code
stringlengths 86
54.5k
| code_codestyle
int64 0
371
| style_context
stringlengths 87
49.2k
| style_context_codestyle
int64 0
349
| label
int64 0
1
|
---|---|---|---|---|
"""simple docstring"""
import warnings
from typing import Any, Dict, List, Optional, Union
import numpy as np
from ...audio_utils import mel_filter_bank, optimal_fft_length, spectrogram, window_function
from ...feature_extraction_sequence_utils import SequenceFeatureExtractor
from ...feature_extraction_utils import BatchFeature
from ...utils import PaddingStrategy, TensorType, logging
SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__)
class lowercase ( _UpperCAmelCase ):
_SCREAMING_SNAKE_CASE = ['input_values', 'attention_mask']
def __init__( self , lowercase = 1 , lowercase = 16_000 , lowercase = 0.0 , lowercase = False , lowercase = 80 , lowercase = 16 , lowercase = 64 , lowercase = "hann_window" , lowercase = 1.0 , lowercase = 80 , lowercase = 7_600 , lowercase = 1e-10 , lowercase = 2 , lowercase = True , **lowercase , ) -> List[str]:
super().__init__(feature_size=lowercase , sampling_rate=lowercase , padding_value=lowercase , **lowercase )
lowerCAmelCase = do_normalize
lowerCAmelCase = return_attention_mask
lowerCAmelCase = num_mel_bins
lowerCAmelCase = hop_length
lowerCAmelCase = win_length
lowerCAmelCase = win_function
lowerCAmelCase = frame_signal_scale
lowerCAmelCase = fmin
lowerCAmelCase = fmax
lowerCAmelCase = mel_floor
lowerCAmelCase = reduction_factor
lowerCAmelCase = win_length * sampling_rate // 1_000
lowerCAmelCase = hop_length * sampling_rate // 1_000
lowerCAmelCase = optimal_fft_length(self.sample_size )
lowerCAmelCase = (self.n_fft // 2) + 1
lowerCAmelCase = window_function(window_length=self.sample_size , name=self.win_function , periodic=lowercase )
lowerCAmelCase = mel_filter_bank(
num_frequency_bins=self.n_freqs , num_mel_filters=self.num_mel_bins , min_frequency=self.fmin , max_frequency=self.fmax , sampling_rate=self.sampling_rate , norm="""slaney""" , mel_scale="""slaney""" , )
if frame_signal_scale != 1.0:
warnings.warn(
"""The argument `frame_signal_scale` is deprecated and will be removed in version 4.30.0 of Transformers""" , lowercase , )
if reduction_factor != 2.0:
warnings.warn(
"""The argument `reduction_factor` is deprecated and will be removed in version 4.30.0 of Transformers""" , lowercase , )
@staticmethod
# Copied from transformers.models.wav2vec2.feature_extraction_wav2vec2.Wav2Vec2FeatureExtractor.zero_mean_unit_var_norm
def _snake_case ( lowercase , lowercase , lowercase = 0.0 ) -> List[np.ndarray]:
if attention_mask is not None:
lowerCAmelCase = np.array(lowercase , np.intaa )
lowerCAmelCase = []
for vector, length in zip(lowercase , attention_mask.sum(-1 ) ):
lowerCAmelCase = (vector - vector[:length].mean()) / np.sqrt(vector[:length].var() + 1e-7 )
if length < normed_slice.shape[0]:
lowerCAmelCase = padding_value
normed_input_values.append(lowercase )
else:
lowerCAmelCase = [(x - x.mean()) / np.sqrt(x.var() + 1e-7 ) for x in input_values]
return normed_input_values
def _snake_case ( self , lowercase , ) -> np.ndarray:
lowerCAmelCase = spectrogram(
lowercase , window=self.window , frame_length=self.sample_size , hop_length=self.sample_stride , fft_length=self.n_fft , mel_filters=self.mel_filters , mel_floor=self.mel_floor , log_mel="""log10""" , )
return log_mel_spec.T
def __call__( self , lowercase = None , lowercase = None , lowercase = False , lowercase = None , lowercase = False , lowercase = None , lowercase = None , lowercase = None , lowercase = None , **lowercase , ) -> BatchFeature:
if audio is None and audio_target is None:
raise ValueError("""You must provide either `audio` or `audio_target` values.""" )
if sampling_rate is not None:
if sampling_rate != self.sampling_rate:
raise ValueError(
f'The model corresponding to this feature extractor: {self} was trained using a sampling rate of'
f' {self.sampling_rate}. Please make sure that the provided audio input was sampled with'
f' {self.sampling_rate} and not {sampling_rate}.' )
else:
logger.warning(
"""It is strongly recommended to pass the ``sampling_rate`` argument to this function. """
"""Failing to do so can result in silent errors that might be hard to debug.""" )
if audio is not None:
lowerCAmelCase = self._process_audio(
lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , **lowercase , )
else:
lowerCAmelCase = None
if audio_target is not None:
lowerCAmelCase = self._process_audio(
lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , **lowercase , )
if inputs is None:
return inputs_target
else:
lowerCAmelCase = inputs_target["""input_values"""]
lowerCAmelCase = inputs_target.get("""attention_mask""" )
if decoder_attention_mask is not None:
lowerCAmelCase = decoder_attention_mask
return inputs
def _snake_case ( self , lowercase , lowercase = False , lowercase = False , lowercase = None , lowercase = False , lowercase = None , lowercase = None , lowercase = None , **lowercase , ) -> BatchFeature:
lowerCAmelCase = isinstance(lowercase , np.ndarray ) and len(speech.shape ) > 1
if is_batched_numpy and len(speech.shape ) > 2:
raise ValueError(f'Only mono-channel audio is supported for input to {self}' )
lowerCAmelCase = is_batched_numpy or (
isinstance(lowercase , (list, tuple) ) and (isinstance(speech[0] , (np.ndarray, tuple, list) ))
)
if is_batched:
lowerCAmelCase = [np.asarray(lowercase , dtype=np.floataa ) for speech in speech]
elif not is_batched and not isinstance(lowercase , np.ndarray ):
lowerCAmelCase = np.asarray(lowercase , dtype=np.floataa )
elif isinstance(lowercase , np.ndarray ) and speech.dtype is np.dtype(np.floataa ):
lowerCAmelCase = speech.astype(np.floataa )
# always return batch
if not is_batched:
lowerCAmelCase = [speech]
# needed to make pad() work on spectrogram inputs
lowerCAmelCase = self.feature_size
# convert into correct format for padding
if is_target:
lowerCAmelCase = [self._extract_mel_features(lowercase ) for waveform in speech]
lowerCAmelCase = BatchFeature({"""input_values""": features} )
lowerCAmelCase = self.num_mel_bins
else:
lowerCAmelCase = BatchFeature({"""input_values""": speech} )
lowerCAmelCase = self.pad(
lowercase , padding=lowercase , max_length=lowercase , truncation=lowercase , pad_to_multiple_of=lowercase , return_attention_mask=lowercase , **lowercase , )
lowerCAmelCase = feature_size_hack
# convert input values to correct format
lowerCAmelCase = padded_inputs["""input_values"""]
if not isinstance(input_values[0] , np.ndarray ):
lowerCAmelCase = [np.asarray(lowercase , dtype=np.floataa ) for array in input_values]
elif (
not isinstance(lowercase , np.ndarray )
and isinstance(input_values[0] , np.ndarray )
and input_values[0].dtype is np.dtype(np.floataa )
):
lowerCAmelCase = [array.astype(np.floataa ) for array in input_values]
elif isinstance(lowercase , np.ndarray ) and input_values.dtype is np.dtype(np.floataa ):
lowerCAmelCase = input_values.astype(np.floataa )
# convert attention_mask to correct format
lowerCAmelCase = padded_inputs.get("""attention_mask""" )
if attention_mask is not None:
lowerCAmelCase = [np.asarray(lowercase , dtype=np.intaa ) for array in attention_mask]
# zero-mean and unit-variance normalization
if not is_target and self.do_normalize:
lowerCAmelCase = (
attention_mask
if self._get_padding_strategies(lowercase , max_length=lowercase ) is not PaddingStrategy.DO_NOT_PAD
else None
)
lowerCAmelCase = self.zero_mean_unit_var_norm(
padded_inputs["""input_values"""] , attention_mask=lowercase , padding_value=self.padding_value )
if return_tensors is not None:
lowerCAmelCase = padded_inputs.convert_to_tensors(lowercase )
return padded_inputs
def _snake_case ( self ) -> Dict[str, Any]:
lowerCAmelCase = super().to_dict()
# Don't serialize these as they are derived from the other properties.
lowerCAmelCase = ["""window""", """mel_filters""", """sample_size""", """sample_stride""", """n_fft""", """n_freqs"""]
for name in names:
if name in output:
del output[name]
return output
| 46 |
"""simple docstring"""
import logging
import os
from dataclasses import dataclass, field
from typing import Dict, Optional
import datasets
import numpy as np
import tensorflow as tf
from transformers import (
AutoConfig,
AutoTokenizer,
EvalPrediction,
HfArgumentParser,
PreTrainedTokenizer,
TFAutoModelForSequenceClassification,
TFTrainer,
TFTrainingArguments,
)
from transformers.utils import logging as hf_logging
hf_logging.set_verbosity_info()
hf_logging.enable_default_handler()
hf_logging.enable_explicit_format()
def __UpperCAmelCase ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = None , ):
__lowercase : Tuple = {}
if train_file is not None:
__lowercase : List[Any] = [train_file]
if eval_file is not None:
__lowercase : List[str] = [eval_file]
if test_file is not None:
__lowercase : List[Any] = [test_file]
__lowercase : List[str] = datasets.load_dataset('''csv''' , data_files=__UpperCamelCase )
__lowercase : str = list(ds[list(files.keys() )[0]].features.keys() )
__lowercase : Union[str, Any] = features_name.pop(__UpperCamelCase )
__lowercase : List[str] = list(set(ds[list(files.keys() )[0]][label_name] ) )
__lowercase : List[str] = {label: i for i, label in enumerate(__UpperCamelCase )}
__lowercase : Optional[Any] = tokenizer.model_input_names
__lowercase : Optional[Any] = {}
if len(__UpperCamelCase ) == 1:
for k in files.keys():
__lowercase : str = ds[k].map(
lambda __UpperCamelCase : tokenizer.batch_encode_plus(
example[features_name[0]] , truncation=__UpperCamelCase , max_length=__UpperCamelCase , padding='''max_length''' ) , batched=__UpperCamelCase , )
elif len(__UpperCamelCase ) == 2:
for k in files.keys():
__lowercase : List[Any] = ds[k].map(
lambda __UpperCamelCase : tokenizer.batch_encode_plus(
(example[features_name[0]], example[features_name[1]]) , truncation=__UpperCamelCase , max_length=__UpperCamelCase , padding='''max_length''' , ) , batched=__UpperCamelCase , )
def gen_train():
for ex in transformed_ds[datasets.Split.TRAIN]:
__lowercase : Dict = {k: v for k, v in ex.items() if k in input_names}
__lowercase : str = labelaid[ex[label_name]]
yield (d, label)
def gen_val():
for ex in transformed_ds[datasets.Split.VALIDATION]:
__lowercase : Tuple = {k: v for k, v in ex.items() if k in input_names}
__lowercase : List[str] = labelaid[ex[label_name]]
yield (d, label)
def gen_test():
for ex in transformed_ds[datasets.Split.TEST]:
__lowercase : Optional[Any] = {k: v for k, v in ex.items() if k in input_names}
__lowercase : Dict = labelaid[ex[label_name]]
yield (d, label)
__lowercase : str = (
tf.data.Dataset.from_generator(
__UpperCamelCase , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , )
if datasets.Split.TRAIN in transformed_ds
else None
)
if train_ds is not None:
__lowercase : List[Any] = train_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.TRAIN] ) ) )
__lowercase : Optional[Any] = (
tf.data.Dataset.from_generator(
__UpperCamelCase , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , )
if datasets.Split.VALIDATION in transformed_ds
else None
)
if val_ds is not None:
__lowercase : Tuple = val_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.VALIDATION] ) ) )
__lowercase : str = (
tf.data.Dataset.from_generator(
__UpperCamelCase , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , )
if datasets.Split.TEST in transformed_ds
else None
)
if test_ds is not None:
__lowercase : Optional[Any] = test_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.TEST] ) ) )
return train_ds, val_ds, test_ds, labelaid
a_ = logging.getLogger(__name__)
@dataclass
class UpperCAmelCase_ :
UpperCamelCase =field(metadata={"help": "Which column contains the label"} )
UpperCamelCase =field(default=snake_case , metadata={"help": "The path of the training file"} )
UpperCamelCase =field(default=snake_case , metadata={"help": "The path of the development file"} )
UpperCamelCase =field(default=snake_case , metadata={"help": "The path of the test file"} )
UpperCamelCase =field(
default=1_28 , metadata={
"help": (
"The maximum total input sequence length after tokenization. Sequences longer "
"than this will be truncated, sequences shorter will be padded."
)
} , )
UpperCamelCase =field(
default=snake_case , metadata={"help": "Overwrite the cached training and evaluation sets"} )
@dataclass
class UpperCAmelCase_ :
UpperCamelCase =field(
metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} )
UpperCamelCase =field(
default=snake_case , metadata={"help": "Pretrained config name or path if not the same as model_name"} )
UpperCamelCase =field(
default=snake_case , metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} )
UpperCamelCase =field(default=snake_case , metadata={"help": "Set this flag to use fast tokenization."} )
# If you want to tweak more attributes on your tokenizer, you should do it in a distinct script,
# or just modify its tokenizer_config.json.
UpperCamelCase =field(
default=snake_case , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , )
def __UpperCAmelCase ( ):
# See all possible arguments in src/transformers/training_args.py
# or by passing the --help flag to this script.
# We now keep distinct sets of args, for a cleaner separation of concerns.
__lowercase : Optional[int] = HfArgumentParser((ModelArguments, DataTrainingArguments, TFTrainingArguments) )
__lowercase ,__lowercase ,__lowercase : Tuple = parser.parse_args_into_dataclasses()
if (
os.path.exists(training_args.output_dir )
and os.listdir(training_args.output_dir )
and training_args.do_train
and not training_args.overwrite_output_dir
):
raise ValueError(
f"""Output directory ({training_args.output_dir}) already exists and is not empty. Use"""
''' --overwrite_output_dir to overcome.''' )
# Setup logging
logging.basicConfig(
format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , level=logging.INFO , )
logger.info(
f"""n_replicas: {training_args.n_replicas}, distributed training: {bool(training_args.n_replicas > 1 )}, """
f"""16-bits training: {training_args.fpaa}""" )
logger.info(f"""Training/evaluation parameters {training_args}""" )
# Load pretrained model and tokenizer
#
# Distributed training:
# The .from_pretrained methods guarantee that only one local process can concurrently
# download model & vocab.
__lowercase : str = AutoTokenizer.from_pretrained(
model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , )
__lowercase ,__lowercase ,__lowercase ,__lowercase : Any = get_tfds(
train_file=data_args.train_file , eval_file=data_args.dev_file , test_file=data_args.test_file , tokenizer=__UpperCamelCase , label_column_id=data_args.label_column_id , max_seq_length=data_args.max_seq_length , )
__lowercase : str = AutoConfig.from_pretrained(
model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=len(__UpperCamelCase ) , labelaid=__UpperCamelCase , idalabel={id: label for label, id in labelaid.items()} , finetuning_task='''text-classification''' , cache_dir=model_args.cache_dir , )
with training_args.strategy.scope():
__lowercase : Union[str, Any] = TFAutoModelForSequenceClassification.from_pretrained(
model_args.model_name_or_path , from_pt=bool('''.bin''' in model_args.model_name_or_path ) , config=__UpperCamelCase , cache_dir=model_args.cache_dir , )
def compute_metrics(__UpperCamelCase ) -> Dict:
__lowercase : List[Any] = np.argmax(p.predictions , axis=1 )
return {"acc": (preds == p.label_ids).mean()}
# Initialize our Trainer
__lowercase : Optional[Any] = TFTrainer(
model=__UpperCamelCase , args=__UpperCamelCase , train_dataset=__UpperCamelCase , eval_dataset=__UpperCamelCase , compute_metrics=__UpperCamelCase , )
# Training
if training_args.do_train:
trainer.train()
trainer.save_model()
tokenizer.save_pretrained(training_args.output_dir )
# Evaluation
__lowercase : List[Any] = {}
if training_args.do_eval:
logger.info('''*** Evaluate ***''' )
__lowercase : List[Any] = trainer.evaluate()
__lowercase : int = os.path.join(training_args.output_dir , '''eval_results.txt''' )
with open(__UpperCamelCase , '''w''' ) as writer:
logger.info('''***** Eval results *****''' )
for key, value in result.items():
logger.info(f""" {key} = {value}""" )
writer.write(f"""{key} = {value}\n""" )
results.update(__UpperCamelCase )
return results
if __name__ == "__main__":
main()
| 249 | 0 |
"""simple docstring"""
from ..utils import DummyObject, requires_backends
class __a ( metaclass=A__ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE_ = ['keras_nlp']
def __init__( self : str , *lowercase_ : int , **lowercase_ : int ):
requires_backends(self , ['''keras_nlp'''] )
| 357 |
"""simple docstring"""
import argparse
import os
import re
_SCREAMING_SNAKE_CASE : List[str] = """src/diffusers"""
# Pattern that looks at the indentation in a line.
_SCREAMING_SNAKE_CASE : Optional[int] = re.compile(r"""^(\s*)\S""")
# Pattern that matches `"key":" and puts `key` in group 0.
_SCREAMING_SNAKE_CASE : Any = re.compile(r"""^\s*\"([^\"]+)\":""")
# Pattern that matches `_import_structure["key"]` and puts `key` in group 0.
_SCREAMING_SNAKE_CASE : List[str] = re.compile(r"""^\s*_import_structure\[\"([^\"]+)\"\]""")
# Pattern that matches `"key",` and puts `key` in group 0.
_SCREAMING_SNAKE_CASE : str = re.compile(r"""^\s*\"([^\"]+)\",\s*$""")
# Pattern that matches any `[stuff]` and puts `stuff` in group 0.
_SCREAMING_SNAKE_CASE : Optional[Any] = re.compile(r"""\[([^\]]+)\]""")
def _lowerCAmelCase ( UpperCAmelCase : Union[str, Any] ):
'''simple docstring'''
UpperCamelCase__ : str =_re_indent.search(UpperCAmelCase )
return "" if search is None else search.groups()[0]
def _lowerCAmelCase ( UpperCAmelCase : int , UpperCAmelCase : Union[str, Any]="" , UpperCAmelCase : List[Any]=None , UpperCAmelCase : Tuple=None ):
'''simple docstring'''
UpperCamelCase__ : int =0
UpperCamelCase__ : Union[str, Any] =code.split('''\n''' )
if start_prompt is not None:
while not lines[index].startswith(UpperCAmelCase ):
index += 1
UpperCamelCase__ : Optional[int] =['''\n'''.join(lines[:index] )]
else:
UpperCamelCase__ : List[Any] =[]
# We split into blocks until we get to the `end_prompt` (or the end of the block).
UpperCamelCase__ : Dict =[lines[index]]
index += 1
while index < len(UpperCAmelCase ) and (end_prompt is None or not lines[index].startswith(UpperCAmelCase )):
if len(lines[index] ) > 0 and get_indent(lines[index] ) == indent_level:
if len(UpperCAmelCase ) > 0 and get_indent(current_block[-1] ).startswith(indent_level + ''' ''' ):
current_block.append(lines[index] )
blocks.append('''\n'''.join(UpperCAmelCase ) )
if index < len(UpperCAmelCase ) - 1:
UpperCamelCase__ : Optional[Any] =[lines[index + 1]]
index += 1
else:
UpperCamelCase__ : List[str] =[]
else:
blocks.append('''\n'''.join(UpperCAmelCase ) )
UpperCamelCase__ : List[Any] =[lines[index]]
else:
current_block.append(lines[index] )
index += 1
# Adds current block if it's nonempty.
if len(UpperCAmelCase ) > 0:
blocks.append('''\n'''.join(UpperCAmelCase ) )
# Add final block after end_prompt if provided.
if end_prompt is not None and index < len(UpperCAmelCase ):
blocks.append('''\n'''.join(lines[index:] ) )
return blocks
def _lowerCAmelCase ( UpperCAmelCase : str ):
'''simple docstring'''
def _inner(UpperCAmelCase : Dict ):
return key(UpperCAmelCase ).lower().replace('''_''' , '''''' )
return _inner
def _lowerCAmelCase ( UpperCAmelCase : int , UpperCAmelCase : Dict=None ):
'''simple docstring'''
def noop(UpperCAmelCase : Optional[Any] ):
return x
if key is None:
