code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
"""simple docstring""" UpperCAmelCase__ : Tuple = [ 'DownloadConfig', 'DownloadManager', 'DownloadMode', 'StreamingDownloadManager', ] from .download_config import DownloadConfig from .download_manager import DownloadManager, DownloadMode from .streaming_download_manager import StreamingDownloadManager
25
"""simple docstring""" import logging import os from logging import ( CRITICAL, # NOQA DEBUG, # NOQA ERROR, # NOQA FATAL, # NOQA INFO, # NOQA NOTSET, # NOQA WARN, # NOQA WARNING, # NOQA ) from typing import Optional from tqdm import auto as tqdm_lib UpperCAmelCase__ : Optional[int] = { 'debug': logging.DEBUG, 'info': logging.INFO, 'warning': logging.WARNING, 'error': logging.ERROR, 'critical': logging.CRITICAL, } UpperCAmelCase__ : List[Any] = logging.WARNING def lowercase_ ( ): SCREAMING_SNAKE_CASE__ : Optional[Any] = os.getenv("""DATASETS_VERBOSITY""" ,_snake_case ) if env_level_str: if env_level_str in log_levels: return log_levels[env_level_str] else: logging.getLogger().warning( f'''Unknown option DATASETS_VERBOSITY={env_level_str}, ''' f'''has to be one of: { ', '.join(log_levels.keys() ) }''' ) return _default_log_level def lowercase_ ( ): return __name__.split(""".""" )[0] def lowercase_ ( ): return logging.getLogger(_get_library_name() ) def lowercase_ ( ): # Apply our default configuration to the library root logger. SCREAMING_SNAKE_CASE__ : Optional[Any] = _get_library_root_logger() library_root_logger.setLevel(_get_default_logging_level() ) def lowercase_ ( ): SCREAMING_SNAKE_CASE__ : Optional[Any] = _get_library_root_logger() library_root_logger.setLevel(logging.NOTSET ) def lowercase_ ( _snake_case = None ): if name is None: SCREAMING_SNAKE_CASE__ : Optional[Any] = _get_library_name() return logging.getLogger(_snake_case ) def lowercase_ ( ): return _get_library_root_logger().getEffectiveLevel() def lowercase_ ( _snake_case ): _get_library_root_logger().setLevel(_snake_case ) def lowercase_ ( ): return set_verbosity(_snake_case ) def lowercase_ ( ): return set_verbosity(_snake_case ) def lowercase_ ( ): return set_verbosity(_snake_case ) def lowercase_ ( ): return set_verbosity(_snake_case ) def lowercase_ ( ): SCREAMING_SNAKE_CASE__ : Tuple = False def lowercase_ ( ): SCREAMING_SNAKE_CASE__ : str = True # Configure the library root logger at the module level (singleton-like) _configure_library_root_logger() class lowerCAmelCase_ : """simple docstring""" def __init__(self , *SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) -> int: # pylint: disable=unused-argument """simple docstring""" SCREAMING_SNAKE_CASE__ : List[str] = args[0] if args else None def __iter__(self ) -> int: """simple docstring""" return iter(self._iterator ) def __getattr__(self , SCREAMING_SNAKE_CASE__ ) -> int: """simple docstring""" def empty_fn(*SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ): # pylint: disable=unused-argument return return empty_fn def __enter__(self ) -> Dict: """simple docstring""" return self def __exit__(self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> str: """simple docstring""" return UpperCAmelCase__ : str = True class lowerCAmelCase_ : """simple docstring""" def __call__(self , *SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=False , **SCREAMING_SNAKE_CASE__ ) -> List[Any]: """simple docstring""" if _tqdm_active and not disable: return tqdm_lib.tqdm(*SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) else: return EmptyTqdm(*SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) def __magic_name__ (self , *SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[Any] = None if _tqdm_active: return tqdm_lib.tqdm.set_lock(*SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) def __magic_name__ (self ) -> Optional[Any]: """simple docstring""" if _tqdm_active: return tqdm_lib.tqdm.get_lock() UpperCAmelCase__ : Tuple = _tqdm_cls() def lowercase_ ( ): global _tqdm_active return bool(_tqdm_active ) def lowercase_ ( ): global _tqdm_active SCREAMING_SNAKE_CASE__ : Union[str, Any] = True def lowercase_ ( ): global _tqdm_active SCREAMING_SNAKE_CASE__ : str = False
25
1
def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> int: """simple docstring""" while second != 0: A__ = first & second first ^= second A__ = c << 1 return first if __name__ == "__main__": import doctest doctest.testmod() _lowerCamelCase : Any = int(input("""Enter the first number: """).strip()) _lowerCamelCase : List[Any] = int(input("""Enter the second number: """).strip()) print(F'''{add(first, second) = }''')
369
class UpperCamelCase_ : '''simple docstring''' def __init__( self : List[str] , UpperCAmelCase__ : int) ->Union[str, Any]: '''simple docstring''' A__ = n A__ = [None] * self.n A__ = 0 # index of the first element A__ = 0 A__ = 0 def __len__( self : List[Any]) ->int: '''simple docstring''' return self.size def SCREAMING_SNAKE_CASE ( self : List[Any]) ->bool: '''simple docstring''' return self.size == 0 def SCREAMING_SNAKE_CASE ( self : str) ->List[Any]: '''simple docstring''' return False if self.is_empty() else self.array[self.front] def SCREAMING_SNAKE_CASE ( self : List[str] , UpperCAmelCase__ : str) ->Any: '''simple docstring''' if self.size >= self.n: raise Exception('''QUEUE IS FULL''') A__ = data A__ = (self.rear + 1) % self.n self.size += 1 return self def SCREAMING_SNAKE_CASE ( self : Union[str, Any]) ->Any: '''simple docstring''' if self.size == 0: raise Exception('''UNDERFLOW''') A__ = self.array[self.front] A__ = None A__ = (self.front + 1) % self.n self.size -= 1 return temp
231
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging __A = logging.get_logger(__name__) __A = { # See all MEGATRON_BERT models at https://huggingface.co/models?filter=bert } class UpperCAmelCase (__SCREAMING_SNAKE_CASE ): """simple docstring""" _UpperCAmelCase :Optional[Any] = "megatron-bert" def __init__( self , _UpperCAmelCase=29056 , _UpperCAmelCase=1024 , _UpperCAmelCase=24 , _UpperCAmelCase=16 , _UpperCAmelCase=4096 , _UpperCAmelCase="gelu" , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=512 , _UpperCAmelCase=2 , _UpperCAmelCase=0.02 , _UpperCAmelCase=1e-1_2 , _UpperCAmelCase=0 , _UpperCAmelCase="absolute" , _UpperCAmelCase=True , **_UpperCAmelCase , ): super().__init__(pad_token_id=__UpperCAmelCase , **__UpperCAmelCase ) lowercase__: str = vocab_size lowercase__: Tuple = hidden_size lowercase__: List[str] = num_hidden_layers lowercase__: Dict = num_attention_heads lowercase__: Union[str, Any] = hidden_act lowercase__: Optional[Any] = intermediate_size lowercase__: List[Any] = hidden_dropout_prob lowercase__: str = attention_probs_dropout_prob lowercase__: List[Any] = max_position_embeddings lowercase__: List[str] = type_vocab_size lowercase__: Union[str, Any] = initializer_range lowercase__: str = layer_norm_eps lowercase__: int = position_embedding_type lowercase__: Optional[int] = use_cache
177
"""simple docstring""" import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_gpta import GPTaTokenizer if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation UpperCamelCase : Any = logging.get_logger(__name__) UpperCamelCase : Any = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} UpperCamelCase : Dict = { "vocab_file": { "gpt2": "https://huggingface.co/gpt2/resolve/main/vocab.json", "gpt2-medium": "https://huggingface.co/gpt2-medium/resolve/main/vocab.json", "gpt2-large": "https://huggingface.co/gpt2-large/resolve/main/vocab.json", "gpt2-xl": "https://huggingface.co/gpt2-xl/resolve/main/vocab.json", "distilgpt2": "https://huggingface.co/distilgpt2/resolve/main/vocab.json", }, "merges_file": { "gpt2": "https://huggingface.co/gpt2/resolve/main/merges.txt", "gpt2-medium": "https://huggingface.co/gpt2-medium/resolve/main/merges.txt", "gpt2-large": "https://huggingface.co/gpt2-large/resolve/main/merges.txt", "gpt2-xl": "https://huggingface.co/gpt2-xl/resolve/main/merges.txt", "distilgpt2": "https://huggingface.co/distilgpt2/resolve/main/merges.txt", }, "tokenizer_file": { "gpt2": "https://huggingface.co/gpt2/resolve/main/tokenizer.json", "gpt2-medium": "https://huggingface.co/gpt2-medium/resolve/main/tokenizer.json", "gpt2-large": "https://huggingface.co/gpt2-large/resolve/main/tokenizer.json", "gpt2-xl": "https://huggingface.co/gpt2-xl/resolve/main/tokenizer.json", "distilgpt2": "https://huggingface.co/distilgpt2/resolve/main/tokenizer.json", }, } UpperCamelCase : Dict = { "gpt2": 1_0_2_4, "gpt2-medium": 1_0_2_4, "gpt2-large": 1_0_2_4, "gpt2-xl": 1_0_2_4, "distilgpt2": 1_0_2_4, } class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): lowercase = VOCAB_FILES_NAMES lowercase = PRETRAINED_VOCAB_FILES_MAP lowercase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase = ["input_ids", "attention_mask"] lowercase = GPTaTokenizer def __init__( self , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase="<|endoftext|>" , __UpperCAmelCase="<|endoftext|>" , __UpperCAmelCase="<|endoftext|>" , __UpperCAmelCase=False , **__UpperCAmelCase , ): '''simple docstring''' super().__init__( __UpperCAmelCase , __UpperCAmelCase , tokenizer_file=__UpperCAmelCase , unk_token=__UpperCAmelCase , bos_token=__UpperCAmelCase , eos_token=__UpperCAmelCase , add_prefix_space=__UpperCAmelCase , **__UpperCAmelCase , ) __UpperCamelCase = kwargs.pop('add_bos_token' , __UpperCAmelCase ) __UpperCamelCase = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('add_prefix_space' , __UpperCAmelCase ) != add_prefix_space: __UpperCamelCase = getattr(__UpperCAmelCase , pre_tok_state.pop('type' ) ) __UpperCamelCase = add_prefix_space __UpperCamelCase = pre_tok_class(**__UpperCAmelCase ) __UpperCamelCase = add_prefix_space def UpperCAmelCase ( self , *__UpperCAmelCase , **__UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = kwargs.get('is_split_into_words' , __UpperCAmelCase ) assert self.add_prefix_space or not is_split_into_words, ( F'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*__UpperCAmelCase , **__UpperCAmelCase ) def UpperCAmelCase ( self , *__UpperCAmelCase , **__UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = kwargs.get('is_split_into_words' , __UpperCAmelCase ) assert self.add_prefix_space or not is_split_into_words, ( F'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' "to use it with pretokenized inputs." ) return super()._encode_plus(*__UpperCAmelCase , **__UpperCAmelCase ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None ): '''simple docstring''' __UpperCamelCase = self._tokenizer.model.save(__UpperCAmelCase , name=__UpperCAmelCase ) return tuple(__UpperCAmelCase ) def UpperCAmelCase ( self , __UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(__UpperCAmelCase , add_special_tokens=__UpperCAmelCase ) + [self.eos_token_id] ) if len(__UpperCAmelCase ) > self.model_max_length: __UpperCamelCase = input_ids[-self.model_max_length :] return input_ids
316
0
from typing import List, Optional, Union import numpy as np from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import PaddingStrategy, TensorType, logging UpperCamelCase = logging.get_logger(__name__) class _lowerCamelCase ( lowerCamelCase__ ): """simple docstring""" snake_case = ["input_values", "padding_mask"] def __init__( self , _SCREAMING_SNAKE_CASE = 1 , _SCREAMING_SNAKE_CASE = 2_4000 , _SCREAMING_SNAKE_CASE = 0.0 , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , **_SCREAMING_SNAKE_CASE , )->List[str]: '''simple docstring''' super().__init__(feature_size=__A , sampling_rate=__A , padding_value=__A , **__A ) A_ : List[str] = chunk_length_s A_ : int = overlap @property def _snake_case ( self )->Any: '''simple docstring''' if self.chunk_length_s is None: return None else: return int(self.chunk_length_s * self.sampling_rate ) @property def _snake_case ( self )->Tuple: '''simple docstring''' if self.chunk_length_s is None or self.overlap is None: return None else: return max(1 , int((1.0 - self.overlap) * self.chunk_length ) ) def __call__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = False , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , )->Dict: '''simple docstring''' if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( F'''The model corresponding to this feature extractor: {self} was trained using a sampling rate of''' F''' {self.sampling_rate}. Please make sure that the provided audio input was sampled with''' F''' {self.sampling_rate} and not {sampling_rate}.''' ) else: logger.warning( '''It is strongly recommended to pass the `sampling_rate` argument to this function. ''' '''Failing to do so can result in silent errors that might be hard to debug.''' ) if padding and truncation: raise ValueError('''Both padding and truncation were set. Make sure you only set one.''' ) elif padding is None: # by default let's pad the inputs A_ : Optional[int] = True A_ : str = bool( isinstance(__A , (list, tuple) ) and (isinstance(raw_audio[0] , (np.ndarray, tuple, list) )) ) if is_batched: A_ : int = [np.asarray(__A , dtype=np.floataa ).T for audio in raw_audio] elif not is_batched and not isinstance(__A , np.ndarray ): A_ : List[Any] = np.asarray(__A , dtype=np.floataa ) elif isinstance(__A , np.ndarray ) and raw_audio.dtype is np.dtype(np.floataa ): A_ : Dict = raw_audio.astype(np.floataa ) # always return batch if not is_batched: A_ : Union[str, Any] = [np.asarray(__A ).T] # verify inputs are valid for idx, example in enumerate(__A ): if example.ndim > 2: raise ValueError(F'''Expected input shape (channels, length) but got shape {example.shape}''' ) if self.feature_size == 1 and example.ndim != 1: raise ValueError(F'''Expected mono audio but example has {example.shape[-1]} channels''' ) if self.feature_size == 2 and example.shape[-1] != 2: raise ValueError(F'''Expected stereo audio but example has {example.shape[-1]} channels''' ) A_ : Tuple = None A_ : str = BatchFeature({'''input_values''': raw_audio} ) if self.chunk_stride is not None and self.chunk_length is not None and max_length is None: if truncation: A_ : Optional[Any] = min(array.shape[0] for array in raw_audio ) A_ : Tuple = int(np.floor(max_length / self.chunk_stride ) ) A_ : Dict = (nb_step - 1) * self.chunk_stride + self.chunk_length elif padding: A_ : Union[str, Any] = max(array.shape[0] for array in raw_audio ) A_ : Union[str, Any] = int(np.ceil(max_length / self.chunk_stride ) ) A_ : List[str] = (nb_step - 1) * self.chunk_stride + self.chunk_length A_ : Optional[int] = '''max_length''' else: A_ : str = input_values # normal padding on batch if padded_inputs is None: A_ : Optional[int] = self.pad( __A , max_length=__A , truncation=__A , padding=__A , return_attention_mask=__A , ) if padding: A_ : Optional[Any] = padded_inputs.pop('''attention_mask''' ) A_ : Dict = [] for example in padded_inputs.pop('''input_values''' ): if self.feature_size == 1: A_ : Optional[int] = example[..., None] input_values.append(example.T ) A_ : List[Any] = input_values if return_tensors is not None: A_ : List[Any] = padded_inputs.convert_to_tensors(__A ) return padded_inputs
360
import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST, OpenAIGPTConfig, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification, OpenAIGPTLMHeadModel, OpenAIGPTModel, ) class _lowerCamelCase : """simple docstring""" def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=13 , _SCREAMING_SNAKE_CASE=7 , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=99 , _SCREAMING_SNAKE_CASE=32 , _SCREAMING_SNAKE_CASE=5 , _SCREAMING_SNAKE_CASE=4 , _SCREAMING_SNAKE_CASE=37 , _SCREAMING_SNAKE_CASE="gelu" , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=512 , _SCREAMING_SNAKE_CASE=16 , _SCREAMING_SNAKE_CASE=2 , _SCREAMING_SNAKE_CASE=0.0_2 , _SCREAMING_SNAKE_CASE=3 , _SCREAMING_SNAKE_CASE=4 , _SCREAMING_SNAKE_CASE=None , )->Any: '''simple docstring''' A_ : List[Any] = parent A_ : int = batch_size A_ : str = seq_length A_ : int = is_training A_ : Any = use_token_type_ids A_ : Union[str, Any] = use_labels A_ : Any = vocab_size A_ : Dict = hidden_size A_ : Dict = num_hidden_layers A_ : int = num_attention_heads A_ : Optional[Any] = intermediate_size A_ : Dict = hidden_act A_ : List[str] = hidden_dropout_prob A_ : List[Any] = attention_probs_dropout_prob A_ : Union[str, Any] = max_position_embeddings A_ : Optional[int] = type_vocab_size A_ : str = type_sequence_label_size A_ : Tuple = initializer_range A_ : Union[str, Any] = num_labels A_ : List[str] = num_choices A_ : Union[str, Any] = scope A_ : Any = self.vocab_size - 1 def _snake_case ( self )->Any: '''simple docstring''' A_ : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) A_ : Any = None if self.use_token_type_ids: A_ : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) A_ : str = None A_ : Union[str, Any] = None A_ : Optional[int] = None if self.use_labels: A_ : str = ids_tensor([self.batch_size] , self.type_sequence_label_size ) A_ : Any = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) A_ : Union[str, Any] = ids_tensor([self.batch_size] , self.num_choices ) A_ : Optional[Any] = OpenAIGPTConfig( vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , pad_token_id=self.pad_token_id , ) A_ : List[str] = ids_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 ) return ( config, input_ids, head_mask, token_type_ids, sequence_labels, token_labels, choice_labels, ) def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , *_SCREAMING_SNAKE_CASE )->Tuple: '''simple docstring''' A_ : int = OpenAIGPTModel(config=_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() A_ : int = model(_SCREAMING_SNAKE_CASE , token_type_ids=_SCREAMING_SNAKE_CASE , head_mask=_SCREAMING_SNAKE_CASE ) A_ : Tuple = model(_SCREAMING_SNAKE_CASE , token_type_ids=_SCREAMING_SNAKE_CASE ) A_ : Any = model(_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , *_SCREAMING_SNAKE_CASE )->List[str]: '''simple docstring''' A_ : int = OpenAIGPTLMHeadModel(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() A_ : Tuple = model(_SCREAMING_SNAKE_CASE , token_type_ids=_SCREAMING_SNAKE_CASE , labels=_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , *_SCREAMING_SNAKE_CASE )->Optional[int]: '''simple docstring''' A_ : List[Any] = OpenAIGPTDoubleHeadsModel(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() A_ : str = model(_SCREAMING_SNAKE_CASE , token_type_ids=_SCREAMING_SNAKE_CASE , labels=_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , *_SCREAMING_SNAKE_CASE )->str: '''simple docstring''' A_ : Any = self.num_labels A_ : List[Any] = OpenAIGPTForSequenceClassification(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() A_ : Optional[int] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) A_ : Optional[Any] = model(_SCREAMING_SNAKE_CASE , token_type_ids=_SCREAMING_SNAKE_CASE , labels=_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _snake_case ( self )->int: '''simple docstring''' A_ : Dict = self.prepare_config_and_inputs() ( ( A_ ) , ( A_ ) , ( A_ ) , ( A_ ) , ( A_ ) , ( A_ ) , ( A_ ) , ) : Optional[int] = config_and_inputs A_ : int = { '''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''head_mask''': head_mask, } return config, inputs_dict @require_torch class _lowerCamelCase ( UpperCamelCase , UpperCamelCase , UpperCamelCase , unittest.TestCase ): """simple docstring""" snake_case = ( (OpenAIGPTModel, OpenAIGPTLMHeadModel, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification) if is_torch_available() else () ) snake_case = ( (OpenAIGPTLMHeadModel,) if is_torch_available() else () ) # TODO (PVP): Add Double HeadsModel when generate() function is changed accordingly snake_case = ( { "feature-extraction": OpenAIGPTModel, "text-classification": OpenAIGPTForSequenceClassification, "text-generation": OpenAIGPTLMHeadModel, "zero-shot": OpenAIGPTForSequenceClassification, } if is_torch_available() else {} ) def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )->Dict: '''simple docstring''' if pipeline_test_casse_name == "ZeroShotClassificationPipelineTests": # Get `tokenizer does not have a padding token` error for both fast/slow tokenizers. # `OpenAIGPTConfig` was never used in pipeline tests, either because of a missing checkpoint or because a # tiny config could not be created. return True return False def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=False )->Optional[int]: '''simple docstring''' A_ : Optional[Any] = super()._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , return_labels=_SCREAMING_SNAKE_CASE ) if return_labels: if model_class.__name__ == "OpenAIGPTDoubleHeadsModel": A_ : List[str] = torch.zeros( (self.model_tester.batch_size, self.model_tester.num_choices, self.model_tester.seq_length) , dtype=torch.long , device=_SCREAMING_SNAKE_CASE , ) A_ : List[Any] = inputs_dict['''labels'''] A_ : Any = inputs_dict['''labels'''] A_ : Tuple = torch.zeros( (self.model_tester.batch_size, self.model_tester.num_choices) , dtype=torch.long , device=_SCREAMING_SNAKE_CASE , ) A_ : Union[str, Any] = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_SCREAMING_SNAKE_CASE ) return inputs_dict def _snake_case ( self )->Any: '''simple docstring''' A_ : Any = OpenAIGPTModelTester(self ) A_ : int = ConfigTester(self , config_class=_SCREAMING_SNAKE_CASE , n_embd=37 ) def _snake_case ( self )->Optional[int]: '''simple docstring''' self.config_tester.run_common_tests() def _snake_case ( self )->Tuple: '''simple docstring''' A_ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_openai_gpt_model(*_SCREAMING_SNAKE_CASE ) def _snake_case ( self )->List[Any]: '''simple docstring''' A_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head_model(*_SCREAMING_SNAKE_CASE ) def _snake_case ( self )->Any: '''simple docstring''' A_ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_double_lm_head_model(*_SCREAMING_SNAKE_CASE ) def _snake_case ( self )->Tuple: '''simple docstring''' A_ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_openai_gpt_for_sequence_classification(*_SCREAMING_SNAKE_CASE ) @slow def _snake_case ( self )->List[str]: '''simple docstring''' for model_name in OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A_ : Optional[int] = OpenAIGPTModel.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertIsNotNone(_SCREAMING_SNAKE_CASE ) @require_torch class _lowerCamelCase ( unittest.TestCase ): """simple docstring""" @slow def _snake_case ( self )->Tuple: '''simple docstring''' A_ : Optional[int] = OpenAIGPTLMHeadModel.from_pretrained('''openai-gpt''' ) model.to(_SCREAMING_SNAKE_CASE ) A_ : Optional[int] = torch.tensor([[481, 4735, 544]] , dtype=torch.long , device=_SCREAMING_SNAKE_CASE ) # the president is A_ : Union[str, Any] = [ 481, 4735, 544, 246, 963, 870, 762, 239, 244, 4_0477, 244, 249, 719, 881, 487, 544, 240, 244, 603, 481, ] # the president is a very good man. " \n " i\'m sure he is, " said the A_ : Dict = model.generate(_SCREAMING_SNAKE_CASE , do_sample=_SCREAMING_SNAKE_CASE ) self.assertListEqual(output_ids[0].tolist() , _SCREAMING_SNAKE_CASE )
65
0
"""simple docstring""" import os from typing import BinaryIO, Optional, Union import numpy as np import pyarrow.parquet as pq from .. import Audio, Dataset, Features, Image, NamedSplit, Value, config from ..features.features import FeatureType, _visit from ..formatting import query_table from ..packaged_modules import _PACKAGED_DATASETS_MODULES from ..packaged_modules.parquet.parquet import Parquet from ..utils import logging from ..utils.typing import NestedDataStructureLike, PathLike from .abc import AbstractDatasetReader def lowercase__ ( _UpperCAmelCase ) -> Optional[int]: '''simple docstring''' lowercase : Any = np.inf def set_batch_size(_UpperCAmelCase ) -> None: nonlocal batch_size if isinstance(_UpperCAmelCase , _UpperCAmelCase ): lowercase : Tuple = min(_UpperCAmelCase , config.PARQUET_ROW_GROUP_SIZE_FOR_IMAGE_DATASETS ) elif isinstance(_UpperCAmelCase , _UpperCAmelCase ): lowercase : int = min(_UpperCAmelCase , config.PARQUET_ROW_GROUP_SIZE_FOR_AUDIO_DATASETS ) elif isinstance(_UpperCAmelCase , _UpperCAmelCase ) and feature.dtype == "binary": lowercase : List[str] = min(_UpperCAmelCase , config.PARQUET_ROW_GROUP_SIZE_FOR_BINARY_DATASETS ) _visit(_UpperCAmelCase , _UpperCAmelCase ) return None if batch_size is np.inf else batch_size class a__ ( SCREAMING_SNAKE_CASE__ ): def __init__( self : Union[str, Any], lowerCAmelCase : NestedDataStructureLike[PathLike], lowerCAmelCase : Optional[NamedSplit] = None, lowerCAmelCase : Optional[Features] = None, lowerCAmelCase : str = None, lowerCAmelCase : bool = False, lowerCAmelCase : bool = False, lowerCAmelCase : Optional[int] = None, **lowerCAmelCase : str, ) -> Any: super().__init__( lowerCAmelCase, split=lowerCAmelCase, features=lowerCAmelCase, cache_dir=lowerCAmelCase, keep_in_memory=lowerCAmelCase, streaming=lowerCAmelCase, num_proc=lowerCAmelCase, **lowerCAmelCase, ) lowercase : str = path_or_paths if isinstance(lowerCAmelCase, lowerCAmelCase ) else {self.split: path_or_paths} lowercase : str = _PACKAGED_DATASETS_MODULES['parquet'][1] lowercase : Any = Parquet( cache_dir=lowerCAmelCase, data_files=lowerCAmelCase, features=lowerCAmelCase, hash=lowerCAmelCase, **lowerCAmelCase, ) def lowercase ( self : int ) -> List[str]: # Build iterable dataset if self.streaming: lowercase : int = self.builder.as_streaming_dataset(split=self.split ) # Build regular (map-style) dataset else: lowercase : int = None lowercase : str = None lowercase : Tuple = None lowercase : Tuple = None self.builder.download_and_prepare( download_config=lowerCAmelCase, download_mode=lowerCAmelCase, verification_mode=lowerCAmelCase, base_path=lowerCAmelCase, num_proc=self.num_proc, ) lowercase : str = self.builder.as_dataset( split=self.split, verification_mode=lowerCAmelCase, in_memory=self.keep_in_memory ) return dataset class a__ : def __init__( self : Any, lowerCAmelCase : Dataset, lowerCAmelCase : Union[PathLike, BinaryIO], lowerCAmelCase : Optional[int] = None, **lowerCAmelCase : Optional[int], ) -> Dict: lowercase : Union[str, Any] = dataset lowercase : Tuple = path_or_buf lowercase : Union[str, Any] = batch_size or get_writer_batch_size(dataset.features ) lowercase : Any = parquet_writer_kwargs def lowercase ( self : int ) -> int: lowercase : int = self.batch_size if self.batch_size else config.DEFAULT_MAX_BATCH_SIZE if isinstance(self.path_or_buf, (str, bytes, os.PathLike) ): with open(self.path_or_buf, 'wb+' ) as buffer: lowercase : Any = self._write(file_obj=lowerCAmelCase, batch_size=lowerCAmelCase, **self.parquet_writer_kwargs ) else: lowercase : Union[str, Any] = self._write(file_obj=self.path_or_buf, batch_size=lowerCAmelCase, **self.parquet_writer_kwargs ) return written def lowercase ( self : Tuple, lowerCAmelCase : BinaryIO, lowerCAmelCase : int, **lowerCAmelCase : Tuple ) -> int: lowercase : Tuple = 0 lowercase : Union[str, Any] = parquet_writer_kwargs.pop('path_or_buf', lowerCAmelCase ) lowercase : Tuple = self.dataset.features.arrow_schema lowercase : Optional[Any] = pq.ParquetWriter(lowerCAmelCase, schema=lowerCAmelCase, **lowerCAmelCase ) for offset in logging.tqdm( range(0, len(self.dataset ), lowerCAmelCase ), unit='ba', disable=not logging.is_progress_bar_enabled(), desc='Creating parquet from Arrow format', ): lowercase : Dict = query_table( table=self.dataset._data, key=slice(lowerCAmelCase, offset + batch_size ), indices=self.dataset._indices if self.dataset._indices is not None else None, ) writer.write_table(lowerCAmelCase ) written += batch.nbytes writer.close() return written
255
"""simple docstring""" def lowercase__ ( _UpperCAmelCase , _UpperCAmelCase ) -> Dict: '''simple docstring''' _enforce_args(_UpperCAmelCase , _UpperCAmelCase ) if n == 0: return 0 lowercase : Tuple = float('-inf' ) for i in range(1 , n + 1 ): lowercase : Union[str, Any] = max( _UpperCAmelCase , prices[i - 1] + naive_cut_rod_recursive(n - i , _UpperCAmelCase ) ) return max_revue def lowercase__ ( _UpperCAmelCase , _UpperCAmelCase ) -> int: '''simple docstring''' _enforce_args(_UpperCAmelCase , _UpperCAmelCase ) lowercase : Any = [float('-inf' ) for _ in range(n + 1 )] return _top_down_cut_rod_recursive(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) def lowercase__ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> Dict: '''simple docstring''' if max_rev[n] >= 0: return max_rev[n] elif n == 0: return 0 else: lowercase : Optional[int] = float('-inf' ) for i in range(1 , n + 1 ): lowercase : Dict = max( _UpperCAmelCase , prices[i - 1] + _top_down_cut_rod_recursive(n - i , _UpperCAmelCase , _UpperCAmelCase ) , ) lowercase : int = max_revenue return max_rev[n] def lowercase__ ( _UpperCAmelCase , _UpperCAmelCase ) -> str: '''simple docstring''' _enforce_args(_UpperCAmelCase , _UpperCAmelCase ) # length(max_rev) = n + 1, to accommodate for the revenue obtainable from a rod of # length 0. lowercase : int = [float('-inf' ) for _ in range(n + 1 )] lowercase : Union[str, Any] = 0 for i in range(1 , n + 1 ): lowercase : Any = max_rev[i] for j in range(1 , i + 1 ): lowercase : Optional[int] = max(_UpperCAmelCase , prices[j - 1] + max_rev[i - j] ) lowercase : Optional[Any] = max_revenue_i return max_rev[n] def lowercase__ ( _UpperCAmelCase , _UpperCAmelCase ) -> List[Any]: '''simple docstring''' if n < 0: lowercase : Tuple = f'''n must be greater than or equal to 0. Got n = {n}''' raise ValueError(_UpperCAmelCase ) if n > len(_UpperCAmelCase ): lowercase : Dict = ( 'Each integral piece of rod must have a corresponding price. ' f'''Got n = {n} but length of prices = {len(_UpperCAmelCase )}''' ) raise ValueError(_UpperCAmelCase ) def lowercase__ ( ) -> str: '''simple docstring''' lowercase : Optional[Any] = [6, 10, 12, 15, 20, 23] lowercase : Optional[Any] = len(_UpperCAmelCase ) # the best revenue comes from cutting the rod into 6 pieces, each # of length 1 resulting in a revenue of 6 * 6 = 36. lowercase : List[Any] = 36 lowercase : Union[str, Any] = top_down_cut_rod(_UpperCAmelCase , _UpperCAmelCase ) lowercase : Optional[Any] = bottom_up_cut_rod(_UpperCAmelCase , _UpperCAmelCase ) lowercase : List[str] = naive_cut_rod_recursive(_UpperCAmelCase , _UpperCAmelCase ) assert expected_max_revenue == max_rev_top_down assert max_rev_top_down == max_rev_bottom_up assert max_rev_bottom_up == max_rev_naive if __name__ == "__main__": main()
255
1
from abc import ABC, abstractmethod from typing import Optional, Union from .. import Dataset, DatasetDict, Features, IterableDataset, IterableDatasetDict, NamedSplit from ..utils.typing import NestedDataStructureLike, PathLike class A ( UpperCAmelCase__ ): '''simple docstring''' def __init__(self : Union[str, Any] , _UpperCAmelCase : Optional[NestedDataStructureLike[PathLike]] = None , _UpperCAmelCase : Optional[NamedSplit] = None , _UpperCAmelCase : Optional[Features] = None , _UpperCAmelCase : str = None , _UpperCAmelCase : bool = False , _UpperCAmelCase : bool = False , _UpperCAmelCase : Optional[int] = None , **_UpperCAmelCase : Any , ) -> str: """simple docstring""" lowercase__ = path_or_paths lowercase__ = split if split or isinstance(_UpperCAmelCase , _UpperCAmelCase ) else """train""" lowercase__ = features lowercase__ = cache_dir lowercase__ = keep_in_memory lowercase__ = streaming lowercase__ = num_proc lowercase__ = kwargs @abstractmethod def lowerCamelCase__ (self : Tuple ) -> Union[Dataset, DatasetDict, IterableDataset, IterableDatasetDict]: """simple docstring""" pass class A ( UpperCAmelCase__ ): '''simple docstring''' def __init__(self : Tuple , _UpperCAmelCase : Optional[Features] = None , _UpperCAmelCase : str = None , _UpperCAmelCase : bool = False , _UpperCAmelCase : bool = False , _UpperCAmelCase : Optional[int] = None , **_UpperCAmelCase : int , ) -> Any: """simple docstring""" lowercase__ = features lowercase__ = cache_dir lowercase__ = keep_in_memory lowercase__ = streaming lowercase__ = num_proc lowercase__ = kwargs @abstractmethod def lowerCamelCase__ (self : Optional[Any] ) -> Union[Dataset, IterableDataset]: """simple docstring""" pass
146
def UpperCamelCase ( __magic_name__ : str ) -> List[str]: # noqa: E741 """simple docstring""" lowercase__ = len(__magic_name__ ) lowercase__ = 0 lowercase__ = [0] * n lowercase__ = [False] * n lowercase__ = [False] * n def dfs(__magic_name__ : str , __magic_name__ : List[str] , __magic_name__ : str , __magic_name__ : Any ): if parent == root: out_edge_count += 1 lowercase__ = True lowercase__ = at for to in l[at]: if to == parent: pass elif not visited[to]: lowercase__ = dfs(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) lowercase__ = min(low[at] , low[to] ) # AP found via bridge if at < low[to]: lowercase__ = True # AP found via cycle if at == low[to]: lowercase__ = True else: lowercase__ = min(low[at] , __magic_name__ ) return out_edge_count for i in range(__magic_name__ ): if not visited[i]: lowercase__ = 0 lowercase__ = dfs(__magic_name__ , __magic_name__ , -1 , __magic_name__ ) lowercase__ = out_edge_count > 1 for x in range(len(__magic_name__ ) ): if is_art[x] is True: print(__magic_name__ ) # Adjacency list of graph A : List[str] = { 0: [1, 2], 1: [0, 2], 2: [0, 1, 3, 5], 3: [2, 4], 4: [3], 5: [2, 6, 8], 6: [5, 7], 7: [6, 8], 8: [5, 7], } compute_ap(data)
146
1
from random import shuffle import tensorflow as tf from numpy import array def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> Optional[Any]: """simple docstring""" A__ = int(lowercase_ ) assert noofclusters < len(lowercase_ ) # Find out the dimensionality A__ = len(vectors[0] ) # Will help select random centroids from among the available vectors A__ = list(range(len(lowercase_ ) ) ) shuffle(lowercase_ ) # GRAPH OF COMPUTATION # We initialize a new graph and set it as the default during each run # of this algorithm. This ensures that as this function is called # multiple times, the default graph doesn't keep getting crowded with # unused ops and Variables from previous function calls. A__ = tf.Graph() with graph.as_default(): # SESSION OF COMPUTATION A__ = tf.Session() ##CONSTRUCTING THE ELEMENTS OF COMPUTATION ##First lets ensure we have a Variable vector for each centroid, ##initialized to one of the vectors from the available data points A__ = [ tf.Variable(vectors[vector_indices[i]] ) for i in range(lowercase_ ) ] ##These nodes will assign the centroid Variables the appropriate ##values A__ = tf.placeholder('''float64''' , [dim] ) A__ = [] for centroid in centroids: cent_assigns.append(tf.assign(lowercase_ , lowercase_ ) ) ##Variables for cluster assignments of individual vectors(initialized ##to 0 at first) A__ = [tf.Variable(0 ) for i in range(len(lowercase_ ) )] ##These nodes will assign an assignment Variable the appropriate ##value A__ = tf.placeholder('''int32''' ) A__ = [] for assignment in assignments: cluster_assigns.append(tf.assign(lowercase_ , lowercase_ ) ) ##Now lets construct the node that will compute the mean # The placeholder for the input A__ = tf.placeholder('''float''' , [None, dim] ) # The Node/op takes the input and computes a mean along the 0th # dimension, i.e. the list of input vectors A__ = tf.reduce_mean(lowercase_ , 0 ) ##Node for computing Euclidean distances # Placeholders for input A__ = tf.placeholder('''float''' , [dim] ) A__ = tf.placeholder('''float''' , [dim] ) A__ = tf.sqrt(tf.reduce_sum(tf.pow(tf.sub(lowercase_ , lowercase_ ) , 2 ) ) ) ##This node will figure out which cluster to assign a vector to, ##based on Euclidean distances of the vector from the centroids. # Placeholder for input A__ = tf.placeholder('''float''' , [noofclusters] ) A__ = tf.argmin(lowercase_ , 0 ) ##INITIALIZING STATE VARIABLES ##This will help initialization of all Variables defined with respect ##to the graph. The Variable-initializer should be defined after ##all the Variables have been constructed, so that each of them ##will be included in the initialization. A__ = tf.initialize_all_variables() # Initialize all variables sess.run(lowercase_ ) ##CLUSTERING ITERATIONS # Now perform the Expectation-Maximization steps of K-Means clustering # iterations. To keep things simple, we will only do a set number of # iterations, instead of using a Stopping Criterion. A__ = 100 for _ in range(lowercase_ ): ##EXPECTATION STEP ##Based on the centroid locations till last iteration, compute ##the _expected_ centroid assignments. # Iterate over each vector for vector_n in range(len(lowercase_ ) ): A__ = vectors[vector_n] # Compute Euclidean distance between this vector and each # centroid. Remember that this list cannot be named #'centroid_distances', since that is the input to the # cluster assignment node. A__ = [ sess.run(lowercase_ , feed_dict={va: vect, va: sess.run(lowercase_ )} ) for centroid in centroids ] # Now use the cluster assignment node, with the distances # as the input A__ = sess.run( lowercase_ , feed_dict={centroid_distances: distances} ) # Now assign the value to the appropriate state variable sess.run( cluster_assigns[vector_n] , feed_dict={assignment_value: assignment} ) ##MAXIMIZATION STEP # Based on the expected state computed from the Expectation Step, # compute the locations of the centroids so as to maximize the # overall objective of minimizing within-cluster Sum-of-Squares for cluster_n in range(lowercase_ ): # Collect all the vectors assigned to this cluster A__ = [ vectors[i] for i in range(len(lowercase_ ) ) if sess.run(assignments[i] ) == cluster_n ] # Compute new centroid location A__ = sess.run( lowercase_ , feed_dict={mean_input: array(lowercase_ )} ) # Assign value to appropriate variable sess.run( cent_assigns[cluster_n] , feed_dict={centroid_value: new_location} ) # Return centroids and assignments A__ = sess.run(lowercase_ ) A__ = sess.run(lowercase_ ) return centroids, assignments
14
import warnings from pathlib import Path from typing import List, Tuple, Union import fire from torch import nn from transformers import AutoModelForSeqaSeqLM, AutoTokenizer, PreTrainedModel from transformers.utils import logging _a = logging.get_logger(__name__) def __A ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )-> None: """simple docstring""" _UpperCAmelCase = nn.ModuleList([src_layers[i] for i in layers_to_copy] ) assert len(__lowerCAmelCase ) == len(__lowerCAmelCase ), F"""{len(__lowerCAmelCase )} != {len(__lowerCAmelCase )}""" dest_layers.load_state_dict(layers_to_copy.state_dict() ) _a = { # maps num layers in teacher -> num_layers in student -> which teacher layers to copy. # 12: bart, 16: pegasus, 6: marian/Helsinki-NLP 12: { 1: [0], # This says that if the teacher has 12 layers and the student has 1, copy layer 0 of the teacher 2: [0, 6], 3: [0, 6, 11], 4: [0, 4, 8, 11], 6: [0, 2, 4, 7, 9, 11], 9: [0, 1, 2, 4, 5, 7, 9, 10, 11], 12: list(range(12)), }, 16: { # maps num layers in student -> which teacher layers to copy 1: [0], 2: [0, 15], 3: [0, 8, 15], 4: [0, 5, 10, 15], 6: [0, 3, 6, 9, 12, 15], 8: [0, 2, 4, 6, 8, 10, 12, 15], 9: [0, 1, 3, 5, 7, 9, 11, 13, 15], 12: [0, 1, 2, 3, 4, 5, 6, 7, 9, 11, 13, 15], 16: list(range(16)), }, 6: {1: [0], 2: [0, 5], 3: [0, 2, 5], 4: [0, 1, 3, 5], 6: list(range(6))}, } _a = { # maps num layers in student -> which teacher layers to copy. 6: {1: [5], 2: [3, 5], 3: [1, 4, 5], 4: [1, 2, 4, 5]}, 12: {1: [11], 2: [5, 11], 3: [3, 7, 11], 6: [1, 3, 5, 8, 10, 11]}, 16: {1: [15], 4: [4, 9, 12, 15], 8: [1, 3, 5, 7, 9, 11, 13, 15]}, } def __A ( __lowerCAmelCase , __lowerCAmelCase )-> Dict: """simple docstring""" try: _UpperCAmelCase = LAYERS_TO_COPY[n_teacher][n_student] return val except KeyError: if n_student != n_teacher: warnings.warn( F"""no hardcoded layers to copy for teacher {n_teacher} -> student {n_student}, defaulting to first""" F""" {n_student}""" ) return list(range(__lowerCAmelCase ) ) def __A ( __lowerCAmelCase , __lowerCAmelCase )-> List[int]: """simple docstring""" if n_student > n_teacher: raise ValueError(F"""Cannot perform intermediate supervision for student {n_student} > teacher {n_teacher}""" ) elif n_teacher == n_student: return list(range(__lowerCAmelCase ) ) elif n_student == 1: return [n_teacher - 1] else: return LAYERS_TO_SUPERVISE[n_teacher][n_student] def __A ( __lowerCAmelCase , __lowerCAmelCase = "student" , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase=False , __lowerCAmelCase=None , __lowerCAmelCase=None , **__lowerCAmelCase , )-> Tuple[PreTrainedModel, List[int], List[int]]: """simple docstring""" _UpperCAmelCase = 'encoder_layers and decoder_layers cannot be both None-- you would just have an identical teacher.' assert (e is not None) or (d is not None), _msg if isinstance(__lowerCAmelCase , __lowerCAmelCase ): AutoTokenizer.from_pretrained(__lowerCAmelCase ).save_pretrained(__lowerCAmelCase ) # purely for convenience _UpperCAmelCase = AutoModelForSeqaSeqLM.from_pretrained(__lowerCAmelCase ).eval() else: assert isinstance(__lowerCAmelCase , __lowerCAmelCase ), F"""teacher must be a model or string got type {type(__lowerCAmelCase )}""" _UpperCAmelCase = teacher.config.to_diff_dict() try: _UpperCAmelCase , _UpperCAmelCase = teacher.config.encoder_layers, teacher.config.decoder_layers if e is None: _UpperCAmelCase = teacher_e if d is None: _UpperCAmelCase = teacher_d init_kwargs.update({'encoder_layers': e, 'decoder_layers': d} ) except AttributeError: # T5 if hasattr(teacher.config , 'num_encoder_layers' ): _UpperCAmelCase , _UpperCAmelCase = teacher.config.num_encoder_layers, teacher.config.num_decoder_layers else: _UpperCAmelCase , _UpperCAmelCase = teacher.config.num_layers, teacher.config.num_decoder_layers if e is None: _UpperCAmelCase = teacher_e if d is None: _UpperCAmelCase = teacher_d if hasattr(teacher.config , 'num_encoder_layers' ): init_kwargs.update({'num_encoder_layers': e, 'num_decoder_layers': d} ) else: init_kwargs.update({'num_layers': e, 'num_decoder_layers': d} ) # Kwargs to instantiate student: teacher kwargs with updated layer numbers + **extra_config_kwargs init_kwargs.update(__lowerCAmelCase ) # Copy weights _UpperCAmelCase = teacher.config_class(**__lowerCAmelCase ) _UpperCAmelCase = AutoModelForSeqaSeqLM.from_config(__lowerCAmelCase ) # Start by copying the full teacher state dict this will copy the first N teacher layers to the student. _UpperCAmelCase = student.load_state_dict(teacher.state_dict() , strict=__lowerCAmelCase ) assert info.missing_keys == [], info.missing_keys # every student key should have a teacher keys. if copy_first_teacher_layers: # Our copying is done. We just log and save _UpperCAmelCase , _UpperCAmelCase = list(range(__lowerCAmelCase ) ), list(range(__lowerCAmelCase ) ) logger.info( F"""Copied encoder layers {e_layers_to_copy} and decoder layers {d_layers_to_copy}. Saving them to""" F""" {save_path}""" ) student.save_pretrained(__lowerCAmelCase ) return student, e_layers_to_copy, d_layers_to_copy # Decide which layers of the teacher to copy. Not exactly alternating -- we try to keep first and last layer. if e_layers_to_copy is None: _UpperCAmelCase = pick_layers_to_copy(__lowerCAmelCase , __lowerCAmelCase ) if d_layers_to_copy is None: _UpperCAmelCase = pick_layers_to_copy(__lowerCAmelCase , __lowerCAmelCase ) try: if hasattr( __lowerCAmelCase , 'prophetnet' ): # For ProphetNet, student.model.encoder.layers is called student.prophetnet.encoder.layers copy_layers(teacher.prophetnet.encoder.layers , student.prophetnet.encoder.layers , __lowerCAmelCase ) copy_layers(teacher.prophetnet.decoder.layers , student.prophetnet.decoder.layers , __lowerCAmelCase ) else: copy_layers(teacher.model.encoder.layers , student.model.encoder.layers , __lowerCAmelCase ) copy_layers(teacher.model.decoder.layers , student.model.decoder.layers , __lowerCAmelCase ) except AttributeError: # For t5, student.model.encoder.layers is called student.encoder.block copy_layers(teacher.encoder.block , student.encoder.block , __lowerCAmelCase ) copy_layers(teacher.decoder.block , student.decoder.block , __lowerCAmelCase ) logger.info( F"""Copied encoder layers {e_layers_to_copy} and decoder layers {d_layers_to_copy}. Saving them to {save_path}""" ) _UpperCAmelCase = { 'teacher_type': teacher.config.model_type, 'copied_encoder_layers': e_layers_to_copy, 'copied_decoder_layers': d_layers_to_copy, } student.save_pretrained(__lowerCAmelCase ) # Save information about copying for easier reproducibility return student, e_layers_to_copy, d_layers_to_copy if __name__ == "__main__": fire.Fire(create_student_by_copying_alternating_layers)
39
0
'''simple docstring''' import numpy as np from nltk.translate import meteor_score import datasets from datasets.config import importlib_metadata, version lowerCamelCase : str = version.parse(importlib_metadata.version("nltk")) if NLTK_VERSION >= version.Version("3.6.4"): from nltk import word_tokenize lowerCamelCase : int = '\\n@inproceedings{banarjee2005,\n title = {{METEOR}: An Automatic Metric for {MT} Evaluation with Improved Correlation with Human Judgments},\n author = {Banerjee, Satanjeev and Lavie, Alon},\n booktitle = {Proceedings of the {ACL} Workshop on Intrinsic and Extrinsic Evaluation Measures for Machine Translation and/or Summarization},\n month = jun,\n year = {2005},\n address = {Ann Arbor, Michigan},\n publisher = {Association for Computational Linguistics},\n url = {https://www.aclweb.org/anthology/W05-0909},\n pages = {65--72},\n}\n' lowerCamelCase : Optional[Any] = '\\nMETEOR, an automatic metric for machine translation evaluation\nthat is based on a generalized concept of unigram matching between the\nmachine-produced translation and human-produced reference translations.\nUnigrams can be matched based on their surface forms, stemmed forms,\nand meanings; furthermore, METEOR can be easily extended to include more\nadvanced matching strategies. Once all generalized unigram matches\nbetween the two strings have been found, METEOR computes a score for\nthis matching using a combination of unigram-precision, unigram-recall, and\na measure of fragmentation that is designed to directly capture how\nwell-ordered the matched words in the machine translation are in relation\nto the reference.\n\nMETEOR gets an R correlation value of 0.347 with human evaluation on the Arabic\ndata and 0.331 on the Chinese data. This is shown to be an improvement on\nusing simply unigram-precision, unigram-recall and their harmonic F1\ncombination.\n' lowerCamelCase : List[Any] = '\nComputes METEOR score of translated segments against one or more references.\nArgs:\n predictions: list of predictions to score. Each prediction\n should be a string with tokens separated by spaces.\n references: list of reference for each prediction. Each\n reference should be a string with tokens separated by spaces.\n alpha: Parameter for controlling relative weights of precision and recall. default: 0.9\n beta: Parameter for controlling shape of penalty as a function of fragmentation. default: 3\n gamma: Relative weight assigned to fragmentation penalty. default: 0.5\nReturns:\n \'meteor\': meteor score.\nExamples:\n\n >>> meteor = datasets.load_metric(\'meteor\')\n >>> predictions = ["It is a guide to action which ensures that the military always obeys the commands of the party"]\n >>> references = ["It is a guide to action that ensures that the military will forever heed Party commands"]\n >>> results = meteor.compute(predictions=predictions, references=references)\n >>> print(round(results["meteor"], 4))\n 0.6944\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class A__ ( datasets.Metric ): def A ( self : Any ) -> Optional[int]: '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('string' , id='sequence' ), 'references': datasets.Value('string' , id='sequence' ), } ) , codebase_urls=['https://github.com/nltk/nltk/blob/develop/nltk/translate/meteor_score.py'] , reference_urls=[ 'https://www.nltk.org/api/nltk.translate.html#module-nltk.translate.meteor_score', 'https://en.wikipedia.org/wiki/METEOR', ] , ) def A ( self : Union[str, Any] , _a : Dict ) -> Optional[Any]: '''simple docstring''' import nltk nltk.download('wordnet' ) if NLTK_VERSION >= version.Version('3.6.5' ): nltk.download('punkt' ) if NLTK_VERSION >= version.Version('3.6.6' ): nltk.download('omw-1.4' ) def A ( self : int , _a : int , _a : List[str] , _a : Any=0.9 , _a : int=3 , _a : List[str]=0.5 ) -> Optional[int]: '''simple docstring''' if NLTK_VERSION >= version.Version('3.6.5' ): _SCREAMING_SNAKE_CASE =[ meteor_score.single_meteor_score( word_tokenize(_lowercase ) , word_tokenize(_lowercase ) , alpha=_lowercase , beta=_lowercase , gamma=_lowercase ) for ref, pred in zip(_lowercase , _lowercase ) ] else: _SCREAMING_SNAKE_CASE =[ meteor_score.single_meteor_score(_lowercase , _lowercase , alpha=_lowercase , beta=_lowercase , gamma=_lowercase ) for ref, pred in zip(_lowercase , _lowercase ) ] return {"meteor": np.mean(_lowercase )}
370
'''simple docstring''' import os def _lowerCAmelCase ( ) -> List[str]: """simple docstring""" _SCREAMING_SNAKE_CASE =os.path.dirname(os.path.realpath(_UpperCamelCase ) ) _SCREAMING_SNAKE_CASE =os.path.join(_UpperCamelCase , 'triangle.txt' ) with open(_UpperCamelCase ) as f: _SCREAMING_SNAKE_CASE =f.readlines() _SCREAMING_SNAKE_CASE =[] for line in triangle: _SCREAMING_SNAKE_CASE =[] for number in line.strip().split(' ' ): numbers_from_line.append(int(_UpperCamelCase ) ) a.append(_UpperCamelCase ) for i in range(1 , len(_UpperCamelCase ) ): for j in range(len(a[i] ) ): _SCREAMING_SNAKE_CASE =a[i - 1][j] if j != len(a[i - 1] ) else 0 _SCREAMING_SNAKE_CASE =a[i - 1][j - 1] if j > 0 else 0 a[i][j] += max(_UpperCamelCase , _UpperCamelCase ) return max(a[-1] ) if __name__ == "__main__": print(solution())
114
0
"""simple docstring""" def A ( snake_case__ , snake_case__ ): '''simple docstring''' return price * (1 + tax_rate) if __name__ == "__main__": print(F'{price_plus_tax(100, 0.25) = }') print(F'{price_plus_tax(1_25.50, 0.05) = }')
165
"""simple docstring""" def A ( snake_case__ ): '''simple docstring''' assert isinstance(snake_case__ , snake_case__ ), f"""The input value of [n={number}] is not an integer""" if number == 1: return 2 elif number < 1: SCREAMING_SNAKE_CASE__ = f"""The input value of [n={number}] has to be > 0""" raise ValueError(snake_case__ ) else: SCREAMING_SNAKE_CASE__ = sylvester(number - 1 ) SCREAMING_SNAKE_CASE__ = num - 1 SCREAMING_SNAKE_CASE__ = num return lower * upper + 1 if __name__ == "__main__": print(F'The 8th number in Sylvester\'s sequence: {sylvester(8)}')
165
1
from __future__ import annotations class __snake_case : def __init__( self : Tuple , _lowercase : int = 0 ): """simple docstring""" SCREAMING_SNAKE_CASE__ = key def __a ( self : List[Any] , _lowercase : str , _lowercase : int ): """simple docstring""" assert isinstance(_lowercase , _lowercase ) and isinstance(_lowercase , _lowercase ) SCREAMING_SNAKE_CASE__ = key or self.__key or 1 # make sure key is an appropriate size key %= 2_55 return [chr(ord(_lowercase ) ^ key ) for ch in content] def __a ( self : List[str] , _lowercase : str , _lowercase : int ): """simple docstring""" assert isinstance(_lowercase , _lowercase ) and isinstance(_lowercase , _lowercase ) SCREAMING_SNAKE_CASE__ = key or self.__key or 1 # make sure key is an appropriate size key %= 2_55 return [chr(ord(_lowercase ) ^ key ) for ch in content] def __a ( self : List[str] , _lowercase : str , _lowercase : int = 0 ): """simple docstring""" assert isinstance(_lowercase , _lowercase ) and isinstance(_lowercase , _lowercase ) SCREAMING_SNAKE_CASE__ = key or self.__key or 1 # make sure key can be any size while key > 2_55: key -= 2_55 # This will be returned SCREAMING_SNAKE_CASE__ = """""" for ch in content: ans += chr(ord(_lowercase ) ^ key ) return ans def __a ( self : Optional[int] , _lowercase : str , _lowercase : int = 0 ): """simple docstring""" assert isinstance(_lowercase , _lowercase ) and isinstance(_lowercase , _lowercase ) SCREAMING_SNAKE_CASE__ = key or self.__key or 1 # make sure key can be any size while key > 2_55: key -= 2_55 # This will be returned SCREAMING_SNAKE_CASE__ = """""" for ch in content: ans += chr(ord(_lowercase ) ^ key ) return ans def __a ( self : Union[str, Any] , _lowercase : str , _lowercase : int = 0 ): """simple docstring""" assert isinstance(_lowercase , _lowercase ) and isinstance(_lowercase , _lowercase ) try: with open(_lowercase ) as fin, open("""encrypt.out""" , """w+""" ) as fout: # actual encrypt-process for line in fin: fout.write(self.encrypt_string(_lowercase , _lowercase ) ) except OSError: return False return True def __a ( self : Union[str, Any] , _lowercase : str , _lowercase : int ): """simple docstring""" assert isinstance(_lowercase , _lowercase ) and isinstance(_lowercase , _lowercase ) try: with open(_lowercase ) as fin, open("""decrypt.out""" , """w+""" ) as fout: # actual encrypt-process for line in fin: fout.write(self.decrypt_string(_lowercase , _lowercase ) ) except OSError: return False return True # Tests # crypt = XORCipher() # key = 67 # # test encrypt # print(crypt.encrypt("hallo welt",key)) # # test decrypt # print(crypt.decrypt(crypt.encrypt("hallo welt",key), key)) # # test encrypt_string # print(crypt.encrypt_string("hallo welt",key)) # # test decrypt_string # print(crypt.decrypt_string(crypt.encrypt_string("hallo welt",key),key)) # if (crypt.encrypt_file("test.txt",key)): # print("encrypt successful") # else: # print("encrypt unsuccessful") # if (crypt.decrypt_file("encrypt.out",key)): # print("decrypt successful") # else: # print("decrypt unsuccessful")
204
import argparse import io import requests import torch from omegaconf import OmegaConf from diffusers import AutoencoderKL from diffusers.pipelines.stable_diffusion.convert_from_ckpt import ( assign_to_checkpoint, conv_attn_to_linear, create_vae_diffusers_config, renew_vae_attention_paths, renew_vae_resnet_paths, ) def __SCREAMING_SNAKE_CASE ( __UpperCamelCase : Optional[int] , __UpperCamelCase : str ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE__ = checkpoint SCREAMING_SNAKE_CASE__ = {} SCREAMING_SNAKE_CASE__ = vae_state_dict["""encoder.conv_in.weight"""] SCREAMING_SNAKE_CASE__ = vae_state_dict["""encoder.conv_in.bias"""] SCREAMING_SNAKE_CASE__ = vae_state_dict["""encoder.conv_out.weight"""] SCREAMING_SNAKE_CASE__ = vae_state_dict["""encoder.conv_out.bias"""] SCREAMING_SNAKE_CASE__ = vae_state_dict["""encoder.norm_out.weight"""] SCREAMING_SNAKE_CASE__ = vae_state_dict["""encoder.norm_out.bias"""] SCREAMING_SNAKE_CASE__ = vae_state_dict["""decoder.conv_in.weight"""] SCREAMING_SNAKE_CASE__ = vae_state_dict["""decoder.conv_in.bias"""] SCREAMING_SNAKE_CASE__ = vae_state_dict["""decoder.conv_out.weight"""] SCREAMING_SNAKE_CASE__ = vae_state_dict["""decoder.conv_out.bias"""] SCREAMING_SNAKE_CASE__ = vae_state_dict["""decoder.norm_out.weight"""] SCREAMING_SNAKE_CASE__ = vae_state_dict["""decoder.norm_out.bias"""] SCREAMING_SNAKE_CASE__ = vae_state_dict["""quant_conv.weight"""] SCREAMING_SNAKE_CASE__ = vae_state_dict["""quant_conv.bias"""] SCREAMING_SNAKE_CASE__ = vae_state_dict["""post_quant_conv.weight"""] SCREAMING_SNAKE_CASE__ = vae_state_dict["""post_quant_conv.bias"""] # Retrieves the keys for the encoder down blocks only SCREAMING_SNAKE_CASE__ = len({""".""".join(layer.split(""".""" )[:3] ) for layer in vae_state_dict if """encoder.down""" in layer} ) SCREAMING_SNAKE_CASE__ = { layer_id: [key for key in vae_state_dict if f"""down.{layer_id}""" in key] for layer_id in range(__UpperCamelCase ) } # Retrieves the keys for the decoder up blocks only SCREAMING_SNAKE_CASE__ = len({""".""".join(layer.split(""".""" )[:3] ) for layer in vae_state_dict if """decoder.up""" in layer} ) SCREAMING_SNAKE_CASE__ = { layer_id: [key for key in vae_state_dict if f"""up.{layer_id}""" in key] for layer_id in range(__UpperCamelCase ) } for i in range(__UpperCamelCase ): SCREAMING_SNAKE_CASE__ = [key for key in down_blocks[i] if f"""down.{i}""" in key and f"""down.{i}.downsample""" not in key] if f"""encoder.down.{i}.downsample.conv.weight""" in vae_state_dict: SCREAMING_SNAKE_CASE__ = vae_state_dict.pop( f"""encoder.down.{i}.downsample.conv.weight""" ) SCREAMING_SNAKE_CASE__ = vae_state_dict.pop( f"""encoder.down.{i}.downsample.conv.bias""" ) SCREAMING_SNAKE_CASE__ = renew_vae_resnet_paths(__UpperCamelCase ) SCREAMING_SNAKE_CASE__ = {"""old""": f"""down.{i}.block""", """new""": f"""down_blocks.{i}.resnets"""} assign_to_checkpoint(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , additional_replacements=[meta_path] , config=__UpperCamelCase ) SCREAMING_SNAKE_CASE__ = [key for key in vae_state_dict if """encoder.mid.block""" in key] SCREAMING_SNAKE_CASE__ = 2 for i in range(1 , num_mid_res_blocks + 1 ): SCREAMING_SNAKE_CASE__ = [key for key in mid_resnets if f"""encoder.mid.block_{i}""" in key] SCREAMING_SNAKE_CASE__ = renew_vae_resnet_paths(__UpperCamelCase ) SCREAMING_SNAKE_CASE__ = {"""old""": f"""mid.block_{i}""", """new""": f"""mid_block.resnets.{i - 1}"""} assign_to_checkpoint(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , additional_replacements=[meta_path] , config=__UpperCamelCase ) SCREAMING_SNAKE_CASE__ = [key for key in vae_state_dict if """encoder.mid.attn""" in key] SCREAMING_SNAKE_CASE__ = renew_vae_attention_paths(__UpperCamelCase ) SCREAMING_SNAKE_CASE__ = {"""old""": """mid.attn_1""", """new""": """mid_block.attentions.0"""} assign_to_checkpoint(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , additional_replacements=[meta_path] , config=__UpperCamelCase ) conv_attn_to_linear(__UpperCamelCase ) for i in range(__UpperCamelCase ): SCREAMING_SNAKE_CASE__ = num_up_blocks - 1 - i SCREAMING_SNAKE_CASE__ = [ key for key in up_blocks[block_id] if f"""up.{block_id}""" in key and f"""up.{block_id}.upsample""" not in key ] if f"""decoder.up.{block_id}.upsample.conv.weight""" in vae_state_dict: SCREAMING_SNAKE_CASE__ = vae_state_dict[ f"""decoder.up.{block_id}.upsample.conv.weight""" ] SCREAMING_SNAKE_CASE__ = vae_state_dict[ f"""decoder.up.{block_id}.upsample.conv.bias""" ] SCREAMING_SNAKE_CASE__ = renew_vae_resnet_paths(__UpperCamelCase ) SCREAMING_SNAKE_CASE__ = {"""old""": f"""up.{block_id}.block""", """new""": f"""up_blocks.{i}.resnets"""} assign_to_checkpoint(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , additional_replacements=[meta_path] , config=__UpperCamelCase ) SCREAMING_SNAKE_CASE__ = [key for key in vae_state_dict if """decoder.mid.block""" in key] SCREAMING_SNAKE_CASE__ = 2 for i in range(1 , num_mid_res_blocks + 1 ): SCREAMING_SNAKE_CASE__ = [key for key in mid_resnets if f"""decoder.mid.block_{i}""" in key] SCREAMING_SNAKE_CASE__ = renew_vae_resnet_paths(__UpperCamelCase ) SCREAMING_SNAKE_CASE__ = {"""old""": f"""mid.block_{i}""", """new""": f"""mid_block.resnets.{i - 1}"""} assign_to_checkpoint(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , additional_replacements=[meta_path] , config=__UpperCamelCase ) SCREAMING_SNAKE_CASE__ = [key for key in vae_state_dict if """decoder.mid.attn""" in key] SCREAMING_SNAKE_CASE__ = renew_vae_attention_paths(__UpperCamelCase ) SCREAMING_SNAKE_CASE__ = {"""old""": """mid.attn_1""", """new""": """mid_block.attentions.0"""} assign_to_checkpoint(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , additional_replacements=[meta_path] , config=__UpperCamelCase ) conv_attn_to_linear(__UpperCamelCase ) return new_checkpoint def __SCREAMING_SNAKE_CASE ( __UpperCamelCase : str , __UpperCamelCase : str , ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE__ = requests.get( """ https://raw.githubusercontent.com/CompVis/stable-diffusion/main/configs/stable-diffusion/v1-inference.yaml""" ) SCREAMING_SNAKE_CASE__ = io.BytesIO(r.content ) SCREAMING_SNAKE_CASE__ = OmegaConf.load(__UpperCamelCase ) SCREAMING_SNAKE_CASE__ = 5_12 SCREAMING_SNAKE_CASE__ = """cuda""" if torch.cuda.is_available() else """cpu""" if checkpoint_path.endswith("""safetensors""" ): from safetensors import safe_open SCREAMING_SNAKE_CASE__ = {} with safe_open(__UpperCamelCase , framework="""pt""" , device="""cpu""" ) as f: for key in f.keys(): SCREAMING_SNAKE_CASE__ = f.get_tensor(__UpperCamelCase ) else: SCREAMING_SNAKE_CASE__ = torch.load(__UpperCamelCase , map_location=__UpperCamelCase )["""state_dict"""] # Convert the VAE model. SCREAMING_SNAKE_CASE__ = create_vae_diffusers_config(__UpperCamelCase , image_size=__UpperCamelCase ) SCREAMING_SNAKE_CASE__ = custom_convert_ldm_vae_checkpoint(__UpperCamelCase , __UpperCamelCase ) SCREAMING_SNAKE_CASE__ = AutoencoderKL(**__UpperCamelCase ) vae.load_state_dict(__UpperCamelCase ) vae.save_pretrained(__UpperCamelCase ) if __name__ == "__main__": __lowerCamelCase : List[Any] = argparse.ArgumentParser() parser.add_argument('''--vae_pt_path''', default=None, type=str, required=True, help='''Path to the VAE.pt to convert.''') parser.add_argument('''--dump_path''', default=None, type=str, required=True, help='''Path to the VAE.pt to convert.''') __lowerCamelCase : Optional[int] = parser.parse_args() vae_pt_to_vae_diffuser(args.vae_pt_path, args.dump_path)
204
1
import numpy as np from nltk.translate import meteor_score import datasets from datasets.config import importlib_metadata, version lowercase_ = version.parse(importlib_metadata.version("nltk")) if NLTK_VERSION >= version.Version("3.6.4"): from nltk import word_tokenize lowercase_ = "\\n@inproceedings{banarjee2005,\n title = {{METEOR}: An Automatic Metric for {MT} Evaluation with Improved Correlation with Human Judgments},\n author = {Banerjee, Satanjeev and Lavie, Alon},\n booktitle = {Proceedings of the {ACL} Workshop on Intrinsic and Extrinsic Evaluation Measures for Machine Translation and/or Summarization},\n month = jun,\n year = {2005},\n address = {Ann Arbor, Michigan},\n publisher = {Association for Computational Linguistics},\n url = {https://www.aclweb.org/anthology/W05-0909},\n pages = {65--72},\n}\n" lowercase_ = "\\nMETEOR, an automatic metric for machine translation evaluation\nthat is based on a generalized concept of unigram matching between the\nmachine-produced translation and human-produced reference translations.\nUnigrams can be matched based on their surface forms, stemmed forms,\nand meanings; furthermore, METEOR can be easily extended to include more\nadvanced matching strategies. Once all generalized unigram matches\nbetween the two strings have been found, METEOR computes a score for\nthis matching using a combination of unigram-precision, unigram-recall, and\na measure of fragmentation that is designed to directly capture how\nwell-ordered the matched words in the machine translation are in relation\nto the reference.\n\nMETEOR gets an R correlation value of 0.347 with human evaluation on the Arabic\ndata and 0.331 on the Chinese data. This is shown to be an improvement on\nusing simply unigram-precision, unigram-recall and their harmonic F1\ncombination.\n" lowercase_ = "\nComputes METEOR score of translated segments against one or more references.\nArgs:\n predictions: list of predictions to score. Each prediction\n should be a string with tokens separated by spaces.\n references: list of reference for each prediction. Each\n reference should be a string with tokens separated by spaces.\n alpha: Parameter for controlling relative weights of precision and recall. default: 0.9\n beta: Parameter for controlling shape of penalty as a function of fragmentation. default: 3\n gamma: Relative weight assigned to fragmentation penalty. default: 0.5\nReturns:\n 'meteor': meteor score.\nExamples:\n\n >>> meteor = datasets.load_metric('meteor')\n >>> predictions = [\"It is a guide to action which ensures that the military always obeys the commands of the party\"]\n >>> references = [\"It is a guide to action that ensures that the military will forever heed Party commands\"]\n >>> results = meteor.compute(predictions=predictions, references=references)\n >>> print(round(results[\"meteor\"], 4))\n 0.6944\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class A ( datasets.Metric ): """simple docstring""" def snake_case__ ( self : str )-> str: '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION,citation=_CITATION,inputs_description=_KWARGS_DESCRIPTION,features=datasets.Features( { 'predictions': datasets.Value('string',id='sequence' ), 'references': datasets.Value('string',id='sequence' ), } ),codebase_urls=['https://github.com/nltk/nltk/blob/develop/nltk/translate/meteor_score.py'],reference_urls=[ 'https://www.nltk.org/api/nltk.translate.html#module-nltk.translate.meteor_score', 'https://en.wikipedia.org/wiki/METEOR', ],) def snake_case__ ( self : Union[str, Any],lowercase_ : Optional[int] )-> Any: '''simple docstring''' import nltk nltk.download('wordnet' ) if NLTK_VERSION >= version.Version('3.6.5' ): nltk.download('punkt' ) if NLTK_VERSION >= version.Version('3.6.6' ): nltk.download('omw-1.4' ) def snake_case__ ( self : int,lowercase_ : str,lowercase_ : Tuple,lowercase_ : Any=0.9,lowercase_ : Union[str, Any]=3,lowercase_ : Tuple=0.5 )-> Union[str, Any]: '''simple docstring''' if NLTK_VERSION >= version.Version('3.6.5' ): A__ = [ meteor_score.single_meteor_score( word_tokenize(lowercase_ ),word_tokenize(lowercase_ ),alpha=lowercase_,beta=lowercase_,gamma=lowercase_ ) for ref, pred in zip(lowercase_,lowercase_ ) ] else: A__ = [ meteor_score.single_meteor_score(lowercase_,lowercase_,alpha=lowercase_,beta=lowercase_,gamma=lowercase_ ) for ref, pred in zip(lowercase_,lowercase_ ) ] return {"meteor": np.mean(lowercase_ )}
7
'''simple docstring''' import pytest from datasets import inspect_metric, list_metrics, load_metric @pytest.fixture def UpperCAmelCase_ ( __lowerCamelCase : List[str] ): monkeypatch.setattr("datasets.utils.deprecation_utils._emitted_deprecation_warnings" ,set() ) @pytest.fixture def UpperCAmelCase_ ( __lowerCamelCase : Any ): class a_ : def __init__( self : int , lowercase : int ): """simple docstring""" lowercase_ :Optional[Any] = metric_id class a_ : __A = [MetricMock(_lowerCAmelCase ) for metric_id in ["accuracy", "mse", "precision", "codeparrot/apps_metric"]] def lowercase__ ( self : Union[str, Any] ): """simple docstring""" return self._metrics monkeypatch.setattr("datasets.inspect.huggingface_hub" ,HfhMock() ) @pytest.mark.parametrize( "func, args" ,[(load_metric, ("metrics/mse",)), (list_metrics, ()), (inspect_metric, ("metrics/mse", "tmp_path"))] ) def UpperCAmelCase_ ( __lowerCamelCase : Union[str, Any] ,__lowerCamelCase : int ,__lowerCamelCase : Optional[int] ,__lowerCamelCase : Union[str, Any] ,__lowerCamelCase : Tuple ): if "tmp_path" in args: lowercase_ :Union[str, Any] = tuple(arg if arg != "tmp_path" else tmp_path for arg in args ) with pytest.warns(__lowerCamelCase ,match="https://huggingface.co/docs/evaluate" ): func(*__lowerCamelCase )
223
0
'''simple docstring''' from typing import Dict, Iterable, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging lowercase__ = logging.get_logger(__name__) class snake_case__ ( __SCREAMING_SNAKE_CASE ): """simple docstring""" lowerCamelCase = ["""pixel_values"""] def __init__( self : Union[str, Any] , UpperCamelCase__ : bool = True , UpperCamelCase__ : Dict[str, int] = None , UpperCamelCase__ : PILImageResampling = PILImageResampling.BICUBIC , UpperCamelCase__ : bool = True , UpperCamelCase__ : Dict[str, int] = None , UpperCamelCase__ : bool = True , UpperCamelCase__ : Union[int, float] = 1 / 255 , UpperCamelCase__ : bool = True , UpperCamelCase__ : Optional[Union[float, Iterable[float]]] = IMAGENET_DEFAULT_MEAN , UpperCamelCase__ : Optional[Union[float, Iterable[float]]] = IMAGENET_DEFAULT_STD , **UpperCamelCase__ : List[str] , ) -> None: """simple docstring""" super().__init__(**UpperCamelCase__ ) snake_case : Optional[Any] = size if size is not None else {'''shortest_edge''': 224} snake_case : Optional[Any] = get_size_dict(UpperCamelCase__ , default_to_square=UpperCamelCase__ ) snake_case : Any = crop_size if crop_size is not None else {'''height''': 224, '''width''': 224} snake_case : str = get_size_dict(UpperCamelCase__ , param_name='''crop_size''' ) snake_case : Optional[int] = do_resize snake_case : List[Any] = size snake_case : Any = resample snake_case : Optional[int] = do_center_crop snake_case : int = crop_size snake_case : int = do_rescale snake_case : Optional[Any] = rescale_factor snake_case : str = do_normalize snake_case : Dict = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN snake_case : Any = image_std if image_std is not None else IMAGENET_DEFAULT_STD def lowerCAmelCase ( self : Optional[Any] , UpperCamelCase__ : np.ndarray , UpperCamelCase__ : Dict[str, int] , UpperCamelCase__ : PILImageResampling = PILImageResampling.BICUBIC , UpperCamelCase__ : Optional[Union[str, ChannelDimension]] = None , **UpperCamelCase__ : str , ) -> np.ndarray: """simple docstring""" snake_case : Union[str, Any] = get_size_dict(UpperCamelCase__ , default_to_square=UpperCamelCase__ ) # size_dict is a dict with either keys "height" and "width" or "shortest_edge" if "shortest_edge" in size: snake_case : List[str] = int((256 / 224) * size['''shortest_edge'''] ) snake_case : Optional[Any] = get_resize_output_image_size(UpperCamelCase__ , size=UpperCamelCase__ , default_to_square=UpperCamelCase__ ) snake_case : Optional[Any] = {'''height''': output_size[0], '''width''': output_size[1]} if "height" not in size_dict or "width" not in size_dict: raise ValueError( f'Size dict must have keys \'height\' and \'width\' or \'shortest_edge\'. Got {size_dict.keys()}' ) return resize( UpperCamelCase__ , size=(size_dict['''height'''], size_dict['''width''']) , resample=UpperCamelCase__ , data_format=UpperCamelCase__ , **UpperCamelCase__ ) def lowerCAmelCase ( self : int , UpperCamelCase__ : np.ndarray , UpperCamelCase__ : Dict[str, int] , UpperCamelCase__ : Optional[Union[str, ChannelDimension]] = None , **UpperCamelCase__ : Dict , ) -> np.ndarray: """simple docstring""" snake_case : int = get_size_dict(UpperCamelCase__ ) if "height" not in size or "width" not in size: raise ValueError(f'Size dict must have keys \'height\' and \'width\'. Got {size.keys()}' ) return center_crop(UpperCamelCase__ , size=(size['''height'''], size['''width''']) , data_format=UpperCamelCase__ , **UpperCamelCase__ ) def lowerCAmelCase ( self : Dict , UpperCamelCase__ : np.ndarray , UpperCamelCase__ : Union[int, float] , UpperCamelCase__ : Optional[Union[str, ChannelDimension]] = None , **UpperCamelCase__ : Optional[Any] , ) -> np.ndarray: """simple docstring""" return rescale(UpperCamelCase__ , scale=UpperCamelCase__ , data_format=UpperCamelCase__ , **UpperCamelCase__ ) def lowerCAmelCase ( self : str , UpperCamelCase__ : np.ndarray , UpperCamelCase__ : Union[float, List[float]] , UpperCamelCase__ : Union[float, List[float]] , UpperCamelCase__ : Optional[Union[str, ChannelDimension]] = None , **UpperCamelCase__ : Any , ) -> np.ndarray: """simple docstring""" return normalize(UpperCamelCase__ , mean=UpperCamelCase__ , std=UpperCamelCase__ , data_format=UpperCamelCase__ , **UpperCamelCase__ ) def lowerCAmelCase ( self : Any , UpperCamelCase__ : ImageInput , UpperCamelCase__ : Optional[bool] = None , UpperCamelCase__ : Optional[Dict[str, int]] = None , UpperCamelCase__ : PILImageResampling = None , UpperCamelCase__ : Optional[bool] = None , UpperCamelCase__ : Optional[Dict[str, int]] = None , UpperCamelCase__ : Optional[bool] = None , UpperCamelCase__ : Optional[float] = None , UpperCamelCase__ : Optional[bool] = None , UpperCamelCase__ : Optional[Union[float, Iterable[float]]] = None , UpperCamelCase__ : Optional[Union[float, Iterable[float]]] = None , UpperCamelCase__ : Optional[TensorType] = None , UpperCamelCase__ : ChannelDimension = ChannelDimension.FIRST , **UpperCamelCase__ : Any , ) -> BatchFeature: """simple docstring""" snake_case : Optional[Any] = do_resize if do_resize is not None else self.do_resize snake_case : Optional[int] = resample if resample is not None else self.resample snake_case : Dict = do_center_crop if do_center_crop is not None else self.do_center_crop snake_case : Union[str, Any] = do_rescale if do_rescale is not None else self.do_rescale snake_case : Union[str, Any] = rescale_factor if rescale_factor is not None else self.rescale_factor snake_case : List[Any] = do_normalize if do_normalize is not None else self.do_normalize snake_case : List[str] = image_mean if image_mean is not None else self.image_mean snake_case : Any = image_std if image_std is not None else self.image_std snake_case : List[str] = size if size is not None else self.size snake_case : Optional[int] = get_size_dict(UpperCamelCase__ , default_to_square=UpperCamelCase__ ) snake_case : List[str] = crop_size if crop_size is not None else self.crop_size snake_case : Tuple = get_size_dict(UpperCamelCase__ , param_name='''crop_size''' ) snake_case : str = make_list_of_images(UpperCamelCase__ ) if not valid_images(UpperCamelCase__ ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''' ) if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) # All transformations expect numpy arrays. snake_case : int = [to_numpy_array(UpperCamelCase__ ) for image in images] if do_resize: snake_case : Optional[int] = [self.resize(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) for image in images] if do_center_crop: snake_case : List[str] = [self.center_crop(UpperCamelCase__ , UpperCamelCase__ ) for image in images] if do_rescale: snake_case : Dict = [self.rescale(UpperCamelCase__ , UpperCamelCase__ ) for image in images] if do_normalize: snake_case : int = [self.normalize(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) for image in images] snake_case : int = [to_channel_dimension_format(UpperCamelCase__ , UpperCamelCase__ ) for image in images] snake_case : str = {'''pixel_values''': images} return BatchFeature(data=UpperCamelCase__ , tensor_type=UpperCamelCase__ )
83
'''simple docstring''' def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ ) -> list: '''simple docstring''' snake_case : Any = len(SCREAMING_SNAKE_CASE__ ) for i in range(1 , SCREAMING_SNAKE_CASE__ ): snake_case : Optional[int] = collection[i] snake_case : str = 0 snake_case : List[Any] = i - 1 while low <= high: snake_case : List[Any] = (low + high) // 2 if val < collection[mid]: snake_case : List[str] = mid - 1 else: snake_case : Optional[int] = mid + 1 for j in range(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , -1 ): snake_case : Dict = collection[j - 1] snake_case : Union[str, Any] = val return collection if __name__ == "__main__": lowercase__ = input("Enter numbers separated by a comma:\n").strip() lowercase__ = [int(item) for item in user_input.split(",")] print(binary_insertion_sort(unsorted))
83
1
import json import logging import os import socket import git import numpy as np import torch logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - PID: %(process)d - %(message)s""", datefmt="""%m/%d/%Y %H:%M:%S""", level=logging.INFO, ) _SCREAMING_SNAKE_CASE = logging.getLogger(__name__) def lowercase( UpperCamelCase_ ) -> List[str]: '''simple docstring''' UpperCamelCase = git.Repo(search_parent_directories=UpperCamelCase_ ) UpperCamelCase = { """repo_id""": str(UpperCamelCase_ ), """repo_sha""": str(repo.head.object.hexsha ), """repo_branch""": str(repo.active_branch ), } with open(os.path.join(UpperCamelCase_ , """git_log.json""" ) , """w""" ) as f: json.dump(UpperCamelCase_ , UpperCamelCase_ , indent=4 ) def lowercase( UpperCamelCase_ ) -> List[Any]: '''simple docstring''' if params.n_gpu <= 0: UpperCamelCase = 0 UpperCamelCase = -1 UpperCamelCase = True UpperCamelCase = False return assert torch.cuda.is_available() logger.info("""Initializing GPUs""" ) if params.n_gpu > 1: assert params.local_rank != -1 UpperCamelCase = int(os.environ["""WORLD_SIZE"""] ) UpperCamelCase = int(os.environ["""N_GPU_NODE"""] ) UpperCamelCase = int(os.environ["""RANK"""] ) # number of nodes / node ID UpperCamelCase = params.world_size // params.n_gpu_per_node UpperCamelCase = params.global_rank // params.n_gpu_per_node UpperCamelCase = True assert params.n_nodes == int(os.environ["""N_NODES"""] ) assert params.node_id == int(os.environ["""NODE_RANK"""] ) # local job (single GPU) else: assert params.local_rank == -1 UpperCamelCase = 1 UpperCamelCase = 0 UpperCamelCase = 0 UpperCamelCase = 0 UpperCamelCase = 1 UpperCamelCase = 1 UpperCamelCase = False # sanity checks assert params.n_nodes >= 1 assert 0 <= params.node_id < params.n_nodes assert 0 <= params.local_rank <= params.global_rank < params.world_size assert params.world_size == params.n_nodes * params.n_gpu_per_node # define whether this is the master process / if we are in multi-node distributed mode UpperCamelCase = params.node_id == 0 and params.local_rank == 0 UpperCamelCase = params.n_nodes > 1 # summary UpperCamelCase = f"""--- Global rank: {params.global_rank} - """ logger.info(PREFIX + """Number of nodes: %i""" % params.n_nodes ) logger.info(PREFIX + """Node ID : %i""" % params.node_id ) logger.info(PREFIX + """Local rank : %i""" % params.local_rank ) logger.info(PREFIX + """World size : %i""" % params.world_size ) logger.info(PREFIX + """GPUs per node : %i""" % params.n_gpu_per_node ) logger.info(PREFIX + """Master : %s""" % str(params.is_master ) ) logger.info(PREFIX + """Multi-node : %s""" % str(params.multi_node ) ) logger.info(PREFIX + """Multi-GPU : %s""" % str(params.multi_gpu ) ) logger.info(PREFIX + """Hostname : %s""" % socket.gethostname() ) # set GPU device torch.cuda.set_device(params.local_rank ) # initialize multi-GPU if params.multi_gpu: logger.info("""Initializing PyTorch distributed""" ) torch.distributed.init_process_group( init_method="""env://""" , backend="""nccl""" , ) def lowercase( UpperCamelCase_ ) -> Any: '''simple docstring''' np.random.seed(args.seed ) torch.manual_seed(args.seed ) if args.n_gpu > 0: torch.cuda.manual_seed_all(args.seed )
343
import os from itertools import chain from random import randrange, shuffle import pytest from .sola import PokerHand _SCREAMING_SNAKE_CASE = ( """4S 3H 2C 7S 5H""", """9D 8H 2C 6S 7H""", """2D 6D 9D TH 7D""", """TC 8C 2S JH 6C""", """JH 8S TH AH QH""", """TS KS 5S 9S AC""", """KD 6S 9D TH AD""", """KS 8D 4D 9S 4S""", # pair """8C 4S KH JS 4D""", # pair """QH 8H KD JH 8S""", # pair """KC 4H KS 2H 8D""", # pair """KD 4S KC 3H 8S""", # pair """AH 8S AS KC JH""", # pair """3H 4C 4H 3S 2H""", # 2 pairs """5S 5D 2C KH KH""", # 2 pairs """3C KH 5D 5S KH""", # 2 pairs """AS 3C KH AD KH""", # 2 pairs """7C 7S 3S 7H 5S""", # 3 of a kind """7C 7S KH 2H 7H""", # 3 of a kind """AC KH QH AH AS""", # 3 of a kind """2H 4D 3C AS 5S""", # straight (low ace) """3C 5C 4C 2C 6H""", # straight """6S 8S 7S 5H 9H""", # straight """JS QS 9H TS KH""", # straight """QC KH TS JS AH""", # straight (high ace) """8C 9C 5C 3C TC""", # flush """3S 8S 9S 5S KS""", # flush """4C 5C 9C 8C KC""", # flush """JH 8H AH KH QH""", # flush """3D 2H 3H 2C 2D""", # full house """2H 2C 3S 3H 3D""", # full house """KH KC 3S 3H 3D""", # full house """JC 6H JS JD JH""", # 4 of a kind """JC 7H JS JD JH""", # 4 of a kind """JC KH JS JD JH""", # 4 of a kind """2S AS 4S 5S 3S""", # straight flush (low ace) """2D 6D 3D 4D 5D""", # straight flush """5C 6C 3C 7C 4C""", # straight flush """JH 9H TH KH QH""", # straight flush """JH AH TH KH QH""", # royal flush (high ace straight flush) ) _SCREAMING_SNAKE_CASE = ( ("""2H 3H 4H 5H 6H""", """KS AS TS QS JS""", """Loss"""), ("""2H 3H 4H 5H 6H""", """AS AD AC AH JD""", """Win"""), ("""AS AH 2H AD AC""", """JS JD JC JH 3D""", """Win"""), ("""2S AH 2H AS AC""", """JS JD JC JH AD""", """Loss"""), ("""2S AH 2H AS AC""", """2H 3H 5H 6H 7H""", """Win"""), ("""AS 3S 4S 8S 2S""", """2H 3H 5H 6H 7H""", """Win"""), ("""2H 3H 5H 6H 7H""", """2S 3H 4H 5S 6C""", """Win"""), ("""2S 3H 4H 5S 6C""", """3D 4C 5H 6H 2S""", """Tie"""), ("""2S 3H 4H 5S 6C""", """AH AC 5H 6H AS""", """Win"""), ("""2S 2H 4H 5S 4C""", """AH AC 5H 6H AS""", """Loss"""), ("""2S 2H 4H 5S 4C""", """AH AC 5H 6H 7S""", """Win"""), ("""6S AD 7H 4S AS""", """AH AC 5H 6H 7S""", """Loss"""), ("""2S AH 4H 5S KC""", """AH AC 5H 6H 7S""", """Loss"""), ("""2S 3H 6H 7S 9C""", """7H 3C TH 6H 9S""", """Loss"""), ("""4S 5H 6H TS AC""", """3S 5H 6H TS AC""", """Win"""), ("""2S AH 4H 5S 6C""", """AD 4C 5H 6H 2C""", """Tie"""), ("""AS AH 3H AD AC""", """AS AH 2H AD AC""", """Win"""), ("""AH AC 5H 5C QS""", """AH AC 5H 5C KS""", """Loss"""), ("""AH AC 5H 5C QS""", """KH KC 5H 5C QS""", """Win"""), ("""7C 7S KH 2H 7H""", """3C 3S AH 2H 3H""", """Win"""), ("""3C 3S AH 2H 3H""", """7C 7S KH 2H 7H""", """Loss"""), ("""6H 5H 4H 3H 2H""", """5H 4H 3H 2H AH""", """Win"""), ("""5H 4H 3H 2H AH""", """5H 4H 3H 2H AH""", """Tie"""), ("""5H 4H 3H 2H AH""", """6H 5H 4H 3H 2H""", """Loss"""), ("""AH AD KS KC AC""", """AH KD KH AC KC""", """Win"""), ("""2H 4D 3C AS 5S""", """2H 4D 3C 6S 5S""", """Loss"""), ("""2H 3S 3C 3H 2S""", """3S 3C 2S 2H 2D""", """Win"""), ("""4D 6D 5D 2D JH""", """3S 8S 3H TC KH""", """Loss"""), ("""4S 6C 8S 3S 7S""", """AD KS 2D 7D 7C""", """Loss"""), ("""6S 4C 7H 8C 3H""", """5H JC AH 9D 9C""", """Loss"""), ("""9D 9H JH TC QH""", """3C 2S JS 5C 7H""", """Win"""), ("""2H TC 8S AD 9S""", """4H TS 7H 2C 5C""", """Win"""), ("""9D 3S 2C 7S 7C""", """JC TD 3C TC 9H""", """Loss"""), ) _SCREAMING_SNAKE_CASE = ( ("""2H 3H 4H 5H 6H""", True), ("""AS AH 2H AD AC""", False), ("""2H 3H 5H 6H 7H""", True), ("""KS AS TS QS JS""", True), ("""8H 9H QS JS TH""", False), ("""AS 3S 4S 8S 2S""", True), ) _SCREAMING_SNAKE_CASE = ( ("""2H 3H 4H 5H 6H""", True), ("""AS AH 2H AD AC""", False), ("""2H 3H 5H 6H 7H""", False), ("""KS AS TS QS JS""", True), ("""8H 9H QS JS TH""", True), ) _SCREAMING_SNAKE_CASE = ( ("""2H 4D 3C AS 5S""", True, [5, 4, 3, 2, 1_4]), ("""2H 5D 3C AS 5S""", False, [1_4, 5, 5, 3, 2]), ("""JH QD KC AS TS""", False, [1_4, 1_3, 1_2, 1_1, 1_0]), ("""9D 3S 2C 7S 7C""", False, [9, 7, 7, 3, 2]), ) _SCREAMING_SNAKE_CASE = ( ("""JH AH TH KH QH""", 0), ("""JH 9H TH KH QH""", 0), ("""JC KH JS JD JH""", 7), ("""KH KC 3S 3H 3D""", 6), ("""8C 9C 5C 3C TC""", 0), ("""JS QS 9H TS KH""", 0), ("""7C 7S KH 2H 7H""", 3), ("""3C KH 5D 5S KH""", 2), ("""QH 8H KD JH 8S""", 1), ("""2D 6D 9D TH 7D""", 0), ) _SCREAMING_SNAKE_CASE = ( ("""JH AH TH KH QH""", 2_3), ("""JH 9H TH KH QH""", 2_2), ("""JC KH JS JD JH""", 2_1), ("""KH KC 3S 3H 3D""", 2_0), ("""8C 9C 5C 3C TC""", 1_9), ("""JS QS 9H TS KH""", 1_8), ("""7C 7S KH 2H 7H""", 1_7), ("""3C KH 5D 5S KH""", 1_6), ("""QH 8H KD JH 8S""", 1_5), ("""2D 6D 9D TH 7D""", 1_4), ) def lowercase( ) -> Dict: '''simple docstring''' UpperCamelCase , UpperCamelCase = randrange(len(UpperCamelCase_ ) ), randrange(len(UpperCamelCase_ ) ) UpperCamelCase = ["""Loss""", """Tie""", """Win"""][(play >= oppo) + (play > oppo)] UpperCamelCase , UpperCamelCase = SORTED_HANDS[play], SORTED_HANDS[oppo] return hand, other, expected def lowercase( UpperCamelCase_ = 100 ) -> List[Any]: '''simple docstring''' return (generate_random_hand() for _ in range(UpperCamelCase_ )) @pytest.mark.parametrize("""hand, expected""" , UpperCamelCase_ ) def lowercase( UpperCamelCase_ , UpperCamelCase_ ) -> Optional[int]: '''simple docstring''' assert PokerHand(UpperCamelCase_ )._is_flush() == expected @pytest.mark.parametrize("""hand, expected""" , UpperCamelCase_ ) def lowercase( UpperCamelCase_ , UpperCamelCase_ ) -> Tuple: '''simple docstring''' assert PokerHand(UpperCamelCase_ )._is_straight() == expected @pytest.mark.parametrize("""hand, expected, card_values""" , UpperCamelCase_ ) def lowercase( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) -> Dict: '''simple docstring''' UpperCamelCase = PokerHand(UpperCamelCase_ ) assert player._is_five_high_straight() == expected assert player._card_values == card_values @pytest.mark.parametrize("""hand, expected""" , UpperCamelCase_ ) def lowercase( UpperCamelCase_ , UpperCamelCase_ ) -> Optional[int]: '''simple docstring''' assert PokerHand(UpperCamelCase_ )._is_same_kind() == expected @pytest.mark.parametrize("""hand, expected""" , UpperCamelCase_ ) def lowercase( UpperCamelCase_ , UpperCamelCase_ ) -> Any: '''simple docstring''' assert PokerHand(UpperCamelCase_ )._hand_type == expected @pytest.mark.parametrize("""hand, other, expected""" , UpperCamelCase_ ) def lowercase( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) -> List[Any]: '''simple docstring''' assert PokerHand(UpperCamelCase_ ).compare_with(PokerHand(UpperCamelCase_ ) ) == expected @pytest.mark.parametrize("""hand, other, expected""" , generate_random_hands() ) def lowercase( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) -> int: '''simple docstring''' assert PokerHand(UpperCamelCase_ ).compare_with(PokerHand(UpperCamelCase_ ) ) == expected def lowercase( ) -> Dict: '''simple docstring''' UpperCamelCase = [PokerHand(UpperCamelCase_ ) for hand in SORTED_HANDS] UpperCamelCase = poker_hands.copy() shuffle(UpperCamelCase_ ) UpperCamelCase = chain(sorted(UpperCamelCase_ ) ) for index, hand in enumerate(UpperCamelCase_ ): assert hand == poker_hands[index] def lowercase( ) -> Union[str, Any]: '''simple docstring''' # Test that five high straights are compared correctly. UpperCamelCase = [PokerHand("""2D AC 3H 4H 5S""" ), PokerHand("""2S 3H 4H 5S 6C""" )] pokerhands.sort(reverse=UpperCamelCase_ ) assert pokerhands[0].__str__() == "2S 3H 4H 5S 6C" def lowercase( ) -> str: '''simple docstring''' # Multiple calls to five_high_straight function should still return True # and shouldn't mutate the list in every call other than the first. UpperCamelCase = PokerHand("""2C 4S AS 3D 5C""" ) UpperCamelCase = True UpperCamelCase = [5, 4, 3, 2, 14] for _ in range(10 ): assert pokerhand._is_five_high_straight() == expected assert pokerhand._card_values == expected_card_values def lowercase( ) -> int: '''simple docstring''' # Problem number 54 from Project Euler # Testing from poker_hands.txt file UpperCamelCase = 0 UpperCamelCase = os.path.abspath(os.path.dirname(UpperCamelCase_ ) ) UpperCamelCase = os.path.join(UpperCamelCase_ , """poker_hands.txt""" ) with open(UpperCamelCase_ ) as file_hand: for line in file_hand: UpperCamelCase = line[:14].strip() UpperCamelCase = line[15:].strip() UpperCamelCase , UpperCamelCase = PokerHand(UpperCamelCase_ ), PokerHand(UpperCamelCase_ ) UpperCamelCase = player.compare_with(UpperCamelCase_ ) if output == "Win": answer += 1 assert answer == 376
343
1
import warnings from ..trainer import Trainer from ..utils import logging _A = logging.get_logger(__name__) class A ( a__ ): def __init__( self, UpperCamelCase__=None, **UpperCamelCase__ ): """simple docstring""" warnings.warn( '''`SageMakerTrainer` is deprecated and will be removed in v5 of Transformers. You can use `Trainer` ''' '''instead.''', UpperCamelCase__, ) super().__init__(args=UpperCamelCase__, **UpperCamelCase__ )
370
import pprint import requests _A = '''https://zenquotes.io/api''' def __UpperCamelCase ( ): return requests.get(API_ENDPOINT_URL + '''/today''' ).json() def __UpperCamelCase ( ): return requests.get(API_ENDPOINT_URL + '''/random''' ).json() if __name__ == "__main__": _A = random_quotes() pprint.pprint(response)
167
0
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging lowerCamelCase = logging.get_logger(__name__) lowerCamelCase = '''▁''' lowerCamelCase = {'''vocab_file''': '''spiece.model'''} lowerCamelCase = { '''vocab_file''': { '''google/reformer-crime-and-punishment''': ( '''https://huggingface.co/google/reformer-crime-and-punishment/resolve/main/spiece.model''' ) } } lowerCamelCase = { '''google/reformer-crime-and-punishment''': 52_4288, } class __magic_name__ ( _lowercase ): '''simple docstring''' lowerCamelCase__ : Any = VOCAB_FILES_NAMES lowerCamelCase__ : List[str] = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase__ : int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase__ : Any = ['''input_ids''', '''attention_mask'''] def __init__( self, lowercase_, lowercase_="</s>", lowercase_="<unk>", lowercase_=[], lowercase_ = None, **lowercase_, ) -> None: """simple docstring""" a__ ={} if sp_model_kwargs is None else sp_model_kwargs super().__init__( eos_token=A_, unk_token=A_, additional_special_tokens=A_, sp_model_kwargs=self.sp_model_kwargs, **A_, ) a__ =vocab_file a__ =spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(A_ ) @property def _UpperCAmelCase ( self ) -> List[Any]: """simple docstring""" return self.sp_model.get_piece_size() def _UpperCAmelCase ( self ) -> Dict[str, int]: """simple docstring""" a__ ={self.convert_ids_to_tokens(A_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ) -> Tuple: """simple docstring""" a__ =self.__dict__.copy() a__ =None return state def __setstate__( self, lowercase_ ) -> str: """simple docstring""" a__ =d # for backward compatibility if not hasattr(self, '''sp_model_kwargs''' ): a__ ={} a__ =spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def _UpperCAmelCase ( self, lowercase_ ) -> List[str]: """simple docstring""" return self.sp_model.encode(A_, out_type=A_ ) def _UpperCAmelCase ( self, lowercase_ ) -> Optional[Any]: """simple docstring""" return self.sp_model.piece_to_id(A_ ) def _UpperCAmelCase ( self, lowercase_ ) -> Dict: """simple docstring""" if index < self.sp_model.get_piece_size(): a__ =self.sp_model.IdToPiece(A_ ) return token def _UpperCAmelCase ( self, lowercase_ ) -> Dict: """simple docstring""" a__ =[] a__ ='''''' for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(A_ ) + token a__ =[] else: current_sub_tokens.append(A_ ) out_string += self.sp_model.decode(A_ ) return out_string.strip() def _UpperCAmelCase ( self, lowercase_, lowercase_ = None ) -> Tuple[str]: """simple docstring""" if not os.path.isdir(A_ ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return a__ =os.path.join( A_, (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(A_ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file, A_ ) elif not os.path.isfile(self.vocab_file ): with open(A_, '''wb''' ) as fi: a__ =self.sp_model.serialized_model_proto() fi.write(A_ ) return (out_vocab_file,)
188
"""simple docstring""" class lowerCAmelCase_ : '''simple docstring''' def __init__( self : Dict ,A_ : list[int] ) -> None: A = len(A_ ) A = [0] * len_array if len_array > 0: A = array[0] for i in range(1 ,A_ ): A = self.prefix_sum[i - 1] + array[i] def _SCREAMING_SNAKE_CASE ( self : str ,A_ : int ,A_ : int ) -> int: if start == 0: return self.prefix_sum[end] return self.prefix_sum[end] - self.prefix_sum[start - 1] def _SCREAMING_SNAKE_CASE ( self : str ,A_ : int ) -> bool: A = {0} for sum_item in self.prefix_sum: if sum_item - target_sum in sums: return True sums.add(A_ ) return False if __name__ == "__main__": import doctest doctest.testmod()
74
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging _a : Dict= logging.get_logger(__name__) _a : List[Any]= { "caidas/swin2sr-classicalsr-x2-64": ( "https://huggingface.co/caidas/swin2sr-classicalsr-x2-64/resolve/main/config.json" ), } class UpperCamelCase ( lowercase ): UpperCAmelCase : Any = """swin2sr""" UpperCAmelCase : Optional[Any] = { """hidden_size""": """embed_dim""", """num_attention_heads""": """num_heads""", """num_hidden_layers""": """num_layers""", } def __init__(self : Optional[int] , _A : str=64 , _A : Optional[Any]=1 , _A : str=3 , _A : Optional[int]=1_80 , _A : Any=[6, 6, 6, 6, 6, 6] , _A : Union[str, Any]=[6, 6, 6, 6, 6, 6] , _A : List[str]=8 , _A : Union[str, Any]=2.0 , _A : str=True , _A : List[str]=0.0 , _A : List[Any]=0.0 , _A : Optional[Any]=0.1 , _A : str="gelu" , _A : Optional[int]=False , _A : List[Any]=0.02 , _A : List[str]=1E-5 , _A : str=2 , _A : List[Any]=1.0 , _A : Tuple="1conv" , _A : Dict="pixelshuffle" , **_A : Optional[int] , ) -> Optional[int]: super().__init__(**_A) __snake_case : Optional[int] = image_size __snake_case : Tuple = patch_size __snake_case : List[Any] = num_channels __snake_case : Tuple = embed_dim __snake_case : Optional[int] = depths __snake_case : Dict = len(_A) __snake_case : List[str] = num_heads __snake_case : Optional[Any] = window_size __snake_case : Optional[Any] = mlp_ratio __snake_case : Dict = qkv_bias __snake_case : Optional[int] = hidden_dropout_prob __snake_case : Dict = attention_probs_dropout_prob __snake_case : Dict = drop_path_rate __snake_case : str = hidden_act __snake_case : Union[str, Any] = use_absolute_embeddings __snake_case : Any = layer_norm_eps __snake_case : List[str] = initializer_range __snake_case : str = upscale __snake_case : Any = img_range __snake_case : List[str] = resi_connection __snake_case : Optional[Any] = upsampler
95
