code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
"""simple docstring""" import importlib import sys from argparse import REMAINDER, ArgumentParser from pathlib import Path import torch_xla.distributed.xla_multiprocessing as xmp def UpperCamelCase__ ( ): snake_case : List[str] = ArgumentParser( description=( "PyTorch TPU distributed training launch helper utility that will spawn up multiple distributed processes" ) ) # Optional arguments for the launch helper parser.add_argument("--num_cores" , type=lowercase__ , default=1 , help="Number of TPU cores to use (1 or 8)." ) # positional parser.add_argument( "training_script" , type=lowercase__ , help=( "The full path to the single TPU training " "program/script to be launched in parallel, " "followed by all the arguments for the " "training script" ) , ) # rest from the training program parser.add_argument("training_script_args" , nargs=lowercase__ ) return parser.parse_args() def UpperCamelCase__ ( ): snake_case : Optional[Any] = parse_args() # Import training_script as a module. snake_case : Optional[Any] = Path(args.training_script ) sys.path.append(str(script_fpath.parent.resolve() ) ) snake_case : int = script_fpath.stem snake_case : List[Any] = importlib.import_module(lowercase__ ) # Patch sys.argv snake_case : str = [args.training_script] + args.training_script_args + ['''--tpu_num_cores''', str(args.num_cores )] xmp.spawn(mod._mp_fn , args=() , nprocs=args.num_cores ) if __name__ == "__main__": main()
148
import collections import os from typing import List, Optional, Tuple from transformers.utils import is_jieba_available, requires_backends if is_jieba_available(): import jieba from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = {'vocab_file': 'vocab.txt'} lowerCAmelCase_ = { 'vocab_file': { 'openbmb/cpm-ant-10b': 'https://huggingface.co/openbmb/cpm-ant-10b/blob/main/vocab.txt', }, } lowerCAmelCase_ = { 'openbmb/cpm-ant-10b': 10_24, } def snake_case( __magic_name__ ) -> int: '''simple docstring''' lowercase : Optional[int] = collections.OrderedDict() with open(__magic_name__ , '''r''' , encoding='''utf-8''' ) as reader: lowercase : str = reader.readlines() for index, token in enumerate(__magic_name__ ): lowercase : Union[str, Any] = token.rstrip('''\n''' ) lowercase : List[Any] = index return vocab class _A ( _lowerCamelCase ): def __init__( self : List[str] , _A : Any , _A : List[str]="<unk>" , _A : Union[str, Any]=200 ) -> List[Any]: """simple docstring""" lowercase : Optional[int] = vocab lowercase : List[str] = unk_token lowercase : Any = max_input_chars_per_word def __a ( self : List[str] , _A : Tuple ) -> str: """simple docstring""" lowercase : Dict = list(_A ) if len(_A ) > self.max_input_chars_per_word: return [self.unk_token] lowercase : int = 0 lowercase : Dict = [] while start < len(_A ): lowercase : Optional[Any] = len(_A ) lowercase : List[str] = None while start < end: lowercase : List[Any] = ''''''.join(chars[start:end] ) if substr in self.vocab: lowercase : Union[str, Any] = substr break end -= 1 if cur_substr is None: sub_tokens.append(self.unk_token ) start += 1 else: sub_tokens.append(_A ) lowercase : Dict = end return sub_tokens class _A ( _lowerCamelCase ): _UpperCamelCase : List[str] = VOCAB_FILES_NAMES _UpperCamelCase : Optional[int] = PRETRAINED_VOCAB_FILES_MAP _UpperCamelCase : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCamelCase : List[Any] = ['''input_ids''', '''attention_mask'''] _UpperCamelCase : int = False def __init__( self : List[str] , _A : int , _A : Optional[Any]="<d>" , _A : Any="</d>" , _A : Optional[Any]="<s>" , _A : Any="</s>" , _A : Any="<pad>" , _A : List[Any]="<unk>" , _A : Optional[Any]="</n>" , _A : List[str]="</_>" , _A : Optional[Any]="left" , **_A : str , ) -> Tuple: """simple docstring""" requires_backends(self , ['''jieba'''] ) super().__init__( bod_token=_A , eod_token=_A , bos_token=_A , eos_token=_A , pad_token=_A , unk_token=_A , line_token=_A , space_token=_A , padding_side=_A , **_A , ) lowercase : str = bod_token lowercase : str = eod_token lowercase : Any = load_vocab(_A ) lowercase : List[Any] = self.encoder[space_token] lowercase : Tuple = self.encoder[line_token] del self.encoder[space_token] del self.encoder[line_token] lowercase : Any = collections.OrderedDict(sorted(self.encoder.items() , key=lambda _A : x[1] ) ) lowercase : int = {v: k for k, v in self.encoder.items()} lowercase : Optional[Any] = WordpieceTokenizer(vocab=self.encoder , unk_token=self.unk_token ) @property def __a ( self : Dict ) -> Optional[int]: """simple docstring""" return self.encoder[self.bod_token] @property def __a ( self : Optional[int] ) -> Union[str, Any]: """simple docstring""" return self.encoder[self.eod_token] @property def __a ( self : List[str] ) -> List[str]: """simple docstring""" return self.encoder["\n"] @property def __a ( self : List[Any] ) -> int: """simple docstring""" return len(self.encoder ) def __a ( self : Union[str, Any] ) -> Dict: """simple docstring""" return dict(self.encoder , **self.added_tokens_encoder ) def __a ( self : str , _A : List[str] ) -> Tuple: """simple docstring""" lowercase : int = [] for x in jieba.cut(_A , cut_all=_A ): output_tokens.extend(self.wordpiece_tokenizer.tokenize(_A ) ) return output_tokens def __a ( self : List[Any] , _A : Tuple , **_A : Optional[int] ) -> Any: """simple docstring""" lowercase : List[str] = [i for i in token_ids if i >= 0] lowercase : Any = [ x for x in token_ids if x != self.pad_token_id and x != self.eos_token_id and x != self.bos_token_id ] return super()._decode(_A , **_A ) def __a ( self : List[Any] , _A : int ) -> Optional[Any]: """simple docstring""" return token in self.encoder def __a ( self : Dict , _A : List[str] ) -> str: """simple docstring""" return "".join(_A ) def __a ( self : List[str] , _A : List[str] ) -> Any: """simple docstring""" return self.encoder.get(_A , self.encoder.get(self.unk_token ) ) def __a ( self : Tuple , _A : Union[str, Any] ) -> Tuple: """simple docstring""" return self.decoder.get(_A , self.unk_token ) def __a ( self : List[Any] , _A : str , _A : Optional[str] = None ) -> Tuple[str]: """simple docstring""" if os.path.isdir(_A ): lowercase : str = os.path.join( _A , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) else: lowercase : Optional[int] = (filename_prefix + '''-''' if filename_prefix else '''''') + save_directory lowercase : Any = 0 if " " in self.encoder: lowercase : List[Any] = self.encoder[''' '''] del self.encoder[" "] if "\n" in self.encoder: lowercase : Dict = self.encoder['''\n'''] del self.encoder["\n"] lowercase : Union[str, Any] = collections.OrderedDict(sorted(self.encoder.items() , key=lambda _A : x[1] ) ) with open(_A , '''w''' , encoding='''utf-8''' ) as writer: for token, token_index in self.encoder.items(): if index != token_index: logger.warning( f"""Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.""" ''' Please check that the vocabulary is not corrupted!''' ) lowercase : Any = token_index writer.write(token + '''\n''' ) index += 1 return (vocab_file,) def __a ( self : str , _A : List[int] , _A : List[int] = None ) -> List[int]: """simple docstring""" if token_ids_a is None: return [self.bos_token_id] + token_ids_a return [self.bos_token_id] + token_ids_a + [self.bos_token_id] + token_ids_a def __a ( self : int , _A : List[int] , _A : Optional[List[int]] = None , _A : bool = False ) -> List[int]: """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_A , token_ids_a=_A , already_has_special_tokens=_A ) if token_ids_a is not None: return [1] + ([0] * len(_A )) + [1] + ([0] * len(_A )) return [1] + ([0] * len(_A ))
308
0
"""simple docstring""" def lowerCAmelCase__ ( _UpperCamelCase : int ) -> list[int]: """simple docstring""" if length <= 0 or not isinstance(_UpperCamelCase , _UpperCamelCase ): raise ValueError('Length must be a positive integer.' ) return [n * (2 * n - 1) for n in range(_UpperCamelCase )] if __name__ == "__main__": print(hexagonal_numbers(length=5)) print(hexagonal_numbers(length=10))
363
"""simple docstring""" import math import unittest from transformers import BioGptConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification, BioGptModel, BioGptTokenizer, ) from transformers.models.biogpt.modeling_biogpt import BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST class lowerCAmelCase_ : """simple docstring""" def __init__( self , lowerCAmelCase , lowerCAmelCase=13 , lowerCAmelCase=7 , lowerCAmelCase=True , lowerCAmelCase=True , lowerCAmelCase=False , lowerCAmelCase=True , lowerCAmelCase=99 , lowerCAmelCase=32 , lowerCAmelCase=5 , lowerCAmelCase=4 , lowerCAmelCase=37 , lowerCAmelCase="gelu" , lowerCAmelCase=0.1 , lowerCAmelCase=0.1 , lowerCAmelCase=5_12 , lowerCAmelCase=16 , lowerCAmelCase=2 , lowerCAmelCase=0.02 , lowerCAmelCase=3 , lowerCAmelCase=4 , lowerCAmelCase=None , ): """simple docstring""" snake_case = parent snake_case = batch_size snake_case = seq_length snake_case = is_training snake_case = use_input_mask snake_case = use_token_type_ids snake_case = use_labels snake_case = vocab_size snake_case = hidden_size snake_case = num_hidden_layers snake_case = num_attention_heads snake_case = intermediate_size snake_case = hidden_act snake_case = hidden_dropout_prob snake_case = attention_probs_dropout_prob snake_case = max_position_embeddings snake_case = type_vocab_size snake_case = type_sequence_label_size snake_case = initializer_range snake_case = num_labels snake_case = num_choices snake_case = scope def snake_case ( self ): """simple docstring""" snake_case = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case = None if self.use_input_mask: snake_case = random_attention_mask([self.batch_size, self.seq_length] ) snake_case = None if self.use_token_type_ids: snake_case = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) snake_case = None snake_case = None snake_case = None if self.use_labels: snake_case = ids_tensor([self.batch_size] , self.type_sequence_label_size ) snake_case = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) snake_case = ids_tensor([self.batch_size] , self.num_choices ) snake_case = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def snake_case ( self ): """simple docstring""" return BioGptConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowerCAmelCase , initializer_range=self.initializer_range , ) def snake_case ( self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): """simple docstring""" snake_case = BioGptModel(config=lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() snake_case = model(lowerCAmelCase , attention_mask=lowerCAmelCase ) snake_case = model(lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def snake_case ( self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , ): """simple docstring""" snake_case = BioGptForCausalLM(config=lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() snake_case = model(lowerCAmelCase , attention_mask=lowerCAmelCase , token_type_ids=lowerCAmelCase , labels=lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def snake_case ( self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , *lowerCAmelCase ): """simple docstring""" snake_case = BioGptModel(config=lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() # create attention mask snake_case = torch.ones(input_ids.shape , dtype=torch.long , device=lowerCAmelCase ) snake_case = self.seq_length // 2 snake_case = 0 # first forward pass snake_case ,snake_case = model(lowerCAmelCase , attention_mask=lowerCAmelCase ).to_tuple() # create hypothetical next token and extent to next_input_ids snake_case = ids_tensor((self.batch_size, 1) , config.vocab_size ) # change a random masked slice from input_ids snake_case = ids_tensor((1,) , lowerCAmelCase ).item() + 1 snake_case = ids_tensor((self.batch_size, 1) , config.vocab_size ).squeeze(-1 ) snake_case = random_other_next_tokens # append to next input_ids and attn_mask snake_case = torch.cat([input_ids, next_tokens] , dim=-1 ) snake_case = torch.cat( [attn_mask, torch.ones((attn_mask.shape[0], 1) , dtype=torch.long , device=lowerCAmelCase )] , dim=1 , ) # get two different outputs snake_case = model(lowerCAmelCase , attention_mask=lowerCAmelCase )['last_hidden_state'] snake_case = model(lowerCAmelCase , past_key_values=lowerCAmelCase , attention_mask=lowerCAmelCase )['last_hidden_state'] # select random slice snake_case = ids_tensor((1,) , output_from_past.shape[-1] ).item() snake_case = output_from_no_past[:, -1, random_slice_idx].detach() snake_case = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(lowerCAmelCase , lowerCAmelCase , atol=1E-3 ) ) def snake_case ( self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , *lowerCAmelCase ): """simple docstring""" snake_case = BioGptModel(config=lowerCAmelCase ).to(lowerCAmelCase ).eval() snake_case = torch.ones(input_ids.shape , dtype=torch.long , device=lowerCAmelCase ) # first forward pass snake_case = model(lowerCAmelCase , attention_mask=lowerCAmelCase , use_cache=lowerCAmelCase ) snake_case ,snake_case = outputs.to_tuple() # create hypothetical multiple next token and extent to next_input_ids snake_case = ids_tensor((self.batch_size, 3) , config.vocab_size ) snake_case = ids_tensor((self.batch_size, 3) , 2 ) # append to next input_ids and snake_case = torch.cat([input_ids, next_tokens] , dim=-1 ) snake_case = torch.cat([attention_mask, next_attn_mask] , dim=-1 ) snake_case = model(lowerCAmelCase , attention_mask=lowerCAmelCase )['last_hidden_state'] snake_case = model(lowerCAmelCase , attention_mask=lowerCAmelCase , past_key_values=lowerCAmelCase )[ 'last_hidden_state' ] # select random slice snake_case = ids_tensor((1,) , output_from_past.shape[-1] ).item() snake_case = output_from_no_past[:, -3:, random_slice_idx].detach() snake_case = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(lowerCAmelCase , lowerCAmelCase , atol=1E-3 ) ) def snake_case ( self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , *lowerCAmelCase , lowerCAmelCase=False ): """simple docstring""" snake_case = BioGptForCausalLM(lowerCAmelCase ) model.to(lowerCAmelCase ) if gradient_checkpointing: model.gradient_checkpointing_enable() snake_case = model(lowerCAmelCase , labels=lowerCAmelCase ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) result.loss.backward() def snake_case ( self , lowerCAmelCase , *lowerCAmelCase ): """simple docstring""" snake_case = BioGptModel(lowerCAmelCase ) snake_case = model.config.initializer_range / math.sqrt(2 * model.config.num_hidden_layers ) for key in model.state_dict().keys(): if "c_proj" in key and "weight" in key: self.parent.assertLessEqual(abs(torch.std(model.state_dict()[key] ) - model_std ) , 0.0_01 ) self.parent.assertLessEqual(abs(torch.mean(model.state_dict()[key] ) - 0.0 ) , 0.01 ) def snake_case ( self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , *lowerCAmelCase ): """simple docstring""" snake_case = self.num_labels snake_case = BioGptForTokenClassification(lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() snake_case = model(lowerCAmelCase , attention_mask=lowerCAmelCase , token_type_ids=lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def snake_case ( self ): """simple docstring""" snake_case = self.prepare_config_and_inputs() ( ( snake_case ) ,( snake_case ) ,( snake_case ) ,( snake_case ) ,( snake_case ) ,( snake_case ) ,( snake_case ) , ) = config_and_inputs snake_case = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class lowerCAmelCase_ ( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , unittest.TestCase ): """simple docstring""" _lowerCAmelCase : List[Any] = ( (BioGptModel, BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification) if is_torch_available() else () ) _lowerCAmelCase : str = (BioGptForCausalLM,) if is_torch_available() else () _lowerCAmelCase : str = ( { """feature-extraction""": BioGptModel, """text-classification""": BioGptForSequenceClassification, """text-generation""": BioGptForCausalLM, """token-classification""": BioGptForTokenClassification, """zero-shot""": BioGptForSequenceClassification, } if is_torch_available() else {} ) _lowerCAmelCase : List[str] = False def snake_case ( self ): """simple docstring""" snake_case = BioGptModelTester(self ) snake_case = ConfigTester(self , config_class=lowerCAmelCase , hidden_size=37 ) def snake_case ( self ): """simple docstring""" self.config_tester.run_common_tests() def snake_case ( self ): """simple docstring""" snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase ) def snake_case ( self ): """simple docstring""" snake_case = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: snake_case = type self.model_tester.create_and_check_model(*lowerCAmelCase ) def snake_case ( self ): """simple docstring""" snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_model_attention_mask_past(*lowerCAmelCase ) def snake_case ( self ): """simple docstring""" snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_forward_and_backwards(*lowerCAmelCase , gradient_checkpointing=lowerCAmelCase ) def snake_case ( self ): """simple docstring""" snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_model_past_large_inputs(*lowerCAmelCase ) def snake_case ( self ): """simple docstring""" snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_weight_initialization(*lowerCAmelCase ) def snake_case ( self ): """simple docstring""" snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_for_token_classification(*lowerCAmelCase ) @slow def snake_case ( self ): """simple docstring""" snake_case = BioGptForCausalLM.from_pretrained('microsoft/biogpt' ) model.to(lowerCAmelCase ) snake_case = BioGptTokenizer.from_pretrained('microsoft/biogpt' ) snake_case = 'left' # Define PAD Token = EOS Token = 50256 snake_case = tokenizer.eos_token snake_case = model.config.eos_token_id # use different length sentences to test batching snake_case = [ 'Hello, my dog is a little', 'Today, I', ] snake_case = tokenizer(lowerCAmelCase , return_tensors='pt' , padding=lowerCAmelCase ) snake_case = inputs['input_ids'].to(lowerCAmelCase ) snake_case = model.generate( input_ids=lowerCAmelCase , attention_mask=inputs['attention_mask'].to(lowerCAmelCase ) , ) snake_case = tokenizer(sentences[0] , return_tensors='pt' ).input_ids.to(lowerCAmelCase ) snake_case = model.generate(input_ids=lowerCAmelCase ) snake_case = inputs_non_padded.shape[-1] - inputs['attention_mask'][-1].long().sum().cpu().item() snake_case = tokenizer(sentences[1] , return_tensors='pt' ).input_ids.to(lowerCAmelCase ) snake_case = model.generate(input_ids=lowerCAmelCase , max_length=model.config.max_length - num_paddings ) snake_case = tokenizer.batch_decode(lowerCAmelCase , skip_special_tokens=lowerCAmelCase ) snake_case = tokenizer.decode(output_non_padded[0] , skip_special_tokens=lowerCAmelCase ) snake_case = tokenizer.decode(output_padded[0] , skip_special_tokens=lowerCAmelCase ) snake_case = [ 'Hello, my dog is a little bit bigger than a little bit.', 'Today, I have a good idea of how to use the information', ] self.assertListEqual(lowerCAmelCase , lowerCAmelCase ) self.assertListEqual(lowerCAmelCase , [non_padded_sentence, padded_sentence] ) @slow def snake_case ( self ): """simple docstring""" for model_name in BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case = BioGptModel.from_pretrained(lowerCAmelCase ) self.assertIsNotNone(lowerCAmelCase ) def snake_case ( self ): """simple docstring""" snake_case ,snake_case = self.model_tester.prepare_config_and_inputs_for_common() snake_case = 3 snake_case = input_dict['input_ids'] snake_case = input_ids.ne(1 ).to(lowerCAmelCase ) snake_case = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) snake_case = BioGptForSequenceClassification(lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() snake_case = model(lowerCAmelCase , attention_mask=lowerCAmelCase , labels=lowerCAmelCase ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def snake_case ( self ): """simple docstring""" snake_case ,snake_case = self.model_tester.prepare_config_and_inputs_for_common() snake_case = 3 snake_case = 'multi_label_classification' snake_case = input_dict['input_ids'] snake_case = input_ids.ne(1 ).to(lowerCAmelCase ) snake_case = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) snake_case = BioGptForSequenceClassification(lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() snake_case = model(lowerCAmelCase , attention_mask=lowerCAmelCase , labels=lowerCAmelCase ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) @require_torch class lowerCAmelCase_ ( unittest.TestCase ): """simple docstring""" @slow def snake_case ( self ): """simple docstring""" snake_case = BioGptForCausalLM.from_pretrained('microsoft/biogpt' ) snake_case = torch.tensor([[2, 48_05, 9, 6_56, 21]] ) snake_case = model(lowerCAmelCase )[0] snake_case = 4_23_84 snake_case = torch.Size((1, 5, vocab_size) ) self.assertEqual(output.shape , lowerCAmelCase ) snake_case = torch.tensor( [[[-9.52_36, -9.89_18, 10.45_57], [-11.04_69, -9.64_23, 8.10_22], [-8.86_64, -7.88_26, 5.53_25]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , lowerCAmelCase , atol=1E-4 ) ) @slow def snake_case ( self ): """simple docstring""" snake_case = BioGptTokenizer.from_pretrained('microsoft/biogpt' ) snake_case = BioGptForCausalLM.from_pretrained('microsoft/biogpt' ) model.to(lowerCAmelCase ) torch.manual_seed(0 ) snake_case = tokenizer('COVID-19 is' , return_tensors='pt' ).to(lowerCAmelCase ) snake_case = model.generate( **lowerCAmelCase , min_length=1_00 , max_length=10_24 , num_beams=5 , early_stopping=lowerCAmelCase , ) snake_case = tokenizer.decode(output_ids[0] , skip_special_tokens=lowerCAmelCase ) snake_case = ( 'COVID-19 is a global pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the' ' causative agent of coronavirus disease 2019 (COVID-19), which has spread to more than 200 countries and' ' territories, including the United States (US), Canada, Australia, New Zealand, the United Kingdom (UK),' ' and the United States of America (USA), as of March 11, 2020, with more than 800,000 confirmed cases and' ' more than 800,000 deaths.' ) self.assertEqual(lowerCAmelCase , lowerCAmelCase )
149
0
"""simple docstring""" import absl # noqa: F401 # Here to have a nice missing dependency error message early on import nltk # noqa: F401 # Here to have a nice missing dependency error message early on import numpy # noqa: F401 # Here to have a nice missing dependency error message early on import six # noqa: F401 # Here to have a nice missing dependency error message early on from rouge_score import rouge_scorer, scoring import datasets A: Optional[int] = "\\n@inproceedings{lin-2004-rouge,\n title = \"{ROUGE}: A Package for Automatic Evaluation of Summaries\",\n author = \"Lin, Chin-Yew\",\n booktitle = \"Text Summarization Branches Out\",\n month = jul,\n year = \"2004\",\n address = \"Barcelona, Spain\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://www.aclweb.org/anthology/W04-1013\",\n pages = \"74--81\",\n}\n" A: int = "\\nROUGE, or Recall-Oriented Understudy for Gisting Evaluation, is a set of metrics and a software package used for\nevaluating automatic summarization and machine translation software in natural language processing.\nThe metrics compare an automatically produced summary or translation against a reference or a set of references (human-produced) summary or translation.\n\nNote that ROUGE is case insensitive, meaning that upper case letters are treated the same way as lower case letters.\n\nThis metrics is a wrapper around Google Research reimplementation of ROUGE:\nhttps://github.com/google-research/google-research/tree/master/rouge\n" A: Any = "\nCalculates average rouge scores for a list of hypotheses and references\nArgs:\n predictions: list of predictions to score. Each prediction\n should be a string with tokens separated by spaces.\n references: list of reference for each prediction. Each\n reference should be a string with tokens separated by spaces.\n rouge_types: A list of rouge types to calculate.\n Valid names:\n `\"rouge{n}\"` (e.g. `\"rouge1\"`, `\"rouge2\"`) where: {n} is the n-gram based scoring,\n `\"rougeL\"`: Longest common subsequence based scoring.\n `\"rougeLSum\"`: rougeLsum splits text using `\"\n\"`.\n See details in https://github.com/huggingface/datasets/issues/617\n use_stemmer: Bool indicating whether Porter stemmer should be used to strip word suffixes.\n use_aggregator: Return aggregates if this is set to True\nReturns:\n rouge1: rouge_1 (precision, recall, f1),\n rouge2: rouge_2 (precision, recall, f1),\n rougeL: rouge_l (precision, recall, f1),\n rougeLsum: rouge_lsum (precision, recall, f1)\nExamples:\n\n >>> rouge = datasets.load_metric('rouge')\n >>> predictions = [\"hello there\", \"general kenobi\"]\n >>> references = [\"hello there\", \"general kenobi\"]\n >>> results = rouge.compute(predictions=predictions, references=references)\n >>> print(list(results.keys()))\n ['rouge1', 'rouge2', 'rougeL', 'rougeLsum']\n >>> print(results[\"rouge1\"])\n AggregateScore(low=Score(precision=1.0, recall=1.0, fmeasure=1.0), mid=Score(precision=1.0, recall=1.0, fmeasure=1.0), high=Score(precision=1.0, recall=1.0, fmeasure=1.0))\n >>> print(results[\"rouge1\"].mid.fmeasure)\n 1.0\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class SCREAMING_SNAKE_CASE__ ( datasets.Metric ): def SCREAMING_SNAKE_CASE ( self ) -> str: '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""string""" , id="""sequence""" ), """references""": datasets.Value("""string""" , id="""sequence""" ), } ) , codebase_urls=["""https://github.com/google-research/google-research/tree/master/rouge"""] , reference_urls=[ """https://en.wikipedia.org/wiki/ROUGE_(metric)""", """https://github.com/google-research/google-research/tree/master/rouge""", ] , ) def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=False ) -> Union[str, Any]: '''simple docstring''' if rouge_types is None: UpperCAmelCase : int = ["""rouge1""", """rouge2""", """rougeL""", """rougeLsum"""] UpperCAmelCase : str = rouge_scorer.RougeScorer(rouge_types=_SCREAMING_SNAKE_CASE , use_stemmer=_SCREAMING_SNAKE_CASE ) if use_aggregator: UpperCAmelCase : Optional[int] = scoring.BootstrapAggregator() else: UpperCAmelCase : Tuple = [] for ref, pred in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): UpperCAmelCase : int = scorer.score(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if use_aggregator: aggregator.add_scores(_SCREAMING_SNAKE_CASE ) else: scores.append(_SCREAMING_SNAKE_CASE ) if use_aggregator: UpperCAmelCase : Tuple = aggregator.aggregate() else: UpperCAmelCase : List[Any] = {} for key in scores[0]: UpperCAmelCase : Optional[Any] = [score[key] for score in scores] return result
109
"""simple docstring""" import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( SwiftFormerConfig, SwiftFormerForImageClassification, ViTImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() A: Optional[int] = logging.get_logger(__name__) A: Optional[int] = torch.device("cpu") def _snake_case ( ): UpperCAmelCase : List[Any] = """http://images.cocodataset.org/val2017/000000039769.jpg""" UpperCAmelCase : Tuple = Image.open(requests.get(UpperCamelCase , stream=UpperCamelCase ).raw ) return im def _snake_case ( UpperCamelCase : int ): if swiftformer_name == "swiftformer_xs": return torch.tensor([-2.1_7_0_3e0_0, 2.1_1_0_7e0_0, -2.0_8_1_1e0_0, 8.8_6_8_5e-0_1, 2.4_3_6_0e-0_1] ) elif swiftformer_name == "swiftformer_s": return torch.tensor([3.9_6_3_6e-0_1, 2.3_4_7_8e-0_1, -1.6_9_6_3e0_0, -1.7_3_8_1e0_0, -8.6_3_3_7e-0_1] ) elif swiftformer_name == "swiftformer_l1": return torch.tensor([-4.2_7_6_8e-0_1, -4.7_4_2_9e-0_1, -1.0_8_9_7e0_0, -1.0_2_4_8e0_0, 3.5_5_2_3e-0_2] ) elif swiftformer_name == "swiftformer_l3": return torch.tensor([-2.5_3_3_0e-0_1, 2.4_2_1_1e-0_1, -6.0_1_8_5e-0_1, -8.2_7_8_9e-0_1, -6.0_4_4_6e-0_2] ) def _snake_case ( UpperCamelCase : Optional[Any] , UpperCamelCase : List[str] , UpperCamelCase : str ): UpperCAmelCase : int = dct.pop(UpperCamelCase ) UpperCAmelCase : Any = val def _snake_case ( UpperCamelCase : Union[str, Any] ): UpperCAmelCase : Optional[int] = [] for k in state_dict.keys(): UpperCAmelCase : Optional[Any] = k if ".pwconv" in k: UpperCAmelCase : int = k_new.replace(""".pwconv""" , """.point_wise_conv""" ) if ".dwconv" in k: UpperCAmelCase : Tuple = k_new.replace(""".dwconv""" , """.depth_wise_conv""" ) if ".Proj." in k: UpperCAmelCase : List[Any] = k_new.replace(""".Proj.""" , """.proj.""" ) if "patch_embed" in k_new: UpperCAmelCase : Any = k_new.replace("""patch_embed""" , """swiftformer.patch_embed.patch_embedding""" ) if "network" in k_new: UpperCAmelCase : int = k_new.split(""".""" ) if ls[2].isdigit(): UpperCAmelCase : List[Any] = """swiftformer.encoder.network.""" + ls[1] + """.blocks.""" + ls[2] + """.""" + """.""".join(ls[3:] ) else: UpperCAmelCase : Any = k_new.replace("""network""" , """swiftformer.encoder.network""" ) rename_keys.append((k, k_new) ) return rename_keys @torch.no_grad() def _snake_case ( UpperCamelCase : int , UpperCamelCase : int , UpperCamelCase : Optional[int] ): UpperCAmelCase : List[Any] = SwiftFormerConfig() # dataset (ImageNet-21k only or also fine-tuned on ImageNet 2012), patch_size and image_size UpperCAmelCase : Optional[Any] = 1000 UpperCAmelCase : Tuple = """huggingface/label-files""" UpperCAmelCase : List[str] = """imagenet-1k-id2label.json""" UpperCAmelCase : Dict = json.load(open(hf_hub_download(UpperCamelCase , UpperCamelCase , repo_type="""dataset""" ) , """r""" ) ) UpperCAmelCase : Dict = {int(UpperCamelCase ): v for k, v in idalabel.items()} UpperCAmelCase : str = idalabel UpperCAmelCase : Dict = {v: k for k, v in idalabel.items()} # size of the architecture if swiftformer_name == "swiftformer_xs": UpperCAmelCase : Any = [3, 3, 6, 4] UpperCAmelCase : List[str] = [48, 56, 112, 220] elif swiftformer_name == "swiftformer_s": UpperCAmelCase : Dict = [3, 3, 9, 6] UpperCAmelCase : Union[str, Any] = [48, 64, 168, 224] elif swiftformer_name == "swiftformer_l1": UpperCAmelCase : int = [4, 3, 10, 5] UpperCAmelCase : Optional[int] = [48, 96, 192, 384] elif swiftformer_name == "swiftformer_l3": UpperCAmelCase : Union[str, Any] = [4, 4, 12, 6] UpperCAmelCase : List[Any] = [64, 128, 320, 512] # load state_dict of original model, remove and rename some keys if original_ckpt: if original_ckpt.startswith("""https""" ): UpperCAmelCase : List[str] = torch.hub.load_state_dict_from_url(UpperCamelCase , map_location="""cpu""" , check_hash=UpperCamelCase ) else: UpperCAmelCase : Any = torch.load(UpperCamelCase , map_location="""cpu""" ) UpperCAmelCase : Optional[Any] = checkpoint UpperCAmelCase : Dict = create_rename_keys(UpperCamelCase ) for rename_key_src, rename_key_dest in rename_keys: rename_key(UpperCamelCase , UpperCamelCase , UpperCamelCase ) # load HuggingFace model UpperCAmelCase : List[Any] = SwiftFormerForImageClassification(UpperCamelCase ).eval() hf_model.load_state_dict(UpperCamelCase ) # prepare test inputs UpperCAmelCase : Dict = prepare_img() UpperCAmelCase : Tuple = ViTImageProcessor.from_pretrained("""preprocessor_config""" ) UpperCAmelCase : Optional[int] = processor(images=UpperCamelCase , return_tensors="""pt""" ) # compare outputs from both models UpperCAmelCase : Optional[int] = get_expected_output(UpperCamelCase ) UpperCAmelCase : List[str] = hf_model(inputs["""pixel_values"""] ).logits assert hf_logits.shape == torch.Size([1, 1000] ) assert torch.allclose(hf_logits[0, 0:5] , UpperCamelCase , atol=1e-3 ) Path(UpperCamelCase ).mkdir(exist_ok=UpperCamelCase ) print(F"Saving model {swiftformer_name} to {pytorch_dump_folder_path}" ) hf_model.save_pretrained(UpperCamelCase ) if __name__ == "__main__": A: List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--swiftformer_name", default="swiftformer_xs", choices=["swiftformer_xs", "swiftformer_s", "swiftformer_l1", "swiftformer_l3"], type=str, help="Name of the SwiftFormer model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default="./converted_outputs/", type=str, help="Path to the output PyTorch model directory.", ) parser.add_argument("--original_ckpt", default=None, type=str, help="Path to the original model checkpoint.") A: str = parser.parse_args() convert_swiftformer_checkpoint(args.swiftformer_name, args.pytorch_dump_folder_path, args.original_ckpt)
109
1
from __future__ import annotations def SCREAMING_SNAKE_CASE__ ( __a , __a ): snake_case_ : list[list[int]] = [] snake_case_ : list[int] = [] snake_case_ : Dict = 0 snake_case_ : Any = sum(__a ) create_state_space_tree(__a , __a , __a , __a , __a , __a ) return result def SCREAMING_SNAKE_CASE__ ( __a , __a , __a , __a , __a , __a , ): if sum(__a ) > max_sum or (remaining_nums_sum + sum(__a )) < max_sum: return if sum(__a ) == max_sum: result.append(__a ) return for index in range(__a , len(__a ) ): create_state_space_tree( __a , __a , index + 1 , [*path, nums[index]] , __a , remaining_nums_sum - nums[index] , ) _SCREAMING_SNAKE_CASE = [3, 34, 4, 12, 5, 2] _SCREAMING_SNAKE_CASE = 9 _SCREAMING_SNAKE_CASE = generate_sum_of_subsets_soln(nums, max_sum) print(*result)
88
from decimal import Decimal, getcontext from math import ceil, factorial def SCREAMING_SNAKE_CASE__ ( __a ): if not isinstance(__a , __a ): raise TypeError('Undefined for non-integers' ) elif precision < 1: raise ValueError('Undefined for non-natural numbers' ) snake_case_ : Dict = precision snake_case_ : str = ceil(precision / 14 ) snake_case_ : str = 42_68_80 * Decimal(1_00_05 ).sqrt() snake_case_ : Tuple = 1 snake_case_ : int = 13_59_14_09 snake_case_ : Tuple = Decimal(__a ) for k in range(1 , __a ): snake_case_ : List[Any] = factorial(6 * k ) // (factorial(3 * k ) * factorial(__a ) ** 3) linear_term += 5_45_14_01_34 exponential_term *= -26_25_37_41_26_40_76_80_00 partial_sum += Decimal(multinomial_term * linear_term ) / exponential_term return str(constant_term / partial_sum )[:-1] if __name__ == "__main__": _SCREAMING_SNAKE_CASE = 50 print(F'''The first {n} digits of pi is: {pi(n)}''')
88
1
'''simple docstring''' import argparse import pickle import numpy as np import torch from torch import nn from transformers import ReformerConfig, ReformerModelWithLMHead from transformers.utils import logging logging.set_verbosity_info() def __a(SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : List[str]=None ): '''simple docstring''' assert torch_layer.weight.shape == weight.shape, F'''{torch_layer} layer.weight does not match''' _lowerCAmelCase = nn.Parameter(A_ ) if bias is not None: assert torch_layer.bias.shape == bias.shape, F'''{torch_layer} layer.bias does not match''' _lowerCAmelCase = nn.Parameter(A_ ) def __a(SCREAMING_SNAKE_CASE_ : Tuple , SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : Optional[Any] ): '''simple docstring''' _lowerCAmelCase = np.asarray(weights[0] ) _lowerCAmelCase = np.asarray(weights[1] ) _lowerCAmelCase = np.asarray(weights[2] ) set_param( torch_layer.self_attention.query_key , torch.tensor(A_ ).transpose(1 , 2 ).contiguous().view(-1 , A_ ) , ) set_param( torch_layer.self_attention.value , torch.tensor(A_ ).transpose(1 , 2 ).contiguous().view(-1 , A_ ) , ) set_param( torch_layer.output.dense , torch.tensor(A_ ).view(-1 , A_ ).contiguous().transpose(0 , 1 ) , ) def __a(SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : List[str] ): '''simple docstring''' _lowerCAmelCase = np.asarray(weights[0] ) _lowerCAmelCase = np.asarray(weights[1] ) _lowerCAmelCase = np.asarray(weights[2] ) _lowerCAmelCase = np.asarray(weights[3] ) set_param( torch_layer.self_attention.query , torch.tensor(A_ ).transpose(1 , 2 ).contiguous().view(-1 , A_ ) , ) set_param( torch_layer.self_attention.key , torch.tensor(A_ ).transpose(1 , 2 ).contiguous().view(-1 , A_ ) , ) set_param( torch_layer.self_attention.value , torch.tensor(A_ ).transpose(1 , 2 ).contiguous().view(-1 , A_ ) , ) set_param( torch_layer.output.dense , torch.tensor(A_ ).view(-1 , A_ ).contiguous().transpose(0 , 1 ) , ) def __a(SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : List[Any] ): '''simple docstring''' _lowerCAmelCase = weights[0][0][0] _lowerCAmelCase = np.asarray(layer_norm_a[0] ) _lowerCAmelCase = np.asarray(layer_norm_a[1] ) set_param( torch_block.attention.layer_norm , torch.tensor(A_ ) , torch.tensor(A_ ) , ) # lsh weights + output _lowerCAmelCase = weights[0][1] if len(A_ ) < 4: set_layer_weights_in_torch_lsh(A_ , torch_block.attention , A_ ) else: set_layer_weights_in_torch_local(A_ , torch_block.attention , A_ ) # intermediate weighs _lowerCAmelCase = weights[2][0][1][2] # Chunked Feed Forward if len(A_ ) == 4: _lowerCAmelCase = intermediate_weights[2] # layernorm 2 _lowerCAmelCase = np.asarray(intermediate_weights[0][0] ) _lowerCAmelCase = np.asarray(intermediate_weights[0][1] ) set_param( torch_block.feed_forward.layer_norm , torch.tensor(A_ ) , torch.tensor(A_ ) , ) # intermediate dense _lowerCAmelCase = np.asarray(intermediate_weights[1][0] ) _lowerCAmelCase = np.asarray(intermediate_weights[1][1] ) set_param( torch_block.feed_forward.dense.dense , torch.tensor(A_ ).transpose(0 , 1 ).contiguous() , torch.tensor(A_ ) , ) # intermediate out _lowerCAmelCase = np.asarray(intermediate_weights[4][0] ) _lowerCAmelCase = np.asarray(intermediate_weights[4][1] ) set_param( torch_block.feed_forward.output.dense , torch.tensor(A_ ).transpose(0 , 1 ).contiguous() , torch.tensor(A_ ) , ) def __a(SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : Any ): '''simple docstring''' _lowerCAmelCase = torch_model.reformer # word embeds _lowerCAmelCase = np.asarray(weights[1] ) set_param( torch_model_reformer.embeddings.word_embeddings , torch.tensor(A_ ) , ) if isinstance(weights[3] , A_ ): _lowerCAmelCase = torch_model_reformer.embeddings.position_embeddings for emb_idx in range(len(position_embeddings.weights ) ): _lowerCAmelCase = np.asarray(weights[3][emb_idx][0] ) assert ( position_embeddings.weights[emb_idx].shape == emb_weights.shape ), F'''{position_embeddings[emb_idx]} emb does not match''' _lowerCAmelCase = nn.Parameter(torch.tensor(A_ ) ) _lowerCAmelCase = weights[5] assert len(torch_model_reformer.encoder.layers ) * 4 == len( A_ ), "HF and trax model do not have the same number of layers" for layer_idx, layer in enumerate(torch_model_reformer.encoder.layers ): _lowerCAmelCase = trax_layer_weights[4 * layer_idx : 4 * (layer_idx + 1)] set_block_weights_in_torch(A_ , A_ , A_ ) # output layer norm _lowerCAmelCase = np.asarray(weights[7][0] ) _lowerCAmelCase = np.asarray(weights[7][1] ) set_param( torch_model_reformer.encoder.layer_norm , torch.tensor(A_ ) , torch.tensor(A_ ) , ) # output embeddings _lowerCAmelCase = np.asarray(weights[9][0] ) _lowerCAmelCase = np.asarray(weights[9][1] ) set_param( torch_model.lm_head.decoder , torch.tensor(A_ ).transpose(0 , 1 ).contiguous() , torch.tensor(A_ ) , ) def __a(SCREAMING_SNAKE_CASE_ : Tuple , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : List[Any] ): '''simple docstring''' _lowerCAmelCase = ReformerConfig.from_json_file(A_ ) print(F'''Building PyTorch model from configuration: {config}''' ) _lowerCAmelCase = ReformerModelWithLMHead(A_ ) with open(A_ , "rb" ) as f: _lowerCAmelCase = pickle.load(A_ )['''weights'''] set_model_weights_in_torch(A_ , A_ , config.hidden_size ) # Save pytorch-model print(F'''Save PyTorch model to {pytorch_dump_path}''' ) torch.save(model.state_dict() , A_ ) if __name__ == "__main__": _SCREAMING_SNAKE_CASE = argparse.ArgumentParser() # Required parameters parser.add_argument( "--trax_model_pkl_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained Reformer model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) _SCREAMING_SNAKE_CASE = parser.parse_args() convert_trax_checkpoint_to_pytorch(args.trax_model_pkl_path, args.config_file, args.pytorch_dump_path)
158
"""simple docstring""" import numpy as np import torch from torch.utils.data import Dataset, IterableDataset from ..utils.generic import ModelOutput class SCREAMING_SNAKE_CASE ( a_ ): """simple docstring""" def __init__( self : List[Any] ,lowercase_ : Tuple ,lowercase_ : Dict ,lowercase_ : str ): lowerCAmelCase__ : int = dataset lowerCAmelCase__ : List[str] = process lowerCAmelCase__ : Dict = params def __len__( self : Any ): return len(self.dataset ) def __getitem__( self : Union[str, Any] ,lowercase_ : List[Any] ): lowerCAmelCase__ : Union[str, Any] = self.dataset[i] lowerCAmelCase__ : Optional[Any] = self.process(lowercase_ ,**self.params ) return processed class SCREAMING_SNAKE_CASE ( a_ ): """simple docstring""" def __init__( self : Optional[int] ,lowercase_ : Optional[Any] ,lowercase_ : List[Any] ,lowercase_ : Optional[Any] ,lowercase_ : Tuple=None ): lowerCAmelCase__ : List[Any] = loader lowerCAmelCase__ : int = infer lowerCAmelCase__ : List[str] = params if loader_batch_size == 1: # Let's spare some time by deactivating altogether lowerCAmelCase__ : int = None lowerCAmelCase__ : Dict = loader_batch_size # Internal bookkeeping lowerCAmelCase__ : Optional[Any] = None lowerCAmelCase__ : Optional[int] = None def __len__( self : Union[str, Any] ): return len(self.loader ) def __iter__( self : List[Any] ): lowerCAmelCase__ : List[Any] = iter(self.loader ) return self def __lowerCAmelCase ( self : Tuple ): if isinstance(self._loader_batch_data ,torch.Tensor ): # Batch data is simple tensor, just fetch the slice lowerCAmelCase__ : Tuple = self._loader_batch_data[self._loader_batch_index] else: # Batch data is assumed to be BaseModelOutput (or dict) lowerCAmelCase__ : int = {} for k, element in self._loader_batch_data.items(): if isinstance(lowercase_ ,lowercase_ ): # Convert ModelOutput to tuple first lowerCAmelCase__ : List[Any] = element.to_tuple() if isinstance(element[0] ,torch.Tensor ): lowerCAmelCase__ : List[Any] = tuple(el[self._loader_batch_index].unsqueeze(0 ) for el in element ) elif isinstance(element[0] ,np.ndarray ): lowerCAmelCase__ : str = tuple(np.expand_dims(el[self._loader_batch_index] ,0 ) for el in element ) continue if k in {"hidden_states", "past_key_values", "attentions"} and isinstance(lowercase_ ,lowercase_ ): # Those are stored as lists of tensors so need specific unbatching. if isinstance(element[0] ,torch.Tensor ): lowerCAmelCase__ : Dict = tuple(el[self._loader_batch_index].unsqueeze(0 ) for el in element ) elif isinstance(element[0] ,np.ndarray ): lowerCAmelCase__ : Optional[int] = tuple(np.expand_dims(el[self._loader_batch_index] ,0 ) for el in element ) continue if element is None: # This can happen for optional data that get passed around lowerCAmelCase__ : Dict = None elif isinstance(element[self._loader_batch_index] ,torch.Tensor ): # Take correct batch data, but make it looked like batch_size=1 # For compatibility with other methods within transformers lowerCAmelCase__ : str = element[self._loader_batch_index].unsqueeze(0 ) elif isinstance(element[self._loader_batch_index] ,np.ndarray ): # Take correct batch data, but make it looked like batch_size=1 # For compatibility with other methods within transformers lowerCAmelCase__ : Tuple = np.expand_dims(element[self._loader_batch_index] ,0 ) else: # This is typically a list, so no need to `unsqueeze`. lowerCAmelCase__ : int = element[self._loader_batch_index] # Recreate the element by reusing the original class to make it look # batch_size=1 lowerCAmelCase__ : int = self._loader_batch_data.__class__(lowercase_ ) self._loader_batch_index += 1 return result def __lowerCAmelCase ( self : Optional[int] ): if self._loader_batch_index is not None and self._loader_batch_index < self.loader_batch_size: # We are currently unrolling a batch so we just need to return # the current item within a batch return self.loader_batch_item() # We're out of items within a batch lowerCAmelCase__ : Dict = next(self.iterator ) lowerCAmelCase__ : List[Any] = self.infer(lowercase_ ,**self.params ) # We now have a batch of "inferred things". if self.loader_batch_size is not None: # Try to infer the size of the batch if isinstance(lowercase_ ,torch.Tensor ): lowerCAmelCase__ : int = processed else: lowerCAmelCase__ : Union[str, Any] = list(processed.keys() )[0] lowerCAmelCase__ : Union[str, Any] = processed[key] if isinstance(lowercase_ ,lowercase_ ): lowerCAmelCase__ : List[Any] = len(lowercase_ ) else: lowerCAmelCase__ : List[str] = first_tensor.shape[0] if 0 < observed_batch_size < self.loader_batch_size: # could be last batch so we can't unroll as many # elements. lowerCAmelCase__ : Optional[Any] = observed_batch_size # Setting internal index to unwrap the batch lowerCAmelCase__ : str = processed lowerCAmelCase__ : Any = 0 return self.loader_batch_item() else: # We're not unrolling batches return processed class SCREAMING_SNAKE_CASE ( a_ ): """simple docstring""" def __init__( self : int ,lowercase_ : str ,lowercase_ : str ,lowercase_ : Union[str, Any] ,lowercase_ : int=None ): super().__init__(lowercase_ ,lowercase_ ,lowercase_ ) def __iter__( self : List[Any] ): lowerCAmelCase__ : Dict = iter(self.loader ) lowerCAmelCase__ : Tuple = None return self def __lowerCAmelCase ( self : Optional[int] ): if self.subiterator is None: lowerCAmelCase__ : List[Any] = self.infer(next(self.iterator ) ,**self.params ) try: # Try to return next item lowerCAmelCase__ : Optional[int] = next(self.subiterator ) except StopIteration: # When a preprocess iterator ends, we can start lookig at the next item # ChunkIterator will keep feeding until ALL elements of iterator # all have created their subiterator and have been iterating against. # # Another way to look at it, is we're basically flattening lists of lists # into a single list, but with generators lowerCAmelCase__ : Any = self.infer(next(self.iterator ) ,**self.params ) lowerCAmelCase__ : int = next(self.subiterator ) return processed class SCREAMING_SNAKE_CASE ( a_ ): """simple docstring""" def __iter__( self : Tuple ): lowerCAmelCase__ : int = iter(self.loader ) return self def __lowerCAmelCase ( self : List[Any] ): # Extremely similar to PipelineIterator in its unpacking mechanism # BUT, we have an extra required item which is the presence of `is_last` # That is because everything is flattened by `PipelineChunkIterator` we # need to keep track of how to regroup here in the original `process` # boundaries so that `process` and `postprocess` see the same data. # This iterator accumulates items (possibly while unbatching) until it # its a `is_last` and then just passes it on to the caller. lowerCAmelCase__ : Tuple = False lowerCAmelCase__ : str = [] if self._loader_batch_index is not None and self._loader_batch_index < self.loader_batch_size: while self._loader_batch_index < self.loader_batch_size: lowerCAmelCase__ : Dict = self.loader_batch_item() lowerCAmelCase__ : Optional[Any] = item.pop('''is_last''' ) accumulator.append(lowercase_ ) if is_last: return accumulator while not is_last: lowerCAmelCase__ : Any = self.infer(next(self.iterator ) ,**self.params ) if self.loader_batch_size is not None: if isinstance(lowercase_ ,torch.Tensor ): lowerCAmelCase__ : Tuple = processed else: lowerCAmelCase__ : List[Any] = list(processed.keys() )[0] lowerCAmelCase__ : Union[str, Any] = processed[key] if isinstance(lowercase_ ,lowercase_ ): lowerCAmelCase__ : Tuple = len(lowercase_ ) else: lowerCAmelCase__ : str = first_tensor.shape[0] if 0 < observed_batch_size < self.loader_batch_size: # could be last batch so we can't unroll as many # elements. lowerCAmelCase__ : Optional[int] = observed_batch_size lowerCAmelCase__ : Optional[int] = processed lowerCAmelCase__ : Optional[int] = 0 while self._loader_batch_index < self.loader_batch_size: lowerCAmelCase__ : Any = self.loader_batch_item() lowerCAmelCase__ : Optional[Any] = item.pop('''is_last''' ) accumulator.append(lowercase_ ) if is_last: return accumulator else: lowerCAmelCase__ : Dict = processed lowerCAmelCase__ : Tuple = item.pop('''is_last''' ) accumulator.append(lowercase_ ) return accumulator class SCREAMING_SNAKE_CASE ( a_ ): """simple docstring""" def __init__( self : int ,lowercase_ : Dataset ,lowercase_ : str ): lowerCAmelCase__ : List[Any] = dataset lowerCAmelCase__ : List[Any] = key def __len__( self : List[Any] ): return len(self.dataset ) def __getitem__( self : str ,lowercase_ : Union[str, Any] ): return self.dataset[i][self.key] class SCREAMING_SNAKE_CASE ( a_ ): """simple docstring""" def __init__( self : Dict ,lowercase_ : Dataset ,lowercase_ : str ,lowercase_ : str ): lowerCAmelCase__ : str = dataset lowerCAmelCase__ : List[str] = keya lowerCAmelCase__ : Optional[Any] = keya def __len__( self : str ): return len(self.dataset ) def __getitem__( self : Optional[int] ,lowercase_ : Union[str, Any] ): return {"text": self.dataset[i][self.keya], "text_pair": self.dataset[i][self.keya]}
106
0
"""simple docstring""" from typing import Any class SCREAMING_SNAKE_CASE__ : """simple docstring""" def __init__( self , snake_case__ ): """simple docstring""" lowerCAmelCase : Optional[Any] = data lowerCAmelCase : Tuple = None class SCREAMING_SNAKE_CASE__ : """simple docstring""" def __init__( self ): """simple docstring""" lowerCAmelCase : Optional[int] = None def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Optional[Any] = self.head while temp is not None: print(temp.data , end=" " ) lowerCAmelCase : List[str] = temp.next print() def lowercase__ ( self , snake_case__ ): """simple docstring""" lowerCAmelCase : int = Node(snake_case__ ) lowerCAmelCase : Union[str, Any] = self.head lowerCAmelCase : Optional[Any] = new_node def lowercase__ ( self , snake_case__ , snake_case__ ): """simple docstring""" if node_data_a == node_data_a: return else: lowerCAmelCase : str = self.head while node_a is not None and node_a.data != node_data_a: lowerCAmelCase : Union[str, Any] = node_a.next lowerCAmelCase : Any = self.head while node_a is not None and node_a.data != node_data_a: lowerCAmelCase : List[Any] = node_a.next if node_a is None or node_a is None: return lowerCAmelCase , lowerCAmelCase : str = node_a.data, node_a.data if __name__ == "__main__": lowerCAmelCase__ = LinkedList() for i in range(5, 0, -1): ll.push(i) ll.print_list() ll.swap_nodes(1, 4) print('''After swapping''') ll.print_list()
133
"""simple docstring""" import gc import random import unittest import numpy as np import torch from PIL import Image from diffusers import ( DDIMScheduler, KandinskyVaaImgaImgPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class SCREAMING_SNAKE_CASE__ ( lowercase , unittest.TestCase ): """simple docstring""" a : Optional[Any] =KandinskyVaaImgaImgPipeline a : Optional[int] =["image_embeds", "negative_image_embeds", "image"] a : Optional[int] =[ "image_embeds", "negative_image_embeds", "image", ] a : str =[ "generator", "height", "width", "strength", "guidance_scale", "num_inference_steps", "return_dict", "guidance_scale", "num_images_per_prompt", "output_type", "return_dict", ] a : Dict =False @property def lowercase__ ( self ): """simple docstring""" return 32 @property def lowercase__ ( self ): """simple docstring""" return 32 @property def lowercase__ ( self ): """simple docstring""" return self.time_input_dim @property def lowercase__ ( self ): """simple docstring""" return self.time_input_dim * 4 @property def lowercase__ ( self ): """simple docstring""" return 100 @property def lowercase__ ( self ): """simple docstring""" torch.manual_seed(0 ) lowerCAmelCase : List[str] = { "in_channels": 4, # Out channels is double in channels because predicts mean and variance "out_channels": 8, "addition_embed_type": "image", "down_block_types": ("ResnetDownsampleBlock2D", "SimpleCrossAttnDownBlock2D"), "up_block_types": ("SimpleCrossAttnUpBlock2D", "ResnetUpsampleBlock2D"), "mid_block_type": "UNetMidBlock2DSimpleCrossAttn", "block_out_channels": (self.block_out_channels_a, self.block_out_channels_a * 2), "layers_per_block": 1, "encoder_hid_dim": self.text_embedder_hidden_size, "encoder_hid_dim_type": "image_proj", "cross_attention_dim": self.cross_attention_dim, "attention_head_dim": 4, "resnet_time_scale_shift": "scale_shift", "class_embed_type": None, } lowerCAmelCase : int = UNetaDConditionModel(**snake_case__ ) return model @property def lowercase__ ( self ): """simple docstring""" return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def lowercase__ ( self ): """simple docstring""" torch.manual_seed(0 ) lowerCAmelCase : Optional[int] = VQModel(**self.dummy_movq_kwargs ) return model def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Optional[Any] = self.dummy_unet lowerCAmelCase : Optional[int] = self.dummy_movq lowerCAmelCase : List[str] = { "num_train_timesteps": 1_000, "beta_schedule": "linear", "beta_start": 0.00085, "beta_end": 0.012, "clip_sample": False, "set_alpha_to_one": False, "steps_offset": 0, "prediction_type": "epsilon", "thresholding": False, } lowerCAmelCase : Tuple = DDIMScheduler(**snake_case__ ) lowerCAmelCase : Optional[Any] = { "unet": unet, "scheduler": scheduler, "movq": movq, } return components def lowercase__ ( self , snake_case__ , snake_case__=0 ): """simple docstring""" lowerCAmelCase : Any = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(snake_case__ ) ).to(snake_case__ ) lowerCAmelCase : Any = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( snake_case__ ) # create init_image lowerCAmelCase : List[Any] = floats_tensor((1, 3, 64, 64) , rng=random.Random(snake_case__ ) ).to(snake_case__ ) lowerCAmelCase : List[str] = image.cpu().permute(0 , 2 , 3 , 1 )[0] lowerCAmelCase : List[str] = Image.fromarray(np.uinta(snake_case__ ) ).convert("RGB" ).resize((256, 256) ) if str(snake_case__ ).startswith("mps" ): lowerCAmelCase : Optional[int] = torch.manual_seed(snake_case__ ) else: lowerCAmelCase : Optional[int] = torch.Generator(device=snake_case__ ).manual_seed(snake_case__ ) lowerCAmelCase : List[str] = { "image": init_image, "image_embeds": image_embeds, "negative_image_embeds": negative_image_embeds, "generator": generator, "height": 64, "width": 64, "num_inference_steps": 10, "guidance_scale": 7.0, "strength": 0.2, "output_type": "np", } return inputs def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Tuple = "cpu" lowerCAmelCase : Dict = self.get_dummy_components() lowerCAmelCase : Union[str, Any] = self.pipeline_class(**snake_case__ ) lowerCAmelCase : Optional[int] = pipe.to(snake_case__ ) pipe.set_progress_bar_config(disable=snake_case__ ) lowerCAmelCase : int = pipe(**self.get_dummy_inputs(snake_case__ ) ) lowerCAmelCase : Union[str, Any] = output.images lowerCAmelCase : Union[str, Any] = pipe( **self.get_dummy_inputs(snake_case__ ) , return_dict=snake_case__ , )[0] lowerCAmelCase : Optional[Any] = image[0, -3:, -3:, -1] lowerCAmelCase : Optional[int] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowerCAmelCase : int = np.array( [0.6199778, 0.63984406, 0.46145785, 0.62944984, 0.5622215, 0.47306132, 0.47441456, 0.4607606, 0.48719263] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), f""" expected_slice {expected_slice}, but got {image_slice.flatten()}""" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), f""" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}""" @slow @require_torch_gpu class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): """simple docstring""" def lowercase__ ( self ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : List[Any] = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinskyv22/kandinskyv22_img2img_frog.npy" ) lowerCAmelCase : Tuple = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinsky/cat.png" ) lowerCAmelCase : Optional[Any] = "A red cartoon frog, 4k" lowerCAmelCase : int = KandinskyVaaPriorPipeline.from_pretrained( "kandinsky-community/kandinsky-2-2-prior" , torch_dtype=torch.floataa ) pipe_prior.to(snake_case__ ) lowerCAmelCase : List[Any] = KandinskyVaaImgaImgPipeline.from_pretrained( "kandinsky-community/kandinsky-2-2-decoder" , torch_dtype=torch.floataa ) lowerCAmelCase : Tuple = pipeline.to(snake_case__ ) pipeline.set_progress_bar_config(disable=snake_case__ ) lowerCAmelCase : str = torch.Generator(device="cpu" ).manual_seed(0 ) lowerCAmelCase , lowerCAmelCase : Optional[Any] = pipe_prior( snake_case__ , generator=snake_case__ , num_inference_steps=5 , negative_prompt="" , ).to_tuple() lowerCAmelCase : Tuple = pipeline( image=snake_case__ , image_embeds=snake_case__ , negative_image_embeds=snake_case__ , generator=snake_case__ , num_inference_steps=100 , height=768 , width=768 , strength=0.2 , output_type="np" , ) lowerCAmelCase : Optional[Any] = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(snake_case__ , snake_case__ )
133
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available _snake_case = { "configuration_gpt_neo": ["GPT_NEO_PRETRAINED_CONFIG_ARCHIVE_MAP", "GPTNeoConfig", "GPTNeoOnnxConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ "GPT_NEO_PRETRAINED_MODEL_ARCHIVE_LIST", "GPTNeoForCausalLM", "GPTNeoForQuestionAnswering", "GPTNeoForSequenceClassification", "GPTNeoForTokenClassification", "GPTNeoModel", "GPTNeoPreTrainedModel", "load_tf_weights_in_gpt_neo", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ "FlaxGPTNeoForCausalLM", "FlaxGPTNeoModel", "FlaxGPTNeoPreTrainedModel", ] if TYPE_CHECKING: from .configuration_gpt_neo import GPT_NEO_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTNeoConfig, GPTNeoOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_neo import ( GPT_NEO_PRETRAINED_MODEL_ARCHIVE_LIST, GPTNeoForCausalLM, GPTNeoForQuestionAnswering, GPTNeoForSequenceClassification, GPTNeoForTokenClassification, GPTNeoModel, GPTNeoPreTrainedModel, load_tf_weights_in_gpt_neo, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_gpt_neo import FlaxGPTNeoForCausalLM, FlaxGPTNeoModel, FlaxGPTNeoPreTrainedModel else: import sys _snake_case = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
36
"""simple docstring""" def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> list: '''simple docstring''' lowercase_ = len(__lowerCAmelCase ) lowercase_ = [[0] * n for i in range(__lowerCAmelCase )] for i in range(__lowerCAmelCase ): lowercase_ = y_points[i] for i in range(2 , __lowerCAmelCase ): for j in range(__lowerCAmelCase , __lowerCAmelCase ): lowercase_ = ( (xa - x_points[j - i + 1]) * q[j][i - 1] - (xa - x_points[j]) * q[j - 1][i - 1] ) / (x_points[j] - x_points[j - i + 1]) return [q[n - 1][n - 1], q] if __name__ == "__main__": import doctest doctest.testmod()
136
0
import os import sys import unittest _UpperCAmelCase : str = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, """utils""")) import get_test_info # noqa: E402 from get_test_info import ( # noqa: E402 get_model_to_test_mapping, get_model_to_tester_mapping, get_test_to_tester_mapping, ) _UpperCAmelCase : List[Any] = os.path.join("""tests""", """models""", """bert""", """test_modeling_bert.py""") _UpperCAmelCase : Dict = os.path.join("""tests""", """models""", """blip""", """test_modeling_blip.py""") class lowercase ( unittest.TestCase ): def a ( self ): snake_case_ = get_test_to_tester_mapping(snake_case ) snake_case_ = get_test_to_tester_mapping(snake_case ) snake_case_ = {'BertModelTest': 'BertModelTester'} snake_case_ = { 'BlipModelTest': 'BlipModelTester', 'BlipTextImageModelTest': 'BlipTextImageModelsModelTester', 'BlipTextModelTest': 'BlipTextModelTester', 'BlipTextRetrievalModelTest': 'BlipTextRetrievalModelTester', 'BlipVQAModelTest': 'BlipVQAModelTester', 'BlipVisionModelTest': 'BlipVisionModelTester', } self.assertEqual(get_test_info.to_json(snake_case ) , snake_case ) self.assertEqual(get_test_info.to_json(snake_case ) , snake_case ) def a ( self ): snake_case_ = get_model_to_test_mapping(snake_case ) snake_case_ = get_model_to_test_mapping(snake_case ) snake_case_ = { 'BertForMaskedLM': ['BertModelTest'], 'BertForMultipleChoice': ['BertModelTest'], 'BertForNextSentencePrediction': ['BertModelTest'], 'BertForPreTraining': ['BertModelTest'], 'BertForQuestionAnswering': ['BertModelTest'], 'BertForSequenceClassification': ['BertModelTest'], 'BertForTokenClassification': ['BertModelTest'], 'BertLMHeadModel': ['BertModelTest'], 'BertModel': ['BertModelTest'], } snake_case_ = { 'BlipForConditionalGeneration': ['BlipTextImageModelTest'], 'BlipForImageTextRetrieval': ['BlipTextRetrievalModelTest'], 'BlipForQuestionAnswering': ['BlipVQAModelTest'], 'BlipModel': ['BlipModelTest'], 'BlipTextModel': ['BlipTextModelTest'], 'BlipVisionModel': ['BlipVisionModelTest'], } self.assertEqual(get_test_info.to_json(snake_case ) , snake_case ) self.assertEqual(get_test_info.to_json(snake_case ) , snake_case ) def a ( self ): snake_case_ = get_model_to_tester_mapping(snake_case ) snake_case_ = get_model_to_tester_mapping(snake_case ) snake_case_ = { 'BertForMaskedLM': ['BertModelTester'], 'BertForMultipleChoice': ['BertModelTester'], 'BertForNextSentencePrediction': ['BertModelTester'], 'BertForPreTraining': ['BertModelTester'], 'BertForQuestionAnswering': ['BertModelTester'], 'BertForSequenceClassification': ['BertModelTester'], 'BertForTokenClassification': ['BertModelTester'], 'BertLMHeadModel': ['BertModelTester'], 'BertModel': ['BertModelTester'], } snake_case_ = { 'BlipForConditionalGeneration': ['BlipTextImageModelsModelTester'], 'BlipForImageTextRetrieval': ['BlipTextRetrievalModelTester'], 'BlipForQuestionAnswering': ['BlipVQAModelTester'], 'BlipModel': ['BlipModelTester'], 'BlipTextModel': ['BlipTextModelTester'], 'BlipVisionModel': ['BlipVisionModelTester'], } self.assertEqual(get_test_info.to_json(snake_case ) , snake_case ) self.assertEqual(get_test_info.to_json(snake_case ) , snake_case )
364
def __lowerCamelCase ( UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' return int((input_a, input_a).count(0 ) != 0 ) def __lowerCamelCase ( ): '''simple docstring''' assert nand_gate(0 , 0 ) == 1 assert nand_gate(0 , 1 ) == 1 assert nand_gate(1 , 0 ) == 1 assert nand_gate(1 , 1 ) == 0 if __name__ == "__main__": print(nand_gate(0, 0)) print(nand_gate(0, 1)) print(nand_gate(1, 0)) print(nand_gate(1, 1))
200
0
"""simple docstring""" import os import sys from contextlib import contextmanager # Windows only if os.name == "nt": import ctypes import msvcrt # noqa class SCREAMING_SNAKE_CASE__ ( ctypes.Structure ): __lowerCAmelCase : List[Any] = [('''size''', ctypes.c_int), ('''visible''', ctypes.c_byte)] def _snake_case ( ): if os.name == "nt": UpperCAmelCase : Optional[int] = CursorInfo() UpperCAmelCase : List[Any] = ctypes.windll.kernelaa.GetStdHandle(-11 ) ctypes.windll.kernelaa.GetConsoleCursorInfo(snake_case__ , ctypes.byref(snake_case__ ) ) UpperCAmelCase : Optional[int] = False ctypes.windll.kernelaa.SetConsoleCursorInfo(snake_case__ , ctypes.byref(snake_case__ ) ) elif os.name == "posix": sys.stdout.write("""\033[?25l""" ) sys.stdout.flush() def _snake_case ( ): if os.name == "nt": UpperCAmelCase : int = CursorInfo() UpperCAmelCase : Any = ctypes.windll.kernelaa.GetStdHandle(-11 ) ctypes.windll.kernelaa.GetConsoleCursorInfo(snake_case__ , ctypes.byref(snake_case__ ) ) UpperCAmelCase : str = True ctypes.windll.kernelaa.SetConsoleCursorInfo(snake_case__ , ctypes.byref(snake_case__ ) ) elif os.name == "posix": sys.stdout.write("""\033[?25h""" ) sys.stdout.flush() @contextmanager def _snake_case ( ): try: hide_cursor() yield finally: show_cursor()
109
from math import isqrt, loga def snake_case ( snake_case__ :int) -> list[int]: _A = [True] * max_number for i in range(2 , isqrt(max_number - 1) + 1): if is_prime[i]: for j in range(i**2 , snake_case__ , snake_case__): _A = False return [i for i in range(2 , snake_case__) if is_prime[i]] def snake_case ( snake_case__ :int = 800_800 , snake_case__ :int = 800_800) -> int: _A = degree * loga(snake_case__) _A = int(snake_case__) _A = calculate_prime_numbers(snake_case__) _A = 0 _A = 0 _A = len(snake_case__) - 1 while left < right: while ( prime_numbers[right] * loga(prime_numbers[left]) + prime_numbers[left] * loga(prime_numbers[right]) > upper_bound ): right -= 1 hybrid_integers_count += right - left left += 1 return hybrid_integers_count if __name__ == "__main__": print(F'''{solution() = }''')
180
0
from __future__ import annotations def lowercase( UpperCamelCase_ = 4 ) -> list[list[int]]: '''simple docstring''' UpperCamelCase = abs(_snake_case ) or 4 return [[1 + x + y * row_size for x in range(_snake_case )] for y in range(_snake_case )] def lowercase( UpperCamelCase_ ) -> list[list[int]]: '''simple docstring''' return reverse_row(transpose(_snake_case ) ) # OR.. transpose(reverse_column(matrix)) def lowercase( UpperCamelCase_ ) -> list[list[int]]: '''simple docstring''' return reverse_row(reverse_column(_snake_case ) ) # OR.. reverse_column(reverse_row(matrix)) def lowercase( UpperCamelCase_ ) -> list[list[int]]: '''simple docstring''' return reverse_column(transpose(_snake_case ) ) # OR.. transpose(reverse_row(matrix)) def lowercase( UpperCamelCase_ ) -> list[list[int]]: '''simple docstring''' UpperCamelCase = [list(_snake_case ) for x in zip(*_snake_case )] return matrix def lowercase( UpperCamelCase_ ) -> list[list[int]]: '''simple docstring''' UpperCamelCase = matrix[::-1] return matrix def lowercase( UpperCamelCase_ ) -> list[list[int]]: '''simple docstring''' UpperCamelCase = [x[::-1] for x in matrix] return matrix def lowercase( UpperCamelCase_ ) -> None: '''simple docstring''' for i in matrix: print(*_snake_case ) if __name__ == "__main__": _SCREAMING_SNAKE_CASE = make_matrix() print("""\norigin:\n""") print_matrix(matrix) print("""\nrotate 90 counterclockwise:\n""") print_matrix(rotate_aa(matrix)) _SCREAMING_SNAKE_CASE = make_matrix() print("""\norigin:\n""") print_matrix(matrix) print("""\nrotate 180:\n""") print_matrix(rotate_aaa(matrix)) _SCREAMING_SNAKE_CASE = make_matrix() print("""\norigin:\n""") print_matrix(matrix) print("""\nrotate 270 counterclockwise:\n""") print_matrix(rotate_aaa(matrix))
369
def lowercase( UpperCamelCase_ ) -> int: '''simple docstring''' UpperCamelCase = len(UpperCamelCase_ ) UpperCamelCase = len(matrix[0] ) UpperCamelCase = min(UpperCamelCase_ , UpperCamelCase_ ) for row in range(UpperCamelCase_ ): # Check if diagonal element is not zero if matrix[row][row] != 0: # Eliminate all the elements below the diagonal for col in range(row + 1 , UpperCamelCase_ ): UpperCamelCase = matrix[col][row] / matrix[row][row] for i in range(UpperCamelCase_ , UpperCamelCase_ ): matrix[col][i] -= multiplier * matrix[row][i] else: # Find a non-zero diagonal element to swap rows UpperCamelCase = True for i in range(row + 1 , UpperCamelCase_ ): if matrix[i][row] != 0: UpperCamelCase , UpperCamelCase = matrix[i], matrix[row] UpperCamelCase = False break if reduce: rank -= 1 for i in range(UpperCamelCase_ ): UpperCamelCase = matrix[i][rank] # Reduce the row pointer by one to stay on the same row row -= 1 return rank if __name__ == "__main__": import doctest doctest.testmod()
165
0
'''simple docstring''' # Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from accelerate import PartialState from accelerate.utils.operations import broadcast, gather, gather_object, pad_across_processes, reduce def __a ( UpperCAmelCase ) ->Dict: """simple docstring""" return (torch.arange(state.num_processes ) + 1.0 + (state.num_processes * state.process_index)).to(state.device ) def __a ( UpperCAmelCase ) ->List[str]: """simple docstring""" A = create_tensor(UpperCAmelCase ) A = gather(UpperCAmelCase ) assert gathered_tensor.tolist() == list(range(1 , state.num_processes**2 + 1 ) ) def __a ( UpperCAmelCase ) ->Any: """simple docstring""" A = [state.process_index] A = gather_object(UpperCAmelCase ) assert len(UpperCAmelCase ) == state.num_processes, f"""{gathered_obj}, {len(UpperCAmelCase )} != {state.num_processes}""" assert gathered_obj == list(range(state.num_processes ) ), f"""{gathered_obj} != {list(range(state.num_processes ) )}""" def __a ( UpperCAmelCase ) ->Union[str, Any]: """simple docstring""" A = create_tensor(UpperCAmelCase ) A = broadcast(UpperCAmelCase ) assert broadcasted_tensor.shape == torch.Size([state.num_processes] ) assert broadcasted_tensor.tolist() == list(range(1 , state.num_processes + 1 ) ) def __a ( UpperCAmelCase ) ->Union[str, Any]: """simple docstring""" if state.is_main_process: A = torch.arange(state.num_processes + 1 ).to(state.device ) else: A = torch.arange(state.num_processes ).to(state.device ) A = pad_across_processes(UpperCAmelCase ) assert padded_tensor.shape == torch.Size([state.num_processes + 1] ) if not state.is_main_process: assert padded_tensor.tolist() == list(range(0 , state.num_processes ) ) + [0] def __a ( UpperCAmelCase ) ->int: """simple docstring""" if state.num_processes != 2: return A = create_tensor(UpperCAmelCase ) A = reduce(UpperCAmelCase , """sum""" ) A = torch.tensor([4.0, 6] ).to(state.device ) assert torch.allclose(UpperCAmelCase , UpperCAmelCase ), f"""{reduced_tensor} != {truth_tensor}""" def __a ( UpperCAmelCase ) ->List[Any]: """simple docstring""" if state.num_processes != 2: return A = create_tensor(UpperCAmelCase ) A = reduce(UpperCAmelCase , """mean""" ) A = torch.tensor([2.0, 3] ).to(state.device ) assert torch.allclose(UpperCAmelCase , UpperCAmelCase ), f"""{reduced_tensor} != {truth_tensor}""" def __a ( UpperCAmelCase ) ->Dict: """simple docstring""" main() def __a ( ) ->Optional[int]: """simple docstring""" A = PartialState() state.print(f"""State: {state}""" ) state.print("""testing gather""" ) test_gather(UpperCAmelCase ) state.print("""testing gather_object""" ) test_gather_object(UpperCAmelCase ) state.print("""testing broadcast""" ) test_broadcast(UpperCAmelCase ) state.print("""testing pad_across_processes""" ) test_pad_across_processes(UpperCAmelCase ) state.print("""testing reduce_sum""" ) test_reduce_sum(UpperCAmelCase ) state.print("""testing reduce_mean""" ) test_reduce_mean(UpperCAmelCase ) if __name__ == "__main__": main()
258
'''simple docstring''' import json import os import unittest from transformers.models.biogpt.tokenization_biogpt import VOCAB_FILES_NAMES, BioGptTokenizer from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class __UpperCAmelCase ( A__ , unittest.TestCase ): '''simple docstring''' __lowerCAmelCase = BioGptTokenizer __lowerCAmelCase = False def A (self : int ): super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt A = [ """l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """w</w>""", """r</w>""", """t</w>""", """lo""", """low""", """er</w>""", """low</w>""", """lowest</w>""", """newer</w>""", """wider</w>""", """<unk>""", ] A = dict(zip(_lowerCAmelCase , range(len(_lowerCAmelCase ) ) ) ) A = ["""l o 123""", """lo w 1456""", """e r</w> 1789""", """"""] A = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) A = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" ) as fp: fp.write(json.dumps(_lowerCAmelCase ) ) with open(self.merges_file , """w""" ) as fp: fp.write("""\n""".join(_lowerCAmelCase ) ) def A (self : Tuple , _lowerCAmelCase : List[str] ): A = """lower newer""" A = """lower newer""" return input_text, output_text def A (self : List[Any] ): A = BioGptTokenizer(self.vocab_file , self.merges_file ) A = """lower""" A = ["""low""", """er</w>"""] A = tokenizer.tokenize(_lowerCAmelCase ) self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase ) A = tokens + ["""<unk>"""] A = [14, 15, 20] self.assertListEqual(tokenizer.convert_tokens_to_ids(_lowerCAmelCase ) , _lowerCAmelCase ) @slow def A (self : Union[str, Any] ): A = BioGptTokenizer.from_pretrained("""microsoft/biogpt""" ) A = tokenizer.encode("""sequence builders""" , add_special_tokens=_lowerCAmelCase ) A = tokenizer.encode("""multi-sequence build""" , add_special_tokens=_lowerCAmelCase ) A = tokenizer.build_inputs_with_special_tokens(_lowerCAmelCase ) A = tokenizer.build_inputs_with_special_tokens(_lowerCAmelCase , _lowerCAmelCase ) self.assertTrue(encoded_sentence == [2] + text ) self.assertTrue(encoded_pair == [2] + text + [2] + text_a )
258
1
from typing import List import numpy as np def _a ( SCREAMING_SNAKE_CASE : dict ): """simple docstring""" UpperCamelCase__ : List[str] = {key: len(SCREAMING_SNAKE_CASE ) for key, value in gen_kwargs.items() if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )} if len(set(lists_lengths.values() ) ) > 1: raise RuntimeError( ( '''Sharding is ambiguous for this dataset: ''' + '''we found several data sources lists of different lengths, and we don\'t know over which list we should parallelize:\n''' + '''\n'''.join(F"\t- key {key} has length {length}" for key, length in lists_lengths.items() ) + '''\nTo fix this, check the \'gen_kwargs\' and make sure to use lists only for data sources, ''' + '''and use tuples otherwise. In the end there should only be one single list, or several lists with the same length.''' ) ) UpperCamelCase__ : Union[str, Any] = max(lists_lengths.values() , default=0 ) return max(1 , SCREAMING_SNAKE_CASE ) def _a ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int ): """simple docstring""" UpperCamelCase__ : Dict = [] for group_idx in range(SCREAMING_SNAKE_CASE ): UpperCamelCase__ : Optional[Any] = num_shards // max_num_jobs + (group_idx < (num_shards % max_num_jobs)) if num_shards_to_add == 0: break UpperCamelCase__ : Tuple = shards_indices_per_group[-1].stop if shards_indices_per_group else 0 UpperCamelCase__ : Optional[Any] = range(SCREAMING_SNAKE_CASE , start + num_shards_to_add ) shards_indices_per_group.append(SCREAMING_SNAKE_CASE ) return shards_indices_per_group def _a ( SCREAMING_SNAKE_CASE : dict , SCREAMING_SNAKE_CASE : int ): """simple docstring""" UpperCamelCase__ : Any = _number_of_shards_in_gen_kwargs(SCREAMING_SNAKE_CASE ) if num_shards == 1: return [dict(SCREAMING_SNAKE_CASE )] else: UpperCamelCase__ : List[Any] = _distribute_shards(num_shards=SCREAMING_SNAKE_CASE , max_num_jobs=SCREAMING_SNAKE_CASE ) return [ { key: [value[shard_idx] for shard_idx in shard_indices_per_group[group_idx]] if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) else value for key, value in gen_kwargs.items() } for group_idx in range(len(SCREAMING_SNAKE_CASE ) ) ] def _a ( SCREAMING_SNAKE_CASE : List[dict] ): """simple docstring""" return { key: [value for gen_kwargs in gen_kwargs_list for value in gen_kwargs[key]] if isinstance(gen_kwargs_list[0][key] , SCREAMING_SNAKE_CASE ) else gen_kwargs_list[0][key] for key in gen_kwargs_list[0] } def _a ( SCREAMING_SNAKE_CASE : np.random.Generator , SCREAMING_SNAKE_CASE : dict ): """simple docstring""" UpperCamelCase__ : Union[str, Any] = {len(SCREAMING_SNAKE_CASE ) for value in gen_kwargs.values() if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )} UpperCamelCase__ : Dict = {} for size in list_sizes: UpperCamelCase__ : Union[str, Any] = list(range(SCREAMING_SNAKE_CASE ) ) rng.shuffle(indices_per_size[size] ) # Now let's copy the gen_kwargs and shuffle the lists based on their sizes UpperCamelCase__ : str = dict(SCREAMING_SNAKE_CASE ) for key, value in shuffled_kwargs.items(): if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): UpperCamelCase__ : Optional[Any] = [value[i] for i in indices_per_size[len(SCREAMING_SNAKE_CASE )]] return shuffled_kwargs
371
def _a ( SCREAMING_SNAKE_CASE : float , SCREAMING_SNAKE_CASE : float , SCREAMING_SNAKE_CASE : int ): """simple docstring""" if principal <= 0: raise Exception('''Principal borrowed must be > 0''' ) if rate_per_annum < 0: raise Exception('''Rate of interest must be >= 0''' ) if years_to_repay <= 0 or not isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): raise Exception('''Years to repay must be an integer > 0''' ) # Yearly rate is divided by 12 to get monthly rate UpperCamelCase__ : int = rate_per_annum / 12 # Years to repay is multiplied by 12 to get number of payments as payment is monthly UpperCamelCase__ : int = years_to_repay * 12 return ( principal * rate_per_month * (1 + rate_per_month) ** number_of_payments / ((1 + rate_per_month) ** number_of_payments - 1) ) if __name__ == "__main__": import doctest doctest.testmod()
51
0
"""simple docstring""" import pickle import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, XLMRobertaTokenizer, XLMRobertaTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin SCREAMING_SNAKE_CASE__:Tuple = get_tests_dir("""fixtures/test_sentencepiece.model""") @require_sentencepiece @require_tokenizers class snake_case__ ( snake_case_, unittest.TestCase ): _snake_case : int = XLMRobertaTokenizer _snake_case : List[Any] = XLMRobertaTokenizerFast _snake_case : Union[str, Any] = True _snake_case : int = True def a__ ( self ): super().setUp() # We have a SentencePiece fixture for testing __a = XLMRobertaTokenizer(lowerCamelCase , keep_accents=lowerCamelCase ) tokenizer.save_pretrained(self.tmpdirname ) def a__ ( self ): __a = "<pad>" __a = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowerCamelCase ) , lowerCamelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowerCamelCase ) , lowerCamelCase ) def a__ ( self ): __a = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , "<s>" ) self.assertEqual(vocab_keys[1] , "<pad>" ) self.assertEqual(vocab_keys[-1] , "<mask>" ) self.assertEqual(len(lowerCamelCase ) , 1002 ) def a__ ( self ): self.assertEqual(self.get_tokenizer().vocab_size , 1002 ) def a__ ( self ): __a = XLMRobertaTokenizer(lowerCamelCase , keep_accents=lowerCamelCase ) __a = tokenizer.tokenize("This is a test" ) self.assertListEqual(lowerCamelCase , ["▁This", "▁is", "▁a", "▁t", "est"] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(lowerCamelCase ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) __a = tokenizer.tokenize("I was born in 92000, and this is falsé." ) self.assertListEqual( lowerCamelCase , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "é", ".", ] , ) __a = tokenizer.convert_tokens_to_ids(lowerCamelCase ) self.assertListEqual( lowerCamelCase , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] # ^ unk: 2 + 1 = 3 unk: 2 + 1 = 3 ^ ] , ) __a = tokenizer.convert_ids_to_tokens(lowerCamelCase ) self.assertListEqual( lowerCamelCase , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "<unk>", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "<unk>", ".", ] , ) def a__ ( self ): if not self.test_slow_tokenizer: # as we don't have a slow version, we can't compare the outputs between slow and fast versions return __a = (self.rust_tokenizer_class, "hf-internal-testing/tiny-xlm-roberta", {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"{tokenizer.__class__.__name__} ({pretrained_name})" ): __a = self.rust_tokenizer_class.from_pretrained(lowerCamelCase , **lowerCamelCase ) __a = self.tokenizer_class.from_pretrained(lowerCamelCase , **lowerCamelCase ) __a = tempfile.mkdtemp() __a = tokenizer_r.save_pretrained(lowerCamelCase ) __a = tokenizer_p.save_pretrained(lowerCamelCase ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any("tokenizer.json" in f for f in tokenizer_r_files ) ) __a = tuple(f for f in tokenizer_r_files if "tokenizer.json" not in f ) self.assertSequenceEqual(lowerCamelCase , lowerCamelCase ) # Checks everything loads correctly in the same way __a = tokenizer_r.from_pretrained(lowerCamelCase ) __a = tokenizer_p.from_pretrained(lowerCamelCase ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(lowerCamelCase , lowerCamelCase ) ) # self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key)) # self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id")) shutil.rmtree(lowerCamelCase ) # Save tokenizer rust, legacy_format=True __a = tempfile.mkdtemp() __a = tokenizer_r.save_pretrained(lowerCamelCase , legacy_format=lowerCamelCase ) __a = tokenizer_p.save_pretrained(lowerCamelCase ) # Checks it save with the same files self.assertSequenceEqual(lowerCamelCase , lowerCamelCase ) # Checks everything loads correctly in the same way __a = tokenizer_r.from_pretrained(lowerCamelCase ) __a = tokenizer_p.from_pretrained(lowerCamelCase ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(lowerCamelCase , lowerCamelCase ) ) shutil.rmtree(lowerCamelCase ) # Save tokenizer rust, legacy_format=False __a = tempfile.mkdtemp() __a = tokenizer_r.save_pretrained(lowerCamelCase , legacy_format=lowerCamelCase ) __a = tokenizer_p.save_pretrained(lowerCamelCase ) # Checks it saved the tokenizer.json file self.assertTrue(any("tokenizer.json" in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way __a = tokenizer_r.from_pretrained(lowerCamelCase ) __a = tokenizer_p.from_pretrained(lowerCamelCase ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(lowerCamelCase , lowerCamelCase ) ) shutil.rmtree(lowerCamelCase ) @cached_property def a__ ( self ): return XLMRobertaTokenizer.from_pretrained("xlm-roberta-base" ) def a__ ( self ): with tempfile.NamedTemporaryFile() as f: shutil.copyfile(lowerCamelCase , f.name ) __a = XLMRobertaTokenizer(f.name , keep_accents=lowerCamelCase ) __a = pickle.dumps(lowerCamelCase ) pickle.loads(lowerCamelCase ) def a__ ( self ): if not self.test_rust_tokenizer: return __a = self.get_tokenizer() __a = self.get_rust_tokenizer() __a = "I was born in 92000, and this is falsé." __a = tokenizer.tokenize(lowerCamelCase ) __a = rust_tokenizer.tokenize(lowerCamelCase ) self.assertListEqual(lowerCamelCase , lowerCamelCase ) __a = tokenizer.encode(lowerCamelCase , add_special_tokens=lowerCamelCase ) __a = rust_tokenizer.encode(lowerCamelCase , add_special_tokens=lowerCamelCase ) self.assertListEqual(lowerCamelCase , lowerCamelCase ) __a = self.get_rust_tokenizer() __a = tokenizer.encode(lowerCamelCase ) __a = rust_tokenizer.encode(lowerCamelCase ) self.assertListEqual(lowerCamelCase , lowerCamelCase ) @slow def a__ ( self ): __a = "Hello World!" __a = [0, 35378, 6661, 38, 2] # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.large has same tokenizer # xlmr.eval() # xlmr.encode(symbols) self.assertListEqual(lowerCamelCase , self.big_tokenizer.encode(lowerCamelCase ) ) @slow def a__ ( self ): __a = ( "This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) \" [ ] ! : - . Also we will" " add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth" ) __a = [ 0, 3293, 83, 10, 4552, 4989, 7986, 678, 10, 5915, 111, 179459, 124850, 4, 6044, 237, 12, 6, 5, 6, 4, 6780, 705, 15, 1388, 44, 378, 10114, 711, 152, 20, 6, 5, 22376, 642, 1221, 15190, 34153, 450, 5608, 959, 1119, 57702, 136, 186, 47, 1098, 29367, 47, # 4426, # What fairseq tokenizes from "<unk>": "_<" # 3678, # What fairseq tokenizes from "<unk>": "unk" # 2740, # What fairseq tokenizes from "<unk>": ">" 3, # What we tokenize from "<unk>": "<unk>" 6, # Residue from the tokenization: an extra sentencepiece underline 4, 6044, 237, 6284, 50901, 528, 31, 90, 34, 927, 2, ] # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.large has same tokenizer # xlmr.eval() # xlmr.encode(symbols) self.assertListEqual(lowerCamelCase , self.big_tokenizer.encode(lowerCamelCase ) ) @slow def a__ ( self ): # fmt: off __a = {"input_ids": [[0, 11062, 82772, 7, 15, 82772, 538, 51529, 237, 17198, 1290, 206, 9, 215175, 1314, 136, 17198, 1290, 206, 9, 56359, 42, 122009, 9, 16466, 16, 87344, 4537, 9, 4717, 78381, 6, 159958, 7, 15, 24480, 618, 4, 527, 22693, 5428, 4, 2777, 24480, 9874, 4, 43523, 594, 4, 803, 18392, 33189, 18, 4, 43523, 24447, 12399, 100, 24955, 83658, 9626, 144057, 15, 839, 22335, 16, 136, 24955, 83658, 83479, 15, 39102, 724, 16, 678, 645, 2789, 1328, 4589, 42, 122009, 115774, 23, 805, 1328, 46876, 7, 136, 53894, 1940, 42227, 41159, 17721, 823, 425, 4, 27512, 98722, 206, 136, 5531, 4970, 919, 17336, 5, 2], [0, 20080, 618, 83, 82775, 47, 479, 9, 1517, 73, 53894, 333, 80581, 110117, 18811, 5256, 1295, 51, 152526, 297, 7986, 390, 124416, 538, 35431, 214, 98, 15044, 25737, 136, 7108, 43701, 23, 756, 135355, 7, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 581, 63773, 119455, 6, 147797, 88203, 7, 645, 70, 21, 3285, 10269, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=lowerCamelCase , model_name="xlm-roberta-base" , revision="d9d8a8ea5eb94b1c6654ae9249df7793cd2933d3" , )
261
