code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
"""simple docstring""" import warnings from typing import Any, Dict, List, Optional, Union import numpy as np from ...audio_utils import mel_filter_bank, optimal_fft_length, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import PaddingStrategy, TensorType, logging SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) class lowercase ( _UpperCAmelCase ): _SCREAMING_SNAKE_CASE = ['input_values', 'attention_mask'] def __init__( self , lowercase = 1 , lowercase = 16_000 , lowercase = 0.0 , lowercase = False , lowercase = 80 , lowercase = 16 , lowercase = 64 , lowercase = "hann_window" , lowercase = 1.0 , lowercase = 80 , lowercase = 7_600 , lowercase = 1e-10 , lowercase = 2 , lowercase = True , **lowercase , ) -> List[str]: super().__init__(feature_size=lowercase , sampling_rate=lowercase , padding_value=lowercase , **lowercase ) lowerCAmelCase = do_normalize lowerCAmelCase = return_attention_mask lowerCAmelCase = num_mel_bins lowerCAmelCase = hop_length lowerCAmelCase = win_length lowerCAmelCase = win_function lowerCAmelCase = frame_signal_scale lowerCAmelCase = fmin lowerCAmelCase = fmax lowerCAmelCase = mel_floor lowerCAmelCase = reduction_factor lowerCAmelCase = win_length * sampling_rate // 1_000 lowerCAmelCase = hop_length * sampling_rate // 1_000 lowerCAmelCase = optimal_fft_length(self.sample_size ) lowerCAmelCase = (self.n_fft // 2) + 1 lowerCAmelCase = window_function(window_length=self.sample_size , name=self.win_function , periodic=lowercase ) lowerCAmelCase = mel_filter_bank( num_frequency_bins=self.n_freqs , num_mel_filters=self.num_mel_bins , min_frequency=self.fmin , max_frequency=self.fmax , sampling_rate=self.sampling_rate , norm="""slaney""" , mel_scale="""slaney""" , ) if frame_signal_scale != 1.0: warnings.warn( """The argument `frame_signal_scale` is deprecated and will be removed in version 4.30.0 of Transformers""" , lowercase , ) if reduction_factor != 2.0: warnings.warn( """The argument `reduction_factor` is deprecated and will be removed in version 4.30.0 of Transformers""" , lowercase , ) @staticmethod # Copied from transformers.models.wav2vec2.feature_extraction_wav2vec2.Wav2Vec2FeatureExtractor.zero_mean_unit_var_norm def _snake_case ( lowercase , lowercase , lowercase = 0.0 ) -> List[np.ndarray]: if attention_mask is not None: lowerCAmelCase = np.array(lowercase , np.intaa ) lowerCAmelCase = [] for vector, length in zip(lowercase , attention_mask.sum(-1 ) ): lowerCAmelCase = (vector - vector[:length].mean()) / np.sqrt(vector[:length].var() + 1e-7 ) if length < normed_slice.shape[0]: lowerCAmelCase = padding_value normed_input_values.append(lowercase ) else: lowerCAmelCase = [(x - x.mean()) / np.sqrt(x.var() + 1e-7 ) for x in input_values] return normed_input_values def _snake_case ( self , lowercase , ) -> np.ndarray: lowerCAmelCase = spectrogram( lowercase , window=self.window , frame_length=self.sample_size , hop_length=self.sample_stride , fft_length=self.n_fft , mel_filters=self.mel_filters , mel_floor=self.mel_floor , log_mel="""log10""" , ) return log_mel_spec.T def __call__( self , lowercase = None , lowercase = None , lowercase = False , lowercase = None , lowercase = False , lowercase = None , lowercase = None , lowercase = None , lowercase = None , **lowercase , ) -> BatchFeature: if audio is None and audio_target is None: raise ValueError("""You must provide either `audio` or `audio_target` values.""" ) if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f'The model corresponding to this feature extractor: {self} was trained using a sampling rate of' f' {self.sampling_rate}. Please make sure that the provided audio input was sampled with' f' {self.sampling_rate} and not {sampling_rate}.' ) else: logger.warning( """It is strongly recommended to pass the ``sampling_rate`` argument to this function. """ """Failing to do so can result in silent errors that might be hard to debug.""" ) if audio is not None: lowerCAmelCase = self._process_audio( lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , **lowercase , ) else: lowerCAmelCase = None if audio_target is not None: lowerCAmelCase = self._process_audio( lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , **lowercase , ) if inputs is None: return inputs_target else: lowerCAmelCase = inputs_target["""input_values"""] lowerCAmelCase = inputs_target.get("""attention_mask""" ) if decoder_attention_mask is not None: lowerCAmelCase = decoder_attention_mask return inputs def _snake_case ( self , lowercase , lowercase = False , lowercase = False , lowercase = None , lowercase = False , lowercase = None , lowercase = None , lowercase = None , **lowercase , ) -> BatchFeature: lowerCAmelCase = isinstance(lowercase , np.ndarray ) and len(speech.shape ) > 1 if is_batched_numpy and len(speech.shape ) > 2: raise ValueError(f'Only mono-channel audio is supported for input to {self}' ) lowerCAmelCase = is_batched_numpy or ( isinstance(lowercase , (list, tuple) ) and (isinstance(speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: lowerCAmelCase = [np.asarray(lowercase , dtype=np.floataa ) for speech in speech] elif not is_batched and not isinstance(lowercase , np.ndarray ): lowerCAmelCase = np.asarray(lowercase , dtype=np.floataa ) elif isinstance(lowercase , np.ndarray ) and speech.dtype is np.dtype(np.floataa ): lowerCAmelCase = speech.astype(np.floataa ) # always return batch if not is_batched: lowerCAmelCase = [speech] # needed to make pad() work on spectrogram inputs lowerCAmelCase = self.feature_size # convert into correct format for padding if is_target: lowerCAmelCase = [self._extract_mel_features(lowercase ) for waveform in speech] lowerCAmelCase = BatchFeature({"""input_values""": features} ) lowerCAmelCase = self.num_mel_bins else: lowerCAmelCase = BatchFeature({"""input_values""": speech} ) lowerCAmelCase = self.pad( lowercase , padding=lowercase , max_length=lowercase , truncation=lowercase , pad_to_multiple_of=lowercase , return_attention_mask=lowercase , **lowercase , ) lowerCAmelCase = feature_size_hack # convert input values to correct format lowerCAmelCase = padded_inputs["""input_values"""] if not isinstance(input_values[0] , np.ndarray ): lowerCAmelCase = [np.asarray(lowercase , dtype=np.floataa ) for array in input_values] elif ( not isinstance(lowercase , np.ndarray ) and isinstance(input_values[0] , np.ndarray ) and input_values[0].dtype is np.dtype(np.floataa ) ): lowerCAmelCase = [array.astype(np.floataa ) for array in input_values] elif isinstance(lowercase , np.ndarray ) and input_values.dtype is np.dtype(np.floataa ): lowerCAmelCase = input_values.astype(np.floataa ) # convert attention_mask to correct format lowerCAmelCase = padded_inputs.get("""attention_mask""" ) if attention_mask is not None: lowerCAmelCase = [np.asarray(lowercase , dtype=np.intaa ) for array in attention_mask] # zero-mean and unit-variance normalization if not is_target and self.do_normalize: lowerCAmelCase = ( attention_mask if self._get_padding_strategies(lowercase , max_length=lowercase ) is not PaddingStrategy.DO_NOT_PAD else None ) lowerCAmelCase = self.zero_mean_unit_var_norm( padded_inputs["""input_values"""] , attention_mask=lowercase , padding_value=self.padding_value ) if return_tensors is not None: lowerCAmelCase = padded_inputs.convert_to_tensors(lowercase ) return padded_inputs def _snake_case ( self ) -> Dict[str, Any]: lowerCAmelCase = super().to_dict() # Don't serialize these as they are derived from the other properties. lowerCAmelCase = ["""window""", """mel_filters""", """sample_size""", """sample_stride""", """n_fft""", """n_freqs"""] for name in names: if name in output: del output[name] return output
46
"""simple docstring""" import logging import os from dataclasses import dataclass, field from typing import Dict, Optional import datasets import numpy as np import tensorflow as tf from transformers import ( AutoConfig, AutoTokenizer, EvalPrediction, HfArgumentParser, PreTrainedTokenizer, TFAutoModelForSequenceClassification, TFTrainer, TFTrainingArguments, ) from transformers.utils import logging as hf_logging hf_logging.set_verbosity_info() hf_logging.enable_default_handler() hf_logging.enable_explicit_format() def __UpperCAmelCase ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = None , ): __lowercase : Tuple = {} if train_file is not None: __lowercase : List[Any] = [train_file] if eval_file is not None: __lowercase : List[str] = [eval_file] if test_file is not None: __lowercase : List[Any] = [test_file] __lowercase : List[str] = datasets.load_dataset('''csv''' , data_files=__UpperCamelCase ) __lowercase : str = list(ds[list(files.keys() )[0]].features.keys() ) __lowercase : Union[str, Any] = features_name.pop(__UpperCamelCase ) __lowercase : List[str] = list(set(ds[list(files.keys() )[0]][label_name] ) ) __lowercase : List[str] = {label: i for i, label in enumerate(__UpperCamelCase )} __lowercase : Optional[Any] = tokenizer.model_input_names __lowercase : Optional[Any] = {} if len(__UpperCamelCase ) == 1: for k in files.keys(): __lowercase : str = ds[k].map( lambda __UpperCamelCase : tokenizer.batch_encode_plus( example[features_name[0]] , truncation=__UpperCamelCase , max_length=__UpperCamelCase , padding='''max_length''' ) , batched=__UpperCamelCase , ) elif len(__UpperCamelCase ) == 2: for k in files.keys(): __lowercase : List[Any] = ds[k].map( lambda __UpperCamelCase : tokenizer.batch_encode_plus( (example[features_name[0]], example[features_name[1]]) , truncation=__UpperCamelCase , max_length=__UpperCamelCase , padding='''max_length''' , ) , batched=__UpperCamelCase , ) def gen_train(): for ex in transformed_ds[datasets.Split.TRAIN]: __lowercase : Dict = {k: v for k, v in ex.items() if k in input_names} __lowercase : str = labelaid[ex[label_name]] yield (d, label) def gen_val(): for ex in transformed_ds[datasets.Split.VALIDATION]: __lowercase : Tuple = {k: v for k, v in ex.items() if k in input_names} __lowercase : List[str] = labelaid[ex[label_name]] yield (d, label) def gen_test(): for ex in transformed_ds[datasets.Split.TEST]: __lowercase : Optional[Any] = {k: v for k, v in ex.items() if k in input_names} __lowercase : Dict = labelaid[ex[label_name]] yield (d, label) __lowercase : str = ( tf.data.Dataset.from_generator( __UpperCamelCase , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , ) if datasets.Split.TRAIN in transformed_ds else None ) if train_ds is not None: __lowercase : List[Any] = train_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.TRAIN] ) ) ) __lowercase : Optional[Any] = ( tf.data.Dataset.from_generator( __UpperCamelCase , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , ) if datasets.Split.VALIDATION in transformed_ds else None ) if val_ds is not None: __lowercase : Tuple = val_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.VALIDATION] ) ) ) __lowercase : str = ( tf.data.Dataset.from_generator( __UpperCamelCase , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , ) if datasets.Split.TEST in transformed_ds else None ) if test_ds is not None: __lowercase : Optional[Any] = test_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.TEST] ) ) ) return train_ds, val_ds, test_ds, labelaid a_ = logging.getLogger(__name__) @dataclass class UpperCAmelCase_ : UpperCamelCase =field(metadata={"help": "Which column contains the label"} ) UpperCamelCase =field(default=snake_case , metadata={"help": "The path of the training file"} ) UpperCamelCase =field(default=snake_case , metadata={"help": "The path of the development file"} ) UpperCamelCase =field(default=snake_case , metadata={"help": "The path of the test file"} ) UpperCamelCase =field( default=1_28 , metadata={ "help": ( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) } , ) UpperCamelCase =field( default=snake_case , metadata={"help": "Overwrite the cached training and evaluation sets"} ) @dataclass class UpperCAmelCase_ : UpperCamelCase =field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) UpperCamelCase =field( default=snake_case , metadata={"help": "Pretrained config name or path if not the same as model_name"} ) UpperCamelCase =field( default=snake_case , metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) UpperCamelCase =field(default=snake_case , metadata={"help": "Set this flag to use fast tokenization."} ) # If you want to tweak more attributes on your tokenizer, you should do it in a distinct script, # or just modify its tokenizer_config.json. UpperCamelCase =field( default=snake_case , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , ) def __UpperCAmelCase ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. __lowercase : Optional[int] = HfArgumentParser((ModelArguments, DataTrainingArguments, TFTrainingArguments) ) __lowercase ,__lowercase ,__lowercase : Tuple = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( f"""Output directory ({training_args.output_dir}) already exists and is not empty. Use""" ''' --overwrite_output_dir to overcome.''' ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , level=logging.INFO , ) logger.info( f"""n_replicas: {training_args.n_replicas}, distributed training: {bool(training_args.n_replicas > 1 )}, """ f"""16-bits training: {training_args.fpaa}""" ) logger.info(f"""Training/evaluation parameters {training_args}""" ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. __lowercase : str = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) __lowercase ,__lowercase ,__lowercase ,__lowercase : Any = get_tfds( train_file=data_args.train_file , eval_file=data_args.dev_file , test_file=data_args.test_file , tokenizer=__UpperCamelCase , label_column_id=data_args.label_column_id , max_seq_length=data_args.max_seq_length , ) __lowercase : str = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=len(__UpperCamelCase ) , labelaid=__UpperCamelCase , idalabel={id: label for label, id in labelaid.items()} , finetuning_task='''text-classification''' , cache_dir=model_args.cache_dir , ) with training_args.strategy.scope(): __lowercase : Union[str, Any] = TFAutoModelForSequenceClassification.from_pretrained( model_args.model_name_or_path , from_pt=bool('''.bin''' in model_args.model_name_or_path ) , config=__UpperCamelCase , cache_dir=model_args.cache_dir , ) def compute_metrics(__UpperCamelCase ) -> Dict: __lowercase : List[Any] = np.argmax(p.predictions , axis=1 ) return {"acc": (preds == p.label_ids).mean()} # Initialize our Trainer __lowercase : Optional[Any] = TFTrainer( model=__UpperCamelCase , args=__UpperCamelCase , train_dataset=__UpperCamelCase , eval_dataset=__UpperCamelCase , compute_metrics=__UpperCamelCase , ) # Training if training_args.do_train: trainer.train() trainer.save_model() tokenizer.save_pretrained(training_args.output_dir ) # Evaluation __lowercase : List[Any] = {} if training_args.do_eval: logger.info('''*** Evaluate ***''' ) __lowercase : List[Any] = trainer.evaluate() __lowercase : int = os.path.join(training_args.output_dir , '''eval_results.txt''' ) with open(__UpperCamelCase , '''w''' ) as writer: logger.info('''***** Eval results *****''' ) for key, value in result.items(): logger.info(f""" {key} = {value}""" ) writer.write(f"""{key} = {value}\n""" ) results.update(__UpperCamelCase ) return results if __name__ == "__main__": main()
249
0
"""simple docstring""" from ..utils import DummyObject, requires_backends class __a ( metaclass=A__ ): """simple docstring""" SCREAMING_SNAKE_CASE_ = ['keras_nlp'] def __init__( self : str , *lowercase_ : int , **lowercase_ : int ): requires_backends(self , ['''keras_nlp'''] )
357
"""simple docstring""" import argparse import os import re _SCREAMING_SNAKE_CASE : List[str] = """src/diffusers""" # Pattern that looks at the indentation in a line. _SCREAMING_SNAKE_CASE : Optional[int] = re.compile(r"""^(\s*)\S""") # Pattern that matches `"key":" and puts `key` in group 0. _SCREAMING_SNAKE_CASE : Any = re.compile(r"""^\s*\"([^\"]+)\":""") # Pattern that matches `_import_structure["key"]` and puts `key` in group 0. _SCREAMING_SNAKE_CASE : List[str] = re.compile(r"""^\s*_import_structure\[\"([^\"]+)\"\]""") # Pattern that matches `"key",` and puts `key` in group 0. _SCREAMING_SNAKE_CASE : str = re.compile(r"""^\s*\"([^\"]+)\",\s*$""") # Pattern that matches any `[stuff]` and puts `stuff` in group 0. _SCREAMING_SNAKE_CASE : Optional[Any] = re.compile(r"""\[([^\]]+)\]""") def _lowerCAmelCase ( UpperCAmelCase : Union[str, Any] ): '''simple docstring''' UpperCamelCase__ : str =_re_indent.search(UpperCAmelCase ) return "" if search is None else search.groups()[0] def _lowerCAmelCase ( UpperCAmelCase : int , UpperCAmelCase : Union[str, Any]="" , UpperCAmelCase : List[Any]=None , UpperCAmelCase : Tuple=None ): '''simple docstring''' UpperCamelCase__ : int =0 UpperCamelCase__ : Union[str, Any] =code.split('''\n''' ) if start_prompt is not None: while not lines[index].startswith(UpperCAmelCase ): index += 1 UpperCamelCase__ : Optional[int] =['''\n'''.join(lines[:index] )] else: UpperCamelCase__ : List[Any] =[] # We split into blocks until we get to the `end_prompt` (or the end of the block). UpperCamelCase__ : Dict =[lines[index]] index += 1 while index < len(UpperCAmelCase ) and (end_prompt is None or not lines[index].startswith(UpperCAmelCase )): if len(lines[index] ) > 0 and get_indent(lines[index] ) == indent_level: if len(UpperCAmelCase ) > 0 and get_indent(current_block[-1] ).startswith(indent_level + ''' ''' ): current_block.append(lines[index] ) blocks.append('''\n'''.join(UpperCAmelCase ) ) if index < len(UpperCAmelCase ) - 1: UpperCamelCase__ : Optional[Any] =[lines[index + 1]] index += 1 else: UpperCamelCase__ : List[str] =[] else: blocks.append('''\n'''.join(UpperCAmelCase ) ) UpperCamelCase__ : List[Any] =[lines[index]] else: current_block.append(lines[index] ) index += 1 # Adds current block if it's nonempty. if len(UpperCAmelCase ) > 0: blocks.append('''\n'''.join(UpperCAmelCase ) ) # Add final block after end_prompt if provided. if end_prompt is not None and index < len(UpperCAmelCase ): blocks.append('''\n'''.join(lines[index:] ) ) return blocks def _lowerCAmelCase ( UpperCAmelCase : str ): '''simple docstring''' def _inner(UpperCAmelCase : Dict ): return key(UpperCAmelCase ).lower().replace('''_''' , '''''' ) return _inner def _lowerCAmelCase ( UpperCAmelCase : int , UpperCAmelCase : Dict=None ): '''simple docstring''' def noop(UpperCAmelCase : Optional[Any] ): return x if key is None: UpperCamelCase__ : int =noop # Constants are all uppercase, they go first. UpperCamelCase__ : List[str] =[obj for obj in objects if key(UpperCAmelCase ).isupper()] # Classes are not all uppercase but start with a capital, they go second. UpperCamelCase__ : Dict =[obj for obj in objects if key(UpperCAmelCase )[0].isupper() and not key(UpperCAmelCase ).isupper()] # Functions begin with a lowercase, they go last. UpperCamelCase__ : int =[obj for obj in objects if not key(UpperCAmelCase )[0].isupper()] UpperCamelCase__ : Optional[int] =ignore_underscore(UpperCAmelCase ) return sorted(UpperCAmelCase , key=UpperCAmelCase ) + sorted(UpperCAmelCase , key=UpperCAmelCase ) + sorted(UpperCAmelCase , key=UpperCAmelCase ) def _lowerCAmelCase ( UpperCAmelCase : Union[str, Any] ): '''simple docstring''' def _replace(UpperCAmelCase : Union[str, Any] ): UpperCamelCase__ : List[str] =match.groups()[0] if "," not in imports: return F'''[{imports}]''' UpperCamelCase__ : Optional[int] =[part.strip().replace('''"''' , '''''' ) for part in imports.split(''',''' )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: UpperCamelCase__ : Tuple =keys[:-1] return "[" + ", ".join([F'''"{k}"''' for k in sort_objects(UpperCAmelCase )] ) + "]" UpperCamelCase__ : List[Any] =import_statement.split('''\n''' ) if len(UpperCAmelCase ) > 3: # Here we have to sort internal imports that are on several lines (one per name): # key: [ # "object1", # "object2", # ... # ] # We may have to ignore one or two lines on each side. UpperCamelCase__ : List[str] =2 if lines[1].strip() == '''[''' else 1 UpperCamelCase__ : List[str] =[(i, _re_strip_line.search(UpperCAmelCase ).groups()[0]) for i, line in enumerate(lines[idx:-idx] )] UpperCamelCase__ : List[str] =sort_objects(UpperCAmelCase , key=lambda UpperCAmelCase : x[1] ) UpperCamelCase__ : Tuple =[lines[x[0] + idx] for x in sorted_indices] return "\n".join(lines[:idx] + sorted_lines + lines[-idx:] ) elif len(UpperCAmelCase ) == 3: # Here we have to sort internal imports that are on one separate line: # key: [ # "object1", "object2", ... # ] if _re_bracket_content.search(lines[1] ) is not None: UpperCamelCase__ : Dict =_re_bracket_content.sub(_replace , lines[1] ) else: UpperCamelCase__ : Optional[int] =[part.strip().replace('''"''' , '''''' ) for part in lines[1].split(''',''' )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: UpperCamelCase__ : Tuple =keys[:-1] UpperCamelCase__ : Optional[Any] =get_indent(lines[1] ) + ''', '''.join([F'''"{k}"''' for k in sort_objects(UpperCAmelCase )] ) return "\n".join(UpperCAmelCase ) else: # Finally we have to deal with imports fitting on one line UpperCamelCase__ : List[str] =_re_bracket_content.sub(_replace , UpperCAmelCase ) return import_statement def _lowerCAmelCase ( UpperCAmelCase : Tuple , UpperCAmelCase : Optional[Any]=True ): '''simple docstring''' with open(UpperCAmelCase , '''r''' ) as f: UpperCamelCase__ : int =f.read() if "_import_structure" not in code: return # Blocks of indent level 0 UpperCamelCase__ : Optional[int] =split_code_in_indented_blocks( UpperCAmelCase , start_prompt='''_import_structure = {''' , end_prompt='''if TYPE_CHECKING:''' ) # We ignore block 0 (everything until start_prompt) and the last block (everything after end_prompt). for block_idx in range(1 , len(UpperCAmelCase ) - 1 ): # Check if the block contains some `_import_structure`s thingy to sort. UpperCamelCase__ : Dict =main_blocks[block_idx] UpperCamelCase__ : List[str] =block.split('''\n''' ) # Get to the start of the imports. UpperCamelCase__ : str =0 while line_idx < len(UpperCAmelCase ) and "_import_structure" not in block_lines[line_idx]: # Skip dummy import blocks if "import dummy" in block_lines[line_idx]: UpperCamelCase__ : Optional[int] =len(UpperCAmelCase ) else: line_idx += 1 if line_idx >= len(UpperCAmelCase ): continue # Ignore beginning and last line: they don't contain anything. UpperCamelCase__ : Optional[Any] ='''\n'''.join(block_lines[line_idx:-1] ) UpperCamelCase__ : Tuple =get_indent(block_lines[1] ) # Slit the internal block into blocks of indent level 1. UpperCamelCase__ : str =split_code_in_indented_blocks(UpperCAmelCase , indent_level=UpperCAmelCase ) # We have two categories of import key: list or _import_structure[key].append/extend UpperCamelCase__ : str =_re_direct_key if '''_import_structure''' in block_lines[0] else _re_indirect_key # Grab the keys, but there is a trap: some lines are empty or just comments. UpperCamelCase__ : Tuple =[(pattern.search(UpperCAmelCase ).groups()[0] if pattern.search(UpperCAmelCase ) is not None else None) for b in internal_blocks] # We only sort the lines with a key. UpperCamelCase__ : List[Any] =[(i, key) for i, key in enumerate(UpperCAmelCase ) if key is not None] UpperCamelCase__ : Optional[Any] =[x[0] for x in sorted(UpperCAmelCase , key=lambda UpperCAmelCase : x[1] )] # We reorder the blocks by leaving empty lines/comments as they were and reorder the rest. UpperCamelCase__ : Union[str, Any] =0 UpperCamelCase__ : str =[] for i in range(len(UpperCAmelCase ) ): if keys[i] is None: reordered_blocks.append(internal_blocks[i] ) else: UpperCamelCase__ : Optional[Any] =sort_objects_in_import(internal_blocks[sorted_indices[count]] ) reordered_blocks.append(UpperCAmelCase ) count += 1 # And we put our main block back together with its first and last line. UpperCamelCase__ : Optional[Any] ='''\n'''.join(block_lines[:line_idx] + reordered_blocks + [block_lines[-1]] ) if code != "\n".join(UpperCAmelCase ): if check_only: return True else: print(F'''Overwriting {file}.''' ) with open(UpperCAmelCase , '''w''' ) as f: f.write('''\n'''.join(UpperCAmelCase ) ) def _lowerCAmelCase ( UpperCAmelCase : Dict=True ): '''simple docstring''' UpperCamelCase__ : Union[str, Any] =[] for root, _, files in os.walk(UpperCAmelCase ): if "__init__.py" in files: UpperCamelCase__ : List[Any] =sort_imports(os.path.join(UpperCAmelCase , '''__init__.py''' ) , check_only=UpperCAmelCase ) if result: UpperCamelCase__ : int =[os.path.join(UpperCAmelCase , '''__init__.py''' )] if len(UpperCAmelCase ) > 0: raise ValueError(F'''Would overwrite {len(UpperCAmelCase )} files, run `make style`.''' ) if __name__ == "__main__": _SCREAMING_SNAKE_CASE : List[str] = argparse.ArgumentParser() parser.add_argument("""--check_only""", action="""store_true""", help="""Whether to only check or fix style.""") _SCREAMING_SNAKE_CASE : Optional[int] = parser.parse_args() sort_imports_in_all_inits(check_only=args.check_only)
157
0
'''simple docstring''' UpperCamelCase__ = '''0.21.0''' from .accelerator import Accelerator from .big_modeling import ( cpu_offload, cpu_offload_with_hook, disk_offload, dispatch_model, init_empty_weights, init_on_device, load_checkpoint_and_dispatch, ) from .data_loader import skip_first_batches from .launchers import debug_launcher, notebook_launcher from .state import PartialState from .utils import ( DeepSpeedPlugin, DistributedDataParallelKwargs, DistributedType, FullyShardedDataParallelPlugin, GradScalerKwargs, InitProcessGroupKwargs, find_executable_batch_size, infer_auto_device_map, is_rich_available, load_checkpoint_in_model, synchronize_rng_states, ) if is_rich_available(): from .utils import rich
181
"""simple docstring""" import argparse import torch from transformers import LxmertConfig, LxmertForPreTraining, load_tf_weights_in_lxmert from transformers.utils import logging logging.set_verbosity_info() def snake_case_ ( A_ : Tuple, A_ : int, A_ : Dict ): '''simple docstring''' _lowerCamelCase : Union[str, Any] = LxmertConfig.from_json_file(A_ ) print(F'''Building PyTorch model from configuration: {config}''' ) _lowerCamelCase : List[str] = LxmertForPreTraining(A_ ) # Load weights from tf checkpoint load_tf_weights_in_lxmert(A_, A_, A_ ) # Save pytorch-model print(F'''Save PyTorch model to {pytorch_dump_path}''' ) torch.save(model.state_dict(), A_ ) if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--tf_checkpoint_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.''' ) parser.add_argument( '''--config_file''', default=None, type=str, required=True, help='''The config json file corresponding to the pre-trained model. \nThis specifies the model architecture.''', ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) lowerCAmelCase__ = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path)
72
0
'''simple docstring''' import os from dataclasses import dataclass, field from io import BytesIO from typing import TYPE_CHECKING, Any, ClassVar, Dict, Optional, Union import numpy as np import pyarrow as pa from .. import config from ..download.streaming_download_manager import xopen, xsplitext from ..table import array_cast from ..utils.py_utils import no_op_if_value_is_null, string_to_dict if TYPE_CHECKING: from .features import FeatureType _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = False, False, False @dataclass class _snake_case : __A : Optional[int] =None __A : bool =True __A : bool =True __A : Optional[str] =None # Automatically constructed __A : ClassVar[str] ="dict" __A : ClassVar[Any] =pa.struct({"bytes": pa.binary(), "path": pa.string()}) __A : str =field(default="Audio" , init=__SCREAMING_SNAKE_CASE , repr=__SCREAMING_SNAKE_CASE) def __call__( self ): return self.pa_type def UpperCamelCase__ ( self ,_snake_case ): try: import soundfile as sf # soundfile is a dependency of librosa, needed to decode audio files. except ImportError as err: raise ImportError("To support encoding audio data, please install 'soundfile'." ) from err if isinstance(_snake_case ,_snake_case ): return {"bytes": None, "path": value} elif isinstance(_snake_case ,_snake_case ): return {"bytes": value, "path": None} elif "array" in value: # convert the audio array to wav bytes UpperCAmelCase_ : Optional[Any] = BytesIO() sf.write(_snake_case ,value["array"] ,value["sampling_rate"] ,format="wav" ) return {"bytes": buffer.getvalue(), "path": None} elif value.get("path" ) is not None and os.path.isfile(value["path"] ): # we set "bytes": None to not duplicate the data if they're already available locally if value["path"].endswith("pcm" ): # "PCM" only has raw audio bytes if value.get("sampling_rate" ) is None: # At least, If you want to convert "PCM-byte" to "WAV-byte", you have to know sampling rate raise KeyError("To use PCM files, please specify a 'sampling_rate' in Audio object" ) if value.get("bytes" ): # If we already had PCM-byte, we don`t have to make "read file, make bytes" (just use it!) UpperCAmelCase_ : Union[str, Any] = np.frombuffer(value["bytes"] ,dtype=np.intaa ).astype(np.floataa ) / 3_27_67 else: UpperCAmelCase_ : int = np.memmap(value["path"] ,dtype="h" ,mode="r" ).astype(np.floataa ) / 3_27_67 UpperCAmelCase_ : Dict = BytesIO(bytes() ) sf.write(_snake_case ,_snake_case ,value["sampling_rate"] ,format="wav" ) return {"bytes": buffer.getvalue(), "path": None} else: return {"bytes": None, "path": value.get("path" )} elif value.get("bytes" ) is not None or value.get("path" ) is not None: # store the audio bytes, and path is used to infer the audio format using the file extension return {"bytes": value.get("bytes" ), "path": value.get("path" )} else: raise ValueError( f'''An audio sample should have one of \'path\' or \'bytes\' but they are missing or None in {value}.''' ) def UpperCamelCase__ ( self ,_snake_case ,_snake_case = None ): if not self.decode: raise RuntimeError("Decoding is disabled for this feature. Please use Audio(decode=True) instead." ) UpperCAmelCase_ : str = (value["path"], BytesIO(value["bytes"] )) if value["bytes"] is not None else (value["path"], None) if path is None and file is None: raise ValueError(f'''An audio sample should have one of \'path\' or \'bytes\' but both are None in {value}.''' ) try: import librosa import soundfile as sf except ImportError as err: raise ImportError("To support decoding audio files, please install 'librosa' and 'soundfile'." ) from err UpperCAmelCase_ : Union[str, Any] = xsplitext(_snake_case )[1][1:].lower() if path is not None else None if not config.IS_OPUS_SUPPORTED and audio_format == "opus": raise RuntimeError( "Decoding 'opus' files requires system library 'libsndfile'>=1.0.31, " "You can try to update `soundfile` python library: `pip install \"soundfile>=0.12.1\"`. " ) elif not config.IS_MP3_SUPPORTED and audio_format == "mp3": raise RuntimeError( "Decoding 'mp3' files requires system library 'libsndfile'>=1.1.0, " "You can try to update `soundfile` python library: `pip install \"soundfile>=0.12.1\"`. " ) if file is None: UpperCAmelCase_ : Any = token_per_repo_id or {} UpperCAmelCase_ : int = path.split("::" )[-1] try: UpperCAmelCase_ : Any = string_to_dict(_snake_case ,config.HUB_DATASETS_URL )["repo_id"] UpperCAmelCase_ : Optional[Any] = token_per_repo_id[repo_id] except (ValueError, KeyError): UpperCAmelCase_ : List[Any] = None with xopen(_snake_case ,"rb" ,use_auth_token=_snake_case ) as f: UpperCAmelCase_ : str = sf.read(_snake_case ) else: UpperCAmelCase_ : List[Any] = sf.read(_snake_case ) UpperCAmelCase_ : Optional[Any] = array.T if self.mono: UpperCAmelCase_ : str = librosa.to_mono(_snake_case ) if self.sampling_rate and self.sampling_rate != sampling_rate: UpperCAmelCase_ : Tuple = librosa.resample(_snake_case ,orig_sr=_snake_case ,target_sr=self.sampling_rate ) UpperCAmelCase_ : Optional[int] = self.sampling_rate return {"path": path, "array": array, "sampling_rate": sampling_rate} def UpperCamelCase__ ( self ): from .features import Value if self.decode: raise ValueError("Cannot flatten a decoded Audio feature." ) return { "bytes": Value("binary" ), "path": Value("string" ), } def UpperCamelCase__ ( self ,_snake_case ): if pa.types.is_string(storage.type ): UpperCAmelCase_ : Union[str, Any] = pa.array([None] * len(_snake_case ) ,type=pa.binary() ) UpperCAmelCase_ : List[str] = pa.StructArray.from_arrays([bytes_array, storage] ,["bytes", "path"] ,mask=storage.is_null() ) elif pa.types.is_binary(storage.type ): UpperCAmelCase_ : Tuple = pa.array([None] * len(_snake_case ) ,type=pa.string() ) UpperCAmelCase_ : List[str] = pa.StructArray.from_arrays([storage, path_array] ,["bytes", "path"] ,mask=storage.is_null() ) elif pa.types.is_struct(storage.type ) and storage.type.get_all_field_indices("array" ): UpperCAmelCase_ : List[str] = pa.array([Audio().encode_example(_snake_case ) if x is not None else None for x in storage.to_pylist()] ) elif pa.types.is_struct(storage.type ): if storage.type.get_field_index("bytes" ) >= 0: UpperCAmelCase_ : Optional[int] = storage.field("bytes" ) else: UpperCAmelCase_ : Dict = pa.array([None] * len(_snake_case ) ,type=pa.binary() ) if storage.type.get_field_index("path" ) >= 0: UpperCAmelCase_ : str = storage.field("path" ) else: UpperCAmelCase_ : List[str] = pa.array([None] * len(_snake_case ) ,type=pa.string() ) UpperCAmelCase_ : List[Any] = pa.StructArray.from_arrays([bytes_array, path_array] ,["bytes", "path"] ,mask=storage.is_null() ) return array_cast(_snake_case ,self.pa_type ) def UpperCamelCase__ ( self ,_snake_case ): @no_op_if_value_is_null def path_to_bytes(_snake_case ): with xopen(_snake_case ,"rb" ) as f: UpperCAmelCase_ : Union[str, Any] = f.read() return bytes_ UpperCAmelCase_ : List[Any] = pa.array( [ (path_to_bytes(x["path"] ) if x["bytes"] is None else x["bytes"]) if x is not None else None for x in storage.to_pylist() ] ,type=pa.binary() ,) UpperCAmelCase_ : List[Any] = pa.array( [os.path.basename(_snake_case ) if path is not None else None for path in storage.field("path" ).to_pylist()] ,type=pa.string() ,) UpperCAmelCase_ : int = pa.StructArray.from_arrays([bytes_array, path_array] ,["bytes", "path"] ,mask=bytes_array.is_null() ) return array_cast(_snake_case ,self.pa_type )
366
'''simple docstring''' import argparse from collections import OrderedDict from pathlib import Path import torch from huggingface_hub import hf_hub_download from PIL import Image from torchvision.transforms import functional as F from transformers import DetrImageProcessor, TableTransformerConfig, TableTransformerForObjectDetection from transformers.utils import logging logging.set_verbosity_info() _lowerCamelCase = logging.get_logger(__name__) # here we list all keys to be renamed (original name on the left, our name on the right) _lowerCamelCase = [] for i in range(6): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (f"""transformer.encoder.layers.{i}.self_attn.out_proj.weight""", f"""encoder.layers.{i}.self_attn.out_proj.weight""") ) rename_keys.append( (f"""transformer.encoder.layers.{i}.self_attn.out_proj.bias""", f"""encoder.layers.{i}.self_attn.out_proj.bias""") ) rename_keys.append((f"""transformer.encoder.layers.{i}.linear1.weight""", f"""encoder.layers.{i}.fc1.weight""")) rename_keys.append((f"""transformer.encoder.layers.{i}.linear1.bias""", f"""encoder.layers.{i}.fc1.bias""")) rename_keys.append((f"""transformer.encoder.layers.{i}.linear2.weight""", f"""encoder.layers.{i}.fc2.weight""")) rename_keys.append((f"""transformer.encoder.layers.{i}.linear2.bias""", f"""encoder.layers.{i}.fc2.bias""")) rename_keys.append( (f"""transformer.encoder.layers.{i}.norm1.weight""", f"""encoder.layers.{i}.self_attn_layer_norm.weight""") ) rename_keys.append((f"""transformer.encoder.layers.{i}.norm1.bias""", f"""encoder.layers.{i}.self_attn_layer_norm.bias""")) rename_keys.append((f"""transformer.encoder.layers.{i}.norm2.weight""", f"""encoder.layers.{i}.final_layer_norm.weight""")) rename_keys.append((f"""transformer.encoder.layers.{i}.norm2.bias""", f"""encoder.layers.{i}.final_layer_norm.bias""")) # decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms rename_keys.append( (f"""transformer.decoder.layers.{i}.self_attn.out_proj.weight""", f"""decoder.layers.{i}.self_attn.out_proj.weight""") ) rename_keys.append( (f"""transformer.decoder.layers.{i}.self_attn.out_proj.bias""", f"""decoder.layers.{i}.self_attn.out_proj.bias""") ) rename_keys.append( ( f"""transformer.decoder.layers.{i}.multihead_attn.out_proj.weight""", f"""decoder.layers.{i}.encoder_attn.out_proj.weight""", ) ) rename_keys.append( ( f"""transformer.decoder.layers.{i}.multihead_attn.out_proj.bias""", f"""decoder.layers.{i}.encoder_attn.out_proj.bias""", ) ) rename_keys.append((f"""transformer.decoder.layers.{i}.linear1.weight""", f"""decoder.layers.{i}.fc1.weight""")) rename_keys.append((f"""transformer.decoder.layers.{i}.linear1.bias""", f"""decoder.layers.{i}.fc1.bias""")) rename_keys.append((f"""transformer.decoder.layers.{i}.linear2.weight""", f"""decoder.layers.{i}.fc2.weight""")) rename_keys.append((f"""transformer.decoder.layers.{i}.linear2.bias""", f"""decoder.layers.{i}.fc2.bias""")) rename_keys.append( (f"""transformer.decoder.layers.{i}.norm1.weight""", f"""decoder.layers.{i}.self_attn_layer_norm.weight""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.norm1.bias""", f"""decoder.layers.{i}.self_attn_layer_norm.bias""")) rename_keys.append( (f"""transformer.decoder.layers.{i}.norm2.weight""", f"""decoder.layers.{i}.encoder_attn_layer_norm.weight""") ) rename_keys.append( (f"""transformer.decoder.layers.{i}.norm2.bias""", f"""decoder.layers.{i}.encoder_attn_layer_norm.bias""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.norm3.weight""", f"""decoder.layers.{i}.final_layer_norm.weight""")) rename_keys.append((f"""transformer.decoder.layers.{i}.norm3.bias""", f"""decoder.layers.{i}.final_layer_norm.bias""")) # convolutional projection + query embeddings + layernorm of encoder + layernorm of decoder + class and bounding box heads rename_keys.extend( [ ("""input_proj.weight""", """input_projection.weight"""), ("""input_proj.bias""", """input_projection.bias"""), ("""query_embed.weight""", """query_position_embeddings.weight"""), ("""transformer.encoder.norm.weight""", """encoder.layernorm.weight"""), ("""transformer.encoder.norm.bias""", """encoder.layernorm.bias"""), ("""transformer.decoder.norm.weight""", """decoder.layernorm.weight"""), ("""transformer.decoder.norm.bias""", """decoder.layernorm.bias"""), ("""class_embed.weight""", """class_labels_classifier.weight"""), ("""class_embed.bias""", """class_labels_classifier.bias"""), ("""bbox_embed.layers.0.weight""", """bbox_predictor.layers.0.weight"""), ("""bbox_embed.layers.0.bias""", """bbox_predictor.layers.0.bias"""), ("""bbox_embed.layers.1.weight""", """bbox_predictor.layers.1.weight"""), ("""bbox_embed.layers.1.bias""", """bbox_predictor.layers.1.bias"""), ("""bbox_embed.layers.2.weight""", """bbox_predictor.layers.2.weight"""), ("""bbox_embed.layers.2.bias""", """bbox_predictor.layers.2.bias"""), ] ) def a__ ( _SCREAMING_SNAKE_CASE : Any , _SCREAMING_SNAKE_CASE : List[str] , _SCREAMING_SNAKE_CASE : Optional[int] ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase_ : Tuple = state_dict.pop(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Optional[int] = val def a__ ( _SCREAMING_SNAKE_CASE : int ) -> List[str]: """simple docstring""" UpperCAmelCase_ : Dict = OrderedDict() for key, value in state_dict.items(): if "backbone.0.body" in key: UpperCAmelCase_ : Optional[int] = key.replace("backbone.0.body" , "backbone.conv_encoder.model" ) UpperCAmelCase_ : Union[str, Any] = value else: UpperCAmelCase_ : int = value return new_state_dict def a__ ( _SCREAMING_SNAKE_CASE : List[str] ) -> Dict: """simple docstring""" UpperCAmelCase_ : Dict = "" # first: transformer encoder for i in range(6 ): # read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias) UpperCAmelCase_ : str = state_dict.pop(F'''{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight''' ) UpperCAmelCase_ : Optional[int] = state_dict.pop(F'''{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias''' ) # next, add query, keys and values (in that order) to the state dict UpperCAmelCase_ : List[Any] = in_proj_weight[:2_56, :] UpperCAmelCase_ : Optional[int] = in_proj_bias[:2_56] UpperCAmelCase_ : Dict = in_proj_weight[2_56:5_12, :] UpperCAmelCase_ : Dict = in_proj_bias[2_56:5_12] UpperCAmelCase_ : int = in_proj_weight[-2_56:, :] UpperCAmelCase_ : Dict = in_proj_bias[-2_56:] # next: transformer decoder (which is a bit more complex because it also includes cross-attention) for i in range(6 ): # read in weights + bias of input projection layer of self-attention UpperCAmelCase_ : Optional[int] = state_dict.pop(F'''{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_weight''' ) UpperCAmelCase_ : str = state_dict.pop(F'''{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_bias''' ) # next, add query, keys and values (in that order) to the state dict UpperCAmelCase_ : Union[str, Any] = in_proj_weight[:2_56, :] UpperCAmelCase_ : Optional[int] = in_proj_bias[:2_56] UpperCAmelCase_ : Optional[Any] = in_proj_weight[2_56:5_12, :] UpperCAmelCase_ : List[str] = in_proj_bias[2_56:5_12] UpperCAmelCase_ : Optional[int] = in_proj_weight[-2_56:, :] UpperCAmelCase_ : List[Any] = in_proj_bias[-2_56:] # read in weights + bias of input projection layer of cross-attention UpperCAmelCase_ : int = state_dict.pop( F'''{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_weight''' ) UpperCAmelCase_ : Union[str, Any] = state_dict.pop(F'''{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_bias''' ) # next, add query, keys and values (in that order) of cross-attention to the state dict UpperCAmelCase_ : List[str] = in_proj_weight_cross_attn[:2_56, :] UpperCAmelCase_ : Dict = in_proj_bias_cross_attn[:2_56] UpperCAmelCase_ : List[Any] = in_proj_weight_cross_attn[2_56:5_12, :] UpperCAmelCase_ : int = in_proj_bias_cross_attn[2_56:5_12] UpperCAmelCase_ : int = in_proj_weight_cross_attn[-2_56:, :] UpperCAmelCase_ : str = in_proj_bias_cross_attn[-2_56:] def a__ ( _SCREAMING_SNAKE_CASE : Tuple , _SCREAMING_SNAKE_CASE : Tuple ) -> Any: """simple docstring""" UpperCAmelCase_ , UpperCAmelCase_ : Optional[Any] = image.size UpperCAmelCase_ : int = max(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : List[Any] = 8_00 if "detection" in checkpoint_url else 10_00 UpperCAmelCase_ : str = target_max_size / current_max_size UpperCAmelCase_ : Tuple = image.resize((int(round(scale * width ) ), int(round(scale * height ) )) ) return resized_image def a__ ( _SCREAMING_SNAKE_CASE : Any ) -> List[Any]: """simple docstring""" UpperCAmelCase_ : Any = F.to_tensor(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : List[Any] = F.normalize(_SCREAMING_SNAKE_CASE , mean=[0.485, 0.456, 0.406] , std=[0.229, 0.224, 0.225] ) return image @torch.no_grad() def a__ ( _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : str ) -> Any: """simple docstring""" logger.info("Converting model..." ) # load original state dict UpperCAmelCase_ : Union[str, Any] = torch.hub.load_state_dict_from_url(_SCREAMING_SNAKE_CASE , map_location="cpu" ) # rename keys for src, dest in rename_keys: rename_key(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : List[str] = rename_backbone_keys(_SCREAMING_SNAKE_CASE ) # query, key and value matrices need special treatment read_in_q_k_v(_SCREAMING_SNAKE_CASE ) # important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them UpperCAmelCase_ : Any = "model." for key in state_dict.copy().keys(): if not key.startswith("class_labels_classifier" ) and not key.startswith("bbox_predictor" ): UpperCAmelCase_ : Optional[Any] = state_dict.pop(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Optional[int] = val # create HuggingFace model and load state dict UpperCAmelCase_ : str = TableTransformerConfig( backbone="resnet18" , mask_loss_coefficient=1 , dice_loss_coefficient=1 , ce_loss_coefficient=1 , bbox_loss_coefficient=5 , giou_loss_coefficient=2 , eos_coefficient=0.4 , class_cost=1 , bbox_cost=5 , giou_cost=2 , ) if "detection" in checkpoint_url: UpperCAmelCase_ : str = 15 UpperCAmelCase_ : str = 2 UpperCAmelCase_ : Union[str, Any] = {0: "table", 1: "table rotated"} UpperCAmelCase_ : Tuple = idalabel UpperCAmelCase_ : List[str] = {v: k for k, v in idalabel.items()} else: UpperCAmelCase_ : Tuple = 1_25 UpperCAmelCase_ : Tuple = 6 UpperCAmelCase_ : Union[str, Any] = { 0: "table", 1: "table column", 2: "table row", 3: "table column header", 4: "table projected row header", 5: "table spanning cell", } UpperCAmelCase_ : str = idalabel UpperCAmelCase_ : Any = {v: k for k, v in idalabel.items()} UpperCAmelCase_ : List[Any] = DetrImageProcessor( format="coco_detection" , max_size=8_00 if "detection" in checkpoint_url else 10_00 ) UpperCAmelCase_ : Optional[int] = TableTransformerForObjectDetection(_SCREAMING_SNAKE_CASE ) model.load_state_dict(_SCREAMING_SNAKE_CASE ) model.eval() # verify our conversion UpperCAmelCase_ : Optional[Any] = "example_pdf.png" if "detection" in checkpoint_url else "example_table.png" UpperCAmelCase_ : Dict = hf_hub_download(repo_id="nielsr/example-pdf" , repo_type="dataset" , filename=_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Any = Image.open(_SCREAMING_SNAKE_CASE ).convert("RGB" ) UpperCAmelCase_ : int = normalize(resize(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ).unsqueeze(0 ) UpperCAmelCase_ : Optional[int] = model(_SCREAMING_SNAKE_CASE ) if "detection" in checkpoint_url: UpperCAmelCase_ : Any = (1, 15, 3) UpperCAmelCase_ : Optional[int] = torch.tensor( [[-6.7_897, -16.9_985, 6.7_937], [-8.0_186, -22.2_192, 6.9_677], [-7.3_117, -21.0_708, 7.4_055]] ) UpperCAmelCase_ : Dict = torch.tensor([[0.4_867, 0.1_767, 0.6_732], [0.6_718, 0.4_479, 0.3_830], [0.4_716, 0.1_760, 0.6_364]] ) else: UpperCAmelCase_ : Union[str, Any] = (1, 1_25, 7) UpperCAmelCase_ : List[str] = torch.tensor( [[-18.1_430, -8.3_214, 4.8_274], [-18.4_685, -7.1_361, -4.2_667], [-26.3_693, -9.3_429, -4.9_962]] ) UpperCAmelCase_ : Any = torch.tensor([[0.4_983, 0.5_595, 0.9_440], [0.4_916, 0.6_315, 0.5_954], [0.6_108, 0.8_637, 0.1_135]] ) assert outputs.logits.shape == expected_shape assert torch.allclose(outputs.logits[0, :3, :3] , _SCREAMING_SNAKE_CASE , atol=1E-4 ) assert torch.allclose(outputs.pred_boxes[0, :3, :3] , _SCREAMING_SNAKE_CASE , atol=1E-4 ) print("Looks ok!" ) if pytorch_dump_folder_path is not None: # Save model and image processor logger.info(F'''Saving PyTorch model and image processor to {pytorch_dump_folder_path}...''' ) Path(_SCREAMING_SNAKE_CASE ).mkdir(exist_ok=_SCREAMING_SNAKE_CASE ) model.save_pretrained(_SCREAMING_SNAKE_CASE ) image_processor.save_pretrained(_SCREAMING_SNAKE_CASE ) if push_to_hub: # Push model to HF hub logger.info("Pushing model to the hub..." ) UpperCAmelCase_ : List[str] = ( "microsoft/table-transformer-detection" if "detection" in checkpoint_url else "microsoft/table-transformer-structure-recognition" ) model.push_to_hub(_SCREAMING_SNAKE_CASE ) image_processor.push_to_hub(_SCREAMING_SNAKE_CASE ) if __name__ == "__main__": _lowerCamelCase = argparse.ArgumentParser() parser.add_argument( """--checkpoint_url""", default="""https://pubtables1m.blob.core.windows.net/model/pubtables1m_detection_detr_r18.pth""", type=str, choices=[ """https://pubtables1m.blob.core.windows.net/model/pubtables1m_detection_detr_r18.pth""", """https://pubtables1m.blob.core.windows.net/model/pubtables1m_structure_detr_r18.pth""", ], help="""URL of the Table Transformer checkpoint you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the folder to output PyTorch model.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub.""" ) _lowerCamelCase = parser.parse_args() convert_table_transformer_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
67
0
from __future__ import annotations _lowerCamelCase : Optional[Any] = [-10, -5, 0, 5, 5.1, 11, 13, 21, 3, 4, -21, -10, -5, -1, 0] _lowerCamelCase : Any = [-5, 0, 5, 5.1, 11, 13, 21, -1, 4, -1, -10, -5, -1, 0, -1] def SCREAMING_SNAKE_CASE ( lowercase_ ) -> list[float]: """simple docstring""" A__ = [] A__ = len(lowercase_ ) for i in range(lowercase_ ): A__ = -1 for j in range(i + 1 , lowercase_ ): if arr[i] < arr[j]: A__ = arr[j] break result.append(lowercase_ ) return result def SCREAMING_SNAKE_CASE ( lowercase_ ) -> list[float]: """simple docstring""" A__ = [] for i, outer in enumerate(lowercase_ ): A__ = -1 for inner in arr[i + 1 :]: if outer < inner: A__ = inner break result.append(lowercase_ ) return result def SCREAMING_SNAKE_CASE ( lowercase_ ) -> list[float]: """simple docstring""" A__ = len(lowercase_ ) A__ = [] A__ = [-1] * arr_size for index in reversed(range(lowercase_ ) ): if stack: while stack[-1] <= arr[index]: stack.pop() if not stack: break if stack: A__ = stack[-1] stack.append(arr[index] ) return result if __name__ == "__main__": from doctest import testmod from timeit import timeit testmod() print(next_greatest_element_slow(arr)) print(next_greatest_element_fast(arr)) print(next_greatest_element(arr)) _lowerCamelCase : int = ( """from __main__ import arr, next_greatest_element_slow, """ """next_greatest_element_fast, next_greatest_element""" ) print( """next_greatest_element_slow():""", timeit("""next_greatest_element_slow(arr)""", setup=setup), ) print( """next_greatest_element_fast():""", timeit("""next_greatest_element_fast(arr)""", setup=setup), ) print( """ next_greatest_element():""", timeit("""next_greatest_element(arr)""", setup=setup), )
14
'''simple docstring''' from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCamelCase_ = {"""configuration_focalnet""": ["""FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP""", """FocalNetConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = [ """FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST""", """FocalNetForImageClassification""", """FocalNetForMaskedImageModeling""", """FocalNetBackbone""", """FocalNetModel""", """FocalNetPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_focalnet import FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FocalNetConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_focalnet import ( FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST, FocalNetBackbone, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetModel, FocalNetPreTrainedModel, ) else: import sys UpperCamelCase_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
309
0
'''simple docstring''' import inspect import os import unittest import torch import accelerate from accelerate import debug_launcher from accelerate.test_utils import ( execute_subprocess_async, require_cpu, require_huggingface_suite, require_multi_gpu, require_single_gpu, ) from accelerate.utils import patch_environment @require_huggingface_suite class UpperCAmelCase__ ( unittest.TestCase): def __lowerCamelCase ( self ) -> Optional[int]: __UpperCamelCase = inspect.getfile(accelerate.test_utils ) __UpperCamelCase = os.path.sep.join( mod_file.split(os.path.sep )[:-1] + ["""scripts""", """external_deps""", """test_metrics.py"""] ) from accelerate.test_utils.scripts.external_deps import test_metrics # noqa: F401 __UpperCamelCase = test_metrics @require_cpu def __lowerCamelCase ( self ) -> Optional[int]: debug_launcher(self.test_metrics.main , num_processes=1 ) @require_cpu def __lowerCamelCase ( self ) -> List[Any]: debug_launcher(self.test_metrics.main ) @require_single_gpu def __lowerCamelCase ( self ) -> Union[str, Any]: self.test_metrics.main() @require_multi_gpu def __lowerCamelCase ( self ) -> Union[str, Any]: print(f"Found {torch.cuda.device_count()} devices." ) __UpperCamelCase = ["""torchrun""", f"--nproc_per_node={torch.cuda.device_count()}", self.test_file_path] with patch_environment(omp_num_threads=1 ): execute_subprocess_async(lowercase , env=os.environ.copy() )
360
'''simple docstring''' from dataclasses import dataclass, field from typing import TYPE_CHECKING, Any, ClassVar, Dict, List, Optional, Union import pyarrow as pa if TYPE_CHECKING: from .features import FeatureType @dataclass class UpperCAmelCase__ : __SCREAMING_SNAKE_CASE = 42 __SCREAMING_SNAKE_CASE = None # Automatically constructed __SCREAMING_SNAKE_CASE = "dict" __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = field(default='''Translation''' , init=UpperCAmelCase_ , repr=UpperCAmelCase_) def __call__( self ) -> Optional[Any]: return pa.struct({lang: pa.string() for lang in sorted(self.languages )} ) def __lowerCamelCase ( self ) -> Union["FeatureType", Dict[str, "FeatureType"]]: from .features import Value return {k: Value("""string""" ) for k in sorted(self.languages )} @dataclass class UpperCAmelCase__ : __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = None # Automatically constructed __SCREAMING_SNAKE_CASE = "dict" __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = field(default='''TranslationVariableLanguages''' , init=UpperCAmelCase_ , repr=UpperCAmelCase_) def __lowerCamelCase ( self ) -> Dict: __UpperCamelCase = sorted(set(self.languages ) ) if self.languages else None __UpperCamelCase = len(self.languages ) if self.languages else None def __call__( self ) -> Any: return pa.struct({"""language""": pa.list_(pa.string() ), """translation""": pa.list_(pa.string() )} ) def __lowerCamelCase ( self , lowercase ) -> Any: __UpperCamelCase = set(self.languages ) if self.languages and set(lowercase ) - lang_set: raise ValueError( f"Some languages in example ({', '.join(sorted(set(lowercase ) - lang_set ) )}) are not in valid set ({', '.join(lowercase )})." ) # Convert dictionary into tuples, splitting out cases where there are # multiple translations for a single language. __UpperCamelCase = [] for lang, text in translation_dict.items(): if isinstance(lowercase , lowercase ): translation_tuples.append((lang, text) ) else: translation_tuples.extend([(lang, el) for el in text] ) # Ensure translations are in ascending order by language code. __UpperCamelCase , __UpperCamelCase = zip(*sorted(lowercase ) ) return {"language": languages, "translation": translations} def __lowerCamelCase ( self ) -> Union["FeatureType", Dict[str, "FeatureType"]]: from .features import Sequence, Value return { "language": Sequence(Value("""string""" ) ), "translation": Sequence(Value("""string""" ) ), }
243
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, is_vision_available, ) UpperCamelCase_ = {'''configuration_vit''': ['''VIT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ViTConfig''', '''ViTOnnxConfig''']} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = ['''ViTFeatureExtractor'''] UpperCamelCase_ = ['''ViTImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = [ '''VIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ViTForImageClassification''', '''ViTForMaskedImageModeling''', '''ViTModel''', '''ViTPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = [ '''TFViTForImageClassification''', '''TFViTModel''', '''TFViTPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = [ '''FlaxViTForImageClassification''', '''FlaxViTModel''', '''FlaxViTPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_vit import VIT_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTConfig, ViTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_vit import ViTFeatureExtractor from .image_processing_vit import ViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit import ( VIT_PRETRAINED_MODEL_ARCHIVE_LIST, ViTForImageClassification, ViTForMaskedImageModeling, ViTModel, ViTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vit import TFViTForImageClassification, TFViTModel, TFViTPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_vit import FlaxViTForImageClassification, FlaxViTModel, FlaxViTPreTrainedModel else: import sys UpperCamelCase_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
345
import argparse from argparse import Namespace import torch from torch import nn from transformers import XGLMConfig, XGLMForCausalLM def lowerCamelCase_ ( _a : List[Any] ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = [ """decoder.version""", """decoder.output_projection.weight""", """_float_tensor""", """decoder.embed_positions._float_tensor""", ] for k in ignore_keys: state_dict.pop(_a , _a ) def lowerCamelCase_ ( _a : Any ): '''simple docstring''' UpperCAmelCase_ , UpperCAmelCase_ : Optional[Any] = emb.weight.shape UpperCAmelCase_ : Tuple = nn.Linear(_a , _a , bias=_a ) UpperCAmelCase_ : List[Any] = emb.weight.data return lin_layer def lowerCamelCase_ ( _a : Dict ): '''simple docstring''' UpperCAmelCase_ : int = torch.load(_a , map_location="""cpu""" ) UpperCAmelCase_ : Dict = Namespace(**checkpoint["""cfg"""]["""model"""] ) UpperCAmelCase_ : Optional[int] = checkpoint["""model"""] remove_ignore_keys_(_a ) UpperCAmelCase_ : str = state_dict["""decoder.embed_tokens.weight"""].shape[0] UpperCAmelCase_ : List[str] = {key.replace("""decoder""" , """model""" ): val for key, val in state_dict.items()} UpperCAmelCase_ : int = XGLMConfig( vocab_size=_a , max_position_embeddings=args.max_target_positions , num_layers=args.decoder_layers , attention_heads=args.decoder_attention_heads , ffn_dim=args.decoder_ffn_embed_dim , d_model=args.decoder_embed_dim , layerdrop=args.decoder_layerdrop , dropout=args.dropout , attention_dropout=args.attention_dropout , activation_dropout=args.activation_dropout , activation_function="""gelu""" , scale_embedding=not args.no_scale_embedding , tie_word_embeddings=args.share_decoder_input_output_embed , ) UpperCAmelCase_ : List[str] = XGLMForCausalLM(_a ) UpperCAmelCase_ : Tuple = model.load_state_dict(_a , strict=_a ) print(_a ) UpperCAmelCase_ : Optional[Any] = make_linear_from_emb(model.model.embed_tokens ) return model if __name__ == "__main__": UpperCamelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument('''fairseq_path''', type=str, help='''path to a model.pt on local filesystem.''') parser.add_argument('''pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') UpperCamelCase_ = parser.parse_args() UpperCamelCase_ = convert_fairseq_xglm_checkpoint_from_disk(args.fairseq_path) model.save_pretrained(args.pytorch_dump_folder_path)
345
1
from ..utils import DummyObject, requires_backends class a ( metaclass=lowercase__ ): _lowercase = ['onnx'] def __init__( self , *A_ , **A_ ): '''simple docstring''' requires_backends(self , ["onnx"] ) @classmethod def _UpperCAmelCase ( cls , *A_ , **A_ ): '''simple docstring''' requires_backends(cls , ["onnx"] ) @classmethod def _UpperCAmelCase ( cls , *A_ , **A_ ): '''simple docstring''' requires_backends(cls , ["onnx"] )
358
import warnings from typing import List import numpy as np from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding from ...utils import is_flax_available, is_tf_available, is_torch_available class a ( UpperCAmelCase ): _lowercase = ["image_processor", "tokenizer"] _lowercase = "OwlViTImageProcessor" _lowercase = ("CLIPTokenizer", "CLIPTokenizerFast") def __init__( self , A_=None , A_=None , **A_ ): '''simple docstring''' _UpperCAmelCase : List[str] = None if "feature_extractor" in kwargs: warnings.warn( "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" " instead." , A_ , ) _UpperCAmelCase : Union[str, Any] = kwargs.pop("feature_extractor" ) _UpperCAmelCase : Any = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("You need to specify an `image_processor`." ) if tokenizer is None: raise ValueError("You need to specify a `tokenizer`." ) super().__init__(A_ , A_ ) def __call__( self , A_=None , A_=None , A_=None , A_="max_length" , A_="np" , **A_ ): '''simple docstring''' if text is None and query_images is None and images is None: raise ValueError( "You have to specify at least one text or query image or image. All three cannot be none." ) if text is not None: if isinstance(A_ , A_ ) or (isinstance(A_ , A_ ) and not isinstance(text[0] , A_ )): _UpperCAmelCase : Optional[int] = [self.tokenizer(A_ , padding=A_ , return_tensors=A_ , **A_ )] elif isinstance(A_ , A_ ) and isinstance(text[0] , A_ ): _UpperCAmelCase : Optional[int] = [] # Maximum number of queries across batch _UpperCAmelCase : Optional[Any] = max([len(A_ ) for t in text] ) # Pad all batch samples to max number of text queries for t in text: if len(A_ ) != max_num_queries: _UpperCAmelCase : Optional[int] = t + [" "] * (max_num_queries - len(A_ )) _UpperCAmelCase : str = self.tokenizer(A_ , padding=A_ , return_tensors=A_ , **A_ ) encodings.append(A_ ) else: raise TypeError("Input text should be a string, a list of strings or a nested list of strings" ) if return_tensors == "np": _UpperCAmelCase : List[str] = np.concatenate([encoding["input_ids"] for encoding in encodings] , axis=0 ) _UpperCAmelCase : Tuple = np.concatenate([encoding["attention_mask"] for encoding in encodings] , axis=0 ) elif return_tensors == "jax" and is_flax_available(): import jax.numpy as jnp _UpperCAmelCase : Optional[Any] = jnp.concatenate([encoding["input_ids"] for encoding in encodings] , axis=0 ) _UpperCAmelCase : str = jnp.concatenate([encoding["attention_mask"] for encoding in encodings] , axis=0 ) elif return_tensors == "pt" and is_torch_available(): import torch _UpperCAmelCase : str = torch.cat([encoding["input_ids"] for encoding in encodings] , dim=0 ) _UpperCAmelCase : Dict = torch.cat([encoding["attention_mask"] for encoding in encodings] , dim=0 ) elif return_tensors == "tf" and is_tf_available(): import tensorflow as tf _UpperCAmelCase : Union[str, Any] = tf.stack([encoding["input_ids"] for encoding in encodings] , axis=0 ) _UpperCAmelCase : Optional[int] = tf.stack([encoding["attention_mask"] for encoding in encodings] , axis=0 ) else: raise ValueError("Target return tensor type could not be returned" ) _UpperCAmelCase : Optional[int] = BatchEncoding() _UpperCAmelCase : str = input_ids _UpperCAmelCase : Optional[Any] = attention_mask if query_images is not None: _UpperCAmelCase : int = BatchEncoding() _UpperCAmelCase : str = self.image_processor( A_ , return_tensors=A_ , **A_ ).pixel_values _UpperCAmelCase : Optional[Any] = query_pixel_values if images is not None: _UpperCAmelCase : int = self.image_processor(A_ , return_tensors=A_ , **A_ ) if text is not None and images is not None: _UpperCAmelCase : Optional[int] = image_features.pixel_values return encoding elif query_images is not None and images is not None: _UpperCAmelCase : Any = image_features.pixel_values return encoding elif text is not None or query_images is not None: return encoding else: return BatchEncoding(data=dict(**A_ ) , tensor_type=A_ ) def _UpperCAmelCase ( self , *A_ , **A_ ): '''simple docstring''' return self.image_processor.post_process(*A_ , **A_ ) def _UpperCAmelCase ( self , *A_ , **A_ ): '''simple docstring''' return self.image_processor.post_process_object_detection(*A_ , **A_ ) def _UpperCAmelCase ( self , *A_ , **A_ ): '''simple docstring''' return self.image_processor.post_process_image_guided_detection(*A_ , **A_ ) def _UpperCAmelCase ( self , *A_ , **A_ ): '''simple docstring''' return self.tokenizer.batch_decode(*A_ , **A_ ) def _UpperCAmelCase ( self , *A_ , **A_ ): '''simple docstring''' return self.tokenizer.decode(*A_ , **A_ ) @property def _UpperCAmelCase ( self ): '''simple docstring''' warnings.warn( "`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead." , A_ , ) return self.image_processor_class @property def _UpperCAmelCase ( self ): '''simple docstring''' warnings.warn( "`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead." , A_ , ) return self.image_processor
189
0
'''simple docstring''' import os import tempfile import unittest from pathlib import Path from transformers import AutoConfig, is_tf_available from transformers.testing_utils import require_tf if is_tf_available(): import tensorflow as tf from transformers import TensorFlowBenchmark, TensorFlowBenchmarkArguments @require_tf class lowercase ( unittest.TestCase ): """simple docstring""" def lowerCAmelCase__ ( self , UpperCamelCase_ ): '''simple docstring''' for model_result in results.values(): for batch_size, sequence_length in zip(model_result['''bs'''] , model_result['''ss'''] ): UpperCamelCase__ :Dict = model_result['''result'''][batch_size][sequence_length] self.assertIsNotNone(_SCREAMING_SNAKE_CASE ) def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :List[str] = '''sshleifer/tiny-gpt2''' UpperCamelCase__ :Tuple = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=_SCREAMING_SNAKE_CASE , inference=_SCREAMING_SNAKE_CASE , sequence_lengths=[8] , batch_sizes=[1] , eager_mode=_SCREAMING_SNAKE_CASE , multi_process=_SCREAMING_SNAKE_CASE , ) UpperCamelCase__ :List[Any] = TensorFlowBenchmark(_SCREAMING_SNAKE_CASE ) UpperCamelCase__ :Union[str, Any] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :List[Any] = '''sgugger/tiny-distilbert-classification''' UpperCamelCase__ :List[str] = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=_SCREAMING_SNAKE_CASE , inference=_SCREAMING_SNAKE_CASE , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_SCREAMING_SNAKE_CASE , only_pretrain_model=_SCREAMING_SNAKE_CASE , ) UpperCamelCase__ :str = TensorFlowBenchmark(_SCREAMING_SNAKE_CASE ) UpperCamelCase__ :int = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :Optional[int] = '''sshleifer/tiny-gpt2''' UpperCamelCase__ :Dict = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=_SCREAMING_SNAKE_CASE , inference=_SCREAMING_SNAKE_CASE , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_SCREAMING_SNAKE_CASE , ) UpperCamelCase__ :List[str] = TensorFlowBenchmark(_SCREAMING_SNAKE_CASE ) UpperCamelCase__ :str = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :List[str] = '''sshleifer/tiny-gpt2''' UpperCamelCase__ :Tuple = AutoConfig.from_pretrained(_SCREAMING_SNAKE_CASE ) UpperCamelCase__ :str = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=_SCREAMING_SNAKE_CASE , inference=_SCREAMING_SNAKE_CASE , sequence_lengths=[8] , batch_sizes=[1] , eager_mode=_SCREAMING_SNAKE_CASE , multi_process=_SCREAMING_SNAKE_CASE , ) UpperCamelCase__ :str = TensorFlowBenchmark(_SCREAMING_SNAKE_CASE , [config] ) UpperCamelCase__ :List[str] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :Union[str, Any] = '''sshleifer/tiny-gpt2''' UpperCamelCase__ :Tuple = AutoConfig.from_pretrained(_SCREAMING_SNAKE_CASE ) UpperCamelCase__ :List[Any] = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=_SCREAMING_SNAKE_CASE , inference=_SCREAMING_SNAKE_CASE , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_SCREAMING_SNAKE_CASE , ) UpperCamelCase__ :Optional[int] = TensorFlowBenchmark(_SCREAMING_SNAKE_CASE , [config] ) UpperCamelCase__ :int = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :Any = '''sshleifer/tiny-gpt2''' UpperCamelCase__ :Dict = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=_SCREAMING_SNAKE_CASE , inference=_SCREAMING_SNAKE_CASE , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_SCREAMING_SNAKE_CASE , ) UpperCamelCase__ :Any = TensorFlowBenchmark(_SCREAMING_SNAKE_CASE ) UpperCamelCase__ :List[Any] = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :Optional[Any] = '''sshleifer/tiny-gpt2''' UpperCamelCase__ :Dict = AutoConfig.from_pretrained(_SCREAMING_SNAKE_CASE ) UpperCamelCase__ :Dict = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=_SCREAMING_SNAKE_CASE , inference=_SCREAMING_SNAKE_CASE , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_SCREAMING_SNAKE_CASE , ) UpperCamelCase__ :Optional[int] = TensorFlowBenchmark(_SCREAMING_SNAKE_CASE , [config] ) UpperCamelCase__ :Optional[int] = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :str = '''patrickvonplaten/t5-tiny-random''' UpperCamelCase__ :Any = AutoConfig.from_pretrained(_SCREAMING_SNAKE_CASE ) UpperCamelCase__ :List[Any] = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=_SCREAMING_SNAKE_CASE , inference=_SCREAMING_SNAKE_CASE , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_SCREAMING_SNAKE_CASE , ) UpperCamelCase__ :Optional[Any] = TensorFlowBenchmark(_SCREAMING_SNAKE_CASE , configs=[config] ) UpperCamelCase__ :Optional[int] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) @unittest.skipIf(is_tf_available() and len(tf.config.list_physical_devices('''GPU''' ) ) == 0 , '''Cannot do xla on CPU.''' ) def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :str = '''sshleifer/tiny-gpt2''' UpperCamelCase__ :Any = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=_SCREAMING_SNAKE_CASE , inference=_SCREAMING_SNAKE_CASE , sequence_lengths=[8] , batch_sizes=[1] , use_xla=_SCREAMING_SNAKE_CASE , multi_process=_SCREAMING_SNAKE_CASE , ) UpperCamelCase__ :Tuple = TensorFlowBenchmark(_SCREAMING_SNAKE_CASE ) UpperCamelCase__ :int = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :Optional[Any] = '''sshleifer/tiny-gpt2''' with tempfile.TemporaryDirectory() as tmp_dir: UpperCamelCase__ :str = TensorFlowBenchmarkArguments( models=[MODEL_ID] , inference=_SCREAMING_SNAKE_CASE , save_to_csv=_SCREAMING_SNAKE_CASE , sequence_lengths=[8] , batch_sizes=[1] , inference_time_csv_file=os.path.join(_SCREAMING_SNAKE_CASE , '''inf_time.csv''' ) , inference_memory_csv_file=os.path.join(_SCREAMING_SNAKE_CASE , '''inf_mem.csv''' ) , env_info_csv_file=os.path.join(_SCREAMING_SNAKE_CASE , '''env.csv''' ) , multi_process=_SCREAMING_SNAKE_CASE , ) UpperCamelCase__ :Optional[Any] = TensorFlowBenchmark(_SCREAMING_SNAKE_CASE ) benchmark.run() self.assertTrue(Path(os.path.join(_SCREAMING_SNAKE_CASE , '''inf_time.csv''' ) ).exists() ) self.assertTrue(Path(os.path.join(_SCREAMING_SNAKE_CASE , '''inf_mem.csv''' ) ).exists() ) self.assertTrue(Path(os.path.join(_SCREAMING_SNAKE_CASE , '''env.csv''' ) ).exists() ) def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :Optional[Any] = '''sshleifer/tiny-gpt2''' def _check_summary_is_not_empty(UpperCamelCase_ ): self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , '''sequential''' ) ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , '''cumulative''' ) ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , '''current''' ) ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , '''total''' ) ) with tempfile.TemporaryDirectory() as tmp_dir: UpperCamelCase__ :Dict = TensorFlowBenchmarkArguments( models=[MODEL_ID] , inference=_SCREAMING_SNAKE_CASE , sequence_lengths=[8] , batch_sizes=[1] , log_filename=os.path.join(_SCREAMING_SNAKE_CASE , '''log.txt''' ) , log_print=_SCREAMING_SNAKE_CASE , trace_memory_line_by_line=_SCREAMING_SNAKE_CASE , eager_mode=_SCREAMING_SNAKE_CASE , multi_process=_SCREAMING_SNAKE_CASE , ) UpperCamelCase__ :Any = TensorFlowBenchmark(_SCREAMING_SNAKE_CASE ) UpperCamelCase__ :Dict = benchmark.run() _check_summary_is_not_empty(result.inference_summary ) self.assertTrue(Path(os.path.join(_SCREAMING_SNAKE_CASE , '''log.txt''' ) ).exists() )
97
'''simple docstring''' import argparse import os from io import BytesIO from pathlib import Path import requests from clip_retrieval.clip_client import ClipClient from PIL import Image from tqdm import tqdm def lowercase__ ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase )-> List[str]: UpperCamelCase = 1.5 UpperCamelCase = int(factor * num_class_images ) UpperCamelCase = ClipClient( url="""https://knn.laion.ai/knn-service""" , indice_name="""laion_400m""" , num_images=__UpperCamelCase , aesthetic_weight=0.1 ) os.makedirs(F"{class_data_dir}/images" , exist_ok=__UpperCamelCase ) if len(list(Path(F"{class_data_dir}/images" ).iterdir() ) ) >= num_class_images: return while True: UpperCamelCase = client.query(text=__UpperCamelCase ) if len(__UpperCamelCase ) >= factor * num_class_images or num_images > 1E4: break else: UpperCamelCase = int(factor * num_images ) UpperCamelCase = ClipClient( url="""https://knn.laion.ai/knn-service""" , indice_name="""laion_400m""" , num_images=__UpperCamelCase , aesthetic_weight=0.1 , ) UpperCamelCase = 0 UpperCamelCase = 0 UpperCamelCase = tqdm(desc="""downloading real regularization images""" , total=__UpperCamelCase ) with open(F"{class_data_dir}/caption.txt" , """w""" ) as fa, open(F"{class_data_dir}/urls.txt" , """w""" ) as fa, open( F"{class_data_dir}/images.txt" , """w""" ) as fa: while total < num_class_images: UpperCamelCase = class_images[count] count += 1 try: UpperCamelCase = requests.get(images["""url"""] ) if img.status_code == 200: UpperCamelCase = Image.open(BytesIO(img.content ) ) with open(F"{class_data_dir}/images/{total}.jpg" , """wb""" ) as f: f.write(img.content ) fa.write(images["""caption"""] + """\n""" ) fa.write(images["""url"""] + """\n""" ) fa.write(F"{class_data_dir}/images/{total}.jpg" + """\n""" ) total += 1 pbar.update(1 ) else: continue except Exception: continue return def lowercase__ ( )-> str: UpperCamelCase = argparse.ArgumentParser("""""" , add_help=__UpperCamelCase ) parser.add_argument("""--class_prompt""" , help="""text prompt to retrieve images""" , required=__UpperCamelCase , type=__UpperCamelCase ) parser.add_argument("""--class_data_dir""" , help="""path to save images""" , required=__UpperCamelCase , type=__UpperCamelCase ) parser.add_argument("""--num_class_images""" , help="""number of images to download""" , default=200 , type=__UpperCamelCase ) return parser.parse_args() if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = parse_args() retrieve(args.class_prompt, args.class_data_dir, args.num_class_images)
321
0
import logging import os import sys from dataclasses import dataclass, field from itertools import chain from typing import Optional, Union import datasets import numpy as np import torch from datasets import load_dataset import transformers from transformers import ( AutoConfig, AutoModelForMultipleChoice, AutoTokenizer, HfArgumentParser, Trainer, TrainingArguments, default_data_collator, set_seed, ) from transformers.tokenization_utils_base import PreTrainedTokenizerBase from transformers.trainer_utils import get_last_checkpoint from transformers.utils import PaddingStrategy, check_min_version, send_example_telemetry # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("""4.31.0""") __snake_case : List[Any] = logging.getLogger(__name__) @dataclass class __SCREAMING_SNAKE_CASE : _SCREAMING_SNAKE_CASE : str = field( metadata={'''help''': '''Path to pretrained model or model identifier from huggingface.co/models'''}) _SCREAMING_SNAKE_CASE : Optional[str] = field( default=__lowercase , metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''}) _SCREAMING_SNAKE_CASE : Optional[str] = field( default=__lowercase , metadata={'''help''': '''Pretrained tokenizer name or path if not the same as model_name'''}) _SCREAMING_SNAKE_CASE : Optional[str] = field( default=__lowercase , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co'''} , ) _SCREAMING_SNAKE_CASE : bool = field( default=__lowercase , metadata={'''help''': '''Whether to use one of the fast tokenizer (backed by the tokenizers library) or not.'''} , ) _SCREAMING_SNAKE_CASE : str = field( default='''main''' , metadata={'''help''': '''The specific model version to use (can be a branch name, tag name or commit id).'''} , ) _SCREAMING_SNAKE_CASE : bool = field( default=__lowercase , metadata={ '''help''': ( '''Will use the token generated when running `huggingface-cli login` (necessary to use this script ''' '''with private models).''' ) } , ) @dataclass class __SCREAMING_SNAKE_CASE : _SCREAMING_SNAKE_CASE : Optional[str] = field(default=__lowercase , metadata={'''help''': '''The input training data file (a text file).'''}) _SCREAMING_SNAKE_CASE : Optional[str] = field( default=__lowercase , metadata={'''help''': '''An optional input evaluation data file to evaluate the perplexity on (a text file).'''} , ) _SCREAMING_SNAKE_CASE : bool = field( default=__lowercase , metadata={'''help''': '''Overwrite the cached training and evaluation sets'''}) _SCREAMING_SNAKE_CASE : Optional[int] = field( default=__lowercase , metadata={'''help''': '''The number of processes to use for the preprocessing.'''} , ) _SCREAMING_SNAKE_CASE : Optional[int] = field( default=__lowercase , metadata={ '''help''': ( '''The maximum total input sequence length after tokenization. If passed, sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) } , ) _SCREAMING_SNAKE_CASE : bool = field( default=__lowercase , metadata={ '''help''': ( '''Whether to pad all samples to the maximum sentence length. ''' '''If False, will pad the samples dynamically when batching to the maximum length in the batch. More ''' '''efficient on GPU but very bad for TPU.''' ) } , ) _SCREAMING_SNAKE_CASE : Optional[int] = field( default=__lowercase , metadata={ '''help''': ( '''For debugging purposes or quicker training, truncate the number of training examples to this ''' '''value if set.''' ) } , ) _SCREAMING_SNAKE_CASE : Optional[int] = field( default=__lowercase , metadata={ '''help''': ( '''For debugging purposes or quicker training, truncate the number of evaluation examples to this ''' '''value if set.''' ) } , ) def UpperCamelCase__ ( self ): """simple docstring""" if self.train_file is not None: lowerCAmelCase__ = self.train_file.split('.' )[-1] assert extension in ["csv", "json"], "`train_file` should be a csv or a json file." if self.validation_file is not None: lowerCAmelCase__ = self.validation_file.split('.' )[-1] assert extension in ["csv", "json"], "`validation_file` should be a csv or a json file." @dataclass class __SCREAMING_SNAKE_CASE : _SCREAMING_SNAKE_CASE : PreTrainedTokenizerBase _SCREAMING_SNAKE_CASE : Union[bool, str, PaddingStrategy] = True _SCREAMING_SNAKE_CASE : Optional[int] = None _SCREAMING_SNAKE_CASE : Optional[int] = None def __call__( self , _UpperCamelCase ): """simple docstring""" lowerCAmelCase__ = 'label' if 'label' in features[0].keys() else 'labels' lowerCAmelCase__ = [feature.pop(_UpperCamelCase ) for feature in features] lowerCAmelCase__ = len(_UpperCamelCase ) lowerCAmelCase__ = len(features[0]['input_ids'] ) lowerCAmelCase__ = [ [{k: v[i] for k, v in feature.items()} for i in range(_UpperCamelCase )] for feature in features ] lowerCAmelCase__ = list(chain(*_UpperCamelCase ) ) lowerCAmelCase__ = self.tokenizer.pad( _UpperCamelCase , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors='pt' , ) # Un-flatten lowerCAmelCase__ = {k: v.view(_UpperCamelCase , _UpperCamelCase , -1 ) for k, v in batch.items()} # Add back labels lowerCAmelCase__ = torch.tensor(_UpperCamelCase , dtype=torch.intaa ) return batch def _UpperCamelCase ( ) -> Any: """simple docstring""" lowerCAmelCase__ = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('.json' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry('run_swag' , UpperCamelCase_ , UpperCamelCase_ ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() lowerCAmelCase__ = training_args.get_process_log_level() logger.setLevel(UpperCamelCase_ ) datasets.utils.logging.set_verbosity(UpperCamelCase_ ) transformers.utils.logging.set_verbosity(UpperCamelCase_ ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}" + F"distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}" ) logger.info(F"Training/evaluation parameters {training_args}" ) # Detecting last checkpoint. lowerCAmelCase__ = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: lowerCAmelCase__ = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F"Output directory ({training_args.output_dir}) already exists and is not empty. " 'Use --overwrite_output_dir to overcome.' ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change " 'the `--output_dir` or add `--overwrite_output_dir` to train from scratch.' ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.train_file is not None or data_args.validation_file is not None: lowerCAmelCase__ = {} if data_args.train_file is not None: lowerCAmelCase__ = data_args.train_file if data_args.validation_file is not None: lowerCAmelCase__ = data_args.validation_file lowerCAmelCase__ = data_args.train_file.split('.' )[-1] lowerCAmelCase__ = load_dataset( UpperCamelCase_ , data_files=UpperCamelCase_ , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) else: # Downloading and loading the swag dataset from the hub. lowerCAmelCase__ = load_dataset( 'swag' , 'regular' , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Load pretrained model and tokenizer # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. lowerCAmelCase__ = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) lowerCAmelCase__ = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast_tokenizer , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) lowerCAmelCase__ = AutoModelForMultipleChoice.from_pretrained( model_args.model_name_or_path , from_tf=bool('.ckpt' in model_args.model_name_or_path ) , config=UpperCamelCase_ , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # When using your own dataset or a different dataset from swag, you will probably need to change this. lowerCAmelCase__ = [F"ending{i}" for i in range(4 )] lowerCAmelCase__ = 'sent1' lowerCAmelCase__ = 'sent2' if data_args.max_seq_length is None: lowerCAmelCase__ = tokenizer.model_max_length if max_seq_length > 1024: logger.warning( 'The chosen tokenizer supports a `model_max_length` that is longer than the default `block_size` value' ' of 1024. If you would like to use a longer `block_size` up to `tokenizer.model_max_length` you can' ' override this default with `--block_size xxx`.' ) lowerCAmelCase__ = 1024 else: if data_args.max_seq_length > tokenizer.model_max_length: logger.warning( F"The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the" F"model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}." ) lowerCAmelCase__ = min(data_args.max_seq_length , tokenizer.model_max_length ) # Preprocessing the datasets. def preprocess_function(UpperCamelCase_ : str ): lowerCAmelCase__ = [[context] * 4 for context in examples[context_name]] lowerCAmelCase__ = examples[question_header_name] lowerCAmelCase__ = [ [F"{header} {examples[end][i]}" for end in ending_names] for i, header in enumerate(UpperCamelCase_ ) ] # Flatten out lowerCAmelCase__ = list(chain(*UpperCamelCase_ ) ) lowerCAmelCase__ = list(chain(*UpperCamelCase_ ) ) # Tokenize lowerCAmelCase__ = tokenizer( UpperCamelCase_ , UpperCamelCase_ , truncation=UpperCamelCase_ , max_length=UpperCamelCase_ , padding='max_length' if data_args.pad_to_max_length else False , ) # Un-flatten return {k: [v[i : i + 4] for i in range(0 , len(UpperCamelCase_ ) , 4 )] for k, v in tokenized_examples.items()} if training_args.do_train: if "train" not in raw_datasets: raise ValueError('--do_train requires a train dataset' ) lowerCAmelCase__ = raw_datasets['train'] if data_args.max_train_samples is not None: lowerCAmelCase__ = min(len(UpperCamelCase_ ) , data_args.max_train_samples ) lowerCAmelCase__ = train_dataset.select(range(UpperCamelCase_ ) ) with training_args.main_process_first(desc='train dataset map pre-processing' ): lowerCAmelCase__ = train_dataset.map( UpperCamelCase_ , batched=UpperCamelCase_ , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , ) if training_args.do_eval: if "validation" not in raw_datasets: raise ValueError('--do_eval requires a validation dataset' ) lowerCAmelCase__ = raw_datasets['validation'] if data_args.max_eval_samples is not None: lowerCAmelCase__ = min(len(UpperCamelCase_ ) , data_args.max_eval_samples ) lowerCAmelCase__ = eval_dataset.select(range(UpperCamelCase_ ) ) with training_args.main_process_first(desc='validation dataset map pre-processing' ): lowerCAmelCase__ = eval_dataset.map( UpperCamelCase_ , batched=UpperCamelCase_ , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , ) # Data collator lowerCAmelCase__ = ( default_data_collator if data_args.pad_to_max_length else DataCollatorForMultipleChoice(tokenizer=UpperCamelCase_ , pad_to_multiple_of=8 if training_args.fpaa else None ) ) # Metric def compute_metrics(UpperCamelCase_ : str ): lowerCAmelCase__ , lowerCAmelCase__ = eval_predictions lowerCAmelCase__ = np.argmax(UpperCamelCase_ , axis=1 ) return {"accuracy": (preds == label_ids).astype(np.floataa ).mean().item()} # Initialize our Trainer lowerCAmelCase__ = Trainer( model=UpperCamelCase_ , args=UpperCamelCase_ , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , tokenizer=UpperCamelCase_ , data_collator=UpperCamelCase_ , compute_metrics=UpperCamelCase_ , ) # Training if training_args.do_train: lowerCAmelCase__ = None if training_args.resume_from_checkpoint is not None: lowerCAmelCase__ = training_args.resume_from_checkpoint elif last_checkpoint is not None: lowerCAmelCase__ = last_checkpoint lowerCAmelCase__ = trainer.train(resume_from_checkpoint=UpperCamelCase_ ) trainer.save_model() # Saves the tokenizer too for easy upload lowerCAmelCase__ = train_result.metrics lowerCAmelCase__ = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(UpperCamelCase_ ) ) lowerCAmelCase__ = min(UpperCamelCase_ , len(UpperCamelCase_ ) ) trainer.log_metrics('train' , UpperCamelCase_ ) trainer.save_metrics('train' , UpperCamelCase_ ) trainer.save_state() # Evaluation if training_args.do_eval: logger.info('*** Evaluate ***' ) lowerCAmelCase__ = trainer.evaluate() lowerCAmelCase__ = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(UpperCamelCase_ ) lowerCAmelCase__ = min(UpperCamelCase_ , len(UpperCamelCase_ ) ) trainer.log_metrics('eval' , UpperCamelCase_ ) trainer.save_metrics('eval' , UpperCamelCase_ ) lowerCAmelCase__ = { 'finetuned_from': model_args.model_name_or_path, 'tasks': 'multiple-choice', 'dataset_tags': 'swag', 'dataset_args': 'regular', 'dataset': 'SWAG', 'language': 'en', } if training_args.push_to_hub: trainer.push_to_hub(**UpperCamelCase_ ) else: trainer.create_model_card(**UpperCamelCase_ ) def _UpperCamelCase ( UpperCamelCase_ : Any ) -> str: """simple docstring""" main() if __name__ == "__main__": main()
122
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) __snake_case : Union[str, Any] = { """configuration_convbert""": ["""CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """ConvBertConfig""", """ConvBertOnnxConfig"""], """tokenization_convbert""": ["""ConvBertTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : List[str] = ["""ConvBertTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : Optional[Any] = [ """CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """ConvBertForMaskedLM""", """ConvBertForMultipleChoice""", """ConvBertForQuestionAnswering""", """ConvBertForSequenceClassification""", """ConvBertForTokenClassification""", """ConvBertLayer""", """ConvBertModel""", """ConvBertPreTrainedModel""", """load_tf_weights_in_convbert""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : Union[str, Any] = [ """TF_CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFConvBertForMaskedLM""", """TFConvBertForMultipleChoice""", """TFConvBertForQuestionAnswering""", """TFConvBertForSequenceClassification""", """TFConvBertForTokenClassification""", """TFConvBertLayer""", """TFConvBertModel""", """TFConvBertPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_convbert import CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ConvBertConfig, ConvBertOnnxConfig from .tokenization_convbert import ConvBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_convbert_fast import ConvBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_convbert import ( CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST, ConvBertForMaskedLM, ConvBertForMultipleChoice, ConvBertForQuestionAnswering, ConvBertForSequenceClassification, ConvBertForTokenClassification, ConvBertLayer, ConvBertModel, ConvBertPreTrainedModel, load_tf_weights_in_convbert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_convbert import ( TF_CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFConvBertForMaskedLM, TFConvBertForMultipleChoice, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertLayer, TFConvBertModel, TFConvBertPreTrainedModel, ) else: import sys __snake_case : Dict = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
122
1
def lowercase ( SCREAMING_SNAKE_CASE__ : int = 600_851_475_143 ) -> int: try: _snake_case : int = int(SCREAMING_SNAKE_CASE__ ) except (TypeError, ValueError): raise TypeError("""Parameter n must be int or castable to int.""" ) if n <= 0: raise ValueError("""Parameter n must be greater than or equal to one.""" ) _snake_case : Optional[int] = 1 _snake_case : List[Any] = 2 while i * i <= n: while n % i == 0: _snake_case : Optional[int] = i n //= i i += 1 if n > 1: _snake_case : Optional[int] = n return int(SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": print(F'''{solution() = }''')
317
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging a__ = logging.get_logger(__name__) a__ = { """xlm-roberta-base""": """https://huggingface.co/xlm-roberta-base/resolve/main/config.json""", """xlm-roberta-large""": """https://huggingface.co/xlm-roberta-large/resolve/main/config.json""", """xlm-roberta-large-finetuned-conll02-dutch""": ( """https://huggingface.co/xlm-roberta-large-finetuned-conll02-dutch/resolve/main/config.json""" ), """xlm-roberta-large-finetuned-conll02-spanish""": ( """https://huggingface.co/xlm-roberta-large-finetuned-conll02-spanish/resolve/main/config.json""" ), """xlm-roberta-large-finetuned-conll03-english""": ( """https://huggingface.co/xlm-roberta-large-finetuned-conll03-english/resolve/main/config.json""" ), """xlm-roberta-large-finetuned-conll03-german""": ( """https://huggingface.co/xlm-roberta-large-finetuned-conll03-german/resolve/main/config.json""" ), } class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Dict = """xlm-roberta""" def __init__( self : Any , lowerCAmelCase : Tuple=3_0522 , lowerCAmelCase : Tuple=768 , lowerCAmelCase : Any=12 , lowerCAmelCase : str=12 , lowerCAmelCase : Any=3072 , lowerCAmelCase : int="gelu" , lowerCAmelCase : Union[str, Any]=0.1 , lowerCAmelCase : Dict=0.1 , lowerCAmelCase : List[str]=512 , lowerCAmelCase : Optional[int]=2 , lowerCAmelCase : Tuple=0.02 , lowerCAmelCase : int=1E-12 , lowerCAmelCase : Optional[Any]=1 , lowerCAmelCase : Optional[int]=0 , lowerCAmelCase : Any=2 , lowerCAmelCase : int="absolute" , lowerCAmelCase : Union[str, Any]=True , lowerCAmelCase : Dict=None , **lowerCAmelCase : Any , ) -> List[Any]: """simple docstring""" super().__init__(pad_token_id=lowerCAmelCase , bos_token_id=lowerCAmelCase , eos_token_id=lowerCAmelCase , **lowerCAmelCase) _snake_case : List[Any] = vocab_size _snake_case : Optional[Any] = hidden_size _snake_case : Optional[Any] = num_hidden_layers _snake_case : Union[str, Any] = num_attention_heads _snake_case : List[Any] = hidden_act _snake_case : Tuple = intermediate_size _snake_case : Any = hidden_dropout_prob _snake_case : List[str] = attention_probs_dropout_prob _snake_case : List[Any] = max_position_embeddings _snake_case : List[str] = type_vocab_size _snake_case : Optional[int] = initializer_range _snake_case : int = layer_norm_eps _snake_case : Optional[Any] = position_embedding_type _snake_case : Tuple = use_cache _snake_case : Optional[Any] = classifier_dropout class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' @property def UpperCamelCase_ ( self : Dict) -> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task == "multiple-choice": _snake_case : List[str] = {0: """batch""", 1: """choice""", 2: """sequence"""} else: _snake_case : Optional[Any] = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ])