UpperCamelCase__ : int =noop
# Constants are all uppercase, they go first.
UpperCamelCase__ : List[str] =[obj for obj in objects if key(UpperCAmelCase ).isupper()]
# Classes are not all uppercase but start with a capital, they go second.
UpperCamelCase__ : Dict =[obj for obj in objects if key(UpperCAmelCase )[0].isupper() and not key(UpperCAmelCase ).isupper()]
# Functions begin with a lowercase, they go last.
UpperCamelCase__ : int =[obj for obj in objects if not key(UpperCAmelCase )[0].isupper()]
UpperCamelCase__ : Optional[int] =ignore_underscore(UpperCAmelCase )
return sorted(UpperCAmelCase , key=UpperCAmelCase ) + sorted(UpperCAmelCase , key=UpperCAmelCase ) + sorted(UpperCAmelCase , key=UpperCAmelCase )
def _lowerCAmelCase ( UpperCAmelCase : Union[str, Any] ):
'''simple docstring'''
def _replace(UpperCAmelCase : Union[str, Any] ):
UpperCamelCase__ : List[str] =match.groups()[0]
if "," not in imports:
return F'''[{imports}]'''
UpperCamelCase__ : Optional[int] =[part.strip().replace('''"''' , '''''' ) for part in imports.split(''',''' )]
# We will have a final empty element if the line finished with a comma.
if len(keys[-1] ) == 0:
UpperCamelCase__ : Tuple =keys[:-1]
return "[" + ", ".join([F'''"{k}"''' for k in sort_objects(UpperCAmelCase )] ) + "]"
UpperCamelCase__ : List[Any] =import_statement.split('''\n''' )
if len(UpperCAmelCase ) > 3:
# Here we have to sort internal imports that are on several lines (one per name):
# key: [
# "object1",
# "object2",
# ...
# ]
# We may have to ignore one or two lines on each side.
UpperCamelCase__ : List[str] =2 if lines[1].strip() == '''[''' else 1
UpperCamelCase__ : List[str] =[(i, _re_strip_line.search(UpperCAmelCase ).groups()[0]) for i, line in enumerate(lines[idx:-idx] )]
UpperCamelCase__ : List[str] =sort_objects(UpperCAmelCase , key=lambda UpperCAmelCase : x[1] )
UpperCamelCase__ : Tuple =[lines[x[0] + idx] for x in sorted_indices]
return "\n".join(lines[:idx] + sorted_lines + lines[-idx:] )
elif len(UpperCAmelCase ) == 3:
# Here we have to sort internal imports that are on one separate line:
# key: [
# "object1", "object2", ...
# ]
if _re_bracket_content.search(lines[1] ) is not None:
UpperCamelCase__ : Dict =_re_bracket_content.sub(_replace , lines[1] )
else:
UpperCamelCase__ : Optional[int] =[part.strip().replace('''"''' , '''''' ) for part in lines[1].split(''',''' )]
# We will have a final empty element if the line finished with a comma.
if len(keys[-1] ) == 0:
UpperCamelCase__ : Tuple =keys[:-1]
UpperCamelCase__ : Optional[Any] =get_indent(lines[1] ) + ''', '''.join([F'''"{k}"''' for k in sort_objects(UpperCAmelCase )] )
return "\n".join(UpperCAmelCase )
else:
# Finally we have to deal with imports fitting on one line
UpperCamelCase__ : List[str] =_re_bracket_content.sub(_replace , UpperCAmelCase )
return import_statement
def _lowerCAmelCase ( UpperCAmelCase : Tuple , UpperCAmelCase : Optional[Any]=True ):
'''simple docstring'''
with open(UpperCAmelCase , '''r''' ) as f:
UpperCamelCase__ : int =f.read()
if "_import_structure" not in code:
return
# Blocks of indent level 0
UpperCamelCase__ : Optional[int] =split_code_in_indented_blocks(
UpperCAmelCase , start_prompt='''_import_structure = {''' , end_prompt='''if TYPE_CHECKING:''' )
# We ignore block 0 (everything until start_prompt) and the last block (everything after end_prompt).
for block_idx in range(1 , len(UpperCAmelCase ) - 1 ):
# Check if the block contains some `_import_structure`s thingy to sort.
UpperCamelCase__ : Dict =main_blocks[block_idx]
UpperCamelCase__ : List[str] =block.split('''\n''' )
# Get to the start of the imports.
UpperCamelCase__ : str =0
while line_idx < len(UpperCAmelCase ) and "_import_structure" not in block_lines[line_idx]:
# Skip dummy import blocks
if "import dummy" in block_lines[line_idx]:
UpperCamelCase__ : Optional[int] =len(UpperCAmelCase )
else:
line_idx += 1
if line_idx >= len(UpperCAmelCase ):
continue
# Ignore beginning and last line: they don't contain anything.
UpperCamelCase__ : Optional[Any] ='''\n'''.join(block_lines[line_idx:-1] )
UpperCamelCase__ : Tuple =get_indent(block_lines[1] )
# Slit the internal block into blocks of indent level 1.
UpperCamelCase__ : str =split_code_in_indented_blocks(UpperCAmelCase , indent_level=UpperCAmelCase )
# We have two categories of import key: list or _import_structure[key].append/extend
UpperCamelCase__ : str =_re_direct_key if '''_import_structure''' in block_lines[0] else _re_indirect_key
# Grab the keys, but there is a trap: some lines are empty or just comments.
UpperCamelCase__ : Tuple =[(pattern.search(UpperCAmelCase ).groups()[0] if pattern.search(UpperCAmelCase ) is not None else None) for b in internal_blocks]
# We only sort the lines with a key.
UpperCamelCase__ : List[Any] =[(i, key) for i, key in enumerate(UpperCAmelCase ) if key is not None]
UpperCamelCase__ : Optional[Any] =[x[0] for x in sorted(UpperCAmelCase , key=lambda UpperCAmelCase : x[1] )]
# We reorder the blocks by leaving empty lines/comments as they were and reorder the rest.
UpperCamelCase__ : Union[str, Any] =0
UpperCamelCase__ : str =[]
for i in range(len(UpperCAmelCase ) ):
if keys[i] is None:
reordered_blocks.append(internal_blocks[i] )
else:
UpperCamelCase__ : Optional[Any] =sort_objects_in_import(internal_blocks[sorted_indices[count]] )
reordered_blocks.append(UpperCAmelCase )
count += 1
# And we put our main block back together with its first and last line.
UpperCamelCase__ : Optional[Any] ='''\n'''.join(block_lines[:line_idx] + reordered_blocks + [block_lines[-1]] )
if code != "\n".join(UpperCAmelCase ):
if check_only:
return True
else:
print(F'''Overwriting {file}.''' )
with open(UpperCAmelCase , '''w''' ) as f:
f.write('''\n'''.join(UpperCAmelCase ) )
def _lowerCAmelCase ( UpperCAmelCase : Dict=True ):
'''simple docstring'''
UpperCamelCase__ : Union[str, Any] =[]
for root, _, files in os.walk(UpperCAmelCase ):
if "__init__.py" in files:
UpperCamelCase__ : List[Any] =sort_imports(os.path.join(UpperCAmelCase , '''__init__.py''' ) , check_only=UpperCAmelCase )
if result:
UpperCamelCase__ : int =[os.path.join(UpperCAmelCase , '''__init__.py''' )]
if len(UpperCAmelCase ) > 0:
raise ValueError(F'''Would overwrite {len(UpperCAmelCase )} files, run `make style`.''' )
if __name__ == "__main__":
_SCREAMING_SNAKE_CASE : List[str] = argparse.ArgumentParser()
parser.add_argument("""--check_only""", action="""store_true""", help="""Whether to only check or fix style.""")
_SCREAMING_SNAKE_CASE : Optional[int] = parser.parse_args()
sort_imports_in_all_inits(check_only=args.check_only)
| 157 | 0 |
'''simple docstring'''
UpperCamelCase__ = '''0.21.0'''
from .accelerator import Accelerator
from .big_modeling import (
cpu_offload,
cpu_offload_with_hook,
disk_offload,
dispatch_model,
init_empty_weights,
init_on_device,
load_checkpoint_and_dispatch,
)
from .data_loader import skip_first_batches
from .launchers import debug_launcher, notebook_launcher
from .state import PartialState
from .utils import (
DeepSpeedPlugin,
DistributedDataParallelKwargs,
DistributedType,
FullyShardedDataParallelPlugin,
GradScalerKwargs,
InitProcessGroupKwargs,
find_executable_batch_size,
infer_auto_device_map,
is_rich_available,
load_checkpoint_in_model,
synchronize_rng_states,
)
if is_rich_available():
from .utils import rich
| 181 |
"""simple docstring"""
import argparse
import torch
from transformers import LxmertConfig, LxmertForPreTraining, load_tf_weights_in_lxmert
from transformers.utils import logging
logging.set_verbosity_info()
def snake_case_ ( A_ : Tuple, A_ : int, A_ : Dict ):
'''simple docstring'''
_lowerCamelCase : Union[str, Any] = LxmertConfig.from_json_file(A_ )
print(F'''Building PyTorch model from configuration: {config}''' )
_lowerCamelCase : List[str] = LxmertForPreTraining(A_ )
# Load weights from tf checkpoint
load_tf_weights_in_lxmert(A_, A_, A_ )
# Save pytorch-model
print(F'''Save PyTorch model to {pytorch_dump_path}''' )
torch.save(model.state_dict(), A_ )
if __name__ == "__main__":
lowerCAmelCase__ = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''--tf_checkpoint_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.'''
)
parser.add_argument(
'''--config_file''',
default=None,
type=str,
required=True,
help='''The config json file corresponding to the pre-trained model. \nThis specifies the model architecture.''',
)
parser.add_argument(
'''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.'''
)
lowerCAmelCase__ = parser.parse_args()
convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path)
| 72 | 0 |
'''simple docstring'''
import os
from dataclasses import dataclass, field
from io import BytesIO
from typing import TYPE_CHECKING, Any, ClassVar, Dict, Optional, Union
import numpy as np
import pyarrow as pa
from .. import config
from ..download.streaming_download_manager import xopen, xsplitext
from ..table import array_cast
from ..utils.py_utils import no_op_if_value_is_null, string_to_dict
if TYPE_CHECKING:
from .features import FeatureType
_lowerCamelCase , _lowerCamelCase , _lowerCamelCase = False, False, False
@dataclass
class _snake_case :
__A : Optional[int] =None
__A : bool =True
__A : bool =True
__A : Optional[str] =None
# Automatically constructed
__A : ClassVar[str] ="dict"
__A : ClassVar[Any] =pa.struct({"bytes": pa.binary(), "path": pa.string()})
__A : str =field(default="Audio" , init=__SCREAMING_SNAKE_CASE , repr=__SCREAMING_SNAKE_CASE)
def __call__( self ):
return self.pa_type
def UpperCamelCase__ ( self ,_snake_case ):
try:
import soundfile as sf # soundfile is a dependency of librosa, needed to decode audio files.
except ImportError as err:
raise ImportError("To support encoding audio data, please install 'soundfile'." ) from err
if isinstance(_snake_case ,_snake_case ):
return {"bytes": None, "path": value}
elif isinstance(_snake_case ,_snake_case ):
return {"bytes": value, "path": None}
elif "array" in value:
# convert the audio array to wav bytes
UpperCAmelCase_ : Optional[Any] = BytesIO()
sf.write(_snake_case ,value["array"] ,value["sampling_rate"] ,format="wav" )
return {"bytes": buffer.getvalue(), "path": None}
elif value.get("path" ) is not None and os.path.isfile(value["path"] ):
# we set "bytes": None to not duplicate the data if they're already available locally
if value["path"].endswith("pcm" ):
# "PCM" only has raw audio bytes
if value.get("sampling_rate" ) is None:
# At least, If you want to convert "PCM-byte" to "WAV-byte", you have to know sampling rate
raise KeyError("To use PCM files, please specify a 'sampling_rate' in Audio object" )
if value.get("bytes" ):
# If we already had PCM-byte, we don`t have to make "read file, make bytes" (just use it!)
UpperCAmelCase_ : Union[str, Any] = np.frombuffer(value["bytes"] ,dtype=np.intaa ).astype(np.floataa ) / 3_27_67
else:
UpperCAmelCase_ : int = np.memmap(value["path"] ,dtype="h" ,mode="r" ).astype(np.floataa ) / 3_27_67
UpperCAmelCase_ : Dict = BytesIO(bytes() )
sf.write(_snake_case ,_snake_case ,value["sampling_rate"] ,format="wav" )
return {"bytes": buffer.getvalue(), "path": None}
else:
return {"bytes": None, "path": value.get("path" )}
elif value.get("bytes" ) is not None or value.get("path" ) is not None:
# store the audio bytes, and path is used to infer the audio format using the file extension
return {"bytes": value.get("bytes" ), "path": value.get("path" )}
else:
raise ValueError(
f'''An audio sample should have one of \'path\' or \'bytes\' but they are missing or None in {value}.''' )
def UpperCamelCase__ ( self ,_snake_case ,_snake_case = None ):
if not self.decode:
raise RuntimeError("Decoding is disabled for this feature. Please use Audio(decode=True) instead." )
UpperCAmelCase_ : str = (value["path"], BytesIO(value["bytes"] )) if value["bytes"] is not None else (value["path"], None)
if path is None and file is None:
raise ValueError(f'''An audio sample should have one of \'path\' or \'bytes\' but both are None in {value}.''' )
try:
import librosa
import soundfile as sf
except ImportError as err:
raise ImportError("To support decoding audio files, please install 'librosa' and 'soundfile'." ) from err
UpperCAmelCase_ : Union[str, Any] = xsplitext(_snake_case )[1][1:].lower() if path is not None else None
if not config.IS_OPUS_SUPPORTED and audio_format == "opus":
raise RuntimeError(
"Decoding 'opus' files requires system library 'libsndfile'>=1.0.31, "
"You can try to update `soundfile` python library: `pip install \"soundfile>=0.12.1\"`. " )
elif not config.IS_MP3_SUPPORTED and audio_format == "mp3":
raise RuntimeError(
"Decoding 'mp3' files requires system library 'libsndfile'>=1.1.0, "
"You can try to update `soundfile` python library: `pip install \"soundfile>=0.12.1\"`. " )
if file is None:
UpperCAmelCase_ : Any = token_per_repo_id or {}
UpperCAmelCase_ : int = path.split("::" )[-1]
try:
UpperCAmelCase_ : Any = string_to_dict(_snake_case ,config.HUB_DATASETS_URL )["repo_id"]
UpperCAmelCase_ : Optional[Any] = token_per_repo_id[repo_id]
except (ValueError, KeyError):
UpperCAmelCase_ : List[Any] = None
with xopen(_snake_case ,"rb" ,use_auth_token=_snake_case ) as f:
UpperCAmelCase_ : str = sf.read(_snake_case )
else:
UpperCAmelCase_ : List[Any] = sf.read(_snake_case )
UpperCAmelCase_ : Optional[Any] = array.T
if self.mono:
UpperCAmelCase_ : str = librosa.to_mono(_snake_case )
if self.sampling_rate and self.sampling_rate != sampling_rate:
UpperCAmelCase_ : Tuple = librosa.resample(_snake_case ,orig_sr=_snake_case ,target_sr=self.sampling_rate )
UpperCAmelCase_ : Optional[int] = self.sampling_rate
return {"path": path, "array": array, "sampling_rate": sampling_rate}
def UpperCamelCase__ ( self ):
from .features import Value
if self.decode:
raise ValueError("Cannot flatten a decoded Audio feature." )
return {
"bytes": Value("binary" ),
"path": Value("string" ),
}
def UpperCamelCase__ ( self ,_snake_case ):
if pa.types.is_string(storage.type ):
UpperCAmelCase_ : Union[str, Any] = pa.array([None] * len(_snake_case ) ,type=pa.binary() )
UpperCAmelCase_ : List[str] = pa.StructArray.from_arrays([bytes_array, storage] ,["bytes", "path"] ,mask=storage.is_null() )
elif pa.types.is_binary(storage.type ):
UpperCAmelCase_ : Tuple = pa.array([None] * len(_snake_case ) ,type=pa.string() )
UpperCAmelCase_ : List[str] = pa.StructArray.from_arrays([storage, path_array] ,["bytes", "path"] ,mask=storage.is_null() )
elif pa.types.is_struct(storage.type ) and storage.type.get_all_field_indices("array" ):
UpperCAmelCase_ : List[str] = pa.array([Audio().encode_example(_snake_case ) if x is not None else None for x in storage.to_pylist()] )
elif pa.types.is_struct(storage.type ):
if storage.type.get_field_index("bytes" ) >= 0:
UpperCAmelCase_ : Optional[int] = storage.field("bytes" )
else:
UpperCAmelCase_ : Dict = pa.array([None] * len(_snake_case ) ,type=pa.binary() )
if storage.type.get_field_index("path" ) >= 0:
UpperCAmelCase_ : str = storage.field("path" )
else:
UpperCAmelCase_ : List[str] = pa.array([None] * len(_snake_case ) ,type=pa.string() )
UpperCAmelCase_ : List[Any] = pa.StructArray.from_arrays([bytes_array, path_array] ,["bytes", "path"] ,mask=storage.is_null() )
return array_cast(_snake_case ,self.pa_type )
def UpperCamelCase__ ( self ,_snake_case ):
@no_op_if_value_is_null
def path_to_bytes(_snake_case ):
with xopen(_snake_case ,"rb" ) as f:
UpperCAmelCase_ : Union[str, Any] = f.read()
return bytes_
UpperCAmelCase_ : List[Any] = pa.array(
[
(path_to_bytes(x["path"] ) if x["bytes"] is None else x["bytes"]) if x is not None else None
for x in storage.to_pylist()
] ,type=pa.binary() ,)
UpperCAmelCase_ : List[Any] = pa.array(
[os.path.basename(_snake_case ) if path is not None else None for path in storage.field("path" ).to_pylist()] ,type=pa.string() ,)
UpperCAmelCase_ : int = pa.StructArray.from_arrays([bytes_array, path_array] ,["bytes", "path"] ,mask=bytes_array.is_null() )
return array_cast(_snake_case ,self.pa_type )
| 366 |
'''simple docstring'''
import argparse
from collections import OrderedDict
from pathlib import Path
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from torchvision.transforms import functional as F
from transformers import DetrImageProcessor, TableTransformerConfig, TableTransformerForObjectDetection
from transformers.utils import logging
logging.set_verbosity_info()
_lowerCamelCase = logging.get_logger(__name__)
# here we list all keys to be renamed (original name on the left, our name on the right)
_lowerCamelCase = []
for i in range(6):
# encoder layers: output projection, 2 feedforward neural networks and 2 layernorms
rename_keys.append(
(f"""transformer.encoder.layers.{i}.self_attn.out_proj.weight""", f"""encoder.layers.{i}.self_attn.out_proj.weight""")
)
rename_keys.append(
(f"""transformer.encoder.layers.{i}.self_attn.out_proj.bias""", f"""encoder.layers.{i}.self_attn.out_proj.bias""")
)
rename_keys.append((f"""transformer.encoder.layers.{i}.linear1.weight""", f"""encoder.layers.{i}.fc1.weight"""))
rename_keys.append((f"""transformer.encoder.layers.{i}.linear1.bias""", f"""encoder.layers.{i}.fc1.bias"""))
rename_keys.append((f"""transformer.encoder.layers.{i}.linear2.weight""", f"""encoder.layers.{i}.fc2.weight"""))
rename_keys.append((f"""transformer.encoder.layers.{i}.linear2.bias""", f"""encoder.layers.{i}.fc2.bias"""))
rename_keys.append(
(f"""transformer.encoder.layers.{i}.norm1.weight""", f"""encoder.layers.{i}.self_attn_layer_norm.weight""")
)
rename_keys.append((f"""transformer.encoder.layers.{i}.norm1.bias""", f"""encoder.layers.{i}.self_attn_layer_norm.bias"""))
rename_keys.append((f"""transformer.encoder.layers.{i}.norm2.weight""", f"""encoder.layers.{i}.final_layer_norm.weight"""))
rename_keys.append((f"""transformer.encoder.layers.{i}.norm2.bias""", f"""encoder.layers.{i}.final_layer_norm.bias"""))
# decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms
rename_keys.append(
(f"""transformer.decoder.layers.{i}.self_attn.out_proj.weight""", f"""decoder.layers.{i}.self_attn.out_proj.weight""")
)
rename_keys.append(
(f"""transformer.decoder.layers.{i}.self_attn.out_proj.bias""", f"""decoder.layers.{i}.self_attn.out_proj.bias""")
)
rename_keys.append(
(
f"""transformer.decoder.layers.{i}.multihead_attn.out_proj.weight""",
f"""decoder.layers.{i}.encoder_attn.out_proj.weight""",
)
)
rename_keys.append(
(
f"""transformer.decoder.layers.{i}.multihead_attn.out_proj.bias""",
f"""decoder.layers.{i}.encoder_attn.out_proj.bias""",
)
)
rename_keys.append((f"""transformer.decoder.layers.{i}.linear1.weight""", f"""decoder.layers.{i}.fc1.weight"""))
rename_keys.append((f"""transformer.decoder.layers.{i}.linear1.bias""", f"""decoder.layers.{i}.fc1.bias"""))
rename_keys.append((f"""transformer.decoder.layers.{i}.linear2.weight""", f"""decoder.layers.{i}.fc2.weight"""))
rename_keys.append((f"""transformer.decoder.layers.{i}.linear2.bias""", f"""decoder.layers.{i}.fc2.bias"""))
rename_keys.append(
(f"""transformer.decoder.layers.{i}.norm1.weight""", f"""decoder.layers.{i}.self_attn_layer_norm.weight""")
)
rename_keys.append((f"""transformer.decoder.layers.{i}.norm1.bias""", f"""decoder.layers.{i}.self_attn_layer_norm.bias"""))
rename_keys.append(
(f"""transformer.decoder.layers.{i}.norm2.weight""", f"""decoder.layers.{i}.encoder_attn_layer_norm.weight""")
)
rename_keys.append(
(f"""transformer.decoder.layers.{i}.norm2.bias""", f"""decoder.layers.{i}.encoder_attn_layer_norm.bias""")
)
rename_keys.append((f"""transformer.decoder.layers.{i}.norm3.weight""", f"""decoder.layers.{i}.final_layer_norm.weight"""))
rename_keys.append((f"""transformer.decoder.layers.{i}.norm3.bias""", f"""decoder.layers.{i}.final_layer_norm.bias"""))
# convolutional projection + query embeddings + layernorm of encoder + layernorm of decoder + class and bounding box heads
rename_keys.extend(
[
("""input_proj.weight""", """input_projection.weight"""),
("""input_proj.bias""", """input_projection.bias"""),
("""query_embed.weight""", """query_position_embeddings.weight"""),
("""transformer.encoder.norm.weight""", """encoder.layernorm.weight"""),
("""transformer.encoder.norm.bias""", """encoder.layernorm.bias"""),
("""transformer.decoder.norm.weight""", """decoder.layernorm.weight"""),
("""transformer.decoder.norm.bias""", """decoder.layernorm.bias"""),
("""class_embed.weight""", """class_labels_classifier.weight"""),
("""class_embed.bias""", """class_labels_classifier.bias"""),
("""bbox_embed.layers.0.weight""", """bbox_predictor.layers.0.weight"""),
("""bbox_embed.layers.0.bias""", """bbox_predictor.layers.0.bias"""),
("""bbox_embed.layers.1.weight""", """bbox_predictor.layers.1.weight"""),
("""bbox_embed.layers.1.bias""", """bbox_predictor.layers.1.bias"""),
("""bbox_embed.layers.2.weight""", """bbox_predictor.layers.2.weight"""),
("""bbox_embed.layers.2.bias""", """bbox_predictor.layers.2.bias"""),
]
)
def a__ ( _SCREAMING_SNAKE_CASE : Any , _SCREAMING_SNAKE_CASE : List[str] , _SCREAMING_SNAKE_CASE : Optional[int] ) -> Union[str, Any]:
"""simple docstring"""
UpperCAmelCase_ : Tuple = state_dict.pop(_SCREAMING_SNAKE_CASE )
UpperCAmelCase_ : Optional[int] = val
def a__ ( _SCREAMING_SNAKE_CASE : int ) -> List[str]:
"""simple docstring"""
UpperCAmelCase_ : Dict = OrderedDict()
for key, value in state_dict.items():
if "backbone.0.body" in key:
UpperCAmelCase_ : Optional[int] = key.replace("backbone.0.body" , "backbone.conv_encoder.model" )
UpperCAmelCase_ : Union[str, Any] = value
else:
UpperCAmelCase_ : int = value
return new_state_dict
def a__ ( _SCREAMING_SNAKE_CASE : List[str] ) -> Dict:
"""simple docstring"""
UpperCAmelCase_ : Dict = ""
# first: transformer encoder
for i in range(6 ):
# read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias)
UpperCAmelCase_ : str = state_dict.pop(F'''{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight''' )
UpperCAmelCase_ : Optional[int] = state_dict.pop(F'''{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias''' )
# next, add query, keys and values (in that order) to the state dict
UpperCAmelCase_ : List[Any] = in_proj_weight[:2_56, :]
UpperCAmelCase_ : Optional[int] = in_proj_bias[:2_56]
UpperCAmelCase_ : Dict = in_proj_weight[2_56:5_12, :]
UpperCAmelCase_ : Dict = in_proj_bias[2_56:5_12]
UpperCAmelCase_ : int = in_proj_weight[-2_56:, :]
UpperCAmelCase_ : Dict = in_proj_bias[-2_56:]
# next: transformer decoder (which is a bit more complex because it also includes cross-attention)
for i in range(6 ):
# read in weights + bias of input projection layer of self-attention
UpperCAmelCase_ : Optional[int] = state_dict.pop(F'''{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_weight''' )
UpperCAmelCase_ : str = state_dict.pop(F'''{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_bias''' )
# next, add query, keys and values (in that order) to the state dict
UpperCAmelCase_ : Union[str, Any] = in_proj_weight[:2_56, :]
UpperCAmelCase_ : Optional[int] = in_proj_bias[:2_56]
UpperCAmelCase_ : Optional[Any] = in_proj_weight[2_56:5_12, :]
UpperCAmelCase_ : List[str] = in_proj_bias[2_56:5_12]
UpperCAmelCase_ : Optional[int] = in_proj_weight[-2_56:, :]
UpperCAmelCase_ : List[Any] = in_proj_bias[-2_56:]
# read in weights + bias of input projection layer of cross-attention
UpperCAmelCase_ : int = state_dict.pop(
F'''{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_weight''' )
UpperCAmelCase_ : Union[str, Any] = state_dict.pop(F'''{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_bias''' )
# next, add query, keys and values (in that order) of cross-attention to the state dict
UpperCAmelCase_ : List[str] = in_proj_weight_cross_attn[:2_56, :]
UpperCAmelCase_ : Dict = in_proj_bias_cross_attn[:2_56]
UpperCAmelCase_ : List[Any] = in_proj_weight_cross_attn[2_56:5_12, :]
UpperCAmelCase_ : int = in_proj_bias_cross_attn[2_56:5_12]
UpperCAmelCase_ : int = in_proj_weight_cross_attn[-2_56:, :]
UpperCAmelCase_ : str = in_proj_bias_cross_attn[-2_56:]
def a__ ( _SCREAMING_SNAKE_CASE : Tuple , _SCREAMING_SNAKE_CASE : Tuple ) -> Any:
"""simple docstring"""
UpperCAmelCase_ , UpperCAmelCase_ : Optional[Any] = image.size
UpperCAmelCase_ : int = max(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
UpperCAmelCase_ : List[Any] = 8_00 if "detection" in checkpoint_url else 10_00
UpperCAmelCase_ : str = target_max_size / current_max_size
UpperCAmelCase_ : Tuple = image.resize((int(round(scale * width ) ), int(round(scale * height ) )) )
return resized_image
def a__ ( _SCREAMING_SNAKE_CASE : Any ) -> List[Any]:
"""simple docstring"""
UpperCAmelCase_ : Any = F.to_tensor(_SCREAMING_SNAKE_CASE )
UpperCAmelCase_ : List[Any] = F.normalize(_SCREAMING_SNAKE_CASE , mean=[0.485, 0.456, 0.406] , std=[0.229, 0.224, 0.225] )
return image
@torch.no_grad()
def a__ ( _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : str ) -> Any:
"""simple docstring"""
logger.info("Converting model..." )
# load original state dict
UpperCAmelCase_ : Union[str, Any] = torch.hub.load_state_dict_from_url(_SCREAMING_SNAKE_CASE , map_location="cpu" )
# rename keys
for src, dest in rename_keys:
rename_key(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
UpperCAmelCase_ : List[str] = rename_backbone_keys(_SCREAMING_SNAKE_CASE )
# query, key and value matrices need special treatment
read_in_q_k_v(_SCREAMING_SNAKE_CASE )
# important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them
UpperCAmelCase_ : Any = "model."
for key in state_dict.copy().keys():
if not key.startswith("class_labels_classifier" ) and not key.startswith("bbox_predictor" ):
UpperCAmelCase_ : Optional[Any] = state_dict.pop(_SCREAMING_SNAKE_CASE )
UpperCAmelCase_ : Optional[int] = val
# create HuggingFace model and load state dict
UpperCAmelCase_ : str = TableTransformerConfig(
backbone="resnet18" , mask_loss_coefficient=1 , dice_loss_coefficient=1 , ce_loss_coefficient=1 , bbox_loss_coefficient=5 , giou_loss_coefficient=2 , eos_coefficient=0.4 , class_cost=1 , bbox_cost=5 , giou_cost=2 , )
if "detection" in checkpoint_url:
UpperCAmelCase_ : str = 15
UpperCAmelCase_ : str = 2
UpperCAmelCase_ : Union[str, Any] = {0: "table", 1: "table rotated"}
UpperCAmelCase_ : Tuple = idalabel
UpperCAmelCase_ : List[str] = {v: k for k, v in idalabel.items()}
else:
UpperCAmelCase_ : Tuple = 1_25
UpperCAmelCase_ : Tuple = 6
UpperCAmelCase_ : Union[str, Any] = {
0: "table",
1: "table column",
2: "table row",
3: "table column header",
4: "table projected row header",
5: "table spanning cell",
}
UpperCAmelCase_ : str = idalabel
UpperCAmelCase_ : Any = {v: k for k, v in idalabel.items()}
UpperCAmelCase_ : List[Any] = DetrImageProcessor(
format="coco_detection" , max_size=8_00 if "detection" in checkpoint_url else 10_00 )
UpperCAmelCase_ : Optional[int] = TableTransformerForObjectDetection(_SCREAMING_SNAKE_CASE )
model.load_state_dict(_SCREAMING_SNAKE_CASE )
model.eval()
# verify our conversion
UpperCAmelCase_ : Optional[Any] = "example_pdf.png" if "detection" in checkpoint_url else "example_table.png"
UpperCAmelCase_ : Dict = hf_hub_download(repo_id="nielsr/example-pdf" , repo_type="dataset" , filename=_SCREAMING_SNAKE_CASE )
UpperCAmelCase_ : Any = Image.open(_SCREAMING_SNAKE_CASE ).convert("RGB" )
UpperCAmelCase_ : int = normalize(resize(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ).unsqueeze(0 )
UpperCAmelCase_ : Optional[int] = model(_SCREAMING_SNAKE_CASE )
if "detection" in checkpoint_url:
UpperCAmelCase_ : Any = (1, 15, 3)
UpperCAmelCase_ : Optional[int] = torch.tensor(
[[-6.7_897, -16.9_985, 6.7_937], [-8.0_186, -22.2_192, 6.9_677], [-7.3_117, -21.0_708, 7.4_055]] )
UpperCAmelCase_ : Dict = torch.tensor([[0.4_867, 0.1_767, 0.6_732], [0.6_718, 0.4_479, 0.3_830], [0.4_716, 0.1_760, 0.6_364]] )
else:
UpperCAmelCase_ : Union[str, Any] = (1, 1_25, 7)
UpperCAmelCase_ : List[str] = torch.tensor(
[[-18.1_430, -8.3_214, 4.8_274], [-18.4_685, -7.1_361, -4.2_667], [-26.3_693, -9.3_429, -4.9_962]] )
UpperCAmelCase_ : Any = torch.tensor([[0.4_983, 0.5_595, 0.9_440], [0.4_916, 0.6_315, 0.5_954], [0.6_108, 0.8_637, 0.1_135]] )
assert outputs.logits.shape == expected_shape
assert torch.allclose(outputs.logits[0, :3, :3] , _SCREAMING_SNAKE_CASE , atol=1E-4 )
assert torch.allclose(outputs.pred_boxes[0, :3, :3] , _SCREAMING_SNAKE_CASE , atol=1E-4 )
print("Looks ok!" )
if pytorch_dump_folder_path is not None:
# Save model and image processor
logger.info(F'''Saving PyTorch model and image processor to {pytorch_dump_folder_path}...''' )
Path(_SCREAMING_SNAKE_CASE ).mkdir(exist_ok=_SCREAMING_SNAKE_CASE )
model.save_pretrained(_SCREAMING_SNAKE_CASE )
image_processor.save_pretrained(_SCREAMING_SNAKE_CASE )
if push_to_hub:
# Push model to HF hub
logger.info("Pushing model to the hub..." )
UpperCAmelCase_ : List[str] = (
"microsoft/table-transformer-detection"
if "detection" in checkpoint_url
else "microsoft/table-transformer-structure-recognition"
)
model.push_to_hub(_SCREAMING_SNAKE_CASE )
image_processor.push_to_hub(_SCREAMING_SNAKE_CASE )
if __name__ == "__main__":
_lowerCamelCase = argparse.ArgumentParser()
parser.add_argument(
"""--checkpoint_url""",
default="""https://pubtables1m.blob.core.windows.net/model/pubtables1m_detection_detr_r18.pth""",
type=str,
choices=[
"""https://pubtables1m.blob.core.windows.net/model/pubtables1m_detection_detr_r18.pth""",
"""https://pubtables1m.blob.core.windows.net/model/pubtables1m_structure_detr_r18.pth""",
],
help="""URL of the Table Transformer checkpoint you'd like to convert.""",
)
parser.add_argument(
"""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the folder to output PyTorch model."""
)
parser.add_argument(
"""--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub."""
)
_lowerCamelCase = parser.parse_args()
convert_table_transformer_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
| 67 | 0 |
from __future__ import annotations
_lowerCamelCase : Optional[Any] = [-10, -5, 0, 5, 5.1, 11, 13, 21, 3, 4, -21, -10, -5, -1, 0]
_lowerCamelCase : Any = [-5, 0, 5, 5.1, 11, 13, 21, -1, 4, -1, -10, -5, -1, 0, -1]
def SCREAMING_SNAKE_CASE ( lowercase_ ) -> list[float]:
"""simple docstring"""
A__ = []
A__ = len(lowercase_ )
for i in range(lowercase_ ):
A__ = -1
for j in range(i + 1 , lowercase_ ):
if arr[i] < arr[j]:
A__ = arr[j]
break
result.append(lowercase_ )
return result
def SCREAMING_SNAKE_CASE ( lowercase_ ) -> list[float]:
"""simple docstring"""
A__ = []
for i, outer in enumerate(lowercase_ ):
A__ = -1
for inner in arr[i + 1 :]:
if outer < inner:
A__ = inner
break
result.append(lowercase_ )
return result
def SCREAMING_SNAKE_CASE ( lowercase_ ) -> list[float]:
"""simple docstring"""
A__ = len(lowercase_ )
A__ = []
A__ = [-1] * arr_size
for index in reversed(range(lowercase_ ) ):
if stack:
while stack[-1] <= arr[index]:
stack.pop()
if not stack:
break
if stack:
A__ = stack[-1]
stack.append(arr[index] )
return result
if __name__ == "__main__":
from doctest import testmod
from timeit import timeit
testmod()
print(next_greatest_element_slow(arr))
print(next_greatest_element_fast(arr))
print(next_greatest_element(arr))
_lowerCamelCase : int = (
"""from __main__ import arr, next_greatest_element_slow, """
"""next_greatest_element_fast, next_greatest_element"""
)
print(
"""next_greatest_element_slow():""",
timeit("""next_greatest_element_slow(arr)""", setup=setup),
)
print(
"""next_greatest_element_fast():""",
timeit("""next_greatest_element_fast(arr)""", setup=setup),
)
print(
""" next_greatest_element():""",
timeit("""next_greatest_element(arr)""", setup=setup),
)
| 14 |
'''simple docstring'''
from typing import TYPE_CHECKING
# rely on isort to merge the imports
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
UpperCamelCase_ = {"""configuration_focalnet""": ["""FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP""", """FocalNetConfig"""]}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCamelCase_ = [
"""FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""FocalNetForImageClassification""",
"""FocalNetForMaskedImageModeling""",
"""FocalNetBackbone""",
"""FocalNetModel""",
"""FocalNetPreTrainedModel""",
]
if TYPE_CHECKING:
from .configuration_focalnet import FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FocalNetConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_focalnet import (
FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST,
FocalNetBackbone,
FocalNetForImageClassification,
FocalNetForMaskedImageModeling,
FocalNetModel,
FocalNetPreTrainedModel,
)
else:
import sys
UpperCamelCase_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 309 | 0 |
'''simple docstring'''
import inspect
import os
import unittest
import torch
import accelerate
from accelerate import debug_launcher
from accelerate.test_utils import (
execute_subprocess_async,
require_cpu,
require_huggingface_suite,
require_multi_gpu,
require_single_gpu,
)
from accelerate.utils import patch_environment
@require_huggingface_suite
class UpperCAmelCase__ ( unittest.TestCase):
def __lowerCamelCase ( self ) -> Optional[int]:
__UpperCamelCase = inspect.getfile(accelerate.test_utils )
__UpperCamelCase = os.path.sep.join(
mod_file.split(os.path.sep )[:-1] + ["""scripts""", """external_deps""", """test_metrics.py"""] )
from accelerate.test_utils.scripts.external_deps import test_metrics # noqa: F401
__UpperCamelCase = test_metrics
@require_cpu
def __lowerCamelCase ( self ) -> Optional[int]:
debug_launcher(self.test_metrics.main , num_processes=1 )
@require_cpu
def __lowerCamelCase ( self ) -> List[Any]:
debug_launcher(self.test_metrics.main )
@require_single_gpu
def __lowerCamelCase ( self ) -> Union[str, Any]:
self.test_metrics.main()
@require_multi_gpu
def __lowerCamelCase ( self ) -> Union[str, Any]:
print(f"Found {torch.cuda.device_count()} devices." )
__UpperCamelCase = ["""torchrun""", f"--nproc_per_node={torch.cuda.device_count()}", self.test_file_path]
with patch_environment(omp_num_threads=1 ):
execute_subprocess_async(lowercase , env=os.environ.copy() )
| 360 |
'''simple docstring'''
from dataclasses import dataclass, field
from typing import TYPE_CHECKING, Any, ClassVar, Dict, List, Optional, Union
import pyarrow as pa
if TYPE_CHECKING:
from .features import FeatureType
@dataclass
class UpperCAmelCase__ :
__SCREAMING_SNAKE_CASE = 42
__SCREAMING_SNAKE_CASE = None
# Automatically constructed
__SCREAMING_SNAKE_CASE = "dict"
__SCREAMING_SNAKE_CASE = None
__SCREAMING_SNAKE_CASE = field(default='''Translation''' , init=UpperCAmelCase_ , repr=UpperCAmelCase_)
def __call__( self ) -> Optional[Any]:
return pa.struct({lang: pa.string() for lang in sorted(self.languages )} )
def __lowerCamelCase ( self ) -> Union["FeatureType", Dict[str, "FeatureType"]]:
from .features import Value
return {k: Value("""string""" ) for k in sorted(self.languages )}
@dataclass
class UpperCAmelCase__ :
__SCREAMING_SNAKE_CASE = None
__SCREAMING_SNAKE_CASE = None
__SCREAMING_SNAKE_CASE = None
# Automatically constructed
__SCREAMING_SNAKE_CASE = "dict"
__SCREAMING_SNAKE_CASE = None
__SCREAMING_SNAKE_CASE = field(default='''TranslationVariableLanguages''' , init=UpperCAmelCase_ , repr=UpperCAmelCase_)
def __lowerCamelCase ( self ) -> Dict:
__UpperCamelCase = sorted(set(self.languages ) ) if self.languages else None
__UpperCamelCase = len(self.languages ) if self.languages else None
def __call__( self ) -> Any:
return pa.struct({"""language""": pa.list_(pa.string() ), """translation""": pa.list_(pa.string() )} )
def __lowerCamelCase ( self , lowercase ) -> Any:
__UpperCamelCase = set(self.languages )
if self.languages and set(lowercase ) - lang_set:
raise ValueError(
f"Some languages in example ({', '.join(sorted(set(lowercase ) - lang_set ) )}) are not in valid set ({', '.join(lowercase )})." )