"""simple docstring""" import gc import tempfile import unittest import numpy as np import torch from diffusers import VersatileDiffusionPipeline from diffusers.utils.testing_utils import load_image, nightly, require_torch_gpu, torch_device _a : int= False class UpperCamelCase ( unittest.TestCase ): pass @nightly @require_torch_gpu class UpperCamelCase ( unittest.TestCase ): def _lowercase (self : Optional[Any]) -> Tuple: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def _lowercase (self : int) -> Tuple: __snake_case : str = VersatileDiffusionPipeline.from_pretrained('shi-labs/versatile-diffusion' , torch_dtype=torch.floataa) pipe.to(_A) pipe.set_progress_bar_config(disable=_A) __snake_case : int = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg') __snake_case : List[Any] = torch.manual_seed(0) __snake_case : Optional[int] = pipe.dual_guided( prompt='first prompt' , image=_A , text_to_image_strength=0.75 , generator=_A , guidance_scale=7.5 , num_inference_steps=2 , output_type='numpy' , ).images with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(_A) __snake_case : Optional[Any] = VersatileDiffusionPipeline.from_pretrained(_A , torch_dtype=torch.floataa) pipe.to(_A) pipe.set_progress_bar_config(disable=_A) __snake_case : Tuple = generator.manual_seed(0) __snake_case : int = pipe.dual_guided( prompt='first prompt' , image=_A , text_to_image_strength=0.75 , generator=_A , guidance_scale=7.5 , num_inference_steps=2 , output_type='numpy' , ).images assert np.abs(image - new_image).sum() < 1E-5, "Models don't have the same forward pass" def _lowercase (self : Optional[Any]) -> Optional[int]: __snake_case : Optional[Any] = VersatileDiffusionPipeline.from_pretrained('shi-labs/versatile-diffusion' , torch_dtype=torch.floataa) pipe.to(_A) pipe.set_progress_bar_config(disable=_A) __snake_case : Tuple = 'cyberpunk 2077' __snake_case : int = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg') __snake_case : str = torch.manual_seed(0) __snake_case : Union[str, Any] = pipe.dual_guided( prompt=_A , image=_A , text_to_image_strength=0.75 , generator=_A , guidance_scale=7.5 , num_inference_steps=50 , output_type='numpy' , ).images __snake_case : Optional[Any] = image[0, 2_53:2_56, 2_53:2_56, -1] assert image.shape == (1, 5_12, 5_12, 3) __snake_case : Tuple = np.array([0.1_448, 0.1_619, 0.1_741, 0.1_086, 0.1_147, 0.1_128, 0.1_199, 0.1_165, 0.1_001]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-1 __snake_case : List[str] = 'A painting of a squirrel eating a burger ' __snake_case : str = torch.manual_seed(0) __snake_case : str = pipe.text_to_image( prompt=_A , generator=_A , guidance_scale=7.5 , num_inference_steps=50 , output_type='numpy').images __snake_case : str = image[0, 2_53:2_56, 2_53:2_56, -1] assert image.shape == (1, 5_12, 5_12, 3) __snake_case : Any = np.array([0.3_367, 0.3_169, 0.2_656, 0.3_870, 0.4_790, 0.3_796, 0.4_009, 0.4_878, 0.4_778]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-1 __snake_case : List[str] = pipe.image_variation(_A , generator=_A , output_type='numpy').images __snake_case : Dict = image[0, 2_53:2_56, 2_53:2_56, -1] assert image.shape == (1, 5_12, 5_12, 3) __snake_case : List[Any] = np.array([0.3_076, 0.3_123, 0.3_284, 0.3_782, 0.3_770, 0.3_894, 0.4_297, 0.4_331, 0.4_456]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-1
95
1
import unittest import numpy as np import torch from torch import nn from transformers import ( CLIPImageProcessor, CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer, CLIPVisionConfig, CLIPVisionModelWithProjection, ) from diffusers import KandinskyVaaPriorPipeline, PriorTransformer, UnCLIPScheduler from diffusers.utils import torch_device from diffusers.utils.testing_utils import enable_full_determinism, skip_mps from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class lowerCamelCase__ ( __lowercase , unittest.TestCase): '''simple docstring''' _A = KandinskyVaaPriorPipeline _A = ['prompt'] _A = ['prompt', 'negative_prompt'] _A = [ 'num_images_per_prompt', 'generator', 'num_inference_steps', 'latents', 'negative_prompt', 'guidance_scale', 'output_type', 'return_dict', ] _A = False @property def _lowerCamelCase ( self :Tuple ) -> Optional[Any]: return 3_2 @property def _lowerCamelCase ( self :List[str] ) -> List[str]: return 3_2 @property def _lowerCamelCase ( self :Union[str, Any] ) -> Tuple: return self.time_input_dim @property def _lowerCamelCase ( self :Union[str, Any] ) -> Any: return self.time_input_dim * 4 @property def _lowerCamelCase ( self :Tuple ) -> str: return 1_0_0 @property def _lowerCamelCase ( self :Union[str, Any] ) -> Any: __UpperCamelCase : int = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) return tokenizer @property def _lowerCamelCase ( self :str ) -> int: torch.manual_seed(0 ) __UpperCamelCase : Optional[int] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=3_7 , layer_norm_eps=1E-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , ) return CLIPTextModelWithProjection(a ) @property def _lowerCamelCase ( self :int ) -> Optional[Any]: torch.manual_seed(0 ) __UpperCamelCase : Optional[int] = { "num_attention_heads": 2, "attention_head_dim": 1_2, "embedding_dim": self.text_embedder_hidden_size, "num_layers": 1, } __UpperCamelCase : List[Any] = PriorTransformer(**a ) # clip_std and clip_mean is initialized to be 0 so PriorTransformer.post_process_latents will always return 0 - set clip_std to be 1 so it won't return 0 __UpperCamelCase : Optional[int] = nn.Parameter(torch.ones(model.clip_std.shape ) ) return model @property def _lowerCamelCase ( self :Dict ) -> Union[str, Any]: torch.manual_seed(0 ) __UpperCamelCase : Union[str, Any] = CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size , image_size=2_2_4 , projection_dim=self.text_embedder_hidden_size , intermediate_size=3_7 , num_attention_heads=4 , num_channels=3 , num_hidden_layers=5 , patch_size=1_4 , ) __UpperCamelCase : int = CLIPVisionModelWithProjection(a ) return model @property def _lowerCamelCase ( self :Dict ) -> Optional[Any]: __UpperCamelCase : List[str] = CLIPImageProcessor( crop_size=2_2_4 , do_center_crop=a , do_normalize=a , do_resize=a , image_mean=[0.48145466, 0.4578275, 0.40821073] , image_std=[0.26862954, 0.26130258, 0.27577711] , resample=3 , size=2_2_4 , ) return image_processor def _lowerCamelCase ( self :str ) -> Optional[int]: __UpperCamelCase : str = self.dummy_prior __UpperCamelCase : int = self.dummy_image_encoder __UpperCamelCase : Tuple = self.dummy_text_encoder __UpperCamelCase : int = self.dummy_tokenizer __UpperCamelCase : Optional[Any] = self.dummy_image_processor __UpperCamelCase : int = UnCLIPScheduler( variance_type="fixed_small_log" , prediction_type="sample" , num_train_timesteps=1_0_0_0 , clip_sample=a , clip_sample_range=10.0 , ) __UpperCamelCase : List[Any] = { "prior": prior, "image_encoder": image_encoder, "text_encoder": text_encoder, "tokenizer": tokenizer, "scheduler": scheduler, "image_processor": image_processor, } return components def _lowerCamelCase ( self :Optional[Any] , a :int , a :Union[str, Any]=0 ) -> Any: if str(a ).startswith("mps" ): __UpperCamelCase : int = torch.manual_seed(a ) else: __UpperCamelCase : List[Any] = torch.Generator(device=a ).manual_seed(a ) __UpperCamelCase : int = { "prompt": "horse", "generator": generator, "guidance_scale": 4.0, "num_inference_steps": 2, "output_type": "np", } return inputs def _lowerCamelCase ( self :List[Any] ) -> Dict: __UpperCamelCase : int = "cpu" __UpperCamelCase : List[str] = self.get_dummy_components() __UpperCamelCase : List[str] = self.pipeline_class(**a ) __UpperCamelCase : Tuple = pipe.to(a ) pipe.set_progress_bar_config(disable=a ) __UpperCamelCase : int = pipe(**self.get_dummy_inputs(a ) ) __UpperCamelCase : int = output.image_embeds __UpperCamelCase : Optional[int] = pipe( **self.get_dummy_inputs(a ) , return_dict=a , )[0] __UpperCamelCase : Union[str, Any] = image[0, -1_0:] __UpperCamelCase : List[str] = image_from_tuple[0, -1_0:] assert image.shape == (1, 3_2) __UpperCamelCase : List[Any] = np.array( [-0.0532, 1.7120, 0.3656, -1.0852, -0.8946, -1.1756, 0.4348, 0.2482, 0.5146, -0.1156] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 @skip_mps def _lowerCamelCase ( self :int ) -> Union[str, Any]: __UpperCamelCase : str = torch_device == "cpu" __UpperCamelCase : List[str] = True __UpperCamelCase : List[Any] = False self._test_inference_batch_single_identical( test_max_difference=a , relax_max_difference=a , test_mean_pixel_difference=a , ) @skip_mps def _lowerCamelCase ( self :Any ) -> int: __UpperCamelCase : Optional[Any] = torch_device == "cpu" __UpperCamelCase : Dict = False self._test_attention_slicing_forward_pass( test_max_difference=a , test_mean_pixel_difference=a , )
232
from __future__ import annotations import sys from collections import deque from typing import Generic, TypeVar lowercase : Optional[Any] = TypeVar('T') class lowerCamelCase__ ( Generic[T]): '''simple docstring''' _A = 42 # Cache store of keys _A = 42 # References of the keys in cache _A = 1_0 # Maximum capacity of cache def __init__( self :Optional[Any] , a :int ) -> None: __UpperCamelCase : Union[str, Any] = deque() __UpperCamelCase : str = set() if not n: __UpperCamelCase : Union[str, Any] = sys.maxsize elif n < 0: raise ValueError("n should be an integer greater than 0." ) else: __UpperCamelCase : Any = n def _lowerCamelCase ( self :Tuple , a :T ) -> None: if x not in self.key_reference: if len(self.dq_store ) == LRUCache._MAX_CAPACITY: __UpperCamelCase : int = self.dq_store.pop() self.key_reference.remove(a ) else: self.dq_store.remove(a ) self.dq_store.appendleft(a ) self.key_reference.add(a ) def _lowerCamelCase ( self :Any ) -> None: for k in self.dq_store: print(a ) def __repr__( self :Tuple ) -> str: return f'LRUCache({self._MAX_CAPACITY}) => {list(self.dq_store )}' if __name__ == "__main__": import doctest doctest.testmod() lowercase : LRUCache[str | int] = LRUCache(4) lru_cache.refer('A') lru_cache.refer(2) lru_cache.refer(3) lru_cache.refer('A') lru_cache.refer(4) lru_cache.refer(5) lru_cache.display() print(lru_cache) assert str(lru_cache) == "LRUCache(4) => [5, 4, 'A', 3]"
232
1
from sklearn.metrics import mean_squared_error import datasets snake_case_ = '''\ @article{scikit-learn, title={Scikit-learn: Machine Learning in {P}ython}, author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, journal={Journal of Machine Learning Research}, volume={12}, pages={2825--2830}, year={2011} } ''' snake_case_ = '''\ Mean Squared Error(MSE) is the average of the square of difference between the predicted and actual values. ''' snake_case_ = ''' Args: predictions: array-like of shape (n_samples,) or (n_samples, n_outputs) Estimated target values. references: array-like of shape (n_samples,) or (n_samples, n_outputs) Ground truth (correct) target values. sample_weight: array-like of shape (n_samples,), default=None Sample weights. multioutput: {"raw_values", "uniform_average"} or array-like of shape (n_outputs,), default="uniform_average" Defines aggregating of multiple output values. Array-like value defines weights used to average errors. "raw_values" : Returns a full set of errors in case of multioutput input. "uniform_average" : Errors of all outputs are averaged with uniform weight. squared : bool, default=True If True returns MSE value, if False returns RMSE (Root Mean Squared Error) value. Returns: mse : mean squared error. Examples: >>> mse_metric = datasets.load_metric("mse") >>> predictions = [2.5, 0.0, 2, 8] >>> references = [3, -0.5, 2, 7] >>> results = mse_metric.compute(predictions=predictions, references=references) >>> print(results) {\'mse\': 0.375} >>> rmse_result = mse_metric.compute(predictions=predictions, references=references, squared=False) >>> print(rmse_result) {\'mse\': 0.6123724356957945} If you\'re using multi-dimensional lists, then set the config as follows : >>> mse_metric = datasets.load_metric("mse", "multilist") >>> predictions = [[0.5, 1], [-1, 1], [7, -6]] >>> references = [[0, 2], [-1, 2], [8, -5]] >>> results = mse_metric.compute(predictions=predictions, references=references) >>> print(results) {\'mse\': 0.7083333333333334} >>> results = mse_metric.compute(predictions=predictions, references=references, multioutput=\'raw_values\') >>> print(results) # doctest: +NORMALIZE_WHITESPACE {\'mse\': array([0.41666667, 1. ])} ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class SCREAMING_SNAKE_CASE__ (datasets.Metric ): def snake_case_ ( self): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(self._get_feature_types()) , reference_urls=[ 'https://scikit-learn.org/stable/modules/generated/sklearn.metrics.mean_squared_error.html' ] , ) def snake_case_ ( self): if self.config_name == "multilist": return { "predictions": datasets.Sequence(datasets.Value('float')), "references": datasets.Sequence(datasets.Value('float')), } else: return { "predictions": datasets.Value('float'), "references": datasets.Value('float'), } def snake_case_ ( self , a , a , a=None , a="uniform_average" , a=True): lowercase__ : List[Any] = mean_squared_error( a , a , sample_weight=a , multioutput=a , squared=a) return {"mse": mse}
216
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) snake_case_ = {'''configuration_encoder_decoder''': ['''EncoderDecoderConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ = ['''EncoderDecoderModel'''] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ = ['''TFEncoderDecoderModel'''] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ = ['''FlaxEncoderDecoderModel'''] if TYPE_CHECKING: from .configuration_encoder_decoder import EncoderDecoderConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_encoder_decoder import EncoderDecoderModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_encoder_decoder import TFEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_encoder_decoder import FlaxEncoderDecoderModel else: import sys snake_case_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
216
1
import argparse A : Optional[int] = 'docs/source/_static/js/custom.js' def __lowerCAmelCase ( a__ ) -> Union[str, Any]: with open(a__ , encoding='''utf-8''' , newline='''\n''' ) as f: __a = f.readlines() __a = 0 # First let's put the right version while not lines[index].startswith('''const stableVersion =''' ): index += 1 __a = F"""const stableVersion = \"v{version}\"\n""" # Then update the dictionary while not lines[index].startswith('''const versionMapping = {''' ): index += 1 # We go until the end while not lines[index].startswith('''}''' ): index += 1 # We add the new version at the end lines[index - 1] += F""" \"v{version}\": \"v{version}\",\n""" with open(a__ , '''w''' , encoding='''utf-8''' , newline='''\n''' ) as f: f.writelines(a__ ) if __name__ == "__main__": A : List[str] = argparse.ArgumentParser() parser.add_argument('--version', help='Release version.') A : Dict = parser.parse_args() update_custom_js(args.version)
6
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) A : Optional[int] = { 'configuration_whisper': ['WHISPER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'WhisperConfig', 'WhisperOnnxConfig'], 'feature_extraction_whisper': ['WhisperFeatureExtractor'], 'processing_whisper': ['WhisperProcessor'], 'tokenization_whisper': ['WhisperTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : int = ['WhisperTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : str = [ 'WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST', 'WhisperForConditionalGeneration', 'WhisperModel', 'WhisperPreTrainedModel', 'WhisperForAudioClassification', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : Tuple = [ 'TF_WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFWhisperForConditionalGeneration', 'TFWhisperModel', 'TFWhisperPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : int = [ 'FlaxWhisperForConditionalGeneration', 'FlaxWhisperModel', 'FlaxWhisperPreTrainedModel', 'FlaxWhisperForAudioClassification', ] if TYPE_CHECKING: from .configuration_whisper import WHISPER_PRETRAINED_CONFIG_ARCHIVE_MAP, WhisperConfig, WhisperOnnxConfig from .feature_extraction_whisper import WhisperFeatureExtractor from .processing_whisper import WhisperProcessor from .tokenization_whisper import WhisperTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_whisper_fast import WhisperTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_whisper import ( WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST, WhisperForAudioClassification, WhisperForConditionalGeneration, WhisperModel, WhisperPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_whisper import ( TF_WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST, TFWhisperForConditionalGeneration, TFWhisperModel, TFWhisperPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_whisper import ( FlaxWhisperForAudioClassification, FlaxWhisperForConditionalGeneration, FlaxWhisperModel, FlaxWhisperPreTrainedModel, ) else: import sys A : Tuple = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
6
1
"""simple docstring""" import argparse import os import re import packaging.version SCREAMING_SNAKE_CASE : Dict = '''examples/''' SCREAMING_SNAKE_CASE : str = { '''examples''': (re.compile(R'''^check_min_version\(\"[^\"]+\"\)\s*$''', re.MULTILINE), '''check_min_version(\"VERSION\")\n'''), '''init''': (re.compile(R'''^__version__\s+=\s+\"([^\"]+)\"\s*$''', re.MULTILINE), '''__version__ = \"VERSION\"\n'''), '''setup''': (re.compile(R'''^(\s*)version\s*=\s*\"[^\"]+\",''', re.MULTILINE), R'''\1version=\"VERSION\",'''), '''doc''': (re.compile(R'''^(\s*)release\s*=\s*\"[^\"]+\"$''', re.MULTILINE), '''release = \"VERSION\"\n'''), } SCREAMING_SNAKE_CASE : str = { '''init''': '''src/transformers/__init__.py''', '''setup''': '''setup.py''', } SCREAMING_SNAKE_CASE : Optional[int] = '''README.md''' def __UpperCAmelCase ( snake_case_ : List[Any] , snake_case_ : str , snake_case_ : int ) -> Optional[Any]: """simple docstring""" with open(lowercase__ , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f: _lowerCAmelCase = f.read() _lowerCAmelCase = REPLACE_PATTERNS[pattern] _lowerCAmelCase = replace.replace("""VERSION""" , lowercase__ ) _lowerCAmelCase = re_pattern.sub(lowercase__ , lowercase__ ) with open(lowercase__ , """w""" , encoding="""utf-8""" , newline="""\n""" ) as f: f.write(lowercase__ ) def __UpperCAmelCase ( snake_case_ : Any ) -> int: """simple docstring""" for folder, directories, fnames in os.walk(lowercase__ ): # Removing some of the folders with non-actively maintained examples from the walk if "research_projects" in directories: directories.remove("""research_projects""" ) if "legacy" in directories: directories.remove("""legacy""" ) for fname in fnames: if fname.endswith(""".py""" ): update_version_in_file(os.path.join(lowercase__ , lowercase__ ) , lowercase__ , pattern="""examples""" ) def __UpperCAmelCase ( snake_case_ : Optional[Any] , snake_case_ : Any=False ) -> Any: """simple docstring""" for pattern, fname in REPLACE_FILES.items(): update_version_in_file(lowercase__ , lowercase__ , lowercase__ ) if not patch: update_version_in_examples(lowercase__ ) def __UpperCAmelCase ( ) -> Union[str, Any]: """simple docstring""" _lowerCAmelCase = '🤗 Transformers currently provides the following architectures' _lowerCAmelCase = '1. Want to contribute a new model?' with open(lowercase__ , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f: _lowerCAmelCase = f.readlines() # Find the start of the list. _lowerCAmelCase = 0 while not lines[start_index].startswith(_start_prompt ): start_index += 1 start_index += 1 _lowerCAmelCase = start_index # Update the lines in the model list. while not lines[index].startswith(_end_prompt ): if lines[index].startswith("""1.""" ): _lowerCAmelCase = lines[index].replace( """https://huggingface.co/docs/transformers/main/model_doc""" , """https://huggingface.co/docs/transformers/model_doc""" , ) index += 1 with open(lowercase__ , """w""" , encoding="""utf-8""" , newline="""\n""" ) as f: f.writelines(lowercase__ ) def __UpperCAmelCase ( ) -> int: """simple docstring""" with open(REPLACE_FILES["""init"""] , """r""" ) as f: _lowerCAmelCase = f.read() _lowerCAmelCase = REPLACE_PATTERNS['init'][0].search(lowercase__ ).groups()[0] return packaging.version.parse(lowercase__ ) def __UpperCAmelCase ( snake_case_ : Optional[Any]=False ) -> int: """simple docstring""" _lowerCAmelCase = get_version() if patch and default_version.is_devrelease: raise ValueError("""Can\'t create a patch version from the dev branch, checkout a released version!""" ) if default_version.is_devrelease: _lowerCAmelCase = default_version.base_version elif patch: _lowerCAmelCase = F"""{default_version.major}.{default_version.minor}.{default_version.micro + 1}""" else: _lowerCAmelCase = F"""{default_version.major}.{default_version.minor + 1}.0""" # Now let's ask nicely if that's the right one. _lowerCAmelCase = input(F"""Which version are you releasing? [{default_version}]""" ) if len(lowercase__ ) == 0: _lowerCAmelCase = default_version print(F"""Updating version to {version}.""" ) global_version_update(lowercase__ , patch=lowercase__ ) if not patch: print("""Cleaning main README, don\'t forget to run `make fix-copies`.""" ) clean_main_ref_in_model_list() def __UpperCAmelCase ( ) -> Union[str, Any]: """simple docstring""" _lowerCAmelCase = get_version() _lowerCAmelCase = F"""{current_version.major}.{current_version.minor + 1}.0.dev0""" _lowerCAmelCase = current_version.base_version # Check with the user we got that right. _lowerCAmelCase = input(F"""Which version are we developing now? [{dev_version}]""" ) if len(lowercase__ ) == 0: _lowerCAmelCase = dev_version print(F"""Updating version to {version}.""" ) global_version_update(lowercase__ ) print("""Cleaning main README, don\'t forget to run `make fix-copies`.""" ) clean_main_ref_in_model_list() if __name__ == "__main__": SCREAMING_SNAKE_CASE : int = argparse.ArgumentParser() parser.add_argument('''--post_release''', action='''store_true''', help='''Whether this is pre or post release.''') parser.add_argument('''--patch''', action='''store_true''', help='''Whether or not this is a patch release.''') SCREAMING_SNAKE_CASE : int = parser.parse_args() if not args.post_release: pre_release_work(patch=args.patch) elif args.patch: print('''Nothing to do after a patch :-)''') else: post_release_work()
362
"""simple docstring""" import glob import os import random from string import ascii_lowercase, digits import cva import numpy as np # Parrameters SCREAMING_SNAKE_CASE : Any = (7_2_0, 1_2_8_0) # Height, Width SCREAMING_SNAKE_CASE : List[str] = (0.4, 0.6) # if height or width lower than this scale, drop it. SCREAMING_SNAKE_CASE : List[Any] = 1 / 1_0_0 SCREAMING_SNAKE_CASE : Optional[Any] = '''''' SCREAMING_SNAKE_CASE : Dict = '''''' SCREAMING_SNAKE_CASE : List[Any] = '''''' SCREAMING_SNAKE_CASE : Dict = 2_5_0 def __UpperCAmelCase ( ) -> None: """simple docstring""" _lowerCAmelCase , _lowerCAmelCase = get_dataset(snake_case_ , snake_case_ ) for index in range(snake_case_ ): _lowerCAmelCase = random.sample(range(len(snake_case_ ) ) , 4 ) _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = update_image_and_anno( snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , filter_scale=snake_case_ , ) # Get random string code: '7b7ad245cdff75241935e4dd860f3bad' _lowerCAmelCase = random_chars(32 ) _lowerCAmelCase = path.split(os.sep )[-1].rsplit(""".""" , 1 )[0] _lowerCAmelCase = F"""{OUTPUT_DIR}/{file_name}_MOSAIC_{letter_code}""" cva.imwrite(F"""{file_root}.jpg""" , snake_case_ , [cva.IMWRITE_JPEG_QUALITY, 85] ) print(F"""Succeeded {index+1}/{NUMBER_IMAGES} with {file_name}""" ) _lowerCAmelCase = [] for anno in new_annos: _lowerCAmelCase = anno[3] - anno[1] _lowerCAmelCase = anno[4] - anno[2] _lowerCAmelCase = anno[1] + width / 2 _lowerCAmelCase = anno[2] + height / 2 _lowerCAmelCase = F"""{anno[0]} {x_center} {y_center} {width} {height}""" annos_list.append(snake_case_ ) with open(F"""{file_root}.txt""" , """w""" ) as outfile: outfile.write("""\n""".join(line for line in annos_list ) ) def __UpperCAmelCase ( snake_case_ : str , snake_case_ : str ) -> tuple[list, list]: """simple docstring""" _lowerCAmelCase = [] _lowerCAmelCase = [] for label_file in glob.glob(os.path.join(snake_case_ , """*.txt""" ) ): _lowerCAmelCase = label_file.split(os.sep )[-1].rsplit(""".""" , 1 )[0] with open(snake_case_ ) as in_file: _lowerCAmelCase = in_file.readlines() _lowerCAmelCase = os.path.join(snake_case_ , F"""{label_name}.jpg""" ) _lowerCAmelCase = [] for obj_list in obj_lists: _lowerCAmelCase = obj_list.rstrip("""\n""" ).split(""" """ ) _lowerCAmelCase = float(obj[1] ) - float(obj[3] ) / 2 _lowerCAmelCase = float(obj[2] ) - float(obj[4] ) / 2 _lowerCAmelCase = float(obj[1] ) + float(obj[3] ) / 2 _lowerCAmelCase = float(obj[2] ) + float(obj[4] ) / 2 boxes.append([int(obj[0] ), xmin, ymin, xmax, ymax] ) if not boxes: continue img_paths.append(snake_case_ ) labels.append(snake_case_ ) return img_paths, labels def __UpperCAmelCase ( snake_case_ : list , snake_case_ : list , snake_case_ : list[int] , snake_case_ : tuple[int, int] , snake_case_ : tuple[float, float] , snake_case_ : float = 0.0 , ) -> tuple[list, list, str]: """simple docstring""" _lowerCAmelCase = np.zeros([output_size[0], output_size[1], 3] , dtype=np.uinta ) _lowerCAmelCase = scale_range[0] + random.random() * (scale_range[1] - scale_range[0]) _lowerCAmelCase = scale_range[0] + random.random() * (scale_range[1] - scale_range[0]) _lowerCAmelCase = int(scale_x * output_size[1] ) _lowerCAmelCase = int(scale_y * output_size[0] ) _lowerCAmelCase = [] _lowerCAmelCase = [] for i, index in enumerate(snake_case_ ): _lowerCAmelCase = all_img_list[index] path_list.append(snake_case_ ) _lowerCAmelCase = all_annos[index] _lowerCAmelCase = cva.imread(snake_case_ ) if i == 0: # top-left _lowerCAmelCase = cva.resize(snake_case_ , (divid_point_x, divid_point_y) ) _lowerCAmelCase = img for bbox in img_annos: _lowerCAmelCase = bbox[1] * scale_x _lowerCAmelCase = bbox[2] * scale_y _lowerCAmelCase = bbox[3] * scale_x _lowerCAmelCase = bbox[4] * scale_y new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) elif i == 1: # top-right _lowerCAmelCase = cva.resize(snake_case_ , (output_size[1] - divid_point_x, divid_point_y) ) _lowerCAmelCase = img for bbox in img_annos: _lowerCAmelCase = scale_x + bbox[1] * (1 - scale_x) _lowerCAmelCase = bbox[2] * scale_y _lowerCAmelCase = scale_x + bbox[3] * (1 - scale_x) _lowerCAmelCase = bbox[4] * scale_y new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) elif i == 2: # bottom-left _lowerCAmelCase = cva.resize(snake_case_ , (divid_point_x, output_size[0] - divid_point_y) ) _lowerCAmelCase = img for bbox in img_annos: _lowerCAmelCase = bbox[1] * scale_x _lowerCAmelCase = scale_y + bbox[2] * (1 - scale_y) _lowerCAmelCase = bbox[3] * scale_x _lowerCAmelCase = scale_y + bbox[4] * (1 - scale_y) new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) else: # bottom-right _lowerCAmelCase = cva.resize( snake_case_ , (output_size[1] - divid_point_x, output_size[0] - divid_point_y) ) _lowerCAmelCase = img for bbox in img_annos: _lowerCAmelCase = scale_x + bbox[1] * (1 - scale_x) _lowerCAmelCase = scale_y + bbox[2] * (1 - scale_y) _lowerCAmelCase = scale_x + bbox[3] * (1 - scale_x) _lowerCAmelCase = scale_y + bbox[4] * (1 - scale_y) new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) # Remove bounding box small than scale of filter if filter_scale > 0: _lowerCAmelCase = [ anno for anno in new_anno if filter_scale < (anno[3] - anno[1]) and filter_scale < (anno[4] - anno[2]) ] return output_img, new_anno, path_list[0] def __UpperCAmelCase ( snake_case_ : int ) -> str: """simple docstring""" assert number_char > 1, "The number of character should greater than 1" _lowerCAmelCase = ascii_lowercase + digits return "".join(random.choice(snake_case_ ) for _ in range(snake_case_ ) ) if __name__ == "__main__": main() print('''DONE ✅''')
317
0
"""simple docstring""" from io import BytesIO from typing import List, Union import requests from ..utils import add_end_docstrings, is_decord_available, is_torch_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, Pipeline if is_decord_available(): import numpy as np from decord import VideoReader if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING lowerCamelCase__ = logging.get_logger(__name__) @add_end_docstrings(_lowerCamelCase) class A__ ( _lowerCamelCase): def __init__( self , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ): super().__init__(*_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) requires_backends(self , 'decord' ) self.check_model_type(_SCREAMING_SNAKE_CASE ) def __lowerCamelCase ( self , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None ): __lowerCAmelCase : Union[str, Any] = {} if frame_sampling_rate is not None: __lowerCAmelCase : Optional[int] = frame_sampling_rate if num_frames is not None: __lowerCAmelCase : int = num_frames __lowerCAmelCase : Any = {} if top_k is not None: __lowerCAmelCase : Optional[Any] = top_k return preprocess_params, {}, postprocess_params def __call__( self , _SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ): return super().__call__(_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) def __lowerCamelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=1 ): if num_frames is None: __lowerCAmelCase : Union[str, Any] = self.model.config.num_frames if video.startswith('http://' ) or video.startswith('https://' ): __lowerCAmelCase : Tuple = BytesIO(requests.get(_SCREAMING_SNAKE_CASE ).content ) __lowerCAmelCase : str = VideoReader(_SCREAMING_SNAKE_CASE ) videoreader.seek(0 ) __lowerCAmelCase : Union[str, Any] = 0 __lowerCAmelCase : str = num_frames * frame_sampling_rate - 1 __lowerCAmelCase : Union[str, Any] = np.linspace(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , num=_SCREAMING_SNAKE_CASE , dtype=np.intaa ) __lowerCAmelCase : int = videoreader.get_batch(_SCREAMING_SNAKE_CASE ).asnumpy() __lowerCAmelCase : Dict = list(_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : List[Any] = self.image_processor(_SCREAMING_SNAKE_CASE , return_tensors=self.framework ) return model_inputs def __lowerCamelCase ( self , _SCREAMING_SNAKE_CASE ): __lowerCAmelCase : List[Any] = self.model(**_SCREAMING_SNAKE_CASE ) return model_outputs def __lowerCamelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=5 ): if top_k > self.model.config.num_labels: __lowerCAmelCase : List[str] = self.model.config.num_labels if self.framework == "pt": __lowerCAmelCase : Union[str, Any] = model_outputs.logits.softmax(-1 )[0] __lowerCAmelCase , __lowerCAmelCase : Any = probs.topk(_SCREAMING_SNAKE_CASE ) else: raise ValueError(f"Unsupported framework: {self.framework}" ) __lowerCAmelCase : Any = scores.tolist() __lowerCAmelCase : List[str] = ids.tolist() return [{"score": score, "label": self.model.config.idalabel[_id]} for score, _id in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )]
86
"""simple docstring""" import math import sys def __lowerCAmelCase (_UpperCamelCase ): if number != int(_UpperCamelCase ): raise ValueError('the value of input must be a natural number' ) if number < 0: raise ValueError('the value of input must not be a negative number' ) if number == 0: return 1 __lowerCAmelCase : Any = [-1] * (number + 1) __lowerCAmelCase : List[Any] = 0 for i in range(1 , number + 1 ): __lowerCAmelCase : List[Any] = sys.maxsize __lowerCAmelCase : Optional[int] = int(math.sqrt(_UpperCamelCase ) ) for j in range(1 , root + 1 ): __lowerCAmelCase : Optional[Any] = 1 + answers[i - (j**2)] __lowerCAmelCase : Any = min(_UpperCamelCase , _UpperCamelCase ) __lowerCAmelCase : List[str] = answer return answers[number] if __name__ == "__main__": import doctest doctest.testmod()
86
1
import json import os import subprocess import unittest from ast import literal_eval import pytest from parameterized import parameterized, parameterized_class from . import is_sagemaker_available if is_sagemaker_available(): from sagemaker import Session, TrainingJobAnalytics from sagemaker.huggingface import HuggingFace @pytest.mark.skipif( literal_eval(os.getenv('TEST_SAGEMAKER' , 'False' ) ) is not True , reason='Skipping test because should only be run when releasing minor transformers version' , ) @pytest.mark.usefixtures('sm_env' ) @parameterized_class( [ { 'framework': 'pytorch', 'script': 'run_glue.py', 'model_name_or_path': 'distilbert-base-cased', 'instance_type': 'ml.p3.16xlarge', 'results': {'train_runtime': 650, 'eval_accuracy': 0.7, 'eval_loss': 0.6}, }, { 'framework': 'pytorch', 'script': 'run_ddp.py', 'model_name_or_path': 'distilbert-base-cased', 'instance_type': 'ml.p3.16xlarge', 'results': {'train_runtime': 600, 'eval_accuracy': 0.7, 'eval_loss': 0.6}, }, { 'framework': 'tensorflow', 'script': 'run_tf_dist.py', 'model_name_or_path': 'distilbert-base-cased', 'instance_type': 'ml.p3.16xlarge', 'results': {'train_runtime': 600, 'eval_accuracy': 0.6, 'eval_loss': 0.7}, }, ] ) class a_ ( unittest.TestCase ): """simple docstring""" def __lowerCAmelCase ( self ) ->int: if self.framework == "pytorch": subprocess.run( F"""cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py""".split() , encoding='''utf-8''' , check=_lowerCamelCase , ) assert hasattr(self , '''env''' ) def __lowerCAmelCase ( self , _lowerCamelCase ) ->Optional[Any]: SCREAMING_SNAKE_CASE : Union[str, Any] = F"""{self.env.base_job_name}-{instance_count}-{"ddp" if "ddp" in self.script else "smd"}""" # distributed data settings SCREAMING_SNAKE_CASE : Union[str, Any] = {'''smdistributed''': {'''dataparallel''': {'''enabled''': True}}} if self.script != '''run_ddp.py''' else None # creates estimator return HuggingFace( entry_point=self.script , source_dir=self.env.test_path , role=self.env.role , image_uri=self.env.image_uri , base_job_name=_lowerCamelCase , instance_count=_lowerCamelCase , instance_type=self.instance_type , debugger_hook_config=_lowerCamelCase , hyperparameters={**self.env.distributed_hyperparameters, '''model_name_or_path''': self.model_name_or_path} , metric_definitions=self.env.metric_definitions , distribution=_lowerCamelCase , py_version='''py36''' , ) def __lowerCAmelCase ( self , _lowerCamelCase ) ->List[Any]: TrainingJobAnalytics(_lowerCamelCase ).export_csv(F"""{self.env.test_path}/{job_name}_metrics.csv""" ) @parameterized.expand([(2,)] ) def __lowerCAmelCase ( self , _lowerCamelCase ) ->Optional[int]: # create estimator SCREAMING_SNAKE_CASE : Any = self.create_estimator(_lowerCamelCase ) # run training estimator.fit() # result dataframe SCREAMING_SNAKE_CASE : Dict = TrainingJobAnalytics(estimator.latest_training_job.name ).dataframe() # extract kpis SCREAMING_SNAKE_CASE : int = list(result_metrics_df[result_metrics_df.metric_name == '''eval_accuracy''']['''value'''] ) SCREAMING_SNAKE_CASE : Any = list(result_metrics_df[result_metrics_df.metric_name == '''eval_loss''']['''value'''] ) # get train time from SageMaker job, this includes starting, preprocessing, stopping SCREAMING_SNAKE_CASE : Dict = ( Session().describe_training_job(estimator.latest_training_job.name ).get('''TrainingTimeInSeconds''' , 99_9999 ) ) # assert kpis assert train_runtime <= self.results["train_runtime"] assert all(t >= self.results['''eval_accuracy'''] for t in eval_accuracy ) assert all(t <= self.results['''eval_loss'''] for t in eval_loss ) # dump tests result into json file to share in PR with open(F"""{estimator.latest_training_job.name}.json""" , '''w''' ) as outfile: json.dump({'''train_time''': train_runtime, '''eval_accuracy''': eval_accuracy, '''eval_loss''': eval_loss} , _lowerCamelCase )
19
import datasets from .evaluate import evaluate a__ : Dict = '''\ @article{hendrycks2021cuad, title={CUAD: An Expert-Annotated NLP Dataset for Legal Contract Review}, author={Dan Hendrycks and Collin Burns and Anya Chen and Spencer Ball}, journal={arXiv preprint arXiv:2103.06268}, year={2021} } ''' a__ : List[str] = ''' This metric wrap the official scoring script for version 1 of the Contract Understanding Atticus Dataset (CUAD). Contract Understanding Atticus Dataset (CUAD) v1 is a corpus of more than 13,000 labels in 510 commercial legal contracts that have been manually labeled to identify 41 categories of important clauses that lawyers look for when reviewing contracts in connection with corporate transactions. ''' a__ : List[Any] = ''' Computes CUAD scores (EM, F1, AUPR, Precision@80%Recall, and Precision@90%Recall). Args: predictions: List of question-answers dictionaries with the following key-values: - \'id\': id of the question-answer pair as given in the references (see below) - \'prediction_text\': list of possible texts for the answer, as a list of strings depending on a threshold on the confidence probability of each prediction. references: List of question-answers dictionaries with the following key-values: - \'id\': id of the question-answer pair (see above), - \'answers\': a Dict in the CUAD dataset format { \'text\': list of possible texts for the answer, as a list of strings \'answer_start\': list of start positions for the answer, as a list of ints } Note that answer_start values are not taken into account to compute the metric. Returns: \'exact_match\': Exact match (the normalized answer exactly match the gold answer) \'f1\': The F-score of predicted tokens versus the gold answer \'aupr\': Area Under the Precision-Recall curve \'prec_at_80_recall\': Precision at 80% recall \'prec_at_90_recall\': Precision at 90% recall Examples: >>> predictions = [{\'prediction_text\': [\'The seller:\', \'The buyer/End-User: Shenzhen LOHAS Supply Chain Management Co., Ltd.\'], \'id\': \'LohaCompanyltd_20191209_F-1_EX-10.16_11917878_EX-10.16_Supply Agreement__Parties\'}] >>> references = [{\'answers\': {\'answer_start\': [143, 49], \'text\': [\'The seller:\', \'The buyer/End-User: Shenzhen LOHAS Supply Chain Management Co., Ltd.\']}, \'id\': \'LohaCompanyltd_20191209_F-1_EX-10.16_11917878_EX-10.16_Supply Agreement__Parties\'}] >>> cuad_metric = datasets.load_metric("cuad") >>> results = cuad_metric.compute(predictions=predictions, references=references) >>> print(results) {\'exact_match\': 100.0, \'f1\': 100.0, \'aupr\': 0.0, \'prec_at_80_recall\': 1.0, \'prec_at_90_recall\': 1.0} ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class a_ ( datasets.Metric ): """simple docstring""" def __lowerCAmelCase ( self ) ->Tuple: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': { '''id''': datasets.Value('''string''' ), '''prediction_text''': datasets.features.Sequence(datasets.Value('''string''' ) ), }, '''references''': { '''id''': datasets.Value('''string''' ), '''answers''': datasets.features.Sequence( { '''text''': datasets.Value('''string''' ), '''answer_start''': datasets.Value('''int32''' ), } ), }, } ) , codebase_urls=['''https://www.atticusprojectai.org/cuad'''] , reference_urls=['''https://www.atticusprojectai.org/cuad'''] , ) def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase ) ->Tuple: SCREAMING_SNAKE_CASE : Any = {prediction['''id''']: prediction['''prediction_text'''] for prediction in predictions} SCREAMING_SNAKE_CASE : int = [ { '''paragraphs''': [ { '''qas''': [ { '''answers''': [{'''text''': answer_text} for answer_text in ref['''answers''']['''text''']], '''id''': ref['''id'''], } for ref in references ] } ] } ] SCREAMING_SNAKE_CASE : Dict = evaluate(dataset=_lowerCamelCase , predictions=_lowerCamelCase ) return score
19
1
"""simple docstring""" import argparse import io import requests import torch from omegaconf import OmegaConf from diffusers import AutoencoderKL from diffusers.pipelines.stable_diffusion.convert_from_ckpt import ( assign_to_checkpoint, conv_attn_to_linear, create_vae_diffusers_config, renew_vae_attention_paths, renew_vae_resnet_paths, ) def _A (__a , __a ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE_ : int = checkpoint SCREAMING_SNAKE_CASE_ : str = {} SCREAMING_SNAKE_CASE_ : Optional[Any] = vae_state_dict['''encoder.conv_in.weight'''] SCREAMING_SNAKE_CASE_ : Dict = vae_state_dict['''encoder.conv_in.bias'''] SCREAMING_SNAKE_CASE_ : Optional[Any] = vae_state_dict['''encoder.conv_out.weight'''] SCREAMING_SNAKE_CASE_ : List[Any] = vae_state_dict['''encoder.conv_out.bias'''] SCREAMING_SNAKE_CASE_ : Optional[Any] = vae_state_dict['''encoder.norm_out.weight'''] SCREAMING_SNAKE_CASE_ : str = vae_state_dict['''encoder.norm_out.bias'''] SCREAMING_SNAKE_CASE_ : int = vae_state_dict['''decoder.conv_in.weight'''] SCREAMING_SNAKE_CASE_ : Any = vae_state_dict['''decoder.conv_in.bias'''] SCREAMING_SNAKE_CASE_ : Tuple = vae_state_dict['''decoder.conv_out.weight'''] SCREAMING_SNAKE_CASE_ : Any = vae_state_dict['''decoder.conv_out.bias'''] SCREAMING_SNAKE_CASE_ : List[Any] = vae_state_dict['''decoder.norm_out.weight'''] SCREAMING_SNAKE_CASE_ : int = vae_state_dict['''decoder.norm_out.bias'''] SCREAMING_SNAKE_CASE_ : str = vae_state_dict['''quant_conv.weight'''] SCREAMING_SNAKE_CASE_ : Optional[Any] = vae_state_dict['''quant_conv.bias'''] SCREAMING_SNAKE_CASE_ : int = vae_state_dict['''post_quant_conv.weight'''] SCREAMING_SNAKE_CASE_ : int = vae_state_dict['''post_quant_conv.bias'''] # Retrieves the keys for the encoder down blocks only SCREAMING_SNAKE_CASE_ : Optional[int] = len({'''.'''.join(layer.split('''.''' )[:3] ) for layer in vae_state_dict if '''encoder.down''' in layer} ) SCREAMING_SNAKE_CASE_ : Tuple = { layer_id: [key for key in vae_state_dict if f'down.{layer_id}' in key] for layer_id in range(__a ) } # Retrieves the keys for the decoder up blocks only SCREAMING_SNAKE_CASE_ : Optional[Any] = len({'''.'''.join(layer.split('''.''' )[:3] ) for layer in vae_state_dict if '''decoder.up''' in layer} ) SCREAMING_SNAKE_CASE_ : Tuple = { layer_id: [key for key in vae_state_dict if f'up.{layer_id}' in key] for layer_id in range(__a ) } for i in range(__a ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = [key for key in down_blocks[i] if f'down.{i}' in key and f'down.{i}.downsample' not in key] if f'encoder.down.{i}.downsample.conv.weight' in vae_state_dict: SCREAMING_SNAKE_CASE_ : List[str] = vae_state_dict.pop( f'encoder.down.{i}.downsample.conv.weight' ) SCREAMING_SNAKE_CASE_ : Optional[int] = vae_state_dict.pop( f'encoder.down.{i}.downsample.conv.bias' ) SCREAMING_SNAKE_CASE_ : List[Any] = renew_vae_resnet_paths(__a ) SCREAMING_SNAKE_CASE_ : List[Any] = {'''old''': f'down.{i}.block', '''new''': f'down_blocks.{i}.resnets'} assign_to_checkpoint(__a , __a , __a , additional_replacements=[meta_path] , config=__a ) SCREAMING_SNAKE_CASE_ : str = [key for key in vae_state_dict if '''encoder.mid.block''' in key] SCREAMING_SNAKE_CASE_ : Any = 2 for i in range(1 , num_mid_res_blocks + 1 ): SCREAMING_SNAKE_CASE_ : Optional[Any] = [key for key in mid_resnets if f'encoder.mid.block_{i}' in key] SCREAMING_SNAKE_CASE_ : List[str] = renew_vae_resnet_paths(__a ) SCREAMING_SNAKE_CASE_ : Dict = {'''old''': f'mid.block_{i}', '''new''': f'mid_block.resnets.{i - 1}'} assign_to_checkpoint(__a , __a , __a , additional_replacements=[meta_path] , config=__a ) SCREAMING_SNAKE_CASE_ : Dict = [key for key in vae_state_dict if '''encoder.mid.attn''' in key] SCREAMING_SNAKE_CASE_ : Union[str, Any] = renew_vae_attention_paths(__a ) SCREAMING_SNAKE_CASE_ : Tuple = {'''old''': '''mid.attn_1''', '''new''': '''mid_block.attentions.0'''} assign_to_checkpoint(__a , __a , __a , additional_replacements=[meta_path] , config=__a ) conv_attn_to_linear(__a ) for i in range(__a ): SCREAMING_SNAKE_CASE_ : List[str] = num_up_blocks - 1 - i SCREAMING_SNAKE_CASE_ : Tuple = [ key for key in up_blocks[block_id] if f'up.{block_id}' in key and f'up.{block_id}.upsample' not in key ] if f'decoder.up.{block_id}.upsample.conv.weight' in vae_state_dict: SCREAMING_SNAKE_CASE_ : Optional[Any] = vae_state_dict[ f'decoder.up.{block_id}.upsample.conv.weight' ] SCREAMING_SNAKE_CASE_ : str = vae_state_dict[ f'decoder.up.{block_id}.upsample.conv.bias' ] SCREAMING_SNAKE_CASE_ : Optional[Any] = renew_vae_resnet_paths(__a ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = {'''old''': f'up.{block_id}.block', '''new''': f'up_blocks.{i}.resnets'} assign_to_checkpoint(__a , __a , __a , additional_replacements=[meta_path] , config=__a ) SCREAMING_SNAKE_CASE_ : str = [key for key in vae_state_dict if '''decoder.mid.block''' in key] SCREAMING_SNAKE_CASE_ : List[Any] = 2 for i in range(1 , num_mid_res_blocks + 1 ): SCREAMING_SNAKE_CASE_ : Optional[Any] = [key for key in mid_resnets if f'decoder.mid.block_{i}' in key] SCREAMING_SNAKE_CASE_ : int = renew_vae_resnet_paths(__a ) SCREAMING_SNAKE_CASE_ : Tuple = {'''old''': f'mid.block_{i}', '''new''': f'mid_block.resnets.{i - 1}'} assign_to_checkpoint(__a , __a , __a , additional_replacements=[meta_path] , config=__a ) SCREAMING_SNAKE_CASE_ : List[Any] = [key for key in vae_state_dict if '''decoder.mid.attn''' in key] SCREAMING_SNAKE_CASE_ : Dict = renew_vae_attention_paths(__a ) SCREAMING_SNAKE_CASE_ : Tuple = {'''old''': '''mid.attn_1''', '''new''': '''mid_block.attentions.0'''} assign_to_checkpoint(__a , __a , __a , additional_replacements=[meta_path] , config=__a ) conv_attn_to_linear(__a ) return new_checkpoint def _A (__a , __a , ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[int] = requests.get( ''' https://raw.githubusercontent.com/CompVis/stable-diffusion/main/configs/stable-diffusion/v1-inference.yaml''' ) SCREAMING_SNAKE_CASE_ : Dict = io.BytesIO(r.content ) SCREAMING_SNAKE_CASE_ : Any = OmegaConf.load(__a ) SCREAMING_SNAKE_CASE_ : int = 5_12 SCREAMING_SNAKE_CASE_ : str = '''cuda''' if torch.cuda.is_available() else '''cpu''' if checkpoint_path.endswith('''safetensors''' ): from safetensors import safe_open SCREAMING_SNAKE_CASE_ : Dict = {} with safe_open(__a , framework='''pt''' , device='''cpu''' ) as f: for key in f.keys(): SCREAMING_SNAKE_CASE_ : Any = f.get_tensor(__a ) else: SCREAMING_SNAKE_CASE_ : List[Any] = torch.load(__a , map_location=__a )['''state_dict'''] # Convert the VAE model. SCREAMING_SNAKE_CASE_ : Any = create_vae_diffusers_config(__a , image_size=__a ) SCREAMING_SNAKE_CASE_ : int = custom_convert_ldm_vae_checkpoint(__a , __a ) SCREAMING_SNAKE_CASE_ : Optional[int] = AutoencoderKL(**__a ) vae.load_state_dict(__a ) vae.save_pretrained(__a ) if __name__ == "__main__": UpperCAmelCase_ : int = argparse.ArgumentParser() parser.add_argument("""--vae_pt_path""", default=None, type=str, required=True, help="""Path to the VAE.pt to convert.""") parser.add_argument("""--dump_path""", default=None, type=str, required=True, help="""Path to the VAE.pt to convert.""") UpperCAmelCase_ : Any = parser.parse_args() vae_pt_to_vae_diffuser(args.vae_pt_path, args.dump_path)
91
import copy from typing import Any, Dict, List, Optional, Union import numpy as np import torch from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import TensorType, logging _UpperCAmelCase : Tuple = logging.get_logger(__name__) class lowercase ( lowercase_ ): __SCREAMING_SNAKE_CASE : Optional[Any] = ['''input_features''', '''is_longer'''] def __init__( self , snake_case=64 , snake_case=4_8000 , snake_case=480 , snake_case=10 , snake_case=1024 , snake_case=0.0 , snake_case=False , snake_case = 0 , snake_case = 1_4000 , snake_case = None , snake_case = "fusion" , snake_case = "repeatpad" , **snake_case , ): super().__init__( feature_size=snake_case , sampling_rate=snake_case , padding_value=snake_case , return_attention_mask=snake_case , **snake_case , ) snake_case_ = top_db snake_case_ = truncation snake_case_ = padding snake_case_ = fft_window_size snake_case_ = (fft_window_size >> 1) + 1 snake_case_ = hop_length snake_case_ = max_length_s snake_case_ = max_length_s * sampling_rate snake_case_ = sampling_rate snake_case_ = frequency_min snake_case_ = frequency_max snake_case_ = mel_filter_bank( num_frequency_bins=self.nb_frequency_bins , num_mel_filters=snake_case , min_frequency=snake_case , max_frequency=snake_case , sampling_rate=snake_case , norm=snake_case , mel_scale='htk' , ) snake_case_ = mel_filter_bank( num_frequency_bins=self.nb_frequency_bins , num_mel_filters=snake_case , min_frequency=snake_case , max_frequency=snake_case , sampling_rate=snake_case , norm='slaney' , mel_scale='slaney' , ) def a ( self ): snake_case_ = copy.deepcopy(self.__dict__ ) snake_case_ = self.__class__.__name__ if "mel_filters" in output: del output["mel_filters"] if "mel_filters_slaney" in output: del output["mel_filters_slaney"] return output def a ( self , snake_case , snake_case = None ): snake_case_ = spectrogram( snake_case , window_function(self.fft_window_size , 'hann' ) , frame_length=self.fft_window_size , hop_length=self.hop_length , power=2.0 , mel_filters=snake_case , log_mel='dB' , ) return log_mel_spectrogram.T def a ( self , snake_case , snake_case , snake_case ): snake_case_ = np.array_split(list(range(0 , total_frames - chunk_frames + 1 ) ) , 3 ) if len(ranges[1] ) == 0: # if the audio is too short, we just use the first chunk snake_case_ = [0] if len(ranges[2] ) == 0: # if the audio is too short, we just use the first chunk snake_case_ = [0] # randomly choose index for each part snake_case_ = np.random.choice(ranges[0] ) snake_case_ = np.random.choice(ranges[1] ) snake_case_ = np.random.choice(ranges[2] ) snake_case_ = mel[idx_front : idx_front + chunk_frames, :] snake_case_ = mel[idx_middle : idx_middle + chunk_frames, :] snake_case_ = mel[idx_back : idx_back + chunk_frames, :] snake_case_ = torch.tensor(mel[None, None, :] ) snake_case_ = torch.nn.functional.interpolate( snake_case , size=[chunk_frames, 64] , mode='bilinear' , align_corners=snake_case ) snake_case_ = mel_shrink[0][0].numpy() snake_case_ = np.stack([mel_shrink, mel_chunk_front, mel_chunk_middle, mel_chunk_back] , axis=0 ) return mel_fusion def a ( self , snake_case , snake_case , snake_case , snake_case ): if waveform.shape[0] > max_length: if truncation == "rand_trunc": snake_case_ = True # random crop to max_length (for compatibility) -> this should be handled by self.pad snake_case_ = len(snake_case ) - max_length snake_case_ = np.random.randint(0 , overflow + 1 ) snake_case_ = waveform[idx : idx + max_length] snake_case_ = self._np_extract_fbank_features(snake_case , self.mel_filters_slaney )[None, :] elif truncation == "fusion": snake_case_ = self._np_extract_fbank_features(snake_case , self.mel_filters ) snake_case_ = max_length // self.hop_length + 1 # the +1 related to how the spectrogram is computed snake_case_ = mel.shape[0] if chunk_frames == total_frames: # there is a corner case where the audio length is larger than max_length but smaller than max_length+hop_length. # In this case, we just use the whole audio. snake_case_ = np.stack([mel, mel, mel, mel] , axis=0 ) snake_case_ = False else: snake_case_ = self._random_mel_fusion(snake_case , snake_case , snake_case ) snake_case_ = True else: raise NotImplementedError(F'''data_truncating {truncation} not implemented''' ) else: snake_case_ = False # only use repeat as a new possible value for padding. you repeat the audio before applying the usual max_length padding if waveform.shape[0] < max_length: if padding == "repeat": snake_case_ = int(max_length / len(snake_case ) ) snake_case_ = np.stack(np.tile(snake_case , n_repeat + 1 ) )[:max_length] if padding == "repeatpad": snake_case_ = int(max_length / len(snake_case ) ) snake_case_ = np.stack(np.tile(snake_case , snake_case ) ) snake_case_ = np.pad(snake_case , (0, max_length - waveform.shape[0]) , mode='constant' , constant_values=0 ) if truncation == "fusion": snake_case_ = self._np_extract_fbank_features(snake_case , self.mel_filters ) snake_case_ = np.stack([input_mel, input_mel, input_mel, input_mel] , axis=0 ) else: snake_case_ = self._np_extract_fbank_features(snake_case , self.mel_filters_slaney )[None, :] return input_mel, longer def __call__( self , snake_case , snake_case = None , snake_case = None , snake_case = None , snake_case = None , snake_case = None , **snake_case , ): snake_case_ = truncation if truncation is not None else self.truncation snake_case_ = padding if padding else self.padding if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( F'''The model corresponding to this feature extractor: {self.__class__.__name__} was trained using a''' F''' sampling rate of {self.sampling_rate}. Please make sure that the provided `raw_speech` input''' F''' was sampled with {self.sampling_rate} and not {sampling_rate}.''' ) else: logger.warning( 'It is strongly recommended to pass the `sampling_rate` argument to this function. ' 'Failing to do so can result in silent errors that might be hard to debug.' ) snake_case_ = isinstance(snake_case , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(F'''Only mono-channel audio is supported for input to {self}''' ) snake_case_ = is_batched_numpy or ( isinstance(snake_case , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: snake_case_ = [np.asarray(snake_case , dtype=np.floataa ) for speech in raw_speech] elif not is_batched and not isinstance(snake_case , np.ndarray ): snake_case_ = np.asarray(snake_case , dtype=np.floataa ) elif isinstance(snake_case , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): snake_case_ = raw_speech.astype(np.floataa ) # always return batch if not is_batched: snake_case_ = [np.asarray(snake_case )] # convert to mel spectrogram, truncate and pad if needed. snake_case_ = [ self._get_input_mel(snake_case , max_length if max_length else self.nb_max_samples , snake_case , snake_case ) for waveform in raw_speech ] snake_case_ = [] snake_case_ = [] for mel, longer in padded_inputs: input_mel.append(snake_case ) is_longer.append(snake_case ) if truncation == "fusion" and sum(snake_case ) == 0: # if no audio is longer than 10s, then randomly select one audio to be longer snake_case_ = np.random.randint(0 , len(snake_case ) ) snake_case_ = True if isinstance(input_mel[0] , snake_case ): snake_case_ = [np.asarray(snake_case , dtype=np.floataa ) for feature in input_mel] # is_longer is a list of bool snake_case_ = [[longer] for longer in is_longer] snake_case_ = {'input_features': input_mel, 'is_longer': is_longer} snake_case_ = BatchFeature(snake_case ) if return_tensors is not None: snake_case_ = input_features.convert_to_tensors(snake_case ) return input_features
285
0
UpperCamelCase__ = [ [0, 1_6, 1_3, 0, 0, 0], [0, 0, 1_0, 1_2, 0, 0], [0, 4, 0, 0, 1_4, 0], [0, 0, 9, 0, 0, 2_0], [0, 0, 0, 7, 0, 4], [0, 0, 0, 0, 0, 0], ] def lowerCAmelCase_ ( __A, __A, __A, __A ) -> List[Any]: '''simple docstring''' UpperCAmelCase__ = [False] * len(__A ) UpperCAmelCase__ = [s] UpperCAmelCase__ = True while queue: UpperCAmelCase__ = queue.pop(0 ) for ind in range(len(graph[u] ) ): if visited[ind] is False and graph[u][ind] > 0: queue.append(__A ) UpperCAmelCase__ = True UpperCAmelCase__ = u return visited[t] def lowerCAmelCase_ ( __A, __A, __A ) -> Tuple: '''simple docstring''' UpperCAmelCase__ = [-1] * (len(__A )) UpperCAmelCase__ = 0 UpperCAmelCase__ = [] UpperCAmelCase__ = [i[:] for i in graph] # Record original cut, copy. while bfs(__A, __A, __A, __A ): UpperCAmelCase__ = float("Inf" ) UpperCAmelCase__ = sink while s != source: # Find the minimum value in select path UpperCAmelCase__ = min(__A, graph[parent[s]][s] ) UpperCAmelCase__ = parent[s] max_flow += path_flow UpperCAmelCase__ = sink while v != source: UpperCAmelCase__ = parent[v] graph[u][v] -= path_flow graph[v][u] += path_flow UpperCAmelCase__ = parent[v] for i in range(len(__A ) ): for j in range(len(graph[0] ) ): if graph[i][j] == 0 and temp[i][j] > 0: res.append((i, j) ) return res if __name__ == "__main__": print(mincut(test_graph, source=0, sink=5))
143
from __future__ import annotations def lowerCAmelCase_ ( __A, __A, __A, ) -> tuple: '''simple docstring''' if (electron_conc, hole_conc, intrinsic_conc).count(0 ) != 1: raise ValueError("You cannot supply more or less than 2 values" ) elif electron_conc < 0: raise ValueError("Electron concentration cannot be negative in a semiconductor" ) elif hole_conc < 0: raise ValueError("Hole concentration cannot be negative in a semiconductor" ) elif intrinsic_conc < 0: raise ValueError( "Intrinsic concentration cannot be negative in a semiconductor" ) elif electron_conc == 0: return ( "electron_conc", intrinsic_conc**2 / hole_conc, ) elif hole_conc == 0: return ( "hole_conc", intrinsic_conc**2 / electron_conc, ) elif intrinsic_conc == 0: return ( "intrinsic_conc", (electron_conc * hole_conc) ** 0.5, ) else: return (-1, -1) if __name__ == "__main__": import doctest doctest.testmod()
143
1
from string import ascii_lowercase, ascii_uppercase def _snake_case( SCREAMING_SNAKE_CASE__ ) -> str: if not sentence: return "" lowercase : Optional[int] = dict(zip(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ) return lower_to_upper.get(sentence[0] , sentence[0] ) + sentence[1:] if __name__ == "__main__": from doctest import testmod testmod()
20
from typing import Dict import numpy as np from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, GenericTensor, Pipeline, PipelineException if is_tf_available(): import tensorflow as tf from ..tf_utils import stable_softmax if is_torch_available(): import torch lowercase : List[str] = logging.get_logger(__name__) @add_end_docstrings( lowerCAmelCase , R"\n top_k (`int`, defaults to 5):\n The number of predictions to return.\n targets (`str` or `List[str]`, *optional*):\n When passed, the model will limit the scores to the passed targets instead of looking up in the whole\n vocab. If the provided targets are not in the model vocab, they will be tokenized and the first resulting\n token will be used (with a warning, and that might be slower).\n\n " , ) class __snake_case ( lowerCAmelCase ): def _SCREAMING_SNAKE_CASE ( self ,snake_case ): '''simple docstring''' if self.framework == "tf": lowercase : str = tf.where(input_ids == self.tokenizer.mask_token_id ).numpy() elif self.framework == "pt": lowercase : Optional[int] = torch.nonzero(input_ids == self.tokenizer.mask_token_id ,as_tuple=snake_case ) else: raise ValueError("""Unsupported framework""" ) return masked_index def _SCREAMING_SNAKE_CASE ( self ,snake_case ): '''simple docstring''' lowercase : Tuple = self.get_masked_index(snake_case ) lowercase : Dict = np.prod(masked_index.shape ) if numel < 1: raise PipelineException( """fill-mask""" ,self.model.base_model_prefix ,f"No mask_token ({self.tokenizer.mask_token}) found on the input" ,) def _SCREAMING_SNAKE_CASE ( self ,snake_case ): '''simple docstring''' if isinstance(snake_case ,snake_case ): for model_input in model_inputs: self._ensure_exactly_one_mask_token(model_input["""input_ids"""][0] ) else: for input_ids in model_inputs["input_ids"]: self._ensure_exactly_one_mask_token(snake_case ) def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case=None ,**snake_case ): '''simple docstring''' if return_tensors is None: lowercase : int = self.framework lowercase : Optional[Any] = self.tokenizer(snake_case ,return_tensors=snake_case ) self.ensure_exactly_one_mask_token(snake_case ) return model_inputs def _SCREAMING_SNAKE_CASE ( self ,snake_case ): '''simple docstring''' lowercase : Optional[int] = self.model(**snake_case ) lowercase : Tuple = model_inputs["""input_ids"""] return model_outputs def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case=5 ,snake_case=None ): '''simple docstring''' if target_ids is not None and target_ids.shape[0] < top_k: lowercase : str = target_ids.shape[0] lowercase : Optional[Any] = model_outputs["""input_ids"""][0] lowercase : List[str] = model_outputs["""logits"""] if self.framework == "tf": lowercase : List[str] = tf.where(input_ids == self.tokenizer.mask_token_id ).numpy()[:, 0] lowercase : Tuple = outputs.numpy() lowercase : Tuple = outputs[0, masked_index, :] lowercase : Any = stable_softmax(snake_case ,axis=-1 ) if target_ids is not None: lowercase : Union[str, Any] = tf.gather_nd(tf.squeeze(snake_case ,0 ) ,target_ids.reshape(-1 ,1 ) ) lowercase : int = tf.expand_dims(snake_case ,0 ) lowercase : Tuple = tf.math.top_k(snake_case ,k=snake_case ) lowercase , lowercase : int = topk.values.numpy(), topk.indices.numpy() else: lowercase : Optional[Any] = torch.nonzero(input_ids == self.tokenizer.mask_token_id ,as_tuple=snake_case ).squeeze(-1 ) # Fill mask pipeline supports only one ${mask_token} per sample lowercase : Union[str, Any] = outputs[0, masked_index, :] lowercase : Tuple = logits.softmax(dim=-1 ) if target_ids is not None: lowercase : List[str] = probs[..., target_ids] lowercase , lowercase : Union[str, Any] = probs.topk(snake_case ) lowercase : Any = [] lowercase : List[Any] = values.shape[0] == 1 for i, (_values, _predictions) in enumerate(zip(values.tolist() ,predictions.tolist() ) ): lowercase : Dict = [] for v, p in zip(_values ,_predictions ): # Copy is important since we're going to modify this array in place lowercase : Dict = input_ids.numpy().copy() if target_ids is not None: lowercase : Union[str, Any] = target_ids[p].tolist() lowercase : Tuple = p # Filter padding out: lowercase : List[str] = tokens[np.where(tokens != self.tokenizer.pad_token_id )] # Originally we skip special tokens to give readable output. # For multi masks though, the other [MASK] would be removed otherwise # making the output look odd, so we add them back lowercase : Tuple = self.tokenizer.decode(snake_case ,skip_special_tokens=snake_case ) lowercase : Optional[Any] = {"""score""": v, """token""": p, """token_str""": self.tokenizer.decode([p] ), """sequence""": sequence} row.append(snake_case ) result.append(snake_case ) if single_mask: return result[0] return result def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case=None ): '''simple docstring''' if isinstance(snake_case ,snake_case ): lowercase : List[Any] = [targets] try: lowercase : List[str] = self.tokenizer.get_vocab() except Exception: lowercase : Any = {} lowercase : Dict = [] for target in targets: lowercase : Dict = vocab.get(snake_case ,snake_case ) if id_ is None: lowercase : Optional[int] = self.tokenizer( snake_case ,add_special_tokens=snake_case ,return_attention_mask=snake_case ,return_token_type_ids=snake_case ,max_length=1 ,truncation=snake_case ,)["""input_ids"""] if len(snake_case ) == 0: logger.warning( f"The specified target token `{target}` does not exist in the model vocabulary. " """We cannot replace it with anything meaningful, ignoring it""" ) continue lowercase : Union[str, Any] = input_ids[0] # XXX: If users encounter this pass # it becomes pretty slow, so let's make sure # The warning enables them to fix the input to # get faster performance. logger.warning( f"The specified target token `{target}` does not exist in the model vocabulary. " f"Replacing with `{self.tokenizer.convert_ids_to_tokens(id_ )}`." ) target_ids.append(id_ ) lowercase : Optional[Any] = list(set(snake_case ) ) if len(snake_case ) == 0: raise ValueError("""At least one target must be provided when passed.""" ) lowercase : Optional[Any] = np.array(snake_case ) return target_ids def _SCREAMING_SNAKE_CASE ( self ,snake_case=None ,snake_case=None ): '''simple docstring''' lowercase : Dict = {} if targets is not None: lowercase : str = self.get_target_ids(snake_case ,snake_case ) lowercase : List[Any] = target_ids if top_k is not None: lowercase : List[str] = top_k if self.tokenizer.mask_token_id is None: raise PipelineException( """fill-mask""" ,self.model.base_model_prefix ,"""The tokenizer does not define a `mask_token`.""" ) return {}, {}, postprocess_params def __call__( self ,snake_case ,*snake_case ,**snake_case ): '''simple docstring''' lowercase : Tuple = super().__call__(snake_case ,**snake_case ) if isinstance(snake_case ,snake_case ) and len(snake_case ) == 1: return outputs[0] return outputs
20
1
"""simple docstring""" import json import os from functools import lru_cache from typing import Dict, List, Optional, Tuple, Union import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...tokenization_utils_base import BatchEncoding, EncodedInput from ...utils import PaddingStrategy, logging UpperCAmelCase =logging.get_logger(__name__) UpperCAmelCase ={"vocab_file": "vocab.json", "merges_file": "merges.txt"} # See all LED models at https://huggingface.co/models?filter=LED UpperCAmelCase ={ "vocab_file": { "allenai/led-base-16384": "https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json", }, "merges_file": { "allenai/led-base-16384": "https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt", }, "tokenizer_file": { "allenai/led-base-16384": "https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json", }, } UpperCAmelCase ={ "allenai/led-base-16384": 16_384, } @lru_cache() # Copied from transformers.models.bart.tokenization_bart.bytes_to_unicode def _A ( ): """simple docstring""" A = ( list(range(ord("""!""" ) , ord("""~""" ) + 1 ) ) + list(range(ord("""¡""" ) , ord("""¬""" ) + 1 ) ) + list(range(ord("""®""" ) , ord("""ÿ""" ) + 1 ) ) ) A = bs[:] A = 0 for b in range(2**8 ): if b not in bs: bs.append(_a ) cs.append(2**8 + n ) n += 1 A = [chr(_a ) for n in cs] return dict(zip(_a , _a ) ) def _A ( _a : Any ): """simple docstring""" A = set() A = word[0] for char in word[1:]: pairs.add((prev_char, char) ) A = char return pairs class lowerCamelCase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' _lowerCamelCase = VOCAB_FILES_NAMES _lowerCamelCase = PRETRAINED_VOCAB_FILES_MAP _lowerCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowerCamelCase = ['''input_ids''', '''attention_mask'''] def __init__( self ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_="replace" ,lowerCamelCase_="<s>" ,lowerCamelCase_="</s>" ,lowerCamelCase_="</s>" ,lowerCamelCase_="<s>" ,lowerCamelCase_="<unk>" ,lowerCamelCase_="<pad>" ,lowerCamelCase_="<mask>" ,lowerCamelCase_=False ,**lowerCamelCase_ ,) -> List[Any]: A = AddedToken(lowerCamelCase_ ,lstrip=lowerCamelCase_ ,rstrip=lowerCamelCase_ ) if isinstance(lowerCamelCase_ ,lowerCamelCase_ ) else bos_token A = AddedToken(lowerCamelCase_ ,lstrip=lowerCamelCase_ ,rstrip=lowerCamelCase_ ) if isinstance(lowerCamelCase_ ,lowerCamelCase_ ) else eos_token A = AddedToken(lowerCamelCase_ ,lstrip=lowerCamelCase_ ,rstrip=lowerCamelCase_ ) if isinstance(lowerCamelCase_ ,lowerCamelCase_ ) else sep_token A = AddedToken(lowerCamelCase_ ,lstrip=lowerCamelCase_ ,rstrip=lowerCamelCase_ ) if isinstance(lowerCamelCase_ ,lowerCamelCase_ ) else cls_token A = AddedToken(lowerCamelCase_ ,lstrip=lowerCamelCase_ ,rstrip=lowerCamelCase_ ) if isinstance(lowerCamelCase_ ,lowerCamelCase_ ) else unk_token A = AddedToken(lowerCamelCase_ ,lstrip=lowerCamelCase_ ,rstrip=lowerCamelCase_ ) if isinstance(lowerCamelCase_ ,lowerCamelCase_ ) else pad_token # Mask token behave like a normal word, i.e. include the space before it A = AddedToken(lowerCamelCase_ ,lstrip=lowerCamelCase_ ,rstrip=lowerCamelCase_ ) if isinstance(lowerCamelCase_ ,lowerCamelCase_ ) else mask_token super().__init__( errors=lowerCamelCase_ ,bos_token=lowerCamelCase_ ,eos_token=lowerCamelCase_ ,unk_token=lowerCamelCase_ ,sep_token=lowerCamelCase_ ,cls_token=lowerCamelCase_ ,pad_token=lowerCamelCase_ ,mask_token=lowerCamelCase_ ,add_prefix_space=lowerCamelCase_ ,**lowerCamelCase_ ,) with open(lowerCamelCase_ ,encoding="""utf-8""" ) as vocab_handle: A = json.load(lowerCamelCase_ ) A = {v: k for k, v in self.encoder.items()} A = errors # how to handle errors in decoding A = bytes_to_unicode() A = {v: k for k, v in self.byte_encoder.items()} with open(lowerCamelCase_ ,encoding="""utf-8""" ) as merges_handle: A = merges_handle.read().split("""\n""" )[1:-1] A = [tuple(merge.split() ) for merge in bpe_merges] A = dict(zip(lowerCamelCase_ ,range(len(lowerCamelCase_ ) ) ) ) A = {} A = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions A = re.compile(r"""'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+""" ) @property # Copied from transformers.models.bart.tokenization_bart.BartTokenizer.vocab_size def UpperCamelCase__ ( self ) -> Tuple: return len(self.encoder ) def UpperCamelCase__ ( self ) -> Dict: return dict(self.encoder ,**self.added_tokens_encoder ) def UpperCamelCase__ ( self ,lowerCamelCase_ ) -> Union[str, Any]: if token in self.cache: return self.cache[token] A = tuple(lowerCamelCase_ ) A = get_pairs(lowerCamelCase_ ) if not pairs: return token while True: A = min(lowerCamelCase_ ,key=lambda lowerCamelCase_ : self.bpe_ranks.get(lowerCamelCase_ ,float("""inf""" ) ) ) if bigram not in self.bpe_ranks: break A , A = bigram A = [] A = 0 while i < len(lowerCamelCase_ ): try: A = word.index(lowerCamelCase_ ,lowerCamelCase_ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) A = j if word[i] == first and i < len(lowerCamelCase_ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 A = tuple(lowerCamelCase_ ) A = new_word if len(lowerCamelCase_ ) == 1: break else: A = get_pairs(lowerCamelCase_ ) A = """ """.join(lowerCamelCase_ ) A = word return word def UpperCamelCase__ ( self ,lowerCamelCase_ ) -> Dict: A = [] for token in re.findall(self.pat ,lowerCamelCase_ ): A = """""".join( self.byte_encoder[b] for b in token.encode("""utf-8""" ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(lowerCamelCase_ ).split(""" """ ) ) return bpe_tokens def UpperCamelCase__ ( self ,lowerCamelCase_ ) -> List[str]: return self.encoder.get(lowerCamelCase_ ,self.encoder.get(self.unk_token ) ) def UpperCamelCase__ ( self ,lowerCamelCase_ ) -> Union[str, Any]: return self.decoder.get(lowerCamelCase_ ) def UpperCamelCase__ ( self ,lowerCamelCase_ ) -> Dict: A = """""".join(lowerCamelCase_ ) A = bytearray([self.byte_decoder[c] for c in text] ).decode("""utf-8""" ,errors=self.errors ) return text def UpperCamelCase__ ( self ,lowerCamelCase_ ,lowerCamelCase_ = None ) -> Tuple[str]: if not os.path.isdir(lowerCamelCase_ ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return A = os.path.join( lowerCamelCase_ ,(filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) A = os.path.join( lowerCamelCase_ ,(filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""merges_file"""] ) with open(lowerCamelCase_ ,"""w""" ,encoding="""utf-8""" ) as f: f.write(json.dumps(self.encoder ,indent=2 ,sort_keys=lowerCamelCase_ ,ensure_ascii=lowerCamelCase_ ) + """\n""" ) A = 0 with open(lowerCamelCase_ ,"""w""" ,encoding="""utf-8""" ) as writer: writer.write("""#version: 0.2\n""" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() ,key=lambda lowerCamelCase_ : kv[1] ): if index != token_index: logger.warning( f'Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.' """ Please check that the tokenizer is not corrupted!""" ) A = token_index writer.write(""" """.join(lowerCamelCase_ ) + """\n""" ) index += 1 return vocab_file, merge_file def UpperCamelCase__ ( self ,lowerCamelCase_ ,lowerCamelCase_ = None ) -> List[int]: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] A = [self.cls_token_id] A = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def UpperCamelCase__ ( self ,lowerCamelCase_ ,lowerCamelCase_ = None ,lowerCamelCase_ = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCamelCase_ ,token_ids_a=lowerCamelCase_ ,already_has_special_tokens=lowerCamelCase_ ) if token_ids_a is None: return [1] + ([0] * len(lowerCamelCase_ )) + [1] return [1] + ([0] * len(lowerCamelCase_ )) + [1, 1] + ([0] * len(lowerCamelCase_ )) + [1] def UpperCamelCase__ ( self ,lowerCamelCase_ ,lowerCamelCase_ = None ) -> List[int]: A = [self.sep_token_id] A = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def UpperCamelCase__ ( self ,lowerCamelCase_ ,lowerCamelCase_=False ,**lowerCamelCase_ ) -> Any: A = kwargs.pop("""add_prefix_space""" ,self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(lowerCamelCase_ ) > 0 and not text[0].isspace()): A = """ """ + text return (text, kwargs) def UpperCamelCase__ ( self ,lowerCamelCase_ ,lowerCamelCase_ = None ,lowerCamelCase_ = PaddingStrategy.DO_NOT_PAD ,lowerCamelCase_ = None ,lowerCamelCase_ = None ,) -> dict: A = super()._pad( encoded_inputs=lowerCamelCase_ ,max_length=lowerCamelCase_ ,padding_strategy=lowerCamelCase_ ,pad_to_multiple_of=lowerCamelCase_ ,return_attention_mask=lowerCamelCase_ ,) # Load from model defaults if return_attention_mask is None: A = """attention_mask""" in self.model_input_names if return_attention_mask and "global_attention_mask" in encoded_inputs: A = encoded_inputs[self.model_input_names[0]] # `global_attention_mask` need to have the same length as other (sequential) inputs. A = len(encoded_inputs["""global_attention_mask"""] ) != len(lowerCamelCase_ ) if needs_to_be_padded: A = len(lowerCamelCase_ ) - len(encoded_inputs["""global_attention_mask"""] ) if self.padding_side == "right": # Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend` A = ( encoded_inputs["""global_attention_mask"""] + [-1] * difference ) elif self.padding_side == "left": A = [-1] * difference + encoded_inputs[ """global_attention_mask""" ] else: raise ValueError("""Invalid padding strategy:""" + str(self.padding_side ) ) return encoded_inputs
363
"""simple docstring""" import warnings from typing import List import numpy as np from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding from ...utils import is_flax_available, is_tf_available, is_torch_available class lowerCamelCase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' _lowerCamelCase = ['''image_processor''', '''tokenizer'''] _lowerCamelCase = '''OwlViTImageProcessor''' _lowerCamelCase = ('''CLIPTokenizer''', '''CLIPTokenizerFast''') def __init__( self ,lowerCamelCase_=None ,lowerCamelCase_=None ,**lowerCamelCase_ ) -> Tuple: A = None if "feature_extractor" in kwargs: warnings.warn( """The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`""" """ instead.""" ,lowerCamelCase_ ,) A = kwargs.pop("""feature_extractor""" ) A = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("""You need to specify an `image_processor`.""" ) if tokenizer is None: raise ValueError("""You need to specify a `tokenizer`.""" ) super().__init__(lowerCamelCase_ ,lowerCamelCase_ ) def __call__( self ,lowerCamelCase_=None ,lowerCamelCase_=None ,lowerCamelCase_=None ,lowerCamelCase_="max_length" ,lowerCamelCase_="np" ,**lowerCamelCase_ ) -> Optional[Any]: if text is None and query_images is None and images is None: raise ValueError( """You have to specify at least one text or query image or image. All three cannot be none.""" ) if text is not None: if isinstance(lowerCamelCase_ ,lowerCamelCase_ ) or (isinstance(lowerCamelCase_ ,lowerCamelCase_ ) and not isinstance(text[0] ,lowerCamelCase_ )): A = [self.tokenizer(lowerCamelCase_ ,padding=lowerCamelCase_ ,return_tensors=lowerCamelCase_ ,**lowerCamelCase_ )] elif isinstance(lowerCamelCase_ ,lowerCamelCase_ ) and isinstance(text[0] ,lowerCamelCase_ ): A = [] # Maximum number of queries across batch A = max([len(lowerCamelCase_ ) for t in text] ) # Pad all batch samples to max number of text queries for t in text: if len(lowerCamelCase_ ) != max_num_queries: A = t + [""" """] * (max_num_queries - len(lowerCamelCase_ )) A = self.tokenizer(lowerCamelCase_ ,padding=lowerCamelCase_ ,return_tensors=lowerCamelCase_ ,**lowerCamelCase_ ) encodings.append(lowerCamelCase_ ) else: raise TypeError("""Input text should be a string, a list of strings or a nested list of strings""" ) if return_tensors == "np": A = np.concatenate([encoding["""input_ids"""] for encoding in encodings] ,axis=0 ) A = np.concatenate([encoding["""attention_mask"""] for encoding in encodings] ,axis=0 ) elif return_tensors == "jax" and is_flax_available(): import jax.numpy as jnp A = jnp.concatenate([encoding["""input_ids"""] for encoding in encodings] ,axis=0 ) A = jnp.concatenate([encoding["""attention_mask"""] for encoding in encodings] ,axis=0 ) elif return_tensors == "pt" and is_torch_available(): import torch A = torch.cat([encoding["""input_ids"""] for encoding in encodings] ,dim=0 ) A = torch.cat([encoding["""attention_mask"""] for encoding in encodings] ,dim=0 ) elif return_tensors == "tf" and is_tf_available(): import tensorflow as tf A = tf.stack([encoding["""input_ids"""] for encoding in encodings] ,axis=0 ) A = tf.stack([encoding["""attention_mask"""] for encoding in encodings] ,axis=0 ) else: raise ValueError("""Target return tensor type could not be returned""" ) A = BatchEncoding() A = input_ids A = attention_mask if query_images is not None: A = BatchEncoding() A = self.image_processor( lowerCamelCase_ ,return_tensors=lowerCamelCase_ ,**lowerCamelCase_ ).pixel_values A = query_pixel_values if images is not None: A = self.image_processor(lowerCamelCase_ ,return_tensors=lowerCamelCase_ ,**lowerCamelCase_ ) if text is not None and images is not None: A = image_features.pixel_values return encoding elif query_images is not None and images is not None: A = image_features.pixel_values return encoding elif text is not None or query_images is not None: return encoding else: return BatchEncoding(data=dict(**lowerCamelCase_ ) ,tensor_type=lowerCamelCase_ ) def UpperCamelCase__ ( self ,*lowerCamelCase_ ,**lowerCamelCase_ ) -> int: return self.image_processor.post_process(*lowerCamelCase_ ,**lowerCamelCase_ ) def UpperCamelCase__ ( self ,*lowerCamelCase_ ,**lowerCamelCase_ ) -> Optional[Any]: return self.image_processor.post_process_object_detection(*lowerCamelCase_ ,**lowerCamelCase_ ) def UpperCamelCase__ ( self ,*lowerCamelCase_ ,**lowerCamelCase_ ) -> Optional[Any]: return self.image_processor.post_process_image_guided_detection(*lowerCamelCase_ ,**lowerCamelCase_ ) def UpperCamelCase__ ( self ,*lowerCamelCase_ ,**lowerCamelCase_ ) -> List[str]: return self.tokenizer.batch_decode(*lowerCamelCase_ ,**lowerCamelCase_ ) def UpperCamelCase__ ( self ,*lowerCamelCase_ ,**lowerCamelCase_ ) -> List[str]: return self.tokenizer.decode(*lowerCamelCase_ ,**lowerCamelCase_ ) @property def UpperCamelCase__ ( self ) -> Union[str, Any]: warnings.warn( """`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.""" ,lowerCamelCase_ ,) return self.image_processor_class @property def UpperCamelCase__ ( self ) -> Union[str, Any]: warnings.warn( """`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.""" ,lowerCamelCase_ ,) return self.image_processor
77
0
'''simple docstring''' from collections import Counter import numpy as np from sklearn import datasets from sklearn.model_selection import train_test_split a_ : Optional[int] = datasets.load_iris() a_ : str = np.array(data["""data"""]) a_ : Optional[Any] = np.array(data["""target"""]) a_ : Tuple = data['''target_names'''] a_ : Optional[int] = train_test_split(X, y) def __snake_case ( UpperCAmelCase_ : str , UpperCAmelCase_ : List[Any] ): return np.linalg.norm(np.array(__snake_case ) - np.array(__snake_case ) ) def __snake_case ( UpperCAmelCase_ : Any , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Any , UpperCAmelCase_ : Tuple=5 ): lowerCamelCase_ = zip(__snake_case , __snake_case ) # List of distances of all points from the point to be classified lowerCamelCase_ = [] for data_point in data: lowerCamelCase_ = euclidean_distance(data_point[0] , __snake_case ) distances.append((distance, data_point[1]) ) # Choosing 'k' points with the least distances. lowerCamelCase_ = [i[1] for i in sorted(__snake_case )[:k]] # Most commonly occurring class among them # is the class into which the point is classified lowerCamelCase_ = Counter(__snake_case ).most_common(1 )[0][0] return classes[result] if __name__ == "__main__": print(classifier(X_train, y_train, classes, [4.4, 3.1, 1.3, 1.4]))
55
'''simple docstring''' import shutil import tempfile import unittest import numpy as np import pytest from transformers.testing_utils import require_vision from transformers.utils import is_vision_available if is_vision_available(): from PIL import Image from transformers import AutoProcessor, BertTokenizer, BlipImageProcessor, BlipProcessor, PreTrainedTokenizerFast @require_vision class SCREAMING_SNAKE_CASE (unittest.TestCase ): def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Dict = tempfile.mkdtemp() __A : Optional[int] = BlipImageProcessor() __A : List[str] = BertTokenizer.from_pretrained('hf-internal-testing/tiny-random-BertModel') __A : Any = BlipProcessor(_UpperCAmelCase , _UpperCAmelCase) processor.save_pretrained(self.tmpdirname) def SCREAMING_SNAKE_CASE ( self , **_UpperCAmelCase): '''simple docstring''' return AutoProcessor.from_pretrained(self.tmpdirname , **_UpperCAmelCase).tokenizer def SCREAMING_SNAKE_CASE ( self , **_UpperCAmelCase): '''simple docstring''' return AutoProcessor.from_pretrained(self.tmpdirname , **_UpperCAmelCase).image_processor def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' shutil.rmtree(self.tmpdirname) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : int = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta)] __A : Union[str, Any] = [Image.fromarray(np.moveaxis(_UpperCAmelCase , 0 , -1)) for x in image_inputs] return image_inputs def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : int = BlipProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor()) processor.save_pretrained(self.tmpdirname) __A : int = self.get_tokenizer(bos_token='(BOS)' , eos_token='(EOS)') __A : List[Any] = self.get_image_processor(do_normalize=_UpperCAmelCase , padding_value=1.0) __A : Tuple = BlipProcessor.from_pretrained( self.tmpdirname , bos_token='(BOS)' , eos_token='(EOS)' , do_normalize=_UpperCAmelCase , padding_value=1.0) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab()) self.assertIsInstance(processor.tokenizer , _UpperCAmelCase) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string()) self.assertIsInstance(processor.image_processor , _UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : List[str] = self.get_image_processor() __A : str = self.get_tokenizer() __A : int = BlipProcessor(tokenizer=_UpperCAmelCase , image_processor=_UpperCAmelCase) __A : List[str] = self.prepare_image_inputs() __A : str = image_processor(_UpperCAmelCase , return_tensors='np') __A : str = processor(images=_UpperCAmelCase , return_tensors='np') for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Any = self.get_image_processor() __A : Tuple = self.get_tokenizer() __A : Union[str, Any] = BlipProcessor(tokenizer=_UpperCAmelCase , image_processor=_UpperCAmelCase) __A : str = 'lower newer' __A : Dict = processor(text=_UpperCAmelCase) __A : Tuple = tokenizer(_UpperCAmelCase , return_token_type_ids=_UpperCAmelCase) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key]) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : List[Any] = self.get_image_processor() __A : Optional[Any] = self.get_tokenizer() __A : Optional[Any] = BlipProcessor(tokenizer=_UpperCAmelCase , image_processor=_UpperCAmelCase) __A : Dict = 'lower newer' __A : int = self.prepare_image_inputs() __A : List[Any] = processor(text=_UpperCAmelCase , images=_UpperCAmelCase) self.assertListEqual(list(inputs.keys()) , ['pixel_values', 'input_ids', 'attention_mask']) # test if it raises when no input is passed with pytest.raises(_UpperCAmelCase): processor() def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Union[str, Any] = self.get_image_processor() __A : Optional[Any] = self.get_tokenizer() __A : Union[str, Any] = BlipProcessor(tokenizer=_UpperCAmelCase , image_processor=_UpperCAmelCase) __A : Tuple = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] __A : List[str] = processor.batch_decode(_UpperCAmelCase) __A : List[str] = tokenizer.batch_decode(_UpperCAmelCase) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Any = self.get_image_processor() __A : Union[str, Any] = self.get_tokenizer() __A : Optional[Any] = BlipProcessor(tokenizer=_UpperCAmelCase , image_processor=_UpperCAmelCase) __A : str = 'lower newer' __A : str = self.prepare_image_inputs() __A : Optional[int] = processor(text=_UpperCAmelCase , images=_UpperCAmelCase) # For now the processor supports only ['pixel_values', 'input_ids', 'attention_mask'] self.assertListEqual(list(inputs.keys()) , ['pixel_values', 'input_ids', 'attention_mask'])
190
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging A_ = logging.get_logger(__name__) A_ = { '''edbeeching/decision-transformer-gym-hopper-medium''': ( '''https://huggingface.co/edbeeching/decision-transformer-gym-hopper-medium/resolve/main/config.json''' ), # See all DecisionTransformer models at https://huggingface.co/models?filter=decision_transformer } class __SCREAMING_SNAKE_CASE ( UpperCamelCase ): snake_case_ = 'decision_transformer' snake_case_ = ['past_key_values'] snake_case_ = { 'max_position_embeddings': 'n_positions', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__( self : Tuple , snake_case : Union[str, Any]=17 , snake_case : str=4 , snake_case : int=128 , snake_case : Tuple=4096 , snake_case : str=True , snake_case : Optional[Any]=1 , snake_case : str=1024 , snake_case : Union[str, Any]=3 , snake_case : Union[str, Any]=1 , snake_case : Tuple=None , snake_case : Optional[Any]="relu" , snake_case : Optional[Any]=0.1 , snake_case : int=0.1 , snake_case : Optional[Any]=0.1 , snake_case : Union[str, Any]=1e-5 , snake_case : Optional[int]=0.02 , snake_case : Optional[int]=True , snake_case : Any=True , snake_case : Optional[int]=5_0256 , snake_case : List[Any]=5_0256 , snake_case : Tuple=False , snake_case : Tuple=False , **snake_case : Any , ): '''simple docstring''' A__ : Union[str, Any] = state_dim A__ : Tuple = act_dim A__ : Optional[Any] = hidden_size A__ : str = max_ep_len A__ : Any = action_tanh A__ : Any = vocab_size A__ : Dict = n_positions A__ : Optional[Any] = n_layer A__ : int = n_head A__ : List[str] = n_inner A__ : Tuple = activation_function A__ : Any = resid_pdrop A__ : List[str] = embd_pdrop A__ : Any = attn_pdrop A__ : List[Any] = layer_norm_epsilon A__ : Tuple = initializer_range A__ : Union[str, Any] = scale_attn_weights A__ : Tuple = use_cache A__ : int = scale_attn_by_inverse_layer_idx A__ : Optional[int] = reorder_and_upcast_attn A__ : Optional[int] = bos_token_id A__ : Tuple = eos_token_id super().__init__(bos_token_id=snake_case , eos_token_id=snake_case , **snake_case )
296
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) A_ = { '''configuration_llama''': ['''LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''LlamaConfig'''], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ = ['''LlamaTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ = ['''LlamaTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ = [ '''LlamaForCausalLM''', '''LlamaModel''', '''LlamaPreTrainedModel''', '''LlamaForSequenceClassification''', ] if TYPE_CHECKING: from .configuration_llama import LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP, LlamaConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_llama import LlamaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_llama_fast import LlamaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_llama import LlamaForCausalLM, LlamaForSequenceClassification, LlamaModel, LlamaPreTrainedModel else: import sys A_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
296
1
"""simple docstring""" import json from typing import Iterator, List, Union from tokenizers import AddedToken, Regex, Tokenizer, decoders, normalizers, pre_tokenizers, trainers from tokenizers.implementations.base_tokenizer import BaseTokenizer from tokenizers.models import Unigram from tokenizers.processors import TemplateProcessing class A_ (lowercase__ ): '''simple docstring''' def __init__( self , lowercase_ = "▁" , lowercase_ = True , lowercase_ = "<unk>" , lowercase_ = "</s>" , lowercase_ = "<pad>" , ): """simple docstring""" UpperCAmelCase_ : Union[str, Any] = { "pad": {"id": 0, "token": pad_token}, "eos": {"id": 1, "token": eos_token}, "unk": {"id": 2, "token": unk_token}, } UpperCAmelCase_ : Optional[Any] = [None] * len(self.special_tokens ) for token_dict in self.special_tokens.values(): UpperCAmelCase_ : Any = token_dict["token"] UpperCAmelCase_ : Optional[int] = Tokenizer(Unigram() ) UpperCAmelCase_ : Union[str, Any] = normalizers.Sequence( [ normalizers.Nmt(), normalizers.NFKC(), normalizers.Replace(Regex(" {2,}" ) , " " ), normalizers.Lowercase(), ] ) UpperCAmelCase_ : Tuple = pre_tokenizers.Sequence( [ pre_tokenizers.Metaspace(replacement=lowercase_ , add_prefix_space=lowercase_ ), pre_tokenizers.Digits(individual_digits=lowercase_ ), pre_tokenizers.Punctuation(), ] ) UpperCAmelCase_ : Tuple = decoders.Metaspace(replacement=lowercase_ , add_prefix_space=lowercase_ ) UpperCAmelCase_ : str = TemplateProcessing( single=F"""$A {self.special_tokens["eos"]["token"]}""" , special_tokens=[(self.special_tokens["eos"]["token"], self.special_tokens["eos"]["id"])] , ) UpperCAmelCase_ : Optional[int] = { "model": "SentencePieceUnigram", "replacement": replacement, "add_prefix_space": add_prefix_space, } super().__init__(lowercase_ , lowercase_ ) def UpperCamelCase__ ( self , lowercase_ , lowercase_ = 8000 , lowercase_ = True , ): """simple docstring""" UpperCAmelCase_ : Union[str, Any] = trainers.UnigramTrainer( vocab_size=lowercase_ , special_tokens=self.special_tokens_list , show_progress=lowercase_ , ) if isinstance(lowercase_ , lowercase_ ): UpperCAmelCase_ : List[str] = [files] self._tokenizer.train(lowercase_ , trainer=lowercase_ ) self.add_unk_id() def UpperCamelCase__ ( self , lowercase_ , lowercase_ = 8000 , lowercase_ = True , ): """simple docstring""" UpperCAmelCase_ : Optional[Any] = trainers.UnigramTrainer( vocab_size=lowercase_ , special_tokens=self.special_tokens_list , show_progress=lowercase_ , ) self._tokenizer.train_from_iterator(lowercase_ , trainer=lowercase_ ) self.add_unk_id() def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Union[str, Any] = json.loads(self._tokenizer.to_str() ) UpperCAmelCase_ : Optional[Any] = self.special_tokens["unk"]["id"] UpperCAmelCase_ : Any = Tokenizer.from_str(json.dumps(lowercase_ ) )
61
import argparse import torch from torch import nn from transformers import MBartConfig, MBartForConditionalGeneration def lowerCAmelCase_ ( __A ) -> Dict: '''simple docstring''' UpperCAmelCase__ = [ "encoder.version", "decoder.version", "model.encoder.version", "model.decoder.version", "_float_tensor", "decoder.output_projection.weight", ] for k in ignore_keys: state_dict.pop(__A, __A ) def lowerCAmelCase_ ( __A ) -> Optional[int]: '''simple docstring''' UpperCAmelCase__ , UpperCAmelCase__ = emb.weight.shape UpperCAmelCase__ = nn.Linear(__A, __A, bias=__A ) UpperCAmelCase__ = emb.weight.data return lin_layer def lowerCAmelCase_ ( __A, __A="facebook/mbart-large-en-ro", __A=False, __A=False ) -> Tuple: '''simple docstring''' UpperCAmelCase__ = torch.load(__A, map_location="cpu" )["model"] remove_ignore_keys_(__A ) UpperCAmelCase__ = state_dict["encoder.embed_tokens.weight"].shape[0] UpperCAmelCase__ = MBartConfig.from_pretrained(__A, vocab_size=__A ) if mbart_aa and finetuned: UpperCAmelCase__ = "relu" UpperCAmelCase__ = state_dict["decoder.embed_tokens.weight"] UpperCAmelCase__ = MBartForConditionalGeneration(__A ) model.model.load_state_dict(__A ) if finetuned: UpperCAmelCase__ = make_linear_from_emb(model.model.shared ) return model if __name__ == "__main__": UpperCamelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( 'fairseq_path', type=str, help='bart.large, bart.large.cnn or a path to a model.pt on local filesystem.' ) parser.add_argument('pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument( '--hf_config', default='facebook/mbart-large-cc25', type=str, help='Which huggingface architecture to use: mbart-large', ) parser.add_argument('--mbart_50', action='store_true', help='whether the model is mMART-50 checkpoint') parser.add_argument('--finetuned', action='store_true', help='whether the model is a fine-tuned checkpoint') UpperCamelCase__ = parser.parse_args() UpperCamelCase__ = convert_fairseq_mbart_checkpoint_from_disk( args.fairseq_path, hf_config_path=args.hf_config, finetuned=args.finetuned, mbart_aa=args.mbart_aa ) model.save_pretrained(args.pytorch_dump_folder_path)
65
0
"""simple docstring""" from ..utils import DummyObject, requires_backends class __lowerCAmelCase ( metaclass=__magic_name__ ): UpperCamelCase__ = ['''keras_nlp'''] def __init__( self :Union[str, Any] , *__magic_name__ :Union[str, Any] , **__magic_name__ :str ): '''simple docstring''' requires_backends(self , ["""keras_nlp"""] )
356
