code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
'''simple docstring''' import json import os import subprocess import unittest from ast import literal_eval import pytest from parameterized import parameterized, parameterized_class from . import is_sagemaker_available if is_sagemaker_available(): from sagemaker import Session, TrainingJobAnalytics from sagemaker.huggingface import HuggingFace @pytest.mark.skipif( literal_eval(os.getenv("""TEST_SAGEMAKER""" , """False""" ) ) is not True , reason="""Skipping test because should only be run when releasing minor transformers version""" , ) @pytest.mark.usefixtures("""sm_env""" ) @parameterized_class( [ { """framework""": """pytorch""", """script""": """run_glue.py""", """model_name_or_path""": """distilbert-base-cased""", """instance_type""": """ml.p3.16xlarge""", """results""": {"""train_runtime""": 650, """eval_accuracy""": 0.7, """eval_loss""": 0.6}, }, { """framework""": """pytorch""", """script""": """run_ddp.py""", """model_name_or_path""": """distilbert-base-cased""", """instance_type""": """ml.p3.16xlarge""", """results""": {"""train_runtime""": 600, """eval_accuracy""": 0.7, """eval_loss""": 0.6}, }, { """framework""": """tensorflow""", """script""": """run_tf_dist.py""", """model_name_or_path""": """distilbert-base-cased""", """instance_type""": """ml.p3.16xlarge""", """results""": {"""train_runtime""": 600, """eval_accuracy""": 0.6, """eval_loss""": 0.7}, }, ] ) class UpperCAmelCase ( unittest.TestCase ): def UpperCAmelCase_ ( self :Optional[Any] )-> List[Any]: if self.framework == "pytorch": subprocess.run( F"cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py".split() , encoding="utf-8" , check=lowercase_ , ) assert hasattr(self , "env" ) def UpperCAmelCase_ ( self :Dict , lowercase_ :Tuple )-> List[str]: A__ = F"{self.env.base_job_name}-{instance_count}-{'ddp' if 'ddp' in self.script else 'smd'}" # distributed data settings A__ = {"smdistributed": {"dataparallel": {"enabled": True}}} if self.script != "run_ddp.py" else None # creates estimator return HuggingFace( entry_point=self.script , source_dir=self.env.test_path , role=self.env.role , image_uri=self.env.image_uri , base_job_name=lowercase_ , instance_count=lowercase_ , instance_type=self.instance_type , debugger_hook_config=lowercase_ , hyperparameters={**self.env.distributed_hyperparameters, "model_name_or_path": self.model_name_or_path} , metric_definitions=self.env.metric_definitions , distribution=lowercase_ , py_version="py36" , ) def UpperCAmelCase_ ( self :Tuple , lowercase_ :int )-> Tuple: TrainingJobAnalytics(lowercase_ ).export_csv(F"{self.env.test_path}/{job_name}_metrics.csv" ) @parameterized.expand([(2,)] ) def UpperCAmelCase_ ( self :List[Any] , lowercase_ :Optional[Any] )-> Optional[Any]: # create estimator A__ = self.create_estimator(lowercase_ ) # run training estimator.fit() # result dataframe A__ = TrainingJobAnalytics(estimator.latest_training_job.name ).dataframe() # extract kpis A__ = list(result_metrics_df[result_metrics_df.metric_name == "eval_accuracy"]["value"] ) A__ = list(result_metrics_df[result_metrics_df.metric_name == "eval_loss"]["value"] ) # get train time from SageMaker job, this includes starting, preprocessing, stopping A__ = ( Session().describe_training_job(estimator.latest_training_job.name ).get("TrainingTimeInSeconds" , 99_99_99 ) ) # assert kpis assert train_runtime <= self.results["train_runtime"] assert all(t >= self.results["eval_accuracy"] for t in eval_accuracy ) assert all(t <= self.results["eval_loss"] for t in eval_loss ) # dump tests result into json file to share in PR with open(F"{estimator.latest_training_job.name}.json" , "w" ) as outfile: json.dump({"train_time": train_runtime, "eval_accuracy": eval_accuracy, "eval_loss": eval_loss} , lowercase_ )
237
'''simple docstring''' from __future__ import annotations from decimal import Decimal from numpy import array def UpperCamelCase ( _lowerCamelCase : list[list[float]] ): A__ = Decimal # Check if the provided matrix has 2 rows and 2 columns # since this implementation only works for 2x2 matrices if len(_lowerCamelCase ) == 2 and len(matrix[0] ) == 2 and len(matrix[1] ) == 2: # Calculate the determinant of the matrix A__ = float( d(matrix[0][0] ) * d(matrix[1][1] ) - d(matrix[1][0] ) * d(matrix[0][1] ) ) if determinant == 0: raise ValueError("This matrix has no inverse." ) # Creates a copy of the matrix with swapped positions of the elements A__ = [[0.0, 0.0], [0.0, 0.0]] A__, A__ = matrix[1][1], matrix[0][0] A__, A__ = -matrix[1][0], -matrix[0][1] # Calculate the inverse of the matrix return [ [(float(d(_lowerCamelCase ) ) / determinant) or 0.0 for n in row] for row in swapped_matrix ] elif ( len(_lowerCamelCase ) == 3 and len(matrix[0] ) == 3 and len(matrix[1] ) == 3 and len(matrix[2] ) == 3 ): # Calculate the determinant of the matrix using Sarrus rule A__ = float( ( (d(matrix[0][0] ) * d(matrix[1][1] ) * d(matrix[2][2] )) + (d(matrix[0][1] ) * d(matrix[1][2] ) * d(matrix[2][0] )) + (d(matrix[0][2] ) * d(matrix[1][0] ) * d(matrix[2][1] )) ) - ( (d(matrix[0][2] ) * d(matrix[1][1] ) * d(matrix[2][0] )) + (d(matrix[0][1] ) * d(matrix[1][0] ) * d(matrix[2][2] )) + (d(matrix[0][0] ) * d(matrix[1][2] ) * d(matrix[2][1] )) ) ) if determinant == 0: raise ValueError("This matrix has no inverse." ) # Creating cofactor matrix A__ = [ [d(0.0 ), d(0.0 ), d(0.0 )], [d(0.0 ), d(0.0 ), d(0.0 )], [d(0.0 ), d(0.0 ), d(0.0 )], ] A__ = (d(matrix[1][1] ) * d(matrix[2][2] )) - ( d(matrix[1][2] ) * d(matrix[2][1] ) ) A__ = -( (d(matrix[1][0] ) * d(matrix[2][2] )) - (d(matrix[1][2] ) * d(matrix[2][0] )) ) A__ = (d(matrix[1][0] ) * d(matrix[2][1] )) - ( d(matrix[1][1] ) * d(matrix[2][0] ) ) A__ = -( (d(matrix[0][1] ) * d(matrix[2][2] )) - (d(matrix[0][2] ) * d(matrix[2][1] )) ) A__ = (d(matrix[0][0] ) * d(matrix[2][2] )) - ( d(matrix[0][2] ) * d(matrix[2][0] ) ) A__ = -( (d(matrix[0][0] ) * d(matrix[2][1] )) - (d(matrix[0][1] ) * d(matrix[2][0] )) ) A__ = (d(matrix[0][1] ) * d(matrix[1][2] )) - ( d(matrix[0][2] ) * d(matrix[1][1] ) ) A__ = -( (d(matrix[0][0] ) * d(matrix[1][2] )) - (d(matrix[0][2] ) * d(matrix[1][0] )) ) A__ = (d(matrix[0][0] ) * d(matrix[1][1] )) - ( d(matrix[0][1] ) * d(matrix[1][0] ) ) # Transpose the cofactor matrix (Adjoint matrix) A__ = array(_lowerCamelCase ) for i in range(3 ): for j in range(3 ): A__ = cofactor_matrix[j][i] # Inverse of the matrix using the formula (1/determinant) * adjoint matrix A__ = array(_lowerCamelCase ) for i in range(3 ): for j in range(3 ): inverse_matrix[i][j] /= d(_lowerCamelCase ) # Calculate the inverse of the matrix return [[float(d(_lowerCamelCase ) ) or 0.0 for n in row] for row in inverse_matrix] raise ValueError("Please provide a matrix of size 2x2 or 3x3." )
237
1
import unittest from transformers import EsmConfig, is_torch_available from transformers.testing_utils import TestCasePlus, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers.models.esm.modeling_esmfold import EsmForProteinFolding class __lowerCAmelCase : """simple docstring""" def __init__( self : Union[str, Any] , lowerCAmelCase__ : Dict , lowerCAmelCase__ : str=13 , lowerCAmelCase__ : Optional[Any]=7 , lowerCAmelCase__ : Any=False , lowerCAmelCase__ : Optional[Any]=True , lowerCAmelCase__ : List[str]=False , lowerCAmelCase__ : Optional[Any]=False , lowerCAmelCase__ : Tuple=19 , lowerCAmelCase__ : Any=32 , lowerCAmelCase__ : Any=5 , lowerCAmelCase__ : List[Any]=4 , lowerCAmelCase__ : Union[str, Any]=37 , lowerCAmelCase__ : List[str]="gelu" , lowerCAmelCase__ : List[str]=0.1 , lowerCAmelCase__ : List[str]=0.1 , lowerCAmelCase__ : str=512 , lowerCAmelCase__ : List[Any]=16 , lowerCAmelCase__ : List[str]=2 , lowerCAmelCase__ : Optional[int]=0.02 , lowerCAmelCase__ : Dict=3 , lowerCAmelCase__ : Tuple=4 , lowerCAmelCase__ : Optional[int]=None , ) -> List[str]: '''simple docstring''' _UpperCamelCase = parent _UpperCamelCase = batch_size _UpperCamelCase = seq_length _UpperCamelCase = is_training _UpperCamelCase = use_input_mask _UpperCamelCase = use_token_type_ids _UpperCamelCase = use_labels _UpperCamelCase = vocab_size _UpperCamelCase = hidden_size _UpperCamelCase = num_hidden_layers _UpperCamelCase = num_attention_heads _UpperCamelCase = intermediate_size _UpperCamelCase = hidden_act _UpperCamelCase = hidden_dropout_prob _UpperCamelCase = attention_probs_dropout_prob _UpperCamelCase = max_position_embeddings _UpperCamelCase = type_vocab_size _UpperCamelCase = type_sequence_label_size _UpperCamelCase = initializer_range _UpperCamelCase = num_labels _UpperCamelCase = num_choices _UpperCamelCase = scope def snake_case__ ( self : Optional[Any] ) -> List[Any]: '''simple docstring''' _UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _UpperCamelCase = None if self.use_input_mask: _UpperCamelCase = random_attention_mask([self.batch_size, self.seq_length] ) _UpperCamelCase = None _UpperCamelCase = None _UpperCamelCase = None if self.use_labels: _UpperCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _UpperCamelCase = ids_tensor([self.batch_size] , self.num_choices ) _UpperCamelCase = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def snake_case__ ( self : str ) -> Dict: '''simple docstring''' _UpperCamelCase = EsmConfig( vocab_size=33 , hidden_size=self.hidden_size , pad_token_id=1 , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , is_folding_model=lowerCAmelCase__ , esmfold_config={'''trunk''': {'''num_blocks''': 2}, '''fp16_esm''': False} , ) return config def snake_case__ ( self : Union[str, Any] , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : Any , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : str , lowerCAmelCase__ : Optional[int] ) -> Optional[Any]: '''simple docstring''' _UpperCamelCase = EsmForProteinFolding(config=lowerCAmelCase__ ).float() model.to(lowerCAmelCase__ ) model.eval() _UpperCamelCase = model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ ) _UpperCamelCase = model(lowerCAmelCase__ ) _UpperCamelCase = model(lowerCAmelCase__ ) self.parent.assertEqual(result.positions.shape , (8, self.batch_size, self.seq_length, 14, 3) ) self.parent.assertEqual(result.angles.shape , (8, self.batch_size, self.seq_length, 7, 2) ) def snake_case__ ( self : Dict ) -> Tuple: '''simple docstring''' _UpperCamelCase = self.prepare_config_and_inputs() ( ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ) = config_and_inputs _UpperCamelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class __lowerCAmelCase ( __magic_name__ , __magic_name__ , unittest.TestCase ): """simple docstring""" _snake_case : Tuple = False _snake_case : Optional[Any] = (EsmForProteinFolding,) if is_torch_available() else () _snake_case : List[str] = () _snake_case : List[str] = {} if is_torch_available() else {} _snake_case : Dict = False def snake_case__ ( self : List[str] ) -> Dict: '''simple docstring''' _UpperCamelCase = EsmFoldModelTester(self ) _UpperCamelCase = ConfigTester(self , config_class=lowerCAmelCase__ , hidden_size=37 ) def snake_case__ ( self : str ) -> int: '''simple docstring''' self.config_tester.run_common_tests() def snake_case__ ( self : List[Any] ) -> str: '''simple docstring''' _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase__ ) @unittest.skip('''Does not support attention outputs''' ) def snake_case__ ( self : Dict ) -> str: '''simple docstring''' pass @unittest.skip def snake_case__ ( self : List[Any] ) -> str: '''simple docstring''' pass @unittest.skip('''Esm does not support embedding resizing''' ) def snake_case__ ( self : List[str] ) -> str: '''simple docstring''' pass @unittest.skip('''Esm does not support embedding resizing''' ) def snake_case__ ( self : Union[str, Any] ) -> Dict: '''simple docstring''' pass @unittest.skip('''ESMFold does not support passing input embeds!''' ) def snake_case__ ( self : Dict ) -> Optional[int]: '''simple docstring''' pass @unittest.skip('''ESMFold does not support head pruning.''' ) def snake_case__ ( self : Tuple ) -> Optional[Any]: '''simple docstring''' pass @unittest.skip('''ESMFold does not support head pruning.''' ) def snake_case__ ( self : Optional[int] ) -> Union[str, Any]: '''simple docstring''' pass @unittest.skip('''ESMFold does not support head pruning.''' ) def snake_case__ ( self : int ) -> Any: '''simple docstring''' pass @unittest.skip('''ESMFold does not support head pruning.''' ) def snake_case__ ( self : Optional[int] ) -> Any: '''simple docstring''' pass @unittest.skip('''ESMFold does not support head pruning.''' ) def snake_case__ ( self : Optional[Any] ) -> Tuple: '''simple docstring''' pass @unittest.skip('''ESMFold does not output hidden states in the normal way.''' ) def snake_case__ ( self : Optional[int] ) -> List[str]: '''simple docstring''' pass @unittest.skip('''ESMfold does not output hidden states in the normal way.''' ) def snake_case__ ( self : Tuple ) -> Union[str, Any]: '''simple docstring''' pass @unittest.skip('''ESMFold only has one output format.''' ) def snake_case__ ( self : List[str] ) -> List[str]: '''simple docstring''' pass @unittest.skip('''This test doesn\'t work for ESMFold and doesn\'t test core functionality''' ) def snake_case__ ( self : Optional[int] ) -> Dict: '''simple docstring''' pass @unittest.skip('''ESMFold does not support input chunking.''' ) def snake_case__ ( self : List[str] ) -> Dict: '''simple docstring''' pass @unittest.skip('''ESMFold doesn\'t respect you and it certainly doesn\'t respect your initialization arguments.''' ) def snake_case__ ( self : Dict ) -> int: '''simple docstring''' pass @unittest.skip('''ESMFold doesn\'t support torchscript compilation.''' ) def snake_case__ ( self : Union[str, Any] ) -> Dict: '''simple docstring''' pass @unittest.skip('''ESMFold doesn\'t support torchscript compilation.''' ) def snake_case__ ( self : Union[str, Any] ) -> Optional[Any]: '''simple docstring''' pass @unittest.skip('''ESMFold doesn\'t support torchscript compilation.''' ) def snake_case__ ( self : Optional[int] ) -> Union[str, Any]: '''simple docstring''' pass @unittest.skip('''ESMFold doesn\'t support data parallel.''' ) def snake_case__ ( self : Optional[Any] ) -> Optional[Any]: '''simple docstring''' pass @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def snake_case__ ( self : Any ) -> str: '''simple docstring''' pass @require_torch class __lowerCAmelCase ( __magic_name__ ): """simple docstring""" @slow def snake_case__ ( self : Dict ) -> int: '''simple docstring''' _UpperCamelCase = EsmForProteinFolding.from_pretrained('''facebook/esmfold_v1''' ).float() model.eval() _UpperCamelCase = torch.tensor([[0, 6, 4, 13, 5, 4, 16, 12, 11, 7, 2]] ) _UpperCamelCase = model(lowerCAmelCase__ )['''positions'''] _UpperCamelCase = torch.tensor([2.5828, 0.7993, -10.9334] , dtype=torch.floataa ) self.assertTrue(torch.allclose(position_outputs[0, 0, 0, 0] , lowerCAmelCase__ , atol=1e-4 ) )
363
'''simple docstring''' import unittest from transformers import CamembertTokenizer, CamembertTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.utils import is_torch_available from ...test_tokenization_common import TokenizerTesterMixin lowercase__ : Optional[Any] = get_tests_dir('fixtures/test_sentencepiece.model') lowercase__ : Any = get_tests_dir('fixtures/test_sentencepiece_bpe.model') lowercase__ : Tuple = 'pt' if is_torch_available() else 'tf' @require_sentencepiece @require_tokenizers class __lowerCAmelCase ( __magic_name__ , unittest.TestCase ): """simple docstring""" _snake_case : Union[str, Any] = CamembertTokenizer _snake_case : str = CamembertTokenizerFast _snake_case : int = True _snake_case : List[str] = True def snake_case__ ( self : Dict ) -> Any: '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing _UpperCamelCase = CamembertTokenizer(lowerCAmelCase__ ) tokenizer.save_pretrained(self.tmpdirname ) def snake_case__ ( self : Optional[int] ) -> List[Any]: '''simple docstring''' _UpperCamelCase = '''<pad>''' _UpperCamelCase = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowerCAmelCase__ ) , lowerCAmelCase__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowerCAmelCase__ ) , lowerCAmelCase__ ) def snake_case__ ( self : Dict ) -> List[Any]: '''simple docstring''' _UpperCamelCase = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''<s>NOTUSED''' ) self.assertEqual(vocab_keys[1] , '''<pad>''' ) self.assertEqual(vocab_keys[-1] , '''<mask>''' ) self.assertEqual(len(lowerCAmelCase__ ) , 1004 ) def snake_case__ ( self : Optional[Any] ) -> List[str]: '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size , 1005 ) def snake_case__ ( self : int ) -> Tuple: '''simple docstring''' _UpperCamelCase = CamembertTokenizer(lowerCAmelCase__ ) tokenizer.save_pretrained(self.tmpdirname ) _UpperCamelCase = CamembertTokenizerFast.from_pretrained(self.tmpdirname ) _UpperCamelCase = '''I was born in 92000, and this is falsé.''' _UpperCamelCase = tokenizer.encode(lowerCAmelCase__ ) _UpperCamelCase = rust_tokenizer.encode(lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCamelCase = tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ) _UpperCamelCase = rust_tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) # <unk> tokens are not the same for `rust` than for `slow`. # Because spm gives back raw token instead of `unk` in EncodeAsPieces # tokens = tokenizer.tokenize(sequence) _UpperCamelCase = tokenizer.convert_ids_to_tokens(lowerCAmelCase__ ) _UpperCamelCase = rust_tokenizer.tokenize(lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) def snake_case__ ( self : Optional[int] ) -> List[Any]: '''simple docstring''' if not self.test_rust_tokenizer: return _UpperCamelCase = self.get_tokenizer() _UpperCamelCase = self.get_rust_tokenizer() _UpperCamelCase = '''I was born in 92000, and this is falsé.''' _UpperCamelCase = tokenizer.tokenize(lowerCAmelCase__ ) _UpperCamelCase = rust_tokenizer.tokenize(lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCamelCase = tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ) _UpperCamelCase = rust_tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCamelCase = self.get_rust_tokenizer() _UpperCamelCase = tokenizer.encode(lowerCAmelCase__ ) _UpperCamelCase = rust_tokenizer.encode(lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) @slow def snake_case__ ( self : Any ) -> Optional[Any]: '''simple docstring''' _UpperCamelCase = {'''input_ids''': [[5, 54, 7196, 297, 30, 23, 776, 18, 11, 3215, 3705, 8252, 22, 3164, 1181, 2116, 29, 16, 813, 25, 791, 3314, 20, 3446, 38, 27575, 120, 6, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [5, 468, 17, 11, 9088, 20, 1517, 8, 22804, 18818, 10, 38, 629, 607, 607, 142, 19, 7196, 867, 56, 10326, 24, 2267, 20, 416, 5072, 15612, 233, 734, 7, 2399, 27, 16, 3015, 1649, 7, 24, 20, 4338, 2399, 27, 13, 3400, 14, 13, 6189, 8, 930, 9, 6]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on # camembert is a french model. So we also use french texts. _UpperCamelCase = [ '''Le transformeur est un modèle d\'apprentissage profond introduit en 2017, ''' '''utilisé principalement dans le domaine du traitement automatique des langues (TAL).''', '''À l\'instar des réseaux de neurones récurrents (RNN), les transformeurs sont conçus ''' '''pour gérer des données séquentielles, telles que le langage naturel, pour des tâches ''' '''telles que la traduction et la synthèse de texte.''', ] self.tokenizer_integration_test_util( expected_encoding=lowerCAmelCase__ , model_name='''camembert-base''' , revision='''3a0641d9a1aeb7e848a74299e7e4c4bca216b4cf''' , sequences=lowerCAmelCase__ , )
287
0
import json import os import unittest from transformers import OpenAIGPTTokenizer, OpenAIGPTTokenizerFast from transformers.models.openai.tokenization_openai import VOCAB_FILES_NAMES from transformers.testing_utils import require_ftfy, require_spacy, require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class UpperCAmelCase ( SCREAMING_SNAKE_CASE__ , unittest.TestCase ): '''simple docstring''' __UpperCamelCase : Union[str, Any] = OpenAIGPTTokenizer __UpperCamelCase : List[str] = OpenAIGPTTokenizerFast __UpperCamelCase : int = True __UpperCamelCase : Tuple = False def __magic_name__ ( self : List[Any] ): """simple docstring""" super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt _A: Tuple = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''w</w>''', '''r</w>''', '''t</w>''', '''lo''', '''low''', '''er</w>''', '''low</w>''', '''lowest</w>''', '''newer</w>''', '''wider</w>''', '''<unk>''', ] _A: int = dict(zip(lowerCAmelCase_ , range(len(lowerCAmelCase_ ) ) ) ) _A: Tuple = ['''#version: 0.2''', '''l o''', '''lo w''', '''e r</w>''', ''''''] _A: str = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) _A: int = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' ) as fp: fp.write(json.dumps(lowerCAmelCase_ ) ) with open(self.merges_file , '''w''' ) as fp: fp.write('''\n'''.join(lowerCAmelCase_ ) ) def __magic_name__ ( self : List[Any] , lowerCAmelCase_ : Dict ): """simple docstring""" return "lower newer", "lower newer" def __magic_name__ ( self : Optional[int] ): """simple docstring""" _A: Any = OpenAIGPTTokenizer(self.vocab_file , self.merges_file ) _A: Union[str, Any] = '''lower''' _A: List[str] = ['''low''', '''er</w>'''] _A: Optional[int] = tokenizer.tokenize(lowerCAmelCase_ ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) _A: Union[str, Any] = tokens + ['''<unk>'''] _A: List[str] = [1_4, 1_5, 2_0] self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCAmelCase_ ) , lowerCAmelCase_ ) def __magic_name__ ( self : Tuple , lowerCAmelCase_ : List[Any]=1_5 ): """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): _A: Union[str, Any] = self.rust_tokenizer_class.from_pretrained(lowerCAmelCase_ , **lowerCAmelCase_ ) # Simple input _A: Optional[Any] = '''This is a simple input''' _A: List[str] = ['''This is a simple input 1''', '''This is a simple input 2'''] _A: Union[str, Any] = ('''This is a simple input''', '''This is a pair''') _A: List[Any] = [ ('''This is a simple input 1''', '''This is a simple input 2'''), ('''This is a simple pair 1''', '''This is a simple pair 2'''), ] # Simple input tests self.assertRaises(lowerCAmelCase_ , tokenizer_r.encode , lowerCAmelCase_ , max_length=lowerCAmelCase_ , padding='''max_length''' ) # Simple input self.assertRaises(lowerCAmelCase_ , tokenizer_r.encode_plus , lowerCAmelCase_ , max_length=lowerCAmelCase_ , padding='''max_length''' ) # Simple input self.assertRaises( lowerCAmelCase_ , tokenizer_r.batch_encode_plus , lowerCAmelCase_ , max_length=lowerCAmelCase_ , padding='''max_length''' , ) # Pair input self.assertRaises(lowerCAmelCase_ , tokenizer_r.encode , lowerCAmelCase_ , max_length=lowerCAmelCase_ , padding='''max_length''' ) # Pair input self.assertRaises(lowerCAmelCase_ , tokenizer_r.encode_plus , lowerCAmelCase_ , max_length=lowerCAmelCase_ , padding='''max_length''' ) # Pair input self.assertRaises( lowerCAmelCase_ , tokenizer_r.batch_encode_plus , lowerCAmelCase_ , max_length=lowerCAmelCase_ , padding='''max_length''' , ) def __magic_name__ ( self : List[Any] ): """simple docstring""" pass @require_ftfy @require_spacy @require_tokenizers class UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' pass
121
from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices UpperCAmelCase__ : Any = logging.get_logger(__name__) class UpperCAmelCase ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' __UpperCamelCase : Dict = '''maskformer-swin''' __UpperCamelCase : Any = { '''num_attention_heads''': '''num_heads''', '''num_hidden_layers''': '''num_layers''', } def __init__( self : Optional[Any] , lowerCAmelCase_ : int=2_2_4 , lowerCAmelCase_ : Tuple=4 , lowerCAmelCase_ : Any=3 , lowerCAmelCase_ : Dict=9_6 , lowerCAmelCase_ : Union[str, Any]=[2, 2, 6, 2] , lowerCAmelCase_ : Optional[Any]=[3, 6, 1_2, 2_4] , lowerCAmelCase_ : Optional[Any]=7 , lowerCAmelCase_ : Optional[Any]=4.0 , lowerCAmelCase_ : int=True , lowerCAmelCase_ : Optional[Any]=0.0 , lowerCAmelCase_ : Union[str, Any]=0.0 , lowerCAmelCase_ : Dict=0.1 , lowerCAmelCase_ : Optional[Any]="gelu" , lowerCAmelCase_ : Optional[int]=False , lowerCAmelCase_ : Dict=0.02 , lowerCAmelCase_ : str=1e-5 , lowerCAmelCase_ : Union[str, Any]=None , lowerCAmelCase_ : Any=None , **lowerCAmelCase_ : int , ): """simple docstring""" super().__init__(**lowerCAmelCase_ ) _A: List[Any] = image_size _A: Optional[int] = patch_size _A: Optional[Any] = num_channels _A: str = embed_dim _A: Any = depths _A: str = len(lowerCAmelCase_ ) _A: Any = num_heads _A: int = window_size _A: Dict = mlp_ratio _A: str = qkv_bias _A: List[str] = hidden_dropout_prob _A: List[Any] = attention_probs_dropout_prob _A: Dict = drop_path_rate _A: List[Any] = hidden_act _A: Optional[int] = use_absolute_embeddings _A: Tuple = layer_norm_eps _A: Union[str, Any] = initializer_range # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model _A: Any = int(embed_dim * 2 ** (len(lowerCAmelCase_ ) - 1) ) _A: Tuple = ['''stem'''] + [F"""stage{idx}""" for idx in range(1 , len(lowerCAmelCase_ ) + 1 )] _A , _A: str = get_aligned_output_features_output_indices( out_features=lowerCAmelCase_ , out_indices=lowerCAmelCase_ , stage_names=self.stage_names )
121
1
import heapq def lowerCamelCase__ ( A__ : dict ): '''simple docstring''' __lowerCamelCase = [] # for each node and his adjacency list add them and the rank of the node to queue # using heapq module the queue will be filled like a Priority Queue # heapq works with a min priority queue, so I used -1*len(v) to build it for key, value in graph.items(): # O(log(n)) heapq.heappush(A__ , [-1 * len(A__ ), (key, value)] ) # chosen_vertices = set of chosen vertices __lowerCamelCase = set() # while queue isn't empty and there are still edges # (queue[0][0] is the rank of the node with max rank) while queue and queue[0][0] != 0: # extract vertex with max rank from queue and add it to chosen_vertices __lowerCamelCase = heapq.heappop(A__ )[1][0] chosen_vertices.add(A__ ) # Remove all arcs adjacent to argmax for elem in queue: # if v haven't adjacent node, skip if elem[0] == 0: continue # if argmax is reachable from elem # remove argmax from elem's adjacent list and update his rank if argmax in elem[1][1]: __lowerCamelCase = elem[1][1].index(A__ ) del elem[1][1][index] elem[0] += 1 # re-order the queue heapq.heapify(A__ ) return chosen_vertices if __name__ == "__main__": import doctest doctest.testmod() UpperCAmelCase_ = {0: [1, 3], 1: [0, 3], 2: [0, 3, 4], 3: [0, 1, 2], 4: [2, 3]} print(f"""Minimum vertex cover:\n{greedy_min_vertex_cover(graph)}""")
29
UpperCAmelCase_ = {'a': ['c', 'b'], 'b': ['d', 'e'], 'c': [], 'd': [], 'e': []} UpperCAmelCase_ = ['a', 'b', 'c', 'd', 'e'] def lowerCamelCase__ ( A__ : Union[str, Any] , A__ : Optional[int] , A__ : str ): '''simple docstring''' __lowerCamelCase = start # add current to visited visited.append(A__ ) __lowerCamelCase = edges[current] for neighbor in neighbors: # if neighbor not in visited, visit if neighbor not in visited: __lowerCamelCase = topological_sort(A__ , A__ , A__ ) # if all neighbors visited add current to sort sort.append(A__ ) # if all vertices haven't been visited select a new one to visit if len(A__ ) != len(A__ ): for vertice in vertices: if vertice not in visited: __lowerCamelCase = topological_sort(A__ , A__ , A__ ) # return sort return sort if __name__ == "__main__": UpperCAmelCase_ = topological_sort('a', [], []) print(sort)
29
1
__lowerCamelCase : Tuple = 2_56 # Modulus to hash a string __lowerCamelCase : int = 1_00_00_03 def _snake_case ( lowerCAmelCase : str , lowerCAmelCase : str ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = len(lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : str = len(lowerCAmelCase ) if p_len > t_len: return False SCREAMING_SNAKE_CASE_ : str = 0 SCREAMING_SNAKE_CASE_ : Dict = 0 SCREAMING_SNAKE_CASE_ : Optional[int] = 1 # Calculating the hash of pattern and substring of text for i in range(lowerCAmelCase ): SCREAMING_SNAKE_CASE_ : List[str] = (ord(pattern[i] ) + p_hash * alphabet_size) % modulus SCREAMING_SNAKE_CASE_ : List[Any] = (ord(text[i] ) + text_hash * alphabet_size) % modulus if i == p_len - 1: continue SCREAMING_SNAKE_CASE_ : List[str] = (modulus_power * alphabet_size) % modulus for i in range(0 , t_len - p_len + 1 ): if text_hash == p_hash and text[i : i + p_len] == pattern: return True if i == t_len - p_len: continue # Calculate the https://en.wikipedia.org/wiki/Rolling_hash SCREAMING_SNAKE_CASE_ : Union[str, Any] = ( (text_hash - ord(text[i] ) * modulus_power) * alphabet_size + ord(text[i + p_len] ) ) % modulus return False def _snake_case ( ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = "abc1abc12" SCREAMING_SNAKE_CASE_ : Optional[int] = "alskfjaldsabc1abc1abc12k23adsfabcabc" SCREAMING_SNAKE_CASE_ : Union[str, Any] = "alskfjaldsk23adsfabcabc" assert rabin_karp(lowerCAmelCase , lowerCAmelCase ) and not rabin_karp(lowerCAmelCase , lowerCAmelCase ) # Test 2) SCREAMING_SNAKE_CASE_ : List[Any] = "ABABX" SCREAMING_SNAKE_CASE_ : Union[str, Any] = "ABABZABABYABABX" assert rabin_karp(lowerCAmelCase , lowerCAmelCase ) # Test 3) SCREAMING_SNAKE_CASE_ : Dict = "AAAB" SCREAMING_SNAKE_CASE_ : Union[str, Any] = "ABAAAAAB" assert rabin_karp(lowerCAmelCase , lowerCAmelCase ) # Test 4) SCREAMING_SNAKE_CASE_ : Tuple = "abcdabcy" SCREAMING_SNAKE_CASE_ : Optional[int] = "abcxabcdabxabcdabcdabcy" assert rabin_karp(lowerCAmelCase , lowerCAmelCase ) # Test 5) SCREAMING_SNAKE_CASE_ : List[Any] = "Lü" SCREAMING_SNAKE_CASE_ : List[Any] = "Lüsai" assert rabin_karp(lowerCAmelCase , lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : str = "Lue" assert not rabin_karp(lowerCAmelCase , lowerCAmelCase ) print("Success." ) if __name__ == "__main__": test_rabin_karp()
18
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _SCREAMING_SNAKE_CASE = {"configuration_wavlm": ["WAVLM_PRETRAINED_CONFIG_ARCHIVE_MAP", "WavLMConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = [ "WAVLM_PRETRAINED_MODEL_ARCHIVE_LIST", "WavLMForAudioFrameClassification", "WavLMForCTC", "WavLMForSequenceClassification", "WavLMForXVector", "WavLMModel", "WavLMPreTrainedModel", ] if TYPE_CHECKING: from .configuration_wavlm import WAVLM_PRETRAINED_CONFIG_ARCHIVE_MAP, WavLMConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_wavlm import ( WAVLM_PRETRAINED_MODEL_ARCHIVE_LIST, WavLMForAudioFrameClassification, WavLMForCTC, WavLMForSequenceClassification, WavLMForXVector, WavLMModel, WavLMPreTrainedModel, ) else: import sys _SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
158
0
def __a ( lowerCAmelCase_ : Union[str, Any] ) -> List[str]: # noqa: E741 '''simple docstring''' UpperCAmelCase_= len(lowerCAmelCase_ ) UpperCAmelCase_= 0 UpperCAmelCase_= [0] * n UpperCAmelCase_= [False] * n UpperCAmelCase_= [False] * n def dfs(lowerCAmelCase_ : int ,lowerCAmelCase_ : List[str] ,lowerCAmelCase_ : Tuple ,lowerCAmelCase_ : Tuple ): if parent == root: out_edge_count += 1 UpperCAmelCase_= True UpperCAmelCase_= at for to in l[at]: if to == parent: pass elif not visited[to]: UpperCAmelCase_= dfs(lowerCAmelCase_ ,lowerCAmelCase_ ,lowerCAmelCase_ ,lowerCAmelCase_ ) UpperCAmelCase_= min(low[at] ,low[to] ) # AP found via bridge if at < low[to]: UpperCAmelCase_= True # AP found via cycle if at == low[to]: UpperCAmelCase_= True else: UpperCAmelCase_= min(low[at] ,lowerCAmelCase_ ) return out_edge_count for i in range(lowerCAmelCase_ ): if not visited[i]: UpperCAmelCase_= 0 UpperCAmelCase_= dfs(lowerCAmelCase_ ,lowerCAmelCase_ ,-1 ,lowerCAmelCase_ ) UpperCAmelCase_= out_edge_count > 1 for x in range(len(lowerCAmelCase_ ) ): if is_art[x] is True: print(lowerCAmelCase_ ) # Adjacency list of graph __A = { 0: [1, 2], 1: [0, 2], 2: [0, 1, 3, 5], 3: [2, 4], 4: [3], 5: [2, 6, 8], 6: [5, 7], 7: [6, 8], 8: [5, 7], } compute_ap(data)
277
import inspect from typing import Callable, List, Optional, Union import torch from transformers import ( CLIPImageProcessor, CLIPTextModel, CLIPTokenizer, WhisperForConditionalGeneration, WhisperProcessor, ) from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.utils import logging __A = logging.get_logger(__name__) # pylint: disable=invalid-name class lowercase ( snake_case__): """simple docstring""" def __init__( self : Tuple , __UpperCAmelCase : WhisperForConditionalGeneration , __UpperCAmelCase : WhisperProcessor , __UpperCAmelCase : AutoencoderKL , __UpperCAmelCase : CLIPTextModel , __UpperCAmelCase : CLIPTokenizer , __UpperCAmelCase : UNetaDConditionModel , __UpperCAmelCase : Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler] , __UpperCAmelCase : StableDiffusionSafetyChecker , __UpperCAmelCase : CLIPImageProcessor , ) -> List[str]: super().__init__() if safety_checker is None: logger.warning( F"""You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure""" """ that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered""" """ results in services or applications open to the public. Both the diffusers team and Hugging Face""" """ strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling""" """ it only for use-cases that involve analyzing network behavior or auditing its results. For more""" """ information, please have a look at https://github.com/huggingface/diffusers/pull/254 .""" ) self.register_modules( speech_model=__UpperCAmelCase , speech_processor=__UpperCAmelCase , vae=__UpperCAmelCase , text_encoder=__UpperCAmelCase , tokenizer=__UpperCAmelCase , unet=__UpperCAmelCase , scheduler=__UpperCAmelCase , feature_extractor=__UpperCAmelCase , ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __UpperCAmelCase : Optional[Union[str, int]] = "auto" ) -> List[Any]: if slice_size == "auto": UpperCAmelCase_= self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(__UpperCAmelCase ) def _SCREAMING_SNAKE_CASE ( self : Any ) -> Optional[Any]: self.enable_attention_slicing(__UpperCAmelCase ) @torch.no_grad() def __call__( self : str , __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : str=16_000 , __UpperCAmelCase : int = 512 , __UpperCAmelCase : int = 512 , __UpperCAmelCase : int = 50 , __UpperCAmelCase : float = 7.5 , __UpperCAmelCase : Optional[Union[str, List[str]]] = None , __UpperCAmelCase : Optional[int] = 1 , __UpperCAmelCase : float = 0.0 , __UpperCAmelCase : Optional[torch.Generator] = None , __UpperCAmelCase : Optional[torch.FloatTensor] = None , __UpperCAmelCase : Optional[str] = "pil" , __UpperCAmelCase : bool = True , __UpperCAmelCase : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , __UpperCAmelCase : int = 1 , **__UpperCAmelCase : Union[str, Any] , ) -> Any: UpperCAmelCase_= self.speech_processor.feature_extractor( __UpperCAmelCase , return_tensors="""pt""" , sampling_rate=__UpperCAmelCase ).input_features.to(self.device ) UpperCAmelCase_= self.speech_model.generate(__UpperCAmelCase , max_length=480_000 ) UpperCAmelCase_= self.speech_processor.tokenizer.batch_decode(__UpperCAmelCase , skip_special_tokens=__UpperCAmelCase , normalize=__UpperCAmelCase )[ 0 ] if isinstance(__UpperCAmelCase , __UpperCAmelCase ): UpperCAmelCase_= 1 elif isinstance(__UpperCAmelCase , __UpperCAmelCase ): UpperCAmelCase_= len(__UpperCAmelCase ) else: raise ValueError(F"""`prompt` has to be of type `str` or `list` but is {type(__UpperCAmelCase )}""" ) if height % 8 != 0 or width % 8 != 0: raise ValueError(F"""`height` and `width` have to be divisible by 8 but are {height} and {width}.""" ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(__UpperCAmelCase , __UpperCAmelCase ) or callback_steps <= 0) ): raise ValueError( F"""`callback_steps` has to be a positive integer but is {callback_steps} of type""" F""" {type(__UpperCAmelCase )}.""" ) # get prompt text embeddings UpperCAmelCase_= self.tokenizer( __UpperCAmelCase , padding="""max_length""" , max_length=self.tokenizer.model_max_length , return_tensors="""pt""" , ) UpperCAmelCase_= text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: UpperCAmelCase_= self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] ) logger.warning( """The following part of your input was truncated because CLIP can only handle sequences up to""" F""" {self.tokenizer.model_max_length} tokens: {removed_text}""" ) UpperCAmelCase_= text_input_ids[:, : self.tokenizer.model_max_length] UpperCAmelCase_= self.text_encoder(text_input_ids.to(self.device ) )[0] # duplicate text embeddings for each generation per prompt, using mps friendly method UpperCAmelCase_, UpperCAmelCase_, UpperCAmelCase_= text_embeddings.shape UpperCAmelCase_= text_embeddings.repeat(1 , __UpperCAmelCase , 1 ) UpperCAmelCase_= text_embeddings.view(bs_embed * num_images_per_prompt , __UpperCAmelCase , -1 ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. UpperCAmelCase_= guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: UpperCAmelCase_= 42 if negative_prompt is None: UpperCAmelCase_= [""""""] * batch_size elif type(__UpperCAmelCase ) is not type(__UpperCAmelCase ): raise TypeError( F"""`negative_prompt` should be the same type to `prompt`, but got {type(__UpperCAmelCase )} !=""" F""" {type(__UpperCAmelCase )}.""" ) elif isinstance(__UpperCAmelCase , __UpperCAmelCase ): UpperCAmelCase_= [negative_prompt] elif batch_size != len(__UpperCAmelCase ): raise ValueError( F"""`negative_prompt`: {negative_prompt} has batch size {len(__UpperCAmelCase )}, but `prompt`:""" F""" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches""" """ the batch size of `prompt`.""" ) else: UpperCAmelCase_= negative_prompt UpperCAmelCase_= text_input_ids.shape[-1] UpperCAmelCase_= self.tokenizer( __UpperCAmelCase , padding="""max_length""" , max_length=__UpperCAmelCase , truncation=__UpperCAmelCase , return_tensors="""pt""" , ) UpperCAmelCase_= self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt, using mps friendly method UpperCAmelCase_= uncond_embeddings.shape[1] UpperCAmelCase_= uncond_embeddings.repeat(1 , __UpperCAmelCase , 1 ) UpperCAmelCase_= uncond_embeddings.view(batch_size * num_images_per_prompt , __UpperCAmelCase , -1 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes UpperCAmelCase_= torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. UpperCAmelCase_= (batch_size * num_images_per_prompt, self.unet.config.in_channels, height // 8, width // 8) UpperCAmelCase_= text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not exist on mps UpperCAmelCase_= torch.randn(__UpperCAmelCase , generator=__UpperCAmelCase , device="""cpu""" , dtype=__UpperCAmelCase ).to( self.device ) else: UpperCAmelCase_= torch.randn(__UpperCAmelCase , generator=__UpperCAmelCase , device=self.device , dtype=__UpperCAmelCase ) else: if latents.shape != latents_shape: raise ValueError(F"""Unexpected latents shape, got {latents.shape}, expected {latents_shape}""" ) UpperCAmelCase_= latents.to(self.device ) # set timesteps self.scheduler.set_timesteps(__UpperCAmelCase ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand UpperCAmelCase_= self.scheduler.timesteps.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler UpperCAmelCase_= latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] UpperCAmelCase_= """eta""" in set(inspect.signature(self.scheduler.step ).parameters.keys() ) UpperCAmelCase_= {} if accepts_eta: UpperCAmelCase_= eta for i, t in enumerate(self.progress_bar(__UpperCAmelCase ) ): # expand the latents if we are doing classifier free guidance UpperCAmelCase_= torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents UpperCAmelCase_= self.scheduler.scale_model_input(__UpperCAmelCase , __UpperCAmelCase ) # predict the noise residual UpperCAmelCase_= self.unet(__UpperCAmelCase , __UpperCAmelCase , encoder_hidden_states=__UpperCAmelCase ).sample # perform guidance if do_classifier_free_guidance: UpperCAmelCase_, UpperCAmelCase_= noise_pred.chunk(2 ) UpperCAmelCase_= noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # compute the previous noisy sample x_t -> x_t-1 UpperCAmelCase_= self.scheduler.step(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , **__UpperCAmelCase ).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) UpperCAmelCase_= 1 / 0.18_215 * latents UpperCAmelCase_= self.vae.decode(__UpperCAmelCase ).sample UpperCAmelCase_= (image / 2 + 0.5).clamp(0 , 1 ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 UpperCAmelCase_= image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": UpperCAmelCase_= self.numpy_to_pil(__UpperCAmelCase ) if not return_dict: return image return StableDiffusionPipelineOutput(images=__UpperCAmelCase , nsfw_content_detected=__UpperCAmelCase )
277
1
"""simple docstring""" import random import unittest import torch from diffusers import IFInpaintingSuperResolutionPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class lowercase( __a , __a , unittest.TestCase ): '''simple docstring''' lowercase__ = IFInpaintingSuperResolutionPipeline lowercase__ = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {"width", "height"} lowercase__ = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS.union({"original_image"} ) lowercase__ = PipelineTesterMixin.required_optional_params - {"latents"} def UpperCamelCase_ ( self: Union[str, Any] ): '''simple docstring''' return self._get_superresolution_dummy_components() def UpperCamelCase_ ( self: str, a_: str, a_: Tuple=0 ): '''simple docstring''' if str(a_ ).startswith("""mps""" ): _snake_case : Union[str, Any] = torch.manual_seed(a_ ) else: _snake_case : Optional[Any] = torch.Generator(device=a_ ).manual_seed(a_ ) _snake_case : Optional[Any] = floats_tensor((1, 3, 16, 16), rng=random.Random(a_ ) ).to(a_ ) _snake_case : Any = floats_tensor((1, 3, 32, 32), rng=random.Random(a_ ) ).to(a_ ) _snake_case : Tuple = floats_tensor((1, 3, 32, 32), rng=random.Random(a_ ) ).to(a_ ) _snake_case : List[str] = { """prompt""": """A painting of a squirrel eating a burger""", """image""": image, """original_image""": original_image, """mask_image""": mask_image, """generator""": generator, """num_inference_steps""": 2, """output_type""": """numpy""", } return inputs @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available(), reason="""XFormers attention is only available with CUDA and `xformers` installed""", ) def UpperCamelCase_ ( self: Dict ): '''simple docstring''' self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 ) def UpperCamelCase_ ( self: Tuple ): '''simple docstring''' self._test_save_load_optional_components() @unittest.skipIf(torch_device != """cuda""", reason="""float16 requires CUDA""" ) def UpperCamelCase_ ( self: str ): '''simple docstring''' super().test_save_load_floataa(expected_max_diff=1E-1 ) def UpperCamelCase_ ( self: Optional[int] ): '''simple docstring''' self._test_attention_slicing_forward_pass(expected_max_diff=1E-2 ) def UpperCamelCase_ ( self: Dict ): '''simple docstring''' self._test_save_load_local() def UpperCamelCase_ ( self: int ): '''simple docstring''' self._test_inference_batch_single_identical( expected_max_diff=1E-2, )
64
"""simple docstring""" from __future__ import annotations from collections.abc import Sequence from typing import Literal def UpperCAmelCase__ (snake_case__ : str , snake_case__ : str ): """simple docstring""" _snake_case : Optional[Any] = list(snake_case__ ) _snake_case : List[Any] = list(snake_case__ ) _snake_case : List[Any] = 0 for i in range(len(snake_case__ ) ): if lista[i] != lista[i]: count += 1 _snake_case : Any = """_""" if count > 1: return False else: return "".join(snake_case__ ) def UpperCAmelCase__ (snake_case__ : list[str] ): """simple docstring""" _snake_case : int = [] while True: _snake_case : Union[str, Any] = ["""$"""] * len(snake_case__ ) _snake_case : int = [] for i in range(len(snake_case__ ) ): for j in range(i + 1 , len(snake_case__ ) ): _snake_case : List[Any] = compare_string(binary[i] , binary[j] ) if k is False: _snake_case : Dict = """*""" _snake_case : List[Any] = """*""" temp.append("""X""" ) for i in range(len(snake_case__ ) ): if checka[i] == "$": pi.append(binary[i] ) if len(snake_case__ ) == 0: return pi _snake_case : Optional[int] = list(set(snake_case__ ) ) def UpperCAmelCase__ (snake_case__ : int , snake_case__ : Sequence[float] ): """simple docstring""" _snake_case : Optional[int] = [] for minterm in minterms: _snake_case : Any = """""" for _ in range(snake_case__ ): _snake_case : Optional[Any] = str(minterm % 2 ) + string minterm //= 2 temp.append(snake_case__ ) return temp def UpperCAmelCase__ (snake_case__ : str , snake_case__ : str , snake_case__ : int ): """simple docstring""" _snake_case : Dict = list(snake_case__ ) _snake_case : List[str] = list(snake_case__ ) _snake_case : Tuple = 0 for i in range(len(snake_case__ ) ): if lista[i] != lista[i]: count_n += 1 return count_n == count def UpperCAmelCase__ (snake_case__ : list[list[int]] , snake_case__ : list[str] ): """simple docstring""" _snake_case : Any = [] _snake_case : Union[str, Any] = [0] * len(snake_case__ ) for i in range(len(chart[0] ) ): _snake_case : Tuple = 0 _snake_case : str = -1 for j in range(len(snake_case__ ) ): if chart[j][i] == 1: count += 1 _snake_case : Union[str, Any] = j if count == 1: _snake_case : Union[str, Any] = 1 for i in range(len(snake_case__ ) ): if select[i] == 1: for j in range(len(chart[0] ) ): if chart[i][j] == 1: for k in range(len(snake_case__ ) ): _snake_case : List[Any] = 0 temp.append(prime_implicants[i] ) while True: _snake_case : Optional[int] = 0 _snake_case : str = -1 _snake_case : Any = 0 for i in range(len(snake_case__ ) ): _snake_case : Union[str, Any] = chart[i].count(1 ) if count_n > max_n: _snake_case : Dict = count_n _snake_case : Dict = i if max_n == 0: return temp temp.append(prime_implicants[rem] ) for i in range(len(chart[0] ) ): if chart[rem][i] == 1: for j in range(len(snake_case__ ) ): _snake_case : Optional[Any] = 0 def UpperCAmelCase__ (snake_case__ : list[str] , snake_case__ : list[str] ): """simple docstring""" _snake_case : int = [[0 for x in range(len(snake_case__ ) )] for x in range(len(snake_case__ ) )] for i in range(len(snake_case__ ) ): _snake_case : Any = prime_implicants[i].count("""_""" ) for j in range(len(snake_case__ ) ): if is_for_table(prime_implicants[i] , binary[j] , snake_case__ ): _snake_case : Tuple = 1 return chart def UpperCAmelCase__ (): """simple docstring""" _snake_case : int = int(input("""Enter the no. of variables\n""" ) ) _snake_case : List[str] = [ float(snake_case__ ) for x in input( """Enter the decimal representation of Minterms 'Spaces Separated'\n""" ).split() ] _snake_case : List[str] = decimal_to_binary(snake_case__ , snake_case__ ) _snake_case : str = check(snake_case__ ) print("""Prime Implicants are:""" ) print(snake_case__ ) _snake_case : int = prime_implicant_chart(snake_case__ , snake_case__ ) _snake_case : str = selection(snake_case__ , snake_case__ ) print("""Essential Prime Implicants are:""" ) print(snake_case__ ) if __name__ == "__main__": import doctest doctest.testmod() main()
64
1
'''simple docstring''' import copy import json import os import tempfile from transformers import is_torch_available from .test_configuration_utils import config_common_kwargs class UpperCAmelCase ( snake_case_ ): def __init__( self : Optional[Any] , __snake_case : Any , __snake_case : List[Any]=None , __snake_case : Any=True , __snake_case : List[Any]=None , **__snake_case : int ) -> str: _lowerCAmelCase = parent _lowerCAmelCase = config_class _lowerCAmelCase = has_text_modality _lowerCAmelCase = kwargs _lowerCAmelCase = common_properties def lowercase__ ( self : Union[str, Any] ) -> List[str]: _lowerCAmelCase = self.config_class(**self.inputs_dict ) _lowerCAmelCase = ( ["""hidden_size""", """num_attention_heads""", """num_hidden_layers"""] if self.common_properties is None else self.common_properties ) # Add common fields for text models if self.has_text_modality: common_properties.extend(["""vocab_size"""] ) # Test that config has the common properties as getters for prop in common_properties: self.parent.assertTrue(hasattr(__snake_case , __snake_case ) , msg=f"`{prop}` does not exist" ) # Test that config has the common properties as setter for idx, name in enumerate(__snake_case ): try: setattr(__snake_case , __snake_case , __snake_case ) self.parent.assertEqual( getattr(__snake_case , __snake_case ) , __snake_case , msg=f"`{name} value {idx} expected, but was {getattr(__snake_case , __snake_case )}" ) except NotImplementedError: # Some models might not be able to implement setters for common_properties # In that case, a NotImplementedError is raised pass # Test if config class can be called with Config(prop_name=..) for idx, name in enumerate(__snake_case ): try: _lowerCAmelCase = self.config_class(**{name: idx} ) self.parent.assertEqual( getattr(__snake_case , __snake_case ) , __snake_case , msg=f"`{name} value {idx} expected, but was {getattr(__snake_case , __snake_case )}" ) except NotImplementedError: # Some models might not be able to implement setters for common_properties # In that case, a NotImplementedError is raised pass def lowercase__ ( self : str ) -> Optional[int]: _lowerCAmelCase = self.config_class(**self.inputs_dict ) _lowerCAmelCase = json.loads(config.to_json_string() ) for key, value in self.inputs_dict.items(): self.parent.assertEqual(obj[key] , __snake_case ) def lowercase__ ( self : List[Any] ) -> str: _lowerCAmelCase = self.config_class(**self.inputs_dict ) with tempfile.TemporaryDirectory() as tmpdirname: _lowerCAmelCase = os.path.join(__snake_case , """config.json""" ) config_first.to_json_file(__snake_case ) _lowerCAmelCase = self.config_class.from_json_file(__snake_case ) self.parent.assertEqual(config_second.to_dict() , config_first.to_dict() ) def lowercase__ ( self : Tuple ) -> int: _lowerCAmelCase = self.config_class(**self.inputs_dict ) with tempfile.TemporaryDirectory() as tmpdirname: config_first.save_pretrained(__snake_case ) _lowerCAmelCase = self.config_class.from_pretrained(__snake_case ) self.parent.assertEqual(config_second.to_dict() , config_first.to_dict() ) def lowercase__ ( self : Dict ) -> Union[str, Any]: _lowerCAmelCase = self.config_class(**self.inputs_dict ) _lowerCAmelCase = """test""" with tempfile.TemporaryDirectory() as tmpdirname: _lowerCAmelCase = os.path.join(__snake_case , __snake_case ) config_first.save_pretrained(__snake_case ) _lowerCAmelCase = self.config_class.from_pretrained(__snake_case , subfolder=__snake_case ) self.parent.assertEqual(config_second.to_dict() , config_first.to_dict() ) def lowercase__ ( self : Tuple ) -> List[Any]: _lowerCAmelCase = self.config_class(**self.inputs_dict , num_labels=5 ) self.parent.assertEqual(len(config.idalabel ) , 5 ) self.parent.assertEqual(len(config.labelaid ) , 5 ) _lowerCAmelCase = 3 self.parent.assertEqual(len(config.idalabel ) , 3 ) self.parent.assertEqual(len(config.labelaid ) , 3 ) def lowercase__ ( self : List[str] ) -> List[Any]: if self.config_class.is_composition: return _lowerCAmelCase = self.config_class() self.parent.assertIsNotNone(__snake_case ) def lowercase__ ( self : str ) -> Optional[int]: _lowerCAmelCase = copy.deepcopy(__snake_case ) _lowerCAmelCase = self.config_class(**__snake_case ) _lowerCAmelCase = [] for key, value in config_common_kwargs.items(): if key == "torch_dtype": if not is_torch_available(): continue else: import torch if config.torch_dtype != torch.floataa: wrong_values.append(("""torch_dtype""", config.torch_dtype, torch.floataa) ) elif getattr(__snake_case , __snake_case ) != value: wrong_values.append((key, getattr(__snake_case , __snake_case ), value) ) if len(__snake_case ) > 0: _lowerCAmelCase = """\n""".join([f"- {v[0]}: got {v[1]} instead of {v[2]}" for v in wrong_values] ) raise ValueError(f"The following keys were not properly set in the config:\n{errors}" ) def lowercase__ ( self : Union[str, Any] ) -> List[Any]: self.create_and_test_config_common_properties() self.create_and_test_config_to_json_string() self.create_and_test_config_to_json_file() self.create_and_test_config_from_and_save_pretrained() self.create_and_test_config_from_and_save_pretrained_subfolder() self.create_and_test_config_with_num_labels() self.check_config_can_be_init_without_params() self.check_config_arguments_init()
220
'''simple docstring''' from typing import Any, Callable, Dict, List, Optional, Union import torch from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, LMSDiscreteScheduler, PNDMScheduler, StableDiffusionPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker A__ : Optional[int] ='''CompVis/stable-diffusion-v1-1''' A__ : Optional[int] ='''CompVis/stable-diffusion-v1-2''' A__ : List[str] ='''CompVis/stable-diffusion-v1-3''' A__ : Optional[int] ='''CompVis/stable-diffusion-v1-4''' class UpperCAmelCase ( snake_case_ ): def __init__( self : Any , __snake_case : AutoencoderKL , __snake_case : CLIPTextModel , __snake_case : CLIPTokenizer , __snake_case : UNetaDConditionModel , __snake_case : Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler] , __snake_case : StableDiffusionSafetyChecker , __snake_case : CLIPImageProcessor , __snake_case : bool = True , ) -> Any: super()._init_() _lowerCAmelCase = StableDiffusionPipeline.from_pretrained(__snake_case ) _lowerCAmelCase = StableDiffusionPipeline.from_pretrained(__snake_case ) _lowerCAmelCase = StableDiffusionPipeline.from_pretrained(__snake_case ) _lowerCAmelCase = StableDiffusionPipeline( vae=__snake_case , text_encoder=__snake_case , tokenizer=__snake_case , unet=__snake_case , scheduler=__snake_case , safety_checker=__snake_case , feature_extractor=__snake_case , requires_safety_checker=__snake_case , ) self.register_modules(pipelinea=self.pipea , pipelinea=self.pipea , pipelinea=self.pipea , pipelinea=self.pipea ) @property def lowercase__ ( self : List[Any] ) -> Dict[str, Any]: return {k: getattr(self , __snake_case ) for k in self.config.keys() if not k.startswith("""_""" )} def lowercase__ ( self : List[Any] , __snake_case : Optional[Union[str, int]] = "auto" ) -> Tuple: if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory _lowerCAmelCase = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(__snake_case ) def lowercase__ ( self : str ) -> int: self.enable_attention_slicing(__snake_case ) @torch.no_grad() def lowercase__ ( self : Any , __snake_case : Union[str, List[str]] , __snake_case : int = 5_12 , __snake_case : int = 5_12 , __snake_case : int = 50 , __snake_case : float = 7.5 , __snake_case : Optional[Union[str, List[str]]] = None , __snake_case : Optional[int] = 1 , __snake_case : float = 0.0 , __snake_case : Optional[torch.Generator] = None , __snake_case : Optional[torch.FloatTensor] = None , __snake_case : Optional[str] = "pil" , __snake_case : bool = True , __snake_case : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , __snake_case : int = 1 , **__snake_case : Tuple , ) -> Tuple: return self.pipea( prompt=__snake_case , height=__snake_case , width=__snake_case , num_inference_steps=__snake_case , guidance_scale=__snake_case , negative_prompt=__snake_case , num_images_per_prompt=__snake_case , eta=__snake_case , generator=__snake_case , latents=__snake_case , output_type=__snake_case , return_dict=__snake_case , callback=__snake_case , callback_steps=__snake_case , **__snake_case , ) @torch.no_grad() def lowercase__ ( self : Dict , __snake_case : Union[str, List[str]] , __snake_case : int = 5_12 , __snake_case : int = 5_12 , __snake_case : int = 50 , __snake_case : float = 7.5 , __snake_case : Optional[Union[str, List[str]]] = None , __snake_case : Optional[int] = 1 , __snake_case : float = 0.0 , __snake_case : Optional[torch.Generator] = None , __snake_case : Optional[torch.FloatTensor] = None , __snake_case : Optional[str] = "pil" , __snake_case : bool = True , __snake_case : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , __snake_case : int = 1 , **__snake_case : int , ) -> List[Any]: return self.pipea( prompt=__snake_case , height=__snake_case , width=__snake_case , num_inference_steps=__snake_case , guidance_scale=__snake_case , negative_prompt=__snake_case , num_images_per_prompt=__snake_case , eta=__snake_case , generator=__snake_case , latents=__snake_case , output_type=__snake_case , return_dict=__snake_case , callback=__snake_case , callback_steps=__snake_case , **__snake_case , ) @torch.no_grad() def lowercase__ ( self : Any , __snake_case : Union[str, List[str]] , __snake_case : int = 5_12 , __snake_case : int = 5_12 , __snake_case : int = 50 , __snake_case : float = 7.5 , __snake_case : Optional[Union[str, List[str]]] = None , __snake_case : Optional[int] = 1 , __snake_case : float = 0.0 , __snake_case : Optional[torch.Generator] = None , __snake_case : Optional[torch.FloatTensor] = None , __snake_case : Optional[str] = "pil" , __snake_case : bool = True , __snake_case : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , __snake_case : int = 1 , **__snake_case : Tuple , ) -> Dict: return self.pipea( prompt=__snake_case , height=__snake_case , width=__snake_case , num_inference_steps=__snake_case , guidance_scale=__snake_case , negative_prompt=__snake_case , num_images_per_prompt=__snake_case , eta=__snake_case , generator=__snake_case , latents=__snake_case , output_type=__snake_case , return_dict=__snake_case , callback=__snake_case , callback_steps=__snake_case , **__snake_case , ) @torch.no_grad() def lowercase__ ( self : Dict , __snake_case : Union[str, List[str]] , __snake_case : int = 5_12 , __snake_case : int = 5_12 , __snake_case : int = 50 , __snake_case : float = 7.5 , __snake_case : Optional[Union[str, List[str]]] = None , __snake_case : Optional[int] = 1 , __snake_case : float = 0.0 , __snake_case : Optional[torch.Generator] = None , __snake_case : Optional[torch.FloatTensor] = None , __snake_case : Optional[str] = "pil" , __snake_case : bool = True , __snake_case : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , __snake_case : int = 1 , **__snake_case : str , ) -> List[Any]: return self.pipea( prompt=__snake_case , height=__snake_case , width=__snake_case , num_inference_steps=__snake_case , guidance_scale=__snake_case , negative_prompt=__snake_case , num_images_per_prompt=__snake_case , eta=__snake_case , generator=__snake_case , latents=__snake_case , output_type=__snake_case , return_dict=__snake_case , callback=__snake_case , callback_steps=__snake_case , **__snake_case , ) @torch.no_grad() def lowercase__ ( self : Optional[int] , __snake_case : Union[str, List[str]] , __snake_case : int = 5_12 , __snake_case : int = 5_12 , __snake_case : int = 50 , __snake_case : float = 7.5 , __snake_case : Optional[Union[str, List[str]]] = None , __snake_case : Optional[int] = 1 , __snake_case : float = 0.0 , __snake_case : Optional[torch.Generator] = None , __snake_case : Optional[torch.FloatTensor] = None , __snake_case : Optional[str] = "pil" , __snake_case : bool = True , __snake_case : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , __snake_case : int = 1 , **__snake_case : Tuple , ) -> Optional[Any]: _lowerCAmelCase = """cuda""" if torch.cuda.is_available() else """cpu""" self.to(__snake_case ) # Checks if the height and width are divisible by 8 or not if height % 8 != 0 or width % 8 != 0: raise ValueError(f"`height` and `width` must be divisible by 8 but are {height} and {width}." ) # Get first result from Stable Diffusion Checkpoint v1.1 _lowerCAmelCase = self.textaimg_sda_a( prompt=__snake_case , height=__snake_case , width=__snake_case , num_inference_steps=__snake_case , guidance_scale=__snake_case , negative_prompt=__snake_case , num_images_per_prompt=__snake_case , eta=__snake_case , generator=__snake_case , latents=__snake_case , output_type=__snake_case , return_dict=__snake_case , callback=__snake_case , callback_steps=__snake_case , **__snake_case , ) # Get first result from Stable Diffusion Checkpoint v1.2 _lowerCAmelCase = self.textaimg_sda_a( prompt=__snake_case , height=__snake_case , width=__snake_case , num_inference_steps=__snake_case , guidance_scale=__snake_case , negative_prompt=__snake_case , num_images_per_prompt=__snake_case , eta=__snake_case , generator=__snake_case , latents=__snake_case , output_type=__snake_case , return_dict=__snake_case , callback=__snake_case , callback_steps=__snake_case , **__snake_case , ) # Get first result from Stable Diffusion Checkpoint v1.3 _lowerCAmelCase = self.textaimg_sda_a( prompt=__snake_case , height=__snake_case , width=__snake_case , num_inference_steps=__snake_case , guidance_scale=__snake_case , negative_prompt=__snake_case , num_images_per_prompt=__snake_case , eta=__snake_case , generator=__snake_case , latents=__snake_case , output_type=__snake_case , return_dict=__snake_case , callback=__snake_case , callback_steps=__snake_case , **__snake_case , ) # Get first result from Stable Diffusion Checkpoint v1.4 _lowerCAmelCase = self.textaimg_sda_a( prompt=__snake_case , height=__snake_case , width=__snake_case , num_inference_steps=__snake_case , guidance_scale=__snake_case , negative_prompt=__snake_case , num_images_per_prompt=__snake_case , eta=__snake_case , generator=__snake_case , latents=__snake_case , output_type=__snake_case , return_dict=__snake_case , callback=__snake_case , callback_steps=__snake_case , **__snake_case , ) # Get all result images into a single list and pass it via StableDiffusionPipelineOutput for final result return StableDiffusionPipelineOutput([resa[0], resa[0], resa[0], resa[0]] )
220
1
"""simple docstring""" import os from pathlib import Path import numpy as np import pytest from pack_dataset import pack_data_dir from parameterized import parameterized from save_len_file import save_len_file from torch.utils.data import DataLoader from transformers import AutoTokenizer from transformers.models.mbart.modeling_mbart import shift_tokens_right from transformers.testing_utils import TestCasePlus, slow from utils import FAIRSEQ_AVAILABLE, DistributedSortishSampler, LegacySeqaSeqDataset, SeqaSeqDataset __snake_case = '''bert-base-cased''' __snake_case = '''google/pegasus-xsum''' __snake_case = [''' Sam ate lunch today.''', '''Sams lunch ingredients.'''] __snake_case = ['''A very interesting story about what I ate for lunch.''', '''Avocado, celery, turkey, coffee'''] __snake_case = '''patrickvonplaten/t5-tiny-random''' __snake_case = '''sshleifer/bart-tiny-random''' __snake_case = '''sshleifer/tiny-mbart''' __snake_case = '''sshleifer/tiny-marian-en-de''' def A_ ( _lowerCAmelCase : List[Any], _lowerCAmelCase : List[str] ): """simple docstring""" _a = """\n""".join(_lowerCAmelCase ) Path(_lowerCAmelCase ).open('''w''' ).writelines(_lowerCAmelCase ) def A_ ( _lowerCAmelCase : Optional[int] ): """simple docstring""" for split in ["train", "val", "test"]: _dump_articles(os.path.join(_lowerCAmelCase, f'{split}.source' ), _lowerCAmelCase ) _dump_articles(os.path.join(_lowerCAmelCase, f'{split}.target' ), _lowerCAmelCase ) return tmp_dir class __lowerCamelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' @parameterized.expand( [ MBART_TINY, MARIAN_TINY, T5_TINY, BART_TINY, PEGASUS_XSUM, ] , ) @slow def _UpperCAmelCase ( self , __UpperCAmelCase ) -> Union[str, Any]: _a = AutoTokenizer.from_pretrained(__UpperCAmelCase ) _a = make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) _a = max(len(tokenizer.encode(__UpperCAmelCase ) ) for a in ARTICLES ) _a = max(len(tokenizer.encode(__UpperCAmelCase ) ) for a in SUMMARIES ) _a = 4 _a = 8 assert max_len_target > max_src_len # Will be truncated assert max_len_source > max_src_len # Will be truncated _a = """ro_RO""", """de_DE""" # ignored for all but mbart, but never causes error. _a = SeqaSeqDataset( __UpperCAmelCase , data_dir=__UpperCAmelCase , type_path='''train''' , max_source_length=__UpperCAmelCase , max_target_length=__UpperCAmelCase , src_lang=__UpperCAmelCase , tgt_lang=__UpperCAmelCase , ) _a = DataLoader(__UpperCAmelCase , batch_size=2 , collate_fn=train_dataset.collate_fn ) for batch in dataloader: assert isinstance(__UpperCAmelCase , __UpperCAmelCase ) assert batch["attention_mask"].shape == batch["input_ids"].shape # show that articles were trimmed. assert batch["input_ids"].shape[1] == max_src_len # show that targets are the same len assert batch["labels"].shape[1] == max_tgt_len if tok_name != MBART_TINY: continue # check language codes in correct place _a = shift_tokens_right(batch['''labels'''] , tokenizer.pad_token_id ) assert batch["decoder_input_ids"][0, 0].item() == tokenizer.lang_code_to_id[tgt_lang] assert batch["decoder_input_ids"][0, -1].item() == tokenizer.eos_token_id assert batch["input_ids"][0, -2].item() == tokenizer.eos_token_id assert batch["input_ids"][0, -1].item() == tokenizer.lang_code_to_id[src_lang] break # No need to test every batch @parameterized.expand([BART_TINY, BERT_BASE_CASED] ) def _UpperCAmelCase ( self , __UpperCAmelCase ) -> Any: _a = AutoTokenizer.from_pretrained(__UpperCAmelCase ) _a = make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) _a = max(len(tokenizer.encode(__UpperCAmelCase ) ) for a in ARTICLES ) _a = max(len(tokenizer.encode(__UpperCAmelCase ) ) for a in SUMMARIES ) _a = 4 _a = LegacySeqaSeqDataset( __UpperCAmelCase , data_dir=__UpperCAmelCase , type_path='''train''' , max_source_length=20 , max_target_length=__UpperCAmelCase , ) _a = DataLoader(__UpperCAmelCase , batch_size=2 , collate_fn=train_dataset.collate_fn ) for batch in dataloader: assert batch["attention_mask"].shape == batch["input_ids"].shape # show that articles were trimmed. assert batch["input_ids"].shape[1] == max_len_source assert 20 >= batch["input_ids"].shape[1] # trimmed significantly # show that targets were truncated assert batch["labels"].shape[1] == trunc_target # Truncated assert max_len_target > trunc_target # Truncated break # No need to test every batch def _UpperCAmelCase ( self ) -> int: _a = AutoTokenizer.from_pretrained('''facebook/mbart-large-cc25''' ) _a = Path(make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) ) _a = tmp_dir.joinpath('''train.source''' ).open().readlines() _a = Path(make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) ) pack_data_dir(__UpperCAmelCase , __UpperCAmelCase , 128 , __UpperCAmelCase ) _a = {x.name for x in tmp_dir.iterdir()} _a = {x.name for x in save_dir.iterdir()} _a = save_dir.joinpath('''train.source''' ).open().readlines() # orig: [' Sam ate lunch today.\n', 'Sams lunch ingredients.'] # desired_packed: [' Sam ate lunch today.\n Sams lunch ingredients.'] assert len(__UpperCAmelCase ) < len(__UpperCAmelCase ) assert len(__UpperCAmelCase ) == 1 assert len(packed_examples[0] ) == sum(len(__UpperCAmelCase ) for x in orig_examples ) assert orig_paths == new_paths @pytest.mark.skipif(not FAIRSEQ_AVAILABLE , reason='''This test requires fairseq''' ) def _UpperCAmelCase ( self ) -> int: if not FAIRSEQ_AVAILABLE: return _a = self._get_dataset(max_len=64 ) _a = 64 _a = ds.make_dynamic_sampler(__UpperCAmelCase , required_batch_size_multiple=__UpperCAmelCase ) _a = [len(__UpperCAmelCase ) for x in batch_sampler] assert len(set(__UpperCAmelCase ) ) > 1 # it's not dynamic batch size if every batch is the same length assert sum(__UpperCAmelCase ) == len(__UpperCAmelCase ) # no dropped or added examples _a = DataLoader(__UpperCAmelCase , batch_sampler=__UpperCAmelCase , collate_fn=ds.collate_fn , num_workers=2 ) _a = [] _a = [] for batch in data_loader: _a = batch["""input_ids"""].shape _a = src_shape[0] assert bs % required_batch_size_multiple == 0 or bs < required_batch_size_multiple _a = np.product(batch['''input_ids'''].shape ) num_src_per_batch.append(__UpperCAmelCase ) if num_src_tokens > (max_tokens * 1.1): failures.append(__UpperCAmelCase ) assert num_src_per_batch[0] == max(__UpperCAmelCase ) if failures: raise AssertionError(F'too many tokens in {len(__UpperCAmelCase )} batches' ) def _UpperCAmelCase ( self ) -> List[str]: _a = self._get_dataset(max_len=512 ) _a = 2 _a = ds.make_sortish_sampler(__UpperCAmelCase , shuffle=__UpperCAmelCase ) _a = DataLoader(__UpperCAmelCase , batch_size=__UpperCAmelCase , collate_fn=ds.collate_fn , num_workers=2 ) _a = DataLoader(__UpperCAmelCase , batch_size=__UpperCAmelCase , collate_fn=ds.collate_fn , num_workers=2 , sampler=__UpperCAmelCase ) _a = tokenizer.pad_token_id def count_pad_tokens(__UpperCAmelCase , __UpperCAmelCase="input_ids" ): return [batch[k].eq(__UpperCAmelCase ).sum().item() for batch in data_loader] assert sum(count_pad_tokens(__UpperCAmelCase , k='''labels''' ) ) < sum(count_pad_tokens(__UpperCAmelCase , k='''labels''' ) ) assert sum(count_pad_tokens(__UpperCAmelCase ) ) < sum(count_pad_tokens(__UpperCAmelCase ) ) assert len(__UpperCAmelCase ) == len(__UpperCAmelCase ) def _UpperCAmelCase ( self , __UpperCAmelCase=1000 , __UpperCAmelCase=128 ) -> str: if os.getenv('''USE_REAL_DATA''' , __UpperCAmelCase ): _a = """examples/seq2seq/wmt_en_ro""" _a = max_len * 2 * 64 if not Path(__UpperCAmelCase ).joinpath('''train.len''' ).exists(): save_len_file(__UpperCAmelCase , __UpperCAmelCase ) else: _a = """examples/seq2seq/test_data/wmt_en_ro""" _a = max_len * 4 save_len_file(__UpperCAmelCase , __UpperCAmelCase ) _a = AutoTokenizer.from_pretrained(__UpperCAmelCase ) _a = SeqaSeqDataset( __UpperCAmelCase , data_dir=__UpperCAmelCase , type_path='''train''' , max_source_length=__UpperCAmelCase , max_target_length=__UpperCAmelCase , n_obs=__UpperCAmelCase , ) return ds, max_tokens, tokenizer def _UpperCAmelCase ( self ) -> List[Any]: _a = self._get_dataset() _a = set(DistributedSortishSampler(__UpperCAmelCase , 256 , num_replicas=2 , rank=0 , add_extra_examples=__UpperCAmelCase ) ) _a = set(DistributedSortishSampler(__UpperCAmelCase , 256 , num_replicas=2 , rank=1 , add_extra_examples=__UpperCAmelCase ) ) assert idsa.intersection(__UpperCAmelCase ) == set() @parameterized.expand( [ MBART_TINY, MARIAN_TINY, T5_TINY, BART_TINY, PEGASUS_XSUM, ] , ) def _UpperCAmelCase ( self , __UpperCAmelCase ) -> str: _a = AutoTokenizer.from_pretrained(__UpperCAmelCase , use_fast=__UpperCAmelCase ) if tok_name == MBART_TINY: _a = SeqaSeqDataset( __UpperCAmelCase , data_dir=make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) , type_path='''train''' , max_source_length=4 , max_target_length=8 , src_lang='''EN''' , tgt_lang='''FR''' , ) _a = train_dataset.dataset_kwargs assert "src_lang" in kwargs and "tgt_lang" in kwargs else: _a = SeqaSeqDataset( __UpperCAmelCase , data_dir=make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) , type_path='''train''' , max_source_length=4 , max_target_length=8 , ) _a = train_dataset.dataset_kwargs assert "add_prefix_space" not in kwargs if tok_name != BART_TINY else "add_prefix_space" in kwargs assert len(__UpperCAmelCase ) == 1 if tok_name == BART_TINY else len(__UpperCAmelCase ) == 0
320
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL _lowerCamelCase =logging.get_logger(__name__) class A__ ( __SCREAMING_SNAKE_CASE): _UpperCAmelCase : Union[str, Any] = ["""pixel_values"""] def __init__( self , __magic_name__ = True , __magic_name__ = None , __magic_name__ = None , __magic_name__ = PILImageResampling.BILINEAR , __magic_name__ = True , __magic_name__ = 1 / 2_5_5 , __magic_name__ = True , __magic_name__ = None , __magic_name__ = None , **__magic_name__ , ): super().__init__(**__magic_name__ ) lowerCamelCase : Dict = size if size is not None else {"""shortest_edge""": 3_8_4} lowerCamelCase : Tuple = get_size_dict(__magic_name__ , default_to_square=__magic_name__ ) lowerCamelCase : Dict = do_resize lowerCamelCase : List[Any] = size # Default value set here for backwards compatibility where the value in config is None lowerCamelCase : Any = crop_pct if crop_pct is not None else 2_2_4 / 2_5_6 lowerCamelCase : Union[str, Any] = resample lowerCamelCase : str = do_rescale lowerCamelCase : Union[str, Any] = rescale_factor lowerCamelCase : Tuple = do_normalize lowerCamelCase : Optional[Any] = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN lowerCamelCase : int = image_std if image_std is not None else IMAGENET_STANDARD_STD def UpperCamelCase__ ( self , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ = PILImageResampling.BICUBIC , __magic_name__ = None , **__magic_name__ , ): lowerCamelCase : Union[str, Any] = get_size_dict(__magic_name__ , default_to_square=__magic_name__ ) if "shortest_edge" not in size: raise ValueError(F'''Size dictionary must contain \'shortest_edge\' key. Got {size.keys()}''' ) lowerCamelCase : str = size["""shortest_edge"""] if shortest_edge < 3_8_4: # maintain same ratio, resizing shortest edge to shortest_edge/crop_pct lowerCamelCase : List[str] = int(shortest_edge / crop_pct ) lowerCamelCase : Optional[Any] = get_resize_output_image_size(__magic_name__ , size=__magic_name__ , default_to_square=__magic_name__ ) lowerCamelCase : Optional[int] = resize(image=__magic_name__ , size=__magic_name__ , resample=__magic_name__ , data_format=__magic_name__ , **__magic_name__ ) # then crop to (shortest_edge, shortest_edge) return center_crop(image=__magic_name__ , size=(shortest_edge, shortest_edge) , data_format=__magic_name__ , **__magic_name__ ) else: # warping (no cropping) when evaluated at 384 or larger return resize( __magic_name__ , size=(shortest_edge, shortest_edge) , resample=__magic_name__ , data_format=__magic_name__ , **__magic_name__ ) def UpperCamelCase__ ( self , __magic_name__ , __magic_name__ , __magic_name__ = None , **__magic_name__ , ): return rescale(__magic_name__ , scale=__magic_name__ , data_format=__magic_name__ , **__magic_name__ ) def UpperCamelCase__ ( self , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ = None , **__magic_name__ , ): return normalize(__magic_name__ , mean=__magic_name__ , std=__magic_name__ , data_format=__magic_name__ , **__magic_name__ ) def UpperCamelCase__ ( self , __magic_name__ , __magic_name__ = None , __magic_name__ = None , __magic_name__ = None , __magic_name__ = None , __magic_name__ = None , __magic_name__ = None , __magic_name__ = None , __magic_name__ = None , __magic_name__ = None , __magic_name__ = None , __magic_name__ = ChannelDimension.FIRST , **__magic_name__ , ): lowerCamelCase : str = do_resize if do_resize is not None else self.do_resize lowerCamelCase : Optional[Any] = crop_pct if crop_pct is not None else self.crop_pct lowerCamelCase : Optional[int] = resample if resample is not None else self.resample lowerCamelCase : Optional[int] = do_rescale if do_rescale is not None else self.do_rescale lowerCamelCase : List[str] = rescale_factor if rescale_factor is not None else self.rescale_factor lowerCamelCase : Tuple = do_normalize if do_normalize is not None else self.do_normalize lowerCamelCase : Optional[Any] = image_mean if image_mean is not None else self.image_mean lowerCamelCase : Tuple = image_std if image_std is not None else self.image_std lowerCamelCase : Dict = size if size is not None else self.size lowerCamelCase : str = get_size_dict(__magic_name__ , default_to_square=__magic_name__ ) lowerCamelCase : List[str] = make_list_of_images(__magic_name__ ) if not valid_images(__magic_name__ ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None or resample is None: raise ValueError("""Size and resample must be specified if do_resize is True.""" ) if do_resize and size["shortest_edge"] < 3_8_4 and crop_pct is None: raise ValueError("""crop_pct must be specified if size < 384.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) # All transformations expect numpy arrays. lowerCamelCase : Optional[Any] = [to_numpy_array(__magic_name__ ) for image in images] if do_resize: lowerCamelCase : List[Any] = [self.resize(image=__magic_name__ , size=__magic_name__ , crop_pct=__magic_name__ , resample=__magic_name__ ) for image in images] if do_rescale: lowerCamelCase : Union[str, Any] = [self.rescale(image=__magic_name__ , scale=__magic_name__ ) for image in images] if do_normalize: lowerCamelCase : List[Any] = [self.normalize(image=__magic_name__ , mean=__magic_name__ , std=__magic_name__ ) for image in images] lowerCamelCase : Optional[int] = [to_channel_dimension_format(__magic_name__ , __magic_name__ ) for image in images] lowerCamelCase : List[str] = {"""pixel_values""": images} return BatchFeature(data=__magic_name__ , tensor_type=__magic_name__ )
287
0
"""simple docstring""" def UpperCamelCase_( _snake_case : float , _snake_case : list[float] ): """simple docstring""" if discount_rate < 0: raise ValueError('Discount rate cannot be negative' ) if not cash_flows: raise ValueError('Cash flows list cannot be empty' ) __a =sum( cash_flow / ((1 + discount_rate) ** i) for i, cash_flow in enumerate(_snake_case ) ) return round(_snake_case , ndigits=2 ) if __name__ == "__main__": import doctest doctest.testmod()
358
import string # frequency taken from https://en.wikipedia.org/wiki/Letter_frequency _lowerCAmelCase : Tuple = { "E": 12.70, "T": 9.06, "A": 8.17, "O": 7.51, "I": 6.97, "N": 6.75, "S": 6.33, "H": 6.09, "R": 5.99, "D": 4.25, "L": 4.03, "C": 2.78, "U": 2.76, "M": 2.41, "W": 2.36, "F": 2.23, "G": 2.02, "Y": 1.97, "P": 1.93, "B": 1.29, "V": 0.98, "K": 0.77, "J": 0.15, "X": 0.15, "Q": 0.10, "Z": 0.07, } _lowerCAmelCase : Optional[int] = "ETAOINSHRDLCUMWFGYPBVKJXQZ" _lowerCAmelCase : Any = "ABCDEFGHIJKLMNOPQRSTUVWXYZ" def UpperCamelCase_( _snake_case : str ): """simple docstring""" __a ={letter: 0 for letter in string.ascii_uppercase} for letter in message.upper(): if letter in LETTERS: letter_count[letter] += 1 return letter_count def UpperCamelCase_( _snake_case : tuple ): """simple docstring""" return x[0] def UpperCamelCase_( _snake_case : str ): """simple docstring""" __a =get_letter_count(_snake_case ) __a ={ freq: [] for letter, freq in letter_to_freq.items() } for letter in LETTERS: freq_to_letter[letter_to_freq[letter]].append(_snake_case ) __a ={} for freq in freq_to_letter: freq_to_letter[freq].sort(key=ETAOIN.find , reverse=_snake_case ) __a =''.join(freq_to_letter[freq] ) __a =list(freq_to_letter_str.items() ) freq_pairs.sort(key=_snake_case , reverse=_snake_case ) __a =[freq_pair[1] for freq_pair in freq_pairs] return "".join(_snake_case ) def UpperCamelCase_( _snake_case : str ): """simple docstring""" __a =get_frequency_order(_snake_case ) __a =0 for common_letter in ETAOIN[:6]: if common_letter in freq_order[:6]: match_score += 1 for uncommon_letter in ETAOIN[-6:]: if uncommon_letter in freq_order[-6:]: match_score += 1 return match_score if __name__ == "__main__": import doctest doctest.testmod()
308
0
import glob import os import random from string import ascii_lowercase, digits import cva import numpy as np # Parrameters __UpperCAmelCase = (720, 1280) # Height, Width __UpperCAmelCase = (0.4, 0.6) # if height or width lower than this scale, drop it. __UpperCAmelCase = 1 / 100 __UpperCAmelCase = '' __UpperCAmelCase = '' __UpperCAmelCase = '' __UpperCAmelCase = 250 def lowercase__ ( ): '''simple docstring''' UpperCAmelCase_ , UpperCAmelCase_ : Tuple = get_dataset(__snake_case , __snake_case ) for index in range(__snake_case ): UpperCAmelCase_ : Optional[int] = random.sample(range(len(__snake_case ) ) , 4 ) UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : List[str] = update_image_and_anno( __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , filter_scale=__snake_case , ) # Get random string code: '7b7ad245cdff75241935e4dd860f3bad' UpperCAmelCase_ : Optional[Any] = random_chars(32 ) UpperCAmelCase_ : Optional[int] = path.split(os.sep )[-1].rsplit('.' , 1 )[0] UpperCAmelCase_ : Optional[int] = F"{OUTPUT_DIR}/{file_name}_MOSAIC_{letter_code}" cva.imwrite(F"{file_root}.jpg" , __snake_case , [cva.IMWRITE_JPEG_QUALITY, 85] ) print(F"Succeeded {index+1}/{NUMBER_IMAGES} with {file_name}" ) UpperCAmelCase_ : Optional[Any] = [] for anno in new_annos: UpperCAmelCase_ : str = anno[3] - anno[1] UpperCAmelCase_ : Any = anno[4] - anno[2] UpperCAmelCase_ : Any = anno[1] + width / 2 UpperCAmelCase_ : Dict = anno[2] + height / 2 UpperCAmelCase_ : Union[str, Any] = F"{anno[0]} {x_center} {y_center} {width} {height}" annos_list.append(__snake_case ) with open(F"{file_root}.txt" , 'w' ) as outfile: outfile.write('\n'.join(line for line in annos_list ) ) def lowercase__ ( __snake_case : str , __snake_case : str ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = [] UpperCAmelCase_ : Dict = [] for label_file in glob.glob(os.path.join(__snake_case , '*.txt' ) ): UpperCAmelCase_ : Union[str, Any] = label_file.split(os.sep )[-1].rsplit('.' , 1 )[0] with open(__snake_case ) as in_file: UpperCAmelCase_ : str = in_file.readlines() UpperCAmelCase_ : Optional[int] = os.path.join(__snake_case , F"{label_name}.jpg" ) UpperCAmelCase_ : List[Any] = [] for obj_list in obj_lists: UpperCAmelCase_ : str = obj_list.rstrip('\n' ).split(' ' ) UpperCAmelCase_ : str = float(obj[1] ) - float(obj[3] ) / 2 UpperCAmelCase_ : Optional[Any] = float(obj[2] ) - float(obj[4] ) / 2 UpperCAmelCase_ : Any = float(obj[1] ) + float(obj[3] ) / 2 UpperCAmelCase_ : Dict = float(obj[2] ) + float(obj[4] ) / 2 boxes.append([int(obj[0] ), xmin, ymin, xmax, ymax] ) if not boxes: continue img_paths.append(__snake_case ) labels.append(__snake_case ) return img_paths, labels def lowercase__ ( __snake_case : list , __snake_case : list , __snake_case : list[int] , __snake_case : tuple[int, int] , __snake_case : tuple[float, float] , __snake_case : float = 0.0 , ): '''simple docstring''' UpperCAmelCase_ : Tuple = np.zeros([output_size[0], output_size[1], 3] , dtype=np.uinta ) UpperCAmelCase_ : List[Any] = scale_range[0] + random.random() * (scale_range[1] - scale_range[0]) UpperCAmelCase_ : List[str] = scale_range[0] + random.random() * (scale_range[1] - scale_range[0]) UpperCAmelCase_ : Any = int(scale_x * output_size[1] ) UpperCAmelCase_ : List[str] = int(scale_y * output_size[0] ) UpperCAmelCase_ : Any = [] UpperCAmelCase_ : Tuple = [] for i, index in enumerate(__snake_case ): UpperCAmelCase_ : Any = all_img_list[index] path_list.append(__snake_case ) UpperCAmelCase_ : Optional[Any] = all_annos[index] UpperCAmelCase_ : Tuple = cva.imread(__snake_case ) if i == 0: # top-left UpperCAmelCase_ : Any = cva.resize(__snake_case , (divid_point_x, divid_point_y) ) UpperCAmelCase_ : str = img for bbox in img_annos: UpperCAmelCase_ : Optional[int] = bbox[1] * scale_x UpperCAmelCase_ : str = bbox[2] * scale_y UpperCAmelCase_ : Dict = bbox[3] * scale_x UpperCAmelCase_ : Optional[int] = bbox[4] * scale_y new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) elif i == 1: # top-right UpperCAmelCase_ : Optional[int] = cva.resize(__snake_case , (output_size[1] - divid_point_x, divid_point_y) ) UpperCAmelCase_ : Dict = img for bbox in img_annos: UpperCAmelCase_ : Any = scale_x + bbox[1] * (1 - scale_x) UpperCAmelCase_ : Dict = bbox[2] * scale_y UpperCAmelCase_ : Dict = scale_x + bbox[3] * (1 - scale_x) UpperCAmelCase_ : Any = bbox[4] * scale_y new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) elif i == 2: # bottom-left UpperCAmelCase_ : Dict = cva.resize(__snake_case , (divid_point_x, output_size[0] - divid_point_y) ) UpperCAmelCase_ : Union[str, Any] = img for bbox in img_annos: UpperCAmelCase_ : str = bbox[1] * scale_x UpperCAmelCase_ : Union[str, Any] = scale_y + bbox[2] * (1 - scale_y) UpperCAmelCase_ : str = bbox[3] * scale_x UpperCAmelCase_ : Optional[Any] = scale_y + bbox[4] * (1 - scale_y) new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) else: # bottom-right UpperCAmelCase_ : Optional[Any] = cva.resize( __snake_case , (output_size[1] - divid_point_x, output_size[0] - divid_point_y) ) UpperCAmelCase_ : List[Any] = img for bbox in img_annos: UpperCAmelCase_ : List[str] = scale_x + bbox[1] * (1 - scale_x) UpperCAmelCase_ : int = scale_y + bbox[2] * (1 - scale_y) UpperCAmelCase_ : str = scale_x + bbox[3] * (1 - scale_x) UpperCAmelCase_ : Tuple = scale_y + bbox[4] * (1 - scale_y) new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) # Remove bounding box small than scale of filter if filter_scale > 0: UpperCAmelCase_ : int = [ anno for anno in new_anno if filter_scale < (anno[3] - anno[1]) and filter_scale < (anno[4] - anno[2]) ] return output_img, new_anno, path_list[0] def lowercase__ ( __snake_case : int ): '''simple docstring''' assert number_char > 1, "The number of character should greater than 1" UpperCAmelCase_ : int = ascii_lowercase + digits return "".join(random.choice(__snake_case ) for _ in range(__snake_case ) ) if __name__ == "__main__": main() print('DONE ✅')
29
import inspect import logging import os import random import shutil import tempfile import unittest import pytest import torch from torch import nn from torch.utils.data import DataLoader, TensorDataset from accelerate import Accelerator from accelerate.test_utils import execute_subprocess_async, require_cuda from accelerate.utils import ProjectConfiguration, set_seed __UpperCAmelCase = logging.getLogger(__name__) def lowercase__ ( __snake_case : List[Any]=2 , __snake_case : Union[str, Any]=3 , __snake_case : Any=16 , __snake_case : int = 10 , __snake_case : int = 2 ): '''simple docstring''' def get_dataset(__snake_case : Optional[Any] ): UpperCAmelCase_ : Optional[Any] = torch.randn(batch_size * n_batches , 1 ) return TensorDataset(__snake_case , a * x + b + 0.1 * torch.randn(batch_size * n_batches , 1 ) ) UpperCAmelCase_ : Any = get_dataset(__snake_case ) UpperCAmelCase_ : str = get_dataset(__snake_case ) UpperCAmelCase_ : int = DataLoader(__snake_case , shuffle=__snake_case , batch_size=__snake_case , num_workers=4 ) UpperCAmelCase_ : int = DataLoader(__snake_case , shuffle=__snake_case , batch_size=__snake_case , num_workers=4 ) return (train_dataloader, valid_dataloader) def lowercase__ ( __snake_case : Optional[int] , __snake_case : str , __snake_case : Optional[int] , __snake_case : List[str] , __snake_case : Any , __snake_case : Tuple=None ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = [] for epoch in range(__snake_case ): # Train quickly model.train() for batch in dataloader: UpperCAmelCase_ , UpperCAmelCase_ : List[Any] = batch UpperCAmelCase_ : List[Any] = model(__snake_case ) UpperCAmelCase_ : int = torch.nn.functional.mse_loss(__snake_case , __snake_case ) accelerator.backward(__snake_case ) optimizer.step() optimizer.zero_grad() rands.append(random.random() ) # Introduce some randomness if scheduler is not None: scheduler.step() return rands class lowerCamelCase (nn.Module ): '''simple docstring''' def __init__( self ) -> Optional[Any]: super().__init__() UpperCAmelCase_ : List[Any] = nn.Parameter(torch.randn(1 ) ) UpperCAmelCase_ : Optional[int] = nn.Parameter(torch.randn(1 ) ) def __UpperCAmelCase ( self , _UpperCamelCase ) -> Optional[Any]: return x * self.a + self.b class lowerCamelCase (unittest.TestCase ): '''simple docstring''' def __UpperCAmelCase ( self ) -> Dict: with tempfile.TemporaryDirectory() as tmpdir: set_seed(4_2 ) UpperCAmelCase_ : Tuple = DummyModel() UpperCAmelCase_ : List[str] = torch.optim.Adam(params=model.parameters() , lr=1E-3 ) UpperCAmelCase_ , UpperCAmelCase_ : Union[str, Any] = dummy_dataloaders() UpperCAmelCase_ : Optional[int] = ProjectConfiguration(total_limit=1 , project_dir=_UpperCamelCase , automatic_checkpoint_naming=_UpperCamelCase ) # Train baseline UpperCAmelCase_ : Dict = Accelerator(project_config=_UpperCamelCase ) UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : str = accelerator.prepare( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) # Save initial accelerator.save_state() # Save second state accelerator.save_state() self.assertEqual(len(os.listdir(accelerator.project_dir ) ) , 1 ) def __UpperCAmelCase ( self ) -> int: with tempfile.TemporaryDirectory() as tmpdir: set_seed(4_2 ) UpperCAmelCase_ : Optional[Any] = DummyModel() UpperCAmelCase_ : str = torch.optim.Adam(params=model.parameters() , lr=1E-3 ) UpperCAmelCase_ , UpperCAmelCase_ : Tuple = dummy_dataloaders() # Train baseline UpperCAmelCase_ : Tuple = Accelerator() UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Optional[Any] = accelerator.prepare( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) # Save initial UpperCAmelCase_ : Any = os.path.join(_UpperCamelCase , 'initial' ) accelerator.save_state(_UpperCamelCase ) ((UpperCAmelCase_) , (UpperCAmelCase_)) : Optional[int] = model.a.item(), model.b.item() UpperCAmelCase_ : Dict = optimizer.state_dict() UpperCAmelCase_ : Union[str, Any] = train(3 , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) ((UpperCAmelCase_) , (UpperCAmelCase_)) : Union[str, Any] = model.a.item(), model.b.item() UpperCAmelCase_ : Any = optimizer.state_dict() # Train partially set_seed(4_2 ) UpperCAmelCase_ : int = DummyModel() UpperCAmelCase_ : int = torch.optim.Adam(params=model.parameters() , lr=1E-3 ) UpperCAmelCase_ , UpperCAmelCase_ : str = dummy_dataloaders() UpperCAmelCase_ : Optional[Any] = Accelerator() UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Tuple = accelerator.prepare( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) accelerator.load_state(_UpperCamelCase ) ((UpperCAmelCase_) , (UpperCAmelCase_)) : List[str] = model.a.item(), model.b.item() UpperCAmelCase_ : Optional[Any] = optimizer.state_dict() self.assertEqual(_UpperCamelCase , _UpperCamelCase ) self.assertEqual(_UpperCamelCase , _UpperCamelCase ) self.assertEqual(_UpperCamelCase , _UpperCamelCase ) UpperCAmelCase_ : Dict = train(2 , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) # Save everything UpperCAmelCase_ : Union[str, Any] = os.path.join(_UpperCamelCase , 'checkpoint' ) accelerator.save_state(_UpperCamelCase ) # Load everything back in and make sure all states work accelerator.load_state(_UpperCamelCase ) test_rands += train(1 , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) ((UpperCAmelCase_) , (UpperCAmelCase_)) : Optional[Any] = model.a.item(), model.b.item() UpperCAmelCase_ : Union[str, Any] = optimizer.state_dict() self.assertEqual(_UpperCamelCase , _UpperCamelCase ) self.assertEqual(_UpperCamelCase , _UpperCamelCase ) self.assertEqual(_UpperCamelCase , _UpperCamelCase ) self.assertEqual(_UpperCamelCase , _UpperCamelCase ) def __UpperCAmelCase ( self ) -> int: with tempfile.TemporaryDirectory() as tmpdir: set_seed(4_2 ) UpperCAmelCase_ : Tuple = DummyModel() UpperCAmelCase_ : Optional[int] = torch.optim.Adam(params=model.parameters() , lr=1E-3 ) UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = dummy_dataloaders() UpperCAmelCase_ : Any = ProjectConfiguration(automatic_checkpoint_naming=_UpperCamelCase ) # Train baseline UpperCAmelCase_ : str = Accelerator(project_dir=_UpperCamelCase , project_config=_UpperCamelCase ) UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Any = accelerator.prepare( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) # Save initial accelerator.save_state() ((UpperCAmelCase_) , (UpperCAmelCase_)) : Optional[int] = model.a.item(), model.b.item() UpperCAmelCase_ : Optional[int] = optimizer.state_dict() UpperCAmelCase_ : Optional[Any] = train(3 , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) ((UpperCAmelCase_) , (UpperCAmelCase_)) : Tuple = model.a.item(), model.b.item() UpperCAmelCase_ : Optional[int] = optimizer.state_dict() # Train partially set_seed(4_2 ) UpperCAmelCase_ : Any = DummyModel() UpperCAmelCase_ : Any = torch.optim.Adam(params=model.parameters() , lr=1E-3 ) UpperCAmelCase_ , UpperCAmelCase_ : Union[str, Any] = dummy_dataloaders() UpperCAmelCase_ : Tuple = ProjectConfiguration(iteration=1 , automatic_checkpoint_naming=_UpperCamelCase ) UpperCAmelCase_ : List[Any] = Accelerator(project_dir=_UpperCamelCase , project_config=_UpperCamelCase ) UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Any = accelerator.prepare( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) accelerator.load_state(os.path.join(_UpperCamelCase , 'checkpoints' , 'checkpoint_0' ) ) ((UpperCAmelCase_) , (UpperCAmelCase_)) : str = model.a.item(), model.b.item() UpperCAmelCase_ : List[Any] = optimizer.state_dict() self.assertEqual(_UpperCamelCase , _UpperCamelCase ) self.assertEqual(_UpperCamelCase , _UpperCamelCase ) self.assertEqual(_UpperCamelCase , _UpperCamelCase ) UpperCAmelCase_ : Union[str, Any] = train(2 , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) # Save everything accelerator.save_state() # Load everything back in and make sure all states work accelerator.load_state(os.path.join(_UpperCamelCase , 'checkpoints' , 'checkpoint_1' ) ) test_rands += train(1 , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) ((UpperCAmelCase_) , (UpperCAmelCase_)) : List[Any] = model.a.item(), model.b.item() UpperCAmelCase_ : Dict = optimizer.state_dict() self.assertEqual(_UpperCamelCase , _UpperCamelCase ) self.assertEqual(_UpperCamelCase , _UpperCamelCase ) self.assertEqual(_UpperCamelCase , _UpperCamelCase ) self.assertEqual(_UpperCamelCase , _UpperCamelCase ) def __UpperCAmelCase ( self ) -> Dict: UpperCAmelCase_ : Optional[Any] = torch.tensor([1, 2, 3] ) UpperCAmelCase_ : Any = torch.tensor([2, 3, 4] ) UpperCAmelCase_ : Union[str, Any] = DummyModel() UpperCAmelCase_ : List[str] = torch.optim.Adam(net.parameters() ) UpperCAmelCase_ : Any = Accelerator() with self.assertRaises(_UpperCamelCase ) as ve: accelerator.register_for_checkpointing(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) UpperCAmelCase_ : Optional[int] = str(ve.exception ) self.assertTrue('Item at index 0' in message ) self.assertTrue('Item at index 1' in message ) self.assertFalse('Item at index 2' in message ) self.assertFalse('Item at index 3' in message ) def __UpperCAmelCase ( self ) -> int: with tempfile.TemporaryDirectory() as tmpdir: set_seed(4_2 ) UpperCAmelCase_ : int = DummyModel() UpperCAmelCase_ : Any = torch.optim.Adam(params=model.parameters() , lr=1E-3 ) UpperCAmelCase_ : Dict = torch.optim.lr_scheduler.StepLR(_UpperCamelCase , step_size=1 , gamma=0.99 ) UpperCAmelCase_ , UpperCAmelCase_ : Tuple = dummy_dataloaders() UpperCAmelCase_ : Tuple = ProjectConfiguration(automatic_checkpoint_naming=_UpperCamelCase ) # Train baseline UpperCAmelCase_ : Tuple = Accelerator(project_dir=_UpperCamelCase , project_config=_UpperCamelCase ) UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Any = accelerator.prepare( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) # Save initial accelerator.save_state() UpperCAmelCase_ : Dict = scheduler.state_dict() train(3 , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) self.assertNotEqual(_UpperCamelCase , scheduler.state_dict() ) # Load everything back in and make sure all states work accelerator.load_state(os.path.join(_UpperCamelCase , 'checkpoints' , 'checkpoint_0' ) ) self.assertEqual(_UpperCamelCase , scheduler.state_dict() ) def __UpperCAmelCase ( self ) -> Dict: with tempfile.TemporaryDirectory() as tmpdir: set_seed(4_2 ) UpperCAmelCase_ : Optional[int] = DummyModel() UpperCAmelCase_ : Dict = ProjectConfiguration(automatic_checkpoint_naming=_UpperCamelCase , total_limit=2 ) # Train baseline UpperCAmelCase_ : Optional[int] = Accelerator(project_dir=_UpperCamelCase , project_config=_UpperCamelCase ) UpperCAmelCase_ : str = accelerator.prepare(_UpperCamelCase ) # Save 3 states: for _ in range(1_1 ): accelerator.save_state() self.assertTrue(not os.path.exists(os.path.join(_UpperCamelCase , 'checkpoints' , 'checkpoint_0' ) ) ) self.assertTrue(os.path.exists(os.path.join(_UpperCamelCase , 'checkpoints' , 'checkpoint_9' ) ) ) self.assertTrue(os.path.exists(os.path.join(_UpperCamelCase , 'checkpoints' , 'checkpoint_10' ) ) ) @require_cuda def __UpperCAmelCase ( self ) -> str: UpperCAmelCase_ : List[str] = ['torchrun', f"--nproc_per_node={torch.cuda.device_count()}", inspect.getfile(self.__class__ )] execute_subprocess_async(_UpperCamelCase , env=os.environ.copy() ) if __name__ == "__main__": __UpperCAmelCase = '/tmp/accelerate/state_checkpointing' __UpperCAmelCase = DummyModel() __UpperCAmelCase = torch.optim.Adam(params=model.parameters(), lr=1E-3) __UpperCAmelCase = torch.optim.lr_scheduler.StepLR(optimizer, step_size=1, gamma=0.9_9) __UpperCAmelCase , __UpperCAmelCase = dummy_dataloaders() __UpperCAmelCase = ProjectConfiguration(automatic_checkpoint_naming=True) # Train baseline __UpperCAmelCase = Accelerator(project_dir=savedir, project_config=project_config, mixed_precision='no') if accelerator.process_index == 0: if os.path.exists(savedir): shutil.rmtree(savedir) os.makedirs(savedir) __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = accelerator.prepare( model, optimizer, train_dataloader, valid_dataloader, scheduler ) __UpperCAmelCase , __UpperCAmelCase = accelerator.prepare(model, optimizer) train(3, model, train_dataloader, optimizer, accelerator, scheduler) # Check that the intial optimizer is loaded on the GPU for group in optimizer.param_groups: __UpperCAmelCase = group['params'][0].device break assert param_device.type == accelerator.device.type __UpperCAmelCase = model.cpu() accelerator.wait_for_everyone() accelerator.save_state() accelerator.wait_for_everyone() # Check CPU state accelerator.load_state(os.path.join(savedir, 'checkpoints', 'checkpoint_0'), map_location='cpu') for group in optimizer.param_groups: __UpperCAmelCase = group['params'][0].device break assert ( param_device.type == torch.device('cpu').type ), F"Loaded optimizer states did not match, expected to be loaded on the CPU but got {param_device}" # Check device state model.to(accelerator.device) accelerator.load_state(os.path.join(savedir, 'checkpoints', 'checkpoint_0'), map_location='on_device') for group in optimizer.param_groups: __UpperCAmelCase = group['params'][0].device break assert ( param_device.type == accelerator.device.type ), F"Loaded optimizer states did not match, expected to be loaded on {accelerator.device} but got {param_device}" # Check error with pytest.raises(TypeError, match='Unsupported optimizer map location passed'): accelerator.load_state(os.path.join(savedir, 'checkpoints', 'checkpoint_0'), map_location='invalid') accelerator.wait_for_everyone() if accelerator.process_index == 0: shutil.rmtree(savedir) accelerator.wait_for_everyone()
29
1
'''simple docstring''' import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST, OpenAIGPTConfig, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification, OpenAIGPTLMHeadModel, OpenAIGPTModel, ) class _snake_case : def __init__( self ,_snake_case ,_snake_case=13 ,_snake_case=7 ,_snake_case=True ,_snake_case=True ,_snake_case=True ,_snake_case=99 ,_snake_case=32 ,_snake_case=5 ,_snake_case=4 ,_snake_case=37 ,_snake_case="gelu" ,_snake_case=0.1 ,_snake_case=0.1 ,_snake_case=5_12 ,_snake_case=16 ,_snake_case=2 ,_snake_case=0.02 ,_snake_case=3 ,_snake_case=4 ,_snake_case=None ,): UpperCAmelCase_ : str = parent UpperCAmelCase_ : Optional[int] = batch_size UpperCAmelCase_ : Any = seq_length UpperCAmelCase_ : Dict = is_training UpperCAmelCase_ : Tuple = use_token_type_ids UpperCAmelCase_ : List[Any] = use_labels UpperCAmelCase_ : Union[str, Any] = vocab_size UpperCAmelCase_ : Union[str, Any] = hidden_size UpperCAmelCase_ : List[str] = num_hidden_layers UpperCAmelCase_ : int = num_attention_heads UpperCAmelCase_ : int = intermediate_size UpperCAmelCase_ : Union[str, Any] = hidden_act UpperCAmelCase_ : str = hidden_dropout_prob UpperCAmelCase_ : Optional[Any] = attention_probs_dropout_prob UpperCAmelCase_ : List[str] = max_position_embeddings UpperCAmelCase_ : List[str] = type_vocab_size UpperCAmelCase_ : int = type_sequence_label_size UpperCAmelCase_ : int = initializer_range UpperCAmelCase_ : List[str] = num_labels UpperCAmelCase_ : Dict = num_choices UpperCAmelCase_ : Tuple = scope UpperCAmelCase_ : Tuple = self.vocab_size - 1 def UpperCamelCase__ ( self ): UpperCAmelCase_ : int = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) UpperCAmelCase_ : int = None if self.use_token_type_ids: UpperCAmelCase_ : Any = ids_tensor([self.batch_size, self.seq_length] ,self.type_vocab_size ) UpperCAmelCase_ : str = None UpperCAmelCase_ : Optional[Any] = None UpperCAmelCase_ : Any = None if self.use_labels: UpperCAmelCase_ : List[str] = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) UpperCAmelCase_ : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] ,self.num_labels ) UpperCAmelCase_ : Tuple = ids_tensor([self.batch_size] ,self.num_choices ) UpperCAmelCase_ : Tuple = OpenAIGPTConfig( vocab_size=self.vocab_size ,n_embd=self.hidden_size ,n_layer=self.num_hidden_layers ,n_head=self.num_attention_heads ,n_positions=self.max_position_embeddings ,pad_token_id=self.pad_token_id ,) UpperCAmelCase_ : Tuple = ids_tensor([self.num_hidden_layers, self.num_attention_heads] ,2 ) return ( config, input_ids, head_mask, token_type_ids, sequence_labels, token_labels, choice_labels, ) def UpperCamelCase__ ( self ,_snake_case ,_snake_case ,_snake_case ,_snake_case ,*_snake_case ): UpperCAmelCase_ : Optional[int] = OpenAIGPTModel(config=__lowercase ) model.to(__lowercase ) model.eval() UpperCAmelCase_ : Any = model(__lowercase ,token_type_ids=__lowercase ,head_mask=__lowercase ) UpperCAmelCase_ : Optional[int] = model(__lowercase ,token_type_ids=__lowercase ) UpperCAmelCase_ : Tuple = model(__lowercase ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase__ ( self ,_snake_case ,_snake_case ,_snake_case ,_snake_case ,*_snake_case ): UpperCAmelCase_ : Dict = OpenAIGPTLMHeadModel(__lowercase ) model.to(__lowercase ) model.eval() UpperCAmelCase_ : Optional[int] = model(__lowercase ,token_type_ids=__lowercase ,labels=__lowercase ) self.parent.assertEqual(result.loss.shape ,() ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) def UpperCamelCase__ ( self ,_snake_case ,_snake_case ,_snake_case ,_snake_case ,*_snake_case ): UpperCAmelCase_ : Any = OpenAIGPTDoubleHeadsModel(__lowercase ) model.to(__lowercase ) model.eval() UpperCAmelCase_ : List[Any] = model(__lowercase ,token_type_ids=__lowercase ,labels=__lowercase ) self.parent.assertEqual(result.loss.shape ,() ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) def UpperCamelCase__ ( self ,_snake_case ,_snake_case ,_snake_case ,_snake_case ,*_snake_case ): UpperCAmelCase_ : Optional[int] = self.num_labels UpperCAmelCase_ : Union[str, Any] = OpenAIGPTForSequenceClassification(__lowercase ) model.to(__lowercase ) model.eval() UpperCAmelCase_ : Tuple = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) UpperCAmelCase_ : str = model(__lowercase ,token_type_ids=__lowercase ,labels=__lowercase ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) ) def UpperCamelCase__ ( self ): UpperCAmelCase_ : Optional[Any] = self.prepare_config_and_inputs() ( ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ) : Optional[Any] = config_and_inputs UpperCAmelCase_ : Union[str, Any] = { "input_ids": input_ids, "token_type_ids": token_type_ids, "head_mask": head_mask, } return config, inputs_dict @require_torch class _snake_case (__A , __A , __A , unittest.TestCase): __A : List[str] =( (OpenAIGPTModel, OpenAIGPTLMHeadModel, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification) if is_torch_available() else () ) __A : List[Any] =( (OpenAIGPTLMHeadModel,) if is_torch_available() else () ) # TODO (PVP): Add Double HeadsModel when generate() function is changed accordingly __A : Union[str, Any] =( { 'feature-extraction': OpenAIGPTModel, 'text-classification': OpenAIGPTForSequenceClassification, 'text-generation': OpenAIGPTLMHeadModel, 'zero-shot': OpenAIGPTForSequenceClassification, } if is_torch_available() else {} ) def UpperCamelCase__ ( self ,_snake_case ,_snake_case ,_snake_case ,_snake_case ,_snake_case ): if pipeline_test_casse_name == "ZeroShotClassificationPipelineTests": # Get `tokenizer does not have a padding token` error for both fast/slow tokenizers. # `OpenAIGPTConfig` was never used in pipeline tests, either because of a missing checkpoint or because a # tiny config could not be created. return True return False def UpperCamelCase__ ( self ,_snake_case ,_snake_case ,_snake_case=False ): UpperCAmelCase_ : List[Any] = super()._prepare_for_class(__lowercase ,__lowercase ,return_labels=__lowercase ) if return_labels: if model_class.__name__ == "OpenAIGPTDoubleHeadsModel": UpperCAmelCase_ : int = torch.zeros( (self.model_tester.batch_size, self.model_tester.num_choices, self.model_tester.seq_length) ,dtype=torch.long ,device=__lowercase ,) UpperCAmelCase_ : Any = inputs_dict["labels"] UpperCAmelCase_ : Any = inputs_dict["labels"] UpperCAmelCase_ : List[Any] = torch.zeros( (self.model_tester.batch_size, self.model_tester.num_choices) ,dtype=torch.long ,device=__lowercase ,) UpperCAmelCase_ : str = torch.zeros( self.model_tester.batch_size ,dtype=torch.long ,device=__lowercase ) return inputs_dict def UpperCamelCase__ ( self ): UpperCAmelCase_ : Optional[Any] = OpenAIGPTModelTester(self ) UpperCAmelCase_ : int = ConfigTester(self ,config_class=__lowercase ,n_embd=37 ) def UpperCamelCase__ ( self ): self.config_tester.run_common_tests() def UpperCamelCase__ ( self ): UpperCAmelCase_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_openai_gpt_model(*__lowercase ) def UpperCamelCase__ ( self ): UpperCAmelCase_ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head_model(*__lowercase ) def UpperCamelCase__ ( self ): UpperCAmelCase_ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_double_lm_head_model(*__lowercase ) def UpperCamelCase__ ( self ): UpperCAmelCase_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_openai_gpt_for_sequence_classification(*__lowercase ) @slow def UpperCamelCase__ ( self ): for model_name in OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase_ : List[str] = OpenAIGPTModel.from_pretrained(__lowercase ) self.assertIsNotNone(__lowercase ) @require_torch class _snake_case (unittest.TestCase): @slow def UpperCamelCase__ ( self ): UpperCAmelCase_ : List[str] = OpenAIGPTLMHeadModel.from_pretrained("openai-gpt" ) model.to(__lowercase ) UpperCAmelCase_ : Union[str, Any] = torch.tensor([[4_81, 47_35, 5_44]] ,dtype=torch.long ,device=__lowercase ) # the president is UpperCAmelCase_ : Any = [ 4_81, 47_35, 5_44, 2_46, 9_63, 8_70, 7_62, 2_39, 2_44, 4_04_77, 2_44, 2_49, 7_19, 8_81, 4_87, 5_44, 2_40, 2_44, 6_03, 4_81, ] # the president is a very good man. " \n " i\'m sure he is, " said the UpperCAmelCase_ : Any = model.generate(__lowercase ,do_sample=__lowercase ) self.assertListEqual(output_ids[0].tolist() ,__lowercase )