# Convert dictionary into tuples, splitting out cases where there are
# multiple translations for a single language.
__UpperCamelCase = []
for lang, text in translation_dict.items():
if isinstance(lowercase , lowercase ):
translation_tuples.append((lang, text) )
else:
translation_tuples.extend([(lang, el) for el in text] )
# Ensure translations are in ascending order by language code.
__UpperCamelCase , __UpperCamelCase = zip(*sorted(lowercase ) )
return {"language": languages, "translation": translations}
def __lowerCamelCase ( self ) -> Union["FeatureType", Dict[str, "FeatureType"]]:
from .features import Sequence, Value
return {
"language": Sequence(Value("""string""" ) ),
"translation": Sequence(Value("""string""" ) ),
}
| 243 | 0 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_torch_available,
is_vision_available,
)
UpperCamelCase_ = {'''configuration_vit''': ['''VIT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ViTConfig''', '''ViTOnnxConfig''']}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCamelCase_ = ['''ViTFeatureExtractor''']
UpperCamelCase_ = ['''ViTImageProcessor''']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCamelCase_ = [
'''VIT_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''ViTForImageClassification''',
'''ViTForMaskedImageModeling''',
'''ViTModel''',
'''ViTPreTrainedModel''',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCamelCase_ = [
'''TFViTForImageClassification''',
'''TFViTModel''',
'''TFViTPreTrainedModel''',
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCamelCase_ = [
'''FlaxViTForImageClassification''',
'''FlaxViTModel''',
'''FlaxViTPreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_vit import VIT_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTConfig, ViTOnnxConfig
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_vit import ViTFeatureExtractor
from .image_processing_vit import ViTImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_vit import (
VIT_PRETRAINED_MODEL_ARCHIVE_LIST,
ViTForImageClassification,
ViTForMaskedImageModeling,
ViTModel,
ViTPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_vit import TFViTForImageClassification, TFViTModel, TFViTPreTrainedModel
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_vit import FlaxViTForImageClassification, FlaxViTModel, FlaxViTPreTrainedModel
else:
import sys
UpperCamelCase_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 345 |
import argparse
from argparse import Namespace
import torch
from torch import nn
from transformers import XGLMConfig, XGLMForCausalLM
def lowerCamelCase_ ( _a : List[Any] ):
'''simple docstring'''
UpperCAmelCase_ : Optional[int] = [
"""decoder.version""",
"""decoder.output_projection.weight""",
"""_float_tensor""",
"""decoder.embed_positions._float_tensor""",
]
for k in ignore_keys:
state_dict.pop(_a , _a )
def lowerCamelCase_ ( _a : Any ):
'''simple docstring'''
UpperCAmelCase_ , UpperCAmelCase_ : Optional[Any] = emb.weight.shape
UpperCAmelCase_ : Tuple = nn.Linear(_a , _a , bias=_a )
UpperCAmelCase_ : List[Any] = emb.weight.data
return lin_layer
def lowerCamelCase_ ( _a : Dict ):
'''simple docstring'''
UpperCAmelCase_ : int = torch.load(_a , map_location="""cpu""" )
UpperCAmelCase_ : Dict = Namespace(**checkpoint["""cfg"""]["""model"""] )
UpperCAmelCase_ : Optional[int] = checkpoint["""model"""]
remove_ignore_keys_(_a )
UpperCAmelCase_ : str = state_dict["""decoder.embed_tokens.weight"""].shape[0]
UpperCAmelCase_ : List[str] = {key.replace("""decoder""" , """model""" ): val for key, val in state_dict.items()}
UpperCAmelCase_ : int = XGLMConfig(
vocab_size=_a , max_position_embeddings=args.max_target_positions , num_layers=args.decoder_layers , attention_heads=args.decoder_attention_heads , ffn_dim=args.decoder_ffn_embed_dim , d_model=args.decoder_embed_dim , layerdrop=args.decoder_layerdrop , dropout=args.dropout , attention_dropout=args.attention_dropout , activation_dropout=args.activation_dropout , activation_function="""gelu""" , scale_embedding=not args.no_scale_embedding , tie_word_embeddings=args.share_decoder_input_output_embed , )
UpperCAmelCase_ : List[str] = XGLMForCausalLM(_a )
UpperCAmelCase_ : Tuple = model.load_state_dict(_a , strict=_a )
print(_a )
UpperCAmelCase_ : Optional[Any] = make_linear_from_emb(model.model.embed_tokens )
return model
if __name__ == "__main__":
UpperCamelCase_ = argparse.ArgumentParser()
# Required parameters
parser.add_argument('''fairseq_path''', type=str, help='''path to a model.pt on local filesystem.''')
parser.add_argument('''pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''')
UpperCamelCase_ = parser.parse_args()
UpperCamelCase_ = convert_fairseq_xglm_checkpoint_from_disk(args.fairseq_path)
model.save_pretrained(args.pytorch_dump_folder_path)
| 345 | 1 |
from ..utils import DummyObject, requires_backends
class a ( metaclass=lowercase__ ):
_lowercase = ['onnx']
def __init__( self , *A_ , **A_ ):
'''simple docstring'''
requires_backends(self , ["onnx"] )
@classmethod
def _UpperCAmelCase ( cls , *A_ , **A_ ):
'''simple docstring'''
requires_backends(cls , ["onnx"] )
@classmethod
def _UpperCAmelCase ( cls , *A_ , **A_ ):
'''simple docstring'''
requires_backends(cls , ["onnx"] )
| 358 |
import warnings
from typing import List
import numpy as np
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding
from ...utils import is_flax_available, is_tf_available, is_torch_available
class a ( UpperCAmelCase ):
_lowercase = ["image_processor", "tokenizer"]
_lowercase = "OwlViTImageProcessor"
_lowercase = ("CLIPTokenizer", "CLIPTokenizerFast")
def __init__( self , A_=None , A_=None , **A_ ):
'''simple docstring'''
_UpperCAmelCase : List[str] = None
if "feature_extractor" in kwargs:
warnings.warn(
"The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`"
" instead." , A_ , )
_UpperCAmelCase : Union[str, Any] = kwargs.pop("feature_extractor" )
_UpperCAmelCase : Any = image_processor if image_processor is not None else feature_extractor
if image_processor is None:
raise ValueError("You need to specify an `image_processor`." )
if tokenizer is None:
raise ValueError("You need to specify a `tokenizer`." )
super().__init__(A_ , A_ )
def __call__( self , A_=None , A_=None , A_=None , A_="max_length" , A_="np" , **A_ ):
'''simple docstring'''
if text is None and query_images is None and images is None:
raise ValueError(
"You have to specify at least one text or query image or image. All three cannot be none." )
if text is not None:
if isinstance(A_ , A_ ) or (isinstance(A_ , A_ ) and not isinstance(text[0] , A_ )):
_UpperCAmelCase : Optional[int] = [self.tokenizer(A_ , padding=A_ , return_tensors=A_ , **A_ )]
elif isinstance(A_ , A_ ) and isinstance(text[0] , A_ ):
_UpperCAmelCase : Optional[int] = []
# Maximum number of queries across batch
_UpperCAmelCase : Optional[Any] = max([len(A_ ) for t in text] )
# Pad all batch samples to max number of text queries
for t in text:
if len(A_ ) != max_num_queries:
_UpperCAmelCase : Optional[int] = t + [" "] * (max_num_queries - len(A_ ))
_UpperCAmelCase : str = self.tokenizer(A_ , padding=A_ , return_tensors=A_ , **A_ )
encodings.append(A_ )
else:
raise TypeError("Input text should be a string, a list of strings or a nested list of strings" )
if return_tensors == "np":
_UpperCAmelCase : List[str] = np.concatenate([encoding["input_ids"] for encoding in encodings] , axis=0 )
_UpperCAmelCase : Tuple = np.concatenate([encoding["attention_mask"] for encoding in encodings] , axis=0 )
elif return_tensors == "jax" and is_flax_available():
import jax.numpy as jnp
_UpperCAmelCase : Optional[Any] = jnp.concatenate([encoding["input_ids"] for encoding in encodings] , axis=0 )
_UpperCAmelCase : str = jnp.concatenate([encoding["attention_mask"] for encoding in encodings] , axis=0 )
elif return_tensors == "pt" and is_torch_available():
import torch
_UpperCAmelCase : str = torch.cat([encoding["input_ids"] for encoding in encodings] , dim=0 )
_UpperCAmelCase : Dict = torch.cat([encoding["attention_mask"] for encoding in encodings] , dim=0 )
elif return_tensors == "tf" and is_tf_available():
import tensorflow as tf
_UpperCAmelCase : Union[str, Any] = tf.stack([encoding["input_ids"] for encoding in encodings] , axis=0 )
_UpperCAmelCase : Optional[int] = tf.stack([encoding["attention_mask"] for encoding in encodings] , axis=0 )
else:
raise ValueError("Target return tensor type could not be returned" )
_UpperCAmelCase : Optional[int] = BatchEncoding()
_UpperCAmelCase : str = input_ids
_UpperCAmelCase : Optional[Any] = attention_mask
if query_images is not None:
_UpperCAmelCase : int = BatchEncoding()
_UpperCAmelCase : str = self.image_processor(
A_ , return_tensors=A_ , **A_ ).pixel_values
_UpperCAmelCase : Optional[Any] = query_pixel_values
if images is not None:
_UpperCAmelCase : int = self.image_processor(A_ , return_tensors=A_ , **A_ )
if text is not None and images is not None:
_UpperCAmelCase : Optional[int] = image_features.pixel_values
return encoding
elif query_images is not None and images is not None:
_UpperCAmelCase : Any = image_features.pixel_values
return encoding
elif text is not None or query_images is not None:
return encoding
else:
return BatchEncoding(data=dict(**A_ ) , tensor_type=A_ )
def _UpperCAmelCase ( self , *A_ , **A_ ):
'''simple docstring'''
return self.image_processor.post_process(*A_ , **A_ )
def _UpperCAmelCase ( self , *A_ , **A_ ):
'''simple docstring'''
return self.image_processor.post_process_object_detection(*A_ , **A_ )
def _UpperCAmelCase ( self , *A_ , **A_ ):
'''simple docstring'''
return self.image_processor.post_process_image_guided_detection(*A_ , **A_ )
def _UpperCAmelCase ( self , *A_ , **A_ ):
'''simple docstring'''
return self.tokenizer.batch_decode(*A_ , **A_ )
def _UpperCAmelCase ( self , *A_ , **A_ ):
'''simple docstring'''
return self.tokenizer.decode(*A_ , **A_ )
@property
def _UpperCAmelCase ( self ):
'''simple docstring'''
warnings.warn(
"`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead." , A_ , )
return self.image_processor_class
@property
def _UpperCAmelCase ( self ):
'''simple docstring'''
warnings.warn(
"`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead." , A_ , )
return self.image_processor
| 189 | 0 |
'''simple docstring'''
import os
import tempfile
import unittest
from pathlib import Path
from transformers import AutoConfig, is_tf_available
from transformers.testing_utils import require_tf
if is_tf_available():
import tensorflow as tf
from transformers import TensorFlowBenchmark, TensorFlowBenchmarkArguments
@require_tf
class lowercase ( unittest.TestCase ):
"""simple docstring"""
def lowerCAmelCase__ ( self , UpperCamelCase_ ):
'''simple docstring'''
for model_result in results.values():
for batch_size, sequence_length in zip(model_result['''bs'''] , model_result['''ss'''] ):
UpperCamelCase__ :Dict = model_result['''result'''][batch_size][sequence_length]
self.assertIsNotNone(_SCREAMING_SNAKE_CASE )
def lowerCAmelCase__ ( self ):
'''simple docstring'''
UpperCamelCase__ :List[str] = '''sshleifer/tiny-gpt2'''
UpperCamelCase__ :Tuple = TensorFlowBenchmarkArguments(
models=[MODEL_ID] , training=_SCREAMING_SNAKE_CASE , inference=_SCREAMING_SNAKE_CASE , sequence_lengths=[8] , batch_sizes=[1] , eager_mode=_SCREAMING_SNAKE_CASE , multi_process=_SCREAMING_SNAKE_CASE , )
UpperCamelCase__ :List[Any] = TensorFlowBenchmark(_SCREAMING_SNAKE_CASE )
UpperCamelCase__ :Union[str, Any] = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def lowerCAmelCase__ ( self ):
'''simple docstring'''
UpperCamelCase__ :List[Any] = '''sgugger/tiny-distilbert-classification'''
UpperCamelCase__ :List[str] = TensorFlowBenchmarkArguments(
models=[MODEL_ID] , training=_SCREAMING_SNAKE_CASE , inference=_SCREAMING_SNAKE_CASE , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_SCREAMING_SNAKE_CASE , only_pretrain_model=_SCREAMING_SNAKE_CASE , )
UpperCamelCase__ :str = TensorFlowBenchmark(_SCREAMING_SNAKE_CASE )
UpperCamelCase__ :int = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def lowerCAmelCase__ ( self ):
'''simple docstring'''
UpperCamelCase__ :Optional[int] = '''sshleifer/tiny-gpt2'''
UpperCamelCase__ :Dict = TensorFlowBenchmarkArguments(
models=[MODEL_ID] , training=_SCREAMING_SNAKE_CASE , inference=_SCREAMING_SNAKE_CASE , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_SCREAMING_SNAKE_CASE , )
UpperCamelCase__ :List[str] = TensorFlowBenchmark(_SCREAMING_SNAKE_CASE )
UpperCamelCase__ :str = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def lowerCAmelCase__ ( self ):
'''simple docstring'''
UpperCamelCase__ :List[str] = '''sshleifer/tiny-gpt2'''
UpperCamelCase__ :Tuple = AutoConfig.from_pretrained(_SCREAMING_SNAKE_CASE )
UpperCamelCase__ :str = TensorFlowBenchmarkArguments(
models=[MODEL_ID] , training=_SCREAMING_SNAKE_CASE , inference=_SCREAMING_SNAKE_CASE , sequence_lengths=[8] , batch_sizes=[1] , eager_mode=_SCREAMING_SNAKE_CASE , multi_process=_SCREAMING_SNAKE_CASE , )
UpperCamelCase__ :str = TensorFlowBenchmark(_SCREAMING_SNAKE_CASE , [config] )
UpperCamelCase__ :List[str] = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def lowerCAmelCase__ ( self ):
'''simple docstring'''
UpperCamelCase__ :Union[str, Any] = '''sshleifer/tiny-gpt2'''
UpperCamelCase__ :Tuple = AutoConfig.from_pretrained(_SCREAMING_SNAKE_CASE )
UpperCamelCase__ :List[Any] = TensorFlowBenchmarkArguments(
models=[MODEL_ID] , training=_SCREAMING_SNAKE_CASE , inference=_SCREAMING_SNAKE_CASE , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_SCREAMING_SNAKE_CASE , )
UpperCamelCase__ :Optional[int] = TensorFlowBenchmark(_SCREAMING_SNAKE_CASE , [config] )
UpperCamelCase__ :int = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def lowerCAmelCase__ ( self ):
'''simple docstring'''
UpperCamelCase__ :Any = '''sshleifer/tiny-gpt2'''
UpperCamelCase__ :Dict = TensorFlowBenchmarkArguments(
models=[MODEL_ID] , training=_SCREAMING_SNAKE_CASE , inference=_SCREAMING_SNAKE_CASE , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_SCREAMING_SNAKE_CASE , )
UpperCamelCase__ :Any = TensorFlowBenchmark(_SCREAMING_SNAKE_CASE )
UpperCamelCase__ :List[Any] = benchmark.run()
self.check_results_dict_not_empty(results.time_train_result )
self.check_results_dict_not_empty(results.memory_train_result )
def lowerCAmelCase__ ( self ):
'''simple docstring'''
UpperCamelCase__ :Optional[Any] = '''sshleifer/tiny-gpt2'''
UpperCamelCase__ :Dict = AutoConfig.from_pretrained(_SCREAMING_SNAKE_CASE )
UpperCamelCase__ :Dict = TensorFlowBenchmarkArguments(
models=[MODEL_ID] , training=_SCREAMING_SNAKE_CASE , inference=_SCREAMING_SNAKE_CASE , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_SCREAMING_SNAKE_CASE , )
UpperCamelCase__ :Optional[int] = TensorFlowBenchmark(_SCREAMING_SNAKE_CASE , [config] )
UpperCamelCase__ :Optional[int] = benchmark.run()
self.check_results_dict_not_empty(results.time_train_result )
self.check_results_dict_not_empty(results.memory_train_result )
def lowerCAmelCase__ ( self ):
'''simple docstring'''
UpperCamelCase__ :str = '''patrickvonplaten/t5-tiny-random'''
UpperCamelCase__ :Any = AutoConfig.from_pretrained(_SCREAMING_SNAKE_CASE )
UpperCamelCase__ :List[Any] = TensorFlowBenchmarkArguments(
models=[MODEL_ID] , training=_SCREAMING_SNAKE_CASE , inference=_SCREAMING_SNAKE_CASE , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_SCREAMING_SNAKE_CASE , )
UpperCamelCase__ :Optional[Any] = TensorFlowBenchmark(_SCREAMING_SNAKE_CASE , configs=[config] )
UpperCamelCase__ :Optional[int] = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
@unittest.skipIf(is_tf_available() and len(tf.config.list_physical_devices('''GPU''' ) ) == 0 , '''Cannot do xla on CPU.''' )
def lowerCAmelCase__ ( self ):
'''simple docstring'''
UpperCamelCase__ :str = '''sshleifer/tiny-gpt2'''
UpperCamelCase__ :Any = TensorFlowBenchmarkArguments(
models=[MODEL_ID] , training=_SCREAMING_SNAKE_CASE , inference=_SCREAMING_SNAKE_CASE , sequence_lengths=[8] , batch_sizes=[1] , use_xla=_SCREAMING_SNAKE_CASE , multi_process=_SCREAMING_SNAKE_CASE , )
UpperCamelCase__ :Tuple = TensorFlowBenchmark(_SCREAMING_SNAKE_CASE )
UpperCamelCase__ :int = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def lowerCAmelCase__ ( self ):
'''simple docstring'''
UpperCamelCase__ :Optional[Any] = '''sshleifer/tiny-gpt2'''
with tempfile.TemporaryDirectory() as tmp_dir:
UpperCamelCase__ :str = TensorFlowBenchmarkArguments(
models=[MODEL_ID] , inference=_SCREAMING_SNAKE_CASE , save_to_csv=_SCREAMING_SNAKE_CASE , sequence_lengths=[8] , batch_sizes=[1] , inference_time_csv_file=os.path.join(_SCREAMING_SNAKE_CASE , '''inf_time.csv''' ) , inference_memory_csv_file=os.path.join(_SCREAMING_SNAKE_CASE , '''inf_mem.csv''' ) , env_info_csv_file=os.path.join(_SCREAMING_SNAKE_CASE , '''env.csv''' ) , multi_process=_SCREAMING_SNAKE_CASE , )
UpperCamelCase__ :Optional[Any] = TensorFlowBenchmark(_SCREAMING_SNAKE_CASE )
benchmark.run()
self.assertTrue(Path(os.path.join(_SCREAMING_SNAKE_CASE , '''inf_time.csv''' ) ).exists() )
self.assertTrue(Path(os.path.join(_SCREAMING_SNAKE_CASE , '''inf_mem.csv''' ) ).exists() )
self.assertTrue(Path(os.path.join(_SCREAMING_SNAKE_CASE , '''env.csv''' ) ).exists() )
def lowerCAmelCase__ ( self ):
'''simple docstring'''
UpperCamelCase__ :Optional[Any] = '''sshleifer/tiny-gpt2'''
def _check_summary_is_not_empty(UpperCamelCase_ ):
self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , '''sequential''' ) )
self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , '''cumulative''' ) )
self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , '''current''' ) )
self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , '''total''' ) )
with tempfile.TemporaryDirectory() as tmp_dir:
UpperCamelCase__ :Dict = TensorFlowBenchmarkArguments(
models=[MODEL_ID] , inference=_SCREAMING_SNAKE_CASE , sequence_lengths=[8] , batch_sizes=[1] , log_filename=os.path.join(_SCREAMING_SNAKE_CASE , '''log.txt''' ) , log_print=_SCREAMING_SNAKE_CASE , trace_memory_line_by_line=_SCREAMING_SNAKE_CASE , eager_mode=_SCREAMING_SNAKE_CASE , multi_process=_SCREAMING_SNAKE_CASE , )
UpperCamelCase__ :Any = TensorFlowBenchmark(_SCREAMING_SNAKE_CASE )
UpperCamelCase__ :Dict = benchmark.run()
_check_summary_is_not_empty(result.inference_summary )
self.assertTrue(Path(os.path.join(_SCREAMING_SNAKE_CASE , '''log.txt''' ) ).exists() ) | 97 |
'''simple docstring'''
import argparse
import os
from io import BytesIO
from pathlib import Path
import requests
from clip_retrieval.clip_client import ClipClient
from PIL import Image
from tqdm import tqdm
def lowercase__ ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase )-> List[str]:
UpperCamelCase = 1.5
UpperCamelCase = int(factor * num_class_images )
UpperCamelCase = ClipClient(
url="""https://knn.laion.ai/knn-service""" , indice_name="""laion_400m""" , num_images=__UpperCamelCase , aesthetic_weight=0.1 )
os.makedirs(F"{class_data_dir}/images" , exist_ok=__UpperCamelCase )
if len(list(Path(F"{class_data_dir}/images" ).iterdir() ) ) >= num_class_images:
return
while True:
UpperCamelCase = client.query(text=__UpperCamelCase )
if len(__UpperCamelCase ) >= factor * num_class_images or num_images > 1E4:
break
else:
UpperCamelCase = int(factor * num_images )
UpperCamelCase = ClipClient(
url="""https://knn.laion.ai/knn-service""" , indice_name="""laion_400m""" , num_images=__UpperCamelCase , aesthetic_weight=0.1 , )
UpperCamelCase = 0
UpperCamelCase = 0
UpperCamelCase = tqdm(desc="""downloading real regularization images""" , total=__UpperCamelCase )
with open(F"{class_data_dir}/caption.txt" , """w""" ) as fa, open(F"{class_data_dir}/urls.txt" , """w""" ) as fa, open(
F"{class_data_dir}/images.txt" , """w""" ) as fa:
while total < num_class_images:
UpperCamelCase = class_images[count]
count += 1
try:
UpperCamelCase = requests.get(images["""url"""] )
if img.status_code == 200:
UpperCamelCase = Image.open(BytesIO(img.content ) )
with open(F"{class_data_dir}/images/{total}.jpg" , """wb""" ) as f:
f.write(img.content )
fa.write(images["""caption"""] + """\n""" )
fa.write(images["""url"""] + """\n""" )
fa.write(F"{class_data_dir}/images/{total}.jpg" + """\n""" )
total += 1
pbar.update(1 )
else:
continue
except Exception:
continue
return
def lowercase__ ( )-> str:
UpperCamelCase = argparse.ArgumentParser("""""" , add_help=__UpperCamelCase )
parser.add_argument("""--class_prompt""" , help="""text prompt to retrieve images""" , required=__UpperCamelCase , type=__UpperCamelCase )
parser.add_argument("""--class_data_dir""" , help="""path to save images""" , required=__UpperCamelCase , type=__UpperCamelCase )
parser.add_argument("""--num_class_images""" , help="""number of images to download""" , default=200 , type=__UpperCamelCase )
return parser.parse_args()
if __name__ == "__main__":
SCREAMING_SNAKE_CASE__ = parse_args()
retrieve(args.class_prompt, args.class_data_dir, args.num_class_images)
| 321 | 0 |
import logging
import os
import sys
from dataclasses import dataclass, field
from itertools import chain
from typing import Optional, Union
import datasets
import numpy as np
import torch
from datasets import load_dataset
import transformers
from transformers import (
AutoConfig,
AutoModelForMultipleChoice,
AutoTokenizer,
HfArgumentParser,
Trainer,
TrainingArguments,
default_data_collator,
set_seed,
)
from transformers.tokenization_utils_base import PreTrainedTokenizerBase
from transformers.trainer_utils import get_last_checkpoint
from transformers.utils import PaddingStrategy, check_min_version, send_example_telemetry
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
check_min_version("""4.31.0""")
__snake_case : List[Any] = logging.getLogger(__name__)
@dataclass
class __SCREAMING_SNAKE_CASE :
_SCREAMING_SNAKE_CASE : str = field(
metadata={'''help''': '''Path to pretrained model or model identifier from huggingface.co/models'''})
_SCREAMING_SNAKE_CASE : Optional[str] = field(
default=__lowercase , metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''})
_SCREAMING_SNAKE_CASE : Optional[str] = field(
default=__lowercase , metadata={'''help''': '''Pretrained tokenizer name or path if not the same as model_name'''})
_SCREAMING_SNAKE_CASE : Optional[str] = field(
default=__lowercase , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co'''} , )
_SCREAMING_SNAKE_CASE : bool = field(
default=__lowercase , metadata={'''help''': '''Whether to use one of the fast tokenizer (backed by the tokenizers library) or not.'''} , )
_SCREAMING_SNAKE_CASE : str = field(
default='''main''' , metadata={'''help''': '''The specific model version to use (can be a branch name, tag name or commit id).'''} , )
_SCREAMING_SNAKE_CASE : bool = field(
default=__lowercase , metadata={
'''help''': (
'''Will use the token generated when running `huggingface-cli login` (necessary to use this script '''
'''with private models).'''