"""simple docstring""" from operator import delitem, getitem, setitem import pytest from data_structures.hashing.hash_map import HashMap def _lowerCamelCase( a ): return getitem, k def _lowerCamelCase( a , a ): return setitem, k, v def _lowerCamelCase( a ): return delitem, k def _lowerCamelCase( a , a , *a ): try: return fun(a , *a ), None except Exception as e: return None, e SCREAMING_SNAKE_CASE__:List[Any] = ( _set("""key_a""", """val_a"""), _set("""key_b""", """val_b"""), ) SCREAMING_SNAKE_CASE__:List[Any] = [ _set("""key_a""", """val_a"""), _set("""key_a""", """val_b"""), ] SCREAMING_SNAKE_CASE__:List[Any] = [ _set("""key_a""", """val_a"""), _set("""key_b""", """val_b"""), _del("""key_a"""), _del("""key_b"""), _set("""key_a""", """val_a"""), _del("""key_a"""), ] SCREAMING_SNAKE_CASE__:Any = [ _get("""key_a"""), _del("""key_a"""), _set("""key_a""", """val_a"""), _del("""key_a"""), _del("""key_a"""), _get("""key_a"""), ] SCREAMING_SNAKE_CASE__:int = [ *[_set(x, x) for x in range(5)], # guaranteed upsize ] SCREAMING_SNAKE_CASE__:Any = [ *[_set(x, x) for x in range(5)], # guaranteed upsize *[_del(x) for x in range(5)], _set("""key_a""", """val_b"""), ] @pytest.mark.parametrize( "operations" , ( pytest.param(_add_items , id="add items" ), pytest.param(_overwrite_items , id="overwrite items" ), pytest.param(_delete_items , id="delete items" ), pytest.param(_access_absent_items , id="access absent items" ), pytest.param(_add_with_resize_up , id="add with resize up" ), pytest.param(_add_with_resize_down , id="add with resize down" ), ) , ) def _lowerCamelCase( a ): __a = HashMap(initial_block_size=4 ) __a = {} for _, (fun, *args) in enumerate(a ): __a , __a = _run_operation(a , a , *a ) __a , __a = _run_operation(a , a , *a ) assert my_res == py_res assert str(a ) == str(a ) assert set(a ) == set(a ) assert len(a ) == len(a ) assert set(my.items() ) == set(py.items() ) def _lowerCamelCase( ): def is_public(a ) -> bool: return not name.startswith("_" ) __a = {name for name in dir({} ) if is_public(a )} __a = {name for name in dir(HashMap() ) if is_public(a )} assert dict_public_names > hash_public_names
261
1
def __lowercase ( _SCREAMING_SNAKE_CASE ) -> bool: '''simple docstring''' if p < 2: raise ValueError("""p should not be less than 2!""" ) elif p == 2: return True SCREAMING_SNAKE_CASE = 4 SCREAMING_SNAKE_CASE = (1 << p) - 1 for _ in range(p - 2 ): SCREAMING_SNAKE_CASE = ((s * s) - 2) % m return s == 0 if __name__ == "__main__": print(lucas_lehmer_test(7)) print(lucas_lehmer_test(1_1))
193
import json import sys def __lowercase ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Any: '''simple docstring''' with open(_SCREAMING_SNAKE_CASE , encoding="""utf-8""" ) as f: SCREAMING_SNAKE_CASE = json.load(_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE = ["""<details>""", """<summary>Show updated benchmarks!</summary>""", """ """] for benchmark_name in sorted(_SCREAMING_SNAKE_CASE ): SCREAMING_SNAKE_CASE = results[benchmark_name] SCREAMING_SNAKE_CASE = benchmark_name.split("""/""" )[-1] output_md.append(F"""### Benchmark: {benchmark_file_name}""" ) SCREAMING_SNAKE_CASE = """| metric |""" SCREAMING_SNAKE_CASE = """|--------|""" SCREAMING_SNAKE_CASE = """| new / old (diff) |""" for metric_name in sorted(_SCREAMING_SNAKE_CASE ): SCREAMING_SNAKE_CASE = benchmark_res[metric_name] SCREAMING_SNAKE_CASE = metric_vals["""new"""] SCREAMING_SNAKE_CASE = metric_vals.get("""old""" , _SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE = metric_vals.get("""diff""" , _SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE = F""" {new_val:f}""" if isinstance(_SCREAMING_SNAKE_CASE , (int, float) ) else """None""" if old_val is not None: val_str += F""" / {old_val:f}""" if isinstance(_SCREAMING_SNAKE_CASE , (int, float) ) else "None" if dif_val is not None: val_str += F""" ({dif_val:f})""" if isinstance(_SCREAMING_SNAKE_CASE , (int, float) ) else "None" title += " " + metric_name + " |" lines += "---|" value += val_str + " |" output_md += [title, lines, value, " "] output_md.append("""</details>""" ) with open(_SCREAMING_SNAKE_CASE , """w""" , encoding="""utf-8""" ) as f: f.writelines("""\n""".join(_SCREAMING_SNAKE_CASE ) ) if __name__ == "__main__": SCREAMING_SNAKE_CASE_ = sys.argv[1] SCREAMING_SNAKE_CASE_ = sys.argv[2] format_json_to_md(input_json_file, output_md_file)
193
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) __a: Optional[int] = {'''configuration_plbart''': ['''PLBART_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''PLBartConfig''']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a: Dict = ['''PLBartTokenizer'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a: int = [ '''PLBART_PRETRAINED_MODEL_ARCHIVE_LIST''', '''PLBartForCausalLM''', '''PLBartForConditionalGeneration''', '''PLBartForSequenceClassification''', '''PLBartModel''', '''PLBartPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_plbart import PLBART_PRETRAINED_CONFIG_ARCHIVE_MAP, PLBartConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_plbart import PLBartTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_plbart import ( PLBART_PRETRAINED_MODEL_ARCHIVE_LIST, PLBartForCausalLM, PLBartForConditionalGeneration, PLBartForSequenceClassification, PLBartModel, PLBartPreTrainedModel, ) else: import sys __a: List[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure)
198
'''simple docstring''' import pickle import numpy as np from matplotlib import pyplot as plt class _lowerCAmelCase : def __init__(self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase=0.2 , lowercase=0.2 ): A_ : str = bp_numa A_ : Optional[int] = bp_numa A_ : Optional[Any] = bp_numa A_ : str = conva_get[:2] A_ : Union[str, Any] = conva_get[2] A_ : Union[str, Any] = size_pa A_ : List[str] = rate_w A_ : Dict = rate_t A_ : Dict = [ np.mat(-1 * np.random.rand(self.conva[0] , self.conva[0] ) + 0.5 ) for i in range(self.conva[1] ) ] A_ : Dict = np.mat(-1 * np.random.rand(self.num_bpa , self.num_bpa ) + 0.5 ) A_ : Tuple = np.mat(-1 * np.random.rand(self.num_bpa , self.num_bpa ) + 0.5 ) A_ : List[Any] = -2 * np.random.rand(self.conva[1] ) + 1 A_ : Dict = -2 * np.random.rand(self.num_bpa ) + 1 A_ : Any = -2 * np.random.rand(self.num_bpa ) + 1 def _a (self , lowercase ): # save model dict with pickle A_ : Union[str, Any] = { """num_bp1""": self.num_bpa, """num_bp2""": self.num_bpa, """num_bp3""": self.num_bpa, """conv1""": self.conva, """step_conv1""": self.step_conva, """size_pooling1""": self.size_poolinga, """rate_weight""": self.rate_weight, """rate_thre""": self.rate_thre, """w_conv1""": self.w_conva, """wkj""": self.wkj, """vji""": self.vji, """thre_conv1""": self.thre_conva, """thre_bp2""": self.thre_bpa, """thre_bp3""": self.thre_bpa, } with open(lowercase , """wb""" ) as f: pickle.dump(lowercase , lowercase ) print(F'Model saved: {save_path}' ) @classmethod def _a (cls , lowercase ): # read saved model with open(lowercase , """rb""" ) as f: A_ : Optional[int] = pickle.load(lowercase ) # noqa: S301 A_ : Optional[int] = model_dic.get("""conv1""" ) conv_get.append(model_dic.get("""step_conv1""" ) ) A_ : Tuple = model_dic.get("""size_pooling1""" ) A_ : Optional[Any] = model_dic.get("""num_bp1""" ) A_ : List[str] = model_dic.get("""num_bp2""" ) A_ : Dict = model_dic.get("""num_bp3""" ) A_ : Tuple = model_dic.get("""rate_weight""" ) A_ : List[Any] = model_dic.get("""rate_thre""" ) # create model instance A_ : List[str] = CNN(lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ) # modify model parameter A_ : int = model_dic.get("""w_conv1""" ) A_ : str = model_dic.get("""wkj""" ) A_ : str = model_dic.get("""vji""" ) A_ : int = model_dic.get("""thre_conv1""" ) A_ : Union[str, Any] = model_dic.get("""thre_bp2""" ) A_ : List[Any] = model_dic.get("""thre_bp3""" ) return conv_ins def _a (self , lowercase ): return 1 / (1 + np.exp(-1 * x )) def _a (self , lowercase ): return round(lowercase , 3 ) def _a (self , lowercase , lowercase , lowercase , lowercase , lowercase ): # convolution process A_ : Dict = convs[0] A_ : Any = convs[1] A_ : Tuple = np.shape(lowercase )[0] # get the data slice of original image data, data_focus A_ : List[str] = [] for i_focus in range(0 , size_data - size_conv + 1 , lowercase ): for j_focus in range(0 , size_data - size_conv + 1 , lowercase ): A_ : List[Any] = data[ i_focus : i_focus + size_conv, j_focus : j_focus + size_conv ] data_focus.append(lowercase ) # calculate the feature map of every single kernel, and saved as list of matrix A_ : int = [] A_ : List[str] = int((size_data - size_conv) / conv_step + 1 ) for i_map in range(lowercase ): A_ : List[Any] = [] for i_focus in range(len(lowercase ) ): A_ : List[str] = ( np.sum(np.multiply(data_focus[i_focus] , w_convs[i_map] ) ) - thre_convs[i_map] ) featuremap.append(self.sig(lowercase ) ) A_ : Tuple = np.asmatrix(lowercase ).reshape( lowercase , lowercase ) data_featuremap.append(lowercase ) # expanding the data slice to One dimenssion A_ : Optional[int] = [] for each_focus in data_focus: focusa_list.extend(self.Expand_Mat(lowercase ) ) A_ : Dict = np.asarray(lowercase ) return focus_list, data_featuremap def _a (self , lowercase , lowercase , lowercase="average_pool" ): # pooling process A_ : Union[str, Any] = len(featuremaps[0] ) A_ : str = int(size_map / size_pooling ) A_ : List[str] = [] for i_map in range(len(lowercase ) ): A_ : Any = featuremaps[i_map] A_ : Any = [] for i_focus in range(0 , lowercase , lowercase ): for j_focus in range(0 , lowercase , lowercase ): A_ : Tuple = feature_map[ i_focus : i_focus + size_pooling, j_focus : j_focus + size_pooling, ] if pooling_type == "average_pool": # average pooling map_pooled.append(np.average(lowercase ) ) elif pooling_type == "max_pooling": # max pooling map_pooled.append(np.max(lowercase ) ) A_ : List[str] = np.asmatrix(lowercase ).reshape(lowercase , lowercase ) featuremap_pooled.append(lowercase ) return featuremap_pooled def _a (self , lowercase ): # expanding three dimension data to one dimension list A_ : List[Any] = [] for i in range(len(lowercase ) ): A_ : Tuple = np.shape(data[i] ) A_ : str = data[i].reshape(1 , shapes[0] * shapes[1] ) A_ : Tuple = data_listed.getA().tolist()[0] data_expanded.extend(lowercase ) A_ : Optional[Any] = np.asarray(lowercase ) return data_expanded def _a (self , lowercase ): # expanding matrix to one dimension list A_ : str = np.asarray(lowercase ) A_ : Any = np.shape(lowercase ) A_ : int = data_mat.reshape(1 , shapes[0] * shapes[1] ) return data_expanded def _a (self , lowercase , lowercase , lowercase , lowercase , lowercase ): A_ : List[str] = [] A_ : Union[str, Any] = 0 for i_map in range(lowercase ): A_ : Union[str, Any] = np.ones((size_map, size_map) ) for i in range(0 , lowercase , lowercase ): for j in range(0 , lowercase , lowercase ): A_ : str = pd_pool[ i_pool ] A_ : Optional[Any] = i_pool + 1 A_ : Union[str, Any] = np.multiply( lowercase , np.multiply(out_map[i_map] , (1 - out_map[i_map]) ) ) pd_all.append(lowercase ) return pd_all def _a (self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase=bool ): # model traning print("""----------------------Start Training-------------------------""" ) print((""" - - Shape: Train_Data """, np.shape(lowercase )) ) print((""" - - Shape: Teach_Data """, np.shape(lowercase )) ) A_ : Optional[Any] = 0 A_ : Dict = [] A_ : List[Any] = 10000 while rp < n_repeat and mse >= error_accuracy: A_ : List[Any] = 0 print(F'-------------Learning Time {rp}--------------' ) for p in range(len(lowercase ) ): # print('------------Learning Image: %d--------------'%p) A_ : Optional[Any] = np.asmatrix(datas_train[p] ) A_ : str = np.asarray(datas_teach[p] ) A_, A_ : Dict = self.convolute( lowercase , self.conva , self.w_conva , self.thre_conva , conv_step=self.step_conva , ) A_ : Any = self.pooling(lowercase , self.size_poolinga ) A_ : int = np.shape(lowercase ) A_ : Union[str, Any] = self._expand(lowercase ) A_ : Dict = data_bp_input A_ : int = np.dot(lowercase , self.vji.T ) - self.thre_bpa A_ : Any = self.sig(lowercase ) A_ : Optional[int] = np.dot(lowercase , self.wkj.T ) - self.thre_bpa A_ : List[str] = self.sig(lowercase ) # --------------Model Leaning ------------------------ # calculate error and gradient--------------- A_ : Optional[Any] = np.multiply( (data_teach - bp_outa) , np.multiply(lowercase , (1 - bp_outa) ) ) A_ : Tuple = np.multiply( np.dot(lowercase , self.wkj ) , np.multiply(lowercase , (1 - bp_outa) ) ) A_ : Union[str, Any] = np.dot(lowercase , self.vji ) A_ : int = pd_i_all / (self.size_poolinga * self.size_poolinga) A_ : str = pd_conva_pooled.T.getA().tolist() A_ : List[Any] = self._calculate_gradient_from_pool( lowercase , lowercase , shape_featuremapa[0] , shape_featuremapa[1] , self.size_poolinga , ) # weight and threshold learning process--------- # convolution layer for k_conv in range(self.conva[1] ): A_ : int = self._expand_mat(pd_conva_all[k_conv] ) A_ : Any = self.rate_weight * np.dot(lowercase , lowercase ) A_ : Union[str, Any] = self.w_conva[k_conv] + delta_w.reshape( (self.conva[0], self.conva[0]) ) A_ : Tuple = ( self.thre_conva[k_conv] - np.sum(pd_conva_all[k_conv] ) * self.rate_thre ) # all connected layer A_ : Optional[int] = self.wkj + pd_k_all.T * bp_outa * self.rate_weight A_ : List[str] = self.vji + pd_j_all.T * bp_outa * self.rate_weight A_ : List[Any] = self.thre_bpa - pd_k_all * self.rate_thre A_ : Optional[Any] = self.thre_bpa - pd_j_all * self.rate_thre # calculate the sum error of all single image A_ : Optional[int] = np.sum(abs(data_teach - bp_outa ) ) error_count += errors # print(' ----Teach ',data_teach) # print(' ----BP_output ',bp_out3) A_ : List[Any] = rp + 1 A_ : Union[str, Any] = error_count / patterns all_mse.append(lowercase ) def draw_error(): A_ : str = [error_accuracy for i in range(int(n_repeat * 1.2 ) )] plt.plot(lowercase , """+-""" ) plt.plot(lowercase , """r--""" ) plt.xlabel("""Learning Times""" ) plt.ylabel("""All_mse""" ) plt.grid(lowercase , alpha=0.5 ) plt.show() print("""------------------Training Complished---------------------""" ) print((""" - - Training epoch: """, rp, F' - - Mse: {mse:.6f}') ) if draw_e: draw_error() return mse def _a (self , lowercase ): # model predict A_ : Tuple = [] print("""-------------------Start Testing-------------------------""" ) print((""" - - Shape: Test_Data """, np.shape(lowercase )) ) for p in range(len(lowercase ) ): A_ : int = np.asmatrix(datas_test[p] ) A_, A_ : str = self.convolute( lowercase , self.conva , self.w_conva , self.thre_conva , conv_step=self.step_conva , ) A_ : Dict = self.pooling(lowercase , self.size_poolinga ) A_ : Tuple = self._expand(lowercase ) A_ : int = data_bp_input A_ : Union[str, Any] = bp_outa * self.vji.T - self.thre_bpa A_ : List[str] = self.sig(lowercase ) A_ : Optional[Any] = bp_outa * self.wkj.T - self.thre_bpa A_ : List[Any] = self.sig(lowercase ) produce_out.extend(bp_outa.getA().tolist() ) A_ : Any = [list(map(self.do_round , lowercase ) ) for each in produce_out] return np.asarray(lowercase ) def _a (self , lowercase ): # return the data of image after convoluting process so we can check it out A_ : Optional[Any] = np.asmatrix(lowercase ) A_, A_ : Optional[Any] = self.convolute( lowercase , self.conva , self.w_conva , self.thre_conva , conv_step=self.step_conva , ) A_ : Union[str, Any] = self.pooling(lowercase , self.size_poolinga ) return data_conveda, data_pooleda if __name__ == "__main__": pass
206
0
import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class lowerCAmelCase ( __UpperCamelCase ): UpperCAmelCase__ = ["""image_processor""", """tokenizer"""] UpperCAmelCase__ = """ViTImageProcessor""" UpperCAmelCase__ = ("""CLIPTokenizer""", """CLIPTokenizerFast""") def __init__( self : Optional[Any] , UpperCAmelCase : Union[str, Any]=None , UpperCAmelCase : Dict=None , **UpperCAmelCase : Tuple ) -> int: lowerCamelCase__ : Optional[Any] = None if "feature_extractor" in kwargs: warnings.warn( 'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`' ' instead.' , UpperCAmelCase , ) lowerCamelCase__ : str = kwargs.pop('feature_extractor' ) lowerCamelCase__ : Optional[int] = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('You need to specify an `image_processor`.' ) if tokenizer is None: raise ValueError('You need to specify a `tokenizer`.' ) super().__init__(UpperCAmelCase , UpperCAmelCase ) def __call__( self : Optional[Any] , UpperCAmelCase : List[Any]=None , UpperCAmelCase : Optional[Any]=None , UpperCAmelCase : Any=None , UpperCAmelCase : Optional[Any]=None , **UpperCAmelCase : int ) -> Optional[Any]: if text is None and visual_prompt is None and images is None: raise ValueError('You have to specify either text, visual prompt or images.' ) if text is not None and visual_prompt is not None: raise ValueError('You have to specify exactly one type of prompt. Either text or visual prompt.' ) if text is not None: lowerCamelCase__ : str = self.tokenizer(UpperCAmelCase , return_tensors=UpperCAmelCase , **UpperCAmelCase ) if visual_prompt is not None: lowerCamelCase__ : Dict = self.image_processor(UpperCAmelCase , return_tensors=UpperCAmelCase , **UpperCAmelCase ) if images is not None: lowerCamelCase__ : Dict = self.image_processor(UpperCAmelCase , return_tensors=UpperCAmelCase , **UpperCAmelCase ) if visual_prompt is not None and images is not None: lowerCamelCase__ : Optional[Any] = { 'pixel_values': image_features.pixel_values, 'conditional_pixel_values': prompt_features.pixel_values, } return encoding elif text is not None and images is not None: lowerCamelCase__ : Optional[int] = image_features.pixel_values return encoding elif text is not None: return encoding elif visual_prompt is not None: lowerCamelCase__ : Any = { 'conditional_pixel_values': prompt_features.pixel_values, } return encoding else: return BatchEncoding(data=dict(**UpperCAmelCase ) , tensor_type=UpperCAmelCase ) def A_ ( self : Optional[Any] , *UpperCAmelCase : Any , **UpperCAmelCase : Tuple ) -> List[Any]: return self.tokenizer.batch_decode(*UpperCAmelCase , **UpperCAmelCase ) def A_ ( self : List[str] , *UpperCAmelCase : List[Any] , **UpperCAmelCase : Optional[int] ) -> Tuple: return self.tokenizer.decode(*UpperCAmelCase , **UpperCAmelCase ) @property def A_ ( self : Optional[Any] ) -> List[str]: warnings.warn( '`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.' , UpperCAmelCase , ) return self.image_processor_class @property def A_ ( self : Dict ) -> List[str]: warnings.warn( '`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.' , UpperCAmelCase , ) return self.image_processor
45
from collections import deque class lowerCAmelCase : def __init__( self : str , UpperCAmelCase : str , UpperCAmelCase : int , UpperCAmelCase : int ) -> None: lowerCamelCase__ : Optional[int] = process_name # process name lowerCamelCase__ : Optional[int] = arrival_time # arrival time of the process # completion time of finished process or last interrupted time lowerCamelCase__ : str = arrival_time lowerCamelCase__ : List[Any] = burst_time # remaining burst time lowerCamelCase__ : Any = 0 # total time of the process wait in ready queue lowerCamelCase__ : Tuple = 0 # time from arrival time to completion time class lowerCAmelCase : def __init__( self : List[str] , UpperCAmelCase : int , UpperCAmelCase : list[int] , UpperCAmelCase : deque[Process] , UpperCAmelCase : int , ) -> None: # total number of mlfq's queues lowerCamelCase__ : Optional[int] = number_of_queues # time slice of queues that round robin algorithm applied lowerCamelCase__ : List[str] = time_slices # unfinished process is in this ready_queue lowerCamelCase__ : List[str] = queue # current time lowerCamelCase__ : Optional[Any] = current_time # finished process is in this sequence queue lowerCamelCase__ : deque[Process] = deque() def A_ ( self : Tuple ) -> list[str]: lowerCamelCase__ : Union[str, Any] = [] for i in range(len(self.finish_queue ) ): sequence.append(self.finish_queue[i].process_name ) return sequence def A_ ( self : Tuple , UpperCAmelCase : list[Process] ) -> list[int]: lowerCamelCase__ : Tuple = [] for i in range(len(UpperCAmelCase ) ): waiting_times.append(queue[i].waiting_time ) return waiting_times def A_ ( self : Union[str, Any] , UpperCAmelCase : list[Process] ) -> list[int]: lowerCamelCase__ : int = [] for i in range(len(UpperCAmelCase ) ): turnaround_times.append(queue[i].turnaround_time ) return turnaround_times def A_ ( self : Optional[int] , UpperCAmelCase : list[Process] ) -> list[int]: lowerCamelCase__ : Tuple = [] for i in range(len(UpperCAmelCase ) ): completion_times.append(queue[i].stop_time ) return completion_times def A_ ( self : str , UpperCAmelCase : deque[Process] ) -> list[int]: return [q.burst_time for q in queue] def A_ ( self : int , UpperCAmelCase : Process ) -> int: process.waiting_time += self.current_time - process.stop_time return process.waiting_time def A_ ( self : Optional[int] , UpperCAmelCase : deque[Process] ) -> deque[Process]: lowerCamelCase__ : deque[Process] = deque() # sequence deque of finished process while len(UpperCAmelCase ) != 0: lowerCamelCase__ : List[Any] = ready_queue.popleft() # current process # if process's arrival time is later than current time, update current time if self.current_time < cp.arrival_time: self.current_time += cp.arrival_time # update waiting time of current process self.update_waiting_time(UpperCAmelCase ) # update current time self.current_time += cp.burst_time # finish the process and set the process's burst-time 0 lowerCamelCase__ : Optional[int] = 0 # set the process's turnaround time because it is finished lowerCamelCase__ : Union[str, Any] = self.current_time - cp.arrival_time # set the completion time lowerCamelCase__ : Any = self.current_time # add the process to queue that has finished queue finished.append(UpperCAmelCase ) self.finish_queue.extend(UpperCAmelCase ) # add finished process to finish queue # FCFS will finish all remaining processes return finished def A_ ( self : str , UpperCAmelCase : deque[Process] , UpperCAmelCase : int ) -> tuple[deque[Process], deque[Process]]: lowerCamelCase__ : deque[Process] = deque() # sequence deque of terminated process # just for 1 cycle and unfinished processes will go back to queue for _ in range(len(UpperCAmelCase ) ): lowerCamelCase__ : Dict = ready_queue.popleft() # current process # if process's arrival time is later than current time, update current time if self.current_time < cp.arrival_time: self.current_time += cp.arrival_time # update waiting time of unfinished processes self.update_waiting_time(UpperCAmelCase ) # if the burst time of process is bigger than time-slice if cp.burst_time > time_slice: # use CPU for only time-slice self.current_time += time_slice # update remaining burst time cp.burst_time -= time_slice # update end point time lowerCamelCase__ : List[str] = self.current_time # locate the process behind the queue because it is not finished ready_queue.append(UpperCAmelCase ) else: # use CPU for remaining burst time self.current_time += cp.burst_time # set burst time 0 because the process is finished lowerCamelCase__ : Any = 0 # set the finish time lowerCamelCase__ : int = self.current_time # update the process' turnaround time because it is finished lowerCamelCase__ : Dict = self.current_time - cp.arrival_time # add the process to queue that has finished queue finished.append(UpperCAmelCase ) self.finish_queue.extend(UpperCAmelCase ) # add finished process to finish queue # return finished processes queue and remaining processes queue return finished, ready_queue def A_ ( self : Dict ) -> deque[Process]: # all queues except last one have round_robin algorithm for i in range(self.number_of_queues - 1 ): lowerCamelCase__ , lowerCamelCase__ : Any = self.round_robin( self.ready_queue , self.time_slices[i] ) # the last queue has first_come_first_served algorithm self.first_come_first_served(self.ready_queue ) return self.finish_queue if __name__ == "__main__": import doctest _UpperCAmelCase : List[str] = Process("""P1""", 0, 53) _UpperCAmelCase : Union[str, Any] = Process("""P2""", 0, 17) _UpperCAmelCase : int = Process("""P3""", 0, 68) _UpperCAmelCase : str = Process("""P4""", 0, 24) _UpperCAmelCase : Optional[int] = 3 _UpperCAmelCase : Optional[Any] = [17, 25] _UpperCAmelCase : Optional[int] = deque([Pa, Pa, Pa, Pa]) if len(time_slices) != number_of_queues - 1: raise SystemExit(0) doctest.testmod(extraglobs={"""queue""": deque([Pa, Pa, Pa, Pa])}) _UpperCAmelCase : Tuple = Process("""P1""", 0, 53) _UpperCAmelCase : Any = Process("""P2""", 0, 17) _UpperCAmelCase : Any = Process("""P3""", 0, 68) _UpperCAmelCase : List[Any] = Process("""P4""", 0, 24) _UpperCAmelCase : List[str] = 3 _UpperCAmelCase : Optional[int] = [17, 25] _UpperCAmelCase : Optional[int] = deque([Pa, Pa, Pa, Pa]) _UpperCAmelCase : Union[str, Any] = MLFQ(number_of_queues, time_slices, queue, 0) _UpperCAmelCase : Dict = mlfq.multi_level_feedback_queue() # print total waiting times of processes(P1, P2, P3, P4) print( F"""waiting time:\ \t\t\t{MLFQ.calculate_waiting_time(mlfq, [Pa, Pa, Pa, Pa])}""" ) # print completion times of processes(P1, P2, P3, P4) print( F"""completion time:\ \t\t{MLFQ.calculate_completion_time(mlfq, [Pa, Pa, Pa, Pa])}""" ) # print total turnaround times of processes(P1, P2, P3, P4) print( F"""turnaround time:\ \t\t{MLFQ.calculate_turnaround_time(mlfq, [Pa, Pa, Pa, Pa])}""" ) # print sequence of finished processes print( F"""sequence of finished processes:\ {mlfq.calculate_sequence_of_finish_queue()}""" )
45
1
"""simple docstring""" import os from typing import List, Optional, Union from ...tokenization_utils import PreTrainedTokenizer from ...tokenization_utils_base import AddedToken from ...utils import logging A__ : int = logging.get_logger(__name__) A__ : List[str] = {'vocab_file': 'vocab.txt'} A__ : List[Any] = { 'vocab_file': { 'facebook/esm2_t6_8M_UR50D': 'https://huggingface.co/facebook/esm2_t6_8M_UR50D/resolve/main/vocab.txt', 'facebook/esm2_t12_35M_UR50D': 'https://huggingface.co/facebook/esm2_t12_35M_UR50D/resolve/main/vocab.txt', }, } A__ : Tuple = { 'facebook/esm2_t6_8M_UR50D': 1_024, 'facebook/esm2_t12_35M_UR50D': 1_024, } def _snake_case ( lowerCamelCase__ : Union[str, Any] ) -> Tuple: with open(lowerCamelCase__ , "r" ) as f: lowerCamelCase_ : Dict =f.read().splitlines() return [l.strip() for l in lines] class lowercase__ ( snake_case__ ): _UpperCAmelCase :Union[str, Any] = VOCAB_FILES_NAMES _UpperCAmelCase :Optional[int] = PRETRAINED_VOCAB_FILES_MAP _UpperCAmelCase :Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCAmelCase :Optional[Any] = ["input_ids", "attention_mask"] def __init__( self : Any , snake_case__ : List[str] , snake_case__ : Optional[int]="<unk>" , snake_case__ : int="<cls>" , snake_case__ : Optional[Any]="<pad>" , snake_case__ : Dict="<mask>" , snake_case__ : int="<eos>" , **snake_case__ : Any , ): super().__init__(**snake_case__ ) lowerCamelCase_ : Any =load_vocab_file(snake_case__ ) lowerCamelCase_ : Any =dict(enumerate(self.all_tokens ) ) lowerCamelCase_ : Union[str, Any] ={tok: ind for ind, tok in enumerate(self.all_tokens )} lowerCamelCase_ : List[Any] =unk_token lowerCamelCase_ : str =cls_token lowerCamelCase_ : Any =pad_token lowerCamelCase_ : str =mask_token lowerCamelCase_ : List[Any] =eos_token lowerCamelCase_ : int =self.all_tokens self._create_trie(self.unique_no_split_tokens ) def UpperCAmelCase__ ( self : Dict , snake_case__ : int ): return self._id_to_token.get(snake_case__ , self.unk_token ) def UpperCAmelCase__ ( self : Any , snake_case__ : str ): return self._token_to_id.get(snake_case__ , self._token_to_id.get(self.unk_token ) ) def UpperCAmelCase__ ( self : List[Any] , snake_case__ : Union[str, Any] , **snake_case__ : Union[str, Any] ): return text.split() def UpperCAmelCase__ ( self : List[Any] , snake_case__ : Optional[int]=False ): return len(self._id_to_token ) def UpperCAmelCase__ ( self : List[str] ): return {token: i for i, token in enumerate(self.all_tokens )} def UpperCAmelCase__ ( self : Any , snake_case__ : str ): return self._token_to_id.get(snake_case__ , self._token_to_id.get(self.unk_token ) ) def UpperCAmelCase__ ( self : Optional[int] , snake_case__ : int ): return self._id_to_token.get(snake_case__ , self.unk_token ) def UpperCAmelCase__ ( self : Optional[Any] , snake_case__ : List[int] , snake_case__ : Optional[List[int]] = None ): lowerCamelCase_ : List[str] =[self.cls_token_id] lowerCamelCase_ : List[Any] =[self.eos_token_id] # No sep token in ESM vocabulary if token_ids_a is None: if self.eos_token_id is None: return cls + token_ids_a else: return cls + token_ids_a + sep elif self.eos_token_id is None: raise ValueError("Cannot tokenize multiple sequences when EOS token is not set!" ) return cls + token_ids_a + sep + token_ids_a + sep # Multiple inputs always have an EOS token def UpperCAmelCase__ ( self : int , snake_case__ : List , snake_case__ : Optional[List] = None , snake_case__ : bool = False ): if already_has_special_tokens: if token_ids_a is not None: raise ValueError( "You should not supply a second sequence if the provided sequence of " "ids is already formatted with special tokens for the model." ) return [1 if token in self.all_special_ids else 0 for token in token_ids_a] lowerCamelCase_ : Dict =[1] + ([0] * len(snake_case__ )) + [1] if token_ids_a is not None: mask += [0] * len(snake_case__ ) + [1] return mask def UpperCAmelCase__ ( self : Any , snake_case__ : Union[str, Any] , snake_case__ : Dict ): lowerCamelCase_ : Optional[int] =os.path.join(snake_case__ , (filename_prefix + "-" if filename_prefix else "") + "vocab.txt" ) with open(snake_case__ , "w" ) as f: f.write("\n".join(self.all_tokens ) ) return (vocab_file,) @property def UpperCAmelCase__ ( self : Union[str, Any] ): return self.get_vocab_size(with_added_tokens=snake_case__ ) def UpperCAmelCase__ ( self : Union[str, Any] , snake_case__ : Union[List[str], List[AddedToken]] , snake_case__ : bool = False ): return super()._add_tokens(snake_case__ , special_tokens=snake_case__ )
144
"""simple docstring""" def _snake_case ( lowerCamelCase__ : str ) -> str: if not all(char in "01" for char in bin_string ): raise ValueError("Non-binary value was passed to the function" ) if not bin_string: raise ValueError("Empty string was passed to the function" ) lowerCamelCase_ : Optional[Any] ="" while len(lowerCamelCase__ ) % 3 != 0: lowerCamelCase_ : Any ="0" + bin_string lowerCamelCase_ : int =[ bin_string[index : index + 3] for index in range(len(lowerCamelCase__ ) ) if index % 3 == 0 ] for bin_group in bin_string_in_3_list: lowerCamelCase_ : int =0 for index, val in enumerate(lowerCamelCase__ ): oct_val += int(2 ** (2 - index) * int(lowerCamelCase__ ) ) oct_string += str(lowerCamelCase__ ) return oct_string if __name__ == "__main__": from doctest import testmod testmod()
144
1
from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase__ : List[Any] = logging.get_logger(__name__) lowercase__ : Optional[Any] = { 'studio-ousia/luke-base': 'https://huggingface.co/studio-ousia/luke-base/resolve/main/config.json', 'studio-ousia/luke-large': 'https://huggingface.co/studio-ousia/luke-large/resolve/main/config.json', } class a__ ( _A ): a : Optional[int] = """luke""" def __init__( self , A=50267 , A=500000 , A=768 , A=256 , A=12 , A=12 , A=3072 , A="gelu" , A=0.1 , A=0.1 , A=512 , A=2 , A=0.0_2 , A=1e-12 , A=True , A=None , A=1 , A=0 , A=2 , **A , ) -> Optional[Any]: '''simple docstring''' super().__init__(pad_token_id=__SCREAMING_SNAKE_CASE , bos_token_id=__SCREAMING_SNAKE_CASE , eos_token_id=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) a = vocab_size a = entity_vocab_size a = hidden_size a = entity_emb_size a = num_hidden_layers a = num_attention_heads a = hidden_act a = intermediate_size a = hidden_dropout_prob a = attention_probs_dropout_prob a = max_position_embeddings a = type_vocab_size a = initializer_range a = layer_norm_eps a = use_entity_aware_attention a = classifier_dropout
363
lowercase__ : str = "\n# Installazione di Transformers\n! pip install transformers datasets\n# Per installare dalla fonte invece dell'ultima versione rilasciata, commenta il comando sopra e\n# rimuovi la modalità commento al comando seguente.\n# ! pip install git+https://github.com/huggingface/transformers.git\n" lowercase__ : Any = [{"type": "code", "content": INSTALL_CONTENT}] lowercase__ : Any = { "{processor_class}": "FakeProcessorClass", "{model_class}": "FakeModelClass", "{object_class}": "FakeObjectClass", }
180
0
"""simple docstring""" import unittest from datasets import load_dataset from transformers import BloomTokenizerFast from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class snake_case ( __snake_case, unittest.TestCase ): SCREAMING_SNAKE_CASE_ : List[str] = None SCREAMING_SNAKE_CASE_ : Tuple = BloomTokenizerFast SCREAMING_SNAKE_CASE_ : str = BloomTokenizerFast SCREAMING_SNAKE_CASE_ : int = True SCREAMING_SNAKE_CASE_ : Tuple = False SCREAMING_SNAKE_CASE_ : int = """tokenizer_file""" SCREAMING_SNAKE_CASE_ : List[str] = {"""bos_token""": """<s>""", """eos_token""": """</s>""", """unk_token""": """<unk>""", """pad_token""": """<pad>"""} def lowercase_ ( self : List[Any])-> Dict: '''simple docstring''' super().setUp() __lowerCAmelCase: Optional[Any] = BloomTokenizerFast.from_pretrained("bigscience/tokenizer") tokenizer.save_pretrained(self.tmpdirname) def lowercase_ ( self : List[Any] , **UpperCamelCase__ : Union[str, Any])-> Optional[Any]: '''simple docstring''' kwargs.update(self.special_tokens_map) return BloomTokenizerFast.from_pretrained(self.tmpdirname , **UpperCamelCase__) def lowercase_ ( self : Union[str, Any])-> Union[str, Any]: '''simple docstring''' __lowerCAmelCase: str = self.get_rust_tokenizer() __lowerCAmelCase: int = ["The quick brown fox</s>", "jumps over the lazy dog</s>"] __lowerCAmelCase: List[str] = [[2_1_7_5, 2_3_7_1_4, 7_3_1_7_3, 1_4_4_2_5_2, 2], [7_7, 1_3_2_6_1_9, 3_4_7_8, 3_6_8, 1_0_9_5_8_6, 3_5_4_3_3, 2]] __lowerCAmelCase: List[str] = tokenizer.batch_encode_plus(UpperCamelCase__)["input_ids"] self.assertListEqual(UpperCamelCase__ , UpperCamelCase__) __lowerCAmelCase: List[Any] = tokenizer.batch_decode(UpperCamelCase__) self.assertListEqual(UpperCamelCase__ , UpperCamelCase__) def lowercase_ ( self : Optional[Any] , UpperCamelCase__ : Tuple=6)-> Tuple: '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})"): __lowerCAmelCase: Optional[Any] = self.rust_tokenizer_class.from_pretrained(UpperCamelCase__ , **UpperCamelCase__) # tokenizer_r.pad_token = None # Hotfixing padding = None # Simple input __lowerCAmelCase: Dict = "This is a simple input" __lowerCAmelCase: str = ["This is a simple input 1", "This is a simple input 2"] __lowerCAmelCase: int = ("This is a simple input", "This is a pair") __lowerCAmelCase: Union[str, Any] = [ ("This is a simple input 1", "This is a simple input 2"), ("This is a simple pair 1", "This is a simple pair 2"), ] # Simple input tests try: tokenizer_r.encode(UpperCamelCase__ , max_length=UpperCamelCase__) tokenizer_r.encode_plus(UpperCamelCase__ , max_length=UpperCamelCase__) tokenizer_r.batch_encode_plus(UpperCamelCase__ , max_length=UpperCamelCase__) tokenizer_r.encode(UpperCamelCase__ , max_length=UpperCamelCase__) tokenizer_r.batch_encode_plus(UpperCamelCase__ , max_length=UpperCamelCase__) except ValueError: self.fail("Bloom Tokenizer should be able to deal with padding") __lowerCAmelCase: Tuple = None # Hotfixing padding = None self.assertRaises(UpperCamelCase__ , tokenizer_r.encode , UpperCamelCase__ , max_length=UpperCamelCase__ , padding="max_length") # Simple input self.assertRaises(UpperCamelCase__ , tokenizer_r.encode_plus , UpperCamelCase__ , max_length=UpperCamelCase__ , padding="max_length") # Simple input self.assertRaises( UpperCamelCase__ , tokenizer_r.batch_encode_plus , UpperCamelCase__ , max_length=UpperCamelCase__ , padding="max_length" , ) # Pair input self.assertRaises(UpperCamelCase__ , tokenizer_r.encode , UpperCamelCase__ , max_length=UpperCamelCase__ , padding="max_length") # Pair input self.assertRaises(UpperCamelCase__ , tokenizer_r.encode_plus , UpperCamelCase__ , max_length=UpperCamelCase__ , padding="max_length") # Pair input self.assertRaises( UpperCamelCase__ , tokenizer_r.batch_encode_plus , UpperCamelCase__ , max_length=UpperCamelCase__ , padding="max_length" , ) def lowercase_ ( self : Optional[Any])-> List[str]: '''simple docstring''' __lowerCAmelCase: Dict = self.get_rust_tokenizer() __lowerCAmelCase: List[str] = load_dataset("xnli" , "all_languages" , split="test" , streaming=UpperCamelCase__) __lowerCAmelCase: Union[str, Any] = next(iter(UpperCamelCase__))["premise"] # pick up one data __lowerCAmelCase: Any = list(sample_data.values()) __lowerCAmelCase: int = list(map(tokenizer.encode , UpperCamelCase__)) __lowerCAmelCase: str = [tokenizer.decode(UpperCamelCase__ , clean_up_tokenization_spaces=UpperCamelCase__) for x in output_tokens] self.assertListEqual(UpperCamelCase__ , UpperCamelCase__) def lowercase_ ( self : Optional[int])-> str: '''simple docstring''' self.assertGreaterEqual(len(self.tokenizer_class.pretrained_vocab_files_map) , 1) self.assertGreaterEqual(len(list(self.tokenizer_class.pretrained_vocab_files_map.values())[0]) , 1)
217
"""simple docstring""" import copy from dataclasses import dataclass from pathlib import Path from typing import Dict, Optional, Union @dataclass class snake_case : SCREAMING_SNAKE_CASE_ : Optional[Union[str, Path]] = None SCREAMING_SNAKE_CASE_ : bool = False SCREAMING_SNAKE_CASE_ : bool = False SCREAMING_SNAKE_CASE_ : bool = False SCREAMING_SNAKE_CASE_ : Optional[Dict] = None SCREAMING_SNAKE_CASE_ : Optional[str] = None SCREAMING_SNAKE_CASE_ : bool = False SCREAMING_SNAKE_CASE_ : bool = False SCREAMING_SNAKE_CASE_ : bool = False SCREAMING_SNAKE_CASE_ : bool = True SCREAMING_SNAKE_CASE_ : Optional[int] = None SCREAMING_SNAKE_CASE_ : int = 1 SCREAMING_SNAKE_CASE_ : Optional[Union[str, bool]] = None SCREAMING_SNAKE_CASE_ : bool = False SCREAMING_SNAKE_CASE_ : Optional[Dict] = None SCREAMING_SNAKE_CASE_ : Optional[str] = None def lowercase_ ( self : str)-> "DownloadConfig": '''simple docstring''' return self.__class__(**{k: copy.deepcopy(UpperCamelCase__) for k, v in self.__dict__.items()})
217
1
from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase_ = logging.get_logger(__name__) lowercase_ = { "facebook/vit-mae-base": "https://huggingface.co/facebook/vit-mae-base/resolve/main/config.json", # See all ViT MAE models at https://huggingface.co/models?filter=vit-mae } class A ( __snake_case ): lowerCamelCase = """vit_mae""" def __init__( self : Dict,lowercase_ : str=7_6_8,lowercase_ : Any=1_2,lowercase_ : Optional[int]=1_2,lowercase_ : str=3_0_7_2,lowercase_ : Tuple="gelu",lowercase_ : Optional[int]=0.0,lowercase_ : Tuple=0.0,lowercase_ : Optional[Any]=0.02,lowercase_ : Union[str, Any]=1E-12,lowercase_ : Dict=2_2_4,lowercase_ : Optional[Any]=1_6,lowercase_ : List[Any]=3,lowercase_ : List[Any]=True,lowercase_ : Optional[int]=1_6,lowercase_ : List[Any]=5_1_2,lowercase_ : str=8,lowercase_ : str=2_0_4_8,lowercase_ : int=0.75,lowercase_ : Tuple=False,**lowercase_ : List[str],)-> int: '''simple docstring''' super().__init__(**UpperCamelCase__ ) A__ = hidden_size A__ = num_hidden_layers A__ = num_attention_heads A__ = intermediate_size A__ = hidden_act A__ = hidden_dropout_prob A__ = attention_probs_dropout_prob A__ = initializer_range A__ = layer_norm_eps A__ = image_size A__ = patch_size A__ = num_channels A__ = qkv_bias A__ = decoder_num_attention_heads A__ = decoder_hidden_size A__ = decoder_num_hidden_layers A__ = decoder_intermediate_size A__ = mask_ratio A__ = norm_pix_loss
370
import comet # From: unbabel-comet import torch import datasets lowercase_ = datasets.logging.get_logger(__name__) lowercase_ = "\\n@inproceedings{rei-EtAl:2020:WMT,\n author = {Rei, Ricardo and Stewart, Craig and Farinha, Ana C and Lavie, Alon},\n title = {Unbabel's Participation in the WMT20 Metrics Shared Task},\n booktitle = {Proceedings of the Fifth Conference on Machine Translation},\n month = {November},\n year = {2020},\n address = {Online},\n publisher = {Association for Computational Linguistics},\n pages = {909--918},\n}\n@inproceedings{rei-etal-2020-comet,\n title = \"{COMET}: A Neural Framework for {MT} Evaluation\",\n author = \"Rei, Ricardo and\n Stewart, Craig and\n Farinha, Ana C and\n Lavie, Alon\",\n booktitle = \"Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)\",\n month = nov,\n year = \"2020\",\n address = \"Online\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://www.aclweb.org/anthology/2020.emnlp-main.213\",\n pages = \"2685--2702\",\n}\n" lowercase_ = "\\nCrosslingual Optimized Metric for Evaluation of Translation (COMET) is an open-source framework used to train Machine Translation metrics that achieve high levels of correlation with different types of human judgments (HTER, DA's or MQM).\nWith the release of the framework the authors also released fully trained models that were used to compete in the WMT20 Metrics Shared Task achieving SOTA in that years competition.\n\nSee the [README.md] file at https://unbabel.github.io/COMET/html/models.html for more information.\n" lowercase_ = "\nCOMET score.\n\nArgs:\n\n`sources` (list of str): Source sentences\n`predictions` (list of str): candidate translations\n`references` (list of str): reference translations\n`cuda` (bool): If set to True, runs COMET using GPU\n`show_progress` (bool): Shows progress\n`model`: COMET model to be used. Will default to `wmt-large-da-estimator-1719` if None.\n\nReturns:\n `samples`: List of dictionaries with `src`, `mt`, `ref` and `score`.\n `scores`: List of scores.\n\nExamples:\n\n >>> comet_metric = datasets.load_metric('comet')\n >>> # comet_metric = load_metric('comet', 'wmt20-comet-da') # you can also choose which model to use\n >>> source = [\"Dem Feuer konnte Einhalt geboten werden\", \"Schulen und Kindergärten wurden eröffnet.\"]\n >>> hypothesis = [\"The fire could be stopped\", \"Schools and kindergartens were open\"]\n >>> reference = [\"They were able to control the fire.\", \"Schools and kindergartens opened\"]\n >>> results = comet_metric.compute(predictions=hypothesis, references=reference, sources=source)\n >>> print([round(v, 2) for v in results[\"scores\"]])\n [0.19, 0.92]\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class A ( datasets.Metric ): """simple docstring""" def snake_case__ ( self : Optional[Any] )-> str: '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION,citation=_CITATION,homepage='https://unbabel.github.io/COMET/html/index.html',inputs_description=_KWARGS_DESCRIPTION,features=datasets.Features( { 'sources': datasets.Value('string',id='sequence' ), 'predictions': datasets.Value('string',id='sequence' ), 'references': datasets.Value('string',id='sequence' ), } ),codebase_urls=['https://github.com/Unbabel/COMET'],reference_urls=[ 'https://github.com/Unbabel/COMET', 'https://www.aclweb.org/anthology/2020.emnlp-main.213/', 'http://www.statmt.org/wmt20/pdf/2020.wmt-1.101.pdf6', ],) def snake_case__ ( self : Optional[Any],lowercase_ : Dict )-> str: '''simple docstring''' if self.config_name == "default": A__ = comet.load_from_checkpoint(comet.download_model('wmt20-comet-da' ) ) else: A__ = comet.load_from_checkpoint(comet.download_model(self.config_name ) ) def snake_case__ ( self : List[Any],lowercase_ : Dict,lowercase_ : int,lowercase_ : List[Any],lowercase_ : Tuple=None,lowercase_ : List[str]=False )-> int: '''simple docstring''' if gpus is None: A__ = 1 if torch.cuda.is_available() else 0 A__ = {'src': sources, 'mt': predictions, 'ref': references} A__ = [dict(zip(lowercase_,lowercase_ ) ) for t in zip(*data.values() )] A__ , A__ = self.scorer.predict(lowercase_,gpus=lowercase_,progress_bar=lowercase_ ) return {"mean_score": mean_score, "scores": scores}
282
0
'''simple docstring''' import math from dataclasses import dataclass from typing import Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, randn_tensor from .scheduling_utils import SchedulerMixin @dataclass # Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->UnCLIP class _A ( __SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : torch.FloatTensor _SCREAMING_SNAKE_CASE : Optional[torch.FloatTensor] = None def lowercase_ ( lowerCAmelCase__ : Dict , lowerCAmelCase__ : Optional[int]=0.999 , lowerCAmelCase__ : Tuple="cosine" , ): """simple docstring""" if alpha_transform_type == "cosine": def alpha_bar_fn(lowerCAmelCase__ : int ): return math.cos((t + 0.008) / 1.008 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(lowerCAmelCase__ : Any ): return math.exp(t * -12.0 ) else: raise ValueError(f'Unsupported alpha_tranform_type: {alpha_transform_type}' ) __UpperCAmelCase : str = [] for i in range(lowerCAmelCase__ ): __UpperCAmelCase : int = i / num_diffusion_timesteps __UpperCAmelCase : Any = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(lowerCAmelCase__ ) / alpha_bar_fn(lowerCAmelCase__ ) , lowerCAmelCase__ ) ) return torch.tensor(lowerCAmelCase__ , dtype=torch.floataa ) class _A ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): @register_to_config def __init__( self , __UpperCAmelCase = 1_000 , __UpperCAmelCase = "fixed_small_log" , __UpperCAmelCase = True , __UpperCAmelCase = 1.0 , __UpperCAmelCase = "epsilon" , __UpperCAmelCase = "squaredcos_cap_v2" , ) -> List[str]: '''simple docstring''' if beta_schedule != "squaredcos_cap_v2": raise ValueError("""UnCLIPScheduler only supports `beta_schedule`: 'squaredcos_cap_v2'""" ) __UpperCAmelCase : List[Any] = betas_for_alpha_bar(__UpperCAmelCase ) __UpperCAmelCase : Optional[Any] = 1.0 - self.betas __UpperCAmelCase : Union[str, Any] = torch.cumprod(self.alphas , dim=0 ) __UpperCAmelCase : Union[str, Any] = torch.tensor(1.0 ) # standard deviation of the initial noise distribution __UpperCAmelCase : str = 1.0 # setable values __UpperCAmelCase : List[Any] = None __UpperCAmelCase : List[str] = torch.from_numpy(np.arange(0 , __UpperCAmelCase )[::-1].copy() ) __UpperCAmelCase : Optional[Any] = variance_type def __A ( self , __UpperCAmelCase , __UpperCAmelCase = None ) -> torch.FloatTensor: '''simple docstring''' return sample def __A ( self , __UpperCAmelCase , __UpperCAmelCase = None ) -> List[str]: '''simple docstring''' __UpperCAmelCase : Union[str, Any] = num_inference_steps __UpperCAmelCase : int = (self.config.num_train_timesteps - 1) / (self.num_inference_steps - 1) __UpperCAmelCase : Dict = (np.arange(0 , __UpperCAmelCase ) * step_ratio).round()[::-1].copy().astype(np.intaa ) __UpperCAmelCase : Dict = torch.from_numpy(__UpperCAmelCase ).to(__UpperCAmelCase ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=None ) -> Dict: '''simple docstring''' if prev_timestep is None: __UpperCAmelCase : List[Any] = t - 1 __UpperCAmelCase : Union[str, Any] = self.alphas_cumprod[t] __UpperCAmelCase : List[str] = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.one __UpperCAmelCase : List[Any] = 1 - alpha_prod_t __UpperCAmelCase : Any = 1 - alpha_prod_t_prev if prev_timestep == t - 1: __UpperCAmelCase : List[str] = self.betas[t] else: __UpperCAmelCase : List[Any] = 1 - alpha_prod_t / alpha_prod_t_prev # For t > 0, compute predicted variance βt (see formula (6) and (7) from https://arxiv.org/pdf/2006.11239.pdf) # and sample from it to get previous sample # x_{t-1} ~ N(pred_prev_sample, variance) == add variance to pred_sample __UpperCAmelCase : int = beta_prod_t_prev / beta_prod_t * beta if variance_type is None: __UpperCAmelCase : Union[str, Any] = self.config.variance_type # hacks - were probably added for training stability if variance_type == "fixed_small_log": __UpperCAmelCase : Tuple = torch.log(torch.clamp(__UpperCAmelCase , min=1E-20 ) ) __UpperCAmelCase : List[str] = torch.exp(0.5 * variance ) elif variance_type == "learned_range": # NOTE difference with DDPM scheduler __UpperCAmelCase : Dict = variance.log() __UpperCAmelCase : List[Any] = beta.log() __UpperCAmelCase : Union[str, Any] = (predicted_variance + 1) / 2 __UpperCAmelCase : Any = frac * max_log + (1 - frac) * min_log return variance def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase=None , __UpperCAmelCase = True , ) -> Union[UnCLIPSchedulerOutput, Tuple]: '''simple docstring''' __UpperCAmelCase : Union[str, Any] = timestep if model_output.shape[1] == sample.shape[1] * 2 and self.variance_type == "learned_range": __UpperCAmelCase , __UpperCAmelCase : int = torch.split(__UpperCAmelCase , sample.shape[1] , dim=1 ) else: __UpperCAmelCase : List[str] = None # 1. compute alphas, betas if prev_timestep is None: __UpperCAmelCase : Optional[Any] = t - 1 __UpperCAmelCase : List[Any] = self.alphas_cumprod[t] __UpperCAmelCase : List[str] = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.one __UpperCAmelCase : Tuple = 1 - alpha_prod_t __UpperCAmelCase : str = 1 - alpha_prod_t_prev if prev_timestep == t - 1: __UpperCAmelCase : Tuple = self.betas[t] __UpperCAmelCase : int = self.alphas[t] else: __UpperCAmelCase : int = 1 - alpha_prod_t / alpha_prod_t_prev __UpperCAmelCase : Union[str, Any] = 1 - beta # 2. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf if self.config.prediction_type == "epsilon": __UpperCAmelCase : Optional[Any] = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 elif self.config.prediction_type == "sample": __UpperCAmelCase : Tuple = model_output else: raise ValueError( f'prediction_type given as {self.config.prediction_type} must be one of `epsilon` or `sample`' """ for the UnCLIPScheduler.""" ) # 3. Clip "predicted x_0" if self.config.clip_sample: __UpperCAmelCase : Any = torch.clamp( __UpperCAmelCase , -self.config.clip_sample_range , self.config.clip_sample_range ) # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf __UpperCAmelCase : int = (alpha_prod_t_prev ** 0.5 * beta) / beta_prod_t __UpperCAmelCase : Optional[int] = alpha ** 0.5 * beta_prod_t_prev / beta_prod_t # 5. Compute predicted previous sample µ_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf __UpperCAmelCase : int = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample # 6. Add noise __UpperCAmelCase : int = 0 if t > 0: __UpperCAmelCase : Union[str, Any] = randn_tensor( model_output.shape , dtype=model_output.dtype , generator=__UpperCAmelCase , device=model_output.device ) __UpperCAmelCase : int = self._get_variance( __UpperCAmelCase , predicted_variance=__UpperCAmelCase , prev_timestep=__UpperCAmelCase , ) if self.variance_type == "fixed_small_log": __UpperCAmelCase : Optional[Any] = variance elif self.variance_type == "learned_range": __UpperCAmelCase : Union[str, Any] = (0.5 * variance).exp() else: raise ValueError( f'variance_type given as {self.variance_type} must be one of `fixed_small_log` or `learned_range`' """ for the UnCLIPScheduler.""" ) __UpperCAmelCase : Union[str, Any] = variance * variance_noise __UpperCAmelCase : List[str] = pred_prev_sample + variance if not return_dict: return (pred_prev_sample,) return UnCLIPSchedulerOutput(prev_sample=__UpperCAmelCase , pred_original_sample=__UpperCAmelCase ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ) -> torch.FloatTensor: '''simple docstring''' # Make sure alphas_cumprod and timestep have same device and dtype as original_samples __UpperCAmelCase : Any = self.alphas_cumprod.to(device=original_samples.device , dtype=original_samples.dtype ) __UpperCAmelCase : Union[str, Any] = timesteps.to(original_samples.device ) __UpperCAmelCase : Tuple = alphas_cumprod[timesteps] ** 0.5 __UpperCAmelCase : Optional[Any] = sqrt_alpha_prod.flatten() while len(sqrt_alpha_prod.shape ) < len(original_samples.shape ): __UpperCAmelCase : Union[str, Any] = sqrt_alpha_prod.unsqueeze(-1 ) __UpperCAmelCase : Union[str, Any] = (1 - alphas_cumprod[timesteps]) ** 0.5 __UpperCAmelCase : Tuple = sqrt_one_minus_alpha_prod.flatten() while len(sqrt_one_minus_alpha_prod.shape ) < len(original_samples.shape ): __UpperCAmelCase : Any = sqrt_one_minus_alpha_prod.unsqueeze(-1 ) __UpperCAmelCase : Dict = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise return noisy_samples
254
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available _UpperCamelCase = { '''configuration_bridgetower''': [ '''BRIDGETOWER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''BridgeTowerConfig''', '''BridgeTowerTextConfig''', '''BridgeTowerVisionConfig''', ], '''processing_bridgetower''': ['''BridgeTowerProcessor'''], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase = ['''BridgeTowerImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase = [ '''BRIDGETOWER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''BridgeTowerForContrastiveLearning''', '''BridgeTowerForImageAndTextRetrieval''', '''BridgeTowerForMaskedLM''', '''BridgeTowerModel''', '''BridgeTowerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_bridgetower import ( BRIDGETOWER_PRETRAINED_CONFIG_ARCHIVE_MAP, BridgeTowerConfig, BridgeTowerTextConfig, BridgeTowerVisionConfig, ) from .processing_bridgetower import BridgeTowerProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_bridgetower import BridgeTowerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bridgetower import ( BRIDGETOWER_PRETRAINED_MODEL_ARCHIVE_LIST, BridgeTowerForContrastiveLearning, BridgeTowerForImageAndTextRetrieval, BridgeTowerForMaskedLM, BridgeTowerModel, BridgeTowerPreTrainedModel, ) else: import sys _UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
254
1
import numpy as np import pandas as pd from sklearn.preprocessing import Normalizer from sklearn.svm import SVR from statsmodels.tsa.statespace.sarimax import SARIMAX def __lowercase ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> float: '''simple docstring''' SCREAMING_SNAKE_CASE = np.array([[1, item, train_mtch[i]] for i, item in enumerate(_SCREAMING_SNAKE_CASE )] ) SCREAMING_SNAKE_CASE = np.array(_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE = np.dot(np.dot(np.linalg.inv(np.dot(x.transpose() , _SCREAMING_SNAKE_CASE ) ) , x.transpose() ) , _SCREAMING_SNAKE_CASE ) return abs(beta[0] + test_dt[0] * beta[1] + test_mtch[0] + beta[2] ) def __lowercase ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> float: '''simple docstring''' SCREAMING_SNAKE_CASE = (1, 2, 1) SCREAMING_SNAKE_CASE = (1, 1, 0, 7) SCREAMING_SNAKE_CASE = SARIMAX( _SCREAMING_SNAKE_CASE , exog=_SCREAMING_SNAKE_CASE , order=_SCREAMING_SNAKE_CASE , seasonal_order=_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE = model.fit(disp=_SCREAMING_SNAKE_CASE , maxiter=6_00 , method="""nm""" ) SCREAMING_SNAKE_CASE = model_fit.predict(1 , len(_SCREAMING_SNAKE_CASE ) , exog=[test_match] ) return result[0] def __lowercase ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> float: '''simple docstring''' SCREAMING_SNAKE_CASE = SVR(kernel="""rbf""" , C=1 , gamma=0.1 , epsilon=0.1 ) regressor.fit(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE = regressor.predict(_SCREAMING_SNAKE_CASE ) return y_pred[0] def __lowercase ( _SCREAMING_SNAKE_CASE ) -> float: '''simple docstring''' train_user.sort() SCREAMING_SNAKE_CASE = np.percentile(_SCREAMING_SNAKE_CASE , 25 ) SCREAMING_SNAKE_CASE = np.percentile(_SCREAMING_SNAKE_CASE , 75 ) SCREAMING_SNAKE_CASE = qa - qa SCREAMING_SNAKE_CASE = qa - (iqr * 0.1) return low_lim def __lowercase ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> bool: '''simple docstring''' SCREAMING_SNAKE_CASE = 0 SCREAMING_SNAKE_CASE = 0 for i in list_vote: if i > actual_result: SCREAMING_SNAKE_CASE = not_safe + 1 else: if abs(abs(_SCREAMING_SNAKE_CASE ) - abs(_SCREAMING_SNAKE_CASE ) ) <= 0.1: safe += 1 else: not_safe += 1 return safe > not_safe if __name__ == "__main__": # data_input_df = pd.read_csv("ex_data.csv", header=None) SCREAMING_SNAKE_CASE_ = [[1_8_2_3_1, 0.0, 1], [2_2_6_2_1, 1.0, 2], [1_5_6_7_5, 0.0, 3], [2_3_5_8_3, 1.0, 4]] SCREAMING_SNAKE_CASE_ = pd.DataFrame( data_input, columns=["""total_user""", """total_even""", """days"""] ) SCREAMING_SNAKE_CASE_ = Normalizer().fit_transform(data_input_df.values) # split data SCREAMING_SNAKE_CASE_ = normalize_df[:, 2].tolist() SCREAMING_SNAKE_CASE_ = normalize_df[:, 0].tolist() SCREAMING_SNAKE_CASE_ = normalize_df[:, 1].tolist() # for svr (input variable = total date and total match) SCREAMING_SNAKE_CASE_ = normalize_df[:, [1, 2]].tolist() SCREAMING_SNAKE_CASE_ = x[: len(x) - 1] SCREAMING_SNAKE_CASE_ = x[len(x) - 1 :] # for linear regression & sarimax SCREAMING_SNAKE_CASE_ = total_date[: len(total_date) - 1] SCREAMING_SNAKE_CASE_ = total_user[: len(total_user) - 1] SCREAMING_SNAKE_CASE_ = total_match[: len(total_match) - 1] SCREAMING_SNAKE_CASE_ = total_date[len(total_date) - 1 :] SCREAMING_SNAKE_CASE_ = total_user[len(total_user) - 1 :] SCREAMING_SNAKE_CASE_ = total_match[len(total_match) - 1 :] # voting system with forecasting SCREAMING_SNAKE_CASE_ = [ linear_regression_prediction( trn_date, trn_user, trn_match, tst_date, tst_match ), sarimax_predictor(trn_user, trn_match, tst_match), support_vector_regressor(x_train, x_test, trn_user), ] # check the safety of today's data SCREAMING_SNAKE_CASE_ = """""" if data_safety_checker(res_vote, tst_user) else """not """ print("""Today's data is {not_str}safe.""")
193
import logging import random import ray from transformers import RagConfig, RagRetriever, RagTokenizer from transformers.models.rag.retrieval_rag import CustomHFIndex SCREAMING_SNAKE_CASE_ = logging.getLogger(__name__) class UpperCamelCase__ : '''simple docstring''' def __init__( self : str ) -> List[str]: '''simple docstring''' SCREAMING_SNAKE_CASE = False def SCREAMING_SNAKE_CASE__ ( self : Any ,lowerCamelCase__ : int ,lowerCamelCase__ : Dict ,lowerCamelCase__ : List[Any] ,lowerCamelCase__ : Tuple ) -> Optional[Any]: '''simple docstring''' if not self.initialized: SCREAMING_SNAKE_CASE = RagRetriever( lowerCamelCase__ ,question_encoder_tokenizer=lowerCamelCase__ ,generator_tokenizer=lowerCamelCase__ ,index=lowerCamelCase__ ,init_retrieval=lowerCamelCase__ ,) SCREAMING_SNAKE_CASE = True def SCREAMING_SNAKE_CASE__ ( self : Dict ) -> Any: '''simple docstring''' self.retriever.index.init_index() def SCREAMING_SNAKE_CASE__ ( self : Any ,lowerCamelCase__ : List[Any] ,lowerCamelCase__ : List[str] ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE = self.retriever._main_retrieve(lowerCamelCase__ ,lowerCamelCase__ ) return doc_ids, retrieved_doc_embeds class UpperCamelCase__ ( lowerCAmelCase_ ): '''simple docstring''' def __init__( self : int ,lowerCamelCase__ : Dict ,lowerCamelCase__ : Optional[Any] ,lowerCamelCase__ : List[str] ,lowerCamelCase__ : Optional[Any] ,lowerCamelCase__ : Dict=None ) -> Any: '''simple docstring''' if index is not None and index.is_initialized() and len(lowerCamelCase__ ) > 0: raise ValueError( """When using Ray for distributed fine-tuning, """ """you'll need to provide the paths instead, """ """as the dataset and the index are loaded """ """separately. More info in examples/rag/use_own_knowledge_dataset.py """ ) super().__init__( lowerCamelCase__ ,question_encoder_tokenizer=lowerCamelCase__ ,generator_tokenizer=lowerCamelCase__ ,index=lowerCamelCase__ ,init_retrieval=lowerCamelCase__ ,) SCREAMING_SNAKE_CASE = retrieval_workers if len(self.retrieval_workers ) > 0: ray.get( [ worker.create_rag_retriever.remote(lowerCamelCase__ ,lowerCamelCase__ ,lowerCamelCase__ ,lowerCamelCase__ ) for worker in self.retrieval_workers ] ) def SCREAMING_SNAKE_CASE__ ( self : List[str] ) -> Union[str, Any]: '''simple docstring''' logger.info("""initializing retrieval""" ) if len(self.retrieval_workers ) > 0: ray.get([worker.init_retrieval.remote() for worker in self.retrieval_workers] ) else: # Non-distributed training. Load index into this same process. self.index.init_index() def SCREAMING_SNAKE_CASE__ ( self : Any ,lowerCamelCase__ : Any ,lowerCamelCase__ : int ) -> Dict: '''simple docstring''' if len(self.retrieval_workers ) > 0: # Select a random retrieval actor. SCREAMING_SNAKE_CASE = self.retrieval_workers[random.randint(0 ,len(self.retrieval_workers ) - 1 )] SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE = ray.get(random_worker.retrieve.remote(lowerCamelCase__ ,lowerCamelCase__ ) ) else: SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE = self._main_retrieve(lowerCamelCase__ ,lowerCamelCase__ ) return retrieved_doc_embeds, doc_ids, self.index.get_doc_dicts(lowerCamelCase__ ) @classmethod def SCREAMING_SNAKE_CASE__ ( cls : Optional[Any] ,lowerCamelCase__ : List[Any] ,lowerCamelCase__ : Union[str, Any]=None ,**lowerCamelCase__ : Optional[Any] ) -> Any: '''simple docstring''' return super(lowerCamelCase__ ,cls ).get_tokenizers(lowerCamelCase__ ,lowerCamelCase__ ,**lowerCamelCase__ ) @classmethod def SCREAMING_SNAKE_CASE__ ( cls : Any ,lowerCamelCase__ : Tuple ,lowerCamelCase__ : List[Any] ,lowerCamelCase__ : List[Any]=None ,**lowerCamelCase__ : Any ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE = kwargs.pop("""config""" ,lowerCamelCase__ ) or RagConfig.from_pretrained(lowerCamelCase__ ,**lowerCamelCase__ ) SCREAMING_SNAKE_CASE = RagTokenizer.from_pretrained(lowerCamelCase__ ,config=lowerCamelCase__ ) SCREAMING_SNAKE_CASE = rag_tokenizer.question_encoder SCREAMING_SNAKE_CASE = rag_tokenizer.generator if indexed_dataset is not None: SCREAMING_SNAKE_CASE = """custom""" SCREAMING_SNAKE_CASE = CustomHFIndex(config.retrieval_vector_size ,lowerCamelCase__ ) else: SCREAMING_SNAKE_CASE = cls._build_index(lowerCamelCase__ ) return cls( lowerCamelCase__ ,question_encoder_tokenizer=lowerCamelCase__ ,generator_tokenizer=lowerCamelCase__ ,retrieval_workers=lowerCamelCase__ ,index=lowerCamelCase__ ,)
193
1
import time from dataclasses import dataclass from multiprocessing import Pool from unittest import TestCase from unittest.mock import patch import multiprocess import numpy as np import pytest from datasets.utils.py_utils import ( NestedDataStructure, asdict, iflatmap_unordered, map_nested, temp_seed, temporary_assignment, zip_dict, ) from .utils import require_tf, require_torch def A (__A : List[Any] ) -> Tuple: # picklable for multiprocessing """simple docstring""" return x.sum() def A (__A : Optional[Any] ) -> Optional[Any]: # picklable for multiprocessing """simple docstring""" return i + 1 @dataclass class __snake_case : UpperCAmelCase__ : int UpperCAmelCase__ : str class __snake_case ( a ): def lowerCamelCase ( self : List[str]): """simple docstring""" UpperCAmelCase_ = {} UpperCAmelCase_ = [] UpperCAmelCase_ = 1 UpperCAmelCase_ = [1, 2] UpperCAmelCase_ = {'''a''': 1, '''b''': 2} UpperCAmelCase_ = {'''a''': [1, 2], '''b''': [3, 4]} UpperCAmelCase_ = {'''a''': {'''1''': 1}, '''b''': 2} UpperCAmelCase_ = {'''a''': 1, '''b''': 2, '''c''': 3, '''d''': 4} UpperCAmelCase_ = {} UpperCAmelCase_ = [] UpperCAmelCase_ = 2 UpperCAmelCase_ = [2, 3] UpperCAmelCase_ = {'''a''': 2, '''b''': 3} UpperCAmelCase_ = {'''a''': [2, 3], '''b''': [4, 5]} UpperCAmelCase_ = {'''a''': {'''1''': 2}, '''b''': 3} UpperCAmelCase_ = {'''a''': 2, '''b''': 3, '''c''': 4, '''d''': 5} self.assertEqual(map_nested(_snake_case , _snake_case) , _snake_case) self.assertEqual(map_nested(_snake_case , _snake_case) , _snake_case) self.assertEqual(map_nested(_snake_case , _snake_case) , _snake_case) self.assertEqual(map_nested(_snake_case , _snake_case) , _snake_case) self.assertEqual(map_nested(_snake_case , _snake_case) , _snake_case) self.assertEqual(map_nested(_snake_case , _snake_case) , _snake_case) self.assertEqual(map_nested(_snake_case , _snake_case) , _snake_case) self.assertEqual(map_nested(_snake_case , _snake_case) , _snake_case) UpperCAmelCase_ = 2 self.assertEqual(map_nested(_snake_case , _snake_case , num_proc=_snake_case) , _snake_case) self.assertEqual(map_nested(_snake_case , _snake_case , num_proc=_snake_case) , _snake_case) self.assertEqual(map_nested(_snake_case , _snake_case , num_proc=_snake_case) , _snake_case) self.assertEqual(map_nested(_snake_case , _snake_case , num_proc=_snake_case) , _snake_case) self.assertEqual(map_nested(_snake_case , _snake_case , num_proc=_snake_case) , _snake_case) self.assertEqual(map_nested(_snake_case , _snake_case , num_proc=_snake_case) , _snake_case) self.assertEqual(map_nested(_snake_case , _snake_case , num_proc=_snake_case) , _snake_case) self.assertEqual(map_nested(_snake_case , _snake_case , num_proc=_snake_case) , _snake_case) UpperCAmelCase_ = {'''a''': np.eye(2), '''b''': np.zeros(3), '''c''': np.ones(2)} UpperCAmelCase_ = {'''a''': 2, '''b''': 0, '''c''': 2} UpperCAmelCase_ = { '''a''': np.eye(2).astype(_snake_case), '''b''': np.zeros(3).astype(_snake_case), '''c''': np.ones(2).astype(_snake_case), } self.assertEqual(map_nested(_snake_case , _snake_case , map_numpy=_snake_case) , _snake_case) self.assertEqual( {k: v.tolist() for k, v in map_nested(_snake_case , _snake_case , map_numpy=_snake_case).items()} , {k: v.tolist() for k, v in expected_map_nested_sna_int.items()} , ) self.assertEqual(map_nested(_snake_case , _snake_case , map_numpy=_snake_case , num_proc=_snake_case) , _snake_case) self.assertEqual( {k: v.tolist() for k, v in map_nested(_snake_case , _snake_case , map_numpy=_snake_case , num_proc=_snake_case).items()} , {k: v.tolist() for k, v in expected_map_nested_sna_int.items()} , ) with self.assertRaises(_snake_case): # can't pickle a local lambda map_nested(lambda _snake_case: x + 1 , _snake_case , num_proc=_snake_case) def lowerCamelCase ( self : int): """simple docstring""" UpperCAmelCase_ = {'''a''': 1, '''b''': 2} UpperCAmelCase_ = {'''a''': 3, '''b''': 4} UpperCAmelCase_ = {'''a''': 5, '''b''': 6} UpperCAmelCase_ = sorted([('''a''', (1, 3, 5)), ('''b''', (2, 4, 6))]) self.assertEqual(sorted(zip_dict(_snake_case , _snake_case , _snake_case)) , _snake_case) def lowerCamelCase ( self : Dict): """simple docstring""" class __snake_case : UpperCAmelCase__ : int = '''bar''' UpperCAmelCase_ = Foo() self.assertEqual(foo.my_attr , '''bar''') with temporary_assignment(_snake_case , '''my_attr''' , '''BAR'''): self.assertEqual(foo.my_attr , '''BAR''') self.assertEqual(foo.my_attr , '''bar''') @pytest.mark.parametrize( '''iterable_length, num_proc, expected_num_proc''' , [ (1, None, 1), (1, 1, 1), (2, None, 1), (2, 1, 1), (2, 2, 1), (2, 3, 1), (3, 2, 1), (16, 16, 16), (16, 17, 16), (17, 16, 16), ] , ) def A (__A : Tuple , __A : List[Any] , __A : Union[str, Any] ) -> Optional[Any]: """simple docstring""" with patch('''datasets.utils.py_utils._single_map_nested''' ) as mock_single_map_nested, patch( '''datasets.parallel.parallel.Pool''' ) as mock_multiprocessing_pool: UpperCAmelCase_ = {F"""{i}""": i for i in range(__A )} UpperCAmelCase_ = map_nested(lambda __A : x + 10 , __A , num_proc=__A , parallel_min_length=16 ) if expected_num_proc == 1: assert mock_single_map_nested.called assert not mock_multiprocessing_pool.called else: assert not mock_single_map_nested.called assert mock_multiprocessing_pool.called assert mock_multiprocessing_pool.call_args[0][0] == expected_num_proc class __snake_case ( a ): @require_tf def lowerCamelCase ( self : List[str]): """simple docstring""" import tensorflow as tf from tensorflow.keras import layers UpperCAmelCase_ = layers.Dense(2) def gen_random_output(): UpperCAmelCase_ = tf.random.uniform((1, 3)) return model(_snake_case).numpy() with temp_seed(42 , set_tensorflow=_snake_case): UpperCAmelCase_ = gen_random_output() with temp_seed(42 , set_tensorflow=_snake_case): UpperCAmelCase_ = gen_random_output() UpperCAmelCase_ = gen_random_output() np.testing.assert_equal(_snake_case , _snake_case) self.assertGreater(np.abs(outa - outa).sum() , 0) @require_torch def lowerCamelCase ( self : Any): """simple docstring""" import torch def gen_random_output(): UpperCAmelCase_ = torch.nn.Linear(3 , 2) UpperCAmelCase_ = torch.rand(1 , 3) return model(_snake_case).detach().numpy() with temp_seed(42 , set_pytorch=_snake_case): UpperCAmelCase_ = gen_random_output() with temp_seed(42 , set_pytorch=_snake_case): UpperCAmelCase_ = gen_random_output() UpperCAmelCase_ = gen_random_output() np.testing.assert_equal(_snake_case , _snake_case) self.assertGreater(np.abs(outa - outa).sum() , 0) def lowerCamelCase ( self : List[str]): """simple docstring""" def gen_random_output(): return np.random.rand(1 , 3) with temp_seed(42): UpperCAmelCase_ = gen_random_output() with temp_seed(42): UpperCAmelCase_ = gen_random_output() UpperCAmelCase_ = gen_random_output() np.testing.assert_equal(_snake_case , _snake_case) self.assertGreater(np.abs(outa - outa).sum() , 0) @pytest.mark.parametrize('''input_data''' , [{}] ) def A (__A : List[Any] ) -> Dict: """simple docstring""" UpperCAmelCase_ = NestedDataStructure(__A ).data assert output_data == input_data @pytest.mark.parametrize( '''data, expected_output''' , [ ({}, []), ([], []), ('''foo''', ['''foo''']), (['''foo''', '''bar'''], ['''foo''', '''bar''']), ([['''foo''', '''bar''']], ['''foo''', '''bar''']), ([[['''foo'''], ['''bar''']]], ['''foo''', '''bar''']), ([[['''foo'''], '''bar''']], ['''foo''', '''bar''']), ({'''a''': 1, '''b''': 2}, [1, 2]), ({'''a''': [1, 2], '''b''': [3, 4]}, [1, 2, 3, 4]), ({'''a''': [[1, 2]], '''b''': [[3, 4]]}, [1, 2, 3, 4]), ({'''a''': [[1, 2]], '''b''': [3, 4]}, [1, 2, 3, 4]), ({'''a''': [[[1], [2]]], '''b''': [[[3], [4]]]}, [1, 2, 3, 4]), ({'''a''': [[[1], [2]]], '''b''': [[3, 4]]}, [1, 2, 3, 4]), ({'''a''': [[[1], [2]]], '''b''': [3, 4]}, [1, 2, 3, 4]), ({'''a''': [[[1], [2]]], '''b''': [3, [4]]}, [1, 2, 3, 4]), ({'''a''': {'''1''': 1}, '''b''': 2}, [1, 2]), ({'''a''': {'''1''': [1]}, '''b''': 2}, [1, 2]), ({'''a''': {'''1''': [1]}, '''b''': [2]}, [1, 2]), ] , ) def A (__A : Tuple , __A : Dict ) -> Dict: """simple docstring""" UpperCAmelCase_ = NestedDataStructure(__A ).flatten() assert output == expected_output def A () -> Any: """simple docstring""" UpperCAmelCase_ = A(x=1 , y='''foobar''' ) UpperCAmelCase_ = {'''x''': 1, '''y''': '''foobar'''} assert asdict(__A ) == expected_output UpperCAmelCase_ = {'''a''': {'''b''': A(x=10 , y='''foo''' )}, '''c''': [A(x=20 , y='''bar''' )]} UpperCAmelCase_ = {'''a''': {'''b''': {'''x''': 10, '''y''': '''foo'''}}, '''c''': [{'''x''': 20, '''y''': '''bar'''}]} assert asdict(__A ) == expected_output with pytest.raises(__A ): asdict([1, A(x=10 , y='''foo''' )] ) def A (__A : str ) -> Optional[int]: """simple docstring""" return text.split() def A (__A : Optional[Any] ) -> Optional[Any]: """simple docstring""" yield (time.time(), content) time.sleep(2 ) yield (time.time(), content) def A () -> Tuple: """simple docstring""" with Pool(2 ) as pool: UpperCAmelCase_ = list(iflatmap_unordered(__A , _split_text , kwargs_iterable=[{'''text''': '''hello there'''}] * 10 ) ) assert out.count('''hello''' ) == 10 assert out.count('''there''' ) == 10 assert len(__A ) == 20 # check multiprocess from pathos (uses dill for pickling) with multiprocess.Pool(2 ) as pool: UpperCAmelCase_ = list(iflatmap_unordered(__A , _split_text , kwargs_iterable=[{'''text''': '''hello there'''}] * 10 ) ) assert out.count('''hello''' ) == 10 assert out.count('''there''' ) == 10 assert len(__A ) == 20 # check that we get items as fast as possible with Pool(2 ) as pool: UpperCAmelCase_ = [] for yield_time, content in iflatmap_unordered( __A , _aseconds_generator_of_aitems_with_timing , kwargs_iterable=[{'''content''': '''a'''}, {'''content''': '''b'''}] ): assert yield_time < time.time() + 0.1, "we should each item directly after it was yielded" out.append(__A ) assert out.count('''a''' ) == 2 assert out.count('''b''' ) == 2 assert len(__A ) == 4
51
snake_case_ : Dict = { "Pillow": "Pillow", "accelerate": "accelerate>=0.11.0", "compel": "compel==0.1.8", "black": "black~=23.1", "datasets": "datasets", "filelock": "filelock", "flax": "flax>=0.4.1", "hf-doc-builder": "hf-doc-builder>=0.3.0", "huggingface-hub": "huggingface-hub>=0.13.2", "requests-mock": "requests-mock==1.10.0", "importlib_metadata": "importlib_metadata", "invisible-watermark": "invisible-watermark", "isort": "isort>=5.5.4", "jax": "jax>=0.2.8,!=0.3.2", "jaxlib": "jaxlib>=0.1.65", "Jinja2": "Jinja2", "k-diffusion": "k-diffusion>=0.0.12", "torchsde": "torchsde", "note_seq": "note_seq", "librosa": "librosa", "numpy": "numpy", "omegaconf": "omegaconf", "parameterized": "parameterized", "protobuf": "protobuf>=3.20.3,<4", "pytest": "pytest", "pytest-timeout": "pytest-timeout", "pytest-xdist": "pytest-xdist", "ruff": "ruff>=0.0.241", "safetensors": "safetensors", "sentencepiece": "sentencepiece>=0.1.91,!=0.1.92", "scipy": "scipy", "onnx": "onnx", "regex": "regex!=2019.12.17", "requests": "requests", "tensorboard": "tensorboard", "torch": "torch>=1.4", "torchvision": "torchvision", "transformers": "transformers>=4.25.1", "urllib3": "urllib3<=2.0.0", }
51
1
"""simple docstring""" from __future__ import annotations a__ : int = list[list[int]] # assigning initial values to the grid a__ : Matrix = [ [3, 0, 6, 5, 0, 8, 4, 0, 0], [5, 2, 0, 0, 0, 0, 0, 0, 0], [0, 8, 7, 0, 0, 0, 0, 3, 1], [0, 0, 3, 0, 1, 0, 0, 8, 0], [9, 0, 0, 8, 6, 3, 0, 0, 5], [0, 5, 0, 0, 9, 0, 6, 0, 0], [1, 3, 0, 0, 0, 0, 2, 5, 0], [0, 0, 0, 0, 0, 0, 0, 7, 4], [0, 0, 5, 2, 0, 6, 3, 0, 0], ] # a grid with no solution a__ : Matrix = [ [5, 0, 6, 5, 0, 8, 4, 0, 3], [5, 2, 0, 0, 0, 0, 0, 0, 2], [1, 8, 7, 0, 0, 0, 0, 3, 1], [0, 0, 3, 0, 1, 0, 0, 8, 0], [9, 0, 0, 8, 6, 3, 0, 0, 5], [0, 5, 0, 0, 9, 0, 6, 0, 0], [1, 3, 0, 0, 0, 0, 2, 5, 0], [0, 0, 0, 0, 0, 0, 0, 7, 4], [0, 0, 5, 2, 0, 6, 3, 0, 0], ] def UpperCAmelCase__ (lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): '''simple docstring''' for i in range(9 ): if grid[row][i] == n or grid[i][column] == n: return False for i in range(3 ): for j in range(3 ): if grid[(row - row % 3) + i][(column - column % 3) + j] == n: return False return True def UpperCAmelCase__ (lowerCAmelCase_ ): '''simple docstring''' for i in range(9 ): for j in range(9 ): if grid[i][j] == 0: return i, j return None def UpperCAmelCase__ (lowerCAmelCase_ ): '''simple docstring''' if location := find_empty_location(lowerCAmelCase_ ): __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = location else: # If the location is ``None``, then the grid is solved. return grid for digit in range(1 , 10 ): if is_safe(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): __SCREAMING_SNAKE_CASE = digit if sudoku(lowerCAmelCase_ ) is not None: return grid __SCREAMING_SNAKE_CASE = 0 return None def UpperCAmelCase__ (lowerCAmelCase_ ): '''simple docstring''' for row in grid: for cell in row: print(lowerCAmelCase_ , end=" " ) print() if __name__ == "__main__": # make a copy of grid so that you can compare with the unmodified grid for example_grid in (initial_grid, no_solution): print('''\nExample grid:\n''' + '''=''' * 2_0) print_solution(example_grid) print('''\nExample grid solution:''') a__ : List[Any] = sudoku(example_grid) if solution is not None: print_solution(solution) else: print('''Cannot find a solution.''')
195
"""simple docstring""" from __future__ import annotations def UpperCAmelCase__ (lowerCAmelCase_ ): '''simple docstring''' if not nums: return 0 __SCREAMING_SNAKE_CASE = nums[0] __SCREAMING_SNAKE_CASE = 0 for num in nums[1:]: __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = ( max_excluding + num, max(lowerCAmelCase_ , lowerCAmelCase_ ), ) return max(lowerCAmelCase_ , lowerCAmelCase_ ) if __name__ == "__main__": import doctest doctest.testmod()
195
1
"""simple docstring""" import logging import os from dataclasses import dataclass, field from functools import partial from pathlib import Path from tempfile import TemporaryDirectory from typing import List, Optional import faiss import torch from datasets import Features, Sequence, Value, load_dataset from transformers import DPRContextEncoder, DPRContextEncoderTokenizerFast, HfArgumentParser lowercase_ = logging.getLogger(__name__) torch.set_grad_enabled(False) lowercase_ = "cuda" if torch.cuda.is_available() else "cpu" def lowercase ( lowerCAmelCase__ : str , lowerCAmelCase__ : List[Any]=100 , lowerCAmelCase__ : Optional[int]=" " ) -> List[str]: __a = text.split(lowerCAmelCase__ ) return [character.join(text[i : i + n] ).strip() for i in range(0 , len(lowerCAmelCase__ ) , lowerCAmelCase__ )] def lowercase ( lowerCAmelCase__ : dict ) -> dict: __a , __a = [], [] for title, text in zip(documents['''title'''] , documents['''text'''] ): if text is not None: for passage in split_text(lowerCAmelCase__ ): titles.append(title if title is not None else '''''' ) texts.append(lowerCAmelCase__ ) return {"title": titles, "text": texts} def lowercase ( lowerCAmelCase__ : dict , lowerCAmelCase__ : DPRContextEncoder , lowerCAmelCase__ : DPRContextEncoderTokenizerFast ) -> dict: __a = ctx_tokenizer( documents['''title'''] , documents['''text'''] , truncation=lowerCAmelCase__ , padding='''longest''' , return_tensors='''pt''' )['''input_ids'''] __a = ctx_encoder(input_ids.to(device=lowerCAmelCase__ ) , return_dict=lowerCAmelCase__ ).pooler_output return {"embeddings": embeddings.detach().cpu().numpy()} def lowercase ( lowerCAmelCase__ : "RagExampleArguments" , lowerCAmelCase__ : "ProcessingArguments" , lowerCAmelCase__ : "IndexHnswArguments" , ) -> Tuple: ###################################### logger.info('''Step 1 - Create the dataset''' ) ###################################### # The dataset needed for RAG must have three columns: # - title (string): title of the document # - text (string): text of a passage of the document # - embeddings (array of dimension d): DPR representation of the passage # Let's say you have documents in tab-separated csv files with columns "title" and "text" assert os.path.isfile(rag_example_args.csv_path ), "Please provide a valid path to a csv file" # You can load a Dataset object this way __a = load_dataset( '''csv''' , data_files=[rag_example_args.csv_path] , split='''train''' , delimiter='''\t''' , column_names=['''title''', '''text'''] ) # More info about loading csv files in the documentation: https://huggingface.co/docs/datasets/loading_datasets.html?highlight=csv#csv-files # Then split the documents into passages of 100 words __a = dataset.map(lowerCAmelCase__ , batched=lowerCAmelCase__ , num_proc=processing_args.num_proc ) # And compute the embeddings __a = DPRContextEncoder.from_pretrained(rag_example_args.dpr_ctx_encoder_model_name ).to(device=lowerCAmelCase__ ) __a = DPRContextEncoderTokenizerFast.from_pretrained(rag_example_args.dpr_ctx_encoder_model_name ) __a = Features( {'''text''': Value('''string''' ), '''title''': Value('''string''' ), '''embeddings''': Sequence(Value('''float32''' ) )} ) # optional, save as float32 instead of float64 to save space __a = dataset.map( partial(lowerCAmelCase__ , ctx_encoder=lowerCAmelCase__ , ctx_tokenizer=lowerCAmelCase__ ) , batched=lowerCAmelCase__ , batch_size=processing_args.batch_size , features=lowerCAmelCase__ , ) # And finally save your dataset __a = os.path.join(rag_example_args.output_dir , '''my_knowledge_dataset''' ) dataset.save_to_disk(lowerCAmelCase__ ) # from datasets import load_from_disk # dataset = load_from_disk(passages_path) # to reload the dataset ###################################### logger.info('''Step 2 - Index the dataset''' ) ###################################### # Let's use the Faiss implementation of HNSW for fast approximate nearest neighbor search __a = faiss.IndexHNSWFlat(index_hnsw_args.d , index_hnsw_args.m , faiss.METRIC_INNER_PRODUCT ) dataset.add_faiss_index('''embeddings''' , custom_index=lowerCAmelCase__ ) # And save the index __a = os.path.join(rag_example_args.output_dir , '''my_knowledge_dataset_hnsw_index.faiss''' ) dataset.get_index('''embeddings''' ).save(lowerCAmelCase__ ) # dataset.load_faiss_index("embeddings", index_path) # to reload the index @dataclass class __lowerCAmelCase : '''simple docstring''' __UpperCAmelCase : str = field( default=str(Path(__SCREAMING_SNAKE_CASE ).parent / 'test_run' / 'dummy-kb' / 'my_knowledge_dataset.csv' ) , metadata={'help': 'Path to a tab-separated csv file with columns \'title\' and \'text\''} , ) __UpperCAmelCase : Optional[str] = field( default=__SCREAMING_SNAKE_CASE , metadata={'help': 'Question that is passed as input to RAG. Default is \'What does Moses\' rod turn into ?\'.'} , ) __UpperCAmelCase : str = field( default='facebook/rag-sequence-nq' , metadata={'help': 'The RAG model to use. Either \'facebook/rag-sequence-nq\' or \'facebook/rag-token-nq\''} , ) __UpperCAmelCase : str = field( default='facebook/dpr-ctx_encoder-multiset-base' , metadata={ 'help': ( 'The DPR context encoder model to use. Either \'facebook/dpr-ctx_encoder-single-nq-base\' or' ' \'facebook/dpr-ctx_encoder-multiset-base\'' ) } , ) __UpperCAmelCase : Optional[str] = field( default=str(Path(__SCREAMING_SNAKE_CASE ).parent / 'test_run' / 'dummy-kb' ) , metadata={'help': 'Path to a directory where the dataset passages and the index will be saved'} , ) @dataclass class __lowerCAmelCase : '''simple docstring''' __UpperCAmelCase : Optional[int] = field( default=__SCREAMING_SNAKE_CASE , metadata={ 'help': 'The number of processes to use to split the documents into passages. Default is single process.' } , ) __UpperCAmelCase : int = field( default=1_6 , metadata={ 'help': 'The batch size to use when computing the passages embeddings using the DPR context encoder.' } , ) @dataclass class __lowerCAmelCase : '''simple docstring''' __UpperCAmelCase : int = field( default=7_6_8 , metadata={'help': 'The dimension of the embeddings to pass to the HNSW Faiss index.'} , ) __UpperCAmelCase : int = field( default=1_2_8 , metadata={ 'help': ( 'The number of bi-directional links created for every new element during the HNSW index construction.' ) } , ) if __name__ == "__main__": logging.basicConfig(level=logging.WARNING) logger.setLevel(logging.INFO) lowercase_ = HfArgumentParser((RagExampleArguments, ProcessingArguments, IndexHnswArguments)) lowercase_ , lowercase_ , lowercase_ = parser.parse_args_into_dataclasses() with TemporaryDirectory() as tmp_dir: lowercase_ = rag_example_args.output_dir or tmp_dir main(rag_example_args, processing_args, index_hnsw_args)
45
"""simple docstring""" a : Any = { '''a''': '''AAAAA''', '''b''': '''AAAAB''', '''c''': '''AAABA''', '''d''': '''AAABB''', '''e''': '''AABAA''', '''f''': '''AABAB''', '''g''': '''AABBA''', '''h''': '''AABBB''', '''i''': '''ABAAA''', '''j''': '''BBBAA''', '''k''': '''ABAAB''', '''l''': '''ABABA''', '''m''': '''ABABB''', '''n''': '''ABBAA''', '''o''': '''ABBAB''', '''p''': '''ABBBA''', '''q''': '''ABBBB''', '''r''': '''BAAAA''', '''s''': '''BAAAB''', '''t''': '''BAABA''', '''u''': '''BAABB''', '''v''': '''BBBAB''', '''w''': '''BABAA''', '''x''': '''BABAB''', '''y''': '''BABBA''', '''z''': '''BABBB''', ''' ''': ''' ''', } a : List[Any] = {value: key for key, value in encode_dict.items()} def _SCREAMING_SNAKE_CASE ( _lowercase : str ) ->str: '''simple docstring''' a : int = "" for letter in word.lower(): if letter.isalpha() or letter == " ": encoded += encode_dict[letter] else: raise Exception("encode() accepts only letters of the alphabet and spaces" ) return encoded def _SCREAMING_SNAKE_CASE ( _lowercase : str ) ->str: '''simple docstring''' if set(_lowercase ) - {"A", "B", " "} != set(): raise Exception("decode() accepts only 'A', 'B' and spaces" ) a : Optional[Any] = "" for word in coded.split(): while len(_lowercase ) != 0: decoded += decode_dict[word[:5]] a : List[Any] = word[5:] decoded += " " return decoded.strip() if __name__ == "__main__": from doctest import testmod testmod()
105
0
"""simple docstring""" import unittest import numpy as np import torch from diffusers import ScoreSdeVePipeline, ScoreSdeVeScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class __a ( unittest.TestCase ): @property def snake_case_ ( self ): torch.manual_seed(0 ) _lowerCamelCase = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=('DownBlock2D', 'AttnDownBlock2D') , up_block_types=('AttnUpBlock2D', 'UpBlock2D') , ) return model def snake_case_ ( self ): _lowerCamelCase = self.dummy_uncond_unet _lowerCamelCase = ScoreSdeVeScheduler() _lowerCamelCase = ScoreSdeVePipeline(unet=a__ , scheduler=a__ ) sde_ve.to(a__ ) sde_ve.set_progress_bar_config(disable=a__ ) _lowerCamelCase = torch.manual_seed(0 ) _lowerCamelCase = sde_ve(num_inference_steps=2 , output_type='numpy' , generator=a__ ).images _lowerCamelCase = torch.manual_seed(0 ) _lowerCamelCase = sde_ve(num_inference_steps=2 , output_type='numpy' , generator=a__ , return_dict=a__ )[ 0 ] _lowerCamelCase = image[0, -3:, -3:, -1] _lowerCamelCase = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) _lowerCamelCase = np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch class __a ( unittest.TestCase ): def snake_case_ ( self ): _lowerCamelCase = 'google/ncsnpp-church-256' _lowerCamelCase = UNetaDModel.from_pretrained(a__ ) _lowerCamelCase = ScoreSdeVeScheduler.from_pretrained(a__ ) _lowerCamelCase = ScoreSdeVePipeline(unet=a__ , scheduler=a__ ) sde_ve.to(a__ ) sde_ve.set_progress_bar_config(disable=a__ ) _lowerCamelCase = torch.manual_seed(0 ) _lowerCamelCase = sde_ve(num_inference_steps=10 , output_type='numpy' , generator=a__ ).images _lowerCamelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 2_56, 2_56, 3) _lowerCamelCase = np.array([0.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
80
"""simple docstring""" from math import factorial def SCREAMING_SNAKE_CASE_ ( snake_case : int = 20 )-> int: _lowerCamelCase = 2 * n # middle entry of odd rows starting at row 3 is the solution for n = 1, # 2, 3,... _lowerCamelCase = n // 2 return int(factorial(snake_case ) / (factorial(snake_case ) * factorial(n - k )) ) if __name__ == "__main__": import sys if len(sys.argv) == 1: print(solution(2_0)) else: try: A_ : Optional[Any] =int(sys.argv[1]) print(solution(n)) except ValueError: print("""Invalid entry - please enter a number.""")
