code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
import requests _snake_case = '''''' # <-- Put your OpenWeatherMap appid here! _snake_case = '''https://api.openweathermap.org/data/2.5/''' def lowercase_( SCREAMING_SNAKE_CASE_ = "Chicago" , SCREAMING_SNAKE_CASE_ = APPID ): '''simple docstring''' return requests.get(URL_BASE + "weather" , params=locals() ).json() def lowercase_( SCREAMING_SNAKE_CASE_ = "Kolkata, India" , SCREAMING_SNAKE_CASE_ = APPID ): '''simple docstring''' return requests.get(URL_BASE + "forecast" , params=locals() ).json() def lowercase_( SCREAMING_SNAKE_CASE_ = 55.68 , SCREAMING_SNAKE_CASE_ = 12.57 , SCREAMING_SNAKE_CASE_ = APPID ): '''simple docstring''' return requests.get(URL_BASE + "onecall" , params=locals() ).json() if __name__ == "__main__": from pprint import pprint while True: _snake_case = input('''Enter a location:''').strip() if location: pprint(current_weather(location)) else: break
283
import math from typing import Callable, List, Optional, Union import numpy as np import PIL import torch from PIL import Image from transformers import CLIPTextModel, CLIPTokenizer from diffusers.models import AutoencoderKL, UNetaDConditionModel from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_upscale import StableDiffusionUpscalePipeline from diffusers.schedulers import DDIMScheduler, DDPMScheduler, LMSDiscreteScheduler, PNDMScheduler def lowercase_( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=[] ): '''simple docstring''' lowerCamelCase : Optional[Any] = size[0] - overlap_pixels * 2 lowerCamelCase : int = size[1] - overlap_pixels * 2 for letter in ["l", "r"]: if letter in remove_borders: size_x += overlap_pixels for letter in ["t", "b"]: if letter in remove_borders: size_y += overlap_pixels lowerCamelCase : Tuple = np.ones((size_y, size_x) , dtype=np.uinta ) * 255 lowerCamelCase : List[Any] = np.pad(SCREAMING_SNAKE_CASE_ , mode="linear_ramp" , pad_width=SCREAMING_SNAKE_CASE_ , end_values=0 ) if "l" in remove_borders: lowerCamelCase : Optional[Any] = mask[:, overlap_pixels : mask.shape[1]] if "r" in remove_borders: lowerCamelCase : List[Any] = mask[:, 0 : mask.shape[1] - overlap_pixels] if "t" in remove_borders: lowerCamelCase : List[Any] = mask[overlap_pixels : mask.shape[0], :] if "b" in remove_borders: lowerCamelCase : Tuple = mask[0 : mask.shape[0] - overlap_pixels, :] return mask def lowercase_( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): '''simple docstring''' return max(SCREAMING_SNAKE_CASE_ , min(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) def lowercase_( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): '''simple docstring''' return ( clamp(rect[0] , min[0] , max[0] ), clamp(rect[1] , min[1] , max[1] ), clamp(rect[2] , min[0] , max[0] ), clamp(rect[3] , min[1] , max[1] ), ) def lowercase_( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): '''simple docstring''' lowerCamelCase : Optional[Any] = list(SCREAMING_SNAKE_CASE_ ) rect[0] -= overlap rect[1] -= overlap rect[2] += overlap rect[3] += overlap lowerCamelCase : Any = clamp_rect(SCREAMING_SNAKE_CASE_ , [0, 0] , [image_size[0], image_size[1]] ) return rect def lowercase_( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): '''simple docstring''' lowerCamelCase : Dict = Image.new("RGB" , (tile.size[0] + original_slice, tile.size[1]) ) result.paste( original_image.resize((tile.size[0], tile.size[1]) , Image.BICUBIC ).crop( (slice_x, 0, slice_x + original_slice, tile.size[1]) ) , (0, 0) , ) result.paste(SCREAMING_SNAKE_CASE_ , (original_slice, 0) ) return result def lowercase_( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): '''simple docstring''' lowerCamelCase : Union[str, Any] = (original_image_slice * 4, 0, tile.size[0], tile.size[1]) lowerCamelCase : int = tile.crop(SCREAMING_SNAKE_CASE_ ) return tile def lowercase_( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): '''simple docstring''' lowerCamelCase : int = n % d return n - divisor class UpperCAmelCase_ ( UpperCamelCase ): '''simple docstring''' def __init__( self , __A , __A , __A , __A , __A , __A , __A = 350 , ): """simple docstring""" super().__init__( vae=__A , text_encoder=__A , tokenizer=__A , unet=__A , low_res_scheduler=__A , scheduler=__A , max_noise_level=__A , ) def _snake_case ( self , __A , __A , __A , __A , __A , __A , __A , **__A ): """simple docstring""" torch.manual_seed(0 ) lowerCamelCase : Tuple = ( min(image.size[0] - (tile_size + original_image_slice) , x * tile_size ), min(image.size[1] - (tile_size + original_image_slice) , y * tile_size ), min(image.size[0] , (x + 1) * tile_size ), min(image.size[1] , (y + 1) * tile_size ), ) lowerCamelCase : Union[str, Any] = add_overlap_rect(__A , __A , image.size ) lowerCamelCase : List[str] = image.crop(__A ) lowerCamelCase : Optional[int] = ((crop_rect[0] + ((crop_rect[2] - crop_rect[0]) / 2)) / image.size[0]) * tile.size[0] lowerCamelCase : int = translated_slice_x - (original_image_slice / 2) lowerCamelCase : Optional[Any] = max(0 , __A ) lowerCamelCase : Tuple = squeeze_tile(__A , __A , __A , __A ) lowerCamelCase : Dict = to_input.size lowerCamelCase : Optional[int] = to_input.resize((tile_size, tile_size) , Image.BICUBIC ) lowerCamelCase : Dict = super(__A , self ).__call__(image=__A , **__A ).images[0] lowerCamelCase : Tuple = upscaled_tile.resize((orig_input_size[0] * 4, orig_input_size[1] * 4) , Image.BICUBIC ) lowerCamelCase : Optional[Any] = unsqueeze_tile(__A , __A ) lowerCamelCase : Optional[Any] = upscaled_tile.resize((tile.size[0] * 4, tile.size[1] * 4) , Image.BICUBIC ) lowerCamelCase : int = [] if x == 0: remove_borders.append("l" ) elif crop_rect[2] == image.size[0]: remove_borders.append("r" ) if y == 0: remove_borders.append("t" ) elif crop_rect[3] == image.size[1]: remove_borders.append("b" ) lowerCamelCase : int = Image.fromarray( make_transparency_mask( (upscaled_tile.size[0], upscaled_tile.size[1]) , tile_border * 4 , remove_borders=__A ) , mode="L" , ) final_image.paste( __A , (crop_rect_with_overlap[0] * 4, crop_rect_with_overlap[1] * 4) , __A ) @torch.no_grad() def __call__( self , __A , __A , __A = 75 , __A = 9.0 , __A = 50 , __A = None , __A = 1 , __A = 0.0 , __A = None , __A = None , __A = None , __A = 1 , __A = 128 , __A = 32 , __A = 32 , ): """simple docstring""" lowerCamelCase : Dict = Image.new("RGB" , (image.size[0] * 4, image.size[1] * 4) ) lowerCamelCase : Union[str, Any] = math.ceil(image.size[0] / tile_size ) lowerCamelCase : Dict = math.ceil(image.size[1] / tile_size ) lowerCamelCase : str = tcx * tcy lowerCamelCase : int = 0 for y in range(__A ): for x in range(__A ): self._process_tile( __A , __A , __A , __A , __A , __A , __A , prompt=__A , num_inference_steps=__A , guidance_scale=__A , noise_level=__A , negative_prompt=__A , num_images_per_prompt=__A , eta=__A , generator=__A , latents=__A , ) current_count += 1 if callback is not None: callback({"progress": current_count / total_tile_count, "image": final_image} ) return final_image def lowercase_( ): '''simple docstring''' lowerCamelCase : Dict = "stabilityai/stable-diffusion-x4-upscaler" lowerCamelCase : Union[str, Any] = StableDiffusionTiledUpscalePipeline.from_pretrained(SCREAMING_SNAKE_CASE_ , revision="fp16" , torch_dtype=torch.floataa ) lowerCamelCase : Optional[Any] = pipe.to("cuda" ) lowerCamelCase : List[str] = Image.open("../../docs/source/imgs/diffusers_library.jpg" ) def callback(SCREAMING_SNAKE_CASE_ ): print(f"""progress: {obj['progress']:.4f}""" ) obj["image"].save("diffusers_library_progress.jpg" ) lowerCamelCase : int = pipe(image=SCREAMING_SNAKE_CASE_ , prompt="Black font, white background, vector" , noise_level=40 , callback=SCREAMING_SNAKE_CASE_ ) final_image.save("diffusers_library.jpg" ) if __name__ == "__main__": main()
283
1
'''simple docstring''' import argparse _lowerCAmelCase = "docs/source/_static/js/custom.js" def UpperCamelCase ( a ) -> str: '''simple docstring''' with open(a , encoding='''utf-8''' , newline='''\n''' ) as f: __magic_name__ = f.readlines() __magic_name__ = 0 # First let's put the right version while not lines[index].startswith('''const stableVersion =''' ): index += 1 __magic_name__ = F'''const stableVersion = "v{version}"\n''' # Then update the dictionary while not lines[index].startswith('''const versionMapping = {''' ): index += 1 # We go until the end while not lines[index].startswith('''}''' ): index += 1 # We add the new version at the end lines[index - 1] += F''' "v{version}": "v{version}",\n''' with open(a , '''w''' , encoding='''utf-8''' , newline='''\n''' ) as f: f.writelines(a ) if __name__ == "__main__": _lowerCAmelCase = argparse.ArgumentParser() parser.add_argument("--version", help="Release version.") _lowerCAmelCase = parser.parse_args() update_custom_js(args.version)
98
'''simple docstring''' import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, PNDMScheduler, StableDiffusionInpaintPipeline, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, slow from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class _SCREAMING_SNAKE_CASE ( __a ,__a ,__a ,unittest.TestCase ): __SCREAMING_SNAKE_CASE :Union[str, Any] = StableDiffusionInpaintPipeline __SCREAMING_SNAKE_CASE :Optional[int] = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS __SCREAMING_SNAKE_CASE :Tuple = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS __SCREAMING_SNAKE_CASE :str = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess __SCREAMING_SNAKE_CASE :Optional[Any] = frozenset([] ) def snake_case__ ( self : Union[str, Any] ): torch.manual_seed(0 ) __magic_name__ = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=9 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , attention_head_dim=(2, 4) , use_linear_projection=a__ , ) __magic_name__ = PNDMScheduler(skip_prk_steps=a__ ) torch.manual_seed(0 ) __magic_name__ = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , sample_size=128 , ) torch.manual_seed(0 ) __magic_name__ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , hidden_act='''gelu''' , projection_dim=512 , ) __magic_name__ = CLIPTextModel(a__ ) __magic_name__ = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) __magic_name__ = { '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''safety_checker''': None, '''feature_extractor''': None, } return components def snake_case__ ( self : Any , a__ : Optional[int] , a__ : List[Any]=0 ): # TODO: use tensor inputs instead of PIL, this is here just to leave the old expected_slices untouched __magic_name__ = floats_tensor((1, 3, 32, 32) , rng=random.Random(a__ ) ).to(a__ ) __magic_name__ = image.cpu().permute(0 , 2 , 3 , 1 )[0] __magic_name__ = Image.fromarray(np.uinta(a__ ) ).convert('''RGB''' ).resize((64, 64) ) __magic_name__ = Image.fromarray(np.uinta(image + 4 ) ).convert('''RGB''' ).resize((64, 64) ) if str(a__ ).startswith('''mps''' ): __magic_name__ = torch.manual_seed(a__ ) else: __magic_name__ = torch.Generator(device=a__ ).manual_seed(a__ ) __magic_name__ = { '''prompt''': '''A painting of a squirrel eating a burger''', '''image''': init_image, '''mask_image''': mask_image, '''generator''': generator, '''num_inference_steps''': 2, '''guidance_scale''': 6.0, '''output_type''': '''numpy''', } return inputs def snake_case__ ( self : Union[str, Any] ): __magic_name__ = '''cpu''' # ensure determinism for the device-dependent torch.Generator __magic_name__ = self.get_dummy_components() __magic_name__ = StableDiffusionInpaintPipeline(**a__ ) __magic_name__ = sd_pipe.to(a__ ) sd_pipe.set_progress_bar_config(disable=a__ ) __magic_name__ = self.get_dummy_inputs(a__ ) __magic_name__ = sd_pipe(**a__ ).images __magic_name__ = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) __magic_name__ = np.array([0.4_727, 0.5_735, 0.3_941, 0.5_446, 0.5_926, 0.4_394, 0.5_062, 0.4_654, 0.4_476] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def snake_case__ ( self : List[Any] ): super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): def snake_case__ ( self : int ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def snake_case__ ( self : Tuple ): __magic_name__ = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/sd2-inpaint/init_image.png''' ) __magic_name__ = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png''' ) __magic_name__ = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint''' '''/yellow_cat_sitting_on_a_park_bench.npy''' ) __magic_name__ = '''stabilityai/stable-diffusion-2-inpainting''' __magic_name__ = StableDiffusionInpaintPipeline.from_pretrained(a__ , safety_checker=a__ ) pipe.to(a__ ) pipe.set_progress_bar_config(disable=a__ ) pipe.enable_attention_slicing() __magic_name__ = '''Face of a yellow cat, high resolution, sitting on a park bench''' __magic_name__ = torch.manual_seed(0 ) __magic_name__ = pipe( prompt=a__ , image=a__ , mask_image=a__ , generator=a__ , output_type='''np''' , ) __magic_name__ = output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image ).max() < 9E-3 def snake_case__ ( self : List[str] ): __magic_name__ = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/sd2-inpaint/init_image.png''' ) __magic_name__ = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png''' ) __magic_name__ = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint''' '''/yellow_cat_sitting_on_a_park_bench_fp16.npy''' ) __magic_name__ = '''stabilityai/stable-diffusion-2-inpainting''' __magic_name__ = StableDiffusionInpaintPipeline.from_pretrained( a__ , torch_dtype=torch.floataa , safety_checker=a__ , ) pipe.to(a__ ) pipe.set_progress_bar_config(disable=a__ ) pipe.enable_attention_slicing() __magic_name__ = '''Face of a yellow cat, high resolution, sitting on a park bench''' __magic_name__ = torch.manual_seed(0 ) __magic_name__ = pipe( prompt=a__ , image=a__ , mask_image=a__ , generator=a__ , output_type='''np''' , ) __magic_name__ = output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image ).max() < 5E-1 def snake_case__ ( self : List[Any] ): torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() __magic_name__ = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/sd2-inpaint/init_image.png''' ) __magic_name__ = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png''' ) __magic_name__ = '''stabilityai/stable-diffusion-2-inpainting''' __magic_name__ = PNDMScheduler.from_pretrained(a__ , subfolder='''scheduler''' ) __magic_name__ = StableDiffusionInpaintPipeline.from_pretrained( a__ , safety_checker=a__ , scheduler=a__ , torch_dtype=torch.floataa , ) pipe.to(a__ ) pipe.set_progress_bar_config(disable=a__ ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() __magic_name__ = '''Face of a yellow cat, high resolution, sitting on a park bench''' __magic_name__ = torch.manual_seed(0 ) __magic_name__ = pipe( prompt=a__ , image=a__ , mask_image=a__ , generator=a__ , num_inference_steps=2 , output_type='''np''' , ) __magic_name__ = torch.cuda.max_memory_allocated() # make sure that less than 2.65 GB is allocated assert mem_bytes < 2.65 * 10**9
98
1
"""simple docstring""" import copy import os import tempfile from unittest import TestCase from unittest.mock import patch import numpy as np import pyarrow as pa import pyarrow.parquet as pq import pytest from datasets.arrow_writer import ArrowWriter, OptimizedTypedSequence, ParquetWriter, TypedSequence from datasets.features import ArrayaD, ClassLabel, Features, Image, Value from datasets.features.features import ArrayaDExtensionType, cast_to_python_objects from datasets.keyhash import DuplicatedKeysError, InvalidKeyError from .utils import require_pil class _UpperCAmelCase ( lowerCAmelCase__): def _snake_case ( self : str ): snake_case_ : List[str] = pa.array(TypedSequence([1, 2, 3] ) ) self.assertEqual(arr.type , pa.intaa() ) def _snake_case ( self : Optional[int] ): with self.assertRaises(lowercase_ ): snake_case_ : int = pa.array(TypedSequence([1, 2, 3] ) , type=pa.intaa() ) def _snake_case ( self : Union[str, Any] ): with self.assertRaises(lowercase_ ): snake_case_ : Optional[Any] = pa.array(TypedSequence([1, 2, 3] , try_type=Value('''bool''' ) , type=Value('''int64''' ) ) ) def _snake_case ( self : Dict ): snake_case_ : Optional[Any] = pa.array(TypedSequence([1, 2, 3] , type=Value('''int32''' ) ) ) self.assertEqual(arr.type , pa.intaa() ) def _snake_case ( self : Dict ): with self.assertRaises((TypeError, pa.lib.ArrowInvalid) ): snake_case_ : Union[str, Any] = pa.array(TypedSequence(['''foo''', '''bar'''] , type=Value('''int64''' ) ) ) def _snake_case ( self : int ): snake_case_ : Any = pa.array(TypedSequence([1, 2, 3] , try_type=Value('''int32''' ) ) ) self.assertEqual(arr.type , pa.intaa() ) def _snake_case ( self : Dict ): snake_case_ : Tuple = pa.array(TypedSequence(['''foo''', '''bar'''] , try_type=Value('''int64''' ) ) ) self.assertEqual(arr.type , pa.string() ) def _snake_case ( self : Dict ): snake_case_ : Union[str, Any] = pa.array(TypedSequence([[[1, 2, 3]]] , type=ArrayaD((1, 3) , '''int64''' ) ) ) self.assertEqual(arr.type , ArrayaDExtensionType((1, 3) , '''int64''' ) ) def _snake_case ( self : List[Any] ): with self.assertRaises((TypeError, pa.lib.ArrowInvalid) ): snake_case_ : Dict = pa.array(TypedSequence(['''foo''', '''bar'''] , type=ArrayaD((1, 3) , '''int64''' ) ) ) def _snake_case ( self : Dict ): snake_case_ : Dict = pa.array(TypedSequence([[[1, 2, 3]]] , try_type=ArrayaD((1, 3) , '''int64''' ) ) ) self.assertEqual(arr.type , ArrayaDExtensionType((1, 3) , '''int64''' ) ) def _snake_case ( self : Union[str, Any] ): snake_case_ : int = pa.array(TypedSequence(['''foo''', '''bar'''] , try_type=ArrayaD((1, 3) , '''int64''' ) ) ) self.assertEqual(arr.type , pa.string() ) @require_pil def _snake_case ( self : str ): import PIL.Image snake_case_ : List[str] = PIL.Image.fromarray(np.arange(10 , dtype=np.uinta ).reshape(2 , 5 ) ) with patch( '''datasets.arrow_writer.cast_to_python_objects''' , side_effect=lowercase_ ) as mock_cast_to_python_objects: snake_case_ : Union[str, Any] = pa.array(TypedSequence([{'''path''': None, '''bytes''': B'''image_bytes'''}, pil_image] , type=Image() ) ) snake_case_, snake_case_ : Tuple = mock_cast_to_python_objects.call_args_list[-1] self.assertIn('''optimize_list_casting''' , lowercase_ ) self.assertFalse(kwargs['''optimize_list_casting'''] ) def __lowercase ( _a , _a ): snake_case_ : List[Any] = pa.BufferReader(_a ) if isinstance(_a , pa.Buffer ) else pa.memory_map(_a ) snake_case_ : int = pa.ipc.open_stream(_a ) snake_case_ : pa.Table = f.read_all() assert len(pa_table.to_batches() ) == expected_num_chunks assert pa_table.to_pydict() == {"col_1": ["foo", "bar"], "col_2": [1, 2]} del pa_table @pytest.mark.parametrize('''writer_batch_size''' , [None, 1, 10] ) @pytest.mark.parametrize( '''fields''' , [None, {'''col_1''': pa.string(), '''col_2''': pa.intaa()}, {'''col_1''': pa.string(), '''col_2''': pa.intaa()}] ) def __lowercase ( _a , _a ): snake_case_ : Optional[Any] = pa.BufferOutputStream() snake_case_ : Optional[Any] = pa.schema(_a ) if fields else None with ArrowWriter(stream=_a , schema=_a , writer_batch_size=_a ) as writer: writer.write({'''col_1''': '''foo''', '''col_2''': 1} ) writer.write({'''col_1''': '''bar''', '''col_2''': 2} ) snake_case_, snake_case_ : Optional[Any] = writer.finalize() assert num_examples == 2 assert num_bytes > 0 if not fields: snake_case_ : Dict = {'''col_1''': pa.string(), '''col_2''': pa.intaa()} assert writer._schema == pa.schema(_a , metadata=writer._schema.metadata ) _check_output(output.getvalue() , expected_num_chunks=num_examples if writer_batch_size == 1 else 1 ) def __lowercase ( ): snake_case_ : Tuple = pa.BufferOutputStream() snake_case_ : Optional[Any] = Features({'''labels''': ClassLabel(names=['''neg''', '''pos'''] )} ) with ArrowWriter(stream=_a , features=_a ) as writer: writer.write({'''labels''': 0} ) writer.write({'''labels''': 1} ) snake_case_, snake_case_ : Any = writer.finalize() assert num_examples == 2 assert num_bytes > 0 assert writer._schema == features.arrow_schema assert writer._schema.metadata == features.arrow_schema.metadata snake_case_ : str = pa.BufferReader(output.getvalue() ) snake_case_ : str = pa.ipc.open_stream(_a ) snake_case_ : pa.Table = f.read_all() snake_case_ : Dict = pa_table.schema assert pa_table.num_rows == 2 assert schema == features.arrow_schema assert schema.metadata == features.arrow_schema.metadata assert features == Features.from_arrow_schema(_a ) @pytest.mark.parametrize('''writer_batch_size''' , [None, 1, 10] ) def __lowercase ( _a ): snake_case_ : Any = pa.BufferOutputStream() with ArrowWriter( stream=_a , writer_batch_size=_a , hash_salt='''split_name''' , check_duplicates=_a , ) as writer: with pytest.raises(_a ): writer.write({'''col_1''': '''foo''', '''col_2''': 1} , key=[1, 2] ) snake_case_, snake_case_ : List[str] = writer.finalize() @pytest.mark.parametrize('''writer_batch_size''' , [None, 2, 10] ) def __lowercase ( _a ): snake_case_ : List[Any] = pa.BufferOutputStream() with ArrowWriter( stream=_a , writer_batch_size=_a , hash_salt='''split_name''' , check_duplicates=_a , ) as writer: with pytest.raises(_a ): writer.write({'''col_1''': '''foo''', '''col_2''': 1} , key=10 ) writer.write({'''col_1''': '''bar''', '''col_2''': 2} , key=10 ) snake_case_, snake_case_ : Dict = writer.finalize() @pytest.mark.parametrize('''writer_batch_size''' , [None, 2, 10] ) def __lowercase ( _a ): snake_case_ : List[str] = pa.BufferOutputStream() with ArrowWriter( stream=_a , writer_batch_size=_a , hash_salt='''split_name''' , check_duplicates=_a , ) as writer: writer.write({'''col_1''': '''foo''', '''col_2''': 1} , key=1 ) writer.write({'''col_1''': '''bar''', '''col_2''': 2} , key=2 ) snake_case_, snake_case_ : Union[str, Any] = writer.finalize() assert num_examples == 2 assert num_bytes > 0 _check_output(output.getvalue() , expected_num_chunks=num_examples if writer_batch_size == 1 else 1 ) @pytest.mark.parametrize('''writer_batch_size''' , [None, 1, 10] ) @pytest.mark.parametrize( '''fields''' , [None, {'''col_1''': pa.string(), '''col_2''': pa.intaa()}, {'''col_1''': pa.string(), '''col_2''': pa.intaa()}] ) def __lowercase ( _a , _a ): snake_case_ : List[Any] = pa.BufferOutputStream() snake_case_ : str = pa.schema(_a ) if fields else None with ArrowWriter(stream=_a , schema=_a , writer_batch_size=_a ) as writer: writer.write_batch({'''col_1''': ['''foo''', '''bar'''], '''col_2''': [1, 2]} ) writer.write_batch({'''col_1''': [], '''col_2''': []} ) snake_case_, snake_case_ : str = writer.finalize() assert num_examples == 2 assert num_bytes > 0 if not fields: snake_case_ : Optional[int] = {'''col_1''': pa.string(), '''col_2''': pa.intaa()} assert writer._schema == pa.schema(_a , metadata=writer._schema.metadata ) _check_output(output.getvalue() , expected_num_chunks=num_examples if writer_batch_size == 1 else 1 ) @pytest.mark.parametrize('''writer_batch_size''' , [None, 1, 10] ) @pytest.mark.parametrize( '''fields''' , [None, {'''col_1''': pa.string(), '''col_2''': pa.intaa()}, {'''col_1''': pa.string(), '''col_2''': pa.intaa()}] ) def __lowercase ( _a , _a ): snake_case_ : Any = pa.BufferOutputStream() snake_case_ : List[str] = pa.schema(_a ) if fields else None with ArrowWriter(stream=_a , schema=_a , writer_batch_size=_a ) as writer: writer.write_table(pa.Table.from_pydict({'''col_1''': ['''foo''', '''bar'''], '''col_2''': [1, 2]} ) ) snake_case_, snake_case_ : int = writer.finalize() assert num_examples == 2 assert num_bytes > 0 if not fields: snake_case_ : Dict = {'''col_1''': pa.string(), '''col_2''': pa.intaa()} assert writer._schema == pa.schema(_a , metadata=writer._schema.metadata ) _check_output(output.getvalue() , expected_num_chunks=num_examples if writer_batch_size == 1 else 1 ) @pytest.mark.parametrize('''writer_batch_size''' , [None, 1, 10] ) @pytest.mark.parametrize( '''fields''' , [None, {'''col_1''': pa.string(), '''col_2''': pa.intaa()}, {'''col_1''': pa.string(), '''col_2''': pa.intaa()}] ) def __lowercase ( _a , _a ): snake_case_ : Optional[int] = pa.BufferOutputStream() snake_case_ : Dict = pa.schema(_a ) if fields else None with ArrowWriter(stream=_a , schema=_a , writer_batch_size=_a ) as writer: writer.write_row(pa.Table.from_pydict({'''col_1''': ['''foo'''], '''col_2''': [1]} ) ) writer.write_row(pa.Table.from_pydict({'''col_1''': ['''bar'''], '''col_2''': [2]} ) ) snake_case_, snake_case_ : List[Any] = writer.finalize() assert num_examples == 2 assert num_bytes > 0 if not fields: snake_case_ : Optional[int] = {'''col_1''': pa.string(), '''col_2''': pa.intaa()} assert writer._schema == pa.schema(_a , metadata=writer._schema.metadata ) _check_output(output.getvalue() , expected_num_chunks=num_examples if writer_batch_size == 1 else 1 ) def __lowercase ( ): with tempfile.TemporaryDirectory() as tmp_dir: snake_case_ : Optional[int] = {'''col_1''': pa.string(), '''col_2''': pa.intaa()} snake_case_ : Any = os.path.join(_a , '''test.arrow''' ) with ArrowWriter(path=_a , schema=pa.schema(_a ) ) as writer: writer.write_batch({'''col_1''': ['''foo''', '''bar'''], '''col_2''': [1, 2]} ) snake_case_, snake_case_ : Optional[int] = writer.finalize() assert num_examples == 2 assert num_bytes > 0 assert writer._schema == pa.schema(_a , metadata=writer._schema.metadata ) _check_output(_a , 1 ) def __lowercase ( _a ): if pa.types.is_list(_a ): return get_base_dtype(arr_type.value_type ) else: return arr_type def __lowercase ( _a , _a ): if isinstance(lst[0] , _a ): change_first_primitive_element_in_list(lst[0] , _a ) else: snake_case_ : Any = value @pytest.mark.parametrize('''optimized_int_type, expected_dtype''' , [(None, pa.intaa()), (Value('''int32''' ), pa.intaa())] ) @pytest.mark.parametrize('''sequence''' , [[1, 2, 3], [[1, 2, 3]], [[[1, 2, 3]]]] ) def __lowercase ( _a , _a , _a ): snake_case_ : List[Any] = pa.array(TypedSequence(_a , optimized_int_type=_a ) ) assert get_base_dtype(arr.type ) == expected_dtype @pytest.mark.parametrize( '''col, expected_dtype''' , [ ('''attention_mask''', pa.inta()), ('''special_tokens_mask''', pa.inta()), ('''token_type_ids''', pa.inta()), ('''input_ids''', pa.intaa()), ('''other''', pa.intaa()), ] , ) @pytest.mark.parametrize('''sequence''' , [[1, 2, 3], [[1, 2, 3]], [[[1, 2, 3]]]] ) def __lowercase ( _a , _a , _a ): # in range snake_case_ : int = pa.array(OptimizedTypedSequence(_a , col=_a ) ) assert get_base_dtype(arr.type ) == expected_dtype # not in range if col != "other": # avoids errors due to in-place modifications snake_case_ : int = copy.deepcopy(_a ) snake_case_ : str = np.iinfo(expected_dtype.to_pandas_dtype() ).max + 1 change_first_primitive_element_in_list(_a , _a ) snake_case_ : Dict = pa.array(OptimizedTypedSequence(_a , col=_a ) ) assert get_base_dtype(arr.type ) == pa.intaa() @pytest.mark.parametrize('''raise_exception''' , [False, True] ) def __lowercase ( _a , _a ): snake_case_ : Tuple = str(tmp_path / '''dataset-train.arrow''' ) try: with ArrowWriter(path=_a ) as writer: if raise_exception: raise pa.lib.ArrowInvalid() else: writer.stream.close() except pa.lib.ArrowInvalid: pass finally: assert writer.stream.closed def __lowercase ( _a ): snake_case_ : Any = '''mock://dataset-train.arrow''' with ArrowWriter(path=_a , storage_options=mockfs.storage_options ) as writer: assert isinstance(writer._fs , type(_a ) ) assert writer._fs.storage_options == mockfs.storage_options writer.write({'''col_1''': '''foo''', '''col_2''': 1} ) writer.write({'''col_1''': '''bar''', '''col_2''': 2} ) snake_case_, snake_case_ : List[str] = writer.finalize() assert num_examples == 2 assert num_bytes > 0 assert mockfs.exists(_a ) def __lowercase ( ): snake_case_ : List[Any] = pa.BufferOutputStream() with ParquetWriter(stream=_a ) as writer: writer.write({'''col_1''': '''foo''', '''col_2''': 1} ) writer.write({'''col_1''': '''bar''', '''col_2''': 2} ) snake_case_, snake_case_ : Dict = writer.finalize() assert num_examples == 2 assert num_bytes > 0 snake_case_ : int = pa.BufferReader(output.getvalue() ) snake_case_ : pa.Table = pq.read_table(_a ) assert pa_table.to_pydict() == {"col_1": ["foo", "bar"], "col_2": [1, 2]} @require_pil @pytest.mark.parametrize('''embed_local_files''' , [False, True] ) def __lowercase ( _a , _a ): import PIL.Image snake_case_ : Optional[Any] = str(tmp_path / '''test_image_rgb.jpg''' ) PIL.Image.fromarray(np.zeros((5, 5) , dtype=np.uinta ) ).save(_a , format='''png''' ) snake_case_ : Tuple = pa.BufferOutputStream() with ParquetWriter( stream=_a , features=Features({'''image''': Image()} ) , embed_local_files=_a ) as writer: writer.write({'''image''': image_path} ) writer.finalize() snake_case_ : Any = pa.BufferReader(output.getvalue() ) snake_case_ : pa.Table = pq.read_table(_a ) snake_case_ : Union[str, Any] = pa_table.to_pydict() if embed_local_files: assert isinstance(out['''image'''][0]['''path'''] , _a ) with open(_a , '''rb''' ) as f: assert out["image"][0]["bytes"] == f.read() else: assert out["image"][0]["path"] == image_path assert out["image"][0]["bytes"] is None def __lowercase ( ): snake_case_ : Union[str, Any] = pa.schema([pa.field('''col_1''' , pa.string() , nullable=_a )] ) snake_case_ : Tuple = pa.BufferOutputStream() with ArrowWriter(stream=_a ) as writer: writer._build_writer(inferred_schema=_a ) assert writer._schema == pa.schema([pa.field('''col_1''' , pa.string() )] )
264
"""simple docstring""" import copy import os import cva import numpy as np from matplotlib import pyplot as plt class _UpperCAmelCase : def __init__( self : List[Any] ): snake_case_ : List[str] = '''''' snake_case_ : Tuple = '''''' snake_case_ : int = [] snake_case_ : Optional[int] = 0 snake_case_ : Optional[Any] = 256 snake_case_ : Tuple = 0 snake_case_ : Tuple = 0 snake_case_ : Optional[Any] = 0 snake_case_ : Any = 0 def _snake_case ( self : Optional[Any] , lowercase_ : List[Any] ): snake_case_ : List[Any] = cva.imread(lowercase_ , 0 ) snake_case_ : Tuple = copy.deepcopy(self.img ) snake_case_, snake_case_, snake_case_ : List[Any] = plt.hist(self.img.ravel() , 256 , [0, 256] , label='''x''' ) snake_case_ : str = np.sum(lowercase_ ) for i in range(len(lowercase_ ) ): snake_case_ : Optional[Any] = x[i] / self.k self.sk += prk snake_case_ : Any = (self.L - 1) * self.sk if self.rem != 0: snake_case_ : Dict = int(last % last ) snake_case_ : Union[str, Any] = int(last + 1 if self.rem >= 0.5 else last ) self.last_list.append(lowercase_ ) snake_case_ : int = int(np.ma.count(self.img ) / self.img[1].size ) snake_case_ : Tuple = self.img[1].size for i in range(self.number_of_cols ): for j in range(self.number_of_rows ): snake_case_ : Union[str, Any] = self.img[j][i] if num != self.last_list[num]: snake_case_ : List[str] = self.last_list[num] cva.imwrite('''output_data/output.jpg''' , self.img ) def _snake_case ( self : Tuple ): plt.hist(self.img.ravel() , 256 , [0, 256] ) def _snake_case ( self : int ): cva.imshow('''Output-Image''' , self.img ) cva.imshow('''Input-Image''' , self.original_image ) cva.waitKey(5000 ) cva.destroyAllWindows() if __name__ == "__main__": lowercase__ : Any = os.path.join(os.path.basename(__file__), '''image_data/input.jpg''') lowercase__ : Any = ConstantStretch() stretcher.stretch(file_path) stretcher.plot_histogram() stretcher.show_image()
264
1
import gc import threading import time import psutil import torch class _snake_case : def __init__( self ): a :Tuple = psutil.Process() a :str = False def SCREAMING_SNAKE_CASE__ ( self ): a :Union[str, Any] = -1 while True: a :Union[str, Any] = max(self.process.memory_info().rss , self.cpu_memory_peak ) # can't sleep or will not catch the peak right (this comment is here on purpose) if not self.peak_monitoring: break def SCREAMING_SNAKE_CASE__ ( self ): a :Tuple = True a :List[str] = threading.Thread(target=self.peak_monitor ) a :List[str] = True self.thread.start() def SCREAMING_SNAKE_CASE__ ( self ): a :List[str] = False self.thread.join() return self.cpu_memory_peak snake_case : Any = PeakCPUMemory() def __lowerCamelCase ( ): """simple docstring""" a :Tuple = {'''time''': time.time()} gc.collect() torch.cuda.empty_cache() # CPU mem a :Any = psutil.Process().memory_info().rss cpu_peak_tracker.start() # GPU mem for i in range(torch.cuda.device_count() ): a :Optional[int] = torch.cuda.memory_allocated(UpperCAmelCase_ ) torch.cuda.reset_peak_memory_stats() return measures def __lowerCamelCase ( UpperCAmelCase_ : int ): """simple docstring""" a :str = {'''time''': time.time() - start_measures['''time''']} gc.collect() torch.cuda.empty_cache() # CPU mem a :int = (psutil.Process().memory_info().rss - start_measures['''cpu''']) / 2**20 a :Optional[Any] = (cpu_peak_tracker.stop() - start_measures['''cpu''']) / 2**20 # GPU mem for i in range(torch.cuda.device_count() ): a :Dict = (torch.cuda.memory_allocated(UpperCAmelCase_ ) - start_measures[str(UpperCAmelCase_ )]) / 2**20 a :List[str] = (torch.cuda.max_memory_allocated(UpperCAmelCase_ ) - start_measures[str(UpperCAmelCase_ )]) / 2**20 return measures def __lowerCamelCase ( UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Dict ): """simple docstring""" print(F'''{description}:''' ) print(F'''- Time: {measures['time']:.2f}s''' ) for i in range(torch.cuda.device_count() ): print(F'''- GPU {i} allocated: {measures[str(UpperCAmelCase_ )]:.2f}MiB''' ) a :Union[str, Any] = measures[F'''{i}-peak'''] print(F'''- GPU {i} peak: {peak:.2f}MiB''' ) print(F'''- CPU RAM allocated: {measures['cpu']:.2f}MiB''' ) print(F'''- CPU RAM peak: {measures['cpu-peak']:.2f}MiB''' )
281
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging snake_case : Optional[Any] = logging.get_logger(__name__) snake_case : Dict = { '''facebook/data2vec-vision-base-ft''': ( '''https://huggingface.co/facebook/data2vec-vision-base-ft/resolve/main/config.json''' ), } class _snake_case ( _snake_case ): SCREAMING_SNAKE_CASE__ = 'data2vec-vision' def __init__( self , _lowerCamelCase=768 , _lowerCamelCase=12 , _lowerCamelCase=12 , _lowerCamelCase=3072 , _lowerCamelCase="gelu" , _lowerCamelCase=0.0 , _lowerCamelCase=0.0 , _lowerCamelCase=0.02 , _lowerCamelCase=1e-12 , _lowerCamelCase=224 , _lowerCamelCase=16 , _lowerCamelCase=3 , _lowerCamelCase=False , _lowerCamelCase=False , _lowerCamelCase=False , _lowerCamelCase=False , _lowerCamelCase=0.1 , _lowerCamelCase=0.1 , _lowerCamelCase=True , _lowerCamelCase=[3, 5, 7, 11] , _lowerCamelCase=[1, 2, 3, 6] , _lowerCamelCase=True , _lowerCamelCase=0.4 , _lowerCamelCase=256 , _lowerCamelCase=1 , _lowerCamelCase=False , _lowerCamelCase=255 , **_lowerCamelCase , ): super().__init__(**_lowerCamelCase ) a :Tuple = hidden_size a :Any = num_hidden_layers a :Optional[int] = num_attention_heads a :Dict = intermediate_size a :List[Any] = hidden_act a :List[str] = hidden_dropout_prob a :Union[str, Any] = attention_probs_dropout_prob a :Any = initializer_range a :Any = layer_norm_eps a :Union[str, Any] = image_size a :int = patch_size a :Optional[int] = num_channels a :Union[str, Any] = use_mask_token a :Optional[Any] = use_absolute_position_embeddings a :Tuple = use_relative_position_bias a :List[Any] = use_shared_relative_position_bias a :Dict = layer_scale_init_value a :Optional[int] = drop_path_rate a :List[str] = use_mean_pooling # decode head attributes (semantic segmentation) a :str = out_indices a :Tuple = pool_scales # auxiliary head attributes (semantic segmentation) a :List[Any] = use_auxiliary_head a :List[Any] = auxiliary_loss_weight a :Optional[int] = auxiliary_channels a :List[str] = auxiliary_num_convs a :str = auxiliary_concat_input a :Union[str, Any] = semantic_loss_ignore_index class _snake_case ( _snake_case ): SCREAMING_SNAKE_CASE__ = version.parse('1.11' ) @property def SCREAMING_SNAKE_CASE__ ( self ): return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) @property def SCREAMING_SNAKE_CASE__ ( self ): return 1e-4
281
1
"""simple docstring""" import re def UpperCAmelCase__ (lowerCAmelCase_ ): '''simple docstring''' return [char.split() for char in re.split(R"[^ a-z A-Z 0-9 \s]" , str_ )] def UpperCAmelCase__ (lowerCAmelCase_ ): '''simple docstring''' __SCREAMING_SNAKE_CASE = split_input(str_ ) return "".join( ["".join([char.capitalize() for char in sub_str] ) for sub_str in string_split] ) def UpperCAmelCase__ (lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): '''simple docstring''' try: __SCREAMING_SNAKE_CASE = split_input(lowerCAmelCase_ ) if upper: __SCREAMING_SNAKE_CASE = "".join( [ separator.join([char.upper() for char in sub_str] ) for sub_str in string_split ] ) else: __SCREAMING_SNAKE_CASE = "".join( [ separator.join([char.lower() for char in sub_str] ) for sub_str in string_split ] ) return res_str except IndexError: return "not valid string" def UpperCAmelCase__ (lowerCAmelCase_ ): '''simple docstring''' return to_simple_case(lowerCAmelCase_ ) def UpperCAmelCase__ (lowerCAmelCase_ ): '''simple docstring''' try: __SCREAMING_SNAKE_CASE = to_simple_case(lowerCAmelCase_ ) return res_str[0].lower() + res_str[1:] except IndexError: return "not valid string" def UpperCAmelCase__ (lowerCAmelCase_ , lowerCAmelCase_ ): '''simple docstring''' return to_complex_case(lowerCAmelCase_ , lowerCAmelCase_ , "_" ) def UpperCAmelCase__ (lowerCAmelCase_ , lowerCAmelCase_ ): '''simple docstring''' return to_complex_case(lowerCAmelCase_ , lowerCAmelCase_ , "-" ) if __name__ == "__main__": __import__('''doctest''').testmod()
54
import warnings from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging a : List[Any] = logging.get_logger(__name__) a : List[Any] = { "nvidia/segformer-b0-finetuned-ade-512-512": ( "https://huggingface.co/nvidia/segformer-b0-finetuned-ade-512-512/resolve/main/config.json" ), # See all SegFormer models at https://huggingface.co/models?filter=segformer } class a ( lowercase__ ): """simple docstring""" a : int = 'segformer' def __init__( self : Dict , __lowercase : str=3 , __lowercase : Dict=4 , __lowercase : Any=[2, 2, 2, 2] , __lowercase : Optional[int]=[8, 4, 2, 1] , __lowercase : List[str]=[32, 64, 160, 256] , __lowercase : Union[str, Any]=[7, 3, 3, 3] , __lowercase : Optional[int]=[4, 2, 2, 2] , __lowercase : Any=[1, 2, 5, 8] , __lowercase : List[str]=[4, 4, 4, 4] , __lowercase : Any="gelu" , __lowercase : Optional[int]=0.0 , __lowercase : Dict=0.0 , __lowercase : Optional[Any]=0.1 , __lowercase : int=0.02 , __lowercase : Optional[int]=0.1 , __lowercase : Optional[Any]=1e-6 , __lowercase : Tuple=256 , __lowercase : List[Any]=255 , **__lowercase : Union[str, Any] , ) -> List[Any]: super().__init__(**__lowercase ) if "reshape_last_stage" in kwargs and kwargs["reshape_last_stage"] is False: warnings.warn( """Reshape_last_stage is set to False in this config. This argument is deprecated and will soon be""" """ removed, as the behaviour will default to that of reshape_last_stage = True.""" , __lowercase , ) __UpperCAmelCase : Tuple = num_channels __UpperCAmelCase : Any = num_encoder_blocks __UpperCAmelCase : List[Any] = depths __UpperCAmelCase : Dict = sr_ratios __UpperCAmelCase : int = hidden_sizes __UpperCAmelCase : Optional[Any] = patch_sizes __UpperCAmelCase : List[Any] = strides __UpperCAmelCase : List[str] = mlp_ratios __UpperCAmelCase : Tuple = num_attention_heads __UpperCAmelCase : List[str] = hidden_act __UpperCAmelCase : Tuple = hidden_dropout_prob __UpperCAmelCase : Dict = attention_probs_dropout_prob __UpperCAmelCase : Any = classifier_dropout_prob __UpperCAmelCase : Optional[int] = initializer_range __UpperCAmelCase : Optional[Any] = drop_path_rate __UpperCAmelCase : int = layer_norm_eps __UpperCAmelCase : Dict = decoder_hidden_size __UpperCAmelCase : Tuple = kwargs.get("""reshape_last_stage""" , __lowercase ) __UpperCAmelCase : int = semantic_loss_ignore_index class a ( lowercase__ ): """simple docstring""" a : Union[str, Any] = version.parse('1.11' ) @property def UpperCAmelCase ( self : Union[str, Any] ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def UpperCAmelCase ( self : Optional[Any] ) -> float: return 1e-4 @property def UpperCAmelCase ( self : str ) -> int: return 12
114
0
'''simple docstring''' def A_( A : int , A : int): return int((input_a, input_a).count(0) == 0) def A_( ): assert and_gate(0 , 0) == 0 assert and_gate(0 , 1) == 0 assert and_gate(1 , 0) == 0 assert and_gate(1 , 1) == 1 if __name__ == "__main__": test_and_gate() print(and_gate(1, 0)) print(and_gate(0, 0)) print(and_gate(0, 1)) print(and_gate(1, 1))
251
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase : Optional[Any] = logging.get_logger(__name__) lowerCAmelCase : int = { 'facebook/timesformer': 'https://huggingface.co/facebook/timesformer/resolve/main/config.json', } class SCREAMING_SNAKE_CASE__ ( snake_case_): lowerCAmelCase_ = """timesformer""" def __init__( self , A_=224 , A_=16 , A_=3 , A_=8 , A_=768 , A_=12 , A_=12 , A_=3072 , A_="gelu" , A_=0.0 , A_=0.0 , A_=0.02 , A_=1e-6 , A_=True , A_="divided_space_time" , A_=0 , **A_ , )-> Union[str, Any]: '''simple docstring''' super().__init__(**A_ ) UpperCamelCase = image_size UpperCamelCase = patch_size UpperCamelCase = num_channels UpperCamelCase = num_frames UpperCamelCase = hidden_size UpperCamelCase = num_hidden_layers UpperCamelCase = num_attention_heads UpperCamelCase = intermediate_size UpperCamelCase = hidden_act UpperCamelCase = hidden_dropout_prob UpperCamelCase = attention_probs_dropout_prob UpperCamelCase = initializer_range UpperCamelCase = layer_norm_eps UpperCamelCase = qkv_bias UpperCamelCase = attention_type UpperCamelCase = drop_path_rate
251
1
import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( HubertConfig, HubertForCTC, HubertModel, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaProcessor, logging, ) logging.set_verbosity_info() A__: Union[str, Any] = logging.get_logger(__name__) A__: Any = { '''post_extract_proj''': '''feature_projection.projection''', '''encoder.pos_conv.0''': '''encoder.pos_conv_embed.conv''', '''self_attn.k_proj''': '''encoder.layers.*.attention.k_proj''', '''self_attn.v_proj''': '''encoder.layers.*.attention.v_proj''', '''self_attn.q_proj''': '''encoder.layers.*.attention.q_proj''', '''self_attn.out_proj''': '''encoder.layers.*.attention.out_proj''', '''self_attn_layer_norm''': '''encoder.layers.*.layer_norm''', '''fc1''': '''encoder.layers.*.feed_forward.intermediate_dense''', '''fc2''': '''encoder.layers.*.feed_forward.output_dense''', '''final_layer_norm''': '''encoder.layers.*.final_layer_norm''', '''encoder.layer_norm''': '''encoder.layer_norm''', '''w2v_model.layer_norm''': '''feature_projection.layer_norm''', '''w2v_encoder.proj''': '''lm_head''', '''mask_emb''': '''masked_spec_embed''', } def lowerCAmelCase_ ( A_ ,A_ ,A_ ,A_ ,A_): for attribute in key.split("."): UpperCamelCase__: List[str] = getattr(A_ ,A_) if weight_type is not None: UpperCamelCase__: Union[str, Any] = getattr(A_ ,A_).shape else: UpperCamelCase__: Optional[int] = hf_pointer.shape assert hf_shape == value.shape, ( F"Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be" F" {value.shape} for {full_name}" ) if weight_type == "weight": UpperCamelCase__: Dict = value elif weight_type == "weight_g": UpperCamelCase__: Optional[int] = value elif weight_type == "weight_v": UpperCamelCase__: int = value elif weight_type == "bias": UpperCamelCase__: List[Any] = value else: UpperCamelCase__: Any = value logger.info(F"{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.") def lowerCAmelCase_ ( A_ ,A_ ,A_): UpperCamelCase__: Any = [] UpperCamelCase__: Optional[Any] = fairseq_model.state_dict() UpperCamelCase__: str = hf_model.hubert.feature_extractor if is_finetuned else hf_model.feature_extractor for name, value in fairseq_dict.items(): UpperCamelCase__: Optional[Any] = False if "conv_layers" in name: load_conv_layer( A_ ,A_ ,A_ ,A_ ,hf_model.config.feat_extract_norm == "group" ,) UpperCamelCase__: Union[str, Any] = True else: for key, mapped_key in MAPPING.items(): UpperCamelCase__: Optional[int] = "hubert." + mapped_key if (is_finetuned and mapped_key != "lm_head") else mapped_key if key in name or (key.split("w2v_model.")[-1] == name.split(".")[0] and not is_finetuned): UpperCamelCase__: List[Any] = True if "*" in mapped_key: UpperCamelCase__: Optional[int] = name.split(A_)[0].split(".")[-2] UpperCamelCase__: List[str] = mapped_key.replace("*" ,A_) if "weight_g" in name: UpperCamelCase__: List[str] = "weight_g" elif "weight_v" in name: UpperCamelCase__: Any = "weight_v" elif "weight" in name: UpperCamelCase__: Union[str, Any] = "weight" elif "bias" in name: UpperCamelCase__: Any = "bias" else: UpperCamelCase__: Tuple = None set_recursively(A_ ,A_ ,A_ ,A_ ,A_) continue if not is_used: unused_weights.append(A_) logger.warning(F"Unused weights: {unused_weights}") def lowerCAmelCase_ ( A_ ,A_ ,A_ ,A_ ,A_): UpperCamelCase__: Optional[Any] = full_name.split("conv_layers.")[-1] UpperCamelCase__: Any = name.split(".") UpperCamelCase__: str = int(items[0]) UpperCamelCase__: Union[str, Any] = int(items[1]) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F"{full_name} has size {value.shape}, but" F" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found." ) UpperCamelCase__: Dict = value logger.info(F"Feat extract conv layer {layer_id} was initialized from {full_name}.") elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F"{full_name} has size {value.shape}, but" F" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found." ) UpperCamelCase__: Dict = value logger.info(F"Feat extract conv layer {layer_id} was initialized from {full_name}.") elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F"{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was" " found." ) UpperCamelCase__: List[str] = value logger.info(F"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.") elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F"{full_name} has size {value.shape}, but" F" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found." ) UpperCamelCase__: Dict = value logger.info(F"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.") else: unused_weights.append(A_) @torch.no_grad() def lowerCAmelCase_ ( A_ ,A_ ,A_=None ,A_=None ,A_=True): if config_path is not None: UpperCamelCase__: List[str] = HubertConfig.from_pretrained(A_) else: UpperCamelCase__: Optional[Any] = HubertConfig() if is_finetuned: if dict_path: UpperCamelCase__: Tuple = Dictionary.load(A_) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq UpperCamelCase__: Any = target_dict.pad_index UpperCamelCase__: str = target_dict.bos_index UpperCamelCase__: Union[str, Any] = target_dict.eos_index UpperCamelCase__: Optional[Any] = len(target_dict.symbols) UpperCamelCase__: Union[str, Any] = os.path.join(A_ ,"vocab.json") if not os.path.isdir(A_): logger.error("--pytorch_dump_folder_path ({}) should be a directory".format(A_)) return os.makedirs(A_ ,exist_ok=A_) with open(A_ ,"w" ,encoding="utf-8") as vocab_handle: json.dump(target_dict.indices ,A_) UpperCamelCase__: int = WavaVecaCTCTokenizer( A_ ,unk_token=target_dict.unk_word ,pad_token=target_dict.pad_word ,bos_token=target_dict.bos_word ,eos_token=target_dict.eos_word ,word_delimiter_token="|" ,do_lower_case=A_ ,) UpperCamelCase__: Dict = True if config.feat_extract_norm == "layer" else False UpperCamelCase__: str = WavaVecaFeatureExtractor( feature_size=1 ,sampling_rate=1_60_00 ,padding_value=0 ,do_normalize=A_ ,return_attention_mask=A_ ,) UpperCamelCase__: List[str] = WavaVecaProcessor(feature_extractor=A_ ,tokenizer=A_) processor.save_pretrained(A_) UpperCamelCase__: Optional[Any] = HubertForCTC(A_) else: UpperCamelCase__: List[Any] = HubertModel(A_) if is_finetuned: UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__: Any = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] ,arg_overrides={"data": "/".join(dict_path.split("/")[:-1])}) else: UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__: Dict = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path]) UpperCamelCase__: int = model[0].eval() recursively_load_weights(A_ ,A_ ,A_) hf_wavavec.save_pretrained(A_) if __name__ == "__main__": A__: Dict = argparse.ArgumentParser() parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to fairseq checkpoint''') parser.add_argument('''--dict_path''', default=None, type=str, help='''Path to dict of fine-tuned model''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') parser.add_argument( '''--not_finetuned''', action='''store_true''', help='''Whether the model to convert is a fine-tuned model or not''' ) A__: Tuple = parser.parse_args() convert_hubert_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
149
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) A__: str = { '''configuration_blip''': [ '''BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''BlipConfig''', '''BlipTextConfig''', '''BlipVisionConfig''', ], '''processing_blip''': ['''BlipProcessor'''], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__: List[str] = ['''BlipImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__: Tuple = [ '''BLIP_PRETRAINED_MODEL_ARCHIVE_LIST''', '''BlipModel''', '''BlipPreTrainedModel''', '''BlipForConditionalGeneration''', '''BlipForQuestionAnswering''', '''BlipVisionModel''', '''BlipTextModel''', '''BlipForImageTextRetrieval''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__: str = [ '''TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFBlipModel''', '''TFBlipPreTrainedModel''', '''TFBlipForConditionalGeneration''', '''TFBlipForQuestionAnswering''', '''TFBlipVisionModel''', '''TFBlipTextModel''', '''TFBlipForImageTextRetrieval''', ] if TYPE_CHECKING: from .configuration_blip import BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, BlipConfig, BlipTextConfig, BlipVisionConfig from .processing_blip import BlipProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_blip import BlipImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blip import ( BLIP_PRETRAINED_MODEL_ARCHIVE_LIST, BlipForConditionalGeneration, BlipForImageTextRetrieval, BlipForQuestionAnswering, BlipModel, BlipPreTrainedModel, BlipTextModel, BlipVisionModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blip import ( TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST, TFBlipForConditionalGeneration, TFBlipForImageTextRetrieval, TFBlipForQuestionAnswering, TFBlipModel, TFBlipPreTrainedModel, TFBlipTextModel, TFBlipVisionModel, ) else: import sys A__: Any = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
149
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available _lowerCAmelCase :int = {'configuration_speech_encoder_decoder': ['SpeechEncoderDecoderConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase :List[Any] = ['SpeechEncoderDecoderModel'] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase :int = ['FlaxSpeechEncoderDecoderModel'] if TYPE_CHECKING: from .configuration_speech_encoder_decoder import SpeechEncoderDecoderConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_speech_encoder_decoder import SpeechEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_speech_encoder_decoder import FlaxSpeechEncoderDecoderModel else: import sys _lowerCAmelCase :List[str] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
359
"""simple docstring""" from __future__ import annotations def lowerCamelCase_ (UpperCamelCase__ : list[int] , UpperCamelCase__ : int , UpperCamelCase__ : int , UpperCamelCase__ : int ): if (direction == 1 and array[indexa] > array[indexa]) or ( direction == 0 and array[indexa] < array[indexa] ): _UpperCAmelCase , _UpperCAmelCase : int = array[indexa], array[indexa] def lowerCamelCase_ (UpperCamelCase__ : list[int] , UpperCamelCase__ : int , UpperCamelCase__ : int , UpperCamelCase__ : int ): if length > 1: _UpperCAmelCase : str = int(length / 2 ) for i in range(UpperCamelCase__ , low + middle ): comp_and_swap(UpperCamelCase__ , UpperCamelCase__ , i + middle , UpperCamelCase__ ) bitonic_merge(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) bitonic_merge(UpperCamelCase__ , low + middle , UpperCamelCase__ , UpperCamelCase__ ) def lowerCamelCase_ (UpperCamelCase__ : list[int] , UpperCamelCase__ : int , UpperCamelCase__ : int , UpperCamelCase__ : int ): if length > 1: _UpperCAmelCase : str = int(length / 2 ) bitonic_sort(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , 1 ) bitonic_sort(UpperCamelCase__ , low + middle , UpperCamelCase__ , 0 ) bitonic_merge(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) if __name__ == "__main__": _lowerCAmelCase :Any = input('Enter numbers separated by a comma:\n').strip() _lowerCAmelCase :Tuple = [int(item.strip()) for item in user_input.split(',')] bitonic_sort(unsorted, 0, len(unsorted), 1) print('\nSorted array in ascending order is: ', end='') print(*unsorted, sep=', ') bitonic_merge(unsorted, 0, len(unsorted), 0) print('Sorted array in descending order is: ', end='') print(*unsorted, sep=', ')
68
0
from __future__ import annotations def _a ( SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : Optional[Any] ): if len(_UpperCAmelCase ) < k or k < 0: raise ValueError("Invalid Input" ) __lowerCAmelCase = sum(array[:k] ) for i in range(len(_UpperCAmelCase ) - k ): __lowerCAmelCase = current_sum - array[i] + array[i + k] __lowerCAmelCase = max(_UpperCAmelCase , _UpperCAmelCase ) return max_sum if __name__ == "__main__": from doctest import testmod from random import randint testmod() UpperCamelCase__ = [randint(-1000, 1000) for i in range(100)] UpperCamelCase__ = randint(0, 110) print(f'''The maximum sum of {k} consecutive elements is {max_sum_in_array(array,k)}''')
92
"""simple docstring""" from __future__ import annotations import unittest import numpy as np from transformers import LayoutLMConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.layoutlm.modeling_tf_layoutlm import ( TF_LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFLayoutLMForMaskedLM, TFLayoutLMForQuestionAnswering, TFLayoutLMForSequenceClassification, TFLayoutLMForTokenClassification, TFLayoutLMModel, ) class a__ : def __init__( self : str, lowerCAmelCase : Union[str, Any], lowerCAmelCase : Optional[Any]=13, lowerCAmelCase : str=7, lowerCAmelCase : Union[str, Any]=True, lowerCAmelCase : Optional[int]=True, lowerCAmelCase : Dict=True, lowerCAmelCase : List[str]=True, lowerCAmelCase : List[Any]=99, lowerCAmelCase : Tuple=32, lowerCAmelCase : int=2, lowerCAmelCase : Dict=4, lowerCAmelCase : List[str]=37, lowerCAmelCase : Any="gelu", lowerCAmelCase : Optional[int]=0.1, lowerCAmelCase : Tuple=0.1, lowerCAmelCase : Optional[int]=512, lowerCAmelCase : Dict=16, lowerCAmelCase : Tuple=2, lowerCAmelCase : Union[str, Any]=0.02, lowerCAmelCase : str=3, lowerCAmelCase : Any=4, lowerCAmelCase : List[str]=None, lowerCAmelCase : Union[str, Any]=1000, ) -> Dict: lowercase : Optional[Any] = parent lowercase : Tuple = batch_size lowercase : List[Any] = seq_length lowercase : List[str] = is_training lowercase : Optional[Any] = use_input_mask lowercase : Optional[int] = use_token_type_ids lowercase : List[Any] = use_labels lowercase : Optional[Any] = vocab_size lowercase : int = hidden_size lowercase : Union[str, Any] = num_hidden_layers lowercase : Dict = num_attention_heads lowercase : str = intermediate_size lowercase : Union[str, Any] = hidden_act lowercase : str = hidden_dropout_prob lowercase : Any = attention_probs_dropout_prob lowercase : List[Any] = max_position_embeddings lowercase : Optional[int] = type_vocab_size lowercase : Optional[int] = type_sequence_label_size lowercase : str = initializer_range lowercase : Any = num_labels lowercase : List[Any] = num_choices lowercase : Optional[int] = scope lowercase : str = range_bbox def lowercase ( self : str ) -> Optional[int]: lowercase : List[str] = ids_tensor([self.batch_size, self.seq_length], self.vocab_size ) # convert bbox to numpy since TF does not support item assignment lowercase : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length, 4], self.range_bbox ).numpy() # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: lowercase : str = bbox[i, j, 3] lowercase : Tuple = bbox[i, j, 1] lowercase : Union[str, Any] = t if bbox[i, j, 2] < bbox[i, j, 0]: lowercase : Optional[int] = bbox[i, j, 2] lowercase : List[str] = bbox[i, j, 0] lowercase : Union[str, Any] = t lowercase : Any = tf.convert_to_tensor(lowerCAmelCase ) lowercase : Optional[Any] = None if self.use_input_mask: lowercase : int = random_attention_mask([self.batch_size, self.seq_length] ) lowercase : str = None if self.use_token_type_ids: lowercase : Optional[Any] = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size ) lowercase : Dict = None lowercase : List[str] = None lowercase : List[Any] = None if self.use_labels: lowercase : Optional[int] = ids_tensor([self.batch_size], self.type_sequence_label_size ) lowercase : Tuple = ids_tensor([self.batch_size, self.seq_length], self.num_labels ) lowercase : Optional[int] = ids_tensor([self.batch_size], self.num_choices ) lowercase : Tuple = LayoutLMConfig( vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, type_vocab_size=self.type_vocab_size, initializer_range=self.initializer_range, ) return config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowercase ( self : int, lowerCAmelCase : Tuple, lowerCAmelCase : Optional[Any], lowerCAmelCase : Tuple, lowerCAmelCase : List[str], lowerCAmelCase : Optional[int], lowerCAmelCase : Optional[Any], lowerCAmelCase : Tuple, lowerCAmelCase : List[Any] ) -> Dict: lowercase : Dict = TFLayoutLMModel(config=lowerCAmelCase ) lowercase : str = model(lowerCAmelCase, lowerCAmelCase, attention_mask=lowerCAmelCase, token_type_ids=lowerCAmelCase ) lowercase : Union[str, Any] = model(lowerCAmelCase, lowerCAmelCase, token_type_ids=lowerCAmelCase ) lowercase : Any = model(lowerCAmelCase, lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.hidden_size) ) def lowercase ( self : Tuple, lowerCAmelCase : str, lowerCAmelCase : Dict, lowerCAmelCase : Dict, lowerCAmelCase : Optional[int], lowerCAmelCase : Optional[int], lowerCAmelCase : Optional[int], lowerCAmelCase : Tuple, lowerCAmelCase : List[str] ) -> Any: lowercase : Optional[Any] = TFLayoutLMForMaskedLM(config=lowerCAmelCase ) lowercase : List[Any] = model(lowerCAmelCase, lowerCAmelCase, attention_mask=lowerCAmelCase, token_type_ids=lowerCAmelCase, labels=lowerCAmelCase ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size) ) def lowercase ( self : Any, lowerCAmelCase : Tuple, lowerCAmelCase : str, lowerCAmelCase : Dict, lowerCAmelCase : Dict, lowerCAmelCase : List[str], lowerCAmelCase : Tuple, lowerCAmelCase : List[str], lowerCAmelCase : int ) -> List[str]: lowercase : Optional[Any] = self.num_labels lowercase : Optional[int] = TFLayoutLMForSequenceClassification(config=lowerCAmelCase ) lowercase : Tuple = model(lowerCAmelCase, lowerCAmelCase, attention_mask=lowerCAmelCase, token_type_ids=lowerCAmelCase ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels) ) def lowercase ( self : Tuple, lowerCAmelCase : Union[str, Any], lowerCAmelCase : List[str], lowerCAmelCase : Optional[int], lowerCAmelCase : List[str], lowerCAmelCase : List[str], lowerCAmelCase : int, lowerCAmelCase : Optional[Any], lowerCAmelCase : Dict ) -> Dict: lowercase : Optional[int] = self.num_labels lowercase : int = TFLayoutLMForTokenClassification(config=lowerCAmelCase ) lowercase : List[str] = model(lowerCAmelCase, lowerCAmelCase, attention_mask=lowerCAmelCase, token_type_ids=lowerCAmelCase, labels=lowerCAmelCase ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels) ) def lowercase ( self : Any, lowerCAmelCase : Optional[Any], lowerCAmelCase : List[str], lowerCAmelCase : List[Any], lowerCAmelCase : List[Any], lowerCAmelCase : Any, lowerCAmelCase : str, lowerCAmelCase : Union[str, Any], lowerCAmelCase : Tuple ) -> Optional[Any]: lowercase : List[str] = TFLayoutLMForQuestionAnswering(config=lowerCAmelCase ) lowercase : Optional[int] = model(lowerCAmelCase, lowerCAmelCase, attention_mask=lowerCAmelCase, token_type_ids=lowerCAmelCase ) self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length) ) def lowercase ( self : Tuple ) -> Union[str, Any]: lowercase : Any = self.prepare_config_and_inputs() ( ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ) : Union[str, Any] = config_and_inputs lowercase : Optional[Any] = { 'input_ids': input_ids, 'bbox': bbox, 'token_type_ids': token_type_ids, 'attention_mask': input_mask, } return config, inputs_dict @require_tf class a__ ( SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, unittest.TestCase ): _lowerCamelCase = ( ( TFLayoutLMModel, TFLayoutLMForMaskedLM, TFLayoutLMForTokenClassification, TFLayoutLMForSequenceClassification, TFLayoutLMForQuestionAnswering, ) if is_tf_available() else () ) _lowerCamelCase = ( { 'feature-extraction': TFLayoutLMModel, 'fill-mask': TFLayoutLMForMaskedLM, 'text-classification': TFLayoutLMForSequenceClassification, 'token-classification': TFLayoutLMForTokenClassification, 'zero-shot': TFLayoutLMForSequenceClassification, } if is_tf_available() else {} ) _lowerCamelCase = False _lowerCamelCase = True _lowerCamelCase = 10 def lowercase ( self : Tuple ) -> int: lowercase : int = TFLayoutLMModelTester(self ) lowercase : int = ConfigTester(self, config_class=lowerCAmelCase, hidden_size=37 ) def lowercase ( self : List[str] ) -> Dict: self.config_tester.run_common_tests() def lowercase ( self : str ) -> List[Any]: lowercase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase ) def lowercase ( self : List[Any] ) -> Tuple: lowercase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*lowerCAmelCase ) def lowercase ( self : int ) -> List[str]: lowercase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*lowerCAmelCase ) def lowercase ( self : Dict ) -> int: lowercase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*lowerCAmelCase ) def lowercase ( self : List[str] ) -> Any: lowercase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*lowerCAmelCase ) @slow def lowercase ( self : Dict ) -> List[Any]: for model_name in TF_LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase : Dict = TFLayoutLMModel.from_pretrained(lowerCAmelCase ) self.assertIsNotNone(lowerCAmelCase ) @unittest.skip('Onnx compliancy broke with TF 2.10' ) def lowercase ( self : List[Any] ) -> List[Any]: pass def lowercase__ ( ) -> str: '''simple docstring''' lowercase : Any = tf.convert_to_tensor([[1_01,10_19,10_14,10_16,10_37,1_28_49,47_47,10_04,1_42_46,22_78,54_39,45_24,50_02,29_30,21_93,29_30,43_41,32_08,10_05,10_55,21_71,28_48,1_13_00,35_31,1_02],[1_01,40_70,40_34,70_20,10_24,30_58,10_15,10_13,28_61,10_13,60_70,1_92_74,27_72,62_05,2_78_14,1_61_47,1_61_47,43_43,20_47,1_02_83,1_09_69,1_43_89,10_12,23_38,1_02]] ) # noqa: E231 lowercase : List[Any] = tf.convert_to_tensor([[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],] ) # noqa: E231 lowercase : List[str] = tf.convert_to_tensor([[[0,0,0,0],[4_23,2_37,4_40,2_51],[4_27,2_72,4_41,2_87],[4_19,1_15,4_37,1_29],[9_61,8_85,9_92,9_12],[2_56,38,3_30,58],[2_56,38,3_30,58],[3_36,42,3_53,57],[3_60,39,4_01,56],[3_60,39,4_01,56],[4_11,39,4_71,59],[4_79,41,5_28,59],[5_33,39,6_30,60],[67,1_13,1_34,1_31],[1_41,1_15,2_09,1_32],[68,1_49,1_33,1_66],[1_41,1_49,1_87,1_64],[1_95,1_48,2_87,1_65],[1_95,1_48,2_87,1_65],[1_95,1_48,2_87,1_65],[2_95,1_48,3_49,1_65],[4_41,1_49,4_92,1_66],[4_97,1_49,5_46,1_64],[64,2_01,1_25,2_18],[10_00,10_00,10_00,10_00]],[[0,0,0,0],[6_62,1_50,7_54,1_66],[6_65,1_99,7_42,2_11],[5_19,2_13,5_54,2_28],[5_19,2_13,5_54,2_28],[1_34,4_33,1_87,4_54],[1_30,4_67,2_04,4_80],[1_30,4_67,2_04,4_80],[1_30,4_67,2_04,4_80],[1_30,4_67,2_04,4_80],[1_30,4_67,2_04,4_80],[3_14,4_69,3_76,4_82],[5_04,6_84,5_82,7_06],[9_41,8_25,9_73,9_00],[9_41,8_25,9_73,9_00],[9_41,8_25,9_73,9_00],[9_41,8_25,9_73,9_00],[6_10,7_49,6_52,7_65],[1_30,6_59,1_68,6_72],[1_76,6_57,2_37,6_72],[2_38,6_57,3_12,6_72],[4_43,6_53,6_28,6_72],[4_43,6_53,6_28,6_72],[7_16,3_01,8_25,3_17],[10_00,10_00,10_00,10_00]]] ) # noqa: E231 lowercase : Dict = tf.convert_to_tensor([[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]] ) # noqa: E231 # these are sequence labels (i.e. at the token level) lowercase : List[Any] = tf.convert_to_tensor([[-1_00,10,10,10,9,1,-1_00,7,7,-1_00,7,7,4,2,5,2,8,8,-1_00,-1_00,5,0,3,2,-1_00],[-1_00,12,12,12,-1_00,12,10,-1_00,-1_00,-1_00,-1_00,10,12,9,-1_00,-1_00,-1_00,10,10,10,9,12,-1_00,10,-1_00]] ) # noqa: E231 # fmt: on return input_ids, attention_mask, bbox, token_type_ids, labels @require_tf class a__ ( unittest.TestCase ): @slow def lowercase ( self : Optional[int] ) -> str: lowercase : Any = TFLayoutLMModel.from_pretrained('microsoft/layoutlm-base-uncased' ) lowercase , lowercase , lowercase , lowercase , lowercase : str = prepare_layoutlm_batch_inputs() # forward pass lowercase : List[str] = model(input_ids=lowerCAmelCase, bbox=lowerCAmelCase, attention_mask=lowerCAmelCase, token_type_ids=lowerCAmelCase ) # test the sequence output on [0, :3, :3] lowercase : Dict = tf.convert_to_tensor( [[0.1785, -0.1947, -0.0425], [-0.3254, -0.2807, 0.2553], [-0.5391, -0.3322, 0.3364]], ) self.assertTrue(np.allclose(outputs.last_hidden_state[0, :3, :3], lowerCAmelCase, atol=1e-3 ) ) # test the pooled output on [1, :3] lowercase : Any = tf.convert_to_tensor([-0.6580, -0.0214, 0.8552] ) self.assertTrue(np.allclose(outputs.pooler_output[1, :3], lowerCAmelCase, atol=1e-3 ) ) @slow def lowercase ( self : List[Any] ) -> Any: # initialize model with randomly initialized sequence classification head lowercase : List[str] = TFLayoutLMForSequenceClassification.from_pretrained('microsoft/layoutlm-base-uncased', num_labels=2 ) lowercase , lowercase , lowercase , lowercase , lowercase : Any = prepare_layoutlm_batch_inputs() # forward pass lowercase : Optional[int] = model( input_ids=lowerCAmelCase, bbox=lowerCAmelCase, attention_mask=lowerCAmelCase, token_type_ids=lowerCAmelCase, labels=tf.convert_to_tensor([1, 1] ), ) # test whether we get a loss as a scalar lowercase : List[str] = outputs.loss lowercase : List[Any] = (2,) self.assertEqual(loss.shape, lowerCAmelCase ) # test the shape of the logits lowercase : str = outputs.logits lowercase : List[str] = (2, 2) self.assertEqual(logits.shape, lowerCAmelCase ) @slow def lowercase ( self : List[Any] ) -> str: # initialize model with randomly initialized token classification head lowercase : Tuple = TFLayoutLMForTokenClassification.from_pretrained('microsoft/layoutlm-base-uncased', num_labels=13 ) lowercase , lowercase , lowercase , lowercase , lowercase : str = prepare_layoutlm_batch_inputs() # forward pass lowercase : List[str] = model( input_ids=lowerCAmelCase, bbox=lowerCAmelCase, attention_mask=lowerCAmelCase, token_type_ids=lowerCAmelCase, labels=lowerCAmelCase ) # test the shape of the logits lowercase : Union[str, Any] = outputs.logits lowercase : Union[str, Any] = tf.convert_to_tensor((2, 25, 13) ) self.assertEqual(logits.shape, lowerCAmelCase ) @slow def lowercase ( self : Union[str, Any] ) -> int: # initialize model with randomly initialized token classification head lowercase : Optional[Any] = TFLayoutLMForQuestionAnswering.from_pretrained('microsoft/layoutlm-base-uncased' ) lowercase , lowercase , lowercase , lowercase , lowercase : Any = prepare_layoutlm_batch_inputs() # forward pass lowercase : int = model(input_ids=lowerCAmelCase, bbox=lowerCAmelCase, attention_mask=lowerCAmelCase, token_type_ids=lowerCAmelCase ) # test the shape of the logits lowercase : str = tf.convert_to_tensor((2, 25) ) self.assertEqual(outputs.start_logits.shape, lowerCAmelCase ) self.assertEqual(outputs.end_logits.shape, lowerCAmelCase )
255
0
'''simple docstring''' import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( WavaVecaConfig, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaForCTC, WavaVecaForPreTraining, WavaVecaProcessor, logging, ) from transformers.models.wavaveca.modeling_wavaveca import WavaVecaForSequenceClassification logging.set_verbosity_info() A_ : Optional[Any] = logging.get_logger(__name__) A_ : Optional[int] = { """post_extract_proj""": """feature_projection.projection""", """encoder.pos_conv.0""": """encoder.pos_conv_embed.conv""", """self_attn.k_proj""": """encoder.layers.*.attention.k_proj""", """self_attn.v_proj""": """encoder.layers.*.attention.v_proj""", """self_attn.q_proj""": """encoder.layers.*.attention.q_proj""", """self_attn.out_proj""": """encoder.layers.*.attention.out_proj""", """self_attn_layer_norm""": """encoder.layers.*.layer_norm""", """fc1""": """encoder.layers.*.feed_forward.intermediate_dense""", """fc2""": """encoder.layers.*.feed_forward.output_dense""", """final_layer_norm""": """encoder.layers.*.final_layer_norm""", """encoder.layer_norm""": """encoder.layer_norm""", """adapter_layer""": """encoder.layers.*.adapter_layer""", """w2v_model.layer_norm""": """feature_projection.layer_norm""", """quantizer.weight_proj""": """quantizer.weight_proj""", """quantizer.vars""": """quantizer.codevectors""", """project_q""": """project_q""", """final_proj""": """project_hid""", """w2v_encoder.proj""": """lm_head""", """mask_emb""": """masked_spec_embed""", """pooling_layer.linear""": """projector""", """pooling_layer.projection""": """classifier""", } A_ : Tuple = [ """lm_head""", """quantizer.weight_proj""", """quantizer.codevectors""", """project_q""", """project_hid""", """projector""", """classifier""", ] def snake_case_ ( lowerCAmelCase_ )-> List[Any]: '''simple docstring''' _UpperCAmelCase : int = {} with open(lowerCAmelCase_ , """r""" ) as file: for line_number, line in enumerate(lowerCAmelCase_ ): _UpperCAmelCase : int = line.strip() if line: _UpperCAmelCase : Tuple = line.split() _UpperCAmelCase : Optional[int] = line_number _UpperCAmelCase : str = words[0] _UpperCAmelCase : Optional[Any] = value return result def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ )-> Union[str, Any]: '''simple docstring''' for attribute in key.split(""".""" ): _UpperCAmelCase : Dict = getattr(lowerCAmelCase_ , lowerCAmelCase_ ) _UpperCAmelCase : str = None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(lowerCAmelCase_ ): _UpperCAmelCase : List[str] = PARAM_MAPPING[full_name.split(""".""" )[-1]] _UpperCAmelCase : Union[str, Any] = """param""" if weight_type is not None and weight_type != "param": _UpperCAmelCase : Optional[int] = getattr(lowerCAmelCase_ , lowerCAmelCase_ ).shape elif weight_type is not None and weight_type == "param": _UpperCAmelCase : Optional[Any] = hf_pointer for attribute in hf_param_name.split(""".""" ): _UpperCAmelCase : Any = getattr(lowerCAmelCase_ , lowerCAmelCase_ ) _UpperCAmelCase : List[str] = shape_pointer.shape # let's reduce dimension _UpperCAmelCase : str = value[0] else: _UpperCAmelCase : List[str] = hf_pointer.shape if hf_shape != value.shape: raise ValueError( F'''Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be''' F''' {value.shape} for {full_name}''' ) if weight_type == "weight": _UpperCAmelCase : List[Any] = value elif weight_type == "weight_g": _UpperCAmelCase : Optional[int] = value elif weight_type == "weight_v": _UpperCAmelCase : Dict = value elif weight_type == "bias": _UpperCAmelCase : int = value elif weight_type == "param": for attribute in hf_param_name.split(""".""" ): _UpperCAmelCase : List[Any] = getattr(lowerCAmelCase_ , lowerCAmelCase_ ) _UpperCAmelCase : List[Any] = value else: _UpperCAmelCase : Tuple = value logger.info(F'''{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.''' ) def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ )-> List[Any]: '''simple docstring''' _UpperCAmelCase : Dict = None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(lowerCAmelCase_ ): _UpperCAmelCase : Any = PARAM_MAPPING[full_name.split(""".""" )[-1]] _UpperCAmelCase : Optional[Any] = """param""" if weight_type is not None and weight_type != "param": _UpperCAmelCase : List[str] = """.""".join([key, weight_type] ) elif weight_type is not None and weight_type == "param": _UpperCAmelCase : Dict = """.""".join([key, hf_param_name] ) else: _UpperCAmelCase : int = key _UpperCAmelCase : int = value if """lm_head""" in full_key else value[0] A_ : Union[str, Any] = { """W_a""": """linear_1.weight""", """W_b""": """linear_2.weight""", """b_a""": """linear_1.bias""", """b_b""": """linear_2.bias""", """ln_W""": """norm.weight""", """ln_b""": """norm.bias""", } def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_=None , lowerCAmelCase_=None )-> Any: '''simple docstring''' _UpperCAmelCase : int = False for key, mapped_key in MAPPING.items(): _UpperCAmelCase : Tuple = """wav2vec2.""" + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split("""w2v_model.""" )[-1] == name.split(""".""" )[0]: _UpperCAmelCase : Tuple = True if "*" in mapped_key: _UpperCAmelCase : Dict = name.split(lowerCAmelCase_ )[0].split(""".""" )[-2] _UpperCAmelCase : Dict = mapped_key.replace("""*""" , lowerCAmelCase_ ) if "weight_g" in name: _UpperCAmelCase : Optional[Any] = """weight_g""" elif "weight_v" in name: _UpperCAmelCase : Optional[Any] = """weight_v""" elif "bias" in name: _UpperCAmelCase : Dict = """bias""" elif "weight" in name: # TODO: don't match quantizer.weight_proj _UpperCAmelCase : List[str] = """weight""" else: _UpperCAmelCase : Optional[Any] = None if hf_dict is not None: rename_dict(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) else: set_recursively(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) return is_used return is_used def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ )-> str: '''simple docstring''' _UpperCAmelCase : Any = [] _UpperCAmelCase : Dict = fairseq_model.state_dict() _UpperCAmelCase : Optional[Any] = hf_model.wavaveca.feature_extractor for name, value in fairseq_dict.items(): _UpperCAmelCase : int = False if "conv_layers" in name: load_conv_layer( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , hf_model.config.feat_extract_norm == """group""" , ) _UpperCAmelCase : int = True else: _UpperCAmelCase : Dict = load_wavaveca_layer(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) if not is_used: unused_weights.append(lowerCAmelCase_ ) logger.warning(F'''Unused weights: {unused_weights}''' ) def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ )-> Union[str, Any]: '''simple docstring''' _UpperCAmelCase : Dict = full_name.split("""conv_layers.""" )[-1] _UpperCAmelCase : Any = name.split(""".""" ) _UpperCAmelCase : Any = int(items[0] ) _UpperCAmelCase : int = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) _UpperCAmelCase : int = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) _UpperCAmelCase : Any = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.''' ) _UpperCAmelCase : Tuple = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.''' ) _UpperCAmelCase : int = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) else: unused_weights.append(lowerCAmelCase_ ) @torch.no_grad() def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_=None , lowerCAmelCase_=None , lowerCAmelCase_=True , lowerCAmelCase_=False )-> Optional[int]: '''simple docstring''' if config_path is not None: _UpperCAmelCase : List[Any] = WavaVecaConfig.from_pretrained(lowerCAmelCase_ ) else: _UpperCAmelCase : Optional[Any] = WavaVecaConfig() if is_seq_class: _UpperCAmelCase : List[str] = read_txt_into_dict(lowerCAmelCase_ ) _UpperCAmelCase : List[str] = idalabel _UpperCAmelCase : List[str] = WavaVecaForSequenceClassification(lowerCAmelCase_ ) _UpperCAmelCase : Tuple = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16000 , padding_value=0 , do_normalize=lowerCAmelCase_ , return_attention_mask=lowerCAmelCase_ , ) feature_extractor.save_pretrained(lowerCAmelCase_ ) elif is_finetuned: if dict_path: _UpperCAmelCase : str = Dictionary.load(lowerCAmelCase_ ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq _UpperCAmelCase : str = target_dict.pad_index _UpperCAmelCase : List[str] = target_dict.bos_index _UpperCAmelCase : int = target_dict.eos_index _UpperCAmelCase : Optional[Any] = len(target_dict.symbols ) _UpperCAmelCase : Union[str, Any] = os.path.join(lowerCAmelCase_ , """vocab.json""" ) if not os.path.isdir(lowerCAmelCase_ ): logger.error("""--pytorch_dump_folder_path ({}) should be a directory""".format(lowerCAmelCase_ ) ) return os.makedirs(lowerCAmelCase_ , exist_ok=lowerCAmelCase_ ) _UpperCAmelCase : int = target_dict.indices # fairseq has the <pad> and <s> switched _UpperCAmelCase : Any = 0 _UpperCAmelCase : int = 1 with open(lowerCAmelCase_ , """w""" , encoding="""utf-8""" ) as vocab_handle: json.dump(lowerCAmelCase_ , lowerCAmelCase_ ) _UpperCAmelCase : Optional[int] = WavaVecaCTCTokenizer( lowerCAmelCase_ , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="""|""" , do_lower_case=lowerCAmelCase_ , ) _UpperCAmelCase : int = True if config.feat_extract_norm == """layer""" else False _UpperCAmelCase : Tuple = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16000 , padding_value=0 , do_normalize=lowerCAmelCase_ , return_attention_mask=lowerCAmelCase_ , ) _UpperCAmelCase : str = WavaVecaProcessor(feature_extractor=lowerCAmelCase_ , tokenizer=lowerCAmelCase_ ) processor.save_pretrained(lowerCAmelCase_ ) _UpperCAmelCase : str = WavaVecaForCTC(lowerCAmelCase_ ) else: _UpperCAmelCase : int = WavaVecaForPreTraining(lowerCAmelCase_ ) if is_finetuned or is_seq_class: _UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase : Optional[Any] = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"""data""": """/""".join(dict_path.split("""/""" )[:-1] )} ) else: _UpperCAmelCase : Optional[Any] = argparse.Namespace(task="""audio_pretraining""" ) _UpperCAmelCase : List[str] = fairseq.tasks.setup_task(lowerCAmelCase_ ) _UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase : Any = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] , task=lowerCAmelCase_ ) _UpperCAmelCase : str = model[0].eval() recursively_load_weights(lowerCAmelCase_ , lowerCAmelCase_ , not is_finetuned ) hf_wavavec.save_pretrained(lowerCAmelCase_ ) if __name__ == "__main__": A_ : List[str] = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""") parser.add_argument("""--dict_path""", default=None, type=str, help="""Path to dict of fine-tuned model""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument( """--not_finetuned""", action="""store_true""", help="""Whether the model to convert is a fine-tuned model or not""" ) parser.add_argument( """--is_seq_class""", action="""store_true""", help="""Whether the model to convert is a fine-tuned sequence classification model or not""", ) A_ : Optional[int] = parser.parse_args() A_ : List[str] = not args.not_finetuned and not args.is_seq_class convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, is_finetuned, args.is_seq_class, )
349
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging A_ : Union[str, Any] = logging.get_logger(__name__) A_ : Any = { """hustvl/yolos-small""": """https://huggingface.co/hustvl/yolos-small/resolve/main/config.json""", # See all YOLOS models at https://huggingface.co/models?filter=yolos } class lowercase ( _lowerCamelCase ): """simple docstring""" UpperCAmelCase = """yolos""" def __init__( self ,a_=768 ,a_=12 ,a_=12 ,a_=3_072 ,a_="gelu" ,a_=0.0 ,a_=0.0 ,a_=0.02 ,a_=1E-1_2 ,a_=[512, 864] ,a_=16 ,a_=3 ,a_=True ,a_=100 ,a_=True ,a_=False ,a_=1 ,a_=5 ,a_=2 ,a_=5 ,a_=2 ,a_=0.1 ,**a_ ,) -> List[str]: super().__init__(**a_ ) _UpperCAmelCase : Optional[Any] = hidden_size _UpperCAmelCase : Optional[Any] = num_hidden_layers _UpperCAmelCase : Tuple = num_attention_heads _UpperCAmelCase : Optional[Any] = intermediate_size _UpperCAmelCase : Union[str, Any] = hidden_act _UpperCAmelCase : List[str] = hidden_dropout_prob _UpperCAmelCase : Optional[int] = attention_probs_dropout_prob _UpperCAmelCase : List[Any] = initializer_range _UpperCAmelCase : Union[str, Any] = layer_norm_eps _UpperCAmelCase : int = image_size _UpperCAmelCase : Dict = patch_size _UpperCAmelCase : Tuple = num_channels _UpperCAmelCase : Optional[Any] = qkv_bias _UpperCAmelCase : List[Any] = num_detection_tokens _UpperCAmelCase : Tuple = use_mid_position_embeddings _UpperCAmelCase : int = auxiliary_loss # Hungarian matcher _UpperCAmelCase : Dict = class_cost _UpperCAmelCase : Dict = bbox_cost _UpperCAmelCase : Optional[int] = giou_cost # Loss coefficients _UpperCAmelCase : int = bbox_loss_coefficient _UpperCAmelCase : Optional[Any] = giou_loss_coefficient _UpperCAmelCase : Union[str, Any] = eos_coefficient class lowercase ( _lowerCamelCase ): """simple docstring""" UpperCAmelCase = version.parse("""1.11""" ) @property def _snake_case ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def _snake_case ( self ) -> float: return 1E-4 @property def _snake_case ( self ) -> int: return 12
349
1
'''simple docstring''' from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __a = { "configuration_mctct": ["MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP", "MCTCTConfig"], "feature_extraction_mctct": ["MCTCTFeatureExtractor"], "processing_mctct": ["MCTCTProcessor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = [ "MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST", "MCTCTForCTC", "MCTCTModel", "MCTCTPreTrainedModel", ] if TYPE_CHECKING: from .configuration_mctct import MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP, MCTCTConfig from .feature_extraction_mctct import MCTCTFeatureExtractor from .processing_mctct import MCTCTProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mctct import MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST, MCTCTForCTC, MCTCTModel, MCTCTPreTrainedModel else: import sys __a = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
35
import itertools import json import linecache import os import pickle import re import socket import string from collections import Counter from logging import getLogger from pathlib import Path from typing import Callable, Dict, Iterable, List import git import torch from torch.utils.data import Dataset from transformers import BartTokenizer, RagTokenizer, TaTokenizer def _A ( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase=True , _lowercase="pt" ) -> Union[str, Any]: """simple docstring""" __UpperCamelCase = {'add_prefix_space': True} if isinstance(_lowercase , _lowercase ) and not line.startswith(' ' ) else {} __UpperCamelCase = padding_side return tokenizer( [line] , max_length=_lowercase , padding='max_length' if pad_to_max_length else None , truncation=_lowercase , return_tensors=_lowercase , add_special_tokens=_lowercase , **_lowercase , ) def _A ( _lowercase , _lowercase , _lowercase=None , ) -> List[Any]: """simple docstring""" __UpperCamelCase = input_ids.ne(_lowercase ).any(dim=0 ) if attention_mask is None: return input_ids[:, keep_column_mask] else: return (input_ids[:, keep_column_mask], attention_mask[:, keep_column_mask]) class __lowerCamelCase (_a ): def __init__( self: List[str],A_: str,A_: List[str],A_: List[str],A_: List[str],A_: Tuple="train",A_: Any=None,A_: List[str]=None,A_: List[Any]=None,A_: int="",): '''simple docstring''' super().__init__() __UpperCamelCase = Path(A_ ).joinpath(type_path + '.source' ) __UpperCamelCase = Path(A_ ).joinpath(type_path + '.target' ) __UpperCamelCase = self.get_char_lens(self.src_file ) __UpperCamelCase = max_source_length __UpperCamelCase = max_target_length assert min(self.src_lens ) > 0, F'''found empty line in {self.src_file}''' __UpperCamelCase = tokenizer __UpperCamelCase = prefix if n_obs is not None: __UpperCamelCase = self.src_lens[:n_obs] __UpperCamelCase = src_lang __UpperCamelCase = tgt_lang def __len__( self: Optional[Any] ): '''simple docstring''' return len(self.src_lens ) def __getitem__( self: int,A_: Optional[Any] ): '''simple docstring''' __UpperCamelCase = index + 1 # linecache starts at 1 __UpperCamelCase = self.prefix + linecache.getline(str(self.src_file ),A_ ).rstrip('\n' ) __UpperCamelCase = linecache.getline(str(self.tgt_file ),A_ ).rstrip('\n' ) assert source_line, F'''empty source line for index {index}''' assert tgt_line, F'''empty tgt line for index {index}''' # Need to add eos token manually for T5 if isinstance(self.tokenizer,A_ ): source_line += self.tokenizer.eos_token tgt_line += self.tokenizer.eos_token # Pad source and target to the right __UpperCamelCase = ( self.tokenizer.question_encoder if isinstance(self.tokenizer,A_ ) else self.tokenizer ) __UpperCamelCase = self.tokenizer.generator if isinstance(self.tokenizer,A_ ) else self.tokenizer __UpperCamelCase = encode_line(A_,A_,self.max_source_length,'right' ) __UpperCamelCase = encode_line(A_,A_,self.max_target_length,'right' ) __UpperCamelCase = source_inputs['input_ids'].squeeze() __UpperCamelCase = target_inputs['input_ids'].squeeze() __UpperCamelCase = source_inputs['attention_mask'].squeeze() return { "input_ids": source_ids, "attention_mask": src_mask, "decoder_input_ids": target_ids, } @staticmethod def snake_case_ ( A_: List[Any] ): '''simple docstring''' return [len(A_ ) for x in Path(A_ ).open().readlines()] def snake_case_ ( self: Union[str, Any],A_: Any ): '''simple docstring''' __UpperCamelCase = torch.stack([x['input_ids'] for x in batch] ) __UpperCamelCase = torch.stack([x['attention_mask'] for x in batch] ) __UpperCamelCase = torch.stack([x['decoder_input_ids'] for x in batch] ) __UpperCamelCase = ( self.tokenizer.generator.pad_token_id if isinstance(self.tokenizer,A_ ) else self.tokenizer.pad_token_id ) __UpperCamelCase = ( self.tokenizer.question_encoder.pad_token_id if isinstance(self.tokenizer,A_ ) else self.tokenizer.pad_token_id ) __UpperCamelCase = trim_batch(A_,A_ ) __UpperCamelCase, __UpperCamelCase = trim_batch(A_,A_,attention_mask=A_ ) __UpperCamelCase = { 'input_ids': source_ids, 'attention_mask': source_mask, 'decoder_input_ids': y, } return batch __snake_case = getLogger(__name__) def _A ( _lowercase ) -> Any: """simple docstring""" return list(itertools.chain.from_iterable(_lowercase ) ) def _A ( _lowercase ) -> None: """simple docstring""" __UpperCamelCase = get_git_info() save_json(_lowercase , os.path.join(_lowercase , 'git_log.json' ) ) def _A ( _lowercase , _lowercase , _lowercase=4 , **_lowercase ) -> List[Any]: """simple docstring""" with open(_lowercase , 'w' ) as f: json.dump(_lowercase , _lowercase , indent=_lowercase , **_lowercase ) def _A ( _lowercase ) -> Union[str, Any]: """simple docstring""" with open(_lowercase ) as f: return json.load(_lowercase ) def _A ( ) -> Dict: """simple docstring""" __UpperCamelCase = git.Repo(search_parent_directories=_lowercase ) __UpperCamelCase = { 'repo_id': str(_lowercase ), 'repo_sha': str(repo.head.object.hexsha ), 'repo_branch': str(repo.active_branch ), 'hostname': str(socket.gethostname() ), } return repo_infos def _A ( _lowercase , _lowercase ) -> List: """simple docstring""" return list(map(_lowercase , _lowercase ) ) def _A ( _lowercase , _lowercase ) -> Tuple: """simple docstring""" with open(_lowercase , 'wb' ) as f: return pickle.dump(_lowercase , _lowercase ) def _A ( _lowercase ) -> List[Any]: """simple docstring""" def remove_articles(_lowercase ): return re.sub(r'\b(a|an|the)\b' , ' ' , _lowercase ) def white_space_fix(_lowercase ): return " ".join(text.split() ) def remove_punc(_lowercase ): __UpperCamelCase = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(_lowercase ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(_lowercase ) ) ) ) def _A ( _lowercase , _lowercase ) -> int: """simple docstring""" __UpperCamelCase = normalize_answer(_lowercase ).split() __UpperCamelCase = normalize_answer(_lowercase ).split() __UpperCamelCase = Counter(_lowercase ) & Counter(_lowercase ) __UpperCamelCase = sum(common.values() ) if num_same == 0: return 0 __UpperCamelCase = 1.0 * num_same / len(_lowercase ) __UpperCamelCase = 1.0 * num_same / len(_lowercase ) __UpperCamelCase = (2 * precision * recall) / (precision + recall) return fa def _A ( _lowercase , _lowercase ) -> Any: """simple docstring""" return normalize_answer(_lowercase ) == normalize_answer(_lowercase ) def _A ( _lowercase , _lowercase ) -> Dict: """simple docstring""" assert len(_lowercase ) == len(_lowercase ) __UpperCamelCase = 0 for hypo, pred in zip(_lowercase , _lowercase ): em += exact_match_score(_lowercase , _lowercase ) if len(_lowercase ) > 0: em /= len(_lowercase ) return {"em": em} def _A ( _lowercase ) -> Optional[Any]: """simple docstring""" return model_prefix.startswith('rag' ) def _A ( _lowercase , _lowercase , _lowercase ) -> Dict: """simple docstring""" __UpperCamelCase = {p: p for p in extra_params} # T5 models don't have `dropout` param, they have `dropout_rate` instead __UpperCamelCase = 'dropout_rate' for p in extra_params: if getattr(_lowercase , _lowercase , _lowercase ): if not hasattr(_lowercase , _lowercase ) and not hasattr(_lowercase , equivalent_param[p] ): logger.info('config doesn\'t have a `{}` attribute'.format(_lowercase ) ) delattr(_lowercase , _lowercase ) continue __UpperCamelCase = p if hasattr(_lowercase , _lowercase ) else equivalent_param[p] setattr(_lowercase , _lowercase , getattr(_lowercase , _lowercase ) ) delattr(_lowercase , _lowercase ) return hparams, config
310
0
'''simple docstring''' import json import os import unittest from transformers.models.ctrl.tokenization_ctrl import VOCAB_FILES_NAMES, CTRLTokenizer from ...test_tokenization_common import TokenizerTesterMixin class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ , unittest.TestCase ): """simple docstring""" __magic_name__ = CTRLTokenizer __magic_name__ = False __magic_name__ = False def a ( self ): '''simple docstring''' super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt _lowerCAmelCase : Optional[Any] = ['adapt', 're@@', 'a@@', 'apt', 'c@@', 't', '<unk>'] _lowerCAmelCase : Tuple = dict(zip(snake_case__ , range(len(snake_case__ ) ) ) ) _lowerCAmelCase : List[str] = ['#version: 0.2', 'a p', 'ap t</w>', 'r e', 'a d', 'ad apt</w>', ''] _lowerCAmelCase : Optional[int] = {'unk_token': '<unk>'} _lowerCAmelCase : int = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) _lowerCAmelCase : List[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(snake_case__ ) + '\n' ) with open(self.merges_file , 'w' , encoding='utf-8' ) as fp: fp.write('\n'.join(snake_case__ ) ) def a ( self , **snake_case__ ): '''simple docstring''' kwargs.update(self.special_tokens_map ) return CTRLTokenizer.from_pretrained(self.tmpdirname , **snake_case__ ) def a ( self , snake_case__ ): '''simple docstring''' _lowerCAmelCase : Any = 'adapt react readapt apt' _lowerCAmelCase : Tuple = 'adapt react readapt apt' return input_text, output_text def a ( self ): '''simple docstring''' _lowerCAmelCase : Optional[int] = CTRLTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) _lowerCAmelCase : List[str] = 'adapt react readapt apt' _lowerCAmelCase : Tuple = 'adapt re@@ a@@ c@@ t re@@ adapt apt'.split() _lowerCAmelCase : Union[str, Any] = tokenizer.tokenize(snake_case__ ) self.assertListEqual(snake_case__ , snake_case__ ) _lowerCAmelCase : List[str] = tokens + [tokenizer.unk_token] _lowerCAmelCase : Any = [0, 1, 2, 4, 5, 1, 0, 3, 6] self.assertListEqual(tokenizer.convert_tokens_to_ids(snake_case__ ) , snake_case__ )
25
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) lowerCAmelCase : Union[str, Any] = { """configuration_resnet""": ["""RESNET_PRETRAINED_CONFIG_ARCHIVE_MAP""", """ResNetConfig""", """ResNetOnnxConfig"""] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : Dict = [ """RESNET_PRETRAINED_MODEL_ARCHIVE_LIST""", """ResNetForImageClassification""", """ResNetModel""", """ResNetPreTrainedModel""", """ResNetBackbone""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : str = [ """TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFResNetForImageClassification""", """TFResNetModel""", """TFResNetPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : Optional[Any] = [ """FlaxResNetForImageClassification""", """FlaxResNetModel""", """FlaxResNetPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_resnet import RESNET_PRETRAINED_CONFIG_ARCHIVE_MAP, ResNetConfig, ResNetOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_resnet import ( RESNET_PRETRAINED_MODEL_ARCHIVE_LIST, ResNetBackbone, ResNetForImageClassification, ResNetModel, ResNetPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_resnet import ( TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFResNetForImageClassification, TFResNetModel, TFResNetPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_resnet import FlaxResNetForImageClassification, FlaxResNetModel, FlaxResNetPreTrainedModel else: import sys lowerCAmelCase : str = _LazyModule(__name__, globals()["""__file__"""], _import_structure)
25
1
from abc import ABC, abstractmethod from argparse import ArgumentParser class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' @staticmethod @abstractmethod def SCREAMING_SNAKE_CASE_ (UpperCAmelCase_ : ArgumentParser) ->int: '''simple docstring''' raise NotImplementedError() @abstractmethod def SCREAMING_SNAKE_CASE_ (self : int) ->Tuple: '''simple docstring''' raise NotImplementedError()
10
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ....tokenization_utils_fast import PreTrainedTokenizerFast from ....utils import logging from .tokenization_retribert import RetriBertTokenizer __A = logging.get_logger(__name__) __A = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} __A = { "vocab_file": { "yjernite/retribert-base-uncased": ( "https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/vocab.txt" ), }, "tokenizer_file": { "yjernite/retribert-base-uncased": ( "https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/tokenizer.json" ), }, } __A = { "yjernite/retribert-base-uncased": 512, } __A = { "yjernite/retribert-base-uncased": {"do_lower_case": True}, } class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = VOCAB_FILES_NAMES lowercase_ = PRETRAINED_VOCAB_FILES_MAP lowercase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase_ = PRETRAINED_INIT_CONFIGURATION lowercase_ = RetriBertTokenizer lowercase_ = ["input_ids", "attention_mask"] def __init__(self : int , UpperCAmelCase_ : List[str]=None , UpperCAmelCase_ : str=None , UpperCAmelCase_ : Optional[Any]=True , UpperCAmelCase_ : Union[str, Any]="[UNK]" , UpperCAmelCase_ : Any="[SEP]" , UpperCAmelCase_ : List[str]="[PAD]" , UpperCAmelCase_ : Optional[Any]="[CLS]" , UpperCAmelCase_ : Optional[Any]="[MASK]" , UpperCAmelCase_ : Dict=True , UpperCAmelCase_ : str=None , **UpperCAmelCase_ : str , ) ->List[Any]: '''simple docstring''' super().__init__( UpperCAmelCase_ , tokenizer_file=UpperCAmelCase_ , do_lower_case=UpperCAmelCase_ , unk_token=UpperCAmelCase_ , sep_token=UpperCAmelCase_ , pad_token=UpperCAmelCase_ , cls_token=UpperCAmelCase_ , mask_token=UpperCAmelCase_ , tokenize_chinese_chars=UpperCAmelCase_ , strip_accents=UpperCAmelCase_ , **UpperCAmelCase_ , ) lowerCamelCase__: List[Any] =json.loads(self.backend_tokenizer.normalizer.__getstate__()) if ( normalizer_state.get("lowercase" , UpperCAmelCase_) != do_lower_case or normalizer_state.get("strip_accents" , UpperCAmelCase_) != strip_accents or normalizer_state.get("handle_chinese_chars" , UpperCAmelCase_) != tokenize_chinese_chars ): lowerCamelCase__: Dict =getattr(UpperCAmelCase_ , normalizer_state.pop("type")) lowerCamelCase__: int =do_lower_case lowerCamelCase__: int =strip_accents lowerCamelCase__: List[str] =tokenize_chinese_chars lowerCamelCase__: Tuple =normalizer_class(**UpperCAmelCase_) lowerCamelCase__: Any =do_lower_case def SCREAMING_SNAKE_CASE_ (self : List[str] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Optional[Any]=None) ->List[str]: '''simple docstring''' lowerCamelCase__: Optional[Any] =[self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def SCREAMING_SNAKE_CASE_ (self : Dict , UpperCAmelCase_ : List[int] , UpperCAmelCase_ : Optional[List[int]] = None) ->List[int]: '''simple docstring''' lowerCamelCase__: Tuple =[self.sep_token_id] lowerCamelCase__: Optional[int] =[self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep) * [0] + len(token_ids_a + sep) * [1] def SCREAMING_SNAKE_CASE_ (self : Tuple , UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[str] = None) ->Tuple[str]: '''simple docstring''' lowerCamelCase__: Tuple =self._tokenizer.model.save(UpperCAmelCase_ , name=UpperCAmelCase_) return tuple(UpperCAmelCase_)
10
1
'''simple docstring''' import logging import os import random import sys from dataclasses import dataclass, field from typing import Optional import datasets import evaluate import numpy as np from datasets import load_dataset import transformers from transformers import ( AutoConfig, AutoModelForSequenceClassification, AutoTokenizer, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, Trainer, TrainingArguments, default_data_collator, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('''4.31.0''') require_version('''datasets>=1.8.0''', '''To fix: pip install -r examples/pytorch/text-classification/requirements.txt''') _lowerCAmelCase = logging.getLogger(__name__) @dataclass class lowerCAmelCase_: '''simple docstring''' __lowercase : Optional[int] = field( default=1_2_8 , metadata={ '''help''': ( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) } , ) __lowercase : bool = field( default=SCREAMING_SNAKE_CASE_ , metadata={'''help''': '''Overwrite the cached preprocessed datasets or not.'''} ) __lowercase : bool = field( default=SCREAMING_SNAKE_CASE_ , metadata={ '''help''': ( '''Whether to pad all samples to `max_seq_length`. ''' '''If False, will pad the samples dynamically when batching to the maximum length in the batch.''' ) } , ) __lowercase : Optional[int] = field( default=SCREAMING_SNAKE_CASE_ , metadata={ '''help''': ( '''For debugging purposes or quicker training, truncate the number of training examples to this ''' '''value if set.''' ) } , ) __lowercase : Optional[int] = field( default=SCREAMING_SNAKE_CASE_ , metadata={ '''help''': ( '''For debugging purposes or quicker training, truncate the number of evaluation examples to this ''' '''value if set.''' ) } , ) __lowercase : Optional[int] = field( default=SCREAMING_SNAKE_CASE_ , metadata={ '''help''': ( '''For debugging purposes or quicker training, truncate the number of prediction examples to this ''' '''value if set.''' ) } , ) @dataclass class lowerCAmelCase_: '''simple docstring''' __lowercase : str = field( default=SCREAMING_SNAKE_CASE_ , metadata={'''help''': '''Path to pretrained model or model identifier from huggingface.co/models'''} ) __lowercase : str = field( default=SCREAMING_SNAKE_CASE_ , metadata={'''help''': '''Evaluation language. Also train language if `train_language` is set to None.'''} ) __lowercase : Optional[str] = field( default=SCREAMING_SNAKE_CASE_ , metadata={'''help''': '''Train language if it is different from the evaluation language.'''} ) __lowercase : Optional[str] = field( default=SCREAMING_SNAKE_CASE_ , metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} ) __lowercase : Optional[str] = field( default=SCREAMING_SNAKE_CASE_ , metadata={'''help''': '''Pretrained tokenizer name or path if not the same as model_name'''} ) __lowercase : Optional[str] = field( default=SCREAMING_SNAKE_CASE_ , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co'''} , ) __lowercase : Optional[bool] = field( default=SCREAMING_SNAKE_CASE_ , metadata={'''help''': '''arg to indicate if tokenizer should do lower case in AutoTokenizer.from_pretrained()'''} , ) __lowercase : bool = field( default=SCREAMING_SNAKE_CASE_ , metadata={'''help''': '''Whether to use one of the fast tokenizer (backed by the tokenizers library) or not.'''} , ) __lowercase : str = field( default='''main''' , metadata={'''help''': '''The specific model version to use (can be a branch name, tag name or commit id).'''} , ) __lowercase : bool = field( default=SCREAMING_SNAKE_CASE_ , metadata={ '''help''': ( '''Will use the token generated when running `huggingface-cli login` (necessary to use this script ''' '''with private models).''' ) } , ) __lowercase : bool = field( default=SCREAMING_SNAKE_CASE_ , metadata={'''help''': '''Will enable to load a pretrained model whose head dimensions are different.'''} , ) def _SCREAMING_SNAKE_CASE ( ): """simple docstring""" lowerCAmelCase__ : int = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ : str = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry("""run_xnli""" , UpperCamelCase ) # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() lowerCAmelCase__ : str = training_args.get_process_log_level() logger.setLevel(UpperCamelCase ) datasets.utils.logging.set_verbosity(UpperCamelCase ) transformers.utils.logging.set_verbosity(UpperCamelCase ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( f"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}""" + f"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" ) logger.info(f"""Training/evaluation parameters {training_args}""" ) # Detecting last checkpoint. lowerCAmelCase__ : Optional[Any] = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: lowerCAmelCase__ : Optional[Any] = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f"""Output directory ({training_args.output_dir}) already exists and is not empty. """ """Use --overwrite_output_dir to overcome.""" ) elif last_checkpoint is not None: logger.info( f"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """ """the `--output_dir` or add `--overwrite_output_dir` to train from scratch.""" ) # Set seed before initializing model. set_seed(training_args.seed ) # In distributed training, the load_dataset function guarantees that only one local process can concurrently # download the dataset. # Downloading and loading xnli dataset from the hub. if training_args.do_train: if model_args.train_language is None: lowerCAmelCase__ : Dict = load_dataset( """xnli""" , model_args.language , split="""train""" , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) else: lowerCAmelCase__ : str = load_dataset( """xnli""" , model_args.train_language , split="""train""" , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) lowerCAmelCase__ : str = train_dataset.features["""label"""].names if training_args.do_eval: lowerCAmelCase__ : Tuple = load_dataset( """xnli""" , model_args.language , split="""validation""" , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) lowerCAmelCase__ : List[Any] = eval_dataset.features["""label"""].names if training_args.do_predict: lowerCAmelCase__ : Union[str, Any] = load_dataset( """xnli""" , model_args.language , split="""test""" , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) lowerCAmelCase__ : Union[str, Any] = predict_dataset.features["""label"""].names # Labels lowerCAmelCase__ : List[Any] = len(UpperCamelCase ) # Load pretrained model and tokenizer # In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. lowerCAmelCase__ : Any = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=UpperCamelCase , idalabel={str(UpperCamelCase ): label for i, label in enumerate(UpperCamelCase )} , labelaid={label: i for i, label in enumerate(UpperCamelCase )} , finetuning_task="""xnli""" , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) lowerCAmelCase__ : Union[str, Any] = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , do_lower_case=model_args.do_lower_case , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast_tokenizer , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) lowerCAmelCase__ : Optional[int] = AutoModelForSequenceClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool(""".ckpt""" in model_args.model_name_or_path ) , config=UpperCamelCase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ignore_mismatched_sizes=model_args.ignore_mismatched_sizes , ) # Preprocessing the datasets # Padding strategy if data_args.pad_to_max_length: lowerCAmelCase__ : int = """max_length""" else: # We will pad later, dynamically at batch creation, to the max sequence length in each batch lowerCAmelCase__ : Optional[Any] = False def preprocess_function(UpperCamelCase ): # Tokenize the texts return tokenizer( examples["""premise"""] , examples["""hypothesis"""] , padding=UpperCamelCase , max_length=data_args.max_seq_length , truncation=UpperCamelCase , ) if training_args.do_train: if data_args.max_train_samples is not None: lowerCAmelCase__ : Optional[Any] = min(len(UpperCamelCase ) , data_args.max_train_samples ) lowerCAmelCase__ : Any = train_dataset.select(range(UpperCamelCase ) ) with training_args.main_process_first(desc="""train dataset map pre-processing""" ): lowerCAmelCase__ : int = train_dataset.map( UpperCamelCase , batched=UpperCamelCase , load_from_cache_file=not data_args.overwrite_cache , desc="""Running tokenizer on train dataset""" , ) # Log a few random samples from the training set: for index in random.sample(range(len(UpperCamelCase ) ) , 3 ): logger.info(f"""Sample {index} of the training set: {train_dataset[index]}.""" ) if training_args.do_eval: if data_args.max_eval_samples is not None: lowerCAmelCase__ : List[str] = min(len(UpperCamelCase ) , data_args.max_eval_samples ) lowerCAmelCase__ : Optional[Any] = eval_dataset.select(range(UpperCamelCase ) ) with training_args.main_process_first(desc="""validation dataset map pre-processing""" ): lowerCAmelCase__ : List[str] = eval_dataset.map( UpperCamelCase , batched=UpperCamelCase , load_from_cache_file=not data_args.overwrite_cache , desc="""Running tokenizer on validation dataset""" , ) if training_args.do_predict: if data_args.max_predict_samples is not None: lowerCAmelCase__ : List[str] = min(len(UpperCamelCase ) , data_args.max_predict_samples ) lowerCAmelCase__ : Tuple = predict_dataset.select(range(UpperCamelCase ) ) with training_args.main_process_first(desc="""prediction dataset map pre-processing""" ): lowerCAmelCase__ : str = predict_dataset.map( UpperCamelCase , batched=UpperCamelCase , load_from_cache_file=not data_args.overwrite_cache , desc="""Running tokenizer on prediction dataset""" , ) # Get the metric function lowerCAmelCase__ : int = evaluate.load("""xnli""" ) # You can define your custom compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a # predictions and label_ids field) and has to return a dictionary string to float. def compute_metrics(UpperCamelCase ): lowerCAmelCase__ : int = p.predictions[0] if isinstance(p.predictions , UpperCamelCase ) else p.predictions lowerCAmelCase__ : Optional[int] = np.argmax(UpperCamelCase , axis=1 ) return metric.compute(predictions=UpperCamelCase , references=p.label_ids ) # Data collator will default to DataCollatorWithPadding, so we change it if we already did the padding. if data_args.pad_to_max_length: lowerCAmelCase__ : Dict = default_data_collator elif training_args.fpaa: lowerCAmelCase__ : Tuple = DataCollatorWithPadding(UpperCamelCase , pad_to_multiple_of=8 ) else: lowerCAmelCase__ : int = None # Initialize our Trainer lowerCAmelCase__ : Any = Trainer( model=UpperCamelCase , args=UpperCamelCase , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , compute_metrics=UpperCamelCase , tokenizer=UpperCamelCase , data_collator=UpperCamelCase , ) # Training if training_args.do_train: lowerCAmelCase__ : Any = None if training_args.resume_from_checkpoint is not None: lowerCAmelCase__ : List[Any] = training_args.resume_from_checkpoint elif last_checkpoint is not None: lowerCAmelCase__ : Dict = last_checkpoint lowerCAmelCase__ : Optional[Any] = trainer.train(resume_from_checkpoint=UpperCamelCase ) lowerCAmelCase__ : Optional[int] = train_result.metrics lowerCAmelCase__ : str = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(UpperCamelCase ) ) lowerCAmelCase__ : List[Any] = min(UpperCamelCase , len(UpperCamelCase ) ) trainer.save_model() # Saves the tokenizer too for easy upload trainer.log_metrics("""train""" , UpperCamelCase ) trainer.save_metrics("""train""" , UpperCamelCase ) trainer.save_state() # Evaluation if training_args.do_eval: logger.info("""*** Evaluate ***""" ) lowerCAmelCase__ : List[str] = trainer.evaluate(eval_dataset=UpperCamelCase ) lowerCAmelCase__ : Any = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(UpperCamelCase ) lowerCAmelCase__ : Optional[Any] = min(UpperCamelCase , len(UpperCamelCase ) ) trainer.log_metrics("""eval""" , UpperCamelCase ) trainer.save_metrics("""eval""" , UpperCamelCase ) # Prediction if training_args.do_predict: logger.info("""*** Predict ***""" ) lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ : Union[str, Any] = trainer.predict(UpperCamelCase , metric_key_prefix="""predict""" ) lowerCAmelCase__ : str = ( data_args.max_predict_samples if data_args.max_predict_samples is not None else len(UpperCamelCase ) ) lowerCAmelCase__ : Optional[Any] = min(UpperCamelCase , len(UpperCamelCase ) ) trainer.log_metrics("""predict""" , UpperCamelCase ) trainer.save_metrics("""predict""" , UpperCamelCase ) lowerCAmelCase__ : str = np.argmax(UpperCamelCase , axis=1 ) lowerCAmelCase__ : Optional[Any] = os.path.join(training_args.output_dir , """predictions.txt""" ) if trainer.is_world_process_zero(): with open(UpperCamelCase , """w""" ) as writer: writer.write("""index\tprediction\n""" ) for index, item in enumerate(UpperCamelCase ): lowerCAmelCase__ : Tuple = label_list[item] writer.write(f"""{index}\t{item}\n""" ) if __name__ == "__main__": main()