from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices __UpperCamelCase : Optional[Any] = logging.get_logger(__name__) __UpperCamelCase : int = { "shi-labs/nat-mini-in1k-224": "https://huggingface.co/shi-labs/nat-mini-in1k-224/resolve/main/config.json", # See all Nat models at https://huggingface.co/models?filter=nat } class __lowerCAmelCase ( __magic_name__ , __magic_name__ ): UpperCamelCase__ = '''nat''' UpperCamelCase__ = { '''num_attention_heads''': '''num_heads''', '''num_hidden_layers''': '''num_layers''', } def __init__( self :Any , __magic_name__ :int=4 , __magic_name__ :Dict=3 , __magic_name__ :List[str]=64 , __magic_name__ :Optional[int]=[3, 4, 6, 5] , __magic_name__ :int=[2, 4, 8, 16] , __magic_name__ :str=7 , __magic_name__ :Tuple=3.0 , __magic_name__ :Dict=True , __magic_name__ :List[Any]=0.0 , __magic_name__ :List[Any]=0.0 , __magic_name__ :List[Any]=0.1 , __magic_name__ :Optional[Any]="gelu" , __magic_name__ :Optional[Any]=0.02 , __magic_name__ :Tuple=1E-5 , __magic_name__ :Union[str, Any]=0.0 , __magic_name__ :int=None , __magic_name__ :Any=None , **__magic_name__ :Dict , ): '''simple docstring''' super().__init__(**__magic_name__ ) a = patch_size a = num_channels a = embed_dim a = depths a = len(__magic_name__ ) a = num_heads a = kernel_size a = mlp_ratio a = qkv_bias a = hidden_dropout_prob a = attention_probs_dropout_prob a = drop_path_rate a = hidden_act a = layer_norm_eps a = initializer_range # we set the hidden_size attribute in order to make Nat work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model a = int(embed_dim * 2 ** (len(__magic_name__ ) - 1) ) a = layer_scale_init_value a = ["""stem"""] + [F'stage{idx}' for idx in range(1 , len(__magic_name__ ) + 1 )] a , a = get_aligned_output_features_output_indices( out_features=__magic_name__ , out_indices=__magic_name__ , stage_names=self.stage_names )
347
0
"""simple docstring""" import importlib import os import sys # This is required to make the module import works (when the python process is running from the root of the repo) sys.path.append(".") def lowercase__( __SCREAMING_SNAKE_CASE : Dict ): lowercase_ : Optional[Any] = test_file.split(os.path.sep ) if components[0:2] != ["tests", "models"]: raise ValueError( '`test_file` should start with `tests/models/` (with `/` being the OS specific path separator). Got ' F'''{test_file} instead.''' ) lowercase_ : str = components[-1] if not test_fn.endswith('py' ): raise ValueError(F'''`test_file` should be a python file. Got {test_fn} instead.''' ) if not test_fn.startswith('test_modeling_' ): raise ValueError( F'''`test_file` should point to a file name of the form `test_modeling_*.py`. Got {test_fn} instead.''' ) lowercase_ : Optional[int] = components[:-1] + [test_fn.replace('.py' , '' )] lowercase_ : Dict = '.'.join(__SCREAMING_SNAKE_CASE ) return test_module_path def lowercase__( __SCREAMING_SNAKE_CASE : Tuple ): lowercase_ : Any = get_module_path(__SCREAMING_SNAKE_CASE ) lowercase_ : List[Any] = importlib.import_module(__SCREAMING_SNAKE_CASE ) return test_module def lowercase__( __SCREAMING_SNAKE_CASE : int ): lowercase_ : Dict = [] lowercase_ : str = get_test_module(__SCREAMING_SNAKE_CASE ) for attr in dir(__SCREAMING_SNAKE_CASE ): if attr.endswith('ModelTester' ): tester_classes.append(getattr(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) ) # sort with class names return sorted(__SCREAMING_SNAKE_CASE , key=lambda __SCREAMING_SNAKE_CASE : x.__name__ ) def lowercase__( __SCREAMING_SNAKE_CASE : List[str] ): lowercase_ : Optional[int] = [] lowercase_ : Optional[Any] = get_test_module(__SCREAMING_SNAKE_CASE ) for attr in dir(__SCREAMING_SNAKE_CASE ): lowercase_ : Dict = getattr(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) # (TF/Flax)ModelTesterMixin is also an attribute in specific model test module. Let's exclude them by checking # `all_model_classes` is not empty (which also excludes other special classes). lowercase_ : str = getattr(__SCREAMING_SNAKE_CASE , 'all_model_classes' , [] ) if len(__SCREAMING_SNAKE_CASE ) > 0: test_classes.append(__SCREAMING_SNAKE_CASE ) # sort with class names return sorted(__SCREAMING_SNAKE_CASE , key=lambda __SCREAMING_SNAKE_CASE : x.__name__ ) def lowercase__( __SCREAMING_SNAKE_CASE : Dict ): lowercase_ : Union[str, Any] = get_test_classes(__SCREAMING_SNAKE_CASE ) lowercase_ : List[Any] = set() for test_class in test_classes: model_classes.update(test_class.all_model_classes ) # sort with class names return sorted(__SCREAMING_SNAKE_CASE , key=lambda __SCREAMING_SNAKE_CASE : x.__name__ ) def lowercase__( __SCREAMING_SNAKE_CASE : Optional[int] ): lowercase_ : Any = test_class() if hasattr(__SCREAMING_SNAKE_CASE , 'setUp' ): test.setUp() lowercase_ : Any = None if hasattr(__SCREAMING_SNAKE_CASE , 'model_tester' ): # `(TF/Flax)ModelTesterMixin` has this attribute default to `None`. Let's skip this case. if test.model_tester is not None: lowercase_ : Union[str, Any] = test.model_tester.__class__ return model_tester def lowercase__( __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : List[Any] ): lowercase_ : str = get_test_classes(__SCREAMING_SNAKE_CASE ) lowercase_ : Any = [] for test_class in test_classes: if model_class in test_class.all_model_classes: target_test_classes.append(__SCREAMING_SNAKE_CASE ) # sort with class names return sorted(__SCREAMING_SNAKE_CASE , key=lambda __SCREAMING_SNAKE_CASE : x.__name__ ) def lowercase__( __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : Optional[int] ): lowercase_ : Optional[Any] = get_test_classes_for_model(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) lowercase_ : Optional[Any] = [] for test_class in test_classes: lowercase_ : str = get_model_tester_from_test_class(__SCREAMING_SNAKE_CASE ) if tester_class is not None: tester_classes.append(__SCREAMING_SNAKE_CASE ) # sort with class names return sorted(__SCREAMING_SNAKE_CASE , key=lambda __SCREAMING_SNAKE_CASE : x.__name__ ) def lowercase__( __SCREAMING_SNAKE_CASE : List[str] ): lowercase_ : List[str] = get_test_classes(__SCREAMING_SNAKE_CASE ) lowercase_ : str = {test_class: get_model_tester_from_test_class(__SCREAMING_SNAKE_CASE ) for test_class in test_classes} return test_tester_mapping def lowercase__( __SCREAMING_SNAKE_CASE : Optional[int] ): lowercase_ : int = get_model_classes(__SCREAMING_SNAKE_CASE ) lowercase_ : Tuple = { model_class: get_test_classes_for_model(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) for model_class in model_classes } return model_test_mapping def lowercase__( __SCREAMING_SNAKE_CASE : Any ): lowercase_ : str = get_model_classes(__SCREAMING_SNAKE_CASE ) lowercase_ : Optional[Any] = { model_class: get_tester_classes_for_model(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) for model_class in model_classes } return model_to_tester_mapping def lowercase__( __SCREAMING_SNAKE_CASE : Union[str, Any] ): if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): return o elif isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): return o.__name__ elif isinstance(__SCREAMING_SNAKE_CASE , (list, tuple) ): return [to_json(__SCREAMING_SNAKE_CASE ) for x in o] elif isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): return {to_json(__SCREAMING_SNAKE_CASE ): to_json(__SCREAMING_SNAKE_CASE ) for k, v in o.items()} else: return o
213
"""simple docstring""" import inspect import unittest import warnings from math import ceil, floor from transformers import LevitConfig from transformers.file_utils import cached_property, is_torch_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING, MODEL_MAPPING, LevitForImageClassification, LevitForImageClassificationWithTeacher, LevitModel, ) from transformers.models.levit.modeling_levit import LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import LevitImageProcessor class UpperCamelCase ( lowercase_ ): def _UpperCAmelCase ( self ) -> Any: '''simple docstring''' lowercase_ : Any = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(__UpperCamelCase ,'hidden_sizes' ) ) self.parent.assertTrue(hasattr(__UpperCamelCase ,'num_attention_heads' ) ) class UpperCamelCase : def __init__( self ,__UpperCamelCase ,__UpperCamelCase=13 ,__UpperCamelCase=64 ,__UpperCamelCase=3 ,__UpperCamelCase=3 ,__UpperCamelCase=2 ,__UpperCamelCase=1 ,__UpperCamelCase=16 ,__UpperCamelCase=[128, 256, 384] ,__UpperCamelCase=[4, 6, 8] ,__UpperCamelCase=[2, 3, 4] ,__UpperCamelCase=[16, 16, 16] ,__UpperCamelCase=0 ,__UpperCamelCase=[2, 2, 2] ,__UpperCamelCase=[2, 2, 2] ,__UpperCamelCase=0.02 ,__UpperCamelCase=True ,__UpperCamelCase=True ,__UpperCamelCase=2 ,) -> str: '''simple docstring''' lowercase_ : Optional[Any] = parent lowercase_ : Any = batch_size lowercase_ : str = image_size lowercase_ : List[Any] = num_channels lowercase_ : Any = kernel_size lowercase_ : Any = stride lowercase_ : List[str] = padding lowercase_ : Tuple = hidden_sizes lowercase_ : List[Any] = num_attention_heads lowercase_ : Optional[int] = depths lowercase_ : Union[str, Any] = key_dim lowercase_ : List[str] = drop_path_rate lowercase_ : Dict = patch_size lowercase_ : List[Any] = attention_ratio lowercase_ : Optional[int] = mlp_ratio lowercase_ : Any = initializer_range lowercase_ : Optional[Any] = [ ['Subsample', key_dim[0], hidden_sizes[0] // key_dim[0], 4, 2, 2], ['Subsample', key_dim[0], hidden_sizes[1] // key_dim[0], 4, 2, 2], ] lowercase_ : Dict = is_training lowercase_ : Tuple = use_labels lowercase_ : Dict = num_labels lowercase_ : Union[str, Any] = initializer_range def _UpperCAmelCase ( self ) -> List[str]: '''simple docstring''' lowercase_ : Union[str, Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowercase_ : List[str] = None if self.use_labels: lowercase_ : List[Any] = ids_tensor([self.batch_size] ,self.num_labels ) lowercase_ : List[str] = self.get_config() return config, pixel_values, labels def _UpperCAmelCase ( self ) -> List[str]: '''simple docstring''' return LevitConfig( image_size=self.image_size ,num_channels=self.num_channels ,kernel_size=self.kernel_size ,stride=self.stride ,padding=self.padding ,patch_size=self.patch_size ,hidden_sizes=self.hidden_sizes ,num_attention_heads=self.num_attention_heads ,depths=self.depths ,key_dim=self.key_dim ,drop_path_rate=self.drop_path_rate ,mlp_ratio=self.mlp_ratio ,attention_ratio=self.attention_ratio ,initializer_range=self.initializer_range ,down_ops=self.down_ops ,) def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) -> Any: '''simple docstring''' lowercase_ : Union[str, Any] = LevitModel(config=__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() lowercase_ : Optional[Any] = model(__UpperCamelCase ) lowercase_ : Union[str, Any] = (self.image_size, self.image_size) lowercase_ , lowercase_ : Tuple = image_size[0], image_size[1] for _ in range(4 ): lowercase_ : Optional[int] = floor(((height + 2 * self.padding - self.kernel_size) / self.stride) + 1 ) lowercase_ : Dict = floor(((width + 2 * self.padding - self.kernel_size) / self.stride) + 1 ) self.parent.assertEqual( result.last_hidden_state.shape ,(self.batch_size, ceil(height / 4 ) * ceil(width / 4 ), self.hidden_sizes[-1]) ,) def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) -> Union[str, Any]: '''simple docstring''' lowercase_ : str = self.num_labels lowercase_ : Optional[Any] = LevitForImageClassification(__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() lowercase_ : Union[str, Any] = model(__UpperCamelCase ,labels=__UpperCamelCase ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) ) def _UpperCAmelCase ( self ) -> List[Any]: '''simple docstring''' lowercase_ : Union[str, Any] = self.prepare_config_and_inputs() lowercase_ , lowercase_ , lowercase_ : Tuple = config_and_inputs lowercase_ : int = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class UpperCamelCase ( lowercase_ , lowercase_ , unittest.TestCase ): lowercase = ( (LevitModel, LevitForImageClassification, LevitForImageClassificationWithTeacher) if is_torch_available() else () ) lowercase = ( { 'feature-extraction': LevitModel, 'image-classification': (LevitForImageClassification, LevitForImageClassificationWithTeacher), } if is_torch_available() else {} ) lowercase = False lowercase = False lowercase = False lowercase = False lowercase = False def _UpperCAmelCase ( self ) -> List[str]: '''simple docstring''' lowercase_ : Tuple = LevitModelTester(self ) lowercase_ : Dict = ConfigTester(self ,config_class=__UpperCamelCase ,has_text_modality=__UpperCamelCase ,hidden_size=37 ) def _UpperCAmelCase ( self ) -> List[str]: '''simple docstring''' self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def _UpperCAmelCase ( self ) -> List[Any]: '''simple docstring''' return @unittest.skip(reason='Levit does not use inputs_embeds' ) def _UpperCAmelCase ( self ) -> Tuple: '''simple docstring''' pass @unittest.skip(reason='Levit does not support input and output embeddings' ) def _UpperCAmelCase ( self ) -> Tuple: '''simple docstring''' pass @unittest.skip(reason='Levit does not output attentions' ) def _UpperCAmelCase ( self ) -> Optional[Any]: '''simple docstring''' pass def _UpperCAmelCase ( self ) -> List[str]: '''simple docstring''' lowercase_ , lowercase_ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase_ : Optional[int] = model_class(__UpperCamelCase ) lowercase_ : Dict = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase_ : Union[str, Any] = [*signature.parameters.keys()] lowercase_ : Optional[int] = ['pixel_values'] self.assertListEqual(arg_names[:1] ,__UpperCamelCase ) def _UpperCAmelCase ( self ) -> Dict: '''simple docstring''' def check_hidden_states_output(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ): lowercase_ : List[Any] = model_class(__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() with torch.no_grad(): lowercase_ : Optional[int] = model(**self._prepare_for_class(__UpperCamelCase ,__UpperCamelCase ) ) lowercase_ : Dict = outputs.hidden_states lowercase_ : List[str] = len(self.model_tester.depths ) + 1 self.assertEqual(len(__UpperCamelCase ) ,__UpperCamelCase ) lowercase_ : Optional[int] = (self.model_tester.image_size, self.model_tester.image_size) lowercase_ , lowercase_ : Union[str, Any] = image_size[0], image_size[1] for _ in range(4 ): lowercase_ : Optional[Any] = floor( ( (height + 2 * self.model_tester.padding - self.model_tester.kernel_size) / self.model_tester.stride ) + 1 ) lowercase_ : Optional[int] = floor( ( (width + 2 * self.model_tester.padding - self.model_tester.kernel_size) / self.model_tester.stride ) + 1 ) # verify the first hidden states (first block) self.assertListEqual( list(hidden_states[0].shape[-2:] ) ,[ height * width, self.model_tester.hidden_sizes[0], ] ,) lowercase_ , lowercase_ : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase_ : Any = True check_hidden_states_output(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowercase_ : Optional[int] = True check_hidden_states_output(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def _UpperCAmelCase ( self ) -> Tuple: '''simple docstring''' pass def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase=False ) -> List[Any]: '''simple docstring''' lowercase_ : Optional[Any] = super()._prepare_for_class(__UpperCamelCase ,__UpperCamelCase ,return_labels=__UpperCamelCase ) if return_labels: if model_class.__name__ == "LevitForImageClassificationWithTeacher": del inputs_dict["labels"] return inputs_dict def _UpperCAmelCase ( self ) -> Union[str, Any]: '''simple docstring''' lowercase_ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCamelCase ) def _UpperCAmelCase ( self ) -> Optional[int]: '''simple docstring''' lowercase_ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__UpperCamelCase ) def _UpperCAmelCase ( self ) -> Union[str, Any]: '''simple docstring''' if not self.model_tester.is_training: return lowercase_ , lowercase_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() lowercase_ : Optional[Any] = True for model_class in self.all_model_classes: # LevitForImageClassificationWithTeacher supports inference-only if ( model_class in get_values(__UpperCamelCase ) or model_class.__name__ == "LevitForImageClassificationWithTeacher" ): continue lowercase_ : Dict = model_class(__UpperCamelCase ) model.to(__UpperCamelCase ) model.train() lowercase_ : List[Any] = self._prepare_for_class(__UpperCamelCase ,__UpperCamelCase ,return_labels=__UpperCamelCase ) lowercase_ : Union[str, Any] = model(**__UpperCamelCase ).loss loss.backward() def _UpperCAmelCase ( self ) -> str: '''simple docstring''' lowercase_ , lowercase_ : int = self.model_tester.prepare_config_and_inputs_for_common() if not self.model_tester.is_training: return lowercase_ : Union[str, Any] = False lowercase_ : Dict = True for model_class in self.all_model_classes: if model_class in get_values(__UpperCamelCase ) or not model_class.supports_gradient_checkpointing: continue # LevitForImageClassificationWithTeacher supports inference-only if model_class.__name__ == "LevitForImageClassificationWithTeacher": continue lowercase_ : Dict = model_class(__UpperCamelCase ) model.gradient_checkpointing_enable() model.to(__UpperCamelCase ) model.train() lowercase_ : Tuple = self._prepare_for_class(__UpperCamelCase ,__UpperCamelCase ,return_labels=__UpperCamelCase ) lowercase_ : Any = model(**__UpperCamelCase ).loss loss.backward() def _UpperCAmelCase ( self ) -> Optional[Any]: '''simple docstring''' lowercase_ , lowercase_ : Any = self.model_tester.prepare_config_and_inputs_for_common() lowercase_ : int = [ {'title': 'multi_label_classification', 'num_labels': 2, 'dtype': torch.float}, {'title': 'single_label_classification', 'num_labels': 1, 'dtype': torch.long}, {'title': 'regression', 'num_labels': 1, 'dtype': torch.float}, ] for model_class in self.all_model_classes: if ( model_class not in [ *get_values(__UpperCamelCase ), ] or model_class.__name__ == "LevitForImageClassificationWithTeacher" ): continue for problem_type in problem_types: with self.subTest(msg=f'''Testing {model_class} with {problem_type["title"]}''' ): lowercase_ : Any = problem_type['title'] lowercase_ : Tuple = problem_type['num_labels'] lowercase_ : Tuple = model_class(__UpperCamelCase ) model.to(__UpperCamelCase ) model.train() lowercase_ : Optional[int] = self._prepare_for_class(__UpperCamelCase ,__UpperCamelCase ,return_labels=__UpperCamelCase ) if problem_type["num_labels"] > 1: lowercase_ : Any = inputs['labels'].unsqueeze(1 ).repeat(1 ,problem_type['num_labels'] ) lowercase_ : str = inputs['labels'].to(problem_type['dtype'] ) # This tests that we do not trigger the warning form PyTorch "Using a target size that is different # to the input size. This will likely lead to incorrect results due to broadcasting. Please ensure # they have the same size." which is a symptom something in wrong for the regression problem. # See https://github.com/huggingface/transformers/issues/11780 with warnings.catch_warnings(record=__UpperCamelCase ) as warning_list: lowercase_ : int = model(**__UpperCamelCase ).loss for w in warning_list: if "Using a target size that is different to the input size" in str(w.message ): raise ValueError( f'''Something is going wrong in the regression problem: intercepted {w.message}''' ) loss.backward() @slow def _UpperCAmelCase ( self ) -> List[Any]: '''simple docstring''' for model_name in LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase_ : List[Any] = LevitModel.from_pretrained(__UpperCamelCase ) self.assertIsNotNone(__UpperCamelCase ) def lowercase__( ): lowercase_ : Any = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class UpperCamelCase ( unittest.TestCase ): @cached_property def _UpperCAmelCase ( self ) -> Tuple: '''simple docstring''' return LevitImageProcessor.from_pretrained(LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) @slow def _UpperCAmelCase ( self ) -> Optional[Any]: '''simple docstring''' lowercase_ : Any = LevitForImageClassificationWithTeacher.from_pretrained(LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to( __UpperCamelCase ) lowercase_ : str = self.default_image_processor lowercase_ : Any = prepare_img() lowercase_ : Optional[int] = image_processor(images=__UpperCamelCase ,return_tensors='pt' ).to(__UpperCamelCase ) # forward pass with torch.no_grad(): lowercase_ : Union[str, Any] = model(**__UpperCamelCase ) # verify the logits lowercase_ : str = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape ,__UpperCamelCase ) lowercase_ : Any = torch.tensor([1.0448, -0.3745, -1.8317] ).to(__UpperCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] ,__UpperCamelCase ,atol=1e-4 ) )
213
1
"""simple docstring""" import inspect import unittest from transformers import RegNetConfig, is_flax_available from transformers.testing_utils import require_flax, slow from transformers.utils import cached_property, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor if is_flax_available(): import jax import jax.numpy as jnp from transformers.models.regnet.modeling_flax_regnet import FlaxRegNetForImageClassification, FlaxRegNetModel if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class _A ( unittest.TestCase ): """simple docstring""" def __init__( self : str , __UpperCAmelCase : int , __UpperCAmelCase : List[str]=3 , __UpperCAmelCase : Any=32 , __UpperCAmelCase : Dict=3 , __UpperCAmelCase : List[str]=10 , __UpperCAmelCase : Dict=[10, 20, 30, 40] , __UpperCAmelCase : Union[str, Any]=[1, 1, 2, 1] , __UpperCAmelCase : int=True , __UpperCAmelCase : int=True , __UpperCAmelCase : str="relu" , __UpperCAmelCase : Union[str, Any]=3 , __UpperCAmelCase : str=None , ): a : Optional[Any] = parent a : List[str] = batch_size a : List[str] = image_size a : Any = num_channels a : int = embeddings_size a : str = hidden_sizes a : Optional[Any] = depths a : List[str] = is_training a : int = use_labels a : List[str] = hidden_act a : Tuple = num_labels a : Union[str, Any] = scope a : int = len(__UpperCAmelCase) def __snake_case ( self : List[str]): a : Union[str, Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) a : str = self.get_config() return config, pixel_values def __snake_case ( self : int): return RegNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , image_size=self.image_size , ) def __snake_case ( self : List[str] , __UpperCAmelCase : List[str] , __UpperCAmelCase : Optional[int]): a : List[Any] = FlaxRegNetModel(config=__UpperCAmelCase) a : List[str] = model(__UpperCAmelCase) # Output shape (b, c, h, w) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def __snake_case ( self : str , __UpperCAmelCase : int , __UpperCAmelCase : Optional[Any]): a : Any = self.num_labels a : List[Any] = FlaxRegNetForImageClassification(config=__UpperCAmelCase) a : Union[str, Any] = model(__UpperCAmelCase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels)) def __snake_case ( self : int): a : str = self.prepare_config_and_inputs() a , a : int = config_and_inputs a : Optional[int] = {"pixel_values": pixel_values} return config, inputs_dict @require_flax class _A ( _a ,unittest.TestCase ): """simple docstring""" UpperCAmelCase : int = (FlaxRegNetModel, FlaxRegNetForImageClassification) if is_flax_available() else () UpperCAmelCase : Dict = False UpperCAmelCase : Any = False UpperCAmelCase : Dict = False def __snake_case ( self : str): a : Union[str, Any] = FlaxRegNetModelTester(self) a : str = ConfigTester(self , config_class=__UpperCAmelCase , has_text_modality=__UpperCAmelCase) def __snake_case ( self : Optional[Any]): self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def __snake_case ( self : Union[str, Any]): return def __snake_case ( self : Any): a : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCAmelCase) def __snake_case ( self : Tuple): a : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__UpperCAmelCase) @unittest.skip(reason="RegNet does not use inputs_embeds") def __snake_case ( self : Any): pass @unittest.skip(reason="RegNet does not support input and output embeddings") def __snake_case ( self : Dict): pass def __snake_case ( self : Optional[Any]): a , a : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a : int = model_class(__UpperCAmelCase) a : Dict = inspect.signature(model.__call__) # signature.parameters is an OrderedDict => so arg_names order is deterministic a : str = [*signature.parameters.keys()] a : int = ["pixel_values"] self.assertListEqual(arg_names[:1] , __UpperCAmelCase) def __snake_case ( self : Union[str, Any]): def check_hidden_states_output(__UpperCAmelCase : Optional[Any] , __UpperCAmelCase : List[str] , __UpperCAmelCase : str): a : Optional[Any] = model_class(__UpperCAmelCase) a : List[Any] = model(**self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase)) a : Any = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states a : str = self.model_tester.num_stages self.assertEqual(len(__UpperCAmelCase) , expected_num_stages + 1) a , a : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a : str = True check_hidden_states_output(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] a : Tuple = True check_hidden_states_output(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase) def __snake_case ( self : Union[str, Any]): a , a : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__): a : int = self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase) a : Optional[int] = model_class(__UpperCAmelCase) @jax.jit def model_jitted(__UpperCAmelCase : Optional[Any] , **__UpperCAmelCase : List[Any]): return model(pixel_values=__UpperCAmelCase , **__UpperCAmelCase) with self.subTest("JIT Enabled"): a : Dict = model_jitted(**__UpperCAmelCase).to_tuple() with self.subTest("JIT Disabled"): with jax.disable_jit(): a : Any = model_jitted(**__UpperCAmelCase).to_tuple() self.assertEqual(len(__UpperCAmelCase) , len(__UpperCAmelCase)) for jitted_output, output in zip(__UpperCAmelCase , __UpperCAmelCase): self.assertEqual(jitted_output.shape , output.shape) def lowercase ( )-> List[Any]: '''simple docstring''' a : Dict = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_flax class _A ( unittest.TestCase ): """simple docstring""" @cached_property def __snake_case ( self : str): return AutoImageProcessor.from_pretrained("facebook/regnet-y-040") if is_vision_available() else None @slow def __snake_case ( self : int): a : Tuple = FlaxRegNetForImageClassification.from_pretrained("facebook/regnet-y-040") a : Optional[Any] = self.default_image_processor a : List[Any] = prepare_img() a : List[str] = image_processor(images=__UpperCAmelCase , return_tensors="np") a : Any = model(**__UpperCAmelCase) # verify the logits a : Any = (1, 1000) self.assertEqual(outputs.logits.shape , __UpperCAmelCase) a : Tuple = jnp.array([-0.4_180, -1.5_051, -3.4_836]) self.assertTrue(jnp.allclose(outputs.logits[0, :3] , __UpperCAmelCase , atol=1e-4))
226
"""simple docstring""" import sys import turtle def lowercase ( A_ , A_ )-> tuple[float, float]: '''simple docstring''' return (pa[0] + pa[0]) / 2, (pa[1] + pa[1]) / 2 def lowercase ( A_ , A_ , A_ , A_ , )-> None: '''simple docstring''' my_pen.up() my_pen.goto(vertexa[0] , vertexa[1] ) my_pen.down() my_pen.goto(vertexa[0] , vertexa[1] ) my_pen.goto(vertexa[0] , vertexa[1] ) my_pen.goto(vertexa[0] , vertexa[1] ) if depth == 0: return triangle(A_ , get_mid(A_ , A_ ) , get_mid(A_ , A_ ) , depth - 1 ) triangle(A_ , get_mid(A_ , A_ ) , get_mid(A_ , A_ ) , depth - 1 ) triangle(A_ , get_mid(A_ , A_ ) , get_mid(A_ , A_ ) , depth - 1 ) if __name__ == "__main__": if len(sys.argv) != 2: raise ValueError( """Correct format for using this script: """ """python fractals.py <int:depth_for_fractal>""" ) __lowercase = turtle.Turtle() my_pen.ht() my_pen.speed(5) my_pen.pencolor("""red""") __lowercase = [(-175, -125), (0, 175), (175, -125)] # vertices of triangle triangle(vertices[0], vertices[1], vertices[2], int(sys.argv[1]))
226
1
def UpperCAmelCase__ ( _A : float ): '''simple docstring''' if edge <= 0 or not isinstance(_A , _A ): raise ValueError('''Length must be a positive.''' ) return 3 * ((25 + 10 * (5 ** (1 / 2))) ** (1 / 2)) * (edge**2) def UpperCAmelCase__ ( _A : float ): '''simple docstring''' if edge <= 0 or not isinstance(_A , _A ): raise ValueError('''Length must be a positive.''' ) return ((15 + (7 * (5 ** (1 / 2)))) / 4) * (edge**3) if __name__ == "__main__": import doctest doctest.testmod()
188
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( SwiftFormerConfig, SwiftFormerForImageClassification, ViTImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() lowerCamelCase = logging.get_logger(__name__) lowerCamelCase = torch.device('''cpu''') def UpperCAmelCase__ ( ): '''simple docstring''' a__ ='''http://images.cocodataset.org/val2017/000000039769.jpg''' a__ =Image.open(requests.get(_A , stream=_A ).raw ) return im def UpperCAmelCase__ ( _A : Optional[int] ): '''simple docstring''' if swiftformer_name == "swiftformer_xs": return torch.tensor([-2.17_03E00, 2.11_07E00, -2.08_11E00, 8.86_85E-01, 2.43_60E-01] ) elif swiftformer_name == "swiftformer_s": return torch.tensor([3.96_36E-01, 2.34_78E-01, -1.69_63E00, -1.73_81E00, -8.63_37E-01] ) elif swiftformer_name == "swiftformer_l1": return torch.tensor([-4.27_68E-01, -4.74_29E-01, -1.08_97E00, -1.02_48E00, 3.55_23E-02] ) elif swiftformer_name == "swiftformer_l3": return torch.tensor([-2.53_30E-01, 2.42_11E-01, -6.01_85E-01, -8.27_89E-01, -6.04_46E-02] ) def UpperCAmelCase__ ( _A : List[str] , _A : Union[str, Any] , _A : str ): '''simple docstring''' a__ =dct.pop(_A ) a__ =val def UpperCAmelCase__ ( _A : Any ): '''simple docstring''' a__ =[] for k in state_dict.keys(): a__ =k if ".pwconv" in k: a__ =k_new.replace('''.pwconv''' , '''.point_wise_conv''' ) if ".dwconv" in k: a__ =k_new.replace('''.dwconv''' , '''.depth_wise_conv''' ) if ".Proj." in k: a__ =k_new.replace('''.Proj.''' , '''.proj.''' ) if "patch_embed" in k_new: a__ =k_new.replace('''patch_embed''' , '''swiftformer.patch_embed.patch_embedding''' ) if "network" in k_new: a__ =k_new.split('''.''' ) if ls[2].isdigit(): a__ ='''swiftformer.encoder.network.''' + ls[1] + '''.blocks.''' + ls[2] + '''.''' + '''.'''.join(ls[3:] ) else: a__ =k_new.replace('''network''' , '''swiftformer.encoder.network''' ) rename_keys.append((k, k_new) ) return rename_keys @torch.no_grad() def UpperCAmelCase__ ( _A : int , _A : Union[str, Any] , _A : int ): '''simple docstring''' a__ =SwiftFormerConfig() # dataset (ImageNet-21k only or also fine-tuned on ImageNet 2012), patch_size and image_size a__ =10_00 a__ ='''huggingface/label-files''' a__ ='''imagenet-1k-id2label.json''' a__ =json.load(open(hf_hub_download(_A , _A , repo_type='''dataset''' ) , '''r''' ) ) a__ ={int(_A ): v for k, v in idalabel.items()} a__ =idalabel a__ ={v: k for k, v in idalabel.items()} # size of the architecture if swiftformer_name == "swiftformer_xs": a__ =[3, 3, 6, 4] a__ =[48, 56, 1_12, 2_20] elif swiftformer_name == "swiftformer_s": a__ =[3, 3, 9, 6] a__ =[48, 64, 1_68, 2_24] elif swiftformer_name == "swiftformer_l1": a__ =[4, 3, 10, 5] a__ =[48, 96, 1_92, 3_84] elif swiftformer_name == "swiftformer_l3": a__ =[4, 4, 12, 6] a__ =[64, 1_28, 3_20, 5_12] # load state_dict of original model, remove and rename some keys if original_ckpt: if original_ckpt.startswith('''https''' ): a__ =torch.hub.load_state_dict_from_url(_A , map_location='''cpu''' , check_hash=_A ) else: a__ =torch.load(_A , map_location='''cpu''' ) a__ =checkpoint a__ =create_rename_keys(_A ) for rename_key_src, rename_key_dest in rename_keys: rename_key(_A , _A , _A ) # load HuggingFace model a__ =SwiftFormerForImageClassification(_A ).eval() hf_model.load_state_dict(_A ) # prepare test inputs a__ =prepare_img() a__ =ViTImageProcessor.from_pretrained('''preprocessor_config''' ) a__ =processor(images=_A , return_tensors='''pt''' ) # compare outputs from both models a__ =get_expected_output(_A ) a__ =hf_model(inputs['''pixel_values'''] ).logits assert hf_logits.shape == torch.Size([1, 10_00] ) assert torch.allclose(hf_logits[0, 0:5] , _A , atol=1E-3 ) Path(_A ).mkdir(exist_ok=_A ) print(F"""Saving model {swiftformer_name} to {pytorch_dump_folder_path}""" ) hf_model.save_pretrained(_A ) if __name__ == "__main__": lowerCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--swiftformer_name''', default='''swiftformer_xs''', choices=['''swiftformer_xs''', '''swiftformer_s''', '''swiftformer_l1''', '''swiftformer_l3'''], type=str, help='''Name of the SwiftFormer model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default='''./converted_outputs/''', type=str, help='''Path to the output PyTorch model directory.''', ) parser.add_argument('''--original_ckpt''', default=None, type=str, help='''Path to the original model checkpoint.''') lowerCamelCase = parser.parse_args() convert_swiftformer_checkpoint(args.swiftformer_name, args.pytorch_dump_folder_path, args.original_ckpt)
188
1
"""simple docstring""" import pickle import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, XGLMTokenizer, XGLMTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin SCREAMING_SNAKE_CASE : Tuple = get_tests_dir('''fixtures/test_sentencepiece.model''') @require_sentencepiece @require_tokenizers class __lowerCamelCase ( __lowercase , unittest.TestCase ): __UpperCamelCase = XGLMTokenizer __UpperCamelCase = XGLMTokenizerFast __UpperCamelCase = True __UpperCamelCase = True def A__ (self ): '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing _lowerCAmelCase = XGLMTokenizer(lowerCamelCase , keep_accents=lowerCamelCase ) tokenizer.save_pretrained(self.tmpdirname ) def A__ (self ): '''simple docstring''' _lowerCAmelCase = """<pad>""" _lowerCAmelCase = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowerCamelCase ) , lowerCamelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowerCamelCase ) , lowerCamelCase ) def A__ (self ): '''simple docstring''' _lowerCAmelCase = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<s>""" ) self.assertEqual(vocab_keys[1] , """<pad>""" ) self.assertEqual(len(lowerCamelCase ) , 1_008 ) def A__ (self ): '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size , 1_008 ) def A__ (self ): '''simple docstring''' _lowerCAmelCase = XGLMTokenizer(lowerCamelCase , keep_accents=lowerCamelCase ) _lowerCAmelCase = tokenizer.tokenize("""This is a test""" ) self.assertListEqual(lowerCamelCase , ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(lowerCamelCase ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) _lowerCAmelCase = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( lowerCamelCase , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """é""", """.""", ] , ) _lowerCAmelCase = tokenizer.convert_tokens_to_ids(lowerCamelCase ) self.assertListEqual( lowerCamelCase , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) _lowerCAmelCase = tokenizer.convert_ids_to_tokens(lowerCamelCase ) self.assertListEqual( lowerCamelCase , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """<unk>""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """<unk>""", """.""", ] , ) @cached_property def A__ (self ): '''simple docstring''' return XGLMTokenizer.from_pretrained("""facebook/xglm-564M""" ) def A__ (self ): '''simple docstring''' with tempfile.NamedTemporaryFile() as f: shutil.copyfile(lowerCamelCase , f.name ) _lowerCAmelCase = XGLMTokenizer(f.name , keep_accents=lowerCamelCase ) _lowerCAmelCase = pickle.dumps(lowerCamelCase ) pickle.loads(lowerCamelCase ) def A__ (self ): '''simple docstring''' if not self.test_rust_tokenizer: return _lowerCAmelCase = self.get_tokenizer() _lowerCAmelCase = self.get_rust_tokenizer() _lowerCAmelCase = """I was born in 92000, and this is falsé.""" _lowerCAmelCase = tokenizer.tokenize(lowerCamelCase ) _lowerCAmelCase = rust_tokenizer.tokenize(lowerCamelCase ) self.assertListEqual(lowerCamelCase , lowerCamelCase ) _lowerCAmelCase = tokenizer.encode(lowerCamelCase , add_special_tokens=lowerCamelCase ) _lowerCAmelCase = rust_tokenizer.encode(lowerCamelCase , add_special_tokens=lowerCamelCase ) self.assertListEqual(lowerCamelCase , lowerCamelCase ) _lowerCAmelCase = self.get_rust_tokenizer() _lowerCAmelCase = tokenizer.encode(lowerCamelCase ) _lowerCAmelCase = rust_tokenizer.encode(lowerCamelCase ) self.assertListEqual(lowerCamelCase , lowerCamelCase ) @slow def A__ (self ): '''simple docstring''' _lowerCAmelCase = """Hello World!""" _lowerCAmelCase = [2, 31_227, 4_447, 35] self.assertListEqual(lowerCamelCase , self.big_tokenizer.encode(lowerCamelCase ) ) @slow def A__ (self ): '''simple docstring''' _lowerCAmelCase = ( """This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) \" [ ] ! : - . Also we will""" """ add words that should not exsist and be tokenized to unk, such as saoneuhaoesuth""" ) # fmt: off _lowerCAmelCase = [2, 1_018, 67, 11, 1_988, 2_617, 5_631, 278, 11, 3_407, 48, 71_630, 28_085, 4, 3_234, 157, 13, 6, 5, 6, 4, 3_526, 768, 15, 659, 57, 298, 3_983, 864, 129, 21, 6, 5, 13_675, 377, 652, 7_580, 10_341, 155, 2_817, 422, 1_666, 7, 1_674, 53, 113, 202_277, 17_892, 33, 60, 87, 4, 3_234, 157, 61, 2_667, 52_376, 19, 88, 23, 735] # fmt: on self.assertListEqual(lowerCamelCase , self.big_tokenizer.encode(lowerCamelCase ) ) @slow def A__ (self ): '''simple docstring''' _lowerCAmelCase = { """input_ids""": [[2, 108_825, 1_163, 15, 88_010, 473, 15_898, 157, 13_672, 1_857, 312, 8, 238_021, 1_163, 53, 13_672, 1_857, 312, 8, 53_283, 182_396, 8, 18_566, 16, 36_733, 4_101, 8, 230, 244_017, 122_553, 7, 15, 132_597, 4, 293, 12_511, 7_610, 4, 3_414, 132_597, 9, 4, 32_361, 362, 4, 734, 28_512, 32_569, 18, 4, 32_361, 26_096, 14_982, 73, 18_715, 21_433, 235_261, 15, 492, 12_427, 16, 53, 18_715, 21_433, 65_454, 15, 23_659, 563, 16, 278, 597, 2_843, 595, 7_931, 182_396, 64_186, 22, 886, 595, 132_981, 53, 25_540, 3_449, 43_982, 39_901, 5_951, 878, 330, 4, 27_694, 80_269, 312, 53, 6_517, 11_780, 611, 20_408, 5], [2, 6, 132_597, 67, 42_897, 33, 592, 8, 163_729, 25_540, 361, 136_997, 109_514, 173_230, 7, 501, 60, 102_913, 196, 5_631, 235, 63_243, 473, 6, 231_757, 74, 5_277, 7_905, 53, 3_095, 37_317, 22, 454, 183_874, 5], [2, 268, 31_298, 46_530, 6, 132_935, 43_831, 7, 597, 32, 24, 3_688, 9_865, 5]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] } # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=lowerCamelCase , model_name="""facebook/xglm-564M""" , padding=lowerCamelCase , )
317
"""simple docstring""" from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available SCREAMING_SNAKE_CASE : List[Any] = {'''configuration_focalnet''': ['''FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''FocalNetConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE : Union[str, Any] = [ '''FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST''', '''FocalNetForImageClassification''', '''FocalNetForMaskedImageModeling''', '''FocalNetBackbone''', '''FocalNetModel''', '''FocalNetPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_focalnet import FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FocalNetConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_focalnet import ( FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST, FocalNetBackbone, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetModel, FocalNetPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE : Optional[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
317
1
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCamelCase : List[str] = logging.get_logger(__name__) lowerCamelCase : Optional[Any] = { 'microsoft/beit-base-patch16-224-pt22k': ( 'https://huggingface.co/microsoft/beit-base-patch16-224-pt22k/resolve/main/config.json' ), # See all BEiT models at https://huggingface.co/models?filter=beit } class __lowerCAmelCase (lowercase_ ): '''simple docstring''' lowerCAmelCase__ : Dict = """beit""" def __init__(self : Any , UpperCamelCase : Union[str, Any]=8192 , UpperCamelCase : Optional[Any]=768 , UpperCamelCase : str=12 , UpperCamelCase : Optional[int]=12 , UpperCamelCase : Optional[int]=3072 , UpperCamelCase : str="gelu" , UpperCamelCase : Any=0.0 , UpperCamelCase : List[Any]=0.0 , UpperCamelCase : List[str]=0.02 , UpperCamelCase : Union[str, Any]=1E-12 , UpperCamelCase : Optional[Any]=224 , UpperCamelCase : Tuple=16 , UpperCamelCase : Union[str, Any]=3 , UpperCamelCase : Optional[Any]=False , UpperCamelCase : Optional[Any]=False , UpperCamelCase : Union[str, Any]=False , UpperCamelCase : Tuple=False , UpperCamelCase : Optional[int]=0.1 , UpperCamelCase : Dict=0.1 , UpperCamelCase : Union[str, Any]=True , UpperCamelCase : Union[str, Any]=[3, 5, 7, 11] , UpperCamelCase : Dict=[1, 2, 3, 6] , UpperCamelCase : List[str]=True , UpperCamelCase : Union[str, Any]=0.4 , UpperCamelCase : Optional[int]=256 , UpperCamelCase : Optional[Any]=1 , UpperCamelCase : Optional[Any]=False , UpperCamelCase : str=255 , **UpperCamelCase : Any , ): '''simple docstring''' super().__init__(**UpperCamelCase ) lowercase__ = vocab_size lowercase__ = hidden_size lowercase__ = num_hidden_layers lowercase__ = num_attention_heads lowercase__ = intermediate_size lowercase__ = hidden_act lowercase__ = hidden_dropout_prob lowercase__ = attention_probs_dropout_prob lowercase__ = initializer_range lowercase__ = layer_norm_eps lowercase__ = image_size lowercase__ = patch_size lowercase__ = num_channels lowercase__ = use_mask_token lowercase__ = use_absolute_position_embeddings lowercase__ = use_relative_position_bias lowercase__ = use_shared_relative_position_bias lowercase__ = layer_scale_init_value lowercase__ = drop_path_rate lowercase__ = use_mean_pooling # decode head attributes (semantic segmentation) lowercase__ = out_indices lowercase__ = pool_scales # auxiliary head attributes (semantic segmentation) lowercase__ = use_auxiliary_head lowercase__ = auxiliary_loss_weight lowercase__ = auxiliary_channels lowercase__ = auxiliary_num_convs lowercase__ = auxiliary_concat_input lowercase__ = semantic_loss_ignore_index class __lowerCAmelCase (lowercase_ ): '''simple docstring''' lowerCAmelCase__ : Optional[Any] = version.parse("""1.11""" ) @property def UpperCamelCase__ (self : Dict ): '''simple docstring''' return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) @property def UpperCamelCase__ (self : str ): '''simple docstring''' return 1E-4
2
import argparse import json from collections import OrderedDict from functools import partial from pathlib import Path import timm import torch from huggingface_hub import hf_hub_download from transformers import LevitConfig, LevitForImageClassificationWithTeacher, LevitImageProcessor from transformers.utils import logging logging.set_verbosity_info() lowerCAmelCase__ = logging.get_logger() def __lowerCamelCase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = True ): """simple docstring""" print(F"""Converting {name}...""" ) with torch.no_grad(): if hidden_sizes == 128: if name[-1] == "S": lowercase__ : Union[str, Any] = timm.create_model("levit_128s" , pretrained=lowerCamelCase__ ) else: lowercase__ : Union[str, Any] = timm.create_model("levit_128" , pretrained=lowerCamelCase__ ) if hidden_sizes == 192: lowercase__ : Dict = timm.create_model("levit_192" , pretrained=lowerCamelCase__ ) if hidden_sizes == 256: lowercase__ : Optional[Any] = timm.create_model("levit_256" , pretrained=lowerCamelCase__ ) if hidden_sizes == 384: lowercase__ : List[str] = timm.create_model("levit_384" , pretrained=lowerCamelCase__ ) from_model.eval() lowercase__ : Union[str, Any] = LevitForImageClassificationWithTeacher(lowerCamelCase__ ).eval() lowercase__ : Tuple = OrderedDict() lowercase__ : Dict = from_model.state_dict() lowercase__ : Union[str, Any] = list(from_model.state_dict().keys() ) lowercase__ : Any = list(our_model.state_dict().keys() ) print(len(lowerCamelCase__ ) , len(lowerCamelCase__ ) ) for i in range(len(lowerCamelCase__ ) ): lowercase__ : Union[str, Any] = weights[og_keys[i]] our_model.load_state_dict(lowerCamelCase__ ) lowercase__ : List[str] = torch.randn((2, 3, 224, 224) ) lowercase__ : Optional[Any] = from_model(lowerCamelCase__ ) lowercase__ : Optional[Any] = our_model(lowerCamelCase__ ).logits assert torch.allclose(lowerCamelCase__ , lowerCamelCase__ ), "The model logits don't match the original one." lowercase__ : Optional[Any] = name print(lowerCamelCase__ ) if push_to_hub: our_model.save_pretrained(save_directory / checkpoint_name ) lowercase__ : Union[str, Any] = LevitImageProcessor() image_processor.save_pretrained(save_directory / checkpoint_name ) print(F"""Pushed {checkpoint_name}""" ) def __lowerCamelCase ( lowerCamelCase__ , lowerCamelCase__ = None , lowerCamelCase__ = True ): """simple docstring""" lowercase__ : Optional[Any] = "imagenet-1k-id2label.json" lowercase__ : str = 1_000 lowercase__ : Any = (1, num_labels) lowercase__ : Optional[Any] = "huggingface/label-files" lowercase__ : Optional[Any] = num_labels lowercase__ : Optional[int] = json.load(open(hf_hub_download(lowerCamelCase__ , lowerCamelCase__ , repo_type="dataset" ) , "r" ) ) lowercase__ : Optional[int] = {int(lowerCamelCase__ ): v for k, v in idalabel.items()} lowercase__ : Dict = idalabel lowercase__ : str = {v: k for k, v in idalabel.items()} lowercase__ : Optional[Any] = partial(lowerCamelCase__ , num_labels=lowerCamelCase__ , idalabel=lowerCamelCase__ , labelaid=lowerCamelCase__ ) lowercase__ : List[str] = { "levit-128S": 128, "levit-128": 128, "levit-192": 192, "levit-256": 256, "levit-384": 384, } lowercase__ : int = { "levit-128S": ImageNetPreTrainedConfig( hidden_sizes=[128, 256, 384] , num_attention_heads=[4, 6, 8] , depths=[2, 3, 4] , key_dim=[16, 16, 16] , drop_path_rate=0 , ), "levit-128": ImageNetPreTrainedConfig( hidden_sizes=[128, 256, 384] , num_attention_heads=[4, 8, 12] , depths=[4, 4, 4] , key_dim=[16, 16, 16] , drop_path_rate=0 , ), "levit-192": ImageNetPreTrainedConfig( hidden_sizes=[192, 288, 384] , num_attention_heads=[3, 5, 6] , depths=[4, 4, 4] , key_dim=[32, 32, 32] , drop_path_rate=0 , ), "levit-256": ImageNetPreTrainedConfig( hidden_sizes=[256, 384, 512] , num_attention_heads=[4, 6, 8] , depths=[4, 4, 4] , key_dim=[32, 32, 32] , drop_path_rate=0 , ), "levit-384": ImageNetPreTrainedConfig( hidden_sizes=[384, 512, 768] , num_attention_heads=[6, 9, 12] , depths=[4, 4, 4] , key_dim=[32, 32, 32] , drop_path_rate=0.1 , ), } if model_name: convert_weight_and_push( names_to_hidden_sizes[model_name] , lowerCamelCase__ , names_to_config[model_name] , lowerCamelCase__ , lowerCamelCase__ ) else: for model_name, config in names_to_config.items(): convert_weight_and_push(names_to_hidden_sizes[model_name] , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) return config, expected_shape if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default=None, type=str, help='''The name of the model you wish to convert, it must be one of the supported Levit* architecture,''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default='''levit-dump-folder/''', type=Path, required=False, help='''Path to the output PyTorch model directory.''', ) parser.add_argument('''--push_to_hub''', action='''store_true''', help='''Push model and image processor to the hub''') parser.add_argument( '''--no-push_to_hub''', dest='''push_to_hub''', action='''store_false''', help='''Do not push model and image processor to the hub''', ) lowerCAmelCase__ = parser.parse_args() lowerCAmelCase__ = args.pytorch_dump_folder_path pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True) convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
130
0
from collections.abc import Callable import numpy as np def _a ( SCREAMING_SNAKE_CASE__ : Callable , SCREAMING_SNAKE_CASE__ : float , SCREAMING_SNAKE_CASE__ : float , SCREAMING_SNAKE_CASE__ : float , SCREAMING_SNAKE_CASE__ : float ) -> np.ndarray: '''simple docstring''' SCREAMING_SNAKE_CASE__ : str = int(np.ceil((x_end - xa) / step_size ) ) SCREAMING_SNAKE_CASE__ : str = np.zeros((n + 1,) ) SCREAMING_SNAKE_CASE__ : str = ya SCREAMING_SNAKE_CASE__ : List[str] = xa for k in range(SCREAMING_SNAKE_CASE__ ): SCREAMING_SNAKE_CASE__ : Tuple = y[k] + step_size * ode_func(SCREAMING_SNAKE_CASE__ , y[k] ) x += step_size return y if __name__ == "__main__": import doctest doctest.testmod()
366
from sympy import diff, lambdify, symbols from sympy.functions import * # noqa: F403 def _a ( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : complex , SCREAMING_SNAKE_CASE__ : str = "x" , SCREAMING_SNAKE_CASE__ : float = 10**-10 , SCREAMING_SNAKE_CASE__ : int = 1 , ) -> complex: '''simple docstring''' SCREAMING_SNAKE_CASE__ : Union[str, Any] = symbols(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : str = lambdify(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : int = lambdify(SCREAMING_SNAKE_CASE__ , diff(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ) SCREAMING_SNAKE_CASE__ : Any = starting_point while True: if diff_function(SCREAMING_SNAKE_CASE__ ) != 0: SCREAMING_SNAKE_CASE__ : Any = prev_guess - multiplicity * func(SCREAMING_SNAKE_CASE__ ) / diff_function( SCREAMING_SNAKE_CASE__ ) else: raise ZeroDivisionError("Could not find root" ) from None # Precision is checked by comparing the difference of consecutive guesses if abs(next_guess - prev_guess ) < precision: return next_guess SCREAMING_SNAKE_CASE__ : Optional[int] = next_guess # Let's Execute if __name__ == "__main__": # Find root of trigonometric function # Find value of pi print(f"The root of sin(x) = 0 is {newton_raphson('sin(x)', 2)}") # Find root of polynomial # Find fourth Root of 5 print(f"The root of x**4 - 5 = 0 is {newton_raphson('x**4 -5', 0.4 +5J)}") # Find value of e print( '''The root of log(y) - 1 = 0 is ''', f"{newton_raphson('log(y) - 1', 2, variable='y')}", ) # Exponential Roots print( '''The root of exp(x) - 1 = 0 is''', f"{newton_raphson('exp(x) - 1', 1_0, precision=0.005)}", ) # Find root of cos(x) print(f"The root of cos(x) = 0 is {newton_raphson('cos(x)', 0)}")
191
0
# Lint as: python3 # pylint: enable=line-too-long # pylint: disable=g-import-not-at-top,g-bad-import-order,wrong-import-position _UpperCAmelCase : int = """2.13.1""" import platform import pyarrow from packaging import version if version.parse(platform.python_version()) < version.parse("""3.7"""): raise ImportWarning( """To use `datasets`, Python>=3.7 is required, and the current version of Python doesn't match this condition.""" ) if version.parse(pyarrow.__version__).major < 8: raise ImportWarning( """To use `datasets`, the module `pyarrow>=8.0.0` is required, and the current version of `pyarrow` doesn't match this condition.\n""" """If you are running this in a Google Colab, you should probably just restart the runtime to use the right version of `pyarrow`.""" ) del platform del pyarrow del version from .arrow_dataset import Dataset from .arrow_reader import ReadInstruction from .builder import ArrowBasedBuilder, BeamBasedBuilder, BuilderConfig, DatasetBuilder, GeneratorBasedBuilder from .combine import concatenate_datasets, interleave_datasets from .dataset_dict import DatasetDict, IterableDatasetDict from .download import * from .features import * from .fingerprint import disable_caching, enable_caching, is_caching_enabled, set_caching_enabled from .info import DatasetInfo, MetricInfo from .inspect import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, list_datasets, list_metrics, ) from .iterable_dataset import IterableDataset from .load import load_dataset, load_dataset_builder, load_from_disk, load_metric from .metric import Metric from .splits import ( NamedSplit, NamedSplitAll, Split, SplitBase, SplitDict, SplitGenerator, SplitInfo, SubSplitInfo, percent, ) from .tasks import * from .utils import * from .utils import logging # deprecated modules from datasets import arrow_dataset as _arrow_dataset # isort:skip from datasets import utils as _utils # isort:skip from datasets.utils import download_manager as _deprecated_download_manager # isort:skip _UpperCAmelCase : List[str] = concatenate_datasets _UpperCAmelCase : str = DownloadConfig _UpperCAmelCase : Tuple = DownloadManager _UpperCAmelCase : Union[str, Any] = DownloadMode _UpperCAmelCase : Union[str, Any] = DownloadConfig _UpperCAmelCase : List[Any] = DownloadMode _UpperCAmelCase : List[str] = DownloadManager del _arrow_dataset, _utils, _deprecated_download_manager
285
import os import pytest import yaml from datasets.features.features import Features, Value from datasets.info import DatasetInfo, DatasetInfosDict @pytest.mark.parametrize( 'files' , [ ['full:README.md', 'dataset_infos.json'], ['empty:README.md', 'dataset_infos.json'], ['dataset_infos.json'], ['full:README.md'], ] , ) def __lowerCamelCase ( UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' snake_case_ = tmp_path_factory.mktemp('dset_infos_dir' ) if "full:README.md" in files: with open(dataset_infos_dir / 'README.md' , 'w' ) as f: f.write('---\ndataset_info:\n dataset_size: 42\n---' ) if "empty:README.md" in files: with open(dataset_infos_dir / 'README.md' , 'w' ) as f: f.write('' ) # we want to support dataset_infos.json for backward compatibility if "dataset_infos.json" in files: with open(dataset_infos_dir / 'dataset_infos.json' , 'w' ) as f: f.write('{"default": {"dataset_size": 42}}' ) snake_case_ = DatasetInfosDict.from_directory(UpperCamelCase__ ) assert dataset_infos assert dataset_infos["default"].dataset_size == 42 @pytest.mark.parametrize( 'dataset_info' , [ DatasetInfo(), DatasetInfo( description='foo' , features=Features({'a': Value('int32' )} ) , builder_name='builder' , config_name='config' , version='1.0.0' , splits=[{'name': 'train'}] , download_size=42 , ), ] , ) def __lowerCamelCase ( UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' snake_case_ = str(UpperCamelCase__ ) dataset_info.write_to_directory(UpperCamelCase__ ) snake_case_ = DatasetInfo.from_directory(UpperCamelCase__ ) assert dataset_info == reloaded assert os.path.exists(os.path.join(UpperCamelCase__ , 'dataset_info.json' ) ) def __lowerCamelCase ( ): '''simple docstring''' snake_case_ = DatasetInfo( description='foo' , citation='bar' , homepage='https://foo.bar' , license='CC0' , features=Features({'a': Value('int32' )} ) , post_processed={} , supervised_keys=() , task_templates=[] , builder_name='builder' , config_name='config' , version='1.0.0' , splits=[{'name': 'train', 'num_examples': 42}] , download_checksums={} , download_size=1337 , post_processing_size=442 , dataset_size=1234 , size_in_bytes=1337 + 442 + 1234 , ) snake_case_ = dataset_info._to_yaml_dict() assert sorted(UpperCamelCase__ ) == sorted(DatasetInfo._INCLUDED_INFO_IN_YAML ) for key in DatasetInfo._INCLUDED_INFO_IN_YAML: assert key in dataset_info_yaml_dict assert isinstance(dataset_info_yaml_dict[key] , (list, dict, int, str) ) snake_case_ = yaml.safe_dump(UpperCamelCase__ ) snake_case_ = yaml.safe_load(UpperCamelCase__ ) assert dataset_info_yaml_dict == reloaded def __lowerCamelCase ( ): '''simple docstring''' snake_case_ = DatasetInfo() snake_case_ = dataset_info._to_yaml_dict() assert dataset_info_yaml_dict == {} @pytest.mark.parametrize( 'dataset_infos_dict' , [ DatasetInfosDict(), DatasetInfosDict({'default': DatasetInfo()} ), DatasetInfosDict({'my_config_name': DatasetInfo()} ), DatasetInfosDict( { 'default': DatasetInfo( description='foo' , features=Features({'a': Value('int32' )} ) , builder_name='builder' , config_name='config' , version='1.0.0' , splits=[{'name': 'train'}] , download_size=42 , ) } ), DatasetInfosDict( { 'v1': DatasetInfo(dataset_size=42 ), 'v2': DatasetInfo(dataset_size=1337 ), } ), ] , ) def __lowerCamelCase ( UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' snake_case_ = str(UpperCamelCase__ ) dataset_infos_dict.write_to_directory(UpperCamelCase__ ) snake_case_ = DatasetInfosDict.from_directory(UpperCamelCase__ ) # the config_name of the dataset_infos_dict take over the attribute for config_name, dataset_info in dataset_infos_dict.items(): snake_case_ = config_name # the yaml representation doesn't include fields like description or citation # so we just test that we can recover what we can from the yaml snake_case_ = DatasetInfo._from_yaml_dict(dataset_info._to_yaml_dict() ) assert dataset_infos_dict == reloaded if dataset_infos_dict: assert os.path.exists(os.path.join(UpperCamelCase__ , 'README.md' ) )
285
1
import argparse import collections import numpy as np import torch from flax import traverse_util from tax import checkpoints from transformers import MTaConfig, UMTaEncoderModel, UMTaForConditionalGeneration from transformers.utils import logging logging.set_verbosity_info() def A_ ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> str: return params[F"""{prefix}/{prefix}/relpos_bias/rel_embedding"""][:, i, :] def A_ ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase="attention" ) -> int: UpperCamelCase : Tuple = np.ascontiguousarray(params[F"""{prefix}/{prefix}/{layer_name}/key/kernel"""][:, i, :, :] ) UpperCamelCase : Dict = k_tmp.reshape(k_tmp.shape[0] , k_tmp.shape[1] * k_tmp.shape[2] ) UpperCamelCase : Dict = np.ascontiguousarray(params[F"""{prefix}/{prefix}/{layer_name}/out/kernel"""][:, i, :, :] ) UpperCamelCase : str = o_tmp.reshape(o_tmp.shape[0] * o_tmp.shape[1] , o_tmp.shape[2] ) UpperCamelCase : str = np.ascontiguousarray(params[F"""{prefix}/{prefix}/{layer_name}/query/kernel"""][:, i, :, :] ) UpperCamelCase : Union[str, Any] = q_tmp.reshape(q_tmp.shape[0] , q_tmp.shape[1] * q_tmp.shape[2] ) UpperCamelCase : Dict = np.ascontiguousarray(params[F"""{prefix}/{prefix}/{layer_name}/value/kernel"""][:, i, :, :] ) UpperCamelCase : Dict = v_tmp.reshape(v_tmp.shape[0] , v_tmp.shape[1] * v_tmp.shape[2] ) return k, o, q, v def A_ ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase=False ) -> Union[str, Any]: if split_mlp_wi: UpperCamelCase : Union[str, Any] = params[F"""{prefix}/{prefix}/mlp/wi_0/kernel"""][:, i, :] UpperCamelCase : str = params[F"""{prefix}/{prefix}/mlp/wi_1/kernel"""][:, i, :] UpperCamelCase : Tuple = (wi_a, wi_a) else: UpperCamelCase : Dict = params[F"""{prefix}/{prefix}/mlp/wi/kernel"""][:, i, :] UpperCamelCase : str = params[F"""{prefix}/{prefix}/mlp/wo/kernel"""][:, i, :] return wi, wo def A_ ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> Optional[int]: return params[F"""{prefix}/{prefix}/{layer_name}/scale"""][:, i] def A_ ( _lowerCAmelCase , *, _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = False ) -> Dict: UpperCamelCase : int = traverse_util.flatten_dict(variables["target"] ) UpperCamelCase : Union[str, Any] = {"/".join(_lowerCAmelCase ): v for k, v in old.items()} # v1.1 models have a gated GeLU with wi_0 and wi_1 instead of wi UpperCamelCase : List[str] = "encoder/encoder/mlp/wi_0/kernel" in old print("Split MLP:" , _lowerCAmelCase ) UpperCamelCase : Union[str, Any] = collections.OrderedDict() # Shared embeddings. UpperCamelCase : Union[str, Any] = old["token_embedder/embedding"] # Encoder. for i in range(_lowerCAmelCase ): # Block i, layer 0 (Self Attention). UpperCamelCase : Tuple = tax_layer_norm_lookup(_lowerCAmelCase , _lowerCAmelCase , "encoder" , "pre_attention_layer_norm" ) UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase : Dict = tax_attention_lookup(_lowerCAmelCase , _lowerCAmelCase , "encoder" , "attention" ) UpperCamelCase : int = layer_norm UpperCamelCase : Dict = k.T UpperCamelCase : Any = o.T UpperCamelCase : Optional[int] = q.T UpperCamelCase : str = v.T # Block i, layer 1 (MLP). UpperCamelCase : int = tax_layer_norm_lookup(_lowerCAmelCase , _lowerCAmelCase , "encoder" , "pre_mlp_layer_norm" ) UpperCamelCase , UpperCamelCase : List[Any] = tax_mlp_lookup(_lowerCAmelCase , _lowerCAmelCase , "encoder" , _lowerCAmelCase ) UpperCamelCase : Union[str, Any] = layer_norm if split_mlp_wi: UpperCamelCase : List[Any] = wi[0].T UpperCamelCase : Optional[Any] = wi[1].T else: UpperCamelCase : Any = wi.T UpperCamelCase : Tuple = wo.T if scalable_attention: # convert the rel_embedding of each layer UpperCamelCase : Optional[Any] = tax_relpos_bias_lookup( _lowerCAmelCase , _lowerCAmelCase , "encoder" ).T UpperCamelCase : Union[str, Any] = old["encoder/encoder_norm/scale"] if not scalable_attention: UpperCamelCase : Optional[int] = tax_relpos_bias_lookup( _lowerCAmelCase , 0 , "encoder" ).T UpperCamelCase : List[str] = tax_relpos_bias_lookup( _lowerCAmelCase , 0 , "decoder" ).T if not is_encoder_only: # Decoder. for i in range(_lowerCAmelCase ): # Block i, layer 0 (Self Attention). UpperCamelCase : Union[str, Any] = tax_layer_norm_lookup(_lowerCAmelCase , _lowerCAmelCase , "decoder" , "pre_self_attention_layer_norm" ) UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase : int = tax_attention_lookup(_lowerCAmelCase , _lowerCAmelCase , "decoder" , "self_attention" ) UpperCamelCase : Any = layer_norm UpperCamelCase : int = k.T UpperCamelCase : Tuple = o.T UpperCamelCase : List[str] = q.T UpperCamelCase : List[str] = v.T # Block i, layer 1 (Cross Attention). UpperCamelCase : Tuple = tax_layer_norm_lookup(_lowerCAmelCase , _lowerCAmelCase , "decoder" , "pre_cross_attention_layer_norm" ) UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase : Any = tax_attention_lookup(_lowerCAmelCase , _lowerCAmelCase , "decoder" , "encoder_decoder_attention" ) UpperCamelCase : Optional[Any] = layer_norm UpperCamelCase : List[str] = k.T UpperCamelCase : Tuple = o.T UpperCamelCase : Any = q.T UpperCamelCase : Any = v.T # Block i, layer 2 (MLP). UpperCamelCase : Any = tax_layer_norm_lookup(_lowerCAmelCase , _lowerCAmelCase , "decoder" , "pre_mlp_layer_norm" ) UpperCamelCase , UpperCamelCase : Union[str, Any] = tax_mlp_lookup(_lowerCAmelCase , _lowerCAmelCase , "decoder" , _lowerCAmelCase ) UpperCamelCase : Union[str, Any] = layer_norm if split_mlp_wi: UpperCamelCase : int = wi[0].T UpperCamelCase : Tuple = wi[1].T else: UpperCamelCase : Dict = wi.T UpperCamelCase : Optional[int] = wo.T if scalable_attention: # convert the rel_embedding of each layer UpperCamelCase : str = tax_relpos_bias_lookup(_lowerCAmelCase , _lowerCAmelCase , "decoder" ).T UpperCamelCase : List[Any] = old["decoder/decoder_norm/scale"] # LM Head (only in v1.1 checkpoints, in v1.0 embeddings are used instead) if "decoder/logits_dense/kernel" in old: UpperCamelCase : Any = old["decoder/logits_dense/kernel"].T return new def A_ ( _lowerCAmelCase , _lowerCAmelCase ) -> Any: UpperCamelCase : Union[str, Any] = collections.OrderedDict([(k, torch.from_numpy(v.copy() )) for (k, v) in converted_params.items()] ) # Add what is missing. if "encoder.embed_tokens.weight" not in state_dict: UpperCamelCase : Union[str, Any] = state_dict["shared.weight"] if not is_encoder_only: if "decoder.embed_tokens.weight" not in state_dict: UpperCamelCase : Any = state_dict["shared.weight"] if "lm_head.weight" not in state_dict: # For old 1.0 models. print("Using shared word embeddings as lm_head." ) UpperCamelCase : Any = state_dict["shared.weight"] return state_dict def A_ ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> Optional[Any]: UpperCamelCase : Tuple = checkpoints.load_tax_checkpoint(_lowerCAmelCase ) UpperCamelCase : int = convert_tax_to_pytorch( _lowerCAmelCase , num_layers=config.num_layers , is_encoder_only=_lowerCAmelCase , scalable_attention=_lowerCAmelCase ) UpperCamelCase : List[Any] = make_state_dict(_lowerCAmelCase , _lowerCAmelCase ) model.load_state_dict(_lowerCAmelCase , strict=_lowerCAmelCase ) def A_ ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = False , _lowerCAmelCase = False , ) -> Tuple: UpperCamelCase : List[Any] = MTaConfig.from_json_file(_lowerCAmelCase ) print(F"""Building PyTorch model from configuration: {config}""" ) # Non-v1.1 checkpoints could also use T5Model, but this works for all. # The v1.0 checkpoints will simply have an LM head that is the word embeddings. if is_encoder_only: UpperCamelCase : int = UMTaEncoderModel(_lowerCAmelCase ) else: UpperCamelCase : str = UMTaForConditionalGeneration(_lowerCAmelCase ) # Load weights from tf checkpoint load_tax_weights_in_ta(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) # Save pytorch-model print(F"""Save PyTorch model to {pytorch_dump_path}""" ) model.save_pretrained(_lowerCAmelCase ) # Verify that we can load the checkpoint. model.from_pretrained(_lowerCAmelCase ) print("Done" ) if __name__ == "__main__": __lowerCamelCase : List[Any] = argparse.ArgumentParser(description="""Converts a native T5X checkpoint into a PyTorch checkpoint.""") # Required parameters parser.add_argument( """--t5x_checkpoint_path""", default=None, type=str, required=True, help="""Path to the T5X checkpoint.""" ) parser.add_argument( """--config_file""", default=None, type=str, required=True, help="""The config json file corresponding to the pre-trained T5 model.\nThis specifies the model architecture.""", ) parser.add_argument( """--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) parser.add_argument( """--is_encoder_only""", action="""store_true""", help="""Check if the model is encoder-decoder model""", default=False ) parser.add_argument( """--scalable_attention""", action="""store_true""", help="""Whether the model uses scaled attention (umt5 model)""", default=False, ) __lowerCamelCase : Any = parser.parse_args() convert_tax_checkpoint_to_pytorch( args.tax_checkpoint_path, args.config_file, args.pytorch_dump_path, args.is_encoder_only, args.scalable_attention, )
140
import argparse import numpy as np import torch from transformers import SpeechTaHifiGan, SpeechTaHifiGanConfig, logging logging.set_verbosity_info() __lowerCamelCase : Dict = logging.get_logger("""transformers.models.speecht5""") def A_ ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> Tuple: hf_model.apply_weight_norm() UpperCamelCase : int = checkpoint["input_conv.weight_g"] UpperCamelCase : Dict = checkpoint["input_conv.weight_v"] UpperCamelCase : List[Any] = checkpoint["input_conv.bias"] for i in range(len(config.upsample_rates ) ): UpperCamelCase : Any = checkpoint[F"""upsamples.{i}.1.weight_g"""] UpperCamelCase : List[Any] = checkpoint[F"""upsamples.{i}.1.weight_v"""] UpperCamelCase : Optional[Any] = checkpoint[F"""upsamples.{i}.1.bias"""] for i in range(len(config.upsample_rates ) * len(config.resblock_kernel_sizes ) ): for j in range(len(config.resblock_dilation_sizes ) ): UpperCamelCase : Union[str, Any] = checkpoint[F"""blocks.{i}.convs1.{j}.1.weight_g"""] UpperCamelCase : int = checkpoint[F"""blocks.{i}.convs1.{j}.1.weight_v"""] UpperCamelCase : str = checkpoint[F"""blocks.{i}.convs1.{j}.1.bias"""] UpperCamelCase : Union[str, Any] = checkpoint[F"""blocks.{i}.convs2.{j}.1.weight_g"""] UpperCamelCase : int = checkpoint[F"""blocks.{i}.convs2.{j}.1.weight_v"""] UpperCamelCase : Optional[Any] = checkpoint[F"""blocks.{i}.convs2.{j}.1.bias"""] UpperCamelCase : Tuple = checkpoint["output_conv.1.weight_g"] UpperCamelCase : Tuple = checkpoint["output_conv.1.weight_v"] UpperCamelCase : int = checkpoint["output_conv.1.bias"] hf_model.remove_weight_norm() @torch.no_grad() def A_ ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase=None , _lowerCAmelCase=None , ) -> Tuple: if config_path is not None: UpperCamelCase : List[Any] = SpeechTaHifiGanConfig.from_pretrained(_lowerCAmelCase ) else: UpperCamelCase : Optional[int] = SpeechTaHifiGanConfig() UpperCamelCase : List[str] = SpeechTaHifiGan(_lowerCAmelCase ) UpperCamelCase : str = torch.load(_lowerCAmelCase ) load_weights(orig_checkpoint["model"]["generator"] , _lowerCAmelCase , _lowerCAmelCase ) UpperCamelCase : List[Any] = np.load(_lowerCAmelCase ) UpperCamelCase : List[str] = stats[0].reshape(-1 ) UpperCamelCase : Tuple = stats[1].reshape(-1 ) UpperCamelCase : Any = torch.from_numpy(_lowerCAmelCase ).float() UpperCamelCase : Any = torch.from_numpy(_lowerCAmelCase ).float() model.save_pretrained(_lowerCAmelCase ) if repo_id: print("Pushing to the hub..." ) model.push_to_hub(_lowerCAmelCase ) if __name__ == "__main__": __lowerCamelCase : Union[str, Any] = argparse.ArgumentParser() parser.add_argument("""--checkpoint_path""", required=True, default=None, type=str, help="""Path to original checkpoint""") parser.add_argument("""--stats_path""", required=True, default=None, type=str, help="""Path to stats.npy file""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument( """--pytorch_dump_folder_path""", required=True, default=None, type=str, help="""Path to the output PyTorch model.""" ) parser.add_argument( """--push_to_hub""", default=None, type=str, help="""Where to upload the converted model on the 🤗 hub.""" ) __lowerCamelCase : Tuple = parser.parse_args() convert_hifigan_checkpoint( args.checkpoint_path, args.stats_path, args.pytorch_dump_folder_path, args.config_path, args.push_to_hub, )
140
1
'''simple docstring''' import argparse import json import os import fairseq import torch from fairseq.data import Dictionary # Register SEW's fairseq modules from sew_asapp import tasks # noqa: F401 from transformers import ( SEWConfig, SEWForCTC, SEWModel, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaProcessor, logging, ) logging.set_verbosity_info() A__ : Optional[Any] = logging.get_logger(__name__) A__ : List[Any] = { """post_extract_proj""": """feature_projection""", """encoder.pos_conv.0""": """encoder.pos_conv_embed.conv""", """self_attn.k_proj""": """encoder.layers.*.attention.k_proj""", """self_attn.v_proj""": """encoder.layers.*.attention.v_proj""", """self_attn.q_proj""": """encoder.layers.*.attention.q_proj""", """self_attn.out_proj""": """encoder.layers.*.attention.out_proj""", """self_attn_layer_norm""": """encoder.layers.*.layer_norm""", """fc1""": """encoder.layers.*.feed_forward.intermediate_dense""", """fc2""": """encoder.layers.*.feed_forward.output_dense""", """final_layer_norm""": """encoder.layers.*.final_layer_norm""", """encoder.upsample.0""": """encoder.upsample.projection""", """encoder.layer_norm""": """encoder.layer_norm""", """w2v_model.layer_norm""": """layer_norm""", """w2v_encoder.proj""": """lm_head""", """mask_emb""": """masked_spec_embed""", } def UpperCAmelCase__ ( UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[int] ) -> Any: for attribute in key.split('.' ): __lowerCamelCase : Optional[int] = getattr(UpperCAmelCase_ , UpperCAmelCase_ ) if weight_type is not None: __lowerCamelCase : Optional[Any] = getattr(UpperCAmelCase_ , UpperCAmelCase_ ).shape else: __lowerCamelCase : Optional[int] = hf_pointer.shape assert hf_shape == value.shape, ( F'Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be' F' {value.shape} for {full_name}' ) if weight_type == "weight": __lowerCamelCase : int = value elif weight_type == "weight_g": __lowerCamelCase : Dict = value elif weight_type == "weight_v": __lowerCamelCase : Optional[Any] = value elif weight_type == "bias": __lowerCamelCase : Optional[Any] = value else: __lowerCamelCase : int = value logger.info(F'{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.' ) def UpperCAmelCase__ ( UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : List[Any] ) -> str: __lowerCamelCase : Optional[int] = [] __lowerCamelCase : Any = fairseq_model.state_dict() __lowerCamelCase : Tuple = hf_model.sew.feature_extractor if is_finetuned else hf_model.feature_extractor for name, value in fairseq_dict.items(): __lowerCamelCase : Dict = False if "conv_layers" in name: load_conv_layer( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , hf_model.config.feat_extract_norm == 'group' , ) __lowerCamelCase : int = True else: for key, mapped_key in MAPPING.items(): __lowerCamelCase : str = 'sew.' + mapped_key if (is_finetuned and mapped_key != 'lm_head') else mapped_key if key in name or key.split('w2v_model.' )[-1] == name.split('.' )[0]: __lowerCamelCase : str = True if "*" in mapped_key: __lowerCamelCase : Dict = name.split(UpperCAmelCase_ )[0].split('.' )[-2] __lowerCamelCase : Any = mapped_key.replace('*' , UpperCAmelCase_ ) if "weight_g" in name: __lowerCamelCase : int = 'weight_g' elif "weight_v" in name: __lowerCamelCase : Tuple = 'weight_v' elif "weight" in name: __lowerCamelCase : int = 'weight' elif "bias" in name: __lowerCamelCase : Optional[Any] = 'bias' else: __lowerCamelCase : List[Any] = None set_recursively(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) continue if not is_used: unused_weights.append(UpperCAmelCase_ ) logger.warning(F'Unused weights: {unused_weights}' ) def UpperCAmelCase__ ( UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Any , UpperCAmelCase_ : List[Any] ) -> Any: __lowerCamelCase : List[str] = full_name.split('conv_layers.' )[-1] __lowerCamelCase : str = name.split('.' ) __lowerCamelCase : Dict = int(items[0] ) __lowerCamelCase : Tuple = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F'{full_name} has size {value.shape}, but' F' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.' ) __lowerCamelCase : List[str] = value logger.info(F'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F'{full_name} has size {value.shape}, but' F' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.' ) __lowerCamelCase : Dict = value logger.info(F'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F'{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was' " found." ) __lowerCamelCase : Optional[Any] = value logger.info(F'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F'{full_name} has size {value.shape}, but' F' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.' ) __lowerCamelCase : str = value logger.info(F'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) else: unused_weights.append(UpperCAmelCase_ ) def UpperCAmelCase__ ( UpperCAmelCase_ : int , UpperCAmelCase_ : List[str] ) -> List[str]: __lowerCamelCase : Optional[Any] = SEWConfig() if is_finetuned: __lowerCamelCase : str = model.wav_encoder.wav_model.cfg else: __lowerCamelCase : str = model.cfg __lowerCamelCase : Union[str, Any] = fs_config.conv_bias __lowerCamelCase : List[Any] = eval(fs_config.conv_feature_layers ) __lowerCamelCase : Tuple = [x[0] for x in conv_layers] __lowerCamelCase : Tuple = [x[1] for x in conv_layers] __lowerCamelCase : int = [x[2] for x in conv_layers] __lowerCamelCase : List[Any] = 'gelu' __lowerCamelCase : Dict = 'layer' if fs_config.extractor_mode == 'layer_norm' else 'group' __lowerCamelCase : int = 0.0 __lowerCamelCase : Dict = fs_config.activation_fn.name __lowerCamelCase : int = fs_config.encoder_embed_dim __lowerCamelCase : List[Any] = 0.02 __lowerCamelCase : Any = fs_config.encoder_ffn_embed_dim __lowerCamelCase : List[Any] = 1e-5 __lowerCamelCase : Dict = fs_config.encoder_layerdrop __lowerCamelCase : List[str] = fs_config.encoder_attention_heads __lowerCamelCase : Union[str, Any] = fs_config.conv_pos_groups __lowerCamelCase : Optional[int] = fs_config.conv_pos __lowerCamelCase : Optional[Any] = len(UpperCAmelCase_ ) __lowerCamelCase : int = fs_config.encoder_layers __lowerCamelCase : str = fs_config.squeeze_factor # take care of any params that are overridden by the Wav2VecCtc model if is_finetuned: __lowerCamelCase : Union[str, Any] = model.cfg __lowerCamelCase : List[Any] = fs_config.final_dropout __lowerCamelCase : List[Any] = fs_config.layerdrop __lowerCamelCase : Union[str, Any] = fs_config.activation_dropout __lowerCamelCase : List[str] = fs_config.mask_prob > 0 or fs_config.mask_channel_prob > 0 __lowerCamelCase : Any = fs_config.attention_dropout __lowerCamelCase : Any = fs_config.dropout_input __lowerCamelCase : str = fs_config.dropout __lowerCamelCase : Union[str, Any] = fs_config.mask_channel_length __lowerCamelCase : str = fs_config.mask_channel_prob __lowerCamelCase : Optional[int] = fs_config.mask_length __lowerCamelCase : Tuple = fs_config.mask_prob __lowerCamelCase : Union[str, Any] = 'Wav2Vec2FeatureExtractor' __lowerCamelCase : int = 'Wav2Vec2CTCTokenizer' return config @torch.no_grad() def UpperCAmelCase__ ( UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Dict=None , UpperCAmelCase_ : Dict=None , UpperCAmelCase_ : List[str]=True ) -> Any: if is_finetuned: __lowerCamelCase , __lowerCamelCase , __lowerCamelCase : List[str] = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'data': '/'.join(dict_path.split('/' )[:-1] )} ) else: __lowerCamelCase , __lowerCamelCase , __lowerCamelCase : Tuple = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] ) if config_path is not None: __lowerCamelCase : Any = SEWConfig.from_pretrained(UpperCAmelCase_ ) else: __lowerCamelCase : Optional[int] = convert_config(model[0] , UpperCAmelCase_ ) __lowerCamelCase : Tuple = model[0].eval() __lowerCamelCase : Optional[Any] = True if config.feat_extract_norm == 'layer' else False __lowerCamelCase : Tuple = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_60_00 , padding_value=0 , do_normalize=UpperCAmelCase_ , return_attention_mask=UpperCAmelCase_ , ) if is_finetuned: if dict_path: __lowerCamelCase : str = Dictionary.load(UpperCAmelCase_ ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq __lowerCamelCase : int = target_dict.pad_index __lowerCamelCase : Tuple = target_dict.bos_index __lowerCamelCase : Optional[int] = target_dict.pad_index __lowerCamelCase : Dict = target_dict.bos_index __lowerCamelCase : List[str] = target_dict.eos_index __lowerCamelCase : Tuple = len(target_dict.symbols ) __lowerCamelCase : List[str] = os.path.join(UpperCAmelCase_ , 'vocab.json' ) if not os.path.isdir(UpperCAmelCase_ ): logger.error('--pytorch_dump_folder_path ({}) should be a directory'.format(UpperCAmelCase_ ) ) return os.makedirs(UpperCAmelCase_ , exist_ok=UpperCAmelCase_ ) with open(UpperCAmelCase_ , 'w' , encoding='utf-8' ) as vocab_handle: json.dump(target_dict.indices , UpperCAmelCase_ ) __lowerCamelCase : str = WavaVecaCTCTokenizer( UpperCAmelCase_ , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token='|' , do_lower_case=UpperCAmelCase_ , ) __lowerCamelCase : Union[str, Any] = WavaVecaProcessor(feature_extractor=UpperCAmelCase_ , tokenizer=UpperCAmelCase_ ) processor.save_pretrained(UpperCAmelCase_ ) __lowerCamelCase : Optional[Any] = SEWForCTC(UpperCAmelCase_ ) else: __lowerCamelCase : Union[str, Any] = SEWModel(UpperCAmelCase_ ) feature_extractor.save_pretrained(UpperCAmelCase_ ) recursively_load_weights(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) hf_model.save_pretrained(UpperCAmelCase_ ) if __name__ == "__main__": A__ : Tuple = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""") parser.add_argument("""--dict_path""", default=None, type=str, help="""Path to dict of fine-tuned model""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument( """--is_finetuned""", action="""store_true""", help="""Whether the model to convert is a fine-tuned model or not""" ) A__ : Any = parser.parse_args() convert_sew_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, args.is_finetuned )
185
'''simple docstring''' import unittest from knapsack import knapsack as k class UpperCAmelCase_ (unittest.TestCase ): """simple docstring""" def lowercase_ ( self ) -> Optional[Any]: __lowerCamelCase : int = 0 __lowerCamelCase : Union[str, Any] = [0] __lowerCamelCase : Any = [0] __lowerCamelCase : Union[str, Any] = len(SCREAMING_SNAKE_CASE_ ) self.assertEqual(k.knapsack(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) , 0 ) __lowerCamelCase : List[str] = [60] __lowerCamelCase : Union[str, Any] = [10] __lowerCamelCase : List[Any] = len(SCREAMING_SNAKE_CASE_ ) self.assertEqual(k.knapsack(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) , 0 ) def lowercase_ ( self ) -> List[str]: __lowerCamelCase : Optional[int] = 3 __lowerCamelCase : int = [1, 2, 3] __lowerCamelCase : str = [3, 2, 1] __lowerCamelCase : Union[str, Any] = len(SCREAMING_SNAKE_CASE_ ) self.assertEqual(k.knapsack(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) , 5 ) def lowercase_ ( self ) -> int: __lowerCamelCase : Optional[int] = 50 __lowerCamelCase : List[str] = [60, 1_00, 1_20] __lowerCamelCase : List[str] = [10, 20, 30] __lowerCamelCase : List[str] = len(SCREAMING_SNAKE_CASE_ ) self.assertEqual(k.knapsack(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) , 2_20 ) if __name__ == "__main__": unittest.main()
185
1
'''simple docstring''' def snake_case_ (UpperCamelCase : int = 100_0000 ): '''simple docstring''' _a = limit + 1 _a = [0] * limit for first_term in range(1 , UpperCamelCase ): for n in range(UpperCamelCase , UpperCamelCase , UpperCamelCase ): _a = first_term + n / first_term if common_difference % 4: # d must be divisble by 4 continue else: common_difference /= 4 if ( first_term > common_difference and first_term < 4 * common_difference ): # since x,y,z are positive integers frequency[n] += 1 # so z>0 and a>d ,also 4d<a _a = sum(1 for x in frequency[1:limit] if x == 10 ) return count if __name__ == "__main__": print(F'''{solution() = }''')
179
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) _snake_case : List[str] = {'configuration_xlnet': ['XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP', 'XLNetConfig']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case : List[Any] = ['XLNetTokenizer'] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case : int = ['XLNetTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case : Optional[int] = [ 'XLNET_PRETRAINED_MODEL_ARCHIVE_LIST', 'XLNetForMultipleChoice', 'XLNetForQuestionAnswering', 'XLNetForQuestionAnsweringSimple', 'XLNetForSequenceClassification', 'XLNetForTokenClassification', 'XLNetLMHeadModel', 'XLNetModel', 'XLNetPreTrainedModel', 'load_tf_weights_in_xlnet', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case : str = [ 'TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFXLNetForMultipleChoice', 'TFXLNetForQuestionAnsweringSimple', 'TFXLNetForSequenceClassification', 'TFXLNetForTokenClassification', 'TFXLNetLMHeadModel', 'TFXLNetMainLayer', 'TFXLNetModel', 'TFXLNetPreTrainedModel', ] if TYPE_CHECKING: from .configuration_xlnet import XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP, XLNetConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlnet import XLNetTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlnet_fast import XLNetTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlnet import ( XLNET_PRETRAINED_MODEL_ARCHIVE_LIST, XLNetForMultipleChoice, XLNetForQuestionAnswering, XLNetForQuestionAnsweringSimple, XLNetForSequenceClassification, XLNetForTokenClassification, XLNetLMHeadModel, XLNetModel, XLNetPreTrainedModel, load_tf_weights_in_xlnet, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlnet import ( TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLNetForMultipleChoice, TFXLNetForQuestionAnsweringSimple, TFXLNetForSequenceClassification, TFXLNetForTokenClassification, TFXLNetLMHeadModel, TFXLNetMainLayer, TFXLNetModel, TFXLNetPreTrainedModel, ) else: import sys _snake_case : Union[str, Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
179
1
"""simple docstring""" import mpmath # for roots of unity import numpy as np class lowerCAmelCase_ : """simple docstring""" def __init__(self , SCREAMING_SNAKE_CASE__=None , SCREAMING_SNAKE_CASE__=None ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE__ : Union[str, Any] = list(poly_a or [0] )[:] SCREAMING_SNAKE_CASE__ : Tuple = list(poly_b or [0] )[:] # Remove leading zero coefficients while self.polyA[-1] == 0: self.polyA.pop() SCREAMING_SNAKE_CASE__ : int = len(self.polyA ) while self.polyB[-1] == 0: self.polyB.pop() SCREAMING_SNAKE_CASE__ : List[str] = len(self.polyB ) # Add 0 to make lengths equal a power of 2 SCREAMING_SNAKE_CASE__ : Optional[int] = int( 2 ** np.ceil(np.loga(len(self.polyA ) + len(self.polyB ) - 1 ) ) ) while len(self.polyA ) < self.c_max_length: self.polyA.append(0 ) while len(self.polyB ) < self.c_max_length: self.polyB.append(0 ) # A complex root used for the fourier transform SCREAMING_SNAKE_CASE__ : List[str] = complex(mpmath.root(x=1 , n=self.c_max_length , k=1 ) ) # The product SCREAMING_SNAKE_CASE__ : Tuple = self.__multiply() def __magic_name__ (self , SCREAMING_SNAKE_CASE__ ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : str = [[x] for x in self.polyA] if which == """A""" else [[x] for x in self.polyB] # Corner case if len(SCREAMING_SNAKE_CASE__ ) <= 1: return dft[0] # SCREAMING_SNAKE_CASE__ : Optional[Any] = self.c_max_length // 2 while next_ncol > 0: SCREAMING_SNAKE_CASE__ : Any = [[] for i in range(SCREAMING_SNAKE_CASE__ )] SCREAMING_SNAKE_CASE__ : Tuple = self.root**next_ncol # First half of next step SCREAMING_SNAKE_CASE__ : str = 1 for j in range(self.c_max_length // (next_ncol * 2) ): for i in range(SCREAMING_SNAKE_CASE__ ): new_dft[i].append(dft[i][j] + current_root * dft[i + next_ncol][j] ) current_root *= root # Second half of next step SCREAMING_SNAKE_CASE__ : int = 1 for j in range(self.c_max_length // (next_ncol * 2) ): for i in range(SCREAMING_SNAKE_CASE__ ): new_dft[i].append(dft[i][j] - current_root * dft[i + next_ncol][j] ) current_root *= root # Update SCREAMING_SNAKE_CASE__ : Union[str, Any] = new_dft SCREAMING_SNAKE_CASE__ : Tuple = next_ncol // 2 return dft[0] def __magic_name__ (self ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.__dft("""A""" ) SCREAMING_SNAKE_CASE__ : Dict = self.__dft("""B""" ) SCREAMING_SNAKE_CASE__ : List[Any] = [[dft_a[i] * dft_b[i] for i in range(self.c_max_length )]] del dft_a del dft_b # Corner Case if len(inverce_c[0] ) <= 1: return inverce_c[0] # Inverse DFT SCREAMING_SNAKE_CASE__ : Optional[Any] = 2 while next_ncol <= self.c_max_length: SCREAMING_SNAKE_CASE__ : List[str] = [[] for i in range(SCREAMING_SNAKE_CASE__ )] SCREAMING_SNAKE_CASE__ : Tuple = self.root ** (next_ncol // 2) SCREAMING_SNAKE_CASE__ : Any = 1 # First half of next step for j in range(self.c_max_length // next_ncol ): for i in range(next_ncol // 2 ): # Even positions new_inverse_c[i].append( ( inverce_c[i][j] + inverce_c[i][j + self.c_max_length // next_ncol] ) / 2 ) # Odd positions new_inverse_c[i + next_ncol // 2].append( ( inverce_c[i][j] - inverce_c[i][j + self.c_max_length // next_ncol] ) / (2 * current_root) ) current_root *= root # Update SCREAMING_SNAKE_CASE__ : Optional[Any] = new_inverse_c next_ncol *= 2 # Unpack SCREAMING_SNAKE_CASE__ : Optional[Any] = [round(x[0].real , 8 ) + round(x[0].imag , 8 ) * 1j for x in inverce_c] # Remove leading 0's while inverce_c[-1] == 0: inverce_c.pop() return inverce_c def __str__(self ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[str] = """A = """ + """ + """.join( F'''{coef}*x^{i}''' for coef, i in enumerate(self.polyA[: self.len_A] ) ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = """B = """ + """ + """.join( F'''{coef}*x^{i}''' for coef, i in enumerate(self.polyB[: self.len_B] ) ) SCREAMING_SNAKE_CASE__ : int = """A*B = """ + """ + """.join( F'''{coef}*x^{i}''' for coef, i in enumerate(self.product ) ) return F'''{a}\n{b}\n{c}''' # Unit tests if __name__ == "__main__": import doctest doctest.testmod()
25
"""simple docstring""" import unittest import numpy as np import torch from .utils_summarization import build_mask, compute_token_type_ids, process_story, truncate_or_pad class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :Dict = 1_0 def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :Optional[int] = [1, 2, 3, 4] lowerCAmelCase__ :Tuple = [1, 2, 3, 4, 0, 0, 0, 0, 0, 0] self.assertEqual(truncate_or_pad(__UpperCAmelCase , self.block_size , 0 ) , __UpperCAmelCase ) def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :Optional[Any] = [1, 2, 3, 4, 5, 6, 7, 8, 9, 1_0] lowerCAmelCase__ :List[Any] = [1, 2, 3, 4, 5, 6, 7, 8, 9, 1_0] self.assertEqual(truncate_or_pad(__UpperCAmelCase , self.block_size , 0 ) , __UpperCAmelCase ) def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :Dict = [1, 2, 3, 4, 5, 6, 7, 8, 9, 1_0, 1_1, 1_2, 1_3] lowerCAmelCase__ :List[Any] = [1, 2, 3, 4, 5, 6, 7, 8, 9, 1_0] self.assertEqual(truncate_or_pad(__UpperCAmelCase , self.block_size , 0 ) , __UpperCAmelCase ) def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :Tuple = 'It was the year of Our Lord one thousand seven hundred and\n seventy-five.\n\nSpiritual revelations were conceded to England at that\n favoured period, as at this.' lowerCAmelCase__ , lowerCAmelCase__ :List[Any] = process_story(__UpperCAmelCase ) self.assertEqual(__UpperCAmelCase , [] ) def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :Any = '' lowerCAmelCase__ , lowerCAmelCase__ :Any = process_story(__UpperCAmelCase ) self.assertEqual(__UpperCAmelCase , [] ) self.assertEqual(__UpperCAmelCase , [] ) def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :List[str] = ( 'It was the year of Our Lord one thousand seven hundred and ' 'seventy-five\n\nSpiritual revelations were conceded to England ' 'at that favoured period, as at this.\n@highlight\n\nIt was the best of times' ) lowerCAmelCase__ , lowerCAmelCase__ :str = process_story(__UpperCAmelCase ) lowerCAmelCase__ :List[str] = [ 'It was the year of Our Lord one thousand seven hundred and seventy-five.', 'Spiritual revelations were conceded to England at that favoured period, as at this.', ] self.assertEqual(__UpperCAmelCase , __UpperCAmelCase ) lowerCAmelCase__ :List[str] = ['It was the best of times.'] self.assertEqual(__UpperCAmelCase , __UpperCAmelCase ) def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :Tuple = torch.tensor([1, 2, 3, 4] ) lowerCAmelCase__ :List[str] = torch.tensor([1, 1, 1, 1] ) np.testing.assert_array_equal(build_mask(__UpperCAmelCase , 0 ).numpy() , expected.numpy() ) def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :List[Any] = torch.tensor([1, 2, 3, 4, 2_3, 2_3, 2_3] ) lowerCAmelCase__ :Optional[int] = torch.tensor([1, 1, 1, 1, 0, 0, 0] ) np.testing.assert_array_equal(build_mask(__UpperCAmelCase , 2_3 ).numpy() , expected.numpy() ) def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :List[Any] = torch.tensor([8, 2, 3, 4, 1, 1, 1] ) lowerCAmelCase__ :Optional[Any] = torch.tensor([1, 1, 1, 1, 0, 0, 0] ) np.testing.assert_array_equal(build_mask(__UpperCAmelCase , 1 ).numpy() , expected.numpy() ) def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :Optional[Any] = 1_0_1 lowerCAmelCase__ :str = torch.tensor([[1, 2, 3, 4, 5, 6], [1, 2, 3, 1_0_1, 5, 6], [1, 1_0_1, 3, 4, 1_0_1, 6]] ) lowerCAmelCase__ :Any = torch.tensor([[1, 1, 1, 1, 1, 1], [1, 1, 1, 0, 0, 0], [1, 0, 0, 0, 1, 1]] ) lowerCAmelCase__ :List[Any] = compute_token_type_ids(__UpperCAmelCase , __UpperCAmelCase ) np.testing.assert_array_equal(__UpperCAmelCase , __UpperCAmelCase )
293
0