80
1
'''simple docstring''' import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class a__ ( lowerCamelCase_ ): _SCREAMING_SNAKE_CASE : List[str] = ['image_processor', 'tokenizer'] _SCREAMING_SNAKE_CASE : List[str] = 'ViltImageProcessor' _SCREAMING_SNAKE_CASE : Optional[Any] = ('BertTokenizer', 'BertTokenizerFast') def __init__( self , _UpperCamelCase=None , _UpperCamelCase=None , **_UpperCamelCase ): """simple docstring""" _lowercase : int = None if "feature_extractor" in kwargs: warnings.warn( "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" " instead." , __a , ) _lowercase : int = kwargs.pop("feature_extractor" ) _lowercase : str = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("You need to specify an `image_processor`." ) if tokenizer is None: raise ValueError("You need to specify a `tokenizer`." ) super().__init__(__a , __a ) _lowercase : int = self.image_processor def __call__( self , _UpperCamelCase , _UpperCamelCase = None , _UpperCamelCase = True , _UpperCamelCase = False , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = 0 , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = False , _UpperCamelCase = False , _UpperCamelCase = False , _UpperCamelCase = False , _UpperCamelCase = True , _UpperCamelCase = None , **_UpperCamelCase , ): """simple docstring""" _lowercase : Dict = self.tokenizer( text=__a , add_special_tokens=__a , padding=__a , truncation=__a , max_length=__a , stride=__a , pad_to_multiple_of=__a , return_token_type_ids=__a , return_attention_mask=__a , return_overflowing_tokens=__a , return_special_tokens_mask=__a , return_offsets_mapping=__a , return_length=__a , verbose=__a , return_tensors=__a , **__a , ) # add pixel_values + pixel_mask _lowercase : List[Any] = self.image_processor(__a , return_tensors=__a ) encoding.update(__a ) return encoding def _lowerCamelCase ( self , *_UpperCamelCase , **_UpperCamelCase ): """simple docstring""" return self.tokenizer.batch_decode(*__a , **__a ) def _lowerCamelCase ( self , *_UpperCamelCase , **_UpperCamelCase ): """simple docstring""" return self.tokenizer.decode(*__a , **__a ) @property def _lowerCamelCase ( self ): """simple docstring""" _lowercase : Dict = self.tokenizer.model_input_names _lowercase : int = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def _lowerCamelCase ( self ): """simple docstring""" warnings.warn( "`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead." , __a , ) return self.image_processor_class @property def _lowerCamelCase ( self ): """simple docstring""" warnings.warn( "`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead." , __a , ) return self.image_processor
250
import argparse import copy def A ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : int = {} with open(_lowerCamelCase ) as f: for line in f: if line.split()[0] not in dict_of_neighbours: _lowerCAmelCase : Tuple = [] _list.append([line.split()[1], line.split()[2]] ) _lowerCAmelCase : Any = _list else: dict_of_neighbours[line.split()[0]].append( [line.split()[1], line.split()[2]] ) if line.split()[1] not in dict_of_neighbours: _lowerCAmelCase : str = [] _list.append([line.split()[0], line.split()[2]] ) _lowerCAmelCase : Any = _list else: dict_of_neighbours[line.split()[1]].append( [line.split()[0], line.split()[2]] ) return dict_of_neighbours def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' with open(_lowerCamelCase ) as f: _lowerCAmelCase : str = f.read(1 ) _lowerCAmelCase : str = start_node _lowerCAmelCase : List[str] = [] _lowerCAmelCase : Any = start_node _lowerCAmelCase : str = 0 while visiting not in first_solution: _lowerCAmelCase : Dict = 10_000 for k in dict_of_neighbours[visiting]: if int(k[1] ) < int(_lowerCamelCase ) and k[0] not in first_solution: _lowerCAmelCase : List[str] = k[1] _lowerCAmelCase : List[Any] = k[0] first_solution.append(_lowerCamelCase ) _lowerCAmelCase : Optional[int] = distance_of_first_solution + int(_lowerCamelCase ) _lowerCAmelCase : str = best_node first_solution.append(_lowerCamelCase ) _lowerCAmelCase : Union[str, Any] = 0 for k in dict_of_neighbours[first_solution[-2]]: if k[0] == start_node: break position += 1 _lowerCAmelCase : Tuple = ( distance_of_first_solution + int(dict_of_neighbours[first_solution[-2]][position][1] ) - 10_000 ) return first_solution, distance_of_first_solution def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Tuple = [] for n in solution[1:-1]: _lowerCAmelCase : Dict = solution.index(_lowerCamelCase ) for kn in solution[1:-1]: _lowerCAmelCase : Dict = solution.index(_lowerCamelCase ) if n == kn: continue _lowerCAmelCase : Optional[int] = copy.deepcopy(_lowerCamelCase ) _lowerCAmelCase : int = kn _lowerCAmelCase : Dict = n _lowerCAmelCase : Optional[int] = 0 for k in _tmp[:-1]: _lowerCAmelCase : str = _tmp[_tmp.index(_lowerCamelCase ) + 1] for i in dict_of_neighbours[k]: if i[0] == next_node: _lowerCAmelCase : Optional[Any] = distance + int(i[1] ) _tmp.append(_lowerCamelCase ) if _tmp not in neighborhood_of_solution: neighborhood_of_solution.append(_tmp ) _lowerCAmelCase : List[Any] = len(neighborhood_of_solution[0] ) - 1 neighborhood_of_solution.sort(key=lambda _lowerCamelCase : x[index_of_last_item_in_the_list] ) return neighborhood_of_solution def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : List[str] = 1 _lowerCAmelCase : int = first_solution _lowerCAmelCase : Tuple = [] _lowerCAmelCase : Tuple = distance_of_first_solution _lowerCAmelCase : Optional[int] = solution while count <= iters: _lowerCAmelCase : int = find_neighborhood(_lowerCamelCase , _lowerCamelCase ) _lowerCAmelCase : Tuple = 0 _lowerCAmelCase : Dict = neighborhood[index_of_best_solution] _lowerCAmelCase : int = len(_lowerCamelCase ) - 1 _lowerCAmelCase : Union[str, Any] = False while not found: _lowerCAmelCase : Tuple = 0 while i < len(_lowerCamelCase ): if best_solution[i] != solution[i]: _lowerCAmelCase : str = best_solution[i] _lowerCAmelCase : Tuple = solution[i] break _lowerCAmelCase : int = i + 1 if [first_exchange_node, second_exchange_node] not in tabu_list and [ second_exchange_node, first_exchange_node, ] not in tabu_list: tabu_list.append([first_exchange_node, second_exchange_node] ) _lowerCAmelCase : Optional[int] = True _lowerCAmelCase : Optional[Any] = best_solution[:-1] _lowerCAmelCase : Tuple = neighborhood[index_of_best_solution][best_cost_index] if cost < best_cost: _lowerCAmelCase : Union[str, Any] = cost _lowerCAmelCase : List[Any] = solution else: _lowerCAmelCase : Optional[Any] = index_of_best_solution + 1 _lowerCAmelCase : Optional[Any] = neighborhood[index_of_best_solution] if len(_lowerCamelCase ) >= size: tabu_list.pop(0 ) _lowerCAmelCase : int = count + 1 return best_solution_ever, best_cost def A ( _lowerCamelCase=None ): '''simple docstring''' _lowerCAmelCase : int = generate_neighbours(args.File ) _lowerCAmelCase , _lowerCAmelCase : List[str] = generate_first_solution( args.File , _lowerCamelCase ) _lowerCAmelCase , _lowerCAmelCase : Any = tabu_search( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , args.Iterations , args.Size , ) print(F"Best solution: {best_sol}, with total distance: {best_cost}." ) if __name__ == "__main__": _snake_case = argparse.ArgumentParser(description="Tabu Search") parser.add_argument( "-f", "--File", type=str, help="Path to the file containing the data", required=True, ) parser.add_argument( "-i", "--Iterations", type=int, help="How many iterations the algorithm should perform", required=True, ) parser.add_argument( "-s", "--Size", type=int, help="Size of the tabu list", required=True ) # Pass the arguments to main method main(parser.parse_args())
36
0
"""simple docstring""" import unittest import torch from torch import nn from diffusers.models.activations import get_activation class A__ ( unittest.TestCase ): '''simple docstring''' def _SCREAMING_SNAKE_CASE ( self: int) -> Any: """simple docstring""" __lowerCAmelCase : Union[str, Any] = get_activation("swish") self.assertIsInstance(_lowerCamelCase , nn.SiLU) self.assertEqual(act(torch.tensor(-100 , dtype=torch.floataa)).item() , 0) self.assertNotEqual(act(torch.tensor(-1 , dtype=torch.floataa)).item() , 0) self.assertEqual(act(torch.tensor(0 , dtype=torch.floataa)).item() , 0) self.assertEqual(act(torch.tensor(20 , dtype=torch.floataa)).item() , 20) def _SCREAMING_SNAKE_CASE ( self: List[Any]) -> Optional[Any]: """simple docstring""" __lowerCAmelCase : int = get_activation("silu") self.assertIsInstance(_lowerCamelCase , nn.SiLU) self.assertEqual(act(torch.tensor(-100 , dtype=torch.floataa)).item() , 0) self.assertNotEqual(act(torch.tensor(-1 , dtype=torch.floataa)).item() , 0) self.assertEqual(act(torch.tensor(0 , dtype=torch.floataa)).item() , 0) self.assertEqual(act(torch.tensor(20 , dtype=torch.floataa)).item() , 20) def _SCREAMING_SNAKE_CASE ( self: Union[str, Any]) -> Tuple: """simple docstring""" __lowerCAmelCase : Tuple = get_activation("mish") self.assertIsInstance(_lowerCamelCase , nn.Mish) self.assertEqual(act(torch.tensor(-200 , dtype=torch.floataa)).item() , 0) self.assertNotEqual(act(torch.tensor(-1 , dtype=torch.floataa)).item() , 0) self.assertEqual(act(torch.tensor(0 , dtype=torch.floataa)).item() , 0) self.assertEqual(act(torch.tensor(20 , dtype=torch.floataa)).item() , 20) def _SCREAMING_SNAKE_CASE ( self: Tuple) -> List[Any]: """simple docstring""" __lowerCAmelCase : List[Any] = get_activation("gelu") self.assertIsInstance(_lowerCamelCase , nn.GELU) self.assertEqual(act(torch.tensor(-100 , dtype=torch.floataa)).item() , 0) self.assertNotEqual(act(torch.tensor(-1 , dtype=torch.floataa)).item() , 0) self.assertEqual(act(torch.tensor(0 , dtype=torch.floataa)).item() , 0) self.assertEqual(act(torch.tensor(20 , dtype=torch.floataa)).item() , 20)
368
"""simple docstring""" import random import unittest import numpy as np import transformers from transformers import is_flax_available, is_torch_available from transformers.testing_utils import is_pt_flax_cross_test, require_flax if is_flax_available(): import os import jax.numpy as jnp from jax import jit from transformers import AutoTokenizer, FlaxAutoModelForCausalLM from transformers.modeling_flax_pytorch_utils import load_flax_weights_in_pytorch_model __snake_case : Tuple = '0.12' # assumed parallelism: 8 if is_torch_available(): import torch def _lowercase ( __snake_case ,__snake_case ,__snake_case=None ) -> str: if rng is None: __lowerCAmelCase : str = random.Random() __lowerCAmelCase : List[Any] = 1 for dim in shape: total_dims *= dim __lowerCAmelCase : int = [] for _ in range(__snake_case ): values.append(rng.randint(0 ,vocab_size - 1 ) ) __lowerCAmelCase : Dict = np.array(__snake_case ,dtype=jnp.intaa ).reshape(__snake_case ) return output def _lowercase ( __snake_case ,__snake_case=None ) -> Optional[Any]: __lowerCAmelCase : List[str] = ids_tensor(__snake_case ,vocab_size=2 ,rng=__snake_case ) # make sure that at least one token is attended to for each batch __lowerCAmelCase : str = 1 return attn_mask @require_flax class A__ : '''simple docstring''' SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = () def _SCREAMING_SNAKE_CASE ( self: int) -> Tuple: """simple docstring""" __lowerCAmelCase , __lowerCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() # cut to half length & take max batch_size 3 __lowerCAmelCase : Tuple = 2 __lowerCAmelCase : Dict = inputs["input_ids"].shape[-1] // 2 __lowerCAmelCase : Union[str, Any] = inputs["input_ids"][:max_batch_size, :sequence_length] __lowerCAmelCase : str = jnp.ones_like(_SCREAMING_SNAKE_CASE) __lowerCAmelCase : str = attention_mask[:max_batch_size, :sequence_length] # generate max 5 tokens __lowerCAmelCase : Dict = input_ids.shape[-1] + 5 if config.eos_token_id is not None and config.pad_token_id is None: # hack to allow generate for models such as GPT2 as is done in `generate()` __lowerCAmelCase : int = config.eos_token_id return config, input_ids, attention_mask, max_length @is_pt_flax_cross_test def _SCREAMING_SNAKE_CASE ( self: int) -> str: """simple docstring""" __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase : str = self._get_input_ids_and_config() __lowerCAmelCase : Dict = False __lowerCAmelCase : Dict = max_length __lowerCAmelCase : Any = 0 for model_class in self.all_generative_model_classes: __lowerCAmelCase : Union[str, Any] = model_class(_SCREAMING_SNAKE_CASE) __lowerCAmelCase : List[Any] = model_class.__name__[4:] # Skip the "Flax" at the beginning __lowerCAmelCase : int = getattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE) __lowerCAmelCase : Tuple = pt_model_class(_SCREAMING_SNAKE_CASE).eval() __lowerCAmelCase : Optional[int] = load_flax_weights_in_pytorch_model(_SCREAMING_SNAKE_CASE , flax_model.params) __lowerCAmelCase : int = flax_model.generate(_SCREAMING_SNAKE_CASE).sequences __lowerCAmelCase : Any = pt_model.generate(torch.tensor(_SCREAMING_SNAKE_CASE , dtype=torch.long)) if flax_generation_outputs.shape[-1] > pt_generation_outputs.shape[-1]: __lowerCAmelCase : Any = flax_generation_outputs[:, : pt_generation_outputs.shape[-1]] self.assertListEqual(pt_generation_outputs.numpy().tolist() , flax_generation_outputs.tolist()) def _SCREAMING_SNAKE_CASE ( self: List[str]) -> List[str]: """simple docstring""" __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase : Optional[Any] = self._get_input_ids_and_config() __lowerCAmelCase : List[str] = False __lowerCAmelCase : Optional[Any] = max_length for model_class in self.all_generative_model_classes: __lowerCAmelCase : List[str] = model_class(_SCREAMING_SNAKE_CASE) __lowerCAmelCase : Union[str, Any] = model.generate(_SCREAMING_SNAKE_CASE).sequences self.assertEqual(generation_outputs.shape[-1] , _SCREAMING_SNAKE_CASE) __lowerCAmelCase : List[Any] = jit(model.generate) __lowerCAmelCase : List[str] = jit_generate(_SCREAMING_SNAKE_CASE).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist()) def _SCREAMING_SNAKE_CASE ( self: Dict) -> Union[str, Any]: """simple docstring""" __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase : Optional[Any] = self._get_input_ids_and_config() __lowerCAmelCase : Dict = True __lowerCAmelCase : List[str] = max_length for model_class in self.all_generative_model_classes: __lowerCAmelCase : Tuple = model_class(_SCREAMING_SNAKE_CASE) __lowerCAmelCase : Optional[Any] = model.generate(_SCREAMING_SNAKE_CASE).sequences self.assertEqual(generation_outputs.shape[-1] , _SCREAMING_SNAKE_CASE) __lowerCAmelCase : Union[str, Any] = jit(model.generate) __lowerCAmelCase : Optional[Any] = jit_generate(_SCREAMING_SNAKE_CASE).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist()) def _SCREAMING_SNAKE_CASE ( self: Optional[int]) -> Dict: """simple docstring""" __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase : Any = self._get_input_ids_and_config() __lowerCAmelCase : Tuple = False __lowerCAmelCase : Tuple = max_length __lowerCAmelCase : Any = 2 for model_class in self.all_generative_model_classes: __lowerCAmelCase : Optional[int] = model_class(_SCREAMING_SNAKE_CASE) __lowerCAmelCase : Any = model.generate(_SCREAMING_SNAKE_CASE).sequences self.assertEqual(generation_outputs.shape[-1] , _SCREAMING_SNAKE_CASE) __lowerCAmelCase : str = jit(model.generate) __lowerCAmelCase : Dict = jit_generate(_SCREAMING_SNAKE_CASE).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist()) def _SCREAMING_SNAKE_CASE ( self: str) -> str: """simple docstring""" __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase : Optional[int] = self._get_input_ids_and_config() __lowerCAmelCase : List[Any] = False __lowerCAmelCase : Any = max_length __lowerCAmelCase : Dict = 2 __lowerCAmelCase : int = 2 for model_class in self.all_generative_model_classes: __lowerCAmelCase : str = model_class(_SCREAMING_SNAKE_CASE) __lowerCAmelCase : Any = model.generate(_SCREAMING_SNAKE_CASE).sequences self.assertEqual(generation_outputs.shape[0] , input_ids.shape[0] * config.num_return_sequences) def _SCREAMING_SNAKE_CASE ( self: Any) -> Optional[Any]: """simple docstring""" __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase : int = self._get_input_ids_and_config() __lowerCAmelCase : str = True __lowerCAmelCase : Tuple = max_length __lowerCAmelCase : Tuple = 0.8 __lowerCAmelCase : Any = 10 __lowerCAmelCase : Any = 0.3 __lowerCAmelCase : List[Any] = 1 __lowerCAmelCase : int = 8 __lowerCAmelCase : Optional[int] = 9 for model_class in self.all_generative_model_classes: __lowerCAmelCase : Union[str, Any] = model_class(_SCREAMING_SNAKE_CASE) __lowerCAmelCase : Tuple = model.generate(_SCREAMING_SNAKE_CASE).sequences self.assertEqual(generation_outputs.shape[-1] , _SCREAMING_SNAKE_CASE) __lowerCAmelCase : Optional[int] = jit(model.generate) __lowerCAmelCase : str = jit_generate(_SCREAMING_SNAKE_CASE).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist()) def _SCREAMING_SNAKE_CASE ( self: Tuple) -> List[Any]: """simple docstring""" __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase : List[str] = self._get_input_ids_and_config() __lowerCAmelCase : int = max_length __lowerCAmelCase : Tuple = 1 __lowerCAmelCase : List[str] = 8 __lowerCAmelCase : str = 9 for model_class in self.all_generative_model_classes: __lowerCAmelCase : Dict = model_class(_SCREAMING_SNAKE_CASE) __lowerCAmelCase : List[Any] = model.generate(_SCREAMING_SNAKE_CASE).sequences self.assertEqual(generation_outputs.shape[-1] , _SCREAMING_SNAKE_CASE) __lowerCAmelCase : Any = jit(model.generate) __lowerCAmelCase : str = jit_generate(_SCREAMING_SNAKE_CASE).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist()) def _SCREAMING_SNAKE_CASE ( self: List[str]) -> Dict: """simple docstring""" __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase : int = self._get_input_ids_and_config() __lowerCAmelCase : Union[str, Any] = max_length __lowerCAmelCase : Dict = 2 __lowerCAmelCase : Tuple = 1 __lowerCAmelCase : int = 8 __lowerCAmelCase : str = 9 for model_class in self.all_generative_model_classes: __lowerCAmelCase : str = model_class(_SCREAMING_SNAKE_CASE) __lowerCAmelCase : Dict = model.generate(_SCREAMING_SNAKE_CASE).sequences self.assertEqual(generation_outputs.shape[-1] , _SCREAMING_SNAKE_CASE) __lowerCAmelCase : List[Any] = jit(model.generate) __lowerCAmelCase : Union[str, Any] = jit_generate(_SCREAMING_SNAKE_CASE).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist()) def _SCREAMING_SNAKE_CASE ( self: str) -> Any: """simple docstring""" __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase : Union[str, Any] = self._get_input_ids_and_config() # pad attention mask on the left __lowerCAmelCase : Tuple = attention_mask.at[(0, 0)].set(0) __lowerCAmelCase : Optional[Any] = False __lowerCAmelCase : int = max_length for model_class in self.all_generative_model_classes: __lowerCAmelCase : str = model_class(_SCREAMING_SNAKE_CASE) __lowerCAmelCase : Optional[int] = model.generate(_SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE).sequences self.assertEqual(generation_outputs.shape[-1] , _SCREAMING_SNAKE_CASE) __lowerCAmelCase : Tuple = jit(model.generate) __lowerCAmelCase : Dict = jit_generate(_SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist()) def _SCREAMING_SNAKE_CASE ( self: Tuple) -> str: """simple docstring""" __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase : Any = self._get_input_ids_and_config() # pad attention mask on the left __lowerCAmelCase : int = attention_mask.at[(0, 0)].set(0) __lowerCAmelCase : Optional[int] = True __lowerCAmelCase : Optional[Any] = max_length for model_class in self.all_generative_model_classes: __lowerCAmelCase : Any = model_class(_SCREAMING_SNAKE_CASE) __lowerCAmelCase : Optional[int] = model.generate(_SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE).sequences self.assertEqual(generation_outputs.shape[-1] , _SCREAMING_SNAKE_CASE) __lowerCAmelCase : Tuple = jit(model.generate) __lowerCAmelCase : Any = jit_generate(_SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist()) def _SCREAMING_SNAKE_CASE ( self: Union[str, Any]) -> str: """simple docstring""" __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase : Union[str, Any] = self._get_input_ids_and_config() # pad attention mask on the left __lowerCAmelCase : int = attention_mask.at[(0, 0)].set(0) __lowerCAmelCase : Tuple = 2 __lowerCAmelCase : Dict = max_length for model_class in self.all_generative_model_classes: __lowerCAmelCase : Tuple = model_class(_SCREAMING_SNAKE_CASE) __lowerCAmelCase : Optional[Any] = model.generate(_SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE).sequences self.assertEqual(generation_outputs.shape[-1] , _SCREAMING_SNAKE_CASE) __lowerCAmelCase : Dict = jit(model.generate) __lowerCAmelCase : int = jit_generate(_SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist()) @require_flax class A__ ( unittest.TestCase ): '''simple docstring''' def _SCREAMING_SNAKE_CASE ( self: Tuple) -> Any: """simple docstring""" __lowerCAmelCase : Tuple = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-bert") __lowerCAmelCase : Optional[int] = FlaxAutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-bert-flax-only") __lowerCAmelCase : Optional[Any] = "Hello world" __lowerCAmelCase : str = tokenizer(_SCREAMING_SNAKE_CASE , return_tensors="np").input_ids # typos are quickly detected (the correct argument is `do_sample`) with self.assertRaisesRegex(_SCREAMING_SNAKE_CASE , "do_samples"): model.generate(_SCREAMING_SNAKE_CASE , do_samples=_SCREAMING_SNAKE_CASE) # arbitrary arguments that will not be used anywhere are also not accepted with self.assertRaisesRegex(_SCREAMING_SNAKE_CASE , "foo"): __lowerCAmelCase : int = {"foo": "bar"} model.generate(_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE)
58
0
import importlib import os import fsspec import pytest from fsspec import register_implementation from fsspec.registry import _registry as _fsspec_registry from datasets.filesystems import COMPRESSION_FILESYSTEMS, HfFileSystem, extract_path_from_uri, is_remote_filesystem from .utils import require_lza, require_zstandard def lowerCAmelCase_ ( _snake_case : List[Any] ) -> List[Any]: '''simple docstring''' assert "mock" in _fsspec_registry assert "bz2" in _fsspec_registry def lowerCAmelCase_ ( ) -> Tuple: '''simple docstring''' assert "mock" not in _fsspec_registry assert "bz2" in _fsspec_registry def lowerCAmelCase_ ( ) -> Union[str, Any]: '''simple docstring''' __magic_name__ : Dict = "mock-s3-bucket" __magic_name__ : Any = F'''s3://{mock_bucket}''' __magic_name__ : str = extract_path_from_uri(_snake_case ) assert dataset_path.startswith("s3://" ) is False __magic_name__ : Tuple = "./local/path" __magic_name__ : Optional[Any] = extract_path_from_uri(_snake_case ) assert dataset_path == new_dataset_path def lowerCAmelCase_ ( _snake_case : List[str] ) -> Optional[Any]: '''simple docstring''' __magic_name__ : str = is_remote_filesystem(_snake_case ) assert is_remote is True __magic_name__ : Optional[int] = fsspec.filesystem("file" ) __magic_name__ : int = is_remote_filesystem(_snake_case ) assert is_remote is False @pytest.mark.parametrize("compression_fs_class" , _snake_case ) def lowerCAmelCase_ ( _snake_case : Optional[int] , _snake_case : Optional[Any] , _snake_case : int , _snake_case : Tuple , _snake_case : Any , _snake_case : Union[str, Any] , _snake_case : Any ) -> int: '''simple docstring''' __magic_name__ : Any = {"gzip": gz_file, "xz": xz_file, "zstd": zstd_file, "bz2": bza_file, "lz4": lza_file} __magic_name__ : str = input_paths[compression_fs_class.protocol] if input_path is None: __magic_name__ : Dict = F'''for \'{compression_fs_class.protocol}\' compression protocol, ''' if compression_fs_class.protocol == "lz4": reason += require_lza.kwargs["reason"] elif compression_fs_class.protocol == "zstd": reason += require_zstandard.kwargs["reason"] pytest.skip(_snake_case ) __magic_name__ : str = fsspec.filesystem(compression_fs_class.protocol , fo=_snake_case ) assert isinstance(_snake_case , _snake_case ) __magic_name__ : int = os.path.basename(_snake_case ) __magic_name__ : Optional[int] = expected_filename[: expected_filename.rindex("." )] assert fs.glob("*" ) == [expected_filename] with fs.open(_snake_case , "r" , encoding="utf-8" ) as f, open(_snake_case , encoding="utf-8" ) as expected_file: assert f.read() == expected_file.read() @pytest.mark.parametrize("protocol" , ["zip", "gzip"] ) def lowerCAmelCase_ ( _snake_case : List[Any] , _snake_case : Optional[Any] , _snake_case : Optional[Any] ) -> str: '''simple docstring''' __magic_name__ : int = {"zip": zip_jsonl_path, "gzip": jsonl_gz_path} __magic_name__ : int = compressed_file_paths[protocol] __magic_name__ : Tuple = "dataset.jsonl" __magic_name__ : List[str] = F'''{protocol}://{member_file_path}::{compressed_file_path}''' __magic_name__ , *__magic_name__ : Optional[Any] = fsspec.get_fs_token_paths(_snake_case ) assert fs.isfile(_snake_case ) assert not fs.isfile("non_existing_" + member_file_path ) @pytest.mark.integration def lowerCAmelCase_ ( _snake_case : Union[str, Any] , _snake_case : Dict , _snake_case : List[str] , _snake_case : Tuple ) -> str: '''simple docstring''' __magic_name__ : int = hf_api.dataset_info(_snake_case , token=_snake_case ) __magic_name__ : Optional[Any] = HfFileSystem(repo_info=_snake_case , token=_snake_case ) assert sorted(hffs.glob("*" ) ) == [".gitattributes", "data"] assert hffs.isdir("data" ) assert hffs.isfile(".gitattributes" ) and hffs.isfile("data/text_data.txt" ) with open(_snake_case ) as f: assert hffs.open("data/text_data.txt" , "r" ).read() == f.read() def lowerCAmelCase_ ( ) -> Optional[int]: '''simple docstring''' __magic_name__ : Optional[Any] = "bz2" # Import module import datasets.filesystems # Overwrite protocol and reload register_implementation(_snake_case , _snake_case , clobber=_snake_case ) with pytest.warns(_snake_case ) as warning_info: importlib.reload(datasets.filesystems ) assert len(_snake_case ) == 1 assert ( str(warning_info[0].message ) == F'''A filesystem protocol was already set for {protocol} and will be overwritten.''' )
281
import hashlib import unittest from typing import Dict import numpy as np from transformers import ( MODEL_FOR_MASK_GENERATION_MAPPING, TF_MODEL_FOR_MASK_GENERATION_MAPPING, is_vision_available, pipeline, ) from transformers.pipelines import MaskGenerationPipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) if is_vision_available(): from PIL import Image else: class _snake_case : @staticmethod def SCREAMING_SNAKE_CASE ( *_a , **_a ): pass def lowerCAmelCase_ ( _snake_case : Image ) -> str: '''simple docstring''' __magic_name__ : Optional[int] = hashlib.mda(image.tobytes() ) return m.hexdigest()[:10] def lowerCAmelCase_ ( _snake_case : Image ) -> Dict: '''simple docstring''' __magic_name__ : List[Any] = np.array(_snake_case ) __magic_name__ : Optional[int] = npimg.shape return {"hash": hashimage(_snake_case ), "shape": shape} @is_pipeline_test @require_vision @require_torch class _snake_case ( unittest.TestCase ): UpperCamelCase__ = dict( (list(MODEL_FOR_MASK_GENERATION_MAPPING.items() ) if MODEL_FOR_MASK_GENERATION_MAPPING else []) ) UpperCamelCase__ = dict( (list(TF_MODEL_FOR_MASK_GENERATION_MAPPING.items() ) if TF_MODEL_FOR_MASK_GENERATION_MAPPING else []) ) def SCREAMING_SNAKE_CASE ( self , _a , _a , _a ): __magic_name__ : Dict = MaskGenerationPipeline(model=_a , image_processor=_a ) return image_segmenter, [ "./tests/fixtures/tests_samples/COCO/000000039769.png", "./tests/fixtures/tests_samples/COCO/000000039769.png", ] def SCREAMING_SNAKE_CASE ( self , _a , _a ): pass @require_tf @unittest.skip("Image segmentation not implemented in TF" ) def SCREAMING_SNAKE_CASE ( self ): pass @slow @require_torch def SCREAMING_SNAKE_CASE ( self ): __magic_name__ : Dict = pipeline("mask-generation" , model="facebook/sam-vit-huge" ) __magic_name__ : str = image_segmenter("http://images.cocodataset.org/val2017/000000039769.jpg" , points_per_batch=256 ) # Shortening by hashing __magic_name__ : Dict = [] for i, o in enumerate(outputs["masks"] ): new_outupt += [{"mask": mask_to_test_readable(_a ), "scores": outputs["scores"][i]}] # fmt: off self.assertEqual( nested_simplify(_a , decimals=4 ) , [ {"mask": {"hash": "115ad19f5f", "shape": (480, 640)}, "scores": 1.04_44}, {"mask": {"hash": "6affa964c6", "shape": (480, 640)}, "scores": 1.0_21}, {"mask": {"hash": "dfe28a0388", "shape": (480, 640)}, "scores": 1.01_67}, {"mask": {"hash": "c0a5f4a318", "shape": (480, 640)}, "scores": 1.01_32}, {"mask": {"hash": "fe8065c197", "shape": (480, 640)}, "scores": 1.00_53}, {"mask": {"hash": "e2d0b7a0b7", "shape": (480, 640)}, "scores": 0.99_67}, {"mask": {"hash": "453c7844bd", "shape": (480, 640)}, "scores": 0.9_93}, {"mask": {"hash": "3d44f2926d", "shape": (480, 640)}, "scores": 0.99_09}, {"mask": {"hash": "64033ddc3f", "shape": (480, 640)}, "scores": 0.98_79}, {"mask": {"hash": "801064ff79", "shape": (480, 640)}, "scores": 0.98_34}, {"mask": {"hash": "6172f276ef", "shape": (480, 640)}, "scores": 0.97_16}, {"mask": {"hash": "b49e60e084", "shape": (480, 640)}, "scores": 0.96_12}, {"mask": {"hash": "a811e775fd", "shape": (480, 640)}, "scores": 0.95_99}, {"mask": {"hash": "a6a8ebcf4b", "shape": (480, 640)}, "scores": 0.95_52}, {"mask": {"hash": "9d8257e080", "shape": (480, 640)}, "scores": 0.95_32}, {"mask": {"hash": "32de6454a8", "shape": (480, 640)}, "scores": 0.95_16}, {"mask": {"hash": "af3d4af2c8", "shape": (480, 640)}, "scores": 0.94_99}, {"mask": {"hash": "3c6db475fb", "shape": (480, 640)}, "scores": 0.94_83}, {"mask": {"hash": "c290813fb9", "shape": (480, 640)}, "scores": 0.94_64}, {"mask": {"hash": "b6f0b8f606", "shape": (480, 640)}, "scores": 0.9_43}, {"mask": {"hash": "92ce16bfdf", "shape": (480, 640)}, "scores": 0.9_43}, {"mask": {"hash": "c749b25868", "shape": (480, 640)}, "scores": 0.94_08}, {"mask": {"hash": "efb6cab859", "shape": (480, 640)}, "scores": 0.93_35}, {"mask": {"hash": "1ff2eafb30", "shape": (480, 640)}, "scores": 0.93_26}, {"mask": {"hash": "788b798e24", "shape": (480, 640)}, "scores": 0.92_62}, {"mask": {"hash": "abea804f0e", "shape": (480, 640)}, "scores": 0.89_99}, {"mask": {"hash": "7b9e8ddb73", "shape": (480, 640)}, "scores": 0.89_86}, {"mask": {"hash": "cd24047c8a", "shape": (480, 640)}, "scores": 0.89_84}, {"mask": {"hash": "6943e6bcbd", "shape": (480, 640)}, "scores": 0.88_73}, {"mask": {"hash": "b5f47c9191", "shape": (480, 640)}, "scores": 0.88_71} ] , ) # fmt: on @require_torch @slow def SCREAMING_SNAKE_CASE ( self ): __magic_name__ : str = "facebook/sam-vit-huge" __magic_name__ : str = pipeline("mask-generation" , model=_a ) __magic_name__ : Tuple = image_segmenter( "http://images.cocodataset.org/val2017/000000039769.jpg" , pred_iou_thresh=1 , points_per_batch=256 ) # Shortening by hashing __magic_name__ : Any = [] for i, o in enumerate(outputs["masks"] ): new_outupt += [{"mask": mask_to_test_readable(_a ), "scores": outputs["scores"][i]}] self.assertEqual( nested_simplify(_a , decimals=4 ) , [ {"mask": {"hash": "115ad19f5f", "shape": (480, 640)}, "scores": 1.04_44}, {"mask": {"hash": "6affa964c6", "shape": (480, 640)}, "scores": 1.02_10}, {"mask": {"hash": "dfe28a0388", "shape": (480, 640)}, "scores": 1.01_67}, {"mask": {"hash": "c0a5f4a318", "shape": (480, 640)}, "scores": 1.01_32}, {"mask": {"hash": "fe8065c197", "shape": (480, 640)}, "scores": 1.00_53}, ] , )
281
1
'''simple docstring''' import math import time from typing import Dict, List, Optional from torch.utils.data import Dataset from transformers import SeqaSeqTrainer, is_torch_tpu_available from transformers.trainer_utils import PredictionOutput, speed_metrics if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm import torch_xla.debug.metrics as met class _snake_case ( a_ ): def __init__( self , *_lowerCamelCase , _lowerCamelCase=None , _lowerCamelCase=None , **_lowerCamelCase): super().__init__(*lowercase_ , **lowercase_) UpperCAmelCase__ : Optional[int] = eval_examples UpperCAmelCase__ : str = post_process_function def snake_case__ ( self , _lowerCamelCase = None , _lowerCamelCase=None , _lowerCamelCase = None , _lowerCamelCase = "eval" , **_lowerCamelCase , ): UpperCAmelCase__ : Optional[Any] = gen_kwargs.copy() UpperCAmelCase__ : Any = ( gen_kwargs["""max_length"""] if gen_kwargs.get("""max_length""") is not None else self.args.generation_max_length ) UpperCAmelCase__ : List[Any] = ( gen_kwargs["""num_beams"""] if gen_kwargs.get("""num_beams""") is not None else self.args.generation_num_beams ) UpperCAmelCase__ : List[Any] = gen_kwargs UpperCAmelCase__ : Tuple = self.eval_dataset if eval_dataset is None else eval_dataset UpperCAmelCase__ : Any = self.get_eval_dataloader(lowercase_) UpperCAmelCase__ : List[str] = self.eval_examples if eval_examples is None else eval_examples # Temporarily disable metric computation, we will do it in the loop here. UpperCAmelCase__ : List[Any] = self.compute_metrics UpperCAmelCase__ : Dict = None UpperCAmelCase__ : Tuple = time.time() UpperCAmelCase__ : Tuple = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: UpperCAmelCase__ : int = eval_loop( lowercase_ , description="""Evaluation""" , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=lowercase_ , metric_key_prefix=lowercase_ , ) finally: UpperCAmelCase__ : Dict = compute_metrics UpperCAmelCase__ : Optional[Any] = self.args.eval_batch_size * self.args.world_size if f'''{metric_key_prefix}_jit_compilation_time''' in output.metrics: start_time += output.metrics[f'''{metric_key_prefix}_jit_compilation_time'''] output.metrics.update( speed_metrics( lowercase_ , lowercase_ , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size) , )) if self.post_process_function is not None and self.compute_metrics is not None and self.args.should_save: # Only the main node write the results by default UpperCAmelCase__ : List[str] = self.post_process_function(lowercase_ , lowercase_ , lowercase_) UpperCAmelCase__ : Tuple = self.compute_metrics(lowercase_) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys()): if not key.startswith(f'''{metric_key_prefix}_'''): UpperCAmelCase__ : List[str] = metrics.pop(lowercase_) metrics.update(output.metrics) else: UpperCAmelCase__ : int = output.metrics if self.args.should_log: # Only the main node log the results by default self.log(lowercase_) if self.args.tpu_metrics_debug or self.args.debug: # tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.) xm.master_print(met.metrics_report()) UpperCAmelCase__ : List[Any] = self.callback_handler.on_evaluate(self.args , self.state , self.control , lowercase_) return metrics def snake_case__ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=None , _lowerCamelCase = "test" , **_lowerCamelCase): UpperCAmelCase__ : Tuple = gen_kwargs.copy() UpperCAmelCase__ : Tuple = self.get_test_dataloader(lowercase_) # Temporarily disable metric computation, we will do it in the loop here. UpperCAmelCase__ : Optional[Any] = self.compute_metrics UpperCAmelCase__ : List[Any] = None UpperCAmelCase__ : Tuple = time.time() UpperCAmelCase__ : Dict = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: UpperCAmelCase__ : Dict = eval_loop( lowercase_ , description="""Prediction""" , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=lowercase_ , metric_key_prefix=lowercase_ , ) finally: UpperCAmelCase__ : List[str] = compute_metrics UpperCAmelCase__ : int = self.args.eval_batch_size * self.args.world_size if f'''{metric_key_prefix}_jit_compilation_time''' in output.metrics: start_time += output.metrics[f'''{metric_key_prefix}_jit_compilation_time'''] output.metrics.update( speed_metrics( lowercase_ , lowercase_ , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size) , )) if self.post_process_function is None or self.compute_metrics is None: return output UpperCAmelCase__ : str = self.post_process_function(lowercase_ , lowercase_ , lowercase_ , """predict""") UpperCAmelCase__ : Optional[int] = self.compute_metrics(lowercase_) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys()): if not key.startswith(f'''{metric_key_prefix}_'''): UpperCAmelCase__ : Any = metrics.pop(lowercase_) metrics.update(output.metrics) return PredictionOutput(predictions=predictions.predictions , label_ids=predictions.label_ids , metrics=lowercase_)
364
'''simple docstring''' import os from datetime import datetime as dt from github import Github __A =[ 'good first issue', 'good second issue', 'good difficult issue', 'enhancement', 'new pipeline/model', 'new scheduler', 'wip', ] def _UpperCamelCase ( ): UpperCAmelCase__ : Union[str, Any] = Github(os.environ["""GITHUB_TOKEN"""] ) UpperCAmelCase__ : Any = g.get_repo("""huggingface/diffusers""" ) UpperCAmelCase__ : Optional[int] = repo.get_issues(state="""open""" ) for issue in open_issues: UpperCAmelCase__ : Any = sorted(issue.get_comments() , key=lambda UpperCamelCase__ : i.created_at , reverse=UpperCamelCase__ ) UpperCAmelCase__ : List[Any] = comments[0] if len(UpperCamelCase__ ) > 0 else None if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and (dt.utcnow() - issue.updated_at).days > 7 and (dt.utcnow() - issue.created_at).days >= 3_0 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Closes the issue after 7 days of inactivity since the Stalebot notification. issue.edit(state="""closed""" ) elif ( "stale" in issue.get_labels() and last_comment is not None and last_comment.user.login != "github-actions[bot]" ): # Opens the issue if someone other than Stalebot commented. issue.edit(state="""open""" ) issue.remove_from_labels("""stale""" ) elif ( (dt.utcnow() - issue.updated_at).days > 2_3 and (dt.utcnow() - issue.created_at).days >= 3_0 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Post a Stalebot notification after 23 days of inactivity. issue.create_comment( """This issue has been automatically marked as stale because it has not had """ """recent activity. If you think this still needs to be addressed """ """please comment on this thread.\n\nPlease note that issues that do not follow the """ """[contributing guidelines](https://github.com/huggingface/diffusers/blob/main/CONTRIBUTING.md) """ """are likely to be ignored.""" ) issue.add_to_labels("""stale""" ) if __name__ == "__main__": main()
283
0
import json import os import unittest from transformers import MgpstrTokenizer from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class _a ( UpperCamelCase__ , unittest.TestCase): """simple docstring""" UpperCamelCase__ = MgpstrTokenizer UpperCamelCase__ = False UpperCamelCase__ = {} UpperCamelCase__ = False def UpperCAmelCase_ ( self: List[str] ): '''simple docstring''' super().setUp() # fmt: off UpperCamelCase__: Union[str, Any] = ["[GO]", "[s]", "0", "1", "2", "3", "4", "5", "6", "7", "8", "9", "a", "b", "c", "d", "e", "f", "g", "h", "i", "j", "k", "l", "m", "n", "o", "p", "q", "r", "s", "t", "u", "v", "w", "x", "y", "z"] # fmt: on UpperCamelCase__: int = dict(zip(__lowerCamelCase , range(len(__lowerCamelCase ) ) ) ) UpperCamelCase__: Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as fp: fp.write(json.dumps(__lowerCamelCase ) + "\n" ) def UpperCAmelCase_ ( self: Dict , **__lowerCamelCase: List[str] ): '''simple docstring''' return MgpstrTokenizer.from_pretrained(self.tmpdirname , **__lowerCamelCase ) def UpperCAmelCase_ ( self: Optional[Any] , __lowerCamelCase: List[Any] ): '''simple docstring''' UpperCamelCase__: Tuple = "tester" UpperCamelCase__: Optional[int] = "tester" return input_text, output_text @unittest.skip("MGP-STR always lower cases letters." ) def UpperCAmelCase_ ( self: str ): '''simple docstring''' pass def UpperCAmelCase_ ( self: Dict ): '''simple docstring''' UpperCamelCase__: Dict = self.get_tokenizers(do_lower_case=__lowerCamelCase ) for tokenizer in tokenizers: with self.subTest(F"{tokenizer.__class__.__name__}" ): UpperCamelCase__: Optional[int] = "[SPECIAL_TOKEN]" tokenizer.add_special_tokens({"cls_token": special_token} ) UpperCamelCase__: Union[str, Any] = tokenizer.encode([special_token] , add_special_tokens=__lowerCamelCase ) self.assertEqual(len(__lowerCamelCase ) , 1 ) UpperCamelCase__: str = tokenizer.decode(__lowerCamelCase , skip_special_tokens=__lowerCamelCase ) self.assertTrue(special_token not in decoded ) def UpperCAmelCase_ ( self: Optional[int] ): '''simple docstring''' UpperCamelCase__: List[Any] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F"{tokenizer.__class__.__name__}" ): UpperCamelCase__ , UpperCamelCase__: Optional[int] = self.get_input_output_texts(__lowerCamelCase ) UpperCamelCase__: Tuple = tokenizer.tokenize(__lowerCamelCase ) UpperCamelCase__: List[Any] = tokenizer.convert_tokens_to_ids(__lowerCamelCase ) UpperCamelCase__: int = tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase ) self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) UpperCamelCase__: Union[str, Any] = tokenizer.convert_ids_to_tokens(__lowerCamelCase ) self.assertNotEqual(len(__lowerCamelCase ) , 0 ) UpperCamelCase__: int = tokenizer.decode(__lowerCamelCase ) self.assertIsInstance(__lowerCamelCase , __lowerCamelCase ) self.assertEqual(text_a.replace(" " , "" ) , __lowerCamelCase ) @unittest.skip("MGP-STR tokenizer only handles one sequence." ) def UpperCAmelCase_ ( self: List[str] ): '''simple docstring''' pass @unittest.skip("inputs cannot be pretokenized in MgpstrTokenizer" ) def UpperCAmelCase_ ( self: Tuple ): '''simple docstring''' pass
149
import torch from diffusers import DDIMParallelScheduler from .test_schedulers import SchedulerCommonTest class _a ( UpperCamelCase__): """simple docstring""" UpperCamelCase__ = (DDIMParallelScheduler,) UpperCamelCase__ = (("""eta""", 0.0), ("""num_inference_steps""", 50)) def UpperCAmelCase_ ( self: int , **__lowerCamelCase: Dict ): '''simple docstring''' UpperCamelCase__: Any = { "num_train_timesteps": 1000, "beta_start": 0.0_001, "beta_end": 0.02, "beta_schedule": "linear", "clip_sample": True, } config.update(**__lowerCamelCase ) return config def UpperCAmelCase_ ( self: int , **__lowerCamelCase: Optional[int] ): '''simple docstring''' UpperCamelCase__: str = self.scheduler_classes[0] UpperCamelCase__: Optional[int] = self.get_scheduler_config(**__lowerCamelCase ) UpperCamelCase__: List[str] = scheduler_class(**__lowerCamelCase ) UpperCamelCase__ , UpperCamelCase__: int = 10, 0.0 UpperCamelCase__: List[Any] = self.dummy_model() UpperCamelCase__: Optional[int] = self.dummy_sample_deter scheduler.set_timesteps(__lowerCamelCase ) for t in scheduler.timesteps: UpperCamelCase__: Optional[Any] = model(__lowerCamelCase , __lowerCamelCase ) UpperCamelCase__: Tuple = scheduler.step(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ).prev_sample return sample def UpperCAmelCase_ ( self: List[Any] ): '''simple docstring''' for timesteps in [100, 500, 1000]: self.check_over_configs(num_train_timesteps=__lowerCamelCase ) def UpperCAmelCase_ ( self: Tuple ): '''simple docstring''' for steps_offset in [0, 1]: self.check_over_configs(steps_offset=__lowerCamelCase ) UpperCamelCase__: Tuple = self.scheduler_classes[0] UpperCamelCase__: Optional[int] = self.get_scheduler_config(steps_offset=1 ) UpperCamelCase__: str = scheduler_class(**__lowerCamelCase ) scheduler.set_timesteps(5 ) assert torch.equal(scheduler.timesteps , torch.LongTensor([801, 601, 401, 201, 1] ) ) def UpperCAmelCase_ ( self: Optional[Any] ): '''simple docstring''' for beta_start, beta_end in zip([0.0_001, 0.001, 0.01, 0.1] , [0.002, 0.02, 0.2, 2] ): self.check_over_configs(beta_start=__lowerCamelCase , beta_end=__lowerCamelCase ) def UpperCAmelCase_ ( self: Union[str, Any] ): '''simple docstring''' for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=__lowerCamelCase ) def UpperCAmelCase_ ( self: List[str] ): '''simple docstring''' for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=__lowerCamelCase ) def UpperCAmelCase_ ( self: Dict ): '''simple docstring''' for clip_sample in [True, False]: self.check_over_configs(clip_sample=__lowerCamelCase ) def UpperCAmelCase_ ( self: Any ): '''simple docstring''' for timestep_spacing in ["trailing", "leading"]: self.check_over_configs(timestep_spacing=__lowerCamelCase ) def UpperCAmelCase_ ( self: List[str] ): '''simple docstring''' for rescale_betas_zero_snr in [True, False]: self.check_over_configs(rescale_betas_zero_snr=__lowerCamelCase ) def UpperCAmelCase_ ( self: Optional[int] ): '''simple docstring''' self.check_over_configs(thresholding=__lowerCamelCase ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs( thresholding=__lowerCamelCase , prediction_type=__lowerCamelCase , sample_max_value=__lowerCamelCase , ) def UpperCAmelCase_ ( self: Tuple ): '''simple docstring''' for t in [1, 10, 49]: self.check_over_forward(time_step=__lowerCamelCase ) def UpperCAmelCase_ ( self: int ): '''simple docstring''' for t, num_inference_steps in zip([1, 10, 50] , [10, 50, 500] ): self.check_over_forward(time_step=__lowerCamelCase , num_inference_steps=__lowerCamelCase ) def UpperCAmelCase_ ( self: Optional[int] ): '''simple docstring''' for t, eta in zip([1, 10, 49] , [0.0, 0.5, 1.0] ): self.check_over_forward(time_step=__lowerCamelCase , eta=__lowerCamelCase ) def UpperCAmelCase_ ( self: Optional[int] ): '''simple docstring''' UpperCamelCase__: Any = self.scheduler_classes[0] UpperCamelCase__: Optional[int] = self.get_scheduler_config() UpperCamelCase__: str = scheduler_class(**__lowerCamelCase ) assert torch.sum(torch.abs(scheduler._get_variance(0 , 0 ) - 0.0 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(420 , 400 ) - 0.14_771 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(980 , 960 ) - 0.32_460 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(0 , 0 ) - 0.0 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(487 , 486 ) - 0.00_979 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(999 , 998 ) - 0.02 ) ) < 1e-5 def UpperCAmelCase_ ( self: Optional[Any] ): '''simple docstring''' UpperCamelCase__: List[Any] = self.scheduler_classes[0] UpperCamelCase__: Union[str, Any] = self.get_scheduler_config() UpperCamelCase__: Any = scheduler_class(**__lowerCamelCase ) UpperCamelCase__ , UpperCamelCase__: Union[str, Any] = 10, 0.0 scheduler.set_timesteps(__lowerCamelCase ) UpperCamelCase__: Tuple = self.dummy_model() UpperCamelCase__: Union[str, Any] = self.dummy_sample_deter UpperCamelCase__: Dict = self.dummy_sample_deter + 0.1 UpperCamelCase__: Dict = self.dummy_sample_deter - 0.1 UpperCamelCase__: int = samplea.shape[0] UpperCamelCase__: List[str] = torch.stack([samplea, samplea, samplea] , dim=0 ) UpperCamelCase__: Union[str, Any] = torch.arange(__lowerCamelCase )[0:3, None].repeat(1 , __lowerCamelCase ) UpperCamelCase__: str = model(samples.flatten(0 , 1 ) , timesteps.flatten(0 , 1 ) ) UpperCamelCase__: Optional[int] = scheduler.batch_step_no_noise(__lowerCamelCase , timesteps.flatten(0 , 1 ) , samples.flatten(0 , 1 ) , __lowerCamelCase ) UpperCamelCase__: Dict = torch.sum(torch.abs(__lowerCamelCase ) ) UpperCamelCase__: Tuple = torch.mean(torch.abs(__lowerCamelCase ) ) assert abs(result_sum.item() - 1_147.7_904 ) < 1e-2 assert abs(result_mean.item() - 0.4_982 ) < 1e-3 def UpperCAmelCase_ ( self: Optional[Any] ): '''simple docstring''' UpperCamelCase__: str = self.full_loop() UpperCamelCase__: List[str] = torch.sum(torch.abs(__lowerCamelCase ) ) UpperCamelCase__: Any = torch.mean(torch.abs(__lowerCamelCase ) ) assert abs(result_sum.item() - 172.0_067 ) < 1e-2 assert abs(result_mean.item() - 0.223_967 ) < 1e-3 def UpperCAmelCase_ ( self: str ): '''simple docstring''' UpperCamelCase__: Optional[int] = self.full_loop(prediction_type="v_prediction" ) UpperCamelCase__: List[Any] = torch.sum(torch.abs(__lowerCamelCase ) ) UpperCamelCase__: Optional[Any] = torch.mean(torch.abs(__lowerCamelCase ) ) assert abs(result_sum.item() - 52.5_302 ) < 1e-2 assert abs(result_mean.item() - 0.0_684 ) < 1e-3 def UpperCAmelCase_ ( self: List[str] ): '''simple docstring''' UpperCamelCase__: Any = self.full_loop(set_alpha_to_one=__lowerCamelCase , beta_start=0.01 ) UpperCamelCase__: Optional[Any] = torch.sum(torch.abs(__lowerCamelCase ) ) UpperCamelCase__: Optional[Any] = torch.mean(torch.abs(__lowerCamelCase ) ) assert abs(result_sum.item() - 149.8_295 ) < 1e-2 assert abs(result_mean.item() - 0.1_951 ) < 1e-3 def UpperCAmelCase_ ( self: List[Any] ): '''simple docstring''' UpperCamelCase__: Tuple = self.full_loop(set_alpha_to_one=__lowerCamelCase , beta_start=0.01 ) UpperCamelCase__: Optional[int] = torch.sum(torch.abs(__lowerCamelCase ) ) UpperCamelCase__: List[Any] = torch.mean(torch.abs(__lowerCamelCase ) ) assert abs(result_sum.item() - 149.0_784 ) < 1e-2 assert abs(result_mean.item() - 0.1_941 ) < 1e-3
149
1
import unittest import numpy as np import torch from diffusers import ScoreSdeVePipeline, ScoreSdeVeScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class _a ( unittest.TestCase ): @property def snake_case ( self : Optional[int] ) -> List[str]: '''simple docstring''' torch.manual_seed(0 ) _UpperCamelCase : int = UNetaDModel( block_out_channels=(3_2, 6_4), layers_per_block=2, sample_size=3_2, in_channels=3, out_channels=3, down_block_types=('''DownBlock2D''', '''AttnDownBlock2D'''), up_block_types=('''AttnUpBlock2D''', '''UpBlock2D'''), ) return model def snake_case ( self : str ) -> Tuple: '''simple docstring''' _UpperCamelCase : Union[str, Any] = self.dummy_uncond_unet _UpperCamelCase : Optional[Any] = ScoreSdeVeScheduler() _UpperCamelCase : Dict = ScoreSdeVePipeline(unet=lowerCAmelCase__, scheduler=lowerCAmelCase__ ) sde_ve.to(lowerCAmelCase__ ) sde_ve.set_progress_bar_config(disable=lowerCAmelCase__ ) _UpperCamelCase : List[str] = torch.manual_seed(0 ) _UpperCamelCase : Tuple = sde_ve(num_inference_steps=2, output_type='''numpy''', generator=lowerCAmelCase__ ).images _UpperCamelCase : Dict = torch.manual_seed(0 ) _UpperCamelCase : List[str] = sde_ve(num_inference_steps=2, output_type='''numpy''', generator=lowerCAmelCase__, return_dict=lowerCAmelCase__ )[ 0 ] _UpperCamelCase : Union[str, Any] = image[0, -3:, -3:, -1] _UpperCamelCase : Union[str, Any] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 3_2, 3_2, 3) _UpperCamelCase : str = np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch class _a ( unittest.TestCase ): def snake_case ( self : str ) -> Dict: '''simple docstring''' _UpperCamelCase : int = '''google/ncsnpp-church-256''' _UpperCamelCase : List[Any] = UNetaDModel.from_pretrained(lowerCAmelCase__ ) _UpperCamelCase : str = ScoreSdeVeScheduler.from_pretrained(lowerCAmelCase__ ) _UpperCamelCase : str = ScoreSdeVePipeline(unet=lowerCAmelCase__, scheduler=lowerCAmelCase__ ) sde_ve.to(lowerCAmelCase__ ) sde_ve.set_progress_bar_config(disable=lowerCAmelCase__ ) _UpperCamelCase : Dict = torch.manual_seed(0 ) _UpperCamelCase : List[str] = sde_ve(num_inference_steps=1_0, output_type='''numpy''', generator=lowerCAmelCase__ ).images _UpperCamelCase : List[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 2_5_6, 2_5_6, 3) _UpperCamelCase : Optional[Any] = np.array([0.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
370
"""simple docstring""" from __future__ import annotations import math def a_ ( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ): if depth < 0: raise ValueError('''Depth cannot be less than 0''' ) if len(_lowercase ) == 0: raise ValueError('''Scores cannot be empty''' ) if depth == height: return scores[node_index] if is_max: return max( minimax(depth + 1 , node_index * 2 , _lowercase , _lowercase , _lowercase ) , minimax(depth + 1 , node_index * 2 + 1 , _lowercase , _lowercase , _lowercase ) , ) return min( minimax(depth + 1 , node_index * 2 , _lowercase , _lowercase , _lowercase ) , minimax(depth + 1 , node_index * 2 + 1 , _lowercase , _lowercase , _lowercase ) , ) def a_ ( ): _UpperCamelCase : Dict = [90, 23, 6, 33, 21, 65, 123, 3_4423] _UpperCamelCase : int = math.log(len(_lowercase ) , 2 ) print('''Optimal value : ''' , end='''''' ) print(minimax(0 , 0 , _lowercase , _lowercase , _lowercase ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
128
0
"""simple docstring""" import math def _lowercase ( __lowerCAmelCase ) -> bool: return math.sqrt(__lowerCAmelCase ) * math.sqrt(__lowerCAmelCase ) == num def _lowercase ( __lowerCAmelCase ) -> bool: SCREAMING_SNAKE_CASE__ : str = 0 SCREAMING_SNAKE_CASE__ : Union[str, Any] = n while left <= right: SCREAMING_SNAKE_CASE__ : int = (left + right) // 2 if mid**2 == n: return True elif mid**2 > n: SCREAMING_SNAKE_CASE__ : Any = mid - 1 else: SCREAMING_SNAKE_CASE__ : Optional[Any] = mid + 1 return False if __name__ == "__main__": import doctest doctest.testmod()
132
"""simple docstring""" import tempfile import unittest from transformers import SPIECE_UNDERLINE, BatchEncoding, PLBartTokenizer, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, ) from ...test_tokenization_common import TokenizerTesterMixin a :Optional[int] = get_tests_dir("fixtures/test_sentencepiece.model") if is_torch_available(): from transformers.models.plbart.modeling_plbart import shift_tokens_right a :Tuple = 50_003 a :Optional[int] = 50_002 @require_sentencepiece @require_tokenizers class __a (UpperCamelCase_ , unittest.TestCase): '''simple docstring''' _SCREAMING_SNAKE_CASE :Dict = PLBartTokenizer _SCREAMING_SNAKE_CASE :List[str] = None _SCREAMING_SNAKE_CASE :Any = False def _a ( self ) -> Dict: """simple docstring""" super().setUp() # We have a SentencePiece fixture for testing SCREAMING_SNAKE_CASE__ : Any = PLBartTokenizer(_a , language_codes="""base""" , keep_accents=_a ) tokenizer.save_pretrained(self.tmpdirname ) def _a ( self ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : str = PLBartTokenizer(_a , language_codes="""base""" , keep_accents=_a ) SCREAMING_SNAKE_CASE__ : Dict = tokenizer.tokenize("""This is a test""" ) self.assertListEqual(_a , ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(_a ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) SCREAMING_SNAKE_CASE__ : List[str] = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( _a , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """é""", """.""", ] , ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = tokenizer.convert_tokens_to_ids(_a ) self.assertListEqual( _a , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) SCREAMING_SNAKE_CASE__ : Any = tokenizer.convert_ids_to_tokens(_a ) self.assertListEqual( _a , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """<unk>""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """<unk>""", """.""", ] , ) SCREAMING_SNAKE_CASE__ : Tuple = tokenizer.vocab_size SCREAMING_SNAKE_CASE__ : Dict = [tokenizer.convert_ids_to_tokens(_a ) for x in range(end - 4 , _a )] self.assertListEqual(_a , ["""__java__""", """__python__""", """__en_XX__""", """<mask>"""] ) SCREAMING_SNAKE_CASE__ : List[str] = """java.lang.Exception, python.lang.Exception, javascript, php, ruby, go""" SCREAMING_SNAKE_CASE__ : Any = tokenizer(_a ).input_ids self.assertEqual( tokenizer.decode(_a , skip_special_tokens=_a , clean_up_tokenization_spaces=_a ) , _a , ) def _a ( self ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[Any] = PLBartTokenizer(_a , language_codes="""multi""" , keep_accents=_a ) SCREAMING_SNAKE_CASE__ : List[Any] = tokenizer.tokenize("""This is a test""" ) self.assertListEqual(_a , ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(_a ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) SCREAMING_SNAKE_CASE__ : str = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( _a , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """é""", """.""", ] , ) SCREAMING_SNAKE_CASE__ : List[Any] = tokenizer.convert_tokens_to_ids(_a ) self.assertListEqual( _a , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) SCREAMING_SNAKE_CASE__ : str = tokenizer.convert_ids_to_tokens(_a ) self.assertListEqual( _a , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """<unk>""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """<unk>""", """.""", ] , ) SCREAMING_SNAKE_CASE__ : List[Any] = tokenizer.vocab_size SCREAMING_SNAKE_CASE__ : Optional[int] = [tokenizer.convert_ids_to_tokens(_a ) for x in range(end - 7 , _a )] self.assertListEqual( _a , ["""__java__""", """__python__""", """__en_XX__""", """__javascript__""", """__php__""", """__ruby__""", """__go__"""] ) SCREAMING_SNAKE_CASE__ : Tuple = """java.lang.Exception, python.lang.Exception, javascript, php, ruby, go""" SCREAMING_SNAKE_CASE__ : Optional[int] = tokenizer(_a ).input_ids self.assertEqual( tokenizer.decode(_a , skip_special_tokens=_a , clean_up_tokenization_spaces=_a ) , _a , ) @require_torch @require_sentencepiece @require_tokenizers class __a (unittest.TestCase): '''simple docstring''' _SCREAMING_SNAKE_CASE :Optional[int] = """uclanlp/plbart-python-en_XX""" _SCREAMING_SNAKE_CASE :List[Any] = [ """def maximum(a,b,c):NEW_LINE_INDENTreturn max([a,b,c])""", """def sum(a,b,c):NEW_LINE_INDENTreturn sum([a,b,c])""", ] _SCREAMING_SNAKE_CASE :Optional[Any] = [ """Returns the maximum value of a b c.""", """Sums the values of a b c.""", ] _SCREAMING_SNAKE_CASE :str = [ 1_34, 54_52, 3_34_60, 3_34_41, 3_34_63, 3_34_65, 3_34_63, 3_34_49, 9_88, 20, 3_34_56, 19, 3_34_56, 7_71, 39, 42_58, 8_89, 33_18, 3_34_41, 3_34_63, 3_34_65, 3_34_63, 3_34_49, 24_71, 2, PYTHON_CODE, ] @classmethod def _a ( cls ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : PLBartTokenizer = PLBartTokenizer.from_pretrained( cls.checkpoint_name , language_codes="""base""" , src_lang="""python""" , tgt_lang="""en_XX""" ) SCREAMING_SNAKE_CASE__ : Any = 1 return cls def _a ( self ) -> Union[str, Any]: """simple docstring""" self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["""__java__"""] , 50_001 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["""__python__"""] , 50_002 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["""__en_XX__"""] , 50_003 ) def _a ( self ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , _a ) def _a ( self ) -> Dict: """simple docstring""" self.assertIn(_a , self.tokenizer.all_special_ids ) SCREAMING_SNAKE_CASE__ : Tuple = [EN_CODE, 9_037, 33_442, 57, 752, 153, 14, 56, 18, 9, 2] SCREAMING_SNAKE_CASE__ : Any = self.tokenizer.decode(_a , skip_special_tokens=_a ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=_a ) self.assertEqual(_a , _a ) self.assertNotIn(self.tokenizer.eos_token , _a ) def _a ( self ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[Any] = ["""def sum(a,b,c):NEW_LINE_INDENTreturn sum([a,b,c])""" * 20] self.assertIsInstance(src_text[0] , _a ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = 10 SCREAMING_SNAKE_CASE__ : Optional[Any] = self.tokenizer(_a , max_length=_a , truncation=_a ).input_ids[0] self.assertEqual(ids[-2] , 2 ) self.assertEqual(ids[-1] , _a ) self.assertEqual(len(_a ) , _a ) def _a ( self ) -> Optional[int]: """simple docstring""" self.assertListEqual(self.tokenizer.convert_tokens_to_ids(["""<mask>""", """__java__"""] ) , [50_004, 50_001] ) def _a ( self ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[int] = tempfile.mkdtemp() SCREAMING_SNAKE_CASE__ : Tuple = self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(_a ) SCREAMING_SNAKE_CASE__ : Dict = PLBartTokenizer.from_pretrained(_a ) self.assertDictEqual(new_tok.fairseq_tokens_to_ids , _a ) @require_torch def _a ( self ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE__ : Dict = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=_a , return_tensors="""pt""" ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = shift_tokens_right(batch["""labels"""] , self.tokenizer.pad_token_id ) # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 self.assertEqual(batch.input_ids[1][-2:].tolist() , [2, PYTHON_CODE] ) self.assertEqual(batch.decoder_input_ids[1][0] , _a ) self.assertEqual(batch.decoder_input_ids[1][-1] , 2 ) self.assertEqual(batch.labels[1][-2:].tolist() , [2, EN_CODE] ) @require_torch def _a ( self ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE__ : int = self.tokenizer( self.src_text , text_target=self.tgt_text , padding=_a , truncation=_a , max_length=len(self.expected_src_tokens ) , return_tensors="""pt""" , ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = shift_tokens_right(batch["""labels"""] , self.tokenizer.pad_token_id ) self.assertIsInstance(_a , _a ) self.assertEqual((2, 26) , batch.input_ids.shape ) self.assertEqual((2, 26) , batch.attention_mask.shape ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens , _a ) self.assertEqual(2 , batch.decoder_input_ids[0, -1] ) # EOS # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens , [] ) self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id, PYTHON_CODE] ) def _a ( self ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[int] = self.tokenizer(self.src_text , padding=_a , truncation=_a , max_length=3 , return_tensors="""pt""" ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.tokenizer( text_target=self.tgt_text , padding=_a , truncation=_a , max_length=10 , return_tensors="""pt""" ) SCREAMING_SNAKE_CASE__ : List[Any] = targets["""input_ids"""] SCREAMING_SNAKE_CASE__ : Dict = shift_tokens_right(_a , self.tokenizer.pad_token_id ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.decoder_input_ids.shape[1] , 10 ) @require_torch def _a ( self ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.tokenizer._build_translation_inputs( """A test""" , return_tensors="""pt""" , src_lang="""en_XX""" , tgt_lang="""java""" ) self.assertEqual( nested_simplify(_a ) , { # A, test, EOS, en_XX """input_ids""": [[150, 242, 2, 50_003]], """attention_mask""": [[1, 1, 1, 1]], # java """forced_bos_token_id""": 50_001, } , )
132
1
import os from typing import List, Optional, Union from ...tokenization_utils import PreTrainedTokenizer from ...tokenization_utils_base import AddedToken from ...utils import logging __UpperCamelCase : Optional[Any] = logging.get_logger(__name__) __UpperCamelCase : int = {"vocab_file": "vocab.txt"} __UpperCamelCase : Optional[int] = { "vocab_file": { "facebook/esm2_t6_8M_UR50D": "https://huggingface.co/facebook/esm2_t6_8M_UR50D/resolve/main/vocab.txt", "facebook/esm2_t12_35M_UR50D": "https://huggingface.co/facebook/esm2_t12_35M_UR50D/resolve/main/vocab.txt", }, } __UpperCamelCase : Optional[Any] = { "facebook/esm2_t6_8M_UR50D": 1024, "facebook/esm2_t12_35M_UR50D": 1024, } def _a ( SCREAMING_SNAKE_CASE : int ): """simple docstring""" with open(SCREAMING_SNAKE_CASE , '''r''' ) as f: UpperCamelCase__ : Optional[int] = f.read().splitlines() return [l.strip() for l in lines] class __magic_name__ ( __lowerCAmelCase): A: int = VOCAB_FILES_NAMES A: Optional[Any] = PRETRAINED_VOCAB_FILES_MAP A: Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A: str = ["input_ids", "attention_mask"] def __init__( self : List[str] , lowerCamelCase__ : List[Any] , lowerCamelCase__ : Optional[Any]="<unk>" , lowerCamelCase__ : Union[str, Any]="<cls>" , lowerCamelCase__ : str="<pad>" , lowerCamelCase__ : Tuple="<mask>" , lowerCamelCase__ : Optional[int]="<eos>" , **lowerCamelCase__ : Tuple , ) -> List[Any]: '''simple docstring''' super().__init__(**lowerCamelCase__ ) UpperCamelCase__ : List[Any] = load_vocab_file(lowerCamelCase__ ) UpperCamelCase__ : Dict = dict(enumerate(self.all_tokens ) ) UpperCamelCase__ : Union[str, Any] = {tok: ind for ind, tok in enumerate(self.all_tokens )} UpperCamelCase__ : Any = unk_token UpperCamelCase__ : Optional[int] = cls_token UpperCamelCase__ : Any = pad_token UpperCamelCase__ : str = mask_token UpperCamelCase__ : int = eos_token UpperCamelCase__ : Union[str, Any] = self.all_tokens self._create_trie(self.unique_no_split_tokens ) def UpperCAmelCase__ ( self : List[Any] , lowerCamelCase__ : int ) -> str: '''simple docstring''' return self._id_to_token.get(lowerCamelCase__ , self.unk_token ) def UpperCAmelCase__ ( self : int , lowerCamelCase__ : str ) -> int: '''simple docstring''' return self._token_to_id.get(lowerCamelCase__ , self._token_to_id.get(self.unk_token ) ) def UpperCAmelCase__ ( self : Optional[Any] , lowerCamelCase__ : Optional[int] , **lowerCamelCase__ : Any ) -> List[str]: '''simple docstring''' return text.split() def UpperCAmelCase__ ( self : Any , lowerCamelCase__ : Optional[int]=False ) -> str: '''simple docstring''' return len(self._id_to_token ) def UpperCAmelCase__ ( self : str ) -> Any: '''simple docstring''' return {token: i for i, token in enumerate(self.all_tokens )} def UpperCAmelCase__ ( self : Tuple , lowerCamelCase__ : str ) -> int: '''simple docstring''' return self._token_to_id.get(lowerCamelCase__ , self._token_to_id.get(self.unk_token ) ) def UpperCAmelCase__ ( self : List[str] , lowerCamelCase__ : int ) -> str: '''simple docstring''' return self._id_to_token.get(lowerCamelCase__ , self.unk_token ) def UpperCAmelCase__ ( self : List[Any] , lowerCamelCase__ : List[int] , lowerCamelCase__ : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' UpperCamelCase__ : Tuple = [self.cls_token_id] UpperCamelCase__ : Tuple = [self.eos_token_id] # No sep token in ESM vocabulary if token_ids_a is None: if self.eos_token_id is None: return cls + token_ids_a else: return cls + token_ids_a + sep elif self.eos_token_id is None: raise ValueError('''Cannot tokenize multiple sequences when EOS token is not set!''' ) return cls + token_ids_a + sep + token_ids_a + sep # Multiple inputs always have an EOS token def UpperCAmelCase__ ( self : List[Any] , lowerCamelCase__ : List , lowerCamelCase__ : Optional[List] = None , lowerCamelCase__ : bool = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: if token_ids_a is not None: raise ValueError( '''You should not supply a second sequence if the provided sequence of ''' '''ids is already formatted with special tokens for the model.''' ) return [1 if token in self.all_special_ids else 0 for token in token_ids_a] UpperCamelCase__ : Optional[int] = [1] + ([0] * len(lowerCamelCase__ )) + [1] if token_ids_a is not None: mask += [0] * len(lowerCamelCase__ ) + [1] return mask def UpperCAmelCase__ ( self : Optional[int] , lowerCamelCase__ : List[Any] , lowerCamelCase__ : Optional[Any] ) -> Tuple: '''simple docstring''' UpperCamelCase__ : str = os.path.join(lowerCamelCase__ , (filename_prefix + '''-''' if filename_prefix else '''''') + '''vocab.txt''' ) with open(lowerCamelCase__ , '''w''' ) as f: f.write('''\n'''.join(self.all_tokens ) ) return (vocab_file,) @property def UpperCAmelCase__ ( self : Optional[Any] ) -> int: '''simple docstring''' return self.get_vocab_size(with_added_tokens=lowerCamelCase__ ) def UpperCAmelCase__ ( self : str , lowerCamelCase__ : Union[List[str], List[AddedToken]] , lowerCamelCase__ : bool = False ) -> int: '''simple docstring''' return super()._add_tokens(lowerCamelCase__ , special_tokens=lowerCamelCase__ )
51
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __UpperCamelCase : List[Any] = logging.get_logger(__name__) __UpperCamelCase : Union[str, Any] = { "google/vit-base-patch16-224": "https://huggingface.co/vit-base-patch16-224/resolve/main/config.json", # See all ViT models at https://huggingface.co/models?filter=vit } class __magic_name__ ( __lowerCAmelCase): A: Optional[int] = "vit" def __init__( self : Optional[int] , lowerCamelCase__ : Union[str, Any]=768 , lowerCamelCase__ : Optional[int]=12 , lowerCamelCase__ : Optional[int]=12 , lowerCamelCase__ : Any=3072 , lowerCamelCase__ : Tuple="gelu" , lowerCamelCase__ : Any=0.0 , lowerCamelCase__ : Tuple=0.0 , lowerCamelCase__ : Tuple=0.02 , lowerCamelCase__ : str=1E-1_2 , lowerCamelCase__ : Dict=224 , lowerCamelCase__ : int=16 , lowerCamelCase__ : List[Any]=3 , lowerCamelCase__ : Optional[Any]=True , lowerCamelCase__ : Optional[int]=16 , **lowerCamelCase__ : List[str] , ) -> List[Any]: '''simple docstring''' super().__init__(**lowerCamelCase__ ) UpperCamelCase__ : Union[str, Any] = hidden_size UpperCamelCase__ : str = num_hidden_layers UpperCamelCase__ : List[str] = num_attention_heads UpperCamelCase__ : List[str] = intermediate_size UpperCamelCase__ : Optional[Any] = hidden_act UpperCamelCase__ : Union[str, Any] = hidden_dropout_prob UpperCamelCase__ : List[Any] = attention_probs_dropout_prob UpperCamelCase__ : Union[str, Any] = initializer_range UpperCamelCase__ : Union[str, Any] = layer_norm_eps UpperCamelCase__ : Optional[int] = image_size UpperCamelCase__ : Optional[Any] = patch_size UpperCamelCase__ : Optional[Any] = num_channels UpperCamelCase__ : List[Any] = qkv_bias UpperCamelCase__ : Union[str, Any] = encoder_stride class __magic_name__ ( __lowerCAmelCase): A: int = version.parse("1.11") @property def UpperCAmelCase__ ( self : int ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) @property def UpperCAmelCase__ ( self : Tuple ) -> float: '''simple docstring''' return 1E-4
51
1
'''simple docstring''' from argparse import ArgumentParser, Namespace from ..utils import logging from . import BaseTransformersCLICommand def __lowerCAmelCase ( snake_case__ ): return ConvertCommand( args.model_type , args.tf_checkpoint , args.pytorch_dump_output , args.config , args.finetuning_task_name ) _lowerCAmelCase = ''' transformers can only be used from the commandline to convert TensorFlow models in PyTorch, In that case, it requires TensorFlow to be installed. Please see https://www.tensorflow.org/install/ for installation instructions. ''' class A ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' @staticmethod def a_ (_UpperCAmelCase ) -> Dict: __UpperCamelCase : int = parser.add_parser( "convert" , help="CLI tool to run convert model from original author checkpoints to Transformers PyTorch checkpoints." , ) train_parser.add_argument("--model_type" , type=_UpperCAmelCase , required=_UpperCAmelCase , help="Model's type." ) train_parser.add_argument( "--tf_checkpoint" , type=_UpperCAmelCase , required=_UpperCAmelCase , help="TensorFlow checkpoint path or folder." ) train_parser.add_argument( "--pytorch_dump_output" , type=_UpperCAmelCase , required=_UpperCAmelCase , help="Path to the PyTorch saved model output." ) train_parser.add_argument("--config" , type=_UpperCAmelCase , default="" , help="Configuration file path or folder." ) train_parser.add_argument( "--finetuning_task_name" , type=_UpperCAmelCase , default=_UpperCAmelCase , help="Optional fine-tuning task name if the TF model was a finetuned model." , ) train_parser.set_defaults(func=_UpperCAmelCase ) def __init__(self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , *_UpperCAmelCase , ) -> List[Any]: __UpperCamelCase : Optional[int] = logging.get_logger("transformers-cli/converting" ) self._logger.info(f"Loading model {model_type}" ) __UpperCamelCase : Union[str, Any] = model_type __UpperCamelCase : Optional[int] = tf_checkpoint __UpperCamelCase : Any = pytorch_dump_output __UpperCamelCase : List[Any] = config __UpperCamelCase : Dict = finetuning_task_name def a_ (self ) -> Optional[int]: if self._model_type == "albert": try: from ..models.albert.convert_albert_original_tf_checkpoint_to_pytorch import ( convert_tf_checkpoint_to_pytorch, ) except ImportError: raise ImportError(_UpperCAmelCase ) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "bert": try: from ..models.bert.convert_bert_original_tf_checkpoint_to_pytorch import ( convert_tf_checkpoint_to_pytorch, ) except ImportError: raise ImportError(_UpperCAmelCase ) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "funnel": try: from ..models.funnel.convert_funnel_original_tf_checkpoint_to_pytorch import ( convert_tf_checkpoint_to_pytorch, ) except ImportError: raise ImportError(_UpperCAmelCase ) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "t5": try: from ..models.ta.convert_ta_original_tf_checkpoint_to_pytorch import convert_tf_checkpoint_to_pytorch except ImportError: raise ImportError(_UpperCAmelCase ) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "gpt": from ..models.openai.convert_openai_original_tf_checkpoint_to_pytorch import ( convert_openai_checkpoint_to_pytorch, ) convert_openai_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "transfo_xl": try: from ..models.transfo_xl.convert_transfo_xl_original_tf_checkpoint_to_pytorch import ( convert_transfo_xl_checkpoint_to_pytorch, ) except ImportError: raise ImportError(_UpperCAmelCase ) if "ckpt" in self._tf_checkpoint.lower(): __UpperCamelCase : str = self._tf_checkpoint __UpperCamelCase : Union[str, Any] = "" else: __UpperCamelCase : Dict = self._tf_checkpoint __UpperCamelCase : Optional[Any] = "" convert_transfo_xl_checkpoint_to_pytorch( _UpperCAmelCase , self._config , self._pytorch_dump_output , _UpperCAmelCase ) elif self._model_type == "gpt2": try: from ..models.gpta.convert_gpta_original_tf_checkpoint_to_pytorch import ( convert_gpta_checkpoint_to_pytorch, ) except ImportError: raise ImportError(_UpperCAmelCase ) convert_gpta_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "xlnet": try: from ..models.xlnet.convert_xlnet_original_tf_checkpoint_to_pytorch import ( convert_xlnet_checkpoint_to_pytorch, ) except ImportError: raise ImportError(_UpperCAmelCase ) convert_xlnet_checkpoint_to_pytorch( self._tf_checkpoint , self._config , self._pytorch_dump_output , self._finetuning_task_name ) elif self._model_type == "xlm": from ..models.xlm.convert_xlm_original_pytorch_checkpoint_to_pytorch import ( convert_xlm_checkpoint_to_pytorch, ) convert_xlm_checkpoint_to_pytorch(self._tf_checkpoint , self._pytorch_dump_output ) elif self._model_type == "lxmert": from ..models.lxmert.convert_lxmert_original_tf_checkpoint_to_pytorch import ( convert_lxmert_checkpoint_to_pytorch, ) convert_lxmert_checkpoint_to_pytorch(self._tf_checkpoint , self._pytorch_dump_output ) elif self._model_type == "rembert": from ..models.rembert.convert_rembert_tf_checkpoint_to_pytorch import ( convert_rembert_tf_checkpoint_to_pytorch, ) convert_rembert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) else: raise ValueError( "--model_type should be selected in the list [bert, gpt, gpt2, t5, transfo_xl, xlnet, xlm, lxmert]" )
298
'''simple docstring''' def __lowerCAmelCase ( snake_case__ , snake_case__ , snake_case__ ): def count_of_possible_combinations(snake_case__ ) -> int: if target < 0: return 0 if target == 0: return 1 return sum(count_of_possible_combinations(target - item ) for item in array ) return count_of_possible_combinations(snake_case__ ) def __lowerCAmelCase ( snake_case__ , snake_case__ , snake_case__ ): def count_of_possible_combinations_with_dp_array( snake_case__ , snake_case__ ) -> int: if target < 0: return 0 if target == 0: return 1 if dp_array[target] != -1: return dp_array[target] __UpperCamelCase : Any = sum( count_of_possible_combinations_with_dp_array(target - item , snake_case__ ) for item in array ) __UpperCamelCase : List[str] = answer return answer __UpperCamelCase : Optional[int] = [-1] * (target + 1) return count_of_possible_combinations_with_dp_array(snake_case__ , snake_case__ ) def __lowerCAmelCase ( snake_case__ , snake_case__ , snake_case__ ): __UpperCamelCase : Optional[int] = [0] * (target + 1) __UpperCamelCase : Tuple = 1 for i in range(1 , target + 1 ): for j in range(snake_case__ ): if i - array[j] >= 0: dp_array[i] += dp_array[i - array[j]] return dp_array[target] if __name__ == "__main__": import doctest doctest.testmod() _lowerCAmelCase = 3 _lowerCAmelCase = 5 _lowerCAmelCase = [1, 2, 5] print(combination_sum_iv(n, array, target))
298
1
import inspect import unittest from transformers import MobileNetVaConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileNetVaForImageClassification, MobileNetVaModel from transformers.models.mobilenet_va.modeling_mobilenet_va import MOBILENET_V1_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import MobileNetVaImageProcessor class _snake_case ( snake_case ): def SCREAMING_SNAKE_CASE ( self ): __magic_name__ : Union[str, Any] = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(_a , "tf_padding" ) ) self.parent.assertTrue(hasattr(_a , "depth_multiplier" ) ) class _snake_case : def __init__( self , _a , _a=13 , _a=3 , _a=32 , _a=0.25 , _a=8 , _a=True , _a=1_024 , _a=32 , _a="relu6" , _a=0.1 , _a=0.02 , _a=True , _a=True , _a=10 , _a=None , ): __magic_name__ : Optional[int] = parent __magic_name__ : Union[str, Any] = batch_size __magic_name__ : Tuple = num_channels __magic_name__ : Tuple = image_size __magic_name__ : Any = depth_multiplier __magic_name__ : Any = min_depth __magic_name__ : Any = tf_padding __magic_name__ : int = int(last_hidden_size * depth_multiplier ) __magic_name__ : Any = output_stride __magic_name__ : Tuple = hidden_act __magic_name__ : Optional[int] = classifier_dropout_prob __magic_name__ : Any = use_labels __magic_name__ : str = is_training __magic_name__ : List[str] = num_labels __magic_name__ : str = initializer_range __magic_name__ : Union[str, Any] = scope def SCREAMING_SNAKE_CASE ( self ): __magic_name__ : List[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __magic_name__ : Any = None __magic_name__ : Optional[Any] = None if self.use_labels: __magic_name__ : int = ids_tensor([self.batch_size] , self.num_labels ) __magic_name__ : Optional[int] = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) __magic_name__ : List[Any] = self.get_config() return config, pixel_values, labels, pixel_labels def SCREAMING_SNAKE_CASE ( self ): return MobileNetVaConfig( num_channels=self.num_channels , image_size=self.image_size , depth_multiplier=self.depth_multiplier , min_depth=self.min_depth , tf_padding=self.tf_padding , hidden_act=self.hidden_act , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , ) def SCREAMING_SNAKE_CASE ( self , _a , _a , _a , _a ): __magic_name__ : List[str] = MobileNetVaModel(config=_a ) model.to(_a ) model.eval() __magic_name__ : Optional[int] = model(_a ) self.parent.assertEqual( result.last_hidden_state.shape , ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def SCREAMING_SNAKE_CASE ( self , _a , _a , _a , _a ): __magic_name__ : Any = self.num_labels __magic_name__ : Dict = MobileNetVaForImageClassification(_a ) model.to(_a ) model.eval() __magic_name__ : Any = model(_a , labels=_a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def SCREAMING_SNAKE_CASE ( self ): __magic_name__ : Any = self.prepare_config_and_inputs() __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ : Optional[int] = config_and_inputs __magic_name__ : Union[str, Any] = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class _snake_case ( snake_case , snake_case , unittest.TestCase ): UpperCamelCase__ = (MobileNetVaModel, MobileNetVaForImageClassification) if is_torch_available() else () UpperCamelCase__ = ( {'feature-extraction': MobileNetVaModel, 'image-classification': MobileNetVaForImageClassification} if is_torch_available() else {} ) UpperCamelCase__ = False UpperCamelCase__ = False UpperCamelCase__ = False UpperCamelCase__ = False def SCREAMING_SNAKE_CASE ( self ): __magic_name__ : List[Any] = MobileNetVaModelTester(self ) __magic_name__ : List[str] = MobileNetVaConfigTester(self , config_class=_a , has_text_modality=_a ) def SCREAMING_SNAKE_CASE ( self ): self.config_tester.run_common_tests() @unittest.skip(reason="MobileNetV1 does not use inputs_embeds" ) def SCREAMING_SNAKE_CASE ( self ): pass @unittest.skip(reason="MobileNetV1 does not support input and output embeddings" ) def SCREAMING_SNAKE_CASE ( self ): pass @unittest.skip(reason="MobileNetV1 does not output attentions" ) def SCREAMING_SNAKE_CASE ( self ): pass def SCREAMING_SNAKE_CASE ( self ): __magic_name__ , __magic_name__ : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __magic_name__ : str = model_class(_a ) __magic_name__ : Optional[int] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __magic_name__ : Tuple = [*signature.parameters.keys()] __magic_name__ : List[Any] = ["pixel_values"] self.assertListEqual(arg_names[:1] , _a ) def SCREAMING_SNAKE_CASE ( self ): __magic_name__ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_a ) def SCREAMING_SNAKE_CASE ( self ): def check_hidden_states_output(_a , _a , _a ): __magic_name__ : Dict = model_class(_a ) model.to(_a ) model.eval() with torch.no_grad(): __magic_name__ : Tuple = model(**self._prepare_for_class(_a , _a ) ) __magic_name__ : Optional[Any] = outputs.hidden_states __magic_name__ : Optional[Any] = 26 self.assertEqual(len(_a ) , _a ) __magic_name__ , __magic_name__ : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __magic_name__ : Tuple = True check_hidden_states_output(_a , _a , _a ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __magic_name__ : Dict = True check_hidden_states_output(_a , _a , _a ) def SCREAMING_SNAKE_CASE ( self ): __magic_name__ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_a ) @slow def SCREAMING_SNAKE_CASE ( self ): for model_name in MOBILENET_V1_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __magic_name__ : List[str] = MobileNetVaModel.from_pretrained(_a ) self.assertIsNotNone(_a ) def lowerCAmelCase_ ( ) -> int: '''simple docstring''' __magic_name__ : Optional[int] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class _snake_case ( unittest.TestCase ): @cached_property def SCREAMING_SNAKE_CASE ( self ): return ( MobileNetVaImageProcessor.from_pretrained("google/mobilenet_v1_1.0_224" ) if is_vision_available() else None ) @slow def SCREAMING_SNAKE_CASE ( self ): __magic_name__ : str = MobileNetVaForImageClassification.from_pretrained("google/mobilenet_v1_1.0_224" ).to(_a ) __magic_name__ : Dict = self.default_image_processor __magic_name__ : List[str] = prepare_img() __magic_name__ : Optional[Any] = image_processor(images=_a , return_tensors="pt" ).to(_a ) # forward pass with torch.no_grad(): __magic_name__ : Union[str, Any] = model(**_a ) # verify the logits __magic_name__ : List[str] = torch.Size((1, 1_001) ) self.assertEqual(outputs.logits.shape , _a ) __magic_name__ : Union[str, Any] = torch.tensor([-4.17_39, -1.12_33, 3.12_05] ).to(_a ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _a , atol=1e-4 ) )
41
import argparse import json import re from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( MobileNetVaConfig, MobileNetVaForImageClassification, MobileNetVaImageProcessor, load_tf_weights_in_mobilenet_va, ) from transformers.utils import logging logging.set_verbosity_info() snake_case : int = logging.get_logger(__name__) def lowerCAmelCase_ ( _snake_case : str ) -> Optional[Any]: '''simple docstring''' __magic_name__ : Optional[int] = MobileNetVaConfig(layer_norm_eps=0.001 ) if "_quant" in model_name: raise ValueError("Quantized models are not supported." ) __magic_name__ : int = re.match(R"^mobilenet_v1_([^_]*)_([^_]*)$" , _snake_case ) if matches: __magic_name__ : List[str] = float(matches[1] ) __magic_name__ : Dict = int(matches[2] ) # The TensorFlow version of MobileNetV1 predicts 1001 classes instead of # the usual 1000. The first class (index 0) is "background". __magic_name__ : List[str] = 1001 __magic_name__ : Tuple = "imagenet-1k-id2label.json" __magic_name__ : Union[str, Any] = "huggingface/label-files" __magic_name__ : str = json.load(open(hf_hub_download(_snake_case , _snake_case , repo_type="dataset" ) , "r" ) ) __magic_name__ : Tuple = {int(_snake_case ) + 1: v for k, v in idalabel.items()} __magic_name__ : Dict = "background" __magic_name__ : str = idalabel __magic_name__ : List[Any] = {v: k for k, v in idalabel.items()} return config def lowerCAmelCase_ ( ) -> str: '''simple docstring''' __magic_name__ : Optional[int] = "http://images.cocodataset.org/val2017/000000039769.jpg" __magic_name__ : Any = Image.open(requests.get(_snake_case , stream=_snake_case ).raw ) return im @torch.no_grad() def lowerCAmelCase_ ( _snake_case : str , _snake_case : Optional[int] , _snake_case : Any , _snake_case : int=False ) -> Optional[int]: '''simple docstring''' __magic_name__ : int = get_mobilenet_va_config(_snake_case ) # Load 🤗 model __magic_name__ : List[Any] = MobileNetVaForImageClassification(_snake_case ).eval() # Load weights from TensorFlow checkpoint load_tf_weights_in_mobilenet_va(_snake_case , _snake_case , _snake_case ) # Check outputs on an image, prepared by MobileNetV1ImageProcessor __magic_name__ : Dict = MobileNetVaImageProcessor( crop_size={"width": config.image_size, "height": config.image_size} , size={"shortest_edge": config.image_size + 32} , ) __magic_name__ : int = image_processor(images=prepare_img() , return_tensors="pt" ) __magic_name__ : Any = model(**_snake_case ) __magic_name__ : Dict = outputs.logits assert logits.shape == (1, 1001) if model_name == "mobilenet_v1_1.0_224": __magic_name__ : Tuple = torch.tensor([-4.1_739, -1.1_233, 3.1_205] ) elif model_name == "mobilenet_v1_0.75_192": __magic_name__ : Optional[Any] = torch.tensor([-3.9_440, -2.3_141, -0.3_333] ) else: __magic_name__ : str = None if expected_logits is not None: assert torch.allclose(logits[0, :3] , _snake_case , atol=1E-4 ) Path(_snake_case ).mkdir(exist_ok=_snake_case ) print(F'''Saving model {model_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(_snake_case ) print(F'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(_snake_case ) if push_to_hub: print("Pushing to the hub..." ) __magic_name__ : List[str] = "google/" + model_name image_processor.push_to_hub(_snake_case ) model.push_to_hub(_snake_case ) if __name__ == "__main__": snake_case : List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="mobilenet_v1_1.0_224", type=str, help="Name of the MobileNetV1 model you'd like to convert. Should in the form 'mobilenet_v1_<depth>_<size>'.", ) parser.add_argument( "--checkpoint_path", required=True, type=str, help="Path to the original TensorFlow checkpoint (.ckpt file)." ) parser.add_argument( "--pytorch_dump_folder_path", required=True, type=str, help="Path to the output PyTorch model directory." ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub." ) snake_case : str = parser.parse_args() convert_movilevit_checkpoint( args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
41
1
'''simple docstring''' import unittest from transformers import AlbertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForPreTraining, AlbertForQuestionAnswering, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertModel, ) from transformers.models.albert.modeling_albert import ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST class UpperCamelCase__ : """simple docstring""" def __init__( self : int , lowerCamelCase_ : Any , lowerCamelCase_ : List[Any]=13 , lowerCamelCase_ : List[str]=7 , lowerCamelCase_ : Any=True , lowerCamelCase_ : Union[str, Any]=True , lowerCamelCase_ : Dict=True , lowerCamelCase_ : Any=True , lowerCamelCase_ : List[Any]=99 , lowerCamelCase_ : Dict=16 , lowerCamelCase_ : Dict=36 , lowerCamelCase_ : List[str]=6 , lowerCamelCase_ : List[str]=6 , lowerCamelCase_ : str=6 , lowerCamelCase_ : Union[str, Any]=37 , lowerCamelCase_ : Optional[Any]="gelu" , lowerCamelCase_ : List[Any]=0.1 , lowerCamelCase_ : Dict=0.1 , lowerCamelCase_ : List[Any]=5_12 , lowerCamelCase_ : List[Any]=16 , lowerCamelCase_ : Any=2 , lowerCamelCase_ : Dict=0.02 , lowerCamelCase_ : Any=3 , lowerCamelCase_ : int=4 , lowerCamelCase_ : List[Any]=None , ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = parent SCREAMING_SNAKE_CASE : str = batch_size SCREAMING_SNAKE_CASE : List[str] = seq_length SCREAMING_SNAKE_CASE : Union[str, Any] = is_training SCREAMING_SNAKE_CASE : List[Any] = use_input_mask SCREAMING_SNAKE_CASE : Any = use_token_type_ids SCREAMING_SNAKE_CASE : Optional[Any] = use_labels SCREAMING_SNAKE_CASE : Optional[int] = vocab_size SCREAMING_SNAKE_CASE : str = embedding_size SCREAMING_SNAKE_CASE : List[Any] = hidden_size SCREAMING_SNAKE_CASE : Any = num_hidden_layers SCREAMING_SNAKE_CASE : Any = num_hidden_groups SCREAMING_SNAKE_CASE : List[str] = num_attention_heads SCREAMING_SNAKE_CASE : Any = intermediate_size SCREAMING_SNAKE_CASE : str = hidden_act SCREAMING_SNAKE_CASE : str = hidden_dropout_prob SCREAMING_SNAKE_CASE : Optional[int] = attention_probs_dropout_prob SCREAMING_SNAKE_CASE : List[Any] = max_position_embeddings SCREAMING_SNAKE_CASE : Union[str, Any] = type_vocab_size SCREAMING_SNAKE_CASE : int = type_sequence_label_size SCREAMING_SNAKE_CASE : str = initializer_range SCREAMING_SNAKE_CASE : Tuple = num_labels SCREAMING_SNAKE_CASE : Any = num_choices SCREAMING_SNAKE_CASE : Dict = scope def lowerCamelCase_ ( self : int ): '''simple docstring''' SCREAMING_SNAKE_CASE : Dict = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) SCREAMING_SNAKE_CASE : Tuple = None if self.use_input_mask: SCREAMING_SNAKE_CASE : int = random_attention_mask([self.batch_size, self.seq_length] ) SCREAMING_SNAKE_CASE : Optional[int] = None if self.use_token_type_ids: SCREAMING_SNAKE_CASE : int = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) SCREAMING_SNAKE_CASE : Optional[Any] = None SCREAMING_SNAKE_CASE : Union[str, Any] = None SCREAMING_SNAKE_CASE : int = None if self.use_labels: SCREAMING_SNAKE_CASE : str = ids_tensor([self.batch_size] , self.type_sequence_label_size ) SCREAMING_SNAKE_CASE : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) SCREAMING_SNAKE_CASE : Any = ids_tensor([self.batch_size] , self.num_choices ) SCREAMING_SNAKE_CASE : List[Any] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowerCamelCase_ ( self : List[Any] ): '''simple docstring''' return AlbertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , num_hidden_groups=self.num_hidden_groups , ) def lowerCamelCase_ ( self : List[str] , lowerCamelCase_ : Optional[int] , lowerCamelCase_ : Optional[int] , lowerCamelCase_ : Optional[int] , lowerCamelCase_ : Any , lowerCamelCase_ : Dict , lowerCamelCase_ : Optional[Any] , lowerCamelCase_ : Tuple ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = AlbertModel(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() SCREAMING_SNAKE_CASE : Tuple = model(lowerCamelCase_ , attention_mask=lowerCamelCase_ , token_type_ids=lowerCamelCase_ ) SCREAMING_SNAKE_CASE : List[Any] = model(lowerCamelCase_ , token_type_ids=lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Optional[int] = model(lowerCamelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def lowerCamelCase_ ( self : Union[str, Any] , lowerCamelCase_ : List[str] , lowerCamelCase_ : str , lowerCamelCase_ : str , lowerCamelCase_ : Tuple , lowerCamelCase_ : Optional[int] , lowerCamelCase_ : Optional[Any] , lowerCamelCase_ : Dict ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = AlbertForPreTraining(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() SCREAMING_SNAKE_CASE : int = model( lowerCamelCase_ , attention_mask=lowerCamelCase_ , token_type_ids=lowerCamelCase_ , labels=lowerCamelCase_ , sentence_order_label=lowerCamelCase_ , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.sop_logits.shape , (self.batch_size, config.num_labels) ) def lowerCamelCase_ ( self : Any , lowerCamelCase_ : List[str] , lowerCamelCase_ : str , lowerCamelCase_ : Any , lowerCamelCase_ : List[str] , lowerCamelCase_ : Optional[int] , lowerCamelCase_ : Dict , lowerCamelCase_ : List[Any] ): '''simple docstring''' SCREAMING_SNAKE_CASE : int = AlbertForMaskedLM(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() SCREAMING_SNAKE_CASE : Union[str, Any] = model(lowerCamelCase_ , attention_mask=lowerCamelCase_ , token_type_ids=lowerCamelCase_ , labels=lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCamelCase_ ( self : Tuple , lowerCamelCase_ : Any , lowerCamelCase_ : Union[str, Any] , lowerCamelCase_ : Dict , lowerCamelCase_ : Optional[int] , lowerCamelCase_ : Union[str, Any] , lowerCamelCase_ : Union[str, Any] , lowerCamelCase_ : Dict ): '''simple docstring''' SCREAMING_SNAKE_CASE : str = AlbertForQuestionAnswering(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() SCREAMING_SNAKE_CASE : List[Any] = model( lowerCamelCase_ , attention_mask=lowerCamelCase_ , token_type_ids=lowerCamelCase_ , start_positions=lowerCamelCase_ , end_positions=lowerCamelCase_ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowerCamelCase_ ( self : Any , lowerCamelCase_ : Any , lowerCamelCase_ : Dict , lowerCamelCase_ : Dict , lowerCamelCase_ : str , lowerCamelCase_ : Dict , lowerCamelCase_ : Any , lowerCamelCase_ : List[Any] ): '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = self.num_labels SCREAMING_SNAKE_CASE : Optional[Any] = AlbertForSequenceClassification(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() SCREAMING_SNAKE_CASE : str = model(lowerCamelCase_ , attention_mask=lowerCamelCase_ , token_type_ids=lowerCamelCase_ , labels=lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCamelCase_ ( self : Union[str, Any] , lowerCamelCase_ : Union[str, Any] , lowerCamelCase_ : Any , lowerCamelCase_ : Optional[int] , lowerCamelCase_ : Tuple , lowerCamelCase_ : Optional[int] , lowerCamelCase_ : Dict , lowerCamelCase_ : Optional[int] ): '''simple docstring''' SCREAMING_SNAKE_CASE : str = self.num_labels SCREAMING_SNAKE_CASE : List[Any] = AlbertForTokenClassification(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() SCREAMING_SNAKE_CASE : Any = model(lowerCamelCase_ , attention_mask=lowerCamelCase_ , token_type_ids=lowerCamelCase_ , labels=lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowerCamelCase_ ( self : Dict , lowerCamelCase_ : Union[str, Any] , lowerCamelCase_ : Union[str, Any] , lowerCamelCase_ : int , lowerCamelCase_ : Tuple , lowerCamelCase_ : Union[str, Any] , lowerCamelCase_ : List[str] , lowerCamelCase_ : Dict ): '''simple docstring''' SCREAMING_SNAKE_CASE : Any = self.num_choices SCREAMING_SNAKE_CASE : List[Any] = AlbertForMultipleChoice(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() SCREAMING_SNAKE_CASE : Union[str, Any] = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() SCREAMING_SNAKE_CASE : Optional[Any] = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() SCREAMING_SNAKE_CASE : Optional[int] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() SCREAMING_SNAKE_CASE : List[Any] = model( lowerCamelCase_ , attention_mask=lowerCamelCase_ , token_type_ids=lowerCamelCase_ , labels=lowerCamelCase_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowerCamelCase_ ( self : str ): '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = self.prepare_config_and_inputs() ( ( SCREAMING_SNAKE_CASE ), ( SCREAMING_SNAKE_CASE ), ( SCREAMING_SNAKE_CASE ), ( SCREAMING_SNAKE_CASE ), ( SCREAMING_SNAKE_CASE ), ( SCREAMING_SNAKE_CASE ), ( SCREAMING_SNAKE_CASE ), ) : Dict = config_and_inputs SCREAMING_SNAKE_CASE : Dict = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class UpperCamelCase__ ( lowercase_ , lowercase_ , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE__ = ( ( AlbertModel, AlbertForPreTraining, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertForQuestionAnswering, ) if is_torch_available() else () ) SCREAMING_SNAKE_CASE__ = ( { '''feature-extraction''': AlbertModel, '''fill-mask''': AlbertForMaskedLM, '''question-answering''': AlbertForQuestionAnswering, '''text-classification''': AlbertForSequenceClassification, '''token-classification''': AlbertForTokenClassification, '''zero-shot''': AlbertForSequenceClassification, } if is_torch_available() else {} ) SCREAMING_SNAKE_CASE__ = True def lowerCamelCase_ ( self : Union[str, Any] , lowerCamelCase_ : Optional[int] , lowerCamelCase_ : Tuple , lowerCamelCase_ : Dict=False ): '''simple docstring''' SCREAMING_SNAKE_CASE : Dict = super()._prepare_for_class(lowerCamelCase_ , lowerCamelCase_ , return_labels=lowerCamelCase_ ) if return_labels: if model_class in get_values(lowerCamelCase_ ): SCREAMING_SNAKE_CASE : Optional[int] = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Any = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=lowerCamelCase_ ) return inputs_dict def lowerCamelCase_ ( self : int ): '''simple docstring''' SCREAMING_SNAKE_CASE : Dict = AlbertModelTester(self ) SCREAMING_SNAKE_CASE : Dict = ConfigTester(self , config_class=lowerCamelCase_ , hidden_size=37 ) def lowerCamelCase_ ( self : Optional[int] ): '''simple docstring''' self.config_tester.run_common_tests() def lowerCamelCase_ ( self : str ): '''simple docstring''' SCREAMING_SNAKE_CASE : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase_ ) def lowerCamelCase_ ( self : Tuple ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*lowerCamelCase_ ) def lowerCamelCase_ ( self : Dict ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*lowerCamelCase_ ) def lowerCamelCase_ ( self : int ): '''simple docstring''' SCREAMING_SNAKE_CASE : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*lowerCamelCase_ ) def lowerCamelCase_ ( self : int ): '''simple docstring''' SCREAMING_SNAKE_CASE : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*lowerCamelCase_ ) def lowerCamelCase_ ( self : Optional[Any] ): '''simple docstring''' SCREAMING_SNAKE_CASE : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*lowerCamelCase_ ) def lowerCamelCase_ ( self : List[str] ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: SCREAMING_SNAKE_CASE : Dict = type self.model_tester.create_and_check_model(*lowerCamelCase_ ) @slow def lowerCamelCase_ ( self : Optional[Any] ): '''simple docstring''' for model_name in ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE : List[Any] = AlbertModel.from_pretrained(lowerCamelCase_ ) self.assertIsNotNone(lowerCamelCase_ ) @require_torch class UpperCamelCase__ ( unittest.TestCase ): """simple docstring""" @slow def lowerCamelCase_ ( self : Dict ): '''simple docstring''' SCREAMING_SNAKE_CASE : Any = AlbertModel.from_pretrained("""albert-base-v2""" ) SCREAMING_SNAKE_CASE : Optional[Any] = torch.tensor([[0, 3_45, 2_32, 3_28, 7_40, 1_40, 16_95, 69, 60_78, 15_88, 2]] ) SCREAMING_SNAKE_CASE : int = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): SCREAMING_SNAKE_CASE : Any = model(lowerCamelCase_ , attention_mask=lowerCamelCase_ )[0] SCREAMING_SNAKE_CASE : Union[str, Any] = torch.Size((1, 11, 7_68) ) self.assertEqual(output.shape , lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Tuple = torch.tensor( [[[-0.6_513, 1.5_035, -0.2_766], [-0.6_515, 1.5_046, -0.2_780], [-0.6_512, 1.5_049, -0.2_784]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , lowerCamelCase_ , atol=1e-4 ) )