184
'''simple docstring''' import copy from dataclasses import dataclass from pathlib import Path from typing import Dict, Optional, Union @dataclass class lowerCAmelCase_: '''simple docstring''' __lowercase : Optional[Union[str, Path]] = None __lowercase : bool = False __lowercase : bool = False __lowercase : bool = False __lowercase : Optional[Dict] = None __lowercase : Optional[str] = None __lowercase : bool = False __lowercase : bool = False __lowercase : bool = False __lowercase : bool = True __lowercase : Optional[int] = None __lowercase : int = 1 __lowercase : Optional[Union[str, bool]] = None __lowercase : bool = False __lowercase : Optional[Dict] = None __lowercase : Optional[str] = None def UpperCAmelCase_ ( self ) -> "DownloadConfig": return self.__class__(**{k: copy.deepcopy(__UpperCAmelCase ) for k, v in self.__dict__.items()} )
184
1
"""simple docstring""" def a_ ( _lowerCAmelCase : int , _lowerCAmelCase : int ): '''simple docstring''' return int((input_a, input_a).count(0 ) != 0 ) def a_ ( ): '''simple docstring''' assert nand_gate(0 , 0 ) == 1 assert nand_gate(0 , 1 ) == 1 assert nand_gate(1 , 0 ) == 1 assert nand_gate(1 , 1 ) == 0 if __name__ == "__main__": print(nand_gate(0, 0)) print(nand_gate(0, 1)) print(nand_gate(1, 0)) print(nand_gate(1, 1))
77
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging __snake_case : Optional[Any] =logging.get_logger(__name__) __snake_case : Union[str, Any] ={'vocab_file': 'spm_char.model'} __snake_case : List[str] ={ 'vocab_file': { 'microsoft/speecht5_asr': 'https://huggingface.co/microsoft/speecht5_asr/resolve/main/spm_char.model', 'microsoft/speecht5_tts': 'https://huggingface.co/microsoft/speecht5_tts/resolve/main/spm_char.model', 'microsoft/speecht5_vc': 'https://huggingface.co/microsoft/speecht5_vc/resolve/main/spm_char.model', } } __snake_case : Union[str, Any] ={ 'microsoft/speecht5_asr': 1_0_2_4, 'microsoft/speecht5_tts': 1_0_2_4, 'microsoft/speecht5_vc': 1_0_2_4, } class lowerCamelCase__ ( lowerCamelCase__): '''simple docstring''' snake_case_ =VOCAB_FILES_NAMES snake_case_ =PRETRAINED_VOCAB_FILES_MAP snake_case_ =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case_ =["""input_ids""", """attention_mask"""] def __init__(self ,__lowerCamelCase ,__lowerCamelCase="<s>" ,__lowerCamelCase="</s>" ,__lowerCamelCase="<unk>" ,__lowerCamelCase="<pad>" ,__lowerCamelCase = None ,**__lowerCamelCase ,) -> None: """simple docstring""" lowerCAmelCase__ : Dict = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=__lowerCamelCase ,eos_token=__lowerCamelCase ,unk_token=__lowerCamelCase ,pad_token=__lowerCamelCase ,sp_model_kwargs=self.sp_model_kwargs ,**__lowerCamelCase ,) lowerCAmelCase__ : List[str] = vocab_file lowerCAmelCase__ : Dict = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(__lowerCamelCase ) @property def lowerCAmelCase__ (self ) -> Optional[int]: """simple docstring""" return self.sp_model.get_piece_size() def lowerCAmelCase__ (self ) -> List[Any]: """simple docstring""" lowerCAmelCase__ : int = {self.convert_ids_to_tokens(__lowerCamelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__(self ) -> Dict: """simple docstring""" lowerCAmelCase__ : Union[str, Any] = self.__dict__.copy() lowerCAmelCase__ : Any = None return state def __setstate__(self ,__lowerCamelCase ) -> Union[str, Any]: """simple docstring""" lowerCAmelCase__ : Optional[int] = d # for backward compatibility if not hasattr(self ,'''sp_model_kwargs''' ): lowerCAmelCase__ : Optional[int] = {} lowerCAmelCase__ : str = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def lowerCAmelCase__ (self ,__lowerCamelCase ) -> List[str]: """simple docstring""" return self.sp_model.encode(__lowerCamelCase ,out_type=__lowerCamelCase ) def lowerCAmelCase__ (self ,__lowerCamelCase ) -> Optional[Any]: """simple docstring""" return self.sp_model.piece_to_id(__lowerCamelCase ) def lowerCAmelCase__ (self ,__lowerCamelCase ) -> Any: """simple docstring""" lowerCAmelCase__ : str = self.sp_model.IdToPiece(__lowerCamelCase ) return token def lowerCAmelCase__ (self ,__lowerCamelCase ) -> Dict: """simple docstring""" lowerCAmelCase__ : Optional[Any] = [] lowerCAmelCase__ : Union[str, Any] = '''''' for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(__lowerCamelCase ) + token lowerCAmelCase__ : str = [] else: current_sub_tokens.append(__lowerCamelCase ) out_string += self.sp_model.decode(__lowerCamelCase ) return out_string.strip() def lowerCAmelCase__ (self ,__lowerCamelCase ,__lowerCamelCase=None ) -> List[int]: """simple docstring""" if token_ids_a is None: return token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return token_ids_a + token_ids_a + [self.eos_token_id] def lowerCAmelCase__ (self ,__lowerCamelCase ,__lowerCamelCase = None ,__lowerCamelCase = False ) -> List[int]: """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__lowerCamelCase ,token_ids_a=__lowerCamelCase ,already_has_special_tokens=__lowerCamelCase ) lowerCAmelCase__ : Dict = [1] if token_ids_a is None: return ([0] * len(__lowerCamelCase )) + suffix_ones return ([0] * len(__lowerCamelCase )) + ([0] * len(__lowerCamelCase )) + suffix_ones def lowerCAmelCase__ (self ,__lowerCamelCase ,__lowerCamelCase = None ) -> Tuple[str]: """simple docstring""" if not os.path.isdir(__lowerCamelCase ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return lowerCAmelCase__ : Union[str, Any] = os.path.join( __lowerCamelCase ,(filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__lowerCamelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file ,__lowerCamelCase ) elif not os.path.isfile(self.vocab_file ): with open(__lowerCamelCase ,'''wb''' ) as fi: lowerCAmelCase__ : Tuple = self.sp_model.serialized_model_proto() fi.write(__lowerCamelCase ) return (out_vocab_file,)
129
0
'''simple docstring''' import sys from typing import Tuple import numpy as np import torch from PIL import Image from torch import nn from transformers.image_utils import PILImageResampling from utils import img_tensorize class _A : """simple docstring""" def __init__( self , __UpperCAmelCase , __UpperCAmelCase=sys.maxsize ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : List[str] = '''bilinear''' __UpperCAmelCase : List[str] = max_size __UpperCAmelCase : List[Any] = short_edge_length def __call__( self , __UpperCAmelCase ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : int = [] for img in imgs: __UpperCAmelCase : Dict = img.shape[:2] # later: provide list and randomly choose index for resize __UpperCAmelCase : str = np.random.randint(self.short_edge_length[0] , self.short_edge_length[1] + 1 ) if size == 0: return img __UpperCAmelCase : List[Any] = size * 1.0 / min(snake_case_ , snake_case_ ) if h < w: __UpperCAmelCase : Dict = size, scale * w else: __UpperCAmelCase : Optional[Any] = scale * h, size if max(snake_case_ , snake_case_ ) > self.max_size: __UpperCAmelCase : Tuple = self.max_size * 1.0 / max(snake_case_ , snake_case_ ) __UpperCAmelCase : List[Any] = newh * scale __UpperCAmelCase : int = neww * scale __UpperCAmelCase : Dict = int(neww + 0.5 ) __UpperCAmelCase : Dict = int(newh + 0.5 ) if img.dtype == np.uinta: __UpperCAmelCase : Optional[Any] = Image.fromarray(snake_case_ ) __UpperCAmelCase : str = pil_image.resize((neww, newh) , PILImageResampling.BILINEAR ) __UpperCAmelCase : Optional[Any] = np.asarray(snake_case_ ) else: __UpperCAmelCase : Tuple = img.permute(2 , 0 , 1 ).unsqueeze(0 ) # 3, 0, 1) # hw(c) -> nchw __UpperCAmelCase : Any = nn.functional.interpolate( snake_case_ , (newh, neww) , mode=self.interp_method , align_corners=snake_case_ ).squeeze(0 ) img_augs.append(snake_case_ ) return img_augs class _A : """simple docstring""" def __init__( self , __UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' __UpperCAmelCase : Dict = ResizeShortestEdge([cfg.INPUT.MIN_SIZE_TEST, cfg.INPUT.MIN_SIZE_TEST] , cfg.INPUT.MAX_SIZE_TEST ) __UpperCAmelCase : Union[str, Any] = cfg.INPUT.FORMAT __UpperCAmelCase : Dict = cfg.SIZE_DIVISIBILITY __UpperCAmelCase : List[Any] = cfg.PAD_VALUE __UpperCAmelCase : Dict = cfg.INPUT.MAX_SIZE_TEST __UpperCAmelCase : List[Any] = cfg.MODEL.DEVICE __UpperCAmelCase : Tuple = torch.tensor(cfg.MODEL.PIXEL_STD ).to(self.device ).view(len(cfg.MODEL.PIXEL_STD ) , 1 , 1 ) __UpperCAmelCase : int = torch.tensor(cfg.MODEL.PIXEL_MEAN ).to(self.device ).view(len(cfg.MODEL.PIXEL_STD ) , 1 , 1 ) __UpperCAmelCase : Union[str, Any] = lambda __UpperCAmelCase : (x - self.pixel_mean) / self.pixel_std def __A ( self , __UpperCAmelCase ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : List[str] = tuple(max(snake_case_ ) for s in zip(*[img.shape for img in images] ) ) __UpperCAmelCase : List[Any] = [im.shape[-2:] for im in images] __UpperCAmelCase : Optional[int] = [ nn.functional.pad( snake_case_ , [0, max_size[-1] - size[1], 0, max_size[-2] - size[0]] , value=self.pad_value , ) for size, im in zip(snake_case_ , snake_case_ ) ] return torch.stack(snake_case_ ), torch.tensor(snake_case_ ) def __call__( self , __UpperCAmelCase , __UpperCAmelCase=False ) -> int: '''simple docstring''' with torch.no_grad(): if not isinstance(snake_case_ , snake_case_ ): __UpperCAmelCase : str = [images] if single_image: assert len(snake_case_ ) == 1 for i in range(len(snake_case_ ) ): if isinstance(images[i] , torch.Tensor ): images.insert(snake_case_ , images.pop(snake_case_ ).to(self.device ).float() ) elif not isinstance(images[i] , torch.Tensor ): images.insert( snake_case_ , torch.as_tensor(img_tensorize(images.pop(snake_case_ ) , input_format=self.input_format ) ) .to(self.device ) .float() , ) # resize smallest edge __UpperCAmelCase : Optional[Any] = torch.tensor([im.shape[:2] for im in images] ) __UpperCAmelCase : int = self.aug(snake_case_ ) # transpose images and convert to torch tensors # images = [torch.as_tensor(i.astype("float32")).permute(2, 0, 1).to(self.device) for i in images] # now normalize before pad to avoid useless arithmetic __UpperCAmelCase : str = [self.normalizer(snake_case_ ) for x in images] # now pad them to do the following operations __UpperCAmelCase : List[Any] = self.pad(snake_case_ ) # Normalize if self.size_divisibility > 0: raise NotImplementedError() # pad __UpperCAmelCase : str = torch.true_divide(snake_case_ , snake_case_ ) if single_image: return images[0], sizes[0], scales_yx[0] else: return images, sizes, scales_yx def lowercase_ ( lowerCAmelCase__ : int , lowerCAmelCase__ : Union[str, Any] ): """simple docstring""" boxes[:, 0::2] *= scale_yx[:, 1] boxes[:, 1::2] *= scale_yx[:, 0] return boxes def lowercase_ ( lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Tuple[int, int] ): """simple docstring""" assert torch.isfinite(lowerCAmelCase__ ).all(), "Box tensor contains infinite or NaN!" __UpperCAmelCase : Optional[Any] = box_size tensor[:, 0].clamp_(min=0 , max=lowerCAmelCase__ ) tensor[:, 1].clamp_(min=0 , max=lowerCAmelCase__ ) tensor[:, 2].clamp_(min=0 , max=lowerCAmelCase__ ) tensor[:, 3].clamp_(min=0 , max=lowerCAmelCase__ )
351
'''simple docstring''' from ..utils import DummyObject, requires_backends class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : List[str] = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[int]: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : str = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Union[str, Any]: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : Dict = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> List[str]: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : Optional[int] = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Dict: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : List[Any] = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> str: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : Optional[Any] = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> str: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : Tuple = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : Tuple = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Tuple: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : Any = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Dict: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : str = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> str: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : Optional[int] = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Tuple: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : Union[str, Any] = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : List[Any] = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Dict: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : Optional[Any] = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : Optional[int] = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> List[str]: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : Any = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Dict: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : Tuple = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Tuple: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : str = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Union[str, Any]: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : Dict = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : Optional[Any] = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[int]: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : Union[str, Any] = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Tuple: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : Union[str, Any] = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> int: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : Dict = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> int: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : List[str] = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> int: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : Union[str, Any] = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Union[str, Any]: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : Union[str, Any] = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Union[str, Any]: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : List[Any] = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Any: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : Optional[int] = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Dict: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : Any = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : List[Any] = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Any: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : Optional[Any] = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> List[str]: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] )
16
0
"""simple docstring""" import logging from pathlib import Path import numpy as np import pytorch_lightning as pl import torch from pytorch_lightning.callbacks import EarlyStopping, ModelCheckpoint from pytorch_lightning.utilities import rank_zero_only from utils_rag import save_json def _snake_case ( lowercase__ ): _lowerCamelCase : Tuple = filter(lambda lowercase__ : p.requires_grad , model.parameters() ) _lowerCamelCase : int = sum([np.prod(p.size() ) for p in model_parameters] ) return params lowercase__ = logging.getLogger(__name__) def _snake_case ( lowercase__ , lowercase__ ): if metric == "rouge2": _lowerCamelCase : str = '{val_avg_rouge2:.4f}-{step_count}' elif metric == "bleu": _lowerCamelCase : List[str] = '{val_avg_bleu:.4f}-{step_count}' elif metric == "em": _lowerCamelCase : Union[str, Any] = '{val_avg_em:.4f}-{step_count}' elif metric == "loss": _lowerCamelCase : Dict = '{val_avg_loss:.4f}-{step_count}' else: raise NotImplementedError( f'''seq2seq callbacks only support rouge2 and bleu, got {metric}, You can make your own by adding to this''' ' function.' ) _lowerCamelCase : List[Any] = ModelCheckpoint( dirpath=lowercase__ , filename=lowercase__ , monitor=f'''val_{metric}''' , mode='max' , save_top_k=1 , every_n_epochs=1 , ) return checkpoint_callback def _snake_case ( lowercase__ , lowercase__ ): return EarlyStopping( monitor=f'''val_{metric}''' , mode='min' if 'loss' in metric else 'max' , patience=lowercase__ , verbose=lowercase__ , ) class lowerCAmelCase__ ( pl.Callback ): '''simple docstring''' def A_ ( self , lowercase , lowercase ): _lowerCamelCase : int = {F'''lr_group_{i}''': param['lr'] for i, param in enumerate(pl_module.trainer.optimizers[0].param_groups )} pl_module.logger.log_metrics(lowercase ) @rank_zero_only def A_ ( self , lowercase , lowercase , lowercase , lowercase=True ): logger.info(F'''***** {type_path} results at step {trainer.global_step:05d} *****''' ) _lowerCamelCase : Dict = trainer.callback_metrics trainer.logger.log_metrics({k: v for k, v in metrics.items() if k not in ['log', 'progress_bar', 'preds']} ) # Log results _lowerCamelCase : List[str] = Path(pl_module.hparams.output_dir ) if type_path == "test": _lowerCamelCase : Union[str, Any] = od / 'test_results.txt' _lowerCamelCase : Dict = od / 'test_generations.txt' else: # this never gets hit. I prefer not to save intermediate generations, and results are in metrics.json # If people want this it will be easy enough to add back. _lowerCamelCase : int = od / F'''{type_path}_results/{trainer.global_step:05d}.txt''' _lowerCamelCase : str = od / F'''{type_path}_generations/{trainer.global_step:05d}.txt''' results_file.parent.mkdir(exist_ok=lowercase ) generations_file.parent.mkdir(exist_ok=lowercase ) with open(lowercase , 'a+' ) as writer: for key in sorted(lowercase ): if key in ["log", "progress_bar", "preds"]: continue _lowerCamelCase : Tuple = metrics[key] if isinstance(lowercase , torch.Tensor ): _lowerCamelCase : str = val.item() _lowerCamelCase : Tuple = F'''{key}: {val:.6f}\n''' writer.write(lowercase ) if not save_generations: return if "preds" in metrics: _lowerCamelCase : Any = '\n'.join(metrics['preds'] ) generations_file.open('w+' ).write(lowercase ) @rank_zero_only def A_ ( self , lowercase , lowercase ): try: _lowerCamelCase : Union[str, Any] = pl_module.model.model.num_parameters() except AttributeError: _lowerCamelCase : str = pl_module.model.num_parameters() _lowerCamelCase : List[Any] = count_trainable_parameters(lowercase ) # mp stands for million parameters trainer.logger.log_metrics({'n_params': npars, 'mp': npars / 1E6, 'grad_mp': n_trainable_pars / 1E6} ) @rank_zero_only def A_ ( self , lowercase , lowercase ): save_json(pl_module.metrics , pl_module.metrics_save_path ) return self._write_logs(lowercase , lowercase , 'test' ) @rank_zero_only def A_ ( self , lowercase , lowercase ): save_json(pl_module.metrics , pl_module.metrics_save_path ) # Uncommenting this will save val generations # return self._write_logs(trainer, pl_module, "valid")
96
"""simple docstring""" import math import random def UpperCAmelCase__ (lowerCAmelCase_ , lowerCAmelCase_ = False ): '''simple docstring''' if deriv: return value * (1 - value) return 1 / (1 + math.exp(-value )) # Initial Value a__ : Tuple = 0.02 def UpperCAmelCase__ (lowerCAmelCase_ , lowerCAmelCase_ ): '''simple docstring''' __SCREAMING_SNAKE_CASE = float(2 * (random.randint(1 , 100 )) - 1 ) for _ in range(lowerCAmelCase_ ): # Forward propagation __SCREAMING_SNAKE_CASE = sigmoid_function(INITIAL_VALUE * weight ) # How much did we miss? __SCREAMING_SNAKE_CASE = (expected / 100) - layer_a # Error delta __SCREAMING_SNAKE_CASE = layer_1_error * sigmoid_function(lowerCAmelCase_ , lowerCAmelCase_ ) # Update weight weight += INITIAL_VALUE * layer_1_delta return layer_a * 100 if __name__ == "__main__": import doctest doctest.testmod() a__ : List[str] = int(input('''Expected value: ''')) a__ : str = int(input('''Number of propagations: ''')) print(forward_propagation(expected, number_propagations))
54
0
"""simple docstring""" def lowerCamelCase (a_ :dict) -> bool: lowercase :set[int] = set() # To detect a back edge, keep track of vertices currently in the recursion stack lowercase :set[int] = set() return any( node not in visited and depth_first_search(a_ , a_ , a_ , a_) for node in graph) def lowerCamelCase (a_ :dict , a_ :int , a_ :set , a_ :set) -> bool: visited.add(a_) rec_stk.add(a_) for node in graph[vertex]: if node not in visited: if depth_first_search(a_ , a_ , a_ , a_): return True elif node in rec_stk: return True # The node needs to be removed from recursion stack before function ends rec_stk.remove(a_) return False if __name__ == "__main__": from doctest import testmod testmod()
356
"""simple docstring""" from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...onnx.utils import compute_effective_axis_dimension from ...utils import logging if TYPE_CHECKING: from ...processing_utils import ProcessorMixin from ...utils import TensorType UpperCAmelCase = logging.get_logger(__name__) UpperCAmelCase = { '''microsoft/layoutlmv3-base''': '''https://huggingface.co/microsoft/layoutlmv3-base/resolve/main/config.json''', } class __magic_name__ ( __UpperCAmelCase ): __A : Tuple = "layoutlmv3" def __init__( self : int , snake_case__ : Any=5_0_2_6_5 , snake_case__ : int=7_6_8 , snake_case__ : Dict=1_2 , snake_case__ : Optional[Any]=1_2 , snake_case__ : Union[str, Any]=3_0_7_2 , snake_case__ : Tuple="gelu" , snake_case__ : List[str]=0.1 , snake_case__ : List[str]=0.1 , snake_case__ : int=5_1_2 , snake_case__ : int=2 , snake_case__ : Optional[int]=0.02 , snake_case__ : Union[str, Any]=1e-5 , snake_case__ : Optional[int]=1 , snake_case__ : Any=0 , snake_case__ : Optional[int]=2 , snake_case__ : int=1_0_2_4 , snake_case__ : str=1_2_8 , snake_case__ : Tuple=1_2_8 , snake_case__ : Optional[Any]=True , snake_case__ : Union[str, Any]=3_2 , snake_case__ : Any=1_2_8 , snake_case__ : List[Any]=6_4 , snake_case__ : List[Any]=2_5_6 , snake_case__ : Any=True , snake_case__ : Optional[Any]=True , snake_case__ : Tuple=True , snake_case__ : List[Any]=2_2_4 , snake_case__ : Optional[int]=3 , snake_case__ : Union[str, Any]=1_6 , snake_case__ : str=None , **snake_case__ : List[str] , ): '''simple docstring''' super().__init__( vocab_size=snake_case__ , hidden_size=snake_case__ , num_hidden_layers=snake_case__ , num_attention_heads=snake_case__ , intermediate_size=snake_case__ , hidden_act=snake_case__ , hidden_dropout_prob=snake_case__ , attention_probs_dropout_prob=snake_case__ , max_position_embeddings=snake_case__ , type_vocab_size=snake_case__ , initializer_range=snake_case__ , layer_norm_eps=snake_case__ , pad_token_id=snake_case__ , bos_token_id=snake_case__ , eos_token_id=snake_case__ , **snake_case__ , ) lowercase :Optional[int] = max_ad_position_embeddings lowercase :Tuple = coordinate_size lowercase :Any = shape_size lowercase :Union[str, Any] = has_relative_attention_bias lowercase :Optional[Any] = rel_pos_bins lowercase :Tuple = max_rel_pos lowercase :Any = has_spatial_attention_bias lowercase :Any = rel_ad_pos_bins lowercase :str = max_rel_ad_pos lowercase :int = text_embed lowercase :Optional[int] = visual_embed lowercase :str = input_size lowercase :List[str] = num_channels lowercase :str = patch_size lowercase :Any = classifier_dropout class __magic_name__ ( __UpperCAmelCase ): __A : Tuple = version.parse("1.12" ) @property def __snake_case ( self : Any ): '''simple docstring''' if self.task in ["question-answering", "sequence-classification"]: return OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''sequence'''}), ('''bbox''', {0: '''batch''', 1: '''sequence'''}), ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) else: return OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''sequence'''}), ('''bbox''', {0: '''batch''', 1: '''sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''sequence'''}), ('''pixel_values''', {0: '''batch''', 1: '''num_channels'''}), ] ) @property def __snake_case ( self : int ): '''simple docstring''' return 1e-5 @property def __snake_case ( self : Union[str, Any] ): '''simple docstring''' return 1_2 def __snake_case ( self : str , snake_case__ : "ProcessorMixin" , snake_case__ : int = -1 , snake_case__ : int = -1 , snake_case__ : bool = False , snake_case__ : Optional["TensorType"] = None , snake_case__ : int = 3 , snake_case__ : int = 4_0 , snake_case__ : int = 4_0 , ): '''simple docstring''' setattr(processor.image_processor , '''apply_ocr''' , snake_case__ ) # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX lowercase :Dict = compute_effective_axis_dimension( snake_case__ , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX lowercase :Union[str, Any] = processor.tokenizer.num_special_tokens_to_add(snake_case__ ) lowercase :List[str] = compute_effective_axis_dimension( snake_case__ , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=snake_case__ ) # Generate dummy inputs according to compute batch and sequence lowercase :Tuple = [[''' '''.join([processor.tokenizer.unk_token] ) * seq_length]] * batch_size # Generate dummy bounding boxes lowercase :List[str] = [[[4_8, 8_4, 7_3, 1_2_8]]] * batch_size # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX # batch_size = compute_effective_axis_dimension(batch_size, fixed_dimension=OnnxConfig.default_fixed_batch) lowercase :List[Any] = self._generate_dummy_images(snake_case__ , snake_case__ , snake_case__ , snake_case__ ) lowercase :Dict = dict( processor( snake_case__ , text=snake_case__ , boxes=snake_case__ , return_tensors=snake_case__ , ) ) return inputs
172
0
"""simple docstring""" import contextlib import copy import random from typing import Any, Dict, Iterable, Optional, Union import numpy as np import torch from .utils import deprecate, is_transformers_available if is_transformers_available(): import transformers def a__ ( SCREAMING_SNAKE_CASE : Optional[int] ): '''simple docstring''' random.seed(SCREAMING_SNAKE_CASE ) np.random.seed(SCREAMING_SNAKE_CASE ) torch.manual_seed(SCREAMING_SNAKE_CASE ) torch.cuda.manual_seed_all(SCREAMING_SNAKE_CASE ) # ^^ safe to call this function even if cuda is not available class SCREAMING_SNAKE_CASE__ : """simple docstring""" def __init__( self , snake_case__ , snake_case__ = 0.9999 , snake_case__ = 0.0 , snake_case__ = 0 , snake_case__ = False , snake_case__ = 1.0 , snake_case__ = 2 / 3 , snake_case__ = None , snake_case__ = None , **snake_case__ , ): """simple docstring""" if isinstance(_SCREAMING_SNAKE_CASE , torch.nn.Module ): lowerCAmelCase : List[Any] = ( '''Passing a `torch.nn.Module` to `ExponentialMovingAverage` is deprecated. ''' '''Please pass the parameters of the module instead.''' ) deprecate( "passing a `torch.nn.Module` to `ExponentialMovingAverage`" , "1.0.0" , _SCREAMING_SNAKE_CASE , standard_warn=_SCREAMING_SNAKE_CASE , ) lowerCAmelCase : Optional[int] = parameters.parameters() # set use_ema_warmup to True if a torch.nn.Module is passed for backwards compatibility lowerCAmelCase : Tuple = True if kwargs.get("max_value" , _SCREAMING_SNAKE_CASE ) is not None: lowerCAmelCase : Union[str, Any] = '''The `max_value` argument is deprecated. Please use `decay` instead.''' deprecate("max_value" , "1.0.0" , _SCREAMING_SNAKE_CASE , standard_warn=_SCREAMING_SNAKE_CASE ) lowerCAmelCase : Optional[int] = kwargs['''max_value'''] if kwargs.get("min_value" , _SCREAMING_SNAKE_CASE ) is not None: lowerCAmelCase : Tuple = '''The `min_value` argument is deprecated. Please use `min_decay` instead.''' deprecate("min_value" , "1.0.0" , _SCREAMING_SNAKE_CASE , standard_warn=_SCREAMING_SNAKE_CASE ) lowerCAmelCase : Optional[Any] = kwargs['''min_value'''] lowerCAmelCase : int = list(_SCREAMING_SNAKE_CASE ) lowerCAmelCase : Optional[Any] = [p.clone().detach() for p in parameters] if kwargs.get("device" , _SCREAMING_SNAKE_CASE ) is not None: lowerCAmelCase : int = '''The `device` argument is deprecated. Please use `to` instead.''' deprecate("device" , "1.0.0" , _SCREAMING_SNAKE_CASE , standard_warn=_SCREAMING_SNAKE_CASE ) self.to(device=kwargs["device"] ) lowerCAmelCase : Optional[int] = None lowerCAmelCase : Any = decay lowerCAmelCase : List[str] = min_decay lowerCAmelCase : Any = update_after_step lowerCAmelCase : Tuple = use_ema_warmup lowerCAmelCase : Optional[Any] = inv_gamma lowerCAmelCase : Dict = power lowerCAmelCase : Dict = 0 lowerCAmelCase : int = None # set in `step()` lowerCAmelCase : int = model_cls lowerCAmelCase : Dict = model_config @classmethod def lowercase__ ( cls , snake_case__ , snake_case__ ): """simple docstring""" lowerCAmelCase : Union[str, Any] = model_cls.load_config(_SCREAMING_SNAKE_CASE , return_unused_kwargs=_SCREAMING_SNAKE_CASE ) lowerCAmelCase : List[str] = model_cls.from_pretrained(_SCREAMING_SNAKE_CASE ) lowerCAmelCase : List[Any] = cls(model.parameters() , model_cls=_SCREAMING_SNAKE_CASE , model_config=model.config ) ema_model.load_state_dict(_SCREAMING_SNAKE_CASE ) return ema_model def lowercase__ ( self , snake_case__ ): """simple docstring""" if self.model_cls is None: raise ValueError("`save_pretrained` can only be used if `model_cls` was defined at __init__." ) if self.model_config is None: raise ValueError("`save_pretrained` can only be used if `model_config` was defined at __init__." ) lowerCAmelCase : List[str] = self.model_cls.from_config(self.model_config ) lowerCAmelCase : Dict = self.state_dict() state_dict.pop("shadow_params" , _SCREAMING_SNAKE_CASE ) model.register_to_config(**_SCREAMING_SNAKE_CASE ) self.copy_to(model.parameters() ) model.save_pretrained(_SCREAMING_SNAKE_CASE ) def lowercase__ ( self , snake_case__ ): """simple docstring""" lowerCAmelCase : List[Any] = max(0 , optimization_step - self.update_after_step - 1 ) if step <= 0: return 0.0 if self.use_ema_warmup: lowerCAmelCase : Any = 1 - (1 + step / self.inv_gamma) ** -self.power else: lowerCAmelCase : Union[str, Any] = (1 + step) / (10 + step) lowerCAmelCase : Optional[int] = min(_SCREAMING_SNAKE_CASE , self.decay ) # make sure decay is not smaller than min_decay lowerCAmelCase : List[str] = max(_SCREAMING_SNAKE_CASE , self.min_decay ) return cur_decay_value @torch.no_grad() def lowercase__ ( self , snake_case__ ): """simple docstring""" if isinstance(_SCREAMING_SNAKE_CASE , torch.nn.Module ): lowerCAmelCase : Union[str, Any] = ( '''Passing a `torch.nn.Module` to `ExponentialMovingAverage.step` is deprecated. ''' '''Please pass the parameters of the module instead.''' ) deprecate( "passing a `torch.nn.Module` to `ExponentialMovingAverage.step`" , "1.0.0" , _SCREAMING_SNAKE_CASE , standard_warn=_SCREAMING_SNAKE_CASE , ) lowerCAmelCase : int = parameters.parameters() lowerCAmelCase : Optional[Any] = list(_SCREAMING_SNAKE_CASE ) self.optimization_step += 1 # Compute the decay factor for the exponential moving average. lowerCAmelCase : Tuple = self.get_decay(self.optimization_step ) lowerCAmelCase : str = decay lowerCAmelCase : List[Any] = 1 - decay lowerCAmelCase : int = contextlib.nullcontext if is_transformers_available() and transformers.deepspeed.is_deepspeed_zeroa_enabled(): import deepspeed for s_param, param in zip(self.shadow_params , _SCREAMING_SNAKE_CASE ): if is_transformers_available() and transformers.deepspeed.is_deepspeed_zeroa_enabled(): lowerCAmelCase : Optional[Any] = deepspeed.zero.GatheredParameters(_SCREAMING_SNAKE_CASE , modifier_rank=_SCREAMING_SNAKE_CASE ) with context_manager(): if param.requires_grad: s_param.sub_(one_minus_decay * (s_param - param) ) else: s_param.copy_(_SCREAMING_SNAKE_CASE ) def lowercase__ ( self , snake_case__ ): """simple docstring""" lowerCAmelCase : List[str] = list(_SCREAMING_SNAKE_CASE ) for s_param, param in zip(self.shadow_params , _SCREAMING_SNAKE_CASE ): param.data.copy_(s_param.to(param.device ).data ) def lowercase__ ( self , snake_case__=None , snake_case__=None ): """simple docstring""" lowerCAmelCase : Any = [ p.to(device=_SCREAMING_SNAKE_CASE , dtype=_SCREAMING_SNAKE_CASE ) if p.is_floating_point() else p.to(device=_SCREAMING_SNAKE_CASE ) for p in self.shadow_params ] def lowercase__ ( self ): """simple docstring""" return { "decay": self.decay, "min_decay": self.min_decay, "optimization_step": self.optimization_step, "update_after_step": self.update_after_step, "use_ema_warmup": self.use_ema_warmup, "inv_gamma": self.inv_gamma, "power": self.power, "shadow_params": self.shadow_params, } def lowercase__ ( self , snake_case__ ): """simple docstring""" lowerCAmelCase : Dict = [param.detach().cpu().clone() for param in parameters] def lowercase__ ( self , snake_case__ ): """simple docstring""" if self.temp_stored_params is None: raise RuntimeError("This ExponentialMovingAverage has no `store()`ed weights " "to `restore()`" ) for c_param, param in zip(self.temp_stored_params , _SCREAMING_SNAKE_CASE ): param.data.copy_(c_param.data ) # Better memory-wise. lowerCAmelCase : Tuple = None def lowercase__ ( self , snake_case__ ): """simple docstring""" lowerCAmelCase : int = copy.deepcopy(_SCREAMING_SNAKE_CASE ) lowerCAmelCase : List[Any] = state_dict.get("decay" , self.decay ) if self.decay < 0.0 or self.decay > 1.0: raise ValueError("Decay must be between 0 and 1" ) lowerCAmelCase : List[str] = state_dict.get("min_decay" , self.min_decay ) if not isinstance(self.min_decay , _SCREAMING_SNAKE_CASE ): raise ValueError("Invalid min_decay" ) lowerCAmelCase : Union[str, Any] = state_dict.get("optimization_step" , self.optimization_step ) if not isinstance(self.optimization_step , _SCREAMING_SNAKE_CASE ): raise ValueError("Invalid optimization_step" ) lowerCAmelCase : Tuple = state_dict.get("update_after_step" , self.update_after_step ) if not isinstance(self.update_after_step , _SCREAMING_SNAKE_CASE ): raise ValueError("Invalid update_after_step" ) lowerCAmelCase : Optional[int] = state_dict.get("use_ema_warmup" , self.use_ema_warmup ) if not isinstance(self.use_ema_warmup , _SCREAMING_SNAKE_CASE ): raise ValueError("Invalid use_ema_warmup" ) lowerCAmelCase : Tuple = state_dict.get("inv_gamma" , self.inv_gamma ) if not isinstance(self.inv_gamma , (float, int) ): raise ValueError("Invalid inv_gamma" ) lowerCAmelCase : int = state_dict.get("power" , self.power ) if not isinstance(self.power , (float, int) ): raise ValueError("Invalid power" ) lowerCAmelCase : List[str] = state_dict.get("shadow_params" , _SCREAMING_SNAKE_CASE ) if shadow_params is not None: lowerCAmelCase : Any = shadow_params if not isinstance(self.shadow_params , _SCREAMING_SNAKE_CASE ): raise ValueError("shadow_params must be a list" ) if not all(isinstance(_SCREAMING_SNAKE_CASE , torch.Tensor ) for p in self.shadow_params ): raise ValueError("shadow_params must all be Tensors" )
108
import inspect import unittest from transformers import RegNetConfig from transformers.file_utils import cached_property, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import RegNetForImageClassification, RegNetModel from transformers.models.regnet.modeling_regnet import REGNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class _lowerCamelCase : """simple docstring""" def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=3 , _SCREAMING_SNAKE_CASE=32 , _SCREAMING_SNAKE_CASE=3 , _SCREAMING_SNAKE_CASE=10 , _SCREAMING_SNAKE_CASE=[10, 20, 30, 40] , _SCREAMING_SNAKE_CASE=[1, 1, 2, 1] , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE="relu" , _SCREAMING_SNAKE_CASE=3 , _SCREAMING_SNAKE_CASE=None , )->List[str]: '''simple docstring''' A_ : str = parent A_ : int = batch_size A_ : List[str] = image_size A_ : Dict = num_channels A_ : Tuple = embeddings_size A_ : Union[str, Any] = hidden_sizes A_ : Dict = depths A_ : str = is_training A_ : Union[str, Any] = use_labels A_ : Union[str, Any] = hidden_act A_ : Optional[Any] = num_labels A_ : Tuple = scope A_ : Optional[int] = len(_SCREAMING_SNAKE_CASE ) def _snake_case ( self )->Optional[Any]: '''simple docstring''' A_ : List[str] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) A_ : str = None if self.use_labels: A_ : Union[str, Any] = ids_tensor([self.batch_size] , self.num_labels ) A_ : Optional[Any] = self.get_config() return config, pixel_values, labels def _snake_case ( self )->Union[str, Any]: '''simple docstring''' return RegNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , ) def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )->Union[str, Any]: '''simple docstring''' A_ : Dict = RegNetModel(config=_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() A_ : Any = model(_SCREAMING_SNAKE_CASE ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )->Union[str, Any]: '''simple docstring''' A_ : Union[str, Any] = self.num_labels A_ : Dict = RegNetForImageClassification(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() A_ : int = model(_SCREAMING_SNAKE_CASE , labels=_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _snake_case ( self )->Union[str, Any]: '''simple docstring''' A_ : Tuple = self.prepare_config_and_inputs() A_ , A_ , A_ : str = config_and_inputs A_ : Any = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class _lowerCamelCase ( UpperCamelCase , UpperCamelCase , unittest.TestCase ): """simple docstring""" snake_case = (RegNetModel, RegNetForImageClassification) if is_torch_available() else () snake_case = ( {"feature-extraction": RegNetModel, "image-classification": RegNetForImageClassification} if is_torch_available() else {} ) snake_case = False snake_case = False snake_case = False snake_case = False def _snake_case ( self )->Union[str, Any]: '''simple docstring''' A_ : Union[str, Any] = RegNetModelTester(self ) A_ : Union[str, Any] = ConfigTester(self , config_class=_SCREAMING_SNAKE_CASE , has_text_modality=_SCREAMING_SNAKE_CASE ) def _snake_case ( self )->Dict: '''simple docstring''' self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def _snake_case ( self )->Tuple: '''simple docstring''' return @unittest.skip(reason='''RegNet does not use inputs_embeds''' ) def _snake_case ( self )->Dict: '''simple docstring''' pass @unittest.skip(reason='''RegNet does not support input and output embeddings''' ) def _snake_case ( self )->str: '''simple docstring''' pass def _snake_case ( self )->List[Any]: '''simple docstring''' A_ , A_ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A_ : str = model_class(_SCREAMING_SNAKE_CASE ) A_ : Union[str, Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic A_ : Any = [*signature.parameters.keys()] A_ : Any = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , _SCREAMING_SNAKE_CASE ) def _snake_case ( self )->Any: '''simple docstring''' A_ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_SCREAMING_SNAKE_CASE ) def _snake_case ( self )->Optional[Any]: '''simple docstring''' A_ , A_ : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A_ : Union[str, Any] = model_class(config=_SCREAMING_SNAKE_CASE ) for name, module in model.named_modules(): if isinstance(_SCREAMING_SNAKE_CASE , (nn.BatchNormad, nn.GroupNorm) ): self.assertTrue( torch.all(module.weight == 1 ) , msg=F'''Parameter {name} of model {model_class} seems not properly initialized''' , ) self.assertTrue( torch.all(module.bias == 0 ) , msg=F'''Parameter {name} of model {model_class} seems not properly initialized''' , ) def _snake_case ( self )->List[Any]: '''simple docstring''' def check_hidden_states_output(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): A_ : str = model_class(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() with torch.no_grad(): A_ : Tuple = model(**self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) A_ : Union[str, Any] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states A_ : Optional[int] = self.model_tester.num_stages self.assertEqual(len(_SCREAMING_SNAKE_CASE ) , expected_num_stages + 1 ) # RegNet's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 2, self.model_tester.image_size // 2] , ) A_ , A_ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() A_ : int = ['''basic''', '''bottleneck'''] for model_class in self.all_model_classes: for layer_type in layers_type: A_ : int = layer_type A_ : List[Any] = True check_hidden_states_output(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] A_ : str = True check_hidden_states_output(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def _snake_case ( self )->Dict: '''simple docstring''' A_ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_SCREAMING_SNAKE_CASE ) @slow def _snake_case ( self )->str: '''simple docstring''' for model_name in REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A_ : Dict = RegNetModel.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertIsNotNone(_SCREAMING_SNAKE_CASE ) def _SCREAMING_SNAKE_CASE ( ): A_ : int = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class _lowerCamelCase ( unittest.TestCase ): """simple docstring""" @cached_property def _snake_case ( self )->List[str]: '''simple docstring''' return ( AutoImageProcessor.from_pretrained(REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def _snake_case ( self )->Tuple: '''simple docstring''' A_ : List[Any] = RegNetForImageClassification.from_pretrained(REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to(_SCREAMING_SNAKE_CASE ) A_ : Optional[Any] = self.default_image_processor A_ : Any = prepare_img() A_ : Optional[Any] = image_processor(images=_SCREAMING_SNAKE_CASE , return_tensors='''pt''' ).to(_SCREAMING_SNAKE_CASE ) # forward pass with torch.no_grad(): A_ : Union[str, Any] = model(**_SCREAMING_SNAKE_CASE ) # verify the logits A_ : Union[str, Any] = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , _SCREAMING_SNAKE_CASE ) A_ : Optional[int] = torch.tensor([-0.4_1_8_0, -1.5_0_5_1, -3.4_8_3_6] ).to(_SCREAMING_SNAKE_CASE ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _SCREAMING_SNAKE_CASE , atol=1e-4 ) )
186
0
"""simple docstring""" from __future__ import annotations from statistics import mean def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> list[int]: lowercase__: str = [0] * no_of_processes lowercase__: Dict = [0] * no_of_processes # Initialize remaining_time to waiting_time. for i in range(__UpperCAmelCase ): lowercase__: Any = burst_time[i] lowercase__: list[int] = [] lowercase__: Dict = 0 lowercase__: Optional[Any] = 0 # When processes are not completed, # A process whose arrival time has passed \ # and has remaining execution time is put into the ready_process. # The shortest process in the ready_process, target_process is executed. while completed != no_of_processes: lowercase__: Dict = [] lowercase__: Any = -1 for i in range(__UpperCAmelCase ): if (arrival_time[i] <= total_time) and (remaining_time[i] > 0): ready_process.append(__UpperCAmelCase ) if len(__UpperCAmelCase ) > 0: lowercase__: Optional[int] = ready_process[0] for i in ready_process: if remaining_time[i] < remaining_time[target_process]: lowercase__: Tuple = i total_time += burst_time[target_process] completed += 1 lowercase__: Tuple = 0 lowercase__: List[str] = ( total_time - arrival_time[target_process] - burst_time[target_process] ) else: total_time += 1 return waiting_time def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> list[int]: lowercase__: List[Any] = [0] * no_of_processes for i in range(__UpperCAmelCase ): lowercase__: str = burst_time[i] + waiting_time[i] return turn_around_time if __name__ == "__main__": print("[TEST CASE 01]") __A = 4 __A = [2, 5, 3, 7] __A = [0, 0, 0, 0] __A = calculate_waitingtime(arrival_time, burst_time, no_of_processes) __A = calculate_turnaroundtime( burst_time, no_of_processes, waiting_time ) # Printing the Result print("PID\tBurst Time\tArrival Time\tWaiting Time\tTurnaround Time") for i, process_id in enumerate(list(range(1, 5))): print( f'''{process_id}\t{burst_time[i]}\t\t\t{arrival_time[i]}\t\t\t\t''' f'''{waiting_time[i]}\t\t\t\t{turn_around_time[i]}''' ) print(f'''\nAverage waiting time = {mean(waiting_time):.5f}''') print(f'''Average turnaround time = {mean(turn_around_time):.5f}''')
2
"""simple docstring""" import json import os import unittest from transformers.models.ctrl.tokenization_ctrl import VOCAB_FILES_NAMES, CTRLTokenizer from ...test_tokenization_common import TokenizerTesterMixin class UpperCAmelCase (_UpperCAmelCase ,unittest.TestCase ): """simple docstring""" _UpperCAmelCase :Union[str, Any] = CTRLTokenizer _UpperCAmelCase :Any = False _UpperCAmelCase :List[Any] = False def _snake_case ( self ): super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt lowercase__: Dict = ['''adapt''', '''re@@''', '''a@@''', '''apt''', '''c@@''', '''t''', '''<unk>'''] lowercase__: Any = dict(zip(_UpperCAmelCase , range(len(_UpperCAmelCase ) ) ) ) lowercase__: Optional[int] = ['''#version: 0.2''', '''a p''', '''ap t</w>''', '''r e''', '''a d''', '''ad apt</w>''', ''''''] lowercase__: Optional[Any] = {'''unk_token''': '''<unk>'''} lowercase__: Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) lowercase__: int = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(_UpperCAmelCase ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(_UpperCAmelCase ) ) def _snake_case ( self , **_UpperCAmelCase ): kwargs.update(self.special_tokens_map ) return CTRLTokenizer.from_pretrained(self.tmpdirname , **_UpperCAmelCase ) def _snake_case ( self , _UpperCAmelCase ): lowercase__: Optional[int] = '''adapt react readapt apt''' lowercase__: Optional[int] = '''adapt react readapt apt''' return input_text, output_text def _snake_case ( self ): lowercase__: List[str] = CTRLTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) lowercase__: Optional[int] = '''adapt react readapt apt''' lowercase__: Any = '''adapt re@@ a@@ c@@ t re@@ adapt apt'''.split() lowercase__: Optional[Any] = tokenizer.tokenize(_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) lowercase__: int = tokens + [tokenizer.unk_token] lowercase__: str = [0, 1, 2, 4, 5, 1, 0, 3, 6] self.assertListEqual(tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) , _UpperCAmelCase )
2
1
'''simple docstring''' import os from shutil import copyfile from typing import List, Optional, Tuple from tokenizers import processors from ...tokenization_utils import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_nllb import NllbTokenizer else: lowercase_ = None lowercase_ = logging.get_logger(__name__) lowercase_ = {"""vocab_file""": """sentencepiece.bpe.model""", """tokenizer_file""": """tokenizer.json"""} lowercase_ = { """vocab_file""": { """facebook/nllb-200-distilled-600M""": ( """https://huggingface.co/facebook/nllb-200-distilled-600M/resolve/main/sentencepiece.bpe.model""" ), }, """tokenizer_file""": { """facebook/nllb-200-distilled-600M""": ( """https://huggingface.co/facebook/nllb-200-distilled-600M/resolve/main/tokenizer.json""" ), }, } lowercase_ = { """facebook/nllb-large-en-ro""": 1_024, """facebook/nllb-200-distilled-600M""": 1_024, } # fmt: off lowercase_ = ["""ace_Arab""", """ace_Latn""", """acm_Arab""", """acq_Arab""", """aeb_Arab""", """afr_Latn""", """ajp_Arab""", """aka_Latn""", """amh_Ethi""", """apc_Arab""", """arb_Arab""", """ars_Arab""", """ary_Arab""", """arz_Arab""", """asm_Beng""", """ast_Latn""", """awa_Deva""", """ayr_Latn""", """azb_Arab""", """azj_Latn""", """bak_Cyrl""", """bam_Latn""", """ban_Latn""", """bel_Cyrl""", """bem_Latn""", """ben_Beng""", """bho_Deva""", """bjn_Arab""", """bjn_Latn""", """bod_Tibt""", """bos_Latn""", """bug_Latn""", """bul_Cyrl""", """cat_Latn""", """ceb_Latn""", """ces_Latn""", """cjk_Latn""", """ckb_Arab""", """crh_Latn""", """cym_Latn""", """dan_Latn""", """deu_Latn""", """dik_Latn""", """dyu_Latn""", """dzo_Tibt""", """ell_Grek""", """eng_Latn""", """epo_Latn""", """est_Latn""", """eus_Latn""", """ewe_Latn""", """fao_Latn""", """pes_Arab""", """fij_Latn""", """fin_Latn""", """fon_Latn""", """fra_Latn""", """fur_Latn""", """fuv_Latn""", """gla_Latn""", """gle_Latn""", """glg_Latn""", """grn_Latn""", """guj_Gujr""", """hat_Latn""", """hau_Latn""", """heb_Hebr""", """hin_Deva""", """hne_Deva""", """hrv_Latn""", """hun_Latn""", """hye_Armn""", """ibo_Latn""", """ilo_Latn""", """ind_Latn""", """isl_Latn""", """ita_Latn""", """jav_Latn""", """jpn_Jpan""", """kab_Latn""", """kac_Latn""", """kam_Latn""", """kan_Knda""", """kas_Arab""", """kas_Deva""", """kat_Geor""", """knc_Arab""", """knc_Latn""", """kaz_Cyrl""", """kbp_Latn""", """kea_Latn""", """khm_Khmr""", """kik_Latn""", """kin_Latn""", """kir_Cyrl""", """kmb_Latn""", """kon_Latn""", """kor_Hang""", """kmr_Latn""", """lao_Laoo""", """lvs_Latn""", """lij_Latn""", """lim_Latn""", """lin_Latn""", """lit_Latn""", """lmo_Latn""", """ltg_Latn""", """ltz_Latn""", """lua_Latn""", """lug_Latn""", """luo_Latn""", """lus_Latn""", """mag_Deva""", """mai_Deva""", """mal_Mlym""", """mar_Deva""", """min_Latn""", """mkd_Cyrl""", """plt_Latn""", """mlt_Latn""", """mni_Beng""", """khk_Cyrl""", """mos_Latn""", """mri_Latn""", """zsm_Latn""", """mya_Mymr""", """nld_Latn""", """nno_Latn""", """nob_Latn""", """npi_Deva""", """nso_Latn""", """nus_Latn""", """nya_Latn""", """oci_Latn""", """gaz_Latn""", """ory_Orya""", """pag_Latn""", """pan_Guru""", """pap_Latn""", """pol_Latn""", """por_Latn""", """prs_Arab""", """pbt_Arab""", """quy_Latn""", """ron_Latn""", """run_Latn""", """rus_Cyrl""", """sag_Latn""", """san_Deva""", """sat_Beng""", """scn_Latn""", """shn_Mymr""", """sin_Sinh""", """slk_Latn""", """slv_Latn""", """smo_Latn""", """sna_Latn""", """snd_Arab""", """som_Latn""", """sot_Latn""", """spa_Latn""", """als_Latn""", """srd_Latn""", """srp_Cyrl""", """ssw_Latn""", """sun_Latn""", """swe_Latn""", """swh_Latn""", """szl_Latn""", """tam_Taml""", """tat_Cyrl""", """tel_Telu""", """tgk_Cyrl""", """tgl_Latn""", """tha_Thai""", """tir_Ethi""", """taq_Latn""", """taq_Tfng""", """tpi_Latn""", """tsn_Latn""", """tso_Latn""", """tuk_Latn""", """tum_Latn""", """tur_Latn""", """twi_Latn""", """tzm_Tfng""", """uig_Arab""", """ukr_Cyrl""", """umb_Latn""", """urd_Arab""", """uzn_Latn""", """vec_Latn""", """vie_Latn""", """war_Latn""", """wol_Latn""", """xho_Latn""", """ydd_Hebr""", """yor_Latn""", """yue_Hant""", """zho_Hans""", """zho_Hant""", """zul_Latn"""] class a_ ( snake_case_ ): '''simple docstring''' UpperCamelCase = VOCAB_FILES_NAMES UpperCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase = ['''input_ids''', '''attention_mask'''] UpperCamelCase = NllbTokenizer UpperCamelCase = [] UpperCamelCase = [] def __init__( self , A=None , A=None , A="<s>" , A="</s>" , A="</s>" , A="<s>" , A="<unk>" , A="<pad>" , A="<mask>" , A=None , A=None , A=None , A=False , **A , ) -> Dict: # Mask token behave like a normal word, i.e. include the space before it _SCREAMING_SNAKE_CASE = AddedToken(A , lstrip=A , rstrip=A ) if isinstance(A , A ) else mask_token _SCREAMING_SNAKE_CASE = legacy_behaviour super().__init__( vocab_file=A , tokenizer_file=A , bos_token=A , eos_token=A , sep_token=A , cls_token=A , unk_token=A , pad_token=A , mask_token=A , src_lang=A , tgt_lang=A , additional_special_tokens=A , legacy_behaviour=A , **A , ) _SCREAMING_SNAKE_CASE = vocab_file _SCREAMING_SNAKE_CASE = False if not self.vocab_file else True _SCREAMING_SNAKE_CASE = FAIRSEQ_LANGUAGE_CODES.copy() if additional_special_tokens is not None: # Only add those special tokens if they are not already there. _additional_special_tokens.extend( [t for t in additional_special_tokens if t not in _additional_special_tokens] ) self.add_special_tokens({"""additional_special_tokens""": _additional_special_tokens} ) _SCREAMING_SNAKE_CASE = { lang_code: self.convert_tokens_to_ids(A ) for lang_code in FAIRSEQ_LANGUAGE_CODES } _SCREAMING_SNAKE_CASE = src_lang if src_lang is not None else """eng_Latn""" _SCREAMING_SNAKE_CASE = self.convert_tokens_to_ids(self._src_lang ) _SCREAMING_SNAKE_CASE = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def snake_case_( self ) -> str: return self._src_lang @src_lang.setter def snake_case_( self , A ) -> None: _SCREAMING_SNAKE_CASE = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def snake_case_( self , A , A = None ) -> List[int]: if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def snake_case_( self , A , A = None ) -> List[int]: _SCREAMING_SNAKE_CASE = [self.sep_token_id] _SCREAMING_SNAKE_CASE = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def snake_case_( self , A , A , A , A , **A ) -> Dict: if src_lang is None or tgt_lang is None: raise ValueError("""Translation requires a `src_lang` and a `tgt_lang` for this model""" ) _SCREAMING_SNAKE_CASE = src_lang _SCREAMING_SNAKE_CASE = self(A , add_special_tokens=A , return_tensors=A , **A ) _SCREAMING_SNAKE_CASE = self.convert_tokens_to_ids(A ) _SCREAMING_SNAKE_CASE = tgt_lang_id return inputs def snake_case_( self , A , A = "eng_Latn" , A = None , A = "fra_Latn" , **A , ) -> BatchEncoding: _SCREAMING_SNAKE_CASE = src_lang _SCREAMING_SNAKE_CASE = tgt_lang return super().prepare_seqaseq_batch(A , A , **A ) def snake_case_( self ) -> int: return self.set_src_lang_special_tokens(self.src_lang ) def snake_case_( self ) -> Any: return self.set_tgt_lang_special_tokens(self.tgt_lang ) def snake_case_( self , A ) -> None: _SCREAMING_SNAKE_CASE = self.convert_tokens_to_ids(A ) if self.legacy_behaviour: _SCREAMING_SNAKE_CASE = [] _SCREAMING_SNAKE_CASE = [self.eos_token_id, self.cur_lang_code] else: _SCREAMING_SNAKE_CASE = [self.cur_lang_code] _SCREAMING_SNAKE_CASE = [self.eos_token_id] _SCREAMING_SNAKE_CASE = self.convert_ids_to_tokens(self.prefix_tokens ) _SCREAMING_SNAKE_CASE = self.convert_ids_to_tokens(self.suffix_tokens ) _SCREAMING_SNAKE_CASE = processors.TemplateProcessing( single=prefix_tokens_str + ["""$A"""] + suffix_tokens_str , pair=prefix_tokens_str + ["""$A""", """$B"""] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def snake_case_( self , A ) -> None: _SCREAMING_SNAKE_CASE = self.convert_tokens_to_ids(A ) if self.legacy_behaviour: _SCREAMING_SNAKE_CASE = [] _SCREAMING_SNAKE_CASE = [self.eos_token_id, self.cur_lang_code] else: _SCREAMING_SNAKE_CASE = [self.cur_lang_code] _SCREAMING_SNAKE_CASE = [self.eos_token_id] _SCREAMING_SNAKE_CASE = self.convert_ids_to_tokens(self.prefix_tokens ) _SCREAMING_SNAKE_CASE = self.convert_ids_to_tokens(self.suffix_tokens ) _SCREAMING_SNAKE_CASE = processors.TemplateProcessing( single=prefix_tokens_str + ["""$A"""] + suffix_tokens_str , pair=prefix_tokens_str + ["""$A""", """$B"""] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def snake_case_( self , A , A = None ) -> Tuple[str]: if not self.can_save_slow_tokenizer: raise ValueError( """Your fast tokenizer does not have the necessary information to save the vocabulary for a slow """ """tokenizer.""" ) if not os.path.isdir(A ): logger.error(f'Vocabulary path ({save_directory}) should be a directory.' ) return _SCREAMING_SNAKE_CASE = os.path.join( A , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(A ): copyfile(self.vocab_file , A ) return (out_vocab_file,)
58
'''simple docstring''' import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase_ = logging.get_logger(__name__) lowercase_ = { """BridgeTower/bridgetower-base""": """https://huggingface.co/BridgeTower/bridgetower-base/blob/main/config.json""", """BridgeTower/bridgetower-base-itm-mlm""": ( """https://huggingface.co/BridgeTower/bridgetower-base-itm-mlm/blob/main/config.json""" ), } class a_ ( snake_case_ ): '''simple docstring''' UpperCamelCase = '''bridgetower_vision_model''' def __init__( self , A=768 , A=12 , A=3 , A=16 , A=288 , A=1 , A=1e-05 , A=False , A=True , A=False , **A , ) -> Dict: super().__init__(**A ) _SCREAMING_SNAKE_CASE = hidden_size _SCREAMING_SNAKE_CASE = num_hidden_layers _SCREAMING_SNAKE_CASE = num_channels _SCREAMING_SNAKE_CASE = patch_size _SCREAMING_SNAKE_CASE = image_size _SCREAMING_SNAKE_CASE = initializer_factor _SCREAMING_SNAKE_CASE = layer_norm_eps _SCREAMING_SNAKE_CASE = stop_gradient _SCREAMING_SNAKE_CASE = share_layernorm _SCREAMING_SNAKE_CASE = remove_last_layer @classmethod def snake_case_( cls , A , **A ) -> "PretrainedConfig": _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = cls.get_config_dict(A , **A ) if config_dict.get("""model_type""" ) == "bridgetower": _SCREAMING_SNAKE_CASE = config_dict["""text_config"""] if "model_type" in config_dict and hasattr(cls , """model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( f'You are using a model of type {config_dict["model_type"]} to instantiate a model of type ' f'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' ) return cls.from_dict(A , **A ) class a_ ( snake_case_ ): '''simple docstring''' UpperCamelCase = '''bridgetower_text_model''' def __init__( self , A=5_0265 , A=768 , A=12 , A=12 , A=1 , A=3072 , A="gelu" , A=0.1 , A=0.1 , A=514 , A=1 , A=1e-05 , A=1 , A=0 , A=2 , A="absolute" , A=True , **A , ) -> Union[str, Any]: super().__init__(**A ) _SCREAMING_SNAKE_CASE = vocab_size _SCREAMING_SNAKE_CASE = hidden_size _SCREAMING_SNAKE_CASE = num_hidden_layers _SCREAMING_SNAKE_CASE = num_attention_heads _SCREAMING_SNAKE_CASE = hidden_act _SCREAMING_SNAKE_CASE = initializer_factor _SCREAMING_SNAKE_CASE = intermediate_size _SCREAMING_SNAKE_CASE = hidden_dropout_prob _SCREAMING_SNAKE_CASE = attention_probs_dropout_prob _SCREAMING_SNAKE_CASE = max_position_embeddings _SCREAMING_SNAKE_CASE = type_vocab_size _SCREAMING_SNAKE_CASE = layer_norm_eps _SCREAMING_SNAKE_CASE = position_embedding_type _SCREAMING_SNAKE_CASE = use_cache _SCREAMING_SNAKE_CASE = pad_token_id _SCREAMING_SNAKE_CASE = bos_token_id _SCREAMING_SNAKE_CASE = eos_token_id @classmethod def snake_case_( cls , A , **A ) -> "PretrainedConfig": _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = cls.get_config_dict(A , **A ) if config_dict.get("""model_type""" ) == "bridgetower": _SCREAMING_SNAKE_CASE = config_dict["""text_config"""] if "model_type" in config_dict and hasattr(cls , """model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( f'You are using a model of type {config_dict["model_type"]} to instantiate a model of type ' f'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' ) return cls.from_dict(A , **A ) class a_ ( snake_case_ ): '''simple docstring''' UpperCamelCase = '''bridgetower''' def __init__( self , A=True , A="gelu" , A=768 , A=1 , A=1e-05 , A=False , A="add" , A=12 , A=6 , A=False , A=False , A=None , A=None , **A , ) -> Tuple: # TODO: remove this once the Hub files are updated. _SCREAMING_SNAKE_CASE = kwargs.pop("""text_config_dict""" , A ) _SCREAMING_SNAKE_CASE = kwargs.pop("""vision_config_dict""" , A ) super().__init__(**A ) _SCREAMING_SNAKE_CASE = share_cross_modal_transformer_layers _SCREAMING_SNAKE_CASE = hidden_act _SCREAMING_SNAKE_CASE = hidden_size _SCREAMING_SNAKE_CASE = initializer_factor _SCREAMING_SNAKE_CASE = layer_norm_eps _SCREAMING_SNAKE_CASE = share_link_tower_layers _SCREAMING_SNAKE_CASE = link_tower_type _SCREAMING_SNAKE_CASE = num_attention_heads _SCREAMING_SNAKE_CASE = num_hidden_layers _SCREAMING_SNAKE_CASE = tie_word_embeddings _SCREAMING_SNAKE_CASE = init_layernorm_from_vision_encoder if text_config is None: _SCREAMING_SNAKE_CASE = {} logger.info("""`text_config` is `None`. Initializing the `BridgeTowerTextConfig` with default values.""" ) if vision_config is None: _SCREAMING_SNAKE_CASE = {} logger.info("""`vision_config` is `None`. Initializing the `BridgeTowerVisionConfig` with default values.""" ) _SCREAMING_SNAKE_CASE = BridgeTowerTextConfig(**A ) _SCREAMING_SNAKE_CASE = BridgeTowerVisionConfig(**A ) @classmethod def snake_case_( cls , A , A , **A ) -> int: return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **A ) def snake_case_( self ) -> List[Any]: _SCREAMING_SNAKE_CASE = copy.deepcopy(self.__dict__ ) _SCREAMING_SNAKE_CASE = self.text_config.to_dict() _SCREAMING_SNAKE_CASE = self.vision_config.to_dict() _SCREAMING_SNAKE_CASE = self.__class__.model_type return output
58
1
import glob import os import random from string import ascii_lowercase, digits import cva lowercase : Optional[Any] = """""" lowercase : int = """""" lowercase : List[Any] = """""" lowercase : Optional[int] = 1 # (0 is vertical, 1 is horizontal) def A_ ( ) -> None: a__ , a__ : str = get_dataset(A__ , A__ ) print('Processing...' ) a__ , a__ , a__ : Tuple = update_image_and_anno(A__ , A__ , A__ ) for index, image in enumerate(A__ ): # Get random string code: '7b7ad245cdff75241935e4dd860f3bad' a__ : int = random_chars(32 ) a__ : Optional[Any] = paths[index].split(os.sep )[-1].rsplit('.' , 1 )[0] a__ : Optional[int] = F'{OUTPUT_DIR}/{file_name}_FLIP_{letter_code}' cva.imwrite(F'/{file_root}.jpg' , A__ , [cva.IMWRITE_JPEG_QUALITY, 85] ) print(F'Success {index+1}/{len(A__ )} with {file_name}' ) a__ : List[str] = [] for anno in new_annos[index]: a__ : Union[str, Any] = F'{anno[0]} {anno[1]} {anno[2]} {anno[3]} {anno[4]}' annos_list.append(A__ ) with open(F'/{file_root}.txt' , 'w' ) as outfile: outfile.write('\n'.join(line for line in annos_list ) ) def A_ ( A__ , A__ ) -> tuple[list, list]: a__ : int = [] a__ : int = [] for label_file in glob.glob(os.path.join(A__ , '*.txt' ) ): a__ : Optional[Any] = label_file.split(os.sep )[-1].rsplit('.' , 1 )[0] with open(A__ ) as in_file: a__ : Tuple = in_file.readlines() a__ : Dict = os.path.join(A__ , F'{label_name}.jpg' ) a__ : int = [] for obj_list in obj_lists: a__ : Union[str, Any] = obj_list.rstrip('\n' ).split(' ' ) boxes.append( [ int(obj[0] ), float(obj[1] ), float(obj[2] ), float(obj[3] ), float(obj[4] ), ] ) if not boxes: continue img_paths.append(A__ ) labels.append(A__ ) return img_paths, labels def A_ ( A__ , A__ , A__ = 1 ) -> tuple[list, list, list]: a__ : Optional[int] = [] a__ : Any = [] a__ : Dict = [] for idx in range(len(A__ ) ): a__ : Optional[int] = [] a__ : Optional[Any] = img_list[idx] path_list.append(A__ ) a__ : Union[str, Any] = anno_list[idx] a__ : List[str] = cva.imread(A__ ) if flip_type == 1: a__ : List[str] = cva.flip(A__ , A__ ) for bbox in img_annos: a__ : Optional[Any] = 1 - bbox[1] new_annos.append([bbox[0], x_center_new, bbox[2], bbox[3], bbox[4]] ) elif flip_type == 0: a__ : Optional[Any] = cva.flip(A__ , A__ ) for bbox in img_annos: a__ : Optional[int] = 1 - bbox[2] new_annos.append([bbox[0], bbox[1], y_center_new, bbox[3], bbox[4]] ) new_annos_lists.append(A__ ) new_imgs_list.append(A__ ) return new_imgs_list, new_annos_lists, path_list def A_ ( A__ = 32 ) -> str: assert number_char > 1, "The number of character should greater than 1" a__ : Optional[int] = ascii_lowercase + digits return "".join(random.choice(A__ ) for _ in range(A__ ) ) if __name__ == "__main__": main() print("""DONE ✅""")
225
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) lowercase : str = { """configuration_vision_encoder_decoder""": ["""VisionEncoderDecoderConfig""", """VisionEncoderDecoderOnnxConfig"""] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase : Optional[Any] = ["""VisionEncoderDecoderModel"""] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase : Optional[int] = ["""TFVisionEncoderDecoderModel"""] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase : List[str] = ["""FlaxVisionEncoderDecoderModel"""] if TYPE_CHECKING: from .configuration_vision_encoder_decoder import VisionEncoderDecoderConfig, VisionEncoderDecoderOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vision_encoder_decoder import VisionEncoderDecoderModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vision_encoder_decoder import TFVisionEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_vision_encoder_decoder import FlaxVisionEncoderDecoderModel else: import sys lowercase : Optional[int] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
225
1
"""simple docstring""" import torch from diffusers import DDPMParallelScheduler from .test_schedulers import SchedulerCommonTest class lowerCamelCase__ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" __a = (DDPMParallelScheduler,) def lowerCamelCase__ ( self : int , **UpperCamelCase : Union[str, Any] ): '''simple docstring''' __UpperCAmelCase : List[Any] = { """num_train_timesteps""": 1_000, """beta_start""": 0.0001, """beta_end""": 0.02, """beta_schedule""": """linear""", """variance_type""": """fixed_small""", """clip_sample""": True, } config.update(**__UpperCAmelCase ) return config def lowerCamelCase__ ( self : List[str] ): '''simple docstring''' for timesteps in [1, 5, 100, 1_000]: self.check_over_configs(num_train_timesteps=__UpperCAmelCase ) def lowerCamelCase__ ( self : Dict ): '''simple docstring''' for beta_start, beta_end in zip([0.0001, 0.001, 0.01, 0.1] , [0.002, 0.02, 0.2, 2] ): self.check_over_configs(beta_start=__UpperCAmelCase , beta_end=__UpperCAmelCase ) def lowerCamelCase__ ( self : List[Any] ): '''simple docstring''' for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=__UpperCAmelCase ) def lowerCamelCase__ ( self : List[Any] ): '''simple docstring''' for variance in ["fixed_small", "fixed_large", "other"]: self.check_over_configs(variance_type=__UpperCAmelCase ) def lowerCamelCase__ ( self : Optional[Any] ): '''simple docstring''' for clip_sample in [True, False]: self.check_over_configs(clip_sample=__UpperCAmelCase ) def lowerCamelCase__ ( self : str ): '''simple docstring''' self.check_over_configs(thresholding=__UpperCAmelCase ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs( thresholding=__UpperCAmelCase , prediction_type=__UpperCAmelCase , sample_max_value=__UpperCAmelCase , ) def lowerCamelCase__ ( self : Union[str, Any] ): '''simple docstring''' for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs(prediction_type=__UpperCAmelCase ) def lowerCamelCase__ ( self : Dict ): '''simple docstring''' for t in [0, 500, 999]: self.check_over_forward(time_step=__UpperCAmelCase ) def lowerCamelCase__ ( self : Tuple ): '''simple docstring''' __UpperCAmelCase : Dict = self.scheduler_classes[0] __UpperCAmelCase : Optional[int] = self.get_scheduler_config() __UpperCAmelCase : Union[str, Any] = scheduler_class(**__UpperCAmelCase ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 0.0 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(487 ) - 0.00979 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(999 ) - 0.02 ) ) < 1e-5 def lowerCamelCase__ ( self : List[Any] ): '''simple docstring''' __UpperCAmelCase : Any = self.scheduler_classes[0] __UpperCAmelCase : Tuple = self.get_scheduler_config() __UpperCAmelCase : List[str] = scheduler_class(**__UpperCAmelCase ) __UpperCAmelCase : Tuple = len(__UpperCAmelCase ) __UpperCAmelCase : Optional[Any] = self.dummy_model() __UpperCAmelCase : Dict = self.dummy_sample_deter __UpperCAmelCase : Tuple = self.dummy_sample_deter + 0.1 __UpperCAmelCase : Optional[Any] = self.dummy_sample_deter - 0.1 __UpperCAmelCase : List[str] = samplea.shape[0] __UpperCAmelCase : Any = torch.stack([samplea, samplea, samplea] , dim=0 ) __UpperCAmelCase : Optional[int] = torch.arange(__UpperCAmelCase )[0:3, None].repeat(1 , __UpperCAmelCase ) __UpperCAmelCase : str = model(samples.flatten(0 , 1 ) , timesteps.flatten(0 , 1 ) ) __UpperCAmelCase : Tuple = scheduler.batch_step_no_noise(__UpperCAmelCase , timesteps.flatten(0 , 1 ) , samples.flatten(0 , 1 ) ) __UpperCAmelCase : Optional[int] = torch.sum(torch.abs(__UpperCAmelCase ) ) __UpperCAmelCase : str = torch.mean(torch.abs(__UpperCAmelCase ) ) assert abs(result_sum.item() - 1_153.1_833 ) < 1e-2 assert abs(result_mean.item() - 0.5005 ) < 1e-3 def lowerCamelCase__ ( self : List[str] ): '''simple docstring''' __UpperCAmelCase : Union[str, Any] = self.scheduler_classes[0] __UpperCAmelCase : Any = self.get_scheduler_config() __UpperCAmelCase : List[Any] = scheduler_class(**__UpperCAmelCase ) __UpperCAmelCase : Any = len(__UpperCAmelCase ) __UpperCAmelCase : Union[str, Any] = self.dummy_model() __UpperCAmelCase : List[str] = self.dummy_sample_deter __UpperCAmelCase : Optional[Any] = torch.manual_seed(0 ) for t in reversed(range(__UpperCAmelCase ) ): # 1. predict noise residual __UpperCAmelCase : List[str] = model(__UpperCAmelCase , __UpperCAmelCase ) # 2. predict previous mean of sample x_t-1 __UpperCAmelCase : Dict = scheduler.step(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , generator=__UpperCAmelCase ).prev_sample __UpperCAmelCase : Tuple = pred_prev_sample __UpperCAmelCase : Any = torch.sum(torch.abs(__UpperCAmelCase ) ) __UpperCAmelCase : str = torch.mean(torch.abs(__UpperCAmelCase ) ) assert abs(result_sum.item() - 258.9606 ) < 1e-2 assert abs(result_mean.item() - 0.3372 ) < 1e-3 def lowerCamelCase__ ( self : str ): '''simple docstring''' __UpperCAmelCase : Optional[int] = self.scheduler_classes[0] __UpperCAmelCase : Dict = self.get_scheduler_config(prediction_type="""v_prediction""" ) __UpperCAmelCase : List[str] = scheduler_class(**__UpperCAmelCase ) __UpperCAmelCase : Tuple = len(__UpperCAmelCase ) __UpperCAmelCase : Dict = self.dummy_model() __UpperCAmelCase : Dict = self.dummy_sample_deter __UpperCAmelCase : List[Any] = torch.manual_seed(0 ) for t in reversed(range(__UpperCAmelCase ) ): # 1. predict noise residual __UpperCAmelCase : Optional[Any] = model(__UpperCAmelCase , __UpperCAmelCase ) # 2. predict previous mean of sample x_t-1 __UpperCAmelCase : Optional[int] = scheduler.step(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , generator=__UpperCAmelCase ).prev_sample __UpperCAmelCase : str = pred_prev_sample __UpperCAmelCase : Union[str, Any] = torch.sum(torch.abs(__UpperCAmelCase ) ) __UpperCAmelCase : List[Any] = torch.mean(torch.abs(__UpperCAmelCase ) ) assert abs(result_sum.item() - 202.0296 ) < 1e-2 assert abs(result_mean.item() - 0.2631 ) < 1e-3 def lowerCamelCase__ ( self : Dict ): '''simple docstring''' __UpperCAmelCase : Tuple = self.scheduler_classes[0] __UpperCAmelCase : Union[str, Any] = self.get_scheduler_config() __UpperCAmelCase : Tuple = scheduler_class(**__UpperCAmelCase ) __UpperCAmelCase : Tuple = [100, 87, 50, 1, 0] scheduler.set_timesteps(timesteps=__UpperCAmelCase ) __UpperCAmelCase : Any = scheduler.timesteps for i, timestep in enumerate(__UpperCAmelCase ): if i == len(__UpperCAmelCase ) - 1: __UpperCAmelCase : int = -1 else: __UpperCAmelCase : str = timesteps[i + 1] __UpperCAmelCase : int = scheduler.previous_timestep(__UpperCAmelCase ) __UpperCAmelCase : List[str] = prev_t.item() self.assertEqual(__UpperCAmelCase , __UpperCAmelCase ) def lowerCamelCase__ ( self : int ): '''simple docstring''' __UpperCAmelCase : List[str] = self.scheduler_classes[0] __UpperCAmelCase : Optional[Any] = self.get_scheduler_config() __UpperCAmelCase : int = scheduler_class(**__UpperCAmelCase ) __UpperCAmelCase : Any = [100, 87, 50, 51, 0] with self.assertRaises(__UpperCAmelCase , msg="""`custom_timesteps` must be in descending order.""" ): scheduler.set_timesteps(timesteps=__UpperCAmelCase ) def lowerCamelCase__ ( self : Union[str, Any] ): '''simple docstring''' __UpperCAmelCase : Any = self.scheduler_classes[0] __UpperCAmelCase : Tuple = self.get_scheduler_config() __UpperCAmelCase : Tuple = scheduler_class(**__UpperCAmelCase ) __UpperCAmelCase : Tuple = [100, 87, 50, 1, 0] __UpperCAmelCase : str = len(__UpperCAmelCase ) with self.assertRaises(__UpperCAmelCase , msg="""Can only pass one of `num_inference_steps` or `custom_timesteps`.""" ): scheduler.set_timesteps(num_inference_steps=__UpperCAmelCase , timesteps=__UpperCAmelCase ) def lowerCamelCase__ ( self : Tuple ): '''simple docstring''' __UpperCAmelCase : Tuple = self.scheduler_classes[0] __UpperCAmelCase : Tuple = self.get_scheduler_config() __UpperCAmelCase : int = scheduler_class(**__UpperCAmelCase ) __UpperCAmelCase : Optional[int] = [scheduler.config.num_train_timesteps] with self.assertRaises( __UpperCAmelCase , msg="""`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}""" , ): scheduler.set_timesteps(timesteps=__UpperCAmelCase )
115
"""simple docstring""" import argparse import glob import importlib.util import os import re import black from doc_builder.style_doc import style_docstrings_in_code # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_copies.py UpperCamelCase_ = 'src/diffusers' UpperCamelCase_ = '.' # This is to make sure the diffusers module imported is the one in the repo. UpperCamelCase_ = importlib.util.spec_from_file_location( 'diffusers', os.path.join(DIFFUSERS_PATH, '__init__.py'), submodule_search_locations=[DIFFUSERS_PATH], ) UpperCamelCase_ = spec.loader.load_module() def UpperCamelCase ( UpperCAmelCase , UpperCAmelCase ) ->Dict: """simple docstring""" return line.startswith(UpperCAmelCase ) or len(UpperCAmelCase ) <= 1 or re.search(r"^\s*\)(\s*->.*:|:)\s*$" , UpperCAmelCase ) is not None def UpperCamelCase ( UpperCAmelCase ) ->Any: """simple docstring""" a_ = object_name.split("." ) a_ = 0 # First let's find the module where our object lives. a_ = parts[i] while i < len(UpperCAmelCase ) and not os.path.isfile(os.path.join(UpperCAmelCase , F'''{module}.py''' ) ): i += 1 if i < len(UpperCAmelCase ): a_ = os.path.join(UpperCAmelCase , parts[i] ) if i >= len(UpperCAmelCase ): raise ValueError(F'''`object_name` should begin with the name of a module of diffusers but got {object_name}.''' ) with open(os.path.join(UpperCAmelCase , F'''{module}.py''' ) , "r" , encoding="utf-8" , newline="\n" ) as f: a_ = f.readlines() # Now let's find the class / func in the code! a_ = "" a_ = 0 for name in parts[i + 1 :]: while ( line_index < len(UpperCAmelCase ) and re.search(rF'''^{indent}(class|def)\s+{name}(\(|\:)''' , lines[line_index] ) is None ): line_index += 1 indent += " " line_index += 1 if line_index >= len(UpperCAmelCase ): raise ValueError(F''' {object_name} does not match any function or class in {module}.''' ) # We found the beginning of the class / func, now let's find the end (when the indent diminishes). a_ = line_index while line_index < len(UpperCAmelCase ) and _should_continue(lines[line_index] , UpperCAmelCase ): line_index += 1 # Clean up empty lines at the end (if any). while len(lines[line_index - 1] ) <= 1: line_index -= 1 a_ = lines[start_index:line_index] return "".join(UpperCAmelCase ) UpperCamelCase_ = re.compile(R'^(\s*)#\s*Copied from\s+diffusers\.(\S+\.\S+)\s*($|\S.*$)') UpperCamelCase_ = re.compile(R'^\s*(\S+)->(\S+)(\s+.*|$)') UpperCamelCase_ = re.compile(R'<FILL\s+[^>]*>') def UpperCamelCase ( UpperCAmelCase ) ->int: """simple docstring""" a_ = code.split("\n" ) a_ = 0 while idx < len(UpperCAmelCase ) and len(lines[idx] ) == 0: idx += 1 if idx < len(UpperCAmelCase ): return re.search(r"^(\s*)\S" , lines[idx] ).groups()[0] return "" def UpperCamelCase ( UpperCAmelCase ) ->int: """simple docstring""" a_ = len(get_indent(UpperCAmelCase ) ) > 0 if has_indent: a_ = F'''class Bla:\n{code}''' a_ = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=119 , preview=UpperCAmelCase ) a_ = black.format_str(UpperCAmelCase , mode=UpperCAmelCase ) a_ , a_ = style_docstrings_in_code(UpperCAmelCase ) return result[len("class Bla:\n" ) :] if has_indent else result def UpperCamelCase ( UpperCAmelCase , UpperCAmelCase=False ) ->str: """simple docstring""" with open(UpperCAmelCase , "r" , encoding="utf-8" , newline="\n" ) as f: a_ = f.readlines() a_ = [] a_ = 0 # Not a for loop cause `lines` is going to change (if `overwrite=True`). while line_index < len(UpperCAmelCase ): a_ = _re_copy_warning.search(lines[line_index] ) if search is None: line_index += 1 continue # There is some copied code here, let's retrieve the original. a_ , a_ , a_ = search.groups() a_ = find_code_in_diffusers(UpperCAmelCase ) a_ = get_indent(UpperCAmelCase ) a_ = line_index + 1 if indent == theoretical_indent else line_index + 2 a_ = theoretical_indent a_ = start_index # Loop to check the observed code, stop when indentation diminishes or if we see a End copy comment. a_ = True while line_index < len(UpperCAmelCase ) and should_continue: line_index += 1 if line_index >= len(UpperCAmelCase ): break a_ = lines[line_index] a_ = _should_continue(UpperCAmelCase , UpperCAmelCase ) and re.search(F'''^{indent}# End copy''' , UpperCAmelCase ) is None # Clean up empty lines at the end (if any). while len(lines[line_index - 1] ) <= 1: line_index -= 1 a_ = lines[start_index:line_index] a_ = "".join(UpperCAmelCase ) # Remove any nested `Copied from` comments to avoid circular copies a_ = [line for line in theoretical_code.split("\n" ) if _re_copy_warning.search(UpperCAmelCase ) is None] a_ = "\n".join(UpperCAmelCase ) # Before comparing, use the `replace_pattern` on the original code. if len(UpperCAmelCase ) > 0: a_ = replace_pattern.replace("with" , "" ).split("," ) a_ = [_re_replace_pattern.search(UpperCAmelCase ) for p in patterns] for pattern in patterns: if pattern is None: continue a_ , a_ , a_ = pattern.groups() a_ = re.sub(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) if option.strip() == "all-casing": a_ = re.sub(obja.lower() , obja.lower() , UpperCAmelCase ) a_ = re.sub(obja.upper() , obja.upper() , UpperCAmelCase ) # Blackify after replacement. To be able to do that, we need the header (class or function definition) # from the previous line a_ = blackify(lines[start_index - 1] + theoretical_code ) a_ = theoretical_code[len(lines[start_index - 1] ) :] # Test for a diff and act accordingly. if observed_code != theoretical_code: diffs.append([object_name, start_index] ) if overwrite: a_ = lines[:start_index] + [theoretical_code] + lines[line_index:] a_ = start_index + 1 if overwrite and len(UpperCAmelCase ) > 0: # Warn the user a file has been modified. print(F'''Detected changes, rewriting {filename}.''' ) with open(UpperCAmelCase , "w" , encoding="utf-8" , newline="\n" ) as f: f.writelines(UpperCAmelCase ) return diffs def UpperCamelCase ( UpperCAmelCase = False ) ->int: """simple docstring""" a_ = glob.glob(os.path.join(UpperCAmelCase , "**/*.py" ) , recursive=UpperCAmelCase ) a_ = [] for filename in all_files: a_ = is_copy_consistent(UpperCAmelCase , UpperCAmelCase ) diffs += [F'''- {filename}: copy does not match {d[0]} at line {d[1]}''' for d in new_diffs] if not overwrite and len(UpperCAmelCase ) > 0: a_ = "\n".join(UpperCAmelCase ) raise Exception( "Found the following copy inconsistencies:\n" + diff + "\nRun `make fix-copies` or `python utils/check_copies.py --fix_and_overwrite` to fix them." ) if __name__ == "__main__": UpperCamelCase_ = argparse.ArgumentParser() parser.add_argument('--fix_and_overwrite', action='store_true', help='Whether to fix inconsistencies.') UpperCamelCase_ = parser.parse_args() check_copies(args.fix_and_overwrite)
243
0
import tensorflow as tf from ...tf_utils import shape_list class lowercase_ ( tf.keras.layers.Layer ): '''simple docstring''' def __init__( self : Any , __UpperCAmelCase : Dict , __UpperCAmelCase : Any , __UpperCAmelCase : int , __UpperCAmelCase : str , __UpperCAmelCase : Optional[Any]=1 , __UpperCAmelCase : Any=False , **__UpperCAmelCase : str ) ->Optional[int]: """simple docstring""" super().__init__(**__UpperCAmelCase ) a = vocab_size a = d_embed a = d_proj a = cutoffs + [vocab_size] a = [0] + self.cutoffs a = div_val a = self.cutoffs[0] a = len(self.cutoffs ) - 1 a = self.shortlist_size + self.n_clusters a = keep_order a = [] a = [] def __lowerCAmelCase ( self : Optional[int] , __UpperCAmelCase : Optional[int] ) ->Union[str, Any]: """simple docstring""" if self.n_clusters > 0: a = self.add_weight( shape=(self.n_clusters, self.d_embed) , initializer='''zeros''' , trainable=__UpperCAmelCase , name='''cluster_weight''' ) a = self.add_weight( shape=(self.n_clusters,) , initializer='''zeros''' , trainable=__UpperCAmelCase , name='''cluster_bias''' ) if self.div_val == 1: for i in range(len(self.cutoffs ) ): if self.d_proj != self.d_embed: a = self.add_weight( shape=(self.d_embed, self.d_proj) , initializer='''zeros''' , trainable=__UpperCAmelCase , name=F"""out_projs_._{i}""" , ) self.out_projs.append(__UpperCAmelCase ) else: self.out_projs.append(__UpperCAmelCase ) a = self.add_weight( shape=(self.vocab_size, self.d_embed) , initializer='''zeros''' , trainable=__UpperCAmelCase , name=F"""out_layers_._{i}_._weight""" , ) a = self.add_weight( shape=(self.vocab_size,) , initializer='''zeros''' , trainable=__UpperCAmelCase , name=F"""out_layers_._{i}_._bias""" , ) self.out_layers.append((weight, bias) ) else: for i in range(len(self.cutoffs ) ): a , a = self.cutoff_ends[i], self.cutoff_ends[i + 1] a = self.d_embed // (self.div_val**i) a = self.add_weight( shape=(d_emb_i, self.d_proj) , initializer='''zeros''' , trainable=__UpperCAmelCase , name=F"""out_projs_._{i}""" ) self.out_projs.append(__UpperCAmelCase ) a = self.add_weight( shape=(r_idx - l_idx, d_emb_i) , initializer='''zeros''' , trainable=__UpperCAmelCase , name=F"""out_layers_._{i}_._weight""" , ) a = self.add_weight( shape=(r_idx - l_idx,) , initializer='''zeros''' , trainable=__UpperCAmelCase , name=F"""out_layers_._{i}_._bias""" , ) self.out_layers.append((weight, bias) ) super().build(__UpperCAmelCase ) @staticmethod def __lowerCAmelCase ( __UpperCAmelCase : List[str] , __UpperCAmelCase : Tuple , __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : Tuple=None ) ->Dict: """simple docstring""" a = x if proj is not None: a = tf.einsum('''ibd,ed->ibe''' , __UpperCAmelCase , __UpperCAmelCase ) return tf.einsum('''ibd,nd->ibn''' , __UpperCAmelCase , __UpperCAmelCase ) + b @staticmethod def __lowerCAmelCase ( __UpperCAmelCase : List[Any] , __UpperCAmelCase : int ) ->List[str]: """simple docstring""" a = shape_list(__UpperCAmelCase ) a = tf.range(lp_size[0] , dtype=target.dtype ) a = tf.stack([r, target] , 1 ) return tf.gather_nd(__UpperCAmelCase , __UpperCAmelCase ) def __lowerCAmelCase ( self : Any , __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : Any , __UpperCAmelCase : Tuple=True , __UpperCAmelCase : Union[str, Any]=False ) ->str: """simple docstring""" a = 0 if self.n_clusters == 0: a = self._logit(__UpperCAmelCase , self.out_layers[0][0] , self.out_layers[0][1] , self.out_projs[0] ) if target is not None: a = tf.nn.sparse_softmax_cross_entropy_with_logits(labels=__UpperCAmelCase , logits=__UpperCAmelCase ) a = tf.nn.log_softmax(__UpperCAmelCase , axis=-1 ) else: a = shape_list(__UpperCAmelCase ) a = [] a = tf.zeros(hidden_sizes[:2] ) for i in range(len(self.cutoffs ) ): a , a = self.cutoff_ends[i], self.cutoff_ends[i + 1] if target is not None: a = (target >= l_idx) & (target < r_idx) a = tf.where(__UpperCAmelCase ) a = tf.boolean_mask(__UpperCAmelCase , __UpperCAmelCase ) - l_idx if self.div_val == 1: a = self.out_layers[0][0][l_idx:r_idx] a = self.out_layers[0][1][l_idx:r_idx] else: a = self.out_layers[i][0] a = self.out_layers[i][1] if i == 0: a = tf.concat([cur_W, self.cluster_weight] , 0 ) a = tf.concat([cur_b, self.cluster_bias] , 0 ) a = self._logit(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , self.out_projs[0] ) a = tf.nn.log_softmax(__UpperCAmelCase ) out.append(head_logprob[..., : self.cutoffs[0]] ) if target is not None: a = tf.boolean_mask(__UpperCAmelCase , __UpperCAmelCase ) a = self._gather_logprob(__UpperCAmelCase , __UpperCAmelCase ) else: a = self._logit(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , self.out_projs[i] ) a = tf.nn.log_softmax(__UpperCAmelCase ) a = self.cutoffs[0] + i - 1 # No probability for the head cluster a = head_logprob[..., cluster_prob_idx, None] + tail_logprob out.append(__UpperCAmelCase ) if target is not None: a = tf.boolean_mask(__UpperCAmelCase , __UpperCAmelCase ) a = tf.boolean_mask(__UpperCAmelCase , __UpperCAmelCase ) a = self._gather_logprob(__UpperCAmelCase , __UpperCAmelCase ) cur_logprob += cur_head_logprob[:, self.cutoff_ends[1] + i - 1] if target is not None: loss += tf.scatter_nd(__UpperCAmelCase , -cur_logprob , shape_list(__UpperCAmelCase ) ) a = tf.concat(__UpperCAmelCase , axis=-1 ) if target is not None: if return_mean: a = tf.reduce_mean(__UpperCAmelCase ) # Add the training-time loss value to the layer using `self.add_loss()`. self.add_loss(__UpperCAmelCase ) # Log the loss as a metric (we could log arbitrary metrics, # including different metrics for training and inference. self.add_metric(__UpperCAmelCase , name=self.name , aggregation='''mean''' if return_mean else '''''' ) return out
26
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( SwiftFormerConfig, SwiftFormerForImageClassification, ViTImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() UpperCAmelCase__ = logging.get_logger(__name__) UpperCAmelCase__ = torch.device("cpu") def _a ( ) -> Union[str, Any]: a = '''http://images.cocodataset.org/val2017/000000039769.jpg''' a = Image.open(requests.get(a , stream=a ).raw ) return im def _a ( a :Dict ) -> Tuple: if swiftformer_name == "swiftformer_xs": return torch.tensor([-2.1703e00, 2.1107e00, -2.0811e00, 8.8685e-01, 2.4360e-01] ) elif swiftformer_name == "swiftformer_s": return torch.tensor([3.9636e-01, 2.3478e-01, -1.6963e00, -1.7381e00, -8.6337e-01] ) elif swiftformer_name == "swiftformer_l1": return torch.tensor([-4.2768e-01, -4.7429e-01, -1.0897e00, -1.0248e00, 3.5523e-02] ) elif swiftformer_name == "swiftformer_l3": return torch.tensor([-2.5330e-01, 2.4211e-01, -6.0185e-01, -8.2789e-01, -6.0446e-02] ) def _a ( a :int , a :Any , a :Union[str, Any] ) -> int: a = dct.pop(a ) a = val def _a ( a :Any ) -> Dict: a = [] for k in state_dict.keys(): a = k if ".pwconv" in k: a = k_new.replace('''.pwconv''' , '''.point_wise_conv''' ) if ".dwconv" in k: a = k_new.replace('''.dwconv''' , '''.depth_wise_conv''' ) if ".Proj." in k: a = k_new.replace('''.Proj.''' , '''.proj.''' ) if "patch_embed" in k_new: a = k_new.replace('''patch_embed''' , '''swiftformer.patch_embed.patch_embedding''' ) if "network" in k_new: a = k_new.split('''.''' ) if ls[2].isdigit(): a = '''swiftformer.encoder.network.''' + ls[1] + '''.blocks.''' + ls[2] + '''.''' + '''.'''.join(ls[3:] ) else: a = k_new.replace('''network''' , '''swiftformer.encoder.network''' ) rename_keys.append((k, k_new) ) return rename_keys @torch.no_grad() def _a ( a :List[Any] , a :Tuple , a :List[str] ) -> Union[str, Any]: a = SwiftFormerConfig() # dataset (ImageNet-21k only or also fine-tuned on ImageNet 2012), patch_size and image_size a = 1_000 a = '''huggingface/label-files''' a = '''imagenet-1k-id2label.json''' a = json.load(open(hf_hub_download(a , a , repo_type='''dataset''' ) , '''r''' ) ) a = {int(a ): v for k, v in idalabel.items()} a = idalabel a = {v: k for k, v in idalabel.items()} # size of the architecture if swiftformer_name == "swiftformer_xs": a = [3, 3, 6, 4] a = [48, 56, 112, 220] elif swiftformer_name == "swiftformer_s": a = [3, 3, 9, 6] a = [48, 64, 168, 224] elif swiftformer_name == "swiftformer_l1": a = [4, 3, 10, 5] a = [48, 96, 192, 384] elif swiftformer_name == "swiftformer_l3": a = [4, 4, 12, 6] a = [64, 128, 320, 512] # load state_dict of original model, remove and rename some keys if original_ckpt: if original_ckpt.startswith('''https''' ): a = torch.hub.load_state_dict_from_url(a , map_location='''cpu''' , check_hash=a ) else: a = torch.load(a , map_location='''cpu''' ) a = checkpoint a = create_rename_keys(a ) for rename_key_src, rename_key_dest in rename_keys: rename_key(a , a , a ) # load HuggingFace model a = SwiftFormerForImageClassification(a ).eval() hf_model.load_state_dict(a ) # prepare test inputs a = prepare_img() a = ViTImageProcessor.from_pretrained('''preprocessor_config''' ) a = processor(images=a , return_tensors='''pt''' ) # compare outputs from both models a = get_expected_output(a ) a = hf_model(inputs['''pixel_values'''] ).logits assert hf_logits.shape == torch.Size([1, 1_000] ) assert torch.allclose(hf_logits[0, 0:5] , a , atol=1e-3 ) Path(a ).mkdir(exist_ok=a ) print(F"""Saving model {swiftformer_name} to {pytorch_dump_folder_path}""" ) hf_model.save_pretrained(a ) if __name__ == "__main__": UpperCAmelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( "--swiftformer_name", default="swiftformer_xs", choices=["swiftformer_xs", "swiftformer_s", "swiftformer_l1", "swiftformer_l3"], type=str, help="Name of the SwiftFormer model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default="./converted_outputs/", type=str, help="Path to the output PyTorch model directory.", ) parser.add_argument("--original_ckpt", default=None, type=str, help="Path to the original model checkpoint.") UpperCAmelCase__ = parser.parse_args() convert_swiftformer_checkpoint(args.swiftformer_name, args.pytorch_dump_folder_path, args.original_ckpt)
26
1
def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_: int = 1_0_0 ) -> int: '''simple docstring''' A__ = (n * (n + 1) // 2) ** 2 A__ = n * (n + 1) * (2 * n + 1) // 6 return sum_cubes - sum_squares if __name__ == "__main__": print(f"""{solution() = }""")
68
import gc import random import tempfile import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel from diffusers.pipelines.stable_diffusion_safe import StableDiffusionPipelineSafe as StableDiffusionPipeline from diffusers.utils import floats_tensor, nightly, torch_device from diffusers.utils.testing_utils import require_torch_gpu class _snake_case ( unittest.TestCase ): '''simple docstring''' def A__ ( self: Union[str, Any] ) -> Union[str, Any]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def A__ ( self: List[str] ) -> Dict: UpperCAmelCase_ : Union[str, Any] = 1 UpperCAmelCase_ : Tuple = 3 UpperCAmelCase_ : Optional[Any] = (32, 32) UpperCAmelCase_ : Optional[int] = floats_tensor((batch_size, num_channels) + sizes ,rng=random.Random(0 ) ).to(lowerCamelCase_ ) return image @property def A__ ( self: List[Any] ) -> Optional[Any]: torch.manual_seed(0 ) UpperCAmelCase_ : int = UNetaDConditionModel( block_out_channels=(32, 64) ,layers_per_block=2 ,sample_size=32 ,in_channels=4 ,out_channels=4 ,down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") ,up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") ,cross_attention_dim=32 ,) return model @property def A__ ( self: str ) -> List[str]: torch.manual_seed(0 ) UpperCAmelCase_ : Optional[int] = AutoencoderKL( block_out_channels=[32, 64] ,in_channels=3 ,out_channels=3 ,down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] ,up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] ,latent_channels=4 ,) return model @property def A__ ( self: Optional[int] ) -> int: torch.manual_seed(0 ) UpperCAmelCase_ : Dict = CLIPTextConfig( bos_token_id=0 ,eos_token_id=2 ,hidden_size=32 ,intermediate_size=37 ,layer_norm_eps=1e-05 ,num_attention_heads=4 ,num_hidden_layers=5 ,pad_token_id=1 ,vocab_size=1000 ,) return CLIPTextModel(lowerCamelCase_ ) @property def A__ ( self: Tuple ) -> Tuple: def extract(*lowerCamelCase_: Optional[Any] ,**lowerCamelCase_: str ): class _snake_case : '''simple docstring''' def __init__( self: List[Any] ) -> Optional[Any]: UpperCAmelCase_ : List[str] = torch.ones([0] ) def A__ ( self: List[Any] ,lowerCamelCase_: str ) -> int: self.pixel_values.to(lowerCamelCase_ ) return self return Out() return extract def A__ ( self: Union[str, Any] ) -> Tuple: UpperCAmelCase_ : int = """cpu""" # ensure determinism for the device-dependent torch.Generator UpperCAmelCase_ : int = self.dummy_cond_unet UpperCAmelCase_ : Optional[Any] = DDIMScheduler( beta_start=0.0_0_0_8_5 ,beta_end=0.0_1_2 ,beta_schedule="""scaled_linear""" ,clip_sample=lowerCamelCase_ ,set_alpha_to_one=lowerCamelCase_ ,) UpperCAmelCase_ : str = self.dummy_vae UpperCAmelCase_ : List[str] = self.dummy_text_encoder UpperCAmelCase_ : int = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) # make sure here that pndm scheduler skips prk UpperCAmelCase_ : str = StableDiffusionPipeline( unet=lowerCamelCase_ ,scheduler=lowerCamelCase_ ,vae=lowerCamelCase_ ,text_encoder=lowerCamelCase_ ,tokenizer=lowerCamelCase_ ,safety_checker=lowerCamelCase_ ,feature_extractor=self.dummy_extractor ,) UpperCAmelCase_ : List[str] = sd_pipe.to(lowerCamelCase_ ) sd_pipe.set_progress_bar_config(disable=lowerCamelCase_ ) UpperCAmelCase_ : List[str] = """A painting of a squirrel eating a burger""" UpperCAmelCase_ : str = torch.Generator(device=lowerCamelCase_ ).manual_seed(0 ) UpperCAmelCase_ : int = sd_pipe([prompt] ,generator=lowerCamelCase_ ,guidance_scale=6.0 ,num_inference_steps=2 ,output_type="""np""" ) UpperCAmelCase_ : List[Any] = output.images UpperCAmelCase_ : str = torch.Generator(device=lowerCamelCase_ ).manual_seed(0 ) UpperCAmelCase_ : Dict = sd_pipe( [prompt] ,generator=lowerCamelCase_ ,guidance_scale=6.0 ,num_inference_steps=2 ,output_type="""np""" ,return_dict=lowerCamelCase_ ,)[0] UpperCAmelCase_ : int = image[0, -3:, -3:, -1] UpperCAmelCase_ : Union[str, Any] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) UpperCAmelCase_ : Tuple = np.array([0.5_7_5_6, 0.6_1_1_8, 0.5_0_0_5, 0.5_0_4_1, 0.5_4_7_1, 0.4_7_2_6, 0.4_9_7_6, 0.4_8_6_5, 0.4_8_6_4] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 def A__ ( self: Optional[Any] ) -> Any: UpperCAmelCase_ : Tuple = """cpu""" # ensure determinism for the device-dependent torch.Generator UpperCAmelCase_ : Dict = self.dummy_cond_unet UpperCAmelCase_ : List[Any] = PNDMScheduler(skip_prk_steps=lowerCamelCase_ ) UpperCAmelCase_ : str = self.dummy_vae UpperCAmelCase_ : Union[str, Any] = self.dummy_text_encoder UpperCAmelCase_ : str = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) # make sure here that pndm scheduler skips prk UpperCAmelCase_ : Any = StableDiffusionPipeline( unet=lowerCamelCase_ ,scheduler=lowerCamelCase_ ,vae=lowerCamelCase_ ,text_encoder=lowerCamelCase_ ,tokenizer=lowerCamelCase_ ,safety_checker=lowerCamelCase_ ,feature_extractor=self.dummy_extractor ,) UpperCAmelCase_ : int = sd_pipe.to(lowerCamelCase_ ) sd_pipe.set_progress_bar_config(disable=lowerCamelCase_ ) UpperCAmelCase_ : Optional[Any] = """A painting of a squirrel eating a burger""" UpperCAmelCase_ : Optional[Any] = torch.Generator(device=lowerCamelCase_ ).manual_seed(0 ) UpperCAmelCase_ : Optional[Any] = sd_pipe([prompt] ,generator=lowerCamelCase_ ,guidance_scale=6.0 ,num_inference_steps=2 ,output_type="""np""" ) UpperCAmelCase_ : str = output.images UpperCAmelCase_ : Union[str, Any] = torch.Generator(device=lowerCamelCase_ ).manual_seed(0 ) UpperCAmelCase_ : int = sd_pipe( [prompt] ,generator=lowerCamelCase_ ,guidance_scale=6.0 ,num_inference_steps=2 ,output_type="""np""" ,return_dict=lowerCamelCase_ ,)[0] UpperCAmelCase_ : Dict = image[0, -3:, -3:, -1] UpperCAmelCase_ : List[Any] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) UpperCAmelCase_ : Tuple = np.array([0.5_1_2_5, 0.5_7_1_6, 0.4_8_2_8, 0.5_0_6_0, 0.5_6_5_0, 0.4_7_6_8, 0.5_1_8_5, 0.4_8_9_5, 0.4_9_9_3] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 def A__ ( self: str ) -> Dict: UpperCAmelCase_ : Any = StableDiffusionPipeline.from_pretrained( """hf-internal-testing/tiny-stable-diffusion-lms-pipe""" ,safety_checker=lowerCamelCase_ ) assert isinstance(lowerCamelCase_ ,lowerCamelCase_ ) assert isinstance(pipe.scheduler ,lowerCamelCase_ ) assert pipe.safety_checker is None UpperCAmelCase_ : List[Any] = pipe("""example prompt""" ,num_inference_steps=2 ).images[0] assert image is not None # check that there's no error when saving a pipeline with one of the models being None with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(lowerCamelCase_ ) UpperCAmelCase_ : Any = StableDiffusionPipeline.from_pretrained(lowerCamelCase_ ) # sanity check that the pipeline still works assert pipe.safety_checker is None UpperCAmelCase_ : Optional[int] = pipe("""example prompt""" ,num_inference_steps=2 ).images[0] assert image is not None @unittest.skipIf(torch_device != """cuda""" ,"""This test requires a GPU""" ) def A__ ( self: List[str] ) -> Any: UpperCAmelCase_ : Tuple = self.dummy_cond_unet UpperCAmelCase_ : Dict = PNDMScheduler(skip_prk_steps=lowerCamelCase_ ) UpperCAmelCase_ : List[Any] = self.dummy_vae UpperCAmelCase_ : List[str] = self.dummy_text_encoder UpperCAmelCase_ : Union[str, Any] = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) # put models in fp16 UpperCAmelCase_ : Optional[Any] = unet.half() UpperCAmelCase_ : Optional[int] = vae.half() UpperCAmelCase_ : int = bert.half() # make sure here that pndm scheduler skips prk UpperCAmelCase_ : Any = StableDiffusionPipeline( unet=lowerCamelCase_ ,scheduler=lowerCamelCase_ ,vae=lowerCamelCase_ ,text_encoder=lowerCamelCase_ ,tokenizer=lowerCamelCase_ ,safety_checker=lowerCamelCase_ ,feature_extractor=self.dummy_extractor ,) UpperCAmelCase_ : List[Any] = sd_pipe.to(lowerCamelCase_ ) sd_pipe.set_progress_bar_config(disable=lowerCamelCase_ ) UpperCAmelCase_ : Tuple = """A painting of a squirrel eating a burger""" UpperCAmelCase_ : Optional[int] = sd_pipe([prompt] ,num_inference_steps=2 ,output_type="""np""" ).images assert image.shape == (1, 64, 64, 3) @nightly @require_torch_gpu class _snake_case ( unittest.TestCase ): '''simple docstring''' def A__ ( self: Optional[int] ) -> Optional[Any]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def A__ ( self: List[str] ) -> List[Any]: UpperCAmelCase_ : Tuple = StableDiffusionPipeline.from_pretrained("""runwayml/stable-diffusion-v1-5""" ,safety_checker=lowerCamelCase_ ) UpperCAmelCase_ : Optional[int] = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config ) UpperCAmelCase_ : str = sd_pipe.to(lowerCamelCase_ ) sd_pipe.set_progress_bar_config(disable=lowerCamelCase_ ) UpperCAmelCase_ : str = ( """portrait of girl with smokey eyes makeup in abandoned hotel, grange clothes, redshift, wide high angle""" """ coloured polaroid photograph with flash, kodak film, hyper real, stunning moody cinematography, with""" """ anamorphic lenses, by maripol, fallen angels by wong kar - wai, style of suspiria and neon demon and""" """ children from bahnhof zoo, detailed """ ) UpperCAmelCase_ : Optional[int] = 4003660346 UpperCAmelCase_ : int = 7 # without safety guidance (sld_guidance_scale = 0) UpperCAmelCase_ : Dict = torch.manual_seed(lowerCamelCase_ ) UpperCAmelCase_ : List[Any] = sd_pipe( [prompt] ,generator=lowerCamelCase_ ,guidance_scale=lowerCamelCase_ ,num_inference_steps=50 ,output_type="""np""" ,width=512 ,height=512 ,sld_guidance_scale=0 ,) UpperCAmelCase_ : Optional[int] = output.images UpperCAmelCase_ : Union[str, Any] = image[0, -3:, -3:, -1] UpperCAmelCase_ : Dict = [0.2_2_7_8, 0.2_2_3_1, 0.2_2_4_9, 0.2_3_3_3, 0.2_3_0_3, 0.1_8_8_5, 0.2_2_7_3, 0.2_1_4_4, 0.2_1_7_6] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 # without safety guidance (strong configuration) UpperCAmelCase_ : Union[str, Any] = torch.manual_seed(lowerCamelCase_ ) UpperCAmelCase_ : Any = sd_pipe( [prompt] ,generator=lowerCamelCase_ ,guidance_scale=lowerCamelCase_ ,num_inference_steps=50 ,output_type="""np""" ,width=512 ,height=512 ,sld_guidance_scale=2000 ,sld_warmup_steps=7 ,sld_threshold=0.0_2_5 ,sld_momentum_scale=0.5 ,sld_mom_beta=0.7 ,) UpperCAmelCase_ : Tuple = output.images UpperCAmelCase_ : Union[str, Any] = image[0, -3:, -3:, -1] UpperCAmelCase_ : str = [0.2_3_8_3, 0.2_2_7_6, 0.2_3_6, 0.2_1_9_2, 0.2_1_8_6, 0.2_0_5_3, 0.1_9_7_1, 0.1_9_0_1, 0.1_7_1_9] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def A__ ( self: Optional[int] ) -> Any: UpperCAmelCase_ : Any = StableDiffusionPipeline.from_pretrained("""runwayml/stable-diffusion-v1-5""" ,safety_checker=lowerCamelCase_ ) UpperCAmelCase_ : Any = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config ) UpperCAmelCase_ : str = sd_pipe.to(lowerCamelCase_ ) sd_pipe.set_progress_bar_config(disable=lowerCamelCase_ ) UpperCAmelCase_ : Any = """padme amidala taking a bath artwork, safe for work, no nudity""" UpperCAmelCase_ : List[Any] = 2734971755 UpperCAmelCase_ : Optional[Any] = 7 UpperCAmelCase_ : int = torch.manual_seed(lowerCamelCase_ ) UpperCAmelCase_ : Optional[int] = sd_pipe( [prompt] ,generator=lowerCamelCase_ ,guidance_scale=lowerCamelCase_ ,num_inference_steps=50 ,output_type="""np""" ,width=512 ,height=512 ,sld_guidance_scale=0 ,) UpperCAmelCase_ : Dict = output.images UpperCAmelCase_ : Tuple = image[0, -3:, -3:, -1] UpperCAmelCase_ : Optional[Any] = [0.3_5_0_2, 0.3_6_2_2, 0.3_3_9_6, 0.3_6_4_2, 0.3_4_7_8, 0.3_3_1_8, 0.3_5, 0.3_3_4_8, 0.3_2_9_7] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 UpperCAmelCase_ : Any = torch.manual_seed(lowerCamelCase_ ) UpperCAmelCase_ : Tuple = sd_pipe( [prompt] ,generator=lowerCamelCase_ ,guidance_scale=lowerCamelCase_ ,num_inference_steps=50 ,output_type="""np""" ,width=512 ,height=512 ,sld_guidance_scale=2000 ,sld_warmup_steps=7 ,sld_threshold=0.0_2_5 ,sld_momentum_scale=0.5 ,sld_mom_beta=0.7 ,) UpperCAmelCase_ : Dict = output.images UpperCAmelCase_ : List[Any] = image[0, -3:, -3:, -1] UpperCAmelCase_ : Tuple = [0.5_5_3_1, 0.5_2_0_6, 0.4_8_9_5, 0.5_1_5_6, 0.5_1_8_2, 0.4_7_5_1, 0.4_8_0_2, 0.4_8_0_3, 0.4_4_4_3] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def A__ ( self: Union[str, Any] ) -> int: UpperCAmelCase_ : List[Any] = StableDiffusionPipeline.from_pretrained("""runwayml/stable-diffusion-v1-5""" ) UpperCAmelCase_ : List[str] = sd_pipe.to(lowerCamelCase_ ) sd_pipe.set_progress_bar_config(disable=lowerCamelCase_ ) UpperCAmelCase_ : Any = ( """the four horsewomen of the apocalypse, painting by tom of finland, gaston bussiere, craig mullins, j. c.""" """ leyendecker""" ) UpperCAmelCase_ : Optional[Any] = 1044355234 UpperCAmelCase_ : List[str] = 12 UpperCAmelCase_ : List[Any] = torch.manual_seed(lowerCamelCase_ ) UpperCAmelCase_ : List[Any] = sd_pipe( [prompt] ,generator=lowerCamelCase_ ,guidance_scale=lowerCamelCase_ ,num_inference_steps=50 ,output_type="""np""" ,width=512 ,height=512 ,sld_guidance_scale=0 ,) UpperCAmelCase_ : Any = output.images UpperCAmelCase_ : Dict = image[0, -3:, -3:, -1] UpperCAmelCase_ : Optional[Any] = np.array([0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0] ) assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-7 UpperCAmelCase_ : Optional[int] = torch.manual_seed(lowerCamelCase_ ) UpperCAmelCase_ : Optional[Any] = sd_pipe( [prompt] ,generator=lowerCamelCase_ ,guidance_scale=lowerCamelCase_ ,num_inference_steps=50 ,output_type="""np""" ,width=512 ,height=512 ,sld_guidance_scale=2000 ,sld_warmup_steps=7 ,sld_threshold=0.0_2_5 ,sld_momentum_scale=0.5 ,sld_mom_beta=0.7 ,) UpperCAmelCase_ : List[str] = output.images UpperCAmelCase_ : Any = image[0, -3:, -3:, -1] UpperCAmelCase_ : Any = np.array([0.5_8_1_8, 0.6_2_8_5, 0.6_8_3_5, 0.6_0_1_9, 0.6_2_5, 0.6_7_5_4, 0.6_0_9_6, 0.6_3_3_4, 0.6_5_6_1] ) assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
345
0
__A : Optional[Any] = 'Tobias Carryer' from time import time class _SCREAMING_SNAKE_CASE : def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=int(time() ) )-> Union[str, Any]: # noqa: B008 lowerCamelCase_ =multiplier lowerCamelCase_ =increment lowerCamelCase_ =modulo lowerCamelCase_ =seed def _snake_case ( self )-> Optional[int]: lowerCamelCase_ =(self.multiplier * self.seed + self.increment) % self.modulo return self.seed if __name__ == "__main__": # Show the LCG in action. __A : str = LinearCongruentialGenerator(1_66_45_25, 10_13_90_42_23, 2 << 31) while True: print(lcg.next_number())
49
from __future__ import annotations import numpy as np from numpy import floataa from numpy.typing import NDArray def __UpperCamelCase ( _A : NDArray[floataa] , _A : NDArray[floataa] , _A : list[int] , _A : int , ) ->list[float]: """simple docstring""" lowerCamelCase_ , lowerCamelCase_ =coefficient_matrix.shape lowerCamelCase_ , lowerCamelCase_ =constant_matrix.shape if rowsa != colsa: lowerCamelCase_ =f'Coefficient matrix dimensions must be nxn but received {rowsa}x{colsa}' raise ValueError(_A ) if colsa != 1: lowerCamelCase_ =f'Constant matrix must be nx1 but received {rowsa}x{colsa}' raise ValueError(_A ) if rowsa != rowsa: lowerCamelCase_ =( """Coefficient and constant matrices dimensions must be nxn and nx1 but """ f'received {rowsa}x{colsa} and {rowsa}x{colsa}' ) raise ValueError(_A ) if len(_A ) != rowsa: lowerCamelCase_ =( """Number of initial values must be equal to number of rows in coefficient """ f'matrix but received {len(_A )} and {rowsa}' ) raise ValueError(_A ) if iterations <= 0: raise ValueError("""Iterations must be at least 1""" ) lowerCamelCase_ =np.concatenate( (coefficient_matrix, constant_matrix) , axis=1 ) lowerCamelCase_ , lowerCamelCase_ =table.shape strictly_diagonally_dominant(_A ) # Iterates the whole matrix for given number of times for _ in range(_A ): lowerCamelCase_ =[] for row in range(_A ): lowerCamelCase_ =0 for col in range(_A ): if col == row: lowerCamelCase_ =table[row][col] elif col == cols - 1: lowerCamelCase_ =table[row][col] else: temp += (-1) * table[row][col] * init_val[col] lowerCamelCase_ =(temp + val) / denom new_val.append(_A ) lowerCamelCase_ =new_val return [float(_A ) for i in new_val] def __UpperCamelCase ( _A : NDArray[floataa] ) ->bool: """simple docstring""" lowerCamelCase_ , lowerCamelCase_ =table.shape lowerCamelCase_ =True for i in range(0 , _A ): lowerCamelCase_ =0 for j in range(0 , cols - 1 ): if i == j: continue else: total += table[i][j] if table[i][i] <= total: raise ValueError("""Coefficient matrix is not strictly diagonally dominant""" ) return is_diagonally_dominant # Test Cases if __name__ == "__main__": import doctest doctest.testmod()
49
1