'''simple docstring''' from __future__ import annotations import math import random from collections.abc import Collection from typing import overload class A__ : def __init__( self , UpperCamelCase__ = None ) -> Optional[int]: '''simple docstring''' if components is None: A_ = [] A_ = list(__lowerCamelCase ) def __len__( self ) -> Optional[int]: '''simple docstring''' return len(self.__components ) def __str__( self ) -> Tuple: '''simple docstring''' return "(" + ",".join(map(__lowerCamelCase , self.__components ) ) + ")" def __add__( self , UpperCamelCase__ ) -> Optional[int]: '''simple docstring''' A_ = len(self ) if size == len(__lowerCamelCase ): A_ = [self.__components[i] + other.component(__lowerCamelCase ) for i in range(__lowerCamelCase )] return Vector(__lowerCamelCase ) else: raise Exception("""must have the same size""" ) def __sub__( self , UpperCamelCase__ ) -> str: '''simple docstring''' A_ = len(self ) if size == len(__lowerCamelCase ): A_ = [self.__components[i] - other.component(__lowerCamelCase ) for i in range(__lowerCamelCase )] return Vector(__lowerCamelCase ) else: # error case raise Exception("""must have the same size""" ) @overload def __mul__( self , UpperCamelCase__ ) -> str: '''simple docstring''' ... @overload def __mul__( self , UpperCamelCase__ ) -> Union[str, Any]: '''simple docstring''' ... def __mul__( self , UpperCamelCase__ ) -> Optional[int]: '''simple docstring''' if isinstance(__lowerCamelCase , (float, int) ): A_ = [c * other for c in self.__components] return Vector(__lowerCamelCase ) elif isinstance(__lowerCamelCase , __lowerCamelCase ) and len(self ) == len(__lowerCamelCase ): A_ = len(self ) A_ = [self.__components[i] * other.component(__lowerCamelCase ) for i in range(__lowerCamelCase )] return sum(__lowerCamelCase ) else: # error case raise Exception("""invalid operand!""" ) def snake_case_ ( self ) -> Dict: '''simple docstring''' return Vector(self.__components ) def snake_case_ ( self , UpperCamelCase__ ) -> Union[str, Any]: '''simple docstring''' if isinstance(__lowerCamelCase , __lowerCamelCase ) and -len(self.__components ) <= i < len(self.__components ): return self.__components[i] else: raise Exception("""index out of range""" ) def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ ) -> Union[str, Any]: '''simple docstring''' assert -len(self.__components ) <= pos < len(self.__components ) A_ = value def snake_case_ ( self ) -> Any: '''simple docstring''' if len(self.__components ) == 0: raise Exception("""Vector is empty""" ) A_ = [c**2 for c in self.__components] return math.sqrt(sum(__lowerCamelCase ) ) def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ = False ) -> List[str]: '''simple docstring''' A_ = self * other A_ = self.euclidean_length() * other.euclidean_length() if deg: return math.degrees(math.acos(num / den ) ) else: return math.acos(num / den ) def UpperCAmelCase__ ( UpperCAmelCase__ ) -> Vector: assert isinstance(UpperCAmelCase__, UpperCAmelCase__ ) return Vector([0] * dimension ) def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__ ) -> Vector: assert isinstance(UpperCAmelCase__, UpperCAmelCase__ ) and (isinstance(UpperCAmelCase__, UpperCAmelCase__ )) A_ = [0] * dimension A_ = 1 return Vector(UpperCAmelCase__ ) def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) -> Vector: assert ( isinstance(UpperCAmelCase__, UpperCAmelCase__ ) and isinstance(UpperCAmelCase__, UpperCAmelCase__ ) and (isinstance(UpperCAmelCase__, (int, float) )) ) return x * scalar + y def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) -> Vector: random.seed(UpperCAmelCase__ ) A_ = [random.randint(UpperCAmelCase__, UpperCAmelCase__ ) for _ in range(UpperCAmelCase__ )] return Vector(UpperCAmelCase__ ) class A__ : def __init__( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> Tuple: '''simple docstring''' A_ = matrix A_ = w A_ = h def __str__( self ) -> Dict: '''simple docstring''' A_ = """""" for i in range(self.__height ): ans += "|" for j in range(self.__width ): if j < self.__width - 1: ans += str(self.__matrix[i][j] ) + "," else: ans += str(self.__matrix[i][j] ) + "|\n" return ans def __add__( self , UpperCamelCase__ ) -> int: '''simple docstring''' if self.__width == other.width() and self.__height == other.height(): A_ = [] for i in range(self.__height ): A_ = [ self.__matrix[i][j] + other.component(__lowerCamelCase , __lowerCamelCase ) for j in range(self.__width ) ] matrix.append(__lowerCamelCase ) return Matrix(__lowerCamelCase , self.__width , self.__height ) else: raise Exception("""matrix must have the same dimension!""" ) def __sub__( self , UpperCamelCase__ ) -> str: '''simple docstring''' if self.__width == other.width() and self.__height == other.height(): A_ = [] for i in range(self.__height ): A_ = [ self.__matrix[i][j] - other.component(__lowerCamelCase , __lowerCamelCase ) for j in range(self.__width ) ] matrix.append(__lowerCamelCase ) return Matrix(__lowerCamelCase , self.__width , self.__height ) else: raise Exception("""matrices must have the same dimension!""" ) @overload def __mul__( self , UpperCamelCase__ ) -> Optional[Any]: '''simple docstring''' ... @overload def __mul__( self , UpperCamelCase__ ) -> Tuple: '''simple docstring''' ... def __mul__( self , UpperCamelCase__ ) -> Optional[int]: '''simple docstring''' if isinstance(__lowerCamelCase , __lowerCamelCase ): # matrix-vector if len(__lowerCamelCase ) == self.__width: A_ = zero_vector(self.__height ) for i in range(self.__height ): A_ = [ self.__matrix[i][j] * other.component(__lowerCamelCase ) for j in range(self.__width ) ] ans.change_component(__lowerCamelCase , sum(__lowerCamelCase ) ) return ans else: raise Exception( """vector must have the same size as the """ """number of columns of the matrix!""" ) elif isinstance(__lowerCamelCase , (int, float) ): # matrix-scalar A_ = [ [self.__matrix[i][j] * other for j in range(self.__width )] for i in range(self.__height ) ] return Matrix(__lowerCamelCase , self.__width , self.__height ) return None def snake_case_ ( self ) -> Tuple: '''simple docstring''' return self.__height def snake_case_ ( self ) -> Any: '''simple docstring''' return self.__width def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ ) -> Dict: '''simple docstring''' if 0 <= x < self.__height and 0 <= y < self.__width: return self.__matrix[x][y] else: raise Exception("""change_component: indices out of bounds""" ) def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> str: '''simple docstring''' if 0 <= x < self.__height and 0 <= y < self.__width: A_ = value else: raise Exception("""change_component: indices out of bounds""" ) def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ ) -> str: '''simple docstring''' if self.__height != self.__width: raise Exception("""Matrix is not square""" ) A_ = self.__matrix[:x] + self.__matrix[x + 1 :] for i in range(len(__lowerCamelCase ) ): A_ = minor[i][:y] + minor[i][y + 1 :] return Matrix(__lowerCamelCase , self.__width - 1 , self.__height - 1 ).determinant() def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ ) -> str: '''simple docstring''' if self.__height != self.__width: raise Exception("""Matrix is not square""" ) if 0 <= x < self.__height and 0 <= y < self.__width: return (-1) ** (x + y) * self.minor(__lowerCamelCase , __lowerCamelCase ) else: raise Exception("""Indices out of bounds""" ) def snake_case_ ( self ) -> str: '''simple docstring''' if self.__height != self.__width: raise Exception("""Matrix is not square""" ) if self.__height < 1: raise Exception("""Matrix has no element""" ) elif self.__height == 1: return self.__matrix[0][0] elif self.__height == 2: return ( self.__matrix[0][0] * self.__matrix[1][1] - self.__matrix[0][1] * self.__matrix[1][0] ) else: A_ = [ self.__matrix[0][y] * self.cofactor(0 , __lowerCamelCase ) for y in range(self.__width ) ] return sum(__lowerCamelCase ) def UpperCAmelCase__ ( UpperCAmelCase__ ) -> Matrix: A_ = [[0] * n for _ in range(UpperCAmelCase__ )] return Matrix(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) -> Matrix: random.seed(UpperCAmelCase__ ) A_ = [ [random.randint(UpperCAmelCase__, UpperCAmelCase__ ) for _ in range(UpperCAmelCase__ )] for _ in range(UpperCAmelCase__ ) ] return Matrix(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ )
368
'''simple docstring''' def UpperCAmelCase__ ( UpperCAmelCase__ = 10_00 ) -> int: return sum(2 * a * ((a - 1) // 2) for a in range(3, n + 1 ) ) if __name__ == "__main__": print(solution())
101
0
"""simple docstring""" import gc import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer import diffusers from diffusers import ( AutoencoderKL, EulerDiscreteScheduler, StableDiffusionLatentUpscalePipeline, StableDiffusionPipeline, UNetaDConditionModel, ) from diffusers.schedulers import KarrasDiffusionSchedulers from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() def _snake_case ( snake_case__ : Union[str, Any] ): A = [tensor.shape for tensor in tensor_list] return all(shape == shapes[0] for shape in shapes[1:] ) class lowerCAmelCase_ ( _lowercase , _lowercase , _lowercase , unittest.TestCase ): '''simple docstring''' _lowerCamelCase: Any = StableDiffusionLatentUpscalePipeline _lowerCamelCase: Dict = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - { '''height''', '''width''', '''cross_attention_kwargs''', '''negative_prompt_embeds''', '''prompt_embeds''', } _lowerCamelCase: List[str] = PipelineTesterMixin.required_optional_params - {'''num_images_per_prompt'''} _lowerCamelCase: int = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS _lowerCamelCase: Union[str, Any] = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess _lowerCamelCase: Optional[int] = frozenset([] ) _lowerCamelCase: Tuple = True @property def _SCREAMING_SNAKE_CASE ( self : str ) -> str: A = 1 A = 4 A = (16, 16) A = floats_tensor((batch_size, num_channels) + sizes ,rng=random.Random(0 ) ).to(A_ ) return image def _SCREAMING_SNAKE_CASE ( self : int ) -> str: torch.manual_seed(0 ) A = UNetaDConditionModel( act_fn='gelu' ,attention_head_dim=8 ,norm_num_groups=A_ ,block_out_channels=[32, 32, 64, 64] ,time_cond_proj_dim=160 ,conv_in_kernel=1 ,conv_out_kernel=1 ,cross_attention_dim=32 ,down_block_types=( 'KDownBlock2D', 'KCrossAttnDownBlock2D', 'KCrossAttnDownBlock2D', 'KCrossAttnDownBlock2D', ) ,in_channels=8 ,mid_block_type=A_ ,only_cross_attention=A_ ,out_channels=5 ,resnet_time_scale_shift='scale_shift' ,time_embedding_type='fourier' ,timestep_post_act='gelu' ,up_block_types=('KCrossAttnUpBlock2D', 'KCrossAttnUpBlock2D', 'KCrossAttnUpBlock2D', 'KUpBlock2D') ,) A = AutoencoderKL( block_out_channels=[32, 32, 64, 64] ,in_channels=3 ,out_channels=3 ,down_block_types=[ 'DownEncoderBlock2D', 'DownEncoderBlock2D', 'DownEncoderBlock2D', 'DownEncoderBlock2D', ] ,up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D', 'UpDecoderBlock2D', 'UpDecoderBlock2D'] ,latent_channels=4 ,) A = EulerDiscreteScheduler(prediction_type='sample' ) A = CLIPTextConfig( bos_token_id=0 ,eos_token_id=2 ,hidden_size=32 ,intermediate_size=37 ,layer_norm_eps=1e-05 ,num_attention_heads=4 ,num_hidden_layers=5 ,pad_token_id=1 ,vocab_size=1000 ,hidden_act='quick_gelu' ,projection_dim=512 ,) A = CLIPTextModel(A_ ) A = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) A = { 'unet': model.eval(), 'vae': vae.eval(), 'scheduler': scheduler, 'text_encoder': text_encoder, 'tokenizer': tokenizer, } return components def _SCREAMING_SNAKE_CASE ( self : Any ,A_ : Optional[int] ,A_ : Union[str, Any]=0 ) -> List[Any]: if str(A_ ).startswith('mps' ): A = torch.manual_seed(A_ ) else: A = torch.Generator(device=A_ ).manual_seed(A_ ) A = { 'prompt': 'A painting of a squirrel eating a burger', 'image': self.dummy_image.cpu(), 'generator': generator, 'num_inference_steps': 2, 'output_type': 'numpy', } return inputs def _SCREAMING_SNAKE_CASE ( self : Dict ) -> str: A = 'cpu' A = self.get_dummy_components() A = self.pipeline_class(**A_ ) pipe.to(A_ ) pipe.set_progress_bar_config(disable=A_ ) A = self.get_dummy_inputs(A_ ) A = pipe(**A_ ).images A = image[0, -3:, -3:, -1] self.assertEqual(image.shape ,(1, 256, 256, 3) ) A = np.array( [0.47_22_24_12, 0.41_92_16_33, 0.44_71_74_34, 0.46_87_41_92, 0.42_58_82_58, 0.46_15_07_26, 0.4_67_75_34, 0.45_58_38_32, 0.48_57_90_55] ) A = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(A_ ,1e-3 ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Any: super().test_attention_slicing_forward_pass(expected_max_diff=7e-3 ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Optional[Any]: super().test_cpu_offload_forward_pass(expected_max_diff=3e-3 ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Dict: super().test_dict_tuple_outputs_equivalent(expected_max_difference=3e-3 ) def _SCREAMING_SNAKE_CASE ( self : int ) -> Optional[int]: super().test_inference_batch_single_identical(expected_max_diff=7e-3 ) def _SCREAMING_SNAKE_CASE ( self : str ) -> Dict: super().test_pt_np_pil_outputs_equivalent(expected_max_diff=3e-3 ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Any: super().test_save_load_local(expected_max_difference=3e-3 ) def _SCREAMING_SNAKE_CASE ( self : str ) -> Dict: super().test_save_load_optional_components(expected_max_difference=3e-3 ) def _SCREAMING_SNAKE_CASE ( self : Dict ) -> Any: A = [ 'DDIMScheduler', 'DDPMScheduler', 'PNDMScheduler', 'HeunDiscreteScheduler', 'EulerAncestralDiscreteScheduler', 'KDPM2DiscreteScheduler', 'KDPM2AncestralDiscreteScheduler', 'DPMSolverSDEScheduler', ] A = self.get_dummy_components() A = self.pipeline_class(**A_ ) # make sure that PNDM does not need warm-up pipe.scheduler.register_to_config(skip_prk_steps=A_ ) pipe.to(A_ ) pipe.set_progress_bar_config(disable=A_ ) A = self.get_dummy_inputs(A_ ) A = 2 A = [] for scheduler_enum in KarrasDiffusionSchedulers: if scheduler_enum.name in skip_schedulers: # no sigma schedulers are not supported # no schedulers continue A = getattr(A_ ,scheduler_enum.name ) A = scheduler_cls.from_config(pipe.scheduler.config ) A = pipe(**A_ )[0] outputs.append(A_ ) assert check_same_shape(A_ ) @require_torch_gpu @slow class lowerCAmelCase_ ( unittest.TestCase ): '''simple docstring''' def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> int: super().tearDown() gc.collect() torch.cuda.empty_cache() def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> int: A = torch.manual_seed(33 ) A = StableDiffusionPipeline.from_pretrained('CompVis/stable-diffusion-v1-4' ,torch_dtype=torch.floataa ) pipe.to('cuda' ) A = StableDiffusionLatentUpscalePipeline.from_pretrained( 'stabilityai/sd-x2-latent-upscaler' ,torch_dtype=torch.floataa ) upscaler.to('cuda' ) A = 'a photo of an astronaut high resolution, unreal engine, ultra realistic' A = pipe(A_ ,generator=A_ ,output_type='latent' ).images A = upscaler( prompt=A_ ,image=A_ ,num_inference_steps=20 ,guidance_scale=0 ,generator=A_ ,output_type='np' ,).images[0] A = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/astronaut_1024.npy' ) assert np.abs((expected_image - image).mean() ) < 5e-2 def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> Optional[Any]: A = torch.manual_seed(33 ) A = StableDiffusionLatentUpscalePipeline.from_pretrained( 'stabilityai/sd-x2-latent-upscaler' ,torch_dtype=torch.floataa ) upscaler.to('cuda' ) A = 'the temple of fire by Ross Tran and Gerardo Dottori, oil on canvas' A = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/fire_temple_512.png' ) A = upscaler( prompt=A_ ,image=A_ ,num_inference_steps=20 ,guidance_scale=0 ,generator=A_ ,output_type='np' ,).images[0] A = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/fire_temple_1024.npy' ) assert np.abs((expected_image - image).max() ) < 5e-2
74
from __future__ import absolute_import, division, print_function, unicode_literals from torch import nn from torch.nn import CrossEntropyLoss, MSELoss from transformers import RobertaConfig from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward from transformers.models.roberta.modeling_roberta import ( ROBERTA_INPUTS_DOCSTRING, ROBERTA_START_DOCSTRING, RobertaEmbeddings, ) from .modeling_highway_bert import BertPreTrainedModel, DeeBertModel, HighwayException, entropy @add_start_docstrings( 'The RoBERTa Model transformer with early exiting (DeeRoBERTa). ' , a , ) class UpperCAmelCase_ ( a): lowerCamelCase__ = RobertaConfig lowerCamelCase__ = 'roberta' def __init__( self, __a): '''simple docstring''' super().__init__(__a) _lowerCAmelCase : Optional[Any] = RobertaEmbeddings(__a) self.init_weights() @add_start_docstrings( 'RoBERTa Model (with early exiting - DeeRoBERTa) with a classifier on top,\n also takes care of multi-layer training. ' , a , ) class UpperCAmelCase_ ( a): lowerCamelCase__ = RobertaConfig lowerCamelCase__ = 'roberta' def __init__( self, __a): '''simple docstring''' super().__init__(__a) _lowerCAmelCase : Optional[int] = config.num_labels _lowerCAmelCase : Optional[int] = config.num_hidden_layers _lowerCAmelCase : Optional[int] = DeeRobertaModel(__a) _lowerCAmelCase : Union[str, Any] = nn.Dropout(config.hidden_dropout_prob) _lowerCAmelCase : List[str] = nn.Linear(config.hidden_size, self.config.num_labels) @add_start_docstrings_to_model_forward(__a) def snake_case__ ( self, __a=None, __a=None, __a=None, __a=None, __a=None, __a=None, __a=None, __a=-1, __a=False, ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = self.num_layers try: _lowerCAmelCase : List[Any] = self.roberta( __a, attention_mask=__a, token_type_ids=__a, position_ids=__a, head_mask=__a, inputs_embeds=__a, ) _lowerCAmelCase : List[Any] = outputs[1] _lowerCAmelCase : Dict = self.dropout(__a) _lowerCAmelCase : Dict = self.classifier(__a) _lowerCAmelCase : Optional[Any] = (logits,) + outputs[2:] # add hidden states and attention if they are here except HighwayException as e: _lowerCAmelCase : Tuple = e.message _lowerCAmelCase : Union[str, Any] = e.exit_layer _lowerCAmelCase : List[Any] = outputs[0] if not self.training: _lowerCAmelCase : int = entropy(__a) _lowerCAmelCase : List[Any] = [] _lowerCAmelCase : str = [] if labels is not None: if self.num_labels == 1: # We are doing regression _lowerCAmelCase : Optional[Any] = MSELoss() _lowerCAmelCase : int = loss_fct(logits.view(-1), labels.view(-1)) else: _lowerCAmelCase : Optional[Any] = CrossEntropyLoss() _lowerCAmelCase : Optional[Any] = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) # work with highway exits _lowerCAmelCase : Optional[int] = [] for highway_exit in outputs[-1]: _lowerCAmelCase : Any = highway_exit[0] if not self.training: highway_logits_all.append(__a) highway_entropy.append(highway_exit[2]) if self.num_labels == 1: # We are doing regression _lowerCAmelCase : List[str] = MSELoss() _lowerCAmelCase : List[Any] = loss_fct(highway_logits.view(-1), labels.view(-1)) else: _lowerCAmelCase : Dict = CrossEntropyLoss() _lowerCAmelCase : Optional[Any] = loss_fct(highway_logits.view(-1, self.num_labels), labels.view(-1)) highway_losses.append(__a) if train_highway: _lowerCAmelCase : int = (sum(highway_losses[:-1]),) + outputs # exclude the final highway, of course else: _lowerCAmelCase : Any = (loss,) + outputs if not self.training: _lowerCAmelCase : Optional[Any] = outputs + ((original_entropy, highway_entropy), exit_layer) if output_layer >= 0: _lowerCAmelCase : Optional[Any] = ( (outputs[0],) + (highway_logits_all[output_layer],) + outputs[2:] ) # use the highway of the last layer return outputs # (loss), logits, (hidden_states), (attentions), entropy
36
0
'''simple docstring''' import os import tempfile from functools import partial from unittest import TestCase from unittest.mock import patch import datasets import datasets.config from .utils import require_beam class UpperCAmelCase__ ( datasets.BeamBasedBuilder): def __lowerCamelCase ( self ) -> Tuple: return datasets.DatasetInfo( features=datasets.Features({"""content""": datasets.Value("""string""" )} ) , supervised_keys=lowercase , ) def __lowerCamelCase ( self , lowercase , lowercase ) -> Optional[Any]: return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"""examples""": get_test_dummy_examples()} )] def __lowerCamelCase ( self , lowercase , lowercase ) -> Tuple: import apache_beam as beam return pipeline | "Load Examples" >> beam.Create(lowercase ) class UpperCAmelCase__ ( datasets.BeamBasedBuilder): def __lowerCamelCase ( self ) -> List[str]: return datasets.DatasetInfo( features=datasets.Features({"""a""": datasets.Sequence({"""b""": datasets.Value("""string""" )} )} ) , supervised_keys=lowercase , ) def __lowerCamelCase ( self , lowercase , lowercase ) -> List[str]: return [ datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"""examples""": get_test_nested_examples()} ) ] def __lowerCamelCase ( self , lowercase , lowercase ) -> str: import apache_beam as beam return pipeline | "Load Examples" >> beam.Create(lowercase ) def _lowercase ( ): '''simple docstring''' return [(i, {"content": content}) for i, content in enumerate(["""foo""", """bar""", """foobar"""] )] def _lowercase ( ): '''simple docstring''' return [(i, {"a": {"b": [content]}}) for i, content in enumerate(["""foo""", """bar""", """foobar"""] )] class UpperCAmelCase__ ( UpperCAmelCase_): @require_beam def __lowerCamelCase ( self ) -> Union[str, Any]: __UpperCamelCase = len(get_test_dummy_examples() ) with tempfile.TemporaryDirectory() as tmp_cache_dir: __UpperCamelCase = DummyBeamDataset(cache_dir=lowercase , beam_runner="""DirectRunner""" ) builder.download_and_prepare() self.assertTrue( os.path.exists( os.path.join(lowercase , builder.name , """default""" , """0.0.0""" , f"{builder.name}-train.arrow" ) ) ) self.assertDictEqual(builder.info.features , datasets.Features({"""content""": datasets.Value("""string""" )} ) ) __UpperCamelCase = builder.as_dataset() self.assertEqual(dset["""train"""].num_rows , lowercase ) self.assertEqual(dset["""train"""].info.splits["""train"""].num_examples , lowercase ) self.assertDictEqual(dset["""train"""][0] , get_test_dummy_examples()[0][1] ) self.assertDictEqual( dset["""train"""][expected_num_examples - 1] , get_test_dummy_examples()[expected_num_examples - 1][1] ) self.assertTrue( os.path.exists(os.path.join(lowercase , builder.name , """default""" , """0.0.0""" , """dataset_info.json""" ) ) ) del dset @require_beam def __lowerCamelCase ( self ) -> Dict: import apache_beam as beam __UpperCamelCase = beam.io.parquetio.WriteToParquet __UpperCamelCase = len(get_test_dummy_examples() ) with tempfile.TemporaryDirectory() as tmp_cache_dir: __UpperCamelCase = DummyBeamDataset(cache_dir=lowercase , beam_runner="""DirectRunner""" ) with patch("""apache_beam.io.parquetio.WriteToParquet""" ) as write_parquet_mock: __UpperCamelCase = partial(lowercase , num_shards=2 ) builder.download_and_prepare() self.assertTrue( os.path.exists( os.path.join( lowercase , builder.name , """default""" , """0.0.0""" , f"{builder.name}-train-00000-of-00002.arrow" ) ) ) self.assertTrue( os.path.exists( os.path.join( lowercase , builder.name , """default""" , """0.0.0""" , f"{builder.name}-train-00000-of-00002.arrow" ) ) ) self.assertDictEqual(builder.info.features , datasets.Features({"""content""": datasets.Value("""string""" )} ) ) __UpperCamelCase = builder.as_dataset() self.assertEqual(dset["""train"""].num_rows , lowercase ) self.assertEqual(dset["""train"""].info.splits["""train"""].num_examples , lowercase ) # Order is not preserved when sharding, so we just check that all the elements are there self.assertListEqual(sorted(dset["""train"""]["""content"""] ) , sorted(["""foo""", """bar""", """foobar"""] ) ) self.assertTrue( os.path.exists(os.path.join(lowercase , builder.name , """default""" , """0.0.0""" , """dataset_info.json""" ) ) ) del dset @require_beam def __lowerCamelCase ( self ) -> int: with tempfile.TemporaryDirectory() as tmp_cache_dir: __UpperCamelCase = DummyBeamDataset(cache_dir=lowercase ) self.assertRaises(datasets.builder.MissingBeamOptions , builder.download_and_prepare ) @require_beam def __lowerCamelCase ( self ) -> Dict: __UpperCamelCase = len(get_test_nested_examples() ) with tempfile.TemporaryDirectory() as tmp_cache_dir: __UpperCamelCase = NestedBeamDataset(cache_dir=lowercase , beam_runner="""DirectRunner""" ) builder.download_and_prepare() self.assertTrue( os.path.exists( os.path.join(lowercase , builder.name , """default""" , """0.0.0""" , f"{builder.name}-train.arrow" ) ) ) self.assertDictEqual( builder.info.features , datasets.Features({"""a""": datasets.Sequence({"""b""": datasets.Value("""string""" )} )} ) ) __UpperCamelCase = builder.as_dataset() self.assertEqual(dset["""train"""].num_rows , lowercase ) self.assertEqual(dset["""train"""].info.splits["""train"""].num_examples , lowercase ) self.assertDictEqual(dset["""train"""][0] , get_test_nested_examples()[0][1] ) self.assertDictEqual( dset["""train"""][expected_num_examples - 1] , get_test_nested_examples()[expected_num_examples - 1][1] ) self.assertTrue( os.path.exists(os.path.join(lowercase , builder.name , """default""" , """0.0.0""" , """dataset_info.json""" ) ) ) del dset
243
'''simple docstring''' import csv import tweepy # Twitter API credentials a__ : Dict = '' a__ : List[str] = '' a__ : Optional[Any] = '' a__ : Any = '' def _lowercase ( __A ): '''simple docstring''' __UpperCamelCase = tweepy.OAuthHandler(__A ,__A ) auth.set_access_token(__A ,__A ) __UpperCamelCase = tweepy.API(__A ) # initialize a list to hold all the tweepy Tweets __UpperCamelCase = [] # make initial request for most recent tweets (200 is the maximum allowed count) __UpperCamelCase = api.user_timeline(screen_name=__A ,count=200 ) # save most recent tweets alltweets.extend(__A ) # save the id of the oldest tweet less one __UpperCamelCase = alltweets[-1].id - 1 # keep grabbing tweets until there are no tweets left to grab while len(__A ) > 0: print(f"getting tweets before {oldest}" ) # all subsequent requests use the max_id param to prevent duplicates __UpperCamelCase = api.user_timeline( screen_name=__A ,count=200 ,max_id=__A ) # save most recent tweets alltweets.extend(__A ) # update the id of the oldest tweet less one __UpperCamelCase = alltweets[-1].id - 1 print(f"...{len(__A )} tweets downloaded so far" ) # transform the tweepy tweets into a 2D array that will populate the csv __UpperCamelCase = [[tweet.id_str, tweet.created_at, tweet.text] for tweet in alltweets] # write the csv with open(f"new_{screen_name}_tweets.csv" ,"""w""" ) as f: __UpperCamelCase = csv.writer(__A ) writer.writerow(["""id""", """created_at""", """text"""] ) writer.writerows(__A ) if __name__ == "__main__": # pass in the username of the account you want to download get_all_tweets('FirePing32')
243
1
'''simple docstring''' from .testing import ( are_the_same_tensors, execute_subprocess_async, require_bnb, require_cpu, require_cuda, require_huggingface_suite, require_mps, require_multi_gpu, require_multi_xpu, require_safetensors, require_single_gpu, require_single_xpu, require_torch_min_version, require_tpu, require_xpu, skip, slow, ) from .training import RegressionDataset, RegressionModel, RegressionModelaXPU from .scripts import test_script, test_sync, test_ops # isort: skip
168
'''simple docstring''' # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.whisper import WhisperForConditionalGeneration, WhisperProcessor from .base import PipelineTool class a ( _SCREAMING_SNAKE_CASE ): _lowerCAmelCase = """openai/whisper-base""" _lowerCAmelCase = ( """This is a tool that transcribes an audio into text. It takes an input named `audio` and returns the """ """transcribed text.""" ) _lowerCAmelCase = """transcriber""" _lowerCAmelCase = WhisperProcessor _lowerCAmelCase = WhisperForConditionalGeneration _lowerCAmelCase = ["""audio"""] _lowerCAmelCase = ["""text"""] def __UpperCAmelCase ( self , __magic_name__ ) -> Union[str, Any]: return self.pre_processor(__magic_name__ , return_tensors='pt' ).input_features def __UpperCAmelCase ( self , __magic_name__ ) -> Any: return self.model.generate(inputs=__magic_name__ ) def __UpperCAmelCase ( self , __magic_name__ ) -> List[str]: return self.pre_processor.batch_decode(__magic_name__ , skip_special_tokens=__magic_name__ )[0]
168
1
'''simple docstring''' import unittest from transformers import is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow if is_torch_available(): import torch from transformers import XLMRobertaModel @require_sentencepiece @require_tokenizers @require_torch class a__ ( unittest.TestCase ): '''simple docstring''' @slow def __SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: lowerCAmelCase__ = XLMRobertaModel.from_pretrained('''xlm-roberta-base''' ) lowerCAmelCase__ = torch.tensor([[0, 5_81, 1_02_69, 83, 9_99_42, 1_36, 6_07_42, 23, 70, 8_05_83, 1_82_76, 2]] ) # The dog is cute and lives in the garden house lowerCAmelCase__ = torch.Size((1, 12, 7_68) ) # batch_size, sequence_length, embedding_vector_dim lowerCAmelCase__ = torch.tensor( [[-0.0_101, 0.1_218, -0.0_803, 0.0_801, 0.1_327, 0.0_776, -0.1_215, 0.2_383, 0.3_338, 0.3_106, 0.0_300, 0.0_252]] ) # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.eval() # expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1] with torch.no_grad(): lowerCAmelCase__ = model(lowerCamelCase_ )['''last_hidden_state'''].detach() self.assertEqual(output.shape , lowerCamelCase_ ) # compare the actual values for a slice of last dim self.assertTrue(torch.allclose(output[:, :, -1] , lowerCamelCase_ , atol=1e-3 ) ) @slow def __SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: lowerCAmelCase__ = XLMRobertaModel.from_pretrained('''xlm-roberta-large''' ) lowerCAmelCase__ = torch.tensor([[0, 5_81, 1_02_69, 83, 9_99_42, 1_36, 6_07_42, 23, 70, 8_05_83, 1_82_76, 2]] ) # The dog is cute and lives in the garden house lowerCAmelCase__ = torch.Size((1, 12, 10_24) ) # batch_size, sequence_length, embedding_vector_dim lowerCAmelCase__ = torch.tensor( [[-0.0_699, -0.0_318, 0.0_705, -0.1_241, 0.0_999, -0.0_520, 0.1_004, -0.1_838, -0.4_704, 0.1_437, 0.0_821, 0.0_126]] ) # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.large') # xlmr.eval() # expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1] with torch.no_grad(): lowerCAmelCase__ = model(lowerCamelCase_ )['''last_hidden_state'''].detach() self.assertEqual(output.shape , lowerCamelCase_ ) # compare the actual values for a slice of last dim self.assertTrue(torch.allclose(output[:, :, -1] , lowerCamelCase_ , atol=1e-3 ) )
365
'''simple docstring''' import argparse import json import subprocess def _snake_case ( A , A ) -> Tuple: lowerCAmelCase__ = [] lowerCAmelCase__ = ( F"""curl -H \"Accept: application/vnd.github+json\" -H \"Authorization: Bearer {token}\"""" ''' https://api.github.com/repos/huggingface/transformers/actions/runners''' ) lowerCAmelCase__ = subprocess.run(A , shell=A , stdout=subprocess.PIPE ) lowerCAmelCase__ = output.stdout.decode('''utf-8''' ) lowerCAmelCase__ = json.loads(A ) lowerCAmelCase__ = status['''runners'''] for runner in runners: if runner["name"] in target_runners: if runner["status"] == "offline": offline_runners.append(A ) # save the result so we can report them on Slack with open('''offline_runners.txt''' , '''w''' ) as fp: fp.write(json.dumps(A ) ) if len(A ) > 0: lowerCAmelCase__ = '''\n'''.join([x['''name'''] for x in offline_runners] ) raise ValueError(F"""The following runners are offline:\n{failed}""" ) if __name__ == "__main__": def _snake_case ( A ) -> Optional[Any]: return values.split(''',''' ) __UpperCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--target_runners''', default=None, type=list_str, required=True, help='''Comma-separated list of runners to check status.''', ) parser.add_argument( '''--token''', default=None, type=str, required=True, help='''A token that has actions:read permission.''' ) __UpperCAmelCase = parser.parse_args() get_runner_status(args.target_runners, args.token)
228
0
'''simple docstring''' import argparse import json import os import sys import tempfile import unittest from argparse import Namespace from dataclasses import dataclass, field from enum import Enum from pathlib import Path from typing import List, Literal, Optional import yaml from transformers import HfArgumentParser, TrainingArguments from transformers.hf_argparser import make_choice_type_function, string_to_bool # Since Python 3.10, we can use the builtin `|` operator for Union types # See PEP 604: https://peps.python.org/pep-0604 a__ : Any = sys.version_info >= (3, 1_0) def _UpperCamelCase ( __A=None , __A=None ) -> Optional[int]: '''simple docstring''' return field(default_factory=lambda: default , metadata=__A ) @dataclass class lowercase_ : __UpperCAmelCase = 42 __UpperCAmelCase = 42 __UpperCAmelCase = 42 __UpperCAmelCase = 42 @dataclass class lowercase_ : __UpperCAmelCase = 42 __UpperCAmelCase = field(default='toto' , metadata={'help': 'help message'} ) @dataclass class lowercase_ : __UpperCAmelCase = False __UpperCAmelCase = True __UpperCAmelCase = None class lowercase_ ( a__ ): __UpperCAmelCase = 'titi' __UpperCAmelCase = 'toto' class lowercase_ ( a__ ): __UpperCAmelCase = 'titi' __UpperCAmelCase = 'toto' __UpperCAmelCase = 42 @dataclass class lowercase_ : __UpperCAmelCase = "toto" def __a ( self ): UpperCamelCase__ = BasicEnum(self.foo ) @dataclass class lowercase_ : __UpperCAmelCase = "toto" def __a ( self ): UpperCamelCase__ = MixedTypeEnum(self.foo ) @dataclass class lowercase_ : __UpperCAmelCase = None __UpperCAmelCase = field(default=a__ , metadata={'help': 'help message'} ) __UpperCAmelCase = None __UpperCAmelCase = list_field(default=[] ) __UpperCAmelCase = list_field(default=[] ) @dataclass class lowercase_ : __UpperCAmelCase = list_field(default=[] ) __UpperCAmelCase = list_field(default=[1, 2, 3] ) __UpperCAmelCase = list_field(default=['Hallo', 'Bonjour', 'Hello'] ) __UpperCAmelCase = list_field(default=[0.1, 0.2, 0.3] ) @dataclass class lowercase_ : __UpperCAmelCase = field() __UpperCAmelCase = field() __UpperCAmelCase = field() def __a ( self ): UpperCamelCase__ = BasicEnum(self.required_enum ) @dataclass class lowercase_ : __UpperCAmelCase = 42 __UpperCAmelCase = field() __UpperCAmelCase = None __UpperCAmelCase = field(default='toto' , metadata={'help': 'help message'} ) __UpperCAmelCase = list_field(default=['Hallo', 'Bonjour', 'Hello'] ) if is_python_no_less_than_3_10: @dataclass class lowercase_ : __UpperCAmelCase = False __UpperCAmelCase = True __UpperCAmelCase = None @dataclass class lowercase_ : __UpperCAmelCase = None __UpperCAmelCase = field(default=a__ , metadata={'help': 'help message'} ) __UpperCAmelCase = None __UpperCAmelCase = list_field(default=[] ) __UpperCAmelCase = list_field(default=[] ) class lowercase_ ( unittest.TestCase ): def __a ( self , a , a ): self.assertEqual(len(a._actions ) , len(b._actions ) ) for x, y in zip(a._actions , b._actions ): UpperCamelCase__ = {k: v for k, v in vars(a ).items() if k != "container"} UpperCamelCase__ = {k: v for k, v in vars(a ).items() if k != "container"} # Choices with mixed type have custom function as "type" # So we need to compare results directly for equality if xx.get("choices" , a ) and yy.get("choices" , a ): for expected_choice in yy["choices"] + xx["choices"]: self.assertEqual(xx["type"](a ) , yy["type"](a ) ) del xx["type"], yy["type"] self.assertEqual(a , a ) def __a ( self ): UpperCamelCase__ = HfArgumentParser(a ) UpperCamelCase__ = argparse.ArgumentParser() expected.add_argument("--foo" , type=a , required=a ) expected.add_argument("--bar" , type=a , required=a ) expected.add_argument("--baz" , type=a , required=a ) expected.add_argument("--flag" , type=a , default=a , const=a , nargs="?" ) self.argparsersEqual(a , a ) UpperCamelCase__ = ["--foo", "1", "--baz", "quux", "--bar", "0.5"] ((UpperCamelCase__) , ) = parser.parse_args_into_dataclasses(a , look_for_args_file=a ) self.assertFalse(example.flag ) def __a ( self ): UpperCamelCase__ = HfArgumentParser(a ) UpperCamelCase__ = argparse.ArgumentParser() expected.add_argument("--foo" , default=42 , type=a ) expected.add_argument("--baz" , default="toto" , type=a , help="help message" ) self.argparsersEqual(a , a ) def __a ( self ): UpperCamelCase__ = argparse.ArgumentParser() expected.add_argument("--foo" , type=a , default=a , const=a , nargs="?" ) expected.add_argument("--baz" , type=a , default=a , const=a , nargs="?" ) # A boolean no_* argument always has to come after its "default: True" regular counter-part # and its default must be set to False expected.add_argument("--no_baz" , action="store_false" , default=a , dest="baz" ) expected.add_argument("--opt" , type=a , default=a ) UpperCamelCase__ = [WithDefaultBoolExample] if is_python_no_less_than_3_10: dataclass_types.append(a ) for dataclass_type in dataclass_types: UpperCamelCase__ = HfArgumentParser(a ) self.argparsersEqual(a , a ) UpperCamelCase__ = parser.parse_args([] ) self.assertEqual(a , Namespace(foo=a , baz=a , opt=a ) ) UpperCamelCase__ = parser.parse_args(["--foo", "--no_baz"] ) self.assertEqual(a , Namespace(foo=a , baz=a , opt=a ) ) UpperCamelCase__ = parser.parse_args(["--foo", "--baz"] ) self.assertEqual(a , Namespace(foo=a , baz=a , opt=a ) ) UpperCamelCase__ = parser.parse_args(["--foo", "True", "--baz", "True", "--opt", "True"] ) self.assertEqual(a , Namespace(foo=a , baz=a , opt=a ) ) UpperCamelCase__ = parser.parse_args(["--foo", "False", "--baz", "False", "--opt", "False"] ) self.assertEqual(a , Namespace(foo=a , baz=a , opt=a ) ) def __a ( self ): UpperCamelCase__ = HfArgumentParser(a ) UpperCamelCase__ = argparse.ArgumentParser() expected.add_argument( "--foo" , default="toto" , choices=["titi", "toto", 42] , type=make_choice_type_function(["titi", "toto", 42] ) , ) self.argparsersEqual(a , a ) UpperCamelCase__ = parser.parse_args([] ) self.assertEqual(args.foo , "toto" ) UpperCamelCase__ = parser.parse_args_into_dataclasses([] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.toto ) UpperCamelCase__ = parser.parse_args(["--foo", "titi"] ) self.assertEqual(args.foo , "titi" ) UpperCamelCase__ = parser.parse_args_into_dataclasses(["--foo", "titi"] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.titi ) UpperCamelCase__ = parser.parse_args(["--foo", "42"] ) self.assertEqual(args.foo , 42 ) UpperCamelCase__ = parser.parse_args_into_dataclasses(["--foo", "42"] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.fourtytwo ) def __a ( self ): @dataclass class lowercase_ : __UpperCAmelCase = "toto" UpperCamelCase__ = HfArgumentParser(a ) UpperCamelCase__ = argparse.ArgumentParser() expected.add_argument( "--foo" , default="toto" , choices=("titi", "toto", 42) , type=make_choice_type_function(["titi", "toto", 42] ) , ) self.argparsersEqual(a , a ) UpperCamelCase__ = parser.parse_args([] ) self.assertEqual(args.foo , "toto" ) UpperCamelCase__ = parser.parse_args(["--foo", "titi"] ) self.assertEqual(args.foo , "titi" ) UpperCamelCase__ = parser.parse_args(["--foo", "42"] ) self.assertEqual(args.foo , 42 ) def __a ( self ): UpperCamelCase__ = HfArgumentParser(a ) UpperCamelCase__ = argparse.ArgumentParser() expected.add_argument("--foo_int" , nargs="+" , default=[] , type=a ) expected.add_argument("--bar_int" , nargs="+" , default=[1, 2, 3] , type=a ) expected.add_argument("--foo_str" , nargs="+" , default=["Hallo", "Bonjour", "Hello"] , type=a ) expected.add_argument("--foo_float" , nargs="+" , default=[0.1, 0.2, 0.3] , type=a ) self.argparsersEqual(a , a ) UpperCamelCase__ = parser.parse_args([] ) self.assertEqual( a , Namespace(foo_int=[] , bar_int=[1, 2, 3] , foo_str=["Hallo", "Bonjour", "Hello"] , foo_float=[0.1, 0.2, 0.3] ) , ) UpperCamelCase__ = parser.parse_args("--foo_int 1 --bar_int 2 3 --foo_str a b c --foo_float 0.1 0.7".split() ) self.assertEqual(a , Namespace(foo_int=[1] , bar_int=[2, 3] , foo_str=["a", "b", "c"] , foo_float=[0.1, 0.7] ) ) def __a ( self ): UpperCamelCase__ = argparse.ArgumentParser() expected.add_argument("--foo" , default=a , type=a ) expected.add_argument("--bar" , default=a , type=a , help="help message" ) expected.add_argument("--baz" , default=a , type=a ) expected.add_argument("--ces" , nargs="+" , default=[] , type=a ) expected.add_argument("--des" , nargs="+" , default=[] , type=a ) UpperCamelCase__ = [OptionalExample] if is_python_no_less_than_3_10: dataclass_types.append(a ) for dataclass_type in dataclass_types: UpperCamelCase__ = HfArgumentParser(a ) self.argparsersEqual(a , a ) UpperCamelCase__ = parser.parse_args([] ) self.assertEqual(a , Namespace(foo=a , bar=a , baz=a , ces=[] , des=[] ) ) UpperCamelCase__ = parser.parse_args("--foo 12 --bar 3.14 --baz 42 --ces a b c --des 1 2 3".split() ) self.assertEqual(a , Namespace(foo=12 , bar=3.14 , baz="42" , ces=["a", "b", "c"] , des=[1, 2, 3] ) ) def __a ( self ): UpperCamelCase__ = HfArgumentParser(a ) UpperCamelCase__ = argparse.ArgumentParser() expected.add_argument("--required_list" , nargs="+" , type=a , required=a ) expected.add_argument("--required_str" , type=a , required=a ) expected.add_argument( "--required_enum" , type=make_choice_type_function(["titi", "toto"] ) , choices=["titi", "toto"] , required=a , ) self.argparsersEqual(a , a ) def __a ( self ): UpperCamelCase__ = HfArgumentParser(a ) UpperCamelCase__ = argparse.ArgumentParser() expected.add_argument("--foo" , type=a , required=a ) expected.add_argument( "--required_enum" , type=make_choice_type_function(["titi", "toto"] ) , choices=["titi", "toto"] , required=a , ) expected.add_argument("--opt" , type=a , default=a ) expected.add_argument("--baz" , default="toto" , type=a , help="help message" ) expected.add_argument("--foo_str" , nargs="+" , default=["Hallo", "Bonjour", "Hello"] , type=a ) self.argparsersEqual(a , a ) def __a ( self ): UpperCamelCase__ = HfArgumentParser(a ) UpperCamelCase__ = { "foo": 12, "bar": 3.14, "baz": "42", "flag": True, } UpperCamelCase__ = parser.parse_dict(a )[0] UpperCamelCase__ = BasicExample(**a ) self.assertEqual(a , a ) def __a ( self ): UpperCamelCase__ = HfArgumentParser(a ) UpperCamelCase__ = { "foo": 12, "bar": 3.14, "baz": "42", "flag": True, "extra": 42, } self.assertRaises(a , parser.parse_dict , a , allow_extra_keys=a ) def __a ( self ): UpperCamelCase__ = HfArgumentParser(a ) UpperCamelCase__ = { "foo": 12, "bar": 3.14, "baz": "42", "flag": True, } with tempfile.TemporaryDirectory() as tmp_dir: UpperCamelCase__ = os.path.join(a , "temp_json" ) os.mkdir(a ) with open(temp_local_path + ".json" , "w+" ) as f: json.dump(a , a ) UpperCamelCase__ = parser.parse_yaml_file(Path(temp_local_path + ".json" ) )[0] UpperCamelCase__ = BasicExample(**a ) self.assertEqual(a , a ) def __a ( self ): UpperCamelCase__ = HfArgumentParser(a ) UpperCamelCase__ = { "foo": 12, "bar": 3.14, "baz": "42", "flag": True, } with tempfile.TemporaryDirectory() as tmp_dir: UpperCamelCase__ = os.path.join(a , "temp_yaml" ) os.mkdir(a ) with open(temp_local_path + ".yaml" , "w+" ) as f: yaml.dump(a , a ) UpperCamelCase__ = parser.parse_yaml_file(Path(temp_local_path + ".yaml" ) )[0] UpperCamelCase__ = BasicExample(**a ) self.assertEqual(a , a ) def __a ( self ): UpperCamelCase__ = HfArgumentParser(a ) self.assertIsNotNone(a )
80
'''simple docstring''' def _UpperCamelCase ( __A ) -> int: '''simple docstring''' UpperCamelCase__ = 0 while num > 0: digit_sum += num % 10 num //= 10 return digit_sum def _UpperCamelCase ( __A = 100 ) -> int: '''simple docstring''' UpperCamelCase__ = 1 UpperCamelCase__ = 2 for i in range(2 , max_n + 1 ): UpperCamelCase__ = pre_numerator UpperCamelCase__ = 2 * i // 3 if i % 3 == 0 else 1 UpperCamelCase__ = cur_numerator UpperCamelCase__ = e_cont * pre_numerator + temp return sum_digits(__A ) if __name__ == "__main__": print(F"""{solution() = }""")
80
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available _UpperCAmelCase : List[Any] = { "configuration_transfo_xl": ["TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP", "TransfoXLConfig"], "tokenization_transfo_xl": ["TransfoXLCorpus", "TransfoXLTokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase : str = [ "TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST", "AdaptiveEmbedding", "TransfoXLForSequenceClassification", "TransfoXLLMHeadModel", "TransfoXLModel", "TransfoXLPreTrainedModel", "load_tf_weights_in_transfo_xl", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase : Dict = [ "TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST", "TFAdaptiveEmbedding", "TFTransfoXLForSequenceClassification", "TFTransfoXLLMHeadModel", "TFTransfoXLMainLayer", "TFTransfoXLModel", "TFTransfoXLPreTrainedModel", ] if TYPE_CHECKING: from .configuration_transfo_xl import TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP, TransfoXLConfig from .tokenization_transfo_xl import TransfoXLCorpus, TransfoXLTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_transfo_xl import ( TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST, AdaptiveEmbedding, TransfoXLForSequenceClassification, TransfoXLLMHeadModel, TransfoXLModel, TransfoXLPreTrainedModel, load_tf_weights_in_transfo_xl, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_transfo_xl import ( TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST, TFAdaptiveEmbedding, TFTransfoXLForSequenceClassification, TFTransfoXLLMHeadModel, TFTransfoXLMainLayer, TFTransfoXLModel, TFTransfoXLPreTrainedModel, ) else: import sys _UpperCAmelCase : List[str] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
158
import os import socket from contextlib import contextmanager import torch from ..commands.config.default import write_basic_config # noqa: F401 from ..state import PartialState from .dataclasses import DistributedType from .imports import is_deepspeed_available, is_tpu_available from .transformer_engine import convert_model from .versions import is_torch_version if is_deepspeed_available(): from deepspeed import DeepSpeedEngine if is_tpu_available(check_device=False): import torch_xla.core.xla_model as xm def UpperCAmelCase__ ( lowerCamelCase ): if is_torch_version("<", "2.0.0" ) or not hasattr(lowerCamelCase, "_dynamo" ): return False return isinstance(lowerCamelCase, torch._dynamo.eval_frame.OptimizedModule ) def UpperCAmelCase__ ( lowerCamelCase, lowerCamelCase = True ): lowercase :Optional[Any] = (torch.nn.parallel.DistributedDataParallel, torch.nn.DataParallel) lowercase :str = is_compiled_module(lowerCamelCase ) if is_compiled: lowercase :str = model lowercase :str = model._orig_mod if is_deepspeed_available(): options += (DeepSpeedEngine,) while isinstance(lowerCamelCase, lowerCamelCase ): lowercase :Any = model.module if not keep_fpaa_wrapper: lowercase :List[Any] = getattr(lowerCamelCase, "forward" ) lowercase :Union[str, Any] = model.__dict__.pop("_original_forward", lowerCamelCase ) if original_forward is not None: while hasattr(lowerCamelCase, "__wrapped__" ): lowercase :Tuple = forward.__wrapped__ if forward == original_forward: break lowercase :Tuple = forward if getattr(lowerCamelCase, "_converted_to_transformer_engine", lowerCamelCase ): convert_model(lowerCamelCase, to_transformer_engine=lowerCamelCase ) if is_compiled: lowercase :List[Any] = model lowercase :Optional[int] = compiled_model return model def UpperCAmelCase__ ( ): PartialState().wait_for_everyone() def UpperCAmelCase__ ( lowerCamelCase, lowerCamelCase ): if PartialState().distributed_type == DistributedType.TPU: xm.save(lowerCamelCase, lowerCamelCase ) elif PartialState().local_process_index == 0: torch.save(lowerCamelCase, lowerCamelCase ) @contextmanager def UpperCAmelCase__ ( **lowerCamelCase ): for key, value in kwargs.items(): lowercase :List[str] = str(lowerCamelCase ) yield for key in kwargs: if key.upper() in os.environ: del os.environ[key.upper()] def UpperCAmelCase__ ( lowerCamelCase ): if not hasattr(lowerCamelCase, "__qualname__" ) and not hasattr(lowerCamelCase, "__name__" ): lowercase :Optional[int] = getattr(lowerCamelCase, "__class__", lowerCamelCase ) if hasattr(lowerCamelCase, "__qualname__" ): return obj.__qualname__ if hasattr(lowerCamelCase, "__name__" ): return obj.__name__ return str(lowerCamelCase ) def UpperCAmelCase__ ( lowerCamelCase, lowerCamelCase ): for key, value in source.items(): if isinstance(lowerCamelCase, lowerCamelCase ): lowercase :Tuple = destination.setdefault(lowerCamelCase, {} ) merge_dicts(lowerCamelCase, lowerCamelCase ) else: lowercase :Optional[Any] = value return destination def UpperCAmelCase__ ( lowerCamelCase = None ): if port is None: lowercase :Tuple = 29500 with socket.socket(socket.AF_INET, socket.SOCK_STREAM ) as s: return s.connect_ex(("localhost", port) ) == 0
158
1
import math from typing import List, Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils import SchedulerMixin, SchedulerOutput class lowercase__ ( __lowerCamelCase , __lowerCamelCase ): '''simple docstring''' a : Optional[Any] = 1 @register_to_config def __init__( self, __magic_name__ = 1000, __magic_name__ = None ) -> Tuple: """simple docstring""" # set `betas`, `alphas`, `timesteps` self.set_timesteps(__magic_name__ ) # standard deviation of the initial noise distribution UpperCamelCase__ : List[Any] = 1.0 # For now we only support F-PNDM, i.e. the runge-kutta method # For more information on the algorithm please take a look at the paper: https://arxiv.org/pdf/2202.09778.pdf # mainly at formula (9), (12), (13) and the Algorithm 2. UpperCamelCase__ : Optional[int] = 4 # running values UpperCamelCase__ : Optional[Any] = [] def UpperCamelCase__ ( self, __magic_name__, __magic_name__ = None ) -> Union[str, Any]: """simple docstring""" UpperCamelCase__ : Dict = num_inference_steps UpperCamelCase__ : Tuple = torch.linspace(1, 0, num_inference_steps + 1 )[:-1] UpperCamelCase__ : Any = torch.cat([steps, torch.tensor([0.0] )] ) if self.config.trained_betas is not None: UpperCamelCase__ : Dict = torch.tensor(self.config.trained_betas, dtype=torch.floataa ) else: UpperCamelCase__ : Tuple = torch.sin(steps * math.pi / 2 ) ** 2 UpperCamelCase__ : str = (1.0 - self.betas**2) ** 0.5 UpperCamelCase__ : List[str] = (torch.atana(self.betas, self.alphas ) / math.pi * 2)[:-1] UpperCamelCase__ : int = timesteps.to(__magic_name__ ) UpperCamelCase__ : Tuple = [] def UpperCamelCase__ ( self, __magic_name__, __magic_name__, __magic_name__, __magic_name__ = True, ) -> Union[SchedulerOutput, Tuple]: """simple docstring""" if self.num_inference_steps is None: raise ValueError( '''Number of inference steps is \'None\', you need to run \'set_timesteps\' after creating the scheduler''' ) UpperCamelCase__ : str = (self.timesteps == timestep).nonzero().item() UpperCamelCase__ : int = timestep_index + 1 UpperCamelCase__ : Any = sample * self.betas[timestep_index] + model_output * self.alphas[timestep_index] self.ets.append(__magic_name__ ) if len(self.ets ) == 1: UpperCamelCase__ : Optional[Any] = self.ets[-1] elif len(self.ets ) == 2: UpperCamelCase__ : int = (3 * self.ets[-1] - self.ets[-2]) / 2 elif len(self.ets ) == 3: UpperCamelCase__ : Optional[int] = (23 * self.ets[-1] - 16 * self.ets[-2] + 5 * self.ets[-3]) / 12 else: UpperCamelCase__ : Tuple = (1 / 24) * (55 * self.ets[-1] - 59 * self.ets[-2] + 37 * self.ets[-3] - 9 * self.ets[-4]) UpperCamelCase__ : Optional[int] = self._get_prev_sample(__magic_name__, __magic_name__, __magic_name__, __magic_name__ ) if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=__magic_name__ ) def UpperCamelCase__ ( self, __magic_name__, *__magic_name__, **__magic_name__ ) -> torch.FloatTensor: """simple docstring""" return sample def UpperCamelCase__ ( self, __magic_name__, __magic_name__, __magic_name__, __magic_name__ ) -> Optional[int]: """simple docstring""" UpperCamelCase__ : Any = self.alphas[timestep_index] UpperCamelCase__ : Optional[int] = self.betas[timestep_index] UpperCamelCase__ : int = self.alphas[prev_timestep_index] UpperCamelCase__ : Dict = self.betas[prev_timestep_index] UpperCamelCase__ : Any = (sample - sigma * ets) / max(__magic_name__, 1E-8 ) UpperCamelCase__ : Any = next_alpha * pred + ets * next_sigma return prev_sample def __len__( self ) -> Dict: """simple docstring""" return self.config.num_train_timesteps
201
import re from pathlib import Path from unittest import TestCase import pytest @pytest.mark.integration class lowercase__ ( __lowerCamelCase ): '''simple docstring''' def UpperCamelCase__ ( self, __magic_name__ ) -> Union[str, Any]: """simple docstring""" with open(__magic_name__, encoding='''utf-8''' ) as input_file: UpperCamelCase__ : Tuple = re.compile(R'''(?!.*\b(?:encoding|rb|w|wb|w+|wb+|ab|ab+)\b)(?<=\s)(open)\((.*)\)''' ) UpperCamelCase__ : str = input_file.read() UpperCamelCase__ : List[Any] = regexp.search(__magic_name__ ) return match def UpperCamelCase__ ( self, __magic_name__ ) -> Any: """simple docstring""" with open(__magic_name__, encoding='''utf-8''' ) as input_file: UpperCamelCase__ : Dict = re.compile(R'''#[^\r\n]*print\(|\"[^\r\n]*print\(|\"\"\".*?print\(.*?\"\"\"|(print\()''', re.DOTALL ) UpperCamelCase__ : Any = input_file.read() # use `re.finditer` to handle the case where the ignored groups would be matched first by `re.search` UpperCamelCase__ : Tuple = regexp.finditer(__magic_name__ ) UpperCamelCase__ : Dict = [match for match in matches if match is not None and match.group(1 ) is not None] return matches[0] if matches else None def UpperCamelCase__ ( self ) -> List[Any]: """simple docstring""" UpperCamelCase__ : int = Path('''./datasets''' ) UpperCamelCase__ : Any = list(dataset_paths.absolute().glob('''**/*.py''' ) ) for dataset in dataset_files: if self._no_encoding_on_file_open(str(__magic_name__ ) ): raise AssertionError(f"open(...) must use utf-8 encoding in {dataset}" ) def UpperCamelCase__ ( self ) -> Dict: """simple docstring""" UpperCamelCase__ : Optional[int] = Path('''./datasets''' ) UpperCamelCase__ : Optional[Any] = list(dataset_paths.absolute().glob('''**/*.py''' ) ) for dataset in dataset_files: if self._no_print_statements(str(__magic_name__ ) ): raise AssertionError(f"print statement found in {dataset}. Use datasets.logger/logging instead." )
201
1
"""simple docstring""" from collections import OrderedDict from typing import Any, List, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { '''EleutherAI/gpt-j-6B''': '''https://huggingface.co/EleutherAI/gpt-j-6B/resolve/main/config.json''', # See all GPT-J models at https://huggingface.co/models?filter=gpt_j } class __snake_case ( _lowercase): snake_case__ : Optional[int] = "gptj" snake_case__ : Union[str, Any] = { "max_position_embeddings": "n_positions", "hidden_size": "n_embd", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self : str , __lowerCAmelCase : str=5_0_4_0_0 , __lowerCAmelCase : Optional[int]=2_0_4_8 , __lowerCAmelCase : List[str]=4_0_9_6 , __lowerCAmelCase : Dict=2_8 , __lowerCAmelCase : Any=1_6 , __lowerCAmelCase : Optional[Any]=6_4 , __lowerCAmelCase : Optional[int]=None , __lowerCAmelCase : Any="gelu_new" , __lowerCAmelCase : List[str]=0.0 , __lowerCAmelCase : Optional[int]=0.0 , __lowerCAmelCase : Optional[Any]=0.0 , __lowerCAmelCase : List[str]=1E-5 , __lowerCAmelCase : List[str]=0.02 , __lowerCAmelCase : Optional[int]=True , __lowerCAmelCase : int=5_0_2_5_6 , __lowerCAmelCase : int=5_0_2_5_6 , __lowerCAmelCase : Union[str, Any]=False , **__lowerCAmelCase : Optional[Any] , ): """simple docstring""" _lowerCamelCase : List[str] = vocab_size _lowerCamelCase : Union[str, Any] = n_positions _lowerCamelCase : int = n_embd _lowerCamelCase : Tuple = n_layer _lowerCamelCase : Any = n_head _lowerCamelCase : Optional[Any] = n_inner _lowerCamelCase : Union[str, Any] = rotary_dim _lowerCamelCase : List[Any] = activation_function _lowerCamelCase : Any = resid_pdrop _lowerCamelCase : List[str] = embd_pdrop _lowerCamelCase : Dict = attn_pdrop _lowerCamelCase : Any = layer_norm_epsilon _lowerCamelCase : List[Any] = initializer_range _lowerCamelCase : Union[str, Any] = use_cache _lowerCamelCase : Optional[int] = bos_token_id _lowerCamelCase : Any = eos_token_id super().__init__( bos_token_id=__lowerCAmelCase , eos_token_id=__lowerCAmelCase , tie_word_embeddings=__lowerCAmelCase , **__lowerCAmelCase ) class __snake_case ( _lowercase): def __init__( self : List[str] , __lowerCAmelCase : PretrainedConfig , __lowerCAmelCase : str = "default" , __lowerCAmelCase : List[PatchingSpec] = None , __lowerCAmelCase : bool = False , ): """simple docstring""" super().__init__(__lowerCAmelCase , task=__lowerCAmelCase , patching_specs=__lowerCAmelCase , use_past=__lowerCAmelCase ) if not getattr(self._config , '''pad_token_id''' , __lowerCAmelCase ): # TODO: how to do that better? _lowerCamelCase : Tuple = 0 @property def SCREAMING_SNAKE_CASE ( self : Optional[int] ): """simple docstring""" _lowerCamelCase : List[Any] = OrderedDict({'''input_ids''': {0: '''batch''', 1: '''sequence'''}} ) if self.use_past: self.fill_with_past_key_values_(__lowerCAmelCase , direction='''inputs''' ) _lowerCamelCase : Union[str, Any] = {0: '''batch''', 1: '''past_sequence + sequence'''} else: _lowerCamelCase : str = {0: '''batch''', 1: '''sequence'''} return common_inputs @property def SCREAMING_SNAKE_CASE ( self : Any ): """simple docstring""" return self._config.n_layer @property def SCREAMING_SNAKE_CASE ( self : Optional[int] ): """simple docstring""" return self._config.n_head def SCREAMING_SNAKE_CASE ( self : int , __lowerCAmelCase : PreTrainedTokenizer , __lowerCAmelCase : int = -1 , __lowerCAmelCase : int = -1 , __lowerCAmelCase : bool = False , __lowerCAmelCase : Optional[TensorType] = None , ): """simple docstring""" _lowerCamelCase : Optional[int] = super(__lowerCAmelCase , self ).generate_dummy_inputs( __lowerCAmelCase , batch_size=__lowerCAmelCase , seq_length=__lowerCAmelCase , is_pair=__lowerCAmelCase , framework=__lowerCAmelCase ) # We need to order the input in the way they appears in the forward() _lowerCamelCase : int = OrderedDict({'''input_ids''': common_inputs['''input_ids''']} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' ) else: import torch _lowerCamelCase : int = common_inputs['''input_ids'''].shape # Not using the same length for past_key_values _lowerCamelCase : Dict = seqlen + 2 _lowerCamelCase : Tuple = ( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) _lowerCamelCase : Union[str, Any] = [ (torch.zeros(__lowerCAmelCase ), torch.zeros(__lowerCAmelCase )) for _ in range(self.num_layers ) ] _lowerCamelCase : Any = common_inputs['''attention_mask'''] if self.use_past: _lowerCamelCase : Tuple = ordered_inputs['''attention_mask'''].dtype _lowerCamelCase : Union[str, Any] = torch.cat( [ordered_inputs['''attention_mask'''], torch.ones(__lowerCAmelCase , __lowerCAmelCase , dtype=__lowerCAmelCase )] , dim=1 ) return ordered_inputs @property def SCREAMING_SNAKE_CASE ( self : Tuple ): """simple docstring""" return 1_3
357
"""simple docstring""" import json import os import unittest from transformers.models.blenderbot_small.tokenization_blenderbot_small import ( VOCAB_FILES_NAMES, BlenderbotSmallTokenizer, ) from ...test_tokenization_common import TokenizerTesterMixin class __snake_case ( _lowercase , unittest.TestCase): snake_case__ : Optional[int] = BlenderbotSmallTokenizer snake_case__ : List[str] = False def SCREAMING_SNAKE_CASE ( self : Dict ): """simple docstring""" super().setUp() _lowerCamelCase : str = ['''__start__''', '''adapt''', '''act''', '''ap@@''', '''te''', '''__end__''', '''__unk__'''] _lowerCamelCase : Any = dict(zip(__lowerCAmelCase , range(len(__lowerCAmelCase ) ) ) ) _lowerCamelCase : Any = ['''#version: 0.2''', '''a p''', '''t e</w>''', '''ap t</w>''', '''a d''', '''ad apt</w>''', '''a c''', '''ac t</w>''', ''''''] _lowerCamelCase : List[str] = {'''unk_token''': '''__unk__''', '''bos_token''': '''__start__''', '''eos_token''': '''__end__'''} _lowerCamelCase : Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) _lowerCamelCase : List[str] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(__lowerCAmelCase ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(__lowerCAmelCase ) ) def SCREAMING_SNAKE_CASE ( self : Tuple , **__lowerCAmelCase : List[str] ): """simple docstring""" kwargs.update(self.special_tokens_map ) return BlenderbotSmallTokenizer.from_pretrained(self.tmpdirname , **__lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : List[Any] , __lowerCAmelCase : List[str] ): """simple docstring""" _lowerCamelCase : int = '''adapt act apte''' _lowerCamelCase : Tuple = '''adapt act apte''' return input_text, output_text def SCREAMING_SNAKE_CASE ( self : int ): """simple docstring""" _lowerCamelCase : Tuple = BlenderbotSmallTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) _lowerCamelCase : int = '''adapt act apte''' _lowerCamelCase : Optional[Any] = ['''adapt''', '''act''', '''ap@@''', '''te'''] _lowerCamelCase : Optional[Any] = tokenizer.tokenize(__lowerCAmelCase ) self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase ) _lowerCamelCase : List[Any] = [tokenizer.bos_token] + tokens + [tokenizer.eos_token] _lowerCamelCase : Dict = [0, 1, 2, 3, 4, 5] self.assertListEqual(tokenizer.convert_tokens_to_ids(__lowerCAmelCase ) , __lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : List[str] ): """simple docstring""" _lowerCamelCase : str = BlenderbotSmallTokenizer.from_pretrained('''facebook/blenderbot-90M''' ) assert tok('''sam''' ).input_ids == [1_3_8_4] _lowerCamelCase : List[str] = '''I am a small frog.''' _lowerCamelCase : str = tok([src_text] , padding=__lowerCAmelCase , truncation=__lowerCAmelCase )['''input_ids'''] _lowerCamelCase : Any = tok.batch_decode(__lowerCAmelCase , skip_special_tokens=__lowerCAmelCase , clean_up_tokenization_spaces=__lowerCAmelCase )[0] assert src_text != decoded # I wish it did! assert decoded == "i am a small frog ." def SCREAMING_SNAKE_CASE ( self : Any ): """simple docstring""" _lowerCamelCase : Union[str, Any] = BlenderbotSmallTokenizer.from_pretrained('''facebook/blenderbot-90M''' ) _lowerCamelCase : Optional[Any] = '''I am a small frog .''' _lowerCamelCase : str = '''.''' _lowerCamelCase : str = tok(__lowerCAmelCase )['''input_ids'''] _lowerCamelCase : Dict = tok(__lowerCAmelCase )['''input_ids'''] assert encoded[-1] == encoded_dot[0]
175
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _lowerCAmelCase :int = {'configuration_vit_msn': ['VIT_MSN_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ViTMSNConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase :Any = [ 'VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST', 'ViTMSNModel', 'ViTMSNForImageClassification', 'ViTMSNPreTrainedModel', ] if TYPE_CHECKING: from .configuration_vit_msn import VIT_MSN_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTMSNConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit_msn import ( VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST, ViTMSNForImageClassification, ViTMSNModel, ViTMSNPreTrainedModel, ) else: import sys _lowerCAmelCase :int = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
263
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCAmelCase :List[str] = logging.get_logger(__name__) _lowerCAmelCase :Any = { 'tiiuae/falcon-40b': 'https://huggingface.co/tiiuae/falcon-40b/resolve/main/config.json', 'tiiuae/falcon-7b': 'https://huggingface.co/tiiuae/falcon-7b/resolve/main/config.json', } class _UpperCAmelCase ( a ): '''simple docstring''' a__ ='''falcon''' a__ =['''past_key_values'''] def __init__( self , A=6_5_0_2_4 , A=4_5_4_4 , A=3_2 , A=7_1 , A=1E-5 , A=0.02 , A=True , A=0.0 , A=0.0 , A=None , A=False , A=False , A=True , A=True , A=False , A=1_1 , A=1_1 , **A , ) -> Any: _UpperCAmelCase : int = vocab_size # Backward compatibility with n_embed kwarg _UpperCAmelCase : Optional[Any] = kwargs.pop('''n_embed''' , A ) _UpperCAmelCase : int = hidden_size if n_embed is None else n_embed _UpperCAmelCase : List[str] = num_hidden_layers _UpperCAmelCase : Tuple = num_attention_heads _UpperCAmelCase : Optional[int] = layer_norm_epsilon _UpperCAmelCase : Tuple = initializer_range _UpperCAmelCase : Optional[int] = use_cache _UpperCAmelCase : Any = hidden_dropout _UpperCAmelCase : Dict = attention_dropout _UpperCAmelCase : Any = bos_token_id _UpperCAmelCase : List[Any] = eos_token_id _UpperCAmelCase : Tuple = num_attention_heads if num_kv_heads is None else num_kv_heads _UpperCAmelCase : Dict = alibi _UpperCAmelCase : Optional[int] = new_decoder_architecture _UpperCAmelCase : str = multi_query # Ignored when new_decoder_architecture is True _UpperCAmelCase : Optional[int] = parallel_attn _UpperCAmelCase : Optional[int] = bias super().__init__(bos_token_id=A , eos_token_id=A , **A ) @property def __lowerCAmelCase ( self ) -> List[str]: return self.hidden_size // self.num_attention_heads @property def __lowerCAmelCase ( self ) -> List[Any]: return not self.alibi
263
1
from __future__ import annotations def _a ( SCREAMING_SNAKE_CASE : list[int | str] ): """simple docstring""" create_state_space_tree(SCREAMING_SNAKE_CASE , [] , 0 , [0 for i in range(len(SCREAMING_SNAKE_CASE ) )] ) def _a ( SCREAMING_SNAKE_CASE : list[int | str] , SCREAMING_SNAKE_CASE : list[int | str] , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : list[int] , ): """simple docstring""" if index == len(SCREAMING_SNAKE_CASE ): print(SCREAMING_SNAKE_CASE ) return for i in range(len(SCREAMING_SNAKE_CASE ) ): if not index_used[i]: current_sequence.append(sequence[i] ) UpperCamelCase__ : Optional[Any] = True create_state_space_tree(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , index + 1 , SCREAMING_SNAKE_CASE ) current_sequence.pop() UpperCamelCase__ : Dict = False __UpperCamelCase : list[int | str] = [3, 1, 2, 4] generate_all_permutations(sequence) __UpperCamelCase : list[int | str] = ["A", "B", "C"] generate_all_permutations(sequence_a)
365
import argparse import intel_extension_for_pytorch as ipex import torch from diffusers import DPMSolverMultistepScheduler, StableDiffusionPipeline __UpperCamelCase : Optional[int] = argparse.ArgumentParser("Stable Diffusion script with intel optimization", add_help=False) parser.add_argument("--dpm", action="store_true", help="Enable DPMSolver or not") parser.add_argument("--steps", default=None, type=int, help="Num inference steps") __UpperCamelCase : Optional[int] = parser.parse_args() __UpperCamelCase : Union[str, Any] = "cpu" __UpperCamelCase : Dict = "a lovely <dicoo> in red dress and hat, in the snowly and brightly night, with many brighly buildings" __UpperCamelCase : int = "path-to-your-trained-model" __UpperCamelCase : List[str] = StableDiffusionPipeline.from_pretrained(model_id) if args.dpm: __UpperCamelCase : Optional[Any] = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config) __UpperCamelCase : Optional[Any] = pipe.to(device) # to channels last __UpperCamelCase : Tuple = pipe.unet.to(memory_format=torch.channels_last) __UpperCamelCase : Optional[int] = pipe.vae.to(memory_format=torch.channels_last) __UpperCamelCase : int = pipe.text_encoder.to(memory_format=torch.channels_last) if pipe.requires_safety_checker: __UpperCamelCase : Tuple = pipe.safety_checker.to(memory_format=torch.channels_last) # optimize with ipex __UpperCamelCase : Tuple = torch.randn(2, 4, 64, 64) __UpperCamelCase : Any = torch.rand(1) * 999 __UpperCamelCase : Any = torch.randn(2, 77, 768) __UpperCamelCase : List[Any] = (sample, timestep, encoder_hidden_status) try: __UpperCamelCase : Union[str, Any] = ipex.optimize(pipe.unet.eval(), dtype=torch.bfloataa, inplace=True, sample_input=input_example) except Exception: __UpperCamelCase : str = ipex.optimize(pipe.unet.eval(), dtype=torch.bfloataa, inplace=True) __UpperCamelCase : Tuple = ipex.optimize(pipe.vae.eval(), dtype=torch.bfloataa, inplace=True) __UpperCamelCase : str = ipex.optimize(pipe.text_encoder.eval(), dtype=torch.bfloataa, inplace=True) if pipe.requires_safety_checker: __UpperCamelCase : List[Any] = ipex.optimize(pipe.safety_checker.eval(), dtype=torch.bfloataa, inplace=True) # compute __UpperCamelCase : Optional[Any] = 666 __UpperCamelCase : int = torch.Generator(device).manual_seed(seed) __UpperCamelCase : int = {"generator": generator} if args.steps is not None: __UpperCamelCase : str = args.steps with torch.cpu.amp.autocast(enabled=True, dtype=torch.bfloataa): __UpperCamelCase : str = pipe(prompt, **generate_kwargs).images[0] # save image image.save("generated.png")
51
0
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging a_ : Optional[Any] = logging.get_logger(__name__) a_ : Dict = { "facebook/levit-128S": "https://huggingface.co/facebook/levit-128S/resolve/main/config.json", # See all LeViT models at https://huggingface.co/models?filter=levit } class _snake_case ( A__ ): _lowercase : Optional[int] = '''levit''' def __init__( self , a=224 , a=3 , a=3 , a=2 , a=1 , a=16 , a=[128, 256, 384] , a=[4, 8, 12] , a=[4, 4, 4] , a=[16, 16, 16] , a=0 , a=[2, 2, 2] , a=[2, 2, 2] , a=0.02 , **a , ) -> Any: super().__init__(**a) SCREAMING_SNAKE_CASE = image_size SCREAMING_SNAKE_CASE = num_channels SCREAMING_SNAKE_CASE = kernel_size SCREAMING_SNAKE_CASE = stride SCREAMING_SNAKE_CASE = padding SCREAMING_SNAKE_CASE = hidden_sizes SCREAMING_SNAKE_CASE = num_attention_heads SCREAMING_SNAKE_CASE = depths SCREAMING_SNAKE_CASE = key_dim SCREAMING_SNAKE_CASE = drop_path_rate SCREAMING_SNAKE_CASE = patch_size SCREAMING_SNAKE_CASE = attention_ratio SCREAMING_SNAKE_CASE = mlp_ratio SCREAMING_SNAKE_CASE = initializer_range SCREAMING_SNAKE_CASE = [ ['Subsample', key_dim[0], hidden_sizes[0] // key_dim[0], 4, 2, 2], ['Subsample', key_dim[0], hidden_sizes[1] // key_dim[0], 4, 2, 2], ] class _snake_case ( A__ ): _lowercase : str = version.parse('''1.11''' ) @property def SCREAMING_SNAKE_CASE__ ( self) -> Union[str, Any]: return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ]) @property def SCREAMING_SNAKE_CASE__ ( self) -> Union[str, Any]: return 1E-4
137
import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate # and perform gradient accumulation # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## __UpperCamelCase : Any = 16 __UpperCamelCase : Union[str, Any] = 32 def __A ( __lowerCamelCase , __lowerCamelCase = 16 ) -> List[str]: a = AutoTokenizer.from_pretrained("""bert-base-cased""" ) a = load_dataset("""glue""" , """mrpc""" ) def tokenize_function(__lowerCamelCase ): # max_length=None => use the model max length (it's actually the default) a = tokenizer(examples["""sentence1"""] , examples["""sentence2"""] , truncation=__lowerCamelCase , max_length=__lowerCamelCase ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): a = datasets.map( __lowerCamelCase , batched=__lowerCamelCase , remove_columns=["""idx""", """sentence1""", """sentence2"""] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library a = tokenized_datasets.rename_column("""label""" , """labels""" ) def collate_fn(__lowerCamelCase ): # On TPU it's best to pad everything to the same length or training will be very slow. a = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": a = 16 elif accelerator.mixed_precision != "no": a = 8 else: a = None return tokenizer.pad( __lowerCamelCase , padding="""longest""" , max_length=__lowerCamelCase , pad_to_multiple_of=__lowerCamelCase , return_tensors="""pt""" , ) # Instantiate dataloaders. a = DataLoader( tokenized_datasets["""train"""] , shuffle=__lowerCamelCase , collate_fn=__lowerCamelCase , batch_size=__lowerCamelCase ) a = DataLoader( tokenized_datasets["""validation"""] , shuffle=__lowerCamelCase , collate_fn=__lowerCamelCase , batch_size=__lowerCamelCase ) return train_dataloader, eval_dataloader # For testing only if os.environ.get("TESTING_MOCKED_DATALOADERS", None) == "1": from accelerate.test_utils.training import mocked_dataloaders __UpperCamelCase : Any = mocked_dataloaders # noqa: F811 def __A ( __lowerCamelCase , __lowerCamelCase ) -> List[str]: # For testing only if os.environ.get("""TESTING_MOCKED_DATALOADERS""" , __lowerCamelCase ) == "1": a = 2 # New Code # a = int(args.gradient_accumulation_steps ) # Initialize accelerator a = Accelerator( cpu=args.cpu , mixed_precision=args.mixed_precision , gradient_accumulation_steps=__lowerCamelCase ) if accelerator.distributed_type == DistributedType.TPU and gradient_accumulation_steps > 1: raise NotImplementedError( """Gradient accumulation on TPUs is currently not supported. Pass `gradient_accumulation_steps=1`""" ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs a = config["""lr"""] a = int(config["""num_epochs"""] ) a = int(config["""seed"""] ) a = int(config["""batch_size"""] ) a = evaluate.load("""glue""" , """mrpc""" ) set_seed(__lowerCamelCase ) a , a = get_dataloaders(__lowerCamelCase , __lowerCamelCase ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) a = AutoModelForSequenceClassification.from_pretrained("""bert-base-cased""" , return_dict=__lowerCamelCase ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). a = model.to(accelerator.device ) # Instantiate optimizer a = AdamW(params=model.parameters() , lr=__lowerCamelCase ) # Instantiate scheduler a = get_linear_schedule_with_warmup( optimizer=__lowerCamelCase , num_warmup_steps=100 , num_training_steps=(len(__lowerCamelCase ) * num_epochs) , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. a , a , a , a , a = accelerator.prepare( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) # Now we train the model for epoch in range(__lowerCamelCase ): model.train() for step, batch in enumerate(__lowerCamelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) # New code # # We use the new `accumulate` context manager to perform gradient accumulation # We also currently do not support TPUs nor advise it as bugs were found on the XLA side when running our tests. with accelerator.accumulate(__lowerCamelCase ): a = model(**__lowerCamelCase ) a = output.loss accelerator.backward(__lowerCamelCase ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(__lowerCamelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): a = model(**__lowerCamelCase ) a = outputs.logits.argmax(dim=-1 ) a , a = accelerator.gather_for_metrics((predictions, batch["""labels"""]) ) metric.add_batch( predictions=__lowerCamelCase , references=__lowerCamelCase , ) a = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f'epoch {epoch}:' , __lowerCamelCase ) def __A ( ) -> int: a = argparse.ArgumentParser(description="""Simple example of training script.""" ) parser.add_argument( """--mixed_precision""" , type=__lowerCamelCase , default=__lowerCamelCase , choices=["""no""", """fp16""", """bf16""", """fp8"""] , help="""Whether to use mixed precision. Choose""" """between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.""" """and an Nvidia Ampere GPU.""" , ) # New Code # parser.add_argument( """--gradient_accumulation_steps""" , type=__lowerCamelCase , default=1 , help="""The number of minibatches to be ran before gradients are accumulated.""" , ) parser.add_argument("""--cpu""" , action="""store_true""" , help="""If passed, will train on the CPU.""" ) a = parser.parse_args() a = {"""lr""": 2E-5, """num_epochs""": 3, """seed""": 42, """batch_size""": 16} training_function(__lowerCamelCase , __lowerCamelCase ) if __name__ == "__main__": main()
228
0
"""simple docstring""" import os import tempfile import unittest import uuid from pathlib import Path from transformers.testing_utils import get_tests_dir, require_soundfile, require_torch, require_vision from transformers.tools.agent_types import AgentAudio, AgentImage, AgentText from transformers.utils import is_soundfile_availble, is_torch_available, is_vision_available if is_torch_available(): import torch if is_soundfile_availble(): import soundfile as sf if is_vision_available(): from PIL import Image def lowerCAmelCase_( lowercase_="" ) -> str: _lowerCamelCase = tempfile.mkdtemp() return os.path.join(lowercase_ , str(uuid.uuida() ) + suffix ) @require_soundfile @require_torch class lowerCamelCase_( unittest.TestCase ): '''simple docstring''' def snake_case__ ( self ): _lowerCamelCase = torch.rand(1_2 , dtype=torch.floataa ) - 0.5 _lowerCamelCase = AgentAudio(lowerCamelCase__ ) _lowerCamelCase = str(agent_type.to_string() ) # Ensure that the tensor and the agent_type's tensor are the same self.assertTrue(torch.allclose(lowerCamelCase__ , agent_type.to_raw() , atol=1e-4 ) ) del agent_type # Ensure the path remains even after the object deletion self.assertTrue(os.path.exists(lowerCamelCase__ ) ) # Ensure that the file contains the same value as the original tensor _lowerCamelCase , _lowerCamelCase = sf.read(lowerCamelCase__ ) self.assertTrue(torch.allclose(lowerCamelCase__ , torch.tensor(lowerCamelCase__ ) , atol=1e-4 ) ) def snake_case__ ( self ): _lowerCamelCase = torch.rand(1_2 , dtype=torch.floataa ) - 0.5 _lowerCamelCase = get_new_path(suffix='''.wav''' ) sf.write(lowerCamelCase__ , lowerCamelCase__ , 1_6_0_0_0 ) _lowerCamelCase = AgentAudio(lowerCamelCase__ ) self.assertTrue(torch.allclose(lowerCamelCase__ , agent_type.to_raw() , atol=1e-4 ) ) self.assertEqual(agent_type.to_string() , lowerCamelCase__ ) @require_vision @require_torch class lowerCamelCase_( unittest.TestCase ): '''simple docstring''' def snake_case__ ( self ): _lowerCamelCase = torch.randint(0 , 2_5_6 , (6_4, 6_4, 3) ) _lowerCamelCase = AgentImage(lowerCamelCase__ ) _lowerCamelCase = str(agent_type.to_string() ) # Ensure that the tensor and the agent_type's tensor are the same self.assertTrue(torch.allclose(lowerCamelCase__ , agent_type._tensor , atol=1e-4 ) ) self.assertIsInstance(agent_type.to_raw() , Image.Image ) # Ensure the path remains even after the object deletion del agent_type self.assertTrue(os.path.exists(lowerCamelCase__ ) ) def snake_case__ ( self ): _lowerCamelCase = Path(get_tests_dir('''fixtures/tests_samples/COCO''' ) ) / '''000000039769.png''' _lowerCamelCase = Image.open(lowerCamelCase__ ) _lowerCamelCase = AgentImage(lowerCamelCase__ ) self.assertTrue(path.samefile(agent_type.to_string() ) ) self.assertTrue(image == agent_type.to_raw() ) # Ensure the path remains even after the object deletion del agent_type self.assertTrue(os.path.exists(lowerCamelCase__ ) ) def snake_case__ ( self ): _lowerCamelCase = Path(get_tests_dir('''fixtures/tests_samples/COCO''' ) ) / '''000000039769.png''' _lowerCamelCase = Image.open(lowerCamelCase__ ) _lowerCamelCase = AgentImage(lowerCamelCase__ ) self.assertFalse(path.samefile(agent_type.to_string() ) ) self.assertTrue(image == agent_type.to_raw() ) # Ensure the path remains even after the object deletion del agent_type self.assertTrue(os.path.exists(lowerCamelCase__ ) ) class lowerCamelCase_( unittest.TestCase ): '''simple docstring''' def snake_case__ ( self ): _lowerCamelCase = '''Hey!''' _lowerCamelCase = AgentText(lowerCamelCase__ ) self.assertEqual(lowerCamelCase__ , agent_type.to_string() ) self.assertEqual(lowerCamelCase__ , agent_type.to_raw() ) self.assertEqual(lowerCamelCase__ , lowerCamelCase__ )
352
"""simple docstring""" def lowerCAmelCase_( lowercase_ : List[str] ) -> Optional[Any]: _lowerCamelCase = len(lowercase_ ) while cur > 1: # Find the maximum number in arr _lowerCamelCase = arr.index(max(arr[0:cur] ) ) # Reverse from 0 to mi _lowerCamelCase = arr[mi::-1] + arr[mi + 1 : len(lowercase_ )] # Reverse whole list _lowerCamelCase = arr[cur - 1 :: -1] + arr[cur : len(lowercase_ )] cur -= 1 return arr if __name__ == "__main__": __SCREAMING_SNAKE_CASE : str = input('''Enter numbers separated by a comma:\n''').strip() __SCREAMING_SNAKE_CASE : Optional[Any] = [int(item) for item in user_input.split(''',''')] print(pancake_sort(unsorted))
73
0
from ...configuration_utils import PretrainedConfig from ...utils import logging A__ : Tuple = logging.get_logger(__name__) A__ : Any = { 's-JoL/Open-Llama-V1': 'https://huggingface.co/s-JoL/Open-Llama-V1/blob/main/config.json', } class __snake_case ( __A ): _a = '''open-llama''' def __init__( self : List[Any] , A_ : str=1_0_0_0_0_0 , A_ : List[str]=4_0_9_6 , A_ : Any=1_1_0_0_8 , A_ : List[str]=3_2 , A_ : List[str]=3_2 , A_ : List[str]="silu" , A_ : Union[str, Any]=2_0_4_8 , A_ : Dict=0.02 , A_ : Union[str, Any]=1e-6 , A_ : Union[str, Any]=True , A_ : str=0 , A_ : List[Any]=1 , A_ : List[str]=2 , A_ : str=False , A_ : Dict=True , A_ : Optional[int]=0.1 , A_ : Tuple=0.1 , A_ : Union[str, Any]=True , A_ : str=True , A_ : List[Any]=None , **A_ : List[str] , ): lowerCAmelCase_ : List[str] = vocab_size lowerCAmelCase_ : Dict = max_position_embeddings lowerCAmelCase_ : Dict = hidden_size lowerCAmelCase_ : List[Any] = intermediate_size lowerCAmelCase_ : int = num_hidden_layers lowerCAmelCase_ : Dict = num_attention_heads lowerCAmelCase_ : Any = hidden_act lowerCAmelCase_ : int = initializer_range lowerCAmelCase_ : Dict = rms_norm_eps lowerCAmelCase_ : Optional[Any] = use_cache lowerCAmelCase_ : int = kwargs.pop( '''use_memorry_efficient_attention''' , _lowerCamelCase) lowerCAmelCase_ : Dict = hidden_dropout_prob lowerCAmelCase_ : Optional[Any] = attention_dropout_prob lowerCAmelCase_ : Optional[int] = use_stable_embedding lowerCAmelCase_ : List[Any] = shared_input_output_embedding lowerCAmelCase_ : int = rope_scaling self._rope_scaling_validation() super().__init__( pad_token_id=_lowerCamelCase , bos_token_id=_lowerCamelCase , eos_token_id=_lowerCamelCase , tie_word_embeddings=_lowerCamelCase , **_lowerCamelCase , ) def UpperCAmelCase__ ( self : Optional[int]): if self.rope_scaling is None: return if not isinstance(self.rope_scaling , _lowerCamelCase) or len(self.rope_scaling) != 2: raise ValueError( '''`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, ''' F"""got {self.rope_scaling}""") lowerCAmelCase_ : List[Any] = self.rope_scaling.get('''type''' , _lowerCamelCase) lowerCAmelCase_ : Union[str, Any] = self.rope_scaling.get('''factor''' , _lowerCamelCase) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( F"""`rope_scaling`'s name field must be one of ['linear', 'dynamic'], got {rope_scaling_type}""") if rope_scaling_factor is None or not isinstance(_lowerCamelCase , _lowerCamelCase) or rope_scaling_factor <= 1.0: raise ValueError(F"""`rope_scaling`'s factor field must be an float > 1, got {rope_scaling_factor}""")
103
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, is_vision_available, ) UpperCamelCase__ : int = {'processing_layoutxlm': ['LayoutXLMProcessor']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ : Tuple = ['LayoutXLMTokenizer'] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ : List[Any] = ['LayoutXLMTokenizerFast'] if TYPE_CHECKING: from .processing_layoutxlm import LayoutXLMProcessor try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutxlm import LayoutXLMTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutxlm_fast import LayoutXLMTokenizerFast else: import sys UpperCamelCase__ : Union[str, Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
344
0
from typing import Any def __lowerCamelCase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , ): """simple docstring""" _validation( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , ) # Creates data structures and fill initial step lowercase__ : dict = {} lowercase__ : dict = {} for state in states_space: lowercase__ : Any = observations_space[0] lowercase__ : Optional[int] = ( initial_probabilities[state] * emission_probabilities[state][observation] ) lowercase__ : List[str] = None # Fills the data structure with the probabilities of # different transitions and pointers to previous states for o in range(1 , len(lowerCamelCase__ ) ): lowercase__ : List[Any] = observations_space[o] lowercase__ : Union[str, Any] = observations_space[o - 1] for state in states_space: # Calculates the argmax for probability function lowercase__ : Any = "" lowercase__ : Any = -1 for k_state in states_space: lowercase__ : Optional[int] = ( probabilities[(k_state, prior_observation)] * transition_probabilities[k_state][state] * emission_probabilities[state][observation] ) if probability > max_probability: lowercase__ : List[str] = probability lowercase__ : List[Any] = k_state # Update probabilities and pointers dicts lowercase__ : Dict = ( probabilities[(arg_max, prior_observation)] * transition_probabilities[arg_max][state] * emission_probabilities[state][observation] ) lowercase__ : Optional[int] = arg_max # The final observation lowercase__ : Optional[int] = observations_space[len(lowerCamelCase__ ) - 1] # argmax for given final observation lowercase__ : int = "" lowercase__ : Optional[int] = -1 for k_state in states_space: lowercase__ : int = probabilities[(k_state, final_observation)] if probability > max_probability: lowercase__ : Tuple = probability lowercase__ : Optional[Any] = k_state lowercase__ : Union[str, Any] = arg_max # Process pointers backwards lowercase__ : int = last_state lowercase__ : int = [] for o in range(len(lowerCamelCase__ ) - 1 , -1 , -1 ): result.append(lowerCamelCase__ ) lowercase__ : Tuple = pointers[previous, observations_space[o]] result.reverse() return result def __lowerCamelCase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , ): """simple docstring""" _validate_not_empty( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , ) _validate_lists(lowerCamelCase__ , lowerCamelCase__ ) _validate_dicts( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) def __lowerCamelCase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , ): """simple docstring""" if not all( [ observations_space, states_space, initial_probabilities, transition_probabilities, emission_probabilities, ] ): raise ValueError("There's an empty parameter" ) def __lowerCamelCase ( lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" _validate_list(lowerCamelCase__ , "observations_space" ) _validate_list(lowerCamelCase__ , "states_space" ) def __lowerCamelCase ( lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" if not isinstance(_object , lowerCamelCase__ ): lowercase__ : Tuple = F"""{var_name} must be a list""" raise ValueError(lowerCamelCase__ ) else: for x in _object: if not isinstance(lowerCamelCase__ , lowerCamelCase__ ): lowercase__ : Optional[Any] = F"""{var_name} must be a list of strings""" raise ValueError(lowerCamelCase__ ) def __lowerCamelCase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , ): """simple docstring""" _validate_dict(lowerCamelCase__ , "initial_probabilities" , lowerCamelCase__ ) _validate_nested_dict(lowerCamelCase__ , "transition_probabilities" ) _validate_nested_dict(lowerCamelCase__ , "emission_probabilities" ) def __lowerCamelCase ( lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" _validate_dict(_object , lowerCamelCase__ , lowerCamelCase__ ) for x in _object.values(): _validate_dict(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) def __lowerCamelCase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = False ): """simple docstring""" if not isinstance(_object , lowerCamelCase__ ): lowercase__ : int = F"""{var_name} must be a dict""" raise ValueError(lowerCamelCase__ ) if not all(isinstance(lowerCamelCase__ , lowerCamelCase__ ) for x in _object ): lowercase__ : Optional[Any] = F"""{var_name} all keys must be strings""" raise ValueError(lowerCamelCase__ ) if not all(isinstance(lowerCamelCase__ , lowerCamelCase__ ) for x in _object.values() ): lowercase__ : Optional[int] = "nested dictionary " if nested else "" lowercase__ : Optional[int] = F"""{var_name} {nested_text}all values must be {value_type.__name__}""" raise ValueError(lowerCamelCase__ ) if __name__ == "__main__": from doctest import testmod testmod()
121
import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { '''BridgeTower/bridgetower-base''': '''https://huggingface.co/BridgeTower/bridgetower-base/blob/main/config.json''', '''BridgeTower/bridgetower-base-itm-mlm''': ( '''https://huggingface.co/BridgeTower/bridgetower-base-itm-mlm/blob/main/config.json''' ), } class snake_case__(_UpperCamelCase ): """simple docstring""" lowercase_ = """bridgetower_vision_model""" def __init__( self : str , SCREAMING_SNAKE_CASE : Dict=768 , SCREAMING_SNAKE_CASE : Union[str, Any]=12 , SCREAMING_SNAKE_CASE : Dict=3 , SCREAMING_SNAKE_CASE : Dict=16 , SCREAMING_SNAKE_CASE : List[Any]=288 , SCREAMING_SNAKE_CASE : List[Any]=1 , SCREAMING_SNAKE_CASE : List[str]=1E-0_5 , SCREAMING_SNAKE_CASE : str=False , SCREAMING_SNAKE_CASE : Any=True , SCREAMING_SNAKE_CASE : Tuple=False , **SCREAMING_SNAKE_CASE : List[str] , ): super().__init__(**SCREAMING_SNAKE_CASE ) lowercase__ : Union[str, Any] = hidden_size lowercase__ : str = num_hidden_layers lowercase__ : str = num_channels lowercase__ : Optional[int] = patch_size lowercase__ : Dict = image_size lowercase__ : List[Any] = initializer_factor lowercase__ : int = layer_norm_eps lowercase__ : List[str] = stop_gradient lowercase__ : Optional[int] = share_layernorm lowercase__ : Optional[int] = remove_last_layer @classmethod def snake_case ( cls : Tuple , SCREAMING_SNAKE_CASE : Union[str, os.PathLike] , **SCREAMING_SNAKE_CASE : str ): lowercase__ , lowercase__ : Optional[Any] = cls.get_config_dict(SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) if config_dict.get("model_type" ) == "bridgetower": lowercase__ : Optional[int] = config_dict["text_config"] if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( f"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """ f"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) class snake_case__(_UpperCamelCase ): """simple docstring""" lowercase_ = """bridgetower_text_model""" def __init__( self : Tuple , SCREAMING_SNAKE_CASE : Union[str, Any]=50_265 , SCREAMING_SNAKE_CASE : Optional[int]=768 , SCREAMING_SNAKE_CASE : List[str]=12 , SCREAMING_SNAKE_CASE : Union[str, Any]=12 , SCREAMING_SNAKE_CASE : List[Any]=1 , SCREAMING_SNAKE_CASE : Any=3_072 , SCREAMING_SNAKE_CASE : Union[str, Any]="gelu" , SCREAMING_SNAKE_CASE : Optional[int]=0.1 , SCREAMING_SNAKE_CASE : List[str]=0.1 , SCREAMING_SNAKE_CASE : Tuple=514 , SCREAMING_SNAKE_CASE : List[str]=1 , SCREAMING_SNAKE_CASE : Dict=1E-0_5 , SCREAMING_SNAKE_CASE : List[str]=1 , SCREAMING_SNAKE_CASE : str=0 , SCREAMING_SNAKE_CASE : List[Any]=2 , SCREAMING_SNAKE_CASE : Optional[Any]="absolute" , SCREAMING_SNAKE_CASE : int=True , **SCREAMING_SNAKE_CASE : int , ): super().__init__(**SCREAMING_SNAKE_CASE ) lowercase__ : Any = vocab_size lowercase__ : Optional[Any] = hidden_size lowercase__ : Optional[int] = num_hidden_layers lowercase__ : Optional[int] = num_attention_heads lowercase__ : int = hidden_act lowercase__ : Optional[Any] = initializer_factor lowercase__ : Dict = intermediate_size lowercase__ : Tuple = hidden_dropout_prob lowercase__ : List[Any] = attention_probs_dropout_prob lowercase__ : Optional[int] = max_position_embeddings lowercase__ : str = type_vocab_size lowercase__ : str = layer_norm_eps lowercase__ : Dict = position_embedding_type lowercase__ : Optional[Any] = use_cache lowercase__ : List[str] = pad_token_id lowercase__ : Optional[Any] = bos_token_id lowercase__ : Optional[Any] = eos_token_id @classmethod def snake_case ( cls : Optional[int] , SCREAMING_SNAKE_CASE : Union[str, os.PathLike] , **SCREAMING_SNAKE_CASE : str ): lowercase__ , lowercase__ : Optional[Any] = cls.get_config_dict(SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) if config_dict.get("model_type" ) == "bridgetower": lowercase__ : List[Any] = config_dict["text_config"] if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( f"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """ f"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) class snake_case__(_UpperCamelCase ): """simple docstring""" lowercase_ = """bridgetower""" def __init__( self : Tuple , SCREAMING_SNAKE_CASE : Optional[int]=True , SCREAMING_SNAKE_CASE : Dict="gelu" , SCREAMING_SNAKE_CASE : Any=768 , SCREAMING_SNAKE_CASE : Dict=1 , SCREAMING_SNAKE_CASE : Union[str, Any]=1E-0_5 , SCREAMING_SNAKE_CASE : Tuple=False , SCREAMING_SNAKE_CASE : List[Any]="add" , SCREAMING_SNAKE_CASE : Any=12 , SCREAMING_SNAKE_CASE : Any=6 , SCREAMING_SNAKE_CASE : Any=False , SCREAMING_SNAKE_CASE : List[Any]=False , SCREAMING_SNAKE_CASE : str=None , SCREAMING_SNAKE_CASE : Dict=None , **SCREAMING_SNAKE_CASE : List[Any] , ): # TODO: remove this once the Hub files are updated. lowercase__ : int = kwargs.pop("text_config_dict" , SCREAMING_SNAKE_CASE ) lowercase__ : int = kwargs.pop("vision_config_dict" , SCREAMING_SNAKE_CASE ) super().__init__(**SCREAMING_SNAKE_CASE ) lowercase__ : Dict = share_cross_modal_transformer_layers lowercase__ : int = hidden_act lowercase__ : int = hidden_size lowercase__ : Optional[int] = initializer_factor lowercase__ : Optional[int] = layer_norm_eps lowercase__ : str = share_link_tower_layers lowercase__ : Optional[int] = link_tower_type lowercase__ : List[Any] = num_attention_heads lowercase__ : Dict = num_hidden_layers lowercase__ : Dict = tie_word_embeddings lowercase__ : Optional[Any] = init_layernorm_from_vision_encoder if text_config is None: lowercase__ : Optional[Any] = {} logger.info("`text_config` is `None`. Initializing the `BridgeTowerTextConfig` with default values." ) if vision_config is None: lowercase__ : List[Any] = {} logger.info("`vision_config` is `None`. Initializing the `BridgeTowerVisionConfig` with default values." ) lowercase__ : Any = BridgeTowerTextConfig(**SCREAMING_SNAKE_CASE ) lowercase__ : Dict = BridgeTowerVisionConfig(**SCREAMING_SNAKE_CASE ) @classmethod def snake_case ( cls : Optional[int] , SCREAMING_SNAKE_CASE : BridgeTowerTextConfig , SCREAMING_SNAKE_CASE : BridgeTowerVisionConfig , **SCREAMING_SNAKE_CASE : List[str] ): return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **SCREAMING_SNAKE_CASE ) def snake_case ( self : Optional[int] ): lowercase__ : List[str] = copy.deepcopy(self.__dict__ ) lowercase__ : Dict = self.text_config.to_dict() lowercase__ : Tuple = self.vision_config.to_dict() lowercase__ : Optional[Any] = self.__class__.model_type return output
121
1
'''simple docstring''' from math import log from scipy.constants import Boltzmann, physical_constants lowercase_ = 300 # TEMPERATURE (unit = K) def lowerCamelCase ( __lowerCamelCase : float , __lowerCamelCase : float , __lowerCamelCase : float , ) ->float: if donor_conc <= 0: raise ValueError("""Donor concentration should be positive""" ) elif acceptor_conc <= 0: raise ValueError("""Acceptor concentration should be positive""" ) elif intrinsic_conc <= 0: raise ValueError("""Intrinsic concentration should be positive""" ) elif donor_conc <= intrinsic_conc: raise ValueError( """Donor concentration should be greater than intrinsic concentration""" ) elif acceptor_conc <= intrinsic_conc: raise ValueError( """Acceptor concentration should be greater than intrinsic concentration""" ) else: return ( Boltzmann * T * log((donor_conc * acceptor_conc) / intrinsic_conc**2 ) / physical_constants["electron volt"][0] ) if __name__ == "__main__": import doctest doctest.testmod()
58
import math def lowerCAmelCase_ ( __A ) -> bool: '''simple docstring''' return math.sqrt(__A ) * math.sqrt(__A ) == num def lowerCAmelCase_ ( __A ) -> bool: '''simple docstring''' UpperCAmelCase__ = 0 UpperCAmelCase__ = n while left <= right: UpperCAmelCase__ = (left + right) // 2 if mid**2 == n: return True elif mid**2 > n: UpperCAmelCase__ = mid - 1 else: UpperCAmelCase__ = mid + 1 return False if __name__ == "__main__": import doctest doctest.testmod()
65
0