323
'''simple docstring''' import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class UpperCamelCase__ ( unittest.TestCase ): """simple docstring""" def __init__( self : Dict , lowerCamelCase_ : int , lowerCamelCase_ : List[str]=13 , lowerCamelCase_ : Any=3 , lowerCamelCase_ : Dict=2_24 , lowerCamelCase_ : List[Any]=30 , lowerCamelCase_ : Union[str, Any]=4_00 , lowerCamelCase_ : str=True , lowerCamelCase_ : Union[str, Any]=None , lowerCamelCase_ : Union[str, Any]=True , lowerCamelCase_ : Union[str, Any]=[0.5, 0.5, 0.5] , lowerCamelCase_ : Union[str, Any]=[0.5, 0.5, 0.5] , ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = size if size is not None else {"""height""": 18, """width""": 18} SCREAMING_SNAKE_CASE : Optional[Any] = parent SCREAMING_SNAKE_CASE : int = batch_size SCREAMING_SNAKE_CASE : Any = num_channels SCREAMING_SNAKE_CASE : str = image_size SCREAMING_SNAKE_CASE : Dict = min_resolution SCREAMING_SNAKE_CASE : List[str] = max_resolution SCREAMING_SNAKE_CASE : str = do_resize SCREAMING_SNAKE_CASE : Optional[Any] = size SCREAMING_SNAKE_CASE : Optional[Any] = do_normalize SCREAMING_SNAKE_CASE : List[Any] = image_mean SCREAMING_SNAKE_CASE : str = image_std def lowerCamelCase_ ( self : Any ): '''simple docstring''' return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, } @require_torch @require_vision class UpperCamelCase__ ( lowercase_ , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE__ = ViTImageProcessor if is_vision_available() else None def lowerCamelCase_ ( self : Dict ): '''simple docstring''' SCREAMING_SNAKE_CASE : Dict = EfficientFormerImageProcessorTester(self ) @property def lowerCamelCase_ ( self : str ): '''simple docstring''' return self.image_proc_tester.prepare_image_processor_dict() def lowerCamelCase_ ( self : Any ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowerCamelCase_ , """image_mean""" ) ) self.assertTrue(hasattr(lowerCamelCase_ , """image_std""" ) ) self.assertTrue(hasattr(lowerCamelCase_ , """do_normalize""" ) ) self.assertTrue(hasattr(lowerCamelCase_ , """do_resize""" ) ) self.assertTrue(hasattr(lowerCamelCase_ , """size""" ) ) def lowerCamelCase_ ( self : str ): '''simple docstring''' pass def lowerCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images SCREAMING_SNAKE_CASE : List[str] = prepare_image_inputs(self.image_proc_tester , equal_resolution=lowerCamelCase_ ) for image in image_inputs: self.assertIsInstance(lowerCamelCase_ , Image.Image ) # Test not batched input SCREAMING_SNAKE_CASE : List[str] = image_processor(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_proc_tester.num_channels, self.image_proc_tester.size["""height"""], self.image_proc_tester.size["""width"""], ) , ) # Test batched SCREAMING_SNAKE_CASE : Optional[Any] = image_processor(lowerCamelCase_ , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_proc_tester.batch_size, self.image_proc_tester.num_channels, self.image_proc_tester.size["""height"""], self.image_proc_tester.size["""width"""], ) , ) def lowerCamelCase_ ( self : Optional[int] ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors SCREAMING_SNAKE_CASE : List[Any] = prepare_image_inputs(self.image_proc_tester , equal_resolution=lowerCamelCase_ , numpify=lowerCamelCase_ ) for image in image_inputs: self.assertIsInstance(lowerCamelCase_ , np.ndarray ) # Test not batched input SCREAMING_SNAKE_CASE : Optional[int] = image_processor(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_proc_tester.num_channels, self.image_proc_tester.size["""height"""], self.image_proc_tester.size["""width"""], ) , ) # Test batched SCREAMING_SNAKE_CASE : Tuple = image_processor(lowerCamelCase_ , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_proc_tester.batch_size, self.image_proc_tester.num_channels, self.image_proc_tester.size["""height"""], self.image_proc_tester.size["""width"""], ) , ) def lowerCamelCase_ ( self : Optional[int] ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors SCREAMING_SNAKE_CASE : Any = prepare_image_inputs(self.image_proc_tester , equal_resolution=lowerCamelCase_ , torchify=lowerCamelCase_ ) for image in image_inputs: self.assertIsInstance(lowerCamelCase_ , torch.Tensor ) # Test not batched input SCREAMING_SNAKE_CASE : Any = image_processor(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_proc_tester.num_channels, self.image_proc_tester.size["""height"""], self.image_proc_tester.size["""width"""], ) , ) # Test batched SCREAMING_SNAKE_CASE : Optional[int] = image_processor(lowerCamelCase_ , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_proc_tester.batch_size, self.image_proc_tester.num_channels, self.image_proc_tester.size["""height"""], self.image_proc_tester.size["""width"""], ) , )
323
1
import re def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> bool: lowerCamelCase__ : Dict = re.compile( r'^(?:0|94|\+94|0{2}94)' r'7(0|1|2|4|5|6|7|8)' r'(-| |)' r'\d{7}$' ) return bool(re.search(_UpperCAmelCase , _UpperCAmelCase ) ) if __name__ == "__main__": _UpperCAmelCase : List[str] = """0094702343221""" print(is_sri_lankan_phone_number(phone))
369
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available, ) _UpperCAmelCase : Tuple = { """configuration_perceiver""": ["""PERCEIVER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """PerceiverConfig""", """PerceiverOnnxConfig"""], """tokenization_perceiver""": ["""PerceiverTokenizer"""], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase : Optional[Any] = ["""PerceiverFeatureExtractor"""] _UpperCAmelCase : Dict = ["""PerceiverImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase : List[str] = [ """PERCEIVER_PRETRAINED_MODEL_ARCHIVE_LIST""", """PerceiverForImageClassificationConvProcessing""", """PerceiverForImageClassificationFourier""", """PerceiverForImageClassificationLearned""", """PerceiverForMaskedLM""", """PerceiverForMultimodalAutoencoding""", """PerceiverForOpticalFlow""", """PerceiverForSequenceClassification""", """PerceiverLayer""", """PerceiverModel""", """PerceiverPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_perceiver import PERCEIVER_PRETRAINED_CONFIG_ARCHIVE_MAP, PerceiverConfig, PerceiverOnnxConfig from .tokenization_perceiver import PerceiverTokenizer try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_perceiver import PerceiverFeatureExtractor from .image_processing_perceiver import PerceiverImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_perceiver import ( PERCEIVER_PRETRAINED_MODEL_ARCHIVE_LIST, PerceiverForImageClassificationConvProcessing, PerceiverForImageClassificationFourier, PerceiverForImageClassificationLearned, PerceiverForMaskedLM, PerceiverForMultimodalAutoencoding, PerceiverForOpticalFlow, PerceiverForSequenceClassification, PerceiverLayer, PerceiverModel, PerceiverPreTrainedModel, ) else: import sys _UpperCAmelCase : Any = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
45
0
'''simple docstring''' def a_ ( __snake_case : str , __snake_case : Dict ) -> Dict: """simple docstring""" return (pointa[0] - pointa[0]) ** 2 + (pointa[1] - pointa[1]) ** 2 def a_ ( __snake_case : Tuple , __snake_case : Union[str, Any]=0 ) -> List[str]: """simple docstring""" return sorted(__snake_case , key=lambda __snake_case : x[column] ) def a_ ( __snake_case : Any , __snake_case : Dict , __snake_case : Tuple=float('''inf''' ) ) -> Union[str, Any]: """simple docstring""" for i in range(points_counts - 1 ): for j in range(i + 1 , __snake_case ): lowerCamelCase_ =euclidean_distance_sqr(points[i] , points[j] ) if current_dis < min_dis: lowerCamelCase_ =current_dis return min_dis def a_ ( __snake_case : Optional[Any] , __snake_case : Tuple , __snake_case : Optional[int]=float('''inf''' ) ) -> str: """simple docstring""" for i in range(min(6 , points_counts - 1 ) , __snake_case ): for j in range(max(0 , i - 6 ) , __snake_case ): lowerCamelCase_ =euclidean_distance_sqr(points[i] , points[j] ) if current_dis < min_dis: lowerCamelCase_ =current_dis return min_dis def a_ ( __snake_case : Any , __snake_case : Optional[int] , __snake_case : Dict ) -> Optional[Any]: """simple docstring""" # base case if points_counts <= 3: return dis_between_closest_pair(__snake_case , __snake_case ) # recursion lowerCamelCase_ =points_counts // 2 lowerCamelCase_ =closest_pair_of_points_sqr( __snake_case , points_sorted_on_y[:mid] , __snake_case ) lowerCamelCase_ =closest_pair_of_points_sqr( __snake_case , points_sorted_on_y[mid:] , points_counts - mid ) lowerCamelCase_ =min(__snake_case , __snake_case ) lowerCamelCase_ =[] for point in points_sorted_on_x: if abs(point[0] - points_sorted_on_x[mid][0] ) < closest_pair_dis: cross_strip.append(__snake_case ) lowerCamelCase_ =dis_between_closest_in_strip( __snake_case , len(__snake_case ) , __snake_case ) return min(__snake_case , __snake_case ) def a_ ( __snake_case : Union[str, Any] , __snake_case : str ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_ =column_based_sort(__snake_case , column=0 ) lowerCamelCase_ =column_based_sort(__snake_case , column=1 ) return ( closest_pair_of_points_sqr( __snake_case , __snake_case , __snake_case ) ) ** 0.5 if __name__ == "__main__": a_ : Optional[int] = [(2, 3), (12, 30), (40, 50), (5, 1), (12, 10), (3, 4)] print("""Distance:""", closest_pair_of_points(points, len(points)))
75
'''simple docstring''' from collections import UserDict from typing import Union import numpy as np import requests from ..utils import ( add_end_docstrings, logging, ) from .audio_classification import ffmpeg_read from .base import PIPELINE_INIT_ARGS, Pipeline a_ : Any = logging.get_logger(__name__) @add_end_docstrings(lowerCamelCase__ ) class __UpperCamelCase ( lowerCamelCase__ ): def __init__( self, **lowerCAmelCase ): """simple docstring""" super().__init__(**lowerCAmelCase ) if self.framework != "pt": raise ValueError(f'''The {self.__class__} is only available in PyTorch.''' ) # No specific FOR_XXX available yet def __call__( self, lowerCAmelCase, **lowerCAmelCase ): """simple docstring""" return super().__call__(lowerCAmelCase, **lowerCAmelCase ) def lowercase__ ( self, **lowerCAmelCase ): """simple docstring""" lowerCamelCase_ ={} if "candidate_labels" in kwargs: lowerCamelCase_ =kwargs['''candidate_labels'''] if "hypothesis_template" in kwargs: lowerCamelCase_ =kwargs['''hypothesis_template'''] return preprocess_params, {}, {} def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase=None, lowerCAmelCase="This is a sound of {}." ): """simple docstring""" if isinstance(lowerCAmelCase, lowerCAmelCase ): if audio.startswith('''http://''' ) or audio.startswith('''https://''' ): # We need to actually check for a real protocol, otherwise it's impossible to use a local file # like http_huggingface_co.png lowerCamelCase_ =requests.get(lowerCAmelCase ).content else: with open(lowerCAmelCase, '''rb''' ) as f: lowerCamelCase_ =f.read() if isinstance(lowerCAmelCase, lowerCAmelCase ): lowerCamelCase_ =ffmpeg_read(lowerCAmelCase, self.feature_extractor.sampling_rate ) if not isinstance(lowerCAmelCase, np.ndarray ): raise ValueError('''We expect a numpy ndarray as input''' ) if len(audio.shape ) != 1: raise ValueError('''We expect a single channel audio input for ZeroShotAudioClassificationPipeline''' ) lowerCamelCase_ =self.feature_extractor( [audio], sampling_rate=self.feature_extractor.sampling_rate, return_tensors='''pt''' ) lowerCamelCase_ =candidate_labels lowerCamelCase_ =[hypothesis_template.format(lowerCAmelCase ) for x in candidate_labels] lowerCamelCase_ =self.tokenizer(lowerCAmelCase, return_tensors=self.framework, padding=lowerCAmelCase ) lowerCamelCase_ =[text_inputs] return inputs def lowercase__ ( self, lowerCAmelCase ): """simple docstring""" lowerCamelCase_ =model_inputs.pop('''candidate_labels''' ) lowerCamelCase_ =model_inputs.pop('''text_inputs''' ) if isinstance(text_inputs[0], lowerCAmelCase ): lowerCamelCase_ =text_inputs[0] else: # Batching case. lowerCamelCase_ =text_inputs[0][0] lowerCamelCase_ =self.model(**lowerCAmelCase, **lowerCAmelCase ) lowerCamelCase_ ={ '''candidate_labels''': candidate_labels, '''logits''': outputs.logits_per_audio, } return model_outputs def lowercase__ ( self, lowerCAmelCase ): """simple docstring""" lowerCamelCase_ =model_outputs.pop('''candidate_labels''' ) lowerCamelCase_ =model_outputs['''logits'''][0] if self.framework == "pt": lowerCamelCase_ =logits.softmax(dim=0 ) lowerCamelCase_ =probs.tolist() else: raise ValueError('''`tf` framework not supported.''' ) lowerCamelCase_ =[ {'''score''': score, '''label''': candidate_label} for score, candidate_label in sorted(zip(lowerCAmelCase, lowerCAmelCase ), key=lambda lowerCAmelCase : -x[0] ) ] return result
75
1
import PIL.Image import PIL.ImageOps from packaging import version from PIL import Image if version.parse(version.parse(PIL.__version__).base_version) >= version.parse("""9.1.0"""): __lowerCamelCase : List[Any] = { """linear""": PIL.Image.Resampling.BILINEAR, """bilinear""": PIL.Image.Resampling.BILINEAR, """bicubic""": PIL.Image.Resampling.BICUBIC, """lanczos""": PIL.Image.Resampling.LANCZOS, """nearest""": PIL.Image.Resampling.NEAREST, } else: __lowerCamelCase : int = { """linear""": PIL.Image.LINEAR, """bilinear""": PIL.Image.BILINEAR, """bicubic""": PIL.Image.BICUBIC, """lanczos""": PIL.Image.LANCZOS, """nearest""": PIL.Image.NEAREST, } def SCREAMING_SNAKE_CASE ( snake_case_ : str ): snake_case__ : str = (images / 2 + 0.5).clamp(0 , 1 ) snake_case__ : Any = images.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() snake_case__ : List[Any] = numpy_to_pil(snake_case_ ) return images def SCREAMING_SNAKE_CASE ( snake_case_ : Any ): if images.ndim == 3: snake_case__ : Optional[int] = images[None, ...] snake_case__ : Optional[int] = (images * 255).round().astype("uint8" ) if images.shape[-1] == 1: # special case for grayscale (single channel) images snake_case__ : Dict = [Image.fromarray(image.squeeze() , mode="L" ) for image in images] else: snake_case__ : List[str] = [Image.fromarray(snake_case_ ) for image in images] return pil_images
286
from __future__ import annotations def SCREAMING_SNAKE_CASE ( snake_case_ : float , snake_case_ : float , snake_case_ : float ): if days_between_payments <= 0: raise ValueError("days_between_payments must be > 0" ) if daily_interest_rate < 0: raise ValueError("daily_interest_rate must be >= 0" ) if principal <= 0: raise ValueError("principal must be > 0" ) return principal * daily_interest_rate * days_between_payments def SCREAMING_SNAKE_CASE ( snake_case_ : float , snake_case_ : float , snake_case_ : float , ): if number_of_compounding_periods <= 0: raise ValueError("number_of_compounding_periods must be > 0" ) if nominal_annual_interest_rate_percentage < 0: raise ValueError("nominal_annual_interest_rate_percentage must be >= 0" ) if principal <= 0: raise ValueError("principal must be > 0" ) return principal * ( (1 + nominal_annual_interest_rate_percentage) ** number_of_compounding_periods - 1 ) def SCREAMING_SNAKE_CASE ( snake_case_ : float , snake_case_ : float , snake_case_ : float , ): if number_of_years <= 0: raise ValueError("number_of_years must be > 0" ) if nominal_annual_percentage_rate < 0: raise ValueError("nominal_annual_percentage_rate must be >= 0" ) if principal <= 0: raise ValueError("principal must be > 0" ) return compound_interest( snake_case_ , nominal_annual_percentage_rate / 365 , number_of_years * 365 ) if __name__ == "__main__": import doctest doctest.testmod()
286
1
import math import torch from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from .attention_processor import Attention from .embeddings import get_timestep_embedding from .modeling_utils import ModelMixin class UpperCamelCase_ ( a_ , a_ ): '''simple docstring''' @register_to_config def __init__( self , a = 1_28 , a = 2_56 , a = 20_00.0 , a = 7_68 , a = 12 , a = 12 , a = 64 , a = 20_48 , a = 0.1 , ) -> List[Any]: super().__init__() snake_case_ = nn.Sequential( nn.Linear(snake_case__ , d_model * 4 , bias=snake_case__ ) , nn.SiLU() , nn.Linear(d_model * 4 , d_model * 4 , bias=snake_case__ ) , nn.SiLU() , ) snake_case_ = nn.Embedding(snake_case__ , snake_case__ ) snake_case_ = False snake_case_ = nn.Linear(snake_case__ , snake_case__ , bias=snake_case__ ) snake_case_ = nn.Dropout(p=snake_case__ ) snake_case_ = nn.ModuleList() for lyr_num in range(snake_case__ ): # FiLM conditional T5 decoder snake_case_ = DecoderLayer(d_model=snake_case__ , d_kv=snake_case__ , num_heads=snake_case__ , d_ff=snake_case__ , dropout_rate=snake_case__ ) self.decoders.append(snake_case__ ) snake_case_ = TaLayerNorm(snake_case__ ) snake_case_ = nn.Dropout(p=snake_case__ ) snake_case_ = nn.Linear(snake_case__ , snake_case__ , bias=snake_case__ ) def _UpperCamelCase ( self , a , a ) -> int: snake_case_ = torch.mul(query_input.unsqueeze(-1 ) , key_input.unsqueeze(-2 ) ) return mask.unsqueeze(-3 ) def _UpperCamelCase ( self , a , a , a ) -> Optional[int]: snake_case_ , snake_case_ , snake_case_ = decoder_input_tokens.shape assert decoder_noise_time.shape == (batch,) # decoder_noise_time is in [0, 1), so rescale to expected timing range. snake_case_ = get_timestep_embedding( decoder_noise_time * self.config.max_decoder_noise_time , embedding_dim=self.config.d_model , max_period=self.config.max_decoder_noise_time , ).to(dtype=self.dtype ) snake_case_ = self.conditioning_emb(snake_case__ ).unsqueeze(1 ) assert conditioning_emb.shape == (batch, 1, self.config.d_model * 4) snake_case_ = decoder_input_tokens.shape[1] # If we want to use relative positions for audio context, we can just offset # this sequence by the length of encodings_and_masks. snake_case_ = torch.broadcast_to( torch.arange(snake_case__ , device=decoder_input_tokens.device ) , (batch, seq_length) , ) snake_case_ = self.position_encoding(snake_case__ ) snake_case_ = self.continuous_inputs_projection(snake_case__ ) inputs += position_encodings snake_case_ = self.dropout(snake_case__ ) # decoder: No padding present. snake_case_ = torch.ones( decoder_input_tokens.shape[:2] , device=decoder_input_tokens.device , dtype=inputs.dtype ) # Translate encoding masks to encoder-decoder masks. snake_case_ = [(x, self.encoder_decoder_mask(snake_case__ , snake_case__ )) for x, y in encodings_and_masks] # cross attend style: concat encodings snake_case_ = torch.cat([x[0] for x in encodings_and_encdec_masks] , dim=1 ) snake_case_ = torch.cat([x[1] for x in encodings_and_encdec_masks] , dim=-1 ) for lyr in self.decoders: snake_case_ = lyr( snake_case__ , conditioning_emb=snake_case__ , encoder_hidden_states=snake_case__ , encoder_attention_mask=snake_case__ , )[0] snake_case_ = self.decoder_norm(snake_case__ ) snake_case_ = self.post_dropout(snake_case__ ) snake_case_ = self.spec_out(snake_case__ ) return spec_out class UpperCamelCase_ ( nn.Module ): '''simple docstring''' def __init__( self , a , a , a , a , a , a=1E-6 ) -> List[str]: super().__init__() snake_case_ = nn.ModuleList() # cond self attention: layer 0 self.layer.append( TaLayerSelfAttentionCond(d_model=snake_case__ , d_kv=snake_case__ , num_heads=snake_case__ , dropout_rate=snake_case__ ) ) # cross attention: layer 1 self.layer.append( TaLayerCrossAttention( d_model=snake_case__ , d_kv=snake_case__ , num_heads=snake_case__ , dropout_rate=snake_case__ , layer_norm_epsilon=snake_case__ , ) ) # Film Cond MLP + dropout: last layer self.layer.append( TaLayerFFCond(d_model=snake_case__ , d_ff=snake_case__ , dropout_rate=snake_case__ , layer_norm_epsilon=snake_case__ ) ) def _UpperCamelCase ( self , a , a=None , a=None , a=None , a=None , a=None , ) -> Dict: snake_case_ = self.layer[0]( snake_case__ , conditioning_emb=snake_case__ , attention_mask=snake_case__ , ) if encoder_hidden_states is not None: snake_case_ = torch.where(encoder_attention_mask > 0 , 0 , -1E10 ).to( encoder_hidden_states.dtype ) snake_case_ = self.layer[1]( snake_case__ , key_value_states=snake_case__ , attention_mask=snake_case__ , ) # Apply Film Conditional Feed Forward layer snake_case_ = self.layer[-1](snake_case__ , snake_case__ ) return (hidden_states,) class UpperCamelCase_ ( nn.Module ): '''simple docstring''' def __init__( self , a , a , a , a ) -> List[str]: super().__init__() snake_case_ = TaLayerNorm(snake_case__ ) snake_case_ = TaFiLMLayer(in_features=d_model * 4 , out_features=snake_case__ ) snake_case_ = Attention(query_dim=snake_case__ , heads=snake_case__ , dim_head=snake_case__ , out_bias=snake_case__ , scale_qk=snake_case__ ) snake_case_ = nn.Dropout(snake_case__ ) def _UpperCamelCase ( self , a , a=None , a=None , ) -> Union[str, Any]: snake_case_ = self.layer_norm(snake_case__ ) if conditioning_emb is not None: snake_case_ = self.FiLMLayer(snake_case__ , snake_case__ ) # Self-attention block snake_case_ = self.attention(snake_case__ ) snake_case_ = hidden_states + self.dropout(snake_case__ ) return hidden_states class UpperCamelCase_ ( nn.Module ): '''simple docstring''' def __init__( self , a , a , a , a , a ) -> int: super().__init__() snake_case_ = Attention(query_dim=snake_case__ , heads=snake_case__ , dim_head=snake_case__ , out_bias=snake_case__ , scale_qk=snake_case__ ) snake_case_ = TaLayerNorm(snake_case__ , eps=snake_case__ ) snake_case_ = nn.Dropout(snake_case__ ) def _UpperCamelCase ( self , a , a=None , a=None , ) -> List[Any]: snake_case_ = self.layer_norm(snake_case__ ) snake_case_ = self.attention( snake_case__ , encoder_hidden_states=snake_case__ , attention_mask=attention_mask.squeeze(1 ) , ) snake_case_ = hidden_states + self.dropout(snake_case__ ) return layer_output class UpperCamelCase_ ( nn.Module ): '''simple docstring''' def __init__( self , a , a , a , a ) -> List[Any]: super().__init__() snake_case_ = TaDenseGatedActDense(d_model=snake_case__ , d_ff=snake_case__ , dropout_rate=snake_case__ ) snake_case_ = TaFiLMLayer(in_features=d_model * 4 , out_features=snake_case__ ) snake_case_ = TaLayerNorm(snake_case__ , eps=snake_case__ ) snake_case_ = nn.Dropout(snake_case__ ) def _UpperCamelCase ( self , a , a=None ) -> Any: snake_case_ = self.layer_norm(snake_case__ ) if conditioning_emb is not None: snake_case_ = self.film(snake_case__ , snake_case__ ) snake_case_ = self.DenseReluDense(snake_case__ ) snake_case_ = hidden_states + self.dropout(snake_case__ ) return hidden_states class UpperCamelCase_ ( nn.Module ): '''simple docstring''' def __init__( self , a , a , a ) -> Optional[Any]: super().__init__() snake_case_ = nn.Linear(snake_case__ , snake_case__ , bias=snake_case__ ) snake_case_ = nn.Linear(snake_case__ , snake_case__ , bias=snake_case__ ) snake_case_ = nn.Linear(snake_case__ , snake_case__ , bias=snake_case__ ) snake_case_ = nn.Dropout(snake_case__ ) snake_case_ = NewGELUActivation() def _UpperCamelCase ( self , a ) -> Tuple: snake_case_ = self.act(self.wi_a(snake_case__ ) ) snake_case_ = self.wi_a(snake_case__ ) snake_case_ = hidden_gelu * hidden_linear snake_case_ = self.dropout(snake_case__ ) snake_case_ = self.wo(snake_case__ ) return hidden_states class UpperCamelCase_ ( nn.Module ): '''simple docstring''' def __init__( self , a , a=1E-6 ) -> Any: super().__init__() snake_case_ = nn.Parameter(torch.ones(snake_case__ ) ) snake_case_ = eps def _UpperCamelCase ( self , a ) -> List[str]: snake_case_ = hidden_states.to(torch.floataa ).pow(2 ).mean(-1 , keepdim=snake_case__ ) snake_case_ = hidden_states * torch.rsqrt(variance + self.variance_epsilon ) # convert into half-precision if necessary if self.weight.dtype in [torch.floataa, torch.bfloataa]: snake_case_ = hidden_states.to(self.weight.dtype ) return self.weight * hidden_states class UpperCamelCase_ ( nn.Module ): '''simple docstring''' def _UpperCamelCase ( self , a ) -> List[str]: return 0.5 * input * (1.0 + torch.tanh(math.sqrt(2.0 / math.pi ) * (input + 0.044_715 * torch.pow(snake_case__ , 3.0 )) )) class UpperCamelCase_ ( nn.Module ): '''simple docstring''' def __init__( self , a , a ) -> List[str]: super().__init__() snake_case_ = nn.Linear(snake_case__ , out_features * 2 , bias=snake_case__ ) def _UpperCamelCase ( self , a , a ) -> int: snake_case_ = self.scale_bias(snake_case__ ) snake_case_ , snake_case_ = torch.chunk(snake_case__ , 2 , -1 ) snake_case_ = x * (1 + scale) + shift return x
178
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase : Union[str, Any] =logging.get_logger(__name__) UpperCAmelCase : Optional[Any] ={ """sayakpaul/vit-msn-base""": """https://huggingface.co/sayakpaul/vit-msn-base/resolve/main/config.json""", # See all ViT MSN models at https://huggingface.co/models?filter=vit_msn } class _lowercase (a_ ): '''simple docstring''' lowercase__ = """vit_msn""" def __init__( self , snake_case__=768 , snake_case__=12 , snake_case__=12 , snake_case__=3072 , snake_case__="gelu" , snake_case__=0.0 , snake_case__=0.0 , snake_case__=0.02 , snake_case__=1e-06 , snake_case__=224 , snake_case__=16 , snake_case__=3 , snake_case__=True , **snake_case__ , ): '''simple docstring''' super().__init__(**snake_case__ ) UpperCamelCase_ = hidden_size UpperCamelCase_ = num_hidden_layers UpperCamelCase_ = num_attention_heads UpperCamelCase_ = intermediate_size UpperCamelCase_ = hidden_act UpperCamelCase_ = hidden_dropout_prob UpperCamelCase_ = attention_probs_dropout_prob UpperCamelCase_ = initializer_range UpperCamelCase_ = layer_norm_eps UpperCamelCase_ = image_size UpperCamelCase_ = patch_size UpperCamelCase_ = num_channels UpperCamelCase_ = qkv_bias
128
0
from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig, OnnxSeqaSeqConfigWithPast from ...utils import logging if TYPE_CHECKING: from ...feature_extraction_utils import FeatureExtractionMixin from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import TensorType __a :Tuple = logging.get_logger(__name__) __a :Dict = { 'openai/whisper-base': 'https://huggingface.co/openai/whisper-base/resolve/main/config.json', } # fmt: off __a :Tuple = [ 1, 2, 7, 8, 9, 10, 14, 25, 26, 27, 28, 29, 31, 58, 59, 60, 61, 62, 63, 90, 91, 92, 93, 357, 366, 438, 532, 685, 705, 796, 930, 1058, 1220, 1267, 1279, 1303, 1343, 1377, 1391, 1635, 1782, 1875, 2162, 2361, 2488, 3467, 4008, 4211, 4600, 4808, 5299, 5855, 6329, 7203, 9609, 9959, 1_0563, 1_0786, 1_1420, 1_1709, 1_1907, 1_3163, 1_3697, 1_3700, 1_4808, 1_5306, 1_6410, 1_6791, 1_7992, 1_9203, 1_9510, 2_0724, 2_2305, 2_2935, 2_7007, 3_0109, 3_0420, 3_3409, 3_4949, 4_0283, 4_0493, 4_0549, 4_7282, 4_9146, 5_0257, 5_0359, 5_0360, 5_0361 ] __a :Optional[int] = [ 1, 2, 7, 8, 9, 10, 14, 25, 26, 27, 28, 29, 31, 58, 59, 60, 61, 62, 63, 90, 91, 92, 93, 359, 503, 522, 542, 873, 893, 902, 918, 922, 931, 1350, 1853, 1982, 2460, 2627, 3246, 3253, 3268, 3536, 3846, 3961, 4183, 4667, 6585, 6647, 7273, 9061, 9383, 1_0428, 1_0929, 1_1938, 1_2033, 1_2331, 1_2562, 1_3793, 1_4157, 1_4635, 1_5265, 1_5618, 1_6553, 1_6604, 1_8362, 1_8956, 2_0075, 2_1675, 2_2520, 2_6130, 2_6161, 2_6435, 2_8279, 2_9464, 3_1650, 3_2302, 3_2470, 3_6865, 4_2863, 4_7425, 4_9870, 5_0254, 5_0258, 5_0360, 5_0361, 5_0362 ] class _a ( _UpperCamelCase ): """simple docstring""" _lowerCamelCase : Union[str, Any] = 'whisper' _lowerCamelCase : Any = ['past_key_values'] _lowerCamelCase : Optional[int] = {'num_attention_heads': 'encoder_attention_heads', 'hidden_size': 'd_model'} def __init__( self : Optional[int] , UpperCAmelCase : Union[str, Any]=51865 , UpperCAmelCase : Optional[Any]=80 , UpperCAmelCase : Dict=6 , UpperCAmelCase : Tuple=4 , UpperCAmelCase : List[Any]=6 , UpperCAmelCase : Tuple=4 , UpperCAmelCase : Dict=1536 , UpperCAmelCase : Any=1536 , UpperCAmelCase : str=0.0 , UpperCAmelCase : Optional[Any]=0.0 , UpperCAmelCase : Tuple=50257 , UpperCAmelCase : Any=True , UpperCAmelCase : Optional[Any]=True , UpperCAmelCase : List[Any]="gelu" , UpperCAmelCase : str=256 , UpperCAmelCase : List[Any]=0.0 , UpperCAmelCase : List[str]=0.0 , UpperCAmelCase : str=0.0 , UpperCAmelCase : Dict=0.02 , UpperCAmelCase : int=False , UpperCAmelCase : Union[str, Any]=1500 , UpperCAmelCase : str=448 , UpperCAmelCase : Union[str, Any]=50256 , UpperCAmelCase : int=50256 , UpperCAmelCase : Optional[int]=50256 , UpperCAmelCase : Optional[Any]=None , UpperCAmelCase : Optional[int]=[220, 50256] , UpperCAmelCase : Union[str, Any]=False , UpperCAmelCase : Tuple=256 , UpperCAmelCase : List[Any]=False , UpperCAmelCase : List[Any]=0.05 , UpperCAmelCase : Any=10 , UpperCAmelCase : Dict=2 , UpperCAmelCase : Optional[Any]=0.0 , UpperCAmelCase : Dict=10 , UpperCAmelCase : Union[str, Any]=0 , UpperCAmelCase : str=7 , **UpperCAmelCase : str , ): A_ = vocab_size A_ = num_mel_bins A_ = d_model A_ = encoder_layers A_ = encoder_attention_heads A_ = decoder_layers A_ = decoder_attention_heads A_ = decoder_ffn_dim A_ = encoder_ffn_dim A_ = dropout A_ = attention_dropout A_ = activation_dropout A_ = activation_function A_ = init_std A_ = encoder_layerdrop A_ = decoder_layerdrop A_ = use_cache A_ = encoder_layers A_ = scale_embedding # scale factor will be sqrt(d_model) if True A_ = max_source_positions A_ = max_target_positions # Audio Classification-specific parameters. Feel free to ignore for other classes. A_ = classifier_proj_size A_ = use_weighted_layer_sum # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 A_ = apply_spec_augment A_ = mask_time_prob A_ = mask_time_length A_ = mask_time_min_masks A_ = mask_feature_prob A_ = mask_feature_length A_ = mask_feature_min_masks A_ = median_filter_width super().__init__( pad_token_id=_SCREAMING_SNAKE_CASE , bos_token_id=_SCREAMING_SNAKE_CASE , eos_token_id=_SCREAMING_SNAKE_CASE , is_encoder_decoder=_SCREAMING_SNAKE_CASE , decoder_start_token_id=_SCREAMING_SNAKE_CASE , suppress_tokens=_SCREAMING_SNAKE_CASE , begin_suppress_tokens=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , ) class _a ( _UpperCamelCase ): """simple docstring""" @property def __A ( self : int ): A_ = OrderedDict( [ ("input_features", {0: "batch", 1: "feature_size", 2: "encoder_sequence"}), ] ) if self.use_past: A_ = {0: "batch"} else: A_ = {0: "batch", 1: "decoder_sequence"} if self.use_past: self.fill_with_past_key_values_(_SCREAMING_SNAKE_CASE , direction="inputs" ) return common_inputs def __A ( self : List[str] , UpperCAmelCase : int , UpperCAmelCase : List[str] = -1 , UpperCAmelCase : List[str] = -1 , UpperCAmelCase : Tuple = False , UpperCAmelCase : str = None , UpperCAmelCase : Optional[Any] = 22050 , UpperCAmelCase : int = 5.0 , UpperCAmelCase : str = 220 , ): A_ = OrderedDict() A_ = OnnxConfig.generate_dummy_inputs( self , preprocessor=preprocessor.feature_extractor , batch_size=_SCREAMING_SNAKE_CASE , framework=_SCREAMING_SNAKE_CASE , sampling_rate=_SCREAMING_SNAKE_CASE , time_duration=_SCREAMING_SNAKE_CASE , frequency=_SCREAMING_SNAKE_CASE , ) A_ = encoder_inputs["input_features"].shape[2] A_ = encoder_sequence_length // 2 if self.use_past else seq_length A_ = super().generate_dummy_inputs( preprocessor.tokenizer , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) A_ = encoder_inputs.pop("input_features" ) A_ = decoder_inputs.pop("decoder_input_ids" ) if "past_key_values" in decoder_inputs: A_ = decoder_inputs.pop("past_key_values" ) return dummy_inputs @property def __A ( self : Tuple ): return 1E-3
368
import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import PoolFormerConfig, PoolFormerForImageClassification, PoolFormerImageProcessor from transformers.utils import logging logging.set_verbosity_info() __a :Optional[Any] = logging.get_logger(__name__) def __snake_case ( __UpperCamelCase : List[str] ,__UpperCamelCase : Any ,__UpperCamelCase : List[str] ,__UpperCamelCase : Optional[Any] ): """simple docstring""" A_ = original_name.split("." )[0] A_ = key.split("." ) A_ = int(key_list[key_list.index(__UpperCamelCase ) - 2] ) A_ = int(key_list[key_list.index(__UpperCamelCase ) - 1] ) A_ = orig_block_num - offset A_ = key.replace(f'''{orig_block_num}.{layer_num}.{original_name}''' ,f'''block.{new_block_num}.{layer_num}.{new_name}''' ) return key def __snake_case ( __UpperCamelCase : Any ): """simple docstring""" A_ = OrderedDict() A_ , A_ = 0, 0 for key, value in state_dict.items(): if key.startswith("network" ): A_ = key.replace("network" ,"poolformer.encoder" ) if "proj" in key: # Works for the first embedding as well as the internal embedding layers if key.endswith("bias" ) and "patch_embed" not in key: patch_emb_offset += 1 A_ = key[: key.find("proj" )] A_ = key.replace(__UpperCamelCase ,f'''patch_embeddings.{total_embed_found}.''' ) A_ = key.replace("proj" ,"projection" ) if key.endswith("bias" ): total_embed_found += 1 if "patch_embeddings" in key: A_ = "poolformer.encoder." + key if "mlp.fc1" in key: A_ = replace_key_with_offset(__UpperCamelCase ,__UpperCamelCase ,"mlp.fc1" ,"output.conv1" ) if "mlp.fc2" in key: A_ = replace_key_with_offset(__UpperCamelCase ,__UpperCamelCase ,"mlp.fc2" ,"output.conv2" ) if "norm1" in key: A_ = replace_key_with_offset(__UpperCamelCase ,__UpperCamelCase ,"norm1" ,"before_norm" ) if "norm2" in key: A_ = replace_key_with_offset(__UpperCamelCase ,__UpperCamelCase ,"norm2" ,"after_norm" ) if "layer_scale_1" in key: A_ = replace_key_with_offset(__UpperCamelCase ,__UpperCamelCase ,"layer_scale_1" ,"layer_scale_1" ) if "layer_scale_2" in key: A_ = replace_key_with_offset(__UpperCamelCase ,__UpperCamelCase ,"layer_scale_2" ,"layer_scale_2" ) if "head" in key: A_ = key.replace("head" ,"classifier" ) A_ = value return new_state_dict def __snake_case ( ): """simple docstring""" A_ = "http://images.cocodataset.org/val2017/000000039769.jpg" A_ = Image.open(requests.get(__UpperCamelCase ,stream=__UpperCamelCase ).raw ) return image @torch.no_grad() def __snake_case ( __UpperCamelCase : Union[str, Any] ,__UpperCamelCase : List[str] ,__UpperCamelCase : List[Any] ): """simple docstring""" A_ = PoolFormerConfig() # set attributes based on model_name A_ = "huggingface/label-files" A_ = model_name[-3:] A_ = 1000 A_ = "imagenet-1k-id2label.json" A_ = (1, 1000) # set config attributes A_ = json.load(open(hf_hub_download(__UpperCamelCase ,__UpperCamelCase ,repo_type="dataset" ) ,"r" ) ) A_ = {int(__UpperCamelCase ): v for k, v in idalabel.items()} A_ = idalabel A_ = {v: k for k, v in idalabel.items()} if size == "s12": A_ = [2, 2, 6, 2] A_ = [64, 128, 320, 512] A_ = 4.0 A_ = 0.9 elif size == "s24": A_ = [4, 4, 12, 4] A_ = [64, 128, 320, 512] A_ = 4.0 A_ = 0.9 elif size == "s36": A_ = [6, 6, 18, 6] A_ = [64, 128, 320, 512] A_ = 4.0 A_ = 1E-6 A_ = 0.9 elif size == "m36": A_ = [6, 6, 18, 6] A_ = [96, 192, 384, 768] A_ = 4.0 A_ = 1E-6 A_ = 0.95 elif size == "m48": A_ = [8, 8, 24, 8] A_ = [96, 192, 384, 768] A_ = 4.0 A_ = 1E-6 A_ = 0.95 else: raise ValueError(f'''Size {size} not supported''' ) # load image processor A_ = PoolFormerImageProcessor(crop_pct=__UpperCamelCase ) # Prepare image A_ = prepare_img() A_ = image_processor(images=__UpperCamelCase ,return_tensors="pt" ).pixel_values logger.info(f'''Converting model {model_name}...''' ) # load original state dict A_ = torch.load(__UpperCamelCase ,map_location=torch.device("cpu" ) ) # rename keys A_ = rename_keys(__UpperCamelCase ) # create HuggingFace model and load state dict A_ = PoolFormerForImageClassification(__UpperCamelCase ) model.load_state_dict(__UpperCamelCase ) model.eval() # Define image processor A_ = PoolFormerImageProcessor(crop_pct=__UpperCamelCase ) A_ = image_processor(images=prepare_img() ,return_tensors="pt" ).pixel_values # forward pass A_ = model(__UpperCamelCase ) A_ = outputs.logits # define expected logit slices for different models if size == "s12": A_ = torch.tensor([-0.3045, -0.6758, -0.4869] ) elif size == "s24": A_ = torch.tensor([0.4402, -0.1374, -0.8045] ) elif size == "s36": A_ = torch.tensor([-0.6080, -0.5133, -0.5898] ) elif size == "m36": A_ = torch.tensor([0.3952, 0.2263, -1.2668] ) elif size == "m48": A_ = torch.tensor([0.1167, -0.0656, -0.3423] ) else: raise ValueError(f'''Size {size} not supported''' ) # verify logits assert logits.shape == expected_shape assert torch.allclose(logits[0, :3] ,__UpperCamelCase ,atol=1E-2 ) # finally, save model and image processor logger.info(f'''Saving PyTorch model and image processor to {pytorch_dump_folder_path}...''' ) Path(__UpperCamelCase ).mkdir(exist_ok=__UpperCamelCase ) model.save_pretrained(__UpperCamelCase ) print(f'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(__UpperCamelCase ) if __name__ == "__main__": __a :Union[str, Any] = argparse.ArgumentParser() parser.add_argument( '--model_name', default='poolformer_s12', type=str, help='Name of the model you\'d like to convert.', ) parser.add_argument( '--checkpoint_path', default=None, type=str, help='Path to the original PyTorch checkpoint (.pth file).' ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the folder to output PyTorch model.' ) __a :int = parser.parse_args() convert_poolformer_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path)
329
0
from __future__ import absolute_import, division, print_function, unicode_literals from torch import nn from torch.nn import CrossEntropyLoss, MSELoss from transformers import RobertaConfig from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward from transformers.models.roberta.modeling_roberta import ( ROBERTA_INPUTS_DOCSTRING, ROBERTA_START_DOCSTRING, RobertaEmbeddings, ) from .modeling_highway_bert import BertPreTrainedModel, DeeBertModel, HighwayException, entropy @add_start_docstrings( 'The RoBERTa Model transformer with early exiting (DeeRoBERTa). ' , a__ , ) class a_ ( a__ ): """simple docstring""" __SCREAMING_SNAKE_CASE : Tuple = RobertaConfig __SCREAMING_SNAKE_CASE : Optional[int] = 'roberta' def __init__( self , _lowerCamelCase ) ->Tuple: super().__init__(_lowerCamelCase ) SCREAMING_SNAKE_CASE : List[Any] = RobertaEmbeddings(_lowerCamelCase ) self.init_weights() @add_start_docstrings( 'RoBERTa Model (with early exiting - DeeRoBERTa) with a classifier on top,\n also takes care of multi-layer training. ' , a__ , ) class a_ ( a__ ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[Any] = RobertaConfig __SCREAMING_SNAKE_CASE : List[Any] = 'roberta' def __init__( self , _lowerCamelCase ) ->Union[str, Any]: super().__init__(_lowerCamelCase ) SCREAMING_SNAKE_CASE : List[Any] = config.num_labels SCREAMING_SNAKE_CASE : Any = config.num_hidden_layers SCREAMING_SNAKE_CASE : List[Any] = DeeRobertaModel(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Optional[int] = nn.Dropout(config.hidden_dropout_prob ) SCREAMING_SNAKE_CASE : Dict = nn.Linear(config.hidden_size , self.config.num_labels ) @add_start_docstrings_to_model_forward(_lowerCamelCase ) def __lowerCAmelCase ( self , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase=-1 , _lowerCamelCase=False , ) ->Tuple: SCREAMING_SNAKE_CASE : Any = self.num_layers try: SCREAMING_SNAKE_CASE : Optional[int] = self.roberta( _lowerCamelCase , attention_mask=_lowerCamelCase , token_type_ids=_lowerCamelCase , position_ids=_lowerCamelCase , head_mask=_lowerCamelCase , inputs_embeds=_lowerCamelCase , ) SCREAMING_SNAKE_CASE : str = outputs[1] SCREAMING_SNAKE_CASE : Optional[Any] = self.dropout(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Optional[Any] = self.classifier(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Dict = (logits,) + outputs[2:] # add hidden states and attention if they are here except HighwayException as e: SCREAMING_SNAKE_CASE : Union[str, Any] = e.message SCREAMING_SNAKE_CASE : Optional[Any] = e.exit_layer SCREAMING_SNAKE_CASE : List[str] = outputs[0] if not self.training: SCREAMING_SNAKE_CASE : Optional[int] = entropy(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Optional[Any] = [] SCREAMING_SNAKE_CASE : Optional[Any] = [] if labels is not None: if self.num_labels == 1: # We are doing regression SCREAMING_SNAKE_CASE : Dict = MSELoss() SCREAMING_SNAKE_CASE : int = loss_fct(logits.view(-1 ) , labels.view(-1 ) ) else: SCREAMING_SNAKE_CASE : str = CrossEntropyLoss() SCREAMING_SNAKE_CASE : str = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) # work with highway exits SCREAMING_SNAKE_CASE : Any = [] for highway_exit in outputs[-1]: SCREAMING_SNAKE_CASE : str = highway_exit[0] if not self.training: highway_logits_all.append(_lowerCamelCase ) highway_entropy.append(highway_exit[2] ) if self.num_labels == 1: # We are doing regression SCREAMING_SNAKE_CASE : List[Any] = MSELoss() SCREAMING_SNAKE_CASE : Dict = loss_fct(highway_logits.view(-1 ) , labels.view(-1 ) ) else: SCREAMING_SNAKE_CASE : Dict = CrossEntropyLoss() SCREAMING_SNAKE_CASE : Union[str, Any] = loss_fct(highway_logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) highway_losses.append(_lowerCamelCase ) if train_highway: SCREAMING_SNAKE_CASE : str = (sum(highway_losses[:-1] ),) + outputs # exclude the final highway, of course else: SCREAMING_SNAKE_CASE : List[str] = (loss,) + outputs if not self.training: SCREAMING_SNAKE_CASE : str = outputs + ((original_entropy, highway_entropy), exit_layer) if output_layer >= 0: SCREAMING_SNAKE_CASE : Any = ( (outputs[0],) + (highway_logits_all[output_layer],) + outputs[2:] ) # use the highway of the last layer return outputs # (loss), logits, (hidden_states), (attentions), entropy
313
import datetime import platform import subprocess from typing import Optional, Tuple, Union import numpy as np def UpperCAmelCase_( a__ , a__ ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = F"""{sampling_rate}""" SCREAMING_SNAKE_CASE : Tuple = '''1''' SCREAMING_SNAKE_CASE : Union[str, Any] = '''f32le''' SCREAMING_SNAKE_CASE : List[Any] = [ '''ffmpeg''', '''-i''', '''pipe:0''', '''-ac''', ac, '''-ar''', ar, '''-f''', format_for_conversion, '''-hide_banner''', '''-loglevel''', '''quiet''', '''pipe:1''', ] try: with subprocess.Popen(a__ , stdin=subprocess.PIPE , stdout=subprocess.PIPE ) as ffmpeg_process: SCREAMING_SNAKE_CASE : Tuple = ffmpeg_process.communicate(a__ ) except FileNotFoundError as error: raise ValueError('''ffmpeg was not found but is required to load audio files from filename''' ) from error SCREAMING_SNAKE_CASE : Optional[Any] = output_stream[0] SCREAMING_SNAKE_CASE : Any = np.frombuffer(a__ , np.floataa ) if audio.shape[0] == 0: raise ValueError('''Malformed soundfile''' ) return audio def UpperCAmelCase_( a__ , a__ , a__ = "f32le" , ): """simple docstring""" SCREAMING_SNAKE_CASE : Union[str, Any] = F"""{sampling_rate}""" SCREAMING_SNAKE_CASE : Dict = '''1''' if format_for_conversion == "s16le": SCREAMING_SNAKE_CASE : List[Any] = 2 elif format_for_conversion == "f32le": SCREAMING_SNAKE_CASE : Dict = 4 else: raise ValueError(F"""Unhandled format `{format_for_conversion}`. Please use `s16le` or `f32le`""" ) SCREAMING_SNAKE_CASE : Union[str, Any] = platform.system() if system == "Linux": SCREAMING_SNAKE_CASE : Dict = '''alsa''' SCREAMING_SNAKE_CASE : Any = '''default''' elif system == "Darwin": SCREAMING_SNAKE_CASE : Union[str, Any] = '''avfoundation''' SCREAMING_SNAKE_CASE : Optional[int] = ''':0''' elif system == "Windows": SCREAMING_SNAKE_CASE : int = '''dshow''' SCREAMING_SNAKE_CASE : Any = '''default''' SCREAMING_SNAKE_CASE : Union[str, Any] = [ '''ffmpeg''', '''-f''', format_, '''-i''', input_, '''-ac''', ac, '''-ar''', ar, '''-f''', format_for_conversion, '''-fflags''', '''nobuffer''', '''-hide_banner''', '''-loglevel''', '''quiet''', '''pipe:1''', ] SCREAMING_SNAKE_CASE : List[str] = int(round(sampling_rate * chunk_length_s ) ) * size_of_sample SCREAMING_SNAKE_CASE : List[Any] = _ffmpeg_stream(a__ , a__ ) for item in iterator: yield item def UpperCAmelCase_( a__ , a__ , a__ = None , a__ = None , a__ = "f32le" , ): """simple docstring""" if stream_chunk_s is not None: SCREAMING_SNAKE_CASE : Tuple = stream_chunk_s else: SCREAMING_SNAKE_CASE : List[str] = chunk_length_s SCREAMING_SNAKE_CASE : Union[str, Any] = ffmpeg_microphone(a__ , a__ , format_for_conversion=a__ ) if format_for_conversion == "s16le": SCREAMING_SNAKE_CASE : Optional[int] = np.intaa SCREAMING_SNAKE_CASE : List[Any] = 2 elif format_for_conversion == "f32le": SCREAMING_SNAKE_CASE : Any = np.floataa SCREAMING_SNAKE_CASE : Union[str, Any] = 4 else: raise ValueError(F"""Unhandled format `{format_for_conversion}`. Please use `s16le` or `f32le`""" ) if stride_length_s is None: SCREAMING_SNAKE_CASE : Optional[Any] = chunk_length_s / 6 SCREAMING_SNAKE_CASE : Dict = int(round(sampling_rate * chunk_length_s ) ) * size_of_sample if isinstance(a__ , (int, float) ): SCREAMING_SNAKE_CASE : List[Any] = [stride_length_s, stride_length_s] SCREAMING_SNAKE_CASE : Any = int(round(sampling_rate * stride_length_s[0] ) ) * size_of_sample SCREAMING_SNAKE_CASE : int = int(round(sampling_rate * stride_length_s[1] ) ) * size_of_sample SCREAMING_SNAKE_CASE : Union[str, Any] = datetime.datetime.now() SCREAMING_SNAKE_CASE : Dict = datetime.timedelta(seconds=a__ ) for item in chunk_bytes_iter(a__ , a__ , stride=(stride_left, stride_right) , stream=a__ ): # Put everything back in numpy scale SCREAMING_SNAKE_CASE : Dict = np.frombuffer(item['''raw'''] , dtype=a__ ) SCREAMING_SNAKE_CASE : Optional[Any] = ( item['''stride'''][0] // size_of_sample, item['''stride'''][1] // size_of_sample, ) SCREAMING_SNAKE_CASE : Any = sampling_rate audio_time += delta if datetime.datetime.now() > audio_time + 10 * delta: # We're late !! SKIP continue yield item def UpperCAmelCase_( a__ , a__ , a__ , a__ = False ): """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = b'''''' SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Union[str, Any] = stride if stride_left + stride_right >= chunk_len: raise ValueError( F"""Stride needs to be strictly smaller than chunk_len: ({stride_left}, {stride_right}) vs {chunk_len}""" ) SCREAMING_SNAKE_CASE : Union[str, Any] = 0 for raw in iterator: acc += raw if stream and len(a__ ) < chunk_len: SCREAMING_SNAKE_CASE : List[str] = (_stride_left, 0) yield {"raw": acc[:chunk_len], "stride": stride, "partial": True} else: while len(a__ ) >= chunk_len: # We are flushing the accumulator SCREAMING_SNAKE_CASE : str = (_stride_left, stride_right) SCREAMING_SNAKE_CASE : List[str] = {'''raw''': acc[:chunk_len], '''stride''': stride} if stream: SCREAMING_SNAKE_CASE : List[str] = False yield item SCREAMING_SNAKE_CASE : Dict = stride_left SCREAMING_SNAKE_CASE : int = acc[chunk_len - stride_left - stride_right :] # Last chunk if len(a__ ) > stride_left: SCREAMING_SNAKE_CASE : Optional[Any] = {'''raw''': acc, '''stride''': (_stride_left, 0)} if stream: SCREAMING_SNAKE_CASE : Union[str, Any] = False yield item def UpperCAmelCase_( a__ , a__ ): """simple docstring""" SCREAMING_SNAKE_CASE : str = 2**24 # 16Mo try: with subprocess.Popen(a__ , stdout=subprocess.PIPE , bufsize=a__ ) as ffmpeg_process: while True: SCREAMING_SNAKE_CASE : str = ffmpeg_process.stdout.read(a__ ) if raw == b"": break yield raw except FileNotFoundError as error: raise ValueError('''ffmpeg was not found but is required to stream audio files from filename''' ) from error
313
1
"""simple docstring""" import json import os import tempfile from unittest.mock import patch import torch from torch.utils.data import DataLoader, TensorDataset from accelerate import DistributedType, infer_auto_device_map, init_empty_weights from accelerate.accelerator import Accelerator from accelerate.state import GradientState, PartialState from accelerate.test_utils import require_bnb, require_multi_gpu, slow from accelerate.test_utils.testing import AccelerateTestCase, require_cuda from accelerate.utils import patch_environment def UpperCAmelCase__ (): '''simple docstring''' __SCREAMING_SNAKE_CASE = torch.nn.Linear(2 , 4 ) __SCREAMING_SNAKE_CASE = torch.optim.AdamW(model.parameters() , lr=1.0 ) __SCREAMING_SNAKE_CASE = torch.optim.lr_scheduler.OneCycleLR(lowerCAmelCase_ , max_lr=0.01 , steps_per_epoch=2 , epochs=1 ) __SCREAMING_SNAKE_CASE = DataLoader(TensorDataset(torch.tensor([1, 2, 3] ) ) ) __SCREAMING_SNAKE_CASE = DataLoader(TensorDataset(torch.tensor([4, 5, 6] ) ) ) return model, optimizer, scheduler, train_dl, valid_dl def UpperCAmelCase__ (lowerCAmelCase_ ): '''simple docstring''' return (model.weight.abs().sum() + model.bias.abs().sum()).item() def UpperCAmelCase__ (lowerCAmelCase_ ): '''simple docstring''' __SCREAMING_SNAKE_CASE = torch.nn.Linear(*tuple(model.weight.T.shape ) ).state_dict() model.load_state_dict(lowerCAmelCase_ ) class UpperCamelCase_ ( UpperCamelCase): """simple docstring""" @require_cuda def UpperCAmelCase_ ( self : Optional[int] ) -> Optional[Any]: __SCREAMING_SNAKE_CASE = Accelerator() assert PartialState._shared_state["_cpu"] is False assert PartialState._shared_state["device"].type == "cuda" with self.assertRaises(UpperCAmelCase__ ): __SCREAMING_SNAKE_CASE = Accelerator(cpu=UpperCAmelCase__ ) def UpperCAmelCase_ ( self : List[str] ) -> str: __SCREAMING_SNAKE_CASE = Accelerator() __SCREAMING_SNAKE_CASE = GradientState() assert state.num_steps == 1 __SCREAMING_SNAKE_CASE = 4 assert state.num_steps == 4 assert state.sync_gradients is True __SCREAMING_SNAKE_CASE = False assert state.sync_gradients is False GradientState._reset_state() def UpperCAmelCase_ ( self : Tuple ) -> List[str]: __SCREAMING_SNAKE_CASE = Accelerator() __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = create_components() ( ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ) = accelerator.prepare(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) self.assertTrue(prepared_model in accelerator._models ) self.assertTrue(prepared_optimizer in accelerator._optimizers ) self.assertTrue(prepared_scheduler in accelerator._schedulers ) self.assertTrue(prepared_train_dl in accelerator._dataloaders ) self.assertTrue(prepared_valid_dl in accelerator._dataloaders ) def UpperCAmelCase_ ( self : Any ) -> Any: __SCREAMING_SNAKE_CASE = Accelerator() __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = create_components() accelerator.prepare(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) accelerator.free_memory() self.assertTrue(len(accelerator._models ) == 0 ) self.assertTrue(len(accelerator._optimizers ) == 0 ) self.assertTrue(len(accelerator._schedulers ) == 0 ) self.assertTrue(len(accelerator._dataloaders ) == 0 ) def UpperCAmelCase_ ( self : Any ) -> List[Any]: PartialState._reset_state() # Mock torch.cuda.set_device to avoid an exception as the device doesn't exist def noop(*UpperCAmelCase__ : Optional[Any] , **UpperCAmelCase__ : int ): pass with patch("torch.cuda.set_device" , UpperCAmelCase__ ), patch_environment(ACCELERATE_TORCH_DEVICE="cuda:64" ): __SCREAMING_SNAKE_CASE = Accelerator() self.assertEqual(str(accelerator.state.device ) , "cuda:64" ) def UpperCAmelCase_ ( self : Any ) -> Union[str, Any]: __SCREAMING_SNAKE_CASE = Accelerator() __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = create_components() accelerator.prepare(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = get_signature(UpperCAmelCase__ ) with tempfile.TemporaryDirectory() as tmpdirname: accelerator.save_state(UpperCAmelCase__ ) # make sure random weights don't match load_random_weights(UpperCAmelCase__ ) self.assertTrue(abs(model_signature - get_signature(UpperCAmelCase__ ) ) > 1E-3 ) # make sure loaded weights match accelerator.load_state(UpperCAmelCase__ ) self.assertTrue(abs(model_signature - get_signature(UpperCAmelCase__ ) ) < 1E-3 ) def UpperCAmelCase_ ( self : Optional[int] ) -> Tuple: __SCREAMING_SNAKE_CASE = Accelerator() __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = create_components() accelerator.prepare(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = get_signature(UpperCAmelCase__ ) # saving hook def save_config(UpperCAmelCase__ : Any , UpperCAmelCase__ : int , UpperCAmelCase__ : Optional[Any] ): __SCREAMING_SNAKE_CASE = {"class_name": models[0].__class__.__name__} with open(os.path.join(UpperCAmelCase__ , "data.json" ) , "w" ) as f: json.dump(UpperCAmelCase__ , UpperCAmelCase__ ) # loading hook def load_config(UpperCAmelCase__ : int , UpperCAmelCase__ : Tuple ): with open(os.path.join(UpperCAmelCase__ , "data.json" ) , "r" ) as f: __SCREAMING_SNAKE_CASE = json.load(UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = config["class_name"] __SCREAMING_SNAKE_CASE = accelerator.register_save_state_pre_hook(UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = accelerator.register_load_state_pre_hook(UpperCAmelCase__ ) with tempfile.TemporaryDirectory() as tmpdirname: accelerator.save_state(UpperCAmelCase__ ) # make sure random weights don't match with hooks load_random_weights(UpperCAmelCase__ ) self.assertTrue(abs(model_signature - get_signature(UpperCAmelCase__ ) ) > 1E-3 ) # random class name to verify correct one is loaded __SCREAMING_SNAKE_CASE = "random" # make sure loaded weights match with hooks accelerator.load_state(UpperCAmelCase__ ) self.assertTrue(abs(model_signature - get_signature(UpperCAmelCase__ ) ) < 1E-3 ) # mode.class_name is loaded from config self.assertTrue(model.class_name == model.__class__.__name__ ) # remove hooks save_hook.remove() load_hook.remove() with tempfile.TemporaryDirectory() as tmpdirname: accelerator.save_state(UpperCAmelCase__ ) # make sure random weights don't match with hooks removed load_random_weights(UpperCAmelCase__ ) self.assertTrue(abs(model_signature - get_signature(UpperCAmelCase__ ) ) > 1E-3 ) # random class name to verify correct one is loaded __SCREAMING_SNAKE_CASE = "random" # make sure loaded weights match with hooks removed accelerator.load_state(UpperCAmelCase__ ) self.assertTrue(abs(model_signature - get_signature(UpperCAmelCase__ ) ) < 1E-3 ) # mode.class_name is NOT loaded from config self.assertTrue(model.class_name != model.__class__.__name__ ) def UpperCAmelCase_ ( self : Tuple ) -> Union[str, Any]: __SCREAMING_SNAKE_CASE = Accelerator() __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = create_components() __SCREAMING_SNAKE_CASE = None # This should work __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = accelerator.prepare( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) self.assertTrue(dummy_obj is None ) def UpperCAmelCase_ ( self : List[Any] ) -> List[str]: __SCREAMING_SNAKE_CASE = Accelerator() __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = create_components() __SCREAMING_SNAKE_CASE = [1, 2, 3] # This should work __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = accelerator.prepare( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) self.assertEqual( getattr(UpperCAmelCase__ , "_is_accelerate_prepared" , UpperCAmelCase__ ) , UpperCAmelCase__ , "Dummy object should have `_is_accelerate_prepared` set to `True`" , ) self.assertEqual( getattr(UpperCAmelCase__ , "_is_accelerate_prepared" , UpperCAmelCase__ ) , UpperCAmelCase__ , "Model is missing `_is_accelerator_prepared` or is set to `False`" , ) self.assertEqual( getattr(UpperCAmelCase__ , "_is_accelerate_prepared" , UpperCAmelCase__ ) , UpperCAmelCase__ , "Optimizer is missing `_is_accelerator_prepared` or is set to `False`" , ) self.assertEqual( getattr(UpperCAmelCase__ , "_is_accelerate_prepared" , UpperCAmelCase__ ) , UpperCAmelCase__ , "Scheduler is missing `_is_accelerator_prepared` or is set to `False`" , ) self.assertEqual( getattr(UpperCAmelCase__ , "_is_accelerate_prepared" , UpperCAmelCase__ ) , UpperCAmelCase__ , "Train Dataloader is missing `_is_accelerator_prepared` or is set to `False`" , ) self.assertEqual( getattr(UpperCAmelCase__ , "_is_accelerate_prepared" , UpperCAmelCase__ ) , UpperCAmelCase__ , "Valid Dataloader is missing `_is_accelerator_prepared` or is set to `False`" , ) @slow @require_bnb def UpperCAmelCase_ ( self : Any ) -> int: from transformers import AutoModelForCausalLM __SCREAMING_SNAKE_CASE = AutoModelForCausalLM.from_pretrained( "EleutherAI/gpt-neo-125m" , load_in_abit=UpperCAmelCase__ , device_map={"": 0} , ) __SCREAMING_SNAKE_CASE = Accelerator() # This should work __SCREAMING_SNAKE_CASE = accelerator.prepare(UpperCAmelCase__ ) @slow @require_bnb def UpperCAmelCase_ ( self : Optional[Any] ) -> List[Any]: from transformers import AutoModelForCausalLM __SCREAMING_SNAKE_CASE = Accelerator() with init_empty_weights(): __SCREAMING_SNAKE_CASE = AutoModelForCausalLM.from_pretrained( "EleutherAI/gpt-neo-125m" , ) model.tie_weights() __SCREAMING_SNAKE_CASE = infer_auto_device_map(UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = "cpu" __SCREAMING_SNAKE_CASE = AutoModelForCausalLM.from_pretrained( "EleutherAI/gpt-neo-125m" , device_map=UpperCAmelCase__ , load_in_abit=UpperCAmelCase__ , llm_inta_enable_fpaa_cpu_offload=UpperCAmelCase__ ) # This should not work and get value error with self.assertRaises(UpperCAmelCase__ ): __SCREAMING_SNAKE_CASE = accelerator.prepare(UpperCAmelCase__ ) @slow @require_bnb @require_multi_gpu def UpperCAmelCase_ ( self : str ) -> Union[str, Any]: from transformers import AutoModelForCausalLM __SCREAMING_SNAKE_CASE = {"distributed_type": DistributedType.MULTI_GPU} with init_empty_weights(): __SCREAMING_SNAKE_CASE = AutoModelForCausalLM.from_pretrained( "EleutherAI/gpt-neo-125m" , ) model.tie_weights() __SCREAMING_SNAKE_CASE = infer_auto_device_map(UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = 1 __SCREAMING_SNAKE_CASE = AutoModelForCausalLM.from_pretrained( "EleutherAI/gpt-neo-125m" , load_in_abit=UpperCAmelCase__ , device_map=UpperCAmelCase__ , ) __SCREAMING_SNAKE_CASE = Accelerator() # This should not work and get value error with self.assertRaises(UpperCAmelCase__ ): __SCREAMING_SNAKE_CASE = accelerator.prepare(UpperCAmelCase__ ) PartialState._reset_state() @slow @require_bnb @require_multi_gpu def UpperCAmelCase_ ( self : Optional[Any] ) -> Optional[int]: from transformers import AutoModelForCausalLM with init_empty_weights(): __SCREAMING_SNAKE_CASE = AutoModelForCausalLM.from_pretrained( "EleutherAI/gpt-neo-125m" , ) __SCREAMING_SNAKE_CASE = infer_auto_device_map(UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = 1 __SCREAMING_SNAKE_CASE = AutoModelForCausalLM.from_pretrained( "EleutherAI/gpt-neo-125m" , load_in_abit=UpperCAmelCase__ , device_map=UpperCAmelCase__ , ) __SCREAMING_SNAKE_CASE = Accelerator() # This should work __SCREAMING_SNAKE_CASE = accelerator.prepare(UpperCAmelCase__ ) @require_cuda def UpperCAmelCase_ ( self : Union[str, Any] ) -> Optional[Any]: __SCREAMING_SNAKE_CASE = torch.nn.Linear(1_0 , 1_0 ) __SCREAMING_SNAKE_CASE = torch.optim.SGD(model.parameters() , lr=0.01 ) __SCREAMING_SNAKE_CASE = Accelerator(cpu=UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = accelerator.prepare(UpperCAmelCase__ )
195
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available a__ : List[str] = { '''configuration_biogpt''': ['''BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''BioGptConfig'''], '''tokenization_biogpt''': ['''BioGptTokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Union[str, Any] = [ '''BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''BioGptForCausalLM''', '''BioGptForTokenClassification''', '''BioGptForSequenceClassification''', '''BioGptModel''', '''BioGptPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_biogpt import BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP, BioGptConfig from .tokenization_biogpt import BioGptTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_biogpt import ( BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST, BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification, BioGptModel, BioGptPreTrainedModel, ) else: import sys a__ : Optional[int] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
195
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) _UpperCAmelCase = {"""configuration_deit""": ["""DEIT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """DeiTConfig""", """DeiTOnnxConfig"""]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase = ["""DeiTFeatureExtractor"""] _UpperCAmelCase = ["""DeiTImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase = [ """DEIT_PRETRAINED_MODEL_ARCHIVE_LIST""", """DeiTForImageClassification""", """DeiTForImageClassificationWithTeacher""", """DeiTForMaskedImageModeling""", """DeiTModel""", """DeiTPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase = [ """TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFDeiTForImageClassification""", """TFDeiTForImageClassificationWithTeacher""", """TFDeiTForMaskedImageModeling""", """TFDeiTModel""", """TFDeiTPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_deit import DEIT_PRETRAINED_CONFIG_ARCHIVE_MAP, DeiTConfig, DeiTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_deit import DeiTFeatureExtractor from .image_processing_deit import DeiTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_deit import ( DEIT_PRETRAINED_MODEL_ARCHIVE_LIST, DeiTForImageClassification, DeiTForImageClassificationWithTeacher, DeiTForMaskedImageModeling, DeiTModel, DeiTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_deit import ( TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, TFDeiTModel, TFDeiTPreTrainedModel, ) else: import sys _UpperCAmelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
140
import argparse from typing import Dict import tensorflow as tf import torch from tqdm import tqdm from transformers import BigBirdPegasusConfig, BigBirdPegasusForConditionalGeneration _UpperCAmelCase = [ # tf -> hf ("""/""", """."""), ("""layer_""", """layers."""), ("""kernel""", """weight"""), ("""beta""", """bias"""), ("""gamma""", """weight"""), ("""pegasus""", """model"""), ] _UpperCAmelCase = [ (""".output.dense""", """.fc2"""), ("""intermediate.LayerNorm""", """final_layer_norm"""), ("""intermediate.dense""", """fc1"""), ] _UpperCAmelCase = ( INIT_COMMON + [ ("""attention.self.LayerNorm""", """self_attn_layer_norm"""), ("""attention.output.dense""", """self_attn.out_proj"""), ("""attention.self""", """self_attn"""), ("""attention.encdec.LayerNorm""", """encoder_attn_layer_norm"""), ("""attention.encdec_output.dense""", """encoder_attn.out_proj"""), ("""attention.encdec""", """encoder_attn"""), ("""key""", """k_proj"""), ("""value""", """v_proj"""), ("""query""", """q_proj"""), ("""decoder.LayerNorm""", """decoder.layernorm_embedding"""), ] + END_COMMON ) _UpperCAmelCase = ( INIT_COMMON + [ ("""embeddings.word_embeddings""", """shared.weight"""), ("""embeddings.position_embeddings""", """embed_positions.weight"""), ("""attention.self.LayerNorm""", """self_attn_layer_norm"""), ("""attention.output.dense""", """self_attn.output"""), ("""attention.self""", """self_attn.self"""), ("""encoder.LayerNorm""", """encoder.layernorm_embedding"""), ] + END_COMMON ) _UpperCAmelCase = [ """encdec/key/bias""", """encdec/query/bias""", """encdec/value/bias""", """self/key/bias""", """self/query/bias""", """self/value/bias""", """encdec_output/dense/bias""", """attention/output/dense/bias""", ] def UpperCamelCase ( __lowercase : Optional[Any] ,__lowercase : Tuple ): '''simple docstring''' for tf_name, hf_name in patterns: A_ : Tuple = k.replace(__lowercase ,__lowercase ) return k def UpperCamelCase ( __lowercase : dict ,__lowercase : dict ): '''simple docstring''' A_ : int = BigBirdPegasusConfig(**__lowercase ) A_ : Any = BigBirdPegasusForConditionalGeneration(__lowercase ) A_ : Union[str, Any] = torch_model.state_dict() A_ : Any = {} # separating decoder weights A_ : Any = {k: tf_weights[k] for k in tf_weights if k.startswith('pegasus/decoder' )} A_ : str = {k: tf_weights[k] for k in tf_weights if not k.startswith('pegasus/decoder' )} for k, v in tqdm(decoder_weights.items() ,'tf -> hf conversion' ): A_ : Optional[int] = [k.endswith(__lowercase ) for ending in KEYS_TO_IGNORE] if any(__lowercase ): continue A_ : Optional[Any] = DECODER_PATTERNS A_ : Tuple = rename_state_dict_key(__lowercase ,__lowercase ) if new_k not in state_dict: raise ValueError(f'''could not find new key {new_k} in state dict. (converted from {k})''' ) if any(True if i in k else False for i in ['dense', 'query', 'key', 'value'] ): A_ : Any = v.T A_ : Any = torch.from_numpy(__lowercase ) assert v.shape == state_dict[new_k].shape, f'''{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}''' for k, v in tqdm(remaining_weights.items() ,'tf -> hf conversion' ): A_ : int = [k.endswith(__lowercase ) for ending in KEYS_TO_IGNORE] if any(__lowercase ): continue A_ : Any = REMAINING_PATTERNS A_ : List[str] = rename_state_dict_key(__lowercase ,__lowercase ) if new_k not in state_dict and k != "pegasus/embeddings/position_embeddings": raise ValueError(f'''could not find new key {new_k} in state dict. (converted from {k})''' ) if any(True if i in k else False for i in ['dense', 'query', 'key', 'value'] ): A_ : int = v.T A_ : Dict = torch.from_numpy(__lowercase ) if k != "pegasus/embeddings/position_embeddings": assert v.shape == state_dict[new_k].shape, f'''{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}''' A_ : Optional[int] = mapping['model.embed_positions.weight'] A_ : Tuple = mapping.pop('model.embed_positions.weight' ) A_ , A_ : Optional[Any] = torch_model.load_state_dict(__lowercase ,strict=__lowercase ) A_ : Optional[int] = [ k for k in missing if k not in [ 'final_logits_bias', 'model.encoder.embed_tokens.weight', 'model.decoder.embed_tokens.weight', 'lm_head.weight', ] ] assert unexpected_missing == [], f'''no matches found for the following torch keys {unexpected_missing}''' assert extra == [], f'''no matches found for the following tf keys {extra}''' return torch_model def UpperCamelCase ( __lowercase : Union[str, Any] ): '''simple docstring''' A_ : str = tf.train.list_variables(__lowercase ) A_ : Union[str, Any] = {} A_ : Optional[Any] = ['global_step'] for name, shape in tqdm(__lowercase ,desc='converting tf checkpoint to dict' ): A_ : Union[str, Any] = any(pat in name for pat in ignore_name ) if skip_key: continue A_ : Tuple = tf.train.load_variable(__lowercase ,__lowercase ) A_ : Dict = array return tf_weights def UpperCamelCase ( __lowercase : str ,__lowercase : str ,__lowercase : dict ): '''simple docstring''' A_ : Optional[Any] = get_tf_weights_as_numpy(__lowercase ) A_ : Dict = convert_bigbird_pegasus(__lowercase ,__lowercase ) torch_model.save_pretrained(__lowercase ) if __name__ == "__main__": _UpperCAmelCase = argparse.ArgumentParser() parser.add_argument("""--tf_ckpt_path""", type=str, help="""passed to tf.train.list_variables""") parser.add_argument("""--save_dir""", default=None, type=str, help="""Path to the output PyTorch model.""") _UpperCAmelCase = parser.parse_args() _UpperCAmelCase = {} convert_bigbird_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir, config_update=config_update)
140
1
"""simple docstring""" import collections import importlib.util import os import re from pathlib import Path __SCREAMING_SNAKE_CASE ="src/transformers" # Matches is_xxx_available() __SCREAMING_SNAKE_CASE =re.compile(r"is\_([a-z_]*)_available()") # Catches a one-line _import_struct = {xxx} __SCREAMING_SNAKE_CASE =re.compile(r"^_import_structure\s+=\s+\{([^\}]+)\}") # Catches a line with a key-values pattern: "bla": ["foo", "bar"] __SCREAMING_SNAKE_CASE =re.compile(r"\s+\"\S*\":\s+\[([^\]]*)\]") # Catches a line if not is_foo_available __SCREAMING_SNAKE_CASE =re.compile(r"^\s*if\s+not\s+is\_[a-z_]*\_available\(\)") # Catches a line _import_struct["bla"].append("foo") __SCREAMING_SNAKE_CASE =re.compile(r"^\s*_import_structure\[\"\S*\"\]\.append\(\"(\S*)\"\)") # Catches a line _import_struct["bla"].extend(["foo", "bar"]) or _import_struct["bla"] = ["foo", "bar"] __SCREAMING_SNAKE_CASE =re.compile(r"^\s*_import_structure\[\S*\](?:\.extend\(|\s*=\s+)\[([^\]]*)\]") # Catches a line with an object between quotes and a comma: "MyModel", __SCREAMING_SNAKE_CASE =re.compile("^\s+\"([^\"]+)\",") # Catches a line with objects between brackets only: ["foo", "bar"], __SCREAMING_SNAKE_CASE =re.compile("^\s+\[([^\]]+)\]") # Catches a line with from foo import bar, bla, boo __SCREAMING_SNAKE_CASE =re.compile(r"\s+from\s+\S*\s+import\s+([^\(\s].*)\n") # Catches a line with try: __SCREAMING_SNAKE_CASE =re.compile(r"^\s*try:") # Catches a line with else: __SCREAMING_SNAKE_CASE =re.compile(r"^\s*else:") def lowercase__( __SCREAMING_SNAKE_CASE : Optional[Any] ): if _re_test_backend.search(__SCREAMING_SNAKE_CASE ) is None: return None lowercase_ : Tuple = [b[0] for b in _re_backend.findall(__SCREAMING_SNAKE_CASE )] backends.sort() return "_and_".join(__SCREAMING_SNAKE_CASE ) def lowercase__( __SCREAMING_SNAKE_CASE : Union[str, Any] ): with open(__SCREAMING_SNAKE_CASE , 'r' , encoding='utf-8' , newline='\n' ) as f: lowercase_ : str = f.readlines() lowercase_ : Any = 0 while line_index < len(__SCREAMING_SNAKE_CASE ) and not lines[line_index].startswith('_import_structure = {' ): line_index += 1 # If this is a traditional init, just return. if line_index >= len(__SCREAMING_SNAKE_CASE ): return None # First grab the objects without a specific backend in _import_structure lowercase_ : Optional[Any] = [] while not lines[line_index].startswith('if TYPE_CHECKING' ) and find_backend(lines[line_index] ) is None: lowercase_ : Union[str, Any] = lines[line_index] # If we have everything on a single line, let's deal with it. if _re_one_line_import_struct.search(__SCREAMING_SNAKE_CASE ): lowercase_ : Optional[int] = _re_one_line_import_struct.search(__SCREAMING_SNAKE_CASE ).groups()[0] lowercase_ : List[Any] = re.findall('\[([^\]]+)\]' , __SCREAMING_SNAKE_CASE ) for imp in imports: objects.extend([obj[1:-1] for obj in imp.split(', ' )] ) line_index += 1 continue lowercase_ : Optional[Any] = _re_import_struct_key_value.search(__SCREAMING_SNAKE_CASE ) if single_line_import_search is not None: lowercase_ : Tuple = [obj[1:-1] for obj in single_line_import_search.groups()[0].split(', ' ) if len(__SCREAMING_SNAKE_CASE ) > 0] objects.extend(__SCREAMING_SNAKE_CASE ) elif line.startswith(' ' * 8 + '"' ): objects.append(line[9:-3] ) line_index += 1 lowercase_ : int = {'none': objects} # Let's continue with backend-specific objects in _import_structure while not lines[line_index].startswith('if TYPE_CHECKING' ): # If the line is an if not is_backend_available, we grab all objects associated. lowercase_ : Dict = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: lowercase_ : Tuple = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 lowercase_ : Any = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(' ' * 4 ): lowercase_ : str = lines[line_index] if _re_import_struct_add_one.search(__SCREAMING_SNAKE_CASE ) is not None: objects.append(_re_import_struct_add_one.search(__SCREAMING_SNAKE_CASE ).groups()[0] ) elif _re_import_struct_add_many.search(__SCREAMING_SNAKE_CASE ) is not None: lowercase_ : Dict = _re_import_struct_add_many.search(__SCREAMING_SNAKE_CASE ).groups()[0].split(', ' ) lowercase_ : Tuple = [obj[1:-1] for obj in imports if len(__SCREAMING_SNAKE_CASE ) > 0] objects.extend(__SCREAMING_SNAKE_CASE ) elif _re_between_brackets.search(__SCREAMING_SNAKE_CASE ) is not None: lowercase_ : Dict = _re_between_brackets.search(__SCREAMING_SNAKE_CASE ).groups()[0].split(', ' ) lowercase_ : Optional[int] = [obj[1:-1] for obj in imports if len(__SCREAMING_SNAKE_CASE ) > 0] objects.extend(__SCREAMING_SNAKE_CASE ) elif _re_quote_object.search(__SCREAMING_SNAKE_CASE ) is not None: objects.append(_re_quote_object.search(__SCREAMING_SNAKE_CASE ).groups()[0] ) elif line.startswith(' ' * 8 + '"' ): objects.append(line[9:-3] ) elif line.startswith(' ' * 12 + '"' ): objects.append(line[13:-3] ) line_index += 1 lowercase_ : List[Any] = objects else: line_index += 1 # At this stage we are in the TYPE_CHECKING part, first grab the objects without a specific backend lowercase_ : int = [] while ( line_index < len(__SCREAMING_SNAKE_CASE ) and find_backend(lines[line_index] ) is None and not lines[line_index].startswith('else' ) ): lowercase_ : List[Any] = lines[line_index] lowercase_ : List[str] = _re_import.search(__SCREAMING_SNAKE_CASE ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(', ' ) ) elif line.startswith(' ' * 8 ): objects.append(line[8:-2] ) line_index += 1 lowercase_ : Dict = {'none': objects} # Let's continue with backend-specific objects while line_index < len(__SCREAMING_SNAKE_CASE ): # If the line is an if is_backend_available, we grab all objects associated. lowercase_ : Optional[Any] = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: lowercase_ : Dict = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 lowercase_ : int = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(' ' * 8 ): lowercase_ : str = lines[line_index] lowercase_ : Dict = _re_import.search(__SCREAMING_SNAKE_CASE ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(', ' ) ) elif line.startswith(' ' * 12 ): objects.append(line[12:-2] ) line_index += 1 lowercase_ : List[Any] = objects else: line_index += 1 return import_dict_objects, type_hint_objects def lowercase__( __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Any ): def find_duplicates(__SCREAMING_SNAKE_CASE : Union[str, Any] ): return [k for k, v in collections.Counter(__SCREAMING_SNAKE_CASE ).items() if v > 1] if list(import_dict_objects.keys() ) != list(type_hint_objects.keys() ): return ["Both sides of the init do not have the same backends!"] lowercase_ : int = [] for key in import_dict_objects.keys(): lowercase_ : int = find_duplicates(import_dict_objects[key] ) if duplicate_imports: errors.append(F'''Duplicate _import_structure definitions for: {duplicate_imports}''' ) lowercase_ : List[str] = find_duplicates(type_hint_objects[key] ) if duplicate_type_hints: errors.append(F'''Duplicate TYPE_CHECKING objects for: {duplicate_type_hints}''' ) if sorted(set(import_dict_objects[key] ) ) != sorted(set(type_hint_objects[key] ) ): lowercase_ : Any = 'base imports' if key == 'none' else F'''{key} backend''' errors.append(F'''Differences for {name}:''' ) for a in type_hint_objects[key]: if a not in import_dict_objects[key]: errors.append(F''' {a} in TYPE_HINT but not in _import_structure.''' ) for a in import_dict_objects[key]: if a not in type_hint_objects[key]: errors.append(F''' {a} in _import_structure but not in TYPE_HINT.''' ) return errors def lowercase__( ): lowercase_ : Union[str, Any] = [] for root, _, files in os.walk(__SCREAMING_SNAKE_CASE ): if "__init__.py" in files: lowercase_ : Union[str, Any] = os.path.join(__SCREAMING_SNAKE_CASE , '__init__.py' ) lowercase_ : Optional[int] = parse_init(__SCREAMING_SNAKE_CASE ) if objects is not None: lowercase_ : Optional[Any] = analyze_results(*__SCREAMING_SNAKE_CASE ) if len(__SCREAMING_SNAKE_CASE ) > 0: lowercase_ : Dict = F'''Problem in {fname}, both halves do not define the same objects.\n{errors[0]}''' failures.append('\n'.join(__SCREAMING_SNAKE_CASE ) ) if len(__SCREAMING_SNAKE_CASE ) > 0: raise ValueError('\n\n'.join(__SCREAMING_SNAKE_CASE ) ) def lowercase__( ): lowercase_ : Any = [] for path, directories, files in os.walk(__SCREAMING_SNAKE_CASE ): for folder in directories: # Ignore private modules if folder.startswith('_' ): directories.remove(__SCREAMING_SNAKE_CASE ) continue # Ignore leftovers from branches (empty folders apart from pycache) if len(list((Path(__SCREAMING_SNAKE_CASE ) / folder).glob('*.py' ) ) ) == 0: continue lowercase_ : Dict = str((Path(__SCREAMING_SNAKE_CASE ) / folder).relative_to(__SCREAMING_SNAKE_CASE ) ) lowercase_ : Optional[int] = short_path.replace(os.path.sep , '.' ) submodules.append(__SCREAMING_SNAKE_CASE ) for fname in files: if fname == "__init__.py": continue lowercase_ : Dict = str((Path(__SCREAMING_SNAKE_CASE ) / fname).relative_to(__SCREAMING_SNAKE_CASE ) ) lowercase_ : Tuple = short_path.replace('.py' , '' ).replace(os.path.sep , '.' ) if len(submodule.split('.' ) ) == 1: submodules.append(__SCREAMING_SNAKE_CASE ) return submodules __SCREAMING_SNAKE_CASE =[ "convert_pytorch_checkpoint_to_tf2", "modeling_flax_pytorch_utils", ] def lowercase__( ): # This is to make sure the transformers module imported is the one in the repo. lowercase_ : List[str] = importlib.util.spec_from_file_location( 'transformers' , os.path.join(__SCREAMING_SNAKE_CASE , '__init__.py' ) , submodule_search_locations=[PATH_TO_TRANSFORMERS] , ) lowercase_ : List[str] = spec.loader.load_module() lowercase_ : str = [ module for module in get_transformers_submodules() if module not in IGNORE_SUBMODULES and module not in transformers._import_structure.keys() ] if len(__SCREAMING_SNAKE_CASE ) > 0: lowercase_ : Any = '\n'.join(F'''- {module}''' for module in module_not_registered ) raise ValueError( 'The following submodules are not properly registered in the main init of Transformers:\n' F'''{list_of_modules}\n''' 'Make sure they appear somewhere in the keys of `_import_structure` with an empty list as value.' ) if __name__ == "__main__": check_all_inits() check_submodules()
321
"""simple docstring""" import os import sys import unittest __SCREAMING_SNAKE_CASE =os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, "utils")) import get_test_info # noqa: E402 from get_test_info import ( # noqa: E402 get_model_to_test_mapping, get_model_to_tester_mapping, get_test_to_tester_mapping, ) __SCREAMING_SNAKE_CASE =os.path.join("tests", "models", "bert", "test_modeling_bert.py") __SCREAMING_SNAKE_CASE =os.path.join("tests", "models", "blip", "test_modeling_blip.py") class UpperCamelCase ( unittest.TestCase ): def _UpperCAmelCase ( self ) -> List[str]: '''simple docstring''' lowercase_ : Tuple = get_test_to_tester_mapping(__UpperCamelCase ) lowercase_ : Optional[int] = get_test_to_tester_mapping(__UpperCamelCase ) lowercase_ : List[str] = {'BertModelTest': 'BertModelTester'} lowercase_ : Union[str, Any] = { 'BlipModelTest': 'BlipModelTester', 'BlipTextImageModelTest': 'BlipTextImageModelsModelTester', 'BlipTextModelTest': 'BlipTextModelTester', 'BlipTextRetrievalModelTest': 'BlipTextRetrievalModelTester', 'BlipVQAModelTest': 'BlipVQAModelTester', 'BlipVisionModelTest': 'BlipVisionModelTester', } self.assertEqual(get_test_info.to_json(__UpperCamelCase ) ,__UpperCamelCase ) self.assertEqual(get_test_info.to_json(__UpperCamelCase ) ,__UpperCamelCase ) def _UpperCAmelCase ( self ) -> List[Any]: '''simple docstring''' lowercase_ : Optional[Any] = get_model_to_test_mapping(__UpperCamelCase ) lowercase_ : List[str] = get_model_to_test_mapping(__UpperCamelCase ) lowercase_ : Any = { 'BertForMaskedLM': ['BertModelTest'], 'BertForMultipleChoice': ['BertModelTest'], 'BertForNextSentencePrediction': ['BertModelTest'], 'BertForPreTraining': ['BertModelTest'], 'BertForQuestionAnswering': ['BertModelTest'], 'BertForSequenceClassification': ['BertModelTest'], 'BertForTokenClassification': ['BertModelTest'], 'BertLMHeadModel': ['BertModelTest'], 'BertModel': ['BertModelTest'], } lowercase_ : Any = { 'BlipForConditionalGeneration': ['BlipTextImageModelTest'], 'BlipForImageTextRetrieval': ['BlipTextRetrievalModelTest'], 'BlipForQuestionAnswering': ['BlipVQAModelTest'], 'BlipModel': ['BlipModelTest'], 'BlipTextModel': ['BlipTextModelTest'], 'BlipVisionModel': ['BlipVisionModelTest'], } self.assertEqual(get_test_info.to_json(__UpperCamelCase ) ,__UpperCamelCase ) self.assertEqual(get_test_info.to_json(__UpperCamelCase ) ,__UpperCamelCase ) def _UpperCAmelCase ( self ) -> Any: '''simple docstring''' lowercase_ : List[str] = get_model_to_tester_mapping(__UpperCamelCase ) lowercase_ : Dict = get_model_to_tester_mapping(__UpperCamelCase ) lowercase_ : Tuple = { 'BertForMaskedLM': ['BertModelTester'], 'BertForMultipleChoice': ['BertModelTester'], 'BertForNextSentencePrediction': ['BertModelTester'], 'BertForPreTraining': ['BertModelTester'], 'BertForQuestionAnswering': ['BertModelTester'], 'BertForSequenceClassification': ['BertModelTester'], 'BertForTokenClassification': ['BertModelTester'], 'BertLMHeadModel': ['BertModelTester'], 'BertModel': ['BertModelTester'], } lowercase_ : Optional[Any] = { 'BlipForConditionalGeneration': ['BlipTextImageModelsModelTester'], 'BlipForImageTextRetrieval': ['BlipTextRetrievalModelTester'], 'BlipForQuestionAnswering': ['BlipVQAModelTester'], 'BlipModel': ['BlipModelTester'], 'BlipTextModel': ['BlipTextModelTester'], 'BlipVisionModel': ['BlipVisionModelTester'], } self.assertEqual(get_test_info.to_json(__UpperCamelCase ) ,__UpperCamelCase ) self.assertEqual(get_test_info.to_json(__UpperCamelCase ) ,__UpperCamelCase )
321
1
"""simple docstring""" import pytest from datasets.parallel import ParallelBackendConfig, parallel_backend from datasets.utils.py_utils import map_nested from .utils import require_dill_gt_0_3_2, require_joblibspark, require_not_windows def _snake_case ( lowercase__ ): # picklable for multiprocessing return i + 1 @require_dill_gt_0_3_2 @require_joblibspark @require_not_windows def _snake_case ( ): with parallel_backend('spark' ): assert ParallelBackendConfig.backend_name == "spark" _lowerCamelCase : List[str] = [1, 2, 3] with pytest.raises(lowercase__ ): with parallel_backend('unsupported backend' ): map_nested(lowercase__ , lowercase__ , num_proc=2 ) with pytest.raises(lowercase__ ): with parallel_backend('unsupported backend' ): map_nested(lowercase__ , lowercase__ , num_proc=-1 ) @require_dill_gt_0_3_2 @require_joblibspark @require_not_windows @pytest.mark.parametrize('num_proc' , [2, -1] ) def _snake_case ( lowercase__ ): _lowerCamelCase : Optional[Any] = [1, 2] _lowerCamelCase : Any = {'a': 1, 'b': 2} _lowerCamelCase : int = {'a': [1, 2], 'b': [3, 4]} _lowerCamelCase : List[Any] = {'a': {'1': 1}, 'b': 2} _lowerCamelCase : List[Any] = {'a': 1, 'b': 2, 'c': 3, 'd': 4} _lowerCamelCase : Any = [2, 3] _lowerCamelCase : str = {'a': 2, 'b': 3} _lowerCamelCase : Dict = {'a': [2, 3], 'b': [4, 5]} _lowerCamelCase : List[str] = {'a': {'1': 2}, 'b': 3} _lowerCamelCase : Optional[Any] = {'a': 2, 'b': 3, 'c': 4, 'd': 5} with parallel_backend('spark' ): assert map_nested(lowercase__ , lowercase__ , num_proc=lowercase__ ) == expected_map_nested_sa assert map_nested(lowercase__ , lowercase__ , num_proc=lowercase__ ) == expected_map_nested_sa assert map_nested(lowercase__ , lowercase__ , num_proc=lowercase__ ) == expected_map_nested_sa assert map_nested(lowercase__ , lowercase__ , num_proc=lowercase__ ) == expected_map_nested_sa assert map_nested(lowercase__ , lowercase__ , num_proc=lowercase__ ) == expected_map_nested_sa
96
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowercase__ = {"""configuration_ibert""": ["""IBERT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """IBertConfig""", """IBertOnnxConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ = [ """IBERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """IBertForMaskedLM""", """IBertForMultipleChoice""", """IBertForQuestionAnswering""", """IBertForSequenceClassification""", """IBertForTokenClassification""", """IBertModel""", """IBertPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_ibert import IBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, IBertConfig, IBertOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_ibert import ( IBERT_PRETRAINED_MODEL_ARCHIVE_LIST, IBertForMaskedLM, IBertForMultipleChoice, IBertForQuestionAnswering, IBertForSequenceClassification, IBertForTokenClassification, IBertModel, IBertPreTrainedModel, ) else: import sys lowercase__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
96
1
__a :str = { 'A': '.-', 'B': '-...', 'C': '-.-.', 'D': '-..', 'E': '.', 'F': '..-.', 'G': '--.', 'H': '....', 'I': '..', 'J': '.---', 'K': '-.-', 'L': '.-..', 'M': '--', 'N': '-.', 'O': '---', 'P': '.--.', 'Q': '--.-', 'R': '.-.', 'S': '...', 'T': '-', 'U': '..-', 'V': '...-', 'W': '.--', 'X': '-..-', 'Y': '-.--', 'Z': '--..', '1': '.----', '2': '..---', '3': '...--', '4': '....-', '5': '.....', '6': '-....', '7': '--...', '8': '---..', '9': '----.', '0': '-----', '&': '.-...', '@': '.--.-.', ':': '---...', ',': '--..--', '.': '.-.-.-', '\'': '.----.', '"': '.-..-.', '?': '..--..', '/': '-..-.', '=': '-...-', '+': '.-.-.', '-': '-....-', '(': '-.--.', ')': '-.--.-', '!': '-.-.--', ' ': '/' } # Exclamation mark is not in ITU-R recommendation # fmt: on __a :Dict = {value: key for key, value in MORSE_CODE_DICT.items()} def __snake_case ( __UpperCamelCase : str ): """simple docstring""" return " ".join(MORSE_CODE_DICT[char] for char in message.upper() ) def __snake_case ( __UpperCamelCase : str ): """simple docstring""" return "".join(REVERSE_DICT[char] for char in message.split() ) def __snake_case ( ): """simple docstring""" A_ = "Morse code here!" print(__UpperCamelCase ) A_ = encrypt(__UpperCamelCase ) print(__UpperCamelCase ) A_ = decrypt(__UpperCamelCase ) print(__UpperCamelCase ) if __name__ == "__main__": main()
329
import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import PoolFormerConfig, PoolFormerForImageClassification, PoolFormerImageProcessor from transformers.utils import logging logging.set_verbosity_info() __a :Optional[Any] = logging.get_logger(__name__) def __snake_case ( __UpperCamelCase : List[str] ,__UpperCamelCase : Any ,__UpperCamelCase : List[str] ,__UpperCamelCase : Optional[Any] ): """simple docstring""" A_ = original_name.split("." )[0] A_ = key.split("." ) A_ = int(key_list[key_list.index(__UpperCamelCase ) - 2] ) A_ = int(key_list[key_list.index(__UpperCamelCase ) - 1] ) A_ = orig_block_num - offset A_ = key.replace(f'''{orig_block_num}.{layer_num}.{original_name}''' ,f'''block.{new_block_num}.{layer_num}.{new_name}''' ) return key def __snake_case ( __UpperCamelCase : Any ): """simple docstring""" A_ = OrderedDict() A_ , A_ = 0, 0 for key, value in state_dict.items(): if key.startswith("network" ): A_ = key.replace("network" ,"poolformer.encoder" ) if "proj" in key: # Works for the first embedding as well as the internal embedding layers if key.endswith("bias" ) and "patch_embed" not in key: patch_emb_offset += 1 A_ = key[: key.find("proj" )] A_ = key.replace(__UpperCamelCase ,f'''patch_embeddings.{total_embed_found}.''' ) A_ = key.replace("proj" ,"projection" ) if key.endswith("bias" ): total_embed_found += 1 if "patch_embeddings" in key: A_ = "poolformer.encoder." + key if "mlp.fc1" in key: A_ = replace_key_with_offset(__UpperCamelCase ,__UpperCamelCase ,"mlp.fc1" ,"output.conv1" ) if "mlp.fc2" in key: A_ = replace_key_with_offset(__UpperCamelCase ,__UpperCamelCase ,"mlp.fc2" ,"output.conv2" ) if "norm1" in key: A_ = replace_key_with_offset(__UpperCamelCase ,__UpperCamelCase ,"norm1" ,"before_norm" ) if "norm2" in key: A_ = replace_key_with_offset(__UpperCamelCase ,__UpperCamelCase ,"norm2" ,"after_norm" ) if "layer_scale_1" in key: A_ = replace_key_with_offset(__UpperCamelCase ,__UpperCamelCase ,"layer_scale_1" ,"layer_scale_1" ) if "layer_scale_2" in key: A_ = replace_key_with_offset(__UpperCamelCase ,__UpperCamelCase ,"layer_scale_2" ,"layer_scale_2" ) if "head" in key: A_ = key.replace("head" ,"classifier" ) A_ = value return new_state_dict def __snake_case ( ): """simple docstring""" A_ = "http://images.cocodataset.org/val2017/000000039769.jpg" A_ = Image.open(requests.get(__UpperCamelCase ,stream=__UpperCamelCase ).raw ) return image @torch.no_grad() def __snake_case ( __UpperCamelCase : Union[str, Any] ,__UpperCamelCase : List[str] ,__UpperCamelCase : List[Any] ): """simple docstring""" A_ = PoolFormerConfig() # set attributes based on model_name A_ = "huggingface/label-files" A_ = model_name[-3:] A_ = 1000 A_ = "imagenet-1k-id2label.json" A_ = (1, 1000) # set config attributes A_ = json.load(open(hf_hub_download(__UpperCamelCase ,__UpperCamelCase ,repo_type="dataset" ) ,"r" ) ) A_ = {int(__UpperCamelCase ): v for k, v in idalabel.items()} A_ = idalabel A_ = {v: k for k, v in idalabel.items()} if size == "s12": A_ = [2, 2, 6, 2] A_ = [64, 128, 320, 512] A_ = 4.0 A_ = 0.9 elif size == "s24": A_ = [4, 4, 12, 4] A_ = [64, 128, 320, 512] A_ = 4.0 A_ = 0.9 elif size == "s36": A_ = [6, 6, 18, 6] A_ = [64, 128, 320, 512] A_ = 4.0 A_ = 1E-6 A_ = 0.9 elif size == "m36": A_ = [6, 6, 18, 6] A_ = [96, 192, 384, 768] A_ = 4.0 A_ = 1E-6 A_ = 0.95 elif size == "m48": A_ = [8, 8, 24, 8] A_ = [96, 192, 384, 768] A_ = 4.0 A_ = 1E-6 A_ = 0.95 else: raise ValueError(f'''Size {size} not supported''' ) # load image processor A_ = PoolFormerImageProcessor(crop_pct=__UpperCamelCase ) # Prepare image A_ = prepare_img() A_ = image_processor(images=__UpperCamelCase ,return_tensors="pt" ).pixel_values logger.info(f'''Converting model {model_name}...''' ) # load original state dict A_ = torch.load(__UpperCamelCase ,map_location=torch.device("cpu" ) ) # rename keys A_ = rename_keys(__UpperCamelCase ) # create HuggingFace model and load state dict A_ = PoolFormerForImageClassification(__UpperCamelCase ) model.load_state_dict(__UpperCamelCase ) model.eval() # Define image processor A_ = PoolFormerImageProcessor(crop_pct=__UpperCamelCase ) A_ = image_processor(images=prepare_img() ,return_tensors="pt" ).pixel_values # forward pass A_ = model(__UpperCamelCase ) A_ = outputs.logits # define expected logit slices for different models if size == "s12": A_ = torch.tensor([-0.3045, -0.6758, -0.4869] ) elif size == "s24": A_ = torch.tensor([0.4402, -0.1374, -0.8045] ) elif size == "s36": A_ = torch.tensor([-0.6080, -0.5133, -0.5898] ) elif size == "m36": A_ = torch.tensor([0.3952, 0.2263, -1.2668] ) elif size == "m48": A_ = torch.tensor([0.1167, -0.0656, -0.3423] ) else: raise ValueError(f'''Size {size} not supported''' ) # verify logits assert logits.shape == expected_shape assert torch.allclose(logits[0, :3] ,__UpperCamelCase ,atol=1E-2 ) # finally, save model and image processor logger.info(f'''Saving PyTorch model and image processor to {pytorch_dump_folder_path}...''' ) Path(__UpperCamelCase ).mkdir(exist_ok=__UpperCamelCase ) model.save_pretrained(__UpperCamelCase ) print(f'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(__UpperCamelCase ) if __name__ == "__main__": __a :Union[str, Any] = argparse.ArgumentParser() parser.add_argument( '--model_name', default='poolformer_s12', type=str, help='Name of the model you\'d like to convert.', ) parser.add_argument( '--checkpoint_path', default=None, type=str, help='Path to the original PyTorch checkpoint (.pth file).' ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the folder to output PyTorch model.' ) __a :int = parser.parse_args() convert_poolformer_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path)
329
1
"""simple docstring""" import logging from transformers import PretrainedConfig a : Tuple = logging.getLogger(__name__) a : Dict = { '''bertabs-finetuned-cnndm''': '''https://huggingface.co/remi/bertabs-finetuned-cnndm-extractive-abstractive-summarization/resolve/main/config.json''', } class __UpperCamelCase ( a__ ): lowerCamelCase : Optional[Any] ="""bertabs""" def __init__( self , lowerCAmelCase__=3_0522 , lowerCAmelCase__=512 , lowerCAmelCase__=6 , lowerCAmelCase__=512 , lowerCAmelCase__=8 , lowerCAmelCase__=512 , lowerCAmelCase__=0.2 , lowerCAmelCase__=6 , lowerCAmelCase__=768 , lowerCAmelCase__=8 , lowerCAmelCase__=2048 , lowerCAmelCase__=0.2 , **lowerCAmelCase__ , ) -> int: super().__init__(**lowerCAmelCase__ ) a : Dict = vocab_size a : str = max_pos a : str = enc_layers a : int = enc_hidden_size a : Tuple = enc_heads a : Dict = enc_ff_size a : List[Any] = enc_dropout a : str = dec_layers a : Dict = dec_hidden_size a : Union[str, Any] = dec_heads a : Union[str, Any] = dec_ff_size a : List[Any] = dec_dropout
105
"""simple docstring""" import os def __UpperCAmelCase ( ) -> int: with open(os.path.dirname(__lowerCamelCase ) + '''/p022_names.txt''' ) as file: lowercase__ : List[Any] = str(file.readlines()[0] ) lowercase__ : Dict = names.replace('''"''' , '''''' ).split(''',''' ) names.sort() lowercase__ : int = 0 lowercase__ : Optional[Any] = 0 for i, name in enumerate(__lowerCamelCase ): for letter in name: name_score += ord(__lowerCamelCase ) - 64 total_score += (i + 1) * name_score lowercase__ : List[str] = 0 return total_score if __name__ == "__main__": print(solution())
16
0