359
'''simple docstring''' import os from pathlib import Path def a__ ( ) -> Union[str, Any]: """simple docstring""" from torch.utils.cpp_extension import load UpperCAmelCase_ : Union[str, Any] = Path(_SCREAMING_SNAKE_CASE ).resolve().parent.parent.parent / "kernels" / "deformable_detr" UpperCAmelCase_ : Any = [ root / filename for filename in [ "vision.cpp", os.path.join("cpu" , "ms_deform_attn_cpu.cpp" ), os.path.join("cuda" , "ms_deform_attn_cuda.cu" ), ] ] load( "MultiScaleDeformableAttention" , _SCREAMING_SNAKE_CASE , with_cuda=_SCREAMING_SNAKE_CASE , extra_include_paths=[str(_SCREAMING_SNAKE_CASE )] , extra_cflags=["-DWITH_CUDA=1"] , extra_cuda_cflags=[ "-DCUDA_HAS_FP16=1", "-D__CUDA_NO_HALF_OPERATORS__", "-D__CUDA_NO_HALF_CONVERSIONS__", "-D__CUDA_NO_HALF2_OPERATORS__", ] , ) import MultiScaleDeformableAttention as MSDA return MSDA
67
0
from __future__ import annotations import unittest from transformers import FunnelConfig, is_tf_available from transformers.testing_utils import require_tf from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFFunnelBaseModel, TFFunnelForMaskedLM, TFFunnelForMultipleChoice, TFFunnelForPreTraining, TFFunnelForQuestionAnswering, TFFunnelForSequenceClassification, TFFunnelForTokenClassification, TFFunnelModel, ) class snake_case__ : """simple docstring""" def __init__( self : Optional[int], _snake_case : Any, _snake_case : Optional[int]=1_3, _snake_case : List[Any]=7, _snake_case : List[Any]=True, _snake_case : List[str]=True, _snake_case : List[str]=True, _snake_case : List[str]=True, _snake_case : Any=9_9, _snake_case : Optional[int]=[1, 1, 2], _snake_case : Any=1, _snake_case : List[Any]=3_2, _snake_case : int=4, _snake_case : Any=8, _snake_case : List[Any]=3_7, _snake_case : Optional[int]="gelu_new", _snake_case : str=0.1, _snake_case : Optional[Any]=0.1, _snake_case : Optional[Any]=0.0, _snake_case : int=5_1_2, _snake_case : Union[str, Any]=3, _snake_case : Any=0.0_2, _snake_case : str=3, _snake_case : str=4, _snake_case : Tuple=None, _snake_case : List[str]=False, ) ->Optional[Any]: snake_case__ : str = parent snake_case__ : Optional[Any] = batch_size snake_case__ : Any = seq_length snake_case__ : Optional[Any] = is_training snake_case__ : Tuple = use_input_mask snake_case__ : Tuple = use_token_type_ids snake_case__ : Dict = use_labels snake_case__ : Tuple = vocab_size snake_case__ : str = block_sizes snake_case__ : Tuple = num_decoder_layers snake_case__ : List[Any] = d_model snake_case__ : Union[str, Any] = n_head snake_case__ : Optional[Any] = d_head snake_case__ : Dict = d_inner snake_case__ : List[Any] = hidden_act snake_case__ : List[Any] = hidden_dropout snake_case__ : Optional[int] = attention_dropout snake_case__ : Optional[Any] = activation_dropout snake_case__ : str = max_position_embeddings snake_case__ : List[Any] = type_vocab_size snake_case__ : Any = 2 snake_case__ : Optional[Any] = num_labels snake_case__ : List[Any] = num_choices snake_case__ : Union[str, Any] = scope snake_case__ : Union[str, Any] = initializer_std # Used in the tests to check the size of the first attention layer snake_case__ : int = n_head # Used in the tests to check the size of the first hidden state snake_case__ : Union[str, Any] = self.d_model # Used in the tests to check the number of output hidden states/attentions snake_case__ : Optional[int] = sum(self.block_sizes ) + (0 if base else self.num_decoder_layers) # FunnelModel adds two hidden layers: input embeddings and the sum of the upsampled encoder hidden state with # the last hidden state of the first block (which is the first hidden state of the decoder). if not base: snake_case__ : List[str] = self.num_hidden_layers + 2 def lowercase_ ( self : Any ) ->Optional[int]: snake_case__ : List[Any] = ids_tensor([self.batch_size, self.seq_length], self.vocab_size ) snake_case__ : Dict = None if self.use_input_mask: snake_case__ : Tuple = random_attention_mask([self.batch_size, self.seq_length] ) snake_case__ : List[str] = None if self.use_token_type_ids: snake_case__ : Dict = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size ) snake_case__ : str = None snake_case__ : Optional[int] = None snake_case__ : List[Any] = None if self.use_labels: snake_case__ : Any = ids_tensor([self.batch_size], self.type_sequence_label_size ) snake_case__ : Any = ids_tensor([self.batch_size, self.seq_length], self.num_labels ) snake_case__ : Dict = ids_tensor([self.batch_size], self.num_choices ) snake_case__ : str = FunnelConfig( vocab_size=self.vocab_size, block_sizes=self.block_sizes, num_decoder_layers=self.num_decoder_layers, d_model=self.d_model, n_head=self.n_head, d_head=self.d_head, d_inner=self.d_inner, hidden_act=self.hidden_act, hidden_dropout=self.hidden_dropout, attention_dropout=self.attention_dropout, activation_dropout=self.activation_dropout, max_position_embeddings=self.max_position_embeddings, type_vocab_size=self.type_vocab_size, initializer_std=self.initializer_std, ) return ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, ) def lowercase_ ( self : Tuple, _snake_case : int, _snake_case : Optional[Any], _snake_case : Tuple, _snake_case : List[str], _snake_case : str, _snake_case : Tuple, _snake_case : Union[str, Any], ) ->Optional[int]: snake_case__ : Any = TFFunnelModel(config=_snake_case ) snake_case__ : List[Any] = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} snake_case__ : str = model(_snake_case ) snake_case__ : Union[str, Any] = [input_ids, input_mask] snake_case__ : Tuple = model(_snake_case ) snake_case__ : Optional[Any] = model(_snake_case ) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.d_model) ) snake_case__ : Union[str, Any] = False snake_case__ : Any = TFFunnelModel(config=_snake_case ) snake_case__ : Dict = model(_snake_case ) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.d_model) ) snake_case__ : Dict = False snake_case__ : str = TFFunnelModel(config=_snake_case ) snake_case__ : List[str] = model(_snake_case ) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.d_model) ) def lowercase_ ( self : Any, _snake_case : Dict, _snake_case : Any, _snake_case : Any, _snake_case : int, _snake_case : Dict, _snake_case : List[Any], _snake_case : str, ) ->str: snake_case__ : Any = TFFunnelBaseModel(config=_snake_case ) snake_case__ : List[str] = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} snake_case__ : Any = model(_snake_case ) snake_case__ : str = [input_ids, input_mask] snake_case__ : Any = model(_snake_case ) snake_case__ : Union[str, Any] = model(_snake_case ) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, 2, self.d_model) ) snake_case__ : List[Any] = False snake_case__ : List[Any] = TFFunnelBaseModel(config=_snake_case ) snake_case__ : Optional[int] = model(_snake_case ) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, 3, self.d_model) ) snake_case__ : Dict = False snake_case__ : List[str] = TFFunnelBaseModel(config=_snake_case ) snake_case__ : Any = model(_snake_case ) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, 2, self.d_model) ) def lowercase_ ( self : Optional[int], _snake_case : List[str], _snake_case : int, _snake_case : Union[str, Any], _snake_case : int, _snake_case : Union[str, Any], _snake_case : Tuple, _snake_case : Optional[int], ) ->Dict: snake_case__ : int = TFFunnelForPreTraining(config=_snake_case ) snake_case__ : Optional[int] = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} snake_case__ : List[Any] = model(_snake_case ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length) ) def lowercase_ ( self : str, _snake_case : Any, _snake_case : Optional[int], _snake_case : List[str], _snake_case : int, _snake_case : Any, _snake_case : Any, _snake_case : int, ) ->int: snake_case__ : Optional[Any] = TFFunnelForMaskedLM(config=_snake_case ) snake_case__ : Dict = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} snake_case__ : str = model(_snake_case ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size) ) def lowercase_ ( self : Optional[int], _snake_case : List[str], _snake_case : Tuple, _snake_case : Union[str, Any], _snake_case : Union[str, Any], _snake_case : Dict, _snake_case : List[str], _snake_case : Union[str, Any], ) ->int: snake_case__ : List[str] = self.num_labels snake_case__ : int = TFFunnelForSequenceClassification(config=_snake_case ) snake_case__ : Optional[Any] = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} snake_case__ : int = model(_snake_case ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels) ) def lowercase_ ( self : int, _snake_case : int, _snake_case : List[str], _snake_case : str, _snake_case : Any, _snake_case : Optional[int], _snake_case : Dict, _snake_case : Any, ) ->List[str]: snake_case__ : Optional[int] = self.num_choices snake_case__ : List[Any] = TFFunnelForMultipleChoice(config=_snake_case ) snake_case__ : List[Any] = tf.tile(tf.expand_dims(_snake_case, 1 ), (1, self.num_choices, 1) ) snake_case__ : Dict = tf.tile(tf.expand_dims(_snake_case, 1 ), (1, self.num_choices, 1) ) snake_case__ : str = tf.tile(tf.expand_dims(_snake_case, 1 ), (1, self.num_choices, 1) ) snake_case__ : List[Any] = { 'input_ids': multiple_choice_inputs_ids, 'attention_mask': multiple_choice_input_mask, 'token_type_ids': multiple_choice_token_type_ids, } snake_case__ : int = model(_snake_case ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_choices) ) def lowercase_ ( self : Union[str, Any], _snake_case : List[Any], _snake_case : List[str], _snake_case : Any, _snake_case : Optional[Any], _snake_case : Optional[Any], _snake_case : Any, _snake_case : List[str], ) ->str: snake_case__ : List[str] = self.num_labels snake_case__ : List[Any] = TFFunnelForTokenClassification(config=_snake_case ) snake_case__ : Optional[int] = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} snake_case__ : Optional[int] = model(_snake_case ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels) ) def lowercase_ ( self : Optional[int], _snake_case : int, _snake_case : List[str], _snake_case : Tuple, _snake_case : Optional[int], _snake_case : int, _snake_case : List[Any], _snake_case : str, ) ->Optional[int]: snake_case__ : Union[str, Any] = TFFunnelForQuestionAnswering(config=_snake_case ) snake_case__ : Optional[int] = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} snake_case__ : Optional[int] = model(_snake_case ) self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length) ) def lowercase_ ( self : Any ) ->Any: snake_case__ : Tuple = self.prepare_config_and_inputs() ( ( snake_case__ ) , ( snake_case__ ) , ( snake_case__ ) , ( snake_case__ ) , ( snake_case__ ) , ( snake_case__ ) , ( snake_case__ ) , ) : Any = config_and_inputs snake_case__ : Optional[int] = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_tf class snake_case__ ( lowerCAmelCase_ , lowerCAmelCase_ , unittest.TestCase ): """simple docstring""" _SCREAMING_SNAKE_CASE = ( ( TFFunnelModel, TFFunnelForMaskedLM, TFFunnelForPreTraining, TFFunnelForQuestionAnswering, TFFunnelForTokenClassification, ) if is_tf_available() else () ) _SCREAMING_SNAKE_CASE = ( { """feature-extraction""": (TFFunnelBaseModel, TFFunnelModel), """fill-mask""": TFFunnelForMaskedLM, """question-answering""": TFFunnelForQuestionAnswering, """text-classification""": TFFunnelForSequenceClassification, """token-classification""": TFFunnelForTokenClassification, """zero-shot""": TFFunnelForSequenceClassification, } if is_tf_available() else {} ) _SCREAMING_SNAKE_CASE = False _SCREAMING_SNAKE_CASE = False def lowercase_ ( self : str ) ->List[Any]: snake_case__ : Union[str, Any] = TFFunnelModelTester(self ) snake_case__ : List[str] = ConfigTester(self, config_class=_snake_case ) def lowercase_ ( self : List[Any] ) ->List[Any]: self.config_tester.run_common_tests() def lowercase_ ( self : Tuple ) ->int: snake_case__ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_snake_case ) def lowercase_ ( self : Union[str, Any] ) ->Dict: snake_case__ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*_snake_case ) def lowercase_ ( self : List[str] ) ->Dict: snake_case__ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*_snake_case ) def lowercase_ ( self : int ) ->Optional[int]: snake_case__ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*_snake_case ) def lowercase_ ( self : Any ) ->Any: snake_case__ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*_snake_case ) @require_tf class snake_case__ ( lowerCAmelCase_ , unittest.TestCase ): """simple docstring""" _SCREAMING_SNAKE_CASE = ( (TFFunnelBaseModel, TFFunnelForMultipleChoice, TFFunnelForSequenceClassification) if is_tf_available() else () ) _SCREAMING_SNAKE_CASE = False _SCREAMING_SNAKE_CASE = False def lowercase_ ( self : Optional[int] ) ->Any: snake_case__ : int = TFFunnelModelTester(self, base=_snake_case ) snake_case__ : List[str] = ConfigTester(self, config_class=_snake_case ) def lowercase_ ( self : Dict ) ->Optional[Any]: self.config_tester.run_common_tests() def lowercase_ ( self : str ) ->Union[str, Any]: snake_case__ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_base_model(*_snake_case ) def lowercase_ ( self : Any ) ->Optional[Any]: snake_case__ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*_snake_case ) def lowercase_ ( self : int ) ->Optional[Any]: snake_case__ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*_snake_case )
277
import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( WavaVecaConfig, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaForCTC, WavaVecaForPreTraining, WavaVecaProcessor, logging, ) from transformers.models.wavaveca.modeling_wavaveca import WavaVecaForSequenceClassification logging.set_verbosity_info() a_ :List[Any] = logging.get_logger(__name__) a_ :List[Any] = { "post_extract_proj": "feature_projection.projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.k_proj": "encoder.layers.*.attention.k_proj", "self_attn.v_proj": "encoder.layers.*.attention.v_proj", "self_attn.q_proj": "encoder.layers.*.attention.q_proj", "self_attn.out_proj": "encoder.layers.*.attention.out_proj", "self_attn_layer_norm": "encoder.layers.*.layer_norm", "fc1": "encoder.layers.*.feed_forward.intermediate_dense", "fc2": "encoder.layers.*.feed_forward.output_dense", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.layer_norm": "encoder.layer_norm", "adapter_layer": "encoder.layers.*.adapter_layer", "w2v_model.layer_norm": "feature_projection.layer_norm", "quantizer.weight_proj": "quantizer.weight_proj", "quantizer.vars": "quantizer.codevectors", "project_q": "project_q", "final_proj": "project_hid", "w2v_encoder.proj": "lm_head", "mask_emb": "masked_spec_embed", "pooling_layer.linear": "projector", "pooling_layer.projection": "classifier", } a_ :List[Any] = [ "lm_head", "quantizer.weight_proj", "quantizer.codevectors", "project_q", "project_hid", "projector", "classifier", ] def lowercase_ (A : Dict ): snake_case__ : Optional[Any] = {} with open(A , 'r' ) as file: for line_number, line in enumerate(A ): snake_case__ : Dict = line.strip() if line: snake_case__ : int = line.split() snake_case__ : List[str] = line_number snake_case__ : Dict = words[0] snake_case__ : Optional[Any] = value return result def lowercase_ (A : int , A : int , A : Optional[int] , A : Optional[Any] , A : Tuple ): for attribute in key.split('.' ): snake_case__ : Optional[int] = getattr(A , A ) snake_case__ : Union[str, Any] = None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(A ): snake_case__ : List[str] = PARAM_MAPPING[full_name.split('.' )[-1]] snake_case__ : Dict = 'param' if weight_type is not None and weight_type != "param": snake_case__ : Union[str, Any] = getattr(A , A ).shape elif weight_type is not None and weight_type == "param": snake_case__ : Optional[int] = hf_pointer for attribute in hf_param_name.split('.' ): snake_case__ : Optional[Any] = getattr(A , A ) snake_case__ : Dict = shape_pointer.shape # let's reduce dimension snake_case__ : List[Any] = value[0] else: snake_case__ : Union[str, Any] = hf_pointer.shape if hf_shape != value.shape: raise ValueError( F'''Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be''' F''' {value.shape} for {full_name}''' ) if weight_type == "weight": snake_case__ : Any = value elif weight_type == "weight_g": snake_case__ : List[Any] = value elif weight_type == "weight_v": snake_case__ : Any = value elif weight_type == "bias": snake_case__ : List[Any] = value elif weight_type == "param": for attribute in hf_param_name.split('.' ): snake_case__ : int = getattr(A , A ) snake_case__ : Optional[int] = value else: snake_case__ : Optional[Any] = value logger.info(F'''{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.''' ) def lowercase_ (A : Tuple , A : List[Any] , A : int , A : str , A : Tuple ): snake_case__ : Optional[int] = None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(A ): snake_case__ : List[str] = PARAM_MAPPING[full_name.split('.' )[-1]] snake_case__ : str = 'param' if weight_type is not None and weight_type != "param": snake_case__ : int = '.'.join([key, weight_type] ) elif weight_type is not None and weight_type == "param": snake_case__ : Any = '.'.join([key, hf_param_name] ) else: snake_case__ : Dict = key snake_case__ : List[str] = value if 'lm_head' in full_key else value[0] a_ :List[str] = { "W_a": "linear_1.weight", "W_b": "linear_2.weight", "b_a": "linear_1.bias", "b_b": "linear_2.bias", "ln_W": "norm.weight", "ln_b": "norm.bias", } def lowercase_ (A : str , A : Optional[Any] , A : Optional[Any]=None , A : List[str]=None ): snake_case__ : Optional[int] = False for key, mapped_key in MAPPING.items(): snake_case__ : Tuple = 'wav2vec2.' + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split('w2v_model.' )[-1] == name.split('.' )[0]: snake_case__ : Optional[int] = True if "*" in mapped_key: snake_case__ : List[Any] = name.split(A )[0].split('.' )[-2] snake_case__ : Union[str, Any] = mapped_key.replace('*' , A ) if "weight_g" in name: snake_case__ : Tuple = 'weight_g' elif "weight_v" in name: snake_case__ : List[str] = 'weight_v' elif "bias" in name: snake_case__ : Dict = 'bias' elif "weight" in name: # TODO: don't match quantizer.weight_proj snake_case__ : Optional[int] = 'weight' else: snake_case__ : str = None if hf_dict is not None: rename_dict(A , A , A , A , A ) else: set_recursively(A , A , A , A , A ) return is_used return is_used def lowercase_ (A : Optional[Any] , A : Dict , A : Optional[int] ): snake_case__ : Dict = [] snake_case__ : Tuple = fairseq_model.state_dict() snake_case__ : str = hf_model.wavaveca.feature_extractor for name, value in fairseq_dict.items(): snake_case__ : str = False if "conv_layers" in name: load_conv_layer( A , A , A , A , hf_model.config.feat_extract_norm == 'group' , ) snake_case__ : Any = True else: snake_case__ : Dict = load_wavaveca_layer(A , A , A ) if not is_used: unused_weights.append(A ) logger.warning(F'''Unused weights: {unused_weights}''' ) def lowercase_ (A : Dict , A : Optional[Any] , A : Tuple , A : str , A : List[str] ): snake_case__ : List[Any] = full_name.split('conv_layers.' )[-1] snake_case__ : List[str] = name.split('.' ) snake_case__ : List[Any] = int(items[0] ) snake_case__ : str = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) snake_case__ : Any = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) snake_case__ : str = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.''' ) snake_case__ : str = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.''' ) snake_case__ : int = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) else: unused_weights.append(A ) @torch.no_grad() def lowercase_ (A : Union[str, Any] , A : str , A : Tuple=None , A : List[str]=None , A : Any=True , A : Optional[int]=False ): if config_path is not None: snake_case__ : List[Any] = WavaVecaConfig.from_pretrained(A ) else: snake_case__ : List[Any] = WavaVecaConfig() if is_seq_class: snake_case__ : Dict = read_txt_into_dict(A ) snake_case__ : Any = idalabel snake_case__ : Union[str, Any] = WavaVecaForSequenceClassification(A ) snake_case__ : Any = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_6_0_0_0 , padding_value=0 , do_normalize=A , return_attention_mask=A , ) feature_extractor.save_pretrained(A ) elif is_finetuned: if dict_path: snake_case__ : str = Dictionary.load(A ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq snake_case__ : List[str] = target_dict.pad_index snake_case__ : Optional[int] = target_dict.bos_index snake_case__ : Optional[int] = target_dict.eos_index snake_case__ : List[Any] = len(target_dict.symbols ) snake_case__ : str = os.path.join(A , 'vocab.json' ) if not os.path.isdir(A ): logger.error('--pytorch_dump_folder_path ({}) should be a directory'.format(A ) ) return os.makedirs(A , exist_ok=A ) snake_case__ : Optional[Any] = target_dict.indices # fairseq has the <pad> and <s> switched snake_case__ : Optional[Any] = 0 snake_case__ : Union[str, Any] = 1 with open(A , 'w' , encoding='utf-8' ) as vocab_handle: json.dump(A , A ) snake_case__ : List[Any] = WavaVecaCTCTokenizer( A , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token='|' , do_lower_case=A , ) snake_case__ : str = True if config.feat_extract_norm == 'layer' else False snake_case__ : Optional[Any] = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_6_0_0_0 , padding_value=0 , do_normalize=A , return_attention_mask=A , ) snake_case__ : Union[str, Any] = WavaVecaProcessor(feature_extractor=A , tokenizer=A ) processor.save_pretrained(A ) snake_case__ : str = WavaVecaForCTC(A ) else: snake_case__ : int = WavaVecaForPreTraining(A ) if is_finetuned or is_seq_class: snake_case__ , snake_case__ , snake_case__ : str = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'data': '/'.join(dict_path.split('/' )[:-1] )} ) else: snake_case__ : Tuple = argparse.Namespace(task='audio_pretraining' ) snake_case__ : str = fairseq.tasks.setup_task(A ) snake_case__ , snake_case__ , snake_case__ : Any = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] , task=A ) snake_case__ : List[Any] = model[0].eval() recursively_load_weights(A , A , not is_finetuned ) hf_wavavec.save_pretrained(A ) if __name__ == "__main__": a_ :List[Any] = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--not_finetuned", action="store_true", help="Whether the model to convert is a fine-tuned model or not" ) parser.add_argument( "--is_seq_class", action="store_true", help="Whether the model to convert is a fine-tuned sequence classification model or not", ) a_ :str = parser.parse_args() a_ :Tuple = not args.not_finetuned and not args.is_seq_class convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, is_finetuned, args.is_seq_class, )
277
1
"""simple docstring""" import gc import unittest import torch from parameterized import parameterized from diffusers import AutoencoderKL from diffusers.utils import floats_tensor, load_hf_numpy, require_torch_gpu, slow, torch_all_close, torch_device from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin, UNetTesterMixin enable_full_determinism() class snake_case__ ( snake_case_, snake_case_, unittest.TestCase ): _snake_case : Tuple = AutoencoderKL _snake_case : int = """sample""" _snake_case : List[str] = 1E-2 @property def a__ ( self ): __a = 4 __a = 3 __a = (32, 32) __a = floats_tensor((batch_size, num_channels) + sizes ).to(lowerCamelCase ) return {"sample": image} @property def a__ ( self ): return (3, 32, 32) @property def a__ ( self ): return (3, 32, 32) def a__ ( self ): __a = { "block_out_channels": [32, 64], "in_channels": 3, "out_channels": 3, "down_block_types": ["DownEncoderBlock2D", "DownEncoderBlock2D"], "up_block_types": ["UpDecoderBlock2D", "UpDecoderBlock2D"], "latent_channels": 4, } __a = self.dummy_input return init_dict, inputs_dict def a__ ( self ): pass def a__ ( self ): pass @unittest.skipIf(torch_device == "mps" , "Gradient checkpointing skipped on MPS" ) def a__ ( self ): # enable deterministic behavior for gradient checkpointing __a , __a = self.prepare_init_args_and_inputs_for_common() __a = self.model_class(**lowerCamelCase ) model.to(lowerCamelCase ) assert not model.is_gradient_checkpointing and model.training __a = model(**lowerCamelCase ).sample # run the backwards pass on the model. For backwards pass, for simplicity purpose, # we won't calculate the loss and rather backprop on out.sum() model.zero_grad() __a = torch.randn_like(lowerCamelCase ) __a = (out - labels).mean() loss.backward() # re-instantiate the model now enabling gradient checkpointing __a = self.model_class(**lowerCamelCase ) # clone model model_a.load_state_dict(model.state_dict() ) model_a.to(lowerCamelCase ) model_a.enable_gradient_checkpointing() assert model_a.is_gradient_checkpointing and model_a.training __a = model_a(**lowerCamelCase ).sample # run the backwards pass on the model. For backwards pass, for simplicity purpose, # we won't calculate the loss and rather backprop on out.sum() model_a.zero_grad() __a = (out_a - labels).mean() loss_a.backward() # compare the output and parameters gradients self.assertTrue((loss - loss_a).abs() < 1E-5 ) __a = dict(model.named_parameters() ) __a = dict(model_a.named_parameters() ) for name, param in named_params.items(): self.assertTrue(torch_all_close(param.grad.data , named_params_a[name].grad.data , atol=5E-5 ) ) def a__ ( self ): __a , __a = AutoencoderKL.from_pretrained("fusing/autoencoder-kl-dummy" , output_loading_info=lowerCamelCase ) self.assertIsNotNone(lowerCamelCase ) self.assertEqual(len(loading_info["missing_keys"] ) , 0 ) model.to(lowerCamelCase ) __a = model(**self.dummy_input ) assert image is not None, "Make sure output is not None" def a__ ( self ): __a = AutoencoderKL.from_pretrained("fusing/autoencoder-kl-dummy" ) __a = model.to(lowerCamelCase ) model.eval() if torch_device == "mps": __a = torch.manual_seed(0 ) else: __a = torch.Generator(device=lowerCamelCase ).manual_seed(0 ) __a = torch.randn( 1 , model.config.in_channels , model.config.sample_size , model.config.sample_size , generator=torch.manual_seed(0 ) , ) __a = image.to(lowerCamelCase ) with torch.no_grad(): __a = model(lowerCamelCase , sample_posterior=lowerCamelCase , generator=lowerCamelCase ).sample __a = output[0, -1, -3:, -3:].flatten().cpu() # Since the VAE Gaussian prior's generator is seeded on the appropriate device, # the expected output slices are not the same for CPU and GPU. if torch_device == "mps": __a = torch.tensor( [ -4.0078E-01, -3.8323E-04, -1.2681E-01, -1.1462E-01, 2.0095E-01, 1.0893E-01, -8.8247E-02, -3.0361E-01, -9.8644E-03, ] ) elif torch_device == "cpu": __a = torch.tensor( [-0.1352, 0.0878, 0.0419, -0.0818, -0.1069, 0.0688, -0.1458, -0.4446, -0.0026] ) else: __a = torch.tensor( [-0.2421, 0.4642, 0.2507, -0.0438, 0.0682, 0.3160, -0.2018, -0.0727, 0.2485] ) self.assertTrue(torch_all_close(lowerCamelCase , lowerCamelCase , rtol=1E-2 ) ) @slow class snake_case__ ( unittest.TestCase ): def a__ ( self , lowerCamelCase , lowerCamelCase ): return F"gaussian_noise_s={seed}_shape={'_'.join([str(lowerCamelCase ) for s in shape] )}.npy" def a__ ( self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def a__ ( self , lowerCamelCase=0 , lowerCamelCase=(4, 3, 512, 512) , lowerCamelCase=False ): __a = torch.floataa if fpaa else torch.floataa __a = torch.from_numpy(load_hf_numpy(self.get_file_format(lowerCamelCase , lowerCamelCase ) ) ).to(lowerCamelCase ).to(lowerCamelCase ) return image def a__ ( self , lowerCamelCase="CompVis/stable-diffusion-v1-4" , lowerCamelCase=False ): __a = "fp16" if fpaa else None __a = torch.floataa if fpaa else torch.floataa __a = AutoencoderKL.from_pretrained( lowerCamelCase , subfolder="vae" , torch_dtype=lowerCamelCase , revision=lowerCamelCase , ) model.to(lowerCamelCase ).eval() return model def a__ ( self , lowerCamelCase=0 ): if torch_device == "mps": return torch.manual_seed(lowerCamelCase ) return torch.Generator(device=lowerCamelCase ).manual_seed(lowerCamelCase ) @parameterized.expand( [ # fmt: off [33, [-0.1603, 0.9878, -0.0495, -0.0790, -0.2709, 0.8375, -0.2060, -0.0824], [-0.2395, 0.0098, 0.0102, -0.0709, -0.2840, -0.0274, -0.0718, -0.1824]], [47, [-0.2376, 0.1168, 0.1332, -0.4840, -0.2508, -0.0791, -0.0493, -0.4089], [0.0350, 0.0847, 0.0467, 0.0344, -0.0842, -0.0547, -0.0633, -0.1131]], # fmt: on ] ) def a__ ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase ): __a = self.get_sd_vae_model() __a = self.get_sd_image(lowerCamelCase ) __a = self.get_generator(lowerCamelCase ) with torch.no_grad(): __a = model(lowerCamelCase , generator=lowerCamelCase , sample_posterior=lowerCamelCase ).sample assert sample.shape == image.shape __a = sample[-1, -2:, -2:, :2].flatten().float().cpu() __a = torch.tensor(expected_slice_mps if torch_device == "mps" else expected_slice ) assert torch_all_close(lowerCamelCase , lowerCamelCase , atol=3E-3 ) @parameterized.expand( [ # fmt: off [33, [-0.0513, 0.0289, 1.3799, 0.2166, -0.2573, -0.0871, 0.5103, -0.0999]], [47, [-0.4128, -0.1320, -0.3704, 0.1965, -0.4116, -0.2332, -0.3340, 0.2247]], # fmt: on ] ) @require_torch_gpu def a__ ( self , lowerCamelCase , lowerCamelCase ): __a = self.get_sd_vae_model(fpaa=lowerCamelCase ) __a = self.get_sd_image(lowerCamelCase , fpaa=lowerCamelCase ) __a = self.get_generator(lowerCamelCase ) with torch.no_grad(): __a = model(lowerCamelCase , generator=lowerCamelCase , sample_posterior=lowerCamelCase ).sample assert sample.shape == image.shape __a = sample[-1, -2:, :2, -2:].flatten().float().cpu() __a = torch.tensor(lowerCamelCase ) assert torch_all_close(lowerCamelCase , lowerCamelCase , atol=1E-2 ) @parameterized.expand( [ # fmt: off [33, [-0.1609, 0.9866, -0.0487, -0.0777, -0.2716, 0.8368, -0.2055, -0.0814], [-0.2395, 0.0098, 0.0102, -0.0709, -0.2840, -0.0274, -0.0718, -0.1824]], [47, [-0.2377, 0.1147, 0.1333, -0.4841, -0.2506, -0.0805, -0.0491, -0.4085], [0.0350, 0.0847, 0.0467, 0.0344, -0.0842, -0.0547, -0.0633, -0.1131]], # fmt: on ] ) def a__ ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase ): __a = self.get_sd_vae_model() __a = self.get_sd_image(lowerCamelCase ) with torch.no_grad(): __a = model(lowerCamelCase ).sample assert sample.shape == image.shape __a = sample[-1, -2:, -2:, :2].flatten().float().cpu() __a = torch.tensor(expected_slice_mps if torch_device == "mps" else expected_slice ) assert torch_all_close(lowerCamelCase , lowerCamelCase , atol=3E-3 ) @parameterized.expand( [ # fmt: off [13, [-0.2051, -0.1803, -0.2311, -0.2114, -0.3292, -0.3574, -0.2953, -0.3323]], [37, [-0.2632, -0.2625, -0.2199, -0.2741, -0.4539, -0.4990, -0.3720, -0.4925]], # fmt: on ] ) @require_torch_gpu def a__ ( self , lowerCamelCase , lowerCamelCase ): __a = self.get_sd_vae_model() __a = self.get_sd_image(lowerCamelCase , shape=(3, 4, 64, 64) ) with torch.no_grad(): __a = model.decode(lowerCamelCase ).sample assert list(sample.shape ) == [3, 3, 512, 512] __a = sample[-1, -2:, :2, -2:].flatten().cpu() __a = torch.tensor(lowerCamelCase ) assert torch_all_close(lowerCamelCase , lowerCamelCase , atol=1E-3 ) @parameterized.expand( [ # fmt: off [27, [-0.0369, 0.0207, -0.0776, -0.0682, -0.1747, -0.1930, -0.1465, -0.2039]], [16, [-0.1628, -0.2134, -0.2747, -0.2642, -0.3774, -0.4404, -0.3687, -0.4277]], # fmt: on ] ) @require_torch_gpu def a__ ( self , lowerCamelCase , lowerCamelCase ): __a = self.get_sd_vae_model(fpaa=lowerCamelCase ) __a = self.get_sd_image(lowerCamelCase , shape=(3, 4, 64, 64) , fpaa=lowerCamelCase ) with torch.no_grad(): __a = model.decode(lowerCamelCase ).sample assert list(sample.shape ) == [3, 3, 512, 512] __a = sample[-1, -2:, :2, -2:].flatten().float().cpu() __a = torch.tensor(lowerCamelCase ) assert torch_all_close(lowerCamelCase , lowerCamelCase , atol=5E-3 ) @parameterized.expand([(13,), (16,), (27,)] ) @require_torch_gpu @unittest.skipIf(not is_xformers_available() , reason="xformers is not required when using PyTorch 2.0." ) def a__ ( self , lowerCamelCase ): __a = self.get_sd_vae_model(fpaa=lowerCamelCase ) __a = self.get_sd_image(lowerCamelCase , shape=(3, 4, 64, 64) , fpaa=lowerCamelCase ) with torch.no_grad(): __a = model.decode(lowerCamelCase ).sample model.enable_xformers_memory_efficient_attention() with torch.no_grad(): __a = model.decode(lowerCamelCase ).sample assert list(sample.shape ) == [3, 3, 512, 512] assert torch_all_close(lowerCamelCase , lowerCamelCase , atol=1E-1 ) @parameterized.expand([(13,), (16,), (37,)] ) @require_torch_gpu @unittest.skipIf(not is_xformers_available() , reason="xformers is not required when using PyTorch 2.0." ) def a__ ( self , lowerCamelCase ): __a = self.get_sd_vae_model() __a = self.get_sd_image(lowerCamelCase , shape=(3, 4, 64, 64) ) with torch.no_grad(): __a = model.decode(lowerCamelCase ).sample model.enable_xformers_memory_efficient_attention() with torch.no_grad(): __a = model.decode(lowerCamelCase ).sample assert list(sample.shape ) == [3, 3, 512, 512] assert torch_all_close(lowerCamelCase , lowerCamelCase , atol=1E-2 ) @parameterized.expand( [ # fmt: off [33, [-0.3001, 0.0918, -2.6984, -3.9720, -3.2099, -5.0353, 1.7338, -0.2065, 3.4267]], [47, [-1.5030, -4.3871, -6.0355, -9.1157, -1.6661, -2.7853, 2.1607, -5.0823, 2.5633]], # fmt: on ] ) def a__ ( self , lowerCamelCase , lowerCamelCase ): __a = self.get_sd_vae_model() __a = self.get_sd_image(lowerCamelCase ) __a = self.get_generator(lowerCamelCase ) with torch.no_grad(): __a = model.encode(lowerCamelCase ).latent_dist __a = dist.sample(generator=lowerCamelCase ) assert list(sample.shape ) == [image.shape[0], 4] + [i // 8 for i in image.shape[2:]] __a = sample[0, -1, -3:, -3:].flatten().cpu() __a = torch.tensor(lowerCamelCase ) __a = 3E-3 if torch_device != "mps" else 1E-2 assert torch_all_close(lowerCamelCase , lowerCamelCase , atol=lowerCamelCase )
363
"""simple docstring""" import torch from torch import nn from torch.nn import CrossEntropyLoss, MSELoss from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward from transformers.models.bert.modeling_bert import ( BERT_INPUTS_DOCSTRING, BERT_START_DOCSTRING, BertEmbeddings, BertLayer, BertPooler, BertPreTrainedModel, ) def _lowerCamelCase( a ): __a = torch.exp(a ) __a = torch.sum(a , dim=1 ) # sum of exp(x_i) __a = torch.sum(x * exp_x , dim=1 ) # sum of x_i * exp(x_i) return torch.log(a ) - B / A class snake_case__ ( nn.Module ): def __init__( self , lowerCamelCase ): super().__init__() __a = config.output_attentions __a = config.output_hidden_states __a = nn.ModuleList([BertLayer(lowerCamelCase ) for _ in range(config.num_hidden_layers )] ) __a = nn.ModuleList([BertHighway(lowerCamelCase ) for _ in range(config.num_hidden_layers )] ) __a = [-1 for _ in range(config.num_hidden_layers )] def a__ ( self , lowerCamelCase ): if (type(lowerCamelCase ) is float) or (type(lowerCamelCase ) is int): for i in range(len(self.early_exit_entropy ) ): __a = x else: __a = x def a__ ( self , lowerCamelCase ): __a = pooler.state_dict() for highway in self.highway: for name, param in highway.pooler.state_dict().items(): param.copy_(loaded_model[name] ) def a__ ( self , lowerCamelCase , lowerCamelCase=None , lowerCamelCase=None , lowerCamelCase=None , lowerCamelCase=None , ): __a = () __a = () __a = () for i, layer_module in enumerate(self.layer ): if self.output_hidden_states: __a = all_hidden_states + (hidden_states,) __a = layer_module( lowerCamelCase , lowerCamelCase , head_mask[i] , lowerCamelCase , lowerCamelCase ) __a = layer_outputs[0] if self.output_attentions: __a = all_attentions + (layer_outputs[1],) __a = (hidden_states,) if self.output_hidden_states: __a = current_outputs + (all_hidden_states,) if self.output_attentions: __a = current_outputs + (all_attentions,) __a = self.highway[i](lowerCamelCase ) # logits, pooled_output if not self.training: __a = highway_exit[0] __a = entropy(lowerCamelCase ) __a = highway_exit + (highway_entropy,) # logits, hidden_states(?), entropy __a = all_highway_exits + (highway_exit,) if highway_entropy < self.early_exit_entropy[i]: __a = (highway_logits,) + current_outputs[1:] + (all_highway_exits,) raise HighwayException(lowerCamelCase , i + 1 ) else: __a = all_highway_exits + (highway_exit,) # Add last layer if self.output_hidden_states: __a = all_hidden_states + (hidden_states,) __a = (hidden_states,) if self.output_hidden_states: __a = outputs + (all_hidden_states,) if self.output_attentions: __a = outputs + (all_attentions,) __a = outputs + (all_highway_exits,) return outputs # last-layer hidden state, (all hidden states), (all attentions), all highway exits @add_start_docstrings( """The Bert Model transformer with early exiting (DeeBERT). """, snake_case_, ) class snake_case__ ( snake_case_ ): def __init__( self , lowerCamelCase ): super().__init__(lowerCamelCase ) __a = config __a = BertEmbeddings(lowerCamelCase ) __a = DeeBertEncoder(lowerCamelCase ) __a = BertPooler(lowerCamelCase ) self.init_weights() def a__ ( self ): self.encoder.init_highway_pooler(self.pooler ) def a__ ( self ): return self.embeddings.word_embeddings def a__ ( self , lowerCamelCase ): __a = value def a__ ( self , lowerCamelCase ): for layer, heads in heads_to_prune.items(): self.encoder.layer[layer].attention.prune_heads(lowerCamelCase ) @add_start_docstrings_to_model_forward(lowerCamelCase ) def a__ ( self , lowerCamelCase=None , lowerCamelCase=None , lowerCamelCase=None , lowerCamelCase=None , lowerCamelCase=None , lowerCamelCase=None , lowerCamelCase=None , lowerCamelCase=None , ): if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time" ) elif input_ids is not None: __a = input_ids.size() elif inputs_embeds is not None: __a = inputs_embeds.size()[:-1] else: raise ValueError("You have to specify either input_ids or inputs_embeds" ) __a = input_ids.device if input_ids is not None else inputs_embeds.device if attention_mask is None: __a = torch.ones(lowerCamelCase , device=lowerCamelCase ) if encoder_attention_mask is None: __a = torch.ones(lowerCamelCase , device=lowerCamelCase ) if token_type_ids is None: __a = torch.zeros(lowerCamelCase , dtype=torch.long , device=lowerCamelCase ) # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] # ourselves in which case we just need to make it broadcastable to all heads. __a = self.get_extended_attention_mask(lowerCamelCase , lowerCamelCase , lowerCamelCase ) # If a 2D ou 3D attention mask is provided for the cross-attention # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] if encoder_attention_mask.dim() == 3: __a = encoder_attention_mask[:, None, :, :] if encoder_attention_mask.dim() == 2: __a = encoder_attention_mask[:, None, None, :] __a = encoder_extended_attention_mask.to( dtype=next(self.parameters() ).dtype ) # fp16 compatibility __a = (1.0 - encoder_extended_attention_mask) * -1_0000.0 # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] __a = self.get_head_mask(lowerCamelCase , self.config.num_hidden_layers ) __a = self.embeddings( input_ids=lowerCamelCase , position_ids=lowerCamelCase , token_type_ids=lowerCamelCase , inputs_embeds=lowerCamelCase ) __a = self.encoder( lowerCamelCase , attention_mask=lowerCamelCase , head_mask=lowerCamelCase , encoder_hidden_states=lowerCamelCase , encoder_attention_mask=lowerCamelCase , ) __a = encoder_outputs[0] __a = self.pooler(lowerCamelCase ) __a = ( sequence_output, pooled_output, ) + encoder_outputs[ 1: ] # add hidden_states and attentions if they are here return outputs # sequence_output, pooled_output, (hidden_states), (attentions), highway exits class snake_case__ ( snake_case_ ): def __init__( self , lowerCamelCase , lowerCamelCase ): __a = message __a = exit_layer # start from 1! class snake_case__ ( nn.Module ): def __init__( self , lowerCamelCase ): super().__init__() __a = BertPooler(lowerCamelCase ) __a = nn.Dropout(config.hidden_dropout_prob ) __a = nn.Linear(config.hidden_size , config.num_labels ) def a__ ( self , lowerCamelCase ): # Pooler __a = encoder_outputs[0] __a = self.pooler(lowerCamelCase ) # "return" pooler_output # BertModel __a = (pooler_input, pooler_output) + encoder_outputs[1:] # "return" bmodel_output # Dropout and classification __a = bmodel_output[1] __a = self.dropout(lowerCamelCase ) __a = self.classifier(lowerCamelCase ) return logits, pooled_output @add_start_docstrings( """Bert Model (with early exiting - DeeBERT) with a classifier on top, also takes care of multi-layer training. """, snake_case_, ) class snake_case__ ( snake_case_ ): def __init__( self , lowerCamelCase ): super().__init__(lowerCamelCase ) __a = config.num_labels __a = config.num_hidden_layers __a = DeeBertModel(lowerCamelCase ) __a = nn.Dropout(config.hidden_dropout_prob ) __a = nn.Linear(config.hidden_size , self.config.num_labels ) self.init_weights() @add_start_docstrings_to_model_forward(lowerCamelCase ) def a__ ( self , lowerCamelCase=None , lowerCamelCase=None , lowerCamelCase=None , lowerCamelCase=None , lowerCamelCase=None , lowerCamelCase=None , lowerCamelCase=None , lowerCamelCase=-1 , lowerCamelCase=False , ): __a = self.num_layers try: __a = self.bert( lowerCamelCase , attention_mask=lowerCamelCase , token_type_ids=lowerCamelCase , position_ids=lowerCamelCase , head_mask=lowerCamelCase , inputs_embeds=lowerCamelCase , ) # sequence_output, pooled_output, (hidden_states), (attentions), highway exits __a = outputs[1] __a = self.dropout(lowerCamelCase ) __a = self.classifier(lowerCamelCase ) __a = (logits,) + outputs[2:] # add hidden states and attention if they are here except HighwayException as e: __a = e.message __a = e.exit_layer __a = outputs[0] if not self.training: __a = entropy(lowerCamelCase ) __a = [] __a = [] if labels is not None: if self.num_labels == 1: # We are doing regression __a = MSELoss() __a = loss_fct(logits.view(-1 ) , labels.view(-1 ) ) else: __a = CrossEntropyLoss() __a = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) # work with highway exits __a = [] for highway_exit in outputs[-1]: __a = highway_exit[0] if not self.training: highway_logits_all.append(lowerCamelCase ) highway_entropy.append(highway_exit[2] ) if self.num_labels == 1: # We are doing regression __a = MSELoss() __a = loss_fct(highway_logits.view(-1 ) , labels.view(-1 ) ) else: __a = CrossEntropyLoss() __a = loss_fct(highway_logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) highway_losses.append(lowerCamelCase ) if train_highway: __a = (sum(highway_losses[:-1] ),) + outputs # exclude the final highway, of course else: __a = (loss,) + outputs if not self.training: __a = outputs + ((original_entropy, highway_entropy), exit_layer) if output_layer >= 0: __a = ( (outputs[0],) + (highway_logits_all[output_layer],) + outputs[2:] ) # use the highway of the last layer return outputs # (loss), logits, (hidden_states), (attentions), (highway_exits)
268
0
"""simple docstring""" import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import PoolFormerImageProcessor class a ( unittest.TestCase ): def __init__( self , _lowerCamelCase , _lowerCamelCase=7 , _lowerCamelCase=3 , _lowerCamelCase=3_0 , _lowerCamelCase=4_0_0 , _lowerCamelCase=True , _lowerCamelCase=None , _lowerCamelCase=0.9 , _lowerCamelCase=None , _lowerCamelCase=True , _lowerCamelCase=[0.5, 0.5, 0.5] , _lowerCamelCase=[0.5, 0.5, 0.5] , ): lowercase = size if size is not None else {'shortest_edge': 3_0} lowercase = crop_size if crop_size is not None else {'height': 3_0, 'width': 3_0} lowercase = parent lowercase = batch_size lowercase = num_channels lowercase = min_resolution lowercase = max_resolution lowercase = do_resize_and_center_crop lowercase = size lowercase = crop_pct lowercase = crop_size lowercase = do_normalize lowercase = image_mean lowercase = image_std def UpperCamelCase_ ( self ): return { "size": self.size, "do_resize_and_center_crop": self.do_resize_and_center_crop, "crop_pct": self.crop_pct, "crop_size": self.crop_size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, } @require_torch @require_vision class a ( a_, unittest.TestCase ): UpperCAmelCase_ : List[str] =PoolFormerImageProcessor if is_vision_available() else None def UpperCamelCase_ ( self ): lowercase = PoolFormerImageProcessingTester(self ) @property def UpperCamelCase_ ( self ): return self.image_processor_tester.prepare_image_processor_dict() def UpperCamelCase_ ( self ): lowercase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_lowerCamelCase , 'do_resize_and_center_crop' ) ) self.assertTrue(hasattr(_lowerCamelCase , 'size' ) ) self.assertTrue(hasattr(_lowerCamelCase , 'crop_pct' ) ) self.assertTrue(hasattr(_lowerCamelCase , 'do_normalize' ) ) self.assertTrue(hasattr(_lowerCamelCase , 'image_mean' ) ) self.assertTrue(hasattr(_lowerCamelCase , 'image_std' ) ) def UpperCamelCase_ ( self ): lowercase = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'shortest_edge': 3_0} ) self.assertEqual(image_processor.crop_size , {'height': 3_0, 'width': 3_0} ) lowercase = self.image_processing_class.from_dict(self.image_processor_dict , size=4_2 , crop_size=8_4 ) self.assertEqual(image_processor.size , {'shortest_edge': 4_2} ) self.assertEqual(image_processor.crop_size , {'height': 8_4, 'width': 8_4} ) def UpperCamelCase_ ( self ): pass def UpperCamelCase_ ( self ): # Initialize image_processing lowercase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowercase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowerCamelCase ) for image in image_inputs: self.assertIsInstance(_lowerCamelCase , Image.Image ) # Test not batched input lowercase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched lowercase = image_processing(_lowerCamelCase , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) def UpperCamelCase_ ( self ): # Initialize image_processing lowercase = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowercase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowerCamelCase , numpify=_lowerCamelCase ) for image in image_inputs: self.assertIsInstance(_lowerCamelCase , np.ndarray ) # Test not batched input lowercase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched lowercase = image_processing(_lowerCamelCase , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) def UpperCamelCase_ ( self ): # Initialize image_processing lowercase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowercase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowerCamelCase , torchify=_lowerCamelCase ) for image in image_inputs: self.assertIsInstance(_lowerCamelCase , torch.Tensor ) # Test not batched input lowercase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched lowercase = image_processing(_lowerCamelCase , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , )
220
"""simple docstring""" def _SCREAMING_SNAKE_CASE ( __snake_case : List[str] , __snake_case : List[str] ): '''simple docstring''' lowercase = '' for i in table: res += inp[i - 1] return res def _SCREAMING_SNAKE_CASE ( __snake_case : str ): '''simple docstring''' return data[1:] + data[0] def _SCREAMING_SNAKE_CASE ( __snake_case : List[str] , __snake_case : Optional[int] ): '''simple docstring''' lowercase = '' for i in range(len(__snake_case ) ): if a[i] == b[i]: res += "0" else: res += "1" return res def _SCREAMING_SNAKE_CASE ( __snake_case : Dict , __snake_case : Optional[Any] ): '''simple docstring''' lowercase = int('0b' + data[0] + data[-1] , 2 ) lowercase = int('0b' + data[1:3] , 2 ) return bin(s[row][col] )[2:] def _SCREAMING_SNAKE_CASE ( __snake_case : Union[str, Any] , __snake_case : Union[str, Any] , __snake_case : Dict , __snake_case : Union[str, Any] , __snake_case : Optional[int] ): '''simple docstring''' lowercase = message[:4] lowercase = message[4:] lowercase = apply_table(__snake_case , __snake_case ) lowercase = xor(__snake_case , __snake_case ) lowercase = apply_sbox(__snake_case , temp[:4] ) # noqa: E741 lowercase = apply_sbox(__snake_case , temp[4:] ) lowercase = '0' * (2 - len(__snake_case )) + l # noqa: E741 lowercase = '0' * (2 - len(__snake_case )) + r lowercase = apply_table(l + r , __snake_case ) lowercase = xor(__snake_case , __snake_case ) return temp + right if __name__ == "__main__": _UpperCamelCase : Dict = input('Enter 10 bit key: ') _UpperCamelCase : int = input('Enter 8 bit message: ') _UpperCamelCase : Optional[int] = [6, 3, 7, 4, 8, 5, 1_0, 9] _UpperCamelCase : Optional[Any] = [3, 5, 2, 7, 4, 1_0, 1, 9, 8, 6] _UpperCamelCase : str = [2, 4, 3, 1] _UpperCamelCase : List[Any] = [2, 6, 3, 1, 4, 8, 5, 7] _UpperCamelCase : List[str] = [4, 1, 3, 5, 7, 2, 8, 6] _UpperCamelCase : int = [4, 1, 2, 3, 2, 3, 4, 1] _UpperCamelCase : Optional[Any] = [[1, 0, 3, 2], [3, 2, 1, 0], [0, 2, 1, 3], [3, 1, 3, 2]] _UpperCamelCase : Optional[int] = [[0, 1, 2, 3], [2, 0, 1, 3], [3, 0, 1, 0], [2, 1, 0, 3]] # key generation _UpperCamelCase : str = apply_table(key, paa_table) _UpperCamelCase : Union[str, Any] = temp[:5] _UpperCamelCase : Dict = temp[5:] _UpperCamelCase : List[Any] = left_shift(left) _UpperCamelCase : str = left_shift(right) _UpperCamelCase : int = apply_table(left + right, pa_table) _UpperCamelCase : Optional[int] = left_shift(left) _UpperCamelCase : Any = left_shift(right) _UpperCamelCase : str = left_shift(left) _UpperCamelCase : Tuple = left_shift(right) _UpperCamelCase : Union[str, Any] = apply_table(left + right, pa_table) # encryption _UpperCamelCase : Tuple = apply_table(message, IP) _UpperCamelCase : Any = function(expansion, sa, sa, keya, temp) _UpperCamelCase : List[Any] = temp[4:] + temp[:4] _UpperCamelCase : List[str] = function(expansion, sa, sa, keya, temp) _UpperCamelCase : int = apply_table(temp, IP_inv) print('Cipher text is:', CT) # decryption _UpperCamelCase : List[Any] = apply_table(CT, IP) _UpperCamelCase : Optional[Any] = function(expansion, sa, sa, keya, temp) _UpperCamelCase : int = temp[4:] + temp[:4] _UpperCamelCase : str = function(expansion, sa, sa, keya, temp) _UpperCamelCase : List[Any] = apply_table(temp, IP_inv) print('Plain text after decypting is:', PT)
220
1
'''simple docstring''' import heapq import sys import numpy as np a__ : Optional[int] = tuple[int, int] class UpperCAmelCase__ : def __init__( self ) -> Optional[Any]: __UpperCamelCase = [] __UpperCamelCase = set() def __lowerCamelCase ( self ) -> Union[str, Any]: if not self.empty(): return self.elements[0][0] else: return float("""inf""" ) def __lowerCamelCase ( self ) -> int: return len(self.elements ) == 0 def __lowerCamelCase ( self , lowercase , lowercase ) -> Optional[Any]: if item not in self.set: heapq.heappush(self.elements , (priority, item) ) self.set.add(_a ) else: # update # print("update", item) __UpperCamelCase = [] ((__UpperCamelCase) , (__UpperCamelCase)) = heapq.heappop(self.elements ) while x != item: temp.append((pri, x) ) ((__UpperCamelCase) , (__UpperCamelCase)) = heapq.heappop(self.elements ) temp.append((priority, item) ) for pro, xxx in temp: heapq.heappush(self.elements , (pro, xxx) ) def __lowerCamelCase ( self , lowercase ) -> Any: if item in self.set: self.set.remove(_a ) __UpperCamelCase = [] ((__UpperCamelCase) , (__UpperCamelCase)) = heapq.heappop(self.elements ) while x != item: temp.append((pro, x) ) ((__UpperCamelCase) , (__UpperCamelCase)) = heapq.heappop(self.elements ) for prito, yyy in temp: heapq.heappush(self.elements , (prito, yyy) ) def __lowerCamelCase ( self ) -> List[Any]: return self.elements[0][1] def __lowerCamelCase ( self ) -> Optional[Any]: ((__UpperCamelCase) , (__UpperCamelCase)) = heapq.heappop(self.elements ) self.set.remove(_a ) return (priority, item) def _lowercase ( __A ,__A ): '''simple docstring''' __UpperCamelCase = np.array(lowerCAmelCase__ ) __UpperCamelCase = np.array(lowerCAmelCase__ ) return np.linalg.norm(a - b ) def _lowercase ( __A ,__A ): '''simple docstring''' return consistent_heuristic(lowerCAmelCase__ ,lowerCAmelCase__ ) // t def _lowercase ( __A ,__A ): '''simple docstring''' return abs(p[0] - goal[0] ) + abs(p[1] - goal[1] ) def _lowercase ( __A ,__A ,__A ,__A ): '''simple docstring''' __UpperCamelCase = g_function[start] + Wa * heuristics[i](lowerCAmelCase__ ,lowerCAmelCase__ ) return ans def _lowercase ( __A ,__A ,__A ): '''simple docstring''' __UpperCamelCase = np.chararray((n, n) ) for i in range(lowerCAmelCase__ ): for j in range(lowerCAmelCase__ ): __UpperCamelCase = """*""" for i in range(lowerCAmelCase__ ): for j in range(lowerCAmelCase__ ): if (j, (n - 1) - i) in blocks: __UpperCamelCase = """#""" __UpperCamelCase = """-""" __UpperCamelCase = back_pointer[goal] while x != start: ((__UpperCamelCase) , (__UpperCamelCase)) = x # print(x) __UpperCamelCase = """-""" __UpperCamelCase = back_pointer[x] __UpperCamelCase = """-""" for i in range(lowerCAmelCase__ ): for j in range(lowerCAmelCase__ ): if (i, j) == (0, n - 1): print(grid[i][j] ,end=""" """ ) print("""<-- End position""" ,end=""" """ ) else: print(grid[i][j] ,end=""" """ ) print() print("""^""" ) print("""Start position""" ) print() print("""# is an obstacle""" ) print("""- is the path taken by algorithm""" ) print("""PATH TAKEN BY THE ALGORITHM IS:-""" ) __UpperCamelCase = back_pointer[goal] while x != start: print(lowerCAmelCase__ ,end=""" """ ) __UpperCamelCase = back_pointer[x] print(lowerCAmelCase__ ) sys.exit() def _lowercase ( __A ): '''simple docstring''' if p[0] < 0 or p[0] > n - 1: return False if p[1] < 0 or p[1] > n - 1: return False return True def _lowercase ( __A ,__A ,__A ,__A ,__A ,__A ,__A ,__A ,): '''simple docstring''' for itera in range(lowerCAmelCase__ ): open_list[itera].remove_element(lowerCAmelCase__ ) # print("s", s) # print("j", j) ((__UpperCamelCase) , (__UpperCamelCase)) = s __UpperCamelCase = (x - 1, y) __UpperCamelCase = (x + 1, y) __UpperCamelCase = (x, y + 1) __UpperCamelCase = (x, y - 1) for neighbours in [left, right, up, down]: if neighbours not in blocks: if valid(lowerCAmelCase__ ) and neighbours not in visited: # print("neighbour", neighbours) visited.add(lowerCAmelCase__ ) __UpperCamelCase = -1 __UpperCamelCase = float("""inf""" ) if valid(lowerCAmelCase__ ) and g_function[neighbours] > g_function[s] + 1: __UpperCamelCase = g_function[s] + 1 __UpperCamelCase = s if neighbours not in close_list_anchor: open_list[0].put(lowerCAmelCase__ ,key(lowerCAmelCase__ ,0 ,lowerCAmelCase__ ,lowerCAmelCase__ ) ) if neighbours not in close_list_inad: for var in range(1 ,lowerCAmelCase__ ): if key(lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ) <= Wa * key( lowerCAmelCase__ ,0 ,lowerCAmelCase__ ,lowerCAmelCase__ ): open_list[j].put( lowerCAmelCase__ ,key(lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ) ) def _lowercase ( ): '''simple docstring''' __UpperCamelCase = [] for x in range(1 ,5 ): for y in range(1 ,6 ): some_list.append((x, y) ) for x in range(15 ,20 ): some_list.append((x, 17) ) for x in range(10 ,19 ): for y in range(1 ,15 ): some_list.append((x, y) ) # L block for x in range(1 ,4 ): for y in range(12 ,19 ): some_list.append((x, y) ) for x in range(3 ,13 ): for y in range(16 ,19 ): some_list.append((x, y) ) return some_list a__ : List[Any] = {0: consistent_heuristic, 1: heuristic_a, 2: heuristic_a} a__ : Dict = [ (0, 1), (1, 1), (2, 1), (3, 1), (4, 1), (5, 1), (6, 1), (7, 1), (8, 1), (9, 1), (1_0, 1), (1_1, 1), (1_2, 1), (1_3, 1), (1_4, 1), (1_5, 1), (1_6, 1), (1_7, 1), (1_8, 1), (1_9, 1), ] a__ : str = make_common_ground() a__ : List[Any] = blocks_blk # hyper parameters a__ : str = 1 a__ : int = 1 a__ : Dict = 2_0 a__ : Dict = 3 # one consistent and two other inconsistent # start and end destination a__ : List[str] = (0, 0) a__ : Optional[Any] = (n - 1, n - 1) a__ : int = 1 def _lowercase ( __A ,__A ,__A ): '''simple docstring''' __UpperCamelCase = {start: 0, goal: float("""inf""" )} __UpperCamelCase = {start: -1, goal: -1} __UpperCamelCase = [] __UpperCamelCase = set() for i in range(lowerCAmelCase__ ): open_list.append(PriorityQueue() ) open_list[i].put(lowerCAmelCase__ ,key(lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ) ) __UpperCamelCase = [] __UpperCamelCase = [] while open_list[0].minkey() < float("""inf""" ): for i in range(1 ,lowerCAmelCase__ ): # print(open_list[0].minkey(), open_list[i].minkey()) if open_list[i].minkey() <= Wa * open_list[0].minkey(): global t t += 1 if g_function[goal] <= open_list[i].minkey(): if g_function[goal] < float("""inf""" ): do_something(lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ) else: __UpperCamelCase , __UpperCamelCase = open_list[i].top_show() visited.add(lowerCAmelCase__ ) expand_state( lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,) close_list_inad.append(lowerCAmelCase__ ) else: if g_function[goal] <= open_list[0].minkey(): if g_function[goal] < float("""inf""" ): do_something(lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ) else: __UpperCamelCase = open_list[0].top_show() visited.add(lowerCAmelCase__ ) expand_state( lowerCAmelCase__ ,0 ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,) close_list_anchor.append(lowerCAmelCase__ ) print("""No path found to goal""" ) print() for i in range(n - 1 ,-1 ,-1 ): for j in range(lowerCAmelCase__ ): if (j, i) in blocks: print("""#""" ,end=""" """ ) elif (j, i) in back_pointer: if (j, i) == (n - 1, n - 1): print("""*""" ,end=""" """ ) else: print("""-""" ,end=""" """ ) else: print("""*""" ,end=""" """ ) if (j, i) == (n - 1, n - 1): print("""<-- End position""" ,end=""" """ ) print() print("""^""" ) print("""Start position""" ) print() print("""# is an obstacle""" ) print("""- is the path taken by algorithm""" ) if __name__ == "__main__": multi_a_star(start, goal, n_heuristic)
361
'''simple docstring''' from typing import Dict, List, Optional from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging a__ : Optional[Any] = logging.get_logger(__name__) a__ : List[str] = { 'nielsr/canine-s': 2_0_4_8, } # Unicode defines 1,114,112 total “codepoints” a__ : Any = 1_1_1_4_1_1_2 # Below: Constants defining canonical codepoints for special, pseudo-characters. # Copied from https://github.com/google-research/language/blob/master/language/canine/special_codepoints.py a__ : List[str] = 0 a__ : int = 0Xe0_00 a__ : Any = 0Xe0_01 a__ : Union[str, Any] = 0Xe0_02 a__ : Tuple = 0Xe0_03 a__ : Tuple = 0Xe0_04 # Maps special codepoints to human-readable names. a__ : Dict[int, str] = { # Special symbols are represented using codepoints values that are valid, # but designated as "Private Use", meaning that they will never be assigned # characters by the Unicode Consortium, and are thus safe for use here. # # NOTE: Do *NOT* add any sort of [UNK_CHAR] here. They are explicitly # excluded and should fail with a hard error. CLS: "[CLS]", SEP: "[SEP]", BOS: "[BOS]", MASK: "[MASK]", PAD: "[PAD]", RESERVED: "[RESERVED]", } # Maps special codepoint human-readable names to their codepoint values. a__ : Dict[str, int] = {name: codepoint for codepoint, name in SPECIAL_CODEPOINTS.items()} class UpperCAmelCase__ ( UpperCAmelCase_): __SCREAMING_SNAKE_CASE = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self , lowercase=chr(lowercase ) , lowercase=chr(lowercase ) , lowercase=chr(lowercase ) , lowercase=chr(lowercase ) , lowercase=chr(lowercase ) , lowercase=chr(lowercase ) , lowercase=False , lowercase=2_0_4_8 , **lowercase , ) -> str: __UpperCamelCase = AddedToken(lowercase , lstrip=lowercase , rstrip=lowercase ) if isinstance(lowercase , lowercase ) else bos_token __UpperCamelCase = AddedToken(lowercase , lstrip=lowercase , rstrip=lowercase ) if isinstance(lowercase , lowercase ) else eos_token __UpperCamelCase = AddedToken(lowercase , lstrip=lowercase , rstrip=lowercase ) if isinstance(lowercase , lowercase ) else sep_token __UpperCamelCase = AddedToken(lowercase , lstrip=lowercase , rstrip=lowercase ) if isinstance(lowercase , lowercase ) else cls_token __UpperCamelCase = AddedToken(lowercase , lstrip=lowercase , rstrip=lowercase ) if isinstance(lowercase , lowercase ) else pad_token # Mask token behave like a normal word, i.e. include the space before it __UpperCamelCase = AddedToken(lowercase , lstrip=lowercase , rstrip=lowercase ) if isinstance(lowercase , lowercase ) else mask_token super().__init__( bos_token=lowercase , eos_token=lowercase , sep_token=lowercase , cls_token=lowercase , pad_token=lowercase , mask_token=lowercase , add_prefix_space=lowercase , model_max_length=lowercase , **lowercase , ) # Creates a mapping for looking up the IDs of special symbols. __UpperCamelCase = {} for codepoint, name in SPECIAL_CODEPOINTS.items(): __UpperCamelCase = codepoint # Creates a mapping for looking up the string forms of special symbol IDs. __UpperCamelCase = { codepoint: name for name, codepoint in self._special_codepoints.items() } __UpperCamelCase = UNICODE_VOCAB_SIZE __UpperCamelCase = len(self._special_codepoints ) @property def __lowerCamelCase ( self ) -> int: return self._unicode_vocab_size def __lowerCamelCase ( self , lowercase ) -> List[str]: return list(lowercase ) def __lowerCamelCase ( self , lowercase ) -> int: try: return ord(lowercase ) except TypeError: raise ValueError(f"invalid token: '{token}'" ) def __lowerCamelCase ( self , lowercase ) -> str: try: if index in SPECIAL_CODEPOINTS: return SPECIAL_CODEPOINTS[index] return chr(lowercase ) except TypeError: raise ValueError(f"invalid id: {index}" ) def __lowerCamelCase ( self , lowercase ) -> Tuple: return "".join(lowercase ) def __lowerCamelCase ( self , lowercase , lowercase = None ) -> List[int]: __UpperCamelCase = [self.sep_token_id] __UpperCamelCase = [self.cls_token_id] __UpperCamelCase = cls + token_ids_a + sep if token_ids_a is not None: result += token_ids_a + sep return result def __lowerCamelCase ( self , lowercase , lowercase = None , lowercase = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowercase , token_ids_a=lowercase , already_has_special_tokens=lowercase ) __UpperCamelCase = [1] + ([0] * len(lowercase )) + [1] if token_ids_a is not None: result += ([0] * len(lowercase )) + [1] return result def __lowerCamelCase ( self , lowercase , lowercase = None ) -> List[int]: __UpperCamelCase = [self.sep_token_id] __UpperCamelCase = [self.cls_token_id] __UpperCamelCase = len(cls + token_ids_a + sep ) * [0] if token_ids_a is not None: result += len(token_ids_a + sep ) * [1] return result def __lowerCamelCase ( self , lowercase , lowercase = None ) -> Optional[Any]: return ()
243
0
"""simple docstring""" # We ignore warnings about stepping the scheduler since we step it ourselves during gradient accumulation import warnings from .state import AcceleratorState, GradientState warnings.filterwarnings("ignore", category=UserWarning, module="torch.optim.lr_scheduler") class lowerCamelCase__ : def __init__( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = True , SCREAMING_SNAKE_CASE = False ): """simple docstring""" snake_case : Optional[int] = scheduler snake_case : List[str] = optimizers if isinstance(_A , (list, tuple) ) else [optimizers] snake_case : Tuple = split_batches snake_case : Optional[int] = step_with_optimizer snake_case : Tuple = GradientState() def lowerCamelCase_ ( self , *SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ): """simple docstring""" if not self.step_with_optimizer: # No link between scheduler and optimizer -> just step self.scheduler.step(*_A , **_A ) return # Otherwise, first make sure the optimizer was stepped. if not self.gradient_state.sync_gradients: if self.gradient_state.adjust_scheduler: self.scheduler._step_count += 1 return for opt in self.optimizers: if opt.step_was_skipped: return if self.split_batches: # Split batches -> the training dataloader batch size is not changed so one step per training step self.scheduler.step(*_A , **_A ) else: # Otherwise the training dataloader batch size was multiplied by `num_processes`, so we need to do # num_processes steps per training step snake_case : Tuple = AcceleratorState().num_processes for _ in range(_A ): # Special case when using OneCycle and `drop_last` was not used if hasattr(self.scheduler , "total_steps" ): if self.scheduler._step_count <= self.scheduler.total_steps: self.scheduler.step(*_A , **_A ) else: self.scheduler.step(*_A , **_A ) def lowerCamelCase_ ( self ): """simple docstring""" return self.scheduler.get_last_lr() def lowerCamelCase_ ( self ): """simple docstring""" return self.scheduler.state_dict() def lowerCamelCase_ ( self , SCREAMING_SNAKE_CASE ): """simple docstring""" self.scheduler.load_state_dict(_A ) def lowerCamelCase_ ( self ): """simple docstring""" return self.scheduler.get_lr() def lowerCamelCase_ ( self , *SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ): """simple docstring""" return self.scheduler.print_lr(*_A , **_A )
148
from heapq import heappop, heappush import numpy as np def snake_case( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , ) -> tuple[float | int, list[tuple[int, int]]]: '''simple docstring''' lowercase , lowercase : Optional[int] = grid.shape lowercase : Optional[int] = [-1, 1, 0, 0] lowercase : List[str] = [0, 0, -1, 1] if allow_diagonal: dx += [-1, -1, 1, 1] dy += [-1, 1, -1, 1] lowercase , lowercase : Union[str, Any] = [(0, source)], set() lowercase : List[str] = np.full((rows, cols) , np.inf ) lowercase : Dict = 0 lowercase : Dict = np.empty((rows, cols) , dtype=__magic_name__ ) lowercase : Any = None while queue: ((lowercase) , (lowercase)) : Optional[Any] = heappop(__magic_name__ ) if (x, y) in visited: continue visited.add((x, y) ) if (x, y) == destination: lowercase : Tuple = [] while (x, y) != source: path.append((x, y) ) lowercase , lowercase : Optional[int] = predecessors[x, y] path.append(__magic_name__ ) # add the source manually path.reverse() return matrix[destination], path for i in range(len(__magic_name__ ) ): lowercase , lowercase : Optional[int] = x + dx[i], y + dy[i] if 0 <= nx < rows and 0 <= ny < cols: lowercase : List[Any] = grid[nx][ny] if next_node == 1 and matrix[nx, ny] > dist + 1: heappush(__magic_name__ , (dist + 1, (nx, ny)) ) lowercase : int = dist + 1 lowercase : Optional[Any] = (x, y) return np.inf, [] if __name__ == "__main__": import doctest doctest.testmod()
308
0
# Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os import platform import numpy as np import psutil import torch from accelerate import __version__ as version from accelerate.commands.config import default_config_file, load_config_from_file from ..utils import is_npu_available, is_xpu_available def a_ ( lowerCAmelCase_ : Union[str, Any]=None ): if subparsers is not None: __lowerCAmelCase = subparsers.add_parser('env' ) else: __lowerCAmelCase = argparse.ArgumentParser('Accelerate env command' ) parser.add_argument( '--config_file', default=lowerCAmelCase_, help='The config file to use for the default values in the launching script.' ) if subparsers is not None: parser.set_defaults(func=lowerCAmelCase_ ) return parser def a_ ( lowerCAmelCase_ : Optional[Any] ): __lowerCAmelCase = torch.__version__ __lowerCAmelCase = torch.cuda.is_available() __lowerCAmelCase = is_xpu_available() __lowerCAmelCase = is_npu_available() __lowerCAmelCase = 'Not found' # Get the default from the config file. if args.config_file is not None or os.path.isfile(lowerCAmelCase_ ): __lowerCAmelCase = load_config_from_file(args.config_file ).to_dict() __lowerCAmelCase = { '`Accelerate` version': version, 'Platform': platform.platform(), 'Python version': platform.python_version(), 'Numpy version': np.__version__, 'PyTorch version (GPU?)': F"""{pt_version} ({pt_cuda_available})""", 'PyTorch XPU available': str(lowerCAmelCase_ ), 'PyTorch NPU available': str(lowerCAmelCase_ ), 'System RAM': F"""{psutil.virtual_memory().total / 1024 ** 3:.2f} GB""", } if pt_cuda_available: __lowerCAmelCase = torch.cuda.get_device_name() print('\nCopy-and-paste the text below in your GitHub issue\n' ) print('\n'.join([F"""- {prop}: {val}""" for prop, val in info.items()] ) ) print('- `Accelerate` default config:' if args.config_file is None else '- `Accelerate` config passed:' ) __lowerCAmelCase = ( '\n'.join([F"""\t- {prop}: {val}""" for prop, val in accelerate_config.items()] ) if isinstance(lowerCAmelCase_, lowerCAmelCase_ ) else F"""\t{accelerate_config}""" ) print(lowerCAmelCase_ ) __lowerCAmelCase = accelerate_config return info def a_ ( ): __lowerCAmelCase = env_command_parser() __lowerCAmelCase = parser.parse_args() env_command(lowerCAmelCase_ ) return 0 if __name__ == "__main__": raise SystemExit(main())
207
import argparse from transformers import ( TapasConfig, TapasForMaskedLM, TapasForQuestionAnswering, TapasForSequenceClassification, TapasModel, TapasTokenizer, load_tf_weights_in_tapas, ) from transformers.utils import logging logging.set_verbosity_info() def a_ ( lowerCAmelCase_ : str, lowerCAmelCase_ : Optional[int], lowerCAmelCase_ : Any, lowerCAmelCase_ : List[Any], lowerCAmelCase_ : Tuple ): # Initialise PyTorch model. # If you want to convert a checkpoint that uses absolute position embeddings, make sure to set reset_position_index_per_cell of # TapasConfig to False. # initialize configuration from json file __lowerCAmelCase = TapasConfig.from_json_file(lowerCAmelCase_ ) # set absolute/relative position embeddings parameter __lowerCAmelCase = reset_position_index_per_cell # set remaining parameters of TapasConfig as well as the model based on the task if task == "SQA": __lowerCAmelCase = TapasForQuestionAnswering(config=lowerCAmelCase_ ) elif task == "WTQ": # run_task_main.py hparams __lowerCAmelCase = 4 __lowerCAmelCase = True # hparam_utils.py hparams __lowerCAmelCase = 0.66_4694 __lowerCAmelCase = 0.20_7951 __lowerCAmelCase = 0.12_1194 __lowerCAmelCase = True __lowerCAmelCase = True __lowerCAmelCase = False __lowerCAmelCase = 0.035_2513 __lowerCAmelCase = TapasForQuestionAnswering(config=lowerCAmelCase_ ) elif task == "WIKISQL_SUPERVISED": # run_task_main.py hparams __lowerCAmelCase = 4 __lowerCAmelCase = False # hparam_utils.py hparams __lowerCAmelCase = 36.4519 __lowerCAmelCase = 0.90_3421 __lowerCAmelCase = 222.088 __lowerCAmelCase = True __lowerCAmelCase = True __lowerCAmelCase = True __lowerCAmelCase = 0.76_3141 __lowerCAmelCase = TapasForQuestionAnswering(config=lowerCAmelCase_ ) elif task == "TABFACT": __lowerCAmelCase = TapasForSequenceClassification(config=lowerCAmelCase_ ) elif task == "MLM": __lowerCAmelCase = TapasForMaskedLM(config=lowerCAmelCase_ ) elif task == "INTERMEDIATE_PRETRAINING": __lowerCAmelCase = TapasModel(config=lowerCAmelCase_ ) else: raise ValueError(F"""Task {task} not supported.""" ) print(F"""Building PyTorch model from configuration: {config}""" ) # Load weights from tf checkpoint load_tf_weights_in_tapas(lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ ) # Save pytorch-model (weights and configuration) print(F"""Save PyTorch model to {pytorch_dump_path}""" ) model.save_pretrained(lowerCAmelCase_ ) # Save tokenizer files print(F"""Save tokenizer files to {pytorch_dump_path}""" ) __lowerCAmelCase = TapasTokenizer(vocab_file=tf_checkpoint_path[:-10] + 'vocab.txt', model_max_length=512 ) tokenizer.save_pretrained(lowerCAmelCase_ ) print('Used relative position embeddings:', model.config.reset_position_index_per_cell ) if __name__ == "__main__": _snake_case : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--task', default='SQA', type=str, help='Model task for which to convert a checkpoint. Defaults to SQA.' ) parser.add_argument( '--reset_position_index_per_cell', default=False, action='store_true', help='Whether to use relative position embeddings or not. Defaults to True.', ) parser.add_argument( '--tf_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.' ) parser.add_argument( '--tapas_config_file', default=None, type=str, required=True, help=( 'The config json file corresponding to the pre-trained TAPAS model. \n' 'This specifies the model architecture.' ), ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) _snake_case : Optional[Any] = parser.parse_args() convert_tf_checkpoint_to_pytorch( args.task, args.reset_position_index_per_cell, args.tf_checkpoint_path, args.tapas_config_file, args.pytorch_dump_path, )
207
1
import gc import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import ( AutoencoderKL, DiffusionPipeline, EulerDiscreteScheduler, StableDiffusionXLImgaImgPipeline, UNetaDConditionModel, ) from diffusers.utils import floats_tensor, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class A ( _UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ): """simple docstring""" lowerCamelCase = StableDiffusionXLImgaImgPipeline lowerCamelCase = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {'height', 'width'} lowerCamelCase = PipelineTesterMixin.required_optional_params - {'latents'} lowerCamelCase = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS lowerCamelCase = IMAGE_TO_IMAGE_IMAGE_PARAMS lowerCamelCase = IMAGE_TO_IMAGE_IMAGE_PARAMS def snake_case__ ( self : Union[str, Any] )-> Optional[Any]: '''simple docstring''' torch.manual_seed(0 ) A__ = UNetaDConditionModel( block_out_channels=(3_2, 6_4),layers_per_block=2,sample_size=3_2,in_channels=4,out_channels=4,down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D'),up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D'),attention_head_dim=(2, 4),use_linear_projection=lowercase_,addition_embed_type='text_time',addition_time_embed_dim=8,transformer_layers_per_block=(1, 2),projection_class_embeddings_input_dim=8_0,cross_attention_dim=6_4,) A__ = EulerDiscreteScheduler( beta_start=0.00_085,beta_end=0.012,steps_offset=1,beta_schedule='scaled_linear',timestep_spacing='leading',) torch.manual_seed(0 ) A__ = AutoencoderKL( block_out_channels=[3_2, 6_4],in_channels=3,out_channels=3,down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'],up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'],latent_channels=4,sample_size=1_2_8,) torch.manual_seed(0 ) A__ = CLIPTextConfig( bos_token_id=0,eos_token_id=2,hidden_size=3_2,intermediate_size=3_7,layer_norm_eps=1E-05,num_attention_heads=4,num_hidden_layers=5,pad_token_id=1,vocab_size=1_0_0_0,hidden_act='gelu',projection_dim=3_2,) A__ = CLIPTextModel(lowercase_ ) A__ = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip',local_files_only=lowercase_ ) A__ = CLIPTextModelWithProjection(lowercase_ ) A__ = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip',local_files_only=lowercase_ ) A__ = { 'unet': unet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'text_encoder_2': text_encoder_a, 'tokenizer_2': tokenizer_a, # "safety_checker": None, # "feature_extractor": None, } return components def snake_case__ ( self : List[str],lowercase_ : Optional[Any],lowercase_ : str=0 )-> Optional[int]: '''simple docstring''' A__ = floats_tensor((1, 3, 3_2, 3_2),rng=random.Random(lowercase_ ) ).to(lowercase_ ) A__ = image / 2 + 0.5 if str(lowercase_ ).startswith('mps' ): A__ = torch.manual_seed(lowercase_ ) else: A__ = torch.Generator(device=lowercase_ ).manual_seed(lowercase_ ) A__ = { 'prompt': 'A painting of a squirrel eating a burger', 'image': image, 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 5.0, 'output_type': 'numpy', 'strength': 0.75, } return inputs def snake_case__ ( self : Union[str, Any] )-> str: '''simple docstring''' A__ = 'cpu' # ensure determinism for the device-dependent torch.Generator A__ = self.get_dummy_components() A__ = StableDiffusionXLImgaImgPipeline(**lowercase_ ) A__ = sd_pipe.to(lowercase_ ) sd_pipe.set_progress_bar_config(disable=lowercase_ ) A__ = self.get_dummy_inputs(lowercase_ ) A__ = sd_pipe(**lowercase_ ).images A__ = image[0, -3:, -3:, -1] assert image.shape == (1, 3_2, 3_2, 3) A__ = np.array([0.4_656, 0.4_840, 0.4_439, 0.6_698, 0.5_574, 0.4_524, 0.5_799, 0.5_943, 0.5_165] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def snake_case__ ( self : List[Any] )-> str: '''simple docstring''' super().test_attention_slicing_forward_pass(expected_max_diff=3E-3 ) def snake_case__ ( self : Tuple )-> Dict: '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) def snake_case__ ( self : int )-> Tuple: '''simple docstring''' pass def snake_case__ ( self : List[str] )-> Tuple: '''simple docstring''' A__ = self.get_dummy_components() A__ = StableDiffusionXLImgaImgPipeline(**lowercase_ ) A__ = sd_pipe.to(lowercase_ ) A__ = sd_pipe.to(lowercase_ ) sd_pipe.set_progress_bar_config(disable=lowercase_ ) # forward without prompt embeds A__ = self.get_dummy_inputs(lowercase_ ) A__ = 3 * ['this is a negative prompt'] A__ = negative_prompt A__ = 3 * [inputs['prompt']] A__ = sd_pipe(**lowercase_ ) A__ = output.images[0, -3:, -3:, -1] # forward with prompt embeds A__ = self.get_dummy_inputs(lowercase_ ) A__ = 3 * ['this is a negative prompt'] A__ = 3 * [inputs.pop('prompt' )] ( ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ) = sd_pipe.encode_prompt(lowercase_,negative_prompt=lowercase_ ) A__ = sd_pipe( **lowercase_,prompt_embeds=lowercase_,negative_prompt_embeds=lowercase_,pooled_prompt_embeds=lowercase_,negative_pooled_prompt_embeds=lowercase_,) A__ = output.images[0, -3:, -3:, -1] # make sure that it's equal assert np.abs(image_slice_a.flatten() - image_slice_a.flatten() ).max() < 1E-4 @slow @require_torch_gpu class A ( unittest.TestCase ): """simple docstring""" def snake_case__ ( self : Union[str, Any] )-> List[Any]: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def snake_case__ ( self : Optional[Any],lowercase_ : Union[str, Any],lowercase_ : Any="cpu",lowercase_ : str=torch.floataa,lowercase_ : str=0 )-> List[str]: '''simple docstring''' A__ = torch.Generator(device=lowercase_ ).manual_seed(lowercase_ ) A__ = np.random.RandomState(lowercase_ ).standard_normal((1, 4, 6_4, 6_4) ) A__ = torch.from_numpy(lowercase_ ).to(device=lowercase_,dtype=lowercase_ ) A__ = { 'prompt': 'a photograph of an astronaut riding a horse', 'latents': latents, 'generator': generator, 'num_inference_steps': 3, 'guidance_scale': 7.5, 'output_type': 'numpy', } return inputs def snake_case__ ( self : List[Any] )-> Dict: '''simple docstring''' A__ = DiffusionPipeline.from_pretrained('stabilityai/stable-diffusion-2-base' ) pipe.to(lowercase_ ) pipe.set_progress_bar_config(disable=lowercase_ ) A__ = self.get_inputs(lowercase_ ) A__ = pipe(**lowercase_ ).images A__ = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 5_1_2, 5_1_2, 3) A__ = np.array([0.49_493, 0.47_896, 0.40_798, 0.54_214, 0.53_212, 0.48_202, 0.47_656, 0.46_329, 0.48_506] ) assert np.abs(image_slice - expected_slice ).max() < 7E-3
7
'''simple docstring''' import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST, OpenAIGPTConfig, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification, OpenAIGPTLMHeadModel, OpenAIGPTModel, ) class a__ : def __init__( self : Union[str, Any] , a : Union[str, Any] , a : Tuple=13 , a : Optional[Any]=7 , a : List[Any]=True , a : Optional[Any]=True , a : Any=True , a : Union[str, Any]=99 , a : Any=32 , a : int=5 , a : Optional[int]=4 , a : Union[str, Any]=37 , a : Optional[Any]="gelu" , a : Union[str, Any]=0.1 , a : Any=0.1 , a : Optional[int]=5_12 , a : int=16 , a : Optional[Any]=2 , a : Union[str, Any]=0.02 , a : Any=3 , a : Dict=4 , a : Any=None , ): """simple docstring""" __lowerCamelCase = parent __lowerCamelCase = batch_size __lowerCamelCase = seq_length __lowerCamelCase = is_training __lowerCamelCase = use_token_type_ids __lowerCamelCase = use_labels __lowerCamelCase = vocab_size __lowerCamelCase = hidden_size __lowerCamelCase = num_hidden_layers __lowerCamelCase = num_attention_heads __lowerCamelCase = intermediate_size __lowerCamelCase = hidden_act __lowerCamelCase = hidden_dropout_prob __lowerCamelCase = attention_probs_dropout_prob __lowerCamelCase = max_position_embeddings __lowerCamelCase = type_vocab_size __lowerCamelCase = type_sequence_label_size __lowerCamelCase = initializer_range __lowerCamelCase = num_labels __lowerCamelCase = num_choices __lowerCamelCase = scope __lowerCamelCase = self.vocab_size - 1 def SCREAMING_SNAKE_CASE__ ( self : List[str] ): """simple docstring""" __lowerCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowerCamelCase = None if self.use_token_type_ids: __lowerCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __lowerCamelCase = None __lowerCamelCase = None __lowerCamelCase = None if self.use_labels: __lowerCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowerCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __lowerCamelCase = ids_tensor([self.batch_size] , self.num_choices ) __lowerCamelCase = OpenAIGPTConfig( vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , pad_token_id=self.pad_token_id , ) __lowerCamelCase = ids_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 ) return ( config, input_ids, head_mask, token_type_ids, sequence_labels, token_labels, choice_labels, ) def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] , a : Dict , a : List[str] , a : Tuple , a : List[Any] , *a : Union[str, Any] ): """simple docstring""" __lowerCamelCase = OpenAIGPTModel(config=a ) model.to(a ) model.eval() __lowerCamelCase = model(a , token_type_ids=a , head_mask=a ) __lowerCamelCase = model(a , token_type_ids=a ) __lowerCamelCase = model(a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def SCREAMING_SNAKE_CASE__ ( self : Optional[int] , a : Union[str, Any] , a : Dict , a : Union[str, Any] , a : Tuple , *a : Union[str, Any] ): """simple docstring""" __lowerCamelCase = OpenAIGPTLMHeadModel(a ) model.to(a ) model.eval() __lowerCamelCase = model(a , token_type_ids=a , labels=a ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def SCREAMING_SNAKE_CASE__ ( self : Optional[int] , a : Tuple , a : Optional[int] , a : Union[str, Any] , a : Optional[Any] , *a : Optional[Any] ): """simple docstring""" __lowerCamelCase = OpenAIGPTDoubleHeadsModel(a ) model.to(a ) model.eval() __lowerCamelCase = model(a , token_type_ids=a , labels=a ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def SCREAMING_SNAKE_CASE__ ( self : List[str] , a : int , a : Dict , a : Optional[Any] , a : str , *a : int ): """simple docstring""" __lowerCamelCase = self.num_labels __lowerCamelCase = OpenAIGPTForSequenceClassification(a ) model.to(a ) model.eval() __lowerCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowerCamelCase = model(a , token_type_ids=a , labels=a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ): """simple docstring""" __lowerCamelCase = self.prepare_config_and_inputs() ( ( __lowerCamelCase ) , ( __lowerCamelCase ) , ( __lowerCamelCase ) , ( __lowerCamelCase ) , ( __lowerCamelCase ) , ( __lowerCamelCase ) , ( __lowerCamelCase ) , ) = config_and_inputs __lowerCamelCase = { '''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''head_mask''': head_mask, } return config, inputs_dict @require_torch class a__ ( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase ): lowerCamelCase : List[str] =( (OpenAIGPTModel, OpenAIGPTLMHeadModel, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification) if is_torch_available() else () ) lowerCamelCase : str =( (OpenAIGPTLMHeadModel,) if is_torch_available() else () ) # TODO (PVP): Add Double HeadsModel when generate() function is changed accordingly lowerCamelCase : Optional[int] =( { "feature-extraction": OpenAIGPTModel, "text-classification": OpenAIGPTForSequenceClassification, "text-generation": OpenAIGPTLMHeadModel, "zero-shot": OpenAIGPTForSequenceClassification, } if is_torch_available() else {} ) def SCREAMING_SNAKE_CASE__ ( self : List[Any] , a : Tuple , a : Optional[int] , a : int , a : str , a : Any ): """simple docstring""" if pipeline_test_casse_name == "ZeroShotClassificationPipelineTests": # Get `tokenizer does not have a padding token` error for both fast/slow tokenizers. # `OpenAIGPTConfig` was never used in pipeline tests, either because of a missing checkpoint or because a # tiny config could not be created. return True return False def SCREAMING_SNAKE_CASE__ ( self : Optional[int] , a : int , a : Optional[int] , a : str=False ): """simple docstring""" __lowerCamelCase = super()._prepare_for_class(a , a , return_labels=a ) if return_labels: if model_class.__name__ == "OpenAIGPTDoubleHeadsModel": __lowerCamelCase = torch.zeros( (self.model_tester.batch_size, self.model_tester.num_choices, self.model_tester.seq_length) , dtype=torch.long , device=a , ) __lowerCamelCase = inputs_dict['''labels'''] __lowerCamelCase = inputs_dict['''labels'''] __lowerCamelCase = torch.zeros( (self.model_tester.batch_size, self.model_tester.num_choices) , dtype=torch.long , device=a , ) __lowerCamelCase = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=a ) return inputs_dict def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ): """simple docstring""" __lowerCamelCase = OpenAIGPTModelTester(self ) __lowerCamelCase = ConfigTester(self , config_class=a , n_embd=37 ) def SCREAMING_SNAKE_CASE__ ( self : List[str] ): """simple docstring""" self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ): """simple docstring""" __lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_openai_gpt_model(*a ) def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ): """simple docstring""" __lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head_model(*a ) def SCREAMING_SNAKE_CASE__ ( self : List[str] ): """simple docstring""" __lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_double_lm_head_model(*a ) def SCREAMING_SNAKE_CASE__ ( self : Any ): """simple docstring""" __lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_openai_gpt_for_sequence_classification(*a ) @slow def SCREAMING_SNAKE_CASE__ ( self : Any ): """simple docstring""" for model_name in OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowerCamelCase = OpenAIGPTModel.from_pretrained(a ) self.assertIsNotNone(a ) @require_torch class a__ ( unittest.TestCase ): @slow def SCREAMING_SNAKE_CASE__ ( self : str ): """simple docstring""" __lowerCamelCase = OpenAIGPTLMHeadModel.from_pretrained('''openai-gpt''' ) model.to(a ) __lowerCamelCase = torch.tensor([[4_81, 47_35, 5_44]] , dtype=torch.long , device=a ) # the president is __lowerCamelCase = [ 4_81, 47_35, 5_44, 2_46, 9_63, 8_70, 7_62, 2_39, 2_44, 4_04_77, 2_44, 2_49, 7_19, 8_81, 4_87, 5_44, 2_40, 2_44, 6_03, 4_81, ] # the president is a very good man. " \n " i\'m sure he is, " said the __lowerCamelCase = model.generate(a , do_sample=a ) self.assertListEqual(output_ids[0].tolist() , a )
67
0
import argparse import re import torch from CLAP import create_model from transformers import AutoFeatureExtractor, ClapConfig, ClapModel __snake_case = { 'text_branch': 'text_model', 'audio_branch': 'audio_model.audio_encoder', 'attn': 'attention.self', 'self.proj': 'output.dense', 'attention.self_mask': 'attn_mask', 'mlp.fc1': 'intermediate.dense', 'mlp.fc2': 'output.dense', 'norm1': 'layernorm_before', 'norm2': 'layernorm_after', 'bn0': 'batch_norm', } __snake_case = AutoFeatureExtractor.from_pretrained("""laion/clap-htsat-unfused""", truncation="""rand_trunc""") def _lowercase ( UpperCamelCase_ , UpperCamelCase_=False ) -> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = create_model( 'HTSAT-tiny' , 'roberta' , snake_case_ , precision='fp32' , device='cuda:0' if torch.cuda.is_available() else 'cpu' , enable_fusion=snake_case_ , fusion_type='aff_2d' if enable_fusion else None , ) return model, model_cfg def _lowercase ( UpperCamelCase_ ) -> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE__ = {} SCREAMING_SNAKE_CASE__ = r'.*sequential.(\d+).*' SCREAMING_SNAKE_CASE__ = r'.*_projection.(\d+).*' for key, value in state_dict.items(): # check if any key needs to be modified for key_to_modify, new_key in KEYS_TO_MODIFY_MAPPING.items(): if key_to_modify in key: SCREAMING_SNAKE_CASE__ = key.replace(snake_case_ , snake_case_ ) if re.match(snake_case_ , snake_case_ ): # replace sequential layers with list SCREAMING_SNAKE_CASE__ = re.match(snake_case_ , snake_case_ ).group(1 ) SCREAMING_SNAKE_CASE__ = key.replace(F'sequential.{sequential_layer}.' , F'layers.{int(snake_case_ )//3}.linear.' ) elif re.match(snake_case_ , snake_case_ ): SCREAMING_SNAKE_CASE__ = int(re.match(snake_case_ , snake_case_ ).group(1 ) ) # Because in CLAP they use `nn.Sequential`... SCREAMING_SNAKE_CASE__ = 1 if projecton_layer == 0 else 2 SCREAMING_SNAKE_CASE__ = key.replace(F'_projection.{projecton_layer}.' , F'_projection.linear{transformers_projection_layer}.' ) if "audio" and "qkv" in key: # split qkv into query key and value SCREAMING_SNAKE_CASE__ = value SCREAMING_SNAKE_CASE__ = mixed_qkv.size(0 ) // 3 SCREAMING_SNAKE_CASE__ = mixed_qkv[:qkv_dim] SCREAMING_SNAKE_CASE__ = mixed_qkv[qkv_dim : qkv_dim * 2] SCREAMING_SNAKE_CASE__ = mixed_qkv[qkv_dim * 2 :] SCREAMING_SNAKE_CASE__ = query_layer SCREAMING_SNAKE_CASE__ = key_layer SCREAMING_SNAKE_CASE__ = value_layer else: SCREAMING_SNAKE_CASE__ = value return model_state_dict def _lowercase ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_=False ) -> List[str]: '''simple docstring''' SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = init_clap(snake_case_ , enable_fusion=snake_case_ ) clap_model.eval() SCREAMING_SNAKE_CASE__ = clap_model.state_dict() SCREAMING_SNAKE_CASE__ = rename_state_dict(snake_case_ ) SCREAMING_SNAKE_CASE__ = ClapConfig() SCREAMING_SNAKE_CASE__ = enable_fusion SCREAMING_SNAKE_CASE__ = ClapModel(snake_case_ ) # ignore the spectrogram embedding layer model.load_state_dict(snake_case_ , strict=snake_case_ ) model.save_pretrained(snake_case_ ) transformers_config.save_pretrained(snake_case_ ) if __name__ == "__main__": __snake_case = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument("""--enable_fusion""", action="""store_true""", help="""Whether to enable fusion or not""") __snake_case = parser.parse_args() convert_clap_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.enable_fusion)
370
import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST, OpenAIGPTConfig, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification, OpenAIGPTLMHeadModel, OpenAIGPTModel, ) class lowercase__ : def __init__( self : Dict , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Dict=13 , UpperCAmelCase_ : Optional[Any]=7 , UpperCAmelCase_ : Any=True , UpperCAmelCase_ : List[str]=True , UpperCAmelCase_ : List[str]=True , UpperCAmelCase_ : int=99 , UpperCAmelCase_ : Tuple=32 , UpperCAmelCase_ : int=5 , UpperCAmelCase_ : Tuple=4 , UpperCAmelCase_ : Tuple=37 , UpperCAmelCase_ : Optional[Any]="gelu" , UpperCAmelCase_ : Tuple=0.1 , UpperCAmelCase_ : Tuple=0.1 , UpperCAmelCase_ : Optional[Any]=512 , UpperCAmelCase_ : List[str]=16 , UpperCAmelCase_ : Any=2 , UpperCAmelCase_ : Dict=0.02 , UpperCAmelCase_ : Optional[int]=3 , UpperCAmelCase_ : Any=4 , UpperCAmelCase_ : Tuple=None , ): SCREAMING_SNAKE_CASE__ = parent SCREAMING_SNAKE_CASE__ = batch_size SCREAMING_SNAKE_CASE__ = seq_length SCREAMING_SNAKE_CASE__ = is_training SCREAMING_SNAKE_CASE__ = use_token_type_ids SCREAMING_SNAKE_CASE__ = use_labels SCREAMING_SNAKE_CASE__ = vocab_size SCREAMING_SNAKE_CASE__ = hidden_size SCREAMING_SNAKE_CASE__ = num_hidden_layers SCREAMING_SNAKE_CASE__ = num_attention_heads SCREAMING_SNAKE_CASE__ = intermediate_size SCREAMING_SNAKE_CASE__ = hidden_act SCREAMING_SNAKE_CASE__ = hidden_dropout_prob SCREAMING_SNAKE_CASE__ = attention_probs_dropout_prob SCREAMING_SNAKE_CASE__ = max_position_embeddings SCREAMING_SNAKE_CASE__ = type_vocab_size SCREAMING_SNAKE_CASE__ = type_sequence_label_size SCREAMING_SNAKE_CASE__ = initializer_range SCREAMING_SNAKE_CASE__ = num_labels SCREAMING_SNAKE_CASE__ = num_choices SCREAMING_SNAKE_CASE__ = scope SCREAMING_SNAKE_CASE__ = self.vocab_size - 1 def A_ ( self : List[Any] ): SCREAMING_SNAKE_CASE__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) SCREAMING_SNAKE_CASE__ = None if self.use_token_type_ids: SCREAMING_SNAKE_CASE__ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) SCREAMING_SNAKE_CASE__ = None SCREAMING_SNAKE_CASE__ = None SCREAMING_SNAKE_CASE__ = None if self.use_labels: SCREAMING_SNAKE_CASE__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) SCREAMING_SNAKE_CASE__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) SCREAMING_SNAKE_CASE__ = ids_tensor([self.batch_size] , self.num_choices ) SCREAMING_SNAKE_CASE__ = OpenAIGPTConfig( vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , pad_token_id=self.pad_token_id , ) SCREAMING_SNAKE_CASE__ = ids_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 ) return ( config, input_ids, head_mask, token_type_ids, sequence_labels, token_labels, choice_labels, ) def A_ ( self : Union[str, Any] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : List[str] , *UpperCAmelCase_ : List[str] ): SCREAMING_SNAKE_CASE__ = OpenAIGPTModel(config=UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() SCREAMING_SNAKE_CASE__ = model(UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ , head_mask=UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = model(UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = model(UpperCAmelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def A_ ( self : Union[str, Any] , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Any , UpperCAmelCase_ : Any , UpperCAmelCase_ : Tuple , *UpperCAmelCase_ : List[Any] ): SCREAMING_SNAKE_CASE__ = OpenAIGPTLMHeadModel(UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() SCREAMING_SNAKE_CASE__ = model(UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ , labels=UpperCAmelCase_ ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def A_ ( self : str , UpperCAmelCase_ : int , UpperCAmelCase_ : int , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Union[str, Any] , *UpperCAmelCase_ : Union[str, Any] ): SCREAMING_SNAKE_CASE__ = OpenAIGPTDoubleHeadsModel(UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() SCREAMING_SNAKE_CASE__ = model(UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ , labels=UpperCAmelCase_ ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def A_ ( self : int , UpperCAmelCase_ : Dict , UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Any , *UpperCAmelCase_ : int ): SCREAMING_SNAKE_CASE__ = self.num_labels SCREAMING_SNAKE_CASE__ = OpenAIGPTForSequenceClassification(UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() SCREAMING_SNAKE_CASE__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) SCREAMING_SNAKE_CASE__ = model(UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ , labels=UpperCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def A_ ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE__ = self.prepare_config_and_inputs() ( ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ) = config_and_inputs SCREAMING_SNAKE_CASE__ = { 'input_ids': input_ids, 'token_type_ids': token_type_ids, 'head_mask': head_mask, } return config, inputs_dict @require_torch class lowercase__ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ): A__ : Union[str, Any] =( (OpenAIGPTModel, OpenAIGPTLMHeadModel, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification) if is_torch_available() else () ) A__ : Any =( (OpenAIGPTLMHeadModel,) if is_torch_available() else () ) # TODO (PVP): Add Double HeadsModel when generate() function is changed accordingly A__ : Dict =( { """feature-extraction""": OpenAIGPTModel, """text-classification""": OpenAIGPTForSequenceClassification, """text-generation""": OpenAIGPTLMHeadModel, """zero-shot""": OpenAIGPTForSequenceClassification, } if is_torch_available() else {} ) def A_ ( self : str , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : int , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : List[Any] ): if pipeline_test_casse_name == "ZeroShotClassificationPipelineTests": # Get `tokenizer does not have a padding token` error for both fast/slow tokenizers. # `OpenAIGPTConfig` was never used in pipeline tests, either because of a missing checkpoint or because a # tiny config could not be created. return True return False def A_ ( self : List[str] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Dict=False ): SCREAMING_SNAKE_CASE__ = super()._prepare_for_class(UpperCAmelCase_ , UpperCAmelCase_ , return_labels=UpperCAmelCase_ ) if return_labels: if model_class.__name__ == "OpenAIGPTDoubleHeadsModel": SCREAMING_SNAKE_CASE__ = torch.zeros( (self.model_tester.batch_size, self.model_tester.num_choices, self.model_tester.seq_length) , dtype=torch.long , device=UpperCAmelCase_ , ) SCREAMING_SNAKE_CASE__ = inputs_dict['labels'] SCREAMING_SNAKE_CASE__ = inputs_dict['labels'] SCREAMING_SNAKE_CASE__ = torch.zeros( (self.model_tester.batch_size, self.model_tester.num_choices) , dtype=torch.long , device=UpperCAmelCase_ , ) SCREAMING_SNAKE_CASE__ = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=UpperCAmelCase_ ) return inputs_dict def A_ ( self : Optional[int] ): SCREAMING_SNAKE_CASE__ = OpenAIGPTModelTester(self ) SCREAMING_SNAKE_CASE__ = ConfigTester(self , config_class=UpperCAmelCase_ , n_embd=37 ) def A_ ( self : Optional[int] ): self.config_tester.run_common_tests() def A_ ( self : Optional[int] ): SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_openai_gpt_model(*UpperCAmelCase_ ) def A_ ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head_model(*UpperCAmelCase_ ) def A_ ( self : List[str] ): SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_double_lm_head_model(*UpperCAmelCase_ ) def A_ ( self : Optional[Any] ): SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_openai_gpt_for_sequence_classification(*UpperCAmelCase_ ) @slow def A_ ( self : Optional[int] ): for model_name in OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE__ = OpenAIGPTModel.from_pretrained(UpperCAmelCase_ ) self.assertIsNotNone(UpperCAmelCase_ ) @require_torch class lowercase__ ( unittest.TestCase ): @slow def A_ ( self : List[Any] ): SCREAMING_SNAKE_CASE__ = OpenAIGPTLMHeadModel.from_pretrained('openai-gpt' ) model.to(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = torch.tensor([[481, 4735, 544]] , dtype=torch.long , device=UpperCAmelCase_ ) # the president is SCREAMING_SNAKE_CASE__ = [ 481, 4735, 544, 246, 963, 870, 762, 239, 244, 40477, 244, 249, 719, 881, 487, 544, 240, 244, 603, 481, ] # the president is a very good man. " \n " i\'m sure he is, " said the SCREAMING_SNAKE_CASE__ = model.generate(UpperCAmelCase_ , do_sample=UpperCAmelCase_ ) self.assertListEqual(output_ids[0].tolist() , UpperCAmelCase_ )
169
0
from sklearn.metrics import matthews_corrcoef import datasets lowercase__ : Any = ''' Compute the Matthews correlation coefficient (MCC) The Matthews correlation coefficient is used in machine learning as a measure of the quality of binary and multiclass classifications. It takes into account true and false positives and negatives and is generally regarded as a balanced measure which can be used even if the classes are of very different sizes. The MCC is in essence a correlation coefficient value between -1 and +1. A coefficient of +1 represents a perfect prediction, 0 an average random prediction and -1 an inverse prediction. The statistic is also known as the phi coefficient. [source: Wikipedia] ''' lowercase__ : Dict = ''' Args: predictions (list of int): Predicted labels, as returned by a model. references (list of int): Ground truth labels. sample_weight (list of int, float, or bool): Sample weights. Defaults to `None`. Returns: matthews_correlation (dict containing float): Matthews correlation. Examples: Example 1, a basic example with only predictions and references as inputs: >>> matthews_metric = datasets.load_metric("matthews_correlation") >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2], ... predictions=[1, 2, 2, 0, 3, 3]) >>> print(round(results[\'matthews_correlation\'], 2)) 0.54 Example 2, the same example as above, but also including sample weights: >>> matthews_metric = datasets.load_metric("matthews_correlation") >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2], ... predictions=[1, 2, 2, 0, 3, 3], ... sample_weight=[0.5, 3, 1, 1, 1, 2]) >>> print(round(results[\'matthews_correlation\'], 2)) 0.1 Example 3, the same example as above, but with sample weights that cause a negative correlation: >>> matthews_metric = datasets.load_metric("matthews_correlation") >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2], ... predictions=[1, 2, 2, 0, 3, 3], ... sample_weight=[0.5, 1, 0, 0, 0, 1]) >>> print(round(results[\'matthews_correlation\'], 2)) -0.25 ''' lowercase__ : List[Any] = '''\ @article{scikit-learn, title={Scikit-learn: Machine Learning in {P}ython}, author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, journal={Journal of Machine Learning Research}, volume={12}, pages={2825--2830}, year={2011} } ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowercase_ ( datasets.Metric ): """simple docstring""" def SCREAMING_SNAKE_CASE_ ( self ) ->Optional[int]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''int32''' ), '''references''': datasets.Value('''int32''' ), } ) , reference_urls=[ '''https://scikit-learn.org/stable/modules/generated/sklearn.metrics.matthews_corrcoef.html''' ] , ) def SCREAMING_SNAKE_CASE_ ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=None ) ->Tuple: return { "matthews_correlation": float(matthews_corrcoef(lowerCAmelCase_ , lowerCAmelCase_ , sample_weight=lowerCAmelCase_ ) ), }