"""simple docstring""" from __future__ import annotations from collections import deque from collections.abc import Sequence from dataclasses import dataclass from typing import Any @dataclass class SCREAMING_SNAKE_CASE__ : __lowerCAmelCase : Optional[int] = 42 __lowerCAmelCase : Optional[int] = None __lowerCAmelCase : str = None def _snake_case ( ): UpperCAmelCase : Tuple = Node(1 ) UpperCAmelCase : Dict = Node(2 ) UpperCAmelCase : int = Node(3 ) UpperCAmelCase : Tuple = Node(4 ) UpperCAmelCase : Tuple = Node(5 ) return tree def _snake_case ( UpperCamelCase : Union[str, Any] ): return [root.data, *preorder(root.left ), *preorder(root.right )] if root else [] def _snake_case ( UpperCamelCase : Dict ): return postorder(root.left ) + postorder(root.right ) + [root.data] if root else [] def _snake_case ( UpperCamelCase : Any ): return [*inorder(root.left ), root.data, *inorder(root.right )] if root else [] def _snake_case ( UpperCamelCase : Tuple ): return (max(height(root.left ) , height(root.right ) ) + 1) if root else 0 def _snake_case ( UpperCamelCase : str ): UpperCAmelCase : List[str] = [] if root is None: return output UpperCAmelCase : List[str] = deque([root] ) while process_queue: UpperCAmelCase : Tuple = process_queue.popleft() output.append(node.data ) if node.left: process_queue.append(node.left ) if node.right: process_queue.append(node.right ) return output def _snake_case ( UpperCamelCase : Tuple , UpperCamelCase : List[Any] ): UpperCAmelCase : str = [] def populate_output(UpperCamelCase : Dict , UpperCamelCase : Optional[int] ) -> None: if not root: return if level == 1: output.append(root.data ) elif level > 1: populate_output(root.left , level - 1 ) populate_output(root.right , level - 1 ) populate_output(lowerCamelCase__ , lowerCamelCase__ ) return output def _snake_case ( UpperCamelCase : Any , UpperCamelCase : List[Any] ): UpperCAmelCase : Any = [] def populate_output(UpperCamelCase : int , UpperCamelCase : Any ) -> None: if root is None: return if level == 1: output.append(root.data ) elif level > 1: populate_output(root.right , level - 1 ) populate_output(root.left , level - 1 ) populate_output(lowerCamelCase__ , lowerCamelCase__ ) return output def _snake_case ( UpperCamelCase : str ): if root is None: return [] UpperCAmelCase : int = [] UpperCAmelCase : int = 0 UpperCAmelCase : int = height(lowerCamelCase__ ) for h in range(1 , height_tree + 1 ): if not flag: output.append(get_nodes_from_left_to_right(lowerCamelCase__ , lowerCamelCase__ ) ) UpperCAmelCase : int = 1 else: output.append(get_nodes_from_right_to_left(lowerCamelCase__ , lowerCamelCase__ ) ) UpperCAmelCase : Union[str, Any] = 0 return output def _snake_case ( ): # Main function for testing. UpperCAmelCase : Optional[int] = make_tree() print(F"In-order Traversal: {inorder(lowerCamelCase__ )}" ) print(F"Pre-order Traversal: {preorder(lowerCamelCase__ )}" ) print(F"Post-order Traversal: {postorder(lowerCamelCase__ )}" , """\n""" ) print(F"Height of Tree: {height(lowerCamelCase__ )}" , """\n""" ) print("""Complete Level Order Traversal: """ ) print(level_order(lowerCamelCase__ ) , """\n""" ) print("""Level-wise order Traversal: """ ) for level in range(1 , height(lowerCamelCase__ ) + 1 ): print(F"Level {level}:" , get_nodes_from_left_to_right(lowerCamelCase__ , level=lowerCamelCase__ ) ) print("""\nZigZag order Traversal: """ ) print(zigzag(lowerCamelCase__ ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
353
"""simple docstring""" def _snake_case ( UpperCamelCase : dict ): UpperCAmelCase : set[int] = set() # To detect a back edge, keep track of vertices currently in the recursion stack UpperCAmelCase : set[int] = set() return any( node not in visited and depth_first_search(UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ) for node in graph ) def _snake_case ( UpperCamelCase : dict , UpperCamelCase : int , UpperCamelCase : set , UpperCamelCase : set ): visited.add(UpperCamelCase ) rec_stk.add(UpperCamelCase ) for node in graph[vertex]: if node not in visited: if depth_first_search(UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ): return True elif node in rec_stk: return True # The node needs to be removed from recursion stack before function ends rec_stk.remove(UpperCamelCase ) return False if __name__ == "__main__": from doctest import testmod testmod()
76
0
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_barthez import BarthezTokenizer else: _UpperCAmelCase = None _UpperCAmelCase = logging.get_logger(__name__) _UpperCAmelCase = {"""vocab_file""": """sentencepiece.bpe.model""", """tokenizer_file""": """tokenizer.json"""} _UpperCAmelCase = { """vocab_file""": { """moussaKam/mbarthez""": """https://huggingface.co/moussaKam/mbarthez/resolve/main/sentencepiece.bpe.model""", """moussaKam/barthez""": """https://huggingface.co/moussaKam/barthez/resolve/main/sentencepiece.bpe.model""", """moussaKam/barthez-orangesum-title""": ( """https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/sentencepiece.bpe.model""" ), }, """tokenizer_file""": { """moussaKam/mbarthez""": """https://huggingface.co/moussaKam/mbarthez/resolve/main/tokenizer.json""", """moussaKam/barthez""": """https://huggingface.co/moussaKam/barthez/resolve/main/tokenizer.json""", """moussaKam/barthez-orangesum-title""": ( """https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/tokenizer.json""" ), }, } _UpperCAmelCase = { """moussaKam/mbarthez""": 1_0_2_4, """moussaKam/barthez""": 1_0_2_4, """moussaKam/barthez-orangesum-title""": 1_0_2_4, } _UpperCAmelCase = """▁""" class a ( UpperCAmelCase__ ): UpperCamelCase : List[Any] = VOCAB_FILES_NAMES UpperCamelCase : Optional[int] = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase : List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase : Optional[int] = ['input_ids', 'attention_mask'] UpperCamelCase : Any = BarthezTokenizer def __init__( self : List[Any] , lowerCAmelCase : List[str]=None , lowerCAmelCase : Optional[Any]=None , lowerCAmelCase : Optional[int]="<s>" , lowerCAmelCase : str="</s>" , lowerCAmelCase : Optional[int]="</s>" , lowerCAmelCase : List[Any]="<s>" , lowerCAmelCase : Dict="<unk>" , lowerCAmelCase : int="<pad>" , lowerCAmelCase : Any="<mask>" , **lowerCAmelCase : Union[str, Any] , ) -> List[str]: '''simple docstring''' SCREAMING_SNAKE_CASE_: int =AddedToken(lowerCAmelCase , lstrip=lowerCAmelCase , rstrip=lowerCAmelCase ) if isinstance(lowerCAmelCase , lowerCAmelCase ) else mask_token super().__init__( lowerCAmelCase , tokenizer_file=lowerCAmelCase , bos_token=lowerCAmelCase , eos_token=lowerCAmelCase , unk_token=lowerCAmelCase , sep_token=lowerCAmelCase , cls_token=lowerCAmelCase , pad_token=lowerCAmelCase , mask_token=lowerCAmelCase , **lowerCAmelCase , ) SCREAMING_SNAKE_CASE_: int =vocab_file SCREAMING_SNAKE_CASE_: str =False if not self.vocab_file else True def lowerCamelCase__ ( self : int , lowerCAmelCase : List[int] , lowerCAmelCase : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] SCREAMING_SNAKE_CASE_: Optional[int] =[self.cls_token_id] SCREAMING_SNAKE_CASE_: List[Any] =[self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def lowerCamelCase__ ( self : str , lowerCAmelCase : List[int] , lowerCAmelCase : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' SCREAMING_SNAKE_CASE_: Optional[int] =[self.sep_token_id] SCREAMING_SNAKE_CASE_: str =[self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def lowerCamelCase__ ( self : Optional[int] , lowerCAmelCase : str , lowerCAmelCase : Optional[str] = None ) -> Tuple[str]: '''simple docstring''' if not self.can_save_slow_tokenizer: raise ValueError( """Your fast tokenizer does not have the necessary information to save the vocabulary for a slow """ """tokenizer.""" ) if not os.path.isdir(lowerCAmelCase ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return SCREAMING_SNAKE_CASE_: Optional[int] =os.path.join( lowerCAmelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCAmelCase ): copyfile(self.vocab_file , lowerCAmelCase ) return (out_vocab_file,)
173
"""simple docstring""" import functools import gc import inspect import torch from .imports import is_npu_available, is_xpu_available def __magic_name__ ( *lowercase ): if not isinstance(lowercase , lowercase ): SCREAMING_SNAKE_CASE_: Optional[Any] =list(lowercase ) for i in range(len(lowercase ) ): SCREAMING_SNAKE_CASE_: Optional[Any] =None gc.collect() if is_xpu_available(): torch.xpu.empty_cache() elif is_npu_available(): torch.npu.empty_cache() else: torch.cuda.empty_cache() return objects def __magic_name__ ( lowercase ): SCREAMING_SNAKE_CASE_: List[Any] =[ """CUDA out of memory.""", # CUDA OOM """cuDNN error: CUDNN_STATUS_NOT_SUPPORTED.""", # CUDNN SNAFU """DefaultCPUAllocator: can't allocate memory""", # CPU OOM ] if isinstance(lowercase , lowercase ) and len(exception.args ) == 1: return any(err in exception.args[0] for err in _statements ) return False def __magic_name__ ( lowercase = None , lowercase = 128 ): if function is None: return functools.partial(lowercase , starting_batch_size=lowercase ) SCREAMING_SNAKE_CASE_: str =starting_batch_size def decorator(*lowercase , **lowercase ): nonlocal batch_size gc.collect() if is_xpu_available(): torch.xpu.empty_cache() elif is_npu_available(): torch.npu.empty_cache() else: torch.cuda.empty_cache() SCREAMING_SNAKE_CASE_: Optional[int] =list(inspect.signature(lowercase ).parameters.keys() ) # Guard against user error if len(lowercase ) < (len(lowercase ) + 1): SCREAMING_SNAKE_CASE_: List[Any] =""", """.join([f'''{arg}={value}''' for arg, value in zip(params[1:] , args[1:] )] ) raise TypeError( f'''Batch size was passed into `{function.__name__}` as the first argument when called.''' f'''Remove this as the decorator already does so: `{function.__name__}({arg_str})`''' ) while True: if batch_size == 0: raise RuntimeError("""No executable batch size found, reached zero.""" ) try: return function(lowercase , *lowercase , **lowercase ) except Exception as e: if should_reduce_batch_size(lowercase ): gc.collect() if is_xpu_available(): torch.xpu.empty_cache() elif is_npu_available(): torch.npu.empty_cache() else: torch.cuda.empty_cache() batch_size //= 2 else: raise return decorator
173
1
def lowerCamelCase__ ( lowercase , lowercase ): """simple docstring""" SCREAMING_SNAKE_CASE : Dict = 0 while b > 0: if b & 1: res += a a += a b >>= 1 return res def lowerCamelCase__ ( lowercase , lowercase , lowercase ): """simple docstring""" SCREAMING_SNAKE_CASE : str = 0 while b > 0: if b & 1: SCREAMING_SNAKE_CASE : Optional[Any] = ((res % c) + (a % c)) % c a += a b >>= 1 return res
357
def lowerCamelCase__ ( lowercase , lowercase = 0 ): """simple docstring""" SCREAMING_SNAKE_CASE : int = length or len(lowercase ) SCREAMING_SNAKE_CASE : Optional[Any] = False for i in range(length - 1 ): if list_data[i] > list_data[i + 1]: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : int = list_data[i + 1], list_data[i] SCREAMING_SNAKE_CASE : str = True return list_data if not swapped else bubble_sort(lowercase , length - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
319
0
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from .tokenization_lxmert import LxmertTokenizer UpperCamelCase__ : str = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''} UpperCamelCase__ : int = { '''vocab_file''': { '''unc-nlp/lxmert-base-uncased''': '''https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/vocab.txt''', }, '''tokenizer_file''': { '''unc-nlp/lxmert-base-uncased''': ( '''https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/tokenizer.json''' ), }, } UpperCamelCase__ : Tuple = { '''unc-nlp/lxmert-base-uncased''': 5_12, } UpperCamelCase__ : Dict = { '''unc-nlp/lxmert-base-uncased''': {'''do_lower_case''': True}, } class _UpperCamelCase ( lowerCamelCase__ ): '''simple docstring''' _A : List[str] = VOCAB_FILES_NAMES _A : Dict = PRETRAINED_VOCAB_FILES_MAP _A : List[Any] = PRETRAINED_INIT_CONFIGURATION _A : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _A : int = LxmertTokenizer def __init__( self : List[str] , lowerCAmelCase__ : Union[str, Any]=None , lowerCAmelCase__ : Tuple=None , lowerCAmelCase__ : Optional[int]=True , lowerCAmelCase__ : Optional[Any]="[UNK]" , lowerCAmelCase__ : str="[SEP]" , lowerCAmelCase__ : Optional[int]="[PAD]" , lowerCAmelCase__ : Tuple="[CLS]" , lowerCAmelCase__ : str="[MASK]" , lowerCAmelCase__ : Optional[int]=True , lowerCAmelCase__ : str=None , **lowerCAmelCase__ : Tuple , ): """simple docstring""" super().__init__( lowerCAmelCase__ , tokenizer_file=lowerCAmelCase__ , do_lower_case=lowerCAmelCase__ , unk_token=lowerCAmelCase__ , sep_token=lowerCAmelCase__ , pad_token=lowerCAmelCase__ , cls_token=lowerCAmelCase__ , mask_token=lowerCAmelCase__ , tokenize_chinese_chars=lowerCAmelCase__ , strip_accents=lowerCAmelCase__ , **lowerCAmelCase__ , ) __SCREAMING_SNAKE_CASE : List[Any] = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("""lowercase""" , lowerCAmelCase__ ) != do_lower_case or normalizer_state.get("""strip_accents""" , lowerCAmelCase__ ) != strip_accents or normalizer_state.get("""handle_chinese_chars""" , lowerCAmelCase__ ) != tokenize_chinese_chars ): __SCREAMING_SNAKE_CASE : Union[str, Any] = getattr(lowerCAmelCase__ , normalizer_state.pop("""type""" ) ) __SCREAMING_SNAKE_CASE : Tuple = do_lower_case __SCREAMING_SNAKE_CASE : Tuple = strip_accents __SCREAMING_SNAKE_CASE : Union[str, Any] = tokenize_chinese_chars __SCREAMING_SNAKE_CASE : List[str] = normalizer_class(**lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : str = do_lower_case def UpperCamelCase__ ( self : Optional[Any] , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : Tuple=None ): """simple docstring""" __SCREAMING_SNAKE_CASE : str = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def UpperCamelCase__ ( self : Optional[Any] , lowerCAmelCase__ : List[int] , lowerCAmelCase__ : Optional[List[int]] = None ): """simple docstring""" __SCREAMING_SNAKE_CASE : Dict = [self.sep_token_id] __SCREAMING_SNAKE_CASE : Dict = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCamelCase__ ( self : Dict , lowerCAmelCase__ : str , lowerCAmelCase__ : Optional[str] = None ): """simple docstring""" __SCREAMING_SNAKE_CASE : List[Any] = self._tokenizer.model.save(lowerCAmelCase__ , name=lowerCAmelCase__ ) return tuple(lowerCAmelCase__ )
112
'''simple docstring''' # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse from ...utils.dataclasses import ( ComputeEnvironment, DistributedType, DynamoBackend, PrecisionType, SageMakerDistributedType, ) from ..menu import BulletMenu UpperCamelCase__ : List[Any] = [ '''EAGER''', '''AOT_EAGER''', '''INDUCTOR''', '''NVFUSER''', '''AOT_NVFUSER''', '''AOT_CUDAGRAPHS''', '''OFI''', '''FX2TRT''', '''ONNXRT''', '''IPEX''', ] def lowerCAmelCase_ ( _lowerCamelCase: str , _lowerCamelCase: Union[str, Any]=None , _lowerCamelCase: Optional[int]=None , _lowerCamelCase: str=None ): __SCREAMING_SNAKE_CASE : Optional[int] = True while ask_again: __SCREAMING_SNAKE_CASE : Tuple = input(_lowerCamelCase ) try: if default is not None and len(_lowerCamelCase ) == 0: return default return convert_value(_lowerCamelCase ) if convert_value is not None else result except Exception: if error_message is not None: print(_lowerCamelCase ) def lowerCAmelCase_ ( _lowerCamelCase: Tuple , _lowerCamelCase: Union[str, Any]=[] , _lowerCamelCase: List[Any]=None , _lowerCamelCase: Optional[Any]=0 ): __SCREAMING_SNAKE_CASE : Union[str, Any] = BulletMenu(_lowerCamelCase , _lowerCamelCase ) __SCREAMING_SNAKE_CASE : Dict = menu.run(default_choice=_lowerCamelCase ) return convert_value(_lowerCamelCase ) if convert_value is not None else result def lowerCAmelCase_ ( _lowerCamelCase: Optional[Any] ): __SCREAMING_SNAKE_CASE : List[str] = int(_lowerCamelCase ) return ComputeEnvironment(["""LOCAL_MACHINE""", """AMAZON_SAGEMAKER"""][value] ) def lowerCAmelCase_ ( _lowerCamelCase: Any ): __SCREAMING_SNAKE_CASE : str = int(_lowerCamelCase ) return DistributedType(["""NO""", """MULTI_CPU""", """MULTI_XPU""", """MULTI_GPU""", """MULTI_NPU""", """TPU"""][value] ) def lowerCAmelCase_ ( _lowerCamelCase: Tuple ): __SCREAMING_SNAKE_CASE : Tuple = int(_lowerCamelCase ) return DynamoBackend(DYNAMO_BACKENDS[value] ).value def lowerCAmelCase_ ( _lowerCamelCase: Union[str, Any] ): __SCREAMING_SNAKE_CASE : List[str] = int(_lowerCamelCase ) return PrecisionType(["""no""", """fp16""", """bf16""", """fp8"""][value] ) def lowerCAmelCase_ ( _lowerCamelCase: Tuple ): __SCREAMING_SNAKE_CASE : int = int(_lowerCamelCase ) return SageMakerDistributedType(["""NO""", """DATA_PARALLEL""", """MODEL_PARALLEL"""][value] ) def lowerCAmelCase_ ( _lowerCamelCase: List[Any] ): return {"yes": True, "no": False}[value.lower()] class _UpperCamelCase ( argparse.RawDescriptionHelpFormatter ): '''simple docstring''' def UpperCamelCase__ ( self : Tuple , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Dict , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : List[Any] ): """simple docstring""" __SCREAMING_SNAKE_CASE : Union[str, Any] = super()._format_usage(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Any = usage.replace("""<command> [<args>] """ , """""" ) return usage
112
1
"""simple docstring""" from typing import Callable, List, Optional, Union import PIL import torch from transformers import ( CLIPImageProcessor, CLIPSegForImageSegmentation, CLIPSegProcessor, CLIPTextModel, CLIPTokenizer, ) from diffusers import DiffusionPipeline from diffusers.configuration_utils import FrozenDict from diffusers.models import AutoencoderKL, UNetaDConditionModel from diffusers.pipelines.stable_diffusion import StableDiffusionInpaintPipeline from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.schedulers import DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler from diffusers.utils import deprecate, is_accelerate_available, logging __SCREAMING_SNAKE_CASE =logging.get_logger(__name__) # pylint: disable=invalid-name class UpperCamelCase ( __SCREAMING_SNAKE_CASE ): def __init__( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,) -> Dict: '''simple docstring''' super().__init__() if hasattr(scheduler.config ,'steps_offset' ) and scheduler.config.steps_offset != 1: lowercase_ : Optional[int] = ( f'''The configuration file of this scheduler: {scheduler} is outdated. `steps_offset`''' f''' should be set to 1 instead of {scheduler.config.steps_offset}. Please make sure ''' 'to update the config accordingly as leaving `steps_offset` might led to incorrect results' ' in future versions. If you have downloaded this checkpoint from the Hugging Face Hub,' ' it would be very nice if you could open a Pull request for the `scheduler/scheduler_config.json`' ' file' ) deprecate('steps_offset!=1' ,'1.0.0' ,_a ,standard_warn=_a ) lowercase_ : List[Any] = dict(scheduler.config ) lowercase_ : Union[str, Any] = 1 lowercase_ : Any = FrozenDict(_a ) if hasattr(scheduler.config ,'skip_prk_steps' ) and scheduler.config.skip_prk_steps is False: lowercase_ : Union[str, Any] = ( f'''The configuration file of this scheduler: {scheduler} has not set the configuration''' ' `skip_prk_steps`. `skip_prk_steps` should be set to True in the configuration file. Please make' ' sure to update the config accordingly as not setting `skip_prk_steps` in the config might lead to' ' incorrect results in future versions. If you have downloaded this checkpoint from the Hugging Face' ' Hub, it would be very nice if you could open a Pull request for the' ' `scheduler/scheduler_config.json` file' ) deprecate('skip_prk_steps not set' ,'1.0.0' ,_a ,standard_warn=_a ) lowercase_ : Any = dict(scheduler.config ) lowercase_ : Union[str, Any] = True lowercase_ : Tuple = FrozenDict(_a ) if safety_checker is None: logger.warning( f'''You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure''' ' that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered' ' results in services or applications open to the public. Both the diffusers team and Hugging Face' ' strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling' ' it only for use-cases that involve analyzing network behavior or auditing its results. For more' ' information, please have a look at https://github.com/huggingface/diffusers/pull/254 .' ) self.register_modules( segmentation_model=_a ,segmentation_processor=_a ,vae=_a ,text_encoder=_a ,tokenizer=_a ,unet=_a ,scheduler=_a ,safety_checker=_a ,feature_extractor=_a ,) def _UpperCAmelCase ( self ,__UpperCamelCase = "auto" ) -> Dict: '''simple docstring''' if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory lowercase_ : Any = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(_a ) def _UpperCAmelCase ( self ) -> Optional[Any]: '''simple docstring''' self.enable_attention_slicing(_a ) def _UpperCAmelCase ( self ) -> Tuple: '''simple docstring''' if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError('Please install accelerate via `pip install accelerate`' ) lowercase_ : Optional[Any] = torch.device('cuda' ) for cpu_offloaded_model in [self.unet, self.text_encoder, self.vae, self.safety_checker]: if cpu_offloaded_model is not None: cpu_offload(_a ,_a ) @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def _UpperCAmelCase ( self ) -> Optional[int]: '''simple docstring''' if self.device != torch.device('meta' ) or not hasattr(self.unet ,'_hf_hook' ): return self.device for module in self.unet.modules(): if ( hasattr(_a ,'_hf_hook' ) and hasattr(module._hf_hook ,'execution_device' ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() def __call__( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase = 512 ,__UpperCamelCase = 512 ,__UpperCamelCase = 50 ,__UpperCamelCase = 7.5 ,__UpperCamelCase = None ,__UpperCamelCase = 1 ,__UpperCamelCase = 0.0 ,__UpperCamelCase = None ,__UpperCamelCase = None ,__UpperCamelCase = "pil" ,__UpperCamelCase = True ,__UpperCamelCase = None ,__UpperCamelCase = 1 ,**__UpperCamelCase ,) -> Any: '''simple docstring''' lowercase_ : Optional[int] = self.segmentation_processor( text=[text] ,images=[image] ,padding='max_length' ,return_tensors='pt' ).to(self.device ) lowercase_ : Dict = self.segmentation_model(**_a ) lowercase_ : Optional[int] = torch.sigmoid(outputs.logits ).cpu().detach().unsqueeze(-1 ).numpy() lowercase_ : List[str] = self.numpy_to_pil(_a )[0].resize(image.size ) # Run inpainting pipeline with the generated mask lowercase_ : str = StableDiffusionInpaintPipeline( vae=self.vae ,text_encoder=self.text_encoder ,tokenizer=self.tokenizer ,unet=self.unet ,scheduler=self.scheduler ,safety_checker=self.safety_checker ,feature_extractor=self.feature_extractor ,) return inpainting_pipeline( prompt=_a ,image=_a ,mask_image=_a ,height=_a ,width=_a ,num_inference_steps=_a ,guidance_scale=_a ,negative_prompt=_a ,num_images_per_prompt=_a ,eta=_a ,generator=_a ,latents=_a ,output_type=_a ,return_dict=_a ,callback=_a ,callback_steps=_a ,)
361
"""simple docstring""" # # This a `torch.distributed` diagnostics script that checks that all GPUs in the cluster (one or # many nodes) can talk to each other via nccl and allocate gpu memory. # # To run first adjust the number of processes and nodes: # # python -m torch.distributed.run --nproc_per_node 2 --nnodes 1 torch-distributed-gpu-test.py # # You may need to add --master_addr $MASTER_ADDR --master_port $MASTER_PORT if using a custom addr:port # # You can also use the rdzv API: --rdzv_endpoint $MASTER_ADDR:$MASTER_PORT --rdzv_backend c10d # # use torch.distributed.launch instead of torch.distributed.run for torch < 1.9 # # If you get a hanging in `barrier` calls you have some network issues, you may try to debug this with: # # NCCL_DEBUG=INFO python -m torch.distributed.run --nproc_per_node 2 --nnodes 1 torch-distributed-gpu-test.py # # which should tell you what's going on behind the scenes. # # # This script can be run via `srun` in the SLURM environment as well. Here is a SLURM script that # runs on 2 nodes of 4 gpus per node: # # #SBATCH --job-name=test-nodes # name # #SBATCH --nodes=2 # nodes # #SBATCH --ntasks-per-node=1 # crucial - only 1 task per dist per node! # #SBATCH --cpus-per-task=10 # number of cores per tasks # #SBATCH --gres=gpu:4 # number of gpus # #SBATCH --time 0:05:00 # maximum execution time (HH:MM:SS) # #SBATCH --output=%x-%j.out # output file name # # GPUS_PER_NODE=4 # MASTER_ADDR=$(scontrol show hostnames $SLURM_JOB_NODELIST | head -n 1) # MASTER_PORT=6000 # # srun --jobid $SLURM_JOBID bash -c 'python -m torch.distributed.run \ # --nproc_per_node $GPUS_PER_NODE --nnodes $SLURM_NNODES --node_rank $SLURM_PROCID \ # --master_addr $MASTER_ADDR --master_port $MASTER_PORT \ # torch-distributed-gpu-test.py' # import fcntl import os import socket import torch import torch.distributed as dist def lowercase__( *__SCREAMING_SNAKE_CASE : Tuple ): with open(__SCREAMING_SNAKE_CASE , 'r' ) as fh: fcntl.flock(__SCREAMING_SNAKE_CASE , fcntl.LOCK_EX ) try: print(*__SCREAMING_SNAKE_CASE ) finally: fcntl.flock(__SCREAMING_SNAKE_CASE , fcntl.LOCK_UN ) __SCREAMING_SNAKE_CASE =int(os.environ["LOCAL_RANK"]) torch.cuda.set_device(local_rank) __SCREAMING_SNAKE_CASE =torch.device("cuda", local_rank) __SCREAMING_SNAKE_CASE =socket.gethostname() __SCREAMING_SNAKE_CASE =F"[{hostname}-{local_rank}]" try: # test distributed dist.init_process_group("nccl") dist.all_reduce(torch.ones(1).to(device), op=dist.ReduceOp.SUM) dist.barrier() # test cuda is available and can allocate memory torch.cuda.is_available() torch.ones(1).cuda(local_rank) # global rank __SCREAMING_SNAKE_CASE =dist.get_rank() __SCREAMING_SNAKE_CASE =dist.get_world_size() printflock(F"{gpu} is OK (global rank: {rank}/{world_size})") dist.barrier() if rank == 0: printflock(F"pt={torch.__version__}, cuda={torch.version.cuda}, nccl={torch.cuda.nccl.version()}") except Exception: printflock(F"{gpu} is broken") raise
321
0
from __future__ import annotations import time SCREAMING_SNAKE_CASE :Dict = list[tuple[int, int]] SCREAMING_SNAKE_CASE :Any = [ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] SCREAMING_SNAKE_CASE :List[Any] = [[-1, 0], [0, -1], [1, 0], [0, 1]] # up, left, down, right class UpperCAmelCase : '''simple docstring''' def __init__( self : List[Any] ,A : int ,A : int ,A : int ,A : int ,A : Node | None ): __A = pos_x __A = pos_y __A = (pos_y, pos_x) __A = goal_x __A = goal_y __A = parent class UpperCAmelCase : '''simple docstring''' def __init__( self : List[str] ,A : tuple[int, int] ,A : tuple[int, int] ): __A = Node(start[1] ,start[0] ,goal[1] ,goal[0] ,A ) __A = Node(goal[1] ,goal[0] ,goal[1] ,goal[0] ,A ) __A = [self.start] __A = False def UpperCamelCase_ ( self : Tuple ): while self.node_queue: __A = self.node_queue.pop(0 ) if current_node.pos == self.target.pos: __A = True return self.retrace_path(A ) __A = self.get_successors(A ) for node in successors: self.node_queue.append(A ) if not self.reached: return [self.start.pos] return None def UpperCamelCase_ ( self : List[str] ,A : Node ): __A = [] for action in delta: __A = parent.pos_x + action[1] __A = parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(A ) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node(A ,A ,self.target.pos_y ,self.target.pos_x ,A ) ) return successors def UpperCamelCase_ ( self : Optional[int] ,A : Node | None ): __A = node __A = [] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x) ) __A = current_node.parent path.reverse() return path class UpperCAmelCase : '''simple docstring''' def __init__( self : List[str] ,A : Tuple ,A : Union[str, Any] ): __A = BreadthFirstSearch(A ,A ) __A = BreadthFirstSearch(A ,A ) __A = False def UpperCamelCase_ ( self : Tuple ): while self.fwd_bfs.node_queue or self.bwd_bfs.node_queue: __A = self.fwd_bfs.node_queue.pop(0 ) __A = self.bwd_bfs.node_queue.pop(0 ) if current_bwd_node.pos == current_fwd_node.pos: __A = True return self.retrace_bidirectional_path( A ,A ) __A = current_bwd_node __A = current_fwd_node __A = { self.fwd_bfs: self.fwd_bfs.get_successors(A ), self.bwd_bfs: self.bwd_bfs.get_successors(A ), } for bfs in [self.fwd_bfs, self.bwd_bfs]: for node in successors[bfs]: bfs.node_queue.append(A ) if not self.reached: return [self.fwd_bfs.start.pos] return None def UpperCamelCase_ ( self : Dict ,A : Node ,A : Node ): __A = self.fwd_bfs.retrace_path(A ) __A = self.bwd_bfs.retrace_path(A ) bwd_path.pop() bwd_path.reverse() __A = fwd_path + bwd_path return path if __name__ == "__main__": # all coordinates are given in format [y,x] import doctest doctest.testmod() SCREAMING_SNAKE_CASE :Optional[int] = (0, 0) SCREAMING_SNAKE_CASE :List[Any] = (len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) SCREAMING_SNAKE_CASE :List[Any] = time.time() SCREAMING_SNAKE_CASE :List[str] = BreadthFirstSearch(init, goal) SCREAMING_SNAKE_CASE :str = bfs.search() SCREAMING_SNAKE_CASE :Optional[Any] = time.time() - start_bfs_time print('Unidirectional BFS computation time : ', bfs_time) SCREAMING_SNAKE_CASE :List[str] = time.time() SCREAMING_SNAKE_CASE :Dict = BidirectionalBreadthFirstSearch(init, goal) SCREAMING_SNAKE_CASE :Dict = bd_bfs.search() SCREAMING_SNAKE_CASE :Any = time.time() - start_bd_bfs_time print('Bidirectional BFS computation time : ', bd_bfs_time)
15
import numpy as np def UpperCAmelCase ( a_ , a_ , a_ = 1E-12 , a_ = 1_0_0 , ) -> tuple[float, np.ndarray]: """simple docstring""" assert np.shape(a_ )[0] == np.shape(a_ )[1] # Ensure proper dimensionality. assert np.shape(a_ )[0] == np.shape(a_ )[0] # Ensure inputs are either both complex or both real assert np.iscomplexobj(a_ ) == np.iscomplexobj(a_ ) __A = np.iscomplexobj(a_ ) if is_complex: # Ensure complex input_matrix is Hermitian assert np.array_equal(a_ , input_matrix.conj().T ) # Set convergence to False. Will define convergence when we exceed max_iterations # or when we have small changes from one iteration to next. __A = False __A = 0 __A = 0 __A = 1E12 while not convergence: # Multiple matrix by the vector. __A = np.dot(a_ , a_ ) # Normalize the resulting output vector. __A = w / np.linalg.norm(a_ ) # Find rayleigh quotient # (faster than usual b/c we know vector is normalized already) __A = vector.conj().T if is_complex else vector.T __A = np.dot(a_ , np.dot(a_ , a_ ) ) # Check convergence. __A = np.abs(lambda_ - lambda_previous ) / lambda_ iterations += 1 if error <= error_tol or iterations >= max_iterations: __A = True __A = lambda_ if is_complex: __A = np.real(lambda_ ) return lambda_, vector def UpperCAmelCase ( ) -> None: """simple docstring""" __A = np.array([[4_1, 4, 2_0], [4, 2_6, 3_0], [2_0, 3_0, 5_0]] ) __A = np.array([4_1, 4, 2_0] ) __A = real_input_matrix.astype(np.complexaaa ) __A = np.triu(1J * complex_input_matrix , 1 ) complex_input_matrix += imag_matrix complex_input_matrix += -1 * imag_matrix.T __A = np.array([4_1, 4, 2_0] ).astype(np.complexaaa ) for problem_type in ["real", "complex"]: if problem_type == "real": __A = real_input_matrix __A = real_vector elif problem_type == "complex": __A = complex_input_matrix __A = complex_vector # Our implementation. __A , __A = power_iteration(a_ , a_ ) # Numpy implementation. # Get eigenvalues and eigenvectors using built-in numpy # eigh (eigh used for symmetric or hermetian matrices). __A , __A = np.linalg.eigh(a_ ) # Last eigenvalue is the maximum one. __A = eigen_values[-1] # Last column in this matrix is eigenvector corresponding to largest eigenvalue. __A = eigen_vectors[:, -1] # Check our implementation and numpy gives close answers. assert np.abs(eigen_value - eigen_value_max ) <= 1E-6 # Take absolute values element wise of each eigenvector. # as they are only unique to a minus sign. assert np.linalg.norm(np.abs(a_ ) - np.abs(a_ ) ) <= 1E-6 if __name__ == "__main__": import doctest doctest.testmod() test_power_iteration()
15
1
"""simple docstring""" import argparse import logging import os from datetime import datetime import numpy as np import torch from torch import nn from torch.utils.data import DataLoader, RandomSampler, TensorDataset from tqdm import tqdm from transformers import GPTaLMHeadModel _lowerCAmelCase : Optional[int] = logging.getLogger(__name__) def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> List[Any]: '''simple docstring''' if os.path.exists(_lowerCamelCase ): if os.path.exists(os.path.join(_lowerCamelCase , "config.json" ) ) and os.path.isfile( os.path.join(_lowerCamelCase , "config.json" ) ): os.remove(os.path.join(_lowerCamelCase , "config.json" ) ) if os.path.exists(os.path.join(_lowerCamelCase , "pytorch_model.bin" ) ) and os.path.isfile( os.path.join(_lowerCamelCase , "pytorch_model.bin" ) ): os.remove(os.path.join(_lowerCamelCase , "pytorch_model.bin" ) ) else: os.makedirs(_lowerCamelCase ) model.save_pretrained(_lowerCamelCase ) def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase=False ) -> List[str]: '''simple docstring''' _lowerCamelCase : Tuple = 2 if unlogit: _lowerCamelCase : List[Any] = torch.pow(_lowerCamelCase , _lowerCamelCase ) _lowerCamelCase : Dict = p * torch.log(_lowerCamelCase ) _lowerCamelCase : Optional[Any] = 0 return -plogp.sum(dim=-1 ) def lowerCamelCase_( _lowerCamelCase ) -> List[Any]: '''simple docstring''' logger.info("lv, h >\t" + "\t".join(F"""{x + 1}""" for x in range(len(_lowerCamelCase ) ) ) ) for row in range(len(_lowerCamelCase ) ): if tensor.dtype != torch.long: logger.info(F"""layer {row + 1}:\t""" + "\t".join(F"""{x:.5f}""" for x in tensor[row].cpu().data ) ) else: logger.info(F"""layer {row + 1}:\t""" + "\t".join(F"""{x:d}""" for x in tensor[row].cpu().data ) ) def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=True , _lowerCamelCase=True , _lowerCamelCase=None , _lowerCamelCase=False ) -> List[str]: '''simple docstring''' _lowerCamelCase, _lowerCamelCase : Any = model.config.num_hidden_layers, model.config.num_attention_heads _lowerCamelCase : Optional[int] = torch.zeros(_lowerCamelCase , _lowerCamelCase ).to(args.device ) _lowerCamelCase : Dict = torch.zeros(_lowerCamelCase , _lowerCamelCase ).to(args.device ) if head_mask is None: _lowerCamelCase : Optional[int] = torch.ones(_lowerCamelCase , _lowerCamelCase ).to(args.device ) head_mask.requires_grad_(requires_grad=_lowerCamelCase ) # If actually pruned attention multi-head, set head mask to None to avoid shape mismatch if actually_pruned: _lowerCamelCase : str = None _lowerCamelCase : Optional[Any] = 0.0 _lowerCamelCase : Optional[Any] = 0.0 for step, inputs in enumerate(tqdm(_lowerCamelCase , desc="Iteration" , disable=args.local_rank not in [-1, 0] ) ): _lowerCamelCase : Any = tuple(t.to(args.device ) for t in inputs ) ((_lowerCamelCase), ) : List[str] = inputs # Do a forward pass (not with torch.no_grad() since we need gradients for importance score - see below) _lowerCamelCase : List[str] = model(_lowerCamelCase , labels=_lowerCamelCase , head_mask=_lowerCamelCase ) # (loss), lm_logits, presents, (all hidden_states), (attentions) _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : str = ( outputs[0], outputs[1], outputs[-1], ) # Loss and logits are the first, attention the last loss.backward() # Backpropagate to populate the gradients in the head mask total_loss += loss.detach().cpu().numpy() if compute_entropy: for layer, attn in enumerate(_lowerCamelCase ): _lowerCamelCase : str = entropy(attn.detach() , _lowerCamelCase ) attn_entropy[layer] += masked_entropy.sum(-1 ).sum(0 ).sum(0 ).detach() if compute_importance: head_importance += head_mask.grad.abs().detach() tot_tokens += torch.ones_like(_lowerCamelCase ).float().detach().sum().data # Normalize attn_entropy /= tot_tokens head_importance /= tot_tokens # Layerwise importance normalization if not args.dont_normalize_importance_by_layer: _lowerCamelCase : List[Any] = 2 _lowerCamelCase : int = torch.pow(torch.pow(_lowerCamelCase , _lowerCamelCase ).sum(-1 ) , 1 / exponent ) head_importance /= norm_by_layer.unsqueeze(-1 ) + 1e-20 if not args.dont_normalize_global_importance: _lowerCamelCase : List[Any] = (head_importance - head_importance.min()) / (head_importance.max() - head_importance.min()) # Print matrices if compute_entropy: logger.info("Attention entropies" ) print_ad_tensor(_lowerCamelCase ) if compute_importance: logger.info("Head importance scores" ) print_ad_tensor(_lowerCamelCase ) logger.info("Head ranked by importance scores" ) _lowerCamelCase : int = torch.zeros(head_importance.numel() , dtype=torch.long , device=args.device ) _lowerCamelCase : List[str] = torch.arange( head_importance.numel() , device=args.device ) _lowerCamelCase : Optional[Any] = head_ranks.view_as(_lowerCamelCase ) print_ad_tensor(_lowerCamelCase ) return attn_entropy, head_importance, total_loss def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> int: '''simple docstring''' _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : Optional[int] = compute_heads_importance(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , compute_entropy=_lowerCamelCase ) _lowerCamelCase : Dict = 1 / loss # instead of downsteam score use the LM loss logger.info("Pruning: original score: %f, threshold: %f" , _lowerCamelCase , original_score * args.masking_threshold ) _lowerCamelCase : Any = torch.ones_like(_lowerCamelCase ) _lowerCamelCase : List[Any] = max(1 , int(new_head_mask.numel() * args.masking_amount ) ) _lowerCamelCase : int = original_score while current_score >= original_score * args.masking_threshold: _lowerCamelCase : Optional[Any] = new_head_mask.clone().detach() # save current head mask # heads from least important to most - keep only not-masked heads _lowerCamelCase : Optional[int] = float("Inf" ) _lowerCamelCase : Union[str, Any] = head_importance.view(-1 ).sort()[1] if len(_lowerCamelCase ) <= num_to_mask: print("BREAK BY num_to_mask" ) break # mask heads _lowerCamelCase : List[str] = current_heads_to_mask[:num_to_mask] logger.info("Heads to mask: %s" , str(current_heads_to_mask.tolist() ) ) _lowerCamelCase : Optional[int] = new_head_mask.view(-1 ) _lowerCamelCase : str = 0.0 _lowerCamelCase : Optional[int] = new_head_mask.view_as(_lowerCamelCase ) _lowerCamelCase : Optional[Any] = new_head_mask.clone().detach() print_ad_tensor(_lowerCamelCase ) # Compute metric and head importance again _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : str = compute_heads_importance( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , compute_entropy=_lowerCamelCase , head_mask=_lowerCamelCase ) _lowerCamelCase : Optional[Any] = 1 / loss logger.info( "Masking: current score: %f, remaining heads %d (%.1f percents)" , _lowerCamelCase , new_head_mask.sum() , new_head_mask.sum() / new_head_mask.numel() * 100 , ) logger.info("Final head mask" ) print_ad_tensor(_lowerCamelCase ) np.save(os.path.join(args.output_dir , "head_mask.npy" ) , head_mask.detach().cpu().numpy() ) return head_mask def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> str: '''simple docstring''' _lowerCamelCase : Dict = datetime.now() _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : Any = compute_heads_importance( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , compute_entropy=_lowerCamelCase , compute_importance=_lowerCamelCase , head_mask=_lowerCamelCase ) _lowerCamelCase : Union[str, Any] = 1 / loss _lowerCamelCase : Tuple = datetime.now() - before_time _lowerCamelCase : Optional[int] = sum(p.numel() for p in model.parameters() ) _lowerCamelCase : List[Any] = { layer: (1 - head_mask[layer].long()).nonzero().squeeze().tolist() for layer in range(len(_lowerCamelCase ) ) } for k, v in heads_to_prune.items(): if isinstance(_lowerCamelCase , _lowerCamelCase ): _lowerCamelCase : Dict = [ v, ] assert sum(len(_lowerCamelCase ) for h in heads_to_prune.values() ) == (1 - head_mask.long()).sum().item() model.prune_heads(_lowerCamelCase ) _lowerCamelCase : List[str] = sum(p.numel() for p in model.parameters() ) _lowerCamelCase : List[str] = datetime.now() _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : str = compute_heads_importance( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , compute_entropy=_lowerCamelCase , compute_importance=_lowerCamelCase , head_mask=_lowerCamelCase , actually_pruned=_lowerCamelCase , ) _lowerCamelCase : List[str] = 1 / loss _lowerCamelCase : Any = datetime.now() - before_time logger.info( "Pruning: original num of params: %.2e, after pruning %.2e (%.1f percents)" , _lowerCamelCase , _lowerCamelCase , pruned_num_params / original_num_params * 100 , ) logger.info("Pruning: score with masking: %f score with pruning: %f" , _lowerCamelCase , _lowerCamelCase ) logger.info("Pruning: speed ratio (original timing / new timing): %f percents" , original_time / new_time * 100 ) save_model(_lowerCamelCase , args.output_dir ) def lowerCamelCase_( ) -> int: '''simple docstring''' _lowerCamelCase : str = argparse.ArgumentParser() # Required parameters parser.add_argument( "--data_dir" , default=_lowerCamelCase , type=_lowerCamelCase , required=_lowerCamelCase , help="The input data dir. Should contain the .tsv files (or other data files) for the task." , ) parser.add_argument( "--model_name_or_path" , default=_lowerCamelCase , type=_lowerCamelCase , required=_lowerCamelCase , help="Path to pretrained model or model identifier from huggingface.co/models" , ) parser.add_argument( "--output_dir" , default=_lowerCamelCase , type=_lowerCamelCase , required=_lowerCamelCase , help="The output directory where the model predictions and checkpoints will be written." , ) # Other parameters parser.add_argument( "--config_name" , default="" , type=_lowerCamelCase , help="Pretrained config name or path if not the same as model_name_or_path" , ) parser.add_argument( "--tokenizer_name" , default="" , type=_lowerCamelCase , help="Pretrained tokenizer name or path if not the same as model_name_or_path" , ) parser.add_argument( "--cache_dir" , default=_lowerCamelCase , type=_lowerCamelCase , help="Where do you want to store the pre-trained models downloaded from s3" , ) parser.add_argument( "--data_subset" , type=_lowerCamelCase , default=-1 , help="If > 0: limit the data to a subset of data_subset instances." ) parser.add_argument( "--overwrite_output_dir" , action="store_true" , help="Whether to overwrite data in output directory" ) parser.add_argument( "--overwrite_cache" , action="store_true" , help="Overwrite the cached training and evaluation sets" ) parser.add_argument( "--dont_normalize_importance_by_layer" , action="store_true" , help="Don't normalize importance score by layers" ) parser.add_argument( "--dont_normalize_global_importance" , action="store_true" , help="Don't normalize all importance scores between 0 and 1" , ) parser.add_argument( "--try_masking" , action="store_true" , help="Whether to try to mask head until a threshold of accuracy." ) parser.add_argument( "--masking_threshold" , default=0.9 , type=_lowerCamelCase , help="masking threshold in term of metrics (stop masking when metric < threshold * original metric value)." , ) parser.add_argument( "--masking_amount" , default=0.1 , type=_lowerCamelCase , help="Amount to heads to masking at each masking step." ) parser.add_argument("--metric_name" , default="acc" , type=_lowerCamelCase , help="Metric to use for head masking." ) parser.add_argument( "--max_seq_length" , default=128 , type=_lowerCamelCase , help=( "The maximum total input sequence length after WordPiece tokenization. \n" "Sequences longer than this will be truncated, sequences shorter padded." ) , ) parser.add_argument("--batch_size" , default=1 , type=_lowerCamelCase , help="Batch size." ) parser.add_argument("--seed" , type=_lowerCamelCase , default=42 ) parser.add_argument("--local_rank" , type=_lowerCamelCase , default=-1 , help="local_rank for distributed training on gpus" ) parser.add_argument("--no_cuda" , action="store_true" , help="Whether not to use CUDA when available" ) parser.add_argument("--server_ip" , type=_lowerCamelCase , default="" , help="Can be used for distant debugging." ) parser.add_argument("--server_port" , type=_lowerCamelCase , default="" , help="Can be used for distant debugging." ) _lowerCamelCase : Dict = parser.parse_args() if args.server_ip and args.server_port: # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script import ptvsd print("Waiting for debugger attach" ) ptvsd.enable_attach(address=(args.server_ip, args.server_port) , redirect_output=_lowerCamelCase ) ptvsd.wait_for_attach() # Setup devices and distributed training if args.local_rank == -1 or args.no_cuda: _lowerCamelCase : int = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu" ) _lowerCamelCase : Optional[int] = 0 if args.no_cuda else torch.cuda.device_count() else: torch.cuda.set_device(args.local_rank ) _lowerCamelCase : Optional[int] = torch.device("cuda" , args.local_rank ) _lowerCamelCase : List[str] = 1 torch.distributed.init_process_group(backend="nccl" ) # Initializes the distributed backend # Setup logging logging.basicConfig(level=logging.INFO if args.local_rank in [-1, 0] else logging.WARN ) logger.info("device: {} n_gpu: {}, distributed: {}".format(args.device , args.n_gpu , bool(args.local_rank != -1 ) ) ) _lowerCamelCase : List[Any] = GPTaLMHeadModel.from_pretrained(args.model_name_or_path ) # Distributed and parallel training model.to(args.device ) if args.local_rank != -1: _lowerCamelCase : Dict = nn.parallel.DistributedDataParallel( _lowerCamelCase , device_ids=[args.local_rank] , output_device=args.local_rank , find_unused_parameters=_lowerCamelCase ) elif args.n_gpu > 1: _lowerCamelCase : str = nn.DataParallel(_lowerCamelCase ) # Print/save training arguments os.makedirs(args.output_dir , exist_ok=_lowerCamelCase ) torch.save(_lowerCamelCase , os.path.join(args.output_dir , "run_args.bin" ) ) logger.info("Training/evaluation parameters %s" , _lowerCamelCase ) # Prepare dataset _lowerCamelCase : Optional[int] = np.concatenate( [ np.loadtxt(args.data_dir , dtype=np.intaa ), ] ) _lowerCamelCase : Dict = (torch.from_numpy(_lowerCamelCase ),) _lowerCamelCase : int = TensorDataset(*_lowerCamelCase ) _lowerCamelCase : Optional[int] = RandomSampler(_lowerCamelCase ) _lowerCamelCase : Tuple = DataLoader(_lowerCamelCase , sampler=_lowerCamelCase , batch_size=args.batch_size ) # Compute head entropy and importance score compute_heads_importance(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) # Try head masking (set heads to zero until the score goes under a threshole) # and head pruning (remove masked heads and see the effect on the network) if args.try_masking and args.masking_threshold > 0.0 and args.masking_threshold < 1.0: _lowerCamelCase : Union[str, Any] = mask_heads(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) prune_heads(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) if __name__ == "__main__": main()
340
"""simple docstring""" # Lint as: python3 import os import re import urllib.parse from pathlib import Path from typing import Callable, List, Optional, Union from zipfile import ZipFile from ..utils.file_utils import cached_path, hf_github_url from ..utils.logging import get_logger from ..utils.version import Version _lowerCAmelCase : List[Any] = get_logger(__name__) class A_ : lowerCAmelCase__ = 'dummy_data' lowerCAmelCase__ = 'datasets' lowerCAmelCase__ = False def __init__( self: List[str] ,__lowerCAmelCase: str ,__lowerCAmelCase: str ,__lowerCAmelCase: Union[Version, str] ,__lowerCAmelCase: Optional[str] = None ,__lowerCAmelCase: bool = False ,__lowerCAmelCase: bool = True ,__lowerCAmelCase: Optional[List[Callable]] = None ,): '''simple docstring''' _lowerCamelCase : str = 0 _lowerCamelCase : List[str] = dataset_name _lowerCamelCase : Optional[int] = cache_dir _lowerCamelCase : Optional[int] = use_local_dummy_data _lowerCamelCase : int = config # download_callbacks take a single url as input _lowerCamelCase : List[Callable] = download_callbacks or [] # if False, it doesn't load existing files and it returns the paths of the dummy files relative # to the dummy_data zip file root _lowerCamelCase : int = load_existing_dummy_data # TODO(PVP, QL) might need to make this more general _lowerCamelCase : Tuple = str(__lowerCAmelCase ) # to be downloaded _lowerCamelCase : Optional[Any] = None _lowerCamelCase : Dict = None @property def _lowercase ( self: str ): '''simple docstring''' if self._dummy_file is None: _lowerCamelCase : List[str] = self.download_dummy_data() return self._dummy_file @property def _lowercase ( self: str ): '''simple docstring''' if self.config is not None: # structure is dummy / config_name / version_name return os.path.join("dummy" ,self.config.name ,self.version_name ) # structure is dummy / version_name return os.path.join("dummy" ,self.version_name ) @property def _lowercase ( self: Optional[Any] ): '''simple docstring''' return os.path.join(self.dummy_data_folder ,"dummy_data.zip" ) def _lowercase ( self: Optional[Any] ): '''simple docstring''' _lowerCamelCase : Dict = ( self.local_path_to_dummy_data if self.use_local_dummy_data is True else self.github_path_to_dummy_data ) _lowerCamelCase : Optional[int] = cached_path( __lowerCAmelCase ,cache_dir=self.cache_dir ,extract_compressed_file=__lowerCAmelCase ,force_extract=__lowerCAmelCase ) return os.path.join(__lowerCAmelCase ,self.dummy_file_name ) @property def _lowercase ( self: Tuple ): '''simple docstring''' return os.path.join(self.datasets_scripts_dir ,self.dataset_name ,self.dummy_zip_file ) @property def _lowercase ( self: List[str] ): '''simple docstring''' if self._bucket_url is None: _lowerCamelCase : List[str] = hf_github_url(self.dataset_name ,self.dummy_zip_file.replace(os.sep ,"/" ) ) return self._bucket_url @property def _lowercase ( self: Union[str, Any] ): '''simple docstring''' if os.path.isdir(self.dummy_file ): return self.dummy_file # else cut off path to file -> example `xsum`. return "/".join(self.dummy_file.replace(os.sep ,"/" ).split("/" )[:-1] ) def _lowercase ( self: Union[str, Any] ,__lowerCAmelCase: str ,*__lowerCAmelCase: List[Any] ): '''simple docstring''' if self.load_existing_dummy_data: # dummy data is downloaded and tested _lowerCamelCase : Tuple = self.dummy_file else: # dummy data cannot be downloaded and only the path to dummy file is returned _lowerCamelCase : Optional[Any] = self.dummy_file_name # special case when data_url is a dict if isinstance(__lowerCAmelCase ,__lowerCAmelCase ): return self.create_dummy_data_dict(__lowerCAmelCase ,__lowerCAmelCase ) elif isinstance(__lowerCAmelCase ,(list, tuple) ): return self.create_dummy_data_list(__lowerCAmelCase ,__lowerCAmelCase ) else: return self.create_dummy_data_single(__lowerCAmelCase ,__lowerCAmelCase ) def _lowercase ( self: str ,__lowerCAmelCase: Optional[int] ,*__lowerCAmelCase: Optional[int] ): '''simple docstring''' return self.download_and_extract(__lowerCAmelCase ) def _lowercase ( self: List[Any] ,__lowerCAmelCase: Dict ,__lowerCAmelCase: int ): '''simple docstring''' return self.download_and_extract(__lowerCAmelCase ) def _lowercase ( self: Optional[int] ,__lowerCAmelCase: Optional[int] ,*__lowerCAmelCase: List[str] ,**__lowerCAmelCase: Optional[int] ): '''simple docstring''' return path def _lowercase ( self: Optional[int] ): '''simple docstring''' return {} def _lowercase ( self: Optional[Any] ,__lowerCAmelCase: Dict ,__lowerCAmelCase: str ): '''simple docstring''' _lowerCamelCase : str = {} for key, single_urls in data_url.items(): for download_callback in self.download_callbacks: if isinstance(__lowerCAmelCase ,__lowerCAmelCase ): for single_url in single_urls: download_callback(__lowerCAmelCase ) else: _lowerCamelCase : Union[str, Any] = single_urls download_callback(__lowerCAmelCase ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus if isinstance(__lowerCAmelCase ,__lowerCAmelCase ): _lowerCamelCase : Dict = [os.path.join(__lowerCAmelCase ,urllib.parse.quote_plus(Path(__lowerCAmelCase ).name ) ) for x in single_urls] else: _lowerCamelCase : Union[str, Any] = single_urls _lowerCamelCase : List[str] = os.path.join(__lowerCAmelCase ,urllib.parse.quote_plus(Path(__lowerCAmelCase ).name ) ) _lowerCamelCase : List[Any] = value # make sure that values are unique if all(isinstance(__lowerCAmelCase ,__lowerCAmelCase ) for i in dummy_data_dict.values() ) and len(set(dummy_data_dict.values() ) ) < len( dummy_data_dict.values() ): # append key to value to make its name unique _lowerCamelCase : List[Any] = {key: value + key for key, value in dummy_data_dict.items()} return dummy_data_dict def _lowercase ( self: int ,__lowerCAmelCase: List[str] ,__lowerCAmelCase: Tuple ): '''simple docstring''' _lowerCamelCase : Dict = [] # trick: if there are many shards named like `data.txt-000001-of-00300`, only use the first one _lowerCamelCase : List[str] = all(bool(re.findall("[0-9]{3,}-of-[0-9]{3,}" ,__lowerCAmelCase ) ) for url in data_url ) _lowerCamelCase : Optional[Any] = all( url.startswith("https://ftp.ncbi.nlm.nih.gov/pubmed/baseline/pubmed" ) for url in data_url ) if data_url and (is_tf_records or is_pubmed_records): _lowerCamelCase : Tuple = [data_url[0]] * len(__lowerCAmelCase ) for single_url in data_url: for download_callback in self.download_callbacks: download_callback(__lowerCAmelCase ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus _lowerCamelCase : List[Any] = os.path.join(__lowerCAmelCase ,urllib.parse.quote_plus(single_url.split("/" )[-1] ) ) dummy_data_list.append(__lowerCAmelCase ) return dummy_data_list def _lowercase ( self: Union[str, Any] ,__lowerCAmelCase: Optional[Any] ,__lowerCAmelCase: List[Any] ): '''simple docstring''' for download_callback in self.download_callbacks: download_callback(__lowerCAmelCase ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus _lowerCamelCase : Optional[int] = os.path.join(__lowerCAmelCase ,urllib.parse.quote_plus(data_url.split("/" )[-1] ) ) if os.path.exists(__lowerCAmelCase ) or not self.load_existing_dummy_data: return value else: # Backward compatibility, maybe deprecate at one point. # For many datasets with single url calls to dl_manager.download_and_extract, # the dummy_data.zip file is actually the zipped downloaded file # while now we expected the dummy_data.zip file to be a directory containing # the downloaded file. return path_to_dummy_data def _lowercase ( self: Optional[Any] ): '''simple docstring''' pass def _lowercase ( self: Optional[int] ): '''simple docstring''' pass def _lowercase ( self: List[Any] ,__lowerCAmelCase: Optional[int] ): '''simple docstring''' def _iter_archive_members(__lowerCAmelCase: Any ): # this preserves the order of the members inside the ZIP archive _lowerCamelCase : Tuple = Path(self.dummy_file ).parent _lowerCamelCase : str = path.relative_to(__lowerCAmelCase ) with ZipFile(self.local_path_to_dummy_data ) as zip_file: _lowerCamelCase : Optional[int] = zip_file.namelist() for member in members: if member.startswith(relative_path.as_posix() ): yield dummy_parent_path.joinpath(__lowerCAmelCase ) _lowerCamelCase : Optional[Any] = Path(__lowerCAmelCase ) _lowerCamelCase : int = _iter_archive_members(__lowerCAmelCase ) if self.use_local_dummy_data else path.rglob("*" ) for file_path in file_paths: if file_path.is_file() and not file_path.name.startswith((".", "__") ): yield file_path.relative_to(__lowerCAmelCase ).as_posix(), file_path.open("rb" ) def _lowercase ( self: str ,__lowerCAmelCase: Optional[int] ): '''simple docstring''' if not isinstance(__lowerCAmelCase ,__lowerCAmelCase ): _lowerCamelCase : List[Any] = [paths] for path in paths: if os.path.isfile(__lowerCAmelCase ): if os.path.basename(__lowerCAmelCase ).startswith((".", "__") ): return yield path else: for dirpath, dirnames, filenames in os.walk(__lowerCAmelCase ): if os.path.basename(__lowerCAmelCase ).startswith((".", "__") ): continue dirnames.sort() for filename in sorted(__lowerCAmelCase ): if filename.startswith((".", "__") ): continue yield os.path.join(__lowerCAmelCase ,__lowerCAmelCase )
340
1
import math import sys import cva import numpy as np def __lowerCamelCase ( snake_case__ ,snake_case__ ) -> np.ndarray: """simple docstring""" _SCREAMING_SNAKE_CASE = math.sqrt(snake_case__ ) _SCREAMING_SNAKE_CASE = 1 / (sigma * math.sqrt(2 * math.pi )) return cons * np.exp(-((img / sigma) ** 2) * 0.5 ) def __lowerCamelCase ( snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ) -> np.ndarray: """simple docstring""" _SCREAMING_SNAKE_CASE = kernel_size // 2 return img[x - half : x + half + 1, y - half : y + half + 1] def __lowerCamelCase ( snake_case__ ,snake_case__ ) -> np.ndarray: """simple docstring""" _SCREAMING_SNAKE_CASE = np.zeros((kernel_size, kernel_size) ) for i in range(0 ,snake_case__ ): for j in range(0 ,snake_case__ ): _SCREAMING_SNAKE_CASE = math.sqrt( abs(i - kernel_size // 2 ) ** 2 + abs(j - kernel_size // 2 ) ** 2 ) return vec_gaussian(snake_case__ ,snake_case__ ) def __lowerCamelCase ( snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,) -> np.ndarray: """simple docstring""" _SCREAMING_SNAKE_CASE = np.zeros(img.shape ) _SCREAMING_SNAKE_CASE = get_gauss_kernel(snake_case__ ,snake_case__ ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = img.shape for i in range(kernel_size // 2 ,size_x - kernel_size // 2 ): for j in range(kernel_size // 2 ,size_y - kernel_size // 2 ): _SCREAMING_SNAKE_CASE = get_slice(snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ) _SCREAMING_SNAKE_CASE = img_s - img_s[kernel_size // 2, kernel_size // 2] _SCREAMING_SNAKE_CASE = vec_gaussian(snake_case__ ,snake_case__ ) _SCREAMING_SNAKE_CASE = np.multiply(snake_case__ ,snake_case__ ) _SCREAMING_SNAKE_CASE = np.multiply(snake_case__ ,snake_case__ ) _SCREAMING_SNAKE_CASE = np.sum(snake_case__ ) / np.sum(snake_case__ ) _SCREAMING_SNAKE_CASE = val return imga def __lowerCamelCase ( snake_case__ ) -> tuple: """simple docstring""" _SCREAMING_SNAKE_CASE = args[1] if args[1:] else """../image_data/lena.jpg""" _SCREAMING_SNAKE_CASE = float(args[2] ) if args[2:] else 1.0 _SCREAMING_SNAKE_CASE = float(args[3] ) if args[3:] else 1.0 if args[4:]: _SCREAMING_SNAKE_CASE = int(args[4] ) _SCREAMING_SNAKE_CASE = kernel_size + abs(kernel_size % 2 - 1 ) else: _SCREAMING_SNAKE_CASE = 5 return filename, spatial_variance, intensity_variance, kernel_size if __name__ == "__main__": UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase = parse_args(sys.argv) UpperCamelCase = cva.imread(filename, 0) cva.imshow('''input image''', img) UpperCamelCase = img / 255 UpperCamelCase = out.astype('''float32''') UpperCamelCase = bilateral_filter(out, spatial_variance, intensity_variance, kernel_size) UpperCamelCase = out * 255 UpperCamelCase = np.uinta(out) cva.imshow('''output image''', out) cva.waitKey(0) cva.destroyAllWindows()
306
import random def __lowerCamelCase ( snake_case__ ) -> bool: """simple docstring""" _SCREAMING_SNAKE_CASE = num - 1 _SCREAMING_SNAKE_CASE = 0 while s % 2 == 0: _SCREAMING_SNAKE_CASE = s // 2 t += 1 for _ in range(5 ): _SCREAMING_SNAKE_CASE = random.randrange(2 ,num - 1 ) _SCREAMING_SNAKE_CASE = pow(snake_case__ ,snake_case__ ,snake_case__ ) if v != 1: _SCREAMING_SNAKE_CASE = 0 while v != (num - 1): if i == t - 1: return False else: _SCREAMING_SNAKE_CASE = i + 1 _SCREAMING_SNAKE_CASE = (v**2) % num return True def __lowerCamelCase ( snake_case__ ) -> bool: """simple docstring""" if num < 2: return False _SCREAMING_SNAKE_CASE = [ 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 1_01, 1_03, 1_07, 1_09, 1_13, 1_27, 1_31, 1_37, 1_39, 1_49, 1_51, 1_57, 1_63, 1_67, 1_73, 1_79, 1_81, 1_91, 1_93, 1_97, 1_99, 2_11, 2_23, 2_27, 2_29, 2_33, 2_39, 2_41, 2_51, 2_57, 2_63, 2_69, 2_71, 2_77, 2_81, 2_83, 2_93, 3_07, 3_11, 3_13, 3_17, 3_31, 3_37, 3_47, 3_49, 3_53, 3_59, 3_67, 3_73, 3_79, 3_83, 3_89, 3_97, 4_01, 4_09, 4_19, 4_21, 4_31, 4_33, 4_39, 4_43, 4_49, 4_57, 4_61, 4_63, 4_67, 4_79, 4_87, 4_91, 4_99, 5_03, 5_09, 5_21, 5_23, 5_41, 5_47, 5_57, 5_63, 5_69, 5_71, 5_77, 5_87, 5_93, 5_99, 6_01, 6_07, 6_13, 6_17, 6_19, 6_31, 6_41, 6_43, 6_47, 6_53, 6_59, 6_61, 6_73, 6_77, 6_83, 6_91, 7_01, 7_09, 7_19, 7_27, 7_33, 7_39, 7_43, 7_51, 7_57, 7_61, 7_69, 7_73, 7_87, 7_97, 8_09, 8_11, 8_21, 8_23, 8_27, 8_29, 8_39, 8_53, 8_57, 8_59, 8_63, 8_77, 8_81, 8_83, 8_87, 9_07, 9_11, 9_19, 9_29, 9_37, 9_41, 9_47, 9_53, 9_67, 9_71, 9_77, 9_83, 9_91, 9_97, ] if num in low_primes: return True for prime in low_primes: if (num % prime) == 0: return False return rabin_miller(snake_case__ ) def __lowerCamelCase ( snake_case__ = 10_24 ) -> int: """simple docstring""" while True: _SCREAMING_SNAKE_CASE = random.randrange(2 ** (keysize - 1) ,2 ** (keysize) ) if is_prime_low_num(snake_case__ ): return num if __name__ == "__main__": UpperCamelCase = generate_large_prime() print(('''Prime number:''', num)) print(('''is_prime_low_num:''', is_prime_low_num(num)))
306
1
import warnings from ...utils import logging from .image_processing_flava import FlavaImageProcessor lowerCamelCase_ = logging.get_logger(__name__) class __A( __lowerCamelCase ): """simple docstring""" def __init__(self , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ): warnings.warn( """The class FlavaFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please""" """ use FlavaImageProcessor instead.""" , SCREAMING_SNAKE_CASE_ , ) super().__init__(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
354
import re import jax.numpy as jnp from flax.traverse_util import flatten_dict, unflatten_dict from jax.random import PRNGKey from ..utils import logging lowerCamelCase_ = logging.get_logger(__name__) def __magic_name__ ( __a : Optional[int] ): '''simple docstring''' UpperCamelCase__ = R"""\w+[.]\d+""" UpperCamelCase__ = re.findall(__a , __a ) for pat in pats: UpperCamelCase__ = key.replace(__a , """_""".join(pat.split(""".""" ) ) ) return key def __magic_name__ ( __a : str , __a : Dict , __a : int ): '''simple docstring''' UpperCamelCase__ = pt_tuple_key[:-1] + ("""scale""",) if ( any("""norm""" in str_ for str_ in pt_tuple_key ) and (pt_tuple_key[-1] == "bias") and (pt_tuple_key[:-1] + ("bias",) not in random_flax_state_dict) and (pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict) ): UpperCamelCase__ = pt_tuple_key[:-1] + ("""scale""",) return renamed_pt_tuple_key, pt_tensor elif pt_tuple_key[-1] in ["weight", "gamma"] and pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict: UpperCamelCase__ = pt_tuple_key[:-1] + ("""scale""",) return renamed_pt_tuple_key, pt_tensor # embedding if pt_tuple_key[-1] == "weight" and pt_tuple_key[:-1] + ("embedding",) in random_flax_state_dict: UpperCamelCase__ = pt_tuple_key[:-1] + ("""embedding""",) return renamed_pt_tuple_key, pt_tensor # conv layer UpperCamelCase__ = pt_tuple_key[:-1] + ("""kernel""",) if pt_tuple_key[-1] == "weight" and pt_tensor.ndim == 4: UpperCamelCase__ = pt_tensor.transpose(2 , 3 , 1 , 0 ) return renamed_pt_tuple_key, pt_tensor # linear layer UpperCamelCase__ = pt_tuple_key[:-1] + ("""kernel""",) if pt_tuple_key[-1] == "weight": UpperCamelCase__ = pt_tensor.T return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm weight UpperCamelCase__ = pt_tuple_key[:-1] + ("""weight""",) if pt_tuple_key[-1] == "gamma": return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm bias UpperCamelCase__ = pt_tuple_key[:-1] + ("""bias""",) if pt_tuple_key[-1] == "beta": return renamed_pt_tuple_key, pt_tensor return pt_tuple_key, pt_tensor def __magic_name__ ( __a : List[Any] , __a : List[Any] , __a : Optional[int]=42 ): '''simple docstring''' UpperCamelCase__ = {k: v.numpy() for k, v in pt_state_dict.items()} # Step 2: Since the model is stateless, get random Flax params UpperCamelCase__ = flax_model.init_weights(PRNGKey(__a ) ) UpperCamelCase__ = flatten_dict(__a ) UpperCamelCase__ = {} # Need to change some parameters name to match Flax names for pt_key, pt_tensor in pt_state_dict.items(): UpperCamelCase__ = rename_key(__a ) UpperCamelCase__ = tuple(renamed_pt_key.split(""".""" ) ) # Correctly rename weight parameters UpperCamelCase__ , UpperCamelCase__ = rename_key_and_reshape_tensor(__a , __a , __a ) if flax_key in random_flax_state_dict: if flax_tensor.shape != random_flax_state_dict[flax_key].shape: raise ValueError( f"PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape " f"{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}." ) # also add unexpected weight so that warning is thrown UpperCamelCase__ = jnp.asarray(__a ) return unflatten_dict(__a )
178
0
import warnings from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging a_ :str = logging.get_logger(__name__) a_ :Tuple = { "nvidia/segformer-b0-finetuned-ade-512-512": ( "https://huggingface.co/nvidia/segformer-b0-finetuned-ade-512-512/resolve/main/config.json" ), # See all SegFormer models at https://huggingface.co/models?filter=segformer } class snake_case__ ( _SCREAMING_SNAKE_CASE ): """simple docstring""" _SCREAMING_SNAKE_CASE = "segformer" def __init__( self : List[Any], _snake_case : List[Any]=3, _snake_case : Dict=4, _snake_case : Union[str, Any]=[2, 2, 2, 2], _snake_case : Union[str, Any]=[8, 4, 2, 1], _snake_case : List[str]=[3_2, 6_4, 1_6_0, 2_5_6], _snake_case : Union[str, Any]=[7, 3, 3, 3], _snake_case : List[str]=[4, 2, 2, 2], _snake_case : Optional[int]=[1, 2, 5, 8], _snake_case : str=[4, 4, 4, 4], _snake_case : Union[str, Any]="gelu", _snake_case : Dict=0.0, _snake_case : Any=0.0, _snake_case : Optional[int]=0.1, _snake_case : Tuple=0.0_2, _snake_case : Dict=0.1, _snake_case : Dict=1e-6, _snake_case : List[Any]=2_5_6, _snake_case : Dict=2_5_5, **_snake_case : Union[str, Any], ) ->Any: super().__init__(**A_ ) if "reshape_last_stage" in kwargs and kwargs["reshape_last_stage"] is False: warnings.warn( 'Reshape_last_stage is set to False in this config. This argument is deprecated and will soon be' ' removed, as the behaviour will default to that of reshape_last_stage = True.', A_, ) snake_case__ : List[Any] = num_channels snake_case__ : Union[str, Any] = num_encoder_blocks snake_case__ : List[Any] = depths snake_case__ : Optional[int] = sr_ratios snake_case__ : Dict = hidden_sizes snake_case__ : Any = patch_sizes snake_case__ : Dict = strides snake_case__ : Any = mlp_ratios snake_case__ : List[Any] = num_attention_heads snake_case__ : Dict = hidden_act snake_case__ : Tuple = hidden_dropout_prob snake_case__ : Tuple = attention_probs_dropout_prob snake_case__ : Dict = classifier_dropout_prob snake_case__ : Union[str, Any] = initializer_range snake_case__ : Any = drop_path_rate snake_case__ : List[str] = layer_norm_eps snake_case__ : str = decoder_hidden_size snake_case__ : Tuple = kwargs.get('reshape_last_stage', A_ ) snake_case__ : Union[str, Any] = semantic_loss_ignore_index class snake_case__ ( _SCREAMING_SNAKE_CASE ): """simple docstring""" _SCREAMING_SNAKE_CASE = version.parse("""1.11""" ) @property def lowercase_ ( self : List[Any] ) ->Mapping[str, Mapping[int, str]]: return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def lowercase_ ( self : str ) ->float: return 1e-4 @property def lowercase_ ( self : Optional[Any] ) ->int: return 1_2
277
import random import unittest import torch from diffusers import IFInpaintingPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class lowercase ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , unittest.TestCase ): __lowercase : int = IFInpaintingPipeline __lowercase : str = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {"width", "height"} __lowercase : Optional[int] = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS __lowercase : Optional[int] = PipelineTesterMixin.required_optional_params - {"latents"} def __UpperCamelCase ( self ) -> List[str]: """simple docstring""" return self._get_dummy_components() def __UpperCamelCase ( self , A_ , A_=0 ) -> List[Any]: """simple docstring""" if str(A_ ).startswith('mps' ): UpperCamelCase = torch.manual_seed(A_ ) else: UpperCamelCase = torch.Generator(device=A_ ).manual_seed(A_ ) UpperCamelCase = floats_tensor((1, 3, 32, 32) , rng=random.Random(A_ ) ).to(A_ ) UpperCamelCase = floats_tensor((1, 3, 32, 32) , rng=random.Random(A_ ) ).to(A_ ) UpperCamelCase = { 'prompt': 'A painting of a squirrel eating a burger', 'image': image, 'mask_image': mask_image, 'generator': generator, 'num_inference_steps': 2, 'output_type': 'numpy', } return inputs @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available() , reason='XFormers attention is only available with CUDA and `xformers` installed' , ) def __UpperCamelCase ( self ) -> str: """simple docstring""" self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 ) def __UpperCamelCase ( self ) -> str: """simple docstring""" self._test_save_load_optional_components() @unittest.skipIf(torch_device != 'cuda' , reason='float16 requires CUDA' ) def __UpperCamelCase ( self ) -> str: """simple docstring""" # Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder super().test_save_load_floataa(expected_max_diff=1e-1 ) def __UpperCamelCase ( self ) -> Optional[Any]: """simple docstring""" self._test_attention_slicing_forward_pass(expected_max_diff=1e-2 ) def __UpperCamelCase ( self ) -> Dict: """simple docstring""" self._test_save_load_local() def __UpperCamelCase ( self ) -> Dict: """simple docstring""" self._test_inference_batch_single_identical( expected_max_diff=1e-2 , )
222
0
import warnings from ...utils import logging from .image_processing_flava import FlavaImageProcessor lowerCamelCase : Optional[Any] = logging.get_logger(__name__) class __lowercase (UpperCamelCase__ ): """simple docstring""" def __init__( self , *A , **A ) -> None: warnings.warn( """The class FlavaFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please""" """ use FlavaImageProcessor instead.""" , A , ) super().__init__(*A , **A )
176
from argparse import ArgumentParser, Namespace from ..utils import logging from . import BaseTransformersCLICommand def SCREAMING_SNAKE_CASE__ ( lowercase ) -> List[str]: return ConvertCommand( args.model_type ,args.tf_checkpoint ,args.pytorch_dump_output ,args.config ,args.finetuning_task_name ) lowerCamelCase : Tuple = '\ntransformers can only be used from the commandline to convert TensorFlow models in PyTorch, In that case, it requires\nTensorFlow to be installed. Please see https://www.tensorflow.org/install/ for installation instructions.\n' class __lowercase (UpperCamelCase__ ): """simple docstring""" @staticmethod def UpperCAmelCase ( A ) -> List[str]: snake_case : Union[str, Any] = parser.add_parser( """convert""" , help="""CLI tool to run convert model from original author checkpoints to Transformers PyTorch checkpoints.""" , ) train_parser.add_argument("""--model_type""" , type=A , required=A , help="""Model's type.""" ) train_parser.add_argument( """--tf_checkpoint""" , type=A , required=A , help="""TensorFlow checkpoint path or folder.""" ) train_parser.add_argument( """--pytorch_dump_output""" , type=A , required=A , help="""Path to the PyTorch saved model output.""" ) train_parser.add_argument("""--config""" , type=A , default="""""" , help="""Configuration file path or folder.""" ) train_parser.add_argument( """--finetuning_task_name""" , type=A , default=A , help="""Optional fine-tuning task name if the TF model was a finetuned model.""" , ) train_parser.set_defaults(func=A ) def __init__( self , A , A , A , A , A , *A , ) -> List[Any]: snake_case : Any = logging.get_logger("""transformers-cli/converting""" ) self._logger.info(f"""Loading model {model_type}""" ) snake_case : int = model_type snake_case : Any = tf_checkpoint snake_case : int = pytorch_dump_output snake_case : List[str] = config snake_case : Tuple = finetuning_task_name def UpperCAmelCase ( self ) -> int: if self._model_type == "albert": try: from ..models.albert.convert_albert_original_tf_checkpoint_to_pytorch import ( convert_tf_checkpoint_to_pytorch, ) except ImportError: raise ImportError(A ) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "bert": try: from ..models.bert.convert_bert_original_tf_checkpoint_to_pytorch import ( convert_tf_checkpoint_to_pytorch, ) except ImportError: raise ImportError(A ) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "funnel": try: from ..models.funnel.convert_funnel_original_tf_checkpoint_to_pytorch import ( convert_tf_checkpoint_to_pytorch, ) except ImportError: raise ImportError(A ) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "t5": try: from ..models.ta.convert_ta_original_tf_checkpoint_to_pytorch import convert_tf_checkpoint_to_pytorch except ImportError: raise ImportError(A ) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "gpt": from ..models.openai.convert_openai_original_tf_checkpoint_to_pytorch import ( convert_openai_checkpoint_to_pytorch, ) convert_openai_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "transfo_xl": try: from ..models.transfo_xl.convert_transfo_xl_original_tf_checkpoint_to_pytorch import ( convert_transfo_xl_checkpoint_to_pytorch, ) except ImportError: raise ImportError(A ) if "ckpt" in self._tf_checkpoint.lower(): snake_case : List[Any] = self._tf_checkpoint snake_case : Tuple = """""" else: snake_case : Tuple = self._tf_checkpoint snake_case : Tuple = """""" convert_transfo_xl_checkpoint_to_pytorch( A , self._config , self._pytorch_dump_output , A ) elif self._model_type == "gpt2": try: from ..models.gpta.convert_gpta_original_tf_checkpoint_to_pytorch import ( convert_gpta_checkpoint_to_pytorch, ) except ImportError: raise ImportError(A ) convert_gpta_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "xlnet": try: from ..models.xlnet.convert_xlnet_original_tf_checkpoint_to_pytorch import ( convert_xlnet_checkpoint_to_pytorch, ) except ImportError: raise ImportError(A ) convert_xlnet_checkpoint_to_pytorch( self._tf_checkpoint , self._config , self._pytorch_dump_output , self._finetuning_task_name ) elif self._model_type == "xlm": from ..models.xlm.convert_xlm_original_pytorch_checkpoint_to_pytorch import ( convert_xlm_checkpoint_to_pytorch, ) convert_xlm_checkpoint_to_pytorch(self._tf_checkpoint , self._pytorch_dump_output ) elif self._model_type == "lxmert": from ..models.lxmert.convert_lxmert_original_tf_checkpoint_to_pytorch import ( convert_lxmert_checkpoint_to_pytorch, ) convert_lxmert_checkpoint_to_pytorch(self._tf_checkpoint , self._pytorch_dump_output ) elif self._model_type == "rembert": from ..models.rembert.convert_rembert_tf_checkpoint_to_pytorch import ( convert_rembert_tf_checkpoint_to_pytorch, ) convert_rembert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) else: raise ValueError( """--model_type should be selected in the list [bert, gpt, gpt2, t5, transfo_xl, xlnet, xlm, lxmert]""" )
176
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowercase_ = {'configuration_xlnet': ['XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP', 'XLNetConfig']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = ['XLNetTokenizer'] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = ['XLNetTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ 'XLNET_PRETRAINED_MODEL_ARCHIVE_LIST', 'XLNetForMultipleChoice', 'XLNetForQuestionAnswering', 'XLNetForQuestionAnsweringSimple', 'XLNetForSequenceClassification', 'XLNetForTokenClassification', 'XLNetLMHeadModel', 'XLNetModel', 'XLNetPreTrainedModel', 'load_tf_weights_in_xlnet', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ 'TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFXLNetForMultipleChoice', 'TFXLNetForQuestionAnsweringSimple', 'TFXLNetForSequenceClassification', 'TFXLNetForTokenClassification', 'TFXLNetLMHeadModel', 'TFXLNetMainLayer', 'TFXLNetModel', 'TFXLNetPreTrainedModel', ] if TYPE_CHECKING: from .configuration_xlnet import XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP, XLNetConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlnet import XLNetTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlnet_fast import XLNetTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlnet import ( XLNET_PRETRAINED_MODEL_ARCHIVE_LIST, XLNetForMultipleChoice, XLNetForQuestionAnswering, XLNetForQuestionAnsweringSimple, XLNetForSequenceClassification, XLNetForTokenClassification, XLNetLMHeadModel, XLNetModel, XLNetPreTrainedModel, load_tf_weights_in_xlnet, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlnet import ( TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLNetForMultipleChoice, TFXLNetForQuestionAnsweringSimple, TFXLNetForSequenceClassification, TFXLNetForTokenClassification, TFXLNetLMHeadModel, TFXLNetMainLayer, TFXLNetModel, TFXLNetPreTrainedModel, ) else: import sys lowercase_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
205
import logging import torch from torch import nn from torch.nn import CrossEntropyLoss, MSELoss from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward from transformers.models.bert.modeling_bert import ( BERT_INPUTS_DOCSTRING, BERT_START_DOCSTRING, BertEncoder, BertModel, BertPreTrainedModel, ) lowercase_ = logging.getLogger(__name__) class __lowerCAmelCase ( SCREAMING_SNAKE_CASE ): def A__ ( self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase=None , lowerCAmelCase=None ) -> List[str]: '''simple docstring''' _lowercase =self.layer[current_layer](lowerCAmelCase , lowerCAmelCase , head_mask[current_layer] ) _lowercase =layer_outputs[0] return hidden_states @add_start_docstrings( """The bare Bert Model transformer with PABEE outputting raw hidden-states without any specific head on top.""" , SCREAMING_SNAKE_CASE , ) class __lowerCAmelCase ( SCREAMING_SNAKE_CASE ): def __init__( self , lowerCAmelCase ) -> Union[str, Any]: '''simple docstring''' super().__init__(lowerCAmelCase ) _lowercase =BertEncoderWithPabee(lowerCAmelCase ) self.init_weights() _lowercase =0 _lowercase =0 _lowercase =0 _lowercase =0 def A__ ( self , lowerCAmelCase ) -> Optional[Any]: '''simple docstring''' _lowercase =threshold def A__ ( self , lowerCAmelCase ) -> List[Any]: '''simple docstring''' _lowercase =patience def A__ ( self ) -> Dict: '''simple docstring''' _lowercase =0 _lowercase =0 def A__ ( self ) -> int: '''simple docstring''' _lowercase =self.inference_layers_num / self.inference_instances_num _lowercase =( F'''*** Patience = {self.patience} Avg. Inference Layers = {avg_inf_layers:.2f} Speed Up =''' F''' {1 - avg_inf_layers / self.config.num_hidden_layers:.2f} ***''' ) print(lowerCAmelCase ) @add_start_docstrings_to_model_forward(lowerCAmelCase ) def A__ ( self , lowerCAmelCase=None , lowerCAmelCase=None , lowerCAmelCase=None , lowerCAmelCase=None , lowerCAmelCase=None , lowerCAmelCase=None , lowerCAmelCase=None , lowerCAmelCase=None , lowerCAmelCase=None , lowerCAmelCase=None , lowerCAmelCase=False , ) -> str: '''simple docstring''' if input_ids is not None and inputs_embeds is not None: raise ValueError('You cannot specify both input_ids and inputs_embeds at the same time' ) elif input_ids is not None: _lowercase =input_ids.size() elif inputs_embeds is not None: _lowercase =inputs_embeds.size()[:-1] else: raise ValueError('You have to specify either input_ids or inputs_embeds' ) _lowercase =input_ids.device if input_ids is not None else inputs_embeds.device if attention_mask is None: _lowercase =torch.ones(lowerCAmelCase , device=lowerCAmelCase ) if token_type_ids is None: _lowercase =torch.zeros(lowerCAmelCase , dtype=torch.long , device=lowerCAmelCase ) # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] # ourselves in which case we just need to make it broadcastable to all heads. _lowercase =self.get_extended_attention_mask(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) # If a 2D ou 3D attention mask is provided for the cross-attention # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] if self.config.is_decoder and encoder_hidden_states is not None: _lowercase , _lowercase , _lowercase =encoder_hidden_states.size() _lowercase =(encoder_batch_size, encoder_sequence_length) if encoder_attention_mask is None: _lowercase =torch.ones(lowerCAmelCase , device=lowerCAmelCase ) _lowercase =self.invert_attention_mask(lowerCAmelCase ) else: _lowercase =None # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] _lowercase =self.get_head_mask(lowerCAmelCase , self.config.num_hidden_layers ) _lowercase =self.embeddings( input_ids=lowerCAmelCase , position_ids=lowerCAmelCase , token_type_ids=lowerCAmelCase , inputs_embeds=lowerCAmelCase ) _lowercase =embedding_output if self.training: _lowercase =[] for i in range(self.config.num_hidden_layers ): _lowercase =self.encoder.adaptive_forward( lowerCAmelCase , current_layer=lowerCAmelCase , attention_mask=lowerCAmelCase , head_mask=lowerCAmelCase ) _lowercase =self.pooler(lowerCAmelCase ) _lowercase =output_layers[i](output_dropout(lowerCAmelCase ) ) res.append(lowerCAmelCase ) elif self.patience == 0: # Use all layers for inference _lowercase =self.encoder( lowerCAmelCase , attention_mask=lowerCAmelCase , head_mask=lowerCAmelCase , encoder_hidden_states=lowerCAmelCase , encoder_attention_mask=lowerCAmelCase , ) _lowercase =self.pooler(encoder_outputs[0] ) _lowercase =[output_layers[self.config.num_hidden_layers - 1](lowerCAmelCase )] else: _lowercase =0 _lowercase =None _lowercase =0 for i in range(self.config.num_hidden_layers ): calculated_layer_num += 1 _lowercase =self.encoder.adaptive_forward( lowerCAmelCase , current_layer=lowerCAmelCase , attention_mask=lowerCAmelCase , head_mask=lowerCAmelCase ) _lowercase =self.pooler(lowerCAmelCase ) _lowercase =output_layers[i](lowerCAmelCase ) if regression: _lowercase =logits.detach() if patient_result is not None: _lowercase =patient_result.detach() if (patient_result is not None) and torch.abs(patient_result - labels ) < self.regression_threshold: patient_counter += 1 else: _lowercase =0 else: _lowercase =logits.detach().argmax(dim=1 ) if patient_result is not None: _lowercase =patient_result.detach().argmax(dim=1 ) if (patient_result is not None) and torch.all(labels.eq(lowerCAmelCase ) ): patient_counter += 1 else: _lowercase =0 _lowercase =logits if patient_counter == self.patience: break _lowercase =[patient_result] self.inference_layers_num += calculated_layer_num self.inference_instances_num += 1 return res @add_start_docstrings( """Bert Model transformer with PABEE and a sequence classification/regression head on top (a linear layer on top of the pooled output) e.g. for GLUE tasks. """ , SCREAMING_SNAKE_CASE , ) class __lowerCAmelCase ( SCREAMING_SNAKE_CASE ): def __init__( self , lowerCAmelCase ) -> List[Any]: '''simple docstring''' super().__init__(lowerCAmelCase ) _lowercase =config.num_labels _lowercase =BertModelWithPabee(lowerCAmelCase ) _lowercase =nn.Dropout(config.hidden_dropout_prob ) _lowercase =nn.ModuleList( [nn.Linear(config.hidden_size , self.config.num_labels ) for _ in range(config.num_hidden_layers )] ) self.init_weights() @add_start_docstrings_to_model_forward(lowerCAmelCase ) def A__ ( self , lowerCAmelCase=None , lowerCAmelCase=None , lowerCAmelCase=None , lowerCAmelCase=None , lowerCAmelCase=None , lowerCAmelCase=None , lowerCAmelCase=None , ) -> Union[str, Any]: '''simple docstring''' _lowercase =self.bert( input_ids=lowerCAmelCase , attention_mask=lowerCAmelCase , token_type_ids=lowerCAmelCase , position_ids=lowerCAmelCase , head_mask=lowerCAmelCase , inputs_embeds=lowerCAmelCase , output_dropout=self.dropout , output_layers=self.classifiers , regression=self.num_labels == 1 , ) _lowercase =(logits[-1],) if labels is not None: _lowercase =None _lowercase =0 for ix, logits_item in enumerate(lowerCAmelCase ): if self.num_labels == 1: # We are doing regression _lowercase =MSELoss() _lowercase =loss_fct(logits_item.view(-1 ) , labels.view(-1 ) ) else: _lowercase =CrossEntropyLoss() _lowercase =loss_fct(logits_item.view(-1 , self.num_labels ) , labels.view(-1 ) ) if total_loss is None: _lowercase =loss else: total_loss += loss * (ix + 1) total_weights += ix + 1 _lowercase =(total_loss / total_weights,) + outputs return outputs
205
1
import os import unittest from transformers.models.transfo_xl.tokenization_transfo_xl import VOCAB_FILES_NAMES, TransfoXLTokenizer from ...test_tokenization_common import TokenizerTesterMixin class a ( __lowerCamelCase , unittest.TestCase ): __lowerCAmelCase : Dict = TransfoXLTokenizer __lowerCAmelCase : Union[str, Any] = False __lowerCAmelCase : List[str] = False def __lowerCamelCase ( self :Union[str, Any] ): super().setUp() snake_case__ : Optional[int] = [ '''<unk>''', '''[CLS]''', '''[SEP]''', '''want''', '''unwanted''', '''wa''', '''un''', '''running''', ''',''', '''low''', '''l''', ] snake_case__ : Optional[Any] = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file ,'''w''' ,encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) def __lowerCamelCase ( self :int ,**__lowercase :Any ): snake_case__ : str = True return TransfoXLTokenizer.from_pretrained(self.tmpdirname ,**__lowercase ) def __lowerCamelCase ( self :int ,__lowercase :Optional[int] ): snake_case__ : int = '''<unk> UNwanted , running''' snake_case__ : List[Any] = '''<unk> unwanted, running''' return input_text, output_text def __lowerCamelCase ( self :Union[str, Any] ): snake_case__ : Optional[Any] = TransfoXLTokenizer(vocab_file=self.vocab_file ,lower_case=__lowercase ) snake_case__ : Tuple = tokenizer.tokenize('''<unk> UNwanted , running''' ) self.assertListEqual(__lowercase ,['''<unk>''', '''unwanted''', ''',''', '''running'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(__lowercase ) ,[0, 4, 8, 7] ) def __lowerCamelCase ( self :Union[str, Any] ): snake_case__ : List[Any] = TransfoXLTokenizer(lower_case=__lowercase ) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo ! how \n Are yoU ? ''' ) ,['''hello''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) def __lowerCamelCase ( self :Tuple ): snake_case__ : Optional[Any] = TransfoXLTokenizer(lower_case=__lowercase ) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo ! how \n Are yoU ? ''' ) ,['''HeLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] ) def __lowerCamelCase ( self :Optional[int] ): snake_case__ : Any = TransfoXLTokenizer(lower_case=__lowercase ) snake_case__ : List[str] = '''Hello (bracket) and side-scrolled [and] Henry\'s $5,000 with 3.34 m. What\'s up!?''' snake_case__ : Union[str, Any] = [ '''Hello''', '''(''', '''bracket''', ''')''', '''and''', '''side''', '''@-@''', '''scrolled''', '''[''', '''and''', ''']''', '''Henry''', '''\'s''', '''$''', '''5''', '''@,@''', '''000''', '''with''', '''3''', '''@.@''', '''34''', '''m''', '''.''', '''What''', '''\'s''', '''up''', '''!''', '''?''', ] self.assertListEqual(tokenizer.tokenize(__lowercase ) ,__lowercase ) self.assertEqual(tokenizer.convert_tokens_to_string(__lowercase ) ,__lowercase ) def __lowerCamelCase ( self :Optional[Any] ): snake_case__ : Any = self.get_tokenizer() snake_case__ : Optional[Any] = len(__lowercase ) tokenizer.add_tokens(['''new1''', '''new2'''] ) tokenizer.move_added_token('''new1''' ,1 ) # Check that moved token is not copied (duplicate) self.assertEqual(len(__lowercase ) ,original_len + 2 ) # Check that token is moved to specified id self.assertEqual(tokenizer.encode('''new1''' ) ,[1] ) self.assertEqual(tokenizer.decode([1] ) ,'''new1''' )
361
def _lowerCAmelCase ( __lowerCAmelCase ) -> list: """simple docstring""" for i in range(len(__lowerCAmelCase ) - 1 , 0 , -1 ): snake_case__ : List[Any] = False for j in range(__lowerCAmelCase , 0 , -1 ): if unsorted[j] < unsorted[j - 1]: snake_case__ , snake_case__ : Optional[int] = unsorted[j - 1], unsorted[j] snake_case__ : Any = True for j in range(__lowerCAmelCase ): if unsorted[j] > unsorted[j + 1]: snake_case__ , snake_case__ : Tuple = unsorted[j + 1], unsorted[j] snake_case__ : int = True if not swapped: break return unsorted if __name__ == "__main__": import doctest doctest.testmod() A__ = input('''Enter numbers separated by a comma:\n''').strip() A__ = [int(item) for item in user_input.split(''',''')] print(f"""{cocktail_shaker_sort(unsorted) = }""")
44
0
def _a ( SCREAMING_SNAKE_CASE : float ): """simple docstring""" if edge <= 0 or not isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): raise ValueError('''Length must be a positive.''' ) return 3 * ((25 + 10 * (5 ** (1 / 2))) ** (1 / 2)) * (edge**2) def _a ( SCREAMING_SNAKE_CASE : float ): """simple docstring""" if edge <= 0 or not isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): raise ValueError('''Length must be a positive.''' ) return ((15 + (7 * (5 ** (1 / 2)))) / 4) * (edge**3) if __name__ == "__main__": import doctest doctest.testmod()
146