"""simple docstring""" import unittest from parameterized import parameterized from transformers import AutoTokenizer, GPTNeoXConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( GPTNeoXForCausalLM, GPTNeoXForQuestionAnswering, GPTNeoXForSequenceClassification, GPTNeoXForTokenClassification, GPTNeoXModel, ) class lowerCamelCase : '''simple docstring''' def __init__(self , _lowerCamelCase , _lowerCamelCase=13 , _lowerCamelCase=7 , _lowerCamelCase=True , _lowerCamelCase=True , _lowerCamelCase=True , _lowerCamelCase=True , _lowerCamelCase=99 , _lowerCamelCase=64 , _lowerCamelCase=5 , _lowerCamelCase=4 , _lowerCamelCase=37 , _lowerCamelCase="gelu" , _lowerCamelCase=0.1 , _lowerCamelCase=0.1 , _lowerCamelCase=512 , _lowerCamelCase=16 , _lowerCamelCase=2 , _lowerCamelCase=0.02 , _lowerCamelCase=3 , _lowerCamelCase=4 , _lowerCamelCase=None , ): """simple docstring""" UpperCAmelCase__ : Optional[Any] = parent UpperCAmelCase__ : int = batch_size UpperCAmelCase__ : Union[str, Any] = seq_length UpperCAmelCase__ : Optional[int] = is_training UpperCAmelCase__ : Optional[int] = use_input_mask UpperCAmelCase__ : int = use_token_type_ids UpperCAmelCase__ : Dict = use_labels UpperCAmelCase__ : Dict = vocab_size UpperCAmelCase__ : Optional[int] = hidden_size UpperCAmelCase__ : Union[str, Any] = num_hidden_layers UpperCAmelCase__ : Optional[int] = num_attention_heads UpperCAmelCase__ : str = intermediate_size UpperCAmelCase__ : int = hidden_act UpperCAmelCase__ : List[Any] = hidden_dropout_prob UpperCAmelCase__ : Union[str, Any] = attention_probs_dropout_prob UpperCAmelCase__ : Tuple = max_position_embeddings UpperCAmelCase__ : List[str] = type_vocab_size UpperCAmelCase__ : Dict = type_sequence_label_size UpperCAmelCase__ : int = initializer_range UpperCAmelCase__ : Tuple = num_labels UpperCAmelCase__ : List[str] = num_choices UpperCAmelCase__ : Union[str, Any] = scope UpperCAmelCase__ : List[Any] = vocab_size - 1 def _a (self ): """simple docstring""" UpperCAmelCase__ : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase__ : Dict = None if self.use_input_mask: UpperCAmelCase__ : str = random_attention_mask([self.batch_size, self.seq_length] ) UpperCAmelCase__ : Optional[Any] = None if self.use_labels: UpperCAmelCase__ : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCAmelCase__ : Optional[Any] = self.get_config() return config, input_ids, input_mask, token_labels def _a (self ): """simple docstring""" return GPTNeoXConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_lowerCamelCase , initializer_range=self.initializer_range , pad_token_id=self.pad_token_id , ) def _a (self ): """simple docstring""" UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : List[Any] = self.prepare_config_and_inputs() UpperCAmelCase__ : str = True return config, input_ids, input_mask, token_labels def _a (self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): """simple docstring""" UpperCAmelCase__ : List[str] = GPTNeoXModel(config=_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() UpperCAmelCase__ : Optional[int] = model(_lowerCamelCase , attention_mask=_lowerCamelCase ) UpperCAmelCase__ : Optional[Any] = model(_lowerCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _a (self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): """simple docstring""" UpperCAmelCase__ : str = True UpperCAmelCase__ : Union[str, Any] = GPTNeoXModel(_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() UpperCAmelCase__ : Tuple = model(_lowerCamelCase , attention_mask=_lowerCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _a (self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): """simple docstring""" UpperCAmelCase__ : Any = GPTNeoXForCausalLM(config=_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() UpperCAmelCase__ : Union[str, Any] = model(_lowerCamelCase , attention_mask=_lowerCamelCase , labels=_lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _a (self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): """simple docstring""" UpperCAmelCase__ : List[str] = self.num_labels UpperCAmelCase__ : Any = GPTNeoXForQuestionAnswering(_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() UpperCAmelCase__ : Any = model(_lowerCamelCase , attention_mask=_lowerCamelCase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _a (self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): """simple docstring""" UpperCAmelCase__ : Optional[Any] = self.num_labels UpperCAmelCase__ : Dict = GPTNeoXForSequenceClassification(_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() UpperCAmelCase__ : List[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase__ : str = model(_lowerCamelCase , attention_mask=_lowerCamelCase , labels=_lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _a (self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): """simple docstring""" UpperCAmelCase__ : Any = self.num_labels UpperCAmelCase__ : Dict = GPTNeoXForTokenClassification(_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() UpperCAmelCase__ : str = model(_lowerCamelCase , attention_mask=_lowerCamelCase , labels=_lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _a (self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): """simple docstring""" UpperCAmelCase__ : Union[str, Any] = True UpperCAmelCase__ : str = GPTNeoXForCausalLM(config=_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() # first forward pass UpperCAmelCase__ : List[Any] = model(_lowerCamelCase , attention_mask=_lowerCamelCase , use_cache=_lowerCamelCase ) UpperCAmelCase__ : List[Any] = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids UpperCAmelCase__ : str = ids_tensor((self.batch_size, 3) , config.vocab_size ) UpperCAmelCase__ : List[Any] = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and UpperCAmelCase__ : Optional[Any] = torch.cat([input_ids, next_tokens] , dim=-1 ) UpperCAmelCase__ : Union[str, Any] = torch.cat([input_mask, next_mask] , dim=-1 ) UpperCAmelCase__ : List[Any] = model(_lowerCamelCase , attention_mask=_lowerCamelCase , output_hidden_states=_lowerCamelCase ) UpperCAmelCase__ : int = output_from_no_past["""hidden_states"""][0] UpperCAmelCase__ : Union[str, Any] = model( _lowerCamelCase , attention_mask=_lowerCamelCase , past_key_values=_lowerCamelCase , output_hidden_states=_lowerCamelCase , )["""hidden_states"""][0] # select random slice UpperCAmelCase__ : Optional[Any] = ids_tensor((1,) , output_from_past.shape[-1] ).item() UpperCAmelCase__ : List[str] = output_from_no_past[:, -3:, random_slice_idx].detach() UpperCAmelCase__ : str = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(_lowerCamelCase , _lowerCamelCase , atol=1e-3 ) ) def _a (self ): """simple docstring""" UpperCAmelCase__ : Dict = self.prepare_config_and_inputs() UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : Optional[int] = config_and_inputs UpperCAmelCase__ : List[str] = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class lowerCamelCase ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE = ( ( GPTNeoXModel, GPTNeoXForCausalLM, GPTNeoXForQuestionAnswering, GPTNeoXForSequenceClassification, GPTNeoXForTokenClassification, ) if is_torch_available() else () ) SCREAMING_SNAKE_CASE = (GPTNeoXForCausalLM,) if is_torch_available() else () SCREAMING_SNAKE_CASE = ( { 'feature-extraction': GPTNeoXModel, 'question-answering': GPTNeoXForQuestionAnswering, 'text-classification': GPTNeoXForSequenceClassification, 'text-generation': GPTNeoXForCausalLM, 'token-classification': GPTNeoXForTokenClassification, 'zero-shot': GPTNeoXForSequenceClassification, } if is_torch_available() else {} ) SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = False def _a (self ): """simple docstring""" UpperCAmelCase__ : Any = GPTNeoXModelTester(self ) UpperCAmelCase__ : int = ConfigTester(self , config_class=_lowerCamelCase , hidden_size=64 , num_attention_heads=8 ) def _a (self ): """simple docstring""" self.config_tester.run_common_tests() def _a (self ): """simple docstring""" UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) def _a (self ): """simple docstring""" UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) def _a (self ): """simple docstring""" UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : List[str] = self.model_tester.prepare_config_and_inputs_for_decoder() UpperCAmelCase__ : Optional[Any] = None self.model_tester.create_and_check_model_as_decoder(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) def _a (self ): """simple docstring""" UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past_large_inputs(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) def _a (self ): """simple docstring""" UpperCAmelCase__ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_causal_lm(*_lowerCamelCase ) def _a (self ): """simple docstring""" UpperCAmelCase__ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*_lowerCamelCase ) def _a (self ): """simple docstring""" UpperCAmelCase__ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*_lowerCamelCase ) def _a (self ): """simple docstring""" UpperCAmelCase__ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*_lowerCamelCase ) @unittest.skip(reason="""Feed forward chunking is not implemented""" ) def _a (self ): """simple docstring""" pass @parameterized.expand([("""linear""",), ("""dynamic""",)] ) def _a (self , _lowerCamelCase ): """simple docstring""" UpperCAmelCase__ , UpperCAmelCase__ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase__ : Optional[int] = ids_tensor([1, 10] , config.vocab_size ) UpperCAmelCase__ : int = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size ) set_seed(42 ) # Fixed seed at init time so the two models get the same random weights UpperCAmelCase__ : Tuple = GPTNeoXModel(_lowerCamelCase ) original_model.to(_lowerCamelCase ) original_model.eval() UpperCAmelCase__ : Optional[int] = original_model(_lowerCamelCase ).last_hidden_state UpperCAmelCase__ : Optional[Any] = original_model(_lowerCamelCase ).last_hidden_state set_seed(42 ) # Fixed seed at init time so the two models get the same random weights UpperCAmelCase__ : str = {"""type""": scaling_type, """factor""": 10.0} UpperCAmelCase__ : Tuple = GPTNeoXModel(_lowerCamelCase ) scaled_model.to(_lowerCamelCase ) scaled_model.eval() UpperCAmelCase__ : Dict = scaled_model(_lowerCamelCase ).last_hidden_state UpperCAmelCase__ : Optional[int] = scaled_model(_lowerCamelCase ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(_lowerCamelCase , _lowerCamelCase , atol=1e-5 ) ) else: self.assertFalse(torch.allclose(_lowerCamelCase , _lowerCamelCase , atol=1e-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(_lowerCamelCase , _lowerCamelCase , atol=1e-5 ) ) @require_torch class lowerCamelCase ( unittest.TestCase ): '''simple docstring''' @slow def _a (self ): """simple docstring""" UpperCAmelCase__ : Union[str, Any] = AutoTokenizer.from_pretrained("""EleutherAI/pythia-410m-deduped""" ) for checkpointing in [True, False]: UpperCAmelCase__ : Any = GPTNeoXForCausalLM.from_pretrained("""EleutherAI/pythia-410m-deduped""" ) if checkpointing: model.gradient_checkpointing_enable() else: model.gradient_checkpointing_disable() model.to(_lowerCamelCase ) UpperCAmelCase__ : Any = tokenizer("""My favorite food is""" , return_tensors="""pt""" ).to(_lowerCamelCase ) # The hub repo. is updated on 2023-04-04, resulting in poor outputs. # See: https://github.com/huggingface/transformers/pull/24193 UpperCAmelCase__ : Union[str, Any] = """My favorite food is a good old-fashioned, old-fashioned, old-fashioned.\n\nI'm not sure""" UpperCAmelCase__ : List[Any] = model.generate(**_lowerCamelCase , do_sample=_lowerCamelCase , max_new_tokens=20 ) UpperCAmelCase__ : Tuple = tokenizer.batch_decode(_lowerCamelCase )[0] self.assertEqual(_lowerCamelCase , _lowerCamelCase )
166
"""simple docstring""" from math import factorial, radians def a__ ( lowerCAmelCase , lowerCAmelCase = 18 , lowerCAmelCase = 10 ) -> float: UpperCAmelCase__ : List[Any] = angle_in_degrees - ((angle_in_degrees // 360.0) * 360.0) # Converting from degrees to radians UpperCAmelCase__ : Any = radians(lowerCAmelCase ) UpperCAmelCase__ : Optional[int] = angle_in_radians UpperCAmelCase__ : Tuple = 3 UpperCAmelCase__ : str = -1 for _ in range(lowerCAmelCase ): result += (b * (angle_in_radians**a)) / factorial(lowerCAmelCase ) UpperCAmelCase__ : int = -b # One positive term and the next will be negative and so on... a += 2 # Increased by 2 for every term. return round(lowerCAmelCase , lowerCAmelCase ) if __name__ == "__main__": __import__("""doctest""").testmod()
166
1
'''simple docstring''' import json import multiprocessing import os import re from collections import defaultdict import torch from accelerate import Accelerator from accelerate.utils import set_seed from arguments import HumanEvalArguments from datasets import load_dataset, load_metric from torch.utils.data import IterableDataset from torch.utils.data.dataloader import DataLoader from tqdm import tqdm import transformers from transformers import AutoModelForCausalLM, AutoTokenizer, HfArgumentParser, StoppingCriteria, StoppingCriteriaList lowerCAmelCase : int =['''\nclass''', '''\ndef''', '''\n#''', '''\n@''', '''\nprint''', '''\nif'''] class a_ ( _lowerCAmelCase ): def __init__( self : List[Any] , lowercase : int , lowercase : Any , lowercase : Tuple=None , lowercase : Optional[Any]=1 ): """simple docstring""" lowercase_ :Optional[int] = tokenizer lowercase_ :int = dataset lowercase_ :str = len(lowercase ) if n_tasks is None else n_tasks lowercase_ :Tuple = n_copies def __iter__( self : Tuple ): """simple docstring""" lowercase_ :List[str] = [] for task in range(self.n_tasks ): # without strip, the model generate commented codes ... prompts.append(self.tokenizer.eos_token + self.dataset[task]["prompt"].strip() ) lowercase_ :Tuple = self.tokenizer(lowercase , padding=lowercase , return_tensors="pt" ) for task in range(self.n_tasks ): for _ in range(self.n_copies ): yield { "ids": outputs.input_ids[task], "task_id": task, "input_len": outputs.attention_mask[task].sum(), } class a_ ( _lowerCAmelCase ): def __init__( self : List[str] , lowercase : List[str] , lowercase : List[Any] , lowercase : Dict ): """simple docstring""" lowercase_ :int = start_length lowercase_ :Optional[int] = eof_strings lowercase_ :int = tokenizer def __call__( self : Union[str, Any] , lowercase : Optional[int] , lowercase : Any , **lowercase : List[Any] ): """simple docstring""" lowercase_ :Optional[int] = self.tokenizer.batch_decode(input_ids[:, self.start_length :] ) lowercase_ :Union[str, Any] = [] for decoded_generation in decoded_generations: done.append(any(stop_string in decoded_generation for stop_string in self.eof_strings ) ) return all(lowercase ) def UpperCAmelCase_ ( __lowerCamelCase : List[str] ): lowercase_ :Optional[Any] = re.split("(%s)" % "|".join(__lowerCamelCase ) ,__lowerCamelCase ) # last string should be "" return "".join(string_list[:-2] ) def UpperCAmelCase_ ( __lowerCamelCase : str ,__lowerCamelCase : Dict ,__lowerCamelCase : Optional[int] ,__lowerCamelCase : List[str] ,__lowerCamelCase : str ,__lowerCamelCase : List[Any]=20 ,**__lowerCamelCase : Union[str, Any] ): lowercase_ :int = defaultdict(__lowerCamelCase ) # dict of list of generated tokens for step, batch in tqdm(enumerate(__lowerCamelCase ) ): with torch.no_grad(): lowercase_ :List[Any] = batch["ids"].shape[-1] lowercase_ :List[str] = accelerator.unwrap_model(__lowerCamelCase ).generate( input_ids=batch["ids"][:, : batch["input_len"]] ,num_return_sequences=__lowerCamelCase ,**__lowerCamelCase ) # each task is generated batch_size times lowercase_ :List[str] = batch["task_id"].repeat(__lowerCamelCase ) lowercase_ :Optional[Any] = accelerator.pad_across_processes( __lowerCamelCase ,dim=1 ,pad_index=tokenizer.pad_token_id ) lowercase_ , lowercase_ :Any = accelerator.gather((generated_tokens, generated_tasks) ) lowercase_ :int = generated_tokens.cpu().numpy() lowercase_ :Dict = generated_tasks.cpu().numpy() for task, generated_tokens in zip(__lowerCamelCase ,__lowerCamelCase ): gen_token_dict[task].append(__lowerCamelCase ) lowercase_ :Tuple = [[] for _ in range(__lowerCamelCase )] for task, generated_tokens in gen_token_dict.items(): for s in generated_tokens: lowercase_ :Tuple = tokenizer.decode(__lowerCamelCase ,skip_special_tokens=__lowerCamelCase ,clean_up_tokenization_spaces=__lowerCamelCase ) code_gens[task].append(remove_last_block(__lowerCamelCase ) ) return code_gens def UpperCAmelCase_ ( ): # Setup configuration lowercase_ :Optional[int] = HfArgumentParser(__lowerCamelCase ) lowercase_ :int = parser.parse_args() transformers.logging.set_verbosity_error() # enables code execution in code_eval metric lowercase_ :int = args.HF_ALLOW_CODE_EVAL # make sure tokenizer plays nice with multiprocessing lowercase_ :Tuple = "false" if args.num_workers is None: lowercase_ :Dict = multiprocessing.cpu_count() # Use dataset load to feed to accelerate lowercase_ :Dict = Accelerator() set_seed(args.seed ,device_specific=__lowerCamelCase ) # Load model and tokenizer lowercase_ :Optional[Any] = AutoTokenizer.from_pretrained(args.model_ckpt ) lowercase_ :Any = tokenizer.eos_token lowercase_ :Optional[Any] = AutoModelForCausalLM.from_pretrained(args.model_ckpt ) # Generation settings lowercase_ :Optional[Any] = { "do_sample": args.do_sample, "temperature": args.temperature, "max_new_tokens": args.max_new_tokens, "top_p": args.top_p, "top_k": args.top_k, "stopping_criteria": StoppingCriteriaList([EndOfFunctionCriteria(0 ,__lowerCamelCase ,__lowerCamelCase )] ), } # Load evaluation dataset and metric lowercase_ :Any = load_dataset("openai_humaneval" ) lowercase_ :Dict = load_metric("code_eval" ) lowercase_ :str = args.num_tasks if args.num_tasks is not None else len(human_eval["test"] ) lowercase_ :int = args.n_samples // args.batch_size lowercase_ :Union[str, Any] = TokenizedDataset(__lowerCamelCase ,human_eval["test"] ,n_copies=__lowerCamelCase ,n_tasks=__lowerCamelCase ) # do not confuse args.batch_size, which is actually the num_return_sequences lowercase_ :Any = DataLoader(__lowerCamelCase ,batch_size=1 ) # Run a quick test to see if code evaluation is enabled try: lowercase_ :str = code_eval_metric.compute(references=[""] ,predictions=[[""]] ) except ValueError as exception: print( "Code evaluation not enabled. Read the warning below carefully and then use `--HF_ALLOW_CODE_EVAL=\"1\"`" " flag to enable code evaluation." ) raise exception lowercase_ , lowercase_ :List[Any] = accelerator.prepare(__lowerCamelCase ,__lowerCamelCase ) lowercase_ :Optional[int] = complete_code( __lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ,n_tasks=__lowerCamelCase ,batch_size=args.batch_size ,**__lowerCamelCase ,) if accelerator.is_main_process: lowercase_ :Dict = [] for task in tqdm(range(__lowerCamelCase ) ): lowercase_ :Any = human_eval["test"][task]["test"] lowercase_ :str = F'check({human_eval["test"][task]["entry_point"]})' references.append("\n" + test_func + "\n" + entry_point ) # Evaluate completions with "code_eval" metric lowercase_ , lowercase_ :List[str] = code_eval_metric.compute( references=__lowerCamelCase ,predictions=__lowerCamelCase ,num_workers=args.num_workers ) print(F'Results: {pass_at_k}' ) # Save results to json file with open(args.output_file ,"w" ) as fp: json.dump(__lowerCamelCase ,__lowerCamelCase ) # For some reason the folliwng seems to be necessary sometimes for code_eval to work nice with multiprocessing # https://stackoverflow.com/questions/60804599/python-multiprocessing-keeps-spawning-the-whole-script if __name__ == "__main__": main()
223
'''simple docstring''' from typing import List, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase : Optional[int] =logging.get_logger(__name__) lowerCAmelCase : Tuple ={ '''huggingface/autoformer-tourism-monthly''': '''https://huggingface.co/huggingface/autoformer-tourism-monthly/resolve/main/config.json''', } class a_ ( _lowerCAmelCase ): __A = "autoformer" __A = { "hidden_size": "d_model", "num_attention_heads": "encoder_attention_heads", "num_hidden_layers": "encoder_layers", } def __init__( self : Any , lowercase : Optional[int] = None , lowercase : Optional[int] = None , lowercase : str = "student_t" , lowercase : str = "nll" , lowercase : int = 1 , lowercase : List[int] = [1, 2, 3, 4, 5, 6, 7] , lowercase : bool = True , lowercase : int = 0 , lowercase : int = 0 , lowercase : int = 0 , lowercase : int = 0 , lowercase : Optional[List[int]] = None , lowercase : Optional[List[int]] = None , lowercase : int = 64 , lowercase : int = 2 , lowercase : int = 2 , lowercase : int = 2 , lowercase : int = 2 , lowercase : int = 32 , lowercase : int = 32 , lowercase : str = "gelu" , lowercase : float = 0.1 , lowercase : float = 0.1 , lowercase : float = 0.1 , lowercase : float = 0.1 , lowercase : float = 0.1 , lowercase : int = 100 , lowercase : float = 0.02 , lowercase : bool = True , lowercase : int=True , lowercase : int = 10 , lowercase : int = 25 , lowercase : int = 3 , **lowercase : Dict , ): """simple docstring""" lowercase_ :str = prediction_length lowercase_ :Dict = context_length if context_length is not None else prediction_length lowercase_ :Any = distribution_output lowercase_ :Tuple = loss lowercase_ :Dict = input_size lowercase_ :Tuple = num_time_features lowercase_ :int = lags_sequence lowercase_ :Tuple = scaling lowercase_ :List[Any] = num_dynamic_real_features lowercase_ :Union[str, Any] = num_static_real_features lowercase_ :str = num_static_categorical_features if cardinality is not None and num_static_categorical_features > 0: if len(lowercase ) != num_static_categorical_features: raise ValueError( "The cardinality should be a list of the same length as `num_static_categorical_features`" ) lowercase_ :Optional[int] = cardinality else: lowercase_ :Optional[int] = [0] if embedding_dimension is not None and num_static_categorical_features > 0: if len(lowercase ) != num_static_categorical_features: raise ValueError( "The embedding dimension should be a list of the same length as `num_static_categorical_features`" ) lowercase_ :Tuple = embedding_dimension else: lowercase_ :Dict = [min(50 , (cat + 1) // 2 ) for cat in self.cardinality] lowercase_ :Any = num_parallel_samples # Transformer architecture configuration lowercase_ :Tuple = input_size * len(self.lags_sequence ) + self._number_of_features lowercase_ :Union[str, Any] = d_model lowercase_ :Optional[Any] = encoder_attention_heads lowercase_ :Optional[Any] = decoder_attention_heads lowercase_ :Optional[int] = encoder_ffn_dim lowercase_ :int = decoder_ffn_dim lowercase_ :Any = encoder_layers lowercase_ :Optional[Any] = decoder_layers lowercase_ :Dict = dropout lowercase_ :Dict = attention_dropout lowercase_ :str = activation_dropout lowercase_ :int = encoder_layerdrop lowercase_ :Dict = decoder_layerdrop lowercase_ :List[str] = activation_function lowercase_ :int = init_std lowercase_ :Optional[int] = use_cache # Autoformer lowercase_ :List[str] = label_length lowercase_ :List[str] = moving_average lowercase_ :Optional[int] = autocorrelation_factor super().__init__(is_encoder_decoder=lowercase , **lowercase ) @property def lowercase__ ( self : int ): """simple docstring""" return ( sum(self.embedding_dimension ) + self.num_dynamic_real_features + self.num_time_features + self.num_static_real_features + self.input_size * 2 # the log1p(abs(loc)) and log(scale) features )
223
1
# Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os import subprocess from packaging.version import Version, parse from accelerate.commands.config.config_args import default_config_file, load_config_from_file SCREAMING_SNAKE_CASE_:int = "Run commands across TPU VMs for initial setup before running `accelerate launch`." def __UpperCamelCase ( _lowerCAmelCase=None ) -> Union[str, Any]: """simple docstring""" if subparsers is not None: A : Dict = subparsers.add_parser("""tpu-config""" , description=_description ) else: A : str = argparse.ArgumentParser("""Accelerate tpu-config command""" , description=_description ) # Core arguments A : Tuple = parser.add_argument_group( """Config Arguments""" , """Arguments that can be configured through `accelerate config`.""" ) config_args.add_argument( """--config_file""" , type=_lowerCAmelCase , default=_lowerCAmelCase , help="""Path to the config file to use for accelerate.""" , ) config_args.add_argument( """--tpu_name""" , default=_lowerCAmelCase , help="""The name of the TPU to use. If not specified, will use the TPU specified in the config file.""" , ) config_args.add_argument( """--tpu_zone""" , default=_lowerCAmelCase , help="""The zone of the TPU to use. If not specified, will use the zone specified in the config file.""" , ) A : List[str] = parser.add_argument_group("""TPU Arguments""" , """Arguments for options ran inside the TPU.""" ) pod_args.add_argument( """--use_alpha""" , action="""store_true""" , help="""Whether to use `gcloud alpha` when running the TPU training script instead of `gcloud`.""" , ) pod_args.add_argument( """--command_file""" , default=_lowerCAmelCase , help="""The path to the file containing the commands to run on the pod on startup.""" , ) pod_args.add_argument( """--command""" , action="""append""" , nargs="""+""" , help="""A command to run on the pod. Can be passed multiple times.""" , ) pod_args.add_argument( """--install_accelerate""" , action="""store_true""" , help="""Whether to install accelerate on the pod. Defaults to False.""" , ) pod_args.add_argument( """--accelerate_version""" , default="""latest""" , help="""The version of accelerate to install on the pod. If not specified, will use the latest pypi version. Specify \'dev\' to install from GitHub.""" , ) pod_args.add_argument( """--debug""" , action="""store_true""" , help="""If set, will print the command that would be run instead of running it.""" ) if subparsers is not None: parser.set_defaults(func=_lowerCAmelCase ) return parser def __UpperCamelCase ( _lowerCAmelCase ) -> Dict: """simple docstring""" A : str = None # Get the default from the config file if it exists. if args.config_file is not None or os.path.isfile(_lowerCAmelCase ): A : Dict = load_config_from_file(args.config_file ) if not args.command_file and defaults.command_file is not None and not args.command: A : Any = defaults.command_file if not args.command and defaults.commands is not None: A : List[Any] = defaults.commands if not args.tpu_name: A : str = defaults.tpu_name if not args.tpu_zone: A : str = defaults.tpu_zone if args.accelerate_version == "dev": A : Union[str, Any] = '''git+https://github.com/huggingface/accelerate.git''' elif args.accelerate_version == "latest": A : List[Any] = '''accelerate -U''' elif isinstance(parse(args.accelerate_version ) , _lowerCAmelCase ): A : List[Any] = f'''accelerate=={args.accelerate_version}''' if not args.command_file and not args.command: raise ValueError("""You must specify either a command file or a command to run on the pod.""" ) if args.command_file: with open(args.command_file , """r""" ) as f: A : int = [f.read().splitlines()] # To turn list of lists into list of strings if isinstance(args.command[0] , _lowerCAmelCase ): A : Optional[Any] = [line for cmd in args.command for line in cmd] # Default to the shared folder and install accelerate A : Union[str, Any] = ['''cd /usr/share'''] if args.install_accelerate: new_cmd += [f'''pip install {args.accelerate_version}'''] new_cmd += args.command A : Optional[int] = '''; '''.join(_lowerCAmelCase ) # Then send it to gcloud # Eventually try to use google-api-core to do this instead of subprocess A : Any = ['''gcloud'''] if args.use_alpha: cmd += ["alpha"] cmd += [ "compute", "tpus", "tpu-vm", "ssh", args.tpu_name, "--zone", args.tpu_zone, "--command", args.command, "--worker", "all", ] if args.debug: print(f'''Running {" ".join(_lowerCAmelCase )}''' ) return subprocess.run(_lowerCAmelCase ) print("""Successfully setup pod.""" ) def __UpperCamelCase ( ) -> Optional[Any]: """simple docstring""" A : List[str] = tpu_command_parser() A : Tuple = parser.parse_args() tpu_command_launcher(_lowerCAmelCase )
357
import os from pathlib import Path def __UpperCamelCase ( ) -> Any: """simple docstring""" from torch.utils.cpp_extension import load A : Any = Path(_lowerCAmelCase ).resolve().parent.parent.parent / """kernels""" / """deformable_detr""" A : int = [ root / filename for filename in [ """vision.cpp""", os.path.join("""cpu""" , """ms_deform_attn_cpu.cpp""" ), os.path.join("""cuda""" , """ms_deform_attn_cuda.cu""" ), ] ] load( """MultiScaleDeformableAttention""" , _lowerCAmelCase , with_cuda=_lowerCAmelCase , extra_include_paths=[str(_lowerCAmelCase )] , extra_cflags=["""-DWITH_CUDA=1"""] , extra_cuda_cflags=[ """-DCUDA_HAS_FP16=1""", """-D__CUDA_NO_HALF_OPERATORS__""", """-D__CUDA_NO_HALF_CONVERSIONS__""", """-D__CUDA_NO_HALF2_OPERATORS__""", ] , ) import MultiScaleDeformableAttention as MSDA return MSDA
115
0
'''simple docstring''' import os from shutil import copyfile from typing import List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging lowerCAmelCase: str = logging.get_logger(__name__) lowerCAmelCase: Optional[int] = {'vocab_file': 'sentencepiece.model'} lowerCAmelCase: Any = { 'vocab_file': { 'google/rembert': 'https://huggingface.co/google/rembert/resolve/main/sentencepiece.model', }, } lowerCAmelCase: Any = { 'google/rembert': 2_5_6, } class a__( lowerCamelCase__ ): lowercase__ = VOCAB_FILES_NAMES lowercase__ = PRETRAINED_VOCAB_FILES_MAP lowercase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self : Union[str, Any] , __snake_case : List[Any] , __snake_case : int=False , __snake_case : Tuple=True , __snake_case : List[str]=True , __snake_case : str="[CLS]" , __snake_case : List[Any]="[SEP]" , __snake_case : Dict="[UNK]" , __snake_case : List[str]="[SEP]" , __snake_case : Any="[PAD]" , __snake_case : str="[CLS]" , __snake_case : Optional[Any]="[MASK]" , **__snake_case : Optional[int] , ): super().__init__( do_lower_case=__snake_case , remove_space=__snake_case , keep_accents=__snake_case , bos_token=__snake_case , eos_token=__snake_case , unk_token=__snake_case , sep_token=__snake_case , pad_token=__snake_case , cls_token=__snake_case , mask_token=__snake_case , **__snake_case , ) a : List[str] = do_lower_case a : str = remove_space a : Tuple = keep_accents a : Optional[Any] = vocab_file a : List[Any] = spm.SentencePieceProcessor() self.sp_model.Load(__snake_case ) @property def lowercase_ ( self : List[Any] ): return len(self.sp_model ) def lowercase_ ( self : Any ): a : Optional[Any] = {self.convert_ids_to_tokens(__snake_case ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : Dict ): a : List[Any] = self.__dict__.copy() a : List[str] = None return state def __setstate__( self : Optional[int] , __snake_case : Any ): a : str = d a : Union[str, Any] = spm.SentencePieceProcessor() self.sp_model.Load(self.vocab_file ) def lowercase_ ( self : Optional[int] , __snake_case : List[str] , __snake_case : Any=False ): a : Union[str, Any] = self.sp_model.EncodeAsPieces(__snake_case ) return pieces def lowercase_ ( self : List[str] , __snake_case : Any ): return self.sp_model.PieceToId(__snake_case ) def lowercase_ ( self : Union[str, Any] , __snake_case : Optional[Any] ): return self.sp_model.IdToPiece(__snake_case ) def lowercase_ ( self : Tuple , __snake_case : Optional[int] ): a : Optional[int] = self.sp_model.decode_pieces(__snake_case ) return out_string def lowercase_ ( self : int , __snake_case : List[int] , __snake_case : Optional[List[int]] = None ): a : List[str] = [self.sep_token_id] a : Dict = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def lowercase_ ( self : List[Any] , __snake_case : List[int] , __snake_case : Optional[List[int]] = None , __snake_case : bool = False ): if already_has_special_tokens: if token_ids_a is not None: raise ValueError( 'You should not supply a second sequence if the provided sequence of ' 'ids is already formatted with special tokens for the model.' ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is not None: return [1] + ([0] * len(__snake_case )) + [1] + ([0] * len(__snake_case )) + [1] return [1] + ([0] * len(__snake_case )) + [1] def lowercase_ ( self : List[Any] , __snake_case : List[int] , __snake_case : Optional[List[int]] = None ): a : Optional[int] = [self.sep_token_id] a : str = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowercase_ ( self : List[Any] , __snake_case : str , __snake_case : Optional[str] = None ): if not os.path.isdir(__snake_case ): logger.error('Vocabulary path ({}) should be a directory'.format(__snake_case ) ) return a : Tuple = os.path.join( __snake_case , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__snake_case ): copyfile(self.vocab_file , __snake_case ) return (out_vocab_file,)
297
'''simple docstring''' import json from typing import Dict, List, Optional, Tuple, Union from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding, EncodedInput from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import PaddingStrategy, logging from .tokenization_led import LEDTokenizer lowerCAmelCase: Dict = logging.get_logger(__name__) lowerCAmelCase: str = {'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_file': 'tokenizer.json'} lowerCAmelCase: List[Any] = { 'vocab_file': { 'allenai/led-base-16384': 'https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json', }, 'merges_file': { 'allenai/led-base-16384': 'https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt', }, 'tokenizer_file': { 'allenai/led-base-16384': 'https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json', }, } lowerCAmelCase: str = { 'allenai/led-base-16384': 1_6_3_8_4, } class a__( lowerCamelCase__ ): lowercase__ = VOCAB_FILES_NAMES lowercase__ = PRETRAINED_VOCAB_FILES_MAP lowercase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase__ = LEDTokenizer lowercase__ = ["""input_ids""", """attention_mask"""] def __init__( self : List[Any] , __snake_case : Optional[Any]=None , __snake_case : List[str]=None , __snake_case : Tuple=None , __snake_case : Dict="replace" , __snake_case : int="<s>" , __snake_case : Any="</s>" , __snake_case : Optional[Any]="</s>" , __snake_case : Optional[Any]="<s>" , __snake_case : Optional[Any]="<unk>" , __snake_case : List[str]="<pad>" , __snake_case : int="<mask>" , __snake_case : int=False , __snake_case : str=True , **__snake_case : Tuple , ): super().__init__( __snake_case , __snake_case , tokenizer_file=__snake_case , errors=__snake_case , bos_token=__snake_case , eos_token=__snake_case , sep_token=__snake_case , cls_token=__snake_case , unk_token=__snake_case , pad_token=__snake_case , mask_token=__snake_case , add_prefix_space=__snake_case , trim_offsets=__snake_case , **__snake_case , ) a : str = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('add_prefix_space' , __snake_case ) != add_prefix_space: a : List[Any] = getattr(__snake_case , pre_tok_state.pop('type' ) ) a : Optional[Any] = add_prefix_space a : Optional[Any] = pre_tok_class(**__snake_case ) a : Optional[int] = add_prefix_space # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` a : Dict = 'post_processor' a : int = getattr(self.backend_tokenizer , __snake_case , __snake_case ) if tokenizer_component_instance: a : Tuple = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: a : Any = tuple(state['sep'] ) if "cls" in state: a : Any = tuple(state['cls'] ) a : Optional[Any] = False if state.get('add_prefix_space' , __snake_case ) != add_prefix_space: a : Any = add_prefix_space a : Optional[Any] = True if state.get('trim_offsets' , __snake_case ) != trim_offsets: a : List[Any] = trim_offsets a : Union[str, Any] = True if changes_to_apply: a : int = getattr(__snake_case , state.pop('type' ) ) a : List[Any] = component_class(**__snake_case ) setattr(self.backend_tokenizer , __snake_case , __snake_case ) @property # Copied from transformers.models.bart.tokenization_bart_fast.BartTokenizerFast.mask_token with BART->LED def lowercase_ ( self : Dict ): if self._mask_token is None: if self.verbose: logger.error('Using mask_token, but it is not set yet.' ) return None return str(self._mask_token ) @mask_token.setter def lowercase_ ( self : Dict , __snake_case : List[str] ): a : Tuple = AddedToken(__snake_case , lstrip=__snake_case , rstrip=__snake_case ) if isinstance(__snake_case , __snake_case ) else value a : Optional[int] = value def lowercase_ ( self : Optional[Any] , *__snake_case : Any , **__snake_case : Union[str, Any] ): a : Dict = kwargs.get('is_split_into_words' , __snake_case ) if is_split_into_words and not self.add_prefix_space: raise ValueError( F"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ 'to use it with pretokenized inputs.' ) return super()._batch_encode_plus(*__snake_case , **__snake_case ) def lowercase_ ( self : Union[str, Any] , *__snake_case : Optional[int] , **__snake_case : List[str] ): a : Optional[int] = kwargs.get('is_split_into_words' , __snake_case ) if is_split_into_words and not self.add_prefix_space: raise ValueError( F"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ 'to use it with pretokenized inputs.' ) return super()._encode_plus(*__snake_case , **__snake_case ) def lowercase_ ( self : Dict , __snake_case : str , __snake_case : Optional[str] = None ): a : Union[str, Any] = self._tokenizer.model.save(__snake_case , name=__snake_case ) return tuple(__snake_case ) def lowercase_ ( self : Union[str, Any] , __snake_case : str , __snake_case : int=None ): a : List[Any] = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def lowercase_ ( self : Optional[int] , __snake_case : List[int] , __snake_case : Optional[List[int]] = None ): a : int = [self.sep_token_id] a : Optional[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def lowercase_ ( self : List[str] , __snake_case : Union[Dict[str, EncodedInput], BatchEncoding] , __snake_case : Optional[int] = None , __snake_case : PaddingStrategy = PaddingStrategy.DO_NOT_PAD , __snake_case : Optional[int] = None , __snake_case : Optional[bool] = None , ): a : Optional[Any] = super()._pad( encoded_inputs=__snake_case , max_length=__snake_case , padding_strategy=__snake_case , pad_to_multiple_of=__snake_case , return_attention_mask=__snake_case , ) # Load from model defaults if return_attention_mask is None: a : str = 'attention_mask' in self.model_input_names if return_attention_mask and "global_attention_mask" in encoded_inputs: a : Any = encoded_inputs[self.model_input_names[0]] # `global_attention_mask` need to have the same length as other (sequential) inputs. a : Union[str, Any] = len(encoded_inputs['global_attention_mask'] ) != len(__snake_case ) if needs_to_be_padded: a : str = len(__snake_case ) - len(encoded_inputs['global_attention_mask'] ) if self.padding_side == "right": # Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend` a : Dict = ( encoded_inputs['global_attention_mask'] + [-1] * difference ) elif self.padding_side == "left": a : Union[str, Any] = [-1] * difference + encoded_inputs[ 'global_attention_mask' ] else: raise ValueError('Invalid padding strategy:' + str(self.padding_side ) ) return encoded_inputs
297
1
from .data_collator import ( DataCollatorForLanguageModeling, DataCollatorForPermutationLanguageModeling, DataCollatorForSeqaSeq, DataCollatorForSOP, DataCollatorForTokenClassification, DataCollatorForWholeWordMask, DataCollatorWithPadding, DefaultDataCollator, default_data_collator, ) from .metrics import glue_compute_metrics, xnli_compute_metrics from .processors import ( DataProcessor, InputExample, InputFeatures, SingleSentenceClassificationProcessor, SquadExample, SquadFeatures, SquadVaProcessor, SquadVaProcessor, glue_convert_examples_to_features, glue_output_modes, glue_processors, glue_tasks_num_labels, squad_convert_examples_to_features, xnli_output_modes, xnli_processors, xnli_tasks_num_labels, )
169
import argparse import os import transformers from .convert_slow_tokenizer import SLOW_TO_FAST_CONVERTERS from .utils import logging logging.set_verbosity_info() __snake_case = logging.get_logger(__name__) __snake_case = {name: getattr(transformers, name + """Fast""") for name in SLOW_TO_FAST_CONVERTERS} def _lowercase ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) -> List[Any]: '''simple docstring''' if tokenizer_name is not None and tokenizer_name not in TOKENIZER_CLASSES: raise ValueError(F'Unrecognized tokenizer name, should be one of {list(TOKENIZER_CLASSES.keys() )}.' ) if tokenizer_name is None: SCREAMING_SNAKE_CASE__ = TOKENIZER_CLASSES else: SCREAMING_SNAKE_CASE__ = {tokenizer_name: getattr(UpperCamelCase_ , tokenizer_name + 'Fast' )} logger.info(F'Loading tokenizer classes: {tokenizer_names}' ) for tokenizer_name in tokenizer_names: SCREAMING_SNAKE_CASE__ = TOKENIZER_CLASSES[tokenizer_name] SCREAMING_SNAKE_CASE__ = True if checkpoint_name is None: SCREAMING_SNAKE_CASE__ = list(tokenizer_class.max_model_input_sizes.keys() ) else: SCREAMING_SNAKE_CASE__ = [checkpoint_name] logger.info(F'For tokenizer {tokenizer_class.__class__.__name__} loading checkpoints: {checkpoint_names}' ) for checkpoint in checkpoint_names: logger.info(F'Loading {tokenizer_class.__class__.__name__} {checkpoint}' ) # Load tokenizer SCREAMING_SNAKE_CASE__ = tokenizer_class.from_pretrained(UpperCamelCase_ , force_download=UpperCamelCase_ ) # Save fast tokenizer logger.info(F'Save fast tokenizer to {dump_path} with prefix {checkpoint} add_prefix {add_prefix}' ) # For organization names we create sub-directories if "/" in checkpoint: SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = checkpoint.split('/' ) SCREAMING_SNAKE_CASE__ = os.path.join(UpperCamelCase_ , UpperCamelCase_ ) elif add_prefix: SCREAMING_SNAKE_CASE__ = checkpoint SCREAMING_SNAKE_CASE__ = dump_path else: SCREAMING_SNAKE_CASE__ = None SCREAMING_SNAKE_CASE__ = dump_path logger.info(F'=> {dump_path_full} with prefix {checkpoint_prefix_name}, add_prefix {add_prefix}' ) if checkpoint in list(tokenizer.pretrained_vocab_files_map.values() )[0]: SCREAMING_SNAKE_CASE__ = list(tokenizer.pretrained_vocab_files_map.values() )[0][checkpoint] SCREAMING_SNAKE_CASE__ = file_path.split(UpperCamelCase_ )[-1][0] if next_char == "/": SCREAMING_SNAKE_CASE__ = os.path.join(UpperCamelCase_ , UpperCamelCase_ ) SCREAMING_SNAKE_CASE__ = None logger.info(F'=> {dump_path_full} with prefix {checkpoint_prefix_name}, add_prefix {add_prefix}' ) SCREAMING_SNAKE_CASE__ = tokenizer.save_pretrained( UpperCamelCase_ , legacy_format=UpperCamelCase_ , filename_prefix=UpperCamelCase_ ) logger.info(F'=> File names {file_names}' ) for file_name in file_names: if not file_name.endswith('tokenizer.json' ): os.remove(UpperCamelCase_ ) logger.info(F'=> removing {file_name}' ) if __name__ == "__main__": __snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument( """--dump_path""", default=None, type=str, required=True, help="""Path to output generated fast tokenizer files.""" ) parser.add_argument( """--tokenizer_name""", default=None, type=str, help=( F"""Optional tokenizer type selected in the list of {list(TOKENIZER_CLASSES.keys())}. If not given, will """ """download and convert all the checkpoints from AWS.""" ), ) parser.add_argument( """--checkpoint_name""", default=None, type=str, help="""Optional checkpoint name. If not given, will download and convert the canonical checkpoints from AWS.""", ) parser.add_argument( """--force_download""", action="""store_true""", help="""Re-download checkpoints.""", ) __snake_case = parser.parse_args() convert_slow_checkpoint_to_fast(args.tokenizer_name, args.checkpoint_name, args.dump_path, args.force_download)
169
1
'''simple docstring''' from math import loga def snake_case_ ( _lowerCAmelCase : int ) -> int: if a < 0: raise ValueError('''Input value must be a positive integer''' ) elif isinstance(_lowerCAmelCase , _lowerCAmelCase ): raise TypeError('''Input value must be a \'int\' type''' ) return 0 if (a == 0) else int(loga(a & -a ) ) if __name__ == "__main__": import doctest doctest.testmod()
23
from .data_collator import ( DataCollatorForLanguageModeling, DataCollatorForPermutationLanguageModeling, DataCollatorForSeqaSeq, DataCollatorForSOP, DataCollatorForTokenClassification, DataCollatorForWholeWordMask, DataCollatorWithPadding, DefaultDataCollator, default_data_collator, ) from .metrics import glue_compute_metrics, xnli_compute_metrics from .processors import ( DataProcessor, InputExample, InputFeatures, SingleSentenceClassificationProcessor, SquadExample, SquadFeatures, SquadVaProcessor, SquadVaProcessor, glue_convert_examples_to_features, glue_output_modes, glue_processors, glue_tasks_num_labels, squad_convert_examples_to_features, xnli_output_modes, xnli_processors, xnli_tasks_num_labels, )
303
0
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging UpperCAmelCase = logging.get_logger(__name__) UpperCAmelCase = {"vocab_file": "sentencepiece.bpe.model"} UpperCAmelCase = { "vocab_file": { "moussaKam/mbarthez": "https://huggingface.co/moussaKam/mbarthez/resolve/main/sentencepiece.bpe.model", "moussaKam/barthez": "https://huggingface.co/moussaKam/barthez/resolve/main/sentencepiece.bpe.model", "moussaKam/barthez-orangesum-title": ( "https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/sentencepiece.bpe.model" ), }, } UpperCAmelCase = { "moussaKam/mbarthez": 1_024, "moussaKam/barthez": 1_024, "moussaKam/barthez-orangesum-title": 1_024, } UpperCAmelCase = "▁" class UpperCAmelCase_ ( lowercase_): snake_case__ = VOCAB_FILES_NAMES snake_case__ = PRETRAINED_VOCAB_FILES_MAP snake_case__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case__ = ["input_ids", "attention_mask"] def __init__( self : Optional[Any] , __UpperCamelCase : Optional[int] , __UpperCamelCase : Optional[int]="<s>" , __UpperCamelCase : Dict="</s>" , __UpperCamelCase : int="</s>" , __UpperCamelCase : Tuple="<s>" , __UpperCamelCase : Tuple="<unk>" , __UpperCamelCase : Dict="<pad>" , __UpperCamelCase : int="<mask>" , __UpperCamelCase : str = None , **__UpperCamelCase : List[Any] , ) -> None: _UpperCamelCase = AddedToken(a__ , lstrip=a__ , rstrip=a__ ) if isinstance(a__ , a__ ) else mask_token _UpperCamelCase = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=a__ , eos_token=a__ , unk_token=a__ , sep_token=a__ , cls_token=a__ , pad_token=a__ , mask_token=a__ , sp_model_kwargs=self.sp_model_kwargs , **a__ , ) _UpperCamelCase = vocab_file _UpperCamelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(a__ ) ) _UpperCamelCase = {'''<s>''': 0, '''<pad>''': 1, '''</s>''': 2, '''<unk>''': 3} _UpperCamelCase = len(self.sp_model ) - 1 _UpperCamelCase = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def _UpperCamelCase ( self : Optional[Any] , __UpperCamelCase : Dict , __UpperCamelCase : Union[str, Any] = None ) -> List[int]: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] _UpperCamelCase = [self.cls_token_id] _UpperCamelCase = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def _UpperCamelCase ( self : Tuple , __UpperCamelCase : Optional[int] , __UpperCamelCase : Dict = None , __UpperCamelCase : str = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=a__ , token_ids_a=a__ , already_has_special_tokens=a__ ) if token_ids_a is None: return [1] + ([0] * len(a__ )) + [1] return [1] + ([0] * len(a__ )) + [1, 1] + ([0] * len(a__ )) + [1] def _UpperCamelCase ( self : int , __UpperCamelCase : List[Any] , __UpperCamelCase : Union[str, Any] = None ) -> List[int]: _UpperCamelCase = [self.sep_token_id] _UpperCamelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def _UpperCamelCase ( self : Any ) -> List[Any]: return len(self.sp_model ) def _UpperCamelCase ( self : str ) -> int: _UpperCamelCase = {self.convert_ids_to_tokens(a__ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def _UpperCamelCase ( self : Dict , __UpperCamelCase : Any ) -> List[str]: return self.sp_model.encode(a__ , out_type=a__ ) def _UpperCamelCase ( self : Dict , __UpperCamelCase : List[str] ) -> int: if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] _UpperCamelCase = self.sp_model.PieceToId(a__ ) return spm_id if spm_id else self.unk_token_id def _UpperCamelCase ( self : List[str] , __UpperCamelCase : Optional[int] ) -> Tuple: if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(a__ ) def _UpperCamelCase ( self : List[Any] , __UpperCamelCase : Optional[int] ) -> Optional[Any]: _UpperCamelCase = [] _UpperCamelCase = '''''' _UpperCamelCase = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(a__ ) + token _UpperCamelCase = True _UpperCamelCase = [] else: current_sub_tokens.append(a__ ) _UpperCamelCase = False out_string += self.sp_model.decode(a__ ) return out_string.strip() def __getstate__( self : Dict ) -> Dict: _UpperCamelCase = self.__dict__.copy() _UpperCamelCase = None return state def __setstate__( self : Optional[int] , __UpperCamelCase : Tuple ) -> str: _UpperCamelCase = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): _UpperCamelCase = {} _UpperCamelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def _UpperCamelCase ( self : List[Any] , __UpperCamelCase : int , __UpperCamelCase : List[Any] = None ) -> Tuple[str]: if not os.path.isdir(a__ ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return _UpperCamelCase = os.path.join( a__ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(a__ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , a__ ) elif not os.path.isfile(self.vocab_file ): with open(a__ , '''wb''' ) as fi: _UpperCamelCase = self.sp_model.serialized_model_proto() fi.write(a__ ) return (out_vocab_file,)
353
"""simple docstring""" from scipy.stats import pearsonr, spearmanr from sklearn.metrics import fa_score, matthews_corrcoef import datasets UpperCAmelCase = """\ @inproceedings{wang2019glue, title={{GLUE}: A Multi-Task Benchmark and Analysis Platform for Natural Language Understanding}, author={Wang, Alex and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R.}, note={In the Proceedings of ICLR.}, year={2019} } """ UpperCAmelCase = """\ GLUE, the General Language Understanding Evaluation benchmark (https://gluebenchmark.com/) is a collection of resources for training, evaluating, and analyzing natural language understanding systems. """ UpperCAmelCase = """ Compute GLUE evaluation metric associated to each GLUE dataset. Args: predictions: list of predictions to score. Each translation should be tokenized into a list of tokens. references: list of lists of references for each translation. Each reference should be tokenized into a list of tokens. Returns: depending on the GLUE subset, one or several of: \"accuracy\": Accuracy \"f1\": F1 score \"pearson\": Pearson Correlation \"spearmanr\": Spearman Correlation \"matthews_correlation\": Matthew Correlation Examples: >>> glue_metric = datasets.load_metric('glue', 'sst2') # 'sst2' or any of [\"mnli\", \"mnli_mismatched\", \"mnli_matched\", \"qnli\", \"rte\", \"wnli\", \"hans\"] >>> references = [0, 1] >>> predictions = [0, 1] >>> results = glue_metric.compute(predictions=predictions, references=references) >>> print(results) {'accuracy': 1.0} >>> glue_metric = datasets.load_metric('glue', 'mrpc') # 'mrpc' or 'qqp' >>> references = [0, 1] >>> predictions = [0, 1] >>> results = glue_metric.compute(predictions=predictions, references=references) >>> print(results) {'accuracy': 1.0, 'f1': 1.0} >>> glue_metric = datasets.load_metric('glue', 'stsb') >>> references = [0., 1., 2., 3., 4., 5.] >>> predictions = [0., 1., 2., 3., 4., 5.] >>> results = glue_metric.compute(predictions=predictions, references=references) >>> print({\"pearson\": round(results[\"pearson\"], 2), \"spearmanr\": round(results[\"spearmanr\"], 2)}) {'pearson': 1.0, 'spearmanr': 1.0} >>> glue_metric = datasets.load_metric('glue', 'cola') >>> references = [0, 1] >>> predictions = [0, 1] >>> results = glue_metric.compute(predictions=predictions, references=references) >>> print(results) {'matthews_correlation': 1.0} """ def lowercase ( a__ : int , a__ : Tuple ) -> Optional[Any]: return float((preds == labels).mean() ) def lowercase ( a__ : Optional[Any] , a__ : int ) -> Optional[int]: _UpperCamelCase = simple_accuracy(a__ , a__ ) _UpperCamelCase = float(fa_score(y_true=a__ , y_pred=a__ ) ) return { "accuracy": acc, "f1": fa, } def lowercase ( a__ : Any , a__ : Union[str, Any] ) -> Any: _UpperCamelCase = float(pearsonr(a__ , a__ )[0] ) _UpperCamelCase = float(spearmanr(a__ , a__ )[0] ) return { "pearson": pearson_corr, "spearmanr": spearman_corr, } @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION) class UpperCAmelCase_ ( datasets.Metric): def _UpperCamelCase ( self : Optional[int] ) -> Optional[int]: if self.config_name not in [ "sst2", "mnli", "mnli_mismatched", "mnli_matched", "cola", "stsb", "mrpc", "qqp", "qnli", "rte", "wnli", "hans", ]: raise KeyError( '''You should supply a configuration name selected in ''' '''["sst2", "mnli", "mnli_mismatched", "mnli_matched", ''' '''"cola", "stsb", "mrpc", "qqp", "qnli", "rte", "wnli", "hans"]''' ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''int64''' if self.config_name != '''stsb''' else '''float32''' ), '''references''': datasets.Value('''int64''' if self.config_name != '''stsb''' else '''float32''' ), } ) , codebase_urls=[] , reference_urls=[] , format='''numpy''' , ) def _UpperCamelCase ( self : int , __UpperCamelCase : int , __UpperCamelCase : List[Any] ) -> Any: if self.config_name == "cola": return {"matthews_correlation": matthews_corrcoef(__UpperCamelCase , __UpperCamelCase )} elif self.config_name == "stsb": return pearson_and_spearman(__UpperCamelCase , __UpperCamelCase ) elif self.config_name in ["mrpc", "qqp"]: return acc_and_fa(__UpperCamelCase , __UpperCamelCase ) elif self.config_name in ["sst2", "mnli", "mnli_mismatched", "mnli_matched", "qnli", "rte", "wnli", "hans"]: return {"accuracy": simple_accuracy(__UpperCamelCase , __UpperCamelCase )} else: raise KeyError( '''You should supply a configuration name selected in ''' '''["sst2", "mnli", "mnli_mismatched", "mnli_matched", ''' '''"cola", "stsb", "mrpc", "qqp", "qnli", "rte", "wnli", "hans"]''' )
54
0
"""simple docstring""" def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> list: '''simple docstring''' if any(not isinstance(__lowerCAmelCase , __lowerCAmelCase ) or x < 0 for x in sequence ): raise TypeError("""Sequence must be list of non-negative integers""" ) for _ in range(len(__lowerCAmelCase ) ): for i, (rod_upper, rod_lower) in enumerate(zip(__lowerCAmelCase , sequence[1:] ) ): if rod_upper > rod_lower: sequence[i] -= rod_upper - rod_lower sequence[i + 1] += rod_upper - rod_lower return sequence if __name__ == "__main__": assert bead_sort([5, 4, 3, 2, 1]) == [1, 2, 3, 4, 5] assert bead_sort([7, 9, 4, 3, 5]) == [3, 4, 5, 7, 9]
136
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase : List[str] = logging.get_logger(__name__) UpperCAmelCase : Union[str, Any] = { "EleutherAI/gpt-neox-20b": "https://huggingface.co/EleutherAI/gpt-neox-20b/resolve/main/config.json", # See all GPTNeoX models at https://huggingface.co/models?filter=gpt_neox } class SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ): lowercase__ = "gpt_neox" def __init__( self : Union[str, Any] , lowerCAmelCase_ : str=5_0_4_3_2 , lowerCAmelCase_ : List[Any]=6_1_4_4 , lowerCAmelCase_ : str=4_4 , lowerCAmelCase_ : Tuple=6_4 , lowerCAmelCase_ : Optional[int]=2_4_5_7_6 , lowerCAmelCase_ : List[Any]="gelu" , lowerCAmelCase_ : Any=0.25 , lowerCAmelCase_ : int=1_0_0_0_0 , lowerCAmelCase_ : str=0.0 , lowerCAmelCase_ : Dict=0.0 , lowerCAmelCase_ : Optional[Any]=0.1 , lowerCAmelCase_ : Union[str, Any]=2_0_4_8 , lowerCAmelCase_ : Optional[int]=0.02 , lowerCAmelCase_ : List[Any]=1E-5 , lowerCAmelCase_ : Optional[Any]=True , lowerCAmelCase_ : List[Any]=0 , lowerCAmelCase_ : Optional[Any]=2 , lowerCAmelCase_ : int=False , lowerCAmelCase_ : Tuple=True , lowerCAmelCase_ : int=None , **lowerCAmelCase_ : str , ): """simple docstring""" super().__init__(bos_token_id=lowerCAmelCase_ , eos_token_id=lowerCAmelCase_ , **lowerCAmelCase_) lowercase_ = vocab_size lowercase_ = max_position_embeddings lowercase_ = hidden_size lowercase_ = num_hidden_layers lowercase_ = num_attention_heads lowercase_ = intermediate_size lowercase_ = hidden_act lowercase_ = rotary_pct lowercase_ = rotary_emb_base lowercase_ = attention_dropout lowercase_ = hidden_dropout lowercase_ = classifier_dropout lowercase_ = initializer_range lowercase_ = layer_norm_eps lowercase_ = use_cache lowercase_ = tie_word_embeddings lowercase_ = use_parallel_residual lowercase_ = rope_scaling self._rope_scaling_validation() if self.hidden_size % self.num_attention_heads != 0: raise ValueError( """The hidden size is not divisble by the number of attention heads! Make sure to update them!""") def _UpperCAmelCase ( self : Optional[Any]): """simple docstring""" if self.rope_scaling is None: return if not isinstance(self.rope_scaling , lowerCAmelCase_) or len(self.rope_scaling) != 2: raise ValueError( """`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, """ F'''got {self.rope_scaling}''') lowercase_ = self.rope_scaling.get("""type""" , lowerCAmelCase_) lowercase_ = self.rope_scaling.get("""factor""" , lowerCAmelCase_) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( F'''`rope_scaling`\'s name field must be one of [\'linear\', \'dynamic\'], got {rope_scaling_type}''') if rope_scaling_factor is None or not isinstance(lowerCAmelCase_ , lowerCAmelCase_) or rope_scaling_factor <= 1.0: raise ValueError(F'''`rope_scaling`\'s factor field must be an float > 1, got {rope_scaling_factor}''')
136
1
from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE_ = { 'google/realm-cc-news-pretrained-embedder': ( 'https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/config.json' ), 'google/realm-cc-news-pretrained-encoder': ( 'https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/config.json' ), 'google/realm-cc-news-pretrained-scorer': ( 'https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/config.json' ), 'google/realm-cc-news-pretrained-openqa': ( 'https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/config.json' ), 'google/realm-orqa-nq-openqa': 'https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/config.json', 'google/realm-orqa-nq-reader': 'https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/config.json', 'google/realm-orqa-wq-openqa': 'https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/config.json', 'google/realm-orqa-wq-reader': 'https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/config.json', # See all REALM models at https://huggingface.co/models?filter=realm } class a ( UpperCAmelCase ): _lowercase = "realm" def __init__( self , A_=30522 , A_=768 , A_=128 , A_=12 , A_=12 , A_=8 , A_=3072 , A_="gelu_new" , A_=0.1 , A_=0.1 , A_=512 , A_=2 , A_=0.02 , A_=1e-12 , A_=256 , A_=10 , A_=1e-3 , A_=5 , A_=320 , A_=13353718 , A_=5000 , A_=1 , A_=0 , A_=2 , **A_ , ): '''simple docstring''' super().__init__(pad_token_id=A_ , bos_token_id=A_ , eos_token_id=A_ , **A_ ) # Common config _UpperCAmelCase : str = vocab_size _UpperCAmelCase : Any = max_position_embeddings _UpperCAmelCase : Union[str, Any] = hidden_size _UpperCAmelCase : Tuple = retriever_proj_size _UpperCAmelCase : Tuple = num_hidden_layers _UpperCAmelCase : str = num_attention_heads _UpperCAmelCase : List[Any] = num_candidates _UpperCAmelCase : Dict = intermediate_size _UpperCAmelCase : Optional[Any] = hidden_act _UpperCAmelCase : Optional[int] = hidden_dropout_prob _UpperCAmelCase : Any = attention_probs_dropout_prob _UpperCAmelCase : List[Any] = initializer_range _UpperCAmelCase : int = type_vocab_size _UpperCAmelCase : List[Any] = layer_norm_eps # Reader config _UpperCAmelCase : Optional[Any] = span_hidden_size _UpperCAmelCase : Dict = max_span_width _UpperCAmelCase : Union[str, Any] = reader_layer_norm_eps _UpperCAmelCase : List[Any] = reader_beam_size _UpperCAmelCase : Any = reader_seq_len # Retrieval config _UpperCAmelCase : Tuple = num_block_records _UpperCAmelCase : List[str] = searcher_beam_size
189
import shutil import tempfile import unittest import numpy as np import pytest from transformers import is_speech_available, is_vision_available from transformers.testing_utils import require_torch if is_vision_available(): from transformers import TvltImageProcessor if is_speech_available(): from transformers import TvltFeatureExtractor from transformers import TvltProcessor @require_torch class a ( unittest.TestCase ): def _UpperCAmelCase ( self ): '''simple docstring''' _UpperCAmelCase : int = "ZinengTang/tvlt-base" _UpperCAmelCase : int = tempfile.mkdtemp() def _UpperCAmelCase ( self , **A_ ): '''simple docstring''' return TvltImageProcessor.from_pretrained(self.checkpoint , **A_ ) def _UpperCAmelCase ( self , **A_ ): '''simple docstring''' return TvltFeatureExtractor.from_pretrained(self.checkpoint , **A_ ) def _UpperCAmelCase ( self ): '''simple docstring''' shutil.rmtree(self.tmpdirname ) def _UpperCAmelCase ( self ): '''simple docstring''' _UpperCAmelCase : Dict = self.get_image_processor() _UpperCAmelCase : Optional[int] = self.get_feature_extractor() _UpperCAmelCase : Tuple = TvltProcessor(image_processor=A_ , feature_extractor=A_ ) processor.save_pretrained(self.tmpdirname ) _UpperCAmelCase : str = TvltProcessor.from_pretrained(self.tmpdirname ) self.assertIsInstance(processor.feature_extractor , A_ ) self.assertIsInstance(processor.image_processor , A_ ) def _UpperCAmelCase ( self ): '''simple docstring''' _UpperCAmelCase : List[Any] = self.get_image_processor() _UpperCAmelCase : int = self.get_feature_extractor() _UpperCAmelCase : Tuple = TvltProcessor(image_processor=A_ , feature_extractor=A_ ) _UpperCAmelCase : List[str] = np.ones([12000] ) _UpperCAmelCase : int = feature_extractor(A_ , return_tensors="np" ) _UpperCAmelCase : int = processor(audio=A_ , return_tensors="np" ) for key in audio_dict.keys(): self.assertAlmostEqual(audio_dict[key].sum() , input_processor[key].sum() , delta=1e-2 ) def _UpperCAmelCase ( self ): '''simple docstring''' _UpperCAmelCase : List[str] = self.get_image_processor() _UpperCAmelCase : int = self.get_feature_extractor() _UpperCAmelCase : Optional[Any] = TvltProcessor(image_processor=A_ , feature_extractor=A_ ) _UpperCAmelCase : Union[str, Any] = np.ones([3, 224, 224] ) _UpperCAmelCase : Tuple = image_processor(A_ , return_tensors="np" ) _UpperCAmelCase : List[str] = processor(images=A_ , return_tensors="np" ) for key in image_dict.keys(): self.assertAlmostEqual(image_dict[key].sum() , input_processor[key].sum() , delta=1e-2 ) def _UpperCAmelCase ( self ): '''simple docstring''' _UpperCAmelCase : List[str] = self.get_image_processor() _UpperCAmelCase : Any = self.get_feature_extractor() _UpperCAmelCase : Dict = TvltProcessor(image_processor=A_ , feature_extractor=A_ ) _UpperCAmelCase : str = np.ones([12000] ) _UpperCAmelCase : Optional[Any] = np.ones([3, 224, 224] ) _UpperCAmelCase : List[Any] = processor(audio=A_ , images=A_ ) self.assertListEqual(list(inputs.keys() ) , ["audio_values", "audio_mask", "pixel_values", "pixel_mask"] ) # test if it raises when no input is passed with pytest.raises(A_ ): processor() def _UpperCAmelCase ( self ): '''simple docstring''' _UpperCAmelCase : Optional[Any] = self.get_image_processor() _UpperCAmelCase : int = self.get_feature_extractor() _UpperCAmelCase : str = TvltProcessor(image_processor=A_ , feature_extractor=A_ ) self.assertListEqual( processor.model_input_names , image_processor.model_input_names + feature_extractor.model_input_names , msg="`processor` and `image_processor`+`feature_extractor` model input names do not match" , )
189
1
'''simple docstring''' import argparse import torch from safetensors.torch import load_file from diffusers import StableDiffusionPipeline def lowerCamelCase ( lowerCAmelCase : Union[str, Any] , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : Optional[int] , lowerCAmelCase : Dict , lowerCAmelCase : Any ): """simple docstring""" __magic_name__ : str = StableDiffusionPipeline.from_pretrained(lowerCAmelCase , torch_dtype=torch.floataa ) # load LoRA weight from .safetensors __magic_name__ : Optional[int] = load_file(lowerCAmelCase ) __magic_name__ : Tuple = [] # directly update weight in diffusers model for key in state_dict: # it is suggested to print out the key, it usually will be something like below # "lora_te_text_model_encoder_layers_0_self_attn_k_proj.lora_down.weight" # as we have set the alpha beforehand, so just skip if ".alpha" in key or key in visited: continue if "text" in key: __magic_name__ : Any = key.split('.' )[0].split(LORA_PREFIX_TEXT_ENCODER + '_' )[-1].split('_' ) __magic_name__ : Optional[Any] = pipeline.text_encoder else: __magic_name__ : int = key.split('.' )[0].split(LORA_PREFIX_UNET + '_' )[-1].split('_' ) __magic_name__ : List[str] = pipeline.unet # find the target layer __magic_name__ : Optional[Any] = layer_infos.pop(0 ) while len(lowerCAmelCase ) > -1: try: __magic_name__ : Any = curr_layer.__getattr__(lowerCAmelCase ) if len(lowerCAmelCase ) > 0: __magic_name__ : Any = layer_infos.pop(0 ) elif len(lowerCAmelCase ) == 0: break except Exception: if len(lowerCAmelCase ) > 0: temp_name += "_" + layer_infos.pop(0 ) else: __magic_name__ : Optional[int] = layer_infos.pop(0 ) __magic_name__ : Any = [] if "lora_down" in key: pair_keys.append(key.replace('lora_down' , 'lora_up' ) ) pair_keys.append(lowerCAmelCase ) else: pair_keys.append(lowerCAmelCase ) pair_keys.append(key.replace('lora_up' , 'lora_down' ) ) # update weight if len(state_dict[pair_keys[0]].shape ) == 4: __magic_name__ : List[Any] = state_dict[pair_keys[0]].squeeze(3 ).squeeze(2 ).to(torch.floataa ) __magic_name__ : Tuple = state_dict[pair_keys[1]].squeeze(3 ).squeeze(2 ).to(torch.floataa ) curr_layer.weight.data += alpha * torch.mm(lowerCAmelCase , lowerCAmelCase ).unsqueeze(2 ).unsqueeze(3 ) else: __magic_name__ : List[str] = state_dict[pair_keys[0]].to(torch.floataa ) __magic_name__ : str = state_dict[pair_keys[1]].to(torch.floataa ) curr_layer.weight.data += alpha * torch.mm(lowerCAmelCase , lowerCAmelCase ) # update visited list for item in pair_keys: visited.append(lowerCAmelCase ) return pipeline if __name__ == "__main__": lowerCAmelCase :Optional[Any] = argparse.ArgumentParser() parser.add_argument( '''--base_model_path''', default=None, type=str, required=True, help='''Path to the base model in diffusers format.''' ) parser.add_argument( '''--checkpoint_path''', default=None, type=str, required=True, help='''Path to the checkpoint to convert.''' ) parser.add_argument('''--dump_path''', default=None, type=str, required=True, help='''Path to the output model.''') parser.add_argument( '''--lora_prefix_unet''', default='''lora_unet''', type=str, help='''The prefix of UNet weight in safetensors''' ) parser.add_argument( '''--lora_prefix_text_encoder''', default='''lora_te''', type=str, help='''The prefix of text encoder weight in safetensors''', ) parser.add_argument('''--alpha''', default=0.75, type=float, help='''The merging ratio in W = W0 + alpha * deltaW''') parser.add_argument( '''--to_safetensors''', action='''store_true''', help='''Whether to store pipeline in safetensors format or not.''' ) parser.add_argument('''--device''', type=str, help='''Device to use (e.g. cpu, cuda:0, cuda:1, etc.)''') lowerCAmelCase :List[Any] = parser.parse_args() lowerCAmelCase :Any = args.base_model_path lowerCAmelCase :Dict = args.checkpoint_path lowerCAmelCase :Optional[Any] = args.dump_path lowerCAmelCase :List[Any] = args.lora_prefix_unet lowerCAmelCase :List[str] = args.lora_prefix_text_encoder lowerCAmelCase :Tuple = args.alpha lowerCAmelCase :Tuple = convert(base_model_path, checkpoint_path, lora_prefix_unet, lora_prefix_text_encoder, alpha) lowerCAmelCase :Optional[int] = pipe.to(args.device) pipe.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
331
"""simple docstring""" from typing import Optional, Union import torch from torch import nn from ...configuration_utils import ConfigMixin, register_to_config from ...models.modeling_utils import ModelMixin class snake_case__ ( snake_case_, snake_case_ ): @register_to_config def __init__( self , lowerCamelCase = 768 , ): super().__init__() __a = nn.Parameter(torch.zeros(1 , lowerCamelCase ) ) __a = nn.Parameter(torch.ones(1 , lowerCamelCase ) ) def a__ ( self , lowerCamelCase = None , lowerCamelCase = None , ): __a = nn.Parameter(self.mean.to(lowerCamelCase ).to(lowerCamelCase ) ) __a = nn.Parameter(self.std.to(lowerCamelCase ).to(lowerCamelCase ) ) return self def a__ ( self , lowerCamelCase ): __a = (embeds - self.mean) * 1.0 / self.std return embeds def a__ ( self , lowerCamelCase ): __a = (embeds * self.std) + self.mean return embeds
261
0
"""simple docstring""" class _a : """simple docstring""" def __init__( self : List[Any] )->List[str]: _UpperCAmelCase = {} def lowercase__ ( self : Optional[int] )->None: print(self.vertex ) for i in self.vertex: print(__UpperCamelCase , ''' -> ''' , ''' -> '''.join([str(__UpperCamelCase ) for j in self.vertex[i]] ) ) def lowercase__ ( self : Dict , __UpperCamelCase : int , __UpperCamelCase : int )->None: # check if vertex is already present, if from_vertex in self.vertex: self.vertex[from_vertex].append(__UpperCamelCase ) else: # else make a new vertex _UpperCAmelCase = [to_vertex] def lowercase__ ( self : Optional[int] )->None: # visited array for storing already visited nodes _UpperCAmelCase = [False] * len(self.vertex ) # call the recursive helper function for i in range(len(self.vertex ) ): if not visited[i]: self.dfs_recursive(__UpperCamelCase , __UpperCamelCase ) def lowercase__ ( self : Tuple , __UpperCamelCase : int , __UpperCamelCase : list )->None: # mark start vertex as visited _UpperCAmelCase = True print(__UpperCamelCase , end=''' ''' ) # Recur for all the vertices that are adjacent to this node for i in self.vertex: if not visited[i]: self.dfs_recursive(__UpperCamelCase , __UpperCamelCase ) if __name__ == "__main__": __A : str = Graph() g.add_edge(0, 1) g.add_edge(0, 2) g.add_edge(1, 2) g.add_edge(2, 0) g.add_edge(2, 3) g.add_edge(3, 3) g.print_graph() print("DFS:") g.dfs() # OUTPUT: # 0 -> 1 -> 2 # 1 -> 2 # 2 -> 0 -> 3 # 3 -> 3 # DFS: # 0 1 2 3
326
"""simple docstring""" from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __A : Optional[int] = {"configuration_mmbt": ["MMBTConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : int = ["MMBTForClassification", "MMBTModel", "ModalEmbeddings"] if TYPE_CHECKING: from .configuration_mmbt import MMBTConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mmbt import MMBTForClassification, MMBTModel, ModalEmbeddings else: import sys __A : str = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
326
1
import math import qiskit def A ( _lowercase = 1 , _lowercase = 1 , _lowercase = 1 ): if ( isinstance(_lowercase , _lowercase ) or isinstance(_lowercase , _lowercase ) or isinstance(_lowercase , _lowercase ) ): raise TypeError('''inputs must be integers.''' ) if (input_a < 0) or (input_a < 0) or (carry_in < 0): raise ValueError('''inputs must be positive.''' ) if ( (math.floor(_lowercase ) != input_a) or (math.floor(_lowercase ) != input_a) or (math.floor(_lowercase ) != carry_in) ): raise ValueError('''inputs must be exact integers.''' ) if (input_a > 2) or (input_a > 2) or (carry_in > 2): raise ValueError('''inputs must be less or equal to 2.''' ) # build registers SCREAMING_SNAKE_CASE : Dict = qiskit.QuantumRegister(4 , '''qr''' ) SCREAMING_SNAKE_CASE : List[Any] = qiskit.ClassicalRegister(2 , '''cr''' ) # list the entries SCREAMING_SNAKE_CASE : List[str] = [input_a, input_a, carry_in] SCREAMING_SNAKE_CASE : Union[str, Any] = qiskit.QuantumCircuit(_lowercase , _lowercase ) for i in range(0 , 3 ): if entry[i] == 2: quantum_circuit.h(_lowercase ) # for hadamard entries elif entry[i] == 1: quantum_circuit.x(_lowercase ) # for 1 entries elif entry[i] == 0: quantum_circuit.i(_lowercase ) # for 0 entries # build the circuit quantum_circuit.ccx(0 , 1 , 3 ) # ccx = toffoli gate quantum_circuit.cx(0 , 1 ) quantum_circuit.ccx(1 , 2 , 3 ) quantum_circuit.cx(1 , 2 ) quantum_circuit.cx(0 , 1 ) quantum_circuit.measure([2, 3] , _lowercase ) # measure the last two qbits SCREAMING_SNAKE_CASE : int = qiskit.Aer.get_backend('''aer_simulator''' ) SCREAMING_SNAKE_CASE : Union[str, Any] = qiskit.execute(_lowercase , _lowercase , shots=1_000 ) return job.result().get_counts(_lowercase ) if __name__ == "__main__": print(f"""Total sum count for state is: {quantum_full_adder(1, 1, 1)}""")
182
import unittest from pathlib import Path from tempfile import TemporaryDirectory from transformers import AutoConfig, TFGPTaLMHeadModel, is_keras_nlp_available, is_tf_available from transformers.models.gpta.tokenization_gpta import GPTaTokenizer from transformers.testing_utils import require_keras_nlp, require_tf, slow if is_tf_available(): import tensorflow as tf if is_keras_nlp_available(): from transformers.models.gpta import TFGPTaTokenizer __UpperCamelCase : Optional[Any] = ['gpt2'] __UpperCamelCase : str = 'gpt2' if is_tf_available(): class lowercase__ ( tf.Module): def __init__( self : Optional[Any] , UpperCamelCase__ : Union[str, Any] ): '''simple docstring''' super().__init__() SCREAMING_SNAKE_CASE : Dict = tokenizer SCREAMING_SNAKE_CASE : int = AutoConfig.from_pretrained(UpperCamelCase__ ) SCREAMING_SNAKE_CASE : Dict = TFGPTaLMHeadModel.from_config(UpperCamelCase__ ) @tf.function(input_signature=(tf.TensorSpec((None,) , tf.string , name='''text''' ),) ) def __A ( self : str , UpperCamelCase__ : int ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = self.tokenizer(UpperCamelCase__ ) SCREAMING_SNAKE_CASE : Optional[Any] = tokenized['''input_ids'''].to_tensor() SCREAMING_SNAKE_CASE : Any = tf.cast(input_ids_dense > 0 , tf.intaa ) # input_mask = tf.reshape(input_mask, [-1, MAX_SEQ_LEN]) SCREAMING_SNAKE_CASE : List[Any] = self.model(input_ids=UpperCamelCase__ , attention_mask=UpperCamelCase__ )['''logits'''] return outputs @require_tf @require_keras_nlp class lowercase__ ( unittest.TestCase): def __A ( self : int ): '''simple docstring''' super().setUp() SCREAMING_SNAKE_CASE : Optional[Any] = [GPTaTokenizer.from_pretrained(UpperCamelCase__ ) for checkpoint in (TOKENIZER_CHECKPOINTS)] SCREAMING_SNAKE_CASE : List[str] = [TFGPTaTokenizer.from_pretrained(UpperCamelCase__ ) for checkpoint in TOKENIZER_CHECKPOINTS] assert len(self.tokenizers ) == len(self.tf_tokenizers ) SCREAMING_SNAKE_CASE : Tuple = [ '''This is a straightforward English test sentence.''', '''This one has some weird characters\rto\nsee\r\nif those\u00E9break things.''', '''Now we\'re going to add some Chinese: 一 二 三 一二三''', '''And some much more rare Chinese: 齉 堃 齉堃''', '''Je vais aussi écrire en français pour tester les accents''', '''Classical Irish also has some unusual characters, so in they go: Gaelaċ, ꝼ''', ] SCREAMING_SNAKE_CASE : Dict = list(zip(self.test_sentences , self.test_sentences[::-1] ) ) def __A ( self : str ): '''simple docstring''' for tokenizer, tf_tokenizer in zip(self.tokenizers , self.tf_tokenizers ): for test_inputs in self.test_sentences: SCREAMING_SNAKE_CASE : Dict = tokenizer([test_inputs] , return_tensors='''tf''' ) SCREAMING_SNAKE_CASE : Any = tf_tokenizer([test_inputs] ) for key in python_outputs.keys(): # convert them to numpy to avoid messing with ragged tensors SCREAMING_SNAKE_CASE : int = python_outputs[key].numpy() SCREAMING_SNAKE_CASE : int = tf_outputs[key].numpy() self.assertTrue(tf.reduce_all(python_outputs_values.shape == tf_outputs_values.shape ) ) self.assertTrue(tf.reduce_all(tf.cast(UpperCamelCase__ , tf.intaa ) == tf_outputs_values ) ) @slow def __A ( self : Optional[Any] ): '''simple docstring''' for tf_tokenizer in self.tf_tokenizers: SCREAMING_SNAKE_CASE : Optional[int] = tf.function(UpperCamelCase__ ) for test_inputs in self.test_sentences: SCREAMING_SNAKE_CASE : Optional[int] = tf.constant(UpperCamelCase__ ) SCREAMING_SNAKE_CASE : List[str] = compiled_tokenizer(UpperCamelCase__ ) SCREAMING_SNAKE_CASE : List[Any] = tf_tokenizer(UpperCamelCase__ ) for key in eager_outputs.keys(): self.assertTrue(tf.reduce_all(eager_outputs[key] == compiled_outputs[key] ) ) @slow def __A ( self : Optional[int] ): '''simple docstring''' for tf_tokenizer in self.tf_tokenizers: SCREAMING_SNAKE_CASE : str = ModelToSave(tokenizer=UpperCamelCase__ ) SCREAMING_SNAKE_CASE : List[Any] = tf.convert_to_tensor([self.test_sentences[0]] ) SCREAMING_SNAKE_CASE : Union[str, Any] = model.serving(UpperCamelCase__ ) # Build model with some sample inputs with TemporaryDirectory() as tempdir: SCREAMING_SNAKE_CASE : List[str] = Path(UpperCamelCase__ ) / '''saved.model''' tf.saved_model.save(UpperCamelCase__ , UpperCamelCase__ , signatures={'''serving_default''': model.serving} ) SCREAMING_SNAKE_CASE : str = tf.saved_model.load(UpperCamelCase__ ) SCREAMING_SNAKE_CASE : int = loaded_model.signatures['''serving_default'''](UpperCamelCase__ )['''output_0'''] # We may see small differences because the loaded model is compiled, so we need an epsilon for the test self.assertTrue(tf.reduce_all(out == loaded_output ) ) @slow def __A ( self : List[str] ): '''simple docstring''' for tf_tokenizer in self.tf_tokenizers: SCREAMING_SNAKE_CASE : List[Any] = tf.convert_to_tensor([self.test_sentences[0]] ) SCREAMING_SNAKE_CASE : Tuple = tf_tokenizer(UpperCamelCase__ ) # Build model with some sample inputs SCREAMING_SNAKE_CASE : Union[str, Any] = tf_tokenizer.get_config() SCREAMING_SNAKE_CASE : Optional[Any] = TFGPTaTokenizer.from_config(UpperCamelCase__ ) SCREAMING_SNAKE_CASE : str = model_from_config(UpperCamelCase__ ) for key in from_config_output.keys(): self.assertTrue(tf.reduce_all(from_config_output[key] == out[key] ) ) @slow def __A ( self : Optional[int] ): '''simple docstring''' for tf_tokenizer in self.tf_tokenizers: # for the test to run SCREAMING_SNAKE_CASE : Tuple = 12_3123 for max_length in [3, 5, 1024]: SCREAMING_SNAKE_CASE : Dict = tf.convert_to_tensor([self.test_sentences[0]] ) SCREAMING_SNAKE_CASE : Tuple = tf_tokenizer(UpperCamelCase__ , max_length=UpperCamelCase__ ) SCREAMING_SNAKE_CASE : Tuple = out['''input_ids'''].numpy().shape[1] assert out_length == max_length
182
1
import argparse from pathlib import Path from typing import Dict, OrderedDict, Tuple import torch from audiocraft.models import MusicGen from transformers import ( AutoFeatureExtractor, AutoTokenizer, EncodecModel, MusicgenDecoderConfig, MusicgenForConditionalGeneration, MusicgenProcessor, TaEncoderModel, ) from transformers.models.musicgen.modeling_musicgen import MusicgenForCausalLM from transformers.utils import logging logging.set_verbosity_info() _snake_case = logging.get_logger(__name__) _snake_case = ["model.decoder.embed_positions.weights"] def A ( _lowerCamelCase ): '''simple docstring''' if "emb" in name: _lowerCAmelCase : List[Any] = name.replace("emb" , "model.decoder.embed_tokens" ) if "transformer" in name: _lowerCAmelCase : Optional[Any] = name.replace("transformer" , "model.decoder" ) if "cross_attention" in name: _lowerCAmelCase : int = name.replace("cross_attention" , "encoder_attn" ) if "linear1" in name: _lowerCAmelCase : Dict = name.replace("linear1" , "fc1" ) if "linear2" in name: _lowerCAmelCase : int = name.replace("linear2" , "fc2" ) if "norm1" in name: _lowerCAmelCase : Optional[Any] = name.replace("norm1" , "self_attn_layer_norm" ) if "norm_cross" in name: _lowerCAmelCase : Union[str, Any] = name.replace("norm_cross" , "encoder_attn_layer_norm" ) if "norm2" in name: _lowerCAmelCase : Tuple = name.replace("norm2" , "final_layer_norm" ) if "out_norm" in name: _lowerCAmelCase : Any = name.replace("out_norm" , "model.decoder.layer_norm" ) if "linears" in name: _lowerCAmelCase : Dict = name.replace("linears" , "lm_heads" ) if "condition_provider.conditioners.description.output_proj" in name: _lowerCAmelCase : Union[str, Any] = name.replace("condition_provider.conditioners.description.output_proj" , "enc_to_dec_proj" ) return name def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : List[str] = list(state_dict.keys() ) _lowerCAmelCase : str = {} for key in keys: _lowerCAmelCase : Optional[int] = state_dict.pop(_lowerCamelCase ) _lowerCAmelCase : Union[str, Any] = rename_keys(_lowerCamelCase ) if "in_proj_weight" in key: # split fused qkv proj _lowerCAmelCase : int = val[:hidden_size, :] _lowerCAmelCase : Optional[Any] = val[hidden_size : 2 * hidden_size, :] _lowerCAmelCase : Optional[Any] = val[-hidden_size:, :] elif "enc_to_dec_proj" in key: _lowerCAmelCase : Optional[int] = val else: _lowerCAmelCase : Union[str, Any] = val return state_dict, enc_dec_proj_state_dict def A ( _lowerCamelCase ): '''simple docstring''' if checkpoint == "small": # default config values _lowerCAmelCase : Optional[int] = 1_024 _lowerCAmelCase : List[str] = 24 _lowerCAmelCase : int = 16 elif checkpoint == "medium": _lowerCAmelCase : str = 1_536 _lowerCAmelCase : str = 48 _lowerCAmelCase : Union[str, Any] = 24 elif checkpoint == "large": _lowerCAmelCase : Dict = 2_048 _lowerCAmelCase : Any = 48 _lowerCAmelCase : Optional[Any] = 32 else: raise ValueError(F"Checkpoint should be one of `['small', 'medium', 'large']`, got {checkpoint}." ) _lowerCAmelCase : int = MusicgenDecoderConfig( hidden_size=_lowerCamelCase , ffn_dim=hidden_size * 4 , num_hidden_layers=_lowerCamelCase , num_attention_heads=_lowerCamelCase , ) return config @torch.no_grad() def A ( _lowerCamelCase , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase="cpu" ): '''simple docstring''' _lowerCAmelCase : Any = MusicGen.get_pretrained(_lowerCamelCase , device=_lowerCamelCase ) _lowerCAmelCase : int = decoder_config_from_checkpoint(_lowerCamelCase ) _lowerCAmelCase : List[Any] = fairseq_model.lm.state_dict() _lowerCAmelCase : Any = rename_state_dict( _lowerCamelCase , hidden_size=decoder_config.hidden_size ) _lowerCAmelCase : Optional[Any] = TaEncoderModel.from_pretrained("t5-base" ) _lowerCAmelCase : Tuple = EncodecModel.from_pretrained("facebook/encodec_32khz" ) _lowerCAmelCase : Union[str, Any] = MusicgenForCausalLM(_lowerCamelCase ).eval() # load all decoder weights - expect that we'll be missing embeddings and enc-dec projection _lowerCAmelCase : Optional[Any] = decoder.load_state_dict(_lowerCamelCase , strict=_lowerCamelCase ) for key in missing_keys.copy(): if key.startswith(("text_encoder", "audio_encoder") ) or key in EXPECTED_MISSING_KEYS: missing_keys.remove(_lowerCamelCase ) if len(_lowerCamelCase ) > 0: raise ValueError(F"Missing key(s) in state_dict: {missing_keys}" ) if len(_lowerCamelCase ) > 0: raise ValueError(F"Unexpected key(s) in state_dict: {unexpected_keys}" ) # init the composite model _lowerCAmelCase : Any = MusicgenForConditionalGeneration(text_encoder=_lowerCamelCase , audio_encoder=_lowerCamelCase , decoder=_lowerCamelCase ) # load the pre-trained enc-dec projection (from the decoder state dict) model.enc_to_dec_proj.load_state_dict(_lowerCamelCase ) # check we can do a forward pass _lowerCAmelCase : Optional[Any] = torch.arange(0 , 8 , dtype=torch.long ).reshape(2 , -1 ) _lowerCAmelCase : List[str] = input_ids.reshape(2 * 4 , -1 ) with torch.no_grad(): _lowerCAmelCase : Dict = model(input_ids=_lowerCamelCase , decoder_input_ids=_lowerCamelCase ).logits if logits.shape != (8, 1, 2_048): raise ValueError("Incorrect shape for logits" ) # now construct the processor _lowerCAmelCase : int = AutoTokenizer.from_pretrained("t5-base" ) _lowerCAmelCase : List[Any] = AutoFeatureExtractor.from_pretrained("facebook/encodec_32khz" , padding_side="left" ) _lowerCAmelCase : Tuple = MusicgenProcessor(feature_extractor=_lowerCamelCase , tokenizer=_lowerCamelCase ) # set the appropriate bos/pad token ids _lowerCAmelCase : Optional[Any] = 2_048 _lowerCAmelCase : Any = 2_048 # set other default generation config params _lowerCAmelCase : Optional[int] = int(30 * audio_encoder.config.frame_rate ) _lowerCAmelCase : Dict = True _lowerCAmelCase : List[Any] = 3.0 if pytorch_dump_folder is not None: Path(_lowerCamelCase ).mkdir(exist_ok=_lowerCamelCase ) logger.info(F"Saving model {checkpoint} to {pytorch_dump_folder}" ) model.save_pretrained(_lowerCamelCase ) processor.save_pretrained(_lowerCamelCase ) if repo_id: logger.info(F"Pushing model {checkpoint} to {repo_id}" ) model.push_to_hub(_lowerCamelCase ) processor.push_to_hub(_lowerCamelCase ) if __name__ == "__main__": _snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument( "--checkpoint", default="small", type=str, help="Checkpoint size of the MusicGen model you'd like to convert. Can be one of: `['small', 'medium', 'large']`.", ) parser.add_argument( "--pytorch_dump_folder", required=True, default=None, type=str, help="Path to the output PyTorch model directory.", ) parser.add_argument( "--push_to_hub", default=None, type=str, help="Where to upload the converted model on the 🤗 hub." ) parser.add_argument( "--device", default="cpu", type=str, help="Torch device to run the conversion, either cpu or cuda." ) _snake_case = parser.parse_args() convert_musicgen_checkpoint(args.checkpoint, args.pytorch_dump_folder, args.push_to_hub)
368
from __future__ import annotations import unittest from transformers import MobileBertConfig, is_tf_available from transformers.models.auto import get_values from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TF_MODEL_FOR_PRETRAINING_MAPPING, TFMobileBertForMaskedLM, TFMobileBertForMultipleChoice, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertModel, ) @require_tf class UpperCAmelCase_ ( a , a , unittest.TestCase): lowerCamelCase__ = ( ( TFMobileBertModel, TFMobileBertForMaskedLM, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertForMultipleChoice, ) if is_tf_available() else () ) lowerCamelCase__ = ( { 'feature-extraction': TFMobileBertModel, 'fill-mask': TFMobileBertForMaskedLM, 'question-answering': TFMobileBertForQuestionAnswering, 'text-classification': TFMobileBertForSequenceClassification, 'token-classification': TFMobileBertForTokenClassification, 'zero-shot': TFMobileBertForSequenceClassification, } if is_tf_available() else {} ) lowerCamelCase__ = False lowerCamelCase__ = False def snake_case__ ( self, __a, __a, __a=False): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = super()._prepare_for_class(__a, __a, return_labels=__a) if return_labels: if model_class in get_values(__a): _lowerCAmelCase : Tuple = tf.zeros(self.model_tester.batch_size, dtype=tf.intaa) return inputs_dict class UpperCAmelCase_ ( a): def __init__( self, __a, __a=13, __a=7, __a=True, __a=True, __a=True, __a=True, __a=99, __a=32, __a=32, __a=2, __a=4, __a=37, __a="gelu", __a=0.1, __a=0.1, __a=512, __a=16, __a=2, __a=0.02, __a=3, __a=4, __a=None, ): '''simple docstring''' _lowerCAmelCase : List[Any] = parent _lowerCAmelCase : Dict = batch_size _lowerCAmelCase : str = seq_length _lowerCAmelCase : int = is_training _lowerCAmelCase : List[Any] = use_input_mask _lowerCAmelCase : Optional[Any] = use_token_type_ids _lowerCAmelCase : Union[str, Any] = use_labels _lowerCAmelCase : int = vocab_size _lowerCAmelCase : int = hidden_size _lowerCAmelCase : Optional[int] = num_hidden_layers _lowerCAmelCase : Tuple = num_attention_heads _lowerCAmelCase : Dict = intermediate_size _lowerCAmelCase : Tuple = hidden_act _lowerCAmelCase : Any = hidden_dropout_prob _lowerCAmelCase : Any = attention_probs_dropout_prob _lowerCAmelCase : List[Any] = max_position_embeddings _lowerCAmelCase : Any = type_vocab_size _lowerCAmelCase : List[Any] = type_sequence_label_size _lowerCAmelCase : Union[str, Any] = initializer_range _lowerCAmelCase : List[str] = num_labels _lowerCAmelCase : List[Any] = num_choices _lowerCAmelCase : str = scope _lowerCAmelCase : Union[str, Any] = embedding_size def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[Any] = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) _lowerCAmelCase : str = None if self.use_input_mask: _lowerCAmelCase : List[str] = random_attention_mask([self.batch_size, self.seq_length]) _lowerCAmelCase : List[str] = None if self.use_token_type_ids: _lowerCAmelCase : Dict = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size) _lowerCAmelCase : Optional[Any] = None _lowerCAmelCase : Optional[Any] = None _lowerCAmelCase : Optional[int] = None if self.use_labels: _lowerCAmelCase : int = ids_tensor([self.batch_size], self.type_sequence_label_size) _lowerCAmelCase : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length], self.num_labels) _lowerCAmelCase : str = ids_tensor([self.batch_size], self.num_choices) _lowerCAmelCase : Optional[Any] = MobileBertConfig( vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, type_vocab_size=self.type_vocab_size, initializer_range=self.initializer_range, embedding_size=self.embedding_size, ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def snake_case__ ( self, __a, __a, __a, __a, __a, __a, __a): '''simple docstring''' _lowerCAmelCase : str = TFMobileBertModel(config=__a) _lowerCAmelCase : List[str] = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} _lowerCAmelCase : Any = model(__a) _lowerCAmelCase : Optional[Any] = [input_ids, input_mask] _lowerCAmelCase : List[Any] = model(__a) _lowerCAmelCase : Any = model(__a) self.parent.assertEqual( result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.hidden_size)) def snake_case__ ( self, __a, __a, __a, __a, __a, __a, __a): '''simple docstring''' _lowerCAmelCase : int = TFMobileBertForMaskedLM(config=__a) _lowerCAmelCase : List[str] = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} _lowerCAmelCase : List[Any] = model(__a) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size)) def snake_case__ ( self, __a, __a, __a, __a, __a, __a, __a): '''simple docstring''' _lowerCAmelCase : str = TFMobileBertForNextSentencePrediction(config=__a) _lowerCAmelCase : Optional[int] = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} _lowerCAmelCase : List[str] = model(__a) self.parent.assertEqual(result.logits.shape, (self.batch_size, 2)) def snake_case__ ( self, __a, __a, __a, __a, __a, __a, __a): '''simple docstring''' _lowerCAmelCase : Optional[Any] = TFMobileBertForPreTraining(config=__a) _lowerCAmelCase : Any = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} _lowerCAmelCase : Optional[Any] = model(__a) self.parent.assertEqual( result.prediction_logits.shape, (self.batch_size, self.seq_length, self.vocab_size)) self.parent.assertEqual(result.seq_relationship_logits.shape, (self.batch_size, 2)) def snake_case__ ( self, __a, __a, __a, __a, __a, __a, __a): '''simple docstring''' _lowerCAmelCase : Dict = self.num_labels _lowerCAmelCase : Optional[Any] = TFMobileBertForSequenceClassification(config=__a) _lowerCAmelCase : List[Any] = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} _lowerCAmelCase : Optional[Any] = model(__a) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels)) def snake_case__ ( self, __a, __a, __a, __a, __a, __a, __a): '''simple docstring''' _lowerCAmelCase : Optional[Any] = self.num_choices _lowerCAmelCase : List[Any] = TFMobileBertForMultipleChoice(config=__a) _lowerCAmelCase : Dict = tf.tile(tf.expand_dims(__a, 1), (1, self.num_choices, 1)) _lowerCAmelCase : List[str] = tf.tile(tf.expand_dims(__a, 1), (1, self.num_choices, 1)) _lowerCAmelCase : Optional[int] = tf.tile(tf.expand_dims(__a, 1), (1, self.num_choices, 1)) _lowerCAmelCase : Optional[Any] = { "input_ids": multiple_choice_inputs_ids, "attention_mask": multiple_choice_input_mask, "token_type_ids": multiple_choice_token_type_ids, } _lowerCAmelCase : List[str] = model(__a) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_choices)) def snake_case__ ( self, __a, __a, __a, __a, __a, __a, __a): '''simple docstring''' _lowerCAmelCase : List[str] = self.num_labels _lowerCAmelCase : Union[str, Any] = TFMobileBertForTokenClassification(config=__a) _lowerCAmelCase : Optional[Any] = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} _lowerCAmelCase : Union[str, Any] = model(__a) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels)) def snake_case__ ( self, __a, __a, __a, __a, __a, __a, __a): '''simple docstring''' _lowerCAmelCase : int = TFMobileBertForQuestionAnswering(config=__a) _lowerCAmelCase : Union[str, Any] = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} _lowerCAmelCase : Union[str, Any] = model(__a) self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length)) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[Any] = self.prepare_config_and_inputs() ( ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ) : Union[str, Any] = config_and_inputs _lowerCAmelCase : List[str] = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = TFMobileBertModelTest.TFMobileBertModelTester(self) _lowerCAmelCase : List[Any] = ConfigTester(self, config_class=__a, hidden_size=37) def snake_case__ ( self): '''simple docstring''' self.config_tester.run_common_tests() def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_model(*__a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_masked_lm(*__a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_multiple_choice(*__a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_next_sequence_prediction(*__a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_pretraining(*__a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_question_answering(*__a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_sequence_classification(*__a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_token_classification(*__a) @slow def snake_case__ ( self): '''simple docstring''' for model_name in ["google/mobilebert-uncased"]: _lowerCAmelCase : List[Any] = TFMobileBertModel.from_pretrained(__a) self.assertIsNotNone(__a) @require_tf class UpperCAmelCase_ ( unittest.TestCase): @slow def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : str = TFMobileBertForPreTraining.from_pretrained("google/mobilebert-uncased") _lowerCAmelCase : Any = tf.constant([[0, 1, 2, 3, 4, 5]]) _lowerCAmelCase : Tuple = model(__a)[0] _lowerCAmelCase : Union[str, Any] = [1, 6, 3_0522] self.assertEqual(output.shape, __a) _lowerCAmelCase : Tuple = tf.constant( [ [ [-4.5_919_547, -9.248_295, -9.645_256], [-6.7_306_175, -6.440_284, -6.6_052_837], [-7.2_743_506, -6.7_847_915, -6.024_673], ] ]) tf.debugging.assert_near(output[:, :3, :3], __a, atol=1E-4)
300
0
import unittest from transformers import BarthezTokenizer, BarthezTokenizerFast, BatchEncoding from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers @require_sentencepiece @slow # see https://github.com/huggingface/transformers/issues/11457 class __lowerCAmelCase ( a , unittest.TestCase ): """simple docstring""" _SCREAMING_SNAKE_CASE = BarthezTokenizer _SCREAMING_SNAKE_CASE = BarthezTokenizerFast _SCREAMING_SNAKE_CASE = True _SCREAMING_SNAKE_CASE = True def lowerCAmelCase__ ( self : str ) -> str: """simple docstring""" super().setUp() snake_case_ = BarthezTokenizerFast.from_pretrained("moussaKam/mbarthez" ) tokenizer.save_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname , legacy_format=_lowerCAmelCase ) snake_case_ = tokenizer def lowerCAmelCase__ ( self : Optional[Any] ) -> Optional[Any]: """simple docstring""" snake_case_ = "<pad>" snake_case_ = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_lowerCAmelCase ) , _lowerCAmelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_lowerCAmelCase ) , _lowerCAmelCase ) def lowerCAmelCase__ ( self : Dict ) -> Any: """simple docstring""" snake_case_ = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , "<s>" ) self.assertEqual(vocab_keys[1] , "<pad>" ) self.assertEqual(vocab_keys[-1] , "<mask>" ) self.assertEqual(len(_lowerCAmelCase ) , 1_0_1_1_2_2 ) def lowerCAmelCase__ ( self : Tuple ) -> List[Any]: """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 1_0_1_1_2_2 ) @require_torch def lowerCAmelCase__ ( self : List[Any] ) -> str: """simple docstring""" snake_case_ = ["A long paragraph for summarization.", "Another paragraph for summarization."] snake_case_ = [0, 5_7, 3_0_1_8, 7_0_3_0_7, 9_1, 2] snake_case_ = self.tokenizer( _lowerCAmelCase , max_length=len(_lowerCAmelCase ) , padding=_lowerCAmelCase , truncation=_lowerCAmelCase , return_tensors="pt" ) self.assertIsInstance(_lowerCAmelCase , _lowerCAmelCase ) self.assertEqual((2, 6) , batch.input_ids.shape ) self.assertEqual((2, 6) , batch.attention_mask.shape ) snake_case_ = batch.input_ids.tolist()[0] self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase ) def lowerCAmelCase__ ( self : Optional[Any] ) -> Any: """simple docstring""" if not self.test_rust_tokenizer: return snake_case_ = self.get_tokenizer() snake_case_ = self.get_rust_tokenizer() snake_case_ = "I was born in 92000, and this is falsé." snake_case_ = tokenizer.tokenize(_lowerCAmelCase ) snake_case_ = rust_tokenizer.tokenize(_lowerCAmelCase ) self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase ) snake_case_ = tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ) snake_case_ = rust_tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ) self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase ) snake_case_ = self.get_rust_tokenizer() snake_case_ = tokenizer.encode(_lowerCAmelCase ) snake_case_ = rust_tokenizer.encode(_lowerCAmelCase ) self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase ) @slow def lowerCAmelCase__ ( self : int ) -> Optional[Any]: """simple docstring""" # fmt: off snake_case_ = {"input_ids": [[0, 4_9_0, 1_4_3_2_8, 4_5_0_7, 3_5_4, 4_7, 4_3_6_6_9, 9_5, 2_5, 7_8_1_1_7, 2_0_2_1_5, 1_9_7_7_9, 1_9_0, 2_2, 4_0_0, 4, 3_5_3_4_3, 8_0_3_1_0, 6_0_3, 8_6, 2_4_9_3_7, 1_0_5, 3_3_4_3_8, 9_4_7_6_2, 1_9_6, 3_9_6_4_2, 7, 1_5, 1_5_9_3_3, 1_7_3, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 1_0_5_3_4, 8_7, 2_5, 6_6, 3_3_5_8, 1_9_6, 5_5_2_8_9, 8, 8_2_9_6_1, 8_1, 2_2_0_4, 7_5_2_0_3, 7, 1_5, 7_6_3, 1_2_9_5_6, 2_1_6, 1_7_8, 1_4_3_2_8, 9_5_9_5, 1_3_7_7, 6_9_6_9_3, 7, 4_4_8, 7_1_0_2_1, 1_9_6, 1_8_1_0_6, 1_4_3_7, 1_3_9_7_4, 1_0_8, 9_0_8_3, 4, 4_9_3_1_5, 7, 3_9, 8_6, 1_3_2_6, 2_7_9_3, 4_6_3_3_3, 4, 4_4_8, 1_9_6, 7_4_5_8_8, 7, 4_9_3_1_5, 7, 3_9, 2_1, 8_2_2, 3_8_4_7_0, 7_4, 2_1, 6_6_7_2_3, 6_2_4_8_0, 8, 2_2_0_5_0, 5, 2]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on # moussaKam/mbarthez is a french model. So we also use french texts. snake_case_ = [ "Le transformeur est un modèle d'apprentissage profond introduit en 2017, " "utilisé principalement dans le domaine du traitement automatique des langues (TAL).", "À l'instar des réseaux de neurones récurrents (RNN), les transformeurs sont conçus " "pour gérer des données séquentielles, telles que le langage naturel, pour des tâches " "telles que la traduction et la synthèse de texte.", ] self.tokenizer_integration_test_util( expected_encoding=_lowerCAmelCase , model_name="moussaKam/mbarthez" , revision="c2e4ecbca5e3cd2c37fe1ac285ca4fbdf1366fb6" , sequences=_lowerCAmelCase , )
159
from __future__ import annotations import os from typing import Any import requests SCREAMING_SNAKE_CASE :Tuple = '''https://api.github.com''' # https://docs.github.com/en/free-pro-team@latest/rest/reference/users#get-the-authenticated-user SCREAMING_SNAKE_CASE :Tuple = BASE_URL + '''/user''' # https://github.com/settings/tokens SCREAMING_SNAKE_CASE :Optional[Any] = os.environ.get('''USER_TOKEN''', '''''') def _lowerCAmelCase ( lowerCAmelCase_ :str )->dict[Any, Any]: '''simple docstring''' snake_case_ = { "Authorization": F'''token {auth_token}''', "Accept": "application/vnd.github.v3+json", } return requests.get(lowerCAmelCase_ , headers=lowerCAmelCase_ ).json() if __name__ == "__main__": # pragma: no cover if USER_TOKEN: for key, value in fetch_github_info(USER_TOKEN).items(): print(F'''{key}: {value}''') else: raise ValueError('''\'USER_TOKEN\' field cannot be empty.''')