317
1
from bisect import bisect from itertools import accumulate def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ = sorted(zip(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) , key=lambda SCREAMING_SNAKE_CASE : x[0] / x[1] , reverse=SCREAMING_SNAKE_CASE ) lowercase__ , lowercase__ = [i[0] for i in r], [i[1] for i in r] lowercase__ = list(accumulate(SCREAMING_SNAKE_CASE ) ) lowercase__ = bisect(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) return ( 0 if k == 0 else sum(vl[:k] ) + (w - acc[k - 1]) * (vl[k]) / (wt[k]) if k != n else sum(vl[:k] ) ) if __name__ == "__main__": import doctest doctest.testmod()
93
import math_equivalence # From: git+https://github.com/hendrycks/math.git import datasets lowerCAmelCase = '\\n@article{hendrycksmath2021,\n title={Measuring Mathematical Problem Solving With the MATH Dataset},\n author={Dan Hendrycks\n and Collin Burns\n and Saurav Kadavath\n and Akul Arora\n and Steven Basart\n and Eric Tang\n and Dawn Song\n and Jacob Steinhardt},\n journal={arXiv preprint arXiv:2103.03874},\n year={2021}\n}\n' lowerCAmelCase = '\\nThis metric is used to assess performance on the Mathematics Aptitude Test of Heuristics (MATH) dataset.\nIt first canonicalizes the inputs (e.g., converting "1/2" to "\\frac{1}{2}") and then computes accuracy.\n' lowerCAmelCase = R'\nCalculates accuracy after canonicalizing inputs.\n\nArgs:\n predictions: list of predictions to score. Each prediction\n is a string that contains natural language and LaTex.\n references: list of reference for each prediction. Each\n reference is a string that contains natural language\n and LaTex.\nReturns:\n accuracy: accuracy after canonicalizing inputs\n (e.g., converting "1/2" to "\\frac{1}{2}")\n\nExamples:\n >>> metric = datasets.load_metric("competition_math")\n >>> results = metric.compute(references=["\\frac{1}{2}"], predictions=["1/2"])\n >>> print(results)\n {\'accuracy\': 1.0}\n' @datasets.utils.file_utils.add_end_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _a ( datasets.Metric ): def lowerCamelCase_ ( self: List[str] ) -> Tuple: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''string''' ), '''references''': datasets.Value('''string''' ), } ) , homepage='''https://github.com/hendrycks/math''' , codebase_urls=['''https://github.com/hendrycks/math'''] , ) def lowerCamelCase_ ( self: Union[str, Any] , UpperCamelCase_: Any , UpperCamelCase_: int ) -> List[str]: """simple docstring""" lowercase__ = 0.0 for i, j in zip(UpperCamelCase_ , UpperCamelCase_ ): n_correct += 1.0 if math_equivalence.is_equiv(UpperCamelCase_ , UpperCamelCase_ ) else 0.0 lowercase__ = n_correct / len(UpperCamelCase_ ) return { "accuracy": accuracy, }
93
1
'''simple docstring''' import math lowerCamelCase :List[str] = 1_0 lowerCamelCase :List[str] = 7 lowerCamelCase :Dict = BALLS_PER_COLOUR * NUM_COLOURS def a ( lowerCamelCase__ = 20 ): '''simple docstring''' A_ : int = math.comb(lowerCamelCase__ , lowerCamelCase__ ) A_ : Union[str, Any] = math.comb(NUM_BALLS - BALLS_PER_COLOUR , lowerCamelCase__ ) A_ : Dict = NUM_COLOURS * (1 - missing_colour / total) return f'{result:.9f}' if __name__ == "__main__": print(solution(2_0))
206
'''simple docstring''' import argparse import json import gdown import numpy as np import torch from huggingface_hub import hf_hub_download from transformers import ( VideoMAEConfig, VideoMAEForPreTraining, VideoMAEForVideoClassification, VideoMAEImageProcessor, ) def a ( lowerCamelCase__ ): '''simple docstring''' A_ : Optional[int] = VideoMAEConfig() set_architecture_configs(lowerCamelCase__ , lowerCamelCase__ ) if "finetuned" not in model_name: A_ : Dict = False if "finetuned" in model_name: A_ : List[Any] = """huggingface/label-files""" if "kinetics" in model_name: A_ : Dict = 4_00 A_ : List[str] = """kinetics400-id2label.json""" elif "ssv2" in model_name: A_ : Tuple = 1_74 A_ : str = """something-something-v2-id2label.json""" else: raise ValueError("""Model name should either contain 'kinetics' or 'ssv2' in case it's fine-tuned.""" ) A_ : Dict = json.load(open(hf_hub_download(lowerCamelCase__ , lowerCamelCase__ , repo_type="""dataset""" ) , """r""" ) ) A_ : List[str] = {int(lowerCamelCase__ ): v for k, v in idalabel.items()} A_ : Optional[Any] = idalabel A_ : Union[str, Any] = {v: k for k, v in idalabel.items()} return config def a ( lowerCamelCase__ , lowerCamelCase__ ): '''simple docstring''' if "small" in model_name: A_ : int = 3_84 A_ : Union[str, Any] = 15_36 A_ : List[str] = 12 A_ : Optional[int] = 16 A_ : Any = 12 A_ : int = 3 A_ : Optional[Any] = 1_92 A_ : Union[str, Any] = 7_68 elif "large" in model_name: A_ : List[Any] = 10_24 A_ : Optional[Any] = 40_96 A_ : Optional[Any] = 24 A_ : List[str] = 16 A_ : Any = 12 A_ : str = 8 A_ : str = 5_12 A_ : int = 20_48 elif "huge" in model_name: A_ : Optional[Any] = 12_80 A_ : str = 51_20 A_ : str = 32 A_ : int = 16 A_ : Any = 12 A_ : Union[str, Any] = 8 A_ : Dict = 6_40 A_ : Optional[Any] = 25_60 elif "base" not in model_name: raise ValueError("""Model name should include either \"small\", \"base\", \"large\", or \"huge\"""" ) def a ( lowerCamelCase__ ): '''simple docstring''' if "encoder." in name: A_ : List[Any] = name.replace("""encoder.""" , """""" ) if "cls_token" in name: A_ : List[str] = name.replace("""cls_token""" , """videomae.embeddings.cls_token""" ) if "decoder_pos_embed" in name: A_ : Tuple = name.replace("""decoder_pos_embed""" , """decoder.decoder_pos_embed""" ) if "pos_embed" in name and "decoder" not in name: A_ : int = name.replace("""pos_embed""" , """videomae.embeddings.position_embeddings""" ) if "patch_embed.proj" in name: A_ : Optional[Any] = name.replace("""patch_embed.proj""" , """videomae.embeddings.patch_embeddings.projection""" ) if "patch_embed.norm" in name: A_ : Dict = name.replace("""patch_embed.norm""" , """videomae.embeddings.norm""" ) if "decoder.blocks" in name: A_ : List[str] = name.replace("""decoder.blocks""" , """decoder.decoder_layers""" ) if "blocks" in name: A_ : List[str] = name.replace("""blocks""" , """videomae.encoder.layer""" ) if "attn.proj" in name: A_ : str = name.replace("""attn.proj""" , """attention.output.dense""" ) if "attn" in name and "bias" not in name: A_ : str = name.replace("""attn""" , """attention.self""" ) if "attn" in name: A_ : Union[str, Any] = name.replace("""attn""" , """attention.attention""" ) if "norm1" in name: A_ : Any = name.replace("""norm1""" , """layernorm_before""" ) if "norm2" in name: A_ : List[str] = name.replace("""norm2""" , """layernorm_after""" ) if "mlp.fc1" in name: A_ : Dict = name.replace("""mlp.fc1""" , """intermediate.dense""" ) if "mlp.fc2" in name: A_ : List[str] = name.replace("""mlp.fc2""" , """output.dense""" ) if "decoder_embed" in name: A_ : Optional[Any] = name.replace("""decoder_embed""" , """decoder.decoder_embed""" ) if "decoder_norm" in name: A_ : Tuple = name.replace("""decoder_norm""" , """decoder.decoder_norm""" ) if "decoder_pred" in name: A_ : Tuple = name.replace("""decoder_pred""" , """decoder.decoder_pred""" ) if "norm.weight" in name and "decoder" not in name and "fc" not in name: A_ : Dict = name.replace("""norm.weight""" , """videomae.layernorm.weight""" ) if "norm.bias" in name and "decoder" not in name and "fc" not in name: A_ : List[str] = name.replace("""norm.bias""" , """videomae.layernorm.bias""" ) if "head" in name and "decoder" not in name: A_ : Optional[Any] = name.replace("""head""" , """classifier""" ) return name def a ( lowerCamelCase__ , lowerCamelCase__ ): '''simple docstring''' for key in orig_state_dict.copy().keys(): A_ : str = orig_state_dict.pop(lowerCamelCase__ ) if key.startswith("""encoder.""" ): A_ : Tuple = key.replace("""encoder.""" , """""" ) if "qkv" in key: A_ : Optional[int] = key.split(""".""" ) if key.startswith("""decoder.blocks""" ): A_ : Union[str, Any] = config.decoder_hidden_size A_ : Any = int(key_split[2] ) A_ : int = """decoder.decoder_layers.""" if "weight" in key: A_ : Optional[Any] = val[:dim, :] A_ : Any = val[dim : dim * 2, :] A_ : Dict = val[-dim:, :] else: A_ : List[Any] = config.hidden_size A_ : List[Any] = int(key_split[1] ) A_ : int = """videomae.encoder.layer.""" if "weight" in key: A_ : Any = val[:dim, :] A_ : Union[str, Any] = val[dim : dim * 2, :] A_ : List[str] = val[-dim:, :] else: A_ : Union[str, Any] = val return orig_state_dict def a ( ): '''simple docstring''' A_ : List[Any] = hf_hub_download( repo_id="""hf-internal-testing/spaghetti-video""" , filename="""eating_spaghetti.npy""" , repo_type="""dataset""" ) A_ : Optional[Any] = np.load(lowerCamelCase__ ) return list(lowerCamelCase__ ) def a ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): '''simple docstring''' A_ : Any = get_videomae_config(lowerCamelCase__ ) if "finetuned" in model_name: A_ : List[str] = VideoMAEForVideoClassification(lowerCamelCase__ ) else: A_ : Optional[Any] = VideoMAEForPreTraining(lowerCamelCase__ ) # download original checkpoint, hosted on Google Drive A_ : Optional[Any] = """pytorch_model.bin""" gdown.cached_download(lowerCamelCase__ , lowerCamelCase__ , quiet=lowerCamelCase__ ) A_ : Any = torch.load(lowerCamelCase__ , map_location="""cpu""" ) if "model" in files: A_ : Any = files["""model"""] else: A_ : Dict = files["""module"""] A_ : Any = convert_state_dict(lowerCamelCase__ , lowerCamelCase__ ) model.load_state_dict(lowerCamelCase__ ) model.eval() # verify model on basic input A_ : int = VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5] , image_std=[0.5, 0.5, 0.5] ) A_ : Union[str, Any] = prepare_video() A_ : str = image_processor(lowerCamelCase__ , return_tensors="""pt""" ) if "finetuned" not in model_name: A_ : List[str] = hf_hub_download(repo_id="""hf-internal-testing/bool-masked-pos""" , filename="""bool_masked_pos.pt""" ) A_ : Optional[Any] = torch.load(lowerCamelCase__ ) A_ : Dict = model(**lowerCamelCase__ ) A_ : List[Any] = outputs.logits A_ : Any = [ """videomae-small-finetuned-kinetics""", """videomae-small-finetuned-ssv2""", # Kinetics-400 checkpoints (short = pretrained only for 800 epochs instead of 1600) """videomae-base-short""", """videomae-base-short-finetuned-kinetics""", """videomae-base""", """videomae-base-finetuned-kinetics""", """videomae-large""", """videomae-large-finetuned-kinetics""", """videomae-huge-finetuned-kinetics""", # Something-Something-v2 checkpoints (short = pretrained only for 800 epochs instead of 2400) """videomae-base-short-ssv2""", """videomae-base-short-finetuned-ssv2""", """videomae-base-ssv2""", """videomae-base-finetuned-ssv2""", ] # NOTE: logits were tested with image_mean and image_std equal to [0.5, 0.5, 0.5] and [0.5, 0.5, 0.5] if model_name == "videomae-small-finetuned-kinetics": A_ : str = torch.Size([1, 4_00] ) A_ : Optional[Any] = torch.tensor([-0.9_291, -0.4_061, -0.9_307] ) elif model_name == "videomae-small-finetuned-ssv2": A_ : str = torch.Size([1, 1_74] ) A_ : Union[str, Any] = torch.tensor([0.2_671, -0.4_689, -0.8_235] ) elif model_name == "videomae-base": A_ : Tuple = torch.Size([1, 14_08, 15_36] ) A_ : List[str] = torch.tensor([[0.7_739, 0.7_968, 0.7_089], [0.6_701, 0.7_487, 0.6_209], [0.4_287, 0.5_158, 0.4_773]] ) elif model_name == "videomae-base-short": A_ : Dict = torch.Size([1, 14_08, 15_36] ) A_ : List[str] = torch.tensor([[0.7_994, 0.9_612, 0.8_508], [0.7_401, 0.8_958, 0.8_302], [0.5_862, 0.7_468, 0.7_325]] ) # we verified the loss both for normalized and unnormalized targets for this one A_ : List[Any] = torch.tensor([0.5_142] ) if config.norm_pix_loss else torch.tensor([0.6_469] ) elif model_name == "videomae-large": A_ : str = torch.Size([1, 14_08, 15_36] ) A_ : Dict = torch.tensor([[0.7_149, 0.7_997, 0.6_966], [0.6_768, 0.7_869, 0.6_948], [0.5_139, 0.6_221, 0.5_605]] ) elif model_name == "videomae-large-finetuned-kinetics": A_ : int = torch.Size([1, 4_00] ) A_ : Optional[Any] = torch.tensor([0.0_771, 0.0_011, -0.3_625] ) elif model_name == "videomae-huge-finetuned-kinetics": A_ : Union[str, Any] = torch.Size([1, 4_00] ) A_ : Optional[int] = torch.tensor([0.2_433, 0.1_632, -0.4_894] ) elif model_name == "videomae-base-short-finetuned-kinetics": A_ : List[Any] = torch.Size([1, 4_00] ) A_ : Optional[Any] = torch.tensor([0.6_588, 0.0_990, -0.2_493] ) elif model_name == "videomae-base-finetuned-kinetics": A_ : Union[str, Any] = torch.Size([1, 4_00] ) A_ : Tuple = torch.tensor([0.3_669, -0.0_688, -0.2_421] ) elif model_name == "videomae-base-short-ssv2": A_ : Optional[Any] = torch.Size([1, 14_08, 15_36] ) A_ : List[Any] = torch.tensor([[0.4_712, 0.5_296, 0.5_786], [0.2_278, 0.2_729, 0.4_026], [0.0_352, 0.0_730, 0.2_506]] ) elif model_name == "videomae-base-short-finetuned-ssv2": A_ : Any = torch.Size([1, 1_74] ) A_ : Any = torch.tensor([-0.0_537, -0.1_539, -0.3_266] ) elif model_name == "videomae-base-ssv2": A_ : Dict = torch.Size([1, 14_08, 15_36] ) A_ : Dict = torch.tensor([[0.8_131, 0.8_727, 0.8_546], [0.7_366, 0.9_377, 0.8_870], [0.5_935, 0.8_874, 0.8_564]] ) elif model_name == "videomae-base-finetuned-ssv2": A_ : Any = torch.Size([1, 1_74] ) A_ : str = torch.tensor([0.1_961, -0.8_337, -0.6_389] ) else: raise ValueError(f'Model name not supported. Should be one of {model_names}' ) # verify logits assert logits.shape == expected_shape if "finetuned" in model_name: assert torch.allclose(logits[0, :3] , lowerCamelCase__ , atol=1E-4 ) else: print("""Logits:""" , logits[0, :3, :3] ) assert torch.allclose(logits[0, :3, :3] , lowerCamelCase__ , atol=1E-4 ) print("""Logits ok!""" ) # verify loss, if applicable if model_name == "videomae-base-short": A_ : Optional[int] = outputs.loss assert torch.allclose(lowerCamelCase__ , lowerCamelCase__ , atol=1E-4 ) print("""Loss ok!""" ) if pytorch_dump_folder_path is not None: print(f'Saving model and image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(lowerCamelCase__ ) model.save_pretrained(lowerCamelCase__ ) if push_to_hub: print("""Pushing to the hub...""" ) model.push_to_hub(lowerCamelCase__ , organization="""nielsr""" ) if __name__ == "__main__": lowerCamelCase :Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--checkpoint_url''', default='''https://drive.google.com/u/1/uc?id=1tEhLyskjb755TJ65ptsrafUG2llSwQE1&amp;export=download&amp;confirm=t&amp;uuid=aa3276eb-fb7e-482a-adec-dc7171df14c4''', type=str, help=( '''URL of the original PyTorch checkpoint (on Google Drive) you\'d like to convert. Should be a direct''' ''' download link.''' ), ) parser.add_argument( '''--pytorch_dump_folder_path''', default='''/Users/nielsrogge/Documents/VideoMAE/Test''', type=str, help='''Path to the output PyTorch model directory.''', ) parser.add_argument('''--model_name''', default='''videomae-base''', type=str, help='''Name of the model.''') parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.''' ) lowerCamelCase :Union[str, Any] = parser.parse_args() convert_videomae_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.model_name, args.push_to_hub)
206
1
import json import os import subprocess import unittest from ast import literal_eval import pytest from parameterized import parameterized, parameterized_class from . import is_sagemaker_available if is_sagemaker_available(): from sagemaker import Session, TrainingJobAnalytics from sagemaker.huggingface import HuggingFace @pytest.mark.skipif( literal_eval(os.getenv("TEST_SAGEMAKER" , "False" ) ) is not True , reason="Skipping test because should only be run when releasing minor transformers version" , ) @pytest.mark.usefixtures("sm_env" ) @parameterized_class( [ { "framework": "pytorch", "script": "run_glue.py", "model_name_or_path": "distilbert-base-cased", "instance_type": "ml.p3.16xlarge", "results": {"train_runtime": 650, "eval_accuracy": 0.7, "eval_loss": 0.6}, }, { "framework": "pytorch", "script": "run_ddp.py", "model_name_or_path": "distilbert-base-cased", "instance_type": "ml.p3.16xlarge", "results": {"train_runtime": 600, "eval_accuracy": 0.7, "eval_loss": 0.6}, }, { "framework": "tensorflow", "script": "run_tf_dist.py", "model_name_or_path": "distilbert-base-cased", "instance_type": "ml.p3.16xlarge", "results": {"train_runtime": 600, "eval_accuracy": 0.6, "eval_loss": 0.7}, }, ] ) class _lowerCamelCase ( unittest.TestCase ): """simple docstring""" def _snake_case ( self )->List[str]: '''simple docstring''' if self.framework == "pytorch": subprocess.run( F'''cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py'''.split() , encoding='''utf-8''' , check=_SCREAMING_SNAKE_CASE , ) assert hasattr(self , '''env''' ) def _snake_case ( self , _SCREAMING_SNAKE_CASE )->Union[str, Any]: '''simple docstring''' A_ : List[Any] = F'''{self.env.base_job_name}-{instance_count}-{"ddp" if "ddp" in self.script else "smd"}''' # distributed data settings A_ : Union[str, Any] = {'''smdistributed''': {'''dataparallel''': {'''enabled''': True}}} if self.script != '''run_ddp.py''' else None # creates estimator return HuggingFace( entry_point=self.script , source_dir=self.env.test_path , role=self.env.role , image_uri=self.env.image_uri , base_job_name=_SCREAMING_SNAKE_CASE , instance_count=_SCREAMING_SNAKE_CASE , instance_type=self.instance_type , debugger_hook_config=_SCREAMING_SNAKE_CASE , hyperparameters={**self.env.distributed_hyperparameters, '''model_name_or_path''': self.model_name_or_path} , metric_definitions=self.env.metric_definitions , distribution=_SCREAMING_SNAKE_CASE , py_version='''py36''' , ) def _snake_case ( self , _SCREAMING_SNAKE_CASE )->Optional[int]: '''simple docstring''' TrainingJobAnalytics(_SCREAMING_SNAKE_CASE ).export_csv(F'''{self.env.test_path}/{job_name}_metrics.csv''' ) @parameterized.expand([(2,)] ) def _snake_case ( self , _SCREAMING_SNAKE_CASE )->int: '''simple docstring''' A_ : str = self.create_estimator(_SCREAMING_SNAKE_CASE ) # run training estimator.fit() # result dataframe A_ : Tuple = TrainingJobAnalytics(estimator.latest_training_job.name ).dataframe() # extract kpis A_ : int = list(result_metrics_df[result_metrics_df.metric_name == '''eval_accuracy''']['''value'''] ) A_ : Dict = list(result_metrics_df[result_metrics_df.metric_name == '''eval_loss''']['''value'''] ) # get train time from SageMaker job, this includes starting, preprocessing, stopping A_ : int = ( Session().describe_training_job(estimator.latest_training_job.name ).get('''TrainingTimeInSeconds''' , 99_9999 ) ) # assert kpis assert train_runtime <= self.results["train_runtime"] assert all(t >= self.results['''eval_accuracy'''] for t in eval_accuracy ) assert all(t <= self.results['''eval_loss'''] for t in eval_loss ) # dump tests result into json file to share in PR with open(F'''{estimator.latest_training_job.name}.json''' , '''w''' ) as outfile: json.dump({'''train_time''': train_runtime, '''eval_accuracy''': eval_accuracy, '''eval_loss''': eval_loss} , _SCREAMING_SNAKE_CASE )
65
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_xlnet import XLNetTokenizer else: UpperCamelCase = None UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = {"""vocab_file""": """spiece.model""", """tokenizer_file""": """tokenizer.json"""} UpperCamelCase = { """vocab_file""": { """xlnet-base-cased""": """https://huggingface.co/xlnet-base-cased/resolve/main/spiece.model""", """xlnet-large-cased""": """https://huggingface.co/xlnet-large-cased/resolve/main/spiece.model""", }, """tokenizer_file""": { """xlnet-base-cased""": """https://huggingface.co/xlnet-base-cased/resolve/main/tokenizer.json""", """xlnet-large-cased""": """https://huggingface.co/xlnet-large-cased/resolve/main/tokenizer.json""", }, } UpperCamelCase = { """xlnet-base-cased""": None, """xlnet-large-cased""": None, } UpperCamelCase = """▁""" # Segments (not really needed) UpperCamelCase = 0 UpperCamelCase = 1 UpperCamelCase = 2 UpperCamelCase = 3 UpperCamelCase = 4 class _lowerCamelCase ( UpperCamelCase ): """simple docstring""" snake_case = VOCAB_FILES_NAMES snake_case = PRETRAINED_VOCAB_FILES_MAP snake_case = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case = "left" snake_case = XLNetTokenizer def __init__( self , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE="<s>" , _SCREAMING_SNAKE_CASE="</s>" , _SCREAMING_SNAKE_CASE="<unk>" , _SCREAMING_SNAKE_CASE="<sep>" , _SCREAMING_SNAKE_CASE="<pad>" , _SCREAMING_SNAKE_CASE="<cls>" , _SCREAMING_SNAKE_CASE="<mask>" , _SCREAMING_SNAKE_CASE=["<eop>", "<eod>"] , **_SCREAMING_SNAKE_CASE , )->Dict: '''simple docstring''' A_ : Tuple = AddedToken(_SCREAMING_SNAKE_CASE , lstrip=_SCREAMING_SNAKE_CASE , rstrip=_SCREAMING_SNAKE_CASE ) if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) else mask_token super().__init__( vocab_file=_SCREAMING_SNAKE_CASE , tokenizer_file=_SCREAMING_SNAKE_CASE , do_lower_case=_SCREAMING_SNAKE_CASE , remove_space=_SCREAMING_SNAKE_CASE , keep_accents=_SCREAMING_SNAKE_CASE , bos_token=_SCREAMING_SNAKE_CASE , eos_token=_SCREAMING_SNAKE_CASE , unk_token=_SCREAMING_SNAKE_CASE , sep_token=_SCREAMING_SNAKE_CASE , pad_token=_SCREAMING_SNAKE_CASE , cls_token=_SCREAMING_SNAKE_CASE , mask_token=_SCREAMING_SNAKE_CASE , additional_special_tokens=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , ) A_ : Optional[Any] = 3 A_ : List[Any] = do_lower_case A_ : Optional[Any] = remove_space A_ : Tuple = keep_accents A_ : str = vocab_file A_ : List[str] = False if not self.vocab_file else True def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None )->List[int]: '''simple docstring''' A_ : Optional[Any] = [self.sep_token_id] A_ : str = [self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None )->List[int]: '''simple docstring''' A_ : str = [self.sep_token_id] A_ : List[str] = [2] if token_ids_a is None: return len(token_ids_a + sep ) * [0] + cls_segment_id return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None )->Tuple[str]: '''simple docstring''' if not self.can_save_slow_tokenizer: raise ValueError( '''Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ''' '''tokenizer.''' ) if not os.path.isdir(_SCREAMING_SNAKE_CASE ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return A_ : Union[str, Any] = os.path.join( _SCREAMING_SNAKE_CASE , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_SCREAMING_SNAKE_CASE ): copyfile(self.vocab_file , _SCREAMING_SNAKE_CASE ) return (out_vocab_file,)
65
1
from random import shuffle import tensorflow as tf from numpy import array def lowerCamelCase__ (_UpperCAmelCase , _UpperCAmelCase): SCREAMING_SNAKE_CASE = int(_UpperCAmelCase) assert noofclusters < len(_UpperCAmelCase) # Find out the dimensionality SCREAMING_SNAKE_CASE = len(vectors[0]) # Will help select random centroids from among the available vectors SCREAMING_SNAKE_CASE = list(range(len(_UpperCAmelCase))) shuffle(_UpperCAmelCase) # GRAPH OF COMPUTATION # We initialize a new graph and set it as the default during each run # of this algorithm. This ensures that as this function is called # multiple times, the default graph doesn't keep getting crowded with # unused ops and Variables from previous function calls. SCREAMING_SNAKE_CASE = tf.Graph() with graph.as_default(): # SESSION OF COMPUTATION SCREAMING_SNAKE_CASE = tf.Session() ##CONSTRUCTING THE ELEMENTS OF COMPUTATION ##First lets ensure we have a Variable vector for each centroid, ##initialized to one of the vectors from the available data points SCREAMING_SNAKE_CASE = [ tf.Variable(vectors[vector_indices[i]]) for i in range(_UpperCAmelCase) ] ##These nodes will assign the centroid Variables the appropriate ##values SCREAMING_SNAKE_CASE = tf.placeholder('float64' , [dim]) SCREAMING_SNAKE_CASE = [] for centroid in centroids: cent_assigns.append(tf.assign(_UpperCAmelCase , _UpperCAmelCase)) ##Variables for cluster assignments of individual vectors(initialized ##to 0 at first) SCREAMING_SNAKE_CASE = [tf.Variable(0) for i in range(len(_UpperCAmelCase))] ##These nodes will assign an assignment Variable the appropriate ##value SCREAMING_SNAKE_CASE = tf.placeholder('int32') SCREAMING_SNAKE_CASE = [] for assignment in assignments: cluster_assigns.append(tf.assign(_UpperCAmelCase , _UpperCAmelCase)) ##Now lets construct the node that will compute the mean # The placeholder for the input SCREAMING_SNAKE_CASE = tf.placeholder('float' , [None, dim]) # The Node/op takes the input and computes a mean along the 0th # dimension, i.e. the list of input vectors SCREAMING_SNAKE_CASE = tf.reduce_mean(_UpperCAmelCase , 0) ##Node for computing Euclidean distances # Placeholders for input SCREAMING_SNAKE_CASE = tf.placeholder('float' , [dim]) SCREAMING_SNAKE_CASE = tf.placeholder('float' , [dim]) SCREAMING_SNAKE_CASE = tf.sqrt(tf.reduce_sum(tf.pow(tf.sub(_UpperCAmelCase , _UpperCAmelCase) , 2))) ##This node will figure out which cluster to assign a vector to, ##based on Euclidean distances of the vector from the centroids. # Placeholder for input SCREAMING_SNAKE_CASE = tf.placeholder('float' , [noofclusters]) SCREAMING_SNAKE_CASE = tf.argmin(_UpperCAmelCase , 0) ##INITIALIZING STATE VARIABLES ##This will help initialization of all Variables defined with respect ##to the graph. The Variable-initializer should be defined after ##all the Variables have been constructed, so that each of them ##will be included in the initialization. SCREAMING_SNAKE_CASE = tf.initialize_all_variables() # Initialize all variables sess.run(_UpperCAmelCase) ##CLUSTERING ITERATIONS # Now perform the Expectation-Maximization steps of K-Means clustering # iterations. To keep things simple, we will only do a set number of # iterations, instead of using a Stopping Criterion. SCREAMING_SNAKE_CASE = 100 for _ in range(_UpperCAmelCase): ##EXPECTATION STEP ##Based on the centroid locations till last iteration, compute ##the _expected_ centroid assignments. # Iterate over each vector for vector_n in range(len(_UpperCAmelCase)): SCREAMING_SNAKE_CASE = vectors[vector_n] # Compute Euclidean distance between this vector and each # centroid. Remember that this list cannot be named #'centroid_distances', since that is the input to the # cluster assignment node. SCREAMING_SNAKE_CASE = [ sess.run(_UpperCAmelCase , feed_dict={va: vect, va: sess.run(_UpperCAmelCase)}) for centroid in centroids ] # Now use the cluster assignment node, with the distances # as the input SCREAMING_SNAKE_CASE = sess.run( _UpperCAmelCase , feed_dict={centroid_distances: distances}) # Now assign the value to the appropriate state variable sess.run( cluster_assigns[vector_n] , feed_dict={assignment_value: assignment}) ##MAXIMIZATION STEP # Based on the expected state computed from the Expectation Step, # compute the locations of the centroids so as to maximize the # overall objective of minimizing within-cluster Sum-of-Squares for cluster_n in range(_UpperCAmelCase): # Collect all the vectors assigned to this cluster SCREAMING_SNAKE_CASE = [ vectors[i] for i in range(len(_UpperCAmelCase)) if sess.run(assignments[i]) == cluster_n ] # Compute new centroid location SCREAMING_SNAKE_CASE = sess.run( _UpperCAmelCase , feed_dict={mean_input: array(_UpperCAmelCase)}) # Assign value to appropriate variable sess.run( cent_assigns[cluster_n] , feed_dict={centroid_value: new_location}) # Return centroids and assignments SCREAMING_SNAKE_CASE = sess.run(_UpperCAmelCase) SCREAMING_SNAKE_CASE = sess.run(_UpperCAmelCase) return centroids, assignments
137
import importlib import os import sys # This is required to make the module import works (when the python process is running from the root of the repo) sys.path.append('.') def lowerCamelCase__ (_UpperCAmelCase): SCREAMING_SNAKE_CASE = test_file.split(os.path.sep) if components[0:2] != ["tests", "models"]: raise ValueError( '`test_file` should start with `tests/models/` (with `/` being the OS specific path separator). Got ' F'''{test_file} instead.''') SCREAMING_SNAKE_CASE = components[-1] if not test_fn.endswith('py'): raise ValueError(F'''`test_file` should be a python file. Got {test_fn} instead.''') if not test_fn.startswith('test_modeling_'): raise ValueError( F'''`test_file` should point to a file name of the form `test_modeling_*.py`. Got {test_fn} instead.''') SCREAMING_SNAKE_CASE = components[:-1] + [test_fn.replace('.py' , '')] SCREAMING_SNAKE_CASE = '.'.join(_UpperCAmelCase) return test_module_path def lowerCamelCase__ (_UpperCAmelCase): SCREAMING_SNAKE_CASE = get_module_path(_UpperCAmelCase) SCREAMING_SNAKE_CASE = importlib.import_module(_UpperCAmelCase) return test_module def lowerCamelCase__ (_UpperCAmelCase): SCREAMING_SNAKE_CASE = [] SCREAMING_SNAKE_CASE = get_test_module(_UpperCAmelCase) for attr in dir(_UpperCAmelCase): if attr.endswith('ModelTester'): tester_classes.append(getattr(_UpperCAmelCase , _UpperCAmelCase)) # sort with class names return sorted(_UpperCAmelCase , key=lambda _UpperCAmelCase: x.__name__) def lowerCamelCase__ (_UpperCAmelCase): SCREAMING_SNAKE_CASE = [] SCREAMING_SNAKE_CASE = get_test_module(_UpperCAmelCase) for attr in dir(_UpperCAmelCase): SCREAMING_SNAKE_CASE = getattr(_UpperCAmelCase , _UpperCAmelCase) # (TF/Flax)ModelTesterMixin is also an attribute in specific model test module. Let's exclude them by checking # `all_model_classes` is not empty (which also excludes other special classes). SCREAMING_SNAKE_CASE = getattr(_UpperCAmelCase , 'all_model_classes' , []) if len(_UpperCAmelCase) > 0: test_classes.append(_UpperCAmelCase) # sort with class names return sorted(_UpperCAmelCase , key=lambda _UpperCAmelCase: x.__name__) def lowerCamelCase__ (_UpperCAmelCase): SCREAMING_SNAKE_CASE = get_test_classes(_UpperCAmelCase) SCREAMING_SNAKE_CASE = set() for test_class in test_classes: model_classes.update(test_class.all_model_classes) # sort with class names return sorted(_UpperCAmelCase , key=lambda _UpperCAmelCase: x.__name__) def lowerCamelCase__ (_UpperCAmelCase): SCREAMING_SNAKE_CASE = test_class() if hasattr(_UpperCAmelCase , 'setUp'): test.setUp() SCREAMING_SNAKE_CASE = None if hasattr(_UpperCAmelCase , 'model_tester'): # `(TF/Flax)ModelTesterMixin` has this attribute default to `None`. Let's skip this case. if test.model_tester is not None: SCREAMING_SNAKE_CASE = test.model_tester.__class__ return model_tester def lowerCamelCase__ (_UpperCAmelCase , _UpperCAmelCase): SCREAMING_SNAKE_CASE = get_test_classes(_UpperCAmelCase) SCREAMING_SNAKE_CASE = [] for test_class in test_classes: if model_class in test_class.all_model_classes: target_test_classes.append(_UpperCAmelCase) # sort with class names return sorted(_UpperCAmelCase , key=lambda _UpperCAmelCase: x.__name__) def lowerCamelCase__ (_UpperCAmelCase , _UpperCAmelCase): SCREAMING_SNAKE_CASE = get_test_classes_for_model(_UpperCAmelCase , _UpperCAmelCase) SCREAMING_SNAKE_CASE = [] for test_class in test_classes: SCREAMING_SNAKE_CASE = get_model_tester_from_test_class(_UpperCAmelCase) if tester_class is not None: tester_classes.append(_UpperCAmelCase) # sort with class names return sorted(_UpperCAmelCase , key=lambda _UpperCAmelCase: x.__name__) def lowerCamelCase__ (_UpperCAmelCase): SCREAMING_SNAKE_CASE = get_test_classes(_UpperCAmelCase) SCREAMING_SNAKE_CASE = {test_class: get_model_tester_from_test_class(_UpperCAmelCase) for test_class in test_classes} return test_tester_mapping def lowerCamelCase__ (_UpperCAmelCase): SCREAMING_SNAKE_CASE = get_model_classes(_UpperCAmelCase) SCREAMING_SNAKE_CASE = { model_class: get_test_classes_for_model(_UpperCAmelCase , _UpperCAmelCase) for model_class in model_classes } return model_test_mapping def lowerCamelCase__ (_UpperCAmelCase): SCREAMING_SNAKE_CASE = get_model_classes(_UpperCAmelCase) SCREAMING_SNAKE_CASE = { model_class: get_tester_classes_for_model(_UpperCAmelCase , _UpperCAmelCase) for model_class in model_classes } return model_to_tester_mapping def lowerCamelCase__ (_UpperCAmelCase): if isinstance(_UpperCAmelCase , _UpperCAmelCase): return o elif isinstance(_UpperCAmelCase , _UpperCAmelCase): return o.__name__ elif isinstance(_UpperCAmelCase , (list, tuple)): return [to_json(_UpperCAmelCase) for x in o] elif isinstance(_UpperCAmelCase , _UpperCAmelCase): return {to_json(_UpperCAmelCase): to_json(_UpperCAmelCase) for k, v in o.items()} else: return o
137
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available _snake_case : Any = { 'configuration_data2vec_audio': ['DATA2VEC_AUDIO_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Data2VecAudioConfig'], 'configuration_data2vec_text': [ 'DATA2VEC_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Data2VecTextConfig', 'Data2VecTextOnnxConfig', ], 'configuration_data2vec_vision': [ 'DATA2VEC_VISION_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Data2VecVisionConfig', 'Data2VecVisionOnnxConfig', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case : Optional[Any] = [ 'DATA2VEC_AUDIO_PRETRAINED_MODEL_ARCHIVE_LIST', 'Data2VecAudioForAudioFrameClassification', 'Data2VecAudioForCTC', 'Data2VecAudioForSequenceClassification', 'Data2VecAudioForXVector', 'Data2VecAudioModel', 'Data2VecAudioPreTrainedModel', ] _snake_case : Optional[int] = [ 'DATA2VEC_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST', 'Data2VecTextForCausalLM', 'Data2VecTextForMaskedLM', 'Data2VecTextForMultipleChoice', 'Data2VecTextForQuestionAnswering', 'Data2VecTextForSequenceClassification', 'Data2VecTextForTokenClassification', 'Data2VecTextModel', 'Data2VecTextPreTrainedModel', ] _snake_case : Any = [ 'DATA2VEC_VISION_PRETRAINED_MODEL_ARCHIVE_LIST', 'Data2VecVisionForImageClassification', 'Data2VecVisionForMaskedImageModeling', 'Data2VecVisionForSemanticSegmentation', 'Data2VecVisionModel', 'Data2VecVisionPreTrainedModel', ] if is_tf_available(): _snake_case : str = [ 'TFData2VecVisionForImageClassification', 'TFData2VecVisionForSemanticSegmentation', 'TFData2VecVisionModel', 'TFData2VecVisionPreTrainedModel', ] if TYPE_CHECKING: from .configuration_dataavec_audio import DATA2VEC_AUDIO_PRETRAINED_CONFIG_ARCHIVE_MAP, DataaVecAudioConfig from .configuration_dataavec_text import ( DATA2VEC_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, DataaVecTextConfig, DataaVecTextOnnxConfig, ) from .configuration_dataavec_vision import ( DATA2VEC_VISION_PRETRAINED_CONFIG_ARCHIVE_MAP, DataaVecVisionConfig, DataaVecVisionOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_dataavec_audio import ( DATA2VEC_AUDIO_PRETRAINED_MODEL_ARCHIVE_LIST, DataaVecAudioForAudioFrameClassification, DataaVecAudioForCTC, DataaVecAudioForSequenceClassification, DataaVecAudioForXVector, DataaVecAudioModel, DataaVecAudioPreTrainedModel, ) from .modeling_dataavec_text import ( DATA2VEC_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, DataaVecTextForCausalLM, DataaVecTextForMaskedLM, DataaVecTextForMultipleChoice, DataaVecTextForQuestionAnswering, DataaVecTextForSequenceClassification, DataaVecTextForTokenClassification, DataaVecTextModel, DataaVecTextPreTrainedModel, ) from .modeling_dataavec_vision import ( DATA2VEC_VISION_PRETRAINED_MODEL_ARCHIVE_LIST, DataaVecVisionForImageClassification, DataaVecVisionForMaskedImageModeling, DataaVecVisionForSemanticSegmentation, DataaVecVisionModel, DataaVecVisionPreTrainedModel, ) if is_tf_available(): from .modeling_tf_dataavec_vision import ( TFDataaVecVisionForImageClassification, TFDataaVecVisionForSemanticSegmentation, TFDataaVecVisionModel, TFDataaVecVisionPreTrainedModel, ) else: import sys _snake_case : Optional[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
207
import unittest import numpy as np import torch from .utils_summarization import build_mask, compute_token_type_ids, process_story, truncate_or_pad class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" def lowercase ( self : Any ) -> Optional[int]: __lowerCAmelCase = 1_0 def lowercase ( self : int ) -> Union[str, Any]: __lowerCAmelCase = [1, 2, 3, 4] __lowerCAmelCase = [1, 2, 3, 4, 0, 0, 0, 0, 0, 0] self.assertEqual(truncate_or_pad(lowerCAmelCase_ , self.block_size , 0 ) , lowerCAmelCase_ ) def lowercase ( self : Optional[Any] ) -> List[str]: __lowerCAmelCase = [1, 2, 3, 4, 5, 6, 7, 8, 9, 1_0] __lowerCAmelCase = [1, 2, 3, 4, 5, 6, 7, 8, 9, 1_0] self.assertEqual(truncate_or_pad(lowerCAmelCase_ , self.block_size , 0 ) , lowerCAmelCase_ ) def lowercase ( self : Any ) -> Optional[Any]: __lowerCAmelCase = [1, 2, 3, 4, 5, 6, 7, 8, 9, 1_0, 1_1, 1_2, 1_3] __lowerCAmelCase = [1, 2, 3, 4, 5, 6, 7, 8, 9, 1_0] self.assertEqual(truncate_or_pad(lowerCAmelCase_ , self.block_size , 0 ) , lowerCAmelCase_ ) def lowercase ( self : List[str] ) -> Any: __lowerCAmelCase = 'It was the year of Our Lord one thousand seven hundred and\n seventy-five.\n\nSpiritual revelations were conceded to England at that\n favoured period, as at this.' __lowerCAmelCase , __lowerCAmelCase = process_story(lowerCAmelCase_ ) self.assertEqual(lowerCAmelCase_ , [] ) def lowercase ( self : Any ) -> str: __lowerCAmelCase = '' __lowerCAmelCase , __lowerCAmelCase = process_story(lowerCAmelCase_ ) self.assertEqual(lowerCAmelCase_ , [] ) self.assertEqual(lowerCAmelCase_ , [] ) def lowercase ( self : int ) -> int: __lowerCAmelCase = ( 'It was the year of Our Lord one thousand seven hundred and ' 'seventy-five\n\nSpiritual revelations were conceded to England ' 'at that favoured period, as at this.\n@highlight\n\nIt was the best of times' ) __lowerCAmelCase , __lowerCAmelCase = process_story(lowerCAmelCase_ ) __lowerCAmelCase = [ 'It was the year of Our Lord one thousand seven hundred and seventy-five.', 'Spiritual revelations were conceded to England at that favoured period, as at this.', ] self.assertEqual(lowerCAmelCase_ , lowerCAmelCase_ ) __lowerCAmelCase = ['It was the best of times.'] self.assertEqual(lowerCAmelCase_ , lowerCAmelCase_ ) def lowercase ( self : Dict ) -> Any: __lowerCAmelCase = torch.tensor([1, 2, 3, 4] ) __lowerCAmelCase = torch.tensor([1, 1, 1, 1] ) np.testing.assert_array_equal(build_mask(lowerCAmelCase_ , 0 ).numpy() , expected.numpy() ) def lowercase ( self : List[Any] ) -> Optional[int]: __lowerCAmelCase = torch.tensor([1, 2, 3, 4, 2_3, 2_3, 2_3] ) __lowerCAmelCase = torch.tensor([1, 1, 1, 1, 0, 0, 0] ) np.testing.assert_array_equal(build_mask(lowerCAmelCase_ , 2_3 ).numpy() , expected.numpy() ) def lowercase ( self : str ) -> List[Any]: __lowerCAmelCase = torch.tensor([8, 2, 3, 4, 1, 1, 1] ) __lowerCAmelCase = torch.tensor([1, 1, 1, 1, 0, 0, 0] ) np.testing.assert_array_equal(build_mask(lowerCAmelCase_ , 1 ).numpy() , expected.numpy() ) def lowercase ( self : Optional[Any] ) -> Optional[int]: __lowerCAmelCase = 1_0_1 __lowerCAmelCase = torch.tensor([[1, 2, 3, 4, 5, 6], [1, 2, 3, 1_0_1, 5, 6], [1, 1_0_1, 3, 4, 1_0_1, 6]] ) __lowerCAmelCase = torch.tensor([[1, 1, 1, 1, 1, 1], [1, 1, 1, 0, 0, 0], [1, 0, 0, 0, 1, 1]] ) __lowerCAmelCase = compute_token_type_ids(lowerCAmelCase_ , lowerCAmelCase_ ) np.testing.assert_array_equal(lowerCAmelCase_ , lowerCAmelCase_ )
207
1
from collections import defaultdict from pathlib import Path import pandas as pd from rouge_cli import calculate_rouge_path from utils import calculate_rouge _snake_case = [ "Prosecutor: \"No videos were used in the crash investigation\" German papers say they saw a cell phone video of the" " final seconds on board Flight 9525. The Germanwings co-pilot says he had a \"previous episode of severe" " depression\" German airline confirms it knew of Andreas Lubitz's depression years before he took control.", "The Palestinian Authority officially becomes the 123rd member of the International Criminal Court. The formal" " accession was marked with a ceremony at The Hague, in the Netherlands. The Palestinians signed the ICC's" " founding Rome Statute in January. Israel and the United States opposed the Palestinians' efforts to join the" " body.", "Amnesty International releases its annual report on the death penalty. The report catalogs the use of" " state-sanctioned killing as a punitive measure across the globe. At least 607 people were executed around the" " world in 2014, compared to 778 in 2013. The U.S. remains one of the worst offenders for imposing capital" " punishment.", ] _snake_case = [ "Marseille prosecutor says \"so far no videos were used in the crash investigation\" despite media reports ." " Journalists at Bild and Paris Match are \"very confident\" the video clip is real, an editor says . Andreas Lubitz" " had informed his Lufthansa training school of an episode of severe depression, airline says .", "Membership gives the ICC jurisdiction over alleged crimes committed in Palestinian territories since last June ." " Israel and the United States opposed the move, which could open the door to war crimes investigations against" " Israelis .", "Amnesty's annual death penalty report catalogs encouraging signs, but setbacks in numbers of those sentenced to" " death . Organization claims that governments around the world are using the threat of terrorism to advance" " executions . The number of executions worldwide has gone down by almost 22% compared with 2013, but death" " sentences up by 28% .", ] def lowerCAmelCase_ ( ): _A : int = calculate_rouge(snake_case_,snake_case_,bootstrap_aggregation=snake_case_,rouge_keys=["""rouge2""", """rougeL"""] ) assert isinstance(snake_case_,snake_case_ ) _A : List[str] = calculate_rouge(snake_case_,snake_case_,bootstrap_aggregation=snake_case_,rouge_keys=["""rouge2"""] ) assert ( pd.DataFrame(no_aggregation["""rouge2"""] ).fmeasure.mean() == pd.DataFrame(no_aggregation_just_ra["""rouge2"""] ).fmeasure.mean() ) def lowerCAmelCase_ ( ): _A : Any = """rougeLsum""" _A : List[str] = calculate_rouge(snake_case_,snake_case_,newline_sep=snake_case_,rouge_keys=[k] )[k] _A : List[Any] = calculate_rouge(snake_case_,snake_case_,newline_sep=snake_case_,rouge_keys=[k] )[k] assert score > score_no_sep def lowerCAmelCase_ ( ): _A : Dict = ["""rouge1""", """rouge2""", """rougeL"""] _A : Dict = calculate_rouge(snake_case_,snake_case_,newline_sep=snake_case_,rouge_keys=snake_case_ ) _A : List[Any] = calculate_rouge(snake_case_,snake_case_,newline_sep=snake_case_,rouge_keys=snake_case_ ) assert score_sep == score_no_sep def lowerCAmelCase_ ( ): _A : Union[str, Any] = [ """Her older sister, Margot Frank, died in 1945, a month earlier than previously thought.""", """Marseille prosecutor says \"so far no videos were used in the crash investigation\" despite media reports .""", ] _A : int = [ """Margot Frank, died in 1945, a month earlier than previously thought.""", """Prosecutor: \"No videos were used in the crash investigation\" German papers say they saw a cell phone video of""" """ the final seconds on board Flight 9525.""", ] assert calculate_rouge(snake_case_,snake_case_,newline_sep=snake_case_ ) == calculate_rouge(snake_case_,snake_case_,newline_sep=snake_case_ ) def lowerCAmelCase_ ( ): _A : int = [ """\" \"a person who has such a video needs to immediately give it to the investigators,\" prosecutor says .<n> \"it is a very disturbing scene,\" editor-in-chief of bild online tells \"erin burnett: outfront\" """ ] _A : Any = [ """ Marseille prosecutor says \"so far no videos were used in the crash investigation\" despite media reports . Journalists at Bild and Paris Match are \"very confident\" the video clip is real, an editor says . Andreas Lubitz had informed his Lufthansa training school of an episode of severe depression, airline says .""" ] _A : Dict = calculate_rouge(snake_case_,snake_case_,rouge_keys=["""rougeLsum"""],newline_sep=snake_case_ )["""rougeLsum"""] _A : List[str] = calculate_rouge(snake_case_,snake_case_,rouge_keys=["""rougeLsum"""] )["""rougeLsum"""] assert new_score > prev_score def lowerCAmelCase_ ( ): _A : int = Path("""examples/seq2seq/test_data/wmt_en_ro""" ) _A : Optional[Any] = calculate_rouge_path(data_dir.joinpath("""test.source""" ),data_dir.joinpath("""test.target""" ) ) assert isinstance(snake_case_,snake_case_ ) _A : Dict = calculate_rouge_path( data_dir.joinpath("""test.source""" ),data_dir.joinpath("""test.target""" ),bootstrap_aggregation=snake_case_ ) assert isinstance(snake_case_,snake_case_ )
26
"""simple docstring""" from ..utils import DummyObject, requires_backends class __A ( metaclass=A_ ): '''simple docstring''' lowerCAmelCase : List[str] = ["torch", "torchsde"] def __init__( self : Tuple ,*_snake_case : Union[str, Any] ,**_snake_case : Any ) -> Union[str, Any]: """simple docstring""" requires_backends(self ,['''torch''', '''torchsde'''] ) @classmethod def UpperCAmelCase ( cls : List[str] ,*_snake_case : int ,**_snake_case : Union[str, Any] ) -> str: """simple docstring""" requires_backends(cls ,['''torch''', '''torchsde'''] ) @classmethod def UpperCAmelCase ( cls : List[Any] ,*_snake_case : List[Any] ,**_snake_case : List[str] ) -> List[Any]: """simple docstring""" requires_backends(cls ,['''torch''', '''torchsde'''] )
16
0
def SCREAMING_SNAKE_CASE ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase) -> Optional[Any]: return round(float(moles / volume) * nfactor) def SCREAMING_SNAKE_CASE ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase) -> Union[str, Any]: return round(float((moles * 0.0_821 * temperature) / (volume))) def SCREAMING_SNAKE_CASE ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase) -> str: return round(float((moles * 0.0_821 * temperature) / (pressure))) def SCREAMING_SNAKE_CASE ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase) -> Optional[int]: return round(float((pressure * volume) / (0.0_821 * moles))) if __name__ == "__main__": import doctest doctest.testmod()
367
from math import isqrt def SCREAMING_SNAKE_CASE ( __UpperCamelCase) -> bool: return all(number % divisor != 0 for divisor in range(2 , isqrt(__UpperCamelCase) + 1)) def SCREAMING_SNAKE_CASE ( __UpperCamelCase = 10**6) -> int: a = 0 a = 1 a = 7 while prime_candidate < max_prime: primes_count += is_prime(__UpperCamelCase) cube_index += 1 prime_candidate += 6 * cube_index return primes_count if __name__ == "__main__": print(F'{solution() = }')
180
0
from math import sqrt def lowerCamelCase_ ( _a : Union[str, Any] = 100_0000 ): '''simple docstring''' UpperCAmelCase_ : int = 0 UpperCAmelCase_ : int = 0 UpperCAmelCase_ : int while num_cuboids <= limit: max_cuboid_size += 1 for sum_shortest_sides in range(2 , 2 * max_cuboid_size + 1 ): if sqrt(sum_shortest_sides**2 + max_cuboid_size**2 ).is_integer(): num_cuboids += ( min(_lowercase , sum_shortest_sides // 2 ) - max(1 , sum_shortest_sides - max_cuboid_size ) + 1 ) return max_cuboid_size if __name__ == "__main__": print(F"{solution() = }")
345
import pytest from datasets.splits import SplitDict, SplitInfo from datasets.utils.py_utils import asdict @pytest.mark.parametrize( '''split_dict''' , [ SplitDict(), SplitDict({'''train''': SplitInfo(name='''train''' , num_bytes=1_337 , num_examples=42 , dataset_name='''my_dataset''' )} ), SplitDict({'''train''': SplitInfo(name='''train''' , num_bytes=1_337 , num_examples=42 )} ), SplitDict({'''train''': SplitInfo()} ), ] , ) def A ( _lowercase ): SCREAMING_SNAKE_CASE : Tuple = split_dict._to_yaml_list() assert len(_lowercase ) == len(_lowercase ) SCREAMING_SNAKE_CASE : Tuple = SplitDict._from_yaml_list(_lowercase ) for split_name, split_info in split_dict.items(): # dataset_name field is deprecated, and is therefore not part of the YAML dump SCREAMING_SNAKE_CASE : Any = None # the split name of split_dict takes over the name of the split info object SCREAMING_SNAKE_CASE : Optional[Any] = split_name assert split_dict == reloaded @pytest.mark.parametrize( '''split_info''' , [SplitInfo(), SplitInfo(dataset_name=_lowercase ), SplitInfo(dataset_name='''my_dataset''' )] ) def A ( _lowercase ): # For backward compatibility, we need asdict(split_dict) to return split info dictrionaries with the "dataset_name" # field even if it's deprecated. This way old versionso of `datasets` can still reload dataset_infos.json files SCREAMING_SNAKE_CASE : List[Any] = asdict(SplitDict({'''train''': split_info} ) ) assert "dataset_name" in split_dict_asdict["train"] assert split_dict_asdict["train"]["dataset_name"] == split_info.dataset_name
182
0
'''simple docstring''' from __future__ import annotations import math def UpperCamelCase_( snake_case : int ): '''simple docstring''' if num <= 0: snake_case_ = f'{num}: Invalid input, please enter a positive integer.' raise ValueError(snake_case ) snake_case_ = [True] * (num + 1) snake_case_ = [] snake_case_ = 2 snake_case_ = int(math.sqrt(snake_case ) ) while start <= end: # If start is a prime if sieve[start] is True: prime.append(snake_case ) # Set multiples of start be False for i in range(start * start , num + 1 , snake_case ): if sieve[i] is True: snake_case_ = False start += 1 for j in range(end + 1 , num + 1 ): if sieve[j] is True: prime.append(snake_case ) return prime if __name__ == "__main__": print(prime_sieve(int(input("Enter a positive integer: ").strip())))
92
'''simple docstring''' _SCREAMING_SNAKE_CASE : Optional[int] = "Alexander Joslin" import operator as op from .stack import Stack def UpperCamelCase_( snake_case : str ): '''simple docstring''' snake_case_ = {"*": op.mul, "/": op.truediv, "+": op.add, "-": op.sub} snake_case_ = Stack() snake_case_ = Stack() for i in equation: if i.isdigit(): # RULE 1 operand_stack.push(int(snake_case ) ) elif i in operators: # RULE 2 operator_stack.push(snake_case ) elif i == ")": # RULE 4 snake_case_ = operator_stack.peek() operator_stack.pop() snake_case_ = operand_stack.peek() operand_stack.pop() snake_case_ = operand_stack.peek() operand_stack.pop() snake_case_ = operators[opr](snake_case , snake_case ) operand_stack.push(snake_case ) # RULE 5 return operand_stack.peek() if __name__ == "__main__": _SCREAMING_SNAKE_CASE : List[Any] = "(5 + ((4 * 2) * (2 + 3)))" # answer = 45 print(F"{equation} = {dijkstras_two_stack_algorithm(equation)}")
92
1
"""simple docstring""" import os import re import warnings from shutil import copyfile from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer if TYPE_CHECKING: from ...tokenization_utils_base import TextInput from ...utils import logging lowerCamelCase__ : int = logging.get_logger(__name__) lowerCamelCase__ : List[Any] = {'''vocab_file''': '''spiece.model'''} lowerCamelCase__ : Dict = { '''vocab_file''': { '''t5-small''': '''https://huggingface.co/t5-small/resolve/main/spiece.model''', '''t5-base''': '''https://huggingface.co/t5-base/resolve/main/spiece.model''', '''t5-large''': '''https://huggingface.co/t5-large/resolve/main/spiece.model''', '''t5-3b''': '''https://huggingface.co/t5-3b/resolve/main/spiece.model''', '''t5-11b''': '''https://huggingface.co/t5-11b/resolve/main/spiece.model''', } } # TODO(PVP) - this should be removed in Transformers v5 lowerCamelCase__ : Dict = { '''t5-small''': 5_12, '''t5-base''': 5_12, '''t5-large''': 5_12, '''t5-3b''': 5_12, '''t5-11b''': 5_12, } lowerCamelCase__ : Dict = '''▁''' class _UpperCAmelCase ( __a): __a : Union[str, Any] = VOCAB_FILES_NAMES __a : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP __a : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __a : Optional[Any] = ["""input_ids""", """attention_mask"""] def __init__( self , _A , _A="</s>" , _A="<unk>" , _A="<pad>" , _A=1_00 , _A=None , _A = None , _A=True , **_A , ) -> None: '''simple docstring''' if extra_ids > 0 and additional_special_tokens is None: _UpperCAmelCase : List[str] = [f'''<extra_id_{i}>''' for i in range(_A )] elif extra_ids > 0 and additional_special_tokens is not None: # Check that we have the right number of extra_id special tokens _UpperCAmelCase : List[Any] = len(set(filter(lambda _A : bool("""extra_id""" in str(_A ) ) , _A ) ) ) if extra_tokens != extra_ids: raise ValueError( f'''Both extra_ids ({extra_ids}) and additional_special_tokens ({additional_special_tokens}) are''' """ provided to T5Tokenizer. In this case the additional_special_tokens must include the extra_ids""" """ tokens""" ) if legacy: logger.warning_once( f'''You are using the legacy behaviour of the {self.__class__}. This means that tokens that come after special tokens will not be properly handled. We recommend you to''' """ read the related pull request available at https://github.com/huggingface/transformers/pull/24565""" ) _UpperCAmelCase : Any = legacy _UpperCAmelCase : Union[str, Any] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( eos_token=_A , unk_token=_A , pad_token=_A , extra_ids=_A , additional_special_tokens=_A , sp_model_kwargs=self.sp_model_kwargs , legacy=_A , **_A , ) _UpperCAmelCase : Dict = vocab_file _UpperCAmelCase : str = extra_ids _UpperCAmelCase : List[str] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(_A ) @staticmethod def __snake_case ( _A , _A , _A ) -> int: '''simple docstring''' if pretrained_model_name_or_path in TaTokenizer.max_model_input_sizes: _UpperCAmelCase : Union[str, Any] = TaTokenizer.max_model_input_sizes[pretrained_model_name_or_path] if init_max_model_length is not None and init_max_model_length != max_model_length: return init_max_model_length elif init_max_model_length is None: warnings.warn( """This tokenizer was incorrectly instantiated with a model max length of""" f''' {deprecated_max_model_length} which will be corrected in Transformers v5.\nFor now, this''' """ behavior is kept to avoid breaking backwards compatibility when padding/encoding with""" """ `truncation is True`.\n- Be aware that you SHOULD NOT rely on""" f''' {pretrained_model_name_or_path} automatically truncating your input to''' f''' {deprecated_max_model_length} when padding/encoding.\n- If you want to encode/pad to sequences''' f''' longer than {deprecated_max_model_length} you can either instantiate this tokenizer with''' """ `model_max_length` or pass `max_length` when encoding/padding.\n- To avoid this warning, please""" """ instantiate this tokenizer with `model_max_length` set to your preferred value.""" , _A , ) return max_model_length @property def __snake_case ( self ) -> Any: '''simple docstring''' return self.sp_model.get_piece_size() + self._extra_ids def __snake_case ( self ) -> Optional[int]: '''simple docstring''' _UpperCAmelCase : int = {self.convert_ids_to_tokens(_A ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __snake_case ( self , _A , _A = None , _A = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_A , token_ids_a=_A , already_has_special_tokens=_A ) # normal case: some special tokens if token_ids_a is None: return ([0] * len(_A )) + [1] return ([0] * len(_A )) + [1] + ([0] * len(_A )) + [1] def __snake_case ( self ) -> Optional[int]: '''simple docstring''' return list( set(filter(lambda _A : bool(re.search(r"""<extra_id_\d+>""" , _A ) ) is not None , self.additional_special_tokens ) ) ) def __snake_case ( self ) -> Union[str, Any]: '''simple docstring''' return [self._convert_token_to_id(_A ) for token in self.get_sentinel_tokens()] def __snake_case ( self , _A ) -> List[int]: '''simple docstring''' if len(_A ) > 0 and token_ids[-1] == self.eos_token_id: warnings.warn( f'''This sequence already has {self.eos_token}. In future versions this behavior may lead to duplicated''' """ eos tokens being added.""" ) return token_ids else: return token_ids + [self.eos_token_id] def __snake_case ( self , _A , _A = None ) -> List[int]: '''simple docstring''' _UpperCAmelCase : Optional[int] = [self.eos_token_id] if token_ids_a is None: return len(token_ids_a + eos ) * [0] return len(token_ids_a + eos + token_ids_a + eos ) * [0] def __snake_case ( self , _A , _A = None ) -> List[int]: '''simple docstring''' _UpperCAmelCase : Dict = self._add_eos_if_not_present(_A ) if token_ids_a is None: return token_ids_a else: _UpperCAmelCase : int = self._add_eos_if_not_present(_A ) return token_ids_a + token_ids_a def __getstate__( self ) -> str: '''simple docstring''' _UpperCAmelCase : Any = self.__dict__.copy() _UpperCAmelCase : int = None return state def __setstate__( self , _A ) -> List[Any]: '''simple docstring''' _UpperCAmelCase : Tuple = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): _UpperCAmelCase : int = {} _UpperCAmelCase : Any = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def __snake_case ( self , _A , **_A ) -> List[str]: '''simple docstring''' if not self.legacy: _UpperCAmelCase : Any = SPIECE_UNDERLINE + text.replace(_A , """ """ ) return super().tokenize(_A , **_A ) def __snake_case ( self , _A , **_A ) -> int: '''simple docstring''' if not self.legacy: _UpperCAmelCase : Union[str, Any] = text.startswith(_A ) if is_first: _UpperCAmelCase : List[Any] = text[1:] _UpperCAmelCase : List[Any] = self.sp_model.encode(_A , out_type=_A ) if not self.legacy and not is_first and not text.startswith(""" """ ) and tokens[0].startswith(_A ): _UpperCAmelCase : Any = ([tokens[0][1:]] if len(tokens[0] ) > 1 else []) + tokens[1:] return tokens def __snake_case ( self , _A ) -> Tuple: '''simple docstring''' if token.startswith("""<extra_id_""" ): _UpperCAmelCase : str = re.match(r"""<extra_id_(\d+)>""" , _A ) _UpperCAmelCase : List[Any] = int(match.group(1 ) ) return self.vocab_size - num - 1 return self.sp_model.piece_to_id(_A ) def __snake_case ( self , _A ) -> Any: '''simple docstring''' if index < self.sp_model.get_piece_size(): _UpperCAmelCase : List[Any] = self.sp_model.IdToPiece(_A ) else: _UpperCAmelCase : int = f'''<extra_id_{self.vocab_size - 1 - index}>''' return token def __snake_case ( self , _A ) -> Tuple: '''simple docstring''' _UpperCAmelCase : int = [] _UpperCAmelCase : str = """""" _UpperCAmelCase : Any = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(_A ) + token _UpperCAmelCase : Tuple = True _UpperCAmelCase : Dict = [] else: current_sub_tokens.append(_A ) _UpperCAmelCase : List[str] = False out_string += self.sp_model.decode(_A ) return out_string.strip() def __snake_case ( self , _A , _A = None ) -> Tuple[str]: '''simple docstring''' if not os.path.isdir(_A ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return _UpperCAmelCase : Tuple = os.path.join( _A , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_A ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , _A ) elif not os.path.isfile(self.vocab_file ): with open(_A , """wb""" ) as fi: _UpperCAmelCase : List[str] = self.sp_model.serialized_model_proto() fi.write(_A ) return (out_vocab_file,)
246
"""simple docstring""" import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, BatchEncoding, MBartTokenizer, MBartTokenizerFast, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, ) from ...test_tokenization_common import TokenizerTesterMixin lowerCamelCase__ : Tuple = get_tests_dir('''fixtures/test_sentencepiece.model''') if is_torch_available(): from transformers.models.mbart.modeling_mbart import shift_tokens_right lowerCamelCase__ : int = 25_00_04 lowerCamelCase__ : Any = 25_00_20 @require_sentencepiece @require_tokenizers class _UpperCAmelCase ( __a , unittest.TestCase): __a : Optional[int] = MBartTokenizer __a : Union[str, Any] = MBartTokenizerFast __a : Union[str, Any] = True __a : Union[str, Any] = True def __snake_case ( self ) -> int: '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing _UpperCAmelCase : str = MBartTokenizer(_A , keep_accents=_A ) tokenizer.save_pretrained(self.tmpdirname ) def __snake_case ( self ) -> str: '''simple docstring''' _UpperCAmelCase : Dict = MBartTokenizer(_A , keep_accents=_A ) _UpperCAmelCase : int = tokenizer.tokenize("""This is a test""" ) self.assertListEqual(_A , ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(_A ) , [value + tokenizer.fairseq_offset for value in [2_85, 46, 10, 1_70, 3_82]] , ) _UpperCAmelCase : Tuple = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( _A , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """é""", """.""", ] , ) _UpperCAmelCase : Tuple = tokenizer.convert_tokens_to_ids(_A ) self.assertListEqual( _A , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 6_02, 3_47, 3_47, 3_47, 3, 12, 66, 46, 72, 80, 6, 2, 4] # ^ unk: 2 + 1 = 3 unk: 2 + 1 = 3 ^ ] , ) _UpperCAmelCase : Tuple = tokenizer.convert_ids_to_tokens(_A ) self.assertListEqual( _A , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """<unk>""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """<unk>""", """.""", ] , ) def __snake_case ( self ) -> Optional[Any]: '''simple docstring''' if not self.test_slow_tokenizer: # as we don't have a slow version, we can't compare the outputs between slow and fast versions return _UpperCAmelCase : Tuple = (self.rust_tokenizer_class, """hf-internal-testing/tiny-random-mbart""", {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): _UpperCAmelCase : str = self.rust_tokenizer_class.from_pretrained(_A , **_A ) _UpperCAmelCase : str = self.tokenizer_class.from_pretrained(_A , **_A ) _UpperCAmelCase : Dict = tempfile.mkdtemp() _UpperCAmelCase : str = tokenizer_r.save_pretrained(_A ) _UpperCAmelCase : str = tokenizer_p.save_pretrained(_A ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any("""tokenizer.json""" in f for f in tokenizer_r_files ) ) _UpperCAmelCase : Tuple = tuple(f for f in tokenizer_r_files if """tokenizer.json""" not in f ) self.assertSequenceEqual(_A , _A ) # Checks everything loads correctly in the same way _UpperCAmelCase : List[Any] = tokenizer_r.from_pretrained(_A ) _UpperCAmelCase : int = tokenizer_p.from_pretrained(_A ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(_A , _A ) ) # self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key)) # self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id")) shutil.rmtree(_A ) # Save tokenizer rust, legacy_format=True _UpperCAmelCase : List[Any] = tempfile.mkdtemp() _UpperCAmelCase : Any = tokenizer_r.save_pretrained(_A , legacy_format=_A ) _UpperCAmelCase : Dict = tokenizer_p.save_pretrained(_A ) # Checks it save with the same files self.assertSequenceEqual(_A , _A ) # Checks everything loads correctly in the same way _UpperCAmelCase : List[str] = tokenizer_r.from_pretrained(_A ) _UpperCAmelCase : Any = tokenizer_p.from_pretrained(_A ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(_A , _A ) ) shutil.rmtree(_A ) # Save tokenizer rust, legacy_format=False _UpperCAmelCase : List[Any] = tempfile.mkdtemp() _UpperCAmelCase : Tuple = tokenizer_r.save_pretrained(_A , legacy_format=_A ) _UpperCAmelCase : Dict = tokenizer_p.save_pretrained(_A ) # Checks it saved the tokenizer.json file self.assertTrue(any("""tokenizer.json""" in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way _UpperCAmelCase : List[Any] = tokenizer_r.from_pretrained(_A ) _UpperCAmelCase : Dict = tokenizer_p.from_pretrained(_A ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(_A , _A ) ) shutil.rmtree(_A ) @require_torch @require_sentencepiece @require_tokenizers class _UpperCAmelCase ( unittest.TestCase): __a : Optional[Any] = """facebook/mbart-large-en-ro""" __a : Dict = [ """ UN Chief Says There Is No Military Solution in Syria""", """ Secretary-General Ban Ki-moon says his response to Russia's stepped up military support for Syria is that \"there is no military solution\" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.""", ] __a : List[str] = [ """Şeful ONU declară că nu există o soluţie militară în Siria""", """Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al Rusiei""" """ pentru Siria este că \"nu există o soluţie militară\" la conflictul de aproape cinci ani şi că noi arme nu vor""" """ face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.""", ] __a : int = [8_2_7_4, 1_2_7_8_7_3, 2_5_9_1_6, 7, 8_6_2_2, 2_0_7_1, 4_3_8, 6_7_4_8_5, 5_3, 1_8_7_8_9_5, 2_3, 5_1_7_1_2, 2, EN_CODE] @classmethod def __snake_case ( cls ) -> Optional[Any]: '''simple docstring''' _UpperCAmelCase : MBartTokenizer = MBartTokenizer.from_pretrained( cls.checkpoint_name , src_lang="""en_XX""" , tgt_lang="""ro_RO""" ) _UpperCAmelCase : Tuple = 1 return cls def __snake_case ( self ) -> Union[str, Any]: '''simple docstring''' self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["""ar_AR"""] , 25_00_01 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["""en_EN"""] , 25_00_04 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["""ro_RO"""] , 25_00_20 ) def __snake_case ( self ) -> Dict: '''simple docstring''' _UpperCAmelCase : Optional[int] = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , _A ) def __snake_case ( self ) -> str: '''simple docstring''' self.assertIn(_A , self.tokenizer.all_special_ids ) _UpperCAmelCase : List[Any] = [RO_CODE, 8_84, 90_19, 96, 9, 9_16, 8_67_92, 36, 1_87_43, 1_55_96, 5, 2] _UpperCAmelCase : str = self.tokenizer.decode(_A , skip_special_tokens=_A ) _UpperCAmelCase : Optional[Any] = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=_A ) self.assertEqual(_A , _A ) self.assertNotIn(self.tokenizer.eos_token , _A ) def __snake_case ( self ) -> Dict: '''simple docstring''' _UpperCAmelCase : List[Any] = ["""this is gunna be a long sentence """ * 20] assert isinstance(src_text[0] , _A ) _UpperCAmelCase : str = 10 _UpperCAmelCase : str = self.tokenizer(_A , max_length=_A , truncation=_A ).input_ids[0] self.assertEqual(ids[-2] , 2 ) self.assertEqual(ids[-1] , _A ) self.assertEqual(len(_A ) , _A ) def __snake_case ( self ) -> int: '''simple docstring''' self.assertListEqual(self.tokenizer.convert_tokens_to_ids(["""<mask>""", """ar_AR"""] ) , [25_00_26, 25_00_01] ) def __snake_case ( self ) -> Optional[int]: '''simple docstring''' _UpperCAmelCase : Optional[int] = tempfile.mkdtemp() _UpperCAmelCase : Union[str, Any] = self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(_A ) _UpperCAmelCase : Any = MBartTokenizer.from_pretrained(_A ) self.assertDictEqual(new_tok.fairseq_tokens_to_ids , _A ) @require_torch def __snake_case ( self ) -> Union[str, Any]: '''simple docstring''' _UpperCAmelCase : str = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=_A , return_tensors="""pt""" ) _UpperCAmelCase : str = shift_tokens_right(batch["""labels"""] , self.tokenizer.pad_token_id ) # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 assert batch.input_ids[1][-2:].tolist() == [2, EN_CODE] assert batch.decoder_input_ids[1][0].tolist() == RO_CODE assert batch.decoder_input_ids[1][-1] == 2 assert batch.labels[1][-2:].tolist() == [2, RO_CODE] @require_torch def __snake_case ( self ) -> List[Any]: '''simple docstring''' _UpperCAmelCase : Tuple = self.tokenizer( self.src_text , text_target=self.tgt_text , padding=_A , truncation=_A , max_length=len(self.expected_src_tokens ) , return_tensors="""pt""" , ) _UpperCAmelCase : Dict = shift_tokens_right(batch["""labels"""] , self.tokenizer.pad_token_id ) self.assertIsInstance(_A , _A ) self.assertEqual((2, 14) , batch.input_ids.shape ) self.assertEqual((2, 14) , batch.attention_mask.shape ) _UpperCAmelCase : Optional[Any] = batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens , _A ) self.assertEqual(2 , batch.decoder_input_ids[0, -1] ) # EOS # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens , [] ) self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id, EN_CODE] ) def __snake_case ( self ) -> Union[str, Any]: '''simple docstring''' _UpperCAmelCase : int = self.tokenizer(self.src_text , padding=_A , truncation=_A , max_length=3 , return_tensors="""pt""" ) _UpperCAmelCase : List[str] = self.tokenizer( text_target=self.tgt_text , padding=_A , truncation=_A , max_length=10 , return_tensors="""pt""" ) _UpperCAmelCase : str = targets["""input_ids"""] _UpperCAmelCase : List[Any] = shift_tokens_right(_A , self.tokenizer.pad_token_id ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.decoder_input_ids.shape[1] , 10 ) @require_torch def __snake_case ( self ) -> str: '''simple docstring''' _UpperCAmelCase : Optional[Any] = self.tokenizer._build_translation_inputs( """A test""" , return_tensors="""pt""" , src_lang="""en_XX""" , tgt_lang="""ar_AR""" ) self.assertEqual( nested_simplify(_A ) , { # A, test, EOS, en_XX """input_ids""": [[62, 30_34, 2, 25_00_04]], """attention_mask""": [[1, 1, 1, 1]], # ar_AR """forced_bos_token_id""": 25_00_01, } , )
246
1
"""simple docstring""" import json import os import unittest from transformers.models.blenderbot_small.tokenization_blenderbot_small import ( VOCAB_FILES_NAMES, BlenderbotSmallTokenizer, ) from ...test_tokenization_common import TokenizerTesterMixin class UpperCamelCase ( snake_case_ , unittest.TestCase ): UpperCamelCase : List[Any] = BlenderbotSmallTokenizer UpperCamelCase : Optional[int] = False def _lowercase ( self : Optional[int] ) -> Optional[int]: super().setUp() _a : Dict = ["""__start__""", """adapt""", """act""", """ap@@""", """te""", """__end__""", """__unk__"""] _a : Any = dict(zip(_a , range(len(_a ) ) ) ) _a : Optional[Any] = ["""#version: 0.2""", """a p""", """t e</w>""", """ap t</w>""", """a d""", """ad apt</w>""", """a c""", """ac t</w>""", """"""] _a : Optional[int] = {"""unk_token""": """__unk__""", """bos_token""": """__start__""", """eos_token""": """__end__"""} _a : Tuple = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) _a : str = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(_a ) + """\n""" ) with open(self.merges_file , """w""" , encoding="""utf-8""" ) as fp: fp.write("""\n""".join(_a ) ) def _lowercase ( self : Optional[int] , **UpperCAmelCase__ : Union[str, Any] ) -> int: kwargs.update(self.special_tokens_map ) return BlenderbotSmallTokenizer.from_pretrained(self.tmpdirname , **_a ) def _lowercase ( self : Optional[int] , UpperCAmelCase__ : str ) -> List[Any]: _a : Any = """adapt act apte""" _a : List[str] = """adapt act apte""" return input_text, output_text def _lowercase ( self : int ) -> Optional[Any]: _a : Any = BlenderbotSmallTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) _a : List[Any] = """adapt act apte""" _a : Union[str, Any] = ["""adapt""", """act""", """ap@@""", """te"""] _a : List[Any] = tokenizer.tokenize(_a ) self.assertListEqual(_a , _a ) _a : Any = [tokenizer.bos_token] + tokens + [tokenizer.eos_token] _a : Any = [0, 1, 2, 3, 4, 5] self.assertListEqual(tokenizer.convert_tokens_to_ids(_a ) , _a ) def _lowercase ( self : Optional[int] ) -> Tuple: _a : int = BlenderbotSmallTokenizer.from_pretrained("""facebook/blenderbot-90M""" ) assert tok("""sam""" ).input_ids == [1384] _a : str = """I am a small frog.""" _a : int = tok([src_text] , padding=_a , truncation=_a )["""input_ids"""] _a : Optional[int] = tok.batch_decode(_a , skip_special_tokens=_a , clean_up_tokenization_spaces=_a )[0] assert src_text != decoded # I wish it did! assert decoded == "i am a small frog ." def _lowercase ( self : str ) -> List[str]: _a : Dict = BlenderbotSmallTokenizer.from_pretrained("""facebook/blenderbot-90M""" ) _a : Union[str, Any] = """I am a small frog .""" _a : Dict = """.""" _a : int = tok(_a )["""input_ids"""] _a : Tuple = tok(_a )["""input_ids"""] assert encoded[-1] == encoded_dot[0]
363
"""simple docstring""" from math import factorial def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' if successes > trials: raise ValueError("""successes must be lower or equal to trials""" ) if trials < 0 or successes < 0: raise ValueError("""the function is defined for non-negative integers""" ) if not isinstance(UpperCamelCase__ , UpperCamelCase__ ) or not isinstance(UpperCamelCase__ , UpperCamelCase__ ): raise ValueError("""the function is defined for non-negative integers""" ) if not 0 < prob < 1: raise ValueError("""prob has to be in range of 1 - 0""" ) _a : Optional[int] = (prob**successes) * ((1 - prob) ** (trials - successes)) # Calculate the binomial coefficient: n! / k!(n-k)! _a : Optional[int] = float(factorial(UpperCamelCase__ ) ) coefficient /= factorial(UpperCamelCase__ ) * factorial(trials - successes ) return probability * coefficient if __name__ == "__main__": from doctest import testmod testmod() print('Probability of 2 successes out of 4 trails') print('with probability of 0.75 is:', end=' ') print(binomial_distribution(2, 4, 0.75))
324
0
"""simple docstring""" import re def _lowerCamelCase ( _UpperCamelCase ): '''simple docstring''' return [char.split() for char in re.split(R"[^ a-z A-Z 0-9 \s]" , str_ )] def _lowerCamelCase ( _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = split_input(str_ ) return "".join( ["".join([char.capitalize() for char in sub_str] ) for sub_str in string_split] ) def _lowerCamelCase ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): '''simple docstring''' try: __lowerCAmelCase = split_input(_UpperCamelCase ) if upper: __lowerCAmelCase = "".join( [ separator.join([char.upper() for char in sub_str] ) for sub_str in string_split ] ) else: __lowerCAmelCase = "".join( [ separator.join([char.lower() for char in sub_str] ) for sub_str in string_split ] ) return res_str except IndexError: return "not valid string" def _lowerCamelCase ( _UpperCamelCase ): '''simple docstring''' return to_simple_case(_UpperCamelCase ) def _lowerCamelCase ( _UpperCamelCase ): '''simple docstring''' try: __lowerCAmelCase = to_simple_case(_UpperCamelCase ) return res_str[0].lower() + res_str[1:] except IndexError: return "not valid string" def _lowerCamelCase ( _UpperCamelCase , _UpperCamelCase ): '''simple docstring''' return to_complex_case(_UpperCamelCase , _UpperCamelCase , "_" ) def _lowerCamelCase ( _UpperCamelCase , _UpperCamelCase ): '''simple docstring''' return to_complex_case(_UpperCamelCase , _UpperCamelCase , "-" ) if __name__ == "__main__": __import__("doctest").testmod()
57
"""simple docstring""" import sys from collections import defaultdict class _UpperCamelCase : '''simple docstring''' def __init__( self ): __lowerCAmelCase = [] def snake_case ( self , __a ): return self.node_position[vertex] def snake_case ( self , __a , __a ): __lowerCAmelCase = pos def snake_case ( self , __a , __a , __a , __a ): if start > size // 2 - 1: return else: if 2 * start + 2 >= size: __lowerCAmelCase = 2 * start + 1 else: if heap[2 * start + 1] < heap[2 * start + 2]: __lowerCAmelCase = 2 * start + 1 else: __lowerCAmelCase = 2 * start + 2 if heap[smallest_child] < heap[start]: __lowerCAmelCase , __lowerCAmelCase = heap[smallest_child], positions[smallest_child] __lowerCAmelCase , __lowerCAmelCase = ( heap[start], positions[start], ) __lowerCAmelCase , __lowerCAmelCase = temp, tempa __lowerCAmelCase = self.get_position(positions[smallest_child] ) self.set_position( positions[smallest_child] , self.get_position(positions[start] ) ) self.set_position(positions[start] , __a ) self.top_to_bottom(__a , __a , __a , __a ) def snake_case ( self , __a , __a , __a , __a ): __lowerCAmelCase = position[index] while index != 0: __lowerCAmelCase = int((index - 2) / 2 ) if index % 2 == 0 else int((index - 1) / 2 ) if val < heap[parent]: __lowerCAmelCase = heap[parent] __lowerCAmelCase = position[parent] self.set_position(position[parent] , __a ) else: __lowerCAmelCase = val __lowerCAmelCase = temp self.set_position(__a , __a ) break __lowerCAmelCase = parent else: __lowerCAmelCase = val __lowerCAmelCase = temp self.set_position(__a , 0 ) def snake_case ( self , __a , __a ): __lowerCAmelCase = len(__a ) // 2 - 1 for i in range(__a , -1 , -1 ): self.top_to_bottom(__a , __a , len(__a ) , __a ) def snake_case ( self , __a , __a ): __lowerCAmelCase = positions[0] __lowerCAmelCase = sys.maxsize self.top_to_bottom(__a , 0 , len(__a ) , __a ) return temp def _lowerCamelCase ( _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = Heap() __lowerCAmelCase = [0] * len(_UpperCamelCase ) __lowerCAmelCase = [-1] * len(_UpperCamelCase ) # Neighboring Tree Vertex of selected vertex # Minimum Distance of explored vertex with neighboring vertex of partial tree # formed in graph __lowerCAmelCase = [] # Heap of Distance of vertices from their neighboring vertex __lowerCAmelCase = [] for vertex in range(len(_UpperCamelCase ) ): distance_tv.append(sys.maxsize ) positions.append(_UpperCamelCase ) heap.node_position.append(_UpperCamelCase ) __lowerCAmelCase = [] __lowerCAmelCase = 1 __lowerCAmelCase = sys.maxsize for neighbor, distance in adjacency_list[0]: __lowerCAmelCase = 0 __lowerCAmelCase = distance heap.heapify(_UpperCamelCase , _UpperCamelCase ) for _ in range(1 , len(_UpperCamelCase ) ): __lowerCAmelCase = heap.delete_minimum(_UpperCamelCase , _UpperCamelCase ) if visited[vertex] == 0: tree_edges.append((nbr_tv[vertex], vertex) ) __lowerCAmelCase = 1 for neighbor, distance in adjacency_list[vertex]: if ( visited[neighbor] == 0 and distance < distance_tv[heap.get_position(_UpperCamelCase )] ): __lowerCAmelCase = distance heap.bottom_to_top( _UpperCamelCase , heap.get_position(_UpperCamelCase ) , _UpperCamelCase , _UpperCamelCase ) __lowerCAmelCase = vertex return tree_edges if __name__ == "__main__": # pragma: no cover # < --------- Prims Algorithm --------- > A : Optional[Any] = int(input("Enter number of edges: ").strip()) A : Dict = defaultdict(list) for _ in range(edges_number): A : str = [int(x) for x in input().strip().split()] adjacency_list[edge[0]].append([edge[1], edge[2]]) adjacency_list[edge[1]].append([edge[0], edge[2]]) print(prisms_algorithm(adjacency_list))
57
1
"""simple docstring""" import argparse import json from pathlib import Path import requests import torch from huggingface_hub import cached_download, hf_hub_url from PIL import Image from transformers import DPTConfig, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTImageProcessor from transformers.utils import logging logging.set_verbosity_info() _a = logging.get_logger(__name__) def __a ( __lowerCamelCase ) -> Any: UpperCAmelCase_ : List[Any] = DPTConfig() if "large" in checkpoint_url: UpperCAmelCase_ : str = 1024 UpperCAmelCase_ : Tuple = 4096 UpperCAmelCase_ : List[Any] = 24 UpperCAmelCase_ : Tuple = 16 UpperCAmelCase_ : Union[str, Any] = [5, 11, 17, 23] UpperCAmelCase_ : str = [256, 512, 1024, 1024] UpperCAmelCase_ : Dict = (1, 384, 384) if "ade" in checkpoint_url: UpperCAmelCase_ : str = True UpperCAmelCase_ : Any = 150 UpperCAmelCase_ : Union[str, Any] = "huggingface/label-files" UpperCAmelCase_ : Union[str, Any] = "ade20k-id2label.json" UpperCAmelCase_ : int = json.load(open(cached_download(hf_hub_url(__lowerCamelCase, __lowerCamelCase, repo_type="dataset" ) ), "r" ) ) UpperCAmelCase_ : Tuple = {int(__lowerCamelCase ): v for k, v in idalabel.items()} UpperCAmelCase_ : Optional[int] = idalabel UpperCAmelCase_ : List[Any] = {v: k for k, v in idalabel.items()} UpperCAmelCase_ : Optional[int] = [1, 150, 480, 480] return config, expected_shape def __a ( __lowerCamelCase ) -> Tuple: UpperCAmelCase_ : int = ["pretrained.model.head.weight", "pretrained.model.head.bias"] for k in ignore_keys: state_dict.pop(__lowerCamelCase, __lowerCamelCase ) def __a ( __lowerCamelCase ) -> Optional[Any]: if ( "pretrained.model" in name and "cls_token" not in name and "pos_embed" not in name and "patch_embed" not in name ): UpperCAmelCase_ : Dict = name.replace("pretrained.model", "dpt.encoder" ) if "pretrained.model" in name: UpperCAmelCase_ : Dict = name.replace("pretrained.model", "dpt.embeddings" ) if "patch_embed" in name: UpperCAmelCase_ : Optional[int] = name.replace("patch_embed", "patch_embeddings" ) if "pos_embed" in name: UpperCAmelCase_ : List[str] = name.replace("pos_embed", "position_embeddings" ) if "attn.proj" in name: UpperCAmelCase_ : List[str] = name.replace("attn.proj", "attention.output.dense" ) if "proj" in name and "project" not in name: UpperCAmelCase_ : Union[str, Any] = name.replace("proj", "projection" ) if "blocks" in name: UpperCAmelCase_ : int = name.replace("blocks", "layer" ) if "mlp.fc1" in name: UpperCAmelCase_ : int = name.replace("mlp.fc1", "intermediate.dense" ) if "mlp.fc2" in name: UpperCAmelCase_ : Optional[int] = name.replace("mlp.fc2", "output.dense" ) if "norm1" in name: UpperCAmelCase_ : Tuple = name.replace("norm1", "layernorm_before" ) if "norm2" in name: UpperCAmelCase_ : List[str] = name.replace("norm2", "layernorm_after" ) if "scratch.output_conv" in name: UpperCAmelCase_ : List[str] = name.replace("scratch.output_conv", "head" ) if "scratch" in name: UpperCAmelCase_ : Any = name.replace("scratch", "neck" ) if "layer1_rn" in name: UpperCAmelCase_ : Optional[int] = name.replace("layer1_rn", "convs.0" ) if "layer2_rn" in name: UpperCAmelCase_ : Any = name.replace("layer2_rn", "convs.1" ) if "layer3_rn" in name: UpperCAmelCase_ : List[str] = name.replace("layer3_rn", "convs.2" ) if "layer4_rn" in name: UpperCAmelCase_ : List[str] = name.replace("layer4_rn", "convs.3" ) if "refinenet" in name: UpperCAmelCase_ : str = int(name[len("neck.refinenet" ) : len("neck.refinenet" ) + 1] ) # tricky here: we need to map 4 to 0, 3 to 1, 2 to 2 and 1 to 3 UpperCAmelCase_ : Optional[int] = name.replace(f"""refinenet{layer_idx}""", f"""fusion_stage.layers.{abs(layer_idx-4 )}""" ) if "out_conv" in name: UpperCAmelCase_ : Optional[Any] = name.replace("out_conv", "projection" ) if "resConfUnit1" in name: UpperCAmelCase_ : Optional[int] = name.replace("resConfUnit1", "residual_layer1" ) if "resConfUnit2" in name: UpperCAmelCase_ : List[Any] = name.replace("resConfUnit2", "residual_layer2" ) if "conv1" in name: UpperCAmelCase_ : Tuple = name.replace("conv1", "convolution1" ) if "conv2" in name: UpperCAmelCase_ : Optional[int] = name.replace("conv2", "convolution2" ) # readout blocks if "pretrained.act_postprocess1.0.project.0" in name: UpperCAmelCase_ : List[Any] = name.replace("pretrained.act_postprocess1.0.project.0", "neck.reassemble_stage.readout_projects.0.0" ) if "pretrained.act_postprocess2.0.project.0" in name: UpperCAmelCase_ : int = name.replace("pretrained.act_postprocess2.0.project.0", "neck.reassemble_stage.readout_projects.1.0" ) if "pretrained.act_postprocess3.0.project.0" in name: UpperCAmelCase_ : Optional[int] = name.replace("pretrained.act_postprocess3.0.project.0", "neck.reassemble_stage.readout_projects.2.0" ) if "pretrained.act_postprocess4.0.project.0" in name: UpperCAmelCase_ : str = name.replace("pretrained.act_postprocess4.0.project.0", "neck.reassemble_stage.readout_projects.3.0" ) # resize blocks if "pretrained.act_postprocess1.3" in name: UpperCAmelCase_ : int = name.replace("pretrained.act_postprocess1.3", "neck.reassemble_stage.layers.0.projection" ) if "pretrained.act_postprocess1.4" in name: UpperCAmelCase_ : Dict = name.replace("pretrained.act_postprocess1.4", "neck.reassemble_stage.layers.0.resize" ) if "pretrained.act_postprocess2.3" in name: UpperCAmelCase_ : Union[str, Any] = name.replace("pretrained.act_postprocess2.3", "neck.reassemble_stage.layers.1.projection" ) if "pretrained.act_postprocess2.4" in name: UpperCAmelCase_ : Tuple = name.replace("pretrained.act_postprocess2.4", "neck.reassemble_stage.layers.1.resize" ) if "pretrained.act_postprocess3.3" in name: UpperCAmelCase_ : Optional[Any] = name.replace("pretrained.act_postprocess3.3", "neck.reassemble_stage.layers.2.projection" ) if "pretrained.act_postprocess4.3" in name: UpperCAmelCase_ : Union[str, Any] = name.replace("pretrained.act_postprocess4.3", "neck.reassemble_stage.layers.3.projection" ) if "pretrained.act_postprocess4.4" in name: UpperCAmelCase_ : Any = name.replace("pretrained.act_postprocess4.4", "neck.reassemble_stage.layers.3.resize" ) if "pretrained" in name: UpperCAmelCase_ : List[str] = name.replace("pretrained", "dpt" ) if "bn" in name: UpperCAmelCase_ : List[str] = name.replace("bn", "batch_norm" ) if "head" in name: UpperCAmelCase_ : Dict = name.replace("head", "head.head" ) if "encoder.norm" in name: UpperCAmelCase_ : Optional[int] = name.replace("encoder.norm", "layernorm" ) if "auxlayer" in name: UpperCAmelCase_ : Union[str, Any] = name.replace("auxlayer", "auxiliary_head.head" ) return name def __a ( __lowerCamelCase, __lowerCamelCase ) -> Dict: for i in range(config.num_hidden_layers ): # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) UpperCAmelCase_ : int = state_dict.pop(f"""dpt.encoder.layer.{i}.attn.qkv.weight""" ) UpperCAmelCase_ : List[Any] = state_dict.pop(f"""dpt.encoder.layer.{i}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict UpperCAmelCase_ : Union[str, Any] = in_proj_weight[: config.hidden_size, :] UpperCAmelCase_ : Union[str, Any] = in_proj_bias[: config.hidden_size] UpperCAmelCase_ : Union[str, Any] = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] UpperCAmelCase_ : str = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] UpperCAmelCase_ : Optional[Any] = in_proj_weight[ -config.hidden_size :, : ] UpperCAmelCase_ : List[Any] = in_proj_bias[-config.hidden_size :] def __a ( ) -> Dict: UpperCAmelCase_ : Dict = "http://images.cocodataset.org/val2017/000000039769.jpg" UpperCAmelCase_ : Any = Image.open(requests.get(__lowerCamelCase, stream=__lowerCamelCase ).raw ) return im @torch.no_grad() def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ) -> List[Any]: UpperCAmelCase_ , UpperCAmelCase_ : List[Any] = get_dpt_config(__lowerCamelCase ) # load original state_dict from URL UpperCAmelCase_ : Union[str, Any] = torch.hub.load_state_dict_from_url(__lowerCamelCase, map_location="cpu" ) # remove certain keys remove_ignore_keys_(__lowerCamelCase ) # rename keys for key in state_dict.copy().keys(): UpperCAmelCase_ : Optional[Any] = state_dict.pop(__lowerCamelCase ) UpperCAmelCase_ : str = val # read in qkv matrices read_in_q_k_v(__lowerCamelCase, __lowerCamelCase ) # load HuggingFace model UpperCAmelCase_ : Optional[Any] = DPTForSemanticSegmentation(__lowerCamelCase ) if "ade" in checkpoint_url else DPTForDepthEstimation(__lowerCamelCase ) model.load_state_dict(__lowerCamelCase ) model.eval() # Check outputs on an image UpperCAmelCase_ : str = 480 if "ade" in checkpoint_url else 384 UpperCAmelCase_ : str = DPTImageProcessor(size=__lowerCamelCase ) UpperCAmelCase_ : Union[str, Any] = prepare_img() UpperCAmelCase_ : List[str] = image_processor(__lowerCamelCase, return_tensors="pt" ) # forward pass UpperCAmelCase_ : str = model(**__lowerCamelCase ).logits if "ade" in checkpoint_url else model(**__lowerCamelCase ).predicted_depth # Assert logits UpperCAmelCase_ : Tuple = torch.tensor([[6.3199, 6.3629, 6.4148], [6.3850, 6.3615, 6.4166], [6.3519, 6.3176, 6.3575]] ) if "ade" in checkpoint_url: UpperCAmelCase_ : Union[str, Any] = torch.tensor([[4.0480, 4.2420, 4.4360], [4.3124, 4.5693, 4.8261], [4.5768, 4.8965, 5.2163]] ) assert outputs.shape == torch.Size(__lowerCamelCase ) assert ( torch.allclose(outputs[0, 0, :3, :3], __lowerCamelCase, atol=1E-4 ) if "ade" in checkpoint_url else torch.allclose(outputs[0, :3, :3], __lowerCamelCase ) ) Path(__lowerCamelCase ).mkdir(exist_ok=__lowerCamelCase ) print(f"""Saving model to {pytorch_dump_folder_path}""" ) model.save_pretrained(__lowerCamelCase ) print(f"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(__lowerCamelCase ) if push_to_hub: print("Pushing model to hub..." ) model.push_to_hub( repo_path_or_name=Path(__lowerCamelCase, __lowerCamelCase ), organization="nielsr", commit_message="Add model", use_temp_dir=__lowerCamelCase, ) image_processor.push_to_hub( repo_path_or_name=Path(__lowerCamelCase, __lowerCamelCase ), organization="nielsr", commit_message="Add image processor", use_temp_dir=__lowerCamelCase, ) if __name__ == "__main__": _a = argparse.ArgumentParser() # Required parameters parser.add_argument( '--checkpoint_url', default='https://github.com/intel-isl/DPT/releases/download/1_0/dpt_large-midas-2f21e586.pt', type=str, help='URL of the original DPT checkpoint you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model directory.', ) parser.add_argument( '--push_to_hub', action='store_true', ) parser.add_argument( '--model_name', default='dpt-large', type=str, help='Name of the model, in case you\'re pushing to the hub.', ) _a = parser.parse_args() convert_dpt_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name)
371
"""simple docstring""" import json import os from typing import Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _a = logging.get_logger(__name__) _a = {'vocab_file': 'vocab.json'} _a = { 'vocab_file': { 'mgp-str': 'https://huggingface.co/alibaba-damo/mgp-str-base/blob/main/vocab.json', } } _a = {'mgp-str': 27} class A_ (lowercase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Dict = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE__ : List[str] = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE__ : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self , lowercase_ , lowercase_="[GO]" , lowercase_="[GO]" , lowercase_="[s]" , lowercase_="[GO]" , **lowercase_ ): """simple docstring""" super().__init__( unk_token=lowercase_ , bos_token=lowercase_ , eos_token=lowercase_ , pad_token=lowercase_ , **lowercase_ , ) with open(lowercase_ , encoding="utf-8" ) as vocab_handle: UpperCAmelCase_ : Dict = json.load(lowercase_ ) UpperCAmelCase_ : Dict = {v: k for k, v in self.vocab.items()} @property def UpperCamelCase__ ( self ): """simple docstring""" return len(self.vocab ) def UpperCamelCase__ ( self ): """simple docstring""" return dict(self.vocab , **self.added_tokens_encoder ) def UpperCamelCase__ ( self , lowercase_ ): """simple docstring""" UpperCAmelCase_ : Optional[int] = [] for s in text: char_tokens.extend(lowercase_ ) return char_tokens def UpperCamelCase__ ( self , lowercase_ ): """simple docstring""" return self.vocab.get(lowercase_ , self.vocab.get(self.unk_token ) ) def UpperCamelCase__ ( self , lowercase_ ): """simple docstring""" return self.decoder.get(lowercase_ ) def UpperCamelCase__ ( self , lowercase_ , lowercase_ = None ): """simple docstring""" if not os.path.isdir(lowercase_ ): logger.error("Vocabulary path ({}) should be a directory".format(lowercase_ ) ) return UpperCAmelCase_ : Optional[int] = os.path.join( lowercase_ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) with open(lowercase_ , "w" , encoding="utf-8" ) as f: f.write(json.dumps(self.vocab , indent=2 , sort_keys=lowercase_ , ensure_ascii=lowercase_ ) + "\n" ) return (vocab_file,)
23
0
import os # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_doctest_list.py A__ = """.""" if __name__ == "__main__": A__ = os.path.join(REPO_PATH, """utils/documentation_tests.txt""") A__ = [] A__ = [] with open(doctest_file_path) as fp: for line in fp: A__ = line.strip() A__ = os.path.join(REPO_PATH, line) if not (os.path.isfile(path) or os.path.isdir(path)): non_existent_paths.append(line) all_paths.append(path) if len(non_existent_paths) > 0: A__ = """\n""".join(non_existent_paths) raise ValueError(f"`utils/documentation_tests.txt` contains non-existent paths:\n{non_existent_paths}") if all_paths != sorted(all_paths): raise ValueError("""Files in `utils/documentation_tests.txt` are not in alphabetical order.""")