from dataclasses import dataclass from typing import Dict, Optional, Union import torch import torch.nn.functional as F from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .attention import BasicTransformerBlock from .attention_processor import AttentionProcessor, AttnProcessor from .embeddings import TimestepEmbedding, Timesteps from .modeling_utils import ModelMixin @dataclass class __magic_name__ ( __lowerCAmelCase): A: torch.FloatTensor class __magic_name__ ( __lowerCAmelCase , __lowerCAmelCase): @register_to_config def __init__( self : Union[str, Any] , lowerCamelCase__ : int = 32 , lowerCamelCase__ : int = 64 , lowerCamelCase__ : int = 20 , lowerCamelCase__ : int = 768 , lowerCamelCase__ : Optional[Any]=77 , lowerCamelCase__ : Optional[int]=4 , lowerCamelCase__ : float = 0.0 , lowerCamelCase__ : str = "silu" , lowerCamelCase__ : Optional[str] = None , lowerCamelCase__ : Optional[str] = None , lowerCamelCase__ : Optional[str] = "linear" , lowerCamelCase__ : Optional[str] = "prd" , lowerCamelCase__ : Optional[int] = None , lowerCamelCase__ : Optional[int] = None , lowerCamelCase__ : Optional[int] = None , ) -> Optional[Any]: '''simple docstring''' super().__init__() UpperCamelCase__ : List[Any] = num_attention_heads UpperCamelCase__ : Optional[Any] = attention_head_dim UpperCamelCase__ : List[str] = num_attention_heads * attention_head_dim UpperCamelCase__ : Union[str, Any] = additional_embeddings UpperCamelCase__ : Union[str, Any] = time_embed_dim or inner_dim UpperCamelCase__ : int = embedding_proj_dim or embedding_dim UpperCamelCase__ : Optional[Any] = clip_embed_dim or embedding_dim UpperCamelCase__ : Dict = Timesteps(lowerCamelCase__ , lowerCamelCase__ , 0 ) UpperCamelCase__ : List[Any] = TimestepEmbedding(lowerCamelCase__ , lowerCamelCase__ , out_dim=lowerCamelCase__ , act_fn=lowerCamelCase__ ) UpperCamelCase__ : Optional[Any] = nn.Linear(lowerCamelCase__ , lowerCamelCase__ ) if embedding_proj_norm_type is None: UpperCamelCase__ : int = None elif embedding_proj_norm_type == "layer": UpperCamelCase__ : Optional[int] = nn.LayerNorm(lowerCamelCase__ ) else: raise ValueError(F"unsupported embedding_proj_norm_type: {embedding_proj_norm_type}" ) UpperCamelCase__ : Dict = nn.Linear(lowerCamelCase__ , lowerCamelCase__ ) if encoder_hid_proj_type is None: UpperCamelCase__ : List[Any] = None elif encoder_hid_proj_type == "linear": UpperCamelCase__ : List[str] = nn.Linear(lowerCamelCase__ , lowerCamelCase__ ) else: raise ValueError(F"unsupported encoder_hid_proj_type: {encoder_hid_proj_type}" ) UpperCamelCase__ : List[str] = nn.Parameter(torch.zeros(1 , num_embeddings + additional_embeddings , lowerCamelCase__ ) ) if added_emb_type == "prd": UpperCamelCase__ : Any = nn.Parameter(torch.zeros(1 , 1 , lowerCamelCase__ ) ) elif added_emb_type is None: UpperCamelCase__ : Union[str, Any] = None else: raise ValueError( F"`added_emb_type`: {added_emb_type} is not supported. Make sure to choose one of `'prd'` or `None`." ) UpperCamelCase__ : str = nn.ModuleList( [ BasicTransformerBlock( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , dropout=lowerCamelCase__ , activation_fn='''gelu''' , attention_bias=lowerCamelCase__ , ) for d in range(lowerCamelCase__ ) ] ) if norm_in_type == "layer": UpperCamelCase__ : int = nn.LayerNorm(lowerCamelCase__ ) elif norm_in_type is None: UpperCamelCase__ : int = None else: raise ValueError(F"Unsupported norm_in_type: {norm_in_type}." ) UpperCamelCase__ : Optional[Any] = nn.LayerNorm(lowerCamelCase__ ) UpperCamelCase__ : List[str] = nn.Linear(lowerCamelCase__ , lowerCamelCase__ ) UpperCamelCase__ : Dict = torch.full( [num_embeddings + additional_embeddings, num_embeddings + additional_embeddings] , -1_0000.0 ) causal_attention_mask.triu_(1 ) UpperCamelCase__ : Union[str, Any] = causal_attention_mask[None, ...] self.register_buffer('''causal_attention_mask''' , lowerCamelCase__ , persistent=lowerCamelCase__ ) UpperCamelCase__ : Optional[Any] = nn.Parameter(torch.zeros(1 , lowerCamelCase__ ) ) UpperCamelCase__ : Optional[int] = nn.Parameter(torch.zeros(1 , lowerCamelCase__ ) ) @property # Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.attn_processors def UpperCAmelCase__ ( self : Tuple ) -> Dict[str, AttentionProcessor]: '''simple docstring''' UpperCamelCase__ : Union[str, Any] = {} def fn_recursive_add_processors(lowerCamelCase__ : str , lowerCamelCase__ : torch.nn.Module , lowerCamelCase__ : Dict[str, AttentionProcessor] ): if hasattr(lowerCamelCase__ , '''set_processor''' ): UpperCamelCase__ : Optional[Any] = module.processor for sub_name, child in module.named_children(): fn_recursive_add_processors(F"{name}.{sub_name}" , lowerCamelCase__ , lowerCamelCase__ ) return processors for name, module in self.named_children(): fn_recursive_add_processors(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) return processors def UpperCAmelCase__ ( self : int , lowerCamelCase__ : Union[AttentionProcessor, Dict[str, AttentionProcessor]] ) -> Tuple: '''simple docstring''' UpperCamelCase__ : Tuple = len(self.attn_processors.keys() ) if isinstance(lowerCamelCase__ , lowerCamelCase__ ) and len(lowerCamelCase__ ) != count: raise ValueError( F"A dict of processors was passed, but the number of processors {len(lowerCamelCase__ )} does not match the" F" number of attention layers: {count}. Please make sure to pass {count} processor classes." ) def fn_recursive_attn_processor(lowerCamelCase__ : str , lowerCamelCase__ : torch.nn.Module , lowerCamelCase__ : Dict ): if hasattr(lowerCamelCase__ , '''set_processor''' ): if not isinstance(lowerCamelCase__ , lowerCamelCase__ ): module.set_processor(lowerCamelCase__ ) else: module.set_processor(processor.pop(F"{name}.processor" ) ) for sub_name, child in module.named_children(): fn_recursive_attn_processor(F"{name}.{sub_name}" , lowerCamelCase__ , lowerCamelCase__ ) for name, module in self.named_children(): fn_recursive_attn_processor(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) def UpperCAmelCase__ ( self : List[Any] ) -> List[Any]: '''simple docstring''' self.set_attn_processor(AttnProcessor() ) def UpperCAmelCase__ ( self : str , lowerCamelCase__ : str , lowerCamelCase__ : Union[torch.Tensor, float, int] , lowerCamelCase__ : torch.FloatTensor , lowerCamelCase__ : Optional[torch.FloatTensor] = None , lowerCamelCase__ : Optional[torch.BoolTensor] = None , lowerCamelCase__ : bool = True , ) -> Tuple: '''simple docstring''' UpperCamelCase__ : Union[str, Any] = hidden_states.shape[0] UpperCamelCase__ : List[Any] = timestep if not torch.is_tensor(lowerCamelCase__ ): UpperCamelCase__ : List[str] = torch.tensor([timesteps] , dtype=torch.long , device=hidden_states.device ) elif torch.is_tensor(lowerCamelCase__ ) and len(timesteps.shape ) == 0: UpperCamelCase__ : Optional[int] = timesteps[None].to(hidden_states.device ) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML UpperCamelCase__ : List[str] = timesteps * torch.ones(lowerCamelCase__ , dtype=timesteps.dtype , device=timesteps.device ) UpperCamelCase__ : int = self.time_proj(lowerCamelCase__ ) # timesteps does not contain any weights and will always return f32 tensors # but time_embedding might be fp16, so we need to cast here. UpperCamelCase__ : List[str] = timesteps_projected.to(dtype=self.dtype ) UpperCamelCase__ : Optional[Any] = self.time_embedding(lowerCamelCase__ ) if self.embedding_proj_norm is not None: UpperCamelCase__ : Dict = self.embedding_proj_norm(lowerCamelCase__ ) UpperCamelCase__ : Union[str, Any] = self.embedding_proj(lowerCamelCase__ ) if self.encoder_hidden_states_proj is not None and encoder_hidden_states is not None: UpperCamelCase__ : int = self.encoder_hidden_states_proj(lowerCamelCase__ ) elif self.encoder_hidden_states_proj is not None and encoder_hidden_states is None: raise ValueError('''`encoder_hidden_states_proj` requires `encoder_hidden_states` to be set''' ) UpperCamelCase__ : Optional[int] = self.proj_in(lowerCamelCase__ ) UpperCamelCase__ : int = self.positional_embedding.to(hidden_states.dtype ) UpperCamelCase__ : Tuple = [] UpperCamelCase__ : Optional[Any] = 0 if encoder_hidden_states is not None: additional_embeds.append(lowerCamelCase__ ) additional_embeddings_len += encoder_hidden_states.shape[1] if len(proj_embeddings.shape ) == 2: UpperCamelCase__ : Tuple = proj_embeddings[:, None, :] if len(hidden_states.shape ) == 2: UpperCamelCase__ : Dict = hidden_states[:, None, :] UpperCamelCase__ : Optional[int] = additional_embeds + [ proj_embeddings, time_embeddings[:, None, :], hidden_states, ] if self.prd_embedding is not None: UpperCamelCase__ : int = self.prd_embedding.to(hidden_states.dtype ).expand(lowerCamelCase__ , -1 , -1 ) additional_embeds.append(lowerCamelCase__ ) UpperCamelCase__ : Dict = torch.cat( lowerCamelCase__ , dim=1 , ) # Allow positional_embedding to not include the `addtional_embeddings` and instead pad it with zeros for these additional tokens UpperCamelCase__ : Dict = additional_embeddings_len + proj_embeddings.shape[1] + 1 if positional_embeddings.shape[1] < hidden_states.shape[1]: UpperCamelCase__ : List[str] = F.pad( lowerCamelCase__ , ( 0, 0, additional_embeddings_len, self.prd_embedding.shape[1] if self.prd_embedding is not None else 0, ) , value=0.0 , ) UpperCamelCase__ : int = hidden_states + positional_embeddings if attention_mask is not None: UpperCamelCase__ : Union[str, Any] = (1 - attention_mask.to(hidden_states.dtype )) * -1_0000.0 UpperCamelCase__ : Any = F.pad(lowerCamelCase__ , (0, self.additional_embeddings) , value=0.0 ) UpperCamelCase__ : Optional[Any] = (attention_mask[:, None, :] + self.causal_attention_mask).to(hidden_states.dtype ) UpperCamelCase__ : List[str] = attention_mask.repeat_interleave(self.config.num_attention_heads , dim=0 ) if self.norm_in is not None: UpperCamelCase__ : List[str] = self.norm_in(lowerCamelCase__ ) for block in self.transformer_blocks: UpperCamelCase__ : Any = block(lowerCamelCase__ , attention_mask=lowerCamelCase__ ) UpperCamelCase__ : Optional[Any] = self.norm_out(lowerCamelCase__ ) if self.prd_embedding is not None: UpperCamelCase__ : Optional[int] = hidden_states[:, -1] else: UpperCamelCase__ : int = hidden_states[:, additional_embeddings_len:] UpperCamelCase__ : List[str] = self.proj_to_clip_embeddings(lowerCamelCase__ ) if not return_dict: return (predicted_image_embedding,) return PriorTransformerOutput(predicted_image_embedding=lowerCamelCase__ ) def UpperCAmelCase__ ( self : Optional[int] , lowerCamelCase__ : Optional[int] ) -> List[str]: '''simple docstring''' UpperCamelCase__ : Tuple = (prior_latents * self.clip_std) + self.clip_mean return prior_latents
146
1
from .glue import glue_convert_examples_to_features, glue_output_modes, glue_processors, glue_tasks_num_labels from .squad import SquadExample, SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features from .utils import DataProcessor, InputExample, InputFeatures, SingleSentenceClassificationProcessor from .xnli import xnli_output_modes, xnli_processors, xnli_tasks_num_labels
360
import collections import inspect import unittest from transformers import FocalNetConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( FocalNetBackbone, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetModel, ) from transformers.models.focalnet.modeling_focalnet import FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class UpperCamelCase__ : def __init__(self : Optional[Any] , snake_case_ : Union[str, Any] , snake_case_ : Optional[Any]=1_3 , snake_case_ : str=3_2 , snake_case_ : Any=2 , snake_case_ : Union[str, Any]=3 , snake_case_ : int=1_6 , snake_case_ : Optional[int]=[3_2, 6_4, 1_2_8] , snake_case_ : str=[1, 2, 1] , snake_case_ : str=[2, 2, 4] , snake_case_ : List[str]=2 , snake_case_ : List[str]=2.0 , snake_case_ : List[Any]=True , snake_case_ : Tuple=0.0 , snake_case_ : Optional[Any]=0.0 , snake_case_ : int=0.1 , snake_case_ : Optional[int]="gelu" , snake_case_ : List[str]=False , snake_case_ : Optional[int]=True , snake_case_ : Optional[int]=0.02 , snake_case_ : List[str]=1E-5 , snake_case_ : List[Any]=True , snake_case_ : int=None , snake_case_ : List[Any]=True , snake_case_ : Optional[Any]=1_0 , snake_case_ : Union[str, Any]=8 , snake_case_ : Optional[Any]=["stage1", "stage2"] , snake_case_ : List[Any]=[1, 2] , ): __a : Tuple = parent __a : str = batch_size __a : Any = image_size __a : List[Any] = patch_size __a : List[Any] = num_channels __a : List[str] = embed_dim __a : str = hidden_sizes __a : Any = depths __a : List[str] = num_heads __a : Any = window_size __a : List[str] = mlp_ratio __a : Optional[int] = qkv_bias __a : Any = hidden_dropout_prob __a : List[str] = attention_probs_dropout_prob __a : str = drop_path_rate __a : Optional[Any] = hidden_act __a : Optional[int] = use_absolute_embeddings __a : List[str] = patch_norm __a : int = layer_norm_eps __a : Optional[Any] = initializer_range __a : List[str] = is_training __a : Dict = scope __a : Optional[Any] = use_labels __a : Union[str, Any] = type_sequence_label_size __a : Optional[int] = encoder_stride __a : str = out_features __a : Optional[int] = out_indices def lowerCAmelCase (self : Dict ): __a : Tuple = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __a : Dict = None if self.use_labels: __a : List[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __a : List[str] = self.get_config() return config, pixel_values, labels def lowerCAmelCase (self : Optional[Any] ): return FocalNetConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , hidden_sizes=self.hidden_sizes , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , out_features=self.out_features , out_indices=self.out_indices , ) def lowerCAmelCase (self : Dict , snake_case_ : int , snake_case_ : Tuple , snake_case_ : str ): __a : int = FocalNetModel(config=snake_case_ ) model.to(snake_case_ ) model.eval() __a : Dict = model(snake_case_ ) __a : Union[str, Any] = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) __a : Dict = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) ) def lowerCAmelCase (self : Tuple , snake_case_ : Any , snake_case_ : Union[str, Any] , snake_case_ : Optional[int] ): __a : List[str] = FocalNetBackbone(config=snake_case_ ) model.to(snake_case_ ) model.eval() __a : List[str] = model(snake_case_ ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.image_size, 8, 8] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[:-1] ) # verify backbone works with out_features=None __a : Union[str, Any] = None __a : Tuple = FocalNetBackbone(config=snake_case_ ) model.to(snake_case_ ) model.eval() __a : int = model(snake_case_ ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.image_size * 2, 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def lowerCAmelCase (self : Optional[Any] , snake_case_ : Optional[int] , snake_case_ : Dict , snake_case_ : Optional[Any] ): __a : List[str] = FocalNetForMaskedImageModeling(config=snake_case_ ) model.to(snake_case_ ) model.eval() __a : int = model(snake_case_ ) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images __a : str = 1 __a : Optional[Any] = FocalNetForMaskedImageModeling(snake_case_ ) model.to(snake_case_ ) model.eval() __a : Any = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __a : Union[str, Any] = model(snake_case_ ) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def lowerCAmelCase (self : Union[str, Any] , snake_case_ : List[Any] , snake_case_ : Any , snake_case_ : int ): __a : Dict = self.type_sequence_label_size __a : Optional[Any] = FocalNetForImageClassification(snake_case_ ) model.to(snake_case_ ) model.eval() __a : Union[str, Any] = model(snake_case_ , labels=snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images __a : Optional[int] = 1 __a : str = FocalNetForImageClassification(snake_case_ ) model.to(snake_case_ ) model.eval() __a : str = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __a : List[Any] = model(snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def lowerCAmelCase (self : List[Any] ): __a : Any = self.prepare_config_and_inputs() __a , __a , __a : Any = config_and_inputs __a : Tuple = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class UpperCamelCase__ ( __lowercase ,__lowercase ,unittest.TestCase ): _SCREAMING_SNAKE_CASE : Optional[Any] = ( ( FocalNetModel, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetBackbone, ) if is_torch_available() else () ) _SCREAMING_SNAKE_CASE : Optional[Any] = ( {"feature-extraction": FocalNetModel, "image-classification": FocalNetForImageClassification} if is_torch_available() else {} ) _SCREAMING_SNAKE_CASE : str = False _SCREAMING_SNAKE_CASE : str = False _SCREAMING_SNAKE_CASE : Optional[Any] = False _SCREAMING_SNAKE_CASE : Any = False _SCREAMING_SNAKE_CASE : Dict = False def lowerCAmelCase (self : List[Any] ): __a : Union[str, Any] = FocalNetModelTester(self ) __a : Dict = ConfigTester(self , config_class=snake_case_ , embed_dim=3_7 , has_text_modality=snake_case_ ) def lowerCAmelCase (self : Any ): self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowerCAmelCase (self : Dict ): return def lowerCAmelCase (self : Dict ): __a : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case_ ) def lowerCAmelCase (self : Tuple ): __a : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*snake_case_ ) def lowerCAmelCase (self : Any ): __a : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*snake_case_ ) def lowerCAmelCase (self : Optional[int] ): __a : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*snake_case_ ) @unittest.skip(reason='''FocalNet does not use inputs_embeds''' ) def lowerCAmelCase (self : Optional[Any] ): pass @unittest.skip(reason='''FocalNet does not use feedforward chunking''' ) def lowerCAmelCase (self : str ): pass def lowerCAmelCase (self : Tuple ): __a , __a : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes[:-1]: __a : int = model_class(snake_case_ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) __a : List[Any] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(snake_case_ , nn.Linear ) ) def lowerCAmelCase (self : Optional[int] ): __a , __a : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes[:-1]: __a : str = model_class(snake_case_ ) __a : int = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __a : Dict = [*signature.parameters.keys()] __a : str = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , snake_case_ ) def lowerCAmelCase (self : Tuple , snake_case_ : Tuple , snake_case_ : Dict , snake_case_ : Any , snake_case_ : Optional[Any] ): __a : Any = model_class(snake_case_ ) model.to(snake_case_ ) model.eval() with torch.no_grad(): __a : Dict = model(**self._prepare_for_class(snake_case_ , snake_case_ ) ) __a : Union[str, Any] = outputs.hidden_states __a : Dict = getattr( self.model_tester , '''expected_num_hidden_layers''' , len(self.model_tester.depths ) + 1 ) self.assertEqual(len(snake_case_ ) , snake_case_ ) # FocalNet has a different seq_length __a : int = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) __a : Dict = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) __a : Optional[Any] = outputs.reshaped_hidden_states self.assertEqual(len(snake_case_ ) , snake_case_ ) __a , __a , __a , __a : List[Any] = reshaped_hidden_states[0].shape __a : List[str] = ( reshaped_hidden_states[0].view(snake_case_ , snake_case_ , height * width ).permute(0 , 2 , 1 ) ) self.assertListEqual( list(reshaped_hidden_states.shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) def lowerCAmelCase (self : Optional[int] ): __a , __a : Dict = self.model_tester.prepare_config_and_inputs_for_common() __a : Dict = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes[:-1]: __a : Any = True self.check_hidden_states_output(snake_case_ , snake_case_ , snake_case_ , snake_case_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __a : Optional[int] = True self.check_hidden_states_output(snake_case_ , snake_case_ , snake_case_ , snake_case_ ) def lowerCAmelCase (self : List[Any] ): __a , __a : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() __a : List[str] = 3 __a : Optional[int] = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) __a : List[str] = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) __a : List[Any] = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) __a : Union[str, Any] = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes[:-1]: __a : int = True self.check_hidden_states_output(snake_case_ , snake_case_ , snake_case_ , (padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __a : List[str] = True self.check_hidden_states_output(snake_case_ , snake_case_ , snake_case_ , (padded_height, padded_width) ) @slow def lowerCAmelCase (self : str ): for model_name in FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __a : Dict = FocalNetModel.from_pretrained(snake_case_ ) self.assertIsNotNone(snake_case_ ) def lowerCAmelCase (self : List[Any] ): __a , __a : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() __a : Optional[int] = _config_zero_init(snake_case_ ) for model_class in self.all_model_classes: __a : str = model_class(config=snake_case_ ) for name, param in model.named_parameters(): if "embeddings" not in name and param.requires_grad: self.assertIn( ((param.data.mean() * 1E9).round() / 1E9).item() , [0.0, 1.0] , msg=f"Parameter {name} of model {model_class} seems not properly initialized" , ) @require_vision @require_torch class UpperCamelCase__ ( unittest.TestCase ): @cached_property def lowerCAmelCase (self : str ): # TODO update organization return AutoImageProcessor.from_pretrained('''microsoft/focalnet-tiny''' ) if is_vision_available() else None @slow def lowerCAmelCase (self : str ): __a : int = FocalNetForImageClassification.from_pretrained('''microsoft/focalnet-tiny''' ).to(snake_case_ ) __a : Optional[Any] = self.default_image_processor __a : Dict = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) __a : Optional[Any] = image_processor(images=snake_case_ , return_tensors='''pt''' ).to(snake_case_ ) # forward pass with torch.no_grad(): __a : Any = model(**snake_case_ ) # verify the logits __a : List[Any] = torch.Size((1, 1_0_0_0) ) self.assertEqual(outputs.logits.shape , snake_case_ ) __a : Union[str, Any] = torch.tensor([0.2166, -0.4368, 0.2191] ).to(snake_case_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , snake_case_ , atol=1E-4 ) ) self.assertTrue(outputs.logits.argmax(dim=-1 ).item() , 2_8_1 ) @require_torch class UpperCamelCase__ ( __lowercase ,unittest.TestCase ): _SCREAMING_SNAKE_CASE : Tuple = (FocalNetBackbone,) if is_torch_available() else () _SCREAMING_SNAKE_CASE : int = FocalNetConfig _SCREAMING_SNAKE_CASE : Any = False def lowerCAmelCase (self : Tuple ): __a : Union[str, Any] = FocalNetModelTester(self )
90
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) __snake_case : List[str] ={ 'configuration_encodec': [ 'ENCODEC_PRETRAINED_CONFIG_ARCHIVE_MAP', 'EncodecConfig', ], 'feature_extraction_encodec': ['EncodecFeatureExtractor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : List[str] =[ 'ENCODEC_PRETRAINED_MODEL_ARCHIVE_LIST', 'EncodecModel', 'EncodecPreTrainedModel', ] if TYPE_CHECKING: from .configuration_encodec import ( ENCODEC_PRETRAINED_CONFIG_ARCHIVE_MAP, EncodecConfig, ) from .feature_extraction_encodec import EncodecFeatureExtractor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_encodec import ( ENCODEC_PRETRAINED_MODEL_ARCHIVE_LIST, EncodecModel, EncodecPreTrainedModel, ) else: import sys __snake_case : Tuple =_LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
129
import warnings from contextlib import contextmanager from ...processing_utils import ProcessorMixin class lowerCamelCase__ ( lowerCamelCase__): '''simple docstring''' snake_case_ ="""Speech2TextFeatureExtractor""" snake_case_ ="""Speech2TextTokenizer""" def __init__(self ,__lowerCamelCase ,__lowerCamelCase ) -> str: """simple docstring""" super().__init__(__lowerCamelCase ,__lowerCamelCase ) lowerCAmelCase__ : int = self.feature_extractor lowerCAmelCase__ : List[str] = False def __call__(self ,*__lowerCamelCase ,**__lowerCamelCase ) -> Dict: """simple docstring""" if self._in_target_context_manager: return self.current_processor(*__lowerCamelCase ,**__lowerCamelCase ) if "raw_speech" in kwargs: warnings.warn('''Using `raw_speech` as a keyword argument is deprecated. Use `audio` instead.''' ) lowerCAmelCase__ : Optional[Any] = kwargs.pop('''raw_speech''' ) else: lowerCAmelCase__ : str = kwargs.pop('''audio''' ,__lowerCamelCase ) lowerCAmelCase__ : List[str] = kwargs.pop('''sampling_rate''' ,__lowerCamelCase ) lowerCAmelCase__ : List[str] = kwargs.pop('''text''' ,__lowerCamelCase ) if len(__lowerCamelCase ) > 0: lowerCAmelCase__ : Union[str, Any] = args[0] lowerCAmelCase__ : str = args[1:] if audio is None and text is None: raise ValueError('''You need to specify either an `audio` or `text` input to process.''' ) if audio is not None: lowerCAmelCase__ : str = self.feature_extractor(__lowerCamelCase ,*__lowerCamelCase ,sampling_rate=__lowerCamelCase ,**__lowerCamelCase ) if text is not None: lowerCAmelCase__ : Any = self.tokenizer(__lowerCamelCase ,**__lowerCamelCase ) if text is None: return inputs elif audio is None: return encodings else: lowerCAmelCase__ : str = encodings['''input_ids'''] return inputs def lowerCAmelCase__ (self ,*__lowerCamelCase ,**__lowerCamelCase ) -> List[str]: """simple docstring""" return self.tokenizer.batch_decode(*__lowerCamelCase ,**__lowerCamelCase ) def lowerCAmelCase__ (self ,*__lowerCamelCase ,**__lowerCamelCase ) -> Tuple: """simple docstring""" return self.tokenizer.decode(*__lowerCamelCase ,**__lowerCamelCase ) @contextmanager def lowerCAmelCase__ (self ) -> Any: """simple docstring""" warnings.warn( '''`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your ''' '''labels by using the argument `text` of the regular `__call__` method (either in the same call as ''' '''your audio inputs, or in a separate call.''' ) lowerCAmelCase__ : int = True lowerCAmelCase__ : Union[str, Any] = self.tokenizer yield lowerCAmelCase__ : List[str] = self.feature_extractor lowerCAmelCase__ : Any = False
129
1
'''simple docstring''' def UpperCamelCase__ ( lowerCAmelCase , lowerCAmelCase = False ): """simple docstring""" if not isinstance(__a , __a ): _lowerCAmelCase = f"Expected string as input, found {type(__a )}" raise ValueError(__a ) if not isinstance(__a , __a ): _lowerCAmelCase = f"Expected boolean as use_pascal parameter, found {type(__a )}" raise ValueError(__a ) _lowerCAmelCase = input_str.split("""_""" ) _lowerCAmelCase = 0 if use_pascal else 1 _lowerCAmelCase = words[start_index:] _lowerCAmelCase = [word[0].upper() + word[1:] for word in words_to_capitalize] _lowerCAmelCase = '' if use_pascal else words[0] return "".join([initial_word, *capitalized_words] ) if __name__ == "__main__": from doctest import testmod testmod()
350
'''simple docstring''' import collections import inspect import unittest from typing import Dict, List, Tuple from transformers import MaskFormerSwinConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, torch_device from transformers.utils import is_torch_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import MaskFormerSwinBackbone from transformers.models.maskformer import MaskFormerSwinModel class UpperCAmelCase : def __init__( self : str , __snake_case : Optional[int] , __snake_case : Dict=13 , __snake_case : Dict=32 , __snake_case : List[str]=2 , __snake_case : str=3 , __snake_case : str=16 , __snake_case : int=[1, 2, 1] , __snake_case : Dict=[2, 2, 4] , __snake_case : int=2 , __snake_case : str=2.0 , __snake_case : List[str]=True , __snake_case : Optional[Any]=0.0 , __snake_case : Optional[Any]=0.0 , __snake_case : Dict=0.1 , __snake_case : Tuple="gelu" , __snake_case : str=False , __snake_case : Any=True , __snake_case : Union[str, Any]=0.02 , __snake_case : Union[str, Any]=1E-5 , __snake_case : Optional[Any]=True , __snake_case : Union[str, Any]=None , __snake_case : Any=True , __snake_case : Optional[Any]=10 , __snake_case : Tuple=8 , __snake_case : List[Any]=["stage1", "stage2", "stage3"] , __snake_case : Dict=[1, 2, 3] , ) -> List[str]: _lowerCAmelCase = parent _lowerCAmelCase = batch_size _lowerCAmelCase = image_size _lowerCAmelCase = patch_size _lowerCAmelCase = num_channels _lowerCAmelCase = embed_dim _lowerCAmelCase = depths _lowerCAmelCase = num_heads _lowerCAmelCase = window_size _lowerCAmelCase = mlp_ratio _lowerCAmelCase = qkv_bias _lowerCAmelCase = hidden_dropout_prob _lowerCAmelCase = attention_probs_dropout_prob _lowerCAmelCase = drop_path_rate _lowerCAmelCase = hidden_act _lowerCAmelCase = use_absolute_embeddings _lowerCAmelCase = patch_norm _lowerCAmelCase = layer_norm_eps _lowerCAmelCase = initializer_range _lowerCAmelCase = is_training _lowerCAmelCase = scope _lowerCAmelCase = use_labels _lowerCAmelCase = type_sequence_label_size _lowerCAmelCase = encoder_stride _lowerCAmelCase = out_features _lowerCAmelCase = out_indices def lowercase__ ( self : Union[str, Any] ) -> List[str]: _lowerCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _lowerCAmelCase = None if self.use_labels: _lowerCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _lowerCAmelCase = self.get_config() return config, pixel_values, labels def lowercase__ ( self : int ) -> Any: return MaskFormerSwinConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , out_features=self.out_features , out_indices=self.out_indices , ) def lowercase__ ( self : List[str] , __snake_case : Tuple , __snake_case : Optional[Any] , __snake_case : Optional[Any] ) -> Dict: _lowerCAmelCase = MaskFormerSwinModel(config=__snake_case ) model.to(__snake_case ) model.eval() _lowerCAmelCase = model(__snake_case ) _lowerCAmelCase = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) _lowerCAmelCase = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) ) def lowercase__ ( self : Optional[Any] , __snake_case : Any , __snake_case : List[Any] , __snake_case : Optional[int] ) -> Union[str, Any]: _lowerCAmelCase = MaskFormerSwinBackbone(config=__snake_case ) model.to(__snake_case ) model.eval() _lowerCAmelCase = model(__snake_case ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [13, 16, 16, 16] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , [16, 32, 64] ) # verify ValueError with self.parent.assertRaises(__snake_case ): _lowerCAmelCase = ["""stem"""] _lowerCAmelCase = MaskFormerSwinBackbone(config=__snake_case ) def lowercase__ ( self : Union[str, Any] ) -> int: _lowerCAmelCase = self.prepare_config_and_inputs() _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = config_and_inputs _lowerCAmelCase = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class UpperCAmelCase ( snake_case_ , snake_case_ , unittest.TestCase ): _lowercase: str = ( ( MaskFormerSwinModel, MaskFormerSwinBackbone, ) if is_torch_available() else () ) _lowercase: List[Any] = {'''feature-extraction''': MaskFormerSwinModel} if is_torch_available() else {} _lowercase: Optional[Any] = False _lowercase: List[str] = False _lowercase: Optional[Any] = False _lowercase: str = False _lowercase: Union[str, Any] = False def lowercase__ ( self : Optional[Any] ) -> str: _lowerCAmelCase = MaskFormerSwinModelTester(self ) _lowerCAmelCase = ConfigTester(self , config_class=__snake_case , embed_dim=37 ) @require_torch_multi_gpu @unittest.skip( reason=( """`MaskFormerSwinModel` outputs `hidden_states_spatial_dimensions` which doesn't work well with""" """ `nn.DataParallel`""" ) ) def lowercase__ ( self : Tuple ) -> str: pass def lowercase__ ( self : str ) -> str: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowercase__ ( self : str ) -> Any: return def lowercase__ ( self : Tuple ) -> Tuple: _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__snake_case ) def lowercase__ ( self : Optional[int] ) -> str: _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*__snake_case ) @unittest.skip("""Swin does not use inputs_embeds""" ) def lowercase__ ( self : str ) -> List[str]: pass @unittest.skip("""Swin does not support feedforward chunking""" ) def lowercase__ ( self : Any ) -> Union[str, Any]: pass def lowercase__ ( self : Optional[Any] ) -> List[str]: _lowerCAmelCase , _lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCAmelCase = model_class(__snake_case ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) _lowerCAmelCase = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__snake_case , nn.Linear ) ) def lowercase__ ( self : str ) -> Any: _lowerCAmelCase , _lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCAmelCase = model_class(__snake_case ) _lowerCAmelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _lowerCAmelCase = [*signature.parameters.keys()] _lowerCAmelCase = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , __snake_case ) @unittest.skip(reason="""MaskFormerSwin is only used as backbone and doesn't support output_attentions""" ) def lowercase__ ( self : Union[str, Any] ) -> Any: pass @unittest.skip(reason="""MaskFormerSwin is only used as an internal backbone""" ) def lowercase__ ( self : List[str] ) -> Any: pass def lowercase__ ( self : Tuple , __snake_case : Optional[int] , __snake_case : str , __snake_case : str , __snake_case : Optional[int] ) -> Optional[int]: _lowerCAmelCase = model_class(__snake_case ) model.to(__snake_case ) model.eval() with torch.no_grad(): _lowerCAmelCase = model(**self._prepare_for_class(__snake_case , __snake_case ) ) _lowerCAmelCase = outputs.hidden_states _lowerCAmelCase = getattr( self.model_tester , """expected_num_hidden_layers""" , len(self.model_tester.depths ) + 1 ) self.assertEqual(len(__snake_case ) , __snake_case ) # Swin has a different seq_length _lowerCAmelCase = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) _lowerCAmelCase = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) def lowercase__ ( self : List[str] ) -> Any: _lowerCAmelCase , _lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() _lowerCAmelCase = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes: _lowerCAmelCase = True self.check_hidden_states_output(__snake_case , __snake_case , __snake_case , __snake_case ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _lowerCAmelCase = True self.check_hidden_states_output(__snake_case , __snake_case , __snake_case , __snake_case ) def lowercase__ ( self : Any ) -> Any: _lowerCAmelCase , _lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() _lowerCAmelCase = 3 _lowerCAmelCase = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) _lowerCAmelCase = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) _lowerCAmelCase = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) _lowerCAmelCase = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes: _lowerCAmelCase = True self.check_hidden_states_output(__snake_case , __snake_case , __snake_case , (padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _lowerCAmelCase = True self.check_hidden_states_output(__snake_case , __snake_case , __snake_case , (padded_height, padded_width) ) @unittest.skip(reason="""MaskFormerSwin doesn't have pretrained checkpoints""" ) def lowercase__ ( self : List[Any] ) -> Any: pass @unittest.skip(reason="""This will be fixed once MaskFormerSwin is replaced by native Swin""" ) def lowercase__ ( self : Any ) -> str: pass @unittest.skip(reason="""This will be fixed once MaskFormerSwin is replaced by native Swin""" ) def lowercase__ ( self : Dict ) -> Optional[int]: pass def lowercase__ ( self : List[str] ) -> Tuple: _lowerCAmelCase , _lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() def set_nan_tensor_to_zero(__snake_case : List[str] ): _lowerCAmelCase = 0 return t def check_equivalence(__snake_case : Any , __snake_case : Optional[Any] , __snake_case : Tuple , __snake_case : Dict={} ): with torch.no_grad(): _lowerCAmelCase = model(**__snake_case , return_dict=__snake_case , **__snake_case ) _lowerCAmelCase = model(**__snake_case , return_dict=__snake_case , **__snake_case ).to_tuple() def recursive_check(__snake_case : int , __snake_case : Any ): if isinstance(__snake_case , (List, Tuple) ): for tuple_iterable_value, dict_iterable_value in zip(__snake_case , __snake_case ): recursive_check(__snake_case , __snake_case ) elif isinstance(__snake_case , __snake_case ): for tuple_iterable_value, dict_iterable_value in zip( tuple_object.values() , dict_object.values() ): recursive_check(__snake_case , __snake_case ) elif tuple_object is None: return else: self.assertTrue( torch.allclose( set_nan_tensor_to_zero(__snake_case ) , set_nan_tensor_to_zero(__snake_case ) , atol=1E-5 ) , msg=( """Tuple and dict output are not equal. Difference:""" f" {torch.max(torch.abs(tuple_object - dict_object ) )}. Tuple has `nan`:" f" {torch.isnan(__snake_case ).any()} and `inf`: {torch.isinf(__snake_case )}. Dict has" f" `nan`: {torch.isnan(__snake_case ).any()} and `inf`: {torch.isinf(__snake_case )}." ) , ) recursive_check(__snake_case , __snake_case ) for model_class in self.all_model_classes: _lowerCAmelCase = model_class(__snake_case ) model.to(__snake_case ) model.eval() _lowerCAmelCase = self._prepare_for_class(__snake_case , __snake_case ) _lowerCAmelCase = self._prepare_for_class(__snake_case , __snake_case ) check_equivalence(__snake_case , __snake_case , __snake_case ) _lowerCAmelCase = self._prepare_for_class(__snake_case , __snake_case , return_labels=__snake_case ) _lowerCAmelCase = self._prepare_for_class(__snake_case , __snake_case , return_labels=__snake_case ) check_equivalence(__snake_case , __snake_case , __snake_case ) _lowerCAmelCase = self._prepare_for_class(__snake_case , __snake_case ) _lowerCAmelCase = self._prepare_for_class(__snake_case , __snake_case ) check_equivalence(__snake_case , __snake_case , __snake_case , {"""output_hidden_states""": True} ) _lowerCAmelCase = self._prepare_for_class(__snake_case , __snake_case , return_labels=__snake_case ) _lowerCAmelCase = self._prepare_for_class(__snake_case , __snake_case , return_labels=__snake_case ) check_equivalence(__snake_case , __snake_case , __snake_case , {"""output_hidden_states""": True} ) @require_torch class UpperCAmelCase ( unittest.TestCase , snake_case_ ): _lowercase: int = (MaskFormerSwinBackbone,) if is_torch_available() else () _lowercase: Dict = MaskFormerSwinConfig def lowercase__ ( self : Union[str, Any] ) -> str: _lowerCAmelCase = MaskFormerSwinModelTester(self ) def lowercase__ ( self : str ) -> Tuple: _lowerCAmelCase , _lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() _lowerCAmelCase = inputs_dict["""pixel_values"""].shape[0] for backbone_class in self.all_model_classes: _lowerCAmelCase = backbone_class(__snake_case ) backbone.to(__snake_case ) backbone.eval() _lowerCAmelCase = backbone(**__snake_case ) # Test default outputs and verify feature maps self.assertIsInstance(outputs.feature_maps , __snake_case ) self.assertTrue(len(outputs.feature_maps ) == len(backbone.channels ) ) for feature_map, n_channels in zip(outputs.feature_maps , backbone.channels ): self.assertTrue(feature_map.shape[:2] , (batch_size, n_channels) ) self.assertIsNone(outputs.hidden_states ) self.assertIsNone(outputs.attentions ) # Test output_hidden_states=True _lowerCAmelCase = backbone(**__snake_case , output_hidden_states=__snake_case ) self.assertIsNotNone(outputs.hidden_states ) self.assertTrue(len(outputs.hidden_states ) , len(backbone.stage_names ) ) # We skip the stem layer for hidden_states, n_channels in zip(outputs.hidden_states[1:] , backbone.channels ): for hidden_state in hidden_states: # Hidden states are in the format (batch_size, (height * width), n_channels) _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = hidden_state.shape self.assertTrue((h_batch_size, h_n_channels) , (batch_size, n_channels) ) # Test output_attentions=True if self.has_attentions: _lowerCAmelCase = backbone(**__snake_case , output_attentions=__snake_case ) self.assertIsNotNone(outputs.attentions )
220
0
"""simple docstring""" import warnings from ...utils import logging from .image_processing_flava import FlavaImageProcessor lowercase_ = logging.get_logger(__name__) class snake_case ( _lowerCAmelCase ): '''simple docstring''' def __init__( self : Optional[int], *_lowerCamelCase : List[Any], **_lowerCamelCase : Optional[int] ): '''simple docstring''' warnings.warn( '''The class FlavaFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please''' ''' use FlavaImageProcessor instead.''', _lowerCamelCase, ) super().__init__(*_lowerCamelCase, **_lowerCamelCase )
266
"""simple docstring""" import json import os from functools import lru_cache from typing import TYPE_CHECKING, List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation lowercase_ = logging.get_logger(__name__) lowercase_ = { 'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_config_file': 'tokenizer_config.json', } lowercase_ = { 'vocab_file': {'facebook/blenderbot-3B': 'https://huggingface.co/facebook/blenderbot-3B/resolve/main/vocab.json'}, 'merges_file': {'facebook/blenderbot-3B': 'https://huggingface.co/facebook/blenderbot-3B/resolve/main/merges.txt'}, 'tokenizer_config_file': { 'facebook/blenderbot-3B': 'https://huggingface.co/facebook/blenderbot-3B/resolve/main/tokenizer_config.json' }, } lowercase_ = {'facebook/blenderbot-3B': 128} @lru_cache() # Copied from transformers.models.roberta.tokenization_roberta.bytes_to_unicode def lowerCAmelCase ( ): """simple docstring""" __A = ( list(range(ord('''!''' ) , ord('''~''' ) + 1 ) ) + list(range(ord('''¡''' ) , ord('''¬''' ) + 1 ) ) + list(range(ord('''®''' ) , ord('''ÿ''' ) + 1 ) ) ) __A = bs[:] __A = 0 for b in range(2**8 ): if b not in bs: bs.append(__UpperCamelCase ) cs.append(2**8 + n ) n += 1 __A = [chr(__UpperCamelCase ) for n in cs] return dict(zip(__UpperCamelCase , __UpperCamelCase ) ) def lowerCAmelCase ( __UpperCamelCase ): """simple docstring""" __A = set() __A = word[0] for char in word[1:]: pairs.add((prev_char, char) ) __A = char return pairs class snake_case ( _lowerCAmelCase ): '''simple docstring''' A_ : Tuple = VOCAB_FILES_NAMES A_ : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP A_ : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A_ : Optional[Any] = ["input_ids", "attention_mask"] def __init__( self : Dict, _lowerCamelCase : Optional[Any], _lowerCamelCase : List[str], _lowerCamelCase : Dict="replace", _lowerCamelCase : Any="<s>", _lowerCamelCase : Optional[int]="</s>", _lowerCamelCase : Dict="</s>", _lowerCamelCase : List[Any]="<s>", _lowerCamelCase : List[str]="<unk>", _lowerCamelCase : str="<pad>", _lowerCamelCase : Any="<mask>", _lowerCamelCase : Any=False, **_lowerCamelCase : Tuple, ): '''simple docstring''' __A = AddedToken(_lowerCamelCase, lstrip=_lowerCamelCase, rstrip=_lowerCamelCase ) if isinstance(_lowerCamelCase, _lowerCamelCase ) else bos_token __A = AddedToken(_lowerCamelCase, lstrip=_lowerCamelCase, rstrip=_lowerCamelCase ) if isinstance(_lowerCamelCase, _lowerCamelCase ) else eos_token __A = AddedToken(_lowerCamelCase, lstrip=_lowerCamelCase, rstrip=_lowerCamelCase ) if isinstance(_lowerCamelCase, _lowerCamelCase ) else sep_token __A = AddedToken(_lowerCamelCase, lstrip=_lowerCamelCase, rstrip=_lowerCamelCase ) if isinstance(_lowerCamelCase, _lowerCamelCase ) else cls_token __A = AddedToken(_lowerCamelCase, lstrip=_lowerCamelCase, rstrip=_lowerCamelCase ) if isinstance(_lowerCamelCase, _lowerCamelCase ) else unk_token __A = AddedToken(_lowerCamelCase, lstrip=_lowerCamelCase, rstrip=_lowerCamelCase ) if isinstance(_lowerCamelCase, _lowerCamelCase ) else pad_token # Mask token behave like a normal word, i.e. include the space before it __A = AddedToken(_lowerCamelCase, lstrip=_lowerCamelCase, rstrip=_lowerCamelCase ) if isinstance(_lowerCamelCase, _lowerCamelCase ) else mask_token super().__init__( errors=_lowerCamelCase, bos_token=_lowerCamelCase, eos_token=_lowerCamelCase, unk_token=_lowerCamelCase, sep_token=_lowerCamelCase, cls_token=_lowerCamelCase, pad_token=_lowerCamelCase, mask_token=_lowerCamelCase, add_prefix_space=_lowerCamelCase, **_lowerCamelCase, ) with open(_lowerCamelCase, encoding='''utf-8''' ) as vocab_handle: __A = json.load(_lowerCamelCase ) __A = {v: k for k, v in self.encoder.items()} __A = errors # how to handle errors in decoding __A = bytes_to_unicode() __A = {v: k for k, v in self.byte_encoder.items()} with open(_lowerCamelCase, encoding='''utf-8''' ) as merges_handle: __A = merges_handle.read().split('''\n''' )[1:-1] __A = [tuple(merge.split() ) for merge in bpe_merges] __A = dict(zip(_lowerCamelCase, range(len(_lowerCamelCase ) ) ) ) __A = {} __A = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions __A = re.compile(R'''\'s|\'t|\'re|\'ve|\'m|\'ll|\'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+''' ) @property # Copied from transformers.models.roberta.tokenization_roberta.RobertaTokenizer.vocab_size with Roberta->Blenderbot, RoBERTa->Blenderbot def _SCREAMING_SNAKE_CASE ( self : Any ): '''simple docstring''' return len(self.encoder ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): '''simple docstring''' return dict(self.encoder, **self.added_tokens_encoder ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any], _lowerCamelCase : List[Any] ): '''simple docstring''' if token in self.cache: return self.cache[token] __A = tuple(_lowerCamelCase ) __A = get_pairs(_lowerCamelCase ) if not pairs: return token while True: __A = min(_lowerCamelCase, key=lambda _lowerCamelCase : self.bpe_ranks.get(_lowerCamelCase, float('''inf''' ) ) ) if bigram not in self.bpe_ranks: break __A , __A = bigram __A = [] __A = 0 while i < len(_lowerCamelCase ): try: __A = word.index(_lowerCamelCase, _lowerCamelCase ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) __A = j if word[i] == first and i < len(_lowerCamelCase ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 __A = tuple(_lowerCamelCase ) __A = new_word if len(_lowerCamelCase ) == 1: break else: __A = get_pairs(_lowerCamelCase ) __A = ''' '''.join(_lowerCamelCase ) __A = word return word def _SCREAMING_SNAKE_CASE ( self : Optional[int], _lowerCamelCase : Dict ): '''simple docstring''' __A = [] for token in re.findall(self.pat, _lowerCamelCase ): __A = ''''''.join( self.byte_encoder[b] for b in token.encode('''utf-8''' ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(_lowerCamelCase ).split(''' ''' ) ) return bpe_tokens def _SCREAMING_SNAKE_CASE ( self : Union[str, Any], _lowerCamelCase : Dict ): '''simple docstring''' return self.encoder.get(_lowerCamelCase, self.encoder.get(self.unk_token ) ) def _SCREAMING_SNAKE_CASE ( self : Optional[int], _lowerCamelCase : Any ): '''simple docstring''' return self.decoder.get(_lowerCamelCase ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any], _lowerCamelCase : Dict ): '''simple docstring''' __A = ''''''.join(_lowerCamelCase ) __A = bytearray([self.byte_decoder[c] for c in text] ).decode('''utf-8''', errors=self.errors ) return text def _SCREAMING_SNAKE_CASE ( self : Dict, _lowerCamelCase : str, _lowerCamelCase : Optional[str] = None ): '''simple docstring''' if not os.path.isdir(_lowerCamelCase ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return __A = os.path.join( _lowerCamelCase, (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) __A = os.path.join( _lowerCamelCase, (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''merges_file'''] ) with open(_lowerCamelCase, '''w''', encoding='''utf-8''' ) as f: f.write(json.dumps(self.encoder, indent=2, sort_keys=_lowerCamelCase, ensure_ascii=_lowerCamelCase ) + '''\n''' ) __A = 0 with open(_lowerCamelCase, '''w''', encoding='''utf-8''' ) as writer: writer.write('''#version: 0.2\n''' ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items(), key=lambda _lowerCamelCase : kv[1] ): if index != token_index: logger.warning( f'Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.' ''' Please check that the tokenizer is not corrupted!''' ) __A = token_index writer.write(''' '''.join(_lowerCamelCase ) + '''\n''' ) index += 1 return vocab_file, merge_file def _SCREAMING_SNAKE_CASE ( self : Optional[int], _lowerCamelCase : List[int], _lowerCamelCase : Optional[List[int]] = None, _lowerCamelCase : bool = False ): '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_lowerCamelCase, token_ids_a=_lowerCamelCase, already_has_special_tokens=_lowerCamelCase ) if token_ids_a is None: return [1] + ([0] * len(_lowerCamelCase )) + [1] return [1] + ([0] * len(_lowerCamelCase )) + [1, 1] + ([0] * len(_lowerCamelCase )) + [1] def _SCREAMING_SNAKE_CASE ( self : Any, _lowerCamelCase : List[int], _lowerCamelCase : Optional[List[int]] = None ): '''simple docstring''' __A = [self.sep_token_id] __A = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def _SCREAMING_SNAKE_CASE ( self : Optional[Any], _lowerCamelCase : Union[str, Any], _lowerCamelCase : List[str]=False, **_lowerCamelCase : List[Any] ): '''simple docstring''' __A = kwargs.pop('''add_prefix_space''', self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(_lowerCamelCase ) > 0 and not text[0].isspace()): __A = ''' ''' + text return (text, kwargs) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any], _lowerCamelCase : List[int], _lowerCamelCase : Optional[List[int]] = None ): '''simple docstring''' return token_ids_a + [self.eos_token_id] def _SCREAMING_SNAKE_CASE ( self : List[Any], _lowerCamelCase : "Conversation" ): '''simple docstring''' __A = [] for is_user, text in conversation.iter_texts(): if is_user: # We need to space prefix as it's being done within blenderbot inputs.append(''' ''' + text ) else: # Generated responses should contain them already. inputs.append(_lowerCamelCase ) __A = ''' '''.join(_lowerCamelCase ) __A = self.encode(_lowerCamelCase ) if len(_lowerCamelCase ) > self.model_max_length: __A = input_ids[-self.model_max_length :] logger.warning(f'Trimmed input from conversation as it was longer than {self.model_max_length} tokens.' ) return input_ids
266
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) lowerCAmelCase__ = {'''configuration_reformer''': ['''REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ReformerConfig''']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = ['''ReformerTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = ['''ReformerTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ '''REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ReformerAttention''', '''ReformerForMaskedLM''', '''ReformerForQuestionAnswering''', '''ReformerForSequenceClassification''', '''ReformerLayer''', '''ReformerModel''', '''ReformerModelWithLMHead''', '''ReformerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_reformer import REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, ReformerConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_reformer import ReformerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_reformer_fast import ReformerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_reformer import ( REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ReformerAttention, ReformerForMaskedLM, ReformerForQuestionAnswering, ReformerForSequenceClassification, ReformerLayer, ReformerModel, ReformerModelWithLMHead, ReformerPreTrainedModel, ) else: import sys lowerCAmelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
244
"""simple docstring""" import doctest from collections import deque import numpy as np class _lowerCamelCase : def __init__(self ) -> None: UpperCamelCase = [2, 1, 2, -1] UpperCamelCase = [1, 2, 3, 4] def snake_case_ (self ) -> list[float]: UpperCamelCase = len(self.first_signal ) UpperCamelCase = len(self.second_signal ) UpperCamelCase = max(__a , __a ) # create a zero matrix of max_length x max_length UpperCamelCase = [[0] * max_length for i in range(__a )] # fills the smaller signal with zeros to make both signals of same length if length_first_signal < length_second_signal: self.first_signal += [0] * (max_length - length_first_signal) elif length_first_signal > length_second_signal: self.second_signal += [0] * (max_length - length_second_signal) for i in range(__a ): UpperCamelCase = deque(self.second_signal ) rotated_signal.rotate(__a ) for j, item in enumerate(__a ): matrix[i][j] += item # multiply the matrix with the first signal UpperCamelCase = np.matmul(np.transpose(__a ) , np.transpose(self.first_signal ) ) # rounding-off to two decimal places return [round(__a , 2 ) for i in final_signal] if __name__ == "__main__": doctest.testmod()
244
1
"""simple docstring""" import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import SegformerImageProcessor, SwinConfig, UperNetConfig, UperNetForSemanticSegmentation def __A ( a_ :int) -> Optional[int]: __a : List[Any] = 3_84 __a : Tuple = 7 if "tiny" in model_name: __a : int = 96 __a : str = (2, 2, 6, 2) __a : List[Any] = (3, 6, 12, 24) elif "small" in model_name: __a : Union[str, Any] = 96 __a : Any = (2, 2, 18, 2) __a : Tuple = (3, 6, 12, 24) elif "base" in model_name: __a : Tuple = 1_28 __a : List[Any] = (2, 2, 18, 2) __a : int = (4, 8, 16, 32) __a : Optional[int] = 12 __a : Optional[int] = 5_12 elif "large" in model_name: __a : Optional[Any] = 1_92 __a : int = (2, 2, 18, 2) __a : int = (6, 12, 24, 48) __a : List[Any] = 12 __a : Optional[Any] = 7_68 # set label information __a : Optional[Any] = 1_50 __a : Tuple = """huggingface/label-files""" __a : List[str] = """ade20k-id2label.json""" __a : str = json.load(open(hf_hub_download(_snake_case , _snake_case , repo_type='''dataset''') , '''r''')) __a : Union[str, Any] = {int(_snake_case): v for k, v in idalabel.items()} __a : List[Any] = {v: k for k, v in idalabel.items()} __a : str = SwinConfig( embed_dim=_snake_case , depths=_snake_case , num_heads=_snake_case , window_size=_snake_case , out_features=['''stage1''', '''stage2''', '''stage3''', '''stage4'''] , ) __a : int = UperNetConfig( backbone_config=_snake_case , auxiliary_in_channels=_snake_case , num_labels=_snake_case , idalabel=_snake_case , labelaid=_snake_case , ) return config def __A ( a_ :Dict) -> Tuple: __a : Optional[Any] = [] # fmt: off # stem rename_keys.append(('''backbone.patch_embed.projection.weight''', '''backbone.embeddings.patch_embeddings.projection.weight''')) rename_keys.append(('''backbone.patch_embed.projection.bias''', '''backbone.embeddings.patch_embeddings.projection.bias''')) rename_keys.append(('''backbone.patch_embed.norm.weight''', '''backbone.embeddings.norm.weight''')) rename_keys.append(('''backbone.patch_embed.norm.bias''', '''backbone.embeddings.norm.bias''')) # stages for i in range(len(config.backbone_config.depths)): for j in range(config.backbone_config.depths[i]): rename_keys.append((F"""backbone.stages.{i}.blocks.{j}.norm1.weight""", F"""backbone.encoder.layers.{i}.blocks.{j}.layernorm_before.weight""")) rename_keys.append((F"""backbone.stages.{i}.blocks.{j}.norm1.bias""", F"""backbone.encoder.layers.{i}.blocks.{j}.layernorm_before.bias""")) rename_keys.append((F"""backbone.stages.{i}.blocks.{j}.attn.w_msa.relative_position_bias_table""", F"""backbone.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table""")) rename_keys.append((F"""backbone.stages.{i}.blocks.{j}.attn.w_msa.relative_position_index""", F"""backbone.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index""")) rename_keys.append((F"""backbone.stages.{i}.blocks.{j}.attn.w_msa.proj.weight""", F"""backbone.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight""")) rename_keys.append((F"""backbone.stages.{i}.blocks.{j}.attn.w_msa.proj.bias""", F"""backbone.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias""")) rename_keys.append((F"""backbone.stages.{i}.blocks.{j}.norm2.weight""", F"""backbone.encoder.layers.{i}.blocks.{j}.layernorm_after.weight""")) rename_keys.append((F"""backbone.stages.{i}.blocks.{j}.norm2.bias""", F"""backbone.encoder.layers.{i}.blocks.{j}.layernorm_after.bias""")) rename_keys.append((F"""backbone.stages.{i}.blocks.{j}.ffn.layers.0.0.weight""", F"""backbone.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight""")) rename_keys.append((F"""backbone.stages.{i}.blocks.{j}.ffn.layers.0.0.bias""", F"""backbone.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias""")) rename_keys.append((F"""backbone.stages.{i}.blocks.{j}.ffn.layers.1.weight""", F"""backbone.encoder.layers.{i}.blocks.{j}.output.dense.weight""")) rename_keys.append((F"""backbone.stages.{i}.blocks.{j}.ffn.layers.1.bias""", F"""backbone.encoder.layers.{i}.blocks.{j}.output.dense.bias""")) if i < 3: rename_keys.append((F"""backbone.stages.{i}.downsample.reduction.weight""", F"""backbone.encoder.layers.{i}.downsample.reduction.weight""")) rename_keys.append((F"""backbone.stages.{i}.downsample.norm.weight""", F"""backbone.encoder.layers.{i}.downsample.norm.weight""")) rename_keys.append((F"""backbone.stages.{i}.downsample.norm.bias""", F"""backbone.encoder.layers.{i}.downsample.norm.bias""")) rename_keys.append((F"""backbone.norm{i}.weight""", F"""backbone.hidden_states_norms.stage{i+1}.weight""")) rename_keys.append((F"""backbone.norm{i}.bias""", F"""backbone.hidden_states_norms.stage{i+1}.bias""")) # decode head rename_keys.extend( [ ('''decode_head.conv_seg.weight''', '''decode_head.classifier.weight'''), ('''decode_head.conv_seg.bias''', '''decode_head.classifier.bias'''), ('''auxiliary_head.conv_seg.weight''', '''auxiliary_head.classifier.weight'''), ('''auxiliary_head.conv_seg.bias''', '''auxiliary_head.classifier.bias'''), ]) # fmt: on return rename_keys def __A ( a_ :Union[str, Any] , a_ :Optional[int] , a_ :Dict) -> List[Any]: __a : Optional[Any] = dct.pop(_snake_case) __a : Tuple = val def __A ( a_ :Union[str, Any] , a_ :int) -> Tuple: __a : int = [int(backbone_config.embed_dim * 2**i) for i in range(len(backbone_config.depths))] for i in range(len(backbone_config.depths)): __a : Union[str, Any] = num_features[i] for j in range(backbone_config.depths[i]): # fmt: off # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) __a : List[Any] = state_dict.pop(F"""backbone.stages.{i}.blocks.{j}.attn.w_msa.qkv.weight""") __a : Union[str, Any] = state_dict.pop(F"""backbone.stages.{i}.blocks.{j}.attn.w_msa.qkv.bias""") # next, add query, keys and values (in that order) to the state dict __a : Tuple = in_proj_weight[:dim, :] __a : List[Any] = in_proj_bias[: dim] __a : Optional[int] = in_proj_weight[ dim : dim * 2, : ] __a : List[Any] = in_proj_bias[ dim : dim * 2 ] __a : Tuple = in_proj_weight[ -dim :, : ] __a : Optional[Any] = in_proj_bias[-dim :] # fmt: on def __A ( a_ :Tuple) -> Union[str, Any]: __a : List[Any] = x.shape __a : List[Any] = x.reshape(_snake_case , 4 , in_channel // 4) __a : Dict = x[:, [0, 2, 1, 3], :].transpose(1 , 2).reshape(_snake_case , _snake_case) return x def __A ( a_ :Optional[int]) -> Any: __a : Optional[Any] = x.shape __a : Any = x.reshape(_snake_case , in_channel // 4 , 4) __a : Optional[Any] = x[:, :, [0, 2, 1, 3]].transpose(1 , 2).reshape(_snake_case , _snake_case) return x def __A ( a_ :Dict) -> List[Any]: __a : Tuple = x.shape[0] __a : List[str] = x.reshape(4 , in_channel // 4) __a : Optional[Any] = x[[0, 2, 1, 3], :].transpose(0 , 1).reshape(_snake_case) return x def __A ( a_ :str) -> Union[str, Any]: __a : int = x.shape[0] __a : List[str] = x.reshape(in_channel // 4 , 4) __a : Tuple = x[:, [0, 2, 1, 3]].transpose(0 , 1).reshape(_snake_case) return x def __A ( a_ :Any , a_ :Tuple , a_ :Optional[int]) -> str: __a : List[Any] = { """upernet-swin-tiny""": """https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_tiny_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K/upernet_swin_tiny_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K_20210531_112542-e380ad3e.pth""", """upernet-swin-small""": """https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_small_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K/upernet_swin_small_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K_20210526_192015-ee2fff1c.pth""", """upernet-swin-base""": """https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_base_patch4_window12_512x512_160k_ade20k_pretrain_384x384_22K/upernet_swin_base_patch4_window12_512x512_160k_ade20k_pretrain_384x384_22K_20210531_125459-429057bf.pth""", """upernet-swin-large""": """https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_large_patch4_window12_512x512_pretrain_384x384_22K_160k_ade20k/upernet_swin_large_patch4_window12_512x512_pretrain_384x384_22K_160k_ade20k_20220318_091743-9ba68901.pth""", } __a : Optional[int] = model_name_to_url[model_name] __a : Optional[int] = torch.hub.load_state_dict_from_url(_snake_case , map_location='''cpu''' , file_name=_snake_case)[ """state_dict""" ] for name, param in state_dict.items(): print(_snake_case , param.shape) __a : Optional[Any] = get_upernet_config(_snake_case) __a : List[str] = UperNetForSemanticSegmentation(_snake_case) model.eval() # replace "bn" => "batch_norm" for key in state_dict.copy().keys(): __a : Optional[int] = state_dict.pop(_snake_case) if "bn" in key: __a : Optional[int] = key.replace('''bn''' , '''batch_norm''') __a : Dict = val # rename keys __a : str = create_rename_keys(_snake_case) for src, dest in rename_keys: rename_key(_snake_case , _snake_case , _snake_case) read_in_q_k_v(_snake_case , config.backbone_config) # fix downsample parameters for key, value in state_dict.items(): if "downsample" in key: if "reduction" in key: __a : Union[str, Any] = reverse_correct_unfold_reduction_order(_snake_case) if "norm" in key: __a : Tuple = reverse_correct_unfold_norm_order(_snake_case) model.load_state_dict(_snake_case) # verify on image __a : List[str] = """https://huggingface.co/datasets/hf-internal-testing/fixtures_ade20k/resolve/main/ADE_val_00000001.jpg""" __a : str = Image.open(requests.get(_snake_case , stream=_snake_case).raw).convert('''RGB''') __a : Optional[Any] = SegformerImageProcessor() __a : Optional[int] = processor(_snake_case , return_tensors='''pt''').pixel_values with torch.no_grad(): __a : Tuple = model(_snake_case) __a : List[Any] = outputs.logits print(logits.shape) print('''First values of logits:''' , logits[0, 0, :3, :3]) # assert values if model_name == "upernet-swin-tiny": __a : Tuple = torch.tensor( [[-7.5_9_5_8, -7.5_9_5_8, -7.4_3_0_2], [-7.5_9_5_8, -7.5_9_5_8, -7.4_3_0_2], [-7.4_7_9_7, -7.4_7_9_7, -7.3_0_6_8]]) elif model_name == "upernet-swin-small": __a : Optional[Any] = torch.tensor( [[-7.1_9_2_1, -7.1_9_2_1, -6.9_5_3_2], [-7.1_9_2_1, -7.1_9_2_1, -6.9_5_3_2], [-7.0_9_0_8, -7.0_9_0_8, -6.8_5_3_4]]) elif model_name == "upernet-swin-base": __a : Union[str, Any] = torch.tensor( [[-6.5_8_5_1, -6.5_8_5_1, -6.4_3_3_0], [-6.5_8_5_1, -6.5_8_5_1, -6.4_3_3_0], [-6.4_7_6_3, -6.4_7_6_3, -6.3_2_5_4]]) elif model_name == "upernet-swin-large": __a : Dict = torch.tensor( [[-7.5_2_9_7, -7.5_2_9_7, -7.3_8_0_2], [-7.5_2_9_7, -7.5_2_9_7, -7.3_8_0_2], [-7.4_0_4_4, -7.4_0_4_4, -7.2_5_8_6]]) print('''Logits:''' , outputs.logits[0, 0, :3, :3]) assert torch.allclose(outputs.logits[0, 0, :3, :3] , _snake_case , atol=1e-4) print('''Looks ok!''') if pytorch_dump_folder_path is not None: print(F"""Saving model {model_name} to {pytorch_dump_folder_path}""") model.save_pretrained(_snake_case) print(F"""Saving processor to {pytorch_dump_folder_path}""") processor.save_pretrained(_snake_case) if push_to_hub: print(F"""Pushing model and processor for {model_name} to hub""") model.push_to_hub(F"""openmmlab/{model_name}""") processor.push_to_hub(F"""openmmlab/{model_name}""") if __name__ == "__main__": A = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default='''upernet-swin-tiny''', type=str, choices=[F'upernet-swin-{size}' for size in ['''tiny''', '''small''', '''base''', '''large''']], help='''Name of the Swin + UperNet model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.''' ) A = parser.parse_args() convert_upernet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
160
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase__ : Optional[Any] = logging.get_logger(__name__) UpperCAmelCase__ : Dict = { 'MIT/ast-finetuned-audioset-10-10-0.4593': ( 'https://huggingface.co/MIT/ast-finetuned-audioset-10-10-0.4593/resolve/main/config.json' ), } class lowerCAmelCase_ (a__ ): """simple docstring""" __UpperCamelCase : Optional[int] = '''audio-spectrogram-transformer''' def __init__(self , SCREAMING_SNAKE_CASE__=7_68 , SCREAMING_SNAKE_CASE__=12 , SCREAMING_SNAKE_CASE__=12 , SCREAMING_SNAKE_CASE__=30_72 , SCREAMING_SNAKE_CASE__="gelu" , SCREAMING_SNAKE_CASE__=0.0 , SCREAMING_SNAKE_CASE__=0.0 , SCREAMING_SNAKE_CASE__=0.02 , SCREAMING_SNAKE_CASE__=1E-12 , SCREAMING_SNAKE_CASE__=16 , SCREAMING_SNAKE_CASE__=True , SCREAMING_SNAKE_CASE__=10 , SCREAMING_SNAKE_CASE__=10 , SCREAMING_SNAKE_CASE__=10_24 , SCREAMING_SNAKE_CASE__=1_28 , **SCREAMING_SNAKE_CASE__ , ) -> Tuple: """simple docstring""" super().__init__(**SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : Optional[Any] = hidden_size SCREAMING_SNAKE_CASE__ : str = num_hidden_layers SCREAMING_SNAKE_CASE__ : int = num_attention_heads SCREAMING_SNAKE_CASE__ : Tuple = intermediate_size SCREAMING_SNAKE_CASE__ : Optional[int] = hidden_act SCREAMING_SNAKE_CASE__ : Any = hidden_dropout_prob SCREAMING_SNAKE_CASE__ : List[Any] = attention_probs_dropout_prob SCREAMING_SNAKE_CASE__ : int = initializer_range SCREAMING_SNAKE_CASE__ : int = layer_norm_eps SCREAMING_SNAKE_CASE__ : Dict = patch_size SCREAMING_SNAKE_CASE__ : Optional[int] = qkv_bias SCREAMING_SNAKE_CASE__ : Optional[int] = frequency_stride SCREAMING_SNAKE_CASE__ : Any = time_stride SCREAMING_SNAKE_CASE__ : Optional[int] = max_length SCREAMING_SNAKE_CASE__ : Any = num_mel_bins
25
0
'''simple docstring''' from typing import List, Optional, Union import torch from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) __A : Dict = logging.get_logger(__name__) # pylint: disable=invalid-name __A : Union[str, Any] = "\n Examples:\n ```py\n >>> from diffusers import KandinskyV22Pipeline, KandinskyV22PriorPipeline\n >>> import torch\n\n >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained(\"kandinsky-community/kandinsky-2-2-prior\")\n >>> pipe_prior.to(\"cuda\")\n >>> prompt = \"red cat, 4k photo\"\n >>> out = pipe_prior(prompt)\n >>> image_emb = out.image_embeds\n >>> zero_image_emb = out.negative_image_embeds\n >>> pipe = KandinskyV22Pipeline.from_pretrained(\"kandinsky-community/kandinsky-2-2-decoder\")\n >>> pipe.to(\"cuda\")\n >>> image = pipe(\n ... image_embeds=image_emb,\n ... negative_image_embeds=zero_image_emb,\n ... height=768,\n ... width=768,\n ... num_inference_steps=50,\n ... ).images\n >>> image[0].save(\"cat.png\")\n ```\n" def UpperCamelCase_ ( A__ : List[str] , A__ : List[Any] , A__ : Dict=8 ): '''simple docstring''' lowerCAmelCase_ : Dict = height // scale_factor**2 if height % scale_factor**2 != 0: new_height += 1 lowerCAmelCase_ : str = width // scale_factor**2 if width % scale_factor**2 != 0: new_width += 1 return new_height * scale_factor, new_width * scale_factor class __snake_case ( _snake_case): """simple docstring""" def __init__( self : Optional[Any] , lowerCamelCase : int , lowerCamelCase : str , lowerCamelCase : Optional[int] , ) -> List[str]: super().__init__() self.register_modules( unet=UpperCamelCase__ , scheduler=UpperCamelCase__ , movq=UpperCamelCase__ , ) lowerCAmelCase_ : Dict = 2 ** (len(self.movq.config.block_out_channels ) - 1) def __lowercase ( self : Optional[int] , lowerCamelCase : Optional[int] , lowerCamelCase : Union[str, Any] , lowerCamelCase : Union[str, Any] , lowerCamelCase : Tuple , lowerCamelCase : Optional[int] , lowerCamelCase : Dict ) -> Union[str, Any]: if latents is None: lowerCAmelCase_ : Union[str, Any] = randn_tensor(UpperCamelCase__ , generator=UpperCamelCase__ , device=UpperCamelCase__ , dtype=UpperCamelCase__ ) else: if latents.shape != shape: raise ValueError(F'Unexpected latents shape, got {latents.shape}, expected {shape}' ) lowerCAmelCase_ : Tuple = latents.to(UpperCamelCase__ ) lowerCAmelCase_ : Tuple = latents * scheduler.init_noise_sigma return latents def __lowercase ( self : int , lowerCamelCase : Dict=0 ) -> Tuple: if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError("""Please install accelerate via `pip install accelerate`""" ) lowerCAmelCase_ : Union[str, Any] = torch.device(F'cuda:{gpu_id}' ) lowerCAmelCase_ : Optional[int] = [ self.unet, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(UpperCamelCase__ , UpperCamelCase__ ) def __lowercase ( self : Tuple , lowerCamelCase : Optional[Any]=0 ) -> List[Any]: if is_accelerate_available() and is_accelerate_version(""">=""" , """0.17.0.dev0""" ): from accelerate import cpu_offload_with_hook else: raise ImportError("""`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.""" ) lowerCAmelCase_ : List[str] = torch.device(F'cuda:{gpu_id}' ) if self.device.type != "cpu": self.to("""cpu""" , silence_dtype_warnings=UpperCamelCase__ ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) lowerCAmelCase_ : Tuple = None for cpu_offloaded_model in [self.unet, self.movq]: lowerCAmelCase_, lowerCAmelCase_ : Dict = cpu_offload_with_hook(UpperCamelCase__ , UpperCamelCase__ , prev_module_hook=UpperCamelCase__ ) # We'll offload the last model manually. lowerCAmelCase_ : Dict = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def __lowercase ( self : str ) -> Union[str, Any]: if not hasattr(self.unet , """_hf_hook""" ): return self.device for module in self.unet.modules(): if ( hasattr(UpperCamelCase__ , """_hf_hook""" ) and hasattr(module._hf_hook , """execution_device""" ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(UpperCamelCase__ ) def __call__( self : Any , lowerCamelCase : Optional[int] , lowerCamelCase : Optional[Any] , lowerCamelCase : Tuple = 5_12 , lowerCamelCase : List[str] = 5_12 , lowerCamelCase : int = 1_00 , lowerCamelCase : List[Any] = 4.0 , lowerCamelCase : List[str] = 1 , lowerCamelCase : List[Any] = None , lowerCamelCase : str = None , lowerCamelCase : Dict = "pil" , lowerCamelCase : Any = True , ) -> Any: lowerCAmelCase_ : Dict = self._execution_device lowerCAmelCase_ : Optional[Any] = guidance_scale > 1.0 if isinstance(UpperCamelCase__ , UpperCamelCase__ ): lowerCAmelCase_ : Optional[Any] = torch.cat(UpperCamelCase__ , dim=0 ) lowerCAmelCase_ : Union[str, Any] = image_embeds.shape[0] * num_images_per_prompt if isinstance(UpperCamelCase__ , UpperCamelCase__ ): lowerCAmelCase_ : Any = torch.cat(UpperCamelCase__ , dim=0 ) if do_classifier_free_guidance: lowerCAmelCase_ : List[Any] = image_embeds.repeat_interleave(UpperCamelCase__ , dim=0 ) lowerCAmelCase_ : str = negative_image_embeds.repeat_interleave(UpperCamelCase__ , dim=0 ) lowerCAmelCase_ : int = torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to(dtype=self.unet.dtype , device=UpperCamelCase__ ) self.scheduler.set_timesteps(UpperCamelCase__ , device=UpperCamelCase__ ) lowerCAmelCase_ : Optional[int] = self.scheduler.timesteps lowerCAmelCase_ : Tuple = self.unet.config.in_channels lowerCAmelCase_, lowerCAmelCase_ : Dict = downscale_height_and_width(UpperCamelCase__ , UpperCamelCase__ , self.movq_scale_factor ) # create initial latent lowerCAmelCase_ : Optional[int] = self.prepare_latents( (batch_size, num_channels_latents, height, width) , image_embeds.dtype , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , self.scheduler , ) for i, t in enumerate(self.progress_bar(UpperCamelCase__ ) ): # expand the latents if we are doing classifier free guidance lowerCAmelCase_ : List[str] = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents lowerCAmelCase_ : List[str] = {"""image_embeds""": image_embeds} lowerCAmelCase_ : int = self.unet( sample=UpperCamelCase__ , timestep=UpperCamelCase__ , encoder_hidden_states=UpperCamelCase__ , added_cond_kwargs=UpperCamelCase__ , return_dict=UpperCamelCase__ , )[0] if do_classifier_free_guidance: lowerCAmelCase_, lowerCAmelCase_ : List[str] = noise_pred.split(latents.shape[1] , dim=1 ) lowerCAmelCase_, lowerCAmelCase_ : Tuple = noise_pred.chunk(2 ) lowerCAmelCase_, lowerCAmelCase_ : List[Any] = variance_pred.chunk(2 ) lowerCAmelCase_ : Optional[Any] = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) lowerCAmelCase_ : Optional[int] = torch.cat([noise_pred, variance_pred_text] , dim=1 ) if not ( hasattr(self.scheduler.config , """variance_type""" ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): lowerCAmelCase_, lowerCAmelCase_ : Dict = noise_pred.split(latents.shape[1] , dim=1 ) # compute the previous noisy sample x_t -> x_t-1 lowerCAmelCase_ : Union[str, Any] = self.scheduler.step( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , generator=UpperCamelCase__ , )[0] # post-processing lowerCAmelCase_ : Union[str, Any] = self.movq.decode(UpperCamelCase__ , force_not_quantize=UpperCamelCase__ )["""sample"""] if output_type not in ["pt", "np", "pil"]: raise ValueError(F'Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}' ) if output_type in ["np", "pil"]: lowerCAmelCase_ : List[str] = image * 0.5 + 0.5 lowerCAmelCase_ : Dict = image.clamp(0 , 1 ) lowerCAmelCase_ : Dict = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": lowerCAmelCase_ : Any = self.numpy_to_pil(UpperCamelCase__ ) if not return_dict: return (image,) return ImagePipelineOutput(images=UpperCamelCase__ )
362
'''simple docstring''' import argparse import json import os from pathlib import Path import requests import torch from transformers import JukeboxConfig, JukeboxModel from transformers.utils import logging logging.set_verbosity_info() __A : List[str] = logging.get_logger(__name__) __A : str = "https://openaipublic.azureedge.net/jukebox/models/" __A : Any = { "jukebox-1b-lyrics": [ "5b/vqvae.pth.tar", "5b/prior_level_0.pth.tar", "5b/prior_level_1.pth.tar", "1b_lyrics/prior_level_2.pth.tar", ], "jukebox-5b-lyrics": [ "5b/vqvae.pth.tar", "5b/prior_level_0.pth.tar", "5b/prior_level_1.pth.tar", "5b_lyrics/prior_level_2.pth.tar", ], } def UpperCamelCase_ ( A__ : int ): '''simple docstring''' if key.endswith(""".model.1.bias""" ) and len(key.split(""".""" ) ) > 10: lowerCAmelCase_ : Union[str, Any] = key.replace(""".model.1.bias""" , """.conv1d_1.bias""" ) elif key.endswith(""".model.1.weight""" ) and len(key.split(""".""" ) ) > 10: lowerCAmelCase_ : Union[str, Any] = key.replace(""".model.1.weight""" , """.conv1d_1.weight""" ) elif key.endswith(""".model.3.bias""" ) and len(key.split(""".""" ) ) > 10: lowerCAmelCase_ : Union[str, Any] = key.replace(""".model.3.bias""" , """.conv1d_2.bias""" ) elif key.endswith(""".model.3.weight""" ) and len(key.split(""".""" ) ) > 10: lowerCAmelCase_ : int = key.replace(""".model.3.weight""" , """.conv1d_2.weight""" ) if "conditioner_blocks.0." in key: lowerCAmelCase_ : Any = key.replace("""conditioner_blocks.0""" , """conditioner_blocks""" ) if "prime_prior" in key: lowerCAmelCase_ : str = key.replace("""prime_prior""" , """encoder""" ) if ".emb." in key and "total" not in key and "absolute" not in key and "relative" not in key: lowerCAmelCase_ : int = key.replace(""".emb.""" , """.""" ) if key.endswith("""k""" ): # replace vqvae.X.k with vqvae.X.codebook return key.replace(""".k""" , """.codebook""" ) if "y_emb." in key: return key.replace("""y_emb.""" , """metadata_embedding.""" ) if "x_emb.emb." in key: lowerCAmelCase_ : List[Any] = key.replace("""0.x_emb.emb""" , """embed_tokens""" ) if "prime_state_ln" in key: return key.replace("""prime_state_ln""" , """encoder.final_layer_norm""" ) if ".ln" in key: return key.replace(""".ln""" , """.layer_norm""" ) if "_ln" in key: return key.replace("""_ln""" , """_layer_norm""" ) if "prime_state_proj" in key: return key.replace("""prime_state_proj""" , """encoder.proj_in""" ) if "prime_x_out" in key: return key.replace("""prime_x_out""" , """encoder.lm_head""" ) if "prior.x_out" in key: return key.replace("""x_out""" , """fc_proj_out""" ) if "x_emb" in key: return key.replace("""x_emb""" , """embed_tokens""" ) return key def UpperCamelCase_ ( A__ : Dict , A__ : Optional[Any] , A__ : Tuple , A__ : Any ): '''simple docstring''' lowerCAmelCase_ : Union[str, Any] = {} import re lowerCAmelCase_ : Union[str, Any] = re.compile(R"""encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)""" ) lowerCAmelCase_ : str = re.compile( R"""encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)""" ) lowerCAmelCase_ : Dict = re.compile(R"""encoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)""" ) lowerCAmelCase_ : int = re.compile(R"""decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)""" ) lowerCAmelCase_ : Optional[int] = re.compile( R"""decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)""" ) lowerCAmelCase_ : Union[str, Any] = re.compile(R"""decoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)""" ) lowerCAmelCase_ : Any = re.compile(R"""conditioner_blocks.(\d*).cond.model.(\d*).(\d).(bias|weight)""" ) lowerCAmelCase_ : Dict = re.compile( R"""conditioner_blocks.(\d*).cond.model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)""" ) lowerCAmelCase_ : str = re.compile(R"""conditioner_blocks.(\d*).cond.model.(\d*).(bias|weight)""" ) for original_key, value in state_dict.items(): # rename vqvae.encoder keys if re_encoder_block_conv_in.fullmatch(A__ ): lowerCAmelCase_ : Dict = re_encoder_block_conv_in.match(A__ ) lowerCAmelCase_ : Optional[int] = regex_match.groups() lowerCAmelCase_ : Tuple = int(groups[2] ) * 2 + int(groups[3] ) lowerCAmelCase_ : Optional[Any] = f'encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}.{groups[-1]}' lowerCAmelCase_ : List[str] = re_encoder_block_conv_in.sub(A__ , A__ ) elif re_encoder_block_resnet.fullmatch(A__ ): lowerCAmelCase_ : Tuple = re_encoder_block_resnet.match(A__ ) lowerCAmelCase_ : Tuple = regex_match.groups() lowerCAmelCase_ : List[Any] = int(groups[2] ) * 2 + int(groups[3] ) lowerCAmelCase_ : str = {"""1""": 1, """3""": 2}[groups[-2]] lowerCAmelCase_ : int = f'encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}.' lowerCAmelCase_ : Optional[Any] = f'resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}' lowerCAmelCase_ : List[str] = prefix + resnet_block lowerCAmelCase_ : Tuple = re_encoder_block_resnet.sub(A__ , A__ ) elif re_encoder_block_proj_out.fullmatch(A__ ): lowerCAmelCase_ : int = re_encoder_block_proj_out.match(A__ ) lowerCAmelCase_ : Tuple = regex_match.groups() lowerCAmelCase_ : Optional[Any] = f'encoders.{groups[0]}.level_blocks.{groups[1]}.proj_out.{groups[-1]}' lowerCAmelCase_ : str = re_encoder_block_proj_out.sub(A__ , A__ ) # rename vqvae.decoder keys elif re_decoder_block_conv_out.fullmatch(A__ ): lowerCAmelCase_ : List[Any] = re_decoder_block_conv_out.match(A__ ) lowerCAmelCase_ : Tuple = regex_match.groups() lowerCAmelCase_ : str = int(groups[2] ) * 2 + int(groups[3] ) - 2 lowerCAmelCase_ : Any = f'decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}.{groups[-1]}' lowerCAmelCase_ : Tuple = re_decoder_block_conv_out.sub(A__ , A__ ) elif re_decoder_block_resnet.fullmatch(A__ ): lowerCAmelCase_ : Optional[Any] = re_decoder_block_resnet.match(A__ ) lowerCAmelCase_ : Optional[Any] = regex_match.groups() lowerCAmelCase_ : Optional[Any] = int(groups[2] ) * 2 + int(groups[3] ) - 2 lowerCAmelCase_ : Any = {"""1""": 1, """3""": 2}[groups[-2]] lowerCAmelCase_ : Optional[int] = f'decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}.' lowerCAmelCase_ : Union[str, Any] = f'resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}' lowerCAmelCase_ : Dict = prefix + resnet_block lowerCAmelCase_ : Any = re_decoder_block_resnet.sub(A__ , A__ ) elif re_decoder_block_proj_in.fullmatch(A__ ): lowerCAmelCase_ : str = re_decoder_block_proj_in.match(A__ ) lowerCAmelCase_ : Optional[int] = regex_match.groups() lowerCAmelCase_ : str = f'decoders.{groups[0]}.level_blocks.{groups[1]}.proj_in.{groups[-1]}' lowerCAmelCase_ : Union[str, Any] = re_decoder_block_proj_in.sub(A__ , A__ ) # rename prior cond.model to upsampler.upsample_block and resnet elif re_prior_cond_conv_out.fullmatch(A__ ): lowerCAmelCase_ : Optional[Any] = re_prior_cond_conv_out.match(A__ ) lowerCAmelCase_ : Union[str, Any] = regex_match.groups() lowerCAmelCase_ : Union[str, Any] = int(groups[1] ) * 2 + int(groups[2] ) - 2 lowerCAmelCase_ : Optional[int] = f'conditioner_blocks.upsampler.upsample_block.{block_index}.{groups[-1]}' lowerCAmelCase_ : Dict = re_prior_cond_conv_out.sub(A__ , A__ ) elif re_prior_cond_resnet.fullmatch(A__ ): lowerCAmelCase_ : Any = re_prior_cond_resnet.match(A__ ) lowerCAmelCase_ : int = regex_match.groups() lowerCAmelCase_ : Dict = int(groups[1] ) * 2 + int(groups[2] ) - 2 lowerCAmelCase_ : Tuple = {"""1""": 1, """3""": 2}[groups[-2]] lowerCAmelCase_ : Optional[Any] = f'conditioner_blocks.upsampler.upsample_block.{block_index}.' lowerCAmelCase_ : List[Any] = f'resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}' lowerCAmelCase_ : Optional[int] = prefix + resnet_block lowerCAmelCase_ : Dict = re_prior_cond_resnet.sub(A__ , A__ ) elif re_prior_cond_proj_in.fullmatch(A__ ): lowerCAmelCase_ : List[str] = re_prior_cond_proj_in.match(A__ ) lowerCAmelCase_ : Optional[Any] = regex_match.groups() lowerCAmelCase_ : Any = f'conditioner_blocks.upsampler.proj_in.{groups[-1]}' lowerCAmelCase_ : List[str] = re_prior_cond_proj_in.sub(A__ , A__ ) # keep original key else: lowerCAmelCase_ : Optional[Any] = original_key lowerCAmelCase_ : Optional[Any] = replace_key(A__ ) if f'{key_prefix}.{key}' not in model_state_dict or key is None: print(f'failed converting {original_key} to {key}, does not match' ) # handle missmatched shape elif value.shape != model_state_dict[f'{key_prefix}.{key}'].shape: lowerCAmelCase_ : Dict = model_state_dict[f'{key_prefix}.{key}'] print(f'{original_key}-> {key} : \nshape {val.shape} and { value.shape}, do not match' ) lowerCAmelCase_ : str = original_key lowerCAmelCase_ : Dict = original_key lowerCAmelCase_ : Optional[int] = value return new_dict @torch.no_grad() def UpperCamelCase_ ( A__ : Optional[Any]=None , A__ : str=None ): '''simple docstring''' for file in MODEL_MAPPING[model_name]: if not os.path.isfile(f'{pytorch_dump_folder_path}/{file.split("/" )[-1]}' ): lowerCAmelCase_ : List[Any] = requests.get(f'{PREFIX}{file}' , allow_redirects=A__ ) os.makedirs(f'{pytorch_dump_folder_path}/' , exist_ok=A__ ) open(f'{pytorch_dump_folder_path}/{file.split("/" )[-1]}' , """wb""" ).write(r.content ) lowerCAmelCase_ : Optional[int] = MODEL_MAPPING[model_name.split("""/""" )[-1]] lowerCAmelCase_ : List[str] = JukeboxConfig.from_pretrained(A__ ) lowerCAmelCase_ : Dict = JukeboxModel(A__ ) lowerCAmelCase_ : Optional[Any] = [] lowerCAmelCase_ : Dict = {} for i, dict_name in enumerate(A__ ): lowerCAmelCase_ : List[Any] = torch.load(f'{pytorch_dump_folder_path}/{dict_name.split("/" )[-1]}' )["""model"""] lowerCAmelCase_ : Dict = {} for k in old_dic.keys(): if k.endswith(""".b""" ): lowerCAmelCase_ : Optional[int] = old_dic[k] elif k.endswith(""".w""" ): lowerCAmelCase_ : Optional[int] = old_dic[k] elif "level_2" not in dict_name and "cond.model." in k: lowerCAmelCase_ : Tuple = old_dic[k] else: lowerCAmelCase_ : List[Any] = old_dic[k] lowerCAmelCase_ : Union[str, Any] = """vqvae""" if i == 0 else f'priors.{3 - i}' lowerCAmelCase_ : str = fix_jukebox_keys(A__ , model.state_dict() , A__ , A__ ) weight_dict.append(A__ ) lowerCAmelCase_ : int = weight_dict.pop(0 ) model.vqvae.load_state_dict(A__ ) for i in range(len(A__ ) ): model.priors[i].load_state_dict(weight_dict[2 - i] ) Path(A__ ).mkdir(exist_ok=A__ ) with open(f'{pytorch_dump_folder_path}/mapping.json' , """w""" ) as txtfile: json.dump(A__ , A__ ) print(f'Saving model {model_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(A__ ) return weight_dict if __name__ == "__main__": __A : str = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="jukebox-5b-lyrics", type=str, help="Name of the model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default="jukebox-5b-lyrics-converted", type=str, help="Path to the output PyTorch model directory.", ) __A : Optional[Any] = parser.parse_args() convert_openai_checkpoint(args.model_name, args.pytorch_dump_folder_path)
89
0
def a__ ( snake_case , snake_case , snake_case ): """simple docstring""" def update_area_of_max_square(snake_case , snake_case ) -> int: # BASE CASE if row >= rows or col >= cols: return 0 __SCREAMING_SNAKE_CASE : List[Any] = update_area_of_max_square(lowerCAmelCase__ , col + 1 ) __SCREAMING_SNAKE_CASE : Optional[int] = update_area_of_max_square(row + 1 , col + 1 ) __SCREAMING_SNAKE_CASE : Dict = update_area_of_max_square(row + 1 , lowerCAmelCase__ ) if mat[row][col]: __SCREAMING_SNAKE_CASE : Any = 1 + min([right, diagonal, down] ) __SCREAMING_SNAKE_CASE : List[Any] = max(largest_square_area[0] , lowerCAmelCase__ ) return sub_problem_sol else: return 0 __SCREAMING_SNAKE_CASE : str = [0] update_area_of_max_square(0 , 0 ) return largest_square_area[0] def a__ ( snake_case , snake_case , snake_case ): """simple docstring""" def update_area_of_max_square_using_dp_array( snake_case , snake_case , snake_case ) -> int: if row >= rows or col >= cols: return 0 if dp_array[row][col] != -1: return dp_array[row][col] __SCREAMING_SNAKE_CASE : Optional[Any] = update_area_of_max_square_using_dp_array(lowerCAmelCase__ , col + 1 , lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Any = update_area_of_max_square_using_dp_array(row + 1 , col + 1 , lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Any = update_area_of_max_square_using_dp_array(row + 1 , lowerCAmelCase__ , lowerCAmelCase__ ) if mat[row][col]: __SCREAMING_SNAKE_CASE : int = 1 + min([right, diagonal, down] ) __SCREAMING_SNAKE_CASE : Optional[int] = max(largest_square_area[0] , lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Optional[int] = sub_problem_sol return sub_problem_sol else: return 0 __SCREAMING_SNAKE_CASE : Any = [0] __SCREAMING_SNAKE_CASE : Optional[Any] = [[-1] * cols for _ in range(lowerCAmelCase__ )] update_area_of_max_square_using_dp_array(0 , 0 , lowerCAmelCase__ ) return largest_square_area[0] def a__ ( snake_case , snake_case , snake_case ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[int] = [[0] * (cols + 1) for _ in range(rows + 1 )] __SCREAMING_SNAKE_CASE : str = 0 for row in range(rows - 1 , -1 , -1 ): for col in range(cols - 1 , -1 , -1 ): __SCREAMING_SNAKE_CASE : Any = dp_array[row][col + 1] __SCREAMING_SNAKE_CASE : List[str] = dp_array[row + 1][col + 1] __SCREAMING_SNAKE_CASE : List[str] = dp_array[row + 1][col] if mat[row][col] == 1: __SCREAMING_SNAKE_CASE : Dict = 1 + min(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : int = max(dp_array[row][col] , lowerCAmelCase__ ) else: __SCREAMING_SNAKE_CASE : List[Any] = 0 return largest_square_area def a__ ( snake_case , snake_case , snake_case ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[int] = [0] * (cols + 1) __SCREAMING_SNAKE_CASE : Tuple = [0] * (cols + 1) __SCREAMING_SNAKE_CASE : Optional[int] = 0 for row in range(rows - 1 , -1 , -1 ): for col in range(cols - 1 , -1 , -1 ): __SCREAMING_SNAKE_CASE : Optional[Any] = current_row[col + 1] __SCREAMING_SNAKE_CASE : Optional[int] = next_row[col + 1] __SCREAMING_SNAKE_CASE : List[str] = next_row[col] if mat[row][col] == 1: __SCREAMING_SNAKE_CASE : Union[str, Any] = 1 + min(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : List[str] = max(current_row[col] , lowerCAmelCase__ ) else: __SCREAMING_SNAKE_CASE : Any = 0 __SCREAMING_SNAKE_CASE : str = current_row return largest_square_area if __name__ == "__main__": import doctest doctest.testmod() print(largest_square_area_in_matrix_bottom_up(2, 2, [[1, 1], [1, 1]]))
303
"""simple docstring""" from argparse import ArgumentParser, Namespace from ..utils import logging from . import BaseTransformersCLICommand def lowercase ( lowerCAmelCase__ : Namespace ) -> Tuple: return ConvertCommand( args.model_type , args.tf_checkpoint , args.pytorch_dump_output , args.config , args.finetuning_task_name ) lowercase_ = "\ntransformers can only be used from the commandline to convert TensorFlow models in PyTorch, In that case, it requires\nTensorFlow to be installed. Please see https://www.tensorflow.org/install/ for installation instructions.\n" class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' @staticmethod def __UpperCAmelCase ( _a ): __a = parser.add_parser( '''convert''' , help='''CLI tool to run convert model from original author checkpoints to Transformers PyTorch checkpoints.''' , ) train_parser.add_argument('''--model_type''' , type=_a , required=_a , help='''Model\'s type.''' ) train_parser.add_argument( '''--tf_checkpoint''' , type=_a , required=_a , help='''TensorFlow checkpoint path or folder.''' ) train_parser.add_argument( '''--pytorch_dump_output''' , type=_a , required=_a , help='''Path to the PyTorch saved model output.''' ) train_parser.add_argument('''--config''' , type=_a , default='''''' , help='''Configuration file path or folder.''' ) train_parser.add_argument( '''--finetuning_task_name''' , type=_a , default=_a , help='''Optional fine-tuning task name if the TF model was a finetuned model.''' , ) train_parser.set_defaults(func=_a ) def __init__( self , _a , _a , _a , _a , _a , *_a , ): __a = logging.get_logger('''transformers-cli/converting''' ) self._logger.info(f'''Loading model {model_type}''' ) __a = model_type __a = tf_checkpoint __a = pytorch_dump_output __a = config __a = finetuning_task_name def __UpperCAmelCase ( self ): if self._model_type == "albert": try: from ..models.albert.convert_albert_original_tf_checkpoint_to_pytorch import ( convert_tf_checkpoint_to_pytorch, ) except ImportError: raise ImportError(_a ) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "bert": try: from ..models.bert.convert_bert_original_tf_checkpoint_to_pytorch import ( convert_tf_checkpoint_to_pytorch, ) except ImportError: raise ImportError(_a ) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "funnel": try: from ..models.funnel.convert_funnel_original_tf_checkpoint_to_pytorch import ( convert_tf_checkpoint_to_pytorch, ) except ImportError: raise ImportError(_a ) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "t5": try: from ..models.ta.convert_ta_original_tf_checkpoint_to_pytorch import convert_tf_checkpoint_to_pytorch except ImportError: raise ImportError(_a ) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "gpt": from ..models.openai.convert_openai_original_tf_checkpoint_to_pytorch import ( convert_openai_checkpoint_to_pytorch, ) convert_openai_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "transfo_xl": try: from ..models.transfo_xl.convert_transfo_xl_original_tf_checkpoint_to_pytorch import ( convert_transfo_xl_checkpoint_to_pytorch, ) except ImportError: raise ImportError(_a ) if "ckpt" in self._tf_checkpoint.lower(): __a = self._tf_checkpoint __a = '''''' else: __a = self._tf_checkpoint __a = '''''' convert_transfo_xl_checkpoint_to_pytorch( _a , self._config , self._pytorch_dump_output , _a ) elif self._model_type == "gpt2": try: from ..models.gpta.convert_gpta_original_tf_checkpoint_to_pytorch import ( convert_gpta_checkpoint_to_pytorch, ) except ImportError: raise ImportError(_a ) convert_gpta_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "xlnet": try: from ..models.xlnet.convert_xlnet_original_tf_checkpoint_to_pytorch import ( convert_xlnet_checkpoint_to_pytorch, ) except ImportError: raise ImportError(_a ) convert_xlnet_checkpoint_to_pytorch( self._tf_checkpoint , self._config , self._pytorch_dump_output , self._finetuning_task_name ) elif self._model_type == "xlm": from ..models.xlm.convert_xlm_original_pytorch_checkpoint_to_pytorch import ( convert_xlm_checkpoint_to_pytorch, ) convert_xlm_checkpoint_to_pytorch(self._tf_checkpoint , self._pytorch_dump_output ) elif self._model_type == "lxmert": from ..models.lxmert.convert_lxmert_original_tf_checkpoint_to_pytorch import ( convert_lxmert_checkpoint_to_pytorch, ) convert_lxmert_checkpoint_to_pytorch(self._tf_checkpoint , self._pytorch_dump_output ) elif self._model_type == "rembert": from ..models.rembert.convert_rembert_tf_checkpoint_to_pytorch import ( convert_rembert_tf_checkpoint_to_pytorch, ) convert_rembert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) else: raise ValueError( '''--model_type should be selected in the list [bert, gpt, gpt2, t5, transfo_xl, xlnet, xlm, lxmert]''' )
45
0
import argparse import json import os import numpy as np import PIL import requests import tensorflow.keras.applications.efficientnet as efficientnet import torch from huggingface_hub import hf_hub_download from PIL import Image from tensorflow.keras.preprocessing import image from transformers import ( EfficientNetConfig, EfficientNetForImageClassification, EfficientNetImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() _A = logging.get_logger(__name__) _A = { "b0": efficientnet.EfficientNetBa, "b1": efficientnet.EfficientNetBa, "b2": efficientnet.EfficientNetBa, "b3": efficientnet.EfficientNetBa, "b4": efficientnet.EfficientNetBa, "b5": efficientnet.EfficientNetBa, "b6": efficientnet.EfficientNetBa, "b7": efficientnet.EfficientNetBa, } _A = { "b0": { "hidden_dim": 12_80, "width_coef": 1.0, "depth_coef": 1.0, "image_size": 2_24, "dropout_rate": 0.2, "dw_padding": [], }, "b1": { "hidden_dim": 12_80, "width_coef": 1.0, "depth_coef": 1.1, "image_size": 2_40, "dropout_rate": 0.2, "dw_padding": [16], }, "b2": { "hidden_dim": 14_08, "width_coef": 1.1, "depth_coef": 1.2, "image_size": 2_60, "dropout_rate": 0.3, "dw_padding": [5, 8, 16], }, "b3": { "hidden_dim": 15_36, "width_coef": 1.2, "depth_coef": 1.4, "image_size": 3_00, "dropout_rate": 0.3, "dw_padding": [5, 18], }, "b4": { "hidden_dim": 17_92, "width_coef": 1.4, "depth_coef": 1.8, "image_size": 3_80, "dropout_rate": 0.4, "dw_padding": [6], }, "b5": { "hidden_dim": 20_48, "width_coef": 1.6, "depth_coef": 2.2, "image_size": 4_56, "dropout_rate": 0.4, "dw_padding": [13, 27], }, "b6": { "hidden_dim": 23_04, "width_coef": 1.8, "depth_coef": 2.6, "image_size": 5_28, "dropout_rate": 0.5, "dw_padding": [31], }, "b7": { "hidden_dim": 25_60, "width_coef": 2.0, "depth_coef": 3.1, "image_size": 6_00, "dropout_rate": 0.5, "dw_padding": [18], }, } def lowercase_ ( A__ ) -> int: """simple docstring""" snake_case = EfficientNetConfig() snake_case = CONFIG_MAP[model_name]["hidden_dim"] snake_case = CONFIG_MAP[model_name]["width_coef"] snake_case = CONFIG_MAP[model_name]["depth_coef"] snake_case = CONFIG_MAP[model_name]["image_size"] snake_case = CONFIG_MAP[model_name]["dropout_rate"] snake_case = CONFIG_MAP[model_name]["dw_padding"] snake_case = "huggingface/label-files" snake_case = "imagenet-1k-id2label.json" snake_case = 1000 snake_case = json.load(open(hf_hub_download(A__ , A__ , repo_type="dataset" ) , "r" ) ) snake_case = {int(A__ ): v for k, v in idalabel.items()} snake_case = idalabel snake_case = {v: k for k, v in idalabel.items()} return config def lowercase_ ( ) -> str: """simple docstring""" snake_case = "http://images.cocodataset.org/val2017/000000039769.jpg" snake_case = Image.open(requests.get(A__ , stream=A__ ).raw ) return im def lowercase_ ( A__ ) -> Tuple: """simple docstring""" snake_case = CONFIG_MAP[model_name]["image_size"] snake_case = EfficientNetImageProcessor( size={"height": size, "width": size} , image_mean=[0.485, 0.456, 0.406] , image_std=[0.47853944, 0.4732864, 0.47434163] , do_center_crop=A__ , ) return preprocessor def lowercase_ ( A__ ) -> Optional[int]: """simple docstring""" snake_case = [v.split("_" )[0].split("block" )[1] for v in original_param_names if v.startswith("block" )] snake_case = sorted(set(A__ ) ) snake_case = len(A__ ) snake_case = {b: str(A__ ) for b, i in zip(A__ , range(A__ ) )} snake_case = [] rename_keys.append(("stem_conv/kernel:0", "embeddings.convolution.weight") ) rename_keys.append(("stem_bn/gamma:0", "embeddings.batchnorm.weight") ) rename_keys.append(("stem_bn/beta:0", "embeddings.batchnorm.bias") ) rename_keys.append(("stem_bn/moving_mean:0", "embeddings.batchnorm.running_mean") ) rename_keys.append(("stem_bn/moving_variance:0", "embeddings.batchnorm.running_var") ) for b in block_names: snake_case = block_name_mapping[b] rename_keys.append((F'block{b}_expand_conv/kernel:0', F'encoder.blocks.{hf_b}.expansion.expand_conv.weight') ) rename_keys.append((F'block{b}_expand_bn/gamma:0', F'encoder.blocks.{hf_b}.expansion.expand_bn.weight') ) rename_keys.append((F'block{b}_expand_bn/beta:0', F'encoder.blocks.{hf_b}.expansion.expand_bn.bias') ) rename_keys.append( (F'block{b}_expand_bn/moving_mean:0', F'encoder.blocks.{hf_b}.expansion.expand_bn.running_mean') ) rename_keys.append( (F'block{b}_expand_bn/moving_variance:0', F'encoder.blocks.{hf_b}.expansion.expand_bn.running_var') ) rename_keys.append( (F'block{b}_dwconv/depthwise_kernel:0', F'encoder.blocks.{hf_b}.depthwise_conv.depthwise_conv.weight') ) rename_keys.append((F'block{b}_bn/gamma:0', F'encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.weight') ) rename_keys.append((F'block{b}_bn/beta:0', F'encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.bias') ) rename_keys.append( (F'block{b}_bn/moving_mean:0', F'encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.running_mean') ) rename_keys.append( (F'block{b}_bn/moving_variance:0', F'encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.running_var') ) rename_keys.append((F'block{b}_se_reduce/kernel:0', F'encoder.blocks.{hf_b}.squeeze_excite.reduce.weight') ) rename_keys.append((F'block{b}_se_reduce/bias:0', F'encoder.blocks.{hf_b}.squeeze_excite.reduce.bias') ) rename_keys.append((F'block{b}_se_expand/kernel:0', F'encoder.blocks.{hf_b}.squeeze_excite.expand.weight') ) rename_keys.append((F'block{b}_se_expand/bias:0', F'encoder.blocks.{hf_b}.squeeze_excite.expand.bias') ) rename_keys.append( (F'block{b}_project_conv/kernel:0', F'encoder.blocks.{hf_b}.projection.project_conv.weight') ) rename_keys.append((F'block{b}_project_bn/gamma:0', F'encoder.blocks.{hf_b}.projection.project_bn.weight') ) rename_keys.append((F'block{b}_project_bn/beta:0', F'encoder.blocks.{hf_b}.projection.project_bn.bias') ) rename_keys.append( (F'block{b}_project_bn/moving_mean:0', F'encoder.blocks.{hf_b}.projection.project_bn.running_mean') ) rename_keys.append( (F'block{b}_project_bn/moving_variance:0', F'encoder.blocks.{hf_b}.projection.project_bn.running_var') ) rename_keys.append(("top_conv/kernel:0", "encoder.top_conv.weight") ) rename_keys.append(("top_bn/gamma:0", "encoder.top_bn.weight") ) rename_keys.append(("top_bn/beta:0", "encoder.top_bn.bias") ) rename_keys.append(("top_bn/moving_mean:0", "encoder.top_bn.running_mean") ) rename_keys.append(("top_bn/moving_variance:0", "encoder.top_bn.running_var") ) snake_case = {} for item in rename_keys: if item[0] in original_param_names: snake_case = "efficientnet." + item[1] snake_case = "classifier.weight" snake_case = "classifier.bias" return key_mapping def lowercase_ ( A__ , A__ , A__ ) -> Optional[Any]: """simple docstring""" for key, value in tf_params.items(): if "normalization" in key: continue snake_case = key_mapping[key] if "_conv" in key and "kernel" in key: snake_case = torch.from_numpy(A__ ).permute(3 , 2 , 0 , 1 ) elif "depthwise_kernel" in key: snake_case = torch.from_numpy(A__ ).permute(2 , 3 , 0 , 1 ) elif "kernel" in key: snake_case = torch.from_numpy(np.transpose(A__ ) ) else: snake_case = torch.from_numpy(A__ ) # Replace HF parameters with original TF model parameters assert hf_params[hf_key].shape == new_hf_value.shape hf_params[hf_key].copy_(A__ ) @torch.no_grad() def lowercase_ ( A__ , A__ , A__ , A__ ) -> Union[str, Any]: """simple docstring""" snake_case = model_classes[model_name]( include_top=A__ , weights="imagenet" , input_tensor=A__ , input_shape=A__ , pooling=A__ , classes=1000 , classifier_activation="softmax" , ) snake_case = original_model.trainable_variables snake_case = original_model.non_trainable_variables snake_case = {param.name: param.numpy() for param in tf_params} for param in tf_non_train_params: snake_case = param.numpy() snake_case = list(tf_params.keys() ) # Load HuggingFace model snake_case = get_efficientnet_config(A__ ) snake_case = EfficientNetForImageClassification(A__ ).eval() snake_case = hf_model.state_dict() # Create src-to-dst parameter name mapping dictionary print("Converting parameters..." ) snake_case = rename_keys(A__ ) replace_params(A__ , A__ , A__ ) # Initialize preprocessor and preprocess input image snake_case = convert_image_processor(A__ ) snake_case = preprocessor(images=prepare_img() , return_tensors="pt" ) # HF model inference hf_model.eval() with torch.no_grad(): snake_case = hf_model(**A__ ) snake_case = outputs.logits.detach().numpy() # Original model inference snake_case = False snake_case = CONFIG_MAP[model_name]["image_size"] snake_case = prepare_img().resize((image_size, image_size) , resample=PIL.Image.NEAREST ) snake_case = image.img_to_array(A__ ) snake_case = np.expand_dims(A__ , axis=0 ) snake_case = original_model.predict(A__ ) # Check whether original and HF model outputs match -> np.allclose assert np.allclose(A__ , A__ , atol=1e-3 ), "The predicted logits are not the same." print("Model outputs match!" ) if save_model: # Create folder to save model if not os.path.isdir(A__ ): os.mkdir(A__ ) # Save converted model and image processor hf_model.save_pretrained(A__ ) preprocessor.save_pretrained(A__ ) if push_to_hub: # Push model and image processor to hub print(F'Pushing converted {model_name} to the hub...' ) snake_case = F'efficientnet-{model_name}' preprocessor.push_to_hub(A__ ) hf_model.push_to_hub(A__ ) if __name__ == "__main__": _A = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="b0", type=str, help="Version name of the EfficientNet model you want to convert, select from [b0, b1, b2, b3, b4, b5, b6, b7].", ) parser.add_argument( "--pytorch_dump_folder_path", default="hf_model", type=str, help="Path to the output PyTorch model directory.", ) parser.add_argument("--save_model", action="store_true", help="Save model to local") parser.add_argument("--push_to_hub", action="store_true", help="Push model and image processor to the hub") _A = parser.parse_args() convert_efficientnet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.save_model, args.push_to_hub)