159
1
import inspect import unittest from transformers import MobileViTConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileViTForImageClassification, MobileViTForSemanticSegmentation, MobileViTModel from transformers.models.mobilevit.modeling_mobilevit import MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class a__ ( snake_case__ ): def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(_A , "hidden_sizes" ) ) self.parent.assertTrue(hasattr(_A , "neck_hidden_sizes" ) ) self.parent.assertTrue(hasattr(_A , "num_attention_heads" ) ) class a__ : def __init__( self , _A , _A=1_3 , _A=3_2 , _A=2 , _A=3 , _A=6_4_0 , _A=4 , _A="silu" , _A=3 , _A=3_2 , _A=0.1 , _A=0.1 , _A=0.1 , _A=0.02 , _A=True , _A=True , _A=1_0 , _A=None , ): """simple docstring""" __lowerCAmelCase = parent __lowerCAmelCase = batch_size __lowerCAmelCase = image_size __lowerCAmelCase = patch_size __lowerCAmelCase = num_channels __lowerCAmelCase = last_hidden_size __lowerCAmelCase = num_attention_heads __lowerCAmelCase = hidden_act __lowerCAmelCase = conv_kernel_size __lowerCAmelCase = output_stride __lowerCAmelCase = hidden_dropout_prob __lowerCAmelCase = attention_probs_dropout_prob __lowerCAmelCase = classifier_dropout_prob __lowerCAmelCase = use_labels __lowerCAmelCase = is_training __lowerCAmelCase = num_labels __lowerCAmelCase = initializer_range __lowerCAmelCase = scope def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __lowerCAmelCase = None __lowerCAmelCase = None if self.use_labels: __lowerCAmelCase = ids_tensor([self.batch_size] , self.num_labels ) __lowerCAmelCase = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) __lowerCAmelCase = self.get_config() return config, pixel_values, labels, pixel_labels def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" return MobileViTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , num_attention_heads=self.num_attention_heads , hidden_act=self.hidden_act , conv_kernel_size=self.conv_kernel_size , output_stride=self.output_stride , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , ) def __SCREAMING_SNAKE_CASE( self , _A , _A , _A , _A ): """simple docstring""" __lowerCAmelCase = MobileViTModel(config=_A ) model.to(_A ) model.eval() __lowerCAmelCase = model(_A ) self.parent.assertEqual( result.last_hidden_state.shape , ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def __SCREAMING_SNAKE_CASE( self , _A , _A , _A , _A ): """simple docstring""" __lowerCAmelCase = self.num_labels __lowerCAmelCase = MobileViTForImageClassification(_A ) model.to(_A ) model.eval() __lowerCAmelCase = model(_A , labels=_A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __SCREAMING_SNAKE_CASE( self , _A , _A , _A , _A ): """simple docstring""" __lowerCAmelCase = self.num_labels __lowerCAmelCase = MobileViTForSemanticSegmentation(_A ) model.to(_A ) model.eval() __lowerCAmelCase = model(_A ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) __lowerCAmelCase = model(_A , labels=_A ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase = self.prepare_config_and_inputs() __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = config_and_inputs __lowerCAmelCase = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class a__ ( snake_case__ , snake_case__ , unittest.TestCase ): _a : Any = ( (MobileViTModel, MobileViTForImageClassification, MobileViTForSemanticSegmentation) if is_torch_available() else () ) _a : Union[str, Any] = ( { """feature-extraction""": MobileViTModel, """image-classification""": MobileViTForImageClassification, """image-segmentation""": MobileViTForSemanticSegmentation, } if is_torch_available() else {} ) _a : int = False _a : Union[str, Any] = False _a : List[str] = False _a : Dict = False def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase = MobileViTModelTester(self ) __lowerCAmelCase = MobileViTConfigTester(self , config_class=_A , has_text_modality=_A ) def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason="MobileViT does not use inputs_embeds" ) def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" pass @unittest.skip(reason="MobileViT does not support input and output embeddings" ) def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" pass @unittest.skip(reason="MobileViT does not output attentions" ) def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" pass def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCAmelCase = model_class(_A ) __lowerCAmelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowerCAmelCase = [*signature.parameters.keys()] __lowerCAmelCase = ["pixel_values"] self.assertListEqual(arg_names[:1] , _A ) @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." ) def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" pass def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_A ) def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" def check_hidden_states_output(_A , _A , _A ): __lowerCAmelCase = model_class(_A ) model.to(_A ) model.eval() with torch.no_grad(): __lowerCAmelCase = model(**self._prepare_for_class(_A , _A ) ) __lowerCAmelCase = outputs.hidden_states __lowerCAmelCase = 5 self.assertEqual(len(_A ) , _A ) # MobileViT's feature maps are of shape (batch_size, num_channels, height, width) # with the width and height being successively divided by 2. __lowerCAmelCase = 2 for i in range(len(_A ) ): self.assertListEqual( list(hidden_states[i].shape[-2:] ) , [self.model_tester.image_size // divisor, self.model_tester.image_size // divisor] , ) divisor *= 2 self.assertEqual(self.model_tester.output_stride , divisor // 2 ) __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCAmelCase = True check_hidden_states_output(_A , _A , _A ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __lowerCAmelCase = True check_hidden_states_output(_A , _A , _A ) def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_A ) def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*_A ) @slow def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" for model_name in MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowerCAmelCase = MobileViTModel.from_pretrained(_A ) self.assertIsNotNone(_A ) def _a ( ): __lowerCAmelCase = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class a__ ( unittest.TestCase ): @cached_property def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" return MobileViTImageProcessor.from_pretrained("apple/mobilevit-xx-small" ) if is_vision_available() else None @slow def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase = MobileViTForImageClassification.from_pretrained("apple/mobilevit-xx-small" ).to(_A ) __lowerCAmelCase = self.default_image_processor __lowerCAmelCase = prepare_img() __lowerCAmelCase = image_processor(images=_A , return_tensors="pt" ).to(_A ) # forward pass with torch.no_grad(): __lowerCAmelCase = model(**_A ) # verify the logits __lowerCAmelCase = torch.Size((1, 1_0_0_0) ) self.assertEqual(outputs.logits.shape , _A ) __lowerCAmelCase = torch.tensor([-1.93_64, -1.23_27, -0.46_53] ).to(_A ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _A , atol=1E-4 ) ) @slow def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase = MobileViTForSemanticSegmentation.from_pretrained("apple/deeplabv3-mobilevit-xx-small" ) __lowerCAmelCase = model.to(_A ) __lowerCAmelCase = MobileViTImageProcessor.from_pretrained("apple/deeplabv3-mobilevit-xx-small" ) __lowerCAmelCase = prepare_img() __lowerCAmelCase = image_processor(images=_A , return_tensors="pt" ).to(_A ) # forward pass with torch.no_grad(): __lowerCAmelCase = model(**_A ) __lowerCAmelCase = outputs.logits # verify the logits __lowerCAmelCase = torch.Size((1, 2_1, 3_2, 3_2) ) self.assertEqual(logits.shape , _A ) __lowerCAmelCase = torch.tensor( [ [[6.97_13, 6.97_86, 7.24_22], [7.28_93, 7.28_25, 7.44_46], [7.65_80, 7.87_97, 7.94_20]], [[-10.68_69, -10.32_50, -10.34_71], [-10.42_28, -9.98_68, -9.71_32], [-11.04_05, -11.02_21, -10.73_18]], [[-3.30_89, -2.85_39, -2.67_40], [-3.27_06, -2.56_21, -2.51_08], [-3.25_34, -2.66_15, -2.66_51]], ] , device=_A , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , _A , atol=1E-4 ) ) @slow def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase = MobileViTForSemanticSegmentation.from_pretrained("apple/deeplabv3-mobilevit-xx-small" ) __lowerCAmelCase = model.to(_A ) __lowerCAmelCase = MobileViTImageProcessor.from_pretrained("apple/deeplabv3-mobilevit-xx-small" ) __lowerCAmelCase = prepare_img() __lowerCAmelCase = image_processor(images=_A , return_tensors="pt" ).to(_A ) # forward pass with torch.no_grad(): __lowerCAmelCase = model(**_A ) __lowerCAmelCase = outputs.logits.detach().cpu() __lowerCAmelCase = image_processor.post_process_semantic_segmentation(outputs=_A , target_sizes=[(5_0, 6_0)] ) __lowerCAmelCase = torch.Size((5_0, 6_0) ) self.assertEqual(segmentation[0].shape , _A ) __lowerCAmelCase = image_processor.post_process_semantic_segmentation(outputs=_A ) __lowerCAmelCase = torch.Size((3_2, 3_2) ) self.assertEqual(segmentation[0].shape , _A )
102
import math def _a ( SCREAMING_SNAKE_CASE_ : int ): if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(SCREAMING_SNAKE_CASE_ ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def _a ( SCREAMING_SNAKE_CASE_ : float = 0.1 ): __lowerCAmelCase = 3 __lowerCAmelCase = 3 while primes / (2 * j - 1) >= ratio: for i in range(j * j + j + 1 , (j + 2) * (j + 2) , j + 1 ): primes += is_prime(SCREAMING_SNAKE_CASE_ ) j += 2 return j if __name__ == "__main__": import doctest doctest.testmod()
102
1
from ..utils import is_flax_available, is_torch_available if is_torch_available(): from .autoencoder_kl import AutoencoderKL from .controlnet import ControlNetModel from .dual_transformer_ad import DualTransformeraDModel from .modeling_utils import ModelMixin from .prior_transformer import PriorTransformer from .ta_film_transformer import TaFilmDecoder from .transformer_ad import TransformeraDModel from .unet_ad import UNetaDModel from .unet_ad import UNetaDModel from .unet_ad_condition import UNetaDConditionModel from .unet_ad_condition import UNetaDConditionModel from .vq_model import VQModel if is_flax_available(): from .controlnet_flax import FlaxControlNetModel from .unet_ad_condition_flax import FlaxUNetaDConditionModel from .vae_flax import FlaxAutoencoderKL
95
"""simple docstring""" import unittest import numpy as np from transformers import RoFormerConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.roformer.modeling_flax_roformer import ( FlaxRoFormerForMaskedLM, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerModel, ) class UpperCAmelCase (unittest.TestCase ): """simple docstring""" def __init__( self , _UpperCAmelCase , _UpperCAmelCase=13 , _UpperCAmelCase=7 , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=99 , _UpperCAmelCase=32 , _UpperCAmelCase=5 , _UpperCAmelCase=4 , _UpperCAmelCase=37 , _UpperCAmelCase="gelu" , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=512 , _UpperCAmelCase=16 , _UpperCAmelCase=2 , _UpperCAmelCase=0.02 , _UpperCAmelCase=4 , ): lowercase__: Dict = parent lowercase__: List[str] = batch_size lowercase__: Optional[Any] = seq_length lowercase__: List[Any] = is_training lowercase__: int = use_attention_mask lowercase__: Tuple = use_token_type_ids lowercase__: Union[str, Any] = use_labels lowercase__: str = vocab_size lowercase__: str = hidden_size lowercase__: str = num_hidden_layers lowercase__: Optional[int] = num_attention_heads lowercase__: List[str] = intermediate_size lowercase__: List[str] = hidden_act lowercase__: Tuple = hidden_dropout_prob lowercase__: int = attention_probs_dropout_prob lowercase__: int = max_position_embeddings lowercase__: Union[str, Any] = type_vocab_size lowercase__: List[Any] = type_sequence_label_size lowercase__: Any = initializer_range lowercase__: str = num_choices def _snake_case ( self ): lowercase__: int = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase__: List[Any] = None if self.use_attention_mask: lowercase__: Tuple = random_attention_mask([self.batch_size, self.seq_length] ) lowercase__: List[Any] = None if self.use_token_type_ids: lowercase__: str = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowercase__: Optional[int] = RoFormerConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_UpperCAmelCase , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def _snake_case ( self ): lowercase__: str = self.prepare_config_and_inputs() lowercase__, lowercase__, lowercase__, lowercase__: Optional[Any] = config_and_inputs lowercase__: Dict = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': attention_mask} return config, inputs_dict @require_flax class UpperCAmelCase (_UpperCAmelCase ,unittest.TestCase ): """simple docstring""" _UpperCAmelCase :List[str] = True _UpperCAmelCase :Union[str, Any] = ( ( FlaxRoFormerModel, FlaxRoFormerForMaskedLM, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, ) if is_flax_available() else () ) def _snake_case ( self ): lowercase__: str = FlaxRoFormerModelTester(self ) @slow def _snake_case ( self ): for model_class_name in self.all_model_classes: lowercase__: Dict = model_class_name.from_pretrained('''junnyu/roformer_chinese_small''' , from_pt=_UpperCAmelCase ) lowercase__: int = model(np.ones((1, 1) ) ) self.assertIsNotNone(_UpperCAmelCase ) @require_flax class UpperCAmelCase (unittest.TestCase ): """simple docstring""" @slow def _snake_case ( self ): lowercase__: Any = FlaxRoFormerForMaskedLM.from_pretrained('''junnyu/roformer_chinese_base''' ) lowercase__: Optional[int] = jnp.array([[0, 1, 2, 3, 4, 5]] ) lowercase__: List[Any] = model(_UpperCAmelCase )[0] lowercase__: str = 50000 lowercase__: Tuple = (1, 6, vocab_size) self.assertEqual(output.shape , _UpperCAmelCase ) lowercase__: List[Any] = jnp.array( [[[-0.1_205, -1.0_265, 0.2_922], [-1.5_134, 0.1_974, 0.1_519], [-5.0_135, -3.9_003, -0.8_404]]] ) self.assertTrue(jnp.allclose(output[:, :3, :3] , _UpperCAmelCase , atol=1e-4 ) )
177
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) a__ : Any = { '''configuration_electra''': ['''ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ElectraConfig''', '''ElectraOnnxConfig'''], '''tokenization_electra''': ['''ElectraTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Optional[Any] = ['''ElectraTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : str = [ '''ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ElectraForCausalLM''', '''ElectraForMaskedLM''', '''ElectraForMultipleChoice''', '''ElectraForPreTraining''', '''ElectraForQuestionAnswering''', '''ElectraForSequenceClassification''', '''ElectraForTokenClassification''', '''ElectraModel''', '''ElectraPreTrainedModel''', '''load_tf_weights_in_electra''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Optional[int] = [ '''TF_ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFElectraForMaskedLM''', '''TFElectraForMultipleChoice''', '''TFElectraForPreTraining''', '''TFElectraForQuestionAnswering''', '''TFElectraForSequenceClassification''', '''TFElectraForTokenClassification''', '''TFElectraModel''', '''TFElectraPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Union[str, Any] = [ '''FlaxElectraForCausalLM''', '''FlaxElectraForMaskedLM''', '''FlaxElectraForMultipleChoice''', '''FlaxElectraForPreTraining''', '''FlaxElectraForQuestionAnswering''', '''FlaxElectraForSequenceClassification''', '''FlaxElectraForTokenClassification''', '''FlaxElectraModel''', '''FlaxElectraPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_electra import ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP, ElectraConfig, ElectraOnnxConfig from .tokenization_electra import ElectraTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_electra_fast import ElectraTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_electra import ( ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST, ElectraForCausalLM, ElectraForMaskedLM, ElectraForMultipleChoice, ElectraForPreTraining, ElectraForQuestionAnswering, ElectraForSequenceClassification, ElectraForTokenClassification, ElectraModel, ElectraPreTrainedModel, load_tf_weights_in_electra, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_electra import ( TF_ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST, TFElectraForMaskedLM, TFElectraForMultipleChoice, TFElectraForPreTraining, TFElectraForQuestionAnswering, TFElectraForSequenceClassification, TFElectraForTokenClassification, TFElectraModel, TFElectraPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_electra import ( FlaxElectraForCausalLM, FlaxElectraForMaskedLM, FlaxElectraForMultipleChoice, FlaxElectraForPreTraining, FlaxElectraForQuestionAnswering, FlaxElectraForSequenceClassification, FlaxElectraForTokenClassification, FlaxElectraModel, FlaxElectraPreTrainedModel, ) else: import sys a__ : List[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
363
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, StableDiffusionSAGPipeline, UNetaDConditionModel, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class a_ ( a__ , a__ , unittest.TestCase ): """simple docstring""" __SCREAMING_SNAKE_CASE : Tuple = StableDiffusionSAGPipeline __SCREAMING_SNAKE_CASE : Dict = TEXT_TO_IMAGE_PARAMS __SCREAMING_SNAKE_CASE : Tuple = TEXT_TO_IMAGE_BATCH_PARAMS __SCREAMING_SNAKE_CASE : List[Any] = TEXT_TO_IMAGE_IMAGE_PARAMS __SCREAMING_SNAKE_CASE : Union[str, Any] = TEXT_TO_IMAGE_IMAGE_PARAMS __SCREAMING_SNAKE_CASE : int = False def __lowerCAmelCase ( self ) ->Optional[int]: torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Tuple = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , ) SCREAMING_SNAKE_CASE : int = DDIMScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule='''scaled_linear''' , clip_sample=_lowerCamelCase , set_alpha_to_one=_lowerCamelCase , ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : str = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Dict = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) SCREAMING_SNAKE_CASE : Union[str, Any] = CLIPTextModel(_lowerCamelCase ) SCREAMING_SNAKE_CASE : str = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) SCREAMING_SNAKE_CASE : Union[str, Any] = { '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''safety_checker''': None, '''feature_extractor''': None, } return components def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase=0 ) ->str: if str(_lowerCamelCase ).startswith('''mps''' ): SCREAMING_SNAKE_CASE : List[Any] = torch.manual_seed(_lowerCamelCase ) else: SCREAMING_SNAKE_CASE : List[Any] = torch.Generator(device=_lowerCamelCase ).manual_seed(_lowerCamelCase ) SCREAMING_SNAKE_CASE : str = { '''prompt''': '''.''', '''generator''': generator, '''num_inference_steps''': 2, '''guidance_scale''': 1.0, '''sag_scale''': 1.0, '''output_type''': '''numpy''', } return inputs def __lowerCAmelCase ( self ) ->Optional[int]: super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) @slow @require_torch_gpu class a_ ( unittest.TestCase ): """simple docstring""" def __lowerCAmelCase ( self ) ->Dict: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __lowerCAmelCase ( self ) ->Union[str, Any]: SCREAMING_SNAKE_CASE : Optional[Any] = StableDiffusionSAGPipeline.from_pretrained('''CompVis/stable-diffusion-v1-4''' ) SCREAMING_SNAKE_CASE : Tuple = sag_pipe.to(_lowerCamelCase ) sag_pipe.set_progress_bar_config(disable=_lowerCamelCase ) SCREAMING_SNAKE_CASE : List[str] = '''.''' SCREAMING_SNAKE_CASE : Dict = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : List[str] = sag_pipe( [prompt] , generator=_lowerCamelCase , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type='''np''' ) SCREAMING_SNAKE_CASE : int = output.images SCREAMING_SNAKE_CASE : Any = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) SCREAMING_SNAKE_CASE : Optional[int] = np.array([0.1_5_6_8, 0.1_7_3_8, 0.1_6_9_5, 0.1_6_9_3, 0.1_5_0_7, 0.1_7_0_5, 0.1_5_4_7, 0.1_7_5_1, 0.1_9_4_9] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-2 def __lowerCAmelCase ( self ) ->Optional[int]: SCREAMING_SNAKE_CASE : Union[str, Any] = StableDiffusionSAGPipeline.from_pretrained('''stabilityai/stable-diffusion-2-1-base''' ) SCREAMING_SNAKE_CASE : int = sag_pipe.to(_lowerCamelCase ) sag_pipe.set_progress_bar_config(disable=_lowerCamelCase ) SCREAMING_SNAKE_CASE : Dict = '''.''' SCREAMING_SNAKE_CASE : str = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Any = sag_pipe( [prompt] , generator=_lowerCamelCase , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type='''np''' ) SCREAMING_SNAKE_CASE : List[str] = output.images SCREAMING_SNAKE_CASE : List[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) SCREAMING_SNAKE_CASE : str = np.array([0.3_4_5_9, 0.2_8_7_6, 0.2_5_3_7, 0.3_0_0_2, 0.2_6_7_1, 0.2_1_6_0, 0.3_0_2_6, 0.2_2_6_2, 0.2_3_7_1] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-2 def __lowerCAmelCase ( self ) ->Any: SCREAMING_SNAKE_CASE : int = StableDiffusionSAGPipeline.from_pretrained('''stabilityai/stable-diffusion-2-1-base''' ) SCREAMING_SNAKE_CASE : Optional[int] = sag_pipe.to(_lowerCamelCase ) sag_pipe.set_progress_bar_config(disable=_lowerCamelCase ) SCREAMING_SNAKE_CASE : int = '''.''' SCREAMING_SNAKE_CASE : Optional[Any] = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : List[str] = sag_pipe( [prompt] , width=768 , height=512 , generator=_lowerCamelCase , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type='''np''' , ) SCREAMING_SNAKE_CASE : List[Any] = output.images assert image.shape == (1, 512, 768, 3)
19
0
from math import sqrt import numpy as np from sympy import symbols # Coefficient # Speed of light (m/s) UpperCAmelCase : Tuple =2_9979_2458 # Symbols UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : int =symbols("""ct x y z""") def _lowerCAmelCase (_lowerCAmelCase): if velocity > c: raise ValueError("Speed must not exceed light speed 299,792,458 [m/s]!") elif velocity < 1: # Usually the speed should be much higher than 1 (c order of magnitude) raise ValueError("Speed must be greater than or equal to 1!") return velocity / c def _lowerCAmelCase (_lowerCAmelCase): return 1 / sqrt(1 - beta(_lowerCAmelCase) ** 2) def _lowerCAmelCase (_lowerCAmelCase): return np.array( [ [gamma(_lowerCAmelCase), -gamma(_lowerCAmelCase) * beta(_lowerCAmelCase), 0, 0], [-gamma(_lowerCAmelCase) * beta(_lowerCAmelCase), gamma(_lowerCAmelCase), 0, 0], [0, 0, 1, 0], [0, 0, 0, 1], ]) def _lowerCAmelCase (_lowerCAmelCase , _lowerCAmelCase = None): # Ensure event is not empty if event is None: UpperCamelCase_ = np.array([ct, x, y, z]) # Symbolic four vector else: event[0] *= c # x0 is ct (speed of light * time) return transformation_matrix(_lowerCAmelCase) @ event if __name__ == "__main__": import doctest doctest.testmod() # Example of symbolic vector: UpperCAmelCase : Optional[Any] =transform(2997_9245) print("""Example of four vector: """) print(F"ct' = {four_vector[0]}") print(F"x' = {four_vector[1]}") print(F"y' = {four_vector[2]}") print(F"z' = {four_vector[3]}") # Substitute symbols with numerical values UpperCAmelCase : List[Any] ={ct: c, x: 1, y: 1, z: 1} UpperCAmelCase : Optional[Any] =[four_vector[i].subs(sub_dict) for i in range(4)] print(F"\n{numerical_vector}")
128
class _lowercase : '''simple docstring''' def __init__( self , snake_case__ ): '''simple docstring''' UpperCamelCase_ = arr.split("," ) def _lowerCamelCase ( self ): '''simple docstring''' UpperCamelCase_ = [int(self.array[0] )] * len(self.array ) UpperCamelCase_ = [int(self.array[0] )] * len(self.array ) for i in range(1 , len(self.array ) ): UpperCamelCase_ = max( int(self.array[i] ) + sum_value[i - 1] , int(self.array[i] ) ) UpperCamelCase_ = max(sum_value[i] , rear[i - 1] ) return rear[len(self.array ) - 1] if __name__ == "__main__": UpperCAmelCase : Tuple =input("""please input some numbers:""") UpperCAmelCase : Optional[int] =SubArray(whole_array) UpperCAmelCase : List[Any] =array.solve_sub_array() print(("""the results is:""", re))
128
1
"""simple docstring""" import warnings from ...utils import logging from .image_processing_deit import DeiTImageProcessor _lowerCamelCase : List[Any] = logging.get_logger(__name__) class __snake_case (_a ): def __init__( self : Optional[int] , *_UpperCAmelCase : List[str] , **_UpperCAmelCase : List[Any] ) -> None: '''simple docstring''' warnings.warn( """The class DeiTFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please""" """ use DeiTImageProcessor instead.""" , _UpperCAmelCase , ) super().__init__(*_UpperCAmelCase , **_UpperCAmelCase )
364
import warnings from ...utils import logging from .image_processing_glpn import GLPNImageProcessor _lowerCamelCase : List[str] = logging.get_logger(__name__) class __snake_case (_a ): def __init__( self : Optional[Any] , *_UpperCAmelCase : str , **_UpperCAmelCase : Any ) -> None: '''simple docstring''' warnings.warn( """The class GLPNFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please""" """ use GLPNImageProcessor instead.""" , _UpperCAmelCase , ) super().__init__(*_UpperCAmelCase , **_UpperCAmelCase )
159
0
def SCREAMING_SNAKE_CASE_ ( snake_case__ ) -> List[str]: lowerCAmelCase = len(snake_case__ ) for i in range(length - 1 ): lowerCAmelCase = i for k in range(i + 1 , snake_case__ ): if collection[k] < collection[least]: lowerCAmelCase = k if least != i: lowerCAmelCase , lowerCAmelCase = (collection[i], collection[least]) return collection if __name__ == "__main__": lowercase__ : Optional[int] = input('''Enter numbers separated by a comma:\n''').strip() lowercase__ : str = [int(item) for item in user_input.split(''',''')] print(selection_sort(unsorted))
338
import os import re import shutil import sys import tempfile import unittest import black lowercase__ : List[str] = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, '''utils''')) import check_copies # noqa: E402 # This is the reference code that will be used in the tests. # If BertLMPredictionHead is changed in modeling_bert.py, this code needs to be manually updated. lowercase__ : Dict = ''' def __init__(self, config): super().__init__() self.transform = BertPredictionHeadTransform(config) # The output weights are the same as the input embeddings, but there is # an output-only bias for each token. self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False) self.bias = nn.Parameter(torch.zeros(config.vocab_size)) # Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings` self.decoder.bias = self.bias def forward(self, hidden_states): hidden_states = self.transform(hidden_states) hidden_states = self.decoder(hidden_states) return hidden_states ''' class lowercase_ ( unittest.TestCase ): """simple docstring""" def SCREAMING_SNAKE_CASE_ ( self ) ->Dict: lowerCAmelCase = tempfile.mkdtemp() os.makedirs(os.path.join(self.transformer_dir , '''models/bert/''' ) ) lowerCAmelCase = self.transformer_dir shutil.copy( os.path.join(__SCREAMING_SNAKE_CASE , '''src/transformers/models/bert/modeling_bert.py''' ) , os.path.join(self.transformer_dir , '''models/bert/modeling_bert.py''' ) , ) def SCREAMING_SNAKE_CASE_ ( self ) ->Optional[Any]: lowerCAmelCase = '''src/transformers''' shutil.rmtree(self.transformer_dir ) def SCREAMING_SNAKE_CASE_ ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=None ) ->Union[str, Any]: lowerCAmelCase = comment + F"\nclass {class_name}(nn.Module):\n" + class_code if overwrite_result is not None: lowerCAmelCase = comment + F"\nclass {class_name}(nn.Module):\n" + overwrite_result lowerCAmelCase = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=119 ) lowerCAmelCase = black.format_str(__SCREAMING_SNAKE_CASE , mode=__SCREAMING_SNAKE_CASE ) lowerCAmelCase = os.path.join(self.transformer_dir , '''new_code.py''' ) with open(__SCREAMING_SNAKE_CASE , '''w''' , newline='''\n''' ) as f: f.write(__SCREAMING_SNAKE_CASE ) if overwrite_result is None: self.assertTrue(len(check_copies.is_copy_consistent(__SCREAMING_SNAKE_CASE ) ) == 0 ) else: check_copies.is_copy_consistent(f.name , overwrite=__SCREAMING_SNAKE_CASE ) with open(__SCREAMING_SNAKE_CASE , '''r''' ) as f: self.assertTrue(f.read() , __SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE_ ( self ) ->int: lowerCAmelCase = check_copies.find_code_in_transformers('''models.bert.modeling_bert.BertLMPredictionHead''' ) self.assertEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE_ ( self ) ->Tuple: # Base copy consistency self.check_copy_consistency( '''# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead''' , '''BertLMPredictionHead''' , REFERENCE_CODE + '''\n''' , ) # With no empty line at the end self.check_copy_consistency( '''# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead''' , '''BertLMPredictionHead''' , __SCREAMING_SNAKE_CASE , ) # Copy consistency with rename self.check_copy_consistency( '''# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->TestModel''' , '''TestModelLMPredictionHead''' , re.sub('''Bert''' , '''TestModel''' , __SCREAMING_SNAKE_CASE ) , ) # Copy consistency with a really long name lowerCAmelCase = '''TestModelWithAReallyLongNameBecauseSomePeopleLikeThatForSomeReason''' self.check_copy_consistency( F"# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->{long_class_name}" , F"{long_class_name}LMPredictionHead" , re.sub('''Bert''' , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) , ) # Copy consistency with overwrite self.check_copy_consistency( '''# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->TestModel''' , '''TestModelLMPredictionHead''' , __SCREAMING_SNAKE_CASE , overwrite_result=re.sub('''Bert''' , '''TestModel''' , __SCREAMING_SNAKE_CASE ) , ) def SCREAMING_SNAKE_CASE_ ( self ) ->Tuple: lowerCAmelCase = check_copies.LOCALIZED_READMES['''README_zh-hans.md'''] lowerCAmelCase = ( '''1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (from Google Research and the''' ''' Toyota Technological Institute at Chicago) released with the paper [ALBERT: A Lite BERT for''' ''' Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942), by Zhenzhong''' ''' Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut.\n1.''' ''' **[DistilBERT](https://huggingface.co/transformers/model_doc/distilbert.html)** (from HuggingFace),''' ''' released together with the paper [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and''' ''' lighter](https://arxiv.org/abs/1910.01108) by Victor Sanh, Lysandre Debut and Thomas Wolf. The same''' ''' method has been applied to compress GPT2 into''' ''' [DistilGPT2](https://github.com/huggingface/transformers/tree/main/examples/distillation), RoBERTa into''' ''' [DistilRoBERTa](https://github.com/huggingface/transformers/tree/main/examples/distillation),''' ''' Multilingual BERT into''' ''' [DistilmBERT](https://github.com/huggingface/transformers/tree/main/examples/distillation) and a German''' ''' version of DistilBERT.\n1. **[ELECTRA](https://huggingface.co/transformers/model_doc/electra.html)**''' ''' (from Google Research/Stanford University) released with the paper [ELECTRA: Pre-training text encoders''' ''' as discriminators rather than generators](https://arxiv.org/abs/2003.10555) by Kevin Clark, Minh-Thang''' ''' Luong, Quoc V. Le, Christopher D. Manning.''' ) lowerCAmelCase = ( '''1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the''' ''' Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of''' ''' Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian''' ''' Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n''' ) lowerCAmelCase = ( '''1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the''' ''' Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of''' ''' Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian''' ''' Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n1.''' ''' **[DistilBERT](https://huggingface.co/transformers/model_doc/distilbert.html)** (来自 HuggingFace) 伴随论文''' ''' [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and''' ''' lighter](https://arxiv.org/abs/1910.01108) 由 Victor Sanh, Lysandre Debut and Thomas Wolf 发布。 The same''' ''' method has been applied to compress GPT2 into''' ''' [DistilGPT2](https://github.com/huggingface/transformers/tree/main/examples/distillation), RoBERTa into''' ''' [DistilRoBERTa](https://github.com/huggingface/transformers/tree/main/examples/distillation),''' ''' Multilingual BERT into''' ''' [DistilmBERT](https://github.com/huggingface/transformers/tree/main/examples/distillation) and a German''' ''' version of DistilBERT.\n1. **[ELECTRA](https://huggingface.co/transformers/model_doc/electra.html)** (来自''' ''' Google Research/Stanford University) 伴随论文 [ELECTRA: Pre-training text encoders as discriminators rather''' ''' than generators](https://arxiv.org/abs/2003.10555) 由 Kevin Clark, Minh-Thang Luong, Quoc V. Le,''' ''' Christopher D. Manning 发布。\n''' ) lowerCAmelCase , lowerCAmelCase = check_copies.convert_to_localized_md( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , localized_readme['''format_model_list'''] ) self.assertFalse(__SCREAMING_SNAKE_CASE ) self.assertEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) lowerCAmelCase , lowerCAmelCase = check_copies.convert_to_localized_md( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , localized_readme['''format_model_list'''] ) # Check whether the number of models is equal to README.md after conversion. self.assertTrue(__SCREAMING_SNAKE_CASE ) lowerCAmelCase = ( '''1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (from Google Research and the''' ''' Toyota Technological Institute at Chicago) released with the paper [ALBERT: A Lite BERT for''' ''' Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942), by Zhenzhong''' ''' Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut.''' ) lowerCAmelCase = ( '''1. **[ALBERT](https://huggingface.co/transformers/main/model_doc/albert.html)** (来自 Google Research and''' ''' the Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of''' ''' Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian''' ''' Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n''' ) lowerCAmelCase = ( '''1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the''' ''' Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of''' ''' Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian''' ''' Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n''' ) lowerCAmelCase , lowerCAmelCase = check_copies.convert_to_localized_md( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , localized_readme['''format_model_list'''] ) # Check if the model link is synchronized. self.assertEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
338
1
def SCREAMING_SNAKE_CASE__ ( __a ): if not isinstance(__a , __a ): raise TypeError('only integers accepted as input' ) else: snake_case_ : Any = str(abs(__a ) ) snake_case_ : List[Any] = [list(__a ) for char in range(len(__a ) )] for index in range(len(__a ) ): num_transpositions[index].pop(__a ) return max( int(''.join(list(__a ) ) ) for transposition in num_transpositions ) if __name__ == "__main__": __import__("""doctest""").testmod()
88
from itertools import product from cva import COLOR_BGR2GRAY, cvtColor, imread, imshow, waitKey from numpy import dot, exp, mgrid, pi, ravel, square, uinta, zeros def SCREAMING_SNAKE_CASE__ ( __a , __a ): snake_case_ : List[Any] = k_size // 2 snake_case_ ,snake_case_ : Any = mgrid[0 - center : k_size - center, 0 - center : k_size - center] snake_case_ : Optional[Any] = 1 / (2 * pi * sigma) * exp(-(square(__a ) + square(__a )) / (2 * square(__a )) ) return g def SCREAMING_SNAKE_CASE__ ( __a , __a , __a ): snake_case_ ,snake_case_ : Union[str, Any] = image.shape[0], image.shape[1] # dst image height and width snake_case_ : int = height - k_size + 1 snake_case_ : Optional[int] = width - k_size + 1 # im2col, turn the k_size*k_size pixels into a row and np.vstack all rows snake_case_ : Optional[Any] = zeros((dst_height * dst_width, k_size * k_size) ) snake_case_ : Tuple = 0 for i, j in product(range(__a ) , range(__a ) ): snake_case_ : Optional[int] = ravel(image[i : i + k_size, j : j + k_size] ) snake_case_ : str = window row += 1 # turn the kernel into shape(k*k, 1) snake_case_ : List[Any] = gen_gaussian_kernel(__a , __a ) snake_case_ : str = ravel(__a ) # reshape and get the dst image snake_case_ : Optional[int] = dot(__a , __a ).reshape(__a , __a ).astype(__a ) return dst if __name__ == "__main__": # read original image _SCREAMING_SNAKE_CASE = imread(R"""../image_data/lena.jpg""") # turn image in gray scale value _SCREAMING_SNAKE_CASE = cvtColor(img, COLOR_BGR2GRAY) # get values with two different mask size _SCREAMING_SNAKE_CASE = gaussian_filter(gray, 3, sigma=1) _SCREAMING_SNAKE_CASE = gaussian_filter(gray, 5, sigma=0.8) # show result images imshow("""gaussian filter with 3x3 mask""", gaussianaxa) imshow("""gaussian filter with 5x5 mask""", gaussianaxa) waitKey()
88
1
'''simple docstring''' import argparse import torch from transformers import BlenderbotConfig, BlenderbotForConditionalGeneration from transformers.utils import logging logging.set_verbosity_info() _lowerCamelCase : Tuple = logging.get_logger(__name__) _lowerCamelCase : Any = [ ["attention", "attn"], ["encoder_attention", "encoder_attn"], ["q_lin", "q_proj"], ["k_lin", "k_proj"], ["v_lin", "v_proj"], ["out_lin", "out_proj"], ["norm_embeddings", "layernorm_embedding"], ["position_embeddings", "embed_positions"], ["embeddings", "embed_tokens"], ["ffn.lin", "fc"], ] def __lowerCamelCase ( A__ ) -> List[str]: """simple docstring""" if k == "embeddings.weight": return "shared.weight" for parlai_name, hf_name in PATTERNS: UpperCamelCase = k.replace(A__ , A__ ) if k.startswith('encoder' ): UpperCamelCase = k.replace('.attn' , '.self_attn' ) UpperCamelCase = k.replace('norm1' , 'self_attn_layer_norm' ) UpperCamelCase = k.replace('norm2' , 'final_layer_norm' ) elif k.startswith('decoder' ): UpperCamelCase = k.replace('norm1' , 'self_attn_layer_norm' ) UpperCamelCase = k.replace('norm2' , 'encoder_attn_layer_norm' ) UpperCamelCase = k.replace('norm3' , 'final_layer_norm' ) return k def __lowerCamelCase ( A__ ) -> Any: """simple docstring""" UpperCamelCase = [ 'model.encoder.layernorm_embedding.weight', 'model.encoder.layernorm_embedding.bias', 'model.decoder.layernorm_embedding.weight', 'model.decoder.layernorm_embedding.bias', ] for k in keys: UpperCamelCase = sd.pop(A__ ) UpperCamelCase = k.replace('layernorm_embedding' , 'layer_norm' ) assert new_k not in sd UpperCamelCase = v _lowerCamelCase : Any = ["START"] @torch.no_grad() def __lowerCamelCase ( A__ , A__ , A__ ) -> int: """simple docstring""" UpperCamelCase = torch.load(A__ , map_location='cpu' ) UpperCamelCase = model['model'] UpperCamelCase = BlenderbotConfig.from_json_file(A__ ) UpperCamelCase = BlenderbotForConditionalGeneration(A__ ) UpperCamelCase = m.model.state_dict().keys() UpperCamelCase = [] UpperCamelCase = {} for k, v in sd.items(): if k in IGNORE_KEYS: continue UpperCamelCase = rename_state_dict_key(A__ ) if new_k not in valid_keys: failures.append([k, new_k] ) else: UpperCamelCase = v if cfg.normalize_before: # Blenderbot-3B checkpoints. Rename layernorm_embedding -> layer_norm rename_layernorm_keys(A__ ) m.model.load_state_dict(A__ , strict=A__ ) m.half() m.save_pretrained(A__ ) if __name__ == "__main__": _lowerCamelCase : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument("--src_path", type=str, help="like blenderbot-model.bin") parser.add_argument("--save_dir", default="hf_blenderbot", type=str, help="Where to save converted model.") parser.add_argument( "--hf_config_json", default="blenderbot-3b-config.json", type=str, help="Path to config to use" ) _lowerCamelCase : str = parser.parse_args() convert_parlai_checkpoint(args.src_path, args.save_dir, args.hf_config_json)
28
'''simple docstring''' def A__ ( UpperCAmelCase_ ): _UpperCamelCase : List[str] = abs(UpperCAmelCase_ ) _UpperCamelCase : int = 0 while n > 0: res += n % 1_0 n //= 1_0 return res def A__ ( UpperCAmelCase_ ): _UpperCamelCase : List[Any] = abs(UpperCAmelCase_ ) return n if n < 1_0 else n % 1_0 + sum_of_digits(n // 1_0 ) def A__ ( UpperCAmelCase_ ): return sum(int(UpperCAmelCase_ ) for c in str(abs(UpperCAmelCase_ ) ) ) def A__ ( ): from collections.abc import Callable from timeit import timeit def benchmark_a_function(UpperCAmelCase_ , UpperCAmelCase_ ) -> None: _UpperCamelCase : str = f'{func.__name__}({value})' _UpperCamelCase : Tuple = timeit(f'__main__.{call}' , setup='import __main__' ) print(f'{call:56} = {func(UpperCAmelCase_ )} -- {timing:.4f} seconds' ) for value in (2_6_2_1_4_4, 1_1_2_5_8_9_9_9_0_6_8_4_2_6_2_4, 1_2_6_7_6_5_0_6_0_0_2_2_8_2_2_9_4_0_1_4_9_6_7_0_3_2_0_5_3_7_6): for func in (sum_of_digits, sum_of_digits_recursion, sum_of_digits_compact): benchmark_a_function(UpperCAmelCase_ , UpperCAmelCase_ ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
83
0
"""simple docstring""" import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from .tokenization_electra import ElectraTokenizer __UpperCamelCase = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''} __UpperCamelCase = { '''vocab_file''': { '''google/electra-small-generator''': ( '''https://huggingface.co/google/electra-small-generator/resolve/main/vocab.txt''' ), '''google/electra-base-generator''': '''https://huggingface.co/google/electra-base-generator/resolve/main/vocab.txt''', '''google/electra-large-generator''': ( '''https://huggingface.co/google/electra-large-generator/resolve/main/vocab.txt''' ), '''google/electra-small-discriminator''': ( '''https://huggingface.co/google/electra-small-discriminator/resolve/main/vocab.txt''' ), '''google/electra-base-discriminator''': ( '''https://huggingface.co/google/electra-base-discriminator/resolve/main/vocab.txt''' ), '''google/electra-large-discriminator''': ( '''https://huggingface.co/google/electra-large-discriminator/resolve/main/vocab.txt''' ), }, '''tokenizer_file''': { '''google/electra-small-generator''': ( '''https://huggingface.co/google/electra-small-generator/resolve/main/tokenizer.json''' ), '''google/electra-base-generator''': ( '''https://huggingface.co/google/electra-base-generator/resolve/main/tokenizer.json''' ), '''google/electra-large-generator''': ( '''https://huggingface.co/google/electra-large-generator/resolve/main/tokenizer.json''' ), '''google/electra-small-discriminator''': ( '''https://huggingface.co/google/electra-small-discriminator/resolve/main/tokenizer.json''' ), '''google/electra-base-discriminator''': ( '''https://huggingface.co/google/electra-base-discriminator/resolve/main/tokenizer.json''' ), '''google/electra-large-discriminator''': ( '''https://huggingface.co/google/electra-large-discriminator/resolve/main/tokenizer.json''' ), }, } __UpperCamelCase = { '''google/electra-small-generator''': 512, '''google/electra-base-generator''': 512, '''google/electra-large-generator''': 512, '''google/electra-small-discriminator''': 512, '''google/electra-base-discriminator''': 512, '''google/electra-large-discriminator''': 512, } __UpperCamelCase = { '''google/electra-small-generator''': {'''do_lower_case''': True}, '''google/electra-base-generator''': {'''do_lower_case''': True}, '''google/electra-large-generator''': {'''do_lower_case''': True}, '''google/electra-small-discriminator''': {'''do_lower_case''': True}, '''google/electra-base-discriminator''': {'''do_lower_case''': True}, '''google/electra-large-discriminator''': {'''do_lower_case''': True}, } class UpperCamelCase ( lowerCAmelCase__ ): SCREAMING_SNAKE_CASE_ = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE_ = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE_ = PRETRAINED_INIT_CONFIGURATION SCREAMING_SNAKE_CASE_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE_ = ElectraTokenizer def __init__( self, lowerCAmelCase__=None, lowerCAmelCase__=None, lowerCAmelCase__=True, lowerCAmelCase__="[UNK]", lowerCAmelCase__="[SEP]", lowerCAmelCase__="[PAD]", lowerCAmelCase__="[CLS]", lowerCAmelCase__="[MASK]", lowerCAmelCase__=True, lowerCAmelCase__=None, **lowerCAmelCase__, ) -> Optional[Any]: super().__init__( lowerCAmelCase__, tokenizer_file=lowerCAmelCase__, do_lower_case=lowerCAmelCase__, unk_token=lowerCAmelCase__, sep_token=lowerCAmelCase__, pad_token=lowerCAmelCase__, cls_token=lowerCAmelCase__, mask_token=lowerCAmelCase__, tokenize_chinese_chars=lowerCAmelCase__, strip_accents=lowerCAmelCase__, **lowerCAmelCase__, ) snake_case_ = json.loads(self.backend_tokenizer.normalizer.__getstate__()) if ( normalizer_state.get('lowercase', lowerCAmelCase__) != do_lower_case or normalizer_state.get('strip_accents', lowerCAmelCase__) != strip_accents or normalizer_state.get('handle_chinese_chars', lowerCAmelCase__) != tokenize_chinese_chars ): snake_case_ = getattr(lowerCAmelCase__, normalizer_state.pop('type')) snake_case_ = do_lower_case snake_case_ = strip_accents snake_case_ = tokenize_chinese_chars snake_case_ = normalizer_class(**lowerCAmelCase__) snake_case_ = do_lower_case def a_ ( self, lowerCAmelCase__, lowerCAmelCase__=None) -> List[Any]: snake_case_ = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def a_ ( self, lowerCAmelCase__, lowerCAmelCase__ = None) -> List[int]: snake_case_ = [self.sep_token_id] snake_case_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep) * [0] + len(token_ids_a + sep) * [1] def a_ ( self, lowerCAmelCase__, lowerCAmelCase__ = None) -> Tuple[str]: snake_case_ = self._tokenizer.model.save(lowerCAmelCase__, name=lowerCAmelCase__) return tuple(lowerCAmelCase__)
312
"""simple docstring""" from ....configuration_utils import PretrainedConfig from ....utils import logging __UpperCamelCase = logging.get_logger(__name__) __UpperCamelCase = { '''CarlCochet/trajectory-transformer-halfcheetah-medium-v2''': ( '''https://huggingface.co/CarlCochet/trajectory-transformer-halfcheetah-medium-v2/resolve/main/config.json''' ), # See all TrajectoryTransformer models at https://huggingface.co/models?filter=trajectory_transformer } class UpperCamelCase ( lowerCAmelCase__ ): SCREAMING_SNAKE_CASE_ = "trajectory_transformer" SCREAMING_SNAKE_CASE_ = ["past_key_values"] SCREAMING_SNAKE_CASE_ = { "hidden_size": "n_embd", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self, lowerCAmelCase__=100, lowerCAmelCase__=5, lowerCAmelCase__=1, lowerCAmelCase__=1, lowerCAmelCase__=249, lowerCAmelCase__=6, lowerCAmelCase__=17, lowerCAmelCase__=25, lowerCAmelCase__=4, lowerCAmelCase__=4, lowerCAmelCase__=128, lowerCAmelCase__=0.1, lowerCAmelCase__=0.1, lowerCAmelCase__=0.1, lowerCAmelCase__=0.0006, lowerCAmelCase__=512, lowerCAmelCase__=0.02, lowerCAmelCase__=1e-12, lowerCAmelCase__=1, lowerCAmelCase__=True, lowerCAmelCase__=1, lowerCAmelCase__=5_0256, lowerCAmelCase__=5_0256, **lowerCAmelCase__, ) -> Optional[Any]: snake_case_ = vocab_size snake_case_ = action_weight snake_case_ = reward_weight snake_case_ = value_weight snake_case_ = max_position_embeddings snake_case_ = block_size snake_case_ = action_dim snake_case_ = observation_dim snake_case_ = transition_dim snake_case_ = learning_rate snake_case_ = n_layer snake_case_ = n_head snake_case_ = n_embd snake_case_ = embd_pdrop snake_case_ = attn_pdrop snake_case_ = resid_pdrop snake_case_ = initializer_range snake_case_ = layer_norm_eps snake_case_ = kaiming_initializer_range snake_case_ = use_cache super().__init__(pad_token_id=lowerCAmelCase__, bos_token_id=lowerCAmelCase__, eos_token_id=lowerCAmelCase__, **lowerCAmelCase__)
312
1
from __future__ import annotations def _UpperCAmelCase (UpperCamelCase__ : list ): if not nums: raise ValueError("List is empty" ) return sum(UpperCamelCase__ ) / len(UpperCamelCase__ ) if __name__ == "__main__": import doctest doctest.testmod()
11
from typing import List, Optional, Tuple, Union import torch from ...utils import logging, randn_tensor from ..pipeline_utils import AudioPipelineOutput, DiffusionPipeline __lowerCamelCase : str = logging.get_logger(__name__) # pylint: disable=invalid-name class A__ ( __snake_case ): def __init__( self , A_ , A_ ): '''simple docstring''' super().__init__() self.register_modules(unet=A_ , scheduler=A_ ) @torch.no_grad() def __call__( self , A_ = 1 , A_ = 100 , A_ = None , A_ = None , A_ = True , ): '''simple docstring''' if audio_length_in_s is None: UpperCamelCase : str = self.unet.config.sample_size / self.unet.config.sample_rate UpperCamelCase : Optional[Any] = audio_length_in_s * self.unet.config.sample_rate UpperCamelCase : Any = 2 ** len(self.unet.up_blocks ) if sample_size < 3 * down_scale_factor: raise ValueError( F"""{audio_length_in_s} is too small. Make sure it's bigger or equal to""" F""" {3 * down_scale_factor / self.unet.config.sample_rate}.""" ) UpperCamelCase : Union[str, Any] = int(A_ ) if sample_size % down_scale_factor != 0: UpperCamelCase : List[str] = ( (audio_length_in_s * self.unet.config.sample_rate) // down_scale_factor + 1 ) * down_scale_factor logger.info( F"""{audio_length_in_s} is increased to {sample_size / self.unet.config.sample_rate} so that it can be handled""" F""" by the model. It will be cut to {original_sample_size / self.unet.config.sample_rate} after the denoising""" " process." ) UpperCamelCase : Any = int(A_ ) UpperCamelCase : Union[str, Any] = next(iter(self.unet.parameters() ) ).dtype UpperCamelCase : Optional[int] = (batch_size, self.unet.config.in_channels, sample_size) if isinstance(A_ , A_ ) and len(A_ ) != batch_size: raise ValueError( F"""You have passed a list of generators of length {len(A_ )}, but requested an effective batch""" F""" size of {batch_size}. Make sure the batch size matches the length of the generators.""" ) UpperCamelCase : Optional[Any] = randn_tensor(A_ , generator=A_ , device=self.device , dtype=A_ ) # set step values self.scheduler.set_timesteps(A_ , device=audio.device ) UpperCamelCase : Optional[int] = self.scheduler.timesteps.to(A_ ) for t in self.progress_bar(self.scheduler.timesteps ): # 1. predict noise model_output UpperCamelCase : Dict = self.unet(A_ , A_ ).sample # 2. compute previous image: x_t -> t_t-1 UpperCamelCase : int = self.scheduler.step(A_ , A_ , A_ ).prev_sample UpperCamelCase : Optional[Any] = audio.clamp(-1 , 1 ).float().cpu().numpy() UpperCamelCase : Dict = audio[:, :, :original_sample_size] if not return_dict: return (audio,) return AudioPipelineOutput(audios=A_ )
52
0
"""simple docstring""" import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging _lowercase : str = logging.get_logger(__name__) _lowercase : Optional[Any] = "▁" _lowercase : Any = {"vocab_file": "sentencepiece.bpe.model", "monolingual_vocab_file": "dict.txt"} _lowercase : Union[str, Any] = { "vocab_file": { "vinai/bartpho-syllable": "https://huggingface.co/vinai/bartpho-syllable/resolve/main/sentencepiece.bpe.model", }, "monolingual_vocab_file": { "vinai/bartpho-syllable": "https://huggingface.co/vinai/bartpho-syllable/resolve/main/dict.txt", }, } _lowercase : str = {"vinai/bartpho-syllable": 1_0_2_4} class __SCREAMING_SNAKE_CASE ( lowerCAmelCase_ ): '''simple docstring''' _a = VOCAB_FILES_NAMES _a = PRETRAINED_VOCAB_FILES_MAP _a = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _a = ['input_ids', 'attention_mask'] def __init__( self : str, lowerCamelCase : Dict, lowerCamelCase : Tuple, lowerCamelCase : Optional[Any]="<s>", lowerCamelCase : List[Any]="</s>", lowerCamelCase : Optional[int]="</s>", lowerCamelCase : int="<s>", lowerCamelCase : List[Any]="<unk>", lowerCamelCase : Dict="<pad>", lowerCamelCase : Tuple="<mask>", lowerCamelCase : Optional[Dict[str, Any]] = None, **lowerCamelCase : Dict, )-> None: # Mask token behave like a normal word, i.e. include the space before it lowerCamelCase__ : str =AddedToken(lowerCamelCase, lstrip=lowerCamelCase, rstrip=lowerCamelCase ) if isinstance(lowerCamelCase, lowerCamelCase ) else mask_token lowerCamelCase__ : int ={} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=lowerCamelCase, eos_token=lowerCamelCase, unk_token=lowerCamelCase, sep_token=lowerCamelCase, cls_token=lowerCamelCase, pad_token=lowerCamelCase, mask_token=lowerCamelCase, sp_model_kwargs=self.sp_model_kwargs, **lowerCamelCase, ) lowerCamelCase__ : Optional[Any] =vocab_file lowerCamelCase__ : Any =monolingual_vocab_file lowerCamelCase__ : str =spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(lowerCamelCase ) ) # Load the reduced vocab # Keep order of special tokens for backward compatibility lowerCamelCase__ : Any ={} lowerCamelCase__ : Optional[Any] =0 for token in [bos_token, pad_token, eos_token, unk_token, sep_token, cls_token]: if str(lowerCamelCase ) not in self.fairseq_tokens_to_ids: lowerCamelCase__ : Optional[int] =cnt cnt += 1 with open(lowerCamelCase, '''r''', encoding='''utf-8''' ) as f: for line in f.readlines(): lowerCamelCase__ : List[str] =line.strip().split()[0] lowerCamelCase__ : Dict =len(self.fairseq_tokens_to_ids ) if str(lowerCamelCase ) not in self.fairseq_tokens_to_ids: lowerCamelCase__ : Tuple =len(self.fairseq_tokens_to_ids ) lowerCamelCase__ : str ={v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__( self : List[str] )-> Optional[int]: lowerCamelCase__ : Optional[Any] =self.__dict__.copy() lowerCamelCase__ : Optional[int] =None lowerCamelCase__ : int =self.sp_model.serialized_model_proto() return state def __setstate__( self : List[Any], lowerCamelCase : Tuple )-> Any: lowerCamelCase__ : Optional[int] =d # for backward compatibility if not hasattr(self, '''sp_model_kwargs''' ): lowerCamelCase__ : str ={} lowerCamelCase__ : str =spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) def snake_case ( self : Dict, lowerCamelCase : List[int], lowerCamelCase : Optional[List[int]] = None )-> List[int]: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] lowerCamelCase__ : Optional[Any] =[self.cls_token_id] lowerCamelCase__ : Optional[int] =[self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def snake_case ( self : Optional[Any], lowerCamelCase : List[int], lowerCamelCase : Optional[List[int]] = None, lowerCamelCase : bool = False )-> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCamelCase, token_ids_a=lowerCamelCase, already_has_special_tokens=lowerCamelCase ) if token_ids_a is None: return [1] + ([0] * len(lowerCamelCase )) + [1] return [1] + ([0] * len(lowerCamelCase )) + [1, 1] + ([0] * len(lowerCamelCase )) + [1] def snake_case ( self : Dict, lowerCamelCase : List[int], lowerCamelCase : Optional[List[int]] = None )-> List[int]: lowerCamelCase__ : Optional[Any] =[self.sep_token_id] lowerCamelCase__ : List[Any] =[self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def snake_case ( self : int )-> Optional[int]: return len(self.fairseq_ids_to_tokens ) def snake_case ( self : Optional[int] )-> Optional[int]: lowerCamelCase__ : Optional[Any] ={self.convert_ids_to_tokens(lowerCamelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def snake_case ( self : Optional[int], lowerCamelCase : str )-> List[str]: return self.sp_model.encode(lowerCamelCase, out_type=lowerCamelCase ) def snake_case ( self : int, lowerCamelCase : Optional[Any] )-> List[str]: if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] else: return self.unk_token_id def snake_case ( self : Any, lowerCamelCase : Optional[int] )-> Optional[int]: return self.fairseq_ids_to_tokens[index] def snake_case ( self : int, lowerCamelCase : Any )-> Optional[int]: lowerCamelCase__ : List[str] =''''''.join(lowerCamelCase ).replace(lowerCamelCase, ''' ''' ).strip() return out_string def snake_case ( self : Union[str, Any], lowerCamelCase : str, lowerCamelCase : Optional[str] = None )-> Tuple[str]: if not os.path.isdir(lowerCamelCase ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return lowerCamelCase__ : Dict =os.path.join( lowerCamelCase, (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) lowerCamelCase__ : Tuple =os.path.join( lowerCamelCase, (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''monolingual_vocab_file'''], ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCamelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file, lowerCamelCase ) elif not os.path.isfile(self.vocab_file ): with open(lowerCamelCase, '''wb''' ) as fi: lowerCamelCase__ : Any =self.sp_model.serialized_model_proto() fi.write(lowerCamelCase ) if os.path.abspath(self.monolingual_vocab_file ) != os.path.abspath( lowerCamelCase ) and os.path.isfile(self.monolingual_vocab_file ): copyfile(self.monolingual_vocab_file, lowerCamelCase ) elif not os.path.isfile(self.monolingual_vocab_file ): with open(lowerCamelCase, '''w''', encoding='''utf-8''' ) as fp: for token in self.fairseq_tokens_to_ids: if token not in self.all_special_tokens: fp.write(F'''{str(lowerCamelCase )} \n''' ) return out_vocab_file, out_monolingual_vocab_file
272
"""simple docstring""" # Usage: # ./gen-card-allenai-wmt16.py import os from pathlib import Path def snake_case__ ( __lowerCamelCase : Union[str, Any] , __lowerCamelCase : int , __lowerCamelCase : Tuple , __lowerCamelCase : Union[str, Any] ): """simple docstring""" lowerCamelCase__ : Any ={ '''en''': '''Machine learning is great, isn\'t it?''', '''ru''': '''Машинное обучение - это здорово, не так ли?''', '''de''': '''Maschinelles Lernen ist großartig, nicht wahr?''', } # BLUE scores as follows: # "pair": [fairseq, transformers] lowerCamelCase__ : Optional[Any] ={ '''wmt16-en-de-dist-12-1''': [28.3, 27.52], '''wmt16-en-de-dist-6-1''': [27.4, 27.11], '''wmt16-en-de-12-1''': [26.9, 25.75], } lowerCamelCase__ : Any =f'''{src_lang}-{tgt_lang}''' lowerCamelCase__ : Any =f''' --- language: - {src_lang} - {tgt_lang} thumbnail: tags: - translation - wmt16 - allenai license: apache-2.0 datasets: - wmt16 metrics: - bleu --- # FSMT ## Model description This is a ported version of fairseq-based [wmt16 transformer](https://github.com/jungokasai/deep-shallow/) for {src_lang}-{tgt_lang}. For more details, please, see [Deep Encoder, Shallow Decoder: Reevaluating the Speed-Quality Tradeoff in Machine Translation](https://arxiv.org/abs/2006.10369). All 3 models are available: * [wmt16-en-de-dist-12-1](https://huggingface.co/allenai/wmt16-en-de-dist-12-1) * [wmt16-en-de-dist-6-1](https://huggingface.co/allenai/wmt16-en-de-dist-6-1) * [wmt16-en-de-12-1](https://huggingface.co/allenai/wmt16-en-de-12-1) ## Intended uses & limitations #### How to use ```python from transformers import FSMTForConditionalGeneration, FSMTTokenizer mname = "allenai/{model_name}" tokenizer = FSMTTokenizer.from_pretrained(mname) model = FSMTForConditionalGeneration.from_pretrained(mname) input = "{texts[src_lang]}" input_ids = tokenizer.encode(input, return_tensors="pt") outputs = model.generate(input_ids) decoded = tokenizer.decode(outputs[0], skip_special_tokens=True) print(decoded) # {texts[tgt_lang]} ``` #### Limitations and bias ## Training data Pretrained weights were left identical to the original model released by allenai. For more details, please, see the [paper](https://arxiv.org/abs/2006.10369). ## Eval results Here are the BLEU scores: model | fairseq | transformers -------|---------|---------- {model_name} | {scores[model_name][0]} | {scores[model_name][1]} The score is slightly below the score reported in the paper, as the researchers don\'t use `sacrebleu` and measure the score on tokenized outputs. `transformers` score was measured using `sacrebleu` on detokenized outputs. The score was calculated using this code: ```bash git clone https://github.com/huggingface/transformers cd transformers export PAIR={pair} export DATA_DIR=data/$PAIR export SAVE_DIR=data/$PAIR export BS=8 export NUM_BEAMS=5 mkdir -p $DATA_DIR sacrebleu -t wmt16 -l $PAIR --echo src > $DATA_DIR/val.source sacrebleu -t wmt16 -l $PAIR --echo ref > $DATA_DIR/val.target echo $PAIR PYTHONPATH="src:examples/seq2seq" python examples/seq2seq/run_eval.py allenai/{model_name} $DATA_DIR/val.source $SAVE_DIR/test_translations.txt --reference_path $DATA_DIR/val.target --score_path $SAVE_DIR/test_bleu.json --bs $BS --task translation --num_beams $NUM_BEAMS ``` ## Data Sources - [training, etc.](http://www.statmt.org/wmt16/) - [test set](http://matrix.statmt.org/test_sets/newstest2016.tgz?1504722372) ### BibTeX entry and citation info ``` @misc{{kasai2020deep, title={{Deep Encoder, Shallow Decoder: Reevaluating the Speed-Quality Tradeoff in Machine Translation}}, author={{Jungo Kasai and Nikolaos Pappas and Hao Peng and James Cross and Noah A. Smith}}, year={{2020}}, eprint={{2006.10369}}, archivePrefix={{arXiv}}, primaryClass={{cs.CL}} }} ``` ''' model_card_dir.mkdir(parents=__lowerCamelCase , exist_ok=__lowerCamelCase ) lowerCamelCase__ : str =os.path.join(__lowerCamelCase , '''README.md''' ) print(f'''Generating {path}''' ) with open(__lowerCamelCase , '''w''' , encoding='''utf-8''' ) as f: f.write(__lowerCamelCase ) # make sure we are under the root of the project _lowercase : List[str] = Path(__file__).resolve().parent.parent.parent _lowercase : Dict = repo_dir / "model_cards" for model_name in ["wmt16-en-de-dist-12-1", "wmt16-en-de-dist-6-1", "wmt16-en-de-12-1"]: _lowercase : int = model_cards_dir / "allenai" / model_name write_model_card(model_card_dir, src_lang="en", tgt_lang="de", model_name=model_name)
272
1
"""simple docstring""" def _SCREAMING_SNAKE_CASE ( __snake_case : int ): '''simple docstring''' if not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): raise ValueError('multiplicative_persistence() only accepts integral values' ) if num < 0: raise ValueError('multiplicative_persistence() does not accept negative values' ) lowercase = 0 lowercase = str(SCREAMING_SNAKE_CASE_ ) while len(SCREAMING_SNAKE_CASE_ ) != 1: lowercase = [int(SCREAMING_SNAKE_CASE_ ) for i in num_string] lowercase = 1 for i in range(0 , len(SCREAMING_SNAKE_CASE_ ) ): total *= numbers[i] lowercase = str(SCREAMING_SNAKE_CASE_ ) steps += 1 return steps def _SCREAMING_SNAKE_CASE ( __snake_case : int ): '''simple docstring''' if not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): raise ValueError('additive_persistence() only accepts integral values' ) if num < 0: raise ValueError('additive_persistence() does not accept negative values' ) lowercase = 0 lowercase = str(SCREAMING_SNAKE_CASE_ ) while len(SCREAMING_SNAKE_CASE_ ) != 1: lowercase = [int(SCREAMING_SNAKE_CASE_ ) for i in num_string] lowercase = 0 for i in range(0 , len(SCREAMING_SNAKE_CASE_ ) ): total += numbers[i] lowercase = str(SCREAMING_SNAKE_CASE_ ) steps += 1 return steps if __name__ == "__main__": import doctest doctest.testmod()
220
import itertools from dataclasses import dataclass from typing import Any, Callable, Dict, List, Optional, Union import pandas as pd import pyarrow as pa import datasets import datasets.config from datasets.features.features import require_storage_cast from datasets.table import table_cast from datasets.utils.py_utils import Literal snake_case_ = datasets.utils.logging.get_logger(__name__) snake_case_ = ['''names''', '''prefix'''] snake_case_ = ['''warn_bad_lines''', '''error_bad_lines''', '''mangle_dupe_cols'''] snake_case_ = ['''encoding_errors''', '''on_bad_lines'''] snake_case_ = ['''date_format'''] @dataclass class SCREAMING_SNAKE_CASE__ (datasets.BuilderConfig ): __lowerCamelCase : str = "," __lowerCamelCase : Optional[str] = None __lowerCamelCase : Optional[Union[int, List[int], str]] = "infer" __lowerCamelCase : Optional[List[str]] = None __lowerCamelCase : Optional[List[str]] = None __lowerCamelCase : Optional[Union[int, str, List[int], List[str]]] = None __lowerCamelCase : Optional[Union[List[int], List[str]]] = None __lowerCamelCase : Optional[str] = None __lowerCamelCase : bool = True __lowerCamelCase : Optional[Literal["c", "python", "pyarrow"]] = None __lowerCamelCase : Dict[Union[int, str], Callable[[Any], Any]] = None __lowerCamelCase : Optional[list] = None __lowerCamelCase : Optional[list] = None __lowerCamelCase : bool = False __lowerCamelCase : Optional[Union[int, List[int]]] = None __lowerCamelCase : Optional[int] = None __lowerCamelCase : Optional[Union[str, List[str]]] = None __lowerCamelCase : bool = True __lowerCamelCase : bool = True __lowerCamelCase : bool = False __lowerCamelCase : bool = True __lowerCamelCase : Optional[str] = None __lowerCamelCase : str = "." __lowerCamelCase : Optional[str] = None __lowerCamelCase : str = '"' __lowerCamelCase : int = 0 __lowerCamelCase : Optional[str] = None __lowerCamelCase : Optional[str] = None __lowerCamelCase : Optional[str] = None __lowerCamelCase : Optional[str] = None __lowerCamelCase : bool = True __lowerCamelCase : bool = True __lowerCamelCase : int = 0 __lowerCamelCase : bool = True __lowerCamelCase : bool = False __lowerCamelCase : Optional[str] = None __lowerCamelCase : int = 1_0000 __lowerCamelCase : Optional[datasets.Features] = None __lowerCamelCase : Optional[str] = "strict" __lowerCamelCase : Literal["error", "warn", "skip"] = "error" __lowerCamelCase : Optional[str] = None def snake_case_ ( self): if self.delimiter is not None: lowercase__ : List[Any] = self.delimiter if self.column_names is not None: lowercase__ : Optional[int] = self.column_names @property def snake_case_ ( self): lowercase__ : Dict = { 'sep': self.sep, 'header': self.header, 'names': self.names, 'index_col': self.index_col, 'usecols': self.usecols, 'prefix': self.prefix, 'mangle_dupe_cols': self.mangle_dupe_cols, 'engine': self.engine, 'converters': self.converters, 'true_values': self.true_values, 'false_values': self.false_values, 'skipinitialspace': self.skipinitialspace, 'skiprows': self.skiprows, 'nrows': self.nrows, 'na_values': self.na_values, 'keep_default_na': self.keep_default_na, 'na_filter': self.na_filter, 'verbose': self.verbose, 'skip_blank_lines': self.skip_blank_lines, 'thousands': self.thousands, 'decimal': self.decimal, 'lineterminator': self.lineterminator, 'quotechar': self.quotechar, 'quoting': self.quoting, 'escapechar': self.escapechar, 'comment': self.comment, 'encoding': self.encoding, 'dialect': self.dialect, 'error_bad_lines': self.error_bad_lines, 'warn_bad_lines': self.warn_bad_lines, 'skipfooter': self.skipfooter, 'doublequote': self.doublequote, 'memory_map': self.memory_map, 'float_precision': self.float_precision, 'chunksize': self.chunksize, 'encoding_errors': self.encoding_errors, 'on_bad_lines': self.on_bad_lines, 'date_format': self.date_format, } # some kwargs must not be passed if they don't have a default value # some others are deprecated and we can also not pass them if they are the default value for pd_read_csv_parameter in _PANDAS_READ_CSV_NO_DEFAULT_PARAMETERS + _PANDAS_READ_CSV_DEPRECATED_PARAMETERS: if pd_read_csv_kwargs[pd_read_csv_parameter] == getattr(CsvConfig() , a): del pd_read_csv_kwargs[pd_read_csv_parameter] # Remove 2.0 new arguments if not (datasets.config.PANDAS_VERSION.major >= 2): for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_2_0_0_PARAMETERS: del pd_read_csv_kwargs[pd_read_csv_parameter] # Remove 1.3 new arguments if not (datasets.config.PANDAS_VERSION.major >= 1 and datasets.config.PANDAS_VERSION.minor >= 3): for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_1_3_0_PARAMETERS: del pd_read_csv_kwargs[pd_read_csv_parameter] return pd_read_csv_kwargs class SCREAMING_SNAKE_CASE__ (datasets.ArrowBasedBuilder ): __lowerCamelCase : Optional[Any] = CsvConfig def snake_case_ ( self): return datasets.DatasetInfo(features=self.config.features) def snake_case_ ( self , a): if not self.config.data_files: raise ValueError(f"""At least one data file must be specified, but got data_files={self.config.data_files}""") lowercase__ : Any = dl_manager.download_and_extract(self.config.data_files) if isinstance(a , (str, list, tuple)): lowercase__ : List[str] = data_files if isinstance(a , a): lowercase__ : Optional[Any] = [files] lowercase__ : Optional[int] = [dl_manager.iter_files(a) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'files': files})] lowercase__ : int = [] for split_name, files in data_files.items(): if isinstance(a , a): lowercase__ : Optional[int] = [files] lowercase__ : Tuple = [dl_manager.iter_files(a) for file in files] splits.append(datasets.SplitGenerator(name=a , gen_kwargs={'files': files})) return splits def snake_case_ ( self , a): if self.config.features is not None: lowercase__ : Optional[int] = self.config.features.arrow_schema if all(not require_storage_cast(a) for feature in self.config.features.values()): # cheaper cast lowercase__ : Dict = pa.Table.from_arrays([pa_table[field.name] for field in schema] , schema=a) else: # more expensive cast; allows str <-> int/float or str to Audio for example lowercase__ : Optional[Any] = table_cast(a , a) return pa_table def snake_case_ ( self , a): lowercase__ : List[Any] = self.config.features.arrow_schema if self.config.features else None # dtype allows reading an int column as str lowercase__ : Optional[int] = ( { name: dtype.to_pandas_dtype() if not require_storage_cast(a) else object for name, dtype, feature in zip(schema.names , schema.types , self.config.features.values()) } if schema is not None else None ) for file_idx, file in enumerate(itertools.chain.from_iterable(a)): lowercase__ : int = pd.read_csv(a , iterator=a , dtype=a , **self.config.pd_read_csv_kwargs) try: for batch_idx, df in enumerate(a): lowercase__ : List[str] = pa.Table.from_pandas(a) # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield (file_idx, batch_idx), self._cast_table(a) except ValueError as e: logger.error(f"""Failed to read file '{file}' with error {type(a)}: {e}""") raise
214
0
"""simple docstring""" import os import pytest from attr import dataclass _A = """us-east-1""" # defaults region @dataclass class lowerCamelCase : '''simple docstring''' SCREAMING_SNAKE_CASE = 42 SCREAMING_SNAKE_CASE = 'arn:aws:iam::558105141721:role/sagemaker_execution_role' SCREAMING_SNAKE_CASE = { 'task_name': 'mnli', 'per_device_train_batch_size': 1_6, 'per_device_eval_batch_size': 1_6, 'do_train': True, 'do_eval': True, 'do_predict': True, 'output_dir': '/opt/ml/model', 'overwrite_output_dir': True, 'max_steps': 5_0_0, 'save_steps': 5_5_0_0, } SCREAMING_SNAKE_CASE = {**hyperparameters, 'max_steps': 1_0_0_0} @property def _a (self ): """simple docstring""" if self.framework == "pytorch": return [ {"Name": "train_runtime", "Regex": r"train_runtime.*=\D*(.*?)$"}, {"Name": "eval_accuracy", "Regex": r"eval_accuracy.*=\D*(.*?)$"}, {"Name": "eval_loss", "Regex": r"eval_loss.*=\D*(.*?)$"}, ] else: return [ {"Name": "train_runtime", "Regex": r"train_runtime.*=\D*(.*?)$"}, {"Name": "eval_accuracy", "Regex": r"loss.*=\D*(.*?)]?$"}, {"Name": "eval_loss", "Regex": r"sparse_categorical_accuracy.*=\D*(.*?)]?$"}, ] @property def _a (self ): """simple docstring""" return F"""{self.framework}-transfromers-test""" @property def _a (self ): """simple docstring""" return F"""./tests/sagemaker/scripts/{self.framework}""" @property def _a (self ): """simple docstring""" if self.framework == "pytorch": return "763104351884.dkr.ecr.us-east-1.amazonaws.com/huggingface-pytorch-training:1.7.1-transformers4.6.1-gpu-py36-cu110-ubuntu18.04" else: return "763104351884.dkr.ecr.us-east-1.amazonaws.com/huggingface-tensorflow-training:2.4.1-transformers4.6.1-gpu-py37-cu110-ubuntu18.04" @pytest.fixture(scope="""class""" ) def a__ ( lowerCAmelCase ) -> Tuple: UpperCAmelCase__ : Union[str, Any] = SageMakerTestEnvironment(framework=request.cls.framework )
166
"""simple docstring""" from math import atan, cos, radians, sin, tan from .haversine_distance import haversine_distance _A = 6_378_137.0 _A = 6_356_752.314_245 _A = 6_37_81_37 def a__ ( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) -> float: UpperCAmelCase__ : Union[str, Any] = (AXIS_A - AXIS_B) / AXIS_A # Parametric latitudes # https://en.wikipedia.org/wiki/Latitude#Parametric_(or_reduced)_latitude UpperCAmelCase__ : List[str] = atan((1 - flattening) * tan(radians(lowerCAmelCase ) ) ) UpperCAmelCase__ : str = atan((1 - flattening) * tan(radians(lowerCAmelCase ) ) ) # Compute central angle between two points # using haversine theta. sigma = haversine_distance / equatorial radius UpperCAmelCase__ : Any = haversine_distance(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) / EQUATORIAL_RADIUS # Intermediate P and Q values UpperCAmelCase__ : int = (b_lata + b_lata) / 2 UpperCAmelCase__ : Any = (b_lata - b_lata) / 2 # Intermediate X value # X = (sigma - sin(sigma)) * sin^2Pcos^2Q / cos^2(sigma/2) UpperCAmelCase__ : Optional[Any] = (sin(lowerCAmelCase ) ** 2) * (cos(lowerCAmelCase ) ** 2) UpperCAmelCase__ : Optional[Any] = cos(sigma / 2 ) ** 2 UpperCAmelCase__ : Optional[int] = (sigma - sin(lowerCAmelCase )) * (x_numerator / x_demonimator) # Intermediate Y value # Y = (sigma + sin(sigma)) * cos^2Psin^2Q / sin^2(sigma/2) UpperCAmelCase__ : Optional[int] = (cos(lowerCAmelCase ) ** 2) * (sin(lowerCAmelCase ) ** 2) UpperCAmelCase__ : str = sin(sigma / 2 ) ** 2 UpperCAmelCase__ : Union[str, Any] = (sigma + sin(lowerCAmelCase )) * (y_numerator / y_denominator) return EQUATORIAL_RADIUS * (sigma - ((flattening / 2) * (x_value + y_value))) if __name__ == "__main__": import doctest doctest.testmod()
166
1
import subprocess import sys from transformers import BertConfig, BertModel, BertTokenizer, pipeline from transformers.testing_utils import TestCasePlus, require_torch class __lowerCAmelCase ( UpperCamelCase__): @require_torch def _lowercase ( self ) -> List[str]: '''simple docstring''' a__ : List[Any] ="\nfrom transformers import BertConfig, BertModel, BertTokenizer, pipeline\n " a__ : Any ="\nmname = \"hf-internal-testing/tiny-random-bert\"\nBertConfig.from_pretrained(mname)\nBertModel.from_pretrained(mname)\nBertTokenizer.from_pretrained(mname)\npipe = pipeline(task=\"fill-mask\", model=mname)\nprint(\"success\")\n " a__ : int ="\nimport socket\ndef offline_socket(*args, **kwargs): raise RuntimeError(\"Offline mode is enabled, we shouldn't access internet\")\nsocket.socket = offline_socket\n " # Force fetching the files so that we can use the cache a__ : str ="hf-internal-testing/tiny-random-bert" BertConfig.from_pretrained(lowerCAmelCase__ ) BertModel.from_pretrained(lowerCAmelCase__ ) BertTokenizer.from_pretrained(lowerCAmelCase__ ) pipeline(task="fill-mask" , model=lowerCAmelCase__ ) # baseline - just load from_pretrained with normal network a__ : List[str] =[sys.executable, "-c", "\n".join([load, run, mock] )] # should succeed a__ : List[str] =self.get_env() # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files a__ : Union[str, Any] ="1" a__ : List[str] =subprocess.run(lowerCAmelCase__ , env=lowerCAmelCase__ , check=lowerCAmelCase__ , capture_output=lowerCAmelCase__ ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn("success" , result.stdout.decode() ) @require_torch def _lowercase ( self ) -> int: '''simple docstring''' a__ : List[Any] ="\nfrom transformers import BertConfig, BertModel, BertTokenizer, pipeline\n " a__ : int ="\nmname = \"hf-internal-testing/tiny-random-bert\"\nBertConfig.from_pretrained(mname)\nBertModel.from_pretrained(mname)\nBertTokenizer.from_pretrained(mname)\npipe = pipeline(task=\"fill-mask\", model=mname)\nprint(\"success\")\n " a__ : str ="\nimport socket\ndef offline_socket(*args, **kwargs): raise socket.error(\"Faking flaky internet\")\nsocket.socket = offline_socket\n " # Force fetching the files so that we can use the cache a__ : Any ="hf-internal-testing/tiny-random-bert" BertConfig.from_pretrained(lowerCAmelCase__ ) BertModel.from_pretrained(lowerCAmelCase__ ) BertTokenizer.from_pretrained(lowerCAmelCase__ ) pipeline(task="fill-mask" , model=lowerCAmelCase__ ) # baseline - just load from_pretrained with normal network a__ : str =[sys.executable, "-c", "\n".join([load, run, mock] )] # should succeed a__ : Any =self.get_env() a__ : Dict =subprocess.run(lowerCAmelCase__ , env=lowerCAmelCase__ , check=lowerCAmelCase__ , capture_output=lowerCAmelCase__ ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn("success" , result.stdout.decode() ) @require_torch def _lowercase ( self ) -> Optional[int]: '''simple docstring''' a__ : Any ="\nfrom transformers import BertConfig, BertModel, BertTokenizer\n " a__ : Optional[Any] ="\nmname = \"hf-internal-testing/tiny-random-bert-sharded\"\nBertConfig.from_pretrained(mname)\nBertModel.from_pretrained(mname)\nprint(\"success\")\n " a__ : Optional[int] ="\nimport socket\ndef offline_socket(*args, **kwargs): raise ValueError(\"Offline mode is enabled\")\nsocket.socket = offline_socket\n " # baseline - just load from_pretrained with normal network a__ : Any =[sys.executable, "-c", "\n".join([load, run] )] # should succeed a__ : List[Any] =self.get_env() a__ : Dict =subprocess.run(lowerCAmelCase__ , env=lowerCAmelCase__ , check=lowerCAmelCase__ , capture_output=lowerCAmelCase__ ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn("success" , result.stdout.decode() ) # next emulate no network a__ : Optional[int] =[sys.executable, "-c", "\n".join([load, mock, run] )] # Doesn't fail anymore since the model is in the cache due to other tests, so commenting this. # env["TRANSFORMERS_OFFLINE"] = "0" # result = subprocess.run(cmd, env=env, check=False, capture_output=True) # self.assertEqual(result.returncode, 1, result.stderr) # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files a__ : List[Any] ="1" a__ : str =subprocess.run(lowerCAmelCase__ , env=lowerCAmelCase__ , check=lowerCAmelCase__ , capture_output=lowerCAmelCase__ ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn("success" , result.stdout.decode() ) @require_torch def _lowercase ( self ) -> Optional[int]: '''simple docstring''' a__ : Any ="\nfrom transformers import pipeline\n " a__ : Any ="\nmname = \"hf-internal-testing/tiny-random-bert\"\npipe = pipeline(model=mname)\n " a__ : Tuple ="\nimport socket\ndef offline_socket(*args, **kwargs): raise socket.error(\"Offline mode is enabled\")\nsocket.socket = offline_socket\n " a__ : Any =self.get_env() a__ : List[Any] ="1" a__ : Tuple =[sys.executable, "-c", "\n".join([load, mock, run] )] a__ : Any =subprocess.run(lowerCAmelCase__ , env=lowerCAmelCase__ , check=lowerCAmelCase__ , capture_output=lowerCAmelCase__ ) self.assertEqual(result.returncode , 1 , result.stderr ) self.assertIn( "You cannot infer task automatically within `pipeline` when using offline mode" , result.stderr.decode().replace("\n" , "" ) , ) @require_torch def _lowercase ( self ) -> Optional[int]: '''simple docstring''' a__ : Dict ="\nfrom transformers import AutoModel\n " a__ : str ="\nmname = \"hf-internal-testing/test_dynamic_model\"\nAutoModel.from_pretrained(mname, trust_remote_code=True)\nprint(\"success\")\n " # baseline - just load from_pretrained with normal network a__ : List[str] =[sys.executable, "-c", "\n".join([load, run] )] # should succeed a__ : str =self.get_env() a__ : Optional[int] =subprocess.run(lowerCAmelCase__ , env=lowerCAmelCase__ , check=lowerCAmelCase__ , capture_output=lowerCAmelCase__ ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn("success" , result.stdout.decode() ) # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files a__ : int ="1" a__ : List[str] =subprocess.run(lowerCAmelCase__ , env=lowerCAmelCase__ , check=lowerCAmelCase__ , capture_output=lowerCAmelCase__ ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn("success" , result.stdout.decode() )
95
import os import tempfile import unittest from transformers import FlaubertConfig, is_torch_available from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( FlaubertForMultipleChoice, FlaubertForQuestionAnswering, FlaubertForQuestionAnsweringSimple, FlaubertForSequenceClassification, FlaubertForTokenClassification, FlaubertModel, FlaubertWithLMHeadModel, ) from transformers.models.flaubert.modeling_flaubert import FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST class _SCREAMING_SNAKE_CASE ( lowerCAmelCase__): def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=13 , _SCREAMING_SNAKE_CASE=7 , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=2 , _SCREAMING_SNAKE_CASE=99 , _SCREAMING_SNAKE_CASE=0 , _SCREAMING_SNAKE_CASE=32 , _SCREAMING_SNAKE_CASE=5 , _SCREAMING_SNAKE_CASE=4 , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=512 , _SCREAMING_SNAKE_CASE=12 , _SCREAMING_SNAKE_CASE=2 , _SCREAMING_SNAKE_CASE=0.0_2 , _SCREAMING_SNAKE_CASE=3 , _SCREAMING_SNAKE_CASE=4 , _SCREAMING_SNAKE_CASE="last" , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , )-> Optional[Any]: lowerCamelCase_ =parent lowerCamelCase_ =batch_size lowerCamelCase_ =seq_length lowerCamelCase_ =is_training lowerCamelCase_ =use_input_lengths lowerCamelCase_ =use_token_type_ids lowerCamelCase_ =use_labels lowerCamelCase_ =gelu_activation lowerCamelCase_ =sinusoidal_embeddings lowerCamelCase_ =causal lowerCamelCase_ =asm lowerCamelCase_ =n_langs lowerCamelCase_ =vocab_size lowerCamelCase_ =n_special lowerCamelCase_ =hidden_size lowerCamelCase_ =num_hidden_layers lowerCamelCase_ =num_attention_heads lowerCamelCase_ =hidden_dropout_prob lowerCamelCase_ =attention_probs_dropout_prob lowerCamelCase_ =max_position_embeddings lowerCamelCase_ =type_vocab_size lowerCamelCase_ =type_sequence_label_size lowerCamelCase_ =initializer_range lowerCamelCase_ =num_labels lowerCamelCase_ =num_choices lowerCamelCase_ =summary_type lowerCamelCase_ =use_proj lowerCamelCase_ =scope def _snake_case ( self )-> Dict: lowerCamelCase_ =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCamelCase_ =random_attention_mask([self.batch_size, self.seq_length] ) lowerCamelCase_ =None if self.use_input_lengths: lowerCamelCase_ =( ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length lowerCamelCase_ =None if self.use_token_type_ids: lowerCamelCase_ =ids_tensor([self.batch_size, self.seq_length] , self.n_langs ) lowerCamelCase_ =None lowerCamelCase_ =None lowerCamelCase_ =None if self.use_labels: lowerCamelCase_ =ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCamelCase_ =ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCamelCase_ =ids_tensor([self.batch_size] , 2 ).float() lowerCamelCase_ =ids_tensor([self.batch_size] , self.num_choices ) lowerCamelCase_ =self.get_config() return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def _snake_case ( self )-> List[str]: return FlaubertConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , ) def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , )-> str: lowerCamelCase_ =FlaubertModel(config=_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() lowerCamelCase_ =model(_SCREAMING_SNAKE_CASE , lengths=_SCREAMING_SNAKE_CASE , langs=_SCREAMING_SNAKE_CASE ) lowerCamelCase_ =model(_SCREAMING_SNAKE_CASE , langs=_SCREAMING_SNAKE_CASE ) lowerCamelCase_ =model(_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , )-> List[Any]: lowerCamelCase_ =FlaubertWithLMHeadModel(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() lowerCamelCase_ =model(_SCREAMING_SNAKE_CASE , token_type_ids=_SCREAMING_SNAKE_CASE , labels=_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , )-> Optional[Any]: lowerCamelCase_ =FlaubertForQuestionAnsweringSimple(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() lowerCamelCase_ =model(_SCREAMING_SNAKE_CASE ) lowerCamelCase_ =model(_SCREAMING_SNAKE_CASE , start_positions=_SCREAMING_SNAKE_CASE , end_positions=_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , )-> Optional[int]: lowerCamelCase_ =FlaubertForQuestionAnswering(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() lowerCamelCase_ =model(_SCREAMING_SNAKE_CASE ) lowerCamelCase_ =model( _SCREAMING_SNAKE_CASE , start_positions=_SCREAMING_SNAKE_CASE , end_positions=_SCREAMING_SNAKE_CASE , cls_index=_SCREAMING_SNAKE_CASE , is_impossible=_SCREAMING_SNAKE_CASE , p_mask=_SCREAMING_SNAKE_CASE , ) lowerCamelCase_ =model( _SCREAMING_SNAKE_CASE , start_positions=_SCREAMING_SNAKE_CASE , end_positions=_SCREAMING_SNAKE_CASE , cls_index=_SCREAMING_SNAKE_CASE , is_impossible=_SCREAMING_SNAKE_CASE , ) ((lowerCamelCase_) , ) =result_with_labels.to_tuple() lowerCamelCase_ =model(_SCREAMING_SNAKE_CASE , start_positions=_SCREAMING_SNAKE_CASE , end_positions=_SCREAMING_SNAKE_CASE ) ((lowerCamelCase_) , ) =result_with_labels.to_tuple() self.parent.assertEqual(result_with_labels.loss.shape , () ) self.parent.assertEqual(result.start_top_log_probs.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual(result.start_top_index.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual( result.end_top_log_probs.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual( result.end_top_index.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual(result.cls_logits.shape , (self.batch_size,) ) def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , )-> Any: lowerCamelCase_ =FlaubertForSequenceClassification(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() lowerCamelCase_ =model(_SCREAMING_SNAKE_CASE ) lowerCamelCase_ =model(_SCREAMING_SNAKE_CASE , labels=_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , )-> List[Any]: lowerCamelCase_ =self.num_labels lowerCamelCase_ =FlaubertForTokenClassification(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() lowerCamelCase_ =model(_SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE , labels=_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , )-> Dict: lowerCamelCase_ =self.num_choices lowerCamelCase_ =FlaubertForMultipleChoice(config=_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() lowerCamelCase_ =input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowerCamelCase_ =token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowerCamelCase_ =input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowerCamelCase_ =model( _SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE , token_type_ids=_SCREAMING_SNAKE_CASE , labels=_SCREAMING_SNAKE_CASE , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def _snake_case ( self )-> int: lowerCamelCase_ =self.prepare_config_and_inputs() ( ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ) =config_and_inputs lowerCamelCase_ ={ """input_ids""": input_ids, """token_type_ids""": token_type_ids, """lengths""": input_lengths, """attention_mask""": input_mask, } return config, inputs_dict @require_torch class _SCREAMING_SNAKE_CASE ( lowerCAmelCase__ , lowerCAmelCase__ , unittest.TestCase): _UpperCamelCase:str = ( ( FlaubertModel, FlaubertWithLMHeadModel, FlaubertForQuestionAnswering, FlaubertForQuestionAnsweringSimple, FlaubertForSequenceClassification, FlaubertForTokenClassification, FlaubertForMultipleChoice, ) if is_torch_available() else () ) _UpperCamelCase:str = ( { "feature-extraction": FlaubertModel, "fill-mask": FlaubertWithLMHeadModel, "question-answering": FlaubertForQuestionAnsweringSimple, "text-classification": FlaubertForSequenceClassification, "token-classification": FlaubertForTokenClassification, "zero-shot": FlaubertForSequenceClassification, } if is_torch_available() else {} ) def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )-> Optional[Any]: if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith("""Fast""" ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=False )-> List[Any]: lowerCamelCase_ =super()._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , return_labels=_SCREAMING_SNAKE_CASE ) if return_labels: if model_class.__name__ == "FlaubertForQuestionAnswering": lowerCamelCase_ =torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_SCREAMING_SNAKE_CASE ) lowerCamelCase_ =torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_SCREAMING_SNAKE_CASE ) return inputs_dict def _snake_case ( self )-> Optional[Any]: lowerCamelCase_ =FlaubertModelTester(self ) lowerCamelCase_ =ConfigTester(self , config_class=_SCREAMING_SNAKE_CASE , emb_dim=37 ) def _snake_case ( self )-> Optional[Any]: self.config_tester.run_common_tests() def _snake_case ( self )-> List[Any]: lowerCamelCase_ =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_model(*_SCREAMING_SNAKE_CASE ) def _snake_case ( self )-> int: lowerCamelCase_ =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_lm_head(*_SCREAMING_SNAKE_CASE ) def _snake_case ( self )-> Tuple: lowerCamelCase_ =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_simple_qa(*_SCREAMING_SNAKE_CASE ) def _snake_case ( self )-> List[Any]: lowerCamelCase_ =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_qa(*_SCREAMING_SNAKE_CASE ) def _snake_case ( self )-> Optional[Any]: lowerCamelCase_ =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_sequence_classif(*_SCREAMING_SNAKE_CASE ) def _snake_case ( self )-> List[Any]: lowerCamelCase_ =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_token_classif(*_SCREAMING_SNAKE_CASE ) def _snake_case ( self )-> List[str]: lowerCamelCase_ =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_multiple_choice(*_SCREAMING_SNAKE_CASE ) @slow def _snake_case ( self )-> Optional[Any]: for model_name in FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase_ =FlaubertModel.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertIsNotNone(_SCREAMING_SNAKE_CASE ) @slow @require_torch_gpu def _snake_case ( self )-> Optional[Any]: lowerCamelCase_ , lowerCamelCase_ =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # FlauBertForMultipleChoice behaves incorrectly in JIT environments. if model_class == FlaubertForMultipleChoice: return lowerCamelCase_ =True lowerCamelCase_ =model_class(config=_SCREAMING_SNAKE_CASE ) lowerCamelCase_ =self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) lowerCamelCase_ =torch.jit.trace( _SCREAMING_SNAKE_CASE , (inputs_dict["""input_ids"""].to("""cpu""" ), inputs_dict["""attention_mask"""].to("""cpu""" )) ) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(_SCREAMING_SNAKE_CASE , os.path.join(_SCREAMING_SNAKE_CASE , """traced_model.pt""" ) ) lowerCamelCase_ =torch.jit.load(os.path.join(_SCREAMING_SNAKE_CASE , """traced_model.pt""" ) , map_location=_SCREAMING_SNAKE_CASE ) loaded(inputs_dict["""input_ids"""].to(_SCREAMING_SNAKE_CASE ) , inputs_dict["""attention_mask"""].to(_SCREAMING_SNAKE_CASE ) ) @require_torch class _SCREAMING_SNAKE_CASE ( unittest.TestCase): @slow def _snake_case ( self )-> Union[str, Any]: lowerCamelCase_ =FlaubertModel.from_pretrained("""flaubert/flaubert_base_cased""" ) lowerCamelCase_ =torch.tensor([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]] ) with torch.no_grad(): lowerCamelCase_ =model(_SCREAMING_SNAKE_CASE )[0] lowerCamelCase_ =torch.Size((1, 11, 768) ) self.assertEqual(output.shape , _SCREAMING_SNAKE_CASE ) lowerCamelCase_ =torch.tensor( [[[-2.6_2_5_1, -1.4_2_9_8, -0.0_2_2_7], [-2.8_5_1_0, -1.6_3_8_7, 0.2_2_5_8], [-2.8_1_1_4, -1.1_8_3_2, -0.3_0_6_6]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , _SCREAMING_SNAKE_CASE , atol=1E-4 ) )
154
0
import argparse import torch from diffusers.pipelines.stable_diffusion.convert_from_ckpt import download_from_original_stable_diffusion_ckpt if __name__ == "__main__": SCREAMING_SNAKE_CASE_ = argparse.ArgumentParser() parser.add_argument( '--checkpoint_path', default=None, type=str, required=True, help='Path to the checkpoint to convert.' ) # !wget https://raw.githubusercontent.com/CompVis/stable-diffusion/main/configs/stable-diffusion/v1-inference.yaml parser.add_argument( '--original_config_file', default=None, type=str, help='The YAML config file corresponding to the original architecture.', ) parser.add_argument( '--num_in_channels', default=None, type=int, help='The number of input channels. If `None` number of input channels will be automatically inferred.', ) parser.add_argument( '--scheduler_type', default='pndm', type=str, help='Type of scheduler to use. Should be one of [\'pndm\', \'lms\', \'ddim\', \'euler\', \'euler-ancestral\', \'dpm\']', ) parser.add_argument( '--pipeline_type', default=None, type=str, help=( 'The pipeline type. One of \'FrozenOpenCLIPEmbedder\', \'FrozenCLIPEmbedder\', \'PaintByExample\'' '. If `None` pipeline will be automatically inferred.' ), ) parser.add_argument( '--image_size', default=None, type=int, help=( 'The image size that the model was trained on. Use 512 for Stable Diffusion v1.X and Stable Siffusion v2' ' Base. Use 768 for Stable Diffusion v2.' ), ) parser.add_argument( '--prediction_type', default=None, type=str, help=( 'The prediction type that the model was trained on. Use \'epsilon\' for Stable Diffusion v1.X and Stable' ' Diffusion v2 Base. Use \'v_prediction\' for Stable Diffusion v2.' ), ) parser.add_argument( '--extract_ema', action='store_true', help=( 'Only relevant for checkpoints that have both EMA and non-EMA weights. Whether to extract the EMA weights' ' or not. Defaults to `False`. Add `--extract_ema` to extract the EMA weights. EMA weights usually yield' ' higher quality images for inference. Non-EMA weights are usually better to continue fine-tuning.' ), ) parser.add_argument( '--upcast_attention', action='store_true', help=( 'Whether the attention computation should always be upcasted. This is necessary when running stable' ' diffusion 2.1.' ), ) parser.add_argument( '--from_safetensors', action='store_true', help='If `--checkpoint_path` is in `safetensors` format, load checkpoint with safetensors instead of PyTorch.', ) parser.add_argument( '--to_safetensors', action='store_true', help='Whether to store pipeline in safetensors format or not.', ) parser.add_argument('--dump_path', default=None, type=str, required=True, help='Path to the output model.') parser.add_argument('--device', type=str, help='Device to use (e.g. cpu, cuda:0, cuda:1, etc.)') parser.add_argument( '--stable_unclip', type=str, default=None, required=False, help='Set if this is a stable unCLIP model. One of \'txt2img\' or \'img2img\'.', ) parser.add_argument( '--stable_unclip_prior', type=str, default=None, required=False, help='Set if this is a stable unCLIP txt2img model. Selects which prior to use. If `--stable_unclip` is set to `txt2img`, the karlo prior (https://huggingface.co/kakaobrain/karlo-v1-alpha/tree/main/prior) is selected by default.', ) parser.add_argument( '--clip_stats_path', type=str, help='Path to the clip stats file. Only required if the stable unclip model\'s config specifies `model.params.noise_aug_config.params.clip_stats_path`.', required=False, ) parser.add_argument( '--controlnet', action='store_true', default=None, help='Set flag if this is a controlnet checkpoint.' ) parser.add_argument('--half', action='store_true', help='Save weights in half precision.') parser.add_argument( '--vae_path', type=str, default=None, required=False, help='Set to a path, hub id to an already converted vae to not convert it again.', ) SCREAMING_SNAKE_CASE_ = parser.parse_args() SCREAMING_SNAKE_CASE_ = download_from_original_stable_diffusion_ckpt( checkpoint_path=args.checkpoint_path, original_config_file=args.original_config_file, image_size=args.image_size, prediction_type=args.prediction_type, model_type=args.pipeline_type, extract_ema=args.extract_ema, scheduler_type=args.scheduler_type, num_in_channels=args.num_in_channels, upcast_attention=args.upcast_attention, from_safetensors=args.from_safetensors, device=args.device, stable_unclip=args.stable_unclip, stable_unclip_prior=args.stable_unclip_prior, clip_stats_path=args.clip_stats_path, controlnet=args.controlnet, vae_path=args.vae_path, ) if args.half: pipe.to(torch_dtype=torch.floataa) if args.controlnet: # only save the controlnet model pipe.controlnet.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors) else: pipe.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
189
import warnings from typing import List import numpy as np from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding from ...utils import is_flax_available, is_tf_available, is_torch_available class a ( UpperCAmelCase ): _lowercase = ["image_processor", "tokenizer"] _lowercase = "OwlViTImageProcessor" _lowercase = ("CLIPTokenizer", "CLIPTokenizerFast") def __init__( self , A_=None , A_=None , **A_ ): '''simple docstring''' _UpperCAmelCase : List[str] = None if "feature_extractor" in kwargs: warnings.warn( "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" " instead." , A_ , ) _UpperCAmelCase : Union[str, Any] = kwargs.pop("feature_extractor" ) _UpperCAmelCase : Any = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("You need to specify an `image_processor`." ) if tokenizer is None: raise ValueError("You need to specify a `tokenizer`." ) super().__init__(A_ , A_ ) def __call__( self , A_=None , A_=None , A_=None , A_="max_length" , A_="np" , **A_ ): '''simple docstring''' if text is None and query_images is None and images is None: raise ValueError( "You have to specify at least one text or query image or image. All three cannot be none." ) if text is not None: if isinstance(A_ , A_ ) or (isinstance(A_ , A_ ) and not isinstance(text[0] , A_ )): _UpperCAmelCase : Optional[int] = [self.tokenizer(A_ , padding=A_ , return_tensors=A_ , **A_ )] elif isinstance(A_ , A_ ) and isinstance(text[0] , A_ ): _UpperCAmelCase : Optional[int] = [] # Maximum number of queries across batch _UpperCAmelCase : Optional[Any] = max([len(A_ ) for t in text] ) # Pad all batch samples to max number of text queries for t in text: if len(A_ ) != max_num_queries: _UpperCAmelCase : Optional[int] = t + [" "] * (max_num_queries - len(A_ )) _UpperCAmelCase : str = self.tokenizer(A_ , padding=A_ , return_tensors=A_ , **A_ ) encodings.append(A_ ) else: raise TypeError("Input text should be a string, a list of strings or a nested list of strings" ) if return_tensors == "np": _UpperCAmelCase : List[str] = np.concatenate([encoding["input_ids"] for encoding in encodings] , axis=0 ) _UpperCAmelCase : Tuple = np.concatenate([encoding["attention_mask"] for encoding in encodings] , axis=0 ) elif return_tensors == "jax" and is_flax_available(): import jax.numpy as jnp _UpperCAmelCase : Optional[Any] = jnp.concatenate([encoding["input_ids"] for encoding in encodings] , axis=0 ) _UpperCAmelCase : str = jnp.concatenate([encoding["attention_mask"] for encoding in encodings] , axis=0 ) elif return_tensors == "pt" and is_torch_available(): import torch _UpperCAmelCase : str = torch.cat([encoding["input_ids"] for encoding in encodings] , dim=0 ) _UpperCAmelCase : Dict = torch.cat([encoding["attention_mask"] for encoding in encodings] , dim=0 ) elif return_tensors == "tf" and is_tf_available(): import tensorflow as tf _UpperCAmelCase : Union[str, Any] = tf.stack([encoding["input_ids"] for encoding in encodings] , axis=0 ) _UpperCAmelCase : Optional[int] = tf.stack([encoding["attention_mask"] for encoding in encodings] , axis=0 ) else: raise ValueError("Target return tensor type could not be returned" ) _UpperCAmelCase : Optional[int] = BatchEncoding() _UpperCAmelCase : str = input_ids _UpperCAmelCase : Optional[Any] = attention_mask if query_images is not None: _UpperCAmelCase : int = BatchEncoding() _UpperCAmelCase : str = self.image_processor( A_ , return_tensors=A_ , **A_ ).pixel_values _UpperCAmelCase : Optional[Any] = query_pixel_values if images is not None: _UpperCAmelCase : int = self.image_processor(A_ , return_tensors=A_ , **A_ ) if text is not None and images is not None: _UpperCAmelCase : Optional[int] = image_features.pixel_values return encoding elif query_images is not None and images is not None: _UpperCAmelCase : Any = image_features.pixel_values return encoding elif text is not None or query_images is not None: return encoding else: return BatchEncoding(data=dict(**A_ ) , tensor_type=A_ ) def _UpperCAmelCase ( self , *A_ , **A_ ): '''simple docstring''' return self.image_processor.post_process(*A_ , **A_ ) def _UpperCAmelCase ( self , *A_ , **A_ ): '''simple docstring''' return self.image_processor.post_process_object_detection(*A_ , **A_ ) def _UpperCAmelCase ( self , *A_ , **A_ ): '''simple docstring''' return self.image_processor.post_process_image_guided_detection(*A_ , **A_ ) def _UpperCAmelCase ( self , *A_ , **A_ ): '''simple docstring''' return self.tokenizer.batch_decode(*A_ , **A_ ) def _UpperCAmelCase ( self , *A_ , **A_ ): '''simple docstring''' return self.tokenizer.decode(*A_ , **A_ ) @property def _UpperCAmelCase ( self ): '''simple docstring''' warnings.warn( "`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead." , A_ , ) return self.image_processor_class @property def _UpperCAmelCase ( self ): '''simple docstring''' warnings.warn( "`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead." , A_ , ) return self.image_processor
189
1