)
} , )
@dataclass
class __SCREAMING_SNAKE_CASE :
_SCREAMING_SNAKE_CASE : Optional[str] = field(default=__lowercase , metadata={'''help''': '''The input training data file (a text file).'''})
_SCREAMING_SNAKE_CASE : Optional[str] = field(
default=__lowercase , metadata={'''help''': '''An optional input evaluation data file to evaluate the perplexity on (a text file).'''} , )
_SCREAMING_SNAKE_CASE : bool = field(
default=__lowercase , metadata={'''help''': '''Overwrite the cached training and evaluation sets'''})
_SCREAMING_SNAKE_CASE : Optional[int] = field(
default=__lowercase , metadata={'''help''': '''The number of processes to use for the preprocessing.'''} , )
_SCREAMING_SNAKE_CASE : Optional[int] = field(
default=__lowercase , metadata={
'''help''': (
'''The maximum total input sequence length after tokenization. If passed, sequences longer '''
'''than this will be truncated, sequences shorter will be padded.'''
)
} , )
_SCREAMING_SNAKE_CASE : bool = field(
default=__lowercase , metadata={
'''help''': (
'''Whether to pad all samples to the maximum sentence length. '''
'''If False, will pad the samples dynamically when batching to the maximum length in the batch. More '''
'''efficient on GPU but very bad for TPU.'''
)
} , )
_SCREAMING_SNAKE_CASE : Optional[int] = field(
default=__lowercase , metadata={
'''help''': (
'''For debugging purposes or quicker training, truncate the number of training examples to this '''
'''value if set.'''
)
} , )
_SCREAMING_SNAKE_CASE : Optional[int] = field(
default=__lowercase , metadata={
'''help''': (
'''For debugging purposes or quicker training, truncate the number of evaluation examples to this '''
'''value if set.'''
)
} , )
def UpperCamelCase__ ( self ):
"""simple docstring"""
if self.train_file is not None:
lowerCAmelCase__ = self.train_file.split('.' )[-1]
assert extension in ["csv", "json"], "`train_file` should be a csv or a json file."
if self.validation_file is not None:
lowerCAmelCase__ = self.validation_file.split('.' )[-1]
assert extension in ["csv", "json"], "`validation_file` should be a csv or a json file."
@dataclass
class __SCREAMING_SNAKE_CASE :
_SCREAMING_SNAKE_CASE : PreTrainedTokenizerBase
_SCREAMING_SNAKE_CASE : Union[bool, str, PaddingStrategy] = True
_SCREAMING_SNAKE_CASE : Optional[int] = None
_SCREAMING_SNAKE_CASE : Optional[int] = None
def __call__( self , _UpperCamelCase ):
"""simple docstring"""
lowerCAmelCase__ = 'label' if 'label' in features[0].keys() else 'labels'
lowerCAmelCase__ = [feature.pop(_UpperCamelCase ) for feature in features]
lowerCAmelCase__ = len(_UpperCamelCase )
lowerCAmelCase__ = len(features[0]['input_ids'] )
lowerCAmelCase__ = [
[{k: v[i] for k, v in feature.items()} for i in range(_UpperCamelCase )] for feature in features
]
lowerCAmelCase__ = list(chain(*_UpperCamelCase ) )
lowerCAmelCase__ = self.tokenizer.pad(
_UpperCamelCase , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors='pt' , )
# Un-flatten
lowerCAmelCase__ = {k: v.view(_UpperCamelCase , _UpperCamelCase , -1 ) for k, v in batch.items()}
# Add back labels
lowerCAmelCase__ = torch.tensor(_UpperCamelCase , dtype=torch.intaa )
return batch
def _UpperCamelCase ( ) -> Any:
"""simple docstring"""
lowerCAmelCase__ = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) )
if len(sys.argv ) == 2 and sys.argv[1].endswith('.json' ):
# If we pass only one argument to the script and it's the path to a json file,
# let's parse it to get our arguments.
lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) )
else:
lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = parser.parse_args_into_dataclasses()
# Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
# information sent is the one passed as arguments along with your Python/PyTorch versions.
send_example_telemetry('run_swag' , UpperCamelCase_ , UpperCamelCase_ )
# Setup logging
logging.basicConfig(
format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , handlers=[logging.StreamHandler(sys.stdout )] , )
if training_args.should_log:
# The default of training_args.log_level is passive, so we set log level at info here to have that default.
transformers.utils.logging.set_verbosity_info()
lowerCAmelCase__ = training_args.get_process_log_level()
logger.setLevel(UpperCamelCase_ )
datasets.utils.logging.set_verbosity(UpperCamelCase_ )
transformers.utils.logging.set_verbosity(UpperCamelCase_ )
transformers.utils.logging.enable_default_handler()
transformers.utils.logging.enable_explicit_format()
# Log on each process the small summary:
logger.warning(
F"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"
+ F"distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}" )
logger.info(F"Training/evaluation parameters {training_args}" )
# Detecting last checkpoint.
lowerCAmelCase__ = None
if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir:
lowerCAmelCase__ = get_last_checkpoint(training_args.output_dir )
if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0:
raise ValueError(
F"Output directory ({training_args.output_dir}) already exists and is not empty. "
'Use --overwrite_output_dir to overcome.' )
elif last_checkpoint is not None and training_args.resume_from_checkpoint is None:
logger.info(
F"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change "
'the `--output_dir` or add `--overwrite_output_dir` to train from scratch.' )
# Set seed before initializing model.
set_seed(training_args.seed )
# Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below)
# or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/
# (the dataset will be downloaded automatically from the datasets Hub).
# For CSV/JSON files, this script will use the column called 'text' or the first column if no column called
# 'text' is found. You can easily tweak this behavior (see below).
# In distributed training, the load_dataset function guarantee that only one local process can concurrently
# download the dataset.
if data_args.train_file is not None or data_args.validation_file is not None:
lowerCAmelCase__ = {}
if data_args.train_file is not None:
lowerCAmelCase__ = data_args.train_file
if data_args.validation_file is not None:
lowerCAmelCase__ = data_args.validation_file
lowerCAmelCase__ = data_args.train_file.split('.' )[-1]
lowerCAmelCase__ = load_dataset(
UpperCamelCase_ , data_files=UpperCamelCase_ , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , )
else:
# Downloading and loading the swag dataset from the hub.
lowerCAmelCase__ = load_dataset(
'swag' , 'regular' , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , )
# See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at
# https://huggingface.co/docs/datasets/loading_datasets.html.
# Load pretrained model and tokenizer
# Distributed training:
# The .from_pretrained methods guarantee that only one local process can concurrently
# download model & vocab.
lowerCAmelCase__ = AutoConfig.from_pretrained(
model_args.config_name if model_args.config_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , )
lowerCAmelCase__ = AutoTokenizer.from_pretrained(
model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast_tokenizer , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , )
lowerCAmelCase__ = AutoModelForMultipleChoice.from_pretrained(
model_args.model_name_or_path , from_tf=bool('.ckpt' in model_args.model_name_or_path ) , config=UpperCamelCase_ , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , )
# When using your own dataset or a different dataset from swag, you will probably need to change this.
lowerCAmelCase__ = [F"ending{i}" for i in range(4 )]
lowerCAmelCase__ = 'sent1'
lowerCAmelCase__ = 'sent2'
if data_args.max_seq_length is None:
lowerCAmelCase__ = tokenizer.model_max_length
if max_seq_length > 1024:
logger.warning(
'The chosen tokenizer supports a `model_max_length` that is longer than the default `block_size` value'
' of 1024. If you would like to use a longer `block_size` up to `tokenizer.model_max_length` you can'
' override this default with `--block_size xxx`.' )
lowerCAmelCase__ = 1024
else:
if data_args.max_seq_length > tokenizer.model_max_length:
logger.warning(
F"The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the"
F"model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}." )
lowerCAmelCase__ = min(data_args.max_seq_length , tokenizer.model_max_length )
# Preprocessing the datasets.
def preprocess_function(UpperCamelCase_ : str ):
lowerCAmelCase__ = [[context] * 4 for context in examples[context_name]]
lowerCAmelCase__ = examples[question_header_name]
lowerCAmelCase__ = [
[F"{header} {examples[end][i]}" for end in ending_names] for i, header in enumerate(UpperCamelCase_ )
]
# Flatten out
lowerCAmelCase__ = list(chain(*UpperCamelCase_ ) )
lowerCAmelCase__ = list(chain(*UpperCamelCase_ ) )
# Tokenize
lowerCAmelCase__ = tokenizer(
UpperCamelCase_ , UpperCamelCase_ , truncation=UpperCamelCase_ , max_length=UpperCamelCase_ , padding='max_length' if data_args.pad_to_max_length else False , )
# Un-flatten
return {k: [v[i : i + 4] for i in range(0 , len(UpperCamelCase_ ) , 4 )] for k, v in tokenized_examples.items()}
if training_args.do_train:
if "train" not in raw_datasets:
raise ValueError('--do_train requires a train dataset' )
lowerCAmelCase__ = raw_datasets['train']
if data_args.max_train_samples is not None:
lowerCAmelCase__ = min(len(UpperCamelCase_ ) , data_args.max_train_samples )
lowerCAmelCase__ = train_dataset.select(range(UpperCamelCase_ ) )
with training_args.main_process_first(desc='train dataset map pre-processing' ):
lowerCAmelCase__ = train_dataset.map(
UpperCamelCase_ , batched=UpperCamelCase_ , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , )
if training_args.do_eval:
if "validation" not in raw_datasets:
raise ValueError('--do_eval requires a validation dataset' )
lowerCAmelCase__ = raw_datasets['validation']
if data_args.max_eval_samples is not None:
lowerCAmelCase__ = min(len(UpperCamelCase_ ) , data_args.max_eval_samples )
lowerCAmelCase__ = eval_dataset.select(range(UpperCamelCase_ ) )
with training_args.main_process_first(desc='validation dataset map pre-processing' ):
lowerCAmelCase__ = eval_dataset.map(
UpperCamelCase_ , batched=UpperCamelCase_ , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , )
# Data collator
lowerCAmelCase__ = (
default_data_collator
if data_args.pad_to_max_length
else DataCollatorForMultipleChoice(tokenizer=UpperCamelCase_ , pad_to_multiple_of=8 if training_args.fpaa else None )
)
# Metric
def compute_metrics(UpperCamelCase_ : str ):
lowerCAmelCase__ , lowerCAmelCase__ = eval_predictions
lowerCAmelCase__ = np.argmax(UpperCamelCase_ , axis=1 )
return {"accuracy": (preds == label_ids).astype(np.floataa ).mean().item()}
# Initialize our Trainer
lowerCAmelCase__ = Trainer(
model=UpperCamelCase_ , args=UpperCamelCase_ , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , tokenizer=UpperCamelCase_ , data_collator=UpperCamelCase_ , compute_metrics=UpperCamelCase_ , )
# Training
if training_args.do_train:
lowerCAmelCase__ = None
if training_args.resume_from_checkpoint is not None:
lowerCAmelCase__ = training_args.resume_from_checkpoint
elif last_checkpoint is not None:
lowerCAmelCase__ = last_checkpoint
lowerCAmelCase__ = trainer.train(resume_from_checkpoint=UpperCamelCase_ )
trainer.save_model() # Saves the tokenizer too for easy upload
lowerCAmelCase__ = train_result.metrics
lowerCAmelCase__ = (
data_args.max_train_samples if data_args.max_train_samples is not None else len(UpperCamelCase_ )
)
lowerCAmelCase__ = min(UpperCamelCase_ , len(UpperCamelCase_ ) )
trainer.log_metrics('train' , UpperCamelCase_ )
trainer.save_metrics('train' , UpperCamelCase_ )
trainer.save_state()
# Evaluation
if training_args.do_eval:
logger.info('*** Evaluate ***' )
lowerCAmelCase__ = trainer.evaluate()
lowerCAmelCase__ = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(UpperCamelCase_ )
lowerCAmelCase__ = min(UpperCamelCase_ , len(UpperCamelCase_ ) )
trainer.log_metrics('eval' , UpperCamelCase_ )
trainer.save_metrics('eval' , UpperCamelCase_ )
lowerCAmelCase__ = {
'finetuned_from': model_args.model_name_or_path,
'tasks': 'multiple-choice',
'dataset_tags': 'swag',
'dataset_args': 'regular',
'dataset': 'SWAG',
'language': 'en',
}
if training_args.push_to_hub:
trainer.push_to_hub(**UpperCamelCase_ )
else:
trainer.create_model_card(**UpperCamelCase_ )
def _UpperCamelCase ( UpperCamelCase_ : Any ) -> str:
"""simple docstring"""
main()
if __name__ == "__main__":
main()
| 122 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
__snake_case : Union[str, Any] = {
"""configuration_convbert""": ["""CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """ConvBertConfig""", """ConvBertOnnxConfig"""],
"""tokenization_convbert""": ["""ConvBertTokenizer"""],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__snake_case : List[str] = ["""ConvBertTokenizerFast"""]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__snake_case : Optional[Any] = [
"""CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""ConvBertForMaskedLM""",
"""ConvBertForMultipleChoice""",
"""ConvBertForQuestionAnswering""",
"""ConvBertForSequenceClassification""",
"""ConvBertForTokenClassification""",
"""ConvBertLayer""",
"""ConvBertModel""",
"""ConvBertPreTrainedModel""",
"""load_tf_weights_in_convbert""",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__snake_case : Union[str, Any] = [
"""TF_CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""TFConvBertForMaskedLM""",
"""TFConvBertForMultipleChoice""",
"""TFConvBertForQuestionAnswering""",
"""TFConvBertForSequenceClassification""",
"""TFConvBertForTokenClassification""",
"""TFConvBertLayer""",
"""TFConvBertModel""",
"""TFConvBertPreTrainedModel""",
]
if TYPE_CHECKING:
from .configuration_convbert import CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ConvBertConfig, ConvBertOnnxConfig
from .tokenization_convbert import ConvBertTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_convbert_fast import ConvBertTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_convbert import (
CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
ConvBertForMaskedLM,
ConvBertForMultipleChoice,
ConvBertForQuestionAnswering,
ConvBertForSequenceClassification,
ConvBertForTokenClassification,
ConvBertLayer,
ConvBertModel,
ConvBertPreTrainedModel,
load_tf_weights_in_convbert,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_convbert import (
TF_CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
TFConvBertForMaskedLM,
TFConvBertForMultipleChoice,
TFConvBertForQuestionAnswering,
TFConvBertForSequenceClassification,
TFConvBertForTokenClassification,
TFConvBertLayer,
TFConvBertModel,
TFConvBertPreTrainedModel,
)
else:
import sys
__snake_case : Dict = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 122 | 1 |
def lowercase ( SCREAMING_SNAKE_CASE__ : int = 600_851_475_143 ) -> int:
try:
_snake_case : int = int(SCREAMING_SNAKE_CASE__ )
except (TypeError, ValueError):
raise TypeError("""Parameter n must be int or castable to int.""" )
if n <= 0:
raise ValueError("""Parameter n must be greater than or equal to one.""" )
_snake_case : Optional[int] = 1
_snake_case : List[Any] = 2
while i * i <= n:
while n % i == 0:
_snake_case : Optional[int] = i
n //= i
i += 1
if n > 1:
_snake_case : Optional[int] = n
return int(SCREAMING_SNAKE_CASE__ )
if __name__ == "__main__":
print(F'''{solution() = }''')
| 317 |
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
a__ = logging.get_logger(__name__)
a__ = {
"""xlm-roberta-base""": """https://huggingface.co/xlm-roberta-base/resolve/main/config.json""",
"""xlm-roberta-large""": """https://huggingface.co/xlm-roberta-large/resolve/main/config.json""",
"""xlm-roberta-large-finetuned-conll02-dutch""": (
"""https://huggingface.co/xlm-roberta-large-finetuned-conll02-dutch/resolve/main/config.json"""
),
"""xlm-roberta-large-finetuned-conll02-spanish""": (
"""https://huggingface.co/xlm-roberta-large-finetuned-conll02-spanish/resolve/main/config.json"""
),
"""xlm-roberta-large-finetuned-conll03-english""": (
"""https://huggingface.co/xlm-roberta-large-finetuned-conll03-english/resolve/main/config.json"""
),
"""xlm-roberta-large-finetuned-conll03-german""": (
"""https://huggingface.co/xlm-roberta-large-finetuned-conll03-german/resolve/main/config.json"""
),
}
class snake_case ( SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : Dict = """xlm-roberta"""