137
import argparse import dataclasses import json import logging import os import shutil from typing import List, Optional import datasets from accelerate import Accelerator from datasets import load_dataset from finetuning import finetune from tqdm.auto import tqdm import transformers from transformers import AutoConfig, set_seed from transformers.trainer_utils import IntervalStrategy _A = logging.getLogger(__name__) _A = "pytorch_model.bin" @dataclasses.dataclass class lowerCamelCase : UpperCAmelCase__ : str = dataclasses.field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models."} ) UpperCAmelCase__ : Optional[str] = dataclasses.field( default=A_ , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co."} , ) @dataclasses.dataclass class lowerCamelCase : UpperCAmelCase__ : str = dataclasses.field(metadata={"help": "A csv or a json file containing the training data."} ) UpperCAmelCase__ : str = dataclasses.field(metadata={"help": "A csv or a json file containing the data to predict on."} ) UpperCAmelCase__ : Optional[str] = dataclasses.field( default=A_ , metadata={"help": "A csv or a json file containing the validation data."} ) UpperCAmelCase__ : Optional[str] = dataclasses.field( default=A_ , metadata={"help": "The name of the task to train on."} , ) UpperCAmelCase__ : Optional[List[str]] = dataclasses.field( default=A_ , metadata={"help": "The list of labels for the task."} ) @dataclasses.dataclass class lowerCamelCase : UpperCAmelCase__ : str = dataclasses.field( metadata={"help": "The output directory where the model predictions and checkpoints will be written."} ) UpperCAmelCase__ : Optional[str] = dataclasses.field( default="accuracy" , metadata={"help": "The evaluation metric used for the task."} ) UpperCAmelCase__ : Optional[str] = dataclasses.field( default="no" , metadata={ "help": "The evaluation strategy to adopt during training. Possible values are: [\"no\", \"step\", \"epoch]" } , ) UpperCAmelCase__ : Optional[int] = dataclasses.field( default=10 , metadata={"help": "Number of evaluation calls with no improvement after which training will be stopped."} , ) UpperCAmelCase__ : Optional[float] = dataclasses.field( default=0.0 , metadata={ "help": "How much the specified evaluation metric must improve to satisfy early stopping conditions." } , ) UpperCAmelCase__ : Optional[bool] = dataclasses.field( default=A_ , metadata={"help": "Whether to filter the pseudo-labeled data based on the confidence score."} , ) UpperCAmelCase__ : Optional[bool] = dataclasses.field( default=A_ , metadata={"help": "Whether to filter the pseudo-labeled data based on the validation performance."} , ) UpperCAmelCase__ : Optional[bool] = dataclasses.field( default=A_ , metadata={"help": "Whether to fine-tune on labeled data after pseudo training."} , ) UpperCAmelCase__ : Optional[float] = dataclasses.field( default=0.0 , metadata={"help": "Confidence threshold for pseudo-labeled data filtering."} , ) UpperCAmelCase__ : Optional[int] = dataclasses.field( default=1_00 , metadata={"help": "Number of evaluation calls with no improvement after which training will be stopped."} , ) UpperCAmelCase__ : Optional[int] = dataclasses.field( default=A_ , metadata={"help": "Random seed for initialization."} , ) def lowercase_ ( A__ , A__ , A__ , A__ , A__ , A__ ) -> Union[str, Any]: """simple docstring""" snake_case = datasets.concatenate_datasets([infer_input, infer_output] , axis=1 ) if args.do_filter_by_confidence: snake_case = dataset.filter(lambda A__ : example["probability"] > args.confidence_threshold ) if args.do_filter_by_val_performance: assert eval_result >= 0.0 and eval_result <= 1.0 snake_case = int(eval_result * len(A__ ) ) print(A__ ) snake_case = dataset.sort("probability" , reverse=A__ ) snake_case = dataset.select(range(A__ ) ) snake_case = dataset.remove_columns(["label", "probability"] ) snake_case = dataset.rename_column("prediction" , "label" ) snake_case = dataset.map(lambda A__ : {"label": idalabel[example["label"]]} ) snake_case = dataset.shuffle(seed=args.seed ) snake_case = os.path.join(A__ , F'train_pseudo.{args.data_file_extension}' ) if args.data_file_extension == "csv": dataset.to_csv(A__ , index=A__ ) else: dataset.to_json(A__ ) def lowercase_ ( A__ , A__ , A__ , A__ , **A__ ) -> List[Any]: """simple docstring""" snake_case = Accelerator() # Make one log on every process with the configuration for debugging. logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , level=logging.INFO , ) logger.info(accelerator.state ) # Setup logging, we only want one process per machine to log things on the # screen. accelerator.is_local_main_process is only True for one process per # machine. logger.setLevel(logging.INFO if accelerator.is_local_main_process else logging.ERROR ) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_info() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() snake_case = STModelArguments(model_name_or_path=A__ ) snake_case = STDataArguments(train_file=A__ , infer_file=A__ ) snake_case = STTrainingArguments(output_dir=A__ ) snake_case = argparse.Namespace() for arg_class in (model_args, data_args, training_args): for key, value in vars(A__ ).items(): setattr(A__ , A__ , A__ ) for key, value in kwargs.items(): if hasattr(A__ , A__ ): setattr(A__ , A__ , A__ ) # Sanity checks snake_case = {} snake_case = None # You need to provide the training data and the data to predict on assert args.train_file is not None assert args.infer_file is not None snake_case = args.train_file snake_case = args.infer_file if args.evaluation_strategy != IntervalStrategy.NO.value: assert args.eval_file is not None snake_case = args.eval_file for key in data_files: snake_case = data_files[key].split("." )[-1] assert extension in ["csv", "json"], F'`{key}_file` should be a csv or a json file.' if args.data_file_extension is None: snake_case = extension else: assert extension == args.data_file_extension, F'`{key}_file` should be a {args.data_file_extension} file`.' assert ( args.eval_metric in datasets.list_metrics() ), F'{args.eval_metric} not in the list of supported metrics {datasets.list_metrics()}.' # If passed along, set the training seed now. if args.seed is not None: set_seed(args.seed ) logger.info("Creating the initial data directory for self-training..." ) snake_case = F'{args.output_dir}/self-train_iter-{{}}'.format snake_case = data_dir_format(0 ) if accelerator.is_main_process: if args.output_dir is not None: os.makedirs(args.output_dir , exist_ok=A__ ) os.makedirs(A__ , exist_ok=A__ ) accelerator.wait_for_everyone() snake_case = None snake_case = None snake_case = 0 snake_case = False # Show the progress bar snake_case = tqdm(range(args.max_selftrain_iterations ) , disable=not accelerator.is_local_main_process ) # Self-train for iteration in range(0 , int(args.max_selftrain_iterations ) ): snake_case = data_dir_format(A__ ) assert os.path.exists(A__ ) # Stage 1: initial fine-tuning for iteration = 0 or pseudo-training for # iteration > 0 snake_case = os.path.join(A__ , "stage-1" ) snake_case = { "accelerator": accelerator, "model_name_or_path": args.model_name_or_path, "cache_dir": args.cache_dir, "do_train": True, "train_file": data_files["train"] if iteration == 0 else data_files["train_pseudo"], "do_eval": True if args.eval_file is not None else False, "eval_file": data_files["eval"], "do_predict": True, "infer_file": data_files["infer"], "task_name": args.task_name, "label_list": args.label_list, "output_dir": current_output_dir, "eval_metric": args.eval_metric, "evaluation_strategy": args.evaluation_strategy, "early_stopping_patience": args.early_stopping_patience, "early_stopping_threshold": args.early_stopping_threshold, "seed": args.seed, } # Add additional training arguments for key, value in kwargs.items(): if key not in arguments_dict and not hasattr(A__ , A__ ): arguments_dict.update({key: value} ) snake_case = os.path.join(A__ , "best-checkpoint" , A__ ) if os.path.exists(A__ ): logger.info( "Found existing model checkpoint at %s. Skipping self-training: iteration: %d, stage: 1." , A__ , A__ , ) else: logger.info("***** Running self-training: iteration: %d, stage: 1 *****" , A__ ) finetune(**A__ ) accelerator.wait_for_everyone() assert os.path.exists(A__ ) logger.info("Self-training job completed: iteration: %d, stage: 1." , A__ ) if iteration > 0 and args.finetune_on_labeled_data: # Stage 2 (optional): fine-tuning on the original labeled data snake_case = os.path.join(A__ , "best-checkpoint" ) snake_case = os.path.join(A__ , "stage-2" ) # Update arguments_dict snake_case = model_path snake_case = data_files["train"] snake_case = current_output_dir snake_case = os.path.join(A__ , "best-checkpoint" , A__ ) if os.path.exists(A__ ): logger.info( "Found existing model checkpoint at %s. Skipping self-training: iteration: %d, stage: 2." , A__ , A__ , ) else: logger.info("***** Running self-training: iteration: %d, stage: 2 *****" , A__ ) finetune(**A__ ) accelerator.wait_for_everyone() assert os.path.exists(A__ ) logger.info("Self-training job completed: iteration: %d, stage: 2." , A__ ) snake_case = iteration snake_case = data_dir_format(iteration + 1 ) snake_case = AutoConfig.from_pretrained(os.path.join(A__ , "best-checkpoint" ) ) snake_case = config.idalabel snake_case = os.path.join(A__ , "eval_results_best-checkpoint.json" ) snake_case = os.path.join(A__ , "test_results_best-checkpoint.json" ) assert os.path.exists(A__ ) with open(A__ , "r" ) as f: snake_case = float(json.load(A__ )[args.eval_metric] ) snake_case = os.path.join(A__ , "infer_output_best-checkpoint.csv" ) assert os.path.exists(A__ ) # Loading the dataset from local csv or json files. snake_case = load_dataset(args.data_file_extension , data_files={"data": data_files["infer"]} )["data"] snake_case = load_dataset("csv" , data_files={"data": infer_output_file} )["data"] if accelerator.is_main_process: os.makedirs(A__ , exist_ok=A__ ) shutil.copy(A__ , os.path.join(A__ , F'eval_results_iter-{iteration}.json' ) ) if os.path.exists(A__ ): shutil.copy(A__ , os.path.join(A__ , F'test_results_iter-{iteration}.json' ) ) create_pseudo_labeled_data(A__ , A__ , A__ , A__ , A__ , A__ ) accelerator.wait_for_everyone() snake_case = os.path.join(A__ , F'train_pseudo.{args.data_file_extension}' ) if args.evaluation_strategy != IntervalStrategy.NO.value: snake_case = eval_result if best_iteration is None: snake_case = new_iteration snake_case = new_eval_result else: if new_eval_result - best_eval_result > args.early_stopping_threshold: snake_case = new_iteration snake_case = new_eval_result snake_case = 0 else: if new_eval_result == best_eval_result: snake_case = new_iteration snake_case = new_eval_result early_stopping_patience_counter += 1 if early_stopping_patience_counter >= args.early_stopping_patience: snake_case = True progress_bar.update(1 ) if should_training_stop: break if best_iteration is not None: # Save the best iteration logger.info("Best iteration: %d" , A__ ) logger.info("Best evaluation result: %s = %f" , args.eval_metric , A__ ) accelerator.wait_for_everyone() if accelerator.is_main_process: shutil.copy( os.path.join(A__ , F'eval_results_iter-{iteration}.json' ) , os.path.join(A__ , "eval_results_best-iteration.json" ) , ) else: # Assume that the last iteration is the best logger.info("Best iteration: %d" , args.max_selftrain_iterations - 1 ) logger.info("Best evaluation result: %s = %f" , args.eval_metric , A__ ) accelerator.wait_for_everyone() if accelerator.is_main_process: shutil.copy( os.path.join(A__ , F'eval_results_iter-{args.max_selftrain_iterations - 1}.json' ) , os.path.join(A__ , "eval_results_best-iteration.json" ) , )
137
1
'''simple docstring''' import re import tempfile from pathlib import Path import pytest import yaml from datasets.utils.readme import ReadMe # @pytest.fixture # def example_yaml_structure(): A =yaml.safe_load( '\\nname: ""\nallow_empty: false\nallow_empty_text: true\nsubsections:\n - name: "Dataset Card for X" # First-level markdown heading\n allow_empty: false\n allow_empty_text: true\n subsections:\n - name: "Table of Contents"\n allow_empty: false\n allow_empty_text: false\n subsections: null\n - name: "Dataset Description"\n allow_empty: false\n allow_empty_text: false\n subsections:\n - name: "Dataset Summary"\n allow_empty: false\n allow_empty_text: false\n subsections: null\n - name: "Supported Tasks and Leaderboards"\n allow_empty: true\n allow_empty_text: true\n subsections: null\n - name: Languages\n allow_empty: false\n allow_empty_text: true\n subsections: null\n' ) A ={ 'name': 'root', 'text': '', 'is_empty_text': True, 'subsections': [ { 'name': 'Dataset Card for My Dataset', 'text': '', 'is_empty_text': True, 'subsections': [ {'name': 'Table of Contents', 'text': 'Some text here.', 'is_empty_text': False, 'subsections': []}, { 'name': 'Dataset Description', 'text': 'Some text here.', 'is_empty_text': False, 'subsections': [ { 'name': 'Dataset Summary', 'text': 'Some text here.', 'is_empty_text': False, 'subsections': [], }, { 'name': 'Supported Tasks and Leaderboards', 'text': '', 'is_empty_text': True, 'subsections': [], }, {'name': 'Languages', 'text': 'Language Text', 'is_empty_text': False, 'subsections': []}, ], }, ], } ], } A ='\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n' A ='\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n#### Extra Ignored Subsection\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n' A ={ 'name': 'root', 'text': '', 'is_empty_text': True, 'subsections': [ { 'name': 'Dataset Card for My Dataset', 'text': '', 'is_empty_text': True, 'subsections': [ {'name': 'Table of Contents', 'text': 'Some text here.', 'is_empty_text': False, 'subsections': []}, { 'name': 'Dataset Description', 'text': 'Some text here.', 'is_empty_text': False, 'subsections': [ { 'name': 'Dataset Summary', 'text': 'Some text here.', 'is_empty_text': False, 'subsections': [ { 'name': 'Extra Ignored Subsection', 'text': '', 'is_empty_text': True, 'subsections': [], } ], }, { 'name': 'Supported Tasks and Leaderboards', 'text': '', 'is_empty_text': True, 'subsections': [], }, {'name': 'Languages', 'text': 'Language Text', 'is_empty_text': False, 'subsections': []}, ], }, ], } ], } A ='\\n---\n---\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n' A =( 'The following issues were found for the README at `{path}`:\n-\tEmpty YAML markers are present in the README.' ) A ='\\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n' A =( 'The following issues were found for the README at `{path}`:\n-\tNo YAML markers are present in the README.' ) A ='\\n---\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n' A ='The following issues were found for the README at `{path}`:\n-\tOnly the start of YAML tags present in the README.' A ='\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n' A ='The following issues were found for the README at `{path}`:\n-\tExpected some content in section `Dataset Summary` but it is empty.\n-\tExpected some text in section `Dataset Summary` but it is empty (text in subsections are ignored).' A ='\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card for My Dataset\n' A ='The following issues were found for the README at `{path}`:\n-\tExpected some content in section `Dataset Card for My Dataset` but it is empty.\n-\tSection `Dataset Card for My Dataset` expected the following subsections: `Table of Contents`, `Dataset Description`. Found \'None\'.' A ='\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Languages\nLanguage Text\n' A ='The following issues were found for the README at `{path}`:\n-\tSection `Dataset Description` is missing subsection: `Supported Tasks and Leaderboards`.' A ='\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\n' A ='The following issues were found for the README at `{path}`:\n-\tExpected some content in section `Languages` but it is empty.' A ='\\n---\nlanguage:\n- zh\n- en\n---\n\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n' A ='The following issues were found for the README at `{path}`:\n-\tThe README has no first-level headings. One heading is expected. Skipping further validation for this README.' A ='\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n# Dataset Card My Dataset\n' A ='The following issues were found for the README at `{path}`:\n-\tThe README has several first-level headings: `Dataset Card for My Dataset`, `Dataset Card My Dataset`. Only one heading is expected. Skipping further validation for this README.' A ='\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n' A ='The following issues were found for the README at `{path}`:\n-\tNo first-level heading starting with `Dataset Card for` found in README. Skipping further validation for this README.' A ='' A ='The following issues were found for the README at `{path}`:\n-\tThe README has no first-level headings. One heading is expected. Skipping further validation for this README.\n-\tNo YAML markers are present in the README.' A ='\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card for My Dataset\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n' A ='The following issues were found while parsing the README at `{path}`:\n-\tMultiple sections with the same heading `Dataset Card for My Dataset` have been found. Please keep only one of these sections.' @pytest.mark.parametrize( '''readme_md, expected_dict''' , [ (README_CORRECT, CORRECT_DICT), (README_CORRECT_FOUR_LEVEL, CORRECT_DICT_FOUR_LEVEL), ] , ) def snake_case_ (_a : str , _a : str ): assert ReadMe.from_string(_a , _a ).to_dict() == expected_dict @pytest.mark.parametrize( '''readme_md, expected_error''' , [ (README_NO_YAML, EXPECTED_ERROR_README_NO_YAML), (README_EMPTY_YAML, EXPECTED_ERROR_README_EMPTY_YAML), (README_INCORRECT_YAML, EXPECTED_ERROR_README_INCORRECT_YAML), (README_EMPTY, EXPECTED_ERROR_README_EMPTY), (README_NONE_SUBSECTION, EXPECTED_ERROR_README_NONE_SUBSECTION), (README_MISSING_FIRST_LEVEL, EXPECTED_ERROR_README_MISSING_FIRST_LEVEL), (README_MISSING_SUBSECTION, EXPECTED_ERROR_README_MISSING_SUBSECTION), (README_MISSING_TEXT, EXPECTED_ERROR_README_MISSING_TEXT), (README_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_WRONG_FIRST_LEVEL), (README_MULTIPLE_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_MULTIPLE_WRONG_FIRST_LEVEL), (README_MISSING_CONTENT, EXPECTED_ERROR_README_MISSING_CONTENT), ] , ) def snake_case_ (_a : Any , _a : List[str] ): with pytest.raises(_a , match=re.escape(expected_error.format(path='''root''' ) ) ): UpperCAmelCase = ReadMe.from_string(_a , _a ) readme.validate() @pytest.mark.parametrize( '''readme_md, expected_error''' , [ (README_MULTIPLE_SAME_HEADING_1, EXPECTED_ERROR_README_MULTIPLE_SAME_HEADING_1), ] , ) def snake_case_ (_a : List[Any] , _a : Dict ): with pytest.raises(_a , match=re.escape(expected_error.format(path='''root''' ) ) ): ReadMe.from_string(_a , _a ) @pytest.mark.parametrize( '''readme_md,''' , [ (README_MULTIPLE_SAME_HEADING_1), ] , ) def snake_case_ (_a : Optional[int] ): ReadMe.from_string(_a , _a , suppress_parsing_errors=_a ) @pytest.mark.parametrize( '''readme_md, expected_dict''' , [ (README_CORRECT, CORRECT_DICT), (README_CORRECT_FOUR_LEVEL, CORRECT_DICT_FOUR_LEVEL), ] , ) def snake_case_ (_a : Any , _a : Union[str, Any] ): with tempfile.TemporaryDirectory() as tmp_dir: UpperCAmelCase = Path(_a ) / '''README.md''' with open(_a , '''w+''' ) as readme_file: readme_file.write(_a ) UpperCAmelCase = ReadMe.from_readme(_a , _a ).to_dict() assert out["name"] == path assert out["text"] == "" assert out["is_empty_text"] assert out["subsections"] == expected_dict["subsections"] @pytest.mark.parametrize( '''readme_md, expected_error''' , [ (README_NO_YAML, EXPECTED_ERROR_README_NO_YAML), (README_EMPTY_YAML, EXPECTED_ERROR_README_EMPTY_YAML), (README_INCORRECT_YAML, EXPECTED_ERROR_README_INCORRECT_YAML), (README_EMPTY, EXPECTED_ERROR_README_EMPTY), (README_NONE_SUBSECTION, EXPECTED_ERROR_README_NONE_SUBSECTION), (README_MISSING_FIRST_LEVEL, EXPECTED_ERROR_README_MISSING_FIRST_LEVEL), (README_MISSING_SUBSECTION, EXPECTED_ERROR_README_MISSING_SUBSECTION), (README_MISSING_TEXT, EXPECTED_ERROR_README_MISSING_TEXT), (README_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_WRONG_FIRST_LEVEL), (README_MULTIPLE_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_MULTIPLE_WRONG_FIRST_LEVEL), (README_MISSING_CONTENT, EXPECTED_ERROR_README_MISSING_CONTENT), ] , ) def snake_case_ (_a : Tuple , _a : List[Any] ): with tempfile.TemporaryDirectory() as tmp_dir: UpperCAmelCase = Path(_a ) / '''README.md''' with open(_a , '''w+''' ) as readme_file: readme_file.write(_a ) UpperCAmelCase = expected_error.format(path=_a ) with pytest.raises(_a , match=re.escape(_a ) ): UpperCAmelCase = ReadMe.from_readme(_a , _a ) readme.validate() @pytest.mark.parametrize( '''readme_md, expected_error''' , [ (README_MULTIPLE_SAME_HEADING_1, EXPECTED_ERROR_README_MULTIPLE_SAME_HEADING_1), ] , ) def snake_case_ (_a : List[Any] , _a : List[str] ): with tempfile.TemporaryDirectory() as tmp_dir: UpperCAmelCase = Path(_a ) / '''README.md''' with open(_a , '''w+''' ) as readme_file: readme_file.write(_a ) UpperCAmelCase = expected_error.format(path=_a ) with pytest.raises(_a , match=re.escape(_a ) ): ReadMe.from_readme(_a , _a ) @pytest.mark.parametrize( '''readme_md,''' , [ (README_MULTIPLE_SAME_HEADING_1), ] , ) def snake_case_ (_a : int ): with tempfile.TemporaryDirectory() as tmp_dir: UpperCAmelCase = Path(_a ) / '''README.md''' with open(_a , '''w+''' ) as readme_file: readme_file.write(_a ) ReadMe.from_readme(_a , _a , suppress_parsing_errors=_a )
34
"""simple docstring""" import os import numpy import onnx def a_ ( lowerCamelCase , lowerCamelCase ): UpperCAmelCase__ = a.name UpperCAmelCase__ = b.name UpperCAmelCase__ = '' UpperCAmelCase__ = '' UpperCAmelCase__ = a == b UpperCAmelCase__ = name_a UpperCAmelCase__ = name_b return res def a_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase ): for i, input_name in enumerate(node_proto.input ): if input_name == name: node_proto.input.insert(lowerCamelCase , lowerCamelCase ) node_proto.input.pop(i + 1 ) if node_proto.op_type == "If": _graph_replace_input_with(node_proto.attribute[0].g , lowerCamelCase , lowerCamelCase ) _graph_replace_input_with(node_proto.attribute[1].g , lowerCamelCase , lowerCamelCase ) if node_proto.op_type == "Loop": _graph_replace_input_with(node_proto.attribute[0].g , lowerCamelCase , lowerCamelCase ) def a_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase ): for n in graph_proto.node: _node_replace_input_with(lowerCamelCase , lowerCamelCase , lowerCamelCase ) def a_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase ): UpperCAmelCase__ = list(model.graph.initializer ) UpperCAmelCase__ = list(model_without_ext.graph.initializer ) for i, ref_i in ind_to_replace: assert inits_with_data[i].name == inits[i].name assert inits_with_data[ref_i].name == inits[ref_i].name assert i > ref_i UpperCAmelCase__ = inits[i].name UpperCAmelCase__ = inits[ref_i].name model_without_ext.graph.initializer.remove(inits[i] ) # for n in model.graph.node: _graph_replace_input_with(model_without_ext.graph , lowerCamelCase , lowerCamelCase ) def a_ ( lowerCamelCase ): UpperCAmelCase__ = os.path.dirname(lowerCamelCase ) UpperCAmelCase__ = os.path.basename(lowerCamelCase ) UpperCAmelCase__ = onnx.load(os.path.join(lowerCamelCase , lowerCamelCase ) ) UpperCAmelCase__ = list(model.graph.initializer ) UpperCAmelCase__ = set() UpperCAmelCase__ = {} UpperCAmelCase__ = [] UpperCAmelCase__ = 0 for i in range(len(lowerCamelCase ) ): if i in dup_set: continue for j in range(i + 1 , len(lowerCamelCase ) ): if j in dup_set: continue if _is_equal_tensor_proto(inits[i] , inits[j] ): dup_set.add(lowerCamelCase ) dup_set.add(lowerCamelCase ) UpperCAmelCase__ = inits[j].data_type UpperCAmelCase__ = numpy.prod(inits[j].dims ) if dtype == 1: mem_size *= 4 elif dtype == 6: mem_size *= 4 elif dtype == 7 or dtype == 1_1: mem_size *= 8 else: print('unexpected data type: ' , lowerCamelCase ) total_reduced_size += mem_size UpperCAmelCase__ = inits[i].name UpperCAmelCase__ = inits[j].name if name_i in dup_map: dup_map[name_i].append(lowerCamelCase ) else: UpperCAmelCase__ = [name_j] ind_to_replace.append((j, i) ) print('total reduced size: ' , total_reduced_size / 1_0_2_4 / 1_0_2_4 / 1_0_2_4 , 'GB' ) UpperCAmelCase__ = sorted(lowerCamelCase ) _remove_dup_initializers_from_model(lowerCamelCase , lowerCamelCase , lowerCamelCase ) UpperCAmelCase__ = 'optimized_' + model_file_name UpperCAmelCase__ = os.path.join(lowerCamelCase , lowerCamelCase ) onnx.save(lowerCamelCase , lowerCamelCase ) return new_model
98
0
import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ConvNextConfig, SegformerImageProcessor, UperNetConfig, UperNetForSemanticSegmentation def A ( __UpperCAmelCase ) -> Dict: '''simple docstring''' UpperCAmelCase_ = 384 if "tiny" in model_name: UpperCAmelCase_ = [3, 3, 9, 3] UpperCAmelCase_ = [96, 192, 384, 768] if "small" in model_name: UpperCAmelCase_ = [3, 3, 27, 3] UpperCAmelCase_ = [96, 192, 384, 768] if "base" in model_name: UpperCAmelCase_ = [3, 3, 27, 3] UpperCAmelCase_ = [128, 256, 512, 1024] UpperCAmelCase_ = 512 if "large" in model_name: UpperCAmelCase_ = [3, 3, 27, 3] UpperCAmelCase_ = [192, 384, 768, 1536] UpperCAmelCase_ = 768 if "xlarge" in model_name: UpperCAmelCase_ = [3, 3, 27, 3] UpperCAmelCase_ = [256, 512, 1024, 2048] UpperCAmelCase_ = 1024 # set label information UpperCAmelCase_ = 150 UpperCAmelCase_ = '''huggingface/label-files''' UpperCAmelCase_ = '''ade20k-id2label.json''' UpperCAmelCase_ = json.load(open(hf_hub_download(__UpperCAmelCase , __UpperCAmelCase , repo_type='''dataset''' ) , '''r''' ) ) UpperCAmelCase_ = {int(__UpperCAmelCase ): v for k, v in idalabel.items()} UpperCAmelCase_ = {v: k for k, v in idalabel.items()} UpperCAmelCase_ = ConvNextConfig( depths=__UpperCAmelCase , hidden_sizes=__UpperCAmelCase , out_features=['''stage1''', '''stage2''', '''stage3''', '''stage4'''] ) UpperCAmelCase_ = UperNetConfig( backbone_config=__UpperCAmelCase , auxiliary_in_channels=__UpperCAmelCase , num_labels=__UpperCAmelCase , idalabel=__UpperCAmelCase , labelaid=__UpperCAmelCase , ) return config def A ( __UpperCAmelCase ) -> Optional[int]: '''simple docstring''' UpperCAmelCase_ = [] # fmt: off # stem rename_keys.append(('''backbone.downsample_layers.0.0.weight''', '''backbone.embeddings.patch_embeddings.weight''') ) rename_keys.append(('''backbone.downsample_layers.0.0.bias''', '''backbone.embeddings.patch_embeddings.bias''') ) rename_keys.append(('''backbone.downsample_layers.0.1.weight''', '''backbone.embeddings.layernorm.weight''') ) rename_keys.append(('''backbone.downsample_layers.0.1.bias''', '''backbone.embeddings.layernorm.bias''') ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((f"backbone.stages.{i}.{j}.gamma", f"backbone.encoder.stages.{i}.layers.{j}.layer_scale_parameter") ) rename_keys.append((f"backbone.stages.{i}.{j}.depthwise_conv.weight", f"backbone.encoder.stages.{i}.layers.{j}.dwconv.weight") ) rename_keys.append((f"backbone.stages.{i}.{j}.depthwise_conv.bias", f"backbone.encoder.stages.{i}.layers.{j}.dwconv.bias") ) rename_keys.append((f"backbone.stages.{i}.{j}.norm.weight", f"backbone.encoder.stages.{i}.layers.{j}.layernorm.weight") ) rename_keys.append((f"backbone.stages.{i}.{j}.norm.bias", f"backbone.encoder.stages.{i}.layers.{j}.layernorm.bias") ) rename_keys.append((f"backbone.stages.{i}.{j}.pointwise_conv1.weight", f"backbone.encoder.stages.{i}.layers.{j}.pwconv1.weight") ) rename_keys.append((f"backbone.stages.{i}.{j}.pointwise_conv1.bias", f"backbone.encoder.stages.{i}.layers.{j}.pwconv1.bias") ) rename_keys.append((f"backbone.stages.{i}.{j}.pointwise_conv2.weight", f"backbone.encoder.stages.{i}.layers.{j}.pwconv2.weight") ) rename_keys.append((f"backbone.stages.{i}.{j}.pointwise_conv2.bias", f"backbone.encoder.stages.{i}.layers.{j}.pwconv2.bias") ) if i > 0: rename_keys.append((f"backbone.downsample_layers.{i}.0.weight", f"backbone.encoder.stages.{i}.downsampling_layer.0.weight") ) rename_keys.append((f"backbone.downsample_layers.{i}.0.bias", f"backbone.encoder.stages.{i}.downsampling_layer.0.bias") ) rename_keys.append((f"backbone.downsample_layers.{i}.1.weight", f"backbone.encoder.stages.{i}.downsampling_layer.1.weight") ) rename_keys.append((f"backbone.downsample_layers.{i}.1.bias", f"backbone.encoder.stages.{i}.downsampling_layer.1.bias") ) rename_keys.append((f"backbone.norm{i}.weight", f"backbone.hidden_states_norms.stage{i+1}.weight") ) rename_keys.append((f"backbone.norm{i}.bias", f"backbone.hidden_states_norms.stage{i+1}.bias") ) # decode head rename_keys.extend( [ ('''decode_head.conv_seg.weight''', '''decode_head.classifier.weight'''), ('''decode_head.conv_seg.bias''', '''decode_head.classifier.bias'''), ('''auxiliary_head.conv_seg.weight''', '''auxiliary_head.classifier.weight'''), ('''auxiliary_head.conv_seg.bias''', '''auxiliary_head.classifier.bias'''), ] ) # fmt: on return rename_keys def A ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Tuple: '''simple docstring''' UpperCAmelCase_ = dct.pop(__UpperCAmelCase ) UpperCAmelCase_ = val def A ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> str: '''simple docstring''' UpperCAmelCase_ = { '''upernet-convnext-tiny''': '''https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_tiny_fp16_512x512_160k_ade20k/upernet_convnext_tiny_fp16_512x512_160k_ade20k_20220227_124553-cad485de.pth''', '''upernet-convnext-small''': '''https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_small_fp16_512x512_160k_ade20k/upernet_convnext_small_fp16_512x512_160k_ade20k_20220227_131208-1b1e394f.pth''', '''upernet-convnext-base''': '''https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_base_fp16_512x512_160k_ade20k/upernet_convnext_base_fp16_512x512_160k_ade20k_20220227_181227-02a24fc6.pth''', '''upernet-convnext-large''': '''https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_large_fp16_640x640_160k_ade20k/upernet_convnext_large_fp16_640x640_160k_ade20k_20220226_040532-e57aa54d.pth''', '''upernet-convnext-xlarge''': '''https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_xlarge_fp16_640x640_160k_ade20k/upernet_convnext_xlarge_fp16_640x640_160k_ade20k_20220226_080344-95fc38c2.pth''', } UpperCAmelCase_ = model_name_to_url[model_name] UpperCAmelCase_ = torch.hub.load_state_dict_from_url(__UpperCAmelCase , map_location='''cpu''' )['''state_dict'''] UpperCAmelCase_ = get_upernet_config(__UpperCAmelCase ) UpperCAmelCase_ = UperNetForSemanticSegmentation(__UpperCAmelCase ) model.eval() # replace "bn" => "batch_norm" for key in state_dict.copy().keys(): UpperCAmelCase_ = state_dict.pop(__UpperCAmelCase ) if "bn" in key: UpperCAmelCase_ = key.replace('''bn''' , '''batch_norm''' ) UpperCAmelCase_ = val # rename keys UpperCAmelCase_ = create_rename_keys(__UpperCAmelCase ) for src, dest in rename_keys: rename_key(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) model.load_state_dict(__UpperCAmelCase ) # verify on image UpperCAmelCase_ = '''https://huggingface.co/datasets/hf-internal-testing/fixtures_ade20k/resolve/main/ADE_val_00000001.jpg''' UpperCAmelCase_ = Image.open(requests.get(__UpperCAmelCase , stream=__UpperCAmelCase ).raw ).convert('''RGB''' ) UpperCAmelCase_ = SegformerImageProcessor() UpperCAmelCase_ = processor(__UpperCAmelCase , return_tensors='''pt''' ).pixel_values with torch.no_grad(): UpperCAmelCase_ = model(__UpperCAmelCase ) if model_name == "upernet-convnext-tiny": UpperCAmelCase_ = torch.tensor( [[-8.8_110, -8.8_110, -8.6_521], [-8.8_110, -8.8_110, -8.6_521], [-8.7_746, -8.7_746, -8.6_130]] ) elif model_name == "upernet-convnext-small": UpperCAmelCase_ = torch.tensor( [[-8.8_236, -8.8_236, -8.6_771], [-8.8_236, -8.8_236, -8.6_771], [-8.7_638, -8.7_638, -8.6_240]] ) elif model_name == "upernet-convnext-base": UpperCAmelCase_ = torch.tensor( [[-8.8_558, -8.8_558, -8.6_905], [-8.8_558, -8.8_558, -8.6_905], [-8.7_669, -8.7_669, -8.6_021]] ) elif model_name == "upernet-convnext-large": UpperCAmelCase_ = torch.tensor( [[-8.6_660, -8.6_660, -8.6_210], [-8.6_660, -8.6_660, -8.6_210], [-8.6_310, -8.6_310, -8.5_964]] ) elif model_name == "upernet-convnext-xlarge": UpperCAmelCase_ = torch.tensor( [[-8.4_980, -8.4_980, -8.3_977], [-8.4_980, -8.4_980, -8.3_977], [-8.4_379, -8.4_379, -8.3_412]] ) print('''Logits:''' , outputs.logits[0, 0, :3, :3] ) assert torch.allclose(outputs.logits[0, 0, :3, :3] , __UpperCAmelCase , atol=1e-4 ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: print(f"Saving model {model_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(__UpperCAmelCase ) print(f"Saving processor to {pytorch_dump_folder_path}" ) processor.save_pretrained(__UpperCAmelCase ) if push_to_hub: print(f"Pushing model and processor for {model_name} to hub" ) model.push_to_hub(f"openmmlab/{model_name}" ) processor.push_to_hub(f"openmmlab/{model_name}" ) if __name__ == "__main__": UpperCamelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="upernet-convnext-tiny", type=str, choices=[f"upernet-convnext-{size}" for size in ["tiny", "small", "base", "large", "xlarge"]], help="Name of the ConvNext UperNet model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub." ) UpperCamelCase_ = parser.parse_args() convert_upernet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
344
import pytest UpperCamelCase_ = "__dummy_dataset1__" UpperCamelCase_ = "\nimport json\nimport os\n\nimport datasets\n\n\nREPO_URL = \"https://huggingface.co/datasets/albertvillanova/tests-raw-jsonl/resolve/main/\"\nURLS = {\"train\": REPO_URL + \"wikiann-bn-train.jsonl\", \"validation\": REPO_URL + \"wikiann-bn-validation.jsonl\"}\n\n\nclass __DummyDataset1__(datasets.GeneratorBasedBuilder):\n\n def _info(self):\n features = datasets.Features(\n {\n \"tokens\": datasets.Sequence(datasets.Value(\"string\")),\n \"ner_tags\": datasets.Sequence(\n datasets.features.ClassLabel(\n names=[\n \"O\",\n \"B-PER\",\n \"I-PER\",\n \"B-ORG\",\n \"I-ORG\",\n \"B-LOC\",\n \"I-LOC\",\n ]\n )\n ),\n \"langs\": datasets.Sequence(datasets.Value(\"string\")),\n \"spans\": datasets.Sequence(datasets.Value(\"string\")),\n }\n )\n return datasets.DatasetInfo(features=features)\n\n def _split_generators(self, dl_manager):\n dl_path = dl_manager.download(URLS)\n return [\n datasets.SplitGenerator(datasets.Split.TRAIN, gen_kwargs={\"filepath\": dl_path[\"train\"]}),\n datasets.SplitGenerator(datasets.Split.VALIDATION, gen_kwargs={\"filepath\": dl_path[\"validation\"]}),\n ]\n\n def _generate_examples(self, filepath):\n with open(filepath, \"r\", encoding=\"utf-8\") as f:\n for i, line in enumerate(f):\n yield i, json.loads(line)\n" @pytest.fixture def A ( ) -> str: '''simple docstring''' return DATASET_LOADING_SCRIPT_NAME @pytest.fixture def A ( ) -> Any: '''simple docstring''' return DATASET_LOADING_SCRIPT_CODE @pytest.fixture def A ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> List[str]: '''simple docstring''' UpperCAmelCase_ = dataset_loading_script_name UpperCAmelCase_ = tmp_path / '''datasets''' / script_name script_dir.mkdir(parents=__UpperCAmelCase ) UpperCAmelCase_ = script_dir / f"{script_name}.py" with open(__UpperCAmelCase , '''w''' ) as f: f.write(__UpperCAmelCase ) return str(__UpperCAmelCase )
344
1
import argparse import torch from transformers import FunnelBaseModel, FunnelConfig, FunnelModel, load_tf_weights_in_funnel from transformers.utils import logging logging.set_verbosity_info() def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> str: """simple docstring""" A__ = FunnelConfig.from_json_file(_lowerCAmelCase ) print(f"""Building PyTorch model from configuration: {config}""" ) A__ = FunnelBaseModel(_lowerCAmelCase ) if base_model else FunnelModel(_lowerCAmelCase ) # Load weights from tf checkpoint load_tf_weights_in_funnel(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) # Save pytorch-model print(f"""Save PyTorch model to {pytorch_dump_path}""" ) torch.save(model.state_dict() , _lowerCAmelCase ) if __name__ == "__main__": _lowerCamelCase : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument( """--tf_checkpoint_path""", default=None, type=str, required=True, help="""Path to the TensorFlow checkpoint path.""" ) parser.add_argument( """--config_file""", default=None, type=str, required=True, help="""The config json file corresponding to the pre-trained model. \nThis specifies the model architecture.""", ) parser.add_argument( """--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) parser.add_argument( """--base_model""", action="""store_true""", help="""Whether you want just the base model (no decoder) or not.""" ) _lowerCamelCase : Union[str, Any] = parser.parse_args() convert_tf_checkpoint_to_pytorch( args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path, args.base_model )
14
from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import torch from ...utils import BaseOutput, OptionalDependencyNotAvailable, is_torch_available, is_transformers_available @dataclass class _UpperCamelCase ( lowerCAmelCase ): UpperCAmelCase_ = 42 try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .pipeline_text_to_video_synth import TextToVideoSDPipeline from .pipeline_text_to_video_synth_imgaimg import VideoToVideoSDPipeline # noqa: F401 from .pipeline_text_to_video_zero import TextToVideoZeroPipeline
169
0
'''simple docstring''' def __lowerCAmelCase (__lowerCAmelCase = 4_000_000 ): _UpperCAmelCase : List[Any] = [] _UpperCAmelCase , _UpperCAmelCase : Dict = 0, 1 while b <= n: if b % 2 == 0: even_fibs.append(__lowerCAmelCase ) _UpperCAmelCase , _UpperCAmelCase : Any = b, a + b return sum(__lowerCAmelCase ) if __name__ == "__main__": print(F'''{solution() = }''')
322
'''simple docstring''' from __future__ import annotations from collections.abc import Callable lowerCamelCase__ = list[list[float | int]] def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase ): _UpperCAmelCase : int = len(__lowerCAmelCase ) _UpperCAmelCase : Matrix = [[0 for _ in range(size + 1 )] for _ in range(__lowerCAmelCase )] _UpperCAmelCase : int _UpperCAmelCase : int _UpperCAmelCase : int _UpperCAmelCase : int _UpperCAmelCase : int _UpperCAmelCase : float for row in range(__lowerCAmelCase ): for col in range(__lowerCAmelCase ): _UpperCAmelCase : Optional[Any] = matrix[row][col] _UpperCAmelCase : Optional[int] = vector[row][0] _UpperCAmelCase : int = 0 _UpperCAmelCase : Union[str, Any] = 0 while row < size and col < size: # pivoting _UpperCAmelCase : Optional[Any] = max((abs(augmented[rowa][col] ), rowa) for rowa in range(__lowerCAmelCase , __lowerCAmelCase ) )[ 1 ] if augmented[pivot_row][col] == 0: col += 1 continue else: _UpperCAmelCase , _UpperCAmelCase : str = augmented[pivot_row], augmented[row] for rowa in range(row + 1 , __lowerCAmelCase ): _UpperCAmelCase : Dict = augmented[rowa][col] / augmented[row][col] _UpperCAmelCase : Optional[Any] = 0 for cola in range(col + 1 , size + 1 ): augmented[rowa][cola] -= augmented[row][cola] * ratio row += 1 col += 1 # back substitution for col in range(1 , __lowerCAmelCase ): for row in range(__lowerCAmelCase ): _UpperCAmelCase : Dict = augmented[row][col] / augmented[col][col] for cola in range(__lowerCAmelCase , size + 1 ): augmented[row][cola] -= augmented[col][cola] * ratio # round to get rid of numbers like 2.000000000000004 return [ [round(augmented[row][size] / augmented[row][row] , 10 )] for row in range(__lowerCAmelCase ) ] def __lowerCAmelCase (__lowerCAmelCase ): _UpperCAmelCase : int = len(__lowerCAmelCase ) _UpperCAmelCase : Matrix = [[0 for _ in range(__lowerCAmelCase )] for _ in range(__lowerCAmelCase )] _UpperCAmelCase : Matrix = [[0] for _ in range(__lowerCAmelCase )] _UpperCAmelCase : Matrix _UpperCAmelCase : int _UpperCAmelCase : int _UpperCAmelCase : int for x_val, y_val in enumerate(__lowerCAmelCase ): for col in range(__lowerCAmelCase ): _UpperCAmelCase : Dict = (x_val + 1) ** (size - col - 1) _UpperCAmelCase : int = y_val _UpperCAmelCase : List[str] = solve(__lowerCAmelCase , __lowerCAmelCase ) def interpolated_func(__lowerCAmelCase ) -> int: return sum( round(coeffs[x_val][0] ) * (var ** (size - x_val - 1)) for x_val in range(__lowerCAmelCase ) ) return interpolated_func def __lowerCAmelCase (__lowerCAmelCase ): return ( 1 - variable + variable**2 - variable**3 + variable**4 - variable**5 + variable**6 - variable**7 + variable**8 - variable**9 + variable**10 ) def __lowerCAmelCase (__lowerCAmelCase = question_function , __lowerCAmelCase = 10 ): _UpperCAmelCase : list[int] = [func(__lowerCAmelCase ) for x_val in range(1 , order + 1 )] _UpperCAmelCase : list[Callable[[int], int]] = [ interpolate(data_points[:max_coeff] ) for max_coeff in range(1 , order + 1 ) ] _UpperCAmelCase : int = 0 _UpperCAmelCase : Callable[[int], int] _UpperCAmelCase : int for poly in polynomials: _UpperCAmelCase : int = 1 while func(__lowerCAmelCase ) == poly(__lowerCAmelCase ): x_val += 1 ret += poly(__lowerCAmelCase ) return ret if __name__ == "__main__": print(F'''{solution() = }''')
322
1
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import normalizers from ....tokenization_utils_fast import PreTrainedTokenizerFast from ....utils import logging from .tokenization_retribert import RetriBertTokenizer __lowerCAmelCase = logging.get_logger(__name__) __lowerCAmelCase = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''} __lowerCAmelCase = { '''vocab_file''': { '''yjernite/retribert-base-uncased''': ( '''https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/vocab.txt''' ), }, '''tokenizer_file''': { '''yjernite/retribert-base-uncased''': ( '''https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/tokenizer.json''' ), }, } __lowerCAmelCase = { '''yjernite/retribert-base-uncased''': 512, } __lowerCAmelCase = { '''yjernite/retribert-base-uncased''': {'''do_lower_case''': True}, } class __magic_name__ ( _UpperCamelCase ): lowerCAmelCase : Optional[Any] = VOCAB_FILES_NAMES lowerCAmelCase : Optional[int] = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase : Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase : Any = PRETRAINED_INIT_CONFIGURATION lowerCAmelCase : List[str] = RetriBertTokenizer lowerCAmelCase : Tuple = ['input_ids', 'attention_mask'] def __init__( self : str ,_UpperCAmelCase : List[Any]=None ,_UpperCAmelCase : Optional[Any]=None ,_UpperCAmelCase : Optional[int]=True ,_UpperCAmelCase : Union[str, Any]="[UNK]" ,_UpperCAmelCase : List[Any]="[SEP]" ,_UpperCAmelCase : str="[PAD]" ,_UpperCAmelCase : int="[CLS]" ,_UpperCAmelCase : str="[MASK]" ,_UpperCAmelCase : int=True ,_UpperCAmelCase : Tuple=None ,**_UpperCAmelCase : str ,): super().__init__( _UpperCAmelCase ,tokenizer_file=_UpperCAmelCase ,do_lower_case=_UpperCAmelCase ,unk_token=_UpperCAmelCase ,sep_token=_UpperCAmelCase ,pad_token=_UpperCAmelCase ,cls_token=_UpperCAmelCase ,mask_token=_UpperCAmelCase ,tokenize_chinese_chars=_UpperCAmelCase ,strip_accents=_UpperCAmelCase ,**_UpperCAmelCase ,) _a : List[Any] = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' ,_UpperCAmelCase ) != do_lower_case or normalizer_state.get('strip_accents' ,_UpperCAmelCase ) != strip_accents or normalizer_state.get('handle_chinese_chars' ,_UpperCAmelCase ) != tokenize_chinese_chars ): _a : List[Any] = getattr(_UpperCAmelCase ,normalizer_state.pop('type' ) ) _a : Union[str, Any] = do_lower_case _a : Optional[int] = strip_accents _a : Dict = tokenize_chinese_chars _a : Dict = normalizer_class(**_UpperCAmelCase ) _a : Dict = do_lower_case def __lowercase ( self : Tuple ,_UpperCAmelCase : Any ,_UpperCAmelCase : Union[str, Any]=None ): _a : Any = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def __lowercase ( self : List[str] ,_UpperCAmelCase : List[int] ,_UpperCAmelCase : Optional[List[int]] = None ): _a : Optional[int] = [self.sep_token_id] _a : Optional[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __lowercase ( self : List[Any] ,_UpperCAmelCase : str ,_UpperCAmelCase : Optional[str] = None ): _a : Tuple = self._tokenizer.model.save(_UpperCAmelCase ,name=_UpperCAmelCase ) return tuple(_UpperCAmelCase )
89
from pathlib import Path import cva import numpy as np from matplotlib import pyplot as plt def _a ( lowerCamelCase: np.ndarray , lowerCamelCase: np.ndarray , lowerCamelCase: np.ndarray , lowerCamelCase: int , lowerCamelCase: int ) -> np.ndarray: '''simple docstring''' __A = cva.getAffineTransform(lowerCamelCase , lowerCamelCase ) return cva.warpAffine(lowerCamelCase , lowerCamelCase , (rows, cols) ) if __name__ == "__main__": # read original image snake_case__ : List[Any] = cva.imread( str(Path(__file__).resolve().parent.parent / 'image_data' / 'lena.jpg') ) # turn image in gray scale value snake_case__ : List[str] = cva.cvtColor(image, cva.COLOR_BGR2GRAY) # get image shape snake_case__ , snake_case__ : str = gray_img.shape # set different points to rotate image snake_case__ : Any = np.array([[50, 50], [200, 50], [50, 200]], np.floataa) snake_case__ : str = np.array([[10, 100], [200, 50], [100, 250]], np.floataa) snake_case__ : int = np.array([[50, 50], [150, 50], [120, 200]], np.floataa) snake_case__ : List[str] = np.array([[10, 100], [80, 50], [180, 250]], np.floataa) # add all rotated images in a list snake_case__ : Optional[Any] = [ gray_img, get_rotation(gray_img, ptsa, ptsa, img_rows, img_cols), get_rotation(gray_img, ptsa, ptsa, img_rows, img_cols), get_rotation(gray_img, ptsa, ptsa, img_rows, img_cols), ] # plot different image rotations snake_case__ : Optional[Any] = plt.figure(1) snake_case__ : Dict = ['Original', 'Rotation 1', 'Rotation 2', 'Rotation 3'] for i, image in enumerate(images): plt.subplot(2, 2, i + 1), plt.imshow(image, 'gray') plt.title(titles[i]) plt.axis('off') plt.subplots_adjust(left=0.0, bottom=0.05, right=1.0, top=0.95) plt.show()
117
0
"""simple docstring""" import socket def SCREAMING_SNAKE_CASE ( ) -> str: _lowerCAmelCase : Optional[int] = socket.socket(socket.AF_INET ,socket.SOCK_STREAM ) _lowerCAmelCase : Optional[int] = socket.gethostname() _lowerCAmelCase : Tuple = 12312 sock.connect((host, port) ) sock.send(b"""Hello server!""" ) with open("""Received_file""" ,"""wb""" ) as out_file: print("""File opened""" ) print("""Receiving data...""" ) while True: _lowerCAmelCase : List[Any] = sock.recv(1024 ) if not data: break out_file.write(_lowerCamelCase ) print("""Successfully received the file""" ) sock.close() print("""Connection closed""" ) if __name__ == "__main__": main()
353
"""simple docstring""" from typing import Optional import pyspark from .. import Features, NamedSplit from ..download import DownloadMode from ..packaged_modules.spark.spark import Spark from .abc import AbstractDatasetReader class __A ( SCREAMING_SNAKE_CASE_ ): def __init__( self , a__ , a__ = None , a__ = None , a__ = True , a__ = None , a__ = False , a__ = None , a__ = True , a__ = "arrow" , **a__ , ): super().__init__( split=a__ , features=a__ , cache_dir=a__ , keep_in_memory=a__ , streaming=a__ , **a__ , ) _lowerCAmelCase : List[Any] = load_from_cache_file _lowerCAmelCase : str = file_format _lowerCAmelCase : Dict = Spark( df=a__ , features=a__ , cache_dir=a__ , working_dir=a__ , **a__ , ) def __A ( self ): if self.streaming: return self.builder.as_streaming_dataset(split=self.split ) _lowerCAmelCase : Dict = None if self._load_from_cache_file else DownloadMode.FORCE_REDOWNLOAD self.builder.download_and_prepare( download_mode=a__ , file_format=self._file_format , ) return self.builder.as_dataset(split=self.split )
126
0
'''simple docstring''' from typing import List, Optional, Union from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase : Any = logging.get_logger(__name__) lowerCamelCase : Dict = { 'huggingface/time-series-transformer-tourism-monthly': ( 'https://huggingface.co/huggingface/time-series-transformer-tourism-monthly/resolve/main/config.json' ), # See all TimeSeriesTransformer models at https://huggingface.co/models?filter=time_series_transformer } class __lowerCAmelCase (lowercase_ ): '''simple docstring''' lowerCAmelCase__ : Optional[Any] = """time_series_transformer""" lowerCAmelCase__ : Optional[int] = { """hidden_size""": """d_model""", """num_attention_heads""": """encoder_attention_heads""", """num_hidden_layers""": """encoder_layers""", } def __init__(self : Any , UpperCamelCase : Optional[int] = None , UpperCamelCase : Optional[int] = None , UpperCamelCase : str = "student_t" , UpperCamelCase : str = "nll" , UpperCamelCase : int = 1 , UpperCamelCase : List[int] = [1, 2, 3, 4, 5, 6, 7] , UpperCamelCase : Optional[Union[str, bool]] = "mean" , UpperCamelCase : int = 0 , UpperCamelCase : int = 0 , UpperCamelCase : int = 0 , UpperCamelCase : int = 0 , UpperCamelCase : Optional[List[int]] = None , UpperCamelCase : Optional[List[int]] = None , UpperCamelCase : int = 32 , UpperCamelCase : int = 32 , UpperCamelCase : int = 2 , UpperCamelCase : int = 2 , UpperCamelCase : int = 2 , UpperCamelCase : int = 2 , UpperCamelCase : bool = True , UpperCamelCase : str = "gelu" , UpperCamelCase : int = 64 , UpperCamelCase : float = 0.1 , UpperCamelCase : float = 0.1 , UpperCamelCase : float = 0.1 , UpperCamelCase : float = 0.1 , UpperCamelCase : float = 0.1 , UpperCamelCase : int = 100 , UpperCamelCase : float = 0.02 , UpperCamelCase : Tuple=True , **UpperCamelCase : Optional[Any] , ): '''simple docstring''' lowercase__ = prediction_length lowercase__ = context_length or prediction_length lowercase__ = distribution_output lowercase__ = loss lowercase__ = input_size lowercase__ = num_time_features lowercase__ = lags_sequence lowercase__ = scaling lowercase__ = num_dynamic_real_features lowercase__ = num_static_real_features lowercase__ = num_static_categorical_features if cardinality and num_static_categorical_features > 0: if len(UpperCamelCase ) != num_static_categorical_features: raise ValueError( '''The cardinality should be a list of the same length as `num_static_categorical_features`''' ) lowercase__ = cardinality else: lowercase__ = [0] if embedding_dimension and num_static_categorical_features > 0: if len(UpperCamelCase ) != num_static_categorical_features: raise ValueError( '''The embedding dimension should be a list of the same length as `num_static_categorical_features`''' ) lowercase__ = embedding_dimension else: lowercase__ = [min(50 , (cat + 1) // 2 ) for cat in self.cardinality] lowercase__ = num_parallel_samples # Transformer architecture configuration lowercase__ = input_size * len(UpperCamelCase ) + self._number_of_features lowercase__ = d_model lowercase__ = encoder_attention_heads lowercase__ = decoder_attention_heads lowercase__ = encoder_ffn_dim lowercase__ = decoder_ffn_dim lowercase__ = encoder_layers lowercase__ = decoder_layers lowercase__ = dropout lowercase__ = attention_dropout lowercase__ = activation_dropout lowercase__ = encoder_layerdrop lowercase__ = decoder_layerdrop lowercase__ = activation_function lowercase__ = init_std lowercase__ = use_cache super().__init__(is_encoder_decoder=UpperCamelCase , **UpperCamelCase ) @property def UpperCamelCase__ (self : Optional[int] ): '''simple docstring''' return ( sum(self.embedding_dimension ) + self.num_dynamic_real_features + self.num_time_features + self.num_static_real_features + self.input_size * 2 # the log1p(abs(loc)) and log(scale) features )
2
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) A : Dict = { 'configuration_xlm_roberta': [ 'XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP', 'XLMRobertaConfig', 'XLMRobertaOnnxConfig', ], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : Union[str, Any] = ['XLMRobertaTokenizer'] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : int = ['XLMRobertaTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : List[Any] = [ 'XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST', 'XLMRobertaForCausalLM', 'XLMRobertaForMaskedLM', 'XLMRobertaForMultipleChoice', 'XLMRobertaForQuestionAnswering', 'XLMRobertaForSequenceClassification', 'XLMRobertaForTokenClassification', 'XLMRobertaModel', 'XLMRobertaPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : int = [ 'TF_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFXLMRobertaForCausalLM', 'TFXLMRobertaForMaskedLM', 'TFXLMRobertaForMultipleChoice', 'TFXLMRobertaForQuestionAnswering', 'TFXLMRobertaForSequenceClassification', 'TFXLMRobertaForTokenClassification', 'TFXLMRobertaModel', 'TFXLMRobertaPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : Tuple = [ 'FLAX_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST', 'FlaxXLMRobertaForMaskedLM', 'FlaxXLMRobertaForCausalLM', 'FlaxXLMRobertaForMultipleChoice', 'FlaxXLMRobertaForQuestionAnswering', 'FlaxXLMRobertaForSequenceClassification', 'FlaxXLMRobertaForTokenClassification', 'FlaxXLMRobertaModel', 'FlaxXLMRobertaPreTrainedModel', ] if TYPE_CHECKING: from .configuration_xlm_roberta import ( XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMRobertaConfig, XLMRobertaOnnxConfig, ) try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlm_roberta import XLMRobertaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlm_roberta_fast import XLMRobertaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlm_roberta import ( XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, XLMRobertaForCausalLM, XLMRobertaForMaskedLM, XLMRobertaForMultipleChoice, XLMRobertaForQuestionAnswering, XLMRobertaForSequenceClassification, XLMRobertaForTokenClassification, XLMRobertaModel, XLMRobertaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlm_roberta import ( TF_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLMRobertaForCausalLM, TFXLMRobertaForMaskedLM, TFXLMRobertaForMultipleChoice, TFXLMRobertaForQuestionAnswering, TFXLMRobertaForSequenceClassification, TFXLMRobertaForTokenClassification, TFXLMRobertaModel, TFXLMRobertaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_xlm_roberta import ( FLAX_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, FlaxXLMRobertaForCausalLM, FlaxXLMRobertaForMaskedLM, FlaxXLMRobertaForMultipleChoice, FlaxXLMRobertaForQuestionAnswering, FlaxXLMRobertaForSequenceClassification, FlaxXLMRobertaForTokenClassification, FlaxXLMRobertaModel, FlaxXLMRobertaPreTrainedModel, ) else: import sys A : Tuple = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
6
0
import os import sys lowercase : Any = os.path.join(os.path.dirname(__file__), "src") sys.path.append(SRC_DIR) from transformers import ( AutoConfig, AutoModel, AutoModelForCausalLM, AutoModelForMaskedLM, AutoModelForQuestionAnswering, AutoModelForSequenceClassification, AutoTokenizer, add_start_docstrings, ) lowercase : Optional[Any] = [ "torch", "numpy", "tokenizers", "filelock", "requests", "tqdm", "regex", "sentencepiece", "sacremoses", "importlib_metadata", "huggingface_hub", ] @add_start_docstrings(AutoConfig.__doc__ ) def UpperCAmelCase_ (*_lowerCAmelCase : List[str] , **_lowerCAmelCase : List[str] ): return AutoConfig.from_pretrained(*_lowerCAmelCase , **_lowerCAmelCase ) @add_start_docstrings(AutoTokenizer.__doc__ ) def UpperCAmelCase_ (*_lowerCAmelCase : Optional[Any] , **_lowerCAmelCase : Any ): return AutoTokenizer.from_pretrained(*_lowerCAmelCase , **_lowerCAmelCase ) @add_start_docstrings(AutoModel.__doc__ ) def UpperCAmelCase_ (*_lowerCAmelCase : Union[str, Any] , **_lowerCAmelCase : Any ): return AutoModel.from_pretrained(*_lowerCAmelCase , **_lowerCAmelCase ) @add_start_docstrings(AutoModelForCausalLM.__doc__ ) def UpperCAmelCase_ (*_lowerCAmelCase : Union[str, Any] , **_lowerCAmelCase : Dict ): return AutoModelForCausalLM.from_pretrained(*_lowerCAmelCase , **_lowerCAmelCase ) @add_start_docstrings(AutoModelForMaskedLM.__doc__ ) def UpperCAmelCase_ (*_lowerCAmelCase : List[Any] , **_lowerCAmelCase : Tuple ): return AutoModelForMaskedLM.from_pretrained(*_lowerCAmelCase , **_lowerCAmelCase ) @add_start_docstrings(AutoModelForSequenceClassification.__doc__ ) def UpperCAmelCase_ (*_lowerCAmelCase : Tuple , **_lowerCAmelCase : int ): return AutoModelForSequenceClassification.from_pretrained(*_lowerCAmelCase , **_lowerCAmelCase ) @add_start_docstrings(AutoModelForQuestionAnswering.__doc__ ) def UpperCAmelCase_ (*_lowerCAmelCase : List[str] , **_lowerCAmelCase : List[str] ): return AutoModelForQuestionAnswering.from_pretrained(*_lowerCAmelCase , **_lowerCAmelCase )
358
from typing import TYPE_CHECKING from ..utils import _LazyModule lowercase : Union[str, Any] = { "config": [ "EXTERNAL_DATA_FORMAT_SIZE_LIMIT", "OnnxConfig", "OnnxConfigWithPast", "OnnxSeq2SeqConfigWithPast", "PatchingSpec", ], "convert": ["export", "validate_model_outputs"], "features": ["FeaturesManager"], "utils": ["ParameterFormat", "compute_serialized_parameters_size"], } if TYPE_CHECKING: from .config import ( EXTERNAL_DATA_FORMAT_SIZE_LIMIT, OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast, PatchingSpec, ) from .convert import export, validate_model_outputs from .features import FeaturesManager from .utils import ParameterFormat, compute_serialized_parameters_size else: import sys lowercase : Optional[int] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
171
0
'''simple docstring''' class lowerCamelCase_ : '''simple docstring''' def __init__( self : Tuple , A : Any , A : str , A : Union[str, Any] ): _UpperCAmelCase : Optional[int] = None _UpperCAmelCase : Optional[int] = None _UpperCAmelCase : Any = graph self._normalize_graph(A , A ) _UpperCAmelCase : List[str] = len(A ) _UpperCAmelCase : Tuple = None def _A ( self : Any , A : List[Any] , A : str ): if sources is int: _UpperCAmelCase : List[Any] = [sources] if sinks is int: _UpperCAmelCase : List[Any] = [sinks] if len(A ) == 0 or len(A ) == 0: return _UpperCAmelCase : str = sources[0] _UpperCAmelCase : Union[str, Any] = sinks[0] # make fake vertex if there are more # than one source or sink if len(A ) > 1 or len(A ) > 1: _UpperCAmelCase : Dict = 0 for i in sources: max_input_flow += sum(self.graph[i] ) _UpperCAmelCase : str = len(self.graph ) + 1 for room in self.graph: room.insert(0 , 0 ) self.graph.insert(0 , [0] * size ) for i in sources: _UpperCAmelCase : Optional[Any] = max_input_flow _UpperCAmelCase : List[str] = 0 _UpperCAmelCase : str = len(self.graph ) + 1 for room in self.graph: room.append(0 ) self.graph.append([0] * size ) for i in sinks: _UpperCAmelCase : Dict = max_input_flow _UpperCAmelCase : List[Any] = size - 1 def _A ( self : Union[str, Any] ): if self.maximum_flow_algorithm is None: raise Exception("You need to set maximum flow algorithm before." ) if self.source_index is None or self.sink_index is None: return 0 self.maximum_flow_algorithm.execute() return self.maximum_flow_algorithm.getMaximumFlow() def _A ( self : Tuple , A : Dict ): _UpperCAmelCase : str = algorithm(self ) class lowerCamelCase_ : '''simple docstring''' def __init__( self : Any , A : str ): _UpperCAmelCase : Optional[int] = flow_network _UpperCAmelCase : Any = flow_network.verticesCount _UpperCAmelCase : List[str] = flow_network.sourceIndex _UpperCAmelCase : Union[str, Any] = flow_network.sinkIndex # it's just a reference, so you shouldn't change # it in your algorithms, use deep copy before doing that _UpperCAmelCase : Any = flow_network.graph _UpperCAmelCase : Union[str, Any] = False def _A ( self : List[str] ): if not self.executed: self._algorithm() _UpperCAmelCase : int = True def _A ( self : List[Any] ): pass class lowerCamelCase_ (snake_case__ ): '''simple docstring''' def __init__( self : Optional[int] , A : Union[str, Any] ): super().__init__(A ) # use this to save your result _UpperCAmelCase : Any = -1 def _A ( self : Union[str, Any] ): if not self.executed: raise Exception("You should execute algorithm before using its result!" ) return self.maximum_flow class lowerCamelCase_ (snake_case__ ): '''simple docstring''' def __init__( self : Tuple , A : int ): super().__init__(A ) _UpperCAmelCase : List[str] = [[0] * self.verticies_count for i in range(self.verticies_count )] _UpperCAmelCase : Union[str, Any] = [0] * self.verticies_count _UpperCAmelCase : int = [0] * self.verticies_count def _A ( self : Dict ): _UpperCAmelCase : Dict = self.verticies_count # push some substance to graph for nextvertex_index, bandwidth in enumerate(self.graph[self.source_index] ): self.preflow[self.source_index][nextvertex_index] += bandwidth self.preflow[nextvertex_index][self.source_index] -= bandwidth self.excesses[nextvertex_index] += bandwidth # Relabel-to-front selection rule _UpperCAmelCase : Optional[int] = [ i for i in range(self.verticies_count ) if i != self.source_index and i != self.sink_index ] # move through list _UpperCAmelCase : Any = 0 while i < len(A ): _UpperCAmelCase : int = vertices_list[i] _UpperCAmelCase : int = self.heights[vertex_index] self.process_vertex(A ) if self.heights[vertex_index] > previous_height: # if it was relabeled, swap elements # and start from 0 index vertices_list.insert(0 , vertices_list.pop(A ) ) _UpperCAmelCase : Union[str, Any] = 0 else: i += 1 _UpperCAmelCase : List[Any] = sum(self.preflow[self.source_index] ) def _A ( self : Union[str, Any] , A : str ): while self.excesses[vertex_index] > 0: for neighbour_index in range(self.verticies_count ): # if it's neighbour and current vertex is higher if ( self.graph[vertex_index][neighbour_index] - self.preflow[vertex_index][neighbour_index] > 0 and self.heights[vertex_index] > self.heights[neighbour_index] ): self.push(A , A ) self.relabel(A ) def _A ( self : int , A : Dict , A : List[str] ): _UpperCAmelCase : int = min( self.excesses[from_index] , self.graph[from_index][to_index] - self.preflow[from_index][to_index] , ) self.preflow[from_index][to_index] += preflow_delta self.preflow[to_index][from_index] -= preflow_delta self.excesses[from_index] -= preflow_delta self.excesses[to_index] += preflow_delta def _A ( self : Optional[int] , A : Union[str, Any] ): _UpperCAmelCase : str = None for to_index in range(self.verticies_count ): if ( self.graph[vertex_index][to_index] - self.preflow[vertex_index][to_index] > 0 ) and (min_height is None or self.heights[to_index] < min_height): _UpperCAmelCase : Tuple = self.heights[to_index] if min_height is not None: _UpperCAmelCase : Optional[Any] = min_height + 1 if __name__ == "__main__": __SCREAMING_SNAKE_CASE : Optional[int] = [0] __SCREAMING_SNAKE_CASE : Union[str, Any] = [3] # graph = [ # [0, 0, 4, 6, 0, 0], # [0, 0, 5, 2, 0, 0], # [0, 0, 0, 0, 4, 4], # [0, 0, 0, 0, 6, 6], # [0, 0, 0, 0, 0, 0], # [0, 0, 0, 0, 0, 0], # ] __SCREAMING_SNAKE_CASE : List[Any] = [[0, 7, 0, 0], [0, 0, 6, 0], [0, 0, 0, 8], [9, 0, 0, 0]] # prepare our network __SCREAMING_SNAKE_CASE : Union[str, Any] = FlowNetwork(graph, entrances, exits) # set algorithm flow_network.set_maximum_flow_algorithm(PushRelabelExecutor) # and calculate __SCREAMING_SNAKE_CASE : Optional[Any] = flow_network.find_maximum_flow() print(F'maximum flow is {maximum_flow}')
31
'''simple docstring''' __SCREAMING_SNAKE_CASE : Dict = 8.3_1_4_4_6_2 # Unit - J mol-1 K-1 def UpperCamelCase_ ( _UpperCAmelCase : float , _UpperCAmelCase : float , _UpperCAmelCase : float ) -> float: """simple docstring""" if moles < 0 or kelvin < 0 or volume < 0: raise ValueError("Invalid inputs. Enter positive value." ) return moles * kelvin * UNIVERSAL_GAS_CONSTANT / volume def UpperCamelCase_ ( _UpperCAmelCase : float , _UpperCAmelCase : float , _UpperCAmelCase : float ) -> float: """simple docstring""" if moles < 0 or kelvin < 0 or pressure < 0: raise ValueError("Invalid inputs. Enter positive value." ) return moles * kelvin * UNIVERSAL_GAS_CONSTANT / pressure if __name__ == "__main__": from doctest import testmod testmod()
31
1
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, convert_to_rgb, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging _UpperCAmelCase = logging.get_logger(__name__) if is_vision_available(): import PIL class _UpperCamelCase ( lowerCamelCase__ ): _UpperCamelCase : List[Any] = ['pixel_values'] def __init__( self: int , _SCREAMING_SNAKE_CASE: Dict = True , _SCREAMING_SNAKE_CASE: Tuple = None , _SCREAMING_SNAKE_CASE: Optional[Any] = PILImageResampling.BICUBIC , _SCREAMING_SNAKE_CASE: int = True , _SCREAMING_SNAKE_CASE: Any = None , _SCREAMING_SNAKE_CASE: List[str] = True , _SCREAMING_SNAKE_CASE: Tuple = 1 / 255 , _SCREAMING_SNAKE_CASE: int = True , _SCREAMING_SNAKE_CASE: int = None , _SCREAMING_SNAKE_CASE: Union[str, Any] = None , _SCREAMING_SNAKE_CASE: Tuple = True , **_SCREAMING_SNAKE_CASE: Union[str, Any] , ) -> List[Any]: """simple docstring""" super().__init__(**_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = size if size is not None else {"shortest_edge": 224} UpperCamelCase_ = get_size_dict(_SCREAMING_SNAKE_CASE , default_to_square=_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = crop_size if crop_size is not None else {"height": 224, "width": 224} UpperCamelCase_ = get_size_dict(_SCREAMING_SNAKE_CASE , default_to_square=_SCREAMING_SNAKE_CASE , param_name="crop_size" ) UpperCamelCase_ = do_resize UpperCamelCase_ = size UpperCamelCase_ = resample UpperCamelCase_ = do_center_crop UpperCamelCase_ = crop_size UpperCamelCase_ = do_rescale UpperCamelCase_ = rescale_factor UpperCamelCase_ = do_normalize UpperCamelCase_ = image_mean if image_mean is not None else OPENAI_CLIP_MEAN UpperCamelCase_ = image_std if image_std is not None else OPENAI_CLIP_STD UpperCamelCase_ = do_convert_rgb def lowercase ( self: List[Any] , _SCREAMING_SNAKE_CASE: List[Any] , _SCREAMING_SNAKE_CASE: Tuple , _SCREAMING_SNAKE_CASE: Dict = PILImageResampling.BICUBIC , _SCREAMING_SNAKE_CASE: List[str] = None , **_SCREAMING_SNAKE_CASE: Tuple , ) -> Union[str, Any]: """simple docstring""" UpperCamelCase_ = get_size_dict(_SCREAMING_SNAKE_CASE , default_to_square=_SCREAMING_SNAKE_CASE ) if "shortest_edge" not in size: raise ValueError(f'''The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}''' ) UpperCamelCase_ = get_resize_output_image_size(_SCREAMING_SNAKE_CASE , size=size["shortest_edge"] , default_to_square=_SCREAMING_SNAKE_CASE ) return resize(_SCREAMING_SNAKE_CASE , size=_SCREAMING_SNAKE_CASE , resample=_SCREAMING_SNAKE_CASE , data_format=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) def lowercase ( self: List[Any] , _SCREAMING_SNAKE_CASE: int , _SCREAMING_SNAKE_CASE: List[str] , _SCREAMING_SNAKE_CASE: Tuple = None , **_SCREAMING_SNAKE_CASE: Optional[int] , ) -> Union[str, Any]: """simple docstring""" UpperCamelCase_ = get_size_dict(_SCREAMING_SNAKE_CASE ) if "height" not in size or "width" not in size: raise ValueError(f'''The `size` parameter must contain the keys (height, width). Got {size.keys()}''' ) return center_crop(_SCREAMING_SNAKE_CASE , size=(size["height"], size["width"]) , data_format=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) def lowercase ( self: Union[str, Any] , _SCREAMING_SNAKE_CASE: str , _SCREAMING_SNAKE_CASE: Union[str, Any] , _SCREAMING_SNAKE_CASE: Any = None , **_SCREAMING_SNAKE_CASE: Optional[Any] , ) -> List[Any]: """simple docstring""" return rescale(_SCREAMING_SNAKE_CASE , scale=_SCREAMING_SNAKE_CASE , data_format=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) def lowercase ( self: Dict , _SCREAMING_SNAKE_CASE: str , _SCREAMING_SNAKE_CASE: Union[str, Any] , _SCREAMING_SNAKE_CASE: int , _SCREAMING_SNAKE_CASE: Optional[Any] = None , **_SCREAMING_SNAKE_CASE: int , ) -> int: """simple docstring""" return normalize(_SCREAMING_SNAKE_CASE , mean=_SCREAMING_SNAKE_CASE , std=_SCREAMING_SNAKE_CASE , data_format=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) def lowercase ( self: Tuple , _SCREAMING_SNAKE_CASE: int , _SCREAMING_SNAKE_CASE: Dict = None , _SCREAMING_SNAKE_CASE: Dict = None , _SCREAMING_SNAKE_CASE: int = None , _SCREAMING_SNAKE_CASE: Any = None , _SCREAMING_SNAKE_CASE: Optional[int] = None , _SCREAMING_SNAKE_CASE: Dict = None , _SCREAMING_SNAKE_CASE: Optional[Any] = None , _SCREAMING_SNAKE_CASE: int = None , _SCREAMING_SNAKE_CASE: Any = None , _SCREAMING_SNAKE_CASE: int = None , _SCREAMING_SNAKE_CASE: Tuple = None , _SCREAMING_SNAKE_CASE: List[Any] = None , _SCREAMING_SNAKE_CASE: Any = ChannelDimension.FIRST , **_SCREAMING_SNAKE_CASE: int , ) -> int: """simple docstring""" UpperCamelCase_ = do_resize if do_resize is not None else self.do_resize UpperCamelCase_ = size if size is not None else self.size UpperCamelCase_ = get_size_dict(_SCREAMING_SNAKE_CASE , param_name="size" , default_to_square=_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = resample if resample is not None else self.resample UpperCamelCase_ = do_center_crop if do_center_crop is not None else self.do_center_crop UpperCamelCase_ = crop_size if crop_size is not None else self.crop_size UpperCamelCase_ = get_size_dict(_SCREAMING_SNAKE_CASE , param_name="crop_size" , default_to_square=_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = do_rescale if do_rescale is not None else self.do_rescale UpperCamelCase_ = rescale_factor if rescale_factor is not None else self.rescale_factor UpperCamelCase_ = do_normalize if do_normalize is not None else self.do_normalize UpperCamelCase_ = image_mean if image_mean is not None else self.image_mean UpperCamelCase_ = image_std if image_std is not None else self.image_std UpperCamelCase_ = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb UpperCamelCase_ = make_list_of_images(_SCREAMING_SNAKE_CASE ) if not valid_images(_SCREAMING_SNAKE_CASE ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None: raise ValueError("Size must be specified if do_resize is True." ) if do_center_crop and crop_size is None: raise ValueError("Crop size must be specified if do_center_crop is True." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True." ) # PIL RGBA images are converted to RGB if do_convert_rgb: UpperCamelCase_ = [convert_to_rgb(_SCREAMING_SNAKE_CASE ) for image in images] # All transformations expect numpy arrays. UpperCamelCase_ = [to_numpy_array(_SCREAMING_SNAKE_CASE ) for image in images] if do_resize: UpperCamelCase_ = [self.resize(image=_SCREAMING_SNAKE_CASE , size=_SCREAMING_SNAKE_CASE , resample=_SCREAMING_SNAKE_CASE ) for image in images] if do_center_crop: UpperCamelCase_ = [self.center_crop(image=_SCREAMING_SNAKE_CASE , size=_SCREAMING_SNAKE_CASE ) for image in images] if do_rescale: UpperCamelCase_ = [self.rescale(image=_SCREAMING_SNAKE_CASE , scale=_SCREAMING_SNAKE_CASE ) for image in images] if do_normalize: UpperCamelCase_ = [self.normalize(image=_SCREAMING_SNAKE_CASE , mean=_SCREAMING_SNAKE_CASE , std=_SCREAMING_SNAKE_CASE ) for image in images] UpperCamelCase_ = [to_channel_dimension_format(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) for image in images] UpperCamelCase_ = {"pixel_values": images} return BatchFeature(data=_SCREAMING_SNAKE_CASE , tensor_type=_SCREAMING_SNAKE_CASE )
356
import io import math from typing import Dict, Optional, Union import numpy as np from huggingface_hub import hf_hub_download from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import convert_to_rgb, normalize, to_channel_dimension_format, to_pil_image from ...image_utils import ( ChannelDimension, ImageInput, get_image_size, infer_channel_dimension_format, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_vision_available, logging from ...utils.import_utils import requires_backends if is_vision_available(): import textwrap from PIL import Image, ImageDraw, ImageFont if is_torch_available(): import torch from transformers.pytorch_utils import is_torch_greater_or_equal_than_1_11 else: _UpperCAmelCase = False _UpperCAmelCase = logging.get_logger(__name__) _UpperCAmelCase = 'ybelkada/fonts' def lowerCAmelCase_ ( ) -> Dict: if is_torch_available() and not is_torch_greater_or_equal_than_1_11: raise ImportError( F'''You are using torch=={torch.__version__}, but torch>=1.11.0 is required to use ''' "Pix2StructImageProcessor. Please upgrade torch." ) def lowerCAmelCase_ ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) -> List[Any]: requires_backends(UpperCamelCase_ , ["torch"] ) _check_torch_version() UpperCamelCase_ = image_tensor.unsqueeze(0 ) UpperCamelCase_ = torch.nn.functional.unfold(UpperCamelCase_ , (patch_height, patch_width) , stride=(patch_height, patch_width) ) UpperCamelCase_ = patches.reshape(image_tensor.size(0 ) , image_tensor.size(1 ) , UpperCamelCase_ , UpperCamelCase_ , -1 ) UpperCamelCase_ = patches.permute(0 , 4 , 2 , 3 , 1 ).reshape( image_tensor.size(2 ) // patch_height , image_tensor.size(3 ) // patch_width , image_tensor.size(1 ) * patch_height * patch_width , ) return patches.unsqueeze(0 ) def lowerCAmelCase_ ( UpperCamelCase_ , UpperCamelCase_ = 36 , UpperCamelCase_ = "black" , UpperCamelCase_ = "white" , UpperCamelCase_ = 5 , UpperCamelCase_ = 5 , UpperCamelCase_ = 5 , UpperCamelCase_ = 5 , UpperCamelCase_ = None , UpperCamelCase_ = None , ) -> Image.Image: requires_backends(UpperCamelCase_ , "vision" ) # Add new lines so that each line is no more than 80 characters. UpperCamelCase_ = textwrap.TextWrapper(width=80 ) UpperCamelCase_ = wrapper.wrap(text=UpperCamelCase_ ) UpperCamelCase_ = "\n".join(UpperCamelCase_ ) if font_bytes is not None and font_path is None: UpperCamelCase_ = io.BytesIO(UpperCamelCase_ ) elif font_path is not None: UpperCamelCase_ = font_path else: UpperCamelCase_ = hf_hub_download(UpperCamelCase_ , "Arial.TTF" ) UpperCamelCase_ = ImageFont.truetype(UpperCamelCase_ , encoding="UTF-8" , size=UpperCamelCase_ ) # Use a temporary canvas to determine the width and height in pixels when # rendering the text. UpperCamelCase_ = ImageDraw.Draw(Image.new("RGB" , (1, 1) , UpperCamelCase_ ) ) UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = temp_draw.textbbox((0, 0) , UpperCamelCase_ , UpperCamelCase_ ) # Create the actual image with a bit of padding around the text. UpperCamelCase_ = text_width + left_padding + right_padding UpperCamelCase_ = text_height + top_padding + bottom_padding UpperCamelCase_ = Image.new("RGB" , (image_width, image_height) , UpperCamelCase_ ) UpperCamelCase_ = ImageDraw.Draw(UpperCamelCase_ ) draw.text(xy=(left_padding, top_padding) , text=UpperCamelCase_ , fill=UpperCamelCase_ , font=UpperCamelCase_ ) return image def lowerCAmelCase_ ( UpperCamelCase_ , UpperCamelCase_ , **UpperCamelCase_ ) -> Union[str, Any]: requires_backends(UpperCamelCase_ , "vision" ) # Convert to PIL image if necessary UpperCamelCase_ = to_pil_image(UpperCamelCase_ ) UpperCamelCase_ = render_text(UpperCamelCase_ , **UpperCamelCase_ ) UpperCamelCase_ = max(header_image.width , image.width ) UpperCamelCase_ = int(image.height * (new_width / image.width) ) UpperCamelCase_ = int(header_image.height * (new_width / header_image.width) ) UpperCamelCase_ = Image.new("RGB" , (new_width, new_height + new_header_height) , "white" ) new_image.paste(header_image.resize((new_width, new_header_height) ) , (0, 0) ) new_image.paste(image.resize((new_width, new_height) ) , (0, new_header_height) ) # Convert back to the original framework if necessary UpperCamelCase_ = to_numpy_array(UpperCamelCase_ ) if infer_channel_dimension_format(UpperCamelCase_ ) == ChannelDimension.LAST: UpperCamelCase_ = to_channel_dimension_format(UpperCamelCase_ , ChannelDimension.LAST ) return new_image class _UpperCamelCase ( lowerCAmelCase_ ): _UpperCamelCase : str = ['''flattened_patches'''] def __init__( self: List[Any] , _SCREAMING_SNAKE_CASE: bool = True , _SCREAMING_SNAKE_CASE: bool = True , _SCREAMING_SNAKE_CASE: Dict[str, int] = None , _SCREAMING_SNAKE_CASE: int = 2048 , _SCREAMING_SNAKE_CASE: bool = False , **_SCREAMING_SNAKE_CASE: Optional[Any] , ) -> None: """simple docstring""" super().__init__(**_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = patch_size if patch_size is not None else {"height": 16, "width": 16} UpperCamelCase_ = do_normalize UpperCamelCase_ = do_convert_rgb UpperCamelCase_ = max_patches UpperCamelCase_ = is_vqa def lowercase ( self: Dict , _SCREAMING_SNAKE_CASE: np.ndarray , _SCREAMING_SNAKE_CASE: int , _SCREAMING_SNAKE_CASE: dict , **_SCREAMING_SNAKE_CASE: Union[str, Any] ) -> np.ndarray: """simple docstring""" requires_backends(self.extract_flattened_patches , "torch" ) _check_torch_version() # convert to torch UpperCamelCase_ = to_channel_dimension_format(_SCREAMING_SNAKE_CASE , ChannelDimension.FIRST ) UpperCamelCase_ = torch.from_numpy(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ , UpperCamelCase_ = patch_size["height"], patch_size["width"] UpperCamelCase_ , UpperCamelCase_ = get_image_size(_SCREAMING_SNAKE_CASE ) # maximize scale s.t. UpperCamelCase_ = math.sqrt(max_patches * (patch_height / image_height) * (patch_width / image_width) ) UpperCamelCase_ = max(min(math.floor(scale * image_height / patch_height ) , _SCREAMING_SNAKE_CASE ) , 1 ) UpperCamelCase_ = max(min(math.floor(scale * image_width / patch_width ) , _SCREAMING_SNAKE_CASE ) , 1 ) UpperCamelCase_ = max(num_feasible_rows * patch_height , 1 ) UpperCamelCase_ = max(num_feasible_cols * patch_width , 1 ) UpperCamelCase_ = torch.nn.functional.interpolate( image.unsqueeze(0 ) , size=(resized_height, resized_width) , mode="bilinear" , align_corners=_SCREAMING_SNAKE_CASE , antialias=_SCREAMING_SNAKE_CASE , ).squeeze(0 ) # [1, rows, columns, patch_height * patch_width * image_channels] UpperCamelCase_ = torch_extract_patches(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) UpperCamelCase_ = patches.shape UpperCamelCase_ = patches_shape[1] UpperCamelCase_ = patches_shape[2] UpperCamelCase_ = patches_shape[3] # [rows * columns, patch_height * patch_width * image_channels] UpperCamelCase_ = patches.reshape([rows * columns, depth] ) # [rows * columns, 1] UpperCamelCase_ = torch.arange(_SCREAMING_SNAKE_CASE ).reshape([rows, 1] ).repeat(1 , _SCREAMING_SNAKE_CASE ).reshape([rows * columns, 1] ) UpperCamelCase_ = torch.arange(_SCREAMING_SNAKE_CASE ).reshape([1, columns] ).repeat(_SCREAMING_SNAKE_CASE , 1 ).reshape([rows * columns, 1] ) # Offset by 1 so the ids do not contain zeros, which represent padding. row_ids += 1 col_ids += 1 # Prepare additional patch features. # [rows * columns, 1] UpperCamelCase_ = row_ids.to(torch.floataa ) UpperCamelCase_ = col_ids.to(torch.floataa ) # [rows * columns, 2 + patch_height * patch_width * image_channels] UpperCamelCase_ = torch.cat([row_ids, col_ids, patches] , -1 ) # [max_patches, 2 + patch_height * patch_width * image_channels] UpperCamelCase_ = torch.nn.functional.pad(_SCREAMING_SNAKE_CASE , [0, 0, 0, max_patches - (rows * columns)] ).float() UpperCamelCase_ = to_numpy_array(_SCREAMING_SNAKE_CASE ) return result def lowercase ( self: Optional[Any] , _SCREAMING_SNAKE_CASE: np.ndarray , _SCREAMING_SNAKE_CASE: Optional[Union[str, ChannelDimension]] = None , **_SCREAMING_SNAKE_CASE: List[str] ) -> np.ndarray: """simple docstring""" if image.dtype == np.uinta: UpperCamelCase_ = image.astype(np.floataa ) # take mean across the whole `image` UpperCamelCase_ = np.mean(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = np.std(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = max(_SCREAMING_SNAKE_CASE , 1.0 / math.sqrt(np.prod(image.shape ) ) ) return normalize(_SCREAMING_SNAKE_CASE , mean=_SCREAMING_SNAKE_CASE , std=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) def lowercase ( self: Optional[int] , _SCREAMING_SNAKE_CASE: ImageInput , _SCREAMING_SNAKE_CASE: Optional[str] = None , _SCREAMING_SNAKE_CASE: bool = None , _SCREAMING_SNAKE_CASE: Optional[bool] = None , _SCREAMING_SNAKE_CASE: Optional[int] = None , _SCREAMING_SNAKE_CASE: Optional[Dict[str, int]] = None , _SCREAMING_SNAKE_CASE: Optional[Union[str, TensorType]] = None , _SCREAMING_SNAKE_CASE: ChannelDimension = ChannelDimension.FIRST , **_SCREAMING_SNAKE_CASE: List[Any] , ) -> ImageInput: """simple docstring""" UpperCamelCase_ = do_normalize if do_normalize is not None else self.do_normalize UpperCamelCase_ = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb UpperCamelCase_ = patch_size if patch_size is not None else self.patch_size UpperCamelCase_ = max_patches if max_patches is not None else self.max_patches UpperCamelCase_ = self.is_vqa if kwargs.get("data_format" , _SCREAMING_SNAKE_CASE ) is not None: raise ValueError("data_format is not an accepted input as the outputs are " ) UpperCamelCase_ = make_list_of_images(_SCREAMING_SNAKE_CASE ) if not valid_images(_SCREAMING_SNAKE_CASE ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) # PIL RGBA images are converted to RGB if do_convert_rgb: UpperCamelCase_ = [convert_to_rgb(_SCREAMING_SNAKE_CASE ) for image in images] # All transformations expect numpy arrays. UpperCamelCase_ = [to_numpy_array(_SCREAMING_SNAKE_CASE ) for image in images] if is_vqa: if header_text is None: raise ValueError("A header text must be provided for VQA models." ) UpperCamelCase_ = kwargs.pop("font_bytes" , _SCREAMING_SNAKE_CASE ) UpperCamelCase_ = kwargs.pop("font_path" , _SCREAMING_SNAKE_CASE ) if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): UpperCamelCase_ = [header_text] * len(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = [ render_header(_SCREAMING_SNAKE_CASE , header_text[i] , font_bytes=_SCREAMING_SNAKE_CASE , font_path=_SCREAMING_SNAKE_CASE ) for i, image in enumerate(_SCREAMING_SNAKE_CASE ) ] if do_normalize: UpperCamelCase_ = [self.normalize(image=_SCREAMING_SNAKE_CASE ) for image in images] # convert to torch tensor and permute UpperCamelCase_ = [ self.extract_flattened_patches(image=_SCREAMING_SNAKE_CASE , max_patches=_SCREAMING_SNAKE_CASE , patch_size=_SCREAMING_SNAKE_CASE ) for image in images ] # create attention mask in numpy UpperCamelCase_ = [(image.sum(axis=-1 ) != 0).astype(np.floataa ) for image in images] UpperCamelCase_ = BatchFeature( data={"flattened_patches": images, "attention_mask": attention_masks} , tensor_type=_SCREAMING_SNAKE_CASE ) return encoded_outputs
328
0
def UpperCamelCase__ ( A__ , A__ ) -> str: snake_case__ : Optional[Any] = 0 while b > 0: if b & 1: res += a a += a b >>= 1 return res def UpperCamelCase__ ( A__ , A__ , A__ ) -> int: snake_case__ : Tuple = 0 while b > 0: if b & 1: snake_case__ : int = ((res % c) + (a % c)) % c a += a b >>= 1 return res
143
import random from .binary_exp_mod import bin_exp_mod def UpperCamelCase__ ( A__ , A__=1000 ) -> Optional[int]: if n < 2: return False if n % 2 == 0: return n == 2 # this means n is odd snake_case__ : List[Any] = n - 1 snake_case__ : Optional[int] = 0 while d % 2 == 0: d /= 2 exp += 1 # n - 1=d*(2**exp) snake_case__ : Union[str, Any] = 0 while count < prec: snake_case__ : Dict = random.randint(2 , n - 1 ) snake_case__ : Dict = bin_exp_mod(A__ , A__ , A__ ) if b != 1: snake_case__ : Tuple = True for _ in range(A__ ): if b == n - 1: snake_case__ : List[str] = False break snake_case__ : Dict = b * b b %= n if flag: return False count += 1 return True if __name__ == "__main__": lowerCAmelCase__ : str = abs(int(input('''Enter bound : ''').strip())) print('''Here\'s the list of primes:''') print(''', '''.join(str(i) for i in range(n + 1) if is_prime_big(i)))
143
1
import random import sys import numpy as np from matplotlib import pyplot as plt from matplotlib.colors import ListedColormap lowerCamelCase : List[Any] = "Usage of script: script_name <size_of_canvas:int>" lowerCamelCase : List[str] = [0] * 100 + [1] * 10 random.shuffle(choice) def _SCREAMING_SNAKE_CASE ( lowercase : int ): '''simple docstring''' lowerCamelCase_ = [[False for i in range(lowercase )] for j in range(lowercase )] return canvas def _SCREAMING_SNAKE_CASE ( lowercase : list[list[bool]] ): '''simple docstring''' for i, row in enumerate(lowercase ): for j, _ in enumerate(lowercase ): lowerCamelCase_ = bool(random.getrandbits(1 ) ) def _SCREAMING_SNAKE_CASE ( lowercase : list[list[bool]] ): '''simple docstring''' lowerCamelCase_ = np.array(lowercase ) lowerCamelCase_ = np.array(create_canvas(current_canvas.shape[0] ) ) for r, row in enumerate(lowercase ): for c, pt in enumerate(lowercase ): lowerCamelCase_ = __judge_point( lowercase , current_canvas[r - 1 : r + 2, c - 1 : c + 2] ) lowerCamelCase_ = next_gen_canvas del next_gen_canvas # cleaning memory as we move on. lowerCamelCase_ = current_canvas.tolist() return return_canvas def _SCREAMING_SNAKE_CASE ( lowercase : bool , lowercase : list[list[bool]] ): '''simple docstring''' lowerCamelCase_ = 0 lowerCamelCase_ = 0 # finding dead or alive neighbours count. for i in neighbours: for status in i: if status: alive += 1 else: dead += 1 # handling duplicate entry for focus pt. if pt: alive -= 1 else: dead -= 1 # running the rules of game here. lowerCamelCase_ = pt if pt: if alive < 2: lowerCamelCase_ = False elif alive == 2 or alive == 3: lowerCamelCase_ = True elif alive > 3: lowerCamelCase_ = False else: if alive == 3: lowerCamelCase_ = True return state if __name__ == "__main__": if len(sys.argv) != 2: raise Exception(usage_doc) lowerCamelCase : Dict = int(sys.argv[1]) # main working structure of this module. lowerCamelCase : int = create_canvas(canvas_size) seed(c) lowerCamelCase , lowerCamelCase : str = plt.subplots() fig.show() lowerCamelCase : str = ListedColormap(["w", "k"]) try: while True: lowerCamelCase : Dict = run(c) ax.matshow(c, cmap=cmap) fig.canvas.draw() ax.cla() except KeyboardInterrupt: # do nothing. pass
208
import math def _SCREAMING_SNAKE_CASE ( lowercase : float , lowercase : float ): '''simple docstring''' return math.pow(lowercase , 2 ) - a def _SCREAMING_SNAKE_CASE ( lowercase : float ): '''simple docstring''' return 2 * x def _SCREAMING_SNAKE_CASE ( lowercase : float ): '''simple docstring''' lowerCamelCase_ = 2.0 while start <= a: lowerCamelCase_ = math.pow(lowercase , 2 ) return start def _SCREAMING_SNAKE_CASE ( lowercase : float , lowercase : int = 99_99 , lowercase : float = 0.00_0000_0000_0001 ): '''simple docstring''' if a < 0: raise ValueError('math domain error' ) lowerCamelCase_ = get_initial_point(lowercase ) for _ in range(lowercase ): lowerCamelCase_ = value lowerCamelCase_ = value - fx(lowercase , lowercase ) / fx_derivative(lowercase ) if abs(prev_value - value ) < tolerance: return value return value if __name__ == "__main__": from doctest import testmod testmod()
208
1
import argparse from torch import nn # transformers_old should correspond to branch `save_old_prophetnet_model_structure` here # original prophetnet_checkpoints are saved under `patrickvonplaten/..._old` respectively from transformers_old.modeling_prophetnet import ( ProphetNetForConditionalGeneration as ProphetNetForConditionalGenerationOld, ) from transformers_old.modeling_xlm_prophetnet import ( XLMProphetNetForConditionalGeneration as XLMProphetNetForConditionalGenerationOld, ) from transformers import ProphetNetForConditionalGeneration, XLMProphetNetForConditionalGeneration, logging __snake_case : Optional[Any] = logging.get_logger(__name__) logging.set_verbosity_info() def _UpperCAmelCase ( a__ , a__): '''simple docstring''' if "xprophetnet" in prophetnet_checkpoint_path: a_ : int = XLMProphetNetForConditionalGenerationOld.from_pretrained(a__) a_ , a_ : Tuple = XLMProphetNetForConditionalGeneration.from_pretrained( a__ , output_loading_info=a__) else: a_ : int = ProphetNetForConditionalGenerationOld.from_pretrained(a__) a_ , a_ : Union[str, Any] = ProphetNetForConditionalGeneration.from_pretrained( a__ , output_loading_info=a__) a_ : int = ["""key_proj""", """value_proj""", """query_proj"""] a_ : Union[str, Any] = { """self_attn""": """ngram_self_attn""", """cross_attn""": """encoder_attn""", """cross_attn_layer_norm""": """encoder_attn_layer_norm""", """feed_forward_layer_norm""": """final_layer_norm""", """feed_forward""": """""", """intermediate""": """fc1""", """output""": """fc2""", """key_proj""": """k_proj""", """query_proj""": """q_proj""", """value_proj""": """v_proj""", """word_embeddings""": """embed_tokens""", """embeddings_layer_norm""": """emb_layer_norm""", """relative_pos_embeddings""": """relative_linear""", """ngram_embeddings""": """ngram_input_embed""", """position_embeddings""": """embed_positions""", } for key in loading_info["missing_keys"]: a_ : List[str] = key.split(""".""") if attributes[0] == "lm_head": a_ : Optional[Any] = prophet a_ : List[str] = prophet_old else: a_ : List[Any] = prophet.prophetnet a_ : Tuple = prophet_old.model a_ : str = False for attribute in attributes: if attribute in mapping: a_ : Dict = mapping[attribute] if not hasattr(a__ , a__) and len(a__) > 0: a_ : Optional[int] = attribute elif hasattr(a__ , a__): a_ : Tuple = attribute if attribute == "weight": assert old_model.weight.shape == model.weight.shape, "Shapes have to match!" a_ : int = old_model.weight logger.info(f'''{attribute} is initialized.''') a_ : Union[str, Any] = True break elif attribute == "bias": assert old_model.bias.shape == model.bias.shape, "Shapes have to match!" a_ : Tuple = old_model.bias logger.info(f'''{attribute} is initialized''') a_ : int = True break elif attribute in special_keys and hasattr(a__ , """in_proj_weight"""): a_ : str = old_model.in_proj_weight.shape[0] // 3 a_ : List[Any] = getattr(a__ , a__) param.weight.shape == old_model.in_proj_weight[:embed_dim, :].shape, "Shapes have to match" param.bias.shape == old_model.in_proj_bias[:embed_dim].shape, "Shapes have to match" if attribute == "query_proj": a_ : Optional[Any] = nn.Parameter(old_model.in_proj_weight[:embed_dim, :]) a_ : str = nn.Parameter(old_model.in_proj_bias[:embed_dim]) elif attribute == "key_proj": a_ : List[Any] = nn.Parameter(old_model.in_proj_weight[embed_dim : 2 * embed_dim, :]) a_ : Tuple = nn.Parameter(old_model.in_proj_bias[embed_dim : 2 * embed_dim]) elif attribute == "value_proj": a_ : Tuple = nn.Parameter(old_model.in_proj_weight[2 * embed_dim :, :]) a_ : List[str] = nn.Parameter(old_model.in_proj_bias[2 * embed_dim :]) a_ : List[str] = True break elif attribute == "position_embeddings": assert ( model.position_embeddings.weight.shape[-1] == old_model.embed_positions.weight.shape[-1] ), "Hidden size has to match" assert model.position_embeddings.weight.shape[0] == 5_1_2, "We want 512 position_embeddings." a_ : Tuple = nn.Parameter(old_model.embed_positions.weight[:5_1_2, :]) a_ : Tuple = True break if attribute.isdigit(): a_ : int = model[int(a__)] a_ : str = old_model[int(a__)] else: a_ : Any = getattr(a__ , a__) if old_attribute == "": a_ : str = old_model else: if not hasattr(a__ , a__): raise ValueError(f'''{old_model} does not have {old_attribute}''') a_ : str = getattr(a__ , a__) if not is_key_init: raise ValueError(f'''{key} was not correctly initialized!''') print(f'''Saving model to {pytorch_dump_folder_path}''') prophet.save_pretrained(a__) if __name__ == "__main__": __snake_case : int = argparse.ArgumentParser() # Required parameters parser.add_argument( """--prophetnet_checkpoint_path""", default=None, type=str, required=True, help="""Path the official PyTorch dump.""" ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) __snake_case : Any = parser.parse_args() convert_prophetnet_checkpoint_to_pytorch(args.prophetnet_checkpoint_path, args.pytorch_dump_folder_path)