82
'''simple docstring''' import argparse import json from pathlib import Path import torch import torchaudio from datasets import load_dataset from huggingface_hub import hf_hub_download from transformers import ASTConfig, ASTFeatureExtractor, ASTForAudioClassification from transformers.utils import logging logging.set_verbosity_info() A =logging.get_logger(__name__) def snake_case_ (_a : List[str] ): UpperCAmelCase = ASTConfig() if "10-10" in model_name: pass elif "speech-commands" in model_name: UpperCAmelCase = 1_2_8 elif "12-12" in model_name: UpperCAmelCase = 1_2 UpperCAmelCase = 1_2 elif "14-14" in model_name: UpperCAmelCase = 1_4 UpperCAmelCase = 1_4 elif "16-16" in model_name: UpperCAmelCase = 1_6 UpperCAmelCase = 1_6 else: raise ValueError('''Model not supported''' ) UpperCAmelCase = '''huggingface/label-files''' if "speech-commands" in model_name: UpperCAmelCase = 3_5 UpperCAmelCase = '''speech-commands-v2-id2label.json''' else: UpperCAmelCase = 5_2_7 UpperCAmelCase = '''audioset-id2label.json''' UpperCAmelCase = json.load(open(hf_hub_download(_a , _a , repo_type='''dataset''' ) , '''r''' ) ) UpperCAmelCase = {int(_a ): v for k, v in idalabel.items()} UpperCAmelCase = idalabel UpperCAmelCase = {v: k for k, v in idalabel.items()} return config def snake_case_ (_a : Tuple ): if "module.v" in name: UpperCAmelCase = name.replace('''module.v''' , '''audio_spectrogram_transformer''' ) if "cls_token" in name: UpperCAmelCase = name.replace('''cls_token''' , '''embeddings.cls_token''' ) if "dist_token" in name: UpperCAmelCase = name.replace('''dist_token''' , '''embeddings.distillation_token''' ) if "pos_embed" in name: UpperCAmelCase = name.replace('''pos_embed''' , '''embeddings.position_embeddings''' ) if "patch_embed.proj" in name: UpperCAmelCase = name.replace('''patch_embed.proj''' , '''embeddings.patch_embeddings.projection''' ) # transformer blocks if "blocks" in name: UpperCAmelCase = name.replace('''blocks''' , '''encoder.layer''' ) if "attn.proj" in name: UpperCAmelCase = name.replace('''attn.proj''' , '''attention.output.dense''' ) if "attn" in name: UpperCAmelCase = name.replace('''attn''' , '''attention.self''' ) if "norm1" in name: UpperCAmelCase = name.replace('''norm1''' , '''layernorm_before''' ) if "norm2" in name: UpperCAmelCase = name.replace('''norm2''' , '''layernorm_after''' ) if "mlp.fc1" in name: UpperCAmelCase = name.replace('''mlp.fc1''' , '''intermediate.dense''' ) if "mlp.fc2" in name: UpperCAmelCase = name.replace('''mlp.fc2''' , '''output.dense''' ) # final layernorm if "audio_spectrogram_transformer.norm" in name: UpperCAmelCase = name.replace('''audio_spectrogram_transformer.norm''' , '''audio_spectrogram_transformer.layernorm''' ) # classifier head if "module.mlp_head.0" in name: UpperCAmelCase = name.replace('''module.mlp_head.0''' , '''classifier.layernorm''' ) if "module.mlp_head.1" in name: UpperCAmelCase = name.replace('''module.mlp_head.1''' , '''classifier.dense''' ) return name def snake_case_ (_a : Dict , _a : List[Any] ): for key in orig_state_dict.copy().keys(): UpperCAmelCase = orig_state_dict.pop(_a ) if "qkv" in key: UpperCAmelCase = key.split('''.''' ) UpperCAmelCase = int(key_split[3] ) UpperCAmelCase = config.hidden_size if "weight" in key: UpperCAmelCase = val[:dim, :] UpperCAmelCase = val[dim : dim * 2, :] UpperCAmelCase = val[-dim:, :] else: UpperCAmelCase = val[:dim] UpperCAmelCase = val[dim : dim * 2] UpperCAmelCase = val[-dim:] else: UpperCAmelCase = val return orig_state_dict def snake_case_ (_a : Tuple ): UpperCAmelCase = [ '''module.v.head.weight''', '''module.v.head.bias''', '''module.v.head_dist.weight''', '''module.v.head_dist.bias''', ] for k in ignore_keys: state_dict.pop(_a , _a ) @torch.no_grad() def snake_case_ (_a : int , _a : Union[str, Any] , _a : Dict=False ): UpperCAmelCase = get_audio_spectrogram_transformer_config(_a ) UpperCAmelCase = { '''ast-finetuned-audioset-10-10-0.4593''': ( '''https://www.dropbox.com/s/ca0b1v2nlxzyeb4/audioset_10_10_0.4593.pth?dl=1''' ), '''ast-finetuned-audioset-10-10-0.450''': ( '''https://www.dropbox.com/s/1tv0hovue1bxupk/audioset_10_10_0.4495.pth?dl=1''' ), '''ast-finetuned-audioset-10-10-0.448''': ( '''https://www.dropbox.com/s/6u5sikl4b9wo4u5/audioset_10_10_0.4483.pth?dl=1''' ), '''ast-finetuned-audioset-10-10-0.448-v2''': ( '''https://www.dropbox.com/s/kt6i0v9fvfm1mbq/audioset_10_10_0.4475.pth?dl=1''' ), '''ast-finetuned-audioset-12-12-0.447''': ( '''https://www.dropbox.com/s/snfhx3tizr4nuc8/audioset_12_12_0.4467.pth?dl=1''' ), '''ast-finetuned-audioset-14-14-0.443''': ( '''https://www.dropbox.com/s/z18s6pemtnxm4k7/audioset_14_14_0.4431.pth?dl=1''' ), '''ast-finetuned-audioset-16-16-0.442''': ( '''https://www.dropbox.com/s/mdsa4t1xmcimia6/audioset_16_16_0.4422.pth?dl=1''' ), '''ast-finetuned-speech-commands-v2''': ( '''https://www.dropbox.com/s/q0tbqpwv44pquwy/speechcommands_10_10_0.9812.pth?dl=1''' ), } # load original state_dict UpperCAmelCase = model_name_to_url[model_name] UpperCAmelCase = torch.hub.load_state_dict_from_url(_a , map_location='''cpu''' ) # remove some keys remove_keys(_a ) # rename some keys UpperCAmelCase = convert_state_dict(_a , _a ) # load 🤗 model UpperCAmelCase = ASTForAudioClassification(_a ) model.eval() model.load_state_dict(_a ) # verify outputs on dummy input # source: https://github.com/YuanGongND/ast/blob/79e873b8a54d0a3b330dd522584ff2b9926cd581/src/run.py#L62 UpperCAmelCase = -4.267_7393 if '''speech-commands''' not in model_name else -6.84_5978 UpperCAmelCase = 4.568_9974 if '''speech-commands''' not in model_name else 5.565_4526 UpperCAmelCase = 1_0_2_4 if '''speech-commands''' not in model_name else 1_2_8 UpperCAmelCase = ASTFeatureExtractor(mean=_a , std=_a , max_length=_a ) if "speech-commands" in model_name: UpperCAmelCase = load_dataset('''speech_commands''' , '''v0.02''' , split='''validation''' ) UpperCAmelCase = dataset[0]['''audio''']['''array'''] else: UpperCAmelCase = hf_hub_download( repo_id='''nielsr/audio-spectogram-transformer-checkpoint''' , filename='''sample_audio.flac''' , repo_type='''dataset''' , ) UpperCAmelCase , UpperCAmelCase = torchaudio.load(_a ) UpperCAmelCase = waveform.squeeze().numpy() UpperCAmelCase = feature_extractor(_a , sampling_rate=1_6_0_0_0 , return_tensors='''pt''' ) # forward pass UpperCAmelCase = model(**_a ) UpperCAmelCase = outputs.logits if model_name == "ast-finetuned-audioset-10-10-0.4593": UpperCAmelCase = torch.tensor([-0.8760, -7.0042, -8.6602] ) elif model_name == "ast-finetuned-audioset-10-10-0.450": UpperCAmelCase = torch.tensor([-1.1986, -7.0903, -8.2718] ) elif model_name == "ast-finetuned-audioset-10-10-0.448": UpperCAmelCase = torch.tensor([-2.6128, -8.0080, -9.4344] ) elif model_name == "ast-finetuned-audioset-10-10-0.448-v2": UpperCAmelCase = torch.tensor([-1.5080, -7.4534, -8.8917] ) elif model_name == "ast-finetuned-audioset-12-12-0.447": UpperCAmelCase = torch.tensor([-0.5050, -6.5833, -8.0843] ) elif model_name == "ast-finetuned-audioset-14-14-0.443": UpperCAmelCase = torch.tensor([-0.3826, -7.0336, -8.2413] ) elif model_name == "ast-finetuned-audioset-16-16-0.442": UpperCAmelCase = torch.tensor([-1.2113, -6.9101, -8.3470] ) elif model_name == "ast-finetuned-speech-commands-v2": UpperCAmelCase = torch.tensor([6.1589, -8.0566, -8.7984] ) else: raise ValueError('''Unknown model name''' ) if not torch.allclose(logits[0, :3] , _a , atol=1E-4 ): raise ValueError('''Logits don\'t match''' ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: Path(_a ).mkdir(exist_ok=_a ) print(F"Saving model {model_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(_a ) print(F"Saving feature extractor to {pytorch_dump_folder_path}" ) feature_extractor.save_pretrained(_a ) if push_to_hub: print('''Pushing model and feature extractor to the hub...''' ) model.push_to_hub(F"MIT/{model_name}" ) feature_extractor.push_to_hub(F"MIT/{model_name}" ) if __name__ == "__main__": A =argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='ast-finetuned-audioset-10-10-0.4593', type=str, help='Name of the Audio Spectrogram Transformer model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.' ) A =parser.parse_args() convert_audio_spectrogram_transformer_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
34
0
"""simple docstring""" from __future__ import annotations from typing import Any class __lowerCAmelCase : def __init__( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = 0 ): '''simple docstring''' __UpperCamelCase , __UpperCamelCase = row, column __UpperCamelCase = [[default_value for c in range(__UpperCAmelCase )] for r in range(__UpperCAmelCase )] def __str__( self ): '''simple docstring''' __UpperCamelCase = F'Matrix consist of {self.row} rows and {self.column} columns\n' # Make string identifier __UpperCamelCase = 0 for row_vector in self.array: for obj in row_vector: __UpperCamelCase = max(__UpperCAmelCase , len(str(__UpperCAmelCase ) ) ) __UpperCamelCase = F'%{max_element_length}s' # Make string and return def single_line(__UpperCAmelCase ) -> str: nonlocal string_format_identifier __UpperCamelCase = '[' line += ", ".join(string_format_identifier % (obj,) for obj in row_vector ) line += "]" return line s += "\n".join(single_line(__UpperCAmelCase ) for row_vector in self.array ) return s def __repr__( self ): '''simple docstring''' return str(self ) def UpperCAmelCase ( self , __UpperCAmelCase ): '''simple docstring''' if not (isinstance(__UpperCAmelCase , (list, tuple) ) and len(__UpperCAmelCase ) == 2): return False elif not (0 <= loc[0] < self.row and 0 <= loc[1] < self.column): return False else: return True def __getitem__( self , __UpperCAmelCase ): '''simple docstring''' assert self.validate_indicies(__UpperCAmelCase ) return self.array[loc[0]][loc[1]] def __setitem__( self , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' assert self.validate_indicies(__UpperCAmelCase ) __UpperCamelCase = value def __add__( self , __UpperCAmelCase ): '''simple docstring''' assert isinstance(__UpperCAmelCase , __UpperCAmelCase ) assert self.row == another.row and self.column == another.column # Add __UpperCamelCase = Matrix(self.row , self.column ) for r in range(self.row ): for c in range(self.column ): __UpperCamelCase = self[r, c] + another[r, c] return result def __neg__( self ): '''simple docstring''' __UpperCamelCase = Matrix(self.row , self.column ) for r in range(self.row ): for c in range(self.column ): __UpperCamelCase = -self[r, c] return result def __sub__( self , __UpperCAmelCase ): '''simple docstring''' return self + (-another) def __mul__( self , __UpperCAmelCase ): '''simple docstring''' if isinstance(__UpperCAmelCase , (int, float) ): # Scalar multiplication __UpperCamelCase = Matrix(self.row , self.column ) for r in range(self.row ): for c in range(self.column ): __UpperCamelCase = self[r, c] * another return result elif isinstance(__UpperCAmelCase , __UpperCAmelCase ): # Matrix multiplication assert self.column == another.row __UpperCamelCase = Matrix(self.row , another.column ) for r in range(self.row ): for c in range(another.column ): for i in range(self.column ): result[r, c] += self[r, i] * another[i, c] return result else: __UpperCamelCase = F'Unsupported type given for another ({type(__UpperCAmelCase )})' raise TypeError(__UpperCAmelCase ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = Matrix(self.column , self.row ) for r in range(self.row ): for c in range(self.column ): __UpperCamelCase = self[r, c] return result def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' assert isinstance(__UpperCAmelCase , __UpperCAmelCase ) and isinstance(__UpperCAmelCase , __UpperCAmelCase ) assert self.row == self.column == u.row == v.row # u, v should be column vector assert u.column == v.column == 1 # u, v should be column vector # Calculate __UpperCamelCase = v.transpose() __UpperCamelCase = (v_t * self * u)[0, 0] + 1 if numerator_factor == 0: return None # It's not invertable return self - ((self * u) * (v_t * self) * (1.0 / numerator_factor)) # Testing if __name__ == "__main__": def A ( ) -> None: # a^(-1) __UpperCamelCase = Matrix(3 , 3 , 0 ) for i in range(3 ): __UpperCamelCase = 1 print(f'a^(-1) is {ainv}' ) # u, v __UpperCamelCase = Matrix(3 , 1 , 0 ) __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = 1, 2, -3 __UpperCamelCase = Matrix(3 , 1 , 0 ) __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = 4, -2, 5 print(f'u is {u}' ) print(f'v is {v}' ) print(f'uv^T is {u * v.transpose()}' ) # Sherman Morrison print(f'(a + uv^T)^(-1) is {ainv.sherman_morrison(snake_case , snake_case )}' ) def A ( ) -> None: import doctest doctest.testmod() testa()
263
"""simple docstring""" import heapq as hq import math from collections.abc import Iterator class __lowerCAmelCase : def __init__( self , __UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = str(id_ ) __UpperCamelCase = None __UpperCamelCase = None __UpperCamelCase = [] __UpperCamelCase = {} # {vertex:distance} def __lt__( self , __UpperCAmelCase ): '''simple docstring''' return self.key < other.key def __repr__( self ): '''simple docstring''' return self.id def UpperCAmelCase ( self , __UpperCAmelCase ): '''simple docstring''' self.neighbors.append(__UpperCAmelCase ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = weight def A ( snake_case :List[Any] , snake_case :Dict , snake_case :Any , snake_case :str ) -> List[str]: # add the neighbors: graph[a - 1].add_neighbor(graph[b - 1] ) graph[b - 1].add_neighbor(graph[a - 1] ) # add the edges: graph[a - 1].add_edge(graph[b - 1] , snake_case ) graph[b - 1].add_edge(graph[a - 1] , snake_case ) def A ( snake_case :list , snake_case :Vertex ) -> list: __UpperCamelCase = [] for u in graph: __UpperCamelCase = math.inf __UpperCamelCase = None __UpperCamelCase = 0 __UpperCamelCase = graph[:] while q: __UpperCamelCase = min(snake_case ) q.remove(snake_case ) for v in u.neighbors: if (v in q) and (u.edges[v.id] < v.key): __UpperCamelCase = u __UpperCamelCase = u.edges[v.id] for i in range(1 , len(snake_case ) ): a.append((int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1) ) return a def A ( snake_case :list , snake_case :Vertex ) -> Iterator[tuple]: for u in graph: __UpperCamelCase = math.inf __UpperCamelCase = None __UpperCamelCase = 0 __UpperCamelCase = list(snake_case ) hq.heapify(snake_case ) while h: __UpperCamelCase = hq.heappop(snake_case ) for v in u.neighbors: if (v in h) and (u.edges[v.id] < v.key): __UpperCamelCase = u __UpperCamelCase = u.edges[v.id] hq.heapify(snake_case ) for i in range(1 , len(snake_case ) ): yield (int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1) def A ( ) -> None: pass if __name__ == "__main__": import doctest doctest.testmod()
263
1
"""simple docstring""" from typing import Optional import pyspark from .. import Features, NamedSplit from ..download import DownloadMode from ..packaged_modules.spark.spark import Spark from .abc import AbstractDatasetReader class A__ ( _lowerCamelCase): def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = True , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = False , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = True , _SCREAMING_SNAKE_CASE = "arrow" , **_SCREAMING_SNAKE_CASE , ): super().__init__( split=_SCREAMING_SNAKE_CASE , features=_SCREAMING_SNAKE_CASE , cache_dir=_SCREAMING_SNAKE_CASE , keep_in_memory=_SCREAMING_SNAKE_CASE , streaming=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , ) __lowerCAmelCase : List[str] = load_from_cache_file __lowerCAmelCase : Any = file_format __lowerCAmelCase : Dict = Spark( df=_SCREAMING_SNAKE_CASE , features=_SCREAMING_SNAKE_CASE , cache_dir=_SCREAMING_SNAKE_CASE , working_dir=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , ) def __lowerCamelCase ( self ): if self.streaming: return self.builder.as_streaming_dataset(split=self.split ) __lowerCAmelCase : Union[str, Any] = None if self._load_from_cache_file else DownloadMode.FORCE_REDOWNLOAD self.builder.download_and_prepare( download_mode=_SCREAMING_SNAKE_CASE , file_format=self._file_format , ) return self.builder.as_dataset(split=self.split )
86
"""simple docstring""" import unittest from typing import Dict, List, Optional, Union import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import BridgeTowerImageProcessor class snake_case_( unittest.TestCase ): def __init__( self : Union[str, Any] , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : bool = True , UpperCamelCase_ : Dict[str, int] = None , UpperCamelCase_ : int = 3_2 , UpperCamelCase_ : bool = True , UpperCamelCase_ : Union[int, float] = 1 / 2_5_5 , UpperCamelCase_ : bool = True , UpperCamelCase_ : bool = True , UpperCamelCase_ : Optional[Union[float, List[float]]] = [0.48_145_466, 0.4_578_275, 0.40_821_073] , UpperCamelCase_ : Optional[Union[float, List[float]]] = [0.26_862_954, 0.26_130_258, 0.27_577_711] , UpperCamelCase_ : bool = True , UpperCamelCase_ : Optional[int]=7 , UpperCamelCase_ : int=3_0 , UpperCamelCase_ : str=4_0_0 , UpperCamelCase_ : List[Any]=3 , ): lowerCAmelCase : Union[str, Any] = parent lowerCAmelCase : Union[str, Any] = do_resize lowerCAmelCase : List[str] = size if size is not None else {'''shortest_edge''': 2_8_8} lowerCAmelCase : int = size_divisor lowerCAmelCase : List[str] = do_rescale lowerCAmelCase : Optional[Any] = rescale_factor lowerCAmelCase : Dict = do_normalize lowerCAmelCase : Any = do_center_crop lowerCAmelCase : Union[str, Any] = image_mean lowerCAmelCase : Optional[Any] = image_std lowerCAmelCase : Union[str, Any] = do_pad lowerCAmelCase : Union[str, Any] = batch_size lowerCAmelCase : Any = num_channels lowerCAmelCase : Union[str, Any] = min_resolution lowerCAmelCase : int = max_resolution def lowerCamelCase__ ( self : Dict ): return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, "size_divisor": self.size_divisor, } def lowerCamelCase__ ( self : Any , UpperCamelCase_ : int , UpperCamelCase_ : List[str]=False ): if not batched: lowerCAmelCase : Dict = self.size['''shortest_edge'''] lowerCAmelCase : Dict = image_inputs[0] if isinstance(UpperCamelCase_ , Image.Image ): lowerCAmelCase, lowerCAmelCase : Optional[int] = image.size else: lowerCAmelCase, lowerCAmelCase : List[Any] = image.shape[1], image.shape[2] lowerCAmelCase : Union[str, Any] = size / min(UpperCamelCase_ , UpperCamelCase_ ) if h < w: lowerCAmelCase, lowerCAmelCase : Dict = size, scale * w else: lowerCAmelCase, lowerCAmelCase : Optional[int] = scale * h, size lowerCAmelCase : List[Any] = int((1_3_3_3 / 8_0_0) * size ) if max(UpperCamelCase_ , UpperCamelCase_ ) > max_size: lowerCAmelCase : int = max_size / max(UpperCamelCase_ , UpperCamelCase_ ) lowerCAmelCase : str = newh * scale lowerCAmelCase : Tuple = neww * scale lowerCAmelCase, lowerCAmelCase : List[str] = int(newh + 0.5 ), int(neww + 0.5 ) lowerCAmelCase, lowerCAmelCase : Tuple = ( newh // self.size_divisor * self.size_divisor, neww // self.size_divisor * self.size_divisor, ) else: lowerCAmelCase : Optional[int] = [] for image in image_inputs: lowerCAmelCase, lowerCAmelCase : List[str] = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) lowerCAmelCase : Union[str, Any] = max(UpperCamelCase_ , key=lambda UpperCamelCase_ : item[0] )[0] lowerCAmelCase : Union[str, Any] = max(UpperCamelCase_ , key=lambda UpperCamelCase_ : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class snake_case_( a__ , unittest.TestCase ): __UpperCamelCase = BridgeTowerImageProcessor if is_vision_available() else None def lowerCamelCase__ ( self : Optional[int] ): lowerCAmelCase : Optional[int] = BridgeTowerImageProcessingTester(self ) @property def lowerCamelCase__ ( self : List[str] ): return self.image_processor_tester.prepare_image_processor_dict() def lowerCamelCase__ ( self : List[str] ): lowerCAmelCase : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(UpperCamelCase_ , '''image_mean''' ) ) self.assertTrue(hasattr(UpperCamelCase_ , '''image_std''' ) ) self.assertTrue(hasattr(UpperCamelCase_ , '''do_normalize''' ) ) self.assertTrue(hasattr(UpperCamelCase_ , '''do_resize''' ) ) self.assertTrue(hasattr(UpperCamelCase_ , '''size''' ) ) self.assertTrue(hasattr(UpperCamelCase_ , '''size_divisor''' ) ) def lowerCamelCase__ ( self : int ): pass def lowerCamelCase__ ( self : Optional[Any] ): # Initialize image processor lowerCAmelCase : str = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowerCAmelCase : Optional[int] = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCamelCase_ ) for image in image_inputs: self.assertIsInstance(UpperCamelCase_ , Image.Image ) # Test not batched input lowerCAmelCase : Optional[int] = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values lowerCAmelCase, lowerCAmelCase : List[Any] = self.image_processor_tester.get_expected_values(UpperCamelCase_ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched lowerCAmelCase : Dict = image_processing(UpperCamelCase_ , return_tensors='''pt''' ).pixel_values lowerCAmelCase, lowerCAmelCase : int = self.image_processor_tester.get_expected_values(UpperCamelCase_ , batched=UpperCamelCase_ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def lowerCamelCase__ ( self : Optional[Any] ): # Initialize image processor lowerCAmelCase : Tuple = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowerCAmelCase : List[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCamelCase_ , numpify=UpperCamelCase_ ) for image in image_inputs: self.assertIsInstance(UpperCamelCase_ , np.ndarray ) # Test not batched input lowerCAmelCase : Any = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values lowerCAmelCase, lowerCAmelCase : Optional[Any] = self.image_processor_tester.get_expected_values(UpperCamelCase_ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched lowerCAmelCase : Tuple = image_processing(UpperCamelCase_ , return_tensors='''pt''' ).pixel_values lowerCAmelCase, lowerCAmelCase : str = self.image_processor_tester.get_expected_values(UpperCamelCase_ , batched=UpperCamelCase_ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def lowerCamelCase__ ( self : Optional[int] ): # Initialize image processor lowerCAmelCase : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowerCAmelCase : List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCamelCase_ , torchify=UpperCamelCase_ ) for image in image_inputs: self.assertIsInstance(UpperCamelCase_ , torch.Tensor ) # Test not batched input lowerCAmelCase : Any = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values lowerCAmelCase, lowerCAmelCase : Tuple = self.image_processor_tester.get_expected_values(UpperCamelCase_ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched lowerCAmelCase : str = image_processing(UpperCamelCase_ , return_tensors='''pt''' ).pixel_values lowerCAmelCase, lowerCAmelCase : str = self.image_processor_tester.get_expected_values(UpperCamelCase_ , batched=UpperCamelCase_ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , )
60
0
"""simple docstring""" import os import warnings from typing import List, Optional from ...tokenization_utils_base import BatchEncoding from ...utils import logging from .configuration_rag import RagConfig _SCREAMING_SNAKE_CASE : Tuple = logging.get_logger(__name__) class __a : """simple docstring""" def __init__( self : Optional[Any] , lowercase_ : Any , lowercase_ : Optional[int] ): UpperCamelCase__ : str =question_encoder UpperCamelCase__ : Any =generator UpperCamelCase__ : Optional[Any] =self.question_encoder def _lowerCAmelCase ( self : Optional[Any] , lowercase_ : str ): if os.path.isfile(__lowerCamelCase ): raise ValueError(f'''Provided path ({save_directory}) should be a directory, not a file''' ) os.makedirs(__lowerCamelCase , exist_ok=__lowerCamelCase ) UpperCamelCase__ : Dict =os.path.join(__lowerCamelCase , '''question_encoder_tokenizer''' ) UpperCamelCase__ : Dict =os.path.join(__lowerCamelCase , '''generator_tokenizer''' ) self.question_encoder.save_pretrained(__lowerCamelCase ) self.generator.save_pretrained(__lowerCamelCase ) @classmethod def _lowerCAmelCase ( cls : Tuple , lowercase_ : Optional[int] , **lowercase_ : str ): from ..auto.tokenization_auto import AutoTokenizer UpperCamelCase__ : Optional[Any] =kwargs.pop('''config''' , __lowerCamelCase ) if config is None: UpperCamelCase__ : int =RagConfig.from_pretrained(__lowerCamelCase ) UpperCamelCase__ : Optional[Any] =AutoTokenizer.from_pretrained( __lowerCamelCase , config=config.question_encoder , subfolder='''question_encoder_tokenizer''' ) UpperCamelCase__ : str =AutoTokenizer.from_pretrained( __lowerCamelCase , config=config.generator , subfolder='''generator_tokenizer''' ) return cls(question_encoder=__lowerCamelCase , generator=__lowerCamelCase ) def __call__( self : int , *lowercase_ : str , **lowercase_ : Dict ): return self.current_tokenizer(*__lowerCamelCase , **__lowerCamelCase ) def _lowerCAmelCase ( self : Optional[int] , *lowercase_ : Optional[Any] , **lowercase_ : Dict ): return self.generator.batch_decode(*__lowerCamelCase , **__lowerCamelCase ) def _lowerCAmelCase ( self : List[Any] , *lowercase_ : Optional[Any] , **lowercase_ : Optional[int] ): return self.generator.decode(*__lowerCamelCase , **__lowerCamelCase ) def _lowerCAmelCase ( self : List[str] ): UpperCamelCase__ : Tuple =self.question_encoder def _lowerCAmelCase ( self : str ): UpperCamelCase__ : str =self.generator def _lowerCAmelCase ( self : int , lowercase_ : Optional[Any] , lowercase_ : List[Any] = None , lowercase_ : int = None , lowercase_ : Dict = None , lowercase_ : Union[str, Any] = "longest" , lowercase_ : Union[str, Any] = None , lowercase_ : Optional[int] = True , **lowercase_ : str , ): warnings.warn( '''`prepare_seq2seq_batch` is deprecated and will be removed in version 5 of 🤗 Transformers. Use the ''' '''regular `__call__` method to prepare your inputs and the tokenizer under the `with_target_tokenizer` ''' '''context manager to prepare your targets. See the documentation of your specific tokenizer for more ''' '''details''' , __lowerCamelCase , ) if max_length is None: UpperCamelCase__ : Union[str, Any] =self.current_tokenizer.model_max_length UpperCamelCase__ : List[str] =self( __lowerCamelCase , add_special_tokens=__lowerCamelCase , return_tensors=__lowerCamelCase , max_length=__lowerCamelCase , padding=__lowerCamelCase , truncation=__lowerCamelCase , **__lowerCamelCase , ) if tgt_texts is None: return model_inputs # Process tgt_texts if max_target_length is None: UpperCamelCase__ : str =self.current_tokenizer.model_max_length UpperCamelCase__ : Optional[int] =self( text_target=__lowerCamelCase , add_special_tokens=__lowerCamelCase , return_tensors=__lowerCamelCase , padding=__lowerCamelCase , max_length=__lowerCamelCase , truncation=__lowerCamelCase , **__lowerCamelCase , ) UpperCamelCase__ : Optional[Any] =labels['''input_ids'''] return model_inputs
356
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _SCREAMING_SNAKE_CASE : List[str] = { """configuration_bigbird_pegasus""": [ """BIGBIRD_PEGASUS_PRETRAINED_CONFIG_ARCHIVE_MAP""", """BigBirdPegasusConfig""", """BigBirdPegasusOnnxConfig""", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE : Optional[Any] = [ """BIGBIRD_PEGASUS_PRETRAINED_MODEL_ARCHIVE_LIST""", """BigBirdPegasusForCausalLM""", """BigBirdPegasusForConditionalGeneration""", """BigBirdPegasusForQuestionAnswering""", """BigBirdPegasusForSequenceClassification""", """BigBirdPegasusModel""", """BigBirdPegasusPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_bigbird_pegasus import ( BIGBIRD_PEGASUS_PRETRAINED_CONFIG_ARCHIVE_MAP, BigBirdPegasusConfig, BigBirdPegasusOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bigbird_pegasus import ( BIGBIRD_PEGASUS_PRETRAINED_MODEL_ARCHIVE_LIST, BigBirdPegasusForCausalLM, BigBirdPegasusForConditionalGeneration, BigBirdPegasusForQuestionAnswering, BigBirdPegasusForSequenceClassification, BigBirdPegasusModel, BigBirdPegasusPreTrainedModel, ) else: import sys _SCREAMING_SNAKE_CASE : Optional[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
157
0
'''simple docstring''' # coding=utf-8 # Copyright 2023 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # this script dumps information about the environment import os import platform import sys UpperCamelCase = '''3''' print('''Python version:''', sys.version) print('''OS platform:''', platform.platform()) print('''OS architecture:''', platform.machine()) try: import torch print('''Torch version:''', torch.__version__) print('''Cuda available:''', torch.cuda.is_available()) print('''Cuda version:''', torch.version.cuda) print('''CuDNN version:''', torch.backends.cudnn.version()) print('''Number of GPUs available:''', torch.cuda.device_count()) except ImportError: print('''Torch version:''', None) try: import transformers print('''transformers version:''', transformers.__version__) except ImportError: print('''transformers version:''', None)
319
'''simple docstring''' import json import os from functools import lru_cache from typing import List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt'''} UpperCamelCase = { '''vocab_file''': { '''allenai/longformer-base-4096''': '''https://huggingface.co/allenai/longformer-base-4096/resolve/main/vocab.json''', '''allenai/longformer-large-4096''': ( '''https://huggingface.co/allenai/longformer-large-4096/resolve/main/vocab.json''' ), '''allenai/longformer-large-4096-finetuned-triviaqa''': ( '''https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/vocab.json''' ), '''allenai/longformer-base-4096-extra.pos.embd.only''': ( '''https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/vocab.json''' ), '''allenai/longformer-large-4096-extra.pos.embd.only''': ( '''https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/vocab.json''' ), }, '''merges_file''': { '''allenai/longformer-base-4096''': '''https://huggingface.co/allenai/longformer-base-4096/resolve/main/merges.txt''', '''allenai/longformer-large-4096''': ( '''https://huggingface.co/allenai/longformer-large-4096/resolve/main/merges.txt''' ), '''allenai/longformer-large-4096-finetuned-triviaqa''': ( '''https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/merges.txt''' ), '''allenai/longformer-base-4096-extra.pos.embd.only''': ( '''https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/merges.txt''' ), '''allenai/longformer-large-4096-extra.pos.embd.only''': ( '''https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/merges.txt''' ), }, } UpperCamelCase = { '''allenai/longformer-base-4096''': 4096, '''allenai/longformer-large-4096''': 4096, '''allenai/longformer-large-4096-finetuned-triviaqa''': 4096, '''allenai/longformer-base-4096-extra.pos.embd.only''': 4096, '''allenai/longformer-large-4096-extra.pos.embd.only''': 4096, } @lru_cache() # Copied from transformers.models.roberta.tokenization_roberta.bytes_to_unicode def SCREAMING_SNAKE_CASE( ) -> Dict: A: Dict = ( list(range(ord('''!''' ) , ord('''~''' ) + 1 ) ) + list(range(ord('''¡''' ) , ord('''¬''' ) + 1 ) ) + list(range(ord('''®''' ) , ord('''ÿ''' ) + 1 ) ) ) A: Union[str, Any] = bs[:] A: List[str] = 0 for b in range(2**8 ): if b not in bs: bs.append(__lowercase ) cs.append(2**8 + n ) n += 1 A: List[Any] = [chr(__lowercase ) for n in cs] return dict(zip(__lowercase , __lowercase ) ) def SCREAMING_SNAKE_CASE( __lowercase ) -> Optional[int]: A: Optional[Any] = set() A: Tuple = word[0] for char in word[1:]: pairs.add((prev_char, char) ) A: List[Any] = char return pairs class lowerCAmelCase_ ( UpperCAmelCase_ ): '''simple docstring''' UpperCamelCase_ : int = VOCAB_FILES_NAMES UpperCamelCase_ : int = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase_ : List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase_ : int = ["""input_ids""", """attention_mask"""] def __init__( self : int , SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : str="replace" , SCREAMING_SNAKE_CASE_ : str="<s>" , SCREAMING_SNAKE_CASE_ : Any="</s>" , SCREAMING_SNAKE_CASE_ : int="</s>" , SCREAMING_SNAKE_CASE_ : List[Any]="<s>" , SCREAMING_SNAKE_CASE_ : str="<unk>" , SCREAMING_SNAKE_CASE_ : Dict="<pad>" , SCREAMING_SNAKE_CASE_ : Dict="<mask>" , SCREAMING_SNAKE_CASE_ : Union[str, Any]=False , **SCREAMING_SNAKE_CASE_ : Tuple , ) -> List[str]: '''simple docstring''' A: int = AddedToken(SCREAMING_SNAKE_CASE_ , lstrip=SCREAMING_SNAKE_CASE_ , rstrip=SCREAMING_SNAKE_CASE_ ) if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else bos_token A: Dict = AddedToken(SCREAMING_SNAKE_CASE_ , lstrip=SCREAMING_SNAKE_CASE_ , rstrip=SCREAMING_SNAKE_CASE_ ) if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else eos_token A: int = AddedToken(SCREAMING_SNAKE_CASE_ , lstrip=SCREAMING_SNAKE_CASE_ , rstrip=SCREAMING_SNAKE_CASE_ ) if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else sep_token A: Dict = AddedToken(SCREAMING_SNAKE_CASE_ , lstrip=SCREAMING_SNAKE_CASE_ , rstrip=SCREAMING_SNAKE_CASE_ ) if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else cls_token A: Any = AddedToken(SCREAMING_SNAKE_CASE_ , lstrip=SCREAMING_SNAKE_CASE_ , rstrip=SCREAMING_SNAKE_CASE_ ) if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else unk_token A: str = AddedToken(SCREAMING_SNAKE_CASE_ , lstrip=SCREAMING_SNAKE_CASE_ , rstrip=SCREAMING_SNAKE_CASE_ ) if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else pad_token # Mask token behave like a normal word, i.e. include the space before it A: Dict = AddedToken(SCREAMING_SNAKE_CASE_ , lstrip=SCREAMING_SNAKE_CASE_ , rstrip=SCREAMING_SNAKE_CASE_ ) if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else mask_token super().__init__( errors=SCREAMING_SNAKE_CASE_ , bos_token=SCREAMING_SNAKE_CASE_ , eos_token=SCREAMING_SNAKE_CASE_ , unk_token=SCREAMING_SNAKE_CASE_ , sep_token=SCREAMING_SNAKE_CASE_ , cls_token=SCREAMING_SNAKE_CASE_ , pad_token=SCREAMING_SNAKE_CASE_ , mask_token=SCREAMING_SNAKE_CASE_ , add_prefix_space=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , ) with open(SCREAMING_SNAKE_CASE_ , encoding='''utf-8''' ) as vocab_handle: A: str = json.load(SCREAMING_SNAKE_CASE_ ) A: str = {v: k for k, v in self.encoder.items()} A: Union[str, Any] = errors # how to handle errors in decoding A: Optional[int] = bytes_to_unicode() A: Union[str, Any] = {v: k for k, v in self.byte_encoder.items()} with open(SCREAMING_SNAKE_CASE_ , encoding='''utf-8''' ) as merges_handle: A: int = merges_handle.read().split('''\n''' )[1:-1] A: str = [tuple(merge.split() ) for merge in bpe_merges] A: Any = dict(zip(SCREAMING_SNAKE_CASE_ , range(len(SCREAMING_SNAKE_CASE_ ) ) ) ) A: Union[str, Any] = {} A: Tuple = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions A: Dict = re.compile(R'''\'s|\'t|\'re|\'ve|\'m|\'ll|\'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+''' ) @property def _snake_case ( self : int ) -> List[Any]: '''simple docstring''' return len(self.encoder ) def _snake_case ( self : Optional[Any] ) -> int: '''simple docstring''' return dict(self.encoder , **self.added_tokens_encoder ) def _snake_case ( self : str , SCREAMING_SNAKE_CASE_ : Optional[int] ) -> Optional[Any]: '''simple docstring''' if token in self.cache: return self.cache[token] A: str = tuple(SCREAMING_SNAKE_CASE_ ) A: str = get_pairs(SCREAMING_SNAKE_CASE_ ) if not pairs: return token while True: A: Dict = min(SCREAMING_SNAKE_CASE_ , key=lambda SCREAMING_SNAKE_CASE_ : self.bpe_ranks.get(SCREAMING_SNAKE_CASE_ , float('''inf''' ) ) ) if bigram not in self.bpe_ranks: break A , A: Optional[Any] = bigram A: Tuple = [] A: List[Any] = 0 while i < len(SCREAMING_SNAKE_CASE_ ): try: A: Union[str, Any] = word.index(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) A: int = j if word[i] == first and i < len(SCREAMING_SNAKE_CASE_ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 A: Optional[Any] = tuple(SCREAMING_SNAKE_CASE_ ) A: Any = new_word if len(SCREAMING_SNAKE_CASE_ ) == 1: break else: A: Union[str, Any] = get_pairs(SCREAMING_SNAKE_CASE_ ) A: str = ''' '''.join(SCREAMING_SNAKE_CASE_ ) A: str = word return word def _snake_case ( self : Union[str, Any] , SCREAMING_SNAKE_CASE_ : Optional[Any] ) -> Optional[int]: '''simple docstring''' A: Dict = [] for token in re.findall(self.pat , SCREAMING_SNAKE_CASE_ ): A: Tuple = ''''''.join( self.byte_encoder[b] for b in token.encode('''utf-8''' ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(SCREAMING_SNAKE_CASE_ ).split(''' ''' ) ) return bpe_tokens def _snake_case ( self : List[Any] , SCREAMING_SNAKE_CASE_ : Optional[Any] ) -> Optional[Any]: '''simple docstring''' return self.encoder.get(SCREAMING_SNAKE_CASE_ , self.encoder.get(self.unk_token ) ) def _snake_case ( self : Tuple , SCREAMING_SNAKE_CASE_ : Optional[Any] ) -> str: '''simple docstring''' return self.decoder.get(SCREAMING_SNAKE_CASE_ ) def _snake_case ( self : Union[str, Any] , SCREAMING_SNAKE_CASE_ : Optional[int] ) -> Tuple: '''simple docstring''' A: Optional[int] = ''''''.join(SCREAMING_SNAKE_CASE_ ) A: Tuple = bytearray([self.byte_decoder[c] for c in text] ).decode('''utf-8''' , errors=self.errors ) return text def _snake_case ( self : int , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : Optional[str] = None ) -> Tuple[str]: '''simple docstring''' if not os.path.isdir(SCREAMING_SNAKE_CASE_ ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return A: Union[str, Any] = os.path.join( SCREAMING_SNAKE_CASE_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) A: int = os.path.join( SCREAMING_SNAKE_CASE_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''merges_file'''] ) with open(SCREAMING_SNAKE_CASE_ , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=SCREAMING_SNAKE_CASE_ , ensure_ascii=SCREAMING_SNAKE_CASE_ ) + '''\n''' ) A: Any = 0 with open(SCREAMING_SNAKE_CASE_ , '''w''' , encoding='''utf-8''' ) as writer: writer.write('''#version: 0.2\n''' ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda SCREAMING_SNAKE_CASE_ : kv[1] ): if index != token_index: logger.warning( f"""Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.""" ''' Please check that the tokenizer is not corrupted!''' ) A: Union[str, Any] = token_index writer.write(''' '''.join(SCREAMING_SNAKE_CASE_ ) + '''\n''' ) index += 1 return vocab_file, merge_file def _snake_case ( self : List[Any] , SCREAMING_SNAKE_CASE_ : List[int] , SCREAMING_SNAKE_CASE_ : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] A: int = [self.cls_token_id] A: str = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def _snake_case ( self : Tuple , SCREAMING_SNAKE_CASE_ : List[int] , SCREAMING_SNAKE_CASE_ : Optional[List[int]] = None , SCREAMING_SNAKE_CASE_ : bool = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=SCREAMING_SNAKE_CASE_ , token_ids_a=SCREAMING_SNAKE_CASE_ , already_has_special_tokens=SCREAMING_SNAKE_CASE_ ) if token_ids_a is None: return [1] + ([0] * len(SCREAMING_SNAKE_CASE_ )) + [1] return [1] + ([0] * len(SCREAMING_SNAKE_CASE_ )) + [1, 1] + ([0] * len(SCREAMING_SNAKE_CASE_ )) + [1] def _snake_case ( self : Tuple , SCREAMING_SNAKE_CASE_ : List[int] , SCREAMING_SNAKE_CASE_ : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' A: Dict = [self.sep_token_id] A: Optional[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def _snake_case ( self : int , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : Dict=False , **SCREAMING_SNAKE_CASE_ : Optional[int] ) -> int: '''simple docstring''' A: Tuple = kwargs.pop('''add_prefix_space''' , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(SCREAMING_SNAKE_CASE_ ) > 0 and not text[0].isspace()): A: List[Any] = ''' ''' + text return (text, kwargs)
319
1
import asyncio import os import re import sys import tempfile import unittest from contextlib import contextmanager from copy import deepcopy from distutils.util import strtobool from enum import Enum from importlib.util import find_spec from pathlib import Path from unittest.mock import patch import pyarrow as pa import pytest import requests from packaging import version from datasets import config if config.PY_VERSION < version.parse("3.8"): import importlib_metadata else: import importlib.metadata as importlib_metadata def A__ ( __lowerCamelCase, __lowerCamelCase=False ): try: SCREAMING_SNAKE_CASE_ = os.environ[key] except KeyError: # KEY isn't set, default to `default`. SCREAMING_SNAKE_CASE_ = default else: # KEY is set, convert it to True or False. try: SCREAMING_SNAKE_CASE_ = strtobool(__lowerCamelCase ) except ValueError: # More values are supported, but let's keep the message simple. raise ValueError(F'''If set, {key} must be yes or no.''' ) return _value __UpperCAmelCase = parse_flag_from_env("RUN_SLOW", default=False) __UpperCAmelCase = parse_flag_from_env("RUN_REMOTE", default=False) __UpperCAmelCase = parse_flag_from_env("RUN_LOCAL", default=True) __UpperCAmelCase = parse_flag_from_env("RUN_PACKAGED", default=True) # Compression __UpperCAmelCase = pytest.mark.skipif(not config.LZ4_AVAILABLE, reason="test requires lz4") __UpperCAmelCase = pytest.mark.skipif(not config.PY7ZR_AVAILABLE, reason="test requires py7zr") __UpperCAmelCase = pytest.mark.skipif(not config.ZSTANDARD_AVAILABLE, reason="test requires zstandard") # Audio __UpperCAmelCase = pytest.mark.skipif( # On Windows and OS X, soundfile installs sndfile find_spec("soundfile") is None or version.parse(importlib_metadata.version("soundfile")) < version.parse("0.12.0"), reason="test requires sndfile>=0.12.1: 'pip install \"soundfile>=0.12.1\"'; ", ) # Beam __UpperCAmelCase = pytest.mark.skipif( not config.BEAM_AVAILABLE or config.DILL_VERSION >= version.parse("0.3.2"), reason="test requires apache-beam and a compatible dill version", ) # Dill-cloudpickle compatibility __UpperCAmelCase = pytest.mark.skipif( config.DILL_VERSION <= version.parse("0.3.2"), reason="test requires dill>0.3.2 for cloudpickle compatibility", ) # Windows __UpperCAmelCase = pytest.mark.skipif( sys.platform == "win32", reason="test should not be run on Windows", ) def A__ ( __lowerCamelCase ): try: import faiss # noqa except ImportError: SCREAMING_SNAKE_CASE_ = unittest.skip('''test requires faiss''' )(__lowerCamelCase ) return test_case def A__ ( __lowerCamelCase ): try: import regex # noqa except ImportError: SCREAMING_SNAKE_CASE_ = unittest.skip('''test requires regex''' )(__lowerCamelCase ) return test_case def A__ ( __lowerCamelCase ): try: import elasticsearch # noqa except ImportError: SCREAMING_SNAKE_CASE_ = unittest.skip('''test requires elasticsearch''' )(__lowerCamelCase ) return test_case def A__ ( __lowerCamelCase ): try: import sqlalchemy # noqa except ImportError: SCREAMING_SNAKE_CASE_ = unittest.skip('''test requires sqlalchemy''' )(__lowerCamelCase ) return test_case def A__ ( __lowerCamelCase ): if not config.TORCH_AVAILABLE: SCREAMING_SNAKE_CASE_ = unittest.skip('''test requires PyTorch''' )(__lowerCamelCase ) return test_case def A__ ( __lowerCamelCase ): if not config.TF_AVAILABLE: SCREAMING_SNAKE_CASE_ = unittest.skip('''test requires TensorFlow''' )(__lowerCamelCase ) return test_case def A__ ( __lowerCamelCase ): if not config.JAX_AVAILABLE: SCREAMING_SNAKE_CASE_ = unittest.skip('''test requires JAX''' )(__lowerCamelCase ) return test_case def A__ ( __lowerCamelCase ): if not config.PIL_AVAILABLE: SCREAMING_SNAKE_CASE_ = unittest.skip('''test requires Pillow''' )(__lowerCamelCase ) return test_case def A__ ( __lowerCamelCase ): try: import transformers # noqa F401 except ImportError: return unittest.skip('''test requires transformers''' )(__lowerCamelCase ) else: return test_case def A__ ( __lowerCamelCase ): try: import tiktoken # noqa F401 except ImportError: return unittest.skip('''test requires tiktoken''' )(__lowerCamelCase ) else: return test_case def A__ ( __lowerCamelCase ): try: import spacy # noqa F401 except ImportError: return unittest.skip('''test requires spacy''' )(__lowerCamelCase ) else: return test_case def A__ ( __lowerCamelCase ): def _require_spacy_model(__lowerCamelCase ): try: import spacy # noqa F401 spacy.load(__lowerCamelCase ) except ImportError: return unittest.skip('''test requires spacy''' )(__lowerCamelCase ) except OSError: return unittest.skip('''test requires spacy model \'{}\''''.format(__lowerCamelCase ) )(__lowerCamelCase ) else: return test_case return _require_spacy_model def A__ ( __lowerCamelCase ): try: import pyspark # noqa F401 except ImportError: return unittest.skip('''test requires pyspark''' )(__lowerCamelCase ) else: return test_case def A__ ( __lowerCamelCase ): try: import joblibspark # noqa F401 except ImportError: return unittest.skip('''test requires joblibspark''' )(__lowerCamelCase ) else: return test_case def A__ ( __lowerCamelCase ): if not _run_slow_tests or _run_slow_tests == 0: SCREAMING_SNAKE_CASE_ = unittest.skip('''test is slow''' )(__lowerCamelCase ) return test_case def A__ ( __lowerCamelCase ): if not _run_local_tests or _run_local_tests == 0: SCREAMING_SNAKE_CASE_ = unittest.skip('''test is local''' )(__lowerCamelCase ) return test_case def A__ ( __lowerCamelCase ): if not _run_packaged_tests or _run_packaged_tests == 0: SCREAMING_SNAKE_CASE_ = unittest.skip('''test is packaged''' )(__lowerCamelCase ) return test_case def A__ ( __lowerCamelCase ): if not _run_remote_tests or _run_remote_tests == 0: SCREAMING_SNAKE_CASE_ = unittest.skip('''test requires remote''' )(__lowerCamelCase ) return test_case def A__ ( *__lowerCamelCase ): def decorate(cls ): for name, fn in cls.__dict__.items(): if callable(__lowerCamelCase ) and name.startswith('''test''' ): for decorator in decorators: SCREAMING_SNAKE_CASE_ = decorator(__lowerCamelCase ) setattr(cls, __lowerCamelCase, __lowerCamelCase ) return cls return decorate class UpperCamelCase__ ( __SCREAMING_SNAKE_CASE ): """simple docstring""" pass class UpperCamelCase__ ( __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCAmelCase_ =0 UpperCAmelCase_ =1 UpperCAmelCase_ =2 @contextmanager def A__ ( __lowerCamelCase=OfflineSimulationMode.CONNECTION_FAILS, __lowerCamelCase=1E-16 ): SCREAMING_SNAKE_CASE_ = requests.Session().request def timeout_request(__lowerCamelCase, __lowerCamelCase, __lowerCamelCase, **__lowerCamelCase ): # Change the url to an invalid url so that the connection hangs SCREAMING_SNAKE_CASE_ = '''https://10.255.255.1''' if kwargs.get('''timeout''' ) is None: raise RequestWouldHangIndefinitelyError( F'''Tried a call to {url} in offline mode with no timeout set. Please set a timeout.''' ) SCREAMING_SNAKE_CASE_ = timeout try: return online_request(__lowerCamelCase, __lowerCamelCase, **__lowerCamelCase ) except Exception as e: # The following changes in the error are just here to make the offline timeout error prettier SCREAMING_SNAKE_CASE_ = url SCREAMING_SNAKE_CASE_ = e.args[0] SCREAMING_SNAKE_CASE_ = (max_retry_error.args[0].replace('''10.255.255.1''', F'''OfflineMock[{url}]''' ),) SCREAMING_SNAKE_CASE_ = (max_retry_error,) raise def raise_connection_error(__lowerCamelCase, __lowerCamelCase, **__lowerCamelCase ): raise requests.ConnectionError('''Offline mode is enabled.''', request=__lowerCamelCase ) if mode is OfflineSimulationMode.CONNECTION_FAILS: with patch('''requests.Session.send''', __lowerCamelCase ): yield elif mode is OfflineSimulationMode.CONNECTION_TIMES_OUT: # inspired from https://stackoverflow.com/a/904609 with patch('''requests.Session.request''', __lowerCamelCase ): yield elif mode is OfflineSimulationMode.HF_DATASETS_OFFLINE_SET_TO_1: with patch('''datasets.config.HF_DATASETS_OFFLINE''', __lowerCamelCase ): yield else: raise ValueError('''Please use a value from the OfflineSimulationMode enum.''' ) @contextmanager def A__ ( *__lowerCamelCase, **__lowerCamelCase ): SCREAMING_SNAKE_CASE_ = str(Path().resolve() ) with tempfile.TemporaryDirectory(*__lowerCamelCase, **__lowerCamelCase ) as tmp_dir: try: os.chdir(__lowerCamelCase ) yield finally: os.chdir(__lowerCamelCase ) @contextmanager def A__ ( ): import gc gc.collect() SCREAMING_SNAKE_CASE_ = pa.total_allocated_bytes() yield assert pa.total_allocated_bytes() - previous_allocated_memory > 0, "Arrow memory didn't increase." @contextmanager def A__ ( ): import gc gc.collect() SCREAMING_SNAKE_CASE_ = pa.total_allocated_bytes() yield assert pa.total_allocated_bytes() - previous_allocated_memory <= 0, "Arrow memory wasn't expected to increase." def A__ ( __lowerCamelCase, __lowerCamelCase ): return deepcopy(__lowerCamelCase ).integers(0, 1_00, 10 ).tolist() == deepcopy(__lowerCamelCase ).integers(0, 1_00, 10 ).tolist() def A__ ( __lowerCamelCase ): import decorator from requests.exceptions import HTTPError def _wrapper(__lowerCamelCase, *__lowerCamelCase, **__lowerCamelCase ): try: return func(*__lowerCamelCase, **__lowerCamelCase ) except HTTPError as err: if str(__lowerCamelCase ).startswith('''500''' ) or str(__lowerCamelCase ).startswith('''502''' ): pytest.xfail(str(__lowerCamelCase ) ) raise err return decorator.decorator(_wrapper, __lowerCamelCase ) class UpperCamelCase__ : """simple docstring""" def __init__( self , _A , _A , _A ) -> Dict: SCREAMING_SNAKE_CASE_ = returncode SCREAMING_SNAKE_CASE_ = stdout SCREAMING_SNAKE_CASE_ = stderr async def A__ ( __lowerCamelCase, __lowerCamelCase ): while True: SCREAMING_SNAKE_CASE_ = await stream.readline() if line: callback(__lowerCamelCase ) else: break async def A__ ( __lowerCamelCase, __lowerCamelCase=None, __lowerCamelCase=None, __lowerCamelCase=None, __lowerCamelCase=False, __lowerCamelCase=False ): if echo: print('''\nRunning: ''', ''' '''.join(__lowerCamelCase ) ) SCREAMING_SNAKE_CASE_ = await asyncio.create_subprocess_exec( cmd[0], *cmd[1:], stdin=__lowerCamelCase, stdout=asyncio.subprocess.PIPE, stderr=asyncio.subprocess.PIPE, env=__lowerCamelCase, ) # note: there is a warning for a possible deadlock when using `wait` with huge amounts of data in the pipe # https://docs.python.org/3/library/asyncio-subprocess.html#asyncio.asyncio.subprocess.Process.wait # # If it starts hanging, will need to switch to the following code. The problem is that no data # will be seen until it's done and if it hangs for example there will be no debug info. # out, err = await p.communicate() # return _RunOutput(p.returncode, out, err) SCREAMING_SNAKE_CASE_ = [] SCREAMING_SNAKE_CASE_ = [] def tee(__lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase="" ): SCREAMING_SNAKE_CASE_ = line.decode('''utf-8''' ).rstrip() sink.append(__lowerCamelCase ) if not quiet: print(__lowerCamelCase, __lowerCamelCase, file=__lowerCamelCase ) # XXX: the timeout doesn't seem to make any difference here await asyncio.wait( [ _read_stream(p.stdout, lambda __lowerCamelCase : tee(__lowerCamelCase, __lowerCamelCase, sys.stdout, label='''stdout:''' ) ), _read_stream(p.stderr, lambda __lowerCamelCase : tee(__lowerCamelCase, __lowerCamelCase, sys.stderr, label='''stderr:''' ) ), ], timeout=__lowerCamelCase, ) return _RunOutput(await p.wait(), __lowerCamelCase, __lowerCamelCase ) def A__ ( __lowerCamelCase, __lowerCamelCase=None, __lowerCamelCase=None, __lowerCamelCase=1_80, __lowerCamelCase=False, __lowerCamelCase=True ): SCREAMING_SNAKE_CASE_ = asyncio.get_event_loop() SCREAMING_SNAKE_CASE_ = loop.run_until_complete( _stream_subprocess(__lowerCamelCase, env=__lowerCamelCase, stdin=__lowerCamelCase, timeout=__lowerCamelCase, quiet=__lowerCamelCase, echo=__lowerCamelCase ) ) SCREAMING_SNAKE_CASE_ = ''' '''.join(__lowerCamelCase ) if result.returncode > 0: SCREAMING_SNAKE_CASE_ = '''\n'''.join(result.stderr ) raise RuntimeError( F'''\'{cmd_str}\' failed with returncode {result.returncode}\n\n''' F'''The combined stderr from workers follows:\n{stderr}''' ) # check that the subprocess actually did run and produced some output, should the test rely on # the remote side to do the testing if not result.stdout and not result.stderr: raise RuntimeError(F'''\'{cmd_str}\' produced no output.''' ) return result def A__ ( ): SCREAMING_SNAKE_CASE_ = os.environ.get('''PYTEST_XDIST_WORKER''', '''gw0''' ) SCREAMING_SNAKE_CASE_ = re.sub(r'''^gw''', '''''', __lowerCamelCase, 0, re.M ) return int(__lowerCamelCase ) def A__ ( ): SCREAMING_SNAKE_CASE_ = 2_95_00 SCREAMING_SNAKE_CASE_ = pytest_xdist_worker_id() return port + uniq_delta
257
from .data_collator import ( DataCollatorForLanguageModeling, DataCollatorForPermutationLanguageModeling, DataCollatorForSeqaSeq, DataCollatorForSOP, DataCollatorForTokenClassification, DataCollatorForWholeWordMask, DataCollatorWithPadding, DefaultDataCollator, default_data_collator, ) from .metrics import glue_compute_metrics, xnli_compute_metrics from .processors import ( DataProcessor, InputExample, InputFeatures, SingleSentenceClassificationProcessor, SquadExample, SquadFeatures, SquadVaProcessor, SquadVaProcessor, glue_convert_examples_to_features, glue_output_modes, glue_processors, glue_tasks_num_labels, squad_convert_examples_to_features, xnli_output_modes, xnli_processors, xnli_tasks_num_labels, )
257
1
'''simple docstring''' import os def UpperCamelCase_ ( ) -> int: '''simple docstring''' with open(os.path.dirname(snake_case_ ) + """/p022_names.txt""" ) as file: __lowerCAmelCase = str(file.readlines()[0] ) __lowerCAmelCase = names.replace("""\"""" , """""" ).split(""",""" ) names.sort() __lowerCAmelCase = 0 __lowerCAmelCase = 0 for i, name in enumerate(snake_case_ ): for letter in name: name_score += ord(snake_case_ ) - 64 total_score += (i + 1) * name_score __lowerCAmelCase = 0 return total_score if __name__ == "__main__": print(solution())
229
'''simple docstring''' import argparse import gc import json import os import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils.deepspeed import DummyOptim, DummyScheduler _A : Optional[Any] = 16 _A : Union[str, Any] = 32 def UpperCamelCase_ ( snake_case_ : List[str] ) -> str: '''simple docstring''' return int(x / 2**20 ) class _lowercase : '''simple docstring''' def __enter__( self : List[Any] ) -> int: gc.collect() torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() # reset the peak gauge to zero __lowerCAmelCase = torch.cuda.memory_allocated() return self def __exit__( self : Tuple , *SCREAMING_SNAKE_CASE__ : List[Any] ) -> Optional[Any]: gc.collect() torch.cuda.empty_cache() __lowerCAmelCase = torch.cuda.memory_allocated() __lowerCAmelCase = torch.cuda.max_memory_allocated() __lowerCAmelCase = bamb(self.end - self.begin ) __lowerCAmelCase = bamb(self.peak - self.begin ) # print(f"delta used/peak {self.used:4d}/{self.peaked:4d}") def UpperCamelCase_ ( snake_case_ : Accelerator , snake_case_ : int = 16 , snake_case_ : str = "bert-base-cased" , snake_case_ : int = 3_20 , snake_case_ : int = 1_60 , ) -> Optional[int]: '''simple docstring''' __lowerCAmelCase = AutoTokenizer.from_pretrained(snake_case_ ) __lowerCAmelCase = load_dataset( """glue""" , """mrpc""" , split={"""train""": f"""train[:{n_train}]""", """validation""": f"""validation[:{n_val}]"""} ) def tokenize_function(snake_case_ : List[Any] ): # max_length=None => use the model max length (it's actually the default) __lowerCAmelCase = tokenizer(examples["""sentence1"""] , examples["""sentence2"""] , truncation=snake_case_ , max_length=snake_case_ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset __lowerCAmelCase = datasets.map( snake_case_ , batched=snake_case_ , remove_columns=["""idx""", """sentence1""", """sentence2"""] , load_from_cache_file=snake_case_ ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library __lowerCAmelCase = tokenized_datasets.rename_column("""label""" , """labels""" ) def collate_fn(snake_case_ : List[Any] ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(snake_case_ , padding="""max_length""" , max_length=1_28 , return_tensors="""pt""" ) return tokenizer.pad(snake_case_ , padding="""longest""" , return_tensors="""pt""" ) # Instantiate dataloaders. __lowerCAmelCase = DataLoader( tokenized_datasets["""train"""] , shuffle=snake_case_ , collate_fn=snake_case_ , batch_size=snake_case_ ) __lowerCAmelCase = DataLoader( tokenized_datasets["""validation"""] , shuffle=snake_case_ , collate_fn=snake_case_ , batch_size=snake_case_ ) return train_dataloader, eval_dataloader def UpperCamelCase_ ( snake_case_ : List[Any] , snake_case_ : Tuple ) -> Optional[int]: '''simple docstring''' __lowerCAmelCase = Accelerator() # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs __lowerCAmelCase = config["""lr"""] __lowerCAmelCase = int(config["""num_epochs"""] ) __lowerCAmelCase = int(config["""seed"""] ) __lowerCAmelCase = int(config["""batch_size"""] ) __lowerCAmelCase = args.model_name_or_path set_seed(snake_case_ ) __lowerCAmelCase , __lowerCAmelCase = get_dataloaders(snake_case_ , snake_case_ , snake_case_ , args.n_train , args.n_val ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) __lowerCAmelCase = AutoModelForSequenceClassification.from_pretrained(snake_case_ , return_dict=snake_case_ ) # Instantiate optimizer __lowerCAmelCase = ( AdamW if accelerator.state.deepspeed_plugin is None or """optimizer""" not in accelerator.state.deepspeed_plugin.deepspeed_config else DummyOptim ) __lowerCAmelCase = optimizer_cls(params=model.parameters() , lr=snake_case_ ) if accelerator.state.deepspeed_plugin is not None: __lowerCAmelCase = accelerator.state.deepspeed_plugin.deepspeed_config[ """gradient_accumulation_steps""" ] else: __lowerCAmelCase = 1 __lowerCAmelCase = (len(snake_case_ ) * num_epochs) // gradient_accumulation_steps # Instantiate scheduler if ( accelerator.state.deepspeed_plugin is None or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config ): __lowerCAmelCase = get_linear_schedule_with_warmup( optimizer=snake_case_ , num_warmup_steps=0 , num_training_steps=snake_case_ , ) else: __lowerCAmelCase = DummyScheduler(snake_case_ , total_num_steps=snake_case_ , warmup_num_steps=0 ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = accelerator.prepare( snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) # We need to keep track of how many total steps we have iterated over __lowerCAmelCase = 0 # We also need to keep track of the stating epoch so files are named properly __lowerCAmelCase = 0 # Now we train the model __lowerCAmelCase = {} for epoch in range(snake_case_ , snake_case_ ): with TorchTracemalloc() as tracemalloc: model.train() for step, batch in enumerate(snake_case_ ): __lowerCAmelCase = model(**snake_case_ ) __lowerCAmelCase = outputs.loss __lowerCAmelCase = loss / gradient_accumulation_steps accelerator.backward(snake_case_ ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 # Printing the GPU memory usage details such as allocated memory, peak memory, and total memory usage accelerator.print("""Memory before entering the train : {}""".format(bamb(tracemalloc.begin ) ) ) accelerator.print("""Memory consumed at the end of the train (end-begin): {}""".format(tracemalloc.used ) ) accelerator.print("""Peak Memory consumed during the train (max-begin): {}""".format(tracemalloc.peaked ) ) accelerator.print( """Total Peak Memory consumed during the train (max): {}""".format( tracemalloc.peaked + bamb(tracemalloc.begin ) ) ) __lowerCAmelCase = tracemalloc.peaked + bamb(tracemalloc.begin ) if args.peak_memory_upper_bound is not None: assert ( train_total_peak_memory[f"""epoch-{epoch}"""] <= args.peak_memory_upper_bound ), "Peak memory usage exceeded the upper bound" accelerator.wait_for_everyone() if accelerator.is_main_process: with open(os.path.join(args.output_dir , """peak_memory_utilization.json""" ) , """w""" ) as f: json.dump(snake_case_ , snake_case_ ) def UpperCamelCase_ ( ) -> Any: '''simple docstring''' __lowerCAmelCase = argparse.ArgumentParser(description="""Simple example of training script tracking peak GPU memory usage.""" ) parser.add_argument( """--model_name_or_path""" , type=snake_case_ , default="""bert-base-cased""" , help="""Path to pretrained model or model identifier from huggingface.co/models.""" , required=snake_case_ , ) parser.add_argument( """--output_dir""" , type=snake_case_ , default=""".""" , help="""Optional save directory where all checkpoint folders will be stored. Default is the current working directory.""" , ) parser.add_argument( """--peak_memory_upper_bound""" , type=snake_case_ , default=snake_case_ , help="""The upper bound of peak memory usage in MB. If set, the training will throw an error if the peak memory usage exceeds this value.""" , ) parser.add_argument( """--n_train""" , type=snake_case_ , default=3_20 , help="""Number of training examples to use.""" , ) parser.add_argument( """--n_val""" , type=snake_case_ , default=1_60 , help="""Number of validation examples to use.""" , ) parser.add_argument( """--num_epochs""" , type=snake_case_ , default=1 , help="""Number of train epochs.""" , ) __lowerCAmelCase = parser.parse_args() __lowerCAmelCase = {"""lr""": 2E-5, """num_epochs""": args.num_epochs, """seed""": 42, """batch_size""": 16} training_function(snake_case_ , snake_case_ ) if __name__ == "__main__": main()
229
1
"""simple docstring""" # Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from accelerate import PartialState from accelerate.utils.operations import broadcast, gather, gather_object, pad_across_processes, reduce def __UpperCamelCase ( lowercase__ : List[str] ) -> Optional[int]: '''simple docstring''' return (torch.arange(state.num_processes ) + 1.0 + (state.num_processes * state.process_index)).to(state.device ) def __UpperCamelCase ( lowercase__ : List[str] ) -> str: '''simple docstring''' lowerCAmelCase_ : str = create_tensor(lowercase__ ) lowerCAmelCase_ : int = gather(lowercase__ ) assert gathered_tensor.tolist() == list(range(1 , state.num_processes**2 + 1 ) ) def __UpperCamelCase ( lowercase__ : Optional[int] ) -> List[Any]: '''simple docstring''' lowerCAmelCase_ : Optional[int] = [state.process_index] lowerCAmelCase_ : Optional[int] = gather_object(lowercase__ ) assert len(lowercase__ ) == state.num_processes, f'{gathered_obj}, {len(lowercase__ )} != {state.num_processes}' assert gathered_obj == list(range(state.num_processes ) ), f'{gathered_obj} != {list(range(state.num_processes ) )}' def __UpperCamelCase ( lowercase__ : int ) -> Optional[Any]: '''simple docstring''' lowerCAmelCase_ : int = create_tensor(lowercase__ ) lowerCAmelCase_ : Any = broadcast(lowercase__ ) assert broadcasted_tensor.shape == torch.Size([state.num_processes] ) assert broadcasted_tensor.tolist() == list(range(1 , state.num_processes + 1 ) ) def __UpperCamelCase ( lowercase__ : Tuple ) -> List[str]: '''simple docstring''' if state.is_main_process: lowerCAmelCase_ : Dict = torch.arange(state.num_processes + 1 ).to(state.device ) else: lowerCAmelCase_ : int = torch.arange(state.num_processes ).to(state.device ) lowerCAmelCase_ : Optional[Any] = pad_across_processes(lowercase__ ) assert padded_tensor.shape == torch.Size([state.num_processes + 1] ) if not state.is_main_process: assert padded_tensor.tolist() == list(range(0 , state.num_processes ) ) + [0] def __UpperCamelCase ( lowercase__ : Tuple ) -> Tuple: '''simple docstring''' if state.num_processes != 2: return lowerCAmelCase_ : Union[str, Any] = create_tensor(lowercase__ ) lowerCAmelCase_ : Optional[int] = reduce(lowercase__ , """sum""" ) lowerCAmelCase_ : int = torch.tensor([4.0, 6] ).to(state.device ) assert torch.allclose(lowercase__ , lowercase__ ), f'{reduced_tensor} != {truth_tensor}' def __UpperCamelCase ( lowercase__ : int ) -> Optional[int]: '''simple docstring''' if state.num_processes != 2: return lowerCAmelCase_ : Tuple = create_tensor(lowercase__ ) lowerCAmelCase_ : str = reduce(lowercase__ , """mean""" ) lowerCAmelCase_ : List[str] = torch.tensor([2.0, 3] ).to(state.device ) assert torch.allclose(lowercase__ , lowercase__ ), f'{reduced_tensor} != {truth_tensor}' def __UpperCamelCase ( lowercase__ : Dict ) -> Optional[Any]: '''simple docstring''' main() def __UpperCamelCase ( ) -> Dict: '''simple docstring''' lowerCAmelCase_ : Tuple = PartialState() state.print(f'State: {state}' ) state.print("""testing gather""" ) test_gather(lowercase__ ) state.print("""testing gather_object""" ) test_gather_object(lowercase__ ) state.print("""testing broadcast""" ) test_broadcast(lowercase__ ) state.print("""testing pad_across_processes""" ) test_pad_across_processes(lowercase__ ) state.print("""testing reduce_sum""" ) test_reduce_sum(lowercase__ ) state.print("""testing reduce_mean""" ) test_reduce_mean(lowercase__ ) if __name__ == "__main__": main()
365
def __UpperCamelCase ( lowercase__ : str ) -> bool: '''simple docstring''' lowerCAmelCase_ : Any = 0 for ch in input_str: lowerCAmelCase_ : Any = ord(lowercase__ ) lowerCAmelCase_ : Dict = pow(2 , lowercase__ ) # If we already turned on bit for current character's unicode if bitmap >> ch_unicode & 1 == 1: return False bitmap |= ch_bit_index_on return True if __name__ == "__main__": import doctest doctest.testmod()
28
0
import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import DeiTImageProcessor, ViTConfig, ViTForImageClassification, ViTImageProcessor, ViTModel from transformers.utils import logging logging.set_verbosity_info() _UpperCAmelCase : Optional[int] =logging.get_logger(__name__) def lowerCAmelCase ( lowerCAmelCase_ , lowerCAmelCase_=False )-> List[Any]: lowerCAmelCase_ : Any = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f"""blocks.{i}.norm1.weight""", f"""vit.encoder.layer.{i}.layernorm_before.weight""") ) rename_keys.append((f"""blocks.{i}.norm1.bias""", f"""vit.encoder.layer.{i}.layernorm_before.bias""") ) rename_keys.append((f"""blocks.{i}.attn.proj.weight""", f"""vit.encoder.layer.{i}.attention.output.dense.weight""") ) rename_keys.append((f"""blocks.{i}.attn.proj.bias""", f"""vit.encoder.layer.{i}.attention.output.dense.bias""") ) rename_keys.append((f"""blocks.{i}.norm2.weight""", f"""vit.encoder.layer.{i}.layernorm_after.weight""") ) rename_keys.append((f"""blocks.{i}.norm2.bias""", f"""vit.encoder.layer.{i}.layernorm_after.bias""") ) rename_keys.append((f"""blocks.{i}.mlp.fc1.weight""", f"""vit.encoder.layer.{i}.intermediate.dense.weight""") ) rename_keys.append((f"""blocks.{i}.mlp.fc1.bias""", f"""vit.encoder.layer.{i}.intermediate.dense.bias""") ) rename_keys.append((f"""blocks.{i}.mlp.fc2.weight""", f"""vit.encoder.layer.{i}.output.dense.weight""") ) rename_keys.append((f"""blocks.{i}.mlp.fc2.bias""", f"""vit.encoder.layer.{i}.output.dense.bias""") ) # projection layer + position embeddings rename_keys.extend( [ ('''cls_token''', '''vit.embeddings.cls_token'''), ('''patch_embed.proj.weight''', '''vit.embeddings.patch_embeddings.projection.weight'''), ('''patch_embed.proj.bias''', '''vit.embeddings.patch_embeddings.projection.bias'''), ('''pos_embed''', '''vit.embeddings.position_embeddings'''), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ('''norm.weight''', '''layernorm.weight'''), ('''norm.bias''', '''layernorm.bias'''), ('''pre_logits.fc.weight''', '''pooler.dense.weight'''), ('''pre_logits.fc.bias''', '''pooler.dense.bias'''), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" lowerCAmelCase_ : Union[str, Any] = [(pair[0], pair[1][4:]) if pair[1].startswith('''vit''' ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ('''norm.weight''', '''vit.layernorm.weight'''), ('''norm.bias''', '''vit.layernorm.bias'''), ('''head.weight''', '''classifier.weight'''), ('''head.bias''', '''classifier.bias'''), ] ) return rename_keys def lowerCAmelCase ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_=False )-> str: for i in range(config.num_hidden_layers ): if base_model: lowerCAmelCase_ : int = '''''' else: lowerCAmelCase_ : Tuple = '''vit.''' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) lowerCAmelCase_ : Optional[int] = state_dict.pop(f"""blocks.{i}.attn.qkv.weight""" ) lowerCAmelCase_ : Optional[int] = state_dict.pop(f"""blocks.{i}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict lowerCAmelCase_ : List[str] = in_proj_weight[ : config.hidden_size, : ] lowerCAmelCase_ : List[str] = in_proj_bias[: config.hidden_size] lowerCAmelCase_ : Dict = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] lowerCAmelCase_ : Union[str, Any] = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] lowerCAmelCase_ : Tuple = in_proj_weight[ -config.hidden_size :, : ] lowerCAmelCase_ : Optional[Any] = in_proj_bias[-config.hidden_size :] def lowerCAmelCase ( lowerCAmelCase_ )-> int: lowerCAmelCase_ : str = ['''head.weight''', '''head.bias'''] for k in ignore_keys: state_dict.pop(lowerCAmelCase_ , lowerCAmelCase_ ) def lowerCAmelCase ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ )-> Union[str, Any]: lowerCAmelCase_ : List[str] = dct.pop(lowerCAmelCase_ ) lowerCAmelCase_ : Dict = val def lowerCAmelCase ( )-> List[Any]: lowerCAmelCase_ : Dict = '''http://images.cocodataset.org/val2017/000000039769.jpg''' lowerCAmelCase_ : Dict = Image.open(requests.get(lowerCAmelCase_ , stream=lowerCAmelCase_ ).raw ) return im @torch.no_grad() def lowerCAmelCase ( lowerCAmelCase_ , lowerCAmelCase_ )-> List[str]: lowerCAmelCase_ : Tuple = ViTConfig() lowerCAmelCase_ : Optional[int] = False # dataset (ImageNet-21k only or also fine-tuned on ImageNet 2012), patch_size and image_size if vit_name[-5:] == "in21k": lowerCAmelCase_ : str = True lowerCAmelCase_ : str = int(vit_name[-12:-10] ) lowerCAmelCase_ : Tuple = int(vit_name[-9:-6] ) else: lowerCAmelCase_ : Optional[Any] = 1_000 lowerCAmelCase_ : List[Any] = '''huggingface/label-files''' lowerCAmelCase_ : Dict = '''imagenet-1k-id2label.json''' lowerCAmelCase_ : Dict = json.load(open(hf_hub_download(lowerCAmelCase_ , lowerCAmelCase_ , repo_type='''dataset''' ) , '''r''' ) ) lowerCAmelCase_ : Any = {int(lowerCAmelCase_ ): v for k, v in idalabel.items()} lowerCAmelCase_ : Any = idalabel lowerCAmelCase_ : List[str] = {v: k for k, v in idalabel.items()} lowerCAmelCase_ : Optional[int] = int(vit_name[-6:-4] ) lowerCAmelCase_ : Dict = int(vit_name[-3:] ) # size of the architecture if "deit" in vit_name: if vit_name[9:].startswith('''tiny''' ): lowerCAmelCase_ : str = 192 lowerCAmelCase_ : Tuple = 768 lowerCAmelCase_ : List[str] = 12 lowerCAmelCase_ : int = 3 elif vit_name[9:].startswith('''small''' ): lowerCAmelCase_ : Dict = 384 lowerCAmelCase_ : List[str] = 1_536 lowerCAmelCase_ : List[Any] = 12 lowerCAmelCase_ : Union[str, Any] = 6 else: pass else: if vit_name[4:].startswith('''small''' ): lowerCAmelCase_ : Any = 768 lowerCAmelCase_ : str = 2_304 lowerCAmelCase_ : List[str] = 8 lowerCAmelCase_ : List[str] = 8 elif vit_name[4:].startswith('''base''' ): pass elif vit_name[4:].startswith('''large''' ): lowerCAmelCase_ : Optional[Any] = 1_024 lowerCAmelCase_ : int = 4_096 lowerCAmelCase_ : List[Any] = 24 lowerCAmelCase_ : Union[str, Any] = 16 elif vit_name[4:].startswith('''huge''' ): lowerCAmelCase_ : int = 1_280 lowerCAmelCase_ : Tuple = 5_120 lowerCAmelCase_ : List[Any] = 32 lowerCAmelCase_ : Optional[Any] = 16 # load original model from timm lowerCAmelCase_ : Optional[Any] = timm.create_model(lowerCAmelCase_ , pretrained=lowerCAmelCase_ ) timm_model.eval() # load state_dict of original model, remove and rename some keys lowerCAmelCase_ : Union[str, Any] = timm_model.state_dict() if base_model: remove_classification_head_(lowerCAmelCase_ ) lowerCAmelCase_ : Any = create_rename_keys(lowerCAmelCase_ , lowerCAmelCase_ ) for src, dest in rename_keys: rename_key(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) read_in_q_k_v(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) # load HuggingFace model if vit_name[-5:] == "in21k": lowerCAmelCase_ : List[str] = ViTModel(lowerCAmelCase_ ).eval() else: lowerCAmelCase_ : List[Any] = ViTForImageClassification(lowerCAmelCase_ ).eval() model.load_state_dict(lowerCAmelCase_ ) # Check outputs on an image, prepared by ViTImageProcessor/DeiTImageProcessor if "deit" in vit_name: lowerCAmelCase_ : Tuple = DeiTImageProcessor(size=config.image_size ) else: lowerCAmelCase_ : Optional[Any] = ViTImageProcessor(size=config.image_size ) lowerCAmelCase_ : List[Any] = image_processor(images=prepare_img() , return_tensors='''pt''' ) lowerCAmelCase_ : int = encoding['''pixel_values'''] lowerCAmelCase_ : List[str] = model(lowerCAmelCase_ ) if base_model: lowerCAmelCase_ : int = timm_model.forward_features(lowerCAmelCase_ ) assert timm_pooled_output.shape == outputs.pooler_output.shape assert torch.allclose(lowerCAmelCase_ , outputs.pooler_output , atol=1e-3 ) else: lowerCAmelCase_ : Optional[Any] = timm_model(lowerCAmelCase_ ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(lowerCAmelCase_ , outputs.logits , atol=1e-3 ) Path(lowerCAmelCase_ ).mkdir(exist_ok=lowerCAmelCase_ ) print(f"""Saving model {vit_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(lowerCAmelCase_ ) print(f"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(lowerCAmelCase_ ) if __name__ == "__main__": _UpperCAmelCase : str =argparse.ArgumentParser() # Required parameters parser.add_argument( """--vit_name""", default="""vit_base_patch16_224""", type=str, help="""Name of the ViT timm model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) _UpperCAmelCase : Dict =parser.parse_args() convert_vit_checkpoint(args.vit_name, args.pytorch_dump_folder_path)
262
from argparse import ArgumentParser from .add_new_model import AddNewModelCommand from .add_new_model_like import AddNewModelLikeCommand from .convert import ConvertCommand from .download import DownloadCommand from .env import EnvironmentCommand from .lfs import LfsCommands from .pt_to_tf import PTtoTFCommand from .run import RunCommand from .serving import ServeCommand from .user import UserCommands def lowerCAmelCase ( )-> int: lowerCAmelCase_ : int = ArgumentParser('''Transformers CLI tool''' , usage='''transformers-cli <command> [<args>]''' ) lowerCAmelCase_ : Dict = parser.add_subparsers(help='''transformers-cli command helpers''' ) # Register commands ConvertCommand.register_subcommand(lowerCAmelCase_ ) DownloadCommand.register_subcommand(lowerCAmelCase_ ) EnvironmentCommand.register_subcommand(lowerCAmelCase_ ) RunCommand.register_subcommand(lowerCAmelCase_ ) ServeCommand.register_subcommand(lowerCAmelCase_ ) UserCommands.register_subcommand(lowerCAmelCase_ ) AddNewModelCommand.register_subcommand(lowerCAmelCase_ ) AddNewModelLikeCommand.register_subcommand(lowerCAmelCase_ ) LfsCommands.register_subcommand(lowerCAmelCase_ ) PTtoTFCommand.register_subcommand(lowerCAmelCase_ ) # Let's go lowerCAmelCase_ : Union[str, Any] = parser.parse_args() if not hasattr(lowerCAmelCase_ , '''func''' ): parser.print_help() exit(1 ) # Run lowerCAmelCase_ : List[Any] = args.func(lowerCAmelCase_ ) service.run() if __name__ == "__main__": main()
262
1
import logging import torch from accelerate import Accelerator from arguments import EvaluationArguments from datasets import load_dataset from torch.utils.data import IterableDataset from torch.utils.data.dataloader import DataLoader from transformers import AutoModelForCausalLM, AutoTokenizer, HfArgumentParser, set_seed class _UpperCAmelCase ( _UpperCamelCase ): """simple docstring""" def __init__( self : Optional[int] , lowerCAmelCase_ : int , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Optional[Any]=1_0_2_4 , lowerCAmelCase_ : Optional[int]=1_0_2_4 , lowerCAmelCase_ : Optional[int]=3.6 ) -> Optional[int]: __lowerCAmelCase = tokenizer __lowerCAmelCase = tokenizer.bos_token_id __lowerCAmelCase = dataset __lowerCAmelCase = seq_length __lowerCAmelCase = seq_length * chars_per_token * num_of_sequences def __iter__( self : Dict ) -> Dict: __lowerCAmelCase = iter(self.dataset ) __lowerCAmelCase = True while more_examples: __lowerCAmelCase , __lowerCAmelCase = [], 0 while True: if buffer_len >= self.input_characters: break try: buffer.append(next(lowerCAmelCase_ )['content'] ) buffer_len += len(buffer[-1] ) except StopIteration: __lowerCAmelCase = False break __lowerCAmelCase = tokenizer(lowerCAmelCase_ , truncation=lowerCAmelCase_ )['input_ids'] __lowerCAmelCase = [] for tokenized_input in tokenized_inputs: all_token_ids.extend(tokenized_input + [self.concat_token_id] ) for i in range(0 , len(lowerCAmelCase_ ) , self.seq_length ): __lowerCAmelCase = all_token_ids[i : i + self.seq_length] if len(lowerCAmelCase_ ) == self.seq_length: yield torch.tensor(lowerCAmelCase_ ) def a_ ( lowerCAmelCase_ : Optional[int] ): __lowerCAmelCase = {'streaming': True} __lowerCAmelCase = load_dataset(args.dataset_name, split='train', **lowerCAmelCase_ ) __lowerCAmelCase = ConstantLengthDataset(lowerCAmelCase_, lowerCAmelCase_, seq_length=args.seq_length ) __lowerCAmelCase = DataLoader(lowerCAmelCase_, batch_size=args.batch_size ) return eval_dataloader def a_ ( lowerCAmelCase_ : List[Any] ): model.eval() __lowerCAmelCase = [] for step, batch in enumerate(lowerCAmelCase_ ): with torch.no_grad(): __lowerCAmelCase = model(lowerCAmelCase_, labels=lowerCAmelCase_ ) __lowerCAmelCase = outputs.loss.repeat(args.batch_size ) losses.append(accelerator.gather(lowerCAmelCase_ ) ) if args.max_eval_steps > 0 and step >= args.max_eval_steps: break __lowerCAmelCase = torch.mean(torch.cat(lowerCAmelCase_ ) ) try: __lowerCAmelCase = torch.exp(lowerCAmelCase_ ) except OverflowError: __lowerCAmelCase = float('inf' ) return loss.item(), perplexity.item() # Setup Accelerator _snake_case : List[str] = Accelerator() # Parse configuration _snake_case : int = HfArgumentParser(EvaluationArguments) _snake_case : int = parser.parse_args() set_seed(args.seed) # Logging _snake_case : Tuple = logging.getLogger(__name__) logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt='%m/%d/%Y %H:%M:%S', level=logging.INFO ) # Load model and tokenizer _snake_case : List[str] = AutoModelForCausalLM.from_pretrained(args.model_ckpt) _snake_case : Union[str, Any] = AutoTokenizer.from_pretrained(args.model_ckpt) # Load dataset and dataloader _snake_case : Union[str, Any] = create_dataloader(args) # Prepare everything with our `accelerator`. _snake_case : Dict = accelerator.prepare(model, eval_dataloader) # Evaluate and save the last checkpoint logger.info('Evaluating and saving model after training') _snake_case : Dict = evaluate(args) logger.info(F"""loss/eval: {eval_loss}, perplexity: {perplexity}""")
358
class _UpperCAmelCase : """simple docstring""" def __init__( self : Union[str, Any] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : int , lowerCAmelCase_ : Dict ) -> List[str]: __lowerCAmelCase = name __lowerCAmelCase = value __lowerCAmelCase = weight def __repr__( self : Union[str, Any] ) -> List[str]: return f"""{self.__class__.__name__}({self.name}, {self.value}, {self.weight})""" def lowercase ( self : int ) -> Optional[int]: return self.value def lowercase ( self : Optional[Any] ) -> Union[str, Any]: return self.name def lowercase ( self : List[Any] ) -> Tuple: return self.weight def lowercase ( self : int ) -> Dict: return self.value / self.weight def a_ ( lowerCAmelCase_ : Dict, lowerCAmelCase_ : int, lowerCAmelCase_ : Optional[int] ): __lowerCAmelCase = [] for i in range(len(lowerCAmelCase_ ) ): menu.append(Things(name[i], value[i], weight[i] ) ) return menu def a_ ( lowerCAmelCase_ : Optional[int], lowerCAmelCase_ : List[Any], lowerCAmelCase_ : Optional[Any] ): __lowerCAmelCase = sorted(lowerCAmelCase_, key=lowerCAmelCase_, reverse=lowerCAmelCase_ ) __lowerCAmelCase = [] __lowerCAmelCase , __lowerCAmelCase = 0.0, 0.0 for i in range(len(lowerCAmelCase_ ) ): if (total_cost + items_copy[i].get_weight()) <= max_cost: result.append(items_copy[i] ) total_cost += items_copy[i].get_weight() total_value += items_copy[i].get_value() return (result, total_value) def a_ ( ): pass if __name__ == "__main__": import doctest doctest.testmod()
207
0
"""simple docstring""" from __future__ import annotations snake_case_ = 10 def _lowerCAmelCase ( lowercase_ ): UpperCAmelCase = 1 UpperCAmelCase = max(lowercase_ ) while placement <= max_digit: # declare and initialize empty buckets UpperCAmelCase = [[] for _ in range(lowercase_ )] # split list_of_ints between the buckets for i in list_of_ints: UpperCAmelCase = int((i / placement) % RADIX ) buckets[tmp].append(lowercase_ ) # put each buckets' contents into list_of_ints UpperCAmelCase = 0 for b in range(lowercase_ ): for i in buckets[b]: UpperCAmelCase = i a += 1 # move to next placement *= RADIX return list_of_ints if __name__ == "__main__": import doctest doctest.testmod()
78
"""simple docstring""" from __future__ import annotations def _lowerCAmelCase ( lowercase_ , lowercase_ , lowercase_ ): UpperCAmelCase = list(range(len(lowercase_ ) ) ) UpperCAmelCase = [v / w for v, w in zip(lowercase_ , lowercase_ )] index.sort(key=lambda lowercase_ : ratio[i] , reverse=lowercase_ ) UpperCAmelCase = 0 UpperCAmelCase = [0] * len(lowercase_ ) for i in index: if weight[i] <= capacity: UpperCAmelCase = 1 max_value += value[i] capacity -= weight[i] else: UpperCAmelCase = capacity / weight[i] max_value += value[i] * capacity / weight[i] break return max_value, fractions if __name__ == "__main__": import doctest doctest.testmod()
78
1
from __future__ import annotations from typing import Any class __a : def __init__( self , lowerCAmelCase__ ) -> None: '''simple docstring''' lowercase__: int = num_of_nodes lowercase__: list[list[int]] = [] lowercase__: dict[int, int] = {} def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> None: '''simple docstring''' self.m_edges.append([u_node, v_node, weight] ) def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__ ) -> int: '''simple docstring''' if self.m_component[u_node] == u_node: return u_node return self.find_component(self.m_component[u_node] ) def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__ ) -> None: '''simple docstring''' if self.m_component[u_node] != u_node: for k in self.m_component: lowercase__: str = self.find_component(lowerCAmelCase__ ) def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> None: '''simple docstring''' if component_size[u_node] <= component_size[v_node]: lowercase__: Dict = v_node component_size[v_node] += component_size[u_node] self.set_component(lowerCAmelCase__ ) elif component_size[u_node] >= component_size[v_node]: lowercase__: Tuple = self.find_component(lowerCAmelCase__ ) component_size[u_node] += component_size[v_node] self.set_component(lowerCAmelCase__ ) def SCREAMING_SNAKE_CASE__ ( self ) -> None: '''simple docstring''' lowercase__: Union[str, Any] = [] lowercase__: Union[str, Any] = 0 lowercase__: list[Any] = [-1] * self.m_num_of_nodes # A list of components (initialized to all of the nodes) for node in range(self.m_num_of_nodes ): self.m_component.update({node: node} ) component_size.append(1 ) lowercase__: Tuple = self.m_num_of_nodes while num_of_components > 1: for edge in self.m_edges: lowercase__ , lowercase__ , lowercase__: Tuple = edge lowercase__: int = self.m_component[u] lowercase__: Union[str, Any] = self.m_component[v] if u_component != v_component: for component in (u_component, v_component): if ( minimum_weight_edge[component] == -1 or minimum_weight_edge[component][2] > w ): lowercase__: int = [u, v, w] for edge in minimum_weight_edge: if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): lowercase__ , lowercase__ , lowercase__: int = edge lowercase__: List[Any] = self.m_component[u] lowercase__: List[Any] = self.m_component[v] if u_component != v_component: mst_weight += w self.union(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) print(F'Added edge [{u} - {v}]\nAdded weight: {w}\n' ) num_of_components -= 1 lowercase__: Optional[Any] = [-1] * self.m_num_of_nodes print(F'The total weight of the minimal spanning tree is: {mst_weight}' ) def snake_case_ ( ) -> None: pass if __name__ == "__main__": import doctest doctest.testmod()
288
import math import numpy as np import qiskit from qiskit import Aer, ClassicalRegister, QuantumCircuit, QuantumRegister, execute def snake_case_ ( snake_case = 3 ) -> qiskit.result.counts.Counts: if isinstance(snake_case , snake_case ): raise TypeError('number of qubits must be a integer.' ) if number_of_qubits <= 0: raise ValueError('number of qubits must be > 0.' ) if math.floor(snake_case ) != number_of_qubits: raise ValueError('number of qubits must be exact integer.' ) if number_of_qubits > 10: raise ValueError('number of qubits too large to simulate(>10).' ) lowercase__: str = QuantumRegister(snake_case , 'qr' ) lowercase__: str = ClassicalRegister(snake_case , 'cr' ) lowercase__: List[Any] = QuantumCircuit(snake_case , snake_case ) lowercase__: int = number_of_qubits for i in range(snake_case ): quantum_circuit.h(number_of_qubits - i - 1 ) counter -= 1 for j in range(snake_case ): quantum_circuit.cp(np.pi / 2 ** (counter - j) , snake_case , snake_case ) for k in range(number_of_qubits // 2 ): quantum_circuit.swap(snake_case , number_of_qubits - k - 1 ) # measure all the qubits quantum_circuit.measure(snake_case , snake_case ) # simulate with 10000 shots lowercase__: str = Aer.get_backend('qasm_simulator' ) lowercase__: Union[str, Any] = execute(snake_case , snake_case , shots=1_00_00 ) return job.result().get_counts(snake_case ) if __name__ == "__main__": print( F'''Total count for quantum fourier transform state is: \ {quantum_fourier_transform(3)}''' )
288
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available A_ :List[str] = { '''configuration_clap''': [ '''CLAP_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ClapAudioConfig''', '''ClapConfig''', '''ClapTextConfig''', ], '''processing_clap''': ['''ClapProcessor'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ :int = [ '''CLAP_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ClapModel''', '''ClapPreTrainedModel''', '''ClapTextModel''', '''ClapTextModelWithProjection''', '''ClapAudioModel''', '''ClapAudioModelWithProjection''', ] A_ :Union[str, Any] = ['''ClapFeatureExtractor'''] if TYPE_CHECKING: from .configuration_clap import ( CLAP_PRETRAINED_MODEL_ARCHIVE_LIST, ClapAudioConfig, ClapConfig, ClapTextConfig, ) from .processing_clap import ClapProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_clap import ClapFeatureExtractor from .modeling_clap import ( CLAP_PRETRAINED_MODEL_ARCHIVE_LIST, ClapAudioModel, ClapAudioModelWithProjection, ClapModel, ClapPreTrainedModel, ClapTextModel, ClapTextModelWithProjection, ) else: import sys A_ :Any = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
71
from datetime import datetime import requests from bsa import BeautifulSoup if __name__ == "__main__": lowerCAmelCase__ : List[Any] =input('''Enter image url: ''').strip() print(F'''Downloading image from {url} ...''') lowerCAmelCase__ : int =BeautifulSoup(requests.get(url).content, '''html.parser''') # The image URL is in the content field of the first meta tag with property og:image lowerCAmelCase__ : Union[str, Any] =soup.find('''meta''', {'''property''': '''og:image'''})['''content'''] lowerCAmelCase__ : int =requests.get(image_url).content lowerCAmelCase__ : Optional[int] =F'''{datetime.now():%Y-%m-%d_%H:%M:%S}.jpg''' with open(file_name, '''wb''') as fp: fp.write(image_data) print(F'''Done. Image saved to disk as {file_name}.''')
257
0
'''simple docstring''' import unittest from dataclasses import dataclass import pytest from accelerate.commands.config.config_args import SageMakerConfig from accelerate.utils import ComputeEnvironment from accelerate.utils.launch import _convert_nargs_to_dict @dataclass class __SCREAMING_SNAKE_CASE ( _lowercase ): snake_case_ = ComputeEnvironment.AMAZON_SAGEMAKER snake_case_ = True snake_case_ = """ml.p3.2xlarge""" snake_case_ = """accelerate_sagemaker_execution_role""" snake_case_ = """hf-sm""" snake_case_ = """us-east-1""" snake_case_ = 1 snake_case_ = """accelerate-sagemaker-1""" snake_case_ = """1.6""" snake_case_ = """4.4""" snake_case_ = """train.py""" snake_case_ = [ """--model_name_or_path""", """bert""", """--do_train""", """False""", """--epochs""", """3""", """--learning_rate""", """5e-5""", """--max_steps""", """50.5""", ] snake_case_ = [ """--model_name_or_path""", """bert""", """--do_train""", """--do_test""", """False""", """--do_predict""", """--epochs""", """3""", """--learning_rate""", """5e-5""", """--max_steps""", """50.5""", ] class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): def __magic_name__ ( self : List[str] ) -> List[Any]: # If no defaults are changed, `to_kwargs` returns an empty dict. SCREAMING_SNAKE_CASE__ : Optional[Any] =_convert_nargs_to_dict(MockLaunchConfig.success_training_script_args ) assert isinstance(converted_args['''model_name_or_path'''] , __UpperCamelCase ) assert isinstance(converted_args['''do_train'''] , __UpperCamelCase ) assert isinstance(converted_args['''epochs'''] , __UpperCamelCase ) assert isinstance(converted_args['''learning_rate'''] , __UpperCamelCase ) assert isinstance(converted_args['''max_steps'''] , __UpperCamelCase ) with pytest.raises(__UpperCamelCase ): _convert_nargs_to_dict(MockLaunchConfig.fail_training_script_args )
360
'''simple docstring''' from math import factorial def _a( UpperCamelCase__ : int = 1_0_0 ): '''simple docstring''' return sum(int(UpperCamelCase__ ) for x in str(factorial(UpperCamelCase__ ) ) ) if __name__ == "__main__": print(solution(int(input('Enter the Number: ').strip())))
222
0
import cva import numpy as np class UpperCAmelCase__ : """simple docstring""" def __init__( self , A_ , A_ ) -> Optional[Any]: if k in (0.04, 0.06): __UpperCamelCase =k __UpperCamelCase =window_size else: raise ValueError('invalid k value' ) def __str__( self ) -> str: return str(self.k ) def _a ( self , A_ ) -> tuple[cva.Mat, list[list[int]]]: __UpperCamelCase =cva.imread(A_ , 0 ) __UpperCamelCase , __UpperCamelCase =img.shape __UpperCamelCase =[] __UpperCamelCase =img.copy() __UpperCamelCase =cva.cvtColor(A_ , cva.COLOR_GRAY2RGB ) __UpperCamelCase , __UpperCamelCase =np.gradient(A_ ) __UpperCamelCase =dx**2 __UpperCamelCase =dy**2 __UpperCamelCase =dx * dy __UpperCamelCase =0.04 __UpperCamelCase =self.window_size // 2 for y in range(A_ , h - offset ): for x in range(A_ , w - offset ): __UpperCamelCase =ixx[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() __UpperCamelCase =iyy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() __UpperCamelCase =ixy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() __UpperCamelCase =(wxx * wyy) - (wxy**2) __UpperCamelCase =wxx + wyy __UpperCamelCase =det - k * (trace**2) # Can change the value if r > 0.5: corner_list.append([x, y, r] ) color_img.itemset((y, x, 0) , 0 ) color_img.itemset((y, x, 1) , 0 ) color_img.itemset((y, x, 2) , 255 ) return color_img, corner_list if __name__ == "__main__": _A = HarrisCorner(0.04, 3) _A , _A = edge_detect.detect('path_to_image') cva.imwrite('detect.png', color_img)
62
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCamelCase : Optional[Any] = { "configuration_whisper": ["WHISPER_PRETRAINED_CONFIG_ARCHIVE_MAP", "WhisperConfig", "WhisperOnnxConfig"], "feature_extraction_whisper": ["WhisperFeatureExtractor"], "processing_whisper": ["WhisperProcessor"], "tokenization_whisper": ["WhisperTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : Tuple = ["WhisperTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : str = [ "WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST", "WhisperForConditionalGeneration", "WhisperModel", "WhisperPreTrainedModel", "WhisperForAudioClassification", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : List[str] = [ "TF_WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST", "TFWhisperForConditionalGeneration", "TFWhisperModel", "TFWhisperPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : str = [ "FlaxWhisperForConditionalGeneration", "FlaxWhisperModel", "FlaxWhisperPreTrainedModel", "FlaxWhisperForAudioClassification", ] if TYPE_CHECKING: from .configuration_whisper import WHISPER_PRETRAINED_CONFIG_ARCHIVE_MAP, WhisperConfig, WhisperOnnxConfig from .feature_extraction_whisper import WhisperFeatureExtractor from .processing_whisper import WhisperProcessor from .tokenization_whisper import WhisperTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_whisper_fast import WhisperTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_whisper import ( WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST, WhisperForAudioClassification, WhisperForConditionalGeneration, WhisperModel, WhisperPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_whisper import ( TF_WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST, TFWhisperForConditionalGeneration, TFWhisperModel, TFWhisperPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_whisper import ( FlaxWhisperForAudioClassification, FlaxWhisperForConditionalGeneration, FlaxWhisperModel, FlaxWhisperPreTrainedModel, ) else: import sys lowerCamelCase : Tuple = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
204
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __lowercase : Optional[int] = { 'configuration_graphormer': ['GRAPHORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'GraphormerConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase : Any = [ 'GRAPHORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'GraphormerForGraphClassification', 'GraphormerModel', 'GraphormerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_graphormer import GRAPHORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, GraphormerConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_graphormer import ( GRAPHORMER_PRETRAINED_MODEL_ARCHIVE_LIST, GraphormerForGraphClassification, GraphormerModel, GraphormerPreTrainedModel, ) else: import sys __lowercase : Dict = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
294
'''simple docstring''' from .imports import is_rich_available if is_rich_available(): from rich.traceback import install install(show_locals=False) else: raise ModuleNotFoundError('To use the rich extension, install rich with `pip install rich`')
294
1
import math import random from typing import Any from .hill_climbing import SearchProblem def _UpperCamelCase ( snake_case__, snake_case__ = True, snake_case__ = math.inf, snake_case__ = -math.inf, snake_case__ = math.inf, snake_case__ = -math.inf, snake_case__ = False, snake_case__ = 100, snake_case__ = 0.01, snake_case__ = 1, ) -> Any: __UpperCAmelCase : Dict = False __UpperCAmelCase : Dict = search_prob __UpperCAmelCase : Tuple = start_temperate __UpperCAmelCase : Dict = [] __UpperCAmelCase : List[Any] = 0 __UpperCAmelCase : int = None while not search_end: __UpperCAmelCase : str = current_state.score() if best_state is None or current_score > best_state.score(): __UpperCAmelCase : Union[str, Any] = current_state scores.append(snake_case__ ) iterations += 1 __UpperCAmelCase : List[str] = None __UpperCAmelCase : int = current_state.get_neighbors() while ( next_state is None and neighbors ): # till we do not find a neighbor that we can move to __UpperCAmelCase : str = random.randint(0, len(snake_case__ ) - 1 ) # picking a random neighbor __UpperCAmelCase : Tuple = neighbors.pop(snake_case__ ) __UpperCAmelCase : List[str] = picked_neighbor.score() - current_score if ( picked_neighbor.x > max_x or picked_neighbor.x < min_x or picked_neighbor.y > max_y or picked_neighbor.y < min_y ): continue # neighbor outside our bounds if not find_max: __UpperCAmelCase : Dict = change * -1 # in case we are finding minimum if change > 0: # improves the solution __UpperCAmelCase : int = picked_neighbor else: __UpperCAmelCase : List[Any] = (math.e) ** ( change / current_temp ) # probability generation function if random.random() < probability: # random number within probability __UpperCAmelCase : Union[str, Any] = picked_neighbor __UpperCAmelCase : int = current_temp - (current_temp * rate_of_decrease) if current_temp < threshold_temp or next_state is None: # temperature below threshold, or could not find a suitable neighbor __UpperCAmelCase : Optional[Any] = True else: __UpperCAmelCase : int = next_state if visualization: from matplotlib import pyplot as plt plt.plot(range(snake_case__ ), snake_case__ ) plt.xlabel("Iterations" ) plt.ylabel("Function values" ) plt.show() return best_state if __name__ == "__main__": def _UpperCamelCase ( snake_case__, snake_case__ ) -> List[Any]: return (x**2) + (y**2) # starting the problem with initial coordinates (12, 47) _snake_case = SearchProblem(x=12, y=47, step_size=1, function_to_optimize=test_fa) _snake_case = simulated_annealing( prob, find_max=False, max_x=100, min_x=5, max_y=50, min_y=-5, visualization=True ) print( '''The minimum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 ''' F'and 50 > y > - 5 found via hill climbing: {local_min.score()}' ) # starting the problem with initial coordinates (12, 47) _snake_case = SearchProblem(x=12, y=47, step_size=1, function_to_optimize=test_fa) _snake_case = simulated_annealing( prob, find_max=True, max_x=100, min_x=5, max_y=50, min_y=-5, visualization=True ) print( '''The maximum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 ''' F'and 50 > y > - 5 found via hill climbing: {local_min.score()}' ) def _UpperCamelCase ( snake_case__, snake_case__ ) -> Tuple: return (3 * x**2) - (6 * y) _snake_case = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa) _snake_case = simulated_annealing(prob, find_max=False, visualization=True) print( '''The minimum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: ''' F'{local_min.score()}' ) _snake_case = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa) _snake_case = simulated_annealing(prob, find_max=True, visualization=True) print( '''The maximum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: ''' F'{local_min.score()}' )
157
def _UpperCamelCase ( snake_case__ ) -> int: __UpperCAmelCase : list[list[int]] = [[0 for _ in range(snake_case__ )] for _ in range(m + 1 )] for i in range(m + 1 ): __UpperCAmelCase : Optional[int] = 1 for n in range(m + 1 ): for k in range(1, snake_case__ ): memo[n][k] += memo[n][k - 1] if n - k > 0: memo[n][k] += memo[n - k - 1][k] return memo[m][m - 1] if __name__ == "__main__": import sys if len(sys.argv) == 1: try: _snake_case = int(input('''Enter a number: ''').strip()) print(partition(n)) except ValueError: print('''Please enter a number.''') else: try: _snake_case = int(sys.argv[1]) print(partition(n)) except ValueError: print('''Please pass a number.''')
157
1
def a__ ( __SCREAMING_SNAKE_CASE = 5_0 ) -> int: __lowerCAmelCase: List[str] = [1] * (length + 1) for row_length in range(length + 1 ): for tile_length in range(2 , 5 ): for tile_start in range(row_length - tile_length + 1 ): ways_number[row_length] += ways_number[ row_length - tile_start - tile_length ] return ways_number[length] if __name__ == "__main__": print(F'''{solution() = }''')
357
"""simple docstring""" def a__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> int: return int((input_a, input_a).count(0 ) == 0 ) def a__ ( ) -> None: assert and_gate(0 , 0 ) == 0 assert and_gate(0 , 1 ) == 0 assert and_gate(1 , 0 ) == 0 assert and_gate(1 , 1 ) == 1 if __name__ == "__main__": test_and_gate() print(and_gate(1, 0)) print(and_gate(0, 0)) print(and_gate(0, 1)) print(and_gate(1, 1))
108
0
"""simple docstring""" from math import pi, sqrt def __UpperCAmelCase ( __lowerCamelCase ) -> float: if num <= 0: raise ValueError('''math domain error''' ) if num > 1_7_1.5: raise OverflowError('''math range error''' ) elif num - int(__lowerCamelCase ) not in (0, 0.5): raise NotImplementedError('''num must be an integer or a half-integer''' ) elif num == 0.5: return sqrt(__lowerCamelCase ) else: return 1.0 if num == 1 else (num - 1) * gamma(num - 1 ) def __UpperCAmelCase ( ) -> None: assert gamma(0.5 ) == sqrt(__lowerCamelCase ) assert gamma(1 ) == 1.0 assert gamma(2 ) == 1.0 if __name__ == "__main__": from doctest import testmod testmod() lowerCAmelCase_ = 1.0 while num: lowerCAmelCase_ = float(input('Gamma of: ')) print(F'''gamma({num}) = {gamma(num)}''') print('\nEnter 0 to exit...')