'''simple docstring''' from math import ceil from typing import List, Optional, Union import numpy as np from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import BatchFeature, SequenceFeatureExtractor from ...utils import TensorType, logging __lowerCAmelCase = logging.get_logger(__name__) class __magic_name__ ( _UpperCamelCase ): lowerCAmelCase : str = ['audio_values', 'audio_mask'] def __init__( self : Tuple ,_UpperCAmelCase : str=2048 ,_UpperCAmelCase : List[str]=1 ,_UpperCAmelCase : Any=[16, 16] ,_UpperCAmelCase : Dict=128 ,_UpperCAmelCase : Tuple=44100 ,_UpperCAmelCase : Optional[Any]=86 ,_UpperCAmelCase : str=2048 ,_UpperCAmelCase : Union[str, Any]=0.0 ,**_UpperCAmelCase : List[str] ,): super().__init__( feature_size=_UpperCAmelCase ,sampling_rate=_UpperCAmelCase ,padding_value=_UpperCAmelCase ,**_UpperCAmelCase ,) _a : List[Any] = spectrogram_length _a : Tuple = num_channels _a : Dict = patch_size _a : Optional[Any] = feature_size // self.patch_size[1] _a : Tuple = n_fft _a : List[Any] = sampling_rate // hop_length_to_sampling_rate _a : List[str] = sampling_rate _a : Union[str, Any] = padding_value _a : Any = mel_filter_bank( num_frequency_bins=1 + n_fft // 2 ,num_mel_filters=_UpperCAmelCase ,min_frequency=0.0 ,max_frequency=2_20_50.0 ,sampling_rate=_UpperCAmelCase ,norm='slaney' ,mel_scale='slaney' ,).T def __lowercase ( self : Tuple ,_UpperCAmelCase : np.array ): _a : List[str] = spectrogram( _UpperCAmelCase ,window_function(self.n_fft ,'hann' ) ,frame_length=self.n_fft ,hop_length=self.hop_length ,power=2.0 ,mel_filters=self.mel_filters.T ,log_mel='dB' ,db_range=80.0 ,) _a : List[Any] = log_spec[:, :-1] _a : Optional[Any] = log_spec - 20.0 _a : Dict = np.clip(log_spec / 40.0 ,-2.0 ,0.0 ) + 1.0 return log_spec def __call__( self : int ,_UpperCAmelCase : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] ,_UpperCAmelCase : Optional[Union[str, TensorType]] = None ,_UpperCAmelCase : Optional[bool] = True ,_UpperCAmelCase : Optional[int] = None ,_UpperCAmelCase : bool = False ,_UpperCAmelCase : bool = False ,**_UpperCAmelCase : Any ,): if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( 'This feature extractor is set to support sampling rate' F""" of {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled""" F""" with {self.sampling_rate} and not {sampling_rate}.""" ) else: logger.warning( 'It is strongly recommended to pass the `sampling_rate` argument to this function. ' 'Failing to do so can result in silent errors that might be hard to debug.' ) _a : Optional[Any] = isinstance(_UpperCAmelCase ,np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(F"""Only mono-channel audio is supported for input to {self}""" ) _a : Optional[int] = is_batched_numpy or ( isinstance(_UpperCAmelCase ,(list, tuple) ) and (isinstance(raw_speech[0] ,(np.ndarray, tuple, list) )) ) if is_batched: _a : Union[str, Any] = [np.asarray([speech] ,dtype=np.floataa ).T for speech in raw_speech] elif not is_batched and not isinstance(_UpperCAmelCase ,np.ndarray ): _a : Optional[int] = np.asarray(_UpperCAmelCase ,dtype=np.floataa ) elif isinstance(_UpperCAmelCase ,np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): _a : Optional[Any] = raw_speech.astype(np.floataa ) # always return batch if not is_batched: _a : Dict = [np.asarray([raw_speech] ).T] # Convert audio signals to log mel spectrograms, truncate by time axis _a : Any = [ self._np_extract_fbank_features(waveform.squeeze() ).T[: self.spectrogram_length] for waveform in raw_speech ] if isinstance(audio_features[0] ,_UpperCAmelCase ): _a : Tuple = [np.asarray(_UpperCAmelCase ,dtype=np.floataa ) for feature in audio_features] # Create audio attention mask _a : List[Any] = max( [ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len for feature in audio_features] ) # The maximum number of audio patches in a batch if return_attention_mask: _a : Dict = [ (ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len) * [1] + (max_patch_len - ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len) * [0] for feature in audio_features ] _a : Union[str, Any] = np.array(_UpperCAmelCase ).astype(np.floataa ) # convert into correct format for padding _a : Dict = max_patch_len // self.freq_len * self.patch_size[0] # The maximum audio size in a batch _a : Union[str, Any] = np.ones([len(_UpperCAmelCase ), 1, max_time_len, self.feature_size] ).astype(np.floataa ) _a : List[Any] = padded_audio_features * self.padding_value for i in range(len(_UpperCAmelCase ) ): _a : Any = audio_features[i] _a : List[Any] = feature # return as BatchFeature if return_attention_mask: _a : Tuple = {'audio_values': padded_audio_features, 'audio_mask': audio_mask} else: _a : Tuple = {'audio_values': padded_audio_features} _a : Optional[Any] = BatchFeature(data=_UpperCAmelCase ,tensor_type=_UpperCAmelCase ) return encoded_inputs
89
'''simple docstring''' import unittest from transformers import AlbertTokenizer, AlbertTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin a : Any = get_tests_dir("""fixtures/spiece.model""") @require_sentencepiece @require_tokenizers class UpperCamelCase_ ( __magic_name__ , unittest.TestCase ): lowercase = AlbertTokenizer lowercase = AlbertTokenizerFast lowercase = True lowercase = True lowercase = True def _lowercase( self ) -> str: super().setUp() # We have a SentencePiece fixture for testing UpperCAmelCase : Optional[int] = AlbertTokenizer(A ) tokenizer.save_pretrained(self.tmpdirname ) def _lowercase( self , A ) -> int: UpperCAmelCase : Optional[int] = """this is a test""" UpperCAmelCase : Dict = """this is a test""" return input_text, output_text def _lowercase( self ) -> int: UpperCAmelCase : Tuple = """<pad>""" UpperCAmelCase : Optional[int] = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(A ) , A ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(A ) , A ) def _lowercase( self ) -> Any: UpperCAmelCase : str = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<pad>""" ) self.assertEqual(vocab_keys[1] , """<unk>""" ) self.assertEqual(vocab_keys[-1] , """▁eloquent""" ) self.assertEqual(len(A ) , 30000 ) def _lowercase( self ) -> Tuple: self.assertEqual(self.get_tokenizer().vocab_size , 30000 ) def _lowercase( self ) -> Union[str, Any]: if not self.test_rust_tokenizer: return UpperCAmelCase : int = self.get_tokenizer() UpperCAmelCase : List[str] = self.get_rust_tokenizer() UpperCAmelCase : Optional[Any] = """I was born in 92000, and this is falsé.""" UpperCAmelCase : str = tokenizer.tokenize(A ) UpperCAmelCase : Optional[int] = rust_tokenizer.tokenize(A ) self.assertListEqual(A , A ) UpperCAmelCase : Any = tokenizer.encode(A , add_special_tokens=A ) UpperCAmelCase : Optional[int] = rust_tokenizer.encode(A , add_special_tokens=A ) self.assertListEqual(A , A ) UpperCAmelCase : Optional[Any] = self.get_rust_tokenizer() UpperCAmelCase : Union[str, Any] = tokenizer.encode(A ) UpperCAmelCase : Optional[int] = rust_tokenizer.encode(A ) self.assertListEqual(A , A ) def _lowercase( self ) -> Any: UpperCAmelCase : List[Any] = AlbertTokenizer(A , keep_accents=A ) UpperCAmelCase : Optional[int] = tokenizer.tokenize("""This is a test""" ) self.assertListEqual(A , ["""▁this""", """▁is""", """▁a""", """▁test"""] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(A ) , [48, 25, 21, 1289] ) UpperCAmelCase : Optional[Any] = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( A , ["""▁i""", """▁was""", """▁born""", """▁in""", """▁9""", """2000""", """,""", """▁and""", """▁this""", """▁is""", """▁fal""", """s""", """é""", """."""] ) UpperCAmelCase : str = tokenizer.convert_tokens_to_ids(A ) self.assertListEqual(A , [31, 23, 386, 19, 561, 3050, 15, 17, 48, 25, 8256, 18, 1, 9] ) UpperCAmelCase : List[str] = tokenizer.convert_ids_to_tokens(A ) self.assertListEqual( A , ["""▁i""", """▁was""", """▁born""", """▁in""", """▁9""", """2000""", """,""", """▁and""", """▁this""", """▁is""", """▁fal""", """s""", """<unk>""", """."""] , ) def _lowercase( self ) -> Optional[Any]: UpperCAmelCase : str = AlbertTokenizer(A ) UpperCAmelCase : Optional[int] = tokenizer.encode("""sequence builders""" ) UpperCAmelCase : Any = tokenizer.encode("""multi-sequence build""" ) UpperCAmelCase : Optional[Any] = tokenizer.build_inputs_with_special_tokens(A ) UpperCAmelCase : List[str] = tokenizer.build_inputs_with_special_tokens(A , A ) assert encoded_sentence == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] assert encoded_pair == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [ tokenizer.sep_token_id ] @slow def _lowercase( self ) -> Dict: # fmt: off UpperCAmelCase : Tuple = {"""attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """input_ids""": [[2, 21970, 13, 5, 6092, 167, 28, 7103, 2153, 673, 8, 7028, 12051, 18, 17, 7103, 2153, 673, 8, 3515, 18684, 8, 4461, 6, 1927, 297, 8, 12060, 2607, 18, 13, 5, 4461, 15, 10538, 38, 8, 135, 15, 822, 58, 15, 993, 10363, 15, 1460, 8005, 4461, 15, 993, 255, 2328, 9, 9, 9, 6, 26, 1112, 816, 3260, 13, 5, 103, 2377, 6, 17, 1112, 816, 2782, 13, 5, 103, 10641, 6, 29, 84, 2512, 2430, 782, 18684, 2761, 19, 808, 2430, 2556, 17, 855, 1480, 9477, 4091, 128, 11712, 15, 7103, 2153, 673, 17, 24883, 9990, 9, 3], [2, 11502, 25, 1006, 20, 782, 8, 11809, 855, 1732, 19393, 18667, 37, 367, 21018, 69, 1854, 34, 11860, 19124, 27, 156, 225, 17, 193, 4141, 19, 65, 9124, 9, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [2, 14, 2231, 886, 2385, 17659, 84, 14, 16792, 1952, 9, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """token_type_ids""": [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=A , model_name="""albert-base-v2""" , revision="""6b6560eaf5ff2e250b00c50f380c5389a9c2d82e""" , )
265
0
from collections import defaultdict from math import gcd def _lowercase ( UpperCamelCase_ = 1500000 ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE__ = defaultdict(_snake_case ) SCREAMING_SNAKE_CASE__ = 2 while 2 * euclid_m * (euclid_m + 1) <= limit: for euclid_n in range((euclid_m % 2) + 1 , _snake_case , 2 ): if gcd(_snake_case , _snake_case ) > 1: continue SCREAMING_SNAKE_CASE__ = 2 * euclid_m * (euclid_m + euclid_n) for perimeter in range(_snake_case , limit + 1 , _snake_case ): frequencies[perimeter] += 1 euclid_m += 1 return sum(1 for frequency in frequencies.values() if frequency == 1 ) if __name__ == "__main__": print(F"""{solution() = }""")
352
import argparse import glob import logging import os import sys import time from collections import defaultdict from pathlib import Path from typing import Dict, List, Tuple import numpy as np import pytorch_lightning as pl import torch from callbacks import SeqaSeqLoggingCallback, get_checkpoint_callback, get_early_stopping_callback from torch import nn from torch.utils.data import DataLoader from transformers import MBartTokenizer, TaForConditionalGeneration from transformers.models.bart.modeling_bart import shift_tokens_right from utils import ( ROUGE_KEYS, LegacySeqaSeqDataset, SeqaSeqDataset, assert_all_frozen, calculate_bleu, calculate_rouge, check_output_dir, flatten_list, freeze_embeds, freeze_params, get_git_info, label_smoothed_nll_loss, lmap, pickle_save, save_git_info, save_json, use_task_specific_params, ) # need the parent dir module sys.path.insert(2, str(Path(__file__).resolve().parents[1])) from lightning_base import BaseTransformer, add_generic_args, generic_train # noqa __snake_case = logging.getLogger(__name__) class lowercase__ ( _UpperCAmelCase ): A__ : Tuple ="""summarization""" A__ : Optional[int] =["""loss"""] A__ : Optional[Any] =ROUGE_KEYS A__ : str ="""rouge2""" def __init__( self : List[str] , UpperCAmelCase_ : str , **UpperCAmelCase_ : Optional[Any] ): if hparams.sortish_sampler and hparams.gpus > 1: SCREAMING_SNAKE_CASE__ = False elif hparams.max_tokens_per_batch is not None: if hparams.gpus > 1: raise NotImplementedError('Dynamic Batch size does not work for multi-gpu training' ) if hparams.sortish_sampler: raise ValueError('--sortish_sampler and --max_tokens_per_batch may not be used simultaneously' ) super().__init__(UpperCAmelCase_ , num_labels=UpperCAmelCase_ , mode=self.mode , **UpperCAmelCase_ ) use_task_specific_params(self.model , 'summarization' ) save_git_info(self.hparams.output_dir ) SCREAMING_SNAKE_CASE__ = Path(self.output_dir ) / 'metrics.json' SCREAMING_SNAKE_CASE__ = Path(self.output_dir ) / 'hparams.pkl' pickle_save(self.hparams , self.hparams_save_path ) SCREAMING_SNAKE_CASE__ = 0 SCREAMING_SNAKE_CASE__ = defaultdict(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = self.config.model_type SCREAMING_SNAKE_CASE__ = self.config.tgt_vocab_size if self.model_type == 'fsmt' else self.config.vocab_size SCREAMING_SNAKE_CASE__ = { "data_dir": self.hparams.data_dir, "max_source_length": self.hparams.max_source_length, "prefix": self.model.config.prefix or "", } SCREAMING_SNAKE_CASE__ = { 'train': self.hparams.n_train, 'val': self.hparams.n_val, 'test': self.hparams.n_test, } SCREAMING_SNAKE_CASE__ = {k: v if v >= 0 else None for k, v in n_observations_per_split.items()} SCREAMING_SNAKE_CASE__ = { 'train': self.hparams.max_target_length, 'val': self.hparams.val_max_target_length, 'test': self.hparams.test_max_target_length, } assert self.target_lens["train"] <= self.target_lens["val"], F'target_lens: {self.target_lens}' assert self.target_lens["train"] <= self.target_lens["test"], F'target_lens: {self.target_lens}' if self.hparams.freeze_embeds: freeze_embeds(self.model ) if self.hparams.freeze_encoder: freeze_params(self.model.get_encoder() ) assert_all_frozen(self.model.get_encoder() ) SCREAMING_SNAKE_CASE__ = get_git_info()['repo_sha'] SCREAMING_SNAKE_CASE__ = hparams.num_workers SCREAMING_SNAKE_CASE__ = None # default to config if self.model.config.decoder_start_token_id is None and isinstance(self.tokenizer , UpperCAmelCase_ ): SCREAMING_SNAKE_CASE__ = self.tokenizer.lang_code_to_id[hparams.tgt_lang] SCREAMING_SNAKE_CASE__ = self.decoder_start_token_id SCREAMING_SNAKE_CASE__ = ( SeqaSeqDataset if hasattr(self.tokenizer , 'prepare_seq2seq_batch' ) else LegacySeqaSeqDataset ) SCREAMING_SNAKE_CASE__ = False SCREAMING_SNAKE_CASE__ = self.model.config.num_beams if self.hparams.eval_beams is None else self.hparams.eval_beams if self.hparams.eval_max_gen_length is not None: SCREAMING_SNAKE_CASE__ = self.hparams.eval_max_gen_length else: SCREAMING_SNAKE_CASE__ = self.model.config.max_length SCREAMING_SNAKE_CASE__ = self.default_val_metric if self.hparams.val_metric is None else self.hparams.val_metric def A_ ( self : List[str] , UpperCAmelCase_ : Dict[str, torch.Tensor] ): SCREAMING_SNAKE_CASE__ = { k: self.tokenizer.batch_decode(v.tolist() ) if 'mask' not in k else v.shape for k, v in batch.items() } save_json(UpperCAmelCase_ , Path(self.output_dir ) / 'text_batch.json' ) save_json({k: v.tolist() for k, v in batch.items()} , Path(self.output_dir ) / 'tok_batch.json' ) SCREAMING_SNAKE_CASE__ = True return readable_batch def A_ ( self : List[str] , UpperCAmelCase_ : Union[str, Any] , **UpperCAmelCase_ : str ): return self.model(UpperCAmelCase_ , **UpperCAmelCase_ ) def A_ ( self : Dict , UpperCAmelCase_ : List[int] ): SCREAMING_SNAKE_CASE__ = self.tokenizer.batch_decode( UpperCAmelCase_ , skip_special_tokens=UpperCAmelCase_ , clean_up_tokenization_spaces=UpperCAmelCase_ ) return lmap(str.strip , UpperCAmelCase_ ) def A_ ( self : List[Any] , UpperCAmelCase_ : dict ): SCREAMING_SNAKE_CASE__ = self.tokenizer.pad_token_id SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = batch['input_ids'], batch['attention_mask'] SCREAMING_SNAKE_CASE__ = batch['labels'] if isinstance(self.model , UpperCAmelCase_ ): SCREAMING_SNAKE_CASE__ = self.model._shift_right(UpperCAmelCase_ ) else: SCREAMING_SNAKE_CASE__ = shift_tokens_right(UpperCAmelCase_ , UpperCAmelCase_ ) if not self.already_saved_batch: # This would be slightly better if it only happened on rank zero SCREAMING_SNAKE_CASE__ = decoder_input_ids self.save_readable_batch(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = self(UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , decoder_input_ids=UpperCAmelCase_ , use_cache=UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = outputs['logits'] if self.hparams.label_smoothing == 0: # Same behavior as modeling_bart.py, besides ignoring pad_token_id SCREAMING_SNAKE_CASE__ = nn.CrossEntropyLoss(ignore_index=UpperCAmelCase_ ) assert lm_logits.shape[-1] == self.vocab_size SCREAMING_SNAKE_CASE__ = ce_loss_fct(lm_logits.view(-1 , lm_logits.shape[-1] ) , tgt_ids.view(-1 ) ) else: SCREAMING_SNAKE_CASE__ = nn.functional.log_softmax(UpperCAmelCase_ , dim=-1 ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = label_smoothed_nll_loss( UpperCAmelCase_ , UpperCAmelCase_ , self.hparams.label_smoothing , ignore_index=UpperCAmelCase_ ) return (loss,) @property def A_ ( self : Dict ): return self.tokenizer.pad_token_id def A_ ( self : List[str] , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : List[str] ): SCREAMING_SNAKE_CASE__ = self._step(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = dict(zip(self.loss_names , UpperCAmelCase_ ) ) # tokens per batch SCREAMING_SNAKE_CASE__ = batch['input_ids'].ne(self.pad ).sum() + batch['labels'].ne(self.pad ).sum() SCREAMING_SNAKE_CASE__ = batch['input_ids'].shape[0] SCREAMING_SNAKE_CASE__ = batch['input_ids'].eq(self.pad ).sum() SCREAMING_SNAKE_CASE__ = batch['input_ids'].eq(self.pad ).float().mean() # TODO(SS): make a wandb summary metric for this return {"loss": loss_tensors[0], "log": logs} def A_ ( self : Tuple , UpperCAmelCase_ : int , UpperCAmelCase_ : Tuple ): return self._generative_step(UpperCAmelCase_ ) def A_ ( self : Optional[Any] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Tuple="val" ): self.step_count += 1 SCREAMING_SNAKE_CASE__ = {k: torch.stack([x[k] for x in outputs] ).mean() for k in self.loss_names} SCREAMING_SNAKE_CASE__ = losses['loss'] SCREAMING_SNAKE_CASE__ = { k: np.array([x[k] for x in outputs] ).mean() for k in self.metric_names + ['gen_time', 'gen_len'] } SCREAMING_SNAKE_CASE__ = ( generative_metrics[self.val_metric] if self.val_metric in generative_metrics else losses[self.val_metric] ) SCREAMING_SNAKE_CASE__ = torch.tensor(UpperCAmelCase_ ).type_as(UpperCAmelCase_ ) generative_metrics.update({k: v.item() for k, v in losses.items()} ) losses.update(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = {F'{prefix}_avg_{k}': x for k, x in losses.items()} SCREAMING_SNAKE_CASE__ = self.step_count self.metrics[prefix].append(UpperCAmelCase_ ) # callback writes this to self.metrics_save_path SCREAMING_SNAKE_CASE__ = flatten_list([x['preds'] for x in outputs] ) return { "log": all_metrics, "preds": preds, F'{prefix}_loss': loss, F'{prefix}_{self.val_metric}': metric_tensor, } def A_ ( self : List[str] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Dict ): return calculate_rouge(UpperCAmelCase_ , UpperCAmelCase_ ) def A_ ( self : str , UpperCAmelCase_ : dict ): SCREAMING_SNAKE_CASE__ = time.time() # parser.add_argument('--eval_max_gen_length', type=int, default=None, help='never generate more than n tokens') SCREAMING_SNAKE_CASE__ = self.model.generate( batch['input_ids'] , attention_mask=batch['attention_mask'] , use_cache=UpperCAmelCase_ , decoder_start_token_id=self.decoder_start_token_id , num_beams=self.eval_beams , max_length=self.eval_max_length , ) SCREAMING_SNAKE_CASE__ = (time.time() - ta) / batch['input_ids'].shape[0] SCREAMING_SNAKE_CASE__ = self.ids_to_clean_text(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = self.ids_to_clean_text(batch['labels'] ) SCREAMING_SNAKE_CASE__ = self._step(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = dict(zip(self.loss_names , UpperCAmelCase_ ) ) SCREAMING_SNAKE_CASE__ = self.calc_generative_metrics(UpperCAmelCase_ , UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = np.mean(lmap(UpperCAmelCase_ , UpperCAmelCase_ ) ) base_metrics.update(gen_time=UpperCAmelCase_ , gen_len=UpperCAmelCase_ , preds=UpperCAmelCase_ , target=UpperCAmelCase_ , **UpperCAmelCase_ ) return base_metrics def A_ ( self : List[Any] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : int ): return self._generative_step(UpperCAmelCase_ ) def A_ ( self : Any , UpperCAmelCase_ : List[str] ): return self.validation_epoch_end(UpperCAmelCase_ , prefix='test' ) def A_ ( self : Optional[int] , UpperCAmelCase_ : List[Any] ): SCREAMING_SNAKE_CASE__ = self.n_obs[type_path] SCREAMING_SNAKE_CASE__ = self.target_lens[type_path] SCREAMING_SNAKE_CASE__ = self.dataset_class( self.tokenizer , type_path=UpperCAmelCase_ , n_obs=UpperCAmelCase_ , max_target_length=UpperCAmelCase_ , **self.dataset_kwargs , ) return dataset def A_ ( self : Optional[Any] , UpperCAmelCase_ : str , UpperCAmelCase_ : int , UpperCAmelCase_ : bool = False ): SCREAMING_SNAKE_CASE__ = self.get_dataset(UpperCAmelCase_ ) if self.hparams.sortish_sampler and type_path != "test" and type_path != "val": SCREAMING_SNAKE_CASE__ = dataset.make_sortish_sampler(UpperCAmelCase_ , distributed=self.hparams.gpus > 1 ) return DataLoader( UpperCAmelCase_ , batch_size=UpperCAmelCase_ , collate_fn=dataset.collate_fn , shuffle=UpperCAmelCase_ , num_workers=self.num_workers , sampler=UpperCAmelCase_ , ) elif self.hparams.max_tokens_per_batch is not None and type_path != "test" and type_path != "val": SCREAMING_SNAKE_CASE__ = dataset.make_dynamic_sampler( self.hparams.max_tokens_per_batch , distributed=self.hparams.gpus > 1 ) return DataLoader( UpperCAmelCase_ , batch_sampler=UpperCAmelCase_ , collate_fn=dataset.collate_fn , num_workers=self.num_workers , ) else: return DataLoader( UpperCAmelCase_ , batch_size=UpperCAmelCase_ , collate_fn=dataset.collate_fn , shuffle=UpperCAmelCase_ , num_workers=self.num_workers , sampler=UpperCAmelCase_ , ) def A_ ( self : Any ): SCREAMING_SNAKE_CASE__ = self.get_dataloader('train' , batch_size=self.hparams.train_batch_size , shuffle=UpperCAmelCase_ ) return dataloader def A_ ( self : str ): return self.get_dataloader('val' , batch_size=self.hparams.eval_batch_size ) def A_ ( self : int ): return self.get_dataloader('test' , batch_size=self.hparams.eval_batch_size ) @staticmethod def A_ ( UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Any ): BaseTransformer.add_model_specific_args(UpperCAmelCase_ , UpperCAmelCase_ ) add_generic_args(UpperCAmelCase_ , UpperCAmelCase_ ) parser.add_argument( '--max_source_length' , default=1024 , type=UpperCAmelCase_ , help=( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) , ) parser.add_argument( '--max_target_length' , default=56 , type=UpperCAmelCase_ , help=( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) , ) parser.add_argument( '--val_max_target_length' , default=142 , type=UpperCAmelCase_ , help=( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) , ) parser.add_argument( '--test_max_target_length' , default=142 , type=UpperCAmelCase_ , help=( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) , ) parser.add_argument('--freeze_encoder' , action='store_true' ) parser.add_argument('--freeze_embeds' , action='store_true' ) parser.add_argument('--sortish_sampler' , action='store_true' , default=UpperCAmelCase_ ) parser.add_argument('--overwrite_output_dir' , action='store_true' , default=UpperCAmelCase_ ) parser.add_argument('--max_tokens_per_batch' , type=UpperCAmelCase_ , default=UpperCAmelCase_ ) parser.add_argument('--logger_name' , type=UpperCAmelCase_ , choices=['default', 'wandb', 'wandb_shared'] , default='default' ) parser.add_argument('--n_train' , type=UpperCAmelCase_ , default=-1 , required=UpperCAmelCase_ , help='# examples. -1 means use all.' ) parser.add_argument('--n_val' , type=UpperCAmelCase_ , default=500 , required=UpperCAmelCase_ , help='# examples. -1 means use all.' ) parser.add_argument('--n_test' , type=UpperCAmelCase_ , default=-1 , required=UpperCAmelCase_ , help='# examples. -1 means use all.' ) parser.add_argument( '--task' , type=UpperCAmelCase_ , default='summarization' , required=UpperCAmelCase_ , help='# examples. -1 means use all.' ) parser.add_argument('--label_smoothing' , type=UpperCAmelCase_ , default=0.0 , required=UpperCAmelCase_ ) parser.add_argument('--src_lang' , type=UpperCAmelCase_ , default='' , required=UpperCAmelCase_ ) parser.add_argument('--tgt_lang' , type=UpperCAmelCase_ , default='' , required=UpperCAmelCase_ ) parser.add_argument('--eval_beams' , type=UpperCAmelCase_ , default=UpperCAmelCase_ , required=UpperCAmelCase_ ) parser.add_argument( '--val_metric' , type=UpperCAmelCase_ , default=UpperCAmelCase_ , required=UpperCAmelCase_ , choices=['bleu', 'rouge2', 'loss', None] ) parser.add_argument('--eval_max_gen_length' , type=UpperCAmelCase_ , default=UpperCAmelCase_ , help='never generate more than n tokens' ) parser.add_argument('--save_top_k' , type=UpperCAmelCase_ , default=1 , required=UpperCAmelCase_ , help='How many checkpoints to save' ) parser.add_argument( '--early_stopping_patience' , type=UpperCAmelCase_ , default=-1 , required=UpperCAmelCase_ , help=( '-1 means never early stop. early_stopping_patience is measured in validation checks, not epochs. So' ' val_check_interval will effect it.' ) , ) return parser class lowercase__ ( _UpperCAmelCase ): A__ : Optional[Any] ="""translation""" A__ : Dict =["""loss"""] A__ : Optional[int] =["""bleu"""] A__ : Union[str, Any] ="""bleu""" def __init__( self : Tuple , UpperCAmelCase_ : Dict , **UpperCAmelCase_ : Optional[int] ): super().__init__(UpperCAmelCase_ , **UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = hparams.src_lang SCREAMING_SNAKE_CASE__ = hparams.tgt_lang def A_ ( self : List[Any] , UpperCAmelCase_ : int , UpperCAmelCase_ : Dict ): return calculate_bleu(UpperCAmelCase_ , UpperCAmelCase_ ) def _lowercase ( UpperCamelCase_ , UpperCamelCase_=None ) -> SummarizationModule: '''simple docstring''' Path(args.output_dir ).mkdir(exist_ok=UpperCamelCase_ ) check_output_dir(UpperCamelCase_ , expected_items=3 ) if model is None: if "summarization" in args.task: SCREAMING_SNAKE_CASE__ = SummarizationModule(UpperCamelCase_ ) else: SCREAMING_SNAKE_CASE__ = TranslationModule(UpperCamelCase_ ) SCREAMING_SNAKE_CASE__ = Path(args.data_dir ).name if ( args.logger_name == "default" or args.fast_dev_run or str(args.output_dir ).startswith('/tmp' ) or str(args.output_dir ).startswith('/var' ) ): SCREAMING_SNAKE_CASE__ = True # don't pollute wandb logs unnecessarily elif args.logger_name == "wandb": from pytorch_lightning.loggers import WandbLogger SCREAMING_SNAKE_CASE__ = os.environ.get('WANDB_PROJECT' , UpperCamelCase_ ) SCREAMING_SNAKE_CASE__ = WandbLogger(name=model.output_dir.name , project=UpperCamelCase_ ) elif args.logger_name == "wandb_shared": from pytorch_lightning.loggers import WandbLogger SCREAMING_SNAKE_CASE__ = WandbLogger(name=model.output_dir.name , project=F'hf_{dataset}' ) if args.early_stopping_patience >= 0: SCREAMING_SNAKE_CASE__ = get_early_stopping_callback(model.val_metric , args.early_stopping_patience ) else: SCREAMING_SNAKE_CASE__ = False SCREAMING_SNAKE_CASE__ = args.val_metric == 'loss' SCREAMING_SNAKE_CASE__ = generic_train( UpperCamelCase_ , UpperCamelCase_ , logging_callback=SeqaSeqLoggingCallback() , checkpoint_callback=get_checkpoint_callback( args.output_dir , model.val_metric , args.save_top_k , UpperCamelCase_ ) , early_stopping_callback=UpperCamelCase_ , logger=UpperCamelCase_ , ) pickle_save(model.hparams , model.output_dir / 'hparams.pkl' ) if not args.do_predict: return model SCREAMING_SNAKE_CASE__ = '' SCREAMING_SNAKE_CASE__ = sorted(glob.glob(os.path.join(args.output_dir , '*.ckpt' ) , recursive=UpperCamelCase_ ) ) if checkpoints: SCREAMING_SNAKE_CASE__ = checkpoints[-1] SCREAMING_SNAKE_CASE__ = checkpoints[-1] trainer.logger.log_hyperparams(model.hparams ) # test() without a model tests using the best checkpoint automatically trainer.test() return model if __name__ == "__main__": __snake_case = argparse.ArgumentParser() __snake_case = pl.Trainer.add_argparse_args(parser) __snake_case = SummarizationModule.add_model_specific_args(parser, os.getcwd()) __snake_case = parser.parse_args() main(args)
169
0
"""simple docstring""" import argparse import os import re lowerCAmelCase : int = 'src/transformers/models/auto' # re pattern that matches mapping introductions: # SUPER_MODEL_MAPPING_NAMES = OrderedDict or SUPER_MODEL_MAPPING = OrderedDict lowerCAmelCase : Any = re.compile(r"""[A-Z_]+_MAPPING(\s+|_[A-Z_]+\s+)=\s+OrderedDict""") # re pattern that matches identifiers in mappings lowerCAmelCase : int = re.compile(r"""\s*\(\s*\"(\S[^\"]+)\"""") def a__ ( snake_case__ , snake_case__ = False ) -> Optional[Any]: with open(lowercase_ , """r""" , encoding="""utf-8""" ) as f: lowerCamelCase = f.read() lowerCamelCase = content.split("""\n""" ) lowerCamelCase = [] lowerCamelCase = 0 while line_idx < len(lowercase_ ): if _re_intro_mapping.search(lines[line_idx] ) is not None: lowerCamelCase = len(re.search(R"""^(\s*)\S""" , lines[line_idx] ).groups()[0] ) + 8 # Start of a new mapping! while not lines[line_idx].startswith(""" """ * indent + """(""" ): new_lines.append(lines[line_idx] ) line_idx += 1 lowerCamelCase = [] while lines[line_idx].strip() != "]": # Blocks either fit in one line or not if lines[line_idx].strip() == "(": lowerCamelCase = line_idx while not lines[line_idx].startswith(""" """ * indent + """)""" ): line_idx += 1 blocks.append("""\n""".join(lines[start_idx : line_idx + 1] ) ) else: blocks.append(lines[line_idx] ) line_idx += 1 # Sort blocks by their identifiers lowerCamelCase = sorted(lowercase_ , key=lambda snake_case__ : _re_identifier.search(lowercase_ ).groups()[0] ) new_lines += blocks else: new_lines.append(lines[line_idx] ) line_idx += 1 if overwrite: with open(lowercase_ , """w""" , encoding="""utf-8""" ) as f: f.write("""\n""".join(lowercase_ ) ) elif "\n".join(lowercase_ ) != content: return True def a__ ( snake_case__ = False ) -> List[Any]: lowerCamelCase = [os.path.join(lowercase_ , lowercase_ ) for f in os.listdir(lowercase_ ) if f.endswith(""".py""" )] lowerCamelCase = [sort_auto_mapping(lowercase_ , overwrite=lowercase_ ) for fname in fnames] if not overwrite and any(lowercase_ ): lowerCamelCase = [f for f, d in zip(lowercase_ , lowercase_ ) if d] raise ValueError( F'The following files have auto mappings that need sorting: {", ".join(lowercase_ )}. Run `make style` to fix' """ this.""" ) if __name__ == "__main__": lowerCAmelCase : Tuple = argparse.ArgumentParser() parser.add_argument("""--check_only""", action="""store_true""", help="""Whether to only check or fix style.""") lowerCAmelCase : Union[str, Any] = parser.parse_args() sort_all_auto_mappings(not args.check_only)
291
def UpperCamelCase (lowercase_: int = 10 ) -> str: if not isinstance(lowercase_ , lowercase_ ) or n < 0: raise ValueError("""Invalid input""" ) A__ : List[str] = 10**n A__ : Any = 28433 * (pow(2 , 7830457 , lowercase_ )) + 1 return str(number % modulus ) if __name__ == "__main__": from doctest import testmod testmod() print(f'''{solution(10) = }''')
192
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) UpperCamelCase : Any = { """configuration_deberta""": ["""DEBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP""", """DebertaConfig""", """DebertaOnnxConfig"""], """tokenization_deberta""": ["""DebertaTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase : Optional[Any] = ["""DebertaTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase : Any = [ """DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST""", """DebertaForMaskedLM""", """DebertaForQuestionAnswering""", """DebertaForSequenceClassification""", """DebertaForTokenClassification""", """DebertaModel""", """DebertaPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase : Union[str, Any] = [ """TF_DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFDebertaForMaskedLM""", """TFDebertaForQuestionAnswering""", """TFDebertaForSequenceClassification""", """TFDebertaForTokenClassification""", """TFDebertaModel""", """TFDebertaPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_deberta import DEBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, DebertaConfig, DebertaOnnxConfig from .tokenization_deberta import DebertaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_deberta_fast import DebertaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_deberta import ( DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, DebertaForMaskedLM, DebertaForQuestionAnswering, DebertaForSequenceClassification, DebertaForTokenClassification, DebertaModel, DebertaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_deberta import ( TF_DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, TFDebertaForMaskedLM, TFDebertaForQuestionAnswering, TFDebertaForSequenceClassification, TFDebertaForTokenClassification, TFDebertaModel, TFDebertaPreTrainedModel, ) else: import sys UpperCamelCase : Dict = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
345
'''simple docstring''' import faiss # noqa: F401 # Here to have a nice missing dependency error message early on import numpy # noqa: F401 # Here to have a nice missing dependency error message early on import requests # noqa: F401 # Here to have a nice missing dependency error message early on import sklearn # noqa: F401 # Here to have a nice missing dependency error message early on import tqdm # noqa: F401 # Here to have a nice missing dependency error message early on from mauve import compute_mauve # From: mauve-text import datasets UpperCamelCase : Optional[int] = """\ @inproceedings{pillutla-etal:mauve:neurips2021, title={MAUVE: Measuring the Gap Between Neural Text and Human Text using Divergence Frontiers}, author={Pillutla, Krishna and Swayamdipta, Swabha and Zellers, Rowan and Thickstun, John and Welleck, Sean and Choi, Yejin and Harchaoui, Zaid}, booktitle = {NeurIPS}, year = {2021} } """ UpperCamelCase : Optional[Any] = """\ MAUVE is a library built on PyTorch and HuggingFace Transformers to measure the gap between neural text and human text with the eponymous MAUVE measure. MAUVE summarizes both Type I and Type II errors measured softly using Kullback–Leibler (KL) divergences. For details, see the MAUVE paper: https://arxiv.org/abs/2102.01454 (Neurips, 2021). This metrics is a wrapper around the official implementation of MAUVE: https://github.com/krishnap25/mauve """ UpperCamelCase : str = """ Calculates MAUVE scores between two lists of generated text and reference text. Args: predictions: list of generated text to score. Each predictions should be a string with tokens separated by spaces. references: list of reference for each prediction. Each reference should be a string with tokens separated by spaces. Optional Args: num_buckets: the size of the histogram to quantize P and Q. Options: 'auto' (default) or an integer pca_max_data: the number data points to use for PCA dimensionality reduction prior to clustering. If -1, use all the data. Default -1 kmeans_explained_var: amount of variance of the data to keep in dimensionality reduction by PCA. Default 0.9 kmeans_num_redo: number of times to redo k-means clustering (the best objective is kept). Default 5 kmeans_max_iter: maximum number of k-means iterations. Default 500 featurize_model_name: name of the model from which features are obtained. Default 'gpt2-large' Use one of ['gpt2', 'gpt2-medium', 'gpt2-large', 'gpt2-xl']. device_id: Device for featurization. Supply a GPU id (e.g. 0 or 3) to use GPU. If no GPU with this id is found, use CPU max_text_length: maximum number of tokens to consider. Default 1024 divergence_curve_discretization_size: Number of points to consider on the divergence curve. Default 25 mauve_scaling_factor: \"c\" from the paper. Default 5. verbose: If True (default), print running time updates seed: random seed to initialize k-means cluster assignments. Returns: mauve: MAUVE score, a number between 0 and 1. Larger values indicate that P and Q are closer, frontier_integral: Frontier Integral, a number between 0 and 1. Smaller values indicate that P and Q are closer, divergence_curve: a numpy.ndarray of shape (m, 2); plot it with matplotlib to view the divergence curve, p_hist: a discrete distribution, which is a quantized version of the text distribution p_text, q_hist: same as above, but with q_text. Examples: >>> # faiss segfaults in doctest for some reason, so the .compute call is not tested with doctest >>> import datasets >>> mauve = datasets.load_metric('mauve') >>> predictions = [\"hello there\", \"general kenobi\"] >>> references = [\"hello there\", \"general kenobi\"] >>> out = mauve.compute(predictions=predictions, references=references) # doctest: +SKIP >>> print(out.mauve) # doctest: +SKIP 1.0 """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCamelCase ( datasets.Metric ): """simple docstring""" def SCREAMING_SNAKE_CASE_ ( self : Optional[int]): """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage='https://github.com/krishnap25/mauve' , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('string' , id='sequence'), 'references': datasets.Value('string' , id='sequence'), }) , codebase_urls=['https://github.com/krishnap25/mauve'] , reference_urls=[ 'https://arxiv.org/abs/2102.01454', 'https://github.com/krishnap25/mauve', ] , ) def SCREAMING_SNAKE_CASE_ ( self : str , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Any , UpperCAmelCase_ : Optional[Any]=None , UpperCAmelCase_ : int=None , UpperCAmelCase_ : Any=None , UpperCAmelCase_ : Optional[int]=None , UpperCAmelCase_ : Tuple="auto" , UpperCAmelCase_ : Any=-1 , UpperCAmelCase_ : Optional[int]=0.9 , UpperCAmelCase_ : Union[str, Any]=5 , UpperCAmelCase_ : int=5_0_0 , UpperCAmelCase_ : int="gpt2-large" , UpperCAmelCase_ : Tuple=-1 , UpperCAmelCase_ : Dict=1_0_2_4 , UpperCAmelCase_ : List[str]=2_5 , UpperCAmelCase_ : int=5 , UpperCAmelCase_ : Any=True , UpperCAmelCase_ : str=2_5 , ): """simple docstring""" a : List[str] = compute_mauve( p_text=UpperCAmelCase_ , q_text=UpperCAmelCase_ , p_features=UpperCAmelCase_ , q_features=UpperCAmelCase_ , p_tokens=UpperCAmelCase_ , q_tokens=UpperCAmelCase_ , num_buckets=UpperCAmelCase_ , pca_max_data=UpperCAmelCase_ , kmeans_explained_var=UpperCAmelCase_ , kmeans_num_redo=UpperCAmelCase_ , kmeans_max_iter=UpperCAmelCase_ , featurize_model_name=UpperCAmelCase_ , device_id=UpperCAmelCase_ , max_text_length=UpperCAmelCase_ , divergence_curve_discretization_size=UpperCAmelCase_ , mauve_scaling_factor=UpperCAmelCase_ , verbose=UpperCAmelCase_ , seed=UpperCAmelCase_ , ) return out
345
1
'''simple docstring''' import argparse import datetime import json import time import warnings from logging import getLogger from pathlib import Path from typing import Dict, List import torch from tqdm import tqdm from transformers import AutoModelForSeqaSeqLM, AutoTokenizer from utils import calculate_bleu, calculate_rouge, chunks, parse_numeric_n_bool_cl_kwargs, use_task_specific_params lowerCAmelCase :str = getLogger(__name__) lowerCAmelCase :Dict = '''cuda''' if torch.cuda.is_available() else '''cpu''' def lowerCamelCase ( lowerCAmelCase : List[str] , lowerCAmelCase : str , lowerCAmelCase : str , lowerCAmelCase : int = 8 , lowerCAmelCase : str = DEFAULT_DEVICE , lowerCAmelCase : Optional[Any]=False , lowerCAmelCase : Optional[int]="summarization" , lowerCAmelCase : Dict=None , **lowerCAmelCase : List[str] , ): """simple docstring""" __magic_name__ : Dict = Path(_UpperCAmelCase ).open('w' , encoding='utf-8' ) __magic_name__ : Optional[int] = str(_UpperCAmelCase ) __magic_name__ : List[Any] = AutoModelForSeqaSeqLM.from_pretrained(_UpperCAmelCase ).to(_UpperCAmelCase ) if fpaa: __magic_name__ : Dict = model.half() __magic_name__ : Tuple = AutoTokenizer.from_pretrained(_UpperCAmelCase ) logger.info(f'Inferred tokenizer type: {tokenizer.__class__}' ) # if this is wrong, check config.model_type. __magic_name__ : Dict = time.time() # update config with task specific params use_task_specific_params(_UpperCAmelCase , _UpperCAmelCase ) if prefix is None: __magic_name__ : List[Any] = prefix or getattr(model.config , 'prefix' , '' ) or '''''' for examples_chunk in tqdm(list(chunks(_UpperCAmelCase , _UpperCAmelCase ) ) ): __magic_name__ : Any = [prefix + text for text in examples_chunk] __magic_name__ : Union[str, Any] = tokenizer(_UpperCAmelCase , return_tensors='pt' , truncation=_UpperCAmelCase , padding='longest' ).to(_UpperCAmelCase ) __magic_name__ : Dict = model.generate( input_ids=batch.input_ids , attention_mask=batch.attention_mask , **_UpperCAmelCase , ) __magic_name__ : List[Any] = tokenizer.batch_decode(_UpperCAmelCase , skip_special_tokens=_UpperCAmelCase , clean_up_tokenization_spaces=_UpperCAmelCase ) for hypothesis in dec: fout.write(hypothesis + '\n' ) fout.flush() fout.close() __magic_name__ : Dict = int(time.time() - start_time ) # seconds __magic_name__ : Union[str, Any] = len(_UpperCAmelCase ) return {"n_obs": n_obs, "runtime": runtime, "seconds_per_sample": round(runtime / n_obs , 4 )} def lowerCamelCase ( ): """simple docstring""" return datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S' ) def lowerCamelCase ( lowerCAmelCase : Any=True ): """simple docstring""" __magic_name__ : Dict = argparse.ArgumentParser() parser.add_argument('model_name' , type=_UpperCAmelCase , help='like facebook/bart-large-cnn,t5-base, etc.' ) parser.add_argument('input_path' , type=_UpperCAmelCase , help='like cnn_dm/test.source' ) parser.add_argument('save_path' , type=_UpperCAmelCase , help='where to save summaries' ) parser.add_argument('--reference_path' , type=_UpperCAmelCase , required=_UpperCAmelCase , help='like cnn_dm/test.target' ) parser.add_argument('--score_path' , type=_UpperCAmelCase , required=_UpperCAmelCase , default='metrics.json' , help='where to save metrics' ) parser.add_argument('--device' , type=_UpperCAmelCase , required=_UpperCAmelCase , default=_UpperCAmelCase , help='cuda, cuda:1, cpu etc.' ) parser.add_argument( '--prefix' , type=_UpperCAmelCase , required=_UpperCAmelCase , default=_UpperCAmelCase , help='will be added to the begininng of src examples' ) parser.add_argument('--task' , type=_UpperCAmelCase , default='summarization' , help='used for task_specific_params + metrics' ) parser.add_argument('--bs' , type=_UpperCAmelCase , default=8 , required=_UpperCAmelCase , help='batch size' ) parser.add_argument( '--n_obs' , type=_UpperCAmelCase , default=-1 , required=_UpperCAmelCase , help='How many observations. Defaults to all.' ) parser.add_argument('--fp16' , action='store_true' ) parser.add_argument('--dump-args' , action='store_true' , help='print the custom hparams with the results' ) parser.add_argument( '--info' , nargs='?' , type=_UpperCAmelCase , const=datetime_now() , help=( 'use in conjunction w/ --dump-args to print with the results whatever other info you\'d like, e.g.' ' lang=en-ru. If no value is passed, the current datetime string will be used.' ) , ) # Unspecified args like --num_beams=2 --decoder_start_token_id=4 are passed to model.generate __magic_name__ : Dict = parser.parse_known_args() __magic_name__ : Optional[Any] = parse_numeric_n_bool_cl_kwargs(_UpperCAmelCase ) if parsed_args and verbose: print(f'parsed the following generate kwargs: {parsed_args}' ) __magic_name__ : Optional[int] = [''' ''' + x.rstrip() if '''t5''' in args.model_name else x.rstrip() for x in open(args.input_path ).readlines()] if args.n_obs > 0: __magic_name__ : Optional[int] = examples[: args.n_obs] Path(args.save_path ).parent.mkdir(exist_ok=_UpperCAmelCase ) if args.reference_path is None and Path(args.score_path ).exists(): warnings.warn(f'score_path {args.score_path} will be overwritten unless you type ctrl-c.' ) if args.device == "cpu" and args.fpaa: # this mix leads to RuntimeError: "threshold_cpu" not implemented for 'Half' raise ValueError('Can\'t mix --fp16 and --device cpu' ) __magic_name__ : int = generate_summaries_or_translations( _UpperCAmelCase , args.save_path , args.model_name , batch_size=args.bs , device=args.device , fpaa=args.fpaa , task=args.task , prefix=args.prefix , **_UpperCAmelCase , ) if args.reference_path is None: return {} # Compute scores __magic_name__ : str = calculate_bleu if '''translation''' in args.task else calculate_rouge __magic_name__ : Tuple = [x.rstrip() for x in open(args.save_path ).readlines()] __magic_name__ : int = [x.rstrip() for x in open(args.reference_path ).readlines()][: len(_UpperCAmelCase )] __magic_name__ : dict = score_fn(_UpperCAmelCase , _UpperCAmelCase ) scores.update(_UpperCAmelCase ) if args.dump_args: scores.update(_UpperCAmelCase ) if args.info: __magic_name__ : Dict = args.info if verbose: print(_UpperCAmelCase ) if args.score_path is not None: json.dump(_UpperCAmelCase , open(args.score_path , 'w' ) ) return scores if __name__ == "__main__": # Usage for MT: # python run_eval.py MODEL_NAME $DATA_DIR/test.source $save_dir/test_translations.txt --reference_path $DATA_DIR/test.target --score_path $save_dir/test_bleu.json --task translation $@ run_generate(verbose=True)
331
import argparse import shutil import time from json import JSONDecodeError from logging import getLogger from pathlib import Path from typing import Dict, List import torch from torch.utils.data import DataLoader from tqdm import tqdm from transformers import AutoModelForSeqaSeqLM, AutoTokenizer from utils import ( SeqaSeqDataset, calculate_bleu, calculate_rouge, chunks, lmap, load_json, parse_numeric_n_bool_cl_kwargs, save_json, use_task_specific_params, write_txt_file, ) __A =getLogger(__name__) def a ( _UpperCAmelCase : Optional[int] , _UpperCAmelCase : str , _UpperCAmelCase : str , _UpperCAmelCase : int = 8 , _UpperCAmelCase : int = 10_24 , _UpperCAmelCase : Any="val" , _UpperCAmelCase : Dict=None , _UpperCAmelCase : Any=False , _UpperCAmelCase : Union[str, Any]="summarization" , _UpperCAmelCase : Optional[Any]=None , _UpperCAmelCase : Union[str, Any]=1 , _UpperCAmelCase : Dict = None , _UpperCAmelCase : Dict="" , **_UpperCAmelCase : List[str] , ): '''simple docstring''' __UpperCAmelCase : Any = str(_UpperCAmelCase ) assert local_rank is not None torch.distributed.init_process_group(backend='''nccl''' , rank=_UpperCAmelCase ) __UpperCAmelCase : Union[str, Any] = Path(_UpperCAmelCase ) __UpperCAmelCase : Union[str, Any] = save_dir.joinpath(f'rank_{local_rank}_output.json' ) torch.cuda.set_device(_UpperCAmelCase ) __UpperCAmelCase : int = AutoModelForSeqaSeqLM.from_pretrained(_UpperCAmelCase ).cuda() if fpaa: __UpperCAmelCase : Any = model.half() # determine if we need to increase num_beams use_task_specific_params(_UpperCAmelCase , _UpperCAmelCase ) # update config with task specific params __UpperCAmelCase : List[str] = generate_kwargs.pop('''num_beams''' , model.config.num_beams ) # AttributeError risk? if num_return_sequences > num_beams: __UpperCAmelCase : Any = num_return_sequences __UpperCAmelCase : Tuple = AutoTokenizer.from_pretrained(_UpperCAmelCase ) logger.info(f'Inferred tokenizer type: {tokenizer.__class__}' ) # if this is wrong, check config.model_type. if max_source_length is None: __UpperCAmelCase : Optional[Any] = tokenizer.model_max_length if prefix is None: __UpperCAmelCase : str = prefix or getattr(model.config , '''prefix''' , '''''' ) or '''''' __UpperCAmelCase : Union[str, Any] = SeqaSeqDataset( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , max_target_length=10_24 , type_path=_UpperCAmelCase , n_obs=_UpperCAmelCase , prefix=_UpperCAmelCase , **_UpperCAmelCase , ) # I set shuffle=True for a more accurate progress bar. # If all the longest samples are first, the prog bar estimate is too high at the beginning. __UpperCAmelCase : str = ds.make_sortish_sampler(_UpperCAmelCase , distributed=_UpperCAmelCase , add_extra_examples=_UpperCAmelCase , shuffle=_UpperCAmelCase ) __UpperCAmelCase : List[Any] = DataLoader(_UpperCAmelCase , sampler=_UpperCAmelCase , batch_size=_UpperCAmelCase , collate_fn=ds.collate_fn ) __UpperCAmelCase : List[Any] = [] for batch in tqdm(_UpperCAmelCase ): __UpperCAmelCase : str = model.generate( input_ids=batch['''input_ids'''].to(model.device ) , attention_mask=batch['''attention_mask'''].to(model.device ) , num_return_sequences=_UpperCAmelCase , num_beams=_UpperCAmelCase , **_UpperCAmelCase , ) __UpperCAmelCase : Optional[int] = tokenizer.batch_decode(_UpperCAmelCase , skip_special_tokens=_UpperCAmelCase , clean_up_tokenization_spaces=_UpperCAmelCase ) __UpperCAmelCase : List[str] = batch['''ids'''] if num_return_sequences > 1: __UpperCAmelCase : Any = chunks(_UpperCAmelCase , _UpperCAmelCase ) # batch size chunks, each of size num_return_seq for i, pred in enumerate(_UpperCAmelCase ): results.append({'''pred''': pred, '''id''': ids[i].item()} ) save_json(_UpperCAmelCase , _UpperCAmelCase ) return results, sampler.num_replicas def a ( ): '''simple docstring''' __UpperCAmelCase : Union[str, Any] = argparse.ArgumentParser( epilog='''Unspecified args like --num_beams=2 --decoder_start_token_id=4 are passed to model.generate''' ) parser.add_argument('''--data_dir''' , type=_UpperCAmelCase , help='''like cnn_dm/test.source''' ) parser.add_argument( '''--model_name''' , type=_UpperCAmelCase , help='''like facebook/bart-large-cnn,t5-base, etc.''' , default='''sshleifer/distilbart-xsum-12-3''' , ) parser.add_argument('''--save_dir''' , type=_UpperCAmelCase , help='''where to save''' , default='''tmp_gen''' ) parser.add_argument('''--max_source_length''' , type=_UpperCAmelCase , default=_UpperCAmelCase ) parser.add_argument( '''--type_path''' , type=_UpperCAmelCase , default='''test''' , help='''which subset to evaluate typically train/val/test''' ) parser.add_argument('''--task''' , type=_UpperCAmelCase , default='''summarization''' , help='''used for task_specific_params + metrics''' ) parser.add_argument('''--bs''' , type=_UpperCAmelCase , default=8 , required=_UpperCAmelCase , help='''batch size''' ) parser.add_argument( '''--local_rank''' , type=_UpperCAmelCase , default=-1 , required=_UpperCAmelCase , help='''should be passed by distributed.launch''' ) parser.add_argument( '''--n_obs''' , type=_UpperCAmelCase , default=_UpperCAmelCase , required=_UpperCAmelCase , help='''How many observations. Defaults to all.''' ) parser.add_argument( '''--num_return_sequences''' , type=_UpperCAmelCase , default=1 , required=_UpperCAmelCase , help='''How many sequences to return''' ) parser.add_argument( '''--sync_timeout''' , type=_UpperCAmelCase , default=6_00 , required=_UpperCAmelCase , help='''How long should master process wait for other processes to finish.''' , ) parser.add_argument('''--src_lang''' , type=_UpperCAmelCase , default=_UpperCAmelCase , required=_UpperCAmelCase ) parser.add_argument('''--tgt_lang''' , type=_UpperCAmelCase , default=_UpperCAmelCase , required=_UpperCAmelCase ) parser.add_argument( '''--prefix''' , type=_UpperCAmelCase , required=_UpperCAmelCase , default=_UpperCAmelCase , help='''will be added to the begininng of src examples''' ) parser.add_argument('''--fp16''' , action='''store_true''' ) parser.add_argument('''--debug''' , action='''store_true''' ) __UpperCAmelCase : Any = time.time() __UpperCAmelCase , __UpperCAmelCase : Any = parser.parse_known_args() __UpperCAmelCase : List[Any] = parse_numeric_n_bool_cl_kwargs(_UpperCAmelCase ) if generate_kwargs and args.local_rank <= 0: print(f'parsed the following generate kwargs: {generate_kwargs}' ) __UpperCAmelCase : Union[str, Any] = Path(args.save_dir + '''_tmp''' ) Path(_UpperCAmelCase ).mkdir(exist_ok=_UpperCAmelCase ) # this handles locking. __UpperCAmelCase : int = list(json_save_dir.glob('''rank_*.json''' ) ) if intermediate_files: raise ValueError(f'Found files at {json_save_dir} please move or remove them.' ) # In theory, a node could finish and save before another node hits this. If this happens, we can address later. __UpperCAmelCase : List[Any] = {} if args.src_lang is not None: __UpperCAmelCase : List[str] = args.src_lang if args.tgt_lang is not None: __UpperCAmelCase : List[Any] = args.tgt_lang Path(args.save_dir ).mkdir(exist_ok=_UpperCAmelCase ) __UpperCAmelCase , __UpperCAmelCase : int = eval_data_dir( args.data_dir , _UpperCAmelCase , args.model_name , type_path=args.type_path , bs=args.bs , fpaa=args.fpaa , task=args.task , local_rank=args.local_rank , n_obs=args.n_obs , max_source_length=args.max_source_length , num_return_sequences=args.num_return_sequences , prefix=args.prefix , dataset_kwargs=_UpperCAmelCase , **_UpperCAmelCase , ) if args.local_rank <= 0: __UpperCAmelCase : int = Path(args.save_dir ) save_dir.mkdir(exist_ok=_UpperCAmelCase ) __UpperCAmelCase : List[str] = gather_results_from_each_node(_UpperCAmelCase , _UpperCAmelCase , args.sync_timeout ) __UpperCAmelCase : List[Any] = combine_partial_results(_UpperCAmelCase ) if args.num_return_sequences > 1: __UpperCAmelCase : int = save_dir.joinpath('''pseudolabel_results.json''' ) print(f'Saving aggregated results at {save_path}, intermediate in {json_save_dir}/' ) save_json(_UpperCAmelCase , _UpperCAmelCase ) return __UpperCAmelCase : str = Path(args.data_dir ).joinpath(args.type_path + '''.target''' ) with open(_UpperCAmelCase ) as f: __UpperCAmelCase : int = [x.rstrip() for x in f.readlines()][: len(_UpperCAmelCase )] # Calculate metrics, save metrics, and save _generations.txt __UpperCAmelCase : Optional[Any] = '''translation''' in args.task __UpperCAmelCase : Optional[int] = calculate_bleu if calc_bleu else calculate_rouge __UpperCAmelCase : Union[str, Any] = '''bleu''' if calc_bleu else '''rouge''' __UpperCAmelCase : Dict = score_fn(_UpperCAmelCase , _UpperCAmelCase ) __UpperCAmelCase : Union[str, Any] = len(_UpperCAmelCase ) __UpperCAmelCase : Union[str, Any] = time.time() - start_time __UpperCAmelCase : List[str] = round(runtime / metrics['''n_obs'''] , 4 ) __UpperCAmelCase : List[str] = num_replicas # TODO(@stas00): add whatever metadata to metrics __UpperCAmelCase : List[Any] = save_dir.joinpath(f'{args.type_path}_{metric_name}.json' ) save_json(_UpperCAmelCase , _UpperCAmelCase , indent=_UpperCAmelCase ) print(_UpperCAmelCase ) write_txt_file(_UpperCAmelCase , save_dir.joinpath(f'{args.type_path}_generations.txt' ) ) if args.debug: write_txt_file(_UpperCAmelCase , save_dir.joinpath(f'{args.type_path}.target' ) ) else: shutil.rmtree(_UpperCAmelCase ) def a ( _UpperCAmelCase : int ): '''simple docstring''' __UpperCAmelCase : Optional[Any] = [] for partial_result in partial_results: records.extend(_UpperCAmelCase ) __UpperCAmelCase : List[str] = sorted(_UpperCAmelCase , key=lambda _UpperCAmelCase : x["id"] ) __UpperCAmelCase : Union[str, Any] = [x['''pred'''] for x in records] return preds def a ( _UpperCAmelCase : Tuple , _UpperCAmelCase : Tuple , _UpperCAmelCase : Union[str, Any] ): '''simple docstring''' __UpperCAmelCase : List[str] = time.time() logger.info('''waiting for all nodes to finish''' ) __UpperCAmelCase : Any = None while (time.time() - start_wait) < timeout: __UpperCAmelCase : List[Any] = list(save_dir.glob('''rank_*.json''' ) ) if len(_UpperCAmelCase ) < num_replicas: continue try: # make sure all json files are fully saved __UpperCAmelCase : Union[str, Any] = lmap(_UpperCAmelCase , _UpperCAmelCase ) return json_data except JSONDecodeError: continue else: raise TimeoutError('''Rank 0 gave up on waiting for other processes''' ) # Unreachable if __name__ == "__main__": # Usage for MT: run_generate()
226
0
import unittest from datasets import load_dataset from transformers.pipelines import pipeline from transformers.testing_utils import is_pipeline_test, nested_simplify, require_torch, slow @is_pipeline_test @require_torch class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' @require_torch def lowerCAmelCase__ ( self : Dict ): UpperCamelCase_: Any = pipeline( task="""zero-shot-audio-classification""" , model="""hf-internal-testing/tiny-clap-htsat-unfused""" ) UpperCamelCase_: str = load_dataset("""ashraq/esc50""" ) UpperCamelCase_: Optional[int] = dataset["""train"""]["""audio"""][-1]["""array"""] UpperCamelCase_: Optional[int] = audio_classifier(snake_case_ , candidate_labels=["""Sound of a dog""", """Sound of vaccum cleaner"""] ) self.assertEqual( nested_simplify(snake_case_ ) , [{"""score""": 0.501, """label""": """Sound of a dog"""}, {"""score""": 0.499, """label""": """Sound of vaccum cleaner"""}] , ) @unittest.skip("""No models are available in TF""" ) def lowerCAmelCase__ ( self : Optional[Any] ): pass @slow @require_torch def lowerCAmelCase__ ( self : int ): UpperCamelCase_: List[str] = pipeline( task="""zero-shot-audio-classification""" , model="""laion/clap-htsat-unfused""" , ) # This is an audio of a dog UpperCamelCase_: Tuple = load_dataset("""ashraq/esc50""" ) UpperCamelCase_: Optional[int] = dataset["""train"""]["""audio"""][-1]["""array"""] UpperCamelCase_: int = audio_classifier(snake_case_ , candidate_labels=["""Sound of a dog""", """Sound of vaccum cleaner"""] ) self.assertEqual( nested_simplify(snake_case_ ) , [ {"""score""": 0.999, """label""": """Sound of a dog"""}, {"""score""": 0.001, """label""": """Sound of vaccum cleaner"""}, ] , ) UpperCamelCase_: Any = audio_classifier([audio] * 5 , candidate_labels=["""Sound of a dog""", """Sound of vaccum cleaner"""] ) self.assertEqual( nested_simplify(snake_case_ ) , [ [ {"""score""": 0.999, """label""": """Sound of a dog"""}, {"""score""": 0.001, """label""": """Sound of vaccum cleaner"""}, ], ] * 5 , ) UpperCamelCase_: Any = audio_classifier( [audio] * 5 , candidate_labels=["""Sound of a dog""", """Sound of vaccum cleaner"""] , batch_size=5 ) self.assertEqual( nested_simplify(snake_case_ ) , [ [ {"""score""": 0.999, """label""": """Sound of a dog"""}, {"""score""": 0.001, """label""": """Sound of vaccum cleaner"""}, ], ] * 5 , ) @unittest.skip("""No models are available in TF""" ) def lowerCAmelCase__ ( self : Optional[Any] ): pass
223
from __future__ import annotations import unittest from transformers import AutoTokenizer, PegasusConfig, is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFPegasusForConditionalGeneration, TFPegasusModel @require_tf class _UpperCamelCase : '''simple docstring''' __UpperCamelCase : str = PegasusConfig __UpperCamelCase : str = {} __UpperCamelCase : Optional[Any] = """gelu""" def __init__( self : Optional[Any] , snake_case_ : Optional[Any] , snake_case_ : str=13 , snake_case_ : Dict=7 , snake_case_ : List[Any]=True , snake_case_ : Optional[int]=False , snake_case_ : Any=99 , snake_case_ : Optional[Any]=32 , snake_case_ : Dict=2 , snake_case_ : Any=4 , snake_case_ : Optional[Any]=37 , snake_case_ : Dict=0.1 , snake_case_ : Optional[int]=0.1 , snake_case_ : List[str]=40 , snake_case_ : Tuple=2 , snake_case_ : Optional[int]=1 , snake_case_ : str=0 , ): UpperCamelCase_: List[str] = parent UpperCamelCase_: Optional[Any] = batch_size UpperCamelCase_: Union[str, Any] = seq_length UpperCamelCase_: Tuple = is_training UpperCamelCase_: Tuple = use_labels UpperCamelCase_: Tuple = vocab_size UpperCamelCase_: Tuple = hidden_size UpperCamelCase_: Optional[Any] = num_hidden_layers UpperCamelCase_: List[Any] = num_attention_heads UpperCamelCase_: Optional[int] = intermediate_size UpperCamelCase_: Dict = hidden_dropout_prob UpperCamelCase_: str = attention_probs_dropout_prob UpperCamelCase_: Optional[int] = max_position_embeddings UpperCamelCase_: Union[str, Any] = eos_token_id UpperCamelCase_: Optional[int] = pad_token_id UpperCamelCase_: List[Any] = bos_token_id def lowerCAmelCase__ ( self : str ): UpperCamelCase_: List[Any] = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) UpperCamelCase_: int = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) UpperCamelCase_: List[Any] = tf.concat([input_ids, eos_tensor] , axis=1 ) UpperCamelCase_: List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCamelCase_: Optional[int] = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) UpperCamelCase_: List[str] = prepare_pegasus_inputs_dict(snake_case_ , snake_case_ , snake_case_ ) return config, inputs_dict def lowerCAmelCase__ ( self : Any , snake_case_ : List[str] , snake_case_ : Dict ): UpperCamelCase_: Any = TFPegasusModel(config=snake_case_ ).get_decoder() UpperCamelCase_: Any = inputs_dict["""input_ids"""] UpperCamelCase_: int = input_ids[:1, :] UpperCamelCase_: List[str] = inputs_dict["""attention_mask"""][:1, :] UpperCamelCase_: Tuple = inputs_dict["""head_mask"""] UpperCamelCase_: int = 1 # first forward pass UpperCamelCase_: Dict = model(snake_case_ , attention_mask=snake_case_ , head_mask=snake_case_ , use_cache=snake_case_ ) UpperCamelCase_, UpperCamelCase_: List[str] = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids UpperCamelCase_: Optional[int] = ids_tensor((self.batch_size, 3) , config.vocab_size ) UpperCamelCase_: Union[str, Any] = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and UpperCamelCase_: Union[str, Any] = tf.concat([input_ids, next_tokens] , axis=-1 ) UpperCamelCase_: Optional[int] = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) UpperCamelCase_: List[Any] = model(snake_case_ , attention_mask=snake_case_ )[0] UpperCamelCase_: Dict = model(snake_case_ , attention_mask=snake_case_ , past_key_values=snake_case_ )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice UpperCamelCase_: str = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) UpperCamelCase_: str = output_from_no_past[:, -3:, random_slice_idx] UpperCamelCase_: int = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(snake_case_ , snake_case_ , rtol=1e-3 ) def A__ ( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase=None , lowerCamelCase=None , lowerCamelCase=None , lowerCamelCase=None , lowerCamelCase=None , ) -> Optional[int]: if attention_mask is None: UpperCamelCase_: Union[str, Any] = tf.cast(tf.math.not_equal(lowerCamelCase , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: UpperCamelCase_: str = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: UpperCamelCase_: Tuple = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: UpperCamelCase_: Dict = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: UpperCamelCase_: str = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class _UpperCamelCase ( _A , _A , unittest.TestCase ): '''simple docstring''' __UpperCamelCase : Union[str, Any] = (TFPegasusForConditionalGeneration, TFPegasusModel) if is_tf_available() else () __UpperCamelCase : str = (TFPegasusForConditionalGeneration,) if is_tf_available() else () __UpperCamelCase : int = ( { """conversational""": TFPegasusForConditionalGeneration, """feature-extraction""": TFPegasusModel, """summarization""": TFPegasusForConditionalGeneration, """text2text-generation""": TFPegasusForConditionalGeneration, """translation""": TFPegasusForConditionalGeneration, } if is_tf_available() else {} ) __UpperCamelCase : Optional[Any] = True __UpperCamelCase : Any = False __UpperCamelCase : Dict = False def lowerCAmelCase__ ( self : Dict ): UpperCamelCase_: Tuple = TFPegasusModelTester(self ) UpperCamelCase_: List[Any] = ConfigTester(self , config_class=snake_case_ ) def lowerCAmelCase__ ( self : Dict ): self.config_tester.run_common_tests() def lowerCAmelCase__ ( self : Optional[int] ): UpperCamelCase_: Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*snake_case_ ) @require_sentencepiece @require_tokenizers @require_tf class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' __UpperCamelCase : Union[str, Any] = [ """ PG&E stated it scheduled the blackouts in response to forecasts for high winds amid dry conditions. The aim is to reduce the risk of wildfires. Nearly 800 thousand customers were scheduled to be affected by the shutoffs which were expected to last through at least midday tomorrow.""", """ The London trio are up for best UK act and best album, as well as getting two nominations in the best song category.\"We got told like this morning 'Oh I think you're nominated'\", said Dappy.\"And I was like 'Oh yeah, which one?' And now we've got nominated for four awards. I mean, wow!\"Bandmate Fazer added: \"We thought it's best of us to come down and mingle with everyone and say hello to the cameras. And now we find we've got four nominations.\"The band have two shots at the best song prize, getting the nod for their Tynchy Stryder collaboration Number One, and single Strong Again.Their album Uncle B will also go up against records by the likes of Beyonce and Kanye West.N-Dubz picked up the best newcomer Mobo in 2007, but female member Tulisa said they wouldn't be too disappointed if they didn't win this time around.\"At the end of the day we're grateful to be where we are in our careers.\"If it don't happen then it don't happen - live to fight another day and keep on making albums and hits for the fans.\"Dappy also revealed they could be performing live several times on the night.The group will be doing Number One and also a possible rendition of the War Child single, I Got Soul.The charity song is a re-working of The Killers' All These Things That I've Done and is set to feature artists like Chipmunk, Ironik and Pixie Lott.This year's Mobos will be held outside of London for the first time, in Glasgow on 30 September.N-Dubz said they were looking forward to performing for their Scottish fans and boasted about their recent shows north of the border.\"We just done Edinburgh the other day,\" said Dappy.\"We smashed up an N-Dubz show over there. We done Aberdeen about three or four months ago - we smashed up that show over there! Everywhere we go we smash it up!\" """, ] __UpperCamelCase : Optional[int] = [ """California's largest electricity provider has cut power to hundreds of thousands of customers in an effort to""" """ reduce the risk of wildfires.""", """N-Dubz have revealed they\'re \"grateful\" to have been nominated for four Mobo Awards.""", ] # differs slightly from pytorch, likely due to numerical differences in linear layers __UpperCamelCase : Union[str, Any] = """google/pegasus-xsum""" @cached_property def lowerCAmelCase__ ( self : Dict ): return AutoTokenizer.from_pretrained(self.model_name ) @cached_property def lowerCAmelCase__ ( self : int ): UpperCamelCase_: List[Any] = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model def lowerCAmelCase__ ( self : Union[str, Any] , **snake_case_ : Optional[int] ): UpperCamelCase_: str = self.translate_src_text(**snake_case_ ) assert self.expected_text == generated_words def lowerCAmelCase__ ( self : Optional[Any] , **snake_case_ : int ): UpperCamelCase_: Tuple = self.tokenizer(self.src_text , **snake_case_ , padding=snake_case_ , return_tensors="""tf""" ) UpperCamelCase_: Tuple = self.model.generate( model_inputs.input_ids , attention_mask=model_inputs.attention_mask , num_beams=2 , use_cache=snake_case_ , ) UpperCamelCase_: Tuple = self.tokenizer.batch_decode(generated_ids.numpy() , skip_special_tokens=snake_case_ ) return generated_words @slow def lowerCAmelCase__ ( self : Optional[Any] ): self._assert_generated_batch_equal_expected()
223
1
'''simple docstring''' import unittest import torch from diffusers import DDIMScheduler, DDPMScheduler, UNetaDModel from diffusers.training_utils import set_seed from diffusers.utils.testing_utils import slow __a: str = False class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def _lowerCAmelCase( self , __lowerCAmelCase=32 ) -> List[Any]: set_seed(0 ) lowercase__ : Union[str, Any] = UNetaDModel(sample_size=__lowerCAmelCase , in_channels=3 , out_channels=3 ) lowercase__ : Dict = torch.optim.SGD(model.parameters() , lr=0.0_0_0_1 ) return model, optimizer @slow def _lowerCAmelCase( self ) -> Union[str, Any]: lowercase__ : List[str] = '''cpu''' # ensure full determinism without setting the CUBLAS_WORKSPACE_CONFIG env variable lowercase__ : Union[str, Any] = DDPMScheduler( num_train_timesteps=1000 , beta_start=0.0_0_0_1 , beta_end=0.0_2 , beta_schedule='''linear''' , clip_sample=__lowerCAmelCase , ) lowercase__ : Optional[int] = DDIMScheduler( num_train_timesteps=1000 , beta_start=0.0_0_0_1 , beta_end=0.0_2 , beta_schedule='''linear''' , clip_sample=__lowerCAmelCase , ) assert ddpm_scheduler.config.num_train_timesteps == ddim_scheduler.config.num_train_timesteps # shared batches for DDPM and DDIM set_seed(0 ) lowercase__ : int = [torch.randn((4, 3, 32, 32) ).clip(-1 , 1 ).to(__lowerCAmelCase ) for _ in range(4 )] lowercase__ : str = [torch.randn((4, 3, 32, 32) ).to(__lowerCAmelCase ) for _ in range(4 )] lowercase__ : Any = [torch.randint(0 , 1000 , (4,) ).long().to(__lowerCAmelCase ) for _ in range(4 )] # train with a DDPM scheduler lowercase__ , lowercase__ : Optional[int] = self.get_model_optimizer(resolution=32 ) model.train().to(__lowerCAmelCase ) for i in range(4 ): optimizer.zero_grad() lowercase__ : List[Any] = ddpm_scheduler.add_noise(clean_images[i] , noise[i] , timesteps[i] ) lowercase__ : int = model(__lowerCAmelCase , timesteps[i] ).sample lowercase__ : Optional[Any] = torch.nn.functional.mse_loss(__lowerCAmelCase , noise[i] ) loss.backward() optimizer.step() del model, optimizer # recreate the model and optimizer, and retry with DDIM lowercase__ , lowercase__ : int = self.get_model_optimizer(resolution=32 ) model.train().to(__lowerCAmelCase ) for i in range(4 ): optimizer.zero_grad() lowercase__ : Union[str, Any] = ddim_scheduler.add_noise(clean_images[i] , noise[i] , timesteps[i] ) lowercase__ : List[Any] = model(__lowerCAmelCase , timesteps[i] ).sample lowercase__ : List[str] = torch.nn.functional.mse_loss(__lowerCAmelCase , noise[i] ) loss.backward() optimizer.step() del model, optimizer self.assertTrue(torch.allclose(__lowerCAmelCase , __lowerCAmelCase , atol=1E-5 ) ) self.assertTrue(torch.allclose(__lowerCAmelCase , __lowerCAmelCase , atol=1E-5 ) )
198
'''simple docstring''' def __UpperCamelCase ( UpperCAmelCase = 1 , UpperCAmelCase = 1000 ): lowercase__ : Dict = 1 lowercase__ : Dict = 0 for divide_by_number in range(UpperCAmelCase , digit + 1 ): lowercase__ : list[int] = [] lowercase__ : Union[str, Any] = numerator for _ in range(1 , digit + 1 ): if now_divide in has_been_divided: if longest_list_length < len(UpperCAmelCase ): lowercase__ : Dict = len(UpperCAmelCase ) lowercase__ : Optional[Any] = divide_by_number else: has_been_divided.append(UpperCAmelCase ) lowercase__ : int = now_divide * 10 % divide_by_number return the_digit # Tests if __name__ == "__main__": import doctest doctest.testmod()
198
1
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, convert_to_rgb, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging __A = logging.get_logger(__name__) if is_vision_available(): import PIL class SCREAMING_SNAKE_CASE ( snake_case ): """simple docstring""" A_ = ["pixel_values"] def __init__( self: List[Any] , __A: bool = True , __A: Dict[str, int] = None , __A: PILImageResampling = PILImageResampling.BICUBIC , __A: bool = True , __A: Dict[str, int] = None , __A: bool = True , __A: Union[int, float] = 1 / 2_55 , __A: bool = True , __A: Optional[Union[float, List[float]]] = None , __A: Optional[Union[float, List[float]]] = None , __A: bool = True , **__A: Dict , ) -> None: super().__init__(**__A ) _A = size if size is not None else {'''shortest_edge''': 2_24} _A = get_size_dict(__A , default_to_square=__A ) _A = crop_size if crop_size is not None else {'''height''': 2_24, '''width''': 2_24} _A = get_size_dict(__A , default_to_square=__A , param_name='''crop_size''' ) _A = do_resize _A = size _A = resample _A = do_center_crop _A = crop_size _A = do_rescale _A = rescale_factor _A = do_normalize _A = image_mean if image_mean is not None else OPENAI_CLIP_MEAN _A = image_std if image_std is not None else OPENAI_CLIP_STD _A = do_convert_rgb def __A ( self: Union[str, Any] , __A: np.ndarray , __A: Dict[str, int] , __A: PILImageResampling = PILImageResampling.BICUBIC , __A: Optional[Union[str, ChannelDimension]] = None , **__A: Optional[Any] , ) -> np.ndarray: _A = get_size_dict(__A , default_to_square=__A ) if "shortest_edge" not in size: raise ValueError(f"""The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}""" ) _A = get_resize_output_image_size(__A , size=size['''shortest_edge'''] , default_to_square=__A ) return resize(__A , size=__A , resample=__A , data_format=__A , **__A ) def __A ( self: Union[str, Any] , __A: np.ndarray , __A: Dict[str, int] , __A: Optional[Union[str, ChannelDimension]] = None , **__A: Dict , ) -> np.ndarray: _A = get_size_dict(__A ) if "height" not in size or "width" not in size: raise ValueError(f"""The `size` parameter must contain the keys (height, width). Got {size.keys()}""" ) return center_crop(__A , size=(size['''height'''], size['''width''']) , data_format=__A , **__A ) def __A ( self: Optional[Any] , __A: np.ndarray , __A: Union[int, float] , __A: Optional[Union[str, ChannelDimension]] = None , **__A: str , ) -> Any: return rescale(__A , scale=__A , data_format=__A , **__A ) def __A ( self: List[Any] , __A: np.ndarray , __A: Union[float, List[float]] , __A: Union[float, List[float]] , __A: Optional[Union[str, ChannelDimension]] = None , **__A: str , ) -> np.ndarray: return normalize(__A , mean=__A , std=__A , data_format=__A , **__A ) def __A ( self: List[Any] , __A: ImageInput , __A: bool = None , __A: Dict[str, int] = None , __A: PILImageResampling = None , __A: bool = None , __A: int = None , __A: bool = None , __A: float = None , __A: bool = None , __A: Optional[Union[float, List[float]]] = None , __A: Optional[Union[float, List[float]]] = None , __A: bool = None , __A: Optional[Union[str, TensorType]] = None , __A: Optional[ChannelDimension] = ChannelDimension.FIRST , **__A: Tuple , ) -> PIL.Image.Image: _A = do_resize if do_resize is not None else self.do_resize _A = size if size is not None else self.size _A = get_size_dict(__A , param_name='''size''' , default_to_square=__A ) _A = resample if resample is not None else self.resample _A = do_center_crop if do_center_crop is not None else self.do_center_crop _A = crop_size if crop_size is not None else self.crop_size _A = get_size_dict(__A , param_name='''crop_size''' , default_to_square=__A ) _A = do_rescale if do_rescale is not None else self.do_rescale _A = rescale_factor if rescale_factor is not None else self.rescale_factor _A = do_normalize if do_normalize is not None else self.do_normalize _A = image_mean if image_mean is not None else self.image_mean _A = image_std if image_std is not None else self.image_std _A = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb _A = make_list_of_images(__A ) if not valid_images(__A ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''' ) if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) # PIL RGBA images are converted to RGB if do_convert_rgb: _A = [convert_to_rgb(__A ) for image in images] # All transformations expect numpy arrays. _A = [to_numpy_array(__A ) for image in images] if do_resize: _A = [self.resize(image=__A , size=__A , resample=__A ) for image in images] if do_center_crop: _A = [self.center_crop(image=__A , size=__A ) for image in images] if do_rescale: _A = [self.rescale(image=__A , scale=__A ) for image in images] if do_normalize: _A = [self.normalize(image=__A , mean=__A , std=__A ) for image in images] _A = [to_channel_dimension_format(__A , __A ) for image in images] _A = {'''pixel_values''': images} return BatchFeature(data=__A , tensor_type=__A )
75
from dataclasses import dataclass from typing import Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, randn_tensor from .scheduling_utils import SchedulerMixin @dataclass class SCREAMING_SNAKE_CASE ( snake_case ): """simple docstring""" A_ = 42 A_ = 42 A_ = None class SCREAMING_SNAKE_CASE ( snake_case , snake_case ): """simple docstring""" A_ = 2 @register_to_config def __init__( self: List[str] , __A: float = 0.02 , __A: float = 1_00 , __A: float = 1.007 , __A: float = 80 , __A: float = 0.05 , __A: float = 50 , ) -> Optional[int]: # standard deviation of the initial noise distribution _A = sigma_max # setable values _A = None _A = None _A = None # sigma(t_i) def __A ( self: Any , __A: torch.FloatTensor , __A: Optional[int] = None ) -> torch.FloatTensor: return sample def __A ( self: Union[str, Any] , __A: int , __A: Union[str, torch.device] = None ) -> List[Any]: _A = num_inference_steps _A = np.arange(0 , self.num_inference_steps )[::-1].copy() _A = torch.from_numpy(__A ).to(__A ) _A = [ ( self.config.sigma_max**2 * (self.config.sigma_min**2 / self.config.sigma_max**2) ** (i / (num_inference_steps - 1)) ) for i in self.timesteps ] _A = torch.tensor(__A , dtype=torch.floataa , device=__A ) def __A ( self: List[Any] , __A: torch.FloatTensor , __A: float , __A: Optional[torch.Generator] = None ) -> Tuple[torch.FloatTensor, float]: if self.config.s_min <= sigma <= self.config.s_max: _A = min(self.config.s_churn / self.num_inference_steps , 2**0.5 - 1 ) else: _A = 0 # sample eps ~ N(0, S_noise^2 * I) _A = self.config.s_noise * randn_tensor(sample.shape , generator=__A ).to(sample.device ) _A = sigma + gamma * sigma _A = sample + ((sigma_hat**2 - sigma**2) ** 0.5 * eps) return sample_hat, sigma_hat def __A ( self: Optional[Any] , __A: torch.FloatTensor , __A: float , __A: float , __A: torch.FloatTensor , __A: bool = True , ) -> Union[KarrasVeOutput, Tuple]: _A = sample_hat + sigma_hat * model_output _A = (sample_hat - pred_original_sample) / sigma_hat _A = sample_hat + (sigma_prev - sigma_hat) * derivative if not return_dict: return (sample_prev, derivative) return KarrasVeOutput( prev_sample=__A , derivative=__A , pred_original_sample=__A ) def __A ( self: Dict , __A: torch.FloatTensor , __A: float , __A: float , __A: torch.FloatTensor , __A: torch.FloatTensor , __A: torch.FloatTensor , __A: bool = True , ) -> Union[KarrasVeOutput, Tuple]: _A = sample_prev + sigma_prev * model_output _A = (sample_prev - pred_original_sample) / sigma_prev _A = sample_hat + (sigma_prev - sigma_hat) * (0.5 * derivative + 0.5 * derivative_corr) if not return_dict: return (sample_prev, derivative) return KarrasVeOutput( prev_sample=__A , derivative=__A , pred_original_sample=__A ) def __A ( self: Any , __A: List[Any] , __A: int , __A: int ) -> int: raise NotImplementedError()
75
1
'''simple docstring''' from __future__ import annotations import math def _SCREAMING_SNAKE_CASE ( UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ): """simple docstring""" if depth < 0: raise ValueError("""Depth cannot be less than 0""" ) if not scores: raise ValueError("""Scores cannot be empty""" ) if depth == height: return scores[node_index] return ( max( minimax(depth + 1 , node_index * 2 , UpperCamelCase , UpperCamelCase , UpperCamelCase ) , minimax(depth + 1 , node_index * 2 + 1 , UpperCamelCase , UpperCamelCase , UpperCamelCase ) , ) if is_max else min( minimax(depth + 1 , node_index * 2 , UpperCamelCase , UpperCamelCase , UpperCamelCase ) , minimax(depth + 1 , node_index * 2 + 1 , UpperCamelCase , UpperCamelCase , UpperCamelCase ) , ) ) def _SCREAMING_SNAKE_CASE ( ): """simple docstring""" lowerCAmelCase__ : Tuple = [90, 23, 6, 33, 21, 65, 123, 34423] lowerCAmelCase__ : Optional[int] = math.log(len(UpperCamelCase ) , 2 ) print(f"""Optimal value : {minimax(0 , 0 , UpperCamelCase , UpperCamelCase , UpperCamelCase )}""" ) if __name__ == "__main__": import doctest doctest.testmod() main()
37
'''simple docstring''' def a__ ( a__ , a__ ): """simple docstring""" __SCREAMING_SNAKE_CASE = int(a__ ) # Initialize Result __SCREAMING_SNAKE_CASE = [] # Traverse through all denomination for denomination in reversed(a__ ): # Find denominations while int(a__ ) >= int(a__ ): total_value -= int(a__ ) answer.append(a__ ) # Append the "answers" array return answer # Driver Code if __name__ == "__main__": UpperCAmelCase : Dict = [] UpperCAmelCase : List[str] = '0' if ( input('Do you want to enter your denominations ? (yY/n): ').strip().lower() == "y" ): UpperCAmelCase : List[str] = int(input('Enter the number of denominations you want to add: ').strip()) for i in range(0, n): denominations.append(int(input(f"""Denomination {i}: """).strip())) UpperCAmelCase : str = input('Enter the change you want to make in Indian Currency: ').strip() else: # All denominations of Indian Currency if user does not enter UpperCAmelCase : int = [1, 2, 5, 1_0, 2_0, 5_0, 1_0_0, 5_0_0, 2_0_0_0] UpperCAmelCase : Any = input('Enter the change you want to make: ').strip() if int(value) == 0 or int(value) < 0: print('The total value cannot be zero or negative.') else: print(f"""Following is minimal change for {value}: """) UpperCAmelCase : Any = find_minimum_change(denominations, value) # Print result for i in range(len(answer)): print(answer[i], end=' ')
267
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) lowercase__ : Dict = { 'configuration_longformer': [ 'LONGFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'LongformerConfig', 'LongformerOnnxConfig', ], 'tokenization_longformer': ['LongformerTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ : Tuple = ['LongformerTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ : List[str] = [ 'LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'LongformerForMaskedLM', 'LongformerForMultipleChoice', 'LongformerForQuestionAnswering', 'LongformerForSequenceClassification', 'LongformerForTokenClassification', 'LongformerModel', 'LongformerPreTrainedModel', 'LongformerSelfAttention', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ : List[str] = [ 'TF_LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFLongformerForMaskedLM', 'TFLongformerForMultipleChoice', 'TFLongformerForQuestionAnswering', 'TFLongformerForSequenceClassification', 'TFLongformerForTokenClassification', 'TFLongformerModel', 'TFLongformerPreTrainedModel', 'TFLongformerSelfAttention', ] if TYPE_CHECKING: from .configuration_longformer import ( LONGFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, LongformerConfig, LongformerOnnxConfig, ) from .tokenization_longformer import LongformerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_longformer_fast import LongformerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_longformer import ( LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, LongformerForMaskedLM, LongformerForMultipleChoice, LongformerForQuestionAnswering, LongformerForSequenceClassification, LongformerForTokenClassification, LongformerModel, LongformerPreTrainedModel, LongformerSelfAttention, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_longformer import ( TF_LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TFLongformerForMaskedLM, TFLongformerForMultipleChoice, TFLongformerForQuestionAnswering, TFLongformerForSequenceClassification, TFLongformerForTokenClassification, TFLongformerModel, TFLongformerPreTrainedModel, TFLongformerSelfAttention, ) else: import sys lowercase__ : Any = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
287
'''simple docstring''' import gc import unittest from diffusers import FlaxControlNetModel, FlaxStableDiffusionControlNetPipeline from diffusers.utils import is_flax_available, load_image, slow from diffusers.utils.testing_utils import require_flax if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard @slow @require_flax class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def snake_case__ ( self : List[str] ) -> Optional[int]: '''simple docstring''' super().tearDown() gc.collect() def snake_case__ ( self : int ) -> Union[str, Any]: '''simple docstring''' _UpperCamelCase , _UpperCamelCase = FlaxControlNetModel.from_pretrained( '''lllyasviel/sd-controlnet-canny''' , from_pt=lowerCAmelCase__ , dtype=jnp.bfloataa ) _UpperCamelCase , _UpperCamelCase = FlaxStableDiffusionControlNetPipeline.from_pretrained( '''runwayml/stable-diffusion-v1-5''' , controlnet=lowerCAmelCase__ , from_pt=lowerCAmelCase__ , dtype=jnp.bfloataa ) _UpperCamelCase = controlnet_params _UpperCamelCase = '''bird''' _UpperCamelCase = jax.device_count() _UpperCamelCase = pipe.prepare_text_inputs([prompts] * num_samples ) _UpperCamelCase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny.png''' ) _UpperCamelCase = pipe.prepare_image_inputs([canny_image] * num_samples ) _UpperCamelCase = jax.random.PRNGKey(0 ) _UpperCamelCase = jax.random.split(lowerCAmelCase__ , jax.device_count() ) _UpperCamelCase = replicate(lowerCAmelCase__ ) _UpperCamelCase = shard(lowerCAmelCase__ ) _UpperCamelCase = shard(lowerCAmelCase__ ) _UpperCamelCase = pipe( prompt_ids=lowerCAmelCase__ , image=lowerCAmelCase__ , params=lowerCAmelCase__ , prng_seed=lowerCAmelCase__ , num_inference_steps=50 , jit=lowerCAmelCase__ , ).images assert images.shape == (jax.device_count(), 1, 768, 512, 3) _UpperCamelCase = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) _UpperCamelCase = images[0, 253:256, 253:256, -1] _UpperCamelCase = jnp.asarray(jax.device_get(image_slice.flatten() ) ) _UpperCamelCase = jnp.array( [0.167969, 0.116699, 0.081543, 0.154297, 0.132812, 0.108887, 0.169922, 0.169922, 0.205078] ) print(f"""output_slice: {output_slice}""" ) assert jnp.abs(output_slice - expected_slice ).max() < 1e-2 def snake_case__ ( self : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' _UpperCamelCase , _UpperCamelCase = FlaxControlNetModel.from_pretrained( '''lllyasviel/sd-controlnet-openpose''' , from_pt=lowerCAmelCase__ , dtype=jnp.bfloataa ) _UpperCamelCase , _UpperCamelCase = FlaxStableDiffusionControlNetPipeline.from_pretrained( '''runwayml/stable-diffusion-v1-5''' , controlnet=lowerCAmelCase__ , from_pt=lowerCAmelCase__ , dtype=jnp.bfloataa ) _UpperCamelCase = controlnet_params _UpperCamelCase = '''Chef in the kitchen''' _UpperCamelCase = jax.device_count() _UpperCamelCase = pipe.prepare_text_inputs([prompts] * num_samples ) _UpperCamelCase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/pose.png''' ) _UpperCamelCase = pipe.prepare_image_inputs([pose_image] * num_samples ) _UpperCamelCase = jax.random.PRNGKey(0 ) _UpperCamelCase = jax.random.split(lowerCAmelCase__ , jax.device_count() ) _UpperCamelCase = replicate(lowerCAmelCase__ ) _UpperCamelCase = shard(lowerCAmelCase__ ) _UpperCamelCase = shard(lowerCAmelCase__ ) _UpperCamelCase = pipe( prompt_ids=lowerCAmelCase__ , image=lowerCAmelCase__ , params=lowerCAmelCase__ , prng_seed=lowerCAmelCase__ , num_inference_steps=50 , jit=lowerCAmelCase__ , ).images assert images.shape == (jax.device_count(), 1, 768, 512, 3) _UpperCamelCase = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) _UpperCamelCase = images[0, 253:256, 253:256, -1] _UpperCamelCase = jnp.asarray(jax.device_get(image_slice.flatten() ) ) _UpperCamelCase = jnp.array( [[0.271484, 0.261719, 0.275391, 0.277344, 0.279297, 0.291016, 0.294922, 0.302734, 0.302734]] ) print(f"""output_slice: {output_slice}""" ) assert jnp.abs(output_slice - expected_slice ).max() < 1e-2
287
1
'''simple docstring''' import argparse import os from pathlib import Path from typing import Dict import tensorflow as tf import torch from tqdm import tqdm from transformers import PegasusConfig, PegasusForConditionalGeneration, PegasusTokenizer from transformers.models.pegasus.configuration_pegasus import DEFAULTS, task_specific_params a__ : int =[ # replace left string with right string to get the relevant state_dict key (identical state dict to bart) ['''memory_attention''', '''encoder_attn'''], ['''attention''', '''attn'''], ['''/''', '''.'''], ['''.LayerNorm.gamma''', '''_layer_norm.weight'''], ['''.LayerNorm.beta''', '''_layer_norm.bias'''], ['''r.layer_''', '''r.layers.'''], ['''output_proj''', '''out_proj'''], ['''ffn.dense_1.''', '''fc2.'''], ['''ffn.dense.''', '''fc1.'''], ['''ffn_layer_norm''', '''final_layer_norm'''], ['''kernel''', '''weight'''], ['''encoder_layer_norm.''', '''encoder.layer_norm.'''], ['''decoder_layer_norm.''', '''decoder.layer_norm.'''], ['''embeddings.weights''', '''shared.weight'''], ] def lowercase__ ( __lowercase : Dict ) -> Tuple: """simple docstring""" for pegasus_name, hf_name in PATTERNS: __UpperCamelCase = k.replace(__lowercase , __lowercase ) return k def lowercase__ ( __lowercase : dict , __lowercase : dict ) -> PegasusForConditionalGeneration: """simple docstring""" __UpperCamelCase = DEFAULTS.copy() cfg_kwargs.update(__lowercase ) __UpperCamelCase = PegasusConfig(**__lowercase ) __UpperCamelCase = PegasusForConditionalGeneration(__lowercase ) __UpperCamelCase = torch_model.model.state_dict() __UpperCamelCase = {} for k, v in tf_weights.items(): __UpperCamelCase = rename_state_dict_key(__lowercase ) if new_k not in sd: raise ValueError(F'''could not find new key {new_k} in state dict. (converted from {k})''' ) if "dense" in k or "proj" in new_k: __UpperCamelCase = v.T __UpperCamelCase = torch.tensor(__lowercase , dtype=sd[new_k].dtype ) assert v.shape == sd[new_k].shape, F'''{new_k}, {k}, {v.shape}, {sd[new_k].shape}''' # make sure embedding.padding_idx is respected __UpperCamelCase = torch.zeros_like(mapping['shared.weight'][cfg.pad_token_id + 1] ) __UpperCamelCase = mapping['shared.weight'] __UpperCamelCase = mapping['shared.weight'] __UpperCamelCase = {k: torch.zeros_like(__lowercase ) for k, v in sd.items() if k.endswith('bias' ) and k not in mapping} mapping.update(**__lowercase ) __UpperCamelCase , __UpperCamelCase = torch_model.model.load_state_dict(__lowercase , strict=__lowercase ) __UpperCamelCase = [ k for k in missing if k not in ['encoder.embed_positions.weight', 'decoder.embed_positions.weight'] ] assert unexpected_missing == [], F'''no matches found for the following torch keys {unexpected_missing}''' assert extra == [], F'''no matches found for the following tf keys {extra}''' return torch_model def lowercase__ ( __lowercase : Optional[Any]="./ckpt/aeslc/model.ckpt-32000" ) -> Dict: """simple docstring""" __UpperCamelCase = tf.train.list_variables(__lowercase ) __UpperCamelCase = {} __UpperCamelCase = ['Adafactor', 'global_step'] for name, shape in tqdm(__lowercase , desc='converting tf checkpoint to dict' ): __UpperCamelCase = any(pat in name for pat in ignore_name ) if skip_key: continue __UpperCamelCase = tf.train.load_variable(__lowercase , __lowercase ) __UpperCamelCase = array return tf_weights def lowercase__ ( __lowercase : str , __lowercase : str ) -> Optional[Any]: """simple docstring""" __UpperCamelCase = Path(__lowercase ).parent.name __UpperCamelCase = task_specific_params[F'''summarization_{dataset}''']['max_position_embeddings'] __UpperCamelCase = PegasusTokenizer.from_pretrained('sshleifer/pegasus' , model_max_length=__lowercase ) assert tok.model_max_length == desired_max_model_length tok.save_pretrained(__lowercase ) # convert model __UpperCamelCase = get_tf_weights_as_numpy(__lowercase ) __UpperCamelCase = task_specific_params[F'''summarization_{dataset}'''] if dataset == "large": __UpperCamelCase = task_specific_params __UpperCamelCase = convert_pegasus(__lowercase , __lowercase ) torch_model.save_pretrained(__lowercase ) __UpperCamelCase = torch_model.state_dict() sd.pop('model.decoder.embed_positions.weight' ) sd.pop('model.encoder.embed_positions.weight' ) torch.save(__lowercase , Path(__lowercase ) / 'pytorch_model.bin' ) if __name__ == "__main__": a__ : Union[str, Any] =argparse.ArgumentParser() # Required parameters parser.add_argument('''tf_ckpt_path''', type=str, help='''passed to tf.train.list_variables''') parser.add_argument('''save_dir''', default=None, type=str, help='''Path to the output PyTorch model.''') a__ : int =parser.parse_args() if args.save_dir is None: a__ : str =Path(args.tf_ckpt_path).parent.name a__ : str =os.path.join('''pegasus''', dataset) convert_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir)
53
'''simple docstring''' from typing import List, Optional, Union from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class snake_case ( __lowerCamelCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Any =["image_processor", "tokenizer"] SCREAMING_SNAKE_CASE_ : List[Any] ="BlipImageProcessor" SCREAMING_SNAKE_CASE_ : Optional[int] =("BertTokenizer", "BertTokenizerFast") def __init__( self : Dict , __A : Optional[int] , __A : List[Any] ): __UpperCamelCase = False super().__init__(__A , __A ) __UpperCamelCase = self.image_processor def __call__( self : List[Any] , __A : ImageInput = None , __A : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , __A : bool = True , __A : Union[bool, str, PaddingStrategy] = False , __A : Union[bool, str, TruncationStrategy] = None , __A : Optional[int] = None , __A : int = 0 , __A : Optional[int] = None , __A : Optional[bool] = None , __A : bool = False , __A : bool = False , __A : bool = False , __A : bool = False , __A : bool = False , __A : bool = True , __A : Optional[Union[str, TensorType]] = None , **__A : List[Any] , ): if images is None and text is None: raise ValueError('You have to specify either images or text.' ) # Get only text if images is None: __UpperCamelCase = self.tokenizer __UpperCamelCase = self.tokenizer( text=__A , add_special_tokens=__A , padding=__A , truncation=__A , max_length=__A , stride=__A , pad_to_multiple_of=__A , return_attention_mask=__A , return_overflowing_tokens=__A , return_special_tokens_mask=__A , return_offsets_mapping=__A , return_token_type_ids=__A , return_length=__A , verbose=__A , return_tensors=__A , **__A , ) return text_encoding # add pixel_values __UpperCamelCase = self.image_processor(__A , return_tensors=__A ) if text is not None: __UpperCamelCase = self.tokenizer( text=__A , add_special_tokens=__A , padding=__A , truncation=__A , max_length=__A , stride=__A , pad_to_multiple_of=__A , return_attention_mask=__A , return_overflowing_tokens=__A , return_special_tokens_mask=__A , return_offsets_mapping=__A , return_token_type_ids=__A , return_length=__A , verbose=__A , return_tensors=__A , **__A , ) else: __UpperCamelCase = None if text_encoding is not None: encoding_image_processor.update(__A ) return encoding_image_processor def _lowerCamelCase ( self : List[Any] , *__A : Dict , **__A : Optional[int] ): return self.tokenizer.batch_decode(*__A , **__A ) def _lowerCamelCase ( self : List[Any] , *__A : List[str] , **__A : Dict ): return self.tokenizer.decode(*__A , **__A ) @property def _lowerCamelCase ( self : Tuple ): __UpperCamelCase = self.tokenizer.model_input_names __UpperCamelCase = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
53
1
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase : int = logging.get_logger(__name__) lowerCamelCase : Optional[int] = { '''google/switch-base-8''': '''https://huggingface.co/google/switch-base-8/blob/main/config.json''', } class lowerCAmelCase ( __a ): '''simple docstring''' _A : str = '''switch_transformers''' _A : Any = ['''past_key_values'''] _A : Any = {'''hidden_size''': '''d_model''', '''num_attention_heads''': '''num_heads''', '''num_hidden_layers''': '''num_layers'''} def __init__( self : Union[str, Any] , __a : str=32128 , __a : Dict=768 , __a : str=64 , __a : List[str]=2048 , __a : List[Any]=64 , __a : Union[str, Any]=12 , __a : Optional[Any]=3 , __a : str=12 , __a : int=3 , __a : Tuple=12 , __a : Any=8 , __a : List[str]=False , __a : Union[str, Any]=0.01 , __a : List[Any]="float32" , __a : Tuple=False , __a : List[Any]=32 , __a : int=128 , __a : List[Any]=0.1 , __a : str=1E-6 , __a : Optional[Any]=0.001 , __a : Optional[int]=0.001 , __a : str=1.0 , __a : List[Any]="relu" , __a : Dict=True , __a : Optional[Any]=False , __a : Optional[Any]=True , __a : Optional[Any]=0 , __a : Union[str, Any]=1 , **__a : Optional[int] , ) -> List[Any]: """simple docstring""" __lowercase : Dict = vocab_size __lowercase : List[Any] = d_model __lowercase : Dict = d_kv __lowercase : List[Any] = d_ff __lowercase : Dict = num_sparse_encoder_layers __lowercase : int = num_layers __lowercase : Optional[Any] = ( num_decoder_layers if num_decoder_layers is not None else self.num_layers ) # default = symmetry __lowercase : Union[str, Any] = num_sparse_decoder_layers # This tells us, each how many encoder layer we'll have to set a sparse layer. if self.num_sparse_encoder_layers > 0: __lowercase : str = self.num_layers // self.num_sparse_encoder_layers else: __lowercase : str = self.num_layers # HACK: this will create 0 sparse layers # This tells us, each how many encoder layer we'll have to set a sparse layer. if self.num_sparse_decoder_layers > 0: __lowercase : int = self.num_decoder_layers // self.num_sparse_decoder_layers else: __lowercase : str = self.num_decoder_layers # HACK: this will create 0 sparse layers __lowercase : Optional[Any] = num_heads __lowercase : Any = num_experts __lowercase : Optional[int] = expert_capacity __lowercase : Optional[int] = router_bias __lowercase : List[Any] = router_jitter_noise if router_dtype not in ["float32", "float16", "bfloat16"]: raise ValueError(F"`router_dtype` must be one of 'float32', 'float16' or 'bfloat16', got {router_dtype}" ) __lowercase : int = router_dtype __lowercase : List[str] = router_ignore_padding_tokens __lowercase : str = relative_attention_num_buckets __lowercase : List[Any] = relative_attention_max_distance __lowercase : Any = dropout_rate __lowercase : Dict = layer_norm_epsilon __lowercase : Optional[Any] = initializer_factor __lowercase : int = feed_forward_proj __lowercase : Tuple = use_cache __lowercase : Optional[Any] = add_router_probs __lowercase : Optional[Any] = router_z_loss_coef __lowercase : List[str] = router_aux_loss_coef __lowercase : Union[str, Any] = self.feed_forward_proj.split("""-""" ) __lowercase : List[str] = act_info[-1] __lowercase : Optional[int] = act_info[0] == """gated""" if len(__a ) > 1 and act_info[0] != "gated" or len(__a ) > 2: raise ValueError( F"`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer." """Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. """ """'gated-gelu' or 'relu'""" ) # for backwards compatibility if feed_forward_proj == "gated-gelu": __lowercase : List[Any] = """gelu_new""" super().__init__( pad_token_id=__a , eos_token_id=__a , is_encoder_decoder=__a , **__a , )
306
import copy import inspect import unittest from transformers import AutoBackbone from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import require_timm, require_torch, torch_device from transformers.utils.import_utils import is_torch_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor if is_torch_available(): import torch from transformers import TimmBackbone, TimmBackboneConfig from ...test_pipeline_mixin import PipelineTesterMixin class lowerCAmelCase : '''simple docstring''' def __init__( self : Optional[Any] , __a : Dict , __a : List[str]=None , __a : Optional[Any]=None , __a : Union[str, Any]=None , __a : int="resnet50" , __a : List[str]=3 , __a : Tuple=32 , __a : Dict=3 , __a : List[str]=True , __a : Union[str, Any]=True , ) -> Any: """simple docstring""" __lowercase : Optional[int] = parent __lowercase : List[str] = out_indices if out_indices is not None else [4] __lowercase : Optional[int] = stage_names __lowercase : Any = out_features __lowercase : Optional[Any] = backbone __lowercase : Optional[Any] = batch_size __lowercase : Union[str, Any] = image_size __lowercase : List[str] = num_channels __lowercase : str = use_pretrained_backbone __lowercase : str = is_training def lowerCAmelCase ( self : Dict ) -> Tuple: """simple docstring""" __lowercase : Optional[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __lowercase : str = self.get_config() return config, pixel_values def lowerCAmelCase ( self : int ) -> str: """simple docstring""" return TimmBackboneConfig( image_size=self.image_size , num_channels=self.num_channels , out_features=self.out_features , out_indices=self.out_indices , stage_names=self.stage_names , use_pretrained_backbone=self.use_pretrained_backbone , backbone=self.backbone , ) def lowerCAmelCase ( self : Optional[int] , __a : Dict , __a : Any ) -> Dict: """simple docstring""" __lowercase : Dict = TimmBackbone(config=__a ) model.to(__a ) model.eval() with torch.no_grad(): __lowercase : Optional[Any] = model(__a ) self.parent.assertEqual( result.feature_map[-1].shape , (self.batch_size, model.channels[-1], 14, 14) , ) def lowerCAmelCase ( self : Any ) -> int: """simple docstring""" __lowercase : Union[str, Any] = self.prepare_config_and_inputs() __lowercase , __lowercase : str = config_and_inputs __lowercase : List[str] = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch @require_timm class lowerCAmelCase ( __a , __a , __a , unittest.TestCase ): '''simple docstring''' _A : List[Any] = (TimmBackbone,) if is_torch_available() else () _A : Dict = {'''feature-extraction''': TimmBackbone} if is_torch_available() else {} _A : List[Any] = False _A : List[str] = False _A : Any = False _A : Optional[Any] = False def lowerCAmelCase ( self : Dict ) -> Optional[Any]: """simple docstring""" __lowercase : str = TimmBackboneModelTester(self ) __lowercase : Any = ConfigTester(self , config_class=__a , has_text_modality=__a ) def lowerCAmelCase ( self : Any ) -> str: """simple docstring""" self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowerCAmelCase ( self : str ) -> Tuple: """simple docstring""" __lowercase : Tuple = """resnet18""" __lowercase : Optional[int] = """microsoft/resnet-18""" __lowercase : Union[str, Any] = AutoBackbone.from_pretrained(__a , use_timm_backbone=__a ) __lowercase : Dict = AutoBackbone.from_pretrained(__a ) self.assertEqual(len(timm_model.out_features ) , len(transformers_model.out_features ) ) self.assertEqual(len(timm_model.stage_names ) , len(transformers_model.stage_names ) ) self.assertEqual(timm_model.channels , transformers_model.channels ) # Out indices are set to the last layer by default. For timm models, we don't know # the number of layers in advance, so we set it to (-1,), whereas for transformers # models, we set it to [len(stage_names) - 1] (kept for backward compatibility). self.assertEqual(timm_model.out_indices , (-1,) ) self.assertEqual(transformers_model.out_indices , [len(timm_model.stage_names ) - 1] ) __lowercase : Union[str, Any] = AutoBackbone.from_pretrained(__a , use_timm_backbone=__a , out_indices=[1, 2, 3] ) __lowercase : Optional[Any] = AutoBackbone.from_pretrained(__a , out_indices=[1, 2, 3] ) self.assertEqual(timm_model.out_indices , transformers_model.out_indices ) self.assertEqual(len(timm_model.out_features ) , len(transformers_model.out_features ) ) self.assertEqual(timm_model.channels , transformers_model.channels ) @unittest.skip("""TimmBackbone doesn't support feed forward chunking""" ) def lowerCAmelCase ( self : List[Any] ) -> Any: """simple docstring""" pass @unittest.skip("""TimmBackbone doesn't have num_hidden_layers attribute""" ) def lowerCAmelCase ( self : List[str] ) -> Union[str, Any]: """simple docstring""" pass @unittest.skip("""TimmBackbone initialization is managed on the timm side""" ) def lowerCAmelCase ( self : List[Any] ) -> str: """simple docstring""" pass @unittest.skip("""TimmBackbone models doesn't have inputs_embeds""" ) def lowerCAmelCase ( self : Optional[int] ) -> Dict: """simple docstring""" pass @unittest.skip("""TimmBackbone models doesn't have inputs_embeds""" ) def lowerCAmelCase ( self : Tuple ) -> Tuple: """simple docstring""" pass @unittest.skip("""TimmBackbone model cannot be created without specifying a backbone checkpoint""" ) def lowerCAmelCase ( self : Dict ) -> Optional[Any]: """simple docstring""" pass @unittest.skip("""Only checkpoints on timm can be loaded into TimmBackbone""" ) def lowerCAmelCase ( self : Union[str, Any] ) -> int: """simple docstring""" pass @unittest.skip("""model weights aren't tied in TimmBackbone.""" ) def lowerCAmelCase ( self : Union[str, Any] ) -> str: """simple docstring""" pass @unittest.skip("""model weights aren't tied in TimmBackbone.""" ) def lowerCAmelCase ( self : Dict ) -> int: """simple docstring""" pass @unittest.skip("""Only checkpoints on timm can be loaded into TimmBackbone""" ) def lowerCAmelCase ( self : List[str] ) -> List[Any]: """simple docstring""" pass @unittest.skip("""Only checkpoints on timm can be loaded into TimmBackbone""" ) def lowerCAmelCase ( self : List[Any] ) -> Tuple: """simple docstring""" pass @unittest.skip("""TimmBackbone doesn't have hidden size info in its configuration.""" ) def lowerCAmelCase ( self : Dict ) -> Any: """simple docstring""" pass @unittest.skip("""TimmBackbone doesn't support output_attentions.""" ) def lowerCAmelCase ( self : str ) -> List[Any]: """simple docstring""" pass @unittest.skip("""Safetensors is not supported by timm.""" ) def lowerCAmelCase ( self : Any ) -> List[Any]: """simple docstring""" pass @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def lowerCAmelCase ( self : List[str] ) -> List[str]: """simple docstring""" pass def lowerCAmelCase ( self : Any ) -> List[str]: """simple docstring""" __lowercase , __lowercase : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase : Optional[Any] = model_class(__a ) __lowercase : Any = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowercase : List[str] = [*signature.parameters.keys()] __lowercase : str = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , __a ) def lowerCAmelCase ( self : Optional[Any] ) -> int: """simple docstring""" __lowercase , __lowercase : int = self.model_tester.prepare_config_and_inputs_for_common() __lowercase : Optional[Any] = True __lowercase : Union[str, Any] = self.has_attentions # no need to test all models as different heads yield the same functionality __lowercase : Union[str, Any] = self.all_model_classes[0] __lowercase : List[Any] = model_class(__a ) model.to(__a ) __lowercase : Optional[Any] = self._prepare_for_class(__a , __a ) __lowercase : Union[str, Any] = model(**__a ) __lowercase : Optional[int] = outputs[0][-1] # Encoder-/Decoder-only models __lowercase : Any = outputs.hidden_states[0] hidden_states.retain_grad() if self.has_attentions: __lowercase : Optional[int] = outputs.attentions[0] attentions.retain_grad() output.flatten()[0].backward(retain_graph=__a ) self.assertIsNotNone(hidden_states.grad ) if self.has_attentions: self.assertIsNotNone(attentions.grad ) def lowerCAmelCase ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" __lowercase , __lowercase : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase : List[str] = model_class(__a ) model.to(__a ) model.eval() __lowercase : int = model(**__a ) self.assertEqual(len(result.feature_maps ) , len(config.out_indices ) ) self.assertEqual(len(model.channels ) , len(config.out_indices ) ) # Check output of last stage is taken if out_features=None, out_indices=None __lowercase : Any = copy.deepcopy(__a ) __lowercase : Dict = None __lowercase : Tuple = model_class(__a ) model.to(__a ) model.eval() __lowercase : Optional[int] = model(**__a ) self.assertEqual(len(result.feature_maps ) , 1 ) self.assertEqual(len(model.channels ) , 1 ) # Check backbone can be initialized with fresh weights __lowercase : List[str] = copy.deepcopy(__a ) __lowercase : Optional[Any] = False __lowercase : str = model_class(__a ) model.to(__a ) model.eval() __lowercase : List[Any] = model(**__a )