import copy from typing import Dict, List, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING a_ : Dict = { "facebook/mask2former-swin-small-coco-instance": ( "https://huggingface.co/facebook/mask2former-swin-small-coco-instance/blob/main/config.json" ) # See all Mask2Former models at https://huggingface.co/models?filter=mask2former } a_ : Dict = logging.get_logger(__name__) class _snake_case ( A__ ): _lowercase : Union[str, Any] = '''mask2former''' _lowercase : Optional[Any] = ['''swin'''] _lowercase : List[str] = {'''hidden_size''': '''hidden_dim'''} def __init__( self , a = None , a = 256 , a = 256 , a = 256 , a = 1024 , a = "relu" , a = 6 , a = 10 , a = 8 , a = 0.0 , a = 2048 , a = False , a = False , a = 4 , a = 255 , a = 100 , a = 0.1 , a = 2.0 , a = 5.0 , a = 5.0 , a = 1_2544 , a = 3.0 , a = 0.75 , a = 0.02 , a = 1.0 , a = True , a = [4, 8, 16, 32] , a = None , **a , ) -> Optional[Any]: if backbone_config is None: logger.info('`backbone_config` is `None`. Initializing the config with the default `Swin` backbone.') SCREAMING_SNAKE_CASE = CONFIG_MAPPING['swin']( image_size=224 , in_channels=3 , patch_size=4 , embed_dim=96 , depths=[2, 2, 18, 2] , num_heads=[3, 6, 12, 24] , window_size=7 , drop_path_rate=0.3 , use_absolute_embeddings=a , out_features=['stage1', 'stage2', 'stage3', 'stage4'] , ) if isinstance(a , a): SCREAMING_SNAKE_CASE = backbone_config.pop('model_type') SCREAMING_SNAKE_CASE = CONFIG_MAPPING[backbone_model_type] SCREAMING_SNAKE_CASE = config_class.from_dict(a) # verify that the backbone is supported if backbone_config.model_type not in self.backbones_supported: logger.warning_once( f'''Backbone {backbone_config.model_type} is not a supported model and may not be compatible with Mask2Former. ''' f'''Supported model types: {','.join(self.backbones_supported)}''') SCREAMING_SNAKE_CASE = backbone_config SCREAMING_SNAKE_CASE = feature_size SCREAMING_SNAKE_CASE = mask_feature_size SCREAMING_SNAKE_CASE = hidden_dim SCREAMING_SNAKE_CASE = encoder_feedforward_dim SCREAMING_SNAKE_CASE = activation_function SCREAMING_SNAKE_CASE = encoder_layers SCREAMING_SNAKE_CASE = decoder_layers SCREAMING_SNAKE_CASE = num_attention_heads SCREAMING_SNAKE_CASE = dropout SCREAMING_SNAKE_CASE = dim_feedforward SCREAMING_SNAKE_CASE = pre_norm SCREAMING_SNAKE_CASE = enforce_input_projection SCREAMING_SNAKE_CASE = common_stride SCREAMING_SNAKE_CASE = ignore_value SCREAMING_SNAKE_CASE = num_queries SCREAMING_SNAKE_CASE = no_object_weight SCREAMING_SNAKE_CASE = class_weight SCREAMING_SNAKE_CASE = mask_weight SCREAMING_SNAKE_CASE = dice_weight SCREAMING_SNAKE_CASE = train_num_points SCREAMING_SNAKE_CASE = oversample_ratio SCREAMING_SNAKE_CASE = importance_sample_ratio SCREAMING_SNAKE_CASE = init_std SCREAMING_SNAKE_CASE = init_xavier_std SCREAMING_SNAKE_CASE = use_auxiliary_loss SCREAMING_SNAKE_CASE = feature_strides SCREAMING_SNAKE_CASE = output_auxiliary_logits SCREAMING_SNAKE_CASE = decoder_layers super().__init__(**a) @classmethod def SCREAMING_SNAKE_CASE__ ( cls , a , **a) -> int: return cls( backbone_config=a , **a , ) def SCREAMING_SNAKE_CASE__ ( self) -> Dict: SCREAMING_SNAKE_CASE = copy.deepcopy(self.__dict__) SCREAMING_SNAKE_CASE = self.backbone_config.to_dict() SCREAMING_SNAKE_CASE = self.__class__.model_type return output
137
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __UpperCamelCase : Optional[Any] = { "configuration_jukebox": [ "JUKEBOX_PRETRAINED_CONFIG_ARCHIVE_MAP", "JukeboxConfig", "JukeboxPriorConfig", "JukeboxVQVAEConfig", ], "tokenization_jukebox": ["JukeboxTokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Tuple = [ "JUKEBOX_PRETRAINED_MODEL_ARCHIVE_LIST", "JukeboxModel", "JukeboxPreTrainedModel", "JukeboxVQVAE", "JukeboxPrior", ] if TYPE_CHECKING: from .configuration_jukebox import ( JUKEBOX_PRETRAINED_CONFIG_ARCHIVE_MAP, JukeboxConfig, JukeboxPriorConfig, JukeboxVQVAEConfig, ) from .tokenization_jukebox import JukeboxTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_jukebox import ( JUKEBOX_PRETRAINED_MODEL_ARCHIVE_LIST, JukeboxModel, JukeboxPreTrainedModel, JukeboxPrior, JukeboxVQVAE, ) else: import sys __UpperCamelCase : List[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
228
0
'''simple docstring''' import inspect import unittest from math import floor from transformers import CvtConfig from transformers.file_utils import cached_property, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import CvtForImageClassification, CvtModel from transformers.models.cvt.modeling_cvt import CVT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class UpperCamelCase_ (a__ ): """simple docstring""" def _a ( self : List[Any] ): """simple docstring""" A_ : List[str] = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(_lowerCamelCase , '''embed_dim''' ) ) self.parent.assertTrue(hasattr(_lowerCamelCase , '''num_heads''' ) ) class UpperCamelCase_ : """simple docstring""" def __init__( self : int , _lowerCamelCase : int , _lowerCamelCase : List[str]=13 , _lowerCamelCase : str=64 , _lowerCamelCase : str=3 , _lowerCamelCase : Optional[Any]=[16, 48, 96] , _lowerCamelCase : Dict=[1, 3, 6] , _lowerCamelCase : Tuple=[1, 2, 10] , _lowerCamelCase : List[str]=[7, 3, 3] , _lowerCamelCase : Any=[4, 2, 2] , _lowerCamelCase : str=[2, 1, 1] , _lowerCamelCase : List[str]=[2, 2, 2] , _lowerCamelCase : List[Any]=[False, False, True] , _lowerCamelCase : Any=[0.0, 0.0, 0.0] , _lowerCamelCase : int=0.02 , _lowerCamelCase : Tuple=1E-12 , _lowerCamelCase : Union[str, Any]=True , _lowerCamelCase : Optional[Any]=True , _lowerCamelCase : int=2 , ): """simple docstring""" A_ : Any = parent A_ : List[Any] = batch_size A_ : List[str] = image_size A_ : str = patch_sizes A_ : Union[str, Any] = patch_stride A_ : int = patch_padding A_ : int = is_training A_ : List[str] = use_labels A_ : List[str] = num_labels A_ : List[Any] = num_channels A_ : str = embed_dim A_ : Optional[int] = num_heads A_ : Optional[Any] = stride_kv A_ : str = depth A_ : Any = cls_token A_ : int = attention_drop_rate A_ : str = initializer_range A_ : int = layer_norm_eps def _a ( self : Any ): """simple docstring""" A_ : str = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) A_ : Union[str, Any] = None if self.use_labels: A_ : Optional[int] = ids_tensor([self.batch_size] , self.num_labels ) A_ : Optional[Any] = self.get_config() return config, pixel_values, labels def _a ( self : List[str] ): """simple docstring""" return CvtConfig( image_size=self.image_size , num_labels=self.num_labels , num_channels=self.num_channels , embed_dim=self.embed_dim , num_heads=self.num_heads , patch_sizes=self.patch_sizes , patch_padding=self.patch_padding , patch_stride=self.patch_stride , stride_kv=self.stride_kv , depth=self.depth , cls_token=self.cls_token , attention_drop_rate=self.attention_drop_rate , initializer_range=self.initializer_range , ) def _a ( self : Tuple , _lowerCamelCase : List[Any] , _lowerCamelCase : str , _lowerCamelCase : Optional[Any] ): """simple docstring""" A_ : List[str] = CvtModel(config=_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() A_ : Dict = model(_lowerCamelCase ) A_ : Union[str, Any] = (self.image_size, self.image_size) A_ ,A_ : Union[str, Any] = image_size[0], image_size[1] for i in range(len(self.depth ) ): A_ : Optional[Any] = floor(((height + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1 ) A_ : List[str] = floor(((width + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1 ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.embed_dim[-1], height, width) ) def _a ( self : List[str] , _lowerCamelCase : str , _lowerCamelCase : Dict , _lowerCamelCase : List[Any] ): """simple docstring""" A_ : Optional[Any] = self.num_labels A_ : Tuple = CvtForImageClassification(_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() A_ : str = model(_lowerCamelCase , labels=_lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _a ( self : Dict ): """simple docstring""" A_ : int = self.prepare_config_and_inputs() A_ ,A_ ,A_ : Union[str, Any] = config_and_inputs A_ : List[str] = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class UpperCamelCase_ (a__, a__, unittest.TestCase ): """simple docstring""" _lowerCAmelCase = (CvtModel, CvtForImageClassification) if is_torch_available() else () _lowerCAmelCase = ( {'feature-extraction': CvtModel, 'image-classification': CvtForImageClassification} if is_torch_available() else {} ) _lowerCAmelCase = False _lowerCAmelCase = False _lowerCAmelCase = False _lowerCAmelCase = False _lowerCAmelCase = False def _a ( self : Optional[int] ): """simple docstring""" A_ : List[Any] = CvtModelTester(self ) A_ : Union[str, Any] = ConfigTester(self , config_class=_lowerCamelCase , has_text_modality=_lowerCamelCase , hidden_size=37 ) def _a ( self : List[Any] ): """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def _a ( self : Optional[int] ): """simple docstring""" return @unittest.skip(reason='''Cvt does not output attentions''' ) def _a ( self : Union[str, Any] ): """simple docstring""" pass @unittest.skip(reason='''Cvt does not use inputs_embeds''' ) def _a ( self : Optional[Any] ): """simple docstring""" pass @unittest.skip(reason='''Cvt does not support input and output embeddings''' ) def _a ( self : Optional[int] ): """simple docstring""" pass def _a ( self : str ): """simple docstring""" A_ ,A_ : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A_ : Union[str, Any] = model_class(_lowerCamelCase ) A_ : Union[str, Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic A_ : Dict = [*signature.parameters.keys()] A_ : int = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , _lowerCamelCase ) def _a ( self : int ): """simple docstring""" A_ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowerCamelCase ) def _a ( self : List[str] ): """simple docstring""" def check_hidden_states_output(_lowerCamelCase : Any , _lowerCamelCase : List[Any] , _lowerCamelCase : Any ): A_ : Optional[int] = model_class(_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() with torch.no_grad(): A_ : Tuple = model(**self._prepare_for_class(_lowerCamelCase , _lowerCamelCase ) ) A_ : int = outputs.hidden_states A_ : Union[str, Any] = len(self.model_tester.depth ) self.assertEqual(len(_lowerCamelCase ) , _lowerCamelCase ) # verify the first hidden states (first block) self.assertListEqual( list(hidden_states[0].shape[-3:] ) , [ self.model_tester.embed_dim[0], self.model_tester.image_size // 4, self.model_tester.image_size // 4, ] , ) A_ ,A_ : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A_ : Any = True check_hidden_states_output(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] A_ : Union[str, Any] = True check_hidden_states_output(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) def _a ( self : Union[str, Any] ): """simple docstring""" A_ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_lowerCamelCase ) @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def _a ( self : int ): """simple docstring""" pass @slow def _a ( self : str ): """simple docstring""" for model_name in CVT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A_ : int = CvtModel.from_pretrained(_lowerCamelCase ) self.assertIsNotNone(_lowerCamelCase ) def snake_case__ ( ) -> Any: A_ : List[str] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class UpperCamelCase_ (unittest.TestCase ): """simple docstring""" @cached_property def _a ( self : List[str] ): """simple docstring""" return AutoImageProcessor.from_pretrained(CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) @slow def _a ( self : str ): """simple docstring""" A_ : int = CvtForImageClassification.from_pretrained(CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to(_lowerCamelCase ) A_ : Union[str, Any] = self.default_image_processor A_ : Union[str, Any] = prepare_img() A_ : str = image_processor(images=_lowerCamelCase , return_tensors='''pt''' ).to(_lowerCamelCase ) # forward pass with torch.no_grad(): A_ : str = model(**_lowerCamelCase ) # verify the logits A_ : Dict = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , _lowerCamelCase ) A_ : Tuple = torch.tensor([0.92_85, 0.90_15, -0.31_50] ).to(_lowerCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _lowerCamelCase , atol=1E-4 ) )
4
'''simple docstring''' import logging import os from dataclasses import dataclass from typing import List, Optional, Union import tqdm from filelock import FileLock from transformers import ( BartTokenizer, BartTokenizerFast, DataProcessor, PreTrainedTokenizer, RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, is_tf_available, is_torch_available, ) snake_case__ = logging.getLogger(__name__) @dataclass(frozen=a__ ) class UpperCamelCase_ : """simple docstring""" _lowerCAmelCase = 42 _lowerCAmelCase = 42 _lowerCAmelCase = None _lowerCAmelCase = None _lowerCAmelCase = None @dataclass(frozen=a__ ) class UpperCamelCase_ : """simple docstring""" _lowerCAmelCase = 42 _lowerCAmelCase = None _lowerCAmelCase = None _lowerCAmelCase = None _lowerCAmelCase = None if is_torch_available(): import torch from torch.utils.data import Dataset class UpperCamelCase_ (a__ ): """simple docstring""" _lowerCAmelCase = 42 def __init__( self : Optional[int] , _lowerCamelCase : str , _lowerCamelCase : PreTrainedTokenizer , _lowerCamelCase : str , _lowerCamelCase : Optional[int] = None , _lowerCamelCase : List[Any]=False , _lowerCamelCase : bool = False , ): """simple docstring""" A_ : Optional[int] = hans_processors[task]() A_ : int = os.path.join( _lowerCamelCase , '''cached_{}_{}_{}_{}'''.format( '''dev''' if evaluate else '''train''' , tokenizer.__class__.__name__ , str(_lowerCamelCase ) , _lowerCamelCase , ) , ) A_ : Dict = processor.get_labels() if tokenizer.__class__ in ( RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, BartTokenizer, BartTokenizerFast, ): # HACK(label indices are swapped in RoBERTa pretrained model) A_ ,A_ : List[str] = label_list[2], label_list[1] A_ : Optional[int] = label_list # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. A_ : str = cached_features_file + '''.lock''' with FileLock(_lowerCamelCase ): if os.path.exists(_lowerCamelCase ) and not overwrite_cache: logger.info(f'Loading features from cached file {cached_features_file}' ) A_ : List[str] = torch.load(_lowerCamelCase ) else: logger.info(f'Creating features from dataset file at {data_dir}' ) A_ : Optional[int] = ( processor.get_dev_examples(_lowerCamelCase ) if evaluate else processor.get_train_examples(_lowerCamelCase ) ) logger.info('''Training examples: %s''' , len(_lowerCamelCase ) ) A_ : Optional[int] = hans_convert_examples_to_features(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) logger.info('''Saving features into cached file %s''' , _lowerCamelCase ) torch.save(self.features , _lowerCamelCase ) def __len__( self : List[str] ): """simple docstring""" return len(self.features ) def __getitem__( self : List[str] , _lowerCamelCase : Optional[int] ): """simple docstring""" return self.features[i] def _a ( self : str ): """simple docstring""" return self.label_list if is_tf_available(): import tensorflow as tf class UpperCamelCase_ : """simple docstring""" _lowerCAmelCase = 42 def __init__( self : Optional[int] , _lowerCamelCase : str , _lowerCamelCase : PreTrainedTokenizer , _lowerCamelCase : str , _lowerCamelCase : Optional[int] = 128 , _lowerCamelCase : Dict=False , _lowerCamelCase : bool = False , ): """simple docstring""" A_ : Optional[int] = hans_processors[task]() A_ : Optional[int] = processor.get_labels() if tokenizer.__class__ in ( RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, BartTokenizer, BartTokenizerFast, ): # HACK(label indices are swapped in RoBERTa pretrained model) A_ ,A_ : Union[str, Any] = label_list[2], label_list[1] A_ : Tuple = label_list A_ : Optional[int] = processor.get_dev_examples(_lowerCamelCase ) if evaluate else processor.get_train_examples(_lowerCamelCase ) A_ : Tuple = hans_convert_examples_to_features(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) def gen(): for ex_index, ex in tqdm.tqdm(enumerate(self.features ) , desc='''convert examples to features''' ): if ex_index % 10000 == 0: logger.info('''Writing example %d of %d''' % (ex_index, len(_lowerCamelCase )) ) yield ( { "example_id": 0, "input_ids": ex.input_ids, "attention_mask": ex.attention_mask, "token_type_ids": ex.token_type_ids, }, ex.label, ) A_ : List[Any] = tf.data.Dataset.from_generator( _lowerCamelCase , ( { '''example_id''': tf.intaa, '''input_ids''': tf.intaa, '''attention_mask''': tf.intaa, '''token_type_ids''': tf.intaa, }, tf.intaa, ) , ( { '''example_id''': tf.TensorShape([] ), '''input_ids''': tf.TensorShape([None, None] ), '''attention_mask''': tf.TensorShape([None, None] ), '''token_type_ids''': tf.TensorShape([None, None] ), }, tf.TensorShape([] ), ) , ) def _a ( self : Any ): """simple docstring""" return self.dataset def __len__( self : Dict ): """simple docstring""" return len(self.features ) def __getitem__( self : Optional[int] , _lowerCamelCase : List[str] ): """simple docstring""" return self.features[i] def _a ( self : Tuple ): """simple docstring""" return self.label_list class UpperCamelCase_ (a__ ): """simple docstring""" def _a ( self : List[str] , _lowerCamelCase : Union[str, Any] ): """simple docstring""" return self._create_examples(self._read_tsv(os.path.join(_lowerCamelCase , '''heuristics_train_set.txt''' ) ) , '''train''' ) def _a ( self : List[str] , _lowerCamelCase : Tuple ): """simple docstring""" return self._create_examples(self._read_tsv(os.path.join(_lowerCamelCase , '''heuristics_evaluation_set.txt''' ) ) , '''dev''' ) def _a ( self : Any ): """simple docstring""" return ["contradiction", "entailment", "neutral"] def _a ( self : Optional[Any] , _lowerCamelCase : Optional[Any] , _lowerCamelCase : Any ): """simple docstring""" A_ : Tuple = [] for i, line in enumerate(_lowerCamelCase ): if i == 0: continue A_ : str = '''%s-%s''' % (set_type, line[0]) A_ : Optional[Any] = line[5] A_ : Union[str, Any] = line[6] A_ : List[str] = line[7][2:] if line[7].startswith('''ex''' ) else line[7] A_ : str = line[0] examples.append(InputExample(guid=_lowerCamelCase , text_a=_lowerCamelCase , text_b=_lowerCamelCase , label=_lowerCamelCase , pairID=_lowerCamelCase ) ) return examples def snake_case__ ( lowerCamelCase__ : List[InputExample] , lowerCamelCase__ : List[str] , lowerCamelCase__ : int , lowerCamelCase__ : PreTrainedTokenizer , ) -> int: A_ : Union[str, Any] = {label: i for i, label in enumerate(lowerCamelCase__ )} A_ : Optional[Any] = [] for ex_index, example in tqdm.tqdm(enumerate(lowerCamelCase__ ) , desc='''convert examples to features''' ): if ex_index % 1_0_0_0_0 == 0: logger.info('''Writing example %d''' % (ex_index) ) A_ : Optional[int] = tokenizer( example.text_a , example.text_b , add_special_tokens=lowerCamelCase__ , max_length=lowerCamelCase__ , padding='''max_length''' , truncation=lowerCamelCase__ , return_overflowing_tokens=lowerCamelCase__ , ) A_ : List[str] = label_map[example.label] if example.label in label_map else 0 A_ : Tuple = int(example.pairID ) features.append(InputFeatures(**lowerCamelCase__ , label=lowerCamelCase__ , pairID=lowerCamelCase__ ) ) for i, example in enumerate(examples[:5] ): logger.info('''*** Example ***''' ) logger.info(f'guid: {example}' ) logger.info(f'features: {features[i]}' ) return features snake_case__ = { """hans""": 3, } snake_case__ = { """hans""": HansProcessor, }
4
1
'''simple docstring''' from __future__ import annotations from statistics import mean def _SCREAMING_SNAKE_CASE (A , A , A ) -> list[int]: """simple docstring""" lowercase__ = [0] * no_of_processes lowercase__ = [0] * no_of_processes # Initialize remaining_time to waiting_time. for i in range(A ): lowercase__ = burst_time[i] lowercase__ = [] lowercase__ = 0 lowercase__ = 0 # When processes are not completed, # A process whose arrival time has passed \ # and has remaining execution time is put into the ready_process. # The shortest process in the ready_process, target_process is executed. while completed != no_of_processes: lowercase__ = [] lowercase__ = -1 for i in range(A ): if (arrival_time[i] <= total_time) and (remaining_time[i] > 0): ready_process.append(A ) if len(A ) > 0: lowercase__ = ready_process[0] for i in ready_process: if remaining_time[i] < remaining_time[target_process]: lowercase__ = i total_time += burst_time[target_process] completed += 1 lowercase__ = 0 lowercase__ = ( total_time - arrival_time[target_process] - burst_time[target_process] ) else: total_time += 1 return waiting_time def _SCREAMING_SNAKE_CASE (A , A , A ) -> list[int]: """simple docstring""" lowercase__ = [0] * no_of_processes for i in range(A ): lowercase__ = burst_time[i] + waiting_time[i] return turn_around_time if __name__ == "__main__": print('[TEST CASE 01]') lowerCamelCase : Union[str, Any] = 4 lowerCamelCase : Optional[Any] = [2, 5, 3, 7] lowerCamelCase : str = [0, 0, 0, 0] lowerCamelCase : Any = calculate_waitingtime(arrival_time, burst_time, no_of_processes) lowerCamelCase : Optional[int] = calculate_turnaroundtime( burst_time, no_of_processes, waiting_time ) # Printing the Result print('PID\tBurst Time\tArrival Time\tWaiting Time\tTurnaround Time') for i, process_id in enumerate(list(range(1, 5))): print( f"""{process_id}\t{burst_time[i]}\t\t\t{arrival_time[i]}\t\t\t\t""" f"""{waiting_time[i]}\t\t\t\t{turn_around_time[i]}""" ) print(f"""\nAverage waiting time = {mean(waiting_time):.5f}""") print(f"""Average turnaround time = {mean(turn_around_time):.5f}""")
2
'''simple docstring''' # Lint as: python3 import itertools import os import re lowerCamelCase : Any = re.compile(R'([A-Z]+)([A-Z][a-z])') lowerCamelCase : str = re.compile(R'([a-z\d])([A-Z])') lowerCamelCase : Optional[int] = re.compile(R'(?<!_)_(?!_)') lowerCamelCase : List[Any] = re.compile(R'(_{2,})') lowerCamelCase : str = R'^\w+(\.\w+)*$' lowerCamelCase : Dict = R'<>:/\|?*' def _SCREAMING_SNAKE_CASE (A ) -> Any: """simple docstring""" lowercase__ = _uppercase_uppercase_re.sub(R'''\1_\2''' , A ) lowercase__ = _lowercase_uppercase_re.sub(R'''\1_\2''' , A ) return name.lower() def _SCREAMING_SNAKE_CASE (A ) -> Tuple: """simple docstring""" lowercase__ = _single_underscore_re.split(A ) lowercase__ = [_multiple_underscores_re.split(A ) for n in name] return "".join(n.capitalize() for n in itertools.chain.from_iterable(A ) if n != '''''' ) def _SCREAMING_SNAKE_CASE (A ) -> Tuple: """simple docstring""" if os.path.basename(A ) != name: raise ValueError(f"Should be a dataset name, not a path: {name}" ) return camelcase_to_snakecase(A ) def _SCREAMING_SNAKE_CASE (A , A ) -> Optional[Any]: """simple docstring""" if os.path.basename(A ) != name: raise ValueError(f"Should be a dataset name, not a path: {name}" ) if not re.match(_split_re , A ): raise ValueError(f"Split name should match '{_split_re}'' but got '{split}'." ) return f"{filename_prefix_for_name(A )}-{split}" def _SCREAMING_SNAKE_CASE (A , A , A , A=None ) -> List[str]: """simple docstring""" lowercase__ = filename_prefix_for_split(A , A ) if filetype_suffix: prefix += f".{filetype_suffix}" lowercase__ = os.path.join(A , A ) return f"{filepath}*" def _SCREAMING_SNAKE_CASE (A , A , A , A=None , A=None ) -> Optional[Any]: """simple docstring""" lowercase__ = filename_prefix_for_split(A , A ) lowercase__ = os.path.join(A , A ) if shard_lengths: lowercase__ = len(A ) lowercase__ = [f"{prefix}-{shard_id:05d}-of-{num_shards:05d}" for shard_id in range(A )] if filetype_suffix: lowercase__ = [filename + f".{filetype_suffix}" for filename in filenames] return filenames else: lowercase__ = prefix if filetype_suffix: filename += f".{filetype_suffix}" return [filename]
2
1
"""simple docstring""" import unittest from parameterized import parameterized from transformers import AutoTokenizer, GPTNeoXConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( GPTNeoXForCausalLM, GPTNeoXForQuestionAnswering, GPTNeoXForSequenceClassification, GPTNeoXForTokenClassification, GPTNeoXModel, ) class _lowercase : """simple docstring""" def __init__( self : Dict , UpperCamelCase__ : str , UpperCamelCase__ : Dict=13 , UpperCamelCase__ : Tuple=7 , UpperCamelCase__ : Any=True , UpperCamelCase__ : Optional[Any]=True , UpperCamelCase__ : Tuple=True , UpperCamelCase__ : Optional[Any]=True , UpperCamelCase__ : Union[str, Any]=99 , UpperCamelCase__ : Dict=64 , UpperCamelCase__ : Optional[int]=5 , UpperCamelCase__ : Optional[int]=4 , UpperCamelCase__ : str=37 , UpperCamelCase__ : int="gelu" , UpperCamelCase__ : Optional[int]=0.1 , UpperCamelCase__ : int=0.1 , UpperCamelCase__ : Any=512 , UpperCamelCase__ : str=16 , UpperCamelCase__ : str=2 , UpperCamelCase__ : Optional[Any]=0.02 , UpperCamelCase__ : Optional[int]=3 , UpperCamelCase__ : Union[str, Any]=4 , UpperCamelCase__ : Optional[Any]=None , ) -> str: '''simple docstring''' __UpperCamelCase =parent __UpperCamelCase =batch_size __UpperCamelCase =seq_length __UpperCamelCase =is_training __UpperCamelCase =use_input_mask __UpperCamelCase =use_token_type_ids __UpperCamelCase =use_labels __UpperCamelCase =vocab_size __UpperCamelCase =hidden_size __UpperCamelCase =num_hidden_layers __UpperCamelCase =num_attention_heads __UpperCamelCase =intermediate_size __UpperCamelCase =hidden_act __UpperCamelCase =hidden_dropout_prob __UpperCamelCase =attention_probs_dropout_prob __UpperCamelCase =max_position_embeddings __UpperCamelCase =type_vocab_size __UpperCamelCase =type_sequence_label_size __UpperCamelCase =initializer_range __UpperCamelCase =num_labels __UpperCamelCase =num_choices __UpperCamelCase =scope __UpperCamelCase =vocab_size - 1 def UpperCAmelCase_ ( self : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' __UpperCamelCase =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __UpperCamelCase =None if self.use_input_mask: __UpperCamelCase =random_attention_mask([self.batch_size, self.seq_length] ) __UpperCamelCase =None if self.use_labels: __UpperCamelCase =ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __UpperCamelCase =self.get_config() return config, input_ids, input_mask, token_labels def UpperCAmelCase_ ( self : Dict ) -> List[Any]: '''simple docstring''' return GPTNeoXConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=UpperCamelCase__ , initializer_range=self.initializer_range , pad_token_id=self.pad_token_id , ) def UpperCAmelCase_ ( self : List[str] ) -> Optional[int]: '''simple docstring''' __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase =self.prepare_config_and_inputs() __UpperCamelCase =True return config, input_ids, input_mask, token_labels def UpperCAmelCase_ ( self : Union[str, Any] , UpperCamelCase__ : Dict , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : int ) -> Any: '''simple docstring''' __UpperCamelCase =GPTNeoXModel(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() __UpperCamelCase =model(UpperCamelCase__ , attention_mask=UpperCamelCase__ ) __UpperCamelCase =model(UpperCamelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCAmelCase_ ( self : Optional[int] , UpperCamelCase__ : Any , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : List[Any] ) -> str: '''simple docstring''' __UpperCamelCase =True __UpperCamelCase =GPTNeoXModel(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() __UpperCamelCase =model(UpperCamelCase__ , attention_mask=UpperCamelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCAmelCase_ ( self : List[Any] , UpperCamelCase__ : Tuple , UpperCamelCase__ : Dict , UpperCamelCase__ : str , UpperCamelCase__ : Dict ) -> List[Any]: '''simple docstring''' __UpperCamelCase =GPTNeoXForCausalLM(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() __UpperCamelCase =model(UpperCamelCase__ , attention_mask=UpperCamelCase__ , labels=UpperCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCAmelCase_ ( self : int , UpperCamelCase__ : str , UpperCamelCase__ : int , UpperCamelCase__ : List[str] , UpperCamelCase__ : Tuple ) -> Tuple: '''simple docstring''' __UpperCamelCase =self.num_labels __UpperCamelCase =GPTNeoXForQuestionAnswering(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() __UpperCamelCase =model(UpperCamelCase__ , attention_mask=UpperCamelCase__ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def UpperCAmelCase_ ( self : Optional[Any] , UpperCamelCase__ : Dict , UpperCamelCase__ : Any , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : int ) -> str: '''simple docstring''' __UpperCamelCase =self.num_labels __UpperCamelCase =GPTNeoXForSequenceClassification(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() __UpperCamelCase =ids_tensor([self.batch_size] , self.type_sequence_label_size ) __UpperCamelCase =model(UpperCamelCase__ , attention_mask=UpperCamelCase__ , labels=UpperCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCAmelCase_ ( self : Union[str, Any] , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Any , UpperCamelCase__ : Any , UpperCamelCase__ : Tuple ) -> Optional[int]: '''simple docstring''' __UpperCamelCase =self.num_labels __UpperCamelCase =GPTNeoXForTokenClassification(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() __UpperCamelCase =model(UpperCamelCase__ , attention_mask=UpperCamelCase__ , labels=UpperCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCAmelCase_ ( self : List[Any] , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : List[str] ) -> Dict: '''simple docstring''' __UpperCamelCase =True __UpperCamelCase =GPTNeoXForCausalLM(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() # first forward pass __UpperCamelCase =model(UpperCamelCase__ , attention_mask=UpperCamelCase__ , use_cache=UpperCamelCase__ ) __UpperCamelCase =outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids __UpperCamelCase =ids_tensor((self.batch_size, 3) , config.vocab_size ) __UpperCamelCase =ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and __UpperCamelCase =torch.cat([input_ids, next_tokens] , dim=-1 ) __UpperCamelCase =torch.cat([input_mask, next_mask] , dim=-1 ) __UpperCamelCase =model(UpperCamelCase__ , attention_mask=UpperCamelCase__ , output_hidden_states=UpperCamelCase__ ) __UpperCamelCase =output_from_no_past['''hidden_states'''][0] __UpperCamelCase =model( UpperCamelCase__ , attention_mask=UpperCamelCase__ , past_key_values=UpperCamelCase__ , output_hidden_states=UpperCamelCase__ , )['''hidden_states'''][0] # select random slice __UpperCamelCase =ids_tensor((1,) , output_from_past.shape[-1] ).item() __UpperCamelCase =output_from_no_past[:, -3:, random_slice_idx].detach() __UpperCamelCase =output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(UpperCamelCase__ , UpperCamelCase__ , atol=1E-3 ) ) def UpperCAmelCase_ ( self : Any ) -> Optional[Any]: '''simple docstring''' __UpperCamelCase =self.prepare_config_and_inputs() __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase =config_and_inputs __UpperCamelCase ={'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class _lowercase ( __a , __a , __a , unittest.TestCase ): """simple docstring""" lowercase__ = ( ( GPTNeoXModel, GPTNeoXForCausalLM, GPTNeoXForQuestionAnswering, GPTNeoXForSequenceClassification, GPTNeoXForTokenClassification, ) if is_torch_available() else () ) lowercase__ = (GPTNeoXForCausalLM,) if is_torch_available() else () lowercase__ = ( { '''feature-extraction''': GPTNeoXModel, '''question-answering''': GPTNeoXForQuestionAnswering, '''text-classification''': GPTNeoXForSequenceClassification, '''text-generation''': GPTNeoXForCausalLM, '''token-classification''': GPTNeoXForTokenClassification, '''zero-shot''': GPTNeoXForSequenceClassification, } if is_torch_available() else {} ) lowercase__ = False lowercase__ = False lowercase__ = False lowercase__ = False def UpperCAmelCase_ ( self : int ) -> Optional[int]: '''simple docstring''' __UpperCamelCase =GPTNeoXModelTester(self ) __UpperCamelCase =ConfigTester(self , config_class=UpperCamelCase__ , hidden_size=64 , num_attention_heads=8 ) def UpperCAmelCase_ ( self : Union[str, Any] ) -> List[Any]: '''simple docstring''' self.config_tester.run_common_tests() def UpperCAmelCase_ ( self : Dict ) -> List[Any]: '''simple docstring''' __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) def UpperCAmelCase_ ( self : int ) -> Union[str, Any]: '''simple docstring''' __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase =self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) def UpperCAmelCase_ ( self : Union[str, Any] ) -> List[str]: '''simple docstring''' __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase =self.model_tester.prepare_config_and_inputs_for_decoder() __UpperCamelCase =None self.model_tester.create_and_check_model_as_decoder(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) def UpperCAmelCase_ ( self : Any ) -> Optional[int]: '''simple docstring''' __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past_large_inputs(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) def UpperCAmelCase_ ( self : List[Any] ) -> Tuple: '''simple docstring''' __UpperCamelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_causal_lm(*UpperCamelCase__ ) def UpperCAmelCase_ ( self : List[str] ) -> Optional[Any]: '''simple docstring''' __UpperCamelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*UpperCamelCase__ ) def UpperCAmelCase_ ( self : Union[str, Any] ) -> Optional[int]: '''simple docstring''' __UpperCamelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*UpperCamelCase__ ) def UpperCAmelCase_ ( self : str ) -> Any: '''simple docstring''' __UpperCamelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*UpperCamelCase__ ) @unittest.skip(reason='''Feed forward chunking is not implemented''' ) def UpperCAmelCase_ ( self : Union[str, Any] ) -> Optional[int]: '''simple docstring''' pass @parameterized.expand([('''linear''',), ('''dynamic''',)] ) def UpperCAmelCase_ ( self : Union[str, Any] , UpperCamelCase__ : Optional[int] ) -> List[Any]: '''simple docstring''' __UpperCamelCase , __UpperCamelCase =self.model_tester.prepare_config_and_inputs_for_common() __UpperCamelCase =ids_tensor([1, 10] , config.vocab_size ) __UpperCamelCase =ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size ) set_seed(42 ) # Fixed seed at init time so the two models get the same random weights __UpperCamelCase =GPTNeoXModel(UpperCamelCase__ ) original_model.to(UpperCamelCase__ ) original_model.eval() __UpperCamelCase =original_model(UpperCamelCase__ ).last_hidden_state __UpperCamelCase =original_model(UpperCamelCase__ ).last_hidden_state set_seed(42 ) # Fixed seed at init time so the two models get the same random weights __UpperCamelCase ={'''type''': scaling_type, '''factor''': 10.0} __UpperCamelCase =GPTNeoXModel(UpperCamelCase__ ) scaled_model.to(UpperCamelCase__ ) scaled_model.eval() __UpperCamelCase =scaled_model(UpperCamelCase__ ).last_hidden_state __UpperCamelCase =scaled_model(UpperCamelCase__ ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(UpperCamelCase__ , UpperCamelCase__ , atol=1E-5 ) ) else: self.assertFalse(torch.allclose(UpperCamelCase__ , UpperCamelCase__ , atol=1E-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(UpperCamelCase__ , UpperCamelCase__ , atol=1E-5 ) ) @require_torch class _lowercase ( unittest.TestCase ): """simple docstring""" @slow def UpperCAmelCase_ ( self : Optional[Any] ) -> Optional[int]: '''simple docstring''' __UpperCamelCase =AutoTokenizer.from_pretrained('''EleutherAI/pythia-410m-deduped''' ) for checkpointing in [True, False]: __UpperCamelCase =GPTNeoXForCausalLM.from_pretrained('''EleutherAI/pythia-410m-deduped''' ) if checkpointing: model.gradient_checkpointing_enable() else: model.gradient_checkpointing_disable() model.to(UpperCamelCase__ ) __UpperCamelCase =tokenizer('''My favorite food is''' , return_tensors='''pt''' ).to(UpperCamelCase__ ) # The hub repo. is updated on 2023-04-04, resulting in poor outputs. # See: https://github.com/huggingface/transformers/pull/24193 __UpperCamelCase ='''My favorite food is a good old-fashioned, old-fashioned, old-fashioned.\n\nI\'m not sure''' __UpperCamelCase =model.generate(**UpperCamelCase__ , do_sample=UpperCamelCase__ , max_new_tokens=20 ) __UpperCamelCase =tokenizer.batch_decode(UpperCamelCase__ )[0] self.assertEqual(UpperCamelCase__ , UpperCamelCase__ )
353
"""simple docstring""" from __future__ import annotations from collections.abc import Iterator from typing import Any class _lowercase : """simple docstring""" def __init__( self : int , UpperCamelCase__ : Any ) -> Optional[Any]: '''simple docstring''' __UpperCamelCase =data __UpperCamelCase =None class _lowercase : """simple docstring""" def __init__( self : Union[str, Any] ) -> List[Any]: '''simple docstring''' __UpperCamelCase =None __UpperCamelCase =None def __iter__( self : int ) -> Iterator[Any]: '''simple docstring''' __UpperCamelCase =self.head while self.head: yield node.data __UpperCamelCase =node.next if node == self.head: break def __len__( self : Union[str, Any] ) -> int: '''simple docstring''' return sum(1 for _ in self ) def __repr__( self : str ) -> Union[str, Any]: '''simple docstring''' return "->".join(str(UpperCamelCase__ ) for item in iter(self ) ) def UpperCAmelCase_ ( self : List[str] , UpperCamelCase__ : Any ) -> None: '''simple docstring''' self.insert_nth(len(self ) , UpperCamelCase__ ) def UpperCAmelCase_ ( self : Optional[int] , UpperCamelCase__ : Any ) -> None: '''simple docstring''' self.insert_nth(0 , UpperCamelCase__ ) def UpperCAmelCase_ ( self : List[str] , UpperCamelCase__ : int , UpperCamelCase__ : Any ) -> None: '''simple docstring''' if index < 0 or index > len(self ): raise IndexError('''list index out of range.''' ) __UpperCamelCase =Node(UpperCamelCase__ ) if self.head is None: __UpperCamelCase =new_node # first node points itself __UpperCamelCase =__UpperCamelCase =new_node elif index == 0: # insert at head __UpperCamelCase =self.head __UpperCamelCase =__UpperCamelCase =new_node else: __UpperCamelCase =self.head for _ in range(index - 1 ): __UpperCamelCase =temp.next __UpperCamelCase =temp.next __UpperCamelCase =new_node if index == len(self ) - 1: # insert at tail __UpperCamelCase =new_node def UpperCAmelCase_ ( self : Any ) -> Any: '''simple docstring''' return self.delete_nth(0 ) def UpperCAmelCase_ ( self : Optional[int] ) -> Any: '''simple docstring''' return self.delete_nth(len(self ) - 1 ) def UpperCAmelCase_ ( self : int , UpperCamelCase__ : int = 0 ) -> Any: '''simple docstring''' if not 0 <= index < len(self ): raise IndexError('''list index out of range.''' ) __UpperCamelCase =self.head if self.head == self.tail: # just one node __UpperCamelCase =__UpperCamelCase =None elif index == 0: # delete head node __UpperCamelCase =self.tail.next.next __UpperCamelCase =self.head.next else: __UpperCamelCase =self.head for _ in range(index - 1 ): __UpperCamelCase =temp.next __UpperCamelCase =temp.next __UpperCamelCase =temp.next.next if index == len(self ) - 1: # delete at tail __UpperCamelCase =temp return delete_node.data def UpperCAmelCase_ ( self : str ) -> bool: '''simple docstring''' return len(self ) == 0 def lowerCAmelCase (): """simple docstring""" __UpperCamelCase =CircularLinkedList() assert len(__UpperCamelCase ) == 0 assert circular_linked_list.is_empty() is True assert str(__UpperCamelCase ) == "" try: circular_linked_list.delete_front() raise AssertionError # This should not happen except IndexError: assert True # This should happen try: circular_linked_list.delete_tail() raise AssertionError # This should not happen except IndexError: assert True # This should happen try: circular_linked_list.delete_nth(-1 ) raise AssertionError except IndexError: assert True try: circular_linked_list.delete_nth(0 ) raise AssertionError except IndexError: assert True assert circular_linked_list.is_empty() is True for i in range(5 ): assert len(__UpperCamelCase ) == i circular_linked_list.insert_nth(__UpperCamelCase , i + 1 ) assert str(__UpperCamelCase ) == "->".join(str(__UpperCamelCase ) for i in range(1 , 6 ) ) circular_linked_list.insert_tail(6 ) assert str(__UpperCamelCase ) == "->".join(str(__UpperCamelCase ) for i in range(1 , 7 ) ) circular_linked_list.insert_head(0 ) assert str(__UpperCamelCase ) == "->".join(str(__UpperCamelCase ) for i in range(0 , 7 ) ) assert circular_linked_list.delete_front() == 0 assert circular_linked_list.delete_tail() == 6 assert str(__UpperCamelCase ) == "->".join(str(__UpperCamelCase ) for i in range(1 , 6 ) ) assert circular_linked_list.delete_nth(2 ) == 3 circular_linked_list.insert_nth(2 , 3 ) assert str(__UpperCamelCase ) == "->".join(str(__UpperCamelCase ) for i in range(1 , 6 ) ) assert circular_linked_list.is_empty() is False if __name__ == "__main__": import doctest doctest.testmod()
85
0
'''simple docstring''' import copy from typing import Any, Dict, List, Optional, Union import numpy as np from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import TensorType, logging SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) class a_ ( lowerCamelCase ): lowercase = ["""input_features"""] def __init__( self , _SCREAMING_SNAKE_CASE=80 , _SCREAMING_SNAKE_CASE=16000 , _SCREAMING_SNAKE_CASE=160 , _SCREAMING_SNAKE_CASE=30 , _SCREAMING_SNAKE_CASE=400 , _SCREAMING_SNAKE_CASE=0.0 , _SCREAMING_SNAKE_CASE=False , **_SCREAMING_SNAKE_CASE , ) -> Dict: """simple docstring""" super().__init__( feature_size=_SCREAMING_SNAKE_CASE , sampling_rate=_SCREAMING_SNAKE_CASE , padding_value=_SCREAMING_SNAKE_CASE , return_attention_mask=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , ) UpperCamelCase = n_fft UpperCamelCase = hop_length UpperCamelCase = chunk_length UpperCamelCase = chunk_length * sampling_rate UpperCamelCase = self.n_samples // hop_length UpperCamelCase = sampling_rate UpperCamelCase = mel_filter_bank( num_frequency_bins=1 + n_fft // 2 , num_mel_filters=_SCREAMING_SNAKE_CASE , min_frequency=0.0 , max_frequency=8_0_0_0.0 , sampling_rate=_SCREAMING_SNAKE_CASE , norm="""slaney""" , mel_scale="""slaney""" , ) def A__ ( self , _SCREAMING_SNAKE_CASE ) -> np.ndarray: """simple docstring""" UpperCamelCase = spectrogram( _SCREAMING_SNAKE_CASE , window_function(self.n_fft , """hann""" ) , frame_length=self.n_fft , hop_length=self.hop_length , power=2.0 , mel_filters=self.mel_filters , log_mel="""log10""" , ) UpperCamelCase = log_spec[:, :-1] UpperCamelCase = np.maximum(_SCREAMING_SNAKE_CASE , log_spec.max() - 8.0 ) UpperCamelCase = (log_spec + 4.0) / 4.0 return log_spec @staticmethod # Copied from transformers.models.wav2vec2.feature_extraction_wav2vec2.Wav2Vec2FeatureExtractor.zero_mean_unit_var_norm def A__ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = 0.0 ) -> List[np.ndarray]: """simple docstring""" if attention_mask is not None: UpperCamelCase = np.array(_SCREAMING_SNAKE_CASE , np.intaa ) UpperCamelCase = [] for vector, length in zip(_SCREAMING_SNAKE_CASE , attention_mask.sum(-1 ) ): UpperCamelCase = (vector - vector[:length].mean()) / np.sqrt(vector[:length].var() + 1e-7 ) if length < normed_slice.shape[0]: UpperCamelCase = padding_value normed_input_values.append(_SCREAMING_SNAKE_CASE ) else: UpperCamelCase = [(x - x.mean()) / np.sqrt(x.var() + 1e-7 ) for x in input_values] return normed_input_values def __call__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = True , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = "max_length" , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , **_SCREAMING_SNAKE_CASE , ) -> BatchFeature: """simple docstring""" if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( F"The model corresponding to this feature extractor: {self.__class__.__name__} was trained using a" F" sampling rate of {self.sampling_rate}. Please make sure that the provided `raw_speech` input" F" was sampled with {self.sampling_rate} and not {sampling_rate}." ) else: logger.warning( """It is strongly recommended to pass the `sampling_rate` argument to this function. """ """Failing to do so can result in silent errors that might be hard to debug.""" ) UpperCamelCase = isinstance(_SCREAMING_SNAKE_CASE , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(F"Only mono-channel audio is supported for input to {self}" ) UpperCamelCase = is_batched_numpy or ( isinstance(_SCREAMING_SNAKE_CASE , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: UpperCamelCase = [np.asarray([speech] , dtype=np.floataa ).T for speech in raw_speech] elif not is_batched and not isinstance(_SCREAMING_SNAKE_CASE , np.ndarray ): UpperCamelCase = np.asarray(_SCREAMING_SNAKE_CASE , dtype=np.floataa ) elif isinstance(_SCREAMING_SNAKE_CASE , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): UpperCamelCase = raw_speech.astype(np.floataa ) # always return batch if not is_batched: UpperCamelCase = [np.asarray([raw_speech] ).T] UpperCamelCase = BatchFeature({"""input_features""": raw_speech} ) # convert into correct format for padding UpperCamelCase = self.pad( _SCREAMING_SNAKE_CASE , padding=_SCREAMING_SNAKE_CASE , max_length=max_length if max_length else self.n_samples , truncation=_SCREAMING_SNAKE_CASE , pad_to_multiple_of=_SCREAMING_SNAKE_CASE , return_attention_mask=return_attention_mask or do_normalize , ) # zero-mean and unit-variance normalization if do_normalize: UpperCamelCase = self.zero_mean_unit_var_norm( padded_inputs["""input_features"""] , attention_mask=padded_inputs["""attention_mask"""] , padding_value=self.padding_value , ) UpperCamelCase = np.stack(padded_inputs["""input_features"""] , axis=0 ) # make sure list is in array format UpperCamelCase = padded_inputs.get("""input_features""" ).transpose(2 , 0 , 1 ) UpperCamelCase = [self._np_extract_fbank_features(_SCREAMING_SNAKE_CASE ) for waveform in input_features[0]] if isinstance(input_features[0] , _SCREAMING_SNAKE_CASE ): UpperCamelCase = [np.asarray(_SCREAMING_SNAKE_CASE , dtype=np.floataa ) for feature in input_features] else: UpperCamelCase = input_features if return_attention_mask: # rescale from sample (48000) to feature (3000) UpperCamelCase = padded_inputs["""attention_mask"""][:, :: self.hop_length] if return_tensors is not None: UpperCamelCase = padded_inputs.convert_to_tensors(_SCREAMING_SNAKE_CASE ) return padded_inputs def A__ ( self ) -> Dict[str, Any]: """simple docstring""" UpperCamelCase = copy.deepcopy(self.__dict__ ) UpperCamelCase = self.__class__.__name__ if "mel_filters" in output: del output["mel_filters"] return output
321
'''simple docstring''' import logging import os import sys from dataclasses import dataclass, field from typing import Optional import torch from datasets import load_dataset from torchvision.transforms import Compose, Lambda, Normalize, RandomHorizontalFlip, RandomResizedCrop, ToTensor from torchvision.transforms.functional import InterpolationMode import transformers from transformers import ( HfArgumentParser, Trainer, TrainingArguments, ViTImageProcessor, ViTMAEConfig, ViTMAEForPreTraining, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version SCREAMING_SNAKE_CASE__ = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('4.31.0') require_version('datasets>=1.8.0', 'To fix: pip install -r examples/pytorch/image-pretraining/requirements.txt') @dataclass class a_ : lowercase = field( default="""cifar10""" , metadata={"""help""": """Name of a dataset from the datasets package"""} ) lowercase = field( default=lowerCamelCase , metadata={"""help""": """The configuration name of the dataset to use (via the datasets library)."""} ) lowercase = field( default=lowerCamelCase , metadata={"""help""": """The column name of the images in the files."""} ) lowercase = field(default=lowerCamelCase , metadata={"""help""": """A folder containing the training data."""} ) lowercase = field(default=lowerCamelCase , metadata={"""help""": """A folder containing the validation data."""} ) lowercase = field( default=0.15 , metadata={"""help""": """Percent to split off of train for validation."""} ) lowercase = field( default=lowerCamelCase , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of training examples to this """ """value if set.""" ) } , ) lowercase = field( default=lowerCamelCase , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of evaluation examples to this """ """value if set.""" ) } , ) def A__ ( self ) -> Tuple: """simple docstring""" UpperCamelCase = {} if self.train_dir is not None: UpperCamelCase = self.train_dir if self.validation_dir is not None: UpperCamelCase = self.validation_dir UpperCamelCase = data_files if data_files else None @dataclass class a_ : lowercase = field( default=lowerCamelCase , metadata={ """help""": ( """The model checkpoint for weights initialization.Don't set if you want to train a model from scratch.""" ) } , ) lowercase = field( default=lowerCamelCase , metadata={"""help""": """Pretrained config name or path if not the same as model_name_or_path"""} ) lowercase = field( default=lowerCamelCase , metadata={ """help""": ( """Override some existing default config settings when a model is trained from scratch. Example: """ """n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index""" ) } , ) lowercase = field( default=lowerCamelCase , metadata={"""help""": """Where do you want to store the pretrained models downloaded from s3"""} ) lowercase = field( default="""main""" , metadata={"""help""": """The specific model version to use (can be a branch name, tag name or commit id)."""} , ) lowercase = field(default=lowerCamelCase , metadata={"""help""": """Name or path of preprocessor config."""} ) lowercase = field( default=lowerCamelCase , metadata={ """help""": ( """Will use the token generated when running `huggingface-cli login` (necessary to use this script """ """with private models).""" ) } , ) lowercase = field( default=0.75 , metadata={"""help""": """The ratio of the number of masked tokens in the input sequence."""} ) lowercase = field( default=lowerCamelCase , metadata={"""help""": """Whether or not to train with normalized pixel values as target."""} ) @dataclass class a_ ( lowerCamelCase ): lowercase = field( default=1E-3 , metadata={"""help""": """Base learning rate: absolute_lr = base_lr * total_batch_size / 256."""} ) def lowercase__ ( __UpperCamelCase )-> int: UpperCamelCase = torch.stack([example["""pixel_values"""] for example in examples] ) return {"pixel_values": pixel_values} def lowercase__ ( )-> List[Any]: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. UpperCamelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, CustomTrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(""".json""" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. UpperCamelCase ,UpperCamelCase ,UpperCamelCase = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: UpperCamelCase ,UpperCamelCase ,UpperCamelCase = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry("""run_mae""" , __UpperCamelCase , __UpperCamelCase ) # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() UpperCamelCase = training_args.get_process_log_level() logger.setLevel(__UpperCamelCase ) transformers.utils.logging.set_verbosity(__UpperCamelCase ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}" + F"distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}" ) logger.info(F"Training/evaluation parameters {training_args}" ) # Detecting last checkpoint. UpperCamelCase = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: UpperCamelCase = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F"Output directory ({training_args.output_dir}) already exists and is not empty. " """Use --overwrite_output_dir to overcome.""" ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change " """the `--output_dir` or add `--overwrite_output_dir` to train from scratch.""" ) # Initialize our dataset. UpperCamelCase = load_dataset( data_args.dataset_name , data_args.dataset_config_name , data_files=data_args.data_files , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) # If we don't have a validation split, split off a percentage of train as validation. UpperCamelCase = None if """validation""" in ds.keys() else data_args.train_val_split if isinstance(data_args.train_val_split , __UpperCamelCase ) and data_args.train_val_split > 0.0: UpperCamelCase = ds["""train"""].train_test_split(data_args.train_val_split ) UpperCamelCase = split["""train"""] UpperCamelCase = split["""test"""] # Load pretrained model and image processor # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. UpperCamelCase = { """cache_dir""": model_args.cache_dir, """revision""": model_args.model_revision, """use_auth_token""": True if model_args.use_auth_token else None, } if model_args.config_name: UpperCamelCase = ViTMAEConfig.from_pretrained(model_args.config_name , **__UpperCamelCase ) elif model_args.model_name_or_path: UpperCamelCase = ViTMAEConfig.from_pretrained(model_args.model_name_or_path , **__UpperCamelCase ) else: UpperCamelCase = ViTMAEConfig() logger.warning("""You are instantiating a new config instance from scratch.""" ) if model_args.config_overrides is not None: logger.info(F"Overriding config: {model_args.config_overrides}" ) config.update_from_string(model_args.config_overrides ) logger.info(F"New config: {config}" ) # adapt config config.update( { """mask_ratio""": model_args.mask_ratio, """norm_pix_loss""": model_args.norm_pix_loss, } ) # create image processor if model_args.image_processor_name: UpperCamelCase = ViTImageProcessor.from_pretrained(model_args.image_processor_name , **__UpperCamelCase ) elif model_args.model_name_or_path: UpperCamelCase = ViTImageProcessor.from_pretrained(model_args.model_name_or_path , **__UpperCamelCase ) else: UpperCamelCase = ViTImageProcessor() # create model if model_args.model_name_or_path: UpperCamelCase = ViTMAEForPreTraining.from_pretrained( model_args.model_name_or_path , from_tf=bool(""".ckpt""" in model_args.model_name_or_path ) , config=__UpperCamelCase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) else: logger.info("""Training new model from scratch""" ) UpperCamelCase = ViTMAEForPreTraining(__UpperCamelCase ) if training_args.do_train: UpperCamelCase = ds["""train"""].column_names else: UpperCamelCase = ds["""validation"""].column_names if data_args.image_column_name is not None: UpperCamelCase = data_args.image_column_name elif "image" in column_names: UpperCamelCase = """image""" elif "img" in column_names: UpperCamelCase = """img""" else: UpperCamelCase = column_names[0] # transformations as done in original MAE paper # source: https://github.com/facebookresearch/mae/blob/main/main_pretrain.py if "shortest_edge" in image_processor.size: UpperCamelCase = image_processor.size["""shortest_edge"""] else: UpperCamelCase = (image_processor.size["""height"""], image_processor.size["""width"""]) UpperCamelCase = Compose( [ Lambda(lambda __UpperCamelCase : img.convert("""RGB""" ) if img.mode != "RGB" else img ), RandomResizedCrop(__UpperCamelCase , scale=(0.2, 1.0) , interpolation=InterpolationMode.BICUBIC ), RandomHorizontalFlip(), ToTensor(), Normalize(mean=image_processor.image_mean , std=image_processor.image_std ), ] ) def preprocess_images(__UpperCamelCase ): UpperCamelCase = [transforms(__UpperCamelCase ) for image in examples[image_column_name]] return examples if training_args.do_train: if "train" not in ds: raise ValueError("""--do_train requires a train dataset""" ) if data_args.max_train_samples is not None: UpperCamelCase = ds["""train"""].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) # Set the training transforms ds["train"].set_transform(__UpperCamelCase ) if training_args.do_eval: if "validation" not in ds: raise ValueError("""--do_eval requires a validation dataset""" ) if data_args.max_eval_samples is not None: UpperCamelCase = ( ds["""validation"""].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms ds["validation"].set_transform(__UpperCamelCase ) # Compute absolute learning rate UpperCamelCase = ( training_args.train_batch_size * training_args.gradient_accumulation_steps * training_args.world_size ) if training_args.base_learning_rate is not None: UpperCamelCase = training_args.base_learning_rate * total_train_batch_size / 256 # Initialize our trainer UpperCamelCase = Trainer( model=__UpperCamelCase , args=__UpperCamelCase , train_dataset=ds["""train"""] if training_args.do_train else None , eval_dataset=ds["""validation"""] if training_args.do_eval else None , tokenizer=__UpperCamelCase , data_collator=__UpperCamelCase , ) # Training if training_args.do_train: UpperCamelCase = None if training_args.resume_from_checkpoint is not None: UpperCamelCase = training_args.resume_from_checkpoint elif last_checkpoint is not None: UpperCamelCase = last_checkpoint UpperCamelCase = trainer.train(resume_from_checkpoint=__UpperCamelCase ) trainer.save_model() trainer.log_metrics("""train""" , train_result.metrics ) trainer.save_metrics("""train""" , train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: UpperCamelCase = trainer.evaluate() trainer.log_metrics("""eval""" , __UpperCamelCase ) trainer.save_metrics("""eval""" , __UpperCamelCase ) # Write model card and (optionally) push to hub UpperCamelCase = { """tasks""": """masked-auto-encoding""", """dataset""": data_args.dataset_name, """tags""": ["""masked-auto-encoding"""], } if training_args.push_to_hub: trainer.push_to_hub(**__UpperCamelCase ) else: trainer.create_model_card(**__UpperCamelCase ) def lowercase__ ( __UpperCamelCase )-> List[str]: # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
321
1
"""simple docstring""" import argparse import json import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils.deepspeed import DummyOptim, DummyScheduler __lowercase = 16 __lowercase = 32 def lowerCAmelCase (__UpperCamelCase : Accelerator , __UpperCamelCase : int = 1_6 , __UpperCamelCase : str = "bert-base-cased" ): """simple docstring""" __UpperCamelCase =AutoTokenizer.from_pretrained(UpperCAmelCase__ ) __UpperCamelCase =load_dataset('''glue''' , '''mrpc''' ) def tokenize_function(__UpperCamelCase : Tuple ): # max_length=None => use the model max length (it's actually the default) __UpperCamelCase =tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=UpperCAmelCase__ , max_length=UpperCAmelCase__ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset __UpperCamelCase =datasets.map( UpperCAmelCase__ , batched=UpperCAmelCase__ , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , load_from_cache_file=UpperCAmelCase__ ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library __UpperCamelCase =tokenized_datasets.rename_column('''label''' , '''labels''' ) def collate_fn(__UpperCamelCase : Tuple ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(UpperCAmelCase__ , padding='''max_length''' , max_length=1_2_8 , return_tensors='''pt''' ) return tokenizer.pad(UpperCAmelCase__ , padding='''longest''' , return_tensors='''pt''' ) # Instantiate dataloaders. __UpperCamelCase =DataLoader( tokenized_datasets['''train'''] , shuffle=UpperCAmelCase__ , collate_fn=UpperCAmelCase__ , batch_size=UpperCAmelCase__ ) __UpperCamelCase =DataLoader( tokenized_datasets['''validation'''] , shuffle=UpperCAmelCase__ , collate_fn=UpperCAmelCase__ , batch_size=UpperCAmelCase__ ) return train_dataloader, eval_dataloader def lowerCAmelCase (__UpperCamelCase : List[Any] , __UpperCamelCase : List[str] ): """simple docstring""" __UpperCamelCase =Accelerator() # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs __UpperCamelCase =config["""lr"""] __UpperCamelCase =int(config['''num_epochs'''] ) __UpperCamelCase =int(config['''seed'''] ) __UpperCamelCase =int(config['''batch_size'''] ) __UpperCamelCase =args.model_name_or_path set_seed(UpperCAmelCase__ ) __UpperCamelCase =get_dataloaders(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) __UpperCamelCase =AutoModelForSequenceClassification.from_pretrained(UpperCAmelCase__ , return_dict=UpperCAmelCase__ ) # Instantiate optimizer __UpperCamelCase =( AdamW if accelerator.state.deepspeed_plugin is None or """optimizer""" not in accelerator.state.deepspeed_plugin.deepspeed_config else DummyOptim ) __UpperCamelCase =optimizer_cls(params=model.parameters() , lr=UpperCAmelCase__ ) if accelerator.state.deepspeed_plugin is not None: __UpperCamelCase =accelerator.state.deepspeed_plugin.deepspeed_config[ """gradient_accumulation_steps""" ] else: __UpperCamelCase =1 __UpperCamelCase =(len(UpperCAmelCase__ ) * num_epochs) // gradient_accumulation_steps # Instantiate scheduler if ( accelerator.state.deepspeed_plugin is None or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config ): __UpperCamelCase =get_linear_schedule_with_warmup( optimizer=UpperCAmelCase__ , num_warmup_steps=0 , num_training_steps=UpperCAmelCase__ , ) else: __UpperCamelCase =DummyScheduler(UpperCAmelCase__ , total_num_steps=UpperCAmelCase__ , warmup_num_steps=0 ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. __UpperCamelCase =accelerator.prepare( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) # We need to keep track of how many total steps we have iterated over __UpperCamelCase =0 # We also need to keep track of the stating epoch so files are named properly __UpperCamelCase =0 # Now we train the model __UpperCamelCase =evaluate.load('''glue''' , '''mrpc''' ) __UpperCamelCase =0 __UpperCamelCase ={} for epoch in range(UpperCAmelCase__ , UpperCAmelCase__ ): model.train() for step, batch in enumerate(UpperCAmelCase__ ): __UpperCamelCase =model(**UpperCAmelCase__ ) __UpperCamelCase =outputs.loss __UpperCamelCase =loss / gradient_accumulation_steps accelerator.backward(UpperCAmelCase__ ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 model.eval() __UpperCamelCase =0 for step, batch in enumerate(UpperCAmelCase__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): __UpperCamelCase =model(**UpperCAmelCase__ ) __UpperCamelCase =outputs.logits.argmax(dim=-1 ) # It is slightly faster to call this once, than multiple times __UpperCamelCase =accelerator.gather( (predictions, batch['''labels''']) ) # If we are in a multiprocess environment, the last batch has duplicates if accelerator.use_distributed: if step == len(UpperCAmelCase__ ) - 1: __UpperCamelCase =predictions[: len(eval_dataloader.dataset ) - samples_seen] __UpperCamelCase =references[: len(eval_dataloader.dataset ) - samples_seen] else: samples_seen += references.shape[0] metric.add_batch( predictions=UpperCAmelCase__ , references=UpperCAmelCase__ , ) __UpperCamelCase =metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F"""epoch {epoch}:""" , UpperCAmelCase__ ) __UpperCamelCase =eval_metric["""accuracy"""] if best_performance < eval_metric["accuracy"]: __UpperCamelCase =eval_metric["""accuracy"""] if args.performance_lower_bound is not None: assert ( args.performance_lower_bound <= best_performance ), F"""Best performance metric {best_performance} is lower than the lower bound {args.performance_lower_bound}""" accelerator.wait_for_everyone() if accelerator.is_main_process: with open(os.path.join(args.output_dir , '''all_results.json''' ) , '''w''' ) as f: json.dump(UpperCAmelCase__ , UpperCAmelCase__ ) def lowerCAmelCase (): """simple docstring""" __UpperCamelCase =argparse.ArgumentParser(description='''Simple example of training script tracking peak GPU memory usage.''' ) parser.add_argument( '''--model_name_or_path''' , type=UpperCAmelCase__ , default='''bert-base-cased''' , help='''Path to pretrained model or model identifier from huggingface.co/models.''' , required=UpperCAmelCase__ , ) parser.add_argument( '''--output_dir''' , type=UpperCAmelCase__ , default='''.''' , help='''Optional save directory where all checkpoint folders will be stored. Default is the current working directory.''' , ) parser.add_argument( '''--performance_lower_bound''' , type=UpperCAmelCase__ , default=UpperCAmelCase__ , help='''Optional lower bound for the performance metric. If set, the training will throw error when the performance metric drops below this value.''' , ) parser.add_argument( '''--num_epochs''' , type=UpperCAmelCase__ , default=3 , help='''Number of train epochs.''' , ) __UpperCamelCase =parser.parse_args() __UpperCamelCase ={"""lr""": 2E-5, """num_epochs""": args.num_epochs, """seed""": 4_2, """batch_size""": 1_6} training_function(UpperCAmelCase__ , UpperCAmelCase__ ) if __name__ == "__main__": main()
371
"""simple docstring""" from typing import TYPE_CHECKING from ...file_utils import _LazyModule, is_tokenizers_available, is_torch_available from ...utils import OptionalDependencyNotAvailable __lowercase = {'''configuration_gpt_neox''': ['''GPT_NEOX_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''GPTNeoXConfig''']} try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase = ['''GPTNeoXTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase = [ '''GPT_NEOX_PRETRAINED_MODEL_ARCHIVE_LIST''', '''GPTNeoXForCausalLM''', '''GPTNeoXForQuestionAnswering''', '''GPTNeoXForSequenceClassification''', '''GPTNeoXForTokenClassification''', '''GPTNeoXLayer''', '''GPTNeoXModel''', '''GPTNeoXPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_gpt_neox import GPT_NEOX_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTNeoXConfig try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_gpt_neox_fast import GPTNeoXTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_neox import ( GPT_NEOX_PRETRAINED_MODEL_ARCHIVE_LIST, GPTNeoXForCausalLM, GPTNeoXForQuestionAnswering, GPTNeoXForSequenceClassification, GPTNeoXForTokenClassification, GPTNeoXLayer, GPTNeoXModel, GPTNeoXPreTrainedModel, ) else: import sys __lowercase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
85
0
'''simple docstring''' from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast from ...utils import logging _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE = { '''EleutherAI/gpt-neo-1.3B''': '''https://huggingface.co/EleutherAI/gpt-neo-1.3B/resolve/main/config.json''', # See all GPTNeo models at https://huggingface.co/models?filter=gpt_neo } class lowerCAmelCase_ ( lowercase__ ): __lowerCamelCase : Tuple = """gpt_neo""" __lowerCamelCase : Optional[Any] = ["""past_key_values"""] __lowerCamelCase : str = {"""num_attention_heads""": """num_heads""", """num_hidden_layers""": """num_layers"""} def __init__( self , _lowerCAmelCase=50257 , _lowerCAmelCase=2048 , _lowerCAmelCase=2048 , _lowerCAmelCase=24 , _lowerCAmelCase=[[["global", "local"], 12]] , _lowerCAmelCase=16 , _lowerCAmelCase=None , _lowerCAmelCase=256 , _lowerCAmelCase="gelu_new" , _lowerCAmelCase=0.0 , _lowerCAmelCase=0.0 , _lowerCAmelCase=0.0 , _lowerCAmelCase=0.1 , _lowerCAmelCase=1E-5 , _lowerCAmelCase=0.02 , _lowerCAmelCase=True , _lowerCAmelCase=50256 , _lowerCAmelCase=50256 , **_lowerCAmelCase , ) -> Any: _lowerCAmelCase = vocab_size _lowerCAmelCase = max_position_embeddings _lowerCAmelCase = hidden_size _lowerCAmelCase = num_layers _lowerCAmelCase = num_heads _lowerCAmelCase = intermediate_size _lowerCAmelCase = window_size _lowerCAmelCase = activation_function _lowerCAmelCase = resid_dropout _lowerCAmelCase = embed_dropout _lowerCAmelCase = attention_dropout _lowerCAmelCase = classifier_dropout _lowerCAmelCase = layer_norm_epsilon _lowerCAmelCase = initializer_range _lowerCAmelCase = use_cache _lowerCAmelCase = bos_token_id _lowerCAmelCase = eos_token_id _lowerCAmelCase = attention_types _lowerCAmelCase = self.expand_attention_types_params(_A ) if len(self.attention_layers ) != self.num_layers: raise ValueError( "Configuration for convolutional module is incorrect. " "It is required that `len(config.attention_layers)` == `config.num_layers` " f'''but is `len(config.attention_layers) = {len(self.attention_layers )}`, ''' f'''`config.num_layers = {self.num_layers}`. ''' "`config.attention_layers` is prepared using `config.attention_types`. " "Please verify the value of `config.attention_types` argument." ) super().__init__(bos_token_id=_A , eos_token_id=_A , **_A ) @staticmethod def _snake_case ( _lowerCAmelCase ) -> List[Any]: _lowerCAmelCase = [] for item in attention_types: for _ in range(item[1] ): attentions.extend(item[0] ) return attentions def __a(SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : List[Any] ): '''simple docstring''' import torch _lowerCAmelCase = input.size() _lowerCAmelCase = len(SCREAMING_SNAKE_CASE_ ) _lowerCAmelCase = shape[dimension] _lowerCAmelCase = torch.arange(0 , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) _lowerCAmelCase = torch.div(sizedim - size , SCREAMING_SNAKE_CASE_ , rounding_mode="floor" ) + 1 _lowerCAmelCase = torch.arange(SCREAMING_SNAKE_CASE_ ) + low_indices[:min_length][:, None] _lowerCAmelCase = [slice(SCREAMING_SNAKE_CASE_ )] * rank _lowerCAmelCase = indices _lowerCAmelCase = input[s] _lowerCAmelCase = list(range(0 , rank + 1 ) ) perm.append(perm.pop(dimension + 1 ) ) return sliced.permute(SCREAMING_SNAKE_CASE_ ) def __a(SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : Dict ): '''simple docstring''' import torch _lowerCAmelCase = torch.arange(1 , SCREAMING_SNAKE_CASE_ ) _lowerCAmelCase = torch.remainder(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) _lowerCAmelCase = remainders == 0 _lowerCAmelCase = candidates[divisor_indices] _lowerCAmelCase = torch.max(SCREAMING_SNAKE_CASE_ ) return largest_divisor, torch.div(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , rounding_mode="floor" ) class lowerCAmelCase_ ( lowercase__ ): @property def _snake_case ( self ) -> Mapping[str, Mapping[int, str]]: _lowerCAmelCase = OrderedDict({"input_ids": {0: "batch", 1: "sequence"}} ) if self.use_past: self.fill_with_past_key_values_(_A , direction="inputs" ) _lowerCAmelCase = {0: 'batch', 1: 'past_sequence + sequence'} else: _lowerCAmelCase = {0: 'batch', 1: 'sequence'} return common_inputs @property def _snake_case ( self ) -> int: return self._config.num_heads def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase = -1 , _lowerCAmelCase = -1 , _lowerCAmelCase = False , _lowerCAmelCase = None , ) -> Mapping[str, Any]: _lowerCAmelCase = super(_A , self ).generate_dummy_inputs( _A , batch_size=_A , seq_length=_A , is_pair=_A , framework=_A ) # We need to order the input in the way they appears in the forward() _lowerCAmelCase = OrderedDict({"input_ids": common_inputs["input_ids"]} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed." ) else: import torch _lowerCAmelCase = common_inputs['input_ids'].shape # Not using the same length for past_key_values _lowerCAmelCase = seqlen + 2 _lowerCAmelCase = ( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) _lowerCAmelCase = [ (torch.zeros(_A ), torch.zeros(_A )) for _ in range(self.num_layers ) ] _lowerCAmelCase = common_inputs['attention_mask'] if self.use_past: _lowerCAmelCase = ordered_inputs['attention_mask'].dtype _lowerCAmelCase = torch.cat( [ordered_inputs["attention_mask"], torch.ones(_A , _A , dtype=_A )] , dim=1 ) return ordered_inputs @property def _snake_case ( self ) -> int: return 13
158
'''simple docstring''' import logging from pathlib import Path import numpy as np import pytorch_lightning as pl import torch from pytorch_lightning.callbacks import EarlyStopping, ModelCheckpoint from pytorch_lightning.utilities import rank_zero_only from utils_rag import save_json def lowerCamelCase ( lowerCAmelCase : Tuple ): """simple docstring""" __magic_name__ : List[Any] = filter(lambda lowerCAmelCase : p.requires_grad , model.parameters() ) __magic_name__ : Tuple = sum([np.prod(p.size() ) for p in model_parameters] ) return params lowerCAmelCase :Union[str, Any] = logging.getLogger(__name__) def lowerCamelCase ( lowerCAmelCase : List[Any] , lowerCAmelCase : int ): """simple docstring""" if metric == "rouge2": __magic_name__ : Any = '{val_avg_rouge2:.4f}-{step_count}' elif metric == "bleu": __magic_name__ : Optional[Any] = '{val_avg_bleu:.4f}-{step_count}' elif metric == "em": __magic_name__ : Dict = '{val_avg_em:.4f}-{step_count}' elif metric == "loss": __magic_name__ : int = '{val_avg_loss:.4f}-{step_count}' else: raise NotImplementedError( f'seq2seq callbacks only support rouge2 and bleu, got {metric}, You can make your own by adding to this' ' function.' ) __magic_name__ : List[Any] = ModelCheckpoint( dirpath=lowerCAmelCase , filename=lowerCAmelCase , monitor=f'val_{metric}' , mode='max' , save_top_k=1 , every_n_epochs=1 , ) return checkpoint_callback def lowerCamelCase ( lowerCAmelCase : Optional[int] , lowerCAmelCase : Optional[Any] ): """simple docstring""" return EarlyStopping( monitor=f'val_{metric}' , mode='min' if 'loss' in metric else 'max' , patience=lowerCAmelCase , verbose=lowerCAmelCase , ) class _lowerCamelCase ( pl.Callback ): '''simple docstring''' def __lowerCAmelCase ( self : List[str] , _A : Optional[Any] , _A : List[str] ) -> int: __magic_name__ : Optional[Any] = {F'lr_group_{i}': param['lr'] for i, param in enumerate(pl_module.trainer.optimizers[0].param_groups )} pl_module.logger.log_metrics(_A ) @rank_zero_only def __lowerCAmelCase ( self : Any , _A : pl.Trainer , _A : pl.LightningModule , _A : str , _A : Dict=True ) -> None: logger.info(F'***** {type_path} results at step {trainer.global_step:05d} *****' ) __magic_name__ : List[str] = trainer.callback_metrics trainer.logger.log_metrics({k: v for k, v in metrics.items() if k not in ['log', 'progress_bar', 'preds']} ) # Log results __magic_name__ : Optional[Any] = Path(pl_module.hparams.output_dir ) if type_path == "test": __magic_name__ : List[Any] = od / 'test_results.txt' __magic_name__ : Dict = od / 'test_generations.txt' else: # this never gets hit. I prefer not to save intermediate generations, and results are in metrics.json # If people want this it will be easy enough to add back. __magic_name__ : Dict = od / F'{type_path}_results/{trainer.global_step:05d}.txt' __magic_name__ : Optional[Any] = od / F'{type_path}_generations/{trainer.global_step:05d}.txt' results_file.parent.mkdir(exist_ok=_A ) generations_file.parent.mkdir(exist_ok=_A ) with open(_A , 'a+' ) as writer: for key in sorted(_A ): if key in ["log", "progress_bar", "preds"]: continue __magic_name__ : Optional[Any] = metrics[key] if isinstance(_A , torch.Tensor ): __magic_name__ : Tuple = val.item() __magic_name__ : int = F'{key}: {val:.6f}\n' writer.write(_A ) if not save_generations: return if "preds" in metrics: __magic_name__ : str = '\n'.join(metrics['preds'] ) generations_file.open('w+' ).write(_A ) @rank_zero_only def __lowerCAmelCase ( self : List[str] , _A : Union[str, Any] , _A : Tuple ) -> Tuple: try: __magic_name__ : str = pl_module.model.model.num_parameters() except AttributeError: __magic_name__ : List[str] = pl_module.model.num_parameters() __magic_name__ : List[Any] = count_trainable_parameters(_A ) # mp stands for million parameters trainer.logger.log_metrics({'n_params': npars, 'mp': npars / 1E6, 'grad_mp': n_trainable_pars / 1E6} ) @rank_zero_only def __lowerCAmelCase ( self : Union[str, Any] , _A : pl.Trainer , _A : pl.LightningModule ) -> List[Any]: save_json(pl_module.metrics , pl_module.metrics_save_path ) return self._write_logs(_A , _A , 'test' ) @rank_zero_only def __lowerCAmelCase ( self : Tuple , _A : pl.Trainer , _A : Any ) -> List[Any]: save_json(pl_module.metrics , pl_module.metrics_save_path ) # Uncommenting this will save val generations # return self._write_logs(trainer, pl_module, "valid")
331
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __lowercase : Any = { "configuration_xlm_roberta": [ "XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP", "XLMRobertaConfig", "XLMRobertaOnnxConfig", ], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase : Optional[int] = ["XLMRobertaTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase : str = ["XLMRobertaTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase : List[str] = [ "XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST", "XLMRobertaForCausalLM", "XLMRobertaForMaskedLM", "XLMRobertaForMultipleChoice", "XLMRobertaForQuestionAnswering", "XLMRobertaForSequenceClassification", "XLMRobertaForTokenClassification", "XLMRobertaModel", "XLMRobertaPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase : Union[str, Any] = [ "TF_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST", "TFXLMRobertaForCausalLM", "TFXLMRobertaForMaskedLM", "TFXLMRobertaForMultipleChoice", "TFXLMRobertaForQuestionAnswering", "TFXLMRobertaForSequenceClassification", "TFXLMRobertaForTokenClassification", "TFXLMRobertaModel", "TFXLMRobertaPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase : Dict = [ "FLAX_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST", "FlaxXLMRobertaForMaskedLM", "FlaxXLMRobertaForCausalLM", "FlaxXLMRobertaForMultipleChoice", "FlaxXLMRobertaForQuestionAnswering", "FlaxXLMRobertaForSequenceClassification", "FlaxXLMRobertaForTokenClassification", "FlaxXLMRobertaModel", "FlaxXLMRobertaPreTrainedModel", ] if TYPE_CHECKING: from .configuration_xlm_roberta import ( XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMRobertaConfig, XLMRobertaOnnxConfig, ) try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlm_roberta import XLMRobertaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlm_roberta_fast import XLMRobertaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlm_roberta import ( XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, XLMRobertaForCausalLM, XLMRobertaForMaskedLM, XLMRobertaForMultipleChoice, XLMRobertaForQuestionAnswering, XLMRobertaForSequenceClassification, XLMRobertaForTokenClassification, XLMRobertaModel, XLMRobertaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlm_roberta import ( TF_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLMRobertaForCausalLM, TFXLMRobertaForMaskedLM, TFXLMRobertaForMultipleChoice, TFXLMRobertaForQuestionAnswering, TFXLMRobertaForSequenceClassification, TFXLMRobertaForTokenClassification, TFXLMRobertaModel, TFXLMRobertaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_xlm_roberta import ( FLAX_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, FlaxXLMRobertaForCausalLM, FlaxXLMRobertaForMaskedLM, FlaxXLMRobertaForMultipleChoice, FlaxXLMRobertaForQuestionAnswering, FlaxXLMRobertaForSequenceClassification, FlaxXLMRobertaForTokenClassification, FlaxXLMRobertaModel, FlaxXLMRobertaPreTrainedModel, ) else: import sys __lowercase : Optional[int] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
357
'''simple docstring''' __lowercase : Optional[Any] = {'a': ['c', 'b'], 'b': ['d', 'e'], 'c': [], 'd': [], 'e': []} __lowercase : List[str] = ['a', 'b', 'c', 'd', 'e'] def lowerCamelCase (_SCREAMING_SNAKE_CASE : List[Any] , _SCREAMING_SNAKE_CASE : Any , _SCREAMING_SNAKE_CASE : List[str] ): __a : Any = start # add current to visited visited.append(_SCREAMING_SNAKE_CASE ) __a : Union[str, Any] = edges[current] for neighbor in neighbors: # if neighbor not in visited, visit if neighbor not in visited: __a : Dict = topological_sort(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # if all neighbors visited add current to sort sort.append(_SCREAMING_SNAKE_CASE ) # if all vertices haven't been visited select a new one to visit if len(_SCREAMING_SNAKE_CASE ) != len(_SCREAMING_SNAKE_CASE ): for vertice in vertices: if vertice not in visited: __a : List[Any] = topological_sort(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # return sort return sort if __name__ == "__main__": __lowercase : Union[str, Any] = topological_sort('a', [], []) print(sort)
294
0
"""simple docstring""" import json import os import unittest from transformers.models.blenderbot_small.tokenization_blenderbot_small import ( VOCAB_FILES_NAMES, BlenderbotSmallTokenizer, ) from ...test_tokenization_common import TokenizerTesterMixin class lowerCAmelCase__ ( _lowerCamelCase, unittest.TestCase ): '''simple docstring''' lowerCamelCase__ = BlenderbotSmallTokenizer lowerCamelCase__ = False def A_ ( self ): super().setUp() _lowerCamelCase : Optional[int] = ['''__start__''', '''adapt''', '''act''', '''ap@@''', '''te''', '''__end__''', '''__unk__'''] _lowerCamelCase : int = dict(zip(_A , range(len(_A ) ) ) ) _lowerCamelCase : Optional[Any] = ['''#version: 0.2''', '''a p''', '''t e</w>''', '''ap t</w>''', '''a d''', '''ad apt</w>''', '''a c''', '''ac t</w>''', ''''''] _lowerCamelCase : str = {'''unk_token''': '''__unk__''', '''bos_token''': '''__start__''', '''eos_token''': '''__end__'''} _lowerCamelCase : List[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) _lowerCamelCase : Any = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(_A ) + '\n' ) with open(self.merges_file , 'w' , encoding='utf-8' ) as fp: fp.write('\n'.join(_A ) ) def A_ ( self , **lowercase ): kwargs.update(self.special_tokens_map ) return BlenderbotSmallTokenizer.from_pretrained(self.tmpdirname , **_A ) def A_ ( self , lowercase ): _lowerCamelCase : Any = '''adapt act apte''' _lowerCamelCase : Union[str, Any] = '''adapt act apte''' return input_text, output_text def A_ ( self ): _lowerCamelCase : Any = BlenderbotSmallTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) _lowerCamelCase : Optional[int] = '''adapt act apte''' _lowerCamelCase : List[Any] = ['''adapt''', '''act''', '''ap@@''', '''te'''] _lowerCamelCase : Dict = tokenizer.tokenize(_A ) self.assertListEqual(_A , _A ) _lowerCamelCase : Tuple = [tokenizer.bos_token] + tokens + [tokenizer.eos_token] _lowerCamelCase : List[str] = [0, 1, 2, 3, 4, 5] self.assertListEqual(tokenizer.convert_tokens_to_ids(_A ) , _A ) def A_ ( self ): _lowerCamelCase : int = BlenderbotSmallTokenizer.from_pretrained('facebook/blenderbot-90M' ) assert tok('sam' ).input_ids == [1384] _lowerCamelCase : Union[str, Any] = '''I am a small frog.''' _lowerCamelCase : Dict = tok([src_text] , padding=_A , truncation=_A )['''input_ids'''] _lowerCamelCase : Dict = tok.batch_decode(_A , skip_special_tokens=_A , clean_up_tokenization_spaces=_A )[0] assert src_text != decoded # I wish it did! assert decoded == "i am a small frog ." def A_ ( self ): _lowerCamelCase : List[str] = BlenderbotSmallTokenizer.from_pretrained('facebook/blenderbot-90M' ) _lowerCamelCase : List[str] = '''I am a small frog .''' _lowerCamelCase : Any = '''.''' _lowerCamelCase : List[str] = tok(_A )['''input_ids'''] _lowerCamelCase : Optional[int] = tok(_A )['''input_ids'''] assert encoded[-1] == encoded_dot[0]
96
import argparse import os from io import BytesIO from pathlib import Path import requests from clip_retrieval.clip_client import ClipClient from PIL import Image from tqdm import tqdm def snake_case( __magic_name__ , __magic_name__ , __magic_name__ ) -> Optional[Any]: '''simple docstring''' lowercase : int = 1.5 lowercase : int = int(factor * num_class_images ) lowercase : Any = ClipClient( url='''https://knn.laion.ai/knn-service''' , indice_name='''laion_400m''' , num_images=__magic_name__ , aesthetic_weight=0.1 ) os.makedirs(F"""{class_data_dir}/images""" , exist_ok=__magic_name__ ) if len(list(Path(F"""{class_data_dir}/images""" ).iterdir() ) ) >= num_class_images: return while True: lowercase : str = client.query(text=__magic_name__ ) if len(__magic_name__ ) >= factor * num_class_images or num_images > 1e4: break else: lowercase : List[str] = int(factor * num_images ) lowercase : List[str] = ClipClient( url='''https://knn.laion.ai/knn-service''' , indice_name='''laion_400m''' , num_images=__magic_name__ , aesthetic_weight=0.1 , ) lowercase : Dict = 0 lowercase : Optional[Any] = 0 lowercase : List[Any] = tqdm(desc='''downloading real regularization images''' , total=__magic_name__ ) with open(F"""{class_data_dir}/caption.txt""" , '''w''' ) as fa, open(F"""{class_data_dir}/urls.txt""" , '''w''' ) as fa, open( F"""{class_data_dir}/images.txt""" , '''w''' ) as fa: while total < num_class_images: lowercase : int = class_images[count] count += 1 try: lowercase : int = requests.get(images['''url'''] ) if img.status_code == 2_00: lowercase : List[Any] = Image.open(BytesIO(img.content ) ) with open(F"""{class_data_dir}/images/{total}.jpg""" , '''wb''' ) as f: f.write(img.content ) fa.write(images['''caption'''] + '''\n''' ) fa.write(images['''url'''] + '''\n''' ) fa.write(F"""{class_data_dir}/images/{total}.jpg""" + '''\n''' ) total += 1 pbar.update(1 ) else: continue except Exception: continue return def snake_case( ) -> Optional[int]: '''simple docstring''' lowercase : List[str] = argparse.ArgumentParser('''''' , add_help=__magic_name__ ) parser.add_argument('''--class_prompt''' , help='''text prompt to retrieve images''' , required=__magic_name__ , type=__magic_name__ ) parser.add_argument('''--class_data_dir''' , help='''path to save images''' , required=__magic_name__ , type=__magic_name__ ) parser.add_argument('''--num_class_images''' , help='''number of images to download''' , default=2_00 , type=__magic_name__ ) return parser.parse_args() if __name__ == "__main__": lowerCAmelCase_ = parse_args() retrieve(args.class_prompt, args.class_data_dir, args.num_class_images)
308
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available _UpperCamelCase = { '''configuration_xlm''': ['''XLM_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''XLMConfig''', '''XLMOnnxConfig'''], '''tokenization_xlm''': ['''XLMTokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase = [ '''XLM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''XLMForMultipleChoice''', '''XLMForQuestionAnswering''', '''XLMForQuestionAnsweringSimple''', '''XLMForSequenceClassification''', '''XLMForTokenClassification''', '''XLMModel''', '''XLMPreTrainedModel''', '''XLMWithLMHeadModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase = [ '''TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFXLMForMultipleChoice''', '''TFXLMForQuestionAnsweringSimple''', '''TFXLMForSequenceClassification''', '''TFXLMForTokenClassification''', '''TFXLMMainLayer''', '''TFXLMModel''', '''TFXLMPreTrainedModel''', '''TFXLMWithLMHeadModel''', ] if TYPE_CHECKING: from .configuration_xlm import XLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMConfig, XLMOnnxConfig from .tokenization_xlm import XLMTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlm import ( XLM_PRETRAINED_MODEL_ARCHIVE_LIST, XLMForMultipleChoice, XLMForQuestionAnswering, XLMForQuestionAnsweringSimple, XLMForSequenceClassification, XLMForTokenClassification, XLMModel, XLMPreTrainedModel, XLMWithLMHeadModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlm import ( TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLMForMultipleChoice, TFXLMForQuestionAnsweringSimple, TFXLMForSequenceClassification, TFXLMForTokenClassification, TFXLMMainLayer, TFXLMModel, TFXLMPreTrainedModel, TFXLMWithLMHeadModel, ) else: import sys _UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
371
import json import os import unittest from transformers.models.biogpt.tokenization_biogpt import VOCAB_FILES_NAMES, BioGptTokenizer from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class lowercase ( _UpperCamelCase , unittest.TestCase ): '''simple docstring''' __SCREAMING_SNAKE_CASE = BioGptTokenizer __SCREAMING_SNAKE_CASE = False def UpperCamelCase__ (self ) -> str: """simple docstring""" super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt UpperCAmelCase__ = [ 'l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', 'w</w>', 'r</w>', 't</w>', 'lo', 'low', 'er</w>', 'low</w>', 'lowest</w>', 'newer</w>', 'wider</w>', '<unk>', ] UpperCAmelCase__ = dict(zip(__a , range(len(__a ) ) ) ) UpperCAmelCase__ = ['l o 123', 'lo w 1456', 'e r</w> 1789', ''] UpperCAmelCase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) UpperCAmelCase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' ) as fp: fp.write(json.dumps(__a ) ) with open(self.merges_file , 'w' ) as fp: fp.write('\n'.join(__a ) ) def UpperCamelCase__ (self , __a ) -> Any: """simple docstring""" UpperCAmelCase__ = 'lower newer' UpperCAmelCase__ = 'lower newer' return input_text, output_text def UpperCamelCase__ (self ) -> Any: """simple docstring""" UpperCAmelCase__ = BioGptTokenizer(self.vocab_file , self.merges_file ) UpperCAmelCase__ = 'lower' UpperCAmelCase__ = ['low', 'er</w>'] UpperCAmelCase__ = tokenizer.tokenize(__a ) self.assertListEqual(__a , __a ) UpperCAmelCase__ = tokens + ['<unk>'] UpperCAmelCase__ = [14, 15, 20] self.assertListEqual(tokenizer.convert_tokens_to_ids(__a ) , __a ) @slow def UpperCamelCase__ (self ) -> int: """simple docstring""" UpperCAmelCase__ = BioGptTokenizer.from_pretrained('microsoft/biogpt' ) UpperCAmelCase__ = tokenizer.encode('sequence builders' , add_special_tokens=__a ) UpperCAmelCase__ = tokenizer.encode('multi-sequence build' , add_special_tokens=__a ) UpperCAmelCase__ = tokenizer.build_inputs_with_special_tokens(__a ) UpperCAmelCase__ = tokenizer.build_inputs_with_special_tokens(__a , __a ) self.assertTrue(encoded_sentence == [2] + text ) self.assertTrue(encoded_pair == [2] + text + [2] + text_a )
335
0
from ..utils import DummyObject, requires_backends class __a ( metaclass=__UpperCamelCase ): __lowercase : Dict = ['''torch''', '''torchsde'''] def __init__( self , *lowerCAmelCase__ , **lowerCAmelCase__ ) -> Optional[int]: '''simple docstring''' requires_backends(self , ['torch', 'torchsde'] ) @classmethod def SCREAMING_SNAKE_CASE__ ( cls , *lowerCAmelCase__ , **lowerCAmelCase__ ) -> Dict: '''simple docstring''' requires_backends(cls , ['torch', 'torchsde'] ) @classmethod def SCREAMING_SNAKE_CASE__ ( cls , *lowerCAmelCase__ , **lowerCAmelCase__ ) -> Optional[Any]: '''simple docstring''' requires_backends(cls , ['torch', 'torchsde'] )
196
"""simple docstring""" from manim import * class _SCREAMING_SNAKE_CASE( A ): def _UpperCamelCase ( self ) -> str: """simple docstring""" __SCREAMING_SNAKE_CASE :Optional[Any] = Rectangle(height=0.5 ,width=0.5 ) __SCREAMING_SNAKE_CASE :List[str] = Rectangle(height=0.4_6 ,width=0.4_6 ).set_stroke(width=0 ) __SCREAMING_SNAKE_CASE :List[str] = [mem.copy() for i in range(6 )] __SCREAMING_SNAKE_CASE :List[str] = [mem.copy() for i in range(6 )] __SCREAMING_SNAKE_CASE :Optional[int] = VGroup(*SCREAMING_SNAKE_CASE__ ).arrange(SCREAMING_SNAKE_CASE__ ,buff=0 ) __SCREAMING_SNAKE_CASE :Optional[Any] = VGroup(*SCREAMING_SNAKE_CASE__ ).arrange(SCREAMING_SNAKE_CASE__ ,buff=0 ) __SCREAMING_SNAKE_CASE :Any = VGroup(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ).arrange(SCREAMING_SNAKE_CASE__ ,buff=0 ) __SCREAMING_SNAKE_CASE :Tuple = Text('''CPU''' ,font_size=24 ) __SCREAMING_SNAKE_CASE :Optional[Any] = Group(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ).arrange(SCREAMING_SNAKE_CASE__ ,buff=0.5 ,aligned_edge=SCREAMING_SNAKE_CASE__ ) cpu.move_to([-2.5, -0.5, 0] ) self.add(SCREAMING_SNAKE_CASE__ ) __SCREAMING_SNAKE_CASE :List[Any] = [mem.copy() for i in range(1 )] __SCREAMING_SNAKE_CASE :str = VGroup(*SCREAMING_SNAKE_CASE__ ).arrange(SCREAMING_SNAKE_CASE__ ,buff=0 ) __SCREAMING_SNAKE_CASE :Union[str, Any] = Text('''GPU''' ,font_size=24 ) __SCREAMING_SNAKE_CASE :int = Group(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ).arrange(SCREAMING_SNAKE_CASE__ ,buff=0.5 ,aligned_edge=SCREAMING_SNAKE_CASE__ ) gpu.align_to(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) gpu.set_x(gpu.get_x() - 1 ) self.add(SCREAMING_SNAKE_CASE__ ) __SCREAMING_SNAKE_CASE :str = [mem.copy() for i in range(6 )] __SCREAMING_SNAKE_CASE :int = VGroup(*SCREAMING_SNAKE_CASE__ ).arrange(SCREAMING_SNAKE_CASE__ ,buff=0 ) __SCREAMING_SNAKE_CASE :List[Any] = Text('''Model''' ,font_size=24 ) __SCREAMING_SNAKE_CASE :int = Group(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ).arrange(SCREAMING_SNAKE_CASE__ ,buff=0.5 ,aligned_edge=SCREAMING_SNAKE_CASE__ ) model.move_to([3, -1.0, 0] ) self.play( Create(SCREAMING_SNAKE_CASE__ ,run_time=1 ) ,Create(SCREAMING_SNAKE_CASE__ ,run_time=1 ) ,Create(SCREAMING_SNAKE_CASE__ ,run_time=1 ) ,) __SCREAMING_SNAKE_CASE :List[str] = MarkupText( f'''First, an empty model skeleton is loaded\ninto <span fgcolor=\'{YELLOW}\'>memory</span> without using much RAM.''' ,font_size=24 ,) __SCREAMING_SNAKE_CASE :List[Any] = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) __SCREAMING_SNAKE_CASE :Optional[Any] = MarkupText( f'''<b>Key:</b>\n\n<span fgcolor=\'{YELLOW}\'>●</span> Empty Model''' ,font_size=18 ,) key_text.move_to([-5, 2.4, 0] ) step_a.move_to([2, 2, 0] ) self.play(Write(SCREAMING_SNAKE_CASE__ ,run_time=2.5 ) ,Write(SCREAMING_SNAKE_CASE__ ) ,Write(SCREAMING_SNAKE_CASE__ ) ) self.add(SCREAMING_SNAKE_CASE__ ) __SCREAMING_SNAKE_CASE :Union[str, Any] = [] __SCREAMING_SNAKE_CASE :int = [] __SCREAMING_SNAKE_CASE :List[Any] = [] for i, rect in enumerate(SCREAMING_SNAKE_CASE__ ): __SCREAMING_SNAKE_CASE :Any = Rectangle(height=0.4_6 ,width=0.4_6 ).set_stroke(width=0.0 ).set_fill(SCREAMING_SNAKE_CASE__ ,opacity=0.7 ) cpu_target.move_to(SCREAMING_SNAKE_CASE__ ) cpu_target.generate_target() __SCREAMING_SNAKE_CASE :Union[str, Any] = 0.4_6 / 4 __SCREAMING_SNAKE_CASE :Tuple = 0.4_6 / 3 if i == 0: cpu_target.target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) ,buff=0.0_2 ,direction=SCREAMING_SNAKE_CASE__ ) cpu_target.target.set_x(cpu_target.target.get_x() + 0.1 ) elif i == 3: cpu_target.target.next_to(cpu_targs[0].target ,direction=SCREAMING_SNAKE_CASE__ ,buff=0.0 ) else: cpu_target.target.next_to(cpu_targs[i - 1].target ,direction=SCREAMING_SNAKE_CASE__ ,buff=0.0 ) cpu_targs.append(SCREAMING_SNAKE_CASE__ ) first_animations.append(rect.animate(run_time=0.5 ).set_stroke(SCREAMING_SNAKE_CASE__ ) ) second_animations.append(MoveToTarget(SCREAMING_SNAKE_CASE__ ,run_time=1.5 ) ) self.play(*SCREAMING_SNAKE_CASE__ ) self.play(*SCREAMING_SNAKE_CASE__ ) self.wait()
191
0
from scipy.stats import pearsonr, spearmanr from sklearn.metrics import fa_score, matthews_corrcoef import datasets A : Dict = '\\n@inproceedings{wang2019glue,\n title={{GLUE}: A Multi-Task Benchmark and Analysis Platform for Natural Language Understanding},\n author={Wang, Alex and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R.},\n note={In the Proceedings of ICLR.},\n year={2019}\n}\n' A : List[str] = '\\nGLUE, the General Language Understanding Evaluation benchmark\n(https://gluebenchmark.com/) is a collection of resources for training,\nevaluating, and analyzing natural language understanding systems.\n' A : str = '\nCompute GLUE evaluation metric associated to each GLUE dataset.\nArgs:\n predictions: list of predictions to score.\n Each translation should be tokenized into a list of tokens.\n references: list of lists of references for each translation.\n Each reference should be tokenized into a list of tokens.\nReturns: depending on the GLUE subset, one or several of:\n "accuracy": Accuracy\n "f1": F1 score\n "pearson": Pearson Correlation\n "spearmanr": Spearman Correlation\n "matthews_correlation": Matthew Correlation\nExamples:\n\n >>> glue_metric = datasets.load_metric(\'glue\', \'sst2\') # \'sst2\' or any of ["mnli", "mnli_mismatched", "mnli_matched", "qnli", "rte", "wnli", "hans"]\n >>> references = [0, 1]\n >>> predictions = [0, 1]\n >>> results = glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'accuracy\': 1.0}\n\n >>> glue_metric = datasets.load_metric(\'glue\', \'mrpc\') # \'mrpc\' or \'qqp\'\n >>> references = [0, 1]\n >>> predictions = [0, 1]\n >>> results = glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'accuracy\': 1.0, \'f1\': 1.0}\n\n >>> glue_metric = datasets.load_metric(\'glue\', \'stsb\')\n >>> references = [0., 1., 2., 3., 4., 5.]\n >>> predictions = [0., 1., 2., 3., 4., 5.]\n >>> results = glue_metric.compute(predictions=predictions, references=references)\n >>> print({"pearson": round(results["pearson"], 2), "spearmanr": round(results["spearmanr"], 2)})\n {\'pearson\': 1.0, \'spearmanr\': 1.0}\n\n >>> glue_metric = datasets.load_metric(\'glue\', \'cola\')\n >>> references = [0, 1]\n >>> predictions = [0, 1]\n >>> results = glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'matthews_correlation\': 1.0}\n' def __lowerCAmelCase ( a__ , a__ ) -> int: return float((preds == labels).mean() ) def __lowerCAmelCase ( a__ , a__ ) -> Optional[int]: __a = simple_accuracy(a__ , a__ ) __a = float(fa_score(y_true=a__ , y_pred=a__ ) ) return { "accuracy": acc, "f1": fa, } def __lowerCAmelCase ( a__ , a__ ) -> int: __a = float(pearsonr(a__ , a__ )[0] ) __a = float(spearmanr(a__ , a__ )[0] ) return { "pearson": pearson_corr, "spearmanr": spearman_corr, } @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __A( datasets.Metric ): def SCREAMING_SNAKE_CASE_ ( self ) -> List[Any]: '''simple docstring''' if self.config_name not in [ "sst2", "mnli", "mnli_mismatched", "mnli_matched", "cola", "stsb", "mrpc", "qqp", "qnli", "rte", "wnli", "hans", ]: raise KeyError( '''You should supply a configuration name selected in ''' '''["sst2", "mnli", "mnli_mismatched", "mnli_matched", ''' '''"cola", "stsb", "mrpc", "qqp", "qnli", "rte", "wnli", "hans"]''' ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''int64''' if self.config_name != '''stsb''' else '''float32''' ), '''references''': datasets.Value('''int64''' if self.config_name != '''stsb''' else '''float32''' ), } ) , codebase_urls=[] , reference_urls=[] , format='''numpy''' , ) def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case ) -> str: '''simple docstring''' if self.config_name == "cola": return {"matthews_correlation": matthews_corrcoef(_snake_case , _snake_case )} elif self.config_name == "stsb": return pearson_and_spearman(_snake_case , _snake_case ) elif self.config_name in ["mrpc", "qqp"]: return acc_and_fa(_snake_case , _snake_case ) elif self.config_name in ["sst2", "mnli", "mnli_mismatched", "mnli_matched", "qnli", "rte", "wnli", "hans"]: return {"accuracy": simple_accuracy(_snake_case , _snake_case )} else: raise KeyError( '''You should supply a configuration name selected in ''' '''["sst2", "mnli", "mnli_mismatched", "mnli_matched", ''' '''"cola", "stsb", "mrpc", "qqp", "qnli", "rte", "wnli", "hans"]''' )
33
from __future__ import annotations def __lowerCAmelCase ( a__ , a__ = None ) -> list[list[str]]: __a = word_bank or [] # create a table __a = len(a__ ) + 1 __a = [] for _ in range(a__ ): table.append([] ) # seed value __a = [[]] # because empty string has empty combination # iterate through the indices for i in range(a__ ): # condition if table[i] != []: for word in word_bank: # slice condition if target[i : i + len(a__ )] == word: __a = [ [word, *way] for way in table[i] ] # adds the word to every combination the current position holds # now,push that combination to the table[i+len(word)] table[i + len(a__ )] += new_combinations # combinations are in reverse order so reverse for better output for combination in table[len(a__ )]: combination.reverse() return table[len(a__ )] if __name__ == "__main__": print(all_construct('jwajalapa', ['jwa', 'j', 'w', 'a', 'la', 'lapa'])) print(all_construct('rajamati', ['s', 'raj', 'amat', 'raja', 'ma', 'i', 't'])) print( all_construct( 'hexagonosaurus', ['h', 'ex', 'hex', 'ag', 'ago', 'ru', 'auru', 'rus', 'go', 'no', 'o', 's'], ) )
33
1
import argparse import re from typing import Dict import torch from datasets import Audio, Dataset, load_dataset, load_metric from transformers import AutoFeatureExtractor, pipeline def UpperCamelCase ( __lowerCamelCase : Dataset , __lowerCamelCase : Dict[str, str] ): snake_case : int = args.log_outputs snake_case : Dict = "_".join(args.dataset.split("/" ) + [args.config, args.split] ) # load metric snake_case : List[str] = load_metric("wer" ) snake_case : Tuple = load_metric("cer" ) # compute metrics snake_case : List[Any] = wer.compute(references=result["target"] , predictions=result["prediction"] ) snake_case : int = cer.compute(references=result["target"] , predictions=result["prediction"] ) # print & log results snake_case : int = f"""WER: {wer_result}\nCER: {cer_result}""" print(__lowerCamelCase ) with open(f"""{dataset_id}_eval_results.txt""" , "w" ) as f: f.write(__lowerCamelCase ) # log all results in text file. Possibly interesting for analysis if log_outputs is not None: snake_case : int = f"""log_{dataset_id}_predictions.txt""" snake_case : List[Any] = f"""log_{dataset_id}_targets.txt""" with open(__lowerCamelCase , "w" ) as p, open(__lowerCamelCase , "w" ) as t: # mapping function to write output def write_to_file(__lowerCamelCase : str , __lowerCamelCase : Optional[int] ): p.write(f"""{i}""" + "\n" ) p.write(batch["prediction"] + "\n" ) t.write(f"""{i}""" + "\n" ) t.write(batch["target"] + "\n" ) result.map(__lowerCamelCase , with_indices=__lowerCamelCase ) def UpperCamelCase ( __lowerCamelCase : str ): snake_case : List[Any] = "[,?.!\-\;\:\"“%‘”�—’…–]" # noqa: W605 IMPORTANT: this should correspond to the chars that were ignored during training snake_case : List[Any] = re.sub(__lowerCamelCase , "" , text.lower() ) # In addition, we can normalize the target text, e.g. removing new lines characters etc... # note that order is important here! snake_case : Optional[Any] = ["\n\n", "\n", " ", " "] for t in token_sequences_to_ignore: snake_case : Dict = " ".join(text.split(__lowerCamelCase ) ) return text def UpperCamelCase ( __lowerCamelCase : int ): # load dataset snake_case : str = load_dataset(args.dataset , args.config , split=args.split , use_auth_token=__lowerCamelCase ) # for testing: only process the first two examples as a test # dataset = dataset.select(range(10)) # load processor snake_case : List[Any] = AutoFeatureExtractor.from_pretrained(args.model_id ) snake_case : Union[str, Any] = feature_extractor.sampling_rate # resample audio snake_case : Union[str, Any] = dataset.cast_column("audio" , Audio(sampling_rate=__lowerCamelCase ) ) # load eval pipeline if args.device is None: snake_case : List[str] = 0 if torch.cuda.is_available() else -1 snake_case : str = pipeline("automatic-speech-recognition" , model=args.model_id , device=args.device ) # map function to decode audio def map_to_pred(__lowerCamelCase : int ): snake_case : Dict = asr( batch["audio"]["array"] , chunk_length_s=args.chunk_length_s , stride_length_s=args.stride_length_s ) snake_case : str = prediction["text"] snake_case : Tuple = normalize_text(batch["sentence"] ) return batch # run inference on all examples snake_case : Dict = dataset.map(__lowerCamelCase , remove_columns=dataset.column_names ) # compute and log_results # do not change function below log_results(__lowerCamelCase , __lowerCamelCase ) if __name__ == "__main__": __lowerCamelCase = argparse.ArgumentParser() parser.add_argument( """--model_id""", type=str, required=True, help="""Model identifier. Should be loadable with 🤗 Transformers""" ) parser.add_argument( """--dataset""", type=str, required=True, help="""Dataset name to evaluate the `model_id`. Should be loadable with 🤗 Datasets""", ) parser.add_argument( """--config""", type=str, required=True, help="""Config of the dataset. *E.g.* `'en'` for Common Voice""" ) parser.add_argument("""--split""", type=str, required=True, help="""Split of the dataset. *E.g.* `'test'`""") parser.add_argument( """--chunk_length_s""", type=float, default=None, help="""Chunk length in seconds. Defaults to 5 seconds.""" ) parser.add_argument( """--stride_length_s""", type=float, default=None, help="""Stride of the audio chunks. Defaults to 1 second.""" ) parser.add_argument( """--log_outputs""", action="""store_true""", help="""If defined, write outputs to log file for analysis.""" ) parser.add_argument( """--device""", type=int, default=None, help="""The device to run the pipeline on. -1 for CPU (default), 0 for the first GPU and so on.""", ) __lowerCamelCase = parser.parse_args() main(args)
59
"""simple docstring""" import warnings from contextlib import contextmanager from ...processing_utils import ProcessorMixin class __snake_case ( _lowercase): snake_case__ : List[Any] = "Speech2TextFeatureExtractor" snake_case__ : Union[str, Any] = "Speech2TextTokenizer" def __init__( self : int , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Union[str, Any] ): """simple docstring""" super().__init__(__lowerCAmelCase , __lowerCAmelCase ) _lowerCamelCase : List[str] = self.feature_extractor _lowerCamelCase : str = False def __call__( self : List[Any] , *__lowerCAmelCase : int , **__lowerCAmelCase : List[str] ): """simple docstring""" if self._in_target_context_manager: return self.current_processor(*__lowerCAmelCase , **__lowerCAmelCase ) if "raw_speech" in kwargs: warnings.warn('''Using `raw_speech` as a keyword argument is deprecated. Use `audio` instead.''' ) _lowerCamelCase : str = kwargs.pop('''raw_speech''' ) else: _lowerCamelCase : Tuple = kwargs.pop('''audio''' , __lowerCAmelCase ) _lowerCamelCase : Optional[Any] = kwargs.pop('''sampling_rate''' , __lowerCAmelCase ) _lowerCamelCase : Union[str, Any] = kwargs.pop('''text''' , __lowerCAmelCase ) if len(__lowerCAmelCase ) > 0: _lowerCamelCase : List[Any] = args[0] _lowerCamelCase : int = args[1:] if audio is None and text is None: raise ValueError('''You need to specify either an `audio` or `text` input to process.''' ) if audio is not None: _lowerCamelCase : List[Any] = self.feature_extractor(__lowerCAmelCase , *__lowerCAmelCase , sampling_rate=__lowerCAmelCase , **__lowerCAmelCase ) if text is not None: _lowerCamelCase : List[Any] = self.tokenizer(__lowerCAmelCase , **__lowerCAmelCase ) if text is None: return inputs elif audio is None: return encodings else: _lowerCamelCase : List[str] = encodings['''input_ids'''] return inputs def SCREAMING_SNAKE_CASE ( self : Any , *__lowerCAmelCase : List[Any] , **__lowerCAmelCase : Tuple ): """simple docstring""" return self.tokenizer.batch_decode(*__lowerCAmelCase , **__lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Any , *__lowerCAmelCase : List[str] , **__lowerCAmelCase : int ): """simple docstring""" return self.tokenizer.decode(*__lowerCAmelCase , **__lowerCAmelCase ) @contextmanager def SCREAMING_SNAKE_CASE ( self : str ): """simple docstring""" warnings.warn( '''`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your ''' '''labels by using the argument `text` of the regular `__call__` method (either in the same call as ''' '''your audio inputs, or in a separate call.''' ) _lowerCamelCase : Union[str, Any] = True _lowerCamelCase : Any = self.tokenizer yield _lowerCamelCase : List[str] = self.feature_extractor _lowerCamelCase : Tuple = False
72
0
"""simple docstring""" from transformers import HfArgumentParser, TensorFlowBenchmark, TensorFlowBenchmarkArguments def __lowerCamelCase ( ) -> str: __SCREAMING_SNAKE_CASE :Union[str, Any] = HfArgumentParser(__lowerCamelCase ) __SCREAMING_SNAKE_CASE :Any = parser.parse_args_into_dataclasses()[0] __SCREAMING_SNAKE_CASE :Any = TensorFlowBenchmark(args=__lowerCamelCase ) try: __SCREAMING_SNAKE_CASE :List[Any] = parser.parse_args_into_dataclasses()[0] except ValueError as e: __SCREAMING_SNAKE_CASE :Union[str, Any] = "Arg --no_{0} is no longer used, please use --no-{0} instead." __SCREAMING_SNAKE_CASE :List[str] = " ".join(str(__lowerCamelCase ).split(''' ''' )[:-1] ) __SCREAMING_SNAKE_CASE :Optional[Any] = "" __SCREAMING_SNAKE_CASE :str = eval(str(__lowerCamelCase ).split(''' ''' )[-1] ) __SCREAMING_SNAKE_CASE :Union[str, Any] = [] for arg in depreciated_args: # arg[2:] removes '--' if arg[2:] in TensorFlowBenchmark.deprecated_args: # arg[5:] removes '--no_' full_error_msg += arg_error_msg.format(arg[5:] ) else: wrong_args.append(__lowerCamelCase ) if len(__lowerCamelCase ) > 0: __SCREAMING_SNAKE_CASE :str = full_error_msg + begin_error_msg + str(__lowerCamelCase ) raise ValueError(__lowerCamelCase ) benchmark.run() if __name__ == "__main__": main()
351