def __init__( self : Any , lowerCAmelCase : Tuple=3_0522 , lowerCAmelCase : Tuple=768 , lowerCAmelCase : Any=12 , lowerCAmelCase : str=12 , lowerCAmelCase : Any=3072 , lowerCAmelCase : int="gelu" , lowerCAmelCase : Union[str, Any]=0.1 , lowerCAmelCase : Dict=0.1 , lowerCAmelCase : List[str]=512 , lowerCAmelCase : Optional[int]=2 , lowerCAmelCase : Tuple=0.02 , lowerCAmelCase : int=1E-12 , lowerCAmelCase : Optional[Any]=1 , lowerCAmelCase : Optional[int]=0 , lowerCAmelCase : Any=2 , lowerCAmelCase : int="absolute" , lowerCAmelCase : Union[str, Any]=True , lowerCAmelCase : Dict=None , **lowerCAmelCase : Any , ) -> List[Any]:
"""simple docstring"""
super().__init__(pad_token_id=lowerCAmelCase , bos_token_id=lowerCAmelCase , eos_token_id=lowerCAmelCase , **lowerCAmelCase)
_snake_case : List[Any] = vocab_size
_snake_case : Optional[Any] = hidden_size
_snake_case : Optional[Any] = num_hidden_layers
_snake_case : Union[str, Any] = num_attention_heads
_snake_case : List[Any] = hidden_act
_snake_case : Tuple = intermediate_size
_snake_case : Any = hidden_dropout_prob
_snake_case : List[str] = attention_probs_dropout_prob
_snake_case : List[Any] = max_position_embeddings
_snake_case : List[str] = type_vocab_size
_snake_case : Optional[int] = initializer_range
_snake_case : int = layer_norm_eps
_snake_case : Optional[Any] = position_embedding_type
_snake_case : Tuple = use_cache
_snake_case : Optional[Any] = classifier_dropout
class snake_case ( SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
@property
def UpperCamelCase_ ( self : Dict) -> Mapping[str, Mapping[int, str]]:
"""simple docstring"""
if self.task == "multiple-choice":
_snake_case : List[str] = {0: """batch""", 1: """choice""", 2: """sequence"""}
else:
_snake_case : Optional[Any] = {0: """batch""", 1: """sequence"""}
return OrderedDict(
[
("""input_ids""", dynamic_axis),
("""attention_mask""", dynamic_axis),
])
| 317 | 1 |
from bisect import bisect
from itertools import accumulate
def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ):
"""simple docstring"""
lowercase__ = sorted(zip(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) , key=lambda SCREAMING_SNAKE_CASE : x[0] / x[1] , reverse=SCREAMING_SNAKE_CASE )
lowercase__ , lowercase__ = [i[0] for i in r], [i[1] for i in r]
lowercase__ = list(accumulate(SCREAMING_SNAKE_CASE ) )
lowercase__ = bisect(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
return (
0
if k == 0
else sum(vl[:k] ) + (w - acc[k - 1]) * (vl[k]) / (wt[k])
if k != n
else sum(vl[:k] )
)
if __name__ == "__main__":
import doctest
doctest.testmod()
| 93 |
import math_equivalence # From: git+https://github.com/hendrycks/math.git
import datasets
lowerCAmelCase = '\\n@article{hendrycksmath2021,\n title={Measuring Mathematical Problem Solving With the MATH Dataset},\n author={Dan Hendrycks\n and Collin Burns\n and Saurav Kadavath\n and Akul Arora\n and Steven Basart\n and Eric Tang\n and Dawn Song\n and Jacob Steinhardt},\n journal={arXiv preprint arXiv:2103.03874},\n year={2021}\n}\n'
lowerCAmelCase = '\\nThis metric is used to assess performance on the Mathematics Aptitude Test of Heuristics (MATH) dataset.\nIt first canonicalizes the inputs (e.g., converting "1/2" to "\\frac{1}{2}") and then computes accuracy.\n'
lowerCAmelCase = R'\nCalculates accuracy after canonicalizing inputs.\n\nArgs:\n predictions: list of predictions to score. Each prediction\n is a string that contains natural language and LaTex.\n references: list of reference for each prediction. Each\n reference is a string that contains natural language\n and LaTex.\nReturns:\n accuracy: accuracy after canonicalizing inputs\n (e.g., converting "1/2" to "\\frac{1}{2}")\n\nExamples:\n >>> metric = datasets.load_metric("competition_math")\n >>> results = metric.compute(references=["\\frac{1}{2}"], predictions=["1/2"])\n >>> print(results)\n {\'accuracy\': 1.0}\n'
@datasets.utils.file_utils.add_end_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class _a ( datasets.Metric ):
def lowerCamelCase_ ( self: List[str] ) -> Tuple:
"""simple docstring"""
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
'''predictions''': datasets.Value('''string''' ),
'''references''': datasets.Value('''string''' ),
} ) , homepage='''https://github.com/hendrycks/math''' , codebase_urls=['''https://github.com/hendrycks/math'''] , )
def lowerCamelCase_ ( self: Union[str, Any] , UpperCamelCase_: Any , UpperCamelCase_: int ) -> List[str]:
"""simple docstring"""
lowercase__ = 0.0
for i, j in zip(UpperCamelCase_ , UpperCamelCase_ ):
n_correct += 1.0 if math_equivalence.is_equiv(UpperCamelCase_ , UpperCamelCase_ ) else 0.0
lowercase__ = n_correct / len(UpperCamelCase_ )
return {
"accuracy": accuracy,
}
| 93 | 1 |
'''simple docstring'''
import math
lowerCamelCase :List[str] = 1_0
lowerCamelCase :List[str] = 7
lowerCamelCase :Dict = BALLS_PER_COLOUR * NUM_COLOURS
def a ( lowerCamelCase__ = 20 ):
'''simple docstring'''
A_ : int = math.comb(lowerCamelCase__ , lowerCamelCase__ )
A_ : Union[str, Any] = math.comb(NUM_BALLS - BALLS_PER_COLOUR , lowerCamelCase__ )
A_ : Dict = NUM_COLOURS * (1 - missing_colour / total)
return f'{result:.9f}'
if __name__ == "__main__":
print(solution(2_0)) | 206 |
'''simple docstring'''
import argparse
import json
import gdown
import numpy as np
import torch
from huggingface_hub import hf_hub_download
from transformers import (
VideoMAEConfig,
VideoMAEForPreTraining,
VideoMAEForVideoClassification,
VideoMAEImageProcessor,
)
def a ( lowerCamelCase__ ):
'''simple docstring'''
A_ : Optional[int] = VideoMAEConfig()
set_architecture_configs(lowerCamelCase__ , lowerCamelCase__ )
if "finetuned" not in model_name:
A_ : Dict = False
if "finetuned" in model_name:
A_ : List[Any] = """huggingface/label-files"""
if "kinetics" in model_name:
A_ : Dict = 4_00
A_ : List[str] = """kinetics400-id2label.json"""
elif "ssv2" in model_name:
A_ : Tuple = 1_74
A_ : str = """something-something-v2-id2label.json"""
else:
raise ValueError("""Model name should either contain 'kinetics' or 'ssv2' in case it's fine-tuned.""" )
A_ : Dict = json.load(open(hf_hub_download(lowerCamelCase__ , lowerCamelCase__ , repo_type="""dataset""" ) , """r""" ) )
A_ : List[str] = {int(lowerCamelCase__ ): v for k, v in idalabel.items()}
A_ : Optional[Any] = idalabel
A_ : Union[str, Any] = {v: k for k, v in idalabel.items()}
return config
def a ( lowerCamelCase__ , lowerCamelCase__ ):
'''simple docstring'''
if "small" in model_name:
A_ : int = 3_84
A_ : Union[str, Any] = 15_36
A_ : List[str] = 12
A_ : Optional[int] = 16
A_ : Any = 12
A_ : int = 3
A_ : Optional[Any] = 1_92
A_ : Union[str, Any] = 7_68
elif "large" in model_name:
A_ : List[Any] = 10_24
A_ : Optional[Any] = 40_96
A_ : Optional[Any] = 24
A_ : List[str] = 16
A_ : Any = 12
A_ : str = 8
A_ : str = 5_12
A_ : int = 20_48
elif "huge" in model_name:
A_ : Optional[Any] = 12_80
A_ : str = 51_20
A_ : str = 32
A_ : int = 16
A_ : Any = 12
A_ : Union[str, Any] = 8
A_ : Dict = 6_40
A_ : Optional[Any] = 25_60
elif "base" not in model_name:
raise ValueError("""Model name should include either \"small\", \"base\", \"large\", or \"huge\"""" )
def a ( lowerCamelCase__ ):
'''simple docstring'''
if "encoder." in name:
A_ : List[Any] = name.replace("""encoder.""" , """""" )
if "cls_token" in name:
A_ : List[str] = name.replace("""cls_token""" , """videomae.embeddings.cls_token""" )
if "decoder_pos_embed" in name:
A_ : Tuple = name.replace("""decoder_pos_embed""" , """decoder.decoder_pos_embed""" )
if "pos_embed" in name and "decoder" not in name:
A_ : int = name.replace("""pos_embed""" , """videomae.embeddings.position_embeddings""" )
if "patch_embed.proj" in name:
A_ : Optional[Any] = name.replace("""patch_embed.proj""" , """videomae.embeddings.patch_embeddings.projection""" )
if "patch_embed.norm" in name:
A_ : Dict = name.replace("""patch_embed.norm""" , """videomae.embeddings.norm""" )
if "decoder.blocks" in name:
A_ : List[str] = name.replace("""decoder.blocks""" , """decoder.decoder_layers""" )
if "blocks" in name:
A_ : List[str] = name.replace("""blocks""" , """videomae.encoder.layer""" )
if "attn.proj" in name:
A_ : str = name.replace("""attn.proj""" , """attention.output.dense""" )
if "attn" in name and "bias" not in name:
A_ : str = name.replace("""attn""" , """attention.self""" )
if "attn" in name:
A_ : Union[str, Any] = name.replace("""attn""" , """attention.attention""" )
if "norm1" in name:
A_ : Any = name.replace("""norm1""" , """layernorm_before""" )
if "norm2" in name:
A_ : List[str] = name.replace("""norm2""" , """layernorm_after""" )
if "mlp.fc1" in name:
A_ : Dict = name.replace("""mlp.fc1""" , """intermediate.dense""" )
if "mlp.fc2" in name:
A_ : List[str] = name.replace("""mlp.fc2""" , """output.dense""" )
if "decoder_embed" in name:
A_ : Optional[Any] = name.replace("""decoder_embed""" , """decoder.decoder_embed""" )
if "decoder_norm" in name:
A_ : Tuple = name.replace("""decoder_norm""" , """decoder.decoder_norm""" )
if "decoder_pred" in name:
A_ : Tuple = name.replace("""decoder_pred""" , """decoder.decoder_pred""" )
if "norm.weight" in name and "decoder" not in name and "fc" not in name:
A_ : Dict = name.replace("""norm.weight""" , """videomae.layernorm.weight""" )
if "norm.bias" in name and "decoder" not in name and "fc" not in name:
A_ : List[str] = name.replace("""norm.bias""" , """videomae.layernorm.bias""" )
if "head" in name and "decoder" not in name:
A_ : Optional[Any] = name.replace("""head""" , """classifier""" )
return name
def a ( lowerCamelCase__ , lowerCamelCase__ ):
'''simple docstring'''
for key in orig_state_dict.copy().keys():
A_ : str = orig_state_dict.pop(lowerCamelCase__ )
if key.startswith("""encoder.""" ):
A_ : Tuple = key.replace("""encoder.""" , """""" )
if "qkv" in key:
A_ : Optional[int] = key.split(""".""" )
if key.startswith("""decoder.blocks""" ):
A_ : Union[str, Any] = config.decoder_hidden_size
A_ : Any = int(key_split[2] )
A_ : int = """decoder.decoder_layers."""
if "weight" in key:
A_ : Optional[Any] = val[:dim, :]
A_ : Any = val[dim : dim * 2, :]
A_ : Dict = val[-dim:, :]
else:
A_ : List[Any] = config.hidden_size
A_ : List[Any] = int(key_split[1] )
A_ : int = """videomae.encoder.layer."""
if "weight" in key:
A_ : Any = val[:dim, :]
A_ : Union[str, Any] = val[dim : dim * 2, :]
A_ : List[str] = val[-dim:, :]
else:
A_ : Union[str, Any] = val
return orig_state_dict
def a ( ):
'''simple docstring'''
A_ : List[Any] = hf_hub_download(
repo_id="""hf-internal-testing/spaghetti-video""" , filename="""eating_spaghetti.npy""" , repo_type="""dataset""" )
A_ : Optional[Any] = np.load(lowerCamelCase__ )
return list(lowerCamelCase__ )
def a ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ):
'''simple docstring'''
A_ : Any = get_videomae_config(lowerCamelCase__ )
if "finetuned" in model_name:
A_ : List[str] = VideoMAEForVideoClassification(lowerCamelCase__ )
else:
A_ : Optional[Any] = VideoMAEForPreTraining(lowerCamelCase__ )
# download original checkpoint, hosted on Google Drive
A_ : Optional[Any] = """pytorch_model.bin"""
gdown.cached_download(lowerCamelCase__ , lowerCamelCase__ , quiet=lowerCamelCase__ )
A_ : Any = torch.load(lowerCamelCase__ , map_location="""cpu""" )
if "model" in files:
A_ : Any = files["""model"""]
else:
A_ : Dict = files["""module"""]
A_ : Any = convert_state_dict(lowerCamelCase__ , lowerCamelCase__ )
model.load_state_dict(lowerCamelCase__ )
model.eval()
# verify model on basic input
A_ : int = VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5] , image_std=[0.5, 0.5, 0.5] )
A_ : Union[str, Any] = prepare_video()
A_ : str = image_processor(lowerCamelCase__ , return_tensors="""pt""" )
if "finetuned" not in model_name:
A_ : List[str] = hf_hub_download(repo_id="""hf-internal-testing/bool-masked-pos""" , filename="""bool_masked_pos.pt""" )
A_ : Optional[Any] = torch.load(lowerCamelCase__ )
A_ : Dict = model(**lowerCamelCase__ )
A_ : List[Any] = outputs.logits
A_ : Any = [
"""videomae-small-finetuned-kinetics""",
"""videomae-small-finetuned-ssv2""",
# Kinetics-400 checkpoints (short = pretrained only for 800 epochs instead of 1600)
"""videomae-base-short""",
"""videomae-base-short-finetuned-kinetics""",
"""videomae-base""",
"""videomae-base-finetuned-kinetics""",
"""videomae-large""",
"""videomae-large-finetuned-kinetics""",
"""videomae-huge-finetuned-kinetics""",
# Something-Something-v2 checkpoints (short = pretrained only for 800 epochs instead of 2400)
"""videomae-base-short-ssv2""",
"""videomae-base-short-finetuned-ssv2""",
"""videomae-base-ssv2""",
"""videomae-base-finetuned-ssv2""",
]
# NOTE: logits were tested with image_mean and image_std equal to [0.5, 0.5, 0.5] and [0.5, 0.5, 0.5]
if model_name == "videomae-small-finetuned-kinetics":
A_ : str = torch.Size([1, 4_00] )
A_ : Optional[Any] = torch.tensor([-0.9_291, -0.4_061, -0.9_307] )
elif model_name == "videomae-small-finetuned-ssv2":
A_ : str = torch.Size([1, 1_74] )
A_ : Union[str, Any] = torch.tensor([0.2_671, -0.4_689, -0.8_235] )
elif model_name == "videomae-base":
A_ : Tuple = torch.Size([1, 14_08, 15_36] )
A_ : List[str] = torch.tensor([[0.7_739, 0.7_968, 0.7_089], [0.6_701, 0.7_487, 0.6_209], [0.4_287, 0.5_158, 0.4_773]] )
elif model_name == "videomae-base-short":
A_ : Dict = torch.Size([1, 14_08, 15_36] )
A_ : List[str] = torch.tensor([[0.7_994, 0.9_612, 0.8_508], [0.7_401, 0.8_958, 0.8_302], [0.5_862, 0.7_468, 0.7_325]] )
# we verified the loss both for normalized and unnormalized targets for this one
A_ : List[Any] = torch.tensor([0.5_142] ) if config.norm_pix_loss else torch.tensor([0.6_469] )
elif model_name == "videomae-large":
A_ : str = torch.Size([1, 14_08, 15_36] )
A_ : Dict = torch.tensor([[0.7_149, 0.7_997, 0.6_966], [0.6_768, 0.7_869, 0.6_948], [0.5_139, 0.6_221, 0.5_605]] )
elif model_name == "videomae-large-finetuned-kinetics":
A_ : int = torch.Size([1, 4_00] )
A_ : Optional[Any] = torch.tensor([0.0_771, 0.0_011, -0.3_625] )
elif model_name == "videomae-huge-finetuned-kinetics":
A_ : Union[str, Any] = torch.Size([1, 4_00] )
A_ : Optional[int] = torch.tensor([0.2_433, 0.1_632, -0.4_894] )
elif model_name == "videomae-base-short-finetuned-kinetics":
A_ : List[Any] = torch.Size([1, 4_00] )
A_ : Optional[Any] = torch.tensor([0.6_588, 0.0_990, -0.2_493] )
elif model_name == "videomae-base-finetuned-kinetics":
A_ : Union[str, Any] = torch.Size([1, 4_00] )
A_ : Tuple = torch.tensor([0.3_669, -0.0_688, -0.2_421] )
elif model_name == "videomae-base-short-ssv2":
A_ : Optional[Any] = torch.Size([1, 14_08, 15_36] )
A_ : List[Any] = torch.tensor([[0.4_712, 0.5_296, 0.5_786], [0.2_278, 0.2_729, 0.4_026], [0.0_352, 0.0_730, 0.2_506]] )
elif model_name == "videomae-base-short-finetuned-ssv2":
A_ : Any = torch.Size([1, 1_74] )
A_ : Any = torch.tensor([-0.0_537, -0.1_539, -0.3_266] )
elif model_name == "videomae-base-ssv2":
A_ : Dict = torch.Size([1, 14_08, 15_36] )
A_ : Dict = torch.tensor([[0.8_131, 0.8_727, 0.8_546], [0.7_366, 0.9_377, 0.8_870], [0.5_935, 0.8_874, 0.8_564]] )
elif model_name == "videomae-base-finetuned-ssv2":
A_ : Any = torch.Size([1, 1_74] )
A_ : str = torch.tensor([0.1_961, -0.8_337, -0.6_389] )
else:
raise ValueError(f'Model name not supported. Should be one of {model_names}' )
# verify logits
assert logits.shape == expected_shape
if "finetuned" in model_name:
assert torch.allclose(logits[0, :3] , lowerCamelCase__ , atol=1E-4 )
else:
print("""Logits:""" , logits[0, :3, :3] )
assert torch.allclose(logits[0, :3, :3] , lowerCamelCase__ , atol=1E-4 )
print("""Logits ok!""" )
# verify loss, if applicable
if model_name == "videomae-base-short":
A_ : Optional[int] = outputs.loss
assert torch.allclose(lowerCamelCase__ , lowerCamelCase__ , atol=1E-4 )
print("""Loss ok!""" )
if pytorch_dump_folder_path is not None:
print(f'Saving model and image processor to {pytorch_dump_folder_path}' )
image_processor.save_pretrained(lowerCamelCase__ )
model.save_pretrained(lowerCamelCase__ )
if push_to_hub:
print("""Pushing to the hub...""" )
model.push_to_hub(lowerCamelCase__ , organization="""nielsr""" )
if __name__ == "__main__":
lowerCamelCase :Tuple = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''--checkpoint_url''',
default='''https://drive.google.com/u/1/uc?id=1tEhLyskjb755TJ65ptsrafUG2llSwQE1&export=download&confirm=t&uuid=aa3276eb-fb7e-482a-adec-dc7171df14c4''',
type=str,
help=(
'''URL of the original PyTorch checkpoint (on Google Drive) you\'d like to convert. Should be a direct'''
''' download link.'''