306
1
'''simple docstring''' from collections.abc import Iterable from typing import Any class lowerCAmelCase : def __init__( self : str , __lowercase : int | None = None ): """simple docstring""" __lowercase =value __lowercase =None # Added in order to delete a node easier __lowercase =None __lowercase =None def __repr__( self : Tuple ): """simple docstring""" from pprint import pformat if self.left is None and self.right is None: return str(self.value ) return pformat({f'''{self.value}''': (self.left, self.right)} , indent=1 ) class lowerCAmelCase : def __init__( self : List[str] , __lowercase : Node | None = None ): """simple docstring""" __lowercase =root def __str__( self : int ): """simple docstring""" return str(self.root ) def snake_case ( self : Optional[int] , __lowercase : Node , __lowercase : Node | None ): """simple docstring""" if new_children is not None: # reset its kids __lowercase =node.parent if node.parent is not None: # reset its parent if self.is_right(__lowercase ): # If it is the right children __lowercase =new_children else: __lowercase =new_children else: __lowercase =new_children def snake_case ( self : Optional[int] , __lowercase : Node ): """simple docstring""" if node.parent and node.parent.right: return node == node.parent.right return False def snake_case ( self : str ): """simple docstring""" return self.root is None def snake_case ( self : List[str] , __lowercase : Optional[int] ): """simple docstring""" __lowercase =Node(__lowercase ) # create a new Node if self.empty(): # if Tree is empty __lowercase =new_node # set its root else: # Tree is not empty __lowercase =self.root # from root if parent_node is None: return while True: # While we don't get to a leaf if value < parent_node.value: # We go left if parent_node.left is None: __lowercase =new_node # We insert the new node in a leaf break else: __lowercase =parent_node.left else: if parent_node.right is None: __lowercase =new_node break else: __lowercase =parent_node.right __lowercase =parent_node def snake_case ( self : Any , *__lowercase : Optional[Any] ): """simple docstring""" for value in values: self.__insert(__lowercase ) def snake_case ( self : List[str] , __lowercase : int ): """simple docstring""" if self.empty(): raise IndexError('Warning: Tree is empty! please use another.' ) else: __lowercase =self.root # use lazy evaluation here to avoid NoneType Attribute error while node is not None and node.value is not value: __lowercase =node.left if value < node.value else node.right return node def snake_case ( self : str , __lowercase : Node | None = None ): """simple docstring""" if node is None: if self.root is None: return None __lowercase =self.root if not self.empty(): while node.right is not None: __lowercase =node.right return node def snake_case ( self : List[Any] , __lowercase : Node | None = None ): """simple docstring""" if node is None: __lowercase =self.root if self.root is None: return None if not self.empty(): __lowercase =self.root while node.left is not None: __lowercase =node.left return node def snake_case ( self : Tuple , __lowercase : int ): """simple docstring""" __lowercase =self.search(__lowercase ) # Look for the node with that label if node is not None: if node.left is None and node.right is None: # If it has no children self.__reassign_nodes(__lowercase , __lowercase ) elif node.left is None: # Has only right children self.__reassign_nodes(__lowercase , node.right ) elif node.right is None: # Has only left children self.__reassign_nodes(__lowercase , node.left ) else: __lowercase =self.get_max( node.left ) # Gets the max value of the left branch self.remove(tmp_node.value ) # type: ignore __lowercase =( tmp_node.value # type: ignore ) # Assigns the value to the node to delete and keep tree structure def snake_case ( self : List[str] , __lowercase : Node | None ): """simple docstring""" if node is not None: yield node # Preorder Traversal yield from self.preorder_traverse(node.left ) yield from self.preorder_traverse(node.right ) def snake_case ( self : List[Any] , __lowercase : Optional[int]=None ): """simple docstring""" if traversal_function is None: return self.preorder_traverse(self.root ) else: return traversal_function(self.root ) def snake_case ( self : Any , __lowercase : list , __lowercase : Node | None ): """simple docstring""" if node: self.inorder(__lowercase , node.left ) arr.append(node.value ) self.inorder(__lowercase , node.right ) def snake_case ( self : List[Any] , __lowercase : int , __lowercase : Node ): """simple docstring""" __lowercase =[] self.inorder(__lowercase , __lowercase ) # append all values to list using inorder traversal return arr[k - 1] def __UpperCamelCase ( lowercase__ : Node | None ): '''simple docstring''' __lowercase =[] if curr_node is not None: __lowercase =postorder(curr_node.left ) + postorder(curr_node.right ) + [curr_node] return node_list def __UpperCamelCase ( ): '''simple docstring''' __lowercase =(8, 3, 6, 1, 10, 14, 13, 4, 7) __lowercase =BinarySearchTree() for i in testlist: t.insert(lowercase__ ) # Prints all the elements of the list in order traversal print(lowercase__ ) if t.search(6 ) is not None: print('The value 6 exists' ) else: print('The value 6 doesn\'t exist' ) if t.search(-1 ) is not None: print('The value -1 exists' ) else: print('The value -1 doesn\'t exist' ) if not t.empty(): print('Max Value: ', t.get_max().value ) # type: ignore print('Min Value: ', t.get_min().value ) # type: ignore for i in testlist: t.remove(lowercase__ ) print(lowercase__ ) if __name__ == "__main__": import doctest doctest.testmod(verbose=True)
141
'''simple docstring''' import random import unittest import torch from diffusers import IFImgaImgSuperResolutionPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class lowerCAmelCase ( A , A , unittest.TestCase ): lowerCAmelCase_ = IFImgaImgSuperResolutionPipeline lowerCAmelCase_ = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {"width", "height"} lowerCAmelCase_ = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({"original_image"} ) lowerCAmelCase_ = PipelineTesterMixin.required_optional_params - {"latents"} def snake_case ( self : int ): """simple docstring""" return self._get_superresolution_dummy_components() def snake_case ( self : Optional[Any] , __lowercase : Union[str, Any] , __lowercase : List[str]=0 ): """simple docstring""" if str(__lowercase ).startswith('mps' ): __lowercase =torch.manual_seed(__lowercase ) else: __lowercase =torch.Generator(device=__lowercase ).manual_seed(__lowercase ) __lowercase =floats_tensor((1, 3, 32, 32) , rng=random.Random(__lowercase ) ).to(__lowercase ) __lowercase =floats_tensor((1, 3, 16, 16) , rng=random.Random(__lowercase ) ).to(__lowercase ) __lowercase ={ 'prompt': 'A painting of a squirrel eating a burger', 'image': image, 'original_image': original_image, 'generator': generator, 'num_inference_steps': 2, 'output_type': 'numpy', } return inputs @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available() , reason='XFormers attention is only available with CUDA and `xformers` installed' , ) def snake_case ( self : Union[str, Any] ): """simple docstring""" self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 ) def snake_case ( self : Optional[int] ): """simple docstring""" self._test_save_load_optional_components() @unittest.skipIf(torch_device != 'cuda' , reason='float16 requires CUDA' ) def snake_case ( self : int ): """simple docstring""" super().test_save_load_floataa(expected_max_diff=1E-1 ) def snake_case ( self : Optional[int] ): """simple docstring""" self._test_attention_slicing_forward_pass(expected_max_diff=1E-2 ) def snake_case ( self : str ): """simple docstring""" self._test_save_load_local() def snake_case ( self : Optional[Any] ): """simple docstring""" self._test_inference_batch_single_identical( expected_max_diff=1E-2 , )
141
1
'''simple docstring''' from collections import UserDict from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING from ..tf_utils import stable_softmax lowerCAmelCase_ = logging.get_logger(__name__) @add_end_docstrings(__lowerCAmelCase ) class lowerCamelCase ( __lowerCAmelCase ): def __init__( self, **lowercase_ ) -> List[str]: super().__init__(**lowercase_ ) requires_backends(self, 'vision' ) self.check_model_type( TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if self.framework == 'tf' else MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING ) def __call__( self, lowercase_, **lowercase_ ) -> Union[str, Any]: return super().__call__(lowercase_, **lowercase_ ) def _lowerCamelCase ( self, **lowercase_ ) -> Union[str, Any]: snake_case = {} if "candidate_labels" in kwargs: snake_case = kwargs['candidate_labels'] if "hypothesis_template" in kwargs: snake_case = kwargs['hypothesis_template'] return preprocess_params, {}, {} def _lowerCamelCase ( self, lowercase_, lowercase_=None, lowercase_="This is a photo of {}." ) -> Optional[int]: snake_case = load_image(lowercase_ ) snake_case = self.image_processor(images=[image], return_tensors=self.framework ) snake_case = candidate_labels snake_case = [hypothesis_template.format(lowercase_ ) for x in candidate_labels] snake_case = self.tokenizer(lowercase_, return_tensors=self.framework, padding=lowercase_ ) snake_case = [text_inputs] return inputs def _lowerCamelCase ( self, lowercase_ ) -> Optional[int]: snake_case = model_inputs.pop('candidate_labels' ) snake_case = model_inputs.pop('text_inputs' ) if isinstance(text_inputs[0], lowercase_ ): snake_case = text_inputs[0] else: # Batching case. snake_case = text_inputs[0][0] snake_case = self.model(**lowercase_, **lowercase_ ) snake_case = { 'candidate_labels': candidate_labels, 'logits': outputs.logits_per_image, } return model_outputs def _lowerCamelCase ( self, lowercase_ ) -> int: snake_case = model_outputs.pop('candidate_labels' ) snake_case = model_outputs['logits'][0] if self.framework == "pt": snake_case = logits.softmax(dim=-1 ).squeeze(-1 ) snake_case = probs.tolist() if not isinstance(lowercase_, lowercase_ ): snake_case = [scores] elif self.framework == "tf": snake_case = stable_softmax(lowercase_, axis=-1 ) snake_case = probs.numpy().tolist() else: raise ValueError(F'''Unsupported framework: {self.framework}''' ) snake_case = [ {'score': score, 'label': candidate_label} for score, candidate_label in sorted(zip(lowercase_, lowercase_ ), key=lambda lowercase_ : -x[0] ) ] return result
332
'''simple docstring''' import os import time from dataclasses import dataclass, field from enum import Enum from typing import Dict, List, Optional, Union import torch from filelock import FileLock from torch.utils.data import Dataset from ...models.auto.modeling_auto import MODEL_FOR_QUESTION_ANSWERING_MAPPING from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging from ..processors.squad import SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = list(MODEL_FOR_QUESTION_ANSWERING_MAPPING.keys()) lowerCAmelCase_ = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class lowerCamelCase : snake_case_ = field( default=__lowerCAmelCase , metadata={'''help''': '''Model type selected in the list: ''' + ''', '''.join(__lowerCAmelCase )} ) snake_case_ = field( default=__lowerCAmelCase , metadata={'''help''': '''The input data dir. Should contain the .json files for the SQuAD task.'''} ) snake_case_ = field( default=128 , metadata={ '''help''': ( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) } , ) snake_case_ = field( default=128 , metadata={'''help''': '''When splitting up a long document into chunks, how much stride to take between chunks.'''} , ) snake_case_ = field( default=64 , metadata={ '''help''': ( '''The maximum number of tokens for the question. Questions longer than this will ''' '''be truncated to this length.''' ) } , ) snake_case_ = field( default=30 , metadata={ '''help''': ( '''The maximum length of an answer that can be generated. This is needed because the start ''' '''and end predictions are not conditioned on one another.''' ) } , ) snake_case_ = field( default=__lowerCAmelCase , metadata={'''help''': '''Overwrite the cached training and evaluation sets'''} ) snake_case_ = field( default=__lowerCAmelCase , metadata={'''help''': '''If true, the SQuAD examples contain some that do not have an answer.'''} ) snake_case_ = field( default=0.0 , metadata={'''help''': '''If null_score - best_non_null is greater than the threshold predict null.'''} ) snake_case_ = field( default=20 , metadata={'''help''': '''If null_score - best_non_null is greater than the threshold predict null.'''} ) snake_case_ = field( default=0 , metadata={ '''help''': ( '''language id of input for language-specific xlm models (see''' ''' tokenization_xlm.PRETRAINED_INIT_CONFIGURATION)''' ) } , ) snake_case_ = field(default=1 , metadata={'''help''': '''multiple threads for converting example to features'''} ) class lowerCamelCase ( __lowerCAmelCase ): snake_case_ = '''train''' snake_case_ = '''dev''' class lowerCamelCase ( __lowerCAmelCase ): snake_case_ = 42 snake_case_ = 42 snake_case_ = 42 snake_case_ = 42 def __init__( self, lowercase_, lowercase_, lowercase_ = None, lowercase_ = Split.train, lowercase_ = False, lowercase_ = None, lowercase_ = "pt", ) -> int: snake_case = args snake_case = is_language_sensitive snake_case = SquadVaProcessor() if args.version_2_with_negative else SquadVaProcessor() if isinstance(lowercase_, lowercase_ ): try: snake_case = Split[mode] except KeyError: raise KeyError('mode is not a valid split name' ) snake_case = mode # Load data features from cache or dataset file snake_case = 'v2' if args.version_2_with_negative else 'v1' snake_case = os.path.join( cache_dir if cache_dir is not None else args.data_dir, F'''cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{version_tag}''', ) # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. snake_case = cached_features_file + '.lock' with FileLock(lowercase_ ): if os.path.exists(lowercase_ ) and not args.overwrite_cache: snake_case = time.time() snake_case = torch.load(lowercase_ ) # Legacy cache files have only features, while new cache files # will have dataset and examples also. snake_case = self.old_features['features'] snake_case = self.old_features.get('dataset', lowercase_ ) snake_case = self.old_features.get('examples', lowercase_ ) logger.info( F'''Loading features from cached file {cached_features_file} [took %.3f s]''', time.time() - start ) if self.dataset is None or self.examples is None: logger.warning( F'''Deleting cached file {cached_features_file} will allow dataset and examples to be cached in''' ' future run' ) else: if mode == Split.dev: snake_case = self.processor.get_dev_examples(args.data_dir ) else: snake_case = self.processor.get_train_examples(args.data_dir ) snake_case , snake_case = squad_convert_examples_to_features( examples=self.examples, tokenizer=lowercase_, max_seq_length=args.max_seq_length, doc_stride=args.doc_stride, max_query_length=args.max_query_length, is_training=mode == Split.train, threads=args.threads, return_dataset=lowercase_, ) snake_case = time.time() torch.save( {'features': self.features, 'dataset': self.dataset, 'examples': self.examples}, lowercase_, ) # ^ This seems to take a lot of time so I want to investigate why and how we can improve. logger.info( F'''Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]''' ) def __len__( self ) -> Tuple: return len(self.features ) def __getitem__( self, lowercase_ ) -> Dict[str, torch.Tensor]: # Convert to Tensors and build dataset snake_case = self.features[i] snake_case = torch.tensor(feature.input_ids, dtype=torch.long ) snake_case = torch.tensor(feature.attention_mask, dtype=torch.long ) snake_case = torch.tensor(feature.token_type_ids, dtype=torch.long ) snake_case = torch.tensor(feature.cls_index, dtype=torch.long ) snake_case = torch.tensor(feature.p_mask, dtype=torch.float ) snake_case = torch.tensor(feature.is_impossible, dtype=torch.float ) snake_case = { 'input_ids': input_ids, 'attention_mask': attention_mask, 'token_type_ids': token_type_ids, } if self.args.model_type in ["xlm", "roberta", "distilbert", "camembert"]: del inputs["token_type_ids"] if self.args.model_type in ["xlnet", "xlm"]: inputs.update({'cls_index': cls_index, 'p_mask': p_mask} ) if self.args.version_2_with_negative: inputs.update({'is_impossible': is_impossible} ) if self.is_language_sensitive: inputs.update({'langs': (torch.ones(input_ids.shape, dtype=torch.intaa ) * self.args.lang_id)} ) if self.mode == Split.train: snake_case = torch.tensor(feature.start_position, dtype=torch.long ) snake_case = torch.tensor(feature.end_position, dtype=torch.long ) inputs.update({'start_positions': start_positions, 'end_positions': end_positions} ) return inputs
332
1
'''simple docstring''' import numpy as np from PIL import Image def a_ ( __snake_case : np.ndarray , __snake_case : int , __snake_case : int ) -> np.ndarray: """simple docstring""" lowerCamelCase_ =np.array(__snake_case ) if arr.shape[0] != arr.shape[1]: raise ValueError('''The input array is not a square matrix''' ) lowerCamelCase_ =0 lowerCamelCase_ =0 lowerCamelCase_ =0 lowerCamelCase_ =0 # compute the shape of the output matrix lowerCamelCase_ =(arr.shape[0] - size) // stride + 1 # initialize the output matrix with zeros of shape maxpool_shape lowerCamelCase_ =np.zeros((maxpool_shape, maxpool_shape) ) while i < arr.shape[0]: if i + size > arr.shape[0]: # if the end of the matrix is reached, break break while j < arr.shape[1]: # if the end of the matrix is reached, break if j + size > arr.shape[1]: break # compute the maximum of the pooling matrix lowerCamelCase_ =np.max(arr[i : i + size, j : j + size] ) # shift the pooling matrix by stride of column pixels j += stride mat_j += 1 # shift the pooling matrix by stride of row pixels i += stride mat_i += 1 # reset the column index to 0 lowerCamelCase_ =0 lowerCamelCase_ =0 return updated_arr def a_ ( __snake_case : np.ndarray , __snake_case : int , __snake_case : int ) -> np.ndarray: """simple docstring""" lowerCamelCase_ =np.array(__snake_case ) if arr.shape[0] != arr.shape[1]: raise ValueError('''The input array is not a square matrix''' ) lowerCamelCase_ =0 lowerCamelCase_ =0 lowerCamelCase_ =0 lowerCamelCase_ =0 # compute the shape of the output matrix lowerCamelCase_ =(arr.shape[0] - size) // stride + 1 # initialize the output matrix with zeros of shape avgpool_shape lowerCamelCase_ =np.zeros((avgpool_shape, avgpool_shape) ) while i < arr.shape[0]: # if the end of the matrix is reached, break if i + size > arr.shape[0]: break while j < arr.shape[1]: # if the end of the matrix is reached, break if j + size > arr.shape[1]: break # compute the average of the pooling matrix lowerCamelCase_ =int(np.average(arr[i : i + size, j : j + size] ) ) # shift the pooling matrix by stride of column pixels j += stride mat_j += 1 # shift the pooling matrix by stride of row pixels i += stride mat_i += 1 # reset the column index to 0 lowerCamelCase_ =0 lowerCamelCase_ =0 return updated_arr # Main Function if __name__ == "__main__": from doctest import testmod testmod(name="""avgpooling""", verbose=True) # Loading the image a_ : Union[str, Any] = Image.open("""path_to_image""") # Converting the image to numpy array and maxpooling, displaying the result # Ensure that the image is a square matrix Image.fromarray(maxpooling(np.array(image), size=3, stride=2)).show() # Converting the image to numpy array and averagepooling, displaying the result # Ensure that the image is a square matrix Image.fromarray(avgpooling(np.array(image), size=3, stride=2)).show()
75
'''simple docstring''' import json import os import shutil import tempfile import unittest from multiprocessing import get_context from pathlib import Path import datasets import numpy as np from datasets import load_dataset from parameterized import parameterized from transformers import AutoProcessor from transformers.models.wavaveca import WavaVecaCTCTokenizer, WavaVecaFeatureExtractor from transformers.models.wavaveca.tokenization_wavaveca import VOCAB_FILES_NAMES from transformers.testing_utils import require_pyctcdecode, require_torch, require_torchaudio, slow from transformers.utils import FEATURE_EXTRACTOR_NAME, is_pyctcdecode_available, is_torch_available from ..wavaveca.test_feature_extraction_wavaveca import floats_list if is_pyctcdecode_available(): from huggingface_hub import snapshot_download from pyctcdecode import BeamSearchDecoderCTC from transformers.models.wavaveca_with_lm import WavaVecaProcessorWithLM from transformers.models.wavaveca_with_lm.processing_wavaveca_with_lm import WavaVecaDecoderWithLMOutput if is_torch_available(): from transformers import WavaVecaForCTC @require_pyctcdecode class __UpperCamelCase ( unittest.TestCase ): def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ ='''| <pad> <unk> <s> </s> a b c d e f g h i j k'''.split() lowerCamelCase_ =dict(zip(lowerCAmelCase, range(len(lowerCAmelCase ) ) ) ) lowerCamelCase_ ={ '''unk_token''': '''<unk>''', '''bos_token''': '''<s>''', '''eos_token''': '''</s>''', } lowerCamelCase_ ={ '''feature_size''': 1, '''padding_value''': 0.0, '''sampling_rate''': 16_000, '''return_attention_mask''': False, '''do_normalize''': True, } lowerCamelCase_ =tempfile.mkdtemp() lowerCamelCase_ =os.path.join(self.tmpdirname, VOCAB_FILES_NAMES['''vocab_file'''] ) lowerCamelCase_ =os.path.join(self.tmpdirname, lowerCAmelCase ) with open(self.vocab_file, '''w''', encoding='''utf-8''' ) as fp: fp.write(json.dumps(lowerCAmelCase ) + '''\n''' ) with open(self.feature_extraction_file, '''w''', encoding='''utf-8''' ) as fp: fp.write(json.dumps(lowerCAmelCase ) + '''\n''' ) # load decoder from hub lowerCamelCase_ ='''hf-internal-testing/ngram-beam-search-decoder''' def lowercase__ ( self, **lowerCAmelCase ): """simple docstring""" lowerCamelCase_ =self.add_kwargs_tokens_map.copy() kwargs.update(lowerCAmelCase ) return WavaVecaCTCTokenizer.from_pretrained(self.tmpdirname, **lowerCAmelCase ) def lowercase__ ( self, **lowerCAmelCase ): """simple docstring""" return WavaVecaFeatureExtractor.from_pretrained(self.tmpdirname, **lowerCAmelCase ) def lowercase__ ( self, **lowerCAmelCase ): """simple docstring""" return BeamSearchDecoderCTC.load_from_hf_hub(self.decoder_name, **lowerCAmelCase ) def lowercase__ ( self ): """simple docstring""" shutil.rmtree(self.tmpdirname ) def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =self.get_tokenizer() lowerCamelCase_ =self.get_feature_extractor() lowerCamelCase_ =self.get_decoder() lowerCamelCase_ =WavaVecaProcessorWithLM(tokenizer=lowerCAmelCase, feature_extractor=lowerCAmelCase, decoder=lowerCAmelCase ) processor.save_pretrained(self.tmpdirname ) lowerCamelCase_ =WavaVecaProcessorWithLM.from_pretrained(self.tmpdirname ) # tokenizer self.assertEqual(processor.tokenizer.get_vocab(), tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer, lowerCAmelCase ) # feature extractor self.assertEqual(processor.feature_extractor.to_json_string(), feature_extractor.to_json_string() ) self.assertIsInstance(processor.feature_extractor, lowerCAmelCase ) # decoder self.assertEqual(processor.decoder._alphabet.labels, decoder._alphabet.labels ) self.assertEqual( processor.decoder.model_container[decoder._model_key]._unigram_set, decoder.model_container[decoder._model_key]._unigram_set, ) self.assertIsInstance(processor.decoder, lowerCAmelCase ) def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =WavaVecaProcessorWithLM( tokenizer=self.get_tokenizer(), feature_extractor=self.get_feature_extractor(), decoder=self.get_decoder() ) processor.save_pretrained(self.tmpdirname ) # make sure that error is thrown when decoder alphabet doesn't match lowerCamelCase_ =WavaVecaProcessorWithLM.from_pretrained( self.tmpdirname, alpha=5.0, beta=3.0, score_boundary=-7.0, unk_score_offset=3 ) # decoder self.assertEqual(processor.language_model.alpha, 5.0 ) self.assertEqual(processor.language_model.beta, 3.0 ) self.assertEqual(processor.language_model.score_boundary, -7.0 ) self.assertEqual(processor.language_model.unk_score_offset, 3 ) def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =self.get_tokenizer() # add token to trigger raise tokenizer.add_tokens(['''xx'''] ) with self.assertRaisesRegex(lowerCAmelCase, '''include''' ): WavaVecaProcessorWithLM( tokenizer=lowerCAmelCase, feature_extractor=self.get_feature_extractor(), decoder=self.get_decoder() ) def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =self.get_feature_extractor() lowerCamelCase_ =self.get_tokenizer() lowerCamelCase_ =self.get_decoder() lowerCamelCase_ =WavaVecaProcessorWithLM(tokenizer=lowerCAmelCase, feature_extractor=lowerCAmelCase, decoder=lowerCAmelCase ) lowerCamelCase_ =floats_list((3, 1_000) ) lowerCamelCase_ =feature_extractor(lowerCAmelCase, return_tensors='''np''' ) lowerCamelCase_ =processor(lowerCAmelCase, return_tensors='''np''' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum(), input_processor[key].sum(), delta=1e-2 ) def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =self.get_feature_extractor() lowerCamelCase_ =self.get_tokenizer() lowerCamelCase_ =self.get_decoder() lowerCamelCase_ =WavaVecaProcessorWithLM(tokenizer=lowerCAmelCase, feature_extractor=lowerCAmelCase, decoder=lowerCAmelCase ) lowerCamelCase_ ='''This is a test string''' lowerCamelCase_ =processor(text=lowerCAmelCase ) lowerCamelCase_ =tokenizer(lowerCAmelCase ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key], encoded_processor[key] ) def lowercase__ ( self, lowerCAmelCase=(2, 10, 16), lowerCAmelCase=77 ): """simple docstring""" np.random.seed(lowerCAmelCase ) return np.random.rand(*lowerCAmelCase ) def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =self.get_feature_extractor() lowerCamelCase_ =self.get_tokenizer() lowerCamelCase_ =self.get_decoder() lowerCamelCase_ =WavaVecaProcessorWithLM(tokenizer=lowerCAmelCase, feature_extractor=lowerCAmelCase, decoder=lowerCAmelCase ) lowerCamelCase_ =self._get_dummy_logits(shape=(10, 16), seed=13 ) lowerCamelCase_ =processor.decode(lowerCAmelCase ) lowerCamelCase_ =decoder.decode_beams(lowerCAmelCase )[0] self.assertEqual(decoded_decoder[0], decoded_processor.text ) self.assertEqual('''</s> <s> </s>''', decoded_processor.text ) self.assertEqual(decoded_decoder[-2], decoded_processor.logit_score ) self.assertEqual(decoded_decoder[-1], decoded_processor.lm_score ) @parameterized.expand([[None], ['''fork'''], ['''spawn''']] ) def lowercase__ ( self, lowerCAmelCase ): """simple docstring""" lowerCamelCase_ =self.get_feature_extractor() lowerCamelCase_ =self.get_tokenizer() lowerCamelCase_ =self.get_decoder() lowerCamelCase_ =WavaVecaProcessorWithLM(tokenizer=lowerCAmelCase, feature_extractor=lowerCAmelCase, decoder=lowerCAmelCase ) lowerCamelCase_ =self._get_dummy_logits() # note: pool should be instantiated *after* Wav2Vec2ProcessorWithLM. # otherwise, the LM won't be available to the pool's sub-processes. # manual logic used to allow parameterized test for both pool=None and pool=Pool(...) if pool_context is None: lowerCamelCase_ =processor.batch_decode(lowerCAmelCase ) else: with get_context(lowerCAmelCase ).Pool() as pool: lowerCamelCase_ =processor.batch_decode(lowerCAmelCase, lowerCAmelCase ) lowerCamelCase_ =list(lowerCAmelCase ) with get_context('''fork''' ).Pool() as p: lowerCamelCase_ =decoder.decode_beams_batch(lowerCAmelCase, lowerCAmelCase ) lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ =[], [], [] for beams in decoded_beams: texts_decoder.append(beams[0][0] ) logit_scores_decoder.append(beams[0][-2] ) lm_scores_decoder.append(beams[0][-1] ) self.assertListEqual(lowerCAmelCase, decoded_processor.text ) self.assertListEqual(['''<s> <s> </s>''', '''<s> <s> <s>'''], decoded_processor.text ) self.assertListEqual(lowerCAmelCase, decoded_processor.logit_score ) self.assertListEqual(lowerCAmelCase, decoded_processor.lm_score ) def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =self.get_feature_extractor() lowerCamelCase_ =self.get_tokenizer() lowerCamelCase_ =self.get_decoder() lowerCamelCase_ =WavaVecaProcessorWithLM(tokenizer=lowerCAmelCase, feature_extractor=lowerCAmelCase, decoder=lowerCAmelCase ) lowerCamelCase_ =self._get_dummy_logits() lowerCamelCase_ =15 lowerCamelCase_ =-2_0.0 lowerCamelCase_ =-4.0 lowerCamelCase_ =processor.batch_decode( lowerCAmelCase, beam_width=lowerCAmelCase, beam_prune_logp=lowerCAmelCase, token_min_logp=lowerCAmelCase, ) lowerCamelCase_ =decoded_processor_out.text lowerCamelCase_ =list(lowerCAmelCase ) with get_context('''fork''' ).Pool() as pool: lowerCamelCase_ =decoder.decode_beams_batch( lowerCAmelCase, lowerCAmelCase, beam_width=lowerCAmelCase, beam_prune_logp=lowerCAmelCase, token_min_logp=lowerCAmelCase, ) lowerCamelCase_ =[d[0][0] for d in decoded_decoder_out] lowerCamelCase_ =[d[0][2] for d in decoded_decoder_out] lowerCamelCase_ =[d[0][3] for d in decoded_decoder_out] self.assertListEqual(lowerCAmelCase, lowerCAmelCase ) self.assertListEqual(['''</s> <s> <s>''', '''<s> <s> <s>'''], lowerCAmelCase ) self.assertTrue(np.array_equal(lowerCAmelCase, decoded_processor_out.logit_score ) ) self.assertTrue(np.allclose([-2_0.0_5_4, -1_8.4_4_7], lowerCAmelCase, atol=1e-3 ) ) self.assertTrue(np.array_equal(lowerCAmelCase, decoded_processor_out.lm_score ) ) self.assertTrue(np.allclose([-1_5.5_5_4, -1_3.9_4_7_4], lowerCAmelCase, atol=1e-3 ) ) def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =self.get_feature_extractor() lowerCamelCase_ =self.get_tokenizer() lowerCamelCase_ =self.get_decoder() lowerCamelCase_ =WavaVecaProcessorWithLM(tokenizer=lowerCAmelCase, feature_extractor=lowerCAmelCase, decoder=lowerCAmelCase ) lowerCamelCase_ =self._get_dummy_logits() lowerCamelCase_ =2.0 lowerCamelCase_ =5.0 lowerCamelCase_ =-2_0.0 lowerCamelCase_ =True lowerCamelCase_ =processor.batch_decode( lowerCAmelCase, alpha=lowerCAmelCase, beta=lowerCAmelCase, unk_score_offset=lowerCAmelCase, lm_score_boundary=lowerCAmelCase, ) lowerCamelCase_ =decoded_processor_out.text lowerCamelCase_ =list(lowerCAmelCase ) decoder.reset_params( alpha=lowerCAmelCase, beta=lowerCAmelCase, unk_score_offset=lowerCAmelCase, lm_score_boundary=lowerCAmelCase, ) with get_context('''fork''' ).Pool() as pool: lowerCamelCase_ =decoder.decode_beams_batch( lowerCAmelCase, lowerCAmelCase, ) lowerCamelCase_ =[d[0][0] for d in decoded_decoder_out] self.assertListEqual(lowerCAmelCase, lowerCAmelCase ) self.assertListEqual(['''<s> </s> <s> </s> </s>''', '''</s> </s> <s> </s> </s>'''], lowerCAmelCase ) lowerCamelCase_ =processor.decoder.model_container[processor.decoder._model_key] self.assertEqual(lm_model.alpha, 2.0 ) self.assertEqual(lm_model.beta, 5.0 ) self.assertEqual(lm_model.unk_score_offset, -2_0.0 ) self.assertEqual(lm_model.score_boundary, lowerCAmelCase ) def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =WavaVecaProcessorWithLM.from_pretrained('''hf-internal-testing/processor_with_lm''' ) lowerCamelCase_ =processor.decoder.model_container[processor.decoder._model_key] lowerCamelCase_ =Path(language_model._kenlm_model.path.decode('''utf-8''' ) ).parent.parent.absolute() lowerCamelCase_ =os.listdir(lowerCAmelCase ) lowerCamelCase_ =['''alphabet.json''', '''language_model'''] downloaded_decoder_files.sort() expected_decoder_files.sort() # test that only decoder relevant files from # https://huggingface.co/hf-internal-testing/processor_with_lm/tree/main # are downloaded and none of the rest (e.g. README.md, ...) self.assertListEqual(lowerCAmelCase, lowerCAmelCase ) def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =snapshot_download('''hf-internal-testing/processor_with_lm''' ) lowerCamelCase_ =WavaVecaProcessorWithLM.from_pretrained(lowerCAmelCase ) lowerCamelCase_ =processor.decoder.model_container[processor.decoder._model_key] lowerCamelCase_ =Path(language_model._kenlm_model.path.decode('''utf-8''' ) ).parent.parent.absolute() lowerCamelCase_ =os.listdir(lowerCAmelCase ) lowerCamelCase_ =os.listdir(lowerCAmelCase ) local_decoder_files.sort() expected_decoder_files.sort() # test that both decoder form hub and local files in cache are the same self.assertListEqual(lowerCAmelCase, lowerCAmelCase ) def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =WavaVecaProcessorWithLM.from_pretrained('''hf-internal-testing/processor_with_lm''' ) lowerCamelCase_ =AutoProcessor.from_pretrained('''hf-internal-testing/processor_with_lm''' ) lowerCamelCase_ =floats_list((3, 1_000) ) lowerCamelCase_ =processor_wavaveca(lowerCAmelCase, return_tensors='''np''' ) lowerCamelCase_ =processor_auto(lowerCAmelCase, return_tensors='''np''' ) for key in input_wavaveca.keys(): self.assertAlmostEqual(input_wavaveca[key].sum(), input_auto[key].sum(), delta=1e-2 ) lowerCamelCase_ =self._get_dummy_logits() lowerCamelCase_ =processor_wavaveca.batch_decode(lowerCAmelCase ) lowerCamelCase_ =processor_auto.batch_decode(lowerCAmelCase ) self.assertListEqual(decoded_wavaveca.text, decoded_auto.text ) def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =self.get_feature_extractor() lowerCamelCase_ =self.get_tokenizer() lowerCamelCase_ =self.get_decoder() lowerCamelCase_ =WavaVecaProcessorWithLM(tokenizer=lowerCAmelCase, feature_extractor=lowerCAmelCase, decoder=lowerCAmelCase ) self.assertListEqual( processor.model_input_names, feature_extractor.model_input_names, msg='''`processor` and `feature_extractor` model input names do not match''', ) @staticmethod def lowercase__ ( lowerCAmelCase, lowerCAmelCase ): """simple docstring""" lowerCamelCase_ =[d[key] for d in offsets] return retrieved_list def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =WavaVecaProcessorWithLM.from_pretrained('''hf-internal-testing/processor_with_lm''' ) lowerCamelCase_ =self._get_dummy_logits()[0] lowerCamelCase_ =processor.decode(lowerCAmelCase, output_word_offsets=lowerCAmelCase ) # check Wav2Vec2CTCTokenizerOutput keys for word self.assertEqual(len(outputs.keys() ), 4 ) self.assertTrue('''text''' in outputs ) self.assertTrue('''word_offsets''' in outputs ) self.assertTrue(isinstance(lowerCAmelCase, lowerCAmelCase ) ) self.assertEqual(''' '''.join(self.get_from_offsets(outputs['''word_offsets'''], '''word''' ) ), outputs.text ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''], '''word''' ), ['''<s>''', '''<s>''', '''</s>'''] ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''], '''start_offset''' ), [0, 2, 4] ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''], '''end_offset''' ), [1, 3, 5] ) def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =WavaVecaProcessorWithLM.from_pretrained('''hf-internal-testing/processor_with_lm''' ) lowerCamelCase_ =self._get_dummy_logits() lowerCamelCase_ =processor.batch_decode(lowerCAmelCase, output_word_offsets=lowerCAmelCase ) # check Wav2Vec2CTCTokenizerOutput keys for word self.assertEqual(len(outputs.keys() ), 4 ) self.assertTrue('''text''' in outputs ) self.assertTrue('''word_offsets''' in outputs ) self.assertTrue(isinstance(lowerCAmelCase, lowerCAmelCase ) ) self.assertListEqual( [''' '''.join(self.get_from_offsets(lowerCAmelCase, '''word''' ) ) for o in outputs['''word_offsets''']], outputs.text ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''][0], '''word''' ), ['''<s>''', '''<s>''', '''</s>'''] ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''][0], '''start_offset''' ), [0, 2, 4] ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''][0], '''end_offset''' ), [1, 3, 5] ) @slow @require_torch @require_torchaudio def lowercase__ ( self ): """simple docstring""" import torch lowerCamelCase_ =load_dataset('''common_voice''', '''en''', split='''train''', streaming=lowerCAmelCase ) lowerCamelCase_ =ds.cast_column('''audio''', datasets.Audio(sampling_rate=16_000 ) ) lowerCamelCase_ =iter(lowerCAmelCase ) lowerCamelCase_ =next(lowerCAmelCase ) lowerCamelCase_ =AutoProcessor.from_pretrained('''patrickvonplaten/wav2vec2-base-100h-with-lm''' ) lowerCamelCase_ =WavaVecaForCTC.from_pretrained('''patrickvonplaten/wav2vec2-base-100h-with-lm''' ) # compare to filename `common_voice_en_100038.mp3` of dataset viewer on https://huggingface.co/datasets/common_voice/viewer/en/train lowerCamelCase_ =processor(sample['''audio''']['''array'''], return_tensors='''pt''' ).input_values with torch.no_grad(): lowerCamelCase_ =model(lowerCAmelCase ).logits.cpu().numpy() lowerCamelCase_ =processor.decode(logits[0], output_word_offsets=lowerCAmelCase ) lowerCamelCase_ =model.config.inputs_to_logits_ratio / processor.feature_extractor.sampling_rate lowerCamelCase_ =[ { '''start_time''': d['''start_offset'''] * time_offset, '''end_time''': d['''end_offset'''] * time_offset, '''word''': d['''word'''], } for d in output['''word_offsets'''] ] lowerCamelCase_ ='''WHY DOES MILISANDRA LOOK LIKE SHE WANTS TO CONSUME JOHN SNOW ON THE RIVER AT THE WALL''' # output words self.assertEqual(''' '''.join(self.get_from_offsets(lowerCAmelCase, '''word''' ) ), lowerCAmelCase ) self.assertEqual(''' '''.join(self.get_from_offsets(lowerCAmelCase, '''word''' ) ), output.text ) # output times lowerCamelCase_ =torch.tensor(self.get_from_offsets(lowerCAmelCase, '''start_time''' ) ) lowerCamelCase_ =torch.tensor(self.get_from_offsets(lowerCAmelCase, '''end_time''' ) ) # fmt: off lowerCamelCase_ =torch.tensor([1.4_1_9_9, 1.6_5_9_9, 2.2_5_9_9, 3.0, 3.2_4, 3.5_9_9_9, 3.7_9_9_9, 4.0_9_9_9, 4.2_6, 4.9_4, 5.2_8, 5.6_5_9_9, 5.7_8, 5.9_4, 6.3_2, 6.5_3_9_9, 6.6_5_9_9] ) lowerCamelCase_ =torch.tensor([1.5_3_9_9, 1.8_9_9_9, 2.9, 3.1_6, 3.5_3_9_9, 3.7_2, 4.0_1_9_9, 4.1_7_9_9, 4.7_6, 5.1_5_9_9, 5.5_5_9_9, 5.6_9_9_9, 5.8_6, 6.1_9_9_9, 6.3_8, 6.6_1_9_9, 6.9_4] ) # fmt: on self.assertTrue(torch.allclose(lowerCAmelCase, lowerCAmelCase, atol=0.0_1 ) ) self.assertTrue(torch.allclose(lowerCAmelCase, lowerCAmelCase, atol=0.0_1 ) )
75
1
import os import posixpath import uuid from dataclasses import dataclass from typing import TYPE_CHECKING, Iterable, List, Optional, Tuple, Union import numpy as np import pyarrow as pa import datasets from datasets.arrow_writer import ArrowWriter, ParquetWriter from datasets.config import MAX_SHARD_SIZE from datasets.filesystems import ( is_remote_filesystem, rename, ) from datasets.iterable_dataset import _BaseExamplesIterable from datasets.utils.py_utils import convert_file_size_to_int lowerCAmelCase = datasets.utils.logging.get_logger(__name__) if TYPE_CHECKING: import pyspark @dataclass class A ( datasets.BuilderConfig ): UpperCamelCase_ : Optional[datasets.Features] =None def _lowerCamelCase( lowercase__ , lowercase__ , ) -> List[str]: '''simple docstring''' import pyspark def generate_fn(): __lowercase= df.select('*' , pyspark.sql.functions.spark_partition_id().alias('part_id' ) ) for partition_id in partition_order: __lowercase= df_with_partition_id.select('*' ).where(F'part_id = {partition_id}' ).drop('part_id' ) __lowercase= partition_df.collect() __lowercase= 0 for row in rows: yield F'{partition_id}_{row_id}', row.asDict() row_id += 1 return generate_fn class A ( _BaseExamplesIterable ): def __init__(self , lowerCAmelCase , lowerCAmelCase=None , ): __lowercase= df __lowercase= partition_order or range(self.df.rdd.getNumPartitions() ) __lowercase= _generate_iterable_examples(self.df , self.partition_order ) def __iter__(self ): yield from self.generate_examples_fn() def _A (self , lowerCAmelCase ): __lowercase= list(range(self.df.rdd.getNumPartitions() ) ) generator.shuffle(lowerCAmelCase ) return SparkExamplesIterable(self.df , partition_order=lowerCAmelCase ) def _A (self , lowerCAmelCase , lowerCAmelCase ): __lowercase= self.split_shard_indices_by_worker(lowerCAmelCase , lowerCAmelCase ) return SparkExamplesIterable(self.df , partition_order=lowerCAmelCase ) @property def _A (self ): return len(self.partition_order ) class A ( datasets.DatasetBuilder ): UpperCamelCase_ : Optional[Any] =SparkConfig def __init__(self , lowerCAmelCase , lowerCAmelCase = None , lowerCAmelCase = None , **lowerCAmelCase , ): import pyspark __lowercase= pyspark.sql.SparkSession.builder.getOrCreate() __lowercase= df __lowercase= working_dir super().__init__( cache_dir=lowerCAmelCase , config_name=str(self.df.semanticHash() ) , **lowerCAmelCase , ) def _A (self ): # Returns the path of the created file. def create_cache_and_write_probe(lowerCAmelCase ): # makedirs with exist_ok will recursively create the directory. It will not throw an error if directories # already exist. os.makedirs(self._cache_dir , exist_ok=lowerCAmelCase ) __lowercase= os.path.join(self._cache_dir , 'fs_test' + uuid.uuida().hex ) # Opening the file in append mode will create a new file unless it already exists, in which case it will not # change the file contents. open(lowerCAmelCase , 'a' ) return [probe_file] if self._spark.conf.get('spark.master' , '' ).startswith('local' ): return # If the cluster is multi-node, make sure that the user provided a cache_dir and that it is on an NFS # accessible to the driver. # TODO: Stream batches to the driver using ArrowCollectSerializer instead of throwing an error. if self._cache_dir: __lowercase= ( self._spark.sparkContext.parallelize(range(1 ) , 1 ).mapPartitions(lowerCAmelCase ).collect() ) if os.path.isfile(probe[0] ): return raise ValueError( 'When using Dataset.from_spark on a multi-node cluster, the driver and all workers should be able to access cache_dir' ) def _A (self ): return datasets.DatasetInfo(features=self.config.features ) def _A (self , lowerCAmelCase ): return [datasets.SplitGenerator(name=datasets.Split.TRAIN )] def _A (self , lowerCAmelCase ): import pyspark def get_arrow_batch_size(lowerCAmelCase ): for batch in it: yield pa.RecordBatch.from_pydict({'batch_bytes': [batch.nbytes]} ) __lowercase= self.df.count() __lowercase= df_num_rows if df_num_rows <= 1_0_0 else 1_0_0 # Approximate the size of each row (in Arrow format) by averaging over a max-100-row sample. __lowercase= ( self.df.limit(lowerCAmelCase ) .repartition(1 ) .mapInArrow(lowerCAmelCase , 'batch_bytes: long' ) .agg(pyspark.sql.functions.sum('batch_bytes' ).alias('sample_bytes' ) ) .collect()[0] .sample_bytes / sample_num_rows ) __lowercase= approx_bytes_per_row * df_num_rows if approx_total_size > max_shard_size: # Make sure there is at least one row per partition. __lowercase= min(lowerCAmelCase , int(approx_total_size / max_shard_size ) ) __lowercase= self.df.repartition(lowerCAmelCase ) def _A (self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , ): import pyspark __lowercase= ParquetWriter if file_format == 'parquet' else ArrowWriter __lowercase= os.path.join(self._working_dir , os.path.basename(lowerCAmelCase ) ) if self._working_dir else fpath __lowercase= file_format == 'parquet' # Define these so that we don't reference self in write_arrow, which will result in a pickling error due to # pickling the SparkContext. __lowercase= self.config.features __lowercase= self._writer_batch_size __lowercase= self._fs.storage_options def write_arrow(lowerCAmelCase ): # Within the same SparkContext, no two task attempts will share the same attempt ID. __lowercase= pyspark.TaskContext().taskAttemptId() __lowercase= next(lowerCAmelCase , lowerCAmelCase ) if first_batch is None: # Some partitions might not receive any data. return pa.RecordBatch.from_arrays( [[task_id], [0], [0]] , names=['task_id', 'num_examples', 'num_bytes'] , ) __lowercase= 0 __lowercase= writer_class( features=lowerCAmelCase , path=working_fpath.replace('SSSSS' , f'{shard_id:05d}' ).replace('TTTTT' , f'{task_id:05d}' ) , writer_batch_size=lowerCAmelCase , storage_options=lowerCAmelCase , embed_local_files=lowerCAmelCase , ) __lowercase= pa.Table.from_batches([first_batch] ) writer.write_table(lowerCAmelCase ) for batch in it: if max_shard_size is not None and writer._num_bytes >= max_shard_size: __lowercase, __lowercase= writer.finalize() writer.close() yield pa.RecordBatch.from_arrays( [[task_id], [num_examples], [num_bytes]] , names=['task_id', 'num_examples', 'num_bytes'] , ) shard_id += 1 __lowercase= writer_class( features=writer._features , path=working_fpath.replace('SSSSS' , f'{shard_id:05d}' ).replace('TTTTT' , f'{task_id:05d}' ) , writer_batch_size=lowerCAmelCase , storage_options=lowerCAmelCase , embed_local_files=lowerCAmelCase , ) __lowercase= pa.Table.from_batches([batch] ) writer.write_table(lowerCAmelCase ) if writer._num_bytes > 0: __lowercase, __lowercase= writer.finalize() writer.close() yield pa.RecordBatch.from_arrays( [[task_id], [num_examples], [num_bytes]] , names=['task_id', 'num_examples', 'num_bytes'] , ) if working_fpath != fpath: for file in os.listdir(os.path.dirname(lowerCAmelCase ) ): __lowercase= os.path.join(os.path.dirname(lowerCAmelCase ) , os.path.basename(lowerCAmelCase ) ) shutil.move(lowerCAmelCase , lowerCAmelCase ) __lowercase= ( self.df.mapInArrow(lowerCAmelCase , 'task_id: long, num_examples: long, num_bytes: long' ) .groupBy('task_id' ) .agg( pyspark.sql.functions.sum('num_examples' ).alias('total_num_examples' ) , pyspark.sql.functions.sum('num_bytes' ).alias('total_num_bytes' ) , pyspark.sql.functions.count('num_bytes' ).alias('num_shards' ) , pyspark.sql.functions.collect_list('num_examples' ).alias('shard_lengths' ) , ) .collect() ) for row in stats: yield row.task_id, (row.total_num_examples, row.total_num_bytes, row.num_shards, row.shard_lengths) def _A (self , lowerCAmelCase , lowerCAmelCase = "arrow" , lowerCAmelCase = None , lowerCAmelCase = None , **lowerCAmelCase , ): self._validate_cache_dir() __lowercase= convert_file_size_to_int(max_shard_size or MAX_SHARD_SIZE ) self._repartition_df_if_needed(lowerCAmelCase ) __lowercase= not is_remote_filesystem(self._fs ) __lowercase= os.path.join if is_local else posixpath.join __lowercase= '-TTTTT-SSSSS-of-NNNNN' __lowercase= f'{self.name}-{split_generator.name}{SUFFIX}.{file_format}' __lowercase= path_join(self._output_dir , lowerCAmelCase ) __lowercase= 0 __lowercase= 0 __lowercase= 0 __lowercase= [] __lowercase= [] for task_id, content in self._prepare_split_single(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): ( ( __lowercase ), ( __lowercase ), ( __lowercase ), ( __lowercase ), )= content if num_bytes > 0: total_num_examples += num_examples total_num_bytes += num_bytes total_shards += num_shards task_id_and_num_shards.append((task_id, num_shards) ) all_shard_lengths.extend(lowerCAmelCase ) __lowercase= total_num_examples __lowercase= total_num_bytes # should rename everything at the end logger.debug(f'Renaming {total_shards} shards.' ) if total_shards > 1: __lowercase= all_shard_lengths # Define fs outside of _rename_shard so that we don't reference self in the function, which will result in a # pickling error due to pickling the SparkContext. __lowercase= self._fs # use the -SSSSS-of-NNNNN pattern def _rename_shard( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , ): rename( lowerCAmelCase , fpath.replace('SSSSS' , f'{shard_id:05d}' ).replace('TTTTT' , f'{task_id:05d}' ) , fpath.replace('TTTTT-SSSSS' , f'{global_shard_id:05d}' ).replace('NNNNN' , f'{total_shards:05d}' ) , ) __lowercase= [] __lowercase= 0 for i in range(len(lowerCAmelCase ) ): __lowercase, __lowercase= task_id_and_num_shards[i] for shard_id in range(lowerCAmelCase ): args.append([task_id, shard_id, global_shard_id] ) global_shard_id += 1 self._spark.sparkContext.parallelize(lowerCAmelCase , len(lowerCAmelCase ) ).map(lambda lowerCAmelCase : _rename_shard(*lowerCAmelCase ) ).collect() else: # don't use any pattern __lowercase= 0 __lowercase= task_id_and_num_shards[0][0] self._rename( fpath.replace('SSSSS' , f'{shard_id:05d}' ).replace('TTTTT' , f'{task_id:05d}' ) , fpath.replace(lowerCAmelCase , '' ) , ) def _A (self , lowerCAmelCase , ): return SparkExamplesIterable(self.df )
304
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available lowerCAmelCase = {'''configuration_mra''': ['''MRA_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MraConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase = [ '''MRA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''MraForMaskedLM''', '''MraForMultipleChoice''', '''MraForQuestionAnswering''', '''MraForSequenceClassification''', '''MraForTokenClassification''', '''MraLayer''', '''MraModel''', '''MraPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_mra import MRA_PRETRAINED_CONFIG_ARCHIVE_MAP, MraConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mra import ( MRA_PRETRAINED_MODEL_ARCHIVE_LIST, MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, MraLayer, MraModel, MraPreTrainedModel, ) else: import sys lowerCAmelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
304
1
'''simple docstring''' import warnings from ...utils import logging from .image_processing_layoutlmva import LayoutLMvaImageProcessor lowerCamelCase_ = logging.get_logger(__name__) class _UpperCAmelCase ( snake_case_ ): """simple docstring""" def __init__( self : List[Any] , *__UpperCAmelCase : List[str] , **__UpperCAmelCase : Tuple ): '''simple docstring''' warnings.warn( "The class LayoutLMv2FeatureExtractor is deprecated and will be removed in version 5 of Transformers." " Please use LayoutLMv2ImageProcessor instead." , __UpperCAmelCase , ) super().__init__(*__UpperCAmelCase , **__UpperCAmelCase )
79
'''simple docstring''' import argparse import logging import os from datetime import datetime import numpy as np import torch from torch import nn from torch.utils.data import DataLoader, RandomSampler, TensorDataset from tqdm import tqdm from transformers import GPTaLMHeadModel lowerCamelCase_ = logging.getLogger(__name__) def __lowercase ( __lowercase , __lowercase ) -> Optional[int]: '''simple docstring''' if os.path.exists(__lowercase ): if os.path.exists(os.path.join(__lowercase , "config.json" ) ) and os.path.isfile( os.path.join(__lowercase , "config.json" ) ): os.remove(os.path.join(__lowercase , "config.json" ) ) if os.path.exists(os.path.join(__lowercase , "pytorch_model.bin" ) ) and os.path.isfile( os.path.join(__lowercase , "pytorch_model.bin" ) ): os.remove(os.path.join(__lowercase , "pytorch_model.bin" ) ) else: os.makedirs(__lowercase ) model.save_pretrained(__lowercase ) def __lowercase ( __lowercase , __lowercase=False ) -> Optional[int]: '''simple docstring''' _A = 2 if unlogit: _A = torch.pow(__lowercase , __lowercase ) _A = p * torch.log(__lowercase ) _A = 0 return -plogp.sum(dim=-1 ) def __lowercase ( __lowercase ) -> Optional[Any]: '''simple docstring''' logger.info("lv, h >\t" + "\t".join(F'''{x + 1}''' for x in range(len(__lowercase ) ) ) ) for row in range(len(__lowercase ) ): if tensor.dtype != torch.long: logger.info(F'''layer {row + 1}:\t''' + "\t".join(F'''{x:.5f}''' for x in tensor[row].cpu().data ) ) else: logger.info(F'''layer {row + 1}:\t''' + "\t".join(F'''{x:d}''' for x in tensor[row].cpu().data ) ) def __lowercase ( __lowercase , __lowercase , __lowercase , __lowercase=True , __lowercase=True , __lowercase=None , __lowercase=False ) -> int: '''simple docstring''' _A , _A = model.config.num_hidden_layers, model.config.num_attention_heads _A = torch.zeros(__lowercase , __lowercase ).to(args.device ) _A = torch.zeros(__lowercase , __lowercase ).to(args.device ) if head_mask is None: _A = torch.ones(__lowercase , __lowercase ).to(args.device ) head_mask.requires_grad_(requires_grad=__lowercase ) # If actually pruned attention multi-head, set head mask to None to avoid shape mismatch if actually_pruned: _A = None _A = 0.0 _A = 0.0 for step, inputs in enumerate(tqdm(__lowercase , desc="Iteration" , disable=args.local_rank not in [-1, 0] ) ): _A = tuple(t.to(args.device ) for t in inputs ) ((_A) , ) = inputs # Do a forward pass (not with torch.no_grad() since we need gradients for importance score - see below) _A = model(__lowercase , labels=__lowercase , head_mask=__lowercase ) # (loss), lm_logits, presents, (all hidden_states), (attentions) _A , _A , _A = ( outputs[0], outputs[1], outputs[-1], ) # Loss and logits are the first, attention the last loss.backward() # Backpropagate to populate the gradients in the head mask total_loss += loss.detach().cpu().numpy() if compute_entropy: for layer, attn in enumerate(__lowercase ): _A = entropy(attn.detach() , __lowercase ) attn_entropy[layer] += masked_entropy.sum(-1 ).sum(0 ).sum(0 ).detach() if compute_importance: head_importance += head_mask.grad.abs().detach() tot_tokens += torch.ones_like(__lowercase ).float().detach().sum().data # Normalize attn_entropy /= tot_tokens head_importance /= tot_tokens # Layerwise importance normalization if not args.dont_normalize_importance_by_layer: _A = 2 _A = torch.pow(torch.pow(__lowercase , __lowercase ).sum(-1 ) , 1 / exponent ) head_importance /= norm_by_layer.unsqueeze(-1 ) + 1e-20 if not args.dont_normalize_global_importance: _A = (head_importance - head_importance.min()) / (head_importance.max() - head_importance.min()) # Print matrices if compute_entropy: logger.info("Attention entropies" ) print_ad_tensor(__lowercase ) if compute_importance: logger.info("Head importance scores" ) print_ad_tensor(__lowercase ) logger.info("Head ranked by importance scores" ) _A = torch.zeros(head_importance.numel() , dtype=torch.long , device=args.device ) _A = torch.arange( head_importance.numel() , device=args.device ) _A = head_ranks.view_as(__lowercase ) print_ad_tensor(__lowercase ) return attn_entropy, head_importance, total_loss def __lowercase ( __lowercase , __lowercase , __lowercase ) -> List[str]: '''simple docstring''' _A , _A , _A = compute_heads_importance(__lowercase , __lowercase , __lowercase , compute_entropy=__lowercase ) _A = 1 / loss # instead of downsteam score use the LM loss logger.info("Pruning: original score: %f, threshold: %f" , __lowercase , original_score * args.masking_threshold ) _A = torch.ones_like(__lowercase ) _A = max(1 , int(new_head_mask.numel() * args.masking_amount ) ) _A = original_score while current_score >= original_score * args.masking_threshold: _A = new_head_mask.clone().detach() # save current head mask # heads from least important to most - keep only not-masked heads _A = float("Inf" ) _A = head_importance.view(-1 ).sort()[1] if len(__lowercase ) <= num_to_mask: print("BREAK BY num_to_mask" ) break # mask heads _A = current_heads_to_mask[:num_to_mask] logger.info("Heads to mask: %s" , str(current_heads_to_mask.tolist() ) ) _A = new_head_mask.view(-1 ) _A = 0.0 _A = new_head_mask.view_as(__lowercase ) _A = new_head_mask.clone().detach() print_ad_tensor(__lowercase ) # Compute metric and head importance again _A , _A , _A = compute_heads_importance( __lowercase , __lowercase , __lowercase , compute_entropy=__lowercase , head_mask=__lowercase ) _A = 1 / loss logger.info( "Masking: current score: %f, remaining heads %d (%.1f percents)" , __lowercase , new_head_mask.sum() , new_head_mask.sum() / new_head_mask.numel() * 100 , ) logger.info("Final head mask" ) print_ad_tensor(__lowercase ) np.save(os.path.join(args.output_dir , "head_mask.npy" ) , head_mask.detach().cpu().numpy() ) return head_mask def __lowercase ( __lowercase , __lowercase , __lowercase , __lowercase ) -> List[str]: '''simple docstring''' _A = datetime.now() _A , _A , _A = compute_heads_importance( __lowercase , __lowercase , __lowercase , compute_entropy=__lowercase , compute_importance=__lowercase , head_mask=__lowercase ) _A = 1 / loss _A = datetime.now() - before_time _A = sum(p.numel() for p in model.parameters() ) _A = { layer: (1 - head_mask[layer].long()).nonzero().squeeze().tolist() for layer in range(len(__lowercase ) ) } for k, v in heads_to_prune.items(): if isinstance(__lowercase , __lowercase ): _A = [ v, ] assert sum(len(__lowercase ) for h in heads_to_prune.values() ) == (1 - head_mask.long()).sum().item() model.prune_heads(__lowercase ) _A = sum(p.numel() for p in model.parameters() ) _A = datetime.now() _A , _A , _A = compute_heads_importance( __lowercase , __lowercase , __lowercase , compute_entropy=__lowercase , compute_importance=__lowercase , head_mask=__lowercase , actually_pruned=__lowercase , ) _A = 1 / loss _A = datetime.now() - before_time logger.info( "Pruning: original num of params: %.2e, after pruning %.2e (%.1f percents)" , __lowercase , __lowercase , pruned_num_params / original_num_params * 100 , ) logger.info("Pruning: score with masking: %f score with pruning: %f" , __lowercase , __lowercase ) logger.info("Pruning: speed ratio (original timing / new timing): %f percents" , original_time / new_time * 100 ) save_model(__lowercase , args.output_dir ) def __lowercase ( ) -> Union[str, Any]: '''simple docstring''' _A = argparse.ArgumentParser() # Required parameters parser.add_argument( "--data_dir" , default=__lowercase , type=__lowercase , required=__lowercase , help="The input data dir. Should contain the .tsv files (or other data files) for the task." , ) parser.add_argument( "--model_name_or_path" , default=__lowercase , type=__lowercase , required=__lowercase , help="Path to pretrained model or model identifier from huggingface.co/models" , ) parser.add_argument( "--output_dir" , default=__lowercase , type=__lowercase , required=__lowercase , help="The output directory where the model predictions and checkpoints will be written." , ) # Other parameters parser.add_argument( "--config_name" , default="" , type=__lowercase , help="Pretrained config name or path if not the same as model_name_or_path" , ) parser.add_argument( "--tokenizer_name" , default="" , type=__lowercase , help="Pretrained tokenizer name or path if not the same as model_name_or_path" , ) parser.add_argument( "--cache_dir" , default=__lowercase , type=__lowercase , help="Where do you want to store the pre-trained models downloaded from s3" , ) parser.add_argument( "--data_subset" , type=__lowercase , default=-1 , help="If > 0: limit the data to a subset of data_subset instances." ) parser.add_argument( "--overwrite_output_dir" , action="store_true" , help="Whether to overwrite data in output directory" ) parser.add_argument( "--overwrite_cache" , action="store_true" , help="Overwrite the cached training and evaluation sets" ) parser.add_argument( "--dont_normalize_importance_by_layer" , action="store_true" , help="Don't normalize importance score by layers" ) parser.add_argument( "--dont_normalize_global_importance" , action="store_true" , help="Don't normalize all importance scores between 0 and 1" , ) parser.add_argument( "--try_masking" , action="store_true" , help="Whether to try to mask head until a threshold of accuracy." ) parser.add_argument( "--masking_threshold" , default=0.9 , type=__lowercase , help="masking threshold in term of metrics (stop masking when metric < threshold * original metric value)." , ) parser.add_argument( "--masking_amount" , default=0.1 , type=__lowercase , help="Amount to heads to masking at each masking step." ) parser.add_argument("--metric_name" , default="acc" , type=__lowercase , help="Metric to use for head masking." ) parser.add_argument( "--max_seq_length" , default=128 , type=__lowercase , help=( "The maximum total input sequence length after WordPiece tokenization. \n" "Sequences longer than this will be truncated, sequences shorter padded." ) , ) parser.add_argument("--batch_size" , default=1 , type=__lowercase , help="Batch size." ) parser.add_argument("--seed" , type=__lowercase , default=42 ) parser.add_argument("--local_rank" , type=__lowercase , default=-1 , help="local_rank for distributed training on gpus" ) parser.add_argument("--no_cuda" , action="store_true" , help="Whether not to use CUDA when available" ) parser.add_argument("--server_ip" , type=__lowercase , default="" , help="Can be used for distant debugging." ) parser.add_argument("--server_port" , type=__lowercase , default="" , help="Can be used for distant debugging." ) _A = parser.parse_args() if args.server_ip and args.server_port: # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script import ptvsd print("Waiting for debugger attach" ) ptvsd.enable_attach(address=(args.server_ip, args.server_port) , redirect_output=__lowercase ) ptvsd.wait_for_attach() # Setup devices and distributed training if args.local_rank == -1 or args.no_cuda: _A = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu" ) _A = 0 if args.no_cuda else torch.cuda.device_count() else: torch.cuda.set_device(args.local_rank ) _A = torch.device("cuda" , args.local_rank ) _A = 1 torch.distributed.init_process_group(backend="nccl" ) # Initializes the distributed backend # Setup logging logging.basicConfig(level=logging.INFO if args.local_rank in [-1, 0] else logging.WARN ) logger.info("device: {} n_gpu: {}, distributed: {}".format(args.device , args.n_gpu , bool(args.local_rank != -1 ) ) ) _A = GPTaLMHeadModel.from_pretrained(args.model_name_or_path ) # Distributed and parallel training model.to(args.device ) if args.local_rank != -1: _A = nn.parallel.DistributedDataParallel( __lowercase , device_ids=[args.local_rank] , output_device=args.local_rank , find_unused_parameters=__lowercase ) elif args.n_gpu > 1: _A = nn.DataParallel(__lowercase ) # Print/save training arguments os.makedirs(args.output_dir , exist_ok=__lowercase ) torch.save(__lowercase , os.path.join(args.output_dir , "run_args.bin" ) ) logger.info("Training/evaluation parameters %s" , __lowercase ) # Prepare dataset _A = np.concatenate( [ np.loadtxt(args.data_dir , dtype=np.intaa ), ] ) _A = (torch.from_numpy(__lowercase ),) _A = TensorDataset(*__lowercase ) _A = RandomSampler(__lowercase ) _A = DataLoader(__lowercase , sampler=__lowercase , batch_size=args.batch_size ) # Compute head entropy and importance score compute_heads_importance(__lowercase , __lowercase , __lowercase ) # Try head masking (set heads to zero until the score goes under a threshole) # and head pruning (remove masked heads and see the effect on the network) if args.try_masking and args.masking_threshold > 0.0 and args.masking_threshold < 1.0: _A = mask_heads(__lowercase , __lowercase , __lowercase ) prune_heads(__lowercase , __lowercase , __lowercase , __lowercase ) if __name__ == "__main__": main()
79
1
'''simple docstring''' import math def A_( A : int): if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(A) + 1) , 6): if number % i == 0 or number % (i + 2) == 0: return False return True def A_( A : float = 0.1): UpperCamelCase = 3 UpperCamelCase = 3 while primes / (2 * j - 1) >= ratio: for i in range(j * j + j + 1 , (j + 2) * (j + 2) , j + 1): primes += is_prime(A) j += 2 return j if __name__ == "__main__": import doctest doctest.testmod()
251
'''simple docstring''' import json import os from collections import Counter import torch import torchvision import torchvision.transforms as transforms from PIL import Image from torch import nn from torch.utils.data import Dataset lowerCAmelCase : str = {1: (1, 1), 2: (2, 1), 3: (3, 1), 4: (2, 2), 5: (5, 1), 6: (3, 2), 7: (7, 1), 8: (4, 2), 9: (3, 3)} class SCREAMING_SNAKE_CASE__ ( nn.Module): def __init__( self , A_ )-> int: '''simple docstring''' super().__init__() UpperCamelCase = torchvision.models.resnetaaa(pretrained=A_ ) UpperCamelCase = list(model.children() )[:-2] UpperCamelCase = nn.Sequential(*A_ ) UpperCamelCase = nn.AdaptiveAvgPoolad(POOLING_BREAKDOWN[args.num_image_embeds] ) def UpperCAmelCase_ ( self , A_ )-> List[Any]: '''simple docstring''' UpperCamelCase = self.pool(self.model(A_ ) ) UpperCamelCase = torch.flatten(A_ , start_dim=2 ) UpperCamelCase = out.transpose(1 , 2 ).contiguous() return out # BxNx2048 class SCREAMING_SNAKE_CASE__ ( snake_case_): def __init__( self , A_ , A_ , A_ , A_ , A_ )-> Dict: '''simple docstring''' UpperCamelCase = [json.loads(A_ ) for l in open(A_ )] UpperCamelCase = os.path.dirname(A_ ) UpperCamelCase = tokenizer UpperCamelCase = labels UpperCamelCase = len(A_ ) UpperCamelCase = max_seq_length UpperCamelCase = transforms def __len__( self )-> Union[str, Any]: '''simple docstring''' return len(self.data ) def __getitem__( self , A_ )-> Any: '''simple docstring''' UpperCamelCase = torch.LongTensor(self.tokenizer.encode(self.data[index]['text'] , add_special_tokens=A_ ) ) UpperCamelCase , UpperCamelCase , UpperCamelCase = sentence[0], sentence[1:-1], sentence[-1] UpperCamelCase = sentence[: self.max_seq_length] UpperCamelCase = torch.zeros(self.n_classes ) UpperCamelCase = 1 UpperCamelCase = Image.open(os.path.join(self.data_dir , self.data[index]['img'] ) ).convert('RGB' ) UpperCamelCase = self.transforms(A_ ) return { "image_start_token": start_token, "image_end_token": end_token, "sentence": sentence, "image": image, "label": label, } def UpperCAmelCase_ ( self )-> List[Any]: '''simple docstring''' UpperCamelCase = Counter() for row in self.data: label_freqs.update(row['label'] ) return label_freqs def A_( A : Union[str, Any]): UpperCamelCase = [len(row['sentence']) for row in batch] UpperCamelCase , UpperCamelCase = len(A), max(A) UpperCamelCase = torch.zeros(A , A , dtype=torch.long) UpperCamelCase = torch.zeros(A , A , dtype=torch.long) for i_batch, (input_row, length) in enumerate(zip(A , A)): UpperCamelCase = input_row['sentence'] UpperCamelCase = 1 UpperCamelCase = torch.stack([row['image'] for row in batch]) UpperCamelCase = torch.stack([row['label'] for row in batch]) UpperCamelCase = torch.stack([row['image_start_token'] for row in batch]) UpperCamelCase = torch.stack([row['image_end_token'] for row in batch]) return text_tensor, mask_tensor, img_tensor, img_start_token, img_end_token, tgt_tensor def A_( ): return [ "Crime", "Drama", "Thriller", "Action", "Comedy", "Romance", "Documentary", "Short", "Mystery", "History", "Family", "Adventure", "Fantasy", "Sci-Fi", "Western", "Horror", "Sport", "War", "Music", "Musical", "Animation", "Biography", "Film-Noir", ] def A_( ): return transforms.Compose( [ transforms.Resize(256), transforms.CenterCrop(224), transforms.ToTensor(), transforms.Normalize( mean=[0.46_777_044, 0.44_531_429, 0.40_661_017] , std=[0.12_221_994, 0.12_145_835, 0.14_380_469] , ), ])
251
1
'''simple docstring''' from __future__ import annotations from math import pi, sqrt def _UpperCamelCase ( UpperCamelCase__ , UpperCamelCase__ ): if inductance <= 0: raise ValueError("""Inductance cannot be 0 or negative""" ) elif capacitance <= 0: raise ValueError("""Capacitance cannot be 0 or negative""" ) else: return ( "Resonant frequency", float(1 / (2 * pi * (sqrt(inductance * capacitance ))) ), ) if __name__ == "__main__": import doctest doctest.testmod()
163
'''simple docstring''' import unittest from transformers.testing_utils import CaptureStdout from transformers.tools.python_interpreter import evaluate def _UpperCamelCase ( UpperCamelCase__ ): return x + 2 class _snake_case ( unittest.TestCase ): def snake_case__ ( self): UpperCAmelCase__ : List[str] = """x = 3""" UpperCAmelCase__ : Dict = {} UpperCAmelCase__ : List[str] = evaluate(_lowerCamelCase , {} , state=_lowerCamelCase) assert result == 3 self.assertDictEqual(_lowerCamelCase , {"""x""": 3}) UpperCAmelCase__ : Optional[int] = """x = y""" UpperCAmelCase__ : Optional[Any] = {"""y""": 5} UpperCAmelCase__ : Dict = evaluate(_lowerCamelCase , {} , state=_lowerCamelCase) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(_lowerCamelCase , {"""x""": 5, """y""": 5}) def snake_case__ ( self): UpperCAmelCase__ : Any = """y = add_two(x)""" UpperCAmelCase__ : Optional[Any] = {"""x""": 3} UpperCAmelCase__ : Tuple = evaluate(_lowerCamelCase , {"""add_two""": add_two} , state=_lowerCamelCase) assert result == 5 self.assertDictEqual(_lowerCamelCase , {"""x""": 3, """y""": 5}) # Won't work without the tool with CaptureStdout() as out: UpperCAmelCase__ : List[str] = evaluate(_lowerCamelCase , {} , state=_lowerCamelCase) assert result is None assert "tried to execute add_two" in out.out def snake_case__ ( self): UpperCAmelCase__ : Union[str, Any] = """x = 3""" UpperCAmelCase__ : Dict = {} UpperCAmelCase__ : Optional[int] = evaluate(_lowerCamelCase , {} , state=_lowerCamelCase) assert result == 3 self.assertDictEqual(_lowerCamelCase , {"""x""": 3}) def snake_case__ ( self): UpperCAmelCase__ : Union[str, Any] = """test_dict = {'x': x, 'y': add_two(x)}""" UpperCAmelCase__ : Any = {"""x""": 3} UpperCAmelCase__ : List[str] = evaluate(_lowerCamelCase , {"""add_two""": add_two} , state=_lowerCamelCase) self.assertDictEqual(_lowerCamelCase , {"""x""": 3, """y""": 5}) self.assertDictEqual(_lowerCamelCase , {"""x""": 3, """test_dict""": {"""x""": 3, """y""": 5}}) def snake_case__ ( self): UpperCAmelCase__ : List[Any] = """x = 3\ny = 5""" UpperCAmelCase__ : Union[str, Any] = {} UpperCAmelCase__ : List[Any] = evaluate(_lowerCamelCase , {} , state=_lowerCamelCase) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(_lowerCamelCase , {"""x""": 3, """y""": 5}) def snake_case__ ( self): UpperCAmelCase__ : Dict = """text = f'This is x: {x}.'""" UpperCAmelCase__ : str = {"""x""": 3} UpperCAmelCase__ : Optional[Any] = evaluate(_lowerCamelCase , {} , state=_lowerCamelCase) # evaluate returns the value of the last assignment. assert result == "This is x: 3." self.assertDictEqual(_lowerCamelCase , {"""x""": 3, """text""": """This is x: 3."""}) def snake_case__ ( self): UpperCAmelCase__ : Union[str, Any] = """if x <= 3:\n y = 2\nelse:\n y = 5""" UpperCAmelCase__ : Optional[Any] = {"""x""": 3} UpperCAmelCase__ : Optional[int] = evaluate(_lowerCamelCase , {} , state=_lowerCamelCase) # evaluate returns the value of the last assignment. assert result == 2 self.assertDictEqual(_lowerCamelCase , {"""x""": 3, """y""": 2}) UpperCAmelCase__ : Optional[int] = {"""x""": 8} UpperCAmelCase__ : int = evaluate(_lowerCamelCase , {} , state=_lowerCamelCase) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(_lowerCamelCase , {"""x""": 8, """y""": 5}) def snake_case__ ( self): UpperCAmelCase__ : Union[str, Any] = """test_list = [x, add_two(x)]""" UpperCAmelCase__ : int = {"""x""": 3} UpperCAmelCase__ : Tuple = evaluate(_lowerCamelCase , {"""add_two""": add_two} , state=_lowerCamelCase) self.assertListEqual(_lowerCamelCase , [3, 5]) self.assertDictEqual(_lowerCamelCase , {"""x""": 3, """test_list""": [3, 5]}) def snake_case__ ( self): UpperCAmelCase__ : Tuple = """y = x""" UpperCAmelCase__ : Optional[Any] = {"""x""": 3} UpperCAmelCase__ : Optional[int] = evaluate(_lowerCamelCase , {} , state=_lowerCamelCase) assert result == 3 self.assertDictEqual(_lowerCamelCase , {"""x""": 3, """y""": 3}) def snake_case__ ( self): UpperCAmelCase__ : List[str] = """test_list = [x, add_two(x)]\ntest_list[1]""" UpperCAmelCase__ : Union[str, Any] = {"""x""": 3} UpperCAmelCase__ : int = evaluate(_lowerCamelCase , {"""add_two""": add_two} , state=_lowerCamelCase) assert result == 5 self.assertDictEqual(_lowerCamelCase , {"""x""": 3, """test_list""": [3, 5]}) UpperCAmelCase__ : List[str] = """test_dict = {'x': x, 'y': add_two(x)}\ntest_dict['y']""" UpperCAmelCase__ : Any = {"""x""": 3} UpperCAmelCase__ : Dict = evaluate(_lowerCamelCase , {"""add_two""": add_two} , state=_lowerCamelCase) assert result == 5 self.assertDictEqual(_lowerCamelCase , {"""x""": 3, """test_dict""": {"""x""": 3, """y""": 5}}) def snake_case__ ( self): UpperCAmelCase__ : Optional[int] = """x = 0\nfor i in range(3):\n x = i""" UpperCAmelCase__ : str = {} UpperCAmelCase__ : Tuple = evaluate(_lowerCamelCase , {"""range""": range} , state=_lowerCamelCase) assert result == 2 self.assertDictEqual(_lowerCamelCase , {"""x""": 2, """i""": 2})
163
1
"""simple docstring""" import math from enum import Enum from typing import Optional, Union from torch.optim import Optimizer from torch.optim.lr_scheduler import LambdaLR from .utils import logging __lowerCamelCase = logging.get_logger(__name__) class UpperCamelCase__( __A ): lowerCAmelCase__ : List[str] = 'linear' lowerCAmelCase__ : Optional[int] = 'cosine' lowerCAmelCase__ : Optional[Any] = 'cosine_with_restarts' lowerCAmelCase__ : int = 'polynomial' lowerCAmelCase__ : Any = 'constant' lowerCAmelCase__ : Dict = 'constant_with_warmup' lowerCAmelCase__ : List[str] = 'piecewise_constant' def UpperCAmelCase ( UpperCamelCase__ , UpperCamelCase__ = -1 ): """simple docstring""" return LambdaLR(UpperCamelCase__ , lambda UpperCamelCase__ : 1 , last_epoch=UpperCamelCase__ ) def UpperCAmelCase ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = -1 ): """simple docstring""" def lr_lambda(UpperCamelCase__ ): if current_step < num_warmup_steps: return float(UpperCamelCase__ ) / float(max(1.0 , UpperCamelCase__ ) ) return 1.0 return LambdaLR(UpperCamelCase__ , UpperCamelCase__ , last_epoch=UpperCamelCase__ ) def UpperCAmelCase ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = -1 ): """simple docstring""" A__ = {} A__ = step_rules.split(',' ) for rule_str in rule_list[:-1]: A__ , A__ = rule_str.split(':' ) A__ = int(UpperCamelCase__ ) A__ = float(UpperCamelCase__ ) A__ = value A__ = float(rule_list[-1] ) def create_rules_function(UpperCamelCase__ , UpperCamelCase__ ): def rule_func(UpperCamelCase__ ) -> float: A__ = sorted(rules_dict.keys() ) for i, sorted_step in enumerate(UpperCamelCase__ ): if steps < sorted_step: return rules_dict[sorted_steps[i]] return last_lr_multiple return rule_func A__ = create_rules_function(UpperCamelCase__ , UpperCamelCase__ ) return LambdaLR(UpperCamelCase__ , UpperCamelCase__ , last_epoch=UpperCamelCase__ ) def UpperCAmelCase ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__=-1 ): """simple docstring""" def lr_lambda(UpperCamelCase__ ): if current_step < num_warmup_steps: return float(UpperCamelCase__ ) / float(max(1 , UpperCamelCase__ ) ) return max( 0.0 , float(num_training_steps - current_step ) / float(max(1 , num_training_steps - num_warmup_steps ) ) ) return LambdaLR(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) def UpperCAmelCase ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = 0.5 , UpperCamelCase__ = -1 ): """simple docstring""" def lr_lambda(UpperCamelCase__ ): if current_step < num_warmup_steps: return float(UpperCamelCase__ ) / float(max(1 , UpperCamelCase__ ) ) A__ = float(current_step - num_warmup_steps ) / float(max(1 , num_training_steps - num_warmup_steps ) ) return max(0.0 , 0.5 * (1.0 + math.cos(math.pi * float(UpperCamelCase__ ) * 2.0 * progress )) ) return LambdaLR(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) def UpperCAmelCase ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = 1 , UpperCamelCase__ = -1 ): """simple docstring""" def lr_lambda(UpperCamelCase__ ): if current_step < num_warmup_steps: return float(UpperCamelCase__ ) / float(max(1 , UpperCamelCase__ ) ) A__ = float(current_step - num_warmup_steps ) / float(max(1 , num_training_steps - num_warmup_steps ) ) if progress >= 1.0: return 0.0 return max(0.0 , 0.5 * (1.0 + math.cos(math.pi * ((float(UpperCamelCase__ ) * progress) % 1.0) )) ) return LambdaLR(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) def UpperCAmelCase ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__=1E-7 , UpperCamelCase__=1.0 , UpperCamelCase__=-1 ): """simple docstring""" A__ = optimizer.defaults['lr'] if not (lr_init > lr_end): raise ValueError(F'''lr_end ({lr_end}) must be be smaller than initial lr ({lr_init})''' ) def lr_lambda(UpperCamelCase__ ): if current_step < num_warmup_steps: return float(UpperCamelCase__ ) / float(max(1 , UpperCamelCase__ ) ) elif current_step > num_training_steps: return lr_end / lr_init # as LambdaLR multiplies by lr_init else: A__ = lr_init - lr_end A__ = num_training_steps - num_warmup_steps A__ = 1 - (current_step - num_warmup_steps) / decay_steps A__ = lr_range * pct_remaining**power + lr_end return decay / lr_init # as LambdaLR multiplies by lr_init return LambdaLR(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) __lowerCamelCase = { SchedulerType.LINEAR: get_linear_schedule_with_warmup, SchedulerType.COSINE: get_cosine_schedule_with_warmup, SchedulerType.COSINE_WITH_RESTARTS: get_cosine_with_hard_restarts_schedule_with_warmup, SchedulerType.POLYNOMIAL: get_polynomial_decay_schedule_with_warmup, SchedulerType.CONSTANT: get_constant_schedule, SchedulerType.CONSTANT_WITH_WARMUP: get_constant_schedule_with_warmup, SchedulerType.PIECEWISE_CONSTANT: get_piecewise_constant_schedule, } def UpperCAmelCase ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = None , UpperCamelCase__ = None , UpperCamelCase__ = None , UpperCamelCase__ = 1 , UpperCamelCase__ = 1.0 , UpperCamelCase__ = -1 , ): """simple docstring""" A__ = SchedulerType(UpperCamelCase__ ) A__ = TYPE_TO_SCHEDULER_FUNCTION[name] if name == SchedulerType.CONSTANT: return schedule_func(UpperCamelCase__ , last_epoch=UpperCamelCase__ ) if name == SchedulerType.PIECEWISE_CONSTANT: return schedule_func(UpperCamelCase__ , step_rules=UpperCamelCase__ , last_epoch=UpperCamelCase__ ) # All other schedulers require `num_warmup_steps` if num_warmup_steps is None: raise ValueError(F'''{name} requires `num_warmup_steps`, please provide that argument.''' ) if name == SchedulerType.CONSTANT_WITH_WARMUP: return schedule_func(UpperCamelCase__ , num_warmup_steps=UpperCamelCase__ , last_epoch=UpperCamelCase__ ) # All other schedulers require `num_training_steps` if num_training_steps is None: raise ValueError(F'''{name} requires `num_training_steps`, please provide that argument.''' ) if name == SchedulerType.COSINE_WITH_RESTARTS: return schedule_func( UpperCamelCase__ , num_warmup_steps=UpperCamelCase__ , num_training_steps=UpperCamelCase__ , num_cycles=UpperCamelCase__ , last_epoch=UpperCamelCase__ , ) if name == SchedulerType.POLYNOMIAL: return schedule_func( UpperCamelCase__ , num_warmup_steps=UpperCamelCase__ , num_training_steps=UpperCamelCase__ , power=UpperCamelCase__ , last_epoch=UpperCamelCase__ , ) return schedule_func( UpperCamelCase__ , num_warmup_steps=UpperCamelCase__ , num_training_steps=UpperCamelCase__ , last_epoch=UpperCamelCase__ )
154
"""simple docstring""" class UpperCamelCase__: def __init__( self ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ) -> Dict: A__ = None A__ = None A__ = graph self._normalize_graph(__UpperCAmelCase ,__UpperCAmelCase ) A__ = len(__UpperCAmelCase ) A__ = None def snake_case__ ( self ,__UpperCAmelCase ,__UpperCAmelCase ) -> str: if sources is int: A__ = [sources] if sinks is int: A__ = [sinks] if len(__UpperCAmelCase ) == 0 or len(__UpperCAmelCase ) == 0: return A__ = sources[0] A__ = sinks[0] # make fake vertex if there are more # than one source or sink if len(__UpperCAmelCase ) > 1 or len(__UpperCAmelCase ) > 1: A__ = 0 for i in sources: max_input_flow += sum(self.graph[i] ) A__ = len(self.graph ) + 1 for room in self.graph: room.insert(0 ,0 ) self.graph.insert(0 ,[0] * size ) for i in sources: A__ = max_input_flow A__ = 0 A__ = len(self.graph ) + 1 for room in self.graph: room.append(0 ) self.graph.append([0] * size ) for i in sinks: A__ = max_input_flow A__ = size - 1 def snake_case__ ( self ) -> Optional[int]: if self.maximum_flow_algorithm is None: raise Exception('You need to set maximum flow algorithm before.' ) if self.source_index is None or self.sink_index is None: return 0 self.maximum_flow_algorithm.execute() return self.maximum_flow_algorithm.getMaximumFlow() def snake_case__ ( self ,__UpperCAmelCase ) -> Any: A__ = algorithm(self ) class UpperCamelCase__: def __init__( self ,__UpperCAmelCase ) -> Optional[int]: A__ = flow_network A__ = flow_network.verticesCount A__ = flow_network.sourceIndex A__ = flow_network.sinkIndex # it's just a reference, so you shouldn't change # it in your algorithms, use deep copy before doing that A__ = flow_network.graph A__ = False def snake_case__ ( self ) -> Optional[Any]: if not self.executed: self._algorithm() A__ = True def snake_case__ ( self ) -> Tuple: pass class UpperCamelCase__( __A ): def __init__( self ,__UpperCAmelCase ) -> List[Any]: super().__init__(__UpperCAmelCase ) # use this to save your result A__ = -1 def snake_case__ ( self ) -> Any: if not self.executed: raise Exception('You should execute algorithm before using its result!' ) return self.maximum_flow class UpperCamelCase__( __A ): def __init__( self ,__UpperCAmelCase ) -> int: super().__init__(__UpperCAmelCase ) A__ = [[0] * self.verticies_count for i in range(self.verticies_count )] A__ = [0] * self.verticies_count A__ = [0] * self.verticies_count def snake_case__ ( self ) -> Optional[Any]: A__ = self.verticies_count # push some substance to graph for nextvertex_index, bandwidth in enumerate(self.graph[self.source_index] ): self.preflow[self.source_index][nextvertex_index] += bandwidth self.preflow[nextvertex_index][self.source_index] -= bandwidth self.excesses[nextvertex_index] += bandwidth # Relabel-to-front selection rule A__ = [ i for i in range(self.verticies_count ) if i != self.source_index and i != self.sink_index ] # move through list A__ = 0 while i < len(__UpperCAmelCase ): A__ = vertices_list[i] A__ = self.heights[vertex_index] self.process_vertex(__UpperCAmelCase ) if self.heights[vertex_index] > previous_height: # if it was relabeled, swap elements # and start from 0 index vertices_list.insert(0 ,vertices_list.pop(__UpperCAmelCase ) ) A__ = 0 else: i += 1 A__ = sum(self.preflow[self.source_index] ) def snake_case__ ( self ,__UpperCAmelCase ) -> List[Any]: while self.excesses[vertex_index] > 0: for neighbour_index in range(self.verticies_count ): # if it's neighbour and current vertex is higher if ( self.graph[vertex_index][neighbour_index] - self.preflow[vertex_index][neighbour_index] > 0 and self.heights[vertex_index] > self.heights[neighbour_index] ): self.push(__UpperCAmelCase ,__UpperCAmelCase ) self.relabel(__UpperCAmelCase ) def snake_case__ ( self ,__UpperCAmelCase ,__UpperCAmelCase ) -> List[Any]: A__ = min( self.excesses[from_index] ,self.graph[from_index][to_index] - self.preflow[from_index][to_index] ,) self.preflow[from_index][to_index] += preflow_delta self.preflow[to_index][from_index] -= preflow_delta self.excesses[from_index] -= preflow_delta self.excesses[to_index] += preflow_delta def snake_case__ ( self ,__UpperCAmelCase ) -> Any: A__ = None for to_index in range(self.verticies_count ): if ( self.graph[vertex_index][to_index] - self.preflow[vertex_index][to_index] > 0 ) and (min_height is None or self.heights[to_index] < min_height): A__ = self.heights[to_index] if min_height is not None: A__ = min_height + 1 if __name__ == "__main__": __lowerCamelCase = [0] __lowerCamelCase = [3] # graph = [ # [0, 0, 4, 6, 0, 0], # [0, 0, 5, 2, 0, 0], # [0, 0, 0, 0, 4, 4], # [0, 0, 0, 0, 6, 6], # [0, 0, 0, 0, 0, 0], # [0, 0, 0, 0, 0, 0], # ] __lowerCamelCase = [[0, 7, 0, 0], [0, 0, 6, 0], [0, 0, 0, 8], [9, 0, 0, 0]] # prepare our network __lowerCamelCase = FlowNetwork(graph, entrances, exits) # set algorithm flow_network.set_maximum_flow_algorithm(PushRelabelExecutor) # and calculate __lowerCamelCase = flow_network.find_maximum_flow() print(F'''maximum flow is {maximum_flow}''')
154
1
"""simple docstring""" import math import tensorflow as tf from packaging import version def a_ ( lowerCamelCase ): UpperCAmelCase__ = tf.convert_to_tensor(lowerCamelCase ) UpperCAmelCase__ = 0.5 * (1.0 + tf.math.erf(x / tf.cast(tf.sqrt(2.0 ) , x.dtype ) )) return x * cdf def a_ ( lowerCamelCase ): UpperCAmelCase__ = tf.convert_to_tensor(lowerCamelCase ) UpperCAmelCase__ = tf.cast(math.pi , x.dtype ) UpperCAmelCase__ = tf.cast(0.044715 , x.dtype ) UpperCAmelCase__ = 0.5 * (1.0 + tf.tanh(tf.sqrt(2.0 / pi ) * (x + coeff * tf.pow(lowerCamelCase , 3 )) )) return x * cdf def a_ ( lowerCamelCase ): UpperCAmelCase__ = tf.convert_to_tensor(lowerCamelCase ) return x * tf.tanh(tf.math.softplus(lowerCamelCase ) ) def a_ ( lowerCamelCase ): UpperCAmelCase__ = tf.convert_to_tensor(lowerCamelCase ) UpperCAmelCase__ = tf.cast(0.044715 , x.dtype ) UpperCAmelCase__ = tf.cast(0.7978845608 , x.dtype ) return 0.5 * x * (1.0 + tf.tanh(x * coeffa * (1.0 + coeffa * x * x) )) def a_ ( lowerCamelCase ): UpperCAmelCase__ = tf.convert_to_tensor(lowerCamelCase ) UpperCAmelCase__ = tf.cast(1.702 , x.dtype ) return x * tf.math.sigmoid(coeff * x ) def a_ ( lowerCamelCase ): return tf.clip_by_value(_gelu(lowerCamelCase ) , -1_0 , 1_0 ) def a_ ( lowerCamelCase , lowerCamelCase=-1 ): UpperCAmelCase__ , UpperCAmelCase__ = tf.split(lowerCamelCase , 2 , axis=lowerCamelCase ) return a * tf.math.sigmoid(lowerCamelCase ) if version.parse(tf.version.VERSION) >= version.parse('2.4'): def a_ ( lowerCamelCase ): return tf.keras.activations.gelu(lowerCamelCase , approximate=lowerCamelCase ) lowerCAmelCase__ : str = tf.keras.activations.gelu lowerCAmelCase__ : Tuple = approximate_gelu_wrap else: lowerCAmelCase__ : str = _gelu lowerCAmelCase__ : Optional[Any] = _gelu_new lowerCAmelCase__ : Any = { 'gelu': gelu, 'gelu_10': gelu_aa, 'gelu_fast': gelu_fast, 'gelu_new': gelu_new, 'glu': glu, 'mish': mish, 'quick_gelu': quick_gelu, 'relu': tf.keras.activations.relu, 'sigmoid': tf.keras.activations.sigmoid, 'silu': tf.keras.activations.swish, 'swish': tf.keras.activations.swish, 'tanh': tf.keras.activations.tanh, } def a_ ( lowerCamelCase ): if activation_string in ACTaFN: return ACTaFN[activation_string] else: raise KeyError(f'''function {activation_string} not found in ACT2FN mapping {list(ACTaFN.keys() )}''' )
98
import inspect import jax import jax.lax as lax import jax.numpy as jnp from ..utils import add_start_docstrings from ..utils.logging import get_logger _UpperCAmelCase : List[Any] = get_logger(__name__) _UpperCAmelCase : Tuple = R"\n Args:\n input_ids (`jnp.ndarray` of shape `(batch_size, sequence_length)`):\n Indices of input sequence tokens in the vocabulary.\n\n Indices can be obtained using [`PreTrainedTokenizer`]. See [`PreTrainedTokenizer.encode`] and\n [`PreTrainedTokenizer.__call__`] for details.\n\n [What are input IDs?](../glossary#input-ids)\n scores (`jnp.ndarray` of shape `(batch_size, config.vocab_size)`):\n Prediction scores of a language modeling head. These can be logits for each vocabulary when not using beam\n search or log softmax for each vocabulary token when using beam search\n kwargs (`Dict[str, Any]`, *optional*):\n Additional logits processor specific kwargs.\n\n Return:\n `jnp.ndarray` of shape `(batch_size, config.vocab_size)`: The processed prediction scores.\n\n" class lowercase : @add_start_docstrings(A_ ) def __call__( self , A_ , A_ ) -> jnp.ndarray: """simple docstring""" raise NotImplementedError( F'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' ) class lowercase : @add_start_docstrings(A_ ) def __call__( self , A_ , A_ ) -> jnp.ndarray: """simple docstring""" raise NotImplementedError( F'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' ) class lowercase ( _SCREAMING_SNAKE_CASE ): @add_start_docstrings(A_ ) def __call__( self , A_ , A_ , A_ , **A_ ) -> jnp.ndarray: """simple docstring""" for processor in self: UpperCamelCase = inspect.signature(processor.__call__ ).parameters if len(A_ ) > 3: if not all(arg in kwargs for arg in list(function_args.keys() )[2:] ): raise ValueError( F'''Make sure that all the required parameters: {list(function_args.keys() )} for ''' F'''{processor.__class__} are passed to the logits processor.''' ) UpperCamelCase = processor(A_ , A_ , A_ , **A_ ) else: UpperCamelCase = processor(A_ , A_ , A_ ) return scores class lowercase ( _SCREAMING_SNAKE_CASE ): def __init__( self , A_ ) -> Tuple: """simple docstring""" if not isinstance(A_ , A_ ) or not (temperature > 0): raise ValueError(F'''`temperature` has to be a strictly positive float, but is {temperature}''' ) UpperCamelCase = temperature def __call__( self , A_ , A_ , A_ ) -> jnp.ndarray: """simple docstring""" UpperCamelCase = scores / self.temperature return scores class lowercase ( _SCREAMING_SNAKE_CASE ): def __init__( self , A_ , A_ = -float('Inf' ) , A_ = 1 ) -> List[Any]: """simple docstring""" if not isinstance(A_ , A_ ) or (top_p < 0 or top_p > 1.0): raise ValueError(F'''`top_p` has to be a float > 0 and < 1, but is {top_p}''' ) if not isinstance(A_ , A_ ) or (min_tokens_to_keep < 1): raise ValueError(F'''`min_tokens_to_keep` has to be a positive integer, but is {min_tokens_to_keep}''' ) UpperCamelCase = top_p UpperCamelCase = filter_value UpperCamelCase = min_tokens_to_keep def __call__( self , A_ , A_ , A_ ) -> jnp.ndarray: """simple docstring""" UpperCamelCase , UpperCamelCase = lax.top_k(A_ , scores.shape[-1] ) UpperCamelCase = jnp.full_like(A_ , self.filter_value ) UpperCamelCase = jax.nn.softmax(A_ , axis=-1 ).cumsum(axis=-1 ) UpperCamelCase = cumulative_probs < self.top_p # include the token that is higher than top_p as well UpperCamelCase = jnp.roll(A_ , 1 ) score_mask |= score_mask.at[:, 0].set(A_ ) # min tokens to keep UpperCamelCase = score_mask.at[:, : self.min_tokens_to_keep].set(A_ ) UpperCamelCase = jnp.where(A_ , A_ , A_ ) UpperCamelCase = jax.lax.sort_key_val(A_ , A_ )[-1] return next_scores class lowercase ( _SCREAMING_SNAKE_CASE ): def __init__( self , A_ , A_ = -float('Inf' ) , A_ = 1 ) -> List[str]: """simple docstring""" if not isinstance(A_ , A_ ) or top_k <= 0: raise ValueError(F'''`top_k` has to be a strictly positive integer, but is {top_k}''' ) UpperCamelCase = max(A_ , A_ ) UpperCamelCase = filter_value def __call__( self , A_ , A_ , A_ ) -> jnp.ndarray: """simple docstring""" UpperCamelCase , UpperCamelCase = scores.shape UpperCamelCase = jnp.full(batch_size * vocab_size , self.filter_value ) UpperCamelCase = min(self.top_k , scores.shape[-1] ) # Safety check UpperCamelCase , UpperCamelCase = lax.top_k(A_ , A_ ) UpperCamelCase = jnp.broadcast_to((jnp.arange(A_ ) * vocab_size)[:, None] , (batch_size, topk) ).flatten() UpperCamelCase = topk_scores.flatten() UpperCamelCase = topk_indices.flatten() + shift UpperCamelCase = next_scores_flat.at[topk_indices_flat].set(A_ ) UpperCamelCase = next_scores_flat.reshape(A_ , A_ ) return next_scores class lowercase ( _SCREAMING_SNAKE_CASE ): def __init__( self , A_ ) -> List[Any]: """simple docstring""" UpperCamelCase = bos_token_id def __call__( self , A_ , A_ , A_ ) -> jnp.ndarray: """simple docstring""" UpperCamelCase = jnp.full(scores.shape , -float('inf' ) ) UpperCamelCase = 1 - jnp.bool_(cur_len - 1 ) UpperCamelCase = jnp.where(A_ , new_scores.at[:, self.bos_token_id].set(0 ) , A_ ) return scores class lowercase ( _SCREAMING_SNAKE_CASE ): def __init__( self , A_ , A_ ) -> Union[str, Any]: """simple docstring""" UpperCamelCase = max_length UpperCamelCase = eos_token_id def __call__( self , A_ , A_ , A_ ) -> jnp.ndarray: """simple docstring""" UpperCamelCase = jnp.full(scores.shape , -float('inf' ) ) UpperCamelCase = 1 - jnp.bool_(cur_len - self.max_length + 1 ) UpperCamelCase = jnp.where(A_ , new_scores.at[:, self.eos_token_id].set(0 ) , A_ ) return scores class lowercase ( _SCREAMING_SNAKE_CASE ): def __init__( self , A_ , A_ ) -> Optional[Any]: """simple docstring""" if not isinstance(A_ , A_ ) or min_length < 0: raise ValueError(F'''`min_length` has to be a positive integer, but is {min_length}''' ) if not isinstance(A_ , A_ ) or eos_token_id < 0: raise ValueError(F'''`eos_token_id` has to be a positive integer, but is {eos_token_id}''' ) UpperCamelCase = min_length UpperCamelCase = eos_token_id def __call__( self , A_ , A_ , A_ ) -> jnp.ndarray: """simple docstring""" # create boolean flag to decide if min length penalty should be applied UpperCamelCase = 1 - jnp.clip(cur_len - self.min_length , 0 , 1 ) UpperCamelCase = jnp.where(A_ , scores.at[:, self.eos_token_id].set(-float('inf' ) ) , A_ ) return scores class lowercase ( _SCREAMING_SNAKE_CASE ): def __init__( self , A_ , A_ ) -> str: """simple docstring""" UpperCamelCase = list(A_ ) UpperCamelCase = begin_index def __call__( self , A_ , A_ , A_ ) -> Union[str, Any]: """simple docstring""" UpperCamelCase = 1 - jnp.bool_(cur_len - self.begin_index ) UpperCamelCase = jnp.where(A_ , scores.at[:, self.begin_suppress_tokens].set(-float('inf' ) ) , A_ ) return scores class lowercase ( _SCREAMING_SNAKE_CASE ): def __init__( self , A_ ) -> List[Any]: """simple docstring""" UpperCamelCase = list(A_ ) def __call__( self , A_ , A_ , A_ ) -> jnp.ndarray: """simple docstring""" UpperCamelCase = scores.at[..., self.suppress_tokens].set(-float('inf' ) ) return scores class lowercase ( _SCREAMING_SNAKE_CASE ): def __init__( self , A_ ) -> str: """simple docstring""" UpperCamelCase = dict(A_ ) # Converts the dictionary of format {index: token} containing the tokens to be forced to an array, where the # index of the array corresponds to the index of the token to be forced, for XLA compatibility. # Indexes without forced tokens will have a negative value. UpperCamelCase = jnp.ones((max(force_token_map.keys() ) + 1) , dtype=jnp.intaa ) * -1 for index, token in force_token_map.items(): if token is not None: UpperCamelCase = force_token_array.at[index].set(A_ ) UpperCamelCase = jnp.intaa(A_ ) def __call__( self , A_ , A_ , A_ ) -> jnp.ndarray: """simple docstring""" def _force_token(A_ ): UpperCamelCase = scores.shape[0] UpperCamelCase = self.force_token_array[generation_idx] UpperCamelCase = jnp.ones_like(A_ , dtype=scores.dtype ) * -float('inf' ) UpperCamelCase = jnp.zeros((batch_size, 1) , dtype=scores.dtype ) UpperCamelCase = lax.dynamic_update_slice(A_ , A_ , (0, current_token) ) return new_scores UpperCamelCase = lax.cond( cur_len >= self.force_token_array.shape[0] , lambda: scores , lambda: lax.cond( self.force_token_array[cur_len] >= 0 , lambda: _force_token(A_ ) , lambda: scores , ) , ) return scores class lowercase ( _SCREAMING_SNAKE_CASE ): def __init__( self , A_ , A_ , A_ ) -> str: """simple docstring""" UpperCamelCase = generate_config.eos_token_id UpperCamelCase = generate_config.no_timestamps_token_id UpperCamelCase = generate_config.no_timestamps_token_id + 1 UpperCamelCase = decoder_input_length + 1 if generate_config.is_multilingual: # room for language token and task token self.begin_index += 2 if hasattr(A_ , 'max_initial_timestamp_index' ): UpperCamelCase = generate_config.max_initial_timestamp_index else: UpperCamelCase = model_config.vocab_size if self.max_initial_timestamp_index is None: UpperCamelCase = model_config.vocab_size def __call__( self , A_ , A_ , A_ ) -> Dict: """simple docstring""" # suppress <|notimestamps|> which is handled by without_timestamps UpperCamelCase = scores.at[:, self.no_timestamps_token_id].set(-float('inf' ) ) def handle_pairs(A_ , A_ ): UpperCamelCase = jnp.where((cur_len - self.begin_index) >= 1 , A_ , A_ ) UpperCamelCase = jnp.where( input_ids_k[cur_len - 1] >= self.timestamp_begin , True and last_was_timestamp , A_ , ) UpperCamelCase = jnp.where((cur_len - self.begin_index) < 2 , A_ , A_ ) UpperCamelCase = jnp.where( input_ids_k[cur_len - 2] >= self.timestamp_begin , A_ , A_ , ) return jnp.where( A_ , jnp.where( penultimate_was_timestamp > 0 , scores_k.at[self.timestamp_begin :].set(-float('inf' ) ) , scores_k.at[: self.eos_token_id].set(-float('inf' ) ) , ) , A_ , ) UpperCamelCase = jax.vmap(A_ )(A_ , A_ ) UpperCamelCase = jnp.where(cur_len == self.begin_index , A_ , A_ ) UpperCamelCase = jnp.where( self.max_initial_timestamp_index is not None , True and apply_max_initial_timestamp , A_ , ) UpperCamelCase = self.timestamp_begin + self.max_initial_timestamp_index UpperCamelCase = jnp.where( A_ , scores.at[:, last_allowed + 1 :].set(-float('inf' ) ) , A_ , ) # if sum of probability over timestamps is above any other token, sample timestamp UpperCamelCase = jax.nn.log_softmax(A_ , axis=-1 ) def handle_cumulative_probs(A_ , A_ ): UpperCamelCase = jax.nn.logsumexp(logprobs_k[self.timestamp_begin :] , axis=-1 ) UpperCamelCase = jnp.max(logprobs_k[: self.timestamp_begin] ) return jnp.where( timestamp_logprob > max_text_token_logprob , scores_k.at[: self.timestamp_begin].set(-float('inf' ) ) , A_ , ) UpperCamelCase = jax.vmap(A_ )(A_ , A_ ) return scores
222
0
"""simple docstring""" import math def lowercase_ ( _lowerCamelCase: float , _lowerCamelCase: float ) -> float: '''simple docstring''' if ( not isinstance(_lowerCamelCase , (int, float) ) or power_factor < -1 or power_factor > 1 ): raise ValueError("power_factor must be a valid float value between -1 and 1." ) return apparent_power * power_factor def lowercase_ ( _lowerCamelCase: float , _lowerCamelCase: float ) -> float: '''simple docstring''' if ( not isinstance(_lowerCamelCase , (int, float) ) or power_factor < -1 or power_factor > 1 ): raise ValueError("power_factor must be a valid float value between -1 and 1." ) return apparent_power * math.sqrt(1 - power_factor**2 ) if __name__ == "__main__": import doctest doctest.testmod()
362
"""simple docstring""" def lowercase_ ( _lowerCamelCase: int = 4000000 ) -> int: '''simple docstring''' __lowerCamelCase : Tuple = [0, 1] __lowerCamelCase : Union[str, Any] = 0 while fib[i] <= n: fib.append(fib[i] + fib[i + 1] ) if fib[i + 2] > n: break i += 1 __lowerCamelCase : Tuple = 0 for j in range(len(_lowerCamelCase ) - 1 ): if fib[j] % 2 == 0: total += fib[j] return total if __name__ == "__main__": print(F"""{solution() = }""")
64
0