16
"""simple docstring""" def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase ) -> str: if not isinstance(__lowerCamelCase , __lowerCamelCase ): raise ValueError('''iterations must be defined as integers''' ) if not isinstance(__lowerCamelCase , __lowerCamelCase ) or not number >= 1: raise ValueError( '''starting number must be and integer and be more than 0''' ) if not iterations >= 1: raise ValueError('''Iterations must be done more than 0 times to play FizzBuzz''' ) lowercase__ : Tuple = '''''' while number <= iterations: if number % 3 == 0: out += "Fizz" if number % 5 == 0: out += "Buzz" if 0 not in (number % 3, number % 5): out += str(__lowerCamelCase ) # print(out) number += 1 out += " " return out if __name__ == "__main__": import doctest doctest.testmod()
16
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __snake_case : Tuple ={ "configuration_git": ["GIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "GitConfig", "GitVisionConfig"], "processing_git": ["GitProcessor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : int =[ "GIT_PRETRAINED_MODEL_ARCHIVE_LIST", "GitForCausalLM", "GitModel", "GitPreTrainedModel", "GitVisionModel", ] if TYPE_CHECKING: from .configuration_git import GIT_PRETRAINED_CONFIG_ARCHIVE_MAP, GitConfig, GitVisionConfig from .processing_git import GitProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_git import ( GIT_PRETRAINED_MODEL_ARCHIVE_LIST, GitForCausalLM, GitModel, GitPreTrainedModel, GitVisionModel, ) else: import sys __snake_case : int =_LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
350
def lowerCAmelCase__ ( lowerCamelCase_ : int ,lowerCamelCase_ : int): '''simple docstring''' while b: lowerCAmelCase__ , lowerCAmelCase__ : Optional[Any] = b, a % b return a def lowerCAmelCase__ ( lowerCamelCase_ : int ,lowerCamelCase_ : int): '''simple docstring''' return a if b == 0 else euclidean_gcd_recursive(lowerCamelCase_ ,a % b) def lowerCAmelCase__ ( ): '''simple docstring''' print(f"""euclidean_gcd(3, 5) = {euclidean_gcd(3 ,5)}""") print(f"""euclidean_gcd(5, 3) = {euclidean_gcd(5 ,3)}""") print(f"""euclidean_gcd(1, 3) = {euclidean_gcd(1 ,3)}""") print(f"""euclidean_gcd(3, 6) = {euclidean_gcd(3 ,6)}""") print(f"""euclidean_gcd(6, 3) = {euclidean_gcd(6 ,3)}""") print(f"""euclidean_gcd_recursive(3, 5) = {euclidean_gcd_recursive(3 ,5)}""") print(f"""euclidean_gcd_recursive(5, 3) = {euclidean_gcd_recursive(5 ,3)}""") print(f"""euclidean_gcd_recursive(1, 3) = {euclidean_gcd_recursive(1 ,3)}""") print(f"""euclidean_gcd_recursive(3, 6) = {euclidean_gcd_recursive(3 ,6)}""") print(f"""euclidean_gcd_recursive(6, 3) = {euclidean_gcd_recursive(6 ,3)}""") if __name__ == "__main__": main()
94
0
import argparse import requests import torch # pip3 install salesforce-lavis # I'm actually installing a slightly modified version: pip3 install git+https://github.com/nielsrogge/LAVIS.git@fix_lavis_float32 (there's also the fix_lavis branch) # also note: to convert Vicuna checkpoints, we had to include /home/niels/python_projects/checkpoints/FastChat/vicuna-7b in lavis/configs/models/blip2/blip2_instruct_vicuna7b.yaml # same for Vicuna-13b from lavis.models import load_model_and_preprocess from PIL import Image from transformers import ( AutoTokenizer, BlipImageProcessor, InstructBlipConfig, InstructBlipForConditionalGeneration, InstructBlipProcessor, InstructBlipQFormerConfig, InstructBlipVisionConfig, LlamaConfig, LlamaTokenizerFast, TaConfig, TaTokenizerFast, ) from transformers.utils.constants import OPENAI_CLIP_MEAN, OPENAI_CLIP_STD def _a ( ): """simple docstring""" lowercase__ = '''https://raw.githubusercontent.com/salesforce/LAVIS/main/docs/_static/Confusing-Pictures.jpg''' lowercase__ = Image.open(requests.get(SCREAMING_SNAKE_CASE , stream=SCREAMING_SNAKE_CASE ).raw ).convert('''RGB''' ) return image def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ = [] # fmt: off # vision encoder rename_keys.append(('''visual_encoder.cls_token''', '''vision_model.embeddings.class_embedding''') ) rename_keys.append(('''visual_encoder.pos_embed''', '''vision_model.embeddings.position_embedding''') ) rename_keys.append(('''visual_encoder.patch_embed.proj.weight''', '''vision_model.embeddings.patch_embedding.weight''') ) rename_keys.append(('''visual_encoder.patch_embed.proj.bias''', '''vision_model.embeddings.patch_embedding.bias''') ) rename_keys.append(('''ln_vision.weight''', '''vision_model.post_layernorm.weight''') ) rename_keys.append(('''ln_vision.bias''', '''vision_model.post_layernorm.bias''') ) for i in range(config.vision_config.num_hidden_layers ): rename_keys.append((f'visual_encoder.blocks.{i}.norm1.weight', f'vision_model.encoder.layers.{i}.layer_norm1.weight') ) rename_keys.append((f'visual_encoder.blocks.{i}.norm1.bias', f'vision_model.encoder.layers.{i}.layer_norm1.bias') ) rename_keys.append((f'visual_encoder.blocks.{i}.norm2.weight', f'vision_model.encoder.layers.{i}.layer_norm2.weight') ) rename_keys.append((f'visual_encoder.blocks.{i}.norm2.bias', f'vision_model.encoder.layers.{i}.layer_norm2.bias') ) rename_keys.append((f'visual_encoder.blocks.{i}.attn.qkv.weight', f'vision_model.encoder.layers.{i}.self_attn.qkv.weight') ) rename_keys.append((f'visual_encoder.blocks.{i}.attn.proj.weight', f'vision_model.encoder.layers.{i}.self_attn.projection.weight',) ) rename_keys.append((f'visual_encoder.blocks.{i}.attn.proj.bias', f'vision_model.encoder.layers.{i}.self_attn.projection.bias') ) rename_keys.append((f'visual_encoder.blocks.{i}.mlp.fc1.weight', f'vision_model.encoder.layers.{i}.mlp.fc1.weight') ) rename_keys.append((f'visual_encoder.blocks.{i}.mlp.fc1.bias', f'vision_model.encoder.layers.{i}.mlp.fc1.bias') ) rename_keys.append((f'visual_encoder.blocks.{i}.mlp.fc2.weight', f'vision_model.encoder.layers.{i}.mlp.fc2.weight') ) rename_keys.append((f'visual_encoder.blocks.{i}.mlp.fc2.bias', f'vision_model.encoder.layers.{i}.mlp.fc2.bias') ) # QFormer rename_keys.append(('''Qformer.bert.embeddings.LayerNorm.weight''', '''qformer.embeddings.layernorm.weight''') ) rename_keys.append(('''Qformer.bert.embeddings.LayerNorm.bias''', '''qformer.embeddings.layernorm.bias''') ) # fmt: on return rename_keys def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ = dct.pop(SCREAMING_SNAKE_CASE ) lowercase__ = val def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" for i in range(config.vision_config.num_hidden_layers ): # read in original q and v biases lowercase__ = state_dict.pop(f'visual_encoder.blocks.{i}.attn.q_bias' ) lowercase__ = state_dict.pop(f'visual_encoder.blocks.{i}.attn.v_bias' ) # next, set bias in the state dict lowercase__ = torch.cat((q_bias, torch.zeros_like(SCREAMING_SNAKE_CASE , requires_grad=SCREAMING_SNAKE_CASE ), v_bias) ) lowercase__ = qkv_bias def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ = 3_64 if '''coco''' in model_name else 2_24 lowercase__ = InstructBlipVisionConfig(image_size=SCREAMING_SNAKE_CASE ).to_dict() # make sure the models have proper bos_token_id and eos_token_id set (important for generation) # seems like flan-T5 models don't have bos_token_id properly set? if "t5-xl" in model_name: lowercase__ = TaConfig.from_pretrained('''google/flan-t5-xl''' , dense_act_fn='''gelu''' , bos_token_id=1 ).to_dict() elif "t5-xxl" in model_name: lowercase__ = TaConfig.from_pretrained('''google/flan-t5-xxl''' , dense_act_fn='''gelu''' , bos_token_id=1 ).to_dict() elif "vicuna-7b" in model_name: lowercase__ = LlamaConfig.from_pretrained('''decapoda-research/llama-7b-hf''' , vocab_size=3_20_01 ).to_dict() elif "vicuna-13b" in model_name: lowercase__ = LlamaConfig.from_pretrained('''decapoda-research/llama-13b-hf''' , vocab_size=3_20_01 ).to_dict() else: raise ValueError('''Model name not supported''' ) # the authors add one special "[DEC]" token to the vocab of Q-Former, hence vocab size = 30522 + 1 lowercase__ = InstructBlipQFormerConfig(vocab_size=3_05_23 ).to_dict() lowercase__ = InstructBlipConfig(vision_config=SCREAMING_SNAKE_CASE , text_config=SCREAMING_SNAKE_CASE , qformer_config=SCREAMING_SNAKE_CASE ) return config, image_size @torch.no_grad() def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=False ): """simple docstring""" lowercase__ = AutoTokenizer.from_pretrained('''bert-base-uncased''' , truncation_side='''left''' ) qformer_tokenizer.add_special_tokens({'''bos_token''': '''[DEC]'''} ) if "t5" in model_name: lowercase__ = TaTokenizerFast.from_pretrained('''google/flan-t5-xl''' , truncation_side='''left''' ) elif "vicuna" in model_name: # the following was used in the original implementation: # tokenizer = LlamaTokenizer.from_pretrained("huggyllama/llama-7b", use_fast=False, truncation_side="left") # tokenizer.add_special_tokens({"pad_token": "[PAD]"}) # tokenizer.add_special_tokens({"bos_token": "</s>"}) # tokenizer.add_special_tokens({"eos_token": "</s>"}) # tokenizer.add_special_tokens({"unk_token": "</s>"}) lowercase__ = LlamaTokenizerFast.from_pretrained( '''huggyllama/llama-7b''' , truncation_side='''left''' , bos_token='''</s>''' , unk_token='''</s>''' ) tokenizer.add_special_tokens({'''pad_token''': '''[PAD]'''} ) lowercase__ , lowercase__ = get_blipa_config(SCREAMING_SNAKE_CASE ) lowercase__ = InstructBlipForConditionalGeneration(SCREAMING_SNAKE_CASE ).eval() lowercase__ = { '''instructblip-vicuna-7b''': ('''blip2_vicuna_instruct''', '''vicuna7b'''), '''instructblip-vicuna-13b''': ('''blip2_vicuna_instruct''', '''vicuna13b'''), '''instructblip-flan-t5-xl''': ('''blip2_t5_instruct''', '''flant5xl'''), '''instructblip-flan-t5-xxl''': ('''blip2_t5_instruct''', '''flant5xxl'''), } lowercase__ , lowercase__ = model_name_to_original[model_name] # load original model print('''Loading original model...''' ) lowercase__ = '''cuda:1''' if torch.cuda.is_available() else '''cpu''' lowercase__ = '''cuda:2''' if torch.cuda.is_available() else '''cpu''' lowercase__ , lowercase__ , lowercase__ = load_model_and_preprocess( name=SCREAMING_SNAKE_CASE , model_type=SCREAMING_SNAKE_CASE , is_eval=SCREAMING_SNAKE_CASE , device=SCREAMING_SNAKE_CASE ) original_model.eval() print('''Done!''' ) # update state dict keys lowercase__ = original_model.state_dict() lowercase__ = create_rename_keys(SCREAMING_SNAKE_CASE ) for src, dest in rename_keys: rename_key(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # some keys can be renamed efficiently for key, val in state_dict.copy().items(): lowercase__ = state_dict.pop(SCREAMING_SNAKE_CASE ) if key.startswith('''Qformer.bert''' ): lowercase__ = key.replace('''Qformer.bert''' , '''qformer''' ) if "attention.self" in key: lowercase__ = key.replace('''self''' , '''attention''' ) if "llm_proj" in key: lowercase__ = key.replace('''llm_proj''' , '''language_projection''' ) if "t5_proj" in key: lowercase__ = key.replace('''t5_proj''' , '''language_projection''' ) if key.startswith('''llm_model''' ): lowercase__ = key.replace('''llm_model''' , '''language_model''' ) if key.startswith('''t5''' ): lowercase__ = key.replace('''t5''' , '''language''' ) lowercase__ = val # read in qv biases read_in_q_v_bias(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # note: weights get loaded in torch.float32 by default hf_model.load_state_dict(SCREAMING_SNAKE_CASE , strict=SCREAMING_SNAKE_CASE ) lowercase__ = load_demo_image() lowercase__ = '''What is unusual about this image?''' # create processor lowercase__ = BlipImageProcessor( size={'''height''': image_size, '''width''': image_size} , image_mean=SCREAMING_SNAKE_CASE , image_std=SCREAMING_SNAKE_CASE ) lowercase__ = InstructBlipProcessor( image_processor=SCREAMING_SNAKE_CASE , tokenizer=SCREAMING_SNAKE_CASE , qformer_tokenizer=SCREAMING_SNAKE_CASE , ) lowercase__ = processor(images=SCREAMING_SNAKE_CASE , text=SCREAMING_SNAKE_CASE , return_tensors='''pt''' ).to(SCREAMING_SNAKE_CASE ) # make sure processor creates exact same pixel values lowercase__ = vis_processors['''eval'''](SCREAMING_SNAKE_CASE ).unsqueeze(0 ).to(SCREAMING_SNAKE_CASE ) lowercase__ = inputs.pixel_values assert torch.allclose(original_pixel_values.to(pixel_values.device ) , SCREAMING_SNAKE_CASE ) original_model.to(SCREAMING_SNAKE_CASE ) hf_model.to(SCREAMING_SNAKE_CASE ) with torch.no_grad(): if "vicuna" in model_name: lowercase__ = original_model({'''image''': original_pixel_values, '''text_input''': [prompt]} ).logits lowercase__ = hf_model(**SCREAMING_SNAKE_CASE ).logits else: lowercase__ = original_model( {'''image''': original_pixel_values, '''text_input''': [prompt], '''text_output''': ['''\n''']} ).logits lowercase__ = tokenizer('''\n''' , return_tensors='''pt''' ).input_ids.to(SCREAMING_SNAKE_CASE ) lowercase__ = label_input_ids.masked_fill(label_input_ids == tokenizer.pad_token_id , -1_00 ) lowercase__ = hf_model(**SCREAMING_SNAKE_CASE , labels=SCREAMING_SNAKE_CASE ).logits print('''First values of original logits:''' , original_logits[0, :3, :3] ) print('''First values of HF logits:''' , logits[0, :3, :3] ) # assert values assert original_logits.shape == logits.shape lowercase__ = 1E-4 if '''vicuna''' in model_name else 1E-5 assert torch.allclose(original_logits.to(logits.device ) , SCREAMING_SNAKE_CASE , atol=SCREAMING_SNAKE_CASE ) print('''Looks ok!''' ) print('''Generating with original model...''' ) lowercase__ = original_model.generate({'''image''': original_pixel_values, '''prompt''': prompt} , num_beams=5 ) # important: we need to cast the weights of the HF model to the appropriate type print('''Generating with HF model...''' ) lowercase__ = hf_model.generate( **SCREAMING_SNAKE_CASE , do_sample=SCREAMING_SNAKE_CASE , num_beams=5 , max_length=2_56 , min_length=1 , top_p=0.9 , repetition_penalty=1.5 , length_penalty=1.0 , temperature=1 , ) if "vicuna" in model_name: # convert output id 0 to 2 (eos_token_id) # TODO add this in the generate method? lowercase__ = 2 print('''Original generation:''' , SCREAMING_SNAKE_CASE ) lowercase__ = processor.batch_decode(SCREAMING_SNAKE_CASE , skip_special_tokens=SCREAMING_SNAKE_CASE ) lowercase__ = [text.strip() for text in output_text] print('''HF generation:''' , SCREAMING_SNAKE_CASE ) if pytorch_dump_folder_path is not None: processor.save_pretrained(SCREAMING_SNAKE_CASE ) hf_model.save_pretrained(SCREAMING_SNAKE_CASE ) if push_to_hub: processor.push_to_hub(f'Salesforce/{model_name}' ) hf_model.push_to_hub(f'Salesforce/{model_name}' ) if __name__ == "__main__": lowerCAmelCase = argparse.ArgumentParser() lowerCAmelCase = [ 'instructblip-vicuna-7b', 'instructblip-vicuna-13b', 'instructblip-flan-t5-xl', 'instructblip-flan-t5-xxl', ] parser.add_argument( '--model_name', default='instructblip-flan-t5-xl', choices=choices, type=str, help='Path to hf config.json of model to convert', ) parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument( '--push_to_hub', action='store_true', help='Whether to push the model and processor to the hub after converting', ) lowerCAmelCase = parser.parse_args() convert_blipa_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
110
import numpy # List of input, output pairs UpperCAmelCase : str = ( ((5, 2, 3), 15), ((6, 5, 9), 25), ((11, 12, 13), 41), ((1, 1, 1), 8), ((11, 12, 13), 41), ) UpperCAmelCase : Optional[int] = (((515, 22, 13), 555), ((61, 35, 49), 150)) UpperCAmelCase : str = [2, 4, 1, 5] UpperCAmelCase : List[str] = len(train_data) UpperCAmelCase : Dict = 0.0_0_9 def _A ( SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : Tuple="train" ): """simple docstring""" return calculate_hypothesis_value(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) - output( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) def _A ( SCREAMING_SNAKE_CASE : Tuple ): """simple docstring""" a__ : Tuple =0 for i in range(len(SCREAMING_SNAKE_CASE ) - 1 ): hyp_val += data_input_tuple[i] * parameter_vector[i + 1] hyp_val += parameter_vector[0] return hyp_val def _A ( SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : Dict ): """simple docstring""" if data_set == "train": return train_data[example_no][1] elif data_set == "test": return test_data[example_no][1] return None def _A ( SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : Tuple ): """simple docstring""" if data_set == "train": return _hypothesis_value(train_data[example_no][0] ) elif data_set == "test": return _hypothesis_value(test_data[example_no][0] ) return None def _A ( SCREAMING_SNAKE_CASE : Union[str, Any] , SCREAMING_SNAKE_CASE : int=m ): """simple docstring""" a__ : Any =0 for i in range(SCREAMING_SNAKE_CASE ): if index == -1: summation_value += _error(SCREAMING_SNAKE_CASE ) else: summation_value += _error(SCREAMING_SNAKE_CASE ) * train_data[i][0][index] return summation_value def _A ( SCREAMING_SNAKE_CASE : int ): """simple docstring""" a__ : Any =summation_of_cost_derivative(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) / m return cost_derivative_value def _A ( ): """simple docstring""" global parameter_vector # Tune these values to set a tolerance value for predicted output a__ : Dict =0.0_0_0_0_0_2 a__ : Union[str, Any] =0 a__ : Any =0 while True: j += 1 a__ : Any =[0, 0, 0, 0] for i in range(0 , len(SCREAMING_SNAKE_CASE ) ): a__ : Tuple =get_cost_derivative(i - 1 ) a__ : List[Any] =( parameter_vector[i] - LEARNING_RATE * cost_derivative ) if numpy.allclose( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , atol=SCREAMING_SNAKE_CASE , rtol=SCREAMING_SNAKE_CASE , ): break a__ : Optional[Any] =temp_parameter_vector print(("Number of iterations:", j) ) def _A ( ): """simple docstring""" for i in range(len(SCREAMING_SNAKE_CASE ) ): print(("Actual output value:", output(SCREAMING_SNAKE_CASE , "test" )) ) print(("Hypothesis output:", calculate_hypothesis_value(SCREAMING_SNAKE_CASE , "test" )) ) if __name__ == "__main__": run_gradient_descent() print("""\nTesting gradient descent for a linear hypothesis function.\n""") test_gradient_descent()
95
0
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging snake_case__ = logging.get_logger(__name__) snake_case__ = { """facebook/levit-128S""": """https://huggingface.co/facebook/levit-128S/resolve/main/config.json""", # See all LeViT models at https://huggingface.co/models?filter=levit } class UpperCamelCase_ (a__ ): """simple docstring""" _lowerCAmelCase = 'levit' def __init__( self : int , _lowerCamelCase : List[Any]=224 , _lowerCamelCase : Union[str, Any]=3 , _lowerCamelCase : int=3 , _lowerCamelCase : Tuple=2 , _lowerCamelCase : Optional[int]=1 , _lowerCamelCase : List[str]=16 , _lowerCamelCase : Tuple=[128, 256, 384] , _lowerCamelCase : List[str]=[4, 8, 12] , _lowerCamelCase : Optional[int]=[4, 4, 4] , _lowerCamelCase : Union[str, Any]=[16, 16, 16] , _lowerCamelCase : int=0 , _lowerCamelCase : Union[str, Any]=[2, 2, 2] , _lowerCamelCase : Optional[Any]=[2, 2, 2] , _lowerCamelCase : Optional[Any]=0.02 , **_lowerCamelCase : List[Any] , ): """simple docstring""" super().__init__(**_lowerCamelCase ) A_ : List[Any] = image_size A_ : List[str] = num_channels A_ : Tuple = kernel_size A_ : Optional[int] = stride A_ : Dict = padding A_ : Tuple = hidden_sizes A_ : Tuple = num_attention_heads A_ : int = depths A_ : Any = key_dim A_ : Any = drop_path_rate A_ : Tuple = patch_size A_ : Union[str, Any] = attention_ratio A_ : str = mlp_ratio A_ : Optional[Any] = initializer_range A_ : Union[str, Any] = [ ['''Subsample''', key_dim[0], hidden_sizes[0] // key_dim[0], 4, 2, 2], ['''Subsample''', key_dim[0], hidden_sizes[1] // key_dim[0], 4, 2, 2], ] class UpperCamelCase_ (a__ ): """simple docstring""" _lowerCAmelCase = version.parse('1.11' ) @property def _a ( self : Optional[int] ): """simple docstring""" return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) @property def _a ( self : int ): """simple docstring""" return 1E-4
4
'''simple docstring''' class UpperCamelCase_ : """simple docstring""" def __init__( self : Optional[Any] , _lowerCamelCase : Union[str, Any] ): """simple docstring""" A_ : Union[str, Any] = val A_ : Tuple = None A_ : Any = None def _a ( self : Tuple , _lowerCamelCase : List[Any] ): """simple docstring""" if self.val: if val < self.val: if self.left is None: A_ : int = Node(_lowerCamelCase ) else: self.left.insert(_lowerCamelCase ) elif val > self.val: if self.right is None: A_ : List[str] = Node(_lowerCamelCase ) else: self.right.insert(_lowerCamelCase ) else: A_ : Any = val def snake_case__ ( lowerCamelCase__ : Any , lowerCamelCase__ : Optional[int] ) -> str: # Recursive traversal if root: inorder(root.left , lowerCamelCase__ ) res.append(root.val ) inorder(root.right , lowerCamelCase__ ) def snake_case__ ( lowerCamelCase__ : Optional[int] ) -> Tuple: # Build BST if len(lowerCamelCase__ ) == 0: return arr A_ : Dict = Node(arr[0] ) for i in range(1 , len(lowerCamelCase__ ) ): root.insert(arr[i] ) # Traverse BST in order. A_ : Tuple = [] inorder(lowerCamelCase__ , lowerCamelCase__ ) return res if __name__ == "__main__": print(tree_sort([10, 1, 3, 2, 9, 14, 13]))
4
1
import numpy as np from cva import COLOR_BGR2GRAY, cvtColor, imread from numpy import array, uinta from PIL import Image from digital_image_processing import change_contrast as cc from digital_image_processing import convert_to_negative as cn from digital_image_processing import sepia as sp from digital_image_processing.dithering import burkes as bs from digital_image_processing.edge_detection import canny from digital_image_processing.filters import convolve as conv from digital_image_processing.filters import gaussian_filter as gg from digital_image_processing.filters import local_binary_pattern as lbp from digital_image_processing.filters import median_filter as med from digital_image_processing.filters import sobel_filter as sob from digital_image_processing.resize import resize as rs __lowerCAmelCase : Union[str, Any] =imread(r'digital_image_processing/image_data/lena_small.jpg') __lowerCAmelCase : List[Any] =cvtColor(img, COLOR_BGR2GRAY) def _UpperCamelCase ( ): __SCREAMING_SNAKE_CASE : Optional[Any] = cn.convert_to_negative(lowercase__ ) # assert negative_img array for at least one True assert negative_img.any() def _UpperCamelCase ( ): with Image.open('''digital_image_processing/image_data/lena_small.jpg''' ) as img: # Work around assertion for response assert str(cc.change_contrast(lowercase__ , 110 ) ).startswith( '''<PIL.Image.Image image mode=RGB size=100x100 at''' ) def _UpperCamelCase ( ): __SCREAMING_SNAKE_CASE : List[Any] = canny.gen_gaussian_kernel(9 , sigma=1.4 ) # Assert ambiguous array assert resp.all() def _UpperCamelCase ( ): __SCREAMING_SNAKE_CASE : str = imread('''digital_image_processing/image_data/lena_small.jpg''' , 0 ) # assert ambiguous array for all == True assert canny_img.all() __SCREAMING_SNAKE_CASE : Dict = canny.canny(lowercase__ ) # assert canny array for at least one True assert canny_array.any() def _UpperCamelCase ( ): assert gg.gaussian_filter(lowercase__ , 5 , sigma=0.9 ).all() def _UpperCamelCase ( ): # laplace diagonals __SCREAMING_SNAKE_CASE : List[Any] = array([[0.25, 0.5, 0.25], [0.5, -3, 0.5], [0.25, 0.5, 0.25]] ) __SCREAMING_SNAKE_CASE : Tuple = conv.img_convolve(lowercase__ , lowercase__ ).astype(lowercase__ ) assert res.any() def _UpperCamelCase ( ): assert med.median_filter(lowercase__ , 3 ).any() def _UpperCamelCase ( ): __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : str = sob.sobel_filter(lowercase__ ) assert grad.any() and theta.any() def _UpperCamelCase ( ): __SCREAMING_SNAKE_CASE : List[str] = sp.make_sepia(lowercase__ , 20 ) assert sepia.all() def _UpperCamelCase ( lowercase__ = "digital_image_processing/image_data/lena_small.jpg" ): __SCREAMING_SNAKE_CASE : List[str] = bs.Burkes(imread(lowercase__ , 1 ) , 120 ) burkes.process() assert burkes.output_img.any() def _UpperCamelCase ( lowercase__ = "digital_image_processing/image_data/lena_small.jpg" , ): __SCREAMING_SNAKE_CASE : Union[str, Any] = rs.NearestNeighbour(imread(lowercase__ , 1 ) , 400 , 200 ) nn.process() assert nn.output.any() def _UpperCamelCase ( ): __SCREAMING_SNAKE_CASE : Union[str, Any] = '''digital_image_processing/image_data/lena.jpg''' # Reading the image and converting it to grayscale. __SCREAMING_SNAKE_CASE : Dict = imread(lowercase__ , 0 ) # Test for get_neighbors_pixel function() return not None __SCREAMING_SNAKE_CASE : List[str] = 0 __SCREAMING_SNAKE_CASE : Optional[int] = 0 __SCREAMING_SNAKE_CASE : str = image[x_coordinate][y_coordinate] __SCREAMING_SNAKE_CASE : Any = lbp.get_neighbors_pixel( lowercase__ , lowercase__ , lowercase__ , lowercase__ ) assert neighbors_pixels is not None # Test for local_binary_pattern function() # Create a numpy array as the same height and width of read image __SCREAMING_SNAKE_CASE : Dict = np.zeros((image.shape[0], image.shape[1]) ) # Iterating through the image and calculating the local binary pattern value # for each pixel. for i in range(0 , image.shape[0] ): for j in range(0 , image.shape[1] ): __SCREAMING_SNAKE_CASE : Optional[Any] = lbp.local_binary_value(lowercase__ , lowercase__ , lowercase__ ) assert lbp_image.any()
9
"""simple docstring""" from dataclasses import dataclass from typing import Optional import numpy as np import torch import torch.nn as nn from ..utils import BaseOutput, is_torch_version, randn_tensor from .attention_processor import SpatialNorm from .unet_ad_blocks import UNetMidBlockaD, get_down_block, get_up_block @dataclass class UpperCamelCase__( __A ): lowerCAmelCase__ : torch.FloatTensor class UpperCamelCase__( nn.Module ): def __init__( self ,__UpperCAmelCase=3 ,__UpperCAmelCase=3 ,__UpperCAmelCase=("DownEncoderBlock2D",) ,__UpperCAmelCase=(64,) ,__UpperCAmelCase=2 ,__UpperCAmelCase=32 ,__UpperCAmelCase="silu" ,__UpperCAmelCase=True ,) -> Union[str, Any]: super().__init__() A__ = layers_per_block A__ = torch.nn.Convad( __UpperCAmelCase ,block_out_channels[0] ,kernel_size=3 ,stride=1 ,padding=1 ,) A__ = None A__ = nn.ModuleList([] ) # down A__ = block_out_channels[0] for i, down_block_type in enumerate(__UpperCAmelCase ): A__ = output_channel A__ = block_out_channels[i] A__ = i == len(__UpperCAmelCase ) - 1 A__ = get_down_block( __UpperCAmelCase ,num_layers=self.layers_per_block ,in_channels=__UpperCAmelCase ,out_channels=__UpperCAmelCase ,add_downsample=not is_final_block ,resnet_eps=1e-6 ,downsample_padding=0 ,resnet_act_fn=__UpperCAmelCase ,resnet_groups=__UpperCAmelCase ,attention_head_dim=__UpperCAmelCase ,temb_channels=__UpperCAmelCase ,) self.down_blocks.append(__UpperCAmelCase ) # mid A__ = UNetMidBlockaD( in_channels=block_out_channels[-1] ,resnet_eps=1e-6 ,resnet_act_fn=__UpperCAmelCase ,output_scale_factor=1 ,resnet_time_scale_shift='default' ,attention_head_dim=block_out_channels[-1] ,resnet_groups=__UpperCAmelCase ,temb_channels=__UpperCAmelCase ,) # out A__ = nn.GroupNorm(num_channels=block_out_channels[-1] ,num_groups=__UpperCAmelCase ,eps=1e-6 ) A__ = nn.SiLU() A__ = 2 * out_channels if double_z else out_channels A__ = nn.Convad(block_out_channels[-1] ,__UpperCAmelCase ,3 ,padding=1 ) A__ = False def snake_case__ ( self ,__UpperCAmelCase ) -> Optional[int]: A__ = x A__ = self.conv_in(__UpperCAmelCase ) if self.training and self.gradient_checkpointing: def create_custom_forward(__UpperCAmelCase ): def custom_forward(*__UpperCAmelCase ): return module(*__UpperCAmelCase ) return custom_forward # down if is_torch_version('>=' ,'1.11.0' ): for down_block in self.down_blocks: A__ = torch.utils.checkpoint.checkpoint( create_custom_forward(__UpperCAmelCase ) ,__UpperCAmelCase ,use_reentrant=__UpperCAmelCase ) # middle A__ = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) ,__UpperCAmelCase ,use_reentrant=__UpperCAmelCase ) else: for down_block in self.down_blocks: A__ = torch.utils.checkpoint.checkpoint(create_custom_forward(__UpperCAmelCase ) ,__UpperCAmelCase ) # middle A__ = torch.utils.checkpoint.checkpoint(create_custom_forward(self.mid_block ) ,__UpperCAmelCase ) else: # down for down_block in self.down_blocks: A__ = down_block(__UpperCAmelCase ) # middle A__ = self.mid_block(__UpperCAmelCase ) # post-process A__ = self.conv_norm_out(__UpperCAmelCase ) A__ = self.conv_act(__UpperCAmelCase ) A__ = self.conv_out(__UpperCAmelCase ) return sample class UpperCamelCase__( nn.Module ): def __init__( self ,__UpperCAmelCase=3 ,__UpperCAmelCase=3 ,__UpperCAmelCase=("UpDecoderBlock2D",) ,__UpperCAmelCase=(64,) ,__UpperCAmelCase=2 ,__UpperCAmelCase=32 ,__UpperCAmelCase="silu" ,__UpperCAmelCase="group" ,) -> Any: super().__init__() A__ = layers_per_block A__ = nn.Convad( __UpperCAmelCase ,block_out_channels[-1] ,kernel_size=3 ,stride=1 ,padding=1 ,) A__ = None A__ = nn.ModuleList([] ) A__ = in_channels if norm_type == 'spatial' else None # mid A__ = UNetMidBlockaD( in_channels=block_out_channels[-1] ,resnet_eps=1e-6 ,resnet_act_fn=__UpperCAmelCase ,output_scale_factor=1 ,resnet_time_scale_shift='default' if norm_type == 'group' else norm_type ,attention_head_dim=block_out_channels[-1] ,resnet_groups=__UpperCAmelCase ,temb_channels=__UpperCAmelCase ,) # up A__ = list(reversed(__UpperCAmelCase ) ) A__ = reversed_block_out_channels[0] for i, up_block_type in enumerate(__UpperCAmelCase ): A__ = output_channel A__ = reversed_block_out_channels[i] A__ = i == len(__UpperCAmelCase ) - 1 A__ = get_up_block( __UpperCAmelCase ,num_layers=self.layers_per_block + 1 ,in_channels=__UpperCAmelCase ,out_channels=__UpperCAmelCase ,prev_output_channel=__UpperCAmelCase ,add_upsample=not is_final_block ,resnet_eps=1e-6 ,resnet_act_fn=__UpperCAmelCase ,resnet_groups=__UpperCAmelCase ,attention_head_dim=__UpperCAmelCase ,temb_channels=__UpperCAmelCase ,resnet_time_scale_shift=__UpperCAmelCase ,) self.up_blocks.append(__UpperCAmelCase ) A__ = output_channel # out if norm_type == "spatial": A__ = SpatialNorm(block_out_channels[0] ,__UpperCAmelCase ) else: A__ = nn.GroupNorm(num_channels=block_out_channels[0] ,num_groups=__UpperCAmelCase ,eps=1e-6 ) A__ = nn.SiLU() A__ = nn.Convad(block_out_channels[0] ,__UpperCAmelCase ,3 ,padding=1 ) A__ = False def snake_case__ ( self ,__UpperCAmelCase ,__UpperCAmelCase=None ) -> Dict: A__ = z A__ = self.conv_in(__UpperCAmelCase ) A__ = next(iter(self.up_blocks.parameters() ) ).dtype if self.training and self.gradient_checkpointing: def create_custom_forward(__UpperCAmelCase ): def custom_forward(*__UpperCAmelCase ): return module(*__UpperCAmelCase ) return custom_forward if is_torch_version('>=' ,'1.11.0' ): # middle A__ = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) ,__UpperCAmelCase ,__UpperCAmelCase ,use_reentrant=__UpperCAmelCase ) A__ = sample.to(__UpperCAmelCase ) # up for up_block in self.up_blocks: A__ = torch.utils.checkpoint.checkpoint( create_custom_forward(__UpperCAmelCase ) ,__UpperCAmelCase ,__UpperCAmelCase ,use_reentrant=__UpperCAmelCase ) else: # middle A__ = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) ,__UpperCAmelCase ,__UpperCAmelCase ) A__ = sample.to(__UpperCAmelCase ) # up for up_block in self.up_blocks: A__ = torch.utils.checkpoint.checkpoint(create_custom_forward(__UpperCAmelCase ) ,__UpperCAmelCase ,__UpperCAmelCase ) else: # middle A__ = self.mid_block(__UpperCAmelCase ,__UpperCAmelCase ) A__ = sample.to(__UpperCAmelCase ) # up for up_block in self.up_blocks: A__ = up_block(__UpperCAmelCase ,__UpperCAmelCase ) # post-process if latent_embeds is None: A__ = self.conv_norm_out(__UpperCAmelCase ) else: A__ = self.conv_norm_out(__UpperCAmelCase ,__UpperCAmelCase ) A__ = self.conv_act(__UpperCAmelCase ) A__ = self.conv_out(__UpperCAmelCase ) return sample class UpperCamelCase__( nn.Module ): def __init__( self ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase=None ,__UpperCAmelCase="random" ,__UpperCAmelCase=False ,__UpperCAmelCase=True ) -> Tuple: super().__init__() A__ = n_e A__ = vq_embed_dim A__ = beta A__ = legacy A__ = nn.Embedding(self.n_e ,self.vq_embed_dim ) self.embedding.weight.data.uniform_(-1.0 / self.n_e ,1.0 / self.n_e ) A__ = remap if self.remap is not None: self.register_buffer('used' ,torch.tensor(np.load(self.remap ) ) ) A__ = self.used.shape[0] A__ = unknown_index # "random" or "extra" or integer if self.unknown_index == "extra": A__ = self.re_embed A__ = self.re_embed + 1 print( f'''Remapping {self.n_e} indices to {self.re_embed} indices. ''' f'''Using {self.unknown_index} for unknown indices.''' ) else: A__ = n_e A__ = sane_index_shape def snake_case__ ( self ,__UpperCAmelCase ) -> List[str]: A__ = inds.shape assert len(__UpperCAmelCase ) > 1 A__ = inds.reshape(ishape[0] ,-1 ) A__ = self.used.to(__UpperCAmelCase ) A__ = (inds[:, :, None] == used[None, None, ...]).long() A__ = match.argmax(-1 ) A__ = match.sum(2 ) < 1 if self.unknown_index == "random": A__ = torch.randint(0 ,self.re_embed ,size=new[unknown].shape ).to(device=new.device ) else: A__ = self.unknown_index return new.reshape(__UpperCAmelCase ) def snake_case__ ( self ,__UpperCAmelCase ) -> Optional[Any]: A__ = inds.shape assert len(__UpperCAmelCase ) > 1 A__ = inds.reshape(ishape[0] ,-1 ) A__ = self.used.to(__UpperCAmelCase ) if self.re_embed > self.used.shape[0]: # extra token A__ = 0 # simply set to zero A__ = torch.gather(used[None, :][inds.shape[0] * [0], :] ,1 ,__UpperCAmelCase ) return back.reshape(__UpperCAmelCase ) def snake_case__ ( self ,__UpperCAmelCase ) -> Dict: # reshape z -> (batch, height, width, channel) and flatten A__ = z.permute(0 ,2 ,3 ,1 ).contiguous() A__ = z.view(-1 ,self.vq_embed_dim ) # distances from z to embeddings e_j (z - e)^2 = z^2 + e^2 - 2 e * z A__ = torch.argmin(torch.cdist(__UpperCAmelCase ,self.embedding.weight ) ,dim=1 ) A__ = self.embedding(__UpperCAmelCase ).view(z.shape ) A__ = None A__ = None # compute loss for embedding if not self.legacy: A__ = self.beta * torch.mean((z_q.detach() - z) ** 2 ) + torch.mean((z_q - z.detach()) ** 2 ) else: A__ = torch.mean((z_q.detach() - z) ** 2 ) + self.beta * torch.mean((z_q - z.detach()) ** 2 ) # preserve gradients A__ = z + (z_q - z).detach() # reshape back to match original input shape A__ = z_q.permute(0 ,3 ,1 ,2 ).contiguous() if self.remap is not None: A__ = min_encoding_indices.reshape(z.shape[0] ,-1 ) # add batch axis A__ = self.remap_to_used(__UpperCAmelCase ) A__ = min_encoding_indices.reshape(-1 ,1 ) # flatten if self.sane_index_shape: A__ = min_encoding_indices.reshape(z_q.shape[0] ,z_q.shape[2] ,z_q.shape[3] ) return z_q, loss, (perplexity, min_encodings, min_encoding_indices) def snake_case__ ( self ,__UpperCAmelCase ,__UpperCAmelCase ) -> str: # shape specifying (batch, height, width, channel) if self.remap is not None: A__ = indices.reshape(shape[0] ,-1 ) # add batch axis A__ = self.unmap_to_all(__UpperCAmelCase ) A__ = indices.reshape(-1 ) # flatten again # get quantized latent vectors A__ = self.embedding(__UpperCAmelCase ) if shape is not None: A__ = z_q.view(__UpperCAmelCase ) # reshape back to match original input shape A__ = z_q.permute(0 ,3 ,1 ,2 ).contiguous() return z_q class UpperCamelCase__( __A ): def __init__( self ,__UpperCAmelCase ,__UpperCAmelCase=False ) -> Any: A__ = parameters A__ , A__ = torch.chunk(__UpperCAmelCase ,2 ,dim=1 ) A__ = torch.clamp(self.logvar ,-3_0.0 ,2_0.0 ) A__ = deterministic A__ = torch.exp(0.5 * self.logvar ) A__ = torch.exp(self.logvar ) if self.deterministic: A__ = A__ = torch.zeros_like( self.mean ,device=self.parameters.device ,dtype=self.parameters.dtype ) def snake_case__ ( self ,__UpperCAmelCase = None ) -> torch.FloatTensor: # make sure sample is on the same device as the parameters and has same dtype A__ = randn_tensor( self.mean.shape ,generator=__UpperCAmelCase ,device=self.parameters.device ,dtype=self.parameters.dtype ) A__ = self.mean + self.std * sample return x def snake_case__ ( self ,__UpperCAmelCase=None ) -> int: if self.deterministic: return torch.Tensor([0.0] ) else: if other is None: return 0.5 * torch.sum(torch.pow(self.mean ,2 ) + self.var - 1.0 - self.logvar ,dim=[1, 2, 3] ) else: return 0.5 * torch.sum( torch.pow(self.mean - other.mean ,2 ) / other.var + self.var / other.var - 1.0 - self.logvar + other.logvar ,dim=[1, 2, 3] ,) def snake_case__ ( self ,__UpperCAmelCase ,__UpperCAmelCase=[1, 2, 3] ) -> List[Any]: if self.deterministic: return torch.Tensor([0.0] ) A__ = np.log(2.0 * np.pi ) return 0.5 * torch.sum(logtwopi + self.logvar + torch.pow(sample - self.mean ,2 ) / self.var ,dim=__UpperCAmelCase ) def snake_case__ ( self ) -> Optional[Any]: return self.mean
221
0
"""simple docstring""" import warnings from ...utils import logging from .image_processing_perceiver import PerceiverImageProcessor UpperCAmelCase: Optional[int] = logging.get_logger(__name__) class UpperCamelCase ( snake_case ): """simple docstring""" def __init__( self ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): warnings.warn( """The class PerceiverFeatureExtractor is deprecated and will be removed in version 5 of Transformers.""" """ Please use PerceiverImageProcessor instead.""" ,UpperCAmelCase_ ,) super().__init__(*UpperCAmelCase_ ,**UpperCAmelCase_ )
336
"""simple docstring""" from ....configuration_utils import PretrainedConfig from ....utils import logging UpperCAmelCase: Tuple = logging.get_logger(__name__) UpperCAmelCase: List[Any] = { """CarlCochet/trajectory-transformer-halfcheetah-medium-v2""": ( """https://huggingface.co/CarlCochet/trajectory-transformer-halfcheetah-medium-v2/resolve/main/config.json""" ), # See all TrajectoryTransformer models at https://huggingface.co/models?filter=trajectory_transformer } class UpperCamelCase ( snake_case ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = "trajectory_transformer" SCREAMING_SNAKE_CASE_ : Optional[int] = ["past_key_values"] SCREAMING_SNAKE_CASE_ : Tuple = { "hidden_size": "n_embd", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self ,UpperCAmelCase_=1_00 ,UpperCAmelCase_=5 ,UpperCAmelCase_=1 ,UpperCAmelCase_=1 ,UpperCAmelCase_=2_49 ,UpperCAmelCase_=6 ,UpperCAmelCase_=17 ,UpperCAmelCase_=25 ,UpperCAmelCase_=4 ,UpperCAmelCase_=4 ,UpperCAmelCase_=1_28 ,UpperCAmelCase_=0.1 ,UpperCAmelCase_=0.1 ,UpperCAmelCase_=0.1 ,UpperCAmelCase_=0.0006 ,UpperCAmelCase_=5_12 ,UpperCAmelCase_=0.02 ,UpperCAmelCase_=1E-12 ,UpperCAmelCase_=1 ,UpperCAmelCase_=True ,UpperCAmelCase_=1 ,UpperCAmelCase_=5_02_56 ,UpperCAmelCase_=5_02_56 ,**UpperCAmelCase_ ,): _lowercase : Dict = vocab_size _lowercase : List[str] = action_weight _lowercase : int = reward_weight _lowercase : List[Any] = value_weight _lowercase : List[str] = max_position_embeddings _lowercase : Any = block_size _lowercase : Any = action_dim _lowercase : List[str] = observation_dim _lowercase : Union[str, Any] = transition_dim _lowercase : str = learning_rate _lowercase : Tuple = n_layer _lowercase : Optional[int] = n_head _lowercase : List[str] = n_embd _lowercase : List[str] = embd_pdrop _lowercase : Optional[Any] = attn_pdrop _lowercase : List[Any] = resid_pdrop _lowercase : str = initializer_range _lowercase : Optional[Any] = layer_norm_eps _lowercase : List[Any] = kaiming_initializer_range _lowercase : List[Any] = use_cache super().__init__(pad_token_id=UpperCAmelCase_ ,bos_token_id=UpperCAmelCase_ ,eos_token_id=UpperCAmelCase_ ,**UpperCAmelCase_ )
336
1
import json import logging import os import socket import git import numpy as np import torch logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - PID: %(process)d - %(message)s""", datefmt="""%m/%d/%Y %H:%M:%S""", level=logging.INFO, ) __lowerCamelCase : Optional[int] = logging.getLogger(__name__) def A_ ( _lowerCAmelCase ) -> Tuple: UpperCamelCase : List[str] = git.Repo(search_parent_directories=lowercase_ ) UpperCamelCase : Tuple = { "repo_id": str(lowercase_ ), "repo_sha": str(repo.head.object.hexsha ), "repo_branch": str(repo.active_branch ), } with open(os.path.join(lowercase_ , "git_log.json" ) , "w" ) as f: json.dump(lowercase_ , lowercase_ , indent=4 ) def A_ ( _lowerCAmelCase ) -> str: if params.n_gpu <= 0: UpperCamelCase : Optional[Any] = 0 UpperCamelCase : Union[str, Any] = -1 UpperCamelCase : List[Any] = True UpperCamelCase : Union[str, Any] = False return assert torch.cuda.is_available() logger.info("Initializing GPUs" ) if params.n_gpu > 1: assert params.local_rank != -1 UpperCamelCase : int = int(os.environ["WORLD_SIZE"] ) UpperCamelCase : Union[str, Any] = int(os.environ["N_GPU_NODE"] ) UpperCamelCase : Optional[int] = int(os.environ["RANK"] ) # number of nodes / node ID UpperCamelCase : str = params.world_size // params.n_gpu_per_node UpperCamelCase : int = params.global_rank // params.n_gpu_per_node UpperCamelCase : Optional[int] = True assert params.n_nodes == int(os.environ["N_NODES"] ) assert params.node_id == int(os.environ["NODE_RANK"] ) # local job (single GPU) else: assert params.local_rank == -1 UpperCamelCase : Tuple = 1 UpperCamelCase : int = 0 UpperCamelCase : Optional[Any] = 0 UpperCamelCase : Tuple = 0 UpperCamelCase : List[Any] = 1 UpperCamelCase : str = 1 UpperCamelCase : Union[str, Any] = False # sanity checks assert params.n_nodes >= 1 assert 0 <= params.node_id < params.n_nodes assert 0 <= params.local_rank <= params.global_rank < params.world_size assert params.world_size == params.n_nodes * params.n_gpu_per_node # define whether this is the master process / if we are in multi-node distributed mode UpperCamelCase : int = params.node_id == 0 and params.local_rank == 0 UpperCamelCase : Tuple = params.n_nodes > 1 # summary UpperCamelCase : List[Any] = F"""--- Global rank: {params.global_rank} - """ logger.info(PREFIX + "Number of nodes: %i" % params.n_nodes ) logger.info(PREFIX + "Node ID : %i" % params.node_id ) logger.info(PREFIX + "Local rank : %i" % params.local_rank ) logger.info(PREFIX + "World size : %i" % params.world_size ) logger.info(PREFIX + "GPUs per node : %i" % params.n_gpu_per_node ) logger.info(PREFIX + "Master : %s" % str(params.is_master ) ) logger.info(PREFIX + "Multi-node : %s" % str(params.multi_node ) ) logger.info(PREFIX + "Multi-GPU : %s" % str(params.multi_gpu ) ) logger.info(PREFIX + "Hostname : %s" % socket.gethostname() ) # set GPU device torch.cuda.set_device(params.local_rank ) # initialize multi-GPU if params.multi_gpu: logger.info("Initializing PyTorch distributed" ) torch.distributed.init_process_group( init_method="env://" , backend="nccl" , ) def A_ ( _lowerCAmelCase ) -> int: np.random.seed(args.seed ) torch.manual_seed(args.seed ) if args.n_gpu > 0: torch.cuda.manual_seed_all(args.seed )
52
"""simple docstring""" import qiskit def _SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> qiskit.result.counts.Counts: A__ = qiskit.Aer.get_backend("aer_simulator" ) # Create a Quantum Circuit acting on the q register A__ = qiskit.QuantumCircuit(lowercase_ , lowercase_ ) # Apply X (NOT) Gate to Qubits 0 & 1 circuit.x(0 ) circuit.x(1 ) # Map the quantum measurement to the classical bits circuit.measure([0, 1] , [0, 1] ) # Execute the circuit on the qasm simulator A__ = qiskit.execute(lowercase_ , lowercase_ , shots=10_00 ) # Return the histogram data of the results of the experiment. return job.result().get_counts(lowercase_ ) if __name__ == "__main__": SCREAMING_SNAKE_CASE = single_qubit_measure(2, 2) print(f'Total count for various states are: {counts}')
247
0
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import normalizers from ....tokenization_utils_fast import PreTrainedTokenizerFast from ....utils import logging from .tokenization_retribert import RetriBertTokenizer __A : Tuple = logging.get_logger(__name__) __A : Any = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} __A : List[str] = { "vocab_file": { "yjernite/retribert-base-uncased": ( "https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/vocab.txt" ), }, "tokenizer_file": { "yjernite/retribert-base-uncased": ( "https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/tokenizer.json" ), }, } __A : Optional[Any] = { "yjernite/retribert-base-uncased": 512, } __A : int = { "yjernite/retribert-base-uncased": {"do_lower_case": True}, } class __snake_case ( _SCREAMING_SNAKE_CASE): """simple docstring""" lowercase = VOCAB_FILES_NAMES lowercase = PRETRAINED_VOCAB_FILES_MAP lowercase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase = PRETRAINED_INIT_CONFIGURATION lowercase = RetriBertTokenizer lowercase = ['input_ids', 'attention_mask'] def __init__( self : List[Any] , lowerCamelCase : Union[str, Any]=None , lowerCamelCase : List[str]=None , lowerCamelCase : str=True , lowerCamelCase : str="[UNK]" , lowerCamelCase : str="[SEP]" , lowerCamelCase : Optional[int]="[PAD]" , lowerCamelCase : List[Any]="[CLS]" , lowerCamelCase : Optional[Any]="[MASK]" , lowerCamelCase : Dict=True , lowerCamelCase : int=None , **lowerCamelCase : str , ) -> Optional[int]: super().__init__( lowerCamelCase , tokenizer_file=lowerCamelCase , do_lower_case=lowerCamelCase , unk_token=lowerCamelCase , sep_token=lowerCamelCase , pad_token=lowerCamelCase , cls_token=lowerCamelCase , mask_token=lowerCamelCase , tokenize_chinese_chars=lowerCamelCase , strip_accents=lowerCamelCase , **lowerCamelCase , ) lowerCAmelCase_ : Union[str, Any] = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("""lowercase""" , lowerCamelCase ) != do_lower_case or normalizer_state.get("""strip_accents""" , lowerCamelCase ) != strip_accents or normalizer_state.get("""handle_chinese_chars""" , lowerCamelCase ) != tokenize_chinese_chars ): lowerCAmelCase_ : int = getattr(lowerCamelCase , normalizer_state.pop("""type""" ) ) lowerCAmelCase_ : Dict = do_lower_case lowerCAmelCase_ : Optional[Any] = strip_accents lowerCAmelCase_ : List[str] = tokenize_chinese_chars lowerCAmelCase_ : Tuple = normalizer_class(**lowerCamelCase ) lowerCAmelCase_ : Tuple = do_lower_case def __lowercase ( self : Union[str, Any] , lowerCamelCase : Optional[Any] , lowerCamelCase : Optional[Any]=None ) -> int: lowerCAmelCase_ : Optional[Any] = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def __lowercase ( self : Dict , lowerCamelCase : List[int] , lowerCamelCase : Optional[List[int]] = None ) -> List[int]: lowerCAmelCase_ : str = [self.sep_token_id] lowerCAmelCase_ : Union[str, Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __lowercase ( self : Dict , lowerCamelCase : str , lowerCamelCase : Optional[str] = None ) -> Tuple[str]: lowerCAmelCase_ : Optional[int] = self._tokenizer.model.save(lowerCamelCase , name=lowerCamelCase ) return tuple(lowerCamelCase )
89
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, is_vision_available, ) __A : List[str] = { "configuration_owlvit": [ "OWLVIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "OwlViTConfig", "OwlViTOnnxConfig", "OwlViTTextConfig", "OwlViTVisionConfig", ], "processing_owlvit": ["OwlViTProcessor"], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Optional[int] = ["OwlViTFeatureExtractor"] __A : str = ["OwlViTImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Tuple = [ "OWLVIT_PRETRAINED_MODEL_ARCHIVE_LIST", "OwlViTModel", "OwlViTPreTrainedModel", "OwlViTTextModel", "OwlViTVisionModel", "OwlViTForObjectDetection", ] if TYPE_CHECKING: from .configuration_owlvit import ( OWLVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, OwlViTConfig, OwlViTOnnxConfig, OwlViTTextConfig, OwlViTVisionConfig, ) from .processing_owlvit import OwlViTProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_owlvit import OwlViTFeatureExtractor from .image_processing_owlvit import OwlViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_owlvit import ( OWLVIT_PRETRAINED_MODEL_ARCHIVE_LIST, OwlViTForObjectDetection, OwlViTModel, OwlViTPreTrainedModel, OwlViTTextModel, OwlViTVisionModel, ) else: import sys __A : List[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
89
1
from __future__ import annotations from typing import Any class __A : """simple docstring""" def __init__( self , lowerCamelCase__ ): """simple docstring""" __UpperCamelCase : Optional[Any] =num_of_nodes __UpperCamelCase : Tuple =[] __UpperCamelCase : Optional[int] ={} def __lowercase ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" self.m_edges.append([u_node, v_node, weight] ) def __lowercase ( self , lowerCamelCase__ ): """simple docstring""" if self.m_component[u_node] == u_node: return u_node return self.find_component(self.m_component[u_node] ) def __lowercase ( self , lowerCamelCase__ ): """simple docstring""" if self.m_component[u_node] != u_node: for k in self.m_component: __UpperCamelCase : Any =self.find_component(UpperCAmelCase__ ) def __lowercase ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" if component_size[u_node] <= component_size[v_node]: __UpperCamelCase : Dict =v_node component_size[v_node] += component_size[u_node] self.set_component(UpperCAmelCase__ ) elif component_size[u_node] >= component_size[v_node]: __UpperCamelCase : int =self.find_component(UpperCAmelCase__ ) component_size[u_node] += component_size[v_node] self.set_component(UpperCAmelCase__ ) def __lowercase ( self ): """simple docstring""" __UpperCamelCase : Any =[] __UpperCamelCase : List[Any] =0 __UpperCamelCase : int =[-1] * self.m_num_of_nodes # A list of components (initialized to all of the nodes) for node in range(self.m_num_of_nodes ): self.m_component.update({node: node} ) component_size.append(1 ) __UpperCamelCase : Any =self.m_num_of_nodes while num_of_components > 1: for edge in self.m_edges: __UpperCamelCase , __UpperCamelCase , __UpperCamelCase : List[str] =edge __UpperCamelCase : Optional[Any] =self.m_component[u] __UpperCamelCase : List[Any] =self.m_component[v] if u_component != v_component: for component in (u_component, v_component): if ( minimum_weight_edge[component] == -1 or minimum_weight_edge[component][2] > w ): __UpperCamelCase : List[str] =[u, v, w] for edge in minimum_weight_edge: if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ): __UpperCamelCase , __UpperCamelCase , __UpperCamelCase : Union[str, Any] =edge __UpperCamelCase : Union[str, Any] =self.m_component[u] __UpperCamelCase : Dict =self.m_component[v] if u_component != v_component: mst_weight += w self.union(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) print(f'Added edge [{u} - {v}]\nAdded weight: {w}\n' ) num_of_components -= 1 __UpperCamelCase : Optional[int] =[-1] * self.m_num_of_nodes print(f'The total weight of the minimal spanning tree is: {mst_weight}' ) def A ( ) -> None: pass if __name__ == "__main__": import doctest doctest.testmod()
71
"""simple docstring""" import inspect import unittest import numpy as np from transformers import BeitConfig from transformers.testing_utils import require_flax, require_vision, slow from transformers.utils import cached_property, is_flax_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor if is_flax_available(): import jax from transformers import FlaxBeitForImageClassification, FlaxBeitForMaskedImageModeling, FlaxBeitModel if is_vision_available(): from PIL import Image from transformers import BeitImageProcessor class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def __init__( self : str, UpperCAmelCase__ : List[Any], UpperCAmelCase__ : int=1_0_0, UpperCAmelCase__ : Any=1_3, UpperCAmelCase__ : List[Any]=3_0, UpperCAmelCase__ : Dict=2, UpperCAmelCase__ : Any=3, UpperCAmelCase__ : Optional[Any]=True, UpperCAmelCase__ : List[str]=True, UpperCAmelCase__ : Optional[Any]=3_2, UpperCAmelCase__ : Any=5, UpperCAmelCase__ : Any=4, UpperCAmelCase__ : Any=3_7, UpperCAmelCase__ : Optional[int]="gelu", UpperCAmelCase__ : Dict=0.1, UpperCAmelCase__ : Optional[int]=0.1, UpperCAmelCase__ : Dict=1_0, UpperCAmelCase__ : Tuple=0.02, UpperCAmelCase__ : List[Any]=3, ): __lowercase = parent __lowercase = vocab_size __lowercase = batch_size __lowercase = image_size __lowercase = patch_size __lowercase = num_channels __lowercase = is_training __lowercase = use_labels __lowercase = hidden_size __lowercase = num_hidden_layers __lowercase = num_attention_heads __lowercase = intermediate_size __lowercase = hidden_act __lowercase = hidden_dropout_prob __lowercase = attention_probs_dropout_prob __lowercase = type_sequence_label_size __lowercase = initializer_range # in BeiT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) __lowercase = (image_size // patch_size) ** 2 __lowercase = num_patches + 1 def _lowercase ( self : int ): __lowercase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __lowercase = None if self.use_labels: __lowercase = ids_tensor([self.batch_size], self.type_sequence_label_size ) __lowercase = BeitConfig( vocab_size=self.vocab_size, image_size=self.image_size, patch_size=self.patch_size, num_channels=self.num_channels, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, is_decoder=UpperCAmelCase__, initializer_range=self.initializer_range, ) return config, pixel_values, labels def _lowercase ( self : Any, UpperCAmelCase__ : List[Any], UpperCAmelCase__ : List[str], UpperCAmelCase__ : List[str] ): __lowercase = FlaxBeitModel(config=UpperCAmelCase__ ) __lowercase = model(UpperCAmelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size) ) def _lowercase ( self : Optional[Any], UpperCAmelCase__ : Optional[Any], UpperCAmelCase__ : int, UpperCAmelCase__ : List[Any] ): __lowercase = FlaxBeitForMaskedImageModeling(config=UpperCAmelCase__ ) __lowercase = model(UpperCAmelCase__ ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length - 1, self.vocab_size) ) def _lowercase ( self : Dict, UpperCAmelCase__ : List[Any], UpperCAmelCase__ : Any, UpperCAmelCase__ : Union[str, Any] ): __lowercase = self.type_sequence_label_size __lowercase = FlaxBeitForImageClassification(config=UpperCAmelCase__ ) __lowercase = model(UpperCAmelCase__ ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.type_sequence_label_size) ) # test greyscale images __lowercase = 1 __lowercase = FlaxBeitForImageClassification(UpperCAmelCase__ ) __lowercase = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __lowercase = model(UpperCAmelCase__ ) def _lowercase ( self : List[str] ): __lowercase = self.prepare_config_and_inputs() ( ( __lowercase ) ,( __lowercase ) ,( __lowercase ) , ) = config_and_inputs __lowercase = {"pixel_values": pixel_values} return config, inputs_dict @require_flax class _lowerCAmelCase ( lowercase ,unittest.TestCase ): """simple docstring""" __UpperCAmelCase : str = ( (FlaxBeitModel, FlaxBeitForImageClassification, FlaxBeitForMaskedImageModeling) if is_flax_available() else () ) def _lowercase ( self : List[Any] ): __lowercase = FlaxBeitModelTester(self ) __lowercase = ConfigTester(self, config_class=UpperCAmelCase__, has_text_modality=UpperCAmelCase__, hidden_size=3_7 ) def _lowercase ( self : Union[str, Any] ): self.config_tester.run_common_tests() def _lowercase ( self : Optional[int] ): __lowercase ,__lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase = model_class(UpperCAmelCase__ ) __lowercase = inspect.signature(model.__call__ ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowercase = [*signature.parameters.keys()] __lowercase = ["pixel_values"] self.assertListEqual(arg_names[:1], UpperCAmelCase__ ) def _lowercase ( self : Tuple ): __lowercase ,__lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): __lowercase = self._prepare_for_class(UpperCAmelCase__, UpperCAmelCase__ ) __lowercase = model_class(UpperCAmelCase__ ) @jax.jit def model_jitted(UpperCAmelCase__ : str, **UpperCAmelCase__ : Dict ): return model(pixel_values=UpperCAmelCase__, **UpperCAmelCase__ ) with self.subTest("JIT Enabled" ): __lowercase = model_jitted(**UpperCAmelCase__ ).to_tuple() with self.subTest("JIT Disabled" ): with jax.disable_jit(): __lowercase = model_jitted(**UpperCAmelCase__ ).to_tuple() self.assertEqual(len(UpperCAmelCase__ ), len(UpperCAmelCase__ ) ) for jitted_output, output in zip(UpperCAmelCase__, UpperCAmelCase__ ): self.assertEqual(jitted_output.shape, output.shape ) def _lowercase ( self : List[str] ): __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase__ ) def _lowercase ( self : int ): __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*UpperCAmelCase__ ) def _lowercase ( self : Tuple ): __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*UpperCAmelCase__ ) @slow def _lowercase ( self : Union[str, Any] ): for model_class_name in self.all_model_classes: __lowercase = model_class_name.from_pretrained("microsoft/beit-base-patch16-224" ) __lowercase = model(np.ones((1, 3, 2_2_4, 2_2_4) ) ) self.assertIsNotNone(UpperCAmelCase__ ) def _A ( ) -> str: '''simple docstring''' __lowercase = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png") return image @require_vision @require_flax class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" @cached_property def _lowercase ( self : Optional[int] ): return BeitImageProcessor.from_pretrained("microsoft/beit-base-patch16-224" ) if is_vision_available() else None @slow def _lowercase ( self : Any ): __lowercase = FlaxBeitForMaskedImageModeling.from_pretrained("microsoft/beit-base-patch16-224-pt22k" ) __lowercase = self.default_image_processor __lowercase = prepare_img() __lowercase = image_processor(images=UpperCAmelCase__, return_tensors="np" ).pixel_values # prepare bool_masked_pos __lowercase = np.ones((1, 1_9_6), dtype=UpperCAmelCase__ ) # forward pass __lowercase = model(pixel_values=UpperCAmelCase__, bool_masked_pos=UpperCAmelCase__ ) __lowercase = outputs.logits # verify the logits __lowercase = (1, 1_9_6, 8_1_9_2) self.assertEqual(logits.shape, UpperCAmelCase__ ) __lowercase = np.array( [[-3.2_437, 0.5_072, -13.9_174], [-3.2_456, 0.4_948, -13.9_401], [-3.2_033, 0.5_121, -13.8_550]] ) self.assertTrue(np.allclose(logits[bool_masked_pos][:3, :3], UpperCAmelCase__, atol=1E-2 ) ) @slow def _lowercase ( self : Any ): __lowercase = FlaxBeitForImageClassification.from_pretrained("microsoft/beit-base-patch16-224" ) __lowercase = self.default_image_processor __lowercase = prepare_img() __lowercase = image_processor(images=UpperCAmelCase__, return_tensors="np" ) # forward pass __lowercase = model(**UpperCAmelCase__ ) __lowercase = outputs.logits # verify the logits __lowercase = (1, 1_0_0_0) self.assertEqual(logits.shape, UpperCAmelCase__ ) __lowercase = np.array([-1.2_385, -1.0_987, -1.0_108] ) self.assertTrue(np.allclose(logits[0, :3], UpperCAmelCase__, atol=1E-4 ) ) __lowercase = 2_8_1 self.assertEqual(logits.argmax(-1 ).item(), UpperCAmelCase__ ) @slow def _lowercase ( self : List[str] ): __lowercase = FlaxBeitForImageClassification.from_pretrained("microsoft/beit-large-patch16-224-pt22k-ft22k" ) __lowercase = self.default_image_processor __lowercase = prepare_img() __lowercase = image_processor(images=UpperCAmelCase__, return_tensors="np" ) # forward pass __lowercase = model(**UpperCAmelCase__ ) __lowercase = outputs.logits # verify the logits __lowercase = (1, 2_1_8_4_1) self.assertEqual(logits.shape, UpperCAmelCase__ ) __lowercase = np.array([1.6_881, -0.2_787, 0.5_901] ) self.assertTrue(np.allclose(logits[0, :3], UpperCAmelCase__, atol=1E-4 ) ) __lowercase = 2_3_9_6 self.assertEqual(logits.argmax(-1 ).item(), UpperCAmelCase__ )
17
0
import inspect import unittest import numpy as np from tests.test_modeling_common import floats_tensor from transformers import MaskaFormerConfig, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MaskaFormerForUniversalSegmentation, MaskaFormerModel if is_vision_available(): from transformers import MaskaFormerImageProcessor if is_vision_available(): from PIL import Image class __A: def __init__( self , _snake_case , _snake_case=2 , _snake_case=True , _snake_case=False , _snake_case=10 , _snake_case=3 , _snake_case=32 * 8 , _snake_case=32 * 8 , _snake_case=4 , _snake_case=64 , ) -> str: '''simple docstring''' __a = parent __a = batch_size __a = is_training __a = use_auxiliary_loss __a = num_queries __a = num_channels __a = min_size __a = max_size __a = num_labels __a = hidden_dim __a = hidden_dim def SCREAMING_SNAKE_CASE_ ( self ) -> Any: '''simple docstring''' __a = floats_tensor([self.batch_size, self.num_channels, self.min_size, self.max_size] ).to( _snake_case ) __a = torch.ones([self.batch_size, self.min_size, self.max_size] , device=_snake_case ) __a = ( torch.rand([self.batch_size, self.num_labels, self.min_size, self.max_size] , device=_snake_case ) > 0.5 ).float() __a = (torch.rand((self.batch_size, self.num_labels) , device=_snake_case ) > 0.5).long() __a = self.get_config() return config, pixel_values, pixel_mask, mask_labels, class_labels def SCREAMING_SNAKE_CASE_ ( self ) -> List[str]: '''simple docstring''' __a = MaskaFormerConfig( hidden_size=self.hidden_dim , ) __a = self.num_queries __a = self.num_labels __a = [1, 1, 1, 1] __a = self.num_channels __a = 64 __a = 128 __a = self.hidden_dim __a = self.hidden_dim __a = self.hidden_dim return config def SCREAMING_SNAKE_CASE_ ( self ) -> List[Any]: '''simple docstring''' __a , __a , __a , __a , __a = self.prepare_config_and_inputs() __a = {'''pixel_values''': pixel_values, '''pixel_mask''': pixel_mask} return config, inputs_dict def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case ) -> str: '''simple docstring''' __a = output.encoder_hidden_states __a = output.pixel_decoder_hidden_states __a = output.transformer_decoder_hidden_states self.parent.assertTrue(len(_snake_case ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(_snake_case ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(_snake_case ) , config.decoder_layers ) def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case , _snake_case , _snake_case=False ) -> Any: '''simple docstring''' with torch.no_grad(): __a = MaskaFormerModel(config=_snake_case ) model.to(_snake_case ) model.eval() __a = model(pixel_values=_snake_case , pixel_mask=_snake_case ) __a = model(_snake_case , output_hidden_states=_snake_case ) self.parent.assertEqual( output.transformer_decoder_last_hidden_state.shape , (self.batch_size, self.num_queries, self.hidden_dim) , ) # let's ensure the other two hidden state exists self.parent.assertTrue(output.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(output.encoder_last_hidden_state is not None ) if output_hidden_states: self.check_output_hidden_state(_snake_case , _snake_case ) def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ) -> Union[str, Any]: '''simple docstring''' __a = MaskaFormerForUniversalSegmentation(config=_snake_case ) model.to(_snake_case ) model.eval() def comm_check_on_output(_snake_case ): # let's still check that all the required stuff is there self.parent.assertTrue(result.transformer_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.encoder_last_hidden_state is not None ) # okay, now we need to check the logits shape # due to the encoder compression, masks have a //4 spatial size self.parent.assertEqual( result.masks_queries_logits.shape , (self.batch_size, self.num_queries, self.min_size // 4, self.max_size // 4) , ) # + 1 for null class self.parent.assertEqual( result.class_queries_logits.shape , (self.batch_size, self.num_queries, self.num_labels + 1) ) with torch.no_grad(): __a = model(pixel_values=_snake_case , pixel_mask=_snake_case ) __a = model(_snake_case ) comm_check_on_output(_snake_case ) __a = model( pixel_values=_snake_case , pixel_mask=_snake_case , mask_labels=_snake_case , class_labels=_snake_case ) comm_check_on_output(_snake_case ) self.parent.assertTrue(result.loss is not None ) self.parent.assertEqual(result.loss.shape , torch.Size([1] ) ) @require_torch class __A( a , a , unittest.TestCase ): snake_case_ = (MaskaFormerModel, MaskaFormerForUniversalSegmentation) if is_torch_available() else () snake_case_ = {'''feature-extraction''': MaskaFormerModel} if is_torch_available() else {} snake_case_ = False snake_case_ = False snake_case_ = False snake_case_ = False def SCREAMING_SNAKE_CASE_ ( self ) -> Dict: '''simple docstring''' __a = MaskaFormerModelTester(self ) __a = ConfigTester(self , config_class=_snake_case , has_text_modality=_snake_case ) def SCREAMING_SNAKE_CASE_ ( self ) -> Optional[int]: '''simple docstring''' self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE_ ( self ) -> List[str]: '''simple docstring''' __a , __a = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskaformer_model(_snake_case , **_snake_case , output_hidden_states=_snake_case ) def SCREAMING_SNAKE_CASE_ ( self ) -> List[Any]: '''simple docstring''' __a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_maskaformer_instance_segmentation_head_model(*_snake_case ) @unittest.skip(reason='''Mask2Former does not use inputs_embeds''' ) def SCREAMING_SNAKE_CASE_ ( self ) -> Union[str, Any]: '''simple docstring''' pass @unittest.skip(reason='''Mask2Former does not have a get_input_embeddings method''' ) def SCREAMING_SNAKE_CASE_ ( self ) -> List[Any]: '''simple docstring''' pass @unittest.skip(reason='''Mask2Former is not a generative model''' ) def SCREAMING_SNAKE_CASE_ ( self ) -> List[Any]: '''simple docstring''' pass @unittest.skip(reason='''Mask2Former does not use token embeddings''' ) def SCREAMING_SNAKE_CASE_ ( self ) -> List[str]: '''simple docstring''' pass @require_torch_multi_gpu @unittest.skip( reason='''Mask2Former has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`''' ) def SCREAMING_SNAKE_CASE_ ( self ) -> List[Any]: '''simple docstring''' pass @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def SCREAMING_SNAKE_CASE_ ( self ) -> Optional[int]: '''simple docstring''' pass def SCREAMING_SNAKE_CASE_ ( self ) -> str: '''simple docstring''' __a , __a = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __a = model_class(_snake_case ) __a = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __a = [*signature.parameters.keys()] __a = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , _snake_case ) @slow def SCREAMING_SNAKE_CASE_ ( self ) -> Any: '''simple docstring''' for model_name in ["facebook/mask2former-swin-small-coco-instance"]: __a = MaskaFormerModel.from_pretrained(_snake_case ) self.assertIsNotNone(_snake_case ) def SCREAMING_SNAKE_CASE_ ( self ) -> Union[str, Any]: '''simple docstring''' __a = (self.model_tester.min_size,) * 2 __a = { '''pixel_values''': torch.randn((2, 3, *size) , device=_snake_case ), '''mask_labels''': torch.randn((2, 10, *size) , device=_snake_case ), '''class_labels''': torch.zeros(2 , 10 , device=_snake_case ).long(), } __a = self.model_tester.get_config() __a = MaskaFormerForUniversalSegmentation(_snake_case ).to(_snake_case ) __a = model(**_snake_case ) self.assertTrue(outputs.loss is not None ) def SCREAMING_SNAKE_CASE_ ( self ) -> Optional[Any]: '''simple docstring''' __a , __a = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskaformer_model(_snake_case , **_snake_case , output_hidden_states=_snake_case ) def SCREAMING_SNAKE_CASE_ ( self ) -> Tuple: '''simple docstring''' __a , __a = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __a = model_class(_snake_case ).to(_snake_case ) __a = model(**_snake_case , output_attentions=_snake_case ) self.assertTrue(outputs.attentions is not None ) def SCREAMING_SNAKE_CASE_ ( self ) -> str: '''simple docstring''' if not self.model_tester.is_training: return __a = self.all_model_classes[1] __a , __a , __a , __a , __a = self.model_tester.prepare_config_and_inputs() __a = model_class(_snake_case ) model.to(_snake_case ) model.train() __a = model(_snake_case , mask_labels=_snake_case , class_labels=_snake_case ).loss loss.backward() def SCREAMING_SNAKE_CASE_ ( self ) -> Union[str, Any]: '''simple docstring''' __a = self.all_model_classes[1] __a , __a , __a , __a , __a = self.model_tester.prepare_config_and_inputs() __a = True __a = True __a = model_class(_snake_case ).to(_snake_case ) model.train() __a = model(_snake_case , mask_labels=_snake_case , class_labels=_snake_case ) __a = outputs.encoder_hidden_states[0] encoder_hidden_states.retain_grad() __a = outputs.pixel_decoder_hidden_states[0] pixel_decoder_hidden_states.retain_grad() __a = outputs.transformer_decoder_hidden_states[0] transformer_decoder_hidden_states.retain_grad() __a = outputs.attentions[0] attentions.retain_grad() outputs.loss.backward(retain_graph=_snake_case ) self.assertIsNotNone(encoder_hidden_states.grad ) self.assertIsNotNone(pixel_decoder_hidden_states.grad ) self.assertIsNotNone(transformer_decoder_hidden_states.grad ) self.assertIsNotNone(attentions.grad ) A : Any = 1E-4 def __lowerCAmelCase ( ) -> int: __a = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_vision @slow class __A( unittest.TestCase ): @cached_property def SCREAMING_SNAKE_CASE_ ( self ) -> Dict: '''simple docstring''' return "facebook/mask2former-swin-small-coco-instance" @cached_property def SCREAMING_SNAKE_CASE_ ( self ) -> Dict: '''simple docstring''' return MaskaFormerImageProcessor.from_pretrained(self.model_checkpoints ) if is_vision_available() else None def SCREAMING_SNAKE_CASE_ ( self ) -> str: '''simple docstring''' __a = MaskaFormerModel.from_pretrained(self.model_checkpoints ).to(_snake_case ) __a = self.default_image_processor __a = prepare_img() __a = image_processor(_snake_case , return_tensors='''pt''' ).to(_snake_case ) __a = inputs['''pixel_values'''].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(_snake_case , (1, 3, 384, 384) ) with torch.no_grad(): __a = model(**_snake_case ) __a = torch.tensor( [[-0.2790, -1.0717, -1.1668], [-0.5128, -0.3128, -0.4987], [-0.5832, 0.1971, -0.0197]] ).to(_snake_case ) self.assertTrue( torch.allclose( outputs.encoder_last_hidden_state[0, 0, :3, :3] , _snake_case , atol=_snake_case ) ) __a = torch.tensor( [[0.8973, 1.1847, 1.1776], [1.1934, 1.5040, 1.5128], [1.1153, 1.4486, 1.4951]] ).to(_snake_case ) self.assertTrue( torch.allclose( outputs.pixel_decoder_last_hidden_state[0, 0, :3, :3] , _snake_case , atol=_snake_case ) ) __a = torch.tensor( [[2.1152, 1.7000, -0.8603], [1.5808, 1.8004, -0.9353], [1.6043, 1.7495, -0.5999]] ).to(_snake_case ) self.assertTrue( torch.allclose( outputs.transformer_decoder_last_hidden_state[0, :3, :3] , _snake_case , atol=_snake_case ) ) def SCREAMING_SNAKE_CASE_ ( self ) -> List[str]: '''simple docstring''' __a = MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints ).to(_snake_case ).eval() __a = self.default_image_processor __a = prepare_img() __a = image_processor(_snake_case , return_tensors='''pt''' ).to(_snake_case ) __a = inputs['''pixel_values'''].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(_snake_case , (1, 3, 384, 384) ) with torch.no_grad(): __a = model(**_snake_case ) # masks_queries_logits __a = outputs.masks_queries_logits self.assertEqual( masks_queries_logits.shape , (1, model.config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) ) __a = [ [-8.7839, -9.0056, -8.8121], [-7.4104, -7.0313, -6.5401], [-6.6105, -6.3427, -6.4675], ] __a = torch.tensor(_snake_case ).to(_snake_case ) self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] , _snake_case , atol=_snake_case ) ) # class_queries_logits __a = outputs.class_queries_logits self.assertEqual(class_queries_logits.shape , (1, model.config.num_queries, model.config.num_labels + 1) ) __a = torch.tensor( [ [1.8324, -8.0835, -4.1922], [0.8450, -9.0050, -3.6053], [0.3045, -7.7293, -3.0275], ] ).to(_snake_case ) self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] , _snake_case , atol=_snake_case ) ) def SCREAMING_SNAKE_CASE_ ( self ) -> int: '''simple docstring''' __a = MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints ).to(_snake_case ).eval() __a = self.default_image_processor __a = image_processor( [np.zeros((3, 800, 1_333) ), np.zeros((3, 800, 1_333) )] , segmentation_maps=[np.zeros((384, 384) ).astype(np.floataa ), np.zeros((384, 384) ).astype(np.floataa )] , return_tensors='''pt''' , ) __a = inputs['''pixel_values'''].to(_snake_case ) __a = [el.to(_snake_case ) for el in inputs['''mask_labels''']] __a = [el.to(_snake_case ) for el in inputs['''class_labels''']] with torch.no_grad(): __a = model(**_snake_case ) self.assertTrue(outputs.loss is not None )
33
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING A : List[Any] = logging.get_logger(__name__) A : Optional[Any] = { 'microsoft/table-transformer-detection': ( 'https://huggingface.co/microsoft/table-transformer-detection/resolve/main/config.json' ), } class __A( a ): snake_case_ = '''table-transformer''' snake_case_ = ['''past_key_values'''] snake_case_ = { '''hidden_size''': '''d_model''', '''num_attention_heads''': '''encoder_attention_heads''', } def __init__( self , _snake_case=True , _snake_case=None , _snake_case=3 , _snake_case=100 , _snake_case=6 , _snake_case=2_048 , _snake_case=8 , _snake_case=6 , _snake_case=2_048 , _snake_case=8 , _snake_case=0.0 , _snake_case=0.0 , _snake_case=True , _snake_case="relu" , _snake_case=256 , _snake_case=0.1 , _snake_case=0.0 , _snake_case=0.0 , _snake_case=0.02 , _snake_case=1.0 , _snake_case=False , _snake_case="sine" , _snake_case="resnet50" , _snake_case=True , _snake_case=False , _snake_case=1 , _snake_case=5 , _snake_case=2 , _snake_case=1 , _snake_case=1 , _snake_case=5 , _snake_case=2 , _snake_case=0.1 , **_snake_case , ) -> int: '''simple docstring''' if backbone_config is not None and use_timm_backbone: raise ValueError('''You can\'t specify both `backbone_config` and `use_timm_backbone`.''' ) if not use_timm_backbone: if backbone_config is None: logger.info('''`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.''' ) __a = CONFIG_MAPPING['''resnet'''](out_features=['''stage4'''] ) elif isinstance(_snake_case , _snake_case ): __a = backbone_config.get('''model_type''' ) __a = CONFIG_MAPPING[backbone_model_type] __a = config_class.from_dict(_snake_case ) # set timm attributes to None __a , __a , __a = None, None, None __a = use_timm_backbone __a = backbone_config __a = num_channels __a = num_queries __a = d_model __a = encoder_ffn_dim __a = encoder_layers __a = encoder_attention_heads __a = decoder_ffn_dim __a = decoder_layers __a = decoder_attention_heads __a = dropout __a = attention_dropout __a = activation_dropout __a = activation_function __a = init_std __a = init_xavier_std __a = encoder_layerdrop __a = decoder_layerdrop __a = encoder_layers __a = auxiliary_loss __a = position_embedding_type __a = backbone __a = use_pretrained_backbone __a = dilation # Hungarian matcher __a = class_cost __a = bbox_cost __a = giou_cost # Loss coefficients __a = mask_loss_coefficient __a = dice_loss_coefficient __a = bbox_loss_coefficient __a = giou_loss_coefficient __a = eos_coefficient super().__init__(is_encoder_decoder=_snake_case , **_snake_case ) @property def SCREAMING_SNAKE_CASE_ ( self ) -> int: '''simple docstring''' return self.encoder_attention_heads @property def SCREAMING_SNAKE_CASE_ ( self ) -> int: '''simple docstring''' return self.d_model class __A( a ): snake_case_ = version.parse('''1.11''' ) @property def SCREAMING_SNAKE_CASE_ ( self ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ('''pixel_mask''', {0: '''batch'''}), ] ) @property def SCREAMING_SNAKE_CASE_ ( self ) -> float: '''simple docstring''' return 1E-5 @property def SCREAMING_SNAKE_CASE_ ( self ) -> int: '''simple docstring''' return 12
33
1
from google.protobuf import descriptor as _descriptor from google.protobuf import descriptor_pool as _descriptor_pool from google.protobuf import symbol_database as _symbol_database from google.protobuf.internal import builder as _builder # @@protoc_insertion_point(imports) UpperCAmelCase : Tuple =_symbol_database.Default() UpperCAmelCase : List[Any] =_descriptor_pool.Default().AddSerializedFile( b"""\n\x19sentencepiece_model.proto\x12\rsentencepiece\"\x80\x0c\n\x0bTrainerSpec\x12\r\n\x05input\x18\x01 \x03(\t\x12\x14\n\x0cinput_format\x18\x07 \x01(\t\x12\x14\n\x0cmodel_prefix\x18\x02 \x01(\t\x12\x41\n\nmodel_type\x18\x03 \x01(\x0e\x32$.sentencepiece.TrainerSpec.ModelType:\x07UNIGRAM\x12\x18\n\nvocab_size\x18\x04 \x01(\x05:\x04\x38\x30\x30\x30\x12\x17\n\x0f\x61\x63\x63\x65pt_language\x18\x05 \x03(\t\x12 \n\x15self_test_sample_size\x18\x06 \x01(\x05:\x01\x30\x12*\n\x1b\x65nable_differential_privacy\x18\x32 \x01(\x08:\x05\x66\x61lse\x12+\n differential_privacy_noise_level\x18\x33 \x01(\x02:\x01\x30\x12\x32\n\'differential_privacy_clipping_threshold\x18\x34 \x01(\x04:\x01\x30\x12\"\n\x12\x63haracter_coverage\x18\n \x01(\x02:\x06\x30.9995\x12\x1e\n\x13input_sentence_size\x18\x0b \x01(\x04:\x01\x30\x12$\n\x16shuffle_input_sentence\x18\x13 \x01(\x08:\x04true\x12 \n\x14mining_sentence_size\x18\x0c \x01(\x05\x42\x02\x18\x01\x12\"\n\x16training_sentence_size\x18\r \x01(\x05\x42\x02\x18\x01\x12(\n\x17seed_sentencepiece_size\x18\x0e \x01(\x05:\x07\x31\x30\x30\x30\x30\x30\x30\x12\x1e\n\x10shrinking_factor\x18\x0f \x01(\x02:\x04\x30.75\x12!\n\x13max_sentence_length\x18\x12 \x01(\x05:\x04\x34\x31\x39\x32\x12\x17\n\x0bnum_threads\x18\x10 \x01(\x05:\x02\x31\x36\x12\x1d\n\x12num_sub_iterations\x18\x11 \x01(\x05:\x01\x32\x12$\n\x18max_sentencepiece_length\x18\x14 \x01(\x05:\x02\x31\x36\x12%\n\x17split_by_unicode_script\x18\x15 \x01(\x08:\x04true\x12\x1d\n\x0fsplit_by_number\x18\x17 \x01(\x08:\x04true\x12!\n\x13split_by_whitespace\x18\x16 \x01(\x08:\x04true\x12)\n\x1atreat_whitespace_as_suffix\x18\x18 \x01(\x08:\x05\x66\x61lse\x12+\n\x1c\x61llow_whitespace_only_pieces\x18\x1a \x01(\x08:\x05\x66\x61lse\x12\x1b\n\x0csplit_digits\x18\x19 \x01(\x08:\x05\x66\x61lse\x12#\n\x19pretokenization_delimiter\x18\x35 \x01(\t:\x00\x12\x17\n\x0f\x63ontrol_symbols\x18\x1e \x03(\t\x12\x1c\n\x14user_defined_symbols\x18\x1f \x03(\t\x12\x16\n\x0erequired_chars\x18$ \x01(\t\x12\x1c\n\rbyte_fallback\x18# \x01(\x08:\x05\x66\x61lse\x12+\n\x1dvocabulary_output_piece_score\x18 \x01(\x08:\x04true\x12\x1e\n\x10hard_vocab_limit\x18! \x01(\x08:\x04true\x12\x1c\n\ruse_all_vocab\x18\" \x01(\x08:\x05\x66\x61lse\x12\x11\n\x06unk_id\x18( \x01(\x05:\x01\x30\x12\x11\n\x06\x62os_id\x18) \x01(\x05:\x01\x31\x12\x11\n\x06\x65os_id\x18* \x01(\x05:\x01\x32\x12\x12\n\x06pad_id\x18+ \x01(\x05:\x02-1\x12\x18\n\tunk_piece\x18- \x01(\t:\x05<unk>\x12\x16\n\tbos_piece\x18. \x01(\t:\x03<s>\x12\x17\n\teos_piece\x18/ \x01(\t:\x04</s>\x12\x18\n\tpad_piece\x18\x30 \x01(\t:\x05<pad>\x12\x1a\n\x0bunk_surface\x18, \x01(\t:\x05 \xe2\x81\x87 \x12+\n\x1ctrain_extremely_large_corpus\x18\x31 \x01(\x08:\x05\x66\x61lse\"5\n\tModelType\x12\x0b\n\x07UNIGRAM\x10\x01\x12\x07\n\x03\x42PE\x10\x02\x12\x08\n\x04WORD\x10\x03\x12\x08\n\x04\x43HAR\x10\x04*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\"\xd1\x01\n\x0eNormalizerSpec\x12\x0c\n\x04name\x18\x01 \x01(\t\x12\x1c\n\x14precompiled_charsmap\x18\x02 \x01(\x0c\x12\x1e\n\x10\x61\x64\x64_dummy_prefix\x18\x03 \x01(\x08:\x04true\x12&\n\x18remove_extra_whitespaces\x18\x04 \x01(\x08:\x04true\x12 \n\x12\x65scape_whitespaces\x18\x05 \x01(\x08:\x04true\x12\x1e\n\x16normalization_rule_tsv\x18\x06 \x01(\t*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\"y\n\x0cSelfTestData\x12\x33\n\x07samples\x18\x01 \x03(\x0b\x32\".sentencepiece.SelfTestData.Sample\x1a)\n\x06Sample\x12\r\n\x05input\x18\x01 \x01(\t\x12\x10\n\x08\x65xpected\x18\x02 \x01(\t*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\"\xfe\x03\n\nModelProto\x12\x37\n\x06pieces\x18\x01 \x03(\x0b\x32\'.sentencepiece.ModelProto.SentencePiece\x12\x30\n\x0ctrainer_spec\x18\x02 \x01(\x0b\x32\x1a.sentencepiece.TrainerSpec\x12\x36\n\x0fnormalizer_spec\x18\x03 \x01(\x0b\x32\x1d.sentencepiece.NormalizerSpec\x12\x33\n\x0eself_test_data\x18\x04 \x01(\x0b\x32\x1b.sentencepiece.SelfTestData\x12\x38\n\x11\x64\x65normalizer_spec\x18\x05 \x01(\x0b\x32\x1d.sentencepiece.NormalizerSpec\x1a\xd2\x01\n\rSentencePiece\x12\r\n\x05piece\x18\x01 \x01(\t\x12\r\n\x05score\x18\x02 \x01(\x02\x12\x42\n\x04type\x18\x03 \x01(\x0e\x32,.sentencepiece.ModelProto.SentencePiece.Type:\x06NORMAL\"T\n\x04Type\x12\n\n\x06NORMAL\x10\x01\x12\x0b\n\x07UNKNOWN\x10\x02\x12\x0b\n\x07\x43ONTROL\x10\x03\x12\x10\n\x0cUSER_DEFINED\x10\x04\x12\x08\n\x04\x42YTE\x10\x06\x12\n\n\x06UNUSED\x10\x05*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\x42\x02H\x03""" ) UpperCAmelCase : Optional[int] =globals() _builder.BuildMessageAndEnumDescriptors(DESCRIPTOR, _globals) _builder.BuildTopDescriptorsAndMessages(DESCRIPTOR, """sentencepiece_model_pb2""", _globals) if _descriptor._USE_C_DESCRIPTORS is False: UpperCAmelCase : str =None UpperCAmelCase : List[Any] =b"""H\003""" # (generated by protobuf compiler, but `_TRAINERSPEC` is not defined) # _TRAINERSPEC.fields_by_name["mining_sentence_size"]._options = None # _TRAINERSPEC.fields_by_name["mining_sentence_size"]._serialized_options = b"\030\001" # _TRAINERSPEC.fields_by_name["training_sentence_size"]._options = None # _TRAINERSPEC.fields_by_name["training_sentence_size"]._serialized_options = b"\030\001" UpperCAmelCase : str =45 UpperCAmelCase : Optional[Any] =1581 UpperCAmelCase : Dict =1517 UpperCAmelCase : str =1570 UpperCAmelCase : Optional[int] =1584 UpperCAmelCase : str =1793 UpperCAmelCase : Any =1795 UpperCAmelCase : Dict =1916 UpperCAmelCase : str =1864 UpperCAmelCase : Dict =1905 UpperCAmelCase : Union[str, Any] =1919 UpperCAmelCase : Any =2429 UpperCAmelCase : Dict =2208 UpperCAmelCase : int =2418 UpperCAmelCase : str =2323 UpperCAmelCase : Any =2407 # @@protoc_insertion_point(module_scope)
128
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, XLMRobertaTokenizer from diffusers import AltDiffusionPipeline, AutoencoderKL, DDIMScheduler, PNDMScheduler, UNetaDConditionModel from diffusers.pipelines.alt_diffusion.modeling_roberta_series import ( RobertaSeriesConfig, RobertaSeriesModelWithTransformation, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class _lowercase (a_ , a_ , a_ , unittest.TestCase ): '''simple docstring''' lowercase__ = AltDiffusionPipeline lowercase__ = TEXT_TO_IMAGE_PARAMS lowercase__ = TEXT_TO_IMAGE_BATCH_PARAMS lowercase__ = TEXT_TO_IMAGE_IMAGE_PARAMS lowercase__ = TEXT_TO_IMAGE_IMAGE_PARAMS def _lowerCamelCase ( self ): '''simple docstring''' torch.manual_seed(0 ) UpperCamelCase_ = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "UpBlock2D") , cross_attention_dim=32 , ) UpperCamelCase_ = DDIMScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule="scaled_linear" , clip_sample=snake_case__ , set_alpha_to_one=snake_case__ , ) torch.manual_seed(0 ) UpperCamelCase_ = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , ) # TODO: address the non-deterministic text encoder (fails for save-load tests) # torch.manual_seed(0) # text_encoder_config = RobertaSeriesConfig( # hidden_size=32, # project_dim=32, # intermediate_size=37, # layer_norm_eps=1e-05, # num_attention_heads=4, # num_hidden_layers=5, # vocab_size=5002, # ) # text_encoder = RobertaSeriesModelWithTransformation(text_encoder_config) torch.manual_seed(0 ) UpperCamelCase_ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=5002 , ) UpperCamelCase_ = CLIPTextModel(snake_case__ ) UpperCamelCase_ = XLMRobertaTokenizer.from_pretrained("hf-internal-testing/tiny-xlm-roberta" ) UpperCamelCase_ = 77 UpperCamelCase_ = { "unet": unet, "scheduler": scheduler, "vae": vae, "text_encoder": text_encoder, "tokenizer": tokenizer, "safety_checker": None, "feature_extractor": None, } return components def _lowerCamelCase ( self , snake_case__ , snake_case__=0 ): '''simple docstring''' if str(snake_case__ ).startswith("mps" ): UpperCamelCase_ = torch.manual_seed(snake_case__ ) else: UpperCamelCase_ = torch.Generator(device=snake_case__ ).manual_seed(snake_case__ ) UpperCamelCase_ = { "prompt": "A painting of a squirrel eating a burger", "generator": generator, "num_inference_steps": 2, "guidance_scale": 6.0, "output_type": "numpy", } return inputs def _lowerCamelCase ( self ): '''simple docstring''' super().test_attention_slicing_forward_pass(expected_max_diff=3e-3 ) def _lowerCamelCase ( self ): '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) def _lowerCamelCase ( self ): '''simple docstring''' UpperCamelCase_ = "cpu" # ensure determinism for the device-dependent torch.Generator UpperCamelCase_ = self.get_dummy_components() torch.manual_seed(0 ) UpperCamelCase_ = RobertaSeriesConfig( hidden_size=32 , project_dim=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=5002 , ) # TODO: remove after fixing the non-deterministic text encoder UpperCamelCase_ = RobertaSeriesModelWithTransformation(snake_case__ ) UpperCamelCase_ = text_encoder UpperCamelCase_ = AltDiffusionPipeline(**snake_case__ ) UpperCamelCase_ = alt_pipe.to(snake_case__ ) alt_pipe.set_progress_bar_config(disable=snake_case__ ) UpperCamelCase_ = self.get_dummy_inputs(snake_case__ ) UpperCamelCase_ = "A photo of an astronaut" UpperCamelCase_ = alt_pipe(**snake_case__ ) UpperCamelCase_ = output.images UpperCamelCase_ = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) UpperCamelCase_ = np.array( [0.5_748_162, 0.60_447_145, 0.48_821_217, 0.50_100_636, 0.5_431_185, 0.45_763_683, 0.49_657_696, 0.48_132_733, 0.47_573_093] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def _lowerCamelCase ( self ): '''simple docstring''' UpperCamelCase_ = "cpu" # ensure determinism for the device-dependent torch.Generator UpperCamelCase_ = self.get_dummy_components() UpperCamelCase_ = PNDMScheduler(skip_prk_steps=snake_case__ ) torch.manual_seed(0 ) UpperCamelCase_ = RobertaSeriesConfig( hidden_size=32 , project_dim=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=5002 , ) # TODO: remove after fixing the non-deterministic text encoder UpperCamelCase_ = RobertaSeriesModelWithTransformation(snake_case__ ) UpperCamelCase_ = text_encoder UpperCamelCase_ = AltDiffusionPipeline(**snake_case__ ) UpperCamelCase_ = alt_pipe.to(snake_case__ ) alt_pipe.set_progress_bar_config(disable=snake_case__ ) UpperCamelCase_ = self.get_dummy_inputs(snake_case__ ) UpperCamelCase_ = alt_pipe(**snake_case__ ) UpperCamelCase_ = output.images UpperCamelCase_ = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) UpperCamelCase_ = np.array( [0.51_605_093, 0.5_707_241, 0.47_365_507, 0.50_578_886, 0.5_633_877, 0.4_642_503, 0.5_182_081, 0.48_763_484, 0.49_084_237] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch_gpu class _lowercase (unittest.TestCase ): '''simple docstring''' def _lowerCamelCase ( self ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def _lowerCamelCase ( self ): '''simple docstring''' UpperCamelCase_ = AltDiffusionPipeline.from_pretrained("BAAI/AltDiffusion" , safety_checker=snake_case__ ) UpperCamelCase_ = alt_pipe.to(snake_case__ ) alt_pipe.set_progress_bar_config(disable=snake_case__ ) UpperCamelCase_ = "A painting of a squirrel eating a burger" UpperCamelCase_ = torch.manual_seed(0 ) UpperCamelCase_ = alt_pipe([prompt] , generator=snake_case__ , guidance_scale=6.0 , num_inference_steps=20 , output_type="np" ) UpperCamelCase_ = output.images UpperCamelCase_ = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) UpperCamelCase_ = np.array([0.1_010, 0.0_800, 0.0_794, 0.0_885, 0.0_843, 0.0_762, 0.0_769, 0.0_729, 0.0_586] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def _lowerCamelCase ( self ): '''simple docstring''' UpperCamelCase_ = DDIMScheduler.from_pretrained("BAAI/AltDiffusion" , subfolder="scheduler" ) UpperCamelCase_ = AltDiffusionPipeline.from_pretrained("BAAI/AltDiffusion" , scheduler=snake_case__ , safety_checker=snake_case__ ) UpperCamelCase_ = alt_pipe.to(snake_case__ ) alt_pipe.set_progress_bar_config(disable=snake_case__ ) UpperCamelCase_ = "A painting of a squirrel eating a burger" UpperCamelCase_ = torch.manual_seed(0 ) UpperCamelCase_ = alt_pipe([prompt] , generator=snake_case__ , num_inference_steps=2 , output_type="numpy" ) UpperCamelCase_ = output.images UpperCamelCase_ = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) UpperCamelCase_ = np.array([0.4_019, 0.4_052, 0.3_810, 0.4_119, 0.3_916, 0.3_982, 0.4_651, 0.4_195, 0.5_323] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
128
1
'''simple docstring''' import gc import importlib.metadata import tempfile import unittest from packaging import version from transformers import ( AutoModel, AutoModelForCausalLM, AutoModelForSeqaSeqLM, AutoModelForSequenceClassification, AutoTokenizer, BitsAndBytesConfig, pipeline, ) from transformers.testing_utils import ( is_torch_available, require_accelerate, require_bitsandbytes, require_torch, require_torch_gpu, require_torch_multi_gpu, slow, ) def lowerCamelCase ( lowerCAmelCase : Union[str, Any] ): """simple docstring""" if model.config.model_type == "gpt2": return model.transformer.h[0].mlp.c_fc return model.transformer.h[0].mlp.dense_ah_to_h if is_torch_available(): import torch import torch.nn as nn class _lowerCamelCase ( nn.Module ): '''simple docstring''' def __init__( self : str , _A : nn.Module , _A : int ) -> int: super().__init__() __magic_name__ : Tuple = module __magic_name__ : Optional[int] = nn.Sequential( nn.Linear(module.in_features , _A , bias=_A ) , nn.Linear(_A , module.out_features , bias=_A ) , ) __magic_name__ : Dict = (2.0 / (5 * min(module.in_features , module.out_features ))) ** 0.5 nn.init.normal_(self.adapter[0].weight , std=_A ) nn.init.zeros_(self.adapter[1].weight ) self.adapter.to(module.weight.device ) def __lowerCAmelCase ( self : Optional[Any] , _A : Union[str, Any] , *_A : List[Any] , **_A : Any ) -> Any: return self.module(_A , *_A , **_A ) + self.adapter(_A ) @require_bitsandbytes @require_accelerate @require_torch @require_torch_gpu @slow class _lowerCamelCase ( unittest.TestCase ): '''simple docstring''' A_ : str = """bigscience/bloom-1b7""" # Constant values A_ : Optional[int] = 2.109659552692574 A_ : Dict = """Hello my name is""" A_ : str = set() EXPECTED_OUTPUTS.add("""Hello my name is John and I am a professional photographer. I""" ) EXPECTED_OUTPUTS.add("""Hello my name is John.\nI am a friend of your father.\n""" ) EXPECTED_OUTPUTS.add("""Hello my name is John Doe, I am a student at the University""" ) A_ : str = 10 def __lowerCAmelCase ( self : str ) -> Optional[int]: # Models and tokenizer __magic_name__ : List[str] = AutoTokenizer.from_pretrained(self.model_name ) class _lowerCamelCase ( lowercase__ ): '''simple docstring''' def __lowerCAmelCase ( self : List[str] ) -> Union[str, Any]: super().setUp() # Models and tokenizer __magic_name__ : Tuple = AutoModelForCausalLM.from_pretrained( self.model_name , torch_dtype=torch.floataa , device_map='auto' ) __magic_name__ : List[str] = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=_A , device_map='auto' ) def __lowerCAmelCase ( self : Optional[int] ) -> List[Any]: del self.model_fpaa del self.model_abit gc.collect() torch.cuda.empty_cache() def __lowerCAmelCase ( self : str ) -> Optional[Any]: __magic_name__ : str = self.model_abit.config self.assertTrue(hasattr(_A , 'quantization_config' ) ) __magic_name__ : Any = config.to_dict() __magic_name__ : Union[str, Any] = config.to_diff_dict() __magic_name__ : List[str] = config.to_json_string() def __lowerCAmelCase ( self : Union[str, Any] ) -> int: from bitsandbytes.nn import Paramsabit __magic_name__ : str = self.model_fpaa.get_memory_footprint() __magic_name__ : Tuple = self.model_abit.get_memory_footprint() self.assertAlmostEqual(mem_fpaa / mem_abit , self.EXPECTED_RELATIVE_DIFFERENCE ) __magic_name__ : Tuple = get_some_linear_layer(self.model_abit ) self.assertTrue(linear.weight.__class__ == Paramsabit ) def __lowerCAmelCase ( self : Dict ) -> List[Any]: from transformers import TaPreTrainedModel self.model_fpaa.get_memory_footprint() self.model_abit.get_memory_footprint() for name, module in self.model_abit.named_modules(): if isinstance(_A , torch.nn.Linear ): if name not in ["lm_head"] + TaPreTrainedModel._keep_in_fpaa_modules: # 4-bit parameters are packed in uint8 variables self.assertTrue(module.weight.dtype == torch.uinta ) def __lowerCAmelCase ( self : int ) -> Dict: __magic_name__ : Dict = self.tokenizer(self.input_text , return_tensors='pt' ) __magic_name__ : Union[str, Any] = self.model_abit.generate(input_ids=encoded_input['input_ids'].to(0 ) , max_new_tokens=10 ) self.assertIn(self.tokenizer.decode(output_sequences[0] , skip_special_tokens=_A ) , self.EXPECTED_OUTPUTS ) def __lowerCAmelCase ( self : List[Any] ) -> Optional[int]: __magic_name__ : int = BitsAndBytesConfig() __magic_name__ : Any = True __magic_name__ : Dict = AutoModelForCausalLM.from_pretrained( self.model_name , quantization_config=_A , device_map='auto' ) __magic_name__ : str = self.tokenizer(self.input_text , return_tensors='pt' ) __magic_name__ : List[str] = model_abit_from_config.generate( input_ids=encoded_input['input_ids'].to(0 ) , max_new_tokens=10 ) self.assertIn(self.tokenizer.decode(output_sequences[0] , skip_special_tokens=_A ) , self.EXPECTED_OUTPUTS ) def __lowerCAmelCase ( self : Dict ) -> Union[str, Any]: with self.assertRaises(_A ), tempfile.TemporaryDirectory() as tmpdirname: self.model_abit.save_pretrained(_A ) def __lowerCAmelCase ( self : int ) -> Union[str, Any]: __magic_name__ : Any = BitsAndBytesConfig() with self.assertRaises(_A ): __magic_name__ : List[str] = AutoModelForCausalLM.from_pretrained( self.model_name , quantization_config=_A , load_in_abit=_A , device_map='auto' , bnb_abit_quant_type='nf4' , ) def __lowerCAmelCase ( self : str ) -> Any: with self.assertRaises(_A ): # Tries with `str` self.model_abit.to('cpu' ) with self.assertRaises(_A ): # Tries with a `dtype`` self.model_abit.to(torch.floataa ) with self.assertRaises(_A ): # Tries with a `device` self.model_abit.to(torch.device('cuda:0' ) ) with self.assertRaises(_A ): # Tries with a `device` self.model_abit.float() with self.assertRaises(_A ): # Tries with a `device` self.model_abit.half() # Test if we did not break anything __magic_name__ : Dict = self.tokenizer(self.input_text , return_tensors='pt' ) __magic_name__ : Dict = self.model_fpaa.to(torch.floataa ) __magic_name__ : int = self.model_fpaa.generate(input_ids=encoded_input['input_ids'].to(0 ) , max_new_tokens=10 ) # Check this does not throw an error __magic_name__ : Optional[Any] = self.model_fpaa.to('cpu' ) # Check this does not throw an error __magic_name__ : List[Any] = self.model_fpaa.half() # Check this does not throw an error __magic_name__ : str = self.model_fpaa.float() def __lowerCAmelCase ( self : Dict ) -> Tuple: __magic_name__ : Optional[int] = AutoModelForSeqaSeqLM.from_pretrained('t5-small' , load_in_abit=_A , device_map='auto' ) self.assertTrue(model.decoder.block[0].layer[2].DenseReluDense.wo.weight.dtype == torch.floataa ) @require_bitsandbytes @require_accelerate @require_torch @require_torch_gpu @slow class _lowerCamelCase ( unittest.TestCase ): '''simple docstring''' @classmethod def __lowerCAmelCase ( cls : str ) -> List[Any]: __magic_name__ : Optional[Any] = 't5-small' __magic_name__ : Optional[Any] = 'google/flan-t5-small' # flan-t5 uses dense-act instead of dense-relu-dense __magic_name__ : int = AutoTokenizer.from_pretrained(cls.model_name ) __magic_name__ : Union[str, Any] = 'Translate in German: Hello, my dog is cute' def __lowerCAmelCase ( self : Tuple ) -> Any: gc.collect() torch.cuda.empty_cache() def __lowerCAmelCase ( self : Dict ) -> Dict: from transformers import TaForConditionalGeneration __magic_name__ : int = TaForConditionalGeneration._keep_in_fpaa_modules __magic_name__ : Any = None # test with `t5-small` __magic_name__ : Union[str, Any] = TaForConditionalGeneration.from_pretrained(self.model_name , load_in_abit=_A , device_map='auto' ) __magic_name__ : Optional[int] = self.tokenizer(self.input_text , return_tensors='pt' ).to(0 ) __magic_name__ : Any = model.generate(**_A ) # test with `flan-t5-small` __magic_name__ : int = TaForConditionalGeneration.from_pretrained( self.dense_act_model_name , load_in_abit=_A , device_map='auto' ) __magic_name__ : Optional[Any] = self.tokenizer(self.input_text , return_tensors='pt' ).to(0 ) __magic_name__ : Optional[int] = model.generate(**_A ) __magic_name__ : Any = modules def __lowerCAmelCase ( self : str ) -> Any: import bitsandbytes as bnb from transformers import TaForConditionalGeneration # test with `t5-small` __magic_name__ : Optional[int] = TaForConditionalGeneration.from_pretrained(self.model_name , load_in_abit=_A , device_map='auto' ) # there was a bug with decoders - this test checks that it is fixed self.assertTrue(isinstance(model.decoder.block[0].layer[0].SelfAttention.q , bnb.nn.Linearabit ) ) __magic_name__ : List[str] = self.tokenizer(self.input_text , return_tensors='pt' ).to(0 ) __magic_name__ : Union[str, Any] = model.generate(**_A ) # test with `flan-t5-small` __magic_name__ : Any = TaForConditionalGeneration.from_pretrained( self.dense_act_model_name , load_in_abit=_A , device_map='auto' ) __magic_name__ : Tuple = self.tokenizer(self.input_text , return_tensors='pt' ).to(0 ) __magic_name__ : Dict = model.generate(**_A ) class _lowerCamelCase ( lowercase__ ): '''simple docstring''' def __lowerCAmelCase ( self : Tuple ) -> Optional[int]: super().setUp() # model_name __magic_name__ : List[str] = 'bigscience/bloom-560m' __magic_name__ : str = 't5-small' # Different types of model __magic_name__ : List[str] = AutoModel.from_pretrained(self.model_name , load_in_abit=_A , device_map='auto' ) # Sequence classification model __magic_name__ : int = AutoModelForSequenceClassification.from_pretrained( self.model_name , load_in_abit=_A , device_map='auto' ) # CausalLM model __magic_name__ : Tuple = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=_A , device_map='auto' ) # Seq2seq model __magic_name__ : Tuple = AutoModelForSeqaSeqLM.from_pretrained( self.seq_to_seq_name , load_in_abit=_A , device_map='auto' ) def __lowerCAmelCase ( self : Optional[int] ) -> Dict: del self.base_model del self.sequence_model del self.model_abit del self.seq_to_seq_model gc.collect() torch.cuda.empty_cache() def __lowerCAmelCase ( self : str ) -> Optional[int]: from bitsandbytes.nn import Paramsabit self.assertTrue(self.base_model.h[-1].mlp.dense_ah_to_h.weight.__class__ == Paramsabit ) # Other heads should be nn.Parameter self.assertTrue(self.model_abit.lm_head.weight.__class__ == torch.nn.Parameter ) self.assertTrue(self.sequence_model.score.weight.__class__ == torch.nn.Parameter ) self.assertTrue(self.seq_to_seq_model.lm_head.weight.__class__ == torch.nn.Parameter ) class _lowerCamelCase ( lowercase__ ): '''simple docstring''' def __lowerCAmelCase ( self : List[str] ) -> Optional[int]: super().setUp() def __lowerCAmelCase ( self : Optional[int] ) -> List[Any]: del self.pipe gc.collect() torch.cuda.empty_cache() def __lowerCAmelCase ( self : Optional[Any] ) -> List[Any]: __magic_name__ : Optional[int] = pipeline( 'text-generation' , model=self.model_name , model_kwargs={'device_map': 'auto', 'load_in_4bit': True, 'torch_dtype': torch.floataa} , max_new_tokens=self.MAX_NEW_TOKENS , ) # Real second forward pass __magic_name__ : Tuple = self.pipe(self.input_text ) self.assertIn(pipeline_output[0]['generated_text'] , self.EXPECTED_OUTPUTS ) @require_torch_multi_gpu class _lowerCamelCase ( lowercase__ ): '''simple docstring''' def __lowerCAmelCase ( self : Any ) -> List[str]: super().setUp() def __lowerCAmelCase ( self : Dict ) -> int: __magic_name__ : Optional[int] = AutoModelForCausalLM.from_pretrained( self.model_name , load_in_abit=_A , device_map='balanced' ) # Check correct device map self.assertEqual(set(model_parallel.hf_device_map.values() ) , {0, 1} ) # Check that inference pass works on the model __magic_name__ : int = self.tokenizer(self.input_text , return_tensors='pt' ) # Second real batch __magic_name__ : Optional[Any] = model_parallel.generate(input_ids=encoded_input['input_ids'].to(0 ) , max_new_tokens=10 ) self.assertIn(self.tokenizer.decode(output_parallel[0] , skip_special_tokens=_A ) , self.EXPECTED_OUTPUTS ) class _lowerCamelCase ( lowercase__ ): '''simple docstring''' def __lowerCAmelCase ( self : str ) -> int: __magic_name__ : int = 'facebook/opt-350m' super().setUp() def __lowerCAmelCase ( self : Any ) -> Tuple: if version.parse(importlib.metadata.version('bitsandbytes' ) ) < version.parse('0.37.0' ): return # Step 1: freeze all parameters __magic_name__ : Optional[Any] = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=_A ) self.assertEqual(set(model.hf_device_map.values() ) , {torch.cuda.current_device()} ) for param in model.parameters(): __magic_name__ : Optional[int] = False # freeze the model - train adapters later if param.ndim == 1: # cast the small parameters (e.g. layernorm) to fp32 for stability __magic_name__ : Tuple = param.data.to(torch.floataa ) # Step 2: add adapters for _, module in model.named_modules(): if "OPTAttention" in repr(type(_A ) ): __magic_name__ : List[str] = LoRALayer(module.q_proj , rank=16 ) __magic_name__ : Tuple = LoRALayer(module.k_proj , rank=16 ) __magic_name__ : Optional[int] = LoRALayer(module.v_proj , rank=16 ) # Step 3: dummy batch __magic_name__ : List[Any] = self.tokenizer('Test batch ' , return_tensors='pt' ).to(0 ) # Step 4: Check if the gradient is not None with torch.cuda.amp.autocast(): __magic_name__ : List[str] = model.forward(**_A ) out.logits.norm().backward() for module in model.modules(): if isinstance(_A , _A ): self.assertTrue(module.adapter[1].weight.grad is not None ) self.assertTrue(module.adapter[1].weight.grad.norm().item() > 0 ) elif isinstance(_A , nn.Embedding ): self.assertTrue(module.weight.grad is None ) class _lowerCamelCase ( lowercase__ ): '''simple docstring''' A_ : Tuple = """gpt2-xl""" A_ : List[Any] = 3.3191854854152187