338
"""simple docstring""" from torch import nn def snake_case ( A__ ): if act_fn in ["swish", "silu"]: return nn.SiLU() elif act_fn == "mish": return nn.Mish() elif act_fn == "gelu": return nn.GELU() else: raise ValueError(F"""Unsupported activation function: {act_fn}""" )
268
0
import copy import tempfile import unittest from transformers import MaMaaaConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from transformers.utils import cached_property from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MaMaaaForConditionalGeneration, MaMaaaModel, MaMaaaTokenizer from transformers.models.mam_aaa.modeling_mam_aaa import MaMaaaDecoder, MaMaaaEncoder def _a ( SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : int=None , SCREAMING_SNAKE_CASE__ : Any=None , SCREAMING_SNAKE_CASE__ : Optional[int]=None , SCREAMING_SNAKE_CASE__ : Tuple=None , SCREAMING_SNAKE_CASE__ : Optional[Any]=None , ) -> Optional[Any]: '''simple docstring''' if attention_mask is None: SCREAMING_SNAKE_CASE__ : int = input_ids.ne(config.pad_token_id ) if decoder_attention_mask is None: SCREAMING_SNAKE_CASE__ : int = decoder_input_ids.ne(config.pad_token_id ) if head_mask is None: SCREAMING_SNAKE_CASE__ : int = torch.ones(config.encoder_layers , config.encoder_attention_heads , device=A__ ) if decoder_head_mask is None: SCREAMING_SNAKE_CASE__ : int = torch.ones(config.decoder_layers , config.decoder_attention_heads , device=A__ ) if cross_attn_head_mask is None: SCREAMING_SNAKE_CASE__ : Dict = torch.ones(config.decoder_layers , config.decoder_attention_heads , device=A__ ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } class lowerCamelCase : """simple docstring""" def __init__( self : Optional[Any], _UpperCAmelCase : str, _UpperCAmelCase : Dict=1_3, _UpperCAmelCase : Dict=7, _UpperCAmelCase : Optional[int]=True, _UpperCAmelCase : Dict=False, _UpperCAmelCase : int=9_9, _UpperCAmelCase : Tuple=1_6, _UpperCAmelCase : str=2, _UpperCAmelCase : List[str]=4, _UpperCAmelCase : Dict=4, _UpperCAmelCase : Optional[Any]="relu", _UpperCAmelCase : str=0.1, _UpperCAmelCase : Union[str, Any]=0.1, _UpperCAmelCase : int=0.0, _UpperCAmelCase : Dict=0.0, _UpperCAmelCase : str=2_0, _UpperCAmelCase : Union[str, Any]=2, _UpperCAmelCase : Tuple=1, _UpperCAmelCase : List[str]=0, ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[Any] = parent SCREAMING_SNAKE_CASE__ : Any = batch_size SCREAMING_SNAKE_CASE__ : List[str] = seq_length SCREAMING_SNAKE_CASE__ : int = is_training SCREAMING_SNAKE_CASE__ : str = use_labels SCREAMING_SNAKE_CASE__ : int = vocab_size SCREAMING_SNAKE_CASE__ : Dict = hidden_size SCREAMING_SNAKE_CASE__ : Any = num_hidden_layers SCREAMING_SNAKE_CASE__ : Optional[Any] = num_attention_heads SCREAMING_SNAKE_CASE__ : List[str] = intermediate_size SCREAMING_SNAKE_CASE__ : Any = hidden_act SCREAMING_SNAKE_CASE__ : List[str] = hidden_dropout_prob SCREAMING_SNAKE_CASE__ : int = attention_probs_dropout_prob SCREAMING_SNAKE_CASE__ : List[str] = encoder_layerdrop SCREAMING_SNAKE_CASE__ : Optional[Any] = decoder_layerdrop SCREAMING_SNAKE_CASE__ : List[Any] = max_position_embeddings SCREAMING_SNAKE_CASE__ : int = eos_token_id SCREAMING_SNAKE_CASE__ : Dict = pad_token_id SCREAMING_SNAKE_CASE__ : Tuple = bos_token_id def A_ ( self : Optional[int] ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Tuple = ids_tensor([self.batch_size, self.seq_length], self.vocab_size ) SCREAMING_SNAKE_CASE__ : int = self.eos_token_id # Eos Token SCREAMING_SNAKE_CASE__ : List[str] = ids_tensor([self.batch_size, self.seq_length], self.vocab_size ) # we need to clamp the input ids here to avoid having pad token in between # this is because for M2M100 the position_ids are prepared such that # all pad tokens have pos id = 2 and rest are between 2..seq_length # and the seq_length here is seq_length - num_pad_tokens # but when using past, there is no way of knowing if the past input ids had # pad tokens in them, which results in incorrect seq_lenth and which in turn results in # position_ids being off by num_pad_tokens in past input SCREAMING_SNAKE_CASE__ : str = input_ids.clamp(self.pad_token_id + 1 ) SCREAMING_SNAKE_CASE__ : str = decoder_input_ids.clamp(self.pad_token_id + 1 ) SCREAMING_SNAKE_CASE__ : Optional[int] = self.get_config() SCREAMING_SNAKE_CASE__ : List[Any] = prepare_mam_aaa_inputs_dict(lowercase__, lowercase__, lowercase__ ) return config, inputs_dict def A_ ( self : Optional[Any] ) -> Optional[Any]: """simple docstring""" return MaMaaaConfig( vocab_size=self.vocab_size, d_model=self.hidden_size, encoder_layers=self.num_hidden_layers, decoder_layers=self.num_hidden_layers, encoder_attention_heads=self.num_attention_heads, decoder_attention_heads=self.num_attention_heads, encoder_ffn_dim=self.intermediate_size, decoder_ffn_dim=self.intermediate_size, dropout=self.hidden_dropout_prob, attention_dropout=self.attention_probs_dropout_prob, encoder_layerdrop=self.encoder_layerdrop, decoder_layerdrop=self.decoder_layerdrop, max_position_embeddings=self.max_position_embeddings, eos_token_id=self.eos_token_id, bos_token_id=self.bos_token_id, pad_token_id=self.pad_token_id, ) def A_ ( self : Optional[int] ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ : Dict = self.prepare_config_and_inputs() return config, inputs_dict def A_ ( self : Tuple, _UpperCAmelCase : Optional[Any], _UpperCAmelCase : Any ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE__ : int = MaMaaaModel(config=lowercase__ ).get_decoder().to(lowercase__ ).eval() SCREAMING_SNAKE_CASE__ : int = inputs_dict["input_ids"] SCREAMING_SNAKE_CASE__ : Union[str, Any] = inputs_dict["attention_mask"] SCREAMING_SNAKE_CASE__ : int = inputs_dict["head_mask"] # first forward pass SCREAMING_SNAKE_CASE__ : List[Any] = model(lowercase__, attention_mask=lowercase__, head_mask=lowercase__, use_cache=lowercase__ ) SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ : str = outputs.to_tuple() # create hypothetical multiple next token and extent to next_input_ids SCREAMING_SNAKE_CASE__ : List[Any] = ids_tensor((self.batch_size, 3), config.vocab_size ) SCREAMING_SNAKE_CASE__ : List[str] = ids_tensor((self.batch_size, 3), 2 ) # append to next input_ids and SCREAMING_SNAKE_CASE__ : str = torch.cat([input_ids, next_tokens], dim=-1 ) SCREAMING_SNAKE_CASE__ : Dict = torch.cat([attention_mask, next_attn_mask], dim=-1 ) SCREAMING_SNAKE_CASE__ : Optional[Any] = model(lowercase__, attention_mask=lowercase__ )["last_hidden_state"] SCREAMING_SNAKE_CASE__ : Dict = model(lowercase__, attention_mask=lowercase__, past_key_values=lowercase__ )[ "last_hidden_state" ] # select random slice SCREAMING_SNAKE_CASE__ : Optional[Any] = ids_tensor((1,), output_from_past.shape[-1] ).item() SCREAMING_SNAKE_CASE__ : Tuple = output_from_no_past[:, -3:, random_slice_idx].detach() SCREAMING_SNAKE_CASE__ : str = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(lowercase__, lowercase__, atol=1E-2 ) ) def A_ ( self : List[Any], _UpperCAmelCase : Any, _UpperCAmelCase : Optional[Any] ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE__ : Tuple = MaMaaaModel(config=lowercase__ ).to(lowercase__ ).eval() SCREAMING_SNAKE_CASE__ : Union[str, Any] = model(**lowercase__ ) SCREAMING_SNAKE_CASE__ : Dict = outputs.encoder_last_hidden_state SCREAMING_SNAKE_CASE__ : Tuple = outputs.last_hidden_state with tempfile.TemporaryDirectory() as tmpdirname: SCREAMING_SNAKE_CASE__ : Any = model.get_encoder() encoder.save_pretrained(lowercase__ ) SCREAMING_SNAKE_CASE__ : Dict = MaMaaaEncoder.from_pretrained(lowercase__ ).to(lowercase__ ) SCREAMING_SNAKE_CASE__ : int = encoder(inputs_dict["input_ids"], attention_mask=inputs_dict["attention_mask"] )[ 0 ] self.parent.assertTrue((encoder_last_hidden_state_a - encoder_last_hidden_state).abs().max().item() < 1E-3 ) with tempfile.TemporaryDirectory() as tmpdirname: SCREAMING_SNAKE_CASE__ : Tuple = model.get_decoder() decoder.save_pretrained(lowercase__ ) SCREAMING_SNAKE_CASE__ : List[Any] = MaMaaaDecoder.from_pretrained(lowercase__ ).to(lowercase__ ) SCREAMING_SNAKE_CASE__ : Tuple = decoder( input_ids=inputs_dict["decoder_input_ids"], attention_mask=inputs_dict["decoder_attention_mask"], encoder_hidden_states=lowercase__, encoder_attention_mask=inputs_dict["attention_mask"], )[0] self.parent.assertTrue((last_hidden_state_a - last_hidden_state).abs().max().item() < 1E-3 ) @require_torch class lowerCamelCase (lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ): """simple docstring""" UpperCAmelCase_ = ( ( MaMaaaModel, MaMaaaForConditionalGeneration, ) if is_torch_available() else () ) UpperCAmelCase_ = (MaMaaaForConditionalGeneration,) if is_torch_available() else () UpperCAmelCase_ = ( { 'conversational': MaMaaaForConditionalGeneration, 'feature-extraction': MaMaaaModel, 'summarization': MaMaaaForConditionalGeneration, 'text2text-generation': MaMaaaForConditionalGeneration, 'translation': MaMaaaForConditionalGeneration, } if is_torch_available() else {} ) UpperCAmelCase_ = True UpperCAmelCase_ = True UpperCAmelCase_ = False UpperCAmelCase_ = False def A_ ( self : Optional[Any], _UpperCAmelCase : List[Any], _UpperCAmelCase : str, _UpperCAmelCase : List[str], _UpperCAmelCase : Optional[int], _UpperCAmelCase : str ) -> Union[str, Any]: """simple docstring""" if pipeline_test_casse_name == "TranslationPipelineTests": # Get `ValueError: Translation requires a `src_lang` and a `tgt_lang` for this model`. # `M2M100Config` was never used in pipeline tests: cannot create a simple tokenizer. return True return False def A_ ( self : List[str] ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE__ : Dict = MaMaaaModelTester(self ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = ConfigTester(self, config_class=lowercase__ ) def A_ ( self : List[Any] ) -> str: """simple docstring""" self.config_tester.run_common_tests() def A_ ( self : Union[str, Any] ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ : Tuple = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE__ : Any = model_class(lowercase__ ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(lowercase__ ) SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ : int = model_class.from_pretrained(lowercase__, output_loading_info=lowercase__ ) self.assertEqual(info["missing_keys"], [] ) def A_ ( self : str ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past_large_inputs(*lowercase__ ) def A_ ( self : Dict ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_encoder_decoder_model_standalone(*lowercase__ ) def A_ ( self : Any ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in (MaMaaaModel, MaMaaaForConditionalGeneration): SCREAMING_SNAKE_CASE__ : Tuple = model_class(lowercase__ ) model.to(lowercase__ ) model.eval() SCREAMING_SNAKE_CASE__ : List[Any] = copy.deepcopy(self._prepare_for_class(lowercase__, lowercase__ ) ) if not self.is_encoder_decoder: SCREAMING_SNAKE_CASE__ : str = inputs["input_ids"] del inputs["input_ids"] else: SCREAMING_SNAKE_CASE__ : str = inputs["input_ids"] SCREAMING_SNAKE_CASE__ : Union[str, Any] = inputs.get("decoder_input_ids", lowercase__ ) del inputs["input_ids"] inputs.pop("decoder_input_ids", lowercase__ ) SCREAMING_SNAKE_CASE__ : Dict = model.get_input_embeddings() if not self.is_encoder_decoder: SCREAMING_SNAKE_CASE__ : Union[str, Any] = wte(lowercase__ ) else: SCREAMING_SNAKE_CASE__ : List[str] = wte(lowercase__ ) SCREAMING_SNAKE_CASE__ : List[str] = wte(lowercase__ ) with torch.no_grad(): model(**lowercase__ )[0] def A_ ( self : int ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ : str = self.model_tester.prepare_config_and_inputs() SCREAMING_SNAKE_CASE__ : Optional[int] = input_dict["input_ids"] SCREAMING_SNAKE_CASE__ : int = input_ids.ne(1 ).to(lowercase__ ) SCREAMING_SNAKE_CASE__ : Dict = MaMaaaForConditionalGeneration(lowercase__ ).eval().to(lowercase__ ) if torch_device == "cuda": model.half() model.generate(lowercase__, attention_mask=lowercase__ ) model.generate(num_beams=4, do_sample=lowercase__, early_stopping=lowercase__, num_return_sequences=3 ) def _a ( SCREAMING_SNAKE_CASE__ : Optional[int] ) -> List[str]: '''simple docstring''' return torch.tensor(A__ , dtype=torch.long , device=A__ ) _lowerCamelCase : int = 1e-4 @require_torch @require_sentencepiece @require_tokenizers @slow class lowerCamelCase (unittest.TestCase ): """simple docstring""" @cached_property def A_ ( self : List[Any] ) -> Optional[int]: """simple docstring""" return MaMaaaTokenizer.from_pretrained("facebook/m2m100_418M" ) def A_ ( self : Optional[int] ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[int] = MaMaaaModel.from_pretrained("facebook/m2m100_418M" ).to(lowercase__ ) SCREAMING_SNAKE_CASE__ : str = _long_tensor([[1_2_8_0_2_8, 9_8, 1_2, 3_0_5_2_7, 2_7_3_2, 1_5_9, 7_7_5_5, 6_1_9_0_4, 3_9_1_4_4, 3_8, 2]] ) SCREAMING_SNAKE_CASE__ : str = _long_tensor([[2, 1_2_8_0_2_8, 9_8, 1_2, 3_0_5_2_7, 2_7_3_2, 1_5_9, 7_7_5_5, 6_1_9_0_4, 3_9_1_4_4, 3_8]] ) SCREAMING_SNAKE_CASE__ : Optional[Any] = prepare_mam_aaa_inputs_dict(model.config, lowercase__, lowercase__ ) with torch.no_grad(): SCREAMING_SNAKE_CASE__ : int = model(**lowercase__ )[0] SCREAMING_SNAKE_CASE__ : Optional[Any] = torch.Size((1, 1_1, 1_0_2_4) ) self.assertEqual(output.shape, lowercase__ ) # change to expected output here SCREAMING_SNAKE_CASE__ : List[str] = torch.tensor( [[-0.7780, -0.1676, 0.1038], [-6.7556, -1.3992, 0.0567], [-7.5383, -0.5920, -0.2779]], device=lowercase__ ) self.assertTrue(torch.allclose(output[:, :3, :3], lowercase__, atol=lowercase__ ) ) def A_ ( self : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[Any] = MaMaaaForConditionalGeneration.from_pretrained("facebook/m2m100_418M" ).to(lowercase__ ) # change to intended input SCREAMING_SNAKE_CASE__ : Union[str, Any] = _long_tensor([[1_2_8_0_2_8, 9_8, 1_2, 3_0_5_2_7, 2_7_3_2, 1_5_9, 7_7_5_5, 6_1_9_0_4, 3_9_1_4_4, 3_8, 2]] ) SCREAMING_SNAKE_CASE__ : Tuple = _long_tensor([[2, 1_2_8_0_2_8, 9_8, 1_2, 3_0_5_2_7, 2_7_3_2, 1_5_9, 7_7_5_5, 6_1_9_0_4, 3_9_1_4_4, 3_8]] ) SCREAMING_SNAKE_CASE__ : Optional[Any] = prepare_mam_aaa_inputs_dict(model.config, lowercase__, lowercase__ ) with torch.no_grad(): SCREAMING_SNAKE_CASE__ : Optional[int] = model(**lowercase__ )[0] SCREAMING_SNAKE_CASE__ : int = torch.Size((1, 1_1, model.config.vocab_size) ) self.assertEqual(output.shape, lowercase__ ) # change to expected output here SCREAMING_SNAKE_CASE__ : str = torch.tensor( [[-1.0448, -1.0411, 3.7992], [-3.2191, -3.2386, -1.3451], [-3.6210, -3.5993, 0.4925]], device=lowercase__ ) self.assertTrue(torch.allclose(output[:, :3, :3], lowercase__, atol=lowercase__ ) ) def A_ ( self : Union[str, Any] ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[Any] = MaMaaaForConditionalGeneration.from_pretrained("facebook/m2m100_418M" ).to(lowercase__ ) SCREAMING_SNAKE_CASE__ : Optional[int] = MaMaaaTokenizer.from_pretrained("facebook/m2m100_418M", src_lang="fr", tgt_lang="en" ) SCREAMING_SNAKE_CASE__ : str = [ "L\'affaire NSA souligne l\'absence totale de débat sur le renseignement", "Selon moi, il y a deux niveaux de réponse de la part du gouvernement français.", "Lorsque François Hollande téléphone à Barack Obama ou quand le ministre des affaires étrangères Laurent" " Fabius convoque l\'ambassadeur des Etats-Unis, ils réagissent à une vraie découverte, qui est celle de" " l\'ampleur de la surveillance américaine sur l\'ensemble des communications en France.", ] # The below article tests that we don't add any hypotheses outside of the top n_beams SCREAMING_SNAKE_CASE__ : Union[str, Any] = tokenizer(lowercase__, padding=lowercase__, return_tensors="pt" ) SCREAMING_SNAKE_CASE__ : Optional[Any] = model.generate( input_ids=dct["input_ids"].to(lowercase__ ), attention_mask=dct["attention_mask"].to(lowercase__ ), num_beams=5, forced_bos_token_id=tokenizer.get_lang_id("en" ), ) SCREAMING_SNAKE_CASE__ : Optional[Any] = [ "The NSA case highlights the total absence of intelligence debate", "I think there are two levels of response from the French government.", "When François Hollande calls Barack Obama or when Foreign Minister Laurent Fabius calls the U.S." " Ambassador, they respond to a real discovery, which is that of the scale of U.S. surveillance on all" " communications in France.", ] SCREAMING_SNAKE_CASE__ : Optional[int] = tokenizer.batch_decode( hypotheses_batch.tolist(), clean_up_tokenization_spaces=lowercase__, skip_special_tokens=lowercase__ ) assert generated == expected_en
358
def _a ( SCREAMING_SNAKE_CASE__ : str ) -> str: '''simple docstring''' if not all(char in "01" for char in bin_string ): raise ValueError("Non-binary value was passed to the function" ) if not bin_string: raise ValueError("Empty string was passed to the function" ) SCREAMING_SNAKE_CASE__ : List[Any] = "" while len(SCREAMING_SNAKE_CASE__ ) % 3 != 0: SCREAMING_SNAKE_CASE__ : str = "0" + bin_string SCREAMING_SNAKE_CASE__ : List[Any] = [ bin_string[index : index + 3] for index in range(len(SCREAMING_SNAKE_CASE__ ) ) if index % 3 == 0 ] for bin_group in bin_string_in_3_list: SCREAMING_SNAKE_CASE__ : List[Any] = 0 for index, val in enumerate(SCREAMING_SNAKE_CASE__ ): oct_val += int(2 ** (2 - index) * int(SCREAMING_SNAKE_CASE__ ) ) oct_string += str(SCREAMING_SNAKE_CASE__ ) return oct_string if __name__ == "__main__": from doctest import testmod testmod()
191
0
from __future__ import annotations import unittest from transformers import XGLMConfig, XGLMTokenizer, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.xglm.modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, ) @require_tf class lowerCamelCase__ : SCREAMING_SNAKE_CASE__ = XGLMConfig SCREAMING_SNAKE_CASE__ = {} SCREAMING_SNAKE_CASE__ = '''gelu''' def __init__(self , UpperCAmelCase , UpperCAmelCase=1_4 , UpperCAmelCase=7 , UpperCAmelCase=True , UpperCAmelCase=True , UpperCAmelCase=True , UpperCAmelCase=9_9 , UpperCAmelCase=3_2 , UpperCAmelCase=2 , UpperCAmelCase=4 , UpperCAmelCase=3_7 , UpperCAmelCase="gelu" , UpperCAmelCase=0.1 , UpperCAmelCase=0.1 , UpperCAmelCase=5_1_2 , UpperCAmelCase=0.02 , ) -> List[Any]: _lowercase =parent _lowercase =batch_size _lowercase =seq_length _lowercase =is_training _lowercase =use_input_mask _lowercase =use_labels _lowercase =vocab_size _lowercase =d_model _lowercase =num_hidden_layers _lowercase =num_attention_heads _lowercase =ffn_dim _lowercase =activation_function _lowercase =activation_dropout _lowercase =attention_dropout _lowercase =max_position_embeddings _lowercase =initializer_range _lowercase =None _lowercase =0 _lowercase =2 _lowercase =1 def __A (self ) -> List[str]: return XGLMConfig.from_pretrained('''facebook/xglm-564M''' ) def __A (self ) -> List[str]: _lowercase =tf.clip_by_value( ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) , clip_value_min=0 , clip_value_max=3 ) _lowercase =None if self.use_input_mask: _lowercase =random_attention_mask([self.batch_size, self.seq_length] ) _lowercase =self.get_config() _lowercase =floats_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 ) return ( config, input_ids, input_mask, head_mask, ) def __A (self ) -> int: return XGLMConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , num_layers=self.num_hidden_layers , attention_heads=self.num_attention_heads , ffn_dim=self.ffn_dim , activation_function=self.activation_function , activation_dropout=self.activation_dropout , attention_dropout=self.attention_dropout , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , use_cache=UpperCAmelCase , bos_token_id=self.bos_token_id , eos_token_id=self.eos_token_id , pad_token_id=self.pad_token_id , return_dict=UpperCAmelCase , ) def __A (self ) -> str: _lowercase =self.prepare_config_and_inputs() ( ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ) =config_and_inputs _lowercase ={ '''input_ids''': input_ids, '''head_mask''': head_mask, } return config, inputs_dict @require_tf class lowerCamelCase__ ( lowerCAmelCase , lowerCAmelCase , unittest.TestCase): SCREAMING_SNAKE_CASE__ = (TFXGLMModel, TFXGLMForCausalLM) if is_tf_available() else () SCREAMING_SNAKE_CASE__ = (TFXGLMForCausalLM,) if is_tf_available() else () SCREAMING_SNAKE_CASE__ = ( {'''feature-extraction''': TFXGLMModel, '''text-generation''': TFXGLMForCausalLM} if is_tf_available() else {} ) SCREAMING_SNAKE_CASE__ = False SCREAMING_SNAKE_CASE__ = False SCREAMING_SNAKE_CASE__ = False def __A (self ) -> Optional[Any]: _lowercase =TFXGLMModelTester(self ) _lowercase =ConfigTester(self , config_class=UpperCAmelCase , n_embd=3_7 ) def __A (self ) -> Tuple: self.config_tester.run_common_tests() @slow def __A (self ) -> str: for model_name in TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowercase =TFXGLMModel.from_pretrained(UpperCAmelCase ) self.assertIsNotNone(UpperCAmelCase ) @unittest.skip(reason='''Currently, model embeddings are going to undergo a major refactor.''' ) def __A (self ) -> Optional[Any]: super().test_resize_token_embeddings() @require_tf class lowerCamelCase__ ( unittest.TestCase): @slow def __A (self , UpperCAmelCase=True ) -> str: _lowercase =TFXGLMForCausalLM.from_pretrained('''facebook/xglm-564M''' ) _lowercase =tf.convert_to_tensor([[2, 2_6_8, 9_8_6_5]] , dtype=tf.intaa ) # The dog # </s> The dog is a very friendly dog. He is very affectionate and loves to play with other # fmt: off _lowercase =[2, 2_6_8, 9_8_6_5, 6_7, 1_1, 1_9_8_8, 5_7_2_5_2, 9_8_6_5, 5, 9_8_4, 6_7, 1_9_8_8, 2_1_3_8_3_8, 1_6_5_8, 5_3, 7_0_4_4_6, 3_3, 6_6_5_7, 2_7_8, 1_5_8_1] # fmt: on _lowercase =model.generate(UpperCAmelCase , do_sample=UpperCAmelCase , num_beams=1 ) if verify_outputs: self.assertListEqual(output_ids[0].numpy().tolist() , UpperCAmelCase ) @slow def __A (self ) -> int: _lowercase =XGLMTokenizer.from_pretrained('''facebook/xglm-564M''' ) _lowercase =TFXGLMForCausalLM.from_pretrained('''facebook/xglm-564M''' ) tf.random.set_seed(0 ) _lowercase =tokenizer('''Today is a nice day and''' , return_tensors='''tf''' ) _lowercase =tokenized.input_ids # forces the generation to happen on CPU, to avoid GPU-related quirks (and assure same output regardless of the available devices) with tf.device(''':/CPU:0''' ): _lowercase =model.generate(UpperCAmelCase , do_sample=UpperCAmelCase , seed=[7, 0] ) _lowercase =tokenizer.decode(output_ids[0] , skip_special_tokens=UpperCAmelCase ) _lowercase =( '''Today is a nice day and warm evening here over Southern Alberta!! Today when they closed schools due''' ) self.assertEqual(UpperCAmelCase , UpperCAmelCase ) @slow def __A (self ) -> str: _lowercase =TFXGLMForCausalLM.from_pretrained('''facebook/xglm-564M''' ) _lowercase =XGLMTokenizer.from_pretrained('''facebook/xglm-564M''' ) _lowercase ='''left''' # use different length sentences to test batching _lowercase =[ '''This is an extremelly long sentence that only exists to test the ability of the model to cope with ''' '''left-padding, such as in batched generation. The output for the sequence below should be the same ''' '''regardless of whether left padding is applied or not. When''', '''Hello, my dog is a little''', ] _lowercase =tokenizer(UpperCAmelCase , return_tensors='''tf''' , padding=UpperCAmelCase ) _lowercase =inputs['''input_ids'''] _lowercase =model.generate(input_ids=UpperCAmelCase , attention_mask=inputs['''attention_mask'''] , max_new_tokens=1_2 ) _lowercase =tokenizer(sentences[0] , return_tensors='''tf''' ).input_ids _lowercase =model.generate(input_ids=UpperCAmelCase , max_new_tokens=1_2 ) _lowercase =tokenizer(sentences[1] , return_tensors='''tf''' ).input_ids _lowercase =model.generate(input_ids=UpperCAmelCase , max_new_tokens=1_2 ) _lowercase =tokenizer.batch_decode(UpperCAmelCase , skip_special_tokens=UpperCAmelCase ) _lowercase =tokenizer.decode(output_non_padded[0] , skip_special_tokens=UpperCAmelCase ) _lowercase =tokenizer.decode(output_padded[0] , skip_special_tokens=UpperCAmelCase ) _lowercase =[ '''This is an extremelly long sentence that only exists to test the ability of the model to cope with ''' '''left-padding, such as in batched generation. The output for the sequence below should be the same ''' '''regardless of whether left padding is applied or not. When left padding is applied, the sequence will be ''' '''a single''', '''Hello, my dog is a little bit of a shy one, but he is very friendly''', ] self.assertListEqual(UpperCAmelCase , UpperCAmelCase ) self.assertListEqual(UpperCAmelCase , [non_padded_sentence, padded_sentence] )
5
"""simple docstring""" import argparse import json import os import re import shutil import torch from transformers import BioGptConfig, BioGptForCausalLM from transformers.models.biogpt.tokenization_biogpt import VOCAB_FILES_NAMES from transformers.tokenization_utils_base import TOKENIZER_CONFIG_FILE from transformers.utils import WEIGHTS_NAME, logging logging.set_verbosity_warning() UpperCamelCase_ = 2 class snake_case : def __init__( self , *, # begin keyword-only arguments __UpperCAmelCase="<s>" , __UpperCAmelCase="<pad>" , __UpperCAmelCase="</s>" , __UpperCAmelCase="<unk>" , __UpperCAmelCase=None , ) ->Tuple: a_ , a_ , a_ , a_ = bos, unk, pad, eos a_ = [] a_ = [] a_ = {} a_ = self.add_symbol(__UpperCAmelCase) a_ = self.add_symbol(__UpperCAmelCase) a_ = self.add_symbol(__UpperCAmelCase) a_ = self.add_symbol(__UpperCAmelCase) if extra_special_symbols: for s in extra_special_symbols: self.add_symbol(__UpperCAmelCase) a_ = len(self.symbols) def __eq__( self , __UpperCAmelCase) ->Dict: return self.indices == other.indices def __getitem__( self , __UpperCAmelCase) ->Optional[Any]: if idx < len(self.symbols): return self.symbols[idx] return self.unk_word def __len__( self) ->Any: return len(self.symbols) def __contains__( self , __UpperCAmelCase) ->Dict: return sym in self.indices @classmethod def UpperCAmelCase__ ( cls , __UpperCAmelCase) ->List[Any]: a_ = cls() d.add_from_file(__UpperCAmelCase) return d def UpperCAmelCase__ ( self , __UpperCAmelCase , __UpperCAmelCase=1 , __UpperCAmelCase=False) ->List[Any]: if word in self.indices and not overwrite: a_ = self.indices[word] a_ = self.count[idx] + n return idx else: a_ = len(self.symbols) a_ = idx self.symbols.append(__UpperCAmelCase) self.count.append(__UpperCAmelCase) return idx def UpperCAmelCase__ ( self , __UpperCAmelCase) ->Tuple: return 0 def UpperCAmelCase__ ( self , __UpperCAmelCase) ->List[str]: if isinstance(__UpperCAmelCase , __UpperCAmelCase): try: with open(__UpperCAmelCase , "r" , encoding="utf-8") as fd: self.add_from_file(__UpperCAmelCase) except FileNotFoundError as fnfe: raise fnfe except UnicodeError: raise Exception("Incorrect encoding detected in {}, please rebuild the dataset".format(__UpperCAmelCase)) return a_ = f.readlines() a_ = self._load_meta(__UpperCAmelCase) for line in lines[indices_start_line:]: try: a_ , a_ = line.rstrip().rsplit(" " , 1) if field == "#fairseq:overwrite": a_ = True a_ , a_ = line.rsplit(" " , 1) else: a_ = False a_ = int(__UpperCAmelCase) a_ = line if word in self and not overwrite: raise RuntimeError( "Duplicate word found when loading Dictionary: '{}'. " "Duplicate words can overwrite earlier ones by adding the " "#fairseq:overwrite flag at the end of the corresponding row " "in the dictionary file. If using the Camembert model, please " "download an updated copy of the model file.".format(__UpperCAmelCase)) self.add_symbol(__UpperCAmelCase , n=__UpperCAmelCase , overwrite=__UpperCAmelCase) except ValueError: raise ValueError("Incorrect dictionary format, expected '<token> <cnt> [flags]'") def UpperCamelCase ( UpperCAmelCase ) ->Union[str, Any]: """simple docstring""" a_ = dict((re.sub(r"@@$" , "" , UpperCAmelCase ), v) if k.endswith("@@" ) else (re.sub(r"$" , "</w>" , UpperCAmelCase ), v) for k, v in d.items() ) a_ = "<s> <pad> </s> <unk>".split() # restore the special tokens for k in keep_keys: del da[F'''{k}</w>'''] a_ = d[k] # restore return da def UpperCamelCase ( UpperCAmelCase , UpperCAmelCase ) ->Any: """simple docstring""" if not os.path.exists(UpperCAmelCase ): raise ValueError(F'''path {biogpt_checkpoint_path} does not exist!''' ) os.makedirs(UpperCAmelCase , exist_ok=UpperCAmelCase ) print(F'''Writing results to {pytorch_dump_folder_path}''' ) # handle various types of models a_ = os.path.join(UpperCAmelCase , "checkpoint.pt" ) if not os.path.isfile(UpperCAmelCase ): raise ValueError(F'''path to the file {checkpoint_file} does not exist!''' ) a_ = torch.load(UpperCAmelCase , map_location="cpu" ) a_ = chkpt["cfg"]["model"] # dicts a_ = os.path.join(UpperCAmelCase , "dict.txt" ) if not os.path.isfile(UpperCAmelCase ): raise ValueError(F'''path to the file {dict_file} does not exist!''' ) a_ = Dictionary.load(UpperCAmelCase ) a_ = rewrite_dict_keys(src_dict.indices ) a_ = len(UpperCAmelCase ) a_ = os.path.join(UpperCAmelCase , VOCAB_FILES_NAMES["vocab_file"] ) print(F'''Generating {src_vocab_file} of {src_vocab_size} records''' ) with open(UpperCAmelCase , "w" , encoding="utf-8" ) as f: f.write(json.dumps(UpperCAmelCase , ensure_ascii=UpperCAmelCase , indent=UpperCAmelCase ) ) # merges_file (bpecodes) a_ = os.path.join(UpperCAmelCase , "bpecodes" ) if not os.path.isfile(UpperCAmelCase ): raise ValueError(F'''path to the file {bpecodes_file} does not exist!''' ) a_ = os.path.join(UpperCAmelCase , VOCAB_FILES_NAMES["merges_file"] ) shutil.copyfile(UpperCAmelCase , UpperCAmelCase ) # model config a_ = os.path.join(UpperCAmelCase , "config.json" ) a_ = { "activation_dropout": args["activation_dropout"], "architectures": ["BioGptForCausalLM"], "attention_probs_dropout_prob": args["attention_dropout"], "bos_token_id": 0, "eos_token_id": 2, "hidden_act": args["activation_fn"], "hidden_dropout_prob": args["dropout"], "hidden_size": args["decoder_embed_dim"], "initializer_range": 0.02, "intermediate_size": args["decoder_ffn_embed_dim"], "layer_norm_eps": 1E-12, "layerdrop": args["decoder_layerdrop"], "max_position_embeddings": args["max_target_positions"], "model_type": "biogpt", "num_attention_heads": args["decoder_attention_heads"], "num_hidden_layers": args["decoder_layers"], "pad_token_id": 1, "scale_embedding": not args["no_scale_embedding"], "tie_word_embeddings": args["share_decoder_input_output_embed"], "vocab_size": src_vocab_size, } # good hparam defaults to start with print(F'''Generating {biogpt_model_config_file}''' ) with open(UpperCAmelCase , "w" , encoding="utf-8" ) as f: f.write(json.dumps(UpperCAmelCase , ensure_ascii=UpperCAmelCase , indent=UpperCAmelCase ) ) # tokenizer config a_ = os.path.join(UpperCAmelCase , UpperCAmelCase ) a_ = { "bos_token": "<s>", "eos_token": "</s>", "model_max_length": 1_024, "pad_token": "<pad>", "special_tokens_map_file": None, "tokenizer_class": "BioGptTokenizer", "unk_token": "<unk>", } print(F'''Generating {biogpt_tokenizer_config_file}''' ) with open(UpperCAmelCase , "w" , encoding="utf-8" ) as f: f.write(json.dumps(UpperCAmelCase , ensure_ascii=UpperCAmelCase , indent=UpperCAmelCase ) ) # model a_ = chkpt["model"] # remove unneeded keys a_ = [ "decoder.version", ] for k in ignore_keys: model_state_dict.pop(UpperCAmelCase , UpperCAmelCase ) a_ = list(model_state_dict.keys() ) for layer_name in layer_names: if layer_name.endswith("output_projection.weight" ): a_ = model_state_dict.pop(UpperCAmelCase ) else: a_ = model_state_dict.pop(UpperCAmelCase ) a_ = BioGptConfig.from_pretrained(UpperCAmelCase ) a_ = BioGptForCausalLM(UpperCAmelCase ) # check that it loads ok model_new.load_state_dict(UpperCAmelCase ) # save a_ = os.path.join(UpperCAmelCase , UpperCAmelCase ) print(F'''Generating {pytorch_weights_dump_path}''' ) torch.save(UpperCAmelCase , UpperCAmelCase ) print("Conversion is done!" ) if __name__ == "__main__": UpperCamelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--biogpt_checkpoint_path', default=None, type=str, required=True, help=( 'Path to the official PyTorch checkpoint file which is expected to reside in the dump dir with dicts,' ' bpecodes, etc.' ), ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) UpperCamelCase_ = parser.parse_args() convert_biogpt_checkpoint_to_pytorch(args.biogpt_checkpoint_path, args.pytorch_dump_folder_path)
243
0
"""simple docstring""" def _snake_case ( _snake_case : Any ) -> Any: '''simple docstring''' stooge(_snake_case , 0 , len(_snake_case ) - 1 ) return arr def _snake_case ( _snake_case : List[Any] , _snake_case : Dict , _snake_case : Optional[Any] ) -> Union[str, Any]: '''simple docstring''' if i >= h: return # If first element is smaller than the last then swap them if arr[i] > arr[h]: _A , _A = arr[h], arr[i] # If there are more than 2 elements in the array if h - i + 1 > 2: _A = (int)((h - i + 1) / 3 ) # Recursively sort first 2/3 elements stooge(_snake_case , _snake_case , (h - t) ) # Recursively sort last 2/3 elements stooge(_snake_case , i + t , (_snake_case) ) # Recursively sort first 2/3 elements stooge(_snake_case , _snake_case , (h - t) ) if __name__ == "__main__": a = input('''Enter numbers separated by a comma:\n''').strip() a = [int(item) for item in user_input.split(''',''')] print(stooge_sort(unsorted))
271
"""simple docstring""" def _snake_case ( _snake_case : int ) -> list: '''simple docstring''' _A = int(_snake_case ) if n_element < 1: _A = ValueError('a should be a positive number' ) raise my_error _A = [1] _A , _A , _A = (0, 0, 0) _A = 1 while index < n_element: while hamming_list[i] * 2 <= hamming_list[-1]: i += 1 while hamming_list[j] * 3 <= hamming_list[-1]: j += 1 while hamming_list[k] * 5 <= hamming_list[-1]: k += 1 hamming_list.append( min(hamming_list[i] * 2 , hamming_list[j] * 3 , hamming_list[k] * 5 ) ) index += 1 return hamming_list if __name__ == "__main__": a = input('''Enter the last number (nth term) of the Hamming Number Series: ''') print('''Formula of Hamming Number Series => 2^i * 3^j * 5^k''') a = hamming(int(n)) print('''-----------------------------------------------------''') print(F'''The list with nth numbers is: {hamming_numbers}''') print('''-----------------------------------------------------''')
271
1
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_bert import BertTokenizer A__ : Tuple = logging.get_logger(__name__) A__ : Optional[int] = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} A__ : Dict = { 'vocab_file': { 'bert-base-uncased': 'https://huggingface.co/bert-base-uncased/resolve/main/vocab.txt', 'bert-large-uncased': 'https://huggingface.co/bert-large-uncased/resolve/main/vocab.txt', 'bert-base-cased': 'https://huggingface.co/bert-base-cased/resolve/main/vocab.txt', 'bert-large-cased': 'https://huggingface.co/bert-large-cased/resolve/main/vocab.txt', 'bert-base-multilingual-uncased': ( 'https://huggingface.co/bert-base-multilingual-uncased/resolve/main/vocab.txt' ), 'bert-base-multilingual-cased': 'https://huggingface.co/bert-base-multilingual-cased/resolve/main/vocab.txt', 'bert-base-chinese': 'https://huggingface.co/bert-base-chinese/resolve/main/vocab.txt', 'bert-base-german-cased': 'https://huggingface.co/bert-base-german-cased/resolve/main/vocab.txt', 'bert-large-uncased-whole-word-masking': ( 'https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/vocab.txt' ), 'bert-large-cased-whole-word-masking': ( 'https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/vocab.txt' ), 'bert-large-uncased-whole-word-masking-finetuned-squad': ( 'https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/vocab.txt' ), 'bert-large-cased-whole-word-masking-finetuned-squad': ( 'https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/vocab.txt' ), 'bert-base-cased-finetuned-mrpc': ( 'https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/vocab.txt' ), 'bert-base-german-dbmdz-cased': 'https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/vocab.txt', 'bert-base-german-dbmdz-uncased': ( 'https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/vocab.txt' ), 'TurkuNLP/bert-base-finnish-cased-v1': ( 'https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/vocab.txt' ), 'TurkuNLP/bert-base-finnish-uncased-v1': ( 'https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/vocab.txt' ), 'wietsedv/bert-base-dutch-cased': ( 'https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'bert-base-uncased': 'https://huggingface.co/bert-base-uncased/resolve/main/tokenizer.json', 'bert-large-uncased': 'https://huggingface.co/bert-large-uncased/resolve/main/tokenizer.json', 'bert-base-cased': 'https://huggingface.co/bert-base-cased/resolve/main/tokenizer.json', 'bert-large-cased': 'https://huggingface.co/bert-large-cased/resolve/main/tokenizer.json', 'bert-base-multilingual-uncased': ( 'https://huggingface.co/bert-base-multilingual-uncased/resolve/main/tokenizer.json' ), 'bert-base-multilingual-cased': ( 'https://huggingface.co/bert-base-multilingual-cased/resolve/main/tokenizer.json' ), 'bert-base-chinese': 'https://huggingface.co/bert-base-chinese/resolve/main/tokenizer.json', 'bert-base-german-cased': 'https://huggingface.co/bert-base-german-cased/resolve/main/tokenizer.json', 'bert-large-uncased-whole-word-masking': ( 'https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/tokenizer.json' ), 'bert-large-cased-whole-word-masking': ( 'https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/tokenizer.json' ), 'bert-large-uncased-whole-word-masking-finetuned-squad': ( 'https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/tokenizer.json' ), 'bert-large-cased-whole-word-masking-finetuned-squad': ( 'https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/tokenizer.json' ), 'bert-base-cased-finetuned-mrpc': ( 'https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/tokenizer.json' ), 'bert-base-german-dbmdz-cased': ( 'https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/tokenizer.json' ), 'bert-base-german-dbmdz-uncased': ( 'https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/tokenizer.json' ), 'TurkuNLP/bert-base-finnish-cased-v1': ( 'https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/tokenizer.json' ), 'TurkuNLP/bert-base-finnish-uncased-v1': ( 'https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/tokenizer.json' ), 'wietsedv/bert-base-dutch-cased': ( 'https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/tokenizer.json' ), }, } A__ : Any = { 'bert-base-uncased': 5_12, 'bert-large-uncased': 5_12, 'bert-base-cased': 5_12, 'bert-large-cased': 5_12, 'bert-base-multilingual-uncased': 5_12, 'bert-base-multilingual-cased': 5_12, 'bert-base-chinese': 5_12, 'bert-base-german-cased': 5_12, 'bert-large-uncased-whole-word-masking': 5_12, 'bert-large-cased-whole-word-masking': 5_12, 'bert-large-uncased-whole-word-masking-finetuned-squad': 5_12, 'bert-large-cased-whole-word-masking-finetuned-squad': 5_12, 'bert-base-cased-finetuned-mrpc': 5_12, 'bert-base-german-dbmdz-cased': 5_12, 'bert-base-german-dbmdz-uncased': 5_12, 'TurkuNLP/bert-base-finnish-cased-v1': 5_12, 'TurkuNLP/bert-base-finnish-uncased-v1': 5_12, 'wietsedv/bert-base-dutch-cased': 5_12, } A__ : Union[str, Any] = { 'bert-base-uncased': {'do_lower_case': True}, 'bert-large-uncased': {'do_lower_case': True}, 'bert-base-cased': {'do_lower_case': False}, 'bert-large-cased': {'do_lower_case': False}, 'bert-base-multilingual-uncased': {'do_lower_case': True}, 'bert-base-multilingual-cased': {'do_lower_case': False}, 'bert-base-chinese': {'do_lower_case': False}, 'bert-base-german-cased': {'do_lower_case': False}, 'bert-large-uncased-whole-word-masking': {'do_lower_case': True}, 'bert-large-cased-whole-word-masking': {'do_lower_case': False}, 'bert-large-uncased-whole-word-masking-finetuned-squad': {'do_lower_case': True}, 'bert-large-cased-whole-word-masking-finetuned-squad': {'do_lower_case': False}, 'bert-base-cased-finetuned-mrpc': {'do_lower_case': False}, 'bert-base-german-dbmdz-cased': {'do_lower_case': False}, 'bert-base-german-dbmdz-uncased': {'do_lower_case': True}, 'TurkuNLP/bert-base-finnish-cased-v1': {'do_lower_case': False}, 'TurkuNLP/bert-base-finnish-uncased-v1': {'do_lower_case': True}, 'wietsedv/bert-base-dutch-cased': {'do_lower_case': False}, } class _UpperCAmelCase ( A__ ): """simple docstring""" lowercase__ = VOCAB_FILES_NAMES lowercase__ = PRETRAINED_VOCAB_FILES_MAP lowercase__ = PRETRAINED_INIT_CONFIGURATION lowercase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase__ = BertTokenizer def __init__( self : Union[str, Any], lowerCamelCase : List[str]=None, lowerCamelCase : Dict=None, lowerCamelCase : List[Any]=True, lowerCamelCase : int="[UNK]", lowerCamelCase : str="[SEP]", lowerCamelCase : Any="[PAD]", lowerCamelCase : List[Any]="[CLS]", lowerCamelCase : Dict="[MASK]", lowerCamelCase : Optional[int]=True, lowerCamelCase : Optional[int]=None, **lowerCamelCase : str, ): '''simple docstring''' super().__init__( lowerCamelCase, tokenizer_file=lowerCamelCase, do_lower_case=lowerCamelCase, unk_token=lowerCamelCase, sep_token=lowerCamelCase, pad_token=lowerCamelCase, cls_token=lowerCamelCase, mask_token=lowerCamelCase, tokenize_chinese_chars=lowerCamelCase, strip_accents=lowerCamelCase, **lowerCamelCase, ) lowercase__ = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('''lowercase''', lowerCamelCase ) != do_lower_case or normalizer_state.get('''strip_accents''', lowerCamelCase ) != strip_accents or normalizer_state.get('''handle_chinese_chars''', lowerCamelCase ) != tokenize_chinese_chars ): lowercase__ = getattr(lowerCamelCase, normalizer_state.pop('''type''' ) ) lowercase__ = do_lower_case lowercase__ = strip_accents lowercase__ = tokenize_chinese_chars lowercase__ = normalizer_class(**lowerCamelCase ) lowercase__ = do_lower_case def lowercase__ ( self : Union[str, Any], lowerCamelCase : Any, lowerCamelCase : List[Any]=None ): '''simple docstring''' lowercase__ = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def lowercase__ ( self : str, lowerCamelCase : List[int], lowerCamelCase : Optional[List[int]] = None ): '''simple docstring''' lowercase__ = [self.sep_token_id] lowercase__ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowercase__ ( self : Optional[int], lowerCamelCase : str, lowerCamelCase : Optional[str] = None ): '''simple docstring''' lowercase__ = self._tokenizer.model.save(lowerCamelCase, name=lowerCamelCase ) return tuple(lowerCamelCase )
207
import warnings warnings.warn( 'memory_utils has been reorganized to utils.memory. Import `find_executable_batchsize` from the main `__init__`: ' '`from accelerate import find_executable_batch_size` to avoid this warning.', FutureWarning, )
207
1
import unittest from transformers import AutoTokenizer, is_flax_available from transformers.testing_utils import require_flax, require_sentencepiece, require_tokenizers, slow if is_flax_available(): import jax.numpy as jnp from transformers import FlaxXLMRobertaModel @require_sentencepiece @require_tokenizers @require_flax class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): @slow def __lowerCamelCase ( self ): lowercase : int = FlaxXLMRobertaModel.from_pretrained('''xlm-roberta-base''' ) lowercase : List[Any] = AutoTokenizer.from_pretrained('''xlm-roberta-base''' ) lowercase : Optional[int] = '''The dog is cute and lives in the garden house''' lowercase : List[str] = jnp.array([tokenizer.encode(SCREAMING_SNAKE_CASE__ )] ) lowercase : Any = (1, 12, 768) # batch_size, sequence_length, embedding_vector_dim lowercase : Union[str, Any] = jnp.array( [[-0.0101, 0.1218, -0.0803, 0.0801, 0.1327, 0.0776, -0.1215, 0.2383, 0.3338, 0.3106, 0.0300, 0.0252]] ) lowercase : Any = model(SCREAMING_SNAKE_CASE__ )['''last_hidden_state'''] self.assertEqual(output.shape , SCREAMING_SNAKE_CASE__ ) # compare the actual values for a slice of last dim self.assertTrue(jnp.allclose(output[:, :, -1] , SCREAMING_SNAKE_CASE__ , atol=1E-3 ) )
173
import re from typing import Callable, List, Optional, Union import tensorflow as tf try: from tensorflow.keras.optimizers.legacy import Adam except ImportError: from tensorflow.keras.optimizers import Adam class __SCREAMING_SNAKE_CASE ( tf.keras.optimizers.schedules.LearningRateSchedule ): def __init__( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = 1.0 , SCREAMING_SNAKE_CASE__ = None , ): super().__init__() lowercase : str = initial_learning_rate lowercase : Optional[Any] = warmup_steps lowercase : Union[str, Any] = power lowercase : List[str] = decay_schedule_fn lowercase : List[str] = name def __call__( self , SCREAMING_SNAKE_CASE__ ): with tf.name_scope(self.name or '''WarmUp''' ) as name: # Implements polynomial warmup. i.e., if global_step < warmup_steps, the # learning rate will be `global_step/num_warmup_steps * init_lr`. lowercase : Optional[Any] = tf.cast(SCREAMING_SNAKE_CASE__ , tf.floataa ) lowercase : Tuple = tf.cast(self.warmup_steps , tf.floataa ) lowercase : Optional[Any] = global_step_float / warmup_steps_float lowercase : Union[str, Any] = self.initial_learning_rate * tf.math.pow(SCREAMING_SNAKE_CASE__ , self.power ) return tf.cond( global_step_float < warmup_steps_float , lambda: warmup_learning_rate , lambda: self.decay_schedule_fn(step - self.warmup_steps ) , name=SCREAMING_SNAKE_CASE__ , ) def __lowerCamelCase ( self ): return { "initial_learning_rate": self.initial_learning_rate, "decay_schedule_fn": self.decay_schedule_fn, "warmup_steps": self.warmup_steps, "power": self.power, "name": self.name, } def __lowercase ( _UpperCamelCase, _UpperCamelCase, _UpperCamelCase, _UpperCamelCase = 0.0, _UpperCamelCase = 0.9, _UpperCamelCase = 0.9_9_9, _UpperCamelCase = 1e-8, _UpperCamelCase = None, _UpperCamelCase = None, _UpperCamelCase = 0.0, _UpperCamelCase = 1.0, _UpperCamelCase = None, ) ->Any: """simple docstring""" lowercase : List[str] = tf.keras.optimizers.schedules.PolynomialDecay( initial_learning_rate=_UpperCamelCase, decay_steps=num_train_steps - num_warmup_steps, end_learning_rate=init_lr * min_lr_ratio, power=_UpperCamelCase, ) if num_warmup_steps: lowercase : Tuple = WarmUp( initial_learning_rate=_UpperCamelCase, decay_schedule_fn=_UpperCamelCase, warmup_steps=_UpperCamelCase, ) if weight_decay_rate > 0.0: lowercase : Tuple = AdamWeightDecay( learning_rate=_UpperCamelCase, weight_decay_rate=_UpperCamelCase, beta_a=_UpperCamelCase, beta_a=_UpperCamelCase, epsilon=_UpperCamelCase, clipnorm=_UpperCamelCase, global_clipnorm=_UpperCamelCase, exclude_from_weight_decay=['''LayerNorm''', '''layer_norm''', '''bias'''], include_in_weight_decay=_UpperCamelCase, ) else: lowercase : Union[str, Any] = tf.keras.optimizers.Adam( learning_rate=_UpperCamelCase, beta_a=_UpperCamelCase, beta_a=_UpperCamelCase, epsilon=_UpperCamelCase, clipnorm=_UpperCamelCase, global_clipnorm=_UpperCamelCase, ) # We return the optimizer and the LR scheduler in order to better track the # evolution of the LR independently of the optimizer. return optimizer, lr_schedule class __SCREAMING_SNAKE_CASE ( A__ ): def __init__( self , SCREAMING_SNAKE_CASE__ = 0.001 , SCREAMING_SNAKE_CASE__ = 0.9 , SCREAMING_SNAKE_CASE__ = 0.999 , SCREAMING_SNAKE_CASE__ = 1E-7 , SCREAMING_SNAKE_CASE__ = False , SCREAMING_SNAKE_CASE__ = 0.0 , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = "AdamWeightDecay" , **SCREAMING_SNAKE_CASE__ , ): super().__init__(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) lowercase : str = weight_decay_rate lowercase : int = include_in_weight_decay lowercase : str = exclude_from_weight_decay @classmethod def __lowerCamelCase ( cls , SCREAMING_SNAKE_CASE__ ): lowercase : Tuple = {'''WarmUp''': WarmUp} return super(SCREAMING_SNAKE_CASE__ , cls ).from_config(SCREAMING_SNAKE_CASE__ , custom_objects=SCREAMING_SNAKE_CASE__ ) def __lowerCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): super(SCREAMING_SNAKE_CASE__ , self )._prepare_local(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) lowercase : int = tf.constant( self.weight_decay_rate , name='''adam_weight_decay_rate''' ) def __lowerCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): lowercase : Any = self._do_use_weight_decay(var.name ) if do_decay: return var.assign_sub( learning_rate * var * apply_state[(var.device, var.dtype.base_dtype)]['''weight_decay_rate'''] , use_locking=self._use_locking , ) return tf.no_op() def __lowerCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=None , **SCREAMING_SNAKE_CASE__ ): lowercase , lowercase : Tuple = list(zip(*SCREAMING_SNAKE_CASE__ ) ) return super(SCREAMING_SNAKE_CASE__ , self ).apply_gradients(zip(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) , name=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) def __lowerCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): if apply_state is None: return self._decayed_lr_t[var_dtype], {} lowercase : Tuple = apply_state or {} lowercase : Any = apply_state.get((var_device, var_dtype) ) if coefficients is None: lowercase : Dict = self._fallback_apply_state(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) lowercase : Optional[int] = coefficients return coefficients["lr_t"], {"apply_state": apply_state} def __lowerCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=None ): lowercase , lowercase : int = self._get_lr(var.device , var.dtype.base_dtype , SCREAMING_SNAKE_CASE__ ) lowercase : str = self._decay_weights_op(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) with tf.control_dependencies([decay] ): return super(SCREAMING_SNAKE_CASE__ , self )._resource_apply_dense(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) def __lowerCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=None ): lowercase , lowercase : Union[str, Any] = self._get_lr(var.device , var.dtype.base_dtype , SCREAMING_SNAKE_CASE__ ) lowercase : Optional[int] = self._decay_weights_op(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) with tf.control_dependencies([decay] ): return super(SCREAMING_SNAKE_CASE__ , self )._resource_apply_sparse(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) def __lowerCamelCase ( self ): lowercase : Dict = super().get_config() config.update({'''weight_decay_rate''': self.weight_decay_rate} ) return config def __lowerCamelCase ( self , SCREAMING_SNAKE_CASE__ ): if self.weight_decay_rate == 0: return False if self._include_in_weight_decay: for r in self._include_in_weight_decay: if re.search(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) is not None: return True if self._exclude_from_weight_decay: for r in self._exclude_from_weight_decay: if re.search(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) is not None: return False return True class __SCREAMING_SNAKE_CASE ( A__ ): def __init__( self ): lowercase : Optional[Any] = [] lowercase : Tuple = None @property def __lowerCamelCase ( self ): if self._accum_steps is None: lowercase : Any = tf.Variable( tf.constant(0 , dtype=tf.intaa ) , trainable=SCREAMING_SNAKE_CASE__ , synchronization=tf.VariableSynchronization.ON_READ , aggregation=tf.VariableAggregation.ONLY_FIRST_REPLICA , ) return self._accum_steps.value() @property def __lowerCamelCase ( self ): if not self._gradients: raise ValueError('''The accumulator should be called first to initialize the gradients''' ) return [gradient.value() if gradient is not None else gradient for gradient in self._gradients] def __call__( self , SCREAMING_SNAKE_CASE__ ): if not self._gradients: lowercase : Optional[Any] = self.step # Create the step variable. self._gradients.extend( [ tf.Variable( tf.zeros_like(SCREAMING_SNAKE_CASE__ ) , trainable=SCREAMING_SNAKE_CASE__ , synchronization=tf.VariableSynchronization.ON_READ , aggregation=tf.VariableAggregation.ONLY_FIRST_REPLICA , ) if gradient is not None else gradient for gradient in gradients ] ) if len(SCREAMING_SNAKE_CASE__ ) != len(self._gradients ): raise ValueError(f"""Expected {len(self._gradients )} gradients, but got {len(SCREAMING_SNAKE_CASE__ )}""" ) for accum_gradient, gradient in zip(self._gradients , SCREAMING_SNAKE_CASE__ ): if accum_gradient is not None and gradient is not None: accum_gradient.assign_add(SCREAMING_SNAKE_CASE__ ) self._accum_steps.assign_add(1 ) def __lowerCamelCase ( self ): if not self._gradients: return self._accum_steps.assign(0 ) for gradient in self._gradients: if gradient is not None: gradient.assign(tf.zeros_like(SCREAMING_SNAKE_CASE__ ) )
173
1
A__ = [ [0, 16, 13, 0, 0, 0], [0, 0, 10, 12, 0, 0], [0, 4, 0, 0, 14, 0], [0, 0, 9, 0, 0, 20], [0, 0, 0, 7, 0, 4], [0, 0, 0, 0, 0, 0], ] def _UpperCAmelCase ( snake_case , snake_case , snake_case , snake_case ): """simple docstring""" _lowerCAmelCase = [False] * len(snake_case ) _lowerCAmelCase = [s] _lowerCAmelCase = True while queue: _lowerCAmelCase = queue.pop(0 ) for ind in range(len(graph[u] ) ): if visited[ind] is False and graph[u][ind] > 0: queue.append(snake_case ) _lowerCAmelCase = True _lowerCAmelCase = u return visited[t] def _UpperCAmelCase ( snake_case , snake_case , snake_case ): """simple docstring""" _lowerCAmelCase = [-1] * (len(snake_case )) _lowerCAmelCase = 0 _lowerCAmelCase = [] _lowerCAmelCase = [i[:] for i in graph] # Record original cut, copy. while bfs(snake_case , snake_case , snake_case , snake_case ): _lowerCAmelCase = float("""Inf""" ) _lowerCAmelCase = sink while s != source: # Find the minimum value in select path _lowerCAmelCase = min(snake_case , graph[parent[s]][s] ) _lowerCAmelCase = parent[s] max_flow += path_flow _lowerCAmelCase = sink while v != source: _lowerCAmelCase = parent[v] graph[u][v] -= path_flow graph[v][u] += path_flow _lowerCAmelCase = parent[v] for i in range(len(snake_case ) ): for j in range(len(graph[0] ) ): if graph[i][j] == 0 and temp[i][j] > 0: res.append((i, j) ) return res if __name__ == "__main__": print(mincut(test_graph, source=0, sink=5))
82
import unittest from transformers import is_vision_available from transformers.pipelines import pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class _UpperCamelCase : @staticmethod def UpperCAmelCase_ ( *lowerCamelCase :Tuple , **lowerCamelCase :List[Any] ) -> Tuple: pass @is_pipeline_test @require_vision class _UpperCamelCase ( unittest.TestCase ): @require_torch def UpperCAmelCase_ ( self :int ) -> Optional[Any]: UpperCAmelCase__ = pipeline( model="hf-internal-testing/tiny-random-clip-zero-shot-image-classification" , ) UpperCAmelCase__ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) UpperCAmelCase__ = image_classifier(lowerCamelCase , candidate_labels=["a", "b", "c"] ) # The floating scores are so close, we enter floating error approximation and the order is not guaranteed across # python and torch versions. self.assertIn( nested_simplify(lowerCamelCase ) , [ [{"score": 0.3_33, "label": "a"}, {"score": 0.3_33, "label": "b"}, {"score": 0.3_33, "label": "c"}], [{"score": 0.3_33, "label": "a"}, {"score": 0.3_33, "label": "c"}, {"score": 0.3_33, "label": "b"}], ] , ) UpperCAmelCase__ = image_classifier([image] * 5 , candidate_labels=["A", "B", "C"] , batch_size=2 ) self.assertEqual( nested_simplify(lowerCamelCase ) , [ [ {"score": 0.3_33, "label": ANY(lowerCamelCase )}, {"score": 0.3_33, "label": ANY(lowerCamelCase )}, {"score": 0.3_33, "label": ANY(lowerCamelCase )}, ], [ {"score": 0.3_33, "label": ANY(lowerCamelCase )}, {"score": 0.3_33, "label": ANY(lowerCamelCase )}, {"score": 0.3_33, "label": ANY(lowerCamelCase )}, ], [ {"score": 0.3_33, "label": ANY(lowerCamelCase )}, {"score": 0.3_33, "label": ANY(lowerCamelCase )}, {"score": 0.3_33, "label": ANY(lowerCamelCase )}, ], [ {"score": 0.3_33, "label": ANY(lowerCamelCase )}, {"score": 0.3_33, "label": ANY(lowerCamelCase )}, {"score": 0.3_33, "label": ANY(lowerCamelCase )}, ], [ {"score": 0.3_33, "label": ANY(lowerCamelCase )}, {"score": 0.3_33, "label": ANY(lowerCamelCase )}, {"score": 0.3_33, "label": ANY(lowerCamelCase )}, ], ] , ) @require_tf def UpperCAmelCase_ ( self :List[str] ) -> Optional[int]: UpperCAmelCase__ = pipeline( model="hf-internal-testing/tiny-random-clip-zero-shot-image-classification" , framework="tf" ) UpperCAmelCase__ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) UpperCAmelCase__ = image_classifier(lowerCamelCase , candidate_labels=["a", "b", "c"] ) self.assertEqual( nested_simplify(lowerCamelCase ) , [{"score": 0.3_33, "label": "a"}, {"score": 0.3_33, "label": "b"}, {"score": 0.3_33, "label": "c"}] , ) UpperCAmelCase__ = image_classifier([image] * 5 , candidate_labels=["A", "B", "C"] , batch_size=2 ) self.assertEqual( nested_simplify(lowerCamelCase ) , [ [ {"score": 0.3_33, "label": ANY(lowerCamelCase )}, {"score": 0.3_33, "label": ANY(lowerCamelCase )}, {"score": 0.3_33, "label": ANY(lowerCamelCase )}, ], [ {"score": 0.3_33, "label": ANY(lowerCamelCase )}, {"score": 0.3_33, "label": ANY(lowerCamelCase )}, {"score": 0.3_33, "label": ANY(lowerCamelCase )}, ], [ {"score": 0.3_33, "label": ANY(lowerCamelCase )}, {"score": 0.3_33, "label": ANY(lowerCamelCase )}, {"score": 0.3_33, "label": ANY(lowerCamelCase )}, ], [ {"score": 0.3_33, "label": ANY(lowerCamelCase )}, {"score": 0.3_33, "label": ANY(lowerCamelCase )}, {"score": 0.3_33, "label": ANY(lowerCamelCase )}, ], [ {"score": 0.3_33, "label": ANY(lowerCamelCase )}, {"score": 0.3_33, "label": ANY(lowerCamelCase )}, {"score": 0.3_33, "label": ANY(lowerCamelCase )}, ], ] , ) @slow @require_torch def UpperCAmelCase_ ( self :str ) -> Dict: UpperCAmelCase__ = pipeline( task="zero-shot-image-classification" , model="openai/clip-vit-base-patch32" , ) # This is an image of 2 cats with remotes and no planes UpperCAmelCase__ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) UpperCAmelCase__ = image_classifier(lowerCamelCase , candidate_labels=["cat", "plane", "remote"] ) self.assertEqual( nested_simplify(lowerCamelCase ) , [ {"score": 0.5_11, "label": "remote"}, {"score": 0.4_85, "label": "cat"}, {"score": 0.0_04, "label": "plane"}, ] , ) UpperCAmelCase__ = image_classifier([image] * 5 , candidate_labels=["cat", "plane", "remote"] , batch_size=2 ) self.assertEqual( nested_simplify(lowerCamelCase ) , [ [ {"score": 0.5_11, "label": "remote"}, {"score": 0.4_85, "label": "cat"}, {"score": 0.0_04, "label": "plane"}, ], ] * 5 , ) @slow @require_tf def UpperCAmelCase_ ( self :List[Any] ) -> List[str]: UpperCAmelCase__ = pipeline( task="zero-shot-image-classification" , model="openai/clip-vit-base-patch32" , framework="tf" ) # This is an image of 2 cats with remotes and no planes UpperCAmelCase__ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) UpperCAmelCase__ = image_classifier(lowerCamelCase , candidate_labels=["cat", "plane", "remote"] ) self.assertEqual( nested_simplify(lowerCamelCase ) , [ {"score": 0.5_11, "label": "remote"}, {"score": 0.4_85, "label": "cat"}, {"score": 0.0_04, "label": "plane"}, ] , ) UpperCAmelCase__ = image_classifier([image] * 5 , candidate_labels=["cat", "plane", "remote"] , batch_size=2 ) self.assertEqual( nested_simplify(lowerCamelCase ) , [ [ {"score": 0.5_11, "label": "remote"}, {"score": 0.4_85, "label": "cat"}, {"score": 0.0_04, "label": "plane"}, ], ] * 5 , )
169
0
'''simple docstring''' from __future__ import annotations class UpperCamelCase_ : """simple docstring""" def __init__( self : Optional[int] , _lowerCamelCase : int ): """simple docstring""" A_ : Union[str, Any] = order # a_{0} ... a_{k} A_ : Union[str, Any] = [1.0] + [0.0] * order # b_{0} ... b_{k} A_ : int = [1.0] + [0.0] * order # x[n-1] ... x[n-k] A_ : str = [0.0] * self.order # y[n-1] ... y[n-k] A_ : Optional[Any] = [0.0] * self.order def _a ( self : Dict , _lowerCamelCase : list[float] , _lowerCamelCase : list[float] ): """simple docstring""" if len(_lowerCamelCase ) < self.order: A_ : Any = [1.0, *a_coeffs] if len(_lowerCamelCase ) != self.order + 1: A_ : List[Any] = ( f'Expected a_coeffs to have {self.order + 1} elements ' f'for {self.order}-order filter, got {len(_lowerCamelCase )}' ) raise ValueError(_lowerCamelCase ) if len(_lowerCamelCase ) != self.order + 1: A_ : Union[str, Any] = ( f'Expected b_coeffs to have {self.order + 1} elements ' f'for {self.order}-order filter, got {len(_lowerCamelCase )}' ) raise ValueError(_lowerCamelCase ) A_ : Tuple = a_coeffs A_ : str = b_coeffs def _a ( self : Tuple , _lowerCamelCase : float ): """simple docstring""" A_ : Any = 0.0 # Start at index 1 and do index 0 at the end. for i in range(1 , self.order + 1 ): result += ( self.b_coeffs[i] * self.input_history[i - 1] - self.a_coeffs[i] * self.output_history[i - 1] ) A_ : str = (result + self.b_coeffs[0] * sample) / self.a_coeffs[0] A_ : Optional[Any] = self.input_history[:-1] A_ : List[str] = self.output_history[:-1] A_ : Tuple = sample A_ : Tuple = result return result
4
'''simple docstring''' import argparse from collections import OrderedDict from pathlib import Path import torch from huggingface_hub import hf_hub_download from PIL import Image from torchvision.transforms import functional as F from transformers import DetrImageProcessor, TableTransformerConfig, TableTransformerForObjectDetection from transformers.utils import logging logging.set_verbosity_info() snake_case__ = logging.get_logger(__name__) # here we list all keys to be renamed (original name on the left, our name on the right) snake_case__ = [] for i in range(6): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (F'transformer.encoder.layers.{i}.self_attn.out_proj.weight', F'encoder.layers.{i}.self_attn.out_proj.weight') ) rename_keys.append( (F'transformer.encoder.layers.{i}.self_attn.out_proj.bias', F'encoder.layers.{i}.self_attn.out_proj.bias') ) rename_keys.append((F'transformer.encoder.layers.{i}.linear1.weight', F'encoder.layers.{i}.fc1.weight')) rename_keys.append((F'transformer.encoder.layers.{i}.linear1.bias', F'encoder.layers.{i}.fc1.bias')) rename_keys.append((F'transformer.encoder.layers.{i}.linear2.weight', F'encoder.layers.{i}.fc2.weight')) rename_keys.append((F'transformer.encoder.layers.{i}.linear2.bias', F'encoder.layers.{i}.fc2.bias')) rename_keys.append( (F'transformer.encoder.layers.{i}.norm1.weight', F'encoder.layers.{i}.self_attn_layer_norm.weight') ) rename_keys.append((F'transformer.encoder.layers.{i}.norm1.bias', F'encoder.layers.{i}.self_attn_layer_norm.bias')) rename_keys.append((F'transformer.encoder.layers.{i}.norm2.weight', F'encoder.layers.{i}.final_layer_norm.weight')) rename_keys.append((F'transformer.encoder.layers.{i}.norm2.bias', F'encoder.layers.{i}.final_layer_norm.bias')) # decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms rename_keys.append( (F'transformer.decoder.layers.{i}.self_attn.out_proj.weight', F'decoder.layers.{i}.self_attn.out_proj.weight') ) rename_keys.append( (F'transformer.decoder.layers.{i}.self_attn.out_proj.bias', F'decoder.layers.{i}.self_attn.out_proj.bias') ) rename_keys.append( ( F'transformer.decoder.layers.{i}.multihead_attn.out_proj.weight', F'decoder.layers.{i}.encoder_attn.out_proj.weight', ) ) rename_keys.append( ( F'transformer.decoder.layers.{i}.multihead_attn.out_proj.bias', F'decoder.layers.{i}.encoder_attn.out_proj.bias', ) ) rename_keys.append((F'transformer.decoder.layers.{i}.linear1.weight', F'decoder.layers.{i}.fc1.weight')) rename_keys.append((F'transformer.decoder.layers.{i}.linear1.bias', F'decoder.layers.{i}.fc1.bias')) rename_keys.append((F'transformer.decoder.layers.{i}.linear2.weight', F'decoder.layers.{i}.fc2.weight')) rename_keys.append((F'transformer.decoder.layers.{i}.linear2.bias', F'decoder.layers.{i}.fc2.bias')) rename_keys.append( (F'transformer.decoder.layers.{i}.norm1.weight', F'decoder.layers.{i}.self_attn_layer_norm.weight') ) rename_keys.append((F'transformer.decoder.layers.{i}.norm1.bias', F'decoder.layers.{i}.self_attn_layer_norm.bias')) rename_keys.append( (F'transformer.decoder.layers.{i}.norm2.weight', F'decoder.layers.{i}.encoder_attn_layer_norm.weight') ) rename_keys.append( (F'transformer.decoder.layers.{i}.norm2.bias', F'decoder.layers.{i}.encoder_attn_layer_norm.bias') ) rename_keys.append((F'transformer.decoder.layers.{i}.norm3.weight', F'decoder.layers.{i}.final_layer_norm.weight')) rename_keys.append((F'transformer.decoder.layers.{i}.norm3.bias', F'decoder.layers.{i}.final_layer_norm.bias')) # convolutional projection + query embeddings + layernorm of encoder + layernorm of decoder + class and bounding box heads rename_keys.extend( [ ("""input_proj.weight""", """input_projection.weight"""), ("""input_proj.bias""", """input_projection.bias"""), ("""query_embed.weight""", """query_position_embeddings.weight"""), ("""transformer.encoder.norm.weight""", """encoder.layernorm.weight"""), ("""transformer.encoder.norm.bias""", """encoder.layernorm.bias"""), ("""transformer.decoder.norm.weight""", """decoder.layernorm.weight"""), ("""transformer.decoder.norm.bias""", """decoder.layernorm.bias"""), ("""class_embed.weight""", """class_labels_classifier.weight"""), ("""class_embed.bias""", """class_labels_classifier.bias"""), ("""bbox_embed.layers.0.weight""", """bbox_predictor.layers.0.weight"""), ("""bbox_embed.layers.0.bias""", """bbox_predictor.layers.0.bias"""), ("""bbox_embed.layers.1.weight""", """bbox_predictor.layers.1.weight"""), ("""bbox_embed.layers.1.bias""", """bbox_predictor.layers.1.bias"""), ("""bbox_embed.layers.2.weight""", """bbox_predictor.layers.2.weight"""), ("""bbox_embed.layers.2.bias""", """bbox_predictor.layers.2.bias"""), ] ) def snake_case__ ( lowerCamelCase__ : List[Any] , lowerCamelCase__ : List[Any] , lowerCamelCase__ : List[Any] ) -> Optional[Any]: A_ : Tuple = state_dict.pop(lowerCamelCase__ ) A_ : Optional[Any] = val def snake_case__ ( lowerCamelCase__ : Dict ) -> Any: A_ : int = OrderedDict() for key, value in state_dict.items(): if "backbone.0.body" in key: A_ : int = key.replace('''backbone.0.body''' , '''backbone.conv_encoder.model''' ) A_ : List[str] = value else: A_ : Optional[int] = value return new_state_dict def snake_case__ ( lowerCamelCase__ : Union[str, Any] ) -> Optional[Any]: A_ : Any = '''''' # first: transformer encoder for i in range(6 ): # read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias) A_ : Tuple = state_dict.pop(f'{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight' ) A_ : Dict = state_dict.pop(f'{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias' ) # next, add query, keys and values (in that order) to the state dict A_ : str = in_proj_weight[:2_5_6, :] A_ : Optional[Any] = in_proj_bias[:2_5_6] A_ : Dict = in_proj_weight[2_5_6:5_1_2, :] A_ : Tuple = in_proj_bias[2_5_6:5_1_2] A_ : Tuple = in_proj_weight[-2_5_6:, :] A_ : Optional[int] = in_proj_bias[-2_5_6:] # next: transformer decoder (which is a bit more complex because it also includes cross-attention) for i in range(6 ): # read in weights + bias of input projection layer of self-attention A_ : Union[str, Any] = state_dict.pop(f'{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_weight' ) A_ : Dict = state_dict.pop(f'{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_bias' ) # next, add query, keys and values (in that order) to the state dict A_ : List[str] = in_proj_weight[:2_5_6, :] A_ : int = in_proj_bias[:2_5_6] A_ : Any = in_proj_weight[2_5_6:5_1_2, :] A_ : List[str] = in_proj_bias[2_5_6:5_1_2] A_ : Union[str, Any] = in_proj_weight[-2_5_6:, :] A_ : Optional[Any] = in_proj_bias[-2_5_6:] # read in weights + bias of input projection layer of cross-attention A_ : Tuple = state_dict.pop( f'{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_weight' ) A_ : Optional[Any] = state_dict.pop(f'{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_bias' ) # next, add query, keys and values (in that order) of cross-attention to the state dict A_ : Dict = in_proj_weight_cross_attn[:2_5_6, :] A_ : Tuple = in_proj_bias_cross_attn[:2_5_6] A_ : int = in_proj_weight_cross_attn[2_5_6:5_1_2, :] A_ : List[str] = in_proj_bias_cross_attn[2_5_6:5_1_2] A_ : Any = in_proj_weight_cross_attn[-2_5_6:, :] A_ : Any = in_proj_bias_cross_attn[-2_5_6:] def snake_case__ ( lowerCamelCase__ : List[str] , lowerCamelCase__ : Tuple ) -> Dict: A_ ,A_ : int = image.size A_ : Tuple = max(lowerCamelCase__ , lowerCamelCase__ ) A_ : Optional[Any] = 8_0_0 if '''detection''' in checkpoint_url else 1_0_0_0 A_ : Union[str, Any] = target_max_size / current_max_size A_ : Any = image.resize((int(round(scale * width ) ), int(round(scale * height ) )) ) return resized_image def snake_case__ ( lowerCamelCase__ : Tuple ) -> str: A_ : Any = F.to_tensor(lowerCamelCase__ ) A_ : Optional[Any] = F.normalize(lowerCamelCase__ , mean=[0.485, 0.456, 0.406] , std=[0.229, 0.224, 0.225] ) return image @torch.no_grad() def snake_case__ ( lowerCamelCase__ : List[Any] , lowerCamelCase__ : int , lowerCamelCase__ : int ) -> str: logger.info('''Converting model...''' ) # load original state dict A_ : Tuple = torch.hub.load_state_dict_from_url(lowerCamelCase__ , map_location='''cpu''' ) # rename keys for src, dest in rename_keys: rename_key(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) A_ : str = rename_backbone_keys(lowerCamelCase__ ) # query, key and value matrices need special treatment read_in_q_k_v(lowerCamelCase__ ) # important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them A_ : List[Any] = '''model.''' for key in state_dict.copy().keys(): if not key.startswith('''class_labels_classifier''' ) and not key.startswith('''bbox_predictor''' ): A_ : List[Any] = state_dict.pop(lowerCamelCase__ ) A_ : str = val # create HuggingFace model and load state dict A_ : Union[str, Any] = TableTransformerConfig( backbone='''resnet18''' , mask_loss_coefficient=1 , dice_loss_coefficient=1 , ce_loss_coefficient=1 , bbox_loss_coefficient=5 , giou_loss_coefficient=2 , eos_coefficient=0.4 , class_cost=1 , bbox_cost=5 , giou_cost=2 , ) if "detection" in checkpoint_url: A_ : Dict = 1_5 A_ : Dict = 2 A_ : int = {0: '''table''', 1: '''table rotated'''} A_ : List[str] = idalabel A_ : Optional[int] = {v: k for k, v in idalabel.items()} else: A_ : Union[str, Any] = 1_2_5 A_ : Optional[Any] = 6 A_ : Optional[Any] = { 0: '''table''', 1: '''table column''', 2: '''table row''', 3: '''table column header''', 4: '''table projected row header''', 5: '''table spanning cell''', } A_ : int = idalabel A_ : Tuple = {v: k for k, v in idalabel.items()} A_ : Optional[Any] = DetrImageProcessor( format='''coco_detection''' , max_size=8_0_0 if '''detection''' in checkpoint_url else 1_0_0_0 ) A_ : int = TableTransformerForObjectDetection(lowerCamelCase__ ) model.load_state_dict(lowerCamelCase__ ) model.eval() # verify our conversion A_ : Optional[int] = '''example_pdf.png''' if '''detection''' in checkpoint_url else '''example_table.png''' A_ : Union[str, Any] = hf_hub_download(repo_id='''nielsr/example-pdf''' , repo_type='''dataset''' , filename=lowerCamelCase__ ) A_ : Tuple = Image.open(lowerCamelCase__ ).convert('''RGB''' ) A_ : int = normalize(resize(lowerCamelCase__ , lowerCamelCase__ ) ).unsqueeze(0 ) A_ : str = model(lowerCamelCase__ ) if "detection" in checkpoint_url: A_ : str = (1, 1_5, 3) A_ : int = torch.tensor( [[-6.7897, -16.9985, 6.7937], [-8.0186, -22.2192, 6.9677], [-7.3117, -21.0708, 7.4055]] ) A_ : Tuple = torch.tensor([[0.4867, 0.1767, 0.6732], [0.6718, 0.4479, 0.3830], [0.4716, 0.1760, 0.6364]] ) else: A_ : Optional[int] = (1, 1_2_5, 7) A_ : Dict = torch.tensor( [[-18.1430, -8.3214, 4.8274], [-18.4685, -7.1361, -4.2667], [-26.3693, -9.3429, -4.9962]] ) A_ : Any = torch.tensor([[0.4983, 0.5595, 0.9440], [0.4916, 0.6315, 0.5954], [0.6108, 0.8637, 0.1135]] ) assert outputs.logits.shape == expected_shape assert torch.allclose(outputs.logits[0, :3, :3] , lowerCamelCase__ , atol=1e-4 ) assert torch.allclose(outputs.pred_boxes[0, :3, :3] , lowerCamelCase__ , atol=1e-4 ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: # Save model and image processor logger.info(f'Saving PyTorch model and image processor to {pytorch_dump_folder_path}...' ) Path(lowerCamelCase__ ).mkdir(exist_ok=lowerCamelCase__ ) model.save_pretrained(lowerCamelCase__ ) image_processor.save_pretrained(lowerCamelCase__ ) if push_to_hub: # Push model to HF hub logger.info('''Pushing model to the hub...''' ) A_ : List[Any] = ( '''microsoft/table-transformer-detection''' if '''detection''' in checkpoint_url else '''microsoft/table-transformer-structure-recognition''' ) model.push_to_hub(lowerCamelCase__ ) image_processor.push_to_hub(lowerCamelCase__ ) if __name__ == "__main__": snake_case__ = argparse.ArgumentParser() parser.add_argument( """--checkpoint_url""", default="""https://pubtables1m.blob.core.windows.net/model/pubtables1m_detection_detr_r18.pth""", type=str, choices=[ """https://pubtables1m.blob.core.windows.net/model/pubtables1m_detection_detr_r18.pth""", """https://pubtables1m.blob.core.windows.net/model/pubtables1m_structure_detr_r18.pth""", ], help="""URL of the Table Transformer checkpoint you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the folder to output PyTorch model.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub.""" ) snake_case__ = parser.parse_args() convert_table_transformer_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
4
1
import operator as op def A ( _SCREAMING_SNAKE_CASE ) -> Union[str, Any]: lowerCamelCase : Any = [] lowerCamelCase : List[str] = lambda _SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE : int(x / y ) # noqa: E731 integer division operation lowerCamelCase : Tuple = { "^": op.pow, "*": op.mul, "/": div, "+": op.add, "-": op.sub, } # operators & their respective operation # print table header print("Symbol".center(8 ) ,"Action".center(12 ) ,"Stack" ,sep=" | " ) print("-" * (30 + len(_SCREAMING_SNAKE_CASE )) ) for x in post_fix: if x.isdigit(): # if x in digit stack.append(_SCREAMING_SNAKE_CASE ) # append x to stack # output in tabular format print(x.rjust(8 ) ,("push(" + x + ")").ljust(12 ) ,",".join(_SCREAMING_SNAKE_CASE ) ,sep=" | " ) else: lowerCamelCase : Optional[int] = stack.pop() # pop stack # output in tabular format print("".rjust(8 ) ,("pop(" + b + ")").ljust(12 ) ,",".join(_SCREAMING_SNAKE_CASE ) ,sep=" | " ) lowerCamelCase : int = stack.pop() # pop stack # output in tabular format print("".rjust(8 ) ,("pop(" + a + ")").ljust(12 ) ,",".join(_SCREAMING_SNAKE_CASE ) ,sep=" | " ) stack.append( str(opr[x](int(_SCREAMING_SNAKE_CASE ) ,int(_SCREAMING_SNAKE_CASE ) ) ) ) # evaluate the 2 values popped from stack & push result to stack # output in tabular format print( x.rjust(8 ) ,("push(" + a + x + b + ")").ljust(12 ) ,",".join(_SCREAMING_SNAKE_CASE ) ,sep=" | " ,) return int(stack[0] ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__ : Tuple = input('\n\nEnter a Postfix Equation (space separated) = ').split(' ') print('\n\tResult = ', solve(Postfix))
48
"""simple docstring""" from typing import TYPE_CHECKING from ...file_utils import _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available from ...utils import OptionalDependencyNotAvailable lowerCamelCase_ = {"configuration_dpt": ["DPT_PRETRAINED_CONFIG_ARCHIVE_MAP", "DPTConfig"]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ = ["DPTFeatureExtractor"] lowerCamelCase_ = ["DPTImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ = [ "DPT_PRETRAINED_MODEL_ARCHIVE_LIST", "DPTForDepthEstimation", "DPTForSemanticSegmentation", "DPTModel", "DPTPreTrainedModel", ] if TYPE_CHECKING: from .configuration_dpt import DPT_PRETRAINED_CONFIG_ARCHIVE_MAP, DPTConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_dpt import DPTFeatureExtractor from .image_processing_dpt import DPTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_dpt import ( DPT_PRETRAINED_MODEL_ARCHIVE_LIST, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTModel, DPTPreTrainedModel, ) else: import sys lowerCamelCase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
191
0
'''simple docstring''' # XXX: we want transformers master here - in the absense of conftest manipulating sys.path: # hack it in for now: import sys from pathlib import Path lowerCAmelCase : Dict = Path(__file__).resolve().parents[3] / 'src' sys.path.insert(1, str(git_repo_path)) import dataclasses # noqa import io # noqa import itertools # noqa import json # noqa import os # noqa import unittest # noqa from copy import deepcopy # noqa from parameterized import parameterized # noqa from transformers import TrainingArguments, is_torch_available # noqa from transformers.deepspeed import is_deepspeed_available # noqa from transformers.file_utils import WEIGHTS_NAME # noqa from transformers.testing_utils import ( # noqa CaptureLogger, ExtendSysPath, TestCasePlus, execute_subprocess_async, get_gpu_count, mockenv_context, require_deepspeed, require_torch_gpu, require_torch_multi_gpu, slow, ) from transformers.trainer_utils import set_seed # noqa set_seed(42) lowerCAmelCase : List[Any] = {'base': 'patrickvonplaten/wav2vec2_tiny_random', 'robust': 'patrickvonplaten/wav2vec2_tiny_random_robust'} lowerCAmelCase : Union[str, Any] = 'zero2' lowerCAmelCase : Any = 'zero3' lowerCAmelCase : Union[str, Any] = [ZEROa, ZEROa] def A_( A : Optional[Any] , A : str , A : Optional[int]): # customize the test name generator function as we want both params to appear in the sub-test # name, as by default it shows only the first param UpperCamelCase = parameterized.to_safe_name('_'.join(str(A) for x in param.args)) return f'''{func.__name__}_{param_based_name}''' # Cartesian-product of zero stages with models to test lowerCAmelCase : Union[str, Any] = list(itertools.product(stages, models.keys())) @slow @require_deepspeed @require_torch_gpu class SCREAMING_SNAKE_CASE__ ( snake_case_): @parameterized.expand(A_ , name_func=A_ ) def UpperCAmelCase_ ( self , A_ , A_ )-> Dict: '''simple docstring''' self.run_and_check( stage=A_ , model=A_ , distributed=A_ , fpaa=A_ , ) @require_torch_multi_gpu @parameterized.expand(A_ , name_func=A_ ) def UpperCAmelCase_ ( self , A_ , A_ )-> List[Any]: '''simple docstring''' self.run_and_check( stage=A_ , model=A_ , distributed=A_ , fpaa=A_ , ) @parameterized.expand(A_ , name_func=A_ ) def UpperCAmelCase_ ( self , A_ , A_ )-> List[Any]: '''simple docstring''' self.run_and_check( stage=A_ , model=A_ , distributed=A_ , fpaa=A_ , ) @require_torch_multi_gpu @parameterized.expand(A_ , name_func=A_ ) def UpperCAmelCase_ ( self , A_ , A_ )-> List[Any]: '''simple docstring''' self.run_and_check( stage=A_ , model=A_ , distributed=A_ , fpaa=A_ , ) def UpperCAmelCase_ ( self , A_ )-> Optional[Any]: '''simple docstring''' pass def UpperCAmelCase_ ( self , A_ , A_ , A_ = 10 , A_ = True , A_ = True , A_ = True , )-> List[str]: '''simple docstring''' UpperCamelCase = models[model] UpperCamelCase = self.run_trainer( stage=A_ , model_name=A_ , eval_steps=A_ , num_train_epochs=1 , distributed=A_ , fpaa=A_ , ) self.do_checks(A_ ) return output_dir def UpperCAmelCase_ ( self , A_ , A_ , A_ = 10 , A_ = 1 , A_ = True , A_ = True , )-> Optional[int]: '''simple docstring''' UpperCamelCase = self.get_auto_remove_tmp_dir('./xxx' , after=A_ ) UpperCamelCase = F''' --model_name_or_path {model_name} --dataset_name hf-internal-testing/librispeech_asr_dummy --dataset_config_name clean --train_split_name validation --validation_split_name validation --output_dir {output_dir} --num_train_epochs {str(A_ )} --per_device_train_batch_size 2 --per_device_eval_batch_size 2 --evaluation_strategy steps --learning_rate 5e-4 --warmup_steps 8 --orthography timit --preprocessing_num_workers 1 --group_by_length --freeze_feature_extractor --report_to none --save_steps 0 --eval_steps {eval_steps} --report_to none '''.split() if fpaa: args.extend(['--fp16'] ) # currently ds_config_wav2vec2_zero.json requires "zero_optimization.find_unused_parameters": true, # hence the separate config files UpperCamelCase = F'''--deepspeed {self.test_file_dir_str}/ds_config_wav2vec2_{stage}.json'''.split() UpperCamelCase = [F'''{self.examples_dir_str}/research_projects/wav2vec2/run_asr.py'''] UpperCamelCase = self.get_launcher(A_ ) UpperCamelCase = launcher + script + args + ds_args # keep for quick debug # print(" ".join([f"\nPYTHONPATH={self.src_dir_str}"] +cmd)); die execute_subprocess_async(A_ , env=self.get_env() ) return output_dir def UpperCAmelCase_ ( self , A_=False )-> Union[str, Any]: '''simple docstring''' UpperCamelCase = min(2 , get_gpu_count() ) if distributed else 1 return F'''deepspeed --num_nodes 1 --num_gpus {num_gpus}'''.split()
251
'''simple docstring''' from __future__ import annotations import time import numpy as np lowerCAmelCase : List[Any] = [8, 5, 9, 7] lowerCAmelCase : str = [ [2, 0, 1, 1], [0, 1, 2, 1], [4, 0, 0, 3], [0, 2, 1, 0], [1, 0, 3, 0], ] lowerCAmelCase : Tuple = [ [3, 2, 1, 4], [0, 2, 5, 2], [5, 1, 0, 5], [1, 5, 3, 0], [3, 0, 3, 3], ] class SCREAMING_SNAKE_CASE__ : def __init__( self , A_ , A_ , A_ , )-> None: '''simple docstring''' UpperCamelCase = claim_vector UpperCamelCase = allocated_resources_table UpperCamelCase = maximum_claim_table def UpperCAmelCase_ ( self )-> list[int]: '''simple docstring''' return [ sum(p_item[i] for p_item in self.__allocated_resources_table ) for i in range(len(self.__allocated_resources_table[0] ) ) ] def UpperCAmelCase_ ( self )-> list[int]: '''simple docstring''' return np.array(self.__claim_vector ) - np.array( self.__processes_resource_summation() ) def UpperCAmelCase_ ( self )-> list[list[int]]: '''simple docstring''' return [ list(np.array(self.__maximum_claim_table[i] ) - np.array(A_ ) ) for i, allocated_resource in enumerate(self.__allocated_resources_table ) ] def UpperCAmelCase_ ( self )-> dict[int, list[int]]: '''simple docstring''' return {self.__need().index(A_ ): i for i in self.__need()} def UpperCAmelCase_ ( self , **A_ )-> None: '''simple docstring''' UpperCamelCase = self.__need() UpperCamelCase = self.__allocated_resources_table UpperCamelCase = self.__available_resources() UpperCamelCase = self.__need_index_manager() for kw, val in kwargs.items(): if kw and val is True: self.__pretty_data() print('_' * 50 + '\n' ) while need_list: UpperCamelCase = False for each_need in need_list: UpperCamelCase = True for index, need in enumerate(A_ ): if need > available_resources[index]: UpperCamelCase = False break if execution: UpperCamelCase = True # get the original index of the process from ind_ctrl db for original_need_index, need_clone in need_index_manager.items(): if each_need == need_clone: UpperCamelCase = original_need_index print(F'''Process {process_number + 1} is executing.''' ) # remove the process run from stack need_list.remove(A_ ) # update available/freed resources stack UpperCamelCase = np.array(A_ ) + np.array( alloc_resources_table[process_number] ) print( 'Updated available resource stack for processes: ' + ' '.join([str(A_ ) for x in available_resources] ) ) break if safe: print('The process is in a safe state.\n' ) else: print('System in unsafe state. Aborting...\n' ) break def UpperCAmelCase_ ( self )-> Union[str, Any]: '''simple docstring''' print(' ' * 9 + 'Allocated Resource Table' ) for item in self.__allocated_resources_table: print( F'''P{self.__allocated_resources_table.index(A_ ) + 1}''' + ' '.join(F'''{it:>8}''' for it in item ) + '\n' ) print(' ' * 9 + 'System Resource Table' ) for item in self.__maximum_claim_table: print( F'''P{self.__maximum_claim_table.index(A_ ) + 1}''' + ' '.join(F'''{it:>8}''' for it in item ) + '\n' ) print( 'Current Usage by Active Processes: ' + ' '.join(str(A_ ) for x in self.__claim_vector ) ) print( 'Initial Available Resources: ' + ' '.join(str(A_ ) for x in self.__available_resources() ) ) time.sleep(1 ) if __name__ == "__main__": import doctest doctest.testmod()
251
1
'''simple docstring''' import unittest import numpy as np import torch from diffusers import KarrasVePipeline, KarrasVeScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" @property def __lowercase ( self : Optional[Any] ): '''simple docstring''' torch.manual_seed(0 ) _a : Dict = UNetaDModel( block_out_channels=(32, 64) ,layers_per_block=2 ,sample_size=32 ,in_channels=3 ,out_channels=3 ,down_block_types=('DownBlock2D', 'AttnDownBlock2D') ,up_block_types=('AttnUpBlock2D', 'UpBlock2D') ,) return model def __lowercase ( self : Optional[int] ): '''simple docstring''' _a : Optional[int] = self.dummy_uncond_unet _a : Optional[int] = KarrasVeScheduler() _a : Optional[Any] = KarrasVePipeline(unet=_a ,scheduler=_a ) pipe.to(_a ) pipe.set_progress_bar_config(disable=_a ) _a : Tuple = torch.manual_seed(0 ) _a : Tuple = pipe(num_inference_steps=2 ,generator=_a ,output_type='numpy' ).images _a : Any = torch.manual_seed(0 ) _a : Optional[Any] = pipe(num_inference_steps=2 ,generator=_a ,output_type='numpy' ,return_dict=_a )[0] _a : Dict = image[0, -3:, -3:, -1] _a : int = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) _a : int = np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" def __lowercase ( self : Union[str, Any] ): '''simple docstring''' _a : Any = 'google/ncsnpp-celebahq-256' _a : List[Any] = UNetaDModel.from_pretrained(_a ) _a : List[Any] = KarrasVeScheduler() _a : List[str] = KarrasVePipeline(unet=_a ,scheduler=_a ) pipe.to(_a ) pipe.set_progress_bar_config(disable=_a ) _a : Dict = torch.manual_seed(0 ) _a : List[str] = pipe(num_inference_steps=20 ,generator=_a ,output_type='numpy' ).images _a : Optional[int] = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) _a : List[str] = np.array([0.578, 0.5811, 0.5924, 0.5809, 0.587, 0.5886, 0.5861, 0.5802, 0.586] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
271
'''simple docstring''' from __future__ import annotations __lowerCAmelCase = [-1_0, -5, 0, 5, 5.1, 1_1, 1_3, 2_1, 3, 4, -2_1, -1_0, -5, -1, 0] __lowerCAmelCase = [-5, 0, 5, 5.1, 1_1, 1_3, 2_1, -1, 4, -1, -1_0, -5, -1, 0, -1] def UpperCAmelCase_ (__a : list[float] ): """simple docstring""" _a : Optional[int] = [] _a : int = len(__a ) for i in range(__a ): _a : float = -1 for j in range(i + 1 , __a ): if arr[i] < arr[j]: _a : Any = arr[j] break result.append(__a ) return result def UpperCAmelCase_ (__a : list[float] ): """simple docstring""" _a : Tuple = [] for i, outer in enumerate(__a ): _a : float = -1 for inner in arr[i + 1 :]: if outer < inner: _a : Dict = inner break result.append(__a ) return result def UpperCAmelCase_ (__a : list[float] ): """simple docstring""" _a : int = len(__a ) _a : list[float] = [] _a : list[float] = [-1] * arr_size for index in reversed(range(__a ) ): if stack: while stack[-1] <= arr[index]: stack.pop() if not stack: break if stack: _a : Dict = stack[-1] stack.append(arr[index] ) return result if __name__ == "__main__": from doctest import testmod from timeit import timeit testmod() print(next_greatest_element_slow(arr)) print(next_greatest_element_fast(arr)) print(next_greatest_element(arr)) __lowerCAmelCase = ( """from __main__ import arr, next_greatest_element_slow, """ """next_greatest_element_fast, next_greatest_element""" ) print( """next_greatest_element_slow():""", timeit("""next_greatest_element_slow(arr)""", setup=setup), ) print( """next_greatest_element_fast():""", timeit("""next_greatest_element_fast(arr)""", setup=setup), ) print( """ next_greatest_element():""", timeit("""next_greatest_element(arr)""", setup=setup), )
271
1
"""simple docstring""" import os from argparse import ArgumentParser from typing import List import torch.utils.data from datasets import Dataset, IterableDataset from datasets.distributed import split_dataset_by_node lowercase__ = 4 lowercase__ = 3 class lowerCAmelCase__ ( lowercase ): '''simple docstring''' pass def _snake_case ( lowercase__ ): for shard in shards: for i in range(lowercase__ ): yield {"i": i, "shard": shard} def _snake_case ( ): _lowerCamelCase : str = int(os.environ['RANK'] ) _lowerCamelCase : Tuple = int(os.environ['WORLD_SIZE'] ) _lowerCamelCase : List[str] = ArgumentParser() parser.add_argument('--streaming' , type=lowercase__ ) parser.add_argument('--local_rank' , type=lowercase__ ) parser.add_argument('--num_workers' , type=lowercase__ , default=0 ) _lowerCamelCase : str = parser.parse_args() _lowerCamelCase : Any = args.streaming _lowerCamelCase : Tuple = args.num_workers _lowerCamelCase : Dict = {'shards': [f'''shard_{shard_idx}''' for shard_idx in range(lowercase__ )]} _lowerCamelCase : Dict = IterableDataset.from_generator(lowercase__ , gen_kwargs=lowercase__ ) if not streaming: _lowerCamelCase : Tuple = Dataset.from_list(list(lowercase__ ) ) _lowerCamelCase : str = split_dataset_by_node(lowercase__ , rank=lowercase__ , world_size=lowercase__ ) _lowerCamelCase : Optional[Any] = torch.utils.data.DataLoader(lowercase__ , num_workers=lowercase__ ) _lowerCamelCase : Union[str, Any] = NUM_SHARDS * NUM_ITEMS_PER_SHARD _lowerCamelCase : List[str] = full_size // world_size expected_local_size += int(rank < (full_size % world_size) ) _lowerCamelCase : Optional[Any] = sum(1 for _ in dataloader ) if local_size != expected_local_size: raise FailedTestError(f'''local_size {local_size} != expected_local_size {expected_local_size}''' ) if __name__ == "__main__": main()
350
"""simple docstring""" # XXX: we want transformers master here - in the absense of conftest manipulating sys.path: # hack it in for now: import sys from pathlib import Path lowercase__ = Path(__file__).resolve().parents[3] / """src""" sys.path.insert(1, str(git_repo_path)) import dataclasses # noqa import io # noqa import itertools # noqa import json # noqa import os # noqa import unittest # noqa from copy import deepcopy # noqa from parameterized import parameterized # noqa from transformers import TrainingArguments, is_torch_available # noqa from transformers.deepspeed import is_deepspeed_available # noqa from transformers.file_utils import WEIGHTS_NAME # noqa from transformers.testing_utils import ( # noqa CaptureLogger, ExtendSysPath, TestCasePlus, execute_subprocess_async, get_gpu_count, mockenv_context, require_deepspeed, require_torch_gpu, require_torch_multi_gpu, slow, ) from transformers.trainer_utils import set_seed # noqa set_seed(42) lowercase__ = {"""base""": """patrickvonplaten/wav2vec2_tiny_random""", """robust""": """patrickvonplaten/wav2vec2_tiny_random_robust"""} lowercase__ = """zero2""" lowercase__ = """zero3""" lowercase__ = [ZEROa, ZEROa] def _snake_case ( lowercase__ , lowercase__ , lowercase__ ): # customize the test name generator function as we want both params to appear in the sub-test # name, as by default it shows only the first param _lowerCamelCase : List[str] = parameterized.to_safe_name('_'.join(str(lowercase__ ) for x in param.args ) ) return f'''{func.__name__}_{param_based_name}''' # Cartesian-product of zero stages with models to test lowercase__ = list(itertools.product(stages, models.keys())) @slow @require_deepspeed @require_torch_gpu class lowerCAmelCase__ ( lowercase ): '''simple docstring''' @parameterized.expand(lowercase , name_func=lowercase ) def A_ ( self , lowercase , lowercase ): self.run_and_check( stage=lowercase , model=lowercase , distributed=lowercase , fpaa=lowercase , ) @require_torch_multi_gpu @parameterized.expand(lowercase , name_func=lowercase ) def A_ ( self , lowercase , lowercase ): self.run_and_check( stage=lowercase , model=lowercase , distributed=lowercase , fpaa=lowercase , ) @parameterized.expand(lowercase , name_func=lowercase ) def A_ ( self , lowercase , lowercase ): self.run_and_check( stage=lowercase , model=lowercase , distributed=lowercase , fpaa=lowercase , ) @require_torch_multi_gpu @parameterized.expand(lowercase , name_func=lowercase ) def A_ ( self , lowercase , lowercase ): self.run_and_check( stage=lowercase , model=lowercase , distributed=lowercase , fpaa=lowercase , ) def A_ ( self , lowercase ): # XXX: run_asr is premature and doesn't save any results # so all we check for now is that the process didn't fail pass def A_ ( self , lowercase , lowercase , lowercase = 10 , lowercase = True , lowercase = True , lowercase = True , ): _lowerCamelCase : List[str] = models[model] _lowerCamelCase : Optional[int] = self.run_trainer( stage=lowercase , model_name=lowercase , eval_steps=lowercase , num_train_epochs=1 , distributed=lowercase , fpaa=lowercase , ) self.do_checks(lowercase ) return output_dir def A_ ( self , lowercase , lowercase , lowercase = 10 , lowercase = 1 , lowercase = True , lowercase = True , ): _lowerCamelCase : List[str] = self.get_auto_remove_tmp_dir('./xxx' , after=lowercase ) _lowerCamelCase : Any = F''' --model_name_or_path {model_name} --dataset_name hf-internal-testing/librispeech_asr_dummy --dataset_config_name clean --train_split_name validation --validation_split_name validation --output_dir {output_dir} --num_train_epochs {str(lowercase )} --per_device_train_batch_size 2 --per_device_eval_batch_size 2 --evaluation_strategy steps --learning_rate 5e-4 --warmup_steps 8 --orthography timit --preprocessing_num_workers 1 --group_by_length --freeze_feature_extractor --report_to none --save_steps 0 --eval_steps {eval_steps} --report_to none '''.split() if fpaa: args.extend(['--fp16'] ) # currently ds_config_wav2vec2_zero.json requires "zero_optimization.find_unused_parameters": true, # hence the separate config files _lowerCamelCase : Optional[int] = F'''--deepspeed {self.test_file_dir_str}/ds_config_wav2vec2_{stage}.json'''.split() _lowerCamelCase : Optional[Any] = [F'''{self.examples_dir_str}/research_projects/wav2vec2/run_asr.py'''] _lowerCamelCase : Dict = self.get_launcher(lowercase ) _lowerCamelCase : Union[str, Any] = launcher + script + args + ds_args # keep for quick debug # print(" ".join([f"\nPYTHONPATH={self.src_dir_str}"] +cmd)); die execute_subprocess_async(lowercase , env=self.get_env() ) return output_dir def A_ ( self , lowercase=False ): # 1. explicitly set --num_nodes=1 just in case these tests end up run on a multi-node setup # - it won't be able to handle that # 2. for now testing with just 2 gpus max (since some quality tests may give different # results with mode gpus because we use very little data) _lowerCamelCase : Any = min(2 , get_gpu_count() ) if distributed else 1 return F'''deepspeed --num_nodes 1 --num_gpus {num_gpus}'''.split()
12
0
"""simple docstring""" import logging import torch from torch import nn from torch.nn import CrossEntropyLoss, MSELoss from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward from transformers.models.bert.modeling_bert import ( BERT_INPUTS_DOCSTRING, BERT_START_DOCSTRING, BertEncoder, BertModel, BertPreTrainedModel, ) _UpperCAmelCase = logging.getLogger(__name__) class a ( UpperCAmelCase__ ): def lowerCamelCase__ ( self : Optional[Any] , lowerCAmelCase : List[str] , lowerCAmelCase : Any , lowerCAmelCase : Dict=None , lowerCAmelCase : Dict=None ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE_: Optional[Any] =self.layer[current_layer](lowerCAmelCase , lowerCAmelCase , head_mask[current_layer] ) SCREAMING_SNAKE_CASE_: Optional[Any] =layer_outputs[0] return hidden_states @add_start_docstrings( 'The bare Bert Model transformer with PABEE outputting raw hidden-states without any specific head on top.' , UpperCAmelCase__ , ) class a ( UpperCAmelCase__ ): def __init__( self : Dict , lowerCAmelCase : List[Any] ) -> Dict: '''simple docstring''' super().__init__(lowerCAmelCase ) SCREAMING_SNAKE_CASE_: Union[str, Any] =BertEncoderWithPabee(lowerCAmelCase ) self.init_weights() SCREAMING_SNAKE_CASE_: Dict =0 SCREAMING_SNAKE_CASE_: Any =0 SCREAMING_SNAKE_CASE_: Optional[int] =0 SCREAMING_SNAKE_CASE_: Dict =0 def lowerCamelCase__ ( self : Any , lowerCAmelCase : List[str] ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE_: Dict =threshold def lowerCamelCase__ ( self : Optional[Any] , lowerCAmelCase : Optional[int] ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE_: List[Any] =patience def lowerCamelCase__ ( self : Optional[Any] ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE_: Union[str, Any] =0 SCREAMING_SNAKE_CASE_: str =0 def lowerCamelCase__ ( self : Dict ) -> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE_: Tuple =self.inference_layers_num / self.inference_instances_num SCREAMING_SNAKE_CASE_: int =( f'''*** Patience = {self.patience} Avg. Inference Layers = {avg_inf_layers:.2f} Speed Up =''' f''' {1 - avg_inf_layers / self.config.num_hidden_layers:.2f} ***''' ) print(lowerCAmelCase ) @add_start_docstrings_to_model_forward(lowerCAmelCase ) def lowerCamelCase__ ( self : List[str] , lowerCAmelCase : Tuple=None , lowerCAmelCase : int=None , lowerCAmelCase : int=None , lowerCAmelCase : List[Any]=None , lowerCAmelCase : List[str]=None , lowerCAmelCase : Optional[int]=None , lowerCAmelCase : Tuple=None , lowerCAmelCase : Dict=None , lowerCAmelCase : List[Any]=None , lowerCAmelCase : List[Any]=None , lowerCAmelCase : Optional[Any]=False , ) -> Tuple: '''simple docstring''' if input_ids is not None and inputs_embeds is not None: raise ValueError("""You cannot specify both input_ids and inputs_embeds at the same time""" ) elif input_ids is not None: SCREAMING_SNAKE_CASE_: int =input_ids.size() elif inputs_embeds is not None: SCREAMING_SNAKE_CASE_: int =inputs_embeds.size()[:-1] else: raise ValueError("""You have to specify either input_ids or inputs_embeds""" ) SCREAMING_SNAKE_CASE_: Optional[int] =input_ids.device if input_ids is not None else inputs_embeds.device if attention_mask is None: SCREAMING_SNAKE_CASE_: int =torch.ones(lowerCAmelCase , device=lowerCAmelCase ) if token_type_ids is None: SCREAMING_SNAKE_CASE_: Optional[int] =torch.zeros(lowerCAmelCase , dtype=torch.long , device=lowerCAmelCase ) # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] # ourselves in which case we just need to make it broadcastable to all heads. SCREAMING_SNAKE_CASE_: torch.Tensor =self.get_extended_attention_mask(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) # If a 2D ou 3D attention mask is provided for the cross-attention # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] if self.config.is_decoder and encoder_hidden_states is not None: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Dict =encoder_hidden_states.size() SCREAMING_SNAKE_CASE_: List[Any] =(encoder_batch_size, encoder_sequence_length) if encoder_attention_mask is None: SCREAMING_SNAKE_CASE_: Union[str, Any] =torch.ones(lowerCAmelCase , device=lowerCAmelCase ) SCREAMING_SNAKE_CASE_: Optional[Any] =self.invert_attention_mask(lowerCAmelCase ) else: SCREAMING_SNAKE_CASE_: Union[str, Any] =None # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] SCREAMING_SNAKE_CASE_: Tuple =self.get_head_mask(lowerCAmelCase , self.config.num_hidden_layers ) SCREAMING_SNAKE_CASE_: List[str] =self.embeddings( input_ids=lowerCAmelCase , position_ids=lowerCAmelCase , token_type_ids=lowerCAmelCase , inputs_embeds=lowerCAmelCase ) SCREAMING_SNAKE_CASE_: int =embedding_output if self.training: SCREAMING_SNAKE_CASE_: List[str] =[] for i in range(self.config.num_hidden_layers ): SCREAMING_SNAKE_CASE_: Union[str, Any] =self.encoder.adaptive_forward( lowerCAmelCase , current_layer=lowerCAmelCase , attention_mask=lowerCAmelCase , head_mask=lowerCAmelCase ) SCREAMING_SNAKE_CASE_: Optional[int] =self.pooler(lowerCAmelCase ) SCREAMING_SNAKE_CASE_: Union[str, Any] =output_layers[i](output_dropout(lowerCAmelCase ) ) res.append(lowerCAmelCase ) elif self.patience == 0: # Use all layers for inference SCREAMING_SNAKE_CASE_: int =self.encoder( lowerCAmelCase , attention_mask=lowerCAmelCase , head_mask=lowerCAmelCase , encoder_hidden_states=lowerCAmelCase , encoder_attention_mask=lowerCAmelCase , ) SCREAMING_SNAKE_CASE_: Dict =self.pooler(encoder_outputs[0] ) SCREAMING_SNAKE_CASE_: Optional[Any] =[output_layers[self.config.num_hidden_layers - 1](lowerCAmelCase )] else: SCREAMING_SNAKE_CASE_: Any =0 SCREAMING_SNAKE_CASE_: List[Any] =None SCREAMING_SNAKE_CASE_: List[str] =0 for i in range(self.config.num_hidden_layers ): calculated_layer_num += 1 SCREAMING_SNAKE_CASE_: Optional[int] =self.encoder.adaptive_forward( lowerCAmelCase , current_layer=lowerCAmelCase , attention_mask=lowerCAmelCase , head_mask=lowerCAmelCase ) SCREAMING_SNAKE_CASE_: Optional[int] =self.pooler(lowerCAmelCase ) SCREAMING_SNAKE_CASE_: Optional[int] =output_layers[i](lowerCAmelCase ) if regression: SCREAMING_SNAKE_CASE_: Optional[int] =logits.detach() if patient_result is not None: SCREAMING_SNAKE_CASE_: Dict =patient_result.detach() if (patient_result is not None) and torch.abs(patient_result - labels ) < self.regression_threshold: patient_counter += 1 else: SCREAMING_SNAKE_CASE_: Any =0 else: SCREAMING_SNAKE_CASE_: List[Any] =logits.detach().argmax(dim=1 ) if patient_result is not None: SCREAMING_SNAKE_CASE_: Optional[Any] =patient_result.detach().argmax(dim=1 ) if (patient_result is not None) and torch.all(labels.eq(lowerCAmelCase ) ): patient_counter += 1 else: SCREAMING_SNAKE_CASE_: Optional[int] =0 SCREAMING_SNAKE_CASE_: Tuple =logits if patient_counter == self.patience: break SCREAMING_SNAKE_CASE_: int =[patient_result] self.inference_layers_num += calculated_layer_num self.inference_instances_num += 1 return res @add_start_docstrings( 'Bert Model transformer with PABEE and a sequence classification/regression head on top (a linear layer on top of\n the pooled output) e.g. for GLUE tasks. ' , UpperCAmelCase__ , ) class a ( UpperCAmelCase__ ): def __init__( self : Optional[Any] , lowerCAmelCase : Dict ) -> Union[str, Any]: '''simple docstring''' super().__init__(lowerCAmelCase ) SCREAMING_SNAKE_CASE_: List[str] =config.num_labels SCREAMING_SNAKE_CASE_: List[str] =BertModelWithPabee(lowerCAmelCase ) SCREAMING_SNAKE_CASE_: int =nn.Dropout(config.hidden_dropout_prob ) SCREAMING_SNAKE_CASE_: List[Any] =nn.ModuleList( [nn.Linear(config.hidden_size , self.config.num_labels ) for _ in range(config.num_hidden_layers )] ) self.init_weights() @add_start_docstrings_to_model_forward(lowerCAmelCase ) def lowerCamelCase__ ( self : Union[str, Any] , lowerCAmelCase : Optional[Any]=None , lowerCAmelCase : Optional[int]=None , lowerCAmelCase : Optional[int]=None , lowerCAmelCase : Optional[Any]=None , lowerCAmelCase : Optional[int]=None , lowerCAmelCase : List[Any]=None , lowerCAmelCase : List[Any]=None , ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE_: str =self.bert( input_ids=lowerCAmelCase , attention_mask=lowerCAmelCase , token_type_ids=lowerCAmelCase , position_ids=lowerCAmelCase , head_mask=lowerCAmelCase , inputs_embeds=lowerCAmelCase , output_dropout=self.dropout , output_layers=self.classifiers , regression=self.num_labels == 1 , ) SCREAMING_SNAKE_CASE_: int =(logits[-1],) if labels is not None: SCREAMING_SNAKE_CASE_: str =None SCREAMING_SNAKE_CASE_: Tuple =0 for ix, logits_item in enumerate(lowerCAmelCase ): if self.num_labels == 1: # We are doing regression SCREAMING_SNAKE_CASE_: Union[str, Any] =MSELoss() SCREAMING_SNAKE_CASE_: List[str] =loss_fct(logits_item.view(-1 ) , labels.view(-1 ) ) else: SCREAMING_SNAKE_CASE_: Union[str, Any] =CrossEntropyLoss() SCREAMING_SNAKE_CASE_: List[str] =loss_fct(logits_item.view(-1 , self.num_labels ) , labels.view(-1 ) ) if total_loss is None: SCREAMING_SNAKE_CASE_: List[Any] =loss else: total_loss += loss * (ix + 1) total_weights += ix + 1 SCREAMING_SNAKE_CASE_: Any =(total_loss / total_weights,) + outputs return outputs
173