"""simple docstring""" import baseaa import io import json import os from copy import deepcopy from ..optimizer import AcceleratedOptimizer from ..scheduler import AcceleratedScheduler class _SCREAMING_SNAKE_CASE: def __init__( self ,SCREAMING_SNAKE_CASE__ ) -> int: """simple docstring""" if isinstance(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ): # Don't modify user's data should they want to reuse it (e.g. in tests), because once we # modified it, it will not be accepted here again, since `auto` values would have been overridden __SCREAMING_SNAKE_CASE :Optional[int] = deepcopy(SCREAMING_SNAKE_CASE__ ) elif os.path.exists(SCREAMING_SNAKE_CASE__ ): with io.open(SCREAMING_SNAKE_CASE__ ,'''r''' ,encoding='''utf-8''' ) as f: __SCREAMING_SNAKE_CASE :Dict = json.load(SCREAMING_SNAKE_CASE__ ) else: try: __SCREAMING_SNAKE_CASE :str = baseaa.urlsafe_baadecode(SCREAMING_SNAKE_CASE__ ).decode('''utf-8''' ) __SCREAMING_SNAKE_CASE :Union[str, Any] = json.loads(SCREAMING_SNAKE_CASE__ ) except (UnicodeDecodeError, AttributeError, ValueError): raise ValueError( f'''Expected a string path to an existing deepspeed config, or a dictionary, or a base64 encoded string. Received: {config_file_or_dict}''' ) __SCREAMING_SNAKE_CASE :Optional[int] = config self.set_stage_and_offload() def _UpperCamelCase ( self ) -> Any: """simple docstring""" __SCREAMING_SNAKE_CASE :Union[str, Any] = self.get_value('''zero_optimization.stage''' ,-1 ) # offload __SCREAMING_SNAKE_CASE :Any = False if self.is_zeroa() or self.is_zeroa(): __SCREAMING_SNAKE_CASE :Optional[Any] = set(['''cpu''', '''nvme'''] ) __SCREAMING_SNAKE_CASE :Optional[Any] = set( [ self.get_value('''zero_optimization.offload_optimizer.device''' ), self.get_value('''zero_optimization.offload_param.device''' ), ] ) if len(offload_devices & offload_devices_valid ) > 0: __SCREAMING_SNAKE_CASE :int = True def _UpperCamelCase ( self ,SCREAMING_SNAKE_CASE__ ) -> Tuple: """simple docstring""" __SCREAMING_SNAKE_CASE :Any = self.config # find the config node of interest if it exists __SCREAMING_SNAKE_CASE :Union[str, Any] = ds_key_long.split('''.''' ) __SCREAMING_SNAKE_CASE :List[str] = nodes.pop() for node in nodes: __SCREAMING_SNAKE_CASE :Dict = config.get(SCREAMING_SNAKE_CASE__ ) if config is None: return None, ds_key return config, ds_key def _UpperCamelCase ( self ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__=None ) -> Tuple: """simple docstring""" __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE :Optional[Any] = self.find_config_node(SCREAMING_SNAKE_CASE__ ) if config is None: return default return config.get(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__=False ) -> int: """simple docstring""" __SCREAMING_SNAKE_CASE :Dict = self.config # find the config node of interest if it exists __SCREAMING_SNAKE_CASE :str = ds_key_long.split('''.''' ) for node in nodes: __SCREAMING_SNAKE_CASE :Any = config __SCREAMING_SNAKE_CASE :int = config.get(SCREAMING_SNAKE_CASE__ ) if config is None: if must_exist: raise ValueError(f'''Can\'t find {ds_key_long} entry in the config: {self.config}''' ) else: return # if found remove it if parent_config is not None: parent_config.pop(SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self ,SCREAMING_SNAKE_CASE__ ) -> Optional[int]: """simple docstring""" __SCREAMING_SNAKE_CASE :int = self.get_value(SCREAMING_SNAKE_CASE__ ) return False if value is None else bool(SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self ,SCREAMING_SNAKE_CASE__ ) -> Optional[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE :str = self.get_value(SCREAMING_SNAKE_CASE__ ) return False if value is None else not bool(SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self ) -> List[str]: """simple docstring""" return self._stage == 2 def _UpperCamelCase ( self ) -> List[Any]: """simple docstring""" return self._stage == 3 def _UpperCamelCase ( self ) -> Union[str, Any]: """simple docstring""" return self._offload class _SCREAMING_SNAKE_CASE: def __init__( self ,SCREAMING_SNAKE_CASE__ ) -> Optional[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE :Optional[int] = engine def _UpperCamelCase ( self ,SCREAMING_SNAKE_CASE__ ,**SCREAMING_SNAKE_CASE__ ) -> List[Any]: """simple docstring""" self.engine.backward(SCREAMING_SNAKE_CASE__ ,**SCREAMING_SNAKE_CASE__ ) # Deepspeed's `engine.step` performs the following operations: # - gradient accumulation check # - gradient clipping # - optimizer step # - zero grad # - checking overflow # - lr_scheduler step (only if engine.lr_scheduler is not None) self.engine.step() # and this plugin overrides the above calls with no-ops when Accelerate runs under # Deepspeed, but allows normal functionality for non-Deepspeed cases thus enabling a simple # training loop that works transparently under many training regimes. class _SCREAMING_SNAKE_CASE( A ): def __init__( self ,SCREAMING_SNAKE_CASE__ ) -> str: """simple docstring""" super().__init__(SCREAMING_SNAKE_CASE__ ,device_placement=SCREAMING_SNAKE_CASE__ ,scaler=SCREAMING_SNAKE_CASE__ ) __SCREAMING_SNAKE_CASE :int = hasattr(self.optimizer ,'''overflow''' ) def _UpperCamelCase ( self ,SCREAMING_SNAKE_CASE__=None ) -> Union[str, Any]: """simple docstring""" pass # `accelerator.backward(loss)` is doing that automatically. Therefore, its implementation is not needed def _UpperCamelCase ( self ) -> Union[str, Any]: """simple docstring""" pass # `accelerator.backward(loss)` is doing that automatically. Therefore, its implementation is not needed @property def _UpperCamelCase ( self ) -> Dict: """simple docstring""" if self.__has_overflow__: return self.optimizer.overflow return False class _SCREAMING_SNAKE_CASE( A ): def __init__( self ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) -> Optional[int]: """simple docstring""" super().__init__(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self ) -> Optional[int]: """simple docstring""" pass # `accelerator.backward(loss)` is doing that automatically. Therefore, its implementation is not needed class _SCREAMING_SNAKE_CASE: def __init__( self ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__=0.0_0_1 ,SCREAMING_SNAKE_CASE__=0 ,**SCREAMING_SNAKE_CASE__ ) -> List[str]: """simple docstring""" __SCREAMING_SNAKE_CASE :Optional[Any] = params __SCREAMING_SNAKE_CASE :str = lr __SCREAMING_SNAKE_CASE :str = weight_decay __SCREAMING_SNAKE_CASE :int = kwargs class _SCREAMING_SNAKE_CASE: def __init__( self ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__=None ,SCREAMING_SNAKE_CASE__=0 ,**SCREAMING_SNAKE_CASE__ ) -> str: """simple docstring""" __SCREAMING_SNAKE_CASE :Dict = optimizer __SCREAMING_SNAKE_CASE :Union[str, Any] = total_num_steps __SCREAMING_SNAKE_CASE :Any = warmup_num_steps __SCREAMING_SNAKE_CASE :int = kwargs
239
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available __A = { "configuration_data2vec_audio": ["DATA2VEC_AUDIO_PRETRAINED_CONFIG_ARCHIVE_MAP", "Data2VecAudioConfig"], "configuration_data2vec_text": [ "DATA2VEC_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP", "Data2VecTextConfig", "Data2VecTextOnnxConfig", ], "configuration_data2vec_vision": [ "DATA2VEC_VISION_PRETRAINED_CONFIG_ARCHIVE_MAP", "Data2VecVisionConfig", "Data2VecVisionOnnxConfig", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = [ "DATA2VEC_AUDIO_PRETRAINED_MODEL_ARCHIVE_LIST", "Data2VecAudioForAudioFrameClassification", "Data2VecAudioForCTC", "Data2VecAudioForSequenceClassification", "Data2VecAudioForXVector", "Data2VecAudioModel", "Data2VecAudioPreTrainedModel", ] __A = [ "DATA2VEC_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST", "Data2VecTextForCausalLM", "Data2VecTextForMaskedLM", "Data2VecTextForMultipleChoice", "Data2VecTextForQuestionAnswering", "Data2VecTextForSequenceClassification", "Data2VecTextForTokenClassification", "Data2VecTextModel", "Data2VecTextPreTrainedModel", ] __A = [ "DATA2VEC_VISION_PRETRAINED_MODEL_ARCHIVE_LIST", "Data2VecVisionForImageClassification", "Data2VecVisionForMaskedImageModeling", "Data2VecVisionForSemanticSegmentation", "Data2VecVisionModel", "Data2VecVisionPreTrainedModel", ] if is_tf_available(): __A = [ "TFData2VecVisionForImageClassification", "TFData2VecVisionForSemanticSegmentation", "TFData2VecVisionModel", "TFData2VecVisionPreTrainedModel", ] if TYPE_CHECKING: from .configuration_dataavec_audio import DATA2VEC_AUDIO_PRETRAINED_CONFIG_ARCHIVE_MAP, DataaVecAudioConfig from .configuration_dataavec_text import ( DATA2VEC_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, DataaVecTextConfig, DataaVecTextOnnxConfig, ) from .configuration_dataavec_vision import ( DATA2VEC_VISION_PRETRAINED_CONFIG_ARCHIVE_MAP, DataaVecVisionConfig, DataaVecVisionOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_dataavec_audio import ( DATA2VEC_AUDIO_PRETRAINED_MODEL_ARCHIVE_LIST, DataaVecAudioForAudioFrameClassification, DataaVecAudioForCTC, DataaVecAudioForSequenceClassification, DataaVecAudioForXVector, DataaVecAudioModel, DataaVecAudioPreTrainedModel, ) from .modeling_dataavec_text import ( DATA2VEC_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, DataaVecTextForCausalLM, DataaVecTextForMaskedLM, DataaVecTextForMultipleChoice, DataaVecTextForQuestionAnswering, DataaVecTextForSequenceClassification, DataaVecTextForTokenClassification, DataaVecTextModel, DataaVecTextPreTrainedModel, ) from .modeling_dataavec_vision import ( DATA2VEC_VISION_PRETRAINED_MODEL_ARCHIVE_LIST, DataaVecVisionForImageClassification, DataaVecVisionForMaskedImageModeling, DataaVecVisionForSemanticSegmentation, DataaVecVisionModel, DataaVecVisionPreTrainedModel, ) if is_tf_available(): from .modeling_tf_dataavec_vision import ( TFDataaVecVisionForImageClassification, TFDataaVecVisionForSemanticSegmentation, TFDataaVecVisionModel, TFDataaVecVisionPreTrainedModel, ) else: import sys __A = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
90
'''simple docstring''' import torch from torch import nn class _snake_case ( nn.Module ): def __init__( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=1 , _lowerCamelCase=False): super().__init__() UpperCAmelCase__ : List[Any] = n_token UpperCAmelCase__ : Tuple = d_embed UpperCAmelCase__ : str = d_proj UpperCAmelCase__ : str = cutoffs + [n_token] UpperCAmelCase__ : List[Any] = [0] + self.cutoffs UpperCAmelCase__ : Optional[Any] = div_val UpperCAmelCase__ : Optional[int] = self.cutoffs[0] UpperCAmelCase__ : Optional[int] = len(self.cutoffs) - 1 UpperCAmelCase__ : Union[str, Any] = self.shortlist_size + self.n_clusters if self.n_clusters > 0: UpperCAmelCase__ : int = nn.Parameter(torch.zeros(self.n_clusters , self.d_embed)) UpperCAmelCase__ : Optional[Any] = nn.Parameter(torch.zeros(self.n_clusters)) UpperCAmelCase__ : int = nn.ModuleList() UpperCAmelCase__ : List[Any] = nn.ParameterList() if div_val == 1: for i in range(len(self.cutoffs)): if d_proj != d_embed: self.out_projs.append(nn.Parameter(torch.FloatTensor(_lowerCamelCase , _lowerCamelCase))) else: self.out_projs.append(_lowerCamelCase) self.out_layers.append(nn.Linear(_lowerCamelCase , _lowerCamelCase)) else: for i in range(len(self.cutoffs)): UpperCAmelCase__ , UpperCAmelCase__ : List[str] = self.cutoff_ends[i], self.cutoff_ends[i + 1] UpperCAmelCase__ : Union[str, Any] = d_embed // (div_val**i) self.out_projs.append(nn.Parameter(torch.FloatTensor(_lowerCamelCase , _lowerCamelCase))) self.out_layers.append(nn.Linear(_lowerCamelCase , r_idx - l_idx)) UpperCAmelCase__ : Optional[int] = keep_order def snake_case__ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase): if proj is None: UpperCAmelCase__ : Dict = nn.functional.linear(_lowerCamelCase , _lowerCamelCase , bias=_lowerCamelCase) else: # if CUDA_MAJOR <= 9 and CUDA_MINOR <= 1: UpperCAmelCase__ : Optional[int] = nn.functional.linear(_lowerCamelCase , proj.t().contiguous()) UpperCAmelCase__ : List[str] = nn.functional.linear(_lowerCamelCase , _lowerCamelCase , bias=_lowerCamelCase) # else: # logit = torch.einsum('bd,de,ev->bv', (hidden, proj, weight.t())) # if bias is not None: # logit = logit + bias return logit def snake_case__ ( self , _lowerCamelCase , _lowerCamelCase=None , _lowerCamelCase=False): if labels is not None: # Shift so that tokens < n predict n UpperCAmelCase__ : Optional[int] = hidden[..., :-1, :].contiguous() UpperCAmelCase__ : int = labels[..., 1:].contiguous() UpperCAmelCase__ : List[str] = hidden.view(-1 , hidden.size(-1)) UpperCAmelCase__ : Optional[int] = labels.view(-1) if hidden.size(0) != labels.size(0): raise RuntimeError("""Input and labels should have the same size in the batch dimension.""") else: UpperCAmelCase__ : Optional[int] = hidden.view(-1 , hidden.size(-1)) if self.n_clusters == 0: UpperCAmelCase__ : Tuple = self._compute_logit(_lowerCamelCase , self.out_layers[0].weight , self.out_layers[0].bias , self.out_projs[0]) if labels is not None: UpperCAmelCase__ : Dict = labels != -100 UpperCAmelCase__ : Tuple = torch.zeros_like(_lowerCamelCase , dtype=hidden.dtype , device=hidden.device) UpperCAmelCase__ : List[Any] = ( -nn.functional.log_softmax(_lowerCamelCase , dim=-1)[mask].gather(1 , labels[mask].unsqueeze(1)).squeeze(1) ) else: UpperCAmelCase__ : List[str] = nn.functional.log_softmax(_lowerCamelCase , dim=-1) else: # construct weights and biases UpperCAmelCase__ , UpperCAmelCase__ : Union[str, Any] = [], [] for i in range(len(self.cutoffs)): if self.div_val == 1: UpperCAmelCase__ , UpperCAmelCase__ : int = self.cutoff_ends[i], self.cutoff_ends[i + 1] UpperCAmelCase__ : Dict = self.out_layers[0].weight[l_idx:r_idx] UpperCAmelCase__ : Any = self.out_layers[0].bias[l_idx:r_idx] else: UpperCAmelCase__ : Union[str, Any] = self.out_layers[i].weight UpperCAmelCase__ : Any = self.out_layers[i].bias if i == 0: UpperCAmelCase__ : Optional[Any] = torch.cat([weight_i, self.cluster_weight] , dim=0) UpperCAmelCase__ : List[Any] = torch.cat([bias_i, self.cluster_bias] , dim=0) weights.append(_lowerCamelCase) biases.append(_lowerCamelCase) UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : Optional[int] = weights[0], biases[0], self.out_projs[0] UpperCAmelCase__ : Optional[int] = self._compute_logit(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase) UpperCAmelCase__ : Union[str, Any] = nn.functional.log_softmax(_lowerCamelCase , dim=1) if labels is None: UpperCAmelCase__ : str = hidden.new_empty((head_logit.size(0), self.n_token)) else: UpperCAmelCase__ : Optional[Any] = torch.zeros_like(_lowerCamelCase , dtype=hidden.dtype , device=hidden.device) UpperCAmelCase__ : Optional[int] = 0 UpperCAmelCase__ : List[str] = [0] + self.cutoffs for i in range(len(_lowerCamelCase) - 1): UpperCAmelCase__ , UpperCAmelCase__ : Dict = cutoff_values[i], cutoff_values[i + 1] if labels is not None: UpperCAmelCase__ : List[str] = (labels >= l_idx) & (labels < r_idx) UpperCAmelCase__ : str = mask_i.nonzero().squeeze() if indices_i.numel() == 0: continue UpperCAmelCase__ : List[Any] = labels.index_select(0 , _lowerCamelCase) - l_idx UpperCAmelCase__ : List[str] = head_logprob.index_select(0 , _lowerCamelCase) UpperCAmelCase__ : Optional[Any] = hidden.index_select(0 , _lowerCamelCase) else: UpperCAmelCase__ : Any = hidden if i == 0: if labels is not None: UpperCAmelCase__ : List[Any] = head_logprob_i.gather(1 , target_i[:, None]).squeeze(1) else: UpperCAmelCase__ : Tuple = head_logprob[:, : self.cutoffs[0]] else: UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : str = weights[i], biases[i], self.out_projs[i] UpperCAmelCase__ : int = self._compute_logit(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase) UpperCAmelCase__ : str = nn.functional.log_softmax(_lowerCamelCase , dim=1) UpperCAmelCase__ : int = self.cutoffs[0] + i - 1 # No probability for the head cluster if labels is not None: UpperCAmelCase__ : Dict = head_logprob_i[:, cluster_prob_idx] + tail_logprob_i.gather( 1 , target_i[:, None]).squeeze(1) else: UpperCAmelCase__ : List[str] = head_logprob[:, cluster_prob_idx, None] + tail_logprob_i UpperCAmelCase__ : Tuple = logprob_i if labels is not None: if (hasattr(self , """keep_order""") and self.keep_order) or keep_order: out.index_copy_(0 , _lowerCamelCase , -logprob_i) else: out[offset : offset + logprob_i.size(0)].copy_(-logprob_i) offset += logprob_i.size(0) return out def snake_case__ ( self , _lowerCamelCase): if self.n_clusters == 0: UpperCAmelCase__ : Union[str, Any] = self._compute_logit(_lowerCamelCase , self.out_layers[0].weight , self.out_layers[0].bias , self.out_projs[0]) return nn.functional.log_softmax(_lowerCamelCase , dim=-1) else: # construct weights and biases UpperCAmelCase__ , UpperCAmelCase__ : Optional[int] = [], [] for i in range(len(self.cutoffs)): if self.div_val == 1: UpperCAmelCase__ , UpperCAmelCase__ : Any = self.cutoff_ends[i], self.cutoff_ends[i + 1] UpperCAmelCase__ : Union[str, Any] = self.out_layers[0].weight[l_idx:r_idx] UpperCAmelCase__ : Any = self.out_layers[0].bias[l_idx:r_idx] else: UpperCAmelCase__ : int = self.out_layers[i].weight UpperCAmelCase__ : List[str] = self.out_layers[i].bias if i == 0: UpperCAmelCase__ : List[Any] = torch.cat([weight_i, self.cluster_weight] , dim=0) UpperCAmelCase__ : Optional[int] = torch.cat([bias_i, self.cluster_bias] , dim=0) weights.append(_lowerCamelCase) biases.append(_lowerCamelCase) UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : str = weights[0], biases[0], self.out_projs[0] UpperCAmelCase__ : List[Any] = self._compute_logit(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase) UpperCAmelCase__ : List[Any] = hidden.new_empty((head_logit.size(0), self.n_token)) UpperCAmelCase__ : int = nn.functional.log_softmax(_lowerCamelCase , dim=1) UpperCAmelCase__ : str = [0] + self.cutoffs for i in range(len(_lowerCamelCase) - 1): UpperCAmelCase__ , UpperCAmelCase__ : Union[str, Any] = cutoff_values[i], cutoff_values[i + 1] if i == 0: UpperCAmelCase__ : List[Any] = head_logprob[:, : self.cutoffs[0]] else: UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : Union[str, Any] = weights[i], biases[i], self.out_projs[i] UpperCAmelCase__ : Union[str, Any] = self._compute_logit(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase) UpperCAmelCase__ : List[str] = nn.functional.log_softmax(_lowerCamelCase , dim=1) UpperCAmelCase__ : Union[str, Any] = head_logprob[:, -i] + tail_logprob_i UpperCAmelCase__ : Dict = logprob_i return out
163
0
from __future__ import annotations def lowerCamelCase__ ( A__ : tuple[int, int] , A__ : int ): '''simple docstring''' __lowerCamelCase, __lowerCamelCase = position __lowerCamelCase = [ (y + 1, x + 2), (y - 1, x + 2), (y + 1, x - 2), (y - 1, x - 2), (y + 2, x + 1), (y + 2, x - 1), (y - 2, x + 1), (y - 2, x - 1), ] __lowerCamelCase = [] for position in positions: __lowerCamelCase, __lowerCamelCase = position if 0 <= y_test < n and 0 <= x_test < n: permissible_positions.append(A__ ) return permissible_positions def lowerCamelCase__ ( A__ : list[list[int]] ): '''simple docstring''' return not any(elem == 0 for row in board for elem in row ) def lowerCamelCase__ ( A__ : list[list[int]] , A__ : tuple[int, int] , A__ : int ): '''simple docstring''' if is_complete(A__ ): return True for position in get_valid_pos(A__ , len(A__ ) ): __lowerCamelCase, __lowerCamelCase = position if board[y][x] == 0: __lowerCamelCase = curr + 1 if open_knight_tour_helper(A__ , A__ , curr + 1 ): return True __lowerCamelCase = 0 return False def lowerCamelCase__ ( A__ : int ): '''simple docstring''' __lowerCamelCase = [[0 for i in range(A__ )] for j in range(A__ )] for i in range(A__ ): for j in range(A__ ): __lowerCamelCase = 1 if open_knight_tour_helper(A__ , (i, j) , 1 ): return board __lowerCamelCase = 0 __lowerCamelCase = f'Open Kight Tour cannot be performed on a board of size {n}' raise ValueError(A__ ) if __name__ == "__main__": import doctest doctest.testmod()
29
import asyncio import os import shutil import subprocess import sys import tempfile import unittest from distutils.util import strtobool from functools import partial from pathlib import Path from typing import List, Union from unittest import mock import torch from ..state import AcceleratorState, PartialState from ..utils import ( gather, is_bnb_available, is_comet_ml_available, is_datasets_available, is_deepspeed_available, is_mps_available, is_safetensors_available, is_tensorboard_available, is_torch_version, is_tpu_available, is_transformers_available, is_wandb_available, is_xpu_available, ) def lowerCamelCase__ ( A__ : Dict , A__ : Optional[int]=False ): '''simple docstring''' try: __lowerCamelCase = os.environ[key] except KeyError: # KEY isn't set, default to `default`. __lowerCamelCase = default else: # KEY is set, convert it to True or False. try: __lowerCamelCase = strtobool(A__ ) except ValueError: # More values are supported, but let's keep the message simple. raise ValueError(f'If set, {key} must be yes or no.' ) return _value UpperCAmelCase_ = parse_flag_from_env('RUN_SLOW', default=False) def lowerCamelCase__ ( A__ : Any ): '''simple docstring''' return unittest.skip("""Test was skipped""" )(A__ ) def lowerCamelCase__ ( A__ : List[Any] ): '''simple docstring''' return unittest.skipUnless(_run_slow_tests , """test is slow""" )(A__ ) def lowerCamelCase__ ( A__ : Union[str, Any] ): '''simple docstring''' return unittest.skipUnless(not torch.cuda.is_available() , """test requires only a CPU""" )(A__ ) def lowerCamelCase__ ( A__ : List[str] ): '''simple docstring''' return unittest.skipUnless(torch.cuda.is_available() , """test requires a GPU""" )(A__ ) def lowerCamelCase__ ( A__ : Union[str, Any] ): '''simple docstring''' return unittest.skipUnless(is_xpu_available() , """test requires a XPU""" )(A__ ) def lowerCamelCase__ ( A__ : Optional[int] ): '''simple docstring''' return unittest.skipUnless(is_mps_available() , """test requires a `mps` backend support in `torch`""" )(A__ ) def lowerCamelCase__ ( A__ : List[Any] ): '''simple docstring''' return unittest.skipUnless( is_transformers_available() and is_datasets_available() , """test requires the Hugging Face suite""" )(A__ ) def lowerCamelCase__ ( A__ : Any ): '''simple docstring''' return unittest.skipUnless(is_bnb_available() , """test requires the bitsandbytes library""" )(A__ ) def lowerCamelCase__ ( A__ : Optional[int] ): '''simple docstring''' return unittest.skipUnless(is_tpu_available() , """test requires TPU""" )(A__ ) def lowerCamelCase__ ( A__ : List[Any] ): '''simple docstring''' return unittest.skipUnless(torch.cuda.device_count() == 1 , """test requires a GPU""" )(A__ ) def lowerCamelCase__ ( A__ : Dict ): '''simple docstring''' return unittest.skipUnless(torch.xpu.device_count() == 1 , """test requires a XPU""" )(A__ ) def lowerCamelCase__ ( A__ : Dict ): '''simple docstring''' return unittest.skipUnless(torch.cuda.device_count() > 1 , """test requires multiple GPUs""" )(A__ ) def lowerCamelCase__ ( A__ : Tuple ): '''simple docstring''' return unittest.skipUnless(torch.xpu.device_count() > 1 , """test requires multiple XPUs""" )(A__ ) def lowerCamelCase__ ( A__ : Optional[int] ): '''simple docstring''' return unittest.skipUnless(is_safetensors_available() , """test requires safetensors""" )(A__ ) def lowerCamelCase__ ( A__ : Dict ): '''simple docstring''' return unittest.skipUnless(is_deepspeed_available() , """test requires DeepSpeed""" )(A__ ) def lowerCamelCase__ ( A__ : List[str] ): '''simple docstring''' return unittest.skipUnless(is_torch_version(""">=""" , """1.12.0""" ) , """test requires torch version >= 1.12.0""" )(A__ ) def lowerCamelCase__ ( A__ : Tuple=None , A__ : Optional[Any]=None ): '''simple docstring''' if test_case is None: return partial(A__ , version=A__ ) return unittest.skipUnless(is_torch_version(""">=""" , A__ ) , f'test requires torch version >= {version}' )(A__ ) def lowerCamelCase__ ( A__ : Dict ): '''simple docstring''' return unittest.skipUnless(is_tensorboard_available() , """test requires Tensorboard""" )(A__ ) def lowerCamelCase__ ( A__ : Optional[Any] ): '''simple docstring''' return unittest.skipUnless(is_wandb_available() , """test requires wandb""" )(A__ ) def lowerCamelCase__ ( A__ : str ): '''simple docstring''' return unittest.skipUnless(is_comet_ml_available() , """test requires comet_ml""" )(A__ ) UpperCAmelCase_ = ( any([is_wandb_available(), is_tensorboard_available()]) and not is_comet_ml_available() ) def lowerCamelCase__ ( A__ : Any ): '''simple docstring''' return unittest.skipUnless( _atleast_one_tracker_available , """test requires at least one tracker to be available and for `comet_ml` to not be installed""" , )(A__ ) class lowerCamelCase__( unittest.TestCase): UpperCAmelCase__ : List[Any] = True @classmethod def lowerCAmelCase__ ( cls: int ): __lowerCamelCase = tempfile.mkdtemp() @classmethod def lowerCAmelCase__ ( cls: Any ): if os.path.exists(cls.tmpdir ): shutil.rmtree(cls.tmpdir ) def lowerCAmelCase__ ( self: Any ): if self.clear_on_setup: for path in Path(self.tmpdir ).glob("""**/*""" ): if path.is_file(): path.unlink() elif path.is_dir(): shutil.rmtree(UpperCamelCase_ ) class lowerCamelCase__( unittest.TestCase): def lowerCAmelCase__ ( self: int ): super().tearDown() # Reset the state of the AcceleratorState singleton. AcceleratorState._reset_state() PartialState._reset_state() class lowerCamelCase__( unittest.TestCase): def lowerCAmelCase__ ( self: Tuple , UpperCamelCase_: Union[mock.Mock, List[mock.Mock]] ): __lowerCamelCase = mocks if isinstance(UpperCamelCase_ , (tuple, list) ) else [mocks] for m in self.mocks: m.start() self.addCleanup(m.stop ) def lowerCamelCase__ ( A__ : Optional[Any] ): '''simple docstring''' __lowerCamelCase = AcceleratorState() __lowerCamelCase = tensor[None].clone().to(state.device ) __lowerCamelCase = gather(A__ ).cpu() __lowerCamelCase = tensor[0].cpu() for i in range(tensors.shape[0] ): if not torch.equal(tensors[i] , A__ ): return False return True class lowerCamelCase__: def __init__( self: Union[str, Any] , UpperCamelCase_: Dict , UpperCamelCase_: Any , UpperCamelCase_: Any ): __lowerCamelCase = returncode __lowerCamelCase = stdout __lowerCamelCase = stderr async def lowerCamelCase__ ( A__ : int , A__ : Any ): '''simple docstring''' while True: __lowerCamelCase = await stream.readline() if line: callback(A__ ) else: break async def lowerCamelCase__ ( A__ : Dict , A__ : List[str]=None , A__ : Any=None , A__ : Optional[Any]=None , A__ : Tuple=False , A__ : List[Any]=False ): '''simple docstring''' if echo: print("""\nRunning: """ , """ """.join(A__ ) ) __lowerCamelCase = await asyncio.create_subprocess_exec( cmd[0] , *cmd[1:] , stdin=A__ , stdout=asyncio.subprocess.PIPE , stderr=asyncio.subprocess.PIPE , env=A__ , ) # note: there is a warning for a possible deadlock when using `wait` with huge amounts of data in the pipe # https://docs.python.org/3/library/asyncio-subprocess.html#asyncio.asyncio.subprocess.Process.wait # # If it starts hanging, will need to switch to the following code. The problem is that no data # will be seen until it's done and if it hangs for example there will be no debug info. # out, err = await p.communicate() # return _RunOutput(p.returncode, out, err) __lowerCamelCase = [] __lowerCamelCase = [] def tee(A__ : int , A__ : Any , A__ : Optional[Any] , A__ : int="" ): __lowerCamelCase = line.decode("""utf-8""" ).rstrip() sink.append(A__ ) if not quiet: print(A__ , A__ , file=A__ ) # XXX: the timeout doesn't seem to make any difference here await asyncio.wait( [ asyncio.create_task(_read_stream(p.stdout , lambda A__ : tee(A__ , A__ , sys.stdout , label="""stdout:""" ) ) ), asyncio.create_task(_read_stream(p.stderr , lambda A__ : tee(A__ , A__ , sys.stderr , label="""stderr:""" ) ) ), ] , timeout=A__ , ) return _RunOutput(await p.wait() , A__ , A__ ) def lowerCamelCase__ ( A__ : Optional[Any] , A__ : Any=None , A__ : Union[str, Any]=None , A__ : Dict=180 , A__ : str=False , A__ : List[Any]=True ): '''simple docstring''' __lowerCamelCase = asyncio.get_event_loop() __lowerCamelCase = loop.run_until_complete( _stream_subprocess(A__ , env=A__ , stdin=A__ , timeout=A__ , quiet=A__ , echo=A__ ) ) __lowerCamelCase = """ """.join(A__ ) if result.returncode > 0: __lowerCamelCase = """\n""".join(result.stderr ) raise RuntimeError( f'\'{cmd_str}\' failed with returncode {result.returncode}\n\n' f'The combined stderr from workers follows:\n{stderr}' ) return result class lowerCamelCase__( __lowerCamelCase): pass def lowerCamelCase__ ( A__ : List[str] , A__ : Union[str, Any]=False ): '''simple docstring''' try: __lowerCamelCase = subprocess.check_output(A__ , stderr=subprocess.STDOUT ) if return_stdout: if hasattr(A__ , """decode""" ): __lowerCamelCase = output.decode("""utf-8""" ) return output except subprocess.CalledProcessError as e: raise SubprocessCallException( f'Command `{" ".join(A__ )}` failed with the following error:\n\n{e.output.decode()}' ) from e
29
1
"""simple docstring""" import os from bleurt import score # From: git+https://github.com/google-research/bleurt.git import datasets A: int = datasets.logging.get_logger(__name__) A: int = "\\n@inproceedings{bleurt,\n title={BLEURT: Learning Robust Metrics for Text Generation},\n author={Thibault Sellam and Dipanjan Das and Ankur P. Parikh},\n booktitle={ACL},\n year={2020},\n url={https://arxiv.org/abs/2004.04696}\n}\n" A: Union[str, Any] = "\\nBLEURT a learnt evaluation metric for Natural Language Generation. It is built using multiple phases of transfer learning starting from a pretrained BERT model (Devlin et al. 2018)\nand then employing another pre-training phrase using synthetic data. Finally it is trained on WMT human annotations. You may run BLEURT out-of-the-box or fine-tune\nit for your specific application (the latter is expected to perform better).\n\nSee the project\'s README at https://github.com/google-research/bleurt#readme for more information.\n" A: List[str] = "\nBLEURT score.\n\nArgs:\n `predictions` (list of str): prediction/candidate sentences\n `references` (list of str): reference sentences\n `checkpoint` BLEURT checkpoint. Will default to BLEURT-tiny if None.\n\nReturns:\n \'scores\': List of scores.\nExamples:\n\n >>> predictions = [\"hello there\", \"general kenobi\"]\n >>> references = [\"hello there\", \"general kenobi\"]\n >>> bleurt = datasets.load_metric(\"bleurt\")\n >>> results = bleurt.compute(predictions=predictions, references=references)\n >>> print([round(v, 2) for v in results[\"scores\"]])\n [1.03, 1.04]\n" A: Optional[Any] = { "bleurt-tiny-128": "https://storage.googleapis.com/bleurt-oss/bleurt-tiny-128.zip", "bleurt-tiny-512": "https://storage.googleapis.com/bleurt-oss/bleurt-tiny-512.zip", "bleurt-base-128": "https://storage.googleapis.com/bleurt-oss/bleurt-base-128.zip", "bleurt-base-512": "https://storage.googleapis.com/bleurt-oss/bleurt-base-512.zip", "bleurt-large-128": "https://storage.googleapis.com/bleurt-oss/bleurt-large-128.zip", "bleurt-large-512": "https://storage.googleapis.com/bleurt-oss/bleurt-large-512.zip", "BLEURT-20-D3": "https://storage.googleapis.com/bleurt-oss-21/BLEURT-20-D3.zip", "BLEURT-20-D6": "https://storage.googleapis.com/bleurt-oss-21/BLEURT-20-D6.zip", "BLEURT-20-D12": "https://storage.googleapis.com/bleurt-oss-21/BLEURT-20-D12.zip", "BLEURT-20": "https://storage.googleapis.com/bleurt-oss-21/BLEURT-20.zip", } @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class SCREAMING_SNAKE_CASE__ ( datasets.Metric ): def SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage="""https://github.com/google-research/bleurt""" , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""string""" , id="""sequence""" ), """references""": datasets.Value("""string""" , id="""sequence""" ), } ) , codebase_urls=["""https://github.com/google-research/bleurt"""] , reference_urls=["""https://github.com/google-research/bleurt""", """https://arxiv.org/abs/2004.04696"""] , ) def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE ) -> List[Any]: '''simple docstring''' if self.config_name == "default": logger.warning( """Using default BLEURT-Base checkpoint for sequence maximum length 128. """ """You can use a bigger model for better results with e.g.: datasets.load_metric(\'bleurt\', \'bleurt-large-512\').""" ) UpperCAmelCase : Tuple = '''bleurt-base-128''' if self.config_name.lower() in CHECKPOINT_URLS: UpperCAmelCase : Dict = self.config_name.lower() elif self.config_name.upper() in CHECKPOINT_URLS: UpperCAmelCase : Dict = self.config_name.upper() else: raise KeyError( F"{self.config_name} model not found. You should supply the name of a model checkpoint for bleurt in {CHECKPOINT_URLS.keys()}" ) # download the model checkpoint specified by self.config_name and set up the scorer UpperCAmelCase : List[str] = dl_manager.download_and_extract(CHECKPOINT_URLS[checkpoint_name] ) UpperCAmelCase : Any = score.BleurtScorer(os.path.join(__lowercase , __lowercase ) ) def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Tuple: '''simple docstring''' UpperCAmelCase : int = self.scorer.score(references=__lowercase , candidates=__lowercase ) return {"scores": scores}
109
'''simple docstring''' from __future__ import annotations import math a_ = '2020.9.26' a_ = 'xcodz-dot, cclaus, dhruvmanila' def _a( UpperCamelCase__ : float, UpperCamelCase__ : float, UpperCamelCase__ : float, UpperCamelCase__ : float, UpperCamelCase__ : float ): '''simple docstring''' if not all(isinstance(UpperCamelCase__, (float, int) ) for val in locals().values() ): SCREAMING_SNAKE_CASE__ : int =f"Input values must either be float or int: {list(locals().values() )}" raise TypeError(UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ : Dict =((x * distance) / (z + distance)) * scale SCREAMING_SNAKE_CASE__ : Tuple =((y * distance) / (z + distance)) * scale return projected_x, projected_y def _a( UpperCamelCase__ : float, UpperCamelCase__ : float, UpperCamelCase__ : float, UpperCamelCase__ : str, UpperCamelCase__ : float ): '''simple docstring''' if not isinstance(UpperCamelCase__, UpperCamelCase__ ): raise TypeError('''Axis must be a str''' ) SCREAMING_SNAKE_CASE__ : List[Any] =locals() del input_variables["axis"] if not all(isinstance(UpperCamelCase__, (float, int) ) for val in input_variables.values() ): SCREAMING_SNAKE_CASE__ : List[str] =( '''Input values except axis must either be float or int: ''' f"{list(input_variables.values() )}" ) raise TypeError(UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ : Tuple =(angle % 3_6_0) / 4_5_0 * 1_8_0 / math.pi if axis == "z": SCREAMING_SNAKE_CASE__ : str =x * math.cos(UpperCamelCase__ ) - y * math.sin(UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ : Tuple =y * math.cos(UpperCamelCase__ ) + x * math.sin(UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ : str =z elif axis == "x": SCREAMING_SNAKE_CASE__ : Dict =y * math.cos(UpperCamelCase__ ) - z * math.sin(UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ : Optional[int] =z * math.cos(UpperCamelCase__ ) + y * math.sin(UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ : Union[str, Any] =x elif axis == "y": SCREAMING_SNAKE_CASE__ : Tuple =x * math.cos(UpperCamelCase__ ) - z * math.sin(UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ : Optional[Any] =z * math.cos(UpperCamelCase__ ) + x * math.sin(UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ : List[Any] =y else: raise ValueError('''not a valid axis, choose one of \'x\', \'y\', \'z\'''' ) return new_x, new_y, new_z if __name__ == "__main__": import doctest doctest.testmod() print(F'''{convert_to_ad(1.0, 2.0, 3.0, 10.0, 10.0) = }''') print(F'''{rotate(1.0, 2.0, 3.0, 'y', 90.0) = }''')
152
0
'''simple docstring''' def _a( UpperCamelCase__ : Union[str, Any] ): SCREAMING_SNAKE_CASE__ : str =[0] * len(UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ : int =[] SCREAMING_SNAKE_CASE__ : Dict =[1] * len(UpperCamelCase__ ) for values in graph.values(): for i in values: indegree[i] += 1 for i in range(len(UpperCamelCase__ ) ): if indegree[i] == 0: queue.append(UpperCamelCase__ ) while queue: SCREAMING_SNAKE_CASE__ : Optional[Any] =queue.pop(0 ) for x in graph[vertex]: indegree[x] -= 1 if long_dist[vertex] + 1 > long_dist[x]: SCREAMING_SNAKE_CASE__ : Optional[int] =long_dist[vertex] + 1 if indegree[x] == 0: queue.append(UpperCamelCase__ ) print(max(UpperCamelCase__ ) ) # Adjacency list of Graph a_ = {0: [2, 3, 4], 1: [2, 7], 2: [5], 3: [5, 7], 4: [7], 5: [6], 6: [7], 7: []} longest_distance(graph)
371
'''simple docstring''' import math def _a( UpperCamelCase__ : int ): '''simple docstring''' return math.sqrt(UpperCamelCase__ ) * math.sqrt(UpperCamelCase__ ) == num def _a( UpperCamelCase__ : int ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : List[Any] =0 SCREAMING_SNAKE_CASE__ : Any =n while left <= right: SCREAMING_SNAKE_CASE__ : str =(left + right) // 2 if mid**2 == n: return True elif mid**2 > n: SCREAMING_SNAKE_CASE__ : Optional[Any] =mid - 1 else: SCREAMING_SNAKE_CASE__ : Tuple =mid + 1 return False if __name__ == "__main__": import doctest doctest.testmod()
222
0
import argparse import os import re lowerCAmelCase = 'src/transformers/models/auto' # re pattern that matches mapping introductions: # SUPER_MODEL_MAPPING_NAMES = OrderedDict or SUPER_MODEL_MAPPING = OrderedDict lowerCAmelCase = re.compile(R'[A-Z_]+_MAPPING(\s+|_[A-Z_]+\s+)=\s+OrderedDict') # re pattern that matches identifiers in mappings lowerCAmelCase = re.compile(R'\s*\(\s*"(\S[^"]+)"') def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = False ): """simple docstring""" with open(SCREAMING_SNAKE_CASE , '''r''' , encoding='''utf-8''' ) as f: lowercase__ = f.read() lowercase__ = content.split('''\n''' ) lowercase__ = [] lowercase__ = 0 while line_idx < len(SCREAMING_SNAKE_CASE ): if _re_intro_mapping.search(lines[line_idx] ) is not None: lowercase__ = len(re.search(R'''^(\s*)\S''' , lines[line_idx] ).groups()[0] ) + 8 # Start of a new mapping! while not lines[line_idx].startswith(''' ''' * indent + '''(''' ): new_lines.append(lines[line_idx] ) line_idx += 1 lowercase__ = [] while lines[line_idx].strip() != "]": # Blocks either fit in one line or not if lines[line_idx].strip() == "(": lowercase__ = line_idx while not lines[line_idx].startswith(''' ''' * indent + ''')''' ): line_idx += 1 blocks.append('''\n'''.join(lines[start_idx : line_idx + 1] ) ) else: blocks.append(lines[line_idx] ) line_idx += 1 # Sort blocks by their identifiers lowercase__ = sorted(SCREAMING_SNAKE_CASE , key=lambda SCREAMING_SNAKE_CASE : _re_identifier.search(SCREAMING_SNAKE_CASE ).groups()[0] ) new_lines += blocks else: new_lines.append(lines[line_idx] ) line_idx += 1 if overwrite: with open(SCREAMING_SNAKE_CASE , '''w''' , encoding='''utf-8''' ) as f: f.write('''\n'''.join(SCREAMING_SNAKE_CASE ) ) elif "\n".join(SCREAMING_SNAKE_CASE ) != content: return True def _a ( SCREAMING_SNAKE_CASE = False ): """simple docstring""" lowercase__ = [os.path.join(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) for f in os.listdir(SCREAMING_SNAKE_CASE ) if f.endswith('''.py''' )] lowercase__ = [sort_auto_mapping(SCREAMING_SNAKE_CASE , overwrite=SCREAMING_SNAKE_CASE ) for fname in fnames] if not overwrite and any(SCREAMING_SNAKE_CASE ): lowercase__ = [f for f, d in zip(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if d] raise ValueError( f'The following files have auto mappings that need sorting: {", ".join(SCREAMING_SNAKE_CASE )}. Run `make style` to fix' ''' this.''' ) if __name__ == "__main__": lowerCAmelCase = argparse.ArgumentParser() parser.add_argument('--check_only', action='store_true', help='Whether to only check or fix style.') lowerCAmelCase = parser.parse_args() sort_all_auto_mappings(not args.check_only)
110
import argparse import torch from huggingface_hub import hf_hub_download from transformers import AutoTokenizer, RobertaPreLayerNormConfig, RobertaPreLayerNormForMaskedLM from transformers.utils import logging logging.set_verbosity_info() lowerCAmelCase = logging.get_logger(__name__) def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ = RobertaPreLayerNormConfig.from_pretrained( SCREAMING_SNAKE_CASE , architectures=['''RobertaPreLayerNormForMaskedLM'''] ) # convert state_dict lowercase__ = torch.load(hf_hub_download(repo_id=SCREAMING_SNAKE_CASE , filename='''pytorch_model.bin''' ) ) lowercase__ = {} for tensor_key, tensor_value in original_state_dict.items(): # The transformer implementation gives the model a unique name, rather than overwiriting 'roberta' if tensor_key.startswith('''roberta.''' ): lowercase__ = '''roberta_prelayernorm.''' + tensor_key[len('''roberta.''' ) :] # The original implementation contains weights which are not used, remove them from the state_dict if tensor_key.endswith('''.self.LayerNorm.weight''' ) or tensor_key.endswith('''.self.LayerNorm.bias''' ): continue lowercase__ = tensor_value lowercase__ = RobertaPreLayerNormForMaskedLM.from_pretrained( pretrained_model_name_or_path=SCREAMING_SNAKE_CASE , config=SCREAMING_SNAKE_CASE , state_dict=SCREAMING_SNAKE_CASE ) model.save_pretrained(SCREAMING_SNAKE_CASE ) # convert tokenizer lowercase__ = AutoTokenizer.from_pretrained(SCREAMING_SNAKE_CASE ) tokenizer.save_pretrained(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": lowerCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '--checkpoint-repo', default=None, type=str, required=True, help='Path the official PyTorch dump, e.g. \'andreasmadsen/efficient_mlm_m0.40\'.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) lowerCAmelCase = parser.parse_args() convert_roberta_prelayernorm_checkpoint_to_pytorch(args.checkpoint_repo, args.pytorch_dump_folder_path)
110
1
"""simple docstring""" from string import ascii_lowercase, ascii_uppercase def lowerCamelCase__ (_UpperCAmelCase): if not sentence: return "" SCREAMING_SNAKE_CASE = dict(zip(_A , _A)) return lower_to_upper.get(sentence[0] , sentence[0]) + sentence[1:] if __name__ == "__main__": from doctest import testmod testmod()
353
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import convert_to_rgb, normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL a_ : Optional[Any] = logging.get_logger(__name__) class _snake_case ( A__ ): _lowercase : Optional[int] = ['''pixel_values'''] def __init__( self , a = True , a = None , a = PILImageResampling.BICUBIC , a = True , a = 1 / 255 , a = True , a = None , a = None , a = True , **a , ) -> None: super().__init__(**a) SCREAMING_SNAKE_CASE = size if size is not None else {'height': 384, 'width': 384} SCREAMING_SNAKE_CASE = get_size_dict(a , default_to_square=a) SCREAMING_SNAKE_CASE = do_resize SCREAMING_SNAKE_CASE = size SCREAMING_SNAKE_CASE = resample SCREAMING_SNAKE_CASE = do_rescale SCREAMING_SNAKE_CASE = rescale_factor SCREAMING_SNAKE_CASE = do_normalize SCREAMING_SNAKE_CASE = image_mean if image_mean is not None else OPENAI_CLIP_MEAN SCREAMING_SNAKE_CASE = image_std if image_std is not None else OPENAI_CLIP_STD SCREAMING_SNAKE_CASE = do_convert_rgb def SCREAMING_SNAKE_CASE__ ( self , a , a , a = PILImageResampling.BICUBIC , a = None , **a , ) -> np.ndarray: SCREAMING_SNAKE_CASE = get_size_dict(a , default_to_square=a) if "height" not in size or "width" not in size: raise ValueError(f'''The `size` dictionary must contain the keys `height` and `width`. Got {size.keys()}''') SCREAMING_SNAKE_CASE = (size['height'], size['width']) return resize(a , size=a , resample=a , data_format=a , **a) def SCREAMING_SNAKE_CASE__ ( self , a , a , a = None , **a , ) -> Optional[Any]: return rescale(a , scale=a , data_format=a , **a) def SCREAMING_SNAKE_CASE__ ( self , a , a , a , a = None , **a , ) -> np.ndarray: return normalize(a , mean=a , std=a , data_format=a , **a) def SCREAMING_SNAKE_CASE__ ( self , a , a = None , a = None , a = None , a = None , a = None , a = None , a = None , a = None , a = None , a = None , a = ChannelDimension.FIRST , **a , ) -> PIL.Image.Image: SCREAMING_SNAKE_CASE = do_resize if do_resize is not None else self.do_resize SCREAMING_SNAKE_CASE = resample if resample is not None else self.resample SCREAMING_SNAKE_CASE = do_rescale if do_rescale is not None else self.do_rescale SCREAMING_SNAKE_CASE = rescale_factor if rescale_factor is not None else self.rescale_factor SCREAMING_SNAKE_CASE = do_normalize if do_normalize is not None else self.do_normalize SCREAMING_SNAKE_CASE = image_mean if image_mean is not None else self.image_mean SCREAMING_SNAKE_CASE = image_std if image_std is not None else self.image_std SCREAMING_SNAKE_CASE = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb SCREAMING_SNAKE_CASE = size if size is not None else self.size SCREAMING_SNAKE_CASE = get_size_dict(a , default_to_square=a) SCREAMING_SNAKE_CASE = make_list_of_images(a) if not valid_images(a): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.') if do_resize and size is None or resample is None: raise ValueError('Size and resample must be specified if do_resize is True.') if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.') if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.') # PIL RGBA images are converted to RGB if do_convert_rgb: SCREAMING_SNAKE_CASE = [convert_to_rgb(a) for image in images] # All transformations expect numpy arrays. SCREAMING_SNAKE_CASE = [to_numpy_array(a) for image in images] if do_resize: SCREAMING_SNAKE_CASE = [self.resize(image=a , size=a , resample=a) for image in images] if do_rescale: SCREAMING_SNAKE_CASE = [self.rescale(image=a , scale=a) for image in images] if do_normalize: SCREAMING_SNAKE_CASE = [self.normalize(image=a , mean=a , std=a) for image in images] SCREAMING_SNAKE_CASE = [to_channel_dimension_format(a , a) for image in images] SCREAMING_SNAKE_CASE = BatchFeature(data={'pixel_values': images} , tensor_type=a) return encoded_outputs
327
0
import gc import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer import diffusers from diffusers import ( AutoencoderKL, EulerDiscreteScheduler, StableDiffusionLatentUpscalePipeline, StableDiffusionPipeline, UNetaDConditionModel, ) from diffusers.schedulers import KarrasDiffusionSchedulers from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() def lowerCAmelCase__ ( lowerCamelCase_ : str): '''simple docstring''' lowerCAmelCase__ : List[str] = [tensor.shape for tensor in tensor_list] return all(shape == shapes[0] for shape in shapes[1:]) class lowerCamelCase__ ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase): '''simple docstring''' snake_case_ =StableDiffusionLatentUpscalePipeline snake_case_ =TEXT_GUIDED_IMAGE_VARIATION_PARAMS - { """height""", """width""", """cross_attention_kwargs""", """negative_prompt_embeds""", """prompt_embeds""", } snake_case_ =PipelineTesterMixin.required_optional_params - {"""num_images_per_prompt"""} snake_case_ =TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS snake_case_ =frozenset( []) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess snake_case_ =frozenset([]) snake_case_ =True @property def lowerCAmelCase__ (self ) -> Any: """simple docstring""" lowerCAmelCase__ : Optional[Any] = 1 lowerCAmelCase__ : List[str] = 4 lowerCAmelCase__ : Tuple = (16, 16) lowerCAmelCase__ : List[Any] = floats_tensor((batch_size, num_channels) + sizes ,rng=random.Random(0 ) ).to(__lowerCamelCase ) return image def lowerCAmelCase__ (self ) -> Any: """simple docstring""" torch.manual_seed(0 ) lowerCAmelCase__ : Dict = UNetaDConditionModel( act_fn='''gelu''' ,attention_head_dim=8 ,norm_num_groups=__lowerCamelCase ,block_out_channels=[32, 32, 64, 64] ,time_cond_proj_dim=1_60 ,conv_in_kernel=1 ,conv_out_kernel=1 ,cross_attention_dim=32 ,down_block_types=( '''KDownBlock2D''', '''KCrossAttnDownBlock2D''', '''KCrossAttnDownBlock2D''', '''KCrossAttnDownBlock2D''', ) ,in_channels=8 ,mid_block_type=__lowerCamelCase ,only_cross_attention=__lowerCamelCase ,out_channels=5 ,resnet_time_scale_shift='''scale_shift''' ,time_embedding_type='''fourier''' ,timestep_post_act='''gelu''' ,up_block_types=('''KCrossAttnUpBlock2D''', '''KCrossAttnUpBlock2D''', '''KCrossAttnUpBlock2D''', '''KUpBlock2D''') ,) lowerCAmelCase__ : Dict = AutoencoderKL( block_out_channels=[32, 32, 64, 64] ,in_channels=3 ,out_channels=3 ,down_block_types=[ '''DownEncoderBlock2D''', '''DownEncoderBlock2D''', '''DownEncoderBlock2D''', '''DownEncoderBlock2D''', ] ,up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D''', '''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] ,latent_channels=4 ,) lowerCAmelCase__ : List[str] = EulerDiscreteScheduler(prediction_type='''sample''' ) lowerCAmelCase__ : List[str] = CLIPTextConfig( bos_token_id=0 ,eos_token_id=2 ,hidden_size=32 ,intermediate_size=37 ,layer_norm_eps=1e-05 ,num_attention_heads=4 ,num_hidden_layers=5 ,pad_token_id=1 ,vocab_size=10_00 ,hidden_act='''quick_gelu''' ,projection_dim=5_12 ,) lowerCAmelCase__ : Union[str, Any] = CLIPTextModel(__lowerCamelCase ) lowerCAmelCase__ : int = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) lowerCAmelCase__ : List[str] = { '''unet''': model.eval(), '''vae''': vae.eval(), '''scheduler''': scheduler, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, } return components def lowerCAmelCase__ (self ,__lowerCamelCase ,__lowerCamelCase=0 ) -> List[str]: """simple docstring""" if str(__lowerCamelCase ).startswith('''mps''' ): lowerCAmelCase__ : Tuple = torch.manual_seed(__lowerCamelCase ) else: lowerCAmelCase__ : List[str] = torch.Generator(device=__lowerCamelCase ).manual_seed(__lowerCamelCase ) lowerCAmelCase__ : List[str] = { '''prompt''': '''A painting of a squirrel eating a burger''', '''image''': self.dummy_image.cpu(), '''generator''': generator, '''num_inference_steps''': 2, '''output_type''': '''numpy''', } return inputs def lowerCAmelCase__ (self ) -> List[Any]: """simple docstring""" lowerCAmelCase__ : Union[str, Any] = '''cpu''' lowerCAmelCase__ : List[Any] = self.get_dummy_components() lowerCAmelCase__ : List[Any] = self.pipeline_class(**__lowerCamelCase ) pipe.to(__lowerCamelCase ) pipe.set_progress_bar_config(disable=__lowerCamelCase ) lowerCAmelCase__ : Dict = self.get_dummy_inputs(__lowerCamelCase ) lowerCAmelCase__ : List[str] = pipe(**__lowerCamelCase ).images lowerCAmelCase__ : Tuple = image[0, -3:, -3:, -1] self.assertEqual(image.shape ,(1, 2_56, 2_56, 3) ) lowerCAmelCase__ : List[str] = np.array( [0.4722_2412, 0.4192_1633, 0.4471_7434, 0.4687_4192, 0.4258_8258, 0.4615_0726, 0.467_7534, 0.4558_3832, 0.4857_9055] ) lowerCAmelCase__ : Any = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(__lowerCamelCase ,1e-3 ) def lowerCAmelCase__ (self ) -> List[Any]: """simple docstring""" super().test_attention_slicing_forward_pass(expected_max_diff=7e-3 ) def lowerCAmelCase__ (self ) -> Dict: """simple docstring""" super().test_cpu_offload_forward_pass(expected_max_diff=3e-3 ) def lowerCAmelCase__ (self ) -> List[Any]: """simple docstring""" super().test_dict_tuple_outputs_equivalent(expected_max_difference=3e-3 ) def lowerCAmelCase__ (self ) -> Any: """simple docstring""" super().test_inference_batch_single_identical(expected_max_diff=7e-3 ) def lowerCAmelCase__ (self ) -> Optional[Any]: """simple docstring""" super().test_pt_np_pil_outputs_equivalent(expected_max_diff=3e-3 ) def lowerCAmelCase__ (self ) -> str: """simple docstring""" super().test_save_load_local(expected_max_difference=3e-3 ) def lowerCAmelCase__ (self ) -> Union[str, Any]: """simple docstring""" super().test_save_load_optional_components(expected_max_difference=3e-3 ) def lowerCAmelCase__ (self ) -> Optional[int]: """simple docstring""" lowerCAmelCase__ : Union[str, Any] = [ '''DDIMScheduler''', '''DDPMScheduler''', '''PNDMScheduler''', '''HeunDiscreteScheduler''', '''EulerAncestralDiscreteScheduler''', '''KDPM2DiscreteScheduler''', '''KDPM2AncestralDiscreteScheduler''', '''DPMSolverSDEScheduler''', ] lowerCAmelCase__ : Tuple = self.get_dummy_components() lowerCAmelCase__ : Optional[Any] = self.pipeline_class(**__lowerCamelCase ) # make sure that PNDM does not need warm-up pipe.scheduler.register_to_config(skip_prk_steps=__lowerCamelCase ) pipe.to(__lowerCamelCase ) pipe.set_progress_bar_config(disable=__lowerCamelCase ) lowerCAmelCase__ : Optional[Any] = self.get_dummy_inputs(__lowerCamelCase ) lowerCAmelCase__ : Dict = 2 lowerCAmelCase__ : str = [] for scheduler_enum in KarrasDiffusionSchedulers: if scheduler_enum.name in skip_schedulers: # no sigma schedulers are not supported # no schedulers continue lowerCAmelCase__ : Optional[Any] = getattr(__lowerCamelCase ,scheduler_enum.name ) lowerCAmelCase__ : Union[str, Any] = scheduler_cls.from_config(pipe.scheduler.config ) lowerCAmelCase__ : List[Any] = pipe(**__lowerCamelCase )[0] outputs.append(__lowerCamelCase ) assert check_same_shape(__lowerCamelCase ) @require_torch_gpu @slow class lowerCamelCase__ ( unittest.TestCase): '''simple docstring''' def lowerCAmelCase__ (self ) -> List[Any]: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCAmelCase__ (self ) -> Union[str, Any]: """simple docstring""" lowerCAmelCase__ : Tuple = torch.manual_seed(33 ) lowerCAmelCase__ : Optional[Any] = StableDiffusionPipeline.from_pretrained('''CompVis/stable-diffusion-v1-4''' ,torch_dtype=torch.floataa ) pipe.to('''cuda''' ) lowerCAmelCase__ : Any = StableDiffusionLatentUpscalePipeline.from_pretrained( '''stabilityai/sd-x2-latent-upscaler''' ,torch_dtype=torch.floataa ) upscaler.to('''cuda''' ) lowerCAmelCase__ : str = '''a photo of an astronaut high resolution, unreal engine, ultra realistic''' lowerCAmelCase__ : Tuple = pipe(__lowerCamelCase ,generator=__lowerCamelCase ,output_type='''latent''' ).images lowerCAmelCase__ : Dict = upscaler( prompt=__lowerCamelCase ,image=__lowerCamelCase ,num_inference_steps=20 ,guidance_scale=0 ,generator=__lowerCamelCase ,output_type='''np''' ,).images[0] lowerCAmelCase__ : Tuple = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/astronaut_1024.npy''' ) assert np.abs((expected_image - image).mean() ) < 5e-2 def lowerCAmelCase__ (self ) -> Union[str, Any]: """simple docstring""" lowerCAmelCase__ : Any = torch.manual_seed(33 ) lowerCAmelCase__ : List[Any] = StableDiffusionLatentUpscalePipeline.from_pretrained( '''stabilityai/sd-x2-latent-upscaler''' ,torch_dtype=torch.floataa ) upscaler.to('''cuda''' ) lowerCAmelCase__ : Union[str, Any] = '''the temple of fire by Ross Tran and Gerardo Dottori, oil on canvas''' lowerCAmelCase__ : List[str] = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/fire_temple_512.png''' ) lowerCAmelCase__ : List[str] = upscaler( prompt=__lowerCamelCase ,image=__lowerCamelCase ,num_inference_steps=20 ,guidance_scale=0 ,generator=__lowerCamelCase ,output_type='''np''' ,).images[0] lowerCAmelCase__ : Dict = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/fire_temple_1024.npy''' ) assert np.abs((expected_image - image).max() ) < 5e-2
129
import argparse import json import os import tensorstore as ts import torch from flax import serialization from flax.traverse_util import flatten_dict, unflatten_dict from tensorflow.io import gfile from transformers.modeling_utils import dtype_byte_size from transformers.models.switch_transformers.convert_switch_transformers_original_flax_checkpoint_to_pytorch import ( rename_keys, ) from transformers.utils import WEIGHTS_INDEX_NAME, WEIGHTS_NAME from transformers.utils.hub import convert_file_size_to_int def lowerCAmelCase__ ( lowerCamelCase_ : str ,lowerCamelCase_ : Any): '''simple docstring''' if flax_key_tuple[-1] == "kernel" and flax_tensor.ndim == 3: # expert layer lowerCAmelCase__ : Tuple = flax_key_tuple[:-1] + ('''weight''',) lowerCAmelCase__ : int = torch.permute(lowerCamelCase_ ,(0, 2, 1)) elif flax_key_tuple[-1] == "kernel" and ".".join(lowerCamelCase_): # linear layer lowerCAmelCase__ : List[Any] = flax_key_tuple[:-1] + ('''weight''',) lowerCAmelCase__ : str = flax_tensor.T elif flax_key_tuple[-1] in ["scale", "embedding"]: lowerCAmelCase__ : Union[str, Any] = flax_key_tuple[:-1] + ('''weight''',) return flax_key_tuple, flax_tensor def lowerCAmelCase__ ( lowerCamelCase_ : Union[str, Any] ,lowerCamelCase_ : int ,lowerCamelCase_ : str): '''simple docstring''' if "metadata" in layer: lowerCAmelCase__ : Optional[Any] = layer.split('''metadata''') lowerCAmelCase__ : int = ''''''.join(split_layer[0])[:-1] lowerCAmelCase__ : Optional[int] = [tuple(('''metadata''' + split_layer[1]).split('''/'''))] elif "kvstore" in layer: lowerCAmelCase__ : Optional[int] = layer.split('''kvstore''') lowerCAmelCase__ : Optional[Any] = ''''''.join(split_layer[0])[:-1] lowerCAmelCase__ : Tuple = [tuple(('''kvstore''' + split_layer[1]).split('''/'''))] else: lowerCAmelCase__ : List[str] = layer.split('''/''') lowerCAmelCase__ : int = '''/'''.join(split_layer[:-1]) lowerCAmelCase__ : List[str] = (split_layer[-1],) if "kvstore/path" in layer: lowerCAmelCase__ : Optional[Any] = f"""{switch_checkpoint_path}/{checkpoint_info[layer]}""" elif "kvstore/driver" in layer: lowerCAmelCase__ : Dict = '''file''' else: lowerCAmelCase__ : Optional[Any] = checkpoint_info[layer] return curr_real_layer_name, split_layer, content def lowerCAmelCase__ ( lowerCamelCase_ : List[str] ,lowerCamelCase_ : Optional[int]): '''simple docstring''' lowerCAmelCase__ : Union[str, Any] = rename_keys(lowerCamelCase_) lowerCAmelCase__ : List[Any] = {} for k, v in current_block.items(): lowerCAmelCase__ : List[Any] = v lowerCAmelCase__ : Tuple = new_current_block torch.save(lowerCamelCase_ ,lowerCamelCase_) def lowerCAmelCase__ ( lowerCamelCase_ : Dict ,lowerCamelCase_ : Dict ,lowerCamelCase_ : Optional[int] ,lowerCamelCase_ : Dict ,lowerCamelCase_ : str = WEIGHTS_NAME): '''simple docstring''' lowerCAmelCase__ : Optional[int] = convert_file_size_to_int(lowerCamelCase_) lowerCAmelCase__ : Dict = [] lowerCAmelCase__ : Optional[int] = {} lowerCAmelCase__ : Optional[Any] = 0 lowerCAmelCase__ : List[str] = 0 os.makedirs(lowerCamelCase_ ,exist_ok=lowerCamelCase_) with gfile.GFile(switch_checkpoint_path + '''/checkpoint''' ,'''rb''') as fp: lowerCAmelCase__ : str = serialization.msgpack_restore(fp.read())['''optimizer''']['''target'''] lowerCAmelCase__ : int = flatten_dict(lowerCamelCase_ ,sep='''/''') lowerCAmelCase__ : str = {} for layer in checkpoint_info.keys(): lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ : int = get_key_and_tensorstore_dict( lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_) if curr_real_layer_name in all_layers: lowerCAmelCase__ : List[Any] = content else: lowerCAmelCase__ : str = {split_layer[-1]: content} for key in all_layers.keys(): # open tensorstore file lowerCAmelCase__ : str = ts.open(unflatten_dict(all_layers[key])).result().read().result() lowerCAmelCase__ : str = torch.tensor(lowerCamelCase_) lowerCAmelCase__ : Dict = raw_weights.numel() * dtype_byte_size(raw_weights.dtype) # use the renaming pattern from the small conversion scripts lowerCAmelCase__ , lowerCAmelCase__ : int = rename_base_flax_keys(tuple(key.split('''/''')) ,lowerCamelCase_) lowerCAmelCase__ : List[str] = '''/'''.join(lowerCamelCase_) # If this weight is going to tip up over the maximal size, we split. if current_block_size + weight_size > max_shard_size: lowerCAmelCase__ : Union[str, Any] = os.path.join( lowerCamelCase_ ,weights_name.replace('''.bin''' ,f"""-{len(lowerCamelCase_)+1:05d}-of-???.bin""")) rename_and_save_block(lowerCamelCase_ ,lowerCamelCase_) sharded_state_dicts.append(current_block.keys()) del current_block lowerCAmelCase__ : str = {} lowerCAmelCase__ : Union[str, Any] = 0 lowerCAmelCase__ : str = raw_weights.to(getattr(lowerCamelCase_ ,lowerCamelCase_)) current_block_size += weight_size total_size += weight_size # Add the last block lowerCAmelCase__ : List[str] = os.path.join(lowerCamelCase_ ,weights_name.replace('''.bin''' ,f"""-{len(lowerCamelCase_)+1:05d}-of-???.bin""")) rename_and_save_block(lowerCamelCase_ ,lowerCamelCase_) sharded_state_dicts.append(current_block.keys()) # If we only have one shard, we return it if len(lowerCamelCase_) == 1: return {weights_name: sharded_state_dicts[0]}, None # Otherwise, let's build the index lowerCAmelCase__ : Union[str, Any] = {} lowerCAmelCase__ : Tuple = {} for idx, shard in enumerate(lowerCamelCase_): lowerCAmelCase__ : List[str] = weights_name.replace( '''.bin''' ,f"""-{idx+1:05d}-of-{len(lowerCamelCase_):05d}.bin""") # len(sharded_state_dicts):05d} lowerCAmelCase__ : Union[str, Any] = os.path.join(lowerCamelCase_ ,weights_name.replace('''.bin''' ,f"""-{idx+1:05d}-of-???.bin""")) os.rename(lowerCamelCase_ ,os.path.join(lowerCamelCase_ ,lowerCamelCase_)) lowerCAmelCase__ : List[Any] = shard for key in shard: lowerCAmelCase__ : Dict = shard_file # Add the metadata lowerCAmelCase__ : Optional[Any] = {'''total_size''': total_size} lowerCAmelCase__ : Optional[Any] = {'''metadata''': metadata, '''weight_map''': weight_map} with open(os.path.join(lowerCamelCase_ ,lowerCamelCase_) ,'''w''' ,encoding='''utf-8''') as f: lowerCAmelCase__ : List[Any] = json.dumps(lowerCamelCase_ ,indent=2 ,sort_keys=lowerCamelCase_) + '''\n''' f.write(lowerCamelCase_) return metadata, index if __name__ == "__main__": __snake_case : List[str] =argparse.ArgumentParser() # Required parameters parser.add_argument( '--switch_t5x_checkpoint_path', default='/mnt/disks/disk_switch/original_checkpoints/switch-xxl-128/checkpoint_634600', type=str, required=False, help='Path to a directory containing a folder per layer. Follows the original Google format.', ) parser.add_argument('--max_shard_size', default='10GB', required=False, help='Max shard size') parser.add_argument('--dtype', default='bfloat16', type=str, required=False, help='dtype of the saved model') parser.add_argument( '--pytorch_dump_folder_path', default='/mnt/disks/disk_switch/original_checkpoints/switch-xxl-128-converted', type=str, required=False, help='Path to the output pytorch model.', ) __snake_case : Dict =parser.parse_args() shard_on_the_fly( args.switch_tax_checkpoint_path, args.pytorch_dump_folder_path, args.max_shard_size, args.dtype, ) def lowerCAmelCase__ ( ): '''simple docstring''' from transformers import SwitchTransformersConfig, SwitchTransformersForConditionalGeneration, TaTokenizer lowerCAmelCase__ : Optional[Any] = SwitchTransformersConfig.from_pretrained('''google/switch-base-8''') config.save_pretrained('''/home/arthur_huggingface_co/transformers/switch_converted''') lowerCAmelCase__ : Union[str, Any] = SwitchTransformersForConditionalGeneration.from_pretrained( '''/home/arthur_huggingface_co/transformers/switch_converted''' ,device_map='''auto''') lowerCAmelCase__ : Optional[Any] = TaTokenizer.from_pretrained('''t5-small''') lowerCAmelCase__ : Any = '''A <extra_id_0> walks into a bar a orders a <extra_id_1> with <extra_id_2> pinch of <extra_id_3>.''' lowerCAmelCase__ : Union[str, Any] = tokenizer(lowerCamelCase_ ,return_tensors='''pt''').input_ids lowerCAmelCase__ : Tuple = model.generate(lowerCamelCase_ ,decoder_start_token_id=0) print(tokenizer.decode(out[0]))
129
1
'''simple docstring''' __SCREAMING_SNAKE_CASE :int = { 0: '''0''', 1: '''1''', 2: '''2''', 3: '''3''', 4: '''4''', 5: '''5''', 6: '''6''', 7: '''7''', 8: '''8''', 9: '''9''', 10: '''a''', 11: '''b''', 12: '''c''', 13: '''d''', 14: '''e''', 15: '''f''', } def UpperCAmelCase_ ( __lowercase : float ) -> str: '''simple docstring''' assert type(__lowercase ) in (int, float) and decimal == int(__lowercase ) _UpperCAmelCase = int(__lowercase ) _UpperCAmelCase = "" _UpperCAmelCase = False if decimal < 0: _UpperCAmelCase = True decimal *= -1 while decimal > 0: _UpperCAmelCase , _UpperCAmelCase = divmod(__lowercase , 16 ) _UpperCAmelCase = values[remainder] + hexadecimal _UpperCAmelCase = "0x" + hexadecimal if negative: _UpperCAmelCase = "-" + hexadecimal return hexadecimal if __name__ == "__main__": import doctest doctest.testmod()
356
'''simple docstring''' def UpperCAmelCase_ ( __lowercase : int = 100_0000 ) -> int: '''simple docstring''' _UpperCAmelCase = limit + 1 _UpperCAmelCase = [0] * limit for first_term in range(1 , __lowercase ): for n in range(__lowercase , __lowercase , __lowercase ): _UpperCAmelCase = first_term + n / first_term if common_difference % 4: # d must be divisble by 4 continue else: common_difference /= 4 if ( first_term > common_difference and first_term < 4 * common_difference ): # since x,y,z are positive integers frequency[n] += 1 # so z>0 and a>d ,also 4d<a _UpperCAmelCase = sum(1 for x in frequency[1:limit] if x == 10 ) return count if __name__ == "__main__": print(F"{solution() = }")
156
0
import argparse import requests import torch from PIL import Image from transformers import SwinConfig, SwinForMaskedImageModeling, ViTImageProcessor def _A ( SCREAMING_SNAKE_CASE__ : List[str] ): UpperCamelCase :int = SwinConfig(image_size=192 ) if "base" in model_name: UpperCamelCase :Tuple = 6 UpperCamelCase :Tuple = 128 UpperCamelCase :int = (2, 2, 18, 2) UpperCamelCase :Dict = (4, 8, 16, 32) elif "large" in model_name: UpperCamelCase :Optional[Any] = 12 UpperCamelCase :Any = 192 UpperCamelCase :Tuple = (2, 2, 18, 2) UpperCamelCase :List[Any] = (6, 12, 24, 48) else: raise ValueError('''Model not supported, only supports base and large variants''' ) UpperCamelCase :Tuple = window_size UpperCamelCase :Any = embed_dim UpperCamelCase :str = depths UpperCamelCase :Optional[Any] = num_heads return config def _A ( SCREAMING_SNAKE_CASE__ : Tuple ): if "encoder.mask_token" in name: UpperCamelCase :Optional[Any] = name.replace('''encoder.mask_token''' , '''embeddings.mask_token''' ) if "encoder.patch_embed.proj" in name: UpperCamelCase :Dict = name.replace('''encoder.patch_embed.proj''' , '''embeddings.patch_embeddings.projection''' ) if "encoder.patch_embed.norm" in name: UpperCamelCase :Any = name.replace('''encoder.patch_embed.norm''' , '''embeddings.norm''' ) if "attn.proj" in name: UpperCamelCase :Tuple = name.replace('''attn.proj''' , '''attention.output.dense''' ) if "attn" in name: UpperCamelCase :str = name.replace('''attn''' , '''attention.self''' ) if "norm1" in name: UpperCamelCase :Union[str, Any] = name.replace('''norm1''' , '''layernorm_before''' ) if "norm2" in name: UpperCamelCase :Tuple = name.replace('''norm2''' , '''layernorm_after''' ) if "mlp.fc1" in name: UpperCamelCase :Tuple = name.replace('''mlp.fc1''' , '''intermediate.dense''' ) if "mlp.fc2" in name: UpperCamelCase :Optional[Any] = name.replace('''mlp.fc2''' , '''output.dense''' ) if name == "encoder.norm.weight": UpperCamelCase :Dict = '''layernorm.weight''' if name == "encoder.norm.bias": UpperCamelCase :List[str] = '''layernorm.bias''' if "decoder" in name: pass else: UpperCamelCase :str = '''swin.''' + name return name def _A ( SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : Any ): for key in orig_state_dict.copy().keys(): UpperCamelCase :Union[str, Any] = orig_state_dict.pop(SCREAMING_SNAKE_CASE__ ) if "attn_mask" in key: pass elif "qkv" in key: UpperCamelCase :Dict = key.split('''.''' ) UpperCamelCase :Dict = int(key_split[2] ) UpperCamelCase :int = int(key_split[4] ) UpperCamelCase :str = model.swin.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: UpperCamelCase :Dict = val[:dim, :] UpperCamelCase :str = val[ dim : dim * 2, : ] UpperCamelCase :Dict = val[-dim:, :] else: UpperCamelCase :Optional[Any] = val[ :dim ] UpperCamelCase :List[Any] = val[ dim : dim * 2 ] UpperCamelCase :Union[str, Any] = val[ -dim: ] else: UpperCamelCase :Optional[Any] = val return orig_state_dict def _A ( SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : List[Any] ): UpperCamelCase :Optional[Any] = torch.load(SCREAMING_SNAKE_CASE__ , map_location='''cpu''' )['''model'''] UpperCamelCase :Any = get_swin_config(SCREAMING_SNAKE_CASE__ ) UpperCamelCase :List[Any] = SwinForMaskedImageModeling(SCREAMING_SNAKE_CASE__ ) model.eval() UpperCamelCase :Optional[int] = convert_state_dict(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) model.load_state_dict(SCREAMING_SNAKE_CASE__ ) UpperCamelCase :Union[str, Any] = '''http://images.cocodataset.org/val2017/000000039769.jpg''' UpperCamelCase :Dict = ViTImageProcessor(size={'''height''': 192, '''width''': 192} ) UpperCamelCase :int = Image.open(requests.get(SCREAMING_SNAKE_CASE__ , stream=SCREAMING_SNAKE_CASE__ ).raw ) UpperCamelCase :List[str] = image_processor(images=SCREAMING_SNAKE_CASE__ , return_tensors='''pt''' ) with torch.no_grad(): UpperCamelCase :Optional[Any] = model(**SCREAMING_SNAKE_CASE__ ).logits print(outputs.keys() ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: print(F'''Saving model {model_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(SCREAMING_SNAKE_CASE__ ) print(F'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(SCREAMING_SNAKE_CASE__ ) if push_to_hub: print(F'''Pushing model and image processor for {model_name} to hub''' ) model.push_to_hub(F'''microsoft/{model_name}''' ) image_processor.push_to_hub(F'''microsoft/{model_name}''' ) if __name__ == "__main__": __snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""swin-base-simmim-window6-192""", type=str, choices=["""swin-base-simmim-window6-192""", """swin-large-simmim-window12-192"""], help="""Name of the Swin SimMIM model you'd like to convert.""", ) parser.add_argument( """--checkpoint_path""", default="""/Users/nielsrogge/Documents/SwinSimMIM/simmim_pretrain__swin_base__img192_window6__100ep.pth""", type=str, help="""Path to the original PyTorch checkpoint (.pth file).""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub.""" ) __snake_case = parser.parse_args() convert_swin_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub)
259
import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging __snake_case = logging.get_logger(__name__) __snake_case = { """microsoft/git-base""": """https://huggingface.co/microsoft/git-base/resolve/main/config.json""", } class UpperCAmelCase_ ( lowercase ): """simple docstring""" UpperCamelCase_ : Dict ='git_vision_model' def __init__( self , SCREAMING_SNAKE_CASE_=768 , SCREAMING_SNAKE_CASE_=3072 , SCREAMING_SNAKE_CASE_=12 , SCREAMING_SNAKE_CASE_=12 , SCREAMING_SNAKE_CASE_=3 , SCREAMING_SNAKE_CASE_=224 , SCREAMING_SNAKE_CASE_=16 , SCREAMING_SNAKE_CASE_="quick_gelu" , SCREAMING_SNAKE_CASE_=1e-5 , SCREAMING_SNAKE_CASE_=0.0 , SCREAMING_SNAKE_CASE_=0.02 , **SCREAMING_SNAKE_CASE_ , ) -> Tuple: super().__init__(**SCREAMING_SNAKE_CASE_ ) UpperCamelCase :Optional[int] = hidden_size UpperCamelCase :Union[str, Any] = intermediate_size UpperCamelCase :Dict = num_hidden_layers UpperCamelCase :int = num_attention_heads UpperCamelCase :List[str] = num_channels UpperCamelCase :Optional[int] = patch_size UpperCamelCase :Optional[int] = image_size UpperCamelCase :List[Any] = initializer_range UpperCamelCase :Union[str, Any] = attention_dropout UpperCamelCase :Tuple = layer_norm_eps UpperCamelCase :Optional[Any] = hidden_act @classmethod def UpperCAmelCase ( cls , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) -> "PretrainedConfig": cls._set_token_in_kwargs(SCREAMING_SNAKE_CASE_ ) UpperCamelCase , UpperCamelCase :Dict = cls.get_config_dict(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) # get the vision config dict if we are loading from GITConfig if config_dict.get('''model_type''' ) == "git": UpperCamelCase :Tuple = config_dict['''vision_config'''] if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type: logger.warning( F'''You are using a model of type {config_dict["model_type"]} to instantiate a model of type ''' F'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) class UpperCAmelCase_ ( lowercase ): """simple docstring""" UpperCamelCase_ : Optional[Any] ='git' def __init__( self , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=3_0522 , SCREAMING_SNAKE_CASE_=768 , SCREAMING_SNAKE_CASE_=6 , SCREAMING_SNAKE_CASE_=12 , SCREAMING_SNAKE_CASE_=3072 , SCREAMING_SNAKE_CASE_="gelu" , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=1024 , SCREAMING_SNAKE_CASE_=0.02 , SCREAMING_SNAKE_CASE_=1e-12 , SCREAMING_SNAKE_CASE_=0 , SCREAMING_SNAKE_CASE_="absolute" , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=101 , SCREAMING_SNAKE_CASE_=102 , SCREAMING_SNAKE_CASE_=None , **SCREAMING_SNAKE_CASE_ , ) -> int: super().__init__(bos_token_id=SCREAMING_SNAKE_CASE_ , eos_token_id=SCREAMING_SNAKE_CASE_ , pad_token_id=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) if vision_config is None: UpperCamelCase :Tuple = {} logger.info('''vision_config is None. initializing the GitVisionConfig with default values.''' ) UpperCamelCase :Union[str, Any] = GitVisionConfig(**SCREAMING_SNAKE_CASE_ ) UpperCamelCase :Optional[int] = vocab_size UpperCamelCase :Optional[Any] = hidden_size UpperCamelCase :List[Any] = num_hidden_layers UpperCamelCase :List[Any] = num_attention_heads UpperCamelCase :Dict = hidden_act UpperCamelCase :List[str] = intermediate_size UpperCamelCase :List[str] = hidden_dropout_prob UpperCamelCase :Optional[int] = attention_probs_dropout_prob UpperCamelCase :Optional[Any] = max_position_embeddings UpperCamelCase :Tuple = initializer_range UpperCamelCase :Any = layer_norm_eps UpperCamelCase :int = position_embedding_type UpperCamelCase :Dict = use_cache UpperCamelCase :Tuple = tie_word_embeddings UpperCamelCase :Union[str, Any] = num_image_with_embedding UpperCamelCase :Optional[int] = bos_token_id UpperCamelCase :List[Any] = eos_token_id def UpperCAmelCase ( self ) -> Optional[int]: UpperCamelCase :Union[str, Any] = copy.deepcopy(self.__dict__ ) UpperCamelCase :Optional[int] = self.vision_config.to_dict() UpperCamelCase :int = self.__class__.model_type return output
259
1
from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available __lowercase: List[str] = { "configuration_vivit": ["VIVIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "VivitConfig"], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase: List[Any] = ["VivitImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase: Optional[int] = [ "VIVIT_PRETRAINED_MODEL_ARCHIVE_LIST", "VivitModel", "VivitPreTrainedModel", "VivitForVideoClassification", ] if TYPE_CHECKING: from .configuration_vivit import VIVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, VivitConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_vivit import VivitImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vivit import ( VIVIT_PRETRAINED_MODEL_ARCHIVE_LIST, VivitForVideoClassification, VivitModel, VivitPreTrainedModel, ) else: import sys __lowercase: int = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
364
'''simple docstring''' from __future__ import annotations def SCREAMING_SNAKE_CASE__( _UpperCamelCase : list[int | str] ) -> None: '''simple docstring''' create_state_space_tree(_UpperCamelCase , [] , 0 , [0 for i in range(len(_UpperCamelCase ) )] ) def SCREAMING_SNAKE_CASE__( _UpperCamelCase : list[int | str] , _UpperCamelCase : list[int | str] , _UpperCamelCase : int , _UpperCamelCase : list[int] , ) -> None: '''simple docstring''' if index == len(_UpperCamelCase ): print(_UpperCamelCase ) return for i in range(len(_UpperCamelCase ) ): if not index_used[i]: current_sequence.append(sequence[i] ) UpperCamelCase__ = True create_state_space_tree(_UpperCamelCase , _UpperCamelCase , index + 1 , _UpperCamelCase ) current_sequence.pop() UpperCamelCase__ = False __lowercase: list[int | str] = [3, 1, 2, 4] generate_all_permutations(sequence) __lowercase: list[int | str] = ["A", "B", "C"] generate_all_permutations(sequence_a)
31
0
import argparse import collections import os import re from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_table.py lowercase : Optional[int] = """src/transformers""" lowercase : Union[str, Any] = """docs/source/en""" lowercase : int = """.""" def A_ ( A__ , A__ , A__ ) -> Any: with open(A__ , 'r' , encoding='utf-8' , newline='\n' ) as f: a__ : str = f.readlines() # Find the start prompt. a__ : str = 0 while not lines[start_index].startswith(A__ ): start_index += 1 start_index += 1 a__ : Optional[Any] = start_index while not lines[end_index].startswith(A__ ): end_index += 1 end_index -= 1 while len(lines[start_index] ) <= 1: start_index += 1 while len(lines[end_index] ) <= 1: end_index -= 1 end_index += 1 return "".join(lines[start_index:end_index] ), start_index, end_index, lines # Add here suffixes that are used to identify models, separated by | lowercase : Dict = """Model|Encoder|Decoder|ForConditionalGeneration""" # Regexes that match TF/Flax/PT model names. lowercase : int = re.compile(r"""TF(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)""") lowercase : Optional[Any] = re.compile(r"""Flax(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)""") # Will match any TF or Flax model too so need to be in an else branch afterthe two previous regexes. lowercase : Optional[int] = re.compile(r"""(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)""") # This is to make sure the transformers module imported is the one in the repo. lowercase : Tuple = direct_transformers_import(TRANSFORMERS_PATH) def A_ ( A__ ) -> str: a__ : List[Any] = re.finditer('.+?(?:(?<=[a-z])(?=[A-Z])|(?<=[A-Z])(?=[A-Z][a-z])|$)' , A__ ) return [m.group(0 ) for m in matches] def A_ ( A__ , A__ ) -> List[Any]: a__ : str = 2 if text == '✅' or text == '❌' else len(A__ ) a__ : Tuple = (width - text_length) // 2 a__ : List[Any] = width - text_length - left_indent return " " * left_indent + text + " " * right_indent def A_ ( ) -> List[str]: a__ : int = transformers_module.models.auto.configuration_auto.CONFIG_MAPPING_NAMES a__ : Tuple = { name: config_maping_names[code] for code, name in transformers_module.MODEL_NAMES_MAPPING.items() if code in config_maping_names } a__ : Dict = {name: config.replace('Config' , '' ) for name, config in model_name_to_config.items()} # Dictionaries flagging if each model prefix has a slow/fast tokenizer, backend in PT/TF/Flax. a__ : List[Any] = collections.defaultdict(A__ ) a__ : int = collections.defaultdict(A__ ) a__ : Any = collections.defaultdict(A__ ) a__ : int = collections.defaultdict(A__ ) a__ : List[str] = collections.defaultdict(A__ ) # Let's lookup through all transformers object (once). for attr_name in dir(A__ ): a__ : List[Any] = None if attr_name.endswith('Tokenizer' ): a__ : Optional[Any] = slow_tokenizers a__ : Union[str, Any] = attr_name[:-9] elif attr_name.endswith('TokenizerFast' ): a__ : int = fast_tokenizers a__ : str = attr_name[:-13] elif _re_tf_models.match(A__ ) is not None: a__ : Optional[Any] = tf_models a__ : str = _re_tf_models.match(A__ ).groups()[0] elif _re_flax_models.match(A__ ) is not None: a__ : Dict = flax_models a__ : Optional[Any] = _re_flax_models.match(A__ ).groups()[0] elif _re_pt_models.match(A__ ) is not None: a__ : List[Any] = pt_models a__ : Any = _re_pt_models.match(A__ ).groups()[0] if lookup_dict is not None: while len(A__ ) > 0: if attr_name in model_name_to_prefix.values(): a__ : Dict = True break # Try again after removing the last word in the name a__ : Dict = ''.join(camel_case_split(A__ )[:-1] ) # Let's build that table! a__ : Dict = list(model_name_to_config.keys() ) model_names.sort(key=str.lower ) a__ : Dict = ['Model', 'Tokenizer slow', 'Tokenizer fast', 'PyTorch support', 'TensorFlow support', 'Flax Support'] # We'll need widths to properly display everything in the center (+2 is to leave one extra space on each side). a__ : Union[str, Any] = [len(A__ ) + 2 for c in columns] a__ : List[str] = max([len(A__ ) for name in model_names] ) + 2 # Build the table per se a__ : Union[str, Any] = '|' + '|'.join([_center_text(A__ , A__ ) for c, w in zip(A__ , A__ )] ) + '|\n' # Use ":-----:" format to center-aligned table cell texts table += "|" + "|".join([':' + '-' * (w - 2) + ':' for w in widths] ) + "|\n" a__ : List[Any] = {True: '✅', False: '❌'} for name in model_names: a__ : Union[str, Any] = model_name_to_prefix[name] a__ : Optional[int] = [ name, check[slow_tokenizers[prefix]], check[fast_tokenizers[prefix]], check[pt_models[prefix]], check[tf_models[prefix]], check[flax_models[prefix]], ] table += "|" + "|".join([_center_text(A__ , A__ ) for l, w in zip(A__ , A__ )] ) + "|\n" return table def A_ ( A__=False ) -> str: a__ , a__ , a__ , a__ : Tuple = _find_text_in_file( filename=os.path.join(A__ , 'index.md' ) , start_prompt='<!--This table is updated automatically from the auto modules' , end_prompt='<!-- End table-->' , ) a__ : Any = get_model_table_from_auto_modules() if current_table != new_table: if overwrite: with open(os.path.join(A__ , 'index.md' ) , 'w' , encoding='utf-8' , newline='\n' ) as f: f.writelines(lines[:start_index] + [new_table] + lines[end_index:] ) else: raise ValueError( 'The model table in the `index.md` has not been updated. Run `make fix-copies` to fix this.' ) if __name__ == "__main__": lowercase : Tuple = argparse.ArgumentParser() parser.add_argument("""--fix_and_overwrite""", action="""store_true""", help="""Whether to fix inconsistencies.""") lowercase : Union[str, Any] = parser.parse_args() check_model_table(args.fix_and_overwrite)
99
from collections.abc import Iterable from typing import Generic, TypeVar lowercase : Any = TypeVar("""_T""") class A__ ( Generic[_T] ): """simple docstring""" def __init__( self , lowercase = None) -> None: '''simple docstring''' a__ : list[_T] = list(iterable or []) a__ : list[_T] = [] def __len__( self) -> int: '''simple docstring''' return len(self._stacka) + len(self._stacka) def __repr__( self) -> str: '''simple docstring''' return F'Queue({tuple(self._stacka[::-1] + self._stacka)})' def __lowercase ( self , lowercase) -> None: '''simple docstring''' self._stacka.append(lowercase) def __lowercase ( self) -> _T: '''simple docstring''' a__ : List[str] = self._stacka.pop a__ : Optional[int] = self._stacka.append if not self._stacka: while self._stacka: stacka_append(stacka_pop()) if not self._stacka: raise IndexError('Queue is empty') return self._stacka.pop() if __name__ == "__main__": from doctest import testmod testmod()
99
1
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __A = logging.get_logger(__name__) __A = { "facebook/data2vec-vision-base-ft": ( "https://huggingface.co/facebook/data2vec-vision-base-ft/resolve/main/config.json" ), } class snake_case ( __snake_case ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = """data2vec-vision""" def __init__( self : Optional[int] , UpperCamelCase__ : str=7_6_8 , UpperCamelCase__ : Any=1_2 , UpperCamelCase__ : str=1_2 , UpperCamelCase__ : Optional[Any]=3_0_7_2 , UpperCamelCase__ : Union[str, Any]="gelu" , UpperCamelCase__ : List[Any]=0.0 , UpperCamelCase__ : Dict=0.0 , UpperCamelCase__ : Union[str, Any]=0.02 , UpperCamelCase__ : str=1e-12 , UpperCamelCase__ : Dict=2_2_4 , UpperCamelCase__ : List[Any]=1_6 , UpperCamelCase__ : Optional[Any]=3 , UpperCamelCase__ : List[str]=False , UpperCamelCase__ : List[Any]=False , UpperCamelCase__ : str=False , UpperCamelCase__ : List[str]=False , UpperCamelCase__ : int=0.1 , UpperCamelCase__ : List[Any]=0.1 , UpperCamelCase__ : Optional[Any]=True , UpperCamelCase__ : List[Any]=[3, 5, 7, 1_1] , UpperCamelCase__ : List[str]=[1, 2, 3, 6] , UpperCamelCase__ : Union[str, Any]=True , UpperCamelCase__ : Any=0.4 , UpperCamelCase__ : Union[str, Any]=2_5_6 , UpperCamelCase__ : List[Any]=1 , UpperCamelCase__ : str=False , UpperCamelCase__ : Optional[int]=2_5_5 , **UpperCamelCase__ : Dict , )-> List[str]: '''simple docstring''' super().__init__(**UpperCamelCase__) __lowerCAmelCase: List[str] = hidden_size __lowerCAmelCase: Union[str, Any] = num_hidden_layers __lowerCAmelCase: Dict = num_attention_heads __lowerCAmelCase: Optional[int] = intermediate_size __lowerCAmelCase: int = hidden_act __lowerCAmelCase: Union[str, Any] = hidden_dropout_prob __lowerCAmelCase: Any = attention_probs_dropout_prob __lowerCAmelCase: Dict = initializer_range __lowerCAmelCase: Any = layer_norm_eps __lowerCAmelCase: Union[str, Any] = image_size __lowerCAmelCase: Tuple = patch_size __lowerCAmelCase: List[str] = num_channels __lowerCAmelCase: Optional[Any] = use_mask_token __lowerCAmelCase: str = use_absolute_position_embeddings __lowerCAmelCase: Optional[int] = use_relative_position_bias __lowerCAmelCase: str = use_shared_relative_position_bias __lowerCAmelCase: Union[str, Any] = layer_scale_init_value __lowerCAmelCase: Any = drop_path_rate __lowerCAmelCase: Dict = use_mean_pooling # decode head attributes (semantic segmentation) __lowerCAmelCase: int = out_indices __lowerCAmelCase: Any = pool_scales # auxiliary head attributes (semantic segmentation) __lowerCAmelCase: List[Any] = use_auxiliary_head __lowerCAmelCase: int = auxiliary_loss_weight __lowerCAmelCase: Dict = auxiliary_channels __lowerCAmelCase: Any = auxiliary_num_convs __lowerCAmelCase: Any = auxiliary_concat_input __lowerCAmelCase: Any = semantic_loss_ignore_index class snake_case ( __snake_case ): SCREAMING_SNAKE_CASE_ : Dict = version.parse("""1.11""" ) @property def lowercase_ ( self : Optional[Any])-> Mapping[str, Mapping[int, str]]: '''simple docstring''' return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ]) @property def lowercase_ ( self : Any)-> float: '''simple docstring''' return 1e-4
365
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __A = logging.get_logger(__name__) __A = { "facebook/data2vec-vision-base-ft": ( "https://huggingface.co/facebook/data2vec-vision-base-ft/resolve/main/config.json" ), } class snake_case ( __snake_case ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = """data2vec-vision""" def __init__( self : Optional[int] , UpperCamelCase__ : str=7_6_8 , UpperCamelCase__ : Any=1_2 , UpperCamelCase__ : str=1_2 , UpperCamelCase__ : Optional[Any]=3_0_7_2 , UpperCamelCase__ : Union[str, Any]="gelu" , UpperCamelCase__ : List[Any]=0.0 , UpperCamelCase__ : Dict=0.0 , UpperCamelCase__ : Union[str, Any]=0.02 , UpperCamelCase__ : str=1e-12 , UpperCamelCase__ : Dict=2_2_4 , UpperCamelCase__ : List[Any]=1_6 , UpperCamelCase__ : Optional[Any]=3 , UpperCamelCase__ : List[str]=False , UpperCamelCase__ : List[Any]=False , UpperCamelCase__ : str=False , UpperCamelCase__ : List[str]=False , UpperCamelCase__ : int=0.1 , UpperCamelCase__ : List[Any]=0.1 , UpperCamelCase__ : Optional[Any]=True , UpperCamelCase__ : List[Any]=[3, 5, 7, 1_1] , UpperCamelCase__ : List[str]=[1, 2, 3, 6] , UpperCamelCase__ : Union[str, Any]=True , UpperCamelCase__ : Any=0.4 , UpperCamelCase__ : Union[str, Any]=2_5_6 , UpperCamelCase__ : List[Any]=1 , UpperCamelCase__ : str=False , UpperCamelCase__ : Optional[int]=2_5_5 , **UpperCamelCase__ : Dict , )-> List[str]: '''simple docstring''' super().__init__(**UpperCamelCase__) __lowerCAmelCase: List[str] = hidden_size __lowerCAmelCase: Union[str, Any] = num_hidden_layers __lowerCAmelCase: Dict = num_attention_heads __lowerCAmelCase: Optional[int] = intermediate_size __lowerCAmelCase: int = hidden_act __lowerCAmelCase: Union[str, Any] = hidden_dropout_prob __lowerCAmelCase: Any = attention_probs_dropout_prob __lowerCAmelCase: Dict = initializer_range __lowerCAmelCase: Any = layer_norm_eps __lowerCAmelCase: Union[str, Any] = image_size __lowerCAmelCase: Tuple = patch_size __lowerCAmelCase: List[str] = num_channels __lowerCAmelCase: Optional[Any] = use_mask_token __lowerCAmelCase: str = use_absolute_position_embeddings __lowerCAmelCase: Optional[int] = use_relative_position_bias __lowerCAmelCase: str = use_shared_relative_position_bias __lowerCAmelCase: Union[str, Any] = layer_scale_init_value __lowerCAmelCase: Any = drop_path_rate __lowerCAmelCase: Dict = use_mean_pooling # decode head attributes (semantic segmentation) __lowerCAmelCase: int = out_indices __lowerCAmelCase: Any = pool_scales # auxiliary head attributes (semantic segmentation) __lowerCAmelCase: List[Any] = use_auxiliary_head __lowerCAmelCase: int = auxiliary_loss_weight __lowerCAmelCase: Dict = auxiliary_channels __lowerCAmelCase: Any = auxiliary_num_convs __lowerCAmelCase: Any = auxiliary_concat_input __lowerCAmelCase: Any = semantic_loss_ignore_index class snake_case ( __snake_case ): SCREAMING_SNAKE_CASE_ : Dict = version.parse("""1.11""" ) @property def lowercase_ ( self : Optional[Any])-> Mapping[str, Mapping[int, str]]: '''simple docstring''' return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ]) @property def lowercase_ ( self : Any)-> float: '''simple docstring''' return 1e-4
108
0
def _SCREAMING_SNAKE_CASE ( a , a ) -> List[str]: while second != 0: __A : List[Any] = first & second first ^= second __A : Optional[int] = c << 1 return first if __name__ == "__main__": import doctest doctest.testmod() UpperCAmelCase : str = int(input('''Enter the first number: ''').strip()) UpperCAmelCase : Dict = int(input('''Enter the second number: ''').strip()) print(F"""{add(first, second) = }""")
280
"""simple docstring""" import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = {'''vocab_file''': '''sentencepiece.bpe.model'''} lowerCAmelCase__ = { '''vocab_file''': { '''moussaKam/mbarthez''': '''https://huggingface.co/moussaKam/mbarthez/resolve/main/sentencepiece.bpe.model''', '''moussaKam/barthez''': '''https://huggingface.co/moussaKam/barthez/resolve/main/sentencepiece.bpe.model''', '''moussaKam/barthez-orangesum-title''': ( '''https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/sentencepiece.bpe.model''' ), }, } lowerCAmelCase__ = { '''moussaKam/mbarthez''': 1_024, '''moussaKam/barthez''': 1_024, '''moussaKam/barthez-orangesum-title''': 1_024, } lowerCAmelCase__ = '''▁''' class _lowerCamelCase ( _lowercase ): UpperCAmelCase_ = VOCAB_FILES_NAMES UpperCAmelCase_ = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase_ = ["input_ids", "attention_mask"] def __init__(self , __a , __a="<s>" , __a="</s>" , __a="</s>" , __a="<s>" , __a="<unk>" , __a="<pad>" , __a="<mask>" , __a = None , **__a , ) -> None: # Mask token behave like a normal word, i.e. include the space before it UpperCamelCase = AddedToken(__a , lstrip=__a , rstrip=__a ) if isinstance(__a , __a ) else mask_token UpperCamelCase = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=__a , eos_token=__a , unk_token=__a , sep_token=__a , cls_token=__a , pad_token=__a , mask_token=__a , sp_model_kwargs=self.sp_model_kwargs , **__a , ) UpperCamelCase = vocab_file UpperCamelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(__a ) ) UpperCamelCase = {"<s>": 0, "<pad>": 1, "</s>": 2, "<unk>": 3} UpperCamelCase = len(self.sp_model ) - 1 UpperCamelCase = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def snake_case_ (self , __a , __a = None ) -> List[int]: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] UpperCamelCase = [self.cls_token_id] UpperCamelCase = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def snake_case_ (self , __a , __a = None , __a = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__a , token_ids_a=__a , already_has_special_tokens=__a ) if token_ids_a is None: return [1] + ([0] * len(__a )) + [1] return [1] + ([0] * len(__a )) + [1, 1] + ([0] * len(__a )) + [1] def snake_case_ (self , __a , __a = None ) -> List[int]: UpperCamelCase = [self.sep_token_id] UpperCamelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def snake_case_ (self ) -> Any: return len(self.sp_model ) def snake_case_ (self ) -> int: UpperCamelCase = {self.convert_ids_to_tokens(__a ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def snake_case_ (self , __a ) -> List[str]: return self.sp_model.encode(__a , out_type=__a ) def snake_case_ (self , __a ) -> int: if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] UpperCamelCase = self.sp_model.PieceToId(__a ) return spm_id if spm_id else self.unk_token_id def snake_case_ (self , __a ) -> List[Any]: if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(__a ) def snake_case_ (self , __a ) -> Union[str, Any]: UpperCamelCase = [] UpperCamelCase = "" UpperCamelCase = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(__a ) + token UpperCamelCase = True UpperCamelCase = [] else: current_sub_tokens.append(__a ) UpperCamelCase = False out_string += self.sp_model.decode(__a ) return out_string.strip() def __getstate__(self ) -> str: UpperCamelCase = self.__dict__.copy() UpperCamelCase = None return state def __setstate__(self , __a ) -> Optional[int]: UpperCamelCase = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): UpperCamelCase = {} UpperCamelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def snake_case_ (self , __a , __a = None ) -> Tuple[str]: if not os.path.isdir(__a ): logger.error(F"Vocabulary path ({save_directory}) should be a directory" ) return UpperCamelCase = os.path.join( __a , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__a ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , __a ) elif not os.path.isfile(self.vocab_file ): with open(__a , "wb" ) as fi: UpperCamelCase = self.sp_model.serialized_model_proto() fi.write(__a ) return (out_vocab_file,)
153
0
"""simple docstring""" def UpperCAmelCase__ (lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): '''simple docstring''' global f # a global dp table for knapsack if f[i][j] < 0: if j < wt[i - 1]: __SCREAMING_SNAKE_CASE = mf_knapsack(i - 1 , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) else: __SCREAMING_SNAKE_CASE = max( mf_knapsack(i - 1 , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) , mf_knapsack(i - 1 , lowerCAmelCase_ , lowerCAmelCase_ , j - wt[i - 1] ) + val[i - 1] , ) __SCREAMING_SNAKE_CASE = val return f[i][j] def UpperCAmelCase__ (lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): '''simple docstring''' __SCREAMING_SNAKE_CASE = [[0] * (w + 1) for _ in range(n + 1 )] for i in range(1 , n + 1 ): for w_ in range(1 , w + 1 ): if wt[i - 1] <= w_: __SCREAMING_SNAKE_CASE = max(val[i - 1] + dp[i - 1][w_ - wt[i - 1]] , dp[i - 1][w_] ) else: __SCREAMING_SNAKE_CASE = dp[i - 1][w_] return dp[n][w_], dp def UpperCAmelCase__ (lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): '''simple docstring''' if not (isinstance(lowerCAmelCase_ , (list, tuple) ) and isinstance(lowerCAmelCase_ , (list, tuple) )): raise ValueError( "Both the weights and values vectors must be either lists or tuples" ) __SCREAMING_SNAKE_CASE = len(lowerCAmelCase_ ) if num_items != len(lowerCAmelCase_ ): __SCREAMING_SNAKE_CASE = ( "The number of weights must be the same as the number of values.\n" f"""But got {num_items} weights and {len(lowerCAmelCase_ )} values""" ) raise ValueError(lowerCAmelCase_ ) for i in range(lowerCAmelCase_ ): if not isinstance(wt[i] , lowerCAmelCase_ ): __SCREAMING_SNAKE_CASE = ( "All weights must be integers but got weight of " f"""type {type(wt[i] )} at index {i}""" ) raise TypeError(lowerCAmelCase_ ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = knapsack(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) __SCREAMING_SNAKE_CASE = set() _construct_solution(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) return optimal_val, example_optional_set def UpperCAmelCase__ (lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): '''simple docstring''' if i > 0 and j > 0: if dp[i - 1][j] == dp[i][j]: _construct_solution(lowerCAmelCase_ , lowerCAmelCase_ , i - 1 , lowerCAmelCase_ , lowerCAmelCase_ ) else: optimal_set.add(lowerCAmelCase_ ) _construct_solution(lowerCAmelCase_ , lowerCAmelCase_ , i - 1 , j - wt[i - 1] , lowerCAmelCase_ ) if __name__ == "__main__": a__ : Optional[Any] = [3, 2, 4, 4] a__ : Any = [4, 3, 2, 3] a__ : Union[str, Any] = 4 a__ : Optional[Any] = 6 a__ : List[Any] = [[0] * (w + 1)] + [[0] + [-1] * (w + 1) for _ in range(n + 1)] a__ , a__ : Union[str, Any] = knapsack(w, wt, val, n) print(optimal_solution) print(mf_knapsack(n, wt, val, w)) # switched the n and w # testing the dynamic programming problem with example # the optimal subset for the above example are items 3 and 4 a__ , a__ : Optional[int] = knapsack_with_example_solution(w, wt, val) assert optimal_solution == 8 assert optimal_subset == {3, 4} print('''optimal_value = ''', optimal_solution) print('''An optimal subset corresponding to the optimal value''', optimal_subset)
195
"""simple docstring""" import argparse import re from flax.traverse_util import flatten_dict, unflatten_dict from tax import checkpoints from transformers import SwitchTransformersConfig, SwitchTransformersForConditionalGeneration from transformers.modeling_flax_pytorch_utils import load_flax_weights_in_pytorch_model from transformers.utils import logging logging.set_verbosity_info() # should not include what is already done by the `from_pt` argument a__ : Optional[Any] = { '''/attention/''': '''/0/SelfAttention/''', '''/self_attention/''': '''/0/SelfAttention/''', '''/encoder_decoder_attention/''': '''/1/EncDecAttention/''', '''value''': '''v''', '''query''': '''q''', '''key''': '''k''', '''out''': '''o''', '''pre_self_attention_layer_norm''': '''0/layer_norm''', '''pre_cross_attention_layer_norm''': '''1/layer_norm''', '''pre_attention_layer_norm''': '''0/layer_norm''', # previously 1, but seems wrong '''token_embedder''': '''shared''', '''encoder_norm''': '''final_layer_norm''', '''decoder_norm''': '''final_layer_norm''', '''relpos_bias/rel_embedding''': '''block/0/layer/0/SelfAttention/relative_attention_bias/weight''', '''router/router_weights/w/''': '''router/classifier/''', '''roer/roer_weights/w/''': '''router/classifier/''', '''logits_dense''': '''lm_head''', } def UpperCAmelCase__ (lowerCAmelCase_ ): '''simple docstring''' __SCREAMING_SNAKE_CASE = list(s_dict.keys() ) for key in keys: __SCREAMING_SNAKE_CASE = R".*/layers_(\d+)" __SCREAMING_SNAKE_CASE = key if re.match(lowerCAmelCase_ , lowerCAmelCase_ ): __SCREAMING_SNAKE_CASE = re.sub(R"layers_(\d+)" , R"block/\1/layer" , lowerCAmelCase_ ) __SCREAMING_SNAKE_CASE = R"(encoder|decoder)\/" if re.match(lowerCAmelCase_ , lowerCAmelCase_ ): __SCREAMING_SNAKE_CASE = re.match(lowerCAmelCase_ , lowerCAmelCase_ ).groups() if groups[0] == "encoder": __SCREAMING_SNAKE_CASE = re.sub(R"/mlp/" , R"/1/mlp/" , lowerCAmelCase_ ) __SCREAMING_SNAKE_CASE = re.sub(R"/pre_mlp_layer_norm/" , R"/1/layer_norm/" , lowerCAmelCase_ ) elif groups[0] == "decoder": __SCREAMING_SNAKE_CASE = re.sub(R"/mlp/" , R"/2/mlp/" , lowerCAmelCase_ ) __SCREAMING_SNAKE_CASE = re.sub(R"/pre_mlp_layer_norm/" , R"/2/layer_norm/" , lowerCAmelCase_ ) # 2. Convert other classic mappings for old_key, temp_key in MOE_LAYER_NAME_MAPPING.items(): if old_key in new_key: __SCREAMING_SNAKE_CASE = new_key.replace(lowerCAmelCase_ , lowerCAmelCase_ ) print(f"""{key} -> {new_key}""" ) __SCREAMING_SNAKE_CASE = s_dict.pop(lowerCAmelCase_ ) if "encoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight" in s_dict: __SCREAMING_SNAKE_CASE = s_dict[ "encoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight" ].T if "decoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight" in s_dict: __SCREAMING_SNAKE_CASE = s_dict[ "decoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight" ].T # 3. Take extra care of the EXPERTS layer for key in list(s_dict.keys() ): if "expert" in key: __SCREAMING_SNAKE_CASE = s_dict[key].shape[0] __SCREAMING_SNAKE_CASE = s_dict[key] for idx in range(lowerCAmelCase_ ): __SCREAMING_SNAKE_CASE = expert_weihts[idx] print(f"""{key} -> {key.replace('expert/' , 'nested fstring' )}""" ) s_dict.pop(lowerCAmelCase_ ) return s_dict a__ : List[Any] = { '''NUM_ENCODER_LAYERS''': '''num_layers''', '''NUM_DECODER_LAYERS''': '''num_decoder_layers''', '''NUM_HEADS''': '''num_heads''', '''HEAD_DIM''': '''d_kv''', '''EMBED_DIM''': '''d_model''', '''MLP_DIM''': '''d_ff''', '''NUM_SELECTED_EXPERTS''': '''num_selected_experts''', '''NUM_ENCODER_SPARSE_LAYERS''': '''num_sparse_encoder_layers''', '''NUM_DECODER_SPARSE_LAYERS''': '''num_sparse_decoder_layers''', '''dense.MlpBlock.activations''': '''feed_forward_proj''', } def UpperCAmelCase__ (lowerCAmelCase_ , lowerCAmelCase_ ): '''simple docstring''' import regex as re with open(lowerCAmelCase_ , "r" ) as f: __SCREAMING_SNAKE_CASE = f.read() __SCREAMING_SNAKE_CASE = re.findall(R"(.*) = ([0-9.]*)" , lowerCAmelCase_ ) __SCREAMING_SNAKE_CASE = {} for param, value in regex_match: if param in GIN_TO_CONFIG_MAPPING and value != "": __SCREAMING_SNAKE_CASE = float(lowerCAmelCase_ ) if "." in value else int(lowerCAmelCase_ ) __SCREAMING_SNAKE_CASE = re.findall(R"(.*activations) = \(\'(.*)\',\)" , lowerCAmelCase_ )[0] __SCREAMING_SNAKE_CASE = str(activation[1] ) __SCREAMING_SNAKE_CASE = num_experts __SCREAMING_SNAKE_CASE = SwitchTransformersConfig(**lowerCAmelCase_ ) return config def UpperCAmelCase__ (lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_=None , lowerCAmelCase_="./" , lowerCAmelCase_=8 ): '''simple docstring''' print(f"""Loading flax weights from : {flax_checkpoint_path}""" ) __SCREAMING_SNAKE_CASE = checkpoints.load_tax_checkpoint(lowerCAmelCase_ ) if gin_file is not None: __SCREAMING_SNAKE_CASE = convert_gin_to_config(lowerCAmelCase_ , lowerCAmelCase_ ) else: __SCREAMING_SNAKE_CASE = SwitchTransformersConfig.from_pretrained(lowerCAmelCase_ ) __SCREAMING_SNAKE_CASE = SwitchTransformersForConditionalGeneration(lowerCAmelCase_ ) __SCREAMING_SNAKE_CASE = flax_params["target"] __SCREAMING_SNAKE_CASE = flatten_dict(lowerCAmelCase_ , sep="/" ) __SCREAMING_SNAKE_CASE = rename_keys(lowerCAmelCase_ ) __SCREAMING_SNAKE_CASE = unflatten_dict(lowerCAmelCase_ , sep="/" ) # Load the flax params in the PT model load_flax_weights_in_pytorch_model(lowerCAmelCase_ , lowerCAmelCase_ ) print(f"""Save PyTorch model to {pytorch_dump_path}""" ) pt_model.save_pretrained(lowerCAmelCase_ ) if __name__ == "__main__": a__ : List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--switch_t5x_checkpoint_path''', default=None, type=str, required=True, help=( '''The config json file corresponding to the pre-trained SwitchTransformers model. \nThis specifies the''' ''' model architecture. If not provided, a `gin_file` has to be provided.''' ), ) parser.add_argument( '''--gin_file''', default=None, type=str, required=False, help='''Path to the gin config file. If not provided, a `config_file` has to be passed ''', ) parser.add_argument( '''--config_name''', default=None, type=str, required=False, help='''Config name of SwitchTransformers model.''' ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output pytorch model.''' ) parser.add_argument('''--num_experts''', default=8, type=int, required=False, help='''Number of experts''') a__ : Tuple = parser.parse_args() convert_flax_checkpoint_to_pytorch( args.switch_tax_checkpoint_path, args.config_name, args.gin_file, args.pytorch_dump_folder_path, args.num_experts, )
195
1
# This script creates a super tiny model that is useful inside tests, when we just want to test that # the machinery works, without needing to the check the quality of the outcomes. # # This version creates a tiny model through reduction of a normal pre-trained model, but keeping the # full vocab, merges file, and thus also resulting in a larger model due to a large vocab size. # This gives ~3MB in total for all files. # # If you want a 50 times smaller than this see `fsmt-make-super-tiny-model.py`, which is slightly more complicated # # # It will be used then as "stas/tiny-wmt19-en-de" # Build from transformers import FSMTTokenizer, FSMTConfig, FSMTForConditionalGeneration __a = '''facebook/wmt19-en-de''' __a = FSMTTokenizer.from_pretrained(mname) # get the correct vocab sizes, etc. from the master model __a = FSMTConfig.from_pretrained(mname) config.update( dict( d_model=4, encoder_layers=1, decoder_layers=1, encoder_ffn_dim=4, decoder_ffn_dim=4, encoder_attention_heads=1, decoder_attention_heads=1, ) ) __a = FSMTForConditionalGeneration(config) print(f"num of params {tiny_model.num_parameters()}") # Test __a = tokenizer(['Making tiny model'], return_tensors='pt') __a = tiny_model(**batch) print('test output:', len(outputs.logits[0])) # Save __a = '''tiny-wmt19-en-de''' tiny_model.half() # makes it smaller tiny_model.save_pretrained(mname_tiny) tokenizer.save_pretrained(mname_tiny) print(f"Generated {mname_tiny}") # Upload # transformers-cli upload tiny-wmt19-en-de
30
from maths.prime_factors import prime_factors def __lowerCamelCase ( UpperCAmelCase_ : int ): """simple docstring""" if not isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): a :Dict = F'''Input value of [number={number}] must be an integer''' raise TypeError(UpperCAmelCase_ ) if number < 1: raise ValueError('''Input must be a positive integer''' ) return -1 if len(prime_factors(UpperCAmelCase_ ) ) % 2 else 1 if __name__ == "__main__": import doctest doctest.testmod()
94
0
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = { 'microsoft/table-transformer-detection': ( 'https://huggingface.co/microsoft/table-transformer-detection/resolve/main/config.json' ), } class lowercase__ ( __lowerCamelCase ): '''simple docstring''' a : Optional[int] = "table-transformer" a : List[Any] = ["past_key_values"] a : Any = { "hidden_size": "d_model", "num_attention_heads": "encoder_attention_heads", } def __init__( self, __magic_name__=True, __magic_name__=None, __magic_name__=3, __magic_name__=100, __magic_name__=6, __magic_name__=2048, __magic_name__=8, __magic_name__=6, __magic_name__=2048, __magic_name__=8, __magic_name__=0.0, __magic_name__=0.0, __magic_name__=True, __magic_name__="relu", __magic_name__=256, __magic_name__=0.1, __magic_name__=0.0, __magic_name__=0.0, __magic_name__=0.02, __magic_name__=1.0, __magic_name__=False, __magic_name__="sine", __magic_name__="resnet50", __magic_name__=True, __magic_name__=False, __magic_name__=1, __magic_name__=5, __magic_name__=2, __magic_name__=1, __magic_name__=1, __magic_name__=5, __magic_name__=2, __magic_name__=0.1, **__magic_name__, ) -> Tuple: """simple docstring""" if backbone_config is not None and use_timm_backbone: raise ValueError('''You can\'t specify both `backbone_config` and `use_timm_backbone`.''' ) if not use_timm_backbone: if backbone_config is None: logger.info('''`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.''' ) UpperCamelCase__ : List[str] = CONFIG_MAPPING['''resnet'''](out_features=['''stage4'''] ) elif isinstance(__magic_name__, __magic_name__ ): UpperCamelCase__ : str = backbone_config.get('''model_type''' ) UpperCamelCase__ : str = CONFIG_MAPPING[backbone_model_type] UpperCamelCase__ : List[Any] = config_class.from_dict(__magic_name__ ) # set timm attributes to None UpperCamelCase__ ,UpperCamelCase__ ,UpperCamelCase__ : List[Any] = None, None, None UpperCamelCase__ : Optional[Any] = use_timm_backbone UpperCamelCase__ : Union[str, Any] = backbone_config UpperCamelCase__ : Any = num_channels UpperCamelCase__ : str = num_queries UpperCamelCase__ : List[str] = d_model UpperCamelCase__ : Optional[Any] = encoder_ffn_dim UpperCamelCase__ : Union[str, Any] = encoder_layers UpperCamelCase__ : List[str] = encoder_attention_heads UpperCamelCase__ : Dict = decoder_ffn_dim UpperCamelCase__ : List[str] = decoder_layers UpperCamelCase__ : Optional[Any] = decoder_attention_heads UpperCamelCase__ : Optional[Any] = dropout UpperCamelCase__ : Union[str, Any] = attention_dropout UpperCamelCase__ : Tuple = activation_dropout UpperCamelCase__ : Optional[int] = activation_function UpperCamelCase__ : List[str] = init_std UpperCamelCase__ : str = init_xavier_std UpperCamelCase__ : Optional[Any] = encoder_layerdrop UpperCamelCase__ : Tuple = decoder_layerdrop UpperCamelCase__ : int = encoder_layers UpperCamelCase__ : Any = auxiliary_loss UpperCamelCase__ : int = position_embedding_type UpperCamelCase__ : Optional[int] = backbone UpperCamelCase__ : Tuple = use_pretrained_backbone UpperCamelCase__ : Any = dilation # Hungarian matcher UpperCamelCase__ : List[str] = class_cost UpperCamelCase__ : List[Any] = bbox_cost UpperCamelCase__ : Union[str, Any] = giou_cost # Loss coefficients UpperCamelCase__ : Dict = mask_loss_coefficient UpperCamelCase__ : List[str] = dice_loss_coefficient UpperCamelCase__ : List[str] = bbox_loss_coefficient UpperCamelCase__ : Tuple = giou_loss_coefficient UpperCamelCase__ : List[str] = eos_coefficient super().__init__(is_encoder_decoder=__magic_name__, **__magic_name__ ) @property def UpperCamelCase__ ( self ) -> int: """simple docstring""" return self.encoder_attention_heads @property def UpperCamelCase__ ( self ) -> int: """simple docstring""" return self.d_model class lowercase__ ( __lowerCamelCase ): '''simple docstring''' a : List[str] = version.parse("1.11" ) @property def UpperCamelCase__ ( self ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ('''pixel_mask''', {0: '''batch'''}), ] ) @property def UpperCamelCase__ ( self ) -> float: """simple docstring""" return 1E-5 @property def UpperCamelCase__ ( self ) -> int: """simple docstring""" return 12
247