275
'''simple docstring''' def lowerCamelCase ( lowerCAmelCase : int ): """simple docstring""" if not isinstance(lowerCAmelCase , lowerCAmelCase ): __magic_name__ : int = f'Input value of [number={number}] must be an integer' raise TypeError(lowerCAmelCase ) if number < 0: return False __magic_name__ : Tuple = number * number while number > 0: if number % 10 != number_square % 10: return False number //= 10 number_square //= 10 return True if __name__ == "__main__": import doctest doctest.testmod()
275
1
from diffusers.utils.testing_utils import require_onnxruntime @require_onnxruntime class __lowerCAmelCase : pass
205
import logging import os from typing import Dict, List, Optional, Union import torch import torch.nn as nn from accelerate.utils.imports import ( is_abit_bnb_available, is_abit_bnb_available, is_bnb_available, ) from ..big_modeling import dispatch_model, init_empty_weights from .dataclasses import BnbQuantizationConfig from .modeling import ( find_tied_parameters, get_balanced_memory, infer_auto_device_map, load_checkpoint_in_model, offload_weight, set_module_tensor_to_device, ) if is_bnb_available(): import bitsandbytes as bnb from copy import deepcopy __UpperCamelCase : str = logging.getLogger(__name__) def _a ( SCREAMING_SNAKE_CASE : torch.nn.Module , SCREAMING_SNAKE_CASE : BnbQuantizationConfig , SCREAMING_SNAKE_CASE : Union[str, os.PathLike] = None , SCREAMING_SNAKE_CASE : Optional[Dict[str, Union[int, str, torch.device]]] = None , SCREAMING_SNAKE_CASE : Optional[List[str]] = None , SCREAMING_SNAKE_CASE : Optional[Dict[Union[int, str], Union[int, str]]] = None , SCREAMING_SNAKE_CASE : Optional[Union[str, os.PathLike]] = None , SCREAMING_SNAKE_CASE : bool = False , ): """simple docstring""" UpperCamelCase__ : Union[str, Any] = bnb_quantization_config.load_in_abit UpperCamelCase__ : List[Any] = bnb_quantization_config.load_in_abit if load_in_abit and not is_abit_bnb_available(): raise ImportError( '''You have a version of `bitsandbytes` that is not compatible with 8bit quantization,''' ''' make sure you have the latest version of `bitsandbytes` installed.''' ) if load_in_abit and not is_abit_bnb_available(): raise ValueError( '''You have a version of `bitsandbytes` that is not compatible with 4bit quantization,''' '''make sure you have the latest version of `bitsandbytes` installed.''' ) UpperCamelCase__ : int = [] # custom device map if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) and len(device_map.keys() ) > 1: UpperCamelCase__ : int = [key for key, value in device_map.items() if value in ['''disk''', '''cpu''']] # We keep some modules such as the lm_head in their original dtype for numerical stability reasons if bnb_quantization_config.skip_modules is None: UpperCamelCase__ : List[Any] = get_keys_to_not_convert(SCREAMING_SNAKE_CASE ) # add cpu modules to skip modules only for 4-bit modules if load_in_abit: bnb_quantization_config.skip_modules.extend(SCREAMING_SNAKE_CASE ) UpperCamelCase__ : List[str] = bnb_quantization_config.skip_modules # We add the modules we want to keep in full precision if bnb_quantization_config.keep_in_fpaa_modules is None: UpperCamelCase__ : Union[str, Any] = [] UpperCamelCase__ : List[Any] = bnb_quantization_config.keep_in_fpaa_modules modules_to_not_convert.extend(SCREAMING_SNAKE_CASE ) # compatibility with peft UpperCamelCase__ : Optional[Any] = load_in_abit UpperCamelCase__ : List[str] = load_in_abit UpperCamelCase__ : str = get_parameter_device(SCREAMING_SNAKE_CASE ) if model_device.type != "meta": # quantization of an already loaded model logger.warning( '''It is not recommended to quantize a loaded model. ''' '''The model should be instantiated under the `init_empty_weights` context manager.''' ) UpperCamelCase__ : Union[str, Any] = replace_with_bnb_layers(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , modules_to_not_convert=SCREAMING_SNAKE_CASE ) # convert param to the right dtype UpperCamelCase__ : str = bnb_quantization_config.torch_dtype for name, param in model.state_dict().items(): if any(module_to_keep_in_fpaa in name for module_to_keep_in_fpaa in keep_in_fpaa_modules ): param.to(torch.floataa ) if param.dtype != torch.floataa: UpperCamelCase__ : Union[str, Any] = name.replace('''.weight''' , '''''' ).replace('''.bias''' , '''''' ) UpperCamelCase__ : Dict = getattr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if param is not None: param.to(torch.floataa ) elif torch.is_floating_point(SCREAMING_SNAKE_CASE ): param.to(SCREAMING_SNAKE_CASE ) if model_device.type == "cuda": # move everything to cpu in the first place because we can't do quantization if the weights are already on cuda model.cuda(torch.cuda.current_device() ) torch.cuda.empty_cache() elif torch.cuda.is_available(): model.to(torch.cuda.current_device() ) else: raise RuntimeError('''No GPU found. A GPU is needed for quantization.''' ) logger.info( F"The model device type is {model_device.type}. However, cuda is needed for quantization." '''We move the model to cuda.''' ) return model elif weights_location is None: raise RuntimeError( F"`weights_location` needs to be the folder path containing the weights of the model, but we found {weights_location} " ) else: with init_empty_weights(): UpperCamelCase__ : str = replace_with_bnb_layers( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , modules_to_not_convert=SCREAMING_SNAKE_CASE ) UpperCamelCase__ : List[Any] = get_quantized_model_device_map( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , max_memory=SCREAMING_SNAKE_CASE , no_split_module_classes=SCREAMING_SNAKE_CASE , ) if offload_state_dict is None and device_map is not None and "disk" in device_map.values(): UpperCamelCase__ : Dict = True UpperCamelCase__ : str = any(x in list(device_map.values() ) for x in ['''cpu''', '''disk'''] ) load_checkpoint_in_model( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , dtype=bnb_quantization_config.torch_dtype , offload_folder=SCREAMING_SNAKE_CASE , offload_state_dict=SCREAMING_SNAKE_CASE , keep_in_fpaa_modules=bnb_quantization_config.keep_in_fpaa_modules , offload_abit_bnb=load_in_abit and offload , ) return dispatch_model(SCREAMING_SNAKE_CASE , device_map=SCREAMING_SNAKE_CASE , offload_dir=SCREAMING_SNAKE_CASE ) def _a ( SCREAMING_SNAKE_CASE : List[str] , SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : Dict=None , SCREAMING_SNAKE_CASE : int=None , SCREAMING_SNAKE_CASE : str=None ): """simple docstring""" if device_map is None: if torch.cuda.is_available(): UpperCamelCase__ : int = {'''''': torch.cuda.current_device()} else: raise RuntimeError('''No GPU found. A GPU is needed for quantization.''' ) logger.info('''The device_map was not initialized.''' '''Setting device_map to `{\'\':torch.cuda.current_device()}`.''' ) if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): if device_map not in ["auto", "balanced", "balanced_low_0", "sequential"]: raise ValueError( '''If passing a string for `device_map`, please choose \'auto\', \'balanced\', \'balanced_low_0\' or ''' '''\'sequential\'.''' ) UpperCamelCase__ : str = {} special_dtypes.update( { name: bnb_quantization_config.torch_dtype for name, _ in model.named_parameters() if any(m in name for m in bnb_quantization_config.skip_modules ) } ) special_dtypes.update( { name: torch.floataa for name, _ in model.named_parameters() if any(m in name for m in bnb_quantization_config.keep_in_fpaa_modules ) } ) UpperCamelCase__ : Optional[Any] = {} UpperCamelCase__ : Union[str, Any] = special_dtypes UpperCamelCase__ : Optional[int] = no_split_module_classes UpperCamelCase__ : int = bnb_quantization_config.target_dtype # get max_memory for each device. if device_map != "sequential": UpperCamelCase__ : Dict = get_balanced_memory( SCREAMING_SNAKE_CASE , low_zero=(device_map == '''balanced_low_0''') , max_memory=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE , ) UpperCamelCase__ : Tuple = max_memory UpperCamelCase__ : Dict = infer_auto_device_map(SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): # check if don't have any quantized module on the cpu UpperCamelCase__ : List[Any] = bnb_quantization_config.skip_modules + bnb_quantization_config.keep_in_fpaa_modules UpperCamelCase__ : Dict = { key: device_map[key] for key in device_map.keys() if key not in modules_not_to_convert } for device in ["cpu", "disk"]: if device in device_map_without_some_modules.values(): if bnb_quantization_config.load_in_abit: raise ValueError( ''' Some modules are dispatched on the CPU or the disk. Make sure you have enough GPU RAM to fit the quantized model. If you want to dispatch the model on the CPU or the disk while keeping these modules in `torch_dtype`, you need to pass a custom `device_map` to `load_and_quantize_model`. Check https://huggingface.co/docs/accelerate/main/en/usage_guides/quantization#offload-modules-to-cpu-and-disk for more details. ''' ) else: logger.info( '''Some modules are are offloaded to the CPU or the disk. Note that these modules will be converted to 8-bit''' ) del device_map_without_some_modules return device_map def _a ( SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : Tuple=None , SCREAMING_SNAKE_CASE : int=None ): """simple docstring""" if modules_to_not_convert is None: UpperCamelCase__ : Optional[Any] = [] UpperCamelCase__ , UpperCamelCase__ : Dict = _replace_with_bnb_layers( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if not has_been_replaced: logger.warning( '''You are loading your model in 8bit or 4bit but no linear modules were found in your model.''' ''' this can happen for some architectures such as gpt2 that uses Conv1D instead of Linear layers.''' ''' Please double check your model architecture, or submit an issue on github if you think this is''' ''' a bug.''' ) return model def _a ( SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : List[str]=None , SCREAMING_SNAKE_CASE : Optional[Any]=None , ): """simple docstring""" UpperCamelCase__ : str = False for name, module in model.named_children(): if current_key_name is None: UpperCamelCase__ : Tuple = [] current_key_name.append(SCREAMING_SNAKE_CASE ) if isinstance(SCREAMING_SNAKE_CASE , nn.Linear ) and name not in modules_to_not_convert: # Check if the current key is not in the `modules_to_not_convert` UpperCamelCase__ : int = '''.'''.join(SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Tuple = True for key in modules_to_not_convert: if ( (key in current_key_name_str) and (key + "." in current_key_name_str) ) or key == current_key_name_str: UpperCamelCase__ : List[str] = False break if proceed: # Load bnb module with empty weight and replace ``nn.Linear` module if bnb_quantization_config.load_in_abit: UpperCamelCase__ : int = bnb.nn.LinearabitLt( module.in_features , module.out_features , module.bias is not None , has_fpaa_weights=SCREAMING_SNAKE_CASE , threshold=bnb_quantization_config.llm_inta_threshold , ) elif bnb_quantization_config.load_in_abit: UpperCamelCase__ : Optional[int] = bnb.nn.Linearabit( module.in_features , module.out_features , module.bias is not None , bnb_quantization_config.bnb_abit_compute_dtype , compress_statistics=bnb_quantization_config.bnb_abit_use_double_quant , quant_type=bnb_quantization_config.bnb_abit_quant_type , ) else: raise ValueError('''load_in_8bit and load_in_4bit can\'t be both False''' ) UpperCamelCase__ : List[Any] = module.weight.data if module.bias is not None: UpperCamelCase__ : List[str] = module.bias.data bnb_module.requires_grad_(SCREAMING_SNAKE_CASE ) setattr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Dict = True if len(list(module.children() ) ) > 0: UpperCamelCase__ , UpperCamelCase__ : Tuple = _replace_with_bnb_layers( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Tuple = has_been_replaced | _has_been_replaced # Remove the last key for recursion current_key_name.pop(-1 ) return model, has_been_replaced def _a ( SCREAMING_SNAKE_CASE : List[Any] ): """simple docstring""" with init_empty_weights(): UpperCamelCase__ : Dict = deepcopy(SCREAMING_SNAKE_CASE ) # this has 0 cost since it is done inside `init_empty_weights` context manager` UpperCamelCase__ : str = find_tied_parameters(SCREAMING_SNAKE_CASE ) # For compatibility with Accelerate < 0.18 if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): UpperCamelCase__ : List[str] = sum(list(tied_params.values() ) , [] ) + list(tied_params.keys() ) else: UpperCamelCase__ : int = sum(SCREAMING_SNAKE_CASE , [] ) UpperCamelCase__ : Union[str, Any] = len(SCREAMING_SNAKE_CASE ) > 0 # Check if it is a base model UpperCamelCase__ : str = False if hasattr(SCREAMING_SNAKE_CASE , '''base_model_prefix''' ): UpperCamelCase__ : int = not hasattr(SCREAMING_SNAKE_CASE , model.base_model_prefix ) # Ignore this for base models (BertModel, GPT2Model, etc.) if (not has_tied_params) and is_base_model: return [] # otherwise they have an attached head UpperCamelCase__ : Tuple = list(model.named_children() ) UpperCamelCase__ : str = [list_modules[-1][0]] # add last module together with tied weights UpperCamelCase__ : Dict = set(SCREAMING_SNAKE_CASE ) - set(SCREAMING_SNAKE_CASE ) UpperCamelCase__ : List[Any] = list(set(SCREAMING_SNAKE_CASE ) ) + list(SCREAMING_SNAKE_CASE ) # remove ".weight" from the keys UpperCamelCase__ : int = ['''.weight''', '''.bias'''] UpperCamelCase__ : Optional[int] = [] for name in list_untouched: for name_to_remove in names_to_remove: if name_to_remove in name: UpperCamelCase__ : int = name.replace(SCREAMING_SNAKE_CASE , '''''' ) filtered_module_names.append(SCREAMING_SNAKE_CASE ) return filtered_module_names def _a ( SCREAMING_SNAKE_CASE : Optional[int] ): """simple docstring""" for m in model.modules(): if isinstance(SCREAMING_SNAKE_CASE , bnb.nn.Linearabit ): return True return False def _a ( SCREAMING_SNAKE_CASE : nn.Module ): """simple docstring""" return next(parameter.parameters() ).device def _a ( SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : List[Any] ): """simple docstring""" if fpaa_statistics is None: set_module_tensor_to_device(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , 0 , dtype=SCREAMING_SNAKE_CASE , value=SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Optional[int] = param_name UpperCamelCase__ : str = model if "." in tensor_name: UpperCamelCase__ : List[Any] = tensor_name.split('''.''' ) for split in splits[:-1]: UpperCamelCase__ : Dict = getattr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if new_module is None: raise ValueError(F"{module} has no attribute {split}." ) UpperCamelCase__ : Optional[int] = new_module UpperCamelCase__ : List[str] = splits[-1] # offload weights UpperCamelCase__ : Any = False offload_weight(module._parameters[tensor_name] , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , index=SCREAMING_SNAKE_CASE ) if hasattr(module._parameters[tensor_name] , '''SCB''' ): offload_weight( module._parameters[tensor_name].SCB , param_name.replace('''weight''' , '''SCB''' ) , SCREAMING_SNAKE_CASE , index=SCREAMING_SNAKE_CASE , ) else: offload_weight(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , index=SCREAMING_SNAKE_CASE ) offload_weight(SCREAMING_SNAKE_CASE , param_name.replace('''weight''' , '''SCB''' ) , SCREAMING_SNAKE_CASE , index=SCREAMING_SNAKE_CASE ) set_module_tensor_to_device(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , '''meta''' , dtype=SCREAMING_SNAKE_CASE , value=torch.empty(*param.size() ) )
146
0
'''simple docstring''' import numpy as np import torch from torch.utils.data import DataLoader from accelerate.utils.dataclasses import DistributedType class A_ : def __init__( self : Union[str, Any] , snake_case_ : str=2 , snake_case_ : List[str]=3 , snake_case_ : List[Any]=6_4 , snake_case_ : Any=None ): _UpperCAmelCase = np.random.default_rng(snake_case_ ) _UpperCAmelCase = length _UpperCAmelCase = rng.normal(size=(length,) ).astype(np.floataa ) _UpperCAmelCase = a * self.x + b + rng.normal(scale=0.1 , size=(length,) ).astype(np.floataa ) def __len__( self : int ): return self.length def __getitem__( self : Dict , snake_case_ : str ): return {"x": self.x[i], "y": self.y[i]} class A_ ( torch.nn.Module ): def __init__( self : Optional[Any] , snake_case_ : Union[str, Any]=0 , snake_case_ : Union[str, Any]=0 , snake_case_ : int=False ): super().__init__() _UpperCAmelCase = torch.nn.Parameter(torch.tensor([2, 3] ).float() ) _UpperCAmelCase = torch.nn.Parameter(torch.tensor([2, 3] ).float() ) _UpperCAmelCase = True def lowercase ( self : Any , snake_case_ : Optional[Any]=None ): if self.first_batch: print(f'Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}' ) _UpperCAmelCase = False return x * self.a[0] + self.b[0] class A_ ( torch.nn.Module ): def __init__( self : Tuple , snake_case_ : List[Any]=0 , snake_case_ : Optional[int]=0 , snake_case_ : Optional[Any]=False ): super().__init__() _UpperCAmelCase = torch.nn.Parameter(torch.tensor(snake_case_ ).float() ) _UpperCAmelCase = torch.nn.Parameter(torch.tensor(snake_case_ ).float() ) _UpperCAmelCase = True def lowercase ( self : int , snake_case_ : Optional[int]=None ): if self.first_batch: print(f'Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}' ) _UpperCAmelCase = False return x * self.a + self.b def UpperCAmelCase_ ( __lowercase : Dict , __lowercase : int = 16 ) -> Union[str, Any]: '''simple docstring''' from datasets import load_dataset from transformers import AutoTokenizer _UpperCAmelCase = AutoTokenizer.from_pretrained("bert-base-cased" ) _UpperCAmelCase = {"train": "tests/test_samples/MRPC/train.csv", "validation": "tests/test_samples/MRPC/dev.csv"} _UpperCAmelCase = load_dataset("csv" , data_files=__snake_case ) _UpperCAmelCase = datasets["train"].unique("label" ) _UpperCAmelCase = {v: i for i, v in enumerate(__snake_case )} def tokenize_function(__lowercase : List[str] ): # max_length=None => use the model max length (it's actually the default) _UpperCAmelCase = tokenizer( examples["sentence1"] , examples["sentence2"] , truncation=__snake_case , max_length=__snake_case , padding="max_length" ) if "label" in examples: _UpperCAmelCase = [label_to_id[l] for l in examples["label"]] return outputs # Apply the method we just defined to all the examples in all the splits of the dataset _UpperCAmelCase = datasets.map( __snake_case , batched=__snake_case , remove_columns=["sentence1", "sentence2", "label"] , ) def collate_fn(__lowercase : Tuple ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(__snake_case , padding="max_length" , max_length=128 , return_tensors="pt" ) return tokenizer.pad(__snake_case , padding="longest" , return_tensors="pt" ) # Instantiate dataloaders. _UpperCAmelCase = DataLoader(tokenized_datasets["train"] , shuffle=__snake_case , collate_fn=__snake_case , batch_size=2 ) _UpperCAmelCase = DataLoader(tokenized_datasets["validation"] , shuffle=__snake_case , collate_fn=__snake_case , batch_size=1 ) return train_dataloader, eval_dataloader
356
'''simple docstring''' def UpperCAmelCase_ ( __lowercase : int = 100_0000 ) -> int: '''simple docstring''' _UpperCAmelCase = limit + 1 _UpperCAmelCase = [0] * limit for first_term in range(1 , __lowercase ): for n in range(__lowercase , __lowercase , __lowercase ): _UpperCAmelCase = first_term + n / first_term if common_difference % 4: # d must be divisble by 4 continue else: common_difference /= 4 if ( first_term > common_difference and first_term < 4 * common_difference ): # since x,y,z are positive integers frequency[n] += 1 # so z>0 and a>d ,also 4d<a _UpperCAmelCase = sum(1 for x in frequency[1:limit] if x == 10 ) return count if __name__ == "__main__": print(F"{solution() = }")
156
0
"""simple docstring""" # This model implementation is heavily inspired by https://github.com/haofanwang/ControlNet-for-Diffusers/ import gc import random import tempfile import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, ControlNetModel, DDIMScheduler, StableDiffusionControlNetImgaImgPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_controlnet import MultiControlNetModel from diffusers.utils import floats_tensor, load_image, load_numpy, randn_tensor, slow, torch_device from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, ) enable_full_determinism() class _UpperCAmelCase ( __snake_case, __snake_case, __snake_case, unittest.TestCase ): '''simple docstring''' lowerCamelCase__ =StableDiffusionControlNetImgaImgPipeline lowerCamelCase__ =TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {'height', 'width'} lowerCamelCase__ =TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS lowerCamelCase__ =IMAGE_TO_IMAGE_IMAGE_PARAMS.union({'control_image'} ) lowerCamelCase__ =IMAGE_TO_IMAGE_IMAGE_PARAMS def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' torch.manual_seed(0 ) __snake_case : List[Any] = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , ) torch.manual_seed(0 ) __snake_case : Optional[Any] = ControlNetModel( block_out_channels=(32, 64) , layers_per_block=2 , in_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , cross_attention_dim=32 , conditioning_embedding_out_channels=(16, 32) , ) torch.manual_seed(0 ) __snake_case : Any = DDIMScheduler( beta_start=0.0_0085 , beta_end=0.012 , beta_schedule='''scaled_linear''' , clip_sample=a_ , set_alpha_to_one=a_ , ) torch.manual_seed(0 ) __snake_case : Any = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , ) torch.manual_seed(0 ) __snake_case : List[str] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , ) __snake_case : Any = CLIPTextModel(a_ ) __snake_case : List[str] = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) __snake_case : Tuple = { '''unet''': unet, '''controlnet''': controlnet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''safety_checker''': None, '''feature_extractor''': None, } return components def SCREAMING_SNAKE_CASE (self , a_ , a_=0 ): '''simple docstring''' if str(a_ ).startswith('''mps''' ): __snake_case : int = torch.manual_seed(a_ ) else: __snake_case : int = torch.Generator(device=a_ ).manual_seed(a_ ) __snake_case : List[str] = 2 __snake_case : List[str] = randn_tensor( (1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor) , generator=a_ , device=torch.device(a_ ) , ) __snake_case : Any = floats_tensor(control_image.shape , rng=random.Random(a_ ) ).to(a_ ) __snake_case : str = image.cpu().permute(0 , 2 , 3 , 1 )[0] __snake_case : int = Image.fromarray(np.uinta(a_ ) ).convert('''RGB''' ).resize((64, 64) ) __snake_case : Any = { '''prompt''': '''A painting of a squirrel eating a burger''', '''generator''': generator, '''num_inference_steps''': 2, '''guidance_scale''': 6.0, '''output_type''': '''numpy''', '''image''': image, '''control_image''': control_image, } return inputs def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' return self._test_attention_slicing_forward_pass(expected_max_diff=2E-3 ) @unittest.skipIf( torch_device != '''cuda''' or not is_xformers_available() , reason='''XFormers attention is only available with CUDA and `xformers` installed''' , ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=2E-3 ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' self._test_inference_batch_single_identical(expected_max_diff=2E-3 ) class _UpperCAmelCase ( __snake_case, __snake_case, unittest.TestCase ): '''simple docstring''' lowerCamelCase__ =StableDiffusionControlNetImgaImgPipeline lowerCamelCase__ =TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {'height', 'width'} lowerCamelCase__ =TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS lowerCamelCase__ =frozenset([] ) # TO_DO: add image_params once refactored VaeImageProcessor.preprocess def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' torch.manual_seed(0 ) __snake_case : Optional[int] = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , ) torch.manual_seed(0 ) def init_weights(a_ ): if isinstance(a_ , torch.nn.Convad ): torch.nn.init.normal(m.weight ) m.bias.data.fill_(1.0 ) __snake_case : Dict = ControlNetModel( block_out_channels=(32, 64) , layers_per_block=2 , in_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , cross_attention_dim=32 , conditioning_embedding_out_channels=(16, 32) , ) controlneta.controlnet_down_blocks.apply(a_ ) torch.manual_seed(0 ) __snake_case : Any = ControlNetModel( block_out_channels=(32, 64) , layers_per_block=2 , in_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , cross_attention_dim=32 , conditioning_embedding_out_channels=(16, 32) , ) controlneta.controlnet_down_blocks.apply(a_ ) torch.manual_seed(0 ) __snake_case : List[Any] = DDIMScheduler( beta_start=0.0_0085 , beta_end=0.012 , beta_schedule='''scaled_linear''' , clip_sample=a_ , set_alpha_to_one=a_ , ) torch.manual_seed(0 ) __snake_case : Union[str, Any] = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , ) torch.manual_seed(0 ) __snake_case : Optional[Any] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , ) __snake_case : Dict = CLIPTextModel(a_ ) __snake_case : List[str] = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) __snake_case : Any = MultiControlNetModel([controlneta, controlneta] ) __snake_case : Any = { '''unet''': unet, '''controlnet''': controlnet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''safety_checker''': None, '''feature_extractor''': None, } return components def SCREAMING_SNAKE_CASE (self , a_ , a_=0 ): '''simple docstring''' if str(a_ ).startswith('''mps''' ): __snake_case : Dict = torch.manual_seed(a_ ) else: __snake_case : Optional[int] = torch.Generator(device=a_ ).manual_seed(a_ ) __snake_case : Union[str, Any] = 2 __snake_case : Any = [ randn_tensor( (1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor) , generator=a_ , device=torch.device(a_ ) , ), randn_tensor( (1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor) , generator=a_ , device=torch.device(a_ ) , ), ] __snake_case : List[str] = floats_tensor(control_image[0].shape , rng=random.Random(a_ ) ).to(a_ ) __snake_case : Union[str, Any] = image.cpu().permute(0 , 2 , 3 , 1 )[0] __snake_case : Optional[Any] = Image.fromarray(np.uinta(a_ ) ).convert('''RGB''' ).resize((64, 64) ) __snake_case : Any = { '''prompt''': '''A painting of a squirrel eating a burger''', '''generator''': generator, '''num_inference_steps''': 2, '''guidance_scale''': 6.0, '''output_type''': '''numpy''', '''image''': image, '''control_image''': control_image, } return inputs def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : str = self.get_dummy_components() __snake_case : List[Any] = self.pipeline_class(**a_ ) pipe.to(a_ ) __snake_case : List[Any] = 10.0 __snake_case : List[str] = 4 __snake_case : Optional[Any] = self.get_dummy_inputs(a_ ) __snake_case : int = steps __snake_case : Union[str, Any] = scale __snake_case : str = pipe(**a_ )[0] __snake_case : int = self.get_dummy_inputs(a_ ) __snake_case : Tuple = steps __snake_case : Any = scale __snake_case : str = pipe(**a_ , control_guidance_start=0.1 , control_guidance_end=0.2 )[0] __snake_case : str = self.get_dummy_inputs(a_ ) __snake_case : Union[str, Any] = steps __snake_case : Tuple = scale __snake_case : List[str] = pipe(**a_ , control_guidance_start=[0.1, 0.3] , control_guidance_end=[0.2, 0.7] )[0] __snake_case : int = self.get_dummy_inputs(a_ ) __snake_case : Tuple = steps __snake_case : List[Any] = scale __snake_case : str = pipe(**a_ , control_guidance_start=0.4 , control_guidance_end=[0.5, 0.8] )[0] # make sure that all outputs are different assert np.sum(np.abs(output_a - output_a ) ) > 1E-3 assert np.sum(np.abs(output_a - output_a ) ) > 1E-3 assert np.sum(np.abs(output_a - output_a ) ) > 1E-3 def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' return self._test_attention_slicing_forward_pass(expected_max_diff=2E-3 ) @unittest.skipIf( torch_device != '''cuda''' or not is_xformers_available() , reason='''XFormers attention is only available with CUDA and `xformers` installed''' , ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=2E-3 ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' self._test_inference_batch_single_identical(expected_max_diff=2E-3 ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : str = self.get_dummy_components() __snake_case : Union[str, Any] = self.pipeline_class(**a_ ) pipe.to(a_ ) pipe.set_progress_bar_config(disable=a_ ) with tempfile.TemporaryDirectory() as tmpdir: try: # save_pretrained is not implemented for Multi-ControlNet pipe.save_pretrained(a_ ) except NotImplementedError: pass @slow @require_torch_gpu class _UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Any = ControlNetModel.from_pretrained('''lllyasviel/sd-controlnet-canny''' ) __snake_case : Union[str, Any] = StableDiffusionControlNetImgaImgPipeline.from_pretrained( '''runwayml/stable-diffusion-v1-5''' , safety_checker=a_ , controlnet=a_ ) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=a_ ) __snake_case : Any = torch.Generator(device='''cpu''' ).manual_seed(0 ) __snake_case : List[Any] = '''evil space-punk bird''' __snake_case : Union[str, Any] = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny.png''' ).resize((5_12, 5_12) ) __snake_case : List[str] = load_image( '''https://huggingface.co/lllyasviel/sd-controlnet-canny/resolve/main/images/bird.png''' ).resize((5_12, 5_12) ) __snake_case : Any = pipe( a_ , a_ , control_image=a_ , generator=a_ , output_type='''np''' , num_inference_steps=50 , strength=0.6 , ) __snake_case : List[str] = output.images[0] assert image.shape == (5_12, 5_12, 3) __snake_case : Union[str, Any] = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/img2img.npy''' ) assert np.abs(expected_image - image ).max() < 9E-2
102
"""simple docstring""" import numpy as np def lowercase ( _snake_case : int , _snake_case : Optional[Any] , _snake_case : Optional[int] , _snake_case : int , _snake_case : Union[str, Any] ) ->Dict: """simple docstring""" __snake_case : Union[str, Any] = int(np.ceil((x_end - xa) / h ) ) __snake_case : Dict = np.zeros((n + 1,) ) __snake_case : List[Any] = ya __snake_case : int = xa for k in range(_snake_case ): __snake_case : Any = f(_snake_case , y[k] ) __snake_case : List[Any] = f(x + 0.5 * h , y[k] + 0.5 * h * ka ) __snake_case : int = f(x + 0.5 * h , y[k] + 0.5 * h * ka ) __snake_case : Optional[int] = f(x + h , y[k] + h * ka ) __snake_case : Optional[int] = y[k] + (1 / 6) * h * (ka + 2 * ka + 2 * ka + ka) x += h return y if __name__ == "__main__": import doctest doctest.testmod()
102
1
"""simple docstring""" def A (__A : List[str] , __A : List[Any] , __A : Dict , __A : List[str] ) -> Tuple: """simple docstring""" global f # a global dp table for knapsack if f[i][j] < 0: if j < wt[i - 1]: UpperCAmelCase_ = mf_knapsack(i - 1 , __A , __A , __A ) else: UpperCAmelCase_ = max( mf_knapsack(i - 1 , __A , __A , __A ) , mf_knapsack(i - 1 , __A , __A , j - wt[i - 1] ) + val[i - 1] , ) UpperCAmelCase_ = val return f[i][j] def A (__A : Optional[Any] , __A : int , __A : Tuple , __A : int ) -> str: """simple docstring""" UpperCAmelCase_ = [[0] * (w + 1) for _ in range(n + 1 )] for i in range(1 , n + 1 ): for w_ in range(1 , w + 1 ): if wt[i - 1] <= w_: UpperCAmelCase_ = max(val[i - 1] + dp[i - 1][w_ - wt[i - 1]] , dp[i - 1][w_] ) else: UpperCAmelCase_ = dp[i - 1][w_] return dp[n][w_], dp def A (__A : int , __A : list , __A : list ) -> List[str]: """simple docstring""" if not (isinstance(__A , (list, tuple) ) and isinstance(__A , (list, tuple) )): raise ValueError( '''Both the weights and values vectors must be either lists or tuples''' ) UpperCAmelCase_ = len(__A ) if num_items != len(__A ): UpperCAmelCase_ = ( '''The number of weights must be the same as the number of values.\n''' F"""But got {num_items} weights and {len(__A )} values""" ) raise ValueError(__A ) for i in range(__A ): if not isinstance(wt[i] , __A ): UpperCAmelCase_ = ( '''All weights must be integers but got weight of ''' F"""type {type(wt[i] )} at index {i}""" ) raise TypeError(__A ) UpperCAmelCase_ , UpperCAmelCase_ = knapsack(__A , __A , __A , __A ) UpperCAmelCase_ = set() _construct_solution(__A , __A , __A , __A , __A ) return optimal_val, example_optional_set def A (__A : list , __A : list , __A : int , __A : int , __A : set ) -> Tuple: """simple docstring""" if i > 0 and j > 0: if dp[i - 1][j] == dp[i][j]: _construct_solution(__A , __A , i - 1 , __A , __A ) else: optimal_set.add(__A ) _construct_solution(__A , __A , i - 1 , j - wt[i - 1] , __A ) if __name__ == "__main__": snake_case_ : str = [3, 2, 4, 4] snake_case_ : Optional[Any] = [4, 3, 2, 3] snake_case_ : str = 4 snake_case_ : Any = 6 snake_case_ : List[Any] = [[0] * (w + 1)] + [[0] + [-1] * (w + 1) for _ in range(n + 1)] snake_case_ : Any = knapsack(w, wt, val, n) print(optimal_solution) print(mf_knapsack(n, wt, val, w)) # switched the n and w # testing the dynamic programming problem with example # the optimal subset for the above example are items 3 and 4 snake_case_ : List[Any] = knapsack_with_example_solution(w, wt, val) assert optimal_solution == 8 assert optimal_subset == {3, 4} print("optimal_value = ", optimal_solution) print("An optimal subset corresponding to the optimal value", optimal_subset)
359
import inspect import os import re from transformers.configuration_utils import PretrainedConfig from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_config_docstrings.py snake_case_ : int = "src/transformers" # This is to make sure the transformers module imported is the one in the repo. snake_case_ : Union[str, Any] = direct_transformers_import(PATH_TO_TRANSFORMERS) snake_case_ : Union[str, Any] = transformers.models.auto.configuration_auto.CONFIG_MAPPING snake_case_ : Union[str, Any] = { # used to compute the property `self.chunk_length` "EncodecConfig": ["overlap"], # used as `self.bert_model = BertModel(config, ...)` "DPRConfig": True, # not used in modeling files, but it's an important information "FSMTConfig": ["langs"], # used internally in the configuration class file "GPTNeoConfig": ["attention_types"], # used internally in the configuration class file "EsmConfig": ["is_folding_model"], # used during training (despite we don't have training script for these models yet) "Mask2FormerConfig": ["ignore_value"], # `ignore_value` used during training (despite we don't have training script for these models yet) # `norm` used in conversion script (despite not using in the modeling file) "OneFormerConfig": ["ignore_value", "norm"], # used during preprocessing and collation, see `collating_graphormer.py` "GraphormerConfig": ["spatial_pos_max"], # used internally in the configuration class file "T5Config": ["feed_forward_proj"], # used internally in the configuration class file # `tokenizer_class` get default value `T5Tokenizer` intentionally "MT5Config": ["feed_forward_proj", "tokenizer_class"], "UMT5Config": ["feed_forward_proj", "tokenizer_class"], # used internally in the configuration class file "LongT5Config": ["feed_forward_proj"], # used internally in the configuration class file "SwitchTransformersConfig": ["feed_forward_proj"], # having default values other than `1e-5` - we can't fix them without breaking "BioGptConfig": ["layer_norm_eps"], # having default values other than `1e-5` - we can't fix them without breaking "GLPNConfig": ["layer_norm_eps"], # having default values other than `1e-5` - we can't fix them without breaking "SegformerConfig": ["layer_norm_eps"], # having default values other than `1e-5` - we can't fix them without breaking "CvtConfig": ["layer_norm_eps"], # having default values other than `1e-5` - we can't fix them without breaking "PerceiverConfig": ["layer_norm_eps"], # used internally to calculate the feature size "InformerConfig": ["num_static_real_features", "num_time_features"], # used internally to calculate the feature size "TimeSeriesTransformerConfig": ["num_static_real_features", "num_time_features"], # used internally to calculate the feature size "AutoformerConfig": ["num_static_real_features", "num_time_features"], # used internally to calculate `mlp_dim` "SamVisionConfig": ["mlp_ratio"], # For (head) training, but so far not implemented "ClapAudioConfig": ["num_classes"], # Not used, but providing useful information to users "SpeechT5HifiGanConfig": ["sampling_rate"], } # TODO (ydshieh): Check the failing cases, try to fix them or move some cases to the above block once we are sure SPECIAL_CASES_TO_ALLOW.update( { "CLIPSegConfig": True, "DeformableDetrConfig": True, "DetaConfig": True, "DinatConfig": True, "DonutSwinConfig": True, "EfficientFormerConfig": True, "FSMTConfig": True, "JukeboxConfig": True, "LayoutLMv2Config": True, "MaskFormerSwinConfig": True, "MT5Config": True, "NatConfig": True, "OneFormerConfig": True, "PerceiverConfig": True, "RagConfig": True, "SpeechT5Config": True, "SwinConfig": True, "Swin2SRConfig": True, "Swinv2Config": True, "SwitchTransformersConfig": True, "TableTransformerConfig": True, "TapasConfig": True, "TransfoXLConfig": True, "UniSpeechConfig": True, "UniSpeechSatConfig": True, "WavLMConfig": True, "WhisperConfig": True, # TODO: @Arthur (for `alignment_head` and `alignment_layer`) "JukeboxPriorConfig": True, # TODO: @Younes (for `is_decoder`) "Pix2StructTextConfig": True, } ) def A (__A : List[Any] , __A : Optional[int] , __A : str , __A : Dict ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase_ = False for attribute in attributes: for modeling_source in source_strings: # check if we can find `config.xxx`, `getattr(config, "xxx", ...)` or `getattr(self.config, "xxx", ...)` if ( F"""config.{attribute}""" in modeling_source or F"""getattr(config, \"{attribute}\"""" in modeling_source or F"""getattr(self.config, \"{attribute}\"""" in modeling_source ): UpperCAmelCase_ = True # Deal with multi-line cases elif ( re.search( RF"""getattr[ \t\v\n\r\f]*\([ \t\v\n\r\f]*(self\.)?config,[ \t\v\n\r\f]*\"{attribute}\"""" , __A , ) is not None ): UpperCAmelCase_ = True # `SequenceSummary` is called with `SequenceSummary(config)` elif attribute in [ "summary_type", "summary_use_proj", "summary_activation", "summary_last_dropout", "summary_proj_to_labels", "summary_first_dropout", ]: if "SequenceSummary" in modeling_source: UpperCAmelCase_ = True if attribute_used: break if attribute_used: break # common and important attributes, even if they do not always appear in the modeling files UpperCAmelCase_ = [ '''bos_index''', '''eos_index''', '''pad_index''', '''unk_index''', '''mask_index''', '''image_size''', '''use_cache''', '''out_features''', '''out_indices''', ] UpperCAmelCase_ = ['''encoder_no_repeat_ngram_size'''] # Special cases to be allowed UpperCAmelCase_ = True if not attribute_used: UpperCAmelCase_ = False for attribute in attributes: # Allow if the default value in the configuration class is different from the one in `PretrainedConfig` if attribute in ["is_encoder_decoder"] and default_value is True: UpperCAmelCase_ = True elif attribute in ["tie_word_embeddings"] and default_value is False: UpperCAmelCase_ = True # Allow cases without checking the default value in the configuration class elif attribute in attributes_to_allow + attributes_used_in_generation: UpperCAmelCase_ = True elif attribute.endswith('''_token_id''' ): UpperCAmelCase_ = True # configuration class specific cases if not case_allowed: UpperCAmelCase_ = SPECIAL_CASES_TO_ALLOW.get(config_class.__name__ , [] ) UpperCAmelCase_ = allowed_cases is True or attribute in allowed_cases return attribute_used or case_allowed def A (__A : Tuple ) -> List[Any]: """simple docstring""" UpperCAmelCase_ = dict(inspect.signature(config_class.__init__ ).parameters ) UpperCAmelCase_ = [x for x in list(signature.keys() ) if x not in ['''self''', '''kwargs''']] UpperCAmelCase_ = [signature[param].default for param in parameter_names] # If `attribute_map` exists, an attribute can have different names to be used in the modeling files, and as long # as one variant is used, the test should pass UpperCAmelCase_ = {} if len(config_class.attribute_map ) > 0: UpperCAmelCase_ = {v: k for k, v in config_class.attribute_map.items()} # Get the path to modeling source files UpperCAmelCase_ = inspect.getsourcefile(__A ) UpperCAmelCase_ = os.path.dirname(__A ) # Let's check against all frameworks: as long as one framework uses an attribute, we are good. UpperCAmelCase_ = [os.path.join(__A , __A ) for fn in os.listdir(__A ) if fn.startswith('''modeling_''' )] # Get the source code strings UpperCAmelCase_ = [] for path in modeling_paths: if os.path.isfile(__A ): with open(__A ) as fp: modeling_sources.append(fp.read() ) UpperCAmelCase_ = [] for config_param, default_value in zip(__A , __A ): # `attributes` here is all the variant names for `config_param` UpperCAmelCase_ = [config_param] # some configuration classes have non-empty `attribute_map`, and both names could be used in the # corresponding modeling files. As long as one of them appears, it is fine. if config_param in reversed_attribute_map: attributes.append(reversed_attribute_map[config_param] ) if not check_attribute_being_used(__A , __A , __A , __A ): unused_attributes.append(attributes[0] ) return sorted(__A ) def A () -> Any: """simple docstring""" UpperCAmelCase_ = {} for _config_class in list(CONFIG_MAPPING.values() ): # Skip deprecated models if "models.deprecated" in _config_class.__module__: continue # Some config classes are not in `CONFIG_MAPPING` (e.g. `CLIPVisionConfig`, `Blip2VisionConfig`, etc.) UpperCAmelCase_ = [ cls for name, cls in inspect.getmembers( inspect.getmodule(_config_class ) , lambda __A : inspect.isclass(__A ) and issubclass(__A , __A ) and inspect.getmodule(__A ) == inspect.getmodule(_config_class ) , ) ] for config_class in config_classes_in_module: UpperCAmelCase_ = check_config_attributes_being_used(__A ) if len(__A ) > 0: UpperCAmelCase_ = unused_attributes if len(__A ) > 0: UpperCAmelCase_ = '''The following configuration classes contain unused attributes in the corresponding modeling files:\n''' for name, attributes in configs_with_unused_attributes.items(): error += F"""{name}: {attributes}\n""" raise ValueError(__A ) if __name__ == "__main__": check_config_attributes()
7
0
import importlib.util import json import os import warnings from dataclasses import dataclass, field import torch from ..training_args import TrainingArguments from ..utils import cached_property, is_sagemaker_dp_enabled, logging SCREAMING_SNAKE_CASE_:List[Any] = logging.get_logger(__name__) def __UpperCamelCase ( ) -> str: """simple docstring""" A : Optional[int] = os.getenv("""SM_HP_MP_PARAMETERS""" , """{}""" ) try: # Parse it and check the field "partitions" is included, it is required for model parallel. A : Any = json.loads(_lowerCAmelCase ) if "partitions" not in smp_options: return False except json.JSONDecodeError: return False # Get the sagemaker specific framework parameters from mpi_options variable. A : int = os.getenv("""SM_FRAMEWORK_PARAMS""" , """{}""" ) try: # Parse it and check the field "sagemaker_distributed_dataparallel_enabled". A : List[str] = json.loads(_lowerCAmelCase ) if not mpi_options.get("""sagemaker_mpi_enabled""" , _lowerCAmelCase ): return False except json.JSONDecodeError: return False # Lastly, check if the `smdistributed` module is present. return importlib.util.find_spec("""smdistributed""" ) is not None if is_sagemaker_model_parallel_available(): import smdistributed.modelparallel.torch as smp smp.init() @dataclass class SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' __lowerCamelCase : Optional[int] = field( default="" , metadata={"help": "Used by the SageMaker launcher to send mp-specific args. Ignored in SageMakerTrainer"} , ) def _lowerCAmelCase ( self ): super().__post_init__() warnings.warn( """`SageMakerTrainingArguments` is deprecated and will be removed in v5 of Transformers. You can use """ """`TrainingArguments` instead.""", _lowerCAmelCase, ) @cached_property def _lowerCAmelCase ( self ): logger.info("""PyTorch: setting up devices""" ) if torch.distributed.is_available() and torch.distributed.is_initialized() and self.local_rank == -1: logger.warning( """torch.distributed process group is initialized, but local_rank == -1. """ """In order to use Torch DDP, launch your script with `python -m torch.distributed.launch""" ) if self.no_cuda: A : Tuple = torch.device("""cpu""" ) A : Tuple = 0 elif is_sagemaker_model_parallel_available(): A : Optional[int] = smp.local_rank() A : Dict = torch.device("""cuda""", _lowerCAmelCase ) A : int = 1 elif is_sagemaker_dp_enabled(): import smdistributed.dataparallel.torch.torch_smddp # noqa: F401 torch.distributed.init_process_group(backend="""smddp""", timeout=self.ddp_timeout_delta ) A : Any = int(os.getenv("""SMDATAPARALLEL_LOCAL_RANK""" ) ) A : int = torch.device("""cuda""", self.local_rank ) A : Any = 1 elif self.local_rank == -1: # if n_gpu is > 1 we'll use nn.DataParallel. # If you only want to use a specific subset of GPUs use `CUDA_VISIBLE_DEVICES=0` # Explicitly set CUDA to the first (index 0) CUDA device, otherwise `set_device` will # trigger an error that a device index is missing. Index 0 takes into account the # GPUs available in the environment, so `CUDA_VISIBLE_DEVICES=1,2` with `cuda:0` # will use the first GPU in that env, i.e. GPU#1 A : List[str] = torch.device("""cuda:0""" if torch.cuda.is_available() else """cpu""" ) # Sometimes the line in the postinit has not been run before we end up here, so just checking we're not at # the default value. A : List[str] = torch.cuda.device_count() else: # Here, we'll use torch.distributed. # Initializes the distributed backend which will take care of synchronizing nodes/GPUs if not torch.distributed.is_initialized(): torch.distributed.init_process_group(backend="""nccl""", timeout=self.ddp_timeout_delta ) A : Optional[int] = torch.device("""cuda""", self.local_rank ) A : int = 1 if device.type == "cuda": torch.cuda.set_device(_lowerCAmelCase ) return device @property def _lowerCAmelCase ( self ): if is_sagemaker_model_parallel_available(): return smp.dp_size() return super().world_size @property def _lowerCAmelCase ( self ): return not is_sagemaker_model_parallel_available() @property def _lowerCAmelCase ( self ): return False
116
'''simple docstring''' from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer from ...configuration_utils import PretrainedConfig from ...file_utils import TensorType, is_torch_available from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast from ...onnx.utils import compute_effective_axis_dimension from ...utils import logging lowerCamelCase = logging.get_logger(__name__) lowerCamelCase = { """facebook/blenderbot_small-90M""": """https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/config.json""", # See all BlenderbotSmall models at https://huggingface.co/models?filter=blenderbot_small } class _UpperCamelCase ( A ): '''simple docstring''' lowerCAmelCase__ = """blenderbot-small""" lowerCAmelCase__ = ["""past_key_values"""] lowerCAmelCase__ = {"""num_attention_heads""": """encoder_attention_heads""", """hidden_size""": """d_model"""} def __init__( self : Tuple , _lowerCAmelCase : Any=5_0_2_6_5 , _lowerCAmelCase : str=5_1_2 , _lowerCAmelCase : List[Any]=8 , _lowerCAmelCase : Tuple=2_0_4_8 , _lowerCAmelCase : str=1_6 , _lowerCAmelCase : Optional[int]=8 , _lowerCAmelCase : str=2_0_4_8 , _lowerCAmelCase : Dict=1_6 , _lowerCAmelCase : Dict=0.0 , _lowerCAmelCase : List[Any]=0.0 , _lowerCAmelCase : str=True , _lowerCAmelCase : Union[str, Any]=True , _lowerCAmelCase : Tuple="gelu" , _lowerCAmelCase : int=5_1_2 , _lowerCAmelCase : Optional[int]=0.1 , _lowerCAmelCase : Dict=0.0 , _lowerCAmelCase : int=0.0 , _lowerCAmelCase : Dict=0.02 , _lowerCAmelCase : Optional[int]=1 , _lowerCAmelCase : List[Any]=False , _lowerCAmelCase : str=0 , _lowerCAmelCase : Dict=1 , _lowerCAmelCase : Any=2 , _lowerCAmelCase : Any=2 , **_lowerCAmelCase : List[Any] , ): '''simple docstring''' __lowercase =vocab_size __lowercase =max_position_embeddings __lowercase =d_model __lowercase =encoder_ffn_dim __lowercase =encoder_layers __lowercase =encoder_attention_heads __lowercase =decoder_ffn_dim __lowercase =decoder_layers __lowercase =decoder_attention_heads __lowercase =dropout __lowercase =attention_dropout __lowercase =activation_dropout __lowercase =activation_function __lowercase =init_std __lowercase =encoder_layerdrop __lowercase =decoder_layerdrop __lowercase =use_cache __lowercase =encoder_layers __lowercase =scale_embedding # scale factor will be sqrt(d_model) if True super().__init__( pad_token_id=_lowerCAmelCase , bos_token_id=_lowerCAmelCase , eos_token_id=_lowerCAmelCase , is_encoder_decoder=_lowerCAmelCase , decoder_start_token_id=_lowerCAmelCase , forced_eos_token_id=_lowerCAmelCase , **_lowerCAmelCase , ) class _UpperCamelCase ( A ): '''simple docstring''' @property def __lowerCamelCase ( self : str): '''simple docstring''' if self.task in ["default", "seq2seq-lm"]: __lowercase =OrderedDict( [ ('input_ids', {0: 'batch', 1: 'encoder_sequence'}), ('attention_mask', {0: 'batch', 1: 'encoder_sequence'}), ]) if self.use_past: __lowercase ={0: 'batch'} __lowercase ={0: 'batch', 1: 'past_decoder_sequence + sequence'} else: __lowercase ={0: 'batch', 1: 'decoder_sequence'} __lowercase ={0: 'batch', 1: 'decoder_sequence'} if self.use_past: self.fill_with_past_key_values_(_lowerCAmelCase , direction='inputs') elif self.task == "causal-lm": # TODO: figure this case out. __lowercase =OrderedDict( [ ('input_ids', {0: 'batch', 1: 'encoder_sequence'}), ('attention_mask', {0: 'batch', 1: 'encoder_sequence'}), ]) if self.use_past: __lowercase , __lowercase =self.num_layers for i in range(_lowerCAmelCase): __lowercase ={0: 'batch', 2: 'past_sequence + sequence'} __lowercase ={0: 'batch', 2: 'past_sequence + sequence'} else: __lowercase =OrderedDict( [ ('input_ids', {0: 'batch', 1: 'encoder_sequence'}), ('attention_mask', {0: 'batch', 1: 'encoder_sequence'}), ('decoder_input_ids', {0: 'batch', 1: 'decoder_sequence'}), ('decoder_attention_mask', {0: 'batch', 1: 'decoder_sequence'}), ]) return common_inputs @property def __lowerCamelCase ( self : Optional[int]): '''simple docstring''' if self.task in ["default", "seq2seq-lm"]: __lowercase =super().outputs else: __lowercase =super(_lowerCAmelCase , self).outputs if self.use_past: __lowercase , __lowercase =self.num_layers for i in range(_lowerCAmelCase): __lowercase ={0: 'batch', 2: 'past_sequence + sequence'} __lowercase ={0: 'batch', 2: 'past_sequence + sequence'} return common_outputs def __lowerCamelCase ( self : Tuple , _lowerCAmelCase : PreTrainedTokenizer , _lowerCAmelCase : int = -1 , _lowerCAmelCase : int = -1 , _lowerCAmelCase : bool = False , _lowerCAmelCase : Optional[TensorType] = None , ): '''simple docstring''' __lowercase =self._generate_dummy_inputs_for_sequence_classification_and_question_answering( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase) # Generate decoder inputs __lowercase =seq_length if not self.use_past else 1 __lowercase =self._generate_dummy_inputs_for_sequence_classification_and_question_answering( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase) __lowercase ={f"""decoder_{name}""": tensor for name, tensor in decoder_inputs.items()} __lowercase =dict(**_lowerCAmelCase , **_lowerCAmelCase) if self.use_past: if not is_torch_available(): raise ValueError('Cannot generate dummy past_keys inputs without PyTorch installed.') else: import torch __lowercase , __lowercase =common_inputs['input_ids'].shape __lowercase =common_inputs['decoder_input_ids'].shape[1] __lowercase , __lowercase =self.num_attention_heads __lowercase =( batch, num_encoder_attention_heads, encoder_seq_length, self._config.hidden_size // num_encoder_attention_heads, ) __lowercase =decoder_seq_length + 3 __lowercase =( batch, num_decoder_attention_heads, decoder_past_length, self._config.hidden_size // num_decoder_attention_heads, ) __lowercase =torch.cat( [common_inputs['decoder_attention_mask'], torch.ones(_lowerCAmelCase , _lowerCAmelCase)] , dim=1) __lowercase =[] # If the number of encoder and decoder layers are present in the model configuration, both are considered __lowercase , __lowercase =self.num_layers __lowercase =min(_lowerCAmelCase , _lowerCAmelCase) __lowercase =max(_lowerCAmelCase , _lowerCAmelCase) - min_num_layers __lowercase ='encoder' if num_encoder_layers > num_decoder_layers else 'decoder' for _ in range(_lowerCAmelCase): common_inputs["past_key_values"].append( ( torch.zeros(_lowerCAmelCase), torch.zeros(_lowerCAmelCase), torch.zeros(_lowerCAmelCase), torch.zeros(_lowerCAmelCase), )) # TODO: test this. __lowercase =encoder_shape if remaining_side_name == 'encoder' else decoder_shape for _ in range(_lowerCAmelCase , _lowerCAmelCase): common_inputs["past_key_values"].append((torch.zeros(_lowerCAmelCase), torch.zeros(_lowerCAmelCase))) return common_inputs def __lowerCamelCase ( self : Tuple , _lowerCAmelCase : PreTrainedTokenizer , _lowerCAmelCase : int = -1 , _lowerCAmelCase : int = -1 , _lowerCAmelCase : bool = False , _lowerCAmelCase : Optional[TensorType] = None , ): '''simple docstring''' __lowercase =self._generate_dummy_inputs_for_sequence_classification_and_question_answering( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase) if self.use_past: if not is_torch_available(): raise ValueError('Cannot generate dummy past_keys inputs without PyTorch installed.') else: import torch __lowercase , __lowercase =common_inputs['input_ids'].shape # Not using the same length for past_key_values __lowercase =seqlen + 2 __lowercase , __lowercase =self.num_layers __lowercase , __lowercase =self.num_attention_heads __lowercase =( batch, num_encoder_attention_heads, past_key_values_length, self._config.hidden_size // num_encoder_attention_heads, ) __lowercase =common_inputs['attention_mask'].dtype __lowercase =torch.cat( [common_inputs['attention_mask'], torch.ones(_lowerCAmelCase , _lowerCAmelCase , dtype=_lowerCAmelCase)] , dim=1) __lowercase =[ (torch.zeros(_lowerCAmelCase), torch.zeros(_lowerCAmelCase)) for _ in range(_lowerCAmelCase) ] return common_inputs def __lowerCamelCase ( self : Tuple , _lowerCAmelCase : PreTrainedTokenizer , _lowerCAmelCase : int = -1 , _lowerCAmelCase : int = -1 , _lowerCAmelCase : bool = False , _lowerCAmelCase : Optional[TensorType] = None , ): '''simple docstring''' __lowercase =compute_effective_axis_dimension( _lowerCAmelCase , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX __lowercase =tokenizer.num_special_tokens_to_add(_lowerCAmelCase) __lowercase =compute_effective_axis_dimension( _lowerCAmelCase , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=_lowerCAmelCase) # Generate dummy inputs according to compute batch and sequence __lowercase =[' '.join([tokenizer.unk_token]) * seq_length] * batch_size __lowercase =dict(tokenizer(_lowerCAmelCase , return_tensors=_lowerCAmelCase)) return common_inputs def __lowerCamelCase ( self : Optional[int] , _lowerCAmelCase : PreTrainedTokenizer , _lowerCAmelCase : int = -1 , _lowerCAmelCase : int = -1 , _lowerCAmelCase : bool = False , _lowerCAmelCase : Optional[TensorType] = None , ): '''simple docstring''' if self.task in ["default", "seq2seq-lm"]: __lowercase =self._generate_dummy_inputs_for_default_and_seqaseq_lm( _lowerCAmelCase , batch_size=_lowerCAmelCase , seq_length=_lowerCAmelCase , is_pair=_lowerCAmelCase , framework=_lowerCAmelCase) elif self.task == "causal-lm": __lowercase =self._generate_dummy_inputs_for_causal_lm( _lowerCAmelCase , batch_size=_lowerCAmelCase , seq_length=_lowerCAmelCase , is_pair=_lowerCAmelCase , framework=_lowerCAmelCase) else: __lowercase =self._generate_dummy_inputs_for_sequence_classification_and_question_answering( _lowerCAmelCase , batch_size=_lowerCAmelCase , seq_length=_lowerCAmelCase , is_pair=_lowerCAmelCase , framework=_lowerCAmelCase) return common_inputs def __lowerCamelCase ( self : Tuple , _lowerCAmelCase : Any , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Any): '''simple docstring''' if self.task in ["default", "seq2seq-lm"]: __lowercase =super()._flatten_past_key_values_(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase) else: __lowercase =super(_lowerCAmelCase , self)._flatten_past_key_values_( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase)
166
0
# We ignore warnings about stepping the scheduler since we step it ourselves during gradient accumulation import warnings from .state import AcceleratorState, GradientState warnings.filterwarnings('''ignore''', category=UserWarning, module='''torch.optim.lr_scheduler''') class __a : def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = True , _SCREAMING_SNAKE_CASE = False ) -> str: """simple docstring""" _UpperCAmelCase = scheduler _UpperCAmelCase = optimizers if isinstance(_SCREAMING_SNAKE_CASE , (list, tuple) ) else [optimizers] _UpperCAmelCase = split_batches _UpperCAmelCase = step_with_optimizer _UpperCAmelCase = GradientState() def UpperCAmelCase__ ( self , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> List[Any]: """simple docstring""" if not self.step_with_optimizer: # No link between scheduler and optimizer -> just step self.scheduler.step(*_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) return # Otherwise, first make sure the optimizer was stepped. if not self.gradient_state.sync_gradients: if self.gradient_state.adjust_scheduler: self.scheduler._step_count += 1 return for opt in self.optimizers: if opt.step_was_skipped: return if self.split_batches: # Split batches -> the training dataloader batch size is not changed so one step per training step self.scheduler.step(*_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) else: # Otherwise the training dataloader batch size was multiplied by `num_processes`, so we need to do # num_processes steps per training step _UpperCAmelCase = AcceleratorState().num_processes for _ in range(_SCREAMING_SNAKE_CASE ): # Special case when using OneCycle and `drop_last` was not used if hasattr(self.scheduler , 'total_steps' ): if self.scheduler._step_count <= self.scheduler.total_steps: self.scheduler.step(*_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) else: self.scheduler.step(*_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self ) -> Any: """simple docstring""" return self.scheduler.get_last_lr() def UpperCAmelCase__ ( self ) -> int: """simple docstring""" return self.scheduler.state_dict() def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE ) -> Any: """simple docstring""" self.scheduler.load_state_dict(_SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self ) -> Optional[int]: """simple docstring""" return self.scheduler.get_lr() def UpperCAmelCase__ ( self , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> Any: """simple docstring""" return self.scheduler.print_lr(*_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE )
366
def lowerCAmelCase__ ( a__: int ) -> None: '''simple docstring''' _UpperCAmelCase = generate_pascal_triangle(a__ ) for row_idx in range(a__ ): # Print left spaces for _ in range(num_rows - row_idx - 1 ): print(end=' ' ) # Print row values for col_idx in range(row_idx + 1 ): if col_idx != row_idx: print(triangle[row_idx][col_idx] , end=' ' ) else: print(triangle[row_idx][col_idx] , end='' ) print() def lowerCAmelCase__ ( a__: int ) -> list[list[int]]: '''simple docstring''' if not isinstance(a__ , a__ ): raise TypeError('The input value of \'num_rows\' should be \'int\'' ) if num_rows == 0: return [] elif num_rows < 0: raise ValueError( 'The input value of \'num_rows\' should be greater than or equal to 0' ) _UpperCAmelCase = [] for current_row_idx in range(a__ ): _UpperCAmelCase = populate_current_row(a__ , a__ ) triangle.append(a__ ) return triangle def lowerCAmelCase__ ( a__: list[list[int]] , a__: int ) -> list[int]: '''simple docstring''' _UpperCAmelCase = [-1] * (current_row_idx + 1) # first and last elements of current row are equal to 1 _UpperCAmelCase , _UpperCAmelCase = 1, 1 for current_col_idx in range(1 , a__ ): calculate_current_element( a__ , a__ , a__ , a__ ) return current_row def lowerCAmelCase__ ( a__: list[list[int]] , a__: list[int] , a__: int , a__: int , ) -> None: '''simple docstring''' _UpperCAmelCase = triangle[current_row_idx - 1][current_col_idx - 1] _UpperCAmelCase = triangle[current_row_idx - 1][current_col_idx] _UpperCAmelCase = above_to_left_elt + above_to_right_elt def lowerCAmelCase__ ( a__: int ) -> list[list[int]]: '''simple docstring''' if not isinstance(a__ , a__ ): raise TypeError('The input value of \'num_rows\' should be \'int\'' ) if num_rows == 0: return [] elif num_rows < 0: raise ValueError( 'The input value of \'num_rows\' should be greater than or equal to 0' ) _UpperCAmelCase = [[1]] for row_index in range(1 , a__ ): _UpperCAmelCase = [0] + result[-1] + [0] _UpperCAmelCase = row_index + 1 # Calculate the number of distinct elements in a row _UpperCAmelCase = sum(divmod(a__ , 2 ) ) _UpperCAmelCase = [ temp_row[i - 1] + temp_row[i] for i in range(1 , distinct_elements + 1 ) ] _UpperCAmelCase = row_first_half[: (row_index + 1) // 2] row_second_half.reverse() _UpperCAmelCase = row_first_half + row_second_half result.append(a__ ) return result def lowerCAmelCase__ ( ) -> None: '''simple docstring''' from collections.abc import Callable from timeit import timeit def benchmark_a_function(a__: Callable , a__: int ) -> None: _UpperCAmelCase = F'''{func.__name__}({value})''' _UpperCAmelCase = timeit(F'''__main__.{call}''' , setup='import __main__' ) # print(f"{call:38} = {func(value)} -- {timing:.4f} seconds") print(F'''{call:38} -- {timing:.4f} seconds''' ) for value in range(1_5 ): # (1, 7, 14): for func in (generate_pascal_triangle, generate_pascal_triangle_optimized): benchmark_a_function(a__ , a__ ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
185
0
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __lowerCamelCase : List[Any] = logging.get_logger(__name__) __lowerCamelCase : str = { """roberta-base""": """https://huggingface.co/roberta-base/resolve/main/config.json""", """roberta-large""": """https://huggingface.co/roberta-large/resolve/main/config.json""", """roberta-large-mnli""": """https://huggingface.co/roberta-large-mnli/resolve/main/config.json""", """distilroberta-base""": """https://huggingface.co/distilroberta-base/resolve/main/config.json""", """roberta-base-openai-detector""": """https://huggingface.co/roberta-base-openai-detector/resolve/main/config.json""", """roberta-large-openai-detector""": """https://huggingface.co/roberta-large-openai-detector/resolve/main/config.json""", } class A__ ( __snake_case ): _UpperCAmelCase :Union[str, Any] = 'roberta' def __init__( self , A_=5_0265 , A_=768 , A_=12 , A_=12 , A_=3072 , A_="gelu" , A_=0.1 , A_=0.1 , A_=512 , A_=2 , A_=0.02 , A_=1e-12 , A_=1 , A_=0 , A_=2 , A_="absolute" , A_=True , A_=None , **A_ , ): '''simple docstring''' super().__init__(pad_token_id=A_ , bos_token_id=A_ , eos_token_id=A_ , **A_ ) UpperCamelCase : Optional[int] = vocab_size UpperCamelCase : Dict = hidden_size UpperCamelCase : str = num_hidden_layers UpperCamelCase : Any = num_attention_heads UpperCamelCase : List[str] = hidden_act UpperCamelCase : Optional[Any] = intermediate_size UpperCamelCase : Tuple = hidden_dropout_prob UpperCamelCase : Tuple = attention_probs_dropout_prob UpperCamelCase : Tuple = max_position_embeddings UpperCamelCase : Any = type_vocab_size UpperCamelCase : int = initializer_range UpperCamelCase : str = layer_norm_eps UpperCamelCase : Dict = position_embedding_type UpperCamelCase : Any = use_cache UpperCamelCase : Union[str, Any] = classifier_dropout class A__ ( __snake_case ): @property def __UpperCamelCase( self ): '''simple docstring''' if self.task == "multiple-choice": UpperCamelCase : Optional[int] = {0: "batch", 1: "choice", 2: "sequence"} else: UpperCamelCase : Optional[int] = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ] )
52
'''simple docstring''' import shutil import tempfile import unittest import numpy as np import pytest from transformers.testing_utils import require_vision from transformers.utils import is_vision_available if is_vision_available(): from PIL import Image from transformers import AutoProcessor, BertTokenizer, BlipImageProcessor, BlipProcessor, PreTrainedTokenizerFast @require_vision class A_ ( unittest.TestCase ): def lowercase ( self : int ): _UpperCAmelCase = tempfile.mkdtemp() _UpperCAmelCase = BlipImageProcessor() _UpperCAmelCase = BertTokenizer.from_pretrained("hf-internal-testing/tiny-random-BertModel" ) _UpperCAmelCase = BlipProcessor(snake_case_ , snake_case_ ) processor.save_pretrained(self.tmpdirname ) def lowercase ( self : Tuple , **snake_case_ : int ): return AutoProcessor.from_pretrained(self.tmpdirname , **snake_case_ ).tokenizer def lowercase ( self : Dict , **snake_case_ : Any ): return AutoProcessor.from_pretrained(self.tmpdirname , **snake_case_ ).image_processor def lowercase ( self : int ): shutil.rmtree(self.tmpdirname ) def lowercase ( self : Optional[Any] ): _UpperCAmelCase = [np.random.randint(2_5_5 , size=(3, 3_0, 4_0_0) , dtype=np.uinta )] _UpperCAmelCase = [Image.fromarray(np.moveaxis(snake_case_ , 0 , -1 ) ) for x in image_inputs] return image_inputs def lowercase ( self : int ): _UpperCAmelCase = BlipProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) _UpperCAmelCase = self.get_tokenizer(bos_token="(BOS)" , eos_token="(EOS)" ) _UpperCAmelCase = self.get_image_processor(do_normalize=snake_case_ , padding_value=1.0 ) _UpperCAmelCase = BlipProcessor.from_pretrained( self.tmpdirname , bos_token="(BOS)" , eos_token="(EOS)" , do_normalize=snake_case_ , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , snake_case_ ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , snake_case_ ) def lowercase ( self : Any ): _UpperCAmelCase = self.get_image_processor() _UpperCAmelCase = self.get_tokenizer() _UpperCAmelCase = BlipProcessor(tokenizer=snake_case_ , image_processor=snake_case_ ) _UpperCAmelCase = self.prepare_image_inputs() _UpperCAmelCase = image_processor(snake_case_ , return_tensors="np" ) _UpperCAmelCase = processor(images=snake_case_ , return_tensors="np" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) def lowercase ( self : Optional[int] ): _UpperCAmelCase = self.get_image_processor() _UpperCAmelCase = self.get_tokenizer() _UpperCAmelCase = BlipProcessor(tokenizer=snake_case_ , image_processor=snake_case_ ) _UpperCAmelCase = "lower newer" _UpperCAmelCase = processor(text=snake_case_ ) _UpperCAmelCase = tokenizer(snake_case_ , return_token_type_ids=snake_case_ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def lowercase ( self : Optional[Any] ): _UpperCAmelCase = self.get_image_processor() _UpperCAmelCase = self.get_tokenizer() _UpperCAmelCase = BlipProcessor(tokenizer=snake_case_ , image_processor=snake_case_ ) _UpperCAmelCase = "lower newer" _UpperCAmelCase = self.prepare_image_inputs() _UpperCAmelCase = processor(text=snake_case_ , images=snake_case_ ) self.assertListEqual(list(inputs.keys() ) , ["pixel_values", "input_ids", "attention_mask"] ) # test if it raises when no input is passed with pytest.raises(snake_case_ ): processor() def lowercase ( self : Union[str, Any] ): _UpperCAmelCase = self.get_image_processor() _UpperCAmelCase = self.get_tokenizer() _UpperCAmelCase = BlipProcessor(tokenizer=snake_case_ , image_processor=snake_case_ ) _UpperCAmelCase = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] _UpperCAmelCase = processor.batch_decode(snake_case_ ) _UpperCAmelCase = tokenizer.batch_decode(snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) def lowercase ( self : str ): _UpperCAmelCase = self.get_image_processor() _UpperCAmelCase = self.get_tokenizer() _UpperCAmelCase = BlipProcessor(tokenizer=snake_case_ , image_processor=snake_case_ ) _UpperCAmelCase = "lower newer" _UpperCAmelCase = self.prepare_image_inputs() _UpperCAmelCase = processor(text=snake_case_ , images=snake_case_ ) # For now the processor supports only ['pixel_values', 'input_ids', 'attention_mask'] self.assertListEqual(list(inputs.keys() ) , ["pixel_values", "input_ids", "attention_mask"] )
22
0
'''simple docstring''' import torch from diffusers import EulerDiscreteScheduler from diffusers.utils import torch_device from .test_schedulers import SchedulerCommonTest class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' _lowercase : Optional[Any] = (EulerDiscreteScheduler,) _lowercase : Optional[Any] = 1_0 def _lowercase ( self , **_lowercase ): """simple docstring""" _lowerCAmelCase = { """num_train_timesteps""": 1_100, """beta_start""": 0.0001, """beta_end""": 0.02, """beta_schedule""": """linear""", } config.update(**_lowercase ) return config def _lowercase ( self ): """simple docstring""" for timesteps in [10, 50, 100, 1_000]: self.check_over_configs(num_train_timesteps=_lowercase ) def _lowercase ( self ): """simple docstring""" for beta_start, beta_end in zip([0.0_0001, 0.0001, 0.001] , [0.0002, 0.002, 0.02] ): self.check_over_configs(beta_start=_lowercase , beta_end=_lowercase ) def _lowercase ( self ): """simple docstring""" for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=_lowercase ) def _lowercase ( self ): """simple docstring""" for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=_lowercase ) def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = self.scheduler_classes[0] _lowerCAmelCase = self.get_scheduler_config() _lowerCAmelCase = scheduler_class(**_lowercase ) scheduler.set_timesteps(self.num_inference_steps ) _lowerCAmelCase = torch.manual_seed(0 ) _lowerCAmelCase = self.dummy_model() _lowerCAmelCase = self.dummy_sample_deter * scheduler.init_noise_sigma _lowerCAmelCase = sample.to(_lowercase ) for i, t in enumerate(scheduler.timesteps ): _lowerCAmelCase = scheduler.scale_model_input(_lowercase , _lowercase ) _lowerCAmelCase = model(_lowercase , _lowercase ) _lowerCAmelCase = scheduler.step(_lowercase , _lowercase , _lowercase , generator=_lowercase ) _lowerCAmelCase = output.prev_sample _lowerCAmelCase = torch.sum(torch.abs(_lowercase ) ) _lowerCAmelCase = torch.mean(torch.abs(_lowercase ) ) assert abs(result_sum.item() - 10.0807 ) < 1e-2 assert abs(result_mean.item() - 0.0131 ) < 1e-3 def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = self.scheduler_classes[0] _lowerCAmelCase = self.get_scheduler_config(prediction_type="""v_prediction""" ) _lowerCAmelCase = scheduler_class(**_lowercase ) scheduler.set_timesteps(self.num_inference_steps ) _lowerCAmelCase = torch.manual_seed(0 ) _lowerCAmelCase = self.dummy_model() _lowerCAmelCase = self.dummy_sample_deter * scheduler.init_noise_sigma _lowerCAmelCase = sample.to(_lowercase ) for i, t in enumerate(scheduler.timesteps ): _lowerCAmelCase = scheduler.scale_model_input(_lowercase , _lowercase ) _lowerCAmelCase = model(_lowercase , _lowercase ) _lowerCAmelCase = scheduler.step(_lowercase , _lowercase , _lowercase , generator=_lowercase ) _lowerCAmelCase = output.prev_sample _lowerCAmelCase = torch.sum(torch.abs(_lowercase ) ) _lowerCAmelCase = torch.mean(torch.abs(_lowercase ) ) assert abs(result_sum.item() - 0.0002 ) < 1e-2 assert abs(result_mean.item() - 2.2676e-06 ) < 1e-3 def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = self.scheduler_classes[0] _lowerCAmelCase = self.get_scheduler_config() _lowerCAmelCase = scheduler_class(**_lowercase ) scheduler.set_timesteps(self.num_inference_steps , device=_lowercase ) _lowerCAmelCase = torch.manual_seed(0 ) _lowerCAmelCase = self.dummy_model() _lowerCAmelCase = self.dummy_sample_deter * scheduler.init_noise_sigma.cpu() _lowerCAmelCase = sample.to(_lowercase ) for t in scheduler.timesteps: _lowerCAmelCase = scheduler.scale_model_input(_lowercase , _lowercase ) _lowerCAmelCase = model(_lowercase , _lowercase ) _lowerCAmelCase = scheduler.step(_lowercase , _lowercase , _lowercase , generator=_lowercase ) _lowerCAmelCase = output.prev_sample _lowerCAmelCase = torch.sum(torch.abs(_lowercase ) ) _lowerCAmelCase = torch.mean(torch.abs(_lowercase ) ) assert abs(result_sum.item() - 10.0807 ) < 1e-2 assert abs(result_mean.item() - 0.0131 ) < 1e-3 def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = self.scheduler_classes[0] _lowerCAmelCase = self.get_scheduler_config() _lowerCAmelCase = scheduler_class(**_lowercase , use_karras_sigmas=_lowercase ) scheduler.set_timesteps(self.num_inference_steps , device=_lowercase ) _lowerCAmelCase = torch.manual_seed(0 ) _lowerCAmelCase = self.dummy_model() _lowerCAmelCase = self.dummy_sample_deter * scheduler.init_noise_sigma.cpu() _lowerCAmelCase = sample.to(_lowercase ) for t in scheduler.timesteps: _lowerCAmelCase = scheduler.scale_model_input(_lowercase , _lowercase ) _lowerCAmelCase = model(_lowercase , _lowercase ) _lowerCAmelCase = scheduler.step(_lowercase , _lowercase , _lowercase , generator=_lowercase ) _lowerCAmelCase = output.prev_sample _lowerCAmelCase = torch.sum(torch.abs(_lowercase ) ) _lowerCAmelCase = torch.mean(torch.abs(_lowercase ) ) assert abs(result_sum.item() - 124.52_2994_9951_1719 ) < 1e-2 assert abs(result_mean.item() - 0.1_6213_9326_3339_9963 ) < 1e-3
229
'''simple docstring''' from ...configuration_utils import PretrainedConfig class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' _lowercase : Tuple = '''bert-generation''' def __init__( self , _lowercase=50_358 , _lowercase=1_024 , _lowercase=24 , _lowercase=16 , _lowercase=4_096 , _lowercase="gelu" , _lowercase=0.1 , _lowercase=0.1 , _lowercase=512 , _lowercase=0.02 , _lowercase=1e-12 , _lowercase=0 , _lowercase=2 , _lowercase=1 , _lowercase="absolute" , _lowercase=True , **_lowercase , ): """simple docstring""" super().__init__(pad_token_id=_lowercase , bos_token_id=_lowercase , eos_token_id=_lowercase , **_lowercase ) _lowerCAmelCase = vocab_size _lowerCAmelCase = hidden_size _lowerCAmelCase = num_hidden_layers _lowerCAmelCase = num_attention_heads _lowerCAmelCase = hidden_act _lowerCAmelCase = intermediate_size _lowerCAmelCase = hidden_dropout_prob _lowerCAmelCase = attention_probs_dropout_prob _lowerCAmelCase = max_position_embeddings _lowerCAmelCase = initializer_range _lowerCAmelCase = layer_norm_eps _lowerCAmelCase = position_embedding_type _lowerCAmelCase = use_cache
229
1
"""simple docstring""" from typing import List import numpy as np def UpperCAmelCase__ ( lowerCAmelCase__ :dict ) -> int: '''simple docstring''' lowercase = {key: len(lowerCAmelCase__ ) for key, value in gen_kwargs.items() if isinstance(lowerCAmelCase__ , lowerCAmelCase__ )} if len(set(lists_lengths.values() ) ) > 1: raise RuntimeError( ( """Sharding is ambiguous for this dataset: """ + """we found several data sources lists of different lengths, and we don't know over which list we should parallelize:\n""" + """\n""".join(f'\t- key {key} has length {length}' for key, length in lists_lengths.items() ) + """\nTo fix this, check the 'gen_kwargs' and make sure to use lists only for data sources, """ + """and use tuples otherwise. In the end there should only be one single list, or several lists with the same length.""" ) ) lowercase = max(lists_lengths.values() , default=0 ) return max(1 , lowerCAmelCase__ ) def UpperCAmelCase__ ( lowerCAmelCase__ :int , lowerCAmelCase__ :int ) -> List[range]: '''simple docstring''' lowercase = [] for group_idx in range(lowerCAmelCase__ ): lowercase = num_shards // max_num_jobs + (group_idx < (num_shards % max_num_jobs)) if num_shards_to_add == 0: break lowercase = shards_indices_per_group[-1].stop if shards_indices_per_group else 0 lowercase = range(lowerCAmelCase__ , start + num_shards_to_add ) shards_indices_per_group.append(lowerCAmelCase__ ) return shards_indices_per_group def UpperCAmelCase__ ( lowerCAmelCase__ :dict , lowerCAmelCase__ :int ) -> List[dict]: '''simple docstring''' lowercase = _number_of_shards_in_gen_kwargs(lowerCAmelCase__ ) if num_shards == 1: return [dict(lowerCAmelCase__ )] else: lowercase = _distribute_shards(num_shards=lowerCAmelCase__ , max_num_jobs=lowerCAmelCase__ ) return [ { key: [value[shard_idx] for shard_idx in shard_indices_per_group[group_idx]] if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else value for key, value in gen_kwargs.items() } for group_idx in range(len(lowerCAmelCase__ ) ) ] def UpperCAmelCase__ ( lowerCAmelCase__ :List[dict] ) -> dict: '''simple docstring''' return { key: [value for gen_kwargs in gen_kwargs_list for value in gen_kwargs[key]] if isinstance(gen_kwargs_list[0][key] , lowerCAmelCase__ ) else gen_kwargs_list[0][key] for key in gen_kwargs_list[0] } def UpperCAmelCase__ ( lowerCAmelCase__ :np.random.Generator , lowerCAmelCase__ :dict ) -> dict: '''simple docstring''' lowercase = {len(lowerCAmelCase__ ) for value in gen_kwargs.values() if isinstance(lowerCAmelCase__ , lowerCAmelCase__ )} lowercase = {} for size in list_sizes: lowercase = list(range(lowerCAmelCase__ ) ) rng.shuffle(indices_per_size[size] ) # Now let's copy the gen_kwargs and shuffle the lists based on their sizes lowercase = dict(lowerCAmelCase__ ) for key, value in shuffled_kwargs.items(): if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): lowercase = [value[i] for i in indices_per_size[len(lowerCAmelCase__ )]] return shuffled_kwargs
197
"""simple docstring""" import logging import random import ray from transformers import RagConfig, RagRetriever, RagTokenizer from transformers.models.rag.retrieval_rag import CustomHFIndex __lowerCAmelCase : int =logging.getLogger(__name__) class _A : def __init__( self ): """simple docstring""" lowercase = False def A__ ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): """simple docstring""" if not self.initialized: lowercase = RagRetriever( __lowerCAmelCase , question_encoder_tokenizer=__lowerCAmelCase , generator_tokenizer=__lowerCAmelCase , index=__lowerCAmelCase , init_retrieval=__lowerCAmelCase , ) lowercase = True def A__ ( self ): """simple docstring""" self.retriever.index.init_index() def A__ ( self , __lowerCAmelCase , __lowerCAmelCase ): """simple docstring""" lowercase , lowercase = self.retriever._main_retrieve(__lowerCAmelCase , __lowerCAmelCase ) return doc_ids, retrieved_doc_embeds class _A ( lowerCAmelCase ): def __init__( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=None ): """simple docstring""" if index is not None and index.is_initialized() and len(__lowerCAmelCase ) > 0: raise ValueError( """When using Ray for distributed fine-tuning, """ """you'll need to provide the paths instead, """ """as the dataset and the index are loaded """ """separately. More info in examples/rag/use_own_knowledge_dataset.py """ ) super().__init__( __lowerCAmelCase , question_encoder_tokenizer=__lowerCAmelCase , generator_tokenizer=__lowerCAmelCase , index=__lowerCAmelCase , init_retrieval=__lowerCAmelCase , ) lowercase = retrieval_workers if len(self.retrieval_workers ) > 0: ray.get( [ worker.create_rag_retriever.remote(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) for worker in self.retrieval_workers ] ) def A__ ( self ): """simple docstring""" logger.info("""initializing retrieval""" ) if len(self.retrieval_workers ) > 0: ray.get([worker.init_retrieval.remote() for worker in self.retrieval_workers] ) else: # Non-distributed training. Load index into this same process. self.index.init_index() def A__ ( self , __lowerCAmelCase , __lowerCAmelCase ): """simple docstring""" if len(self.retrieval_workers ) > 0: # Select a random retrieval actor. lowercase = self.retrieval_workers[random.randint(0 , len(self.retrieval_workers ) - 1 )] lowercase , lowercase = ray.get(random_worker.retrieve.remote(__lowerCAmelCase , __lowerCAmelCase ) ) else: lowercase , lowercase = self._main_retrieve(__lowerCAmelCase , __lowerCAmelCase ) return retrieved_doc_embeds, doc_ids, self.index.get_doc_dicts(__lowerCAmelCase ) @classmethod def A__ ( cls , __lowerCAmelCase , __lowerCAmelCase=None , **__lowerCAmelCase ): """simple docstring""" return super(__lowerCAmelCase , cls ).get_tokenizers(__lowerCAmelCase , __lowerCAmelCase , **__lowerCAmelCase ) @classmethod def A__ ( cls , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=None , **__lowerCAmelCase ): """simple docstring""" lowercase = kwargs.pop("""config""" , __lowerCAmelCase ) or RagConfig.from_pretrained(__lowerCAmelCase , **__lowerCAmelCase ) lowercase = RagTokenizer.from_pretrained(__lowerCAmelCase , config=__lowerCAmelCase ) lowercase = rag_tokenizer.question_encoder lowercase = rag_tokenizer.generator if indexed_dataset is not None: lowercase = """custom""" lowercase = CustomHFIndex(config.retrieval_vector_size , __lowerCAmelCase ) else: lowercase = cls._build_index(__lowerCAmelCase ) return cls( __lowerCAmelCase , question_encoder_tokenizer=__lowerCAmelCase , generator_tokenizer=__lowerCAmelCase , retrieval_workers=__lowerCAmelCase , index=__lowerCAmelCase , )
197
1
'''simple docstring''' import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DetaImageProcessor class a__ ( unittest.TestCase ): '''simple docstring''' def __init__( self , lowerCamelCase_ , lowerCamelCase_=7 , lowerCamelCase_=3 , lowerCamelCase_=30 , lowerCamelCase_=4_00 , lowerCamelCase_=True , lowerCamelCase_=None , lowerCamelCase_=True , lowerCamelCase_=[0.5, 0.5, 0.5] , lowerCamelCase_=[0.5, 0.5, 0.5] , lowerCamelCase_=True , lowerCamelCase_=1 / 2_55 , lowerCamelCase_=True , ) -> List[Any]: lowerCAmelCase__ = size if size is not None else {'''shortest_edge''': 18, '''longest_edge''': 13_33} lowerCAmelCase__ = parent lowerCAmelCase__ = batch_size lowerCAmelCase__ = num_channels lowerCAmelCase__ = min_resolution lowerCAmelCase__ = max_resolution lowerCAmelCase__ = do_resize lowerCAmelCase__ = size lowerCAmelCase__ = do_normalize lowerCAmelCase__ = image_mean lowerCAmelCase__ = image_std lowerCAmelCase__ = do_rescale lowerCAmelCase__ = rescale_factor lowerCAmelCase__ = do_pad def __SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def __SCREAMING_SNAKE_CASE ( self , lowerCamelCase_ , lowerCamelCase_=False ) -> Dict: if not batched: lowerCAmelCase__ = image_inputs[0] if isinstance(_UpperCAmelCase , Image.Image ): lowerCAmelCase__ , lowerCAmelCase__ = image.size else: lowerCAmelCase__ , lowerCAmelCase__ = image.shape[1], image.shape[2] if w < h: lowerCAmelCase__ = int(self.size['''shortest_edge'''] * h / w ) lowerCAmelCase__ = self.size['''shortest_edge'''] elif w > h: lowerCAmelCase__ = self.size['''shortest_edge'''] lowerCAmelCase__ = int(self.size['''shortest_edge'''] * w / h ) else: lowerCAmelCase__ = self.size['''shortest_edge'''] lowerCAmelCase__ = self.size['''shortest_edge'''] else: lowerCAmelCase__ = [] for image in image_inputs: lowerCAmelCase__ , lowerCAmelCase__ = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) lowerCAmelCase__ = max(_UpperCAmelCase , key=lambda lowerCamelCase_ : item[0] )[0] lowerCAmelCase__ = max(_UpperCAmelCase , key=lambda lowerCamelCase_ : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class a__ ( lowerCamelCase_ , unittest.TestCase ): '''simple docstring''' lowercase__ : Union[str, Any] = DetaImageProcessor if is_vision_available() else None def __SCREAMING_SNAKE_CASE ( self ) -> List[Any]: lowerCAmelCase__ = DetaImageProcessingTester(self ) @property def __SCREAMING_SNAKE_CASE ( self ) -> str: return self.image_processor_tester.prepare_image_processor_dict() def __SCREAMING_SNAKE_CASE ( self ) -> List[Any]: lowerCAmelCase__ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_UpperCAmelCase , '''image_mean''' ) ) self.assertTrue(hasattr(_UpperCAmelCase , '''image_std''' ) ) self.assertTrue(hasattr(_UpperCAmelCase , '''do_normalize''' ) ) self.assertTrue(hasattr(_UpperCAmelCase , '''do_resize''' ) ) self.assertTrue(hasattr(_UpperCAmelCase , '''do_rescale''' ) ) self.assertTrue(hasattr(_UpperCAmelCase , '''do_pad''' ) ) self.assertTrue(hasattr(_UpperCAmelCase , '''size''' ) ) def __SCREAMING_SNAKE_CASE ( self ) -> List[Any]: lowerCAmelCase__ = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''shortest_edge''': 18, '''longest_edge''': 13_33} ) self.assertEqual(image_processor.do_pad , _UpperCAmelCase ) def __SCREAMING_SNAKE_CASE ( self ) -> Optional[Any]: pass def __SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: lowerCAmelCase__ = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowerCAmelCase__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(_UpperCAmelCase , Image.Image ) # Test not batched input lowerCAmelCase__ = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values lowerCAmelCase__ , lowerCAmelCase__ = self.image_processor_tester.get_expected_values(_UpperCAmelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched lowerCAmelCase__ , lowerCAmelCase__ = self.image_processor_tester.get_expected_values(_UpperCAmelCase , batched=_UpperCAmelCase ) lowerCAmelCase__ = image_processing(_UpperCAmelCase , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def __SCREAMING_SNAKE_CASE ( self ) -> int: lowerCAmelCase__ = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowerCAmelCase__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCAmelCase , numpify=_UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(_UpperCAmelCase , np.ndarray ) # Test not batched input lowerCAmelCase__ = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values lowerCAmelCase__ , lowerCAmelCase__ = self.image_processor_tester.get_expected_values(_UpperCAmelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched lowerCAmelCase__ = image_processing(_UpperCAmelCase , return_tensors='''pt''' ).pixel_values lowerCAmelCase__ , lowerCAmelCase__ = self.image_processor_tester.get_expected_values(_UpperCAmelCase , batched=_UpperCAmelCase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def __SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: lowerCAmelCase__ = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowerCAmelCase__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCAmelCase , torchify=_UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(_UpperCAmelCase , torch.Tensor ) # Test not batched input lowerCAmelCase__ = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values lowerCAmelCase__ , lowerCAmelCase__ = self.image_processor_tester.get_expected_values(_UpperCAmelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched lowerCAmelCase__ = image_processing(_UpperCAmelCase , return_tensors='''pt''' ).pixel_values lowerCAmelCase__ , lowerCAmelCase__ = self.image_processor_tester.get_expected_values(_UpperCAmelCase , batched=_UpperCAmelCase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def __SCREAMING_SNAKE_CASE ( self ) -> List[str]: lowerCAmelCase__ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) with open('''./tests/fixtures/tests_samples/COCO/coco_annotations.txt''' , '''r''' ) as f: lowerCAmelCase__ = json.loads(f.read() ) lowerCAmelCase__ = {'''image_id''': 3_97_69, '''annotations''': target} # encode them lowerCAmelCase__ = DetaImageProcessor() lowerCAmelCase__ = image_processing(images=_UpperCAmelCase , annotations=_UpperCAmelCase , return_tensors='''pt''' ) # verify pixel values lowerCAmelCase__ = torch.Size([1, 3, 8_00, 10_66] ) self.assertEqual(encoding['''pixel_values'''].shape , _UpperCAmelCase ) lowerCAmelCase__ = torch.tensor([0.2_796, 0.3_138, 0.3_481] ) self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] , _UpperCAmelCase , atol=1e-4 ) ) # verify area lowerCAmelCase__ = torch.tensor([5_887.9_600, 1_12_50.20_61, 48_93_53.84_38, 83_71_22.75_00, 14_79_67.51_56, 16_57_32.34_38] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] , _UpperCAmelCase ) ) # verify boxes lowerCAmelCase__ = torch.Size([6, 4] ) self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape , _UpperCAmelCase ) lowerCAmelCase__ = torch.tensor([0.5_503, 0.2_765, 0.0_604, 0.2_215] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] , _UpperCAmelCase , atol=1e-3 ) ) # verify image_id lowerCAmelCase__ = torch.tensor([3_97_69] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] , _UpperCAmelCase ) ) # verify is_crowd lowerCAmelCase__ = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] , _UpperCAmelCase ) ) # verify class_labels lowerCAmelCase__ = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] , _UpperCAmelCase ) ) # verify orig_size lowerCAmelCase__ = torch.tensor([4_80, 6_40] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] , _UpperCAmelCase ) ) # verify size lowerCAmelCase__ = torch.tensor([8_00, 10_66] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] , _UpperCAmelCase ) ) @slow def __SCREAMING_SNAKE_CASE ( self ) -> List[Any]: lowerCAmelCase__ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) with open('''./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt''' , '''r''' ) as f: lowerCAmelCase__ = json.loads(f.read() ) lowerCAmelCase__ = {'''file_name''': '''000000039769.png''', '''image_id''': 3_97_69, '''segments_info''': target} lowerCAmelCase__ = pathlib.Path('''./tests/fixtures/tests_samples/COCO/coco_panoptic''' ) # encode them lowerCAmelCase__ = DetaImageProcessor(format='''coco_panoptic''' ) lowerCAmelCase__ = image_processing(images=_UpperCAmelCase , annotations=_UpperCAmelCase , masks_path=_UpperCAmelCase , return_tensors='''pt''' ) # verify pixel values lowerCAmelCase__ = torch.Size([1, 3, 8_00, 10_66] ) self.assertEqual(encoding['''pixel_values'''].shape , _UpperCAmelCase ) lowerCAmelCase__ = torch.tensor([0.2_796, 0.3_138, 0.3_481] ) self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] , _UpperCAmelCase , atol=1e-4 ) ) # verify area lowerCAmelCase__ = torch.tensor([14_79_79.68_75, 16_55_27.04_69, 48_46_38.59_38, 1_12_92.93_75, 5_879.6_562, 7_634.1_147] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] , _UpperCAmelCase ) ) # verify boxes lowerCAmelCase__ = torch.Size([6, 4] ) self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape , _UpperCAmelCase ) lowerCAmelCase__ = torch.tensor([0.2_625, 0.5_437, 0.4_688, 0.8_625] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] , _UpperCAmelCase , atol=1e-3 ) ) # verify image_id lowerCAmelCase__ = torch.tensor([3_97_69] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] , _UpperCAmelCase ) ) # verify is_crowd lowerCAmelCase__ = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] , _UpperCAmelCase ) ) # verify class_labels lowerCAmelCase__ = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] , _UpperCAmelCase ) ) # verify masks lowerCAmelCase__ = 82_28_73 self.assertEqual(encoding['''labels'''][0]['''masks'''].sum().item() , _UpperCAmelCase ) # verify orig_size lowerCAmelCase__ = torch.tensor([4_80, 6_40] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] , _UpperCAmelCase ) ) # verify size lowerCAmelCase__ = torch.tensor([8_00, 10_66] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] , _UpperCAmelCase ) )
367
'''simple docstring''' from __future__ import annotations import math from collections.abc import Callable def _snake_case ( A , A , A , A = 100 , ) -> float: lowerCAmelCase__ = x_start lowerCAmelCase__ = fnc(A ) lowerCAmelCase__ = 0.0 for _ in range(A ): # Approximates curve as a sequence of linear lines and sums their length lowerCAmelCase__ = (x_end - x_start) / steps + xa lowerCAmelCase__ = fnc(A ) length += math.hypot(xa - xa , fxa - fxa ) # Increment step lowerCAmelCase__ = xa lowerCAmelCase__ = fxa return length if __name__ == "__main__": def _snake_case ( A ) -> List[Any]: return math.sin(10 * x ) print('''f(x) = sin(10 * x)''') print('''The length of the curve from x = -10 to x = 10 is:''') __UpperCAmelCase = 10 while i <= 100_000: print(f"""With {i} steps: {line_length(f, -10, 10, i)}""") i *= 10
228
0
import numpy as np import torch from imwatermark import WatermarkEncoder # Copied from https://github.com/Stability-AI/generative-models/blob/613af104c6b85184091d42d374fef420eddb356d/scripts/demo/streamlit_helpers.py#L66 A__ : List[str] = 0b10_11_00_11_11_10_11_00_10_01_00_00_01_11_10_11_10_11_00_01_10_01_11_10 # bin(x)[2:] gives bits of x as str, use int to convert them to 0/1 A__ : List[str] = [int(bit) for bit in bin(WATERMARK_MESSAGE)[2:]] class __snake_case : def __init__( self : List[Any]): lowerCAmelCase_ : Tuple = WATERMARK_BITS lowerCAmelCase_ : int = WatermarkEncoder() self.encoder.set_watermark('''bits''' , self.watermark) def UpperCAmelCase__ ( self : Optional[Any] , A_ : torch.FloatTensor): # can't encode images that are smaller than 256 if images.shape[-1] < 2_5_6: return images lowerCAmelCase_ : Optional[Any] = (2_5_5 * (images / 2 + 0.5)).cpu().permute(0 , 2 , 3 , 1).float().numpy() lowerCAmelCase_ : Any = [self.encoder.encode(A_ , '''dwtDct''') for image in images] lowerCAmelCase_ : Optional[Any] = torch.from_numpy(np.array(A_)).permute(0 , 3 , 1 , 2) lowerCAmelCase_ : Optional[Any] = torch.clamp(2 * (images / 2_5_5 - 0.5) , min=-1.0 , max=1.0) return images
103
import math def A ( _lowercase ): return math.sqrt(_lowercase ) * math.sqrt(_lowercase ) == num def A ( _lowercase ): SCREAMING_SNAKE_CASE : Dict = 0 SCREAMING_SNAKE_CASE : Tuple = n while left <= right: SCREAMING_SNAKE_CASE : Union[str, Any] = (left + right) // 2 if mid**2 == n: return True elif mid**2 > n: SCREAMING_SNAKE_CASE : Optional[Any] = mid - 1 else: SCREAMING_SNAKE_CASE : Optional[int] = mid + 1 return False if __name__ == "__main__": import doctest doctest.testmod()
182
0
'''simple docstring''' import copy import re class lowercase : """simple docstring""" UpperCAmelCase = """hp""" UpperCAmelCase = {} UpperCAmelCase = None @classmethod def _snake_case ( cls ,a_ ,a_ ) -> int: _UpperCAmelCase : List[str] = prefix _UpperCAmelCase : int = defaults cls.build_naming_info() @staticmethod def _snake_case ( a_ ,a_ ) -> List[Any]: if len(a_ ) == 0: return "" _UpperCAmelCase : Dict = None if any(char.isdigit() for char in word ): raise Exception(f'''Parameters should not contain numbers: \'{word}\' contains a number''' ) if word in info["short_word"]: return info["short_word"][word] for prefix_len in range(1 ,len(a_ ) + 1 ): _UpperCAmelCase : Any = word[:prefix_len] if prefix in info["reverse_short_word"]: continue else: _UpperCAmelCase : List[Any] = prefix break if short_word is None: # Paranoid fallback def int_to_alphabetic(a_ ): _UpperCAmelCase : Optional[int] = """""" while integer != 0: _UpperCAmelCase : Union[str, Any] = chr(ord("""A""" ) + integer % 10 ) + s integer //= 10 return s _UpperCAmelCase : Optional[int] = 0 while True: _UpperCAmelCase : Union[str, Any] = word + """#""" + int_to_alphabetic(a_ ) if sword in info["reverse_short_word"]: continue else: _UpperCAmelCase : List[Any] = sword break _UpperCAmelCase : int = short_word _UpperCAmelCase : Any = word return short_word @staticmethod def _snake_case ( a_ ,a_ ) -> int: _UpperCAmelCase : int = param_name.split("""_""" ) _UpperCAmelCase : Optional[Any] = [TrialShortNamer.shortname_for_word(a_ ,a_ ) for word in words] # We try to create a separatorless short name, but if there is a collision we have to fallback # to a separated short name _UpperCAmelCase : List[str] = ["""""", """_"""] for separator in separators: _UpperCAmelCase : Tuple = separator.join(a_ ) if shortname not in info["reverse_short_param"]: _UpperCAmelCase : Optional[int] = shortname _UpperCAmelCase : Optional[int] = param_name return shortname return param_name @staticmethod def _snake_case ( a_ ,a_ ) -> Tuple: _UpperCAmelCase : int = TrialShortNamer.shortname_for_key(a_ ,a_ ) _UpperCAmelCase : Optional[int] = short_name _UpperCAmelCase : str = param_name @classmethod def _snake_case ( cls ) -> Union[str, Any]: if cls.NAMING_INFO is not None: return _UpperCAmelCase : Tuple = { """short_word""": {}, """reverse_short_word""": {}, """short_param""": {}, """reverse_short_param""": {}, } _UpperCAmelCase : Any = list(cls.DEFAULTS.keys() ) for k in field_keys: cls.add_new_param_name(a_ ,a_ ) _UpperCAmelCase : Optional[Any] = info @classmethod def _snake_case ( cls ,a_ ) -> Any: cls.build_naming_info() assert cls.PREFIX is not None _UpperCAmelCase : Any = [copy.copy(cls.PREFIX )] for k, v in params.items(): if k not in cls.DEFAULTS: raise Exception(f'''You should provide a default value for the param name {k} with value {v}''' ) if v == cls.DEFAULTS[k]: # The default value is not added to the name continue _UpperCAmelCase : Union[str, Any] = cls.NAMING_INFO["""short_param"""][k] if isinstance(a_ ,a_ ): _UpperCAmelCase : Optional[Any] = 1 if v else 0 _UpperCAmelCase : int = """""" if isinstance(a_ ,(int, float) ) else """-""" _UpperCAmelCase : Union[str, Any] = f'''{key}{sep}{v}''' name.append(a_ ) return "_".join(a_ ) @classmethod def _snake_case ( cls ,a_ ) -> str: _UpperCAmelCase : Union[str, Any] = repr[len(cls.PREFIX ) + 1 :] if repr == "": _UpperCAmelCase : Optional[Any] = [] else: _UpperCAmelCase : Optional[int] = repr.split("""_""" ) _UpperCAmelCase : List[Any] = {} for value in values: if "-" in value: _UpperCAmelCase : Union[str, Any] = value.split("""-""" ) else: _UpperCAmelCase : int = re.sub("""[0-9.]""" ,"""""" ,a_ ) _UpperCAmelCase : Union[str, Any] = float(re.sub("""[^0-9.]""" ,"""""" ,a_ ) ) _UpperCAmelCase : Union[str, Any] = cls.NAMING_INFO["""reverse_short_param"""][p_k] _UpperCAmelCase : List[str] = p_v for k in cls.DEFAULTS: if k not in parameters: _UpperCAmelCase : List[str] = cls.DEFAULTS[k] return parameters
351
'''simple docstring''' def snake_case_ ( lowerCAmelCase_ )-> int: '''simple docstring''' if not isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): raise TypeError("""only integers accepted as input""" ) else: _UpperCAmelCase : Dict = str(abs(lowerCAmelCase_ ) ) _UpperCAmelCase : Optional[Any] = [list(lowerCAmelCase_ ) for char in range(len(lowerCAmelCase_ ) )] for index in range(len(lowerCAmelCase_ ) ): num_transpositions[index].pop(lowerCAmelCase_ ) return max( int("""""".join(list(lowerCAmelCase_ ) ) ) for transposition in num_transpositions ) if __name__ == "__main__": __import__("""doctest""").testmod()
349
0