"""simple docstring""" from ..utils import DummyObject, requires_backends class a ( metaclass=UpperCAmelCase__ ): UpperCamelCase : Optional[int] = ['torch', 'torchsde'] def __init__( self : Union[str, Any] , *lowerCAmelCase : Any , **lowerCAmelCase : Union[str, Any] ) -> Dict: '''simple docstring''' requires_backends(self , ["""torch""", """torchsde"""] ) @classmethod def lowerCamelCase__ ( cls : Union[str, Any] , *lowerCAmelCase : Union[str, Any] , **lowerCAmelCase : Tuple ) -> List[Any]: '''simple docstring''' requires_backends(cls , ["""torch""", """torchsde"""] ) @classmethod def lowerCamelCase__ ( cls : Union[str, Any] , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : Any ) -> Tuple: '''simple docstring''' requires_backends(cls , ["""torch""", """torchsde"""] )
173
1
import copy import inspect import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers import VideoMAEConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, VideoMAEForPreTraining, VideoMAEForVideoClassification, VideoMAEModel, ) from transformers.models.videomae.modeling_videomae import VIDEOMAE_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from transformers import VideoMAEImageProcessor class __lowerCAmelCase : def __init__( self: Dict , _lowerCAmelCase: Dict , _lowerCAmelCase: Any=13 , _lowerCAmelCase: List[str]=10 , _lowerCAmelCase: Dict=3 , _lowerCAmelCase: Dict=2 , _lowerCAmelCase: Any=2 , _lowerCAmelCase: Any=2 , _lowerCAmelCase: Union[str, Any]=True , _lowerCAmelCase: Dict=True , _lowerCAmelCase: Optional[Any]=32 , _lowerCAmelCase: Union[str, Any]=5 , _lowerCAmelCase: str=4 , _lowerCAmelCase: str=37 , _lowerCAmelCase: Any="gelu" , _lowerCAmelCase: List[Any]=0.1 , _lowerCAmelCase: Union[str, Any]=0.1 , _lowerCAmelCase: Union[str, Any]=10 , _lowerCAmelCase: List[str]=0.02 , _lowerCAmelCase: Union[str, Any]=0.9 , _lowerCAmelCase: int=None , ): lowercase :Dict = parent lowercase :Optional[int] = batch_size lowercase :List[Any] = image_size lowercase :int = num_channels lowercase :Any = patch_size lowercase :str = tubelet_size lowercase :Optional[Any] = num_frames lowercase :Optional[Any] = is_training lowercase :Tuple = use_labels lowercase :Union[str, Any] = hidden_size lowercase :Any = num_hidden_layers lowercase :Optional[Any] = num_attention_heads lowercase :Optional[int] = intermediate_size lowercase :Union[str, Any] = hidden_act lowercase :int = hidden_dropout_prob lowercase :List[str] = attention_probs_dropout_prob lowercase :List[str] = type_sequence_label_size lowercase :Union[str, Any] = initializer_range lowercase :Optional[Any] = mask_ratio lowercase :List[Any] = scope # in VideoMAE, the number of tokens equals num_frames/tubelet_size * num_patches per frame lowercase :List[str] = (image_size // patch_size) ** 2 lowercase :Dict = (num_frames // tubelet_size) * self.num_patches_per_frame # use this variable to define bool_masked_pos lowercase :Optional[Any] = int(mask_ratio * self.seq_length ) def SCREAMING_SNAKE_CASE ( self: List[Any] ): lowercase :Tuple = floats_tensor( [self.batch_size, self.num_frames, self.num_channels, self.image_size, self.image_size] ) lowercase :Dict = None if self.use_labels: lowercase :Union[str, Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase :Any = self.get_config() return config, pixel_values, labels def SCREAMING_SNAKE_CASE ( self: List[str] ): return VideoMAEConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , num_frames=self.num_frames , tubelet_size=self.tubelet_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=_lowerCAmelCase , initializer_range=self.initializer_range , ) def SCREAMING_SNAKE_CASE ( self: Optional[int] , _lowerCAmelCase: Dict , _lowerCAmelCase: List[Any] , _lowerCAmelCase: Dict ): lowercase :List[Any] = VideoMAEModel(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() lowercase :int = model(_lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def SCREAMING_SNAKE_CASE ( self: Any , _lowerCAmelCase: int , _lowerCAmelCase: str , _lowerCAmelCase: Optional[int] ): lowercase :str = VideoMAEForPreTraining(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() # important: each video needs to have the same number of masked patches # hence we define a single mask, which we then repeat for each example in the batch lowercase :Tuple = torch.ones((self.num_masks,) ) lowercase :str = torch.cat([mask, torch.zeros(self.seq_length - mask.size(0 ) )] ) lowercase :Optional[int] = mask.expand(self.batch_size , -1 ).bool() lowercase :List[Any] = model(_lowerCAmelCase , _lowerCAmelCase ) # model only returns predictions for masked patches lowercase :Any = mask.sum().item() lowercase :Optional[Any] = 3 * self.tubelet_size * self.patch_size**2 self.parent.assertEqual(result.logits.shape , (self.batch_size, num_masked_patches, decoder_num_labels) ) def SCREAMING_SNAKE_CASE ( self: Optional[int] ): lowercase :Union[str, Any] = self.prepare_config_and_inputs() lowercase , lowercase , lowercase :str = config_and_inputs lowercase :Tuple = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class __lowerCAmelCase ( lowerCAmelCase , lowerCAmelCase , unittest.TestCase): _a = ( (VideoMAEModel, VideoMAEForPreTraining, VideoMAEForVideoClassification) if is_torch_available() else () ) _a = ( {'''feature-extraction''': VideoMAEModel, '''video-classification''': VideoMAEForVideoClassification} if is_torch_available() else {} ) _a = False _a = False _a = False _a = False def SCREAMING_SNAKE_CASE ( self: Dict ): lowercase :str = VideoMAEModelTester(self ) lowercase :str = ConfigTester(self , config_class=_lowerCAmelCase , has_text_modality=_lowerCAmelCase , hidden_size=37 ) def SCREAMING_SNAKE_CASE ( self: int , _lowerCAmelCase: str , _lowerCAmelCase: List[Any] , _lowerCAmelCase: Optional[Any]=False ): lowercase :Union[str, Any] = copy.deepcopy(_lowerCAmelCase ) if model_class == VideoMAEForPreTraining: # important: each video needs to have the same number of masked patches # hence we define a single mask, which we then repeat for each example in the batch lowercase :Tuple = torch.ones((self.model_tester.num_masks,) ) lowercase :Optional[Any] = torch.cat([mask, torch.zeros(self.model_tester.seq_length - mask.size(0 ) )] ) lowercase :List[Any] = mask.expand(self.model_tester.batch_size , -1 ).bool() lowercase :Optional[int] = bool_masked_pos.to(_lowerCAmelCase ) if return_labels: if model_class in [ *get_values(_lowerCAmelCase ), ]: lowercase :List[str] = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_lowerCAmelCase ) return inputs_dict def SCREAMING_SNAKE_CASE ( self: Tuple ): self.config_tester.run_common_tests() @unittest.skip(reason="VideoMAE does not use inputs_embeds" ) def SCREAMING_SNAKE_CASE ( self: str ): pass def SCREAMING_SNAKE_CASE ( self: Optional[Any] ): lowercase , lowercase :Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase :Union[str, Any] = model_class(_lowerCAmelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) lowercase :List[str] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_lowerCAmelCase , nn.Linear ) ) def SCREAMING_SNAKE_CASE ( self: List[Any] ): lowercase , lowercase :Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase :Tuple = model_class(_lowerCAmelCase ) lowercase :Optional[int] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase :Optional[int] = [*signature.parameters.keys()] lowercase :List[Any] = ["pixel_values"] self.assertListEqual(arg_names[:1] , _lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self: List[str] ): lowercase :Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self: int ): lowercase :int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*_lowerCAmelCase ) @slow def SCREAMING_SNAKE_CASE ( self: Any ): for model_name in VIDEOMAE_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase :int = VideoMAEModel.from_pretrained(_lowerCAmelCase ) self.assertIsNotNone(_lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self: str ): if not self.has_attentions: pass else: lowercase , lowercase :Dict = self.model_tester.prepare_config_and_inputs_for_common() lowercase :Optional[Any] = True for model_class in self.all_model_classes: lowercase :Tuple = self.model_tester.seq_length - self.model_tester.num_masks lowercase :Dict = ( num_visible_patches if model_class == VideoMAEForPreTraining else self.model_tester.seq_length ) lowercase :Any = True lowercase :Tuple = False lowercase :str = True lowercase :List[Any] = model_class(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() with torch.no_grad(): lowercase :List[Any] = model(**self._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase ) ) lowercase :Any = outputs.attentions self.assertEqual(len(_lowerCAmelCase ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] lowercase :Optional[Any] = True lowercase :str = model_class(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() with torch.no_grad(): lowercase :Any = model(**self._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase ) ) lowercase :List[Any] = outputs.attentions self.assertEqual(len(_lowerCAmelCase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) lowercase :int = len(_lowerCAmelCase ) # Check attention is always last and order is fine lowercase :int = True lowercase :Union[str, Any] = True lowercase :int = model_class(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() with torch.no_grad(): lowercase :Optional[int] = model(**self._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase ) ) self.assertEqual(out_len + 1 , len(_lowerCAmelCase ) ) lowercase :Tuple = outputs.attentions self.assertEqual(len(_lowerCAmelCase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) def SCREAMING_SNAKE_CASE ( self: str ): def check_hidden_states_output(_lowerCAmelCase: Optional[int] , _lowerCAmelCase: List[str] , _lowerCAmelCase: Tuple ): lowercase :Dict = model_class(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() with torch.no_grad(): lowercase :Tuple = model(**self._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase ) ) lowercase :Tuple = outputs.hidden_states lowercase :Any = self.model_tester.num_hidden_layers + 1 self.assertEqual(len(_lowerCAmelCase ) , _lowerCAmelCase ) lowercase :str = self.model_tester.seq_length - self.model_tester.num_masks lowercase :List[str] = num_visible_patches if model_class == VideoMAEForPreTraining else self.model_tester.seq_length self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , ) lowercase , lowercase :Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase :Any = True check_hidden_states_output(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowercase :Optional[Any] = True check_hidden_states_output(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." ) def SCREAMING_SNAKE_CASE ( self: List[Any] ): pass def UpperCAmelCase__ ( ): lowercase :str = hf_hub_download( repo_id="hf-internal-testing/spaghetti-video", filename="eating_spaghetti.npy", repo_type="dataset" ) lowercase :List[str] = np.load(lowerCamelCase ) return list(lowerCamelCase ) @require_torch @require_vision class __lowerCAmelCase ( unittest.TestCase): @cached_property def SCREAMING_SNAKE_CASE ( self: Dict ): # logits were tested with a different mean and std, so we use the same here return ( VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5] , image_std=[0.5, 0.5, 0.5] ) if is_vision_available() else None ) @slow def SCREAMING_SNAKE_CASE ( self: Any ): lowercase :Tuple = VideoMAEForVideoClassification.from_pretrained("MCG-NJU/videomae-base-finetuned-kinetics" ).to( _lowerCAmelCase ) lowercase :Tuple = self.default_image_processor lowercase :Optional[Any] = prepare_video() lowercase :str = image_processor(_lowerCAmelCase , return_tensors="pt" ).to(_lowerCAmelCase ) # forward pass with torch.no_grad(): lowercase :List[str] = model(**_lowerCAmelCase ) # verify the logits lowercase :Optional[int] = torch.Size((1, 4_00) ) self.assertEqual(outputs.logits.shape , _lowerCAmelCase ) lowercase :Optional[int] = torch.tensor([0.36_69, -0.06_88, -0.24_21] ).to(_lowerCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _lowerCAmelCase , atol=1e-4 ) ) @slow def SCREAMING_SNAKE_CASE ( self: Tuple ): lowercase :List[str] = VideoMAEForPreTraining.from_pretrained("MCG-NJU/videomae-base-short" ).to(_lowerCAmelCase ) lowercase :List[Any] = self.default_image_processor lowercase :str = prepare_video() lowercase :Optional[int] = image_processor(_lowerCAmelCase , return_tensors="pt" ).to(_lowerCAmelCase ) # add boolean mask, indicating which patches to mask lowercase :Optional[Any] = hf_hub_download(repo_id="hf-internal-testing/bool-masked-pos" , filename="bool_masked_pos.pt" ) lowercase :str = torch.load(_lowerCAmelCase ) # forward pass with torch.no_grad(): lowercase :Optional[Any] = model(**_lowerCAmelCase ) # verify the logits lowercase :str = torch.Size([1, 14_08, 15_36] ) lowercase :Union[str, Any] = torch.tensor( [[0.79_94, 0.96_12, 0.85_08], [0.74_01, 0.89_58, 0.83_02], [0.58_62, 0.74_68, 0.73_25]] , device=_lowerCAmelCase ) self.assertEqual(outputs.logits.shape , _lowerCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] , _lowerCAmelCase , atol=1e-4 ) ) # verify the loss (`config.norm_pix_loss` = `True`) lowercase :Union[str, Any] = torch.tensor([0.51_42] , device=_lowerCAmelCase ) self.assertTrue(torch.allclose(outputs.loss , _lowerCAmelCase , atol=1e-4 ) ) # verify the loss (`config.norm_pix_loss` = `False`) lowercase :Any = VideoMAEForPreTraining.from_pretrained("MCG-NJU/videomae-base-short" , norm_pix_loss=_lowerCAmelCase ).to( _lowerCAmelCase ) with torch.no_grad(): lowercase :List[str] = model(**_lowerCAmelCase ) lowercase :Tuple = torch.tensor(torch.tensor([0.64_69] ) , device=_lowerCAmelCase ) self.assertTrue(torch.allclose(outputs.loss , _lowerCAmelCase , atol=1e-4 ) )
158
from typing import TYPE_CHECKING from ...utils import _LazyModule _UpperCAmelCase : Optional[int] = {"processing_wav2vec2_with_lm": ["Wav2Vec2ProcessorWithLM"]} if TYPE_CHECKING: from .processing_wavaveca_with_lm import WavaVecaProcessorWithLM else: import sys _UpperCAmelCase : int = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
158
1
'''simple docstring''' from __future__ import annotations class UpperCAmelCase_ : def __init__( self : List[Any] , UpperCAmelCase__ : int ) -> None: lowerCAmelCase = order # a_{0} ... a_{k} lowerCAmelCase = [1.0] + [0.0] * order # b_{0} ... b_{k} lowerCAmelCase = [1.0] + [0.0] * order # x[n-1] ... x[n-k] lowerCAmelCase = [0.0] * self.order # y[n-1] ... y[n-k] lowerCAmelCase = [0.0] * self.order def __UpperCAmelCase ( self : str , UpperCAmelCase__ : list[float] , UpperCAmelCase__ : list[float] ) -> None: if len(UpperCAmelCase__ ) < self.order: lowerCAmelCase = [1.0, *a_coeffs] if len(UpperCAmelCase__ ) != self.order + 1: lowerCAmelCase = ( F'''Expected a_coeffs to have {self.order + 1} elements ''' F'''for {self.order}-order filter, got {len(UpperCAmelCase__ )}''' ) raise ValueError(UpperCAmelCase__ ) if len(UpperCAmelCase__ ) != self.order + 1: lowerCAmelCase = ( F'''Expected b_coeffs to have {self.order + 1} elements ''' F'''for {self.order}-order filter, got {len(UpperCAmelCase__ )}''' ) raise ValueError(UpperCAmelCase__ ) lowerCAmelCase = a_coeffs lowerCAmelCase = b_coeffs def __UpperCAmelCase ( self : Dict , UpperCAmelCase__ : float ) -> float: lowerCAmelCase = 0.0 # Start at index 1 and do index 0 at the end. for i in range(1 , self.order + 1 ): result += ( self.b_coeffs[i] * self.input_history[i - 1] - self.a_coeffs[i] * self.output_history[i - 1] ) lowerCAmelCase = (result + self.b_coeffs[0] * sample) / self.a_coeffs[0] lowerCAmelCase = self.input_history[:-1] lowerCAmelCase = self.output_history[:-1] lowerCAmelCase = sample lowerCAmelCase = result return result
4
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging __snake_case =logging.get_logger(__name__) __snake_case ={ """facebook/s2t-wav2vec2-large-en-de""": ( """https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/config.json""" ), # See all Speech2Text models at https://huggingface.co/models?filter=speech2text2 } class UpperCAmelCase_ ( __lowercase ): lowerCamelCase : Union[str, Any] = '''speech_to_text_2''' lowerCamelCase : Any = ['''past_key_values'''] lowerCamelCase : Optional[Any] = {'''num_attention_heads''': '''decoder_attention_heads''', '''hidden_size''': '''d_model'''} def __init__( self : Optional[int] , UpperCAmelCase__ : Optional[Any]=1_0_0_0_0 , UpperCAmelCase__ : int=6 , UpperCAmelCase__ : Optional[Any]=2_0_4_8 , UpperCAmelCase__ : Union[str, Any]=4 , UpperCAmelCase__ : List[Any]=0.0 , UpperCAmelCase__ : str=True , UpperCAmelCase__ : str="relu" , UpperCAmelCase__ : Any=2_5_6 , UpperCAmelCase__ : Optional[Any]=0.1 , UpperCAmelCase__ : Any=0.0 , UpperCAmelCase__ : Tuple=0.0 , UpperCAmelCase__ : List[Any]=0.02 , UpperCAmelCase__ : List[Any]=2 , UpperCAmelCase__ : str=True , UpperCAmelCase__ : List[str]=1 , UpperCAmelCase__ : Any=0 , UpperCAmelCase__ : Dict=2 , UpperCAmelCase__ : int=1_0_2_4 , **UpperCAmelCase__ : Optional[Any] , ) -> Dict: lowerCAmelCase = vocab_size lowerCAmelCase = d_model lowerCAmelCase = decoder_ffn_dim lowerCAmelCase = decoder_layers lowerCAmelCase = decoder_attention_heads lowerCAmelCase = dropout lowerCAmelCase = attention_dropout lowerCAmelCase = activation_dropout lowerCAmelCase = activation_function lowerCAmelCase = init_std lowerCAmelCase = decoder_layerdrop lowerCAmelCase = use_cache lowerCAmelCase = decoder_layers lowerCAmelCase = scale_embedding # scale factor will be sqrt(d_model) if True lowerCAmelCase = max_target_positions super().__init__( pad_token_id=UpperCAmelCase__ , bos_token_id=UpperCAmelCase__ , eos_token_id=UpperCAmelCase__ , decoder_start_token_id=UpperCAmelCase__ , **UpperCAmelCase__ , )
4
1
import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Audio, ClassLabel, Features from .base import TaskTemplate @dataclass(frozen=__lowerCamelCase ) class lowerCamelCase (__lowerCamelCase ): """simple docstring""" UpperCAmelCase_ = field(default="audio-classification" , metadata={"include_in_asdict_even_if_is_default": True} ) UpperCAmelCase_ = Features({"audio": Audio()} ) UpperCAmelCase_ = Features({"labels": ClassLabel} ) UpperCAmelCase_ = "audio" UpperCAmelCase_ = "labels" def A_ ( self : int, _UpperCAmelCase : Union[str, Any] ) -> Tuple: """simple docstring""" if self.label_column not in features: raise ValueError(F'''Column {self.label_column} is not present in features.''' ) if not isinstance(features[self.label_column], _UpperCAmelCase ): raise ValueError(F'''Column {self.label_column} is not a ClassLabel.''' ) SCREAMING_SNAKE_CASE__ : Optional[Any] = copy.deepcopy(self ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.label_schema.copy() SCREAMING_SNAKE_CASE__ : Tuple = features[self.label_column] SCREAMING_SNAKE_CASE__ : Tuple = label_schema return task_template @property def A_ ( self : int ) -> Dict[str, str]: """simple docstring""" return { self.audio_column: "audio", self.label_column: "labels", }
191
from queue import PriorityQueue from typing import Any import numpy as np def _a ( SCREAMING_SNAKE_CASE__ : dict , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : set , SCREAMING_SNAKE_CASE__ : set , SCREAMING_SNAKE_CASE__ : dict , SCREAMING_SNAKE_CASE__ : dict , SCREAMING_SNAKE_CASE__ : PriorityQueue , SCREAMING_SNAKE_CASE__ : dict , SCREAMING_SNAKE_CASE__ : float | int , ) -> float | int: '''simple docstring''' for nxt, d in graph[v]: if nxt in visited_forward: continue SCREAMING_SNAKE_CASE__ : Union[str, Any] = cst_fwd.get(SCREAMING_SNAKE_CASE__ , np.inf ) SCREAMING_SNAKE_CASE__ : Optional[int] = cst_fwd[v] + d if new_cost_f < old_cost_f: queue.put((new_cost_f, nxt) ) SCREAMING_SNAKE_CASE__ : List[Any] = new_cost_f SCREAMING_SNAKE_CASE__ : Union[str, Any] = v if nxt in visited_backward: if cst_fwd[v] + d + cst_bwd[nxt] < shortest_distance: SCREAMING_SNAKE_CASE__ : Optional[int] = cst_fwd[v] + d + cst_bwd[nxt] return shortest_distance def _a ( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : dict , SCREAMING_SNAKE_CASE__ : dict ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE__ : Union[str, Any] = -1 SCREAMING_SNAKE_CASE__ : List[str] = set() SCREAMING_SNAKE_CASE__ : List[Any] = set() SCREAMING_SNAKE_CASE__ : int = {source: 0} SCREAMING_SNAKE_CASE__ : Union[str, Any] = {destination: 0} SCREAMING_SNAKE_CASE__ : List[Any] = {source: None} SCREAMING_SNAKE_CASE__ : Union[str, Any] = {destination: None} SCREAMING_SNAKE_CASE__ : PriorityQueue[Any] = PriorityQueue() SCREAMING_SNAKE_CASE__ : PriorityQueue[Any] = PriorityQueue() SCREAMING_SNAKE_CASE__ : Dict = np.inf queue_forward.put((0, source) ) queue_backward.put((0, destination) ) if source == destination: return 0 while not queue_forward.empty() and not queue_backward.empty(): SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ : List[str] = queue_forward.get() visited_forward.add(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ : List[Any] = queue_backward.get() visited_backward.add(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : Any = pass_and_relaxation( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , ) SCREAMING_SNAKE_CASE__ : List[Any] = pass_and_relaxation( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , ) if cst_fwd[v_fwd] + cst_bwd[v_bwd] >= shortest_distance: break if shortest_distance != np.inf: SCREAMING_SNAKE_CASE__ : int = shortest_distance return shortest_path_distance _lowerCamelCase : Optional[Any] = { '''B''': [['''C''', 1]], '''C''': [['''D''', 1]], '''D''': [['''F''', 1]], '''E''': [['''B''', 1], ['''G''', 2]], '''F''': [], '''G''': [['''F''', 1]], } _lowerCamelCase : Tuple = { '''B''': [['''E''', 1]], '''C''': [['''B''', 1]], '''D''': [['''C''', 1]], '''F''': [['''D''', 1], ['''G''', 1]], '''E''': [[None, np.inf]], '''G''': [['''E''', 2]], } if __name__ == "__main__": import doctest doctest.testmod()
191
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) UpperCamelCase_ = { "configuration_roformer": ["ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "RoFormerConfig", "RoFormerOnnxConfig"], "tokenization_roformer": ["RoFormerTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = ["RoFormerTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = [ "ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "RoFormerForCausalLM", "RoFormerForMaskedLM", "RoFormerForMultipleChoice", "RoFormerForQuestionAnswering", "RoFormerForSequenceClassification", "RoFormerForTokenClassification", "RoFormerLayer", "RoFormerModel", "RoFormerPreTrainedModel", "load_tf_weights_in_roformer", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = [ "TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "TFRoFormerForCausalLM", "TFRoFormerForMaskedLM", "TFRoFormerForMultipleChoice", "TFRoFormerForQuestionAnswering", "TFRoFormerForSequenceClassification", "TFRoFormerForTokenClassification", "TFRoFormerLayer", "TFRoFormerModel", "TFRoFormerPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = [ "FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "FlaxRoFormerForMaskedLM", "FlaxRoFormerForMultipleChoice", "FlaxRoFormerForQuestionAnswering", "FlaxRoFormerForSequenceClassification", "FlaxRoFormerForTokenClassification", "FlaxRoFormerModel", "FlaxRoFormerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_roformer import ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, RoFormerConfig, RoFormerOnnxConfig from .tokenization_roformer import RoFormerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_roformer_fast import RoFormerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roformer import ( ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, RoFormerForCausalLM, RoFormerForMaskedLM, RoFormerForMultipleChoice, RoFormerForQuestionAnswering, RoFormerForSequenceClassification, RoFormerForTokenClassification, RoFormerLayer, RoFormerModel, RoFormerPreTrainedModel, load_tf_weights_in_roformer, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roformer import ( TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForMultipleChoice, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerLayer, TFRoFormerModel, TFRoFormerPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roformer import ( FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, FlaxRoFormerForMaskedLM, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerModel, FlaxRoFormerPreTrainedModel, ) else: import sys UpperCamelCase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
251
'''simple docstring''' import math from enum import Enum from typing import Optional, Union from torch.optim import Optimizer from torch.optim.lr_scheduler import LambdaLR from .utils import logging UpperCamelCase_ = logging.get_logger(__name__) class _a ( SCREAMING_SNAKE_CASE ): '''simple docstring''' A : Union[str, Any] = '''linear''' A : int = '''cosine''' A : Optional[Any] = '''cosine_with_restarts''' A : Optional[int] = '''polynomial''' A : str = '''constant''' A : Union[str, Any] = '''constant_with_warmup''' A : Optional[Any] = '''piecewise_constant''' def lowercase__( __UpperCamelCase: Optimizer ,__UpperCamelCase: int = -1 ): """simple docstring""" return LambdaLR(__UpperCamelCase ,lambda __UpperCamelCase : 1 ,last_epoch=__UpperCamelCase ) def lowercase__( __UpperCamelCase: Optimizer ,__UpperCamelCase: int ,__UpperCamelCase: int = -1 ): """simple docstring""" def lr_lambda(__UpperCamelCase: int ): if current_step < num_warmup_steps: return float(__UpperCamelCase ) / float(max(1.0 ,__UpperCamelCase ) ) return 1.0 return LambdaLR(__UpperCamelCase ,__UpperCamelCase ,last_epoch=__UpperCamelCase ) def lowercase__( __UpperCamelCase: Optimizer ,__UpperCamelCase: str ,__UpperCamelCase: int = -1 ): """simple docstring""" SCREAMING_SNAKE_CASE : Dict = {} SCREAMING_SNAKE_CASE : Optional[Any] = step_rules.split(',' ) for rule_str in rule_list[:-1]: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[int] = rule_str.split(':' ) SCREAMING_SNAKE_CASE : int = int(__UpperCamelCase ) SCREAMING_SNAKE_CASE : Any = float(__UpperCamelCase ) SCREAMING_SNAKE_CASE : List[str] = value SCREAMING_SNAKE_CASE : Any = float(rule_list[-1] ) def create_rules_function(__UpperCamelCase: Union[str, Any] ,__UpperCamelCase: Optional[Any] ): def rule_func(__UpperCamelCase: int ) -> float: SCREAMING_SNAKE_CASE : Union[str, Any] = sorted(rules_dict.keys() ) for i, sorted_step in enumerate(__UpperCamelCase ): if steps < sorted_step: return rules_dict[sorted_steps[i]] return last_lr_multiple return rule_func SCREAMING_SNAKE_CASE : Any = create_rules_function(__UpperCamelCase ,__UpperCamelCase ) return LambdaLR(__UpperCamelCase ,__UpperCamelCase ,last_epoch=__UpperCamelCase ) def lowercase__( __UpperCamelCase: int ,__UpperCamelCase: List[Any] ,__UpperCamelCase: Dict ,__UpperCamelCase: int=-1 ): """simple docstring""" def lr_lambda(__UpperCamelCase: int ): if current_step < num_warmup_steps: return float(__UpperCamelCase ) / float(max(1 ,__UpperCamelCase ) ) return max( 0.0 ,float(num_training_steps - current_step ) / float(max(1 ,num_training_steps - num_warmup_steps ) ) ) return LambdaLR(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) def lowercase__( __UpperCamelCase: Optimizer ,__UpperCamelCase: int ,__UpperCamelCase: int ,__UpperCamelCase: float = 0.5 ,__UpperCamelCase: int = -1 ): """simple docstring""" def lr_lambda(__UpperCamelCase: Any ): if current_step < num_warmup_steps: return float(__UpperCamelCase ) / float(max(1 ,__UpperCamelCase ) ) SCREAMING_SNAKE_CASE : str = float(current_step - num_warmup_steps ) / float(max(1 ,num_training_steps - num_warmup_steps ) ) return max(0.0 ,0.5 * (1.0 + math.cos(math.pi * float(__UpperCamelCase ) * 2.0 * progress )) ) return LambdaLR(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) def lowercase__( __UpperCamelCase: Optimizer ,__UpperCamelCase: int ,__UpperCamelCase: int ,__UpperCamelCase: int = 1 ,__UpperCamelCase: int = -1 ): """simple docstring""" def lr_lambda(__UpperCamelCase: Dict ): if current_step < num_warmup_steps: return float(__UpperCamelCase ) / float(max(1 ,__UpperCamelCase ) ) SCREAMING_SNAKE_CASE : int = float(current_step - num_warmup_steps ) / float(max(1 ,num_training_steps - num_warmup_steps ) ) if progress >= 1.0: return 0.0 return max(0.0 ,0.5 * (1.0 + math.cos(math.pi * ((float(__UpperCamelCase ) * progress) % 1.0) )) ) return LambdaLR(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) def lowercase__( __UpperCamelCase: Optional[int] ,__UpperCamelCase: Any ,__UpperCamelCase: Optional[int] ,__UpperCamelCase: Optional[Any]=1e-7 ,__UpperCamelCase: Dict=1.0 ,__UpperCamelCase: Optional[Any]=-1 ): """simple docstring""" SCREAMING_SNAKE_CASE : Dict = optimizer.defaults['lr'] if not (lr_init > lr_end): raise ValueError(f"lr_end ({lr_end}) must be be smaller than initial lr ({lr_init})" ) def lr_lambda(__UpperCamelCase: int ): if current_step < num_warmup_steps: return float(__UpperCamelCase ) / float(max(1 ,__UpperCamelCase ) ) elif current_step > num_training_steps: return lr_end / lr_init # as LambdaLR multiplies by lr_init else: SCREAMING_SNAKE_CASE : List[str] = lr_init - lr_end SCREAMING_SNAKE_CASE : Optional[Any] = num_training_steps - num_warmup_steps SCREAMING_SNAKE_CASE : Union[str, Any] = 1 - (current_step - num_warmup_steps) / decay_steps SCREAMING_SNAKE_CASE : str = lr_range * pct_remaining**power + lr_end return decay / lr_init # as LambdaLR multiplies by lr_init return LambdaLR(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) UpperCamelCase_ = { SchedulerType.LINEAR: get_linear_schedule_with_warmup, SchedulerType.COSINE: get_cosine_schedule_with_warmup, SchedulerType.COSINE_WITH_RESTARTS: get_cosine_with_hard_restarts_schedule_with_warmup, SchedulerType.POLYNOMIAL: get_polynomial_decay_schedule_with_warmup, SchedulerType.CONSTANT: get_constant_schedule, SchedulerType.CONSTANT_WITH_WARMUP: get_constant_schedule_with_warmup, SchedulerType.PIECEWISE_CONSTANT: get_piecewise_constant_schedule, } def lowercase__( __UpperCamelCase: Union[str, SchedulerType] ,__UpperCamelCase: Optimizer ,__UpperCamelCase: Optional[str] = None ,__UpperCamelCase: Optional[int] = None ,__UpperCamelCase: Optional[int] = None ,__UpperCamelCase: int = 1 ,__UpperCamelCase: float = 1.0 ,__UpperCamelCase: int = -1 ,): """simple docstring""" SCREAMING_SNAKE_CASE : Union[str, Any] = SchedulerType(__UpperCamelCase ) SCREAMING_SNAKE_CASE : str = TYPE_TO_SCHEDULER_FUNCTION[name] if name == SchedulerType.CONSTANT: return schedule_func(__UpperCamelCase ,last_epoch=__UpperCamelCase ) if name == SchedulerType.PIECEWISE_CONSTANT: return schedule_func(__UpperCamelCase ,step_rules=__UpperCamelCase ,last_epoch=__UpperCamelCase ) # All other schedulers require `num_warmup_steps` if num_warmup_steps is None: raise ValueError(f"{name} requires `num_warmup_steps`, please provide that argument." ) if name == SchedulerType.CONSTANT_WITH_WARMUP: return schedule_func(__UpperCamelCase ,num_warmup_steps=__UpperCamelCase ,last_epoch=__UpperCamelCase ) # All other schedulers require `num_training_steps` if num_training_steps is None: raise ValueError(f"{name} requires `num_training_steps`, please provide that argument." ) if name == SchedulerType.COSINE_WITH_RESTARTS: return schedule_func( __UpperCamelCase ,num_warmup_steps=__UpperCamelCase ,num_training_steps=__UpperCamelCase ,num_cycles=__UpperCamelCase ,last_epoch=__UpperCamelCase ,) if name == SchedulerType.POLYNOMIAL: return schedule_func( __UpperCamelCase ,num_warmup_steps=__UpperCamelCase ,num_training_steps=__UpperCamelCase ,power=__UpperCamelCase ,last_epoch=__UpperCamelCase ,) return schedule_func( __UpperCamelCase ,num_warmup_steps=__UpperCamelCase ,num_training_steps=__UpperCamelCase ,last_epoch=__UpperCamelCase )
251
1
import gc import random import unittest import numpy as np import torch from transformers import CLIPImageProcessor, CLIPVisionConfig, CLIPVisionModel from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEImgaImgPipeline from diffusers.pipelines.shap_e import ShapERenderer from diffusers.utils import floats_tensor, load_image, load_numpy, slow from diffusers.utils.testing_utils import require_torch_gpu, torch_device from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference class lowercase__ ( UpperCamelCase_ , unittest.TestCase): UpperCamelCase_ = ShapEImgaImgPipeline UpperCamelCase_ = ["""image"""] UpperCamelCase_ = ["""image"""] UpperCamelCase_ = [ """num_images_per_prompt""", """num_inference_steps""", """generator""", """latents""", """guidance_scale""", """frame_size""", """output_type""", """return_dict""", ] UpperCamelCase_ = False @property def __A ( self : Tuple ): '''simple docstring''' return 32 @property def __A ( self : str ): '''simple docstring''' return 32 @property def __A ( self : List[Any] ): '''simple docstring''' return self.time_input_dim * 4 @property def __A ( self : List[Any] ): '''simple docstring''' return 8 @property def __A ( self : Union[str, Any] ): '''simple docstring''' torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Optional[int] = CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size , image_size=64 , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_channels=3 , num_hidden_layers=5 , patch_size=1 , ) SCREAMING_SNAKE_CASE : Optional[int] = CLIPVisionModel(UpperCamelCase__ ) return model @property def __A ( self : Tuple ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = CLIPImageProcessor( crop_size=224 , do_center_crop=UpperCamelCase__ , do_normalize=UpperCamelCase__ , do_resize=UpperCamelCase__ , image_mean=[0.4814_5466, 0.457_8275, 0.4082_1073] , image_std=[0.2686_2954, 0.2613_0258, 0.2757_7711] , resample=3 , size=224 , ) return image_processor @property def __A ( self : Dict ): '''simple docstring''' torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Optional[Any] = { '''num_attention_heads''': 2, '''attention_head_dim''': 16, '''embedding_dim''': self.time_input_dim, '''num_embeddings''': 32, '''embedding_proj_dim''': self.text_embedder_hidden_size, '''time_embed_dim''': self.time_embed_dim, '''num_layers''': 1, '''clip_embed_dim''': self.time_input_dim * 2, '''additional_embeddings''': 0, '''time_embed_act_fn''': '''gelu''', '''norm_in_type''': '''layer''', '''embedding_proj_norm_type''': '''layer''', '''encoder_hid_proj_type''': None, '''added_emb_type''': None, } SCREAMING_SNAKE_CASE : List[str] = PriorTransformer(**UpperCamelCase__ ) return model @property def __A ( self : int ): '''simple docstring''' torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Optional[Any] = { '''param_shapes''': ( (self.renderer_dim, 93), (self.renderer_dim, 8), (self.renderer_dim, 8), (self.renderer_dim, 8), ), '''d_latent''': self.time_input_dim, '''d_hidden''': self.renderer_dim, '''n_output''': 12, '''background''': ( 0.1, 0.1, 0.1, ), } SCREAMING_SNAKE_CASE : List[Any] = ShapERenderer(**UpperCamelCase__ ) return model def __A ( self : str ): '''simple docstring''' SCREAMING_SNAKE_CASE : str = self.dummy_prior SCREAMING_SNAKE_CASE : str = self.dummy_image_encoder SCREAMING_SNAKE_CASE : Optional[Any] = self.dummy_image_processor SCREAMING_SNAKE_CASE : int = self.dummy_renderer SCREAMING_SNAKE_CASE : List[str] = HeunDiscreteScheduler( beta_schedule='''exp''' , num_train_timesteps=1024 , prediction_type='''sample''' , use_karras_sigmas=UpperCamelCase__ , clip_sample=UpperCamelCase__ , clip_sample_range=1.0 , ) SCREAMING_SNAKE_CASE : List[str] = { '''prior''': prior, '''image_encoder''': image_encoder, '''image_processor''': image_processor, '''renderer''': renderer, '''scheduler''': scheduler, } return components def __A ( self : str , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Optional[int]=0 ): '''simple docstring''' SCREAMING_SNAKE_CASE : Dict = floats_tensor((1, 3, 64, 64) , rng=random.Random(UpperCamelCase__ ) ).to(UpperCamelCase__ ) if str(UpperCamelCase__ ).startswith('''mps''' ): SCREAMING_SNAKE_CASE : Any = torch.manual_seed(UpperCamelCase__ ) else: SCREAMING_SNAKE_CASE : Tuple = torch.Generator(device=UpperCamelCase__ ).manual_seed(UpperCamelCase__ ) SCREAMING_SNAKE_CASE : Union[str, Any] = { '''image''': input_image, '''generator''': generator, '''num_inference_steps''': 1, '''frame_size''': 32, '''output_type''': '''np''', } return inputs def __A ( self : Optional[Any] ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = '''cpu''' SCREAMING_SNAKE_CASE : Any = self.get_dummy_components() SCREAMING_SNAKE_CASE : Dict = self.pipeline_class(**UpperCamelCase__ ) SCREAMING_SNAKE_CASE : Tuple = pipe.to(UpperCamelCase__ ) pipe.set_progress_bar_config(disable=UpperCamelCase__ ) SCREAMING_SNAKE_CASE : Optional[int] = pipe(**self.get_dummy_inputs(UpperCamelCase__ ) ) SCREAMING_SNAKE_CASE : Any = output.images[0] SCREAMING_SNAKE_CASE : List[Any] = image[0, -3:, -3:, -1] assert image.shape == (20, 32, 32, 3) SCREAMING_SNAKE_CASE : Dict = np.array( [ 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def __A ( self : str ): '''simple docstring''' self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def __A ( self : List[Any] ): '''simple docstring''' SCREAMING_SNAKE_CASE : str = torch_device == '''cpu''' SCREAMING_SNAKE_CASE : List[Any] = True self._test_inference_batch_single_identical( batch_size=2 , test_max_difference=UpperCamelCase__ , relax_max_difference=UpperCamelCase__ , ) def __A ( self : Optional[Any] ): '''simple docstring''' SCREAMING_SNAKE_CASE : str = self.get_dummy_components() SCREAMING_SNAKE_CASE : Any = self.pipeline_class(**UpperCamelCase__ ) SCREAMING_SNAKE_CASE : Optional[Any] = pipe.to(UpperCamelCase__ ) pipe.set_progress_bar_config(disable=UpperCamelCase__ ) SCREAMING_SNAKE_CASE : List[str] = 1 SCREAMING_SNAKE_CASE : List[Any] = 2 SCREAMING_SNAKE_CASE : Any = self.get_dummy_inputs(UpperCamelCase__ ) for key in inputs.keys(): if key in self.batch_params: SCREAMING_SNAKE_CASE : Union[str, Any] = batch_size * [inputs[key]] SCREAMING_SNAKE_CASE : Optional[int] = pipe(**UpperCamelCase__ , num_images_per_prompt=UpperCamelCase__ )[0] assert images.shape[0] == batch_size * num_images_per_prompt @slow @require_torch_gpu class lowercase__ ( unittest.TestCase): def __A ( self : str ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def __A ( self : Any ): '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/shap_e/corgi.png''' ) SCREAMING_SNAKE_CASE : str = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/shap_e/test_shap_e_img2img_out.npy''' ) SCREAMING_SNAKE_CASE : Optional[Any] = ShapEImgaImgPipeline.from_pretrained('''openai/shap-e-img2img''' ) SCREAMING_SNAKE_CASE : Any = pipe.to(UpperCamelCase__ ) pipe.set_progress_bar_config(disable=UpperCamelCase__ ) SCREAMING_SNAKE_CASE : List[Any] = torch.Generator(device=UpperCamelCase__ ).manual_seed(0 ) SCREAMING_SNAKE_CASE : List[Any] = pipe( UpperCamelCase__ , generator=UpperCamelCase__ , guidance_scale=3.0 , num_inference_steps=64 , frame_size=64 , output_type='''np''' , ).images[0] assert images.shape == (20, 64, 64, 3) assert_mean_pixel_difference(UpperCamelCase__ , UpperCamelCase__ )
366
import argparse import os import numpy as np import tensorflow as tf import torch from transformers import BertModel def A ( _lowercase , _lowercase , _lowercase ): SCREAMING_SNAKE_CASE : str = ('''dense.weight''', '''attention.self.query''', '''attention.self.key''', '''attention.self.value''') SCREAMING_SNAKE_CASE : Tuple = ( ('''layer.''', '''layer_'''), ('''word_embeddings.weight''', '''word_embeddings'''), ('''position_embeddings.weight''', '''position_embeddings'''), ('''token_type_embeddings.weight''', '''token_type_embeddings'''), ('''.''', '''/'''), ('''LayerNorm/weight''', '''LayerNorm/gamma'''), ('''LayerNorm/bias''', '''LayerNorm/beta'''), ('''weight''', '''kernel'''), ) if not os.path.isdir(_lowercase ): os.makedirs(_lowercase ) SCREAMING_SNAKE_CASE : List[str] = model.state_dict() def to_tf_var_name(_lowercase ): for patt, repl in iter(_lowercase ): SCREAMING_SNAKE_CASE : Dict = name.replace(_lowercase , _lowercase ) return f"""bert/{name}""" def create_tf_var(_lowercase , _lowercase , _lowercase ): SCREAMING_SNAKE_CASE : Union[str, Any] = tf.dtypes.as_dtype(tensor.dtype ) SCREAMING_SNAKE_CASE : Tuple = tf.get_variable(dtype=_lowercase , shape=tensor.shape , name=_lowercase , initializer=tf.zeros_initializer() ) session.run(tf.variables_initializer([tf_var] ) ) session.run(_lowercase ) return tf_var tf.reset_default_graph() with tf.Session() as session: for var_name in state_dict: SCREAMING_SNAKE_CASE : List[str] = to_tf_var_name(_lowercase ) SCREAMING_SNAKE_CASE : List[str] = state_dict[var_name].numpy() if any(x in var_name for x in tensors_to_transpose ): SCREAMING_SNAKE_CASE : Any = torch_tensor.T SCREAMING_SNAKE_CASE : str = create_tf_var(tensor=_lowercase , name=_lowercase , session=_lowercase ) tf.keras.backend.set_value(_lowercase , _lowercase ) SCREAMING_SNAKE_CASE : Dict = session.run(_lowercase ) print(f"""Successfully created {tf_name}: {np.allclose(_lowercase , _lowercase )}""" ) SCREAMING_SNAKE_CASE : List[Any] = tf.train.Saver(tf.trainable_variables() ) saver.save(_lowercase , os.path.join(_lowercase , model_name.replace('''-''' , '''_''' ) + '''.ckpt''' ) ) def A ( _lowercase=None ): SCREAMING_SNAKE_CASE : Any = argparse.ArgumentParser() parser.add_argument('''--model_name''' , type=_lowercase , required=_lowercase , help='''model name e.g. bert-base-uncased''' ) parser.add_argument( '''--cache_dir''' , type=_lowercase , default=_lowercase , required=_lowercase , help='''Directory containing pytorch model''' ) parser.add_argument('''--pytorch_model_path''' , type=_lowercase , required=_lowercase , help='''/path/to/<pytorch-model-name>.bin''' ) parser.add_argument('''--tf_cache_dir''' , type=_lowercase , required=_lowercase , help='''Directory in which to save tensorflow model''' ) SCREAMING_SNAKE_CASE : Dict = parser.parse_args(_lowercase ) SCREAMING_SNAKE_CASE : Any = BertModel.from_pretrained( pretrained_model_name_or_path=args.model_name , state_dict=torch.load(args.pytorch_model_path ) , cache_dir=args.cache_dir , ) convert_pytorch_checkpoint_to_tf(model=_lowercase , ckpt_dir=args.tf_cache_dir , model_name=args.model_name ) if __name__ == "__main__": main()
258
0
from unittest import TestCase from datasets import Dataset from minhash_deduplication import deduplicate_dataset, make_duplicate_clusters def UpperCamelCase__ ( ) -> int: snake_case__ : int = { 'repo_name': ['test_repo1', 'test_repo2', 'test_repo3'], 'path': ['test_1.py', 'test_2.py', 'unit_test.py'], 'content': ['a ' * 20, 'a ' * 30, 'b ' * 7], } snake_case__ : Any = Dataset.from_dict(A__ ) return dataset class __snake_case ( __lowerCamelCase ): def __a ( self ) -> List[Any]: '''simple docstring''' snake_case__ : Tuple = get_dataset() snake_case__ : Optional[int] = make_duplicate_clusters(UpperCamelCase_ , 0.8_5 ) self.assertEqual(len(duplicate_clusters[0] ) , 2 ) def __a ( self ) -> Any: '''simple docstring''' snake_case__ : List[Any] = get_dataset() snake_case__ , snake_case__ : Dict = deduplicate_dataset(UpperCamelCase_ ) self.assertEqual(len(UpperCamelCase_ ) , 2 ) print(UpperCamelCase_ ) self.assertEqual(duplicate_clusters[0][0]['copies'] , 2 ) self.assertEqual(duplicate_clusters[0][0]['is_extreme'] , UpperCamelCase_ )
143
import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, PNDMScheduler, StableDiffusionInpaintPipeline, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, slow from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class lowerCamelCase__( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , unittest.TestCase): UpperCAmelCase__ : Union[str, Any] = StableDiffusionInpaintPipeline UpperCAmelCase__ : Dict = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS UpperCAmelCase__ : str = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS UpperCAmelCase__ : int = frozenset( []) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess UpperCAmelCase__ : Union[str, Any] = frozenset([]) def lowerCAmelCase__ ( self: str ): torch.manual_seed(0 ) __lowerCamelCase = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=9 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , attention_head_dim=(2, 4) , use_linear_projection=UpperCamelCase_ , ) __lowerCamelCase = PNDMScheduler(skip_prk_steps=UpperCamelCase_ ) torch.manual_seed(0 ) __lowerCamelCase = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , sample_size=1_28 , ) torch.manual_seed(0 ) __lowerCamelCase = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , hidden_act="""gelu""" , projection_dim=5_12 , ) __lowerCamelCase = CLIPTextModel(UpperCamelCase_ ) __lowerCamelCase = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) __lowerCamelCase = { """unet""": unet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """safety_checker""": None, """feature_extractor""": None, } return components def lowerCAmelCase__ ( self: List[Any] , UpperCamelCase_: Any , UpperCamelCase_: List[Any]=0 ): # TODO: use tensor inputs instead of PIL, this is here just to leave the old expected_slices untouched __lowerCamelCase = floats_tensor((1, 3, 32, 32) , rng=random.Random(UpperCamelCase_ ) ).to(UpperCamelCase_ ) __lowerCamelCase = image.cpu().permute(0 , 2 , 3 , 1 )[0] __lowerCamelCase = Image.fromarray(np.uinta(UpperCamelCase_ ) ).convert("""RGB""" ).resize((64, 64) ) __lowerCamelCase = Image.fromarray(np.uinta(image + 4 ) ).convert("""RGB""" ).resize((64, 64) ) if str(UpperCamelCase_ ).startswith("""mps""" ): __lowerCamelCase = torch.manual_seed(UpperCamelCase_ ) else: __lowerCamelCase = torch.Generator(device=UpperCamelCase_ ).manual_seed(UpperCamelCase_ ) __lowerCamelCase = { """prompt""": """A painting of a squirrel eating a burger""", """image""": init_image, """mask_image""": mask_image, """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 6.0, """output_type""": """numpy""", } return inputs def lowerCAmelCase__ ( self: str ): __lowerCamelCase = """cpu""" # ensure determinism for the device-dependent torch.Generator __lowerCamelCase = self.get_dummy_components() __lowerCamelCase = StableDiffusionInpaintPipeline(**UpperCamelCase_ ) __lowerCamelCase = sd_pipe.to(UpperCamelCase_ ) sd_pipe.set_progress_bar_config(disable=UpperCamelCase_ ) __lowerCamelCase = self.get_dummy_inputs(UpperCamelCase_ ) __lowerCamelCase = sd_pipe(**UpperCamelCase_ ).images __lowerCamelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) __lowerCamelCase = np.array([0.4727, 0.5735, 0.3941, 0.5446, 0.5926, 0.4394, 0.5062, 0.4654, 0.4476] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def lowerCAmelCase__ ( self: int ): super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class lowerCamelCase__( unittest.TestCase): def lowerCAmelCase__ ( self: str ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCAmelCase__ ( self: List[Any] ): __lowerCamelCase = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/sd2-inpaint/init_image.png""" ) __lowerCamelCase = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png""" ) __lowerCamelCase = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint""" """/yellow_cat_sitting_on_a_park_bench.npy""" ) __lowerCamelCase = """stabilityai/stable-diffusion-2-inpainting""" __lowerCamelCase = StableDiffusionInpaintPipeline.from_pretrained(UpperCamelCase_ , safety_checker=UpperCamelCase_ ) pipe.to(UpperCamelCase_ ) pipe.set_progress_bar_config(disable=UpperCamelCase_ ) pipe.enable_attention_slicing() __lowerCamelCase = """Face of a yellow cat, high resolution, sitting on a park bench""" __lowerCamelCase = torch.manual_seed(0 ) __lowerCamelCase = pipe( prompt=UpperCamelCase_ , image=UpperCamelCase_ , mask_image=UpperCamelCase_ , generator=UpperCamelCase_ , output_type="""np""" , ) __lowerCamelCase = output.images[0] assert image.shape == (5_12, 5_12, 3) assert np.abs(expected_image - image ).max() < 9E-3 def lowerCAmelCase__ ( self: Optional[int] ): __lowerCamelCase = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/sd2-inpaint/init_image.png""" ) __lowerCamelCase = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png""" ) __lowerCamelCase = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint""" """/yellow_cat_sitting_on_a_park_bench_fp16.npy""" ) __lowerCamelCase = """stabilityai/stable-diffusion-2-inpainting""" __lowerCamelCase = StableDiffusionInpaintPipeline.from_pretrained( UpperCamelCase_ , torch_dtype=torch.floataa , safety_checker=UpperCamelCase_ , ) pipe.to(UpperCamelCase_ ) pipe.set_progress_bar_config(disable=UpperCamelCase_ ) pipe.enable_attention_slicing() __lowerCamelCase = """Face of a yellow cat, high resolution, sitting on a park bench""" __lowerCamelCase = torch.manual_seed(0 ) __lowerCamelCase = pipe( prompt=UpperCamelCase_ , image=UpperCamelCase_ , mask_image=UpperCamelCase_ , generator=UpperCamelCase_ , output_type="""np""" , ) __lowerCamelCase = output.images[0] assert image.shape == (5_12, 5_12, 3) assert np.abs(expected_image - image ).max() < 5E-1 def lowerCAmelCase__ ( self: int ): torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() __lowerCamelCase = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/sd2-inpaint/init_image.png""" ) __lowerCamelCase = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png""" ) __lowerCamelCase = """stabilityai/stable-diffusion-2-inpainting""" __lowerCamelCase = PNDMScheduler.from_pretrained(UpperCamelCase_ , subfolder="""scheduler""" ) __lowerCamelCase = StableDiffusionInpaintPipeline.from_pretrained( UpperCamelCase_ , safety_checker=UpperCamelCase_ , scheduler=UpperCamelCase_ , torch_dtype=torch.floataa , ) pipe.to(UpperCamelCase_ ) pipe.set_progress_bar_config(disable=UpperCamelCase_ ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() __lowerCamelCase = """Face of a yellow cat, high resolution, sitting on a park bench""" __lowerCamelCase = torch.manual_seed(0 ) __lowerCamelCase = pipe( prompt=UpperCamelCase_ , image=UpperCamelCase_ , mask_image=UpperCamelCase_ , generator=UpperCamelCase_ , num_inference_steps=2 , output_type="""np""" , ) __lowerCamelCase = torch.cuda.max_memory_allocated() # make sure that less than 2.65 GB is allocated assert mem_bytes < 2.65 * 10**9
12
0
import argparse import numpy as np import torch from transformers import SpeechTaHifiGan, SpeechTaHifiGanConfig, logging logging.set_verbosity_info() SCREAMING_SNAKE_CASE__ = logging.get_logger("""transformers.models.speecht5""") def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: Optional[Any] , __lowerCamelCase: Tuple , __lowerCamelCase: Dict ): '''simple docstring''' hf_model.apply_weight_norm() lowercase_ = checkpoint["input_conv.weight_g"] lowercase_ = checkpoint["input_conv.weight_v"] lowercase_ = checkpoint["input_conv.bias"] for i in range(len(config.upsample_rates ) ): lowercase_ = checkpoint[F'upsamples.{i}.1.weight_g'] lowercase_ = checkpoint[F'upsamples.{i}.1.weight_v'] lowercase_ = checkpoint[F'upsamples.{i}.1.bias'] for i in range(len(config.upsample_rates ) * len(config.resblock_kernel_sizes ) ): for j in range(len(config.resblock_dilation_sizes ) ): lowercase_ = checkpoint[F'blocks.{i}.convs1.{j}.1.weight_g'] lowercase_ = checkpoint[F'blocks.{i}.convs1.{j}.1.weight_v'] lowercase_ = checkpoint[F'blocks.{i}.convs1.{j}.1.bias'] lowercase_ = checkpoint[F'blocks.{i}.convs2.{j}.1.weight_g'] lowercase_ = checkpoint[F'blocks.{i}.convs2.{j}.1.weight_v'] lowercase_ = checkpoint[F'blocks.{i}.convs2.{j}.1.bias'] lowercase_ = checkpoint["output_conv.1.weight_g"] lowercase_ = checkpoint["output_conv.1.weight_v"] lowercase_ = checkpoint["output_conv.1.bias"] hf_model.remove_weight_norm() @torch.no_grad() def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: List[str] , __lowerCamelCase: Union[str, Any] , __lowerCamelCase: Dict , __lowerCamelCase: Dict=None , __lowerCamelCase: List[Any]=None , ): '''simple docstring''' if config_path is not None: lowercase_ = SpeechTaHifiGanConfig.from_pretrained(__lowerCamelCase ) else: lowercase_ = SpeechTaHifiGanConfig() lowercase_ = SpeechTaHifiGan(__lowerCamelCase ) lowercase_ = torch.load(__lowerCamelCase ) load_weights(orig_checkpoint["model"]["generator"] , __lowerCamelCase , __lowerCamelCase ) lowercase_ = np.load(__lowerCamelCase ) lowercase_ = stats[0].reshape(-1 ) lowercase_ = stats[1].reshape(-1 ) lowercase_ = torch.from_numpy(__lowerCamelCase ).float() lowercase_ = torch.from_numpy(__lowerCamelCase ).float() model.save_pretrained(__lowerCamelCase ) if repo_id: print("Pushing to the hub..." ) model.push_to_hub(__lowerCamelCase ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser() parser.add_argument("""--checkpoint_path""", required=True, default=None, type=str, help="""Path to original checkpoint""") parser.add_argument("""--stats_path""", required=True, default=None, type=str, help="""Path to stats.npy file""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument( """--pytorch_dump_folder_path""", required=True, default=None, type=str, help="""Path to the output PyTorch model.""" ) parser.add_argument( """--push_to_hub""", default=None, type=str, help="""Where to upload the converted model on the 🤗 hub.""" ) SCREAMING_SNAKE_CASE__ = parser.parse_args() convert_hifigan_checkpoint( args.checkpoint_path, args.stats_path, args.pytorch_dump_folder_path, args.config_path, args.push_to_hub, )
354
import gc import random import unittest import numpy as np import torch from transformers import ( CLIPImageProcessor, CLIPTextConfig, CLIPTextModel, CLIPTokenizer, CLIPVisionConfig, CLIPVisionModelWithProjection, ) from diffusers import AutoencoderKL, DDIMScheduler, DDPMScheduler, StableUnCLIPImgaImgPipeline, UNetaDConditionModel from diffusers.pipelines.pipeline_utils import DiffusionPipeline from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import ( enable_full_determinism, floats_tensor, load_image, load_numpy, require_torch_gpu, skip_mps, slow, torch_device, ) from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, assert_mean_pixel_difference, ) enable_full_determinism() class __lowerCamelCase ( snake_case_ , snake_case_ , snake_case_ , unittest.TestCase ): """simple docstring""" lowerCAmelCase__ = StableUnCLIPImgaImgPipeline lowerCAmelCase__ = TEXT_GUIDED_IMAGE_VARIATION_PARAMS lowerCAmelCase__ = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS lowerCAmelCase__ = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess lowerCAmelCase__ = frozenset([] ) def A__ ( self ) -> Dict: '''simple docstring''' lowercase_ = 32 lowercase_ = embedder_hidden_size # image encoding components lowercase_ = CLIPImageProcessor(crop_size=32 , size=32 ) torch.manual_seed(0 ) lowercase_ = CLIPVisionModelWithProjection( CLIPVisionConfig( hidden_size=UpperCAmelCase , projection_dim=UpperCAmelCase , num_hidden_layers=5 , num_attention_heads=4 , image_size=32 , intermediate_size=37 , patch_size=1 , ) ) # regular denoising components torch.manual_seed(0 ) lowercase_ = StableUnCLIPImageNormalizer(embedding_dim=UpperCAmelCase ) lowercase_ = DDPMScheduler(beta_schedule="squaredcos_cap_v2" ) torch.manual_seed(0 ) lowercase_ = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) torch.manual_seed(0 ) lowercase_ = CLIPTextModel( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=UpperCAmelCase , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) ) torch.manual_seed(0 ) lowercase_ = UNetaDConditionModel( sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("CrossAttnDownBlock2D", "DownBlock2D") , up_block_types=("UpBlock2D", "CrossAttnUpBlock2D") , block_out_channels=(32, 64) , attention_head_dim=(2, 4) , class_embed_type="projection" , projection_class_embeddings_input_dim=embedder_projection_dim * 2 , cross_attention_dim=UpperCAmelCase , layers_per_block=1 , upcast_attention=UpperCAmelCase , use_linear_projection=UpperCAmelCase , ) torch.manual_seed(0 ) lowercase_ = DDIMScheduler( beta_schedule="scaled_linear" , beta_start=0.00085 , beta_end=0.012 , prediction_type="v_prediction" , set_alpha_to_one=UpperCAmelCase , steps_offset=1 , ) torch.manual_seed(0 ) lowercase_ = AutoencoderKL() lowercase_ = { # image encoding components "feature_extractor": feature_extractor, "image_encoder": image_encoder.eval(), # image noising components "image_normalizer": image_normalizer.eval(), "image_noising_scheduler": image_noising_scheduler, # regular denoising components "tokenizer": tokenizer, "text_encoder": text_encoder.eval(), "unet": unet.eval(), "scheduler": scheduler, "vae": vae.eval(), } return components def A__ ( self , UpperCAmelCase , UpperCAmelCase=0 , UpperCAmelCase=True ) -> Tuple: '''simple docstring''' if str(UpperCAmelCase ).startswith("mps" ): lowercase_ = torch.manual_seed(UpperCAmelCase ) else: lowercase_ = torch.Generator(device=UpperCAmelCase ).manual_seed(UpperCAmelCase ) lowercase_ = floats_tensor((1, 3, 32, 32) , rng=random.Random(UpperCAmelCase ) ).to(UpperCAmelCase ) if pil_image: lowercase_ = input_image * 0.5 + 0.5 lowercase_ = input_image.clamp(0 , 1 ) lowercase_ = input_image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() lowercase_ = DiffusionPipeline.numpy_to_pil(UpperCAmelCase )[0] return { "prompt": "An anime racoon running a marathon", "image": input_image, "generator": generator, "num_inference_steps": 2, "output_type": "np", } @skip_mps def A__ ( self ) -> Union[str, Any]: '''simple docstring''' lowercase_ = "cpu" # ensure determinism for the device-dependent torch.Generator lowercase_ = self.get_dummy_components() lowercase_ = StableUnCLIPImgaImgPipeline(**UpperCAmelCase ) lowercase_ = sd_pipe.to(UpperCAmelCase ) sd_pipe.set_progress_bar_config(disable=UpperCAmelCase ) lowercase_ = self.get_dummy_inputs(UpperCAmelCase ) inputs.update({"image_embeds": None} ) lowercase_ = sd_pipe(**UpperCAmelCase ).images lowercase_ = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) lowercase_ = np.array([0.3872, 0.7224, 0.5601, 0.4741, 0.6872, 0.5814, 0.4636, 0.3867, 0.5078] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def A__ ( self ) -> int: '''simple docstring''' lowercase_ = torch_device in ["cpu", "mps"] self._test_attention_slicing_forward_pass(test_max_difference=UpperCAmelCase ) def A__ ( self ) -> Dict: '''simple docstring''' lowercase_ = torch_device in ["cpu", "mps"] self._test_inference_batch_single_identical(test_max_difference=UpperCAmelCase ) @unittest.skipIf( torch_device != "cuda" or not is_xformers_available() , reason="XFormers attention is only available with CUDA and `xformers` installed" , ) def A__ ( self ) -> int: '''simple docstring''' self._test_xformers_attention_forwardGenerator_pass(test_max_difference=UpperCAmelCase ) @slow @require_torch_gpu class __lowerCamelCase ( unittest.TestCase ): """simple docstring""" def A__ ( self ) -> int: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def A__ ( self ) -> Tuple: '''simple docstring''' lowercase_ = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png" ) lowercase_ = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_l_img2img_anime_turtle_fp16.npy" ) lowercase_ = StableUnCLIPImgaImgPipeline.from_pretrained( "fusing/stable-unclip-2-1-l-img2img" , torch_dtype=torch.floataa ) pipe.to(UpperCAmelCase ) pipe.set_progress_bar_config(disable=UpperCAmelCase ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() lowercase_ = torch.Generator(device="cpu" ).manual_seed(0 ) lowercase_ = pipe(UpperCAmelCase , "anime turle" , generator=UpperCAmelCase , output_type="np" ) lowercase_ = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(UpperCAmelCase , UpperCAmelCase ) def A__ ( self ) -> Any: '''simple docstring''' lowercase_ = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png" ) lowercase_ = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_h_img2img_anime_turtle_fp16.npy" ) lowercase_ = StableUnCLIPImgaImgPipeline.from_pretrained( "fusing/stable-unclip-2-1-h-img2img" , torch_dtype=torch.floataa ) pipe.to(UpperCAmelCase ) pipe.set_progress_bar_config(disable=UpperCAmelCase ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() lowercase_ = torch.Generator(device="cpu" ).manual_seed(0 ) lowercase_ = pipe(UpperCAmelCase , "anime turle" , generator=UpperCAmelCase , output_type="np" ) lowercase_ = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(UpperCAmelCase , UpperCAmelCase ) def A__ ( self ) -> int: '''simple docstring''' lowercase_ = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png" ) torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() lowercase_ = StableUnCLIPImgaImgPipeline.from_pretrained( "fusing/stable-unclip-2-1-h-img2img" , torch_dtype=torch.floataa ) lowercase_ = pipe.to(UpperCAmelCase ) pipe.set_progress_bar_config(disable=UpperCAmelCase ) pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() lowercase_ = pipe( UpperCAmelCase , "anime turtle" , num_inference_steps=2 , output_type="np" , ) lowercase_ = torch.cuda.max_memory_allocated() # make sure that less than 7 GB is allocated assert mem_bytes < 7 * 10**9
297
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available _SCREAMING_SNAKE_CASE = { "configuration_poolformer": [ "POOLFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "PoolFormerConfig", "PoolFormerOnnxConfig", ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = ["PoolFormerFeatureExtractor"] _SCREAMING_SNAKE_CASE = ["PoolFormerImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = [ "POOLFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "PoolFormerForImageClassification", "PoolFormerModel", "PoolFormerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_poolformer import ( POOLFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, PoolFormerConfig, PoolFormerOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_poolformer import PoolFormerFeatureExtractor from .image_processing_poolformer import PoolFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_poolformer import ( POOLFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, PoolFormerForImageClassification, PoolFormerModel, PoolFormerPreTrainedModel, ) else: import sys _SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()["__file__"], _import_structure)
158
'''simple docstring''' import math import sys def __a(SCREAMING_SNAKE_CASE_ : int ): '''simple docstring''' if number != int(SCREAMING_SNAKE_CASE_ ): raise ValueError("the value of input must be a natural number" ) if number < 0: raise ValueError("the value of input must not be a negative number" ) if number == 0: return 1 _lowerCAmelCase = [-1] * (number + 1) _lowerCAmelCase = 0 for i in range(1 , number + 1 ): _lowerCAmelCase = sys.maxsize _lowerCAmelCase = int(math.sqrt(SCREAMING_SNAKE_CASE_ ) ) for j in range(1 , root + 1 ): _lowerCAmelCase = 1 + answers[i - (j**2)] _lowerCAmelCase = min(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) _lowerCAmelCase = answer return answers[number] if __name__ == "__main__": import doctest doctest.testmod()
158
1
'''simple docstring''' def __A ( lowerCAmelCase_ ): if not nums: # Makes sure that the list is not empty raise ValueError("""List is empty""" ) _UpperCAmelCase : int = sum(lowerCAmelCase_ ) / len(lowerCAmelCase_ ) # Calculate the average return sum(abs(x - average ) for x in nums ) / len(lowerCAmelCase_ ) if __name__ == "__main__": import doctest doctest.testmod()
170
'''simple docstring''' import re from typing import Callable, List, Optional, Union import tensorflow as tf try: from tensorflow.keras.optimizers.legacy import Adam except ImportError: from tensorflow.keras.optimizers import Adam class __lowerCAmelCase ( tf.keras.optimizers.schedules.LearningRateSchedule ): def __init__(self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = 1.0 , lowerCAmelCase__ = None , ): super().__init__() _UpperCAmelCase : str = initial_learning_rate _UpperCAmelCase : str = warmup_steps _UpperCAmelCase : str = power _UpperCAmelCase : Any = decay_schedule_fn _UpperCAmelCase : List[Any] = name def __call__(self , lowerCAmelCase__ ): with tf.name_scope(self.name or """WarmUp""" ) as name: # Implements polynomial warmup. i.e., if global_step < warmup_steps, the # learning rate will be `global_step/num_warmup_steps * init_lr`. _UpperCAmelCase : List[Any] = tf.cast(lowerCAmelCase__ , tf.floataa ) _UpperCAmelCase : List[Any] = tf.cast(self.warmup_steps , tf.floataa ) _UpperCAmelCase : Union[str, Any] = global_step_float / warmup_steps_float _UpperCAmelCase : List[Any] = self.initial_learning_rate * tf.math.pow(lowerCAmelCase__ , self.power ) return tf.cond( global_step_float < warmup_steps_float , lambda: warmup_learning_rate , lambda: self.decay_schedule_fn(step - self.warmup_steps ) , name=lowerCAmelCase__ , ) def snake_case_ (self ): return { "initial_learning_rate": self.initial_learning_rate, "decay_schedule_fn": self.decay_schedule_fn, "warmup_steps": self.warmup_steps, "power": self.power, "name": self.name, } def __A ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = 0.0 , lowerCAmelCase_ = 0.9 , lowerCAmelCase_ = 0.999 , lowerCAmelCase_ = 1e-8 , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_ = 0.0 , lowerCAmelCase_ = 1.0 , lowerCAmelCase_ = None , ): _UpperCAmelCase : Dict = tf.keras.optimizers.schedules.PolynomialDecay( initial_learning_rate=lowerCAmelCase_ , decay_steps=num_train_steps - num_warmup_steps , end_learning_rate=init_lr * min_lr_ratio , power=lowerCAmelCase_ , ) if num_warmup_steps: _UpperCAmelCase : Optional[int] = WarmUp( initial_learning_rate=lowerCAmelCase_ , decay_schedule_fn=lowerCAmelCase_ , warmup_steps=lowerCAmelCase_ , ) if weight_decay_rate > 0.0: _UpperCAmelCase : Any = AdamWeightDecay( learning_rate=lowerCAmelCase_ , weight_decay_rate=lowerCAmelCase_ , beta_a=lowerCAmelCase_ , beta_a=lowerCAmelCase_ , epsilon=lowerCAmelCase_ , clipnorm=lowerCAmelCase_ , global_clipnorm=lowerCAmelCase_ , exclude_from_weight_decay=["""LayerNorm""", """layer_norm""", """bias"""] , include_in_weight_decay=lowerCAmelCase_ , ) else: _UpperCAmelCase : str = tf.keras.optimizers.Adam( learning_rate=lowerCAmelCase_ , beta_a=lowerCAmelCase_ , beta_a=lowerCAmelCase_ , epsilon=lowerCAmelCase_ , clipnorm=lowerCAmelCase_ , global_clipnorm=lowerCAmelCase_ , ) # We return the optimizer and the LR scheduler in order to better track the # evolution of the LR independently of the optimizer. return optimizer, lr_schedule class __lowerCAmelCase ( __a ): def __init__(self , lowerCAmelCase__ = 0.0_0_1 , lowerCAmelCase__ = 0.9 , lowerCAmelCase__ = 0.9_9_9 , lowerCAmelCase__ = 1e-7 , lowerCAmelCase__ = False , lowerCAmelCase__ = 0.0 , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__ = "AdamWeightDecay" , **lowerCAmelCase__ , ): super().__init__(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , **lowerCAmelCase__ ) _UpperCAmelCase : Union[str, Any] = weight_decay_rate _UpperCAmelCase : Tuple = include_in_weight_decay _UpperCAmelCase : List[Any] = exclude_from_weight_decay @classmethod def snake_case_ (cls , lowerCAmelCase__ ): _UpperCAmelCase : str = {"""WarmUp""": WarmUp} return super(lowerCAmelCase__ , cls ).from_config(lowerCAmelCase__ , custom_objects=lowerCAmelCase__ ) def snake_case_ (self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): super(lowerCAmelCase__ , self )._prepare_local(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCAmelCase : Tuple = tf.constant( self.weight_decay_rate , name="""adam_weight_decay_rate""" ) def snake_case_ (self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): _UpperCAmelCase : List[Any] = self._do_use_weight_decay(var.name ) if do_decay: return var.assign_sub( learning_rate * var * apply_state[(var.device, var.dtype.base_dtype)]["""weight_decay_rate"""] , use_locking=self._use_locking , ) return tf.no_op() def snake_case_ (self , lowerCAmelCase__ , lowerCAmelCase__=None , **lowerCAmelCase__ ): _UpperCAmelCase , _UpperCAmelCase : Dict = list(zip(*lowerCAmelCase__ ) ) return super(lowerCAmelCase__ , self ).apply_gradients(zip(lowerCAmelCase__ , lowerCAmelCase__ ) , name=lowerCAmelCase__ , **lowerCAmelCase__ ) def snake_case_ (self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): if apply_state is None: return self._decayed_lr_t[var_dtype], {} _UpperCAmelCase : List[Any] = apply_state or {} _UpperCAmelCase : Optional[int] = apply_state.get((var_device, var_dtype) ) if coefficients is None: _UpperCAmelCase : Dict = self._fallback_apply_state(lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCAmelCase : Any = coefficients return coefficients["lr_t"], {"apply_state": apply_state} def snake_case_ (self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__=None ): _UpperCAmelCase , _UpperCAmelCase : Tuple = self._get_lr(var.device , var.dtype.base_dtype , lowerCAmelCase__ ) _UpperCAmelCase : List[Any] = self._decay_weights_op(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) with tf.control_dependencies([decay] ): return super(lowerCAmelCase__ , self )._resource_apply_dense(lowerCAmelCase__ , lowerCAmelCase__ , **lowerCAmelCase__ ) def snake_case_ (self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__=None ): _UpperCAmelCase , _UpperCAmelCase : Optional[Any] = self._get_lr(var.device , var.dtype.base_dtype , lowerCAmelCase__ ) _UpperCAmelCase : List[str] = self._decay_weights_op(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) with tf.control_dependencies([decay] ): return super(lowerCAmelCase__ , self )._resource_apply_sparse(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , **lowerCAmelCase__ ) def snake_case_ (self ): _UpperCAmelCase : Optional[Any] = super().get_config() config.update({"""weight_decay_rate""": self.weight_decay_rate} ) return config def snake_case_ (self , lowerCAmelCase__ ): if self.weight_decay_rate == 0: return False if self._include_in_weight_decay: for r in self._include_in_weight_decay: if re.search(lowerCAmelCase__ , lowerCAmelCase__ ) is not None: return True if self._exclude_from_weight_decay: for r in self._exclude_from_weight_decay: if re.search(lowerCAmelCase__ , lowerCAmelCase__ ) is not None: return False return True class __lowerCAmelCase ( __a ): def __init__(self ): _UpperCAmelCase : Optional[int] = [] _UpperCAmelCase : List[Any] = None @property def snake_case_ (self ): if self._accum_steps is None: _UpperCAmelCase : str = tf.Variable( tf.constant(0 , dtype=tf.intaa ) , trainable=lowerCAmelCase__ , synchronization=tf.VariableSynchronization.ON_READ , aggregation=tf.VariableAggregation.ONLY_FIRST_REPLICA , ) return self._accum_steps.value() @property def snake_case_ (self ): if not self._gradients: raise ValueError("""The accumulator should be called first to initialize the gradients""" ) return [gradient.value() if gradient is not None else gradient for gradient in self._gradients] def __call__(self , lowerCAmelCase__ ): if not self._gradients: _UpperCAmelCase : Optional[int] = self.step # Create the step variable. self._gradients.extend( [ tf.Variable( tf.zeros_like(lowerCAmelCase__ ) , trainable=lowerCAmelCase__ , synchronization=tf.VariableSynchronization.ON_READ , aggregation=tf.VariableAggregation.ONLY_FIRST_REPLICA , ) if gradient is not None else gradient for gradient in gradients ] ) if len(lowerCAmelCase__ ) != len(self._gradients ): raise ValueError(F"Expected {len(self._gradients )} gradients, but got {len(lowerCAmelCase__ )}" ) for accum_gradient, gradient in zip(self._gradients , lowerCAmelCase__ ): if accum_gradient is not None and gradient is not None: accum_gradient.assign_add(lowerCAmelCase__ ) self._accum_steps.assign_add(1 ) def snake_case_ (self ): if not self._gradients: return self._accum_steps.assign(0 ) for gradient in self._gradients: if gradient is not None: gradient.assign(tf.zeros_like(lowerCAmelCase__ ) )
170
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCamelCase_ = { "configuration_bigbird_pegasus": [ "BIGBIRD_PEGASUS_PRETRAINED_CONFIG_ARCHIVE_MAP", "BigBirdPegasusConfig", "BigBirdPegasusOnnxConfig", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ = [ "BIGBIRD_PEGASUS_PRETRAINED_MODEL_ARCHIVE_LIST", "BigBirdPegasusForCausalLM", "BigBirdPegasusForConditionalGeneration", "BigBirdPegasusForQuestionAnswering", "BigBirdPegasusForSequenceClassification", "BigBirdPegasusModel", "BigBirdPegasusPreTrainedModel", ] if TYPE_CHECKING: from .configuration_bigbird_pegasus import ( BIGBIRD_PEGASUS_PRETRAINED_CONFIG_ARCHIVE_MAP, BigBirdPegasusConfig, BigBirdPegasusOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bigbird_pegasus import ( BIGBIRD_PEGASUS_PRETRAINED_MODEL_ARCHIVE_LIST, BigBirdPegasusForCausalLM, BigBirdPegasusForConditionalGeneration, BigBirdPegasusForQuestionAnswering, BigBirdPegasusForSequenceClassification, BigBirdPegasusModel, BigBirdPegasusPreTrainedModel, ) else: import sys lowerCamelCase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
191
"""simple docstring""" import pytest from datasets.splits import SplitDict, SplitInfo from datasets.utils.py_utils import asdict @pytest.mark.parametrize( '''split_dict''' , [ SplitDict(), SplitDict({'''train''': SplitInfo(name='''train''' , num_bytes=13_37 , num_examples=42 , dataset_name='''my_dataset''' )} ), SplitDict({'''train''': SplitInfo(name='''train''' , num_bytes=13_37 , num_examples=42 )} ), SplitDict({'''train''': SplitInfo()} ), ] , ) def __lowerCamelCase ( a_ : SplitDict ) -> Optional[int]: __SCREAMING_SNAKE_CASE :Tuple = split_dict._to_yaml_list() assert len(a_ ) == len(a_ ) __SCREAMING_SNAKE_CASE :Union[str, Any] = SplitDict._from_yaml_list(a_ ) for split_name, split_info in split_dict.items(): # dataset_name field is deprecated, and is therefore not part of the YAML dump __SCREAMING_SNAKE_CASE :int = None # the split name of split_dict takes over the name of the split info object __SCREAMING_SNAKE_CASE :Union[str, Any] = split_name assert split_dict == reloaded @pytest.mark.parametrize( '''split_info''' , [SplitInfo(), SplitInfo(dataset_name=a_ ), SplitInfo(dataset_name='''my_dataset''' )] ) def __lowerCamelCase ( a_ : Dict ) -> Any: # For backward compatibility, we need asdict(split_dict) to return split info dictrionaries with the "dataset_name" # field even if it's deprecated. This way old versionso of `datasets` can still reload dataset_infos.json files __SCREAMING_SNAKE_CASE :Union[str, Any] = asdict(SplitDict({'''train''': split_info} ) ) assert "dataset_name" in split_dict_asdict["train"] assert split_dict_asdict["train"]["dataset_name"] == split_info.dataset_name
191
1
import pickle import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, XLMRobertaTokenizer, XLMRobertaTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin __snake_case : Union[str, Any] =get_tests_dir('fixtures/test_sentencepiece.model') @require_sentencepiece @require_tokenizers class lowerCamelCase__ ( lowerCamelCase__ , unittest.TestCase): '''simple docstring''' snake_case_ =XLMRobertaTokenizer snake_case_ =XLMRobertaTokenizerFast snake_case_ =True snake_case_ =True def lowerCAmelCase__ (self ) -> Any: """simple docstring""" super().setUp() # We have a SentencePiece fixture for testing lowerCAmelCase__ : List[Any] = XLMRobertaTokenizer(__lowerCamelCase ,keep_accents=__lowerCamelCase ) tokenizer.save_pretrained(self.tmpdirname ) def lowerCAmelCase__ (self ) -> Any: """simple docstring""" lowerCAmelCase__ : List[str] = '''<pad>''' lowerCAmelCase__ : str = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__lowerCamelCase ) ,__lowerCamelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__lowerCamelCase ) ,__lowerCamelCase ) def lowerCAmelCase__ (self ) -> str: """simple docstring""" lowerCAmelCase__ : List[str] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] ,'''<s>''' ) self.assertEqual(vocab_keys[1] ,'''<pad>''' ) self.assertEqual(vocab_keys[-1] ,'''<mask>''' ) self.assertEqual(len(__lowerCamelCase ) ,10_02 ) def lowerCAmelCase__ (self ) -> Dict: """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size ,10_02 ) def lowerCAmelCase__ (self ) -> Optional[int]: """simple docstring""" lowerCAmelCase__ : Optional[int] = XLMRobertaTokenizer(__lowerCamelCase ,keep_accents=__lowerCamelCase ) lowerCAmelCase__ : Union[str, Any] = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(__lowerCamelCase ,['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(__lowerCamelCase ) ,[value + tokenizer.fairseq_offset for value in [2_85, 46, 10, 1_70, 3_82]] ,) lowerCAmelCase__ : List[Any] = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( __lowerCamelCase ,[ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.''', ] ,) lowerCAmelCase__ : List[str] = tokenizer.convert_tokens_to_ids(__lowerCamelCase ) self.assertListEqual( __lowerCamelCase ,[ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 6_02, 3_47, 3_47, 3_47, 3, 12, 66, 46, 72, 80, 6, 2, 4] # ^ unk: 2 + 1 = 3 unk: 2 + 1 = 3 ^ ] ,) lowerCAmelCase__ : Optional[Any] = tokenizer.convert_ids_to_tokens(__lowerCamelCase ) self.assertListEqual( __lowerCamelCase ,[ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''<unk>''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''<unk>''', '''.''', ] ,) def lowerCAmelCase__ (self ) -> Optional[Any]: """simple docstring""" if not self.test_slow_tokenizer: # as we don't have a slow version, we can't compare the outputs between slow and fast versions return lowerCAmelCase__ : Optional[int] = (self.rust_tokenizer_class, '''hf-internal-testing/tiny-xlm-roberta''', {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): lowerCAmelCase__ : Tuple = self.rust_tokenizer_class.from_pretrained(__lowerCamelCase ,**__lowerCamelCase ) lowerCAmelCase__ : Optional[int] = self.tokenizer_class.from_pretrained(__lowerCamelCase ,**__lowerCamelCase ) lowerCAmelCase__ : Dict = tempfile.mkdtemp() lowerCAmelCase__ : Dict = tokenizer_r.save_pretrained(__lowerCamelCase ) lowerCAmelCase__ : List[str] = tokenizer_p.save_pretrained(__lowerCamelCase ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any('''tokenizer.json''' in f for f in tokenizer_r_files ) ) lowerCAmelCase__ : Dict = tuple(f for f in tokenizer_r_files if '''tokenizer.json''' not in f ) self.assertSequenceEqual(__lowerCamelCase ,__lowerCamelCase ) # Checks everything loads correctly in the same way lowerCAmelCase__ : List[str] = tokenizer_r.from_pretrained(__lowerCamelCase ) lowerCAmelCase__ : Dict = tokenizer_p.from_pretrained(__lowerCamelCase ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(__lowerCamelCase ,__lowerCamelCase ) ) # self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key)) # self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id")) shutil.rmtree(__lowerCamelCase ) # Save tokenizer rust, legacy_format=True lowerCAmelCase__ : str = tempfile.mkdtemp() lowerCAmelCase__ : Optional[int] = tokenizer_r.save_pretrained(__lowerCamelCase ,legacy_format=__lowerCamelCase ) lowerCAmelCase__ : Tuple = tokenizer_p.save_pretrained(__lowerCamelCase ) # Checks it save with the same files self.assertSequenceEqual(__lowerCamelCase ,__lowerCamelCase ) # Checks everything loads correctly in the same way lowerCAmelCase__ : Dict = tokenizer_r.from_pretrained(__lowerCamelCase ) lowerCAmelCase__ : int = tokenizer_p.from_pretrained(__lowerCamelCase ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(__lowerCamelCase ,__lowerCamelCase ) ) shutil.rmtree(__lowerCamelCase ) # Save tokenizer rust, legacy_format=False lowerCAmelCase__ : Optional[int] = tempfile.mkdtemp() lowerCAmelCase__ : Dict = tokenizer_r.save_pretrained(__lowerCamelCase ,legacy_format=__lowerCamelCase ) lowerCAmelCase__ : Optional[int] = tokenizer_p.save_pretrained(__lowerCamelCase ) # Checks it saved the tokenizer.json file self.assertTrue(any('''tokenizer.json''' in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way lowerCAmelCase__ : int = tokenizer_r.from_pretrained(__lowerCamelCase ) lowerCAmelCase__ : Dict = tokenizer_p.from_pretrained(__lowerCamelCase ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(__lowerCamelCase ,__lowerCamelCase ) ) shutil.rmtree(__lowerCamelCase ) @cached_property def lowerCAmelCase__ (self ) -> Union[str, Any]: """simple docstring""" return XLMRobertaTokenizer.from_pretrained('''xlm-roberta-base''' ) def lowerCAmelCase__ (self ) -> Dict: """simple docstring""" with tempfile.NamedTemporaryFile() as f: shutil.copyfile(__lowerCamelCase ,f.name ) lowerCAmelCase__ : Dict = XLMRobertaTokenizer(f.name ,keep_accents=__lowerCamelCase ) lowerCAmelCase__ : Optional[Any] = pickle.dumps(__lowerCamelCase ) pickle.loads(__lowerCamelCase ) def lowerCAmelCase__ (self ) -> Tuple: """simple docstring""" if not self.test_rust_tokenizer: return lowerCAmelCase__ : Union[str, Any] = self.get_tokenizer() lowerCAmelCase__ : Union[str, Any] = self.get_rust_tokenizer() lowerCAmelCase__ : int = '''I was born in 92000, and this is falsé.''' lowerCAmelCase__ : Union[str, Any] = tokenizer.tokenize(__lowerCamelCase ) lowerCAmelCase__ : Any = rust_tokenizer.tokenize(__lowerCamelCase ) self.assertListEqual(__lowerCamelCase ,__lowerCamelCase ) lowerCAmelCase__ : Optional[Any] = tokenizer.encode(__lowerCamelCase ,add_special_tokens=__lowerCamelCase ) lowerCAmelCase__ : Optional[int] = rust_tokenizer.encode(__lowerCamelCase ,add_special_tokens=__lowerCamelCase ) self.assertListEqual(__lowerCamelCase ,__lowerCamelCase ) lowerCAmelCase__ : Any = self.get_rust_tokenizer() lowerCAmelCase__ : List[Any] = tokenizer.encode(__lowerCamelCase ) lowerCAmelCase__ : List[Any] = rust_tokenizer.encode(__lowerCamelCase ) self.assertListEqual(__lowerCamelCase ,__lowerCamelCase ) @slow def lowerCAmelCase__ (self ) -> Dict: """simple docstring""" lowerCAmelCase__ : Any = '''Hello World!''' lowerCAmelCase__ : Union[str, Any] = [0, 3_53_78, 66_61, 38, 2] # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.large has same tokenizer # xlmr.eval() # xlmr.encode(symbols) self.assertListEqual(__lowerCamelCase ,self.big_tokenizer.encode(__lowerCamelCase ) ) @slow def lowerCAmelCase__ (self ) -> Dict: """simple docstring""" lowerCAmelCase__ : List[str] = ( '''This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) " [ ] ! : - . Also we will''' ''' add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth''' ) lowerCAmelCase__ : Union[str, Any] = [ 0, 32_93, 83, 10, 45_52, 49_89, 79_86, 6_78, 10, 59_15, 1_11, 17_94_59, 12_48_50, 4, 60_44, 2_37, 12, 6, 5, 6, 4, 67_80, 7_05, 15, 13_88, 44, 3_78, 1_01_14, 7_11, 1_52, 20, 6, 5, 2_23_76, 6_42, 12_21, 1_51_90, 3_41_53, 4_50, 56_08, 9_59, 11_19, 5_77_02, 1_36, 1_86, 47, 10_98, 2_93_67, 47, # 4426, # What fairseq tokenizes from "<unk>": "_<" # 3678, # What fairseq tokenizes from "<unk>": "unk" # 2740, # What fairseq tokenizes from "<unk>": ">" 3, # What we tokenize from "<unk>": "<unk>" 6, # Residue from the tokenization: an extra sentencepiece underline 4, 60_44, 2_37, 62_84, 5_09_01, 5_28, 31, 90, 34, 9_27, 2, ] # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.large has same tokenizer # xlmr.eval() # xlmr.encode(symbols) self.assertListEqual(__lowerCamelCase ,self.big_tokenizer.encode(__lowerCamelCase ) ) @slow def lowerCAmelCase__ (self ) -> str: """simple docstring""" lowerCAmelCase__ : Optional[int] = {'''input_ids''': [[0, 1_10_62, 8_27_72, 7, 15, 8_27_72, 5_38, 5_15_29, 2_37, 1_71_98, 12_90, 2_06, 9, 21_51_75, 13_14, 1_36, 1_71_98, 12_90, 2_06, 9, 5_63_59, 42, 12_20_09, 9, 1_64_66, 16, 8_73_44, 45_37, 9, 47_17, 7_83_81, 6, 15_99_58, 7, 15, 2_44_80, 6_18, 4, 5_27, 2_26_93, 54_28, 4, 27_77, 2_44_80, 98_74, 4, 4_35_23, 5_94, 4, 8_03, 1_83_92, 3_31_89, 18, 4, 4_35_23, 2_44_47, 1_23_99, 1_00, 2_49_55, 8_36_58, 96_26, 14_40_57, 15, 8_39, 2_23_35, 16, 1_36, 2_49_55, 8_36_58, 8_34_79, 15, 3_91_02, 7_24, 16, 6_78, 6_45, 27_89, 13_28, 45_89, 42, 12_20_09, 11_57_74, 23, 8_05, 13_28, 4_68_76, 7, 1_36, 5_38_94, 19_40, 4_22_27, 4_11_59, 1_77_21, 8_23, 4_25, 4, 2_75_12, 9_87_22, 2_06, 1_36, 55_31, 49_70, 9_19, 1_73_36, 5, 2], [0, 2_00_80, 6_18, 83, 8_27_75, 47, 4_79, 9, 15_17, 73, 5_38_94, 3_33, 8_05_81, 11_01_17, 1_88_11, 52_56, 12_95, 51, 15_25_26, 2_97, 79_86, 3_90, 12_44_16, 5_38, 3_54_31, 2_14, 98, 1_50_44, 2_57_37, 1_36, 71_08, 4_37_01, 23, 7_56, 13_53_55, 7, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 5_81, 6_37_73, 11_94_55, 6, 14_77_97, 8_82_03, 7, 6_45, 70, 21, 32_85, 1_02_69, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=__lowerCamelCase ,model_name='''xlm-roberta-base''' ,revision='''d9d8a8ea5eb94b1c6654ae9249df7793cd2933d3''' ,)
94
import numpy as np from numpy import ndarray from scipy.optimize import Bounds, LinearConstraint, minimize def lowerCAmelCase__ ( lowerCamelCase_ : ndarray): '''simple docstring''' return np.dot(lowerCamelCase_ ,lowerCamelCase_) class lowerCamelCase__ : '''simple docstring''' def __init__(self ,*, __lowerCamelCase = np.inf ,__lowerCamelCase = "linear" ,__lowerCamelCase = 0.0 ,) -> None: """simple docstring""" lowerCAmelCase__ : Any = regularization lowerCAmelCase__ : str = gamma if kernel == "linear": lowerCAmelCase__ : Dict = self.__linear elif kernel == "rbf": if self.gamma == 0: raise ValueError('''rbf kernel requires gamma''' ) if not isinstance(self.gamma ,(float, int) ): raise ValueError('''gamma must be float or int''' ) if not self.gamma > 0: raise ValueError('''gamma must be > 0''' ) lowerCAmelCase__ : Optional[Any] = self.__rbf # in the future, there could be a default value like in sklearn # sklear: def_gamma = 1/(n_features * X.var()) (wiki) # previously it was 1/(n_features) else: lowerCAmelCase__ : List[str] = f"""Unknown kernel: {kernel}""" raise ValueError(__lowerCamelCase ) def lowerCAmelCase__ (self ,__lowerCamelCase ,__lowerCamelCase ) -> float: """simple docstring""" return np.dot(__lowerCamelCase ,__lowerCamelCase ) def lowerCAmelCase__ (self ,__lowerCamelCase ,__lowerCamelCase ) -> float: """simple docstring""" return np.exp(-(self.gamma * norm_squared(vectora - vectora )) ) def lowerCAmelCase__ (self ,__lowerCamelCase ,__lowerCamelCase ) -> None: """simple docstring""" lowerCAmelCase__ : str = observations lowerCAmelCase__ : Optional[int] = classes # using Wolfe's Dual to calculate w. # Primal problem: minimize 1/2*norm_squared(w) # constraint: yn(w . xn + b) >= 1 # # With l a vector # Dual problem: maximize sum_n(ln) - # 1/2 * sum_n(sum_m(ln*lm*yn*ym*xn . xm)) # constraint: self.C >= ln >= 0 # and sum_n(ln*yn) = 0 # Then we get w using w = sum_n(ln*yn*xn) # At the end we can get b ~= mean(yn - w . xn) # # Since we use kernels, we only need l_star to calculate b # and to classify observations ((lowerCAmelCase__) , ) : List[str] = np.shape(__lowerCamelCase ) def to_minimize(__lowerCamelCase ) -> float: lowerCAmelCase__ : List[str] = 0 ((lowerCAmelCase__) , ) : str = np.shape(__lowerCamelCase ) for i in range(__lowerCamelCase ): for j in range(__lowerCamelCase ): s += ( candidate[i] * candidate[j] * classes[i] * classes[j] * self.kernel(observations[i] ,observations[j] ) ) return 1 / 2 * s - sum(__lowerCamelCase ) lowerCAmelCase__ : List[str] = LinearConstraint(__lowerCamelCase ,0 ,0 ) lowerCAmelCase__ : List[str] = Bounds(0 ,self.regularization ) lowerCAmelCase__ : int = minimize( __lowerCamelCase ,np.ones(__lowerCamelCase ) ,bounds=__lowerCamelCase ,constraints=[ly_contraint] ).x lowerCAmelCase__ : List[Any] = l_star # calculating mean offset of separation plane to points lowerCAmelCase__ : Optional[Any] = 0 for i in range(__lowerCamelCase ): for j in range(__lowerCamelCase ): s += classes[i] - classes[i] * self.optimum[i] * self.kernel( observations[i] ,observations[j] ) lowerCAmelCase__ : Dict = s / n def lowerCAmelCase__ (self ,__lowerCamelCase ) -> int: """simple docstring""" lowerCAmelCase__ : str = sum( self.optimum[n] * self.classes[n] * self.kernel(self.observations[n] ,__lowerCamelCase ) for n in range(len(self.classes ) ) ) return 1 if s + self.offset >= 0 else -1 if __name__ == "__main__": import doctest doctest.testmod()
94
1
import unittest from transformers import AlbertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForPreTraining, AlbertForQuestionAnswering, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertModel, ) from transformers.models.albert.modeling_albert import ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST class a : """simple docstring""" def __init__( self , lowerCAmelCase_ , lowerCAmelCase_=13 , lowerCAmelCase_=7 , lowerCAmelCase_=True , lowerCAmelCase_=True , lowerCAmelCase_=True , lowerCAmelCase_=True , lowerCAmelCase_=99 , lowerCAmelCase_=16 , lowerCAmelCase_=36 , lowerCAmelCase_=6 , lowerCAmelCase_=6 , lowerCAmelCase_=6 , lowerCAmelCase_=37 , lowerCAmelCase_="gelu" , lowerCAmelCase_=0.1 , lowerCAmelCase_=0.1 , lowerCAmelCase_=5_12 , lowerCAmelCase_=16 , lowerCAmelCase_=2 , lowerCAmelCase_=0.02 , lowerCAmelCase_=3 , lowerCAmelCase_=4 , lowerCAmelCase_=None , ) -> Union[str, Any]: _A = parent _A = batch_size _A = seq_length _A = is_training _A = use_input_mask _A = use_token_type_ids _A = use_labels _A = vocab_size _A = embedding_size _A = hidden_size _A = num_hidden_layers _A = num_hidden_groups _A = num_attention_heads _A = intermediate_size _A = hidden_act _A = hidden_dropout_prob _A = attention_probs_dropout_prob _A = max_position_embeddings _A = type_vocab_size _A = type_sequence_label_size _A = initializer_range _A = num_labels _A = num_choices _A = scope def UpperCAmelCase ( self ) -> Union[str, Any]: _A = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _A = None if self.use_input_mask: _A = random_attention_mask([self.batch_size, self.seq_length] ) _A = None if self.use_token_type_ids: _A = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _A = None _A = None _A = None if self.use_labels: _A = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _A = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _A = ids_tensor([self.batch_size] , self.num_choices ) _A = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCAmelCase ( self ) -> Any: return AlbertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , num_hidden_groups=self.num_hidden_groups , ) def UpperCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) -> Optional[Any]: _A = AlbertModel(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() _A = model(_lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase ) _A = model(_lowerCAmelCase , token_type_ids=_lowerCAmelCase ) _A = model(_lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def UpperCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) -> List[Any]: _A = AlbertForPreTraining(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() _A = model( _lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , labels=_lowerCAmelCase , sentence_order_label=_lowerCAmelCase , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.sop_logits.shape , (self.batch_size, config.num_labels) ) def UpperCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) -> Optional[Any]: _A = AlbertForMaskedLM(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() _A = model(_lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , labels=_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) -> Union[str, Any]: _A = AlbertForQuestionAnswering(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() _A = model( _lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , start_positions=_lowerCAmelCase , end_positions=_lowerCAmelCase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def UpperCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) -> Tuple: _A = self.num_labels _A = AlbertForSequenceClassification(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() _A = model(_lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , labels=_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) -> Union[str, Any]: _A = self.num_labels _A = AlbertForTokenClassification(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() _A = model(_lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , labels=_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) -> Union[str, Any]: _A = self.num_choices _A = AlbertForMultipleChoice(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() _A = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _A = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _A = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _A = model( _lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , labels=_lowerCAmelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def UpperCAmelCase ( self ) -> int: _A = self.prepare_config_and_inputs() ( ( _A ) , ( _A ) , ( _A ) , ( _A ) , ( _A ) , ( _A ) , ( _A ) , ) = config_and_inputs _A = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class a ( A__ , A__ , unittest.TestCase ): """simple docstring""" lowerCamelCase :Union[str, Any] = ( ( AlbertModel, AlbertForPreTraining, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertForQuestionAnswering, ) if is_torch_available() else () ) lowerCamelCase :str = ( { '''feature-extraction''': AlbertModel, '''fill-mask''': AlbertForMaskedLM, '''question-answering''': AlbertForQuestionAnswering, '''text-classification''': AlbertForSequenceClassification, '''token-classification''': AlbertForTokenClassification, '''zero-shot''': AlbertForSequenceClassification, } if is_torch_available() else {} ) lowerCamelCase :Any = True def UpperCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_=False ) -> Optional[int]: _A = super()._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase , return_labels=_lowerCAmelCase ) if return_labels: if model_class in get_values(_lowerCAmelCase ): _A = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=_lowerCAmelCase ) _A = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_lowerCAmelCase ) return inputs_dict def UpperCAmelCase ( self ) -> Union[str, Any]: _A = AlbertModelTester(self ) _A = ConfigTester(self , config_class=_lowerCAmelCase , hidden_size=37 ) def UpperCAmelCase ( self ) -> Optional[Any]: self.config_tester.run_common_tests() def UpperCAmelCase ( self ) -> Optional[Any]: _A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowerCAmelCase ) def UpperCAmelCase ( self ) -> Dict: _A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*_lowerCAmelCase ) def UpperCAmelCase ( self ) -> str: _A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*_lowerCAmelCase ) def UpperCAmelCase ( self ) -> List[Any]: _A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*_lowerCAmelCase ) def UpperCAmelCase ( self ) -> str: _A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*_lowerCAmelCase ) def UpperCAmelCase ( self ) -> Tuple: _A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*_lowerCAmelCase ) def UpperCAmelCase ( self ) -> Optional[int]: _A = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: _A = type self.model_tester.create_and_check_model(*_lowerCAmelCase ) @slow def UpperCAmelCase ( self ) -> Dict: for model_name in ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _A = AlbertModel.from_pretrained(_lowerCAmelCase ) self.assertIsNotNone(_lowerCAmelCase ) @require_torch class a ( unittest.TestCase ): """simple docstring""" @slow def UpperCAmelCase ( self ) -> int: _A = AlbertModel.from_pretrained("""albert-base-v2""" ) _A = torch.tensor([[0, 3_45, 2_32, 3_28, 7_40, 1_40, 16_95, 69, 60_78, 15_88, 2]] ) _A = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): _A = model(_lowerCAmelCase , attention_mask=_lowerCAmelCase )[0] _A = torch.Size((1, 11, 7_68) ) self.assertEqual(output.shape , _lowerCAmelCase ) _A = torch.tensor( [[[-0.6513, 1.5035, -0.2766], [-0.6515, 1.5046, -0.2780], [-0.6512, 1.5049, -0.2784]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , _lowerCAmelCase , atol=1E-4 ) )
180
'''simple docstring''' import datasets from .evaluate import evaluate _lowerCamelCase : List[str] = '\\n@article{hendrycks2021cuad,\n title={CUAD: An Expert-Annotated NLP Dataset for Legal Contract Review},\n author={Dan Hendrycks and Collin Burns and Anya Chen and Spencer Ball},\n journal={arXiv preprint arXiv:2103.06268},\n year={2021}\n}\n' _lowerCamelCase : List[Any] = '\nThis metric wrap the official scoring script for version 1 of the Contract\nUnderstanding Atticus Dataset (CUAD).\nContract Understanding Atticus Dataset (CUAD) v1 is a corpus of more than 13,000 labels in 510\ncommercial legal contracts that have been manually labeled to identify 41 categories of important\nclauses that lawyers look for when reviewing contracts in connection with corporate transactions.\n' _lowerCamelCase : Dict = '\nComputes CUAD scores (EM, F1, AUPR, Precision@80%Recall, and Precision@90%Recall).\nArgs:\n predictions: List of question-answers dictionaries with the following key-values:\n - \'id\': id of the question-answer pair as given in the references (see below)\n - \'prediction_text\': list of possible texts for the answer, as a list of strings\n depending on a threshold on the confidence probability of each prediction.\n references: List of question-answers dictionaries with the following key-values:\n - \'id\': id of the question-answer pair (see above),\n - \'answers\': a Dict in the CUAD dataset format\n {\n \'text\': list of possible texts for the answer, as a list of strings\n \'answer_start\': list of start positions for the answer, as a list of ints\n }\n Note that answer_start values are not taken into account to compute the metric.\nReturns:\n \'exact_match\': Exact match (the normalized answer exactly match the gold answer)\n \'f1\': The F-score of predicted tokens versus the gold answer\n \'aupr\': Area Under the Precision-Recall curve\n \'prec_at_80_recall\': Precision at 80% recall\n \'prec_at_90_recall\': Precision at 90% recall\nExamples:\n >>> predictions = [{\'prediction_text\': [\'The seller:\', \'The buyer/End-User: Shenzhen LOHAS Supply Chain Management Co., Ltd.\'], \'id\': \'LohaCompanyltd_20191209_F-1_EX-10.16_11917878_EX-10.16_Supply Agreement__Parties\'}]\n >>> references = [{\'answers\': {\'answer_start\': [143, 49], \'text\': [\'The seller:\', \'The buyer/End-User: Shenzhen LOHAS Supply Chain Management Co., Ltd.\']}, \'id\': \'LohaCompanyltd_20191209_F-1_EX-10.16_11917878_EX-10.16_Supply Agreement__Parties\'}]\n >>> cuad_metric = datasets.load_metric("cuad")\n >>> results = cuad_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'exact_match\': 100.0, \'f1\': 100.0, \'aupr\': 0.0, \'prec_at_80_recall\': 1.0, \'prec_at_90_recall\': 1.0}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __UpperCAmelCase ( datasets.Metric ): '''simple docstring''' def A (self : int ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": { """id""": datasets.Value("""string""" ), """prediction_text""": datasets.features.Sequence(datasets.Value("""string""" ) ), }, """references""": { """id""": datasets.Value("""string""" ), """answers""": datasets.features.Sequence( { """text""": datasets.Value("""string""" ), """answer_start""": datasets.Value("""int32""" ), } ), }, } ) , codebase_urls=["""https://www.atticusprojectai.org/cuad"""] , reference_urls=["""https://www.atticusprojectai.org/cuad"""] , ) def A (self : Dict , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Any ): A = {prediction["""id"""]: prediction["""prediction_text"""] for prediction in predictions} A = [ { """paragraphs""": [ { """qas""": [ { """answers""": [{"""text""": answer_text} for answer_text in ref["""answers"""]["""text"""]], """id""": ref["""id"""], } for ref in references ] } ] } ] A = evaluate(dataset=_lowerCAmelCase , predictions=_lowerCAmelCase ) return score
258
0
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _lowercase : Optional[Any] = logging.get_logger(__name__) _lowercase : str = "▁" _lowercase : Optional[int] = {"vocab_file": "sentencepiece.bpe.model"} _lowercase : Dict = { "vocab_file": { "facebook/xglm-564M": "https://huggingface.co/facebook/xglm-564M/resolve/main/sentencepiece.bpe.model", } } _lowercase : Optional[Any] = { "facebook/xglm-564M": 2_0_4_8, } class lowerCAmelCase__ ( lowerCamelCase_ ): lowerCAmelCase_ = VOCAB_FILES_NAMES lowerCAmelCase_ = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase_ = ['''input_ids''', '''attention_mask'''] def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE="<s>" , __SCREAMING_SNAKE_CASE="</s>" , __SCREAMING_SNAKE_CASE="</s>" , __SCREAMING_SNAKE_CASE="<s>" , __SCREAMING_SNAKE_CASE="<unk>" , __SCREAMING_SNAKE_CASE="<pad>" , __SCREAMING_SNAKE_CASE = None , **__SCREAMING_SNAKE_CASE , ): """simple docstring""" lowercase_ : Any = {} if sp_model_kwargs is None else sp_model_kwargs # Compatibility with the original tokenizer lowercase_ : Optional[Any] = 7 lowercase_ : List[Any] = [F'''<madeupword{i}>''' for i in range(self.num_madeup_words )] lowercase_ : Tuple = kwargs.get('''additional_special_tokens''' , [] ) kwargs["additional_special_tokens"] += [ word for word in madeup_words if word not in kwargs["additional_special_tokens"] ] super().__init__( bos_token=__SCREAMING_SNAKE_CASE , eos_token=__SCREAMING_SNAKE_CASE , unk_token=__SCREAMING_SNAKE_CASE , sep_token=__SCREAMING_SNAKE_CASE , cls_token=__SCREAMING_SNAKE_CASE , pad_token=__SCREAMING_SNAKE_CASE , sp_model_kwargs=self.sp_model_kwargs , **__SCREAMING_SNAKE_CASE , ) lowercase_ : int = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(__SCREAMING_SNAKE_CASE ) ) lowercase_ : Dict = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab lowercase_ : List[Any] = 1 # Mimic fairseq token-to-id alignment for the first 4 token lowercase_ : Optional[Any] = {'''<s>''': 0, '''<pad>''': 1, '''</s>''': 2, '''<unk>''': 3} lowercase_ : Dict = len(self.sp_model ) lowercase_ : int = {F'''<madeupword{i}>''': sp_size + i + self.fairseq_offset for i in range(self.num_madeup_words )} self.fairseq_tokens_to_ids.update(__SCREAMING_SNAKE_CASE ) lowercase_ : List[str] = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__( self ): """simple docstring""" lowercase_ : List[Any] = self.__dict__.copy() lowercase_ : Optional[Any] = None lowercase_ : List[Any] = self.sp_model.serialized_model_proto() return state def __setstate__( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase_ : List[Any] = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): lowercase_ : Optional[Any] = {} lowercase_ : int = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) def _snake_case ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None ): """simple docstring""" if token_ids_a is None: return [self.sep_token_id] + token_ids_a lowercase_ : Optional[Any] = [self.sep_token_id] return sep + token_ids_a + sep + sep + token_ids_a def _snake_case ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = False ): """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__SCREAMING_SNAKE_CASE , token_ids_a=__SCREAMING_SNAKE_CASE , already_has_special_tokens=__SCREAMING_SNAKE_CASE ) if token_ids_a is None: return [1] + ([0] * len(__SCREAMING_SNAKE_CASE )) return [1] + ([0] * len(__SCREAMING_SNAKE_CASE )) + [1, 1] + ([0] * len(__SCREAMING_SNAKE_CASE )) def _snake_case ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None ): """simple docstring""" lowercase_ : List[Any] = [self.sep_token_id] if token_ids_a is None: return len(sep + token_ids_a ) * [0] return len(sep + token_ids_a + sep + sep + token_ids_a ) * [0] @property def _snake_case ( self ): """simple docstring""" return len(self.sp_model ) + self.fairseq_offset + self.num_madeup_words def _snake_case ( self ): """simple docstring""" lowercase_ : Any = {self.convert_ids_to_tokens(__SCREAMING_SNAKE_CASE ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def _snake_case ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" return self.sp_model.encode(__SCREAMING_SNAKE_CASE , out_type=__SCREAMING_SNAKE_CASE ) def _snake_case ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] lowercase_ : str = self.sp_model.PieceToId(__SCREAMING_SNAKE_CASE ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def _snake_case ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def _snake_case ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase_ : Dict = ''''''.join(__SCREAMING_SNAKE_CASE ).replace(__SCREAMING_SNAKE_CASE , ''' ''' ).strip() return out_string def _snake_case ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None ): """simple docstring""" if not os.path.isdir(__SCREAMING_SNAKE_CASE ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return lowercase_ : str = os.path.join( __SCREAMING_SNAKE_CASE , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__SCREAMING_SNAKE_CASE ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , __SCREAMING_SNAKE_CASE ) elif not os.path.isfile(self.vocab_file ): with open(__SCREAMING_SNAKE_CASE , '''wb''' ) as fi: lowercase_ : Optional[int] = self.sp_model.serialized_model_proto() fi.write(__SCREAMING_SNAKE_CASE ) return (out_vocab_file,)