),
)
parser.add_argument(
'''--pytorch_dump_folder_path''',
default='''/Users/nielsrogge/Documents/VideoMAE/Test''',
type=str,
help='''Path to the output PyTorch model directory.''',
)
parser.add_argument('''--model_name''', default='''videomae-base''', type=str, help='''Name of the model.''')
parser.add_argument(
'''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.'''
)
lowerCamelCase :Union[str, Any] = parser.parse_args()
convert_videomae_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.model_name, args.push_to_hub) | 206 | 1 |
import json
import os
import subprocess
import unittest
from ast import literal_eval
import pytest
from parameterized import parameterized, parameterized_class
from . import is_sagemaker_available
if is_sagemaker_available():
from sagemaker import Session, TrainingJobAnalytics
from sagemaker.huggingface import HuggingFace
@pytest.mark.skipif(
literal_eval(os.getenv("TEST_SAGEMAKER" , "False" ) ) is not True , reason="Skipping test because should only be run when releasing minor transformers version" , )
@pytest.mark.usefixtures("sm_env" )
@parameterized_class(
[
{
"framework": "pytorch",
"script": "run_glue.py",
"model_name_or_path": "distilbert-base-cased",
"instance_type": "ml.p3.16xlarge",
"results": {"train_runtime": 650, "eval_accuracy": 0.7, "eval_loss": 0.6},
},
{
"framework": "pytorch",
"script": "run_ddp.py",
"model_name_or_path": "distilbert-base-cased",
"instance_type": "ml.p3.16xlarge",
"results": {"train_runtime": 600, "eval_accuracy": 0.7, "eval_loss": 0.6},
},
{
"framework": "tensorflow",
"script": "run_tf_dist.py",
"model_name_or_path": "distilbert-base-cased",
"instance_type": "ml.p3.16xlarge",
"results": {"train_runtime": 600, "eval_accuracy": 0.6, "eval_loss": 0.7},
},
] )
class _lowerCamelCase ( unittest.TestCase ):
"""simple docstring"""
def _snake_case ( self )->List[str]:
'''simple docstring'''
if self.framework == "pytorch":
subprocess.run(
F'''cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py'''.split() , encoding='''utf-8''' , check=_SCREAMING_SNAKE_CASE , )
assert hasattr(self , '''env''' )
def _snake_case ( self , _SCREAMING_SNAKE_CASE )->Union[str, Any]:
'''simple docstring'''
A_ : List[Any] = F'''{self.env.base_job_name}-{instance_count}-{"ddp" if "ddp" in self.script else "smd"}'''
# distributed data settings
A_ : Union[str, Any] = {'''smdistributed''': {'''dataparallel''': {'''enabled''': True}}} if self.script != '''run_ddp.py''' else None
# creates estimator
return HuggingFace(
entry_point=self.script , source_dir=self.env.test_path , role=self.env.role , image_uri=self.env.image_uri , base_job_name=_SCREAMING_SNAKE_CASE , instance_count=_SCREAMING_SNAKE_CASE , instance_type=self.instance_type , debugger_hook_config=_SCREAMING_SNAKE_CASE , hyperparameters={**self.env.distributed_hyperparameters, '''model_name_or_path''': self.model_name_or_path} , metric_definitions=self.env.metric_definitions , distribution=_SCREAMING_SNAKE_CASE , py_version='''py36''' , )
def _snake_case ( self , _SCREAMING_SNAKE_CASE )->Optional[int]:
'''simple docstring'''
TrainingJobAnalytics(_SCREAMING_SNAKE_CASE ).export_csv(F'''{self.env.test_path}/{job_name}_metrics.csv''' )
@parameterized.expand([(2,)] )
def _snake_case ( self , _SCREAMING_SNAKE_CASE )->int:
'''simple docstring'''
A_ : str = self.create_estimator(_SCREAMING_SNAKE_CASE )
# run training
estimator.fit()
# result dataframe
A_ : Tuple = TrainingJobAnalytics(estimator.latest_training_job.name ).dataframe()
# extract kpis
A_ : int = list(result_metrics_df[result_metrics_df.metric_name == '''eval_accuracy''']['''value'''] )
A_ : Dict = list(result_metrics_df[result_metrics_df.metric_name == '''eval_loss''']['''value'''] )
# get train time from SageMaker job, this includes starting, preprocessing, stopping
A_ : int = (
Session().describe_training_job(estimator.latest_training_job.name ).get('''TrainingTimeInSeconds''' , 99_9999 )
)
# assert kpis
assert train_runtime <= self.results["train_runtime"]
assert all(t >= self.results['''eval_accuracy'''] for t in eval_accuracy )
assert all(t <= self.results['''eval_loss'''] for t in eval_loss )
# dump tests result into json file to share in PR
with open(F'''{estimator.latest_training_job.name}.json''' , '''w''' ) as outfile:
json.dump({'''train_time''': train_runtime, '''eval_accuracy''': eval_accuracy, '''eval_loss''': eval_loss} , _SCREAMING_SNAKE_CASE )
| 65 |
import os
from shutil import copyfile
from typing import List, Optional, Tuple
from ...tokenization_utils import AddedToken
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import is_sentencepiece_available, logging
if is_sentencepiece_available():
from .tokenization_xlnet import XLNetTokenizer
else:
UpperCamelCase = None
UpperCamelCase = logging.get_logger(__name__)
UpperCamelCase = {"""vocab_file""": """spiece.model""", """tokenizer_file""": """tokenizer.json"""}
UpperCamelCase = {
"""vocab_file""": {
"""xlnet-base-cased""": """https://huggingface.co/xlnet-base-cased/resolve/main/spiece.model""",
"""xlnet-large-cased""": """https://huggingface.co/xlnet-large-cased/resolve/main/spiece.model""",
},
"""tokenizer_file""": {
"""xlnet-base-cased""": """https://huggingface.co/xlnet-base-cased/resolve/main/tokenizer.json""",
"""xlnet-large-cased""": """https://huggingface.co/xlnet-large-cased/resolve/main/tokenizer.json""",
},
}
UpperCamelCase = {
"""xlnet-base-cased""": None,
"""xlnet-large-cased""": None,
}
UpperCamelCase = """▁"""
# Segments (not really needed)
UpperCamelCase = 0
UpperCamelCase = 1
UpperCamelCase = 2
UpperCamelCase = 3
UpperCamelCase = 4
class _lowerCamelCase ( UpperCamelCase ):
"""simple docstring"""
snake_case = VOCAB_FILES_NAMES
snake_case = PRETRAINED_VOCAB_FILES_MAP
snake_case = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
snake_case = "left"
snake_case = XLNetTokenizer
def __init__( self , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE="<s>" , _SCREAMING_SNAKE_CASE="</s>" , _SCREAMING_SNAKE_CASE="<unk>" , _SCREAMING_SNAKE_CASE="<sep>" , _SCREAMING_SNAKE_CASE="<pad>" , _SCREAMING_SNAKE_CASE="<cls>" , _SCREAMING_SNAKE_CASE="<mask>" , _SCREAMING_SNAKE_CASE=["<eop>", "<eod>"] , **_SCREAMING_SNAKE_CASE , )->Dict:
'''simple docstring'''
A_ : Tuple = AddedToken(_SCREAMING_SNAKE_CASE , lstrip=_SCREAMING_SNAKE_CASE , rstrip=_SCREAMING_SNAKE_CASE ) if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) else mask_token
super().__init__(
vocab_file=_SCREAMING_SNAKE_CASE , tokenizer_file=_SCREAMING_SNAKE_CASE , do_lower_case=_SCREAMING_SNAKE_CASE , remove_space=_SCREAMING_SNAKE_CASE , keep_accents=_SCREAMING_SNAKE_CASE , bos_token=_SCREAMING_SNAKE_CASE , eos_token=_SCREAMING_SNAKE_CASE , unk_token=_SCREAMING_SNAKE_CASE , sep_token=_SCREAMING_SNAKE_CASE , pad_token=_SCREAMING_SNAKE_CASE , cls_token=_SCREAMING_SNAKE_CASE , mask_token=_SCREAMING_SNAKE_CASE , additional_special_tokens=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , )
A_ : Optional[Any] = 3
A_ : List[Any] = do_lower_case
A_ : Optional[Any] = remove_space
A_ : Tuple = keep_accents
A_ : str = vocab_file
A_ : List[str] = False if not self.vocab_file else True
def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None )->List[int]:
'''simple docstring'''
A_ : Optional[Any] = [self.sep_token_id]
A_ : str = [self.cls_token_id]
if token_ids_a is None:
return token_ids_a + sep + cls
return token_ids_a + sep + token_ids_a + sep + cls
def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None )->List[int]:
'''simple docstring'''
A_ : str = [self.sep_token_id]
A_ : List[str] = [2]
if token_ids_a is None:
return len(token_ids_a + sep ) * [0] + cls_segment_id
return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id
def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None )->Tuple[str]:
'''simple docstring'''
if not self.can_save_slow_tokenizer:
raise ValueError(
'''Your fast tokenizer does not have the necessary information to save the vocabulary for a slow '''
'''tokenizer.''' )
if not os.path.isdir(_SCREAMING_SNAKE_CASE ):
logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' )
return
A_ : Union[str, Any] = os.path.join(
_SCREAMING_SNAKE_CASE , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(_SCREAMING_SNAKE_CASE ):
copyfile(self.vocab_file , _SCREAMING_SNAKE_CASE )
return (out_vocab_file,)
| 65 | 1 |
from random import shuffle
import tensorflow as tf
from numpy import array
def lowerCamelCase__ (_UpperCAmelCase , _UpperCAmelCase):
SCREAMING_SNAKE_CASE = int(_UpperCAmelCase)
assert noofclusters < len(_UpperCAmelCase)
# Find out the dimensionality
SCREAMING_SNAKE_CASE = len(vectors[0])
# Will help select random centroids from among the available vectors
SCREAMING_SNAKE_CASE = list(range(len(_UpperCAmelCase)))
shuffle(_UpperCAmelCase)
# GRAPH OF COMPUTATION
# We initialize a new graph and set it as the default during each run
# of this algorithm. This ensures that as this function is called
# multiple times, the default graph doesn't keep getting crowded with
# unused ops and Variables from previous function calls.
SCREAMING_SNAKE_CASE = tf.Graph()
with graph.as_default():
# SESSION OF COMPUTATION
SCREAMING_SNAKE_CASE = tf.Session()
##CONSTRUCTING THE ELEMENTS OF COMPUTATION
##First lets ensure we have a Variable vector for each centroid,
##initialized to one of the vectors from the available data points
SCREAMING_SNAKE_CASE = [
tf.Variable(vectors[vector_indices[i]]) for i in range(_UpperCAmelCase)
]
##These nodes will assign the centroid Variables the appropriate
##values
SCREAMING_SNAKE_CASE = tf.placeholder('float64' , [dim])
SCREAMING_SNAKE_CASE = []
for centroid in centroids:
cent_assigns.append(tf.assign(_UpperCAmelCase , _UpperCAmelCase))
##Variables for cluster assignments of individual vectors(initialized
##to 0 at first)
SCREAMING_SNAKE_CASE = [tf.Variable(0) for i in range(len(_UpperCAmelCase))]
##These nodes will assign an assignment Variable the appropriate
##value
SCREAMING_SNAKE_CASE = tf.placeholder('int32')
SCREAMING_SNAKE_CASE = []
for assignment in assignments:
cluster_assigns.append(tf.assign(_UpperCAmelCase , _UpperCAmelCase))
##Now lets construct the node that will compute the mean
# The placeholder for the input
SCREAMING_SNAKE_CASE = tf.placeholder('float' , [None, dim])
# The Node/op takes the input and computes a mean along the 0th
# dimension, i.e. the list of input vectors
SCREAMING_SNAKE_CASE = tf.reduce_mean(_UpperCAmelCase , 0)
##Node for computing Euclidean distances
# Placeholders for input
SCREAMING_SNAKE_CASE = tf.placeholder('float' , [dim])
SCREAMING_SNAKE_CASE = tf.placeholder('float' , [dim])
SCREAMING_SNAKE_CASE = tf.sqrt(tf.reduce_sum(tf.pow(tf.sub(_UpperCAmelCase , _UpperCAmelCase) , 2)))
##This node will figure out which cluster to assign a vector to,
##based on Euclidean distances of the vector from the centroids.
# Placeholder for input
SCREAMING_SNAKE_CASE = tf.placeholder('float' , [noofclusters])
SCREAMING_SNAKE_CASE = tf.argmin(_UpperCAmelCase , 0)
##INITIALIZING STATE VARIABLES
##This will help initialization of all Variables defined with respect
##to the graph. The Variable-initializer should be defined after
##all the Variables have been constructed, so that each of them
##will be included in the initialization.
SCREAMING_SNAKE_CASE = tf.initialize_all_variables()
# Initialize all variables
sess.run(_UpperCAmelCase)
##CLUSTERING ITERATIONS
# Now perform the Expectation-Maximization steps of K-Means clustering
# iterations. To keep things simple, we will only do a set number of
# iterations, instead of using a Stopping Criterion.
SCREAMING_SNAKE_CASE = 100
for _ in range(_UpperCAmelCase):
##EXPECTATION STEP
##Based on the centroid locations till last iteration, compute
##the _expected_ centroid assignments.
# Iterate over each vector
for vector_n in range(len(_UpperCAmelCase)):
SCREAMING_SNAKE_CASE = vectors[vector_n]
# Compute Euclidean distance between this vector and each
# centroid. Remember that this list cannot be named
#'centroid_distances', since that is the input to the
# cluster assignment node.
SCREAMING_SNAKE_CASE = [
sess.run(_UpperCAmelCase , feed_dict={va: vect, va: sess.run(_UpperCAmelCase)})
for centroid in centroids
]
# Now use the cluster assignment node, with the distances
# as the input
SCREAMING_SNAKE_CASE = sess.run(
_UpperCAmelCase , feed_dict={centroid_distances: distances})
# Now assign the value to the appropriate state variable
sess.run(
cluster_assigns[vector_n] , feed_dict={assignment_value: assignment})
##MAXIMIZATION STEP
# Based on the expected state computed from the Expectation Step,
# compute the locations of the centroids so as to maximize the
# overall objective of minimizing within-cluster Sum-of-Squares
for cluster_n in range(_UpperCAmelCase):
# Collect all the vectors assigned to this cluster
SCREAMING_SNAKE_CASE = [
vectors[i]
for i in range(len(_UpperCAmelCase))
if sess.run(assignments[i]) == cluster_n
]
# Compute new centroid location
SCREAMING_SNAKE_CASE = sess.run(
_UpperCAmelCase , feed_dict={mean_input: array(_UpperCAmelCase)})
# Assign value to appropriate variable
sess.run(
cent_assigns[cluster_n] , feed_dict={centroid_value: new_location})
# Return centroids and assignments
SCREAMING_SNAKE_CASE = sess.run(_UpperCAmelCase)
SCREAMING_SNAKE_CASE = sess.run(_UpperCAmelCase)
return centroids, assignments
| 137 |
import importlib
import os
import sys
# This is required to make the module import works (when the python process is running from the root of the repo)
sys.path.append('.')
def lowerCamelCase__ (_UpperCAmelCase):
SCREAMING_SNAKE_CASE = test_file.split(os.path.sep)
if components[0:2] != ["tests", "models"]:
raise ValueError(
'`test_file` should start with `tests/models/` (with `/` being the OS specific path separator). Got '
F'''{test_file} instead.''')
SCREAMING_SNAKE_CASE = components[-1]
if not test_fn.endswith('py'):
raise ValueError(F'''`test_file` should be a python file. Got {test_fn} instead.''')
if not test_fn.startswith('test_modeling_'):
raise ValueError(
F'''`test_file` should point to a file name of the form `test_modeling_*.py`. Got {test_fn} instead.''')
SCREAMING_SNAKE_CASE = components[:-1] + [test_fn.replace('.py' , '')]
SCREAMING_SNAKE_CASE = '.'.join(_UpperCAmelCase)
return test_module_path
def lowerCamelCase__ (_UpperCAmelCase):
SCREAMING_SNAKE_CASE = get_module_path(_UpperCAmelCase)
SCREAMING_SNAKE_CASE = importlib.import_module(_UpperCAmelCase)
return test_module
def lowerCamelCase__ (_UpperCAmelCase):
SCREAMING_SNAKE_CASE = []
SCREAMING_SNAKE_CASE = get_test_module(_UpperCAmelCase)
for attr in dir(_UpperCAmelCase):
if attr.endswith('ModelTester'):
tester_classes.append(getattr(_UpperCAmelCase , _UpperCAmelCase))
# sort with class names
return sorted(_UpperCAmelCase , key=lambda _UpperCAmelCase: x.__name__)
def lowerCamelCase__ (_UpperCAmelCase):
SCREAMING_SNAKE_CASE = []
SCREAMING_SNAKE_CASE = get_test_module(_UpperCAmelCase)
for attr in dir(_UpperCAmelCase):
SCREAMING_SNAKE_CASE = getattr(_UpperCAmelCase , _UpperCAmelCase)