import unittest import numpy as np from transformers import is_flax_available from transformers.testing_utils import require_flax from ..test_modeling_flax_common import ids_tensor if is_flax_available(): import jax import jax.numpy as jnp from transformers.generation import ( FlaxForcedBOSTokenLogitsProcessor, FlaxForcedEOSTokenLogitsProcessor, FlaxLogitsProcessorList, FlaxMinLengthLogitsProcessor, FlaxTemperatureLogitsWarper, FlaxTopKLogitsWarper, FlaxTopPLogitsWarper, ) @require_flax class UpperCamelCase__ (unittest.TestCase ): '''simple docstring''' def _lowercase ( self , UpperCamelCase__ , UpperCamelCase__ ) -> List[str]: lowerCamelCase : str = jnp.ones((batch_size, length) ) / length return scores def _lowercase ( self ) -> Tuple: lowerCamelCase : Optional[int] = None lowerCamelCase : Optional[int] = 20 lowerCamelCase : Dict = self._get_uniform_logits(batch_size=2 , length=UpperCamelCase__ ) # tweak scores to not be uniform anymore lowerCamelCase : Union[str, Any] = scores.at[1, 5].set((1 / length) + 0.1 ) # peak, 1st batch lowerCamelCase : int = scores.at[1, 10].set((1 / length) - 0.4 ) # valley, 1st batch # compute softmax lowerCamelCase : Any = jax.nn.softmax(UpperCamelCase__ , axis=-1 ) lowerCamelCase : Optional[Any] = FlaxTemperatureLogitsWarper(temperature=0.5 ) lowerCamelCase : List[Any] = FlaxTemperatureLogitsWarper(temperature=1.3 ) lowerCamelCase : Dict = jax.nn.softmax(temp_dist_warper_sharper(UpperCamelCase__ , scores.copy() , cur_len=UpperCamelCase__ ) , axis=-1 ) lowerCamelCase : Any = jax.nn.softmax(temp_dist_warper_smoother(UpperCamelCase__ , scores.copy() , cur_len=UpperCamelCase__ ) , axis=-1 ) # uniform distribution stays uniform self.assertTrue(jnp.allclose(probs[0, :] , warped_prob_sharp[0, :] , atol=1e-3 ) ) self.assertTrue(jnp.allclose(probs[0, :] , warped_prob_smooth[0, :] , atol=1e-3 ) ) # sharp peaks get higher, valleys get lower self.assertLess(probs[1, :].max() , warped_prob_sharp[1, :].max() ) self.assertGreater(probs[1, :].min() , warped_prob_sharp[1, :].min() ) # smooth peaks get lower, valleys get higher self.assertGreater(probs[1, :].max() , warped_prob_smooth[1, :].max() ) self.assertLess(probs[1, :].min() , warped_prob_smooth[1, :].min() ) def _lowercase ( self ) -> Any: lowerCamelCase : Dict = None lowerCamelCase : Tuple = 10 lowerCamelCase : Dict = 2 # create ramp distribution lowerCamelCase : str = np.broadcast_to(np.arange(UpperCamelCase__ )[None, :] , (batch_size, vocab_size) ).copy() lowerCamelCase : str = ramp_logits[1:, : vocab_size // 2] + vocab_size lowerCamelCase : Dict = FlaxTopKLogitsWarper(3 ) lowerCamelCase : str = top_k_warp(UpperCamelCase__ , UpperCamelCase__ , cur_len=UpperCamelCase__ ) # check that correct tokens are filtered self.assertListEqual(jnp.isinf(scores[0] ).tolist() , 7 * [True] + 3 * [False] ) self.assertListEqual(jnp.isinf(scores[1] ).tolist() , 2 * [True] + 3 * [False] + 5 * [True] ) # check special case lowerCamelCase : int = 5 lowerCamelCase : List[Any] = FlaxTopKLogitsWarper(top_k=1 , filter_value=0.0 , min_tokens_to_keep=3 ) lowerCamelCase : int = np.broadcast_to(np.arange(UpperCamelCase__ )[None, :] , (batch_size, length) ).copy() lowerCamelCase : List[str] = top_k_warp_safety_check(UpperCamelCase__ , UpperCamelCase__ , cur_len=UpperCamelCase__ ) # min_tokens overwrites k: 3 tokens are kept => 2 tokens are nullified self.assertListEqual((scores == 0.0).sum(axis=-1 ).tolist() , [2, 2] ) def _lowercase ( self ) -> List[Any]: lowerCamelCase : Union[str, Any] = None lowerCamelCase : int = 10 lowerCamelCase : Optional[Any] = 2 # create distribution and take log (inverse to Softmax as taken in TopPLogitsWarper) lowerCamelCase : Optional[Any] = np.log(np.array([[0.3, 0.1, 0.1, 0.5], [0.15, 0.3, 0.3, 0.25]] ) ) lowerCamelCase : Any = FlaxTopPLogitsWarper(0.8 ) lowerCamelCase : Optional[int] = np.exp(top_p_warp(UpperCamelCase__ , UpperCamelCase__ , cur_len=UpperCamelCase__ ) ) # dist should be filtered to keep min num values so that sum is >= top_p # exp (-inf) => 0 lowerCamelCase : str = np.array([[0.3, 0.0, 0.0, 0.5], [0.0, 0.3, 0.3, 0.25]] ) self.assertTrue(np.allclose(UpperCamelCase__ , UpperCamelCase__ , atol=1e-3 ) ) # check edge cases with negative and extreme logits lowerCamelCase : Optional[int] = np.broadcast_to(np.arange(UpperCamelCase__ )[None, :] , (batch_size, vocab_size) ).copy() - ( vocab_size // 2 ) # make ramp_logits more extreme lowerCamelCase : int = ramp_logits[1] * 100.0 # make sure at least 2 tokens are kept lowerCamelCase : Union[str, Any] = FlaxTopPLogitsWarper(0.9 , min_tokens_to_keep=2 , filter_value=0.0 ) lowerCamelCase : Optional[int] = top_p_warp(UpperCamelCase__ , UpperCamelCase__ , cur_len=UpperCamelCase__ ) # first batch should keep three tokens, second batch would keep only 1, but due to `min_tokens_to_keep=2` keeps 2. self.assertListEqual((filtered_dist != 0.0).sum(axis=-1 ).tolist() , [3, 2] ) def _lowercase ( self ) -> Union[str, Any]: lowerCamelCase : List[str] = 20 lowerCamelCase : List[str] = 4 lowerCamelCase : List[str] = 0 lowerCamelCase : Dict = FlaxMinLengthLogitsProcessor(min_length=10 , eos_token_id=UpperCamelCase__ ) # check that min length is applied at length 5 lowerCamelCase : Dict = ids_tensor((batch_size, 20) , vocab_size=20 ) lowerCamelCase : Tuple = 5 lowerCamelCase : Optional[Any] = self._get_uniform_logits(UpperCamelCase__ , UpperCamelCase__ ) lowerCamelCase : Optional[int] = min_dist_processor(UpperCamelCase__ , UpperCamelCase__ , cur_len=UpperCamelCase__ ) self.assertListEqual(scores_before_min_length[:, eos_token_id].tolist() , 4 * [-float("inf" )] ) # check that min length is not applied anymore at length 15 lowerCamelCase : Optional[Any] = self._get_uniform_logits(UpperCamelCase__ , UpperCamelCase__ ) lowerCamelCase : str = 15 lowerCamelCase : List[Any] = min_dist_processor(UpperCamelCase__ , UpperCamelCase__ , cur_len=UpperCamelCase__ ) self.assertFalse(jnp.isinf(UpperCamelCase__ ).any() ) def _lowercase ( self ) -> str: lowerCamelCase : List[str] = 20 lowerCamelCase : List[Any] = 4 lowerCamelCase : str = 0 lowerCamelCase : List[str] = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=UpperCamelCase__ ) # check that all scores are -inf except the bos_token_id score lowerCamelCase : Any = ids_tensor((batch_size, 1) , vocab_size=20 ) lowerCamelCase : str = 1 lowerCamelCase : Tuple = self._get_uniform_logits(UpperCamelCase__ , UpperCamelCase__ ) lowerCamelCase : int = logits_processor(UpperCamelCase__ , UpperCamelCase__ , cur_len=UpperCamelCase__ ) self.assertTrue(jnp.isneginf(scores[:, bos_token_id + 1 :] ).all() ) self.assertListEqual(scores[:, bos_token_id].tolist() , 4 * [0] ) # score for bos_token_id shold be zero # check that bos_token_id is not forced if current length is greater than 1 lowerCamelCase : List[str] = 3 lowerCamelCase : Optional[Any] = self._get_uniform_logits(UpperCamelCase__ , UpperCamelCase__ ) lowerCamelCase : Optional[Any] = logits_processor(UpperCamelCase__ , UpperCamelCase__ , cur_len=UpperCamelCase__ ) self.assertFalse(jnp.isinf(UpperCamelCase__ ).any() ) def _lowercase ( self ) -> List[str]: lowerCamelCase : Dict = 20 lowerCamelCase : Optional[int] = 4 lowerCamelCase : int = 0 lowerCamelCase : Optional[int] = 5 lowerCamelCase : int = FlaxForcedEOSTokenLogitsProcessor(max_length=UpperCamelCase__ , eos_token_id=UpperCamelCase__ ) # check that all scores are -inf except the eos_token_id when max_length is reached lowerCamelCase : Tuple = ids_tensor((batch_size, 4) , vocab_size=20 ) lowerCamelCase : Optional[int] = 4 lowerCamelCase : int = self._get_uniform_logits(UpperCamelCase__ , UpperCamelCase__ ) lowerCamelCase : Tuple = logits_processor(UpperCamelCase__ , UpperCamelCase__ , cur_len=UpperCamelCase__ ) self.assertTrue(jnp.isneginf(scores[:, eos_token_id + 1 :] ).all() ) self.assertListEqual(scores[:, eos_token_id].tolist() , 4 * [0] ) # score for eos_token_id should be zero # check that eos_token_id is not forced if max_length is not reached lowerCamelCase : int = 3 lowerCamelCase : List[str] = self._get_uniform_logits(UpperCamelCase__ , UpperCamelCase__ ) lowerCamelCase : Dict = logits_processor(UpperCamelCase__ , UpperCamelCase__ , cur_len=UpperCamelCase__ ) self.assertFalse(jnp.isinf(UpperCamelCase__ ).any() ) def _lowercase ( self ) -> Any: lowerCamelCase : List[str] = 4 lowerCamelCase : Union[str, Any] = 10 lowerCamelCase : Dict = 15 lowerCamelCase : int = 2 lowerCamelCase : List[str] = 1 lowerCamelCase : List[str] = 15 # dummy input_ids and scores lowerCamelCase : Dict = ids_tensor((batch_size, sequence_length) , UpperCamelCase__ ) lowerCamelCase : Tuple = input_ids.copy() lowerCamelCase : Any = self._get_uniform_logits(UpperCamelCase__ , UpperCamelCase__ ) lowerCamelCase : str = scores.copy() # instantiate all dist processors lowerCamelCase : Dict = FlaxTemperatureLogitsWarper(temperature=0.5 ) lowerCamelCase : Dict = FlaxTopKLogitsWarper(3 ) lowerCamelCase : Tuple = FlaxTopPLogitsWarper(0.8 ) # instantiate all logits processors lowerCamelCase : List[Any] = FlaxMinLengthLogitsProcessor(min_length=10 , eos_token_id=UpperCamelCase__ ) lowerCamelCase : Optional[Any] = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=UpperCamelCase__ ) lowerCamelCase : Union[str, Any] = FlaxForcedEOSTokenLogitsProcessor(max_length=UpperCamelCase__ , eos_token_id=UpperCamelCase__ ) lowerCamelCase : Union[str, Any] = 10 # no processor list lowerCamelCase : Any = temp_dist_warp(UpperCamelCase__ , UpperCamelCase__ , cur_len=UpperCamelCase__ ) lowerCamelCase : Tuple = top_k_warp(UpperCamelCase__ , UpperCamelCase__ , cur_len=UpperCamelCase__ ) lowerCamelCase : Dict = top_p_warp(UpperCamelCase__ , UpperCamelCase__ , cur_len=UpperCamelCase__ ) lowerCamelCase : List[str] = min_dist_proc(UpperCamelCase__ , UpperCamelCase__ , cur_len=UpperCamelCase__ ) lowerCamelCase : Optional[int] = bos_dist_proc(UpperCamelCase__ , UpperCamelCase__ , cur_len=UpperCamelCase__ ) lowerCamelCase : Dict = eos_dist_proc(UpperCamelCase__ , UpperCamelCase__ , cur_len=UpperCamelCase__ ) # with processor list lowerCamelCase : List[Any] = FlaxLogitsProcessorList( [temp_dist_warp, top_k_warp, top_p_warp, min_dist_proc, bos_dist_proc, eos_dist_proc] ) lowerCamelCase : int = processor(UpperCamelCase__ , UpperCamelCase__ , cur_len=UpperCamelCase__ ) # scores should be equal self.assertTrue(jnp.allclose(UpperCamelCase__ , UpperCamelCase__ , atol=1e-3 ) ) # input_ids should never be changed self.assertListEqual(input_ids.tolist() , input_ids_comp.tolist() ) def _lowercase ( self ) -> Union[str, Any]: lowerCamelCase : List[str] = 4 lowerCamelCase : int = 10 lowerCamelCase : List[str] = 15 lowerCamelCase : Optional[Any] = 2 lowerCamelCase : Optional[int] = 1 lowerCamelCase : Any = 15 # dummy input_ids and scores lowerCamelCase : Dict = ids_tensor((batch_size, sequence_length) , UpperCamelCase__ ) lowerCamelCase : Optional[Any] = input_ids.copy() lowerCamelCase : List[Any] = self._get_uniform_logits(UpperCamelCase__ , UpperCamelCase__ ) lowerCamelCase : str = scores.copy() # instantiate all dist processors lowerCamelCase : Optional[int] = FlaxTemperatureLogitsWarper(temperature=0.5 ) lowerCamelCase : Tuple = FlaxTopKLogitsWarper(3 ) lowerCamelCase : str = FlaxTopPLogitsWarper(0.8 ) # instantiate all logits processors lowerCamelCase : List[str] = FlaxMinLengthLogitsProcessor(min_length=10 , eos_token_id=UpperCamelCase__ ) lowerCamelCase : int = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=UpperCamelCase__ ) lowerCamelCase : Optional[Any] = FlaxForcedEOSTokenLogitsProcessor(max_length=UpperCamelCase__ , eos_token_id=UpperCamelCase__ ) lowerCamelCase : Optional[Any] = 10 # no processor list def run_no_processor_list(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): lowerCamelCase : Tuple = temp_dist_warp(UpperCamelCase__ , UpperCamelCase__ , cur_len=UpperCamelCase__ ) lowerCamelCase : Union[str, Any] = top_k_warp(UpperCamelCase__ , UpperCamelCase__ , cur_len=UpperCamelCase__ ) lowerCamelCase : Optional[Any] = top_p_warp(UpperCamelCase__ , UpperCamelCase__ , cur_len=UpperCamelCase__ ) lowerCamelCase : Dict = min_dist_proc(UpperCamelCase__ , UpperCamelCase__ , cur_len=UpperCamelCase__ ) lowerCamelCase : List[str] = bos_dist_proc(UpperCamelCase__ , UpperCamelCase__ , cur_len=UpperCamelCase__ ) lowerCamelCase : Tuple = eos_dist_proc(UpperCamelCase__ , UpperCamelCase__ , cur_len=UpperCamelCase__ ) return scores # with processor list def run_processor_list(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): lowerCamelCase : Optional[int] = FlaxLogitsProcessorList( [temp_dist_warp, top_k_warp, top_p_warp, min_dist_proc, bos_dist_proc, eos_dist_proc] ) lowerCamelCase : Optional[Any] = processor(UpperCamelCase__ , UpperCamelCase__ , cur_len=UpperCamelCase__ ) return scores lowerCamelCase : List[Any] = jax.jit(UpperCamelCase__ ) lowerCamelCase : Optional[int] = jax.jit(UpperCamelCase__ ) lowerCamelCase : Optional[Any] = jitted_run_no_processor_list(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) lowerCamelCase : Dict = jitted_run_processor_list(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) # scores should be equal self.assertTrue(jnp.allclose(UpperCamelCase__ , UpperCamelCase__ , atol=1e-3 ) ) # input_ids should never be changed self.assertListEqual(input_ids.tolist() , input_ids_comp.tolist() )
48
'''simple docstring''' import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( SwiftFormerConfig, SwiftFormerForImageClassification, ViTImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() a : List[Any] = logging.get_logger(__name__) a : Union[str, Any] = torch.device("""cpu""") def __lowerCamelCase ( ) -> Any: UpperCAmelCase : Optional[Any] = """http://images.cocodataset.org/val2017/000000039769.jpg""" UpperCAmelCase : Dict = Image.open(requests.get(_lowercase , stream=_lowercase ).raw ) return im def __lowerCamelCase ( _lowercase ) -> Dict: if swiftformer_name == "swiftformer_xs": return torch.tensor([-2.1_703e00, 2.1_107e00, -2.0_811e00, 8.8_685e-01, 2.4_360e-01] ) elif swiftformer_name == "swiftformer_s": return torch.tensor([3.9_636e-01, 2.3_478e-01, -1.6_963e00, -1.7_381e00, -8.6_337e-01] ) elif swiftformer_name == "swiftformer_l1": return torch.tensor([-4.2_768e-01, -4.7_429e-01, -1.0_897e00, -1.0_248e00, 3.5_523e-02] ) elif swiftformer_name == "swiftformer_l3": return torch.tensor([-2.5_330e-01, 2.4_211e-01, -6.0_185e-01, -8.2_789e-01, -6.0_446e-02] ) def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> str: UpperCAmelCase : Union[str, Any] = dct.pop(_lowercase ) UpperCAmelCase : str = val def __lowerCamelCase ( _lowercase ) -> List[str]: UpperCAmelCase : Tuple = [] for k in state_dict.keys(): UpperCAmelCase : Dict = k if ".pwconv" in k: UpperCAmelCase : Union[str, Any] = k_new.replace(""".pwconv""" , """.point_wise_conv""" ) if ".dwconv" in k: UpperCAmelCase : Dict = k_new.replace(""".dwconv""" , """.depth_wise_conv""" ) if ".Proj." in k: UpperCAmelCase : str = k_new.replace(""".Proj.""" , """.proj.""" ) if "patch_embed" in k_new: UpperCAmelCase : Dict = k_new.replace("""patch_embed""" , """swiftformer.patch_embed.patch_embedding""" ) if "network" in k_new: UpperCAmelCase : Optional[Any] = k_new.split(""".""" ) if ls[2].isdigit(): UpperCAmelCase : Any = """swiftformer.encoder.network.""" + ls[1] + """.blocks.""" + ls[2] + """.""" + """.""".join(ls[3:] ) else: UpperCAmelCase : Any = k_new.replace("""network""" , """swiftformer.encoder.network""" ) rename_keys.append((k, k_new) ) return rename_keys @torch.no_grad() def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> Optional[int]: UpperCAmelCase : Optional[Any] = SwiftFormerConfig() # dataset (ImageNet-21k only or also fine-tuned on ImageNet 2012), patch_size and image_size UpperCAmelCase : List[Any] = 1_0_0_0 UpperCAmelCase : List[str] = """huggingface/label-files""" UpperCAmelCase : Tuple = """imagenet-1k-id2label.json""" UpperCAmelCase : Dict = json.load(open(hf_hub_download(_lowercase , _lowercase , repo_type="""dataset""" ) , """r""" ) ) UpperCAmelCase : Tuple = {int(_lowercase ): v for k, v in idalabel.items()} UpperCAmelCase : Tuple = idalabel UpperCAmelCase : List[Any] = {v: k for k, v in idalabel.items()} # size of the architecture if swiftformer_name == "swiftformer_xs": UpperCAmelCase : List[Any] = [3, 3, 6, 4] UpperCAmelCase : int = [4_8, 5_6, 1_1_2, 2_2_0] elif swiftformer_name == "swiftformer_s": UpperCAmelCase : str = [3, 3, 9, 6] UpperCAmelCase : str = [4_8, 6_4, 1_6_8, 2_2_4] elif swiftformer_name == "swiftformer_l1": UpperCAmelCase : List[Any] = [4, 3, 1_0, 5] UpperCAmelCase : Union[str, Any] = [4_8, 9_6, 1_9_2, 3_8_4] elif swiftformer_name == "swiftformer_l3": UpperCAmelCase : Any = [4, 4, 1_2, 6] UpperCAmelCase : List[Any] = [6_4, 1_2_8, 3_2_0, 5_1_2] # load state_dict of original model, remove and rename some keys if original_ckpt: if original_ckpt.startswith("""https""" ): UpperCAmelCase : Dict = torch.hub.load_state_dict_from_url(_lowercase , map_location="""cpu""" , check_hash=_lowercase ) else: UpperCAmelCase : Dict = torch.load(_lowercase , map_location="""cpu""" ) UpperCAmelCase : str = checkpoint UpperCAmelCase : Tuple = create_rename_keys(_lowercase ) for rename_key_src, rename_key_dest in rename_keys: rename_key(_lowercase , _lowercase , _lowercase ) # load HuggingFace model UpperCAmelCase : str = SwiftFormerForImageClassification(_lowercase ).eval() hf_model.load_state_dict(_lowercase ) # prepare test inputs UpperCAmelCase : Any = prepare_img() UpperCAmelCase : List[Any] = ViTImageProcessor.from_pretrained("""preprocessor_config""" ) UpperCAmelCase : List[str] = processor(images=_lowercase , return_tensors="""pt""" ) # compare outputs from both models UpperCAmelCase : List[str] = get_expected_output(_lowercase ) UpperCAmelCase : Dict = hf_model(inputs["""pixel_values"""] ).logits assert hf_logits.shape == torch.Size([1, 1_0_0_0] ) assert torch.allclose(hf_logits[0, 0:5] , _lowercase , atol=1e-3 ) Path(_lowercase ).mkdir(exist_ok=_lowercase ) print(F'''Saving model {swiftformer_name} to {pytorch_dump_folder_path}''' ) hf_model.save_pretrained(_lowercase ) if __name__ == "__main__": a : Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument( """--swiftformer_name""", default="""swiftformer_xs""", choices=["""swiftformer_xs""", """swiftformer_s""", """swiftformer_l1""", """swiftformer_l3"""], type=str, help="""Name of the SwiftFormer model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default="""./converted_outputs/""", type=str, help="""Path to the output PyTorch model directory.""", ) parser.add_argument("""--original_ckpt""", default=None, type=str, help="""Path to the original model checkpoint.""") a : Union[str, Any] = parser.parse_args() convert_swiftformer_checkpoint(args.swiftformer_name, args.pytorch_dump_folder_path, args.original_ckpt)
265
0
"""simple docstring""" import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_convbert import ConvBertTokenizer _lowerCAmelCase :Any = logging.get_logger(__name__) _lowerCAmelCase :Dict = {'''vocab_file''': '''vocab.txt'''} _lowerCAmelCase :Dict = { '''vocab_file''': { '''YituTech/conv-bert-base''': '''https://huggingface.co/YituTech/conv-bert-base/resolve/main/vocab.txt''', '''YituTech/conv-bert-medium-small''': ( '''https://huggingface.co/YituTech/conv-bert-medium-small/resolve/main/vocab.txt''' ), '''YituTech/conv-bert-small''': '''https://huggingface.co/YituTech/conv-bert-small/resolve/main/vocab.txt''', } } _lowerCAmelCase :Optional[int] = { '''YituTech/conv-bert-base''': 512, '''YituTech/conv-bert-medium-small''': 512, '''YituTech/conv-bert-small''': 512, } _lowerCAmelCase :Dict = { '''YituTech/conv-bert-base''': {'''do_lower_case''': True}, '''YituTech/conv-bert-medium-small''': {'''do_lower_case''': True}, '''YituTech/conv-bert-small''': {'''do_lower_case''': True}, } class _UpperCAmelCase ( A__ ): '''simple docstring''' a__ =VOCAB_FILES_NAMES a__ =PRETRAINED_VOCAB_FILES_MAP a__ =PRETRAINED_INIT_CONFIGURATION a__ =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a__ =ConvBertTokenizer def __init__( self , A=None , A=None , A=True , A="[UNK]" , A="[SEP]" , A="[PAD]" , A="[CLS]" , A="[MASK]" , A=True , A=None , **A , ) -> int: super().__init__( lowerCamelCase__ , tokenizer_file=lowerCamelCase__ , do_lower_case=lowerCamelCase__ , unk_token=lowerCamelCase__ , sep_token=lowerCamelCase__ , pad_token=lowerCamelCase__ , cls_token=lowerCamelCase__ , mask_token=lowerCamelCase__ , tokenize_chinese_chars=lowerCamelCase__ , strip_accents=lowerCamelCase__ , **lowerCamelCase__ , ) _UpperCAmelCase : int = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('''lowercase''' , lowerCamelCase__ ) != do_lower_case or normalizer_state.get('''strip_accents''' , lowerCamelCase__ ) != strip_accents or normalizer_state.get('''handle_chinese_chars''' , lowerCamelCase__ ) != tokenize_chinese_chars ): _UpperCAmelCase : List[Any] = getattr(lowerCamelCase__ , normalizer_state.pop('''type''' ) ) _UpperCAmelCase : Any = do_lower_case _UpperCAmelCase : Dict = strip_accents _UpperCAmelCase : int = tokenize_chinese_chars _UpperCAmelCase : int = normalizer_class(**lowerCamelCase__ ) _UpperCAmelCase : Dict = do_lower_case def __lowerCAmelCase ( self , A , A=None ) -> int: _UpperCAmelCase : List[str] = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def __lowerCAmelCase ( self , A , A = None ) -> Optional[Any]: _UpperCAmelCase : Any = [self.sep_token_id] _UpperCAmelCase : List[str] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __lowerCAmelCase ( self , A , A = None ) -> Dict: _UpperCAmelCase : str = self._tokenizer.model.save(lowerCamelCase__ , name=lowerCamelCase__ ) return tuple(lowerCamelCase__ )
356
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _lowerCAmelCase :int = logging.get_logger(__name__) _lowerCAmelCase :Union[str, Any] = { 'xlm-mlm-en-2048': 'https://huggingface.co/xlm-mlm-en-2048/resolve/main/config.json', 'xlm-mlm-ende-1024': 'https://huggingface.co/xlm-mlm-ende-1024/resolve/main/config.json', 'xlm-mlm-enfr-1024': 'https://huggingface.co/xlm-mlm-enfr-1024/resolve/main/config.json', 'xlm-mlm-enro-1024': 'https://huggingface.co/xlm-mlm-enro-1024/resolve/main/config.json', 'xlm-mlm-tlm-xnli15-1024': 'https://huggingface.co/xlm-mlm-tlm-xnli15-1024/resolve/main/config.json', 'xlm-mlm-xnli15-1024': 'https://huggingface.co/xlm-mlm-xnli15-1024/resolve/main/config.json', 'xlm-clm-enfr-1024': 'https://huggingface.co/xlm-clm-enfr-1024/resolve/main/config.json', 'xlm-clm-ende-1024': 'https://huggingface.co/xlm-clm-ende-1024/resolve/main/config.json', 'xlm-mlm-17-1280': 'https://huggingface.co/xlm-mlm-17-1280/resolve/main/config.json', 'xlm-mlm-100-1280': 'https://huggingface.co/xlm-mlm-100-1280/resolve/main/config.json', } class _UpperCAmelCase ( a ): '''simple docstring''' a__ ='''xlm''' a__ ={ '''hidden_size''': '''emb_dim''', '''num_attention_heads''': '''n_heads''', '''num_hidden_layers''': '''n_layers''', '''n_words''': '''vocab_size''', # For backward compatibility } def __init__( self , A=3_0_1_4_5 , A=2_0_4_8 , A=1_2 , A=1_6 , A=0.1 , A=0.1 , A=True , A=False , A=False , A=False , A=1 , A=True , A=5_1_2 , A=2_0_4_8**-0.5 , A=1E-12 , A=0.02 , A=0 , A=1 , A=2 , A=3 , A=5 , A=True , A="first" , A=True , A=None , A=True , A=0.1 , A=5 , A=5 , A=0 , A=0 , A=2 , A=0 , **A , ) -> Tuple: _UpperCAmelCase : Dict = vocab_size _UpperCAmelCase : Tuple = emb_dim _UpperCAmelCase : Optional[Any] = n_layers _UpperCAmelCase : Optional[Any] = n_heads _UpperCAmelCase : Dict = dropout _UpperCAmelCase : int = attention_dropout _UpperCAmelCase : Optional[Any] = gelu_activation _UpperCAmelCase : str = sinusoidal_embeddings _UpperCAmelCase : Any = causal _UpperCAmelCase : Optional[int] = asm _UpperCAmelCase : List[str] = n_langs _UpperCAmelCase : int = use_lang_emb _UpperCAmelCase : Any = layer_norm_eps _UpperCAmelCase : Any = bos_index _UpperCAmelCase : Optional[Any] = eos_index _UpperCAmelCase : List[str] = pad_index _UpperCAmelCase : Optional[int] = unk_index _UpperCAmelCase : Dict = mask_index _UpperCAmelCase : Any = is_encoder _UpperCAmelCase : Optional[Any] = max_position_embeddings _UpperCAmelCase : List[Any] = embed_init_std _UpperCAmelCase : Union[str, Any] = init_std _UpperCAmelCase : List[str] = summary_type _UpperCAmelCase : Dict = summary_use_proj _UpperCAmelCase : str = summary_activation _UpperCAmelCase : Union[str, Any] = summary_proj_to_labels _UpperCAmelCase : Tuple = summary_first_dropout _UpperCAmelCase : List[str] = start_n_top _UpperCAmelCase : Tuple = end_n_top _UpperCAmelCase : List[str] = mask_token_id _UpperCAmelCase : Optional[int] = lang_id if "n_words" in kwargs: _UpperCAmelCase : Tuple = kwargs['''n_words'''] super().__init__(pad_token_id=A , bos_token_id=A , **A ) class _UpperCAmelCase ( a ): '''simple docstring''' @property def __lowerCAmelCase ( self ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": _UpperCAmelCase : Tuple = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: _UpperCAmelCase : Dict = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ('''token_type_ids''', dynamic_axis), ] )
68
0
import os import tempfile import unittest from transformers import DistilBertConfig, is_torch_available from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, DistilBertModel, ) class __SCREAMING_SNAKE_CASE( a_ ): def __init__( self: Tuple , UpperCamelCase: str , UpperCamelCase: List[Any]=13 , UpperCamelCase: Tuple=7 , UpperCamelCase: int=True , UpperCamelCase: Union[str, Any]=True , UpperCamelCase: Tuple=False , UpperCamelCase: Any=True , UpperCamelCase: str=99 , UpperCamelCase: Optional[int]=32 , UpperCamelCase: Optional[Any]=5 , UpperCamelCase: Any=4 , UpperCamelCase: int=37 , UpperCamelCase: Any="gelu" , UpperCamelCase: str=0.1 , UpperCamelCase: Dict=0.1 , UpperCamelCase: Dict=5_12 , UpperCamelCase: str=16 , UpperCamelCase: List[str]=2 , UpperCamelCase: Optional[int]=0.02 , UpperCamelCase: Tuple=3 , UpperCamelCase: Any=4 , UpperCamelCase: List[Any]=None , ) -> List[str]: snake_case__ = parent snake_case__ = batch_size snake_case__ = seq_length snake_case__ = is_training snake_case__ = use_input_mask snake_case__ = use_token_type_ids snake_case__ = use_labels snake_case__ = vocab_size snake_case__ = hidden_size snake_case__ = num_hidden_layers snake_case__ = num_attention_heads snake_case__ = intermediate_size snake_case__ = hidden_act snake_case__ = hidden_dropout_prob snake_case__ = attention_probs_dropout_prob snake_case__ = max_position_embeddings snake_case__ = type_vocab_size snake_case__ = type_sequence_label_size snake_case__ = initializer_range snake_case__ = num_labels snake_case__ = num_choices snake_case__ = scope def lowerCAmelCase_ ( self: List[str] ) -> int: snake_case__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case__ = None if self.use_input_mask: snake_case__ = random_attention_mask([self.batch_size, self.seq_length] ) snake_case__ = None snake_case__ = None snake_case__ = None if self.use_labels: snake_case__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) snake_case__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) snake_case__ = ids_tensor([self.batch_size] , self.num_choices ) snake_case__ = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def lowerCAmelCase_ ( self: Any ) -> int: return DistilBertConfig( vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , ) def lowerCAmelCase_ ( self: Optional[Any] , UpperCamelCase: Union[str, Any] , UpperCamelCase: Optional[int] , UpperCamelCase: Tuple , UpperCamelCase: Dict , UpperCamelCase: int , UpperCamelCase: Tuple ) -> Optional[int]: snake_case__ = DistilBertModel(config=UpperCamelCase ) model.to(UpperCamelCase ) model.eval() snake_case__ = model(UpperCamelCase , UpperCamelCase ) snake_case__ = model(UpperCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCAmelCase_ ( self: Optional[Any] , UpperCamelCase: Optional[int] , UpperCamelCase: Optional[Any] , UpperCamelCase: List[str] , UpperCamelCase: Tuple , UpperCamelCase: Any , UpperCamelCase: Optional[int] ) -> List[Any]: snake_case__ = DistilBertForMaskedLM(config=UpperCamelCase ) model.to(UpperCamelCase ) model.eval() snake_case__ = model(UpperCamelCase , attention_mask=UpperCamelCase , labels=UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCAmelCase_ ( self: Union[str, Any] , UpperCamelCase: Optional[int] , UpperCamelCase: Optional[Any] , UpperCamelCase: int , UpperCamelCase: Optional[Any] , UpperCamelCase: List[Any] , UpperCamelCase: Union[str, Any] ) -> Any: snake_case__ = DistilBertForQuestionAnswering(config=UpperCamelCase ) model.to(UpperCamelCase ) model.eval() snake_case__ = model( UpperCamelCase , attention_mask=UpperCamelCase , start_positions=UpperCamelCase , end_positions=UpperCamelCase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowerCAmelCase_ ( self: Tuple , UpperCamelCase: Optional[int] , UpperCamelCase: Any , UpperCamelCase: Dict , UpperCamelCase: Tuple , UpperCamelCase: Dict , UpperCamelCase: Union[str, Any] ) -> List[str]: snake_case__ = self.num_labels snake_case__ = DistilBertForSequenceClassification(UpperCamelCase ) model.to(UpperCamelCase ) model.eval() snake_case__ = model(UpperCamelCase , attention_mask=UpperCamelCase , labels=UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCAmelCase_ ( self: List[Any] , UpperCamelCase: Optional[Any] , UpperCamelCase: Union[str, Any] , UpperCamelCase: Any , UpperCamelCase: Optional[int] , UpperCamelCase: Tuple , UpperCamelCase: Any ) -> int: snake_case__ = self.num_labels snake_case__ = DistilBertForTokenClassification(config=UpperCamelCase ) model.to(UpperCamelCase ) model.eval() snake_case__ = model(UpperCamelCase , attention_mask=UpperCamelCase , labels=UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowerCAmelCase_ ( self: Optional[Any] , UpperCamelCase: Dict , UpperCamelCase: List[Any] , UpperCamelCase: Union[str, Any] , UpperCamelCase: Any , UpperCamelCase: Optional[Any] , UpperCamelCase: Optional[int] ) -> str: snake_case__ = self.num_choices snake_case__ = DistilBertForMultipleChoice(config=UpperCamelCase ) model.to(UpperCamelCase ) model.eval() snake_case__ = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() snake_case__ = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() snake_case__ = model( UpperCamelCase , attention_mask=UpperCamelCase , labels=UpperCamelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowerCAmelCase_ ( self: str ) -> List[str]: snake_case__ = self.prepare_config_and_inputs() ((snake_case__) , (snake_case__) , (snake_case__) , (snake_case__) , (snake_case__) , (snake_case__)) = config_and_inputs snake_case__ = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class __SCREAMING_SNAKE_CASE( a_ , a_ , unittest.TestCase ): _UpperCAmelCase = ( ( DistilBertModel, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, ) if is_torch_available() else None ) _UpperCAmelCase = ( { "feature-extraction": DistilBertModel, "fill-mask": DistilBertForMaskedLM, "question-answering": DistilBertForQuestionAnswering, "text-classification": DistilBertForSequenceClassification, "token-classification": DistilBertForTokenClassification, "zero-shot": DistilBertForSequenceClassification, } if is_torch_available() else {} ) _UpperCAmelCase = True _UpperCAmelCase = True _UpperCAmelCase = True _UpperCAmelCase = True def lowerCAmelCase_ ( self: Dict ) -> int: snake_case__ = DistilBertModelTester(self ) snake_case__ = ConfigTester(self , config_class=UpperCamelCase , dim=37 ) def lowerCAmelCase_ ( self: List[str] ) -> Optional[int]: self.config_tester.run_common_tests() def lowerCAmelCase_ ( self: List[Any] ) -> int: snake_case__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_model(*UpperCamelCase ) def lowerCAmelCase_ ( self: List[Any] ) -> Dict: snake_case__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_masked_lm(*UpperCamelCase ) def lowerCAmelCase_ ( self: Tuple ) -> List[Any]: snake_case__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_question_answering(*UpperCamelCase ) def lowerCAmelCase_ ( self: Dict ) -> Union[str, Any]: snake_case__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_sequence_classification(*UpperCamelCase ) def lowerCAmelCase_ ( self: Optional[Any] ) -> Dict: snake_case__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_token_classification(*UpperCamelCase ) def lowerCAmelCase_ ( self: Any ) -> Union[str, Any]: snake_case__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_multiple_choice(*UpperCamelCase ) @slow def lowerCAmelCase_ ( self: int ) -> str: for model_name in DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case__ = DistilBertModel.from_pretrained(UpperCamelCase ) self.assertIsNotNone(UpperCamelCase ) @slow @require_torch_gpu def lowerCAmelCase_ ( self: str ) -> Union[str, Any]: snake_case__ , snake_case__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # BertForMultipleChoice behaves incorrectly in JIT environments. if model_class == DistilBertForMultipleChoice: return snake_case__ = True snake_case__ = model_class(config=UpperCamelCase ) snake_case__ = self._prepare_for_class(UpperCamelCase , UpperCamelCase ) snake_case__ = torch.jit.trace( UpperCamelCase , (inputs_dict['input_ids'].to('cpu' ), inputs_dict['attention_mask'].to('cpu' )) ) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(UpperCamelCase , os.path.join(UpperCamelCase , 'traced_model.pt' ) ) snake_case__ = torch.jit.load(os.path.join(UpperCamelCase , 'traced_model.pt' ) , map_location=UpperCamelCase ) loaded(inputs_dict['input_ids'].to(UpperCamelCase ) , inputs_dict['attention_mask'].to(UpperCamelCase ) ) @require_torch class __SCREAMING_SNAKE_CASE( unittest.TestCase ): @slow def lowerCAmelCase_ ( self: Dict ) -> List[str]: snake_case__ = DistilBertModel.from_pretrained('distilbert-base-uncased' ) snake_case__ = torch.tensor([[0, 3_45, 2_32, 3_28, 7_40, 1_40, 16_95, 69, 60_78, 15_88, 2]] ) snake_case__ = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): snake_case__ = model(UpperCamelCase , attention_mask=UpperCamelCase )[0] snake_case__ = torch.Size((1, 11, 7_68) ) self.assertEqual(output.shape , UpperCamelCase ) snake_case__ = torch.tensor( [[[-0.1_639, 0.3_299, 0.1_648], [-0.1_746, 0.3_289, 0.1_710], [-0.1_884, 0.3_357, 0.1_810]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , UpperCamelCase , atol=1e-4 ) )
307
import math from collections import defaultdict from typing import List, Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin, SchedulerOutput def a_ ( _A , _A=0.999 , _A="cosine" , ) -> Optional[int]: """simple docstring""" if alpha_transform_type == "cosine": def alpha_bar_fn(_A ): return math.cos((t + 0.008) / 1.008 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(_A ): return math.exp(t * -12.0 ) else: raise ValueError(f'''Unsupported alpha_tranform_type: {alpha_transform_type}''' ) snake_case__ = [] for i in range(_A ): snake_case__ = i / num_diffusion_timesteps snake_case__ = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(_A ) / alpha_bar_fn(_A ) , _A ) ) return torch.tensor(_A , dtype=torch.floataa ) class __SCREAMING_SNAKE_CASE( a_ , a_ ): _UpperCAmelCase = [e.name for e in KarrasDiffusionSchedulers] _UpperCAmelCase = 2 @register_to_config def __init__( self: Dict , UpperCamelCase: int = 10_00 , UpperCamelCase: float = 0.00_085 , UpperCamelCase: float = 0.012 , UpperCamelCase: str = "linear" , UpperCamelCase: Optional[Union[np.ndarray, List[float]]] = None , UpperCamelCase: str = "epsilon" , UpperCamelCase: Optional[bool] = False , UpperCamelCase: Optional[bool] = False , UpperCamelCase: float = 1.0 , UpperCamelCase: str = "linspace" , UpperCamelCase: int = 0 , ) -> str: if trained_betas is not None: snake_case__ = torch.tensor(UpperCamelCase , dtype=torch.floataa ) elif beta_schedule == "linear": snake_case__ = torch.linspace(UpperCamelCase , UpperCamelCase , UpperCamelCase , dtype=torch.floataa ) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. snake_case__ = ( torch.linspace(beta_start**0.5 , beta_end**0.5 , UpperCamelCase , dtype=torch.floataa ) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule snake_case__ = betas_for_alpha_bar(UpperCamelCase , alpha_transform_type='cosine' ) elif beta_schedule == "exp": snake_case__ = betas_for_alpha_bar(UpperCamelCase , alpha_transform_type='exp' ) else: raise NotImplementedError(F'''{beta_schedule} does is not implemented for {self.__class__}''' ) snake_case__ = 1.0 - self.betas snake_case__ = torch.cumprod(self.alphas , dim=0 ) # set all values self.set_timesteps(UpperCamelCase , UpperCamelCase , UpperCamelCase ) snake_case__ = use_karras_sigmas def lowerCAmelCase_ ( self: str , UpperCamelCase: int , UpperCamelCase: Optional[int]=None ) -> str: if schedule_timesteps is None: snake_case__ = self.timesteps snake_case__ = (schedule_timesteps == timestep).nonzero() # The sigma index that is taken for the **very** first `step` # is always the second index (or the last index if there is only 1) # This way we can ensure we don't accidentally skip a sigma in # case we start in the middle of the denoising schedule (e.g. for image-to-image) if len(self._index_counter ) == 0: snake_case__ = 1 if len(UpperCamelCase ) > 1 else 0 else: snake_case__ = timestep.cpu().item() if torch.is_tensor(UpperCamelCase ) else timestep snake_case__ = self._index_counter[timestep_int] return indices[pos].item() @property def lowerCAmelCase_ ( self: Optional[Any] ) -> List[Any]: # standard deviation of the initial noise distribution if self.config.timestep_spacing in ["linspace", "trailing"]: return self.sigmas.max() return (self.sigmas.max() ** 2 + 1) ** 0.5 def lowerCAmelCase_ ( self: Tuple , UpperCamelCase: torch.FloatTensor , UpperCamelCase: Union[float, torch.FloatTensor] , ) -> torch.FloatTensor: snake_case__ = self.index_for_timestep(UpperCamelCase ) snake_case__ = self.sigmas[step_index] snake_case__ = sample / ((sigma**2 + 1) ** 0.5) return sample def lowerCAmelCase_ ( self: Tuple , UpperCamelCase: int , UpperCamelCase: Union[str, torch.device] = None , UpperCamelCase: Optional[int] = None , ) -> str: snake_case__ = num_inference_steps snake_case__ = num_train_timesteps or self.config.num_train_timesteps # "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891 if self.config.timestep_spacing == "linspace": snake_case__ = np.linspace(0 , num_train_timesteps - 1 , UpperCamelCase , dtype=UpperCamelCase )[::-1].copy() elif self.config.timestep_spacing == "leading": snake_case__ = num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 snake_case__ = (np.arange(0 , UpperCamelCase ) * step_ratio).round()[::-1].copy().astype(UpperCamelCase ) timesteps += self.config.steps_offset elif self.config.timestep_spacing == "trailing": snake_case__ = num_train_timesteps / self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 snake_case__ = (np.arange(UpperCamelCase , 0 , -step_ratio )).round().copy().astype(UpperCamelCase ) timesteps -= 1 else: raise ValueError( F'''{self.config.timestep_spacing} is not supported. Please make sure to choose one of \'linspace\', \'leading\' or \'trailing\'.''' ) snake_case__ = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5 ) snake_case__ = np.log(UpperCamelCase ) snake_case__ = np.interp(UpperCamelCase , np.arange(0 , len(UpperCamelCase ) ) , UpperCamelCase ) if self.config.use_karras_sigmas: snake_case__ = self._convert_to_karras(in_sigmas=UpperCamelCase , num_inference_steps=self.num_inference_steps ) snake_case__ = np.array([self._sigma_to_t(UpperCamelCase , UpperCamelCase ) for sigma in sigmas] ) snake_case__ = np.concatenate([sigmas, [0.0]] ).astype(np.floataa ) snake_case__ = torch.from_numpy(UpperCamelCase ).to(device=UpperCamelCase ) snake_case__ = torch.cat([sigmas[:1], sigmas[1:-1].repeat_interleave(2 ), sigmas[-1:]] ) snake_case__ = torch.from_numpy(UpperCamelCase ) snake_case__ = torch.cat([timesteps[:1], timesteps[1:].repeat_interleave(2 )] ) if str(UpperCamelCase ).startswith('mps' ): # mps does not support float64 snake_case__ = timesteps.to(UpperCamelCase , dtype=torch.floataa ) else: snake_case__ = timesteps.to(device=UpperCamelCase ) # empty dt and derivative snake_case__ = None snake_case__ = None # for exp beta schedules, such as the one for `pipeline_shap_e.py` # we need an index counter snake_case__ = defaultdict(UpperCamelCase ) def lowerCAmelCase_ ( self: List[str] , UpperCamelCase: List[str] , UpperCamelCase: Dict ) -> Tuple: # get log sigma snake_case__ = np.log(UpperCamelCase ) # get distribution snake_case__ = log_sigma - log_sigmas[:, np.newaxis] # get sigmas range snake_case__ = np.cumsum((dists >= 0) , axis=0 ).argmax(axis=0 ).clip(max=log_sigmas.shape[0] - 2 ) snake_case__ = low_idx + 1 snake_case__ = log_sigmas[low_idx] snake_case__ = log_sigmas[high_idx] # interpolate sigmas snake_case__ = (low - log_sigma) / (low - high) snake_case__ = np.clip(UpperCamelCase , 0 , 1 ) # transform interpolation to time range snake_case__ = (1 - w) * low_idx + w * high_idx snake_case__ = t.reshape(sigma.shape ) return t def lowerCAmelCase_ ( self: List[str] , UpperCamelCase: torch.FloatTensor , UpperCamelCase: Dict ) -> torch.FloatTensor: snake_case__ = in_sigmas[-1].item() snake_case__ = in_sigmas[0].item() snake_case__ = 7.0 # 7.0 is the value used in the paper snake_case__ = np.linspace(0 , 1 , UpperCamelCase ) snake_case__ = sigma_min ** (1 / rho) snake_case__ = sigma_max ** (1 / rho) snake_case__ = (max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho return sigmas @property def lowerCAmelCase_ ( self: Dict ) -> Optional[Any]: return self.dt is None def lowerCAmelCase_ ( self: int , UpperCamelCase: Union[torch.FloatTensor, np.ndarray] , UpperCamelCase: Union[float, torch.FloatTensor] , UpperCamelCase: Union[torch.FloatTensor, np.ndarray] , UpperCamelCase: bool = True , ) -> Union[SchedulerOutput, Tuple]: snake_case__ = self.index_for_timestep(UpperCamelCase ) # advance index counter by 1 snake_case__ = timestep.cpu().item() if torch.is_tensor(UpperCamelCase ) else timestep self._index_counter[timestep_int] += 1 if self.state_in_first_order: snake_case__ = self.sigmas[step_index] snake_case__ = self.sigmas[step_index + 1] else: # 2nd order / Heun's method snake_case__ = self.sigmas[step_index - 1] snake_case__ = self.sigmas[step_index] # currently only gamma=0 is supported. This usually works best anyways. # We can support gamma in the future but then need to scale the timestep before # passing it to the model which requires a change in API snake_case__ = 0 snake_case__ = sigma * (gamma + 1) # Note: sigma_hat == sigma for now # 1. compute predicted original sample (x_0) from sigma-scaled predicted noise if self.config.prediction_type == "epsilon": snake_case__ = sigma_hat if self.state_in_first_order else sigma_next snake_case__ = sample - sigma_input * model_output elif self.config.prediction_type == "v_prediction": snake_case__ = sigma_hat if self.state_in_first_order else sigma_next snake_case__ = model_output * (-sigma_input / (sigma_input**2 + 1) ** 0.5) + ( sample / (sigma_input**2 + 1) ) elif self.config.prediction_type == "sample": snake_case__ = model_output else: raise ValueError( F'''prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`''' ) if self.config.clip_sample: snake_case__ = pred_original_sample.clamp( -self.config.clip_sample_range , self.config.clip_sample_range ) if self.state_in_first_order: # 2. Convert to an ODE derivative for 1st order snake_case__ = (sample - pred_original_sample) / sigma_hat # 3. delta timestep snake_case__ = sigma_next - sigma_hat # store for 2nd order step snake_case__ = derivative snake_case__ = dt snake_case__ = sample else: # 2. 2nd order / Heun's method snake_case__ = (sample - pred_original_sample) / sigma_next snake_case__ = (self.prev_derivative + derivative) / 2 # 3. take prev timestep & sample snake_case__ = self.dt snake_case__ = self.sample # free dt and derivative # Note, this puts the scheduler in "first order mode" snake_case__ = None snake_case__ = None snake_case__ = None snake_case__ = sample + derivative * dt if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=UpperCamelCase ) def lowerCAmelCase_ ( self: Any , UpperCamelCase: torch.FloatTensor , UpperCamelCase: torch.FloatTensor , UpperCamelCase: torch.FloatTensor , ) -> torch.FloatTensor: # Make sure sigmas and timesteps have the same device and dtype as original_samples snake_case__ = self.sigmas.to(device=original_samples.device , dtype=original_samples.dtype ) if original_samples.device.type == "mps" and torch.is_floating_point(UpperCamelCase ): # mps does not support float64 snake_case__ = self.timesteps.to(original_samples.device , dtype=torch.floataa ) snake_case__ = timesteps.to(original_samples.device , dtype=torch.floataa ) else: snake_case__ = self.timesteps.to(original_samples.device ) snake_case__ = timesteps.to(original_samples.device ) snake_case__ = [self.index_for_timestep(UpperCamelCase , UpperCamelCase ) for t in timesteps] snake_case__ = sigmas[step_indices].flatten() while len(sigma.shape ) < len(original_samples.shape ): snake_case__ = sigma.unsqueeze(-1 ) snake_case__ = original_samples + noise * sigma return noisy_samples def __len__( self: List[Any] ) -> Union[str, Any]: return self.config.num_train_timesteps
307
1
from __future__ import annotations import time from collections.abc import Sequence from random import randint from matplotlib import pyplot as plt def lowerCAmelCase_ ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ): if not arr: return None, None, 0 if low == high: return low, high, arr[low] __snake_case : Optional[int] = (low + high) // 2 __snake_case , __snake_case , __snake_case : Union[str, Any] = max_subarray(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) __snake_case , __snake_case , __snake_case : int = max_subarray(__lowerCamelCase , mid + 1 , __lowerCamelCase ) __snake_case , __snake_case , __snake_case : List[Any] = max_cross_sum(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) if left_sum >= right_sum and left_sum >= cross_sum: return left_low, left_high, left_sum elif right_sum >= left_sum and right_sum >= cross_sum: return right_low, right_high, right_sum return cross_left, cross_right, cross_sum def lowerCAmelCase_ ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ): __snake_case , __snake_case : int = float("-inf" ), -1 __snake_case , __snake_case : Tuple = float("-inf" ), -1 __snake_case : int | float = 0 for i in range(__lowerCamelCase , low - 1 , -1 ): summ += arr[i] if summ > left_sum: __snake_case : int = summ __snake_case : str = i __snake_case : Dict = 0 for i in range(mid + 1 , high + 1 ): summ += arr[i] if summ > right_sum: __snake_case : Any = summ __snake_case : Dict = i return max_left, max_right, (left_sum + right_sum) def lowerCAmelCase_ ( __lowerCamelCase ): __snake_case : Union[str, Any] = [randint(1 , __lowerCamelCase ) for _ in range(__lowerCamelCase )] __snake_case : Dict = time.time() max_subarray(__lowerCamelCase , 0 , input_size - 1 ) __snake_case : Dict = time.time() return end - start def lowerCAmelCase_ ( ): __snake_case : Dict = [1_0, 1_0_0, 1_0_0_0, 1_0_0_0_0, 5_0_0_0_0, 1_0_0_0_0_0, 2_0_0_0_0_0, 3_0_0_0_0_0, 4_0_0_0_0_0, 5_0_0_0_0_0] __snake_case : Optional[Any] = [time_max_subarray(__lowerCamelCase ) for input_size in input_sizes] print("No of Inputs\t\tTime Taken" ) for input_size, runtime in zip(__lowerCamelCase , __lowerCamelCase ): print(__lowerCamelCase , "\t\t" , __lowerCamelCase ) plt.plot(__lowerCamelCase , __lowerCamelCase ) plt.xlabel("Number of Inputs" ) plt.ylabel("Time taken in seconds" ) plt.show() if __name__ == "__main__": from doctest import testmod testmod()
134
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _snake_case : int = logging.get_logger(__name__) _snake_case : int = { "microsoft/beit-base-patch16-224-pt22k": ( "https://huggingface.co/microsoft/beit-base-patch16-224-pt22k/resolve/main/config.json" ), # See all BEiT models at https://huggingface.co/models?filter=beit } class a (_lowerCAmelCase ): """simple docstring""" __UpperCAmelCase : Union[str, Any] = "beit" def __init__( self : Union[str, Any] , lowerCamelCase : Any=8192 , lowerCamelCase : Dict=768 , lowerCamelCase : int=12 , lowerCamelCase : Optional[Any]=12 , lowerCamelCase : List[str]=3072 , lowerCamelCase : Tuple="gelu" , lowerCamelCase : Union[str, Any]=0.0 , lowerCamelCase : int=0.0 , lowerCamelCase : Dict=0.02 , lowerCamelCase : List[str]=1E-12 , lowerCamelCase : Optional[Any]=224 , lowerCamelCase : Optional[int]=16 , lowerCamelCase : Any=3 , lowerCamelCase : Optional[int]=False , lowerCamelCase : Any=False , lowerCamelCase : Optional[Any]=False , lowerCamelCase : int=False , lowerCamelCase : Any=0.1 , lowerCamelCase : Tuple=0.1 , lowerCamelCase : Optional[int]=True , lowerCamelCase : int=[3, 5, 7, 11] , lowerCamelCase : str=[1, 2, 3, 6] , lowerCamelCase : int=True , lowerCamelCase : List[Any]=0.4 , lowerCamelCase : int=256 , lowerCamelCase : str=1 , lowerCamelCase : List[str]=False , lowerCamelCase : List[str]=255 , **lowerCamelCase : Dict , ) -> int: super().__init__(**lowerCamelCase ) __snake_case : Any = vocab_size __snake_case : List[str] = hidden_size __snake_case : List[Any] = num_hidden_layers __snake_case : Tuple = num_attention_heads __snake_case : Dict = intermediate_size __snake_case : Union[str, Any] = hidden_act __snake_case : Optional[Any] = hidden_dropout_prob __snake_case : Optional[int] = attention_probs_dropout_prob __snake_case : Union[str, Any] = initializer_range __snake_case : str = layer_norm_eps __snake_case : Optional[Any] = image_size __snake_case : List[str] = patch_size __snake_case : Optional[Any] = num_channels __snake_case : Any = use_mask_token __snake_case : List[str] = use_absolute_position_embeddings __snake_case : List[Any] = use_relative_position_bias __snake_case : str = use_shared_relative_position_bias __snake_case : str = layer_scale_init_value __snake_case : Any = drop_path_rate __snake_case : int = use_mean_pooling # decode head attributes (semantic segmentation) __snake_case : Optional[Any] = out_indices __snake_case : List[str] = pool_scales # auxiliary head attributes (semantic segmentation) __snake_case : int = use_auxiliary_head __snake_case : int = auxiliary_loss_weight __snake_case : Optional[int] = auxiliary_channels __snake_case : int = auxiliary_num_convs __snake_case : str = auxiliary_concat_input __snake_case : List[str] = semantic_loss_ignore_index class a (_lowerCAmelCase ): """simple docstring""" __UpperCAmelCase : Union[str, Any] = version.parse("1.11" ) @property def __snake_case ( self : Dict ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ] ) @property def __snake_case ( self : str ) -> float: return 1E-4
134
1
"""simple docstring""" from pathlib import Path import fire from tqdm import tqdm def lowercase ( _snake_case : int="ro" , _snake_case : Dict="en" , _snake_case : int="wmt16" , _snake_case : List[str]=None ) ->None: """simple docstring""" try: import datasets except (ModuleNotFoundError, ImportError): raise ImportError('''run pip install datasets''' ) __snake_case : Union[str, Any] = f"""{src_lang}-{tgt_lang}""" print(f"""Converting {dataset}-{pair}""" ) __snake_case : Optional[Any] = datasets.load_dataset(_snake_case , _snake_case ) if save_dir is None: __snake_case : int = f"""{dataset}-{pair}""" __snake_case : Union[str, Any] = Path(_snake_case ) save_dir.mkdir(exist_ok=_snake_case ) for split in ds.keys(): print(f"""Splitting {split} with {ds[split].num_rows} records""" ) # to save to val.source, val.target like summary datasets __snake_case : Union[str, Any] = '''val''' if split == '''validation''' else split __snake_case : List[str] = save_dir.joinpath(f"""{fn}.source""" ) __snake_case : int = save_dir.joinpath(f"""{fn}.target""" ) __snake_case : Union[str, Any] = src_path.open('''w+''' ) __snake_case : Union[str, Any] = tgt_path.open('''w+''' ) # reader is the bottleneck so writing one record at a time doesn't slow things down for x in tqdm(ds[split] ): __snake_case : List[str] = x['''translation'''] src_fp.write(ex[src_lang] + '''\n''' ) tgt_fp.write(ex[tgt_lang] + '''\n''' ) print(f"""Saved {dataset} dataset to {save_dir}""" ) if __name__ == "__main__": fire.Fire(download_wmt_dataset)
102
'''simple docstring''' import pytest from datasets.utils.sharding import _distribute_shards, _number_of_shards_in_gen_kwargs, _split_gen_kwargs @pytest.mark.parametrize( "kwargs, expected" , [ ({"num_shards": 0, "max_num_jobs": 1}, []), ({"num_shards": 10, "max_num_jobs": 1}, [range(10 )]), ({"num_shards": 10, "max_num_jobs": 10}, [range(__lowercase , i + 1 ) for i in range(10 )]), ({"num_shards": 1, "max_num_jobs": 10}, [range(1 )]), ({"num_shards": 10, "max_num_jobs": 3}, [range(0 , 4 ), range(4 , 7 ), range(7 , 10 )]), ({"num_shards": 3, "max_num_jobs": 10}, [range(0 , 1 ), range(1 , 2 ), range(2 , 3 )]), ] , ) def UpperCAmelCase_ ( __lowercase : int , __lowercase : Dict ) -> List[Any]: '''simple docstring''' _UpperCAmelCase = _distribute_shards(**__lowercase ) assert out == expected @pytest.mark.parametrize( "gen_kwargs, max_num_jobs, expected" , [ ({"foo": 0}, 10, [{"foo": 0}]), ({"shards": [0, 1, 2, 3]}, 1, [{"shards": [0, 1, 2, 3]}]), ({"shards": [0, 1, 2, 3]}, 4, [{"shards": [0]}, {"shards": [1]}, {"shards": [2]}, {"shards": [3]}]), ({"shards": [0, 1]}, 4, [{"shards": [0]}, {"shards": [1]}]), ({"shards": [0, 1, 2, 3]}, 2, [{"shards": [0, 1]}, {"shards": [2, 3]}]), ] , ) def UpperCAmelCase_ ( __lowercase : Dict , __lowercase : Optional[Any] , __lowercase : int ) -> str: '''simple docstring''' _UpperCAmelCase = _split_gen_kwargs(__lowercase , __lowercase ) assert out == expected @pytest.mark.parametrize( "gen_kwargs, expected" , [ ({"foo": 0}, 1), ({"shards": [0]}, 1), ({"shards": [0, 1, 2, 3]}, 4), ({"shards": [0, 1, 2, 3], "foo": 0}, 4), ({"shards": [0, 1, 2, 3], "other": (0, 1)}, 4), ({"shards": [0, 1, 2, 3], "shards2": [0, 1]}, RuntimeError), ] , ) def UpperCAmelCase_ ( __lowercase : Optional[Any] , __lowercase : List[Any] ) -> List[Any]: '''simple docstring''' if expected is RuntimeError: with pytest.raises(__lowercase ): _number_of_shards_in_gen_kwargs(__lowercase ) else: _UpperCAmelCase = _number_of_shards_in_gen_kwargs(__lowercase ) assert out == expected
22
0
'''simple docstring''' from __future__ import annotations import random # Maximum size of the population. Bigger could be faster but is more memory expensive. lowercase : str = 200 # Number of elements selected in every generation of evolution. The selection takes # place from best to worst of that generation and must be smaller than N_POPULATION. lowercase : List[Any] = 50 # Probability that an element of a generation can mutate, changing one of its genes. # This will guarantee that all genes will be used during evolution. lowercase : str = 0.4 # Just a seed to improve randomness required by the algorithm. random.seed(random.randint(0, 1000)) def SCREAMING_SNAKE_CASE__ ( __A , __A ) -> tuple[str, float]: _snake_case = len([g for position, g in enumerate(__A ) if g == main_target[position]] ) return (item, float(__A )) def SCREAMING_SNAKE_CASE__ ( __A , __A ) -> tuple[str, str]: _snake_case = random.randint(0 , len(__A ) - 1 ) _snake_case = parent_a[:random_slice] + parent_a[random_slice:] _snake_case = parent_a[:random_slice] + parent_a[random_slice:] return (child_a, child_a) def SCREAMING_SNAKE_CASE__ ( __A , __A ) -> str: _snake_case = list(__A ) if random.uniform(0 , 1 ) < MUTATION_PROBABILITY: _snake_case = random.choice(__A ) return "".join(__A ) def SCREAMING_SNAKE_CASE__ ( __A , __A , __A , ) -> list[str]: _snake_case = [] # Generate more children proportionally to the fitness score. _snake_case = int(parent_a[1] * 100 ) + 1 _snake_case = 10 if child_n >= 10 else child_n for _ in range(__A ): _snake_case = population_score[random.randint(0 , __A )][0] _snake_case , _snake_case = crossover(parent_a[0] , __A ) # Append new string to the population list. pop.append(mutate(__A , __A ) ) pop.append(mutate(__A , __A ) ) return pop def SCREAMING_SNAKE_CASE__ ( __A , __A , __A = True ) -> tuple[int, int, str]: # Verify if N_POPULATION is bigger than N_SELECTED if N_POPULATION < N_SELECTED: _snake_case = F'{N_POPULATION} must be bigger than {N_SELECTED}' raise ValueError(__A ) # Verify that the target contains no genes besides the ones inside genes variable. _snake_case = sorted({c for c in target if c not in genes} ) if not_in_genes_list: _snake_case = F'{not_in_genes_list} is not in genes list, evolution cannot converge' raise ValueError(__A ) # Generate random starting population. _snake_case = [] for _ in range(__A ): population.append(''.join([random.choice(__A ) for i in range(len(__A ) )] ) ) # Just some logs to know what the algorithms is doing. _snake_case , _snake_case = 0, 0 # This loop will end when we find a perfect match for our target. while True: generation += 1 total_population += len(__A ) # Random population created. Now it's time to evaluate. # Adding a bit of concurrency can make everything faster, # # import concurrent.futures # population_score: list[tuple[str, float]] = [] # with concurrent.futures.ThreadPoolExecutor( # max_workers=NUM_WORKERS) as executor: # futures = {executor.submit(evaluate, item) for item in population} # concurrent.futures.wait(futures) # population_score = [item.result() for item in futures] # # but with a simple algorithm like this, it will probably be slower. # We just need to call evaluate for every item inside the population. _snake_case = [evaluate(__A , __A ) for item in population] # Check if there is a matching evolution. _snake_case = sorted(__A , key=lambda __A : x[1] , reverse=__A ) if population_score[0][0] == target: return (generation, total_population, population_score[0][0]) # Print the best result every 10 generation. # Just to know that the algorithm is working. if debug and generation % 10 == 0: print( F'\nGeneration: {generation}' F'\nTotal Population:{total_population}' F'\nBest score: {population_score[0][1]}' F'\nBest string: {population_score[0][0]}' ) # Flush the old population, keeping some of the best evolutions. # Keeping this avoid regression of evolution. _snake_case = population[: int(N_POPULATION / 3 )] population.clear() population.extend(__A ) # Normalize population score to be between 0 and 1. _snake_case = [ (item, score / len(__A )) for item, score in population_score ] # This is selection for i in range(__A ): population.extend(select(population_score[int(__A )] , __A , __A ) ) # Check if the population has already reached the maximum value and if so, # break the cycle. If this check is disabled, the algorithm will take # forever to compute large strings, but will also calculate small strings in # a far fewer generations. if len(__A ) > N_POPULATION: break if __name__ == "__main__": lowercase : Tuple = ( "This is a genetic algorithm to evaluate, combine, evolve, and mutate a string!" ) lowercase : Tuple = list( " ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklm" "nopqrstuvwxyz.,;!?+-*#@^'èéòà€ù=)(&%$£/\\" ) lowercase , lowercase , lowercase : int = basic(target_str, genes_list) print( F'''\nGeneration: {generation}\nTotal Population: {population}\nTarget: {target}''' )
160
'''simple docstring''' from ...processing_utils import ProcessorMixin class __UpperCAmelCase ( _lowerCamelCase ): __lowercase = """SpeechT5FeatureExtractor""" __lowercase = """SpeechT5Tokenizer""" def __init__( self , lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" super().__init__(lowerCAmelCase_ , lowerCAmelCase_ ) def __call__( self , *lowerCAmelCase_ , **lowerCAmelCase_ ): """simple docstring""" _snake_case = kwargs.pop('audio' , lowerCAmelCase_ ) _snake_case = kwargs.pop('text' , lowerCAmelCase_ ) _snake_case = kwargs.pop('text_target' , lowerCAmelCase_ ) _snake_case = kwargs.pop('audio_target' , lowerCAmelCase_ ) _snake_case = kwargs.pop('sampling_rate' , lowerCAmelCase_ ) if audio is not None and text is not None: raise ValueError( 'Cannot process both `audio` and `text` inputs. Did you mean `audio_target` or `text_target`?' ) if audio_target is not None and text_target is not None: raise ValueError( 'Cannot process both `audio_target` and `text_target` inputs. Did you mean `audio` or `text`?' ) if audio is None and audio_target is None and text is None and text_target is None: raise ValueError( 'You need to specify either an `audio`, `audio_target`, `text`, or `text_target` input to process.' ) if audio is not None: _snake_case = self.feature_extractor(lowerCAmelCase_ , *lowerCAmelCase_ , sampling_rate=lowerCAmelCase_ , **lowerCAmelCase_ ) elif text is not None: _snake_case = self.tokenizer(lowerCAmelCase_ , **lowerCAmelCase_ ) else: _snake_case = None if audio_target is not None: _snake_case = self.feature_extractor(audio_target=lowerCAmelCase_ , *lowerCAmelCase_ , sampling_rate=lowerCAmelCase_ , **lowerCAmelCase_ ) _snake_case = targets['input_values'] elif text_target is not None: _snake_case = self.tokenizer(lowerCAmelCase_ , **lowerCAmelCase_ ) _snake_case = targets['input_ids'] else: _snake_case = None if inputs is None: return targets if targets is not None: _snake_case = labels _snake_case = targets.get('attention_mask' ) if decoder_attention_mask is not None: _snake_case = decoder_attention_mask return inputs def lowerCamelCase ( self , *lowerCAmelCase_ , **lowerCAmelCase_ ): """simple docstring""" _snake_case = kwargs.pop('input_values' , lowerCAmelCase_ ) _snake_case = kwargs.pop('input_ids' , lowerCAmelCase_ ) _snake_case = kwargs.pop('labels' , lowerCAmelCase_ ) if input_values is not None and input_ids is not None: raise ValueError('Cannot process both `input_values` and `input_ids` inputs.' ) if input_values is None and input_ids is None and labels is None: raise ValueError( 'You need to specify either an `input_values`, `input_ids`, or `labels` input to be padded.' ) if input_values is not None: _snake_case = self.feature_extractor.pad(lowerCAmelCase_ , *lowerCAmelCase_ , **lowerCAmelCase_ ) elif input_ids is not None: _snake_case = self.tokenizer.pad(lowerCAmelCase_ , **lowerCAmelCase_ ) else: _snake_case = None if labels is not None: if "input_ids" in labels or (isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) and "input_ids" in labels[0]): _snake_case = self.tokenizer.pad(lowerCAmelCase_ , **lowerCAmelCase_ ) _snake_case = targets['input_ids'] else: _snake_case = self.feature_extractor.feature_size _snake_case = self.feature_extractor.num_mel_bins _snake_case = self.feature_extractor.pad(lowerCAmelCase_ , *lowerCAmelCase_ , **lowerCAmelCase_ ) _snake_case = feature_size_hack _snake_case = targets['input_values'] else: _snake_case = None if inputs is None: return targets if targets is not None: _snake_case = labels _snake_case = targets.get('attention_mask' ) if decoder_attention_mask is not None: _snake_case = decoder_attention_mask return inputs def lowerCamelCase ( self , *lowerCAmelCase_ , **lowerCAmelCase_ ): """simple docstring""" return self.tokenizer.batch_decode(*lowerCAmelCase_ , **lowerCAmelCase_ ) def lowerCamelCase ( self , *lowerCAmelCase_ , **lowerCAmelCase_ ): """simple docstring""" return self.tokenizer.decode(*lowerCAmelCase_ , **lowerCAmelCase_ )
160
1
"""simple docstring""" from heapq import heappop, heappush import numpy as np def __lowercase ( _a , _a , _a , _a , ): snake_case_ : Dict = grid.shape snake_case_ : str = [-1, 1, 0, 0] snake_case_ : Union[str, Any] = [0, 0, -1, 1] if allow_diagonal: dx += [-1, -1, 1, 1] dy += [-1, 1, -1, 1] snake_case_ : Dict = [(0, source)], set() snake_case_ : List[Any] = np.full((rows, cols) , np.inf ) snake_case_ : Any = 0 snake_case_ : Optional[int] = np.empty((rows, cols) , dtype=_UpperCAmelCase ) snake_case_ : List[Any] = None while queue: (snake_case_) : Any = heappop(_UpperCAmelCase ) if (x, y) in visited: continue visited.add((x, y) ) if (x, y) == destination: snake_case_ : Tuple = [] while (x, y) != source: path.append((x, y) ) snake_case_ : str = predecessors[x, y] path.append(_UpperCAmelCase ) # add the source manually path.reverse() return matrix[destination], path for i in range(len(_UpperCAmelCase ) ): snake_case_ : str = x + dx[i], y + dy[i] if 0 <= nx < rows and 0 <= ny < cols: snake_case_ : Optional[Any] = grid[nx][ny] if next_node == 1 and matrix[nx, ny] > dist + 1: heappush(_UpperCAmelCase , (dist + 1, (nx, ny)) ) snake_case_ : Union[str, Any] = dist + 1 snake_case_ : Dict = (x, y) return np.inf, [] if __name__ == "__main__": import doctest doctest.testmod()
264
import unittest import numpy as np from transformers.testing_utils import require_pytesseract, require_torch from transformers.utils import is_pytesseract_available, is_torch_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_pytesseract_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class UpperCAmelCase__ ( unittest.TestCase ): '''simple docstring''' def __init__( self : Dict , a_ : Dict , a_ : Union[str, Any]=7 , a_ : Optional[Any]=3 , a_ : List[str]=18 , a_ : Union[str, Any]=30 , a_ : Union[str, Any]=4_00 , a_ : Union[str, Any]=True , a_ : Tuple=None , a_ : Optional[int]=True , ): '''simple docstring''' __UpperCAmelCase : Optional[int] = size if size is not None else {'''height''': 18, '''width''': 18} __UpperCAmelCase : Dict = parent __UpperCAmelCase : str = batch_size __UpperCAmelCase : List[str] = num_channels __UpperCAmelCase : Union[str, Any] = image_size __UpperCAmelCase : Optional[int] = min_resolution __UpperCAmelCase : Union[str, Any] = max_resolution __UpperCAmelCase : Tuple = do_resize __UpperCAmelCase : List[str] = size __UpperCAmelCase : List[Any] = apply_ocr def snake_case__ ( self : Optional[int] ): '''simple docstring''' return {"do_resize": self.do_resize, "size": self.size, "apply_ocr": self.apply_ocr} @require_torch @require_pytesseract class UpperCAmelCase__ ( __UpperCamelCase ,unittest.TestCase ): '''simple docstring''' UpperCamelCase = LayoutLMvaImageProcessor if is_pytesseract_available() else None def snake_case__ ( self : List[Any] ): '''simple docstring''' __UpperCAmelCase : str = LayoutLMvaImageProcessingTester(self ) @property def snake_case__ ( self : Union[str, Any] ): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def snake_case__ ( self : List[str] ): '''simple docstring''' __UpperCAmelCase : Optional[int] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(a_ , '''do_resize''' ) ) self.assertTrue(hasattr(a_ , '''size''' ) ) self.assertTrue(hasattr(a_ , '''apply_ocr''' ) ) def snake_case__ ( self : List[str] ): '''simple docstring''' __UpperCAmelCase : Any = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''height''': 18, '''width''': 18} ) __UpperCAmelCase : int = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {'''height''': 42, '''width''': 42} ) def snake_case__ ( self : int ): '''simple docstring''' pass def snake_case__ ( self : List[str] ): '''simple docstring''' __UpperCAmelCase : Dict = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __UpperCAmelCase : Dict = prepare_image_inputs(self.image_processor_tester , equal_resolution=a_ ) for image in image_inputs: self.assertIsInstance(a_ , Image.Image ) # Test not batched input __UpperCAmelCase : List[Any] = image_processing(image_inputs[0] , return_tensors='''pt''' ) self.assertEqual( encoding.pixel_values.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) self.assertIsInstance(encoding.words , a_ ) self.assertIsInstance(encoding.boxes , a_ ) # Test batched __UpperCAmelCase : Optional[Any] = image_processing(a_ , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) def snake_case__ ( self : List[Any] ): '''simple docstring''' __UpperCAmelCase : Dict = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __UpperCAmelCase : Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=a_ , numpify=a_ ) for image in image_inputs: self.assertIsInstance(a_ , np.ndarray ) # Test not batched input __UpperCAmelCase : Dict = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) # Test batched __UpperCAmelCase : int = image_processing(a_ , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) def snake_case__ ( self : Tuple ): '''simple docstring''' __UpperCAmelCase : List[str] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __UpperCAmelCase : Tuple = prepare_image_inputs(self.image_processor_tester , equal_resolution=a_ , torchify=a_ ) for image in image_inputs: self.assertIsInstance(a_ , torch.Tensor ) # Test not batched input __UpperCAmelCase : str = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) # Test batched __UpperCAmelCase : List[Any] = image_processing(a_ , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) def snake_case__ ( self : Optional[Any] ): '''simple docstring''' __UpperCAmelCase : Any = LayoutLMvaImageProcessor() from datasets import load_dataset __UpperCAmelCase : Any = load_dataset('''hf-internal-testing/fixtures_docvqa''' , split='''test''' ) __UpperCAmelCase : Optional[int] = Image.open(ds[0]['''file'''] ).convert('''RGB''' ) __UpperCAmelCase : Any = image_processing(a_ , return_tensors='''pt''' ) self.assertEqual(encoding.pixel_values.shape , (1, 3, 2_24, 2_24) ) self.assertEqual(len(encoding.words ) , len(encoding.boxes ) ) # fmt: off # the words and boxes were obtained with Tesseract 4.1.1 __UpperCAmelCase : Any = [['''11:14''', '''to''', '''11:39''', '''a.m''', '''11:39''', '''to''', '''11:44''', '''a.m.''', '''11:44''', '''a.m.''', '''to''', '''12:25''', '''p.m.''', '''12:25''', '''to''', '''12:58''', '''p.m.''', '''12:58''', '''to''', '''4:00''', '''p.m.''', '''2:00''', '''to''', '''5:00''', '''p.m.''', '''Coffee''', '''Break''', '''Coffee''', '''will''', '''be''', '''served''', '''for''', '''men''', '''and''', '''women''', '''in''', '''the''', '''lobby''', '''adjacent''', '''to''', '''exhibit''', '''area.''', '''Please''', '''move''', '''into''', '''exhibit''', '''area.''', '''(Exhibits''', '''Open)''', '''TRRF''', '''GENERAL''', '''SESSION''', '''(PART''', '''|)''', '''Presiding:''', '''Lee''', '''A.''', '''Waller''', '''TRRF''', '''Vice''', '''President''', '''“Introductory''', '''Remarks”''', '''Lee''', '''A.''', '''Waller,''', '''TRRF''', '''Vice''', '''Presi-''', '''dent''', '''Individual''', '''Interviews''', '''with''', '''TRRF''', '''Public''', '''Board''', '''Members''', '''and''', '''Sci-''', '''entific''', '''Advisory''', '''Council''', '''Mem-''', '''bers''', '''Conducted''', '''by''', '''TRRF''', '''Treasurer''', '''Philip''', '''G.''', '''Kuehn''', '''to''', '''get''', '''answers''', '''which''', '''the''', '''public''', '''refrigerated''', '''warehousing''', '''industry''', '''is''', '''looking''', '''for.''', '''Plus''', '''questions''', '''from''', '''the''', '''floor.''', '''Dr.''', '''Emil''', '''M.''', '''Mrak,''', '''University''', '''of''', '''Cal-''', '''ifornia,''', '''Chairman,''', '''TRRF''', '''Board;''', '''Sam''', '''R.''', '''Cecil,''', '''University''', '''of''', '''Georgia''', '''College''', '''of''', '''Agriculture;''', '''Dr.''', '''Stanley''', '''Charm,''', '''Tufts''', '''University''', '''School''', '''of''', '''Medicine;''', '''Dr.''', '''Robert''', '''H.''', '''Cotton,''', '''ITT''', '''Continental''', '''Baking''', '''Company;''', '''Dr.''', '''Owen''', '''Fennema,''', '''University''', '''of''', '''Wis-''', '''consin;''', '''Dr.''', '''Robert''', '''E.''', '''Hardenburg,''', '''USDA.''', '''Questions''', '''and''', '''Answers''', '''Exhibits''', '''Open''', '''Capt.''', '''Jack''', '''Stoney''', '''Room''', '''TRRF''', '''Scientific''', '''Advisory''', '''Council''', '''Meeting''', '''Ballroom''', '''Foyer''']] # noqa: E231 __UpperCAmelCase : Tuple = [[[1_41, 57, 2_14, 69], [2_28, 58, 2_52, 69], [1_41, 75, 2_16, 88], [2_30, 79, 2_80, 88], [1_42, 2_60, 2_18, 2_73], [2_30, 2_61, 2_55, 2_73], [1_43, 2_79, 2_18, 2_90], [2_31, 2_82, 2_90, 2_91], [1_43, 3_42, 2_18, 3_54], [2_31, 3_45, 2_89, 3_55], [2_02, 3_62, 2_27, 3_73], [1_43, 3_79, 2_20, 3_92], [2_31, 3_82, 2_91, 3_94], [1_44, 7_14, 2_20, 7_26], [2_31, 7_15, 2_56, 7_26], [1_44, 7_32, 2_20, 7_45], [2_32, 7_36, 2_91, 7_47], [1_44, 7_69, 2_18, 7_82], [2_31, 7_70, 2_56, 7_82], [1_41, 7_88, 2_02, 8_01], [2_15, 7_91, 2_74, 8_04], [1_43, 8_26, 2_04, 8_38], [2_15, 8_26, 2_40, 8_38], [1_42, 8_44, 2_02, 8_57], [2_15, 8_47, 2_74, 8_59], [3_34, 57, 4_27, 69], [4_40, 57, 5_22, 69], [3_69, 75, 4_61, 88], [4_69, 75, 5_16, 88], [5_28, 76, 5_62, 88], [5_70, 76, 6_67, 88], [6_75, 75, 7_11, 87], [7_21, 79, 7_78, 88], [7_89, 75, 8_40, 88], [3_69, 97, 4_70, 1_07], [4_84, 94, 5_07, 1_06], [5_18, 94, 5_62, 1_07], [5_76, 94, 6_55, 1_10], [6_68, 94, 7_92, 1_09], [8_04, 95, 8_29, 1_07], [3_69, 1_13, 4_65, 1_25], [4_77, 1_16, 5_47, 1_25], [5_62, 1_13, 6_58, 1_25], [6_71, 1_16, 7_48, 1_25], [7_61, 1_13, 8_11, 1_25], [3_69, 1_31, 4_65, 1_43], [4_77, 1_33, 5_48, 1_43], [5_63, 1_30, 6_98, 1_45], [7_10, 1_30, 8_02, 1_46], [3_36, 1_71, 4_12, 1_83], [4_23, 1_71, 5_72, 1_83], [5_82, 1_70, 7_16, 1_84], [7_28, 1_71, 8_17, 1_87], [8_29, 1_71, 8_44, 1_86], [3_38, 1_97, 4_82, 2_12], [5_07, 1_96, 5_57, 2_09], [5_69, 1_96, 5_95, 2_08], [6_10, 1_96, 7_02, 2_09], [5_05, 2_14, 5_83, 2_26], [5_95, 2_14, 6_56, 2_27], [6_70, 2_15, 8_07, 2_27], [3_35, 2_59, 5_43, 2_74], [5_56, 2_59, 7_08, 2_72], [3_72, 2_79, 4_22, 2_91], [4_35, 2_79, 4_60, 2_91], [4_74, 2_79, 5_74, 2_92], [5_87, 2_78, 6_64, 2_91], [6_76, 2_78, 7_38, 2_91], [7_51, 2_79, 8_34, 2_91], [3_72, 2_98, 4_34, 3_10], [3_35, 3_41, 4_83, 3_54], [4_97, 3_41, 6_55, 3_54], [6_67, 3_41, 7_28, 3_54], [7_40, 3_41, 8_25, 3_54], [3_35, 3_60, 4_30, 3_72], [4_42, 3_60, 5_34, 3_72], [5_45, 3_59, 6_87, 3_72], [6_97, 3_60, 7_54, 3_72], [7_65, 3_60, 8_23, 3_73], [3_34, 3_78, 4_28, 3_91], [4_40, 3_78, 5_77, 3_94], [5_90, 3_78, 7_05, 3_91], [7_20, 3_78, 8_01, 3_91], [3_34, 3_97, 4_00, 4_09], [3_70, 4_16, 5_29, 4_29], [5_44, 4_16, 5_76, 4_32], [5_87, 4_16, 6_65, 4_28], [6_77, 4_16, 8_14, 4_29], [3_72, 4_35, 4_52, 4_50], [4_65, 4_34, 4_95, 4_47], [5_11, 4_34, 6_00, 4_47], [6_11, 4_36, 6_37, 4_47], [6_49, 4_36, 6_94, 4_51], [7_05, 4_38, 8_24, 4_47], [3_69, 4_53, 4_52, 4_66], [4_64, 4_54, 5_09, 4_66], [5_22, 4_53, 6_11, 4_69], [6_25, 4_53, 7_92, 4_69], [3_70, 4_72, 5_56, 4_88], [5_70, 4_72, 6_84, 4_87], [6_97, 4_72, 7_18, 4_85], [7_32, 4_72, 8_35, 4_88], [3_69, 4_90, 4_11, 5_03], [4_25, 4_90, 4_84, 5_03], [4_96, 4_90, 6_35, 5_06], [6_45, 4_90, 7_07, 5_03], [7_18, 4_91, 7_61, 5_03], [7_71, 4_90, 8_40, 5_03], [3_36, 5_10, 3_74, 5_21], [3_88, 5_10, 4_47, 5_22], [4_60, 5_10, 4_89, 5_21], [5_03, 5_10, 5_80, 5_22], [5_92, 5_09, 7_36, 5_25], [7_45, 5_09, 7_70, 5_22], [7_81, 5_09, 8_40, 5_22], [3_38, 5_28, 4_34, 5_41], [4_48, 5_28, 5_96, 5_41], [6_09, 5_27, 6_87, 5_40], [7_00, 5_28, 7_92, 5_41], [3_36, 5_46, 3_97, 5_59], [4_07, 5_46, 4_31, 5_59], [4_43, 5_46, 5_25, 5_60], [5_37, 5_46, 6_80, 5_62], [6_88, 5_46, 7_14, 5_59], [7_22, 5_46, 8_37, 5_62], [3_36, 5_65, 4_49, 5_81], [4_61, 5_65, 4_85, 5_77], [4_97, 5_65, 6_65, 5_81], [6_81, 5_65, 7_18, 5_77], [7_32, 5_65, 8_37, 5_80], [3_37, 5_84, 4_38, 5_97], [4_52, 5_83, 5_21, 5_96], [5_35, 5_84, 6_77, 5_99], [6_90, 5_83, 7_87, 5_96], [8_01, 5_83, 8_25, 5_96], [3_38, 6_02, 4_78, 6_15], [4_92, 6_02, 5_30, 6_14], [5_43, 6_02, 6_38, 6_15], [6_50, 6_02, 6_76, 6_14], [6_88, 6_02, 7_88, 6_15], [8_02, 6_02, 8_43, 6_14], [3_37, 6_21, 5_02, 6_33], [5_16, 6_21, 6_15, 6_37], [6_29, 6_21, 7_74, 6_36], [7_89, 6_21, 8_27, 6_33], [3_37, 6_39, 4_18, 6_52], [4_32, 6_40, 5_71, 6_53], [5_87, 6_39, 7_31, 6_55], [7_43, 6_39, 7_69, 6_52], [7_80, 6_39, 8_41, 6_52], [3_38, 6_58, 4_40, 6_73], [4_55, 6_58, 4_91, 6_70], [5_08, 6_58, 6_02, 6_71], [6_16, 6_58, 6_38, 6_70], [6_54, 6_58, 8_35, 6_74], [3_37, 6_77, 4_29, 6_89], [3_37, 7_14, 4_82, 7_26], [4_95, 7_14, 5_48, 7_26], [5_61, 7_14, 6_83, 7_26], [3_38, 7_70, 4_61, 7_82], [4_74, 7_69, 5_54, 7_85], [4_89, 7_88, 5_62, 8_03], [5_76, 7_88, 6_43, 8_01], [6_56, 7_87, 7_51, 8_04], [7_64, 7_88, 8_44, 8_01], [3_34, 8_25, 4_21, 8_38], [4_30, 8_24, 5_74, 8_38], [5_84, 8_24, 7_23, 8_41], [3_35, 8_44, 4_50, 8_57], [4_64, 8_43, 5_83, 8_60], [6_28, 8_62, 7_55, 8_75], [7_69, 8_61, 8_48, 8_78]]] # noqa: E231 # fmt: on self.assertListEqual(encoding.words , a_ ) self.assertListEqual(encoding.boxes , a_ ) # with apply_OCR = False __UpperCAmelCase : List[str] = LayoutLMvaImageProcessor(apply_ocr=a_ ) __UpperCAmelCase : List[Any] = image_processing(a_ , return_tensors='''pt''' ) self.assertEqual(encoding.pixel_values.shape , (1, 3, 2_24, 2_24) )
226
0
import argparse import torch # Step 1. clone https://github.com/microsoft/unilm # Step 2. git checkout to https://github.com/microsoft/unilm/commit/b94ec76c36f02fb2b0bf0dcb0b8554a2185173cd # Step 3. cd unilm # Step 4. ln -s $(realpath wavlm/modules.py) ./ # create simlink # import classes from unilm.wavlm.WavLM import WavLM as WavLMOrig from unilm.wavlm.WavLM import WavLMConfig as WavLMConfigOrig from transformers import WavLMConfig, WavLMModel, logging logging.set_verbosity_info() _UpperCAmelCase = logging.get_logger(__name__) _UpperCAmelCase = { 'post_extract_proj': 'feature_projection.projection', 'encoder.pos_conv.0': 'encoder.pos_conv_embed.conv', 'self_attn.k_proj': 'encoder.layers.*.attention.k_proj', 'self_attn.v_proj': 'encoder.layers.*.attention.v_proj', 'self_attn.q_proj': 'encoder.layers.*.attention.q_proj', 'self_attn.out_proj': 'encoder.layers.*.attention.out_proj', 'self_attn.grep_linear': 'encoder.layers.*.attention.gru_rel_pos_linear', 'self_attn.relative_attention_bias': 'encoder.layers.*.attention.rel_attn_embed', 'self_attn.grep_a': 'encoder.layers.*.attention.gru_rel_pos_const', 'self_attn_layer_norm': 'encoder.layers.*.layer_norm', 'fc1': 'encoder.layers.*.feed_forward.intermediate_dense', 'fc2': 'encoder.layers.*.feed_forward.output_dense', 'final_layer_norm': 'encoder.layers.*.final_layer_norm', 'encoder.layer_norm': 'encoder.layer_norm', 'w2v_model.layer_norm': 'feature_projection.layer_norm', 'quantizer.weight_proj': 'quantizer.weight_proj', 'quantizer.vars': 'quantizer.codevectors', 'project_q': 'project_q', 'final_proj': 'project_hid', 'w2v_encoder.proj': 'ctc_proj', 'mask_emb': 'masked_spec_embed', } _UpperCAmelCase = [ 'ctc_proj', 'quantizer.weight_proj', 'quantizer.codevectors', 'project_q', 'project_hid', ] def lowerCAmelCase_ ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) -> Tuple: for attribute in key.split("." ): UpperCamelCase_ = getattr(__lowerCAmelCase , __lowerCAmelCase ) if weight_type is not None: UpperCamelCase_ = getattr(__lowerCAmelCase , __lowerCAmelCase ).shape else: UpperCamelCase_ = hf_pointer.shape assert hf_shape == value.shape, ( F'''Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be''' F''' {value.shape} for {full_name}''' ) if weight_type == "weight": UpperCamelCase_ = value elif weight_type == "weight_g": UpperCamelCase_ = value elif weight_type == "weight_v": UpperCamelCase_ = value elif weight_type == "bias": UpperCamelCase_ = value else: UpperCamelCase_ = value logger.info(F'''{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.''' ) def lowerCAmelCase_ ( UpperCamelCase_ , UpperCamelCase_ ) -> str: UpperCamelCase_ = [] UpperCamelCase_ = fairseq_model.state_dict() UpperCamelCase_ = hf_model.feature_extractor for name, value in fairseq_dict.items(): UpperCamelCase_ = False if "conv_layers" in name: load_conv_layer( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , hf_model.config.feat_extract_norm == "group" , ) UpperCamelCase_ = True else: for key, mapped_key in MAPPING.items(): if key in name or key.split("w2v_model." )[-1] == name.split("." )[0]: UpperCamelCase_ = True if "*" in mapped_key: UpperCamelCase_ = name.split(__lowerCAmelCase )[0].split("." )[-2] UpperCamelCase_ = mapped_key.replace("*" , __lowerCAmelCase ) if "weight_g" in name: UpperCamelCase_ = '''weight_g''' elif "weight_v" in name: UpperCamelCase_ = '''weight_v''' elif "bias" in name and "relative_attention_bias" not in name: UpperCamelCase_ = '''bias''' elif "weight" in name: # TODO: don't match quantizer.weight_proj UpperCamelCase_ = '''weight''' else: UpperCamelCase_ = None set_recursively(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) continue if not is_used: unused_weights.append(__lowerCAmelCase ) logger.warning(F'''Unused weights: {unused_weights}''' ) def lowerCAmelCase_ ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) -> int: UpperCamelCase_ = full_name.split("conv_layers." )[-1] UpperCamelCase_ = name.split("." ) UpperCamelCase_ = int(items[0] ) UpperCamelCase_ = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) UpperCamelCase_ = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) UpperCamelCase_ = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F'''{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was''' " found." ) UpperCamelCase_ = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.''' ) UpperCamelCase_ = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) else: unused_weights.append(__lowerCAmelCase ) @torch.no_grad() def lowerCAmelCase_ ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_=None ) -> Dict: UpperCamelCase_ = torch.load(__lowerCAmelCase ) UpperCamelCase_ = WavLMConfigOrig(checkpoint["cfg"] ) UpperCamelCase_ = WavLMOrig(__lowerCAmelCase ) model.load_state_dict(checkpoint["model"] ) model.eval() if config_path is not None: UpperCamelCase_ = WavLMConfig.from_pretrained(__lowerCAmelCase ) else: UpperCamelCase_ = WavLMConfig() UpperCamelCase_ = WavLMModel(__lowerCAmelCase ) recursively_load_weights(__lowerCAmelCase , __lowerCAmelCase ) hf_wavlm.save_pretrained(__lowerCAmelCase ) if __name__ == "__main__": _UpperCAmelCase = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') _UpperCAmelCase = parser.parse_args() convert_wavlm_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
350
from sklearn.metrics import fa_score, matthews_corrcoef import datasets from .record_evaluation import evaluate as evaluate_record _UpperCAmelCase = '\\n@article{wang2019superglue,\n title={SuperGLUE: A Stickier Benchmark for General-Purpose Language Understanding Systems},\n author={Wang, Alex and Pruksachatkun, Yada and Nangia, Nikita and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R},\n journal={arXiv preprint arXiv:1905.00537},\n year={2019}\n}\n' _UpperCAmelCase = '\\nSuperGLUE (https://super.gluebenchmark.com/) is a new benchmark styled after\nGLUE with a new set of more difficult language understanding tasks, improved\nresources, and a new public leaderboard.\n' _UpperCAmelCase = '\nCompute SuperGLUE evaluation metric associated to each SuperGLUE dataset.\nArgs:\n predictions: list of predictions to score. Depending on the SuperGlUE subset:\n - for \'record\': list of question-answer dictionaries with the following keys:\n - \'idx\': index of the question as specified by the dataset\n - \'prediction_text\': the predicted answer text\n - for \'multirc\': list of question-answer dictionaries with the following keys:\n - \'idx\': index of the question-answer pair as specified by the dataset\n - \'prediction\': the predicted answer label\n - otherwise: list of predicted labels\n references: list of reference labels. Depending on the SuperGLUE subset:\n - for \'record\': list of question-answers dictionaries with the following keys:\n - \'idx\': index of the question as specified by the dataset\n - \'answers\': list of possible answers\n - otherwise: list of reference labels\nReturns: depending on the SuperGLUE subset:\n - for \'record\':\n - \'exact_match\': Exact match between answer and gold answer\n - \'f1\': F1 score\n - for \'multirc\':\n - \'exact_match\': Exact match between answer and gold answer\n - \'f1_m\': Per-question macro-F1 score\n - \'f1_a\': Average F1 score over all answers\n - for \'axb\':\n \'matthews_correlation\': Matthew Correlation\n - for \'cb\':\n - \'accuracy\': Accuracy\n - \'f1\': F1 score\n - for all others:\n - \'accuracy\': Accuracy\nExamples:\n\n >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'copa\') # any of ["copa", "rte", "wic", "wsc", "wsc.fixed", "boolq", "axg"]\n >>> predictions = [0, 1]\n >>> references = [0, 1]\n >>> results = super_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'accuracy\': 1.0}\n\n >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'cb\')\n >>> predictions = [0, 1]\n >>> references = [0, 1]\n >>> results = super_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'accuracy\': 1.0, \'f1\': 1.0}\n\n >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'record\')\n >>> predictions = [{\'idx\': {\'passage\': 0, \'query\': 0}, \'prediction_text\': \'answer\'}]\n >>> references = [{\'idx\': {\'passage\': 0, \'query\': 0}, \'answers\': [\'answer\', \'another_answer\']}]\n >>> results = super_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'exact_match\': 1.0, \'f1\': 1.0}\n\n >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'multirc\')\n >>> predictions = [{\'idx\': {\'answer\': 0, \'paragraph\': 0, \'question\': 0}, \'prediction\': 0}, {\'idx\': {\'answer\': 1, \'paragraph\': 2, \'question\': 3}, \'prediction\': 1}]\n >>> references = [0, 1]\n >>> results = super_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'exact_match\': 1.0, \'f1_m\': 1.0, \'f1_a\': 1.0}\n\n >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'axb\')\n >>> references = [0, 1]\n >>> predictions = [0, 1]\n >>> results = super_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'matthews_correlation\': 1.0}\n' def lowerCAmelCase_ ( UpperCamelCase_ , UpperCamelCase_ ) -> Optional[Any]: return float((preds == labels).mean() ) def lowerCAmelCase_ ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_="binary" ) -> Tuple: UpperCamelCase_ = simple_accuracy(UpperCamelCase_ , UpperCamelCase_ ) UpperCamelCase_ = float(fa_score(y_true=UpperCamelCase_ , y_pred=UpperCamelCase_ , average=UpperCamelCase_ ) ) return { "accuracy": acc, "f1": fa, } def lowerCAmelCase_ ( UpperCamelCase_ , UpperCamelCase_ ) -> List[Any]: UpperCamelCase_ = {} for id_pred, label in zip(UpperCamelCase_ , UpperCamelCase_ ): UpperCamelCase_ = F'''{id_pred["idx"]["paragraph"]}-{id_pred["idx"]["question"]}''' UpperCamelCase_ = id_pred["prediction"] if question_id in question_map: question_map[question_id].append((pred, label) ) else: UpperCamelCase_ = [(pred, label)] UpperCamelCase_ , UpperCamelCase_ = [], [] for question, preds_labels in question_map.items(): UpperCamelCase_ , UpperCamelCase_ = zip(*UpperCamelCase_ ) UpperCamelCase_ = fa_score(y_true=UpperCamelCase_ , y_pred=UpperCamelCase_ , average="macro" ) fas.append(UpperCamelCase_ ) UpperCamelCase_ = int(sum(pred == label for pred, label in preds_labels ) == len(UpperCamelCase_ ) ) ems.append(UpperCamelCase_ ) UpperCamelCase_ = float(sum(UpperCamelCase_ ) / len(UpperCamelCase_ ) ) UpperCamelCase_ = sum(UpperCamelCase_ ) / len(UpperCamelCase_ ) UpperCamelCase_ = float(fa_score(y_true=UpperCamelCase_ , y_pred=[id_pred["prediction"] for id_pred in ids_preds] ) ) return {"exact_match": em, "f1_m": fa_m, "f1_a": fa_a} @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _UpperCamelCase ( datasets.Metric ): def lowercase ( self: Optional[int] ) -> Optional[int]: """simple docstring""" if self.config_name not in [ "boolq", "cb", "copa", "multirc", "record", "rte", "wic", "wsc", "wsc.fixed", "axb", "axg", ]: raise KeyError( "You should supply a configuration name selected in " "[\"boolq\", \"cb\", \"copa\", \"multirc\", \"record\", \"rte\", \"wic\", \"wsc\", \"wsc.fixed\", \"axb\", \"axg\",]" ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(self._get_feature_types() ) , codebase_urls=[] , reference_urls=[] , format="numpy" if not self.config_name == "record" and not self.config_name == "multirc" else None , ) def lowercase ( self: List[Any] ) -> int: """simple docstring""" if self.config_name == "record": return { "predictions": { "idx": { "passage": datasets.Value("int64" ), "query": datasets.Value("int64" ), }, "prediction_text": datasets.Value("string" ), }, "references": { "idx": { "passage": datasets.Value("int64" ), "query": datasets.Value("int64" ), }, "answers": datasets.Sequence(datasets.Value("string" ) ), }, } elif self.config_name == "multirc": return { "predictions": { "idx": { "answer": datasets.Value("int64" ), "paragraph": datasets.Value("int64" ), "question": datasets.Value("int64" ), }, "prediction": datasets.Value("int64" ), }, "references": datasets.Value("int64" ), } else: return { "predictions": datasets.Value("int64" ), "references": datasets.Value("int64" ), } def lowercase ( self: Tuple , _SCREAMING_SNAKE_CASE: Optional[Any] , _SCREAMING_SNAKE_CASE: List[str] ) -> Dict: """simple docstring""" if self.config_name == "axb": return {"matthews_correlation": matthews_corrcoef(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )} elif self.config_name == "cb": return acc_and_fa(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , fa_avg="macro" ) elif self.config_name == "record": UpperCamelCase_ = [ { "qas": [ {"id": ref["idx"]["query"], "answers": [{"text": ans} for ans in ref["answers"]]} for ref in references ] } ] UpperCamelCase_ = {pred["idx"]["query"]: pred["prediction_text"] for pred in predictions} return evaluate_record(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )[0] elif self.config_name == "multirc": return evaluate_multirc(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) elif self.config_name in ["copa", "rte", "wic", "wsc", "wsc.fixed", "boolq", "axg"]: return {"accuracy": simple_accuracy(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )} else: raise KeyError( "You should supply a configuration name selected in " "[\"boolq\", \"cb\", \"copa\", \"multirc\", \"record\", \"rte\", \"wic\", \"wsc\", \"wsc.fixed\", \"axb\", \"axg\",]" )
328
0
from collections.abc import Sequence def _UpperCAmelCase ( snake_case , snake_case ): """simple docstring""" return sum(c * (x**i) for i, c in enumerate(snake_case ) ) def _UpperCAmelCase ( snake_case , snake_case ): """simple docstring""" _lowerCAmelCase = 0.0 for coeff in reversed(snake_case ): _lowerCAmelCase = result * x + coeff return result if __name__ == "__main__": A__ = (0.0, 0.0, 5.0, 9.3, 7.0) A__ = 1_0.0 print(evaluate_poly(poly, x)) print(horner(poly, x))
82
from typing import Optional, Union import torch from torch import nn from ...configuration_utils import ConfigMixin, register_to_config from ...models.modeling_utils import ModelMixin class __lowerCAmelCase ( lowerCamelCase__ , lowerCamelCase__ ): @register_to_config def __init__( self , _snake_case = 768 , ): """simple docstring""" super().__init__() _lowerCAmelCase = nn.Parameter(torch.zeros(1 , _snake_case ) ) _lowerCAmelCase = nn.Parameter(torch.ones(1 , _snake_case ) ) def snake_case ( self , _snake_case = None , _snake_case = None , ): """simple docstring""" _lowerCAmelCase = nn.Parameter(self.mean.to(_snake_case ).to(_snake_case ) ) _lowerCAmelCase = nn.Parameter(self.std.to(_snake_case ).to(_snake_case ) ) return self def snake_case ( self , _snake_case ): """simple docstring""" _lowerCAmelCase = (embeds - self.mean) * 1.0 / self.std return embeds def snake_case ( self , _snake_case ): """simple docstring""" _lowerCAmelCase = (embeds * self.std) + self.mean return embeds
82
1
import unittest from transformers import AlbertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForPreTraining, AlbertForQuestionAnswering, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertModel, ) from transformers.models.albert.modeling_albert import ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST class SCREAMING_SNAKE_CASE__ : def __init__( self : Optional[int] , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Optional[Any]=13 , _lowerCAmelCase : Optional[Any]=7 , _lowerCAmelCase : Optional[int]=True , _lowerCAmelCase : Tuple=True , _lowerCAmelCase : Optional[int]=True , _lowerCAmelCase : Union[str, Any]=True , _lowerCAmelCase : Any=99 , _lowerCAmelCase : Union[str, Any]=16 , _lowerCAmelCase : Optional[Any]=36 , _lowerCAmelCase : Dict=6 , _lowerCAmelCase : Dict=6 , _lowerCAmelCase : Tuple=6 , _lowerCAmelCase : Optional[Any]=37 , _lowerCAmelCase : Optional[int]="gelu" , _lowerCAmelCase : int=0.1 , _lowerCAmelCase : Optional[int]=0.1 , _lowerCAmelCase : Dict=5_12 , _lowerCAmelCase : Tuple=16 , _lowerCAmelCase : Any=2 , _lowerCAmelCase : Dict=0.02 , _lowerCAmelCase : Optional[int]=3 , _lowerCAmelCase : Union[str, Any]=4 , _lowerCAmelCase : str=None , ): __snake_case : Any = parent __snake_case : str = batch_size __snake_case : List[str] = seq_length __snake_case : str = is_training __snake_case : Optional[int] = use_input_mask __snake_case : Optional[Any] = use_token_type_ids __snake_case : Optional[Any] = use_labels __snake_case : str = vocab_size __snake_case : int = embedding_size __snake_case : Any = hidden_size __snake_case : List[Any] = num_hidden_layers __snake_case : Tuple = num_hidden_groups __snake_case : List[str] = num_attention_heads __snake_case : List[str] = intermediate_size __snake_case : Dict = hidden_act __snake_case : Optional[int] = hidden_dropout_prob __snake_case : int = attention_probs_dropout_prob __snake_case : Any = max_position_embeddings __snake_case : List[str] = type_vocab_size __snake_case : List[Any] = type_sequence_label_size __snake_case : List[Any] = initializer_range __snake_case : Tuple = num_labels __snake_case : Tuple = num_choices __snake_case : Dict = scope def snake_case__ ( self : int ): __snake_case : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __snake_case : List[str] = None if self.use_input_mask: __snake_case : List[str] = random_attention_mask([self.batch_size, self.seq_length] ) __snake_case : List[Any] = None if self.use_token_type_ids: __snake_case : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __snake_case : List[Any] = None __snake_case : Optional[Any] = None __snake_case : Optional[Any] = None if self.use_labels: __snake_case : Optional[int] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __snake_case : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __snake_case : str = ids_tensor([self.batch_size] , self.num_choices ) __snake_case : List[Any] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def snake_case__ ( self : Dict ): return AlbertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , num_hidden_groups=self.num_hidden_groups , ) def snake_case__ ( self : Optional[int] , _lowerCAmelCase : List[str] , _lowerCAmelCase : List[Any] , _lowerCAmelCase : Tuple , _lowerCAmelCase : Tuple , _lowerCAmelCase : List[Any] , _lowerCAmelCase : Any , _lowerCAmelCase : Optional[Any] ): __snake_case : List[Any] = AlbertModel(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() __snake_case : Any = model(_lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase ) __snake_case : List[Any] = model(_lowerCAmelCase , token_type_ids=_lowerCAmelCase ) __snake_case : Tuple = model(_lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def snake_case__ ( self : Dict , _lowerCAmelCase : Any , _lowerCAmelCase : int , _lowerCAmelCase : List[Any] , _lowerCAmelCase : str , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : int ): __snake_case : Union[str, Any] = AlbertForPreTraining(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() __snake_case : Optional[int] = model( _lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , labels=_lowerCAmelCase , sentence_order_label=_lowerCAmelCase , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.sop_logits.shape , (self.batch_size, config.num_labels) ) def snake_case__ ( self : Union[str, Any] , _lowerCAmelCase : int , _lowerCAmelCase : List[str] , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Any , _lowerCAmelCase : int , _lowerCAmelCase : List[Any] ): __snake_case : Union[str, Any] = AlbertForMaskedLM(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() __snake_case : Union[str, Any] = model(_lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , labels=_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def snake_case__ ( self : Any , _lowerCAmelCase : List[str] , _lowerCAmelCase : int , _lowerCAmelCase : str , _lowerCAmelCase : List[str] , _lowerCAmelCase : List[str] , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : str ): __snake_case : Tuple = AlbertForQuestionAnswering(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() __snake_case : Dict = model( _lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , start_positions=_lowerCAmelCase , end_positions=_lowerCAmelCase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def snake_case__ ( self : Any , _lowerCAmelCase : List[str] , _lowerCAmelCase : int , _lowerCAmelCase : str , _lowerCAmelCase : str , _lowerCAmelCase : Dict , _lowerCAmelCase : int , _lowerCAmelCase : List[str] ): __snake_case : Dict = self.num_labels __snake_case : Optional[Any] = AlbertForSequenceClassification(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() __snake_case : Any = model(_lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , labels=_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def snake_case__ ( self : Optional[Any] , _lowerCAmelCase : List[str] , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Any , _lowerCAmelCase : Any , _lowerCAmelCase : int , _lowerCAmelCase : str , _lowerCAmelCase : str ): __snake_case : List[str] = self.num_labels __snake_case : Dict = AlbertForTokenClassification(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() __snake_case : List[str] = model(_lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , labels=_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def snake_case__ ( self : Any , _lowerCAmelCase : str , _lowerCAmelCase : Any , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Any , _lowerCAmelCase : int , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Tuple ): __snake_case : Optional[Any] = self.num_choices __snake_case : Union[str, Any] = AlbertForMultipleChoice(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() __snake_case : int = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __snake_case : Optional[Any] = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __snake_case : int = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __snake_case : List[Any] = model( _lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , labels=_lowerCAmelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def snake_case__ ( self : Optional[Any] ): __snake_case : int = self.prepare_config_and_inputs() ( ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ) : Any = config_and_inputs __snake_case : Any = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE__ ( __UpperCamelCase , __UpperCamelCase , unittest.TestCase ): A : List[str] = ( ( AlbertModel, AlbertForPreTraining, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertForQuestionAnswering, ) if is_torch_available() else () ) A : Any = ( { "feature-extraction": AlbertModel, "fill-mask": AlbertForMaskedLM, "question-answering": AlbertForQuestionAnswering, "text-classification": AlbertForSequenceClassification, "token-classification": AlbertForTokenClassification, "zero-shot": AlbertForSequenceClassification, } if is_torch_available() else {} ) A : Tuple = True def snake_case__ ( self : List[str] , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Any , _lowerCAmelCase : Optional[int]=False ): __snake_case : Union[str, Any] = super()._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase , return_labels=_lowerCAmelCase ) if return_labels: if model_class in get_values(_lowerCAmelCase ): __snake_case : Optional[Any] = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=_lowerCAmelCase ) __snake_case : Any = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_lowerCAmelCase ) return inputs_dict def snake_case__ ( self : Optional[Any] ): __snake_case : Dict = AlbertModelTester(self ) __snake_case : Union[str, Any] = ConfigTester(self , config_class=_lowerCAmelCase , hidden_size=37 ) def snake_case__ ( self : Optional[Any] ): self.config_tester.run_common_tests() def snake_case__ ( self : Any ): __snake_case : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowerCAmelCase ) def snake_case__ ( self : Any ): __snake_case : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*_lowerCAmelCase ) def snake_case__ ( self : Optional[Any] ): __snake_case : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*_lowerCAmelCase ) def snake_case__ ( self : str ): __snake_case : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*_lowerCAmelCase ) def snake_case__ ( self : Dict ): __snake_case : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*_lowerCAmelCase ) def snake_case__ ( self : Union[str, Any] ): __snake_case : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*_lowerCAmelCase ) def snake_case__ ( self : Union[str, Any] ): __snake_case : Tuple = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: __snake_case : List[str] = type self.model_tester.create_and_check_model(*_lowerCAmelCase ) @slow def snake_case__ ( self : Tuple ): for model_name in ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __snake_case : Optional[Any] = AlbertModel.from_pretrained(_lowerCAmelCase ) self.assertIsNotNone(_lowerCAmelCase ) @require_torch class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): @slow def snake_case__ ( self : int ): __snake_case : str = AlbertModel.from_pretrained("""albert-base-v2""" ) __snake_case : Optional[Any] = torch.tensor([[0, 3_45, 2_32, 3_28, 7_40, 1_40, 16_95, 69, 60_78, 15_88, 2]] ) __snake_case : Optional[int] = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): __snake_case : Any = model(_lowerCAmelCase , attention_mask=_lowerCAmelCase )[0] __snake_case : Tuple = torch.Size((1, 11, 7_68) ) self.assertEqual(output.shape , _lowerCAmelCase ) __snake_case : List[str] = torch.tensor( [[[-0.6513, 1.5035, -0.2766], [-0.6515, 1.5046, -0.2780], [-0.6512, 1.5049, -0.2784]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , _lowerCAmelCase , atol=1e-4 ) )