264
'''simple docstring''' import qiskit def snake_case_ ( __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int ): """simple docstring""" lowercase_ : List[Any] = qiskit.Aer.get_backend('''aer_simulator''' ) # Create a Quantum Circuit acting on the q register lowercase_ : Dict = qiskit.QuantumCircuit(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) # Map the quantum measurement to the classical bits circuit.measure([0] , [0] ) # Execute the circuit on the simulator lowercase_ : Union[str, Any] = qiskit.execute(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , shots=1000 ) # Return the histogram data of the results of the experiment. return job.result().get_counts(__SCREAMING_SNAKE_CASE ) if __name__ == "__main__": print(f"""Total count for various states are: {single_qubit_measure(1, 1)}""")
264
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) __A ={ '''configuration_mega''': ['''MEGA_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MegaConfig''', '''MegaOnnxConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A =[ '''MEGA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''MegaForCausalLM''', '''MegaForMaskedLM''', '''MegaForMultipleChoice''', '''MegaForQuestionAnswering''', '''MegaForSequenceClassification''', '''MegaForTokenClassification''', '''MegaModel''', '''MegaPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_mega import MEGA_PRETRAINED_CONFIG_ARCHIVE_MAP, MegaConfig, MegaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mega import ( MEGA_PRETRAINED_MODEL_ARCHIVE_LIST, MegaForCausalLM, MegaForMaskedLM, MegaForMultipleChoice, MegaForQuestionAnswering, MegaForSequenceClassification, MegaForTokenClassification, MegaModel, MegaPreTrainedModel, ) else: import sys __A =_LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
19
'''simple docstring''' import ast import os import re import shutil import tempfile import unittest from unittest import mock import torch from accelerate.test_utils.examples import compare_against_test from accelerate.test_utils.testing import TempDirTestCase, require_trackers, run_command, slow from accelerate.utils import write_basic_config # DataLoaders built from `test_samples/MRPC` for quick testing # Should mock `{script_name}.get_dataloaders` via: # @mock.patch("{script_name}.get_dataloaders", mocked_dataloaders) lowerCAmelCase: int = [ 'cross_validation.py', 'gradient_accumulation.py', 'local_sgd.py', 'multi_process_metrics.py', 'memory.py', 'automatic_gradient_accumulation.py', 'fsdp_with_peak_mem_tracking.py', 'deepspeed_with_config_support.py', 'megatron_lm_gpt_pretraining.py', ] class a__( unittest.TestCase ): def lowercase_ ( self : int , __snake_case : str , __snake_case : bool , __snake_case : str = None , __snake_case : list = None ): a : Optional[int] = None a : Tuple = os.path.abspath(os.path.join('examples' , 'by_feature' ) ) a : List[str] = os.path.abspath('examples' ) for item in os.listdir(__snake_case ): if item not in EXCLUDE_EXAMPLES: a : int = os.path.join(__snake_case , __snake_case ) if os.path.isfile(__snake_case ) and ".py" in item_path: with self.subTest( tested_script=__snake_case , feature_script=__snake_case , tested_section='main()' if parser_only else 'training_function()' , ): a : List[Any] = compare_against_test( os.path.join(__snake_case , __snake_case ) , __snake_case , __snake_case , __snake_case ) a : Union[str, Any] = '\n'.join(__snake_case ) if special_strings is not None: for string in special_strings: a : Union[str, Any] = diff.replace(__snake_case , '' ) self.assertEqual(__snake_case , '' ) def lowercase_ ( self : Optional[Any] ): self.one_complete_example('complete_nlp_example.py' , __snake_case ) self.one_complete_example('complete_nlp_example.py' , __snake_case ) def lowercase_ ( self : Any ): a : Dict = os.path.abspath(os.path.join('examples' , 'cv_example.py' ) ) a : int = [ ' ' * 16 + '{\n\n', ' ' * 20 + '"accuracy": eval_metric["accuracy"],\n\n', ' ' * 20 + '"f1": eval_metric["f1"],\n\n', ' ' * 20 + '"train_loss": total_loss.item() / len(train_dataloader),\n\n', ' ' * 20 + '"epoch": epoch,\n\n', ' ' * 16 + '},\n\n', ' ' * 16 + 'step=epoch,\n', ' ' * 12, ' ' * 8 + 'for step, batch in enumerate(active_dataloader):\n', ] self.one_complete_example('complete_cv_example.py' , __snake_case , __snake_case , __snake_case ) self.one_complete_example('complete_cv_example.py' , __snake_case , __snake_case , __snake_case ) @mock.patch.dict(os.environ , {"""TESTING_MOCKED_DATALOADERS""": """1"""} ) class a__( lowerCamelCase__ ): lowercase__ = False @classmethod def lowercase_ ( cls : Optional[int] ): super().setUpClass() a : List[str] = tempfile.mkdtemp() a : Tuple = os.path.join(cls._tmpdir , 'default_config.yml' ) write_basic_config(save_location=cls.configPath ) a : Optional[int] = ['accelerate', 'launch', '--config_file', cls.configPath] @classmethod def lowercase_ ( cls : Optional[int] ): super().tearDownClass() shutil.rmtree(cls._tmpdir ) def lowercase_ ( self : Tuple ): a : Union[str, Any] = F""" examples/by_feature/checkpointing.py --checkpointing_steps epoch --output_dir {self.tmpdir} """.split() run_command(self._launch_args + testargs ) self.assertTrue(os.path.exists(os.path.join(self.tmpdir , 'epoch_0' ) ) ) def lowercase_ ( self : Dict ): a : Union[str, Any] = F""" examples/by_feature/checkpointing.py --checkpointing_steps 1 --output_dir {self.tmpdir} """.split() a : int = run_command(self._launch_args + testargs ) self.assertTrue(os.path.exists(os.path.join(self.tmpdir , 'step_2' ) ) ) def lowercase_ ( self : Any ): a : Tuple = F""" examples/by_feature/checkpointing.py --resume_from_checkpoint {os.path.join(self.tmpdir , "epoch_0" )} """.split() a : int = run_command(self._launch_args + testargs , return_stdout=__snake_case ) self.assertNotIn('epoch 0:' , __snake_case ) self.assertIn('epoch 1:' , __snake_case ) def lowercase_ ( self : int ): a : Optional[int] = F""" examples/by_feature/checkpointing.py --resume_from_checkpoint {os.path.join(self.tmpdir , "step_2" )} """.split() a : Union[str, Any] = run_command(self._launch_args + testargs , return_stdout=__snake_case ) if torch.cuda.is_available(): a : Any = torch.cuda.device_count() else: a : str = 1 if num_processes > 1: self.assertNotIn('epoch 0:' , __snake_case ) self.assertIn('epoch 1:' , __snake_case ) else: self.assertIn('epoch 0:' , __snake_case ) self.assertIn('epoch 1:' , __snake_case ) @slow def lowercase_ ( self : Tuple ): a : Tuple = '\n examples/by_feature/cross_validation.py\n --num_folds 2\n '.split() with mock.patch.dict(os.environ , {'TESTING_MOCKED_DATALOADERS': '0'} ): a : Any = run_command(self._launch_args + testargs , return_stdout=__snake_case ) a : Optional[Any] = re.findall('({.+})' , __snake_case ) a : str = [r for r in results if 'accuracy' in r][-1] a : str = ast.literal_eval(__snake_case ) self.assertGreaterEqual(results['accuracy'] , 0.75 ) def lowercase_ ( self : Optional[int] ): a : int = ['examples/by_feature/multi_process_metrics.py'] run_command(self._launch_args + testargs ) @require_trackers @mock.patch.dict(os.environ , {'WANDB_MODE': 'offline'} ) def lowercase_ ( self : Optional[int] ): with tempfile.TemporaryDirectory() as tmpdir: a : Optional[Any] = F""" examples/by_feature/tracking.py --with_tracking --project_dir {tmpdir} """.split() run_command(self._launch_args + testargs ) self.assertTrue(os.path.exists(os.path.join(__snake_case , 'tracking' ) ) ) def lowercase_ ( self : List[str] ): a : Optional[Any] = ['examples/by_feature/gradient_accumulation.py'] run_command(self._launch_args + testargs ) def lowercase_ ( self : int ): a : Optional[Any] = ['examples/by_feature/local_sgd.py'] run_command(self._launch_args + testargs )
297
0
import argparse import json import torch from diffusers import DDPMScheduler, LDMPipeline, UNetaDModel, VQModel def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=1 ): """simple docstring""" if n_shave_prefix_segments >= 0: return ".".join(path.split('''.''' )[n_shave_prefix_segments:] ) else: return ".".join(path.split('''.''' )[:n_shave_prefix_segments] ) def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=0 ): """simple docstring""" lowercase__ = [] for old_item in old_list: lowercase__ = old_item.replace('''in_layers.0''' , '''norm1''' ) lowercase__ = new_item.replace('''in_layers.2''' , '''conv1''' ) lowercase__ = new_item.replace('''out_layers.0''' , '''norm2''' ) lowercase__ = new_item.replace('''out_layers.3''' , '''conv2''' ) lowercase__ = new_item.replace('''emb_layers.1''' , '''time_emb_proj''' ) lowercase__ = new_item.replace('''skip_connection''' , '''conv_shortcut''' ) lowercase__ = shave_segments(SCREAMING_SNAKE_CASE , n_shave_prefix_segments=SCREAMING_SNAKE_CASE ) mapping.append({'''old''': old_item, '''new''': new_item} ) return mapping def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=0 ): """simple docstring""" lowercase__ = [] for old_item in old_list: lowercase__ = old_item lowercase__ = new_item.replace('''norm.weight''' , '''group_norm.weight''' ) lowercase__ = new_item.replace('''norm.bias''' , '''group_norm.bias''' ) lowercase__ = new_item.replace('''proj_out.weight''' , '''proj_attn.weight''' ) lowercase__ = new_item.replace('''proj_out.bias''' , '''proj_attn.bias''' ) lowercase__ = shave_segments(SCREAMING_SNAKE_CASE , n_shave_prefix_segments=SCREAMING_SNAKE_CASE ) mapping.append({'''old''': old_item, '''new''': new_item} ) return mapping def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=None ): """simple docstring""" assert isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ), "Paths should be a list of dicts containing 'old' and 'new' keys." # Splits the attention layers into three variables. if attention_paths_to_split is not None: for path, path_map in attention_paths_to_split.items(): lowercase__ = old_checkpoint[path] lowercase__ = old_tensor.shape[0] // 3 lowercase__ = (-1, channels) if len(old_tensor.shape ) == 3 else (-1) lowercase__ = old_tensor.shape[0] // config['''num_head_channels'''] // 3 lowercase__ = old_tensor.reshape((num_heads, 3 * channels // num_heads) + old_tensor.shape[1:] ) lowercase__ , lowercase__ , lowercase__ = old_tensor.split(channels // num_heads , dim=1 ) lowercase__ = query.reshape(SCREAMING_SNAKE_CASE ) lowercase__ = key.reshape(SCREAMING_SNAKE_CASE ) lowercase__ = value.reshape(SCREAMING_SNAKE_CASE ) for path in paths: lowercase__ = path['''new'''] # These have already been assigned if attention_paths_to_split is not None and new_path in attention_paths_to_split: continue # Global renaming happens here lowercase__ = new_path.replace('''middle_block.0''' , '''mid_block.resnets.0''' ) lowercase__ = new_path.replace('''middle_block.1''' , '''mid_block.attentions.0''' ) lowercase__ = new_path.replace('''middle_block.2''' , '''mid_block.resnets.1''' ) if additional_replacements is not None: for replacement in additional_replacements: lowercase__ = new_path.replace(replacement['''old'''] , replacement['''new'''] ) # proj_attn.weight has to be converted from conv 1D to linear if "proj_attn.weight" in new_path: lowercase__ = old_checkpoint[path['''old''']][:, :, 0] else: lowercase__ = old_checkpoint[path['''old''']] def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ = {} lowercase__ = checkpoint['''time_embed.0.weight'''] lowercase__ = checkpoint['''time_embed.0.bias'''] lowercase__ = checkpoint['''time_embed.2.weight'''] lowercase__ = checkpoint['''time_embed.2.bias'''] lowercase__ = checkpoint['''input_blocks.0.0.weight'''] lowercase__ = checkpoint['''input_blocks.0.0.bias'''] lowercase__ = checkpoint['''out.0.weight'''] lowercase__ = checkpoint['''out.0.bias'''] lowercase__ = checkpoint['''out.2.weight'''] lowercase__ = checkpoint['''out.2.bias'''] # Retrieves the keys for the input blocks only lowercase__ = len({'''.'''.join(layer.split('''.''' )[:2] ) for layer in checkpoint if '''input_blocks''' in layer} ) lowercase__ = { layer_id: [key for key in checkpoint if f'input_blocks.{layer_id}' in key] for layer_id in range(SCREAMING_SNAKE_CASE ) } # Retrieves the keys for the middle blocks only lowercase__ = len({'''.'''.join(layer.split('''.''' )[:2] ) for layer in checkpoint if '''middle_block''' in layer} ) lowercase__ = { layer_id: [key for key in checkpoint if f'middle_block.{layer_id}' in key] for layer_id in range(SCREAMING_SNAKE_CASE ) } # Retrieves the keys for the output blocks only lowercase__ = len({'''.'''.join(layer.split('''.''' )[:2] ) for layer in checkpoint if '''output_blocks''' in layer} ) lowercase__ = { layer_id: [key for key in checkpoint if f'output_blocks.{layer_id}' in key] for layer_id in range(SCREAMING_SNAKE_CASE ) } for i in range(1 , SCREAMING_SNAKE_CASE ): lowercase__ = (i - 1) // (config['''num_res_blocks'''] + 1) lowercase__ = (i - 1) % (config['''num_res_blocks'''] + 1) lowercase__ = [key for key in input_blocks[i] if f'input_blocks.{i}.0' in key] lowercase__ = [key for key in input_blocks[i] if f'input_blocks.{i}.1' in key] if f'input_blocks.{i}.0.op.weight' in checkpoint: lowercase__ = checkpoint[ f'input_blocks.{i}.0.op.weight' ] lowercase__ = checkpoint[ f'input_blocks.{i}.0.op.bias' ] continue lowercase__ = renew_resnet_paths(SCREAMING_SNAKE_CASE ) lowercase__ = {'''old''': f'input_blocks.{i}.0', '''new''': f'down_blocks.{block_id}.resnets.{layer_in_block_id}'} lowercase__ = {'''old''': '''resnets.2.op''', '''new''': '''downsamplers.0.op'''} assign_to_checkpoint( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , additional_replacements=[meta_path, resnet_op] , config=SCREAMING_SNAKE_CASE ) if len(SCREAMING_SNAKE_CASE ): lowercase__ = renew_attention_paths(SCREAMING_SNAKE_CASE ) lowercase__ = { '''old''': f'input_blocks.{i}.1', '''new''': f'down_blocks.{block_id}.attentions.{layer_in_block_id}', } lowercase__ = { f'input_blocks.{i}.1.qkv.bias': { '''key''': f'down_blocks.{block_id}.attentions.{layer_in_block_id}.key.bias', '''query''': f'down_blocks.{block_id}.attentions.{layer_in_block_id}.query.bias', '''value''': f'down_blocks.{block_id}.attentions.{layer_in_block_id}.value.bias', }, f'input_blocks.{i}.1.qkv.weight': { '''key''': f'down_blocks.{block_id}.attentions.{layer_in_block_id}.key.weight', '''query''': f'down_blocks.{block_id}.attentions.{layer_in_block_id}.query.weight', '''value''': f'down_blocks.{block_id}.attentions.{layer_in_block_id}.value.weight', }, } assign_to_checkpoint( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , additional_replacements=[meta_path] , attention_paths_to_split=SCREAMING_SNAKE_CASE , config=SCREAMING_SNAKE_CASE , ) lowercase__ = middle_blocks[0] lowercase__ = middle_blocks[1] lowercase__ = middle_blocks[2] lowercase__ = renew_resnet_paths(SCREAMING_SNAKE_CASE ) assign_to_checkpoint(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , config=SCREAMING_SNAKE_CASE ) lowercase__ = renew_resnet_paths(SCREAMING_SNAKE_CASE ) assign_to_checkpoint(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , config=SCREAMING_SNAKE_CASE ) lowercase__ = renew_attention_paths(SCREAMING_SNAKE_CASE ) lowercase__ = { '''middle_block.1.qkv.bias''': { '''key''': '''mid_block.attentions.0.key.bias''', '''query''': '''mid_block.attentions.0.query.bias''', '''value''': '''mid_block.attentions.0.value.bias''', }, '''middle_block.1.qkv.weight''': { '''key''': '''mid_block.attentions.0.key.weight''', '''query''': '''mid_block.attentions.0.query.weight''', '''value''': '''mid_block.attentions.0.value.weight''', }, } assign_to_checkpoint( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , attention_paths_to_split=SCREAMING_SNAKE_CASE , config=SCREAMING_SNAKE_CASE ) for i in range(SCREAMING_SNAKE_CASE ): lowercase__ = i // (config['''num_res_blocks'''] + 1) lowercase__ = i % (config['''num_res_blocks'''] + 1) lowercase__ = [shave_segments(SCREAMING_SNAKE_CASE , 2 ) for name in output_blocks[i]] lowercase__ = {} for layer in output_block_layers: lowercase__ , lowercase__ = layer.split('''.''' )[0], shave_segments(SCREAMING_SNAKE_CASE , 1 ) if layer_id in output_block_list: output_block_list[layer_id].append(SCREAMING_SNAKE_CASE ) else: lowercase__ = [layer_name] if len(SCREAMING_SNAKE_CASE ) > 1: lowercase__ = [key for key in output_blocks[i] if f'output_blocks.{i}.0' in key] lowercase__ = [key for key in output_blocks[i] if f'output_blocks.{i}.1' in key] lowercase__ = renew_resnet_paths(SCREAMING_SNAKE_CASE ) lowercase__ = renew_resnet_paths(SCREAMING_SNAKE_CASE ) lowercase__ = {'''old''': f'output_blocks.{i}.0', '''new''': f'up_blocks.{block_id}.resnets.{layer_in_block_id}'} assign_to_checkpoint(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , additional_replacements=[meta_path] , config=SCREAMING_SNAKE_CASE ) if ["conv.weight", "conv.bias"] in output_block_list.values(): lowercase__ = list(output_block_list.values() ).index(['''conv.weight''', '''conv.bias'''] ) lowercase__ = checkpoint[ f'output_blocks.{i}.{index}.conv.weight' ] lowercase__ = checkpoint[ f'output_blocks.{i}.{index}.conv.bias' ] # Clear attentions as they have been attributed above. if len(SCREAMING_SNAKE_CASE ) == 2: lowercase__ = [] if len(SCREAMING_SNAKE_CASE ): lowercase__ = renew_attention_paths(SCREAMING_SNAKE_CASE ) lowercase__ = { '''old''': f'output_blocks.{i}.1', '''new''': f'up_blocks.{block_id}.attentions.{layer_in_block_id}', } lowercase__ = { f'output_blocks.{i}.1.qkv.bias': { '''key''': f'up_blocks.{block_id}.attentions.{layer_in_block_id}.key.bias', '''query''': f'up_blocks.{block_id}.attentions.{layer_in_block_id}.query.bias', '''value''': f'up_blocks.{block_id}.attentions.{layer_in_block_id}.value.bias', }, f'output_blocks.{i}.1.qkv.weight': { '''key''': f'up_blocks.{block_id}.attentions.{layer_in_block_id}.key.weight', '''query''': f'up_blocks.{block_id}.attentions.{layer_in_block_id}.query.weight', '''value''': f'up_blocks.{block_id}.attentions.{layer_in_block_id}.value.weight', }, } assign_to_checkpoint( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , additional_replacements=[meta_path] , attention_paths_to_split=to_split if any('''qkv''' in key for key in attentions ) else None , config=SCREAMING_SNAKE_CASE , ) else: lowercase__ = renew_resnet_paths(SCREAMING_SNAKE_CASE , n_shave_prefix_segments=1 ) for path in resnet_0_paths: lowercase__ = '''.'''.join(['''output_blocks''', str(SCREAMING_SNAKE_CASE ), path['''old''']] ) lowercase__ = '''.'''.join(['''up_blocks''', str(SCREAMING_SNAKE_CASE ), '''resnets''', str(SCREAMING_SNAKE_CASE ), path['''new''']] ) lowercase__ = checkpoint[old_path] return new_checkpoint if __name__ == "__main__": lowerCAmelCase = argparse.ArgumentParser() parser.add_argument( '--checkpoint_path', default=None, type=str, required=True, help='Path to the checkpoint to convert.' ) parser.add_argument( '--config_file', default=None, type=str, required=True, help='The config json file corresponding to the architecture.', ) parser.add_argument('--dump_path', default=None, type=str, required=True, help='Path to the output model.') lowerCAmelCase = parser.parse_args() lowerCAmelCase = torch.load(args.checkpoint_path) with open(args.config_file) as f: lowerCAmelCase = json.loads(f.read()) lowerCAmelCase = convert_ldm_checkpoint(checkpoint, config) if "ldm" in config: del config["ldm"] lowerCAmelCase = UNetaDModel(**config) model.load_state_dict(converted_checkpoint) try: lowerCAmelCase = DDPMScheduler.from_config('/'.join(args.checkpoint_path.split('/')[:-1])) lowerCAmelCase = VQModel.from_pretrained('/'.join(args.checkpoint_path.split('/')[:-1])) lowerCAmelCase = LDMPipeline(unet=model, scheduler=scheduler, vae=vqvae) pipe.save_pretrained(args.dump_path) except: # noqa: E722 model.save_pretrained(args.dump_path)
93
import math_equivalence # From: git+https://github.com/hendrycks/math.git import datasets lowerCAmelCase = '\\n@article{hendrycksmath2021,\n title={Measuring Mathematical Problem Solving With the MATH Dataset},\n author={Dan Hendrycks\n and Collin Burns\n and Saurav Kadavath\n and Akul Arora\n and Steven Basart\n and Eric Tang\n and Dawn Song\n and Jacob Steinhardt},\n journal={arXiv preprint arXiv:2103.03874},\n year={2021}\n}\n' lowerCAmelCase = '\\nThis metric is used to assess performance on the Mathematics Aptitude Test of Heuristics (MATH) dataset.\nIt first canonicalizes the inputs (e.g., converting "1/2" to "\\frac{1}{2}") and then computes accuracy.\n' lowerCAmelCase = R'\nCalculates accuracy after canonicalizing inputs.\n\nArgs:\n predictions: list of predictions to score. Each prediction\n is a string that contains natural language and LaTex.\n references: list of reference for each prediction. Each\n reference is a string that contains natural language\n and LaTex.\nReturns:\n accuracy: accuracy after canonicalizing inputs\n (e.g., converting "1/2" to "\\frac{1}{2}")\n\nExamples:\n >>> metric = datasets.load_metric("competition_math")\n >>> results = metric.compute(references=["\\frac{1}{2}"], predictions=["1/2"])\n >>> print(results)\n {\'accuracy\': 1.0}\n' @datasets.utils.file_utils.add_end_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _a ( datasets.Metric ): def lowerCamelCase_ ( self: List[str] ) -> Tuple: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''string''' ), '''references''': datasets.Value('''string''' ), } ) , homepage='''https://github.com/hendrycks/math''' , codebase_urls=['''https://github.com/hendrycks/math'''] , ) def lowerCamelCase_ ( self: Union[str, Any] , UpperCamelCase_: Any , UpperCamelCase_: int ) -> List[str]: """simple docstring""" lowercase__ = 0.0 for i, j in zip(UpperCamelCase_ , UpperCamelCase_ ): n_correct += 1.0 if math_equivalence.is_equiv(UpperCamelCase_ , UpperCamelCase_ ) else 0.0 lowercase__ = n_correct / len(UpperCamelCase_ ) return { "accuracy": accuracy, }
93
1
from __future__ import annotations # This is the precision for this function which can be altered. # It is recommended for users to keep this number greater than or equal to 10. _lowercase : Dict =10 def lowerCAmelCase_ ( _lowercase : int , _lowercase : int , _lowercase : list[int] , _lowercase : int) -> int: """simple docstring""" for i in range(_lowercase , _lowercase): if array[i] == target: return i return -1 def lowerCAmelCase_ ( _lowercase : list[int] , _lowercase : int) -> int: """simple docstring""" a__ : List[Any] = 0 a__ : Tuple = len(_lowercase) while left <= right: if right - left < precision: return lin_search(_lowercase , _lowercase , _lowercase , _lowercase) a__ : Optional[Any] = (left + right) // 3 + 1 a__ : Optional[int] = 2 * (left + right) // 3 + 1 if array[one_third] == target: return one_third elif array[two_third] == target: return two_third elif target < array[one_third]: a__ : int = one_third - 1 elif array[two_third] < target: a__ : List[Any] = two_third + 1 else: a__ : Tuple = one_third + 1 a__ : List[Any] = two_third - 1 else: return -1 def lowerCAmelCase_ ( _lowercase : int , _lowercase : int , _lowercase : list[int] , _lowercase : int) -> int: """simple docstring""" if left < right: if right - left < precision: return lin_search(_lowercase , _lowercase , _lowercase , _lowercase) a__ : Optional[Any] = (left + right) // 3 + 1 a__ : Any = 2 * (left + right) // 3 + 1 if array[one_third] == target: return one_third elif array[two_third] == target: return two_third elif target < array[one_third]: return rec_ternary_search(_lowercase , one_third - 1 , _lowercase , _lowercase) elif array[two_third] < target: return rec_ternary_search(two_third + 1 , _lowercase , _lowercase , _lowercase) else: return rec_ternary_search(one_third + 1 , two_third - 1 , _lowercase , _lowercase) else: return -1 if __name__ == "__main__": import doctest doctest.testmod() _lowercase : List[Any] =input("Enter numbers separated by comma:\n").strip() _lowercase : List[Any] =[int(item.strip()) for item in user_input.split(",")] assert collection == sorted(collection), f"List must be ordered.\n{collection}." _lowercase : Union[str, Any] =int(input("Enter the number to be found in the list:\n").strip()) _lowercase : Tuple =ite_ternary_search(collection, target) _lowercase : List[Any] =rec_ternary_search(0, len(collection) - 1, collection, target) if resulta != -1: print(f'Iterative search: {target} found at positions: {resulta}') print(f'Recursive search: {target} found at positions: {resulta}') else: print("Not found")
170
import logging import os import quant_trainer import torch from torch.utils.data import DataLoader from transformers import Trainer, is_torch_tpu_available from transformers.trainer_utils import PredictionOutput _lowercase : Optional[int] =logging.getLogger(__name__) if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm import torch_xla.debug.metrics as met class snake_case__ (A__ ): """simple docstring""" def __init__( self , *__lowercase , __lowercase=None , __lowercase=None , __lowercase=None , **__lowercase ) -> Optional[Any]: """simple docstring""" super().__init__(*__lowercase , **__lowercase ) a__ : List[str] = eval_examples a__ : List[str] = post_process_function a__ : Union[str, Any] = quant_trainer_args a__ : Optional[Any] = 1_2_8 # default number of calibration samples def SCREAMING_SNAKE_CASE__( self , __lowercase=None ) -> Any: """simple docstring""" if calib_dataset is None and self.calib_dataset is None: raise ValueError("""Trainer: calibration requires an calib_dataset.""" ) a__ : Optional[int] = calib_dataset if calib_dataset is not None else self.calib_dataset a__ : List[Any] = self._remove_unused_columns(__lowercase , description="""Calibration""" ) return DataLoader( __lowercase , batch_size=self.args.eval_batch_size , collate_fn=self.data_collator , drop_last=self.args.dataloader_drop_last , num_workers=self.args.dataloader_num_workers , pin_memory=self.args.dataloader_pin_memory , shuffle=__lowercase , ) def SCREAMING_SNAKE_CASE__( self , __lowercase=None ) -> str: """simple docstring""" a__ : List[Any] = self.train_dataset if calib_dataset is None else calib_dataset a__ : Tuple = self.get_calib_dataloader(__lowercase ) a__ : Tuple = self.model quant_trainer.configure_model(__lowercase , self.quant_trainer_args , calib=__lowercase ) model.eval() quant_trainer.enable_calibration(__lowercase ) logger.info("""***** Running calibration *****""" ) logger.info(F''' Num examples = {self.calib_num}''' ) logger.info(F''' Batch size = {calib_dataloader.batch_size}''' ) for step, inputs in enumerate(__lowercase ): # Prediction step a__ , a__ , a__ : List[str] = self.prediction_step(__lowercase , __lowercase , prediction_loss_only=__lowercase ) if (step + 1) * calib_dataloader.batch_size >= self.calib_num: break quant_trainer.finish_calibration(__lowercase , self.quant_trainer_args ) a__ : Union[str, Any] = model def SCREAMING_SNAKE_CASE__( self , __lowercase=None , __lowercase=None , __lowercase=None , __lowercase = "eval" ) -> int: """simple docstring""" a__ : Dict = self.eval_dataset if eval_dataset is None else eval_dataset a__ : List[Any] = self.get_eval_dataloader(__lowercase ) a__ : Union[str, Any] = self.eval_examples if eval_examples is None else eval_examples # Temporarily disable metric computation, we will do it in the loop here. a__ : Dict = self.compute_metrics a__ : Dict = None a__ : Optional[int] = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: a__ : str = eval_loop( __lowercase , description="""Evaluation""" , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=__lowercase , ) finally: a__ : Tuple = compute_metrics if self.post_process_function is not None and self.compute_metrics is not None: a__ : int = self.post_process_function(__lowercase , __lowercase , output.predictions ) a__ : str = self.compute_metrics(__lowercase ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(F'''{metric_key_prefix}_''' ): a__ : Any = metrics.pop(__lowercase ) self.log(__lowercase ) else: a__ : Any = {} if self.args.tpu_metrics_debug or self.args.debug: # tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.) xm.master_print(met.metrics_report() ) a__ : Any = self.callback_handler.on_evaluate(self.args , self.state , self.control , __lowercase ) return metrics def SCREAMING_SNAKE_CASE__( self , __lowercase , __lowercase , __lowercase=None , __lowercase = "test" ) -> List[str]: """simple docstring""" a__ : str = self.get_test_dataloader(__lowercase ) # Temporarily disable metric computation, we will do it in the loop here. a__ : str = self.compute_metrics a__ : List[str] = None a__ : Tuple = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: a__ : Dict = eval_loop( __lowercase , description="""Prediction""" , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=__lowercase , ) finally: a__ : Optional[int] = compute_metrics if self.post_process_function is None or self.compute_metrics is None: return output a__ : Optional[Any] = self.post_process_function(__lowercase , __lowercase , output.predictions , """predict""" ) a__ : Any = self.compute_metrics(__lowercase ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(F'''{metric_key_prefix}_''' ): a__ : Any = metrics.pop(__lowercase ) return PredictionOutput(predictions=predictions.predictions , label_ids=predictions.label_ids , metrics=__lowercase ) def SCREAMING_SNAKE_CASE__( self , __lowercase="./" ) -> str: """simple docstring""" a__ : Any = self.eval_dataset a__ : Optional[Any] = self.get_eval_dataloader(__lowercase ) a__ : List[str] = next(iter(__lowercase ) ) # saving device - to make it consistent a__ : int = torch.device("""cuda""" if torch.cuda.is_available() else """cpu""" ) # convert to tuple a__ : Any = tuple(v.to(__lowercase ) for k, v in batch.items() ) logger.info("""Converting model to be onnx compatible""" ) from pytorch_quantization.nn import TensorQuantizer a__ : Dict = True a__ : Tuple = self.model.to(__lowercase ) model.eval() model.float() a__ : Optional[Any] = model.module if hasattr(__lowercase , """module""" ) else model quant_trainer.configure_model(__lowercase , self.quant_trainer_args ) a__ : int = os.path.join(__lowercase , """model.onnx""" ) logger.info(F'''exporting model to {output_model_file}''' ) a__ : List[Any] = {0: """batch_size""", 1: """seq_len"""} torch.onnx.export( __lowercase , __lowercase , __lowercase , export_params=__lowercase , opset_version=1_3 , do_constant_folding=__lowercase , input_names=["""input_ids""", """attention_mask""", """token_type_ids"""] , output_names=["""output_start_logits""", """output_end_logits"""] , dynamic_axes={ """input_ids""": axes, """attention_mask""": axes, """token_type_ids""": axes, """output_start_logits""": axes, """output_end_logits""": axes, } , verbose=__lowercase , ) logger.info("""onnx export finished""" )
170
1
def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE :int , SCREAMING_SNAKE_CASE :int ) -> str: if a < 0 or b < 0: raise ValueError("""the value of both inputs must be positive""" ) __lowerCAmelCase : Optional[int] = str(bin(snake_case__ ) )[2:] # remove the leading "0b" __lowerCAmelCase : List[str] = str(bin(snake_case__ ) )[2:] # remove the leading "0b" __lowerCAmelCase : Any = max(len(snake_case__ ) , len(snake_case__ ) ) return "0b" + "".join( str(int(char_a == """1""" and char_b == """1""" ) ) for char_a, char_b in zip(a_binary.zfill(snake_case__ ) , b_binary.zfill(snake_case__ ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
365
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _UpperCAmelCase = '▁' _UpperCAmelCase = {'vocab_file': 'spiece.model'} _UpperCAmelCase = { 'vocab_file': {'google/pegasus-xsum': 'https://huggingface.co/google/pegasus-xsum/resolve/main/spiece.model'} } _UpperCAmelCase = { 'google/pegasus-xsum': 512, } _UpperCAmelCase = logging.get_logger(__name__) class snake_case_ ( __lowercase ): A_ = VOCAB_FILES_NAMES A_ = VOCAB_FILES_NAMES A_ = PRETRAINED_VOCAB_FILES_MAP A_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A_ = ['input_ids', 'attention_mask'] def __init__( self : List[Any] , _snake_case : Union[str, Any] , _snake_case : Union[str, Any]="<pad>" , _snake_case : int="</s>" , _snake_case : Any="<unk>" , _snake_case : Union[str, Any]="<mask_2>" , _snake_case : Any="<mask_1>" , _snake_case : Optional[int]=None , _snake_case : List[str]=103 , _snake_case : Optional[Dict[str, Any]] = None , **_snake_case : Optional[int] , )->None: '''simple docstring''' __lowerCAmelCase : Union[str, Any] = offset if additional_special_tokens is not None: if not isinstance(_snake_case , _snake_case ): raise TypeError( F'''additional_special_tokens should be of type {type(_snake_case )}, but is''' F''' {type(_snake_case )}''' ) __lowerCAmelCase : List[str] = ( ([mask_token_sent] + additional_special_tokens) if mask_token_sent not in additional_special_tokens and mask_token_sent is not None else additional_special_tokens ) # fill additional tokens with ..., <unk_token_102> in case not all additional tokens are already taken additional_special_tokens_extended += [ F'''<unk_{i}>''' for i in range(len(_snake_case ) , self.offset - 1 ) ] if len(set(_snake_case ) ) != len(_snake_case ): raise ValueError( """Please make sure that the provided additional_special_tokens do not contain an incorrectly""" F''' shifted list of <unk_x> tokens. Found {additional_special_tokens_extended}.''' ) __lowerCAmelCase : Dict = additional_special_tokens_extended else: __lowerCAmelCase : Tuple = [mask_token_sent] if mask_token_sent is not None else [] additional_special_tokens += [F'''<unk_{i}>''' for i in range(2 , self.offset )] __lowerCAmelCase : Optional[int] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( eos_token=_snake_case , unk_token=_snake_case , mask_token=_snake_case , pad_token=_snake_case , mask_token_sent=_snake_case , offset=_snake_case , additional_special_tokens=_snake_case , sp_model_kwargs=self.sp_model_kwargs , **_snake_case , ) __lowerCAmelCase : Optional[Any] = mask_token_sent __lowerCAmelCase : Any = vocab_file __lowerCAmelCase : Any = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(_snake_case ) # add special tokens to encoder dict __lowerCAmelCase : Dict[int, str] = { 0: self.pad_token, 1: self.eos_token, } if self.mask_token_sent is not None: self.encoder.update( { 2: self.mask_token_sent, 3: self.mask_token, } ) if self.offset > 0: # entries 2-104 are only used for pretraining and called <mask_1>, <mask_2>, unk_2, ...unk_102 # mask_token_sent is already added to list -> so start at 1 self.encoder.update({i + 3: additional_special_tokens[i] for i in range(1 , self.offset - 1 )} ) __lowerCAmelCase : Dict[str, int] = {v: k for k, v in self.encoder.items()} @property def UpperCAmelCase__ ( self : str )->int: '''simple docstring''' return len(self.sp_model ) + self.offset def UpperCAmelCase__ ( self : Dict )->Dict[str, int]: '''simple docstring''' __lowerCAmelCase : Tuple = {self.convert_ids_to_tokens(_snake_case ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : Optional[int] )->str: '''simple docstring''' __lowerCAmelCase : Optional[Any] = self.__dict__.copy() __lowerCAmelCase : Union[str, Any] = None return state def __setstate__( self : Any , _snake_case : str )->Any: '''simple docstring''' __lowerCAmelCase : str = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): __lowerCAmelCase : Any = {} __lowerCAmelCase : Optional[int] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def UpperCAmelCase__ ( self : Dict , _snake_case : str )->List[str]: '''simple docstring''' return self.sp_model.encode(_snake_case , out_type=_snake_case ) def UpperCAmelCase__ ( self : Tuple , _snake_case : str )->int: '''simple docstring''' if token in self.decoder: return self.decoder[token] elif token in self.added_tokens_decoder: return self.added_tokens_decoder[token] __lowerCAmelCase : Any = self.sp_model.piece_to_id(_snake_case ) return sp_id + self.offset def UpperCAmelCase__ ( self : List[Any] , _snake_case : int )->str: '''simple docstring''' if index in self.encoder: return self.encoder[index] elif index in self.added_tokens_encoder: return self.added_tokens_encoder[index] else: __lowerCAmelCase : Optional[int] = self.sp_model.IdToPiece(index - self.offset ) return token def UpperCAmelCase__ ( self : Union[str, Any] , _snake_case : Optional[int] )->List[str]: '''simple docstring''' __lowerCAmelCase : Any = [] __lowerCAmelCase : Dict = """""" for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(_snake_case ) + token __lowerCAmelCase : int = [] else: current_sub_tokens.append(_snake_case ) out_string += self.sp_model.decode(_snake_case ) return out_string.strip() def UpperCAmelCase__ ( self : Optional[int] , _snake_case : Dict=False )->int: '''simple docstring''' return 1 def UpperCAmelCase__ ( self : Tuple , _snake_case : Tuple )->str: '''simple docstring''' __lowerCAmelCase : List[Any] = set(self.all_special_ids ) # call it once instead of inside list comp all_special_ids.remove(self.unk_token_id ) # <unk> is only sometimes special return [1 if x in all_special_ids else 0 for x in seq] def UpperCAmelCase__ ( self : List[str] , _snake_case : List , _snake_case : Optional[List] = None , _snake_case : bool = False )->List[int]: '''simple docstring''' if already_has_special_tokens: return self._special_token_mask(_snake_case ) elif token_ids_a is None: return self._special_token_mask(_snake_case ) + [1] else: return self._special_token_mask(token_ids_a + token_ids_a ) + [1] def UpperCAmelCase__ ( self : Any , _snake_case : Union[str, Any] , _snake_case : Tuple=None )->List[int]: '''simple docstring''' if token_ids_a is None: return token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return token_ids_a + token_ids_a + [self.eos_token_id] def UpperCAmelCase__ ( self : Any , _snake_case : str , _snake_case : Optional[str] = None )->Tuple[str]: '''simple docstring''' if not os.path.isdir(_snake_case ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return __lowerCAmelCase : Optional[int] = os.path.join( _snake_case , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_snake_case ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , _snake_case ) elif not os.path.isfile(self.vocab_file ): with open(_snake_case , """wb""" ) as fi: __lowerCAmelCase : Tuple = self.sp_model.serialized_model_proto() fi.write(_snake_case ) return (out_vocab_file,)
232
0
import sys from .dependency_versions_table import deps from .utils.versions import require_version, require_version_core # define which module versions we always want to check at run time # (usually the ones defined in `install_requires` in setup.py) # # order specific notes: # - tqdm must be checked before tokenizers snake_case : Union[str, Any] = '''python tqdm regex requests packaging filelock numpy tokenizers'''.split() if sys.version_info < (3, 7): pkgs_to_check_at_runtime.append('''dataclasses''') if sys.version_info < (3, 8): pkgs_to_check_at_runtime.append('''importlib_metadata''') for pkg in pkgs_to_check_at_runtime: if pkg in deps: if pkg == "tokenizers": # must be loaded here, or else tqdm check may fail from .utils import is_tokenizers_available if not is_tokenizers_available(): continue # not required, check version only if installed require_version_core(deps[pkg]) else: raise ValueError(F"""can't find {pkg} in {deps.keys()}, check dependency_versions_table.py""") def __lowerCamelCase ( UpperCAmelCase_ : Any , UpperCAmelCase_ : Optional[int]=None ): """simple docstring""" require_version(deps[pkg] , UpperCAmelCase_ )
94
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from pathlib import Path import torch from ...utils import is_npu_available, is_xpu_available from .config_args import ClusterConfig, default_json_config_file from .config_utils import SubcommandHelpFormatter snake_case : int = '''Create a default config file for Accelerate with only a few flags set.''' def __lowerCamelCase ( UpperCAmelCase_ : Optional[Any]="no" , UpperCAmelCase_ : str = default_json_config_file , UpperCAmelCase_ : bool = False ): """simple docstring""" a :List[str] = Path(UpperCAmelCase_ ) path.parent.mkdir(parents=UpperCAmelCase_ , exist_ok=UpperCAmelCase_ ) if path.exists(): print( F'''Configuration already exists at {save_location}, will not override. Run `accelerate config` manually or pass a different `save_location`.''' ) return False a :Optional[Any] = mixed_precision.lower() if mixed_precision not in ["no", "fp16", "bf16", "fp8"]: raise ValueError( F'''`mixed_precision` should be one of \'no\', \'fp16\', \'bf16\', or \'fp8\'. Received {mixed_precision}''' ) a :List[Any] = { '''compute_environment''': '''LOCAL_MACHINE''', '''mixed_precision''': mixed_precision, } if torch.cuda.is_available(): a :Dict = torch.cuda.device_count() a :Tuple = num_gpus a :int = False if num_gpus > 1: a :str = '''MULTI_GPU''' else: a :List[Any] = '''NO''' elif is_xpu_available() and use_xpu: a :List[Any] = torch.xpu.device_count() a :Optional[int] = num_xpus a :List[Any] = False if num_xpus > 1: a :int = '''MULTI_XPU''' else: a :str = '''NO''' elif is_npu_available(): a :List[str] = torch.npu.device_count() a :Any = num_npus a :Optional[int] = False if num_npus > 1: a :List[str] = '''MULTI_NPU''' else: a :Dict = '''NO''' else: a :str = 0 a :Optional[Any] = True a :Optional[Any] = 1 a :str = '''NO''' a :List[str] = ClusterConfig(**UpperCAmelCase_ ) config.to_json_file(UpperCAmelCase_ ) return path def __lowerCamelCase ( UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Union[str, Any] ): """simple docstring""" a :List[Any] = parser.add_parser('''default''' , parents=UpperCAmelCase_ , help=UpperCAmelCase_ , formatter_class=UpperCAmelCase_ ) parser.add_argument( '''--config_file''' , default=UpperCAmelCase_ , help=( '''The path to use to store the config file. Will default to a file named default_config.yaml in the cache ''' '''location, which is the content of the environment `HF_HOME` suffixed with \'accelerate\', or if you don\'t have ''' '''such an environment variable, your cache directory (\'~/.cache\' or the content of `XDG_CACHE_HOME`) suffixed ''' '''with \'huggingface\'.''' ) , dest='''save_location''' , ) parser.add_argument( '''--mixed_precision''' , choices=['''no''', '''fp16''', '''bf16'''] , type=UpperCAmelCase_ , help='''Whether or not to use mixed precision training. ''' '''Choose between FP16 and BF16 (bfloat16) training. ''' '''BF16 training is only supported on Nvidia Ampere GPUs and PyTorch 1.10 or later.''' , default='''no''' , ) parser.set_defaults(func=UpperCAmelCase_ ) return parser def __lowerCamelCase ( UpperCAmelCase_ : int ): """simple docstring""" a :Optional[Any] = write_basic_config(args.mixed_precision , args.save_location ) if config_file: print(F'''accelerate configuration saved at {config_file}''' )
94
1
"""simple docstring""" def _lowercase ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> int: if principal <= 0: raise Exception("""Principal borrowed must be > 0""" ) if rate_per_annum < 0: raise Exception("""Rate of interest must be >= 0""" ) if years_to_repay <= 0 or not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): raise Exception("""Years to repay must be an integer > 0""" ) # Yearly rate is divided by 12 to get monthly rate SCREAMING_SNAKE_CASE__ : Union[str, Any] = rate_per_annum / 12 # Years to repay is multiplied by 12 to get number of payments as payment is monthly SCREAMING_SNAKE_CASE__ : Any = years_to_repay * 12 return ( principal * rate_per_month * (1 + rate_per_month) ** number_of_payments / ((1 + rate_per_month) ** number_of_payments - 1) ) if __name__ == "__main__": import doctest doctest.testmod()
365
"""simple docstring""" from __future__ import annotations from PIL import Image # Define glider example a :str = [ [0, 1, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0, 0], [1, 1, 1, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], ] # Define blinker example a :Dict = [[0, 1, 0], [0, 1, 0], [0, 1, 0]] def _lowercase ( __lowerCAmelCase ) -> list[list[int]]: SCREAMING_SNAKE_CASE__ : Optional[Any] = [] for i in range(len(__lowerCAmelCase ) ): SCREAMING_SNAKE_CASE__ : Any = [] for j in range(len(cells[i] ) ): # Get the number of live neighbours SCREAMING_SNAKE_CASE__ : List[str] = 0 if i > 0 and j > 0: neighbour_count += cells[i - 1][j - 1] if i > 0: neighbour_count += cells[i - 1][j] if i > 0 and j < len(cells[i] ) - 1: neighbour_count += cells[i - 1][j + 1] if j > 0: neighbour_count += cells[i][j - 1] if j < len(cells[i] ) - 1: neighbour_count += cells[i][j + 1] if i < len(__lowerCAmelCase ) - 1 and j > 0: neighbour_count += cells[i + 1][j - 1] if i < len(__lowerCAmelCase ) - 1: neighbour_count += cells[i + 1][j] if i < len(__lowerCAmelCase ) - 1 and j < len(cells[i] ) - 1: neighbour_count += cells[i + 1][j + 1] # Rules of the game of life (excerpt from Wikipedia): # 1. Any live cell with two or three live neighbours survives. # 2. Any dead cell with three live neighbours becomes a live cell. # 3. All other live cells die in the next generation. # Similarly, all other dead cells stay dead. SCREAMING_SNAKE_CASE__ : Dict = cells[i][j] == 1 if ( (alive and 2 <= neighbour_count <= 3) or not alive and neighbour_count == 3 ): next_generation_row.append(1 ) else: next_generation_row.append(0 ) next_generation.append(__lowerCAmelCase ) return next_generation def _lowercase ( __lowerCAmelCase , __lowerCAmelCase ) -> list[Image.Image]: SCREAMING_SNAKE_CASE__ : Union[str, Any] = [] for _ in range(__lowerCAmelCase ): # Create output image SCREAMING_SNAKE_CASE__ : int = Image.new("""RGB""" , (len(cells[0] ), len(__lowerCAmelCase )) ) SCREAMING_SNAKE_CASE__ : List[Any] = img.load() # Save cells to image for x in range(len(__lowerCAmelCase ) ): for y in range(len(cells[0] ) ): SCREAMING_SNAKE_CASE__ : str = 255 - cells[y][x] * 255 SCREAMING_SNAKE_CASE__ : Optional[Any] = (colour, colour, colour) # Save image images.append(__lowerCAmelCase ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = new_generation(__lowerCAmelCase ) return images if __name__ == "__main__": a :Dict = generate_images(GLIDER, 16) images[0].save("out.gif", save_all=True, append_images=images[1:])
56
0
"""simple docstring""" import json import os from functools import lru_cache from typing import Dict, List, Optional, Tuple, Union import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...tokenization_utils_base import BatchEncoding, EncodedInput from ...utils import PaddingStrategy, logging lowercase__ : Dict = logging.get_logger(__name__) lowercase__ : Optional[int] = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt'''} # See all LED models at https://huggingface.co/models?filter=LED lowercase__ : List[str] = { '''vocab_file''': { '''allenai/led-base-16384''': '''https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json''', }, '''merges_file''': { '''allenai/led-base-16384''': '''https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt''', }, '''tokenizer_file''': { '''allenai/led-base-16384''': '''https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json''', }, } lowercase__ : List[str] = { '''allenai/led-base-16384''': 1_63_84, } @lru_cache() # Copied from transformers.models.bart.tokenization_bart.bytes_to_unicode def __lowercase ( ): snake_case_ : Dict = ( list(range(ord('''!''' ) , ord('''~''' ) + 1 ) ) + list(range(ord('''¡''' ) , ord('''¬''' ) + 1 ) ) + list(range(ord('''®''' ) , ord('''ÿ''' ) + 1 ) ) ) snake_case_ : Dict = bs[:] snake_case_ : Any = 0 for b in range(2**8 ): if b not in bs: bs.append(_a ) cs.append(2**8 + n ) n += 1 snake_case_ : Optional[Any] = [chr(_a ) for n in cs] return dict(zip(_a , _a ) ) def __lowercase ( _a ): snake_case_ : Any = set() snake_case_ : Any = word[0] for char in word[1:]: pairs.add((prev_char, char) ) snake_case_ : Optional[Any] = char return pairs class _UpperCAmelCase ( lowerCAmelCase__): _lowerCAmelCase : List[str] = VOCAB_FILES_NAMES _lowerCAmelCase : Any = PRETRAINED_VOCAB_FILES_MAP _lowerCAmelCase : Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowerCAmelCase : Optional[int] = ["""input_ids""", """attention_mask"""] def __init__( self : Optional[Any] , lowercase_ : str , lowercase_ : Union[str, Any] , lowercase_ : int="replace" , lowercase_ : Any="<s>" , lowercase_ : List[str]="</s>" , lowercase_ : int="</s>" , lowercase_ : List[str]="<s>" , lowercase_ : Tuple="<unk>" , lowercase_ : Optional[int]="<pad>" , lowercase_ : Union[str, Any]="<mask>" , lowercase_ : Dict=False , **lowercase_ : Optional[Any] , ): snake_case_ : Tuple = AddedToken(lowercase_ , lstrip=lowercase_ , rstrip=lowercase_ ) if isinstance(lowercase_ , lowercase_ ) else bos_token snake_case_ : Optional[int] = AddedToken(lowercase_ , lstrip=lowercase_ , rstrip=lowercase_ ) if isinstance(lowercase_ , lowercase_ ) else eos_token snake_case_ : str = AddedToken(lowercase_ , lstrip=lowercase_ , rstrip=lowercase_ ) if isinstance(lowercase_ , lowercase_ ) else sep_token snake_case_ : int = AddedToken(lowercase_ , lstrip=lowercase_ , rstrip=lowercase_ ) if isinstance(lowercase_ , lowercase_ ) else cls_token snake_case_ : int = AddedToken(lowercase_ , lstrip=lowercase_ , rstrip=lowercase_ ) if isinstance(lowercase_ , lowercase_ ) else unk_token snake_case_ : Dict = AddedToken(lowercase_ , lstrip=lowercase_ , rstrip=lowercase_ ) if isinstance(lowercase_ , lowercase_ ) else pad_token # Mask token behave like a normal word, i.e. include the space before it snake_case_ : Optional[int] = AddedToken(lowercase_ , lstrip=lowercase_ , rstrip=lowercase_ ) if isinstance(lowercase_ , lowercase_ ) else mask_token super().__init__( errors=lowercase_ , bos_token=lowercase_ , eos_token=lowercase_ , unk_token=lowercase_ , sep_token=lowercase_ , cls_token=lowercase_ , pad_token=lowercase_ , mask_token=lowercase_ , add_prefix_space=lowercase_ , **lowercase_ , ) with open(lowercase_ , encoding='''utf-8''' ) as vocab_handle: snake_case_ : Tuple = json.load(lowercase_ ) snake_case_ : Dict = {v: k for k, v in self.encoder.items()} snake_case_ : Any = errors # how to handle errors in decoding snake_case_ : Union[str, Any] = bytes_to_unicode() snake_case_ : Tuple = {v: k for k, v in self.byte_encoder.items()} with open(lowercase_ , encoding='''utf-8''' ) as merges_handle: snake_case_ : List[Any] = merges_handle.read().split('''\n''' )[1:-1] snake_case_ : List[Any] = [tuple(merge.split() ) for merge in bpe_merges] snake_case_ : List[str] = dict(zip(lowercase_ , range(len(lowercase_ ) ) ) ) snake_case_ : int = {} snake_case_ : str = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions snake_case_ : int = re.compile(r'''\'s|\'t|\'re|\'ve|\'m|\'ll|\'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+''' ) @property # Copied from transformers.models.bart.tokenization_bart.BartTokenizer.vocab_size def _snake_case ( self : Union[str, Any] ): return len(self.encoder ) def _snake_case ( self : Optional[Any] ): return dict(self.encoder , **self.added_tokens_encoder ) def _snake_case ( self : Tuple , lowercase_ : Tuple ): if token in self.cache: return self.cache[token] snake_case_ : Optional[Any] = tuple(lowercase_ ) snake_case_ : Dict = get_pairs(lowercase_ ) if not pairs: return token while True: snake_case_ : Optional[int] = min(lowercase_ , key=lambda lowercase_ : self.bpe_ranks.get(lowercase_ , float('''inf''' ) ) ) if bigram not in self.bpe_ranks: break snake_case_, snake_case_ : int = bigram snake_case_ : Any = [] snake_case_ : List[str] = 0 while i < len(lowercase_ ): try: snake_case_ : Union[str, Any] = word.index(lowercase_ , lowercase_ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) snake_case_ : Union[str, Any] = j if word[i] == first and i < len(lowercase_ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 snake_case_ : Tuple = tuple(lowercase_ ) snake_case_ : Any = new_word if len(lowercase_ ) == 1: break else: snake_case_ : Optional[int] = get_pairs(lowercase_ ) snake_case_ : Dict = ''' '''.join(lowercase_ ) snake_case_ : Optional[Any] = word return word def _snake_case ( self : Any , lowercase_ : Union[str, Any] ): snake_case_ : Dict = [] for token in re.findall(self.pat , lowercase_ ): snake_case_ : str = ''''''.join( self.byte_encoder[b] for b in token.encode('''utf-8''' ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(lowercase_ ).split(''' ''' ) ) return bpe_tokens def _snake_case ( self : List[Any] , lowercase_ : List[str] ): return self.encoder.get(lowercase_ , self.encoder.get(self.unk_token ) ) def _snake_case ( self : Union[str, Any] , lowercase_ : Dict ): return self.decoder.get(lowercase_ ) def _snake_case ( self : Tuple , lowercase_ : Union[str, Any] ): snake_case_ : Optional[Any] = ''''''.join(lowercase_ ) snake_case_ : Any = bytearray([self.byte_decoder[c] for c in text] ).decode('''utf-8''' , errors=self.errors ) return text def _snake_case ( self : Optional[int] , lowercase_ : str , lowercase_ : Optional[str] = None ): if not os.path.isdir(lowercase_ ): logger.error(f"Vocabulary path ({save_directory}) should be a directory" ) return snake_case_ : str = os.path.join( lowercase_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) snake_case_ : int = os.path.join( lowercase_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''merges_file'''] ) with open(lowercase_ , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=lowercase_ , ensure_ascii=lowercase_ ) + '''\n''' ) snake_case_ : int = 0 with open(lowercase_ , '''w''' , encoding='''utf-8''' ) as writer: writer.write('''#version: 0.2\n''' ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda lowercase_ : kv[1] ): if index != token_index: logger.warning( f"Saving vocabulary to {merge_file}: BPE merge indices are not consecutive." ''' Please check that the tokenizer is not corrupted!''' ) snake_case_ : Union[str, Any] = token_index writer.write(''' '''.join(lowercase_ ) + '''\n''' ) index += 1 return vocab_file, merge_file def _snake_case ( self : str , lowercase_ : List[int] , lowercase_ : Optional[List[int]] = None ): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] snake_case_ : Union[str, Any] = [self.cls_token_id] snake_case_ : Union[str, Any] = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def _snake_case ( self : Any , lowercase_ : List[int] , lowercase_ : Optional[List[int]] = None , lowercase_ : bool = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowercase_ , token_ids_a=lowercase_ , already_has_special_tokens=lowercase_ ) if token_ids_a is None: return [1] + ([0] * len(lowercase_ )) + [1] return [1] + ([0] * len(lowercase_ )) + [1, 1] + ([0] * len(lowercase_ )) + [1] def _snake_case ( self : int , lowercase_ : List[int] , lowercase_ : Optional[List[int]] = None ): snake_case_ : Optional[Any] = [self.sep_token_id] snake_case_ : List[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def _snake_case ( self : Union[str, Any] , lowercase_ : str , lowercase_ : str=False , **lowercase_ : Dict ): snake_case_ : Tuple = kwargs.pop('''add_prefix_space''' , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(lowercase_ ) > 0 and not text[0].isspace()): snake_case_ : List[str] = ''' ''' + text return (text, kwargs) def _snake_case ( self : Any , lowercase_ : Union[Dict[str, EncodedInput], BatchEncoding] , lowercase_ : Optional[int] = None , lowercase_ : PaddingStrategy = PaddingStrategy.DO_NOT_PAD , lowercase_ : Optional[int] = None , lowercase_ : Optional[bool] = None , ): snake_case_ : str = super()._pad( encoded_inputs=lowercase_ , max_length=lowercase_ , padding_strategy=lowercase_ , pad_to_multiple_of=lowercase_ , return_attention_mask=lowercase_ , ) # Load from model defaults if return_attention_mask is None: snake_case_ : int = '''attention_mask''' in self.model_input_names if return_attention_mask and "global_attention_mask" in encoded_inputs: snake_case_ : Optional[Any] = encoded_inputs[self.model_input_names[0]] # `global_attention_mask` need to have the same length as other (sequential) inputs. snake_case_ : Any = len(encoded_inputs['''global_attention_mask'''] ) != len(lowercase_ ) if needs_to_be_padded: snake_case_ : int = len(lowercase_ ) - len(encoded_inputs['''global_attention_mask'''] ) if self.padding_side == "right": # Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend` snake_case_ : List[Any] = ( encoded_inputs['''global_attention_mask'''] + [-1] * difference ) elif self.padding_side == "left": snake_case_ : int = [-1] * difference + encoded_inputs[ '''global_attention_mask''' ] else: raise ValueError('''Invalid padding strategy:''' + str(self.padding_side ) ) return encoded_inputs
264
"""simple docstring""" import shutil import tempfile import unittest from unittest.mock import patch from transformers import ( DefaultFlowCallback, IntervalStrategy, PrinterCallback, ProgressCallback, Trainer, TrainerCallback, TrainingArguments, is_torch_available, ) from transformers.testing_utils import require_torch if is_torch_available(): from transformers.trainer import DEFAULT_CALLBACKS from .test_trainer import RegressionDataset, RegressionModelConfig, RegressionPreTrainedModel class _UpperCAmelCase ( lowerCAmelCase__): def __init__( self : Optional[int] ): snake_case_ : str = [] def _snake_case ( self : List[Any] , lowercase_ : Any , lowercase_ : Union[str, Any] , lowercase_ : List[str] , **lowercase_ : Tuple ): self.events.append('''on_init_end''' ) def _snake_case ( self : List[Any] , lowercase_ : str , lowercase_ : Optional[int] , lowercase_ : List[str] , **lowercase_ : List[str] ): self.events.append('''on_train_begin''' ) def _snake_case ( self : Any , lowercase_ : List[str] , lowercase_ : Tuple , lowercase_ : List[Any] , **lowercase_ : Optional[int] ): self.events.append('''on_train_end''' ) def _snake_case ( self : str , lowercase_ : Optional[int] , lowercase_ : int , lowercase_ : Optional[Any] , **lowercase_ : List[Any] ): self.events.append('''on_epoch_begin''' ) def _snake_case ( self : Tuple , lowercase_ : List[str] , lowercase_ : Dict , lowercase_ : Union[str, Any] , **lowercase_ : Optional[Any] ): self.events.append('''on_epoch_end''' ) def _snake_case ( self : List[str] , lowercase_ : Optional[Any] , lowercase_ : Optional[Any] , lowercase_ : int , **lowercase_ : Optional[Any] ): self.events.append('''on_step_begin''' ) def _snake_case ( self : int , lowercase_ : int , lowercase_ : Union[str, Any] , lowercase_ : List[Any] , **lowercase_ : List[str] ): self.events.append('''on_step_end''' ) def _snake_case ( self : str , lowercase_ : int , lowercase_ : Dict , lowercase_ : List[str] , **lowercase_ : List[str] ): self.events.append('''on_evaluate''' ) def _snake_case ( self : Dict , lowercase_ : Union[str, Any] , lowercase_ : Any , lowercase_ : List[Any] , **lowercase_ : str ): self.events.append('''on_predict''' ) def _snake_case ( self : List[Any] , lowercase_ : Union[str, Any] , lowercase_ : List[Any] , lowercase_ : int , **lowercase_ : Union[str, Any] ): self.events.append('''on_save''' ) def _snake_case ( self : str , lowercase_ : Tuple , lowercase_ : Optional[int] , lowercase_ : List[str] , **lowercase_ : Any ): self.events.append('''on_log''' ) def _snake_case ( self : Dict , lowercase_ : Optional[int] , lowercase_ : List[str] , lowercase_ : Union[str, Any] , **lowercase_ : Optional[int] ): self.events.append('''on_prediction_step''' ) @require_torch class _UpperCAmelCase ( unittest.TestCase): def _snake_case ( self : List[str] ): snake_case_ : Tuple = tempfile.mkdtemp() def _snake_case ( self : Tuple ): shutil.rmtree(self.output_dir ) def _snake_case ( self : int , lowercase_ : Union[str, Any]=0 , lowercase_ : Dict=0 , lowercase_ : List[str]=64 , lowercase_ : Union[str, Any]=64 , lowercase_ : Union[str, Any]=None , lowercase_ : Any=False , **lowercase_ : List[Any] ): # disable_tqdm in TrainingArguments has a flaky default since it depends on the level of logging. We make sure # its set to False since the tests later on depend on its value. snake_case_ : int = RegressionDataset(length=lowercase_ ) snake_case_ : Any = RegressionDataset(length=lowercase_ ) snake_case_ : int = RegressionModelConfig(a=lowercase_ , b=lowercase_ ) snake_case_ : Tuple = RegressionPreTrainedModel(lowercase_ ) snake_case_ : Any = TrainingArguments(self.output_dir , disable_tqdm=lowercase_ , report_to=[] , **lowercase_ ) return Trainer( lowercase_ , lowercase_ , train_dataset=lowercase_ , eval_dataset=lowercase_ , callbacks=lowercase_ , ) def _snake_case ( self : Optional[int] , lowercase_ : Any , lowercase_ : List[Any] ): self.assertEqual(len(lowercase_ ) , len(lowercase_ ) ) # Order doesn't matter snake_case_ : Any = sorted(lowercase_ , key=lambda lowercase_ : cb.__name__ if isinstance(lowercase_ , lowercase_ ) else cb.__class__.__name__ ) snake_case_ : List[str] = sorted(lowercase_ , key=lambda lowercase_ : cb.__name__ if isinstance(lowercase_ , lowercase_ ) else cb.__class__.__name__ ) for cba, cba in zip(lowercase_ , lowercase_ ): if isinstance(lowercase_ , lowercase_ ) and isinstance(lowercase_ , lowercase_ ): self.assertEqual(lowercase_ , lowercase_ ) elif isinstance(lowercase_ , lowercase_ ) and not isinstance(lowercase_ , lowercase_ ): self.assertEqual(lowercase_ , cba.__class__ ) elif not isinstance(lowercase_ , lowercase_ ) and isinstance(lowercase_ , lowercase_ ): self.assertEqual(cba.__class__ , lowercase_ ) else: self.assertEqual(lowercase_ , lowercase_ ) def _snake_case ( self : Optional[Any] , lowercase_ : Tuple ): snake_case_ : Tuple = ['''on_init_end''', '''on_train_begin'''] snake_case_ : List[Any] = 0 snake_case_ : Union[str, Any] = len(trainer.get_eval_dataloader() ) snake_case_ : List[Any] = ['''on_prediction_step'''] * len(trainer.get_eval_dataloader() ) + ['''on_log''', '''on_evaluate'''] for _ in range(trainer.state.num_train_epochs ): expected_events.append('''on_epoch_begin''' ) for _ in range(lowercase_ ): step += 1 expected_events += ["on_step_begin", "on_step_end"] if step % trainer.args.logging_steps == 0: expected_events.append('''on_log''' ) if trainer.args.evaluation_strategy == IntervalStrategy.STEPS and step % trainer.args.eval_steps == 0: expected_events += evaluation_events.copy() if step % trainer.args.save_steps == 0: expected_events.append('''on_save''' ) expected_events.append('''on_epoch_end''' ) if trainer.args.evaluation_strategy == IntervalStrategy.EPOCH: expected_events += evaluation_events.copy() expected_events += ["on_log", "on_train_end"] return expected_events def _snake_case ( self : List[str] ): snake_case_ : Union[str, Any] = self.get_trainer() snake_case_ : Dict = DEFAULT_CALLBACKS.copy() + [ProgressCallback] self.check_callbacks_equality(trainer.callback_handler.callbacks , lowercase_ ) # Callbacks passed at init are added to the default callbacks snake_case_ : Optional[Any] = self.get_trainer(callbacks=[MyTestTrainerCallback] ) expected_callbacks.append(lowercase_ ) self.check_callbacks_equality(trainer.callback_handler.callbacks , lowercase_ ) # TrainingArguments.disable_tqdm controls if use ProgressCallback or PrinterCallback snake_case_ : Optional[int] = self.get_trainer(disable_tqdm=lowercase_ ) snake_case_ : List[Any] = DEFAULT_CALLBACKS.copy() + [PrinterCallback] self.check_callbacks_equality(trainer.callback_handler.callbacks , lowercase_ ) def _snake_case ( self : int ): snake_case_ : int = DEFAULT_CALLBACKS.copy() + [ProgressCallback] snake_case_ : List[Any] = self.get_trainer() # We can add, pop, or remove by class name trainer.remove_callback(lowercase_ ) expected_callbacks.remove(lowercase_ ) self.check_callbacks_equality(trainer.callback_handler.callbacks , lowercase_ ) snake_case_ : Dict = self.get_trainer() snake_case_ : Optional[int] = trainer.pop_callback(lowercase_ ) self.assertEqual(cb.__class__ , lowercase_ ) self.check_callbacks_equality(trainer.callback_handler.callbacks , lowercase_ ) trainer.add_callback(lowercase_ ) expected_callbacks.insert(0 , lowercase_ ) self.check_callbacks_equality(trainer.callback_handler.callbacks , lowercase_ ) # We can also add, pop, or remove by instance snake_case_ : Optional[int] = self.get_trainer() snake_case_ : List[Any] = trainer.callback_handler.callbacks[0] trainer.remove_callback(lowercase_ ) expected_callbacks.remove(lowercase_ ) self.check_callbacks_equality(trainer.callback_handler.callbacks , lowercase_ ) snake_case_ : List[Any] = self.get_trainer() snake_case_ : Optional[int] = trainer.callback_handler.callbacks[0] snake_case_ : Optional[Any] = trainer.pop_callback(lowercase_ ) self.assertEqual(lowercase_ , lowercase_ ) self.check_callbacks_equality(trainer.callback_handler.callbacks , lowercase_ ) trainer.add_callback(lowercase_ ) expected_callbacks.insert(0 , lowercase_ ) self.check_callbacks_equality(trainer.callback_handler.callbacks , lowercase_ ) def _snake_case ( self : List[Any] ): import warnings # XXX: for now ignore scatter_gather warnings in this test since it's not relevant to what's being tested warnings.simplefilter(action='''ignore''' , category=lowercase_ ) snake_case_ : int = self.get_trainer(callbacks=[MyTestTrainerCallback] ) trainer.train() snake_case_ : Union[str, Any] = trainer.callback_handler.callbacks[-2].events self.assertEqual(lowercase_ , self.get_expected_events(lowercase_ ) ) # Independent log/save/eval snake_case_ : int = self.get_trainer(callbacks=[MyTestTrainerCallback] , logging_steps=5 ) trainer.train() snake_case_ : str = trainer.callback_handler.callbacks[-2].events self.assertEqual(lowercase_ , self.get_expected_events(lowercase_ ) ) snake_case_ : List[Any] = self.get_trainer(callbacks=[MyTestTrainerCallback] , save_steps=5 ) trainer.train() snake_case_ : int = trainer.callback_handler.callbacks[-2].events self.assertEqual(lowercase_ , self.get_expected_events(lowercase_ ) ) snake_case_ : List[Any] = self.get_trainer(callbacks=[MyTestTrainerCallback] , eval_steps=5 , evaluation_strategy='''steps''' ) trainer.train() snake_case_ : Union[str, Any] = trainer.callback_handler.callbacks[-2].events self.assertEqual(lowercase_ , self.get_expected_events(lowercase_ ) ) snake_case_ : Union[str, Any] = self.get_trainer(callbacks=[MyTestTrainerCallback] , evaluation_strategy='''epoch''' ) trainer.train() snake_case_ : Dict = trainer.callback_handler.callbacks[-2].events self.assertEqual(lowercase_ , self.get_expected_events(lowercase_ ) ) # A bit of everything snake_case_ : str = self.get_trainer( callbacks=[MyTestTrainerCallback] , logging_steps=3 , save_steps=10 , eval_steps=5 , evaluation_strategy='''steps''' , ) trainer.train() snake_case_ : str = trainer.callback_handler.callbacks[-2].events self.assertEqual(lowercase_ , self.get_expected_events(lowercase_ ) ) # warning should be emitted for duplicated callbacks with patch('''transformers.trainer_callback.logger.warning''' ) as warn_mock: snake_case_ : Dict = self.get_trainer( callbacks=[MyTestTrainerCallback, MyTestTrainerCallback] , ) assert str(lowercase_ ) in warn_mock.call_args[0][0]
264
1
"""simple docstring""" import gc import random import tempfile import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, ControlNetModel, DDIMScheduler, StableDiffusionControlNetImgaImgPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_controlnet import MultiControlNetModel from diffusers.utils import floats_tensor, load_image, load_numpy, randn_tensor, slow, torch_device from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, ) enable_full_determinism() class lowercase( __a , __a , __a , unittest.TestCase ): '''simple docstring''' lowercase__ = StableDiffusionControlNetImgaImgPipeline lowercase__ = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {"height", "width"} lowercase__ = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS lowercase__ = IMAGE_TO_IMAGE_IMAGE_PARAMS.union({"control_image"} ) lowercase__ = IMAGE_TO_IMAGE_IMAGE_PARAMS def UpperCamelCase_ ( self: Optional[Any] ): '''simple docstring''' torch.manual_seed(0 ) _snake_case : str = UNetaDConditionModel( block_out_channels=(32, 64), layers_per_block=2, sample_size=32, in_channels=4, out_channels=4, down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D"""), up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D"""), cross_attention_dim=32, ) torch.manual_seed(0 ) _snake_case : Union[str, Any] = ControlNetModel( block_out_channels=(32, 64), layers_per_block=2, in_channels=4, down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D"""), cross_attention_dim=32, conditioning_embedding_out_channels=(16, 32), ) torch.manual_seed(0 ) _snake_case : Dict = DDIMScheduler( beta_start=0.00_085, beta_end=0.012, beta_schedule="""scaled_linear""", clip_sample=a_, set_alpha_to_one=a_, ) torch.manual_seed(0 ) _snake_case : Optional[int] = AutoencoderKL( block_out_channels=[32, 64], in_channels=3, out_channels=3, down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""], up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""], latent_channels=4, ) torch.manual_seed(0 ) _snake_case : Union[str, Any] = CLIPTextConfig( bos_token_id=0, eos_token_id=2, hidden_size=32, intermediate_size=37, layer_norm_eps=1E-05, num_attention_heads=4, num_hidden_layers=5, pad_token_id=1, vocab_size=1_000, ) _snake_case : Tuple = CLIPTextModel(a_ ) _snake_case : Any = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) _snake_case : Any = { """unet""": unet, """controlnet""": controlnet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """safety_checker""": None, """feature_extractor""": None, } return components def UpperCamelCase_ ( self: str, a_: Any, a_: Union[str, Any]=0 ): '''simple docstring''' if str(a_ ).startswith("""mps""" ): _snake_case : Union[str, Any] = torch.manual_seed(a_ ) else: _snake_case : Any = torch.Generator(device=a_ ).manual_seed(a_ ) _snake_case : Union[str, Any] = 2 _snake_case : Any = randn_tensor( (1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor), generator=a_, device=torch.device(a_ ), ) _snake_case : str = floats_tensor(control_image.shape, rng=random.Random(a_ ) ).to(a_ ) _snake_case : List[str] = image.cpu().permute(0, 2, 3, 1 )[0] _snake_case : int = Image.fromarray(np.uinta(a_ ) ).convert("""RGB""" ).resize((64, 64) ) _snake_case : str = { """prompt""": """A painting of a squirrel eating a burger""", """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 6.0, """output_type""": """numpy""", """image""": image, """control_image""": control_image, } return inputs def UpperCamelCase_ ( self: List[Any] ): '''simple docstring''' return self._test_attention_slicing_forward_pass(expected_max_diff=2E-3 ) @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available(), reason="""XFormers attention is only available with CUDA and `xformers` installed""", ) def UpperCamelCase_ ( self: List[str] ): '''simple docstring''' self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=2E-3 ) def UpperCamelCase_ ( self: Any ): '''simple docstring''' self._test_inference_batch_single_identical(expected_max_diff=2E-3 ) class lowercase( __a , __a , unittest.TestCase ): '''simple docstring''' lowercase__ = StableDiffusionControlNetImgaImgPipeline lowercase__ = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {"height", "width"} lowercase__ = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS lowercase__ = frozenset([] ) # TO_DO: add image_params once refactored VaeImageProcessor.preprocess def UpperCamelCase_ ( self: List[Any] ): '''simple docstring''' torch.manual_seed(0 ) _snake_case : str = UNetaDConditionModel( block_out_channels=(32, 64), layers_per_block=2, sample_size=32, in_channels=4, out_channels=4, down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D"""), up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D"""), cross_attention_dim=32, ) torch.manual_seed(0 ) def init_weights(a_: Optional[Any] ): if isinstance(a_, torch.nn.Convad ): torch.nn.init.normal(m.weight ) m.bias.data.fill_(1.0 ) _snake_case : Optional[Any] = ControlNetModel( block_out_channels=(32, 64), layers_per_block=2, in_channels=4, down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D"""), cross_attention_dim=32, conditioning_embedding_out_channels=(16, 32), ) controlneta.controlnet_down_blocks.apply(a_ ) torch.manual_seed(0 ) _snake_case : Tuple = ControlNetModel( block_out_channels=(32, 64), layers_per_block=2, in_channels=4, down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D"""), cross_attention_dim=32, conditioning_embedding_out_channels=(16, 32), ) controlneta.controlnet_down_blocks.apply(a_ ) torch.manual_seed(0 ) _snake_case : Dict = DDIMScheduler( beta_start=0.00_085, beta_end=0.012, beta_schedule="""scaled_linear""", clip_sample=a_, set_alpha_to_one=a_, ) torch.manual_seed(0 ) _snake_case : Optional[Any] = AutoencoderKL( block_out_channels=[32, 64], in_channels=3, out_channels=3, down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""], up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""], latent_channels=4, ) torch.manual_seed(0 ) _snake_case : Optional[Any] = CLIPTextConfig( bos_token_id=0, eos_token_id=2, hidden_size=32, intermediate_size=37, layer_norm_eps=1E-05, num_attention_heads=4, num_hidden_layers=5, pad_token_id=1, vocab_size=1_000, ) _snake_case : Union[str, Any] = CLIPTextModel(a_ ) _snake_case : int = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) _snake_case : Dict = MultiControlNetModel([controlneta, controlneta] ) _snake_case : str = { """unet""": unet, """controlnet""": controlnet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """safety_checker""": None, """feature_extractor""": None, } return components def UpperCamelCase_ ( self: Union[str, Any], a_: Union[str, Any], a_: Tuple=0 ): '''simple docstring''' if str(a_ ).startswith("""mps""" ): _snake_case : Any = torch.manual_seed(a_ ) else: _snake_case : List[Any] = torch.Generator(device=a_ ).manual_seed(a_ ) _snake_case : Union[str, Any] = 2 _snake_case : List[str] = [ randn_tensor( (1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor), generator=a_, device=torch.device(a_ ), ), randn_tensor( (1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor), generator=a_, device=torch.device(a_ ), ), ] _snake_case : List[str] = floats_tensor(control_image[0].shape, rng=random.Random(a_ ) ).to(a_ ) _snake_case : int = image.cpu().permute(0, 2, 3, 1 )[0] _snake_case : int = Image.fromarray(np.uinta(a_ ) ).convert("""RGB""" ).resize((64, 64) ) _snake_case : Tuple = { """prompt""": """A painting of a squirrel eating a burger""", """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 6.0, """output_type""": """numpy""", """image""": image, """control_image""": control_image, } return inputs def UpperCamelCase_ ( self: Optional[Any] ): '''simple docstring''' _snake_case : Any = self.get_dummy_components() _snake_case : Union[str, Any] = self.pipeline_class(**a_ ) pipe.to(a_ ) _snake_case : int = 10.0 _snake_case : List[str] = 4 _snake_case : Optional[Any] = self.get_dummy_inputs(a_ ) _snake_case : str = steps _snake_case : Union[str, Any] = scale _snake_case : List[Any] = pipe(**a_ )[0] _snake_case : Tuple = self.get_dummy_inputs(a_ ) _snake_case : Tuple = steps _snake_case : Tuple = scale _snake_case : str = pipe(**a_, control_guidance_start=0.1, control_guidance_end=0.2 )[0] _snake_case : int = self.get_dummy_inputs(a_ ) _snake_case : Any = steps _snake_case : Tuple = scale _snake_case : str = pipe(**a_, control_guidance_start=[0.1, 0.3], control_guidance_end=[0.2, 0.7] )[0] _snake_case : Any = self.get_dummy_inputs(a_ ) _snake_case : Union[str, Any] = steps _snake_case : Dict = scale _snake_case : Tuple = pipe(**a_, control_guidance_start=0.4, control_guidance_end=[0.5, 0.8] )[0] # make sure that all outputs are different assert np.sum(np.abs(output_a - output_a ) ) > 1E-3 assert np.sum(np.abs(output_a - output_a ) ) > 1E-3 assert np.sum(np.abs(output_a - output_a ) ) > 1E-3 def UpperCamelCase_ ( self: Tuple ): '''simple docstring''' return self._test_attention_slicing_forward_pass(expected_max_diff=2E-3 ) @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available(), reason="""XFormers attention is only available with CUDA and `xformers` installed""", ) def UpperCamelCase_ ( self: Tuple ): '''simple docstring''' self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=2E-3 ) def UpperCamelCase_ ( self: Optional[int] ): '''simple docstring''' self._test_inference_batch_single_identical(expected_max_diff=2E-3 ) def UpperCamelCase_ ( self: List[Any] ): '''simple docstring''' _snake_case : Optional[Any] = self.get_dummy_components() _snake_case : List[Any] = self.pipeline_class(**a_ ) pipe.to(a_ ) pipe.set_progress_bar_config(disable=a_ ) with tempfile.TemporaryDirectory() as tmpdir: try: # save_pretrained is not implemented for Multi-ControlNet pipe.save_pretrained(a_ ) except NotImplementedError: pass @slow @require_torch_gpu class lowercase( unittest.TestCase ): '''simple docstring''' def UpperCamelCase_ ( self: Union[str, Any] ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase_ ( self: Optional[Any] ): '''simple docstring''' _snake_case : Optional[int] = ControlNetModel.from_pretrained("""lllyasviel/sd-controlnet-canny""" ) _snake_case : List[str] = StableDiffusionControlNetImgaImgPipeline.from_pretrained( """runwayml/stable-diffusion-v1-5""", safety_checker=a_, controlnet=a_ ) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=a_ ) _snake_case : List[str] = torch.Generator(device="""cpu""" ).manual_seed(0 ) _snake_case : Dict = """evil space-punk bird""" _snake_case : Any = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny.png""" ).resize((512, 512) ) _snake_case : Optional[int] = load_image( """https://huggingface.co/lllyasviel/sd-controlnet-canny/resolve/main/images/bird.png""" ).resize((512, 512) ) _snake_case : List[str] = pipe( a_, a_, control_image=a_, generator=a_, output_type="""np""", num_inference_steps=50, strength=0.6, ) _snake_case : Dict = output.images[0] assert image.shape == (512, 512, 3) _snake_case : Optional[int] = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/img2img.npy""" ) assert np.abs(expected_image - image ).max() < 9E-2
353
"""simple docstring""" from typing import Any class lowercase: '''simple docstring''' def __init__( self: Dict, a_: Any ): '''simple docstring''' _snake_case : Dict = data _snake_case : Optional[Any] = None class lowercase: '''simple docstring''' def __init__( self: str ): '''simple docstring''' _snake_case : Any = None def UpperCamelCase_ ( self: Any ): '''simple docstring''' _snake_case : List[Any] = self.head while temp is not None: print(temp.data, end=""" """ ) _snake_case : int = temp.next print() def UpperCamelCase_ ( self: Union[str, Any], a_: Any ): '''simple docstring''' _snake_case : Optional[Any] = Node(a_ ) _snake_case : Union[str, Any] = self.head _snake_case : List[Any] = new_node def UpperCamelCase_ ( self: Tuple, a_: List[str], a_: Union[str, Any] ): '''simple docstring''' if node_data_a == node_data_a: return else: _snake_case : int = self.head while node_a is not None and node_a.data != node_data_a: _snake_case : List[Any] = node_a.next _snake_case : List[Any] = self.head while node_a is not None and node_a.data != node_data_a: _snake_case : List[Any] = node_a.next if node_a is None or node_a is None: return _snake_case , _snake_case : int = node_a.data, node_a.data if __name__ == "__main__": A_ = LinkedList() for i in range(5, 0, -1): ll.push(i) ll.print_list() ll.swap_nodes(1, 4) print('''After swapping''') ll.print_list()
132
0
'''simple docstring''' from math import ceil def snake_case_ ( __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : int ): """simple docstring""" lowercase_ : Any = list(range(0 , __SCREAMING_SNAKE_CASE ) ) lowercase_ : List[str] = [item for sublist in list(device_map.values() ) for item in sublist] # Duplicate check lowercase_ : str = [] for i in device_map_blocks: if device_map_blocks.count(__SCREAMING_SNAKE_CASE ) > 1 and i not in duplicate_blocks: duplicate_blocks.append(__SCREAMING_SNAKE_CASE ) # Missing blocks lowercase_ : Optional[int] = [i for i in blocks if i not in device_map_blocks] lowercase_ : Any = [i for i in device_map_blocks if i not in blocks] if len(__SCREAMING_SNAKE_CASE ) != 0: raise ValueError( '''Duplicate attention blocks specified in device_map. Attention blocks must be specified to one device.''' ''' These attention blocks were specified more than once: ''' + str(__SCREAMING_SNAKE_CASE ) ) if len(__SCREAMING_SNAKE_CASE ) != 0: raise ValueError( '''There are attention blocks for this model that are not specified in the device_map. Add these attention ''' '''blocks to a device on the device_map: ''' + str(__SCREAMING_SNAKE_CASE ) ) if len(__SCREAMING_SNAKE_CASE ) != 0: raise ValueError( '''The device_map contains more attention blocks than this model has. Remove these from the device_map:''' + str(__SCREAMING_SNAKE_CASE ) ) def snake_case_ ( __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : Tuple ): """simple docstring""" lowercase_ : str = list(range(__SCREAMING_SNAKE_CASE ) ) lowercase_ : Any = int(ceil(n_layers / len(__SCREAMING_SNAKE_CASE ) ) ) lowercase_ : Union[str, Any] = [layers[i : i + n_blocks] for i in range(0 , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )] return dict(zip(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) )
93
'''simple docstring''' import importlib import inspect import json import os import re import shutil import sys from pathlib import Path from typing import Dict, Optional, Union from urllib import request from huggingface_hub import HfFolder, cached_download, hf_hub_download, model_info from packaging import version from .. import __version__ from . import DIFFUSERS_DYNAMIC_MODULE_NAME, HF_MODULES_CACHE, logging _lowercase : Optional[Any] = ( "https://raw.githubusercontent.com/huggingface/diffusers/{revision}/examples/community/{pipeline}.py" ) _lowercase : Tuple = logging.get_logger(__name__) # pylint: disable=invalid-name def snake_case_ ( ): """simple docstring""" lowercase_ : Tuple = '''https://pypi.org/pypi/diffusers/json''' lowercase_ : Tuple = json.loads(request.urlopen(__SCREAMING_SNAKE_CASE ).read() )['''releases'''].keys() return sorted(__SCREAMING_SNAKE_CASE , key=lambda __SCREAMING_SNAKE_CASE : version.Version(__SCREAMING_SNAKE_CASE ) ) def snake_case_ ( ): """simple docstring""" if HF_MODULES_CACHE in sys.path: return sys.path.append(__SCREAMING_SNAKE_CASE ) os.makedirs(__SCREAMING_SNAKE_CASE , exist_ok=__SCREAMING_SNAKE_CASE ) lowercase_ : List[Any] = Path(__SCREAMING_SNAKE_CASE ) / '''__init__.py''' if not init_path.exists(): init_path.touch() def snake_case_ ( __SCREAMING_SNAKE_CASE : Union[str, os.PathLike] ): """simple docstring""" init_hf_modules() lowercase_ : Optional[int] = Path(__SCREAMING_SNAKE_CASE ) / name # If the parent module does not exist yet, recursively create it. if not dynamic_module_path.parent.exists(): create_dynamic_module(dynamic_module_path.parent ) os.makedirs(__SCREAMING_SNAKE_CASE , exist_ok=__SCREAMING_SNAKE_CASE ) lowercase_ : str = dynamic_module_path / '''__init__.py''' if not init_path.exists(): init_path.touch() def snake_case_ ( __SCREAMING_SNAKE_CASE : List[str] ): """simple docstring""" with open(__SCREAMING_SNAKE_CASE , '''r''' , encoding='''utf-8''' ) as f: lowercase_ : int = f.read() # Imports of the form `import .xxx` lowercase_ : List[Any] = re.findall('''^\s*import\s+\.(\S+)\s*$''' , __SCREAMING_SNAKE_CASE , flags=re.MULTILINE ) # Imports of the form `from .xxx import yyy` relative_imports += re.findall('''^\s*from\s+\.(\S+)\s+import''' , __SCREAMING_SNAKE_CASE , flags=re.MULTILINE ) # Unique-ify return list(set(__SCREAMING_SNAKE_CASE ) ) def snake_case_ ( __SCREAMING_SNAKE_CASE : str ): """simple docstring""" lowercase_ : int = False lowercase_ : Any = [module_file] lowercase_ : Dict = [] # Let's recurse through all relative imports while not no_change: lowercase_ : Dict = [] for f in files_to_check: new_imports.extend(get_relative_imports(__SCREAMING_SNAKE_CASE ) ) lowercase_ : Union[str, Any] = Path(__SCREAMING_SNAKE_CASE ).parent lowercase_ : Optional[int] = [str(module_path / m ) for m in new_imports] lowercase_ : str = [f for f in new_import_files if f not in all_relative_imports] lowercase_ : int = [F'''{f}.py''' for f in new_import_files] lowercase_ : Optional[Any] = len(__SCREAMING_SNAKE_CASE ) == 0 all_relative_imports.extend(__SCREAMING_SNAKE_CASE ) return all_relative_imports def snake_case_ ( __SCREAMING_SNAKE_CASE : Any ): """simple docstring""" with open(__SCREAMING_SNAKE_CASE , '''r''' , encoding='''utf-8''' ) as f: lowercase_ : Union[str, Any] = f.read() # Imports of the form `import xxx` lowercase_ : Any = re.findall('''^\s*import\s+(\S+)\s*$''' , __SCREAMING_SNAKE_CASE , flags=re.MULTILINE ) # Imports of the form `from xxx import yyy` imports += re.findall('''^\s*from\s+(\S+)\s+import''' , __SCREAMING_SNAKE_CASE , flags=re.MULTILINE ) # Only keep the top-level module lowercase_ : List[str] = [imp.split('''.''' )[0] for imp in imports if not imp.startswith('''.''' )] # Unique-ify and test we got them all lowercase_ : Any = list(set(__SCREAMING_SNAKE_CASE ) ) lowercase_ : Optional[Any] = [] for imp in imports: try: importlib.import_module(__SCREAMING_SNAKE_CASE ) except ImportError: missing_packages.append(__SCREAMING_SNAKE_CASE ) if len(__SCREAMING_SNAKE_CASE ) > 0: raise ImportError( '''This modeling file requires the following packages that were not found in your environment: ''' F'''{', '.join(__SCREAMING_SNAKE_CASE )}. Run `pip install {' '.join(__SCREAMING_SNAKE_CASE )}`''' ) return get_relative_imports(__SCREAMING_SNAKE_CASE ) def snake_case_ ( __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : Optional[Any] ): """simple docstring""" lowercase_ : List[Any] = module_path.replace(os.path.sep , '''.''' ) lowercase_ : Any = importlib.import_module(__SCREAMING_SNAKE_CASE ) if class_name is None: return find_pipeline_class(__SCREAMING_SNAKE_CASE ) return getattr(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def snake_case_ ( __SCREAMING_SNAKE_CASE : Dict ): """simple docstring""" from ..pipelines import DiffusionPipeline lowercase_ : int = dict(inspect.getmembers(__SCREAMING_SNAKE_CASE , inspect.isclass ) ) lowercase_ : Optional[Any] = None for cls_name, cls in cls_members.items(): if ( cls_name != DiffusionPipeline.__name__ and issubclass(cls , __SCREAMING_SNAKE_CASE ) and cls.__module__.split('''.''' )[0] != "diffusers" ): if pipeline_class is not None: raise ValueError( F'''Multiple classes that inherit from {DiffusionPipeline.__name__} have been found:''' F''' {pipeline_class.__name__}, and {cls_name}. Please make sure to define only one in''' F''' {loaded_module}.''' ) lowercase_ : List[Any] = cls return pipeline_class def snake_case_ ( __SCREAMING_SNAKE_CASE : Union[str, os.PathLike] , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Optional[Union[str, os.PathLike]] = None , __SCREAMING_SNAKE_CASE : bool = False , __SCREAMING_SNAKE_CASE : bool = False , __SCREAMING_SNAKE_CASE : Optional[Dict[str, str]] = None , __SCREAMING_SNAKE_CASE : Optional[Union[bool, str]] = None , __SCREAMING_SNAKE_CASE : Optional[str] = None , __SCREAMING_SNAKE_CASE : bool = False , ): """simple docstring""" lowercase_ : Dict = str(__SCREAMING_SNAKE_CASE ) lowercase_ : Tuple = os.path.join(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) if os.path.isfile(__SCREAMING_SNAKE_CASE ): lowercase_ : Dict = module_file_or_url lowercase_ : int = '''local''' elif pretrained_model_name_or_path.count('''/''' ) == 0: lowercase_ : Optional[int] = get_diffusers_versions() # cut ".dev0" lowercase_ : List[Any] = '''v''' + '''.'''.join(__version__.split('''.''' )[:3] ) # retrieve github version that matches if revision is None: lowercase_ : List[str] = latest_version if latest_version[1:] in available_versions else '''main''' logger.info(F'''Defaulting to latest_version: {revision}.''' ) elif revision in available_versions: lowercase_ : List[str] = F'''v{revision}''' elif revision == "main": lowercase_ : Optional[Any] = revision else: raise ValueError( F'''`custom_revision`: {revision} does not exist. Please make sure to choose one of''' F''' {', '.join(available_versions + ['main'] )}.''' ) # community pipeline on GitHub lowercase_ : Tuple = COMMUNITY_PIPELINES_URL.format(revision=__SCREAMING_SNAKE_CASE , pipeline=__SCREAMING_SNAKE_CASE ) try: lowercase_ : Optional[Any] = cached_download( __SCREAMING_SNAKE_CASE , cache_dir=__SCREAMING_SNAKE_CASE , force_download=__SCREAMING_SNAKE_CASE , proxies=__SCREAMING_SNAKE_CASE , resume_download=__SCREAMING_SNAKE_CASE , local_files_only=__SCREAMING_SNAKE_CASE , use_auth_token=__SCREAMING_SNAKE_CASE , ) lowercase_ : Tuple = '''git''' lowercase_ : Tuple = pretrained_model_name_or_path + '''.py''' except EnvironmentError: logger.error(F'''Could not locate the {module_file} inside {pretrained_model_name_or_path}.''' ) raise else: try: # Load from URL or cache if already cached lowercase_ : str = hf_hub_download( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , cache_dir=__SCREAMING_SNAKE_CASE , force_download=__SCREAMING_SNAKE_CASE , proxies=__SCREAMING_SNAKE_CASE , resume_download=__SCREAMING_SNAKE_CASE , local_files_only=__SCREAMING_SNAKE_CASE , use_auth_token=__SCREAMING_SNAKE_CASE , ) lowercase_ : Optional[Any] = os.path.join('''local''' , '''--'''.join(pretrained_model_name_or_path.split('''/''' ) ) ) except EnvironmentError: logger.error(F'''Could not locate the {module_file} inside {pretrained_model_name_or_path}.''' ) raise # Check we have all the requirements in our environment lowercase_ : Tuple = check_imports(__SCREAMING_SNAKE_CASE ) # Now we move the module inside our cached dynamic modules. lowercase_ : str = DIFFUSERS_DYNAMIC_MODULE_NAME + os.path.sep + submodule create_dynamic_module(__SCREAMING_SNAKE_CASE ) lowercase_ : Any = Path(__SCREAMING_SNAKE_CASE ) / full_submodule if submodule == "local" or submodule == "git": # We always copy local files (we could hash the file to see if there was a change, and give them the name of # that hash, to only copy when there is a modification but it seems overkill for now). # The only reason we do the copy is to avoid putting too many folders in sys.path. shutil.copy(__SCREAMING_SNAKE_CASE , submodule_path / module_file ) for module_needed in modules_needed: lowercase_ : Union[str, Any] = F'''{module_needed}.py''' shutil.copy(os.path.join(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) , submodule_path / module_needed ) else: # Get the commit hash # TODO: we will get this info in the etag soon, so retrieve it from there and not here. if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): lowercase_ : Tuple = use_auth_token elif use_auth_token is True: lowercase_ : List[Any] = HfFolder.get_token() else: lowercase_ : Optional[Any] = None lowercase_ : Optional[int] = model_info(__SCREAMING_SNAKE_CASE , revision=__SCREAMING_SNAKE_CASE , token=__SCREAMING_SNAKE_CASE ).sha # The module file will end up being placed in a subfolder with the git hash of the repo. This way we get the # benefit of versioning. lowercase_ : int = submodule_path / commit_hash lowercase_ : Tuple = full_submodule + os.path.sep + commit_hash create_dynamic_module(__SCREAMING_SNAKE_CASE ) if not (submodule_path / module_file).exists(): shutil.copy(__SCREAMING_SNAKE_CASE , submodule_path / module_file ) # Make sure we also have every file with relative for module_needed in modules_needed: if not (submodule_path / module_needed).exists(): get_cached_module_file( __SCREAMING_SNAKE_CASE , F'''{module_needed}.py''' , cache_dir=__SCREAMING_SNAKE_CASE , force_download=__SCREAMING_SNAKE_CASE , resume_download=__SCREAMING_SNAKE_CASE , proxies=__SCREAMING_SNAKE_CASE , use_auth_token=__SCREAMING_SNAKE_CASE , revision=__SCREAMING_SNAKE_CASE , local_files_only=__SCREAMING_SNAKE_CASE , ) return os.path.join(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def snake_case_ ( __SCREAMING_SNAKE_CASE : Union[str, os.PathLike] , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Optional[str] = None , __SCREAMING_SNAKE_CASE : Optional[Union[str, os.PathLike]] = None , __SCREAMING_SNAKE_CASE : bool = False , __SCREAMING_SNAKE_CASE : bool = False , __SCREAMING_SNAKE_CASE : Optional[Dict[str, str]] = None , __SCREAMING_SNAKE_CASE : Optional[Union[bool, str]] = None , __SCREAMING_SNAKE_CASE : Optional[str] = None , __SCREAMING_SNAKE_CASE : bool = False , **__SCREAMING_SNAKE_CASE : Optional[Any] , ): """simple docstring""" lowercase_ : Optional[Any] = get_cached_module_file( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , cache_dir=__SCREAMING_SNAKE_CASE , force_download=__SCREAMING_SNAKE_CASE , resume_download=__SCREAMING_SNAKE_CASE , proxies=__SCREAMING_SNAKE_CASE , use_auth_token=__SCREAMING_SNAKE_CASE , revision=__SCREAMING_SNAKE_CASE , local_files_only=__SCREAMING_SNAKE_CASE , ) return get_class_in_module(__SCREAMING_SNAKE_CASE , final_module.replace('''.py''' , '''''' ) )
93
1
"""simple docstring""" def lowercase_ ( _lowerCamelCase: int , _lowerCamelCase: float , _lowerCamelCase: float ) -> float: '''simple docstring''' return round(float(moles / volume ) * nfactor ) def lowercase_ ( _lowerCamelCase: float , _lowerCamelCase: float , _lowerCamelCase: float ) -> float: '''simple docstring''' return round(float((moles * 0.0821 * temperature) / (volume) ) ) def lowercase_ ( _lowerCamelCase: float , _lowerCamelCase: float , _lowerCamelCase: float ) -> float: '''simple docstring''' return round(float((moles * 0.0821 * temperature) / (pressure) ) ) def lowercase_ ( _lowerCamelCase: float , _lowerCamelCase: float , _lowerCamelCase: float ) -> float: '''simple docstring''' return round(float((pressure * volume) / (0.0821 * moles) ) ) if __name__ == "__main__": import doctest doctest.testmod()
64
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import center_crop, normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL __A = logging.get_logger(__name__) class _snake_case ( a__ ): snake_case__ = ["pixel_values"] def __init__( self : List[str] , UpperCAmelCase : bool = True , UpperCAmelCase : Dict[str, int] = None , UpperCAmelCase : PILImageResampling = PIL.Image.BICUBIC , UpperCAmelCase : bool = True , UpperCAmelCase : Dict[str, int] = None , UpperCAmelCase : Union[int, float] = 1 / 255 , UpperCAmelCase : bool = True , UpperCAmelCase : bool = True , UpperCAmelCase : Optional[Union[float, List[float]]] = None , UpperCAmelCase : Optional[Union[float, List[float]]] = None , **UpperCAmelCase : List[str] , ): super().__init__(**UpperCAmelCase ) __lowerCamelCase : int = size if size is not None else {"height": 256, "width": 256} __lowerCamelCase : str = get_size_dict(UpperCAmelCase ) __lowerCamelCase : Optional[int] = crop_size if crop_size is not None else {"height": 224, "width": 224} __lowerCamelCase : Optional[Any] = get_size_dict(UpperCAmelCase , param_name="crop_size" ) __lowerCamelCase : Any = do_resize __lowerCamelCase : str = size __lowerCamelCase : str = resample __lowerCamelCase : str = do_center_crop __lowerCamelCase : List[str] = crop_size __lowerCamelCase : Union[str, Any] = do_rescale __lowerCamelCase : List[Any] = rescale_factor __lowerCamelCase : Optional[Any] = do_normalize __lowerCamelCase : str = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN __lowerCamelCase : Any = image_std if image_std is not None else IMAGENET_STANDARD_STD def lowerCamelCase__ ( self : Tuple , UpperCAmelCase : np.ndarray , UpperCAmelCase : Dict[str, int] , UpperCAmelCase : PILImageResampling = PIL.Image.BICUBIC , UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **UpperCAmelCase : List[Any] , ): __lowerCamelCase : int = get_size_dict(UpperCAmelCase ) if "height" not in size or "width" not in size: raise ValueError(F"""The size dictionary must have keys 'height' and 'width'. Got {size.keys()}""" ) return resize( UpperCAmelCase , size=(size["height"], size["width"]) , resample=UpperCAmelCase , data_format=UpperCAmelCase , **UpperCAmelCase ) def lowerCamelCase__ ( self : Optional[int] , UpperCAmelCase : np.ndarray , UpperCAmelCase : Dict[str, int] , UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **UpperCAmelCase : Tuple , ): __lowerCamelCase : Optional[int] = get_size_dict(UpperCAmelCase ) if "height" not in size or "width" not in size: raise ValueError(F"""The size dictionary must have keys 'height' and 'width'. Got {size.keys()}""" ) return center_crop(UpperCAmelCase , size=(size["height"], size["width"]) , data_format=UpperCAmelCase , **UpperCAmelCase ) def lowerCamelCase__ ( self : List[Any] , UpperCAmelCase : np.ndarray , UpperCAmelCase : Union[int, float] , UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **UpperCAmelCase : List[str] , ): return rescale(UpperCAmelCase , scale=UpperCAmelCase , data_format=UpperCAmelCase , **UpperCAmelCase ) def lowerCamelCase__ ( self : Optional[Any] , UpperCAmelCase : np.ndarray , UpperCAmelCase : Union[float, List[float]] , UpperCAmelCase : Union[float, List[float]] , UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **UpperCAmelCase : Any , ): return normalize(UpperCAmelCase , mean=UpperCAmelCase , std=UpperCAmelCase , data_format=UpperCAmelCase , **UpperCAmelCase ) def lowerCamelCase__ ( self : Dict , UpperCAmelCase : ImageInput , UpperCAmelCase : bool = None , UpperCAmelCase : Dict[str, int] = None , UpperCAmelCase : List[Any]=None , UpperCAmelCase : bool = None , UpperCAmelCase : Dict[str, int] = None , UpperCAmelCase : bool = None , UpperCAmelCase : float = None , UpperCAmelCase : bool = None , UpperCAmelCase : Optional[Union[float, List[float]]] = None , UpperCAmelCase : Optional[Union[float, List[float]]] = None , UpperCAmelCase : Optional[Union[str, TensorType]] = None , UpperCAmelCase : ChannelDimension = ChannelDimension.FIRST , **UpperCAmelCase : int , ): __lowerCamelCase : int = do_resize if do_resize is not None else self.do_resize __lowerCamelCase : Tuple = resample if resample is not None else self.resample __lowerCamelCase : List[str] = do_center_crop if do_center_crop is not None else self.do_center_crop __lowerCamelCase : str = do_rescale if do_rescale is not None else self.do_rescale __lowerCamelCase : int = rescale_factor if rescale_factor is not None else self.rescale_factor __lowerCamelCase : Union[str, Any] = do_normalize if do_normalize is not None else self.do_normalize __lowerCamelCase : Optional[Any] = image_mean if image_mean is not None else self.image_mean __lowerCamelCase : int = image_std if image_std is not None else self.image_std __lowerCamelCase : Optional[int] = size if size is not None else self.size __lowerCamelCase : Optional[Any] = get_size_dict(UpperCAmelCase ) __lowerCamelCase : List[str] = crop_size if crop_size is not None else self.crop_size __lowerCamelCase : Dict = get_size_dict(UpperCAmelCase , param_name="crop_size" ) __lowerCamelCase : Optional[Any] = make_list_of_images(UpperCAmelCase ) if not valid_images(UpperCAmelCase ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None or resample is None: raise ValueError("Size and resample must be specified if do_resize is True." ) if do_center_crop and crop_size is None: raise ValueError("Crop size must be specified if do_center_crop is True." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True." ) # All transformations expect numpy arrays. __lowerCamelCase : Optional[int] = [to_numpy_array(UpperCAmelCase ) for image in images] if do_resize: __lowerCamelCase : Optional[int] = [self.resize(image=UpperCAmelCase , size=UpperCAmelCase , resample=UpperCAmelCase ) for image in images] if do_center_crop: __lowerCamelCase : int = [self.center_crop(image=UpperCAmelCase , size=UpperCAmelCase ) for image in images] if do_rescale: __lowerCamelCase : List[str] = [self.rescale(image=UpperCAmelCase , scale=UpperCAmelCase ) for image in images] if do_normalize: __lowerCamelCase : Optional[int] = [self.normalize(image=UpperCAmelCase , mean=UpperCAmelCase , std=UpperCAmelCase ) for image in images] __lowerCamelCase : Dict = [to_channel_dimension_format(UpperCAmelCase , UpperCAmelCase ) for image in images] __lowerCamelCase : List[Any] = {"pixel_values": images} return BatchFeature(data=UpperCAmelCase , tensor_type=UpperCAmelCase )
64
1
'''simple docstring''' from typing import Any def a ( __a ) -> list[Any]: '''simple docstring''' if not input_list: return [] UpperCamelCase__ :str = [input_list.count(__a ) for value in input_list] UpperCamelCase__ :Dict = max(__a ) # Gets the maximum count in the input list. # Gets values of modes return sorted({input_list[i] for i, value in enumerate(__a ) if value == y} ) if __name__ == "__main__": import doctest doctest.testmod()
97
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging lowercase : int = logging.get_logger(__name__) lowercase : Union[str, Any] = '▁' lowercase : Tuple = {'vocab_file': 'spiece.model'} lowercase : Dict = { 'vocab_file': { 'google/reformer-crime-and-punishment': ( 'https://huggingface.co/google/reformer-crime-and-punishment/resolve/main/spiece.model' ) } } lowercase : Any = { 'google/reformer-crime-and-punishment': 524288, } class lowerCamelCase__ ( __lowercase): '''simple docstring''' _A = VOCAB_FILES_NAMES _A = PRETRAINED_VOCAB_FILES_MAP _A = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _A = ['input_ids', 'attention_mask'] def __init__( self :int , a :List[Any] , a :Tuple="</s>" , a :str="<unk>" , a :Dict=[] , a :Optional[Dict[str, Any]] = None , **a :Union[str, Any] , ) -> None: __UpperCamelCase : str = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( eos_token=a , unk_token=a , additional_special_tokens=a , sp_model_kwargs=self.sp_model_kwargs , **a , ) __UpperCamelCase : Optional[Any] = vocab_file __UpperCamelCase : Dict = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(a ) @property def _lowerCamelCase ( self :Optional[Any] ) -> Any: return self.sp_model.get_piece_size() def _lowerCamelCase ( self :Optional[int] ) -> Dict[str, int]: __UpperCamelCase : str = {self.convert_ids_to_tokens(a ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self :str ) -> List[str]: __UpperCamelCase : Union[str, Any] = self.__dict__.copy() __UpperCamelCase : Optional[Any] = None return state def __setstate__( self :int , a :List[str] ) -> int: __UpperCamelCase : Union[str, Any] = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): __UpperCamelCase : int = {} __UpperCamelCase : Any = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def _lowerCamelCase ( self :List[Any] , a :str ) -> List[str]: return self.sp_model.encode(a , out_type=a ) def _lowerCamelCase ( self :Optional[int] , a :Optional[Any] ) -> str: return self.sp_model.piece_to_id(a ) def _lowerCamelCase ( self :Dict , a :Union[str, Any] ) -> Optional[int]: if index < self.sp_model.get_piece_size(): __UpperCamelCase : Optional[int] = self.sp_model.IdToPiece(a ) return token def _lowerCamelCase ( self :Dict , a :List[Any] ) -> Dict: __UpperCamelCase : Optional[int] = [] __UpperCamelCase : str = "" for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(a ) + token __UpperCamelCase : List[Any] = [] else: current_sub_tokens.append(a ) out_string += self.sp_model.decode(a ) return out_string.strip() def _lowerCamelCase ( self :Optional[Any] , a :str , a :Optional[str] = None ) -> Tuple[str]: if not os.path.isdir(a ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return __UpperCamelCase : List[Any] = os.path.join( a , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(a ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , a ) elif not os.path.isfile(self.vocab_file ): with open(a , "wb" ) as fi: __UpperCamelCase : int = self.sp_model.serialized_model_proto() fi.write(a ) return (out_vocab_file,)