from typing import Optional from torch import nn from .transformer_ad import TransformeraDModel, TransformeraDModelOutput class lowercase__ ( nn.Module ): '''simple docstring''' def __init__( self, __magic_name__ = 16, __magic_name__ = 88, __magic_name__ = None, __magic_name__ = 1, __magic_name__ = 0.0, __magic_name__ = 32, __magic_name__ = None, __magic_name__ = False, __magic_name__ = None, __magic_name__ = None, __magic_name__ = "geglu", __magic_name__ = None, ) -> Tuple: """simple docstring""" super().__init__() UpperCamelCase__ : str = nn.ModuleList( [ TransformeraDModel( num_attention_heads=__magic_name__, attention_head_dim=__magic_name__, in_channels=__magic_name__, num_layers=__magic_name__, dropout=__magic_name__, norm_num_groups=__magic_name__, cross_attention_dim=__magic_name__, attention_bias=__magic_name__, sample_size=__magic_name__, num_vector_embeds=__magic_name__, activation_fn=__magic_name__, num_embeds_ada_norm=__magic_name__, ) for _ in range(2 ) ] ) # Variables that can be set by a pipeline: # The ratio of transformer1 to transformer2's output states to be combined during inference UpperCamelCase__ : Any = 0.5 # The shape of `encoder_hidden_states` is expected to be # `(batch_size, condition_lengths[0]+condition_lengths[1], num_features)` UpperCamelCase__ : Optional[Any] = [77, 257] # Which transformer to use to encode which condition. # E.g. `(1, 0)` means that we'll use `transformers[1](conditions[0])` and `transformers[0](conditions[1])` UpperCamelCase__ : int = [1, 0] def UpperCamelCase__ ( self, __magic_name__, __magic_name__, __magic_name__=None, __magic_name__=None, __magic_name__=None, __magic_name__ = True, ) -> Any: """simple docstring""" UpperCamelCase__ : Optional[Any] = hidden_states UpperCamelCase__ : Tuple = [] UpperCamelCase__ : int = 0 # attention_mask is not used yet for i in range(2 ): # for each of the two transformers, pass the corresponding condition tokens UpperCamelCase__ : List[Any] = encoder_hidden_states[:, tokens_start : tokens_start + self.condition_lengths[i]] UpperCamelCase__ : List[str] = self.transformer_index_for_condition[i] UpperCamelCase__ : List[str] = self.transformers[transformer_index]( __magic_name__, encoder_hidden_states=__magic_name__, timestep=__magic_name__, cross_attention_kwargs=__magic_name__, return_dict=__magic_name__, )[0] encoded_states.append(encoded_state - input_states ) tokens_start += self.condition_lengths[i] UpperCamelCase__ : List[str] = encoded_states[0] * self.mix_ratio + encoded_states[1] * (1 - self.mix_ratio) UpperCamelCase__ : int = output_states + input_states if not return_dict: return (output_states,) return TransformeraDModelOutput(sample=__magic_name__ )
247
1
import numpy as np from matplotlib import pyplot as plt from sklearn.datasets import load_iris from sklearn.metrics import ConfusionMatrixDisplay from sklearn.model_selection import train_test_split from xgboost import XGBClassifier def _a ( lowerCamelCase: int ) -> str: '''simple docstring''' return (data["data"], data["target"]) def _a ( lowerCamelCase: List[str] , lowerCamelCase: int ) -> List[str]: '''simple docstring''' __A = XGBClassifier() classifier.fit(lowerCamelCase , lowerCamelCase ) return classifier def _a ( ) -> Optional[Any]: '''simple docstring''' __A = load_iris() __A = data_handling(lowerCamelCase ) __A = train_test_split( lowerCamelCase , lowerCamelCase , test_size=0.25 ) __A = iris["target_names"] # Create an XGBoost Classifier from the training data __A = xgboost(lowerCamelCase , lowerCamelCase ) # Display the confusion matrix of the classifier with both training and test sets ConfusionMatrixDisplay.from_estimator( lowerCamelCase , lowerCamelCase , lowerCamelCase , display_labels=lowerCamelCase , cmap='''Blues''' , normalize='''true''' , ) plt.title('''Normalized Confusion Matrix - IRIS Dataset''' ) plt.show() if __name__ == "__main__": import doctest doctest.testmod(verbose=True) main()
117
'''simple docstring''' import gc import unittest import torch from parameterized import parameterized from diffusers import AutoencoderKL from diffusers.utils import floats_tensor, load_hf_numpy, require_torch_gpu, slow, torch_all_close, torch_device from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin, UNetTesterMixin enable_full_determinism() class _snake_case ( _a , _a , unittest.TestCase ): _A : Tuple = AutoencoderKL _A : Union[str, Any] = '''sample''' _A : int = 1E-2 @property def __UpperCamelCase ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE:Tuple = 4 SCREAMING_SNAKE_CASE:Dict = 3 SCREAMING_SNAKE_CASE:str = (32, 32) SCREAMING_SNAKE_CASE:List[str] = floats_tensor((batch_size, num_channels) + sizes ).to(SCREAMING_SNAKE_CASE__ ) return {"sample": image} @property def __UpperCamelCase ( self : Any ): return (3, 32, 32) @property def __UpperCamelCase ( self : int ): return (3, 32, 32) def __UpperCamelCase ( self : Dict ): SCREAMING_SNAKE_CASE:Optional[Any] = { "block_out_channels": [32, 64], "in_channels": 3, "out_channels": 3, "down_block_types": ["DownEncoderBlock2D", "DownEncoderBlock2D"], "up_block_types": ["UpDecoderBlock2D", "UpDecoderBlock2D"], "latent_channels": 4, } SCREAMING_SNAKE_CASE:List[Any] = self.dummy_input return init_dict, inputs_dict def __UpperCamelCase ( self : int ): pass def __UpperCamelCase ( self : Tuple ): pass @unittest.skipIf(torch_device == "mps" ,"Gradient checkpointing skipped on MPS" ) def __UpperCamelCase ( self : str ): # enable deterministic behavior for gradient checkpointing SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE:Optional[Any] = self.prepare_init_args_and_inputs_for_common() SCREAMING_SNAKE_CASE:Optional[Any] = self.model_class(**SCREAMING_SNAKE_CASE__ ) model.to(SCREAMING_SNAKE_CASE__ ) assert not model.is_gradient_checkpointing and model.training SCREAMING_SNAKE_CASE:str = model(**SCREAMING_SNAKE_CASE__ ).sample # run the backwards pass on the model. For backwards pass, for simplicity purpose, # we won't calculate the loss and rather backprop on out.sum() model.zero_grad() SCREAMING_SNAKE_CASE:str = torch.randn_like(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE:List[str] = (out - labels).mean() loss.backward() # re-instantiate the model now enabling gradient checkpointing SCREAMING_SNAKE_CASE:List[Any] = self.model_class(**SCREAMING_SNAKE_CASE__ ) # clone model model_a.load_state_dict(model.state_dict() ) model_a.to(SCREAMING_SNAKE_CASE__ ) model_a.enable_gradient_checkpointing() assert model_a.is_gradient_checkpointing and model_a.training SCREAMING_SNAKE_CASE:Optional[int] = model_a(**SCREAMING_SNAKE_CASE__ ).sample # run the backwards pass on the model. For backwards pass, for simplicity purpose, # we won't calculate the loss and rather backprop on out.sum() model_a.zero_grad() SCREAMING_SNAKE_CASE:List[Any] = (out_a - labels).mean() loss_a.backward() # compare the output and parameters gradients self.assertTrue((loss - loss_a).abs() < 1e-5 ) SCREAMING_SNAKE_CASE:Dict = dict(model.named_parameters() ) SCREAMING_SNAKE_CASE:Tuple = dict(model_a.named_parameters() ) for name, param in named_params.items(): self.assertTrue(torch_all_close(param.grad.data ,named_params_a[name].grad.data ,atol=5e-5 ) ) def __UpperCamelCase ( self : int ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE:int = AutoencoderKL.from_pretrained("fusing/autoencoder-kl-dummy" ,output_loading_info=SCREAMING_SNAKE_CASE__ ) self.assertIsNotNone(SCREAMING_SNAKE_CASE__ ) self.assertEqual(len(loading_info["missing_keys"] ) ,0 ) model.to(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE:Any = model(**self.dummy_input ) assert image is not None, "Make sure output is not None" def __UpperCamelCase ( self : Optional[Any] ): SCREAMING_SNAKE_CASE:Union[str, Any] = AutoencoderKL.from_pretrained("fusing/autoencoder-kl-dummy" ) SCREAMING_SNAKE_CASE:int = model.to(SCREAMING_SNAKE_CASE__ ) model.eval() if torch_device == "mps": SCREAMING_SNAKE_CASE:str = torch.manual_seed(0 ) else: SCREAMING_SNAKE_CASE:Tuple = torch.Generator(device=SCREAMING_SNAKE_CASE__ ).manual_seed(0 ) SCREAMING_SNAKE_CASE:Any = torch.randn( 1 ,model.config.in_channels ,model.config.sample_size ,model.config.sample_size ,generator=torch.manual_seed(0 ) ,) SCREAMING_SNAKE_CASE:Optional[int] = image.to(SCREAMING_SNAKE_CASE__ ) with torch.no_grad(): SCREAMING_SNAKE_CASE:Union[str, Any] = model(SCREAMING_SNAKE_CASE__ ,sample_posterior=SCREAMING_SNAKE_CASE__ ,generator=SCREAMING_SNAKE_CASE__ ).sample SCREAMING_SNAKE_CASE:str = output[0, -1, -3:, -3:].flatten().cpu() # Since the VAE Gaussian prior's generator is seeded on the appropriate device, # the expected output slices are not the same for CPU and GPU. if torch_device == "mps": SCREAMING_SNAKE_CASE:List[Any] = torch.tensor( [ -4.0_078e-01, -3.8_323e-04, -1.2_681e-01, -1.1_462e-01, 2.0_095e-01, 1.0_893e-01, -8.8_247e-02, -3.0_361e-01, -9.8_644e-03, ] ) elif torch_device == "cpu": SCREAMING_SNAKE_CASE:Optional[int] = torch.tensor( [-0.1_352, 0.0_878, 0.0_419, -0.0_818, -0.1_069, 0.0_688, -0.1_458, -0.4_446, -0.0_026] ) else: SCREAMING_SNAKE_CASE:Dict = torch.tensor( [-0.2_421, 0.4_642, 0.2_507, -0.0_438, 0.0_682, 0.3_160, -0.2_018, -0.0_727, 0.2_485] ) self.assertTrue(torch_all_close(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,rtol=1e-2 ) ) @slow class _snake_case ( unittest.TestCase ): def __UpperCamelCase ( self : Optional[Any] ,SCREAMING_SNAKE_CASE__ : Union[str, Any] ,SCREAMING_SNAKE_CASE__ : int ): return F'''gaussian_noise_s={seed}_shape={"_".join([str(SCREAMING_SNAKE_CASE__ ) for s in shape] )}.npy''' def __UpperCamelCase ( self : Tuple ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __UpperCamelCase ( self : Dict ,SCREAMING_SNAKE_CASE__ : Dict=0 ,SCREAMING_SNAKE_CASE__ : Any=(4, 3, 512, 512) ,SCREAMING_SNAKE_CASE__ : Union[str, Any]=False ): SCREAMING_SNAKE_CASE:str = torch.floataa if fpaa else torch.floataa SCREAMING_SNAKE_CASE:List[Any] = torch.from_numpy(load_hf_numpy(self.get_file_format(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) ) ).to(SCREAMING_SNAKE_CASE__ ).to(SCREAMING_SNAKE_CASE__ ) return image def __UpperCamelCase ( self : int ,SCREAMING_SNAKE_CASE__ : Dict="CompVis/stable-diffusion-v1-4" ,SCREAMING_SNAKE_CASE__ : int=False ): SCREAMING_SNAKE_CASE:Union[str, Any] = "fp16" if fpaa else None SCREAMING_SNAKE_CASE:Optional[Any] = torch.floataa if fpaa else torch.floataa SCREAMING_SNAKE_CASE:Union[str, Any] = AutoencoderKL.from_pretrained( SCREAMING_SNAKE_CASE__ ,subfolder="vae" ,torch_dtype=SCREAMING_SNAKE_CASE__ ,revision=SCREAMING_SNAKE_CASE__ ,) model.to(SCREAMING_SNAKE_CASE__ ).eval() return model def __UpperCamelCase ( self : Tuple ,SCREAMING_SNAKE_CASE__ : List[str]=0 ): if torch_device == "mps": return torch.manual_seed(SCREAMING_SNAKE_CASE__ ) return torch.Generator(device=SCREAMING_SNAKE_CASE__ ).manual_seed(SCREAMING_SNAKE_CASE__ ) @parameterized.expand( [ # fmt: off [33, [-0.1_603, 0.9_878, -0.0_495, -0.0_790, -0.2_709, 0.8_375, -0.2_060, -0.0_824], [-0.2_395, 0.0_098, 0.0_102, -0.0_709, -0.2_840, -0.0_274, -0.0_718, -0.1_824]], [47, [-0.2_376, 0.1_168, 0.1_332, -0.4_840, -0.2_508, -0.0_791, -0.0_493, -0.4_089], [0.0_350, 0.0_847, 0.0_467, 0.0_344, -0.0_842, -0.0_547, -0.0_633, -0.1_131]], # fmt: on ] ) def __UpperCamelCase ( self : Tuple ,SCREAMING_SNAKE_CASE__ : List[str] ,SCREAMING_SNAKE_CASE__ : Optional[Any] ,SCREAMING_SNAKE_CASE__ : List[Any] ): SCREAMING_SNAKE_CASE:Any = self.get_sd_vae_model() SCREAMING_SNAKE_CASE:Tuple = self.get_sd_image(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE:Dict = self.get_generator(SCREAMING_SNAKE_CASE__ ) with torch.no_grad(): SCREAMING_SNAKE_CASE:List[str] = model(SCREAMING_SNAKE_CASE__ ,generator=SCREAMING_SNAKE_CASE__ ,sample_posterior=SCREAMING_SNAKE_CASE__ ).sample assert sample.shape == image.shape SCREAMING_SNAKE_CASE:List[Any] = sample[-1, -2:, -2:, :2].flatten().float().cpu() SCREAMING_SNAKE_CASE:Union[str, Any] = torch.tensor(expected_slice_mps if torch_device == "mps" else expected_slice ) assert torch_all_close(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,atol=3e-3 ) @parameterized.expand( [ # fmt: off [33, [-0.0_513, 0.0_289, 1.3_799, 0.2_166, -0.2_573, -0.0_871, 0.5_103, -0.0_999]], [47, [-0.4_128, -0.1_320, -0.3_704, 0.1_965, -0.4_116, -0.2_332, -0.3_340, 0.2_247]], # fmt: on ] ) @require_torch_gpu def __UpperCamelCase ( self : str ,SCREAMING_SNAKE_CASE__ : List[str] ,SCREAMING_SNAKE_CASE__ : Tuple ): SCREAMING_SNAKE_CASE:Tuple = self.get_sd_vae_model(fpaa=SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE:str = self.get_sd_image(SCREAMING_SNAKE_CASE__ ,fpaa=SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE:Tuple = self.get_generator(SCREAMING_SNAKE_CASE__ ) with torch.no_grad(): SCREAMING_SNAKE_CASE:Optional[int] = model(SCREAMING_SNAKE_CASE__ ,generator=SCREAMING_SNAKE_CASE__ ,sample_posterior=SCREAMING_SNAKE_CASE__ ).sample assert sample.shape == image.shape SCREAMING_SNAKE_CASE:int = sample[-1, -2:, :2, -2:].flatten().float().cpu() SCREAMING_SNAKE_CASE:Optional[int] = torch.tensor(SCREAMING_SNAKE_CASE__ ) assert torch_all_close(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,atol=1e-2 ) @parameterized.expand( [ # fmt: off [33, [-0.1_609, 0.9_866, -0.0_487, -0.0_777, -0.2_716, 0.8_368, -0.2_055, -0.0_814], [-0.2_395, 0.0_098, 0.0_102, -0.0_709, -0.2_840, -0.0_274, -0.0_718, -0.1_824]], [47, [-0.2_377, 0.1_147, 0.1_333, -0.4_841, -0.2_506, -0.0_805, -0.0_491, -0.4_085], [0.0_350, 0.0_847, 0.0_467, 0.0_344, -0.0_842, -0.0_547, -0.0_633, -0.1_131]], # fmt: on ] ) def __UpperCamelCase ( self : Tuple ,SCREAMING_SNAKE_CASE__ : List[str] ,SCREAMING_SNAKE_CASE__ : Tuple ,SCREAMING_SNAKE_CASE__ : Optional[Any] ): SCREAMING_SNAKE_CASE:List[str] = self.get_sd_vae_model() SCREAMING_SNAKE_CASE:Union[str, Any] = self.get_sd_image(SCREAMING_SNAKE_CASE__ ) with torch.no_grad(): SCREAMING_SNAKE_CASE:Union[str, Any] = model(SCREAMING_SNAKE_CASE__ ).sample assert sample.shape == image.shape SCREAMING_SNAKE_CASE:int = sample[-1, -2:, -2:, :2].flatten().float().cpu() SCREAMING_SNAKE_CASE:str = torch.tensor(expected_slice_mps if torch_device == "mps" else expected_slice ) assert torch_all_close(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,atol=3e-3 ) @parameterized.expand( [ # fmt: off [13, [-0.2_051, -0.1_803, -0.2_311, -0.2_114, -0.3_292, -0.3_574, -0.2_953, -0.3_323]], [37, [-0.2_632, -0.2_625, -0.2_199, -0.2_741, -0.4_539, -0.4_990, -0.3_720, -0.4_925]], # fmt: on ] ) @require_torch_gpu def __UpperCamelCase ( self : int ,SCREAMING_SNAKE_CASE__ : Dict ,SCREAMING_SNAKE_CASE__ : Optional[int] ): SCREAMING_SNAKE_CASE:Any = self.get_sd_vae_model() SCREAMING_SNAKE_CASE:List[str] = self.get_sd_image(SCREAMING_SNAKE_CASE__ ,shape=(3, 4, 64, 64) ) with torch.no_grad(): SCREAMING_SNAKE_CASE:Optional[Any] = model.decode(SCREAMING_SNAKE_CASE__ ).sample assert list(sample.shape ) == [3, 3, 512, 512] SCREAMING_SNAKE_CASE:List[str] = sample[-1, -2:, :2, -2:].flatten().cpu() SCREAMING_SNAKE_CASE:Any = torch.tensor(SCREAMING_SNAKE_CASE__ ) assert torch_all_close(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,atol=1e-3 ) @parameterized.expand( [ # fmt: off [27, [-0.0_369, 0.0_207, -0.0_776, -0.0_682, -0.1_747, -0.1_930, -0.1_465, -0.2_039]], [16, [-0.1_628, -0.2_134, -0.2_747, -0.2_642, -0.3_774, -0.4_404, -0.3_687, -0.4_277]], # fmt: on ] ) @require_torch_gpu def __UpperCamelCase ( self : Any ,SCREAMING_SNAKE_CASE__ : Union[str, Any] ,SCREAMING_SNAKE_CASE__ : List[str] ): SCREAMING_SNAKE_CASE:int = self.get_sd_vae_model(fpaa=SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE:Dict = self.get_sd_image(SCREAMING_SNAKE_CASE__ ,shape=(3, 4, 64, 64) ,fpaa=SCREAMING_SNAKE_CASE__ ) with torch.no_grad(): SCREAMING_SNAKE_CASE:Optional[Any] = model.decode(SCREAMING_SNAKE_CASE__ ).sample assert list(sample.shape ) == [3, 3, 512, 512] SCREAMING_SNAKE_CASE:Tuple = sample[-1, -2:, :2, -2:].flatten().float().cpu() SCREAMING_SNAKE_CASE:Any = torch.tensor(SCREAMING_SNAKE_CASE__ ) assert torch_all_close(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,atol=5e-3 ) @parameterized.expand([(13,), (16,), (27,)] ) @require_torch_gpu @unittest.skipIf(not is_xformers_available() ,reason="xformers is not required when using PyTorch 2.0." ) def __UpperCamelCase ( self : List[Any] ,SCREAMING_SNAKE_CASE__ : List[str] ): SCREAMING_SNAKE_CASE:str = self.get_sd_vae_model(fpaa=SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE:Dict = self.get_sd_image(SCREAMING_SNAKE_CASE__ ,shape=(3, 4, 64, 64) ,fpaa=SCREAMING_SNAKE_CASE__ ) with torch.no_grad(): SCREAMING_SNAKE_CASE:List[str] = model.decode(SCREAMING_SNAKE_CASE__ ).sample model.enable_xformers_memory_efficient_attention() with torch.no_grad(): SCREAMING_SNAKE_CASE:Optional[Any] = model.decode(SCREAMING_SNAKE_CASE__ ).sample assert list(sample.shape ) == [3, 3, 512, 512] assert torch_all_close(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,atol=1e-1 ) @parameterized.expand([(13,), (16,), (37,)] ) @require_torch_gpu @unittest.skipIf(not is_xformers_available() ,reason="xformers is not required when using PyTorch 2.0." ) def __UpperCamelCase ( self : Tuple ,SCREAMING_SNAKE_CASE__ : Optional[int] ): SCREAMING_SNAKE_CASE:List[Any] = self.get_sd_vae_model() SCREAMING_SNAKE_CASE:List[Any] = self.get_sd_image(SCREAMING_SNAKE_CASE__ ,shape=(3, 4, 64, 64) ) with torch.no_grad(): SCREAMING_SNAKE_CASE:List[Any] = model.decode(SCREAMING_SNAKE_CASE__ ).sample model.enable_xformers_memory_efficient_attention() with torch.no_grad(): SCREAMING_SNAKE_CASE:int = model.decode(SCREAMING_SNAKE_CASE__ ).sample assert list(sample.shape ) == [3, 3, 512, 512] assert torch_all_close(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,atol=1e-2 ) @parameterized.expand( [ # fmt: off [33, [-0.3_001, 0.0_918, -2.6_984, -3.9_720, -3.2_099, -5.0_353, 1.7_338, -0.2_065, 3.4_267]], [47, [-1.5_030, -4.3_871, -6.0_355, -9.1_157, -1.6_661, -2.7_853, 2.1_607, -5.0_823, 2.5_633]], # fmt: on ] ) def __UpperCamelCase ( self : List[str] ,SCREAMING_SNAKE_CASE__ : Optional[int] ,SCREAMING_SNAKE_CASE__ : Optional[int] ): SCREAMING_SNAKE_CASE:int = self.get_sd_vae_model() SCREAMING_SNAKE_CASE:List[Any] = self.get_sd_image(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE:Optional[Any] = self.get_generator(SCREAMING_SNAKE_CASE__ ) with torch.no_grad(): SCREAMING_SNAKE_CASE:List[Any] = model.encode(SCREAMING_SNAKE_CASE__ ).latent_dist SCREAMING_SNAKE_CASE:int = dist.sample(generator=SCREAMING_SNAKE_CASE__ ) assert list(sample.shape ) == [image.shape[0], 4] + [i // 8 for i in image.shape[2:]] SCREAMING_SNAKE_CASE:List[Any] = sample[0, -1, -3:, -3:].flatten().cpu() SCREAMING_SNAKE_CASE:int = torch.tensor(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE:Any = 3e-3 if torch_device != "mps" else 1e-2 assert torch_all_close(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,atol=SCREAMING_SNAKE_CASE__ )
139
0
import json import os import re import shutil import tempfile import unittest from typing import Tuple from transformers import AddedToken, BatchEncoding, ByTaTokenizer from transformers.utils import cached_property, is_tf_available, is_torch_available from ...test_tokenization_common import TokenizerTesterMixin if is_torch_available(): UpperCAmelCase_ : Optional[int] = '''pt''' elif is_tf_available(): UpperCAmelCase_ : Tuple = '''tf''' else: UpperCAmelCase_ : Any = '''jax''' class _SCREAMING_SNAKE_CASE ( _a , unittest.TestCase ): snake_case__ : str = ByTaTokenizer snake_case__ : List[Any] = False def _A ( self : str ): super().setUp() UpperCamelCase :List[Any] = ByTaTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def _A ( self : Optional[Any] ): return ByTaTokenizer.from_pretrained("""google/byt5-small""" ) def _A ( self : Optional[Any] , **__lowerCamelCase : List[Any] ): return self.tokenizer_class.from_pretrained(self.tmpdirname , **__lowerCamelCase ) def _A ( self : int , __lowerCamelCase : Dict , __lowerCamelCase : Tuple=False , __lowerCamelCase : str=20 , __lowerCamelCase : List[Any]=5 ): # XXX The default common tokenizer tests assume that every ID is decodable on its own. # This assumption is invalid for ByT5 because single bytes might not be # valid utf-8 (byte 128 for instance). # Here we're overriding the smallest possible method to provide # a clean sequence without making the same assumption. UpperCamelCase :str = [] for i in range(len(__lowerCamelCase ) ): try: UpperCamelCase :Tuple = tokenizer.decode([i] , clean_up_tokenization_spaces=__lowerCamelCase ) except UnicodeDecodeError: pass toks.append((i, tok) ) UpperCamelCase :int = list(filter(lambda __lowerCamelCase : re.match(R"""^[ a-zA-Z]+$""" , t[1] ) , __lowerCamelCase ) ) UpperCamelCase :Union[str, Any] = list(filter(lambda __lowerCamelCase : [t[0]] == tokenizer.encode(t[1] , add_special_tokens=__lowerCamelCase ) , __lowerCamelCase ) ) if max_length is not None and len(__lowerCamelCase ) > max_length: UpperCamelCase :str = toks[:max_length] if min_length is not None and len(__lowerCamelCase ) < min_length and len(__lowerCamelCase ) > 0: while len(__lowerCamelCase ) < min_length: UpperCamelCase :str = toks + toks # toks_str = [t[1] for t in toks] UpperCamelCase :int = [t[0] for t in toks] # Ensure consistency UpperCamelCase :Optional[Any] = tokenizer.decode(__lowerCamelCase , clean_up_tokenization_spaces=__lowerCamelCase ) if " " not in output_txt and len(__lowerCamelCase ) > 1: UpperCamelCase :Any = ( tokenizer.decode([toks_ids[0]] , clean_up_tokenization_spaces=__lowerCamelCase ) + """ """ + tokenizer.decode(toks_ids[1:] , clean_up_tokenization_spaces=__lowerCamelCase ) ) if with_prefix_space: UpperCamelCase :Union[str, Any] = """ """ + output_txt UpperCamelCase :Optional[Any] = tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase ) return output_txt, output_ids def _A ( self : Union[str, Any] ): UpperCamelCase :List[str] = self.ta_base_tokenizer UpperCamelCase :Dict = tokenizer(["""hi</s>""", """I went to the gym</s>""", """</s>"""] ) UpperCamelCase :Union[str, Any] = tokenizer(["""hi""", """I went to the gym""", """"""] ) self.assertListEqual(batch_with_eos_added["""input_ids"""] , batch_without_eos_added["""input_ids"""] ) def _A ( self : str ): UpperCamelCase :Dict = self.ta_base_tokenizer UpperCamelCase :Dict = """Unicode €.""" UpperCamelCase :List[str] = tokenizer(__lowerCamelCase ) UpperCamelCase :str = [88, 113, 108, 102, 114, 103, 104, 35, 229, 133, 175, 49, 1] self.assertEqual(encoded["""input_ids"""] , __lowerCamelCase ) # decoding UpperCamelCase :Dict = tokenizer.decode(__lowerCamelCase ) self.assertEqual(__lowerCamelCase , """Unicode €.</s>""" ) UpperCamelCase :Dict = tokenizer("""e è é ê ë""" ) UpperCamelCase :List[Any] = [104, 35, 198, 171, 35, 198, 172, 35, 198, 173, 35, 198, 174, 1] self.assertEqual(encoded["""input_ids"""] , __lowerCamelCase ) # decoding UpperCamelCase :int = tokenizer.decode(__lowerCamelCase ) self.assertEqual(__lowerCamelCase , """e è é ê ë</s>""" ) # encode/decode, but with `encode` instead of `__call__` self.assertEqual(tokenizer.decode(tokenizer.encode("""e è é ê ë""" ) ) , """e è é ê ë</s>""" ) def _A ( self : Optional[int] ): UpperCamelCase :Optional[Any] = self.ta_base_tokenizer UpperCamelCase :Any = ["""A long paragraph for summarization.""", """Another paragraph for summarization."""] # fmt: off UpperCamelCase :Dict = [68, 35, 111, 114, 113, 106, 35, 115, 100, 117, 100, 106, 117, 100, 115, 107, 35, 105, 114, 117, 35, 118, 120, 112, 112, 100, 117, 108, 125, 100, 119, 108, 114, 113, 49, 1, 0] # fmt: on UpperCamelCase :Tuple = tokenizer(__lowerCamelCase , padding=__lowerCamelCase , return_tensors=__lowerCamelCase ) self.assertIsInstance(__lowerCamelCase , __lowerCamelCase ) if FRAMEWORK != "jax": UpperCamelCase :Optional[int] = list(batch.input_ids.numpy()[0] ) else: UpperCamelCase :List[str] = list(batch.input_ids.tolist()[0] ) self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) self.assertEqual((2, 37) , batch.input_ids.shape ) self.assertEqual((2, 37) , batch.attention_mask.shape ) def _A ( self : Optional[Any] ): UpperCamelCase :Optional[Any] = self.ta_base_tokenizer UpperCamelCase :int = ["""A long paragraph for summarization.""", """Another paragraph for summarization."""] UpperCamelCase :Optional[Any] = tokenizer(__lowerCamelCase , padding=__lowerCamelCase , return_tensors=__lowerCamelCase ) # check if input_ids are returned and no decoder_input_ids self.assertIn("""input_ids""" , __lowerCamelCase ) self.assertIn("""attention_mask""" , __lowerCamelCase ) self.assertNotIn("""decoder_input_ids""" , __lowerCamelCase ) self.assertNotIn("""decoder_attention_mask""" , __lowerCamelCase ) def _A ( self : Any ): UpperCamelCase :Tuple = self.ta_base_tokenizer UpperCamelCase :Any = [ """Summary of the text.""", """Another summary.""", ] UpperCamelCase :Dict = tokenizer( text_target=__lowerCamelCase , max_length=32 , padding="""max_length""" , truncation=__lowerCamelCase , return_tensors=__lowerCamelCase ) self.assertEqual(32 , targets["""input_ids"""].shape[1] ) def _A ( self : List[Any] ): UpperCamelCase :Any = self.ta_base_tokenizer UpperCamelCase :Optional[Any] = ["""A long paragraph for summarization. </s>"""] UpperCamelCase :Optional[int] = ["""Summary of the text. </s>"""] # fmt: off UpperCamelCase :Any = [68, 35, 111, 114, 113, 106, 35, 115, 100, 117, 100, 106, 117, 100, 115, 107, 35, 105, 114, 117, 35, 118, 120, 112, 112, 100, 117, 108, 125, 100, 119, 108, 114, 113, 49, 35, 1] UpperCamelCase :Union[str, Any] = [86, 120, 112, 112, 100, 117, 124, 35, 114, 105, 35, 119, 107, 104, 35, 119, 104, 123, 119, 49, 35, 1] # fmt: on UpperCamelCase :Optional[int] = tokenizer(__lowerCamelCase , text_target=__lowerCamelCase ) self.assertEqual(__lowerCamelCase , batch["""input_ids"""][0] ) self.assertEqual(__lowerCamelCase , batch["""labels"""][0] ) def _A ( self : Union[str, Any] ): # safety check on max_len default value so we are sure the test works UpperCamelCase :Union[str, Any] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): self.assertNotEqual(tokenizer.model_max_length , 42 ) # Now let's start the test UpperCamelCase :List[Any] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): # Isolate this from the other tests because we save additional tokens/etc UpperCamelCase :Optional[Any] = tempfile.mkdtemp() UpperCamelCase :Tuple = """ He is very happy, UNwant\u00E9d,running""" UpperCamelCase :str = tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase ) tokenizer.save_pretrained(__lowerCamelCase ) UpperCamelCase :Union[str, Any] = tokenizer.__class__.from_pretrained(__lowerCamelCase ) UpperCamelCase :List[Any] = after_tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase ) self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) shutil.rmtree(__lowerCamelCase ) UpperCamelCase :Dict = self.get_tokenizers(model_max_length=42 ) for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): # Isolate this from the other tests because we save additional tokens/etc UpperCamelCase :Dict = tempfile.mkdtemp() UpperCamelCase :List[str] = """ He is very happy, UNwant\u00E9d,running""" tokenizer.add_tokens(["""bim""", """bambam"""] ) UpperCamelCase :str = tokenizer.additional_special_tokens additional_special_tokens.append("""new_additional_special_token""" ) tokenizer.add_special_tokens({"""additional_special_tokens""": additional_special_tokens} ) UpperCamelCase :Tuple = tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase ) tokenizer.save_pretrained(__lowerCamelCase ) UpperCamelCase :int = tokenizer.__class__.from_pretrained(__lowerCamelCase ) UpperCamelCase :List[Any] = after_tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase ) self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) self.assertIn("""new_additional_special_token""" , after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length , 42 ) UpperCamelCase :str = tokenizer.__class__.from_pretrained(__lowerCamelCase , model_max_length=43 ) self.assertEqual(tokenizer.model_max_length , 43 ) shutil.rmtree(__lowerCamelCase ) def _A ( self : Dict ): UpperCamelCase :Optional[Any] = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(__lowerCamelCase ) with open(os.path.join(__lowerCamelCase , """special_tokens_map.json""" ) , encoding="""utf-8""" ) as json_file: UpperCamelCase :str = json.load(__lowerCamelCase ) with open(os.path.join(__lowerCamelCase , """tokenizer_config.json""" ) , encoding="""utf-8""" ) as json_file: UpperCamelCase :Dict = json.load(__lowerCamelCase ) UpperCamelCase :int = [F"""<extra_id_{i}>""" for i in range(125 )] UpperCamelCase :Tuple = added_tokens_extra_ids + [ """an_additional_special_token""" ] UpperCamelCase :int = added_tokens_extra_ids + [ """an_additional_special_token""" ] with open(os.path.join(__lowerCamelCase , """special_tokens_map.json""" ) , """w""" , encoding="""utf-8""" ) as outfile: json.dump(__lowerCamelCase , __lowerCamelCase ) with open(os.path.join(__lowerCamelCase , """tokenizer_config.json""" ) , """w""" , encoding="""utf-8""" ) as outfile: json.dump(__lowerCamelCase , __lowerCamelCase ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files UpperCamelCase :List[str] = tokenizer_class.from_pretrained( __lowerCamelCase , ) self.assertIn( """an_additional_special_token""" , tokenizer_without_change_in_init.additional_special_tokens ) # self.assertIn("an_additional_special_token",tokenizer_without_change_in_init.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( ["""an_additional_special_token"""] , tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids(["""an_additional_special_token"""] ) ) , ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained UpperCamelCase :Any = added_tokens_extra_ids + [AddedToken("""a_new_additional_special_token""" , lstrip=__lowerCamelCase )] UpperCamelCase :Dict = tokenizer_class.from_pretrained( __lowerCamelCase , additional_special_tokens=__lowerCamelCase , ) self.assertIn("""a_new_additional_special_token""" , tokenizer.additional_special_tokens ) self.assertEqual( ["""a_new_additional_special_token"""] , tokenizer.convert_ids_to_tokens( tokenizer.convert_tokens_to_ids(["""a_new_additional_special_token"""] ) ) , ) def _A ( self : Any ): UpperCamelCase :Tuple = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(__lowerCamelCase ) UpperCamelCase :Tuple = tokenizer_class.from_pretrained(__lowerCamelCase ) self.assertTrue(tokenizer.decode([255] ) == """""" ) def _A ( self : Any ): pass def _A ( self : str ): pass def _A ( self : Dict ): pass def _A ( self : Any ): pass def _A ( self : str ): # The default common tokenizer tests uses invalid tokens for ByT5 that can only accept one-character strings # and special added tokens as tokens UpperCamelCase :Optional[int] = self.get_tokenizers(fast=__lowerCamelCase , do_lower_case=__lowerCamelCase ) for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): UpperCamelCase :List[Any] = ["""t""", """h""", """i""", """s""", """ """, """i""", """s""", """ """, """a""", """ """, """t""", """e""", """x""", """t""", """</s>"""] UpperCamelCase :Optional[Any] = tokenizer.convert_tokens_to_string(__lowerCamelCase ) self.assertIsInstance(__lowerCamelCase , __lowerCamelCase ) def _A ( self : int ): UpperCamelCase :Optional[int] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): UpperCamelCase :List[Any] = [ """bos_token""", """eos_token""", """unk_token""", """sep_token""", """pad_token""", """cls_token""", """mask_token""", ] UpperCamelCase :Dict = 0 UpperCamelCase :int = tokenizer.convert_ids_to_tokens( __lowerCamelCase , skip_special_tokens=__lowerCamelCase ) for attr in attributes_list: setattr(__lowerCamelCase , attr + """_id""" , __lowerCamelCase ) self.assertEqual(getattr(__lowerCamelCase , __lowerCamelCase ) , __lowerCamelCase ) self.assertEqual(getattr(__lowerCamelCase , attr + """_id""" ) , __lowerCamelCase ) setattr(__lowerCamelCase , attr + """_id""" , __lowerCamelCase ) self.assertEqual(getattr(__lowerCamelCase , __lowerCamelCase ) , __lowerCamelCase ) self.assertEqual(getattr(__lowerCamelCase , attr + """_id""" ) , __lowerCamelCase ) setattr(__lowerCamelCase , """additional_special_tokens_ids""" , [] ) self.assertListEqual(getattr(__lowerCamelCase , """additional_special_tokens""" ) , [] ) self.assertListEqual(getattr(__lowerCamelCase , """additional_special_tokens_ids""" ) , [] ) setattr(__lowerCamelCase , """additional_special_tokens_ids""" , [token_id_to_test_setters] ) self.assertListEqual(getattr(__lowerCamelCase , """additional_special_tokens""" ) , [token_to_test_setters] ) self.assertListEqual(getattr(__lowerCamelCase , """additional_special_tokens_ids""" ) , [token_id_to_test_setters] )
62
from __future__ import annotations from collections import deque class _SCREAMING_SNAKE_CASE : def __init__( self : Optional[Any] , __lowerCamelCase : list[str] ): UpperCamelCase :list[dict] = [] self.adlist.append( {"""value""": """""", """next_states""": [], """fail_state""": 0, """output""": []} ) for keyword in keywords: self.add_keyword(__lowerCamelCase ) self.set_fail_transitions() def _A ( self : Tuple , __lowerCamelCase : int , __lowerCamelCase : str ): for state in self.adlist[current_state]["next_states"]: if char == self.adlist[state]["value"]: return state return None def _A ( self : int , __lowerCamelCase : str ): UpperCamelCase :List[str] = 0 for character in keyword: UpperCamelCase :List[Any] = self.find_next_state(__lowerCamelCase , __lowerCamelCase ) if next_state is None: self.adlist.append( { """value""": character, """next_states""": [], """fail_state""": 0, """output""": [], } ) self.adlist[current_state]["next_states"].append(len(self.adlist ) - 1 ) UpperCamelCase :Optional[int] = len(self.adlist ) - 1 else: UpperCamelCase :Union[str, Any] = next_state self.adlist[current_state]["output"].append(__lowerCamelCase ) def _A ( self : List[str] ): UpperCamelCase :deque = deque() for node in self.adlist[0]["next_states"]: q.append(__lowerCamelCase ) UpperCamelCase :Tuple = 0 while q: UpperCamelCase :Union[str, Any] = q.popleft() for child in self.adlist[r]["next_states"]: q.append(__lowerCamelCase ) UpperCamelCase :Optional[int] = self.adlist[r]["""fail_state"""] while ( self.find_next_state(__lowerCamelCase , self.adlist[child]["""value"""] ) is None and state != 0 ): UpperCamelCase :List[Any] = self.adlist[state]["""fail_state"""] UpperCamelCase :List[str] = self.find_next_state( __lowerCamelCase , self.adlist[child]["""value"""] ) if self.adlist[child]["fail_state"] is None: UpperCamelCase :Any = 0 UpperCamelCase :Tuple = ( self.adlist[child]["""output"""] + self.adlist[self.adlist[child]["""fail_state"""]]["""output"""] ) def _A ( self : Union[str, Any] , __lowerCamelCase : str ): UpperCamelCase :dict = {} # returns a dict with keywords and list of its occurrences UpperCamelCase :Union[str, Any] = 0 for i in range(len(__lowerCamelCase ) ): while ( self.find_next_state(__lowerCamelCase , string[i] ) is None and current_state != 0 ): UpperCamelCase :List[Any] = self.adlist[current_state]["""fail_state"""] UpperCamelCase :Optional[Any] = self.find_next_state(__lowerCamelCase , string[i] ) if next_state is None: UpperCamelCase :Dict = 0 else: UpperCamelCase :List[str] = next_state for key in self.adlist[current_state]["output"]: if key not in result: UpperCamelCase :Optional[int] = [] result[key].append(i - len(__lowerCamelCase ) + 1 ) return result if __name__ == "__main__": import doctest doctest.testmod()
62
1
'''simple docstring''' from __future__ import annotations def snake_case ( UpperCAmelCase )-> float: """simple docstring""" __A = 0.00 __A = 0 for resistor in resistors: if resistor <= 0: __A = f'Resistor at index {index} has a negative or zero value!' raise ValueError(UpperCAmelCase ) first_sum += 1 / float(UpperCAmelCase ) index += 1 return 1 / first_sum def snake_case ( UpperCAmelCase )-> float: """simple docstring""" __A = 0.00 __A = 0 for resistor in resistors: sum_r += resistor if resistor < 0: __A = f'Resistor at index {index} has a negative value!' raise ValueError(UpperCAmelCase ) index += 1 return sum_r if __name__ == "__main__": import doctest doctest.testmod()
161
'''simple docstring''' import torch from torch import nn from torch.nn import CrossEntropyLoss, MSELoss from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward from transformers.models.bert.modeling_bert import ( BERT_INPUTS_DOCSTRING, BERT_START_DOCSTRING, BertEmbeddings, BertLayer, BertPooler, BertPreTrainedModel, ) def snake_case ( UpperCAmelCase )-> Dict: """simple docstring""" __A = torch.exp(UpperCAmelCase ) __A = torch.sum(UpperCAmelCase , dim=1 ) # sum of exp(x_i) __A = torch.sum(x * exp_x , dim=1 ) # sum of x_i * exp(x_i) return torch.log(UpperCAmelCase ) - B / A class UpperCamelCase__ ( nn.Module): def __init__( self :Any , _A :int ) -> Union[str, Any]: '''simple docstring''' super().__init__() __A = config.output_attentions __A = config.output_hidden_states __A = nn.ModuleList([BertLayer(_A ) for _ in range(config.num_hidden_layers )] ) __A = nn.ModuleList([BertHighway(_A ) for _ in range(config.num_hidden_layers )] ) __A = [-1 for _ in range(config.num_hidden_layers )] def lowercase_ ( self :Any , _A :List[Any] ) -> Tuple: '''simple docstring''' if (type(_A ) is float) or (type(_A ) is int): for i in range(len(self.early_exit_entropy ) ): __A = x else: __A = x def lowercase_ ( self :Optional[Any] , _A :List[str] ) -> Dict: '''simple docstring''' __A = pooler.state_dict() for highway in self.highway: for name, param in highway.pooler.state_dict().items(): param.copy_(loaded_model[name] ) def lowercase_ ( self :List[Any] , _A :Tuple , _A :Tuple=None , _A :int=None , _A :List[Any]=None , _A :str=None , ) -> Tuple: '''simple docstring''' __A = () __A = () __A = () for i, layer_module in enumerate(self.layer ): if self.output_hidden_states: __A = all_hidden_states + (hidden_states,) __A = layer_module( _A , _A , head_mask[i] , _A , _A ) __A = layer_outputs[0] if self.output_attentions: __A = all_attentions + (layer_outputs[1],) __A = (hidden_states,) if self.output_hidden_states: __A = current_outputs + (all_hidden_states,) if self.output_attentions: __A = current_outputs + (all_attentions,) __A = self.highway[i](_A ) # logits, pooled_output if not self.training: __A = highway_exit[0] __A = entropy(_A ) __A = highway_exit + (highway_entropy,) # logits, hidden_states(?), entropy __A = all_highway_exits + (highway_exit,) if highway_entropy < self.early_exit_entropy[i]: __A = (highway_logits,) + current_outputs[1:] + (all_highway_exits,) raise HighwayException(_A , i + 1 ) else: __A = all_highway_exits + (highway_exit,) # Add last layer if self.output_hidden_states: __A = all_hidden_states + (hidden_states,) __A = (hidden_states,) if self.output_hidden_states: __A = outputs + (all_hidden_states,) if self.output_attentions: __A = outputs + (all_attentions,) __A = outputs + (all_highway_exits,) return outputs # last-layer hidden state, (all hidden states), (all attentions), all highway exits @add_start_docstrings( 'The Bert Model transformer with early exiting (DeeBERT). ' , SCREAMING_SNAKE_CASE , ) class UpperCamelCase__ ( SCREAMING_SNAKE_CASE): def __init__( self :Tuple , _A :List[str] ) -> str: '''simple docstring''' super().__init__(_A ) __A = config __A = BertEmbeddings(_A ) __A = DeeBertEncoder(_A ) __A = BertPooler(_A ) self.init_weights() def lowercase_ ( self :Union[str, Any] ) -> str: '''simple docstring''' self.encoder.init_highway_pooler(self.pooler ) def lowercase_ ( self :Optional[Any] ) -> Dict: '''simple docstring''' return self.embeddings.word_embeddings def lowercase_ ( self :Tuple , _A :Tuple ) -> Union[str, Any]: '''simple docstring''' __A = value def lowercase_ ( self :int , _A :int ) -> Tuple: '''simple docstring''' for layer, heads in heads_to_prune.items(): self.encoder.layer[layer].attention.prune_heads(_A ) @add_start_docstrings_to_model_forward(_A ) def lowercase_ ( self :Tuple , _A :int=None , _A :List[Any]=None , _A :Optional[int]=None , _A :Optional[int]=None , _A :Optional[int]=None , _A :Any=None , _A :List[str]=None , _A :Optional[Any]=None , ) -> Union[str, Any]: '''simple docstring''' if input_ids is not None and inputs_embeds is not None: raise ValueError('You cannot specify both input_ids and inputs_embeds at the same time' ) elif input_ids is not None: __A = input_ids.size() elif inputs_embeds is not None: __A = inputs_embeds.size()[:-1] else: raise ValueError('You have to specify either input_ids or inputs_embeds' ) __A = input_ids.device if input_ids is not None else inputs_embeds.device if attention_mask is None: __A = torch.ones(_A , device=_A ) if encoder_attention_mask is None: __A = torch.ones(_A , device=_A ) if token_type_ids is None: __A = torch.zeros(_A , dtype=torch.long , device=_A ) # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] # ourselves in which case we just need to make it broadcastable to all heads. __A = self.get_extended_attention_mask(_A , _A , _A ) # If a 2D ou 3D attention mask is provided for the cross-attention # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] if encoder_attention_mask.dim() == 3: __A = encoder_attention_mask[:, None, :, :] if encoder_attention_mask.dim() == 2: __A = encoder_attention_mask[:, None, None, :] __A = encoder_extended_attention_mask.to( dtype=next(self.parameters() ).dtype ) # fp16 compatibility __A = (1.0 - encoder_extended_attention_mask) * -10_000.0 # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] __A = self.get_head_mask(_A , self.config.num_hidden_layers ) __A = self.embeddings( input_ids=_A , position_ids=_A , token_type_ids=_A , inputs_embeds=_A ) __A = self.encoder( _A , attention_mask=_A , head_mask=_A , encoder_hidden_states=_A , encoder_attention_mask=_A , ) __A = encoder_outputs[0] __A = self.pooler(_A ) __A = ( sequence_output, pooled_output, ) + encoder_outputs[ 1: ] # add hidden_states and attentions if they are here return outputs # sequence_output, pooled_output, (hidden_states), (attentions), highway exits class UpperCamelCase__ ( SCREAMING_SNAKE_CASE): def __init__( self :Optional[Any] , _A :str , _A :List[str] ) -> Optional[int]: '''simple docstring''' __A = message __A = exit_layer # start from 1! class UpperCamelCase__ ( nn.Module): def __init__( self :Any , _A :Dict ) -> Tuple: '''simple docstring''' super().__init__() __A = BertPooler(_A ) __A = nn.Dropout(config.hidden_dropout_prob ) __A = nn.Linear(config.hidden_size , config.num_labels ) def lowercase_ ( self :List[Any] , _A :Optional[Any] ) -> int: '''simple docstring''' __A = encoder_outputs[0] __A = self.pooler(_A ) # "return" pooler_output # BertModel __A = (pooler_input, pooler_output) + encoder_outputs[1:] # "return" bmodel_output # Dropout and classification __A = bmodel_output[1] __A = self.dropout(_A ) __A = self.classifier(_A ) return logits, pooled_output @add_start_docstrings( 'Bert Model (with early exiting - DeeBERT) with a classifier on top,\n also takes care of multi-layer training. ' , SCREAMING_SNAKE_CASE , ) class UpperCamelCase__ ( SCREAMING_SNAKE_CASE): def __init__( self :str , _A :Optional[Any] ) -> str: '''simple docstring''' super().__init__(_A ) __A = config.num_labels __A = config.num_hidden_layers __A = DeeBertModel(_A ) __A = nn.Dropout(config.hidden_dropout_prob ) __A = nn.Linear(config.hidden_size , self.config.num_labels ) self.init_weights() @add_start_docstrings_to_model_forward(_A ) def lowercase_ ( self :Tuple , _A :str=None , _A :Optional[int]=None , _A :Any=None , _A :str=None , _A :int=None , _A :Tuple=None , _A :Any=None , _A :List[str]=-1 , _A :Optional[Any]=False , ) -> List[str]: '''simple docstring''' __A = self.num_layers try: __A = self.bert( _A , attention_mask=_A , token_type_ids=_A , position_ids=_A , head_mask=_A , inputs_embeds=_A , ) # sequence_output, pooled_output, (hidden_states), (attentions), highway exits __A = outputs[1] __A = self.dropout(_A ) __A = self.classifier(_A ) __A = (logits,) + outputs[2:] # add hidden states and attention if they are here except HighwayException as e: __A = e.message __A = e.exit_layer __A = outputs[0] if not self.training: __A = entropy(_A ) __A = [] __A = [] if labels is not None: if self.num_labels == 1: # We are doing regression __A = MSELoss() __A = loss_fct(logits.view(-1 ) , labels.view(-1 ) ) else: __A = CrossEntropyLoss() __A = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) # work with highway exits __A = [] for highway_exit in outputs[-1]: __A = highway_exit[0] if not self.training: highway_logits_all.append(_A ) highway_entropy.append(highway_exit[2] ) if self.num_labels == 1: # We are doing regression __A = MSELoss() __A = loss_fct(highway_logits.view(-1 ) , labels.view(-1 ) ) else: __A = CrossEntropyLoss() __A = loss_fct(highway_logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) highway_losses.append(_A ) if train_highway: __A = (sum(highway_losses[:-1] ),) + outputs # exclude the final highway, of course else: __A = (loss,) + outputs if not self.training: __A = outputs + ((original_entropy, highway_entropy), exit_layer) if output_layer >= 0: __A = ( (outputs[0],) + (highway_logits_all[output_layer],) + outputs[2:] ) # use the highway of the last layer return outputs # (loss), logits, (hidden_states), (attentions), (highway_exits)
161
1
"""simple docstring""" from __future__ import annotations def _A ( UpperCamelCase_ : str) -> list[int]: '''simple docstring''' return [ord(UpperCamelCase_) - 96 for elem in plain] def _A ( UpperCamelCase_ : list[int]) -> str: '''simple docstring''' return "".join(chr(elem + 96) for elem in encoded) def _A ( ) -> None: '''simple docstring''' __lowercase = encode(input("-> ").strip().lower()) print("Encoded: ", UpperCamelCase_) print("Decoded:", decode(UpperCamelCase_)) if __name__ == "__main__": main()
144
"""simple docstring""" from ...utils import is_note_seq_available, is_transformers_available, is_torch_available from ...utils import OptionalDependencyNotAvailable try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .notes_encoder import SpectrogramNotesEncoder from .continous_encoder import SpectrogramContEncoder from .pipeline_spectrogram_diffusion import ( SpectrogramContEncoder, SpectrogramDiffusionPipeline, TaFilmDecoder, ) try: if not (is_transformers_available() and is_torch_available() and is_note_seq_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_transformers_and_torch_and_note_seq_objects import * # noqa F403 else: from .midi_utils import MidiProcessor
144
1
'''simple docstring''' def lowercase__ ( __lowercase : int = 1000 ) -> Union[str, Any]: """simple docstring""" __UpperCamelCase = 2**power __UpperCamelCase = str(SCREAMING_SNAKE_CASE__ ) __UpperCamelCase = list(SCREAMING_SNAKE_CASE__ ) __UpperCamelCase = 0 for i in list_num: sum_of_num += int(SCREAMING_SNAKE_CASE__ ) return sum_of_num if __name__ == "__main__": a__ : Optional[int] =int(input('''Enter the power of 2: ''').strip()) print('''2 ^ ''', power, ''' = ''', 2**power) a__ : Dict =solution(power) print('''Sum of the digits is: ''', result)
53
from numpy import exp, pi, sqrt def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : float = 0.0 , SCREAMING_SNAKE_CASE__ : float = 1.0 ): return 1 / sqrt(2 * pi * sigma**2 ) * exp(-((x - mu) ** 2) / (2 * sigma**2) ) if __name__ == "__main__": import doctest doctest.testmod()
62
0
'''simple docstring''' import collections import inspect import unittest from transformers import SwinvaConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import SwinvaForImageClassification, SwinvaForMaskedImageModeling, SwinvaModel from transformers.models.swinva.modeling_swinva import SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class _UpperCAmelCase : def __init__( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE=13,__SCREAMING_SNAKE_CASE=32,__SCREAMING_SNAKE_CASE=2,__SCREAMING_SNAKE_CASE=3,__SCREAMING_SNAKE_CASE=16,__SCREAMING_SNAKE_CASE=[1, 2, 1],__SCREAMING_SNAKE_CASE=[2, 2, 4],__SCREAMING_SNAKE_CASE=2,__SCREAMING_SNAKE_CASE=2.0,__SCREAMING_SNAKE_CASE=True,__SCREAMING_SNAKE_CASE=0.0,__SCREAMING_SNAKE_CASE=0.0,__SCREAMING_SNAKE_CASE=0.1,__SCREAMING_SNAKE_CASE="gelu",__SCREAMING_SNAKE_CASE=False,__SCREAMING_SNAKE_CASE=True,__SCREAMING_SNAKE_CASE=0.02,__SCREAMING_SNAKE_CASE=1e-5,__SCREAMING_SNAKE_CASE=True,__SCREAMING_SNAKE_CASE=None,__SCREAMING_SNAKE_CASE=True,__SCREAMING_SNAKE_CASE=10,__SCREAMING_SNAKE_CASE=8,): '''simple docstring''' __lowerCAmelCase = parent __lowerCAmelCase = batch_size __lowerCAmelCase = image_size __lowerCAmelCase = patch_size __lowerCAmelCase = num_channels __lowerCAmelCase = embed_dim __lowerCAmelCase = depths __lowerCAmelCase = num_heads __lowerCAmelCase = window_size __lowerCAmelCase = mlp_ratio __lowerCAmelCase = qkv_bias __lowerCAmelCase = hidden_dropout_prob __lowerCAmelCase = attention_probs_dropout_prob __lowerCAmelCase = drop_path_rate __lowerCAmelCase = hidden_act __lowerCAmelCase = use_absolute_embeddings __lowerCAmelCase = patch_norm __lowerCAmelCase = layer_norm_eps __lowerCAmelCase = initializer_range __lowerCAmelCase = is_training __lowerCAmelCase = scope __lowerCAmelCase = use_labels __lowerCAmelCase = type_sequence_label_size __lowerCAmelCase = encoder_stride def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __lowerCAmelCase = None if self.use_labels: __lowerCAmelCase = ids_tensor([self.batch_size],self.type_sequence_label_size ) __lowerCAmelCase = self.get_config() return config, pixel_values, labels def lowerCamelCase__ ( self ): '''simple docstring''' return SwinvaConfig( image_size=self.image_size,patch_size=self.patch_size,num_channels=self.num_channels,embed_dim=self.embed_dim,depths=self.depths,num_heads=self.num_heads,window_size=self.window_size,mlp_ratio=self.mlp_ratio,qkv_bias=self.qkv_bias,hidden_dropout_prob=self.hidden_dropout_prob,attention_probs_dropout_prob=self.attention_probs_dropout_prob,drop_path_rate=self.drop_path_rate,hidden_act=self.hidden_act,use_absolute_embeddings=self.use_absolute_embeddings,path_norm=self.patch_norm,layer_norm_eps=self.layer_norm_eps,initializer_range=self.initializer_range,encoder_stride=self.encoder_stride,) def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ): '''simple docstring''' __lowerCAmelCase = SwinvaModel(config=__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() __lowerCAmelCase = model(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) __lowerCAmelCase = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape,(self.batch_size, expected_seq_len, expected_dim) ) def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ): '''simple docstring''' __lowerCAmelCase = SwinvaForMaskedImageModeling(config=__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() __lowerCAmelCase = model(__SCREAMING_SNAKE_CASE ) self.parent.assertEqual( result.logits.shape,(self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images __lowerCAmelCase = 1 __lowerCAmelCase = SwinvaForMaskedImageModeling(__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() __lowerCAmelCase = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __lowerCAmelCase = model(__SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape,(self.batch_size, 1, self.image_size, self.image_size) ) def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ): '''simple docstring''' __lowerCAmelCase = self.type_sequence_label_size __lowerCAmelCase = SwinvaForImageClassification(__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() __lowerCAmelCase = model(__SCREAMING_SNAKE_CASE,labels=__SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape,(self.batch_size, self.type_sequence_label_size) ) def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = self.prepare_config_and_inputs() __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = config_and_inputs __lowerCAmelCase = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class _UpperCAmelCase ( lowerCAmelCase_ , lowerCAmelCase_ , unittest.TestCase ): a : int =( (SwinvaModel, SwinvaForImageClassification, SwinvaForMaskedImageModeling) if is_torch_available() else () ) a : int =( {"""feature-extraction""": SwinvaModel, """image-classification""": SwinvaForImageClassification} if is_torch_available() else {} ) a : str =False a : int =False a : Optional[int] =False a : Any =False def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = SwinvaModelTester(self ) __lowerCAmelCase = ConfigTester(self,config_class=__SCREAMING_SNAKE_CASE,embed_dim=37 ) def lowerCamelCase__ ( self ): '''simple docstring''' self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__SCREAMING_SNAKE_CASE ) @unittest.skip(reason="""Got `CUDA error: misaligned address` with PyTorch 2.0.0.""" ) def lowerCamelCase__ ( self ): '''simple docstring''' pass @unittest.skip(reason="""Swinv2 does not use inputs_embeds""" ) def lowerCamelCase__ ( self ): '''simple docstring''' pass def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCAmelCase = model_class(__SCREAMING_SNAKE_CASE ) self.assertIsInstance(model.get_input_embeddings(),(nn.Module) ) __lowerCAmelCase = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__SCREAMING_SNAKE_CASE,nn.Linear ) ) def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCAmelCase = model_class(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowerCAmelCase = [*signature.parameters.keys()] __lowerCAmelCase = ["""pixel_values"""] self.assertListEqual(arg_names[:1],__SCREAMING_SNAKE_CASE ) def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() __lowerCAmelCase = True for model_class in self.all_model_classes: __lowerCAmelCase = True __lowerCAmelCase = False __lowerCAmelCase = True __lowerCAmelCase = model_class(__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() with torch.no_grad(): __lowerCAmelCase = model(**self._prepare_for_class(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) ) __lowerCAmelCase = outputs.attentions __lowerCAmelCase = len(self.model_tester.depths ) self.assertEqual(len(__SCREAMING_SNAKE_CASE ),__SCREAMING_SNAKE_CASE ) # check that output_attentions also work using config del inputs_dict["output_attentions"] __lowerCAmelCase = True __lowerCAmelCase = config.window_size**2 __lowerCAmelCase = model_class(__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() with torch.no_grad(): __lowerCAmelCase = model(**self._prepare_for_class(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) ) __lowerCAmelCase = outputs.attentions self.assertEqual(len(__SCREAMING_SNAKE_CASE ),__SCREAMING_SNAKE_CASE ) self.assertListEqual( list(attentions[0].shape[-3:] ),[self.model_tester.num_heads[0], window_size_squared, window_size_squared],) __lowerCAmelCase = len(__SCREAMING_SNAKE_CASE ) # Check attention is always last and order is fine __lowerCAmelCase = True __lowerCAmelCase = True __lowerCAmelCase = model_class(__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() with torch.no_grad(): __lowerCAmelCase = model(**self._prepare_for_class(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) ) if hasattr(self.model_tester,"""num_hidden_states_types""" ): __lowerCAmelCase = self.model_tester.num_hidden_states_types else: # also another +1 for reshaped_hidden_states __lowerCAmelCase = 2 self.assertEqual(out_len + added_hidden_states,len(__SCREAMING_SNAKE_CASE ) ) __lowerCAmelCase = outputs.attentions self.assertEqual(len(__SCREAMING_SNAKE_CASE ),__SCREAMING_SNAKE_CASE ) self.assertListEqual( list(self_attentions[0].shape[-3:] ),[self.model_tester.num_heads[0], window_size_squared, window_size_squared],) def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ): '''simple docstring''' __lowerCAmelCase = model_class(__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() with torch.no_grad(): __lowerCAmelCase = model(**self._prepare_for_class(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) ) __lowerCAmelCase = outputs.hidden_states __lowerCAmelCase = getattr( self.model_tester,"""expected_num_hidden_layers""",len(self.model_tester.depths ) + 1 ) self.assertEqual(len(__SCREAMING_SNAKE_CASE ),__SCREAMING_SNAKE_CASE ) # Swinv2 has a different seq_length __lowerCAmelCase = ( config.patch_size if isinstance(config.patch_size,collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) __lowerCAmelCase = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ),[num_patches, self.model_tester.embed_dim],) __lowerCAmelCase = outputs.reshaped_hidden_states self.assertEqual(len(__SCREAMING_SNAKE_CASE ),__SCREAMING_SNAKE_CASE ) __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = reshaped_hidden_states[0].shape __lowerCAmelCase = ( reshaped_hidden_states[0].view(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,height * width ).permute(0,2,1 ) ) self.assertListEqual( list(reshaped_hidden_states.shape[-2:] ),[num_patches, self.model_tester.embed_dim],) def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() __lowerCAmelCase = ( self.model_tester.image_size if isinstance(self.model_tester.image_size,collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes: __lowerCAmelCase = True self.check_hidden_states_output(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __lowerCAmelCase = True self.check_hidden_states_output(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() __lowerCAmelCase = 3 __lowerCAmelCase = ( self.model_tester.image_size if isinstance(self.model_tester.image_size,collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) __lowerCAmelCase = ( config.patch_size if isinstance(config.patch_size,collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) __lowerCAmelCase = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) __lowerCAmelCase = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes: __lowerCAmelCase = True self.check_hidden_states_output(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,(padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __lowerCAmelCase = True self.check_hidden_states_output(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,(padded_height, padded_width) ) def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*__SCREAMING_SNAKE_CASE ) def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__SCREAMING_SNAKE_CASE ) @slow def lowerCamelCase__ ( self ): '''simple docstring''' for model_name in SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowerCAmelCase = SwinvaModel.from_pretrained(__SCREAMING_SNAKE_CASE ) self.assertIsNotNone(__SCREAMING_SNAKE_CASE ) def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() __lowerCAmelCase = _config_zero_init(__SCREAMING_SNAKE_CASE ) for model_class in self.all_model_classes: __lowerCAmelCase = model_class(config=__SCREAMING_SNAKE_CASE ) for name, param in model.named_parameters(): if "embeddings" not in name and "logit_scale" not in name and param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item(),[0.0, 1.0],msg=f'Parameter {name} of model {model_class} seems not properly initialized',) @require_vision @require_torch class _UpperCAmelCase ( unittest.TestCase ): @cached_property def lowerCamelCase__ ( self ): '''simple docstring''' return ( AutoImageProcessor.from_pretrained("""microsoft/swinv2-tiny-patch4-window8-256""" ) if is_vision_available() else None ) @slow def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = SwinvaForImageClassification.from_pretrained("""microsoft/swinv2-tiny-patch4-window8-256""" ).to( __SCREAMING_SNAKE_CASE ) __lowerCAmelCase = self.default_image_processor __lowerCAmelCase = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) __lowerCAmelCase = image_processor(images=__SCREAMING_SNAKE_CASE,return_tensors="""pt""" ).to(__SCREAMING_SNAKE_CASE ) # forward pass with torch.no_grad(): __lowerCAmelCase = model(**__SCREAMING_SNAKE_CASE ) # verify the logits __lowerCAmelCase = torch.Size((1, 10_00) ) self.assertEqual(outputs.logits.shape,__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = torch.tensor([-0.3947, -0.4306, 0.0026] ).to(__SCREAMING_SNAKE_CASE ) self.assertTrue(torch.allclose(outputs.logits[0, :3],__SCREAMING_SNAKE_CASE,atol=1e-4 ) )
46
'''simple docstring''' import gc import random import unittest import numpy as np import torch from PIL import Image from diffusers import ( DDIMScheduler, KandinskyVaaInpaintPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class _UpperCAmelCase ( lowerCAmelCase_ , unittest.TestCase ): a : str =KandinskyVaaInpaintPipeline a : int =["""image_embeds""", """negative_image_embeds""", """image""", """mask_image"""] a : str =[ """image_embeds""", """negative_image_embeds""", """image""", """mask_image""", ] a : Optional[int] =[ """generator""", """height""", """width""", """latents""", """guidance_scale""", """num_inference_steps""", """return_dict""", """guidance_scale""", """num_images_per_prompt""", """output_type""", """return_dict""", ] a : Dict =False @property def lowerCamelCase__ ( self ): '''simple docstring''' return 32 @property def lowerCamelCase__ ( self ): '''simple docstring''' return 32 @property def lowerCamelCase__ ( self ): '''simple docstring''' return self.time_input_dim @property def lowerCamelCase__ ( self ): '''simple docstring''' return self.time_input_dim * 4 @property def lowerCamelCase__ ( self ): '''simple docstring''' return 1_00 @property def lowerCamelCase__ ( self ): '''simple docstring''' torch.manual_seed(0 ) __lowerCAmelCase = { """in_channels""": 9, # Out channels is double in channels because predicts mean and variance """out_channels""": 8, """addition_embed_type""": """image""", """down_block_types""": ("""ResnetDownsampleBlock2D""", """SimpleCrossAttnDownBlock2D"""), """up_block_types""": ("""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""), """mid_block_type""": """UNetMidBlock2DSimpleCrossAttn""", """block_out_channels""": (self.block_out_channels_a, self.block_out_channels_a * 2), """layers_per_block""": 1, """encoder_hid_dim""": self.text_embedder_hidden_size, """encoder_hid_dim_type""": """image_proj""", """cross_attention_dim""": self.cross_attention_dim, """attention_head_dim""": 4, """resnet_time_scale_shift""": """scale_shift""", """class_embed_type""": None, } __lowerCAmelCase = UNetaDConditionModel(**__SCREAMING_SNAKE_CASE ) return model @property def lowerCamelCase__ ( self ): '''simple docstring''' return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def lowerCamelCase__ ( self ): '''simple docstring''' torch.manual_seed(0 ) __lowerCAmelCase = VQModel(**self.dummy_movq_kwargs ) return model def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = self.dummy_unet __lowerCAmelCase = self.dummy_movq __lowerCAmelCase = DDIMScheduler( num_train_timesteps=10_00,beta_schedule="""linear""",beta_start=0.0_0085,beta_end=0.012,clip_sample=__SCREAMING_SNAKE_CASE,set_alpha_to_one=__SCREAMING_SNAKE_CASE,steps_offset=1,prediction_type="""epsilon""",thresholding=__SCREAMING_SNAKE_CASE,) __lowerCAmelCase = { """unet""": unet, """scheduler""": scheduler, """movq""": movq, } return components def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE=0 ): '''simple docstring''' __lowerCAmelCase = floats_tensor((1, self.text_embedder_hidden_size),rng=random.Random(__SCREAMING_SNAKE_CASE ) ).to(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = floats_tensor((1, self.text_embedder_hidden_size),rng=random.Random(seed + 1 ) ).to( __SCREAMING_SNAKE_CASE ) # create init_image __lowerCAmelCase = floats_tensor((1, 3, 64, 64),rng=random.Random(__SCREAMING_SNAKE_CASE ) ).to(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = image.cpu().permute(0,2,3,1 )[0] __lowerCAmelCase = Image.fromarray(np.uinta(__SCREAMING_SNAKE_CASE ) ).convert("""RGB""" ).resize((2_56, 2_56) ) # create mask __lowerCAmelCase = np.ones((64, 64),dtype=np.floataa ) __lowerCAmelCase = 0 if str(__SCREAMING_SNAKE_CASE ).startswith("""mps""" ): __lowerCAmelCase = torch.manual_seed(__SCREAMING_SNAKE_CASE ) else: __lowerCAmelCase = torch.Generator(device=__SCREAMING_SNAKE_CASE ).manual_seed(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = { """image""": init_image, """mask_image""": mask, """image_embeds""": image_embeds, """negative_image_embeds""": negative_image_embeds, """generator""": generator, """height""": 64, """width""": 64, """num_inference_steps""": 2, """guidance_scale""": 4.0, """output_type""": """np""", } return inputs def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = """cpu""" __lowerCAmelCase = self.get_dummy_components() __lowerCAmelCase = self.pipeline_class(**__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = pipe.to(__SCREAMING_SNAKE_CASE ) pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = pipe(**self.get_dummy_inputs(__SCREAMING_SNAKE_CASE ) ) __lowerCAmelCase = output.images __lowerCAmelCase = pipe( **self.get_dummy_inputs(__SCREAMING_SNAKE_CASE ),return_dict=__SCREAMING_SNAKE_CASE,)[0] __lowerCAmelCase = image[0, -3:, -3:, -1] __lowerCAmelCase = image_from_tuple[0, -3:, -3:, -1] print(f'image.shape {image.shape}' ) assert image.shape == (1, 64, 64, 3) __lowerCAmelCase = np.array( [0.5077_5903, 0.4952_7195, 0.4882_4543, 0.5019_2237, 0.4864_4906, 0.4937_3814, 0.478_0598, 0.4723_4827, 0.4832_7848] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), f' expected_slice {expected_slice}, but got {image_slice.flatten()}' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), f' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}' def lowerCamelCase__ ( self ): '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) @slow @require_torch_gpu class _UpperCAmelCase ( unittest.TestCase ): def lowerCamelCase__ ( self ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinskyv22/kandinskyv22_inpaint_cat_with_hat_fp16.npy""" ) __lowerCAmelCase = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinsky/cat.png""" ) __lowerCAmelCase = np.ones((7_68, 7_68),dtype=np.floataa ) __lowerCAmelCase = 0 __lowerCAmelCase = """a hat""" __lowerCAmelCase = KandinskyVaaPriorPipeline.from_pretrained( """kandinsky-community/kandinsky-2-2-prior""",torch_dtype=torch.floataa ) pipe_prior.to(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = KandinskyVaaInpaintPipeline.from_pretrained( """kandinsky-community/kandinsky-2-2-decoder-inpaint""",torch_dtype=torch.floataa ) __lowerCAmelCase = pipeline.to(__SCREAMING_SNAKE_CASE ) pipeline.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = torch.Generator(device="""cpu""" ).manual_seed(0 ) __lowerCAmelCase , __lowerCAmelCase = pipe_prior( __SCREAMING_SNAKE_CASE,generator=__SCREAMING_SNAKE_CASE,num_inference_steps=5,negative_prompt="""""",).to_tuple() __lowerCAmelCase = pipeline( image=__SCREAMING_SNAKE_CASE,mask_image=__SCREAMING_SNAKE_CASE,image_embeds=__SCREAMING_SNAKE_CASE,negative_image_embeds=__SCREAMING_SNAKE_CASE,generator=__SCREAMING_SNAKE_CASE,num_inference_steps=1_00,height=7_68,width=7_68,output_type="""np""",) __lowerCAmelCase = output.images[0] assert image.shape == (7_68, 7_68, 3) assert_mean_pixel_difference(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE )
46
1
def lowerCamelCase_ ( UpperCamelCase__ : int ) -> str: """simple docstring""" if number > 0: raise ValueError('input must be a negative integer' ) __lowerCamelCase = len(bin(UpperCamelCase__ )[3:] ) __lowerCamelCase = bin(abs(UpperCamelCase__ ) - (1 << binary_number_length) )[3:] __lowerCamelCase = ( ( '1' + '0' * (binary_number_length - len(UpperCamelCase__ )) + twos_complement_number ) if number < 0 else '0' ) return "0b" + twos_complement_number if __name__ == "__main__": import doctest doctest.testmod()
90
from dataclasses import dataclass from typing import Tuple import numpy as np import torch @dataclass class __lowerCAmelCase : """simple docstring""" snake_case_ = 42 # [batch_size x 3] snake_case_ = 42 # [batch_size x 3] snake_case_ = 42 # [batch_size x 3] snake_case_ = 42 # [batch_size x 3] snake_case_ = 42 snake_case_ = 42 snake_case_ = 42 snake_case_ = 42 snake_case_ = 42 def lowercase_ ( self ) -> Union[str, Any]: '''simple docstring''' assert self.x.shape[0] == self.y.shape[0] == self.z.shape[0] == self.origin.shape[0] assert self.x.shape[1] == self.y.shape[1] == self.z.shape[1] == self.origin.shape[1] == 3 assert len(self.x.shape ) == len(self.y.shape ) == len(self.z.shape ) == len(self.origin.shape ) == 2 def lowercase_ ( self ) -> Optional[int]: '''simple docstring''' return torch.from_numpy(np.array([self.width, self.height] , dtype=np.floataa ) ) def lowercase_ ( self ) -> Optional[Any]: '''simple docstring''' return torch.from_numpy(np.array([self.x_fov, self.y_fov] , dtype=np.floataa ) ) def lowercase_ ( self ) -> torch.Tensor: '''simple docstring''' __lowerCamelCase = torch.arange(self.height * self.width ) __lowerCamelCase = torch.stack( [ pixel_indices % self.width, torch.div(lowerCamelCase__ , self.width , rounding_mode='trunc' ), ] , axis=1 , ) return coords @property def lowercase_ ( self ) -> int: '''simple docstring''' __lowerCamelCase , *__lowerCamelCase = self.shape __lowerCamelCase = int(np.prod(lowerCamelCase__ ) ) __lowerCamelCase = self.get_image_coords() __lowerCamelCase = torch.broadcast_to(coords.unsqueeze(0 ) , [batch_size * inner_batch_size, *coords.shape] ) __lowerCamelCase = self.get_camera_rays(lowerCamelCase__ ) __lowerCamelCase = rays.view(lowerCamelCase__ , inner_batch_size * self.height * self.width , 2 , 3 ) return rays def lowercase_ ( self , lowerCamelCase__ ) -> torch.Tensor: '''simple docstring''' __lowerCamelCase , *__lowerCamelCase , __lowerCamelCase = coords.shape assert n_coords == 2 assert batch_size == self.origin.shape[0] __lowerCamelCase = coords.view(lowerCamelCase__ , -1 , 2 ) __lowerCamelCase = self.resolution() __lowerCamelCase = self.fov() __lowerCamelCase = (flat.float() / (res - 1)) * 2 - 1 __lowerCamelCase = fracs * torch.tan(fov / 2 ) __lowerCamelCase = fracs.view(lowerCamelCase__ , -1 , 2 ) __lowerCamelCase = ( self.z.view(lowerCamelCase__ , 1 , 3 ) + self.x.view(lowerCamelCase__ , 1 , 3 ) * fracs[:, :, :1] + self.y.view(lowerCamelCase__ , 1 , 3 ) * fracs[:, :, 1:] ) __lowerCamelCase = directions / directions.norm(dim=-1 , keepdim=lowerCamelCase__ ) __lowerCamelCase = torch.stack( [ torch.broadcast_to(self.origin.view(lowerCamelCase__ , 1 , 3 ) , [batch_size, directions.shape[1], 3] ), directions, ] , dim=2 , ) return rays.view(lowerCamelCase__ , *lowerCamelCase__ , 2 , 3 ) def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ ) -> "DifferentiableProjectiveCamera": '''simple docstring''' assert width * self.height == height * self.width, "The aspect ratio should not change." return DifferentiableProjectiveCamera( origin=self.origin , x=self.x , y=self.y , z=self.z , width=lowerCamelCase__ , height=lowerCamelCase__ , x_fov=self.x_fov , y_fov=self.y_fov , ) def lowerCamelCase_ ( UpperCamelCase__ : int ) -> DifferentiableProjectiveCamera: """simple docstring""" __lowerCamelCase = [] __lowerCamelCase = [] __lowerCamelCase = [] __lowerCamelCase = [] for theta in np.linspace(0 , 2 * np.pi , num=20 ): __lowerCamelCase = np.array([np.sin(UpperCamelCase__ ), np.cos(UpperCamelCase__ ), -0.5] ) z /= np.sqrt(np.sum(z**2 ) ) __lowerCamelCase = -z * 4 __lowerCamelCase = np.array([np.cos(UpperCamelCase__ ), -np.sin(UpperCamelCase__ ), 0.0] ) __lowerCamelCase = np.cross(UpperCamelCase__ , UpperCamelCase__ ) origins.append(UpperCamelCase__ ) xs.append(UpperCamelCase__ ) ys.append(UpperCamelCase__ ) zs.append(UpperCamelCase__ ) return DifferentiableProjectiveCamera( origin=torch.from_numpy(np.stack(UpperCamelCase__ , axis=0 ) ).float() , x=torch.from_numpy(np.stack(UpperCamelCase__ , axis=0 ) ).float() , y=torch.from_numpy(np.stack(UpperCamelCase__ , axis=0 ) ).float() , z=torch.from_numpy(np.stack(UpperCamelCase__ , axis=0 ) ).float() , width=UpperCamelCase__ , height=UpperCamelCase__ , x_fov=0.7 , y_fov=0.7 , shape=(1, len(UpperCamelCase__ )) , )
90
1
"""simple docstring""" from typing import Optional import numpy as np import torch from torch import nn from transformers import GPTaConfig, GPTaLMHeadModel from transformers.modeling_utils import ModuleUtilsMixin from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class lowerCamelCase ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): lowercase : Tuple = [R'h\.\d+\.attn\.bias', R'h\.\d+\.attn\.masked_bias'] @register_to_config def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = 5_0257 , SCREAMING_SNAKE_CASE_ = 1024 , SCREAMING_SNAKE_CASE_ = 768 , SCREAMING_SNAKE_CASE_ = 12 , SCREAMING_SNAKE_CASE_ = 12 , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = "gelu_new" , SCREAMING_SNAKE_CASE_ = 0.1 , SCREAMING_SNAKE_CASE_ = 0.1 , SCREAMING_SNAKE_CASE_ = 0.1 , SCREAMING_SNAKE_CASE_ = 1e-5 , SCREAMING_SNAKE_CASE_ = 0.02 , SCREAMING_SNAKE_CASE_ = True , SCREAMING_SNAKE_CASE_ = True , SCREAMING_SNAKE_CASE_ = False , SCREAMING_SNAKE_CASE_ = False , ): super().__init__() UpperCamelCase : Optional[Any] = prefix_length if prefix_inner_dim != n_embd and prefix_hidden_dim is None: raise ValueError( f'`prefix_hidden_dim` cannot be `None` when `prefix_inner_dim`: {prefix_hidden_dim} and' f' `n_embd`: {n_embd} are not equal.' ) UpperCamelCase : List[Any] = prefix_inner_dim UpperCamelCase : Optional[int] = prefix_hidden_dim UpperCamelCase : List[Any] = ( nn.Linear(self.prefix_inner_dim , self.prefix_hidden_dim ) if self.prefix_hidden_dim is not None else nn.Identity() ) UpperCamelCase : Any = ( nn.Linear(self.prefix_hidden_dim , SCREAMING_SNAKE_CASE_ ) if self.prefix_hidden_dim is not None else nn.Identity() ) UpperCamelCase : Tuple = GPTaConfig( vocab_size=SCREAMING_SNAKE_CASE_ , n_positions=SCREAMING_SNAKE_CASE_ , n_embd=SCREAMING_SNAKE_CASE_ , n_layer=SCREAMING_SNAKE_CASE_ , n_head=SCREAMING_SNAKE_CASE_ , n_inner=SCREAMING_SNAKE_CASE_ , activation_function=SCREAMING_SNAKE_CASE_ , resid_pdrop=SCREAMING_SNAKE_CASE_ , embd_pdrop=SCREAMING_SNAKE_CASE_ , attn_pdrop=SCREAMING_SNAKE_CASE_ , layer_norm_epsilon=SCREAMING_SNAKE_CASE_ , initializer_range=SCREAMING_SNAKE_CASE_ , scale_attn_weights=SCREAMING_SNAKE_CASE_ , use_cache=SCREAMING_SNAKE_CASE_ , scale_attn_by_inverse_layer_idx=SCREAMING_SNAKE_CASE_ , reorder_and_upcast_attn=SCREAMING_SNAKE_CASE_ , ) UpperCamelCase : int = GPTaLMHeadModel(SCREAMING_SNAKE_CASE_ ) def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , ): UpperCamelCase : Union[str, Any] = self.transformer.transformer.wte(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Dict = self.encode_prefix(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Union[str, Any] = self.decode_prefix(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : int = torch.cat((prefix_embeds, embedding_text) , dim=1 ) if labels is not None: UpperCamelCase : List[str] = self.get_dummy_token(input_ids.shape[0] , input_ids.device ) UpperCamelCase : List[str] = torch.cat((dummy_token, input_ids) , dim=1 ) UpperCamelCase : List[Any] = self.transformer(inputs_embeds=SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ ) if self.prefix_hidden_dim is not None: return out, hidden else: return out def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): return torch.zeros(SCREAMING_SNAKE_CASE_ , self.prefix_length , dtype=torch.intaa , device=SCREAMING_SNAKE_CASE_ ) def a_ ( self , SCREAMING_SNAKE_CASE_ ): return self.encode_prefix(SCREAMING_SNAKE_CASE_ ) @torch.no_grad() def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): UpperCamelCase : Union[str, Any] = torch.split(SCREAMING_SNAKE_CASE_ , 1 , dim=0 ) UpperCamelCase : Tuple = [] UpperCamelCase : Any = [] for feature in features: UpperCamelCase : Tuple = self.decode_prefix(feature.to(SCREAMING_SNAKE_CASE_ ) ) # back to the clip feature # Only support beam search for now UpperCamelCase , UpperCamelCase : List[Any] = self.generate_beam( input_embeds=SCREAMING_SNAKE_CASE_ , device=SCREAMING_SNAKE_CASE_ , eos_token_id=SCREAMING_SNAKE_CASE_ ) generated_tokens.append(output_tokens[0] ) generated_seq_lengths.append(seq_lengths[0] ) UpperCamelCase : List[Any] = torch.stack(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Optional[Any] = torch.stack(SCREAMING_SNAKE_CASE_ ) return generated_tokens, generated_seq_lengths @torch.no_grad() def a_ ( self , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_ = 5 , SCREAMING_SNAKE_CASE_ = 67 , SCREAMING_SNAKE_CASE_ = 1.0 , SCREAMING_SNAKE_CASE_ = None , ): UpperCamelCase : Union[str, Any] = eos_token_id UpperCamelCase : str = None UpperCamelCase : Union[str, Any] = None UpperCamelCase : Optional[Any] = torch.ones(SCREAMING_SNAKE_CASE_ , device=SCREAMING_SNAKE_CASE_ , dtype=torch.int ) UpperCamelCase : str = torch.zeros(SCREAMING_SNAKE_CASE_ , device=SCREAMING_SNAKE_CASE_ , dtype=torch.bool ) if input_embeds is not None: UpperCamelCase : Optional[int] = input_embeds else: UpperCamelCase : Any = self.transformer.transformer.wte(SCREAMING_SNAKE_CASE_ ) for i in range(SCREAMING_SNAKE_CASE_ ): UpperCamelCase : List[str] = self.transformer(inputs_embeds=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : str = outputs.logits UpperCamelCase : List[str] = logits[:, -1, :] / (temperature if temperature > 0 else 1.0) UpperCamelCase : List[Any] = logits.softmax(-1 ).log() if scores is None: UpperCamelCase , UpperCamelCase : Any = logits.topk(SCREAMING_SNAKE_CASE_ , -1 ) UpperCamelCase : Union[str, Any] = generated.expand(SCREAMING_SNAKE_CASE_ , *generated.shape[1:] ) UpperCamelCase , UpperCamelCase : List[str] = next_tokens.permute(1 , 0 ), scores.squeeze(0 ) if tokens is None: UpperCamelCase : Optional[Any] = next_tokens else: UpperCamelCase : Optional[Any] = tokens.expand(SCREAMING_SNAKE_CASE_ , *tokens.shape[1:] ) UpperCamelCase : Optional[Any] = torch.cat((tokens, next_tokens) , dim=1 ) else: UpperCamelCase : Union[str, Any] = -float(np.inf ) UpperCamelCase : Union[str, Any] = 0 UpperCamelCase : str = scores[:, None] + logits seq_lengths[~is_stopped] += 1 UpperCamelCase : str = scores_sum / seq_lengths[:, None] UpperCamelCase , UpperCamelCase : List[Any] = scores_sum_average.view(-1 ).topk(SCREAMING_SNAKE_CASE_ , -1 ) UpperCamelCase : str = next_tokens // scores_sum.shape[1] UpperCamelCase : Union[str, Any] = seq_lengths[next_tokens_source] UpperCamelCase : Dict = next_tokens % scores_sum.shape[1] UpperCamelCase : Optional[int] = next_tokens.unsqueeze(1 ) UpperCamelCase : Tuple = tokens[next_tokens_source] UpperCamelCase : str = torch.cat((tokens, next_tokens) , dim=1 ) UpperCamelCase : Optional[Any] = generated[next_tokens_source] UpperCamelCase : Optional[int] = scores_sum_average * seq_lengths UpperCamelCase : Tuple = is_stopped[next_tokens_source] UpperCamelCase : int = self.transformer.transformer.wte(next_tokens.squeeze() ).view(generated.shape[0] , 1 , -1 ) UpperCamelCase : int = torch.cat((generated, next_token_embed) , dim=1 ) UpperCamelCase : Any = is_stopped + next_tokens.eq(SCREAMING_SNAKE_CASE_ ).squeeze() if is_stopped.all(): break UpperCamelCase : Optional[Any] = scores / seq_lengths UpperCamelCase : Tuple = scores.argsort(descending=SCREAMING_SNAKE_CASE_ ) # tokens tensors are already padded to max_seq_length UpperCamelCase : str = [tokens[i] for i in order] UpperCamelCase : List[Any] = torch.stack(SCREAMING_SNAKE_CASE_ , dim=0 ) UpperCamelCase : Dict = torch.tensor([seq_lengths[i] for i in order] , dtype=seq_lengths.dtype ) return output_texts, seq_lengths
27
"""simple docstring""" import unittest from transformers import SqueezeBertConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, SqueezeBertForMaskedLM, SqueezeBertForMultipleChoice, SqueezeBertForQuestionAnswering, SqueezeBertForSequenceClassification, SqueezeBertForTokenClassification, SqueezeBertModel, ) class lowerCamelCase ( _UpperCAmelCase ): def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=13 , SCREAMING_SNAKE_CASE_=7 , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=99 , SCREAMING_SNAKE_CASE_=32 , SCREAMING_SNAKE_CASE_=5 , SCREAMING_SNAKE_CASE_=4 , SCREAMING_SNAKE_CASE_=64 , SCREAMING_SNAKE_CASE_="gelu" , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=512 , SCREAMING_SNAKE_CASE_=16 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=0.02 , SCREAMING_SNAKE_CASE_=3 , SCREAMING_SNAKE_CASE_=4 , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=4 , SCREAMING_SNAKE_CASE_=1 , ): UpperCamelCase : Tuple = parent UpperCamelCase : Optional[int] = batch_size UpperCamelCase : Optional[Any] = seq_length UpperCamelCase : int = is_training UpperCamelCase : Union[str, Any] = use_input_mask UpperCamelCase : Union[str, Any] = use_token_type_ids UpperCamelCase : Dict = use_labels UpperCamelCase : Union[str, Any] = vocab_size UpperCamelCase : Union[str, Any] = hidden_size UpperCamelCase : Tuple = num_hidden_layers UpperCamelCase : Any = num_attention_heads UpperCamelCase : int = intermediate_size UpperCamelCase : str = hidden_act UpperCamelCase : Optional[Any] = hidden_dropout_prob UpperCamelCase : str = attention_probs_dropout_prob UpperCamelCase : List[Any] = max_position_embeddings UpperCamelCase : Optional[Any] = type_vocab_size UpperCamelCase : int = type_sequence_label_size UpperCamelCase : Dict = initializer_range UpperCamelCase : Dict = num_labels UpperCamelCase : Tuple = num_choices UpperCamelCase : Optional[int] = scope UpperCamelCase : List[Any] = q_groups UpperCamelCase : Tuple = k_groups UpperCamelCase : Any = v_groups UpperCamelCase : List[str] = post_attention_groups UpperCamelCase : Tuple = intermediate_groups UpperCamelCase : int = output_groups def a_ ( self ): UpperCamelCase : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCamelCase : Tuple = None if self.use_input_mask: UpperCamelCase : List[str] = random_attention_mask([self.batch_size, self.seq_length] ) UpperCamelCase : Optional[int] = None UpperCamelCase : List[Any] = None UpperCamelCase : Dict = None if self.use_labels: UpperCamelCase : Tuple = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCamelCase : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCamelCase : Tuple = ids_tensor([self.batch_size] , self.num_choices ) UpperCamelCase : Dict = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def a_ ( self ): return SqueezeBertConfig( embedding_size=self.hidden_size , vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , attention_probs_dropout_prob=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , q_groups=self.q_groups , k_groups=self.k_groups , v_groups=self.v_groups , post_attention_groups=self.post_attention_groups , intermediate_groups=self.intermediate_groups , output_groups=self.output_groups , ) def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): UpperCamelCase : List[str] = SqueezeBertModel(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() UpperCamelCase : Any = model(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Any = model(SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): UpperCamelCase : Union[str, Any] = SqueezeBertForMaskedLM(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() UpperCamelCase : List[Any] = model(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): UpperCamelCase : List[Any] = SqueezeBertForQuestionAnswering(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() UpperCamelCase : str = model( SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , start_positions=SCREAMING_SNAKE_CASE_ , end_positions=SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): UpperCamelCase : str = self.num_labels UpperCamelCase : Optional[Any] = SqueezeBertForSequenceClassification(SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() UpperCamelCase : Union[str, Any] = model(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): UpperCamelCase : Any = self.num_labels UpperCamelCase : str = SqueezeBertForTokenClassification(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() UpperCamelCase : Dict = model(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): UpperCamelCase : Optional[int] = self.num_choices UpperCamelCase : Tuple = SqueezeBertForMultipleChoice(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() UpperCamelCase : Union[str, Any] = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCamelCase : Union[str, Any] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCamelCase : Tuple = model( SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def a_ ( self ): UpperCamelCase : Optional[int] = self.prepare_config_and_inputs() ((UpperCamelCase) , (UpperCamelCase) , (UpperCamelCase) , (UpperCamelCase) , (UpperCamelCase) , (UpperCamelCase)) : Optional[int] = config_and_inputs UpperCamelCase : Optional[int] = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class lowerCamelCase ( _UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ): lowercase : Dict = ( ( SqueezeBertModel, SqueezeBertForMaskedLM, SqueezeBertForMultipleChoice, SqueezeBertForQuestionAnswering, SqueezeBertForSequenceClassification, SqueezeBertForTokenClassification, ) if is_torch_available() else None ) lowercase : Dict = ( { 'feature-extraction': SqueezeBertModel, 'fill-mask': SqueezeBertForMaskedLM, 'question-answering': SqueezeBertForQuestionAnswering, 'text-classification': SqueezeBertForSequenceClassification, 'token-classification': SqueezeBertForTokenClassification, 'zero-shot': SqueezeBertForSequenceClassification, } if is_torch_available() else {} ) lowercase : Dict = False lowercase : str = True lowercase : str = False def a_ ( self ): UpperCamelCase : Any = SqueezeBertModelTester(self ) UpperCamelCase : List[Any] = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE_ , dim=37 ) def a_ ( self ): self.config_tester.run_common_tests() def a_ ( self ): UpperCamelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_model(*SCREAMING_SNAKE_CASE_ ) def a_ ( self ): UpperCamelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_masked_lm(*SCREAMING_SNAKE_CASE_ ) def a_ ( self ): UpperCamelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_question_answering(*SCREAMING_SNAKE_CASE_ ) def a_ ( self ): UpperCamelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_sequence_classification(*SCREAMING_SNAKE_CASE_ ) def a_ ( self ): UpperCamelCase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_token_classification(*SCREAMING_SNAKE_CASE_ ) def a_ ( self ): UpperCamelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_multiple_choice(*SCREAMING_SNAKE_CASE_ ) @slow def a_ ( self ): for model_name in SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCamelCase : Optional[Any] = SqueezeBertModel.from_pretrained(SCREAMING_SNAKE_CASE_ ) self.assertIsNotNone(SCREAMING_SNAKE_CASE_ ) @require_sentencepiece @require_tokenizers @require_torch class lowerCamelCase ( unittest.TestCase ): @slow def a_ ( self ): UpperCamelCase : Optional[Any] = SqueezeBertForSequenceClassification.from_pretrained("""squeezebert/squeezebert-mnli""" ) UpperCamelCase : Dict = torch.tensor([[1, 2_9414, 232, 328, 740, 1140, 1_2695, 69, 13, 1588, 2]] ) UpperCamelCase : List[str] = model(SCREAMING_SNAKE_CASE_ )[0] UpperCamelCase : Optional[Any] = torch.Size((1, 3) ) self.assertEqual(output.shape , SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Optional[int] = torch.tensor([[0.6401, -0.0349, -0.6041]] ) self.assertTrue(torch.allclose(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , atol=1e-4 ) )
27
1
'''simple docstring''' import unittest from transformers import is_flax_available from transformers.testing_utils import require_flax, require_sentencepiece, require_tokenizers, require_torch, slow if is_flax_available(): import optax from flax.training.common_utils import onehot from transformers import AutoTokenizer, FlaxMTaForConditionalGeneration from transformers.models.ta.modeling_flax_ta import shift_tokens_right @require_torch @require_sentencepiece @require_tokenizers @require_flax class __SCREAMING_SNAKE_CASE (unittest.TestCase ): """simple docstring""" @slow def UpperCamelCase__ ( self : Union[str, Any] ): _a = FlaxMTaForConditionalGeneration.from_pretrained("google/mt5-small" ) _a = AutoTokenizer.from_pretrained("google/mt5-small" ) _a = tokenizer("Hello there" , return_tensors="np" ).input_ids _a = tokenizer("Hi I am" , return_tensors="np" ).input_ids _a = shift_tokens_right(__a , model.config.pad_token_id , model.config.decoder_start_token_id ) _a = model(__a , decoder_input_ids=__a ).logits _a = optax.softmax_cross_entropy(__a , onehot(__a , logits.shape[-1] ) ).mean() _a = -(labels.shape[-1] * loss.item()) _a = -84.9127 self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 1e-4 )
63
'''simple docstring''' from ....utils import logging lowerCAmelCase_ : Union[str, Any] = logging.get_logger(__name__) class __SCREAMING_SNAKE_CASE (lowerCamelCase_ ): """simple docstring""" def __init__( self : Tuple , __a : int , __a : Any=None , __a : Optional[int]=20_48 ): _a = config.__dict__ _a = modal_hidden_size if num_labels: _a = num_labels
63
1
'''simple docstring''' import inspect import os import unittest from dataclasses import dataclass import torch from accelerate import Accelerator, DistributedDataParallelKwargs, GradScalerKwargs from accelerate.state import AcceleratorState from accelerate.test_utils import execute_subprocess_async, require_cuda, require_multi_gpu from accelerate.utils import KwargsHandler @dataclass class lowerCAmelCase_ ( a__ ): '''simple docstring''' UpperCamelCase_ : Optional[Any] = 0 UpperCamelCase_ : Dict = False UpperCamelCase_ : str = 3.0 class lowerCAmelCase_ ( unittest.TestCase ): '''simple docstring''' def _snake_case ( self : Union[str, Any] ) -> Optional[Any]: '''simple docstring''' self.assertDictEqual(MockClass().to_kwargs() , {} ) self.assertDictEqual(MockClass(a=2 ).to_kwargs() , {'''a''': 2} ) self.assertDictEqual(MockClass(a=2 , b=SCREAMING_SNAKE_CASE_ ).to_kwargs() , {'''a''': 2, '''b''': True} ) self.assertDictEqual(MockClass(a=2 , c=2.25 ).to_kwargs() , {'''a''': 2, '''c''': 2.25} ) @require_cuda def _snake_case ( self : Optional[Any] ) -> str: '''simple docstring''' A: str = GradScalerKwargs(init_scale=10_24 , growth_factor=2 ) AcceleratorState._reset_state() A: Optional[int] = Accelerator(mixed_precision='''fp16''' , kwargs_handlers=[scaler_handler] ) print(accelerator.use_fpaa ) A: Union[str, Any] = accelerator.scaler # Check the kwargs have been applied self.assertEqual(scaler._init_scale , 10_24.0 ) self.assertEqual(scaler._growth_factor , 2.0 ) # Check the other values are at the default self.assertEqual(scaler._backoff_factor , 0.5 ) self.assertEqual(scaler._growth_interval , 20_00 ) self.assertEqual(scaler._enabled , SCREAMING_SNAKE_CASE_ ) @require_multi_gpu def _snake_case ( self : Optional[Any] ) -> str: '''simple docstring''' A: Tuple = ["torchrun", f"""--nproc_per_node={torch.cuda.device_count()}""", inspect.getfile(self.__class__ )] execute_subprocess_async(SCREAMING_SNAKE_CASE_ , env=os.environ.copy() ) if __name__ == "__main__": UpperCamelCase = DistributedDataParallelKwargs(bucket_cap_mb=15, find_unused_parameters=True) UpperCamelCase = Accelerator(kwargs_handlers=[ddp_scaler]) UpperCamelCase = torch.nn.Linear(100, 200) UpperCamelCase = accelerator.prepare(model) # Check the values changed in kwargs UpperCamelCase = '''''' UpperCamelCase = model.bucket_bytes_cap // (1024 * 1024) if observed_bucket_cap_map != 15: error_msg += f"Kwargs badly passed, should have `15` but found {observed_bucket_cap_map}.\n" if model.find_unused_parameters is not True: error_msg += f"Kwargs badly passed, should have `True` but found {model.find_unused_parameters}.\n" # Check the values of the defaults if model.dim != 0: error_msg += f"Default value not respected, should have `0` but found {model.dim}.\n" if model.broadcast_buffers is not True: error_msg += f"Default value not respected, should have `True` but found {model.broadcast_buffers}.\n" if model.gradient_as_bucket_view is not False: error_msg += f"Default value not respected, should have `False` but found {model.gradient_as_bucket_view}.\n" # Raise error at the end to make sure we don't stop at the first failure. if len(error_msg) > 0: raise ValueError(error_msg)
370
'''simple docstring''' from typing import List, Optional, Union import numpy as np import torch import torchaudio.compliance.kaldi as ta_kaldi from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import PaddingStrategy, TensorType, logging UpperCamelCase = logging.get_logger(__name__) class lowerCAmelCase_ ( UpperCAmelCase_ ): '''simple docstring''' UpperCamelCase_ : Optional[Any] = ["""input_features""", """attention_mask"""] def __init__( self : List[Any] , SCREAMING_SNAKE_CASE_ : Tuple=80 , SCREAMING_SNAKE_CASE_ : Union[str, Any]=1_60_00 , SCREAMING_SNAKE_CASE_ : int=80 , SCREAMING_SNAKE_CASE_ : Union[str, Any]=0.0 , SCREAMING_SNAKE_CASE_ : Any=True , SCREAMING_SNAKE_CASE_ : Tuple=True , SCREAMING_SNAKE_CASE_ : Union[str, Any]=True , **SCREAMING_SNAKE_CASE_ : List[str] , ) -> List[Any]: '''simple docstring''' super().__init__(feature_size=SCREAMING_SNAKE_CASE_ , sampling_rate=SCREAMING_SNAKE_CASE_ , padding_value=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) A: Union[str, Any] = num_mel_bins A: str = do_ceptral_normalize A: int = normalize_means A: List[Any] = normalize_vars A: Any = True def _snake_case ( self : Any , SCREAMING_SNAKE_CASE_ : np.ndarray , ) -> np.ndarray: '''simple docstring''' A: Optional[int] = waveform * (2**15) # Kaldi compliance: 16-bit signed integers A: Optional[int] = torch.from_numpy(SCREAMING_SNAKE_CASE_ ).unsqueeze(0 ) A: List[Any] = ta_kaldi.fbank(SCREAMING_SNAKE_CASE_ , num_mel_bins=self.num_mel_bins , sample_frequency=self.sampling_rate ) return features.numpy() @staticmethod def _snake_case ( SCREAMING_SNAKE_CASE_ : np.ndarray , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : Optional[bool] = True , SCREAMING_SNAKE_CASE_ : Optional[bool] = True , SCREAMING_SNAKE_CASE_ : float = 0.0 , ) -> np.ndarray: '''simple docstring''' if normalize_means: A: str = x[:input_length].mean(axis=0 ) A: Dict = np.subtract(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) if normalize_vars: A: Tuple = x[:input_length].std(axis=0 ) A: List[Any] = np.divide(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) if input_length < x.shape[0]: A: Optional[int] = padding_value # make sure array is in float32 A: Optional[Any] = x.astype(np.floataa ) return x def _snake_case ( self : Optional[Any] , SCREAMING_SNAKE_CASE_ : List[np.ndarray] , SCREAMING_SNAKE_CASE_ : Optional[np.ndarray] = None ) -> List[np.ndarray]: '''simple docstring''' A: int = attention_mask.sum(-1 ) if attention_mask is not None else [x.shape[0] for x in input_features] return [ self.utterance_cmvn(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , self.normalize_means , self.normalize_vars , self.padding_value ) for x, n in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ] def __call__( self : Tuple , SCREAMING_SNAKE_CASE_ : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , SCREAMING_SNAKE_CASE_ : Union[bool, str, PaddingStrategy] = False , SCREAMING_SNAKE_CASE_ : Optional[int] = None , SCREAMING_SNAKE_CASE_ : bool = False , SCREAMING_SNAKE_CASE_ : Optional[int] = None , SCREAMING_SNAKE_CASE_ : Optional[Union[str, TensorType]] = None , SCREAMING_SNAKE_CASE_ : Optional[int] = None , SCREAMING_SNAKE_CASE_ : Optional[bool] = None , **SCREAMING_SNAKE_CASE_ : Dict , ) -> BatchFeature: '''simple docstring''' if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f"""The model corresponding to this feature extractor: {self} was trained using a sampling rate of""" f""" {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled with""" f""" {self.sampling_rate} and not {sampling_rate}.""" ) else: logger.warning( '''It is strongly recommended to pass the `sampling_rate` argument to this function. ''' '''Failing to do so can result in silent errors that might be hard to debug.''' ) A: Any = isinstance(SCREAMING_SNAKE_CASE_ , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(f"""Only mono-channel audio is supported for input to {self}""" ) A: Optional[Any] = is_batched_numpy or ( isinstance(SCREAMING_SNAKE_CASE_ , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: A: Optional[int] = [np.asarray(SCREAMING_SNAKE_CASE_ , dtype=np.floataa ) for speech in raw_speech] elif not is_batched and not isinstance(SCREAMING_SNAKE_CASE_ , np.ndarray ): A: int = np.asarray(SCREAMING_SNAKE_CASE_ , dtype=np.floataa ) elif isinstance(SCREAMING_SNAKE_CASE_ , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): A: Any = raw_speech.astype(np.floataa ) # always return batch if not is_batched: A: Union[str, Any] = [raw_speech] # extract fbank features A: str = [self._extract_fbank_features(SCREAMING_SNAKE_CASE_ ) for waveform in raw_speech] # convert into correct format for padding A: int = BatchFeature({'''input_features''': features} ) A: int = self.pad( SCREAMING_SNAKE_CASE_ , padding=SCREAMING_SNAKE_CASE_ , max_length=SCREAMING_SNAKE_CASE_ , truncation=SCREAMING_SNAKE_CASE_ , pad_to_multiple_of=SCREAMING_SNAKE_CASE_ , return_attention_mask=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , ) # make sure list is in array format A: List[str] = padded_inputs.get('''input_features''' ) if isinstance(input_features[0] , SCREAMING_SNAKE_CASE_ ): A: Optional[Any] = [np.asarray(SCREAMING_SNAKE_CASE_ , dtype=np.floataa ) for feature in input_features] A: List[Any] = padded_inputs.get('''attention_mask''' ) if attention_mask is not None: A: Dict = [np.asarray(SCREAMING_SNAKE_CASE_ , dtype=np.intaa ) for array in attention_mask] # Utterance-level cepstral mean and variance normalization if self.do_ceptral_normalize: A: Dict = ( np.array(SCREAMING_SNAKE_CASE_ , dtype=np.intaa ) if self._get_padding_strategies(SCREAMING_SNAKE_CASE_ , max_length=SCREAMING_SNAKE_CASE_ ) is not PaddingStrategy.DO_NOT_PAD else None ) A: List[Any] = self.normalize( padded_inputs['''input_features'''] , attention_mask=SCREAMING_SNAKE_CASE_ ) if return_tensors is not None: A: Dict = padded_inputs.convert_to_tensors(SCREAMING_SNAKE_CASE_ ) return padded_inputs
334
0
'''simple docstring''' import math import os import sys def UpperCamelCase_ ( _UpperCAmelCase : str ) -> str: """simple docstring""" _UpperCAmelCase : List[str] = "" try: with open(_UpperCAmelCase , "rb" ) as binary_file: _UpperCAmelCase : Tuple = binary_file.read() for dat in data: _UpperCAmelCase : int = F"""{dat:08b}""" result += curr_byte return result except OSError: print("File not accessible" ) sys.exit() def UpperCamelCase_ ( _UpperCAmelCase : dict[str, str] , _UpperCAmelCase : str , _UpperCAmelCase : int , _UpperCAmelCase : str ) -> None: """simple docstring""" lexicon.pop(_UpperCAmelCase ) _UpperCAmelCase : int = last_match_id if math.loga(_UpperCAmelCase ).is_integer(): for curr_key in lexicon: _UpperCAmelCase : Optional[int] = "0" + lexicon[curr_key] _UpperCAmelCase : Union[str, Any] = bin(_UpperCAmelCase )[2:] def UpperCamelCase_ ( _UpperCAmelCase : str ) -> str: """simple docstring""" _UpperCAmelCase : List[Any] = {"0": "0", "1": "1"} _UpperCAmelCase , _UpperCAmelCase : str = "", "" _UpperCAmelCase : List[Any] = len(_UpperCAmelCase ) for i in range(len(_UpperCAmelCase ) ): curr_string += data_bits[i] if curr_string not in lexicon: continue _UpperCAmelCase : Union[str, Any] = lexicon[curr_string] result += last_match_id add_key_to_lexicon(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) index += 1 _UpperCAmelCase : int = "" while curr_string != "" and curr_string not in lexicon: curr_string += "0" if curr_string != "": _UpperCAmelCase : Any = lexicon[curr_string] result += last_match_id return result def UpperCamelCase_ ( _UpperCAmelCase : str , _UpperCAmelCase : str ) -> str: """simple docstring""" _UpperCAmelCase : List[Any] = os.path.getsize(_UpperCAmelCase ) _UpperCAmelCase : Tuple = bin(_UpperCAmelCase )[2:] _UpperCAmelCase : int = len(_UpperCAmelCase ) return "0" * (length_length - 1) + file_length_binary + compressed def UpperCamelCase_ ( _UpperCAmelCase : str , _UpperCAmelCase : str ) -> None: """simple docstring""" _UpperCAmelCase : List[str] = 8 try: with open(_UpperCAmelCase , "wb" ) as opened_file: _UpperCAmelCase : Optional[int] = [ to_write[i : i + byte_length] for i in range(0 , len(_UpperCAmelCase ) , _UpperCAmelCase ) ] if len(result_byte_array[-1] ) % byte_length == 0: result_byte_array.append("10000000" ) else: result_byte_array[-1] += "1" + "0" * ( byte_length - len(result_byte_array[-1] ) - 1 ) for elem in result_byte_array: opened_file.write(int(_UpperCAmelCase , 2 ).to_bytes(1 , byteorder="big" ) ) except OSError: print("File not accessible" ) sys.exit() def UpperCamelCase_ ( _UpperCAmelCase : str , _UpperCAmelCase : str ) -> None: """simple docstring""" _UpperCAmelCase : int = read_file_binary(_UpperCAmelCase ) _UpperCAmelCase : Tuple = compress_data(_UpperCAmelCase ) _UpperCAmelCase : Optional[Any] = add_file_length(_UpperCAmelCase , _UpperCAmelCase ) write_file_binary(_UpperCAmelCase , _UpperCAmelCase ) if __name__ == "__main__": compress(sys.argv[1], sys.argv[2])
31
'''simple docstring''' from __future__ import annotations import unittest from transformers import AutoTokenizer, PegasusConfig, is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFPegasusForConditionalGeneration, TFPegasusModel @require_tf class a_ : '''simple docstring''' UpperCamelCase = PegasusConfig UpperCamelCase = {} UpperCamelCase = '''gelu''' def __init__( self , A , A=13 , A=7 , A=True , A=False , A=99 , A=32 , A=2 , A=4 , A=37 , A=0.1 , A=0.1 , A=40 , A=2 , A=1 , A=0 , ) -> Optional[int]: _SCREAMING_SNAKE_CASE = parent _SCREAMING_SNAKE_CASE = batch_size _SCREAMING_SNAKE_CASE = seq_length _SCREAMING_SNAKE_CASE = is_training _SCREAMING_SNAKE_CASE = use_labels _SCREAMING_SNAKE_CASE = vocab_size _SCREAMING_SNAKE_CASE = hidden_size _SCREAMING_SNAKE_CASE = num_hidden_layers _SCREAMING_SNAKE_CASE = num_attention_heads _SCREAMING_SNAKE_CASE = intermediate_size _SCREAMING_SNAKE_CASE = hidden_dropout_prob _SCREAMING_SNAKE_CASE = attention_probs_dropout_prob _SCREAMING_SNAKE_CASE = max_position_embeddings _SCREAMING_SNAKE_CASE = eos_token_id _SCREAMING_SNAKE_CASE = pad_token_id _SCREAMING_SNAKE_CASE = bos_token_id def snake_case_( self ) -> Optional[int]: _SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) _SCREAMING_SNAKE_CASE = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) _SCREAMING_SNAKE_CASE = tf.concat([input_ids, eos_tensor] , axis=1 ) _SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _SCREAMING_SNAKE_CASE = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) _SCREAMING_SNAKE_CASE = prepare_pegasus_inputs_dict(A , A , A ) return config, inputs_dict def snake_case_( self , A , A ) -> int: _SCREAMING_SNAKE_CASE = TFPegasusModel(config=A ).get_decoder() _SCREAMING_SNAKE_CASE = inputs_dict["""input_ids"""] _SCREAMING_SNAKE_CASE = input_ids[:1, :] _SCREAMING_SNAKE_CASE = inputs_dict["""attention_mask"""][:1, :] _SCREAMING_SNAKE_CASE = inputs_dict["""head_mask"""] _SCREAMING_SNAKE_CASE = 1 # first forward pass _SCREAMING_SNAKE_CASE = model(A , attention_mask=A , head_mask=A , use_cache=A ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids _SCREAMING_SNAKE_CASE = ids_tensor((self.batch_size, 3) , config.vocab_size ) _SCREAMING_SNAKE_CASE = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and _SCREAMING_SNAKE_CASE = tf.concat([input_ids, next_tokens] , axis=-1 ) _SCREAMING_SNAKE_CASE = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) _SCREAMING_SNAKE_CASE = model(A , attention_mask=A )[0] _SCREAMING_SNAKE_CASE = model(A , attention_mask=A , past_key_values=A )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice _SCREAMING_SNAKE_CASE = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) _SCREAMING_SNAKE_CASE = output_from_no_past[:, -3:, random_slice_idx] _SCREAMING_SNAKE_CASE = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(A , A , rtol=1e-3 ) def lowerCamelCase ( __lowerCamelCase : Optional[Any] , __lowerCamelCase : str , __lowerCamelCase : Optional[int] , __lowerCamelCase : int=None , __lowerCamelCase : Dict=None , __lowerCamelCase : Union[str, Any]=None , __lowerCamelCase : str=None , __lowerCamelCase : List[Any]=None , ) ->int: if attention_mask is None: _SCREAMING_SNAKE_CASE = tf.cast(tf.math.not_equal(__lowerCamelCase , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: _SCREAMING_SNAKE_CASE = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: _SCREAMING_SNAKE_CASE = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: _SCREAMING_SNAKE_CASE = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: _SCREAMING_SNAKE_CASE = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class a_ ( snake_case_ , snake_case_ , unittest.TestCase ): '''simple docstring''' UpperCamelCase = (TFPegasusForConditionalGeneration, TFPegasusModel) if is_tf_available() else () UpperCamelCase = (TFPegasusForConditionalGeneration,) if is_tf_available() else () UpperCamelCase = ( { '''conversational''': TFPegasusForConditionalGeneration, '''feature-extraction''': TFPegasusModel, '''summarization''': TFPegasusForConditionalGeneration, '''text2text-generation''': TFPegasusForConditionalGeneration, '''translation''': TFPegasusForConditionalGeneration, } if is_tf_available() else {} ) UpperCamelCase = True UpperCamelCase = False UpperCamelCase = False def snake_case_( self ) -> Any: _SCREAMING_SNAKE_CASE = TFPegasusModelTester(self ) _SCREAMING_SNAKE_CASE = ConfigTester(self , config_class=A ) def snake_case_( self ) -> List[str]: self.config_tester.run_common_tests() def snake_case_( self ) -> str: _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*A ) @require_sentencepiece @require_tokenizers @require_tf class a_ ( unittest.TestCase ): '''simple docstring''' UpperCamelCase = [ ''' PG&E stated it scheduled the blackouts in response to forecasts for high winds amid dry conditions. The aim is to reduce the risk of wildfires. Nearly 800 thousand customers were scheduled to be affected by the shutoffs which were expected to last through at least midday tomorrow.''', ''' The London trio are up for best UK act and best album, as well as getting two nominations in the best song category."We got told like this morning \'Oh I think you\'re nominated\'", said Dappy."And I was like \'Oh yeah, which one?\' And now we\'ve got nominated for four awards. I mean, wow!"Bandmate Fazer added: "We thought it\'s best of us to come down and mingle with everyone and say hello to the cameras. And now we find we\'ve got four nominations."The band have two shots at the best song prize, getting the nod for their Tynchy Stryder collaboration Number One, and single Strong Again.Their album Uncle B will also go up against records by the likes of Beyonce and Kanye West.N-Dubz picked up the best newcomer Mobo in 2007, but female member Tulisa said they wouldn\'t be too disappointed if they didn\'t win this time around."At the end of the day we\'re grateful to be where we are in our careers."If it don\'t happen then it don\'t happen - live to fight another day and keep on making albums and hits for the fans."Dappy also revealed they could be performing live several times on the night.The group will be doing Number One and also a possible rendition of the War Child single, I Got Soul.The charity song is a re-working of The Killers\' All These Things That I\'ve Done and is set to feature artists like Chipmunk, Ironik and Pixie Lott.This year\'s Mobos will be held outside of London for the first time, in Glasgow on 30 September.N-Dubz said they were looking forward to performing for their Scottish fans and boasted about their recent shows north of the border."We just done Edinburgh the other day," said Dappy."We smashed up an N-Dubz show over there. We done Aberdeen about three or four months ago - we smashed up that show over there! Everywhere we go we smash it up!" ''', ] UpperCamelCase = [ '''California\'s largest electricity provider has cut power to hundreds of thousands of customers in an effort to''' ''' reduce the risk of wildfires.''', '''N-Dubz have revealed they\'re "grateful" to have been nominated for four Mobo Awards.''', ] # differs slightly from pytorch, likely due to numerical differences in linear layers UpperCamelCase = '''google/pegasus-xsum''' @cached_property def snake_case_( self ) -> List[str]: return AutoTokenizer.from_pretrained(self.model_name ) @cached_property def snake_case_( self ) -> str: _SCREAMING_SNAKE_CASE = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model def snake_case_( self , **A ) -> Optional[Any]: _SCREAMING_SNAKE_CASE = self.translate_src_text(**A ) assert self.expected_text == generated_words def snake_case_( self , **A ) -> Union[str, Any]: _SCREAMING_SNAKE_CASE = self.tokenizer(self.src_text , **A , padding=A , return_tensors="""tf""" ) _SCREAMING_SNAKE_CASE = self.model.generate( model_inputs.input_ids , attention_mask=model_inputs.attention_mask , num_beams=2 , use_cache=A , ) _SCREAMING_SNAKE_CASE = self.tokenizer.batch_decode(generated_ids.numpy() , skip_special_tokens=A ) return generated_words @slow def snake_case_( self ) -> Any: self._assert_generated_batch_equal_expected()