20
from __future__ import annotations def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : list[int] , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int ): '''simple docstring''' if (direction == 1 and array[indexa] > array[indexa]) or ( direction == 0 and array[indexa] < array[indexa] ): __snake_case , __snake_case : str = array[indexa], array[indexa] def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : list[int] , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int ): '''simple docstring''' if length > 1: __snake_case : Tuple = int(length / 2 ) for i in range(__SCREAMING_SNAKE_CASE , low + middle ): comp_and_swap(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , i + middle , __SCREAMING_SNAKE_CASE ) bitonic_merge(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) bitonic_merge(__SCREAMING_SNAKE_CASE , low + middle , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : list[int] , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int ): '''simple docstring''' if length > 1: __snake_case : Optional[Any] = int(length / 2 ) bitonic_sort(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , 1 ) bitonic_sort(__SCREAMING_SNAKE_CASE , low + middle , __SCREAMING_SNAKE_CASE , 0 ) bitonic_merge(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) if __name__ == "__main__": lowercase_ = input("Enter numbers separated by a comma:\n").strip() lowercase_ = [int(item.strip()) for item in user_input.split(",")] bitonic_sort(unsorted, 0, len(unsorted), 1) print("\nSorted array in ascending order is: ", end="") print(*unsorted, sep=", ") bitonic_merge(unsorted, 0, len(unsorted), 0) print("Sorted array in descending order is: ", end="") print(*unsorted, sep=", ")
20
1
"""simple docstring""" from collections import OrderedDict from typing import Any, List, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import logging __a = logging.get_logger(__name__) __a = { "EleutherAI/gpt-j-6B": "https://huggingface.co/EleutherAI/gpt-j-6B/resolve/main/config.json", # See all GPT-J models at https://huggingface.co/models?filter=gpt_j } class lowerCamelCase ( _lowerCAmelCase ): '''simple docstring''' _A : List[Any] = """gptj""" _A : Union[str, Any] = { """max_position_embeddings""": """n_positions""", """hidden_size""": """n_embd""", """num_attention_heads""": """n_head""", """num_hidden_layers""": """n_layer""", } def __init__( self: int , snake_case: int=50_400 , snake_case: Optional[Any]=2_048 , snake_case: Any=4_096 , snake_case: Dict=28 , snake_case: Union[str, Any]=16 , snake_case: Optional[int]=64 , snake_case: List[Any]=None , snake_case: List[str]="gelu_new" , snake_case: Dict=0.0 , snake_case: Union[str, Any]=0.0 , snake_case: List[Any]=0.0 , snake_case: List[Any]=1E-5 , snake_case: Any=0.0_2 , snake_case: Union[str, Any]=True , snake_case: int=50_256 , snake_case: int=50_256 , snake_case: List[Any]=False , **snake_case: List[str] , ) -> Optional[Any]: snake_case_ :Optional[Any] = vocab_size snake_case_ :List[Any] = n_positions snake_case_ :List[str] = n_embd snake_case_ :List[str] = n_layer snake_case_ :int = n_head snake_case_ :int = n_inner snake_case_ :List[str] = rotary_dim snake_case_ :Optional[Any] = activation_function snake_case_ :int = resid_pdrop snake_case_ :List[str] = embd_pdrop snake_case_ :str = attn_pdrop snake_case_ :Union[str, Any] = layer_norm_epsilon snake_case_ :Optional[Any] = initializer_range snake_case_ :Any = use_cache snake_case_ :Tuple = bos_token_id snake_case_ :Any = eos_token_id super().__init__( bos_token_id=snake_case , eos_token_id=snake_case , tie_word_embeddings=snake_case , **snake_case ) class lowerCamelCase ( _lowerCAmelCase ): '''simple docstring''' def __init__( self: int , snake_case: PretrainedConfig , snake_case: str = "default" , snake_case: List[PatchingSpec] = None , snake_case: bool = False , ) -> Any: super().__init__(snake_case , task=snake_case , patching_specs=snake_case , use_past=snake_case ) if not getattr(self._config , """pad_token_id""" , snake_case ): # TODO: how to do that better? snake_case_ :Optional[Any] = 0 @property def lowerCAmelCase_ ( self: Optional[int] ) -> Mapping[str, Mapping[int, str]]: snake_case_ :Tuple = OrderedDict({"""input_ids""": {0: """batch""", 1: """sequence"""}} ) if self.use_past: self.fill_with_past_key_values_(snake_case , direction="""inputs""" ) snake_case_ :Optional[Any] = {0: """batch""", 1: """past_sequence + sequence"""} else: snake_case_ :Tuple = {0: """batch""", 1: """sequence"""} return common_inputs @property def lowerCAmelCase_ ( self: Tuple ) -> int: return self._config.n_layer @property def lowerCAmelCase_ ( self: Optional[int] ) -> int: return self._config.n_head def lowerCAmelCase_ ( self: int , snake_case: PreTrainedTokenizer , snake_case: int = -1 , snake_case: int = -1 , snake_case: bool = False , snake_case: Optional[TensorType] = None , ) -> Mapping[str, Any]: snake_case_ :Tuple = super(snake_case , self ).generate_dummy_inputs( snake_case , batch_size=snake_case , seq_length=snake_case , is_pair=snake_case , framework=snake_case ) # We need to order the input in the way they appears in the forward() snake_case_ :int = OrderedDict({"""input_ids""": common_inputs["""input_ids"""]} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError("""Cannot generate dummy past_keys inputs without PyTorch installed.""" ) else: import torch snake_case_, snake_case_ :List[str] = common_inputs["""input_ids"""].shape # Not using the same length for past_key_values snake_case_ :Dict = seqlen + 2 snake_case_ :List[Any] = ( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) snake_case_ :Optional[int] = [ (torch.zeros(snake_case ), torch.zeros(snake_case )) for _ in range(self.num_layers ) ] snake_case_ :Dict = common_inputs["""attention_mask"""] if self.use_past: snake_case_ :Optional[int] = ordered_inputs["""attention_mask"""].dtype snake_case_ :List[str] = torch.cat( [ordered_inputs["""attention_mask"""], torch.ones(snake_case , snake_case , dtype=snake_case )] , dim=1 ) return ordered_inputs @property def lowerCAmelCase_ ( self: List[str] ) -> int: return 13
66
import unittest from transformers import LiltConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( LiltForQuestionAnswering, LiltForSequenceClassification, LiltForTokenClassification, LiltModel, ) from transformers.models.lilt.modeling_lilt import LILT_PRETRAINED_MODEL_ARCHIVE_LIST class SCREAMING_SNAKE_CASE__ : def __init__(self : Any , a__ : Union[str, Any] , a__ : int=13 , a__ : int=7 , a__ : Optional[Any]=True , a__ : Optional[int]=True , a__ : Any=True , a__ : str=True , a__ : List[Any]=99 , a__ : Any=24 , a__ : List[str]=2 , a__ : Optional[int]=6 , a__ : int=37 , a__ : List[str]="gelu" , a__ : List[Any]=0.1 , a__ : Optional[int]=0.1 , a__ : Union[str, Any]=512 , a__ : List[str]=16 , a__ : Optional[int]=2 , a__ : Union[str, Any]=0.0_2 , a__ : str=3 , a__ : Optional[Any]=None , a__ : Any=1000 , ): """simple docstring""" __snake_case = parent __snake_case = batch_size __snake_case = seq_length __snake_case = is_training __snake_case = use_input_mask __snake_case = use_token_type_ids __snake_case = use_labels __snake_case = vocab_size __snake_case = hidden_size __snake_case = num_hidden_layers __snake_case = num_attention_heads __snake_case = intermediate_size __snake_case = hidden_act __snake_case = hidden_dropout_prob __snake_case = attention_probs_dropout_prob __snake_case = max_position_embeddings __snake_case = type_vocab_size __snake_case = type_sequence_label_size __snake_case = initializer_range __snake_case = num_labels __snake_case = scope __snake_case = range_bbox def a (self : Optional[int] ): """simple docstring""" __snake_case = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __snake_case = ids_tensor([self.batch_size, self.seq_length, 4] , self.range_bbox ) # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: __snake_case = bbox[i, j, 3] __snake_case = bbox[i, j, 1] __snake_case = t if bbox[i, j, 2] < bbox[i, j, 0]: __snake_case = bbox[i, j, 2] __snake_case = bbox[i, j, 0] __snake_case = t __snake_case = None if self.use_input_mask: __snake_case = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) __snake_case = None if self.use_token_type_ids: __snake_case = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __snake_case = None __snake_case = None if self.use_labels: __snake_case = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __snake_case = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __snake_case = self.get_config() return config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels def a (self : List[str] ): """simple docstring""" return LiltConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) def a (self : List[Any] , a__ : List[Any] , a__ : Optional[Any] , a__ : List[str] , a__ : int , a__ : Optional[int] , a__ : str , a__ : Optional[int] , ): """simple docstring""" __snake_case = LiltModel(config=a__ ) model.to(a__ ) model.eval() __snake_case = model(a__ , bbox=a__ , attention_mask=a__ , token_type_ids=a__ ) __snake_case = model(a__ , bbox=a__ , token_type_ids=a__ ) __snake_case = model(a__ , bbox=a__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def a (self : Any , a__ : Tuple , a__ : Dict , a__ : Optional[int] , a__ : Dict , a__ : Union[str, Any] , a__ : str , a__ : Tuple , ): """simple docstring""" __snake_case = self.num_labels __snake_case = LiltForTokenClassification(config=a__ ) model.to(a__ ) model.eval() __snake_case = model( a__ , bbox=a__ , attention_mask=a__ , token_type_ids=a__ , labels=a__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def a (self : int , a__ : Optional[Any] , a__ : int , a__ : int , a__ : Optional[Any] , a__ : Tuple , a__ : Union[str, Any] , a__ : str , ): """simple docstring""" __snake_case = LiltForQuestionAnswering(config=a__ ) model.to(a__ ) model.eval() __snake_case = model( a__ , bbox=a__ , attention_mask=a__ , token_type_ids=a__ , start_positions=a__ , end_positions=a__ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def a (self : Tuple ): """simple docstring""" __snake_case = self.prepare_config_and_inputs() ( ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ) = config_and_inputs __snake_case = { '''input_ids''': input_ids, '''bbox''': bbox, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask, } return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ): A_ : List[Any] = ( ( LiltModel, LiltForSequenceClassification, LiltForTokenClassification, LiltForQuestionAnswering, ) if is_torch_available() else () ) A_ : Any = ( { 'feature-extraction': LiltModel, 'question-answering': LiltForQuestionAnswering, 'text-classification': LiltForSequenceClassification, 'token-classification': LiltForTokenClassification, 'zero-shot': LiltForSequenceClassification, } if is_torch_available() else {} ) A_ : Optional[int] = False A_ : List[Any] = False def a (self : Dict , a__ : Tuple , a__ : Tuple , a__ : Tuple , a__ : Union[str, Any] , a__ : Any ): """simple docstring""" return True def a (self : Union[str, Any] ): """simple docstring""" __snake_case = LiltModelTester(self ) __snake_case = ConfigTester(self , config_class=a__ , hidden_size=37 ) def a (self : Optional[int] ): """simple docstring""" self.config_tester.run_common_tests() def a (self : int ): """simple docstring""" __snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*a__ ) def a (self : List[Any] ): """simple docstring""" __snake_case = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: __snake_case = type self.model_tester.create_and_check_model(*a__ ) def a (self : Optional[Any] ): """simple docstring""" __snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*a__ ) def a (self : Union[str, Any] ): """simple docstring""" __snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*a__ ) @slow def a (self : Optional[int] ): """simple docstring""" for model_name in LILT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __snake_case = LiltModel.from_pretrained(a__ ) self.assertIsNotNone(a__ ) @require_torch @slow class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): def a (self : Tuple ): """simple docstring""" __snake_case = LiltModel.from_pretrained('''SCUT-DLVCLab/lilt-roberta-en-base''' ).to(a__ ) __snake_case = torch.tensor([[1, 2]] , device=a__ ) __snake_case = torch.tensor([[[1, 2, 3, 4], [5, 6, 7, 8]]] , device=a__ ) # forward pass with torch.no_grad(): __snake_case = model(input_ids=a__ , bbox=a__ ) __snake_case = torch.Size([1, 2, 768] ) __snake_case = torch.tensor( [[-0.0_6_5_3, 0.0_9_5_0, -0.0_0_6_1], [-0.0_5_4_5, 0.0_9_2_6, -0.0_3_2_4]] , device=a__ , ) self.assertTrue(outputs.last_hidden_state.shape , a__ ) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :, :3] , a__ , atol=1E-3 ) )
24
0
import pickle import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, XLMRobertaTokenizer, XLMRobertaTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin SCREAMING_SNAKE_CASE__ : List[Any] = get_tests_dir("fixtures/test_sentencepiece.model") @require_sentencepiece @require_tokenizers class lowerCAmelCase__ ( __lowercase , unittest.TestCase ): a__ : int = XLMRobertaTokenizer a__ : Optional[Any] = XLMRobertaTokenizerFast a__ : Any = True a__ : Optional[int] = True def __A ( self : Union[str, Any] ) -> str: super().setUp() # We have a SentencePiece fixture for testing __lowerCamelCase = XLMRobertaTokenizer(__lowerCAmelCase , keep_accents=__lowerCAmelCase ) tokenizer.save_pretrained(self.tmpdirname ) def __A ( self : int ) -> Optional[int]: __lowerCamelCase = '''<pad>''' __lowerCamelCase = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__lowerCAmelCase ) , __lowerCAmelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__lowerCAmelCase ) , __lowerCAmelCase ) def __A ( self : str ) -> str: __lowerCamelCase = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''<s>''' ) self.assertEqual(vocab_keys[1] , '''<pad>''' ) self.assertEqual(vocab_keys[-1] , '''<mask>''' ) self.assertEqual(len(__lowerCAmelCase ) , 10_02 ) def __A ( self : str ) -> Optional[int]: self.assertEqual(self.get_tokenizer().vocab_size , 10_02 ) def __A ( self : Union[str, Any] ) -> int: __lowerCamelCase = XLMRobertaTokenizer(__lowerCAmelCase , keep_accents=__lowerCAmelCase ) __lowerCamelCase = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(__lowerCAmelCase , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(__lowerCAmelCase ) , [value + tokenizer.fairseq_offset for value in [2_85, 46, 10, 1_70, 3_82]] , ) __lowerCamelCase = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( __lowerCAmelCase , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.''', ] , ) __lowerCamelCase = tokenizer.convert_tokens_to_ids(__lowerCAmelCase ) self.assertListEqual( __lowerCAmelCase , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 6_02, 3_47, 3_47, 3_47, 3, 12, 66, 46, 72, 80, 6, 2, 4] # ^ unk: 2 + 1 = 3 unk: 2 + 1 = 3 ^ ] , ) __lowerCamelCase = tokenizer.convert_ids_to_tokens(__lowerCAmelCase ) self.assertListEqual( __lowerCAmelCase , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''<unk>''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''<unk>''', '''.''', ] , ) def __A ( self : str ) -> str: if not self.test_slow_tokenizer: # as we don't have a slow version, we can't compare the outputs between slow and fast versions return __lowerCamelCase = (self.rust_tokenizer_class, '''hf-internal-testing/tiny-xlm-roberta''', {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): __lowerCamelCase = self.rust_tokenizer_class.from_pretrained(__lowerCAmelCase , **__lowerCAmelCase ) __lowerCamelCase = self.tokenizer_class.from_pretrained(__lowerCAmelCase , **__lowerCAmelCase ) __lowerCamelCase = tempfile.mkdtemp() __lowerCamelCase = tokenizer_r.save_pretrained(__lowerCAmelCase ) __lowerCamelCase = tokenizer_p.save_pretrained(__lowerCAmelCase ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any('''tokenizer.json''' in f for f in tokenizer_r_files ) ) __lowerCamelCase = tuple(f for f in tokenizer_r_files if '''tokenizer.json''' not in f ) self.assertSequenceEqual(__lowerCAmelCase , __lowerCAmelCase ) # Checks everything loads correctly in the same way __lowerCamelCase = tokenizer_r.from_pretrained(__lowerCAmelCase ) __lowerCamelCase = tokenizer_p.from_pretrained(__lowerCAmelCase ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(__lowerCAmelCase , __lowerCAmelCase ) ) # self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key)) # self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id")) shutil.rmtree(__lowerCAmelCase ) # Save tokenizer rust, legacy_format=True __lowerCamelCase = tempfile.mkdtemp() __lowerCamelCase = tokenizer_r.save_pretrained(__lowerCAmelCase , legacy_format=__lowerCAmelCase ) __lowerCamelCase = tokenizer_p.save_pretrained(__lowerCAmelCase ) # Checks it save with the same files self.assertSequenceEqual(__lowerCAmelCase , __lowerCAmelCase ) # Checks everything loads correctly in the same way __lowerCamelCase = tokenizer_r.from_pretrained(__lowerCAmelCase ) __lowerCamelCase = tokenizer_p.from_pretrained(__lowerCAmelCase ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(__lowerCAmelCase , __lowerCAmelCase ) ) shutil.rmtree(__lowerCAmelCase ) # Save tokenizer rust, legacy_format=False __lowerCamelCase = tempfile.mkdtemp() __lowerCamelCase = tokenizer_r.save_pretrained(__lowerCAmelCase , legacy_format=__lowerCAmelCase ) __lowerCamelCase = tokenizer_p.save_pretrained(__lowerCAmelCase ) # Checks it saved the tokenizer.json file self.assertTrue(any('''tokenizer.json''' in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way __lowerCamelCase = tokenizer_r.from_pretrained(__lowerCAmelCase ) __lowerCamelCase = tokenizer_p.from_pretrained(__lowerCAmelCase ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(__lowerCAmelCase , __lowerCAmelCase ) ) shutil.rmtree(__lowerCAmelCase ) @cached_property def __A ( self : Union[str, Any] ) -> Optional[Any]: return XLMRobertaTokenizer.from_pretrained('''xlm-roberta-base''' ) def __A ( self : Any ) -> List[str]: with tempfile.NamedTemporaryFile() as f: shutil.copyfile(__lowerCAmelCase , f.name ) __lowerCamelCase = XLMRobertaTokenizer(f.name , keep_accents=__lowerCAmelCase ) __lowerCamelCase = pickle.dumps(__lowerCAmelCase ) pickle.loads(__lowerCAmelCase ) def __A ( self : int ) -> str: if not self.test_rust_tokenizer: return __lowerCamelCase = self.get_tokenizer() __lowerCamelCase = self.get_rust_tokenizer() __lowerCamelCase = '''I was born in 92000, and this is falsé.''' __lowerCamelCase = tokenizer.tokenize(__lowerCAmelCase ) __lowerCamelCase = rust_tokenizer.tokenize(__lowerCAmelCase ) self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase ) __lowerCamelCase = tokenizer.encode(__lowerCAmelCase , add_special_tokens=__lowerCAmelCase ) __lowerCamelCase = rust_tokenizer.encode(__lowerCAmelCase , add_special_tokens=__lowerCAmelCase ) self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase ) __lowerCamelCase = self.get_rust_tokenizer() __lowerCamelCase = tokenizer.encode(__lowerCAmelCase ) __lowerCamelCase = rust_tokenizer.encode(__lowerCAmelCase ) self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase ) @slow def __A ( self : Optional[Any] ) -> Optional[int]: __lowerCamelCase = '''Hello World!''' __lowerCamelCase = [0, 3_53_78, 66_61, 38, 2] # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.large has same tokenizer # xlmr.eval() # xlmr.encode(symbols) self.assertListEqual(__lowerCAmelCase , self.big_tokenizer.encode(__lowerCAmelCase ) ) @slow def __A ( self : List[str] ) -> str: __lowerCamelCase = ( '''This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) \" [ ] ! : - . Also we will''' ''' add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth''' ) __lowerCamelCase = [ 0, 32_93, 83, 10, 45_52, 49_89, 79_86, 6_78, 10, 59_15, 1_11, 17_94_59, 12_48_50, 4, 60_44, 2_37, 12, 6, 5, 6, 4, 67_80, 7_05, 15, 13_88, 44, 3_78, 1_01_14, 7_11, 1_52, 20, 6, 5, 2_23_76, 6_42, 12_21, 1_51_90, 3_41_53, 4_50, 56_08, 9_59, 11_19, 5_77_02, 1_36, 1_86, 47, 10_98, 2_93_67, 47, # 4426, # What fairseq tokenizes from "<unk>": "_<" # 3678, # What fairseq tokenizes from "<unk>": "unk" # 2740, # What fairseq tokenizes from "<unk>": ">" 3, # What we tokenize from "<unk>": "<unk>" 6, # Residue from the tokenization: an extra sentencepiece underline 4, 60_44, 2_37, 62_84, 5_09_01, 5_28, 31, 90, 34, 9_27, 2, ] # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.large has same tokenizer # xlmr.eval() # xlmr.encode(symbols) self.assertListEqual(__lowerCAmelCase , self.big_tokenizer.encode(__lowerCAmelCase ) ) @slow def __A ( self : Tuple ) -> Optional[int]: __lowerCamelCase = {'''input_ids''': [[0, 1_10_62, 8_27_72, 7, 15, 8_27_72, 5_38, 5_15_29, 2_37, 1_71_98, 12_90, 2_06, 9, 21_51_75, 13_14, 1_36, 1_71_98, 12_90, 2_06, 9, 5_63_59, 42, 12_20_09, 9, 1_64_66, 16, 8_73_44, 45_37, 9, 47_17, 7_83_81, 6, 15_99_58, 7, 15, 2_44_80, 6_18, 4, 5_27, 2_26_93, 54_28, 4, 27_77, 2_44_80, 98_74, 4, 4_35_23, 5_94, 4, 8_03, 1_83_92, 3_31_89, 18, 4, 4_35_23, 2_44_47, 1_23_99, 1_00, 2_49_55, 8_36_58, 96_26, 14_40_57, 15, 8_39, 2_23_35, 16, 1_36, 2_49_55, 8_36_58, 8_34_79, 15, 3_91_02, 7_24, 16, 6_78, 6_45, 27_89, 13_28, 45_89, 42, 12_20_09, 11_57_74, 23, 8_05, 13_28, 4_68_76, 7, 1_36, 5_38_94, 19_40, 4_22_27, 4_11_59, 1_77_21, 8_23, 4_25, 4, 2_75_12, 9_87_22, 2_06, 1_36, 55_31, 49_70, 9_19, 1_73_36, 5, 2], [0, 2_00_80, 6_18, 83, 8_27_75, 47, 4_79, 9, 15_17, 73, 5_38_94, 3_33, 8_05_81, 11_01_17, 1_88_11, 52_56, 12_95, 51, 15_25_26, 2_97, 79_86, 3_90, 12_44_16, 5_38, 3_54_31, 2_14, 98, 1_50_44, 2_57_37, 1_36, 71_08, 4_37_01, 23, 7_56, 13_53_55, 7, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 5_81, 6_37_73, 11_94_55, 6, 14_77_97, 8_82_03, 7, 6_45, 70, 21, 32_85, 1_02_69, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=__lowerCAmelCase , model_name='''xlm-roberta-base''' , revision='''d9d8a8ea5eb94b1c6654ae9249df7793cd2933d3''' , )
360
from collections.abc import Iterator, MutableMapping from dataclasses import dataclass from typing import Generic, TypeVar SCREAMING_SNAKE_CASE__ : Any = TypeVar("KEY") SCREAMING_SNAKE_CASE__ : Dict = TypeVar("VAL") @dataclass(frozen=__lowercase , slots=__lowercase ) class lowerCAmelCase__ ( Generic[KEY, VAL] ): a__ : KEY a__ : VAL class lowerCAmelCase__ ( _Item ): def __init__( self : str ) -> None: super().__init__(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def __bool__( self : Tuple ) -> bool: return False SCREAMING_SNAKE_CASE__ : List[Any] = _DeletedItem() class lowerCAmelCase__ ( MutableMapping[KEY, VAL] ): def __init__( self : int , SCREAMING_SNAKE_CASE__ : int = 8 , SCREAMING_SNAKE_CASE__ : float = 0.75 ) -> None: __lowerCamelCase = initial_block_size __lowerCamelCase = [None] * initial_block_size assert 0.0 < capacity_factor < 1.0 __lowerCamelCase = capacity_factor __lowerCamelCase = 0 def __A ( self : Any , SCREAMING_SNAKE_CASE__ : KEY ) -> int: return hash(SCREAMING_SNAKE_CASE__ ) % len(self._buckets ) def __A ( self : Any , SCREAMING_SNAKE_CASE__ : int ) -> int: return (ind + 1) % len(self._buckets ) def __A ( self : Optional[int] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : KEY , SCREAMING_SNAKE_CASE__ : VAL ) -> bool: __lowerCamelCase = self._buckets[ind] if not stored: __lowerCamelCase = _Item(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) self._len += 1 return True elif stored.key == key: __lowerCamelCase = _Item(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) return True else: return False def __A ( self : Any ) -> bool: __lowerCamelCase = len(self._buckets ) * self._capacity_factor return len(self ) >= int(SCREAMING_SNAKE_CASE__ ) def __A ( self : List[Any] ) -> bool: if len(self._buckets ) <= self._initial_block_size: return False __lowerCamelCase = len(self._buckets ) * self._capacity_factor / 2 return len(self ) < limit def __A ( self : int , SCREAMING_SNAKE_CASE__ : int ) -> None: __lowerCamelCase = self._buckets __lowerCamelCase = [None] * new_size __lowerCamelCase = 0 for item in old_buckets: if item: self._add_item(item.key , item.val ) def __A ( self : str ) -> None: self._resize(len(self._buckets ) * 2 ) def __A ( self : Dict ) -> None: self._resize(len(self._buckets ) // 2 ) def __A ( self : Tuple , SCREAMING_SNAKE_CASE__ : KEY ) -> Iterator[int]: __lowerCamelCase = self._get_bucket_index(SCREAMING_SNAKE_CASE__ ) for _ in range(len(self._buckets ) ): yield ind __lowerCamelCase = self._get_next_ind(SCREAMING_SNAKE_CASE__ ) def __A ( self : Optional[int] , SCREAMING_SNAKE_CASE__ : KEY , SCREAMING_SNAKE_CASE__ : VAL ) -> None: for ind in self._iterate_buckets(SCREAMING_SNAKE_CASE__ ): if self._try_set(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): break def __setitem__( self : Tuple , SCREAMING_SNAKE_CASE__ : KEY , SCREAMING_SNAKE_CASE__ : VAL ) -> None: if self._is_full(): self._size_up() self._add_item(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def __delitem__( self : List[Any] , SCREAMING_SNAKE_CASE__ : KEY ) -> None: for ind in self._iterate_buckets(SCREAMING_SNAKE_CASE__ ): __lowerCamelCase = self._buckets[ind] if item is None: raise KeyError(SCREAMING_SNAKE_CASE__ ) if item is _deleted: continue if item.key == key: __lowerCamelCase = _deleted self._len -= 1 break if self._is_sparse(): self._size_down() def __getitem__( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : KEY ) -> VAL: for ind in self._iterate_buckets(SCREAMING_SNAKE_CASE__ ): __lowerCamelCase = self._buckets[ind] if item is None: break if item is _deleted: continue if item.key == key: return item.val raise KeyError(SCREAMING_SNAKE_CASE__ ) def __len__( self : int ) -> int: return self._len def __iter__( self : Tuple ) -> Iterator[KEY]: yield from (item.key for item in self._buckets if item) def __repr__( self : Optional[Any] ) -> str: __lowerCamelCase = ''' ,'''.join( f'''{item.key}: {item.val}''' for item in self._buckets if item ) return f'''HashMap({val_string})'''
339
0
'''simple docstring''' def __lowerCamelCase ( _lowercase , _lowercase ) -> int: return int((input_a, input_a).count(1 ) != 0 ) def __lowerCamelCase ( ) -> None: assert or_gate(0 , 0 ) == 0 assert or_gate(0 , 1 ) == 1 assert or_gate(1 , 0 ) == 1 assert or_gate(1 , 1 ) == 1 if __name__ == "__main__": print(or_gate(0, 1)) print(or_gate(1, 0)) print(or_gate(0, 0)) print(or_gate(1, 1))
265
'''simple docstring''' from PIL import Image def __lowerCamelCase ( _lowercase , _lowercase ) -> Image: def brightness(_lowercase ) -> float: return 1_2_8 + level + (c - 1_2_8) if not -255.0 <= level <= 255.0: raise ValueError("""level must be between -255.0 (black) and 255.0 (white)""" ) return img.point(_lowercase ) if __name__ == "__main__": # Load image with Image.open("""image_data/lena.jpg""") as img: # Change brightness to 100 a : Optional[Any] = change_brightness(img, 1_0_0) brigt_img.save("""image_data/lena_brightness.png""", format="""png""")
265
1
import argparse import gdown import numpy as np import torch from huggingface_hub import hf_hub_download from transformers import ( CLIPTokenizer, CLIPTokenizerFast, VideoMAEImageProcessor, XCLIPConfig, XCLIPModel, XCLIPProcessor, XCLIPTextConfig, XCLIPVisionConfig, ) def _UpperCamelCase ( snake_case__, snake_case__ ) -> str: __UpperCAmelCase : Optional[int] = XCLIPTextConfig() # derive patch size from model name __UpperCAmelCase : int = model_name.find("patch" ) __UpperCAmelCase : Tuple = int(model_name[start_idx + len("patch" ) : start_idx + len("patch" ) + 2] ) __UpperCAmelCase : Union[str, Any] = XCLIPVisionConfig(patch_size=__snake_case, num_frames=__snake_case ) if "large" in model_name: __UpperCAmelCase : List[Any] = 768 __UpperCAmelCase : Dict = 3072 __UpperCAmelCase : Dict = 12 __UpperCAmelCase : str = 1024 __UpperCAmelCase : List[Any] = 4096 __UpperCAmelCase : Union[str, Any] = 16 __UpperCAmelCase : Any = 24 __UpperCAmelCase : Dict = 768 __UpperCAmelCase : List[str] = 3072 if model_name == "xclip-large-patch14-16-frames": __UpperCAmelCase : int = 336 __UpperCAmelCase : str = XCLIPConfig.from_text_vision_configs(__snake_case, __snake_case ) if "large" in model_name: __UpperCAmelCase : str = 768 return config def _UpperCamelCase ( snake_case__ ) -> List[Any]: if name == "token_embedding.weight": __UpperCAmelCase : Tuple = name.replace("token_embedding.weight", "text_model.embeddings.token_embedding.weight" ) if name == "positional_embedding": __UpperCAmelCase : List[Any] = name.replace("positional_embedding", "text_model.embeddings.position_embedding.weight" ) if "ln_1" in name: __UpperCAmelCase : Union[str, Any] = name.replace("ln_1", "layer_norm1" ) if "ln_2" in name: __UpperCAmelCase : Any = name.replace("ln_2", "layer_norm2" ) if "c_fc" in name: __UpperCAmelCase : List[str] = name.replace("c_fc", "fc1" ) if "c_proj" in name: __UpperCAmelCase : str = name.replace("c_proj", "fc2" ) if name.startswith("transformer.resblocks" ): __UpperCAmelCase : str = name.replace("transformer.resblocks", "text_model.encoder.layers" ) if "attn.out_proj" in name and "message" not in name: __UpperCAmelCase : List[str] = name.replace("attn.out_proj", "self_attn.out_proj" ) if "ln_final" in name: __UpperCAmelCase : Tuple = name.replace("ln_final", "text_model.final_layer_norm" ) # visual encoder if name == "visual.class_embedding": __UpperCAmelCase : Dict = name.replace("visual.class_embedding", "vision_model.embeddings.class_embedding" ) if name == "visual.positional_embedding": __UpperCAmelCase : Optional[Any] = name.replace("visual.positional_embedding", "vision_model.embeddings.position_embedding.weight" ) if name.startswith("visual.transformer.resblocks" ): __UpperCAmelCase : Any = name.replace("visual.transformer.resblocks", "vision_model.encoder.layers" ) if "visual.conv1" in name: __UpperCAmelCase : Tuple = name.replace("visual.conv1", "vision_model.embeddings.patch_embedding" ) if "visual.ln_pre" in name: __UpperCAmelCase : Union[str, Any] = name.replace("visual.ln_pre", "vision_model.pre_layernorm" ) if "visual.ln_post" in name: __UpperCAmelCase : Dict = name.replace("visual.ln_post", "vision_model.post_layernorm" ) if "visual.proj" in name: __UpperCAmelCase : Tuple = name.replace("visual.proj", "visual_projection.weight" ) if "text_projection" in name: __UpperCAmelCase : List[str] = name.replace("text_projection", "text_projection.weight" ) # things on top if "prompts_visual_proj" in name: __UpperCAmelCase : Optional[int] = name.replace("prompts_visual_proj", "prompts_visual_projection" ) if "prompts_visual_ln" in name: __UpperCAmelCase : Dict = name.replace("prompts_visual_ln", "prompts_visual_layernorm" ) # mit if name == "mit.positional_embedding": __UpperCAmelCase : Union[str, Any] = name.replace("positional", "position" ) if name.startswith("mit.resblocks" ): __UpperCAmelCase : List[str] = name.replace("mit.resblocks", "mit.encoder.layers" ) # prompts generator if name.startswith("prompts_generator.norm" ): __UpperCAmelCase : List[Any] = name.replace("prompts_generator.norm", "prompts_generator.layernorm" ) return name def _UpperCamelCase ( snake_case__, snake_case__ ) -> Optional[int]: for key in orig_state_dict.copy().keys(): __UpperCAmelCase : List[str] = orig_state_dict.pop(__snake_case ) if "attn.in_proj" in key: __UpperCAmelCase : Optional[int] = key.split("." ) if key.startswith("visual" ): __UpperCAmelCase : Union[str, Any] = key_split[3] __UpperCAmelCase : Any = config.vision_config.hidden_size if "message_attn" in key: if "weight" in key: __UpperCAmelCase : int = val[ :dim, : ] __UpperCAmelCase : List[str] = val[ dim : dim * 2, : ] __UpperCAmelCase : Dict = val[ -dim:, : ] else: __UpperCAmelCase : str = val[ :dim ] __UpperCAmelCase : int = val[ dim : dim * 2 ] __UpperCAmelCase : Optional[int] = val[ -dim: ] else: if "weight" in key: __UpperCAmelCase : Optional[Any] = val[ :dim, : ] __UpperCAmelCase : Optional[Any] = val[ dim : dim * 2, : ] __UpperCAmelCase : int = val[ -dim:, : ] else: __UpperCAmelCase : Union[str, Any] = val[:dim] __UpperCAmelCase : str = val[ dim : dim * 2 ] __UpperCAmelCase : Dict = val[-dim:] elif key.startswith("mit" ): __UpperCAmelCase : int = key_split[2] __UpperCAmelCase : Optional[Any] = config.vision_config.mit_hidden_size if "weight" in key: __UpperCAmelCase : Union[str, Any] = val[:dim, :] __UpperCAmelCase : Any = val[dim : dim * 2, :] __UpperCAmelCase : Any = val[-dim:, :] else: __UpperCAmelCase : List[Any] = val[:dim] __UpperCAmelCase : List[Any] = val[dim : dim * 2] __UpperCAmelCase : List[Any] = val[-dim:] else: __UpperCAmelCase : Any = key_split[2] __UpperCAmelCase : Any = config.text_config.hidden_size if "weight" in key: __UpperCAmelCase : int = val[:dim, :] __UpperCAmelCase : int = val[ dim : dim * 2, : ] __UpperCAmelCase : Tuple = val[-dim:, :] else: __UpperCAmelCase : str = val[:dim] __UpperCAmelCase : Union[str, Any] = val[ dim : dim * 2 ] __UpperCAmelCase : Optional[int] = val[-dim:] else: __UpperCAmelCase : Optional[int] = rename_key(__snake_case ) if new_key_name in ["visual_projection.weight", "text_projection.weight"]: __UpperCAmelCase : Dict = val.T __UpperCAmelCase : Tuple = val return orig_state_dict def _UpperCamelCase ( snake_case__ ) -> Union[str, Any]: if num_frames == 8: __UpperCAmelCase : Any = "eating_spaghetti_8_frames.npy" elif num_frames == 16: __UpperCAmelCase : List[str] = "eating_spaghetti.npy" elif num_frames == 32: __UpperCAmelCase : Union[str, Any] = "eating_spaghetti_32_frames.npy" __UpperCAmelCase : str = hf_hub_download( repo_id="hf-internal-testing/spaghetti-video", filename=__snake_case, repo_type="dataset", ) __UpperCAmelCase : str = np.load(__snake_case ) return list(__snake_case ) def _UpperCamelCase ( snake_case__, snake_case__=None, snake_case__=False ) -> Union[str, Any]: __UpperCAmelCase : Optional[Any] = { # fully supervised kinetics-400 checkpoints "xclip-base-patch32": "https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_32_8.pth", "xclip-base-patch32-16-frames": ( "https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_32_16.pth" ), "xclip-base-patch16": "https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_16_8.pth", "xclip-base-patch16-16-frames": ( "https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_16_16.pth" ), "xclip-large-patch14": "https://drive.google.com/u/0/uc?id=1NUOImq0o5DlQTST17iIP3vG7DgmHQuCx&amp;export=download&amp;confirm=t&amp;uuid=b26caedc-88e2-473e-830a-9d158b653cdb", "xclip-large-patch14-16-frames": "https://drive.google.com/u/0/uc?id=1FOYgnJc097OJ4lGwtRCCydQyVPJEOH7d&amp;export=download&amp;confirm=t&amp;uuid=538fa810-e671-4050-b385-9a623f89804f", # fully supervised kinetics-600 checkpoints "xclip-base-patch16-kinetics-600": ( "https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k600_16_8.pth" ), "xclip-base-patch16-kinetics-600-16-frames": ( "https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k600_16_16.pth" ), "xclip-large-patch14-kinetics-600": "https://drive.google.com/u/0/uc?id=1FV8C1INuM91sLAN4ImjzePLIlpMSihwV&amp;export=download&amp;confirm=t&amp;uuid=141d4977-4a65-44ae-864f-4b0c19f838be", # few shot "xclip-base-patch16-hmdb-2-shot": ( "https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_2.pth" ), "xclip-base-patch16-hmdb-4-shot": ( "https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_4.pth" ), "xclip-base-patch16-hmdb-8-shot": ( "https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_8.pth" ), "xclip-base-patch16-hmdb-16-shot": ( "https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_16.pth" ), "xclip-base-patch16-ucf-2-shot": ( "https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_2.pth" ), "xclip-base-patch16-ucf-4-shot": ( "https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_4.pth" ), "xclip-base-patch16-ucf-8-shot": ( "https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_8.pth" ), "xclip-base-patch16-ucf-16-shot": ( "https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_16.pth" ), # zero shot "xclip-base-patch16-zero-shot": "https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/zero.pth", } __UpperCAmelCase : Dict = model_to_url[model_name] __UpperCAmelCase : Tuple = 8 if "16-frames" in model_name: __UpperCAmelCase : Optional[Any] = 16 elif "shot" in model_name: __UpperCAmelCase : Union[str, Any] = 32 __UpperCAmelCase : Any = get_xclip_config(__snake_case, __snake_case ) __UpperCAmelCase : Optional[int] = XCLIPModel(__snake_case ) model.eval() if "drive" in checkpoint_url: __UpperCAmelCase : Dict = "pytorch_model.bin" gdown.cached_download(__snake_case, __snake_case, quiet=__snake_case ) __UpperCAmelCase : str = torch.load(__snake_case, map_location="cpu" )["model"] else: __UpperCAmelCase : List[Any] = torch.hub.load_state_dict_from_url(__snake_case )["model"] __UpperCAmelCase : str = convert_state_dict(__snake_case, __snake_case ) __UpperCAmelCase : Optional[int] = XCLIPModel(__snake_case ) __UpperCAmelCase , __UpperCAmelCase : Optional[int] = model.load_state_dict(__snake_case, strict=__snake_case ) assert missing_keys == ["text_model.embeddings.position_ids", "vision_model.embeddings.position_ids"] model.eval() __UpperCAmelCase : Optional[Any] = 336 if model_name == "xclip-large-patch14-16-frames" else 224 __UpperCAmelCase : List[str] = VideoMAEImageProcessor(size=__snake_case ) __UpperCAmelCase : str = CLIPTokenizer.from_pretrained("openai/clip-vit-base-patch32" ) __UpperCAmelCase : Tuple = CLIPTokenizerFast.from_pretrained("openai/clip-vit-base-patch32" ) __UpperCAmelCase : Tuple = XCLIPProcessor(image_processor=__snake_case, tokenizer=__snake_case ) __UpperCAmelCase : List[Any] = prepare_video(__snake_case ) __UpperCAmelCase : Tuple = processor( text=["playing sports", "eating spaghetti", "go shopping"], videos=__snake_case, return_tensors="pt", padding=__snake_case ) print("Shape of pixel values:", inputs.pixel_values.shape ) with torch.no_grad(): __UpperCAmelCase : str = model(**__snake_case ) # Verify outputs __UpperCAmelCase : Any = outputs.logits_per_video __UpperCAmelCase : Union[str, Any] = logits_per_video.softmax(dim=1 ) print("Probs:", __snake_case ) # kinetics-400 if model_name == "xclip-base-patch32": __UpperCAmelCase : Tuple = torch.tensor([[0.0019, 0.9951, 0.0030]] ) elif model_name == "xclip-base-patch32-16-frames": __UpperCAmelCase : List[str] = torch.tensor([[7.0_9_9_9e-0_4, 9.9_8_8_3e-0_1, 4.5_5_8_0e-0_4]] ) elif model_name == "xclip-base-patch16": __UpperCAmelCase : str = torch.tensor([[0.0083, 0.9681, 0.0236]] ) elif model_name == "xclip-base-patch16-16-frames": __UpperCAmelCase : Optional[int] = torch.tensor([[7.6_9_3_7e-0_4, 9.9_7_2_8e-0_1, 1.9_4_7_3e-0_3]] ) elif model_name == "xclip-large-patch14": __UpperCAmelCase : Optional[int] = torch.tensor([[0.0062, 0.9864, 0.0075]] ) elif model_name == "xclip-large-patch14-16-frames": __UpperCAmelCase : Tuple = torch.tensor([[3.3_8_7_7e-0_4, 9.9_9_3_7e-0_1, 2.8_8_8_8e-0_4]] ) # kinetics-600 elif model_name == "xclip-base-patch16-kinetics-600": __UpperCAmelCase : Dict = torch.tensor([[0.0555, 0.8914, 0.0531]] ) elif model_name == "xclip-base-patch16-kinetics-600-16-frames": __UpperCAmelCase : Tuple = torch.tensor([[3.8_5_5_4e-0_4, 9.9_9_2_9e-0_1, 3.2_7_5_4e-0_4]] ) elif model_name == "xclip-large-patch14-kinetics-600": __UpperCAmelCase : List[str] = torch.tensor([[0.0036, 0.9920, 0.0045]] ) # few shot elif model_name == "xclip-base-patch16-hmdb-2-shot": __UpperCAmelCase : Any = torch.tensor([[7.1_8_9_0e-0_6, 9.9_9_9_4e-0_1, 5.6_5_5_9e-0_5]] ) elif model_name == "xclip-base-patch16-hmdb-4-shot": __UpperCAmelCase : Optional[Any] = torch.tensor([[1.0_3_2_0e-0_5, 9.9_9_9_3e-0_1, 6.2_4_3_5e-0_5]] ) elif model_name == "xclip-base-patch16-hmdb-8-shot": __UpperCAmelCase : Union[str, Any] = torch.tensor([[4.1_3_7_7e-0_6, 9.9_9_9_0e-0_1, 9.8_3_8_6e-0_5]] ) elif model_name == "xclip-base-patch16-hmdb-16-shot": __UpperCAmelCase : Tuple = torch.tensor([[4.1_3_4_7e-0_5, 9.9_9_6_2e-0_1, 3.3_4_1_1e-0_4]] ) elif model_name == "xclip-base-patch16-ucf-2-shot": __UpperCAmelCase : Dict = torch.tensor([[8.5_8_5_7e-0_5, 9.9_9_2_8e-0_1, 6.3_2_9_1e-0_4]] ) elif model_name == "xclip-base-patch16-ucf-4-shot": __UpperCAmelCase : Dict = torch.tensor([[8.5_8_5_7e-0_5, 9.9_9_2_8e-0_1, 6.3_2_9_1e-0_4]] ) elif model_name == "xclip-base-patch16-ucf-8-shot": __UpperCAmelCase : Optional[Any] = torch.tensor([[0.0027, 0.9904, 0.0070]] ) elif model_name == "xclip-base-patch16-ucf-16-shot": __UpperCAmelCase : Dict = torch.tensor([[9.8_2_1_9e-0_4, 9.9_5_9_3e-0_1, 3.0_8_6_3e-0_3]] ) # zero shot elif model_name == "xclip-base-patch16-zero-shot": __UpperCAmelCase : List[str] = torch.tensor([[3.5_0_8_2e-0_4, 9.9_7_8_5e-0_1, 1.7_9_6_6e-0_3]] ) else: raise ValueError(f'''Model name {model_name} not supported''' ) assert torch.allclose(__snake_case, __snake_case, atol=1e-3 ) print("Looks ok!" ) if pytorch_dump_folder_path is not None: print(f'''Saving model {model_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(__snake_case ) if push_to_hub: print("Pushing model, processor and slow tokenizer files to the hub..." ) model.push_to_hub(__snake_case, organization="nielsr" ) processor.push_to_hub(__snake_case, organization="nielsr" ) slow_tokenizer.push_to_hub(__snake_case, organization="nielsr" ) if __name__ == "__main__": _snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default='''xclip-base-patch32''', type=str, help='''Name of the model.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.''' ) _snake_case = parser.parse_args() convert_xclip_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
362
import json import os import shutil import tempfile import unittest from transformers import BatchEncoding, CanineTokenizer from transformers.testing_utils import require_tokenizers, require_torch from transformers.tokenization_utils import AddedToken from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin class _snake_case ( _lowercase , unittest.TestCase ): lowerCamelCase__: List[Any] = CanineTokenizer lowerCamelCase__: Optional[int] = False def _lowerCamelCase ( self: Optional[Any] ) -> Optional[int]: super().setUp() __UpperCAmelCase : Tuple = CanineTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def _lowerCamelCase ( self: Union[str, Any] ) -> List[Any]: return CanineTokenizer.from_pretrained("google/canine-s" ) def _lowerCamelCase ( self: Any , **__lowerCamelCase: List[Any] ) -> CanineTokenizer: __UpperCAmelCase : Optional[int] = self.tokenizer_class.from_pretrained(self.tmpdirname , **__lowerCamelCase ) __UpperCAmelCase : Optional[int] = 10_24 return tokenizer @require_torch def _lowerCamelCase ( self: List[str] ) -> int: __UpperCAmelCase : Union[str, Any] = self.canine_tokenizer __UpperCAmelCase : List[str] = ["Life is like a box of chocolates.", "You never know what you're gonna get."] # fmt: off __UpperCAmelCase : Dict = [5_73_44, 76, 1_05, 1_02, 1_01, 32, 1_05, 1_15, 32, 1_08, 1_05, 1_07, 1_01, 32, 97, 32, 98, 1_11, 1_20, 32, 1_11, 1_02, 32, 99, 1_04, 1_11, 99, 1_11, 1_08, 97, 1_16, 1_01, 1_15, 46, 5_73_45, 0, 0, 0, 0] # fmt: on __UpperCAmelCase : Union[str, Any] = tokenizer(__lowerCamelCase , padding=__lowerCamelCase , return_tensors="pt" ) self.assertIsInstance(__lowerCamelCase , __lowerCamelCase ) __UpperCAmelCase : Optional[Any] = list(batch.input_ids.numpy()[0] ) self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) self.assertEqual((2, 39) , batch.input_ids.shape ) self.assertEqual((2, 39) , batch.attention_mask.shape ) @require_torch def _lowerCamelCase ( self: Optional[Any] ) -> Tuple: __UpperCAmelCase : Optional[Any] = self.canine_tokenizer __UpperCAmelCase : Dict = ["Once there was a man.", "He wrote a test in HuggingFace Tranformers."] __UpperCAmelCase : Union[str, Any] = tokenizer(__lowerCamelCase , padding=__lowerCamelCase , return_tensors="pt" ) # check if input_ids, attention_mask and token_type_ids are returned self.assertIn("input_ids" , __lowerCamelCase ) self.assertIn("attention_mask" , __lowerCamelCase ) self.assertIn("token_type_ids" , __lowerCamelCase ) @require_torch def _lowerCamelCase ( self: Any ) -> List[str]: __UpperCAmelCase : Optional[Any] = self.canine_tokenizer __UpperCAmelCase : int = [ "What's the weater?", "It's about 25 degrees.", ] __UpperCAmelCase : List[Any] = tokenizer( text_target=__lowerCamelCase , max_length=32 , padding="max_length" , truncation=__lowerCamelCase , return_tensors="pt" ) self.assertEqual(32 , targets["input_ids"].shape[1] ) def _lowerCamelCase ( self: List[Any] ) -> Tuple: # safety check on max_len default value so we are sure the test works __UpperCAmelCase : Optional[int] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): self.assertNotEqual(tokenizer.model_max_length , 42 ) # Now let's start the test __UpperCAmelCase : str = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): # Isolate this from the other tests because we save additional tokens/etc __UpperCAmelCase : int = tempfile.mkdtemp() __UpperCAmelCase : List[Any] = " He is very happy, UNwant\u00E9d,running" __UpperCAmelCase : Union[str, Any] = tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase ) tokenizer.save_pretrained(__lowerCamelCase ) __UpperCAmelCase : Tuple = tokenizer.__class__.from_pretrained(__lowerCamelCase ) __UpperCAmelCase : Dict = after_tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase ) self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) shutil.rmtree(__lowerCamelCase ) __UpperCAmelCase : Optional[Any] = self.get_tokenizers(model_max_length=42 ) for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): # Isolate this from the other tests because we save additional tokens/etc __UpperCAmelCase : List[Any] = tempfile.mkdtemp() __UpperCAmelCase : Optional[int] = " He is very happy, UNwant\u00E9d,running" __UpperCAmelCase : str = tokenizer.additional_special_tokens # We can add a new special token for Canine as follows: __UpperCAmelCase : Tuple = chr(0xE_0_0_7 ) additional_special_tokens.append(__lowerCamelCase ) tokenizer.add_special_tokens({"additional_special_tokens": additional_special_tokens} ) __UpperCAmelCase : Optional[int] = tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase ) tokenizer.save_pretrained(__lowerCamelCase ) __UpperCAmelCase : str = tokenizer.__class__.from_pretrained(__lowerCamelCase ) __UpperCAmelCase : Union[str, Any] = after_tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase ) self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) self.assertIn(__lowerCamelCase , after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length , 42 ) __UpperCAmelCase : Optional[Any] = tokenizer.__class__.from_pretrained(__lowerCamelCase , model_max_length=43 ) self.assertEqual(tokenizer.model_max_length , 43 ) shutil.rmtree(__lowerCamelCase ) def _lowerCamelCase ( self: str ) -> Optional[int]: __UpperCAmelCase : List[Any] = self.get_tokenizers(do_lower_case=__lowerCamelCase ) for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): __UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = self.get_clean_sequence(__lowerCamelCase ) # a special token for Canine can be defined as follows: __UpperCAmelCase : int = 0xE_0_0_5 __UpperCAmelCase : Tuple = chr(__lowerCamelCase ) tokenizer.add_special_tokens({"cls_token": special_token} ) __UpperCAmelCase : Union[str, Any] = tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase ) self.assertEqual(len(__lowerCamelCase ) , 1 ) __UpperCAmelCase : Any = tokenizer.decode(ids + encoded_special_token , clean_up_tokenization_spaces=__lowerCamelCase ) __UpperCAmelCase : Union[str, Any] = tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase ) __UpperCAmelCase : Dict = tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase ) __UpperCAmelCase : int = tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase ) self.assertEqual(__lowerCamelCase , input_encoded + special_token_id ) __UpperCAmelCase : Optional[int] = tokenizer.decode(__lowerCamelCase , skip_special_tokens=__lowerCamelCase ) self.assertTrue(special_token not in decoded ) def _lowerCamelCase ( self: Optional[int] ) -> Optional[Any]: __UpperCAmelCase : List[str] = self.get_tokenizers(do_lower_case=__lowerCamelCase ) for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): __UpperCAmelCase : Optional[int] = chr(0xE_0_0_5 ) __UpperCAmelCase : List[str] = chr(0xE_0_0_6 ) # `add_tokens` method stores special tokens only in `tokenizer.unique_no_split_tokens`. (in tokenization_utils.py) tokenizer.add_tokens([SPECIAL_TOKEN_1] , special_tokens=__lowerCamelCase ) # `add_special_tokens` method stores special tokens in `tokenizer.additional_special_tokens`, # which also occur in `tokenizer.all_special_tokens`. (in tokenization_utils_base.py) tokenizer.add_special_tokens({"additional_special_tokens": [SPECIAL_TOKEN_2]} ) __UpperCAmelCase : Tuple = tokenizer.tokenize(__lowerCamelCase ) __UpperCAmelCase : Optional[Any] = tokenizer.tokenize(__lowerCamelCase ) self.assertEqual(len(__lowerCamelCase ) , 1 ) self.assertEqual(len(__lowerCamelCase ) , 1 ) self.assertEqual(token_a[0] , __lowerCamelCase ) self.assertEqual(token_a[0] , __lowerCamelCase ) @require_tokenizers def _lowerCamelCase ( self: str ) -> Union[str, Any]: __UpperCAmelCase : Any = self.get_tokenizers(do_lower_case=__lowerCamelCase ) for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): # a special token for Canine can be defined as follows: __UpperCAmelCase : Union[str, Any] = 0xE_0_0_6 __UpperCAmelCase : int = chr(__lowerCamelCase ) __UpperCAmelCase : int = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase ) tokenizer.add_special_tokens({"additional_special_tokens": [new_token]} ) with tempfile.TemporaryDirectory() as tmp_dir_name: tokenizer.save_pretrained(__lowerCamelCase ) tokenizer.from_pretrained(__lowerCamelCase ) def _lowerCamelCase ( self: Dict ) -> List[str]: __UpperCAmelCase : str = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(__lowerCamelCase ) with open(os.path.join(__lowerCamelCase , "special_tokens_map.json" ) , encoding="utf-8" ) as json_file: __UpperCAmelCase : Tuple = json.load(__lowerCamelCase ) with open(os.path.join(__lowerCamelCase , "tokenizer_config.json" ) , encoding="utf-8" ) as json_file: __UpperCAmelCase : Optional[int] = json.load(__lowerCamelCase ) # a special token for Canine can be defined as follows: __UpperCAmelCase : Any = 0xE_0_0_6 __UpperCAmelCase : Union[str, Any] = chr(__lowerCamelCase ) __UpperCAmelCase : Dict = [new_token_a] __UpperCAmelCase : int = [new_token_a] with open(os.path.join(__lowerCamelCase , "special_tokens_map.json" ) , "w" , encoding="utf-8" ) as outfile: json.dump(__lowerCamelCase , __lowerCamelCase ) with open(os.path.join(__lowerCamelCase , "tokenizer_config.json" ) , "w" , encoding="utf-8" ) as outfile: json.dump(__lowerCamelCase , __lowerCamelCase ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files __UpperCAmelCase : List[str] = tokenizer_class.from_pretrained(__lowerCamelCase , extra_ids=0 ) self.assertIn(__lowerCamelCase , tokenizer_without_change_in_init.additional_special_tokens ) # self.assertIn("an_additional_special_token",tokenizer_without_change_in_init.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( [new_token_a] , tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids([new_token_a] ) ) , ) __UpperCAmelCase : List[Any] = 0xE_0_0_7 __UpperCAmelCase : List[Any] = chr(__lowerCamelCase ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained __UpperCAmelCase : str = [AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase )] __UpperCAmelCase : Dict = tokenizer_class.from_pretrained( __lowerCamelCase , additional_special_tokens=__lowerCamelCase , extra_ids=0 ) self.assertIn(__lowerCamelCase , tokenizer.additional_special_tokens ) # self.assertIn(new_token_2,tokenizer.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( [new_token_a] , tokenizer.convert_ids_to_tokens(tokenizer.convert_tokens_to_ids([new_token_a] ) ) ) @require_tokenizers def _lowerCamelCase ( self: Optional[Any] ) -> Optional[int]: __UpperCAmelCase : Optional[int] = self.get_tokenizers(do_lower_case=__lowerCamelCase ) for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): __UpperCAmelCase : int = "hello world" if self.space_between_special_tokens: __UpperCAmelCase : Any = "[CLS] hello world [SEP]" else: __UpperCAmelCase : Union[str, Any] = input __UpperCAmelCase : List[Any] = tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase ) __UpperCAmelCase : Any = tokenizer.decode(__lowerCamelCase , spaces_between_special_tokens=self.space_between_special_tokens ) self.assertIn(__lowerCamelCase , [output, output.lower()] ) def _lowerCamelCase ( self: Dict ) -> Any: __UpperCAmelCase : Any = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): __UpperCAmelCase : List[str] = [ "bos_token", "eos_token", "unk_token", "sep_token", "pad_token", "cls_token", "mask_token", ] __UpperCAmelCase : List[str] = "a" __UpperCAmelCase : Any = ord(__lowerCamelCase ) for attr in attributes_list: setattr(__lowerCamelCase , attr + "_id" , __lowerCamelCase ) self.assertEqual(getattr(__lowerCamelCase , __lowerCamelCase ) , __lowerCamelCase ) self.assertEqual(getattr(__lowerCamelCase , attr + "_id" ) , __lowerCamelCase ) setattr(__lowerCamelCase , attr + "_id" , __lowerCamelCase ) self.assertEqual(getattr(__lowerCamelCase , __lowerCamelCase ) , __lowerCamelCase ) self.assertEqual(getattr(__lowerCamelCase , attr + "_id" ) , __lowerCamelCase ) setattr(__lowerCamelCase , "additional_special_tokens_ids" , [] ) self.assertListEqual(getattr(__lowerCamelCase , "additional_special_tokens" ) , [] ) self.assertListEqual(getattr(__lowerCamelCase , "additional_special_tokens_ids" ) , [] ) __UpperCAmelCase : Tuple = 0xE_0_0_6 __UpperCAmelCase : Optional[Any] = chr(__lowerCamelCase ) setattr(__lowerCamelCase , "additional_special_tokens_ids" , [additional_special_token_id] ) self.assertListEqual(getattr(__lowerCamelCase , "additional_special_tokens" ) , [additional_special_token] ) self.assertListEqual(getattr(__lowerCamelCase , "additional_special_tokens_ids" ) , [additional_special_token_id] ) def _lowerCamelCase ( self: str ) -> Union[str, Any]: pass def _lowerCamelCase ( self: Any ) -> Any: pass def _lowerCamelCase ( self: Union[str, Any] ) -> Tuple: pass def _lowerCamelCase ( self: Optional[int] ) -> Any: pass def _lowerCamelCase ( self: List[str] ) -> str: pass def _lowerCamelCase ( self: Union[str, Any] ) -> Optional[int]: pass def _lowerCamelCase ( self: Optional[Any] ) -> Tuple: pass def _lowerCamelCase ( self: str ) -> Tuple: pass
342
0
from ..utils import ( OptionalDependencyNotAvailable, is_flax_available, is_scipy_available, is_torch_available, is_torchsde_available, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_pt_objects import * # noqa F403 else: from .scheduling_consistency_models import CMStochasticIterativeScheduler from .scheduling_ddim import DDIMScheduler from .scheduling_ddim_inverse import DDIMInverseScheduler from .scheduling_ddim_parallel import DDIMParallelScheduler from .scheduling_ddpm import DDPMScheduler from .scheduling_ddpm_parallel import DDPMParallelScheduler from .scheduling_deis_multistep import DEISMultistepScheduler from .scheduling_dpmsolver_multistep import DPMSolverMultistepScheduler from .scheduling_dpmsolver_multistep_inverse import DPMSolverMultistepInverseScheduler from .scheduling_dpmsolver_singlestep import DPMSolverSinglestepScheduler from .scheduling_euler_ancestral_discrete import EulerAncestralDiscreteScheduler from .scheduling_euler_discrete import EulerDiscreteScheduler from .scheduling_heun_discrete import HeunDiscreteScheduler from .scheduling_ipndm import IPNDMScheduler from .scheduling_k_dpm_2_ancestral_discrete import KDPMaAncestralDiscreteScheduler from .scheduling_k_dpm_2_discrete import KDPMaDiscreteScheduler from .scheduling_karras_ve import KarrasVeScheduler from .scheduling_pndm import PNDMScheduler from .scheduling_repaint import RePaintScheduler from .scheduling_sde_ve import ScoreSdeVeScheduler from .scheduling_sde_vp import ScoreSdeVpScheduler from .scheduling_unclip import UnCLIPScheduler from .scheduling_unipc_multistep import UniPCMultistepScheduler from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin from .scheduling_vq_diffusion import VQDiffusionScheduler try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_flax_objects import * # noqa F403 else: from .scheduling_ddim_flax import FlaxDDIMScheduler from .scheduling_ddpm_flax import FlaxDDPMScheduler from .scheduling_dpmsolver_multistep_flax import FlaxDPMSolverMultistepScheduler from .scheduling_karras_ve_flax import FlaxKarrasVeScheduler from .scheduling_lms_discrete_flax import FlaxLMSDiscreteScheduler from .scheduling_pndm_flax import FlaxPNDMScheduler from .scheduling_sde_ve_flax import FlaxScoreSdeVeScheduler from .scheduling_utils_flax import ( FlaxKarrasDiffusionSchedulers, FlaxSchedulerMixin, FlaxSchedulerOutput, broadcast_to_shape_from_left, ) try: if not (is_torch_available() and is_scipy_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_torch_and_scipy_objects import * # noqa F403 else: from .scheduling_lms_discrete import LMSDiscreteScheduler try: if not (is_torch_available() and is_torchsde_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_torch_and_torchsde_objects import * # noqa F403 else: from .scheduling_dpmsolver_sde import DPMSolverSDEScheduler
196
'''simple docstring''' import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import SegformerImageProcessor, SwinConfig, UperNetConfig, UperNetForSemanticSegmentation def __A ( lowerCamelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE : str = 3_84 SCREAMING_SNAKE_CASE : Union[str, Any] = 7 if "tiny" in model_name: SCREAMING_SNAKE_CASE : List[str] = 96 SCREAMING_SNAKE_CASE : List[str] = (2, 2, 6, 2) SCREAMING_SNAKE_CASE : List[Any] = (3, 6, 12, 24) elif "small" in model_name: SCREAMING_SNAKE_CASE : Any = 96 SCREAMING_SNAKE_CASE : List[str] = (2, 2, 18, 2) SCREAMING_SNAKE_CASE : int = (3, 6, 12, 24) elif "base" in model_name: SCREAMING_SNAKE_CASE : int = 1_28 SCREAMING_SNAKE_CASE : Any = (2, 2, 18, 2) SCREAMING_SNAKE_CASE : int = (4, 8, 16, 32) SCREAMING_SNAKE_CASE : Optional[Any] = 12 SCREAMING_SNAKE_CASE : str = 5_12 elif "large" in model_name: SCREAMING_SNAKE_CASE : Tuple = 1_92 SCREAMING_SNAKE_CASE : Tuple = (2, 2, 18, 2) SCREAMING_SNAKE_CASE : List[str] = (6, 12, 24, 48) SCREAMING_SNAKE_CASE : Tuple = 12 SCREAMING_SNAKE_CASE : Union[str, Any] = 7_68 # set label information SCREAMING_SNAKE_CASE : List[str] = 1_50 SCREAMING_SNAKE_CASE : Optional[Any] = """huggingface/label-files""" SCREAMING_SNAKE_CASE : List[str] = """ade20k-id2label.json""" SCREAMING_SNAKE_CASE : Optional[int] = json.load(open(hf_hub_download(lowerCamelCase_ , lowerCamelCase_ , repo_type="""dataset""" ) , """r""" ) ) SCREAMING_SNAKE_CASE : str = {int(lowerCamelCase_ ): v for k, v in idalabel.items()} SCREAMING_SNAKE_CASE : int = {v: k for k, v in idalabel.items()} SCREAMING_SNAKE_CASE : Optional[Any] = SwinConfig( embed_dim=lowerCamelCase_ , depths=lowerCamelCase_ , num_heads=lowerCamelCase_ , window_size=lowerCamelCase_ , out_features=["""stage1""", """stage2""", """stage3""", """stage4"""] , ) SCREAMING_SNAKE_CASE : List[str] = UperNetConfig( backbone_config=lowerCamelCase_ , auxiliary_in_channels=lowerCamelCase_ , num_labels=lowerCamelCase_ , idalabel=lowerCamelCase_ , labelaid=lowerCamelCase_ , ) return config def __A ( lowerCamelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = [] # fmt: off # stem rename_keys.append(("""backbone.patch_embed.projection.weight""", """backbone.embeddings.patch_embeddings.projection.weight""") ) rename_keys.append(("""backbone.patch_embed.projection.bias""", """backbone.embeddings.patch_embeddings.projection.bias""") ) rename_keys.append(("""backbone.patch_embed.norm.weight""", """backbone.embeddings.norm.weight""") ) rename_keys.append(("""backbone.patch_embed.norm.bias""", """backbone.embeddings.norm.bias""") ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((f'''backbone.stages.{i}.blocks.{j}.norm1.weight''', f'''backbone.encoder.layers.{i}.blocks.{j}.layernorm_before.weight''') ) rename_keys.append((f'''backbone.stages.{i}.blocks.{j}.norm1.bias''', f'''backbone.encoder.layers.{i}.blocks.{j}.layernorm_before.bias''') ) rename_keys.append((f'''backbone.stages.{i}.blocks.{j}.attn.w_msa.relative_position_bias_table''', f'''backbone.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table''') ) rename_keys.append((f'''backbone.stages.{i}.blocks.{j}.attn.w_msa.relative_position_index''', f'''backbone.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index''') ) rename_keys.append((f'''backbone.stages.{i}.blocks.{j}.attn.w_msa.proj.weight''', f'''backbone.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight''') ) rename_keys.append((f'''backbone.stages.{i}.blocks.{j}.attn.w_msa.proj.bias''', f'''backbone.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias''') ) rename_keys.append((f'''backbone.stages.{i}.blocks.{j}.norm2.weight''', f'''backbone.encoder.layers.{i}.blocks.{j}.layernorm_after.weight''') ) rename_keys.append((f'''backbone.stages.{i}.blocks.{j}.norm2.bias''', f'''backbone.encoder.layers.{i}.blocks.{j}.layernorm_after.bias''') ) rename_keys.append((f'''backbone.stages.{i}.blocks.{j}.ffn.layers.0.0.weight''', f'''backbone.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight''') ) rename_keys.append((f'''backbone.stages.{i}.blocks.{j}.ffn.layers.0.0.bias''', f'''backbone.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias''') ) rename_keys.append((f'''backbone.stages.{i}.blocks.{j}.ffn.layers.1.weight''', f'''backbone.encoder.layers.{i}.blocks.{j}.output.dense.weight''') ) rename_keys.append((f'''backbone.stages.{i}.blocks.{j}.ffn.layers.1.bias''', f'''backbone.encoder.layers.{i}.blocks.{j}.output.dense.bias''') ) if i < 3: rename_keys.append((f'''backbone.stages.{i}.downsample.reduction.weight''', f'''backbone.encoder.layers.{i}.downsample.reduction.weight''') ) rename_keys.append((f'''backbone.stages.{i}.downsample.norm.weight''', f'''backbone.encoder.layers.{i}.downsample.norm.weight''') ) rename_keys.append((f'''backbone.stages.{i}.downsample.norm.bias''', f'''backbone.encoder.layers.{i}.downsample.norm.bias''') ) rename_keys.append((f'''backbone.norm{i}.weight''', f'''backbone.hidden_states_norms.stage{i+1}.weight''') ) rename_keys.append((f'''backbone.norm{i}.bias''', f'''backbone.hidden_states_norms.stage{i+1}.bias''') ) # decode head rename_keys.extend( [ ("""decode_head.conv_seg.weight""", """decode_head.classifier.weight"""), ("""decode_head.conv_seg.bias""", """decode_head.classifier.bias"""), ("""auxiliary_head.conv_seg.weight""", """auxiliary_head.classifier.weight"""), ("""auxiliary_head.conv_seg.bias""", """auxiliary_head.classifier.bias"""), ] ) # fmt: on return rename_keys def __A ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE : int = dct.pop(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : List[Any] = val def __A ( lowerCamelCase_ , lowerCamelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )] for i in range(len(backbone_config.depths ) ): SCREAMING_SNAKE_CASE : Dict = num_features[i] for j in range(backbone_config.depths[i] ): # fmt: off # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) SCREAMING_SNAKE_CASE : Union[str, Any] = state_dict.pop(f'''backbone.stages.{i}.blocks.{j}.attn.w_msa.qkv.weight''' ) SCREAMING_SNAKE_CASE : Union[str, Any] = state_dict.pop(f'''backbone.stages.{i}.blocks.{j}.attn.w_msa.qkv.bias''' ) # next, add query, keys and values (in that order) to the state dict SCREAMING_SNAKE_CASE : int = in_proj_weight[:dim, :] SCREAMING_SNAKE_CASE : Optional[int] = in_proj_bias[: dim] SCREAMING_SNAKE_CASE : Union[str, Any] = in_proj_weight[ dim : dim * 2, : ] SCREAMING_SNAKE_CASE : Any = in_proj_bias[ dim : dim * 2 ] SCREAMING_SNAKE_CASE : List[Any] = in_proj_weight[ -dim :, : ] SCREAMING_SNAKE_CASE : str = in_proj_bias[-dim :] # fmt: on def __A ( lowerCamelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : Tuple = x.shape SCREAMING_SNAKE_CASE : Any = x.reshape(lowerCamelCase_ , 4 , in_channel // 4 ) SCREAMING_SNAKE_CASE : Any = x[:, [0, 2, 1, 3], :].transpose(1 , 2 ).reshape(lowerCamelCase_ , lowerCamelCase_ ) return x def __A ( lowerCamelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : Dict = x.shape SCREAMING_SNAKE_CASE : Dict = x.reshape(lowerCamelCase_ , in_channel // 4 , 4 ) SCREAMING_SNAKE_CASE : str = x[:, :, [0, 2, 1, 3]].transpose(1 , 2 ).reshape(lowerCamelCase_ , lowerCamelCase_ ) return x def __A ( lowerCamelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE : str = x.shape[0] SCREAMING_SNAKE_CASE : List[str] = x.reshape(4 , in_channel // 4 ) SCREAMING_SNAKE_CASE : str = x[[0, 2, 1, 3], :].transpose(0 , 1 ).reshape(lowerCamelCase_ ) return x def __A ( lowerCamelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = x.shape[0] SCREAMING_SNAKE_CASE : Optional[int] = x.reshape(in_channel // 4 , 4 ) SCREAMING_SNAKE_CASE : str = x[:, [0, 2, 1, 3]].transpose(0 , 1 ).reshape(lowerCamelCase_ ) return x def __A ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE : Dict = { """upernet-swin-tiny""": """https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_tiny_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K/upernet_swin_tiny_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K_20210531_112542-e380ad3e.pth""", """upernet-swin-small""": """https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_small_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K/upernet_swin_small_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K_20210526_192015-ee2fff1c.pth""", """upernet-swin-base""": """https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_base_patch4_window12_512x512_160k_ade20k_pretrain_384x384_22K/upernet_swin_base_patch4_window12_512x512_160k_ade20k_pretrain_384x384_22K_20210531_125459-429057bf.pth""", """upernet-swin-large""": """https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_large_patch4_window12_512x512_pretrain_384x384_22K_160k_ade20k/upernet_swin_large_patch4_window12_512x512_pretrain_384x384_22K_160k_ade20k_20220318_091743-9ba68901.pth""", } SCREAMING_SNAKE_CASE : List[str] = model_name_to_url[model_name] SCREAMING_SNAKE_CASE : Optional[int] = torch.hub.load_state_dict_from_url(lowerCamelCase_ , map_location="""cpu""" , file_name=lowerCamelCase_ )[ """state_dict""" ] for name, param in state_dict.items(): print(lowerCamelCase_ , param.shape ) SCREAMING_SNAKE_CASE : Dict = get_upernet_config(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Union[str, Any] = UperNetForSemanticSegmentation(lowerCamelCase_ ) model.eval() # replace "bn" => "batch_norm" for key in state_dict.copy().keys(): SCREAMING_SNAKE_CASE : Union[str, Any] = state_dict.pop(lowerCamelCase_ ) if "bn" in key: SCREAMING_SNAKE_CASE : List[str] = key.replace("""bn""" , """batch_norm""" ) SCREAMING_SNAKE_CASE : Optional[Any] = val # rename keys SCREAMING_SNAKE_CASE : Union[str, Any] = create_rename_keys(lowerCamelCase_ ) for src, dest in rename_keys: rename_key(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) read_in_q_k_v(lowerCamelCase_ , config.backbone_config ) # fix downsample parameters for key, value in state_dict.items(): if "downsample" in key: if "reduction" in key: SCREAMING_SNAKE_CASE : Tuple = reverse_correct_unfold_reduction_order(lowerCamelCase_ ) if "norm" in key: SCREAMING_SNAKE_CASE : Optional[int] = reverse_correct_unfold_norm_order(lowerCamelCase_ ) model.load_state_dict(lowerCamelCase_ ) # verify on image SCREAMING_SNAKE_CASE : Optional[int] = """https://huggingface.co/datasets/hf-internal-testing/fixtures_ade20k/resolve/main/ADE_val_00000001.jpg""" SCREAMING_SNAKE_CASE : Tuple = Image.open(requests.get(lowerCamelCase_ , stream=lowerCamelCase_ ).raw ).convert("""RGB""" ) SCREAMING_SNAKE_CASE : Optional[int] = SegformerImageProcessor() SCREAMING_SNAKE_CASE : str = processor(lowerCamelCase_ , return_tensors="""pt""" ).pixel_values with torch.no_grad(): SCREAMING_SNAKE_CASE : List[str] = model(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Dict = outputs.logits print(logits.shape ) print("""First values of logits:""" , logits[0, 0, :3, :3] ) # assert values if model_name == "upernet-swin-tiny": SCREAMING_SNAKE_CASE : Optional[Any] = torch.tensor( [[-7.5_958, -7.5_958, -7.4_302], [-7.5_958, -7.5_958, -7.4_302], [-7.4_797, -7.4_797, -7.3_068]] ) elif model_name == "upernet-swin-small": SCREAMING_SNAKE_CASE : Optional[Any] = torch.tensor( [[-7.1_921, -7.1_921, -6.9_532], [-7.1_921, -7.1_921, -6.9_532], [-7.0_908, -7.0_908, -6.8_534]] ) elif model_name == "upernet-swin-base": SCREAMING_SNAKE_CASE : str = torch.tensor( [[-6.5_851, -6.5_851, -6.4_330], [-6.5_851, -6.5_851, -6.4_330], [-6.4_763, -6.4_763, -6.3_254]] ) elif model_name == "upernet-swin-large": SCREAMING_SNAKE_CASE : str = torch.tensor( [[-7.5_297, -7.5_297, -7.3_802], [-7.5_297, -7.5_297, -7.3_802], [-7.4_044, -7.4_044, -7.2_586]] ) print("""Logits:""" , outputs.logits[0, 0, :3, :3] ) assert torch.allclose(outputs.logits[0, 0, :3, :3] , lowerCamelCase_ , atol=1E-4 ) print("""Looks ok!""" ) if pytorch_dump_folder_path is not None: print(f'''Saving model {model_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(lowerCamelCase_ ) print(f'''Saving processor to {pytorch_dump_folder_path}''' ) processor.save_pretrained(lowerCamelCase_ ) if push_to_hub: print(f'''Pushing model and processor for {model_name} to hub''' ) model.push_to_hub(f'''openmmlab/{model_name}''' ) processor.push_to_hub(f'''openmmlab/{model_name}''' ) if __name__ == "__main__": __UpperCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""upernet-swin-tiny""", type=str, choices=[f'''upernet-swin-{size}''' for size in ["""tiny""", """small""", """base""", """large"""]], help="""Name of the Swin + UperNet model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub.""" ) __UpperCAmelCase = parser.parse_args() convert_upernet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
323
0
'''simple docstring''' import operator as op a_ : List[str] = """scaler.pt""" a_ : Union[str, Any] = """pytorch_model""" a_ : int = """random_states""" a_ : str = """optimizer""" a_ : Tuple = """scheduler""" a_ : Dict = """pytorch_model.bin""" a_ : Optional[int] = """pytorch_model.bin.index.json""" a_ : int = """model.safetensors""" a_ : str = """model.safetensors.index.json""" a_ : List[Any] = """1.10.2""" a_ : int = """py38""" a_ : Optional[int] = """4.17.0""" a_ : Any = ["""ml.p3.16xlarge""", """ml.p3dn.24xlarge""", """ml.p4dn.24xlarge"""] a_ : Any = ["""FULL_SHARD""", """SHARD_GRAD_OP""", """NO_SHARD""", """HYBRID_SHARD""", """HYBRID_SHARD_ZERO2"""] a_ : Optional[Any] = ["""TRANSFORMER_BASED_WRAP""", """SIZE_BASED_WRAP""", """NO_WRAP"""] a_ : Any = ["""BACKWARD_PRE""", """BACKWARD_POST""", """NO_PREFETCH"""] a_ : Union[str, Any] = ["""FULL_STATE_DICT""", """LOCAL_STATE_DICT""", """SHARDED_STATE_DICT"""] a_ : int = """2.0.1""" a_ : int = ["""pdsh""", """standard""", """openmpi""", """mvapich"""] a_ : Optional[Any] = ["""default""", """reduce-overhead""", """max-autotune"""] a_ : Optional[Any] = {""">""": op.gt, """>=""": op.ge, """==""": op.eq, """!=""": op.ne, """<=""": op.le, """<""": op.lt} # These are the args for `torch.distributed.launch` for pytorch < 1.9 a_ : Optional[int] = [ """nnodes""", """nproc_per_node""", """rdzv_backend""", """rdzv_endpoint""", """rdzv_id""", """rdzv_conf""", """standalone""", """max_restarts""", """monitor_interval""", """start_method""", """role""", """module""", """m""", """no_python""", """run_path""", """log_dir""", """r""", """redirects""", """t""", """tee""", """node_rank""", """master_addr""", """master_port""", ] a_ : Optional[Any] = ["""DEEPSPEED""", """MULTI_GPU""", """FSDP""", """MEGATRON_LM"""] a_ : Optional[Any] = ["""DEEPSPEED""", """MULTI_XPU""", """FSDP"""]
352
'''simple docstring''' from unittest import TestCase from datasets import Dataset from minhash_deduplication import deduplicate_dataset, make_duplicate_clusters def a_ ( ) -> Tuple: """simple docstring""" lowerCamelCase_ ={ '''repo_name''': ['''test_repo1''', '''test_repo2''', '''test_repo3'''], '''path''': ['''test_1.py''', '''test_2.py''', '''unit_test.py'''], '''content''': ['''a ''' * 20, '''a ''' * 30, '''b ''' * 7], } lowerCamelCase_ =Dataset.from_dict(__snake_case ) return dataset class __UpperCamelCase ( lowerCamelCase__ ): def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =get_dataset() lowerCamelCase_ =make_duplicate_clusters(lowerCAmelCase, 0.8_5 ) self.assertEqual(len(duplicate_clusters[0] ), 2 ) def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =get_dataset() lowerCamelCase_, lowerCamelCase_ =deduplicate_dataset(lowerCAmelCase ) self.assertEqual(len(lowerCAmelCase ), 2 ) print(lowerCAmelCase ) self.assertEqual(duplicate_clusters[0][0]['''copies'''], 2 ) self.assertEqual(duplicate_clusters[0][0]['''is_extreme'''], lowerCAmelCase )
6
0
"""simple docstring""" import argparse from torch import nn # transformers_old should correspond to branch `save_old_prophetnet_model_structure` here # original prophetnet_checkpoints are saved under `patrickvonplaten/..._old` respectively from transformers_old.modeling_prophetnet import ( ProphetNetForConditionalGeneration as ProphetNetForConditionalGenerationOld, ) from transformers_old.modeling_xlm_prophetnet import ( XLMProphetNetForConditionalGeneration as XLMProphetNetForConditionalGenerationOld, ) from transformers import ProphetNetForConditionalGeneration, XLMProphetNetForConditionalGeneration, logging _UpperCamelCase: Tuple = logging.get_logger(__name__) logging.set_verbosity_info() def lowercase__ ( _UpperCAmelCase , _UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' if "xprophetnet" in prophetnet_checkpoint_path: lowercase : List[Any] = XLMProphetNetForConditionalGenerationOld.from_pretrained(lowerCAmelCase_ ) lowercase : int = XLMProphetNetForConditionalGeneration.from_pretrained( lowerCAmelCase_ , output_loading_info=lowerCAmelCase_ ) else: lowercase : Union[str, Any] = ProphetNetForConditionalGenerationOld.from_pretrained(lowerCAmelCase_ ) lowercase : Union[str, Any] = ProphetNetForConditionalGeneration.from_pretrained( lowerCAmelCase_ , output_loading_info=lowerCAmelCase_ ) lowercase : Any = ['key_proj', 'value_proj', 'query_proj'] lowercase : Dict = { 'self_attn': 'ngram_self_attn', 'cross_attn': 'encoder_attn', 'cross_attn_layer_norm': 'encoder_attn_layer_norm', 'feed_forward_layer_norm': 'final_layer_norm', 'feed_forward': '', 'intermediate': 'fc1', 'output': 'fc2', 'key_proj': 'k_proj', 'query_proj': 'q_proj', 'value_proj': 'v_proj', 'word_embeddings': 'embed_tokens', 'embeddings_layer_norm': 'emb_layer_norm', 'relative_pos_embeddings': 'relative_linear', 'ngram_embeddings': 'ngram_input_embed', 'position_embeddings': 'embed_positions', } for key in loading_info["missing_keys"]: lowercase : Union[str, Any] = key.split('.' ) if attributes[0] == "lm_head": lowercase : Optional[Any] = prophet lowercase : str = prophet_old else: lowercase : List[str] = prophet.prophetnet lowercase : Optional[Any] = prophet_old.model lowercase : Optional[Any] = False for attribute in attributes: if attribute in mapping: lowercase : Tuple = mapping[attribute] if not hasattr(lowerCAmelCase_ , lowerCAmelCase_ ) and len(lowerCAmelCase_ ) > 0: lowercase : Tuple = attribute elif hasattr(lowerCAmelCase_ , lowerCAmelCase_ ): lowercase : Optional[int] = attribute if attribute == "weight": assert old_model.weight.shape == model.weight.shape, "Shapes have to match!" lowercase : Any = old_model.weight logger.info(f'''{attribute} is initialized.''' ) lowercase : List[Any] = True break elif attribute == "bias": assert old_model.bias.shape == model.bias.shape, "Shapes have to match!" lowercase : Optional[Any] = old_model.bias logger.info(f'''{attribute} is initialized''' ) lowercase : List[str] = True break elif attribute in special_keys and hasattr(lowerCAmelCase_ , 'in_proj_weight' ): lowercase : Optional[Any] = old_model.in_proj_weight.shape[0] // 3 lowercase : Dict = getattr(lowerCAmelCase_ , lowerCAmelCase_ ) param.weight.shape == old_model.in_proj_weight[:embed_dim, :].shape, "Shapes have to match" param.bias.shape == old_model.in_proj_bias[:embed_dim].shape, "Shapes have to match" if attribute == "query_proj": lowercase : Dict = nn.Parameter(old_model.in_proj_weight[:embed_dim, :] ) lowercase : Tuple = nn.Parameter(old_model.in_proj_bias[:embed_dim] ) elif attribute == "key_proj": lowercase : str = nn.Parameter(old_model.in_proj_weight[embed_dim : 2 * embed_dim, :] ) lowercase : Optional[Any] = nn.Parameter(old_model.in_proj_bias[embed_dim : 2 * embed_dim] ) elif attribute == "value_proj": lowercase : Optional[Any] = nn.Parameter(old_model.in_proj_weight[2 * embed_dim :, :] ) lowercase : Union[str, Any] = nn.Parameter(old_model.in_proj_bias[2 * embed_dim :] ) lowercase : Dict = True break elif attribute == "position_embeddings": assert ( model.position_embeddings.weight.shape[-1] == old_model.embed_positions.weight.shape[-1] ), "Hidden size has to match" assert model.position_embeddings.weight.shape[0] == 5_12, "We want 512 position_embeddings." lowercase : Union[str, Any] = nn.Parameter(old_model.embed_positions.weight[:5_12, :] ) lowercase : Optional[int] = True break if attribute.isdigit(): lowercase : Tuple = model[int(lowerCAmelCase_ )] lowercase : Dict = old_model[int(lowerCAmelCase_ )] else: lowercase : List[Any] = getattr(lowerCAmelCase_ , lowerCAmelCase_ ) if old_attribute == "": lowercase : Optional[Any] = old_model else: if not hasattr(lowerCAmelCase_ , lowerCAmelCase_ ): raise ValueError(f'''{old_model} does not have {old_attribute}''' ) lowercase : List[Any] = getattr(lowerCAmelCase_ , lowerCAmelCase_ ) if not is_key_init: raise ValueError(f'''{key} was not correctly initialized!''' ) print(f'''Saving model to {pytorch_dump_folder_path}''' ) prophet.save_pretrained(lowerCAmelCase_ ) if __name__ == "__main__": _UpperCamelCase: Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--prophetnet_checkpoint_path', default=None, type=str, required=True, help='Path the official PyTorch dump.' ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) _UpperCamelCase: Any = parser.parse_args() convert_prophetnet_checkpoint_to_pytorch(args.prophetnet_checkpoint_path, args.pytorch_dump_folder_path)
255
'''simple docstring''' import multiprocessing from typing import TYPE_CHECKING, Optional, Union from .. import Dataset, Features, config from ..formatting import query_table from ..packaged_modules.sql.sql import Sql from ..utils import logging from .abc import AbstractDatasetInputStream if TYPE_CHECKING: import sqlitea import sqlalchemy class __magic_name__ ( _UpperCamelCase ): def __init__( self : Optional[int] ,_UpperCAmelCase : Union[str, "sqlalchemy.sql.Selectable"] ,_UpperCAmelCase : Union[str, "sqlalchemy.engine.Connection", "sqlalchemy.engine.Engine", "sqlite3.Connection"] ,_UpperCAmelCase : Optional[Features] = None ,_UpperCAmelCase : str = None ,_UpperCAmelCase : bool = False ,**_UpperCAmelCase : Dict ,): super().__init__(features=_UpperCAmelCase ,cache_dir=_UpperCAmelCase ,keep_in_memory=_UpperCAmelCase ,**_UpperCAmelCase ) _a : Tuple = Sql( cache_dir=_UpperCAmelCase ,features=_UpperCAmelCase ,sql=_UpperCAmelCase ,con=_UpperCAmelCase ,**_UpperCAmelCase ,) def __lowercase ( self : Dict ): _a : Optional[Any] = None _a : Dict = None _a : Dict = None _a : Optional[int] = None self.builder.download_and_prepare( download_config=_UpperCAmelCase ,download_mode=_UpperCAmelCase ,verification_mode=_UpperCAmelCase ,base_path=_UpperCAmelCase ,) # Build dataset for splits _a : List[str] = self.builder.as_dataset( split='train' ,verification_mode=_UpperCAmelCase ,in_memory=self.keep_in_memory ) return dataset class __magic_name__ : def __init__( self : Optional[int] ,_UpperCAmelCase : Dataset ,_UpperCAmelCase : str ,_UpperCAmelCase : Union[str, "sqlalchemy.engine.Connection", "sqlalchemy.engine.Engine", "sqlite3.Connection"] ,_UpperCAmelCase : Optional[int] = None ,_UpperCAmelCase : Optional[int] = None ,**_UpperCAmelCase : Dict ,): if num_proc is not None and num_proc <= 0: raise ValueError(F"""num_proc {num_proc} must be an integer > 0.""" ) _a : Dict = dataset _a : List[Any] = name _a : Tuple = con _a : Union[str, Any] = batch_size if batch_size else config.DEFAULT_MAX_BATCH_SIZE _a : List[Any] = num_proc _a : Tuple = to_sql_kwargs def __lowercase ( self : List[Any] ): _a : Tuple = self.to_sql_kwargs.pop('sql' ,_UpperCAmelCase ) _a : str = self.to_sql_kwargs.pop('con' ,_UpperCAmelCase ) _a : Optional[Any] = self.to_sql_kwargs.pop('index' ,_UpperCAmelCase ) _a : Any = self._write(index=_UpperCAmelCase ,**self.to_sql_kwargs ) return written def __lowercase ( self : Optional[int] ,_UpperCAmelCase : Dict ): _a , _a , _a : Any = args _a : Tuple = {**to_sql_kwargs, 'if_exists': 'append'} if offset > 0 else to_sql_kwargs _a : Dict = query_table( table=self.dataset.data ,key=slice(_UpperCAmelCase ,offset + self.batch_size ) ,indices=self.dataset._indices ,) _a : Tuple = batch.to_pandas() _a : Dict = df.to_sql(self.name ,self.con ,index=_UpperCAmelCase ,**_UpperCAmelCase ) return num_rows or len(_UpperCAmelCase ) def __lowercase ( self : int ,_UpperCAmelCase : Optional[int] ,**_UpperCAmelCase : List[Any] ): _a : Union[str, Any] = 0 if self.num_proc is None or self.num_proc == 1: for offset in logging.tqdm( range(0 ,len(self.dataset ) ,self.batch_size ) ,unit='ba' ,disable=not logging.is_progress_bar_enabled() ,desc='Creating SQL from Arrow format' ,): written += self._batch_sql((offset, index, to_sql_kwargs) ) else: _a , _a : List[Any] = len(self.dataset ), self.batch_size with multiprocessing.Pool(self.num_proc ) as pool: for num_rows in logging.tqdm( pool.imap( self._batch_sql ,[(offset, index, to_sql_kwargs) for offset in range(0 ,_UpperCAmelCase ,_UpperCAmelCase )] ,) ,total=(num_rows // batch_size) + 1 if num_rows % batch_size else num_rows // batch_size ,unit='ba' ,disable=not logging.is_progress_bar_enabled() ,desc='Creating SQL from Arrow format' ,): written += num_rows return written
89
0
import importlib.metadata import operator import re import sys from typing import Optional from packaging import version SCREAMING_SNAKE_CASE_ = { '<': operator.lt, '<=': operator.le, '==': operator.eq, '!=': operator.ne, '>=': operator.ge, '>': operator.gt, } def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: Tuple , lowerCAmelCase: Any , lowerCAmelCase: Union[str, Any] , lowerCAmelCase: int , lowerCAmelCase: Union[str, Any] , lowerCAmelCase: Tuple ) -> List[str]: if got_ver is None or want_ver is None: raise ValueError( F'Unable to compare versions for {requirement}: need={want_ver} found={got_ver}. This is unusual. Consider' F' reinstalling {pkg}.' ) if not ops[op](version.parse(lowerCAmelCase ) , version.parse(lowerCAmelCase ) ): raise ImportError( F'{requirement} is required for a normal functioning of this module, but found {pkg}=={got_ver}.{hint}' ) def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: str , lowerCAmelCase: Optional[str] = None ) -> None: _UpperCAmelCase : Dict = F'\n{hint}' if hint is not None else "" # non-versioned check if re.match(R"^[\w_\-\d]+$" , lowerCAmelCase ): _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : int = requirement, None, None else: _UpperCAmelCase : Any = re.findall(R"^([^!=<>\s]+)([\s!=<>]{1,2}.+)" , lowerCAmelCase ) if not match: raise ValueError( "requirement needs to be in the pip package format, .e.g., package_a==1.23, or package_b>=1.23, but" F' got {requirement}' ) _UpperCAmelCase , _UpperCAmelCase : List[str] = match[0] _UpperCAmelCase : List[str] = want_full.split("," ) # there could be multiple requirements _UpperCAmelCase : Dict = {} for w in want_range: _UpperCAmelCase : str = re.findall(R"^([\s!=<>]{1,2})(.+)" , lowerCAmelCase ) if not match: raise ValueError( "requirement needs to be in the pip package format, .e.g., package_a==1.23, or package_b>=1.23," F' but got {requirement}' ) _UpperCAmelCase , _UpperCAmelCase : Dict = match[0] _UpperCAmelCase : Optional[Any] = want_ver if op not in ops: raise ValueError(F'{requirement}: need one of {list(ops.keys() )}, but got {op}' ) # special case if pkg == "python": _UpperCAmelCase : Tuple = ".".join([str(lowerCAmelCase ) for x in sys.version_info[:3]] ) for op, want_ver in wanted.items(): _compare_versions(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) return # check if any version is installed try: _UpperCAmelCase : Optional[int] = importlib.metadata.version(lowerCAmelCase ) except importlib.metadata.PackageNotFoundError: raise importlib.metadata.PackageNotFoundError( F'The \'{requirement}\' distribution was not found and is required by this application. {hint}' ) # check that the right version is installed if version number or a range was provided if want_ver is not None: for op, want_ver in wanted.items(): _compare_versions(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: Any ) -> Tuple: _UpperCAmelCase : List[Any] = "Try: pip install transformers -U or pip install -e '.[dev]' if you're working with git main" return require_version(lowerCAmelCase , lowerCAmelCase )
189
from typing import Optional import torch import torch.utils.checkpoint from torch import Tensor, nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...modeling_outputs import ( BackboneOutput, BaseModelOutputWithNoAttention, BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention, ) from ...modeling_utils import PreTrainedModel from ...utils import ( add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings, ) from ...utils.backbone_utils import BackboneMixin from .configuration_resnet import ResNetConfig SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) # General docstring SCREAMING_SNAKE_CASE_ = 'ResNetConfig' # Base docstring SCREAMING_SNAKE_CASE_ = 'microsoft/resnet-50' SCREAMING_SNAKE_CASE_ = [1, 2048, 7, 7] # Image classification docstring SCREAMING_SNAKE_CASE_ = 'microsoft/resnet-50' SCREAMING_SNAKE_CASE_ = 'tiger cat' SCREAMING_SNAKE_CASE_ = [ 'microsoft/resnet-50', # See all resnet models at https://huggingface.co/models?filter=resnet ] class a ( nn.Module ): def __init__( self , A_ , A_ , A_ = 3 , A_ = 1 , A_ = "relu" ): '''simple docstring''' super().__init__() _UpperCAmelCase : Union[str, Any] = nn.Convad( A_ , A_ , kernel_size=A_ , stride=A_ , padding=kernel_size // 2 , bias=A_ ) _UpperCAmelCase : List[Any] = nn.BatchNormad(A_ ) _UpperCAmelCase : Union[str, Any] = ACTaFN[activation] if activation is not None else nn.Identity() def _UpperCAmelCase ( self , A_ ): '''simple docstring''' _UpperCAmelCase : List[Any] = self.convolution(A_ ) _UpperCAmelCase : Optional[int] = self.normalization(A_ ) _UpperCAmelCase : Optional[Any] = self.activation(A_ ) return hidden_state class a ( nn.Module ): def __init__( self , A_ ): '''simple docstring''' super().__init__() _UpperCAmelCase : Any = ResNetConvLayer( config.num_channels , config.embedding_size , kernel_size=7 , stride=2 , activation=config.hidden_act ) _UpperCAmelCase : List[str] = nn.MaxPoolad(kernel_size=3 , stride=2 , padding=1 ) _UpperCAmelCase : List[Any] = config.num_channels def _UpperCAmelCase ( self , A_ ): '''simple docstring''' _UpperCAmelCase : int = pixel_values.shape[1] if num_channels != self.num_channels: raise ValueError( "Make sure that the channel dimension of the pixel values match with the one set in the configuration." ) _UpperCAmelCase : int = self.embedder(A_ ) _UpperCAmelCase : int = self.pooler(A_ ) return embedding class a ( nn.Module ): def __init__( self , A_ , A_ , A_ = 2 ): '''simple docstring''' super().__init__() _UpperCAmelCase : Union[str, Any] = nn.Convad(A_ , A_ , kernel_size=1 , stride=A_ , bias=A_ ) _UpperCAmelCase : Optional[int] = nn.BatchNormad(A_ ) def _UpperCAmelCase ( self , A_ ): '''simple docstring''' _UpperCAmelCase : str = self.convolution(A_ ) _UpperCAmelCase : List[str] = self.normalization(A_ ) return hidden_state class a ( nn.Module ): def __init__( self , A_ , A_ , A_ = 1 , A_ = "relu" ): '''simple docstring''' super().__init__() _UpperCAmelCase : Optional[int] = in_channels != out_channels or stride != 1 _UpperCAmelCase : Dict = ( ResNetShortCut(A_ , A_ , stride=A_ ) if should_apply_shortcut else nn.Identity() ) _UpperCAmelCase : int = nn.Sequential( ResNetConvLayer(A_ , A_ , stride=A_ ) , ResNetConvLayer(A_ , A_ , activation=A_ ) , ) _UpperCAmelCase : Dict = ACTaFN[activation] def _UpperCAmelCase ( self , A_ ): '''simple docstring''' _UpperCAmelCase : Optional[Any] = hidden_state _UpperCAmelCase : Any = self.layer(A_ ) _UpperCAmelCase : Optional[int] = self.shortcut(A_ ) hidden_state += residual _UpperCAmelCase : Optional[int] = self.activation(A_ ) return hidden_state class a ( nn.Module ): def __init__( self , A_ , A_ , A_ = 1 , A_ = "relu" , A_ = 4 ): '''simple docstring''' super().__init__() _UpperCAmelCase : Optional[Any] = in_channels != out_channels or stride != 1 _UpperCAmelCase : Optional[int] = out_channels // reduction _UpperCAmelCase : List[str] = ( ResNetShortCut(A_ , A_ , stride=A_ ) if should_apply_shortcut else nn.Identity() ) _UpperCAmelCase : Dict = nn.Sequential( ResNetConvLayer(A_ , A_ , kernel_size=1 ) , ResNetConvLayer(A_ , A_ , stride=A_ ) , ResNetConvLayer(A_ , A_ , kernel_size=1 , activation=A_ ) , ) _UpperCAmelCase : List[str] = ACTaFN[activation] def _UpperCAmelCase ( self , A_ ): '''simple docstring''' _UpperCAmelCase : List[Any] = hidden_state _UpperCAmelCase : List[str] = self.layer(A_ ) _UpperCAmelCase : List[str] = self.shortcut(A_ ) hidden_state += residual _UpperCAmelCase : Dict = self.activation(A_ ) return hidden_state class a ( nn.Module ): def __init__( self , A_ , A_ , A_ , A_ = 2 , A_ = 2 , ): '''simple docstring''' super().__init__() _UpperCAmelCase : Any = ResNetBottleNeckLayer if config.layer_type == "bottleneck" else ResNetBasicLayer _UpperCAmelCase : Optional[Any] = nn.Sequential( # downsampling is done in the first layer with stride of 2 layer(A_ , A_ , stride=A_ , activation=config.hidden_act ) , *[layer(A_ , A_ , activation=config.hidden_act ) for _ in range(depth - 1 )] , ) def _UpperCAmelCase ( self , A_ ): '''simple docstring''' _UpperCAmelCase : List[Any] = input for layer in self.layers: _UpperCAmelCase : Optional[Any] = layer(A_ ) return hidden_state class a ( nn.Module ): def __init__( self , A_ ): '''simple docstring''' super().__init__() _UpperCAmelCase : Any = nn.ModuleList([] ) # based on `downsample_in_first_stage` the first layer of the first stage may or may not downsample the input self.stages.append( ResNetStage( A_ , config.embedding_size , config.hidden_sizes[0] , stride=2 if config.downsample_in_first_stage else 1 , depth=config.depths[0] , ) ) _UpperCAmelCase : Union[str, Any] = zip(config.hidden_sizes , config.hidden_sizes[1:] ) for (in_channels, out_channels), depth in zip(A_ , config.depths[1:] ): self.stages.append(ResNetStage(A_ , A_ , A_ , depth=A_ ) ) def _UpperCAmelCase ( self , A_ , A_ = False , A_ = True ): '''simple docstring''' _UpperCAmelCase : List[Any] = () if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: _UpperCAmelCase : Dict = hidden_states + (hidden_state,) _UpperCAmelCase : str = stage_module(A_ ) if output_hidden_states: _UpperCAmelCase : int = hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None ) return BaseModelOutputWithNoAttention( last_hidden_state=A_ , hidden_states=A_ , ) class a ( UpperCAmelCase ): _lowercase = ResNetConfig _lowercase = "resnet" _lowercase = "pixel_values" _lowercase = True def _UpperCAmelCase ( self , A_ ): '''simple docstring''' if isinstance(A_ , nn.Convad ): nn.init.kaiming_normal_(module.weight , mode="fan_out" , nonlinearity="relu" ) elif isinstance(A_ , (nn.BatchNormad, nn.GroupNorm) ): nn.init.constant_(module.weight , 1 ) nn.init.constant_(module.bias , 0 ) def _UpperCAmelCase ( self , A_ , A_=False ): '''simple docstring''' if isinstance(A_ , A_ ): _UpperCAmelCase : Optional[Any] = value SCREAMING_SNAKE_CASE_ = R'\n This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it\n as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and\n behavior.\n\n Parameters:\n config ([`ResNetConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.\n' SCREAMING_SNAKE_CASE_ = R'\n Args:\n pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See\n [`ConvNextImageProcessor.__call__`] for details.\n\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for\n more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.\n' @add_start_docstrings( "The bare ResNet model outputting raw features without any specific head on top." , UpperCAmelCase , ) class a ( UpperCAmelCase ): def __init__( self , A_ ): '''simple docstring''' super().__init__(A_ ) _UpperCAmelCase : List[str] = config _UpperCAmelCase : Any = ResNetEmbeddings(A_ ) _UpperCAmelCase : str = ResNetEncoder(A_ ) _UpperCAmelCase : Any = nn.AdaptiveAvgPoolad((1, 1) ) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(A_ ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=A_ , config_class=_CONFIG_FOR_DOC , modality="vision" , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def _UpperCAmelCase ( self , A_ , A_ = None , A_ = None ): '''simple docstring''' _UpperCAmelCase : Optional[int] = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) _UpperCAmelCase : List[str] = return_dict if return_dict is not None else self.config.use_return_dict _UpperCAmelCase : List[Any] = self.embedder(A_ ) _UpperCAmelCase : str = self.encoder( A_ , output_hidden_states=A_ , return_dict=A_ ) _UpperCAmelCase : List[Any] = encoder_outputs[0] _UpperCAmelCase : int = self.pooler(A_ ) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=A_ , pooler_output=A_ , hidden_states=encoder_outputs.hidden_states , ) @add_start_docstrings( "\n ResNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n " , UpperCAmelCase , ) class a ( UpperCAmelCase ): def __init__( self , A_ ): '''simple docstring''' super().__init__(A_ ) _UpperCAmelCase : Optional[int] = config.num_labels _UpperCAmelCase : str = ResNetModel(A_ ) # classification head _UpperCAmelCase : int = nn.Sequential( nn.Flatten() , nn.Linear(config.hidden_sizes[-1] , config.num_labels ) if config.num_labels > 0 else nn.Identity() , ) # initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(A_ ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=A_ , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def _UpperCAmelCase ( self , A_ = None , A_ = None , A_ = None , A_ = None , ): '''simple docstring''' _UpperCAmelCase : Optional[int] = return_dict if return_dict is not None else self.config.use_return_dict _UpperCAmelCase : Tuple = self.resnet(A_ , output_hidden_states=A_ , return_dict=A_ ) _UpperCAmelCase : Optional[int] = outputs.pooler_output if return_dict else outputs[1] _UpperCAmelCase : int = self.classifier(A_ ) _UpperCAmelCase : Dict = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: _UpperCAmelCase : Optional[Any] = "regression" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): _UpperCAmelCase : Optional[Any] = "single_label_classification" else: _UpperCAmelCase : Any = "multi_label_classification" if self.config.problem_type == "regression": _UpperCAmelCase : str = MSELoss() if self.num_labels == 1: _UpperCAmelCase : Any = loss_fct(logits.squeeze() , labels.squeeze() ) else: _UpperCAmelCase : Optional[int] = loss_fct(A_ , A_ ) elif self.config.problem_type == "single_label_classification": _UpperCAmelCase : Any = CrossEntropyLoss() _UpperCAmelCase : Any = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": _UpperCAmelCase : Any = BCEWithLogitsLoss() _UpperCAmelCase : Tuple = loss_fct(A_ , A_ ) if not return_dict: _UpperCAmelCase : Any = (logits,) + outputs[2:] return (loss,) + output if loss is not None else output return ImageClassifierOutputWithNoAttention(loss=A_ , logits=A_ , hidden_states=outputs.hidden_states ) @add_start_docstrings( "\n ResNet backbone, to be used with frameworks like DETR and MaskFormer.\n " , UpperCAmelCase , ) class a ( UpperCAmelCase , UpperCAmelCase ): def __init__( self , A_ ): '''simple docstring''' super().__init__(A_ ) super()._init_backbone(A_ ) _UpperCAmelCase : Optional[int] = [config.embedding_size] + config.hidden_sizes _UpperCAmelCase : str = ResNetEmbeddings(A_ ) _UpperCAmelCase : List[Any] = ResNetEncoder(A_ ) # initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(A_ ) @replace_return_docstrings(output_type=A_ , config_class=_CONFIG_FOR_DOC ) def _UpperCAmelCase ( self , A_ , A_ = None , A_ = None ): '''simple docstring''' _UpperCAmelCase : Tuple = return_dict if return_dict is not None else self.config.use_return_dict _UpperCAmelCase : Tuple = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) _UpperCAmelCase : Tuple = self.embedder(A_ ) _UpperCAmelCase : Optional[int] = self.encoder(A_ , output_hidden_states=A_ , return_dict=A_ ) _UpperCAmelCase : Optional[int] = outputs.hidden_states _UpperCAmelCase : Any = () for idx, stage in enumerate(self.stage_names ): if stage in self.out_features: feature_maps += (hidden_states[idx],) if not return_dict: _UpperCAmelCase : Union[str, Any] = (feature_maps,) if output_hidden_states: output += (outputs.hidden_states,) return output return BackboneOutput( feature_maps=A_ , hidden_states=outputs.hidden_states if output_hidden_states else None , attentions=A_ , )
189
1
from math import sqrt def snake_case__ ( SCREAMING_SNAKE_CASE_ : int ): '''simple docstring''' lowercase__ : List[str] = 0 for i in range(1 , int(sqrt(SCREAMING_SNAKE_CASE_ ) + 1 ) ): if n % i == 0 and i != sqrt(SCREAMING_SNAKE_CASE_ ): total += i + n // i elif i == sqrt(SCREAMING_SNAKE_CASE_ ): total += i return total - n def snake_case__ ( SCREAMING_SNAKE_CASE_ : int = 10_000 ): '''simple docstring''' lowercase__ : Union[str, Any] = sum( i for i in range(1 , SCREAMING_SNAKE_CASE_ ) if sum_of_divisors(sum_of_divisors(SCREAMING_SNAKE_CASE_ ) ) == i and sum_of_divisors(SCREAMING_SNAKE_CASE_ ) != i ) return total if __name__ == "__main__": print(solution(int(str(input()).strip())))
214
def snake_case__ ( SCREAMING_SNAKE_CASE_ : str ): '''simple docstring''' if not all(x.isalpha() for x in string ): raise ValueError('String must only contain alphabetic characters.' ) lowercase__ : Optional[int] = sorted(string.lower() ) return len(SCREAMING_SNAKE_CASE_ ) == len(set(SCREAMING_SNAKE_CASE_ ) ) if __name__ == "__main__": snake_case_ = input('''Enter a string ''').strip() snake_case_ = is_isogram(input_str) print(F'''{input_str} is {'an' if isogram else 'not an'} isogram.''')