232
0
import tempfile import torch from diffusers import ( DEISMultistepScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, UniPCMultistepScheduler, ) from .test_schedulers import SchedulerCommonTest class lowerCamelCase_ ( UpperCAmelCase_ ): '''simple docstring''' a__ : Dict = (DPMSolverSinglestepScheduler,) a__ : List[Any] = (("""num_inference_steps""", 2_5),) def UpperCamelCase__ ( self , **__lowercase) -> Dict: __UpperCamelCase :Optional[Any] = { '''num_train_timesteps''': 1_000, '''beta_start''': 0.00_01, '''beta_end''': 0.02, '''beta_schedule''': '''linear''', '''solver_order''': 2, '''prediction_type''': '''epsilon''', '''thresholding''': False, '''sample_max_value''': 1.0, '''algorithm_type''': '''dpmsolver++''', '''solver_type''': '''midpoint''', '''lambda_min_clipped''': -float('''inf'''), '''variance_type''': None, } config.update(**__lowercase) return config def UpperCamelCase__ ( self , __lowercase=0 , **__lowercase) -> Tuple: __UpperCamelCase :str = dict(self.forward_default_kwargs) __UpperCamelCase :Dict = kwargs.pop('''num_inference_steps''' , __lowercase) __UpperCamelCase :str = self.dummy_sample __UpperCamelCase :Dict = 0.1 * sample __UpperCamelCase :Optional[int] = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: __UpperCamelCase :List[Any] = self.get_scheduler_config(**__lowercase) __UpperCamelCase :Optional[int] = scheduler_class(**__lowercase) scheduler.set_timesteps(__lowercase) # copy over dummy past residuals __UpperCamelCase :str = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(__lowercase) __UpperCamelCase :str = scheduler_class.from_pretrained(__lowercase) new_scheduler.set_timesteps(__lowercase) # copy over dummy past residuals __UpperCamelCase :str = dummy_past_residuals[: new_scheduler.config.solver_order] __UpperCamelCase , __UpperCamelCase :Tuple = sample, sample for t in range(__lowercase , time_step + scheduler.config.solver_order + 1): __UpperCamelCase :Any = scheduler.step(__lowercase , __lowercase , __lowercase , **__lowercase).prev_sample __UpperCamelCase :Any = new_scheduler.step(__lowercase , __lowercase , __lowercase , **__lowercase).prev_sample assert torch.sum(torch.abs(output - new_output)) < 1E-5, "Scheduler outputs are not identical" def UpperCamelCase__ ( self) -> Any: pass def UpperCamelCase__ ( self , __lowercase=0 , **__lowercase) -> int: __UpperCamelCase :Optional[Any] = dict(self.forward_default_kwargs) __UpperCamelCase :Dict = kwargs.pop('''num_inference_steps''' , __lowercase) __UpperCamelCase :List[Any] = self.dummy_sample __UpperCamelCase :str = 0.1 * sample __UpperCamelCase :Tuple = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: __UpperCamelCase :Optional[Any] = self.get_scheduler_config() __UpperCamelCase :List[str] = scheduler_class(**__lowercase) scheduler.set_timesteps(__lowercase) # copy over dummy past residuals (must be after setting timesteps) __UpperCamelCase :Optional[int] = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(__lowercase) __UpperCamelCase :str = scheduler_class.from_pretrained(__lowercase) # copy over dummy past residuals new_scheduler.set_timesteps(__lowercase) # copy over dummy past residual (must be after setting timesteps) __UpperCamelCase :str = dummy_past_residuals[: new_scheduler.config.solver_order] __UpperCamelCase :int = scheduler.step(__lowercase , __lowercase , __lowercase , **__lowercase).prev_sample __UpperCamelCase :Dict = new_scheduler.step(__lowercase , __lowercase , __lowercase , **__lowercase).prev_sample assert torch.sum(torch.abs(output - new_output)) < 1E-5, "Scheduler outputs are not identical" def UpperCamelCase__ ( self , __lowercase=None , **__lowercase) -> List[str]: if scheduler is None: __UpperCamelCase :int = self.scheduler_classes[0] __UpperCamelCase :Dict = self.get_scheduler_config(**__lowercase) __UpperCamelCase :Dict = scheduler_class(**__lowercase) __UpperCamelCase :Optional[int] = self.scheduler_classes[0] __UpperCamelCase :str = self.get_scheduler_config(**__lowercase) __UpperCamelCase :Optional[int] = scheduler_class(**__lowercase) __UpperCamelCase :Tuple = 10 __UpperCamelCase :str = self.dummy_model() __UpperCamelCase :List[Any] = self.dummy_sample_deter scheduler.set_timesteps(__lowercase) for i, t in enumerate(scheduler.timesteps): __UpperCamelCase :Tuple = model(__lowercase , __lowercase) __UpperCamelCase :str = scheduler.step(__lowercase , __lowercase , __lowercase).prev_sample return sample def UpperCamelCase__ ( self) -> int: __UpperCamelCase :List[str] = DPMSolverSinglestepScheduler(**self.get_scheduler_config()) __UpperCamelCase :Any = 50 __UpperCamelCase :Optional[Any] = self.dummy_model() __UpperCamelCase :Optional[int] = self.dummy_sample_deter scheduler.set_timesteps(__lowercase) # make sure that the first t is uneven for i, t in enumerate(scheduler.timesteps[3:]): __UpperCamelCase :List[Any] = model(__lowercase , __lowercase) __UpperCamelCase :Optional[int] = scheduler.step(__lowercase , __lowercase , __lowercase).prev_sample __UpperCamelCase :Tuple = torch.mean(torch.abs(__lowercase)) assert abs(result_mean.item() - 0.25_74) < 1E-3 def UpperCamelCase__ ( self) -> List[Any]: for timesteps in [25, 50, 100, 999, 1_000]: self.check_over_configs(num_train_timesteps=__lowercase) def UpperCamelCase__ ( self) -> Union[str, Any]: # make sure that iterating over schedulers with same config names gives same results # for defaults __UpperCamelCase :Any = DPMSolverSinglestepScheduler(**self.get_scheduler_config()) __UpperCamelCase :List[str] = self.full_loop(scheduler=__lowercase) __UpperCamelCase :Dict = torch.mean(torch.abs(__lowercase)) assert abs(result_mean.item() - 0.27_91) < 1E-3 __UpperCamelCase :Dict = DEISMultistepScheduler.from_config(scheduler.config) __UpperCamelCase :List[str] = DPMSolverMultistepScheduler.from_config(scheduler.config) __UpperCamelCase :int = UniPCMultistepScheduler.from_config(scheduler.config) __UpperCamelCase :Union[str, Any] = DPMSolverSinglestepScheduler.from_config(scheduler.config) __UpperCamelCase :int = self.full_loop(scheduler=__lowercase) __UpperCamelCase :List[Any] = torch.mean(torch.abs(__lowercase)) assert abs(result_mean.item() - 0.27_91) < 1E-3 def UpperCamelCase__ ( self) -> Tuple: self.check_over_configs(thresholding=__lowercase) for order in [1, 2, 3]: for solver_type in ["midpoint", "heun"]: for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( thresholding=__lowercase , prediction_type=__lowercase , sample_max_value=__lowercase , algorithm_type='''dpmsolver++''' , solver_order=__lowercase , solver_type=__lowercase , ) def UpperCamelCase__ ( self) -> int: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=__lowercase) def UpperCamelCase__ ( self) -> Tuple: for algorithm_type in ["dpmsolver", "dpmsolver++"]: for solver_type in ["midpoint", "heun"]: for order in [1, 2, 3]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( solver_order=__lowercase , solver_type=__lowercase , prediction_type=__lowercase , algorithm_type=__lowercase , ) __UpperCamelCase :List[str] = self.full_loop( solver_order=__lowercase , solver_type=__lowercase , prediction_type=__lowercase , algorithm_type=__lowercase , ) assert not torch.isnan(__lowercase).any(), "Samples have nan numbers" def UpperCamelCase__ ( self) -> Dict: self.check_over_configs(lower_order_final=__lowercase) self.check_over_configs(lower_order_final=__lowercase) def UpperCamelCase__ ( self) -> Union[str, Any]: self.check_over_configs(lambda_min_clipped=-float('''inf''')) self.check_over_configs(lambda_min_clipped=-5.1) def UpperCamelCase__ ( self) -> Dict: self.check_over_configs(variance_type=__lowercase) self.check_over_configs(variance_type='''learned_range''') def UpperCamelCase__ ( self) -> Tuple: for num_inference_steps in [1, 2, 3, 5, 10, 50, 100, 999, 1_000]: self.check_over_forward(num_inference_steps=__lowercase , time_step=0) def UpperCamelCase__ ( self) -> Dict: __UpperCamelCase :int = self.full_loop() __UpperCamelCase :Dict = torch.mean(torch.abs(__lowercase)) assert abs(result_mean.item() - 0.27_91) < 1E-3 def UpperCamelCase__ ( self) -> List[Any]: __UpperCamelCase :List[str] = self.full_loop(use_karras_sigmas=__lowercase) __UpperCamelCase :int = torch.mean(torch.abs(__lowercase)) assert abs(result_mean.item() - 0.22_48) < 1E-3 def UpperCamelCase__ ( self) -> Tuple: __UpperCamelCase :Optional[Any] = self.full_loop(prediction_type='''v_prediction''') __UpperCamelCase :int = torch.mean(torch.abs(__lowercase)) assert abs(result_mean.item() - 0.14_53) < 1E-3 def UpperCamelCase__ ( self) -> Union[str, Any]: __UpperCamelCase :Any = self.full_loop(prediction_type='''v_prediction''' , use_karras_sigmas=__lowercase) __UpperCamelCase :int = torch.mean(torch.abs(__lowercase)) assert abs(result_mean.item() - 0.06_49) < 1E-3 def UpperCamelCase__ ( self) -> List[str]: __UpperCamelCase :int = self.scheduler_classes[0] __UpperCamelCase :Optional[int] = self.get_scheduler_config(thresholding=__lowercase , dynamic_thresholding_ratio=0) __UpperCamelCase :List[Any] = scheduler_class(**__lowercase) __UpperCamelCase :Dict = 10 __UpperCamelCase :Optional[Any] = self.dummy_model() __UpperCamelCase :Dict = self.dummy_sample_deter.half() scheduler.set_timesteps(__lowercase) for i, t in enumerate(scheduler.timesteps): __UpperCamelCase :str = model(__lowercase , __lowercase) __UpperCamelCase :Union[str, Any] = scheduler.step(__lowercase , __lowercase , __lowercase).prev_sample assert sample.dtype == torch.floataa
105
from ...utils import is_note_seq_available, is_transformers_available, is_torch_available from ...utils import OptionalDependencyNotAvailable try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .notes_encoder import SpectrogramNotesEncoder from .continous_encoder import SpectrogramContEncoder from .pipeline_spectrogram_diffusion import ( SpectrogramContEncoder, SpectrogramDiffusionPipeline, TaFilmDecoder, ) try: if not (is_transformers_available() and is_torch_available() and is_note_seq_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_transformers_and_torch_and_note_seq_objects import * # noqa F403 else: from .midi_utils import MidiProcessor
105
1
'''simple docstring''' import gc import unittest import numpy as np import torch from diffusers import AutoencoderKL, DDIMScheduler, DiTPipeline, DPMSolverMultistepScheduler, TransformeraDModel from diffusers.utils import is_xformers_available, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS, CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class lowercase_ ( a__ , unittest.TestCase ): __UpperCAmelCase = DiTPipeline __UpperCAmelCase = CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS __UpperCAmelCase = PipelineTesterMixin.required_optional_params - { 'latents', 'num_images_per_prompt', 'callback', 'callback_steps', } __UpperCAmelCase = CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS __UpperCAmelCase = False def __a ( self ): torch.manual_seed(0 ) UpperCamelCase__ = TransformeraDModel( sample_size=16 , num_layers=2 , patch_size=4 , attention_head_dim=8 , num_attention_heads=2 , in_channels=4 , out_channels=8 , attention_bias=a , activation_fn="gelu-approximate" , num_embeds_ada_norm=10_00 , norm_type="ada_norm_zero" , norm_elementwise_affine=a , ) UpperCamelCase__ = AutoencoderKL() UpperCamelCase__ = DDIMScheduler() UpperCamelCase__ = {"transformer": transformer.eval(), "vae": vae.eval(), "scheduler": scheduler} return components def __a ( self , a , a=0 ): if str(a ).startswith("mps" ): UpperCamelCase__ = torch.manual_seed(a ) else: UpperCamelCase__ = torch.Generator(device=a ).manual_seed(a ) UpperCamelCase__ = { "class_labels": [1], "generator": generator, "num_inference_steps": 2, "output_type": "numpy", } return inputs def __a ( self ): UpperCamelCase__ = "cpu" UpperCamelCase__ = self.get_dummy_components() UpperCamelCase__ = self.pipeline_class(**a ) pipe.to(a ) pipe.set_progress_bar_config(disable=a ) UpperCamelCase__ = self.get_dummy_inputs(a ) UpperCamelCase__ = pipe(**a ).images UpperCamelCase__ = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 16, 16, 3) ) UpperCamelCase__ = np.array([0.2946, 0.6601, 0.4329, 0.3296, 0.4144, 0.5319, 0.7273, 0.5013, 0.4457] ) UpperCamelCase__ = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(a , 1e-3 ) def __a ( self ): self._test_inference_batch_single_identical(relax_max_difference=a , expected_max_diff=1e-3 ) @unittest.skipIf( torch_device != "cuda" or not is_xformers_available() , reason="XFormers attention is only available with CUDA and `xformers` installed" , ) def __a ( self ): self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 ) @require_torch_gpu @slow class lowercase_ ( unittest.TestCase ): def __a ( self ): super().tearDown() gc.collect() torch.cuda.empty_cache() def __a ( self ): UpperCamelCase__ = torch.manual_seed(0 ) UpperCamelCase__ = DiTPipeline.from_pretrained("facebook/DiT-XL-2-256" ) pipe.to("cuda" ) UpperCamelCase__ = ["vase", "umbrella", "white shark", "white wolf"] UpperCamelCase__ = pipe.get_label_ids(a ) UpperCamelCase__ = pipe(a , generator=a , num_inference_steps=40 , output_type="np" ).images for word, image in zip(a , a ): UpperCamelCase__ = load_numpy( f'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/dit/{word}.npy''' ) assert np.abs((expected_image - image).max() ) < 1e-2 def __a ( self ): UpperCamelCase__ = DiTPipeline.from_pretrained("facebook/DiT-XL-2-512" ) UpperCamelCase__ = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.to("cuda" ) UpperCamelCase__ = ["vase", "umbrella"] UpperCamelCase__ = pipe.get_label_ids(a ) UpperCamelCase__ = torch.manual_seed(0 ) UpperCamelCase__ = pipe(a , generator=a , num_inference_steps=25 , output_type="np" ).images for word, image in zip(a , a ): UpperCamelCase__ = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" f'''/dit/{word}_512.npy''' ) assert np.abs((expected_image - image).max() ) < 1e-1
80
'''simple docstring''' import unittest from transformers import ( MODEL_FOR_OBJECT_DETECTION_MAPPING, AutoFeatureExtractor, AutoModelForObjectDetection, ObjectDetectionPipeline, is_vision_available, pipeline, ) from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_pytesseract, require_tf, require_timm, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class a : @staticmethod def A_ ( *lowercase_ : int , **lowercase_ : str ): pass @is_pipeline_test @require_vision @require_timm @require_torch class a ( unittest.TestCase ): snake_case_ = MODEL_FOR_OBJECT_DETECTION_MAPPING def A_ ( self : Any , lowercase_ : List[Any] , lowercase_ : Optional[int] , lowercase_ : List[str] ): snake_case_ = ObjectDetectionPipeline(model=lowercase_ , image_processor=lowercase_ ) return object_detector, ["./tests/fixtures/tests_samples/COCO/000000039769.png"] def A_ ( self : Dict , lowercase_ : List[Any] , lowercase_ : int ): snake_case_ = object_detector('''./tests/fixtures/tests_samples/COCO/000000039769.png''' , threshold=0.0 ) self.assertGreater(len(lowercase_ ) , 0 ) for detected_object in outputs: self.assertEqual( lowercase_ , { '''score''': ANY(lowercase_ ), '''label''': ANY(lowercase_ ), '''box''': {'''xmin''': ANY(lowercase_ ), '''ymin''': ANY(lowercase_ ), '''xmax''': ANY(lowercase_ ), '''ymax''': ANY(lowercase_ )}, } , ) import datasets snake_case_ = datasets.load_dataset('''hf-internal-testing/fixtures_image_utils''' , '''image''' , split='''test''' ) snake_case_ = [ Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ), '''http://images.cocodataset.org/val2017/000000039769.jpg''', # RGBA dataset[0]['''file'''], # LA dataset[1]['''file'''], # L dataset[2]['''file'''], ] snake_case_ = object_detector(lowercase_ , threshold=0.0 ) self.assertEqual(len(lowercase_ ) , len(lowercase_ ) ) for outputs in batch_outputs: self.assertGreater(len(lowercase_ ) , 0 ) for detected_object in outputs: self.assertEqual( lowercase_ , { '''score''': ANY(lowercase_ ), '''label''': ANY(lowercase_ ), '''box''': {'''xmin''': ANY(lowercase_ ), '''ymin''': ANY(lowercase_ ), '''xmax''': ANY(lowercase_ ), '''ymax''': ANY(lowercase_ )}, } , ) @require_tf @unittest.skip('''Object detection not implemented in TF''' ) def A_ ( self : int ): pass @require_torch def A_ ( self : Tuple ): snake_case_ = '''hf-internal-testing/tiny-detr-mobilenetsv3''' snake_case_ = AutoModelForObjectDetection.from_pretrained(lowercase_ ) snake_case_ = AutoFeatureExtractor.from_pretrained(lowercase_ ) snake_case_ = ObjectDetectionPipeline(model=lowercase_ , feature_extractor=lowercase_ ) snake_case_ = object_detector('''http://images.cocodataset.org/val2017/000000039769.jpg''' , threshold=0.0 ) self.assertEqual( nested_simplify(lowercase_ , decimals=4 ) , [ {'''score''': 0.3376, '''label''': '''LABEL_0''', '''box''': {'''xmin''': 159, '''ymin''': 120, '''xmax''': 480, '''ymax''': 359}}, {'''score''': 0.3376, '''label''': '''LABEL_0''', '''box''': {'''xmin''': 159, '''ymin''': 120, '''xmax''': 480, '''ymax''': 359}}, ] , ) snake_case_ = object_detector( [ '''http://images.cocodataset.org/val2017/000000039769.jpg''', '''http://images.cocodataset.org/val2017/000000039769.jpg''', ] , threshold=0.0 , ) self.assertEqual( nested_simplify(lowercase_ , decimals=4 ) , [ [ {'''score''': 0.3376, '''label''': '''LABEL_0''', '''box''': {'''xmin''': 159, '''ymin''': 120, '''xmax''': 480, '''ymax''': 359}}, {'''score''': 0.3376, '''label''': '''LABEL_0''', '''box''': {'''xmin''': 159, '''ymin''': 120, '''xmax''': 480, '''ymax''': 359}}, ], [ {'''score''': 0.3376, '''label''': '''LABEL_0''', '''box''': {'''xmin''': 159, '''ymin''': 120, '''xmax''': 480, '''ymax''': 359}}, {'''score''': 0.3376, '''label''': '''LABEL_0''', '''box''': {'''xmin''': 159, '''ymin''': 120, '''xmax''': 480, '''ymax''': 359}}, ], ] , ) @require_torch @slow def A_ ( self : Optional[int] ): snake_case_ = '''facebook/detr-resnet-50''' snake_case_ = AutoModelForObjectDetection.from_pretrained(lowercase_ ) snake_case_ = AutoFeatureExtractor.from_pretrained(lowercase_ ) snake_case_ = ObjectDetectionPipeline(model=lowercase_ , feature_extractor=lowercase_ ) snake_case_ = object_detector('''http://images.cocodataset.org/val2017/000000039769.jpg''' ) self.assertEqual( nested_simplify(lowercase_ , decimals=4 ) , [ {'''score''': 0.9982, '''label''': '''remote''', '''box''': {'''xmin''': 40, '''ymin''': 70, '''xmax''': 175, '''ymax''': 117}}, {'''score''': 0.9960, '''label''': '''remote''', '''box''': {'''xmin''': 333, '''ymin''': 72, '''xmax''': 368, '''ymax''': 187}}, {'''score''': 0.9955, '''label''': '''couch''', '''box''': {'''xmin''': 0, '''ymin''': 1, '''xmax''': 639, '''ymax''': 473}}, {'''score''': 0.9988, '''label''': '''cat''', '''box''': {'''xmin''': 13, '''ymin''': 52, '''xmax''': 314, '''ymax''': 470}}, {'''score''': 0.9987, '''label''': '''cat''', '''box''': {'''xmin''': 345, '''ymin''': 23, '''xmax''': 640, '''ymax''': 368}}, ] , ) snake_case_ = object_detector( [ '''http://images.cocodataset.org/val2017/000000039769.jpg''', '''http://images.cocodataset.org/val2017/000000039769.jpg''', ] ) self.assertEqual( nested_simplify(lowercase_ , decimals=4 ) , [ [ {'''score''': 0.9982, '''label''': '''remote''', '''box''': {'''xmin''': 40, '''ymin''': 70, '''xmax''': 175, '''ymax''': 117}}, {'''score''': 0.9960, '''label''': '''remote''', '''box''': {'''xmin''': 333, '''ymin''': 72, '''xmax''': 368, '''ymax''': 187}}, {'''score''': 0.9955, '''label''': '''couch''', '''box''': {'''xmin''': 0, '''ymin''': 1, '''xmax''': 639, '''ymax''': 473}}, {'''score''': 0.9988, '''label''': '''cat''', '''box''': {'''xmin''': 13, '''ymin''': 52, '''xmax''': 314, '''ymax''': 470}}, {'''score''': 0.9987, '''label''': '''cat''', '''box''': {'''xmin''': 345, '''ymin''': 23, '''xmax''': 640, '''ymax''': 368}}, ], [ {'''score''': 0.9982, '''label''': '''remote''', '''box''': {'''xmin''': 40, '''ymin''': 70, '''xmax''': 175, '''ymax''': 117}}, {'''score''': 0.9960, '''label''': '''remote''', '''box''': {'''xmin''': 333, '''ymin''': 72, '''xmax''': 368, '''ymax''': 187}}, {'''score''': 0.9955, '''label''': '''couch''', '''box''': {'''xmin''': 0, '''ymin''': 1, '''xmax''': 639, '''ymax''': 473}}, {'''score''': 0.9988, '''label''': '''cat''', '''box''': {'''xmin''': 13, '''ymin''': 52, '''xmax''': 314, '''ymax''': 470}}, {'''score''': 0.9987, '''label''': '''cat''', '''box''': {'''xmin''': 345, '''ymin''': 23, '''xmax''': 640, '''ymax''': 368}}, ], ] , ) @require_torch @slow def A_ ( self : Tuple ): snake_case_ = '''facebook/detr-resnet-50''' snake_case_ = pipeline('''object-detection''' , model=lowercase_ ) snake_case_ = object_detector('''http://images.cocodataset.org/val2017/000000039769.jpg''' ) self.assertEqual( nested_simplify(lowercase_ , decimals=4 ) , [ {'''score''': 0.9982, '''label''': '''remote''', '''box''': {'''xmin''': 40, '''ymin''': 70, '''xmax''': 175, '''ymax''': 117}}, {'''score''': 0.9960, '''label''': '''remote''', '''box''': {'''xmin''': 333, '''ymin''': 72, '''xmax''': 368, '''ymax''': 187}}, {'''score''': 0.9955, '''label''': '''couch''', '''box''': {'''xmin''': 0, '''ymin''': 1, '''xmax''': 639, '''ymax''': 473}}, {'''score''': 0.9988, '''label''': '''cat''', '''box''': {'''xmin''': 13, '''ymin''': 52, '''xmax''': 314, '''ymax''': 470}}, {'''score''': 0.9987, '''label''': '''cat''', '''box''': {'''xmin''': 345, '''ymin''': 23, '''xmax''': 640, '''ymax''': 368}}, ] , ) snake_case_ = object_detector( [ '''http://images.cocodataset.org/val2017/000000039769.jpg''', '''http://images.cocodataset.org/val2017/000000039769.jpg''', ] ) self.assertEqual( nested_simplify(lowercase_ , decimals=4 ) , [ [ {'''score''': 0.9982, '''label''': '''remote''', '''box''': {'''xmin''': 40, '''ymin''': 70, '''xmax''': 175, '''ymax''': 117}}, {'''score''': 0.9960, '''label''': '''remote''', '''box''': {'''xmin''': 333, '''ymin''': 72, '''xmax''': 368, '''ymax''': 187}}, {'''score''': 0.9955, '''label''': '''couch''', '''box''': {'''xmin''': 0, '''ymin''': 1, '''xmax''': 639, '''ymax''': 473}}, {'''score''': 0.9988, '''label''': '''cat''', '''box''': {'''xmin''': 13, '''ymin''': 52, '''xmax''': 314, '''ymax''': 470}}, {'''score''': 0.9987, '''label''': '''cat''', '''box''': {'''xmin''': 345, '''ymin''': 23, '''xmax''': 640, '''ymax''': 368}}, ], [ {'''score''': 0.9982, '''label''': '''remote''', '''box''': {'''xmin''': 40, '''ymin''': 70, '''xmax''': 175, '''ymax''': 117}}, {'''score''': 0.9960, '''label''': '''remote''', '''box''': {'''xmin''': 333, '''ymin''': 72, '''xmax''': 368, '''ymax''': 187}}, {'''score''': 0.9955, '''label''': '''couch''', '''box''': {'''xmin''': 0, '''ymin''': 1, '''xmax''': 639, '''ymax''': 473}}, {'''score''': 0.9988, '''label''': '''cat''', '''box''': {'''xmin''': 13, '''ymin''': 52, '''xmax''': 314, '''ymax''': 470}}, {'''score''': 0.9987, '''label''': '''cat''', '''box''': {'''xmin''': 345, '''ymin''': 23, '''xmax''': 640, '''ymax''': 368}}, ], ] , ) @require_torch @slow def A_ ( self : str ): snake_case_ = 0.9985 snake_case_ = '''facebook/detr-resnet-50''' snake_case_ = pipeline('''object-detection''' , model=lowercase_ ) snake_case_ = object_detector('''http://images.cocodataset.org/val2017/000000039769.jpg''' , threshold=lowercase_ ) self.assertEqual( nested_simplify(lowercase_ , decimals=4 ) , [ {'''score''': 0.9988, '''label''': '''cat''', '''box''': {'''xmin''': 13, '''ymin''': 52, '''xmax''': 314, '''ymax''': 470}}, {'''score''': 0.9987, '''label''': '''cat''', '''box''': {'''xmin''': 345, '''ymin''': 23, '''xmax''': 640, '''ymax''': 368}}, ] , ) @require_torch @require_pytesseract @slow def A_ ( self : Dict ): snake_case_ = '''Narsil/layoutlmv3-finetuned-funsd''' snake_case_ = 0.9993 snake_case_ = pipeline('''object-detection''' , model=lowercase_ , threshold=lowercase_ ) snake_case_ = object_detector( '''https://huggingface.co/spaces/impira/docquery/resolve/2359223c1837a7587402bda0f2643382a6eefeab/invoice.png''' ) self.assertEqual( nested_simplify(lowercase_ , decimals=4 ) , [ {'''score''': 0.9993, '''label''': '''I-ANSWER''', '''box''': {'''xmin''': 294, '''ymin''': 254, '''xmax''': 343, '''ymax''': 264}}, {'''score''': 0.9993, '''label''': '''I-ANSWER''', '''box''': {'''xmin''': 294, '''ymin''': 254, '''xmax''': 343, '''ymax''': 264}}, ] , )
56
0
'''simple docstring''' import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from transformers.generation import DisjunctiveConstraint @require_torch class _a ( unittest.TestCase ): def _lowercase ( self ) -> Dict: # For consistency across different places the DisjunctiveConstraint is called, # dc.token_ids is a list of integers. It is also initialized only by integers. _snake_case = [[1, 2, 4], [1, 2, 3, 4]] _snake_case = DisjunctiveConstraint(a__ ) self.assertTrue(isinstance(dc.token_ids ,a__ ) ) with self.assertRaises(a__ ): DisjunctiveConstraint(torch.LongTensor([[1, 2, 4], [1, 2, 3]] ) ) with self.assertRaises(a__ ): DisjunctiveConstraint([torch.LongTensor([1, 2, 4] ), torch.LongTensor([1, 2, 3, 4, 5] )] ) def _lowercase ( self ) -> Dict: # We can't have constraints that are complete subsets of another. This leads to a preverse # interpretation of "constraint fulfillment": does generating [1,2,3] fulfill the constraint? # It would mean that it generated [1,2] which fulfills it, but it's in the middle of potentially # fulfilling [1,2,3,4]. If we believe that [1,2,3] does fulfill the constraint, then the algorithm # will necessarily never reach [1,2,3,4], giving users a false sense of control (better to just not allow it). _snake_case = [[1, 2], [1, 2, 3, 4]] with self.assertRaises(a__ ): DisjunctiveConstraint(a__ ) # fails here def _lowercase ( self ) -> Any: _snake_case = [[1, 2, 3], [1, 2, 4]] _snake_case = DisjunctiveConstraint(a__ ) _snake_case , _snake_case , _snake_case = dc.update(1 ) _snake_case = stepped is True and completed is False and reset is False self.assertTrue(a__ ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1] ) _snake_case , _snake_case , _snake_case = dc.update(2 ) _snake_case = stepped is True and completed is False and reset is False self.assertTrue(a__ ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2] ) _snake_case , _snake_case , _snake_case = dc.update(3 ) _snake_case = stepped is True and completed is True and reset is False self.assertTrue(a__ ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.current_seq == [1, 2, 3] ) def _lowercase ( self ) -> Optional[Any]: _snake_case = [[1, 2, 3], [1, 2, 4, 5], [1, 2, 5]] _snake_case = DisjunctiveConstraint(a__ ) _snake_case , _snake_case , _snake_case = dc.update(1 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1] ) _snake_case , _snake_case , _snake_case = dc.update(2 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2] ) _snake_case , _snake_case , _snake_case = dc.update(4 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2, 4] ) _snake_case , _snake_case , _snake_case = dc.update(5 ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.current_seq == [1, 2, 4, 5] ) dc.reset() _snake_case , _snake_case , _snake_case = dc.update(1 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.remaining() == 3 ) self.assertTrue(dc.current_seq == [1] ) _snake_case , _snake_case , _snake_case = dc.update(2 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.remaining() == 2 ) self.assertTrue(dc.current_seq == [1, 2] ) _snake_case , _snake_case , _snake_case = dc.update(5 ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.remaining() == 0 ) self.assertTrue(dc.current_seq == [1, 2, 5] )
364
'''simple docstring''' def __a ( _UpperCamelCase: int ) -> str: """simple docstring""" if number > 0: raise ValueError("input must be a negative integer" ) _snake_case = len(bin(_UpperCamelCase )[3:] ) _snake_case = bin(abs(_UpperCamelCase ) - (1 << binary_number_length) )[3:] _snake_case = ( ( "1" + "0" * (binary_number_length - len(_UpperCamelCase )) + twos_complement_number ) if number < 0 else "0" ) return "0b" + twos_complement_number if __name__ == "__main__": import doctest doctest.testmod()
142
0
from ..models.auto import AutoModelForSeqaSeqLM, AutoTokenizer from .base import PipelineTool class lowerCamelCase (UpperCamelCase_ ): '''simple docstring''' _snake_case : Optional[Any] = """philschmid/bart-large-cnn-samsum""" _snake_case : int = ( """This is a tool that summarizes an English text. It takes an input `text` containing the text to summarize, """ """and returns a summary of the text.""" ) _snake_case : Optional[int] = """summarizer""" _snake_case : Union[str, Any] = AutoTokenizer _snake_case : int = AutoModelForSeqaSeqLM _snake_case : str = ["""text"""] _snake_case : Optional[int] = ["""text"""] def __UpperCAmelCase ( self , _UpperCamelCase ) -> Any: return self.pre_processor(_a , return_tensors='pt' , truncation=_a ) def __UpperCAmelCase ( self , _UpperCamelCase ) -> Union[str, Any]: return self.model.generate(**_a )[0] def __UpperCAmelCase ( self , _UpperCamelCase ) -> List[Any]: return self.pre_processor.decode(_a , skip_special_tokens=_a , clean_up_tokenization_spaces=_a )
29
"""simple docstring""" import math_equivalence # From: git+https://github.com/hendrycks/math.git import datasets a :str = "\\n@article{hendrycksmath2021,\n title={Measuring Mathematical Problem Solving With the MATH Dataset},\n author={Dan Hendrycks\n and Collin Burns\n and Saurav Kadavath\n and Akul Arora\n and Steven Basart\n and Eric Tang\n and Dawn Song\n and Jacob Steinhardt},\n journal={arXiv preprint arXiv:2103.03874},\n year={2021}\n}\n" a :List[Any] = "\\nThis metric is used to assess performance on the Mathematics Aptitude Test of Heuristics (MATH) dataset.\nIt first canonicalizes the inputs (e.g., converting \"1/2\" to \"\\frac{1}{2}\") and then computes accuracy.\n" a :int = r"\nCalculates accuracy after canonicalizing inputs.\n\nArgs:\n predictions: list of predictions to score. Each prediction\n is a string that contains natural language and LaTex.\n references: list of reference for each prediction. Each\n reference is a string that contains natural language\n and LaTex.\nReturns:\n accuracy: accuracy after canonicalizing inputs\n (e.g., converting \"1/2\" to \"\\frac{1}{2}\")\n\nExamples:\n >>> metric = datasets.load_metric(\"competition_math\")\n >>> results = metric.compute(references=[\"\\frac{1}{2}\"], predictions=[\"1/2\"])\n >>> print(results)\n {'accuracy': 1.0}\n" @datasets.utils.file_utils.add_end_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION) class __a (datasets.Metric): '''simple docstring''' def _a ( self ) -> List[Any]: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""string""" ), """references""": datasets.Value("""string""" ), } ) , homepage="""https://github.com/hendrycks/math""" , codebase_urls=["""https://github.com/hendrycks/math"""] , ) def _a ( self , _a , _a ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[Any] = 0.0 for i, j in zip(_a , _a ): n_correct += 1.0 if math_equivalence.is_equiv(_a , _a ) else 0.0 SCREAMING_SNAKE_CASE__ : List[str] = n_correct / len(_a ) return { "accuracy": accuracy, }
132
0
'''simple docstring''' import argparse from pathlib import Path import requests import torch from PIL import Image from transformers import ( RobertaTokenizer, TrOCRConfig, TrOCRForCausalLM, TrOCRProcessor, VisionEncoderDecoderModel, ViTConfig, ViTImageProcessor, ViTModel, ) from transformers.utils import logging logging.set_verbosity_info() UpperCamelCase = logging.get_logger(__name__) def SCREAMING_SNAKE_CASE( __lowercase , __lowercase ) -> Any: A: Optional[Any] = [] for i in range(encoder_config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (F"""encoder.deit.blocks.{i}.norm1.weight""", F"""encoder.encoder.layer.{i}.layernorm_before.weight""") ) rename_keys.append((F"""encoder.deit.blocks.{i}.norm1.bias""", F"""encoder.encoder.layer.{i}.layernorm_before.bias""") ) rename_keys.append( (F"""encoder.deit.blocks.{i}.attn.proj.weight""", F"""encoder.encoder.layer.{i}.attention.output.dense.weight""") ) rename_keys.append( (F"""encoder.deit.blocks.{i}.attn.proj.bias""", F"""encoder.encoder.layer.{i}.attention.output.dense.bias""") ) rename_keys.append( (F"""encoder.deit.blocks.{i}.norm2.weight""", F"""encoder.encoder.layer.{i}.layernorm_after.weight""") ) rename_keys.append((F"""encoder.deit.blocks.{i}.norm2.bias""", F"""encoder.encoder.layer.{i}.layernorm_after.bias""") ) rename_keys.append( (F"""encoder.deit.blocks.{i}.mlp.fc1.weight""", F"""encoder.encoder.layer.{i}.intermediate.dense.weight""") ) rename_keys.append( (F"""encoder.deit.blocks.{i}.mlp.fc1.bias""", F"""encoder.encoder.layer.{i}.intermediate.dense.bias""") ) rename_keys.append( (F"""encoder.deit.blocks.{i}.mlp.fc2.weight""", F"""encoder.encoder.layer.{i}.output.dense.weight""") ) rename_keys.append((F"""encoder.deit.blocks.{i}.mlp.fc2.bias""", F"""encoder.encoder.layer.{i}.output.dense.bias""") ) # cls token, position embeddings and patch embeddings of encoder rename_keys.extend( [ ('''encoder.deit.cls_token''', '''encoder.embeddings.cls_token'''), ('''encoder.deit.pos_embed''', '''encoder.embeddings.position_embeddings'''), ('''encoder.deit.patch_embed.proj.weight''', '''encoder.embeddings.patch_embeddings.projection.weight'''), ('''encoder.deit.patch_embed.proj.bias''', '''encoder.embeddings.patch_embeddings.projection.bias'''), ('''encoder.deit.norm.weight''', '''encoder.layernorm.weight'''), ('''encoder.deit.norm.bias''', '''encoder.layernorm.bias'''), ] ) return rename_keys def SCREAMING_SNAKE_CASE( __lowercase , __lowercase ) -> Dict: for i in range(encoder_config.num_hidden_layers ): # queries, keys and values (only weights, no biases) A: Tuple = state_dict.pop(F"""encoder.deit.blocks.{i}.attn.qkv.weight""" ) A: Optional[int] = in_proj_weight[ : encoder_config.hidden_size, : ] A: Dict = in_proj_weight[ encoder_config.hidden_size : encoder_config.hidden_size * 2, : ] A: Any = in_proj_weight[ -encoder_config.hidden_size :, : ] def SCREAMING_SNAKE_CASE( __lowercase , __lowercase , __lowercase ) -> Optional[Any]: A: Optional[Any] = dct.pop(__lowercase ) A: List[Any] = val def SCREAMING_SNAKE_CASE( __lowercase ) -> Optional[int]: if "handwritten" in checkpoint_url: A: str = '''https://fki.tic.heia-fr.ch/static/img/a01-122-02-00.jpg''' # industry # url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02-12.jpg" # have # url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02-10.jpg" # let # url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02.jpg" # # url = "https://fki.tic.heia-fr.ch/static/img/a01-122.jpg" elif "printed" in checkpoint_url or "stage1" in checkpoint_url: A: Union[str, Any] = '''https://www.researchgate.net/profile/Dinh-Sang/publication/338099565/figure/fig8/AS:840413229350922@1577381536857/An-receipt-example-in-the-SROIE-2019-dataset_Q640.jpg''' A: Dict = Image.open(requests.get(__lowercase , stream=__lowercase ).raw ).convert('''RGB''' ) return im @torch.no_grad() def SCREAMING_SNAKE_CASE( __lowercase , __lowercase ) -> Optional[Any]: A: Any = ViTConfig(image_size=3_8_4 , qkv_bias=__lowercase ) A: List[Any] = TrOCRConfig() # size of the architecture if "base" in checkpoint_url: A: Dict = 7_6_8 elif "large" in checkpoint_url: # use ViT-large encoder A: Any = 1_0_2_4 A: List[Any] = 4_0_9_6 A: str = 2_4 A: int = 1_6 A: Tuple = 1_0_2_4 else: raise ValueError('''Should either find \'base\' or \'large\' in checkpoint URL''' ) # the large-printed + stage1 checkpoints uses sinusoidal position embeddings, no layernorm afterwards if "large-printed" in checkpoint_url or "stage1" in checkpoint_url: A: Any = False A: Tuple = '''relu''' A: Any = 1_0_2_4 A: Union[str, Any] = True A: List[str] = False A: Tuple = False # load HuggingFace model A: List[Any] = ViTModel(__lowercase , add_pooling_layer=__lowercase ) A: Tuple = TrOCRForCausalLM(__lowercase ) A: Optional[int] = VisionEncoderDecoderModel(encoder=__lowercase , decoder=__lowercase ) model.eval() # load state_dict of original model, rename some keys A: Tuple = torch.hub.load_state_dict_from_url(__lowercase , map_location='''cpu''' , check_hash=__lowercase )['''model'''] A: Union[str, Any] = create_rename_keys(__lowercase , __lowercase ) for src, dest in rename_keys: rename_key(__lowercase , __lowercase , __lowercase ) read_in_q_k_v(__lowercase , __lowercase ) # remove parameters we don't need del state_dict["encoder.deit.head.weight"] del state_dict["encoder.deit.head.bias"] del state_dict["decoder.version"] # add prefix to decoder keys for key, val in state_dict.copy().items(): A: Tuple = state_dict.pop(__lowercase ) if key.startswith('''decoder''' ) and "output_projection" not in key: A: List[str] = val else: A: Tuple = val # load state dict model.load_state_dict(__lowercase ) # Check outputs on an image A: int = ViTImageProcessor(size=encoder_config.image_size ) A: Tuple = RobertaTokenizer.from_pretrained('''roberta-large''' ) A: List[str] = TrOCRProcessor(__lowercase , __lowercase ) A: Any = processor(images=prepare_img(__lowercase ) , return_tensors='''pt''' ).pixel_values # verify logits A: str = torch.tensor([[model.config.decoder.decoder_start_token_id]] ) A: Tuple = model(pixel_values=__lowercase , decoder_input_ids=__lowercase ) A: Optional[int] = outputs.logits A: List[str] = torch.Size([1, 1, 5_0_2_6_5] ) if "trocr-base-handwritten" in checkpoint_url: A: List[Any] = torch.tensor( [-1.4_5_0_2, -4.6_6_8_3, -0.5_3_4_7, -2.9_2_9_1, 9.1_4_3_5, -3.0_5_7_1, 8.9_7_6_4, 1.7_5_6_0, 8.7_3_5_8, -1.5_3_1_1] ) elif "trocr-large-handwritten" in checkpoint_url: A: int = torch.tensor( [-2.6_4_3_7, -1.3_1_2_9, -2.2_5_9_6, -5.3_4_5_5, 6.3_5_3_9, 1.7_6_0_4, 5.4_9_9_1, 1.4_7_0_2, 5.6_1_1_3, 2.0_1_7_0] ) elif "trocr-base-printed" in checkpoint_url: A: int = torch.tensor( [-5.6_8_1_6, -5.8_3_8_8, 1.1_3_9_8, -6.9_0_3_4, 6.8_5_0_5, -2.4_3_9_3, 1.2_2_8_4, -1.0_2_3_2, -1.9_6_6_1, -3.9_2_1_0] ) elif "trocr-large-printed" in checkpoint_url: A: str = torch.tensor( [-6.0_1_6_2, -7.0_9_5_9, 4.4_1_5_5, -5.1_0_6_3, 7.0_4_6_8, -3.1_6_3_1, 2.6_4_6_6, -0.3_0_8_1, -0.8_1_0_6, -1.7_5_3_5] ) if "stage1" not in checkpoint_url: assert logits.shape == expected_shape, "Shape of logits not as expected" assert torch.allclose(logits[0, 0, :1_0] , __lowercase , atol=1E-3 ), "First elements of logits not as expected" Path(__lowercase ).mkdir(exist_ok=__lowercase ) print(F"""Saving model to {pytorch_dump_folder_path}""" ) model.save_pretrained(__lowercase ) print(F"""Saving processor to {pytorch_dump_folder_path}""" ) processor.save_pretrained(__lowercase ) if __name__ == "__main__": UpperCamelCase = argparse.ArgumentParser() parser.add_argument( '''--checkpoint_url''', default='''https://layoutlm.blob.core.windows.net/trocr/model_zoo/fairseq/trocr-base-handwritten.pt''', type=str, help='''URL to the original PyTorch checkpoint (.pth file).''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the folder to output PyTorch model.''' ) UpperCamelCase = parser.parse_args() convert_tr_ocr_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
334
'''simple docstring''' from ..utils import is_flax_available, is_torch_available if is_torch_available(): from .autoencoder_kl import AutoencoderKL from .controlnet import ControlNetModel from .dual_transformer_ad import DualTransformeraDModel from .modeling_utils import ModelMixin from .prior_transformer import PriorTransformer from .ta_film_transformer import TaFilmDecoder from .transformer_ad import TransformeraDModel from .unet_ad import UNetaDModel from .unet_ad import UNetaDModel from .unet_ad_condition import UNetaDConditionModel from .unet_ad_condition import UNetaDConditionModel from .vq_model import VQModel if is_flax_available(): from .controlnet_flax import FlaxControlNetModel from .unet_ad_condition_flax import FlaxUNetaDConditionModel from .vae_flax import FlaxAutoencoderKL
334
1
"""simple docstring""" import collections import inspect import unittest from typing import Dict, List, Tuple from transformers import MaskFormerSwinConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, torch_device from transformers.utils import is_torch_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import MaskFormerSwinBackbone from transformers.models.maskformer import MaskFormerSwinModel class lowercase: '''simple docstring''' def __init__( self: Any, a_: Union[str, Any], a_: Dict=13, a_: Optional[Any]=32, a_: Any=2, a_: Any=3, a_: Optional[Any]=16, a_: List[str]=[1, 2, 1], a_: int=[2, 2, 4], a_: Dict=2, a_: Optional[int]=2.0, a_: Union[str, Any]=True, a_: Optional[Any]=0.0, a_: Optional[int]=0.0, a_: Union[str, Any]=0.1, a_: str="gelu", a_: int=False, a_: Union[str, Any]=True, a_: Dict=0.02, a_: List[Any]=1E-5, a_: int=True, a_: Union[str, Any]=None, a_: Optional[int]=True, a_: List[Any]=10, a_: Tuple=8, a_: Optional[Any]=["stage1", "stage2", "stage3"], a_: Union[str, Any]=[1, 2, 3], ): '''simple docstring''' _snake_case : str = parent _snake_case : Optional[int] = batch_size _snake_case : Any = image_size _snake_case : int = patch_size _snake_case : Union[str, Any] = num_channels _snake_case : int = embed_dim _snake_case : Optional[Any] = depths _snake_case : Tuple = num_heads _snake_case : Union[str, Any] = window_size _snake_case : List[Any] = mlp_ratio _snake_case : Union[str, Any] = qkv_bias _snake_case : List[Any] = hidden_dropout_prob _snake_case : Dict = attention_probs_dropout_prob _snake_case : Union[str, Any] = drop_path_rate _snake_case : str = hidden_act _snake_case : Union[str, Any] = use_absolute_embeddings _snake_case : Optional[Any] = patch_norm _snake_case : Any = layer_norm_eps _snake_case : Union[str, Any] = initializer_range _snake_case : Union[str, Any] = is_training _snake_case : Optional[Any] = scope _snake_case : Union[str, Any] = use_labels _snake_case : Union[str, Any] = type_sequence_label_size _snake_case : str = encoder_stride _snake_case : List[Any] = out_features _snake_case : Tuple = out_indices def UpperCamelCase_ ( self: str ): '''simple docstring''' _snake_case : str = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _snake_case : Tuple = None if self.use_labels: _snake_case : Optional[Any] = ids_tensor([self.batch_size], self.type_sequence_label_size ) _snake_case : List[str] = self.get_config() return config, pixel_values, labels def UpperCamelCase_ ( self: str ): '''simple docstring''' return MaskFormerSwinConfig( image_size=self.image_size, patch_size=self.patch_size, num_channels=self.num_channels, embed_dim=self.embed_dim, depths=self.depths, num_heads=self.num_heads, window_size=self.window_size, mlp_ratio=self.mlp_ratio, qkv_bias=self.qkv_bias, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, drop_path_rate=self.drop_path_rate, hidden_act=self.hidden_act, use_absolute_embeddings=self.use_absolute_embeddings, path_norm=self.patch_norm, layer_norm_eps=self.layer_norm_eps, initializer_range=self.initializer_range, encoder_stride=self.encoder_stride, out_features=self.out_features, out_indices=self.out_indices, ) def UpperCamelCase_ ( self: str, a_: List[str], a_: List[str], a_: str ): '''simple docstring''' _snake_case : str = MaskFormerSwinModel(config=a_ ) model.to(a_ ) model.eval() _snake_case : Any = model(a_ ) _snake_case : List[str] = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) _snake_case : List[str] = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, expected_seq_len, expected_dim) ) def UpperCamelCase_ ( self: Dict, a_: Tuple, a_: Tuple, a_: Any ): '''simple docstring''' _snake_case : int = MaskFormerSwinBackbone(config=a_ ) model.to(a_ ) model.eval() _snake_case : str = model(a_ ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ), len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ), [13, 16, 16, 16] ) # verify channels self.parent.assertEqual(len(model.channels ), len(config.out_features ) ) self.parent.assertListEqual(model.channels, [16, 32, 64] ) # verify ValueError with self.parent.assertRaises(a_ ): _snake_case : Optional[Any] = ["""stem"""] _snake_case : Tuple = MaskFormerSwinBackbone(config=a_ ) def UpperCamelCase_ ( self: Tuple ): '''simple docstring''' _snake_case : Any = self.prepare_config_and_inputs() _snake_case , _snake_case , _snake_case : List[Any] = config_and_inputs _snake_case : Optional[Any] = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class lowercase( __a , __a , unittest.TestCase ): '''simple docstring''' lowercase__ = ( ( MaskFormerSwinModel, MaskFormerSwinBackbone, ) if is_torch_available() else () ) lowercase__ = {"feature-extraction": MaskFormerSwinModel} if is_torch_available() else {} lowercase__ = False lowercase__ = False lowercase__ = False lowercase__ = False lowercase__ = False def UpperCamelCase_ ( self: Tuple ): '''simple docstring''' _snake_case : List[Any] = MaskFormerSwinModelTester(self ) _snake_case : List[str] = ConfigTester(self, config_class=a_, embed_dim=37 ) @require_torch_multi_gpu @unittest.skip( reason=( """`MaskFormerSwinModel` outputs `hidden_states_spatial_dimensions` which doesn't work well with""" """ `nn.DataParallel`""" ) ) def UpperCamelCase_ ( self: int ): '''simple docstring''' pass def UpperCamelCase_ ( self: Optional[Any] ): '''simple docstring''' self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def UpperCamelCase_ ( self: Tuple ): '''simple docstring''' return def UpperCamelCase_ ( self: Dict ): '''simple docstring''' _snake_case : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*a_ ) def UpperCamelCase_ ( self: Tuple ): '''simple docstring''' _snake_case : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*a_ ) @unittest.skip("""Swin does not use inputs_embeds""" ) def UpperCamelCase_ ( self: Any ): '''simple docstring''' pass @unittest.skip("""Swin does not support feedforward chunking""" ) def UpperCamelCase_ ( self: Optional[Any] ): '''simple docstring''' pass def UpperCamelCase_ ( self: Dict ): '''simple docstring''' _snake_case , _snake_case : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _snake_case : Optional[int] = model_class(a_ ) self.assertIsInstance(model.get_input_embeddings(), (nn.Module) ) _snake_case : Optional[Any] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(a_, nn.Linear ) ) def UpperCamelCase_ ( self: List[str] ): '''simple docstring''' _snake_case , _snake_case : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _snake_case : Tuple = model_class(a_ ) _snake_case : str = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _snake_case : Union[str, Any] = [*signature.parameters.keys()] _snake_case : List[Any] = ["""pixel_values"""] self.assertListEqual(arg_names[:1], a_ ) @unittest.skip(reason="""MaskFormerSwin is only used as backbone and doesn't support output_attentions""" ) def UpperCamelCase_ ( self: List[Any] ): '''simple docstring''' pass @unittest.skip(reason="""MaskFormerSwin is only used as an internal backbone""" ) def UpperCamelCase_ ( self: str ): '''simple docstring''' pass def UpperCamelCase_ ( self: int, a_: str, a_: Dict, a_: Union[str, Any], a_: Union[str, Any] ): '''simple docstring''' _snake_case : Any = model_class(a_ ) model.to(a_ ) model.eval() with torch.no_grad(): _snake_case : Optional[Any] = model(**self._prepare_for_class(a_, a_ ) ) _snake_case : Optional[Any] = outputs.hidden_states _snake_case : Any = getattr( self.model_tester, """expected_num_hidden_layers""", len(self.model_tester.depths ) + 1 ) self.assertEqual(len(a_ ), a_ ) # Swin has a different seq_length _snake_case : int = ( config.patch_size if isinstance(config.patch_size, collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) _snake_case : int = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ), [num_patches, self.model_tester.embed_dim], ) def UpperCamelCase_ ( self: List[Any] ): '''simple docstring''' _snake_case , _snake_case : int = self.model_tester.prepare_config_and_inputs_for_common() _snake_case : Any = ( self.model_tester.image_size if isinstance(self.model_tester.image_size, collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes: _snake_case : Tuple = True self.check_hidden_states_output(a_, a_, a_, a_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _snake_case : Optional[Any] = True self.check_hidden_states_output(a_, a_, a_, a_ ) def UpperCamelCase_ ( self: Optional[Any] ): '''simple docstring''' _snake_case , _snake_case : int = self.model_tester.prepare_config_and_inputs_for_common() _snake_case : str = 3 _snake_case : List[str] = ( self.model_tester.image_size if isinstance(self.model_tester.image_size, collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) _snake_case : List[Any] = ( config.patch_size if isinstance(config.patch_size, collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) _snake_case : List[str] = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) _snake_case : Tuple = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes: _snake_case : Any = True self.check_hidden_states_output(a_, a_, a_, (padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _snake_case : Dict = True self.check_hidden_states_output(a_, a_, a_, (padded_height, padded_width) ) @unittest.skip(reason="""MaskFormerSwin doesn't have pretrained checkpoints""" ) def UpperCamelCase_ ( self: int ): '''simple docstring''' pass @unittest.skip(reason="""This will be fixed once MaskFormerSwin is replaced by native Swin""" ) def UpperCamelCase_ ( self: Dict ): '''simple docstring''' pass @unittest.skip(reason="""This will be fixed once MaskFormerSwin is replaced by native Swin""" ) def UpperCamelCase_ ( self: int ): '''simple docstring''' pass def UpperCamelCase_ ( self: str ): '''simple docstring''' _snake_case , _snake_case : str = self.model_tester.prepare_config_and_inputs_for_common() def set_nan_tensor_to_zero(a_: List[str] ): _snake_case : Union[str, Any] = 0 return t def check_equivalence(a_: List[Any], a_: List[Any], a_: List[str], a_: List[str]={} ): with torch.no_grad(): _snake_case : Any = model(**a_, return_dict=a_, **a_ ) _snake_case : int = model(**a_, return_dict=a_, **a_ ).to_tuple() def recursive_check(a_: Union[str, Any], a_: Tuple ): if isinstance(a_, (List, Tuple) ): for tuple_iterable_value, dict_iterable_value in zip(a_, a_ ): recursive_check(a_, a_ ) elif isinstance(a_, a_ ): for tuple_iterable_value, dict_iterable_value in zip( tuple_object.values(), dict_object.values() ): recursive_check(a_, a_ ) elif tuple_object is None: return else: self.assertTrue( torch.allclose( set_nan_tensor_to_zero(a_ ), set_nan_tensor_to_zero(a_ ), atol=1E-5 ), msg=( """Tuple and dict output are not equal. Difference:""" f" {torch.max(torch.abs(tuple_object - dict_object ) )}. Tuple has `nan`:" f" {torch.isnan(a_ ).any()} and `inf`: {torch.isinf(a_ )}. Dict has" f" `nan`: {torch.isnan(a_ ).any()} and `inf`: {torch.isinf(a_ )}." ), ) recursive_check(a_, a_ ) for model_class in self.all_model_classes: _snake_case : Tuple = model_class(a_ ) model.to(a_ ) model.eval() _snake_case : int = self._prepare_for_class(a_, a_ ) _snake_case : str = self._prepare_for_class(a_, a_ ) check_equivalence(a_, a_, a_ ) _snake_case : str = self._prepare_for_class(a_, a_, return_labels=a_ ) _snake_case : str = self._prepare_for_class(a_, a_, return_labels=a_ ) check_equivalence(a_, a_, a_ ) _snake_case : Tuple = self._prepare_for_class(a_, a_ ) _snake_case : str = self._prepare_for_class(a_, a_ ) check_equivalence(a_, a_, a_, {"""output_hidden_states""": True} ) _snake_case : int = self._prepare_for_class(a_, a_, return_labels=a_ ) _snake_case : Optional[int] = self._prepare_for_class(a_, a_, return_labels=a_ ) check_equivalence(a_, a_, a_, {"""output_hidden_states""": True} ) @require_torch class lowercase( unittest.TestCase , __a ): '''simple docstring''' lowercase__ = (MaskFormerSwinBackbone,) if is_torch_available() else () lowercase__ = MaskFormerSwinConfig def UpperCamelCase_ ( self: int ): '''simple docstring''' _snake_case : List[Any] = MaskFormerSwinModelTester(self ) def UpperCamelCase_ ( self: str ): '''simple docstring''' _snake_case , _snake_case : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() _snake_case : Tuple = inputs_dict["""pixel_values"""].shape[0] for backbone_class in self.all_model_classes: _snake_case : Any = backbone_class(a_ ) backbone.to(a_ ) backbone.eval() _snake_case : Union[str, Any] = backbone(**a_ ) # Test default outputs and verify feature maps self.assertIsInstance(outputs.feature_maps, a_ ) self.assertTrue(len(outputs.feature_maps ) == len(backbone.channels ) ) for feature_map, n_channels in zip(outputs.feature_maps, backbone.channels ): self.assertTrue(feature_map.shape[:2], (batch_size, n_channels) ) self.assertIsNone(outputs.hidden_states ) self.assertIsNone(outputs.attentions ) # Test output_hidden_states=True _snake_case : List[str] = backbone(**a_, output_hidden_states=a_ ) self.assertIsNotNone(outputs.hidden_states ) self.assertTrue(len(outputs.hidden_states ), len(backbone.stage_names ) ) # We skip the stem layer for hidden_states, n_channels in zip(outputs.hidden_states[1:], backbone.channels ): for hidden_state in hidden_states: # Hidden states are in the format (batch_size, (height * width), n_channels) _snake_case , _snake_case , _snake_case : Any = hidden_state.shape self.assertTrue((h_batch_size, h_n_channels), (batch_size, n_channels) ) # Test output_attentions=True if self.has_attentions: _snake_case : Dict = backbone(**a_, output_attentions=a_ ) self.assertIsNotNone(outputs.attentions )
64
"""simple docstring""" import json import os import re import unittest from transformers import CodeGenTokenizer, CodeGenTokenizerFast from transformers.models.codegen.tokenization_codegen import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class lowercase( __a , unittest.TestCase ): '''simple docstring''' lowercase__ = CodeGenTokenizer lowercase__ = CodeGenTokenizerFast lowercase__ = True lowercase__ = {"add_prefix_space": True} lowercase__ = False def UpperCamelCase_ ( self: Tuple ): '''simple docstring''' super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt _snake_case : Tuple = [ """l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """\u0120""", """\u0120l""", """\u0120n""", """\u0120lo""", """\u0120low""", """er""", """\u0120lowest""", """\u0120newer""", """\u0120wider""", """<unk>""", """<|endoftext|>""", ] _snake_case : Tuple = dict(zip(a_, range(len(a_ ) ) ) ) _snake_case : str = ["""#version: 0.2""", """\u0120 l""", """\u0120l o""", """\u0120lo w""", """e r""", """"""] _snake_case : List[Any] = {"""unk_token""": """<unk>"""} _snake_case : Optional[int] = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["""vocab_file"""] ) _snake_case : Optional[Any] = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file, """w""", encoding="""utf-8""" ) as fp: fp.write(json.dumps(a_ ) + """\n""" ) with open(self.merges_file, """w""", encoding="""utf-8""" ) as fp: fp.write("""\n""".join(a_ ) ) def UpperCamelCase_ ( self: Any, **a_: int ): '''simple docstring''' kwargs.update(self.special_tokens_map ) return CodeGenTokenizer.from_pretrained(self.tmpdirname, **a_ ) def UpperCamelCase_ ( self: Any, **a_: str ): '''simple docstring''' kwargs.update(self.special_tokens_map ) return CodeGenTokenizerFast.from_pretrained(self.tmpdirname, **a_ ) def UpperCamelCase_ ( self: Union[str, Any], a_: Dict ): '''simple docstring''' _snake_case : Union[str, Any] = """lower newer""" _snake_case : Tuple = """lower newer""" return input_text, output_text def UpperCamelCase_ ( self: int ): '''simple docstring''' _snake_case : Union[str, Any] = CodeGenTokenizer(self.vocab_file, self.merges_file, **self.special_tokens_map ) _snake_case : Optional[Any] = """lower newer""" _snake_case : Optional[int] = ["""\u0120low""", """er""", """\u0120""", """n""", """e""", """w""", """er"""] _snake_case : int = tokenizer.tokenize(a_, add_prefix_space=a_ ) self.assertListEqual(a_, a_ ) _snake_case : str = tokens + [tokenizer.unk_token] _snake_case : Optional[int] = [14, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(a_ ), a_ ) def UpperCamelCase_ ( self: Union[str, Any] ): '''simple docstring''' if not self.test_rust_tokenizer: return _snake_case : int = self.get_tokenizer() _snake_case : int = self.get_rust_tokenizer(add_prefix_space=a_ ) _snake_case : Dict = """lower newer""" # Testing tokenization _snake_case : Dict = tokenizer.tokenize(a_, add_prefix_space=a_ ) _snake_case : List[str] = rust_tokenizer.tokenize(a_ ) self.assertListEqual(a_, a_ ) # Testing conversion to ids without special tokens _snake_case : Optional[Any] = tokenizer.encode(a_, add_special_tokens=a_, add_prefix_space=a_ ) _snake_case : Tuple = rust_tokenizer.encode(a_, add_special_tokens=a_ ) self.assertListEqual(a_, a_ ) # Testing conversion to ids with special tokens _snake_case : Tuple = self.get_rust_tokenizer(add_prefix_space=a_ ) _snake_case : int = tokenizer.encode(a_, add_prefix_space=a_ ) _snake_case : Optional[Any] = rust_tokenizer.encode(a_ ) self.assertListEqual(a_, a_ ) # Testing the unknown token _snake_case : Tuple = tokens + [rust_tokenizer.unk_token] _snake_case : List[Any] = [14, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(rust_tokenizer.convert_tokens_to_ids(a_ ), a_ ) def UpperCamelCase_ ( self: Dict, *a_: Dict, **a_: int ): '''simple docstring''' pass def UpperCamelCase_ ( self: int, a_: List[Any]=15 ): '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})" ): _snake_case : List[Any] = self.rust_tokenizer_class.from_pretrained(a_, **a_ ) # Simple input _snake_case : Any = """This is a simple input""" _snake_case : Optional[int] = ["""This is a simple input 1""", """This is a simple input 2"""] _snake_case : Optional[int] = ("""This is a simple input""", """This is a pair""") _snake_case : Optional[Any] = [ ("""This is a simple input 1""", """This is a simple input 2"""), ("""This is a simple pair 1""", """This is a simple pair 2"""), ] # Simple input tests self.assertRaises(a_, tokenizer_r.encode, a_, max_length=a_, padding="""max_length""" ) # Simple input self.assertRaises(a_, tokenizer_r.encode_plus, a_, max_length=a_, padding="""max_length""" ) # Simple input self.assertRaises( a_, tokenizer_r.batch_encode_plus, a_, max_length=a_, padding="""max_length""", ) # Pair input self.assertRaises(a_, tokenizer_r.encode, a_, max_length=a_, padding="""max_length""" ) # Pair input self.assertRaises(a_, tokenizer_r.encode_plus, a_, max_length=a_, padding="""max_length""" ) # Pair input self.assertRaises( a_, tokenizer_r.batch_encode_plus, a_, max_length=a_, padding="""max_length""", ) def UpperCamelCase_ ( self: Optional[Any] ): '''simple docstring''' _snake_case : List[str] = CodeGenTokenizer.from_pretrained(self.tmpdirname, pad_token="""<pad>""" ) # Simple input _snake_case : List[Any] = """This is a simple input""" _snake_case : int = ["""This is a simple input looooooooong""", """This is a simple input"""] _snake_case : Any = ("""This is a simple input""", """This is a pair""") _snake_case : str = [ ("""This is a simple input loooooong""", """This is a simple input"""), ("""This is a simple pair loooooong""", """This is a simple pair"""), ] _snake_case : str = tokenizer.pad_token_id _snake_case : Optional[int] = tokenizer(a_, padding="""max_length""", max_length=30, return_tensors="""np""" ) _snake_case : Dict = tokenizer(a_, padding=a_, truncate=a_, return_tensors="""np""" ) _snake_case : Tuple = tokenizer(*a_, padding="""max_length""", max_length=60, return_tensors="""np""" ) _snake_case : Optional[Any] = tokenizer(a_, padding=a_, truncate=a_, return_tensors="""np""" ) # s # test single string max_length padding self.assertEqual(out_s["""input_ids"""].shape[-1], 30 ) self.assertTrue(pad_token_id in out_s["""input_ids"""] ) self.assertTrue(0 in out_s["""attention_mask"""] ) # s2 # test automatic padding self.assertEqual(out_sa["""input_ids"""].shape[-1], 33 ) # long slice doesn't have padding self.assertFalse(pad_token_id in out_sa["""input_ids"""][0] ) self.assertFalse(0 in out_sa["""attention_mask"""][0] ) # short slice does have padding self.assertTrue(pad_token_id in out_sa["""input_ids"""][1] ) self.assertTrue(0 in out_sa["""attention_mask"""][1] ) # p # test single pair max_length padding self.assertEqual(out_p["""input_ids"""].shape[-1], 60 ) self.assertTrue(pad_token_id in out_p["""input_ids"""] ) self.assertTrue(0 in out_p["""attention_mask"""] ) # p2 # test automatic padding pair self.assertEqual(out_pa["""input_ids"""].shape[-1], 52 ) # long slice pair doesn't have padding self.assertFalse(pad_token_id in out_pa["""input_ids"""][0] ) self.assertFalse(0 in out_pa["""attention_mask"""][0] ) # short slice pair does have padding self.assertTrue(pad_token_id in out_pa["""input_ids"""][1] ) self.assertTrue(0 in out_pa["""attention_mask"""][1] ) def UpperCamelCase_ ( self: Union[str, Any] ): '''simple docstring''' _snake_case : Tuple = """$$$""" _snake_case : List[Any] = CodeGenTokenizer.from_pretrained(self.tmpdirname, bos_token=a_, add_bos_token=a_ ) _snake_case : str = """This is a simple input""" _snake_case : int = ["""This is a simple input 1""", """This is a simple input 2"""] _snake_case : Union[str, Any] = tokenizer.bos_token_id _snake_case : Tuple = tokenizer(a_ ) _snake_case : Optional[Any] = tokenizer(a_ ) self.assertEqual(out_s.input_ids[0], a_ ) self.assertTrue(all(o[0] == bos_token_id for o in out_sa.input_ids ) ) _snake_case : Optional[int] = tokenizer.decode(out_s.input_ids ) _snake_case : int = tokenizer.batch_decode(out_sa.input_ids ) self.assertEqual(decode_s.split()[0], a_ ) self.assertTrue(all(d.split()[0] == bos_token for d in decode_sa ) ) @slow def UpperCamelCase_ ( self: str ): '''simple docstring''' _snake_case : Optional[int] = CodeGenTokenizer.from_pretrained("""Salesforce/codegen-350M-mono""" ) _snake_case : Dict = """\nif len_a > len_b:\n result = a\nelse:\n result = b\n\n\n\n#""" _snake_case : Union[str, Any] = """\nif len_a > len_b: result = a\nelse: result = b""" _snake_case : Optional[Any] = tokenizer.encode(a_ ) _snake_case : Dict = ["""^#""", re.escape("""<|endoftext|>""" ), """^'''""", """^\"\"\"""", """\n\n\n"""] _snake_case : Optional[Any] = tokenizer.decode(a_, truncate_before_pattern=a_ ) self.assertEqual(a_, a_ ) def UpperCamelCase_ ( self: str ): '''simple docstring''' pass
64
1
'''simple docstring''' import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class SCREAMING_SNAKE_CASE (unittest.TestCase ): def __init__( self , _UpperCAmelCase , _UpperCAmelCase=13 , _UpperCAmelCase=3 , _UpperCAmelCase=224 , _UpperCAmelCase=30 , _UpperCAmelCase=400 , _UpperCAmelCase=True , _UpperCAmelCase=None , _UpperCAmelCase=True , _UpperCAmelCase=[0.5, 0.5, 0.5] , _UpperCAmelCase=[0.5, 0.5, 0.5] , ): '''simple docstring''' __A : str = size if size is not None else {'height': 18, 'width': 18} __A : List[Any] = parent __A : Optional[int] = batch_size __A : List[str] = num_channels __A : str = image_size __A : Union[str, Any] = min_resolution __A : Optional[Any] = max_resolution __A : Optional[Any] = do_resize __A : Dict = size __A : Tuple = do_normalize __A : Tuple = image_mean __A : str = image_std def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, } @require_torch @require_vision class SCREAMING_SNAKE_CASE (a__ , unittest.TestCase ): lowerCAmelCase = ViTImageProcessor if is_vision_available() else None def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Tuple = EfficientFormerImageProcessorTester(self) @property def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' return self.image_proc_tester.prepare_image_processor_dict() def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : List[str] = self.image_processing_class(**self.image_processor_dict) self.assertTrue(hasattr(_UpperCAmelCase , 'image_mean')) self.assertTrue(hasattr(_UpperCAmelCase , 'image_std')) self.assertTrue(hasattr(_UpperCAmelCase , 'do_normalize')) self.assertTrue(hasattr(_UpperCAmelCase , 'do_resize')) self.assertTrue(hasattr(_UpperCAmelCase , 'size')) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' pass def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Optional[int] = self.image_processing_class(**self.image_processor_dict) # create random PIL images __A : Union[str, Any] = prepare_image_inputs(self.image_proc_tester , equal_resolution=_UpperCAmelCase) for image in image_inputs: self.assertIsInstance(_UpperCAmelCase , Image.Image) # Test not batched input __A : Tuple = image_processor(image_inputs[0] , return_tensors='pt').pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_proc_tester.num_channels, self.image_proc_tester.size['height'], self.image_proc_tester.size['width'], ) , ) # Test batched __A : str = image_processor(_UpperCAmelCase , return_tensors='pt').pixel_values self.assertEqual( encoded_images.shape , ( self.image_proc_tester.batch_size, self.image_proc_tester.num_channels, self.image_proc_tester.size['height'], self.image_proc_tester.size['width'], ) , ) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : List[Any] = self.image_processing_class(**self.image_processor_dict) # create random numpy tensors __A : Union[str, Any] = prepare_image_inputs(self.image_proc_tester , equal_resolution=_UpperCAmelCase , numpify=_UpperCAmelCase) for image in image_inputs: self.assertIsInstance(_UpperCAmelCase , np.ndarray) # Test not batched input __A : List[str] = image_processor(image_inputs[0] , return_tensors='pt').pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_proc_tester.num_channels, self.image_proc_tester.size['height'], self.image_proc_tester.size['width'], ) , ) # Test batched __A : Union[str, Any] = image_processor(_UpperCAmelCase , return_tensors='pt').pixel_values self.assertEqual( encoded_images.shape , ( self.image_proc_tester.batch_size, self.image_proc_tester.num_channels, self.image_proc_tester.size['height'], self.image_proc_tester.size['width'], ) , ) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : List[Any] = self.image_processing_class(**self.image_processor_dict) # create random PyTorch tensors __A : Optional[Any] = prepare_image_inputs(self.image_proc_tester , equal_resolution=_UpperCAmelCase , torchify=_UpperCAmelCase) for image in image_inputs: self.assertIsInstance(_UpperCAmelCase , torch.Tensor) # Test not batched input __A : str = image_processor(image_inputs[0] , return_tensors='pt').pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_proc_tester.num_channels, self.image_proc_tester.size['height'], self.image_proc_tester.size['width'], ) , ) # Test batched __A : List[Any] = image_processor(_UpperCAmelCase , return_tensors='pt').pixel_values self.assertEqual( encoded_images.shape , ( self.image_proc_tester.batch_size, self.image_proc_tester.num_channels, self.image_proc_tester.size['height'], self.image_proc_tester.size['width'], ) , )
190
'''simple docstring''' import math def _lowerCAmelCase ( __snake_case : int ) -> int: if not isinstance(__snake_case , __snake_case ): __A : List[Any] = f'Input value of [number={number}] must be an integer' raise TypeError(__snake_case ) if number < 1: __A : Union[str, Any] = f'Input value of [number={number}] must be > 0' raise ValueError(__snake_case ) elif number == 1: return 3 elif number == 2: return 5 else: __A : Optional[Any] = int(math.log(number // 3 , 2 ) ) + 2 __A : Union[str, Any] = [3, 5] __A : List[Any] = 2 __A : Optional[Any] = 3 for block in range(1 , __snake_case ): for _ in range(__snake_case ): proth_list.append(2 ** (block + 1) + proth_list[proth_index - 1] ) proth_index += 1 increment *= 2 return proth_list[number - 1] if __name__ == "__main__": import doctest doctest.testmod() for number in range(11): lowercase__ : str = 0 try: lowercase__ : List[str] = proth(number) except ValueError: print(f"""ValueError: there is no {number}th Proth number""") continue print(f"""The {number}th Proth number: {value}""")
190
1
"""simple docstring""" import unittest import numpy as np from diffusers import LMSDiscreteScheduler, OnnxStableDiffusionInpaintPipeline from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class __UpperCamelCase ( a__ , unittest.TestCase ): # FIXME: add fast tests pass @nightly @require_onnxruntime @require_torch_gpu class __UpperCamelCase ( unittest.TestCase ): @property def __a ( self ) -> Optional[int]: return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def __a ( self ) -> Any: a : Union[str, Any] = ort.SessionOptions() a : Any = False return options def __a ( self ) -> Dict: a : List[str] = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/in_paint/overture-creations-5sI6fQgYIuo.png" ) a : List[Any] = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/in_paint/overture-creations-5sI6fQgYIuo_mask.png" ) a : int = OnnxStableDiffusionInpaintPipeline.from_pretrained( "runwayml/stable-diffusion-inpainting" , revision="onnx" , safety_checker=lowerCAmelCase__ , feature_extractor=lowerCAmelCase__ , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) a : Optional[int] = "A red cat sitting on a park bench" a : Dict = np.random.RandomState(0 ) a : str = pipe( prompt=lowerCAmelCase__ , image=lowerCAmelCase__ , mask_image=lowerCAmelCase__ , guidance_scale=7.5 , num_inference_steps=10 , generator=lowerCAmelCase__ , output_type="np" , ) a : Union[str, Any] = output.images a : str = images[0, 255:258, 255:258, -1] assert images.shape == (1, 512, 512, 3) a : int = np.array([0.2_514, 0.3_007, 0.3_517, 0.1_790, 0.2_382, 0.3_167, 0.1_944, 0.2_273, 0.2_464] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def __a ( self ) -> Tuple: a : Union[str, Any] = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/in_paint/overture-creations-5sI6fQgYIuo.png" ) a : Union[str, Any] = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/in_paint/overture-creations-5sI6fQgYIuo_mask.png" ) a : Dict = LMSDiscreteScheduler.from_pretrained( "runwayml/stable-diffusion-inpainting" , subfolder="scheduler" , revision="onnx" ) a : Union[str, Any] = OnnxStableDiffusionInpaintPipeline.from_pretrained( "runwayml/stable-diffusion-inpainting" , revision="onnx" , scheduler=lowerCAmelCase__ , safety_checker=lowerCAmelCase__ , feature_extractor=lowerCAmelCase__ , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) a : List[Any] = "A red cat sitting on a park bench" a : List[Any] = np.random.RandomState(0 ) a : List[Any] = pipe( prompt=lowerCAmelCase__ , image=lowerCAmelCase__ , mask_image=lowerCAmelCase__ , guidance_scale=7.5 , num_inference_steps=20 , generator=lowerCAmelCase__ , output_type="np" , ) a : Any = output.images a : List[Any] = images[0, 255:258, 255:258, -1] assert images.shape == (1, 512, 512, 3) a : Any = np.array([0.0_086, 0.0_077, 0.0_083, 0.0_093, 0.0_107, 0.0_139, 0.0_094, 0.0_097, 0.0_125] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3
105
"""simple docstring""" from __future__ import annotations import math import numpy as np from numpy.linalg import norm def _SCREAMING_SNAKE_CASE ( _lowercase : np.ndarray , _lowercase : np.ndarray ) ->float: '''simple docstring''' return math.sqrt(sum(pow(a - b , 2 ) for a, b in zip(_lowercase , _lowercase ) ) ) def _SCREAMING_SNAKE_CASE ( _lowercase : np.ndarray , _lowercase : np.ndarray ) ->list[list[list[float] | float]]: '''simple docstring''' if dataset.ndim != value_array.ndim: a : str = ( "Wrong input data's dimensions... " F"""dataset : {dataset.ndim}, value_array : {value_array.ndim}""" ) raise ValueError(_lowercase ) try: if dataset.shape[1] != value_array.shape[1]: a : int = ( "Wrong input data's shape... " F"""dataset : {dataset.shape[1]}, value_array : {value_array.shape[1]}""" ) raise ValueError(_lowercase ) except IndexError: if dataset.ndim != value_array.ndim: raise TypeError("Wrong shape" ) if dataset.dtype != value_array.dtype: a : Union[str, Any] = ( "Input data have different datatype... " F"""dataset : {dataset.dtype}, value_array : {value_array.dtype}""" ) raise TypeError(_lowercase ) a : str = [] for value in value_array: a : List[Any] = euclidean(_lowercase , dataset[0] ) a : str = dataset[0].tolist() for dataset_value in dataset[1:]: a : Tuple = euclidean(_lowercase , _lowercase ) if dist > temp_dist: a : Dict = temp_dist a : Optional[int] = dataset_value.tolist() answer.append([vector, dist] ) return answer def _SCREAMING_SNAKE_CASE ( _lowercase : np.ndarray , _lowercase : np.ndarray ) ->float: '''simple docstring''' return np.dot(_lowercase , _lowercase ) / (norm(_lowercase ) * norm(_lowercase )) if __name__ == "__main__": import doctest doctest.testmod()
105
1
"""simple docstring""" import enum import warnings from .. import MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING from ..utils import add_end_docstrings, is_tf_available from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf class SCREAMING_SNAKE_CASE ( enum.Enum ): """simple docstring""" lowercase__ = 0 lowercase__ = 1 lowercase__ = 2 @add_end_docstrings(__lowercase ) class SCREAMING_SNAKE_CASE ( __lowercase ): """simple docstring""" lowercase__ = ''' In 1991, the remains of Russian Tsar Nicholas II and his family (except for Alexei and Maria) are discovered. The voice of Nicholas\'s young son, Tsarevich Alexei Nikolaevich, narrates the remainder of the story. 1883 Western Siberia, a young Grigori Rasputin is asked by his father and a group of men to perform magic. Rasputin has a vision and denounces one of the men as a horse thief. Although his father initially slaps him for making such an accusation, Rasputin watches as the man is chased outside and beaten. Twenty years later, Rasputin sees a vision of the Virgin Mary, prompting him to become a priest. Rasputin quickly becomes famous, with people, even a bishop, begging for his blessing. <eod> </s> <eos> ''' def __init__( self : List[Any] ,*lowercase_ : str ,**lowercase_ : Union[str, Any] ): super().__init__(*lowercase_ ,**lowercase_ ) self.check_model_type( TF_MODEL_FOR_CAUSAL_LM_MAPPING if self.framework == '''tf''' else MODEL_FOR_CAUSAL_LM_MAPPING ) if "prefix" not in self._preprocess_params: # This is very specific. The logic is quite complex and needs to be done # as a "default". # It also defines both some preprocess_kwargs and generate_kwargs # which is why we cannot put them in their respective methods. lowerCAmelCase__ : Dict = None if self.model.config.prefix is not None: lowerCAmelCase__ : List[str] = self.model.config.prefix if prefix is None and self.model.__class__.__name__ in [ "XLNetLMHeadModel", "TransfoXLLMHeadModel", "TFXLNetLMHeadModel", "TFTransfoXLLMHeadModel", ]: # For XLNet and TransformerXL we add an article to the prompt to give more state to the model. lowerCAmelCase__ : int = self.XL_PREFIX if prefix is not None: # Recalculate some generate_kwargs linked to prefix. lowerCAmelCase__ : Optional[int] = self._sanitize_parameters(prefix=lowercase_ ,**self._forward_params ) lowerCAmelCase__ : Any = {**self._preprocess_params, **preprocess_params} lowerCAmelCase__ : Dict = {**self._forward_params, **forward_params} def __lowerCAmelCase ( self : Tuple ,lowercase_ : List[str]=None ,lowercase_ : Dict=None ,lowercase_ : Optional[int]=None ,lowercase_ : List[Any]=None ,lowercase_ : List[Any]=None ,lowercase_ : Tuple=None ,lowercase_ : str=None ,lowercase_ : Dict=None ,**lowercase_ : int ,): lowerCAmelCase__ : int = {} if prefix is not None: lowerCAmelCase__ : Union[str, Any] = prefix if prefix: lowerCAmelCase__ : Optional[Any] = self.tokenizer( lowercase_ ,padding=lowercase_ ,add_special_tokens=lowercase_ ,return_tensors=self.framework ) lowerCAmelCase__ : Any = prefix_inputs["""input_ids"""].shape[-1] if handle_long_generation is not None: if handle_long_generation not in {"hole"}: raise ValueError( F'{handle_long_generation} is not a valid value for `handle_long_generation` parameter expected' ''' [None, \'hole\']''' ) lowerCAmelCase__ : Any = handle_long_generation preprocess_params.update(lowercase_ ) lowerCAmelCase__ : str = generate_kwargs lowerCAmelCase__ : Optional[Any] = {} if return_full_text is not None and return_type is None: if return_text is not None: raise ValueError('''`return_text` is mutually exclusive with `return_full_text`''' ) if return_tensors is not None: raise ValueError('''`return_full_text` is mutually exclusive with `return_tensors`''' ) lowerCAmelCase__ : List[str] = ReturnType.FULL_TEXT if return_full_text else ReturnType.NEW_TEXT if return_tensors is not None and return_type is None: if return_text is not None: raise ValueError('''`return_text` is mutually exclusive with `return_tensors`''' ) lowerCAmelCase__ : Optional[Any] = ReturnType.TENSORS if return_type is not None: lowerCAmelCase__ : Dict = return_type if clean_up_tokenization_spaces is not None: lowerCAmelCase__ : str = clean_up_tokenization_spaces if stop_sequence is not None: lowerCAmelCase__ : List[str] = self.tokenizer.encode(lowercase_ ,add_special_tokens=lowercase_ ) if len(lowercase_ ) > 1: warnings.warn( '''Stopping on a multiple token sequence is not yet supported on transformers. The first token of''' ''' the stop sequence will be used as the stop sequence string in the interim.''' ) lowerCAmelCase__ : str = stop_sequence_ids[0] return preprocess_params, forward_params, postprocess_params def __lowerCAmelCase ( self : Any ,*lowercase_ : Dict ,**lowercase_ : List[str] ): if self.model.__class__.__name__ in ["TransfoXLLMHeadModel"]: kwargs.update({'''add_space_before_punct_symbol''': True} ) return super()._parse_and_tokenize(*lowercase_ ,**lowercase_ ) def __call__( self : Tuple ,lowercase_ : List[str] ,**lowercase_ : Dict ): return super().__call__(lowercase_ ,**lowercase_ ) def __lowerCAmelCase ( self : Any ,lowercase_ : List[str] ,lowercase_ : List[str]="" ,lowercase_ : List[Any]=None ,**lowercase_ : Tuple ): lowerCAmelCase__ : List[Any] = self.tokenizer( prefix + prompt_text ,padding=lowercase_ ,add_special_tokens=lowercase_ ,return_tensors=self.framework ) lowerCAmelCase__ : int = prompt_text if handle_long_generation == "hole": lowerCAmelCase__ : int = inputs["""input_ids"""].shape[-1] if "max_new_tokens" in generate_kwargs: lowerCAmelCase__ : Any = generate_kwargs["""max_new_tokens"""] else: lowerCAmelCase__ : int = generate_kwargs.get('''max_length''' ,self.model.config.max_length ) - cur_len if new_tokens < 0: raise ValueError('''We cannot infer how many new tokens are expected''' ) if cur_len + new_tokens > self.tokenizer.model_max_length: lowerCAmelCase__ : Tuple = self.tokenizer.model_max_length - new_tokens if keep_length <= 0: raise ValueError( '''We cannot use `hole` to handle this generation the number of desired tokens exceeds the''' ''' models max length''' ) lowerCAmelCase__ : Any = inputs["""input_ids"""][:, -keep_length:] if "attention_mask" in inputs: lowerCAmelCase__ : Any = inputs["""attention_mask"""][:, -keep_length:] return inputs def __lowerCAmelCase ( self : Optional[Any] ,lowercase_ : Tuple ,**lowercase_ : str ): lowerCAmelCase__ : Union[str, Any] = model_inputs["""input_ids"""] lowerCAmelCase__ : Any = model_inputs.get('''attention_mask''' ,lowercase_ ) # Allow empty prompts if input_ids.shape[1] == 0: lowerCAmelCase__ : Tuple = None lowerCAmelCase__ : Optional[Any] = None lowerCAmelCase__ : str = 1 else: lowerCAmelCase__ : List[Any] = input_ids.shape[0] lowerCAmelCase__ : Dict = model_inputs.pop('''prompt_text''' ) # If there is a prefix, we may need to adjust the generation length. Do so without permanently modifying # generate_kwargs, as some of the parameterization may come from the initialization of the pipeline. lowerCAmelCase__ : Union[str, Any] = generate_kwargs.pop('''prefix_length''' ,0 ) if prefix_length > 0: lowerCAmelCase__ : List[Any] = """max_new_tokens""" in generate_kwargs or ( """generation_config""" in generate_kwargs and generate_kwargs["""generation_config"""].max_new_tokens is not None ) if not has_max_new_tokens: lowerCAmelCase__ : Optional[Any] = generate_kwargs.get('''max_length''' ) or self.model.config.max_length generate_kwargs["max_length"] += prefix_length lowerCAmelCase__ : Any = """min_new_tokens""" in generate_kwargs or ( """generation_config""" in generate_kwargs and generate_kwargs["""generation_config"""].min_new_tokens is not None ) if not has_min_new_tokens and "min_length" in generate_kwargs: generate_kwargs["min_length"] += prefix_length # BS x SL lowerCAmelCase__ : List[Any] = self.model.generate(input_ids=lowercase_ ,attention_mask=lowercase_ ,**lowercase_ ) lowerCAmelCase__ : Optional[int] = generated_sequence.shape[0] if self.framework == "pt": lowerCAmelCase__ : Dict = generated_sequence.reshape(lowercase_ ,out_b // in_b ,*generated_sequence.shape[1:] ) elif self.framework == "tf": lowerCAmelCase__ : int = tf.reshape(lowercase_ ,(in_b, out_b // in_b, *generated_sequence.shape[1:]) ) return {"generated_sequence": generated_sequence, "input_ids": input_ids, "prompt_text": prompt_text} def __lowerCAmelCase ( self : Dict ,lowercase_ : Tuple ,lowercase_ : Union[str, Any]=ReturnType.FULL_TEXT ,lowercase_ : Any=True ): lowerCAmelCase__ : Optional[Any] = model_outputs["""generated_sequence"""][0] lowerCAmelCase__ : Any = model_outputs["""input_ids"""] lowerCAmelCase__ : List[Any] = model_outputs["""prompt_text"""] lowerCAmelCase__ : str = generated_sequence.numpy().tolist() lowerCAmelCase__ : Union[str, Any] = [] for sequence in generated_sequence: if return_type == ReturnType.TENSORS: lowerCAmelCase__ : Optional[Any] = {"""generated_token_ids""": sequence} elif return_type in {ReturnType.NEW_TEXT, ReturnType.FULL_TEXT}: # Decode text lowerCAmelCase__ : str = self.tokenizer.decode( lowercase_ ,skip_special_tokens=lowercase_ ,clean_up_tokenization_spaces=lowercase_ ,) # Remove PADDING prompt of the sequence if XLNet or Transfo-XL model is used if input_ids is None: lowerCAmelCase__ : Tuple = 0 else: lowerCAmelCase__ : Any = len( self.tokenizer.decode( input_ids[0] ,skip_special_tokens=lowercase_ ,clean_up_tokenization_spaces=lowercase_ ,) ) if return_type == ReturnType.FULL_TEXT: lowerCAmelCase__ : Union[str, Any] = prompt_text + text[prompt_length:] else: lowerCAmelCase__ : int = text[prompt_length:] lowerCAmelCase__ : List[str] = {"""generated_text""": all_text} records.append(lowercase_ ) return records
363
"""simple docstring""" def __SCREAMING_SNAKE_CASE ( A_ ): if not isinstance(A_ , A_ ): lowerCAmelCase__ : int = f'Input value of [number={number}] must be an integer' raise TypeError(A_ ) if number < 0: return False lowerCAmelCase__ : List[Any] = number * number while number > 0: if number % 10 != number_square % 10: return False number //= 10 number_square //= 10 return True if __name__ == "__main__": import doctest doctest.testmod()
74
0
"""simple docstring""" from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_tf_available(): import tensorflow as tf from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING from ..tf_utils import stable_softmax if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING _UpperCamelCase : int = logging.get_logger(__name__) @add_end_docstrings(_a) class UpperCAmelCase_ ( _a): def __init__( self , *a , **a ) -> Union[str, Any]: super().__init__(*a , **a ) requires_backends(self , 'vision' ) self.check_model_type( TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING if self.framework == 'tf' else MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING ) def _UpperCAmelCase ( self , a=None ) -> Dict: lowercase__ : Any = {} if top_k is not None: lowercase__ : List[str] = top_k return {}, {}, postprocess_params def __call__( self , a , **a ) -> Tuple: return super().__call__(a , **a ) def _UpperCAmelCase ( self , a ) -> Dict: lowercase__ : List[Any] = load_image(a ) lowercase__ : Union[str, Any] = self.image_processor(images=a , return_tensors=self.framework ) return model_inputs def _UpperCAmelCase ( self , a ) -> List[str]: lowercase__ : Dict = self.model(**a ) return model_outputs def _UpperCAmelCase ( self , a , a=5 ) -> Dict: if top_k > self.model.config.num_labels: lowercase__ : List[Any] = self.model.config.num_labels if self.framework == "pt": lowercase__ : Tuple = model_outputs.logits.softmax(-1 )[0] lowercase__ , lowercase__ : Optional[Any] = probs.topk(a ) elif self.framework == "tf": lowercase__ : Union[str, Any] = stable_softmax(model_outputs.logits , axis=-1 )[0] lowercase__ : str = tf.math.top_k(a , k=a ) lowercase__ , lowercase__ : Dict = topk.values.numpy(), topk.indices.numpy() else: raise ValueError(f"""Unsupported framework: {self.framework}""" ) lowercase__ : Dict = scores.tolist() lowercase__ : Dict = ids.tolist() return [{"score": score, "label": self.model.config.idalabel[_id]} for score, _id in zip(a , a )]
77
import unittest from transformers import MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING, is_vision_available, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class __SCREAMING_SNAKE_CASE : @staticmethod def __lowerCamelCase ( *A : Dict , **A : Optional[int] ) ->Dict: pass @is_pipeline_test @require_vision @require_torch class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): _UpperCAmelCase : Optional[int] = MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING def __lowerCamelCase ( self : Any , A : List[str] , A : Tuple , A : List[str] ) ->List[Any]: lowerCamelCase__ : List[str] = pipeline( '''zero-shot-object-detection''' , model='''hf-internal-testing/tiny-random-owlvit-object-detection''' ) lowerCamelCase__ : Union[str, Any] = [ { '''image''': '''./tests/fixtures/tests_samples/COCO/000000039769.png''', '''candidate_labels''': ['''cat''', '''remote''', '''couch'''], } ] return object_detector, examples def __lowerCamelCase ( self : List[Any] , A : Optional[int] , A : Tuple ) ->Optional[Any]: lowerCamelCase__ : str = object_detector(examples[0] , threshold=0.0 ) lowerCamelCase__ : Union[str, Any] = len(A ) self.assertGreater(A , 0 ) self.assertEqual( A , [ { '''score''': ANY(A ), '''label''': ANY(A ), '''box''': {'''xmin''': ANY(A ), '''ymin''': ANY(A ), '''xmax''': ANY(A ), '''ymax''': ANY(A )}, } for i in range(A ) ] , ) @require_tf @unittest.skip('''Zero Shot Object Detection not implemented in TF''' ) def __lowerCamelCase ( self : Dict ) ->List[Any]: pass @require_torch def __lowerCamelCase ( self : Optional[Any] ) ->List[Any]: lowerCamelCase__ : Optional[int] = pipeline( '''zero-shot-object-detection''' , model='''hf-internal-testing/tiny-random-owlvit-object-detection''' ) lowerCamelCase__ : List[Any] = object_detector( '''./tests/fixtures/tests_samples/COCO/000000039769.png''' , candidate_labels=['''cat''', '''remote''', '''couch'''] , threshold=0.64 , ) self.assertEqual( nested_simplify(A , decimals=4 ) , [ {'''score''': 0.72_35, '''label''': '''cat''', '''box''': {'''xmin''': 2_0_4, '''ymin''': 1_6_7, '''xmax''': 2_3_2, '''ymax''': 1_9_0}}, {'''score''': 0.72_18, '''label''': '''remote''', '''box''': {'''xmin''': 2_0_4, '''ymin''': 1_6_7, '''xmax''': 2_3_2, '''ymax''': 1_9_0}}, {'''score''': 0.71_84, '''label''': '''couch''', '''box''': {'''xmin''': 2_0_4, '''ymin''': 1_6_7, '''xmax''': 2_3_2, '''ymax''': 1_9_0}}, {'''score''': 0.67_48, '''label''': '''remote''', '''box''': {'''xmin''': 5_7_1, '''ymin''': 8_3, '''xmax''': 5_9_8, '''ymax''': 1_0_3}}, {'''score''': 0.66_56, '''label''': '''cat''', '''box''': {'''xmin''': 5_7_1, '''ymin''': 8_3, '''xmax''': 5_9_8, '''ymax''': 1_0_3}}, {'''score''': 0.66_14, '''label''': '''couch''', '''box''': {'''xmin''': 5_7_1, '''ymin''': 8_3, '''xmax''': 5_9_8, '''ymax''': 1_0_3}}, {'''score''': 0.64_56, '''label''': '''remote''', '''box''': {'''xmin''': 4_9_4, '''ymin''': 1_0_5, '''xmax''': 5_2_1, '''ymax''': 1_2_7}}, {'''score''': 0.6_42, '''label''': '''remote''', '''box''': {'''xmin''': 6_7, '''ymin''': 2_7_4, '''xmax''': 9_3, '''ymax''': 2_9_7}}, {'''score''': 0.64_19, '''label''': '''cat''', '''box''': {'''xmin''': 4_9_4, '''ymin''': 1_0_5, '''xmax''': 5_2_1, '''ymax''': 1_2_7}}, ] , ) lowerCamelCase__ : str = object_detector( [ { '''image''': '''./tests/fixtures/tests_samples/COCO/000000039769.png''', '''candidate_labels''': ['''cat''', '''remote''', '''couch'''], } ] , threshold=0.64 , ) self.assertEqual( nested_simplify(A , decimals=4 ) , [ [ {'''score''': 0.72_35, '''label''': '''cat''', '''box''': {'''xmin''': 2_0_4, '''ymin''': 1_6_7, '''xmax''': 2_3_2, '''ymax''': 1_9_0}}, {'''score''': 0.72_18, '''label''': '''remote''', '''box''': {'''xmin''': 2_0_4, '''ymin''': 1_6_7, '''xmax''': 2_3_2, '''ymax''': 1_9_0}}, {'''score''': 0.71_84, '''label''': '''couch''', '''box''': {'''xmin''': 2_0_4, '''ymin''': 1_6_7, '''xmax''': 2_3_2, '''ymax''': 1_9_0}}, {'''score''': 0.67_48, '''label''': '''remote''', '''box''': {'''xmin''': 5_7_1, '''ymin''': 8_3, '''xmax''': 5_9_8, '''ymax''': 1_0_3}}, {'''score''': 0.66_56, '''label''': '''cat''', '''box''': {'''xmin''': 5_7_1, '''ymin''': 8_3, '''xmax''': 5_9_8, '''ymax''': 1_0_3}}, {'''score''': 0.66_14, '''label''': '''couch''', '''box''': {'''xmin''': 5_7_1, '''ymin''': 8_3, '''xmax''': 5_9_8, '''ymax''': 1_0_3}}, {'''score''': 0.64_56, '''label''': '''remote''', '''box''': {'''xmin''': 4_9_4, '''ymin''': 1_0_5, '''xmax''': 5_2_1, '''ymax''': 1_2_7}}, {'''score''': 0.6_42, '''label''': '''remote''', '''box''': {'''xmin''': 6_7, '''ymin''': 2_7_4, '''xmax''': 9_3, '''ymax''': 2_9_7}}, {'''score''': 0.64_19, '''label''': '''cat''', '''box''': {'''xmin''': 4_9_4, '''ymin''': 1_0_5, '''xmax''': 5_2_1, '''ymax''': 1_2_7}}, ] ] , ) @require_torch @slow def __lowerCamelCase ( self : Union[str, Any] ) ->Optional[Any]: lowerCamelCase__ : Tuple = pipeline('''zero-shot-object-detection''' ) lowerCamelCase__ : str = object_detector( '''http://images.cocodataset.org/val2017/000000039769.jpg''' , candidate_labels=['''cat''', '''remote''', '''couch'''] , ) self.assertEqual( nested_simplify(A , decimals=4 ) , [ {'''score''': 0.28_68, '''label''': '''cat''', '''box''': {'''xmin''': 3_2_4, '''ymin''': 2_0, '''xmax''': 6_4_0, '''ymax''': 3_7_3}}, {'''score''': 0.2_77, '''label''': '''remote''', '''box''': {'''xmin''': 4_0, '''ymin''': 7_2, '''xmax''': 1_7_7, '''ymax''': 1_1_5}}, {'''score''': 0.25_37, '''label''': '''cat''', '''box''': {'''xmin''': 1, '''ymin''': 5_5, '''xmax''': 3_1_5, '''ymax''': 4_7_2}}, {'''score''': 0.14_74, '''label''': '''remote''', '''box''': {'''xmin''': 3_3_5, '''ymin''': 7_4, '''xmax''': 3_7_1, '''ymax''': 1_8_7}}, {'''score''': 0.12_08, '''label''': '''couch''', '''box''': {'''xmin''': 4, '''ymin''': 0, '''xmax''': 6_4_2, '''ymax''': 4_7_6}}, ] , ) lowerCamelCase__ : List[Any] = object_detector( [ { '''image''': '''http://images.cocodataset.org/val2017/000000039769.jpg''', '''candidate_labels''': ['''cat''', '''remote''', '''couch'''], }, { '''image''': '''http://images.cocodataset.org/val2017/000000039769.jpg''', '''candidate_labels''': ['''cat''', '''remote''', '''couch'''], }, ] , ) self.assertEqual( nested_simplify(A , decimals=4 ) , [ [ {'''score''': 0.28_68, '''label''': '''cat''', '''box''': {'''xmin''': 3_2_4, '''ymin''': 2_0, '''xmax''': 6_4_0, '''ymax''': 3_7_3}}, {'''score''': 0.2_77, '''label''': '''remote''', '''box''': {'''xmin''': 4_0, '''ymin''': 7_2, '''xmax''': 1_7_7, '''ymax''': 1_1_5}}, {'''score''': 0.25_37, '''label''': '''cat''', '''box''': {'''xmin''': 1, '''ymin''': 5_5, '''xmax''': 3_1_5, '''ymax''': 4_7_2}}, {'''score''': 0.14_74, '''label''': '''remote''', '''box''': {'''xmin''': 3_3_5, '''ymin''': 7_4, '''xmax''': 3_7_1, '''ymax''': 1_8_7}}, {'''score''': 0.12_08, '''label''': '''couch''', '''box''': {'''xmin''': 4, '''ymin''': 0, '''xmax''': 6_4_2, '''ymax''': 4_7_6}}, ], [ {'''score''': 0.28_68, '''label''': '''cat''', '''box''': {'''xmin''': 3_2_4, '''ymin''': 2_0, '''xmax''': 6_4_0, '''ymax''': 3_7_3}}, {'''score''': 0.2_77, '''label''': '''remote''', '''box''': {'''xmin''': 4_0, '''ymin''': 7_2, '''xmax''': 1_7_7, '''ymax''': 1_1_5}}, {'''score''': 0.25_37, '''label''': '''cat''', '''box''': {'''xmin''': 1, '''ymin''': 5_5, '''xmax''': 3_1_5, '''ymax''': 4_7_2}}, {'''score''': 0.14_74, '''label''': '''remote''', '''box''': {'''xmin''': 3_3_5, '''ymin''': 7_4, '''xmax''': 3_7_1, '''ymax''': 1_8_7}}, {'''score''': 0.12_08, '''label''': '''couch''', '''box''': {'''xmin''': 4, '''ymin''': 0, '''xmax''': 6_4_2, '''ymax''': 4_7_6}}, ], ] , ) @require_tf @unittest.skip('''Zero Shot Object Detection not implemented in TF''' ) def __lowerCamelCase ( self : int ) ->Union[str, Any]: pass @require_torch @slow def __lowerCamelCase ( self : Optional[int] ) ->Optional[int]: lowerCamelCase__ : Optional[Any] = 0.2 lowerCamelCase__ : List[Any] = pipeline('''zero-shot-object-detection''' ) lowerCamelCase__ : Any = object_detector( '''http://images.cocodataset.org/val2017/000000039769.jpg''' , candidate_labels=['''cat''', '''remote''', '''couch'''] , threshold=A , ) self.assertEqual( nested_simplify(A , decimals=4 ) , [ {'''score''': 0.28_68, '''label''': '''cat''', '''box''': {'''xmin''': 3_2_4, '''ymin''': 2_0, '''xmax''': 6_4_0, '''ymax''': 3_7_3}}, {'''score''': 0.2_77, '''label''': '''remote''', '''box''': {'''xmin''': 4_0, '''ymin''': 7_2, '''xmax''': 1_7_7, '''ymax''': 1_1_5}}, {'''score''': 0.25_37, '''label''': '''cat''', '''box''': {'''xmin''': 1, '''ymin''': 5_5, '''xmax''': 3_1_5, '''ymax''': 4_7_2}}, ] , ) @require_torch @slow def __lowerCamelCase ( self : Any ) ->str: lowerCamelCase__ : List[Any] = 2 lowerCamelCase__ : Union[str, Any] = pipeline('''zero-shot-object-detection''' ) lowerCamelCase__ : List[str] = object_detector( '''http://images.cocodataset.org/val2017/000000039769.jpg''' , candidate_labels=['''cat''', '''remote''', '''couch'''] , top_k=A , ) self.assertEqual( nested_simplify(A , decimals=4 ) , [ {'''score''': 0.28_68, '''label''': '''cat''', '''box''': {'''xmin''': 3_2_4, '''ymin''': 2_0, '''xmax''': 6_4_0, '''ymax''': 3_7_3}}, {'''score''': 0.2_77, '''label''': '''remote''', '''box''': {'''xmin''': 4_0, '''ymin''': 7_2, '''xmax''': 1_7_7, '''ymax''': 1_1_5}}, ] , )
142
0
"""simple docstring""" import gc import unittest import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DDPMScheduler, PriorTransformer, StableUnCLIPPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer from diffusers.utils.testing_utils import enable_full_determinism, load_numpy, require_torch_gpu, slow, torch_device from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, assert_mean_pixel_difference, ) enable_full_determinism() class lowerCamelCase__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' _lowerCamelCase = StableUnCLIPPipeline _lowerCamelCase = TEXT_TO_IMAGE_PARAMS _lowerCamelCase = TEXT_TO_IMAGE_BATCH_PARAMS _lowerCamelCase = TEXT_TO_IMAGE_IMAGE_PARAMS _lowerCamelCase = TEXT_TO_IMAGE_IMAGE_PARAMS # TODO(will) Expected attn_bias.stride(1) == 0 to be true, but got false _lowerCamelCase = False def UpperCamelCase__ ( self ) -> Tuple: A = 3_2 A = embedder_hidden_size # prior components torch.manual_seed(0 ) A = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) torch.manual_seed(0 ) A = CLIPTextModelWithProjection( CLIPTextConfig( bos_token_id=0 ,eos_token_id=2 ,hidden_size=lowerCamelCase_ ,projection_dim=lowerCamelCase_ ,intermediate_size=3_7 ,layer_norm_eps=1E-05 ,num_attention_heads=4 ,num_hidden_layers=5 ,pad_token_id=1 ,vocab_size=1_0_0_0 ,) ) torch.manual_seed(0 ) A = PriorTransformer( num_attention_heads=2 ,attention_head_dim=1_2 ,embedding_dim=lowerCamelCase_ ,num_layers=1 ,) torch.manual_seed(0 ) A = DDPMScheduler( variance_type="""fixed_small_log""" ,prediction_type="""sample""" ,num_train_timesteps=1_0_0_0 ,clip_sample=lowerCamelCase_ ,clip_sample_range=5.0 ,beta_schedule="""squaredcos_cap_v2""" ,) # regular denoising components torch.manual_seed(0 ) A = StableUnCLIPImageNormalizer(embedding_dim=lowerCamelCase_ ) A = DDPMScheduler(beta_schedule="""squaredcos_cap_v2""" ) torch.manual_seed(0 ) A = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) torch.manual_seed(0 ) A = CLIPTextModel( CLIPTextConfig( bos_token_id=0 ,eos_token_id=2 ,hidden_size=lowerCamelCase_ ,projection_dim=3_2 ,intermediate_size=3_7 ,layer_norm_eps=1E-05 ,num_attention_heads=4 ,num_hidden_layers=5 ,pad_token_id=1 ,vocab_size=1_0_0_0 ,) ) torch.manual_seed(0 ) A = UNetaDConditionModel( sample_size=3_2 ,in_channels=4 ,out_channels=4 ,down_block_types=("""CrossAttnDownBlock2D""", """DownBlock2D""") ,up_block_types=("""UpBlock2D""", """CrossAttnUpBlock2D""") ,block_out_channels=(3_2, 6_4) ,attention_head_dim=(2, 4) ,class_embed_type="""projection""" ,projection_class_embeddings_input_dim=embedder_projection_dim * 2 ,cross_attention_dim=lowerCamelCase_ ,layers_per_block=1 ,upcast_attention=lowerCamelCase_ ,use_linear_projection=lowerCamelCase_ ,) torch.manual_seed(0 ) A = DDIMScheduler( beta_schedule="""scaled_linear""" ,beta_start=0.0_00_85 ,beta_end=0.0_12 ,prediction_type="""v_prediction""" ,set_alpha_to_one=lowerCamelCase_ ,steps_offset=1 ,) torch.manual_seed(0 ) A = AutoencoderKL() A = { # prior components '''prior_tokenizer''': prior_tokenizer, '''prior_text_encoder''': prior_text_encoder, '''prior''': prior, '''prior_scheduler''': prior_scheduler, # image noising components '''image_normalizer''': image_normalizer, '''image_noising_scheduler''': image_noising_scheduler, # regular denoising components '''tokenizer''': tokenizer, '''text_encoder''': text_encoder, '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, } return components def UpperCamelCase__ ( self ,lowerCamelCase_ ,lowerCamelCase_=0 ) -> Union[str, Any]: if str(lowerCamelCase_ ).startswith("""mps""" ): A = torch.manual_seed(lowerCamelCase_ ) else: A = torch.Generator(device=lowerCamelCase_ ).manual_seed(lowerCamelCase_ ) A = { '''prompt''': '''A painting of a squirrel eating a burger''', '''generator''': generator, '''num_inference_steps''': 2, '''prior_num_inference_steps''': 2, '''output_type''': '''numpy''', } return inputs def UpperCamelCase__ ( self ) -> List[str]: A = torch_device == '''cpu''' self._test_attention_slicing_forward_pass(test_max_difference=lowerCamelCase_ ) def UpperCamelCase__ ( self ) -> Optional[Any]: A = torch_device in ['''cpu''', '''mps'''] self._test_inference_batch_single_identical(test_max_difference=lowerCamelCase_ ) @slow @require_torch_gpu class lowerCamelCase__ ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase__ ( self ) -> str: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase__ ( self ) -> List[str]: A = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_l_anime_turtle_fp16.npy""" ) A = StableUnCLIPPipeline.from_pretrained("""fusing/stable-unclip-2-1-l""" ,torch_dtype=torch.floataa ) pipe.to(lowerCamelCase_ ) pipe.set_progress_bar_config(disable=lowerCamelCase_ ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() A = torch.Generator(device="""cpu""" ).manual_seed(0 ) A = pipe("""anime turle""" ,generator=lowerCamelCase_ ,output_type="""np""" ) A = output.images[0] assert image.shape == (7_6_8, 7_6_8, 3) assert_mean_pixel_difference(lowerCamelCase_ ,lowerCamelCase_ ) def UpperCamelCase__ ( self ) -> List[Any]: torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() A = StableUnCLIPPipeline.from_pretrained("""fusing/stable-unclip-2-1-l""" ,torch_dtype=torch.floataa ) A = pipe.to(lowerCamelCase_ ) pipe.set_progress_bar_config(disable=lowerCamelCase_ ) pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() A = pipe( """anime turtle""" ,prior_num_inference_steps=2 ,num_inference_steps=2 ,output_type="""np""" ,) A = torch.cuda.max_memory_allocated() # make sure that less than 7 GB is allocated assert mem_bytes < 7 * 1_0**9
352
"""simple docstring""" class lowerCamelCase__ : '''simple docstring''' def __init__( self ) -> Any: A = 0 A = 0 A = {} def UpperCamelCase__ ( self ,lowerCamelCase_ ) -> List[str]: if vertex not in self.adjacency: A = {} self.num_vertices += 1 def UpperCamelCase__ ( self ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ) -> Optional[Any]: self.add_vertex(lowerCamelCase_ ) self.add_vertex(lowerCamelCase_ ) if head == tail: return A = weight A = weight def UpperCamelCase__ ( self ) -> List[str]: A = self.get_edges() for edge in edges: A , A , A = edge edges.remove((tail, head, weight) ) for i in range(len(lowerCamelCase_ ) ): A = list(edges[i] ) edges.sort(key=lambda lowerCamelCase_ : e[2] ) for i in range(len(lowerCamelCase_ ) - 1 ): if edges[i][2] >= edges[i + 1][2]: A = edges[i][2] + 1 for edge in edges: A , A , A = edge A = weight A = weight def __str__( self ) -> Dict: A = """""" for tail in self.adjacency: for head in self.adjacency[tail]: A = self.adjacency[head][tail] string += f'{head} -> {tail} == {weight}\n' return string.rstrip("""\n""" ) def UpperCamelCase__ ( self ) -> Optional[Any]: A = [] for tail in self.adjacency: for head in self.adjacency[tail]: output.append((tail, head, self.adjacency[head][tail]) ) return output def UpperCamelCase__ ( self ) -> List[str]: return self.adjacency.keys() @staticmethod def UpperCamelCase__ ( lowerCamelCase_=None ,lowerCamelCase_=None ) -> Optional[Any]: A = Graph() if vertices is None: A = [] if edges is None: A = [] for vertex in vertices: g.add_vertex(lowerCamelCase_ ) for edge in edges: g.add_edge(*lowerCamelCase_ ) return g class lowerCamelCase__ : '''simple docstring''' def __init__( self ) -> List[str]: A = {} A = {} def __len__( self ) -> List[str]: return len(self.parent ) def UpperCamelCase__ ( self ,lowerCamelCase_ ) -> List[str]: if item in self.parent: return self.find(lowerCamelCase_ ) A = item A = 0 return item def UpperCamelCase__ ( self ,lowerCamelCase_ ) -> Union[str, Any]: if item not in self.parent: return self.make_set(lowerCamelCase_ ) if item != self.parent[item]: A = self.find(self.parent[item] ) return self.parent[item] def UpperCamelCase__ ( self ,lowerCamelCase_ ,lowerCamelCase_ ) -> Any: A = self.find(lowerCamelCase_ ) A = self.find(lowerCamelCase_ ) if roota == roota: return roota if self.rank[roota] > self.rank[roota]: A = roota return roota if self.rank[roota] < self.rank[roota]: A = roota return roota if self.rank[roota] == self.rank[roota]: self.rank[roota] += 1 A = roota return roota return None @staticmethod def UpperCamelCase__ ( lowerCamelCase_ ) -> List[str]: A = graph.num_vertices A = Graph.UnionFind() A = [] while num_components > 1: A = {} for vertex in graph.get_vertices(): A = -1 A = graph.get_edges() for edge in edges: A , A , A = edge edges.remove((tail, head, weight) ) for edge in edges: A , A , A = edge A = union_find.find(lowerCamelCase_ ) A = union_find.find(lowerCamelCase_ ) if seta != seta: if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight: A = [head, tail, weight] if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight: A = [head, tail, weight] for vertex in cheap_edge: if cheap_edge[vertex] != -1: A , A , A = cheap_edge[vertex] if union_find.find(lowerCamelCase_ ) != union_find.find(lowerCamelCase_ ): union_find.union(lowerCamelCase_ ,lowerCamelCase_ ) mst_edges.append(cheap_edge[vertex] ) A = num_components - 1 A = Graph.build(edges=lowerCamelCase_ ) return mst
77
0
def snake_case__ ( lowerCAmelCase_ ): """simple docstring""" return sum(i for i in range(1, number // 2 + 1 ) if number % i == 0 ) == number if __name__ == "__main__": print("Program to check whether a number is a Perfect number or not...") _lowerCamelCase =int(input("Enter number: ").strip()) print(f'{number} is {"" if perfect(number) else "not "}a Perfect Number.')