58
0
snake_case : str = [ (10_00, '''M'''), (9_00, '''CM'''), (5_00, '''D'''), (4_00, '''CD'''), (1_00, '''C'''), (90, '''XC'''), (50, '''L'''), (40, '''XL'''), (10, '''X'''), (9, '''IX'''), (5, '''V'''), (4, '''IV'''), (1, '''I'''), ] def __lowercase ( __lowerCAmelCase : str ): a__ = {'I': 1, 'V': 5, 'X': 1_0, 'L': 5_0, 'C': 1_0_0, 'D': 5_0_0, 'M': 1_0_0_0} a__ = 0 a__ = 0 while place < len(__lowerCAmelCase ): if (place + 1 < len(__lowerCAmelCase )) and (vals[roman[place]] < vals[roman[place + 1]]): total += vals[roman[place + 1]] - vals[roman[place]] place += 2 else: total += vals[roman[place]] place += 1 return total def __lowercase ( __lowerCAmelCase : int ): a__ = [] for arabic, roman in ROMAN: ((a__) , (a__)) = divmod(__lowerCAmelCase , __lowerCAmelCase ) result.append(roman * factor ) if number == 0: break return "".join(__lowerCAmelCase ) if __name__ == "__main__": import doctest doctest.testmod()
109
from collections import defaultdict from math import ceil, sqrt def __lowercase ( __lowerCAmelCase : int = 1_0_0_0_0_0_0 , __lowerCAmelCase : int = 1_0 ): a__ = defaultdict(__lowerCAmelCase ) for outer_width in range(3 , (t_limit // 4) + 2 ): if outer_width * outer_width > t_limit: a__ = max( ceil(sqrt(outer_width * outer_width - t_limit ) ) , 1 ) else: a__ = 1 hole_width_lower_bound += (outer_width - hole_width_lower_bound) % 2 for hole_width in range(__lowerCAmelCase , outer_width - 1 , 2 ): count[outer_width * outer_width - hole_width * hole_width] += 1 return sum(1 for n in count.values() if 1 <= n <= 1_0 ) if __name__ == "__main__": print(f"""{solution() = }""")
109
1
'''simple docstring''' import logging import os import sys from dataclasses import dataclass, field from typing import Optional from seqaseq_trainer import SeqaSeqTrainer from seqaseq_training_args import SeqaSeqTrainingArguments import transformers from transformers import ( AutoConfig, AutoModelForSeqaSeqLM, AutoTokenizer, HfArgumentParser, MBartTokenizer, MBartTokenizerFast, set_seed, ) from transformers.trainer_utils import EvaluationStrategy, is_main_process from transformers.training_args import ParallelMode from utils import ( SeqaSeqDataCollator, SeqaSeqDataset, assert_all_frozen, build_compute_metrics_fn, check_output_dir, freeze_embeds, freeze_params, lmap, save_json, use_task_specific_params, write_txt_file, ) snake_case_ : int = logging.getLogger(__name__) @dataclass class __a : __a : str = field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) __a : Optional[str] = field( default=lowerCamelCase , metadata={"help": "Pretrained config name or path if not the same as model_name"} ) __a : Optional[str] = field( default=lowerCamelCase , metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) __a : Optional[str] = field( default=lowerCamelCase , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , ) __a : bool = field(default=lowerCamelCase , metadata={"help": "Whether tp freeze the encoder."} ) __a : bool = field(default=lowerCamelCase , metadata={"help": "Whether to freeze the embeddings."} ) @dataclass class __a : __a : str = field( metadata={"help": "The input data dir. Should contain the .tsv files (or other data files) for the task."} ) __a : Optional[str] = field( default="summarization" , metadata={"help": "Task name, summarization (or summarization_{dataset} for pegasus) or translation"} , ) __a : Optional[int] = field( default=1_024 , metadata={ "help": ( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) } , ) __a : Optional[int] = field( default=128 , metadata={ "help": ( "The maximum total sequence length for target text after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) } , ) __a : Optional[int] = field( default=142 , metadata={ "help": ( "The maximum total sequence length for validation target text after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded. " "This argument is also used to override the ``max_length`` param of ``model.generate``, which is used " "during ``evaluate`` and ``predict``." ) } , ) __a : Optional[int] = field( default=142 , metadata={ "help": ( "The maximum total sequence length for test target text after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) } , ) __a : Optional[int] = field(default=-1 , metadata={"help": "# training examples. -1 means use all."} ) __a : Optional[int] = field(default=-1 , metadata={"help": "# validation examples. -1 means use all."} ) __a : Optional[int] = field(default=-1 , metadata={"help": "# test examples. -1 means use all."} ) __a : Optional[str] = field(default=lowerCamelCase , metadata={"help": "Source language id for translation."} ) __a : Optional[str] = field(default=lowerCamelCase , metadata={"help": "Target language id for translation."} ) __a : Optional[int] = field(default=lowerCamelCase , metadata={"help": "# num_beams to use for evaluation."} ) __a : bool = field( default=lowerCamelCase , metadata={"help": "If only pad tokens should be ignored. This assumes that `config.pad_token_id` is defined."} , ) def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : int, SCREAMING_SNAKE_CASE__ : str, SCREAMING_SNAKE_CASE__ : Union[str, Any] ) -> List[Any]: logger.info(F"""***** {split} metrics *****""" ) for key in sorted(metrics.keys() ): logger.info(F""" {key} = {metrics[key]}""" ) save_json(SCREAMING_SNAKE_CASE__, os.path.join(SCREAMING_SNAKE_CASE__, F"""{split}_results.json""" ) ) def lowerCamelCase_ ( ) -> List[str]: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. UpperCAmelCase_ : Dict = HfArgumentParser((ModelArguments, DataTrainingArguments, SeqaSeqTrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('''.json''' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Union[str, Any] = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = parser.parse_args_into_dataclasses() check_output_dir(SCREAMING_SNAKE_CASE__ ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''', datefmt='''%m/%d/%Y %H:%M:%S''', level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN, ) logger.warning( '''Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s''', training_args.local_rank, training_args.device, training_args.n_gpu, bool(training_args.parallel_mode == ParallelMode.DISTRIBUTED ), training_args.fpaa, ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() logger.info('''Training/evaluation parameters %s''', SCREAMING_SNAKE_CASE__ ) # Set seed set_seed(training_args.seed ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. UpperCAmelCase_ : str = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path, cache_dir=model_args.cache_dir, ) UpperCAmelCase_ : Optional[int] = ('''encoder_layerdrop''', '''decoder_layerdrop''', '''dropout''', '''attention_dropout''') for p in extra_model_params: if getattr(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ): assert hasattr(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ), F"""({config.__class__.__name__}) doesn't have a `{p}` attribute""" setattr(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, getattr(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ) ) UpperCAmelCase_ : Optional[Any] = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path, cache_dir=model_args.cache_dir, ) UpperCAmelCase_ : str = AutoModelForSeqaSeqLM.from_pretrained( model_args.model_name_or_path, from_tf='''.ckpt''' in model_args.model_name_or_path, config=SCREAMING_SNAKE_CASE__, cache_dir=model_args.cache_dir, ) # use task specific params use_task_specific_params(SCREAMING_SNAKE_CASE__, data_args.task ) # set num_beams for evaluation if data_args.eval_beams is None: UpperCAmelCase_ : Tuple = model.config.num_beams # set decoder_start_token_id for MBart if model.config.decoder_start_token_id is None and isinstance(SCREAMING_SNAKE_CASE__, (MBartTokenizer, MBartTokenizerFast) ): assert ( data_args.tgt_lang is not None and data_args.src_lang is not None ), "mBart requires --tgt_lang and --src_lang" if isinstance(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ): UpperCAmelCase_ : str = tokenizer.lang_code_to_id[data_args.tgt_lang] else: UpperCAmelCase_ : Optional[int] = tokenizer.convert_tokens_to_ids(data_args.tgt_lang ) if model_args.freeze_embeds: freeze_embeds(SCREAMING_SNAKE_CASE__ ) if model_args.freeze_encoder: freeze_params(model.get_encoder() ) assert_all_frozen(model.get_encoder() ) UpperCAmelCase_ : Optional[Any] = SeqaSeqDataset # Get datasets UpperCAmelCase_ : Optional[Any] = ( dataset_class( SCREAMING_SNAKE_CASE__, type_path='''train''', data_dir=data_args.data_dir, n_obs=data_args.n_train, max_target_length=data_args.max_target_length, max_source_length=data_args.max_source_length, prefix=model.config.prefix or '''''', ) if training_args.do_train else None ) UpperCAmelCase_ : int = ( dataset_class( SCREAMING_SNAKE_CASE__, type_path='''val''', data_dir=data_args.data_dir, n_obs=data_args.n_val, max_target_length=data_args.val_max_target_length, max_source_length=data_args.max_source_length, prefix=model.config.prefix or '''''', ) if training_args.do_eval or training_args.evaluation_strategy != EvaluationStrategy.NO else None ) UpperCAmelCase_ : Any = ( dataset_class( SCREAMING_SNAKE_CASE__, type_path='''test''', data_dir=data_args.data_dir, n_obs=data_args.n_test, max_target_length=data_args.test_max_target_length, max_source_length=data_args.max_source_length, prefix=model.config.prefix or '''''', ) if training_args.do_predict else None ) # Initialize our Trainer UpperCAmelCase_ : Optional[int] = ( build_compute_metrics_fn(data_args.task, SCREAMING_SNAKE_CASE__ ) if training_args.predict_with_generate else None ) UpperCAmelCase_ : str = SeqaSeqTrainer( model=SCREAMING_SNAKE_CASE__, args=SCREAMING_SNAKE_CASE__, data_args=SCREAMING_SNAKE_CASE__, train_dataset=SCREAMING_SNAKE_CASE__, eval_dataset=SCREAMING_SNAKE_CASE__, data_collator=SeqaSeqDataCollator( SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, model.config.decoder_start_token_id, training_args.tpu_num_cores ), compute_metrics=SCREAMING_SNAKE_CASE__, tokenizer=SCREAMING_SNAKE_CASE__, ) UpperCAmelCase_ : str = {} # Training if training_args.do_train: logger.info('''*** Train ***''' ) UpperCAmelCase_ : List[str] = trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) UpperCAmelCase_ : Optional[int] = train_result.metrics UpperCAmelCase_ : Optional[int] = data_args.n_train trainer.save_model() # this also saves the tokenizer if trainer.is_world_process_zero(): handle_metrics('''train''', SCREAMING_SNAKE_CASE__, training_args.output_dir ) all_metrics.update(SCREAMING_SNAKE_CASE__ ) # Need to save the state, since Trainer.save_model saves only the tokenizer with the model trainer.state.save_to_json(os.path.join(training_args.output_dir, '''trainer_state.json''' ) ) # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) tokenizer.save_pretrained(training_args.output_dir ) # Evaluation if training_args.do_eval: logger.info('''*** Evaluate ***''' ) UpperCAmelCase_ : List[str] = trainer.evaluate(metric_key_prefix='''val''' ) UpperCAmelCase_ : Dict = data_args.n_val UpperCAmelCase_ : Optional[Any] = round(metrics['''val_loss'''], 4 ) if trainer.is_world_process_zero(): handle_metrics('''val''', SCREAMING_SNAKE_CASE__, training_args.output_dir ) all_metrics.update(SCREAMING_SNAKE_CASE__ ) if training_args.do_predict: logger.info('''*** Predict ***''' ) UpperCAmelCase_ : Any = trainer.predict(test_dataset=SCREAMING_SNAKE_CASE__, metric_key_prefix='''test''' ) UpperCAmelCase_ : Union[str, Any] = test_output.metrics UpperCAmelCase_ : List[Any] = data_args.n_test if trainer.is_world_process_zero(): UpperCAmelCase_ : List[Any] = round(metrics['''test_loss'''], 4 ) handle_metrics('''test''', SCREAMING_SNAKE_CASE__, training_args.output_dir ) all_metrics.update(SCREAMING_SNAKE_CASE__ ) if training_args.predict_with_generate: UpperCAmelCase_ : Optional[int] = tokenizer.batch_decode( test_output.predictions, skip_special_tokens=SCREAMING_SNAKE_CASE__, clean_up_tokenization_spaces=SCREAMING_SNAKE_CASE__ ) UpperCAmelCase_ : Dict = lmap(str.strip, SCREAMING_SNAKE_CASE__ ) write_txt_file(SCREAMING_SNAKE_CASE__, os.path.join(training_args.output_dir, '''test_generations.txt''' ) ) if trainer.is_world_process_zero(): save_json(SCREAMING_SNAKE_CASE__, os.path.join(training_args.output_dir, '''all_results.json''' ) ) return all_metrics def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : Union[str, Any] ) -> List[Any]: # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
125
'''simple docstring''' from typing import Callable, List, Optional, Union import PIL import torch from transformers import ( CLIPImageProcessor, CLIPSegForImageSegmentation, CLIPSegProcessor, CLIPTextModel, CLIPTokenizer, ) from diffusers import DiffusionPipeline from diffusers.configuration_utils import FrozenDict from diffusers.models import AutoencoderKL, UNetaDConditionModel from diffusers.pipelines.stable_diffusion import StableDiffusionInpaintPipeline from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.schedulers import DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler from diffusers.utils import deprecate, is_accelerate_available, logging snake_case_ : Any = logging.get_logger(__name__) # pylint: disable=invalid-name class __a (lowerCamelCase ): def __init__( self : str , __magic_name__ : CLIPSegForImageSegmentation , __magic_name__ : CLIPSegProcessor , __magic_name__ : AutoencoderKL , __magic_name__ : CLIPTextModel , __magic_name__ : CLIPTokenizer , __magic_name__ : UNetaDConditionModel , __magic_name__ : Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler] , __magic_name__ : StableDiffusionSafetyChecker , __magic_name__ : CLIPImageProcessor , ) -> str: """simple docstring""" super().__init__() if hasattr(scheduler.config , '''steps_offset''' ) and scheduler.config.steps_offset != 1: UpperCAmelCase_ : Dict = ( F"""The configuration file of this scheduler: {scheduler} is outdated. `steps_offset`""" F""" should be set to 1 instead of {scheduler.config.steps_offset}. Please make sure """ '''to update the config accordingly as leaving `steps_offset` might led to incorrect results''' ''' in future versions. If you have downloaded this checkpoint from the Hugging Face Hub,''' ''' it would be very nice if you could open a Pull request for the `scheduler/scheduler_config.json`''' ''' file''' ) deprecate('''steps_offset!=1''' , '''1.0.0''' , __magic_name__ , standard_warn=__magic_name__ ) UpperCAmelCase_ : Optional[int] = dict(scheduler.config ) UpperCAmelCase_ : str = 1 UpperCAmelCase_ : List[str] = FrozenDict(__magic_name__ ) if hasattr(scheduler.config , '''skip_prk_steps''' ) and scheduler.config.skip_prk_steps is False: UpperCAmelCase_ : Dict = ( F"""The configuration file of this scheduler: {scheduler} has not set the configuration""" ''' `skip_prk_steps`. `skip_prk_steps` should be set to True in the configuration file. Please make''' ''' sure to update the config accordingly as not setting `skip_prk_steps` in the config might lead to''' ''' incorrect results in future versions. If you have downloaded this checkpoint from the Hugging Face''' ''' Hub, it would be very nice if you could open a Pull request for the''' ''' `scheduler/scheduler_config.json` file''' ) deprecate('''skip_prk_steps not set''' , '''1.0.0''' , __magic_name__ , standard_warn=__magic_name__ ) UpperCAmelCase_ : Dict = dict(scheduler.config ) UpperCAmelCase_ : str = True UpperCAmelCase_ : Tuple = FrozenDict(__magic_name__ ) if safety_checker is None: logger.warning( F"""You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure""" ''' that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered''' ''' results in services or applications open to the public. Both the diffusers team and Hugging Face''' ''' strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling''' ''' it only for use-cases that involve analyzing network behavior or auditing its results. For more''' ''' information, please have a look at https://github.com/huggingface/diffusers/pull/254 .''' ) self.register_modules( segmentation_model=__magic_name__ , segmentation_processor=__magic_name__ , vae=__magic_name__ , text_encoder=__magic_name__ , tokenizer=__magic_name__ , unet=__magic_name__ , scheduler=__magic_name__ , safety_checker=__magic_name__ , feature_extractor=__magic_name__ , ) def UpperCAmelCase__ ( self : List[str] , __magic_name__ : Optional[Union[str, int]] = "auto" ) -> List[str]: """simple docstring""" if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory UpperCAmelCase_ : Union[str, Any] = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(__magic_name__ ) def UpperCAmelCase__ ( self : List[str] ) -> str: """simple docstring""" self.enable_attention_slicing(__magic_name__ ) def UpperCAmelCase__ ( self : Dict ) -> Optional[int]: """simple docstring""" if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError('''Please install accelerate via `pip install accelerate`''' ) UpperCAmelCase_ : Tuple = torch.device('''cuda''' ) for cpu_offloaded_model in [self.unet, self.text_encoder, self.vae, self.safety_checker]: if cpu_offloaded_model is not None: cpu_offload(__magic_name__ , __magic_name__ ) @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def UpperCAmelCase__ ( self : Tuple ) -> Optional[Any]: """simple docstring""" if self.device != torch.device('''meta''' ) or not hasattr(self.unet , '''_hf_hook''' ): return self.device for module in self.unet.modules(): if ( hasattr(__magic_name__ , '''_hf_hook''' ) and hasattr(module._hf_hook , '''execution_device''' ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() def __call__( self : Union[str, Any] , __magic_name__ : Union[str, List[str]] , __magic_name__ : Union[torch.FloatTensor, PIL.Image.Image] , __magic_name__ : str , __magic_name__ : int = 5_12 , __magic_name__ : int = 5_12 , __magic_name__ : int = 50 , __magic_name__ : float = 7.5 , __magic_name__ : Optional[Union[str, List[str]]] = None , __magic_name__ : Optional[int] = 1 , __magic_name__ : float = 0.0 , __magic_name__ : Optional[torch.Generator] = None , __magic_name__ : Optional[torch.FloatTensor] = None , __magic_name__ : Optional[str] = "pil" , __magic_name__ : bool = True , __magic_name__ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , __magic_name__ : int = 1 , **__magic_name__ : Tuple , ) -> Optional[int]: """simple docstring""" UpperCAmelCase_ : Optional[int] = self.segmentation_processor( text=[text] , images=[image] , padding='''max_length''' , return_tensors='''pt''' ).to(self.device ) UpperCAmelCase_ : int = self.segmentation_model(**__magic_name__ ) UpperCAmelCase_ : Dict = torch.sigmoid(outputs.logits ).cpu().detach().unsqueeze(-1 ).numpy() UpperCAmelCase_ : List[Any] = self.numpy_to_pil(__magic_name__ )[0].resize(image.size ) # Run inpainting pipeline with the generated mask UpperCAmelCase_ : int = StableDiffusionInpaintPipeline( vae=self.vae , text_encoder=self.text_encoder , tokenizer=self.tokenizer , unet=self.unet , scheduler=self.scheduler , safety_checker=self.safety_checker , feature_extractor=self.feature_extractor , ) return inpainting_pipeline( prompt=__magic_name__ , image=__magic_name__ , mask_image=__magic_name__ , height=__magic_name__ , width=__magic_name__ , num_inference_steps=__magic_name__ , guidance_scale=__magic_name__ , negative_prompt=__magic_name__ , num_images_per_prompt=__magic_name__ , eta=__magic_name__ , generator=__magic_name__ , latents=__magic_name__ , output_type=__magic_name__ , return_dict=__magic_name__ , callback=__magic_name__ , callback_steps=__magic_name__ , )
125
1
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging __snake_case = logging.get_logger(__name__) __snake_case = { """facebook/s2t-wav2vec2-large-en-de""": ( """https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/config.json""" ), # See all Speech2Text models at https://huggingface.co/models?filter=speech2text2 } class _lowerCAmelCase ( a__ ): __UpperCAmelCase : Tuple = '''speech_to_text_2''' __UpperCAmelCase : Dict = ['''past_key_values'''] __UpperCAmelCase : List[str] = {'''num_attention_heads''': '''decoder_attention_heads''', '''hidden_size''': '''d_model'''} def __init__( self , UpperCamelCase__=1_0000 , UpperCamelCase__=6 , UpperCamelCase__=2048 , UpperCamelCase__=4 , UpperCamelCase__=0.0 , UpperCamelCase__=True , UpperCamelCase__="relu" , UpperCamelCase__=256 , UpperCamelCase__=0.1 , UpperCamelCase__=0.0 , UpperCamelCase__=0.0 , UpperCamelCase__=0.02 , UpperCamelCase__=2 , UpperCamelCase__=True , UpperCamelCase__=1 , UpperCamelCase__=0 , UpperCamelCase__=2 , UpperCamelCase__=1024 , **UpperCamelCase__ , ) -> List[str]: '''simple docstring''' snake_case : Optional[int] = vocab_size snake_case : Tuple = d_model snake_case : List[str] = decoder_ffn_dim snake_case : str = decoder_layers snake_case : Any = decoder_attention_heads snake_case : int = dropout snake_case : str = attention_dropout snake_case : Optional[int] = activation_dropout snake_case : str = activation_function snake_case : List[Any] = init_std snake_case : Union[str, Any] = decoder_layerdrop snake_case : Any = use_cache snake_case : Optional[Any] = decoder_layers snake_case : Optional[int] = scale_embedding # scale factor will be sqrt(d_model) if True snake_case : Optional[Any] = max_target_positions super().__init__( pad_token_id=_lowerCamelCase , bos_token_id=_lowerCamelCase , eos_token_id=_lowerCamelCase , decoder_start_token_id=_lowerCamelCase , **_lowerCamelCase , )
354
"""simple docstring""" import importlib import torch import yaml from omegaconf import OmegaConf from taming.models.vqgan import VQModel def __lowerCAmelCase ( lowercase : Union[str, Any] , lowercase : Optional[int]=False ) -> Union[str, Any]: """simple docstring""" snake_case : Dict = OmegaConf.load(lowercase ) if display: print(yaml.dump(OmegaConf.to_container(lowercase ) ) ) return config def __lowerCAmelCase ( lowercase : Dict , lowercase : Dict=None , lowercase : Dict=None ) -> Union[str, Any]: """simple docstring""" if conf_path is None: snake_case : Optional[Any] = "./model_checkpoints/vqgan_only.yaml" snake_case : Union[str, Any] = load_config(lowercase , display=lowercase ) snake_case : List[Any] = VQModel(**config.model.params ) if ckpt_path is None: snake_case : Optional[int] = "./model_checkpoints/vqgan_only.pt" snake_case : Union[str, Any] = torch.load(lowercase , map_location=lowercase ) if ".ckpt" in ckpt_path: snake_case : Union[str, Any] = sd["state_dict"] model.load_state_dict(lowercase , strict=lowercase ) model.to(lowercase ) del sd return model def __lowerCAmelCase ( lowercase : str , lowercase : List[str] ) -> List[str]: """simple docstring""" snake_case ,snake_case ,snake_case : List[Any] = model.encode(lowercase ) print(F'VQGAN --- {model.__class__.__name__}: latent shape: {z.shape[2:]}' ) snake_case : Union[str, Any] = model.decode(lowercase ) return xrec def __lowerCAmelCase ( lowercase : List[Any] , lowercase : str=False ) -> Optional[int]: """simple docstring""" snake_case ,snake_case : Any = string.rsplit("." , 1 ) if reload: snake_case : List[Any] = importlib.import_module(lowercase ) importlib.reload(lowercase ) return getattr(importlib.import_module(lowercase , package=lowercase ) , cls ) def __lowerCAmelCase ( lowercase : List[str] ) -> Union[str, Any]: """simple docstring""" if "target" not in config: raise KeyError("Expected key `target` to instantiate." ) return get_obj_from_str(config["target"] )(**config.get("params" , {} ) ) def __lowerCAmelCase ( lowercase : Tuple , lowercase : List[str] , lowercase : Tuple=True , lowercase : Optional[Any]=True ) -> Optional[int]: """simple docstring""" snake_case : Optional[Any] = instantiate_from_config(lowercase ) if sd is not None: model.load_state_dict(lowercase ) if gpu: model.cuda() if eval_mode: model.eval() return {"model": model} def __lowerCAmelCase ( lowercase : List[str] , lowercase : int , lowercase : Dict , lowercase : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" if ckpt: snake_case : Dict = torch.load(lowercase , map_location="cpu" ) snake_case : Any = pl_sd["global_step"] print(F'loaded model from global step {global_step}.' ) else: snake_case : Any = {"state_dict": None} snake_case : List[str] = None snake_case : Dict = load_model_from_config(config.model , pl_sd["state_dict"] , gpu=lowercase , eval_mode=lowercase )["model"] return model, global_step
112
0
import os from datetime import datetime as dt from github import Github A_ :str = [ '''good first issue''', '''feature request''', '''wip''', ] def A ( ) -> Any: __UpperCamelCase : Any =Github(os.environ['GITHUB_TOKEN'] ) __UpperCamelCase : Union[str, Any] =g.get_repo('huggingface/accelerate' ) __UpperCamelCase : Tuple =repo.get_issues(state='open' ) for issue in open_issues: __UpperCamelCase : List[Any] =sorted([comment for comment in issue.get_comments()] ,key=lambda a_ : i.created_at ,reverse=a_ ) __UpperCamelCase : str =comments[0] if len(a_ ) > 0 else None __UpperCamelCase : Any =dt.utcnow() __UpperCamelCase : List[str] =(current_time - issue.updated_at).days __UpperCamelCase : Union[str, Any] =(current_time - issue.created_at).days if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and days_since_updated > 7 and days_since_creation >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Close issue since it has been 7 days of inactivity since bot mention. issue.edit(state='closed' ) elif ( days_since_updated > 23 and days_since_creation >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Add stale comment issue.create_comment( 'This issue has been automatically marked as stale because it has not had ' 'recent activity. If you think this still needs to be addressed ' 'please comment on this thread.\n\nPlease note that issues that do not follow the ' '[contributing guidelines](https://github.com/huggingface/accelerate/blob/main/CONTRIBUTING.md) ' 'are likely to be ignored.' ) if __name__ == "__main__": main()
71
'''simple docstring''' from collections import Counter import numpy as np from sklearn import datasets from sklearn.model_selection import train_test_split a : int = datasets.load_iris() a : Union[str, Any] = np.array(data["data"]) a : Optional[Any] = np.array(data["target"]) a : List[Any] = data["target_names"] a , a , a , a : Dict = train_test_split(X, y) def lowercase ( __magic_name__ , __magic_name__ ): '''simple docstring''' return np.linalg.norm(np.array(__magic_name__ ) - np.array(__magic_name__ ) ) def lowercase ( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__=5 ): '''simple docstring''' UpperCAmelCase : int = zip(__magic_name__ , __magic_name__ ) # List of distances of all points from the point to be classified UpperCAmelCase : List[Any] = [] for data_point in data: UpperCAmelCase : List[str] = euclidean_distance(data_point[0] , __magic_name__ ) distances.append((distance, data_point[1]) ) # Choosing 'k' points with the least distances. UpperCAmelCase : Union[str, Any] = [i[1] for i in sorted(__magic_name__ )[:k]] # Most commonly occurring class among them # is the class into which the point is classified UpperCAmelCase : List[str] = Counter(__magic_name__ ).most_common(1 )[0][0] return classes[result] if __name__ == "__main__": print(classifier(X_train, y_train, classes, [4.4, 3.1, 1.3, 1.4]))
311
0
import unittest from parameterized import parameterized from transformers import AutoTokenizer, GPTNeoXConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( GPTNeoXForCausalLM, GPTNeoXForQuestionAnswering, GPTNeoXForSequenceClassification, GPTNeoXForTokenClassification, GPTNeoXModel, ) class __A: """simple docstring""" def __init__(self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=13 , SCREAMING_SNAKE_CASE_=7 , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=99 , SCREAMING_SNAKE_CASE_=64 , SCREAMING_SNAKE_CASE_=5 , SCREAMING_SNAKE_CASE_=4 , SCREAMING_SNAKE_CASE_=37 , SCREAMING_SNAKE_CASE_="gelu" , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=5_12 , SCREAMING_SNAKE_CASE_=16 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=0.02 , SCREAMING_SNAKE_CASE_=3 , SCREAMING_SNAKE_CASE_=4 , SCREAMING_SNAKE_CASE_=None , ): UpperCamelCase__ = parent UpperCamelCase__ = batch_size UpperCamelCase__ = seq_length UpperCamelCase__ = is_training UpperCamelCase__ = use_input_mask UpperCamelCase__ = use_token_type_ids UpperCamelCase__ = use_labels UpperCamelCase__ = vocab_size UpperCamelCase__ = hidden_size UpperCamelCase__ = num_hidden_layers UpperCamelCase__ = num_attention_heads UpperCamelCase__ = intermediate_size UpperCamelCase__ = hidden_act UpperCamelCase__ = hidden_dropout_prob UpperCamelCase__ = attention_probs_dropout_prob UpperCamelCase__ = max_position_embeddings UpperCamelCase__ = type_vocab_size UpperCamelCase__ = type_sequence_label_size UpperCamelCase__ = initializer_range UpperCamelCase__ = num_labels UpperCamelCase__ = num_choices UpperCamelCase__ = scope UpperCamelCase__ = vocab_size - 1 def UpperCAmelCase_ (self ): UpperCamelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCamelCase__ = None if self.use_input_mask: UpperCamelCase__ = random_attention_mask([self.batch_size, self.seq_length] ) UpperCamelCase__ = None if self.use_labels: UpperCamelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCamelCase__ = self.get_config() return config, input_ids, input_mask, token_labels def UpperCAmelCase_ (self ): return GPTNeoXConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=SCREAMING_SNAKE_CASE_ , initializer_range=self.initializer_range , pad_token_id=self.pad_token_id , ) def UpperCAmelCase_ (self ): UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = self.prepare_config_and_inputs() UpperCamelCase__ = True return config, input_ids, input_mask, token_labels def UpperCAmelCase_ (self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): UpperCamelCase__ = GPTNeoXModel(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() UpperCamelCase__ = model(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = model(SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCAmelCase_ (self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): UpperCamelCase__ = True UpperCamelCase__ = GPTNeoXModel(SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() UpperCamelCase__ = model(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCAmelCase_ (self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): UpperCamelCase__ = GPTNeoXForCausalLM(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() UpperCamelCase__ = model(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCAmelCase_ (self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): UpperCamelCase__ = self.num_labels UpperCamelCase__ = GPTNeoXForQuestionAnswering(SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() UpperCamelCase__ = model(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def UpperCAmelCase_ (self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): UpperCamelCase__ = self.num_labels UpperCamelCase__ = GPTNeoXForSequenceClassification(SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() UpperCamelCase__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCamelCase__ = model(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCAmelCase_ (self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): UpperCamelCase__ = self.num_labels UpperCamelCase__ = GPTNeoXForTokenClassification(SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() UpperCamelCase__ = model(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCAmelCase_ (self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): UpperCamelCase__ = True UpperCamelCase__ = GPTNeoXForCausalLM(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() # first forward pass UpperCamelCase__ = model(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , use_cache=SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids UpperCamelCase__ = ids_tensor((self.batch_size, 3) , config.vocab_size ) UpperCamelCase__ = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and UpperCamelCase__ = torch.cat([input_ids, next_tokens] , dim=-1 ) UpperCamelCase__ = torch.cat([input_mask, next_mask] , dim=-1 ) UpperCamelCase__ = model(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , output_hidden_states=SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = output_from_no_past["""hidden_states"""][0] UpperCamelCase__ = model( SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , past_key_values=SCREAMING_SNAKE_CASE_ , output_hidden_states=SCREAMING_SNAKE_CASE_ , )["""hidden_states"""][0] # select random slice UpperCamelCase__ = ids_tensor((1,) , output_from_past.shape[-1] ).item() UpperCamelCase__ = output_from_no_past[:, -3:, random_slice_idx].detach() UpperCamelCase__ = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , atol=1E-3 ) ) def UpperCAmelCase_ (self ): UpperCamelCase__ = self.prepare_config_and_inputs() UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = config_and_inputs UpperCamelCase__ = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class __A( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE__ = ( ( GPTNeoXModel, GPTNeoXForCausalLM, GPTNeoXForQuestionAnswering, GPTNeoXForSequenceClassification, GPTNeoXForTokenClassification, ) if is_torch_available() else () ) SCREAMING_SNAKE_CASE__ = (GPTNeoXForCausalLM,) if is_torch_available() else () SCREAMING_SNAKE_CASE__ = ( { """feature-extraction""": GPTNeoXModel, """question-answering""": GPTNeoXForQuestionAnswering, """text-classification""": GPTNeoXForSequenceClassification, """text-generation""": GPTNeoXForCausalLM, """token-classification""": GPTNeoXForTokenClassification, """zero-shot""": GPTNeoXForSequenceClassification, } if is_torch_available() else {} ) SCREAMING_SNAKE_CASE__ = False SCREAMING_SNAKE_CASE__ = False SCREAMING_SNAKE_CASE__ = False SCREAMING_SNAKE_CASE__ = False def UpperCAmelCase_ (self ): UpperCamelCase__ = GPTNeoXModelTester(self ) UpperCamelCase__ = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE_ , hidden_size=64 , num_attention_heads=8 ) def UpperCAmelCase_ (self ): self.config_tester.run_common_tests() def UpperCAmelCase_ (self ): UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def UpperCAmelCase_ (self ): UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def UpperCAmelCase_ (self ): # This regression test was failing with PyTorch < 1.3 UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = self.model_tester.prepare_config_and_inputs_for_decoder() UpperCamelCase__ = None self.model_tester.create_and_check_model_as_decoder(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def UpperCAmelCase_ (self ): UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past_large_inputs(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def UpperCAmelCase_ (self ): UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_causal_lm(*SCREAMING_SNAKE_CASE_ ) def UpperCAmelCase_ (self ): UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*SCREAMING_SNAKE_CASE_ ) def UpperCAmelCase_ (self ): UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*SCREAMING_SNAKE_CASE_ ) def UpperCAmelCase_ (self ): UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*SCREAMING_SNAKE_CASE_ ) @unittest.skip(reason="""Feed forward chunking is not implemented""" ) def UpperCAmelCase_ (self ): pass @parameterized.expand([("""linear""",), ("""dynamic""",)] ) def UpperCAmelCase_ (self , SCREAMING_SNAKE_CASE_ ): UpperCamelCase__ , UpperCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase__ = ids_tensor([1, 10] , config.vocab_size ) UpperCamelCase__ = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size ) set_seed(42 ) # Fixed seed at init time so the two models get the same random weights UpperCamelCase__ = GPTNeoXModel(SCREAMING_SNAKE_CASE_ ) original_model.to(SCREAMING_SNAKE_CASE_ ) original_model.eval() UpperCamelCase__ = original_model(SCREAMING_SNAKE_CASE_ ).last_hidden_state UpperCamelCase__ = original_model(SCREAMING_SNAKE_CASE_ ).last_hidden_state set_seed(42 ) # Fixed seed at init time so the two models get the same random weights UpperCamelCase__ = {"""type""": scaling_type, """factor""": 10.0} UpperCamelCase__ = GPTNeoXModel(SCREAMING_SNAKE_CASE_ ) scaled_model.to(SCREAMING_SNAKE_CASE_ ) scaled_model.eval() UpperCamelCase__ = scaled_model(SCREAMING_SNAKE_CASE_ ).last_hidden_state UpperCamelCase__ = scaled_model(SCREAMING_SNAKE_CASE_ ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , atol=1E-5 ) ) else: self.assertFalse(torch.allclose(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , atol=1E-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , atol=1E-5 ) ) @require_torch class __A( unittest.TestCase ): """simple docstring""" @slow def UpperCAmelCase_ (self ): UpperCamelCase__ = AutoTokenizer.from_pretrained("""EleutherAI/pythia-410m-deduped""" ) for checkpointing in [True, False]: UpperCamelCase__ = GPTNeoXForCausalLM.from_pretrained("""EleutherAI/pythia-410m-deduped""" ) if checkpointing: model.gradient_checkpointing_enable() else: model.gradient_checkpointing_disable() model.to(SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = tokenizer("""My favorite food is""" , return_tensors="""pt""" ).to(SCREAMING_SNAKE_CASE_ ) # The hub repo. is updated on 2023-04-04, resulting in poor outputs. # See: https://github.com/huggingface/transformers/pull/24193 UpperCamelCase__ = """My favorite food is a good old-fashioned, old-fashioned, old-fashioned.\n\nI'm not sure""" UpperCamelCase__ = model.generate(**SCREAMING_SNAKE_CASE_ , do_sample=SCREAMING_SNAKE_CASE_ , max_new_tokens=20 ) UpperCamelCase__ = tokenizer.batch_decode(SCREAMING_SNAKE_CASE_ )[0] self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
366
from __future__ import annotations from collections import Counter from random import random class __A: """simple docstring""" def __init__(self ): UpperCamelCase__ = {} def UpperCAmelCase_ (self , SCREAMING_SNAKE_CASE_ ): UpperCamelCase__ = {} def UpperCAmelCase_ (self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): if nodea not in self.connections: self.add_node(SCREAMING_SNAKE_CASE_ ) if nodea not in self.connections: self.add_node(SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = probability def UpperCAmelCase_ (self ): return list(self.connections ) def UpperCAmelCase_ (self , SCREAMING_SNAKE_CASE_ ): UpperCamelCase__ = 0 UpperCamelCase__ = random() for dest in self.connections[node]: current_probability += self.connections[node][dest] if current_probability > random_value: return dest return "" def __magic_name__ ( __a : str , __a : list[tuple[str, str, float]] , __a : int ): '''simple docstring''' UpperCamelCase__ = MarkovChainGraphUndirectedUnweighted() for nodea, nodea, probability in transitions: graph.add_transition_probability(__a , __a , __a ) UpperCamelCase__ = Counter(graph.get_nodes() ) UpperCamelCase__ = start for _ in range(__a ): UpperCamelCase__ = graph.transition(__a ) visited[node] += 1 return visited if __name__ == "__main__": import doctest doctest.testmod()
178
0
import json import os import torch from diffusers import UNetaDModel os.makedirs('''hub/hopper-medium-v2/unet/hor32''', exist_ok=True) os.makedirs('''hub/hopper-medium-v2/unet/hor128''', exist_ok=True) os.makedirs('''hub/hopper-medium-v2/value_function''', exist_ok=True) def lowercase_ ( _lowerCamelCase : Any): if hor == 128: lowercase__ : List[str] = ("DownResnetBlock1D", "DownResnetBlock1D", "DownResnetBlock1D") lowercase__ : Union[str, Any] = (32, 128, 256) lowercase__ : Dict = ("UpResnetBlock1D", "UpResnetBlock1D") elif hor == 32: lowercase__ : Dict = ("DownResnetBlock1D", "DownResnetBlock1D", "DownResnetBlock1D", "DownResnetBlock1D") lowercase__ : int = (32, 64, 128, 256) lowercase__ : Any = ("UpResnetBlock1D", "UpResnetBlock1D", "UpResnetBlock1D") lowercase__ : Optional[int] = torch.load(f'''/Users/bglickenhaus/Documents/diffuser/temporal_unet-hopper-mediumv2-hor{hor}.torch''') lowercase__ : Dict = model.state_dict() lowercase__ : Any = { "down_block_types": down_block_types, "block_out_channels": block_out_channels, "up_block_types": up_block_types, "layers_per_block": 1, "use_timestep_embedding": True, "out_block_type": "OutConv1DBlock", "norm_num_groups": 8, "downsample_each_block": False, "in_channels": 14, "out_channels": 14, "extra_in_channels": 0, "time_embedding_type": "positional", "flip_sin_to_cos": False, "freq_shift": 1, "sample_size": 6_5536, "mid_block_type": "MidResTemporalBlock1D", "act_fn": "mish", } lowercase__ : Optional[int] = UNetaDModel(**_lowerCamelCase) print(f'''length of state dict: {len(state_dict.keys())}''') print(f'''length of value function dict: {len(hf_value_function.state_dict().keys())}''') lowercase__ : Optional[Any] = dict(zip(model.state_dict().keys() , hf_value_function.state_dict().keys())) for k, v in mapping.items(): lowercase__ : Optional[int] = state_dict.pop(_lowerCamelCase) hf_value_function.load_state_dict(_lowerCamelCase) torch.save(hf_value_function.state_dict() , f'''hub/hopper-medium-v2/unet/hor{hor}/diffusion_pytorch_model.bin''') with open(f'''hub/hopper-medium-v2/unet/hor{hor}/config.json''' , "w") as f: json.dump(_lowerCamelCase , _lowerCamelCase) def lowercase_ ( ): lowercase__ : Optional[Any] = { "in_channels": 14, "down_block_types": ("DownResnetBlock1D", "DownResnetBlock1D", "DownResnetBlock1D", "DownResnetBlock1D"), "up_block_types": (), "out_block_type": "ValueFunction", "mid_block_type": "ValueFunctionMidBlock1D", "block_out_channels": (32, 64, 128, 256), "layers_per_block": 1, "downsample_each_block": True, "sample_size": 6_5536, "out_channels": 14, "extra_in_channels": 0, "time_embedding_type": "positional", "use_timestep_embedding": True, "flip_sin_to_cos": False, "freq_shift": 1, "norm_num_groups": 8, "act_fn": "mish", } lowercase__ : Optional[int] = torch.load("/Users/bglickenhaus/Documents/diffuser/value_function-hopper-mediumv2-hor32.torch") lowercase__ : List[Any] = model lowercase__ : Union[str, Any] = UNetaDModel(**_lowerCamelCase) print(f'''length of state dict: {len(state_dict.keys())}''') print(f'''length of value function dict: {len(hf_value_function.state_dict().keys())}''') lowercase__ : Union[str, Any] = dict(zip(state_dict.keys() , hf_value_function.state_dict().keys())) for k, v in mapping.items(): lowercase__ : List[Any] = state_dict.pop(_lowerCamelCase) hf_value_function.load_state_dict(_lowerCamelCase) torch.save(hf_value_function.state_dict() , "hub/hopper-medium-v2/value_function/diffusion_pytorch_model.bin") with open("hub/hopper-medium-v2/value_function/config.json" , "w") as f: json.dump(_lowerCamelCase , _lowerCamelCase) if __name__ == "__main__": unet(32) # unet(128) value_function()
87
import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class snake_case_ ( __A ): __A : Optional[Any] = ["image_processor", "tokenizer"] __A : Tuple = "LayoutLMv3ImageProcessor" __A : List[Any] = ("LayoutLMv3Tokenizer", "LayoutLMv3TokenizerFast") def __init__( self : Union[str, Any] , lowercase_ : int=None , lowercase_ : str=None , **lowercase_ : Optional[Any] ) -> Optional[int]: lowercase__ : Union[str, Any] = None if "feature_extractor" in kwargs: warnings.warn( "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" " instead." , lowercase_ , ) lowercase__ : Optional[int] = kwargs.pop("feature_extractor" ) lowercase__ : int = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("You need to specify an `image_processor`." ) if tokenizer is None: raise ValueError("You need to specify a `tokenizer`." ) super().__init__(lowercase_ , lowercase_ ) def __call__( self : Dict , lowercase_ : Optional[Any] , lowercase_ : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , lowercase_ : Optional[Union[PreTokenizedInput, List[PreTokenizedInput]]] = None , lowercase_ : Union[List[List[int]], List[List[List[int]]]] = None , lowercase_ : Optional[Union[List[int], List[List[int]]]] = None , lowercase_ : bool = True , lowercase_ : Union[bool, str, PaddingStrategy] = False , lowercase_ : Union[bool, str, TruncationStrategy] = None , lowercase_ : Optional[int] = None , lowercase_ : int = 0 , lowercase_ : Optional[int] = None , lowercase_ : Optional[bool] = None , lowercase_ : Optional[bool] = None , lowercase_ : bool = False , lowercase_ : bool = False , lowercase_ : bool = False , lowercase_ : bool = False , lowercase_ : bool = True , lowercase_ : Optional[Union[str, TensorType]] = None , **lowercase_ : Dict , ) -> BatchEncoding: # verify input if self.image_processor.apply_ocr and (boxes is not None): raise ValueError( "You cannot provide bounding boxes if you initialized the image processor with apply_ocr set to True." ) if self.image_processor.apply_ocr and (word_labels is not None): raise ValueError( "You cannot provide word labels if you initialized the image processor with apply_ocr set to True." ) # first, apply the image processor lowercase__ : Union[str, Any] = self.image_processor(images=lowercase_ , return_tensors=lowercase_ ) # second, apply the tokenizer if text is not None and self.image_processor.apply_ocr and text_pair is None: if isinstance(lowercase_ , lowercase_ ): lowercase__ : Optional[Any] = [text] # add batch dimension (as the image processor always adds a batch dimension) lowercase__ : Any = features["words"] lowercase__ : Tuple = self.tokenizer( text=text if text is not None else features["words"] , text_pair=text_pair if text_pair is not None else None , boxes=boxes if boxes is not None else features["boxes"] , word_labels=lowercase_ , add_special_tokens=lowercase_ , padding=lowercase_ , truncation=lowercase_ , max_length=lowercase_ , stride=lowercase_ , pad_to_multiple_of=lowercase_ , return_token_type_ids=lowercase_ , return_attention_mask=lowercase_ , return_overflowing_tokens=lowercase_ , return_special_tokens_mask=lowercase_ , return_offsets_mapping=lowercase_ , return_length=lowercase_ , verbose=lowercase_ , return_tensors=lowercase_ , **lowercase_ , ) # add pixel values lowercase__ : Optional[int] = features.pop("pixel_values" ) if return_overflowing_tokens is True: lowercase__ : Dict = self.get_overflowing_images(lowercase_ , encoded_inputs["overflow_to_sample_mapping"] ) lowercase__ : str = images return encoded_inputs def __UpperCamelCase ( self : List[Any] , lowercase_ : Tuple , lowercase_ : List[Any] ) -> Dict: # in case there's an overflow, ensure each `input_ids` sample is mapped to its corresponding image lowercase__ : Tuple = [] for sample_idx in overflow_to_sample_mapping: images_with_overflow.append(images[sample_idx] ) if len(lowercase_ ) != len(lowercase_ ): raise ValueError( "Expected length of images to be the same as the length of `overflow_to_sample_mapping`, but got" F''' {len(lowercase_ )} and {len(lowercase_ )}''' ) return images_with_overflow def __UpperCamelCase ( self : int , *lowercase_ : Union[str, Any] , **lowercase_ : List[str] ) -> Union[str, Any]: return self.tokenizer.batch_decode(*lowercase_ , **lowercase_ ) def __UpperCamelCase ( self : Union[str, Any] , *lowercase_ : str , **lowercase_ : int ) -> Dict: return self.tokenizer.decode(*lowercase_ , **lowercase_ ) @property def __UpperCamelCase ( self : Any ) -> Any: return ["input_ids", "bbox", "attention_mask", "pixel_values"] @property def __UpperCamelCase ( self : Optional[int] ) -> Optional[Any]: warnings.warn( "`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead." , lowercase_ , ) return self.image_processor_class @property def __UpperCamelCase ( self : List[Any] ) -> Tuple: warnings.warn( "`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead." , lowercase_ , ) return self.image_processor
87
1
from math import sqrt def UpperCAmelCase_ ( __UpperCAmelCase : int ) -> int: SCREAMING_SNAKE_CASE_ = 0 for i in range(1 , int(sqrt(__UpperCAmelCase ) + 1 ) ): if n % i == 0 and i != sqrt(__UpperCAmelCase ): total += i + n // i elif i == sqrt(__UpperCAmelCase ): total += i return total - n def UpperCAmelCase_ ( __UpperCAmelCase : int = 1_00_00 ) -> int: SCREAMING_SNAKE_CASE_ = sum( i for i in range(1 , __UpperCAmelCase ) if sum_of_divisors(sum_of_divisors(__UpperCAmelCase ) ) == i and sum_of_divisors(__UpperCAmelCase ) != i ) return total if __name__ == "__main__": print(solution(int(str(input()).strip())))
210
import gc import threading import time import psutil import torch class lowerCamelCase_ : '''simple docstring''' def __init__( self : Optional[Any] ): SCREAMING_SNAKE_CASE_ = psutil.Process() SCREAMING_SNAKE_CASE_ = False def lowerCAmelCase_ ( self : Dict ): SCREAMING_SNAKE_CASE_ = -1 while True: SCREAMING_SNAKE_CASE_ = max(self.process.memory_info().rss , self.cpu_memory_peak ) # can't sleep or will not catch the peak right (this comment is here on purpose) if not self.peak_monitoring: break def lowerCAmelCase_ ( self : List[str] ): SCREAMING_SNAKE_CASE_ = True SCREAMING_SNAKE_CASE_ = threading.Thread(target=self.peak_monitor ) SCREAMING_SNAKE_CASE_ = True self.thread.start() def lowerCAmelCase_ ( self : List[str] ): SCREAMING_SNAKE_CASE_ = False self.thread.join() return self.cpu_memory_peak lowerCamelCase__ : List[str] = PeakCPUMemory() def UpperCAmelCase_ ( ) -> Tuple: # Time SCREAMING_SNAKE_CASE_ = {'time': time.time()} gc.collect() torch.cuda.empty_cache() # CPU mem SCREAMING_SNAKE_CASE_ = psutil.Process().memory_info().rss cpu_peak_tracker.start() # GPU mem for i in range(torch.cuda.device_count() ): SCREAMING_SNAKE_CASE_ = torch.cuda.memory_allocated(__UpperCAmelCase ) torch.cuda.reset_peak_memory_stats() return measures def UpperCAmelCase_ ( __UpperCAmelCase : Optional[int] ) -> Optional[Any]: # Time SCREAMING_SNAKE_CASE_ = {'time': time.time() - start_measures['time']} gc.collect() torch.cuda.empty_cache() # CPU mem SCREAMING_SNAKE_CASE_ = (psutil.Process().memory_info().rss - start_measures['cpu']) / 2**20 SCREAMING_SNAKE_CASE_ = (cpu_peak_tracker.stop() - start_measures['cpu']) / 2**20 # GPU mem for i in range(torch.cuda.device_count() ): SCREAMING_SNAKE_CASE_ = (torch.cuda.memory_allocated(__UpperCAmelCase ) - start_measures[str(__UpperCAmelCase )]) / 2**20 SCREAMING_SNAKE_CASE_ = (torch.cuda.max_memory_allocated(__UpperCAmelCase ) - start_measures[str(__UpperCAmelCase )]) / 2**20 return measures def UpperCAmelCase_ ( __UpperCAmelCase : Optional[int] , __UpperCAmelCase : Any ) -> Optional[Any]: print(f"{description}:" ) print(f"- Time: {measures['time']:.2f}s" ) for i in range(torch.cuda.device_count() ): print(f"- GPU {i} allocated: {measures[str(__UpperCAmelCase )]:.2f}MiB" ) SCREAMING_SNAKE_CASE_ = measures[f"{i}-peak"] print(f"- GPU {i} peak: {peak:.2f}MiB" ) print(f"- CPU RAM allocated: {measures['cpu']:.2f}MiB" ) print(f"- CPU RAM peak: {measures['cpu-peak']:.2f}MiB" )
210
1
from typing import Dict, List, Optional, Union import numpy as np from .feature_extraction_utils import BatchFeature, FeatureExtractionMixin from .utils import PaddingStrategy, TensorType, is_tf_tensor, is_torch_tensor, logging, to_numpy A_ :int = logging.get_logger(__name__) class __A ( a ): """simple docstring""" def __init__( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , **lowerCamelCase__ ): """simple docstring""" __UpperCamelCase : Optional[Any] =feature_size __UpperCamelCase : Tuple =sampling_rate __UpperCamelCase : List[Any] =padding_value __UpperCamelCase : List[Any] =kwargs.pop('padding_side' , 'right' ) __UpperCamelCase : Optional[Any] =kwargs.pop('return_attention_mask' , lowerCamelCase__ ) super().__init__(**lowerCamelCase__ ) def __lowercase ( self , lowerCamelCase__ , lowerCamelCase__ = True , lowerCamelCase__ = None , lowerCamelCase__ = False , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = None , ): """simple docstring""" if isinstance(lowerCamelCase__ , (list, tuple) ) and isinstance(processed_features[0] , (dict, BatchFeature) ): __UpperCamelCase : List[Any] ={ key: [example[key] for example in processed_features] for key in processed_features[0].keys() } # The model's main input name, usually `input_values`, has be passed for padding if self.model_input_names[0] not in processed_features: raise ValueError( 'You should supply an instance of `transformers.BatchFeature` or list of `transformers.BatchFeature`' f' to this method that includes {self.model_input_names[0]}, but you provided' f' {list(processed_features.keys() )}' ) __UpperCamelCase : Any =processed_features[self.model_input_names[0]] __UpperCamelCase : Optional[Any] =( return_attention_mask if return_attention_mask is not None else self.return_attention_mask ) if len(lowerCamelCase__ ) == 0: if return_attention_mask: __UpperCamelCase : str =[] return processed_features # If we have PyTorch/TF tensors or lists as inputs, we cast them as Numpy arrays # and rebuild them afterwards if no return_tensors is specified # Note that we lose the specific device the tensor may be on for PyTorch __UpperCamelCase : Dict =required_input[0] if isinstance(lowerCamelCase__ , (list, tuple) ): # first_element might be an empty list/tuple in some edge cases so we grab the first non empty element. __UpperCamelCase : int =0 while len(required_input[index] ) == 0: index += 1 if index < len(lowerCamelCase__ ): __UpperCamelCase : Any =required_input[index][0] if return_tensors is None: if is_tf_tensor(lowerCamelCase__ ): __UpperCamelCase : str ='tf' elif is_torch_tensor(lowerCamelCase__ ): __UpperCamelCase : Union[str, Any] ='pt' elif isinstance(lowerCamelCase__ , (int, float, list, tuple, np.ndarray) ): __UpperCamelCase : List[str] ='np' else: raise ValueError( f'type of {first_element} unknown: {type(lowerCamelCase__ )}. ' 'Should be one of a python, numpy, pytorch or tensorflow object.' ) for key, value in processed_features.items(): if isinstance(value[0] , (int, float) ): __UpperCamelCase : Dict =to_numpy(lowerCamelCase__ ) else: __UpperCamelCase : List[Any] =[to_numpy(lowerCamelCase__ ) for v in value] # Convert padding_strategy in PaddingStrategy __UpperCamelCase : Dict =self._get_padding_strategies(padding=lowerCamelCase__ , max_length=lowerCamelCase__ ) __UpperCamelCase : int =processed_features[self.model_input_names[0]] __UpperCamelCase : int =len(lowerCamelCase__ ) if not all(len(lowerCamelCase__ ) == batch_size for v in processed_features.values() ): raise ValueError('Some items in the output dictionary have a different batch size than others.' ) __UpperCamelCase : Union[str, Any] =[] for i in range(lowerCamelCase__ ): __UpperCamelCase : Tuple ={k: v[i] for k, v in processed_features.items()} # truncation __UpperCamelCase : Tuple =self._truncate( lowerCamelCase__ , max_length=lowerCamelCase__ , pad_to_multiple_of=lowerCamelCase__ , truncation=lowerCamelCase__ , ) truncated_inputs.append(lowerCamelCase__ ) if padding_strategy == PaddingStrategy.LONGEST: # make sure that `max_length` cannot be longer than the longest truncated length __UpperCamelCase : Tuple =max(len(input_slice[self.model_input_names[0]] ) for input_slice in truncated_inputs ) __UpperCamelCase : List[Any] =PaddingStrategy.MAX_LENGTH __UpperCamelCase : Any ={} for i in range(lowerCamelCase__ ): # padding __UpperCamelCase : Union[str, Any] =self._pad( truncated_inputs[i] , max_length=lowerCamelCase__ , padding_strategy=lowerCamelCase__ , pad_to_multiple_of=lowerCamelCase__ , return_attention_mask=lowerCamelCase__ , ) for key, value in outputs.items(): if key not in batch_outputs: __UpperCamelCase : str =[] if value.dtype is np.dtype(np.floataa ): __UpperCamelCase : Tuple =value.astype(np.floataa ) batch_outputs[key].append(lowerCamelCase__ ) return BatchFeature(lowerCamelCase__ , tensor_type=lowerCamelCase__ ) def __lowercase ( self , lowerCamelCase__ , lowerCamelCase__ = None , lowerCamelCase__ = PaddingStrategy.DO_NOT_PAD , lowerCamelCase__ = None , lowerCamelCase__ = None , ): """simple docstring""" __UpperCamelCase : Dict =processed_features[self.model_input_names[0]] if padding_strategy == PaddingStrategy.LONGEST: __UpperCamelCase : List[str] =len(lowerCamelCase__ ) if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0): __UpperCamelCase : List[Any] =((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of __UpperCamelCase : List[str] =padding_strategy != PaddingStrategy.DO_NOT_PAD and len(lowerCamelCase__ ) < max_length if return_attention_mask and "attention_mask" not in processed_features: __UpperCamelCase : Tuple =np.ones(len(lowerCamelCase__ ) , dtype=np.intaa ) if needs_to_be_padded: __UpperCamelCase : Any =max_length - len(lowerCamelCase__ ) if self.padding_side == "right": if return_attention_mask: __UpperCamelCase : Optional[Any] =np.pad( processed_features['attention_mask'] , (0, difference) ) __UpperCamelCase : List[str] =((0, difference), (0, 0)) if self.feature_size > 1 else (0, difference) __UpperCamelCase : Union[str, Any] =np.pad( lowerCamelCase__ , lowerCamelCase__ , 'constant' , constant_values=self.padding_value ) elif self.padding_side == "left": if return_attention_mask: __UpperCamelCase : Any =np.pad( processed_features['attention_mask'] , (difference, 0) ) __UpperCamelCase : int =((difference, 0), (0, 0)) if self.feature_size > 1 else (difference, 0) __UpperCamelCase : str =np.pad( lowerCamelCase__ , lowerCamelCase__ , 'constant' , constant_values=self.padding_value ) else: raise ValueError('Invalid padding strategy:' + str(self.padding_side ) ) return processed_features def __lowercase ( self , lowerCamelCase__ , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = None , ): """simple docstring""" if not truncation: return processed_features elif truncation and max_length is None: raise ValueError('When setting ``truncation=True``, make sure that ``max_length`` is defined.' ) __UpperCamelCase : str =processed_features[self.model_input_names[0]] # find `max_length` that fits `pad_to_multiple_of` if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0): __UpperCamelCase : Optional[int] =((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of __UpperCamelCase : Union[str, Any] =len(lowerCamelCase__ ) > max_length if needs_to_be_truncated: __UpperCamelCase : Dict =processed_features[self.model_input_names[0]][:max_length] if "attention_mask" in processed_features: __UpperCamelCase : Any =processed_features['attention_mask'][:max_length] return processed_features def __lowercase ( self , lowerCamelCase__=False , lowerCamelCase__=None ): """simple docstring""" if padding is not False: if padding is True: __UpperCamelCase : Optional[Any] =PaddingStrategy.LONGEST # Default to pad to the longest sequence in the batch elif not isinstance(lowerCamelCase__ , lowerCamelCase__ ): __UpperCamelCase : Optional[int] =PaddingStrategy(lowerCamelCase__ ) elif isinstance(lowerCamelCase__ , lowerCamelCase__ ): __UpperCamelCase : List[str] =padding else: __UpperCamelCase : List[Any] =PaddingStrategy.DO_NOT_PAD # Set max length if needed if max_length is None: if padding_strategy == PaddingStrategy.MAX_LENGTH: raise ValueError( f'When setting ``padding={PaddingStrategy.MAX_LENGTH}``, make sure that max_length is defined' ) # Test if we have a padding value if padding_strategy != PaddingStrategy.DO_NOT_PAD and (self.padding_value is None): raise ValueError( 'Asking to pad but the feature_extractor does not have a padding value. Please select a value to use' ' as `padding_value`. For example: `feature_extractor.padding_value = 0.0`.' ) return padding_strategy
71
A_ :Union[str, Any] = { 0: '''0''', 1: '''1''', 2: '''2''', 3: '''3''', 4: '''4''', 5: '''5''', 6: '''6''', 7: '''7''', 8: '''8''', 9: '''9''', 10: '''a''', 11: '''b''', 12: '''c''', 13: '''d''', 14: '''e''', 15: '''f''', } def A ( a_ ) -> str: assert type(a_ ) in (int, float) and decimal == int(a_ ) __UpperCamelCase : Union[str, Any] =int(a_ ) __UpperCamelCase : List[str] ='' __UpperCamelCase : Optional[Any] =False if decimal < 0: __UpperCamelCase : Tuple =True decimal *= -1 while decimal > 0: __UpperCamelCase , __UpperCamelCase : Optional[Any] =divmod(a_ ,16 ) __UpperCamelCase : Tuple =values[remainder] + hexadecimal __UpperCamelCase : Dict ='0x' + hexadecimal if negative: __UpperCamelCase : int ='-' + hexadecimal return hexadecimal if __name__ == "__main__": import doctest doctest.testmod()
71
1
'''simple docstring''' import itertools import os import re lowercase__ = re.compile(r"([A-Z]+)([A-Z][a-z])") lowercase__ = re.compile(r"([a-z\d])([A-Z])") lowercase__ = re.compile(r"(?<!_)_(?!_)") lowercase__ = re.compile(r"(_{2,})") lowercase__ = r"^\w+(\.\w+)*$" lowercase__ = r"<>:/\|?*" def UpperCamelCase( UpperCAmelCase_ ): UpperCAmelCase : List[str] = _uppercase_uppercase_re.sub(R'\1_\2' , UpperCAmelCase_ ) UpperCAmelCase : str = _lowercase_uppercase_re.sub(R'\1_\2' , UpperCAmelCase_ ) return name.lower() def UpperCamelCase( UpperCAmelCase_ ): UpperCAmelCase : List[str] = _single_underscore_re.split(UpperCAmelCase_ ) UpperCAmelCase : Optional[Any] = [_multiple_underscores_re.split(UpperCAmelCase_ ) for n in name] return "".join(n.capitalize() for n in itertools.chain.from_iterable(UpperCAmelCase_ ) if n != '' ) def UpperCamelCase( UpperCAmelCase_ ): if os.path.basename(UpperCAmelCase_ ) != name: raise ValueError(F"""Should be a dataset name, not a path: {name}""" ) return camelcase_to_snakecase(UpperCAmelCase_ ) def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ ): if os.path.basename(UpperCAmelCase_ ) != name: raise ValueError(F"""Should be a dataset name, not a path: {name}""" ) if not re.match(_split_re , UpperCAmelCase_ ): raise ValueError(F"""Split name should match '{_split_re}'' but got '{split}'.""" ) return F"""{filename_prefix_for_name(UpperCAmelCase_ )}-{split}""" def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_=None ): UpperCAmelCase : Dict = filename_prefix_for_split(UpperCAmelCase_ , UpperCAmelCase_ ) if filetype_suffix: prefix += F""".{filetype_suffix}""" UpperCAmelCase : Optional[int] = os.path.join(UpperCAmelCase_ , UpperCAmelCase_ ) return F"""{filepath}*""" def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_=None , UpperCAmelCase_=None ): UpperCAmelCase : Optional[int] = filename_prefix_for_split(UpperCAmelCase_ , UpperCAmelCase_ ) UpperCAmelCase : str = os.path.join(UpperCAmelCase_ , UpperCAmelCase_ ) if shard_lengths: UpperCAmelCase : List[str] = len(UpperCAmelCase_ ) UpperCAmelCase : List[str] = [F"""{prefix}-{shard_id:05d}-of-{num_shards:05d}""" for shard_id in range(UpperCAmelCase_ )] if filetype_suffix: UpperCAmelCase : Dict = [filename + F""".{filetype_suffix}""" for filename in filenames] return filenames else: UpperCAmelCase : Optional[Any] = prefix if filetype_suffix: filename += F""".{filetype_suffix}""" return [filename]
360
'''simple docstring''' # Lint as: python3 import itertools import os import re lowercase__ = re.compile(r"([A-Z]+)([A-Z][a-z])") lowercase__ = re.compile(r"([a-z\d])([A-Z])") lowercase__ = re.compile(r"(?<!_)_(?!_)") lowercase__ = re.compile(r"(_{2,})") lowercase__ = r"^\w+(\.\w+)*$" lowercase__ = r"<>:/\|?*" def UpperCamelCase( UpperCAmelCase_ ): UpperCAmelCase : List[str] = _uppercase_uppercase_re.sub(R'\1_\2' , UpperCAmelCase_ ) UpperCAmelCase : str = _lowercase_uppercase_re.sub(R'\1_\2' , UpperCAmelCase_ ) return name.lower() def UpperCamelCase( UpperCAmelCase_ ): UpperCAmelCase : List[str] = _single_underscore_re.split(UpperCAmelCase_ ) UpperCAmelCase : Optional[Any] = [_multiple_underscores_re.split(UpperCAmelCase_ ) for n in name] return "".join(n.capitalize() for n in itertools.chain.from_iterable(UpperCAmelCase_ ) if n != '' ) def UpperCamelCase( UpperCAmelCase_ ): if os.path.basename(UpperCAmelCase_ ) != name: raise ValueError(F"""Should be a dataset name, not a path: {name}""" ) return camelcase_to_snakecase(UpperCAmelCase_ ) def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ ): if os.path.basename(UpperCAmelCase_ ) != name: raise ValueError(F"""Should be a dataset name, not a path: {name}""" ) if not re.match(_split_re , UpperCAmelCase_ ): raise ValueError(F"""Split name should match '{_split_re}'' but got '{split}'.""" ) return F"""{filename_prefix_for_name(UpperCAmelCase_ )}-{split}""" def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_=None ): UpperCAmelCase : Dict = filename_prefix_for_split(UpperCAmelCase_ , UpperCAmelCase_ ) if filetype_suffix: prefix += F""".{filetype_suffix}""" UpperCAmelCase : Optional[int] = os.path.join(UpperCAmelCase_ , UpperCAmelCase_ ) return F"""{filepath}*""" def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_=None , UpperCAmelCase_=None ): UpperCAmelCase : Optional[int] = filename_prefix_for_split(UpperCAmelCase_ , UpperCAmelCase_ ) UpperCAmelCase : str = os.path.join(UpperCAmelCase_ , UpperCAmelCase_ ) if shard_lengths: UpperCAmelCase : List[str] = len(UpperCAmelCase_ ) UpperCAmelCase : List[str] = [F"""{prefix}-{shard_id:05d}-of-{num_shards:05d}""" for shard_id in range(UpperCAmelCase_ )] if filetype_suffix: UpperCAmelCase : Dict = [filename + F""".{filetype_suffix}""" for filename in filenames] return filenames else: UpperCAmelCase : Optional[Any] = prefix if filetype_suffix: filename += F""".{filetype_suffix}""" return [filename]
280
0
'''simple docstring''' from typing import Optional, Tuple, Union import torch from diffusers import DiffusionPipeline, ImagePipelineOutput class __UpperCamelCase ( a_ ): def __init__( self, lowerCAmelCase, lowerCAmelCase ): """simple docstring""" super().__init__() self.register_modules(unet=_lowerCamelCase, scheduler=_lowerCamelCase ) @torch.no_grad() def __call__( self, lowerCAmelCase = 1, lowerCAmelCase = None, lowerCAmelCase = 50, lowerCAmelCase = "pil", lowerCAmelCase = True, **lowerCAmelCase, ): """simple docstring""" lowerCamelCase_ =torch.randn( (batch_size, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size), generator=_lowerCamelCase, ) lowerCamelCase_ =image.to(self.device ) # set step values self.scheduler.set_timesteps(_lowerCamelCase ) for t in self.progress_bar(self.scheduler.timesteps ): # 1. predict noise model_output lowerCamelCase_ =self.unet(_lowerCamelCase, _lowerCamelCase ).sample # 2. predict previous mean of image x_t-1 and add variance depending on eta # eta corresponds to η in paper and should be between [0, 1] # do x_t -> x_t-1 lowerCamelCase_ =self.scheduler.step(_lowerCamelCase, _lowerCamelCase, _lowerCamelCase ).prev_sample lowerCamelCase_ =(image / 2 + 0.5).clamp(0, 1 ) lowerCamelCase_ =image.cpu().permute(0, 2, 3, 1 ).numpy() if output_type == "pil": lowerCamelCase_ =self.numpy_to_pil(_lowerCamelCase ) if not return_dict: return (image,), "This is a local test" return ImagePipelineOutput(images=_lowerCamelCase ), "This is a local test"
75
"""simple docstring""" import re import warnings from contextlib import contextmanager from ...processing_utils import ProcessorMixin class a ( a_ ): UpperCAmelCase_ : List[Any] =["image_processor", "tokenizer"] UpperCAmelCase_ : str ="AutoImageProcessor" UpperCAmelCase_ : Any ="AutoTokenizer" def __init__( self , _lowerCamelCase=None , _lowerCamelCase=None , **_lowerCamelCase ): lowercase = None if "feature_extractor" in kwargs: warnings.warn( 'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`' ' instead.' , _lowerCamelCase , ) lowercase = kwargs.pop('feature_extractor' ) lowercase = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('You need to specify an `image_processor`.' ) if tokenizer is None: raise ValueError('You need to specify a `tokenizer`.' ) super().__init__(_lowerCamelCase , _lowerCamelCase ) lowercase = self.image_processor lowercase = False def __call__( self , *_lowerCamelCase , **_lowerCamelCase ): # For backward compatibility if self._in_target_context_manager: return self.current_processor(*_lowerCamelCase , **_lowerCamelCase ) lowercase = kwargs.pop('images' , _lowerCamelCase ) lowercase = kwargs.pop('text' , _lowerCamelCase ) if len(_lowerCamelCase ) > 0: lowercase = args[0] lowercase = args[1:] if images is None and text is None: raise ValueError('You need to specify either an `images` or `text` input to process.' ) if images is not None: lowercase = self.image_processor(_lowerCamelCase , *_lowerCamelCase , **_lowerCamelCase ) if text is not None: lowercase = self.tokenizer(_lowerCamelCase , **_lowerCamelCase ) if text is None: return inputs elif images is None: return encodings else: lowercase = encodings['input_ids'] return inputs def UpperCamelCase_ ( self , *_lowerCamelCase , **_lowerCamelCase ): return self.tokenizer.batch_decode(*_lowerCamelCase , **_lowerCamelCase ) def UpperCamelCase_ ( self , *_lowerCamelCase , **_lowerCamelCase ): return self.tokenizer.decode(*_lowerCamelCase , **_lowerCamelCase ) @contextmanager def UpperCamelCase_ ( self ): warnings.warn( '`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your ' 'labels by using the argument `text` of the regular `__call__` method (either in the same call as ' 'your images inputs, or in a separate call.' ) lowercase = True lowercase = self.tokenizer yield lowercase = self.image_processor lowercase = False def UpperCamelCase_ ( self , _lowerCamelCase , _lowerCamelCase=False , _lowerCamelCase=None ): if added_vocab is None: lowercase = self.tokenizer.get_added_vocab() lowercase = {} while tokens: lowercase = re.search(R'<s_(.*?)>' , _lowerCamelCase , re.IGNORECASE ) if start_token is None: break lowercase = start_token.group(1 ) lowercase = re.search(RF'</s_{key}>' , _lowerCamelCase , re.IGNORECASE ) lowercase = start_token.group() if end_token is None: lowercase = tokens.replace(_lowerCamelCase , '' ) else: lowercase = end_token.group() lowercase = re.escape(_lowerCamelCase ) lowercase = re.escape(_lowerCamelCase ) lowercase = re.search(F'{start_token_escaped}(.*?){end_token_escaped}' , _lowerCamelCase , re.IGNORECASE ) if content is not None: lowercase = content.group(1 ).strip() if r"<s_" in content and r"</s_" in content: # non-leaf node lowercase = self.tokenajson(_lowerCamelCase , is_inner_value=_lowerCamelCase , added_vocab=_lowerCamelCase ) if value: if len(_lowerCamelCase ) == 1: lowercase = value[0] lowercase = value else: # leaf nodes lowercase = [] for leaf in content.split(R'<sep/>' ): lowercase = leaf.strip() if leaf in added_vocab and leaf[0] == "<" and leaf[-2:] == "/>": lowercase = leaf[1:-2] # for categorical special tokens output[key].append(_lowerCamelCase ) if len(output[key] ) == 1: lowercase = output[key][0] lowercase = tokens[tokens.find(_lowerCamelCase ) + len(_lowerCamelCase ) :].strip() if tokens[:6] == r"<sep/>": # non-leaf nodes return [output] + self.tokenajson(tokens[6:] , is_inner_value=_lowerCamelCase , added_vocab=_lowerCamelCase ) if len(_lowerCamelCase ): return [output] if is_inner_value else output else: return [] if is_inner_value else {"text_sequence": tokens} @property def UpperCamelCase_ ( self ): warnings.warn( '`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.' , _lowerCamelCase , ) return self.image_processor_class @property def UpperCamelCase_ ( self ): warnings.warn( '`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.' , _lowerCamelCase , ) return self.image_processor
220
0
def UpperCAmelCase_ ( ) -> Dict: SCREAMING_SNAKE_CASE_ = [] SCREAMING_SNAKE_CASE_ = 1 while len(__lowerCamelCase ) < 1E6: constant.append(str(__lowerCamelCase ) ) i += 1 SCREAMING_SNAKE_CASE_ = "".join(__lowerCamelCase ) return ( int(constant[0] ) * int(constant[9] ) * int(constant[99] ) * int(constant[9_99] ) * int(constant[99_99] ) * int(constant[9_99_99] ) * int(constant[99_99_99] ) ) if __name__ == "__main__": print(solution())
360
import inspect import unittest import numpy as np from tests.test_modeling_common import floats_tensor from transformers import MaskaFormerConfig, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MaskaFormerForUniversalSegmentation, MaskaFormerModel if is_vision_available(): from transformers import MaskaFormerImageProcessor if is_vision_available(): from PIL import Image class lowerCamelCase_ : '''simple docstring''' def __init__( self : Any , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : List[Any]=2 , _lowerCAmelCase : List[str]=True , _lowerCAmelCase : Any=False , _lowerCAmelCase : Tuple=10 , _lowerCAmelCase : Optional[int]=3 , _lowerCAmelCase : Dict=32 * 8 , _lowerCAmelCase : List[str]=32 * 8 , _lowerCAmelCase : List[Any]=4 , _lowerCAmelCase : Optional[Any]=64 , ): SCREAMING_SNAKE_CASE_ = parent SCREAMING_SNAKE_CASE_ = batch_size SCREAMING_SNAKE_CASE_ = is_training SCREAMING_SNAKE_CASE_ = use_auxiliary_loss SCREAMING_SNAKE_CASE_ = num_queries SCREAMING_SNAKE_CASE_ = num_channels SCREAMING_SNAKE_CASE_ = min_size SCREAMING_SNAKE_CASE_ = max_size SCREAMING_SNAKE_CASE_ = num_labels SCREAMING_SNAKE_CASE_ = hidden_dim SCREAMING_SNAKE_CASE_ = hidden_dim def lowerCAmelCase_ ( self : str ): SCREAMING_SNAKE_CASE_ = floats_tensor([self.batch_size, self.num_channels, self.min_size, self.max_size] ).to( _lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = torch.ones([self.batch_size, self.min_size, self.max_size] , device=_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = ( torch.rand([self.batch_size, self.num_labels, self.min_size, self.max_size] , device=_lowerCAmelCase ) > 0.5 ).float() SCREAMING_SNAKE_CASE_ = (torch.rand((self.batch_size, self.num_labels) , device=_lowerCAmelCase ) > 0.5).long() SCREAMING_SNAKE_CASE_ = self.get_config() return config, pixel_values, pixel_mask, mask_labels, class_labels def lowerCAmelCase_ ( self : List[Any] ): SCREAMING_SNAKE_CASE_ = MaskaFormerConfig( hidden_size=self.hidden_dim , ) SCREAMING_SNAKE_CASE_ = self.num_queries SCREAMING_SNAKE_CASE_ = self.num_labels SCREAMING_SNAKE_CASE_ = [1, 1, 1, 1] SCREAMING_SNAKE_CASE_ = self.num_channels SCREAMING_SNAKE_CASE_ = 64 SCREAMING_SNAKE_CASE_ = 128 SCREAMING_SNAKE_CASE_ = self.hidden_dim SCREAMING_SNAKE_CASE_ = self.hidden_dim SCREAMING_SNAKE_CASE_ = self.hidden_dim return config def lowerCAmelCase_ ( self : Optional[int] ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE_ = {'pixel_values': pixel_values, 'pixel_mask': pixel_mask} return config, inputs_dict def lowerCAmelCase_ ( self : Optional[Any] , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Tuple ): SCREAMING_SNAKE_CASE_ = output.encoder_hidden_states SCREAMING_SNAKE_CASE_ = output.pixel_decoder_hidden_states SCREAMING_SNAKE_CASE_ = output.transformer_decoder_hidden_states self.parent.assertTrue(len(_lowerCAmelCase ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(_lowerCAmelCase ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(_lowerCAmelCase ) , config.decoder_layers ) def lowerCAmelCase_ ( self : Optional[Any] , _lowerCAmelCase : Tuple , _lowerCAmelCase : Tuple , _lowerCAmelCase : Any , _lowerCAmelCase : Any=False ): with torch.no_grad(): SCREAMING_SNAKE_CASE_ = MaskaFormerModel(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() SCREAMING_SNAKE_CASE_ = model(pixel_values=_lowerCAmelCase , pixel_mask=_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = model(_lowerCAmelCase , output_hidden_states=_lowerCAmelCase ) self.parent.assertEqual( output.transformer_decoder_last_hidden_state.shape , (self.batch_size, self.num_queries, self.hidden_dim) , ) # let's ensure the other two hidden state exists self.parent.assertTrue(output.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(output.encoder_last_hidden_state is not None ) if output_hidden_states: self.check_output_hidden_state(_lowerCAmelCase , _lowerCAmelCase ) def lowerCAmelCase_ ( self : str , _lowerCAmelCase : Dict , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Any , _lowerCAmelCase : str , _lowerCAmelCase : Any ): SCREAMING_SNAKE_CASE_ = MaskaFormerForUniversalSegmentation(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() def comm_check_on_output(_lowerCAmelCase : List[str] ): # let's still check that all the required stuff is there self.parent.assertTrue(result.transformer_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.encoder_last_hidden_state is not None ) # okay, now we need to check the logits shape # due to the encoder compression, masks have a //4 spatial size self.parent.assertEqual( result.masks_queries_logits.shape , (self.batch_size, self.num_queries, self.min_size // 4, self.max_size // 4) , ) # + 1 for null class self.parent.assertEqual( result.class_queries_logits.shape , (self.batch_size, self.num_queries, self.num_labels + 1) ) with torch.no_grad(): SCREAMING_SNAKE_CASE_ = model(pixel_values=_lowerCAmelCase , pixel_mask=_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = model(_lowerCAmelCase ) comm_check_on_output(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = model( pixel_values=_lowerCAmelCase , pixel_mask=_lowerCAmelCase , mask_labels=_lowerCAmelCase , class_labels=_lowerCAmelCase ) comm_check_on_output(_lowerCAmelCase ) self.parent.assertTrue(result.loss is not None ) self.parent.assertEqual(result.loss.shape , torch.Size([1] ) ) @require_torch class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' lowercase_ = (MaskaFormerModel, MaskaFormerForUniversalSegmentation) if is_torch_available() else () lowercase_ = {"feature-extraction": MaskaFormerModel} if is_torch_available() else {} lowercase_ = False lowercase_ = False lowercase_ = False lowercase_ = False def lowerCAmelCase_ ( self : List[Any] ): SCREAMING_SNAKE_CASE_ = MaskaFormerModelTester(self ) SCREAMING_SNAKE_CASE_ = ConfigTester(self , config_class=_lowerCAmelCase , has_text_modality=_lowerCAmelCase ) def lowerCAmelCase_ ( self : Union[str, Any] ): self.config_tester.run_common_tests() def lowerCAmelCase_ ( self : Tuple ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskaformer_model(_lowerCAmelCase , **_lowerCAmelCase , output_hidden_states=_lowerCAmelCase ) def lowerCAmelCase_ ( self : Any ): SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_maskaformer_instance_segmentation_head_model(*_lowerCAmelCase ) @unittest.skip(reason='Mask2Former does not use inputs_embeds' ) def lowerCAmelCase_ ( self : Optional[int] ): pass @unittest.skip(reason='Mask2Former does not have a get_input_embeddings method' ) def lowerCAmelCase_ ( self : Tuple ): pass @unittest.skip(reason='Mask2Former is not a generative model' ) def lowerCAmelCase_ ( self : List[Any] ): pass @unittest.skip(reason='Mask2Former does not use token embeddings' ) def lowerCAmelCase_ ( self : Tuple ): pass @require_torch_multi_gpu @unittest.skip( reason='Mask2Former has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`' ) def lowerCAmelCase_ ( self : Any ): pass @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def lowerCAmelCase_ ( self : int ): pass def lowerCAmelCase_ ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE_ = model_class(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic SCREAMING_SNAKE_CASE_ = [*signature.parameters.keys()] SCREAMING_SNAKE_CASE_ = ['pixel_values'] self.assertListEqual(arg_names[:1] , _lowerCAmelCase ) @slow def lowerCAmelCase_ ( self : Any ): for model_name in ["facebook/mask2former-swin-small-coco-instance"]: SCREAMING_SNAKE_CASE_ = MaskaFormerModel.from_pretrained(_lowerCAmelCase ) self.assertIsNotNone(_lowerCAmelCase ) def lowerCAmelCase_ ( self : List[Any] ): SCREAMING_SNAKE_CASE_ = (self.model_tester.min_size,) * 2 SCREAMING_SNAKE_CASE_ = { 'pixel_values': torch.randn((2, 3, *size) , device=_lowerCAmelCase ), 'mask_labels': torch.randn((2, 10, *size) , device=_lowerCAmelCase ), 'class_labels': torch.zeros(2 , 10 , device=_lowerCAmelCase ).long(), } SCREAMING_SNAKE_CASE_ = self.model_tester.get_config() SCREAMING_SNAKE_CASE_ = MaskaFormerForUniversalSegmentation(_lowerCAmelCase ).to(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = model(**_lowerCAmelCase ) self.assertTrue(outputs.loss is not None ) def lowerCAmelCase_ ( self : List[Any] ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskaformer_model(_lowerCAmelCase , **_lowerCAmelCase , output_hidden_states=_lowerCAmelCase ) def lowerCAmelCase_ ( self : str ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE_ = model_class(_lowerCAmelCase ).to(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = model(**_lowerCAmelCase , output_attentions=_lowerCAmelCase ) self.assertTrue(outputs.attentions is not None ) def lowerCAmelCase_ ( self : List[str] ): if not self.model_tester.is_training: return SCREAMING_SNAKE_CASE_ = self.all_model_classes[1] SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs() SCREAMING_SNAKE_CASE_ = model_class(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.train() SCREAMING_SNAKE_CASE_ = model(_lowerCAmelCase , mask_labels=_lowerCAmelCase , class_labels=_lowerCAmelCase ).loss loss.backward() def lowerCAmelCase_ ( self : str ): SCREAMING_SNAKE_CASE_ = self.all_model_classes[1] SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs() SCREAMING_SNAKE_CASE_ = True SCREAMING_SNAKE_CASE_ = True SCREAMING_SNAKE_CASE_ = model_class(_lowerCAmelCase ).to(_lowerCAmelCase ) model.train() SCREAMING_SNAKE_CASE_ = model(_lowerCAmelCase , mask_labels=_lowerCAmelCase , class_labels=_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = outputs.encoder_hidden_states[0] encoder_hidden_states.retain_grad() SCREAMING_SNAKE_CASE_ = outputs.pixel_decoder_hidden_states[0] pixel_decoder_hidden_states.retain_grad() SCREAMING_SNAKE_CASE_ = outputs.transformer_decoder_hidden_states[0] transformer_decoder_hidden_states.retain_grad() SCREAMING_SNAKE_CASE_ = outputs.attentions[0] attentions.retain_grad() outputs.loss.backward(retain_graph=_lowerCAmelCase ) self.assertIsNotNone(encoder_hidden_states.grad ) self.assertIsNotNone(pixel_decoder_hidden_states.grad ) self.assertIsNotNone(transformer_decoder_hidden_states.grad ) self.assertIsNotNone(attentions.grad ) lowerCamelCase__ : Tuple = 1E-4 def UpperCAmelCase_ ( ) -> List[Any]: SCREAMING_SNAKE_CASE_ = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_vision @slow class lowerCamelCase_ ( unittest.TestCase ): '''simple docstring''' @cached_property def lowerCAmelCase_ ( self : Optional[int] ): return "facebook/mask2former-swin-small-coco-instance" @cached_property def lowerCAmelCase_ ( self : int ): return MaskaFormerImageProcessor.from_pretrained(self.model_checkpoints ) if is_vision_available() else None def lowerCAmelCase_ ( self : Optional[Any] ): SCREAMING_SNAKE_CASE_ = MaskaFormerModel.from_pretrained(self.model_checkpoints ).to(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = self.default_image_processor SCREAMING_SNAKE_CASE_ = prepare_img() SCREAMING_SNAKE_CASE_ = image_processor(_lowerCAmelCase , return_tensors='pt' ).to(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = inputs['pixel_values'].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(_lowerCAmelCase , (1, 3, 384, 384) ) with torch.no_grad(): SCREAMING_SNAKE_CASE_ = model(**_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = torch.tensor( [[-0.2790, -1.0717, -1.1668], [-0.5128, -0.3128, -0.4987], [-0.5832, 0.1971, -0.0197]] ).to(_lowerCAmelCase ) self.assertTrue( torch.allclose( outputs.encoder_last_hidden_state[0, 0, :3, :3] , _lowerCAmelCase , atol=_lowerCAmelCase ) ) SCREAMING_SNAKE_CASE_ = torch.tensor( [[0.8973, 1.1847, 1.1776], [1.1934, 1.5040, 1.5128], [1.1153, 1.4486, 1.4951]] ).to(_lowerCAmelCase ) self.assertTrue( torch.allclose( outputs.pixel_decoder_last_hidden_state[0, 0, :3, :3] , _lowerCAmelCase , atol=_lowerCAmelCase ) ) SCREAMING_SNAKE_CASE_ = torch.tensor( [[2.1152, 1.7000, -0.8603], [1.5808, 1.8004, -0.9353], [1.6043, 1.7495, -0.5999]] ).to(_lowerCAmelCase ) self.assertTrue( torch.allclose( outputs.transformer_decoder_last_hidden_state[0, :3, :3] , _lowerCAmelCase , atol=_lowerCAmelCase ) ) def lowerCAmelCase_ ( self : List[Any] ): SCREAMING_SNAKE_CASE_ = MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints ).to(_lowerCAmelCase ).eval() SCREAMING_SNAKE_CASE_ = self.default_image_processor SCREAMING_SNAKE_CASE_ = prepare_img() SCREAMING_SNAKE_CASE_ = image_processor(_lowerCAmelCase , return_tensors='pt' ).to(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = inputs['pixel_values'].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(_lowerCAmelCase , (1, 3, 384, 384) ) with torch.no_grad(): SCREAMING_SNAKE_CASE_ = model(**_lowerCAmelCase ) # masks_queries_logits SCREAMING_SNAKE_CASE_ = outputs.masks_queries_logits self.assertEqual( masks_queries_logits.shape , (1, model.config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) ) SCREAMING_SNAKE_CASE_ = [ [-8.7839, -9.0056, -8.8121], [-7.4104, -7.0313, -6.5401], [-6.6105, -6.3427, -6.4675], ] SCREAMING_SNAKE_CASE_ = torch.tensor(_lowerCAmelCase ).to(_lowerCAmelCase ) self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] , _lowerCAmelCase , atol=_lowerCAmelCase ) ) # class_queries_logits SCREAMING_SNAKE_CASE_ = outputs.class_queries_logits self.assertEqual(class_queries_logits.shape , (1, model.config.num_queries, model.config.num_labels + 1) ) SCREAMING_SNAKE_CASE_ = torch.tensor( [ [1.8324, -8.0835, -4.1922], [0.8450, -9.0050, -3.6053], [0.3045, -7.7293, -3.0275], ] ).to(_lowerCAmelCase ) self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] , _lowerCAmelCase , atol=_lowerCAmelCase ) ) def lowerCAmelCase_ ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE_ = MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints ).to(_lowerCAmelCase ).eval() SCREAMING_SNAKE_CASE_ = self.default_image_processor SCREAMING_SNAKE_CASE_ = image_processor( [np.zeros((3, 800, 1_333) ), np.zeros((3, 800, 1_333) )] , segmentation_maps=[np.zeros((384, 384) ).astype(np.floataa ), np.zeros((384, 384) ).astype(np.floataa )] , return_tensors='pt' , ) SCREAMING_SNAKE_CASE_ = inputs['pixel_values'].to(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = [el.to(_lowerCAmelCase ) for el in inputs['mask_labels']] SCREAMING_SNAKE_CASE_ = [el.to(_lowerCAmelCase ) for el in inputs['class_labels']] with torch.no_grad(): SCREAMING_SNAKE_CASE_ = model(**_lowerCAmelCase ) self.assertTrue(outputs.loss is not None )
210
0
import flax.linen as nn import jax.numpy as jnp from .attention_flax import FlaxTransformeraDModel from .resnet_flax import FlaxDownsampleaD, FlaxResnetBlockaD, FlaxUpsampleaD class __lowerCAmelCase ( nn.Module ): lowerCamelCase_ : int lowerCamelCase_ : int lowerCamelCase_ : float = 0.0 lowerCamelCase_ : int = 1 lowerCamelCase_ : int = 1 lowerCamelCase_ : bool = True lowerCamelCase_ : bool = False lowerCamelCase_ : bool = False lowerCamelCase_ : bool = False lowerCamelCase_ : jnp.dtype = jnp.floataa def lowerCamelCase (self ) -> Optional[Any]: '''simple docstring''' snake_case_ : List[str] = [] snake_case_ : Union[str, Any] = [] for i in range(self.num_layers ): snake_case_ : Tuple = self.in_channels if i == 0 else self.out_channels snake_case_ : List[Any] = FlaxResnetBlockaD( in_channels=__magic_name__ , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(__magic_name__ ) snake_case_ : List[str] = FlaxTransformeraDModel( in_channels=self.out_channels , n_heads=self.num_attention_heads , d_head=self.out_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , only_cross_attention=self.only_cross_attention , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) attentions.append(__magic_name__ ) snake_case_ : List[Any] = resnets snake_case_ : int = attentions if self.add_downsample: snake_case_ : str = FlaxDownsampleaD(self.out_channels , dtype=self.dtype ) def __call__(self , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__=True ) -> Optional[int]: '''simple docstring''' snake_case_ : str = () for resnet, attn in zip(self.resnets , self.attentions ): snake_case_ : Union[str, Any] = resnet(__magic_name__ , __magic_name__ , deterministic=__magic_name__ ) snake_case_ : Tuple = attn(__magic_name__ , __magic_name__ , deterministic=__magic_name__ ) output_states += (hidden_states,) if self.add_downsample: snake_case_ : Dict = self.downsamplers_a(__magic_name__ ) output_states += (hidden_states,) return hidden_states, output_states class __lowerCAmelCase ( nn.Module ): lowerCamelCase_ : int lowerCamelCase_ : int lowerCamelCase_ : float = 0.0 lowerCamelCase_ : int = 1 lowerCamelCase_ : bool = True lowerCamelCase_ : jnp.dtype = jnp.floataa def lowerCamelCase (self ) -> Dict: '''simple docstring''' snake_case_ : int = [] for i in range(self.num_layers ): snake_case_ : Optional[int] = self.in_channels if i == 0 else self.out_channels snake_case_ : Optional[Any] = FlaxResnetBlockaD( in_channels=__magic_name__ , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(__magic_name__ ) snake_case_ : Union[str, Any] = resnets if self.add_downsample: snake_case_ : Any = FlaxDownsampleaD(self.out_channels , dtype=self.dtype ) def __call__(self , __magic_name__ , __magic_name__ , __magic_name__=True ) -> int: '''simple docstring''' snake_case_ : Optional[Any] = () for resnet in self.resnets: snake_case_ : List[str] = resnet(__magic_name__ , __magic_name__ , deterministic=__magic_name__ ) output_states += (hidden_states,) if self.add_downsample: snake_case_ : Tuple = self.downsamplers_a(__magic_name__ ) output_states += (hidden_states,) return hidden_states, output_states class __lowerCAmelCase ( nn.Module ): lowerCamelCase_ : int lowerCamelCase_ : int lowerCamelCase_ : int lowerCamelCase_ : float = 0.0 lowerCamelCase_ : int = 1 lowerCamelCase_ : int = 1 lowerCamelCase_ : bool = True lowerCamelCase_ : bool = False lowerCamelCase_ : bool = False lowerCamelCase_ : bool = False lowerCamelCase_ : jnp.dtype = jnp.floataa def lowerCamelCase (self ) -> str: '''simple docstring''' snake_case_ : Union[str, Any] = [] snake_case_ : str = [] for i in range(self.num_layers ): snake_case_ : int = self.in_channels if (i == self.num_layers - 1) else self.out_channels snake_case_ : Any = self.prev_output_channel if i == 0 else self.out_channels snake_case_ : Optional[int] = FlaxResnetBlockaD( in_channels=resnet_in_channels + res_skip_channels , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(__magic_name__ ) snake_case_ : Dict = FlaxTransformeraDModel( in_channels=self.out_channels , n_heads=self.num_attention_heads , d_head=self.out_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , only_cross_attention=self.only_cross_attention , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) attentions.append(__magic_name__ ) snake_case_ : Dict = resnets snake_case_ : List[str] = attentions if self.add_upsample: snake_case_ : List[str] = FlaxUpsampleaD(self.out_channels , dtype=self.dtype ) def __call__(self , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__=True ) -> List[Any]: '''simple docstring''' for resnet, attn in zip(self.resnets , self.attentions ): # pop res hidden states snake_case_ : Optional[Any] = res_hidden_states_tuple[-1] snake_case_ : List[str] = res_hidden_states_tuple[:-1] snake_case_ : List[str] = jnp.concatenate((hidden_states, res_hidden_states) , axis=-1 ) snake_case_ : Any = resnet(__magic_name__ , __magic_name__ , deterministic=__magic_name__ ) snake_case_ : Optional[int] = attn(__magic_name__ , __magic_name__ , deterministic=__magic_name__ ) if self.add_upsample: snake_case_ : Union[str, Any] = self.upsamplers_a(__magic_name__ ) return hidden_states class __lowerCAmelCase ( nn.Module ): lowerCamelCase_ : int lowerCamelCase_ : int lowerCamelCase_ : int lowerCamelCase_ : float = 0.0 lowerCamelCase_ : int = 1 lowerCamelCase_ : bool = True lowerCamelCase_ : jnp.dtype = jnp.floataa def lowerCamelCase (self ) -> str: '''simple docstring''' snake_case_ : int = [] for i in range(self.num_layers ): snake_case_ : Optional[int] = self.in_channels if (i == self.num_layers - 1) else self.out_channels snake_case_ : Union[str, Any] = self.prev_output_channel if i == 0 else self.out_channels snake_case_ : str = FlaxResnetBlockaD( in_channels=resnet_in_channels + res_skip_channels , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(__magic_name__ ) snake_case_ : Optional[Any] = resnets if self.add_upsample: snake_case_ : str = FlaxUpsampleaD(self.out_channels , dtype=self.dtype ) def __call__(self , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__=True ) -> Any: '''simple docstring''' for resnet in self.resnets: # pop res hidden states snake_case_ : List[str] = res_hidden_states_tuple[-1] snake_case_ : List[str] = res_hidden_states_tuple[:-1] snake_case_ : Dict = jnp.concatenate((hidden_states, res_hidden_states) , axis=-1 ) snake_case_ : Dict = resnet(__magic_name__ , __magic_name__ , deterministic=__magic_name__ ) if self.add_upsample: snake_case_ : Tuple = self.upsamplers_a(__magic_name__ ) return hidden_states class __lowerCAmelCase ( nn.Module ): lowerCamelCase_ : int lowerCamelCase_ : float = 0.0 lowerCamelCase_ : int = 1 lowerCamelCase_ : int = 1 lowerCamelCase_ : bool = False lowerCamelCase_ : bool = False lowerCamelCase_ : jnp.dtype = jnp.floataa def lowerCamelCase (self ) -> Tuple: '''simple docstring''' snake_case_ : Tuple = [ FlaxResnetBlockaD( in_channels=self.in_channels , out_channels=self.in_channels , dropout_prob=self.dropout , dtype=self.dtype , ) ] snake_case_ : List[Any] = [] for _ in range(self.num_layers ): snake_case_ : Any = FlaxTransformeraDModel( in_channels=self.in_channels , n_heads=self.num_attention_heads , d_head=self.in_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) attentions.append(__magic_name__ ) snake_case_ : str = FlaxResnetBlockaD( in_channels=self.in_channels , out_channels=self.in_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(__magic_name__ ) snake_case_ : Dict = resnets snake_case_ : List[Any] = attentions def __call__(self , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__=True ) -> Any: '''simple docstring''' snake_case_ : Optional[int] = self.resnets[0](__magic_name__ , __magic_name__ ) for attn, resnet in zip(self.attentions , self.resnets[1:] ): snake_case_ : Tuple = attn(__magic_name__ , __magic_name__ , deterministic=__magic_name__ ) snake_case_ : List[str] = resnet(__magic_name__ , __magic_name__ , deterministic=__magic_name__ ) return hidden_states
279
import argparse from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection from diffusers import UnCLIPImageVariationPipeline, UnCLIPPipeline if __name__ == "__main__": lowerCAmelCase_ = argparse.ArgumentParser() parser.add_argument('''--dump_path''', default=None, type=str, required=True, help='''Path to the output model.''') parser.add_argument( '''--txt2img_unclip''', default='''kakaobrain/karlo-v1-alpha''', type=str, required=False, help='''The pretrained txt2img unclip.''', ) lowerCAmelCase_ = parser.parse_args() lowerCAmelCase_ = UnCLIPPipeline.from_pretrained(args.txtaimg_unclip) lowerCAmelCase_ = CLIPImageProcessor() lowerCAmelCase_ = CLIPVisionModelWithProjection.from_pretrained('''openai/clip-vit-large-patch14''') lowerCAmelCase_ = UnCLIPImageVariationPipeline( decoder=txtaimg.decoder, text_encoder=txtaimg.text_encoder, tokenizer=txtaimg.tokenizer, text_proj=txtaimg.text_proj, feature_extractor=feature_extractor, image_encoder=image_encoder, super_res_first=txtaimg.super_res_first, super_res_last=txtaimg.super_res_last, decoder_scheduler=txtaimg.decoder_scheduler, super_res_scheduler=txtaimg.super_res_scheduler, ) imgaimg.save_pretrained(args.dump_path)
279
1
from collections.abc import Sequence def snake_case_ ( lowerCAmelCase_ : Sequence[int] | None = None ): if nums is None or not nums: raise ValueError("""Input sequence should not be empty""" ) __lowercase : str = nums[0] for i in range(1 , len(lowerCAmelCase_ ) ): __lowercase : Dict = nums[i] __lowercase : List[Any] = max(lowerCAmelCase_ , ans + num , lowerCAmelCase_ ) return ans if __name__ == "__main__": import doctest doctest.testmod() # Try on a sample input from the user lowerCamelCase : Optional[Any] = int(input('''Enter number of elements : ''').strip()) lowerCamelCase : Optional[Any] = list(map(int, input('''\nEnter the numbers : ''').strip().split()))[:n] print(max_subsequence_sum(array))
306
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available lowerCamelCase : Optional[Any] = { '''configuration_poolformer''': [ '''POOLFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''PoolFormerConfig''', '''PoolFormerOnnxConfig''', ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : int = ['''PoolFormerFeatureExtractor'''] lowerCamelCase : Union[str, Any] = ['''PoolFormerImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : List[str] = [ '''POOLFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''PoolFormerForImageClassification''', '''PoolFormerModel''', '''PoolFormerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_poolformer import ( POOLFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, PoolFormerConfig, PoolFormerOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_poolformer import PoolFormerFeatureExtractor from .image_processing_poolformer import PoolFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_poolformer import ( POOLFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, PoolFormerForImageClassification, PoolFormerModel, PoolFormerPreTrainedModel, ) else: import sys lowerCamelCase : Union[str, Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
306
1
'''simple docstring''' import json import os import tempfile import transformers import datasets from utils import generate_example_dataset, get_duration UpperCamelCase_ = 5_0_0_0_0_0 UpperCamelCase_ , UpperCamelCase_ = os.path.split(__file__) UpperCamelCase_ = os.path.join(RESULTS_BASEPATH, "results", RESULTS_FILENAME.replace(".py", ".json")) @get_duration def lowercase__( __UpperCamelCase: datasets.Dataset ,**__UpperCamelCase: Any ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = dataset.map(**__UpperCamelCase ) @get_duration def lowercase__( __UpperCamelCase: datasets.Dataset ,**__UpperCamelCase: Any ): """simple docstring""" SCREAMING_SNAKE_CASE : int = dataset.filter(**__UpperCamelCase ) def lowercase__( ): """simple docstring""" SCREAMING_SNAKE_CASE : List[Any] = {'num examples': SPEED_TEST_N_EXAMPLES} with tempfile.TemporaryDirectory() as tmp_dir: SCREAMING_SNAKE_CASE : Union[str, Any] = datasets.Features({'text': datasets.Value('string' ), 'numbers': datasets.Value('float32' )} ) SCREAMING_SNAKE_CASE : List[str] = generate_example_dataset( os.path.join(__UpperCamelCase ,'dataset.arrow' ) ,__UpperCamelCase ,num_examples=__UpperCamelCase ) SCREAMING_SNAKE_CASE : List[Any] = transformers.AutoTokenizer.from_pretrained('bert-base-cased' ,use_fast=__UpperCamelCase ) def tokenize(__UpperCamelCase: Any ): return tokenizer(examples['text'] ) SCREAMING_SNAKE_CASE : List[str] = map(__UpperCamelCase ) SCREAMING_SNAKE_CASE : Tuple = map(__UpperCamelCase ,batched=__UpperCamelCase ) SCREAMING_SNAKE_CASE : Tuple = map(__UpperCamelCase ,function=lambda __UpperCamelCase : None ,batched=__UpperCamelCase ) with dataset.formatted_as(type='numpy' ): SCREAMING_SNAKE_CASE : Optional[Any] = map(__UpperCamelCase ,function=lambda __UpperCamelCase : None ,batched=__UpperCamelCase ) with dataset.formatted_as(type='pandas' ): SCREAMING_SNAKE_CASE : List[Any] = map(__UpperCamelCase ,function=lambda __UpperCamelCase : None ,batched=__UpperCamelCase ) with dataset.formatted_as(type='torch' ,columns='numbers' ): SCREAMING_SNAKE_CASE : List[str] = map(__UpperCamelCase ,function=lambda __UpperCamelCase : None ,batched=__UpperCamelCase ) with dataset.formatted_as(type='tensorflow' ,columns='numbers' ): SCREAMING_SNAKE_CASE : Optional[int] = map(__UpperCamelCase ,function=lambda __UpperCamelCase : None ,batched=__UpperCamelCase ) SCREAMING_SNAKE_CASE : Any = map(__UpperCamelCase ,function=__UpperCamelCase ,batched=__UpperCamelCase ) SCREAMING_SNAKE_CASE : Dict = filter(__UpperCamelCase ) # Activate later when tokenizer support batched inputs # with dataset.formatted_as(type='numpy'): # times[func.__name__ + " fast-tokenizer batched numpy"] = func(dataset, function=tokenize, batched=True) with open(__UpperCamelCase ,'wb' ) as f: f.write(json.dumps(__UpperCamelCase ).encode('utf-8' ) ) if __name__ == "__main__": # useful to run the profiler benchmark_map_filter()
251
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available UpperCamelCase_ = {"configuration_speech_encoder_decoder": ["SpeechEncoderDecoderConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = ["SpeechEncoderDecoderModel"] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = ["FlaxSpeechEncoderDecoderModel"] if TYPE_CHECKING: from .configuration_speech_encoder_decoder import SpeechEncoderDecoderConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_speech_encoder_decoder import SpeechEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_speech_encoder_decoder import FlaxSpeechEncoderDecoderModel else: import sys UpperCamelCase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
251
1