214
1
from typing import Tuple, Union from ...modeling_outputs import BackboneOutput from ...modeling_utils import PreTrainedModel from ...utils import is_timm_available, is_torch_available, requires_backends from ...utils.backbone_utils import BackboneMixin from .configuration_timm_backbone import TimmBackboneConfig if is_timm_available(): import timm if is_torch_available(): from torch import Tensor class __a ( __UpperCamelCase ,__UpperCamelCase ): __snake_case : Union[str, Any] = """pixel_values""" __snake_case : Optional[Any] = False __snake_case : Dict = TimmBackboneConfig def __init__( self : List[str] , UpperCAmelCase : int , **UpperCAmelCase : List[str] ): requires_backends(self , """timm""" ) super().__init__(UpperCAmelCase ) lowerCAmelCase_ : List[Any] = config if config.backbone is None: raise ValueError("""backbone is not set in the config. Please set it to a timm model name.""" ) if config.backbone not in timm.list_models(): raise ValueError(F'backbone {config.backbone} is not supported by timm.' ) if hasattr(UpperCAmelCase , """out_features""" ) and config.out_features is not None: raise ValueError("""out_features is not supported by TimmBackbone. Please use out_indices instead.""" ) lowerCAmelCase_ : List[str] = getattr(UpperCAmelCase , """use_pretrained_backbone""" , UpperCAmelCase ) if pretrained is None: raise ValueError("""use_pretrained_backbone is not set in the config. Please set it to True or False.""" ) # We just take the final layer by default. This matches the default for the transformers models. lowerCAmelCase_ : str = config.out_indices if getattr(UpperCAmelCase , """out_indices""" , UpperCAmelCase ) is not None else (-1,) lowerCAmelCase_ : Optional[int] = timm.create_model( config.backbone , pretrained=UpperCAmelCase , features_only=config.features_only , in_chans=config.num_channels , out_indices=UpperCAmelCase , **UpperCAmelCase , ) # These are used to control the output of the model when called. If output_hidden_states is True, then # return_layers is modified to include all layers. lowerCAmelCase_ : Union[str, Any] = self._backbone.return_layers lowerCAmelCase_ : Dict = {layer["""module"""]: str(UpperCAmelCase ) for i, layer in enumerate(self._backbone.feature_info.info )} super()._init_backbone(UpperCAmelCase ) @classmethod def A ( cls : Dict , UpperCAmelCase : Union[str, Any] , *UpperCAmelCase : List[Any] , **UpperCAmelCase : Dict ): requires_backends(cls , ["""vision""", """timm"""] ) from ...models.timm_backbone import TimmBackboneConfig lowerCAmelCase_ : Optional[Any] = kwargs.pop("""config""" , TimmBackboneConfig() ) lowerCAmelCase_ : Union[str, Any] = kwargs.pop("""use_timm_backbone""" , UpperCAmelCase ) if not use_timm: raise ValueError("""use_timm_backbone must be True for timm backbones""" ) lowerCAmelCase_ : Union[str, Any] = kwargs.pop("""num_channels""" , config.num_channels ) lowerCAmelCase_ : Tuple = kwargs.pop("""features_only""" , config.features_only ) lowerCAmelCase_ : List[str] = kwargs.pop("""use_pretrained_backbone""" , config.use_pretrained_backbone ) lowerCAmelCase_ : Optional[Any] = kwargs.pop("""out_indices""" , config.out_indices ) lowerCAmelCase_ : Optional[Any] = TimmBackboneConfig( backbone=UpperCAmelCase , num_channels=UpperCAmelCase , features_only=UpperCAmelCase , use_pretrained_backbone=UpperCAmelCase , out_indices=UpperCAmelCase , ) return super()._from_config(UpperCAmelCase , **UpperCAmelCase ) def A ( self : Union[str, Any] , UpperCAmelCase : Union[str, Any] ): pass def A ( self : Union[str, Any] , UpperCAmelCase : List[Any] , UpperCAmelCase : Optional[Any]=None , UpperCAmelCase : List[Any]=None , UpperCAmelCase : int=None , **UpperCAmelCase : Any ): lowerCAmelCase_ : int = return_dict if return_dict is not None else self.config.use_return_dict lowerCAmelCase_ : Dict = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) lowerCAmelCase_ : Any = output_attentions if output_attentions is not None else self.config.output_attentions if output_attentions: raise ValueError("""Cannot output attentions for timm backbones at the moment""" ) if output_hidden_states: # We modify the return layers to include all the stages of the backbone lowerCAmelCase_ : Optional[Any] = self._all_layers lowerCAmelCase_ : List[Any] = self._backbone(UpperCAmelCase , **UpperCAmelCase ) lowerCAmelCase_ : str = self._return_layers lowerCAmelCase_ : Any = tuple(hidden_states[i] for i in self.out_indices ) else: lowerCAmelCase_ : Tuple = self._backbone(UpperCAmelCase , **UpperCAmelCase ) lowerCAmelCase_ : Optional[int] = None lowerCAmelCase_ : List[str] = tuple(UpperCAmelCase ) lowerCAmelCase_ : int = tuple(UpperCAmelCase ) if hidden_states is not None else None if not return_dict: lowerCAmelCase_ : Optional[Any] = (feature_maps,) if output_hidden_states: lowerCAmelCase_ : Tuple = output + (hidden_states,) return output return BackboneOutput(feature_maps=UpperCAmelCase , hidden_states=UpperCAmelCase , attentions=UpperCAmelCase )
350
from collections import OrderedDict from typing import Any, List, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import logging __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = { 'EleutherAI/gpt-j-6B': 'https://huggingface.co/EleutherAI/gpt-j-6B/resolve/main/config.json', # See all GPT-J models at https://huggingface.co/models?filter=gpt_j } class __a ( __UpperCamelCase ): __snake_case : Union[str, Any] = """gptj""" __snake_case : int = { """max_position_embeddings""": """n_positions""", """hidden_size""": """n_embd""", """num_attention_heads""": """n_head""", """num_hidden_layers""": """n_layer""", } def __init__( self : List[str] , UpperCAmelCase : Optional[int]=5_04_00 , UpperCAmelCase : Optional[int]=20_48 , UpperCAmelCase : str=40_96 , UpperCAmelCase : Any=28 , UpperCAmelCase : Dict=16 , UpperCAmelCase : List[str]=64 , UpperCAmelCase : int=None , UpperCAmelCase : Union[str, Any]="gelu_new" , UpperCAmelCase : Tuple=0.0 , UpperCAmelCase : Dict=0.0 , UpperCAmelCase : str=0.0 , UpperCAmelCase : Optional[Any]=1e-5 , UpperCAmelCase : List[Any]=0.02 , UpperCAmelCase : Optional[int]=True , UpperCAmelCase : Dict=5_02_56 , UpperCAmelCase : int=5_02_56 , UpperCAmelCase : Tuple=False , **UpperCAmelCase : Any , ): lowerCAmelCase_ : Tuple = vocab_size lowerCAmelCase_ : Union[str, Any] = n_positions lowerCAmelCase_ : Union[str, Any] = n_embd lowerCAmelCase_ : List[Any] = n_layer lowerCAmelCase_ : List[Any] = n_head lowerCAmelCase_ : Tuple = n_inner lowerCAmelCase_ : Optional[Any] = rotary_dim lowerCAmelCase_ : str = activation_function lowerCAmelCase_ : str = resid_pdrop lowerCAmelCase_ : List[Any] = embd_pdrop lowerCAmelCase_ : Dict = attn_pdrop lowerCAmelCase_ : Any = layer_norm_epsilon lowerCAmelCase_ : Optional[int] = initializer_range lowerCAmelCase_ : Optional[int] = use_cache lowerCAmelCase_ : Optional[int] = bos_token_id lowerCAmelCase_ : Any = eos_token_id super().__init__( bos_token_id=UpperCAmelCase , eos_token_id=UpperCAmelCase , tie_word_embeddings=UpperCAmelCase , **UpperCAmelCase ) class __a ( __UpperCamelCase ): def __init__( self : Any , UpperCAmelCase : PretrainedConfig , UpperCAmelCase : str = "default" , UpperCAmelCase : List[PatchingSpec] = None , UpperCAmelCase : bool = False , ): super().__init__(UpperCAmelCase , task=UpperCAmelCase , patching_specs=UpperCAmelCase , use_past=UpperCAmelCase ) if not getattr(self._config , """pad_token_id""" , UpperCAmelCase ): # TODO: how to do that better? lowerCAmelCase_ : List[Any] = 0 @property def A ( self : List[Any] ): lowerCAmelCase_ : Optional[int] = OrderedDict({"""input_ids""": {0: """batch""", 1: """sequence"""}} ) if self.use_past: self.fill_with_past_key_values_(UpperCAmelCase , direction="""inputs""" ) lowerCAmelCase_ : Any = {0: """batch""", 1: """past_sequence + sequence"""} else: lowerCAmelCase_ : List[Any] = {0: """batch""", 1: """sequence"""} return common_inputs @property def A ( self : Union[str, Any] ): return self._config.n_layer @property def A ( self : Optional[Any] ): return self._config.n_head def A ( self : Optional[Any] , UpperCAmelCase : PreTrainedTokenizer , UpperCAmelCase : int = -1 , UpperCAmelCase : int = -1 , UpperCAmelCase : bool = False , UpperCAmelCase : Optional[TensorType] = None , ): lowerCAmelCase_ : Optional[Any] = super(UpperCAmelCase , self ).generate_dummy_inputs( UpperCAmelCase , batch_size=UpperCAmelCase , seq_length=UpperCAmelCase , is_pair=UpperCAmelCase , framework=UpperCAmelCase ) # We need to order the input in the way they appears in the forward() lowerCAmelCase_ : List[Any] = OrderedDict({"""input_ids""": common_inputs["""input_ids"""]} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError("""Cannot generate dummy past_keys inputs without PyTorch installed.""" ) else: import torch lowerCAmelCase_ , lowerCAmelCase_ : int = common_inputs["""input_ids"""].shape # Not using the same length for past_key_values lowerCAmelCase_ : Optional[Any] = seqlen + 2 lowerCAmelCase_ : Optional[int] = ( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) lowerCAmelCase_ : Optional[int] = [ (torch.zeros(UpperCAmelCase ), torch.zeros(UpperCAmelCase )) for _ in range(self.num_layers ) ] lowerCAmelCase_ : Dict = common_inputs["""attention_mask"""] if self.use_past: lowerCAmelCase_ : Union[str, Any] = ordered_inputs["""attention_mask"""].dtype lowerCAmelCase_ : str = torch.cat( [ordered_inputs["""attention_mask"""], torch.ones(UpperCAmelCase , UpperCAmelCase , dtype=UpperCAmelCase )] , dim=1 ) return ordered_inputs @property def A ( self : Optional[int] ): return 13
28
0
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __lowerCamelCase = logging.get_logger(__name__) __lowerCamelCase = { """junnyu/roformer_chinese_small""": """https://huggingface.co/junnyu/roformer_chinese_small/resolve/main/config.json""", """junnyu/roformer_chinese_base""": """https://huggingface.co/junnyu/roformer_chinese_base/resolve/main/config.json""", """junnyu/roformer_chinese_char_small""": ( """https://huggingface.co/junnyu/roformer_chinese_char_small/resolve/main/config.json""" ), """junnyu/roformer_chinese_char_base""": ( """https://huggingface.co/junnyu/roformer_chinese_char_base/resolve/main/config.json""" ), """junnyu/roformer_small_discriminator""": ( """https://huggingface.co/junnyu/roformer_small_discriminator/resolve/main/config.json""" ), """junnyu/roformer_small_generator""": ( """https://huggingface.co/junnyu/roformer_small_generator/resolve/main/config.json""" ), # See all RoFormer models at https://huggingface.co/models?filter=roformer } class UpperCAmelCase ( A_ ): A__ : Tuple = "roformer" def __init__(self : int , snake_case__ : Optional[Any]=5_00_00 , snake_case__ : Optional[int]=None , snake_case__ : Any=7_68 , snake_case__ : Optional[int]=12 , snake_case__ : Optional[int]=12 , snake_case__ : Union[str, Any]=30_72 , snake_case__ : Optional[int]="gelu" , snake_case__ : int=0.1 , snake_case__ : Dict=0.1 , snake_case__ : Tuple=15_36 , snake_case__ : List[str]=2 , snake_case__ : str=0.02 , snake_case__ : Dict=1e-12 , snake_case__ : Any=0 , snake_case__ : str=False , snake_case__ : Dict=True , **snake_case__ : Optional[Any] , ) -> Dict: '''simple docstring''' super().__init__(pad_token_id=snake_case__ , **snake_case__ ) snake_case : List[Any] = vocab_size snake_case : Any = hidden_size if embedding_size is None else embedding_size snake_case : Tuple = hidden_size snake_case : str = num_hidden_layers snake_case : int = num_attention_heads snake_case : Optional[int] = hidden_act snake_case : Optional[int] = intermediate_size snake_case : int = hidden_dropout_prob snake_case : List[str] = attention_probs_dropout_prob snake_case : str = max_position_embeddings snake_case : Union[str, Any] = type_vocab_size snake_case : List[Any] = initializer_range snake_case : Optional[int] = layer_norm_eps snake_case : Optional[Any] = rotary_value snake_case : Union[str, Any] = use_cache class UpperCAmelCase ( A_ ): @property def _SCREAMING_SNAKE_CASE (self : Optional[int] ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' if self.task == "multiple-choice": snake_case : Any = {0: "batch", 1: "choice", 2: "sequence"} else: snake_case : Tuple = {0: "batch", 1: "sequence"} snake_case : str = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ("token_type_ids", dynamic_axis), ] )
59
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __lowerCamelCase = {"""configuration_xglm""": ["""XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP""", """XGLMConfig"""]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase = ["""XGLMTokenizer"""] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase = ["""XGLMTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase = [ """XGLM_PRETRAINED_MODEL_ARCHIVE_LIST""", """XGLMForCausalLM""", """XGLMModel""", """XGLMPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase = [ """FlaxXGLMForCausalLM""", """FlaxXGLMModel""", """FlaxXGLMPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase = [ """TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFXGLMForCausalLM""", """TFXGLMModel""", """TFXGLMPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_xglm import XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XGLMConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm import XGLMTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm_fast import XGLMTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xglm import XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, XGLMForCausalLM, XGLMModel, XGLMPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_xglm import FlaxXGLMForCausalLM, FlaxXGLMModel, FlaxXGLMPreTrainedModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, TFXGLMPreTrainedModel, ) else: import sys __lowerCamelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure)
59
1
"""simple docstring""" from manim import * class snake_case__ ( snake_case_ ): def a__ ( self ): __a = Rectangle(height=0.5 , width=0.5 ) __a = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 ) __a = Rectangle(height=0.25 , width=0.25 ) __a = [mem.copy() for i in range(6 )] __a = [mem.copy() for i in range(6 )] __a = VGroup(*lowerCamelCase ).arrange(lowerCamelCase , buff=0 ) __a = VGroup(*lowerCamelCase ).arrange(lowerCamelCase , buff=0 ) __a = VGroup(lowerCamelCase , lowerCamelCase ).arrange(lowerCamelCase , buff=0 ) __a = Text("CPU" , font_size=24 ) __a = Group(lowerCamelCase , lowerCamelCase ).arrange(lowerCamelCase , buff=0.5 , aligned_edge=lowerCamelCase ) cpu.move_to([-2.5, -0.5, 0] ) self.add(lowerCamelCase ) __a = [mem.copy() for i in range(4 )] __a = VGroup(*lowerCamelCase ).arrange(lowerCamelCase , buff=0 ) __a = Text("GPU" , font_size=24 ) __a = Group(lowerCamelCase , lowerCamelCase ).arrange(lowerCamelCase , buff=0.5 , aligned_edge=lowerCamelCase ) gpu.move_to([-1, -1, 0] ) self.add(lowerCamelCase ) __a = [mem.copy() for i in range(6 )] __a = VGroup(*lowerCamelCase ).arrange(lowerCamelCase , buff=0 ) __a = Text("Model" , font_size=24 ) __a = Group(lowerCamelCase , lowerCamelCase ).arrange(lowerCamelCase , buff=0.5 , aligned_edge=lowerCamelCase ) model.move_to([3, -1.0, 0] ) self.add(lowerCamelCase ) __a = [] __a = [] for i, rect in enumerate(lowerCamelCase ): __a = fill.copy().set_fill(lowerCamelCase , opacity=0.8 ) target.move_to(lowerCamelCase ) model_arr.append(lowerCamelCase ) __a = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0.0 ).set_fill(lowerCamelCase , opacity=0.8 ) cpu_target.move_to(cpu_left_col_base[i] ) model_cpu_arr.append(lowerCamelCase ) self.add(*lowerCamelCase , *lowerCamelCase ) __a = [meta_mem.copy() for i in range(6 )] __a = [meta_mem.copy() for i in range(6 )] __a = VGroup(*lowerCamelCase ).arrange(lowerCamelCase , buff=0 ) __a = VGroup(*lowerCamelCase ).arrange(lowerCamelCase , buff=0 ) __a = VGroup(lowerCamelCase , lowerCamelCase ).arrange(lowerCamelCase , buff=0 ) __a = Text("Disk" , font_size=24 ) __a = Group(lowerCamelCase , lowerCamelCase ).arrange(lowerCamelCase , buff=0.5 , aligned_edge=lowerCamelCase ) disk.move_to([-4, -1.25, 0] ) self.add(lowerCamelCase , lowerCamelCase ) __a = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) __a = MarkupText( F"<b>Key:</b>\n\n<span fgcolor='{YELLOW}'>●</span> Empty Model" , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) self.add(lowerCamelCase , lowerCamelCase ) __a = MarkupText( F"<span fgcolor='{BLUE}'>●</span> Checkpoint" , font_size=18 , ) blue_text.next_to(lowerCamelCase , DOWN * 2.4 , aligned_edge=key_text.get_left() ) self.add(lowerCamelCase ) __a = MarkupText( F"Now watch as an input is passed through the model\nand how the memory is utilized and handled." , font_size=24 , ) step_a.move_to([2, 2, 0] ) self.play(Write(lowerCamelCase ) ) __a = Square(0.3 ) input.set_fill(lowerCamelCase , opacity=1.0 ) input.set_stroke(width=0.0 ) input.next_to(model_base[0] , lowerCamelCase , buff=0.5 ) self.play(Write(lowerCamelCase ) ) input.generate_target() input.target.next_to(model_arr[0] , direction=lowerCamelCase , buff=0.02 ) self.play(MoveToTarget(lowerCamelCase ) ) self.play(FadeOut(lowerCamelCase ) ) __a = Arrow(start=lowerCamelCase , end=lowerCamelCase , color=lowerCamelCase , buff=0.5 ) a.next_to(model_arr[0].get_left() , lowerCamelCase , buff=0.2 ) model_cpu_arr[0].generate_target() model_cpu_arr[0].target.move_to(gpu_rect[0] ) __a = MarkupText( F"As the input reaches a layer, the hook triggers\nand weights are moved from the CPU\nto the GPU and back." , font_size=24 , ) step_a.move_to([2, 2, 0] ) self.play(Write(lowerCamelCase , run_time=3 ) ) __a = {"run_time": 1, "fade_in": True, "fade_out": True, "buff": 0.02} self.play( Write(lowerCamelCase ) , Circumscribe(model_arr[0] , color=lowerCamelCase , **lowerCamelCase ) , Circumscribe(model_cpu_arr[0] , color=lowerCamelCase , **lowerCamelCase ) , Circumscribe(gpu_rect[0] , color=lowerCamelCase , **lowerCamelCase ) , ) self.play(MoveToTarget(model_cpu_arr[0] ) ) __a = a.copy() for i in range(6 ): a_c.next_to(model_arr[i].get_right() + 0.02 , lowerCamelCase , buff=0.2 ) input.generate_target() input.target.move_to(model_arr[i].get_right() + 0.02 ) __a = AnimationGroup( FadeOut(lowerCamelCase , run_time=0.5 ) , MoveToTarget(lowerCamelCase , run_time=0.5 ) , FadeIn(lowerCamelCase , run_time=0.5 ) , lag_ratio=0.2 ) self.play(lowerCamelCase ) model_cpu_arr[i].generate_target() model_cpu_arr[i].target.move_to(cpu_left_col_base[i] ) if i < 5: model_cpu_arr[i + 1].generate_target() model_cpu_arr[i + 1].target.move_to(gpu_rect[0] ) if i >= 1: __a = 0.7 self.play( Circumscribe(model_arr[i] , **lowerCamelCase ) , Circumscribe(cpu_left_col_base[i] , **lowerCamelCase ) , Circumscribe(cpu_left_col_base[i + 1] , color=lowerCamelCase , **lowerCamelCase ) , Circumscribe(gpu_rect[0] , color=lowerCamelCase , **lowerCamelCase ) , Circumscribe(model_arr[i + 1] , color=lowerCamelCase , **lowerCamelCase ) , ) if i < 1: self.play( MoveToTarget(model_cpu_arr[i] ) , MoveToTarget(model_cpu_arr[i + 1] ) , ) else: self.play( MoveToTarget(model_cpu_arr[i] , run_time=0.7 ) , MoveToTarget(model_cpu_arr[i + 1] , run_time=0.7 ) , ) else: model_cpu_arr[i].generate_target() model_cpu_arr[i].target.move_to(cpu_left_col_base[-1] ) input.generate_target() input.target.next_to(model_arr[-1].get_right() , RIGHT + 0.02 , buff=0.2 ) self.play( Circumscribe(model_arr[-1] , color=lowerCamelCase , **lowerCamelCase ) , Circumscribe(cpu_left_col_base[-1] , color=lowerCamelCase , **lowerCamelCase ) , Circumscribe(gpu_rect[0] , color=lowerCamelCase , **lowerCamelCase ) , ) self.play(MoveToTarget(model_cpu_arr[i] ) ) __a = a_c __a = a_c.copy() input.generate_target() input.target.next_to(model_base[-1] , RIGHT + 0.02 , buff=0.5 ) self.play( FadeOut(lowerCamelCase ) , FadeOut(lowerCamelCase , run_time=0.5 ) , ) __a = MarkupText(F"Inference on a model too large for GPU memory\nis successfully completed." , font_size=24 ) step_a.move_to([2, 2, 0] ) self.play(Write(lowerCamelCase , run_time=3 ) , MoveToTarget(lowerCamelCase ) ) self.wait()
268
"""simple docstring""" import os import random import sys from . import cryptomath_module as cryptomath from . import rabin_miller SCREAMING_SNAKE_CASE__:List[str] = 3 def _lowerCamelCase( a ): print("Generating primitive root of p" ) while True: __a = random.randrange(3 , a ) if pow(a , 2 , a ) == 1: continue if pow(a , a , a ) == 1: continue return g def _lowerCamelCase( a ): print("Generating prime p..." ) __a = rabin_miller.generate_large_prime(a ) # select large prime number. __a = primitive_root(a ) # one primitive root on modulo p. __a = random.randrange(3 , a ) # private_key -> have to be greater than 2 for safety. __a = cryptomath.find_mod_inverse(pow(a , a , a ) , a ) __a = (key_size, e_a, e_a, p) __a = (key_size, d) return public_key, private_key def _lowerCamelCase( a , a ): if os.path.exists(F"{name}_pubkey.txt" ) or os.path.exists(F"{name}_privkey.txt" ): print("\nWARNING:" ) print( F"\"{name}_pubkey.txt\" or \"{name}_privkey.txt\" already exists. \n" "Use a different name or delete these files and re-run this program." ) sys.exit() __a , __a = generate_key(a ) print(F"\nWriting public key to file {name}_pubkey.txt..." ) with open(F"{name}_pubkey.txt" , "w" ) as fo: fo.write(F"{public_key[0]},{public_key[1]},{public_key[2]},{public_key[3]}" ) print(F"Writing private key to file {name}_privkey.txt..." ) with open(F"{name}_privkey.txt" , "w" ) as fo: fo.write(F"{private_key[0]},{private_key[1]}" ) def _lowerCamelCase( ): print("Making key files..." ) make_key_files("elgamal" , 2_0_4_8 ) print("Key files generation successful" ) if __name__ == "__main__": main()
268
1
'''simple docstring''' def lowercase__( __UpperCamelCase: list ,__UpperCamelCase: int = 0 ): """simple docstring""" SCREAMING_SNAKE_CASE : int = length or len(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE : str = False for i in range(length - 1 ): if list_data[i] > list_data[i + 1]: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : str = list_data[i + 1], list_data[i] SCREAMING_SNAKE_CASE : Any = True return list_data if not swapped else bubble_sort(SCREAMING_SNAKE_CASE__ ,length - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
251
'''simple docstring''' import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import SPIECE_UNDERLINE, logging UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = {'vocab_file': 'spiece.model'} UpperCAmelCase_ = { 'vocab_file': { 'TsinghuaAI/CPM-Generate': 'https://huggingface.co/TsinghuaAI/CPM-Generate/resolve/main/spiece.model', } } class lowerCAmelCase_ ( lowerCamelCase_ ): '''simple docstring''' def __init__( self : Dict , _UpperCAmelCase : str , _UpperCAmelCase : Any=False , _UpperCAmelCase : int=True , _UpperCAmelCase : Union[str, Any]=False , _UpperCAmelCase : Dict="<s>" , _UpperCAmelCase : int="</s>" , _UpperCAmelCase : Dict="<unk>" , _UpperCAmelCase : Tuple="<sep>" , _UpperCAmelCase : List[Any]="<pad>" , _UpperCAmelCase : int="<cls>" , _UpperCAmelCase : Union[str, Any]="<mask>" , _UpperCAmelCase : List[str]=["<eop>", "<eod>"] , _UpperCAmelCase : Optional[Dict[str, Any]] = None , **_UpperCAmelCase : int , ): """simple docstring""" UpperCAmelCase__ = AddedToken(_UpperCAmelCase , lstrip=_UpperCAmelCase , rstrip=_UpperCAmelCase ) if isinstance(_UpperCAmelCase , _UpperCAmelCase ) else mask_token UpperCAmelCase__ = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=_UpperCAmelCase , remove_space=_UpperCAmelCase , keep_accents=_UpperCAmelCase , bos_token=_UpperCAmelCase , eos_token=_UpperCAmelCase , unk_token=_UpperCAmelCase , sep_token=_UpperCAmelCase , pad_token=_UpperCAmelCase , cls_token=_UpperCAmelCase , mask_token=_UpperCAmelCase , additional_special_tokens=_UpperCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **_UpperCAmelCase , ) UpperCAmelCase__ = 3 UpperCAmelCase__ = do_lower_case UpperCAmelCase__ = remove_space UpperCAmelCase__ = keep_accents UpperCAmelCase__ = vocab_file UpperCAmelCase__ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(_UpperCAmelCase ) try: import jieba except ModuleNotFoundError as error: raise error.__class__( """You need to install jieba to use CpmTokenizer or CpmTokenizerFast. """ """See https://pypi.org/project/jieba/ for installation.""" ) UpperCAmelCase__ = jieba UpperCAmelCase__ = str.maketrans(""" \n""" , """\u2582\u2583""" ) @property # Copied from transformers.models.xlnet.tokenization_xlnet.XLNetTokenizer.vocab_size def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ): """simple docstring""" return len(self.sp_model ) def SCREAMING_SNAKE_CASE__ ( self : List[str] ): """simple docstring""" UpperCAmelCase__ = {self.convert_ids_to_tokens(_UpperCAmelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : Dict ): """simple docstring""" UpperCAmelCase__ = self.__dict__.copy() UpperCAmelCase__ = None return state def __setstate__( self : Union[str, Any] , _UpperCAmelCase : Union[str, Any] ): """simple docstring""" UpperCAmelCase__ = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): UpperCAmelCase__ = {} UpperCAmelCase__ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def SCREAMING_SNAKE_CASE__ ( self : int , _UpperCAmelCase : Optional[Any] ): """simple docstring""" if self.remove_space: UpperCAmelCase__ = """ """.join(inputs.strip().split() ) else: UpperCAmelCase__ = inputs UpperCAmelCase__ = outputs.replace("""``""" , """\"""" ).replace("""''""" , """\"""" ) if not self.keep_accents: UpperCAmelCase__ = unicodedata.normalize("""NFKD""" , _UpperCAmelCase ) UpperCAmelCase__ = """""".join([c for c in outputs if not unicodedata.combining(_UpperCAmelCase )] ) if self.do_lower_case: UpperCAmelCase__ = outputs.lower() return outputs def SCREAMING_SNAKE_CASE__ ( self : Tuple , _UpperCAmelCase : str ): """simple docstring""" UpperCAmelCase__ = self.preprocess_text(_UpperCAmelCase ) UpperCAmelCase__ = self.sp_model.encode(_UpperCAmelCase , out_type=_UpperCAmelCase ) UpperCAmelCase__ = [] for piece in pieces: if len(_UpperCAmelCase ) > 1 and piece[-1] == str(""",""" ) and piece[-2].isdigit(): UpperCAmelCase__ = self.sp_model.EncodeAsPieces(piece[:-1].replace(_UpperCAmelCase , """""" ) ) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0] ) == 1: UpperCAmelCase__ = cur_pieces[1:] else: UpperCAmelCase__ = cur_pieces[0][1:] cur_pieces.append(piece[-1] ) new_pieces.extend(_UpperCAmelCase ) else: new_pieces.append(_UpperCAmelCase ) return new_pieces def SCREAMING_SNAKE_CASE__ ( self : Optional[int] , _UpperCAmelCase : Union[str, Any] ): """simple docstring""" return self.sp_model.PieceToId(_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self : Dict , _UpperCAmelCase : Any ): """simple docstring""" return self.sp_model.IdToPiece(_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self : int , _UpperCAmelCase : Dict ): """simple docstring""" UpperCAmelCase__ = """""".join(_UpperCAmelCase ).replace(_UpperCAmelCase , """ """ ).strip() return out_string def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] , _UpperCAmelCase : List[int] , _UpperCAmelCase : Optional[List[int]] = None ): """simple docstring""" UpperCAmelCase__ = [self.sep_token_id] UpperCAmelCase__ = [self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] , _UpperCAmelCase : List[int] , _UpperCAmelCase : Optional[List[int]] = None , _UpperCAmelCase : bool = False ): """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_UpperCAmelCase , token_ids_a=_UpperCAmelCase , already_has_special_tokens=_UpperCAmelCase ) if token_ids_a is not None: return ([0] * len(_UpperCAmelCase )) + [1] + ([0] * len(_UpperCAmelCase )) + [1, 1] return ([0] * len(_UpperCAmelCase )) + [1, 1] def SCREAMING_SNAKE_CASE__ ( self : Dict , _UpperCAmelCase : List[int] , _UpperCAmelCase : Optional[List[int]] = None ): """simple docstring""" UpperCAmelCase__ = [self.sep_token_id] UpperCAmelCase__ = [2] if token_ids_a is None: return len(token_ids_a + sep ) * [0] + cls_segment_id return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id def SCREAMING_SNAKE_CASE__ ( self : List[Any] , _UpperCAmelCase : str , _UpperCAmelCase : Optional[str] = None ): """simple docstring""" if not os.path.isdir(_UpperCAmelCase ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return UpperCAmelCase__ = os.path.join( _UpperCAmelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_UpperCAmelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , _UpperCAmelCase ) elif not os.path.isfile(self.vocab_file ): with open(_UpperCAmelCase , """wb""" ) as fi: UpperCAmelCase__ = self.sp_model.serialized_model_proto() fi.write(_UpperCAmelCase ) return (out_vocab_file,) def SCREAMING_SNAKE_CASE__ ( self : Tuple , *_UpperCAmelCase : Tuple , **_UpperCAmelCase : Optional[Any] ): """simple docstring""" UpperCAmelCase__ = super()._decode(*_UpperCAmelCase , **_UpperCAmelCase ) UpperCAmelCase__ = text.replace(""" """ , """""" ).replace("""\u2582""" , """ """ ).replace("""\u2583""" , """\n""" ) return text
346
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE__:Tuple = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__:Tuple = { 'facebook/dpr-ctx_encoder-single-nq-base': ( 'https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/config.json' ), 'facebook/dpr-question_encoder-single-nq-base': ( 'https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/config.json' ), 'facebook/dpr-reader-single-nq-base': ( 'https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/config.json' ), 'facebook/dpr-ctx_encoder-multiset-base': ( 'https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/config.json' ), 'facebook/dpr-question_encoder-multiset-base': ( 'https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/config.json' ), 'facebook/dpr-reader-multiset-base': ( 'https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/config.json' ), } class snake_case__ ( _lowerCAmelCase ): _snake_case : Union[str, Any] = """dpr""" def __init__( self , lowerCamelCase=30522 , lowerCamelCase=768 , lowerCamelCase=12 , lowerCamelCase=12 , lowerCamelCase=3072 , lowerCamelCase="gelu" , lowerCamelCase=0.1 , lowerCamelCase=0.1 , lowerCamelCase=512 , lowerCamelCase=2 , lowerCamelCase=0.02 , lowerCamelCase=1E-12 , lowerCamelCase=0 , lowerCamelCase="absolute" , lowerCamelCase = 0 , **lowerCamelCase , ): super().__init__(pad_token_id=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) __a = vocab_size __a = hidden_size __a = num_hidden_layers __a = num_attention_heads __a = hidden_act __a = intermediate_size __a = hidden_dropout_prob __a = attention_probs_dropout_prob __a = max_position_embeddings __a = type_vocab_size __a = initializer_range __a = layer_norm_eps __a = projection_dim __a = position_embedding_type
366
"""simple docstring""" import collections import os from typing import List, Optional, Tuple from transformers.utils import is_jieba_available, requires_backends if is_jieba_available(): import jieba from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging SCREAMING_SNAKE_CASE__:Tuple = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__:List[Any] = {"""vocab_file""": """vocab.txt"""} SCREAMING_SNAKE_CASE__:Optional[int] = { """vocab_file""": { """openbmb/cpm-ant-10b""": """https://huggingface.co/openbmb/cpm-ant-10b/blob/main/vocab.txt""", }, } SCREAMING_SNAKE_CASE__:Tuple = { """openbmb/cpm-ant-10b""": 1024, } def _lowerCamelCase( a ): __a = collections.OrderedDict() with open(a , "r" , encoding="utf-8" ) as reader: __a = reader.readlines() for index, token in enumerate(a ): __a = token.rstrip("\n" ) __a = index return vocab class snake_case__ ( snake_case_ ): def __init__( self , lowerCamelCase , lowerCamelCase="<unk>" , lowerCamelCase=200 ): __a = vocab __a = unk_token __a = max_input_chars_per_word def a__ ( self , lowerCamelCase ): __a = list(lowerCamelCase ) if len(lowerCamelCase ) > self.max_input_chars_per_word: return [self.unk_token] __a = 0 __a = [] while start < len(lowerCamelCase ): __a = len(lowerCamelCase ) __a = None while start < end: __a = "".join(chars[start:end] ) if substr in self.vocab: __a = substr break end -= 1 if cur_substr is None: sub_tokens.append(self.unk_token ) start += 1 else: sub_tokens.append(lowerCamelCase ) __a = end return sub_tokens class snake_case__ ( snake_case_ ): _snake_case : Optional[int] = VOCAB_FILES_NAMES _snake_case : Optional[int] = PRETRAINED_VOCAB_FILES_MAP _snake_case : Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _snake_case : int = ["""input_ids""", """attention_mask"""] _snake_case : int = False def __init__( self , lowerCamelCase , lowerCamelCase="<d>" , lowerCamelCase="</d>" , lowerCamelCase="<s>" , lowerCamelCase="</s>" , lowerCamelCase="<pad>" , lowerCamelCase="<unk>" , lowerCamelCase="</n>" , lowerCamelCase="</_>" , lowerCamelCase="left" , **lowerCamelCase , ): requires_backends(self , ["jieba"] ) super().__init__( bod_token=lowerCamelCase , eod_token=lowerCamelCase , bos_token=lowerCamelCase , eos_token=lowerCamelCase , pad_token=lowerCamelCase , unk_token=lowerCamelCase , line_token=lowerCamelCase , space_token=lowerCamelCase , padding_side=lowerCamelCase , **lowerCamelCase , ) __a = bod_token __a = eod_token __a = load_vocab(lowerCamelCase ) __a = self.encoder[space_token] __a = self.encoder[line_token] del self.encoder[space_token] del self.encoder[line_token] __a = collections.OrderedDict(sorted(self.encoder.items() , key=lambda lowerCamelCase : x[1] ) ) __a = {v: k for k, v in self.encoder.items()} __a = WordpieceTokenizer(vocab=self.encoder , unk_token=self.unk_token ) @property def a__ ( self ): return self.encoder[self.bod_token] @property def a__ ( self ): return self.encoder[self.eod_token] @property def a__ ( self ): return self.encoder["\n"] @property def a__ ( self ): return len(self.encoder ) def a__ ( self ): return dict(self.encoder , **self.added_tokens_encoder ) def a__ ( self , lowerCamelCase ): __a = [] for x in jieba.cut(lowerCamelCase , cut_all=lowerCamelCase ): output_tokens.extend(self.wordpiece_tokenizer.tokenize(lowerCamelCase ) ) return output_tokens def a__ ( self , lowerCamelCase , **lowerCamelCase ): __a = [i for i in token_ids if i >= 0] __a = [ x for x in token_ids if x != self.pad_token_id and x != self.eos_token_id and x != self.bos_token_id ] return super()._decode(lowerCamelCase , **lowerCamelCase ) def a__ ( self , lowerCamelCase ): return token in self.encoder def a__ ( self , lowerCamelCase ): return "".join(lowerCamelCase ) def a__ ( self , lowerCamelCase ): return self.encoder.get(lowerCamelCase , self.encoder.get(self.unk_token ) ) def a__ ( self , lowerCamelCase ): return self.decoder.get(lowerCamelCase , self.unk_token ) def a__ ( self , lowerCamelCase , lowerCamelCase = None ): if os.path.isdir(lowerCamelCase ): __a = os.path.join( lowerCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) else: __a = (filename_prefix + "-" if filename_prefix else "") + save_directory __a = 0 if " " in self.encoder: __a = self.encoder[" "] del self.encoder[" "] if "\n" in self.encoder: __a = self.encoder["\n"] del self.encoder["\n"] __a = collections.OrderedDict(sorted(self.encoder.items() , key=lambda lowerCamelCase : x[1] ) ) with open(lowerCamelCase , "w" , encoding="utf-8" ) as writer: for token, token_index in self.encoder.items(): if index != token_index: logger.warning( F"Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive." " Please check that the vocabulary is not corrupted!" ) __a = token_index writer.write(token + "\n" ) index += 1 return (vocab_file,) def a__ ( self , lowerCamelCase , lowerCamelCase = None ): if token_ids_a is None: return [self.bos_token_id] + token_ids_a return [self.bos_token_id] + token_ids_a + [self.bos_token_id] + token_ids_a def a__ ( self , lowerCamelCase , lowerCamelCase = None , lowerCamelCase = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCamelCase , token_ids_a=lowerCamelCase , already_has_special_tokens=lowerCamelCase ) if token_ids_a is not None: return [1] + ([0] * len(lowerCamelCase )) + [1] + ([0] * len(lowerCamelCase )) return [1] + ([0] * len(lowerCamelCase ))
268
0
import inspect import unittest import numpy as np from transformers import ViTConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor if is_flax_available(): import jax from transformers.models.vit.modeling_flax_vit import FlaxViTForImageClassification, FlaxViTModel class lowercase ( unittest.TestCase ): def __init__( self , snake_case , snake_case=13 , snake_case=30 , snake_case=2 , snake_case=3 , snake_case=True , snake_case=True , snake_case=32 , snake_case=5 , snake_case=4 , snake_case=37 , snake_case="gelu" , snake_case=0.1 , snake_case=0.1 , snake_case=10 , snake_case=0.02 , ): snake_case_ = parent snake_case_ = batch_size snake_case_ = image_size snake_case_ = patch_size snake_case_ = num_channels snake_case_ = is_training snake_case_ = use_labels snake_case_ = hidden_size snake_case_ = num_hidden_layers snake_case_ = num_attention_heads snake_case_ = intermediate_size snake_case_ = hidden_act snake_case_ = hidden_dropout_prob snake_case_ = attention_probs_dropout_prob snake_case_ = type_sequence_label_size snake_case_ = initializer_range # in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) snake_case_ = (image_size // patch_size) ** 2 snake_case_ = num_patches + 1 def a ( self ): snake_case_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) snake_case_ = ViTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=UpperCAmelCase_ , initializer_range=self.initializer_range , ) return config, pixel_values def a ( self , snake_case , snake_case ): snake_case_ = FlaxViTModel(config=UpperCAmelCase_ ) snake_case_ = model(UpperCAmelCase_ ) # expected sequence length = num_patches + 1 (we add 1 for the [CLS] token) snake_case_ = (self.image_size, self.image_size) snake_case_ = (self.patch_size, self.patch_size) snake_case_ = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, num_patches + 1, self.hidden_size) ) def a ( self , snake_case , snake_case ): snake_case_ = self.type_sequence_label_size snake_case_ = FlaxViTForImageClassification(config=UpperCAmelCase_ ) snake_case_ = model(UpperCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images snake_case_ = 1 snake_case_ = FlaxViTForImageClassification(UpperCAmelCase_ ) snake_case_ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) snake_case_ = model(UpperCAmelCase_ ) def a ( self ): snake_case_ = self.prepare_config_and_inputs() ( ( snake_case_ ) , ( snake_case_ ) , ) = config_and_inputs snake_case_ = {'pixel_values': pixel_values} return config, inputs_dict @require_flax class lowercase ( _UpperCAmelCase , unittest.TestCase ): __SCREAMING_SNAKE_CASE : Union[str, Any] = (FlaxViTModel, FlaxViTForImageClassification) if is_flax_available() else () def a ( self ): snake_case_ = FlaxViTModelTester(self ) snake_case_ = ConfigTester(self , config_class=UpperCAmelCase_ , has_text_modality=UpperCAmelCase_ , hidden_size=37 ) def a ( self ): self.config_tester.run_common_tests() def a ( self ): snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase_ ) def a ( self ): snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*UpperCAmelCase_ ) def a ( self ): snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case_ = model_class(UpperCAmelCase_ ) snake_case_ = inspect.signature(model.__call__ ) # signature.parameters is an OrderedDict => so arg_names order is deterministic snake_case_ = [*signature.parameters.keys()] snake_case_ = ['pixel_values'] self.assertListEqual(arg_names[:1] , UpperCAmelCase_ ) def a ( self ): snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): snake_case_ = self._prepare_for_class(UpperCAmelCase_ , UpperCAmelCase_ ) snake_case_ = model_class(UpperCAmelCase_ ) @jax.jit def model_jitted(snake_case , **snake_case ): return model(pixel_values=UpperCAmelCase_ , **UpperCAmelCase_ ) with self.subTest('JIT Enabled' ): snake_case_ = model_jitted(**UpperCAmelCase_ ).to_tuple() with self.subTest('JIT Disabled' ): with jax.disable_jit(): snake_case_ = model_jitted(**UpperCAmelCase_ ).to_tuple() self.assertEqual(len(UpperCAmelCase_ ) , len(UpperCAmelCase_ ) ) for jitted_output, output in zip(UpperCAmelCase_ , UpperCAmelCase_ ): self.assertEqual(jitted_output.shape , output.shape ) @slow def a ( self ): for model_class_name in self.all_model_classes: snake_case_ = model_class_name.from_pretrained('google/vit-base-patch16-224' ) snake_case_ = model(np.ones((1, 3, 224, 224) ) ) self.assertIsNotNone(UpperCAmelCase_ )
285
import os from typing import List, Optional, Union from ...tokenization_utils import PreTrainedTokenizer from ...tokenization_utils_base import AddedToken from ...utils import logging __snake_case = logging.get_logger(__name__) __snake_case = {"""vocab_file""": """vocab.txt"""} __snake_case = { """vocab_file""": { """facebook/esm2_t6_8M_UR50D""": """https://huggingface.co/facebook/esm2_t6_8M_UR50D/resolve/main/vocab.txt""", """facebook/esm2_t12_35M_UR50D""": """https://huggingface.co/facebook/esm2_t12_35M_UR50D/resolve/main/vocab.txt""", }, } __snake_case = { """facebook/esm2_t6_8M_UR50D""": 10_24, """facebook/esm2_t12_35M_UR50D""": 10_24, } def _lowercase ( UpperCamelCase_ ) -> List[str]: '''simple docstring''' with open(UpperCamelCase_ , 'r' ) as f: SCREAMING_SNAKE_CASE__ = f.read().splitlines() return [l.strip() for l in lines] class lowercase__ ( _UpperCAmelCase ): A__ : Tuple =VOCAB_FILES_NAMES A__ : Union[str, Any] =PRETRAINED_VOCAB_FILES_MAP A__ : Any =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A__ : Any =["""input_ids""", """attention_mask"""] def __init__( self : Optional[int] , UpperCAmelCase_ : str , UpperCAmelCase_ : Tuple="<unk>" , UpperCAmelCase_ : Optional[Any]="<cls>" , UpperCAmelCase_ : List[Any]="<pad>" , UpperCAmelCase_ : Optional[int]="<mask>" , UpperCAmelCase_ : Optional[int]="<eos>" , **UpperCAmelCase_ : Optional[int] , ): super().__init__(**UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = load_vocab_file(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = dict(enumerate(self.all_tokens ) ) SCREAMING_SNAKE_CASE__ = {tok: ind for ind, tok in enumerate(self.all_tokens )} SCREAMING_SNAKE_CASE__ = unk_token SCREAMING_SNAKE_CASE__ = cls_token SCREAMING_SNAKE_CASE__ = pad_token SCREAMING_SNAKE_CASE__ = mask_token SCREAMING_SNAKE_CASE__ = eos_token SCREAMING_SNAKE_CASE__ = self.all_tokens self._create_trie(self.unique_no_split_tokens ) def A_ ( self : Any , UpperCAmelCase_ : int ): return self._id_to_token.get(UpperCAmelCase_ , self.unk_token ) def A_ ( self : Dict , UpperCAmelCase_ : str ): return self._token_to_id.get(UpperCAmelCase_ , self._token_to_id.get(self.unk_token ) ) def A_ ( self : List[str] , UpperCAmelCase_ : Tuple , **UpperCAmelCase_ : List[Any] ): return text.split() def A_ ( self : str , UpperCAmelCase_ : Optional[Any]=False ): return len(self._id_to_token ) def A_ ( self : Union[str, Any] ): return {token: i for i, token in enumerate(self.all_tokens )} def A_ ( self : Any , UpperCAmelCase_ : str ): return self._token_to_id.get(UpperCAmelCase_ , self._token_to_id.get(self.unk_token ) ) def A_ ( self : List[str] , UpperCAmelCase_ : int ): return self._id_to_token.get(UpperCAmelCase_ , self.unk_token ) def A_ ( self : List[str] , UpperCAmelCase_ : List[int] , UpperCAmelCase_ : Optional[List[int]] = None ): SCREAMING_SNAKE_CASE__ = [self.cls_token_id] SCREAMING_SNAKE_CASE__ = [self.eos_token_id] # No sep token in ESM vocabulary if token_ids_a is None: if self.eos_token_id is None: return cls + token_ids_a else: return cls + token_ids_a + sep elif self.eos_token_id is None: raise ValueError('Cannot tokenize multiple sequences when EOS token is not set!' ) return cls + token_ids_a + sep + token_ids_a + sep # Multiple inputs always have an EOS token def A_ ( self : Dict , UpperCAmelCase_ : List , UpperCAmelCase_ : Optional[List] = None , UpperCAmelCase_ : bool = False ): if already_has_special_tokens: if token_ids_a is not None: raise ValueError( 'You should not supply a second sequence if the provided sequence of ' 'ids is already formatted with special tokens for the model.' ) return [1 if token in self.all_special_ids else 0 for token in token_ids_a] SCREAMING_SNAKE_CASE__ = [1] + ([0] * len(UpperCAmelCase_ )) + [1] if token_ids_a is not None: mask += [0] * len(UpperCAmelCase_ ) + [1] return mask def A_ ( self : int , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Any ): SCREAMING_SNAKE_CASE__ = os.path.join(UpperCAmelCase_ , (filename_prefix + '-' if filename_prefix else '') + 'vocab.txt' ) with open(UpperCAmelCase_ , 'w' ) as f: f.write('\n'.join(self.all_tokens ) ) return (vocab_file,) @property def A_ ( self : int ): return self.get_vocab_size(with_added_tokens=UpperCAmelCase_ ) def A_ ( self : List[str] , UpperCAmelCase_ : Union[List[str], List[AddedToken]] , UpperCAmelCase_ : bool = False ): return super()._add_tokens(UpperCAmelCase_ , special_tokens=UpperCAmelCase_ )
176
0
import gc import math import unittest import torch from diffusers import UNetaDModel from diffusers.utils import floats_tensor, logging, slow, torch_all_close, torch_device from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin, UNetTesterMixin A__ = logging.get_logger(__name__) enable_full_determinism() class a ( __lowerCamelCase , __lowerCamelCase , unittest.TestCase ): __lowerCAmelCase : Optional[int] = UNetaDModel __lowerCAmelCase : Union[str, Any] = """sample""" @property def __lowerCamelCase ( self :List[str] ): snake_case__ : Optional[Any] = 4 snake_case__ : Optional[Any] = 3 snake_case__ : Any = (3_2, 3_2) snake_case__ : Any = floats_tensor((batch_size, num_channels) + sizes ).to(__lowercase ) snake_case__ : Optional[Any] = torch.tensor([1_0] ).to(__lowercase ) return {"sample": noise, "timestep": time_step} @property def __lowerCamelCase ( self :int ): return (3, 3_2, 3_2) @property def __lowerCamelCase ( self :Union[str, Any] ): return (3, 3_2, 3_2) def __lowerCamelCase ( self :Optional[int] ): snake_case__ : Any = { '''block_out_channels''': (3_2, 6_4), '''down_block_types''': ('''DownBlock2D''', '''AttnDownBlock2D'''), '''up_block_types''': ('''AttnUpBlock2D''', '''UpBlock2D'''), '''attention_head_dim''': 3, '''out_channels''': 3, '''in_channels''': 3, '''layers_per_block''': 2, '''sample_size''': 3_2, } snake_case__ : int = self.dummy_input return init_dict, inputs_dict class a ( __lowerCamelCase , __lowerCamelCase , unittest.TestCase ): __lowerCAmelCase : Optional[Any] = UNetaDModel __lowerCAmelCase : str = """sample""" @property def __lowerCamelCase ( self :Union[str, Any] ): snake_case__ : Any = 4 snake_case__ : Optional[Any] = 4 snake_case__ : str = (3_2, 3_2) snake_case__ : Any = floats_tensor((batch_size, num_channels) + sizes ).to(__lowercase ) snake_case__ : int = torch.tensor([1_0] ).to(__lowercase ) return {"sample": noise, "timestep": time_step} @property def __lowerCamelCase ( self :Any ): return (4, 3_2, 3_2) @property def __lowerCamelCase ( self :List[Any] ): return (4, 3_2, 3_2) def __lowerCamelCase ( self :Optional[int] ): snake_case__ : Optional[int] = { '''sample_size''': 3_2, '''in_channels''': 4, '''out_channels''': 4, '''layers_per_block''': 2, '''block_out_channels''': (3_2, 6_4), '''attention_head_dim''': 3_2, '''down_block_types''': ('''DownBlock2D''', '''DownBlock2D'''), '''up_block_types''': ('''UpBlock2D''', '''UpBlock2D'''), } snake_case__ : Tuple = self.dummy_input return init_dict, inputs_dict def __lowerCamelCase ( self :List[str] ): snake_case__ , snake_case__ : Optional[int] = UNetaDModel.from_pretrained('''fusing/unet-ldm-dummy-update''' ,output_loading_info=__lowercase ) self.assertIsNotNone(__lowercase ) self.assertEqual(len(loading_info['''missing_keys'''] ) ,0 ) model.to(__lowercase ) snake_case__ : Optional[Any] = model(**self.dummy_input ).sample assert image is not None, "Make sure output is not None" @unittest.skipIf(torch_device != '''cuda''' ,'''This test is supposed to run on GPU''' ) def __lowerCamelCase ( self :List[Any] ): snake_case__ , snake_case__ : str = UNetaDModel.from_pretrained('''fusing/unet-ldm-dummy-update''' ,output_loading_info=__lowercase ) model.to(__lowercase ) snake_case__ : Any = model(**self.dummy_input ).sample assert image is not None, "Make sure output is not None" @unittest.skipIf(torch_device != '''cuda''' ,'''This test is supposed to run on GPU''' ) def __lowerCamelCase ( self :Optional[Any] ): # by defautl model loading will use accelerate as `low_cpu_mem_usage=True` snake_case__ , snake_case__ : str = UNetaDModel.from_pretrained('''fusing/unet-ldm-dummy-update''' ,output_loading_info=__lowercase ) model_accelerate.to(__lowercase ) model_accelerate.eval() snake_case__ : Union[str, Any] = torch.randn( 1 ,model_accelerate.config.in_channels ,model_accelerate.config.sample_size ,model_accelerate.config.sample_size ,generator=torch.manual_seed(0 ) ,) snake_case__ : Any = noise.to(__lowercase ) snake_case__ : Optional[Any] = torch.tensor([1_0] * noise.shape[0] ).to(__lowercase ) snake_case__ : Optional[Any] = model_accelerate(__lowercase ,__lowercase )['''sample'''] # two models don't need to stay in the device at the same time del model_accelerate torch.cuda.empty_cache() gc.collect() snake_case__ , snake_case__ : Union[str, Any] = UNetaDModel.from_pretrained( '''fusing/unet-ldm-dummy-update''' ,output_loading_info=__lowercase ,low_cpu_mem_usage=__lowercase ) model_normal_load.to(__lowercase ) model_normal_load.eval() snake_case__ : Optional[Any] = model_normal_load(__lowercase ,__lowercase )['''sample'''] assert torch_all_close(__lowercase ,__lowercase ,rtol=1e-3 ) def __lowerCamelCase ( self :List[str] ): snake_case__ : Union[str, Any] = UNetaDModel.from_pretrained('''fusing/unet-ldm-dummy-update''' ) model.eval() model.to(__lowercase ) snake_case__ : List[Any] = torch.randn( 1 ,model.config.in_channels ,model.config.sample_size ,model.config.sample_size ,generator=torch.manual_seed(0 ) ,) snake_case__ : List[Any] = noise.to(__lowercase ) snake_case__ : Dict = torch.tensor([1_0] * noise.shape[0] ).to(__lowercase ) with torch.no_grad(): snake_case__ : Any = model(__lowercase ,__lowercase ).sample snake_case__ : Optional[Any] = output[0, -1, -3:, -3:].flatten().cpu() # fmt: off snake_case__ : str = torch.tensor([-13.3258, -20.1100, -15.9873, -17.6617, -23.0596, -17.9419, -13.3675, -16.1889, -12.3800] ) # fmt: on self.assertTrue(torch_all_close(__lowercase ,__lowercase ,rtol=1e-3 ) ) class a ( __lowerCamelCase , __lowerCamelCase , unittest.TestCase ): __lowerCAmelCase : Any = UNetaDModel __lowerCAmelCase : Tuple = """sample""" @property def __lowerCamelCase ( self :Dict ,__lowercase :Union[str, Any]=(3_2, 3_2) ): snake_case__ : Union[str, Any] = 4 snake_case__ : Optional[int] = 3 snake_case__ : Optional[int] = floats_tensor((batch_size, num_channels) + sizes ).to(__lowercase ) snake_case__ : Optional[int] = torch.tensor(batch_size * [1_0] ).to(dtype=torch.intaa ,device=__lowercase ) return {"sample": noise, "timestep": time_step} @property def __lowerCamelCase ( self :Any ): return (3, 3_2, 3_2) @property def __lowerCamelCase ( self :Union[str, Any] ): return (3, 3_2, 3_2) def __lowerCamelCase ( self :List[str] ): snake_case__ : Optional[int] = { '''block_out_channels''': [3_2, 6_4, 6_4, 6_4], '''in_channels''': 3, '''layers_per_block''': 1, '''out_channels''': 3, '''time_embedding_type''': '''fourier''', '''norm_eps''': 1e-6, '''mid_block_scale_factor''': math.sqrt(2.0 ), '''norm_num_groups''': None, '''down_block_types''': [ '''SkipDownBlock2D''', '''AttnSkipDownBlock2D''', '''SkipDownBlock2D''', '''SkipDownBlock2D''', ], '''up_block_types''': [ '''SkipUpBlock2D''', '''SkipUpBlock2D''', '''AttnSkipUpBlock2D''', '''SkipUpBlock2D''', ], } snake_case__ : Dict = self.dummy_input return init_dict, inputs_dict @slow def __lowerCamelCase ( self :int ): snake_case__ , snake_case__ : Optional[int] = UNetaDModel.from_pretrained('''google/ncsnpp-celebahq-256''' ,output_loading_info=__lowercase ) self.assertIsNotNone(__lowercase ) self.assertEqual(len(loading_info['''missing_keys'''] ) ,0 ) model.to(__lowercase ) snake_case__ : int = self.dummy_input snake_case__ : Union[str, Any] = floats_tensor((4, 3) + (2_5_6, 2_5_6) ).to(__lowercase ) snake_case__ : List[Any] = noise snake_case__ : Optional[int] = model(**__lowercase ) assert image is not None, "Make sure output is not None" @slow def __lowerCamelCase ( self :Tuple ): snake_case__ : Union[str, Any] = UNetaDModel.from_pretrained('''google/ncsnpp-celebahq-256''' ) model.to(__lowercase ) snake_case__ : Union[str, Any] = 4 snake_case__ : Any = 3 snake_case__ : Any = (2_5_6, 2_5_6) snake_case__ : Tuple = torch.ones((batch_size, num_channels) + sizes ).to(__lowercase ) snake_case__ : Optional[Any] = torch.tensor(batch_size * [1e-4] ).to(__lowercase ) with torch.no_grad(): snake_case__ : Optional[int] = model(__lowercase ,__lowercase ).sample snake_case__ : Dict = output[0, -3:, -3:, -1].flatten().cpu() # fmt: off snake_case__ : Optional[int] = torch.tensor([-4842.8691, -6499.6631, -3800.1953, -7978.2686, -1_0980.7129, -2_0028.8535, 8148.2822, 2342.2905, 567.7608] ) # fmt: on self.assertTrue(torch_all_close(__lowercase ,__lowercase ,rtol=1e-2 ) ) def __lowerCamelCase ( self :str ): snake_case__ : Union[str, Any] = UNetaDModel.from_pretrained('''fusing/ncsnpp-ffhq-ve-dummy-update''' ) model.to(__lowercase ) snake_case__ : Tuple = 4 snake_case__ : int = 3 snake_case__ : Optional[Any] = (3_2, 3_2) snake_case__ : Tuple = torch.ones((batch_size, num_channels) + sizes ).to(__lowercase ) snake_case__ : str = torch.tensor(batch_size * [1e-4] ).to(__lowercase ) with torch.no_grad(): snake_case__ : Dict = model(__lowercase ,__lowercase ).sample snake_case__ : Tuple = output[0, -3:, -3:, -1].flatten().cpu() # fmt: off snake_case__ : List[str] = torch.tensor([-0.0325, -0.0900, -0.0869, -0.0332, -0.0725, -0.0270, -0.0101, 0.0227, 0.0256] ) # fmt: on self.assertTrue(torch_all_close(__lowercase ,__lowercase ,rtol=1e-2 ) ) def __lowerCamelCase ( self :List[str] ): # not required for this model pass
44
from sklearn.metrics import mean_squared_error import datasets A__ = '''\ @article{scikit-learn, title={Scikit-learn: Machine Learning in {P}ython}, author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, journal={Journal of Machine Learning Research}, volume={12}, pages={2825--2830}, year={2011} } ''' A__ = '''\ Mean Squared Error(MSE) is the average of the square of difference between the predicted and actual values. ''' A__ = ''' Args: predictions: array-like of shape (n_samples,) or (n_samples, n_outputs) Estimated target values. references: array-like of shape (n_samples,) or (n_samples, n_outputs) Ground truth (correct) target values. sample_weight: array-like of shape (n_samples,), default=None Sample weights. multioutput: {"raw_values", "uniform_average"} or array-like of shape (n_outputs,), default="uniform_average" Defines aggregating of multiple output values. Array-like value defines weights used to average errors. "raw_values" : Returns a full set of errors in case of multioutput input. "uniform_average" : Errors of all outputs are averaged with uniform weight. squared : bool, default=True If True returns MSE value, if False returns RMSE (Root Mean Squared Error) value. Returns: mse : mean squared error. Examples: >>> mse_metric = datasets.load_metric("mse") >>> predictions = [2.5, 0.0, 2, 8] >>> references = [3, -0.5, 2, 7] >>> results = mse_metric.compute(predictions=predictions, references=references) >>> print(results) {\'mse\': 0.375} >>> rmse_result = mse_metric.compute(predictions=predictions, references=references, squared=False) >>> print(rmse_result) {\'mse\': 0.6123724356957945} If you\'re using multi-dimensional lists, then set the config as follows : >>> mse_metric = datasets.load_metric("mse", "multilist") >>> predictions = [[0.5, 1], [-1, 1], [7, -6]] >>> references = [[0, 2], [-1, 2], [8, -5]] >>> results = mse_metric.compute(predictions=predictions, references=references) >>> print(results) {\'mse\': 0.7083333333333334} >>> results = mse_metric.compute(predictions=predictions, references=references, multioutput=\'raw_values\') >>> print(results) # doctest: +NORMALIZE_WHITESPACE {\'mse\': array([0.41666667, 1. ])} ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class a ( datasets.Metric ): def __lowerCamelCase ( self :List[Any] ): return datasets.MetricInfo( description=_DESCRIPTION ,citation=_CITATION ,inputs_description=_KWARGS_DESCRIPTION ,features=datasets.Features(self._get_feature_types() ) ,reference_urls=[ '''https://scikit-learn.org/stable/modules/generated/sklearn.metrics.mean_squared_error.html''' ] ,) def __lowerCamelCase ( self :Tuple ): if self.config_name == "multilist": return { "predictions": datasets.Sequence(datasets.Value('''float''' ) ), "references": datasets.Sequence(datasets.Value('''float''' ) ), } else: return { "predictions": datasets.Value('''float''' ), "references": datasets.Value('''float''' ), } def __lowerCamelCase ( self :List[str] ,__lowercase :Optional[int] ,__lowercase :int ,__lowercase :Any=None ,__lowercase :List[str]="uniform_average" ,__lowercase :List[Any]=True ): snake_case__ : Union[str, Any] = mean_squared_error( __lowercase ,__lowercase ,sample_weight=__lowercase ,multioutput=__lowercase ,squared=__lowercase ) return {"mse": mse}
44
1
A__ = """Input must be a string of 8 numbers plus letter""" A__ = """TRWAGMYFPDXBNJZSQVHLCKE""" def _UpperCAmelCase ( snake_case ): """simple docstring""" if not isinstance(snake_case , snake_case ): _lowerCAmelCase = F'Expected string as input, found {type(snake_case ).__name__}' raise TypeError(snake_case ) _lowerCAmelCase = spanish_id.replace("""-""" , """""" ).upper() if len(snake_case ) != 9: raise ValueError(snake_case ) try: _lowerCAmelCase = int(spanish_id_clean[0:8] ) _lowerCAmelCase = spanish_id_clean[8] except ValueError as ex: raise ValueError(snake_case ) from ex if letter.isdigit(): raise ValueError(snake_case ) return letter == LOOKUP_LETTERS[number % 23] if __name__ == "__main__": import doctest doctest.testmod()
82
"""simple docstring""" from typing import Dict, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_torch_tensor, logging if is_torch_available(): import torch __A = logging.get_logger(__name__) class snake_case ( __snake_case ): SCREAMING_SNAKE_CASE_ : Dict = ["""pixel_values"""] def __init__( self : List[Any] , UpperCamelCase__ : bool = True , UpperCamelCase__ : Optional[Dict[str, int]] = None , UpperCamelCase__ : PILImageResampling = PILImageResampling.BILINEAR , UpperCamelCase__ : bool = True , UpperCamelCase__ : Dict[str, int] = None , UpperCamelCase__ : bool = True , UpperCamelCase__ : Union[int, float] = 1 / 2_5_5 , UpperCamelCase__ : bool = True , UpperCamelCase__ : Optional[Union[float, List[float]]] = None , UpperCamelCase__ : Optional[Union[float, List[float]]] = None , **UpperCamelCase__ : Optional[int] , )-> None: '''simple docstring''' super().__init__(**UpperCamelCase__) __lowerCAmelCase: int = size if size is not None else {"shortest_edge": 2_5_6} __lowerCAmelCase: str = get_size_dict(UpperCamelCase__ , default_to_square=UpperCamelCase__) __lowerCAmelCase: Any = crop_size if crop_size is not None else {"height": 2_2_4, "width": 2_2_4} __lowerCAmelCase: Optional[Any] = get_size_dict(UpperCamelCase__ , param_name="crop_size") __lowerCAmelCase: str = do_resize __lowerCAmelCase: Any = size __lowerCAmelCase: Dict = resample __lowerCAmelCase: Tuple = do_center_crop __lowerCAmelCase: str = crop_size __lowerCAmelCase: List[Any] = do_rescale __lowerCAmelCase: int = rescale_factor __lowerCAmelCase: List[Any] = do_normalize __lowerCAmelCase: Any = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN __lowerCAmelCase: Optional[Any] = image_std if image_std is not None else IMAGENET_STANDARD_STD def lowercase_ ( self : Tuple , UpperCamelCase__ : np.ndarray , UpperCamelCase__ : Dict[str, int] , UpperCamelCase__ : PILImageResampling = PILImageResampling.BICUBIC , UpperCamelCase__ : Optional[Union[str, ChannelDimension]] = None , **UpperCamelCase__ : Dict , )-> np.ndarray: '''simple docstring''' __lowerCAmelCase: int = get_size_dict(UpperCamelCase__ , default_to_square=UpperCamelCase__) if "shortest_edge" not in size: raise ValueError(f"The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}") __lowerCAmelCase: Optional[Any] = get_resize_output_image_size(UpperCamelCase__ , size=size["shortest_edge"] , default_to_square=UpperCamelCase__) return resize(UpperCamelCase__ , size=UpperCamelCase__ , resample=UpperCamelCase__ , data_format=UpperCamelCase__ , **UpperCamelCase__) def lowercase_ ( self : Optional[int] , UpperCamelCase__ : np.ndarray , UpperCamelCase__ : Dict[str, int] , UpperCamelCase__ : Optional[Union[str, ChannelDimension]] = None , **UpperCamelCase__ : Tuple , )-> np.ndarray: '''simple docstring''' __lowerCAmelCase: Union[str, Any] = get_size_dict(UpperCamelCase__) if "height" not in size or "width" not in size: raise ValueError(f"The `size` parameter must contain the keys `height` and `width`. Got {size.keys()}") return center_crop(UpperCamelCase__ , size=(size["height"], size["width"]) , data_format=UpperCamelCase__ , **UpperCamelCase__) def lowercase_ ( self : str , UpperCamelCase__ : np.ndarray , UpperCamelCase__ : float , UpperCamelCase__ : Optional[Union[str, ChannelDimension]] = None , **UpperCamelCase__ : Optional[int])-> np.ndarray: '''simple docstring''' return rescale(UpperCamelCase__ , scale=UpperCamelCase__ , data_format=UpperCamelCase__ , **UpperCamelCase__) def lowercase_ ( self : Dict , UpperCamelCase__ : np.ndarray , UpperCamelCase__ : Union[float, List[float]] , UpperCamelCase__ : Union[float, List[float]] , UpperCamelCase__ : Optional[Union[str, ChannelDimension]] = None , **UpperCamelCase__ : Optional[Any] , )-> np.ndarray: '''simple docstring''' return normalize(UpperCamelCase__ , mean=UpperCamelCase__ , std=UpperCamelCase__ , data_format=UpperCamelCase__ , **UpperCamelCase__) def lowercase_ ( self : Union[str, Any] , UpperCamelCase__ : ImageInput , UpperCamelCase__ : Optional[bool] = None , UpperCamelCase__ : Dict[str, int] = None , UpperCamelCase__ : PILImageResampling = None , UpperCamelCase__ : bool = None , UpperCamelCase__ : Dict[str, int] = None , UpperCamelCase__ : Optional[bool] = None , UpperCamelCase__ : Optional[float] = None , UpperCamelCase__ : Optional[bool] = None , UpperCamelCase__ : Optional[Union[float, List[float]]] = None , UpperCamelCase__ : Optional[Union[float, List[float]]] = None , UpperCamelCase__ : Optional[Union[str, TensorType]] = None , UpperCamelCase__ : Union[str, ChannelDimension] = ChannelDimension.FIRST , **UpperCamelCase__ : Optional[Any] , )-> Dict: '''simple docstring''' __lowerCAmelCase: Any = do_resize if do_resize is not None else self.do_resize __lowerCAmelCase: str = size if size is not None else self.size __lowerCAmelCase: Tuple = get_size_dict(UpperCamelCase__ , default_to_square=UpperCamelCase__) __lowerCAmelCase: List[str] = resample if resample is not None else self.resample __lowerCAmelCase: str = do_center_crop if do_center_crop is not None else self.do_center_crop __lowerCAmelCase: Tuple = crop_size if crop_size is not None else self.crop_size __lowerCAmelCase: List[Any] = get_size_dict(UpperCamelCase__ , param_name="crop_size") __lowerCAmelCase: List[Any] = do_rescale if do_rescale is not None else self.do_rescale __lowerCAmelCase: Optional[int] = rescale_factor if rescale_factor is not None else self.rescale_factor __lowerCAmelCase: Optional[int] = do_normalize if do_normalize is not None else self.do_normalize __lowerCAmelCase: Union[str, Any] = image_mean if image_mean is not None else self.image_mean __lowerCAmelCase: Tuple = image_std if image_std is not None else self.image_std __lowerCAmelCase: Union[str, Any] = make_list_of_images(UpperCamelCase__) if not valid_images(UpperCamelCase__): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray.") if do_resize and size is None: raise ValueError("Size must be specified if do_resize is True.") if do_center_crop and crop_size is None: raise ValueError("Crop size must be specified if do_center_crop is True.") if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True.") if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True.") # All transformations expect numpy arrays. __lowerCAmelCase: Tuple = [to_numpy_array(UpperCamelCase__) for image in images] if do_resize: __lowerCAmelCase: Union[str, Any] = [self.resize(image=UpperCamelCase__ , size=UpperCamelCase__ , resample=UpperCamelCase__) for image in images] if do_center_crop: __lowerCAmelCase: Optional[Any] = [self.center_crop(image=UpperCamelCase__ , size=UpperCamelCase__) for image in images] if do_rescale: __lowerCAmelCase: Optional[Any] = [self.rescale(image=UpperCamelCase__ , scale=UpperCamelCase__) for image in images] if do_normalize: __lowerCAmelCase: List[str] = [self.normalize(image=UpperCamelCase__ , mean=UpperCamelCase__ , std=UpperCamelCase__) for image in images] __lowerCAmelCase: Optional[Any] = [to_channel_dimension_format(UpperCamelCase__ , UpperCamelCase__) for image in images] __lowerCAmelCase: List[str] = {"pixel_values": images} return BatchFeature(data=UpperCamelCase__ , tensor_type=UpperCamelCase__) def lowercase_ ( self : int , UpperCamelCase__ : List[str] , UpperCamelCase__ : List[Tuple] = None)-> Dict: '''simple docstring''' __lowerCAmelCase: Union[str, Any] = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(UpperCamelCase__) != len(UpperCamelCase__): raise ValueError( "Make sure that you pass in as many target sizes as the batch dimension of the logits") if is_torch_tensor(UpperCamelCase__): __lowerCAmelCase: Optional[int] = target_sizes.numpy() __lowerCAmelCase: List[Any] = [] for idx in range(len(UpperCamelCase__)): __lowerCAmelCase: List[str] = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0) , size=target_sizes[idx] , mode="bilinear" , align_corners=UpperCamelCase__) __lowerCAmelCase: Optional[Any] = resized_logits[0].argmax(dim=0) semantic_segmentation.append(UpperCamelCase__) else: __lowerCAmelCase: Tuple = logits.argmax(dim=1) __lowerCAmelCase: Optional[Any] = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0])] return semantic_segmentation
217
0
"""simple docstring""" from __future__ import annotations import copy import inspect import json import math import os import tempfile import unittest from importlib import import_module import numpy as np from transformers import ViTMAEConfig from transformers.file_utils import cached_property, is_tf_available, is_vision_available from transformers.testing_utils import require_tf, require_vision, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFViTMAEForPreTraining, TFViTMAEModel if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class UpperCamelCase : def __init__( self, lowerCAmelCase__, lowerCAmelCase__=13, lowerCAmelCase__=30, lowerCAmelCase__=2, lowerCAmelCase__=3, lowerCAmelCase__=True, lowerCAmelCase__=True, lowerCAmelCase__=32, lowerCAmelCase__=2, lowerCAmelCase__=4, lowerCAmelCase__=37, lowerCAmelCase__="gelu", lowerCAmelCase__=0.1, lowerCAmelCase__=0.1, lowerCAmelCase__=10, lowerCAmelCase__=0.02, lowerCAmelCase__=3, lowerCAmelCase__=0.6, lowerCAmelCase__=None, ) -> Dict: snake_case_ = parent snake_case_ = batch_size snake_case_ = image_size snake_case_ = patch_size snake_case_ = num_channels snake_case_ = is_training snake_case_ = use_labels snake_case_ = hidden_size snake_case_ = num_hidden_layers snake_case_ = num_attention_heads snake_case_ = intermediate_size snake_case_ = hidden_act snake_case_ = hidden_dropout_prob snake_case_ = attention_probs_dropout_prob snake_case_ = type_sequence_label_size snake_case_ = initializer_range snake_case_ = mask_ratio snake_case_ = scope # in ViTMAE, the expected sequence length = (num_patches + 1) * (1 - config.mask_ratio), rounded above # (we add 1 for the [CLS] token) snake_case_ = (image_size // patch_size) ** 2 snake_case_ = int(math.ceil((1 - mask_ratio) * (num_patches + 1))) def a_ ( self) -> Optional[Any]: snake_case_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) snake_case_ = None if self.use_labels: snake_case_ = ids_tensor([self.batch_size], self.type_sequence_label_size) snake_case_ = self.get_config() return config, pixel_values, labels def a_ ( self) -> int: return ViTMAEConfig( image_size=self.image_size, patch_size=self.patch_size, num_channels=self.num_channels, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, decoder_hidden_size=self.hidden_size, decoder_num_hidden_layers=self.num_hidden_layers, decoder_num_attention_heads=self.num_attention_heads, decoder_intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, is_decoder=lowerCAmelCase__, initializer_range=self.initializer_range, mask_ratio=self.mask_ratio, ) def a_ ( self, lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__) -> int: snake_case_ = TFViTMAEModel(config=lowerCAmelCase__) snake_case_ = model(lowerCAmelCase__, training=lowerCAmelCase__) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) def a_ ( self, lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__) -> Union[str, Any]: snake_case_ = TFViTMAEForPreTraining(lowerCAmelCase__) snake_case_ = model(lowerCAmelCase__, training=lowerCAmelCase__) # expected sequence length = num_patches snake_case_ = (self.image_size // self.patch_size) ** 2 snake_case_ = self.patch_size**2 * self.num_channels self.parent.assertEqual(result.logits.shape, (self.batch_size, num_patches, expected_num_channels)) # test greyscale images snake_case_ = 1 snake_case_ = TFViTMAEForPreTraining(lowerCAmelCase__) snake_case_ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size]) snake_case_ = model(lowerCAmelCase__, training=lowerCAmelCase__) snake_case_ = self.patch_size**2 self.parent.assertEqual(result.logits.shape, (self.batch_size, num_patches, expected_num_channels)) def a_ ( self) -> Tuple: snake_case_ = self.prepare_config_and_inputs() ((snake_case_) , (snake_case_) , (snake_case_)) = config_and_inputs snake_case_ = {'pixel_values': pixel_values} return config, inputs_dict @require_tf class UpperCamelCase ( lowerCAmelCase__ , lowerCAmelCase__ , unittest.TestCase ): SCREAMING_SNAKE_CASE_ = (TFViTMAEModel, TFViTMAEForPreTraining) if is_tf_available() else () SCREAMING_SNAKE_CASE_ = {"feature-extraction": TFViTMAEModel} if is_tf_available() else {} SCREAMING_SNAKE_CASE_ = False SCREAMING_SNAKE_CASE_ = False SCREAMING_SNAKE_CASE_ = False SCREAMING_SNAKE_CASE_ = False def a_ ( self) -> Tuple: snake_case_ = TFViTMAEModelTester(self) snake_case_ = ConfigTester(self, config_class=lowerCAmelCase__, has_text_modality=lowerCAmelCase__, hidden_size=37) def a_ ( self) -> List[Any]: self.config_tester.run_common_tests() @unittest.skip(reason='ViTMAE does not use inputs_embeds') def a_ ( self) -> int: pass def a_ ( self) -> Tuple: snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case_ = model_class(lowerCAmelCase__) self.assertIsInstance(model.get_input_embeddings(), (tf.keras.layers.Layer)) snake_case_ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowerCAmelCase__, tf.keras.layers.Layer)) def a_ ( self) -> str: snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case_ = model_class(lowerCAmelCase__) snake_case_ = inspect.signature(model.call) # signature.parameters is an OrderedDict => so arg_names order is deterministic snake_case_ = [*signature.parameters.keys()] snake_case_ = ['pixel_values'] self.assertListEqual(arg_names[:1], lowerCAmelCase__) def a_ ( self) -> Optional[int]: snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase__) def a_ ( self) -> List[Any]: snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*lowerCAmelCase__) def a_ ( self) -> Optional[int]: # make the mask reproducible np.random.seed(2) snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs_for_common() snake_case_ = int((config.image_size // config.patch_size) ** 2) snake_case_ = np.random.uniform(size=(self.model_tester.batch_size, num_patches)) for model_class in self.all_model_classes: snake_case_ = model_class(lowerCAmelCase__) snake_case_ = self._prepare_for_class(lowerCAmelCase__, lowerCAmelCase__) snake_case_ = model(lowerCAmelCase__, noise=lowerCAmelCase__) snake_case_ = copy.deepcopy(self._prepare_for_class(lowerCAmelCase__, lowerCAmelCase__)) snake_case_ = model(**lowerCAmelCase__, noise=lowerCAmelCase__) snake_case_ = outputs_dict[0].numpy() snake_case_ = outputs_keywords[0].numpy() self.assertLess(np.sum(np.abs(output_dict - output_keywords)), 1e-6) def a_ ( self) -> Union[str, Any]: # make the mask reproducible np.random.seed(2) snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs_for_common() snake_case_ = int((config.image_size // config.patch_size) ** 2) snake_case_ = np.random.uniform(size=(self.model_tester.batch_size, num_patches)) def prepare_numpy_arrays(lowerCAmelCase__): snake_case_ = {} for k, v in inputs_dict.items(): if tf.is_tensor(lowerCAmelCase__): snake_case_ = v.numpy() else: snake_case_ = np.array(lowerCAmelCase__) return inputs_np_dict for model_class in self.all_model_classes: snake_case_ = model_class(lowerCAmelCase__) snake_case_ = self._prepare_for_class(lowerCAmelCase__, lowerCAmelCase__) snake_case_ = prepare_numpy_arrays(lowerCAmelCase__) snake_case_ = model(lowerCAmelCase__, noise=lowerCAmelCase__) snake_case_ = model(**lowerCAmelCase__, noise=lowerCAmelCase__) self.assert_outputs_same(lowerCAmelCase__, lowerCAmelCase__) def a_ ( self, lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__) -> Union[str, Any]: # make masks reproducible np.random.seed(2) snake_case_ = int((tf_model.config.image_size // tf_model.config.patch_size) ** 2) snake_case_ = np.random.uniform(size=(self.model_tester.batch_size, num_patches)) snake_case_ = tf.constant(lowerCAmelCase__) # Add `noise` argument. # PT inputs will be prepared in `super().check_pt_tf_models()` with this added `noise` argument snake_case_ = tf_noise super().check_pt_tf_models(lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__) def a_ ( self) -> Optional[int]: # make mask reproducible np.random.seed(2) snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs_for_common() snake_case_ = { module_member for model_class in self.all_model_classes for module in (import_module(model_class.__module__),) for module_member_name in dir(lowerCAmelCase__) if module_member_name.endswith('MainLayer') # This condition is required, since `modeling_tf_clip.py` has 3 classes whose names end with `MainLayer`. and module_member_name[: -len('MainLayer')] == model_class.__name__[: -len('Model')] for module_member in (getattr(lowerCAmelCase__, lowerCAmelCase__),) if isinstance(lowerCAmelCase__, lowerCAmelCase__) and tf.keras.layers.Layer in module_member.__bases__ and getattr(lowerCAmelCase__, '_keras_serializable', lowerCAmelCase__) } snake_case_ = int((config.image_size // config.patch_size) ** 2) snake_case_ = np.random.uniform(size=(self.model_tester.batch_size, num_patches)) snake_case_ = tf.convert_to_tensor(lowerCAmelCase__) inputs_dict.update({'noise': noise}) for main_layer_class in tf_main_layer_classes: snake_case_ = main_layer_class(lowerCAmelCase__) snake_case_ = { name: tf.keras.Input(tensor.shape[1:], dtype=tensor.dtype) for name, tensor in inputs_dict.items() } snake_case_ = tf.keras.Model(lowerCAmelCase__, outputs=main_layer(lowerCAmelCase__)) snake_case_ = model(lowerCAmelCase__) with tempfile.TemporaryDirectory() as tmpdirname: snake_case_ = os.path.join(lowerCAmelCase__, 'keras_model.h5') model.save(lowerCAmelCase__) snake_case_ = tf.keras.models.load_model( lowerCAmelCase__, custom_objects={main_layer_class.__name__: main_layer_class}) assert isinstance(lowerCAmelCase__, tf.keras.Model) snake_case_ = model(lowerCAmelCase__) self.assert_outputs_same(lowerCAmelCase__, lowerCAmelCase__) @slow def a_ ( self) -> str: # make mask reproducible np.random.seed(2) snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs_for_common() snake_case_ = int((config.image_size // config.patch_size) ** 2) snake_case_ = np.random.uniform(size=(self.model_tester.batch_size, num_patches)) for model_class in self.all_model_classes: snake_case_ = model_class(lowerCAmelCase__) snake_case_ = self._prepare_for_class(lowerCAmelCase__, lowerCAmelCase__) snake_case_ = model(lowerCAmelCase__, noise=lowerCAmelCase__) if model_class.__name__ == "TFViTMAEModel": snake_case_ = outputs.last_hidden_state.numpy() snake_case_ = 0 else: snake_case_ = outputs.logits.numpy() snake_case_ = 0 with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(lowerCAmelCase__, saved_model=lowerCAmelCase__) snake_case_ = model_class.from_pretrained(lowerCAmelCase__) snake_case_ = model(lowerCAmelCase__, noise=lowerCAmelCase__) if model_class.__name__ == "TFViTMAEModel": snake_case_ = after_outputs['last_hidden_state'].numpy() snake_case_ = 0 else: snake_case_ = after_outputs['logits'].numpy() snake_case_ = 0 snake_case_ = np.amax(np.abs(out_a - out_a)) self.assertLessEqual(lowerCAmelCase__, 1e-5) def a_ ( self) -> List[str]: # make mask reproducible np.random.seed(2) snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs_for_common() snake_case_ = int((config.image_size // config.patch_size) ** 2) snake_case_ = np.random.uniform(size=(self.model_tester.batch_size, num_patches)) for model_class in self.all_model_classes: snake_case_ = model_class(lowerCAmelCase__) snake_case_ = self._prepare_for_class(lowerCAmelCase__, lowerCAmelCase__) snake_case_ = model(lowerCAmelCase__, noise=lowerCAmelCase__) snake_case_ = model.get_config() # make sure that returned config is jsonifiable, which is required by keras json.dumps(lowerCAmelCase__) snake_case_ = model_class.from_config(model.get_config()) # make sure it also accepts a normal config snake_case_ = model_class.from_config(model.config) snake_case_ = new_model(lowerCAmelCase__) # Build model new_model.set_weights(model.get_weights()) snake_case_ = new_model(lowerCAmelCase__, noise=lowerCAmelCase__) self.assert_outputs_same(lowerCAmelCase__, lowerCAmelCase__) @unittest.skip( reason='ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load\n to get deterministic results.') def a_ ( self) -> Dict: pass @unittest.skip(reason='ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load') def a_ ( self) -> Any: pass @slow def a_ ( self) -> List[Any]: snake_case_ = TFViTMAEModel.from_pretrained('google/vit-base-patch16-224') self.assertIsNotNone(lowerCAmelCase__) def UpperCAmelCase ( ) -> List[str]: snake_case_ = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_tf @require_vision class UpperCamelCase ( unittest.TestCase ): @cached_property def a_ ( self) -> Optional[Any]: return ViTImageProcessor.from_pretrained('facebook/vit-mae-base') if is_vision_available() else None @slow def a_ ( self) -> Dict: # make random mask reproducible across the PT and TF model np.random.seed(2) snake_case_ = TFViTMAEForPreTraining.from_pretrained('facebook/vit-mae-base') snake_case_ = self.default_image_processor snake_case_ = prepare_img() snake_case_ = image_processor(images=lowerCAmelCase__, return_tensors='tf') # prepare a noise vector that will be also used for testing the TF model # (this way we can ensure that the PT and TF models operate on the same inputs) snake_case_ = ViTMAEConfig() snake_case_ = int((vit_mae_config.image_size // vit_mae_config.patch_size) ** 2) snake_case_ = np.random.uniform(size=(1, num_patches)) # forward pass snake_case_ = model(**lowerCAmelCase__, noise=lowerCAmelCase__) # verify the logits snake_case_ = tf.convert_to_tensor([1, 196, 768]) self.assertEqual(outputs.logits.shape, lowerCAmelCase__) snake_case_ = tf.convert_to_tensor( [[-0.0548, -1.7023, -0.9325], [0.3721, -0.5670, -0.2233], [0.8235, -1.3878, -0.3524]]) tf.debugging.assert_near(outputs.logits[0, :3, :3], lowerCAmelCase__, atol=1e-4)
312
"""simple docstring""" import random import unittest import numpy as np from diffusers import ( DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, OnnxStableDiffusionImgaImgPipeline, PNDMScheduler, ) from diffusers.utils import floats_tensor from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class UpperCamelCase ( lowerCAmelCase__ , unittest.TestCase ): SCREAMING_SNAKE_CASE_ = "hf-internal-testing/tiny-random-OnnxStableDiffusionPipeline" def a_ ( self, lowerCAmelCase__=0) -> List[Any]: snake_case_ = floats_tensor((1, 3, 128, 128), rng=random.Random(lowerCAmelCase__)) snake_case_ = np.random.RandomState(lowerCAmelCase__) snake_case_ = { 'prompt': 'A painting of a squirrel eating a burger', 'image': image, 'generator': generator, 'num_inference_steps': 3, 'strength': 0.75, 'guidance_scale': 7.5, 'output_type': 'numpy', } return inputs def a_ ( self) -> Optional[Any]: snake_case_ = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint, provider='CPUExecutionProvider') pipe.set_progress_bar_config(disable=lowerCAmelCase__) snake_case_ = self.get_dummy_inputs() snake_case_ = pipe(**lowerCAmelCase__).images snake_case_ = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 128, 128, 3) snake_case_ = np.array([0.69643, 0.58484, 0.50314, 0.58760, 0.55368, 0.59643, 0.51529, 0.41217, 0.49087]) assert np.abs(image_slice - expected_slice).max() < 1e-1 def a_ ( self) -> List[str]: snake_case_ = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint, provider='CPUExecutionProvider') snake_case_ = PNDMScheduler.from_config(pipe.scheduler.config, skip_prk_steps=lowerCAmelCase__) pipe.set_progress_bar_config(disable=lowerCAmelCase__) snake_case_ = self.get_dummy_inputs() snake_case_ = pipe(**lowerCAmelCase__).images snake_case_ = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) snake_case_ = np.array([0.61737, 0.54642, 0.53183, 0.54465, 0.52742, 0.60525, 0.49969, 0.40655, 0.48154]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-1 def a_ ( self) -> str: snake_case_ = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint, provider='CPUExecutionProvider') snake_case_ = LMSDiscreteScheduler.from_config(pipe.scheduler.config) pipe.set_progress_bar_config(disable=lowerCAmelCase__) # warmup pass to apply optimizations snake_case_ = pipe(**self.get_dummy_inputs()) snake_case_ = self.get_dummy_inputs() snake_case_ = pipe(**lowerCAmelCase__).images snake_case_ = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) snake_case_ = np.array([0.52761, 0.59977, 0.49033, 0.49619, 0.54282, 0.50311, 0.47600, 0.40918, 0.45203]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-1 def a_ ( self) -> int: snake_case_ = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint, provider='CPUExecutionProvider') snake_case_ = EulerDiscreteScheduler.from_config(pipe.scheduler.config) pipe.set_progress_bar_config(disable=lowerCAmelCase__) snake_case_ = self.get_dummy_inputs() snake_case_ = pipe(**lowerCAmelCase__).images snake_case_ = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) snake_case_ = np.array([0.52911, 0.60004, 0.49229, 0.49805, 0.54502, 0.50680, 0.47777, 0.41028, 0.45304]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-1 def a_ ( self) -> Dict: snake_case_ = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint, provider='CPUExecutionProvider') snake_case_ = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config) pipe.set_progress_bar_config(disable=lowerCAmelCase__) snake_case_ = self.get_dummy_inputs() snake_case_ = pipe(**lowerCAmelCase__).images snake_case_ = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) snake_case_ = np.array([0.52911, 0.60004, 0.49229, 0.49805, 0.54502, 0.50680, 0.47777, 0.41028, 0.45304]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-1 def a_ ( self) -> Dict: snake_case_ = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint, provider='CPUExecutionProvider') snake_case_ = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config) pipe.set_progress_bar_config(disable=lowerCAmelCase__) snake_case_ = self.get_dummy_inputs() snake_case_ = pipe(**lowerCAmelCase__).images snake_case_ = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) snake_case_ = np.array([0.65331, 0.58277, 0.48204, 0.56059, 0.53665, 0.56235, 0.50969, 0.40009, 0.46552]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-1 @nightly @require_onnxruntime @require_torch_gpu class UpperCamelCase ( unittest.TestCase ): @property def a_ ( self) -> int: return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def a_ ( self) -> str: snake_case_ = ort.SessionOptions() snake_case_ = False return options def a_ ( self) -> Any: snake_case_ = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/img2img/sketch-mountains-input.jpg') snake_case_ = init_image.resize((768, 512)) # using the PNDM scheduler by default snake_case_ = OnnxStableDiffusionImgaImgPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4', revision='onnx', safety_checker=lowerCAmelCase__, feature_extractor=lowerCAmelCase__, provider=self.gpu_provider, sess_options=self.gpu_options, ) pipe.set_progress_bar_config(disable=lowerCAmelCase__) snake_case_ = 'A fantasy landscape, trending on artstation' snake_case_ = np.random.RandomState(0) snake_case_ = pipe( prompt=lowerCAmelCase__, image=lowerCAmelCase__, strength=0.75, guidance_scale=7.5, num_inference_steps=10, generator=lowerCAmelCase__, output_type='np', ) snake_case_ = output.images snake_case_ = images[0, 255:258, 383:386, -1] assert images.shape == (1, 512, 768, 3) snake_case_ = np.array([0.4909, 0.5059, 0.5372, 0.4623, 0.4876, 0.5049, 0.4820, 0.4956, 0.5019]) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice).max() < 2e-2 def a_ ( self) -> List[Any]: snake_case_ = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/img2img/sketch-mountains-input.jpg') snake_case_ = init_image.resize((768, 512)) snake_case_ = LMSDiscreteScheduler.from_pretrained( 'runwayml/stable-diffusion-v1-5', subfolder='scheduler', revision='onnx') snake_case_ = OnnxStableDiffusionImgaImgPipeline.from_pretrained( 'runwayml/stable-diffusion-v1-5', revision='onnx', scheduler=lowerCAmelCase__, safety_checker=lowerCAmelCase__, feature_extractor=lowerCAmelCase__, provider=self.gpu_provider, sess_options=self.gpu_options, ) pipe.set_progress_bar_config(disable=lowerCAmelCase__) snake_case_ = 'A fantasy landscape, trending on artstation' snake_case_ = np.random.RandomState(0) snake_case_ = pipe( prompt=lowerCAmelCase__, image=lowerCAmelCase__, strength=0.75, guidance_scale=7.5, num_inference_steps=20, generator=lowerCAmelCase__, output_type='np', ) snake_case_ = output.images snake_case_ = images[0, 255:258, 383:386, -1] assert images.shape == (1, 512, 768, 3) snake_case_ = np.array([0.8043, 0.926, 0.9581, 0.8119, 0.8954, 0.913, 0.7209, 0.7463, 0.7431]) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice).max() < 2e-2
312
1
import os import shutil import tempfile from unittest import TestCase from unittest.mock import patch import numpy as np from datasets import Dataset from transformers.models.realm.configuration_realm import RealmConfig from transformers.models.realm.retrieval_realm import _REALM_BLOCK_RECORDS_FILENAME, RealmRetriever from transformers.models.realm.tokenization_realm import VOCAB_FILES_NAMES, RealmTokenizer class _a ( _UpperCamelCase ): def lowerCamelCase_ ( self: int ) -> Union[str, Any]: """simple docstring""" lowercase__ = tempfile.mkdtemp() lowercase__ = 5 # Realm tok lowercase__ = [ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''test''', '''question''', '''this''', '''is''', '''the''', '''first''', '''second''', '''third''', '''fourth''', '''fifth''', '''record''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest''', ] lowercase__ = os.path.join(self.tmpdirname , '''realm_tokenizer''' ) os.makedirs(lowerCAmelCase_ , exist_ok=lowerCAmelCase_ ) lowercase__ = os.path.join(lowerCAmelCase_ , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) lowercase__ = os.path.join(self.tmpdirname , '''realm_block_records''' ) os.makedirs(lowerCAmelCase_ , exist_ok=lowerCAmelCase_ ) def lowerCamelCase_ ( self: Tuple ) -> RealmTokenizer: """simple docstring""" return RealmTokenizer.from_pretrained(os.path.join(self.tmpdirname , '''realm_tokenizer''' ) ) def lowerCamelCase_ ( self: int ) -> Optional[Any]: """simple docstring""" shutil.rmtree(self.tmpdirname ) def lowerCamelCase_ ( self: Optional[Any] ) -> List[Any]: """simple docstring""" lowercase__ = RealmConfig(num_block_records=self.num_block_records ) return config def lowerCamelCase_ ( self: int ) -> List[Any]: """simple docstring""" lowercase__ = Dataset.from_dict( { '''id''': ['''0''', '''1'''], '''question''': ['''foo''', '''bar'''], '''answers''': [['''Foo''', '''Bar'''], ['''Bar''']], } ) return dataset def lowerCamelCase_ ( self: Optional[int] ) -> Optional[int]: """simple docstring""" lowercase__ = np.array( [ b'''This is the first record''', b'''This is the second record''', b'''This is the third record''', b'''This is the fourth record''', b'''This is the fifth record''', b'''This is a longer longer longer record''', ] , dtype=lowerCAmelCase_ , ) return block_records def lowerCamelCase_ ( self: str ) -> int: """simple docstring""" lowercase__ = RealmRetriever( block_records=self.get_dummy_block_records() , tokenizer=self.get_tokenizer() , ) return retriever def lowerCamelCase_ ( self: Union[str, Any] ) -> List[Any]: """simple docstring""" lowercase__ = self.get_config() lowercase__ = self.get_dummy_retriever() lowercase__ = retriever.tokenizer lowercase__ = np.array([0, 3] , dtype='''long''' ) lowercase__ = tokenizer(['''Test question'''] ).input_ids lowercase__ = tokenizer( ['''the fourth'''] , add_special_tokens=lowerCAmelCase_ , return_token_type_ids=lowerCAmelCase_ , return_attention_mask=lowerCAmelCase_ , ).input_ids lowercase__ = config.reader_seq_len lowercase__ , lowercase__ , lowercase__ , lowercase__ = retriever( lowerCAmelCase_ , lowerCAmelCase_ , answer_ids=lowerCAmelCase_ , max_length=lowerCAmelCase_ , return_tensors='''np''' ) self.assertEqual(len(lowerCAmelCase_ ) , 2 ) self.assertEqual(len(lowerCAmelCase_ ) , 2 ) self.assertEqual(len(lowerCAmelCase_ ) , 2 ) self.assertEqual(concat_inputs.input_ids.shape , (2, 10) ) self.assertEqual(concat_inputs.attention_mask.shape , (2, 10) ) self.assertEqual(concat_inputs.token_type_ids.shape , (2, 10) ) self.assertEqual(concat_inputs.special_tokens_mask.shape , (2, 10) ) self.assertEqual( tokenizer.convert_ids_to_tokens(concat_inputs.input_ids[0] ) , ['''[CLS]''', '''test''', '''question''', '''[SEP]''', '''this''', '''is''', '''the''', '''first''', '''record''', '''[SEP]'''] , ) self.assertEqual( tokenizer.convert_ids_to_tokens(concat_inputs.input_ids[1] ) , ['''[CLS]''', '''test''', '''question''', '''[SEP]''', '''this''', '''is''', '''the''', '''fourth''', '''record''', '''[SEP]'''] , ) def lowerCamelCase_ ( self: Tuple ) -> List[Any]: """simple docstring""" lowercase__ = self.get_config() lowercase__ = self.get_dummy_retriever() lowercase__ = retriever.tokenizer lowercase__ = np.array([0, 3, 5] , dtype='''long''' ) lowercase__ = tokenizer(['''Test question'''] ).input_ids lowercase__ = tokenizer( ['''the fourth''', '''longer longer'''] , add_special_tokens=lowerCAmelCase_ , return_token_type_ids=lowerCAmelCase_ , return_attention_mask=lowerCAmelCase_ , ).input_ids lowercase__ = config.reader_seq_len lowercase__ , lowercase__ , lowercase__ , lowercase__ = retriever( lowerCAmelCase_ , lowerCAmelCase_ , answer_ids=lowerCAmelCase_ , max_length=lowerCAmelCase_ , return_tensors='''np''' ) self.assertEqual([False, True, True] , lowerCAmelCase_ ) self.assertEqual([[-1, -1, -1], [6, -1, -1], [6, 7, 8]] , lowerCAmelCase_ ) self.assertEqual([[-1, -1, -1], [7, -1, -1], [7, 8, 9]] , lowerCAmelCase_ ) def lowerCamelCase_ ( self: str ) -> Dict: """simple docstring""" lowercase__ = self.get_dummy_retriever() retriever.save_pretrained(os.path.join(self.tmpdirname , '''realm_block_records''' ) ) # Test local path lowercase__ = retriever.from_pretrained(os.path.join(self.tmpdirname , '''realm_block_records''' ) ) self.assertEqual(retriever.block_records[0] , b'''This is the first record''' ) # Test mocked remote path with patch('''transformers.models.realm.retrieval_realm.hf_hub_download''' ) as mock_hf_hub_download: lowercase__ = os.path.join( os.path.join(self.tmpdirname , '''realm_block_records''' ) , _REALM_BLOCK_RECORDS_FILENAME ) lowercase__ = RealmRetriever.from_pretrained('''google/realm-cc-news-pretrained-openqa''' ) self.assertEqual(retriever.block_records[0] , b'''This is the first record''' )
110
import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, EulerAncestralDiscreteScheduler, LMSDiscreteScheduler, PNDMScheduler, StableDiffusionInstructPixaPixPipeline, UNetaDConditionModel, ) from diffusers.image_processor import VaeImageProcessor from diffusers.utils import floats_tensor, load_image, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class _UpperCAmelCase ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , unittest.TestCase ): """simple docstring""" a_ = StableDiffusionInstructPixaPixPipeline a_ = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {"""height""", """width""", """cross_attention_kwargs"""} a_ = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS a_ = IMAGE_TO_IMAGE_IMAGE_PARAMS a_ = IMAGE_TO_IMAGE_IMAGE_PARAMS def lowercase ( self : Optional[int] ) -> Optional[int]: torch.manual_seed(0 ) __lowerCAmelCase = UNetaDConditionModel( block_out_channels=(3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=8 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=3_2 , ) __lowerCAmelCase = PNDMScheduler(skip_prk_steps=lowerCAmelCase_ ) torch.manual_seed(0 ) __lowerCAmelCase = AutoencoderKL( block_out_channels=[3_2, 6_4] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , ) torch.manual_seed(0 ) __lowerCAmelCase = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=3_2 , intermediate_size=3_7 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , ) __lowerCAmelCase = CLIPTextModel(lowerCAmelCase_ ) __lowerCAmelCase = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) __lowerCAmelCase = { 'unet': unet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'safety_checker': None, 'feature_extractor': None, } return components def lowercase ( self : Optional[Any] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Tuple=0 ) -> Dict: __lowerCAmelCase = floats_tensor((1, 3, 3_2, 3_2) , rng=random.Random(lowerCAmelCase_ ) ).to(lowerCAmelCase_ ) __lowerCAmelCase = image.cpu().permute(0 , 2 , 3 , 1 )[0] __lowerCAmelCase = Image.fromarray(np.uinta(lowerCAmelCase_ ) ).convert('RGB' ) if str(lowerCAmelCase_ ).startswith('mps' ): __lowerCAmelCase = torch.manual_seed(lowerCAmelCase_ ) else: __lowerCAmelCase = torch.Generator(device=lowerCAmelCase_ ).manual_seed(lowerCAmelCase_ ) __lowerCAmelCase = { 'prompt': 'A painting of a squirrel eating a burger', 'image': image, 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 6.0, 'image_guidance_scale': 1, 'output_type': 'numpy', } return inputs def lowercase ( self : Tuple ) -> List[Any]: __lowerCAmelCase = 'cpu' # ensure determinism for the device-dependent torch.Generator __lowerCAmelCase = self.get_dummy_components() __lowerCAmelCase = StableDiffusionInstructPixaPixPipeline(**lowerCAmelCase_ ) __lowerCAmelCase = sd_pipe.to(lowerCAmelCase_ ) sd_pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) __lowerCAmelCase = self.get_dummy_inputs(lowerCAmelCase_ ) __lowerCAmelCase = sd_pipe(**lowerCAmelCase_ ).images __lowerCAmelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 3_2, 3_2, 3) __lowerCAmelCase = np.array([0.75_26, 0.37_50, 0.45_47, 0.61_17, 0.58_66, 0.50_16, 0.43_27, 0.56_42, 0.48_15] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def lowercase ( self : List[str] ) -> Dict: __lowerCAmelCase = 'cpu' # ensure determinism for the device-dependent torch.Generator __lowerCAmelCase = self.get_dummy_components() __lowerCAmelCase = StableDiffusionInstructPixaPixPipeline(**lowerCAmelCase_ ) __lowerCAmelCase = sd_pipe.to(lowerCAmelCase_ ) sd_pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) __lowerCAmelCase = self.get_dummy_inputs(lowerCAmelCase_ ) __lowerCAmelCase = 'french fries' __lowerCAmelCase = sd_pipe(**lowerCAmelCase_ , negative_prompt=lowerCAmelCase_ ) __lowerCAmelCase = output.images __lowerCAmelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 3_2, 3_2, 3) __lowerCAmelCase = np.array([0.75_11, 0.36_42, 0.45_53, 0.62_36, 0.57_97, 0.50_13, 0.43_43, 0.56_11, 0.48_31] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def lowercase ( self : List[str] ) -> Any: __lowerCAmelCase = 'cpu' # ensure determinism for the device-dependent torch.Generator __lowerCAmelCase = self.get_dummy_components() __lowerCAmelCase = StableDiffusionInstructPixaPixPipeline(**lowerCAmelCase_ ) __lowerCAmelCase = sd_pipe.to(lowerCAmelCase_ ) sd_pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) __lowerCAmelCase = self.get_dummy_inputs(lowerCAmelCase_ ) __lowerCAmelCase = [inputs['prompt']] * 2 __lowerCAmelCase = np.array(inputs['image'] ).astype(np.floataa ) / 2_55.0 __lowerCAmelCase = torch.from_numpy(lowerCAmelCase_ ).unsqueeze(0 ).to(lowerCAmelCase_ ) __lowerCAmelCase = image / 2 + 0.5 __lowerCAmelCase = image.permute(0 , 3 , 1 , 2 ) __lowerCAmelCase = image.repeat(2 , 1 , 1 , 1 ) __lowerCAmelCase = sd_pipe(**lowerCAmelCase_ ).images __lowerCAmelCase = image[-1, -3:, -3:, -1] assert image.shape == (2, 3_2, 3_2, 3) __lowerCAmelCase = np.array([0.58_12, 0.57_48, 0.52_22, 0.59_08, 0.56_95, 0.71_74, 0.68_04, 0.55_23, 0.55_79] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def lowercase ( self : Dict ) -> Optional[Any]: __lowerCAmelCase = 'cpu' # ensure determinism for the device-dependent torch.Generator __lowerCAmelCase = self.get_dummy_components() __lowerCAmelCase = EulerAncestralDiscreteScheduler( beta_start=0.0_00_85 , beta_end=0.0_12 , beta_schedule='scaled_linear' ) __lowerCAmelCase = StableDiffusionInstructPixaPixPipeline(**lowerCAmelCase_ ) __lowerCAmelCase = sd_pipe.to(lowerCAmelCase_ ) sd_pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) __lowerCAmelCase = self.get_dummy_inputs(lowerCAmelCase_ ) __lowerCAmelCase = sd_pipe(**lowerCAmelCase_ ).images __lowerCAmelCase = image[0, -3:, -3:, -1] __lowerCAmelCase = [round(lowerCAmelCase_ , 4 ) for x in image_slice.flatten().tolist()] print(','.join([str(lowerCAmelCase_ ) for x in slice] ) ) assert image.shape == (1, 3_2, 3_2, 3) __lowerCAmelCase = np.array([0.74_17, 0.38_42, 0.47_32, 0.57_76, 0.58_91, 0.51_39, 0.40_52, 0.56_73, 0.49_86] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def lowercase ( self : Optional[int] ) -> Optional[int]: super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) def lowercase ( self : Optional[Any] ) -> Optional[Any]: __lowerCAmelCase = self.get_dummy_components() __lowerCAmelCase = StableDiffusionInstructPixaPixPipeline(**lowerCAmelCase_ ) __lowerCAmelCase = VaeImageProcessor(do_resize=lowerCAmelCase_ , do_normalize=lowerCAmelCase_ ) __lowerCAmelCase = pipe.to(lowerCAmelCase_ ) pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) __lowerCAmelCase = pipe(**self.get_dummy_inputs_by_type(lowerCAmelCase_ , input_image_type='pt' ) )[0] __lowerCAmelCase = components['vae'] __lowerCAmelCase = self.get_dummy_inputs_by_type(lowerCAmelCase_ , input_image_type='pt' ) for image_param in self.image_latents_params: if image_param in inputs.keys(): __lowerCAmelCase = vae.encode(inputs[image_param] ).latent_dist.mode() __lowerCAmelCase = pipe(**lowerCAmelCase_ )[0] __lowerCAmelCase = np.abs(out - out_latents_inputs ).max() self.assertLess(lowerCAmelCase_ , 1e-4 , 'passing latents as image input generate different result from passing image' ) @slow @require_torch_gpu class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" def lowercase ( self : int ) -> Optional[int]: super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase ( self : List[str] , lowerCAmelCase_ : List[Any]=0 ) -> Any: __lowerCAmelCase = torch.manual_seed(lowerCAmelCase_ ) __lowerCAmelCase = load_image( 'https://huggingface.co/datasets/diffusers/test-arrays/resolve/main/stable_diffusion_pix2pix/example.jpg' ) __lowerCAmelCase = { 'prompt': 'turn him into a cyborg', 'image': image, 'generator': generator, 'num_inference_steps': 3, 'guidance_scale': 7.5, 'image_guidance_scale': 1.0, 'output_type': 'numpy', } return inputs def lowercase ( self : List[Any] ) -> str: __lowerCAmelCase = StableDiffusionInstructPixaPixPipeline.from_pretrained( 'timbrooks/instruct-pix2pix' , safety_checker=lowerCAmelCase_ ) pipe.to(lowerCAmelCase_ ) pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) pipe.enable_attention_slicing() __lowerCAmelCase = self.get_inputs() __lowerCAmelCase = pipe(**lowerCAmelCase_ ).images __lowerCAmelCase = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 5_1_2, 5_1_2, 3) __lowerCAmelCase = np.array([0.59_02, 0.60_15, 0.60_27, 0.59_83, 0.60_92, 0.60_61, 0.57_65, 0.57_85, 0.55_55] ) assert np.abs(expected_slice - image_slice ).max() < 1e-3 def lowercase ( self : Tuple ) -> List[str]: __lowerCAmelCase = StableDiffusionInstructPixaPixPipeline.from_pretrained( 'timbrooks/instruct-pix2pix' , safety_checker=lowerCAmelCase_ ) __lowerCAmelCase = LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.to(lowerCAmelCase_ ) pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) pipe.enable_attention_slicing() __lowerCAmelCase = self.get_inputs() __lowerCAmelCase = pipe(**lowerCAmelCase_ ).images __lowerCAmelCase = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 5_1_2, 5_1_2, 3) __lowerCAmelCase = np.array([0.65_78, 0.68_17, 0.69_72, 0.67_61, 0.68_56, 0.69_16, 0.64_28, 0.65_16, 0.63_01] ) assert np.abs(expected_slice - image_slice ).max() < 1e-3 def lowercase ( self : Optional[Any] ) -> Dict: __lowerCAmelCase = StableDiffusionInstructPixaPixPipeline.from_pretrained( 'timbrooks/instruct-pix2pix' , safety_checker=lowerCAmelCase_ ) __lowerCAmelCase = DDIMScheduler.from_config(pipe.scheduler.config ) pipe.to(lowerCAmelCase_ ) pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) pipe.enable_attention_slicing() __lowerCAmelCase = self.get_inputs() __lowerCAmelCase = pipe(**lowerCAmelCase_ ).images __lowerCAmelCase = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 5_1_2, 5_1_2, 3) __lowerCAmelCase = np.array([0.38_28, 0.38_34, 0.38_18, 0.37_92, 0.38_65, 0.37_52, 0.37_92, 0.38_47, 0.37_53] ) assert np.abs(expected_slice - image_slice ).max() < 1e-3 def lowercase ( self : Optional[int] ) -> int: __lowerCAmelCase = 0 def callback_fn(lowerCAmelCase_ : int , lowerCAmelCase_ : int , lowerCAmelCase_ : torch.FloatTensor ) -> None: __lowerCAmelCase = True nonlocal number_of_steps number_of_steps += 1 if step == 1: __lowerCAmelCase = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 6_4, 6_4) __lowerCAmelCase = latents[0, -3:, -3:, -1] __lowerCAmelCase = np.array([-0.24_63, -0.46_44, -0.97_56, 1.51_76, 1.44_14, 0.78_66, 0.98_97, 0.85_21, 0.79_83] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5e-2 elif step == 2: __lowerCAmelCase = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 6_4, 6_4) __lowerCAmelCase = latents[0, -3:, -3:, -1] __lowerCAmelCase = np.array([-0.26_44, -0.46_26, -0.96_53, 1.51_76, 1.45_51, 0.76_86, 0.98_05, 0.84_52, 0.81_15] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5e-2 __lowerCAmelCase = False __lowerCAmelCase = StableDiffusionInstructPixaPixPipeline.from_pretrained( 'timbrooks/instruct-pix2pix' , safety_checker=lowerCAmelCase_ , torch_dtype=torch.floataa ) __lowerCAmelCase = pipe.to(lowerCAmelCase_ ) pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) pipe.enable_attention_slicing() __lowerCAmelCase = self.get_inputs() pipe(**lowerCAmelCase_ , callback=lowerCAmelCase_ , callback_steps=1 ) assert callback_fn.has_been_called assert number_of_steps == 3 def lowercase ( self : Optional[int] ) -> Any: torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() __lowerCAmelCase = StableDiffusionInstructPixaPixPipeline.from_pretrained( 'timbrooks/instruct-pix2pix' , safety_checker=lowerCAmelCase_ , torch_dtype=torch.floataa ) __lowerCAmelCase = pipe.to(lowerCAmelCase_ ) pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() __lowerCAmelCase = self.get_inputs() __lowerCAmelCase = pipe(**lowerCAmelCase_ ) __lowerCAmelCase = torch.cuda.max_memory_allocated() # make sure that less than 2.2 GB is allocated assert mem_bytes < 2.2 * 1_0**9 def lowercase ( self : List[Any] ) -> Any: __lowerCAmelCase = self.get_inputs() # resize to resolution that is divisible by 8 but not 16 or 32 __lowerCAmelCase = inputs['image'].resize((5_0_4, 5_0_4) ) __lowerCAmelCase = 'timbrooks/instruct-pix2pix' __lowerCAmelCase = StableDiffusionInstructPixaPixPipeline.from_pretrained( lowerCAmelCase_ , safety_checker=lowerCAmelCase_ , ) pipe.to(lowerCAmelCase_ ) pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) pipe.enable_attention_slicing() __lowerCAmelCase = pipe(**lowerCAmelCase_ ) __lowerCAmelCase = output.images[0] __lowerCAmelCase = image[2_5_5:2_5_8, 3_8_3:3_8_6, -1] assert image.shape == (5_0_4, 5_0_4, 3) __lowerCAmelCase = np.array([0.27_26, 0.25_29, 0.26_64, 0.26_55, 0.26_41, 0.26_42, 0.25_91, 0.26_49, 0.25_90] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-3
284
0
"""simple docstring""" import argparse import os import re # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_dummies.py lowerCAmelCase : List[str] = """src/diffusers""" # Matches is_xxx_available() lowerCAmelCase : int = re.compile(r"""is\_([a-z_]*)_available\(\)""") # Matches from xxx import bla lowerCAmelCase : List[str] = re.compile(r"""\s+from\s+\S*\s+import\s+([^\(\s].*)\n""") lowerCAmelCase : Optional[Any] = """ {0} = None """ lowerCAmelCase : List[Any] = """ class {0}(metaclass=DummyObject): _backends = {1} def __init__(self, *args, **kwargs): requires_backends(self, {1}) @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, {1}) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, {1}) """ lowerCAmelCase : Optional[Any] = """ def {0}(*args, **kwargs): requires_backends({0}, {1}) """ def a__ ( snake_case__ ) -> List[Any]: lowerCamelCase = _re_backend.findall(__snake_case ) if len(__snake_case ) == 0: return None return "_and_".join(__snake_case ) def a__ ( ) -> Optional[int]: with open(os.path.join(__snake_case , """__init__.py""" ) , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f: lowerCamelCase = f.readlines() # Get to the point we do the actual imports for type checking lowerCamelCase = 0 lowerCamelCase = {} # Go through the end of the file while line_index < len(__snake_case ): # If the line contains is_backend_available, we grab all objects associated with the `else` block lowerCamelCase = find_backend(lines[line_index] ) if backend is not None: while not lines[line_index].startswith("""else:""" ): line_index += 1 line_index += 1 lowerCamelCase = [] # Until we unindent, add backend objects to the list while line_index < len(__snake_case ) and len(lines[line_index] ) > 1: lowerCamelCase = lines[line_index] lowerCamelCase = _re_single_line_import.search(__snake_case ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(""", """ ) ) elif line.startswith(""" """ * 8 ): objects.append(line[8:-2] ) line_index += 1 if len(__snake_case ) > 0: lowerCamelCase = objects else: line_index += 1 return backend_specific_objects def a__ ( snake_case__ , snake_case__ ) -> Union[str, Any]: if name.isupper(): return DUMMY_CONSTANT.format(__snake_case ) elif name.islower(): return DUMMY_FUNCTION.format(__snake_case , __snake_case ) else: return DUMMY_CLASS.format(__snake_case , __snake_case ) def a__ ( snake_case__=None ) -> List[str]: if backend_specific_objects is None: lowerCamelCase = read_init() # For special correspondence backend to module name as used in the function requires_modulename lowerCamelCase = {} for backend, objects in backend_specific_objects.items(): lowerCamelCase = """[""" + """, """.join(F'"{b}"' for b in backend.split("""_and_""" ) ) + """]""" lowerCamelCase = """# This file is autogenerated by the command `make fix-copies`, do not edit.\n""" dummy_file += "from ..utils import DummyObject, requires_backends\n\n" dummy_file += "\n".join([create_dummy_object(__snake_case , __snake_case ) for o in objects] ) lowerCamelCase = dummy_file return dummy_files def a__ ( snake_case__=False ) -> Union[str, Any]: lowerCamelCase = create_dummy_files() # For special correspondence backend to shortcut as used in utils/dummy_xxx_objects.py lowerCamelCase = {"""torch""": """pt"""} # Locate actual dummy modules and read their content. lowerCamelCase = os.path.join(__snake_case , """utils""" ) lowerCamelCase = { backend: os.path.join(__snake_case , F'dummy_{short_names.get(__snake_case , __snake_case )}_objects.py' ) for backend in dummy_files.keys() } lowerCamelCase = {} for backend, file_path in dummy_file_paths.items(): if os.path.isfile(__snake_case ): with open(__snake_case , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f: lowerCamelCase = f.read() else: lowerCamelCase = """""" for backend in dummy_files.keys(): if dummy_files[backend] != actual_dummies[backend]: if overwrite: print( F'Updating diffusers.utils.dummy_{short_names.get(__snake_case , __snake_case )}_objects.py as the main ' """__init__ has new objects.""" ) with open(dummy_file_paths[backend] , """w""" , encoding="""utf-8""" , newline="""\n""" ) as f: f.write(dummy_files[backend] ) else: raise ValueError( """The main __init__ has objects that are not present in """ F'diffusers.utils.dummy_{short_names.get(__snake_case , __snake_case )}_objects.py. Run `make fix-copies` ' """to fix this.""" ) if __name__ == "__main__": lowerCAmelCase : Tuple = argparse.ArgumentParser() parser.add_argument("""--fix_and_overwrite""", action="""store_true""", help="""Whether to fix inconsistencies.""") lowerCAmelCase : Tuple = parser.parse_args() check_dummies(args.fix_and_overwrite)
356
"""simple docstring""" import math import random def a__ ( snake_case__ , snake_case__ = False ) -> float: if deriv: return value * (1 - value) return 1 / (1 + math.exp(-value )) # Initial Value lowerCAmelCase : Dict = 0.0_2 def a__ ( snake_case__ , snake_case__ ) -> float: lowerCamelCase = float(2 * (random.randint(1 , 1_00 )) - 1 ) for _ in range(snake_case__ ): # Forward propagation lowerCamelCase = sigmoid_function(INITIAL_VALUE * weight ) # How much did we miss? lowerCamelCase = (expected / 1_00) - layer_a # Error delta lowerCamelCase = layer_1_error * sigmoid_function(snake_case__ , snake_case__ ) # Update weight weight += INITIAL_VALUE * layer_1_delta return layer_a * 1_00 if __name__ == "__main__": import doctest doctest.testmod() lowerCAmelCase : Any = int(input("""Expected value: """)) lowerCAmelCase : List[Any] = int(input("""Number of propagations: """)) print(forward_propagation(expected, number_propagations))
168
0
"""simple docstring""" import random def _snake_case ( UpperCAmelCase_ : int ): A__ = num - 1 A__ = 0 while s % 2 == 0: A__ = s // 2 t += 1 for _ in range(5 ): A__ = random.randrange(2 , num - 1 ) A__ = pow(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) if v != 1: A__ = 0 while v != (num - 1): if i == t - 1: return False else: A__ = i + 1 A__ = (v**2) % num return True def _snake_case ( UpperCAmelCase_ : int ): if num < 2: return False A__ = [ 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271, 277, 281, 283, 293, 307, 311, 313, 317, 331, 337, 347, 349, 353, 359, 367, 373, 379, 383, 389, 397, 401, 409, 419, 421, 431, 433, 439, 443, 449, 457, 461, 463, 467, 479, 487, 491, 499, 503, 509, 521, 523, 541, 547, 557, 563, 569, 571, 577, 587, 593, 599, 601, 607, 613, 617, 619, 631, 641, 643, 647, 653, 659, 661, 673, 677, 683, 691, 701, 709, 719, 727, 733, 739, 743, 751, 757, 761, 769, 773, 787, 797, 809, 811, 821, 823, 827, 829, 839, 853, 857, 859, 863, 877, 881, 883, 887, 907, 911, 919, 929, 937, 941, 947, 953, 967, 971, 977, 983, 991, 997, ] if num in low_primes: return True for prime in low_primes: if (num % prime) == 0: return False return rabin_miller(UpperCAmelCase_ ) def _snake_case ( UpperCAmelCase_ : int = 1024 ): while True: A__ = random.randrange(2 ** (keysize - 1) , 2 ** (keysize) ) if is_prime_low_num(UpperCAmelCase_ ): return num if __name__ == "__main__": SCREAMING_SNAKE_CASE_ : Dict = generate_large_prime() print(('Prime number:', num)) print(('is_prime_low_num:', is_prime_low_num(num)))
335
"""simple docstring""" def _snake_case ( UpperCAmelCase_ : int = 10 ): if not isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) or n < 0: raise ValueError("""Invalid input""" ) A__ = 10**n A__ = 2_8433 * (pow(2 , 783_0457 , UpperCAmelCase_ )) + 1 return str(number % modulus ) if __name__ == "__main__": from doctest import testmod testmod() print(f"""{solution(1_0) = }""")
335
1
'''simple docstring''' from typing import List, Optional, Tuple, Union import PIL import torch from torchvision import transforms from diffusers.pipeline_utils import DiffusionPipeline, ImagePipelineOutput from diffusers.schedulers import DDIMScheduler from diffusers.utils import randn_tensor _lowercase : Any = transforms.Compose( [ transforms.Resize((2_5_6, 2_5_6)), transforms.ToTensor(), transforms.Normalize([0.5], [0.5]), ] ) def snake_case_ ( __SCREAMING_SNAKE_CASE : str ): """simple docstring""" if isinstance(__lowerCamelCase , torch.Tensor ): return image elif isinstance(__lowerCamelCase , PIL.Image.Image ): lowercase_ : Any = [image] lowercase_ : List[Any] = [trans(img.convert('''RGB''' ) ) for img in image] lowercase_ : Union[str, Any] = torch.stack(__lowerCamelCase ) return image class lowerCAmelCase__ ( A_ ): def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): """simple docstring""" super().__init__() # make sure scheduler can always be converted to DDIM lowercase_ : List[str] = DDIMScheduler.from_config(scheduler.config ) self.register_modules(unet=snake_case__ , scheduler=snake_case__ ) def _snake_case ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" if strength < 0 or strength > 1: raise ValueError(F'''The value of strength should in [0.0, 1.0] but is {strength}''' ) def _snake_case ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase_ : str = min(int(num_inference_steps * strength ) , snake_case__ ) lowercase_ : Optional[int] = max(num_inference_steps - init_timestep , 0 ) lowercase_ : Any = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def _snake_case ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=None ): """simple docstring""" if not isinstance(snake_case__ , (torch.Tensor, PIL.Image.Image, list) ): raise ValueError( F'''`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(snake_case__ )}''' ) lowercase_ : str = image.to(device=snake_case__ , dtype=snake_case__ ) if isinstance(snake_case__ , snake_case__ ) and len(snake_case__ ) != batch_size: raise ValueError( F'''You have passed a list of generators of length {len(snake_case__ )}, but requested an effective batch''' F''' size of {batch_size}. Make sure the batch size matches the length of the generators.''' ) lowercase_ : Union[str, Any] = init_latents.shape lowercase_ : Optional[int] = randn_tensor(snake_case__ , generator=snake_case__ , device=snake_case__ , dtype=snake_case__ ) # get latents print('''add noise to latents at timestep''' , snake_case__ ) lowercase_ : Dict = self.scheduler.add_noise(snake_case__ , snake_case__ , snake_case__ ) lowercase_ : Tuple = init_latents return latents @torch.no_grad() def __call__( self , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = 0.8 , __SCREAMING_SNAKE_CASE = 1 , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = 0.0 , __SCREAMING_SNAKE_CASE = 50 , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = "pil" , __SCREAMING_SNAKE_CASE = True , ): """simple docstring""" self.check_inputs(snake_case__ ) # 2. Preprocess image lowercase_ : Dict = preprocess(snake_case__ ) # 3. set timesteps self.scheduler.set_timesteps(snake_case__ , device=self.device ) lowercase_ : List[str] = self.get_timesteps(snake_case__ , snake_case__ , self.device ) lowercase_ : Optional[Any] = timesteps[:1].repeat(snake_case__ ) # 4. Prepare latent variables lowercase_ : Any = self.prepare_latents(snake_case__ , snake_case__ , snake_case__ , self.unet.dtype , self.device , snake_case__ ) lowercase_ : Union[str, Any] = latents # 5. Denoising loop for t in self.progress_bar(snake_case__ ): # 1. predict noise model_output lowercase_ : Dict = self.unet(snake_case__ , snake_case__ ).sample # 2. predict previous mean of image x_t-1 and add variance depending on eta # eta corresponds to η in paper and should be between [0, 1] # do x_t -> x_t-1 lowercase_ : Optional[int] = self.scheduler.step( snake_case__ , snake_case__ , snake_case__ , eta=snake_case__ , use_clipped_model_output=snake_case__ , generator=snake_case__ , ).prev_sample lowercase_ : Optional[int] = (image / 2 + 0.5).clamp(0 , 1 ) lowercase_ : str = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": lowercase_ : Union[str, Any] = self.numpy_to_pil(snake_case__ ) if not return_dict: return (image, latent_timestep.item()) return ImagePipelineOutput(images=snake_case__ )
360
'''simple docstring''' from typing import Optional from urllib.parse import quote import huggingface_hub as hfh from packaging import version def snake_case_ ( __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Optional[str] = None ): """simple docstring""" if version.parse(hfh.__version__ ).release < version.parse('''0.11.0''' ).release: # old versions of hfh don't url-encode the file path lowercase_ : int = quote(__SCREAMING_SNAKE_CASE ) return hfh.hf_hub_url(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , repo_type='''dataset''' , revision=__SCREAMING_SNAKE_CASE )
264
0
from scipy.stats import pearsonr, spearmanr from sklearn.metrics import fa_score, matthews_corrcoef import datasets UpperCAmelCase : Any = '''\ @inproceedings{wang2019glue, title={{GLUE}: A Multi-Task Benchmark and Analysis Platform for Natural Language Understanding}, author={Wang, Alex and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R.}, note={In the Proceedings of ICLR.}, year={2019} } ''' UpperCAmelCase : Union[str, Any] = '''\ GLUE, the General Language Understanding Evaluation benchmark (https://gluebenchmark.com/) is a collection of resources for training, evaluating, and analyzing natural language understanding systems. ''' UpperCAmelCase : List[Any] = ''' Compute GLUE evaluation metric associated to each GLUE dataset. Args: predictions: list of predictions to score. Each translation should be tokenized into a list of tokens. references: list of lists of references for each translation. Each reference should be tokenized into a list of tokens. Returns: depending on the GLUE subset, one or several of: "accuracy": Accuracy "f1": F1 score "pearson": Pearson Correlation "spearmanr": Spearman Correlation "matthews_correlation": Matthew Correlation Examples: >>> glue_metric = datasets.load_metric(\'glue\', \'sst2\') # \'sst2\' or any of ["mnli", "mnli_mismatched", "mnli_matched", "qnli", "rte", "wnli", "hans"] >>> references = [0, 1] >>> predictions = [0, 1] >>> results = glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'accuracy\': 1.0} >>> glue_metric = datasets.load_metric(\'glue\', \'mrpc\') # \'mrpc\' or \'qqp\' >>> references = [0, 1] >>> predictions = [0, 1] >>> results = glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'accuracy\': 1.0, \'f1\': 1.0} >>> glue_metric = datasets.load_metric(\'glue\', \'stsb\') >>> references = [0., 1., 2., 3., 4., 5.] >>> predictions = [0., 1., 2., 3., 4., 5.] >>> results = glue_metric.compute(predictions=predictions, references=references) >>> print({"pearson": round(results["pearson"], 2), "spearmanr": round(results["spearmanr"], 2)}) {\'pearson\': 1.0, \'spearmanr\': 1.0} >>> glue_metric = datasets.load_metric(\'glue\', \'cola\') >>> references = [0, 1] >>> predictions = [0, 1] >>> results = glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'matthews_correlation\': 1.0} ''' def _SCREAMING_SNAKE_CASE ( a , a ) -> Tuple: return float((preds == labels).mean() ) def _SCREAMING_SNAKE_CASE ( a , a ) -> int: __A : Optional[int] = simple_accuracy(a , a ) __A : Tuple = float(fa_score(y_true=a , y_pred=a ) ) return { "accuracy": acc, "f1": fa, } def _SCREAMING_SNAKE_CASE ( a , a ) -> List[Any]: __A : Optional[Any] = float(pearsonr(a , a )[0] ) __A : Tuple = float(spearmanr(a , a )[0] ) return { "pearson": pearson_corr, "spearmanr": spearman_corr, } @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _A( datasets.Metric ): """simple docstring""" def UpperCAmelCase_ ( self ): if self.config_name not in [ "sst2", "mnli", "mnli_mismatched", "mnli_matched", "cola", "stsb", "mrpc", "qqp", "qnli", "rte", "wnli", "hans", ]: raise KeyError( 'You should supply a configuration name selected in ' '["sst2", "mnli", "mnli_mismatched", "mnli_matched", ' '"cola", "stsb", "mrpc", "qqp", "qnli", "rte", "wnli", "hans"]' ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('int64' if self.config_name != 'stsb' else 'float32' ), 'references': datasets.Value('int64' if self.config_name != 'stsb' else 'float32' ), } ) , codebase_urls=[] , reference_urls=[] , format='numpy' , ) def UpperCAmelCase_ ( self , _A , _A ): if self.config_name == "cola": return {"matthews_correlation": matthews_corrcoef(_A , _A )} elif self.config_name == "stsb": return pearson_and_spearman(_A , _A ) elif self.config_name in ["mrpc", "qqp"]: return acc_and_fa(_A , _A ) elif self.config_name in ["sst2", "mnli", "mnli_mismatched", "mnli_matched", "qnli", "rte", "wnli", "hans"]: return {"accuracy": simple_accuracy(_A , _A )} else: raise KeyError( 'You should supply a configuration name selected in ' '["sst2", "mnli", "mnli_mismatched", "mnli_matched", ' '"cola", "stsb", "mrpc", "qqp", "qnli", "rte", "wnli", "hans"]' )
280
from __future__ import annotations def _SCREAMING_SNAKE_CASE ( a ) -> int: if not nums: return 0 __A : Optional[int] = nums[0] __A : str = 0 for num in nums[1:]: __A , __A : Tuple = ( max_excluding + num, max(a , a ), ) return max(a , a ) if __name__ == "__main__": import doctest doctest.testmod()
280
1
def lowerCAmelCase_ ( UpperCamelCase_ , UpperCamelCase_ ) -> int: return 1 if input_a == input_a else 0 def lowerCAmelCase_ ( ) -> None: assert xnor_gate(0 , 0 ) == 1 assert xnor_gate(0 , 1 ) == 0 assert xnor_gate(1 , 0 ) == 0 assert xnor_gate(1 , 1 ) == 1 if __name__ == "__main__": print(xnor_gate(0, 0)) print(xnor_gate(0, 1)) print(xnor_gate(1, 0)) print(xnor_gate(1, 1))
328
import logging import os import sys from dataclasses import dataclass, field from typing import Optional from seqaseq_trainer import SeqaSeqTrainer from seqaseq_training_args import SeqaSeqTrainingArguments import transformers from transformers import ( AutoConfig, AutoModelForSeqaSeqLM, AutoTokenizer, HfArgumentParser, MBartTokenizer, MBartTokenizerFast, set_seed, ) from transformers.trainer_utils import EvaluationStrategy, is_main_process from transformers.training_args import ParallelMode from utils import ( SeqaSeqDataCollator, SeqaSeqDataset, assert_all_frozen, build_compute_metrics_fn, check_output_dir, freeze_embeds, freeze_params, lmap, save_json, use_task_specific_params, write_txt_file, ) _UpperCAmelCase = logging.getLogger(__name__) @dataclass class _UpperCamelCase : _UpperCamelCase : str = field( metadata={'''help''': '''Path to pretrained model or model identifier from huggingface.co/models'''} ) _UpperCamelCase : Optional[str] = field( default=lowerCAmelCase_ , metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} ) _UpperCamelCase : Optional[str] = field( default=lowerCAmelCase_ , metadata={'''help''': '''Pretrained tokenizer name or path if not the same as model_name'''} ) _UpperCamelCase : Optional[str] = field( default=lowerCAmelCase_ , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co'''} , ) _UpperCamelCase : bool = field(default=lowerCAmelCase_ , metadata={'''help''': '''Whether tp freeze the encoder.'''} ) _UpperCamelCase : bool = field(default=lowerCAmelCase_ , metadata={'''help''': '''Whether to freeze the embeddings.'''} ) @dataclass class _UpperCamelCase : _UpperCamelCase : str = field( metadata={'''help''': '''The input data dir. Should contain the .tsv files (or other data files) for the task.'''} ) _UpperCamelCase : Optional[str] = field( default='''summarization''' , metadata={'''help''': '''Task name, summarization (or summarization_{dataset} for pegasus) or translation'''} , ) _UpperCamelCase : Optional[int] = field( default=1_0_2_4 , metadata={ '''help''': ( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) } , ) _UpperCamelCase : Optional[int] = field( default=1_2_8 , metadata={ '''help''': ( '''The maximum total sequence length for target text after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) } , ) _UpperCamelCase : Optional[int] = field( default=1_4_2 , metadata={ '''help''': ( '''The maximum total sequence length for validation target text after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded. ''' '''This argument is also used to override the ``max_length`` param of ``model.generate``, which is used ''' '''during ``evaluate`` and ``predict``.''' ) } , ) _UpperCamelCase : Optional[int] = field( default=1_4_2 , metadata={ '''help''': ( '''The maximum total sequence length for test target text after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) } , ) _UpperCamelCase : Optional[int] = field(default=-1 , metadata={'''help''': '''# training examples. -1 means use all.'''} ) _UpperCamelCase : Optional[int] = field(default=-1 , metadata={'''help''': '''# validation examples. -1 means use all.'''} ) _UpperCamelCase : Optional[int] = field(default=-1 , metadata={'''help''': '''# test examples. -1 means use all.'''} ) _UpperCamelCase : Optional[str] = field(default=lowerCAmelCase_ , metadata={'''help''': '''Source language id for translation.'''} ) _UpperCamelCase : Optional[str] = field(default=lowerCAmelCase_ , metadata={'''help''': '''Target language id for translation.'''} ) _UpperCamelCase : Optional[int] = field(default=lowerCAmelCase_ , metadata={'''help''': '''# num_beams to use for evaluation.'''} ) _UpperCamelCase : bool = field( default=lowerCAmelCase_ , metadata={'''help''': '''If only pad tokens should be ignored. This assumes that `config.pad_token_id` is defined.'''} , ) def lowerCAmelCase_ ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) -> Optional[int]: logger.info(F'''***** {split} metrics *****''' ) for key in sorted(metrics.keys() ): logger.info(F''' {key} = {metrics[key]}''' ) save_json(UpperCamelCase_ , os.path.join(UpperCamelCase_ , F'''{split}_results.json''' ) ) def lowerCAmelCase_ ( ) -> Optional[int]: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. UpperCamelCase_ = HfArgumentParser((ModelArguments, DataTrainingArguments, SeqaSeqTrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(".json" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = parser.parse_args_into_dataclasses() check_output_dir(UpperCamelCase_ ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( "Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s" , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.parallel_mode == ParallelMode.DISTRIBUTED ) , training_args.fpaa , ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() logger.info("Training/evaluation parameters %s" , UpperCamelCase_ ) # Set seed set_seed(training_args.seed ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. UpperCamelCase_ = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) UpperCamelCase_ = ("encoder_layerdrop", "decoder_layerdrop", "dropout", "attention_dropout") for p in extra_model_params: if getattr(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ): assert hasattr(UpperCamelCase_ , UpperCamelCase_ ), F'''({config.__class__.__name__}) doesn\'t have a `{p}` attribute''' setattr(UpperCamelCase_ , UpperCamelCase_ , getattr(UpperCamelCase_ , UpperCamelCase_ ) ) UpperCamelCase_ = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) UpperCamelCase_ = AutoModelForSeqaSeqLM.from_pretrained( model_args.model_name_or_path , from_tf=".ckpt" in model_args.model_name_or_path , config=UpperCamelCase_ , cache_dir=model_args.cache_dir , ) # use task specific params use_task_specific_params(UpperCamelCase_ , data_args.task ) # set num_beams for evaluation if data_args.eval_beams is None: UpperCamelCase_ = model.config.num_beams # set decoder_start_token_id for MBart if model.config.decoder_start_token_id is None and isinstance(UpperCamelCase_ , (MBartTokenizer, MBartTokenizerFast) ): assert ( data_args.tgt_lang is not None and data_args.src_lang is not None ), "mBart requires --tgt_lang and --src_lang" if isinstance(UpperCamelCase_ , UpperCamelCase_ ): UpperCamelCase_ = tokenizer.lang_code_to_id[data_args.tgt_lang] else: UpperCamelCase_ = tokenizer.convert_tokens_to_ids(data_args.tgt_lang ) if model_args.freeze_embeds: freeze_embeds(UpperCamelCase_ ) if model_args.freeze_encoder: freeze_params(model.get_encoder() ) assert_all_frozen(model.get_encoder() ) UpperCamelCase_ = SeqaSeqDataset # Get datasets UpperCamelCase_ = ( dataset_class( UpperCamelCase_ , type_path="train" , data_dir=data_args.data_dir , n_obs=data_args.n_train , max_target_length=data_args.max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or "" , ) if training_args.do_train else None ) UpperCamelCase_ = ( dataset_class( UpperCamelCase_ , type_path="val" , data_dir=data_args.data_dir , n_obs=data_args.n_val , max_target_length=data_args.val_max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or "" , ) if training_args.do_eval or training_args.evaluation_strategy != EvaluationStrategy.NO else None ) UpperCamelCase_ = ( dataset_class( UpperCamelCase_ , type_path="test" , data_dir=data_args.data_dir , n_obs=data_args.n_test , max_target_length=data_args.test_max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or "" , ) if training_args.do_predict else None ) # Initialize our Trainer UpperCamelCase_ = ( build_compute_metrics_fn(data_args.task , UpperCamelCase_ ) if training_args.predict_with_generate else None ) UpperCamelCase_ = SeqaSeqTrainer( model=UpperCamelCase_ , args=UpperCamelCase_ , data_args=UpperCamelCase_ , train_dataset=UpperCamelCase_ , eval_dataset=UpperCamelCase_ , data_collator=SeqaSeqDataCollator( UpperCamelCase_ , UpperCamelCase_ , model.config.decoder_start_token_id , training_args.tpu_num_cores ) , compute_metrics=UpperCamelCase_ , tokenizer=UpperCamelCase_ , ) UpperCamelCase_ = {} # Training if training_args.do_train: logger.info("*** Train ***" ) UpperCamelCase_ = trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) UpperCamelCase_ = train_result.metrics UpperCamelCase_ = data_args.n_train trainer.save_model() # this also saves the tokenizer if trainer.is_world_process_zero(): handle_metrics("train" , UpperCamelCase_ , training_args.output_dir ) all_metrics.update(UpperCamelCase_ ) # Need to save the state, since Trainer.save_model saves only the tokenizer with the model trainer.state.save_to_json(os.path.join(training_args.output_dir , "trainer_state.json" ) ) # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) tokenizer.save_pretrained(training_args.output_dir ) # Evaluation if training_args.do_eval: logger.info("*** Evaluate ***" ) UpperCamelCase_ = trainer.evaluate(metric_key_prefix="val" ) UpperCamelCase_ = data_args.n_val UpperCamelCase_ = round(metrics["val_loss"] , 4 ) if trainer.is_world_process_zero(): handle_metrics("val" , UpperCamelCase_ , training_args.output_dir ) all_metrics.update(UpperCamelCase_ ) if training_args.do_predict: logger.info("*** Predict ***" ) UpperCamelCase_ = trainer.predict(test_dataset=UpperCamelCase_ , metric_key_prefix="test" ) UpperCamelCase_ = test_output.metrics UpperCamelCase_ = data_args.n_test if trainer.is_world_process_zero(): UpperCamelCase_ = round(metrics["test_loss"] , 4 ) handle_metrics("test" , UpperCamelCase_ , training_args.output_dir ) all_metrics.update(UpperCamelCase_ ) if training_args.predict_with_generate: UpperCamelCase_ = tokenizer.batch_decode( test_output.predictions , skip_special_tokens=UpperCamelCase_ , clean_up_tokenization_spaces=UpperCamelCase_ ) UpperCamelCase_ = lmap(str.strip , UpperCamelCase_ ) write_txt_file(UpperCamelCase_ , os.path.join(training_args.output_dir , "test_generations.txt" ) ) if trainer.is_world_process_zero(): save_json(UpperCamelCase_ , os.path.join(training_args.output_dir , "all_results.json" ) ) return all_metrics def lowerCAmelCase_ ( UpperCamelCase_ ) -> Optional[Any]: # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
328
1