248
import os import re import shutil from argparse import ArgumentParser, Namespace from datasets.commands import BaseDatasetsCLICommand from datasets.utils.logging import get_logger __snake_case : Dict = """<<<<<<< This should probably be modified because it mentions: """ __snake_case : Any = """======= >>>>>>> """ __snake_case : Any = [ """TextEncoderConfig""", """ByteTextEncoder""", """SubwordTextEncoder""", """encoder_config""", """maybe_build_from_corpus""", """manual_dir""", ] __snake_case : Dict = [ # (pattern, replacement) # Order is important here for some replacements (r"""tfds\.core""", r"""datasets"""), (r"""tf\.io\.gfile\.GFile""", r"""open"""), (r"""tf\.([\w\d]+)""", r"""datasets.Value('\1')"""), (r"""tfds\.features\.Text\(\)""", r"""datasets.Value('string')"""), (r"""tfds\.features\.Text\(""", r"""datasets.Value('string'),"""), (r"""features\s*=\s*tfds.features.FeaturesDict\(""", r"""features=datasets.Features("""), (r"""tfds\.features\.FeaturesDict\(""", r"""dict("""), (r"""The TensorFlow Datasets Authors""", r"""The TensorFlow Datasets Authors and the HuggingFace Datasets Authors"""), (r"""tfds\.""", r"""datasets."""), (r"""dl_manager\.manual_dir""", r"""self.config.data_dir"""), (r"""self\.builder_config""", r"""self.config"""), ] def _UpperCAmelCase ( a__): '''simple docstring''' return ConvertCommand(args.tfds_path , args.datasets_directory) class A__(a_ ): """simple docstring""" @staticmethod def UpperCamelCase__ ( _lowercase ) -> Dict: a_ : Optional[Any] = parser.add_parser( """convert""" , help="""Convert a TensorFlow Datasets dataset to a HuggingFace Datasets dataset.""" , ) train_parser.add_argument( """--tfds_path""" , type=_lowercase , required=_lowercase , help="""Path to a TensorFlow Datasets folder to convert or a single tfds file to convert.""" , ) train_parser.add_argument( """--datasets_directory""" , type=_lowercase , required=_lowercase , help="""Path to the HuggingFace Datasets folder.""" ) train_parser.set_defaults(func=_lowercase ) def __init__( self , _lowercase , _lowercase , *_lowercase ) -> str: a_ : List[Any] = get_logger("""datasets-cli/converting""" ) a_ : Optional[Any] = tfds_path a_ : List[Any] = datasets_directory def UpperCamelCase__ ( self ) -> Dict: if os.path.isdir(self._tfds_path ): a_ : List[Any] = os.path.abspath(self._tfds_path ) elif os.path.isfile(self._tfds_path ): a_ : Dict = os.path.dirname(self._tfds_path ) else: raise ValueError("""--tfds_path is neither a directory nor a file. Please check path.""" ) a_ : List[Any] = os.path.abspath(self._datasets_directory ) self._logger.info(F'''Converting datasets from {abs_tfds_path} to {abs_datasets_path}''' ) a_ : Dict = [] a_ : Tuple = [] a_ : str = {} if os.path.isdir(self._tfds_path ): a_ : str = os.listdir(_lowercase ) else: a_ : int = [os.path.basename(self._tfds_path )] for f_name in file_names: self._logger.info(F'''Looking at file {f_name}''' ) a_ : List[str] = os.path.join(_lowercase , _lowercase ) a_ : Dict = os.path.join(_lowercase , _lowercase ) if not os.path.isfile(_lowercase ) or "__init__" in f_name or "_test" in f_name or ".py" not in f_name: self._logger.info("""Skipping file""" ) continue with open(_lowercase , encoding="""utf-8""" ) as f: a_ : Any = f.readlines() a_ : Any = [] a_ : str = False a_ : List[str] = False a_ : List[Any] = [] for line in lines: a_ : Union[str, Any] = line # Convert imports if "import tensorflow.compat.v2 as tf" in out_line: continue elif "@tfds.core" in out_line: continue elif "builder=self" in out_line: continue elif "import tensorflow_datasets.public_api as tfds" in out_line: a_ : List[Any] = """import datasets\n""" elif "import tensorflow" in out_line: # order is important here a_ : Optional[int] = """""" continue elif "from absl import logging" in out_line: a_ : List[str] = """from datasets import logging\n""" elif "getLogger" in out_line: a_ : List[str] = out_line.replace("""getLogger""" , """get_logger""" ) elif any(expression in out_line for expression in TO_HIGHLIGHT ): a_ : Dict = True a_ : Optional[Any] = list(filter(lambda _lowercase : e in out_line , _lowercase ) ) out_lines.append(HIGHLIGHT_MESSAGE_PRE + str(_lowercase ) + """\n""" ) out_lines.append(_lowercase ) out_lines.append(_lowercase ) continue else: for pattern, replacement in TO_CONVERT: a_ : List[str] = re.sub(_lowercase , _lowercase , _lowercase ) # Take care of saving utilities (to later move them together with main script) if "tensorflow_datasets" in out_line: a_ : Tuple = re.match(r"""from\stensorflow_datasets.*import\s([^\.\r\n]+)""" , _lowercase ) tfds_imports.extend(imp.strip() for imp in match.group(1 ).split(""",""" ) ) a_ : Optional[int] = """from . import """ + match.group(1 ) # Check we have not forget anything if "tf." in out_line or "tfds." in out_line or "tensorflow_datasets" in out_line: raise ValueError(F'''Error converting {out_line.strip()}''' ) if "GeneratorBasedBuilder" in out_line or "BeamBasedBuilder" in out_line: a_ : Optional[Any] = True out_lines.append(_lowercase ) if is_builder or "wmt" in f_name: # We create a new directory for each dataset a_ : List[str] = f_name.replace(""".py""" , """""" ) a_ : Optional[int] = os.path.join(_lowercase , _lowercase ) a_ : Dict = os.path.join(_lowercase , _lowercase ) os.makedirs(_lowercase , exist_ok=_lowercase ) self._logger.info(F'''Adding directory {output_dir}''' ) imports_to_builder_map.update({imp: output_dir for imp in tfds_imports} ) else: # Utilities will be moved at the end utils_files.append(_lowercase ) if needs_manual_update: with_manual_update.append(_lowercase ) with open(_lowercase , """w""" , encoding="""utf-8""" ) as f: f.writelines(_lowercase ) self._logger.info(F'''Converted in {output_file}''' ) for utils_file in utils_files: try: a_ : Optional[int] = os.path.basename(_lowercase ) a_ : List[Any] = imports_to_builder_map[f_name.replace(""".py""" , """""" )] self._logger.info(F'''Moving {dest_folder} to {utils_file}''' ) shutil.copy(_lowercase , _lowercase ) except KeyError: self._logger.error(F'''Cannot find destination folder for {utils_file}. Please copy manually.''' ) if with_manual_update: for file_path in with_manual_update: self._logger.warning( F'''You need to manually update file {file_path} to remove configurations using \'TextEncoderConfig\'.''' )
248
1
import argparse import json import os import re import torch from transformers import BloomConfig, BloomModel from transformers.file_utils import CONFIG_NAME, WEIGHTS_NAME from transformers.utils import logging logging.set_verbosity_info() _lowercase: List[Any] = [ "word_embeddings_layernorm.weight", "word_embeddings_layernorm.bias", "input_layernorm.weight", "input_layernorm.bias", "post_attention_layernorm.weight", "post_attention_layernorm.bias", "self_attention.dense.bias", "mlp.dense_4h_to_h.bias", "ln_f.weight", "ln_f.bias", ] _lowercase: Optional[Any] = [ "mlp.dense_4h_to_h.weight", "self_attention.dense.weight", ] def a( A : Tuple , A : Dict ) -> Tuple: """simple docstring""" a = { "word_embeddings.weight": "word_embeddings.weight", "word_embeddings.norm.weight": "word_embeddings_layernorm.weight", "word_embeddings.norm.bias": "word_embeddings_layernorm.bias", "weight": "ln_f.weight", "bias": "ln_f.bias", } if key in layer_rename_map: return layer_rename_map[key] # Handle transformer blocks a = int(re.match(r".*layer_(\d*).*" , A )[1] ) layer_number -= 3 return f'''h.{layer_number}.''' + key def a( A : int ) -> List[Any]: """simple docstring""" if dtype == torch.bool: return 1 / 8 a = re.search(r"[^\d](\d+)$" , str(A ) ) if bit_search is None: raise ValueError(f'''`dtype` is not a valid dtype: {dtype}.''' ) a = int(bit_search.groups()[0] ) return bit_size // 8 def a( A : Optional[int] , A : Any , A : Any , A : str , A : str ) -> Any: """simple docstring""" if bloom_config_file == "": a = BloomConfig() else: a = BloomConfig.from_json_file(A ) if shard_model: a = os.listdir(A ) a = sorted(filter(lambda A : s.startswith("layer" ) and "model_00" in s , A ) ) a = {"weight_map": {}, "metadata": {}} a = 0 a = None a = BloomConfig() for j, file in enumerate(A ): print("Processing file: {}".format(A ) ) a = None for i in range(A ): # load all TP files a = file.replace("model_00" , f'''model_0{i}''' ) a = torch.load(os.path.join(A , A ) , map_location="cpu" ) # Rename keys in the transformers names a = list(temp.keys() ) for key in keys: a = temp.pop(A ) if tensors is None: a = temp else: for key in tensors.keys(): if any(key.endswith(A ) for end in WEIGHTS_TO_AVERAGE_ENDSWITH ): # We average (sum and then divide) some weights accross TP ranks (see https://github.com/bigscience-workshop/Megatron-DeepSpeed/blob/olruwase/sync_layer_norms/megatron/training.py#L425) tensors[key] += temp[key] else: # Some weights are RowParallelLinear in Megatron-Deepspeed, others are ColumnParallel a = 1 if any(text in key for text in WEIGHTS_WITH_ROW_PARALLELISM_CONTAIN ) else 0 # We concatenate these weights accross TP ranks a = torch.cat([tensors[key], temp[key]] , dim=A ) # Divide by the number of TP the weights we want to average for key in tensors.keys(): if any(key.endswith(A ) for end in WEIGHTS_TO_AVERAGE_ENDSWITH ): a = tensors[key] / pretraining_tp torch.save( A , os.path.join( A , "pytorch_model_{}-of-{}.bin".format(str(j + 1 ).zfill(5 ) , str(len(A ) ).zfill(5 ) ) , ) , ) for key in tensors.keys(): a = tensors[key] total_size += value.numel() * get_dtype_size(value.dtype ) if key not in index_dict["weight_map"]: a = "pytorch_model_{}-of-{}.bin".format( str(j + 1 ).zfill(5 ) , str(len(A ) ).zfill(5 ) ) a = BloomConfig() a = pytorch_dump_folder_path + "/" + CONFIG_NAME a = total_size with open(A , "w" , encoding="utf-8" ) as f: f.write(config.to_json_string() ) with open(os.path.join(A , WEIGHTS_NAME + ".index.json" ) , "w" , encoding="utf-8" ) as f: a = json.dumps(A , indent=2 , sort_keys=A ) + "\n" f.write(A ) else: a = BloomModel(A ) a = os.listdir(A ) a = sorted(filter(lambda A : s.startswith("layer" ) and "model_00" in s , A ) ) a = None for i, file in enumerate(A ): a = None for i in range(A ): # load all TP files a = file.replace("model_00" , f'''model_0{i}''' ) a = torch.load(os.path.join(A , A ) , map_location="cpu" ) # Rename keys in the transformers names a = list(temp.keys() ) for key in keys: a = temp.pop(A ) if tensors is None: a = temp else: for key in tensors.keys(): # We average (sum and then divide) some weights accross TP ranks (see https://github.com/bigscience-workshop/Megatron-DeepSpeed/blob/olruwase/sync_layer_norms/megatron/training.py#L425) if any(key.endswith(A ) for end in WEIGHTS_TO_AVERAGE_ENDSWITH ): tensors[key] += temp[key] else: # Some weights are RowParallelLinear in Megatron-Deepspeed, others are ColumnParallel a = 1 if any(text in key for text in WEIGHTS_WITH_ROW_PARALLELISM_CONTAIN ) else 0 # We concatenate these weights accross TP ranks a = torch.cat([tensors[key], temp[key]] , dim=A ) # Divide by the number of TP the weights we want to average for key in tensors.keys(): if any(key.endswith(A ) for end in WEIGHTS_TO_AVERAGE_ENDSWITH ): a = tensors[key] / pretraining_tp a = model.load_state_dict(A , strict=A ) assert not other_keys.unexpected_keys, f'''The keys {other_keys.unexpected_keys} are unexpected''' if missing_keys is None: a = set(other_keys.missing_keys ) else: a = missing_keys.intersection(set(other_keys.missing_keys ) ) assert not missing_keys, f'''The keys {missing_keys} are missing''' # Save pytorch-model os.makedirs(A , exist_ok=A ) a = pytorch_dump_folder_path + "/" + WEIGHTS_NAME a = pytorch_dump_folder_path + "/" + CONFIG_NAME print(f'''Save PyTorch model to {pytorch_weights_dump_path} with dtype {config.torch_dtype}''' ) if config.torch_dtype is not None: a = model.to(config.torch_dtype ) torch.save(model.state_dict() , A ) print(f'''Save configuration file to {pytorch_config_dump_path}''' ) with open(A , "w" , encoding="utf-8" ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": _lowercase: Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--bloom_checkpoint_path", default=None, type=str, required=True, help="Path to the Megatron-LM checkpoint path.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) parser.add_argument( "--bloom_config_file", default="", type=str, help=( "An optional config json file corresponding to the pre-trained model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--shard_model", action="store_true", help="An optional setting to shard the output model \nThis enables sharding the converted checkpoint", ) parser.add_argument( "--pretraining_tp", default=4, type=int, help="Pretraining TP rank that has been used when training the model in Megatron-LM \n", ) _lowercase: Optional[int] = parser.parse_args() convert_bloom_checkpoint_to_pytorch( args.bloom_checkpoint_path, args.bloom_config_file, args.pytorch_dump_folder_path, args.shard_model, args.pretraining_tp, )
71
import argparse import json from dataclasses import dataclass, field from functools import partial from pathlib import Path from typing import Callable, Dict, List, Tuple import timm import torch import torch.nn as nn from classy_vision.models.regnet import RegNet, RegNetParams, RegNetYaagf, RegNetYaagf, RegNetYaaagf from huggingface_hub import cached_download, hf_hub_url from torch import Tensor from vissl.models.model_helpers import get_trunk_forward_outputs from transformers import AutoImageProcessor, RegNetConfig, RegNetForImageClassification, RegNetModel from transformers.utils import logging logging.set_verbosity_info() _lowercase: Dict = logging.get_logger() @dataclass class _lowercase : """simple docstring""" __A = 42 __A = field(default_factory=lowerCAmelCase ) __A = field(default_factory=lowerCAmelCase ) def UpperCamelCase_ (self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ): """simple docstring""" a = len(list(m.modules() ) ) == 1 or isinstance(lowerCamelCase_ , nn.Convad ) or isinstance(lowerCamelCase_ , nn.BatchNormad ) if has_not_submodules: self.traced.append(lowerCamelCase_ ) def __call__(self , lowerCamelCase_ ): """simple docstring""" for m in self.module.modules(): self.handles.append(m.register_forward_hook(self._forward_hook ) ) self.module(lowerCamelCase_ ) [x.remove() for x in self.handles] return self @property def UpperCamelCase_ (self ): """simple docstring""" return list(filter(lambda lowerCamelCase_ : len(list(x.state_dict().keys() ) ) > 0 , self.traced ) ) @dataclass class _lowercase : """simple docstring""" __A = 42 __A = 42 __A = 1 __A = field(default_factory=lowerCAmelCase ) __A = field(default_factory=lowerCAmelCase ) __A = True def __call__(self , lowerCamelCase_ ): """simple docstring""" a = Tracker(self.dest )(lowerCamelCase_ ).parametrized a = Tracker(self.src )(lowerCamelCase_ ).parametrized a = list(filter(lambda lowerCamelCase_ : type(lowerCamelCase_ ) not in self.src_skip , lowerCamelCase_ ) ) a = list(filter(lambda lowerCamelCase_ : type(lowerCamelCase_ ) not in self.dest_skip , lowerCamelCase_ ) ) if len(lowerCamelCase_ ) != len(lowerCamelCase_ ) and self.raise_if_mismatch: raise Exception( F'''Numbers of operations are different. Source module has {len(lowerCamelCase_ )} operations while''' F''' destination module has {len(lowerCamelCase_ )}.''' ) for dest_m, src_m in zip(lowerCamelCase_ , lowerCamelCase_ ): dest_m.load_state_dict(src_m.state_dict() ) if self.verbose == 1: print(F'''Transfered from={src_m} to={dest_m}''' ) class _lowercase ( nn.Module ): """simple docstring""" def __init__(self , lowerCamelCase_ ): """simple docstring""" super().__init__() a = [] # - get the stem feature_blocks.append(("conv1", model.stem) ) # - get all the feature blocks for k, v in model.trunk_output.named_children(): assert k.startswith("block" ), F'''Unexpected layer name {k}''' a = len(lowerCamelCase_ ) + 1 feature_blocks.append((F'''res{block_index}''', v) ) a = nn.ModuleDict(lowerCamelCase_ ) def UpperCamelCase_ (self , lowerCamelCase_ ): """simple docstring""" return get_trunk_forward_outputs( lowerCamelCase_ , out_feat_keys=lowerCamelCase_ , feature_blocks=self._feature_blocks , ) class _lowercase ( lowerCAmelCase ): """simple docstring""" def UpperCamelCase_ (self , lowerCamelCase_ ): """simple docstring""" a = x.split("-" ) return x_split[0] + x_split[1] + "_" + "".join(x_split[2:] ) def __getitem__(self , lowerCamelCase_ ): """simple docstring""" if x not in self: a = self.convert_name_to_timm(lowerCamelCase_ ) a = partial(lambda: (timm.create_model(lowerCamelCase_ , pretrained=lowerCamelCase_ ).eval(), None) ) else: a = super().__getitem__(lowerCamelCase_ ) return val class _lowercase ( lowerCAmelCase ): """simple docstring""" def __getitem__(self , lowerCamelCase_ ): """simple docstring""" if "seer" in x and "in1k" not in x: a = RegNetModel else: a = RegNetForImageClassification return val def a( A : Dict , A : List[Any] , A : List[Tuple[str, str]] ) -> Union[str, Any]: """simple docstring""" for from_key, to_key in keys: a = from_state_dict[from_key].clone() print(f'''Copied key={from_key} to={to_key}''' ) return to_state_dict def a( A : str , A : Callable[[], nn.Module] , A : Callable[[], nn.Module] , A : RegNetConfig , A : Path , A : bool = True , ) -> List[str]: """simple docstring""" print(f'''Converting {name}...''' ) with torch.no_grad(): a , a = from_model_func() a = our_model_func(A ).eval() a = ModuleTransfer(src=A , dest=A , raise_if_mismatch=A ) a = torch.randn((1, 3, 224, 224) ) module_transfer(A ) if from_state_dict is not None: a = [] # for seer - in1k finetuned we have to manually copy the head if "seer" in name and "in1k" in name: a = [("0.clf.0.weight", "classifier.1.weight"), ("0.clf.0.bias", "classifier.1.bias")] a = manually_copy_vissl_head(A , our_model.state_dict() , A ) our_model.load_state_dict(A ) a = our_model(A , output_hidden_states=A ) a = ( our_outputs.logits if isinstance(A , A ) else our_outputs.last_hidden_state ) a = from_model(A ) a = from_output[-1] if type(A ) is list else from_output # now since I don't want to use any config files, vissl seer model doesn't actually have an head, so let's just check the last hidden state if "seer" in name and "in1k" in name: a = our_outputs.hidden_states[-1] assert torch.allclose(A , A ), "The model logits don't match the original one." if push_to_hub: our_model.push_to_hub( repo_path_or_name=save_directory / name , commit_message="Add model" , use_temp_dir=A , ) a = 224 if "seer" not in name else 384 # we can use the convnext one a = AutoImageProcessor.from_pretrained("facebook/convnext-base-224-22k-1k" , size=A ) image_processor.push_to_hub( repo_path_or_name=save_directory / name , commit_message="Add image processor" , use_temp_dir=A , ) print(f'''Pushed {name}''' ) def a( A : Path , A : str = None , A : bool = True ) -> Dict: """simple docstring""" a = "imagenet-1k-id2label.json" a = 1000 a = (1, num_labels) a = "huggingface/label-files" a = num_labels a = json.load(open(cached_download(hf_hub_url(A , A , repo_type="dataset" ) ) , "r" ) ) a = {int(A ): v for k, v in idalabel.items()} a = idalabel a = {v: k for k, v in idalabel.items()} a = partial(A , num_labels=A , idalabel=A , labelaid=A ) a = { "regnet-x-002": ImageNetPreTrainedConfig( depths=[1, 1, 4, 7] , hidden_sizes=[24, 56, 152, 368] , groups_width=8 , layer_type="x" ), "regnet-x-004": ImageNetPreTrainedConfig( depths=[1, 2, 7, 12] , hidden_sizes=[32, 64, 160, 384] , groups_width=16 , layer_type="x" ), "regnet-x-006": ImageNetPreTrainedConfig( depths=[1, 3, 5, 7] , hidden_sizes=[48, 96, 240, 528] , groups_width=24 , layer_type="x" ), "regnet-x-008": ImageNetPreTrainedConfig( depths=[1, 3, 7, 5] , hidden_sizes=[64, 128, 288, 672] , groups_width=16 , layer_type="x" ), "regnet-x-016": ImageNetPreTrainedConfig( depths=[2, 4, 10, 2] , hidden_sizes=[72, 168, 408, 912] , groups_width=24 , layer_type="x" ), "regnet-x-032": ImageNetPreTrainedConfig( depths=[2, 6, 15, 2] , hidden_sizes=[96, 192, 432, 1008] , groups_width=48 , layer_type="x" ), "regnet-x-040": ImageNetPreTrainedConfig( depths=[2, 5, 14, 2] , hidden_sizes=[80, 240, 560, 1360] , groups_width=40 , layer_type="x" ), "regnet-x-064": ImageNetPreTrainedConfig( depths=[2, 4, 10, 1] , hidden_sizes=[168, 392, 784, 1624] , groups_width=56 , layer_type="x" ), "regnet-x-080": ImageNetPreTrainedConfig( depths=[2, 5, 15, 1] , hidden_sizes=[80, 240, 720, 1920] , groups_width=120 , layer_type="x" ), "regnet-x-120": ImageNetPreTrainedConfig( depths=[2, 5, 11, 1] , hidden_sizes=[224, 448, 896, 2240] , groups_width=112 , layer_type="x" ), "regnet-x-160": ImageNetPreTrainedConfig( depths=[2, 6, 13, 1] , hidden_sizes=[256, 512, 896, 2048] , groups_width=128 , layer_type="x" ), "regnet-x-320": ImageNetPreTrainedConfig( depths=[2, 7, 13, 1] , hidden_sizes=[336, 672, 1344, 2520] , groups_width=168 , layer_type="x" ), # y variant "regnet-y-002": ImageNetPreTrainedConfig(depths=[1, 1, 4, 7] , hidden_sizes=[24, 56, 152, 368] , groups_width=8 ), "regnet-y-004": ImageNetPreTrainedConfig( depths=[1, 3, 6, 6] , hidden_sizes=[48, 104, 208, 440] , groups_width=8 ), "regnet-y-006": ImageNetPreTrainedConfig( depths=[1, 3, 7, 4] , hidden_sizes=[48, 112, 256, 608] , groups_width=16 ), "regnet-y-008": ImageNetPreTrainedConfig( depths=[1, 3, 8, 2] , hidden_sizes=[64, 128, 320, 768] , groups_width=16 ), "regnet-y-016": ImageNetPreTrainedConfig( depths=[2, 6, 17, 2] , hidden_sizes=[48, 120, 336, 888] , groups_width=24 ), "regnet-y-032": ImageNetPreTrainedConfig( depths=[2, 5, 13, 1] , hidden_sizes=[72, 216, 576, 1512] , groups_width=24 ), "regnet-y-040": ImageNetPreTrainedConfig( depths=[2, 6, 12, 2] , hidden_sizes=[128, 192, 512, 1088] , groups_width=64 ), "regnet-y-064": ImageNetPreTrainedConfig( depths=[2, 7, 14, 2] , hidden_sizes=[144, 288, 576, 1296] , groups_width=72 ), "regnet-y-080": ImageNetPreTrainedConfig( depths=[2, 4, 10, 1] , hidden_sizes=[168, 448, 896, 2016] , groups_width=56 ), "regnet-y-120": ImageNetPreTrainedConfig( depths=[2, 5, 11, 1] , hidden_sizes=[224, 448, 896, 2240] , groups_width=112 ), "regnet-y-160": ImageNetPreTrainedConfig( depths=[2, 4, 11, 1] , hidden_sizes=[224, 448, 1232, 3024] , groups_width=112 ), "regnet-y-320": ImageNetPreTrainedConfig( depths=[2, 5, 12, 1] , hidden_sizes=[232, 696, 1392, 3712] , groups_width=232 ), # models created by SEER -> https://arxiv.org/abs/2202.08360 "regnet-y-320-seer": RegNetConfig(depths=[2, 5, 12, 1] , hidden_sizes=[232, 696, 1392, 3712] , groups_width=232 ), "regnet-y-640-seer": RegNetConfig(depths=[2, 5, 12, 1] , hidden_sizes=[328, 984, 1968, 4920] , groups_width=328 ), "regnet-y-1280-seer": RegNetConfig( depths=[2, 7, 17, 1] , hidden_sizes=[528, 1056, 2904, 7392] , groups_width=264 ), "regnet-y-2560-seer": RegNetConfig( depths=[3, 7, 16, 1] , hidden_sizes=[640, 1696, 2544, 5088] , groups_width=640 ), "regnet-y-10b-seer": ImageNetPreTrainedConfig( depths=[2, 7, 17, 1] , hidden_sizes=[2020, 4040, 1_1110, 2_8280] , groups_width=1010 ), # finetuned on imagenet "regnet-y-320-seer-in1k": ImageNetPreTrainedConfig( depths=[2, 5, 12, 1] , hidden_sizes=[232, 696, 1392, 3712] , groups_width=232 ), "regnet-y-640-seer-in1k": ImageNetPreTrainedConfig( depths=[2, 5, 12, 1] , hidden_sizes=[328, 984, 1968, 4920] , groups_width=328 ), "regnet-y-1280-seer-in1k": ImageNetPreTrainedConfig( depths=[2, 7, 17, 1] , hidden_sizes=[528, 1056, 2904, 7392] , groups_width=264 ), "regnet-y-2560-seer-in1k": ImageNetPreTrainedConfig( depths=[3, 7, 16, 1] , hidden_sizes=[640, 1696, 2544, 5088] , groups_width=640 ), "regnet-y-10b-seer-in1k": ImageNetPreTrainedConfig( depths=[2, 7, 17, 1] , hidden_sizes=[2020, 4040, 1_1110, 2_8280] , groups_width=1010 ), } a = NameToOurModelFuncMap() a = NameToFromModelFuncMap() # add seer weights logic def load_using_classy_vision(A : str , A : Callable[[], nn.Module] ) -> Tuple[nn.Module, Dict]: a = torch.hub.load_state_dict_from_url(A , model_dir=str(A ) , map_location="cpu" ) a = model_func() # check if we have a head, if yes add it a = files["classy_state_dict"]["base_model"]["model"] a = model_state_dict["trunk"] model.load_state_dict(A ) return model.eval(), model_state_dict["heads"] # pretrained a = partial( A , "https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_regnet32d/seer_regnet32gf_model_iteration244000.torch" , lambda: FakeRegNetVisslWrapper(RegNetYaagf() ) , ) a = partial( A , "https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_regnet64/seer_regnet64gf_model_final_checkpoint_phase0.torch" , lambda: FakeRegNetVisslWrapper(RegNetYaagf() ) , ) a = partial( A , "https://dl.fbaipublicfiles.com/vissl/model_zoo/swav_ig1b_regnet128Gf_cnstant_bs32_node16_sinkhorn10_proto16k_syncBN64_warmup8k/model_final_checkpoint_phase0.torch" , lambda: FakeRegNetVisslWrapper(RegNetYaaagf() ) , ) a = partial( A , "https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_regnet10B/model_iteration124500_conso.torch" , lambda: FakeRegNetVisslWrapper( RegNet(RegNetParams(depth=27 , group_width=1010 , w_a=1744 , w_a=620.83 , w_m=2.52 ) ) ) , ) # IN1K finetuned a = partial( A , "https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_regnet32_finetuned_in1k_model_final_checkpoint_phase78.torch" , lambda: FakeRegNetVisslWrapper(RegNetYaagf() ) , ) a = partial( A , "https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_regnet64_finetuned_in1k_model_final_checkpoint_phase78.torch" , lambda: FakeRegNetVisslWrapper(RegNetYaagf() ) , ) a = partial( A , "https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_regnet128_finetuned_in1k_model_final_checkpoint_phase78.torch" , lambda: FakeRegNetVisslWrapper(RegNetYaaagf() ) , ) a = partial( A , "https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_10b_finetuned_in1k_model_phase28_conso.torch" , lambda: FakeRegNetVisslWrapper( RegNet(RegNetParams(depth=27 , group_width=1010 , w_a=1744 , w_a=620.83 , w_m=2.52 ) ) ) , ) if model_name: convert_weight_and_push( A , names_to_from_model_map[model_name] , names_to_ours_model_map[model_name] , names_to_config[model_name] , A , A , ) else: for model_name, config in names_to_config.items(): convert_weight_and_push( A , names_to_from_model_map[model_name] , names_to_ours_model_map[model_name] , A , A , A , ) return config, expected_shape if __name__ == "__main__": _lowercase: Any = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default=None, type=str, help=( "The name of the model you wish to convert, it must be one of the supported regnet* architecture," " currently: regnetx-*, regnety-*. If `None`, all of them will the converted." ), ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=Path, required=True, help="Path to the output PyTorch model directory.", ) parser.add_argument( "--push_to_hub", default=True, type=bool, required=False, help="If True, push model and image processor to the hub.", ) _lowercase: Optional[int] = parser.parse_args() _lowercase: Path = args.pytorch_dump_folder_path pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True) convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
71
1
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import rescale, resize, to_channel_dimension_format from ...image_utils import ( ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL _snake_case = logging.get_logger(__name__) def _A ( snake_case , snake_case ) -> Dict: _lowercase : Tuple = b.T _lowercase : Union[str, Any] = np.sum(np.square(snake_case ) , axis=1 ) _lowercase : str = np.sum(np.square(snake_case ) , axis=0 ) _lowercase : Tuple = np.matmul(snake_case , snake_case ) _lowercase : int = aa[:, None] - 2 * ab + ba[None, :] return d def _A ( snake_case , snake_case ) -> int: _lowercase : int = x.reshape(-1 , 3 ) _lowercase : Union[str, Any] = squared_euclidean_distance(snake_case , snake_case ) return np.argmin(snake_case , axis=1 ) class a__ ( UpperCAmelCase__ ): _SCREAMING_SNAKE_CASE : Union[str, Any] = ['pixel_values'] def __init__( self , _UpperCamelCase = None , _UpperCamelCase = True , _UpperCamelCase = None , _UpperCamelCase = PILImageResampling.BILINEAR , _UpperCamelCase = True , _UpperCamelCase = True , **_UpperCamelCase , ): """simple docstring""" super().__init__(**_SCREAMING_SNAKE_CASE ) _lowercase : Any = size if size is not None else {"""height""": 256, """width""": 256} _lowercase : Tuple = get_size_dict(_SCREAMING_SNAKE_CASE ) _lowercase : Any = np.array(_SCREAMING_SNAKE_CASE ) if clusters is not None else None _lowercase : Optional[Any] = do_resize _lowercase : str = size _lowercase : Optional[Any] = resample _lowercase : Optional[int] = do_normalize _lowercase : List[str] = do_color_quantize def _lowerCamelCase ( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = PILImageResampling.BILINEAR , _UpperCamelCase = None , **_UpperCamelCase , ): """simple docstring""" _lowercase : Union[str, Any] = get_size_dict(_SCREAMING_SNAKE_CASE ) if "height" not in size or "width" not in size: raise ValueError(f'''Size dictionary must contain both height and width keys. Got {size.keys()}''' ) return resize( _SCREAMING_SNAKE_CASE , size=(size["height"], size["width"]) , resample=_SCREAMING_SNAKE_CASE , data_format=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) def _lowerCamelCase ( self , _UpperCamelCase , _UpperCamelCase = None , ): """simple docstring""" _lowercase : List[Any] = rescale(image=_SCREAMING_SNAKE_CASE , scale=1 / 1_2_7.5 , data_format=_SCREAMING_SNAKE_CASE ) _lowercase : Optional[int] = image - 1 return image def _lowerCamelCase ( self , _UpperCamelCase , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = ChannelDimension.FIRST , **_UpperCamelCase , ): """simple docstring""" _lowercase : int = do_resize if do_resize is not None else self.do_resize _lowercase : List[str] = size if size is not None else self.size _lowercase : Tuple = get_size_dict(_SCREAMING_SNAKE_CASE ) _lowercase : List[Any] = resample if resample is not None else self.resample _lowercase : Optional[Any] = do_normalize if do_normalize is not None else self.do_normalize _lowercase : List[Any] = do_color_quantize if do_color_quantize is not None else self.do_color_quantize _lowercase : Optional[int] = clusters if clusters is not None else self.clusters _lowercase : Any = np.array(_SCREAMING_SNAKE_CASE ) _lowercase : int = make_list_of_images(_SCREAMING_SNAKE_CASE ) if not valid_images(_SCREAMING_SNAKE_CASE ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None or resample is None: raise ValueError("Size and resample must be specified if do_resize is True." ) if do_color_quantize and clusters is None: raise ValueError("Clusters must be specified if do_color_quantize is True." ) # All transformations expect numpy arrays. _lowercase : Optional[int] = [to_numpy_array(_SCREAMING_SNAKE_CASE ) for image in images] if do_resize: _lowercase : List[Any] = [self.resize(image=_SCREAMING_SNAKE_CASE , size=_SCREAMING_SNAKE_CASE , resample=_SCREAMING_SNAKE_CASE ) for image in images] if do_normalize: _lowercase : Union[str, Any] = [self.normalize(image=_SCREAMING_SNAKE_CASE ) for image in images] if do_color_quantize: _lowercase : List[Any] = [to_channel_dimension_format(_SCREAMING_SNAKE_CASE , ChannelDimension.LAST ) for image in images] # color quantize from (batch_size, height, width, 3) to (batch_size, height, width) _lowercase : Dict = np.array(_SCREAMING_SNAKE_CASE ) _lowercase : int = color_quantize(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ).reshape(images.shape[:-1] ) # flatten to (batch_size, height*width) _lowercase : int = images.shape[0] _lowercase : List[Any] = images.reshape(_SCREAMING_SNAKE_CASE , -1 ) # We need to convert back to a list of images to keep consistent behaviour across processors. _lowercase : List[str] = list(_SCREAMING_SNAKE_CASE ) else: _lowercase : List[str] = [to_channel_dimension_format(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) for image in images] _lowercase : Optional[Any] = {"""input_ids""": images} return BatchFeature(data=_SCREAMING_SNAKE_CASE , tensor_type=_SCREAMING_SNAKE_CASE )
250
"""simple docstring""" from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer from ...configuration_utils import PretrainedConfig from ...file_utils import TensorType, is_torch_available from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast from ...onnx.utils import compute_effective_axis_dimension from ...utils import logging A: Tuple = logging.get_logger(__name__) A: List[Any] = { "facebook/blenderbot_small-90M": "https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/config.json", # See all BlenderbotSmall models at https://huggingface.co/models?filter=blenderbot_small } class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase__ ): __lowerCAmelCase : int = 'blenderbot-small' __lowerCAmelCase : Any = ['past_key_values'] __lowerCAmelCase : str = {'num_attention_heads': 'encoder_attention_heads', 'hidden_size': 'd_model'} def __init__( self , _SCREAMING_SNAKE_CASE=50265 , _SCREAMING_SNAKE_CASE=512 , _SCREAMING_SNAKE_CASE=8 , _SCREAMING_SNAKE_CASE=2048 , _SCREAMING_SNAKE_CASE=16 , _SCREAMING_SNAKE_CASE=8 , _SCREAMING_SNAKE_CASE=2048 , _SCREAMING_SNAKE_CASE=16 , _SCREAMING_SNAKE_CASE=0.0 , _SCREAMING_SNAKE_CASE=0.0 , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE="gelu" , _SCREAMING_SNAKE_CASE=512 , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=0.0 , _SCREAMING_SNAKE_CASE=0.0 , _SCREAMING_SNAKE_CASE=0.02 , _SCREAMING_SNAKE_CASE=1 , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=0 , _SCREAMING_SNAKE_CASE=1 , _SCREAMING_SNAKE_CASE=2 , _SCREAMING_SNAKE_CASE=2 , **_SCREAMING_SNAKE_CASE , ) -> str: '''simple docstring''' UpperCAmelCase : Any = vocab_size UpperCAmelCase : Any = max_position_embeddings UpperCAmelCase : str = d_model UpperCAmelCase : List[Any] = encoder_ffn_dim UpperCAmelCase : Union[str, Any] = encoder_layers UpperCAmelCase : List[str] = encoder_attention_heads UpperCAmelCase : Optional[Any] = decoder_ffn_dim UpperCAmelCase : List[Any] = decoder_layers UpperCAmelCase : Any = decoder_attention_heads UpperCAmelCase : Union[str, Any] = dropout UpperCAmelCase : Union[str, Any] = attention_dropout UpperCAmelCase : int = activation_dropout UpperCAmelCase : int = activation_function UpperCAmelCase : Optional[Any] = init_std UpperCAmelCase : List[str] = encoder_layerdrop UpperCAmelCase : List[str] = decoder_layerdrop UpperCAmelCase : List[str] = use_cache UpperCAmelCase : Union[str, Any] = encoder_layers UpperCAmelCase : Any = scale_embedding # scale factor will be sqrt(d_model) if True super().__init__( pad_token_id=_SCREAMING_SNAKE_CASE , bos_token_id=_SCREAMING_SNAKE_CASE , eos_token_id=_SCREAMING_SNAKE_CASE , is_encoder_decoder=_SCREAMING_SNAKE_CASE , decoder_start_token_id=_SCREAMING_SNAKE_CASE , forced_eos_token_id=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , ) class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase__ ): @property def SCREAMING_SNAKE_CASE ( self ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' if self.task in ["default", "seq2seq-lm"]: UpperCAmelCase : Dict = OrderedDict( [ ("""input_ids""", {0: """batch""", 1: """encoder_sequence"""}), ("""attention_mask""", {0: """batch""", 1: """encoder_sequence"""}), ] ) if self.use_past: UpperCAmelCase : int = {0: """batch"""} UpperCAmelCase : List[Any] = {0: """batch""", 1: """past_decoder_sequence + sequence"""} else: UpperCAmelCase : Optional[Any] = {0: """batch""", 1: """decoder_sequence"""} UpperCAmelCase : Any = {0: """batch""", 1: """decoder_sequence"""} if self.use_past: self.fill_with_past_key_values_(_SCREAMING_SNAKE_CASE , direction="""inputs""" ) elif self.task == "causal-lm": # TODO: figure this case out. UpperCAmelCase : int = OrderedDict( [ ("""input_ids""", {0: """batch""", 1: """encoder_sequence"""}), ("""attention_mask""", {0: """batch""", 1: """encoder_sequence"""}), ] ) if self.use_past: UpperCAmelCase , UpperCAmelCase : Tuple = self.num_layers for i in range(_SCREAMING_SNAKE_CASE ): UpperCAmelCase : Optional[Any] = {0: """batch""", 2: """past_sequence + sequence"""} UpperCAmelCase : List[Any] = {0: """batch""", 2: """past_sequence + sequence"""} else: UpperCAmelCase : Dict = OrderedDict( [ ("""input_ids""", {0: """batch""", 1: """encoder_sequence"""}), ("""attention_mask""", {0: """batch""", 1: """encoder_sequence"""}), ("""decoder_input_ids""", {0: """batch""", 1: """decoder_sequence"""}), ("""decoder_attention_mask""", {0: """batch""", 1: """decoder_sequence"""}), ] ) return common_inputs @property def SCREAMING_SNAKE_CASE ( self ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' if self.task in ["default", "seq2seq-lm"]: UpperCAmelCase : Union[str, Any] = super().outputs else: UpperCAmelCase : int = super(_SCREAMING_SNAKE_CASE , self ).outputs if self.use_past: UpperCAmelCase , UpperCAmelCase : Any = self.num_layers for i in range(_SCREAMING_SNAKE_CASE ): UpperCAmelCase : List[str] = {0: """batch""", 2: """past_sequence + sequence"""} UpperCAmelCase : List[str] = {0: """batch""", 2: """past_sequence + sequence"""} return common_outputs def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = -1 , _SCREAMING_SNAKE_CASE = -1 , _SCREAMING_SNAKE_CASE = False , _SCREAMING_SNAKE_CASE = None , ) -> Mapping[str, Any]: '''simple docstring''' UpperCAmelCase : Dict = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # Generate decoder inputs UpperCAmelCase : Optional[Any] = seq_length if not self.use_past else 1 UpperCAmelCase : Dict = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) UpperCAmelCase : Any = {F"decoder_{name}": tensor for name, tensor in decoder_inputs.items()} UpperCAmelCase : Union[str, Any] = dict(**_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) if self.use_past: if not is_torch_available(): raise ValueError("""Cannot generate dummy past_keys inputs without PyTorch installed.""" ) else: import torch UpperCAmelCase , UpperCAmelCase : int = common_inputs["""input_ids"""].shape UpperCAmelCase : Any = common_inputs["""decoder_input_ids"""].shape[1] UpperCAmelCase , UpperCAmelCase : str = self.num_attention_heads UpperCAmelCase : Union[str, Any] = ( batch, num_encoder_attention_heads, encoder_seq_length, self._config.hidden_size // num_encoder_attention_heads, ) UpperCAmelCase : Union[str, Any] = decoder_seq_length + 3 UpperCAmelCase : Union[str, Any] = ( batch, num_decoder_attention_heads, decoder_past_length, self._config.hidden_size // num_decoder_attention_heads, ) UpperCAmelCase : Optional[Any] = torch.cat( [common_inputs["""decoder_attention_mask"""], torch.ones(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )] , dim=1 ) UpperCAmelCase : List[str] = [] # If the number of encoder and decoder layers are present in the model configuration, both are considered UpperCAmelCase , UpperCAmelCase : List[Any] = self.num_layers UpperCAmelCase : Optional[Any] = min(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) UpperCAmelCase : Optional[Any] = max(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) - min_num_layers UpperCAmelCase : Optional[int] = """encoder""" if num_encoder_layers > num_decoder_layers else """decoder""" for _ in range(_SCREAMING_SNAKE_CASE ): common_inputs["past_key_values"].append( ( torch.zeros(_SCREAMING_SNAKE_CASE ), torch.zeros(_SCREAMING_SNAKE_CASE ), torch.zeros(_SCREAMING_SNAKE_CASE ), torch.zeros(_SCREAMING_SNAKE_CASE ), ) ) # TODO: test this. UpperCAmelCase : Dict = encoder_shape if remaining_side_name == """encoder""" else decoder_shape for _ in range(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): common_inputs["past_key_values"].append((torch.zeros(_SCREAMING_SNAKE_CASE ), torch.zeros(_SCREAMING_SNAKE_CASE )) ) return common_inputs def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = -1 , _SCREAMING_SNAKE_CASE = -1 , _SCREAMING_SNAKE_CASE = False , _SCREAMING_SNAKE_CASE = None , ) -> Mapping[str, Any]: '''simple docstring''' UpperCAmelCase : Tuple = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if self.use_past: if not is_torch_available(): raise ValueError("""Cannot generate dummy past_keys inputs without PyTorch installed.""" ) else: import torch UpperCAmelCase , UpperCAmelCase : Optional[Any] = common_inputs["""input_ids"""].shape # Not using the same length for past_key_values UpperCAmelCase : Union[str, Any] = seqlen + 2 UpperCAmelCase , UpperCAmelCase : Optional[int] = self.num_layers UpperCAmelCase , UpperCAmelCase : Dict = self.num_attention_heads UpperCAmelCase : Any = ( batch, num_encoder_attention_heads, past_key_values_length, self._config.hidden_size // num_encoder_attention_heads, ) UpperCAmelCase : List[Any] = common_inputs["""attention_mask"""].dtype UpperCAmelCase : Any = torch.cat( [common_inputs["""attention_mask"""], torch.ones(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , dtype=_SCREAMING_SNAKE_CASE )] , dim=1 ) UpperCAmelCase : List[str] = [ (torch.zeros(_SCREAMING_SNAKE_CASE ), torch.zeros(_SCREAMING_SNAKE_CASE )) for _ in range(_SCREAMING_SNAKE_CASE ) ] return common_inputs def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = -1 , _SCREAMING_SNAKE_CASE = -1 , _SCREAMING_SNAKE_CASE = False , _SCREAMING_SNAKE_CASE = None , ) -> Mapping[str, Any]: '''simple docstring''' UpperCAmelCase : str = compute_effective_axis_dimension( _SCREAMING_SNAKE_CASE , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX UpperCAmelCase : List[str] = tokenizer.num_special_tokens_to_add(_SCREAMING_SNAKE_CASE ) UpperCAmelCase : int = compute_effective_axis_dimension( _SCREAMING_SNAKE_CASE , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=_SCREAMING_SNAKE_CASE ) # Generate dummy inputs according to compute batch and sequence UpperCAmelCase : Dict = [""" """.join([tokenizer.unk_token] ) * seq_length] * batch_size UpperCAmelCase : Optional[int] = dict(tokenizer(_SCREAMING_SNAKE_CASE , return_tensors=_SCREAMING_SNAKE_CASE ) ) return common_inputs def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = -1 , _SCREAMING_SNAKE_CASE = -1 , _SCREAMING_SNAKE_CASE = False , _SCREAMING_SNAKE_CASE = None , ) -> Mapping[str, Any]: '''simple docstring''' if self.task in ["default", "seq2seq-lm"]: UpperCAmelCase : Optional[int] = self._generate_dummy_inputs_for_default_and_seqaseq_lm( _SCREAMING_SNAKE_CASE , batch_size=_SCREAMING_SNAKE_CASE , seq_length=_SCREAMING_SNAKE_CASE , is_pair=_SCREAMING_SNAKE_CASE , framework=_SCREAMING_SNAKE_CASE ) elif self.task == "causal-lm": UpperCAmelCase : Optional[int] = self._generate_dummy_inputs_for_causal_lm( _SCREAMING_SNAKE_CASE , batch_size=_SCREAMING_SNAKE_CASE , seq_length=_SCREAMING_SNAKE_CASE , is_pair=_SCREAMING_SNAKE_CASE , framework=_SCREAMING_SNAKE_CASE ) else: UpperCAmelCase : Tuple = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( _SCREAMING_SNAKE_CASE , batch_size=_SCREAMING_SNAKE_CASE , seq_length=_SCREAMING_SNAKE_CASE , is_pair=_SCREAMING_SNAKE_CASE , framework=_SCREAMING_SNAKE_CASE ) return common_inputs def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> List[Any]: '''simple docstring''' if self.task in ["default", "seq2seq-lm"]: UpperCAmelCase : List[Any] = super()._flatten_past_key_values_(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) else: UpperCAmelCase : Dict = super(_SCREAMING_SNAKE_CASE , self )._flatten_past_key_values_( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
109
0
"""simple docstring""" import unittest from transformers import DonutProcessor __SCREAMING_SNAKE_CASE : Union[str, Any] = '''naver-clova-ix/donut-base''' class lowerCamelCase_( unittest.TestCase ): '''simple docstring''' def snake_case__ ( self ): _lowerCamelCase = DonutProcessor.from_pretrained(lowerCamelCase__ ) def snake_case__ ( self ): _lowerCamelCase = { '''name''': '''John Doe''', '''age''': '''99''', '''city''': '''Atlanta''', '''state''': '''GA''', '''zip''': '''30301''', '''phone''': '''123-4567''', '''nicknames''': [{'''nickname''': '''Johnny'''}, {'''nickname''': '''JD'''}], } _lowerCamelCase = ( '''<s_name>John Doe</s_name><s_age>99</s_age><s_city>Atlanta</s_city>''' '''<s_state>GA</s_state><s_zip>30301</s_zip><s_phone>123-4567</s_phone>''' '''<s_nicknames><s_nickname>Johnny</s_nickname>''' '''<sep/><s_nickname>JD</s_nickname></s_nicknames>''' ) _lowerCamelCase = self.processor.tokenajson(lowerCamelCase__ ) self.assertDictEqual(lowerCamelCase__ , lowerCamelCase__ )
73
"""simple docstring""" import os import tempfile import unittest import uuid from pathlib import Path from transformers.testing_utils import get_tests_dir, require_soundfile, require_torch, require_vision from transformers.tools.agent_types import AgentAudio, AgentImage, AgentText from transformers.utils import is_soundfile_availble, is_torch_available, is_vision_available if is_torch_available(): import torch if is_soundfile_availble(): import soundfile as sf if is_vision_available(): from PIL import Image def lowerCAmelCase_( lowercase_ : List[str]="" ) -> str: _lowerCamelCase = tempfile.mkdtemp() return os.path.join(lowercase_ , str(uuid.uuida() ) + suffix ) @require_soundfile @require_torch class lowerCamelCase_( unittest.TestCase ): '''simple docstring''' def snake_case__ ( self ): _lowerCamelCase = torch.rand(1_2 , dtype=torch.floataa ) - 0.5 _lowerCamelCase = AgentAudio(lowerCamelCase__ ) _lowerCamelCase = str(agent_type.to_string() ) # Ensure that the tensor and the agent_type's tensor are the same self.assertTrue(torch.allclose(lowerCamelCase__ , agent_type.to_raw() , atol=1e-4 ) ) del agent_type # Ensure the path remains even after the object deletion self.assertTrue(os.path.exists(lowerCamelCase__ ) ) # Ensure that the file contains the same value as the original tensor _lowerCamelCase , _lowerCamelCase = sf.read(lowerCamelCase__ ) self.assertTrue(torch.allclose(lowerCamelCase__ , torch.tensor(lowerCamelCase__ ) , atol=1e-4 ) ) def snake_case__ ( self ): _lowerCamelCase = torch.rand(1_2 , dtype=torch.floataa ) - 0.5 _lowerCamelCase = get_new_path(suffix='''.wav''' ) sf.write(lowerCamelCase__ , lowerCamelCase__ , 1_6_0_0_0 ) _lowerCamelCase = AgentAudio(lowerCamelCase__ ) self.assertTrue(torch.allclose(lowerCamelCase__ , agent_type.to_raw() , atol=1e-4 ) ) self.assertEqual(agent_type.to_string() , lowerCamelCase__ ) @require_vision @require_torch class lowerCamelCase_( unittest.TestCase ): '''simple docstring''' def snake_case__ ( self ): _lowerCamelCase = torch.randint(0 , 2_5_6 , (6_4, 6_4, 3) ) _lowerCamelCase = AgentImage(lowerCamelCase__ ) _lowerCamelCase = str(agent_type.to_string() ) # Ensure that the tensor and the agent_type's tensor are the same self.assertTrue(torch.allclose(lowerCamelCase__ , agent_type._tensor , atol=1e-4 ) ) self.assertIsInstance(agent_type.to_raw() , Image.Image ) # Ensure the path remains even after the object deletion del agent_type self.assertTrue(os.path.exists(lowerCamelCase__ ) ) def snake_case__ ( self ): _lowerCamelCase = Path(get_tests_dir('''fixtures/tests_samples/COCO''' ) ) / '''000000039769.png''' _lowerCamelCase = Image.open(lowerCamelCase__ ) _lowerCamelCase = AgentImage(lowerCamelCase__ ) self.assertTrue(path.samefile(agent_type.to_string() ) ) self.assertTrue(image == agent_type.to_raw() ) # Ensure the path remains even after the object deletion del agent_type self.assertTrue(os.path.exists(lowerCamelCase__ ) ) def snake_case__ ( self ): _lowerCamelCase = Path(get_tests_dir('''fixtures/tests_samples/COCO''' ) ) / '''000000039769.png''' _lowerCamelCase = Image.open(lowerCamelCase__ ) _lowerCamelCase = AgentImage(lowerCamelCase__ ) self.assertFalse(path.samefile(agent_type.to_string() ) ) self.assertTrue(image == agent_type.to_raw() ) # Ensure the path remains even after the object deletion del agent_type self.assertTrue(os.path.exists(lowerCamelCase__ ) ) class lowerCamelCase_( unittest.TestCase ): '''simple docstring''' def snake_case__ ( self ): _lowerCamelCase = '''Hey!''' _lowerCamelCase = AgentText(lowerCamelCase__ ) self.assertEqual(lowerCamelCase__ , agent_type.to_string() ) self.assertEqual(lowerCamelCase__ , agent_type.to_raw() ) self.assertEqual(lowerCamelCase__ , lowerCamelCase__ )
73
1
"""simple docstring""" import argparse import torch from transformers import ( SpeechTaConfig, SpeechTaFeatureExtractor, SpeechTaForSpeechToSpeech, SpeechTaForSpeechToText, SpeechTaForTextToSpeech, SpeechTaProcessor, SpeechTaTokenizer, logging, ) from transformers.tokenization_utils import AddedToken logging.set_verbosity_info() __UpperCamelCase = logging.get_logger('''transformers.models.speecht5''') __UpperCamelCase = { '''speech_encoder_prenet.layer_norm''': '''speecht5.encoder.prenet.feature_projection.layer_norm''', '''speech_encoder_prenet.post_extract_proj''': '''speecht5.encoder.prenet.feature_projection.projection''', '''speech_encoder_prenet.pos_conv.0''': '''speecht5.encoder.prenet.pos_conv_embed.conv''', '''speech_encoder_prenet.mask_emb''': '''speecht5.encoder.prenet.masked_spec_embed''', } __UpperCamelCase = { '''text_encoder_prenet.encoder_prenet.0''': '''speecht5.encoder.prenet.embed_tokens''', '''text_encoder_prenet.encoder_prenet.1.alpha''': '''speecht5.encoder.prenet.encode_positions.alpha''', } __UpperCamelCase = { '''speech_decoder_prenet.decoder_prenet.0.0.prenet.0.0''': '''speecht5.decoder.prenet.layers.0''', '''speech_decoder_prenet.decoder_prenet.0.0.prenet.1.0''': '''speecht5.decoder.prenet.layers.1''', '''speech_decoder_prenet.decoder_prenet.0.1''': '''speecht5.decoder.prenet.final_layer''', '''speech_decoder_prenet.decoder_prenet.1.alpha''': '''speecht5.decoder.prenet.encode_positions.alpha''', '''speech_decoder_prenet.spkembs_layer.0''': '''speecht5.decoder.prenet.speaker_embeds_layer''', } __UpperCamelCase = { '''speech_decoder_postnet.feat_out''': '''speech_decoder_postnet.feat_out''', '''speech_decoder_postnet.prob_out''': '''speech_decoder_postnet.prob_out''', '''speech_decoder_postnet.postnet.postnet.0.0''': '''speech_decoder_postnet.layers.0.conv''', '''speech_decoder_postnet.postnet.postnet.0.1''': '''speech_decoder_postnet.layers.0.batch_norm''', '''speech_decoder_postnet.postnet.postnet.1.0''': '''speech_decoder_postnet.layers.1.conv''', '''speech_decoder_postnet.postnet.postnet.1.1''': '''speech_decoder_postnet.layers.1.batch_norm''', '''speech_decoder_postnet.postnet.postnet.2.0''': '''speech_decoder_postnet.layers.2.conv''', '''speech_decoder_postnet.postnet.postnet.2.1''': '''speech_decoder_postnet.layers.2.batch_norm''', '''speech_decoder_postnet.postnet.postnet.3.0''': '''speech_decoder_postnet.layers.3.conv''', '''speech_decoder_postnet.postnet.postnet.3.1''': '''speech_decoder_postnet.layers.3.batch_norm''', '''speech_decoder_postnet.postnet.postnet.4.0''': '''speech_decoder_postnet.layers.4.conv''', '''speech_decoder_postnet.postnet.postnet.4.1''': '''speech_decoder_postnet.layers.4.batch_norm''', } __UpperCamelCase = { '''text_decoder_prenet.embed_tokens''': '''speecht5.decoder.prenet.embed_tokens''', } __UpperCamelCase = { '''text_decoder_postnet.output_projection''': '''text_decoder_postnet.lm_head''', } __UpperCamelCase = { '''encoder.layers.*.self_attn.k_proj''': '''speecht5.encoder.wrapped_encoder.layers.*.attention.k_proj''', '''encoder.layers.*.self_attn.v_proj''': '''speecht5.encoder.wrapped_encoder.layers.*.attention.v_proj''', '''encoder.layers.*.self_attn.q_proj''': '''speecht5.encoder.wrapped_encoder.layers.*.attention.q_proj''', '''encoder.layers.*.self_attn.out_proj''': '''speecht5.encoder.wrapped_encoder.layers.*.attention.out_proj''', '''encoder.layers.*.self_attn_layer_norm''': '''speecht5.encoder.wrapped_encoder.layers.*.layer_norm''', '''encoder.layers.*.fc1''': '''speecht5.encoder.wrapped_encoder.layers.*.feed_forward.intermediate_dense''', '''encoder.layers.*.fc2''': '''speecht5.encoder.wrapped_encoder.layers.*.feed_forward.output_dense''', '''encoder.layers.*.final_layer_norm''': '''speecht5.encoder.wrapped_encoder.layers.*.final_layer_norm''', '''encoder.layer_norm''': '''speecht5.encoder.wrapped_encoder.layer_norm''', '''encoder.pos_emb.pe_k''': '''speecht5.encoder.wrapped_encoder.embed_positions.pe_k''', } __UpperCamelCase = { '''decoder.layers.*.self_attn.k_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.self_attn.k_proj''', '''decoder.layers.*.self_attn.v_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.self_attn.v_proj''', '''decoder.layers.*.self_attn.q_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.self_attn.q_proj''', '''decoder.layers.*.self_attn.out_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.self_attn.out_proj''', '''decoder.layers.*.self_attn_layer_norm''': '''speecht5.decoder.wrapped_decoder.layers.*.self_attn_layer_norm''', '''decoder.layers.*.encoder_attn.k_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.k_proj''', '''decoder.layers.*.encoder_attn.v_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.v_proj''', '''decoder.layers.*.encoder_attn.q_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.q_proj''', '''decoder.layers.*.encoder_attn.out_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.out_proj''', '''decoder.layers.*.encoder_attn_layer_norm''': '''speecht5.decoder.wrapped_decoder.layers.*.encoder_attn_layer_norm''', '''decoder.layers.*.fc1''': '''speecht5.decoder.wrapped_decoder.layers.*.feed_forward.intermediate_dense''', '''decoder.layers.*.fc2''': '''speecht5.decoder.wrapped_decoder.layers.*.feed_forward.output_dense''', '''decoder.layers.*.final_layer_norm''': '''speecht5.decoder.wrapped_decoder.layers.*.final_layer_norm''', } __UpperCamelCase = { **MAPPING_SPEECH_ENCODER_PRENET, **MAPPING_ENCODER, **MAPPING_DECODER, **MAPPING_TEXT_DECODER_PRENET, **MAPPING_TEXT_DECODER_POSTNET, } __UpperCamelCase = { **MAPPING_TEXT_ENCODER_PRENET, **MAPPING_ENCODER, **MAPPING_DECODER, **MAPPING_SPEECH_DECODER_PRENET, **MAPPING_SPEECH_DECODER_POSTNET, } __UpperCamelCase = { **MAPPING_SPEECH_ENCODER_PRENET, **MAPPING_ENCODER, **MAPPING_DECODER, **MAPPING_SPEECH_DECODER_PRENET, **MAPPING_SPEECH_DECODER_POSTNET, } __UpperCamelCase = [] __UpperCamelCase = [ '''encoder.version''', '''encoder.layers.*.norm_k.weight''', '''encoder.layers.*.norm_k.bias''', '''decoder.version''', '''decoder.layers.*.norm_k.weight''', '''decoder.layers.*.norm_k.bias''', '''decoder.pos_emb.pe_k''', '''speech_encoder_prenet.embed_positions._float_tensor''', '''text_decoder_prenet.embed_positions._float_tensor''', ] __UpperCamelCase = IGNORE_KEYS + [ '''encoder.proj''', '''text_encoder_prenet.*''', '''speech_decoder_prenet.*''', '''speech_decoder_postnet.*''', ] __UpperCamelCase = IGNORE_KEYS + [ '''encoder.proj''', '''speech_encoder_prenet.*''', '''text_decoder_prenet.*''', '''text_decoder_postnet.*''', ] __UpperCamelCase = IGNORE_KEYS + [ '''encoder.proj''', '''text_encoder_prenet.*''', '''text_decoder_prenet.*''', '''text_decoder_postnet.*''', ] def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> str: for attribute in key.split('.' ): snake_case_ = getattr(UpperCAmelCase , UpperCAmelCase ) if weight_type is not None: snake_case_ = getattr(UpperCAmelCase , UpperCAmelCase ).shape else: snake_case_ = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f'Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be' f' {value.shape} for {full_name}' ) if weight_type == "weight": snake_case_ = value elif weight_type == "weight_g": snake_case_ = value elif weight_type == "weight_v": snake_case_ = value elif weight_type == "bias": snake_case_ = value elif weight_type == "running_mean": snake_case_ = value elif weight_type == "running_var": snake_case_ = value elif weight_type == "num_batches_tracked": snake_case_ = value else: snake_case_ = value logger.info(f'{key + ("." + weight_type if weight_type is not None else "")} was initialized from {full_name}.' ) def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase ) -> List[str]: for key in ignore_keys: if key.endswith('.*' ): if name.startswith(key[:-1] ): return True elif ".*." in key: snake_case_ , snake_case_ = key.split('.*.' ) if prefix in name and suffix in name: return True elif key in name: return True return False def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Any: snake_case_ = [] if task == "s2t": snake_case_ = hf_model.speechta.encoder.prenet.feature_encoder snake_case_ = MAPPING_S2T snake_case_ = IGNORE_KEYS_S2T elif task == "t2s": snake_case_ = None snake_case_ = MAPPING_T2S snake_case_ = IGNORE_KEYS_T2S elif task == "s2s": snake_case_ = hf_model.speechta.encoder.prenet.feature_encoder snake_case_ = MAPPING_S2S snake_case_ = IGNORE_KEYS_S2S else: raise ValueError(f'Unsupported task: {task}' ) for name, value in fairseq_dict.items(): if should_ignore(UpperCAmelCase , UpperCAmelCase ): logger.info(f'{name} was ignored' ) continue snake_case_ = False if "conv_layers" in name: load_conv_layer( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , hf_model.config.feat_extract_norm == 'group' , ) snake_case_ = True else: for key, mapped_key in MAPPING.items(): # mapped_key = "speecht5." + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if "*" in key: snake_case_ , snake_case_ = key.split('.*.' ) if prefix in name and suffix in name: snake_case_ = suffix # if key in name or key.split("w2v_model.")[-1] == name.split(".")[0]: if key in name: snake_case_ = True if "*" in mapped_key: snake_case_ = name.split(UpperCAmelCase )[0].split('.' )[-2] snake_case_ = mapped_key.replace('*' , UpperCAmelCase ) if "weight_g" in name: snake_case_ = 'weight_g' elif "weight_v" in name: snake_case_ = 'weight_v' elif "bias" in name: snake_case_ = 'bias' elif "weight" in name: snake_case_ = 'weight' elif "running_mean" in name: snake_case_ = 'running_mean' elif "running_var" in name: snake_case_ = 'running_var' elif "num_batches_tracked" in name: snake_case_ = 'num_batches_tracked' else: snake_case_ = None set_recursively(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) continue if not is_used: unused_weights.append(UpperCAmelCase ) logger.warning(f'Unused weights: {unused_weights}' ) def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> List[str]: snake_case_ = full_name.split('conv_layers.' )[-1] snake_case_ = name.split('.' ) snake_case_ = int(items[0] ) snake_case_ = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.' ) snake_case_ = value logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.' ) snake_case_ = value logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.' ) snake_case_ = value logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.' ) snake_case_ = value logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) else: unused_weights.append(UpperCAmelCase ) @torch.no_grad() def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase=None , ) -> Dict: if config_path is not None: snake_case_ = SpeechTaConfig.from_pretrained(UpperCAmelCase ) else: snake_case_ = SpeechTaConfig() if task == "s2t": snake_case_ = config.max_text_positions snake_case_ = SpeechTaForSpeechToText(UpperCAmelCase ) elif task == "t2s": snake_case_ = 1876 snake_case_ = 600 snake_case_ = config.max_speech_positions snake_case_ = SpeechTaForTextToSpeech(UpperCAmelCase ) elif task == "s2s": snake_case_ = 1876 snake_case_ = config.max_speech_positions snake_case_ = SpeechTaForSpeechToSpeech(UpperCAmelCase ) else: raise ValueError(f'Unknown task name: {task}' ) if vocab_path: snake_case_ = SpeechTaTokenizer(UpperCAmelCase , model_max_length=config.max_text_positions ) # Mask token behaves like a normal word, i.e. include the space before it snake_case_ = AddedToken('<mask>' , lstrip=UpperCAmelCase , rstrip=UpperCAmelCase ) snake_case_ = mask_token tokenizer.add_special_tokens({'mask_token': mask_token} ) tokenizer.add_tokens(['<ctc_blank>'] ) snake_case_ = SpeechTaFeatureExtractor() snake_case_ = SpeechTaProcessor(tokenizer=UpperCAmelCase , feature_extractor=UpperCAmelCase ) processor.save_pretrained(UpperCAmelCase ) snake_case_ = torch.load(UpperCAmelCase ) recursively_load_weights(fairseq_checkpoint['model'] , UpperCAmelCase , UpperCAmelCase ) model.save_pretrained(UpperCAmelCase ) if repo_id: print('Pushing to the hub...' ) processor.push_to_hub(UpperCAmelCase ) model.push_to_hub(UpperCAmelCase ) if __name__ == "__main__": __UpperCamelCase = argparse.ArgumentParser() parser.add_argument( '''--task''', default='''s2t''', type=str, help='''Type of the SpeechT5 model you\'d like to convert. Should be one of \'s2t\', \'t2s\', \'s2s\'.''', ) parser.add_argument('''--checkpoint_path''', required=True, default=None, type=str, help='''Path to fairseq checkpoint''') parser.add_argument('''--vocab_path''', default=None, type=str, help='''Path to SentencePiece model''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') parser.add_argument( '''--pytorch_dump_folder_path''', required=True, default=None, type=str, help='''Path to the output PyTorch model.''' ) parser.add_argument( '''--push_to_hub''', default=None, type=str, help='''Where to upload the converted model on the 🤗 hub.''' ) __UpperCamelCase = parser.parse_args() convert_speechta_checkpoint( args.task, args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.vocab_path, args.push_to_hub, )
69
'''simple docstring''' import shutil import tempfile import unittest from transformers import ClapFeatureExtractor, ClapProcessor, RobertaTokenizer, RobertaTokenizerFast from transformers.testing_utils import require_sentencepiece, require_torchaudio from .test_feature_extraction_clap import floats_list @require_torchaudio @require_sentencepiece class a_ (unittest.TestCase ): def __UpperCamelCase ( self ): _lowerCAmelCase : Dict = """laion/clap-htsat-unfused""" _lowerCAmelCase : int = tempfile.mkdtemp() def __UpperCamelCase ( self , **snake_case_ ): return RobertaTokenizer.from_pretrained(self.checkpoint , **snake_case_ ) def __UpperCamelCase ( self , **snake_case_ ): return ClapFeatureExtractor.from_pretrained(self.checkpoint , **snake_case_ ) def __UpperCamelCase ( self ): shutil.rmtree(self.tmpdirname ) def __UpperCamelCase ( self ): _lowerCAmelCase : Optional[int] = self.get_tokenizer() _lowerCAmelCase : List[Any] = self.get_feature_extractor() _lowerCAmelCase : Union[str, Any] = ClapProcessor(tokenizer=snake_case_ , feature_extractor=snake_case_ ) processor.save_pretrained(self.tmpdirname ) _lowerCAmelCase : Any = ClapProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer , snake_case_ ) self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor.to_json_string() ) self.assertIsInstance(processor.feature_extractor , snake_case_ ) def __UpperCamelCase ( self ): _lowerCAmelCase : Union[str, Any] = ClapProcessor(tokenizer=self.get_tokenizer() , feature_extractor=self.get_feature_extractor() ) processor.save_pretrained(self.tmpdirname ) _lowerCAmelCase : Union[str, Any] = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" ) _lowerCAmelCase : int = self.get_feature_extractor(do_normalize=snake_case_ , padding_value=1.0 ) _lowerCAmelCase : Dict = ClapProcessor.from_pretrained( self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=snake_case_ , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , snake_case_ ) self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.feature_extractor , snake_case_ ) def __UpperCamelCase ( self ): _lowerCAmelCase : int = self.get_feature_extractor() _lowerCAmelCase : Optional[int] = self.get_tokenizer() _lowerCAmelCase : List[Any] = ClapProcessor(tokenizer=snake_case_ , feature_extractor=snake_case_ ) _lowerCAmelCase : Union[str, Any] = floats_list((3, 1_0_0_0) ) _lowerCAmelCase : List[str] = feature_extractor(snake_case_ , return_tensors="""np""" ) _lowerCAmelCase : Optional[Any] = processor(audios=snake_case_ , return_tensors="""np""" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def __UpperCamelCase ( self ): _lowerCAmelCase : int = self.get_feature_extractor() _lowerCAmelCase : List[str] = self.get_tokenizer() _lowerCAmelCase : Tuple = ClapProcessor(tokenizer=snake_case_ , feature_extractor=snake_case_ ) _lowerCAmelCase : Union[str, Any] = """This is a test string""" _lowerCAmelCase : Union[str, Any] = processor(text=snake_case_ ) _lowerCAmelCase : Optional[int] = tokenizer(snake_case_ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def __UpperCamelCase ( self ): _lowerCAmelCase : Dict = self.get_feature_extractor() _lowerCAmelCase : Any = self.get_tokenizer() _lowerCAmelCase : List[Any] = ClapProcessor(tokenizer=snake_case_ , feature_extractor=snake_case_ ) _lowerCAmelCase : Any = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] _lowerCAmelCase : List[Any] = processor.batch_decode(snake_case_ ) _lowerCAmelCase : Dict = tokenizer.batch_decode(snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) def __UpperCamelCase ( self ): _lowerCAmelCase : Union[str, Any] = self.get_feature_extractor() _lowerCAmelCase : Dict = self.get_tokenizer() _lowerCAmelCase : Optional[Any] = ClapProcessor(tokenizer=snake_case_ , feature_extractor=snake_case_ ) self.assertListEqual( processor.model_input_names[2:] , feature_extractor.model_input_names , msg="""`processor` and `feature_extractor` model input names do not match""" , )
309
0
def _a ( UpperCAmelCase ) -> int: """simple docstring""" lowerCamelCase__ : Any = len(UpperCAmelCase ) while cur > 1: # Find the maximum number in arr lowerCamelCase__ : List[Any] = arr.index(max(arr[0:cur] ) ) # Reverse from 0 to mi lowerCamelCase__ : Dict = arr[mi::-1] + arr[mi + 1 : len(UpperCAmelCase )] # Reverse whole list lowerCamelCase__ : List[str] = arr[cur - 1 :: -1] + arr[cur : len(UpperCAmelCase )] cur -= 1 return arr if __name__ == "__main__": _A : List[str] = input('Enter numbers separated by a comma:\n').strip() _A : Any = [int(item) for item in user_input.split(',')] print(pancake_sort(unsorted))
265
from math import ceil from typing import List, Optional, Union import numpy as np from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import BatchFeature, SequenceFeatureExtractor from ...utils import TensorType, logging _A : List[str] = logging.get_logger(__name__) class __SCREAMING_SNAKE_CASE ( lowerCAmelCase_ ): _UpperCAmelCase : Any = ["audio_values", "audio_mask"] def __init__( self : Any , A : Union[str, Any]=2_0_4_8 , A : Any=1 , A : int=[1_6, 1_6] , A : Any=1_2_8 , A : List[Any]=4_4_1_0_0 , A : Dict=8_6 , A : Dict=2_0_4_8 , A : str=0.0 , **A : Union[str, Any] , ) ->List[Any]: super().__init__( feature_size=A , sampling_rate=A , padding_value=A , **A , ) lowerCamelCase__ : Dict = spectrogram_length lowerCamelCase__ : Optional[int] = num_channels lowerCamelCase__ : str = patch_size lowerCamelCase__ : Any = feature_size // self.patch_size[1] lowerCamelCase__ : Union[str, Any] = n_fft lowerCamelCase__ : Union[str, Any] = sampling_rate // hop_length_to_sampling_rate lowerCamelCase__ : Optional[Any] = sampling_rate lowerCamelCase__ : Optional[Any] = padding_value lowerCamelCase__ : Union[str, Any] = mel_filter_bank( num_frequency_bins=1 + n_fft // 2 , num_mel_filters=A , min_frequency=0.0 , max_frequency=2_20_50.0 , sampling_rate=A , norm='''slaney''' , mel_scale='''slaney''' , ).T def __lowerCamelCase ( self : List[Any] , A : np.array ) ->np.ndarray: lowerCamelCase__ : Any = spectrogram( A , window_function(self.n_fft , '''hann''' ) , frame_length=self.n_fft , hop_length=self.hop_length , power=2.0 , mel_filters=self.mel_filters.T , log_mel='''dB''' , db_range=80.0 , ) lowerCamelCase__ : Any = log_spec[:, :-1] lowerCamelCase__ : int = log_spec - 20.0 lowerCamelCase__ : int = np.clip(log_spec / 40.0 , -2.0 , 0.0 ) + 1.0 return log_spec def __call__( self : Union[str, Any] , A : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , A : Optional[Union[str, TensorType]] = None , A : Optional[bool] = True , A : Optional[int] = None , A : bool = False , A : bool = False , **A : str , ) ->BatchFeature: if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( '''This feature extractor is set to support sampling rate''' F" of {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled" F" with {self.sampling_rate} and not {sampling_rate}." ) else: logger.warning( '''It is strongly recommended to pass the `sampling_rate` argument to this function. ''' '''Failing to do so can result in silent errors that might be hard to debug.''' ) lowerCamelCase__ : List[str] = isinstance(A , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(F"Only mono-channel audio is supported for input to {self}" ) lowerCamelCase__ : Any = is_batched_numpy or ( isinstance(A , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: lowerCamelCase__ : Optional[int] = [np.asarray([speech] , dtype=np.floataa ).T for speech in raw_speech] elif not is_batched and not isinstance(A , np.ndarray ): lowerCamelCase__ : Optional[int] = np.asarray(A , dtype=np.floataa ) elif isinstance(A , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): lowerCamelCase__ : Optional[Any] = raw_speech.astype(np.floataa ) # always return batch if not is_batched: lowerCamelCase__ : int = [np.asarray([raw_speech] ).T] # Convert audio signals to log mel spectrograms, truncate by time axis lowerCamelCase__ : List[str] = [ self._np_extract_fbank_features(waveform.squeeze() ).T[: self.spectrogram_length] for waveform in raw_speech ] if isinstance(audio_features[0] , A ): lowerCamelCase__ : Dict = [np.asarray(A , dtype=np.floataa ) for feature in audio_features] # Create audio attention mask lowerCamelCase__ : Optional[Any] = max( [ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len for feature in audio_features] ) # The maximum number of audio patches in a batch if return_attention_mask: lowerCamelCase__ : List[Any] = [ (ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len) * [1] + (max_patch_len - ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len) * [0] for feature in audio_features ] lowerCamelCase__ : List[str] = np.array(A ).astype(np.floataa ) # convert into correct format for padding lowerCamelCase__ : str = max_patch_len // self.freq_len * self.patch_size[0] # The maximum audio size in a batch lowerCamelCase__ : Optional[Any] = np.ones([len(A ), 1, max_time_len, self.feature_size] ).astype(np.floataa ) lowerCamelCase__ : Tuple = padded_audio_features * self.padding_value for i in range(len(A ) ): lowerCamelCase__ : int = audio_features[i] lowerCamelCase__ : Optional[int] = feature # return as BatchFeature if return_attention_mask: lowerCamelCase__ : Optional[int] = {'''audio_values''': padded_audio_features, '''audio_mask''': audio_mask} else: lowerCamelCase__ : Tuple = {'''audio_values''': padded_audio_features} lowerCamelCase__ : Union[str, Any] = BatchFeature(data=A , tensor_type=A ) return encoded_inputs
265
1
"""simple docstring""" import gc import random import unittest import numpy as np import torch from transformers import XLMRobertaTokenizer from diffusers import ( AltDiffusionImgaImgPipeline, AutoencoderKL, PNDMScheduler, UNetaDConditionModel, ) from diffusers.image_processor import VaeImageProcessor from diffusers.pipelines.alt_diffusion.modeling_roberta_series import ( RobertaSeriesConfig, RobertaSeriesModelWithTransformation, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): def __lowerCAmelCase ( self ) -> str: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def __lowerCAmelCase ( self ) -> Union[str, Any]: lowerCAmelCase_ :Union[str, Any] = 1 lowerCAmelCase_ :Any = 3 lowerCAmelCase_ :Tuple = (32, 32) lowerCAmelCase_ :Dict = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(__A ) return image @property def __lowerCAmelCase ( self ) -> Any: torch.manual_seed(0 ) lowerCAmelCase_ :Dict = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , ) return model @property def __lowerCAmelCase ( self ) -> List[Any]: torch.manual_seed(0 ) lowerCAmelCase_ :Optional[Any] = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , ) return model @property def __lowerCAmelCase ( self ) -> Tuple: torch.manual_seed(0 ) lowerCAmelCase_ :Optional[Any] = RobertaSeriesConfig( hidden_size=32 , project_dim=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=5006 , ) return RobertaSeriesModelWithTransformation(__A ) @property def __lowerCAmelCase ( self ) -> int: def extract(*__A , **__A ): class _SCREAMING_SNAKE_CASE : def __init__( self ) -> str: lowerCAmelCase_ :List[str] = torch.ones([0] ) def __lowerCAmelCase ( self , __A ) -> int: self.pixel_values.to(__A ) return self return Out() return extract def __lowerCAmelCase ( self ) -> str: lowerCAmelCase_ :List[str] = """cpu""" # ensure determinism for the device-dependent torch.Generator lowerCAmelCase_ :Dict = self.dummy_cond_unet lowerCAmelCase_ :List[Any] = PNDMScheduler(skip_prk_steps=__A ) lowerCAmelCase_ :int = self.dummy_vae lowerCAmelCase_ :Union[str, Any] = self.dummy_text_encoder lowerCAmelCase_ :Optional[int] = XLMRobertaTokenizer.from_pretrained("""hf-internal-testing/tiny-xlm-roberta""" ) lowerCAmelCase_ :Dict = 77 lowerCAmelCase_ :Tuple = self.dummy_image.to(__A ) lowerCAmelCase_ :Any = init_image / 2 + 0.5 # make sure here that pndm scheduler skips prk lowerCAmelCase_ :Dict = AltDiffusionImgaImgPipeline( unet=__A , scheduler=__A , vae=__A , text_encoder=__A , tokenizer=__A , safety_checker=__A , feature_extractor=self.dummy_extractor , ) lowerCAmelCase_ :Dict = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor , do_normalize=__A ) lowerCAmelCase_ :Any = alt_pipe.to(__A ) alt_pipe.set_progress_bar_config(disable=__A ) lowerCAmelCase_ :Optional[Any] = """A painting of a squirrel eating a burger""" lowerCAmelCase_ :Optional[Any] = torch.Generator(device=__A ).manual_seed(0 ) lowerCAmelCase_ :List[Any] = alt_pipe( [prompt] , generator=__A , guidance_scale=6.0 , num_inference_steps=2 , output_type="""np""" , image=__A , ) lowerCAmelCase_ :Tuple = output.images lowerCAmelCase_ :str = torch.Generator(device=__A ).manual_seed(0 ) lowerCAmelCase_ :str = alt_pipe( [prompt] , generator=__A , guidance_scale=6.0 , num_inference_steps=2 , output_type="""np""" , image=__A , return_dict=__A , )[0] lowerCAmelCase_ :Tuple = image[0, -3:, -3:, -1] lowerCAmelCase_ :List[str] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) lowerCAmelCase_ :str = np.array([0.4_4_2_7, 0.3_7_3_1, 0.4_2_4_9, 0.4_9_4_1, 0.4_5_4_6, 0.4_1_4_8, 0.4_1_9_3, 0.4_6_6_6, 0.4_4_9_9] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5E-3 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 5E-3 @unittest.skipIf(torch_device != """cuda""" , """This test requires a GPU""" ) def __lowerCAmelCase ( self ) -> Optional[int]: lowerCAmelCase_ :Tuple = self.dummy_cond_unet lowerCAmelCase_ :int = PNDMScheduler(skip_prk_steps=__A ) lowerCAmelCase_ :int = self.dummy_vae lowerCAmelCase_ :Dict = self.dummy_text_encoder lowerCAmelCase_ :List[Any] = XLMRobertaTokenizer.from_pretrained("""hf-internal-testing/tiny-xlm-roberta""" ) lowerCAmelCase_ :Optional[Any] = 77 lowerCAmelCase_ :Optional[int] = self.dummy_image.to(__A ) # put models in fp16 lowerCAmelCase_ :Any = unet.half() lowerCAmelCase_ :Union[str, Any] = vae.half() lowerCAmelCase_ :Optional[Any] = bert.half() # make sure here that pndm scheduler skips prk lowerCAmelCase_ :Tuple = AltDiffusionImgaImgPipeline( unet=__A , scheduler=__A , vae=__A , text_encoder=__A , tokenizer=__A , safety_checker=__A , feature_extractor=self.dummy_extractor , ) lowerCAmelCase_ :List[str] = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor , do_normalize=__A ) lowerCAmelCase_ :Union[str, Any] = alt_pipe.to(__A ) alt_pipe.set_progress_bar_config(disable=__A ) lowerCAmelCase_ :int = """A painting of a squirrel eating a burger""" lowerCAmelCase_ :Dict = torch.manual_seed(0 ) lowerCAmelCase_ :Union[str, Any] = alt_pipe( [prompt] , generator=__A , num_inference_steps=2 , output_type="""np""" , image=__A , ).images assert image.shape == (1, 32, 32, 3) @unittest.skipIf(torch_device != """cuda""" , """This test requires a GPU""" ) def __lowerCAmelCase ( self ) -> Optional[int]: lowerCAmelCase_ :List[str] = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/img2img/sketch-mountains-input.jpg""" ) # resize to resolution that is divisible by 8 but not 16 or 32 lowerCAmelCase_ :Tuple = init_image.resize((760, 504) ) lowerCAmelCase_ :str = """BAAI/AltDiffusion""" lowerCAmelCase_ :str = AltDiffusionImgaImgPipeline.from_pretrained( __A , safety_checker=__A , ) pipe.to(__A ) pipe.set_progress_bar_config(disable=__A ) pipe.enable_attention_slicing() lowerCAmelCase_ :Any = """A fantasy landscape, trending on artstation""" lowerCAmelCase_ :Dict = torch.manual_seed(0 ) lowerCAmelCase_ :str = pipe( prompt=__A , image=__A , strength=0.7_5 , guidance_scale=7.5 , generator=__A , output_type="""np""" , ) lowerCAmelCase_ :Dict = output.images[0] lowerCAmelCase_ :List[str] = image[255:258, 383:386, -1] assert image.shape == (504, 760, 3) lowerCAmelCase_ :int = np.array([0.9_3_5_8, 0.9_3_9_7, 0.9_5_9_9, 0.9_9_0_1, 1.0_0_0_0, 1.0_0_0_0, 0.9_8_8_2, 1.0_0_0_0, 1.0_0_0_0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch_gpu class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): def __lowerCAmelCase ( self ) -> Tuple: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __lowerCAmelCase ( self ) -> Any: lowerCAmelCase_ :Union[str, Any] = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/img2img/sketch-mountains-input.jpg""" ) lowerCAmelCase_ :Union[str, Any] = init_image.resize((768, 512) ) lowerCAmelCase_ :str = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/img2img/fantasy_landscape_alt.npy""" ) lowerCAmelCase_ :Union[str, Any] = """BAAI/AltDiffusion""" lowerCAmelCase_ :Any = AltDiffusionImgaImgPipeline.from_pretrained( __A , safety_checker=__A , ) pipe.to(__A ) pipe.set_progress_bar_config(disable=__A ) pipe.enable_attention_slicing() lowerCAmelCase_ :Tuple = """A fantasy landscape, trending on artstation""" lowerCAmelCase_ :int = torch.manual_seed(0 ) lowerCAmelCase_ :Tuple = pipe( prompt=__A , image=__A , strength=0.7_5 , guidance_scale=7.5 , generator=__A , output_type="""np""" , ) lowerCAmelCase_ :Optional[int] = output.images[0] assert image.shape == (512, 768, 3) # img2img is flaky across GPUs even in fp32, so using MAE here assert np.abs(expected_image - image ).max() < 1E-2
84
"""simple docstring""" import tempfile import unittest import numpy as np import transformers from transformers import GPTaTokenizer, GPTJConfig, is_flax_available, is_torch_available from transformers.testing_utils import is_pt_flax_cross_test, require_flax, tooslow from ...generation.test_flax_utils import FlaxGenerationTesterMixin from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax import jax.numpy as jnp from transformers.modeling_flax_pytorch_utils import ( convert_pytorch_state_dict_to_flax, load_flax_weights_in_pytorch_model, ) from transformers.models.gptj.modeling_flax_gptj import FlaxGPTJForCausalLM, FlaxGPTJModel if is_torch_available(): import torch class __lowerCAmelCase : def __init__( self , __UpperCAmelCase , __UpperCAmelCase=14 , __UpperCAmelCase=7 , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=False , __UpperCAmelCase=True , __UpperCAmelCase=99 , __UpperCAmelCase=32 , __UpperCAmelCase=4 , __UpperCAmelCase=4 , __UpperCAmelCase=4 , __UpperCAmelCase=37 , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=512 , __UpperCAmelCase=0.0_2 , ): '''simple docstring''' __UpperCamelCase = parent __UpperCamelCase = batch_size __UpperCamelCase = seq_length __UpperCamelCase = is_training __UpperCamelCase = use_input_mask __UpperCamelCase = use_token_type_ids __UpperCamelCase = use_labels __UpperCamelCase = vocab_size __UpperCamelCase = hidden_size __UpperCamelCase = rotary_dim __UpperCamelCase = num_hidden_layers __UpperCamelCase = num_attention_heads __UpperCamelCase = intermediate_size __UpperCamelCase = hidden_act __UpperCamelCase = hidden_dropout_prob __UpperCamelCase = attention_probs_dropout_prob __UpperCamelCase = max_position_embeddings __UpperCamelCase = initializer_range __UpperCamelCase = None __UpperCamelCase = vocab_size - 1 __UpperCamelCase = vocab_size - 1 __UpperCamelCase = vocab_size - 1 def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __UpperCamelCase = None if self.use_input_mask: __UpperCamelCase = random_attention_mask([self.batch_size, self.seq_length] ) __UpperCamelCase = GPTJConfig( vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , use_cache=__UpperCAmelCase , bos_token_id=self.bos_token_id , eos_token_id=self.eos_token_id , pad_token_id=self.pad_token_id , rotary_dim=self.rotary_dim , ) return (config, input_ids, input_mask) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = self.prepare_config_and_inputs() __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = config_and_inputs __UpperCamelCase = {'input_ids': input_ids, 'attention_mask': attention_mask} return config, inputs_dict def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = 20 __UpperCamelCase = model_class_name(__UpperCAmelCase ) __UpperCamelCase = model.init_cache(input_ids.shape[0] , __UpperCAmelCase ) __UpperCamelCase = jnp.ones((input_ids.shape[0], max_decoder_length) , dtype='i4' ) __UpperCamelCase = jnp.broadcast_to( jnp.arange(input_ids.shape[-1] - 1 )[None, :] , (input_ids.shape[0], input_ids.shape[-1] - 1) ) __UpperCamelCase = model( input_ids[:, :-1] , attention_mask=__UpperCAmelCase , past_key_values=__UpperCAmelCase , position_ids=__UpperCAmelCase , ) __UpperCamelCase = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]] , dtype='i4' ) __UpperCamelCase = model( input_ids[:, -1:] , attention_mask=__UpperCAmelCase , past_key_values=outputs_cache.past_key_values , position_ids=__UpperCAmelCase , ) __UpperCamelCase = model(__UpperCAmelCase ) __UpperCamelCase = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3 , msg=F'Max diff is {diff}' ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = 20 __UpperCamelCase = model_class_name(__UpperCAmelCase ) __UpperCamelCase = jnp.concatenate( [attention_mask, jnp.zeros((attention_mask.shape[0], max_decoder_length - attention_mask.shape[1]) )] , axis=-1 , ) __UpperCamelCase = model.init_cache(input_ids.shape[0] , __UpperCAmelCase ) __UpperCamelCase = jnp.broadcast_to( jnp.arange(input_ids.shape[-1] - 1 )[None, :] , (input_ids.shape[0], input_ids.shape[-1] - 1) ) __UpperCamelCase = model( input_ids[:, :-1] , attention_mask=__UpperCAmelCase , past_key_values=__UpperCAmelCase , position_ids=__UpperCAmelCase , ) __UpperCamelCase = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]] , dtype='i4' ) __UpperCamelCase = model( input_ids[:, -1:] , past_key_values=outputs_cache.past_key_values , attention_mask=__UpperCAmelCase , position_ids=__UpperCAmelCase , ) __UpperCamelCase = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase ) __UpperCamelCase = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3 , msg=F'Max diff is {diff}' ) @require_flax class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): lowercase = (FlaxGPTJModel, FlaxGPTJForCausalLM) if is_flax_available() else () lowercase = (FlaxGPTJForCausalLM,) if is_flax_available() else () def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = FlaxGPTJModelTester(self ) def UpperCAmelCase ( self ): '''simple docstring''' for model_class_name in self.all_model_classes: __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.check_use_cache_forward(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) def UpperCAmelCase ( self ): '''simple docstring''' for model_class_name in self.all_model_classes: __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.check_use_cache_forward_with_attn_mask( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) @tooslow def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = GPTaTokenizer.from_pretrained('gpt2' , pad_token='<|endoftext|>' , padding_side='left' ) __UpperCamelCase = tokenizer(['Hello this is a long string', 'Hey'] , return_tensors='np' , padding=__UpperCAmelCase , truncation=__UpperCAmelCase ) __UpperCamelCase = FlaxGPTJForCausalLM.from_pretrained('EleutherAI/gpt-j-6B' ) __UpperCamelCase = False __UpperCamelCase = model.config.eos_token_id __UpperCamelCase = jax.jit(model.generate ) __UpperCamelCase = jit_generate( inputs['input_ids'] , attention_mask=inputs['attention_mask'] , pad_token_id=tokenizer.pad_token_id ).sequences __UpperCamelCase = tokenizer.batch_decode(__UpperCAmelCase , skip_special_tokens=__UpperCAmelCase ) __UpperCamelCase = [ 'Hello this is a long string of text.\n\nI\'m trying to get the text of the', 'Hey, I\'m a little late to the party. I\'m going to', ] self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) @is_pt_flax_cross_test def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase , __UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): # prepare inputs __UpperCamelCase = self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase ) __UpperCamelCase = {k: torch.tensor(v.tolist() ) for k, v in prepared_inputs_dict.items()} # load corresponding PyTorch class __UpperCamelCase = model_class.__name__[4:] # Skip the "Flax" at the beginning __UpperCamelCase = getattr(__UpperCAmelCase , __UpperCAmelCase ) __UpperCamelCase , __UpperCamelCase = pt_inputs['input_ids'].shape __UpperCamelCase = np.random.randint(0 , seq_length - 1 , size=(batch_size,) ) for batch_idx, start_index in enumerate(__UpperCAmelCase ): __UpperCamelCase = 0 __UpperCamelCase = 1 __UpperCamelCase = 0 __UpperCamelCase = 1 __UpperCamelCase = pt_model_class(__UpperCAmelCase ).eval() __UpperCamelCase = model_class(__UpperCAmelCase , dtype=jnp.floataa ) __UpperCamelCase = convert_pytorch_state_dict_to_flax(pt_model.state_dict() , __UpperCAmelCase ) __UpperCamelCase = fx_state with torch.no_grad(): __UpperCamelCase = pt_model(**__UpperCAmelCase ).to_tuple() __UpperCamelCase = fx_model(**__UpperCAmelCase ).to_tuple() self.assertEqual(len(__UpperCAmelCase ) , len(__UpperCAmelCase ) , 'Output lengths differ between Flax and PyTorch' ) for fx_output, pt_output in zip(__UpperCAmelCase , __UpperCAmelCase ): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4E-2 ) with tempfile.TemporaryDirectory() as tmpdirname: pt_model.save_pretrained(__UpperCAmelCase ) __UpperCamelCase = model_class.from_pretrained(__UpperCAmelCase , from_pt=__UpperCAmelCase ) __UpperCamelCase = fx_model_loaded(**__UpperCAmelCase ).to_tuple() self.assertEqual( len(__UpperCAmelCase ) , len(__UpperCAmelCase ) , 'Output lengths differ between Flax and PyTorch' ) for fx_output_loaded, pt_output in zip(__UpperCAmelCase , __UpperCAmelCase ): self.assert_almost_equals(fx_output_loaded[:, -1] , pt_output[:, -1].numpy() , 4E-2 ) @is_pt_flax_cross_test def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase , __UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): # prepare inputs __UpperCamelCase = self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase ) __UpperCamelCase = {k: torch.tensor(v.tolist() ) for k, v in prepared_inputs_dict.items()} # load corresponding PyTorch class __UpperCamelCase = model_class.__name__[4:] # Skip the "Flax" at the beginning __UpperCamelCase = getattr(__UpperCAmelCase , __UpperCAmelCase ) __UpperCamelCase = pt_model_class(__UpperCAmelCase ).eval() __UpperCamelCase = model_class(__UpperCAmelCase , dtype=jnp.floataa ) __UpperCamelCase = load_flax_weights_in_pytorch_model(__UpperCAmelCase , fx_model.params ) __UpperCamelCase , __UpperCamelCase = pt_inputs['input_ids'].shape __UpperCamelCase = np.random.randint(0 , seq_length - 1 , size=(batch_size,) ) for batch_idx, start_index in enumerate(__UpperCAmelCase ): __UpperCamelCase = 0 __UpperCamelCase = 1 __UpperCamelCase = 0 __UpperCamelCase = 1 # make sure weights are tied in PyTorch pt_model.tie_weights() with torch.no_grad(): __UpperCamelCase = pt_model(**__UpperCAmelCase ).to_tuple() __UpperCamelCase = fx_model(**__UpperCAmelCase ).to_tuple() self.assertEqual(len(__UpperCAmelCase ) , len(__UpperCAmelCase ) , 'Output lengths differ between Flax and PyTorch' ) for fx_output, pt_output in zip(__UpperCAmelCase , __UpperCAmelCase ): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4E-2 ) with tempfile.TemporaryDirectory() as tmpdirname: fx_model.save_pretrained(__UpperCAmelCase ) __UpperCamelCase = pt_model_class.from_pretrained(__UpperCAmelCase , from_flax=__UpperCAmelCase ) with torch.no_grad(): __UpperCamelCase = pt_model_loaded(**__UpperCAmelCase ).to_tuple() self.assertEqual( len(__UpperCAmelCase ) , len(__UpperCAmelCase ) , 'Output lengths differ between Flax and PyTorch' ) for fx_output, pt_output in zip(__UpperCAmelCase , __UpperCAmelCase ): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4E-2 ) @tooslow def UpperCAmelCase ( self ): '''simple docstring''' for model_class_name in self.all_model_classes: __UpperCamelCase = model_class_name.from_pretrained('EleutherAI/gpt-j-6B' ) __UpperCamelCase = model(np.ones((1, 1) ) ) self.assertIsNotNone(__UpperCAmelCase )
316
0
import math from datetime import datetime, timedelta def lowerCamelCase__ ( lowercase ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = year % 19 SCREAMING_SNAKE_CASE : List[str] = year % 4 SCREAMING_SNAKE_CASE : str = year % 7 SCREAMING_SNAKE_CASE : List[Any] = math.floor(year / 100 ) SCREAMING_SNAKE_CASE : int = math.floor((13 + 8 * leap_day_inhibits) / 25 ) SCREAMING_SNAKE_CASE : List[str] = leap_day_inhibits / 4 SCREAMING_SNAKE_CASE : Dict = ( 15 - lunar_orbit_correction + leap_day_inhibits - leap_day_reinstall_number ) % 30 SCREAMING_SNAKE_CASE : Dict = (4 + leap_day_inhibits - leap_day_reinstall_number) % 7 # days to be added to March 21 SCREAMING_SNAKE_CASE : Union[str, Any] = (19 * metonic_cycle + secular_moon_shift) % 30 # PHM -> Paschal Full Moon SCREAMING_SNAKE_CASE : List[str] = ( 2 * julian_leap_year + 4 * non_leap_year + 6 * days_to_add + century_starting_point ) % 7 if days_to_add == 29 and days_from_phm_to_sunday == 6: return datetime(lowercase , 4 , 19 ) elif days_to_add == 28 and days_from_phm_to_sunday == 6: return datetime(lowercase , 4 , 18 ) else: return datetime(lowercase , 3 , 22 ) + timedelta( days=int(days_to_add + days_from_phm_to_sunday ) ) if __name__ == "__main__": for year in (1_994, 2_000, 2_010, 2_021, 2_023): snake_case = """will be""" if year > datetime.now().year else """was""" print(F"""Easter in {year} {tense} {gauss_easter(year)}""")
319
def lowerCamelCase__ ( lowercase , lowercase = 0 ): """simple docstring""" SCREAMING_SNAKE_CASE : int = length or len(lowercase ) SCREAMING_SNAKE_CASE : Optional[Any] = False for i in range(length - 1 ): if list_data[i] > list_data[i + 1]: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : int = list_data[i + 1], list_data[i] SCREAMING_SNAKE_CASE : str = True return list_data if not swapped else bubble_sort(lowercase , length - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
319
1