"""simple docstring""" from ..utils import DummyObject, requires_backends class __lowerCamelCase ( metaclass=__lowercase ): __UpperCamelCase = ['torch'] def __init__(self , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(self , ["""torch"""] ) @classmethod def A__ (cls , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(cls , ["""torch"""] ) @classmethod def A__ (cls , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(cls , ["""torch"""] ) class __lowerCamelCase ( metaclass=__lowercase ): __UpperCamelCase = ['torch'] def __init__(self , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(self , ["""torch"""] ) @classmethod def A__ (cls , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(cls , ["""torch"""] ) @classmethod def A__ (cls , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(cls , ["""torch"""] ) class __lowerCamelCase ( metaclass=__lowercase ): __UpperCamelCase = ['torch'] def __init__(self , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(self , ["""torch"""] ) @classmethod def A__ (cls , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(cls , ["""torch"""] ) @classmethod def A__ (cls , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(cls , ["""torch"""] ) class __lowerCamelCase ( metaclass=__lowercase ): __UpperCamelCase = ['torch'] def __init__(self , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(self , ["""torch"""] ) @classmethod def A__ (cls , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(cls , ["""torch"""] ) @classmethod def A__ (cls , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(cls , ["""torch"""] ) class __lowerCamelCase ( metaclass=__lowercase ): __UpperCamelCase = ['torch'] def __init__(self , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(self , ["""torch"""] ) @classmethod def A__ (cls , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(cls , ["""torch"""] ) @classmethod def A__ (cls , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(cls , ["""torch"""] ) class __lowerCamelCase ( metaclass=__lowercase ): __UpperCamelCase = ['torch'] def __init__(self , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(self , ["""torch"""] ) @classmethod def A__ (cls , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(cls , ["""torch"""] ) @classmethod def A__ (cls , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(cls , ["""torch"""] ) class __lowerCamelCase ( metaclass=__lowercase ): __UpperCamelCase = ['torch'] def __init__(self , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(self , ["""torch"""] ) @classmethod def A__ (cls , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(cls , ["""torch"""] ) @classmethod def A__ (cls , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(cls , ["""torch"""] ) class __lowerCamelCase ( metaclass=__lowercase ): __UpperCamelCase = ['torch'] def __init__(self , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(self , ["""torch"""] ) @classmethod def A__ (cls , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(cls , ["""torch"""] ) @classmethod def A__ (cls , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(cls , ["""torch"""] ) class __lowerCamelCase ( metaclass=__lowercase ): __UpperCamelCase = ['torch'] def __init__(self , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(self , ["""torch"""] ) @classmethod def A__ (cls , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(cls , ["""torch"""] ) @classmethod def A__ (cls , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(cls , ["""torch"""] ) class __lowerCamelCase ( metaclass=__lowercase ): __UpperCamelCase = ['torch'] def __init__(self , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(self , ["""torch"""] ) @classmethod def A__ (cls , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(cls , ["""torch"""] ) @classmethod def A__ (cls , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(cls , ["""torch"""] ) class __lowerCamelCase ( metaclass=__lowercase ): __UpperCamelCase = ['torch'] def __init__(self , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(self , ["""torch"""] ) @classmethod def A__ (cls , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(cls , ["""torch"""] ) @classmethod def A__ (cls , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(cls , ["""torch"""] ) def __UpperCAmelCase ( *snake_case_ : Dict , **snake_case_ : int ) -> Dict: """simple docstring""" requires_backends(snake_case_ , ["""torch"""] ) def __UpperCAmelCase ( *snake_case_ : Union[str, Any] , **snake_case_ : str ) -> List[str]: """simple docstring""" requires_backends(snake_case_ , ["""torch"""] ) def __UpperCAmelCase ( *snake_case_ : List[str] , **snake_case_ : int ) -> List[str]: """simple docstring""" requires_backends(snake_case_ , ["""torch"""] ) def __UpperCAmelCase ( *snake_case_ : List[Any] , **snake_case_ : List[Any] ) -> int: """simple docstring""" requires_backends(snake_case_ , ["""torch"""] ) def __UpperCAmelCase ( *snake_case_ : List[Any] , **snake_case_ : Optional[Any] ) -> Optional[int]: """simple docstring""" requires_backends(snake_case_ , ["""torch"""] ) def __UpperCAmelCase ( *snake_case_ : Optional[Any] , **snake_case_ : List[str] ) -> Optional[Any]: """simple docstring""" requires_backends(snake_case_ , ["""torch"""] ) def __UpperCAmelCase ( *snake_case_ : List[Any] , **snake_case_ : Optional[Any] ) -> Union[str, Any]: """simple docstring""" requires_backends(snake_case_ , ["""torch"""] ) class __lowerCamelCase ( metaclass=__lowercase ): __UpperCamelCase = ['torch'] def __init__(self , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(self , ["""torch"""] ) @classmethod def A__ (cls , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(cls , ["""torch"""] ) @classmethod def A__ (cls , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(cls , ["""torch"""] ) class __lowerCamelCase ( metaclass=__lowercase ): __UpperCamelCase = ['torch'] def __init__(self , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(self , ["""torch"""] ) @classmethod def A__ (cls , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(cls , ["""torch"""] ) @classmethod def A__ (cls , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(cls , ["""torch"""] ) class __lowerCamelCase ( metaclass=__lowercase ): __UpperCamelCase = ['torch'] def __init__(self , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(self , ["""torch"""] ) @classmethod def A__ (cls , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(cls , ["""torch"""] ) @classmethod def A__ (cls , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(cls , ["""torch"""] ) class __lowerCamelCase ( metaclass=__lowercase ): __UpperCamelCase = ['torch'] def __init__(self , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(self , ["""torch"""] ) @classmethod def A__ (cls , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(cls , ["""torch"""] ) @classmethod def A__ (cls , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(cls , ["""torch"""] ) class __lowerCamelCase ( metaclass=__lowercase ): __UpperCamelCase = ['torch'] def __init__(self , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(self , ["""torch"""] ) @classmethod def A__ (cls , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(cls , ["""torch"""] ) @classmethod def A__ (cls , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(cls , ["""torch"""] ) class __lowerCamelCase ( metaclass=__lowercase ): __UpperCamelCase = ['torch'] def __init__(self , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(self , ["""torch"""] ) @classmethod def A__ (cls , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(cls , ["""torch"""] ) @classmethod def A__ (cls , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(cls , ["""torch"""] ) class __lowerCamelCase ( metaclass=__lowercase ): __UpperCamelCase = ['torch'] def __init__(self , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(self , ["""torch"""] ) @classmethod def A__ (cls , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(cls , ["""torch"""] ) @classmethod def A__ (cls , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(cls , ["""torch"""] ) class __lowerCamelCase ( metaclass=__lowercase ): __UpperCamelCase = ['torch'] def __init__(self , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(self , ["""torch"""] ) @classmethod def A__ (cls , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(cls , ["""torch"""] ) @classmethod def A__ (cls , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(cls , ["""torch"""] ) class __lowerCamelCase ( metaclass=__lowercase ): __UpperCamelCase = ['torch'] def __init__(self , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(self , ["""torch"""] ) @classmethod def A__ (cls , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(cls , ["""torch"""] ) @classmethod def A__ (cls , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(cls , ["""torch"""] ) class __lowerCamelCase ( metaclass=__lowercase ): __UpperCamelCase = ['torch'] def __init__(self , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(self , ["""torch"""] ) @classmethod def A__ (cls , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(cls , ["""torch"""] ) @classmethod def A__ (cls , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(cls , ["""torch"""] ) class __lowerCamelCase ( metaclass=__lowercase ): __UpperCamelCase = ['torch'] def __init__(self , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(self , ["""torch"""] ) @classmethod def A__ (cls , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(cls , ["""torch"""] ) @classmethod def A__ (cls , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(cls , ["""torch"""] ) class __lowerCamelCase ( metaclass=__lowercase ): __UpperCamelCase = ['torch'] def __init__(self , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(self , ["""torch"""] ) @classmethod def A__ (cls , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(cls , ["""torch"""] ) @classmethod def A__ (cls , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(cls , ["""torch"""] ) class __lowerCamelCase ( metaclass=__lowercase ): __UpperCamelCase = ['torch'] def __init__(self , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(self , ["""torch"""] ) @classmethod def A__ (cls , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(cls , ["""torch"""] ) @classmethod def A__ (cls , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(cls , ["""torch"""] ) class __lowerCamelCase ( metaclass=__lowercase ): __UpperCamelCase = ['torch'] def __init__(self , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(self , ["""torch"""] ) @classmethod def A__ (cls , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(cls , ["""torch"""] ) @classmethod def A__ (cls , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(cls , ["""torch"""] ) class __lowerCamelCase ( metaclass=__lowercase ): __UpperCamelCase = ['torch'] def __init__(self , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(self , ["""torch"""] ) @classmethod def A__ (cls , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(cls , ["""torch"""] ) @classmethod def A__ (cls , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(cls , ["""torch"""] ) class __lowerCamelCase ( metaclass=__lowercase ): __UpperCamelCase = ['torch'] def __init__(self , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(self , ["""torch"""] ) @classmethod def A__ (cls , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(cls , ["""torch"""] ) @classmethod def A__ (cls , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(cls , ["""torch"""] ) class __lowerCamelCase ( metaclass=__lowercase ): __UpperCamelCase = ['torch'] def __init__(self , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(self , ["""torch"""] ) @classmethod def A__ (cls , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(cls , ["""torch"""] ) @classmethod def A__ (cls , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(cls , ["""torch"""] ) class __lowerCamelCase ( metaclass=__lowercase ): __UpperCamelCase = ['torch'] def __init__(self , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(self , ["""torch"""] ) @classmethod def A__ (cls , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(cls , ["""torch"""] ) @classmethod def A__ (cls , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(cls , ["""torch"""] ) class __lowerCamelCase ( metaclass=__lowercase ): __UpperCamelCase = ['torch'] def __init__(self , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(self , ["""torch"""] ) @classmethod def A__ (cls , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(cls , ["""torch"""] ) @classmethod def A__ (cls , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(cls , ["""torch"""] ) class __lowerCamelCase ( metaclass=__lowercase ): __UpperCamelCase = ['torch'] def __init__(self , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(self , ["""torch"""] ) @classmethod def A__ (cls , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(cls , ["""torch"""] ) @classmethod def A__ (cls , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(cls , ["""torch"""] ) class __lowerCamelCase ( metaclass=__lowercase ): __UpperCamelCase = ['torch'] def __init__(self , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(self , ["""torch"""] ) @classmethod def A__ (cls , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(cls , ["""torch"""] ) @classmethod def A__ (cls , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(cls , ["""torch"""] ) class __lowerCamelCase ( metaclass=__lowercase ): __UpperCamelCase = ['torch'] def __init__(self , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(self , ["""torch"""] ) @classmethod def A__ (cls , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(cls , ["""torch"""] ) @classmethod def A__ (cls , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(cls , ["""torch"""] ) class __lowerCamelCase ( metaclass=__lowercase ): __UpperCamelCase = ['torch'] def __init__(self , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(self , ["""torch"""] ) @classmethod def A__ (cls , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(cls , ["""torch"""] ) @classmethod def A__ (cls , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(cls , ["""torch"""] ) class __lowerCamelCase ( metaclass=__lowercase ): __UpperCamelCase = ['torch'] def __init__(self , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(self , ["""torch"""] ) @classmethod def A__ (cls , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(cls , ["""torch"""] ) @classmethod def A__ (cls , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(cls , ["""torch"""] ) class __lowerCamelCase ( metaclass=__lowercase ): __UpperCamelCase = ['torch'] def __init__(self , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(self , ["""torch"""] ) @classmethod def A__ (cls , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(cls , ["""torch"""] ) @classmethod def A__ (cls , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(cls , ["""torch"""] ) class __lowerCamelCase ( metaclass=__lowercase ): __UpperCamelCase = ['torch'] def __init__(self , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(self , ["""torch"""] ) @classmethod def A__ (cls , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(cls , ["""torch"""] ) @classmethod def A__ (cls , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(cls , ["""torch"""] ) class __lowerCamelCase ( metaclass=__lowercase ): __UpperCamelCase = ['torch'] def __init__(self , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(self , ["""torch"""] ) @classmethod def A__ (cls , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(cls , ["""torch"""] ) @classmethod def A__ (cls , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(cls , ["""torch"""] ) class __lowerCamelCase ( metaclass=__lowercase ): __UpperCamelCase = ['torch'] def __init__(self , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(self , ["""torch"""] ) @classmethod def A__ (cls , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(cls , ["""torch"""] ) @classmethod def A__ (cls , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(cls , ["""torch"""] ) class __lowerCamelCase ( metaclass=__lowercase ): __UpperCamelCase = ['torch'] def __init__(self , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(self , ["""torch"""] ) @classmethod def A__ (cls , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(cls , ["""torch"""] ) @classmethod def A__ (cls , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(cls , ["""torch"""] ) class __lowerCamelCase ( metaclass=__lowercase ): __UpperCamelCase = ['torch'] def __init__(self , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(self , ["""torch"""] ) @classmethod def A__ (cls , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(cls , ["""torch"""] ) @classmethod def A__ (cls , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(cls , ["""torch"""] ) class __lowerCamelCase ( metaclass=__lowercase ): __UpperCamelCase = ['torch'] def __init__(self , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(self , ["""torch"""] ) @classmethod def A__ (cls , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(cls , ["""torch"""] ) @classmethod def A__ (cls , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(cls , ["""torch"""] ) class __lowerCamelCase ( metaclass=__lowercase ): __UpperCamelCase = ['torch'] def __init__(self , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(self , ["""torch"""] ) @classmethod def A__ (cls , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(cls , ["""torch"""] ) @classmethod def A__ (cls , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(cls , ["""torch"""] ) class __lowerCamelCase ( metaclass=__lowercase ): __UpperCamelCase = ['torch'] def __init__(self , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(self , ["""torch"""] ) @classmethod def A__ (cls , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(cls , ["""torch"""] ) @classmethod def A__ (cls , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(cls , ["""torch"""] ) class __lowerCamelCase ( metaclass=__lowercase ): __UpperCamelCase = ['torch'] def __init__(self , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(self , ["""torch"""] ) @classmethod def A__ (cls , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(cls , ["""torch"""] ) @classmethod def A__ (cls , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(cls , ["""torch"""] ) class __lowerCamelCase ( metaclass=__lowercase ): __UpperCamelCase = ['torch'] def __init__(self , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(self , ["""torch"""] ) @classmethod def A__ (cls , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(cls , ["""torch"""] ) @classmethod def A__ (cls , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(cls , ["""torch"""] ) class __lowerCamelCase ( metaclass=__lowercase ): __UpperCamelCase = ['torch'] def __init__(self , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(self , ["""torch"""] ) @classmethod def A__ (cls , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(cls , ["""torch"""] ) @classmethod def A__ (cls , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(cls , ["""torch"""] ) class __lowerCamelCase ( metaclass=__lowercase ): __UpperCamelCase = ['torch'] def __init__(self , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(self , ["""torch"""] ) @classmethod def A__ (cls , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(cls , ["""torch"""] ) @classmethod def A__ (cls , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(cls , ["""torch"""] ) class __lowerCamelCase ( metaclass=__lowercase ): __UpperCamelCase = ['torch'] def __init__(self , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(self , ["""torch"""] ) @classmethod def A__ (cls , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(cls , ["""torch"""] ) @classmethod def A__ (cls , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(cls , ["""torch"""] ) class __lowerCamelCase ( metaclass=__lowercase ): __UpperCamelCase = ['torch'] def __init__(self , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(self , ["""torch"""] ) @classmethod def A__ (cls , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(cls , ["""torch"""] ) @classmethod def A__ (cls , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(cls , ["""torch"""] )
317
"""simple docstring""" # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np import torch from ..models.clipseg import CLIPSegForImageSegmentation from ..utils import is_vision_available, requires_backends from .base import PipelineTool if is_vision_available(): from PIL import Image class __lowerCamelCase ( __lowercase ): __UpperCamelCase = ( 'This is a tool that creates a segmentation mask of an image according to a label. It cannot create an image.' 'It takes two arguments named `image` which should be the original image, and `label` which should be a text ' 'describing the elements what should be identified in the segmentation mask. The tool returns the mask.' ) __UpperCamelCase = 'CIDAS/clipseg-rd64-refined' __UpperCamelCase = 'image_segmenter' __UpperCamelCase = CLIPSegForImageSegmentation __UpperCamelCase = ['image', 'text'] __UpperCamelCase = ['image'] def __init__(self , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(self , ["""vision"""] ) super().__init__(*lowerCamelCase , **lowerCamelCase ) def A__ (self , lowerCamelCase , lowerCamelCase ): '''simple docstring''' return self.pre_processor(text=[label] , images=[image] , padding=lowerCamelCase , return_tensors="""pt""" ) def A__ (self , lowerCamelCase ): '''simple docstring''' with torch.no_grad(): _lowerCAmelCase = self.model(**lowerCamelCase ).logits return logits def A__ (self , lowerCamelCase ): '''simple docstring''' _lowerCAmelCase = outputs.cpu().detach().numpy() _lowerCAmelCase = 0 _lowerCAmelCase = 1 return Image.fromarray((array * 255).astype(np.uinta ) )
317
1
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __lowerCAmelCase : str ={'configuration_mra': ['MRA_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MraConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : Union[str, Any] =[ 'MRA_PRETRAINED_MODEL_ARCHIVE_LIST', 'MraForMaskedLM', 'MraForMultipleChoice', 'MraForQuestionAnswering', 'MraForSequenceClassification', 'MraForTokenClassification', 'MraLayer', 'MraModel', 'MraPreTrainedModel', ] if TYPE_CHECKING: from .configuration_mra import MRA_PRETRAINED_CONFIG_ARCHIVE_MAP, MraConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mra import ( MRA_PRETRAINED_MODEL_ARCHIVE_LIST, MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, MraLayer, MraModel, MraPreTrainedModel, ) else: import sys __lowerCAmelCase : Any =_LazyModule(__name__, globals()['__file__'], _import_structure)
9
'''simple docstring''' import inspect import unittest import numpy as np from tests.test_modeling_common import floats_tensor from transformers import DetrConfig, MaskFormerConfig, SwinConfig, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MaskFormerForInstanceSegmentation, MaskFormerModel if is_vision_available(): from transformers import MaskFormerImageProcessor if is_vision_available(): from PIL import Image class A_ : '''simple docstring''' def __init__( self : Any , lowercase_ : Union[str, Any] , lowercase_ : Optional[Any]=2 , lowercase_ : str=True , lowercase_ : Optional[int]=False , lowercase_ : List[str]=10 , lowercase_ : Optional[Any]=3 , lowercase_ : List[str]=32 * 4 , lowercase_ : str=32 * 6 , lowercase_ : List[Any]=4 , lowercase_ : List[Any]=32 , ) -> Optional[int]: UpperCAmelCase : List[str] = parent UpperCAmelCase : int = batch_size UpperCAmelCase : int = is_training UpperCAmelCase : int = use_auxiliary_loss UpperCAmelCase : List[Any] = num_queries UpperCAmelCase : List[str] = num_channels UpperCAmelCase : List[str] = min_size UpperCAmelCase : Dict = max_size UpperCAmelCase : Tuple = num_labels UpperCAmelCase : str = mask_feature_size def UpperCAmelCase_ ( self : int ) -> int: UpperCAmelCase : Optional[int] = floats_tensor([self.batch_size, self.num_channels, self.min_size, self.max_size] ).to( lowercase_ ) UpperCAmelCase : Tuple = torch.ones([self.batch_size, self.min_size, self.max_size] , device=lowercase_ ) UpperCAmelCase : str = ( torch.rand([self.batch_size, self.num_labels, self.min_size, self.max_size] , device=lowercase_ ) > 0.5 ).float() UpperCAmelCase : Optional[Any] = (torch.rand((self.batch_size, self.num_labels) , device=lowercase_ ) > 0.5).long() UpperCAmelCase : Optional[int] = self.get_config() return config, pixel_values, pixel_mask, mask_labels, class_labels def UpperCAmelCase_ ( self : Tuple ) -> Union[str, Any]: return MaskFormerConfig.from_backbone_and_decoder_configs( backbone_config=SwinConfig( depths=[1, 1, 1, 1] , ) , decoder_config=DetrConfig( decoder_ffn_dim=128 , num_queries=self.num_queries , decoder_attention_heads=2 , d_model=self.mask_feature_size , ) , mask_feature_size=self.mask_feature_size , fpn_feature_size=self.mask_feature_size , num_channels=self.num_channels , num_labels=self.num_labels , ) def UpperCAmelCase_ ( self : Dict ) -> Dict: UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Dict = self.prepare_config_and_inputs() UpperCAmelCase : Optional[Any] = {'pixel_values': pixel_values, 'pixel_mask': pixel_mask} return config, inputs_dict def UpperCAmelCase_ ( self : Optional[Any] , lowercase_ : Optional[Any] , lowercase_ : Tuple ) -> int: UpperCAmelCase : int = output.encoder_hidden_states UpperCAmelCase : Any = output.pixel_decoder_hidden_states UpperCAmelCase : int = output.transformer_decoder_hidden_states self.parent.assertTrue(len(lowercase_ ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(lowercase_ ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(lowercase_ ) , config.decoder_config.decoder_layers ) def UpperCAmelCase_ ( self : List[str] , lowercase_ : Tuple , lowercase_ : List[str] , lowercase_ : Any , lowercase_ : Dict=False ) -> Tuple: with torch.no_grad(): UpperCAmelCase : str = MaskFormerModel(config=lowercase_ ) model.to(lowercase_ ) model.eval() UpperCAmelCase : List[str] = model(pixel_values=lowercase_ , pixel_mask=lowercase_ ) UpperCAmelCase : Union[str, Any] = model(lowercase_ , output_hidden_states=lowercase_ ) # the correct shape of output.transformer_decoder_hidden_states ensure the correcteness of the # encoder and pixel decoder self.parent.assertEqual( output.transformer_decoder_last_hidden_state.shape , (self.batch_size, self.num_queries, self.mask_feature_size) , ) # let's ensure the other two hidden state exists self.parent.assertTrue(output.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(output.encoder_last_hidden_state is not None ) if output_hidden_states: self.check_output_hidden_state(lowercase_ , lowercase_ ) def UpperCAmelCase_ ( self : Dict , lowercase_ : Optional[int] , lowercase_ : int , lowercase_ : Dict , lowercase_ : Dict , lowercase_ : str ) -> Union[str, Any]: UpperCAmelCase : Union[str, Any] = MaskFormerForInstanceSegmentation(config=lowercase_ ) model.to(lowercase_ ) model.eval() def comm_check_on_output(lowercase_ : Union[str, Any] ): # let's still check that all the required stuff is there self.parent.assertTrue(result.transformer_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.encoder_last_hidden_state is not None ) # okay, now we need to check the logits shape # due to the encoder compression, masks have a //4 spatial size self.parent.assertEqual( result.masks_queries_logits.shape , (self.batch_size, self.num_queries, self.min_size // 4, self.max_size // 4) , ) # + 1 for null class self.parent.assertEqual( result.class_queries_logits.shape , (self.batch_size, self.num_queries, self.num_labels + 1) ) with torch.no_grad(): UpperCAmelCase : Optional[Any] = model(pixel_values=lowercase_ , pixel_mask=lowercase_ ) UpperCAmelCase : Dict = model(lowercase_ ) comm_check_on_output(lowercase_ ) UpperCAmelCase : Any = model( pixel_values=lowercase_ , pixel_mask=lowercase_ , mask_labels=lowercase_ , class_labels=lowercase_ ) comm_check_on_output(lowercase_ ) self.parent.assertTrue(result.loss is not None ) self.parent.assertEqual(result.loss.shape , torch.Size([1] ) ) @require_torch class A_ ( _snake_case , _snake_case , unittest.TestCase ): '''simple docstring''' UpperCAmelCase_ : str = (MaskFormerModel, MaskFormerForInstanceSegmentation) if is_torch_available() else () UpperCAmelCase_ : Optional[Any] = ( {"""feature-extraction""": MaskFormerModel, """image-segmentation""": MaskFormerForInstanceSegmentation} if is_torch_available() else {} ) UpperCAmelCase_ : int = False UpperCAmelCase_ : List[Any] = False UpperCAmelCase_ : List[str] = False UpperCAmelCase_ : Tuple = False def UpperCAmelCase_ ( self : Any ) -> int: UpperCAmelCase : Optional[Any] = MaskFormerModelTester(self ) UpperCAmelCase : Optional[int] = ConfigTester(self , config_class=lowercase_ , has_text_modality=lowercase_ ) def UpperCAmelCase_ ( self : str ) -> Union[str, Any]: self.config_tester.run_common_tests() def UpperCAmelCase_ ( self : Union[str, Any] ) -> Union[str, Any]: UpperCAmelCase , UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskformer_model(lowercase_ , **lowercase_ , output_hidden_states=lowercase_ ) def UpperCAmelCase_ ( self : Any ) -> Any: UpperCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_maskformer_instance_segmentation_head_model(*lowercase_ ) @unittest.skip(reason='MaskFormer does not use inputs_embeds' ) def UpperCAmelCase_ ( self : Optional[int] ) -> str: pass @unittest.skip(reason='MaskFormer does not have a get_input_embeddings method' ) def UpperCAmelCase_ ( self : str ) -> List[str]: pass @unittest.skip(reason='MaskFormer is not a generative model' ) def UpperCAmelCase_ ( self : Tuple ) -> Union[str, Any]: pass @unittest.skip(reason='MaskFormer does not use token embeddings' ) def UpperCAmelCase_ ( self : Any ) -> Union[str, Any]: pass @require_torch_multi_gpu @unittest.skip( reason='MaskFormer has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`' ) def UpperCAmelCase_ ( self : int ) -> List[Any]: pass @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def UpperCAmelCase_ ( self : List[Any] ) -> Union[str, Any]: pass def UpperCAmelCase_ ( self : Dict ) -> List[Any]: UpperCAmelCase , UpperCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase : Tuple = model_class(lowercase_ ) UpperCAmelCase : Dict = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase : Optional[Any] = [*signature.parameters.keys()] UpperCAmelCase : str = ['pixel_values'] self.assertListEqual(arg_names[:1] , lowercase_ ) @slow def UpperCAmelCase_ ( self : Any ) -> Optional[int]: for model_name in ["facebook/maskformer-swin-small-coco"]: UpperCAmelCase : Tuple = MaskFormerModel.from_pretrained(lowercase_ ) self.assertIsNotNone(lowercase_ ) def UpperCAmelCase_ ( self : Optional[Any] ) -> Dict: UpperCAmelCase : Optional[Any] = (self.model_tester.min_size,) * 2 UpperCAmelCase : str = { 'pixel_values': torch.randn((2, 3, *size) , device=lowercase_ ), 'mask_labels': torch.randn((2, 10, *size) , device=lowercase_ ), 'class_labels': torch.zeros(2 , 10 , device=lowercase_ ).long(), } UpperCAmelCase : List[str] = MaskFormerForInstanceSegmentation(MaskFormerConfig() ).to(lowercase_ ) UpperCAmelCase : Optional[int] = model(**lowercase_ ) self.assertTrue(outputs.loss is not None ) def UpperCAmelCase_ ( self : Dict ) -> str: UpperCAmelCase , UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskformer_model(lowercase_ , **lowercase_ , output_hidden_states=lowercase_ ) def UpperCAmelCase_ ( self : Optional[Any] ) -> Dict: UpperCAmelCase , UpperCAmelCase : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase : List[Any] = model_class(lowercase_ ).to(lowercase_ ) UpperCAmelCase : List[Any] = model(**lowercase_ , output_attentions=lowercase_ ) self.assertTrue(outputs.attentions is not None ) def UpperCAmelCase_ ( self : Dict ) -> str: if not self.model_tester.is_training: return # only MaskFormerForInstanceSegmentation has the loss UpperCAmelCase : Dict = self.all_model_classes[1] UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() UpperCAmelCase : Any = model_class(lowercase_ ) model.to(lowercase_ ) model.train() UpperCAmelCase : Tuple = model(lowercase_ , mask_labels=lowercase_ , class_labels=lowercase_ ).loss loss.backward() def UpperCAmelCase_ ( self : List[str] ) -> str: # only MaskFormerForInstanceSegmentation has the loss UpperCAmelCase : Optional[int] = self.all_model_classes[1] UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() UpperCAmelCase : List[str] = True UpperCAmelCase : Optional[Any] = True UpperCAmelCase : List[Any] = model_class(lowercase_ ) model.to(lowercase_ ) model.train() UpperCAmelCase : List[str] = model(lowercase_ , mask_labels=lowercase_ , class_labels=lowercase_ ) UpperCAmelCase : Tuple = outputs.encoder_hidden_states[0] encoder_hidden_states.retain_grad() UpperCAmelCase : Optional[int] = outputs.pixel_decoder_hidden_states[0] pixel_decoder_hidden_states.retain_grad() # we requires_grad=True in inputs_embeds (line 2152), the original implementation don't UpperCAmelCase : Any = outputs.transformer_decoder_hidden_states[0] transformer_decoder_hidden_states.retain_grad() UpperCAmelCase : Tuple = outputs.attentions[0] attentions.retain_grad() outputs.loss.backward(retain_graph=lowercase_ ) self.assertIsNotNone(encoder_hidden_states.grad ) self.assertIsNotNone(pixel_decoder_hidden_states.grad ) self.assertIsNotNone(transformer_decoder_hidden_states.grad ) self.assertIsNotNone(attentions.grad ) lowercase__ = 1e-4 def UpperCamelCase( ): UpperCAmelCase : str = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_vision @slow class A_ ( unittest.TestCase ): '''simple docstring''' @cached_property def UpperCAmelCase_ ( self : List[Any] ) -> Union[str, Any]: return ( MaskFormerImageProcessor.from_pretrained('facebook/maskformer-swin-small-coco' ) if is_vision_available() else None ) def UpperCAmelCase_ ( self : List[Any] ) -> Tuple: UpperCAmelCase : List[Any] = MaskFormerModel.from_pretrained('facebook/maskformer-swin-small-coco' ).to(lowercase_ ) UpperCAmelCase : Dict = self.default_image_processor UpperCAmelCase : List[str] = prepare_img() UpperCAmelCase : Union[str, Any] = image_processor(lowercase_ , return_tensors='pt' ).to(lowercase_ ) UpperCAmelCase : Optional[Any] = inputs['pixel_values'].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(lowercase_ , (1, 3, 800, 1_088) ) with torch.no_grad(): UpperCAmelCase : List[Any] = model(**lowercase_ ) UpperCAmelCase : str = torch.tensor( [[-0.0482, 0.9228, 0.4951], [-0.2547, 0.8017, 0.8527], [-0.0069, 0.3385, -0.0089]] ).to(lowercase_ ) self.assertTrue( torch.allclose( outputs.encoder_last_hidden_state[0, 0, :3, :3] , lowercase_ , atol=lowercase_ ) ) UpperCAmelCase : Tuple = torch.tensor( [[-0.8422, -0.8434, -0.9718], [-1.0144, -0.5565, -0.4195], [-1.0038, -0.4484, -0.1961]] ).to(lowercase_ ) self.assertTrue( torch.allclose( outputs.pixel_decoder_last_hidden_state[0, 0, :3, :3] , lowercase_ , atol=lowercase_ ) ) UpperCAmelCase : Tuple = torch.tensor( [[0.2852, -0.0159, 0.9735], [0.6254, 0.1858, 0.8529], [-0.0680, -0.4116, 1.8413]] ).to(lowercase_ ) self.assertTrue( torch.allclose( outputs.transformer_decoder_last_hidden_state[0, :3, :3] , lowercase_ , atol=lowercase_ ) ) def UpperCAmelCase_ ( self : List[str] ) -> int: UpperCAmelCase : Optional[int] = ( MaskFormerForInstanceSegmentation.from_pretrained('facebook/maskformer-swin-small-coco' ) .to(lowercase_ ) .eval() ) UpperCAmelCase : int = self.default_image_processor UpperCAmelCase : Any = prepare_img() UpperCAmelCase : List[Any] = image_processor(lowercase_ , return_tensors='pt' ).to(lowercase_ ) UpperCAmelCase : Union[str, Any] = inputs['pixel_values'].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(lowercase_ , (1, 3, 800, 1_088) ) with torch.no_grad(): UpperCAmelCase : Tuple = model(**lowercase_ ) # masks_queries_logits UpperCAmelCase : Tuple = outputs.masks_queries_logits self.assertEqual( masks_queries_logits.shape , (1, model.config.decoder_config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) , ) UpperCAmelCase : Optional[int] = [ [-1.373_7124, -1.772_4937, -1.936_4233], [-1.597_7281, -1.986_7939, -2.152_3695], [-1.579_5398, -1.926_9832, -2.09_3942], ] UpperCAmelCase : str = torch.tensor(lowercase_ ).to(lowercase_ ) self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] , lowercase_ , atol=lowercase_ ) ) # class_queries_logits UpperCAmelCase : Tuple = outputs.class_queries_logits self.assertEqual( class_queries_logits.shape , (1, model.config.decoder_config.num_queries, model.config.num_labels + 1) ) UpperCAmelCase : Optional[Any] = torch.tensor( [ [1.6512E00, -5.2572E00, -3.3519E00], [3.6169E-02, -5.9025E00, -2.9313E00], [1.0766E-04, -7.7630E00, -5.1263E00], ] ).to(lowercase_ ) self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] , lowercase_ , atol=lowercase_ ) ) def UpperCAmelCase_ ( self : int ) -> Union[str, Any]: UpperCAmelCase : str = ( MaskFormerForInstanceSegmentation.from_pretrained('facebook/maskformer-resnet101-coco-stuff' ) .to(lowercase_ ) .eval() ) UpperCAmelCase : str = self.default_image_processor UpperCAmelCase : str = prepare_img() UpperCAmelCase : Union[str, Any] = image_processor(lowercase_ , return_tensors='pt' ).to(lowercase_ ) UpperCAmelCase : str = inputs['pixel_values'].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(lowercase_ , (1, 3, 800, 1_088) ) with torch.no_grad(): UpperCAmelCase : Tuple = model(**lowercase_ ) # masks_queries_logits UpperCAmelCase : int = outputs.masks_queries_logits self.assertEqual( masks_queries_logits.shape , (1, model.config.decoder_config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) , ) UpperCAmelCase : int = [[-0.9046, -2.6366, -4.6062], [-3.4179, -5.7890, -8.8057], [-4.9179, -7.6560, -10.7711]] UpperCAmelCase : str = torch.tensor(lowercase_ ).to(lowercase_ ) self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] , lowercase_ , atol=lowercase_ ) ) # class_queries_logits UpperCAmelCase : Union[str, Any] = outputs.class_queries_logits self.assertEqual( class_queries_logits.shape , (1, model.config.decoder_config.num_queries, model.config.num_labels + 1) ) UpperCAmelCase : Dict = torch.tensor( [[4.7188, -3.2585, -2.8857], [6.6871, -2.9181, -1.2487], [7.2449, -2.2764, -2.1874]] ).to(lowercase_ ) self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] , lowercase_ , atol=lowercase_ ) ) def UpperCAmelCase_ ( self : Any ) -> Dict: UpperCAmelCase : Any = ( MaskFormerForInstanceSegmentation.from_pretrained('facebook/maskformer-swin-small-coco' ) .to(lowercase_ ) .eval() ) UpperCAmelCase : Union[str, Any] = self.default_image_processor UpperCAmelCase : Optional[int] = image_processor( [np.zeros((3, 800, 1_333) ), np.zeros((3, 800, 1_333) )] , segmentation_maps=[np.zeros((384, 384) ).astype(np.floataa ), np.zeros((384, 384) ).astype(np.floataa )] , return_tensors='pt' , ) UpperCAmelCase : Optional[int] = inputs['pixel_values'].to(lowercase_ ) UpperCAmelCase : Optional[Any] = [el.to(lowercase_ ) for el in inputs['mask_labels']] UpperCAmelCase : List[str] = [el.to(lowercase_ ) for el in inputs['class_labels']] with torch.no_grad(): UpperCAmelCase : Tuple = model(**lowercase_ ) self.assertTrue(outputs.loss is not None )
151
0
"""simple docstring""" # using dfs for finding eulerian path traversal def _UpperCAmelCase ( __lowerCamelCase : str , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : List[str] , __lowerCamelCase : Union[str, Any]=None ) -> List[Any]: _snake_case = (path or []) + [u] for v in graph[u]: if visited_edge[u][v] is False: _snake_case , _snake_case = True, True _snake_case = dfs(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) return path def _UpperCAmelCase ( __lowerCamelCase : int , __lowerCamelCase : Dict ) -> List[str]: _snake_case = 0 _snake_case = -1 for i in range(__lowerCamelCase ): if i not in graph.keys(): continue if len(graph[i] ) % 2 == 1: odd_degree_nodes += 1 _snake_case = i if odd_degree_nodes == 0: return 1, odd_node if odd_degree_nodes == 2: return 2, odd_node return 3, odd_node def _UpperCAmelCase ( __lowerCamelCase : str , __lowerCamelCase : Union[str, Any] ) -> int: _snake_case = [[False for _ in range(max_node + 1 )] for _ in range(max_node + 1 )] _snake_case , _snake_case = check_circuit_or_path(__lowerCamelCase , __lowerCamelCase ) if check == 3: print('''graph is not Eulerian''' ) print('''no path''' ) return _snake_case = 1 if check == 2: _snake_case = odd_node print('''graph has a Euler path''' ) if check == 1: print('''graph has a Euler cycle''' ) _snake_case = dfs(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) print(__lowerCamelCase ) def _UpperCAmelCase ( ) -> Dict: _snake_case = {1: [2, 3, 4], 2: [1, 3], 3: [1, 2], 4: [1, 5], 5: [4]} _snake_case = {1: [2, 3, 4, 5], 2: [1, 3], 3: [1, 2], 4: [1, 5], 5: [1, 4]} _snake_case = {1: [2, 3, 4], 2: [1, 3, 4], 3: [1, 2], 4: [1, 2, 5], 5: [4]} _snake_case = {1: [2, 3], 2: [1, 3], 3: [1, 2]} _snake_case = { 1: [], 2: [] # all degree is zero } _snake_case = 10 check_euler(__lowerCamelCase , __lowerCamelCase ) check_euler(__lowerCamelCase , __lowerCamelCase ) check_euler(__lowerCamelCase , __lowerCamelCase ) check_euler(__lowerCamelCase , __lowerCamelCase ) check_euler(__lowerCamelCase , __lowerCamelCase ) if __name__ == "__main__": main()
40
"""simple docstring""" import argparse import torch from transformers import BertForMaskedLM if __name__ == "__main__": UpperCAmelCase__ = argparse.ArgumentParser( description=( 'Extraction some layers of the full BertForMaskedLM or RObertaForMaskedLM for Transfer Learned' ' Distillation' ) ) parser.add_argument('--model_type', default='bert', choices=['bert']) parser.add_argument('--model_name', default='bert-base-uncased', type=str) parser.add_argument('--dump_checkpoint', default='serialization_dir/tf_bert-base-uncased_0247911.pth', type=str) parser.add_argument('--vocab_transform', action='store_true') UpperCAmelCase__ = parser.parse_args() if args.model_type == "bert": UpperCAmelCase__ = BertForMaskedLM.from_pretrained(args.model_name) UpperCAmelCase__ = 'bert' else: raise ValueError('args.model_type should be "bert".') UpperCAmelCase__ = model.state_dict() UpperCAmelCase__ = {} for w in ["word_embeddings", "position_embeddings"]: UpperCAmelCase__ = state_dict[F"{prefix}.embeddings.{w}.weight"] for w in ["weight", "bias"]: UpperCAmelCase__ = state_dict[F"{prefix}.embeddings.LayerNorm.{w}"] UpperCAmelCase__ = 0 for teacher_idx in [0, 2, 4, 7, 9, 11]: for w in ["weight", "bias"]: UpperCAmelCase__ = state_dict[ F"{prefix}.encoder.layer.{teacher_idx}.attention.self.query.{w}" ] UpperCAmelCase__ = state_dict[ F"{prefix}.encoder.layer.{teacher_idx}.attention.self.key.{w}" ] UpperCAmelCase__ = state_dict[ F"{prefix}.encoder.layer.{teacher_idx}.attention.self.value.{w}" ] UpperCAmelCase__ = state_dict[ F"{prefix}.encoder.layer.{teacher_idx}.attention.output.dense.{w}" ] UpperCAmelCase__ = state_dict[ F"{prefix}.encoder.layer.{teacher_idx}.attention.output.LayerNorm.{w}" ] UpperCAmelCase__ = state_dict[ F"{prefix}.encoder.layer.{teacher_idx}.intermediate.dense.{w}" ] UpperCAmelCase__ = state_dict[ F"{prefix}.encoder.layer.{teacher_idx}.output.dense.{w}" ] UpperCAmelCase__ = state_dict[ F"{prefix}.encoder.layer.{teacher_idx}.output.LayerNorm.{w}" ] std_idx += 1 UpperCAmelCase__ = state_dict['cls.predictions.decoder.weight'] UpperCAmelCase__ = state_dict['cls.predictions.bias'] if args.vocab_transform: for w in ["weight", "bias"]: UpperCAmelCase__ = state_dict[F"cls.predictions.transform.dense.{w}"] UpperCAmelCase__ = state_dict[F"cls.predictions.transform.LayerNorm.{w}"] print(F"N layers selected for distillation: {std_idx}") print(F"Number of params transferred for distillation: {len(compressed_sd.keys())}") print(F"Save transferred checkpoint to {args.dump_checkpoint}.") torch.save(compressed_sd, args.dump_checkpoint)
40
1
A : int = "\n# Transformers installation\n! pip install transformers datasets\n# To install from source instead of the last release, comment the command above and uncomment the following one.\n# ! pip install git+https://github.com/huggingface/transformers.git\n" A : List[str] = [{"type": "code", "content": INSTALL_CONTENT}] A : Tuple = { "{processor_class}": "FakeProcessorClass", "{model_class}": "FakeModelClass", "{object_class}": "FakeObjectClass", }
184
import unittest from transformers import ( MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TextClassificationPipeline, pipeline, ) from transformers.testing_utils import is_pipeline_test, nested_simplify, require_tf, require_torch, slow from .test_pipelines_common import ANY # These 2 model types require different inputs than those of the usual text models. A : Union[str, Any] = {"LayoutLMv2Config", "LayoutLMv3Config"} @is_pipeline_test class _lowercase ( unittest.TestCase): """simple docstring""" A__ = MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING A__ = TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING if model_mapping is not None: A__ = {config: model for config, model in model_mapping.items() if config.__name__ not in _TO_SKIP} if tf_model_mapping is not None: A__ = { config: model for config, model in tf_model_mapping.items() if config.__name__ not in _TO_SKIP } @require_torch def lowerCAmelCase ( self : List[str] ): '''simple docstring''' lowerCamelCase__ : Tuple = pipeline( task="text-classification" , model="hf-internal-testing/tiny-random-distilbert" , framework="pt" ) lowerCamelCase__ : Dict = text_classifier("This is great !" ) self.assertEqual(nested_simplify(__lowerCamelCase ) , [{"label": "LABEL_0", "score": 0.5_0_4}] ) lowerCamelCase__ : List[str] = text_classifier("This is great !" , top_k=2 ) self.assertEqual( nested_simplify(__lowerCamelCase ) , [{"label": "LABEL_0", "score": 0.5_0_4}, {"label": "LABEL_1", "score": 0.4_9_6}] ) lowerCamelCase__ : Optional[int] = text_classifier(["This is great !", "This is bad"] , top_k=2 ) self.assertEqual( nested_simplify(__lowerCamelCase ) , [ [{"label": "LABEL_0", "score": 0.5_0_4}, {"label": "LABEL_1", "score": 0.4_9_6}], [{"label": "LABEL_0", "score": 0.5_0_4}, {"label": "LABEL_1", "score": 0.4_9_6}], ] , ) lowerCamelCase__ : Any = text_classifier("This is great !" , top_k=1 ) self.assertEqual(nested_simplify(__lowerCamelCase ) , [{"label": "LABEL_0", "score": 0.5_0_4}] ) # Legacy behavior lowerCamelCase__ : Dict = text_classifier("This is great !" , return_all_scores=__lowerCamelCase ) self.assertEqual(nested_simplify(__lowerCamelCase ) , [{"label": "LABEL_0", "score": 0.5_0_4}] ) lowerCamelCase__ : str = text_classifier("This is great !" , return_all_scores=__lowerCamelCase ) self.assertEqual( nested_simplify(__lowerCamelCase ) , [[{"label": "LABEL_0", "score": 0.5_0_4}, {"label": "LABEL_1", "score": 0.4_9_6}]] ) lowerCamelCase__ : Optional[Any] = text_classifier(["This is great !", "Something else"] , return_all_scores=__lowerCamelCase ) self.assertEqual( nested_simplify(__lowerCamelCase ) , [ [{"label": "LABEL_0", "score": 0.5_0_4}, {"label": "LABEL_1", "score": 0.4_9_6}], [{"label": "LABEL_0", "score": 0.5_0_4}, {"label": "LABEL_1", "score": 0.4_9_6}], ] , ) lowerCamelCase__ : Any = text_classifier(["This is great !", "Something else"] , return_all_scores=__lowerCamelCase ) self.assertEqual( nested_simplify(__lowerCamelCase ) , [ {"label": "LABEL_0", "score": 0.5_0_4}, {"label": "LABEL_0", "score": 0.5_0_4}, ] , ) @require_torch def lowerCAmelCase ( self : str ): '''simple docstring''' import torch lowerCamelCase__ : int = pipeline( task="text-classification" , model="hf-internal-testing/tiny-random-distilbert" , framework="pt" , device=torch.device("cpu" ) , ) lowerCamelCase__ : Any = text_classifier("This is great !" ) self.assertEqual(nested_simplify(__lowerCamelCase ) , [{"label": "LABEL_0", "score": 0.5_0_4}] ) @require_tf def lowerCAmelCase ( self : int ): '''simple docstring''' lowerCamelCase__ : List[str] = pipeline( task="text-classification" , model="hf-internal-testing/tiny-random-distilbert" , framework="tf" ) lowerCamelCase__ : List[str] = text_classifier("This is great !" ) self.assertEqual(nested_simplify(__lowerCamelCase ) , [{"label": "LABEL_0", "score": 0.5_0_4}] ) @slow @require_torch def lowerCAmelCase ( self : List[Any] ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = pipeline("text-classification" ) lowerCamelCase__ : List[str] = text_classifier("This is great !" ) self.assertEqual(nested_simplify(__lowerCamelCase ) , [{"label": "POSITIVE", "score": 1.0}] ) lowerCamelCase__ : Optional[int] = text_classifier("This is bad !" ) self.assertEqual(nested_simplify(__lowerCamelCase ) , [{"label": "NEGATIVE", "score": 1.0}] ) lowerCamelCase__ : Tuple = text_classifier("Birds are a type of animal" ) self.assertEqual(nested_simplify(__lowerCamelCase ) , [{"label": "POSITIVE", "score": 0.9_8_8}] ) @slow @require_tf def lowerCAmelCase ( self : List[Any] ): '''simple docstring''' lowerCamelCase__ : str = pipeline("text-classification" , framework="tf" ) lowerCamelCase__ : Optional[int] = text_classifier("This is great !" ) self.assertEqual(nested_simplify(__lowerCamelCase ) , [{"label": "POSITIVE", "score": 1.0}] ) lowerCamelCase__ : Optional[Any] = text_classifier("This is bad !" ) self.assertEqual(nested_simplify(__lowerCamelCase ) , [{"label": "NEGATIVE", "score": 1.0}] ) lowerCamelCase__ : Dict = text_classifier("Birds are a type of animal" ) self.assertEqual(nested_simplify(__lowerCamelCase ) , [{"label": "POSITIVE", "score": 0.9_8_8}] ) def lowerCAmelCase ( self : Tuple , __lowerCamelCase : Any , __lowerCamelCase : str , __lowerCamelCase : Optional[Any] ): '''simple docstring''' lowerCamelCase__ : Tuple = TextClassificationPipeline(model=__lowerCamelCase , tokenizer=__lowerCamelCase ) return text_classifier, ["HuggingFace is in", "This is another test"] def lowerCAmelCase ( self : Optional[Any] , __lowerCamelCase : Tuple , __lowerCamelCase : Any ): '''simple docstring''' lowerCamelCase__ : int = text_classifier.model # Small inputs because BartTokenizer tiny has maximum position embeddings = 22 lowerCamelCase__ : List[Any] = "HuggingFace is in" lowerCamelCase__ : Tuple = text_classifier(__lowerCamelCase ) self.assertEqual(nested_simplify(__lowerCamelCase ) , [{"label": ANY(__lowerCamelCase ), "score": ANY(__lowerCamelCase )}] ) self.assertTrue(outputs[0]["label"] in model.config.idalabel.values() ) lowerCamelCase__ : Optional[int] = ["HuggingFace is in ", "Paris is in France"] lowerCamelCase__ : Dict = text_classifier(__lowerCamelCase ) self.assertEqual( nested_simplify(__lowerCamelCase ) , [{"label": ANY(__lowerCamelCase ), "score": ANY(__lowerCamelCase )}, {"label": ANY(__lowerCamelCase ), "score": ANY(__lowerCamelCase )}] , ) self.assertTrue(outputs[0]["label"] in model.config.idalabel.values() ) self.assertTrue(outputs[1]["label"] in model.config.idalabel.values() ) # Forcing to get all results with `top_k=None` # This is NOT the legacy format lowerCamelCase__ : List[Any] = text_classifier(__lowerCamelCase , top_k=__lowerCamelCase ) lowerCamelCase__ : Union[str, Any] = len(model.config.idalabel.values() ) self.assertEqual( nested_simplify(__lowerCamelCase ) , [[{"label": ANY(__lowerCamelCase ), "score": ANY(__lowerCamelCase )}] * N, [{"label": ANY(__lowerCamelCase ), "score": ANY(__lowerCamelCase )}] * N] , ) lowerCamelCase__ : Optional[int] = {"text": "HuggingFace is in ", "text_pair": "Paris is in France"} lowerCamelCase__ : List[Any] = text_classifier(__lowerCamelCase ) self.assertEqual( nested_simplify(__lowerCamelCase ) , {"label": ANY(__lowerCamelCase ), "score": ANY(__lowerCamelCase )} , ) self.assertTrue(outputs["label"] in model.config.idalabel.values() ) # This might be used a text pair, but tokenizer + pipe interaction # makes it hard to understand that it's not using the pair properly # https://github.com/huggingface/transformers/issues/17305 # We disabled this usage instead as it was outputting wrong outputs. lowerCamelCase__ : Any = [["HuggingFace is in ", "Paris is in France"]] with self.assertRaises(__lowerCamelCase ): text_classifier(__lowerCamelCase ) # This used to be valid for doing text pairs # We're keeping it working because of backward compatibility lowerCamelCase__ : int = text_classifier([[["HuggingFace is in ", "Paris is in France"]]] ) self.assertEqual( nested_simplify(__lowerCamelCase ) , [{"label": ANY(__lowerCamelCase ), "score": ANY(__lowerCamelCase )}] , ) self.assertTrue(outputs[0]["label"] in model.config.idalabel.values() )
184
1
def A_ ( A__ ) -> list[list]: a__ : List[Any] = current_set.copy() for row_index, row in enumerate(A__ ): a__ : int = row[0] for column_index, column in enumerate(A__ ): if magnitude == 0: a__ : Tuple = column continue a__ : int = column / magnitude # Subtract to cancel term a__ : Optional[Any] = current_set[0] a__ : Union[str, Any] = [first_row] a__ : List[str] = current_set[1::] for row in current_set: a__ : Dict = [] # If first term is 0, it is already in form we want, so we preserve it if row[0] == 0: final_set.append(A__ ) continue for column_index in range(len(A__ ) ): temp_row.append(first_row[column_index] - row[column_index] ) final_set.append(A__ ) # Create next recursion iteration set if len(final_set[0] ) != 3: a__ : str = final_set[0] a__ : List[str] = [] a__ : Optional[int] = [] for row in final_set[1::]: current_first_column.append(row[0] ) next_iteration.append(row[1::] ) a__ : Optional[int] = simplify(A__ ) for i in range(len(A__ ) ): resultant[i].insert(0 , current_first_column[i] ) resultant.insert(0 , A__ ) a__ : Optional[int] = resultant return final_set def A_ ( A__ ) -> list: if len(A__ ) == 0: raise IndexError('solve_simultaneous() requires n lists of length n+1' ) a__ : str = len(A__ ) + 1 if any(len(A__ ) != _length for item in equations ): raise IndexError('solve_simultaneous() requires n lists of length n+1' ) for row in equations: if any(not isinstance(A__ , (int, float) ) for column in row ): raise ValueError('solve_simultaneous() requires lists of integers' ) if len(A__ ) == 1: return [equations[0][-1] / equations[0][0]] a__ : Tuple = equations.copy() if any(0 in row for row in data_set ): a__ : Dict = data_set.copy() a__ : Dict = [] for row_index, row in enumerate(A__ ): if 0 not in row: a__ : str = data_set.pop(A__ ) break if not full_row: raise ValueError('solve_simultaneous() requires at least 1 full equation' ) data_set.insert(0 , A__ ) a__ : List[str] = data_set.copy() a__ : Any = simplify(A__ ) a__ : Optional[Any] = simplified[::-1] a__ : list = [] for row in simplified: a__ : int = row[-1] if not solutions: if row[-2] == 0: solutions.append(0 ) continue solutions.append(current_solution / row[-2] ) continue a__ : Tuple = row.copy()[: len(A__ ) - 1 :] while temp_row[0] == 0: temp_row.pop(0 ) if len(A__ ) == 0: solutions.append(0 ) continue a__ : str = temp_row[1::] a__ : Any = temp_row[::-1] for column_index, column in enumerate(A__ ): current_solution -= column * solutions[column_index] solutions.append(A__ ) a__ : Optional[Any] = [] for item in solutions: final.append(float(round(A__ , 5 ) ) ) return final[::-1] if __name__ == "__main__": import doctest doctest.testmod() lowercase : List[Any] = [ [2, 1, 1, 1, 1, 4], [1, 2, 1, 1, 1, 5], [1, 1, 2, 1, 1, 6], [1, 1, 1, 2, 1, 7], [1, 1, 1, 1, 2, 8], ] print(solve_simultaneous(eq)) print(solve_simultaneous([[4, 2]]))
225
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, is_vision_available, ) lowercase : List[str] = { """configuration_clip""": [ """CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP""", """CLIPConfig""", """CLIPOnnxConfig""", """CLIPTextConfig""", """CLIPVisionConfig""", ], """processing_clip""": ["""CLIPProcessor"""], """tokenization_clip""": ["""CLIPTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase : Tuple = ["""CLIPTokenizerFast"""] try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase : Optional[int] = ["""CLIPFeatureExtractor"""] lowercase : Union[str, Any] = ["""CLIPImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase : Dict = [ """CLIP_PRETRAINED_MODEL_ARCHIVE_LIST""", """CLIPModel""", """CLIPPreTrainedModel""", """CLIPTextModel""", """CLIPTextModelWithProjection""", """CLIPVisionModel""", """CLIPVisionModelWithProjection""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase : List[str] = [ """TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFCLIPModel""", """TFCLIPPreTrainedModel""", """TFCLIPTextModel""", """TFCLIPVisionModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase : Any = [ """FlaxCLIPModel""", """FlaxCLIPPreTrainedModel""", """FlaxCLIPTextModel""", """FlaxCLIPTextPreTrainedModel""", """FlaxCLIPVisionModel""", """FlaxCLIPVisionPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_clip import ( CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, CLIPConfig, CLIPOnnxConfig, CLIPTextConfig, CLIPVisionConfig, ) from .processing_clip import CLIPProcessor from .tokenization_clip import CLIPTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_clip_fast import CLIPTokenizerFast try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_clip import CLIPFeatureExtractor from .image_processing_clip import CLIPImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_clip import ( CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, CLIPModel, CLIPPreTrainedModel, CLIPTextModel, CLIPTextModelWithProjection, CLIPVisionModel, CLIPVisionModelWithProjection, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_clip import ( TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, TFCLIPModel, TFCLIPPreTrainedModel, TFCLIPTextModel, TFCLIPVisionModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_clip import ( FlaxCLIPModel, FlaxCLIPPreTrainedModel, FlaxCLIPTextModel, FlaxCLIPTextPreTrainedModel, FlaxCLIPVisionModel, FlaxCLIPVisionPreTrainedModel, ) else: import sys lowercase : List[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
225
1
'''simple docstring''' import argparse import json import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils.deepspeed import DummyOptim, DummyScheduler lowerCAmelCase__ = 16 lowerCAmelCase__ = 32 def _A ( A__ , A__ = 16 , A__ = "bert-base-cased" ): """simple docstring""" __lowercase = AutoTokenizer.from_pretrained(A__ ) __lowercase = load_dataset('''glue''' , '''mrpc''' ) def tokenize_function(A__ ): # max_length=None => use the model max length (it's actually the default) __lowercase = tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=A__ , max_length=A__ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset __lowercase = datasets.map( A__ , batched=A__ , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , load_from_cache_file=A__ ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library __lowercase = tokenized_datasets.rename_column('''label''' , '''labels''' ) def collate_fn(A__ ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(A__ , padding='''max_length''' , max_length=128 , return_tensors='''pt''' ) return tokenizer.pad(A__ , padding='''longest''' , return_tensors='''pt''' ) # Instantiate dataloaders. __lowercase = DataLoader( tokenized_datasets['''train'''] , shuffle=A__ , collate_fn=A__ , batch_size=A__ ) __lowercase = DataLoader( tokenized_datasets['''validation'''] , shuffle=A__ , collate_fn=A__ , batch_size=A__ ) return train_dataloader, eval_dataloader def _A ( A__ , A__ , A__ , A__ ): """simple docstring""" model.eval() __lowercase = 0 for step, batch in enumerate(A__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): __lowercase = model(**A__ ) __lowercase = outputs.logits.argmax(dim=-1 ) # It is slightly faster to call this once, than multiple times __lowercase , __lowercase = accelerator.gather( (predictions, batch['''labels''']) ) # If we are in a multiprocess environment, the last batch has duplicates if accelerator.use_distributed: if step == len(A__ ) - 1: __lowercase = predictions[: len(eval_dataloader.dataset ) - samples_seen] __lowercase = references[: len(eval_dataloader.dataset ) - samples_seen] else: samples_seen += references.shape[0] metric.add_batch( predictions=A__ , references=A__ , ) __lowercase = metric.compute() return eval_metric["accuracy"] def _A ( A__ , A__ ): """simple docstring""" __lowercase = Accelerator() # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs __lowercase = config['''lr'''] __lowercase = int(config['''num_epochs'''] ) __lowercase = int(config['''seed'''] ) __lowercase = int(config['''batch_size'''] ) __lowercase = args.model_name_or_path set_seed(A__ ) __lowercase , __lowercase = get_dataloaders(A__ , A__ , A__ ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) __lowercase = AutoModelForSequenceClassification.from_pretrained(A__ , return_dict=A__ ) # Instantiate optimizer __lowercase = ( AdamW if accelerator.state.deepspeed_plugin is None or '''optimizer''' not in accelerator.state.deepspeed_plugin.deepspeed_config else DummyOptim ) __lowercase = optimizer_cls(params=model.parameters() , lr=A__ ) if accelerator.state.deepspeed_plugin is not None: __lowercase = accelerator.state.deepspeed_plugin.deepspeed_config[ '''gradient_accumulation_steps''' ] else: __lowercase = 1 __lowercase = (len(A__ ) * num_epochs) // gradient_accumulation_steps # Instantiate scheduler if ( accelerator.state.deepspeed_plugin is None or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config ): __lowercase = get_linear_schedule_with_warmup( optimizer=A__ , num_warmup_steps=0 , num_training_steps=A__ , ) else: __lowercase = DummyScheduler(A__ , total_num_steps=A__ , warmup_num_steps=0 ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. __lowercase , __lowercase , __lowercase , __lowercase , __lowercase = accelerator.prepare( A__ , A__ , A__ , A__ , A__ ) # We need to keep track of how many total steps we have iterated over __lowercase = 0 # We also need to keep track of the stating epoch so files are named properly __lowercase = 0 __lowercase = evaluate.load('''glue''' , '''mrpc''' ) __lowercase = num_epochs if args.partial_train_epoch is not None: __lowercase = args.partial_train_epoch if args.resume_from_checkpoint: accelerator.load_state(args.resume_from_checkpoint ) __lowercase = args.resume_from_checkpoint.split('''epoch_''' )[1] __lowercase = '''''' for char in epoch_string: if char.isdigit(): state_epoch_num += char else: break __lowercase = int(A__ ) + 1 __lowercase = evaluation_loop(A__ , A__ , A__ , A__ ) accelerator.print('''resumed checkpoint performance:''' , A__ ) accelerator.print('''resumed checkpoint\'s scheduler\'s lr:''' , lr_scheduler.get_lr()[0] ) accelerator.print('''resumed optimizers\'s lr:''' , optimizer.param_groups[0]['''lr'''] ) with open(os.path.join(args.output_dir , F"state_{starting_epoch-1}.json" ) , '''r''' ) as f: __lowercase = json.load(A__ ) assert resumed_state["accuracy"] == accuracy, "Accuracy mismatch, loading from checkpoint failed" assert ( resumed_state["lr"] == lr_scheduler.get_lr()[0] ), "Scheduler learning rate mismatch, loading from checkpoint failed" assert ( resumed_state["optimizer_lr"] == optimizer.param_groups[0]["lr"] ), "Optimizer learning rate mismatch, loading from checkpoint failed" assert resumed_state["epoch"] == starting_epoch - 1, "Epoch mismatch, loading from checkpoint failed" return # Now we train the model __lowercase = {} for epoch in range(A__ , A__ ): model.train() for step, batch in enumerate(A__ ): __lowercase = model(**A__ ) __lowercase = outputs.loss __lowercase = loss / gradient_accumulation_steps accelerator.backward(A__ ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 __lowercase = F"epoch_{epoch}" __lowercase = os.path.join(args.output_dir , A__ ) accelerator.save_state(A__ ) __lowercase = evaluation_loop(A__ , A__ , A__ , A__ ) __lowercase = accuracy __lowercase = lr_scheduler.get_lr()[0] __lowercase = optimizer.param_groups[0]['''lr'''] __lowercase = epoch __lowercase = overall_step accelerator.print(F"epoch {epoch}:" , A__ ) accelerator.wait_for_everyone() if accelerator.is_main_process: with open(os.path.join(args.output_dir , F"state_{epoch}.json" ) , '''w''' ) as f: json.dump(A__ , A__ ) def _A ( ): """simple docstring""" __lowercase = argparse.ArgumentParser(description='''Simple example of training script tracking peak GPU memory usage.''' ) parser.add_argument( '''--model_name_or_path''' , type=A__ , default='''bert-base-cased''' , help='''Path to pretrained model or model identifier from huggingface.co/models.''' , required=A__ , ) parser.add_argument( '''--output_dir''' , type=A__ , default='''.''' , help='''Optional save directory where all checkpoint folders will be stored. Default is the current working directory.''' , ) parser.add_argument( '''--resume_from_checkpoint''' , type=A__ , default=A__ , help='''If the training should continue from a checkpoint folder.''' , ) parser.add_argument( '''--partial_train_epoch''' , type=A__ , default=A__ , help='''If passed, the training will stop after this number of epochs.''' , ) parser.add_argument( '''--num_epochs''' , type=A__ , default=2 , help='''Number of train epochs.''' , ) __lowercase = parser.parse_args() __lowercase = {'''lr''': 2e-5, '''num_epochs''': args.num_epochs, '''seed''': 42, '''batch_size''': 16} training_function(A__ , A__ ) if __name__ == "__main__": main()
104
'''simple docstring''' import unicodedata from dataclasses import dataclass from typing import Optional, Union import numpy as np from transformers.data.data_collator import DataCollatorMixin from transformers.file_utils import PaddingStrategy from transformers.tokenization_utils_base import PreTrainedTokenizerBase def _A ( A__ , A__ , A__ , A__ ): """simple docstring""" if isinstance(A__ , A__ ): __lowercase = np.full((len(A__ ), sequence_length, 2) , A__ ) else: __lowercase = np.full((len(A__ ), sequence_length) , A__ ) for i, tensor in enumerate(A__ ): if padding_side == "right": if isinstance(A__ , A__ ): __lowercase = tensor[:sequence_length] else: __lowercase = tensor[:sequence_length] else: if isinstance(A__ , A__ ): __lowercase = tensor[:sequence_length] else: __lowercase = tensor[:sequence_length] return out_tensor.tolist() def _A ( A__ ): """simple docstring""" __lowercase = ord(A__ ) if (cp >= 33 and cp <= 47) or (cp >= 58 and cp <= 64) or (cp >= 91 and cp <= 96) or (cp >= 123 and cp <= 126): return True __lowercase = unicodedata.category(A__ ) if cat.startswith('''P''' ): return True return False @dataclass class lowercase_ (lowerCamelCase__ ): """simple docstring""" SCREAMING_SNAKE_CASE : PreTrainedTokenizerBase SCREAMING_SNAKE_CASE : Union[bool, str, PaddingStrategy] = True SCREAMING_SNAKE_CASE : Optional[int] = None SCREAMING_SNAKE_CASE : Optional[int] = None SCREAMING_SNAKE_CASE : int = -1_0_0 SCREAMING_SNAKE_CASE : str = "pt" def SCREAMING_SNAKE_CASE ( self : List[str] ,lowercase__ : List[str] ): import torch __lowercase = '''label''' if '''label''' in features[0].keys() else '''labels''' __lowercase = [feature[label_name] for feature in features] if label_name in features[0].keys() else None __lowercase = self.tokenizer.pad( lowercase__ ,padding=self.padding ,max_length=self.max_length ,pad_to_multiple_of=self.pad_to_multiple_of ,return_tensors='''pt''' if labels is None else None ,) if labels is None: return batch __lowercase = torch.tensor(batch['''entity_ids'''] ).shape[1] __lowercase = self.tokenizer.padding_side if padding_side == "right": __lowercase = [ list(lowercase__ ) + [self.label_pad_token_id] * (sequence_length - len(lowercase__ )) for label in labels ] else: __lowercase = [ [self.label_pad_token_id] * (sequence_length - len(lowercase__ )) + list(lowercase__ ) for label in labels ] __lowercase = [feature['''ner_tags'''] for feature in features] __lowercase = padding_tensor(lowercase__ ,-1 ,lowercase__ ,lowercase__ ) __lowercase = [feature['''original_entity_spans'''] for feature in features] __lowercase = padding_tensor(lowercase__ ,(-1, -1) ,lowercase__ ,lowercase__ ) __lowercase = {k: torch.tensor(lowercase__ ,dtype=torch.intaa ) for k, v in batch.items()} return batch
104
1
import warnings from .generation import TFGenerationMixin class snake_case_ (lowerCamelCase_ ): # warning at import time warnings.warn( '''Importing `TFGenerationMixin` from `src/transformers/generation_tf_utils.py` is deprecated and will ''' '''be removed in Transformers v5. Import as `from transformers import TFGenerationMixin` instead.''' , lowerCamelCase_ , )
109
import gc import math import unittest import torch from diffusers import UNetaDModel from diffusers.utils import floats_tensor, logging, slow, torch_all_close, torch_device from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin, UNetTesterMixin snake_case : Tuple = logging.get_logger(__name__) enable_full_determinism() class snake_case_ (lowerCamelCase_ , lowerCamelCase_ , unittest.TestCase ): UpperCAmelCase__ : str = UNetaDModel UpperCAmelCase__ : str = '''sample''' @property def lowerCamelCase__( self :Optional[int] ) -> List[str]: a__ = 4 a__ = 3 a__ = (32, 32) a__ = floats_tensor((batch_size, num_channels) + sizes ).to(__snake_case ) a__ = torch.tensor([10] ).to(__snake_case ) return {"sample": noise, "timestep": time_step} @property def lowerCamelCase__( self :Tuple ) -> Tuple: return (3, 32, 32) @property def lowerCamelCase__( self :List[str] ) -> Optional[Any]: return (3, 32, 32) def lowerCamelCase__( self :str ) -> Tuple: a__ = { 'block_out_channels': (32, 64), 'down_block_types': ('DownBlock2D', 'AttnDownBlock2D'), 'up_block_types': ('AttnUpBlock2D', 'UpBlock2D'), 'attention_head_dim': 3, 'out_channels': 3, 'in_channels': 3, 'layers_per_block': 2, 'sample_size': 32, } a__ = self.dummy_input return init_dict, inputs_dict class snake_case_ (lowerCamelCase_ , lowerCamelCase_ , unittest.TestCase ): UpperCAmelCase__ : int = UNetaDModel UpperCAmelCase__ : Any = '''sample''' @property def lowerCamelCase__( self :Dict ) -> List[str]: a__ = 4 a__ = 4 a__ = (32, 32) a__ = floats_tensor((batch_size, num_channels) + sizes ).to(__snake_case ) a__ = torch.tensor([10] ).to(__snake_case ) return {"sample": noise, "timestep": time_step} @property def lowerCamelCase__( self :Any ) -> str: return (4, 32, 32) @property def lowerCamelCase__( self :Any ) -> Dict: return (4, 32, 32) def lowerCamelCase__( self :int ) -> int: a__ = { 'sample_size': 32, 'in_channels': 4, 'out_channels': 4, 'layers_per_block': 2, 'block_out_channels': (32, 64), 'attention_head_dim': 32, 'down_block_types': ('DownBlock2D', 'DownBlock2D'), 'up_block_types': ('UpBlock2D', 'UpBlock2D'), } a__ = self.dummy_input return init_dict, inputs_dict def lowerCamelCase__( self :str ) -> Any: a__ , a__ = UNetaDModel.from_pretrained('fusing/unet-ldm-dummy-update' ,output_loading_info=__snake_case ) self.assertIsNotNone(__snake_case ) self.assertEqual(len(loading_info['missing_keys'] ) ,0 ) model.to(__snake_case ) a__ = model(**self.dummy_input ).sample assert image is not None, "Make sure output is not None" @unittest.skipIf(torch_device != 'cuda' ,'This test is supposed to run on GPU' ) def lowerCamelCase__( self :Tuple ) -> Optional[int]: a__ , a__ = UNetaDModel.from_pretrained('fusing/unet-ldm-dummy-update' ,output_loading_info=__snake_case ) model.to(__snake_case ) a__ = model(**self.dummy_input ).sample assert image is not None, "Make sure output is not None" @unittest.skipIf(torch_device != 'cuda' ,'This test is supposed to run on GPU' ) def lowerCamelCase__( self :Union[str, Any] ) -> int: # by defautl model loading will use accelerate as `low_cpu_mem_usage=True` a__ , a__ = UNetaDModel.from_pretrained('fusing/unet-ldm-dummy-update' ,output_loading_info=__snake_case ) model_accelerate.to(__snake_case ) model_accelerate.eval() a__ = torch.randn( 1 ,model_accelerate.config.in_channels ,model_accelerate.config.sample_size ,model_accelerate.config.sample_size ,generator=torch.manual_seed(0 ) ,) a__ = noise.to(__snake_case ) a__ = torch.tensor([10] * noise.shape[0] ).to(__snake_case ) a__ = model_accelerate(__snake_case ,__snake_case )['sample'] # two models don't need to stay in the device at the same time del model_accelerate torch.cuda.empty_cache() gc.collect() a__ , a__ = UNetaDModel.from_pretrained( 'fusing/unet-ldm-dummy-update' ,output_loading_info=__snake_case ,low_cpu_mem_usage=__snake_case ) model_normal_load.to(__snake_case ) model_normal_load.eval() a__ = model_normal_load(__snake_case ,__snake_case )['sample'] assert torch_all_close(__snake_case ,__snake_case ,rtol=1E-3 ) def lowerCamelCase__( self :str ) -> Union[str, Any]: a__ = UNetaDModel.from_pretrained('fusing/unet-ldm-dummy-update' ) model.eval() model.to(__snake_case ) a__ = torch.randn( 1 ,model.config.in_channels ,model.config.sample_size ,model.config.sample_size ,generator=torch.manual_seed(0 ) ,) a__ = noise.to(__snake_case ) a__ = torch.tensor([10] * noise.shape[0] ).to(__snake_case ) with torch.no_grad(): a__ = model(__snake_case ,__snake_case ).sample a__ = output[0, -1, -3:, -3:].flatten().cpu() # fmt: off a__ = torch.tensor([-13.32_58, -20.11_00, -15.98_73, -17.66_17, -23.05_96, -17.94_19, -13.36_75, -16.18_89, -12.38_00] ) # fmt: on self.assertTrue(torch_all_close(__snake_case ,__snake_case ,rtol=1E-3 ) ) class snake_case_ (lowerCamelCase_ , lowerCamelCase_ , unittest.TestCase ): UpperCAmelCase__ : Dict = UNetaDModel UpperCAmelCase__ : Optional[Any] = '''sample''' @property def lowerCamelCase__( self :Optional[Any] ,__snake_case :List[Any]=(32, 32) ) -> Optional[int]: a__ = 4 a__ = 3 a__ = floats_tensor((batch_size, num_channels) + sizes ).to(__snake_case ) a__ = torch.tensor(batch_size * [10] ).to(dtype=torch.intaa ,device=__snake_case ) return {"sample": noise, "timestep": time_step} @property def lowerCamelCase__( self :Tuple ) -> Optional[int]: return (3, 32, 32) @property def lowerCamelCase__( self :Optional[Any] ) -> Optional[int]: return (3, 32, 32) def lowerCamelCase__( self :Optional[Any] ) -> List[str]: a__ = { 'block_out_channels': [32, 64, 64, 64], 'in_channels': 3, 'layers_per_block': 1, 'out_channels': 3, 'time_embedding_type': 'fourier', 'norm_eps': 1E-6, 'mid_block_scale_factor': math.sqrt(2.0 ), 'norm_num_groups': None, 'down_block_types': [ 'SkipDownBlock2D', 'AttnSkipDownBlock2D', 'SkipDownBlock2D', 'SkipDownBlock2D', ], 'up_block_types': [ 'SkipUpBlock2D', 'SkipUpBlock2D', 'AttnSkipUpBlock2D', 'SkipUpBlock2D', ], } a__ = self.dummy_input return init_dict, inputs_dict @slow def lowerCamelCase__( self :str ) -> Tuple: a__ , a__ = UNetaDModel.from_pretrained('google/ncsnpp-celebahq-256' ,output_loading_info=__snake_case ) self.assertIsNotNone(__snake_case ) self.assertEqual(len(loading_info['missing_keys'] ) ,0 ) model.to(__snake_case ) a__ = self.dummy_input a__ = floats_tensor((4, 3) + (2_56, 2_56) ).to(__snake_case ) a__ = noise a__ = model(**__snake_case ) assert image is not None, "Make sure output is not None" @slow def lowerCamelCase__( self :Union[str, Any] ) -> Dict: a__ = UNetaDModel.from_pretrained('google/ncsnpp-celebahq-256' ) model.to(__snake_case ) a__ = 4 a__ = 3 a__ = (2_56, 2_56) a__ = torch.ones((batch_size, num_channels) + sizes ).to(__snake_case ) a__ = torch.tensor(batch_size * [1E-4] ).to(__snake_case ) with torch.no_grad(): a__ = model(__snake_case ,__snake_case ).sample a__ = output[0, -3:, -3:, -1].flatten().cpu() # fmt: off a__ = torch.tensor([-48_42.86_91, -64_99.66_31, -38_00.19_53, -79_78.26_86, -1_09_80.71_29, -2_00_28.85_35, 81_48.28_22, 23_42.29_05, 5_67.76_08] ) # fmt: on self.assertTrue(torch_all_close(__snake_case ,__snake_case ,rtol=1E-2 ) ) def lowerCamelCase__( self :Dict ) -> int: a__ = UNetaDModel.from_pretrained('fusing/ncsnpp-ffhq-ve-dummy-update' ) model.to(__snake_case ) a__ = 4 a__ = 3 a__ = (32, 32) a__ = torch.ones((batch_size, num_channels) + sizes ).to(__snake_case ) a__ = torch.tensor(batch_size * [1E-4] ).to(__snake_case ) with torch.no_grad(): a__ = model(__snake_case ,__snake_case ).sample a__ = output[0, -3:, -3:, -1].flatten().cpu() # fmt: off a__ = torch.tensor([-0.03_25, -0.09_00, -0.08_69, -0.03_32, -0.07_25, -0.02_70, -0.01_01, 0.02_27, 0.02_56] ) # fmt: on self.assertTrue(torch_all_close(__snake_case ,__snake_case ,rtol=1E-2 ) ) def lowerCamelCase__( self :int ) -> str: # not required for this model pass
109
1
"""simple docstring""" # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse from .config import config_command_parser from .config_args import default_config_file, load_config_from_file # noqa: F401 from .default import default_command_parser from .update import update_command_parser def lowercase ( a__ : Dict=None ) -> int: _UpperCamelCase = argparse.ArgumentParser(add_help=a__ , allow_abbrev=a__ ) # The main config parser _UpperCamelCase = config_command_parser(a__ ) # The subparser to add commands to _UpperCamelCase = config_parser.add_subparsers(title='''subcommands''' , dest='''subcommand''' ) # Then add other parsers with the parent parser default_command_parser(a__ , parents=[parent_parser] ) update_command_parser(a__ , parents=[parent_parser] ) return config_parser def lowercase ( ) -> str: _UpperCamelCase = get_config_parser() _UpperCamelCase = config_parser.parse_args() if not hasattr(a__ , '''func''' ): config_parser.print_help() exit(1 ) # Run args.func(a__ ) if __name__ == "__main__": main()
256
"""simple docstring""" from typing import List, Optional, Union import numpy as np from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import PaddingStrategy, TensorType, logging UpperCAmelCase = logging.get_logger(__name__) class UpperCAmelCase_ ( _lowercase): snake_case__ = ['''input_values''', '''padding_mask'''] def __init__( self : Optional[Any] , __UpperCamelCase : int = 1 , __UpperCamelCase : int = 2_4000 , __UpperCamelCase : float = 0.0 , __UpperCamelCase : float = None , __UpperCamelCase : float = None , **__UpperCamelCase : Optional[Any] , ) -> Optional[int]: super().__init__(feature_size=__UpperCamelCase , sampling_rate=__UpperCamelCase , padding_value=__UpperCamelCase , **__UpperCamelCase ) _UpperCamelCase = chunk_length_s _UpperCamelCase = overlap @property def _UpperCamelCase ( self : Optional[int] ) -> Optional[int]: if self.chunk_length_s is None: return None else: return int(self.chunk_length_s * self.sampling_rate ) @property def _UpperCamelCase ( self : Union[str, Any] ) -> Optional[int]: if self.chunk_length_s is None or self.overlap is None: return None else: return max(1 , int((1.0 - self.overlap) * self.chunk_length ) ) def __call__( self : Union[str, Any] , __UpperCamelCase : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , __UpperCamelCase : Optional[Union[bool, str, PaddingStrategy]] = None , __UpperCamelCase : Optional[bool] = False , __UpperCamelCase : Optional[int] = None , __UpperCamelCase : Optional[Union[str, TensorType]] = None , __UpperCamelCase : Optional[int] = None , ) -> BatchFeature: if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( F'''The model corresponding to this feature extractor: {self} was trained using a sampling rate of''' F''' {self.sampling_rate}. Please make sure that the provided audio input was sampled with''' F''' {self.sampling_rate} and not {sampling_rate}.''' ) else: logger.warning( '''It is strongly recommended to pass the `sampling_rate` argument to this function. ''' '''Failing to do so can result in silent errors that might be hard to debug.''' ) if padding and truncation: raise ValueError('''Both padding and truncation were set. Make sure you only set one.''' ) elif padding is None: # by default let's pad the inputs _UpperCamelCase = True _UpperCamelCase = bool( isinstance(__UpperCamelCase , (list, tuple) ) and (isinstance(raw_audio[0] , (np.ndarray, tuple, list) )) ) if is_batched: _UpperCamelCase = [np.asarray(__UpperCamelCase , dtype=np.floataa ).T for audio in raw_audio] elif not is_batched and not isinstance(__UpperCamelCase , np.ndarray ): _UpperCamelCase = np.asarray(__UpperCamelCase , dtype=np.floataa ) elif isinstance(__UpperCamelCase , np.ndarray ) and raw_audio.dtype is np.dtype(np.floataa ): _UpperCamelCase = raw_audio.astype(np.floataa ) # always return batch if not is_batched: _UpperCamelCase = [np.asarray(__UpperCamelCase ).T] # verify inputs are valid for idx, example in enumerate(__UpperCamelCase ): if example.ndim > 2: raise ValueError(F'''Expected input shape (channels, length) but got shape {example.shape}''' ) if self.feature_size == 1 and example.ndim != 1: raise ValueError(F'''Expected mono audio but example has {example.shape[-1]} channels''' ) if self.feature_size == 2 and example.shape[-1] != 2: raise ValueError(F'''Expected stereo audio but example has {example.shape[-1]} channels''' ) _UpperCamelCase = None _UpperCamelCase = BatchFeature({'''input_values''': raw_audio} ) if self.chunk_stride is not None and self.chunk_length is not None and max_length is None: if truncation: _UpperCamelCase = min(array.shape[0] for array in raw_audio ) _UpperCamelCase = int(np.floor(max_length / self.chunk_stride ) ) _UpperCamelCase = (nb_step - 1) * self.chunk_stride + self.chunk_length elif padding: _UpperCamelCase = max(array.shape[0] for array in raw_audio ) _UpperCamelCase = int(np.ceil(max_length / self.chunk_stride ) ) _UpperCamelCase = (nb_step - 1) * self.chunk_stride + self.chunk_length _UpperCamelCase = '''max_length''' else: _UpperCamelCase = input_values # normal padding on batch if padded_inputs is None: _UpperCamelCase = self.pad( __UpperCamelCase , max_length=__UpperCamelCase , truncation=__UpperCamelCase , padding=__UpperCamelCase , return_attention_mask=__UpperCamelCase , ) if padding: _UpperCamelCase = padded_inputs.pop('''attention_mask''' ) _UpperCamelCase = [] for example in padded_inputs.pop('''input_values''' ): if self.feature_size == 1: _UpperCamelCase = example[..., None] input_values.append(example.T ) _UpperCamelCase = input_values if return_tensors is not None: _UpperCamelCase = padded_inputs.convert_to_tensors(__UpperCamelCase ) return padded_inputs
256
1
"""simple docstring""" import comet # From: unbabel-comet import torch import datasets A: Union[str, Any] = datasets.logging.get_logger(__name__) A: List[str] = "\\n@inproceedings{rei-EtAl:2020:WMT,\n author = {Rei, Ricardo and Stewart, Craig and Farinha, Ana C and Lavie, Alon},\n title = {Unbabel's Participation in the WMT20 Metrics Shared Task},\n booktitle = {Proceedings of the Fifth Conference on Machine Translation},\n month = {November},\n year = {2020},\n address = {Online},\n publisher = {Association for Computational Linguistics},\n pages = {909--918},\n}\n@inproceedings{rei-etal-2020-comet,\n title = \"{COMET}: A Neural Framework for {MT} Evaluation\",\n author = \"Rei, Ricardo and\n Stewart, Craig and\n Farinha, Ana C and\n Lavie, Alon\",\n booktitle = \"Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)\",\n month = nov,\n year = \"2020\",\n address = \"Online\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://www.aclweb.org/anthology/2020.emnlp-main.213\",\n pages = \"2685--2702\",\n}\n" A: int = "\\nCrosslingual Optimized Metric for Evaluation of Translation (COMET) is an open-source framework used to train Machine Translation metrics that achieve high levels of correlation with different types of human judgments (HTER, DA's or MQM).\nWith the release of the framework the authors also released fully trained models that were used to compete in the WMT20 Metrics Shared Task achieving SOTA in that years competition.\n\nSee the [README.md] file at https://unbabel.github.io/COMET/html/models.html for more information.\n" A: Any = "\nCOMET score.\n\nArgs:\n\n`sources` (list of str): Source sentences\n`predictions` (list of str): candidate translations\n`references` (list of str): reference translations\n`cuda` (bool): If set to True, runs COMET using GPU\n`show_progress` (bool): Shows progress\n`model`: COMET model to be used. Will default to `wmt-large-da-estimator-1719` if None.\n\nReturns:\n `samples`: List of dictionaries with `src`, `mt`, `ref` and `score`.\n `scores`: List of scores.\n\nExamples:\n\n >>> comet_metric = datasets.load_metric('comet')\n >>> # comet_metric = load_metric('comet', 'wmt20-comet-da') # you can also choose which model to use\n >>> source = [\"Dem Feuer konnte Einhalt geboten werden\", \"Schulen und Kindergärten wurden eröffnet.\"]\n >>> hypothesis = [\"The fire could be stopped\", \"Schools and kindergartens were open\"]\n >>> reference = [\"They were able to control the fire.\", \"Schools and kindergartens opened\"]\n >>> results = comet_metric.compute(predictions=hypothesis, references=reference, sources=source)\n >>> print([round(v, 2) for v in results[\"scores\"]])\n [0.19, 0.92]\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class SCREAMING_SNAKE_CASE__ ( datasets.Metric ): def SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage="""https://unbabel.github.io/COMET/html/index.html""" , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """sources""": datasets.Value("""string""" , id="""sequence""" ), """predictions""": datasets.Value("""string""" , id="""sequence""" ), """references""": datasets.Value("""string""" , id="""sequence""" ), } ) , codebase_urls=["""https://github.com/Unbabel/COMET"""] , reference_urls=[ """https://github.com/Unbabel/COMET""", """https://www.aclweb.org/anthology/2020.emnlp-main.213/""", """http://www.statmt.org/wmt20/pdf/2020.wmt-1.101.pdf6""", ] , ) def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE ) -> Any: '''simple docstring''' if self.config_name == "default": UpperCAmelCase : Dict = comet.load_from_checkpoint(comet.download_model("""wmt20-comet-da""" ) ) else: UpperCAmelCase : Dict = comet.load_from_checkpoint(comet.download_model(self.config_name ) ) def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=False ) -> str: '''simple docstring''' if gpus is None: UpperCAmelCase : Optional[int] = 1 if torch.cuda.is_available() else 0 UpperCAmelCase : Tuple = {"""src""": sources, """mt""": predictions, """ref""": references} UpperCAmelCase : Tuple = [dict(zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) for t in zip(*data.values() )] UpperCAmelCase , UpperCAmelCase : Optional[Any] = self.scorer.predict(_SCREAMING_SNAKE_CASE , gpus=_SCREAMING_SNAKE_CASE , progress_bar=_SCREAMING_SNAKE_CASE ) return {"mean_score": mean_score, "scores": scores}
76
"""simple docstring""" import unittest import numpy as np from transformers.testing_utils import require_flax, require_tf, require_torch from transformers.utils import ( expand_dims, flatten_dict, is_flax_available, is_tf_available, is_torch_available, reshape, squeeze, transpose, ) if is_flax_available(): import jax.numpy as jnp if is_tf_available(): import tensorflow as tf if is_torch_available(): import torch class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): def SCREAMING_SNAKE_CASE ( self ) -> Dict: '''simple docstring''' UpperCAmelCase : List[str] = { """task_specific_params""": { """summarization""": {"""length_penalty""": 1.0, """max_length""": 128, """min_length""": 12, """num_beams""": 4}, """summarization_cnn""": {"""length_penalty""": 2.0, """max_length""": 142, """min_length""": 56, """num_beams""": 4}, """summarization_xsum""": {"""length_penalty""": 1.0, """max_length""": 62, """min_length""": 11, """num_beams""": 6}, } } UpperCAmelCase : Optional[Any] = { """task_specific_params.summarization.length_penalty""": 1.0, """task_specific_params.summarization.max_length""": 128, """task_specific_params.summarization.min_length""": 12, """task_specific_params.summarization.num_beams""": 4, """task_specific_params.summarization_cnn.length_penalty""": 2.0, """task_specific_params.summarization_cnn.max_length""": 142, """task_specific_params.summarization_cnn.min_length""": 56, """task_specific_params.summarization_cnn.num_beams""": 4, """task_specific_params.summarization_xsum.length_penalty""": 1.0, """task_specific_params.summarization_xsum.max_length""": 62, """task_specific_params.summarization_xsum.min_length""": 11, """task_specific_params.summarization_xsum.num_beams""": 6, } self.assertEqual(flatten_dict(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self ) -> str: '''simple docstring''' UpperCAmelCase : str = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(transpose(_SCREAMING_SNAKE_CASE ) , x.transpose() ) ) UpperCAmelCase : List[Any] = np.random.randn(3 , 4 , 5 ) self.assertTrue(np.allclose(transpose(_SCREAMING_SNAKE_CASE , axes=(1, 2, 0) ) , x.transpose((1, 2, 0) ) ) ) @require_torch def SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase : Optional[int] = np.random.randn(3 , 4 ) UpperCAmelCase : Tuple = torch.tensor(_SCREAMING_SNAKE_CASE ) self.assertTrue(np.allclose(transpose(_SCREAMING_SNAKE_CASE ) , transpose(_SCREAMING_SNAKE_CASE ).numpy() ) ) UpperCAmelCase : List[str] = np.random.randn(3 , 4 , 5 ) UpperCAmelCase : List[str] = torch.tensor(_SCREAMING_SNAKE_CASE ) self.assertTrue(np.allclose(transpose(_SCREAMING_SNAKE_CASE , axes=(1, 2, 0) ) , transpose(_SCREAMING_SNAKE_CASE , axes=(1, 2, 0) ).numpy() ) ) @require_tf def SCREAMING_SNAKE_CASE ( self ) -> str: '''simple docstring''' UpperCAmelCase : Optional[int] = np.random.randn(3 , 4 ) UpperCAmelCase : Dict = tf.constant(_SCREAMING_SNAKE_CASE ) self.assertTrue(np.allclose(transpose(_SCREAMING_SNAKE_CASE ) , transpose(_SCREAMING_SNAKE_CASE ).numpy() ) ) UpperCAmelCase : List[Any] = np.random.randn(3 , 4 , 5 ) UpperCAmelCase : List[Any] = tf.constant(_SCREAMING_SNAKE_CASE ) self.assertTrue(np.allclose(transpose(_SCREAMING_SNAKE_CASE , axes=(1, 2, 0) ) , transpose(_SCREAMING_SNAKE_CASE , axes=(1, 2, 0) ).numpy() ) ) @require_flax def SCREAMING_SNAKE_CASE ( self ) -> Tuple: '''simple docstring''' UpperCAmelCase : List[Any] = np.random.randn(3 , 4 ) UpperCAmelCase : Union[str, Any] = jnp.array(_SCREAMING_SNAKE_CASE ) self.assertTrue(np.allclose(transpose(_SCREAMING_SNAKE_CASE ) , np.asarray(transpose(_SCREAMING_SNAKE_CASE ) ) ) ) UpperCAmelCase : Dict = np.random.randn(3 , 4 , 5 ) UpperCAmelCase : int = jnp.array(_SCREAMING_SNAKE_CASE ) self.assertTrue(np.allclose(transpose(_SCREAMING_SNAKE_CASE , axes=(1, 2, 0) ) , np.asarray(transpose(_SCREAMING_SNAKE_CASE , axes=(1, 2, 0) ) ) ) ) def SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase : str = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(reshape(_SCREAMING_SNAKE_CASE , (4, 3) ) , np.reshape(_SCREAMING_SNAKE_CASE , (4, 3) ) ) ) UpperCAmelCase : Any = np.random.randn(3 , 4 , 5 ) self.assertTrue(np.allclose(reshape(_SCREAMING_SNAKE_CASE , (12, 5) ) , np.reshape(_SCREAMING_SNAKE_CASE , (12, 5) ) ) ) @require_torch def SCREAMING_SNAKE_CASE ( self ) -> List[str]: '''simple docstring''' UpperCAmelCase : int = np.random.randn(3 , 4 ) UpperCAmelCase : str = torch.tensor(_SCREAMING_SNAKE_CASE ) self.assertTrue(np.allclose(reshape(_SCREAMING_SNAKE_CASE , (4, 3) ) , reshape(_SCREAMING_SNAKE_CASE , (4, 3) ).numpy() ) ) UpperCAmelCase : Dict = np.random.randn(3 , 4 , 5 ) UpperCAmelCase : Tuple = torch.tensor(_SCREAMING_SNAKE_CASE ) self.assertTrue(np.allclose(reshape(_SCREAMING_SNAKE_CASE , (12, 5) ) , reshape(_SCREAMING_SNAKE_CASE , (12, 5) ).numpy() ) ) @require_tf def SCREAMING_SNAKE_CASE ( self ) -> List[Any]: '''simple docstring''' UpperCAmelCase : int = np.random.randn(3 , 4 ) UpperCAmelCase : Union[str, Any] = tf.constant(_SCREAMING_SNAKE_CASE ) self.assertTrue(np.allclose(reshape(_SCREAMING_SNAKE_CASE , (4, 3) ) , reshape(_SCREAMING_SNAKE_CASE , (4, 3) ).numpy() ) ) UpperCAmelCase : Optional[Any] = np.random.randn(3 , 4 , 5 ) UpperCAmelCase : List[Any] = tf.constant(_SCREAMING_SNAKE_CASE ) self.assertTrue(np.allclose(reshape(_SCREAMING_SNAKE_CASE , (12, 5) ) , reshape(_SCREAMING_SNAKE_CASE , (12, 5) ).numpy() ) ) @require_flax def SCREAMING_SNAKE_CASE ( self ) -> str: '''simple docstring''' UpperCAmelCase : Optional[Any] = np.random.randn(3 , 4 ) UpperCAmelCase : Union[str, Any] = jnp.array(_SCREAMING_SNAKE_CASE ) self.assertTrue(np.allclose(reshape(_SCREAMING_SNAKE_CASE , (4, 3) ) , np.asarray(reshape(_SCREAMING_SNAKE_CASE , (4, 3) ) ) ) ) UpperCAmelCase : List[str] = np.random.randn(3 , 4 , 5 ) UpperCAmelCase : List[str] = jnp.array(_SCREAMING_SNAKE_CASE ) self.assertTrue(np.allclose(reshape(_SCREAMING_SNAKE_CASE , (12, 5) ) , np.asarray(reshape(_SCREAMING_SNAKE_CASE , (12, 5) ) ) ) ) def SCREAMING_SNAKE_CASE ( self ) -> int: '''simple docstring''' UpperCAmelCase : List[str] = np.random.randn(1 , 3 , 4 ) self.assertTrue(np.allclose(squeeze(_SCREAMING_SNAKE_CASE ) , np.squeeze(_SCREAMING_SNAKE_CASE ) ) ) UpperCAmelCase : Union[str, Any] = np.random.randn(1 , 4 , 1 , 5 ) self.assertTrue(np.allclose(squeeze(_SCREAMING_SNAKE_CASE , axis=2 ) , np.squeeze(_SCREAMING_SNAKE_CASE , axis=2 ) ) ) @require_torch def SCREAMING_SNAKE_CASE ( self ) -> int: '''simple docstring''' UpperCAmelCase : List[Any] = np.random.randn(1 , 3 , 4 ) UpperCAmelCase : List[str] = torch.tensor(_SCREAMING_SNAKE_CASE ) self.assertTrue(np.allclose(squeeze(_SCREAMING_SNAKE_CASE ) , squeeze(_SCREAMING_SNAKE_CASE ).numpy() ) ) UpperCAmelCase : int = np.random.randn(1 , 4 , 1 , 5 ) UpperCAmelCase : Tuple = torch.tensor(_SCREAMING_SNAKE_CASE ) self.assertTrue(np.allclose(squeeze(_SCREAMING_SNAKE_CASE , axis=2 ) , squeeze(_SCREAMING_SNAKE_CASE , axis=2 ).numpy() ) ) @require_tf def SCREAMING_SNAKE_CASE ( self ) -> str: '''simple docstring''' UpperCAmelCase : int = np.random.randn(1 , 3 , 4 ) UpperCAmelCase : Dict = tf.constant(_SCREAMING_SNAKE_CASE ) self.assertTrue(np.allclose(squeeze(_SCREAMING_SNAKE_CASE ) , squeeze(_SCREAMING_SNAKE_CASE ).numpy() ) ) UpperCAmelCase : Dict = np.random.randn(1 , 4 , 1 , 5 ) UpperCAmelCase : List[str] = tf.constant(_SCREAMING_SNAKE_CASE ) self.assertTrue(np.allclose(squeeze(_SCREAMING_SNAKE_CASE , axis=2 ) , squeeze(_SCREAMING_SNAKE_CASE , axis=2 ).numpy() ) ) @require_flax def SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase : int = np.random.randn(1 , 3 , 4 ) UpperCAmelCase : Optional[Any] = jnp.array(_SCREAMING_SNAKE_CASE ) self.assertTrue(np.allclose(squeeze(_SCREAMING_SNAKE_CASE ) , np.asarray(squeeze(_SCREAMING_SNAKE_CASE ) ) ) ) UpperCAmelCase : Optional[Any] = np.random.randn(1 , 4 , 1 , 5 ) UpperCAmelCase : Optional[Any] = jnp.array(_SCREAMING_SNAKE_CASE ) self.assertTrue(np.allclose(squeeze(_SCREAMING_SNAKE_CASE , axis=2 ) , np.asarray(squeeze(_SCREAMING_SNAKE_CASE , axis=2 ) ) ) ) def SCREAMING_SNAKE_CASE ( self ) -> List[str]: '''simple docstring''' UpperCAmelCase : Dict = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(expand_dims(_SCREAMING_SNAKE_CASE , axis=1 ) , np.expand_dims(_SCREAMING_SNAKE_CASE , axis=1 ) ) ) @require_torch def SCREAMING_SNAKE_CASE ( self ) -> str: '''simple docstring''' UpperCAmelCase : Tuple = np.random.randn(3 , 4 ) UpperCAmelCase : str = torch.tensor(_SCREAMING_SNAKE_CASE ) self.assertTrue(np.allclose(expand_dims(_SCREAMING_SNAKE_CASE , axis=1 ) , expand_dims(_SCREAMING_SNAKE_CASE , axis=1 ).numpy() ) ) @require_tf def SCREAMING_SNAKE_CASE ( self ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase : int = np.random.randn(3 , 4 ) UpperCAmelCase : List[str] = tf.constant(_SCREAMING_SNAKE_CASE ) self.assertTrue(np.allclose(expand_dims(_SCREAMING_SNAKE_CASE , axis=1 ) , expand_dims(_SCREAMING_SNAKE_CASE , axis=1 ).numpy() ) ) @require_flax def SCREAMING_SNAKE_CASE ( self ) -> List[Any]: '''simple docstring''' UpperCAmelCase : Optional[int] = np.random.randn(3 , 4 ) UpperCAmelCase : Optional[Any] = jnp.array(_SCREAMING_SNAKE_CASE ) self.assertTrue(np.allclose(expand_dims(_SCREAMING_SNAKE_CASE , axis=1 ) , np.asarray(expand_dims(_SCREAMING_SNAKE_CASE , axis=1 ) ) ) )
76
1
from typing import Dict import numpy as np import torch from . import residue_constants as rc from .tensor_utils import tensor_tree_map, tree_map def SCREAMING_SNAKE_CASE ( __lowerCAmelCase ) -> Any: UpperCamelCase__ : List[Any] = [] UpperCamelCase__ : List[str] = [] UpperCamelCase__ : Tuple = [] for rt in rc.restypes: UpperCamelCase__ : int = rc.restype_name_to_atomaa_names[rc.restype_atoa[rt]] restype_atomaa_to_atomaa_list.append([(rc.atom_order[name] if name else 0) for name in atom_names] ) UpperCamelCase__ : Dict = {name: i for i, name in enumerate(__lowerCamelCase )} restype_atomaa_to_atomaa_list.append( [(atom_name_to_idxaa[name] if name in atom_name_to_idxaa else 0) for name in rc.atom_types] ) restype_atomaa_mask_list.append([(1.0 if name else 0.0) for name in atom_names] ) # Add dummy mapping for restype 'UNK' restype_atomaa_to_atomaa_list.append([0] * 14 ) restype_atomaa_to_atomaa_list.append([0] * 37 ) restype_atomaa_mask_list.append([0.0] * 14 ) UpperCamelCase__ : Any = torch.tensor( __lowerCamelCase , dtype=torch.intaa , device=protein["aatype"].device , ) UpperCamelCase__ : List[Any] = torch.tensor( __lowerCamelCase , dtype=torch.intaa , device=protein["aatype"].device , ) UpperCamelCase__ : Optional[int] = torch.tensor( __lowerCamelCase , dtype=torch.floataa , device=protein["aatype"].device , ) UpperCamelCase__ : Any = protein["aatype"].to(torch.long ) # create the mapping for (residx, atom14) --> atom37, i.e. an array # with shape (num_res, 14) containing the atom37 indices for this protein UpperCamelCase__ : Optional[int] = restype_atomaa_to_atomaa[protein_aatype] UpperCamelCase__ : Any = restype_atomaa_mask[protein_aatype] UpperCamelCase__ : Union[str, Any] = residx_atomaa_mask UpperCamelCase__ : Tuple = residx_atomaa_to_atomaa.long() # create the gather indices for mapping back UpperCamelCase__ : Tuple = restype_atomaa_to_atomaa[protein_aatype] UpperCamelCase__ : Dict = residx_atomaa_to_atomaa.long() # create the corresponding mask UpperCamelCase__ : Any = torch.zeros([21, 37] , dtype=torch.floataa , device=protein["aatype"].device ) for restype, restype_letter in enumerate(rc.restypes ): UpperCamelCase__ : Tuple = rc.restype_atoa[restype_letter] UpperCamelCase__ : Optional[int] = rc.residue_atoms[restype_name] for atom_name in atom_names: UpperCamelCase__ : Tuple = rc.atom_order[atom_name] UpperCamelCase__ : List[Any] = 1 UpperCamelCase__ : Any = restype_atomaa_mask[protein_aatype] UpperCamelCase__ : str = residx_atomaa_mask return protein def SCREAMING_SNAKE_CASE ( __lowerCAmelCase ) -> Dict: UpperCamelCase__ : List[str] = tree_map(lambda __lowerCAmelCase : torch.tensor(__lowerCamelCase , device=batch["aatype"].device ) , __lowerCamelCase , np.ndarray ) UpperCamelCase__ : List[Any] = tensor_tree_map(lambda __lowerCAmelCase : np.array(__lowerCamelCase ) , make_atomaa_masks(__lowerCamelCase ) ) return out
189
import gc import unittest import numpy as np import torch from diffusers import AutoencoderKL, DDIMScheduler, DiTPipeline, DPMSolverMultistepScheduler, TransformeraDModel from diffusers.utils import is_xformers_available, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS, CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class a (_lowerCAmelCase , unittest.TestCase ): """simple docstring""" __UpperCAmelCase : List[str] = DiTPipeline __UpperCAmelCase : Tuple = CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS __UpperCAmelCase : Any = PipelineTesterMixin.required_optional_params - { "latents", "num_images_per_prompt", "callback", "callback_steps", } __UpperCAmelCase : Optional[int] = CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS __UpperCAmelCase : Optional[int] = False def __snake_case ( self : Optional[int] ) -> str: torch.manual_seed(0 ) __snake_case : Dict = TransformeraDModel( sample_size=16 , num_layers=2 , patch_size=4 , attention_head_dim=8 , num_attention_heads=2 , in_channels=4 , out_channels=8 , attention_bias=lowerCamelCase , activation_fn="gelu-approximate" , num_embeds_ada_norm=1000 , norm_type="ada_norm_zero" , norm_elementwise_affine=lowerCamelCase , ) __snake_case : Union[str, Any] = AutoencoderKL() __snake_case : int = DDIMScheduler() __snake_case : Tuple = {"transformer": transformer.eval(), "vae": vae.eval(), "scheduler": scheduler} return components def __snake_case ( self : Optional[Any] , lowerCamelCase : Any , lowerCamelCase : Tuple=0 ) -> int: if str(lowerCamelCase ).startswith("mps" ): __snake_case : str = torch.manual_seed(lowerCamelCase ) else: __snake_case : Dict = torch.Generator(device=lowerCamelCase ).manual_seed(lowerCamelCase ) __snake_case : Optional[Any] = { "class_labels": [1], "generator": generator, "num_inference_steps": 2, "output_type": "numpy", } return inputs def __snake_case ( self : str ) -> List[str]: __snake_case : Tuple = "cpu" __snake_case : int = self.get_dummy_components() __snake_case : str = self.pipeline_class(**lowerCamelCase ) pipe.to(lowerCamelCase ) pipe.set_progress_bar_config(disable=lowerCamelCase ) __snake_case : Tuple = self.get_dummy_inputs(lowerCamelCase ) __snake_case : Optional[Any] = pipe(**lowerCamelCase ).images __snake_case : List[str] = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 16, 16, 3) ) __snake_case : int = np.array([0.29_46, 0.66_01, 0.43_29, 0.32_96, 0.41_44, 0.53_19, 0.72_73, 0.50_13, 0.44_57] ) __snake_case : Optional[int] = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(lowerCamelCase , 1E-3 ) def __snake_case ( self : List[str] ) -> Tuple: self._test_inference_batch_single_identical(relax_max_difference=lowerCamelCase , expected_max_diff=1E-3 ) @unittest.skipIf( torch_device != "cuda" or not is_xformers_available() , reason="XFormers attention is only available with CUDA and `xformers` installed" , ) def __snake_case ( self : Tuple ) -> str: self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 ) @require_torch_gpu @slow class a (unittest.TestCase ): """simple docstring""" def __snake_case ( self : Optional[Any] ) -> str: super().tearDown() gc.collect() torch.cuda.empty_cache() def __snake_case ( self : List[Any] ) -> Any: __snake_case : Any = torch.manual_seed(0 ) __snake_case : List[Any] = DiTPipeline.from_pretrained("facebook/DiT-XL-2-256" ) pipe.to("cuda" ) __snake_case : Optional[int] = ["vase", "umbrella", "white shark", "white wolf"] __snake_case : Optional[Any] = pipe.get_label_ids(lowerCamelCase ) __snake_case : List[Any] = pipe(lowerCamelCase , generator=lowerCamelCase , num_inference_steps=40 , output_type="np" ).images for word, image in zip(lowerCamelCase , lowerCamelCase ): __snake_case : int = load_numpy( F'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/dit/{word}.npy' ) assert np.abs((expected_image - image).max() ) < 1E-2 def __snake_case ( self : Union[str, Any] ) -> int: __snake_case : Any = DiTPipeline.from_pretrained("facebook/DiT-XL-2-512" ) __snake_case : int = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.to("cuda" ) __snake_case : Tuple = ["vase", "umbrella"] __snake_case : List[str] = pipe.get_label_ids(lowerCamelCase ) __snake_case : Tuple = torch.manual_seed(0 ) __snake_case : str = pipe(lowerCamelCase , generator=lowerCamelCase , num_inference_steps=25 , output_type="np" ).images for word, image in zip(lowerCamelCase , lowerCamelCase ): __snake_case : List[Any] = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" F'/dit/{word}_512.npy' ) assert np.abs((expected_image - image).max() ) < 1E-1
123
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCamelCase_ = { 'configuration_clap': [ 'CLAP_PRETRAINED_MODEL_ARCHIVE_LIST', 'ClapAudioConfig', 'ClapConfig', 'ClapTextConfig', ], 'processing_clap': ['ClapProcessor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = [ 'CLAP_PRETRAINED_MODEL_ARCHIVE_LIST', 'ClapModel', 'ClapPreTrainedModel', 'ClapTextModel', 'ClapTextModelWithProjection', 'ClapAudioModel', 'ClapAudioModelWithProjection', ] UpperCamelCase_ = ['ClapFeatureExtractor'] if TYPE_CHECKING: from .configuration_clap import ( CLAP_PRETRAINED_MODEL_ARCHIVE_LIST, ClapAudioConfig, ClapConfig, ClapTextConfig, ) from .processing_clap import ClapProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_clap import ClapFeatureExtractor from .modeling_clap import ( CLAP_PRETRAINED_MODEL_ARCHIVE_LIST, ClapAudioModel, ClapAudioModelWithProjection, ClapModel, ClapPreTrainedModel, ClapTextModel, ClapTextModelWithProjection, ) else: import sys UpperCamelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
357
"""simple docstring""" import argparse import os from pathlib import Path from typing import Dict import tensorflow as tf import torch from tqdm import tqdm from transformers import PegasusConfig, PegasusForConditionalGeneration, PegasusTokenizer from transformers.models.pegasus.configuration_pegasus import DEFAULTS, task_specific_params UpperCamelCase_ = [ # replace left string with right string to get the relevant state_dict key (identical state dict to bart) ['memory_attention', 'encoder_attn'], ['attention', 'attn'], ['/', '.'], ['.LayerNorm.gamma', '_layer_norm.weight'], ['.LayerNorm.beta', '_layer_norm.bias'], ['r.layer_', 'r.layers.'], ['output_proj', 'out_proj'], ['ffn.dense_1.', 'fc2.'], ['ffn.dense.', 'fc1.'], ['ffn_layer_norm', 'final_layer_norm'], ['kernel', 'weight'], ['encoder_layer_norm.', 'encoder.layer_norm.'], ['decoder_layer_norm.', 'decoder.layer_norm.'], ['embeddings.weights', 'shared.weight'], ] def UpperCamelCase ( UpperCAmelCase ) ->Optional[Any]: """simple docstring""" for pegasus_name, hf_name in PATTERNS: a_ = k.replace(UpperCAmelCase , UpperCAmelCase ) return k def UpperCamelCase ( UpperCAmelCase , UpperCAmelCase ) ->PegasusForConditionalGeneration: """simple docstring""" a_ = DEFAULTS.copy() cfg_kwargs.update(UpperCAmelCase ) a_ = PegasusConfig(**UpperCAmelCase ) a_ = PegasusForConditionalGeneration(UpperCAmelCase ) a_ = torch_model.model.state_dict() a_ = {} for k, v in tf_weights.items(): a_ = rename_state_dict_key(UpperCAmelCase ) if new_k not in sd: raise ValueError(F'''could not find new key {new_k} in state dict. (converted from {k})''' ) if "dense" in k or "proj" in new_k: a_ = v.T a_ = torch.tensor(UpperCAmelCase , dtype=sd[new_k].dtype ) assert v.shape == sd[new_k].shape, F'''{new_k}, {k}, {v.shape}, {sd[new_k].shape}''' # make sure embedding.padding_idx is respected a_ = torch.zeros_like(mapping["shared.weight"][cfg.pad_token_id + 1] ) a_ = mapping["shared.weight"] a_ = mapping["shared.weight"] a_ = {k: torch.zeros_like(UpperCAmelCase ) for k, v in sd.items() if k.endswith("bias" ) and k not in mapping} mapping.update(**UpperCAmelCase ) a_ , a_ = torch_model.model.load_state_dict(UpperCAmelCase , strict=UpperCAmelCase ) a_ = [ k for k in missing if k not in ["encoder.embed_positions.weight", "decoder.embed_positions.weight"] ] assert unexpected_missing == [], F'''no matches found for the following torch keys {unexpected_missing}''' assert extra == [], F'''no matches found for the following tf keys {extra}''' return torch_model def UpperCamelCase ( UpperCAmelCase="./ckpt/aeslc/model.ckpt-32000" ) ->Dict: """simple docstring""" a_ = tf.train.list_variables(UpperCAmelCase ) a_ = {} a_ = ["Adafactor", "global_step"] for name, shape in tqdm(UpperCAmelCase , desc="converting tf checkpoint to dict" ): a_ = any(pat in name for pat in ignore_name ) if skip_key: continue a_ = tf.train.load_variable(UpperCAmelCase , UpperCAmelCase ) a_ = array return tf_weights def UpperCamelCase ( UpperCAmelCase , UpperCAmelCase ) ->Union[str, Any]: """simple docstring""" a_ = Path(UpperCAmelCase ).parent.name a_ = task_specific_params[F'''summarization_{dataset}''']["max_position_embeddings"] a_ = PegasusTokenizer.from_pretrained("sshleifer/pegasus" , model_max_length=UpperCAmelCase ) assert tok.model_max_length == desired_max_model_length tok.save_pretrained(UpperCAmelCase ) # convert model a_ = get_tf_weights_as_numpy(UpperCAmelCase ) a_ = task_specific_params[F'''summarization_{dataset}'''] if dataset == "large": a_ = task_specific_params a_ = convert_pegasus(UpperCAmelCase , UpperCAmelCase ) torch_model.save_pretrained(UpperCAmelCase ) a_ = torch_model.state_dict() sd.pop("model.decoder.embed_positions.weight" ) sd.pop("model.encoder.embed_positions.weight" ) torch.save(UpperCAmelCase , Path(UpperCAmelCase ) / "pytorch_model.bin" ) if __name__ == "__main__": UpperCamelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument('tf_ckpt_path', type=str, help='passed to tf.train.list_variables') parser.add_argument('save_dir', default=None, type=str, help='Path to the output PyTorch model.') UpperCamelCase_ = parser.parse_args() if args.save_dir is None: UpperCamelCase_ = Path(args.tf_ckpt_path).parent.name UpperCamelCase_ = os.path.join('pegasus', dataset) convert_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir)
303
0
'''simple docstring''' def lowercase__( __UpperCamelCase: int = 50 ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = [1] * (length + 1) for row_length in range(length + 1 ): for tile_length in range(2 ,5 ): for tile_start in range(row_length - tile_length + 1 ): ways_number[row_length] += ways_number[ row_length - tile_start - tile_length ] return ways_number[length] if __name__ == "__main__": print(F"""{solution() = }""")
251
'''simple docstring''' from __future__ import annotations from scipy.special import comb # type: ignore class _a : '''simple docstring''' def __init__( self, A ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = list_of_points # Degree determines the flexibility of the curve. # Degree = 1 will produce a straight line. SCREAMING_SNAKE_CASE : Optional[int] = len(A ) - 1 def UpperCamelCase_ ( self, A ): '''simple docstring''' assert 0 <= t <= 1, "Time t must be between 0 and 1." SCREAMING_SNAKE_CASE : list[float] = [] for i in range(len(self.list_of_points ) ): # basis function for each i output_values.append( comb(self.degree, A ) * ((1 - t) ** (self.degree - i)) * (t**i) ) # the basis must sum up to 1 for it to produce a valid Bezier curve. assert round(sum(A ), 5 ) == 1 return output_values def UpperCamelCase_ ( self, A ): '''simple docstring''' assert 0 <= t <= 1, "Time t must be between 0 and 1." SCREAMING_SNAKE_CASE : str = self.basis_function(A ) SCREAMING_SNAKE_CASE : str = 0.0 SCREAMING_SNAKE_CASE : List[Any] = 0.0 for i in range(len(self.list_of_points ) ): # For all points, sum up the product of i-th basis function and i-th point. x += basis_function[i] * self.list_of_points[i][0] y += basis_function[i] * self.list_of_points[i][1] return (x, y) def UpperCamelCase_ ( self, A = 0.01 ): '''simple docstring''' from matplotlib import pyplot as plt # type: ignore SCREAMING_SNAKE_CASE : list[float] = [] # x coordinates of points to plot SCREAMING_SNAKE_CASE : list[float] = [] # y coordinates of points to plot SCREAMING_SNAKE_CASE : List[str] = 0.0 while t <= 1: SCREAMING_SNAKE_CASE : Optional[int] = self.bezier_curve_function(A ) to_plot_x.append(value[0] ) to_plot_y.append(value[1] ) t += step_size SCREAMING_SNAKE_CASE : List[Any] = [i[0] for i in self.list_of_points] SCREAMING_SNAKE_CASE : Union[str, Any] = [i[1] for i in self.list_of_points] plt.plot( A, A, color='blue', label='Curve of Degree ' + str(self.degree ), ) plt.scatter(A, A, color='red', label='Control Points' ) plt.legend() plt.show() if __name__ == "__main__": import doctest doctest.testmod() BezierCurve([(1, 2), (3, 5)]).plot_curve() # degree 1 BezierCurve([(0, 0), (5, 5), (5, 0)]).plot_curve() # degree 2 BezierCurve([(0, 0), (5, 5), (5, 0), (2.5, -2.5)]).plot_curve() # degree 3
251
1
import qiskit def UpperCAmelCase_ ( __UpperCAmelCase : int , __UpperCAmelCase : int ) -> qiskit.result.counts.Counts: SCREAMING_SNAKE_CASE_ = qiskit.Aer.get_backend('aer_simulator' ) # Create a Quantum Circuit acting on the q register SCREAMING_SNAKE_CASE_ = qiskit.QuantumCircuit(__UpperCAmelCase , __UpperCAmelCase ) # Map the quantum measurement to the classical bits circuit.measure([0] , [0] ) # Execute the circuit on the simulator SCREAMING_SNAKE_CASE_ = qiskit.execute(__UpperCAmelCase , __UpperCAmelCase , shots=10_00 ) # Return the histogram data of the results of the experiment. return job.result().get_counts(__UpperCAmelCase ) if __name__ == "__main__": print(f'''Total count for various states are: {single_qubit_measure(1, 1)}''')
351
from json import JSONDecodeError # Workaround for requests.exceptions.JSONDecodeError import requests def UpperCAmelCase_ ( __UpperCAmelCase : str = "isbn/0140328726" ) -> dict: SCREAMING_SNAKE_CASE_ = olid.strip().strip('/' ) # Remove leading/trailing whitespace & slashes if new_olid.count('/' ) != 1: SCREAMING_SNAKE_CASE_ = f"{olid} is not a valid Open Library olid" raise ValueError(__UpperCAmelCase ) return requests.get(f"https://openlibrary.org/{new_olid}.json" ).json() def UpperCAmelCase_ ( __UpperCAmelCase : dict ) -> dict: SCREAMING_SNAKE_CASE_ = { 'title': 'Title', 'publish_date': 'Publish date', 'authors': 'Authors', 'number_of_pages': 'Number of pages:', 'first_sentence': 'First sentence', 'isbn_10': 'ISBN (10)', 'isbn_13': 'ISBN (13)', } SCREAMING_SNAKE_CASE_ = {better_key: ol_book_data[key] for key, better_key in desired_keys.items()} SCREAMING_SNAKE_CASE_ = [ get_openlibrary_data(author['key'] )['name'] for author in data['Authors'] ] SCREAMING_SNAKE_CASE_ = data['First sentence']['value'] for key, value in data.items(): if isinstance(__UpperCAmelCase , __UpperCAmelCase ): SCREAMING_SNAKE_CASE_ = ', '.join(__UpperCAmelCase ) return data if __name__ == "__main__": import doctest doctest.testmod() while True: lowerCamelCase__ : Optional[Any] = input('\nEnter the ISBN code to search (or \'quit\' to stop): ').strip() if isbn.lower() in ("", "q", "quit", "exit", "stop"): break if len(isbn) not in (10, 13) or not isbn.isdigit(): print(f'''Sorry, {isbn} is not a valid ISBN. Please, input a valid ISBN.''') continue print(f'''\nSearching Open Library for ISBN: {isbn}...\n''') try: lowerCamelCase__ : Union[str, Any] = summarize_book(get_openlibrary_data(f'''isbn/{isbn}''')) print('\n'.join(f'''{key}: {value}''' for key, value in book_summary.items())) except JSONDecodeError: # Workaround for requests.exceptions.RequestException: print(f'''Sorry, there are no results for ISBN: {isbn}.''')