334
import argparse import os import sys from unittest.mock import patch import pytorch_lightning as pl import timeout_decorator import torch from distillation import SummarizationDistiller, distill_main from finetune import SummarizationModule, main from transformers import MarianMTModel from transformers.file_utils import cached_path from transformers.testing_utils import TestCasePlus, require_torch_gpu, slow from utils import load_json _lowerCamelCase ="sshleifer/mar_enro_6_3_student" class a_ ( lowerCamelCase_ ): """simple docstring""" def _lowerCAmelCase ( self : Union[str, Any] ): super().setUp() SCREAMING_SNAKE_CASE =cached_path( 'https://cdn-datasets.huggingface.co/translation/wmt_en_ro-tr40k-va0.5k-te0.5k.tar.gz' ,extract_compressed_file=snake_case ,) SCREAMING_SNAKE_CASE =f'{data_cached}/wmt_en_ro-tr40k-va0.5k-te0.5k' @slow @require_torch_gpu def _lowerCAmelCase ( self : Optional[int] ): MarianMTModel.from_pretrained(snake_case ) @slow @require_torch_gpu def _lowerCAmelCase ( self : Tuple ): SCREAMING_SNAKE_CASE ={ '$MAX_LEN': 64, '$BS': 64, '$GAS': 1, '$ENRO_DIR': self.data_dir, 'facebook/mbart-large-cc25': MARIAN_MODEL, # "val_check_interval=0.25": "val_check_interval=1.0", '--learning_rate=3e-5': '--learning_rate 3e-4', '--num_train_epochs 6': '--num_train_epochs 1', } # Clean up bash script SCREAMING_SNAKE_CASE =(self.test_file_dir / 'train_mbart_cc25_enro.sh').open().read().split('finetune.py' )[1].strip() SCREAMING_SNAKE_CASE =bash_script.replace('\\\n' ,'' ).strip().replace('"$@"' ,'' ) for k, v in env_vars_to_replace.items(): SCREAMING_SNAKE_CASE =bash_script.replace(snake_case ,str(snake_case ) ) SCREAMING_SNAKE_CASE =self.get_auto_remove_tmp_dir() # bash_script = bash_script.replace("--fp16 ", "") SCREAMING_SNAKE_CASE =f'\n --output_dir {output_dir}\n --tokenizer_name Helsinki-NLP/opus-mt-en-ro\n --sortish_sampler\n --do_predict\n --gpus 1\n --freeze_encoder\n --n_train 40000\n --n_val 500\n --n_test 500\n --fp16_opt_level O1\n --num_sanity_val_steps 0\n --eval_beams 2\n '.split() # XXX: args.gpus > 1 : handle multi_gpu in the future SCREAMING_SNAKE_CASE =['finetune.py'] + bash_script.split() + args with patch.object(snake_case ,'argv' ,snake_case ): SCREAMING_SNAKE_CASE =argparse.ArgumentParser() SCREAMING_SNAKE_CASE =pl.Trainer.add_argparse_args(snake_case ) SCREAMING_SNAKE_CASE =SummarizationModule.add_model_specific_args(snake_case ,os.getcwd() ) SCREAMING_SNAKE_CASE =parser.parse_args() SCREAMING_SNAKE_CASE =main(snake_case ) # Check metrics SCREAMING_SNAKE_CASE =load_json(model.metrics_save_path ) SCREAMING_SNAKE_CASE =metrics['val'][0] SCREAMING_SNAKE_CASE =metrics['val'][-1] self.assertEqual(len(metrics['val'] ) ,(args.max_epochs / args.val_check_interval) ) assert isinstance(last_step_stats[f'val_avg_{model.val_metric}'] ,snake_case ) self.assertGreater(last_step_stats['val_avg_gen_time'] ,0.01 ) # model hanging on generate. Maybe bad config was saved. (XXX: old comment/assert?) self.assertLessEqual(last_step_stats['val_avg_gen_time'] ,1.0 ) # test learning requirements: # 1. BLEU improves over the course of training by more than 2 pts self.assertGreater(last_step_stats['val_avg_bleu'] - first_step_stats['val_avg_bleu'] ,2 ) # 2. BLEU finishes above 17 self.assertGreater(last_step_stats['val_avg_bleu'] ,17 ) # 3. test BLEU and val BLEU within ~1.1 pt. self.assertLess(abs(metrics['val'][-1]['val_avg_bleu'] - metrics['test'][-1]['test_avg_bleu'] ) ,1.1 ) # check lightning ckpt can be loaded and has a reasonable statedict SCREAMING_SNAKE_CASE =os.listdir(snake_case ) SCREAMING_SNAKE_CASE =[x for x in contents if x.endswith('.ckpt' )][0] SCREAMING_SNAKE_CASE =os.path.join(args.output_dir ,snake_case ) SCREAMING_SNAKE_CASE =torch.load(snake_case ,map_location='cpu' ) SCREAMING_SNAKE_CASE ='model.model.decoder.layers.0.encoder_attn_layer_norm.weight' assert expected_key in ckpt["state_dict"] assert ckpt["state_dict"]["model.model.decoder.layers.0.encoder_attn_layer_norm.weight"].dtype == torch.floataa # TODO: turn on args.do_predict when PL bug fixed. if args.do_predict: SCREAMING_SNAKE_CASE ={os.path.basename(snake_case ) for p in contents} assert "test_generations.txt" in contents assert "test_results.txt" in contents # assert len(metrics["val"]) == desired_n_evals assert len(metrics['test'] ) == 1 class a_ ( lowerCamelCase_ ): """simple docstring""" @timeout_decorator.timeout(600 ) @slow @require_torch_gpu def _lowerCAmelCase ( self : Optional[Any] ): SCREAMING_SNAKE_CASE =f'{self.test_file_dir_str}/test_data/wmt_en_ro' SCREAMING_SNAKE_CASE ={ '--fp16_opt_level=O1': '', '$MAX_LEN': 128, '$BS': 16, '$GAS': 1, '$ENRO_DIR': data_dir, '$m': 'sshleifer/student_marian_en_ro_6_1', 'val_check_interval=0.25': 'val_check_interval=1.0', } # Clean up bash script SCREAMING_SNAKE_CASE =( (self.test_file_dir / 'distil_marian_no_teacher.sh').open().read().split('distillation.py' )[1].strip() ) SCREAMING_SNAKE_CASE =bash_script.replace('\\\n' ,'' ).strip().replace('"$@"' ,'' ) SCREAMING_SNAKE_CASE =bash_script.replace('--fp16 ' ,' ' ) for k, v in env_vars_to_replace.items(): SCREAMING_SNAKE_CASE =bash_script.replace(snake_case ,str(snake_case ) ) SCREAMING_SNAKE_CASE =self.get_auto_remove_tmp_dir() SCREAMING_SNAKE_CASE =bash_script.replace('--fp16' ,'' ) SCREAMING_SNAKE_CASE =6 SCREAMING_SNAKE_CASE =( ['distillation.py'] + bash_script.split() + [ f'--output_dir={output_dir}', '--gpus=1', '--learning_rate=1e-3', f'--num_train_epochs={epochs}', '--warmup_steps=10', '--val_check_interval=1.0', '--do_predict', ] ) with patch.object(snake_case ,'argv' ,snake_case ): SCREAMING_SNAKE_CASE =argparse.ArgumentParser() SCREAMING_SNAKE_CASE =pl.Trainer.add_argparse_args(snake_case ) SCREAMING_SNAKE_CASE =SummarizationDistiller.add_model_specific_args(snake_case ,os.getcwd() ) SCREAMING_SNAKE_CASE =parser.parse_args() # assert args.gpus == gpus THIS BREAKS for multi_gpu SCREAMING_SNAKE_CASE =distill_main(snake_case ) # Check metrics SCREAMING_SNAKE_CASE =load_json(model.metrics_save_path ) SCREAMING_SNAKE_CASE =metrics['val'][0] SCREAMING_SNAKE_CASE =metrics['val'][-1] assert len(metrics['val'] ) >= (args.max_epochs / args.val_check_interval) # +1 accounts for val_sanity_check assert last_step_stats["val_avg_gen_time"] >= 0.01 assert first_step_stats["val_avg_bleu"] < last_step_stats["val_avg_bleu"] # model learned nothing assert 1.0 >= last_step_stats["val_avg_gen_time"] # model hanging on generate. Maybe bad config was saved. assert isinstance(last_step_stats[f'val_avg_{model.val_metric}'] ,snake_case ) # check lightning ckpt can be loaded and has a reasonable statedict SCREAMING_SNAKE_CASE =os.listdir(snake_case ) SCREAMING_SNAKE_CASE =[x for x in contents if x.endswith('.ckpt' )][0] SCREAMING_SNAKE_CASE =os.path.join(args.output_dir ,snake_case ) SCREAMING_SNAKE_CASE =torch.load(snake_case ,map_location='cpu' ) SCREAMING_SNAKE_CASE ='model.model.decoder.layers.0.encoder_attn_layer_norm.weight' assert expected_key in ckpt["state_dict"] assert ckpt["state_dict"]["model.model.decoder.layers.0.encoder_attn_layer_norm.weight"].dtype == torch.floataa # TODO: turn on args.do_predict when PL bug fixed. if args.do_predict: SCREAMING_SNAKE_CASE ={os.path.basename(snake_case ) for p in contents} assert "test_generations.txt" in contents assert "test_results.txt" in contents # assert len(metrics["val"]) == desired_n_evals assert len(metrics['test'] ) == 1
334
1
from __future__ import annotations import unittest import numpy as np from transformers import OPTConfig, is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import GPTaTokenizer, TFOPTForCausalLM, TFOPTModel def UpperCAmelCase_ ( __UpperCAmelCase : Dict , __UpperCAmelCase : Optional[int] , __UpperCAmelCase : int=None , __UpperCAmelCase : Tuple=None ) -> Optional[int]: if attention_mask is None: SCREAMING_SNAKE_CASE_ = tf.cast(tf.math.not_equal(__UpperCAmelCase , config.pad_token_id ) , tf.inta ) return {"input_ids": input_ids, "attention_mask": attention_mask} @require_tf class lowerCamelCase_ : '''simple docstring''' lowercase_ = OPTConfig lowercase_ = {} lowercase_ = "gelu" def __init__( self : Any , _lowerCAmelCase : Dict , _lowerCAmelCase : Tuple=13 , _lowerCAmelCase : int=7 , _lowerCAmelCase : Optional[Any]=True , _lowerCAmelCase : Any=False , _lowerCAmelCase : List[str]=99 , _lowerCAmelCase : Tuple=16 , _lowerCAmelCase : Dict=2 , _lowerCAmelCase : str=4 , _lowerCAmelCase : Union[str, Any]=4 , _lowerCAmelCase : Any="gelu" , _lowerCAmelCase : Tuple=0.1 , _lowerCAmelCase : List[str]=0.1 , _lowerCAmelCase : Optional[int]=20 , _lowerCAmelCase : Union[str, Any]=2 , _lowerCAmelCase : Dict=1 , _lowerCAmelCase : List[str]=0 , _lowerCAmelCase : int=16 , _lowerCAmelCase : List[str]=16 , ): SCREAMING_SNAKE_CASE_ = parent SCREAMING_SNAKE_CASE_ = batch_size SCREAMING_SNAKE_CASE_ = seq_length SCREAMING_SNAKE_CASE_ = is_training SCREAMING_SNAKE_CASE_ = use_labels SCREAMING_SNAKE_CASE_ = vocab_size SCREAMING_SNAKE_CASE_ = hidden_size SCREAMING_SNAKE_CASE_ = num_hidden_layers SCREAMING_SNAKE_CASE_ = num_attention_heads SCREAMING_SNAKE_CASE_ = intermediate_size SCREAMING_SNAKE_CASE_ = hidden_act SCREAMING_SNAKE_CASE_ = hidden_dropout_prob SCREAMING_SNAKE_CASE_ = attention_probs_dropout_prob SCREAMING_SNAKE_CASE_ = max_position_embeddings SCREAMING_SNAKE_CASE_ = eos_token_id SCREAMING_SNAKE_CASE_ = pad_token_id SCREAMING_SNAKE_CASE_ = bos_token_id SCREAMING_SNAKE_CASE_ = embed_dim SCREAMING_SNAKE_CASE_ = word_embed_proj_dim SCREAMING_SNAKE_CASE_ = False def lowerCAmelCase_ ( self : List[str] ): SCREAMING_SNAKE_CASE_ = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) SCREAMING_SNAKE_CASE_ = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) SCREAMING_SNAKE_CASE_ = tf.concat([input_ids, eos_tensor] , axis=1 ) SCREAMING_SNAKE_CASE_ = self.config_cls( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , embed_dim=self.embed_dim , word_embed_proj_dim=self.word_embed_proj_dim , is_encoder_decoder=_lowerCAmelCase , **self.config_updates , ) SCREAMING_SNAKE_CASE_ = prepare_opt_inputs_dict(_lowerCAmelCase , _lowerCAmelCase ) return config, inputs_dict def lowerCAmelCase_ ( self : Union[str, Any] , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : List[str] ): SCREAMING_SNAKE_CASE_ = TFOPTModel(config=_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = inputs_dict['input_ids'] SCREAMING_SNAKE_CASE_ = input_ids[:1, :] SCREAMING_SNAKE_CASE_ = inputs_dict['attention_mask'][:1, :] SCREAMING_SNAKE_CASE_ = 1 # first forward pass SCREAMING_SNAKE_CASE_ = model(_lowerCAmelCase , attention_mask=_lowerCAmelCase , use_cache=_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids SCREAMING_SNAKE_CASE_ = ids_tensor((self.batch_size, 3) , config.vocab_size ) SCREAMING_SNAKE_CASE_ = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and SCREAMING_SNAKE_CASE_ = tf.concat([input_ids, next_tokens] , axis=-1 ) SCREAMING_SNAKE_CASE_ = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) SCREAMING_SNAKE_CASE_ = model(_lowerCAmelCase , attention_mask=_lowerCAmelCase )[0] SCREAMING_SNAKE_CASE_ = model(_lowerCAmelCase , attention_mask=_lowerCAmelCase , past_key_values=_lowerCAmelCase )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice SCREAMING_SNAKE_CASE_ = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) SCREAMING_SNAKE_CASE_ = output_from_no_past[:, -3:, random_slice_idx] SCREAMING_SNAKE_CASE_ = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(_lowerCAmelCase , _lowerCAmelCase , rtol=1E-3 ) @require_tf class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' lowercase_ = (TFOPTModel, TFOPTForCausalLM) if is_tf_available() else () lowercase_ = (TFOPTForCausalLM,) if is_tf_available() else () lowercase_ = ( {"feature-extraction": TFOPTModel, "text-generation": TFOPTForCausalLM} if is_tf_available() else {} ) lowercase_ = False lowercase_ = False lowercase_ = False lowercase_ = 10 def lowerCAmelCase_ ( self : str ): SCREAMING_SNAKE_CASE_ = TFOPTModelTester(self ) SCREAMING_SNAKE_CASE_ = ConfigTester(self , config_class=_lowerCAmelCase ) def lowerCAmelCase_ ( self : Tuple ): self.config_tester.run_common_tests() def lowerCAmelCase_ ( self : int ): SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*_lowerCAmelCase ) def lowerCAmelCase_ ( self : List[str] ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs_for_common() def _get_word_embedding_weight(_lowerCAmelCase : Tuple , _lowerCAmelCase : Tuple ): if hasattr(_lowerCAmelCase , 'weight' ): return embedding_layer.weight else: # Here we build the word embeddings weights if not exists. # And then we retry to get the attribute once built. model.build() if hasattr(_lowerCAmelCase , 'weight' ): return embedding_layer.weight else: return None for model_class in self.all_model_classes: for size in [config.vocab_size - 10, config.vocab_size + 10]: # build the embeddings SCREAMING_SNAKE_CASE_ = model_class(config=_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = _get_word_embedding_weight(_lowerCAmelCase , model.get_input_embeddings() ) SCREAMING_SNAKE_CASE_ = _get_word_embedding_weight(_lowerCAmelCase , model.get_output_embeddings() ) # reshape the embeddings model.resize_token_embeddings(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = _get_word_embedding_weight(_lowerCAmelCase , model.get_input_embeddings() ) SCREAMING_SNAKE_CASE_ = _get_word_embedding_weight(_lowerCAmelCase , model.get_output_embeddings() ) # check that the resized embeddings size matches the desired size. SCREAMING_SNAKE_CASE_ = size if size is not None else config.vocab_size self.assertEqual(new_input_embeddings.shape[0] , _lowerCAmelCase ) # check that weights remain the same after resizing SCREAMING_SNAKE_CASE_ = True for pa, pa in zip(old_input_embeddings.value() , new_input_embeddings.value() ): if tf.math.reduce_sum(tf.math.abs(pa - pa ) ) > 0: SCREAMING_SNAKE_CASE_ = False self.assertTrue(_lowerCAmelCase ) if old_output_embeddings is not None and new_output_embeddings is not None: self.assertEqual(new_output_embeddings.shape[0] , _lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = True for pa, pa in zip(old_output_embeddings.value() , new_output_embeddings.value() ): if tf.math.reduce_sum(tf.math.abs(pa - pa ) ) > 0: SCREAMING_SNAKE_CASE_ = False self.assertTrue(_lowerCAmelCase ) def UpperCAmelCase_ ( __UpperCAmelCase : Optional[int] ) -> List[Any]: return tf.constant(__UpperCAmelCase , dtype=tf.intaa ) @require_tf class lowerCamelCase_ ( unittest.TestCase ): '''simple docstring''' lowercase_ = 99 def lowerCAmelCase_ ( self : List[str] ): SCREAMING_SNAKE_CASE_ = tf.ones((4, 1) , dtype=tf.intaa ) * 2 SCREAMING_SNAKE_CASE_ = tf.concat([ids_tensor((4, 6) , self.vocab_size - 3 ) + 3, eos_column_vector] , axis=1 ) SCREAMING_SNAKE_CASE_ = input_ids.shape[0] SCREAMING_SNAKE_CASE_ = OPTConfig( vocab_size=self.vocab_size , hidden_size=24 , num_hidden_layers=2 , num_attention_heads=2 , ffn_dim=32 , max_position_embeddings=48 , eos_token_id=2 , pad_token_id=1 , bos_token_id=0 , ) return config, input_ids, batch_size @require_sentencepiece @require_tf class lowerCamelCase_ ( unittest.TestCase ): '''simple docstring''' @slow def lowerCAmelCase_ ( self : Any ): SCREAMING_SNAKE_CASE_ = TFOPTModel.from_pretrained('facebook/opt-350m' ) SCREAMING_SNAKE_CASE_ = _long_tensor([[0, 31_414, 232, 328, 740, 1_140, 12_695, 69, 46_078, 1_588, 2]] ) SCREAMING_SNAKE_CASE_ = tf.not_equal(_lowerCAmelCase , model.config.pad_token_id ) with tf.GradientTape(): SCREAMING_SNAKE_CASE_ = model(input_ids=_lowerCAmelCase , attention_mask=_lowerCAmelCase ).last_hidden_state SCREAMING_SNAKE_CASE_ = (1, 11, 512) self.assertEqual(output.shape , _lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = tf.constant( [[-0.2873, -1.9218, -0.3033], [-1.2710, -0.1338, -0.1902], [0.4095, 0.1214, -1.3121]] ) self.assertTrue(np.allclose(output[:, :3, :3] , _lowerCAmelCase , atol=4E-3 ) ) SCREAMING_SNAKE_CASE_ = tf.function(_lowerCAmelCase , jit_compile=_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = xla_generate(_lowerCAmelCase , _lowerCAmelCase )[0] self.assertTrue(np.allclose(output[:, :3, :3] , _lowerCAmelCase , atol=4E-2 ) ) @require_tf @slow class lowerCamelCase_ ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase_ ( self : List[str] ): super().setUp() SCREAMING_SNAKE_CASE_ = 'facebook/opt-350m' def lowerCAmelCase_ ( self : Any ): SCREAMING_SNAKE_CASE_ = TFOPTForCausalLM.from_pretrained(self.path_model ) SCREAMING_SNAKE_CASE_ = GPTaTokenizer.from_pretrained(self.path_model ) SCREAMING_SNAKE_CASE_ = [ 'Today is a beautiful day and I want to', 'In the city of', 'Paris is the capital of France and', 'Computers and mobile phones have taken', ] # verify that prompt without BOS token is identical to Metaseq -> add_special_tokens=False SCREAMING_SNAKE_CASE_ = tokenizer(_lowerCAmelCase , return_tensors='tf' , padding=_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = tf.math.reduce_mean(model(inputs.input_ids , attention_mask=inputs.attention_mask )[0] , axis=-1 ) SCREAMING_SNAKE_CASE_ = tf.constant( [ [1.3851, -13.8923, -10.5229, -10.7533, -0.2309, -10.2384, -0.5365, -9.0947, -5.1670], [-4.7073, -10.6276, -3.9415, -21.5242, -0.2822, -0.2822, -0.2822, -0.2822, -0.2822], [0.6247, -3.4229, -8.9179, -1.4297, -14.1650, 1.4146, -9.0218, -0.2703, -0.2703], [6.4783, -1.9913, -10.7926, -2.3336, 1.5092, -0.9974, -6.8213, 1.3477, 1.3477], ] ) self.assertTrue(np.allclose(_lowerCAmelCase , _lowerCAmelCase , atol=1E-4 ) ) SCREAMING_SNAKE_CASE_ = tf.function(_lowerCAmelCase , jit_compile=_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = tf.math.reduce_mean(xla_generate(inputs.input_ids , attention_mask=inputs.attention_mask )[0] , axis=-1 ) self.assertTrue(np.allclose(_lowerCAmelCase , _lowerCAmelCase , atol=1E-4 ) ) @require_tf @slow class lowerCamelCase_ ( unittest.TestCase ): '''simple docstring''' @property def lowerCAmelCase_ ( self : Tuple ): return [ "Today is a beautiful day and I want", "In the city of", "Paris is the capital of France and", "Computers and mobile phones have taken", ] def lowerCAmelCase_ ( self : Dict ): SCREAMING_SNAKE_CASE_ = 'facebook/opt-125m' SCREAMING_SNAKE_CASE_ = [ 'Today is a beautiful day and I want to', 'In the city of New York, the city', 'Paris is the capital of France and the capital', 'Computers and mobile phones have taken over the', ] SCREAMING_SNAKE_CASE_ = [] SCREAMING_SNAKE_CASE_ = GPTaTokenizer.from_pretrained(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = TFOPTForCausalLM.from_pretrained(_lowerCAmelCase ) for prompt in self.prompts: SCREAMING_SNAKE_CASE_ = tokenizer(_lowerCAmelCase , return_tensors='tf' ).input_ids SCREAMING_SNAKE_CASE_ = model.generate(_lowerCAmelCase , max_length=10 ) SCREAMING_SNAKE_CASE_ = tokenizer.batch_decode(_lowerCAmelCase , skip_special_tokens=_lowerCAmelCase ) predicted_outputs += generated_string self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase ) def lowerCAmelCase_ ( self : List[Any] ): SCREAMING_SNAKE_CASE_ = 'facebook/opt-350m' SCREAMING_SNAKE_CASE_ = GPTaTokenizer.from_pretrained(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = TFOPTForCausalLM.from_pretrained(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = 'left' # use different length sentences to test batching SCREAMING_SNAKE_CASE_ = [ 'Hello, my dog is a little', 'Today, I', ] SCREAMING_SNAKE_CASE_ = tokenizer(_lowerCAmelCase , return_tensors='tf' , padding=_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = inputs['input_ids'] SCREAMING_SNAKE_CASE_ = model.generate(input_ids=_lowerCAmelCase , attention_mask=inputs['attention_mask'] ) SCREAMING_SNAKE_CASE_ = tokenizer(sentences[0] , return_tensors='tf' ).input_ids SCREAMING_SNAKE_CASE_ = model.generate(input_ids=_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = inputs_non_padded.shape[-1] - tf.math.reduce_sum( tf.cast(inputs['attention_mask'][-1] , tf.intaa ) ) SCREAMING_SNAKE_CASE_ = tokenizer(sentences[1] , return_tensors='tf' ).input_ids SCREAMING_SNAKE_CASE_ = model.generate(input_ids=_lowerCAmelCase , max_length=model.config.max_length - num_paddings ) SCREAMING_SNAKE_CASE_ = tokenizer.batch_decode(_lowerCAmelCase , skip_special_tokens=_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = tokenizer.decode(output_non_padded[0] , skip_special_tokens=_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = tokenizer.decode(output_padded[0] , skip_special_tokens=_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = [ 'Hello, my dog is a little bit of a dork.\nI\'m a little bit', 'Today, I was in the middle of a conversation with a friend about the', ] self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase ) self.assertListEqual(_lowerCAmelCase , [non_padded_sentence, padded_sentence] ) def lowerCAmelCase_ ( self : Tuple ): SCREAMING_SNAKE_CASE_ = 'facebook/opt-350m' SCREAMING_SNAKE_CASE_ = [ 'Today is a beautiful day and I want to', 'In the city of San Francisco, the city', 'Paris is the capital of France and the capital', 'Computers and mobile phones have taken over the', ] SCREAMING_SNAKE_CASE_ = [] SCREAMING_SNAKE_CASE_ = GPTaTokenizer.from_pretrained(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = TFOPTForCausalLM.from_pretrained(_lowerCAmelCase ) for prompt in self.prompts: SCREAMING_SNAKE_CASE_ = tokenizer(_lowerCAmelCase , return_tensors='tf' ).input_ids SCREAMING_SNAKE_CASE_ = model.generate(_lowerCAmelCase , max_length=10 ) SCREAMING_SNAKE_CASE_ = tokenizer.batch_decode(_lowerCAmelCase , skip_special_tokens=_lowerCAmelCase ) predicted_outputs += generated_string self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase )
210
import torch from torch import nn from transformers import CLIPPreTrainedModel, CLIPVisionModel from ...models.attention import BasicTransformerBlock from ...utils import logging lowerCamelCase__ : List[Any] = logging.get_logger(__name__) # pylint: disable=invalid-name class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self : List[Any] , _lowerCAmelCase : Dict , _lowerCAmelCase : Tuple=768 ): super().__init__(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = proj_size SCREAMING_SNAKE_CASE_ = CLIPVisionModel(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = PaintByExampleMapper(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = nn.LayerNorm(config.hidden_size ) SCREAMING_SNAKE_CASE_ = nn.Linear(config.hidden_size , self.proj_size ) # uncondition for scaling SCREAMING_SNAKE_CASE_ = nn.Parameter(torch.randn((1, 1, self.proj_size) ) ) def lowerCAmelCase_ ( self : Any , _lowerCAmelCase : int , _lowerCAmelCase : int=False ): SCREAMING_SNAKE_CASE_ = self.model(pixel_values=_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = clip_output.pooler_output SCREAMING_SNAKE_CASE_ = self.mapper(latent_states[:, None] ) SCREAMING_SNAKE_CASE_ = self.final_layer_norm(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = self.proj_out(_lowerCAmelCase ) if return_uncond_vector: return latent_states, self.uncond_vector return latent_states class lowerCamelCase_ ( nn.Module ): '''simple docstring''' def __init__( self : int , _lowerCAmelCase : Optional[Any] ): super().__init__() SCREAMING_SNAKE_CASE_ = (config.num_hidden_layers + 1) // 5 SCREAMING_SNAKE_CASE_ = config.hidden_size SCREAMING_SNAKE_CASE_ = 1 SCREAMING_SNAKE_CASE_ = nn.ModuleList( [ BasicTransformerBlock(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , activation_fn='gelu' , attention_bias=_lowerCAmelCase ) for _ in range(_lowerCAmelCase ) ] ) def lowerCAmelCase_ ( self : Union[str, Any] , _lowerCAmelCase : Optional[Any] ): for block in self.blocks: SCREAMING_SNAKE_CASE_ = block(_lowerCAmelCase ) return hidden_states
210
1
'''simple docstring''' # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import re from ..utils import cached_file # docstyle-ignore lowercase__ : Tuple = ''' Human: <<task>> Assistant: ''' lowercase__ : Optional[Any] = '''huggingface-tools/default-prompts''' lowercase__ : List[str] = {'''chat''': '''chat_prompt_template.txt''', '''run''': '''run_prompt_template.txt'''} def _lowerCAmelCase ( __snake_case : List[Any] , __snake_case : List[Any] , __snake_case : Optional[Any]="run" ) -> Union[str, Any]: if prompt_or_repo_id is None: __A : List[Any] = DEFAULT_PROMPTS_REPO # prompt is considered a repo ID when it does not contain any kind of space if re.search('\\s' , __snake_case ) is not None: return prompt_or_repo_id __A : Optional[Any] = cached_file( __snake_case , PROMPT_FILES[mode] , repo_type='dataset' , user_agent={'agent': agent_name} ) with open(__snake_case , 'r' , encoding='utf-8' ) as f: return f.read()
190
'''simple docstring''' import os import shutil import tempfile from unittest import TestCase from unittest.mock import patch import numpy as np from datasets import Dataset from transformers.models.realm.configuration_realm import RealmConfig from transformers.models.realm.retrieval_realm import _REALM_BLOCK_RECORDS_FILENAME, RealmRetriever from transformers.models.realm.tokenization_realm import VOCAB_FILES_NAMES, RealmTokenizer class SCREAMING_SNAKE_CASE (a__ ): def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Any = tempfile.mkdtemp() __A : str = 5 # Realm tok __A : Union[str, Any] = [ '[UNK]', '[CLS]', '[SEP]', '[PAD]', '[MASK]', 'test', 'question', 'this', 'is', 'the', 'first', 'second', 'third', 'fourth', 'fifth', 'record', 'want', '##want', '##ed', 'wa', 'un', 'runn', '##ing', ',', 'low', 'lowest', ] __A : Union[str, Any] = os.path.join(self.tmpdirname , 'realm_tokenizer') os.makedirs(_UpperCAmelCase , exist_ok=_UpperCAmelCase) __A : Tuple = os.path.join(_UpperCAmelCase , VOCAB_FILES_NAMES['vocab_file']) with open(self.vocab_file , 'w' , encoding='utf-8') as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens])) __A : int = os.path.join(self.tmpdirname , 'realm_block_records') os.makedirs(_UpperCAmelCase , exist_ok=_UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' return RealmTokenizer.from_pretrained(os.path.join(self.tmpdirname , 'realm_tokenizer')) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' shutil.rmtree(self.tmpdirname) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Union[str, Any] = RealmConfig(num_block_records=self.num_block_records) return config def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Dict = Dataset.from_dict( { 'id': ['0', '1'], 'question': ['foo', 'bar'], 'answers': [['Foo', 'Bar'], ['Bar']], }) return dataset def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Any = np.array( [ B'This is the first record', B'This is the second record', B'This is the third record', B'This is the fourth record', B'This is the fifth record', B'This is a longer longer longer record', ] , dtype=_UpperCAmelCase , ) return block_records def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Optional[Any] = RealmRetriever( block_records=self.get_dummy_block_records() , tokenizer=self.get_tokenizer() , ) return retriever def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : List[Any] = self.get_config() __A : str = self.get_dummy_retriever() __A : List[str] = retriever.tokenizer __A : Dict = np.array([0, 3] , dtype='long') __A : Dict = tokenizer(['Test question']).input_ids __A : Optional[Any] = tokenizer( ['the fourth'] , add_special_tokens=_UpperCAmelCase , return_token_type_ids=_UpperCAmelCase , return_attention_mask=_UpperCAmelCase , ).input_ids __A : str = config.reader_seq_len __A ,__A ,__A ,__A : List[str] = retriever( _UpperCAmelCase , _UpperCAmelCase , answer_ids=_UpperCAmelCase , max_length=_UpperCAmelCase , return_tensors='np') self.assertEqual(len(_UpperCAmelCase) , 2) self.assertEqual(len(_UpperCAmelCase) , 2) self.assertEqual(len(_UpperCAmelCase) , 2) self.assertEqual(concat_inputs.input_ids.shape , (2, 10)) self.assertEqual(concat_inputs.attention_mask.shape , (2, 10)) self.assertEqual(concat_inputs.token_type_ids.shape , (2, 10)) self.assertEqual(concat_inputs.special_tokens_mask.shape , (2, 10)) self.assertEqual( tokenizer.convert_ids_to_tokens(concat_inputs.input_ids[0]) , ['[CLS]', 'test', 'question', '[SEP]', 'this', 'is', 'the', 'first', 'record', '[SEP]'] , ) self.assertEqual( tokenizer.convert_ids_to_tokens(concat_inputs.input_ids[1]) , ['[CLS]', 'test', 'question', '[SEP]', 'this', 'is', 'the', 'fourth', 'record', '[SEP]'] , ) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : int = self.get_config() __A : Any = self.get_dummy_retriever() __A : str = retriever.tokenizer __A : Dict = np.array([0, 3, 5] , dtype='long') __A : Tuple = tokenizer(['Test question']).input_ids __A : Union[str, Any] = tokenizer( ['the fourth', 'longer longer'] , add_special_tokens=_UpperCAmelCase , return_token_type_ids=_UpperCAmelCase , return_attention_mask=_UpperCAmelCase , ).input_ids __A : Dict = config.reader_seq_len __A ,__A ,__A ,__A : str = retriever( _UpperCAmelCase , _UpperCAmelCase , answer_ids=_UpperCAmelCase , max_length=_UpperCAmelCase , return_tensors='np') self.assertEqual([False, True, True] , _UpperCAmelCase) self.assertEqual([[-1, -1, -1], [6, -1, -1], [6, 7, 8]] , _UpperCAmelCase) self.assertEqual([[-1, -1, -1], [7, -1, -1], [7, 8, 9]] , _UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Optional[Any] = self.get_dummy_retriever() retriever.save_pretrained(os.path.join(self.tmpdirname , 'realm_block_records')) # Test local path __A : str = retriever.from_pretrained(os.path.join(self.tmpdirname , 'realm_block_records')) self.assertEqual(retriever.block_records[0] , B'This is the first record') # Test mocked remote path with patch('transformers.models.realm.retrieval_realm.hf_hub_download') as mock_hf_hub_download: __A : int = os.path.join( os.path.join(self.tmpdirname , 'realm_block_records') , _REALM_BLOCK_RECORDS_FILENAME) __A : Tuple = RealmRetriever.from_pretrained('google/realm-cc-news-pretrained-openqa') self.assertEqual(retriever.block_records[0] , B'This is the first record')
190
1
import requests _lowercase: List[Any] = "https://newsapi.org/v1/articles?source=bbc-news&sortBy=top&apiKey=" def a( A : str ) -> Optional[Any]: """simple docstring""" a = requests.get(_NEWS_API + bbc_news_api_key ).json() # each article in the list is a dict for i, article in enumerate(bbc_news_page["articles"] , 1 ): print(f'''{i}.) {article['title']}''' ) if __name__ == "__main__": fetch_bbc_news(bbc_news_api_key="<Your BBC News API key goes here>")
350
import unittest from transformers.models.xlm_prophetnet.tokenization_xlm_prophetnet import SPIECE_UNDERLINE, XLMProphetNetTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin _lowercase: str = get_tests_dir("fixtures/test_sentencepiece.model") @require_sentencepiece class _lowercase ( lowerCAmelCase, unittest.TestCase ): """simple docstring""" __A = XLMProphetNetTokenizer __A = False __A = True def UpperCamelCase_ (self ): """simple docstring""" super().setUp() # We have a SentencePiece fixture for testing a = XLMProphetNetTokenizer(lowerCamelCase_ , keep_accents=lowerCamelCase_ ) tokenizer.save_pretrained(self.tmpdirname ) def UpperCamelCase_ (self ): """simple docstring""" a = "[PAD]" a = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowerCamelCase_ ) , lowerCamelCase_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowerCamelCase_ ) , lowerCamelCase_ ) def UpperCamelCase_ (self ): """simple docstring""" a = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , "[PAD]" ) self.assertEqual(vocab_keys[1] , "[CLS]" ) self.assertEqual(vocab_keys[-1] , "j" ) self.assertEqual(len(lowerCamelCase_ ) , 1012 ) def UpperCamelCase_ (self ): """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 1012 ) def UpperCamelCase_ (self ): """simple docstring""" a = XLMProphetNetTokenizer(lowerCamelCase_ , keep_accents=lowerCamelCase_ ) a = tokenizer.tokenize("This is a test" ) self.assertListEqual(lowerCamelCase_ , ["▁This", "▁is", "▁a", "▁t", "est"] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(lowerCamelCase_ ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) a = tokenizer.tokenize("I was born in 92000, and this is falsé." ) self.assertListEqual( lowerCamelCase_ , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "é", ".", ] , ) a = tokenizer.convert_tokens_to_ids(lowerCamelCase_ ) self.assertListEqual( lowerCamelCase_ , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, -9, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, -9, 4] ] , ) a = tokenizer.convert_ids_to_tokens(lowerCamelCase_ ) self.assertListEqual( lowerCamelCase_ , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "[UNK]", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "[UNK]", ".", ] , ) @cached_property def UpperCamelCase_ (self ): """simple docstring""" return XLMProphetNetTokenizer.from_pretrained("microsoft/xprophetnet-large-wiki100-cased" ) @slow def UpperCamelCase_ (self ): """simple docstring""" a = "Hello World!" a = [35389, 6672, 49, 2] self.assertListEqual(lowerCamelCase_ , self.big_tokenizer.encode(lowerCamelCase_ ) ) @slow def UpperCamelCase_ (self ): """simple docstring""" a = {"input_ids": [[11073, 82783, 18, 26, 82783, 549, 51540, 248, 17209, 1301, 217, 20, 215186, 1325, 147, 17209, 1301, 217, 20, 56370, 53, 122020, 20, 16477, 27, 87355, 4548, 20, 4728, 78392, 17, 159969, 18, 26, 24491, 629, 15, 538, 22704, 5439, 15, 2788, 24491, 9885, 15, 43534, 605, 15, 814, 18403, 33200, 29, 15, 43534, 24458, 12410, 111, 24966, 83669, 9637, 144068, 26, 850, 22346, 27, 147, 24966, 83669, 83490, 26, 39113, 735, 27, 689, 656, 2800, 1339, 4600, 53, 122020, 115785, 34, 816, 1339, 46887, 18, 147, 53905, 1951, 42238, 41170, 17732, 834, 436, 15, 27523, 98733, 217, 147, 5542, 4981, 930, 17347, 16, 2], [20091, 629, 94, 82786, 58, 490, 20, 1528, 84, 53905, 344, 80592, 110128, 18822, 5267, 1306, 62, 152537, 308, 7997, 401, 124427, 549, 35442, 225, 109, 15055, 25748, 147, 7119, 43712, 34, 767, 135366, 18, 16, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [592, 63784, 119466, 17, 147808, 88214, 18, 656, 81, 32, 3296, 10280, 16, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=lowerCamelCase_ , model_name="microsoft/xprophetnet-large-wiki100-cased" , revision="1acad1643ddd54a44df6a1b797ada8373685d90e" , )
71
0
def _UpperCAmelCase (UpperCamelCase__ : list , UpperCamelCase__ : list , UpperCamelCase__ : int ): if len(UpperCamelCase__ ) != len(UpperCamelCase__ ): raise ValueError("The length of profit and weight must be same." ) if max_weight <= 0: raise ValueError("max_weight must greater than zero." ) if any(p < 0 for p in profit ): raise ValueError("Profit can not be negative." ) if any(w < 0 for w in weight ): raise ValueError("Weight can not be negative." ) # List created to store profit gained for the 1kg in case of each weight # respectively. Calculate and append profit/weight for each element. _A : Tuple = [p / w for p, w in zip(UpperCamelCase__ , UpperCamelCase__ )] # Creating a copy of the list and sorting profit/weight in ascending order _A : Optional[int] = sorted(UpperCamelCase__ ) # declaring useful variables _A : List[Any] = len(UpperCamelCase__ ) _A : Dict = 0 _A : List[Any] = 0 _A : List[Any] = 0 # loop till the total weight do not reach max limit e.g. 15 kg and till i<length while limit <= max_weight and i < length: # flag value for encountered greatest element in sorted_profit_by_weight _A : Union[str, Any] = sorted_profit_by_weight[length - i - 1] _A : Optional[int] = profit_by_weight.index(UpperCamelCase__ ) _A : List[str] = -1 # check if the weight encountered is less than the total weight # encountered before. if max_weight - limit >= weight[index]: limit += weight[index] # Adding profit gained for the given weight 1 === # weight[index]/weight[index] gain += 1 * profit[index] else: # Since the weight encountered is greater than limit, therefore take the # required number of remaining kgs and calculate profit for it. # weight remaining / weight[index] gain += (max_weight - limit) / weight[index] * profit[index] break i += 1 return gain if __name__ == "__main__": print( 'Input profits, weights, and then max_weight (all positive ints) separated by ' 'spaces.' ) lowerCAmelCase__ = [int(x) for x in input('Input profits separated by spaces: ').split()] lowerCAmelCase__ = [int(x) for x in input('Input weights separated by spaces: ').split()] lowerCAmelCase__ = int(input('Max weight allowed: ')) # Function Call calc_profit(profit, weight, max_weight)
11
"""simple docstring""" class lowerCAmelCase_ : '''simple docstring''' def __init__( self : Dict ,A_ : list[int] ) -> None: A = len(A_ ) A = [0] * len_array if len_array > 0: A = array[0] for i in range(1 ,A_ ): A = self.prefix_sum[i - 1] + array[i] def _SCREAMING_SNAKE_CASE ( self : str ,A_ : int ,A_ : int ) -> int: if start == 0: return self.prefix_sum[end] return self.prefix_sum[end] - self.prefix_sum[start - 1] def _SCREAMING_SNAKE_CASE ( self : str ,A_ : int ) -> bool: A = {0} for sum_item in self.prefix_sum: if sum_item - target_sum in sums: return True sums.add(A_ ) return False if __name__ == "__main__": import doctest doctest.testmod()
74
0
from __future__ import annotations def _lowerCamelCase(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , ) -> str: if (electron_conc, hole_conc, intrinsic_conc).count(0 ) != 1: raise ValueError("""You cannot supply more or less than 2 values""" ) elif electron_conc < 0: raise ValueError("""Electron concentration cannot be negative in a semiconductor""" ) elif hole_conc < 0: raise ValueError("""Hole concentration cannot be negative in a semiconductor""" ) elif intrinsic_conc < 0: raise ValueError( """Intrinsic concentration cannot be negative in a semiconductor""" ) elif electron_conc == 0: return ( "electron_conc", intrinsic_conc**2 / hole_conc, ) elif hole_conc == 0: return ( "hole_conc", intrinsic_conc**2 / electron_conc, ) elif intrinsic_conc == 0: return ( "intrinsic_conc", (electron_conc * hole_conc) ** 0.5, ) else: return (-1, -1) if __name__ == "__main__": import doctest doctest.testmod()
358
"""simple docstring""" def _lowerCamelCase(__UpperCamelCase , __UpperCamelCase ) -> int: return int((input_a, input_a).count(1 ) != 0 ) def _lowerCamelCase() -> None: assert or_gate(0 , 0 ) == 0 assert or_gate(0 , 1 ) == 1 assert or_gate(1 , 0 ) == 1 assert or_gate(1 , 1 ) == 1 if __name__ == "__main__": print(or_gate(0, 1)) print(or_gate(1, 0)) print(or_gate(0, 0)) print(or_gate(1, 1))
341
0
"""simple docstring""" import argparse import numpy as np import torch from transformers import SpeechTaHifiGan, SpeechTaHifiGanConfig, logging logging.set_verbosity_info() __a = logging.get_logger("transformers.models.speecht5") def A_ ( _lowercase, _lowercase, _lowercase ): '''simple docstring''' hf_model.apply_weight_norm() snake_case_ :Optional[int] = checkpoint["""input_conv.weight_g"""] snake_case_ :Optional[int] = checkpoint["""input_conv.weight_v"""] snake_case_ :int = checkpoint["""input_conv.bias"""] for i in range(len(config.upsample_rates ) ): snake_case_ :int = checkpoint[f"""upsamples.{i}.1.weight_g"""] snake_case_ :int = checkpoint[f"""upsamples.{i}.1.weight_v"""] snake_case_ :str = checkpoint[f"""upsamples.{i}.1.bias"""] for i in range(len(config.upsample_rates ) * len(config.resblock_kernel_sizes ) ): for j in range(len(config.resblock_dilation_sizes ) ): snake_case_ :Optional[int] = checkpoint[f"""blocks.{i}.convs1.{j}.1.weight_g"""] snake_case_ :Union[str, Any] = checkpoint[f"""blocks.{i}.convs1.{j}.1.weight_v"""] snake_case_ :Optional[int] = checkpoint[f"""blocks.{i}.convs1.{j}.1.bias"""] snake_case_ :List[Any] = checkpoint[f"""blocks.{i}.convs2.{j}.1.weight_g"""] snake_case_ :List[Any] = checkpoint[f"""blocks.{i}.convs2.{j}.1.weight_v"""] snake_case_ :Tuple = checkpoint[f"""blocks.{i}.convs2.{j}.1.bias"""] snake_case_ :Tuple = checkpoint["""output_conv.1.weight_g"""] snake_case_ :Optional[Any] = checkpoint["""output_conv.1.weight_v"""] snake_case_ :int = checkpoint["""output_conv.1.bias"""] hf_model.remove_weight_norm() @torch.no_grad() def A_ ( _lowercase, _lowercase, _lowercase, _lowercase=None, _lowercase=None, ): '''simple docstring''' if config_path is not None: snake_case_ :Union[str, Any] = SpeechTaHifiGanConfig.from_pretrained(_lowercase ) else: snake_case_ :Tuple = SpeechTaHifiGanConfig() snake_case_ :Any = SpeechTaHifiGan(_lowercase ) snake_case_ :Any = torch.load(_lowercase ) load_weights(orig_checkpoint["""model"""]["""generator"""], _lowercase, _lowercase ) snake_case_ :Tuple = np.load(_lowercase ) snake_case_ :Optional[int] = stats[0].reshape(-1 ) snake_case_ :Optional[int] = stats[1].reshape(-1 ) snake_case_ :Any = torch.from_numpy(_lowercase ).float() snake_case_ :str = torch.from_numpy(_lowercase ).float() model.save_pretrained(_lowercase ) if repo_id: print("""Pushing to the hub...""" ) model.push_to_hub(_lowercase ) if __name__ == "__main__": __a = argparse.ArgumentParser() parser.add_argument("--checkpoint_path", required=True, default=None, type=str, help="Path to original checkpoint") parser.add_argument("--stats_path", required=True, default=None, type=str, help="Path to stats.npy file") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--pytorch_dump_folder_path", required=True, default=None, type=str, help="Path to the output PyTorch model." ) parser.add_argument( "--push_to_hub", default=None, type=str, help="Where to upload the converted model on the 🤗 hub." ) __a = parser.parse_args() convert_hifigan_checkpoint( args.checkpoint_path, args.stats_path, args.pytorch_dump_folder_path, args.config_path, args.push_to_hub, )
66
"""simple docstring""" from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import PIL from PIL import Image from ...utils import ( BaseOutput, OptionalDependencyNotAvailable, is_flax_available, is_k_diffusion_available, is_k_diffusion_version, is_onnx_available, is_torch_available, is_transformers_available, is_transformers_version, ) @dataclass class UpperCAmelCase_ ( _a): lowerCamelCase__ : Union[List[PIL.Image.Image], np.ndarray] lowerCamelCase__ : Optional[List[bool]] try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .pipeline_cycle_diffusion import CycleDiffusionPipeline from .pipeline_stable_diffusion import StableDiffusionPipeline from .pipeline_stable_diffusion_attend_and_excite import StableDiffusionAttendAndExcitePipeline from .pipeline_stable_diffusion_imgaimg import StableDiffusionImgaImgPipeline from .pipeline_stable_diffusion_inpaint import StableDiffusionInpaintPipeline from .pipeline_stable_diffusion_inpaint_legacy import StableDiffusionInpaintPipelineLegacy from .pipeline_stable_diffusion_instruct_pixapix import StableDiffusionInstructPixaPixPipeline from .pipeline_stable_diffusion_latent_upscale import StableDiffusionLatentUpscalePipeline from .pipeline_stable_diffusion_ldmad import StableDiffusionLDMaDPipeline from .pipeline_stable_diffusion_model_editing import StableDiffusionModelEditingPipeline from .pipeline_stable_diffusion_panorama import StableDiffusionPanoramaPipeline from .pipeline_stable_diffusion_paradigms import StableDiffusionParadigmsPipeline from .pipeline_stable_diffusion_sag import StableDiffusionSAGPipeline from .pipeline_stable_diffusion_upscale import StableDiffusionUpscalePipeline from .pipeline_stable_unclip import StableUnCLIPPipeline from .pipeline_stable_unclip_imgaimg import StableUnCLIPImgaImgPipeline from .safety_checker import StableDiffusionSafetyChecker from .stable_unclip_image_normalizer import StableUnCLIPImageNormalizer try: if not (is_transformers_available() and is_torch_available() and is_transformers_version(">=", "4.25.0")): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import StableDiffusionImageVariationPipeline else: from .pipeline_stable_diffusion_image_variation import StableDiffusionImageVariationPipeline try: if not (is_transformers_available() and is_torch_available() and is_transformers_version(">=", "4.26.0")): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ( StableDiffusionDepthaImgPipeline, StableDiffusionDiffEditPipeline, StableDiffusionPixaPixZeroPipeline, ) else: from .pipeline_stable_diffusion_depthaimg import StableDiffusionDepthaImgPipeline from .pipeline_stable_diffusion_diffedit import StableDiffusionDiffEditPipeline from .pipeline_stable_diffusion_pixapix_zero import StableDiffusionPixaPixZeroPipeline try: if not ( is_torch_available() and is_transformers_available() and is_k_diffusion_available() and is_k_diffusion_version(">=", "0.0.12") ): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_and_k_diffusion_objects import * # noqa F403 else: from .pipeline_stable_diffusion_k_diffusion import StableDiffusionKDiffusionPipeline try: if not (is_transformers_available() and is_onnx_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_onnx_objects import * # noqa F403 else: from .pipeline_onnx_stable_diffusion import OnnxStableDiffusionPipeline, StableDiffusionOnnxPipeline from .pipeline_onnx_stable_diffusion_imgaimg import OnnxStableDiffusionImgaImgPipeline from .pipeline_onnx_stable_diffusion_inpaint import OnnxStableDiffusionInpaintPipeline from .pipeline_onnx_stable_diffusion_inpaint_legacy import OnnxStableDiffusionInpaintPipelineLegacy from .pipeline_onnx_stable_diffusion_upscale import OnnxStableDiffusionUpscalePipeline if is_transformers_available() and is_flax_available(): import flax @flax.struct.dataclass class UpperCAmelCase_ ( _a): lowerCamelCase__ : np.ndarray lowerCamelCase__ : List[bool] from ...schedulers.scheduling_pndm_flax import PNDMSchedulerState from .pipeline_flax_stable_diffusion import FlaxStableDiffusionPipeline from .pipeline_flax_stable_diffusion_imgaimg import FlaxStableDiffusionImgaImgPipeline from .pipeline_flax_stable_diffusion_inpaint import FlaxStableDiffusionInpaintPipeline from .safety_checker_flax import FlaxStableDiffusionSafetyChecker
77
0
"""simple docstring""" from dataclasses import dataclass, field from typing import TYPE_CHECKING, Any, ClassVar, Dict, List, Optional, Union import pyarrow as pa if TYPE_CHECKING: from .features import FeatureType @dataclass class _lowerCAmelCase : """simple docstring""" __magic_name__ :List[str] __magic_name__ :Optional[str] = None # Automatically constructed __magic_name__ :ClassVar[str] = "dict" __magic_name__ :ClassVar[Any] = None __magic_name__ :str = field(default="""Translation""" , init=a , repr=a ) def __call__( self ): '''simple docstring''' return pa.struct({lang: pa.string() for lang in sorted(self.languages )} ) def snake_case ( self ): '''simple docstring''' from .features import Value return {k: Value('string' ) for k in sorted(self.languages )} @dataclass class _lowerCAmelCase : """simple docstring""" __magic_name__ :Optional[List] = None __magic_name__ :Optional[int] = None __magic_name__ :Optional[str] = None # Automatically constructed __magic_name__ :ClassVar[str] = "dict" __magic_name__ :ClassVar[Any] = None __magic_name__ :str = field(default="""TranslationVariableLanguages""" , init=a , repr=a ) def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :Union[str, Any] = sorted(set(self.languages ) ) if self.languages else None lowerCAmelCase__ :Tuple = len(self.languages ) if self.languages else None def __call__( self ): '''simple docstring''' return pa.struct({'language': pa.list_(pa.string() ), 'translation': pa.list_(pa.string() )} ) def snake_case ( self , __UpperCAmelCase ): '''simple docstring''' lowerCAmelCase__ :Dict = set(self.languages ) if self.languages and set(__UpperCAmelCase ) - lang_set: raise ValueError( F"Some languages in example ({', '.join(sorted(set(__UpperCAmelCase ) - lang_set ) )}) are not in valid set ({', '.join(__UpperCAmelCase )})." ) # Convert dictionary into tuples, splitting out cases where there are # multiple translations for a single language. lowerCAmelCase__ :str = [] for lang, text in translation_dict.items(): if isinstance(__UpperCAmelCase , __UpperCAmelCase ): translation_tuples.append((lang, text) ) else: translation_tuples.extend([(lang, el) for el in text] ) # Ensure translations are in ascending order by language code. lowerCAmelCase__ :int = zip(*sorted(__UpperCAmelCase ) ) return {"language": languages, "translation": translations} def snake_case ( self ): '''simple docstring''' from .features import Sequence, Value return { "language": Sequence(Value('string' ) ), "translation": Sequence(Value('string' ) ), }
353
"""simple docstring""" import unittest from transformers import DebertaConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( DebertaForMaskedLM, DebertaForQuestionAnswering, DebertaForSequenceClassification, DebertaForTokenClassification, DebertaModel, ) from transformers.models.deberta.modeling_deberta import DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST class _lowerCAmelCase ( a ): """simple docstring""" def __init__( self , __UpperCAmelCase , __UpperCAmelCase=1_3 , __UpperCAmelCase=7 , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=9_9 , __UpperCAmelCase=3_2 , __UpperCAmelCase=5 , __UpperCAmelCase=4 , __UpperCAmelCase=3_7 , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=5_1_2 , __UpperCAmelCase=1_6 , __UpperCAmelCase=2 , __UpperCAmelCase=0.02 , __UpperCAmelCase=False , __UpperCAmelCase=True , __UpperCAmelCase="None" , __UpperCAmelCase=3 , __UpperCAmelCase=4 , __UpperCAmelCase=None , ): '''simple docstring''' lowerCAmelCase__ :Union[str, Any] = parent lowerCAmelCase__ :int = batch_size lowerCAmelCase__ :List[str] = seq_length lowerCAmelCase__ :Tuple = is_training lowerCAmelCase__ :Tuple = use_input_mask lowerCAmelCase__ :Dict = use_token_type_ids lowerCAmelCase__ :Union[str, Any] = use_labels lowerCAmelCase__ :Tuple = vocab_size lowerCAmelCase__ :List[Any] = hidden_size lowerCAmelCase__ :Tuple = num_hidden_layers lowerCAmelCase__ :str = num_attention_heads lowerCAmelCase__ :List[str] = intermediate_size lowerCAmelCase__ :Optional[Any] = hidden_act lowerCAmelCase__ :Union[str, Any] = hidden_dropout_prob lowerCAmelCase__ :Any = attention_probs_dropout_prob lowerCAmelCase__ :Dict = max_position_embeddings lowerCAmelCase__ :Tuple = type_vocab_size lowerCAmelCase__ :List[str] = type_sequence_label_size lowerCAmelCase__ :Tuple = initializer_range lowerCAmelCase__ :Optional[Any] = num_labels lowerCAmelCase__ :int = num_choices lowerCAmelCase__ :Union[str, Any] = relative_attention lowerCAmelCase__ :int = position_biased_input lowerCAmelCase__ :Optional[int] = pos_att_type lowerCAmelCase__ :Dict = scope def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :int = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCAmelCase__ :int = None if self.use_input_mask: lowerCAmelCase__ :int = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) lowerCAmelCase__ :Optional[Any] = None if self.use_token_type_ids: lowerCAmelCase__ :Tuple = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowerCAmelCase__ :Dict = None lowerCAmelCase__ :Union[str, Any] = None lowerCAmelCase__ :Dict = None if self.use_labels: lowerCAmelCase__ :Tuple = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase__ :List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCAmelCase__ :Optional[int] = ids_tensor([self.batch_size] , self.num_choices ) lowerCAmelCase__ :Dict = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def snake_case ( self ): '''simple docstring''' return DebertaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , relative_attention=self.relative_attention , position_biased_input=self.position_biased_input , pos_att_type=self.pos_att_type , ) def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :List[Any] = self.get_config() lowerCAmelCase__ :Optional[Any] = 3_0_0 return config def snake_case ( self , __UpperCAmelCase ): '''simple docstring''' self.parent.assertListEqual(list(result.loss.size() ) , [] ) def snake_case ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' lowerCAmelCase__ :Dict = DebertaModel(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() lowerCAmelCase__ :Any = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase )[0] lowerCAmelCase__ :List[Any] = model(__UpperCAmelCase , token_type_ids=__UpperCAmelCase )[0] lowerCAmelCase__ :Dict = model(__UpperCAmelCase )[0] self.parent.assertListEqual(list(sequence_output.size() ) , [self.batch_size, self.seq_length, self.hidden_size] ) def snake_case ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' lowerCAmelCase__ :str = DebertaForMaskedLM(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() lowerCAmelCase__ :List[str] = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , labels=__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def snake_case ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' lowerCAmelCase__ :Tuple = self.num_labels lowerCAmelCase__ :int = DebertaForSequenceClassification(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() lowerCAmelCase__ :Optional[int] = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , labels=__UpperCAmelCase ) self.parent.assertListEqual(list(result.logits.size() ) , [self.batch_size, self.num_labels] ) self.check_loss_output(__UpperCAmelCase ) def snake_case ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' lowerCAmelCase__ :Optional[int] = self.num_labels lowerCAmelCase__ :Any = DebertaForTokenClassification(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() lowerCAmelCase__ :List[Any] = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , labels=__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def snake_case ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' lowerCAmelCase__ :int = DebertaForQuestionAnswering(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() lowerCAmelCase__ :str = model( __UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , start_positions=__UpperCAmelCase , end_positions=__UpperCAmelCase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :Optional[int] = self.prepare_config_and_inputs() ( ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ) :Tuple = config_and_inputs lowerCAmelCase__ :int = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class _lowerCAmelCase ( a , a , unittest.TestCase ): """simple docstring""" __magic_name__ :List[str] = ( ( DebertaModel, DebertaForMaskedLM, DebertaForSequenceClassification, DebertaForTokenClassification, DebertaForQuestionAnswering, ) if is_torch_available() else () ) __magic_name__ :Optional[Any] = ( { """feature-extraction""": DebertaModel, """fill-mask""": DebertaForMaskedLM, """question-answering""": DebertaForQuestionAnswering, """text-classification""": DebertaForSequenceClassification, """token-classification""": DebertaForTokenClassification, """zero-shot""": DebertaForSequenceClassification, } if is_torch_available() else {} ) __magic_name__ :Tuple = True __magic_name__ :List[Any] = False __magic_name__ :Optional[Any] = False __magic_name__ :str = False __magic_name__ :int = False def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :List[str] = DebertaModelTester(self ) lowerCAmelCase__ :List[Any] = ConfigTester(self , config_class=__UpperCAmelCase , hidden_size=3_7 ) def snake_case ( self ): '''simple docstring''' self.config_tester.run_common_tests() def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_model(*__UpperCAmelCase ) def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_sequence_classification(*__UpperCAmelCase ) def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_masked_lm(*__UpperCAmelCase ) def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_question_answering(*__UpperCAmelCase ) def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_token_classification(*__UpperCAmelCase ) @slow def snake_case ( self ): '''simple docstring''' for model_name in DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase__ :int = DebertaModel.from_pretrained(__UpperCAmelCase ) self.assertIsNotNone(__UpperCAmelCase ) @require_torch @require_sentencepiece @require_tokenizers class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" @unittest.skip(reason='Model not available yet' ) def snake_case ( self ): '''simple docstring''' pass @slow def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :str = DebertaModel.from_pretrained('microsoft/deberta-base' ) lowerCAmelCase__ :str = torch.tensor([[0, 3_1_4_1_4, 2_3_2, 3_2_8, 7_4_0, 1_1_4_0, 1_2_6_9_5, 6_9, 4_6_0_7_8, 1_5_8_8, 2]] ) lowerCAmelCase__ :Tuple = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): lowerCAmelCase__ :int = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase )[0] # compare the actual values for a slice. lowerCAmelCase__ :str = torch.tensor( [[[-0.59_86, -0.80_55, -0.84_62], [1.44_84, -0.93_48, -0.80_59], [0.31_23, 0.00_32, -1.41_31]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , __UpperCAmelCase , atol=1E-4 ) , F"{output[:, 1:4, 1:4]}" )
254
0
import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DetaImageProcessor class _UpperCamelCase ( unittest.TestCase ): """simple docstring""" def __init__( self , lowerCAmelCase__ , lowerCAmelCase__=7 , lowerCAmelCase__=3 , lowerCAmelCase__=30 , lowerCAmelCase__=4_00 , lowerCAmelCase__=True , lowerCAmelCase__=None , lowerCAmelCase__=True , lowerCAmelCase__=[0.5, 0.5, 0.5] , lowerCAmelCase__=[0.5, 0.5, 0.5] , lowerCAmelCase__=True , lowerCAmelCase__=1 / 2_55 , lowerCAmelCase__=True , ) -> Tuple: '''simple docstring''' __lowercase = size if size is not None else {'''shortest_edge''': 18, '''longest_edge''': 13_33} __lowercase = parent __lowercase = batch_size __lowercase = num_channels __lowercase = min_resolution __lowercase = max_resolution __lowercase = do_resize __lowercase = size __lowercase = do_normalize __lowercase = image_mean __lowercase = image_std __lowercase = do_rescale __lowercase = rescale_factor __lowercase = do_pad def _SCREAMING_SNAKE_CASE ( self ) -> List[Any]: '''simple docstring''' return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def _SCREAMING_SNAKE_CASE ( self , lowerCAmelCase__ , lowerCAmelCase__=False ) -> Optional[Any]: '''simple docstring''' if not batched: __lowercase = image_inputs[0] if isinstance(lowerCAmelCase__ , Image.Image ): __lowercase , __lowercase = image.size else: __lowercase , __lowercase = image.shape[1], image.shape[2] if w < h: __lowercase = int(self.size['''shortest_edge'''] * h / w ) __lowercase = self.size['''shortest_edge'''] elif w > h: __lowercase = self.size['''shortest_edge'''] __lowercase = int(self.size['''shortest_edge'''] * w / h ) else: __lowercase = self.size['''shortest_edge'''] __lowercase = self.size['''shortest_edge'''] else: __lowercase = [] for image in image_inputs: __lowercase , __lowercase = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) __lowercase = max(lowerCAmelCase__ , key=lambda lowerCAmelCase__ : item[0] )[0] __lowercase = max(lowerCAmelCase__ , key=lambda lowerCAmelCase__ : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class _UpperCamelCase ( _UpperCAmelCase ,unittest.TestCase ): """simple docstring""" __a : Optional[int] = DetaImageProcessor if is_vision_available() else None def _SCREAMING_SNAKE_CASE ( self ) -> Any: '''simple docstring''' __lowercase = DetaImageProcessingTester(self ) @property def _SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def _SCREAMING_SNAKE_CASE ( self ) -> List[str]: '''simple docstring''' __lowercase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowerCAmelCase__ , '''image_mean''' ) ) self.assertTrue(hasattr(lowerCAmelCase__ , '''image_std''' ) ) self.assertTrue(hasattr(lowerCAmelCase__ , '''do_normalize''' ) ) self.assertTrue(hasattr(lowerCAmelCase__ , '''do_resize''' ) ) self.assertTrue(hasattr(lowerCAmelCase__ , '''do_rescale''' ) ) self.assertTrue(hasattr(lowerCAmelCase__ , '''do_pad''' ) ) self.assertTrue(hasattr(lowerCAmelCase__ , '''size''' ) ) def _SCREAMING_SNAKE_CASE ( self ) -> List[str]: '''simple docstring''' __lowercase = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''shortest_edge''': 18, '''longest_edge''': 13_33} ) self.assertEqual(image_processor.do_pad , lowerCAmelCase__ ) def _SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: '''simple docstring''' pass def _SCREAMING_SNAKE_CASE ( self ) -> Dict: '''simple docstring''' __lowercase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __lowercase = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase__ , Image.Image ) # Test not batched input __lowercase = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values __lowercase , __lowercase = self.image_processor_tester.get_expected_values(lowerCAmelCase__ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __lowercase , __lowercase = self.image_processor_tester.get_expected_values(lowerCAmelCase__ , batched=lowerCAmelCase__ ) __lowercase = image_processing(lowerCAmelCase__ , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def _SCREAMING_SNAKE_CASE ( self ) -> Dict: '''simple docstring''' __lowercase = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __lowercase = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ , numpify=lowerCAmelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase__ , np.ndarray ) # Test not batched input __lowercase = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values __lowercase , __lowercase = self.image_processor_tester.get_expected_values(lowerCAmelCase__ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __lowercase = image_processing(lowerCAmelCase__ , return_tensors='''pt''' ).pixel_values __lowercase , __lowercase = self.image_processor_tester.get_expected_values(lowerCAmelCase__ , batched=lowerCAmelCase__ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def _SCREAMING_SNAKE_CASE ( self ) -> int: '''simple docstring''' __lowercase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __lowercase = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ , torchify=lowerCAmelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase__ , torch.Tensor ) # Test not batched input __lowercase = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values __lowercase , __lowercase = self.image_processor_tester.get_expected_values(lowerCAmelCase__ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __lowercase = image_processing(lowerCAmelCase__ , return_tensors='''pt''' ).pixel_values __lowercase , __lowercase = self.image_processor_tester.get_expected_values(lowerCAmelCase__ , batched=lowerCAmelCase__ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def _SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: '''simple docstring''' __lowercase = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) with open('''./tests/fixtures/tests_samples/COCO/coco_annotations.txt''' , '''r''' ) as f: __lowercase = json.loads(f.read() ) __lowercase = {'''image_id''': 3_97_69, '''annotations''': target} # encode them __lowercase = DetaImageProcessor() __lowercase = image_processing(images=lowerCAmelCase__ , annotations=lowerCAmelCase__ , return_tensors='''pt''' ) # verify pixel values __lowercase = torch.Size([1, 3, 8_00, 10_66] ) self.assertEqual(encoding['''pixel_values'''].shape , lowerCAmelCase__ ) __lowercase = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] , lowerCAmelCase__ , atol=1E-4 ) ) # verify area __lowercase = torch.tensor([5887.9600, 1_1250.2061, 48_9353.8438, 83_7122.7500, 14_7967.5156, 16_5732.3438] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] , lowerCAmelCase__ ) ) # verify boxes __lowercase = torch.Size([6, 4] ) self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape , lowerCAmelCase__ ) __lowercase = torch.tensor([0.5503, 0.2765, 0.0604, 0.2215] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] , lowerCAmelCase__ , atol=1E-3 ) ) # verify image_id __lowercase = torch.tensor([3_97_69] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] , lowerCAmelCase__ ) ) # verify is_crowd __lowercase = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] , lowerCAmelCase__ ) ) # verify class_labels __lowercase = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] , lowerCAmelCase__ ) ) # verify orig_size __lowercase = torch.tensor([4_80, 6_40] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] , lowerCAmelCase__ ) ) # verify size __lowercase = torch.tensor([8_00, 10_66] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] , lowerCAmelCase__ ) ) @slow def _SCREAMING_SNAKE_CASE ( self ) -> Tuple: '''simple docstring''' __lowercase = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) with open('''./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt''' , '''r''' ) as f: __lowercase = json.loads(f.read() ) __lowercase = {'''file_name''': '''000000039769.png''', '''image_id''': 3_97_69, '''segments_info''': target} __lowercase = pathlib.Path('''./tests/fixtures/tests_samples/COCO/coco_panoptic''' ) # encode them __lowercase = DetaImageProcessor(format='''coco_panoptic''' ) __lowercase = image_processing(images=lowerCAmelCase__ , annotations=lowerCAmelCase__ , masks_path=lowerCAmelCase__ , return_tensors='''pt''' ) # verify pixel values __lowercase = torch.Size([1, 3, 8_00, 10_66] ) self.assertEqual(encoding['''pixel_values'''].shape , lowerCAmelCase__ ) __lowercase = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] , lowerCAmelCase__ , atol=1E-4 ) ) # verify area __lowercase = torch.tensor([14_7979.6875, 16_5527.0469, 48_4638.5938, 1_1292.9375, 5879.6562, 7634.1147] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] , lowerCAmelCase__ ) ) # verify boxes __lowercase = torch.Size([6, 4] ) self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape , lowerCAmelCase__ ) __lowercase = torch.tensor([0.2625, 0.5437, 0.4688, 0.8625] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] , lowerCAmelCase__ , atol=1E-3 ) ) # verify image_id __lowercase = torch.tensor([3_97_69] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] , lowerCAmelCase__ ) ) # verify is_crowd __lowercase = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] , lowerCAmelCase__ ) ) # verify class_labels __lowercase = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] , lowerCAmelCase__ ) ) # verify masks __lowercase = 82_28_73 self.assertEqual(encoding['''labels'''][0]['''masks'''].sum().item() , lowerCAmelCase__ ) # verify orig_size __lowercase = torch.tensor([4_80, 6_40] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] , lowerCAmelCase__ ) ) # verify size __lowercase = torch.tensor([8_00, 10_66] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] , lowerCAmelCase__ ) )
210
import torch from diffusers import KDPMaDiscreteScheduler from diffusers.utils import torch_device from .test_schedulers import SchedulerCommonTest class _UpperCamelCase ( _UpperCAmelCase ): """simple docstring""" __a : Optional[Any] = (KDPMaDiscreteScheduler,) __a : Dict = 10 def _SCREAMING_SNAKE_CASE ( self , **lowerCAmelCase__ ) -> int: '''simple docstring''' __lowercase = { '''num_train_timesteps''': 11_00, '''beta_start''': 0.0001, '''beta_end''': 0.02, '''beta_schedule''': '''linear''', } config.update(**lowerCAmelCase__ ) return config def _SCREAMING_SNAKE_CASE ( self ) -> List[str]: '''simple docstring''' for timesteps in [10, 50, 1_00, 10_00]: self.check_over_configs(num_train_timesteps=lowerCAmelCase__ ) def _SCREAMING_SNAKE_CASE ( self ) -> Any: '''simple docstring''' for beta_start, beta_end in zip([0.0_0001, 0.0001, 0.001] , [0.0002, 0.002, 0.02] ): self.check_over_configs(beta_start=lowerCAmelCase__ , beta_end=lowerCAmelCase__ ) def _SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: '''simple docstring''' for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=lowerCAmelCase__ ) def _SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: '''simple docstring''' for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=lowerCAmelCase__ ) def _SCREAMING_SNAKE_CASE ( self ) -> Tuple: '''simple docstring''' __lowercase = self.scheduler_classes[0] __lowercase = self.get_scheduler_config(prediction_type='''v_prediction''' ) __lowercase = scheduler_class(**lowerCAmelCase__ ) scheduler.set_timesteps(self.num_inference_steps ) __lowercase = self.dummy_model() __lowercase = self.dummy_sample_deter * scheduler.init_noise_sigma __lowercase = sample.to(lowerCAmelCase__ ) for i, t in enumerate(scheduler.timesteps ): __lowercase = scheduler.scale_model_input(lowerCAmelCase__ , lowerCAmelCase__ ) __lowercase = model(lowerCAmelCase__ , lowerCAmelCase__ ) __lowercase = scheduler.step(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) __lowercase = output.prev_sample __lowercase = torch.sum(torch.abs(lowerCAmelCase__ ) ) __lowercase = torch.mean(torch.abs(lowerCAmelCase__ ) ) if torch_device in ["cpu", "mps"]: assert abs(result_sum.item() - 4.6934E-07 ) < 1E-2 assert abs(result_mean.item() - 6.1112E-10 ) < 1E-3 else: # CUDA assert abs(result_sum.item() - 4.693_4286_5017_0972E-07 ) < 1E-2 assert abs(result_mean.item() - 0.0002 ) < 1E-3 def _SCREAMING_SNAKE_CASE ( self ) -> str: '''simple docstring''' if torch_device == "mps": return __lowercase = self.scheduler_classes[0] __lowercase = self.get_scheduler_config() __lowercase = scheduler_class(**lowerCAmelCase__ ) scheduler.set_timesteps(self.num_inference_steps ) __lowercase = self.dummy_model() __lowercase = self.dummy_sample_deter * scheduler.init_noise_sigma __lowercase = sample.to(lowerCAmelCase__ ) for i, t in enumerate(scheduler.timesteps ): __lowercase = scheduler.scale_model_input(lowerCAmelCase__ , lowerCAmelCase__ ) __lowercase = model(lowerCAmelCase__ , lowerCAmelCase__ ) __lowercase = scheduler.step(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) __lowercase = output.prev_sample __lowercase = torch.sum(torch.abs(lowerCAmelCase__ ) ) __lowercase = torch.mean(torch.abs(lowerCAmelCase__ ) ) if torch_device in ["cpu", "mps"]: assert abs(result_sum.item() - 20.4125 ) < 1E-2 assert abs(result_mean.item() - 0.0266 ) < 1E-3 else: # CUDA assert abs(result_sum.item() - 20.4125 ) < 1E-2 assert abs(result_mean.item() - 0.0266 ) < 1E-3 def _SCREAMING_SNAKE_CASE ( self ) -> Dict: '''simple docstring''' if torch_device == "mps": return __lowercase = self.scheduler_classes[0] __lowercase = self.get_scheduler_config() __lowercase = scheduler_class(**lowerCAmelCase__ ) scheduler.set_timesteps(self.num_inference_steps , device=lowerCAmelCase__ ) __lowercase = self.dummy_model() __lowercase = self.dummy_sample_deter.to(lowerCAmelCase__ ) * scheduler.init_noise_sigma for t in scheduler.timesteps: __lowercase = scheduler.scale_model_input(lowerCAmelCase__ , lowerCAmelCase__ ) __lowercase = model(lowerCAmelCase__ , lowerCAmelCase__ ) __lowercase = scheduler.step(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) __lowercase = output.prev_sample __lowercase = torch.sum(torch.abs(lowerCAmelCase__ ) ) __lowercase = torch.mean(torch.abs(lowerCAmelCase__ ) ) if str(lowerCAmelCase__ ).startswith('''cpu''' ): # The following sum varies between 148 and 156 on mps. Why? assert abs(result_sum.item() - 20.4125 ) < 1E-2 assert abs(result_mean.item() - 0.0266 ) < 1E-3 else: # CUDA assert abs(result_sum.item() - 20.4125 ) < 1E-2 assert abs(result_mean.item() - 0.0266 ) < 1E-3
210
1
'''simple docstring''' from math import factorial, radians def __lowerCamelCase ( __lowerCAmelCase : float , __lowerCAmelCase : int = 18 , __lowerCAmelCase : int = 10 ) -> float: snake_case = angle_in_degrees - ((angle_in_degrees // 360.0) * 360.0) # Converting from degrees to radians snake_case = radians(__lowerCAmelCase ) snake_case = angle_in_radians snake_case = 3 snake_case = -1 for _ in range(__lowerCAmelCase ): result += (b * (angle_in_radians**a)) / factorial(__lowerCAmelCase ) snake_case = -b # One positive term and the next will be negative and so on... a += 2 # Increased by 2 for every term. return round(__lowerCAmelCase , __lowerCAmelCase ) if __name__ == "__main__": __import__("doctest").testmod()
3
'''simple docstring''' import requests from bsa import BeautifulSoup def __lowerCamelCase ( __lowerCAmelCase : str , __lowerCAmelCase : dict ) -> str: snake_case = BeautifulSoup(requests.get(__lowerCAmelCase , params=__lowerCAmelCase ).content , """html.parser""" ) snake_case = soup.find("""div""" , attrs={"""class""": """gs_ri"""} ) snake_case = div.find("""div""" , attrs={"""class""": """gs_fl"""} ).find_all("""a""" ) return anchors[2].get_text() if __name__ == "__main__": _SCREAMING_SNAKE_CASE = { "title": ( "Precisely geometry controlled microsupercapacitors for ultrahigh areal " "capacitance, volumetric capacitance, and energy density" ), "journal": "Chem. Mater.", "volume": 30, "pages": "3979-3990", "year": 2018, "hl": "en", } print(get_citation("https://scholar.google.com/scholar_lookup", params=params))
3
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available lowercase : int = { """configuration_altclip""": [ """ALTCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP""", """AltCLIPConfig""", """AltCLIPTextConfig""", """AltCLIPVisionConfig""", ], """processing_altclip""": ["""AltCLIPProcessor"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase : Optional[Any] = [ """ALTCLIP_PRETRAINED_MODEL_ARCHIVE_LIST""", """AltCLIPPreTrainedModel""", """AltCLIPModel""", """AltCLIPTextModel""", """AltCLIPVisionModel""", ] if TYPE_CHECKING: from .configuration_altclip import ( ALTCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, AltCLIPConfig, AltCLIPTextConfig, AltCLIPVisionConfig, ) from .processing_altclip import AltCLIPProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_altclip import ( ALTCLIP_PRETRAINED_MODEL_ARCHIVE_LIST, AltCLIPModel, AltCLIPPreTrainedModel, AltCLIPTextModel, AltCLIPVisionModel, ) else: import sys lowercase : List[str] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
20
import unittest import numpy as np import torch from diffusers import DDIMPipeline, DDIMScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, slow, torch_device from ..pipeline_params import UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS, UNCONDITIONAL_IMAGE_GENERATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class __A ( a , unittest.TestCase ): """simple docstring""" UpperCamelCase__ : str =DDIMPipeline UpperCamelCase__ : List[Any] =UNCONDITIONAL_IMAGE_GENERATION_PARAMS UpperCamelCase__ : Tuple =PipelineTesterMixin.required_optional_params - { """num_images_per_prompt""", """latents""", """callback""", """callback_steps""", } UpperCamelCase__ : Tuple =UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS UpperCamelCase__ : Any =False def __lowercase ( self ): """simple docstring""" torch.manual_seed(0 ) __UpperCamelCase : Optional[int] =UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=('DownBlock2D', 'AttnDownBlock2D') , up_block_types=('AttnUpBlock2D', 'UpBlock2D') , ) __UpperCamelCase : int =DDIMScheduler() __UpperCamelCase : Optional[int] ={'unet': unet, 'scheduler': scheduler} return components def __lowercase ( self , lowerCamelCase__ , lowerCamelCase__=0 ): """simple docstring""" if str(lowerCamelCase__ ).startswith('mps' ): __UpperCamelCase : str =torch.manual_seed(lowerCamelCase__ ) else: __UpperCamelCase : Optional[int] =torch.Generator(device=lowerCamelCase__ ).manual_seed(lowerCamelCase__ ) __UpperCamelCase : Tuple ={ 'batch_size': 1, 'generator': generator, 'num_inference_steps': 2, 'output_type': 'numpy', } return inputs def __lowercase ( self ): """simple docstring""" __UpperCamelCase : Any ='cpu' __UpperCamelCase : Optional[Any] =self.get_dummy_components() __UpperCamelCase : Tuple =self.pipeline_class(**lowerCamelCase__ ) pipe.to(lowerCamelCase__ ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) __UpperCamelCase : Union[str, Any] =self.get_dummy_inputs(lowerCamelCase__ ) __UpperCamelCase : int =pipe(**lowerCamelCase__ ).images __UpperCamelCase : Dict =image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 32, 32, 3) ) __UpperCamelCase : Tuple =np.array( [1.000E00, 5.717E-01, 4.717E-01, 1.000E00, 0.000E00, 1.000E00, 3.000E-04, 0.000E00, 9.000E-04] ) __UpperCamelCase : Tuple =np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(lowerCamelCase__ , 1E-3 ) def __lowercase ( self ): """simple docstring""" super().test_dict_tuple_outputs_equivalent(expected_max_difference=3E-3 ) def __lowercase ( self ): """simple docstring""" super().test_save_load_local(expected_max_difference=3E-3 ) def __lowercase ( self ): """simple docstring""" super().test_save_load_optional_components(expected_max_difference=3E-3 ) def __lowercase ( self ): """simple docstring""" super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class __A ( unittest.TestCase ): """simple docstring""" def __lowercase ( self ): """simple docstring""" __UpperCamelCase : str ='google/ddpm-cifar10-32' __UpperCamelCase : str =UNetaDModel.from_pretrained(lowerCamelCase__ ) __UpperCamelCase : Optional[Any] =DDIMScheduler() __UpperCamelCase : List[Any] =DDIMPipeline(unet=lowerCamelCase__ , scheduler=lowerCamelCase__ ) ddim.to(lowerCamelCase__ ) ddim.set_progress_bar_config(disable=lowerCamelCase__ ) __UpperCamelCase : Optional[int] =torch.manual_seed(0 ) __UpperCamelCase : List[str] =ddim(generator=lowerCamelCase__ , eta=0.0 , output_type='numpy' ).images __UpperCamelCase : Union[str, Any] =image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) __UpperCamelCase : str =np.array([0.1_723, 0.1_617, 0.1_600, 0.1_626, 0.1_497, 0.1_513, 0.1_505, 0.1_442, 0.1_453] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def __lowercase ( self ): """simple docstring""" __UpperCamelCase : List[Any] ='google/ddpm-ema-bedroom-256' __UpperCamelCase : Any =UNetaDModel.from_pretrained(lowerCamelCase__ ) __UpperCamelCase : int =DDIMScheduler.from_pretrained(lowerCamelCase__ ) __UpperCamelCase : Dict =DDIMPipeline(unet=lowerCamelCase__ , scheduler=lowerCamelCase__ ) ddpm.to(lowerCamelCase__ ) ddpm.set_progress_bar_config(disable=lowerCamelCase__ ) __UpperCamelCase : Tuple =torch.manual_seed(0 ) __UpperCamelCase : Union[str, Any] =ddpm(generator=lowerCamelCase__ , output_type='numpy' ).images __UpperCamelCase : Tuple =image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) __UpperCamelCase : Optional[Any] =np.array([0.0_060, 0.0_201, 0.0_344, 0.0_024, 0.0_018, 0.0_002, 0.0_022, 0.0_000, 0.0_069] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
71
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCamelCase__ = { "configuration_funnel": ["FUNNEL_PRETRAINED_CONFIG_ARCHIVE_MAP", "FunnelConfig"], "convert_funnel_original_tf_checkpoint_to_pytorch": [], "tokenization_funnel": ["FunnelTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = ["FunnelTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = [ "FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST", "FunnelBaseModel", "FunnelForMaskedLM", "FunnelForMultipleChoice", "FunnelForPreTraining", "FunnelForQuestionAnswering", "FunnelForSequenceClassification", "FunnelForTokenClassification", "FunnelModel", "FunnelPreTrainedModel", "load_tf_weights_in_funnel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = [ "TF_FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST", "TFFunnelBaseModel", "TFFunnelForMaskedLM", "TFFunnelForMultipleChoice", "TFFunnelForPreTraining", "TFFunnelForQuestionAnswering", "TFFunnelForSequenceClassification", "TFFunnelForTokenClassification", "TFFunnelModel", "TFFunnelPreTrainedModel", ] if TYPE_CHECKING: from .configuration_funnel import FUNNEL_PRETRAINED_CONFIG_ARCHIVE_MAP, FunnelConfig from .tokenization_funnel import FunnelTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_funnel_fast import FunnelTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_funnel import ( FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST, FunnelBaseModel, FunnelForMaskedLM, FunnelForMultipleChoice, FunnelForPreTraining, FunnelForQuestionAnswering, FunnelForSequenceClassification, FunnelForTokenClassification, FunnelModel, FunnelPreTrainedModel, load_tf_weights_in_funnel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_funnel import ( TF_FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST, TFFunnelBaseModel, TFFunnelForMaskedLM, TFFunnelForMultipleChoice, TFFunnelForPreTraining, TFFunnelForQuestionAnswering, TFFunnelForSequenceClassification, TFFunnelForTokenClassification, TFFunnelModel, TFFunnelPreTrainedModel, ) else: import sys lowerCamelCase__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
350
"""simple docstring""" import inspect import unittest from transformers import ViTConfig from transformers.testing_utils import ( require_accelerate, require_torch, require_torch_gpu, require_vision, slow, torch_device, ) from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTForImageClassification, ViTForMaskedImageModeling, ViTModel from transformers.models.vit.modeling_vit import VIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class __SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__( self : Dict , __a : List[Any] , __a : str=13 , __a : Any=30 , __a : List[str]=2 , __a : Dict=3 , __a : Union[str, Any]=True , __a : Dict=True , __a : List[str]=32 , __a : Tuple=5 , __a : str=4 , __a : List[str]=37 , __a : Tuple="gelu" , __a : str=0.1 , __a : Optional[int]=0.1 , __a : Union[str, Any]=10 , __a : Optional[Any]=0.02 , __a : List[Any]=None , __a : str=2 , ) -> int: _UpperCamelCase : Tuple = parent _UpperCamelCase : str = batch_size _UpperCamelCase : Tuple = image_size _UpperCamelCase : List[str] = patch_size _UpperCamelCase : Dict = num_channels _UpperCamelCase : List[str] = is_training _UpperCamelCase : Any = use_labels _UpperCamelCase : int = hidden_size _UpperCamelCase : List[Any] = num_hidden_layers _UpperCamelCase : Union[str, Any] = num_attention_heads _UpperCamelCase : Optional[int] = intermediate_size _UpperCamelCase : Any = hidden_act _UpperCamelCase : Dict = hidden_dropout_prob _UpperCamelCase : Dict = attention_probs_dropout_prob _UpperCamelCase : Optional[int] = type_sequence_label_size _UpperCamelCase : int = initializer_range _UpperCamelCase : Optional[int] = scope _UpperCamelCase : Any = encoder_stride # in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) _UpperCamelCase : Optional[int] = (image_size // patch_size) ** 2 _UpperCamelCase : Optional[int] = num_patches + 1 def __SCREAMING_SNAKE_CASE ( self : int ) -> Optional[Any]: _UpperCamelCase : Tuple = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _UpperCamelCase : Union[str, Any] = None if self.use_labels: _UpperCamelCase : Optional[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _UpperCamelCase : Any = self.get_config() return config, pixel_values, labels def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> List[str]: return ViTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=__a , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , ) def __SCREAMING_SNAKE_CASE ( self : Tuple , __a : Optional[int] , __a : Union[str, Any] , __a : Tuple ) -> Union[str, Any]: _UpperCamelCase : Optional[Any] = ViTModel(config=__a ) model.to(__a ) model.eval() _UpperCamelCase : Tuple = model(__a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __SCREAMING_SNAKE_CASE ( self : Dict , __a : str , __a : Optional[int] , __a : int ) -> Optional[int]: _UpperCamelCase : Tuple = ViTForMaskedImageModeling(config=__a ) model.to(__a ) model.eval() _UpperCamelCase : Any = model(__a ) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images _UpperCamelCase : Union[str, Any] = 1 _UpperCamelCase : Union[str, Any] = ViTForMaskedImageModeling(__a ) model.to(__a ) model.eval() _UpperCamelCase : List[Any] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) _UpperCamelCase : Dict = model(__a ) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def __SCREAMING_SNAKE_CASE ( self : List[Any] , __a : Tuple , __a : int , __a : Dict ) -> int: _UpperCamelCase : Any = self.type_sequence_label_size _UpperCamelCase : Optional[Any] = ViTForImageClassification(__a ) model.to(__a ) model.eval() _UpperCamelCase : int = model(__a , labels=__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images _UpperCamelCase : Tuple = 1 _UpperCamelCase : Union[str, Any] = ViTForImageClassification(__a ) model.to(__a ) model.eval() _UpperCamelCase : Optional[int] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) _UpperCamelCase : List[Any] = model(__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def __SCREAMING_SNAKE_CASE ( self : str ) -> Tuple: _UpperCamelCase : Dict = self.prepare_config_and_inputs() ( ( _UpperCamelCase ), ( _UpperCamelCase ), ( _UpperCamelCase ), ) : Union[str, Any] = config_and_inputs _UpperCamelCase : Union[str, Any] = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class __SCREAMING_SNAKE_CASE ( _UpperCamelCase , _UpperCamelCase , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ :Optional[Any] = ( ( ViTModel, ViTForImageClassification, ViTForMaskedImageModeling, ) if is_torch_available() else () ) SCREAMING_SNAKE_CASE__ :Any = ( {"feature-extraction": ViTModel, "image-classification": ViTForImageClassification} if is_torch_available() else {} ) SCREAMING_SNAKE_CASE__ :str = True SCREAMING_SNAKE_CASE__ :List[Any] = False SCREAMING_SNAKE_CASE__ :int = False SCREAMING_SNAKE_CASE__ :int = False def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> List[Any]: _UpperCamelCase : Dict = ViTModelTester(self ) _UpperCamelCase : Any = ConfigTester(self , config_class=__a , has_text_modality=__a , hidden_size=37 ) def __SCREAMING_SNAKE_CASE ( self : str ) -> Optional[Any]: self.config_tester.run_common_tests() @unittest.skip(reason="ViT does not use inputs_embeds" ) def __SCREAMING_SNAKE_CASE ( self : int ) -> List[str]: pass def __SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Union[str, Any]: _UpperCamelCase, _UpperCamelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCamelCase : List[Any] = model_class(__a ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) _UpperCamelCase : Any = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__a , nn.Linear ) ) def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Optional[Any]: _UpperCamelCase, _UpperCamelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCamelCase : Any = model_class(__a ) _UpperCamelCase : Any = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _UpperCamelCase : List[str] = [*signature.parameters.keys()] _UpperCamelCase : Optional[Any] = ["pixel_values"] self.assertListEqual(arg_names[:1] , __a ) def __SCREAMING_SNAKE_CASE ( self : Any ) -> int: _UpperCamelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__a ) def __SCREAMING_SNAKE_CASE ( self : str ) -> List[str]: _UpperCamelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*__a ) def __SCREAMING_SNAKE_CASE ( self : Dict ) -> Union[str, Any]: _UpperCamelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__a ) @slow def __SCREAMING_SNAKE_CASE ( self : str ) -> List[str]: for model_name in VIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCamelCase : List[str] = ViTModel.from_pretrained(__a ) self.assertIsNotNone(__a ) def lowercase__ ( ) -> str: """simple docstring""" _UpperCamelCase : Tuple = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' @cached_property def __SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Optional[int]: return ViTImageProcessor.from_pretrained("google/vit-base-patch16-224" ) if is_vision_available() else None @slow def __SCREAMING_SNAKE_CASE ( self : Tuple ) -> Dict: _UpperCamelCase : List[Any] = ViTForImageClassification.from_pretrained("google/vit-base-patch16-224" ).to(__a ) _UpperCamelCase : str = self.default_image_processor _UpperCamelCase : List[Any] = prepare_img() _UpperCamelCase : Any = image_processor(images=__a , return_tensors="pt" ).to(__a ) # forward pass with torch.no_grad(): _UpperCamelCase : Dict = model(**__a ) # verify the logits _UpperCamelCase : Tuple = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , __a ) _UpperCamelCase : str = torch.tensor([-0.27_44, 0.82_15, -0.08_36] ).to(__a ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __a , atol=1e-4 ) ) @slow def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> str: # ViT models have an `interpolate_pos_encoding` argument in their forward method, # allowing to interpolate the pre-trained position embeddings in order to use # the model on higher resolutions. The DINO model by Facebook AI leverages this # to visualize self-attention on higher resolution images. _UpperCamelCase : List[str] = ViTModel.from_pretrained("facebook/dino-vits8" ).to(__a ) _UpperCamelCase : Union[str, Any] = ViTImageProcessor.from_pretrained("facebook/dino-vits8" , size=480 ) _UpperCamelCase : List[str] = prepare_img() _UpperCamelCase : int = image_processor(images=__a , return_tensors="pt" ) _UpperCamelCase : Any = inputs.pixel_values.to(__a ) # forward pass with torch.no_grad(): _UpperCamelCase : str = model(__a , interpolate_pos_encoding=__a ) # verify the logits _UpperCamelCase : int = torch.Size((1, 3601, 384) ) self.assertEqual(outputs.last_hidden_state.shape , __a ) _UpperCamelCase : int = torch.tensor( [[4.23_40, 4.39_06, -6.66_92], [4.54_63, 1.89_28, -6.72_57], [4.44_29, 0.84_96, -5.85_85]] ).to(__a ) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :3, :3] , __a , atol=1e-4 ) ) @slow @require_accelerate @require_torch_gpu def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Any: _UpperCamelCase : Tuple = ViTModel.from_pretrained("facebook/dino-vits8" , torch_dtype=torch.floataa , device_map="auto" ) _UpperCamelCase : int = self.default_image_processor _UpperCamelCase : Dict = prepare_img() _UpperCamelCase : Union[str, Any] = image_processor(images=__a , return_tensors="pt" ) _UpperCamelCase : Any = inputs.pixel_values.to(__a ) # forward pass to make sure inference works in fp16 with torch.no_grad(): _UpperCamelCase : int = model(__a )
310
0
from math import atan, cos, radians, sin, tan from .haversine_distance import haversine_distance __lowerCAmelCase : str = 637_8137.0 __lowerCAmelCase : Optional[Any] = 635_6752.31_4245 __lowerCAmelCase : List[str] = 6378137 def a__ ( A_, A_, A_, A_ ): '''simple docstring''' __magic_name__ = (AXIS_A - AXIS_B) / AXIS_A # Parametric latitudes # https://en.wikipedia.org/wiki/Latitude#Parametric_(or_reduced)_latitude __magic_name__ = atan((1 - flattening) * tan(radians(A_ ) ) ) __magic_name__ = atan((1 - flattening) * tan(radians(A_ ) ) ) # Compute central angle between two points # using haversine theta. sigma = haversine_distance / equatorial radius __magic_name__ = haversine_distance(A_, A_, A_, A_ ) / EQUATORIAL_RADIUS # Intermediate P and Q values __magic_name__ = (b_lata + b_lata) / 2 __magic_name__ = (b_lata - b_lata) / 2 # Intermediate X value # X = (sigma - sin(sigma)) * sin^2Pcos^2Q / cos^2(sigma/2) __magic_name__ = (sin(A_ ) ** 2) * (cos(A_ ) ** 2) __magic_name__ = cos(sigma / 2 ) ** 2 __magic_name__ = (sigma - sin(A_ )) * (x_numerator / x_demonimator) # Intermediate Y value # Y = (sigma + sin(sigma)) * cos^2Psin^2Q / sin^2(sigma/2) __magic_name__ = (cos(A_ ) ** 2) * (sin(A_ ) ** 2) __magic_name__ = sin(sigma / 2 ) ** 2 __magic_name__ = (sigma + sin(A_ )) * (y_numerator / y_denominator) return EQUATORIAL_RADIUS * (sigma - ((flattening / 2) * (x_value + y_value))) if __name__ == "__main__": import doctest doctest.testmod()
88
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import center_crop, normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL __lowerCAmelCase = logging.get_logger(__name__) class _lowerCAmelCase ( __snake_case ): '''simple docstring''' lowerCAmelCase_ = ["pixel_values"] def __init__(self , UpperCAmelCase = True , UpperCAmelCase = None , UpperCAmelCase = PIL.Image.BICUBIC , UpperCAmelCase = True , UpperCAmelCase = None , UpperCAmelCase = 1 / 255 , UpperCAmelCase = True , UpperCAmelCase = True , UpperCAmelCase = None , UpperCAmelCase = None , **UpperCAmelCase , ) -> None: super().__init__(**UpperCAmelCase ) _snake_case = size if size is not None else {"""height""": 256, """width""": 256} _snake_case = get_size_dict(UpperCAmelCase ) _snake_case = crop_size if crop_size is not None else {"""height""": 224, """width""": 224} _snake_case = get_size_dict(UpperCAmelCase , param_name="""crop_size""" ) _snake_case = do_resize _snake_case = size _snake_case = resample _snake_case = do_center_crop _snake_case = crop_size _snake_case = do_rescale _snake_case = rescale_factor _snake_case = do_normalize _snake_case = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN _snake_case = image_std if image_std is not None else IMAGENET_STANDARD_STD def lowercase (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = PIL.Image.BICUBIC , UpperCAmelCase = None , **UpperCAmelCase , ) -> np.ndarray: _snake_case = get_size_dict(UpperCAmelCase ) if "height" not in size or "width" not in size: raise ValueError(f"""The size dictionary must have keys 'height' and 'width'. Got {size.keys()}""" ) return resize( UpperCAmelCase , size=(size["""height"""], size["""width"""]) , resample=UpperCAmelCase , data_format=UpperCAmelCase , **UpperCAmelCase ) def lowercase (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = None , **UpperCAmelCase , ) -> np.ndarray: _snake_case = get_size_dict(UpperCAmelCase ) if "height" not in size or "width" not in size: raise ValueError(f"""The size dictionary must have keys 'height' and 'width'. Got {size.keys()}""" ) return center_crop(UpperCAmelCase , size=(size["""height"""], size["""width"""]) , data_format=UpperCAmelCase , **UpperCAmelCase ) def lowercase (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = None , **UpperCAmelCase , ) -> List[Any]: return rescale(UpperCAmelCase , scale=UpperCAmelCase , data_format=UpperCAmelCase , **UpperCAmelCase ) def lowercase (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = None , **UpperCAmelCase , ) -> np.ndarray: return normalize(UpperCAmelCase , mean=UpperCAmelCase , std=UpperCAmelCase , data_format=UpperCAmelCase , **UpperCAmelCase ) def lowercase (self , UpperCAmelCase , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase=None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = ChannelDimension.FIRST , **UpperCAmelCase , ) -> PIL.Image.Image: _snake_case = do_resize if do_resize is not None else self.do_resize _snake_case = resample if resample is not None else self.resample _snake_case = do_center_crop if do_center_crop is not None else self.do_center_crop _snake_case = do_rescale if do_rescale is not None else self.do_rescale _snake_case = rescale_factor if rescale_factor is not None else self.rescale_factor _snake_case = do_normalize if do_normalize is not None else self.do_normalize _snake_case = image_mean if image_mean is not None else self.image_mean _snake_case = image_std if image_std is not None else self.image_std _snake_case = size if size is not None else self.size _snake_case = get_size_dict(UpperCAmelCase ) _snake_case = crop_size if crop_size is not None else self.crop_size _snake_case = get_size_dict(UpperCAmelCase , param_name="""crop_size""" ) _snake_case = make_list_of_images(UpperCAmelCase ) if not valid_images(UpperCAmelCase ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None or resample is None: raise ValueError("""Size and resample must be specified if do_resize is True.""" ) if do_center_crop and crop_size is None: raise ValueError("""Crop size must be specified if do_center_crop is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) # All transformations expect numpy arrays. _snake_case = [to_numpy_array(UpperCAmelCase ) for image in images] if do_resize: _snake_case = [self.resize(image=UpperCAmelCase , size=UpperCAmelCase , resample=UpperCAmelCase ) for image in images] if do_center_crop: _snake_case = [self.center_crop(image=UpperCAmelCase , size=UpperCAmelCase ) for image in images] if do_rescale: _snake_case = [self.rescale(image=UpperCAmelCase , scale=UpperCAmelCase ) for image in images] if do_normalize: _snake_case = [self.normalize(image=UpperCAmelCase , mean=UpperCAmelCase , std=UpperCAmelCase ) for image in images] _snake_case = [to_channel_dimension_format(UpperCAmelCase , UpperCAmelCase ) for image in images] _snake_case = {"""pixel_values""": images} return BatchFeature(data=UpperCAmelCase , tensor_type=UpperCAmelCase )
341
0
from ...utils import is_torch_available, is_transformers_available if is_transformers_available() and is_torch_available(): from .pipeline_vq_diffusion import LearnedClassifierFreeSamplingEmbeddings, VQDiffusionPipeline
169
import torch from diffusers import CMStochasticIterativeScheduler from .test_schedulers import SchedulerCommonTest class lowercase__ ( _UpperCAmelCase ): A__ : Any =(CMStochasticIterativeScheduler,) A__ : Optional[int] =1_0 def A_ ( self : Dict , **UpperCAmelCase_ : Union[str, Any] ): SCREAMING_SNAKE_CASE__ = { 'num_train_timesteps': 201, 'sigma_min': 0.002, 'sigma_max': 80.0, } config.update(**UpperCAmelCase_ ) return config def A_ ( self : Tuple ): SCREAMING_SNAKE_CASE__ = 10 SCREAMING_SNAKE_CASE__ = self.get_scheduler_config() SCREAMING_SNAKE_CASE__ = self.scheduler_classes[0](**UpperCAmelCase_ ) scheduler.set_timesteps(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = scheduler.timesteps[0] SCREAMING_SNAKE_CASE__ = scheduler.timesteps[1] SCREAMING_SNAKE_CASE__ = self.dummy_sample SCREAMING_SNAKE_CASE__ = 0.1 * sample SCREAMING_SNAKE_CASE__ = scheduler.step(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ).prev_sample SCREAMING_SNAKE_CASE__ = scheduler.step(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def A_ ( self : List[str] ): for timesteps in [10, 50, 100, 1000]: self.check_over_configs(num_train_timesteps=UpperCAmelCase_ ) def A_ ( self : Any ): for clip_denoised in [True, False]: self.check_over_configs(clip_denoised=UpperCAmelCase_ ) def A_ ( self : List[Any] ): SCREAMING_SNAKE_CASE__ = self.scheduler_classes[0] SCREAMING_SNAKE_CASE__ = self.get_scheduler_config() SCREAMING_SNAKE_CASE__ = scheduler_class(**UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = 1 scheduler.set_timesteps(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = scheduler.timesteps SCREAMING_SNAKE_CASE__ = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__ = self.dummy_model() SCREAMING_SNAKE_CASE__ = self.dummy_sample_deter * scheduler.init_noise_sigma for i, t in enumerate(UpperCAmelCase_ ): # 1. scale model input SCREAMING_SNAKE_CASE__ = scheduler.scale_model_input(UpperCAmelCase_ , UpperCAmelCase_ ) # 2. predict noise residual SCREAMING_SNAKE_CASE__ = model(UpperCAmelCase_ , UpperCAmelCase_ ) # 3. predict previous sample x_t-1 SCREAMING_SNAKE_CASE__ = scheduler.step(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , generator=UpperCAmelCase_ ).prev_sample SCREAMING_SNAKE_CASE__ = pred_prev_sample SCREAMING_SNAKE_CASE__ = torch.sum(torch.abs(UpperCAmelCase_ ) ) SCREAMING_SNAKE_CASE__ = torch.mean(torch.abs(UpperCAmelCase_ ) ) assert abs(result_sum.item() - 192.7_614 ) < 1e-2 assert abs(result_mean.item() - 0.2_510 ) < 1e-3 def A_ ( self : Optional[Any] ): SCREAMING_SNAKE_CASE__ = self.scheduler_classes[0] SCREAMING_SNAKE_CASE__ = self.get_scheduler_config() SCREAMING_SNAKE_CASE__ = scheduler_class(**UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = [106, 0] scheduler.set_timesteps(timesteps=UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = scheduler.timesteps SCREAMING_SNAKE_CASE__ = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__ = self.dummy_model() SCREAMING_SNAKE_CASE__ = self.dummy_sample_deter * scheduler.init_noise_sigma for t in timesteps: # 1. scale model input SCREAMING_SNAKE_CASE__ = scheduler.scale_model_input(UpperCAmelCase_ , UpperCAmelCase_ ) # 2. predict noise residual SCREAMING_SNAKE_CASE__ = model(UpperCAmelCase_ , UpperCAmelCase_ ) # 3. predict previous sample x_t-1 SCREAMING_SNAKE_CASE__ = scheduler.step(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , generator=UpperCAmelCase_ ).prev_sample SCREAMING_SNAKE_CASE__ = pred_prev_sample SCREAMING_SNAKE_CASE__ = torch.sum(torch.abs(UpperCAmelCase_ ) ) SCREAMING_SNAKE_CASE__ = torch.mean(torch.abs(UpperCAmelCase_ ) ) assert abs(result_sum.item() - 347.6_357 ) < 1e-2 assert abs(result_mean.item() - 0.4_527 ) < 1e-3 def A_ ( self : Tuple ): SCREAMING_SNAKE_CASE__ = self.scheduler_classes[0] SCREAMING_SNAKE_CASE__ = self.get_scheduler_config() SCREAMING_SNAKE_CASE__ = scheduler_class(**UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = [39, 30, 12, 15, 0] with self.assertRaises(UpperCAmelCase_ , msg='`timesteps` must be in descending order.' ): scheduler.set_timesteps(timesteps=UpperCAmelCase_ ) def A_ ( self : List[Any] ): SCREAMING_SNAKE_CASE__ = self.scheduler_classes[0] SCREAMING_SNAKE_CASE__ = self.get_scheduler_config() SCREAMING_SNAKE_CASE__ = scheduler_class(**UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = [39, 30, 12, 1, 0] SCREAMING_SNAKE_CASE__ = len(UpperCAmelCase_ ) with self.assertRaises(UpperCAmelCase_ , msg='Can only pass one of `num_inference_steps` or `timesteps`.' ): scheduler.set_timesteps(num_inference_steps=UpperCAmelCase_ , timesteps=UpperCAmelCase_ ) def A_ ( self : Optional[Any] ): SCREAMING_SNAKE_CASE__ = self.scheduler_classes[0] SCREAMING_SNAKE_CASE__ = self.get_scheduler_config() SCREAMING_SNAKE_CASE__ = scheduler_class(**UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = [scheduler.config.num_train_timesteps] with self.assertRaises( UpperCAmelCase_ , msg='`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}' , ): scheduler.set_timesteps(timesteps=UpperCAmelCase_ )
169
1
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING UpperCAmelCase__ : int = logging.get_logger(__name__) UpperCAmelCase__ : str = { 'microsoft/table-transformer-detection': ( 'https://huggingface.co/microsoft/table-transformer-detection/resolve/main/config.json' ), } class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCamelCase : Optional[int] = "table-transformer" __UpperCamelCase : str = ["past_key_values"] __UpperCamelCase : Optional[Any] = { "hidden_size": "d_model", "num_attention_heads": "encoder_attention_heads", } def __init__( self : int , lowerCAmelCase_ : Dict=True , lowerCAmelCase_ : Optional[int]=None , lowerCAmelCase_ : int=3 , lowerCAmelCase_ : List[str]=1_0_0 , lowerCAmelCase_ : int=6 , lowerCAmelCase_ : str=2_0_4_8 , lowerCAmelCase_ : List[Any]=8 , lowerCAmelCase_ : Optional[int]=6 , lowerCAmelCase_ : List[Any]=2_0_4_8 , lowerCAmelCase_ : Dict=8 , lowerCAmelCase_ : Optional[Any]=0.0 , lowerCAmelCase_ : List[str]=0.0 , lowerCAmelCase_ : List[Any]=True , lowerCAmelCase_ : List[Any]="relu" , lowerCAmelCase_ : List[str]=2_5_6 , lowerCAmelCase_ : int=0.1 , lowerCAmelCase_ : List[str]=0.0 , lowerCAmelCase_ : Dict=0.0 , lowerCAmelCase_ : Tuple=0.02 , lowerCAmelCase_ : str=1.0 , lowerCAmelCase_ : List[str]=False , lowerCAmelCase_ : List[str]="sine" , lowerCAmelCase_ : List[str]="resnet50" , lowerCAmelCase_ : Any=True , lowerCAmelCase_ : Union[str, Any]=False , lowerCAmelCase_ : List[Any]=1 , lowerCAmelCase_ : Tuple=5 , lowerCAmelCase_ : int=2 , lowerCAmelCase_ : List[str]=1 , lowerCAmelCase_ : Dict=1 , lowerCAmelCase_ : Optional[Any]=5 , lowerCAmelCase_ : str=2 , lowerCAmelCase_ : List[Any]=0.1 , **lowerCAmelCase_ : int , ): """simple docstring""" if backbone_config is not None and use_timm_backbone: raise ValueError('''You can\'t specify both `backbone_config` and `use_timm_backbone`.''' ) if not use_timm_backbone: if backbone_config is None: logger.info('''`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.''' ) _A: Union[str, Any] = CONFIG_MAPPING["""resnet"""](out_features=['''stage4'''] ) elif isinstance(__UpperCAmelCase , __UpperCAmelCase ): _A: int = backbone_config.get('''model_type''' ) _A: Union[str, Any] = CONFIG_MAPPING[backbone_model_type] _A: List[str] = config_class.from_dict(__UpperCAmelCase ) # set timm attributes to None _A: Optional[Any] = None, None, None _A: int = use_timm_backbone _A: Optional[int] = backbone_config _A: Tuple = num_channels _A: Tuple = num_queries _A: List[str] = d_model _A: Any = encoder_ffn_dim _A: List[Any] = encoder_layers _A: List[str] = encoder_attention_heads _A: Optional[int] = decoder_ffn_dim _A: List[str] = decoder_layers _A: Optional[int] = decoder_attention_heads _A: int = dropout _A: Tuple = attention_dropout _A: Optional[Any] = activation_dropout _A: Any = activation_function _A: Tuple = init_std _A: Tuple = init_xavier_std _A: Union[str, Any] = encoder_layerdrop _A: Optional[int] = decoder_layerdrop _A: List[str] = encoder_layers _A: str = auxiliary_loss _A: Dict = position_embedding_type _A: int = backbone _A: Any = use_pretrained_backbone _A: Optional[Any] = dilation # Hungarian matcher _A: Tuple = class_cost _A: Union[str, Any] = bbox_cost _A: Optional[int] = giou_cost # Loss coefficients _A: List[Any] = mask_loss_coefficient _A: Dict = dice_loss_coefficient _A: List[Any] = bbox_loss_coefficient _A: Optional[Any] = giou_loss_coefficient _A: Optional[Any] = eos_coefficient super().__init__(is_encoder_decoder=__UpperCAmelCase , **__UpperCAmelCase ) @property def __magic_name__ ( self : Dict ): """simple docstring""" return self.encoder_attention_heads @property def __magic_name__ ( self : Any ): """simple docstring""" return self.d_model class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCamelCase : Dict = version.parse('''1.11''' ) @property def __magic_name__ ( self : Optional[Any] ): """simple docstring""" return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ('''pixel_mask''', {0: '''batch'''}), ] ) @property def __magic_name__ ( self : Tuple ): """simple docstring""" return 1e-5 @property def __magic_name__ ( self : int ): """simple docstring""" return 1_2
121
'''simple docstring''' import math import os import sys def lowercase_ ( lowerCAmelCase__ : str ): """simple docstring""" __UpperCAmelCase : Any = """""" try: with open(lowerCAmelCase__ , """rb""" ) as binary_file: __UpperCAmelCase : int = binary_file.read() for dat in data: __UpperCAmelCase : Tuple = f'{dat:08b}' result += curr_byte return result except OSError: print("""File not accessible""" ) sys.exit() def lowercase_ ( lowerCAmelCase__ : dict[str, str] , lowerCAmelCase__ : str , lowerCAmelCase__ : int , lowerCAmelCase__ : str ): """simple docstring""" lexicon.pop(lowerCAmelCase__ ) __UpperCAmelCase : List[str] = last_match_id if math.loga(lowerCAmelCase__ ).is_integer(): for curr_key in lexicon: __UpperCAmelCase : List[str] = """0""" + lexicon[curr_key] __UpperCAmelCase : Any = bin(lowerCAmelCase__ )[2:] def lowercase_ ( lowerCAmelCase__ : str ): """simple docstring""" __UpperCAmelCase : str = {"""0""": """0""", """1""": """1"""} __UpperCAmelCase , __UpperCAmelCase : Dict = """""", """""" __UpperCAmelCase : str = len(lowerCAmelCase__ ) for i in range(len(lowerCAmelCase__ ) ): curr_string += data_bits[i] if curr_string not in lexicon: continue __UpperCAmelCase : str = lexicon[curr_string] result += last_match_id add_key_to_lexicon(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) index += 1 __UpperCAmelCase : Any = """""" while curr_string != "" and curr_string not in lexicon: curr_string += "0" if curr_string != "": __UpperCAmelCase : Union[str, Any] = lexicon[curr_string] result += last_match_id return result def lowercase_ ( lowerCAmelCase__ : str , lowerCAmelCase__ : str ): """simple docstring""" __UpperCAmelCase : int = os.path.getsize(lowerCAmelCase__ ) __UpperCAmelCase : int = bin(lowerCAmelCase__ )[2:] __UpperCAmelCase : List[Any] = len(lowerCAmelCase__ ) return "0" * (length_length - 1) + file_length_binary + compressed def lowercase_ ( lowerCAmelCase__ : str , lowerCAmelCase__ : str ): """simple docstring""" __UpperCAmelCase : List[str] = 8 try: with open(lowerCAmelCase__ , """wb""" ) as opened_file: __UpperCAmelCase : Any = [ to_write[i : i + byte_length] for i in range(0 , len(lowerCAmelCase__ ) , lowerCAmelCase__ ) ] if len(result_byte_array[-1] ) % byte_length == 0: result_byte_array.append("""10000000""" ) else: result_byte_array[-1] += "1" + "0" * ( byte_length - len(result_byte_array[-1] ) - 1 ) for elem in result_byte_array: opened_file.write(int(lowerCAmelCase__ , 2 ).to_bytes(1 , byteorder="""big""" ) ) except OSError: print("""File not accessible""" ) sys.exit() def lowercase_ ( lowerCAmelCase__ : str , lowerCAmelCase__ : str ): """simple docstring""" __UpperCAmelCase : Dict = read_file_binary(lowerCAmelCase__ ) __UpperCAmelCase : str = compress_data(lowerCAmelCase__ ) __UpperCAmelCase : List[str] = add_file_length(lowerCAmelCase__ , lowerCAmelCase__ ) write_file_binary(lowerCAmelCase__ , lowerCAmelCase__ ) if __name__ == "__main__": compress(sys.argv[1], sys.argv[2])
254
0
import gc import unittest from diffusers import FlaxDPMSolverMultistepScheduler, FlaxStableDiffusionPipeline from diffusers.utils import is_flax_available, slow from diffusers.utils.testing_utils import require_flax if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard @slow @require_flax class _SCREAMING_SNAKE_CASE ( unittest.TestCase): def _snake_case ( self )-> List[Any]: super().tearDown() gc.collect() def _snake_case ( self )-> List[str]: lowerCamelCase_ =FlaxStableDiffusionPipeline.from_pretrained( """stabilityai/stable-diffusion-2""" , revision="""bf16""" , dtype=jnp.bfloataa , ) lowerCamelCase_ ='''A painting of a squirrel eating a burger''' lowerCamelCase_ =jax.device_count() lowerCamelCase_ =num_samples * [prompt] lowerCamelCase_ =sd_pipe.prepare_inputs(UpperCamelCase__ ) lowerCamelCase_ =replicate(UpperCamelCase__ ) lowerCamelCase_ =shard(UpperCamelCase__ ) lowerCamelCase_ =jax.random.PRNGKey(0 ) lowerCamelCase_ =jax.random.split(UpperCamelCase__ , jax.device_count() ) lowerCamelCase_ =sd_pipe(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , num_inference_steps=25 , jit=UpperCamelCase__ )[0] assert images.shape == (jax.device_count(), 1, 768, 768, 3) lowerCamelCase_ =images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) lowerCamelCase_ =images[0, 253:256, 253:256, -1] lowerCamelCase_ =jnp.asarray(jax.device_get(image_slice.flatten() ) ) lowerCamelCase_ =jnp.array([0.4_2_3_8, 0.4_4_1_4, 0.4_3_9_5, 0.4_4_5_3, 0.4_6_2_9, 0.4_5_9_0, 0.4_5_3_1, 0.4_5_5_0_8, 0.4_5_1_2] ) print(f'output_slice: {output_slice}' ) assert jnp.abs(output_slice - expected_slice ).max() < 1E-2 def _snake_case ( self )-> Tuple: lowerCamelCase_ ='''stabilityai/stable-diffusion-2''' lowerCamelCase_ =FlaxDPMSolverMultistepScheduler.from_pretrained(UpperCamelCase__ , subfolder="""scheduler""" ) lowerCamelCase_ =FlaxStableDiffusionPipeline.from_pretrained( UpperCamelCase__ , scheduler=UpperCamelCase__ , revision="""bf16""" , dtype=jnp.bfloataa , ) lowerCamelCase_ =scheduler_params lowerCamelCase_ ='''A painting of a squirrel eating a burger''' lowerCamelCase_ =jax.device_count() lowerCamelCase_ =num_samples * [prompt] lowerCamelCase_ =sd_pipe.prepare_inputs(UpperCamelCase__ ) lowerCamelCase_ =replicate(UpperCamelCase__ ) lowerCamelCase_ =shard(UpperCamelCase__ ) lowerCamelCase_ =jax.random.PRNGKey(0 ) lowerCamelCase_ =jax.random.split(UpperCamelCase__ , jax.device_count() ) lowerCamelCase_ =sd_pipe(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , num_inference_steps=25 , jit=UpperCamelCase__ )[0] assert images.shape == (jax.device_count(), 1, 768, 768, 3) lowerCamelCase_ =images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) lowerCamelCase_ =images[0, 253:256, 253:256, -1] lowerCamelCase_ =jnp.asarray(jax.device_get(image_slice.flatten() ) ) lowerCamelCase_ =jnp.array([0.4_3_3_6, 0.4_2_9_6_9, 0.4_4_5_3, 0.4_1_9_9, 0.4_2_9_7, 0.4_5_3_1, 0.4_4_3_4, 0.4_4_3_4, 0.4_2_9_7] ) print(f'output_slice: {output_slice}' ) assert jnp.abs(output_slice - expected_slice ).max() < 1E-2
366
__A : List[Any] = [ 9_99, 8_00, 7_99, 6_00, 5_99, 5_00, 4_00, 3_99, 3_77, 3_55, 3_33, 3_11, 2_88, 2_66, 2_44, 2_22, 2_00, 1_99, 1_77, 1_55, 1_33, 1_11, 88, 66, 44, 22, 0, ] __A : int = [ 9_99, 9_76, 9_52, 9_28, 9_05, 8_82, 8_58, 8_57, 8_10, 7_62, 7_15, 7_14, 5_72, 4_29, 4_28, 2_86, 2_85, 2_38, 1_90, 1_43, 1_42, 1_18, 95, 71, 47, 24, 0, ] __A : Any = [ 9_99, 9_88, 9_77, 9_66, 9_55, 9_44, 9_33, 9_22, 9_11, 9_00, 8_99, 8_79, 8_59, 8_40, 8_20, 8_00, 7_99, 7_66, 7_33, 7_00, 6_99, 6_50, 6_00, 5_99, 5_00, 4_99, 4_00, 3_99, 3_50, 3_00, 2_99, 2_66, 2_33, 2_00, 1_99, 1_79, 1_59, 1_40, 1_20, 1_00, 99, 88, 77, 66, 55, 44, 33, 22, 11, 0, ] __A : Dict = [ 9_99, 9_95, 9_92, 9_89, 9_85, 9_81, 9_78, 9_75, 9_71, 9_67, 9_64, 9_61, 9_57, 9_56, 9_51, 9_47, 9_42, 9_37, 9_33, 9_28, 9_23, 9_19, 9_14, 9_13, 9_08, 9_03, 8_97, 8_92, 8_87, 8_81, 8_76, 8_71, 8_70, 8_64, 8_58, 8_52, 8_46, 8_40, 8_34, 8_28, 8_27, 8_20, 8_13, 8_06, 7_99, 7_92, 7_85, 7_84, 7_77, 7_70, 7_63, 7_56, 7_49, 7_42, 7_41, 7_33, 7_24, 7_16, 7_07, 6_99, 6_98, 6_88, 6_77, 6_66, 6_56, 6_55, 6_45, 6_34, 6_23, 6_13, 6_12, 5_98, 5_84, 5_70, 5_69, 5_55, 5_41, 5_27, 5_26, 5_05, 4_84, 4_83, 4_62, 4_40, 4_39, 3_96, 3_95, 3_52, 3_51, 3_08, 3_07, 2_64, 2_63, 2_20, 2_19, 1_76, 1_32, 88, 44, 0, ] __A : List[str] = [ 9_99, 9_97, 9_95, 9_92, 9_90, 9_88, 9_86, 9_84, 9_81, 9_79, 9_77, 9_75, 9_72, 9_70, 9_68, 9_66, 9_64, 9_61, 9_59, 9_57, 9_56, 9_54, 9_51, 9_49, 9_46, 9_44, 9_41, 9_39, 9_36, 9_34, 9_31, 9_29, 9_26, 9_24, 9_21, 9_19, 9_16, 9_14, 9_13, 9_10, 9_07, 9_05, 9_02, 8_99, 8_96, 8_93, 8_91, 8_88, 8_85, 8_82, 8_79, 8_77, 8_74, 8_71, 8_70, 8_67, 8_64, 8_61, 8_58, 8_55, 8_52, 8_49, 8_46, 8_43, 8_40, 8_37, 8_34, 8_31, 8_28, 8_27, 8_24, 8_21, 8_17, 8_14, 8_11, 8_08, 8_04, 8_01, 7_98, 7_95, 7_91, 7_88, 7_85, 7_84, 7_80, 7_77, 7_74, 7_70, 7_66, 7_63, 7_60, 7_56, 7_52, 7_49, 7_46, 7_42, 7_41, 7_37, 7_33, 7_30, 7_26, 7_22, 7_18, 7_14, 7_10, 7_07, 7_03, 6_99, 6_98, 6_94, 6_90, 6_85, 6_81, 6_77, 6_73, 6_69, 6_64, 6_60, 6_56, 6_55, 6_50, 6_46, 6_41, 6_36, 6_32, 6_27, 6_22, 6_18, 6_13, 6_12, 6_07, 6_02, 5_96, 5_91, 5_86, 5_80, 5_75, 5_70, 5_69, 5_63, 5_57, 5_51, 5_45, 5_39, 5_33, 5_27, 5_26, 5_19, 5_12, 5_05, 4_98, 4_91, 4_84, 4_83, 4_74, 4_66, 4_57, 4_49, 4_40, 4_39, 4_28, 4_18, 4_07, 3_96, 3_95, 3_81, 3_66, 3_52, 3_51, 3_30, 3_08, 3_07, 2_86, 2_64, 2_63, 2_42, 2_20, 2_19, 1_76, 1_75, 1_32, 1_31, 88, 44, 0, ] __A : List[str] = [ 9_99, 9_91, 9_82, 9_74, 9_66, 9_58, 9_50, 9_41, 9_33, 9_25, 9_16, 9_08, 9_00, 8_99, 8_74, 8_50, 8_25, 8_00, 7_99, 7_00, 6_00, 5_00, 4_00, 3_00, 2_00, 1_00, 0, ] __A : Dict = [ 9_99, 9_92, 9_85, 9_78, 9_71, 9_64, 9_57, 9_49, 9_42, 9_35, 9_28, 9_21, 9_14, 9_07, 9_00, 8_99, 8_79, 8_59, 8_40, 8_20, 8_00, 7_99, 7_66, 7_33, 7_00, 6_99, 6_50, 6_00, 5_99, 5_00, 4_99, 4_00, 3_99, 3_00, 2_99, 2_00, 1_99, 1_00, 99, 0, ] __A : str = [ 9_99, 9_96, 9_92, 9_89, 9_85, 9_82, 9_79, 9_75, 9_72, 9_68, 9_65, 9_61, 9_58, 9_55, 9_51, 9_48, 9_44, 9_41, 9_38, 9_34, 9_31, 9_27, 9_24, 9_20, 9_17, 9_14, 9_10, 9_07, 9_03, 9_00, 8_99, 8_91, 8_84, 8_76, 8_69, 8_61, 8_53, 8_46, 8_38, 8_30, 8_23, 8_15, 8_08, 8_00, 7_99, 7_88, 7_77, 7_66, 7_55, 7_44, 7_33, 7_22, 7_11, 7_00, 6_99, 6_88, 6_77, 6_66, 6_55, 6_44, 6_33, 6_22, 6_11, 6_00, 5_99, 5_85, 5_71, 5_57, 5_42, 5_28, 5_14, 5_00, 4_99, 4_85, 4_71, 4_57, 4_42, 4_28, 4_14, 4_00, 3_99, 3_79, 3_59, 3_40, 3_20, 3_00, 2_99, 2_79, 2_59, 2_40, 2_20, 2_00, 1_99, 1_66, 1_33, 1_00, 99, 66, 33, 0, ]
49
0
'''simple docstring''' from math import factorial, radians def lowerCAmelCase_ ( snake_case__ , snake_case__ = 18 , snake_case__ = 10 ): '''simple docstring''' A : List[str] = angle_in_degrees - ((angle_in_degrees // 3_60.0) * 3_60.0) # Converting from degrees to radians A : Optional[int] = radians(snake_case__ ) A : List[str] = angle_in_radians A : Union[str, Any] = 3 A : int = -1 for _ in range(snake_case__ ): result += (b * (angle_in_radians**a)) / factorial(snake_case__ ) A : Any = -b # One positive term and the next will be negative and so on... a += 2 # Increased by 2 for every term. return round(snake_case__ , snake_case__ ) if __name__ == "__main__": __import__('doctest').testmod()
3
'''simple docstring''' from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast from ...utils import logging lowercase : List[str] = logging.get_logger(__name__) lowercase : str = { 'EleutherAI/gpt-neo-1.3B': 'https://huggingface.co/EleutherAI/gpt-neo-1.3B/resolve/main/config.json', # See all GPTNeo models at https://huggingface.co/models?filter=gpt_neo } class A ( __snake_case ): __magic_name__ = '''gpt_neo''' __magic_name__ = ['''past_key_values'''] __magic_name__ = {'''num_attention_heads''': '''num_heads''', '''num_hidden_layers''': '''num_layers'''} def __init__( self , SCREAMING_SNAKE_CASE=50257 , SCREAMING_SNAKE_CASE=2048 , SCREAMING_SNAKE_CASE=2048 , SCREAMING_SNAKE_CASE=24 , SCREAMING_SNAKE_CASE=[[["global", "local"], 12]] , SCREAMING_SNAKE_CASE=16 , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=256 , SCREAMING_SNAKE_CASE="gelu_new" , SCREAMING_SNAKE_CASE=0.0 , SCREAMING_SNAKE_CASE=0.0 , SCREAMING_SNAKE_CASE=0.0 , SCREAMING_SNAKE_CASE=0.1 , SCREAMING_SNAKE_CASE=1e-5 , SCREAMING_SNAKE_CASE=0.02 , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE=50256 , SCREAMING_SNAKE_CASE=50256 , **SCREAMING_SNAKE_CASE , ) -> int: """simple docstring""" A : Union[str, Any] = vocab_size A : Optional[Any] = max_position_embeddings A : Dict = hidden_size A : Optional[Any] = num_layers A : Tuple = num_heads A : int = intermediate_size A : Optional[Any] = window_size A : List[Any] = activation_function A : Union[str, Any] = resid_dropout A : Any = embed_dropout A : List[Any] = attention_dropout A : str = classifier_dropout A : List[Any] = layer_norm_epsilon A : str = initializer_range A : List[str] = use_cache A : Optional[int] = bos_token_id A : List[Any] = eos_token_id A : int = attention_types A : int = self.expand_attention_types_params(SCREAMING_SNAKE_CASE ) if len(self.attention_layers ) != self.num_layers: raise ValueError( '''Configuration for convolutional module is incorrect. ''' '''It is required that `len(config.attention_layers)` == `config.num_layers` ''' F'but is `len(config.attention_layers) = {len(self.attention_layers )}`, ' F'`config.num_layers = {self.num_layers}`. ' '''`config.attention_layers` is prepared using `config.attention_types`. ''' '''Please verify the value of `config.attention_types` argument.''' ) super().__init__(bos_token_id=SCREAMING_SNAKE_CASE , eos_token_id=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) @staticmethod def __lowerCAmelCase ( SCREAMING_SNAKE_CASE ) -> int: """simple docstring""" A : List[str] = [] for item in attention_types: for _ in range(item[1] ): attentions.extend(item[0] ) return attentions def lowerCAmelCase_ ( snake_case__ , snake_case__ , snake_case__ , snake_case__ ): '''simple docstring''' import torch A : Tuple = input.size() A : Union[str, Any] = len(snake_case__ ) A : List[str] = shape[dimension] A : Union[str, Any] = torch.arange(0 , snake_case__ , snake_case__ ) A : List[str] = torch.div(sizedim - size , snake_case__ , rounding_mode='''floor''' ) + 1 A : Optional[int] = torch.arange(snake_case__ ) + low_indices[:min_length][:, None] A : str = [slice(snake_case__ )] * rank A : List[Any] = indices A : Union[str, Any] = input[s] A : List[str] = list(range(0 , rank + 1 ) ) perm.append(perm.pop(dimension + 1 ) ) return sliced.permute(snake_case__ ) def lowerCAmelCase_ ( snake_case__ , snake_case__ ): '''simple docstring''' import torch A : List[str] = torch.arange(1 , snake_case__ ) A : Optional[int] = torch.remainder(snake_case__ , snake_case__ ) A : Optional[int] = remainders == 0 A : Optional[Any] = candidates[divisor_indices] A : Optional[int] = torch.max(snake_case__ ) return largest_divisor, torch.div(snake_case__ , snake_case__ , rounding_mode='''floor''' ) class A ( __snake_case ): @property def __lowerCAmelCase ( self ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" A : Tuple = OrderedDict({'''input_ids''': {0: '''batch''', 1: '''sequence'''}} ) if self.use_past: self.fill_with_past_key_values_(SCREAMING_SNAKE_CASE , direction='''inputs''' ) A : Optional[Any] = {0: '''batch''', 1: '''past_sequence + sequence'''} else: A : Dict = {0: '''batch''', 1: '''sequence'''} return common_inputs @property def __lowerCAmelCase ( self ) -> int: """simple docstring""" return self._config.num_heads def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = -1 , SCREAMING_SNAKE_CASE = -1 , SCREAMING_SNAKE_CASE = False , SCREAMING_SNAKE_CASE = None , ) -> Mapping[str, Any]: """simple docstring""" A : List[str] = super(SCREAMING_SNAKE_CASE , self ).generate_dummy_inputs( SCREAMING_SNAKE_CASE , batch_size=SCREAMING_SNAKE_CASE , seq_length=SCREAMING_SNAKE_CASE , is_pair=SCREAMING_SNAKE_CASE , framework=SCREAMING_SNAKE_CASE ) # We need to order the input in the way they appears in the forward() A : Any = OrderedDict({'''input_ids''': common_inputs['''input_ids''']} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' ) else: import torch A, A : Dict = common_inputs['''input_ids'''].shape # Not using the same length for past_key_values A : str = seqlen + 2 A : List[Any] = ( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) A : Any = [ (torch.zeros(SCREAMING_SNAKE_CASE ), torch.zeros(SCREAMING_SNAKE_CASE )) for _ in range(self.num_layers ) ] A : str = common_inputs['''attention_mask'''] if self.use_past: A : Optional[int] = ordered_inputs['''attention_mask'''].dtype A : List[str] = torch.cat( [ordered_inputs['''attention_mask'''], torch.ones(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , dtype=SCREAMING_SNAKE_CASE )] , dim=1 ) return ordered_inputs @property def __lowerCAmelCase ( self ) -> int: """simple docstring""" return 13
3
1
from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Features, Value from .base import TaskTemplate @dataclass(frozen=UpperCAmelCase ) class SCREAMING_SNAKE_CASE (UpperCAmelCase ): _UpperCamelCase : str = field(default='language-modeling' , metadata={'include_in_asdict_even_if_is_default': True} ) _UpperCamelCase : ClassVar[Features] = Features({'text': Value('string' )} ) _UpperCamelCase : ClassVar[Features] = Features({} ) _UpperCamelCase : str = "text" @property def SCREAMING_SNAKE_CASE_ ( self : List[str] )-> Dict[str, str]: """simple docstring""" return {self.text_column: "text"}
269