210
0
"""simple docstring""" import json import os import sys import tempfile import unittest from pathlib import Path from shutil import copyfile from huggingface_hub import HfFolder, Repository, create_repo, delete_repo from requests.exceptions import HTTPError import transformers from transformers import ( CONFIG_MAPPING, FEATURE_EXTRACTOR_MAPPING, PROCESSOR_MAPPING, TOKENIZER_MAPPING, AutoConfig, AutoFeatureExtractor, AutoProcessor, AutoTokenizer, BertTokenizer, ProcessorMixin, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaProcessor, ) from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test from transformers.tokenization_utils import TOKENIZER_CONFIG_FILE from transformers.utils import FEATURE_EXTRACTOR_NAME, is_tokenizers_available sys.path.append(str(Path(__file__).parent.parent.parent.parent / """utils""")) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402 from test_module.custom_processing import CustomProcessor # noqa E402 from test_module.custom_tokenization import CustomTokenizer # noqa E402 UpperCAmelCase_ : List[str] = get_tests_dir("""fixtures/dummy_feature_extractor_config.json""") UpperCAmelCase_ : Optional[Any] = get_tests_dir("""fixtures/vocab.json""") UpperCAmelCase_ : List[Any] = get_tests_dir("""fixtures""") class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' __UpperCamelCase = ["[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "bla", "blou"] def _SCREAMING_SNAKE_CASE ( self : str): '''simple docstring''' SCREAMING_SNAKE_CASE_ : List[Any] = 0 def _SCREAMING_SNAKE_CASE ( self : str): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Dict = AutoProcessor.from_pretrained('''facebook/wav2vec2-base-960h''') self.assertIsInstance(lowercase_ , lowercase_) def _SCREAMING_SNAKE_CASE ( self : Dict): '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdirname: SCREAMING_SNAKE_CASE_ : str = WavaVecaConfig() SCREAMING_SNAKE_CASE_ : List[str] = AutoProcessor.from_pretrained('''facebook/wav2vec2-base-960h''') # save in new folder model_config.save_pretrained(lowercase_) processor.save_pretrained(lowercase_) SCREAMING_SNAKE_CASE_ : Any = AutoProcessor.from_pretrained(lowercase_) self.assertIsInstance(lowercase_ , lowercase_) def _SCREAMING_SNAKE_CASE ( self : str): '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdirname: # copy relevant files copyfile(lowercase_ , os.path.join(lowercase_ , lowercase_)) copyfile(lowercase_ , os.path.join(lowercase_ , '''vocab.json''')) SCREAMING_SNAKE_CASE_ : Any = AutoProcessor.from_pretrained(lowercase_) self.assertIsInstance(lowercase_ , lowercase_) def _SCREAMING_SNAKE_CASE ( self : Optional[int]): '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdirname: SCREAMING_SNAKE_CASE_ : str = WavaVecaFeatureExtractor() SCREAMING_SNAKE_CASE_ : List[Any] = AutoTokenizer.from_pretrained('''facebook/wav2vec2-base-960h''') SCREAMING_SNAKE_CASE_ : Optional[int] = WavaVecaProcessor(lowercase_ , lowercase_) # save in new folder processor.save_pretrained(lowercase_) # drop `processor_class` in tokenizer with open(os.path.join(lowercase_ , lowercase_) , '''r''') as f: SCREAMING_SNAKE_CASE_ : List[Any] = json.load(lowercase_) config_dict.pop('''processor_class''') with open(os.path.join(lowercase_ , lowercase_) , '''w''') as f: f.write(json.dumps(lowercase_)) SCREAMING_SNAKE_CASE_ : List[Any] = AutoProcessor.from_pretrained(lowercase_) self.assertIsInstance(lowercase_ , lowercase_) def _SCREAMING_SNAKE_CASE ( self : Dict): '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdirname: SCREAMING_SNAKE_CASE_ : str = WavaVecaFeatureExtractor() SCREAMING_SNAKE_CASE_ : int = AutoTokenizer.from_pretrained('''facebook/wav2vec2-base-960h''') SCREAMING_SNAKE_CASE_ : str = WavaVecaProcessor(lowercase_ , lowercase_) # save in new folder processor.save_pretrained(lowercase_) # drop `processor_class` in feature extractor with open(os.path.join(lowercase_ , lowercase_) , '''r''') as f: SCREAMING_SNAKE_CASE_ : Dict = json.load(lowercase_) config_dict.pop('''processor_class''') with open(os.path.join(lowercase_ , lowercase_) , '''w''') as f: f.write(json.dumps(lowercase_)) SCREAMING_SNAKE_CASE_ : Tuple = AutoProcessor.from_pretrained(lowercase_) self.assertIsInstance(lowercase_ , lowercase_) def _SCREAMING_SNAKE_CASE ( self : Dict): '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdirname: SCREAMING_SNAKE_CASE_ : Optional[int] = WavaVecaConfig(processor_class='''Wav2Vec2Processor''') model_config.save_pretrained(lowercase_) # copy relevant files copyfile(lowercase_ , os.path.join(lowercase_ , '''vocab.json''')) # create emtpy sample processor with open(os.path.join(lowercase_ , lowercase_) , '''w''') as f: f.write('''{}''') SCREAMING_SNAKE_CASE_ : int = AutoProcessor.from_pretrained(lowercase_) self.assertIsInstance(lowercase_ , lowercase_) def _SCREAMING_SNAKE_CASE ( self : Any): '''simple docstring''' with self.assertRaises(lowercase_): SCREAMING_SNAKE_CASE_ : str = AutoProcessor.from_pretrained('''hf-internal-testing/test_dynamic_processor''') # If remote code is disabled, we can't load this config. with self.assertRaises(lowercase_): SCREAMING_SNAKE_CASE_ : Union[str, Any] = AutoProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_processor''' , trust_remote_code=lowercase_) SCREAMING_SNAKE_CASE_ : Tuple = AutoProcessor.from_pretrained('''hf-internal-testing/test_dynamic_processor''' , trust_remote_code=lowercase_) self.assertTrue(processor.special_attribute_present) self.assertEqual(processor.__class__.__name__ , '''NewProcessor''') SCREAMING_SNAKE_CASE_ : Tuple = processor.feature_extractor self.assertTrue(feature_extractor.special_attribute_present) self.assertEqual(feature_extractor.__class__.__name__ , '''NewFeatureExtractor''') SCREAMING_SNAKE_CASE_ : Union[str, Any] = processor.tokenizer self.assertTrue(tokenizer.special_attribute_present) if is_tokenizers_available(): self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizerFast''') # Test we can also load the slow version SCREAMING_SNAKE_CASE_ : Any = AutoProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_processor''' , trust_remote_code=lowercase_ , use_fast=lowercase_) SCREAMING_SNAKE_CASE_ : List[str] = new_processor.tokenizer self.assertTrue(new_tokenizer.special_attribute_present) self.assertEqual(new_tokenizer.__class__.__name__ , '''NewTokenizer''') else: self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizer''') def _SCREAMING_SNAKE_CASE ( self : List[str]): '''simple docstring''' try: AutoConfig.register('''custom''' , lowercase_) AutoFeatureExtractor.register(lowercase_ , lowercase_) AutoTokenizer.register(lowercase_ , slow_tokenizer_class=lowercase_) AutoProcessor.register(lowercase_ , lowercase_) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(lowercase_): AutoProcessor.register(lowercase_ , lowercase_) # Now that the config is registered, it can be used as any other config with the auto-API SCREAMING_SNAKE_CASE_ : Union[str, Any] = CustomFeatureExtractor.from_pretrained(lowercase_) with tempfile.TemporaryDirectory() as tmp_dir: SCREAMING_SNAKE_CASE_ : Union[str, Any] = os.path.join(lowercase_ , '''vocab.txt''') with open(lowercase_ , '''w''' , encoding='''utf-8''') as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in self.vocab_tokens])) SCREAMING_SNAKE_CASE_ : List[str] = CustomTokenizer(lowercase_) SCREAMING_SNAKE_CASE_ : Dict = CustomProcessor(lowercase_ , lowercase_) with tempfile.TemporaryDirectory() as tmp_dir: processor.save_pretrained(lowercase_) SCREAMING_SNAKE_CASE_ : str = AutoProcessor.from_pretrained(lowercase_) self.assertIsInstance(lowercase_ , lowercase_) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] if CustomConfig in PROCESSOR_MAPPING._extra_content: del PROCESSOR_MAPPING._extra_content[CustomConfig] def _SCREAMING_SNAKE_CASE ( self : int): '''simple docstring''' class lowerCAmelCase__ ( UpperCAmelCase__ ): '''simple docstring''' __UpperCamelCase = False class lowerCAmelCase__ ( UpperCAmelCase__ ): '''simple docstring''' __UpperCamelCase = False class lowerCAmelCase__ ( UpperCAmelCase__ ): '''simple docstring''' __UpperCamelCase = "AutoFeatureExtractor" __UpperCamelCase = "AutoTokenizer" __UpperCamelCase = False try: AutoConfig.register('''custom''' , lowercase_) AutoFeatureExtractor.register(lowercase_ , lowercase_) AutoTokenizer.register(lowercase_ , slow_tokenizer_class=lowercase_) AutoProcessor.register(lowercase_ , lowercase_) # If remote code is not set, the default is to use local classes. SCREAMING_SNAKE_CASE_ : int = AutoProcessor.from_pretrained('''hf-internal-testing/test_dynamic_processor''') self.assertEqual(processor.__class__.__name__ , '''NewProcessor''') self.assertFalse(processor.special_attribute_present) self.assertFalse(processor.feature_extractor.special_attribute_present) self.assertFalse(processor.tokenizer.special_attribute_present) # If remote code is disabled, we load the local ones. SCREAMING_SNAKE_CASE_ : Any = AutoProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_processor''' , trust_remote_code=lowercase_) self.assertEqual(processor.__class__.__name__ , '''NewProcessor''') self.assertFalse(processor.special_attribute_present) self.assertFalse(processor.feature_extractor.special_attribute_present) self.assertFalse(processor.tokenizer.special_attribute_present) # If remote is enabled, we load from the Hub. SCREAMING_SNAKE_CASE_ : Optional[int] = AutoProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_processor''' , trust_remote_code=lowercase_) self.assertEqual(processor.__class__.__name__ , '''NewProcessor''') self.assertTrue(processor.special_attribute_present) self.assertTrue(processor.feature_extractor.special_attribute_present) self.assertTrue(processor.tokenizer.special_attribute_present) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] if CustomConfig in PROCESSOR_MAPPING._extra_content: del PROCESSOR_MAPPING._extra_content[CustomConfig] def _SCREAMING_SNAKE_CASE ( self : List[Any]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Tuple = AutoProcessor.from_pretrained('''hf-internal-testing/tiny-random-bert''') self.assertEqual(processor.__class__.__name__ , '''BertTokenizerFast''') def _SCREAMING_SNAKE_CASE ( self : Any): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Union[str, Any] = AutoProcessor.from_pretrained('''hf-internal-testing/tiny-random-convnext''') self.assertEqual(processor.__class__.__name__ , '''ConvNextImageProcessor''') @is_staging_test class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' __UpperCamelCase = ["[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "bla", "blou"] @classmethod def _SCREAMING_SNAKE_CASE ( cls : List[Any]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Optional[int] = TOKEN HfFolder.save_token(lowercase_) @classmethod def _SCREAMING_SNAKE_CASE ( cls : str): '''simple docstring''' try: delete_repo(token=cls._token , repo_id='''test-processor''') except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''valid_org/test-processor-org''') except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''test-dynamic-processor''') except HTTPError: pass def _SCREAMING_SNAKE_CASE ( self : Any): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Optional[int] = WavaVecaProcessor.from_pretrained(lowercase_) with tempfile.TemporaryDirectory() as tmp_dir: processor.save_pretrained( os.path.join(lowercase_ , '''test-processor''') , push_to_hub=lowercase_ , use_auth_token=self._token) SCREAMING_SNAKE_CASE_ : List[str] = WavaVecaProcessor.from_pretrained(F'{USER}/test-processor') for k, v in processor.feature_extractor.__dict__.items(): self.assertEqual(lowercase_ , getattr(new_processor.feature_extractor , lowercase_)) self.assertDictEqual(new_processor.tokenizer.get_vocab() , processor.tokenizer.get_vocab()) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Tuple = WavaVecaProcessor.from_pretrained(lowercase_) with tempfile.TemporaryDirectory() as tmp_dir: processor.save_pretrained( os.path.join(lowercase_ , '''test-processor-org''') , push_to_hub=lowercase_ , use_auth_token=self._token , organization='''valid_org''' , ) SCREAMING_SNAKE_CASE_ : str = WavaVecaProcessor.from_pretrained('''valid_org/test-processor-org''') for k, v in processor.feature_extractor.__dict__.items(): self.assertEqual(lowercase_ , getattr(new_processor.feature_extractor , lowercase_)) self.assertDictEqual(new_processor.tokenizer.get_vocab() , processor.tokenizer.get_vocab()) def _SCREAMING_SNAKE_CASE ( self : Optional[int]): '''simple docstring''' CustomFeatureExtractor.register_for_auto_class() CustomTokenizer.register_for_auto_class() CustomProcessor.register_for_auto_class() SCREAMING_SNAKE_CASE_ : Optional[int] = CustomFeatureExtractor.from_pretrained(lowercase_) with tempfile.TemporaryDirectory() as tmp_dir: SCREAMING_SNAKE_CASE_ : Any = os.path.join(lowercase_ , '''vocab.txt''') with open(lowercase_ , '''w''' , encoding='''utf-8''') as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in self.vocab_tokens])) SCREAMING_SNAKE_CASE_ : List[str] = CustomTokenizer(lowercase_) SCREAMING_SNAKE_CASE_ : List[Any] = CustomProcessor(lowercase_ , lowercase_) with tempfile.TemporaryDirectory() as tmp_dir: create_repo(F'{USER}/test-dynamic-processor' , token=self._token) SCREAMING_SNAKE_CASE_ : Union[str, Any] = Repository(lowercase_ , clone_from=F'{USER}/test-dynamic-processor' , token=self._token) processor.save_pretrained(lowercase_) # This has added the proper auto_map field to the feature extractor config self.assertDictEqual( processor.feature_extractor.auto_map , { '''AutoFeatureExtractor''': '''custom_feature_extraction.CustomFeatureExtractor''', '''AutoProcessor''': '''custom_processing.CustomProcessor''', } , ) # This has added the proper auto_map field to the tokenizer config with open(os.path.join(lowercase_ , '''tokenizer_config.json''')) as f: SCREAMING_SNAKE_CASE_ : Dict = json.load(lowercase_) self.assertDictEqual( tokenizer_config['''auto_map'''] , { '''AutoTokenizer''': ['''custom_tokenization.CustomTokenizer''', None], '''AutoProcessor''': '''custom_processing.CustomProcessor''', } , ) # The code has been copied from fixtures self.assertTrue(os.path.isfile(os.path.join(lowercase_ , '''custom_feature_extraction.py'''))) self.assertTrue(os.path.isfile(os.path.join(lowercase_ , '''custom_tokenization.py'''))) self.assertTrue(os.path.isfile(os.path.join(lowercase_ , '''custom_processing.py'''))) repo.push_to_hub() SCREAMING_SNAKE_CASE_ : Tuple = AutoProcessor.from_pretrained(F'{USER}/test-dynamic-processor' , trust_remote_code=lowercase_) # Can't make an isinstance check because the new_processor is from the CustomProcessor class of a dynamic module self.assertEqual(new_processor.__class__.__name__ , '''CustomProcessor''')
91
import pytest from datasets.parallel import ParallelBackendConfig, parallel_backend from datasets.utils.py_utils import map_nested from .utils import require_dill_gt_0_3_2, require_joblibspark, require_not_windows def lowerCAmelCase__(__snake_case ) -> int: # picklable for multiprocessing '''simple docstring''' return i + 1 @require_dill_gt_0_3_2 @require_joblibspark @require_not_windows def lowerCAmelCase__() -> Any: '''simple docstring''' with parallel_backend('''spark''' ): assert ParallelBackendConfig.backend_name == "spark" lowerCamelCase__ = [1, 2, 3] with pytest.raises(__snake_case ): with parallel_backend('''unsupported backend''' ): map_nested(__snake_case ,__snake_case ,num_proc=2 ) with pytest.raises(__snake_case ): with parallel_backend('''unsupported backend''' ): map_nested(__snake_case ,__snake_case ,num_proc=-1 ) @require_dill_gt_0_3_2 @require_joblibspark @require_not_windows @pytest.mark.parametrize('''num_proc''' ,[2, -1] ) def lowerCAmelCase__(__snake_case ) -> Tuple: '''simple docstring''' lowerCamelCase__ = [1, 2] lowerCamelCase__ = {'''a''': 1, '''b''': 2} lowerCamelCase__ = {'''a''': [1, 2], '''b''': [3, 4]} lowerCamelCase__ = {'''a''': {'''1''': 1}, '''b''': 2} lowerCamelCase__ = {'''a''': 1, '''b''': 2, '''c''': 3, '''d''': 4} lowerCamelCase__ = [2, 3] lowerCamelCase__ = {'''a''': 2, '''b''': 3} lowerCamelCase__ = {'''a''': [2, 3], '''b''': [4, 5]} lowerCamelCase__ = {'''a''': {'''1''': 2}, '''b''': 3} lowerCamelCase__ = {'''a''': 2, '''b''': 3, '''c''': 4, '''d''': 5} with parallel_backend('''spark''' ): assert map_nested(__snake_case ,__snake_case ,num_proc=__snake_case ) == expected_map_nested_sa assert map_nested(__snake_case ,__snake_case ,num_proc=__snake_case ) == expected_map_nested_sa assert map_nested(__snake_case ,__snake_case ,num_proc=__snake_case ) == expected_map_nested_sa assert map_nested(__snake_case ,__snake_case ,num_proc=__snake_case ) == expected_map_nested_sa assert map_nested(__snake_case ,__snake_case ,num_proc=__snake_case ) == expected_map_nested_sa
209
0
import unittest from transformers import ( MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, Pipeline, ZeroShotClassificationPipeline, pipeline, ) from transformers.testing_utils import is_pipeline_test, nested_simplify, require_tf, require_torch, slow from .test_pipelines_common import ANY # These 2 model types require different inputs than those of the usual text models. UpperCamelCase_ = {'''LayoutLMv2Config''', '''LayoutLMv3Config'''} @is_pipeline_test class a_ ( unittest.TestCase ): UpperCamelCase__ : Union[str, Any] =MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING UpperCamelCase__ : List[Any] =TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING if model_mapping is not None: UpperCamelCase__ : int ={config: model for config, model in model_mapping.items() if config.__name__ not in _TO_SKIP} if tf_model_mapping is not None: UpperCamelCase__ : int ={ config: model for config, model in tf_model_mapping.items() if config.__name__ not in _TO_SKIP } def __a ( self :Union[str, Any] , _lowercase :str , _lowercase :Optional[Any] , _lowercase :Optional[Any]) -> Optional[Any]: UpperCAmelCase_ = ZeroShotClassificationPipeline( model=__a , tokenizer=__a , candidate_labels=['''polics''', '''health''']) return classifier, ["Who are you voting for in 2020?", "My stomach hurts."] def __a ( self :List[Any] , _lowercase :Union[str, Any] , _lowercase :Optional[int]) -> Optional[Any]: UpperCAmelCase_ = classifier('''Who are you voting for in 2020?''' , candidate_labels='''politics''') self.assertEqual(__a , {'''sequence''': ANY(__a), '''labels''': [ANY(__a)], '''scores''': [ANY(__a)]}) # No kwarg UpperCAmelCase_ = classifier('''Who are you voting for in 2020?''' , ['''politics''']) self.assertEqual(__a , {'''sequence''': ANY(__a), '''labels''': [ANY(__a)], '''scores''': [ANY(__a)]}) UpperCAmelCase_ = classifier('''Who are you voting for in 2020?''' , candidate_labels=['''politics''']) self.assertEqual(__a , {'''sequence''': ANY(__a), '''labels''': [ANY(__a)], '''scores''': [ANY(__a)]}) UpperCAmelCase_ = classifier('''Who are you voting for in 2020?''' , candidate_labels='''politics, public health''') self.assertEqual( __a , {'''sequence''': ANY(__a), '''labels''': [ANY(__a), ANY(__a)], '''scores''': [ANY(__a), ANY(__a)]}) self.assertAlmostEqual(sum(nested_simplify(outputs['''scores'''])) , 1.0) UpperCAmelCase_ = classifier('''Who are you voting for in 2020?''' , candidate_labels=['''politics''', '''public health''']) self.assertEqual( __a , {'''sequence''': ANY(__a), '''labels''': [ANY(__a), ANY(__a)], '''scores''': [ANY(__a), ANY(__a)]}) self.assertAlmostEqual(sum(nested_simplify(outputs['''scores'''])) , 1.0) UpperCAmelCase_ = classifier( '''Who are you voting for in 2020?''' , candidate_labels='''politics''' , hypothesis_template='''This text is about {}''') self.assertEqual(__a , {'''sequence''': ANY(__a), '''labels''': [ANY(__a)], '''scores''': [ANY(__a)]}) # https://github.com/huggingface/transformers/issues/13846 UpperCAmelCase_ = classifier(['''I am happy'''] , ['''positive''', '''negative''']) self.assertEqual( __a , [ {'''sequence''': ANY(__a), '''labels''': [ANY(__a), ANY(__a)], '''scores''': [ANY(__a), ANY(__a)]} for i in range(1) ] , ) UpperCAmelCase_ = classifier(['''I am happy''', '''I am sad'''] , ['''positive''', '''negative''']) self.assertEqual( __a , [ {'''sequence''': ANY(__a), '''labels''': [ANY(__a), ANY(__a)], '''scores''': [ANY(__a), ANY(__a)]} for i in range(2) ] , ) with self.assertRaises(__a): classifier('''''' , candidate_labels='''politics''') with self.assertRaises(__a): classifier(__a , candidate_labels='''politics''') with self.assertRaises(__a): classifier('''Who are you voting for in 2020?''' , candidate_labels='''''') with self.assertRaises(__a): classifier('''Who are you voting for in 2020?''' , candidate_labels=__a) with self.assertRaises(__a): classifier( '''Who are you voting for in 2020?''' , candidate_labels='''politics''' , hypothesis_template='''Not formatting template''' , ) with self.assertRaises(__a): classifier( '''Who are you voting for in 2020?''' , candidate_labels='''politics''' , hypothesis_template=__a , ) self.run_entailment_id(__a) def __a ( self :int , _lowercase :Pipeline) -> Dict: UpperCAmelCase_ = zero_shot_classifier.model.config UpperCAmelCase_ = config.labelaid UpperCAmelCase_ = zero_shot_classifier.entailment_id UpperCAmelCase_ = {'LABEL_0': 0, 'LABEL_1': 1, 'LABEL_2': 2} self.assertEqual(zero_shot_classifier.entailment_id , -1) UpperCAmelCase_ = {'entailment': 0, 'neutral': 1, 'contradiction': 2} self.assertEqual(zero_shot_classifier.entailment_id , 0) UpperCAmelCase_ = {'ENTAIL': 0, 'NON-ENTAIL': 1} self.assertEqual(zero_shot_classifier.entailment_id , 0) UpperCAmelCase_ = {'ENTAIL': 2, 'NEUTRAL': 1, 'CONTR': 0} self.assertEqual(zero_shot_classifier.entailment_id , 2) UpperCAmelCase_ = original_labelaid self.assertEqual(__a , zero_shot_classifier.entailment_id) @require_torch def __a ( self :Union[str, Any]) -> List[str]: UpperCAmelCase_ = pipeline( '''zero-shot-classification''' , model='''sshleifer/tiny-distilbert-base-cased-distilled-squad''' , framework='''pt''' , ) # There was a regression in 4.10 for this # Adding a test so we don't make the mistake again. # https://github.com/huggingface/transformers/issues/13381#issuecomment-912343499 zero_shot_classifier( '''Who are you voting for in 2020?''' * 100 , candidate_labels=['''politics''', '''public health''', '''science''']) @require_torch def __a ( self :List[Any]) -> Any: UpperCAmelCase_ = pipeline( '''zero-shot-classification''' , model='''sshleifer/tiny-distilbert-base-cased-distilled-squad''' , framework='''pt''' , ) UpperCAmelCase_ = zero_shot_classifier( '''Who are you voting for in 2020?''' , candidate_labels=['''politics''', '''public health''', '''science''']) self.assertEqual( nested_simplify(__a) , { '''sequence''': '''Who are you voting for in 2020?''', '''labels''': ['''science''', '''public health''', '''politics'''], '''scores''': [0.333, 0.333, 0.333], } , ) @require_tf def __a ( self :Any) -> Union[str, Any]: UpperCAmelCase_ = pipeline( '''zero-shot-classification''' , model='''sshleifer/tiny-distilbert-base-cased-distilled-squad''' , framework='''tf''' , ) UpperCAmelCase_ = zero_shot_classifier( '''Who are you voting for in 2020?''' , candidate_labels=['''politics''', '''public health''', '''science''']) self.assertEqual( nested_simplify(__a) , { '''sequence''': '''Who are you voting for in 2020?''', '''labels''': ['''science''', '''public health''', '''politics'''], '''scores''': [0.333, 0.333, 0.333], } , ) @slow @require_torch def __a ( self :List[str]) -> Any: UpperCAmelCase_ = pipeline('''zero-shot-classification''' , model='''roberta-large-mnli''' , framework='''pt''') UpperCAmelCase_ = zero_shot_classifier( '''Who are you voting for in 2020?''' , candidate_labels=['''politics''', '''public health''', '''science''']) self.assertEqual( nested_simplify(__a) , { '''sequence''': '''Who are you voting for in 2020?''', '''labels''': ['''politics''', '''public health''', '''science'''], '''scores''': [0.976, 0.015, 0.009], } , ) UpperCAmelCase_ = zero_shot_classifier( '''The dominant sequence transduction models are based on complex recurrent or convolutional neural networks''' ''' in an encoder-decoder configuration. The best performing models also connect the encoder and decoder''' ''' through an attention mechanism. We propose a new simple network architecture, the Transformer, based''' ''' solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two''' ''' machine translation tasks show these models to be superior in quality while being more parallelizable''' ''' and requiring significantly less time to train. Our model achieves 28.4 BLEU on the WMT 2014''' ''' English-to-German translation task, improving over the existing best results, including ensembles by''' ''' over 2 BLEU. On the WMT 2014 English-to-French translation task, our model establishes a new''' ''' single-model state-of-the-art BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small''' ''' fraction of the training costs of the best models from the literature. We show that the Transformer''' ''' generalizes well to other tasks by applying it successfully to English constituency parsing both with''' ''' large and limited training data.''' , candidate_labels=['''machine learning''', '''statistics''', '''translation''', '''vision'''] , multi_label=__a , ) self.assertEqual( nested_simplify(__a) , { '''sequence''': ( '''The dominant sequence transduction models are based on complex recurrent or convolutional neural''' ''' networks in an encoder-decoder configuration. The best performing models also connect the''' ''' encoder and decoder through an attention mechanism. We propose a new simple network''' ''' architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence''' ''' and convolutions entirely. Experiments on two machine translation tasks show these models to be''' ''' superior in quality while being more parallelizable and requiring significantly less time to''' ''' train. Our model achieves 28.4 BLEU on the WMT 2014 English-to-German translation task,''' ''' improving over the existing best results, including ensembles by over 2 BLEU. On the WMT 2014''' ''' English-to-French translation task, our model establishes a new single-model state-of-the-art''' ''' BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small fraction of the training''' ''' costs of the best models from the literature. We show that the Transformer generalizes well to''' ''' other tasks by applying it successfully to English constituency parsing both with large and''' ''' limited training data.''' ), '''labels''': ['''translation''', '''machine learning''', '''vision''', '''statistics'''], '''scores''': [0.817, 0.713, 0.018, 0.018], } , ) @slow @require_tf def __a ( self :str) -> Any: UpperCAmelCase_ = pipeline('''zero-shot-classification''' , model='''roberta-large-mnli''' , framework='''tf''') UpperCAmelCase_ = zero_shot_classifier( '''Who are you voting for in 2020?''' , candidate_labels=['''politics''', '''public health''', '''science''']) self.assertEqual( nested_simplify(__a) , { '''sequence''': '''Who are you voting for in 2020?''', '''labels''': ['''politics''', '''public health''', '''science'''], '''scores''': [0.976, 0.015, 0.009], } , ) UpperCAmelCase_ = zero_shot_classifier( '''The dominant sequence transduction models are based on complex recurrent or convolutional neural networks''' ''' in an encoder-decoder configuration. The best performing models also connect the encoder and decoder''' ''' through an attention mechanism. We propose a new simple network architecture, the Transformer, based''' ''' solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two''' ''' machine translation tasks show these models to be superior in quality while being more parallelizable''' ''' and requiring significantly less time to train. Our model achieves 28.4 BLEU on the WMT 2014''' ''' English-to-German translation task, improving over the existing best results, including ensembles by''' ''' over 2 BLEU. On the WMT 2014 English-to-French translation task, our model establishes a new''' ''' single-model state-of-the-art BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small''' ''' fraction of the training costs of the best models from the literature. We show that the Transformer''' ''' generalizes well to other tasks by applying it successfully to English constituency parsing both with''' ''' large and limited training data.''' , candidate_labels=['''machine learning''', '''statistics''', '''translation''', '''vision'''] , multi_label=__a , ) self.assertEqual( nested_simplify(__a) , { '''sequence''': ( '''The dominant sequence transduction models are based on complex recurrent or convolutional neural''' ''' networks in an encoder-decoder configuration. The best performing models also connect the''' ''' encoder and decoder through an attention mechanism. We propose a new simple network''' ''' architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence''' ''' and convolutions entirely. Experiments on two machine translation tasks show these models to be''' ''' superior in quality while being more parallelizable and requiring significantly less time to''' ''' train. Our model achieves 28.4 BLEU on the WMT 2014 English-to-German translation task,''' ''' improving over the existing best results, including ensembles by over 2 BLEU. On the WMT 2014''' ''' English-to-French translation task, our model establishes a new single-model state-of-the-art''' ''' BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small fraction of the training''' ''' costs of the best models from the literature. We show that the Transformer generalizes well to''' ''' other tasks by applying it successfully to English constituency parsing both with large and''' ''' limited training data.''' ), '''labels''': ['''translation''', '''machine learning''', '''vision''', '''statistics'''], '''scores''': [0.817, 0.713, 0.018, 0.018], } , )
350
def A ( __UpperCAmelCase = 100_0000 ) -> int: '''simple docstring''' UpperCAmelCase_ = [i - 1 for i in range(limit + 1 )] for i in range(2 , limit + 1 ): if phi[i] == i - 1: for j in range(2 * i , limit + 1 , __UpperCAmelCase ): phi[j] -= phi[j] // i return sum(phi[2 : limit + 1] ) if __name__ == "__main__": print(solution())
344
0
import argparse import json import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import AutoImageProcessor, SwinConfig, SwinForImageClassification def lowercase_ ( _A : Optional[int] ): """simple docstring""" lowerCamelCase__ : Optional[Any] = SwinConfig() lowerCamelCase__ : Any = swin_name.split("_" ) lowerCamelCase__ : Optional[int] = name_split[1] lowerCamelCase__ : Optional[int] = int(name_split[4] ) lowerCamelCase__ : Any = int(name_split[3][-1] ) if model_size == "tiny": lowerCamelCase__ : Tuple = 96 lowerCamelCase__ : Optional[int] = (2, 2, 6, 2) lowerCamelCase__ : Optional[Any] = (3, 6, 12, 24) elif model_size == "small": lowerCamelCase__ : Optional[int] = 96 lowerCamelCase__ : Tuple = (2, 2, 18, 2) lowerCamelCase__ : str = (3, 6, 12, 24) elif model_size == "base": lowerCamelCase__ : Optional[Any] = 128 lowerCamelCase__ : Optional[Any] = (2, 2, 18, 2) lowerCamelCase__ : Tuple = (4, 8, 16, 32) else: lowerCamelCase__ : List[str] = 192 lowerCamelCase__ : Tuple = (2, 2, 18, 2) lowerCamelCase__ : int = (6, 12, 24, 48) if "in22k" in swin_name: lowerCamelCase__ : Optional[Any] = 21841 else: lowerCamelCase__ : Union[str, Any] = 1000 lowerCamelCase__ : Tuple = "huggingface/label-files" lowerCamelCase__ : Tuple = "imagenet-1k-id2label.json" lowerCamelCase__ : Any = json.load(open(hf_hub_download(_A , _A , repo_type="dataset" ) , "r" ) ) lowerCamelCase__ : List[Any] = {int(_A ): v for k, v in idalabel.items()} lowerCamelCase__ : List[Any] = idalabel lowerCamelCase__ : str = {v: k for k, v in idalabel.items()} lowerCamelCase__ : str = img_size lowerCamelCase__ : Union[str, Any] = num_classes lowerCamelCase__ : str = embed_dim lowerCamelCase__ : str = depths lowerCamelCase__ : Any = num_heads lowerCamelCase__ : Union[str, Any] = window_size return config def lowercase_ ( _A : str ): """simple docstring""" if "patch_embed.proj" in name: lowerCamelCase__ : Union[str, Any] = name.replace("patch_embed.proj" , "embeddings.patch_embeddings.projection" ) if "patch_embed.norm" in name: lowerCamelCase__ : Union[str, Any] = name.replace("patch_embed.norm" , "embeddings.norm" ) if "layers" in name: lowerCamelCase__ : Union[str, Any] = "encoder." + name if "attn.proj" in name: lowerCamelCase__ : Optional[Any] = name.replace("attn.proj" , "attention.output.dense" ) if "attn" in name: lowerCamelCase__ : Union[str, Any] = name.replace("attn" , "attention.self" ) if "norm1" in name: lowerCamelCase__ : int = name.replace("norm1" , "layernorm_before" ) if "norm2" in name: lowerCamelCase__ : Tuple = name.replace("norm2" , "layernorm_after" ) if "mlp.fc1" in name: lowerCamelCase__ : List[str] = name.replace("mlp.fc1" , "intermediate.dense" ) if "mlp.fc2" in name: lowerCamelCase__ : Dict = name.replace("mlp.fc2" , "output.dense" ) if name == "norm.weight": lowerCamelCase__ : Union[str, Any] = "layernorm.weight" if name == "norm.bias": lowerCamelCase__ : str = "layernorm.bias" if "head" in name: lowerCamelCase__ : Optional[int] = name.replace("head" , "classifier" ) else: lowerCamelCase__ : Optional[Any] = "swin." + name return name def lowercase_ ( _A : List[Any] , _A : List[str] ): """simple docstring""" for key in orig_state_dict.copy().keys(): lowerCamelCase__ : Tuple = orig_state_dict.pop(_A ) if "mask" in key: continue elif "qkv" in key: lowerCamelCase__ : str = key.split("." ) lowerCamelCase__ : Optional[int] = int(key_split[1] ) lowerCamelCase__ : Optional[int] = int(key_split[3] ) lowerCamelCase__ : Any = model.swin.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: lowerCamelCase__ : str = val[:dim, :] lowerCamelCase__ : List[str] = val[ dim : dim * 2, : ] lowerCamelCase__ : List[Any] = val[-dim:, :] else: lowerCamelCase__ : str = val[ :dim ] lowerCamelCase__ : Tuple = val[ dim : dim * 2 ] lowerCamelCase__ : int = val[ -dim: ] else: lowerCamelCase__ : Tuple = val return orig_state_dict def lowercase_ ( _A : List[Any] , _A : List[Any] ): """simple docstring""" lowerCamelCase__ : Any = timm.create_model(_A , pretrained=_A ) timm_model.eval() lowerCamelCase__ : List[Any] = get_swin_config(_A ) lowerCamelCase__ : Dict = SwinForImageClassification(_A ) model.eval() lowerCamelCase__ : List[Any] = convert_state_dict(timm_model.state_dict() , _A ) model.load_state_dict(_A ) lowerCamelCase__ : Union[str, Any] = "http://images.cocodataset.org/val2017/000000039769.jpg" lowerCamelCase__ : int = AutoImageProcessor.from_pretrained("microsoft/{}".format(swin_name.replace("_" , "-" ) ) ) lowerCamelCase__ : Any = Image.open(requests.get(_A , stream=_A ).raw ) lowerCamelCase__ : int = image_processor(images=_A , return_tensors="pt" ) lowerCamelCase__ : List[Any] = timm_model(inputs["pixel_values"] ) lowerCamelCase__ : List[str] = model(**_A ).logits assert torch.allclose(_A , _A , atol=1E-3 ) print(F"Saving model {swin_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(_A ) print(F"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(_A ) if __name__ == "__main__": A : Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--swin_name", default="swin_tiny_patch4_window7_224", type=str, help="Name of the Swin timm model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) A : Optional[Any] = parser.parse_args() convert_swin_checkpoint(args.swin_name, args.pytorch_dump_folder_path)
184
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging A : Union[str, Any] = logging.get_logger(__name__) A : Optional[Any] = { "xlm-roberta-base": "https://huggingface.co/xlm-roberta-base/resolve/main/config.json", "xlm-roberta-large": "https://huggingface.co/xlm-roberta-large/resolve/main/config.json", "xlm-roberta-large-finetuned-conll02-dutch": ( "https://huggingface.co/xlm-roberta-large-finetuned-conll02-dutch/resolve/main/config.json" ), "xlm-roberta-large-finetuned-conll02-spanish": ( "https://huggingface.co/xlm-roberta-large-finetuned-conll02-spanish/resolve/main/config.json" ), "xlm-roberta-large-finetuned-conll03-english": ( "https://huggingface.co/xlm-roberta-large-finetuned-conll03-english/resolve/main/config.json" ), "xlm-roberta-large-finetuned-conll03-german": ( "https://huggingface.co/xlm-roberta-large-finetuned-conll03-german/resolve/main/config.json" ), } class _lowercase ( lowercase__): """simple docstring""" A__ = "xlm-roberta" def __init__( self : Union[str, Any] , __lowerCamelCase : Optional[Any]=30522 , __lowerCamelCase : List[Any]=768 , __lowerCamelCase : Union[str, Any]=12 , __lowerCamelCase : int=12 , __lowerCamelCase : Dict=3072 , __lowerCamelCase : Optional[int]="gelu" , __lowerCamelCase : Optional[Any]=0.1 , __lowerCamelCase : Tuple=0.1 , __lowerCamelCase : str=512 , __lowerCamelCase : Optional[Any]=2 , __lowerCamelCase : Dict=0.0_2 , __lowerCamelCase : List[str]=1E-1_2 , __lowerCamelCase : Optional[int]=1 , __lowerCamelCase : Union[str, Any]=0 , __lowerCamelCase : Optional[int]=2 , __lowerCamelCase : Dict="absolute" , __lowerCamelCase : Optional[Any]=True , __lowerCamelCase : Tuple=None , **__lowerCamelCase : int , ): '''simple docstring''' super().__init__(pad_token_id=__lowerCamelCase , bos_token_id=__lowerCamelCase , eos_token_id=__lowerCamelCase , **__lowerCamelCase ) lowerCamelCase__ : str = vocab_size lowerCamelCase__ : Any = hidden_size lowerCamelCase__ : Optional[Any] = num_hidden_layers lowerCamelCase__ : Union[str, Any] = num_attention_heads lowerCamelCase__ : Any = hidden_act lowerCamelCase__ : str = intermediate_size lowerCamelCase__ : Optional[int] = hidden_dropout_prob lowerCamelCase__ : Any = attention_probs_dropout_prob lowerCamelCase__ : Union[str, Any] = max_position_embeddings lowerCamelCase__ : List[str] = type_vocab_size lowerCamelCase__ : Tuple = initializer_range lowerCamelCase__ : Tuple = layer_norm_eps lowerCamelCase__ : Any = position_embedding_type lowerCamelCase__ : Any = use_cache lowerCamelCase__ : Any = classifier_dropout class _lowercase ( lowercase__): """simple docstring""" @property def lowerCAmelCase ( self : Union[str, Any] ): '''simple docstring''' if self.task == "multiple-choice": lowerCamelCase__ : List[str] = {0: "batch", 1: "choice", 2: "sequence"} else: lowerCamelCase__ : Any = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ] )
184
1
'''simple docstring''' import os from collections import namedtuple import pytest from datasets import ClassLabel, Features, Sequence, Value from datasets.commands.test import TestCommand from datasets.info import DatasetInfo, DatasetInfosDict lowercase__ = namedtuple( "_TestCommandArgs", [ "dataset", "name", "cache_dir", "data_dir", "all_configs", "save_infos", "ignore_verifications", "force_redownload", "clear_cache", ], defaults=[None, None, None, False, False, False, False, False], ) def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ ): return (abs(source - target ) / target) < 0.01 @pytest.mark.integration def UpperCamelCase( UpperCAmelCase_ ): UpperCAmelCase : Union[str, Any] = _TestCommandArgs(dataset=UpperCAmelCase_ , all_configs=UpperCAmelCase_ , save_infos=UpperCAmelCase_ ) UpperCAmelCase : Dict = TestCommand(*UpperCAmelCase_ ) test_command.run() UpperCAmelCase : Optional[int] = os.path.join(UpperCAmelCase_ , 'README.md' ) assert os.path.exists(UpperCAmelCase_ ) UpperCAmelCase : List[str] = DatasetInfosDict.from_directory(UpperCAmelCase_ ) UpperCAmelCase : int = DatasetInfosDict( { 'default': DatasetInfo( features=Features( { 'tokens': Sequence(Value('string' ) ), 'ner_tags': Sequence( ClassLabel(names=['O', 'B-PER', 'I-PER', 'B-ORG', 'I-ORG', 'B-LOC', 'I-LOC'] ) ), 'langs': Sequence(Value('string' ) ), 'spans': Sequence(Value('string' ) ), } ) , splits=[ { 'name': 'train', 'num_bytes': 2_35_15_63, 'num_examples': 1_00_00, }, { 'name': 'validation', 'num_bytes': 23_84_18, 'num_examples': 10_00, }, ] , download_size=3_94_06_80 , dataset_size=2_58_99_81 , ) } ) assert dataset_infos.keys() == expected_dataset_infos.keys() for key in DatasetInfo._INCLUDED_INFO_IN_YAML: UpperCAmelCase , UpperCAmelCase : Tuple = getattr(dataset_infos['default'] , UpperCAmelCase_ ), getattr(expected_dataset_infos['default'] , UpperCAmelCase_ ) if key == "num_bytes": assert is_apercent_close(UpperCAmelCase_ , UpperCAmelCase_ ) elif key == "splits": assert list(UpperCAmelCase_ ) == list(UpperCAmelCase_ ) for split in result: assert result[split].name == expected[split].name assert result[split].num_examples == expected[split].num_examples assert is_apercent_close(result[split].num_bytes , expected[split].num_bytes ) else: result == expected
280
'''simple docstring''' import argparse import json from tqdm import tqdm def UpperCamelCase( ): UpperCAmelCase : List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--src_path' , type=UpperCAmelCase_ , default='biencoder-nq-dev.json' , help='Path to raw DPR training data' , ) parser.add_argument( '--evaluation_set' , type=UpperCAmelCase_ , help='where to store parsed evaluation_set file' , ) parser.add_argument( '--gold_data_path' , type=UpperCAmelCase_ , help='where to store parsed gold_data_path file' , ) UpperCAmelCase : int = parser.parse_args() with open(args.src_path , 'r' ) as src_file, open(args.evaluation_set , 'w' ) as eval_file, open( args.gold_data_path , 'w' ) as gold_file: UpperCAmelCase : int = json.load(UpperCAmelCase_ ) for dpr_record in tqdm(UpperCAmelCase_ ): UpperCAmelCase : Any = dpr_record['question'] UpperCAmelCase : List[str] = [context['title'] for context in dpr_record['positive_ctxs']] eval_file.write(question + '\n' ) gold_file.write('\t'.join(UpperCAmelCase_ ) + '\n' ) if __name__ == "__main__": main()
280
1
import gc import unittest import numpy as np import torch import torch.nn.functional as F from transformers import ( ClapTextConfig, ClapTextModelWithProjection, RobertaTokenizer, SpeechTaHifiGan, SpeechTaHifiGanConfig, ) from diffusers import ( AudioLDMPipeline, AutoencoderKL, DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.utils import is_xformers_available, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism from ..pipeline_params import TEXT_TO_AUDIO_BATCH_PARAMS, TEXT_TO_AUDIO_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class A_ ( snake_case__ , unittest.TestCase ): _lowercase : Any = AudioLDMPipeline _lowercase : Optional[int] = TEXT_TO_AUDIO_PARAMS _lowercase : Tuple = TEXT_TO_AUDIO_BATCH_PARAMS _lowercase : Any = frozenset( [ 'num_inference_steps', 'num_waveforms_per_prompt', 'generator', 'latents', 'output_type', 'return_dict', 'callback', 'callback_steps', ] ) def UpperCAmelCase ( self : str ) -> Optional[int]: torch.manual_seed(0 ) __lowerCAmelCase: Union[str, Any] = UNetaDConditionModel( block_out_channels=(3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=(3_2, 6_4) , class_embed_type='simple_projection' , projection_class_embeddings_input_dim=3_2 , class_embeddings_concat=UpperCAmelCase , ) __lowerCAmelCase: Optional[int] = DDIMScheduler( beta_start=0.00085 , beta_end=0.012 , beta_schedule='scaled_linear' , clip_sample=UpperCAmelCase , set_alpha_to_one=UpperCAmelCase , ) torch.manual_seed(0 ) __lowerCAmelCase: List[str] = AutoencoderKL( block_out_channels=[3_2, 6_4] , in_channels=1 , out_channels=1 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , ) torch.manual_seed(0 ) __lowerCAmelCase: Optional[int] = ClapTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=3_2 , intermediate_size=3_7 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , projection_dim=3_2 , ) __lowerCAmelCase: List[str] = ClapTextModelWithProjection(UpperCAmelCase ) __lowerCAmelCase: Any = RobertaTokenizer.from_pretrained('hf-internal-testing/tiny-random-roberta' , model_max_length=7_7 ) __lowerCAmelCase: int = SpeechTaHifiGanConfig( model_in_dim=8 , sampling_rate=1_6_0_0_0 , upsample_initial_channel=1_6 , upsample_rates=[2, 2] , upsample_kernel_sizes=[4, 4] , resblock_kernel_sizes=[3, 7] , resblock_dilation_sizes=[[1, 3, 5], [1, 3, 5]] , normalize_before=UpperCAmelCase , ) __lowerCAmelCase: Union[str, Any] = SpeechTaHifiGan(UpperCAmelCase ) __lowerCAmelCase: List[Any] = { 'unet': unet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'vocoder': vocoder, } return components def UpperCAmelCase ( self : Tuple , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Optional[int]=0 ) -> Dict: if str(UpperCAmelCase ).startswith('mps' ): __lowerCAmelCase: Optional[Any] = torch.manual_seed(UpperCAmelCase ) else: __lowerCAmelCase: str = torch.Generator(device=UpperCAmelCase ).manual_seed(UpperCAmelCase ) __lowerCAmelCase: int = { 'prompt': 'A hammer hitting a wooden surface', 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 6.0, } return inputs def UpperCAmelCase ( self : Any ) -> List[str]: __lowerCAmelCase: str = 'cpu' # ensure determinism for the device-dependent torch.Generator __lowerCAmelCase: List[Any] = self.get_dummy_components() __lowerCAmelCase: Optional[Any] = AudioLDMPipeline(**UpperCAmelCase ) __lowerCAmelCase: Optional[Any] = audioldm_pipe.to(UpperCAmelCase ) audioldm_pipe.set_progress_bar_config(disable=UpperCAmelCase ) __lowerCAmelCase: List[Any] = self.get_dummy_inputs(UpperCAmelCase ) __lowerCAmelCase: Optional[int] = audioldm_pipe(**UpperCAmelCase ) __lowerCAmelCase: Union[str, Any] = output.audios[0] assert audio.ndim == 1 assert len(UpperCAmelCase ) == 2_5_6 __lowerCAmelCase: Any = audio[:1_0] __lowerCAmelCase: Any = np.array( [-0.0050, 0.0050, -0.0060, 0.0033, -0.0026, 0.0033, -0.0027, 0.0033, -0.0028, 0.0033] ) assert np.abs(audio_slice - expected_slice ).max() < 1E-2 def UpperCAmelCase ( self : List[Any] ) -> Union[str, Any]: __lowerCAmelCase: Any = self.get_dummy_components() __lowerCAmelCase: str = AudioLDMPipeline(**UpperCAmelCase ) __lowerCAmelCase: Optional[int] = audioldm_pipe.to(UpperCAmelCase ) __lowerCAmelCase: List[Any] = audioldm_pipe.to(UpperCAmelCase ) audioldm_pipe.set_progress_bar_config(disable=UpperCAmelCase ) __lowerCAmelCase: Any = self.get_dummy_inputs(UpperCAmelCase ) __lowerCAmelCase: str = 3 * [inputs['prompt']] # forward __lowerCAmelCase: Optional[Any] = audioldm_pipe(**UpperCAmelCase ) __lowerCAmelCase: List[str] = output.audios[0] __lowerCAmelCase: Optional[int] = self.get_dummy_inputs(UpperCAmelCase ) __lowerCAmelCase: int = 3 * [inputs.pop('prompt' )] __lowerCAmelCase: Union[str, Any] = audioldm_pipe.tokenizer( UpperCAmelCase , padding='max_length' , max_length=audioldm_pipe.tokenizer.model_max_length , truncation=UpperCAmelCase , return_tensors='pt' , ) __lowerCAmelCase: Dict = text_inputs['input_ids'].to(UpperCAmelCase ) __lowerCAmelCase: Optional[int] = audioldm_pipe.text_encoder( UpperCAmelCase , ) __lowerCAmelCase: str = prompt_embeds.text_embeds # additional L_2 normalization over each hidden-state __lowerCAmelCase: Dict = F.normalize(UpperCAmelCase , dim=-1 ) __lowerCAmelCase: Tuple = prompt_embeds # forward __lowerCAmelCase: Tuple = audioldm_pipe(**UpperCAmelCase ) __lowerCAmelCase: Optional[Any] = output.audios[0] assert np.abs(audio_a - audio_a ).max() < 1E-2 def UpperCAmelCase ( self : List[str] ) -> int: __lowerCAmelCase: Union[str, Any] = self.get_dummy_components() __lowerCAmelCase: Dict = AudioLDMPipeline(**UpperCAmelCase ) __lowerCAmelCase: str = audioldm_pipe.to(UpperCAmelCase ) __lowerCAmelCase: Optional[int] = audioldm_pipe.to(UpperCAmelCase ) audioldm_pipe.set_progress_bar_config(disable=UpperCAmelCase ) __lowerCAmelCase: List[Any] = self.get_dummy_inputs(UpperCAmelCase ) __lowerCAmelCase: List[Any] = 3 * ['this is a negative prompt'] __lowerCAmelCase: List[Any] = negative_prompt __lowerCAmelCase: Optional[int] = 3 * [inputs['prompt']] # forward __lowerCAmelCase: int = audioldm_pipe(**UpperCAmelCase ) __lowerCAmelCase: int = output.audios[0] __lowerCAmelCase: str = self.get_dummy_inputs(UpperCAmelCase ) __lowerCAmelCase: Union[str, Any] = 3 * [inputs.pop('prompt' )] __lowerCAmelCase: Union[str, Any] = [] for p in [prompt, negative_prompt]: __lowerCAmelCase: str = audioldm_pipe.tokenizer( UpperCAmelCase , padding='max_length' , max_length=audioldm_pipe.tokenizer.model_max_length , truncation=UpperCAmelCase , return_tensors='pt' , ) __lowerCAmelCase: Optional[Any] = text_inputs['input_ids'].to(UpperCAmelCase ) __lowerCAmelCase: Tuple = audioldm_pipe.text_encoder( UpperCAmelCase , ) __lowerCAmelCase: List[Any] = text_embeds.text_embeds # additional L_2 normalization over each hidden-state __lowerCAmelCase: Any = F.normalize(UpperCAmelCase , dim=-1 ) embeds.append(UpperCAmelCase ) __lowerCAmelCase , __lowerCAmelCase: str = embeds # forward __lowerCAmelCase: Union[str, Any] = audioldm_pipe(**UpperCAmelCase ) __lowerCAmelCase: List[str] = output.audios[0] assert np.abs(audio_a - audio_a ).max() < 1E-2 def UpperCAmelCase ( self : str ) -> List[str]: __lowerCAmelCase: Tuple = 'cpu' # ensure determinism for the device-dependent torch.Generator __lowerCAmelCase: str = self.get_dummy_components() __lowerCAmelCase: Tuple = PNDMScheduler(skip_prk_steps=UpperCAmelCase ) __lowerCAmelCase: List[str] = AudioLDMPipeline(**UpperCAmelCase ) __lowerCAmelCase: Optional[Any] = audioldm_pipe.to(UpperCAmelCase ) audioldm_pipe.set_progress_bar_config(disable=UpperCAmelCase ) __lowerCAmelCase: Optional[Any] = self.get_dummy_inputs(UpperCAmelCase ) __lowerCAmelCase: Any = 'egg cracking' __lowerCAmelCase: str = audioldm_pipe(**UpperCAmelCase , negative_prompt=UpperCAmelCase ) __lowerCAmelCase: Tuple = output.audios[0] assert audio.ndim == 1 assert len(UpperCAmelCase ) == 2_5_6 __lowerCAmelCase: List[Any] = audio[:1_0] __lowerCAmelCase: Optional[Any] = np.array( [-0.0051, 0.0050, -0.0060, 0.0034, -0.0026, 0.0033, -0.0027, 0.0033, -0.0028, 0.0032] ) assert np.abs(audio_slice - expected_slice ).max() < 1E-2 def UpperCAmelCase ( self : Any ) -> Optional[Any]: __lowerCAmelCase: Optional[Any] = 'cpu' # ensure determinism for the device-dependent torch.Generator __lowerCAmelCase: List[str] = self.get_dummy_components() __lowerCAmelCase: Dict = PNDMScheduler(skip_prk_steps=UpperCAmelCase ) __lowerCAmelCase: Optional[int] = AudioLDMPipeline(**UpperCAmelCase ) __lowerCAmelCase: Optional[Any] = audioldm_pipe.to(UpperCAmelCase ) audioldm_pipe.set_progress_bar_config(disable=UpperCAmelCase ) __lowerCAmelCase: List[Any] = 'A hammer hitting a wooden surface' # test num_waveforms_per_prompt=1 (default) __lowerCAmelCase: List[str] = audioldm_pipe(UpperCAmelCase , num_inference_steps=2 ).audios assert audios.shape == (1, 2_5_6) # test num_waveforms_per_prompt=1 (default) for batch of prompts __lowerCAmelCase: List[Any] = 2 __lowerCAmelCase: Optional[int] = audioldm_pipe([prompt] * batch_size , num_inference_steps=2 ).audios assert audios.shape == (batch_size, 2_5_6) # test num_waveforms_per_prompt for single prompt __lowerCAmelCase: Dict = 2 __lowerCAmelCase: Optional[int] = audioldm_pipe(UpperCAmelCase , num_inference_steps=2 , num_waveforms_per_prompt=UpperCAmelCase ).audios assert audios.shape == (num_waveforms_per_prompt, 2_5_6) # test num_waveforms_per_prompt for batch of prompts __lowerCAmelCase: List[Any] = 2 __lowerCAmelCase: Tuple = audioldm_pipe( [prompt] * batch_size , num_inference_steps=2 , num_waveforms_per_prompt=UpperCAmelCase ).audios assert audios.shape == (batch_size * num_waveforms_per_prompt, 2_5_6) def UpperCAmelCase ( self : List[Any] ) -> str: __lowerCAmelCase: Dict = 'cpu' # ensure determinism for the device-dependent torch.Generator __lowerCAmelCase: Dict = self.get_dummy_components() __lowerCAmelCase: Any = AudioLDMPipeline(**UpperCAmelCase ) __lowerCAmelCase: Any = audioldm_pipe.to(UpperCAmelCase ) audioldm_pipe.set_progress_bar_config(disable=UpperCAmelCase ) __lowerCAmelCase: Dict = audioldm_pipe.vocoder.config.sampling_rate __lowerCAmelCase: List[str] = self.get_dummy_inputs(UpperCAmelCase ) __lowerCAmelCase: Dict = audioldm_pipe(audio_length_in_s=0.016 , **UpperCAmelCase ) __lowerCAmelCase: int = output.audios[0] assert audio.ndim == 1 assert len(UpperCAmelCase ) / vocoder_sampling_rate == 0.016 __lowerCAmelCase: List[Any] = audioldm_pipe(audio_length_in_s=0.032 , **UpperCAmelCase ) __lowerCAmelCase: Optional[int] = output.audios[0] assert audio.ndim == 1 assert len(UpperCAmelCase ) / vocoder_sampling_rate == 0.032 def UpperCAmelCase ( self : str ) -> str: __lowerCAmelCase: int = self.get_dummy_components() __lowerCAmelCase: int = AudioLDMPipeline(**UpperCAmelCase ) __lowerCAmelCase: Optional[Any] = audioldm_pipe.to(UpperCAmelCase ) audioldm_pipe.set_progress_bar_config(disable=UpperCAmelCase ) __lowerCAmelCase: Union[str, Any] = ['hey'] __lowerCAmelCase: Optional[int] = audioldm_pipe(UpperCAmelCase , num_inference_steps=1 ) __lowerCAmelCase: List[str] = output.audios.shape assert audio_shape == (1, 2_5_6) __lowerCAmelCase: str = audioldm_pipe.vocoder.config config.model_in_dim *= 2 __lowerCAmelCase: int = SpeechTaHifiGan(UpperCAmelCase ).to(UpperCAmelCase ) __lowerCAmelCase: Dict = audioldm_pipe(UpperCAmelCase , num_inference_steps=1 ) __lowerCAmelCase: List[Any] = output.audios.shape # waveform shape is unchanged, we just have 2x the number of mel channels in the spectrogram assert audio_shape == (1, 2_5_6) def UpperCAmelCase ( self : Optional[Any] ) -> Optional[Any]: self._test_attention_slicing_forward_pass(test_mean_pixel_difference=UpperCAmelCase ) def UpperCAmelCase ( self : Union[str, Any] ) -> Any: self._test_inference_batch_single_identical(test_mean_pixel_difference=UpperCAmelCase ) @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available() , reason='XFormers attention is only available with CUDA and `xformers` installed' , ) def UpperCAmelCase ( self : List[str] ) -> Optional[int]: self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=UpperCAmelCase ) @slow class A_ ( unittest.TestCase ): def UpperCAmelCase ( self : Tuple ) -> int: super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCAmelCase ( self : Any , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Any="cpu" , UpperCAmelCase : List[str]=torch.floataa , UpperCAmelCase : Tuple=0 ) -> int: __lowerCAmelCase: Union[str, Any] = torch.Generator(device=UpperCAmelCase ).manual_seed(UpperCAmelCase ) __lowerCAmelCase: List[str] = np.random.RandomState(UpperCAmelCase ).standard_normal((1, 8, 1_2_8, 1_6) ) __lowerCAmelCase: Tuple = torch.from_numpy(UpperCAmelCase ).to(device=UpperCAmelCase , dtype=UpperCAmelCase ) __lowerCAmelCase: Tuple = { 'prompt': 'A hammer hitting a wooden surface', 'latents': latents, 'generator': generator, 'num_inference_steps': 3, 'guidance_scale': 2.5, } return inputs def UpperCAmelCase ( self : Dict ) -> Dict: __lowerCAmelCase: Optional[Any] = AudioLDMPipeline.from_pretrained('cvssp/audioldm' ) __lowerCAmelCase: Any = audioldm_pipe.to(UpperCAmelCase ) audioldm_pipe.set_progress_bar_config(disable=UpperCAmelCase ) __lowerCAmelCase: str = self.get_inputs(UpperCAmelCase ) __lowerCAmelCase: List[Any] = 2_5 __lowerCAmelCase: List[str] = audioldm_pipe(**UpperCAmelCase ).audios[0] assert audio.ndim == 1 assert len(UpperCAmelCase ) == 8_1_9_2_0 __lowerCAmelCase: Optional[int] = audio[7_7_2_3_0:7_7_2_4_0] __lowerCAmelCase: int = np.array( [-0.4884, -0.4607, 0.0023, 0.5007, 0.5896, 0.5151, 0.3813, -0.0208, -0.3687, -0.4315] ) __lowerCAmelCase: str = np.abs(expected_slice - audio_slice ).max() assert max_diff < 1E-2 def UpperCAmelCase ( self : str ) -> Union[str, Any]: __lowerCAmelCase: Tuple = AudioLDMPipeline.from_pretrained('cvssp/audioldm' ) __lowerCAmelCase: Tuple = LMSDiscreteScheduler.from_config(audioldm_pipe.scheduler.config ) __lowerCAmelCase: List[Any] = audioldm_pipe.to(UpperCAmelCase ) audioldm_pipe.set_progress_bar_config(disable=UpperCAmelCase ) __lowerCAmelCase: Dict = self.get_inputs(UpperCAmelCase ) __lowerCAmelCase: str = audioldm_pipe(**UpperCAmelCase ).audios[0] assert audio.ndim == 1 assert len(UpperCAmelCase ) == 8_1_9_2_0 __lowerCAmelCase: str = audio[2_7_7_8_0:2_7_7_9_0] __lowerCAmelCase: List[Any] = np.array([-0.2131, -0.0873, -0.0124, -0.0189, 0.0569, 0.1373, 0.1883, 0.2886, 0.3297, 0.2212] ) __lowerCAmelCase: Optional[int] = np.abs(expected_slice - audio_slice ).max() assert max_diff < 3E-2
322
import unittest from transformers import XLMConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( XLMForMultipleChoice, XLMForQuestionAnswering, XLMForQuestionAnsweringSimple, XLMForSequenceClassification, XLMForTokenClassification, XLMModel, XLMWithLMHeadModel, ) from transformers.models.xlm.modeling_xlm import XLM_PRETRAINED_MODEL_ARCHIVE_LIST class A_ : def __init__( self : Any , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : str=1_3 , UpperCAmelCase : Optional[Any]=7 , UpperCAmelCase : str=True , UpperCAmelCase : Any=True , UpperCAmelCase : Tuple=True , UpperCAmelCase : Any=True , UpperCAmelCase : Optional[int]=True , UpperCAmelCase : List[str]=False , UpperCAmelCase : Tuple=False , UpperCAmelCase : int=False , UpperCAmelCase : Optional[int]=2 , UpperCAmelCase : Any=9_9 , UpperCAmelCase : str=0 , UpperCAmelCase : Dict=3_2 , UpperCAmelCase : int=5 , UpperCAmelCase : Optional[int]=4 , UpperCAmelCase : Any=0.1 , UpperCAmelCase : str=0.1 , UpperCAmelCase : int=5_1_2 , UpperCAmelCase : str=2 , UpperCAmelCase : Optional[int]=0.02 , UpperCAmelCase : Optional[Any]=2 , UpperCAmelCase : List[str]=4 , UpperCAmelCase : Dict="last" , UpperCAmelCase : int=True , UpperCAmelCase : Dict=None , UpperCAmelCase : Union[str, Any]=0 , ) -> Dict: __lowerCAmelCase: Optional[int] = parent __lowerCAmelCase: Dict = batch_size __lowerCAmelCase: Tuple = seq_length __lowerCAmelCase: Tuple = is_training __lowerCAmelCase: Optional[Any] = use_input_lengths __lowerCAmelCase: List[str] = use_token_type_ids __lowerCAmelCase: Dict = use_labels __lowerCAmelCase: int = gelu_activation __lowerCAmelCase: Optional[int] = sinusoidal_embeddings __lowerCAmelCase: Tuple = causal __lowerCAmelCase: Optional[Any] = asm __lowerCAmelCase: int = n_langs __lowerCAmelCase: Tuple = vocab_size __lowerCAmelCase: List[Any] = n_special __lowerCAmelCase: List[Any] = hidden_size __lowerCAmelCase: Union[str, Any] = num_hidden_layers __lowerCAmelCase: Dict = num_attention_heads __lowerCAmelCase: int = hidden_dropout_prob __lowerCAmelCase: List[str] = attention_probs_dropout_prob __lowerCAmelCase: Dict = max_position_embeddings __lowerCAmelCase: List[str] = type_sequence_label_size __lowerCAmelCase: str = initializer_range __lowerCAmelCase: List[str] = num_labels __lowerCAmelCase: List[str] = num_choices __lowerCAmelCase: Optional[int] = summary_type __lowerCAmelCase: Any = use_proj __lowerCAmelCase: Optional[Any] = scope __lowerCAmelCase: Dict = bos_token_id def UpperCAmelCase ( self : Union[str, Any] ) -> Tuple: __lowerCAmelCase: Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowerCAmelCase: str = random_attention_mask([self.batch_size, self.seq_length] ) __lowerCAmelCase: Any = None if self.use_input_lengths: __lowerCAmelCase: Optional[Any] = ( ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length __lowerCAmelCase: str = None if self.use_token_type_ids: __lowerCAmelCase: Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.n_langs ) __lowerCAmelCase: int = None __lowerCAmelCase: Optional[int] = None __lowerCAmelCase: Optional[int] = None if self.use_labels: __lowerCAmelCase: Tuple = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowerCAmelCase: Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __lowerCAmelCase: Optional[int] = ids_tensor([self.batch_size] , 2 ).float() __lowerCAmelCase: str = ids_tensor([self.batch_size] , self.num_choices ) __lowerCAmelCase: Dict = self.get_config() return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def UpperCAmelCase ( self : Tuple ) -> List[Any]: return XLMConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , num_labels=self.num_labels , bos_token_id=self.bos_token_id , ) def UpperCAmelCase ( self : int , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Tuple , UpperCAmelCase : Optional[int] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Dict , UpperCAmelCase : Optional[Any] , UpperCAmelCase : int , UpperCAmelCase : int , UpperCAmelCase : List[str] , ) -> Optional[int]: __lowerCAmelCase: List[str] = XLMModel(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() __lowerCAmelCase: Any = model(UpperCAmelCase , lengths=UpperCAmelCase , langs=UpperCAmelCase ) __lowerCAmelCase: List[str] = model(UpperCAmelCase , langs=UpperCAmelCase ) __lowerCAmelCase: List[str] = model(UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCAmelCase ( self : Union[str, Any] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Optional[int] , UpperCAmelCase : Optional[int] , UpperCAmelCase : Dict , UpperCAmelCase : Any , UpperCAmelCase : List[Any] , UpperCAmelCase : Tuple , UpperCAmelCase : Tuple , UpperCAmelCase : Dict , ) -> int: __lowerCAmelCase: str = XLMWithLMHeadModel(UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() __lowerCAmelCase: Union[str, Any] = model(UpperCAmelCase , token_type_ids=UpperCAmelCase , labels=UpperCAmelCase ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCAmelCase ( self : Optional[int] , UpperCAmelCase : Optional[int] , UpperCAmelCase : Dict , UpperCAmelCase : Optional[int] , UpperCAmelCase : Any , UpperCAmelCase : Optional[int] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : List[str] , UpperCAmelCase : str , UpperCAmelCase : Dict , ) -> List[str]: __lowerCAmelCase: Dict = XLMForQuestionAnsweringSimple(UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() __lowerCAmelCase: str = model(UpperCAmelCase ) __lowerCAmelCase: List[str] = model(UpperCAmelCase , start_positions=UpperCAmelCase , end_positions=UpperCAmelCase ) __lowerCAmelCase: Optional[Any] = outputs self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def UpperCAmelCase ( self : List[str] , UpperCAmelCase : Dict , UpperCAmelCase : List[Any] , UpperCAmelCase : Optional[int] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : str , UpperCAmelCase : List[str] , UpperCAmelCase : List[Any] , UpperCAmelCase : Any , UpperCAmelCase : Optional[int] , ) -> Tuple: __lowerCAmelCase: Union[str, Any] = XLMForQuestionAnswering(UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() __lowerCAmelCase: List[str] = model(UpperCAmelCase ) __lowerCAmelCase: Union[str, Any] = model( UpperCAmelCase , start_positions=UpperCAmelCase , end_positions=UpperCAmelCase , cls_index=UpperCAmelCase , is_impossible=UpperCAmelCase , p_mask=UpperCAmelCase , ) __lowerCAmelCase: Any = model( UpperCAmelCase , start_positions=UpperCAmelCase , end_positions=UpperCAmelCase , cls_index=UpperCAmelCase , is_impossible=UpperCAmelCase , ) ((__lowerCAmelCase) , ): List[str] = result_with_labels.to_tuple() __lowerCAmelCase: Union[str, Any] = model(UpperCAmelCase , start_positions=UpperCAmelCase , end_positions=UpperCAmelCase ) ((__lowerCAmelCase) , ): List[Any] = result_with_labels.to_tuple() self.parent.assertEqual(result_with_labels.loss.shape , () ) self.parent.assertEqual(result.start_top_log_probs.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual(result.start_top_index.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual( result.end_top_log_probs.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual( result.end_top_index.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual(result.cls_logits.shape , (self.batch_size,) ) def UpperCAmelCase ( self : Dict , UpperCAmelCase : Dict , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : List[str] , UpperCAmelCase : List[str] , UpperCAmelCase : Any , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : str , UpperCAmelCase : List[str] , ) -> List[Any]: __lowerCAmelCase: Optional[Any] = XLMForSequenceClassification(UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() __lowerCAmelCase: List[Any] = model(UpperCAmelCase ) __lowerCAmelCase: Tuple = model(UpperCAmelCase , labels=UpperCAmelCase ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def UpperCAmelCase ( self : Optional[Any] , UpperCAmelCase : str , UpperCAmelCase : int , UpperCAmelCase : str , UpperCAmelCase : Tuple , UpperCAmelCase : Optional[Any] , UpperCAmelCase : List[str] , UpperCAmelCase : List[str] , UpperCAmelCase : Dict , UpperCAmelCase : Union[str, Any] , ) -> List[Any]: __lowerCAmelCase: Union[str, Any] = self.num_labels __lowerCAmelCase: Tuple = XLMForTokenClassification(UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() __lowerCAmelCase: Optional[int] = model(UpperCAmelCase , attention_mask=UpperCAmelCase , labels=UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCAmelCase ( self : str , UpperCAmelCase : Tuple , UpperCAmelCase : str , UpperCAmelCase : Any , UpperCAmelCase : str , UpperCAmelCase : str , UpperCAmelCase : str , UpperCAmelCase : str , UpperCAmelCase : List[str] , UpperCAmelCase : List[Any] , ) -> Union[str, Any]: __lowerCAmelCase: List[Any] = self.num_choices __lowerCAmelCase: Optional[Any] = XLMForMultipleChoice(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() __lowerCAmelCase: List[Any] = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __lowerCAmelCase: List[str] = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __lowerCAmelCase: Dict = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __lowerCAmelCase: Any = model( UpperCAmelCase , attention_mask=UpperCAmelCase , token_type_ids=UpperCAmelCase , labels=UpperCAmelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def UpperCAmelCase ( self : Tuple ) -> int: __lowerCAmelCase: Optional[Any] = self.prepare_config_and_inputs() ( ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ): Union[str, Any] = config_and_inputs __lowerCAmelCase: Any = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'lengths': input_lengths} return config, inputs_dict @require_torch class A_ ( snake_case__ , snake_case__ , snake_case__ , unittest.TestCase ): _lowercase : Any = ( ( XLMModel, XLMWithLMHeadModel, XLMForQuestionAnswering, XLMForSequenceClassification, XLMForQuestionAnsweringSimple, XLMForTokenClassification, XLMForMultipleChoice, ) if is_torch_available() else () ) _lowercase : Any = ( (XLMWithLMHeadModel,) if is_torch_available() else () ) # TODO (PVP): Check other models whether language generation is also applicable _lowercase : Optional[int] = ( { 'feature-extraction': XLMModel, 'fill-mask': XLMWithLMHeadModel, 'question-answering': XLMForQuestionAnsweringSimple, 'text-classification': XLMForSequenceClassification, 'text-generation': XLMWithLMHeadModel, 'token-classification': XLMForTokenClassification, 'zero-shot': XLMForSequenceClassification, } if is_torch_available() else {} ) def UpperCAmelCase ( self : Any , UpperCAmelCase : List[Any] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : str , UpperCAmelCase : str , UpperCAmelCase : str ) -> int: if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith('Fast' ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def UpperCAmelCase ( self : Any , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Tuple , UpperCAmelCase : Tuple=False ) -> Dict: __lowerCAmelCase: Optional[Any] = super()._prepare_for_class(UpperCAmelCase , UpperCAmelCase , return_labels=UpperCAmelCase ) if return_labels: if model_class.__name__ == "XLMForQuestionAnswering": __lowerCAmelCase: str = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=UpperCAmelCase ) __lowerCAmelCase: Optional[Any] = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=UpperCAmelCase ) return inputs_dict def UpperCAmelCase ( self : Union[str, Any] ) -> int: __lowerCAmelCase: int = XLMModelTester(self ) __lowerCAmelCase: Optional[int] = ConfigTester(self , config_class=UpperCAmelCase , emb_dim=3_7 ) def UpperCAmelCase ( self : List[str] ) -> List[Any]: self.config_tester.run_common_tests() def UpperCAmelCase ( self : Dict ) -> List[Any]: __lowerCAmelCase: str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_model(*UpperCAmelCase ) def UpperCAmelCase ( self : List[Any] ) -> int: __lowerCAmelCase: Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_lm_head(*UpperCAmelCase ) def UpperCAmelCase ( self : Tuple ) -> Tuple: __lowerCAmelCase: Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_simple_qa(*UpperCAmelCase ) def UpperCAmelCase ( self : Optional[Any] ) -> Tuple: __lowerCAmelCase: Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_qa(*UpperCAmelCase ) def UpperCAmelCase ( self : Optional[Any] ) -> Any: __lowerCAmelCase: List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_sequence_classif(*UpperCAmelCase ) def UpperCAmelCase ( self : Tuple ) -> Tuple: __lowerCAmelCase: Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_token_classif(*UpperCAmelCase ) def UpperCAmelCase ( self : Any ) -> Any: __lowerCAmelCase: Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_for_multiple_choice(*UpperCAmelCase ) def UpperCAmelCase ( self : Optional[Any] , UpperCAmelCase : int , UpperCAmelCase : Tuple , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Dict , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Optional[int]=False , UpperCAmelCase : Dict=1 ) -> Dict: self.assertIsInstance(UpperCAmelCase , UpperCAmelCase ) self.assertListEqual( [isinstance(UpperCAmelCase , UpperCAmelCase ) for iter_attentions in attentions] , [True] * len(UpperCAmelCase ) ) self.assertEqual(len(UpperCAmelCase ) , (max_length - min_length) * num_beam_groups ) for idx, iter_attentions in enumerate(UpperCAmelCase ): # adds PAD dummy token __lowerCAmelCase: int = min_length + idx + 1 __lowerCAmelCase: Union[str, Any] = min_length + idx + 1 __lowerCAmelCase: Any = ( batch_size * num_beam_groups, config.num_attention_heads, tgt_len, src_len, ) # check attn size self.assertListEqual( [layer_attention.shape for layer_attention in iter_attentions] , [expected_shape] * len(UpperCAmelCase ) ) def UpperCAmelCase ( self : Dict , UpperCAmelCase : int , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Any , UpperCAmelCase : Optional[Any] , UpperCAmelCase : str=False , UpperCAmelCase : Optional[int]=1 ) -> Union[str, Any]: self.assertIsInstance(UpperCAmelCase , UpperCAmelCase ) self.assertListEqual( [isinstance(UpperCAmelCase , UpperCAmelCase ) for iter_hidden_states in hidden_states] , [True] * len(UpperCAmelCase ) , ) self.assertEqual(len(UpperCAmelCase ) , (max_length - min_length) * num_beam_groups ) for idx, iter_hidden_states in enumerate(UpperCAmelCase ): # adds PAD dummy token __lowerCAmelCase: Any = min_length + idx + 1 __lowerCAmelCase: str = (batch_size * num_beam_groups, seq_len, config.hidden_size) # check hidden size self.assertListEqual( [layer_hidden_states.shape for layer_hidden_states in iter_hidden_states] , [expected_shape] * len(UpperCAmelCase ) , ) pass @slow def UpperCAmelCase ( self : int ) -> Tuple: for model_name in XLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowerCAmelCase: List[Any] = XLMModel.from_pretrained(UpperCAmelCase ) self.assertIsNotNone(UpperCAmelCase ) @require_torch class A_ ( unittest.TestCase ): @slow def UpperCAmelCase ( self : Tuple ) -> Union[str, Any]: __lowerCAmelCase: Union[str, Any] = XLMWithLMHeadModel.from_pretrained('xlm-mlm-en-2048' ) model.to(UpperCAmelCase ) __lowerCAmelCase: Optional[int] = torch.tensor([[1_4, 4_4_7]] , dtype=torch.long , device=UpperCAmelCase ) # the president __lowerCAmelCase: Union[str, Any] = [ 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, ] # the president the president the president the president the president the president the president the president the president the president # TODO(PVP): this and other input_ids I tried for generation give pretty bad results. Not sure why. Model might just not be made for auto-regressive inference __lowerCAmelCase: str = model.generate(UpperCAmelCase , do_sample=UpperCAmelCase ) self.assertListEqual(output_ids[0].cpu().numpy().tolist() , UpperCAmelCase )
322
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __UpperCamelCase : Optional[int] = {"configuration_xglm": ["XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP", "XGLMConfig"]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Optional[Any] = ["XGLMTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Union[str, Any] = ["XGLMTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : List[Any] = [ "XGLM_PRETRAINED_MODEL_ARCHIVE_LIST", "XGLMForCausalLM", "XGLMModel", "XGLMPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : str = [ "FlaxXGLMForCausalLM", "FlaxXGLMModel", "FlaxXGLMPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Dict = [ "TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST", "TFXGLMForCausalLM", "TFXGLMModel", "TFXGLMPreTrainedModel", ] if TYPE_CHECKING: from .configuration_xglm import XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XGLMConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm import XGLMTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm_fast import XGLMTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xglm import XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, XGLMForCausalLM, XGLMModel, XGLMPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_xglm import FlaxXGLMForCausalLM, FlaxXGLMModel, FlaxXGLMPreTrainedModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, TFXGLMPreTrainedModel, ) else: import sys __UpperCamelCase : Optional[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure)
51
import csv from collections import defaultdict from dataclasses import dataclass, field from typing import List, Optional import matplotlib.pyplot as plt import numpy as np from matplotlib.ticker import ScalarFormatter from transformers import HfArgumentParser def _a ( SCREAMING_SNAKE_CASE : Optional[Any]=None , SCREAMING_SNAKE_CASE : int=None ): """simple docstring""" return field(default_factory=lambda: default , metadata=SCREAMING_SNAKE_CASE ) @dataclass class __magic_name__ : A: str = field( metadata={"help": "The csv file to plot."} , ) A: bool = field( default=__lowerCAmelCase , metadata={"help": "Whether to plot along batch size or sequence length. Defaults to sequence length."} , ) A: bool = field( default=__lowerCAmelCase , metadata={"help": "Whether the csv file has time results or memory results. Defaults to memory results."} , ) A: bool = field( default=__lowerCAmelCase , metadata={"help": "Disable logarithmic scale when plotting"} , ) A: bool = field( default=__lowerCAmelCase , metadata={ "help": "Whether the csv file has training results or inference results. Defaults to inference results." } , ) A: Optional[str] = field( default=__lowerCAmelCase , metadata={"help": "Filename under which the plot will be saved. If unused no plot is saved."} , ) A: Optional[List[str]] = list_field( default=__lowerCAmelCase , metadata={"help": "List of model names that are used instead of the ones in the csv file."}) def _a ( SCREAMING_SNAKE_CASE : Any ): """simple docstring""" try: int(SCREAMING_SNAKE_CASE ) return True except ValueError: return False def _a ( SCREAMING_SNAKE_CASE : Union[str, Any] ): """simple docstring""" try: float(SCREAMING_SNAKE_CASE ) return True except ValueError: return False class __magic_name__ : def __init__( self : Any , lowerCamelCase__ : Dict ) -> Dict: '''simple docstring''' UpperCamelCase__ : int = args UpperCamelCase__ : Any = defaultdict(lambda: {"bsz": [], "seq_len": [], "result": {}} ) with open(self.args.csv_file , newline='''''' ) as csv_file: UpperCamelCase__ : Union[str, Any] = csv.DictReader(lowerCamelCase__ ) for row in reader: UpperCamelCase__ : Union[str, Any] = row['''model'''] self.result_dict[model_name]["bsz"].append(int(row['''batch_size'''] ) ) self.result_dict[model_name]["seq_len"].append(int(row['''sequence_length'''] ) ) if can_convert_to_int(row['''result'''] ): # value is not None UpperCamelCase__ : Any = int(row['''result'''] ) elif can_convert_to_float(row['''result'''] ): # value is not None UpperCamelCase__ : Any = float(row['''result'''] ) def UpperCAmelCase__ ( self : List[Any] ) -> List[Any]: '''simple docstring''' UpperCamelCase__ , UpperCamelCase__ : str = plt.subplots() UpperCamelCase__ : Dict = '''Time usage''' if self.args.is_time else '''Memory usage''' UpperCamelCase__ : int = title_str + ''' for training''' if self.args.is_train else title_str + ''' for inference''' if not self.args.no_log_scale: # set logarithm scales ax.set_xscale('''log''' ) ax.set_yscale('''log''' ) for axis in [ax.xaxis, ax.yaxis]: axis.set_major_formatter(ScalarFormatter() ) for model_name_idx, model_name in enumerate(self.result_dict.keys() ): UpperCamelCase__ : Tuple = sorted(set(self.result_dict[model_name]['''bsz'''] ) ) UpperCamelCase__ : Tuple = sorted(set(self.result_dict[model_name]['''seq_len'''] ) ) UpperCamelCase__ : Dict = self.result_dict[model_name]['''result'''] ((UpperCamelCase__) , (UpperCamelCase__)) : int = ( (batch_sizes, sequence_lengths) if self.args.plot_along_batch else (sequence_lengths, batch_sizes) ) UpperCamelCase__ : Optional[int] = ( model_name if self.args.short_model_names is None else self.args.short_model_names[model_name_idx] ) for inner_loop_value in inner_loop_array: if self.args.plot_along_batch: UpperCamelCase__ : Optional[Any] = np.asarray( [results[(x, inner_loop_value)] for x in x_axis_array if (x, inner_loop_value) in results] , dtype=lowerCamelCase__ , ) else: UpperCamelCase__ : Tuple = np.asarray( [results[(inner_loop_value, x)] for x in x_axis_array if (inner_loop_value, x) in results] , dtype=np.floataa , ) ((UpperCamelCase__) , (UpperCamelCase__)) : str = ( ('''batch_size''', '''len''') if self.args.plot_along_batch else ('''in #tokens''', '''bsz''') ) UpperCamelCase__ : Optional[Any] = np.asarray(lowerCamelCase__ , lowerCamelCase__ )[: len(lowerCamelCase__ )] plt.scatter( lowerCamelCase__ , lowerCamelCase__ , label=F"{label_model_name} - {inner_loop_label}: {inner_loop_value}" ) plt.plot(lowerCamelCase__ , lowerCamelCase__ , '''--''' ) title_str += F" {label_model_name} vs." UpperCamelCase__ : Optional[Any] = title_str[:-4] UpperCamelCase__ : List[Any] = '''Time in s''' if self.args.is_time else '''Memory in MB''' # plot plt.title(lowerCamelCase__ ) plt.xlabel(lowerCamelCase__ ) plt.ylabel(lowerCamelCase__ ) plt.legend() if self.args.figure_png_file is not None: plt.savefig(self.args.figure_png_file ) else: plt.show() def _a ( ): """simple docstring""" UpperCamelCase__ : Optional[Any] = HfArgumentParser(SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Dict = parser.parse_args_into_dataclasses()[0] UpperCamelCase__ : Dict = Plot(args=SCREAMING_SNAKE_CASE ) plot.plot() if __name__ == "__main__": main()
51
1