from binascii import hexlify from hashlib import shaaaa from os import urandom # RFC 3526 - More Modular Exponential (MODP) Diffie-Hellman groups for # Internet Key Exchange (IKE) https://tools.ietf.org/html/rfc3526 lowercase_ = { # 1536-bit 5: { """prime""": int( """FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1""" + """29024E088A67CC74020BBEA63B139B22514A08798E3404DD""" + """EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245""" + """E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED""" + """EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D""" + """C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F""" + """83655D23DCA3AD961C62F356208552BB9ED529077096966D""" + """670C354E4ABC9804F1746C08CA237327FFFFFFFFFFFFFFFF""", base=16, ), """generator""": 2, }, # 2048-bit 14: { """prime""": int( """FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1""" + """29024E088A67CC74020BBEA63B139B22514A08798E3404DD""" + """EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245""" + """E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED""" + """EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D""" + """C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F""" + """83655D23DCA3AD961C62F356208552BB9ED529077096966D""" + """670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B""" + """E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9""" + """DE2BCBF6955817183995497CEA956AE515D2261898FA0510""" + """15728E5A8AACAA68FFFFFFFFFFFFFFFF""", base=16, ), """generator""": 2, }, # 3072-bit 15: { """prime""": int( """FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1""" + """29024E088A67CC74020BBEA63B139B22514A08798E3404DD""" + """EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245""" + """E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED""" + """EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D""" + """C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F""" + """83655D23DCA3AD961C62F356208552BB9ED529077096966D""" + """670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B""" + """E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9""" + """DE2BCBF6955817183995497CEA956AE515D2261898FA0510""" + """15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64""" + """ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7""" + """ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B""" + """F12FFA06D98A0864D87602733EC86A64521F2B18177B200C""" + """BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31""" + """43DB5BFCE0FD108E4B82D120A93AD2CAFFFFFFFFFFFFFFFF""", base=16, ), """generator""": 2, }, # 4096-bit 16: { """prime""": int( """FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1""" + """29024E088A67CC74020BBEA63B139B22514A08798E3404DD""" + """EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245""" + """E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED""" + """EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D""" + """C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F""" + """83655D23DCA3AD961C62F356208552BB9ED529077096966D""" + """670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B""" + """E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9""" + """DE2BCBF6955817183995497CEA956AE515D2261898FA0510""" + """15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64""" + """ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7""" + """ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B""" + """F12FFA06D98A0864D87602733EC86A64521F2B18177B200C""" + """BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31""" + """43DB5BFCE0FD108E4B82D120A92108011A723C12A787E6D7""" + """88719A10BDBA5B2699C327186AF4E23C1A946834B6150BDA""" + """2583E9CA2AD44CE8DBBBC2DB04DE8EF92E8EFC141FBECAA6""" + """287C59474E6BC05D99B2964FA090C3A2233BA186515BE7ED""" + """1F612970CEE2D7AFB81BDD762170481CD0069127D5B05AA9""" + """93B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934063199""" + """FFFFFFFFFFFFFFFF""", base=16, ), """generator""": 2, }, # 6144-bit 17: { """prime""": int( """FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD129024E08""" + """8A67CC74020BBEA63B139B22514A08798E3404DDEF9519B3CD3A431B""" + """302B0A6DF25F14374FE1356D6D51C245E485B576625E7EC6F44C42E9""" + """A637ED6B0BFF5CB6F406B7EDEE386BFB5A899FA5AE9F24117C4B1FE6""" + """49286651ECE45B3DC2007CB8A163BF0598DA48361C55D39A69163FA8""" + """FD24CF5F83655D23DCA3AD961C62F356208552BB9ED529077096966D""" + """670C354E4ABC9804F1746C08CA18217C32905E462E36CE3BE39E772C""" + """180E86039B2783A2EC07A28FB5C55DF06F4C52C9DE2BCBF695581718""" + """3995497CEA956AE515D2261898FA051015728E5A8AAAC42DAD33170D""" + """04507A33A85521ABDF1CBA64ECFB850458DBEF0A8AEA71575D060C7D""" + """B3970F85A6E1E4C7ABF5AE8CDB0933D71E8C94E04A25619DCEE3D226""" + """1AD2EE6BF12FFA06D98A0864D87602733EC86A64521F2B18177B200C""" + """BBE117577A615D6C770988C0BAD946E208E24FA074E5AB3143DB5BFC""" + """E0FD108E4B82D120A92108011A723C12A787E6D788719A10BDBA5B26""" + """99C327186AF4E23C1A946834B6150BDA2583E9CA2AD44CE8DBBBC2DB""" + """04DE8EF92E8EFC141FBECAA6287C59474E6BC05D99B2964FA090C3A2""" + """233BA186515BE7ED1F612970CEE2D7AFB81BDD762170481CD0069127""" + """D5B05AA993B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934028492""" + """36C3FAB4D27C7026C1D4DCB2602646DEC9751E763DBA37BDF8FF9406""" + """AD9E530EE5DB382F413001AEB06A53ED9027D831179727B0865A8918""" + """DA3EDBEBCF9B14ED44CE6CBACED4BB1BDB7F1447E6CC254B33205151""" + """2BD7AF426FB8F401378CD2BF5983CA01C64B92ECF032EA15D1721D03""" + """F482D7CE6E74FEF6D55E702F46980C82B5A84031900B1C9E59E7C97F""" + """BEC7E8F323A97A7E36CC88BE0F1D45B7FF585AC54BD407B22B4154AA""" + """CC8F6D7EBF48E1D814CC5ED20F8037E0A79715EEF29BE32806A1D58B""" + """B7C5DA76F550AA3D8A1FBFF0EB19CCB1A313D55CDA56C9EC2EF29632""" + """387FE8D76E3C0468043E8F663F4860EE12BF2D5B0B7474D6E694F91E""" + """6DCC4024FFFFFFFFFFFFFFFF""", base=16, ), """generator""": 2, }, # 8192-bit 18: { """prime""": int( """FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1""" + """29024E088A67CC74020BBEA63B139B22514A08798E3404DD""" + """EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245""" + """E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED""" + """EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D""" + """C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F""" + """83655D23DCA3AD961C62F356208552BB9ED529077096966D""" + """670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B""" + """E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9""" + """DE2BCBF6955817183995497CEA956AE515D2261898FA0510""" + """15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64""" + """ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7""" + """ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B""" + """F12FFA06D98A0864D87602733EC86A64521F2B18177B200C""" + """BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31""" + """43DB5BFCE0FD108E4B82D120A92108011A723C12A787E6D7""" + """88719A10BDBA5B2699C327186AF4E23C1A946834B6150BDA""" + """2583E9CA2AD44CE8DBBBC2DB04DE8EF92E8EFC141FBECAA6""" + """287C59474E6BC05D99B2964FA090C3A2233BA186515BE7ED""" + """1F612970CEE2D7AFB81BDD762170481CD0069127D5B05AA9""" + """93B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934028492""" + """36C3FAB4D27C7026C1D4DCB2602646DEC9751E763DBA37BD""" + """F8FF9406AD9E530EE5DB382F413001AEB06A53ED9027D831""" + """179727B0865A8918DA3EDBEBCF9B14ED44CE6CBACED4BB1B""" + """DB7F1447E6CC254B332051512BD7AF426FB8F401378CD2BF""" + """5983CA01C64B92ECF032EA15D1721D03F482D7CE6E74FEF6""" + """D55E702F46980C82B5A84031900B1C9E59E7C97FBEC7E8F3""" + """23A97A7E36CC88BE0F1D45B7FF585AC54BD407B22B4154AA""" + """CC8F6D7EBF48E1D814CC5ED20F8037E0A79715EEF29BE328""" + """06A1D58BB7C5DA76F550AA3D8A1FBFF0EB19CCB1A313D55C""" + """DA56C9EC2EF29632387FE8D76E3C0468043E8F663F4860EE""" + """12BF2D5B0B7474D6E694F91E6DBE115974A3926F12FEE5E4""" + """38777CB6A932DF8CD8BEC4D073B931BA3BC832B68D9DD300""" + """741FA7BF8AFC47ED2576F6936BA424663AAB639C5AE4F568""" + """3423B4742BF1C978238F16CBE39D652DE3FDB8BEFC848AD9""" + """22222E04A4037C0713EB57A81A23F0C73473FC646CEA306B""" + """4BCBC8862F8385DDFA9D4B7FA2C087E879683303ED5BDD3A""" + """062B3CF5B3A278A66D2A13F83F44F82DDF310EE074AB6A36""" + """4597E899A0255DC164F31CC50846851DF9AB48195DED7EA1""" + """B1D510BD7EE74D73FAF36BC31ECFA268359046F4EB879F92""" + """4009438B481C6CD7889A002ED5EE382BC9190DA6FC026E47""" + """9558E4475677E9AA9E3050E2765694DFC81F56E880B96E71""" + """60C980DD98EDD3DFFFFFFFFFFFFFFFFF""", base=16, ), """generator""": 2, }, } class SCREAMING_SNAKE_CASE : def __init__( self : Optional[Any] , a : int = 14 )-> None: """simple docstring""" if group not in primes: raise ValueError('Unsupported Group' ) lowercase__ = primes[group]['prime'] lowercase__ = primes[group]['generator'] lowercase__ = int(hexlify(urandom(32 ) ) , base=16 ) def SCREAMING_SNAKE_CASE_ ( self : List[str] )-> str: """simple docstring""" return hex(self.__private_key )[2:] def SCREAMING_SNAKE_CASE_ ( self : Tuple )-> str: """simple docstring""" lowercase__ = pow(self.generator , self.__private_key , self.prime ) return hex(a )[2:] def SCREAMING_SNAKE_CASE_ ( self : Tuple , a : int )-> bool: """simple docstring""" return ( 2 <= key <= self.prime - 2 and pow(a , (self.prime - 1) // 2 , self.prime ) == 1 ) def SCREAMING_SNAKE_CASE_ ( self : str , a : str )-> str: """simple docstring""" lowercase__ = int(a , base=16 ) if not self.is_valid_public_key(a ): raise ValueError('Invalid public key' ) lowercase__ = pow(a , self.__private_key , self.prime ) return shaaaa(str(a ).encode() ).hexdigest() @staticmethod def SCREAMING_SNAKE_CASE_ ( a : int , a : int )-> bool: """simple docstring""" return ( 2 <= remote_public_key_str <= prime - 2 and pow(a , (prime - 1) // 2 , a ) == 1 ) @staticmethod def SCREAMING_SNAKE_CASE_ ( a : str , a : str , a : int = 14 )-> str: """simple docstring""" lowercase__ = int(a , base=16 ) lowercase__ = int(a , base=16 ) lowercase__ = primes[group]['prime'] if not DiffieHellman.is_valid_public_key_static(a , a ): raise ValueError('Invalid public key' ) lowercase__ = pow(a , a , a ) return shaaaa(str(a ).encode() ).hexdigest() if __name__ == "__main__": import doctest doctest.testmod()
269
1
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import GLPNImageProcessor class A (unittest.TestCase ): '''simple docstring''' def __init__( self : Union[str, Any] , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Optional[int]=7 , __lowerCAmelCase : List[str]=3 , __lowerCAmelCase : Union[str, Any]=18 , __lowerCAmelCase : Optional[int]=30 , __lowerCAmelCase : Union[str, Any]=4_00 , __lowerCAmelCase : Optional[Any]=True , __lowerCAmelCase : List[str]=32 , __lowerCAmelCase : Any=True , ) -> Any: """simple docstring""" A__ = parent A__ = batch_size A__ = num_channels A__ = image_size A__ = min_resolution A__ = max_resolution A__ = do_resize A__ = size_divisor A__ = do_rescale def a_ ( self : int ) -> List[str]: """simple docstring""" return { "do_resize": self.do_resize, "size_divisor": self.size_divisor, "do_rescale": self.do_rescale, } @require_torch @require_vision class A (_a , unittest.TestCase ): '''simple docstring''' __lowerCamelCase : Union[str, Any] = GLPNImageProcessor if is_vision_available() else None def a_ ( self : str ) -> int: """simple docstring""" A__ = GLPNImageProcessingTester(self ) @property def a_ ( self : Tuple ) -> Tuple: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def a_ ( self : Any ) -> List[str]: """simple docstring""" A__ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(A_ , """do_resize""" ) ) self.assertTrue(hasattr(A_ , """size_divisor""" ) ) self.assertTrue(hasattr(A_ , """resample""" ) ) self.assertTrue(hasattr(A_ , """do_rescale""" ) ) def a_ ( self : str ) -> Dict: """simple docstring""" pass def a_ ( self : Union[str, Any] ) -> Tuple: """simple docstring""" A__ = self.image_processing_class(**self.image_processor_dict ) # create random PIL images A__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=A_ ) for image in image_inputs: self.assertIsInstance(A_ , Image.Image ) # Test not batched input (GLPNImageProcessor doesn't support batching) A__ = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisor == 0 ) self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisor == 0 ) def a_ ( self : Tuple ) -> int: """simple docstring""" A__ = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors A__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=A_ , numpify=A_ ) for image in image_inputs: self.assertIsInstance(A_ , np.ndarray ) # Test not batched input (GLPNImageProcessor doesn't support batching) A__ = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisor == 0 ) self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisor == 0 ) def a_ ( self : Optional[int] ) -> Tuple: """simple docstring""" A__ = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors A__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=A_ , torchify=A_ ) for image in image_inputs: self.assertIsInstance(A_ , torch.Tensor ) # Test not batched input (GLPNImageProcessor doesn't support batching) A__ = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisor == 0 ) self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisor == 0 )
274
import json import os import unittest from transformers import MgpstrTokenizer from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __lowerCamelCase (_a , unittest.TestCase ): _lowercase = MgpstrTokenizer _lowercase = False _lowercase = {} _lowercase = False def snake_case_ ( self: int ): '''simple docstring''' super().setUp() # fmt: off __UpperCamelCase = ['[GO]', '[s]', '0', '1', '2', '3', '4', '5', '6', '7', '8', '9', 'a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', 'o', 'p', 'q', 'r', 's', 't', 'u', 'v', 'w', 'x', 'y', 'z'] # fmt: on __UpperCamelCase = dict(zip(A_,range(len(A_ ) ) ) ) __UpperCamelCase = os.path.join(self.tmpdirname,VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file,'w',encoding='utf-8' ) as fp: fp.write(json.dumps(A_ ) + '\n' ) def snake_case_ ( self: Dict,**A_: Tuple ): '''simple docstring''' return MgpstrTokenizer.from_pretrained(self.tmpdirname,**A_ ) def snake_case_ ( self: List[Any],A_: Optional[Any] ): '''simple docstring''' __UpperCamelCase = 'tester' __UpperCamelCase = 'tester' return input_text, output_text @unittest.skip('MGP-STR always lower cases letters.' ) def snake_case_ ( self: str ): '''simple docstring''' pass def snake_case_ ( self: List[Any] ): '''simple docstring''' __UpperCamelCase = self.get_tokenizers(do_lower_case=A_ ) for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): __UpperCamelCase = '[SPECIAL_TOKEN]' tokenizer.add_special_tokens({'cls_token': special_token} ) __UpperCamelCase = tokenizer.encode([special_token],add_special_tokens=A_ ) self.assertEqual(len(A_ ),1 ) __UpperCamelCase = tokenizer.decode(A_,skip_special_tokens=A_ ) self.assertTrue(special_token not in decoded ) def snake_case_ ( self: Dict ): '''simple docstring''' __UpperCamelCase = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): __UpperCamelCase, __UpperCamelCase = self.get_input_output_texts(A_ ) __UpperCamelCase = tokenizer.tokenize(A_ ) __UpperCamelCase = tokenizer.convert_tokens_to_ids(A_ ) __UpperCamelCase = tokenizer.encode(A_,add_special_tokens=A_ ) self.assertListEqual(A_,A_ ) __UpperCamelCase = tokenizer.convert_ids_to_tokens(A_ ) self.assertNotEqual(len(A_ ),0 ) __UpperCamelCase = tokenizer.decode(A_ ) self.assertIsInstance(A_,A_ ) self.assertEqual(text_a.replace(' ','' ),A_ ) @unittest.skip('MGP-STR tokenizer only handles one sequence.' ) def snake_case_ ( self: int ): '''simple docstring''' pass @unittest.skip('inputs cannot be pretokenized in MgpstrTokenizer' ) def snake_case_ ( self: List[str] ): '''simple docstring''' pass
310
0
'''simple docstring''' from pickle import UnpicklingError import jax import jax.numpy as jnp import numpy as np from flax.serialization import from_bytes from flax.traverse_util import flatten_dict from ..utils import logging UpperCamelCase__ = logging.get_logger(__name__) def a__ ( lowerCAmelCase__ , lowerCAmelCase__ ) -> Optional[Any]: try: with open(lowerCAmelCase__ , '''rb''' ) as flax_state_f: UpperCAmelCase__ : Optional[int] = from_bytes(lowerCAmelCase__ , flax_state_f.read() ) except UnpicklingError as e: try: with open(lowerCAmelCase__ ) as f: if f.read().startswith('''version''' ): raise OSError( '''You seem to have cloned a repository without having git-lfs installed. Please''' ''' install git-lfs and run `git lfs install` followed by `git lfs pull` in the''' ''' folder you cloned.''' ) else: raise ValueError from e except (UnicodeDecodeError, ValueError): raise EnvironmentError(F"""Unable to convert {model_file} to Flax deserializable object. """ ) return load_flax_weights_in_pytorch_model(lowerCAmelCase__ , lowerCAmelCase__ ) def a__ ( lowerCAmelCase__ , lowerCAmelCase__ ) -> Any: try: import torch # noqa: F401 except ImportError: logger.error( '''Loading Flax weights in PyTorch requires both PyTorch and Flax to be installed. Please see''' ''' https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation''' ''' instructions.''' ) raise # check if we have bf16 weights UpperCAmelCase__ : Any = flatten_dict(jax.tree_util.tree_map(lambda lowerCAmelCase__ : x.dtype == jnp.bfloataa , lowerCAmelCase__ ) ).values() if any(lowerCAmelCase__ ): # convert all weights to fp32 if they are bf16 since torch.from_numpy can-not handle bf16 # and bf16 is not fully supported in PT yet. logger.warning( '''Found ``bfloat16`` weights in Flax model. Casting all ``bfloat16`` weights to ``float32`` ''' '''before loading those in PyTorch model.''' ) UpperCAmelCase__ : Optional[Any] = jax.tree_util.tree_map( lambda lowerCAmelCase__ : params.astype(np.floataa ) if params.dtype == jnp.bfloataa else params , lowerCAmelCase__ ) UpperCAmelCase__ : Dict = '''''' UpperCAmelCase__ : Any = flatten_dict(lowerCAmelCase__ , sep='''.''' ) UpperCAmelCase__ : Union[str, Any] = pt_model.state_dict() # keep track of unexpected & missing keys UpperCAmelCase__ : Union[str, Any] = [] UpperCAmelCase__ : Optional[Any] = set(pt_model_dict.keys() ) for flax_key_tuple, flax_tensor in flax_state_dict.items(): UpperCAmelCase__ : int = flax_key_tuple.split('''.''' ) if flax_key_tuple_array[-1] == "kernel" and flax_tensor.ndim == 4: UpperCAmelCase__ : int = flax_key_tuple_array[:-1] + ['''weight'''] UpperCAmelCase__ : Optional[int] = jnp.transpose(lowerCAmelCase__ , (3, 2, 0, 1) ) elif flax_key_tuple_array[-1] == "kernel": UpperCAmelCase__ : Any = flax_key_tuple_array[:-1] + ['''weight'''] UpperCAmelCase__ : int = flax_tensor.T elif flax_key_tuple_array[-1] == "scale": UpperCAmelCase__ : Union[str, Any] = flax_key_tuple_array[:-1] + ['''weight'''] if "time_embedding" not in flax_key_tuple_array: for i, flax_key_tuple_string in enumerate(lowerCAmelCase__ ): UpperCAmelCase__ : List[str] = ( flax_key_tuple_string.replace('''_0''' , '''.0''' ) .replace('''_1''' , '''.1''' ) .replace('''_2''' , '''.2''' ) .replace('''_3''' , '''.3''' ) .replace('''_4''' , '''.4''' ) .replace('''_5''' , '''.5''' ) .replace('''_6''' , '''.6''' ) .replace('''_7''' , '''.7''' ) .replace('''_8''' , '''.8''' ) .replace('''_9''' , '''.9''' ) ) UpperCAmelCase__ : str = '''.'''.join(lowerCAmelCase__ ) if flax_key in pt_model_dict: if flax_tensor.shape != pt_model_dict[flax_key].shape: raise ValueError( F"""Flax checkpoint seems to be incorrect. Weight {flax_key_tuple} was expected """ F"""to be of shape {pt_model_dict[flax_key].shape}, but is {flax_tensor.shape}.""" ) else: # add weight to pytorch dict UpperCAmelCase__ : Any = np.asarray(lowerCAmelCase__ ) if not isinstance(lowerCAmelCase__ , np.ndarray ) else flax_tensor UpperCAmelCase__ : Tuple = torch.from_numpy(lowerCAmelCase__ ) # remove from missing keys missing_keys.remove(lowerCAmelCase__ ) else: # weight is not expected by PyTorch model unexpected_keys.append(lowerCAmelCase__ ) pt_model.load_state_dict(lowerCAmelCase__ ) # re-transform missing_keys to list UpperCAmelCase__ : Dict = list(lowerCAmelCase__ ) if len(lowerCAmelCase__ ) > 0: logger.warning( '''Some weights of the Flax model were not used when initializing the PyTorch model''' F""" {pt_model.__class__.__name__}: {unexpected_keys}\n- This IS expected if you are initializing""" F""" {pt_model.__class__.__name__} from a Flax model trained on another task or with another architecture""" ''' (e.g. initializing a BertForSequenceClassification model from a FlaxBertForPreTraining model).\n- This''' F""" IS NOT expected if you are initializing {pt_model.__class__.__name__} from a Flax model that you expect""" ''' to be exactly identical (e.g. initializing a BertForSequenceClassification model from a''' ''' FlaxBertForSequenceClassification model).''' ) if len(lowerCAmelCase__ ) > 0: logger.warning( F"""Some weights of {pt_model.__class__.__name__} were not initialized from the Flax model and are newly""" F""" initialized: {missing_keys}\nYou should probably TRAIN this model on a down-stream task to be able to""" ''' use it for predictions and inference.''' ) return pt_model
299
'''simple docstring''' import argparse from typing import List import evaluate import numpy as np import torch from datasets import DatasetDict, load_dataset # New Code # # We'll be using StratifiedKFold for this example from sklearn.model_selection import StratifiedKFold from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing how to perform Cross Validation, # and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To help focus on the differences in the code, building `DataLoaders` # was refactored into its own function. # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## UpperCamelCase__ = 1_6 UpperCamelCase__ = 3_2 def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = 16 ) -> Dict: UpperCAmelCase__ : Dict = AutoTokenizer.from_pretrained('''bert-base-cased''' ) UpperCAmelCase__ : str = DatasetDict( { '''train''': dataset['''train'''].select(lowerCAmelCase__ ), '''validation''': dataset['''train'''].select(lowerCAmelCase__ ), '''test''': dataset['''validation'''], } ) def tokenize_function(lowerCAmelCase__ ): # max_length=None => use the model max length (it's actually the default) UpperCAmelCase__ : Optional[int] = tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=lowerCAmelCase__ , max_length=lowerCAmelCase__ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): UpperCAmelCase__ : Dict = datasets.map( lowerCAmelCase__ , batched=lowerCAmelCase__ , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library UpperCAmelCase__ : int = tokenized_datasets.rename_column('''label''' , '''labels''' ) def collate_fn(lowerCAmelCase__ ): # On TPU it's best to pad everything to the same length or training will be very slow. UpperCAmelCase__ : Optional[Any] = 1_28 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": UpperCAmelCase__ : Any = 16 elif accelerator.mixed_precision != "no": UpperCAmelCase__ : Dict = 8 else: UpperCAmelCase__ : List[Any] = None return tokenizer.pad( lowerCAmelCase__ , padding='''longest''' , max_length=lowerCAmelCase__ , pad_to_multiple_of=lowerCAmelCase__ , return_tensors='''pt''' , ) # Instantiate dataloaders. UpperCAmelCase__ : List[Any] = DataLoader( tokenized_datasets['''train'''] , shuffle=lowerCAmelCase__ , collate_fn=lowerCAmelCase__ , batch_size=lowerCAmelCase__ ) UpperCAmelCase__ : List[str] = DataLoader( tokenized_datasets['''validation'''] , shuffle=lowerCAmelCase__ , collate_fn=lowerCAmelCase__ , batch_size=lowerCAmelCase__ ) UpperCAmelCase__ : List[Any] = DataLoader( tokenized_datasets['''test'''] , shuffle=lowerCAmelCase__ , collate_fn=lowerCAmelCase__ , batch_size=lowerCAmelCase__ ) return train_dataloader, eval_dataloader, test_dataloader def a__ ( lowerCAmelCase__ , lowerCAmelCase__ ) -> str: # New Code # UpperCAmelCase__ : List[str] = [] # Download the dataset UpperCAmelCase__ : Union[str, Any] = load_dataset('''glue''' , '''mrpc''' ) # Create our splits UpperCAmelCase__ : str = StratifiedKFold(n_splits=int(args.num_folds ) ) # Initialize accelerator UpperCAmelCase__ : Dict = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs UpperCAmelCase__ : Any = config['''lr'''] UpperCAmelCase__ : Any = int(config['''num_epochs'''] ) UpperCAmelCase__ : Any = int(config['''seed'''] ) UpperCAmelCase__ : Dict = int(config['''batch_size'''] ) UpperCAmelCase__ : Any = evaluate.load('''glue''' , '''mrpc''' ) # If the batch size is too big we use gradient accumulation UpperCAmelCase__ : Optional[Any] = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: UpperCAmelCase__ : Any = batch_size // MAX_GPU_BATCH_SIZE UpperCAmelCase__ : List[Any] = MAX_GPU_BATCH_SIZE set_seed(lowerCAmelCase__ ) # New Code # # Create our folds: UpperCAmelCase__ : Union[str, Any] = kfold.split(np.zeros(datasets['''train'''].num_rows ) , datasets['''train''']['''label'''] ) UpperCAmelCase__ : Dict = [] # Iterate over them for i, (train_idxs, valid_idxs) in enumerate(lowerCAmelCase__ ): UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : Any = get_fold_dataloaders( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) UpperCAmelCase__ : List[str] = AutoModelForSequenceClassification.from_pretrained('''bert-base-cased''' , return_dict=lowerCAmelCase__ ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). UpperCAmelCase__ : Optional[Any] = model.to(accelerator.device ) # Instantiate optimizer UpperCAmelCase__ : Union[str, Any] = AdamW(params=model.parameters() , lr=lowerCAmelCase__ ) # Instantiate scheduler UpperCAmelCase__ : Any = get_linear_schedule_with_warmup( optimizer=lowerCAmelCase__ , num_warmup_steps=1_00 , num_training_steps=(len(lowerCAmelCase__ ) * num_epochs) // gradient_accumulation_steps , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : str = accelerator.prepare( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) # Now we train the model for epoch in range(lowerCAmelCase__ ): model.train() for step, batch in enumerate(lowerCAmelCase__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) UpperCAmelCase__ : Union[str, Any] = model(**lowerCAmelCase__ ) UpperCAmelCase__ : Dict = outputs.loss UpperCAmelCase__ : Dict = loss / gradient_accumulation_steps accelerator.backward(lowerCAmelCase__ ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(lowerCAmelCase__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): UpperCAmelCase__ : str = model(**lowerCAmelCase__ ) UpperCAmelCase__ : Any = outputs.logits.argmax(dim=-1 ) UpperCAmelCase__ , UpperCAmelCase__ : Union[str, Any] = accelerator.gather_for_metrics((predictions, batch['''labels''']) ) metric.add_batch( predictions=lowerCAmelCase__ , references=lowerCAmelCase__ , ) UpperCAmelCase__ : str = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F"""epoch {epoch}:""" , lowerCAmelCase__ ) # New Code # # We also run predictions on the test set at the very end UpperCAmelCase__ : int = [] for step, batch in enumerate(lowerCAmelCase__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): UpperCAmelCase__ : str = model(**lowerCAmelCase__ ) UpperCAmelCase__ : Union[str, Any] = outputs.logits UpperCAmelCase__ , UpperCAmelCase__ : Optional[int] = accelerator.gather_for_metrics((predictions, batch['''labels''']) ) fold_predictions.append(predictions.cpu() ) if i == 0: # We need all of the test predictions test_references.append(references.cpu() ) # Use accelerator.print to print only on the main process. test_predictions.append(torch.cat(lowerCAmelCase__ , dim=0 ) ) # We now need to release all our memory and get rid of the current model, optimizer, etc accelerator.free_memory() # New Code # # Finally we check the accuracy of our folded results: UpperCAmelCase__ : Union[str, Any] = torch.cat(lowerCAmelCase__ , dim=0 ) UpperCAmelCase__ : Tuple = torch.stack(lowerCAmelCase__ , dim=0 ).sum(dim=0 ).div(int(args.num_folds ) ).argmax(dim=-1 ) UpperCAmelCase__ : Optional[Any] = metric.compute(predictions=lowerCAmelCase__ , references=lowerCAmelCase__ ) accelerator.print('''Average test metrics from all folds:''' , lowerCAmelCase__ ) def a__ ( ) -> Any: UpperCAmelCase__ : Tuple = argparse.ArgumentParser(description='''Simple example of training script.''' ) parser.add_argument( '''--mixed_precision''' , type=lowerCAmelCase__ , default=lowerCAmelCase__ , choices=['''no''', '''fp16''', '''bf16''', '''fp8'''] , help='''Whether to use mixed precision. Choose''' '''between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.''' '''and an Nvidia Ampere GPU.''' , ) parser.add_argument('''--cpu''' , action='''store_true''' , help='''If passed, will train on the CPU.''' ) # New Code # parser.add_argument('''--num_folds''' , type=lowerCAmelCase__ , default=3 , help='''The number of splits to perform across the dataset''' ) UpperCAmelCase__ : Tuple = parser.parse_args() UpperCAmelCase__ : Any = {'''lr''': 2E-5, '''num_epochs''': 3, '''seed''': 42, '''batch_size''': 16} training_function(lowerCAmelCase__ , lowerCAmelCase__ ) if __name__ == "__main__": main()
299
1
import unittest from diffusers import FlaxAutoencoderKL from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import require_flax from .test_modeling_common_flax import FlaxModelTesterMixin if is_flax_available(): import jax @require_flax class _UpperCamelCase ( lowerCAmelCase , unittest.TestCase ): UpperCAmelCase_ = FlaxAutoencoderKL @property def UpperCAmelCase_ ( self :int ) -> Optional[int]: UpperCAmelCase__ = 4 UpperCAmelCase__ = 3 UpperCAmelCase__ = (32, 32) UpperCAmelCase__ = jax.random.PRNGKey(0 ) UpperCAmelCase__ = jax.random.uniform(lowerCamelCase , ((batch_size, num_channels) + sizes) ) return {"sample": image, "prng_key": prng_key} def UpperCAmelCase_ ( self :Optional[Any] ) -> Any: UpperCAmelCase__ = { "block_out_channels": [32, 64], "in_channels": 3, "out_channels": 3, "down_block_types": ["DownEncoderBlock2D", "DownEncoderBlock2D"], "up_block_types": ["UpDecoderBlock2D", "UpDecoderBlock2D"], "latent_channels": 4, } UpperCAmelCase__ = self.dummy_input return init_dict, inputs_dict
169
from typing import List, Optional, Tuple, Union import torch from ...models import UNetaDModel from ...schedulers import ScoreSdeVeScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class _UpperCamelCase ( lowerCAmelCase ): UpperCAmelCase_ = 42 UpperCAmelCase_ = 42 def __init__( self :int , lowerCamelCase :UNetaDModel , lowerCamelCase :ScoreSdeVeScheduler ) -> Any: super().__init__() self.register_modules(unet=lowerCamelCase , scheduler=lowerCamelCase ) @torch.no_grad() def __call__( self :Optional[Any] , lowerCamelCase :int = 1 , lowerCamelCase :int = 2000 , lowerCamelCase :Optional[Union[torch.Generator, List[torch.Generator]]] = None , lowerCamelCase :Optional[str] = "pil" , lowerCamelCase :bool = True , **lowerCamelCase :Any , ) -> Union[ImagePipelineOutput, Tuple]: UpperCAmelCase__ = self.unet.config.sample_size UpperCAmelCase__ = (batch_size, 3, img_size, img_size) UpperCAmelCase__ = self.unet UpperCAmelCase__ = randn_tensor(lowerCamelCase , generator=lowerCamelCase ) * self.scheduler.init_noise_sigma UpperCAmelCase__ = sample.to(self.device ) self.scheduler.set_timesteps(lowerCamelCase ) self.scheduler.set_sigmas(lowerCamelCase ) for i, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ): UpperCAmelCase__ = self.scheduler.sigmas[i] * torch.ones(shape[0] , device=self.device ) # correction step for _ in range(self.scheduler.config.correct_steps ): UpperCAmelCase__ = self.unet(lowerCamelCase , lowerCamelCase ).sample UpperCAmelCase__ = self.scheduler.step_correct(lowerCamelCase , lowerCamelCase , generator=lowerCamelCase ).prev_sample # prediction step UpperCAmelCase__ = model(lowerCamelCase , lowerCamelCase ).sample UpperCAmelCase__ = self.scheduler.step_pred(lowerCamelCase , lowerCamelCase , lowerCamelCase , generator=lowerCamelCase ) UpperCAmelCase__ , UpperCAmelCase__ = output.prev_sample, output.prev_sample_mean UpperCAmelCase__ = sample_mean.clamp(0 , 1 ) UpperCAmelCase__ = sample.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": UpperCAmelCase__ = self.numpy_to_pil(lowerCamelCase ) if not return_dict: return (sample,) return ImagePipelineOutput(images=lowerCamelCase )
169
1
'''simple docstring''' import argparse import torch from transformers import LxmertConfig, LxmertForPreTraining, load_tf_weights_in_lxmert from transformers.utils import logging logging.set_verbosity_info() def lowerCamelCase (_SCREAMING_SNAKE_CASE : Any , _SCREAMING_SNAKE_CASE : Union[str, Any] , _SCREAMING_SNAKE_CASE : Dict ): # Initialise PyTorch model __a : Any = LxmertConfig.from_json_file(_SCREAMING_SNAKE_CASE ) print(F"""Building PyTorch model from configuration: {config}""" ) __a : Tuple = LxmertForPreTraining(_SCREAMING_SNAKE_CASE ) # Load weights from tf checkpoint load_tf_weights_in_lxmert(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # Save pytorch-model print(F"""Save PyTorch model to {pytorch_dump_path}""" ) torch.save(model.state_dict() , _SCREAMING_SNAKE_CASE ) if __name__ == "__main__": __lowercase : Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument( '--tf_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.' ) parser.add_argument( '--config_file', default=None, type=str, required=True, help='The config json file corresponding to the pre-trained model. \nThis specifies the model architecture.', ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) __lowercase : List[str] = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path)
369
'''simple docstring''' import json import os import re import unittest from transformers import CodeGenTokenizer, CodeGenTokenizerFast from transformers.models.codegen.tokenization_codegen import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __UpperCamelCase ( lowerCAmelCase_ , unittest.TestCase ): A_ = CodeGenTokenizer A_ = CodeGenTokenizerFast A_ = True A_ = {"add_prefix_space": True} A_ = False def __UpperCAmelCase ( self ): '''simple docstring''' super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt __a : Tuple = [ 'l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', '\u0120', '\u0120l', '\u0120n', '\u0120lo', '\u0120low', 'er', '\u0120lowest', '\u0120newer', '\u0120wider', '<unk>', '<|endoftext|>', ] __a : Union[str, Any] = dict(zip(__a , range(len(__a ) ) ) ) __a : Tuple = ['#version: 0.2', '\u0120 l', '\u0120l o', '\u0120lo w', 'e r', ''] __a : Dict = {'unk_token': '<unk>'} __a : List[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) __a : List[str] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(__a ) + '\n' ) with open(self.merges_file , 'w' , encoding='utf-8' ) as fp: fp.write('\n'.join(__a ) ) def __UpperCAmelCase ( self , **__a ): '''simple docstring''' kwargs.update(self.special_tokens_map ) return CodeGenTokenizer.from_pretrained(self.tmpdirname , **__a ) def __UpperCAmelCase ( self , **__a ): '''simple docstring''' kwargs.update(self.special_tokens_map ) return CodeGenTokenizerFast.from_pretrained(self.tmpdirname , **__a ) def __UpperCAmelCase ( self , __a ): '''simple docstring''' __a : Tuple = 'lower newer' __a : Tuple = 'lower newer' return input_text, output_text def __UpperCAmelCase ( self ): '''simple docstring''' __a : List[Any] = CodeGenTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) __a : str = 'lower newer' __a : Tuple = ['\u0120low', 'er', '\u0120', 'n', 'e', 'w', 'er'] __a : Dict = tokenizer.tokenize(__a , add_prefix_space=__a ) self.assertListEqual(__a , __a ) __a : List[str] = tokens + [tokenizer.unk_token] __a : Any = [14, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(__a ) , __a ) def __UpperCAmelCase ( self ): '''simple docstring''' if not self.test_rust_tokenizer: return __a : List[Any] = self.get_tokenizer() __a : List[str] = self.get_rust_tokenizer(add_prefix_space=__a ) __a : Any = 'lower newer' # Testing tokenization __a : Dict = tokenizer.tokenize(__a , add_prefix_space=__a ) __a : Dict = rust_tokenizer.tokenize(__a ) self.assertListEqual(__a , __a ) # Testing conversion to ids without special tokens __a : int = tokenizer.encode(__a , add_special_tokens=__a , add_prefix_space=__a ) __a : Tuple = rust_tokenizer.encode(__a , add_special_tokens=__a ) self.assertListEqual(__a , __a ) # Testing conversion to ids with special tokens __a : Tuple = self.get_rust_tokenizer(add_prefix_space=__a ) __a : Union[str, Any] = tokenizer.encode(__a , add_prefix_space=__a ) __a : int = rust_tokenizer.encode(__a ) self.assertListEqual(__a , __a ) # Testing the unknown token __a : Any = tokens + [rust_tokenizer.unk_token] __a : Tuple = [14, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(rust_tokenizer.convert_tokens_to_ids(__a ) , __a ) def __UpperCAmelCase ( self , *__a , **__a ): '''simple docstring''' pass def __UpperCAmelCase ( self , __a=15 ): '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): __a : Optional[int] = self.rust_tokenizer_class.from_pretrained(__a , **__a ) # Simple input __a : List[Any] = 'This is a simple input' __a : Tuple = ['This is a simple input 1', 'This is a simple input 2'] __a : Tuple = ('This is a simple input', 'This is a pair') __a : str = [ ('This is a simple input 1', 'This is a simple input 2'), ('This is a simple pair 1', 'This is a simple pair 2'), ] # Simple input tests self.assertRaises(__a , tokenizer_r.encode , __a , max_length=__a , padding='max_length' ) # Simple input self.assertRaises(__a , tokenizer_r.encode_plus , __a , max_length=__a , padding='max_length' ) # Simple input self.assertRaises( __a , tokenizer_r.batch_encode_plus , __a , max_length=__a , padding='max_length' , ) # Pair input self.assertRaises(__a , tokenizer_r.encode , __a , max_length=__a , padding='max_length' ) # Pair input self.assertRaises(__a , tokenizer_r.encode_plus , __a , max_length=__a , padding='max_length' ) # Pair input self.assertRaises( __a , tokenizer_r.batch_encode_plus , __a , max_length=__a , padding='max_length' , ) def __UpperCAmelCase ( self ): '''simple docstring''' __a : List[Any] = CodeGenTokenizer.from_pretrained(self.tmpdirname , pad_token='<pad>' ) # Simple input __a : str = 'This is a simple input' __a : Any = ['This is a simple input looooooooong', 'This is a simple input'] __a : Optional[int] = ('This is a simple input', 'This is a pair') __a : Optional[Any] = [ ('This is a simple input loooooong', 'This is a simple input'), ('This is a simple pair loooooong', 'This is a simple pair'), ] __a : int = tokenizer.pad_token_id __a : List[Any] = tokenizer(__a , padding='max_length' , max_length=30 , return_tensors='np' ) __a : Union[str, Any] = tokenizer(__a , padding=__a , truncate=__a , return_tensors='np' ) __a : Optional[Any] = tokenizer(*__a , padding='max_length' , max_length=60 , return_tensors='np' ) __a : List[Any] = tokenizer(__a , padding=__a , truncate=__a , return_tensors='np' ) # s # test single string max_length padding self.assertEqual(out_s['input_ids'].shape[-1] , 30 ) self.assertTrue(pad_token_id in out_s['input_ids'] ) self.assertTrue(0 in out_s['attention_mask'] ) # s2 # test automatic padding self.assertEqual(out_sa['input_ids'].shape[-1] , 33 ) # long slice doesn't have padding self.assertFalse(pad_token_id in out_sa['input_ids'][0] ) self.assertFalse(0 in out_sa['attention_mask'][0] ) # short slice does have padding self.assertTrue(pad_token_id in out_sa['input_ids'][1] ) self.assertTrue(0 in out_sa['attention_mask'][1] ) # p # test single pair max_length padding self.assertEqual(out_p['input_ids'].shape[-1] , 60 ) self.assertTrue(pad_token_id in out_p['input_ids'] ) self.assertTrue(0 in out_p['attention_mask'] ) # p2 # test automatic padding pair self.assertEqual(out_pa['input_ids'].shape[-1] , 52 ) # long slice pair doesn't have padding self.assertFalse(pad_token_id in out_pa['input_ids'][0] ) self.assertFalse(0 in out_pa['attention_mask'][0] ) # short slice pair does have padding self.assertTrue(pad_token_id in out_pa['input_ids'][1] ) self.assertTrue(0 in out_pa['attention_mask'][1] ) def __UpperCAmelCase ( self ): '''simple docstring''' __a : Optional[int] = '$$$' __a : List[str] = CodeGenTokenizer.from_pretrained(self.tmpdirname , bos_token=__a , add_bos_token=__a ) __a : Union[str, Any] = 'This is a simple input' __a : List[Any] = ['This is a simple input 1', 'This is a simple input 2'] __a : List[Any] = tokenizer.bos_token_id __a : List[str] = tokenizer(__a ) __a : Optional[Any] = tokenizer(__a ) self.assertEqual(out_s.input_ids[0] , __a ) self.assertTrue(all(o[0] == bos_token_id for o in out_sa.input_ids ) ) __a : Any = tokenizer.decode(out_s.input_ids ) __a : Union[str, Any] = tokenizer.batch_decode(out_sa.input_ids ) self.assertEqual(decode_s.split()[0] , __a ) self.assertTrue(all(d.split()[0] == bos_token for d in decode_sa ) ) @slow def __UpperCAmelCase ( self ): '''simple docstring''' __a : Any = CodeGenTokenizer.from_pretrained('Salesforce/codegen-350M-mono' ) __a : Optional[int] = '\nif len_a > len_b:\n result = a\nelse:\n result = b\n\n\n\n#' __a : Tuple = '\nif len_a > len_b: result = a\nelse: result = b' __a : Optional[int] = tokenizer.encode(__a ) __a : Union[str, Any] = ['^#', re.escape('<|endoftext|>' ), '^\'\'\'', '^"""', '\n\n\n'] __a : Tuple = tokenizer.decode(__a , truncate_before_pattern=__a ) self.assertEqual(__a , __a ) def __UpperCAmelCase ( self ): '''simple docstring''' pass
294
0
"""simple docstring""" import argparse lowerCamelCase_ : int = """docs/source/_static/js/custom.js""" def _A ( lowercase ): """simple docstring""" with open(lowercase , encoding='''utf-8''' , newline='''\n''' ) as f: a =f.readlines() a =0 # First let's put the right version while not lines[index].startswith('''const stableVersion =''' ): index += 1 a =f'''const stableVersion = "v{version}"\n''' # Then update the dictionary while not lines[index].startswith('''const versionMapping = {''' ): index += 1 # We go until the end while not lines[index].startswith('''}''' ): index += 1 # We add the new version at the end lines[index - 1] += f''' "v{version}": "v{version}",\n''' with open(lowercase , '''w''' , encoding='''utf-8''' , newline='''\n''' ) as f: f.writelines(lowercase ) if __name__ == "__main__": lowerCamelCase_ : List[str] = argparse.ArgumentParser() parser.add_argument("""--version""", help="""Release version.""") lowerCamelCase_ : Optional[Any] = parser.parse_args() update_custom_js(args.version)
81
from collections import defaultdict from typing import Optional from ..image_utils import load_image from ..utils import ( add_end_docstrings, is_torch_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, ChunkPipeline if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_MASK_GENERATION_MAPPING __snake_case :List[Any] = logging.get_logger(__name__) @add_end_docstrings(__UpperCAmelCase ) class _A ( __UpperCAmelCase ): def __init__( self : Dict , **__SCREAMING_SNAKE_CASE : Tuple): '''simple docstring''' super().__init__(**__SCREAMING_SNAKE_CASE) requires_backends(self , '''vision''') requires_backends(self , '''torch''') if self.framework != "pt": raise ValueError(F'The {self.__class__} is only available in PyTorch.') self.check_model_type(__SCREAMING_SNAKE_CASE) def _lowerCamelCase ( self : Any , **__SCREAMING_SNAKE_CASE : Any): '''simple docstring''' __a = {} __a = {} __a = {} # preprocess args if "points_per_batch" in kwargs: __a = kwargs['''points_per_batch'''] if "points_per_crop" in kwargs: __a = kwargs['''points_per_crop'''] if "crops_n_layers" in kwargs: __a = kwargs['''crops_n_layers'''] if "crop_overlap_ratio" in kwargs: __a = kwargs['''crop_overlap_ratio'''] if "crop_n_points_downscale_factor" in kwargs: __a = kwargs['''crop_n_points_downscale_factor'''] # postprocess args if "pred_iou_thresh" in kwargs: __a = kwargs['''pred_iou_thresh'''] if "stability_score_offset" in kwargs: __a = kwargs['''stability_score_offset'''] if "mask_threshold" in kwargs: __a = kwargs['''mask_threshold'''] if "stability_score_thresh" in kwargs: __a = kwargs['''stability_score_thresh'''] if "crops_nms_thresh" in kwargs: __a = kwargs['''crops_nms_thresh'''] if "output_rle_mask" in kwargs: __a = kwargs['''output_rle_mask'''] if "output_bboxes_mask" in kwargs: __a = kwargs['''output_bboxes_mask'''] return preprocess_kwargs, forward_params, postprocess_kwargs def __call__( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : int , *__SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Tuple=None , __SCREAMING_SNAKE_CASE : Any=None , **__SCREAMING_SNAKE_CASE : str): '''simple docstring''' return super().__call__(__SCREAMING_SNAKE_CASE , *__SCREAMING_SNAKE_CASE , num_workers=__SCREAMING_SNAKE_CASE , batch_size=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE) def _lowerCamelCase ( self : Dict , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Any=64 , __SCREAMING_SNAKE_CASE : int = 0 , __SCREAMING_SNAKE_CASE : float = 512 / 1_500 , __SCREAMING_SNAKE_CASE : Optional[int] = 32 , __SCREAMING_SNAKE_CASE : Optional[int] = 1 , ): '''simple docstring''' __a = load_image(__SCREAMING_SNAKE_CASE) __a = self.image_processor.size['''longest_edge'''] __a , __a , __a , __a = self.image_processor.generate_crop_boxes( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) __a = self.image_processor(images=__SCREAMING_SNAKE_CASE , return_tensors='''pt''') with self.device_placement(): if self.framework == "pt": __a = self.get_inference_context() with inference_context(): __a = self._ensure_tensor_on_device(__SCREAMING_SNAKE_CASE , device=self.device) __a = self.model.get_image_embeddings(model_inputs.pop('''pixel_values''')) __a = image_embeddings __a = grid_points.shape[1] __a = points_per_batch if points_per_batch is not None else n_points if points_per_batch <= 0: raise ValueError( '''Cannot have points_per_batch<=0. Must be >=1 to returned batched outputs. ''' '''To return all points at once, set points_per_batch to None''') for i in range(0 , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE): __a = grid_points[:, i : i + points_per_batch, :, :] __a = input_labels[:, i : i + points_per_batch] __a = i == n_points - points_per_batch yield { "input_points": batched_points, "input_labels": labels, "input_boxes": crop_boxes, "is_last": is_last, **model_inputs, } def _lowerCamelCase ( self : Any , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : int=0.88 , __SCREAMING_SNAKE_CASE : List[Any]=0.95 , __SCREAMING_SNAKE_CASE : List[Any]=0 , __SCREAMING_SNAKE_CASE : int=1 , ): '''simple docstring''' __a = model_inputs.pop('''input_boxes''') __a = model_inputs.pop('''is_last''') __a = model_inputs.pop('''original_sizes''').tolist() __a = model_inputs.pop('''reshaped_input_sizes''').tolist() __a = self.model(**__SCREAMING_SNAKE_CASE) # post processing happens here in order to avoid CPU GPU copies of ALL the masks __a = model_outputs['''pred_masks'''] __a = self.image_processor.post_process_masks( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , binarize=__SCREAMING_SNAKE_CASE) __a = model_outputs['''iou_scores'''] __a , __a , __a = self.image_processor.filter_masks( masks[0] , iou_scores[0] , original_sizes[0] , input_boxes[0] , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , ) return { "masks": masks, "is_last": is_last, "boxes": boxes, "iou_scores": iou_scores, } def _lowerCamelCase ( self : int , __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : Dict=False , __SCREAMING_SNAKE_CASE : Tuple=False , __SCREAMING_SNAKE_CASE : int=0.7 , ): '''simple docstring''' __a = [] __a = [] __a = [] for model_output in model_outputs: all_scores.append(model_output.pop('''iou_scores''')) all_masks.extend(model_output.pop('''masks''')) all_boxes.append(model_output.pop('''boxes''')) __a = torch.cat(__SCREAMING_SNAKE_CASE) __a = torch.cat(__SCREAMING_SNAKE_CASE) __a , __a , __a , __a = self.image_processor.post_process_for_mask_generation( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) __a = defaultdict(__SCREAMING_SNAKE_CASE) for output in model_outputs: for k, v in output.items(): extra[k].append(__SCREAMING_SNAKE_CASE) __a = {} if output_rle_mask: __a = rle_mask if output_bboxes_mask: __a = bounding_boxes return {"masks": output_masks, "scores": iou_scores, **optional, **extra}
49
0
def __snake_case ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): __a , __a = len(_UpperCAmelCase ), len(grid[0] ) if ( min(_UpperCAmelCase , _UpperCAmelCase ) < 0 or row == row_length or col == col_length or (row, col) in visit or grid[row][col] == 1 ): return 0 if row == row_length - 1 and col == col_length - 1: return 1 visit.add((row, col) ) __a = 0 count += depth_first_search(_UpperCAmelCase , row + 1 , _UpperCAmelCase , _UpperCAmelCase ) count += depth_first_search(_UpperCAmelCase , row - 1 , _UpperCAmelCase , _UpperCAmelCase ) count += depth_first_search(_UpperCAmelCase , _UpperCAmelCase , col + 1 , _UpperCAmelCase ) count += depth_first_search(_UpperCAmelCase , _UpperCAmelCase , col - 1 , _UpperCAmelCase ) visit.remove((row, col) ) return count if __name__ == "__main__": import doctest doctest.testmod()
131
import multiprocessing import os from typing import BinaryIO, Optional, Union import fsspec from .. import Dataset, Features, NamedSplit, config from ..formatting import query_table from ..packaged_modules.json.json import Json from ..utils import logging from ..utils.typing import NestedDataStructureLike, PathLike from .abc import AbstractDatasetReader class _A ( __UpperCAmelCase ): def __init__( self : Dict , __SCREAMING_SNAKE_CASE : NestedDataStructureLike[PathLike] , __SCREAMING_SNAKE_CASE : Optional[NamedSplit] = None , __SCREAMING_SNAKE_CASE : Optional[Features] = None , __SCREAMING_SNAKE_CASE : str = None , __SCREAMING_SNAKE_CASE : bool = False , __SCREAMING_SNAKE_CASE : bool = False , __SCREAMING_SNAKE_CASE : Optional[str] = None , __SCREAMING_SNAKE_CASE : Optional[int] = None , **__SCREAMING_SNAKE_CASE : Any , ): '''simple docstring''' super().__init__( __SCREAMING_SNAKE_CASE , split=__SCREAMING_SNAKE_CASE , features=__SCREAMING_SNAKE_CASE , cache_dir=__SCREAMING_SNAKE_CASE , keep_in_memory=__SCREAMING_SNAKE_CASE , streaming=__SCREAMING_SNAKE_CASE , num_proc=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE , ) __a = field __a = path_or_paths if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) else {self.split: path_or_paths} __a = Json( cache_dir=__SCREAMING_SNAKE_CASE , data_files=__SCREAMING_SNAKE_CASE , features=__SCREAMING_SNAKE_CASE , field=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE , ) def _lowerCamelCase ( self : List[Any]): '''simple docstring''' if self.streaming: __a = self.builder.as_streaming_dataset(split=self.split) # Build regular (map-style) dataset else: __a = None __a = None __a = None __a = None self.builder.download_and_prepare( download_config=__SCREAMING_SNAKE_CASE , download_mode=__SCREAMING_SNAKE_CASE , verification_mode=__SCREAMING_SNAKE_CASE , base_path=__SCREAMING_SNAKE_CASE , num_proc=self.num_proc , ) __a = self.builder.as_dataset( split=self.split , verification_mode=__SCREAMING_SNAKE_CASE , in_memory=self.keep_in_memory) return dataset class _A : def __init__( self : Any , __SCREAMING_SNAKE_CASE : Dataset , __SCREAMING_SNAKE_CASE : Union[PathLike, BinaryIO] , __SCREAMING_SNAKE_CASE : Optional[int] = None , __SCREAMING_SNAKE_CASE : Optional[int] = None , **__SCREAMING_SNAKE_CASE : List[str] , ): '''simple docstring''' if num_proc is not None and num_proc <= 0: raise ValueError(F'num_proc {num_proc} must be an integer > 0.') __a = dataset __a = path_or_buf __a = batch_size if batch_size else config.DEFAULT_MAX_BATCH_SIZE __a = num_proc __a = '''utf-8''' __a = to_json_kwargs def _lowerCamelCase ( self : int): '''simple docstring''' __a = self.to_json_kwargs.pop('''path_or_buf''' , __SCREAMING_SNAKE_CASE) __a = self.to_json_kwargs.pop('''orient''' , '''records''') __a = self.to_json_kwargs.pop('''lines''' , True if orient == '''records''' else False) __a = self.to_json_kwargs.pop('''index''' , False if orient in ['''split''', '''table'''] else True) __a = self.to_json_kwargs.pop('''compression''' , __SCREAMING_SNAKE_CASE) if compression not in [None, "infer", "gzip", "bz2", "xz"]: raise NotImplementedError(F'`datasets` currently does not support {compression} compression') if isinstance(self.path_or_buf , (str, bytes, os.PathLike)): with fsspec.open(self.path_or_buf , '''wb''' , compression=__SCREAMING_SNAKE_CASE) as buffer: __a = self._write(file_obj=__SCREAMING_SNAKE_CASE , orient=__SCREAMING_SNAKE_CASE , lines=__SCREAMING_SNAKE_CASE , index=__SCREAMING_SNAKE_CASE , **self.to_json_kwargs) else: if compression: raise NotImplementedError( F'The compression parameter is not supported when writing to a buffer, but compression={compression}' ''' was passed. Please provide a local path instead.''') __a = self._write( file_obj=self.path_or_buf , orient=__SCREAMING_SNAKE_CASE , lines=__SCREAMING_SNAKE_CASE , index=__SCREAMING_SNAKE_CASE , **self.to_json_kwargs) return written def _lowerCamelCase ( self : Dict , __SCREAMING_SNAKE_CASE : str): '''simple docstring''' __a , __a , __a , __a , __a = args __a = query_table( table=self.dataset.data , key=slice(__SCREAMING_SNAKE_CASE , offset + self.batch_size) , indices=self.dataset._indices , ) __a = batch.to_pandas().to_json( path_or_buf=__SCREAMING_SNAKE_CASE , orient=__SCREAMING_SNAKE_CASE , lines=__SCREAMING_SNAKE_CASE , index=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE) if not json_str.endswith('''\n'''): json_str += "\n" return json_str.encode(self.encoding) def _lowerCamelCase ( self : Tuple , __SCREAMING_SNAKE_CASE : BinaryIO , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : List[Any] , **__SCREAMING_SNAKE_CASE : Optional[Any] , ): '''simple docstring''' __a = 0 if self.num_proc is None or self.num_proc == 1: for offset in logging.tqdm( range(0 , len(self.dataset) , self.batch_size) , unit='''ba''' , disable=not logging.is_progress_bar_enabled() , desc='''Creating json from Arrow format''' , ): __a = self._batch_json((offset, orient, lines, index, to_json_kwargs)) written += file_obj.write(__SCREAMING_SNAKE_CASE) else: __a , __a = len(self.dataset), self.batch_size with multiprocessing.Pool(self.num_proc) as pool: for json_str in logging.tqdm( pool.imap( self._batch_json , [(offset, orient, lines, index, to_json_kwargs) for offset in range(0 , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE)] , ) , total=(num_rows // batch_size) + 1 if num_rows % batch_size else num_rows // batch_size , unit='''ba''' , disable=not logging.is_progress_bar_enabled() , desc='''Creating json from Arrow format''' , ): written += file_obj.write(__SCREAMING_SNAKE_CASE) return written
131
1
"""simple docstring""" import warnings from ...configuration_utils import PretrainedConfig from ...utils import logging __snake_case : Optional[Any] = logging.get_logger(__name__) __snake_case : Optional[Any] = { 'xlnet-base-cased': 'https://huggingface.co/xlnet-base-cased/resolve/main/config.json', 'xlnet-large-cased': 'https://huggingface.co/xlnet-large-cased/resolve/main/config.json', } class A__ ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' SCREAMING_SNAKE_CASE = 'xlnet' SCREAMING_SNAKE_CASE = ['mems'] SCREAMING_SNAKE_CASE = { 'n_token': 'vocab_size', # Backward compatibility 'hidden_size': 'd_model', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__( self: Optional[Any] , _SCREAMING_SNAKE_CASE: Dict=3_2000 , _SCREAMING_SNAKE_CASE: Any=1024 , _SCREAMING_SNAKE_CASE: str=24 , _SCREAMING_SNAKE_CASE: Tuple=16 , _SCREAMING_SNAKE_CASE: List[str]=4096 , _SCREAMING_SNAKE_CASE: List[str]="gelu" , _SCREAMING_SNAKE_CASE: Union[str, Any]=True , _SCREAMING_SNAKE_CASE: int="bi" , _SCREAMING_SNAKE_CASE: Union[str, Any]=0.02 , _SCREAMING_SNAKE_CASE: Optional[Any]=1e-12 , _SCREAMING_SNAKE_CASE: Union[str, Any]=0.1 , _SCREAMING_SNAKE_CASE: Optional[Any]=512 , _SCREAMING_SNAKE_CASE: Optional[Any]=None , _SCREAMING_SNAKE_CASE: Union[str, Any]=True , _SCREAMING_SNAKE_CASE: Optional[int]=False , _SCREAMING_SNAKE_CASE: int=False , _SCREAMING_SNAKE_CASE: str=-1 , _SCREAMING_SNAKE_CASE: Union[str, Any]=False , _SCREAMING_SNAKE_CASE: Dict="last" , _SCREAMING_SNAKE_CASE: str=True , _SCREAMING_SNAKE_CASE: Dict="tanh" , _SCREAMING_SNAKE_CASE: Tuple=0.1 , _SCREAMING_SNAKE_CASE: Optional[int]=5 , _SCREAMING_SNAKE_CASE: Union[str, Any]=5 , _SCREAMING_SNAKE_CASE: Tuple=5 , _SCREAMING_SNAKE_CASE: str=1 , _SCREAMING_SNAKE_CASE: Tuple=2 , **_SCREAMING_SNAKE_CASE: Union[str, Any] , ) -> Union[str, Any]: """simple docstring""" __lowerCAmelCase : Dict = vocab_size __lowerCAmelCase : Any = d_model __lowerCAmelCase : Tuple = n_layer __lowerCAmelCase : Tuple = n_head if d_model % n_head != 0: raise ValueError(F"""'d_model % n_head' ({d_model % n_head}) should be equal to 0""") if "d_head" in kwargs: if kwargs["d_head"] != d_model // n_head: raise ValueError( F"""`d_head` ({kwargs['d_head']}) should be equal to `d_model // n_head` ({d_model // n_head})""") __lowerCAmelCase : int = d_model // n_head __lowerCAmelCase : Any = ff_activation __lowerCAmelCase : str = d_inner __lowerCAmelCase : List[str] = untie_r __lowerCAmelCase : Tuple = attn_type __lowerCAmelCase : Optional[Any] = initializer_range __lowerCAmelCase : Any = layer_norm_eps __lowerCAmelCase : str = dropout __lowerCAmelCase : List[str] = mem_len __lowerCAmelCase : Dict = reuse_len __lowerCAmelCase : int = bi_data __lowerCAmelCase : Optional[int] = clamp_len __lowerCAmelCase : List[Any] = same_length __lowerCAmelCase : Dict = summary_type __lowerCAmelCase : int = summary_use_proj __lowerCAmelCase : Dict = summary_activation __lowerCAmelCase : str = summary_last_dropout __lowerCAmelCase : Union[str, Any] = start_n_top __lowerCAmelCase : List[Any] = end_n_top __lowerCAmelCase : Union[str, Any] = bos_token_id __lowerCAmelCase : Tuple = pad_token_id __lowerCAmelCase : Union[str, Any] = eos_token_id if "use_cache" in kwargs: warnings.warn( "The `use_cache` argument is deprecated and will be removed in a future version, use `use_mems_eval`" " instead." , _SCREAMING_SNAKE_CASE , ) __lowerCAmelCase : Tuple = kwargs["use_cache"] __lowerCAmelCase : Tuple = use_mems_eval __lowerCAmelCase : Dict = use_mems_train super().__init__(pad_token_id=_SCREAMING_SNAKE_CASE , bos_token_id=_SCREAMING_SNAKE_CASE , eos_token_id=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE) @property def _SCREAMING_SNAKE_CASE ( self: Optional[Any]) -> Any: """simple docstring""" logger.info(F"""The model {self.model_type} is one of the few models that has no sequence length limit.""") return -1 @max_position_embeddings.setter def _SCREAMING_SNAKE_CASE ( self: Union[str, Any] , _SCREAMING_SNAKE_CASE: List[Any]) -> Any: """simple docstring""" raise NotImplementedError( F"""The model {self.model_type} is one of the few models that has no sequence length limit.""")
269
"""simple docstring""" import os import unittest from transformers import FunnelTokenizer, FunnelTokenizerFast from transformers.models.funnel.tokenization_funnel import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class A__ ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE = FunnelTokenizer SCREAMING_SNAKE_CASE = FunnelTokenizerFast SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = True def _SCREAMING_SNAKE_CASE ( self: Tuple) -> Optional[int]: """simple docstring""" super().setUp() __lowerCAmelCase : str = [ "<unk>", "<cls>", "<sep>", "want", "##want", "##ed", "wa", "un", "runn", "##ing", ",", "low", "lowest", ] __lowerCAmelCase : int = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"]) with open(self.vocab_file , "w" , encoding="utf-8") as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens])) def _SCREAMING_SNAKE_CASE ( self: Optional[Any] , **_SCREAMING_SNAKE_CASE: Union[str, Any]) -> int: """simple docstring""" return FunnelTokenizer.from_pretrained(self.tmpdirname , **_SCREAMING_SNAKE_CASE) def _SCREAMING_SNAKE_CASE ( self: Any , **_SCREAMING_SNAKE_CASE: Any) -> str: """simple docstring""" return FunnelTokenizerFast.from_pretrained(self.tmpdirname , **_SCREAMING_SNAKE_CASE) def _SCREAMING_SNAKE_CASE ( self: Tuple , _SCREAMING_SNAKE_CASE: str) -> Any: """simple docstring""" __lowerCAmelCase : Union[str, Any] = "UNwant\u00E9d,running" __lowerCAmelCase : str = "unwanted, running" return input_text, output_text def _SCREAMING_SNAKE_CASE ( self: Optional[int]) -> List[str]: """simple docstring""" __lowerCAmelCase : Any = self.tokenizer_class(self.vocab_file) __lowerCAmelCase : Any = tokenizer.tokenize("UNwant\u00E9d,running") self.assertListEqual(_SCREAMING_SNAKE_CASE , ["un", "##want", "##ed", ",", "runn", "##ing"]) self.assertListEqual(tokenizer.convert_tokens_to_ids(_SCREAMING_SNAKE_CASE) , [7, 4, 5, 10, 8, 9]) def _SCREAMING_SNAKE_CASE ( self: List[str]) -> List[str]: """simple docstring""" __lowerCAmelCase : Optional[Any] = self.get_tokenizers(do_lower_case=_SCREAMING_SNAKE_CASE) for tokenizer in tokenizers: __lowerCAmelCase : List[str] = tokenizer("UNwant\u00E9d,running") __lowerCAmelCase : Optional[int] = len(inputs["input_ids"]) - 1 self.assertListEqual(inputs["token_type_ids"] , [2] + [0] * sentence_len) __lowerCAmelCase : List[str] = tokenizer("UNwant\u00E9d,running" , "UNwant\u00E9d,running") self.assertListEqual(inputs["token_type_ids"] , [2] + [0] * sentence_len + [1] * sentence_len)
269
1
"""simple docstring""" from typing import Optional import pyspark from .. import Features, NamedSplit from ..download import DownloadMode from ..packaged_modules.spark.spark import Spark from .abc import AbstractDatasetReader class lowerCAmelCase ( lowerCamelCase_ ): '''simple docstring''' def __init__( self , lowerCAmelCase__ , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__ = True , lowerCAmelCase__ = None , lowerCAmelCase__ = False , lowerCAmelCase__ = None , lowerCAmelCase__ = True , lowerCAmelCase__ = "arrow" , **lowerCAmelCase__ , ) -> Any: super().__init__( split=lowerCAmelCase__ , features=lowerCAmelCase__ , cache_dir=lowerCAmelCase__ , keep_in_memory=lowerCAmelCase__ , streaming=lowerCAmelCase__ , **lowerCAmelCase__ , ) SCREAMING_SNAKE_CASE = load_from_cache_file SCREAMING_SNAKE_CASE = file_format SCREAMING_SNAKE_CASE = Spark( df=lowerCAmelCase__ , features=lowerCAmelCase__ , cache_dir=lowerCAmelCase__ , working_dir=lowerCAmelCase__ , **lowerCAmelCase__ , ) def __A ( self ) -> Tuple: if self.streaming: return self.builder.as_streaming_dataset(split=self.split ) SCREAMING_SNAKE_CASE = None if self._load_from_cache_file else DownloadMode.FORCE_REDOWNLOAD self.builder.download_and_prepare( download_mode=lowerCAmelCase__ , file_format=self._file_format , ) return self.builder.as_dataset(split=self.split )
38
"""simple docstring""" import math import os from copy import deepcopy import datasets import evaluate import torch import transformers from datasets import load_dataset from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer from accelerate import Accelerator from accelerate.test_utils import RegressionDataset, RegressionModel from accelerate.utils import is_tpu_available, set_seed __UpperCamelCase = '''true''' def lowercase (SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : Tuple=82 , SCREAMING_SNAKE_CASE_ : List[Any]=16 ) -> Union[str, Any]: set_seed(42 ) SCREAMING_SNAKE_CASE = RegressionModel() SCREAMING_SNAKE_CASE = deepcopy(SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE = RegressionDataset(length=SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE = DataLoader(SCREAMING_SNAKE_CASE_ , batch_size=SCREAMING_SNAKE_CASE_ ) model.to(accelerator.device ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = accelerator.prepare(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) return model, ddp_model, dataloader def lowercase (SCREAMING_SNAKE_CASE_ : Accelerator , SCREAMING_SNAKE_CASE_ : Union[str, Any]=False ) -> Union[str, Any]: SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained('hf-internal-testing/mrpc-bert-base-cased' ) SCREAMING_SNAKE_CASE = load_dataset('glue' , 'mrpc' , split='validation' ) def tokenize_function(SCREAMING_SNAKE_CASE_ : List[str] ): SCREAMING_SNAKE_CASE = tokenizer(examples['sentence1'] , examples['sentence2'] , truncation=SCREAMING_SNAKE_CASE_ , max_length=SCREAMING_SNAKE_CASE_ ) return outputs with accelerator.main_process_first(): SCREAMING_SNAKE_CASE = dataset.map( SCREAMING_SNAKE_CASE_ , batched=SCREAMING_SNAKE_CASE_ , remove_columns=['idx', 'sentence1', 'sentence2'] , ) SCREAMING_SNAKE_CASE = tokenized_datasets.rename_column('label' , 'labels' ) def collate_fn(SCREAMING_SNAKE_CASE_ : Optional[int] ): if use_longest: return tokenizer.pad(SCREAMING_SNAKE_CASE_ , padding='longest' , return_tensors='pt' ) return tokenizer.pad(SCREAMING_SNAKE_CASE_ , padding='max_length' , max_length=1_28 , return_tensors='pt' ) return DataLoader(SCREAMING_SNAKE_CASE_ , shuffle=SCREAMING_SNAKE_CASE_ , collate_fn=SCREAMING_SNAKE_CASE_ , batch_size=16 ) def lowercase (SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : Any ) -> Dict: SCREAMING_SNAKE_CASE = Accelerator(dispatch_batches=SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE = get_dataloader(SCREAMING_SNAKE_CASE_ , not dispatch_batches ) SCREAMING_SNAKE_CASE = AutoModelForSequenceClassification.from_pretrained( 'hf-internal-testing/mrpc-bert-base-cased' , return_dict=SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = accelerator.prepare(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) return {"ddp": [ddp_model, ddp_dataloader, "cuda:0"], "no": [model, dataloader, accelerator.device]}, accelerator def lowercase (SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : Dict ) -> Dict: SCREAMING_SNAKE_CASE = [] for batch in dataloader: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = batch.values() with torch.no_grad(): SCREAMING_SNAKE_CASE = model(SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = accelerator.gather_for_metrics((logit, target) ) logits_and_targets.append((logit, target) ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = [], [] for logit, targ in logits_and_targets: logits.append(SCREAMING_SNAKE_CASE_ ) targs.append(SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = torch.cat(SCREAMING_SNAKE_CASE_ ), torch.cat(SCREAMING_SNAKE_CASE_ ) return logits, targs def lowercase (SCREAMING_SNAKE_CASE_ : Accelerator , SCREAMING_SNAKE_CASE_ : Optional[Any]=82 , SCREAMING_SNAKE_CASE_ : int=False , SCREAMING_SNAKE_CASE_ : List[Any]=False , SCREAMING_SNAKE_CASE_ : Union[str, Any]=16 ) -> List[str]: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = get_basic_setup(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = generate_predictions(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) assert ( len(SCREAMING_SNAKE_CASE_ ) == num_samples ), F'Unexpected number of inputs:\n Expected: {num_samples}\n Actual: {len(SCREAMING_SNAKE_CASE_ )}' def lowercase (SCREAMING_SNAKE_CASE_ : bool = False , SCREAMING_SNAKE_CASE_ : bool = False ) -> Optional[int]: SCREAMING_SNAKE_CASE = evaluate.load('glue' , 'mrpc' ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = get_mrpc_setup(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # First do baseline SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = setup['no'] model.to(SCREAMING_SNAKE_CASE_ ) model.eval() for batch in dataloader: batch.to(SCREAMING_SNAKE_CASE_ ) with torch.inference_mode(): SCREAMING_SNAKE_CASE = model(**SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE = outputs.logits.argmax(dim=-1 ) metric.add_batch(predictions=SCREAMING_SNAKE_CASE_ , references=batch['labels'] ) SCREAMING_SNAKE_CASE = metric.compute() # Then do distributed SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = setup['ddp'] model.eval() for batch in dataloader: with torch.inference_mode(): SCREAMING_SNAKE_CASE = model(**SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE = outputs.logits.argmax(dim=-1 ) SCREAMING_SNAKE_CASE = batch['labels'] SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = accelerator.gather_for_metrics((preds, references) ) metric.add_batch(predictions=SCREAMING_SNAKE_CASE_ , references=SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE = metric.compute() for key in "accuracy f1".split(): assert math.isclose( baseline[key] , distributed[key] ), F'Baseline and Distributed are not the same for key {key}:\n\tBaseline: {baseline[key]}\n\tDistributed: {distributed[key]}\n' def lowercase () -> Dict: SCREAMING_SNAKE_CASE = Accelerator(split_batches=SCREAMING_SNAKE_CASE_ , dispatch_batches=SCREAMING_SNAKE_CASE_ ) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_warning() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() # These are a bit slower so they should only be ran on the GPU or TPU if torch.cuda.is_available() or is_tpu_available(): if accelerator.is_local_main_process: print('**Testing gather_for_metrics**' ) for split_batches in [True, False]: for dispatch_batches in [True, False]: if accelerator.is_local_main_process: print(F'With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`' ) test_mrpc(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) accelerator.state._reset_state() if accelerator.is_local_main_process: print('**Test torch metrics**' ) for split_batches in [True, False]: for dispatch_batches in [True, False]: SCREAMING_SNAKE_CASE = Accelerator(split_batches=SCREAMING_SNAKE_CASE_ , dispatch_batches=SCREAMING_SNAKE_CASE_ ) if accelerator.is_local_main_process: print(F'With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`, length=99' ) test_torch_metrics(SCREAMING_SNAKE_CASE_ , 99 ) accelerator.state._reset_state() if accelerator.is_local_main_process: print('**Test last batch is not dropped when perfectly divisible**' ) SCREAMING_SNAKE_CASE = Accelerator() test_torch_metrics(SCREAMING_SNAKE_CASE_ , 5_12 ) accelerator.state._reset_state() def lowercase (SCREAMING_SNAKE_CASE_ : int ) -> Union[str, Any]: # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
38
1
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import CLIPSegProcessor, ViTImageProcessor @require_vision class UpperCamelCase__ ( unittest.TestCase ): """simple docstring""" def _UpperCamelCase ( self ) -> List[Any]: SCREAMING_SNAKE_CASE_ = tempfile.mkdtemp() # fmt: off SCREAMING_SNAKE_CASE_ = ['''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''lo''', '''l</w>''', '''w</w>''', '''r</w>''', '''t</w>''', '''low</w>''', '''er</w>''', '''lowest</w>''', '''newer</w>''', '''wider''', '''<unk>''', '''<|startoftext|>''', '''<|endoftext|>'''] # fmt: on SCREAMING_SNAKE_CASE_ = dict(zip(_A , range(len(_A ) ) ) ) SCREAMING_SNAKE_CASE_ = ['''#version: 0.2''', '''l o''', '''lo w</w>''', '''e r</w>''', ''''''] SCREAMING_SNAKE_CASE_ = {'''unk_token''': '''<unk>'''} SCREAMING_SNAKE_CASE_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) SCREAMING_SNAKE_CASE_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(_A ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(_A ) ) SCREAMING_SNAKE_CASE_ = { '''do_resize''': True, '''size''': 20, '''do_center_crop''': True, '''crop_size''': 18, '''do_normalize''': True, '''image_mean''': [0.4814_5466, 0.457_8275, 0.4082_1073], '''image_std''': [0.2686_2954, 0.2613_0258, 0.2757_7711], } SCREAMING_SNAKE_CASE_ = os.path.join(self.tmpdirname , _A ) with open(self.image_processor_file , '''w''' , encoding='''utf-8''' ) as fp: json.dump(_A , _A ) def _UpperCamelCase ( self , **_A ) -> int: return CLIPTokenizer.from_pretrained(self.tmpdirname , **_A ) def _UpperCamelCase ( self , **_A ) -> Dict: return CLIPTokenizerFast.from_pretrained(self.tmpdirname , **_A ) def _UpperCamelCase ( self , **_A ) -> Optional[int]: return ViTImageProcessor.from_pretrained(self.tmpdirname , **_A ) def _UpperCamelCase ( self ) -> Union[str, Any]: shutil.rmtree(self.tmpdirname ) def _UpperCamelCase ( self ) -> Optional[int]: SCREAMING_SNAKE_CASE_ = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] SCREAMING_SNAKE_CASE_ = [Image.fromarray(np.moveaxis(_A , 0 , -1 ) ) for x in image_inputs] return image_inputs def _UpperCamelCase ( self ) -> int: SCREAMING_SNAKE_CASE_ = self.get_tokenizer() SCREAMING_SNAKE_CASE_ = self.get_rust_tokenizer() SCREAMING_SNAKE_CASE_ = self.get_image_processor() SCREAMING_SNAKE_CASE_ = CLIPSegProcessor(tokenizer=_A , image_processor=_A ) processor_slow.save_pretrained(self.tmpdirname ) SCREAMING_SNAKE_CASE_ = CLIPSegProcessor.from_pretrained(self.tmpdirname , use_fast=_A ) SCREAMING_SNAKE_CASE_ = CLIPSegProcessor(tokenizer=_A , image_processor=_A ) processor_fast.save_pretrained(self.tmpdirname ) SCREAMING_SNAKE_CASE_ = CLIPSegProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , _A ) self.assertIsInstance(processor_fast.tokenizer , _A ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , _A ) self.assertIsInstance(processor_fast.image_processor , _A ) def _UpperCamelCase ( self ) -> Optional[int]: SCREAMING_SNAKE_CASE_ = CLIPSegProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) SCREAMING_SNAKE_CASE_ = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' ) SCREAMING_SNAKE_CASE_ = self.get_image_processor(do_normalize=_A , padding_value=1.0 ) SCREAMING_SNAKE_CASE_ = CLIPSegProcessor.from_pretrained( self.tmpdirname , bos_token='''(BOS)''' , eos_token='''(EOS)''' , do_normalize=_A , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , _A ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , _A ) def _UpperCamelCase ( self ) -> Any: SCREAMING_SNAKE_CASE_ = self.get_image_processor() SCREAMING_SNAKE_CASE_ = self.get_tokenizer() SCREAMING_SNAKE_CASE_ = CLIPSegProcessor(tokenizer=_A , image_processor=_A ) SCREAMING_SNAKE_CASE_ = self.prepare_image_inputs() SCREAMING_SNAKE_CASE_ = image_processor(_A , return_tensors='''np''' ) SCREAMING_SNAKE_CASE_ = processor(images=_A , return_tensors='''np''' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def _UpperCamelCase ( self ) -> Optional[int]: SCREAMING_SNAKE_CASE_ = self.get_image_processor() SCREAMING_SNAKE_CASE_ = self.get_tokenizer() SCREAMING_SNAKE_CASE_ = CLIPSegProcessor(tokenizer=_A , image_processor=_A ) SCREAMING_SNAKE_CASE_ = '''lower newer''' SCREAMING_SNAKE_CASE_ = processor(text=_A ) SCREAMING_SNAKE_CASE_ = tokenizer(_A ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def _UpperCamelCase ( self ) -> str: SCREAMING_SNAKE_CASE_ = self.get_image_processor() SCREAMING_SNAKE_CASE_ = self.get_tokenizer() SCREAMING_SNAKE_CASE_ = CLIPSegProcessor(tokenizer=_A , image_processor=_A ) SCREAMING_SNAKE_CASE_ = '''lower newer''' SCREAMING_SNAKE_CASE_ = self.prepare_image_inputs() SCREAMING_SNAKE_CASE_ = processor(text=_A , images=_A ) self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''attention_mask''', '''pixel_values'''] ) # test if it raises when no input is passed with pytest.raises(_A ): processor() def _UpperCamelCase ( self ) -> Optional[int]: SCREAMING_SNAKE_CASE_ = self.get_image_processor() SCREAMING_SNAKE_CASE_ = self.get_tokenizer() SCREAMING_SNAKE_CASE_ = CLIPSegProcessor(tokenizer=_A , image_processor=_A ) SCREAMING_SNAKE_CASE_ = self.prepare_image_inputs() SCREAMING_SNAKE_CASE_ = self.prepare_image_inputs() SCREAMING_SNAKE_CASE_ = processor(images=_A , visual_prompt=_A ) self.assertListEqual(list(inputs.keys() ) , ['''pixel_values''', '''conditional_pixel_values'''] ) # test if it raises when no input is passed with pytest.raises(_A ): processor() def _UpperCamelCase ( self ) -> Optional[int]: SCREAMING_SNAKE_CASE_ = self.get_image_processor() SCREAMING_SNAKE_CASE_ = self.get_tokenizer() SCREAMING_SNAKE_CASE_ = CLIPSegProcessor(tokenizer=_A , image_processor=_A ) SCREAMING_SNAKE_CASE_ = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] SCREAMING_SNAKE_CASE_ = processor.batch_decode(_A ) SCREAMING_SNAKE_CASE_ = tokenizer.batch_decode(_A ) self.assertListEqual(_A , _A )
299
import argparse import glob import logging import os import sys import time from collections import defaultdict from pathlib import Path from typing import Dict, List, Tuple import numpy as np import pytorch_lightning as pl import torch from callbacks import SeqaSeqLoggingCallback, get_checkpoint_callback, get_early_stopping_callback from torch import nn from torch.utils.data import DataLoader from transformers import MBartTokenizer, TaForConditionalGeneration from transformers.models.bart.modeling_bart import shift_tokens_right from utils import ( ROUGE_KEYS, LegacySeqaSeqDataset, SeqaSeqDataset, assert_all_frozen, calculate_bleu, calculate_rouge, check_output_dir, flatten_list, freeze_embeds, freeze_params, get_git_info, label_smoothed_nll_loss, lmap, pickle_save, save_git_info, save_json, use_task_specific_params, ) # need the parent dir module sys.path.insert(2, str(Path(__file__).resolve().parents[1])) from lightning_base import BaseTransformer, add_generic_args, generic_train # noqa __UpperCAmelCase = logging.getLogger(__name__) class UpperCamelCase__ ( __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCAmelCase_ ="summarization" UpperCAmelCase_ =["loss"] UpperCAmelCase_ =ROUGE_KEYS UpperCAmelCase_ ="rouge2" def __init__( self , _A , **_A ) -> Tuple: if hparams.sortish_sampler and hparams.gpus > 1: SCREAMING_SNAKE_CASE_ = False elif hparams.max_tokens_per_batch is not None: if hparams.gpus > 1: raise NotImplementedError('''Dynamic Batch size does not work for multi-gpu training''' ) if hparams.sortish_sampler: raise ValueError('''--sortish_sampler and --max_tokens_per_batch may not be used simultaneously''' ) super().__init__(_A , num_labels=_A , mode=self.mode , **_A ) use_task_specific_params(self.model , '''summarization''' ) save_git_info(self.hparams.output_dir ) SCREAMING_SNAKE_CASE_ = Path(self.output_dir ) / '''metrics.json''' SCREAMING_SNAKE_CASE_ = Path(self.output_dir ) / '''hparams.pkl''' pickle_save(self.hparams , self.hparams_save_path ) SCREAMING_SNAKE_CASE_ = 0 SCREAMING_SNAKE_CASE_ = defaultdict(_A ) SCREAMING_SNAKE_CASE_ = self.config.model_type SCREAMING_SNAKE_CASE_ = self.config.tgt_vocab_size if self.model_type == '''fsmt''' else self.config.vocab_size SCREAMING_SNAKE_CASE_ = { "data_dir": self.hparams.data_dir, "max_source_length": self.hparams.max_source_length, "prefix": self.model.config.prefix or "", } SCREAMING_SNAKE_CASE_ = { '''train''': self.hparams.n_train, '''val''': self.hparams.n_val, '''test''': self.hparams.n_test, } SCREAMING_SNAKE_CASE_ = {k: v if v >= 0 else None for k, v in n_observations_per_split.items()} SCREAMING_SNAKE_CASE_ = { '''train''': self.hparams.max_target_length, '''val''': self.hparams.val_max_target_length, '''test''': self.hparams.test_max_target_length, } assert self.target_lens["train"] <= self.target_lens["val"], F'''target_lens: {self.target_lens}''' assert self.target_lens["train"] <= self.target_lens["test"], F'''target_lens: {self.target_lens}''' if self.hparams.freeze_embeds: freeze_embeds(self.model ) if self.hparams.freeze_encoder: freeze_params(self.model.get_encoder() ) assert_all_frozen(self.model.get_encoder() ) SCREAMING_SNAKE_CASE_ = get_git_info()['''repo_sha'''] SCREAMING_SNAKE_CASE_ = hparams.num_workers SCREAMING_SNAKE_CASE_ = None # default to config if self.model.config.decoder_start_token_id is None and isinstance(self.tokenizer , _A ): SCREAMING_SNAKE_CASE_ = self.tokenizer.lang_code_to_id[hparams.tgt_lang] SCREAMING_SNAKE_CASE_ = self.decoder_start_token_id SCREAMING_SNAKE_CASE_ = ( SeqaSeqDataset if hasattr(self.tokenizer , '''prepare_seq2seq_batch''' ) else LegacySeqaSeqDataset ) SCREAMING_SNAKE_CASE_ = False SCREAMING_SNAKE_CASE_ = self.model.config.num_beams if self.hparams.eval_beams is None else self.hparams.eval_beams if self.hparams.eval_max_gen_length is not None: SCREAMING_SNAKE_CASE_ = self.hparams.eval_max_gen_length else: SCREAMING_SNAKE_CASE_ = self.model.config.max_length SCREAMING_SNAKE_CASE_ = self.default_val_metric if self.hparams.val_metric is None else self.hparams.val_metric def _UpperCamelCase ( self , _A ) -> Dict[str, List[str]]: SCREAMING_SNAKE_CASE_ = { k: self.tokenizer.batch_decode(v.tolist() ) if '''mask''' not in k else v.shape for k, v in batch.items() } save_json(_A , Path(self.output_dir ) / '''text_batch.json''' ) save_json({k: v.tolist() for k, v in batch.items()} , Path(self.output_dir ) / '''tok_batch.json''' ) SCREAMING_SNAKE_CASE_ = True return readable_batch def _UpperCamelCase ( self , _A , **_A ) -> List[str]: return self.model(_A , **_A ) def _UpperCamelCase ( self , _A ) -> List[Any]: SCREAMING_SNAKE_CASE_ = self.tokenizer.batch_decode( _A , skip_special_tokens=_A , clean_up_tokenization_spaces=_A ) return lmap(str.strip , _A ) def _UpperCamelCase ( self , _A ) -> Tuple: SCREAMING_SNAKE_CASE_ = self.tokenizer.pad_token_id SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = batch['''input_ids'''], batch['''attention_mask'''] SCREAMING_SNAKE_CASE_ = batch['''labels'''] if isinstance(self.model , _A ): SCREAMING_SNAKE_CASE_ = self.model._shift_right(_A ) else: SCREAMING_SNAKE_CASE_ = shift_tokens_right(_A , _A ) if not self.already_saved_batch: # This would be slightly better if it only happened on rank zero SCREAMING_SNAKE_CASE_ = decoder_input_ids self.save_readable_batch(_A ) SCREAMING_SNAKE_CASE_ = self(_A , attention_mask=_A , decoder_input_ids=_A , use_cache=_A ) SCREAMING_SNAKE_CASE_ = outputs['''logits'''] if self.hparams.label_smoothing == 0: # Same behavior as modeling_bart.py, besides ignoring pad_token_id SCREAMING_SNAKE_CASE_ = nn.CrossEntropyLoss(ignore_index=_A ) assert lm_logits.shape[-1] == self.vocab_size SCREAMING_SNAKE_CASE_ = ce_loss_fct(lm_logits.view(-1 , lm_logits.shape[-1] ) , tgt_ids.view(-1 ) ) else: SCREAMING_SNAKE_CASE_ = nn.functional.log_softmax(_A , dim=-1 ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = label_smoothed_nll_loss( _A , _A , self.hparams.label_smoothing , ignore_index=_A ) return (loss,) @property def _UpperCamelCase ( self ) -> int: return self.tokenizer.pad_token_id def _UpperCamelCase ( self , _A , _A ) -> Dict: SCREAMING_SNAKE_CASE_ = self._step(_A ) SCREAMING_SNAKE_CASE_ = dict(zip(self.loss_names , _A ) ) # tokens per batch SCREAMING_SNAKE_CASE_ = batch['''input_ids'''].ne(self.pad ).sum() + batch['''labels'''].ne(self.pad ).sum() SCREAMING_SNAKE_CASE_ = batch['''input_ids'''].shape[0] SCREAMING_SNAKE_CASE_ = batch['''input_ids'''].eq(self.pad ).sum() SCREAMING_SNAKE_CASE_ = batch['''input_ids'''].eq(self.pad ).float().mean() # TODO(SS): make a wandb summary metric for this return {"loss": loss_tensors[0], "log": logs} def _UpperCamelCase ( self , _A , _A ) -> Dict: return self._generative_step(_A ) def _UpperCamelCase ( self , _A , _A="val" ) -> Dict: self.step_count += 1 SCREAMING_SNAKE_CASE_ = {k: torch.stack([x[k] for x in outputs] ).mean() for k in self.loss_names} SCREAMING_SNAKE_CASE_ = losses['''loss'''] SCREAMING_SNAKE_CASE_ = { k: np.array([x[k] for x in outputs] ).mean() for k in self.metric_names + ['''gen_time''', '''gen_len'''] } SCREAMING_SNAKE_CASE_ = ( generative_metrics[self.val_metric] if self.val_metric in generative_metrics else losses[self.val_metric] ) SCREAMING_SNAKE_CASE_ = torch.tensor(_A ).type_as(_A ) generative_metrics.update({k: v.item() for k, v in losses.items()} ) losses.update(_A ) SCREAMING_SNAKE_CASE_ = {F'''{prefix}_avg_{k}''': x for k, x in losses.items()} SCREAMING_SNAKE_CASE_ = self.step_count self.metrics[prefix].append(_A ) # callback writes this to self.metrics_save_path SCREAMING_SNAKE_CASE_ = flatten_list([x['''preds'''] for x in outputs] ) return { "log": all_metrics, "preds": preds, F'''{prefix}_loss''': loss, F'''{prefix}_{self.val_metric}''': metric_tensor, } def _UpperCamelCase ( self , _A , _A ) -> Dict: return calculate_rouge(_A , _A ) def _UpperCamelCase ( self , _A ) -> dict: SCREAMING_SNAKE_CASE_ = time.time() # parser.add_argument('--eval_max_gen_length', type=int, default=None, help='never generate more than n tokens') SCREAMING_SNAKE_CASE_ = self.model.generate( batch['''input_ids'''] , attention_mask=batch['''attention_mask'''] , use_cache=_A , decoder_start_token_id=self.decoder_start_token_id , num_beams=self.eval_beams , max_length=self.eval_max_length , ) SCREAMING_SNAKE_CASE_ = (time.time() - ta) / batch['''input_ids'''].shape[0] SCREAMING_SNAKE_CASE_ = self.ids_to_clean_text(_A ) SCREAMING_SNAKE_CASE_ = self.ids_to_clean_text(batch['''labels'''] ) SCREAMING_SNAKE_CASE_ = self._step(_A ) SCREAMING_SNAKE_CASE_ = dict(zip(self.loss_names , _A ) ) SCREAMING_SNAKE_CASE_ = self.calc_generative_metrics(_A , _A ) SCREAMING_SNAKE_CASE_ = np.mean(lmap(_A , _A ) ) base_metrics.update(gen_time=_A , gen_len=_A , preds=_A , target=_A , **_A ) return base_metrics def _UpperCamelCase ( self , _A , _A ) -> Any: return self._generative_step(_A ) def _UpperCamelCase ( self , _A ) -> Optional[int]: return self.validation_epoch_end(_A , prefix='''test''' ) def _UpperCamelCase ( self , _A ) -> SeqaSeqDataset: SCREAMING_SNAKE_CASE_ = self.n_obs[type_path] SCREAMING_SNAKE_CASE_ = self.target_lens[type_path] SCREAMING_SNAKE_CASE_ = self.dataset_class( self.tokenizer , type_path=_A , n_obs=_A , max_target_length=_A , **self.dataset_kwargs , ) return dataset def _UpperCamelCase ( self , _A , _A , _A = False ) -> DataLoader: SCREAMING_SNAKE_CASE_ = self.get_dataset(_A ) if self.hparams.sortish_sampler and type_path != "test" and type_path != "val": SCREAMING_SNAKE_CASE_ = dataset.make_sortish_sampler(_A , distributed=self.hparams.gpus > 1 ) return DataLoader( _A , batch_size=_A , collate_fn=dataset.collate_fn , shuffle=_A , num_workers=self.num_workers , sampler=_A , ) elif self.hparams.max_tokens_per_batch is not None and type_path != "test" and type_path != "val": SCREAMING_SNAKE_CASE_ = dataset.make_dynamic_sampler( self.hparams.max_tokens_per_batch , distributed=self.hparams.gpus > 1 ) return DataLoader( _A , batch_sampler=_A , collate_fn=dataset.collate_fn , num_workers=self.num_workers , ) else: return DataLoader( _A , batch_size=_A , collate_fn=dataset.collate_fn , shuffle=_A , num_workers=self.num_workers , sampler=_A , ) def _UpperCamelCase ( self ) -> DataLoader: SCREAMING_SNAKE_CASE_ = self.get_dataloader('''train''' , batch_size=self.hparams.train_batch_size , shuffle=_A ) return dataloader def _UpperCamelCase ( self ) -> DataLoader: return self.get_dataloader('''val''' , batch_size=self.hparams.eval_batch_size ) def _UpperCamelCase ( self ) -> DataLoader: return self.get_dataloader('''test''' , batch_size=self.hparams.eval_batch_size ) @staticmethod def _UpperCamelCase ( _A , _A ) -> Dict: BaseTransformer.add_model_specific_args(_A , _A ) add_generic_args(_A , _A ) parser.add_argument( '''--max_source_length''' , default=1024 , type=_A , help=( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) , ) parser.add_argument( '''--max_target_length''' , default=56 , type=_A , help=( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) , ) parser.add_argument( '''--val_max_target_length''' , default=142 , type=_A , help=( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) , ) parser.add_argument( '''--test_max_target_length''' , default=142 , type=_A , help=( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) , ) parser.add_argument('''--freeze_encoder''' , action='''store_true''' ) parser.add_argument('''--freeze_embeds''' , action='''store_true''' ) parser.add_argument('''--sortish_sampler''' , action='''store_true''' , default=_A ) parser.add_argument('''--overwrite_output_dir''' , action='''store_true''' , default=_A ) parser.add_argument('''--max_tokens_per_batch''' , type=_A , default=_A ) parser.add_argument('''--logger_name''' , type=_A , choices=['''default''', '''wandb''', '''wandb_shared'''] , default='''default''' ) parser.add_argument('''--n_train''' , type=_A , default=-1 , required=_A , help='''# examples. -1 means use all.''' ) parser.add_argument('''--n_val''' , type=_A , default=500 , required=_A , help='''# examples. -1 means use all.''' ) parser.add_argument('''--n_test''' , type=_A , default=-1 , required=_A , help='''# examples. -1 means use all.''' ) parser.add_argument( '''--task''' , type=_A , default='''summarization''' , required=_A , help='''# examples. -1 means use all.''' ) parser.add_argument('''--label_smoothing''' , type=_A , default=0.0 , required=_A ) parser.add_argument('''--src_lang''' , type=_A , default='''''' , required=_A ) parser.add_argument('''--tgt_lang''' , type=_A , default='''''' , required=_A ) parser.add_argument('''--eval_beams''' , type=_A , default=_A , required=_A ) parser.add_argument( '''--val_metric''' , type=_A , default=_A , required=_A , choices=['''bleu''', '''rouge2''', '''loss''', None] ) parser.add_argument('''--eval_max_gen_length''' , type=_A , default=_A , help='''never generate more than n tokens''' ) parser.add_argument('''--save_top_k''' , type=_A , default=1 , required=_A , help='''How many checkpoints to save''' ) parser.add_argument( '''--early_stopping_patience''' , type=_A , default=-1 , required=_A , help=( '''-1 means never early stop. early_stopping_patience is measured in validation checks, not epochs. So''' ''' val_check_interval will effect it.''' ) , ) return parser class UpperCamelCase__ ( __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCAmelCase_ ="translation" UpperCAmelCase_ =["loss"] UpperCAmelCase_ =["bleu"] UpperCAmelCase_ ="bleu" def __init__( self , _A , **_A ) -> Optional[int]: super().__init__(_A , **_A ) SCREAMING_SNAKE_CASE_ = hparams.src_lang SCREAMING_SNAKE_CASE_ = hparams.tgt_lang def _UpperCamelCase ( self , _A , _A ) -> dict: return calculate_bleu(_A , _A ) def A__ ( __lowerCamelCase, __lowerCamelCase=None ): Path(args.output_dir ).mkdir(exist_ok=__lowerCamelCase ) check_output_dir(__lowerCamelCase, expected_items=3 ) if model is None: if "summarization" in args.task: SCREAMING_SNAKE_CASE_ = SummarizationModule(__lowerCamelCase ) else: SCREAMING_SNAKE_CASE_ = TranslationModule(__lowerCamelCase ) SCREAMING_SNAKE_CASE_ = Path(args.data_dir ).name if ( args.logger_name == "default" or args.fast_dev_run or str(args.output_dir ).startswith('''/tmp''' ) or str(args.output_dir ).startswith('''/var''' ) ): SCREAMING_SNAKE_CASE_ = True # don't pollute wandb logs unnecessarily elif args.logger_name == "wandb": from pytorch_lightning.loggers import WandbLogger SCREAMING_SNAKE_CASE_ = os.environ.get('''WANDB_PROJECT''', __lowerCamelCase ) SCREAMING_SNAKE_CASE_ = WandbLogger(name=model.output_dir.name, project=__lowerCamelCase ) elif args.logger_name == "wandb_shared": from pytorch_lightning.loggers import WandbLogger SCREAMING_SNAKE_CASE_ = WandbLogger(name=model.output_dir.name, project=F'''hf_{dataset}''' ) if args.early_stopping_patience >= 0: SCREAMING_SNAKE_CASE_ = get_early_stopping_callback(model.val_metric, args.early_stopping_patience ) else: SCREAMING_SNAKE_CASE_ = False SCREAMING_SNAKE_CASE_ = args.val_metric == '''loss''' SCREAMING_SNAKE_CASE_ = generic_train( __lowerCamelCase, __lowerCamelCase, logging_callback=SeqaSeqLoggingCallback(), checkpoint_callback=get_checkpoint_callback( args.output_dir, model.val_metric, args.save_top_k, __lowerCamelCase ), early_stopping_callback=__lowerCamelCase, logger=__lowerCamelCase, ) pickle_save(model.hparams, model.output_dir / '''hparams.pkl''' ) if not args.do_predict: return model SCREAMING_SNAKE_CASE_ = '''''' SCREAMING_SNAKE_CASE_ = sorted(glob.glob(os.path.join(args.output_dir, '''*.ckpt''' ), recursive=__lowerCamelCase ) ) if checkpoints: SCREAMING_SNAKE_CASE_ = checkpoints[-1] SCREAMING_SNAKE_CASE_ = checkpoints[-1] trainer.logger.log_hyperparams(model.hparams ) # test() without a model tests using the best checkpoint automatically trainer.test() return model if __name__ == "__main__": __UpperCAmelCase = argparse.ArgumentParser() __UpperCAmelCase = pl.Trainer.add_argparse_args(parser) __UpperCAmelCase = SummarizationModule.add_model_specific_args(parser, os.getcwd()) __UpperCAmelCase = parser.parse_args() main(args)
299
1
from dataclasses import dataclass from enum import Enum from typing import List, Optional, Union import numpy as np import PIL from PIL import Image from ...utils import BaseOutput, is_torch_available, is_transformers_available @dataclass class a__ ( snake_case__ ): _a : Union[List[PIL.Image.Image], np.ndarray] _a : Optional[List[bool]] if is_transformers_available() and is_torch_available(): from .pipeline_semantic_stable_diffusion import SemanticStableDiffusionPipeline
351
import os import time from dataclasses import dataclass, field from enum import Enum from typing import Dict, List, Optional, Union import torch from filelock import FileLock from torch.utils.data import Dataset from ...models.auto.modeling_auto import MODEL_FOR_QUESTION_ANSWERING_MAPPING from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging from ..processors.squad import SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features UpperCamelCase__ = logging.get_logger(__name__) UpperCamelCase__ = list(MODEL_FOR_QUESTION_ANSWERING_MAPPING.keys()) UpperCamelCase__ = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class a__ : _a : str = field( default=snake_case__ , metadata={"""help""": """Model type selected in the list: """ + """, """.join(snake_case__ )} ) _a : str = field( default=snake_case__ , metadata={"""help""": """The input data dir. Should contain the .json files for the SQuAD task."""} ) _a : int = field( default=1_2_8 , metadata={ """help""": ( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) } , ) _a : int = field( default=1_2_8 , metadata={"""help""": """When splitting up a long document into chunks, how much stride to take between chunks."""} , ) _a : int = field( default=6_4 , metadata={ """help""": ( """The maximum number of tokens for the question. Questions longer than this will """ """be truncated to this length.""" ) } , ) _a : int = field( default=3_0 , metadata={ """help""": ( """The maximum length of an answer that can be generated. This is needed because the start """ """and end predictions are not conditioned on one another.""" ) } , ) _a : bool = field( default=snake_case__ , metadata={"""help""": """Overwrite the cached training and evaluation sets"""} ) _a : bool = field( default=snake_case__ , metadata={"""help""": """If true, the SQuAD examples contain some that do not have an answer."""} ) _a : float = field( default=0.0 , metadata={"""help""": """If null_score - best_non_null is greater than the threshold predict null."""} ) _a : int = field( default=2_0 , metadata={"""help""": """If null_score - best_non_null is greater than the threshold predict null."""} ) _a : int = field( default=0 , metadata={ """help""": ( """language id of input for language-specific xlm models (see""" """ tokenization_xlm.PRETRAINED_INIT_CONFIGURATION)""" ) } , ) _a : int = field(default=1 , metadata={"""help""": """multiple threads for converting example to features"""} ) class a__ ( snake_case__ ): _a : Any = """train""" _a : Union[str, Any] = """dev""" class a__ ( snake_case__ ): _a : SquadDataTrainingArguments _a : List[SquadFeatures] _a : Split _a : bool def __init__( self , _A , _A , _A = None , _A = Split.train , _A = False , _A = None , _A = "pt" , ): """simple docstring""" __lowerCAmelCase = args __lowerCAmelCase = is_language_sensitive __lowerCAmelCase = SquadVaProcessor() if args.version_2_with_negative else SquadVaProcessor() if isinstance(_A , _A ): try: __lowerCAmelCase = Split[mode] except KeyError: raise KeyError("mode is not a valid split name" ) __lowerCAmelCase = mode # Load data features from cache or dataset file __lowerCAmelCase = "v2" if args.version_2_with_negative else "v1" __lowerCAmelCase = os.path.join( cache_dir if cache_dir is not None else args.data_dir , f"""cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{version_tag}""" , ) # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. __lowerCAmelCase = cached_features_file + ".lock" with FileLock(_A ): if os.path.exists(_A ) and not args.overwrite_cache: __lowerCAmelCase = time.time() __lowerCAmelCase = torch.load(_A ) # Legacy cache files have only features, while new cache files # will have dataset and examples also. __lowerCAmelCase = self.old_features["features"] __lowerCAmelCase = self.old_features.get("dataset" , _A ) __lowerCAmelCase = self.old_features.get("examples" , _A ) logger.info( f"""Loading features from cached file {cached_features_file} [took %.3f s]""" , time.time() - start ) if self.dataset is None or self.examples is None: logger.warning( f"""Deleting cached file {cached_features_file} will allow dataset and examples to be cached in""" " future run" ) else: if mode == Split.dev: __lowerCAmelCase = self.processor.get_dev_examples(args.data_dir ) else: __lowerCAmelCase = self.processor.get_train_examples(args.data_dir ) __lowerCAmelCase , __lowerCAmelCase = squad_convert_examples_to_features( examples=self.examples , tokenizer=_A , max_seq_length=args.max_seq_length , doc_stride=args.doc_stride , max_query_length=args.max_query_length , is_training=mode == Split.train , threads=args.threads , return_dataset=_A , ) __lowerCAmelCase = time.time() torch.save( {"features": self.features, "dataset": self.dataset, "examples": self.examples} , _A , ) # ^ This seems to take a lot of time so I want to investigate why and how we can improve. logger.info( f"""Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]""" ) def __len__( self ): """simple docstring""" return len(self.features ) def __getitem__( self , _A ): """simple docstring""" __lowerCAmelCase = self.features[i] __lowerCAmelCase = torch.tensor(feature.input_ids , dtype=torch.long ) __lowerCAmelCase = torch.tensor(feature.attention_mask , dtype=torch.long ) __lowerCAmelCase = torch.tensor(feature.token_type_ids , dtype=torch.long ) __lowerCAmelCase = torch.tensor(feature.cls_index , dtype=torch.long ) __lowerCAmelCase = torch.tensor(feature.p_mask , dtype=torch.float ) __lowerCAmelCase = torch.tensor(feature.is_impossible , dtype=torch.float ) __lowerCAmelCase = { "input_ids": input_ids, "attention_mask": attention_mask, "token_type_ids": token_type_ids, } if self.args.model_type in ["xlm", "roberta", "distilbert", "camembert"]: del inputs["token_type_ids"] if self.args.model_type in ["xlnet", "xlm"]: inputs.update({"cls_index": cls_index, "p_mask": p_mask} ) if self.args.version_2_with_negative: inputs.update({"is_impossible": is_impossible} ) if self.is_language_sensitive: inputs.update({"langs": (torch.ones(input_ids.shape , dtype=torch.intaa ) * self.args.lang_id)} ) if self.mode == Split.train: __lowerCAmelCase = torch.tensor(feature.start_position , dtype=torch.long ) __lowerCAmelCase = torch.tensor(feature.end_position , dtype=torch.long ) inputs.update({"start_positions": start_positions, "end_positions": end_positions} ) return inputs
102
0
"""simple docstring""" import doctest import glob import importlib import inspect import os import re from contextlib import contextmanager from functools import wraps from unittest.mock import patch import numpy as np import pytest from absl.testing import parameterized import datasets from datasets import load_metric from .utils import for_all_test_methods, local, slow # mark all tests as integration UpperCAmelCase : Union[str, Any] = pytest.mark.integration UpperCAmelCase : Union[str, Any] = {"comet"} UpperCAmelCase : Tuple = importlib.util.find_spec("fairseq") is not None UpperCAmelCase : Optional[Any] = {"code_eval"} UpperCAmelCase : Union[str, Any] = os.name == "nt" UpperCAmelCase : int = {"bertscore", "frugalscore", "perplexity"} UpperCAmelCase : Any = importlib.util.find_spec("transformers") is not None def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> Dict: '''simple docstring''' @wraps(UpperCamelCase__ ) def wrapper(self , __lowerCAmelCase ): if not _has_fairseq and metric_name in REQUIRE_FAIRSEQ: self.skipTest("""\"test requires Fairseq\"""" ) else: test_case(self , UpperCamelCase__ ) return wrapper def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> Union[str, Any]: '''simple docstring''' @wraps(UpperCamelCase__ ) def wrapper(self , __lowerCAmelCase ): if not _has_transformers and metric_name in REQUIRE_TRANSFORMERS: self.skipTest("""\"test requires transformers\"""" ) else: test_case(self , UpperCamelCase__ ) return wrapper def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> Optional[Any]: '''simple docstring''' @wraps(UpperCamelCase__ ) def wrapper(self , __lowerCAmelCase ): if _on_windows and metric_name in UNSUPPORTED_ON_WINDOWS: self.skipTest("""\"test not supported on Windows\"""" ) else: test_case(self , UpperCamelCase__ ) return wrapper def _SCREAMING_SNAKE_CASE () -> Dict: '''simple docstring''' lowercase_ = [metric_dir.split(os.sep )[-2] for metric_dir in glob.glob("""./metrics/*/""" )] return [{"testcase_name": x, "metric_name": x} for x in metrics if x != "gleu"] # gleu is unfinished @parameterized.named_parameters(get_local_metric_names() ) @for_all_test_methods( snake_case_ , snake_case_ , snake_case_ ) @local class SCREAMING_SNAKE_CASE__ ( parameterized.TestCase ): lowercase__ = {} lowercase__ = None @pytest.mark.filterwarnings("""ignore:metric_module_factory is deprecated:FutureWarning""") @pytest.mark.filterwarnings("""ignore:load_metric is deprecated:FutureWarning""") def _UpperCAmelCase ( self : Union[str, Any] , lowerCAmelCase_ : Any): """simple docstring""" lowercase_ = """[...]""" lowercase_ = importlib.import_module( datasets.load.metric_module_factory(os.path.join("""metrics""" , UpperCAmelCase__)).module_path) lowercase_ = datasets.load.import_main_class(metric_module.__name__ , dataset=UpperCAmelCase__) # check parameters lowercase_ = inspect.signature(metric._compute).parameters self.assertTrue(all(p.kind != p.VAR_KEYWORD for p in parameters.values())) # no **kwargs # run doctest with self.patch_intensive_calls(UpperCAmelCase__ , metric_module.__name__): with self.use_local_metrics(): try: lowercase_ = doctest.testmod(UpperCAmelCase__ , verbose=UpperCAmelCase__ , raise_on_error=UpperCAmelCase__) except doctest.UnexpectedException as e: raise e.exc_info[1] # raise the exception that doctest caught self.assertEqual(results.failed , 0) self.assertGreater(results.attempted , 1) @slow def _UpperCAmelCase ( self : List[str] , lowerCAmelCase_ : Optional[int]): """simple docstring""" lowercase_ = """[...]""" lowercase_ = importlib.import_module( datasets.load.metric_module_factory(os.path.join("""metrics""" , UpperCAmelCase__)).module_path) # run doctest with self.use_local_metrics(): lowercase_ = doctest.testmod(UpperCAmelCase__ , verbose=UpperCAmelCase__ , raise_on_error=UpperCAmelCase__) self.assertEqual(results.failed , 0) self.assertGreater(results.attempted , 1) @contextmanager def _UpperCAmelCase ( self : List[Any] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : int): """simple docstring""" if metric_name in self.INTENSIVE_CALLS_PATCHER: with self.INTENSIVE_CALLS_PATCHER[metric_name](UpperCAmelCase__): yield else: yield @contextmanager def _UpperCAmelCase ( self : Tuple): """simple docstring""" def load_local_metric(lowerCAmelCase_ : Optional[Any] , *lowerCAmelCase_ : Union[str, Any] , **lowerCAmelCase_ : Tuple): return load_metric(os.path.join("""metrics""" , UpperCAmelCase__) , *UpperCAmelCase__ , **UpperCAmelCase__) with patch("""datasets.load_metric""") as mock_load_metric: lowercase_ = load_local_metric yield @classmethod def _UpperCAmelCase ( cls : Union[str, Any] , lowerCAmelCase_ : Tuple): """simple docstring""" def wrapper(lowerCAmelCase_ : str): lowercase_ = contextmanager(UpperCAmelCase__) lowercase_ = patcher return patcher return wrapper @LocalMetricTest.register_intensive_calls_patcher("""bleurt""" ) def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> int: '''simple docstring''' import tensorflow.compat.va as tf from bleurt.score import Predictor tf.flags.DEFINE_string("""sv""" , """""" , """""" ) # handle pytest cli flags class SCREAMING_SNAKE_CASE__ ( snake_case_ ): def _UpperCAmelCase ( self : str , lowerCAmelCase_ : List[str]): """simple docstring""" assert len(input_dict["""input_ids"""]) == 2 return np.array([1.03, 1.04]) # mock predict_fn which is supposed to do a forward pass with a bleurt model with patch("""bleurt.score._create_predictor""" ) as mock_create_predictor: lowercase_ = MockedPredictor() yield @LocalMetricTest.register_intensive_calls_patcher("""bertscore""" ) def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> Optional[Any]: '''simple docstring''' import torch def bert_cos_score_idf(__lowerCAmelCase , __lowerCAmelCase , *__lowerCAmelCase , **__lowerCAmelCase ): return torch.tensor([[1.0, 1.0, 1.0]] * len(UpperCamelCase__ ) ) # mock get_model which is supposed to do download a bert model # mock bert_cos_score_idf which is supposed to do a forward pass with a bert model with patch("""bert_score.scorer.get_model""" ), patch( """bert_score.scorer.bert_cos_score_idf""" ) as mock_bert_cos_score_idf: lowercase_ = bert_cos_score_idf yield @LocalMetricTest.register_intensive_calls_patcher("""comet""" ) def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> int: '''simple docstring''' def load_from_checkpoint(__lowerCAmelCase ): class SCREAMING_SNAKE_CASE__ : def _UpperCAmelCase ( self : Optional[int] , lowerCAmelCase_ : List[str] , *lowerCAmelCase_ : int , **lowerCAmelCase_ : Optional[int]): """simple docstring""" assert len(UpperCAmelCase__) == 2 lowercase_ = [0.19, 0.92] return scores, sum(UpperCAmelCase__) / len(UpperCAmelCase__) return Model() # mock load_from_checkpoint which is supposed to do download a bert model # mock load_from_checkpoint which is supposed to do download a bert model with patch("""comet.download_model""" ) as mock_download_model: lowercase_ = None with patch("""comet.load_from_checkpoint""" ) as mock_load_from_checkpoint: lowercase_ = load_from_checkpoint yield def _SCREAMING_SNAKE_CASE () -> int: '''simple docstring''' lowercase_ = load_metric(os.path.join("""metrics""" , """seqeval""" ) ) lowercase_ = """ERROR""" lowercase_ = F'''Scheme should be one of [IOB1, IOB2, IOE1, IOE2, IOBES, BILOU], got {wrong_scheme}''' with pytest.raises(UpperCamelCase__ , match=re.escape(UpperCamelCase__ ) ): metric.compute(predictions=[] , references=[] , scheme=UpperCamelCase__ )
136
"""simple docstring""" from __future__ import annotations import time import numpy as np _snake_case = [8, 5, 9, 7] _snake_case = [ [2, 0, 1, 1], [0, 1, 2, 1], [4, 0, 0, 3], [0, 2, 1, 0], [1, 0, 3, 0], ] _snake_case = [ [3, 2, 1, 4], [0, 2, 5, 2], [5, 1, 0, 5], [1, 5, 3, 0], [3, 0, 3, 3], ] class UpperCamelCase : def __init__( self : List[Any] , UpperCAmelCase__ : list[int] , UpperCAmelCase__ : list[list[int]] , UpperCAmelCase__ : list[list[int]] , ) -> None: _a : List[str] = claim_vector _a : List[Any] = allocated_resources_table _a : Union[str, Any] = maximum_claim_table def _lowercase ( self : Tuple ) -> list[int]: return [ sum(p_item[i] for p_item in self.__allocated_resources_table ) for i in range(len(self.__allocated_resources_table[0] ) ) ] def _lowercase ( self : int ) -> list[int]: return np.array(self.__claim_vector ) - np.array( self.__processes_resource_summation() ) def _lowercase ( self : List[str] ) -> list[list[int]]: return [ list(np.array(self.__maximum_claim_table[i] ) - np.array(UpperCAmelCase__ ) ) for i, allocated_resource in enumerate(self.__allocated_resources_table ) ] def _lowercase ( self : Optional[Any] ) -> dict[int, list[int]]: return {self.__need().index(UpperCAmelCase__ ): i for i in self.__need()} def _lowercase ( self : Dict , **UpperCAmelCase__ : Optional[Any] ) -> None: _a : List[Any] = self.__need() _a : Optional[int] = self.__allocated_resources_table _a : str = self.__available_resources() _a : Optional[Any] = self.__need_index_manager() for kw, val in kwargs.items(): if kw and val is True: self.__pretty_data() print("""_""" * 50 + """\n""" ) while need_list: _a : int = False for each_need in need_list: _a : Optional[int] = True for index, need in enumerate(UpperCAmelCase__ ): if need > available_resources[index]: _a : List[Any] = False break if execution: _a : str = True # get the original index of the process from ind_ctrl db for original_need_index, need_clone in need_index_manager.items(): if each_need == need_clone: _a : Any = original_need_index print(f"""Process {process_number + 1} is executing.""" ) # remove the process run from stack need_list.remove(UpperCAmelCase__ ) # update available/freed resources stack _a : Union[str, Any] = np.array(UpperCAmelCase__ ) + np.array( alloc_resources_table[process_number] ) print( """Updated available resource stack for processes: """ + """ """.join([str(UpperCAmelCase__ ) for x in available_resources] ) ) break if safe: print("""The process is in a safe state.\n""" ) else: print("""System in unsafe state. Aborting...\n""" ) break def _lowercase ( self : Any ) -> Optional[int]: print(""" """ * 9 + """Allocated Resource Table""" ) for item in self.__allocated_resources_table: print( f"""P{self.__allocated_resources_table.index(UpperCAmelCase__ ) + 1}""" + """ """.join(f"""{it:>8}""" for it in item ) + """\n""" ) print(""" """ * 9 + """System Resource Table""" ) for item in self.__maximum_claim_table: print( f"""P{self.__maximum_claim_table.index(UpperCAmelCase__ ) + 1}""" + """ """.join(f"""{it:>8}""" for it in item ) + """\n""" ) print( """Current Usage by Active Processes: """ + """ """.join(str(UpperCAmelCase__ ) for x in self.__claim_vector ) ) print( """Initial Available Resources: """ + """ """.join(str(UpperCAmelCase__ ) for x in self.__available_resources() ) ) time.sleep(1 ) if __name__ == "__main__": import doctest doctest.testmod()
294
0
import flax.linen as nn import jax import jax.numpy as jnp class UpperCamelCase__ ( nn.Module ): """simple docstring""" UpperCAmelCase_ =42 UpperCAmelCase_ =jnp.floataa def _UpperCamelCase ( self ) -> str: SCREAMING_SNAKE_CASE_ = nn.Conv( self.out_channels , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) def __call__( self , _A ) -> Optional[Any]: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = hidden_states.shape SCREAMING_SNAKE_CASE_ = jax.image.resize( _A , shape=(batch, height * 2, width * 2, channels) , method='''nearest''' , ) SCREAMING_SNAKE_CASE_ = self.conv(_A ) return hidden_states class UpperCamelCase__ ( nn.Module ): """simple docstring""" UpperCAmelCase_ =42 UpperCAmelCase_ =jnp.floataa def _UpperCamelCase ( self ) -> List[str]: SCREAMING_SNAKE_CASE_ = nn.Conv( self.out_channels , kernel_size=(3, 3) , strides=(2, 2) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) def __call__( self , _A ) -> Optional[Any]: # pad = ((0, 0), (0, 1), (0, 1), (0, 0)) # pad height and width dim # hidden_states = jnp.pad(hidden_states, pad_width=pad) SCREAMING_SNAKE_CASE_ = self.conv(_A ) return hidden_states class UpperCamelCase__ ( nn.Module ): """simple docstring""" UpperCAmelCase_ =42 UpperCAmelCase_ =None UpperCAmelCase_ =0.0 UpperCAmelCase_ =None UpperCAmelCase_ =jnp.floataa def _UpperCamelCase ( self ) -> List[str]: SCREAMING_SNAKE_CASE_ = self.in_channels if self.out_channels is None else self.out_channels SCREAMING_SNAKE_CASE_ = nn.GroupNorm(num_groups=32 , epsilon=1E-5 ) SCREAMING_SNAKE_CASE_ = nn.Conv( _A , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) SCREAMING_SNAKE_CASE_ = nn.Dense(_A , dtype=self.dtype ) SCREAMING_SNAKE_CASE_ = nn.GroupNorm(num_groups=32 , epsilon=1E-5 ) SCREAMING_SNAKE_CASE_ = nn.Dropout(self.dropout_prob ) SCREAMING_SNAKE_CASE_ = nn.Conv( _A , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) SCREAMING_SNAKE_CASE_ = self.in_channels != out_channels if self.use_nin_shortcut is None else self.use_nin_shortcut SCREAMING_SNAKE_CASE_ = None if use_nin_shortcut: SCREAMING_SNAKE_CASE_ = nn.Conv( _A , kernel_size=(1, 1) , strides=(1, 1) , padding='''VALID''' , dtype=self.dtype , ) def __call__( self , _A , _A , _A=True ) -> str: SCREAMING_SNAKE_CASE_ = hidden_states SCREAMING_SNAKE_CASE_ = self.norma(_A ) SCREAMING_SNAKE_CASE_ = nn.swish(_A ) SCREAMING_SNAKE_CASE_ = self.conva(_A ) SCREAMING_SNAKE_CASE_ = self.time_emb_proj(nn.swish(_A ) ) SCREAMING_SNAKE_CASE_ = jnp.expand_dims(jnp.expand_dims(_A , 1 ) , 1 ) SCREAMING_SNAKE_CASE_ = hidden_states + temb SCREAMING_SNAKE_CASE_ = self.norma(_A ) SCREAMING_SNAKE_CASE_ = nn.swish(_A ) SCREAMING_SNAKE_CASE_ = self.dropout(_A , _A ) SCREAMING_SNAKE_CASE_ = self.conva(_A ) if self.conv_shortcut is not None: SCREAMING_SNAKE_CASE_ = self.conv_shortcut(_A ) return hidden_states + residual
369
__UpperCAmelCase = [ (10_00, "M"), (9_00, "CM"), (5_00, "D"), (4_00, "CD"), (1_00, "C"), (90, "XC"), (50, "L"), (40, "XL"), (10, "X"), (9, "IX"), (5, "V"), (4, "IV"), (1, "I"), ] def A__ ( __lowerCamelCase ): SCREAMING_SNAKE_CASE_ = {'''I''': 1, '''V''': 5, '''X''': 10, '''L''': 50, '''C''': 1_00, '''D''': 5_00, '''M''': 10_00} SCREAMING_SNAKE_CASE_ = 0 SCREAMING_SNAKE_CASE_ = 0 while place < len(__lowerCamelCase ): if (place + 1 < len(__lowerCamelCase )) and (vals[roman[place]] < vals[roman[place + 1]]): total += vals[roman[place + 1]] - vals[roman[place]] place += 2 else: total += vals[roman[place]] place += 1 return total def A__ ( __lowerCamelCase ): SCREAMING_SNAKE_CASE_ = [] for arabic, roman in ROMAN: ((SCREAMING_SNAKE_CASE_) , (SCREAMING_SNAKE_CASE_)) = divmod(__lowerCamelCase, __lowerCamelCase ) result.append(roman * factor ) if number == 0: break return "".join(__lowerCamelCase ) if __name__ == "__main__": import doctest doctest.testmod()
257
0
import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoFeatureExtractor, WavaVecaFeatureExtractor from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test sys.path.append(str(Path(__file__).parent.parent / '''utils''')) from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402 lowerCamelCase = get_tests_dir('''fixtures''') class _a ( unittest.TestCase): def UpperCAmelCase__( self : Union[str, Any] )-> Optional[Any]: # A mock response for an HTTP head request to emulate server down lowerCAmelCase__ : Optional[int] = mock.Mock() lowerCAmelCase__ : Any = 500 lowerCAmelCase__ : Union[str, Any] = {} lowerCAmelCase__ : Any = HTTPError lowerCAmelCase__ : Any = {} # Download this model to make sure it's in the cache. lowerCAmelCase__ : str = WavaVecaFeatureExtractor.from_pretrained('''hf-internal-testing/tiny-random-wav2vec2''' ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch('''requests.Session.request''' , return_value=_SCREAMING_SNAKE_CASE ) as mock_head: lowerCAmelCase__ : int = WavaVecaFeatureExtractor.from_pretrained('''hf-internal-testing/tiny-random-wav2vec2''' ) # This check we did call the fake head request mock_head.assert_called() def UpperCAmelCase__( self : Optional[Any] )-> int: # This test is for deprecated behavior and can be removed in v5 lowerCAmelCase__ : Union[str, Any] = WavaVecaFeatureExtractor.from_pretrained( '''https://huggingface.co/hf-internal-testing/tiny-random-wav2vec2/resolve/main/preprocessor_config.json''' ) @is_staging_test class _a ( unittest.TestCase): @classmethod def UpperCAmelCase__( cls : str )-> Union[str, Any]: lowerCAmelCase__ : Dict = TOKEN HfFolder.save_token(_SCREAMING_SNAKE_CASE ) @classmethod def UpperCAmelCase__( cls : List[str] )-> int: try: delete_repo(token=cls._token , repo_id='''test-feature-extractor''' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''valid_org/test-feature-extractor-org''' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''test-dynamic-feature-extractor''' ) except HTTPError: pass def UpperCAmelCase__( self : List[Any] )-> Tuple: lowerCAmelCase__ : Optional[Any] = WavaVecaFeatureExtractor.from_pretrained(_SCREAMING_SNAKE_CASE ) feature_extractor.push_to_hub('''test-feature-extractor''' , use_auth_token=self._token ) lowerCAmelCase__ : Tuple = WavaVecaFeatureExtractor.from_pretrained(F'{USER}/test-feature-extractor' ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(_SCREAMING_SNAKE_CASE , getattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) # Reset repo delete_repo(token=self._token , repo_id='''test-feature-extractor''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained( _SCREAMING_SNAKE_CASE , repo_id='''test-feature-extractor''' , push_to_hub=_SCREAMING_SNAKE_CASE , use_auth_token=self._token ) lowerCAmelCase__ : Dict = WavaVecaFeatureExtractor.from_pretrained(F'{USER}/test-feature-extractor' ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(_SCREAMING_SNAKE_CASE , getattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) def UpperCAmelCase__( self : Optional[int] )-> List[Any]: lowerCAmelCase__ : Dict = WavaVecaFeatureExtractor.from_pretrained(_SCREAMING_SNAKE_CASE ) feature_extractor.push_to_hub('''valid_org/test-feature-extractor''' , use_auth_token=self._token ) lowerCAmelCase__ : Dict = WavaVecaFeatureExtractor.from_pretrained('''valid_org/test-feature-extractor''' ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(_SCREAMING_SNAKE_CASE , getattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) # Reset repo delete_repo(token=self._token , repo_id='''valid_org/test-feature-extractor''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained( _SCREAMING_SNAKE_CASE , repo_id='''valid_org/test-feature-extractor-org''' , push_to_hub=_SCREAMING_SNAKE_CASE , use_auth_token=self._token ) lowerCAmelCase__ : List[Any] = WavaVecaFeatureExtractor.from_pretrained('''valid_org/test-feature-extractor-org''' ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(_SCREAMING_SNAKE_CASE , getattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) def UpperCAmelCase__( self : Union[str, Any] )-> Optional[int]: CustomFeatureExtractor.register_for_auto_class() lowerCAmelCase__ : List[str] = CustomFeatureExtractor.from_pretrained(_SCREAMING_SNAKE_CASE ) feature_extractor.push_to_hub('''test-dynamic-feature-extractor''' , use_auth_token=self._token ) # This has added the proper auto_map field to the config self.assertDictEqual( feature_extractor.auto_map , {'''AutoFeatureExtractor''': '''custom_feature_extraction.CustomFeatureExtractor'''} , ) lowerCAmelCase__ : List[str] = AutoFeatureExtractor.from_pretrained( F'{USER}/test-dynamic-feature-extractor' , trust_remote_code=_SCREAMING_SNAKE_CASE ) # Can't make an isinstance check because the new_feature_extractor is from the CustomFeatureExtractor class of a dynamic module self.assertEqual(new_feature_extractor.__class__.__name__ , '''CustomFeatureExtractor''' )
131
import unittest import numpy as np from transformers import DistilBertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.distilbert.modeling_flax_distilbert import ( FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertModel, ) class _a ( unittest.TestCase): def __init__( self : int , _SCREAMING_SNAKE_CASE : Any , _SCREAMING_SNAKE_CASE : str=13 , _SCREAMING_SNAKE_CASE : List[str]=7 , _SCREAMING_SNAKE_CASE : List[Any]=True , _SCREAMING_SNAKE_CASE : Dict=True , _SCREAMING_SNAKE_CASE : Optional[int]=True , _SCREAMING_SNAKE_CASE : Union[str, Any]=True , _SCREAMING_SNAKE_CASE : Optional[int]=99 , _SCREAMING_SNAKE_CASE : Optional[int]=32 , _SCREAMING_SNAKE_CASE : Union[str, Any]=5 , _SCREAMING_SNAKE_CASE : Optional[int]=4 , _SCREAMING_SNAKE_CASE : Optional[int]=37 , _SCREAMING_SNAKE_CASE : Any="gelu" , _SCREAMING_SNAKE_CASE : Tuple=0.1 , _SCREAMING_SNAKE_CASE : Any=0.1 , _SCREAMING_SNAKE_CASE : Tuple=512 , _SCREAMING_SNAKE_CASE : Optional[int]=16 , _SCREAMING_SNAKE_CASE : Optional[int]=2 , _SCREAMING_SNAKE_CASE : Union[str, Any]=0.02 , _SCREAMING_SNAKE_CASE : Tuple=4 , )-> Optional[int]: lowerCAmelCase__ : Optional[int] = parent lowerCAmelCase__ : Optional[int] = batch_size lowerCAmelCase__ : List[Any] = seq_length lowerCAmelCase__ : Any = is_training lowerCAmelCase__ : str = use_attention_mask lowerCAmelCase__ : Union[str, Any] = use_token_type_ids lowerCAmelCase__ : List[Any] = use_labels lowerCAmelCase__ : List[str] = vocab_size lowerCAmelCase__ : Optional[Any] = hidden_size lowerCAmelCase__ : str = num_hidden_layers lowerCAmelCase__ : Any = num_attention_heads lowerCAmelCase__ : List[Any] = intermediate_size lowerCAmelCase__ : Any = hidden_act lowerCAmelCase__ : Any = hidden_dropout_prob lowerCAmelCase__ : int = attention_probs_dropout_prob lowerCAmelCase__ : Optional[int] = max_position_embeddings lowerCAmelCase__ : List[str] = type_vocab_size lowerCAmelCase__ : Union[str, Any] = type_sequence_label_size lowerCAmelCase__ : List[str] = initializer_range lowerCAmelCase__ : int = num_choices def UpperCAmelCase__( self : List[str] )-> Optional[Any]: lowerCAmelCase__ : Any = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCAmelCase__ : Union[str, Any] = None if self.use_attention_mask: lowerCAmelCase__ : Optional[int] = random_attention_mask([self.batch_size, self.seq_length] ) lowerCAmelCase__ : Any = DistilBertConfig( vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , tie_weights_=_SCREAMING_SNAKE_CASE , ) return config, input_ids, attention_mask def UpperCAmelCase__( self : Dict )-> Union[str, Any]: lowerCAmelCase__ : List[str] = self.prepare_config_and_inputs() lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ : Dict = config_and_inputs lowerCAmelCase__ : Optional[int] = {'''input_ids''': input_ids, '''attention_mask''': attention_mask} return config, inputs_dict @require_flax class _a ( _lowercase , unittest.TestCase): _a : str = ( ( FlaxDistilBertModel, FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertForQuestionAnswering, ) if is_flax_available() else () ) def UpperCAmelCase__( self : str )-> List[str]: lowerCAmelCase__ : Tuple = FlaxDistilBertModelTester(self ) @slow def UpperCAmelCase__( self : Dict )-> Tuple: for model_class_name in self.all_model_classes: lowerCAmelCase__ : Tuple = model_class_name.from_pretrained('''distilbert-base-uncased''' ) lowerCAmelCase__ : List[str] = model(np.ones((1, 1) ) ) self.assertIsNotNone(_SCREAMING_SNAKE_CASE ) @require_flax class _a ( unittest.TestCase): @slow def UpperCAmelCase__( self : Optional[int] )-> List[Any]: lowerCAmelCase__ : int = FlaxDistilBertModel.from_pretrained('''distilbert-base-uncased''' ) lowerCAmelCase__ : Tuple = np.array([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]] ) lowerCAmelCase__ : str = np.array([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) lowerCAmelCase__ : str = model(_SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE )[0] lowerCAmelCase__ : str = (1, 11, 768) self.assertEqual(output.shape , _SCREAMING_SNAKE_CASE ) lowerCAmelCase__ : str = np.array([[[-0.1639, 0.3299, 0.1648], [-0.1746, 0.3289, 0.1710], [-0.1884, 0.3357, 0.1810]]] ) self.assertTrue(jnp.allclose(output[:, 1:4, 1:4] , _SCREAMING_SNAKE_CASE , atol=1E-4 ) )
131
1
from typing import TYPE_CHECKING from ...utils import _LazyModule _A = {"tokenization_wav2vec2_phoneme": ["Wav2Vec2PhonemeCTCTokenizer"]} if TYPE_CHECKING: from .tokenization_wavaveca_phoneme import WavaVecaPhonemeCTCTokenizer else: import sys _A = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
368
from . import ( albert, align, altclip, audio_spectrogram_transformer, auto, autoformer, bark, bart, barthez, bartpho, beit, bert, bert_generation, bert_japanese, bertweet, big_bird, bigbird_pegasus, biogpt, bit, blenderbot, blenderbot_small, blip, blip_a, bloom, bridgetower, byta, camembert, canine, chinese_clip, clap, clip, clipseg, codegen, conditional_detr, convbert, convnext, convnextva, cpm, cpmant, ctrl, cvt, dataavec, deberta, deberta_va, decision_transformer, deformable_detr, deit, deprecated, deta, detr, dialogpt, dinat, distilbert, dit, donut, dpr, dpt, efficientformer, efficientnet, electra, encodec, encoder_decoder, ernie, ernie_m, esm, falcon, flaubert, flava, fnet, focalnet, fsmt, funnel, git, glpn, gpta, gpt_bigcode, gpt_neo, gpt_neox, gpt_neox_japanese, gpt_swa, gptj, gptsan_japanese, graphormer, groupvit, herbert, hubert, ibert, imagegpt, informer, instructblip, jukebox, layoutlm, layoutlmva, layoutlmva, layoutxlm, led, levit, lilt, llama, longformer, longta, luke, lxmert, mam_aaa, marian, markuplm, maskaformer, maskformer, mbart, mbartaa, mega, megatron_bert, megatron_gpta, mgp_str, mluke, mobilebert, mobilenet_va, mobilenet_va, mobilevit, mobilevitva, mpnet, mra, mta, musicgen, mvp, nat, nezha, nllb, nllb_moe, nystromformer, oneformer, open_llama, openai, opt, owlvit, pegasus, pegasus_x, perceiver, phobert, pixastruct, plbart, poolformer, prophetnet, qdqbert, rag, realm, reformer, regnet, rembert, resnet, roberta, roberta_prelayernorm, roc_bert, roformer, rwkv, sam, segformer, sew, sew_d, speech_encoder_decoder, speech_to_text, speech_to_text_a, speechta, splinter, squeezebert, swiftformer, swin, swinasr, swinva, switch_transformers, ta, table_transformer, tapas, time_series_transformer, timesformer, timm_backbone, transfo_xl, trocr, tvlt, umta, unispeech, unispeech_sat, upernet, videomae, vilt, vision_encoder_decoder, vision_text_dual_encoder, visual_bert, vit, vit_hybrid, vit_mae, vit_msn, vivit, wavaveca, wavaveca_conformer, wavaveca_phoneme, wavaveca_with_lm, wavlm, whisper, x_clip, xglm, xlm, xlm_prophetnet, xlm_roberta, xlm_roberta_xl, xlnet, xmod, yolos, yoso, )
137
0