# (TF/Flax)ModelTesterMixin is also an attribute in specific model test module. Let's exclude them by checking
# `all_model_classes` is not empty (which also excludes other special classes).
SCREAMING_SNAKE_CASE = getattr(_UpperCAmelCase , 'all_model_classes' , [])
if len(_UpperCAmelCase) > 0:
test_classes.append(_UpperCAmelCase)
# sort with class names
return sorted(_UpperCAmelCase , key=lambda _UpperCAmelCase: x.__name__)
def lowerCamelCase__ (_UpperCAmelCase):
SCREAMING_SNAKE_CASE = get_test_classes(_UpperCAmelCase)
SCREAMING_SNAKE_CASE = set()
for test_class in test_classes:
model_classes.update(test_class.all_model_classes)
# sort with class names
return sorted(_UpperCAmelCase , key=lambda _UpperCAmelCase: x.__name__)
def lowerCamelCase__ (_UpperCAmelCase):
SCREAMING_SNAKE_CASE = test_class()
if hasattr(_UpperCAmelCase , 'setUp'):
test.setUp()
SCREAMING_SNAKE_CASE = None
if hasattr(_UpperCAmelCase , 'model_tester'):
# `(TF/Flax)ModelTesterMixin` has this attribute default to `None`. Let's skip this case.
if test.model_tester is not None:
SCREAMING_SNAKE_CASE = test.model_tester.__class__
return model_tester
def lowerCamelCase__ (_UpperCAmelCase , _UpperCAmelCase):
SCREAMING_SNAKE_CASE = get_test_classes(_UpperCAmelCase)
SCREAMING_SNAKE_CASE = []
for test_class in test_classes:
if model_class in test_class.all_model_classes:
target_test_classes.append(_UpperCAmelCase)
# sort with class names
return sorted(_UpperCAmelCase , key=lambda _UpperCAmelCase: x.__name__)
def lowerCamelCase__ (_UpperCAmelCase , _UpperCAmelCase):
SCREAMING_SNAKE_CASE = get_test_classes_for_model(_UpperCAmelCase , _UpperCAmelCase)
SCREAMING_SNAKE_CASE = []
for test_class in test_classes:
SCREAMING_SNAKE_CASE = get_model_tester_from_test_class(_UpperCAmelCase)
if tester_class is not None:
tester_classes.append(_UpperCAmelCase)
# sort with class names
return sorted(_UpperCAmelCase , key=lambda _UpperCAmelCase: x.__name__)
def lowerCamelCase__ (_UpperCAmelCase):
SCREAMING_SNAKE_CASE = get_test_classes(_UpperCAmelCase)
SCREAMING_SNAKE_CASE = {test_class: get_model_tester_from_test_class(_UpperCAmelCase) for test_class in test_classes}
return test_tester_mapping
def lowerCamelCase__ (_UpperCAmelCase):
SCREAMING_SNAKE_CASE = get_model_classes(_UpperCAmelCase)
SCREAMING_SNAKE_CASE = {
model_class: get_test_classes_for_model(_UpperCAmelCase , _UpperCAmelCase) for model_class in model_classes
}
return model_test_mapping
def lowerCamelCase__ (_UpperCAmelCase):
SCREAMING_SNAKE_CASE = get_model_classes(_UpperCAmelCase)
SCREAMING_SNAKE_CASE = {
model_class: get_tester_classes_for_model(_UpperCAmelCase , _UpperCAmelCase) for model_class in model_classes
}
return model_to_tester_mapping
def lowerCamelCase__ (_UpperCAmelCase):
if isinstance(_UpperCAmelCase , _UpperCAmelCase):
return o
elif isinstance(_UpperCAmelCase , _UpperCAmelCase):
return o.__name__
elif isinstance(_UpperCAmelCase , (list, tuple)):
return [to_json(_UpperCAmelCase) for x in o]
elif isinstance(_UpperCAmelCase , _UpperCAmelCase):
return {to_json(_UpperCAmelCase): to_json(_UpperCAmelCase) for k, v in o.items()}
else:
return o
| 137 | 1 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available
_snake_case : Any = {
'configuration_data2vec_audio': ['DATA2VEC_AUDIO_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Data2VecAudioConfig'],
'configuration_data2vec_text': [
'DATA2VEC_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP',
'Data2VecTextConfig',
'Data2VecTextOnnxConfig',
],
'configuration_data2vec_vision': [
'DATA2VEC_VISION_PRETRAINED_CONFIG_ARCHIVE_MAP',
'Data2VecVisionConfig',
'Data2VecVisionOnnxConfig',
],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_snake_case : Optional[Any] = [
'DATA2VEC_AUDIO_PRETRAINED_MODEL_ARCHIVE_LIST',
'Data2VecAudioForAudioFrameClassification',
'Data2VecAudioForCTC',
'Data2VecAudioForSequenceClassification',
'Data2VecAudioForXVector',
'Data2VecAudioModel',
'Data2VecAudioPreTrainedModel',
]
_snake_case : Optional[int] = [
'DATA2VEC_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST',
'Data2VecTextForCausalLM',
'Data2VecTextForMaskedLM',
'Data2VecTextForMultipleChoice',
'Data2VecTextForQuestionAnswering',
'Data2VecTextForSequenceClassification',
'Data2VecTextForTokenClassification',
'Data2VecTextModel',
'Data2VecTextPreTrainedModel',
]
_snake_case : Any = [
'DATA2VEC_VISION_PRETRAINED_MODEL_ARCHIVE_LIST',
'Data2VecVisionForImageClassification',
'Data2VecVisionForMaskedImageModeling',
'Data2VecVisionForSemanticSegmentation',
'Data2VecVisionModel',
'Data2VecVisionPreTrainedModel',
]
if is_tf_available():
_snake_case : str = [
'TFData2VecVisionForImageClassification',
'TFData2VecVisionForSemanticSegmentation',
'TFData2VecVisionModel',
'TFData2VecVisionPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_dataavec_audio import DATA2VEC_AUDIO_PRETRAINED_CONFIG_ARCHIVE_MAP, DataaVecAudioConfig
from .configuration_dataavec_text import (
DATA2VEC_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP,
DataaVecTextConfig,
DataaVecTextOnnxConfig,
)
from .configuration_dataavec_vision import (
DATA2VEC_VISION_PRETRAINED_CONFIG_ARCHIVE_MAP,
DataaVecVisionConfig,
DataaVecVisionOnnxConfig,
)
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_dataavec_audio import (
DATA2VEC_AUDIO_PRETRAINED_MODEL_ARCHIVE_LIST,
DataaVecAudioForAudioFrameClassification,
DataaVecAudioForCTC,
DataaVecAudioForSequenceClassification,
DataaVecAudioForXVector,
DataaVecAudioModel,
DataaVecAudioPreTrainedModel,
)
from .modeling_dataavec_text import (
DATA2VEC_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST,
DataaVecTextForCausalLM,
DataaVecTextForMaskedLM,
DataaVecTextForMultipleChoice,
DataaVecTextForQuestionAnswering,
DataaVecTextForSequenceClassification,
DataaVecTextForTokenClassification,
DataaVecTextModel,
DataaVecTextPreTrainedModel,
)
from .modeling_dataavec_vision import (
DATA2VEC_VISION_PRETRAINED_MODEL_ARCHIVE_LIST,
DataaVecVisionForImageClassification,
DataaVecVisionForMaskedImageModeling,
DataaVecVisionForSemanticSegmentation,
DataaVecVisionModel,
DataaVecVisionPreTrainedModel,
)
if is_tf_available():
from .modeling_tf_dataavec_vision import (
TFDataaVecVisionForImageClassification,
TFDataaVecVisionForSemanticSegmentation,
TFDataaVecVisionModel,
TFDataaVecVisionPreTrainedModel,
)
else:
import sys
_snake_case : Optional[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 207 |
import unittest
import numpy as np
import torch
from .utils_summarization import build_mask, compute_token_type_ids, process_story, truncate_or_pad
class _UpperCAmelCase ( unittest.TestCase ):
"""simple docstring"""
def lowercase ( self : Any ) -> Optional[int]:
__lowerCAmelCase = 1_0
def lowercase ( self : int ) -> Union[str, Any]:
__lowerCAmelCase = [1, 2, 3, 4]
__lowerCAmelCase = [1, 2, 3, 4, 0, 0, 0, 0, 0, 0]
self.assertEqual(truncate_or_pad(lowerCAmelCase_ , self.block_size , 0 ) , lowerCAmelCase_ )
def lowercase ( self : Optional[Any] ) -> List[str]:
__lowerCAmelCase = [1, 2, 3, 4, 5, 6, 7, 8, 9, 1_0]
__lowerCAmelCase = [1, 2, 3, 4, 5, 6, 7, 8, 9, 1_0]
self.assertEqual(truncate_or_pad(lowerCAmelCase_ , self.block_size , 0 ) , lowerCAmelCase_ )
def lowercase ( self : Any ) -> Optional[Any]:
__lowerCAmelCase = [1, 2, 3, 4, 5, 6, 7, 8, 9, 1_0, 1_1, 1_2, 1_3]
__lowerCAmelCase = [1, 2, 3, 4, 5, 6, 7, 8, 9, 1_0]
self.assertEqual(truncate_or_pad(lowerCAmelCase_ , self.block_size , 0 ) , lowerCAmelCase_ )
def lowercase ( self : List[str] ) -> Any:
__lowerCAmelCase = 'It was the year of Our Lord one thousand seven hundred and\n seventy-five.\n\nSpiritual revelations were conceded to England at that\n favoured period, as at this.'
__lowerCAmelCase , __lowerCAmelCase = process_story(lowerCAmelCase_ )
self.assertEqual(lowerCAmelCase_ , [] )
def lowercase ( self : Any ) -> str:
__lowerCAmelCase = ''
__lowerCAmelCase , __lowerCAmelCase = process_story(lowerCAmelCase_ )
self.assertEqual(lowerCAmelCase_ , [] )
self.assertEqual(lowerCAmelCase_ , [] )
def lowercase ( self : int ) -> int:
__lowerCAmelCase = (
'It was the year of Our Lord one thousand seven hundred and '
'seventy-five\n\nSpiritual revelations were conceded to England '
'at that favoured period, as at this.\n@highlight\n\nIt was the best of times'
)
__lowerCAmelCase , __lowerCAmelCase = process_story(lowerCAmelCase_ )
__lowerCAmelCase = [
'It was the year of Our Lord one thousand seven hundred and seventy-five.',
'Spiritual revelations were conceded to England at that favoured period, as at this.',
]
self.assertEqual(lowerCAmelCase_ , lowerCAmelCase_ )
__lowerCAmelCase = ['It was the best of times.']
self.assertEqual(lowerCAmelCase_ , lowerCAmelCase_ )
def lowercase ( self : Dict ) -> Any:
__lowerCAmelCase = torch.tensor([1, 2, 3, 4] )
__lowerCAmelCase = torch.tensor([1, 1, 1, 1] )
np.testing.assert_array_equal(build_mask(lowerCAmelCase_ , 0 ).numpy() , expected.numpy() )
def lowercase ( self : List[Any] ) -> Optional[int]:
__lowerCAmelCase = torch.tensor([1, 2, 3, 4, 2_3, 2_3, 2_3] )
__lowerCAmelCase = torch.tensor([1, 1, 1, 1, 0, 0, 0] )
np.testing.assert_array_equal(build_mask(lowerCAmelCase_ , 2_3 ).numpy() , expected.numpy() )
def lowercase ( self : str ) -> List[Any]:
__lowerCAmelCase = torch.tensor([8, 2, 3, 4, 1, 1, 1] )
__lowerCAmelCase = torch.tensor([1, 1, 1, 1, 0, 0, 0] )
np.testing.assert_array_equal(build_mask(lowerCAmelCase_ , 1 ).numpy() , expected.numpy() )
def lowercase ( self : Optional[Any] ) -> Optional[int]:
__lowerCAmelCase = 1_0_1
__lowerCAmelCase = torch.tensor([[1, 2, 3, 4, 5, 6], [1, 2, 3, 1_0_1, 5, 6], [1, 1_0_1, 3, 4, 1_0_1, 6]] )
__lowerCAmelCase = torch.tensor([[1, 1, 1, 1, 1, 1], [1, 1, 1, 0, 0, 0], [1, 0, 0, 0, 1, 1]] )
__lowerCAmelCase = compute_token_type_ids(lowerCAmelCase_ , lowerCAmelCase_ )
np.testing.assert_array_equal(lowerCAmelCase_ , lowerCAmelCase_ )
| 207 | 1 |
from collections import defaultdict
from pathlib import Path
import pandas as pd
from rouge_cli import calculate_rouge_path
from utils import calculate_rouge
_snake_case = [
"Prosecutor: \"No videos were used in the crash investigation\" German papers say they saw a cell phone video of the"
" final seconds on board Flight 9525. The Germanwings co-pilot says he had a \"previous episode of severe"
" depression\" German airline confirms it knew of Andreas Lubitz's depression years before he took control.",
"The Palestinian Authority officially becomes the 123rd member of the International Criminal Court. The formal"
" accession was marked with a ceremony at The Hague, in the Netherlands. The Palestinians signed the ICC's"
" founding Rome Statute in January. Israel and the United States opposed the Palestinians' efforts to join the"
" body.",
"Amnesty International releases its annual report on the death penalty. The report catalogs the use of"
" state-sanctioned killing as a punitive measure across the globe. At least 607 people were executed around the"
" world in 2014, compared to 778 in 2013. The U.S. remains one of the worst offenders for imposing capital"
" punishment.",
]
_snake_case = [
"Marseille prosecutor says \"so far no videos were used in the crash investigation\" despite media reports ."
" Journalists at Bild and Paris Match are \"very confident\" the video clip is real, an editor says . Andreas Lubitz"
" had informed his Lufthansa training school of an episode of severe depression, airline says .",
"Membership gives the ICC jurisdiction over alleged crimes committed in Palestinian territories since last June ."
" Israel and the United States opposed the move, which could open the door to war crimes investigations against"
" Israelis .",
"Amnesty's annual death penalty report catalogs encouraging signs, but setbacks in numbers of those sentenced to"
" death . Organization claims that governments around the world are using the threat of terrorism to advance"
" executions . The number of executions worldwide has gone down by almost 22% compared with 2013, but death"
" sentences up by 28% .",
]
def lowerCAmelCase_ ( ):
_A : int = calculate_rouge(snake_case_,snake_case_,bootstrap_aggregation=snake_case_,rouge_keys=["""rouge2""", """rougeL"""] )
assert isinstance(snake_case_,snake_case_ )
_A : List[str] = calculate_rouge(snake_case_,snake_case_,bootstrap_aggregation=snake_case_,rouge_keys=["""rouge2"""] )
assert (
pd.DataFrame(no_aggregation["""rouge2"""] ).fmeasure.mean()
== pd.DataFrame(no_aggregation_just_ra["""rouge2"""] ).fmeasure.mean()
)
def lowerCAmelCase_ ( ):
_A : Any = """rougeLsum"""
_A : List[str] = calculate_rouge(snake_case_,snake_case_,newline_sep=snake_case_,rouge_keys=[k] )[k]
_A : List[Any] = calculate_rouge(snake_case_,snake_case_,newline_sep=snake_case_,rouge_keys=[k] )[k]
assert score > score_no_sep
def lowerCAmelCase_ ( ):
_A : Dict = ["""rouge1""", """rouge2""", """rougeL"""]
_A : Dict = calculate_rouge(snake_case_,snake_case_,newline_sep=snake_case_,rouge_keys=snake_case_ )
_A : List[Any] = calculate_rouge(snake_case_,snake_case_,newline_sep=snake_case_,rouge_keys=snake_case_ )
assert score_sep == score_no_sep
def lowerCAmelCase_ ( ):
_A : Union[str, Any] = [
"""Her older sister, Margot Frank, died in 1945, a month earlier than previously thought.""",
"""Marseille prosecutor says \"so far no videos were used in the crash investigation\" despite media reports .""",
]
_A : int = [
"""Margot Frank, died in 1945, a month earlier than previously thought.""",
"""Prosecutor: \"No videos were used in the crash investigation\" German papers say they saw a cell phone video of"""
""" the final seconds on board Flight 9525.""",
]
assert calculate_rouge(snake_case_,snake_case_,newline_sep=snake_case_ ) == calculate_rouge(snake_case_,snake_case_,newline_sep=snake_case_ )
def lowerCAmelCase_ ( ):
_A : int = [
"""\" \"a person who has such a video needs to immediately give it to the investigators,\" prosecutor says .<n> \"it is a very disturbing scene,\" editor-in-chief of bild online tells \"erin burnett: outfront\" """
]
_A : Any = [
""" Marseille prosecutor says \"so far no videos were used in the crash investigation\" despite media reports . Journalists at Bild and Paris Match are \"very confident\" the video clip is real, an editor says . Andreas Lubitz had informed his Lufthansa training school of an episode of severe depression, airline says ."""
]
_A : Dict = calculate_rouge(snake_case_,snake_case_,rouge_keys=["""rougeLsum"""],newline_sep=snake_case_ )["""rougeLsum"""]
_A : List[str] = calculate_rouge(snake_case_,snake_case_,rouge_keys=["""rougeLsum"""] )["""rougeLsum"""]
assert new_score > prev_score
def lowerCAmelCase_ ( ):
_A : int = Path("""examples/seq2seq/test_data/wmt_en_ro""" )
_A : Optional[Any] = calculate_rouge_path(data_dir.joinpath("""test.source""" ),data_dir.joinpath("""test.target""" ) )
assert isinstance(snake_case_,snake_case_ )
_A : Dict = calculate_rouge_path(
data_dir.joinpath("""test.source""" ),data_dir.joinpath("""test.target""" ),bootstrap_aggregation=snake_case_ )
assert isinstance(snake_case_,snake_case_ )
| 26 |
"""simple docstring"""
from ..utils import DummyObject, requires_backends
class __A ( metaclass=A_ ):
'''simple docstring'''
lowerCAmelCase : List[str] = ["torch", "torchsde"]
def __init__( self : Tuple ,*_snake_case : Union[str, Any] ,**_snake_case : Any ) -> Union[str, Any]:
"""simple docstring"""
requires_backends(self ,['''torch''', '''torchsde'''] )
@classmethod
def UpperCAmelCase ( cls : List[str] ,*_snake_case : int ,**_snake_case : Union[str, Any] ) -> str:
"""simple docstring"""
requires_backends(cls ,['''torch''', '''torchsde'''] )
@classmethod
def UpperCAmelCase ( cls : List[Any] ,*_snake_case : List[Any] ,**_snake_case : List[str] ) -> List[Any]:
"""simple docstring"""
requires_backends(cls ,['''torch''', '''torchsde'''] )
| 16 | 0 |
def SCREAMING_SNAKE_CASE ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase) -> Optional[Any]:
return round(float(moles / volume) * nfactor)
def SCREAMING_SNAKE_CASE ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase) -> Union[str, Any]:
return round(float((moles * 0.0_821 * temperature) / (volume)))
def SCREAMING_SNAKE_CASE ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase) -> str:
return round(float((moles * 0.0_821 * temperature) / (pressure)))
def SCREAMING_SNAKE_CASE ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase) -> Optional[int]:
return round(float((pressure * volume) / (0.0_821 * moles)))
if __name__ == "__main__":
import doctest
doctest.testmod()
| 367 |
from math import isqrt
def SCREAMING_SNAKE_CASE ( __UpperCamelCase) -> bool:
return all(number % divisor != 0 for divisor in range(2 , isqrt(__UpperCamelCase) + 1))
def SCREAMING_SNAKE_CASE ( __UpperCamelCase = 10**6) -> int:
a = 0
a = 1
a = 7
while prime_candidate < max_prime:
primes_count += is_prime(__UpperCamelCase)
cube_index += 1
prime_candidate += 6 * cube_index
return primes_count
if __name__ == "__main__":
print(F'{solution() = }')
| 180 | 0 |
from math import sqrt
def lowerCamelCase_ ( _a : Union[str, Any] = 100_0000 ):
'''simple docstring'''
UpperCAmelCase_ : int = 0
UpperCAmelCase_ : int = 0
UpperCAmelCase_ : int
while num_cuboids <= limit:
max_cuboid_size += 1
for sum_shortest_sides in range(2 , 2 * max_cuboid_size + 1 ):
if sqrt(sum_shortest_sides**2 + max_cuboid_size**2 ).is_integer():
num_cuboids += (
min(_lowercase , sum_shortest_sides // 2 )
- max(1 , sum_shortest_sides - max_cuboid_size )
+ 1
)
return max_cuboid_size
if __name__ == "__main__":
print(F"{solution() = }")
| 345 | import pytest
from datasets.splits import SplitDict, SplitInfo
from datasets.utils.py_utils import asdict
@pytest.mark.parametrize(
'''split_dict''' , [
SplitDict(),
SplitDict({'''train''': SplitInfo(name='''train''' , num_bytes=1_337 , num_examples=42 , dataset_name='''my_dataset''' )} ),
SplitDict({'''train''': SplitInfo(name='''train''' , num_bytes=1_337 , num_examples=42 )} ),
SplitDict({'''train''': SplitInfo()} ),
] , )
def A ( _lowercase ):
SCREAMING_SNAKE_CASE : Tuple = split_dict._to_yaml_list()
assert len(_lowercase ) == len(_lowercase )
SCREAMING_SNAKE_CASE : Tuple = SplitDict._from_yaml_list(_lowercase )
for split_name, split_info in split_dict.items():
# dataset_name field is deprecated, and is therefore not part of the YAML dump
SCREAMING_SNAKE_CASE : Any = None
# the split name of split_dict takes over the name of the split info object
SCREAMING_SNAKE_CASE : Optional[Any] = split_name
assert split_dict == reloaded
@pytest.mark.parametrize(
'''split_info''' , [SplitInfo(), SplitInfo(dataset_name=_lowercase ), SplitInfo(dataset_name='''my_dataset''' )] )
def A ( _lowercase ):
# For backward compatibility, we need asdict(split_dict) to return split info dictrionaries with the "dataset_name"
# field even if it's deprecated. This way old versionso of `datasets` can still reload dataset_infos.json files
SCREAMING_SNAKE_CASE : List[Any] = asdict(SplitDict({'''train''': split_info} ) )
assert "dataset_name" in split_dict_asdict["train"]
assert split_dict_asdict["train"]["dataset_name"] == split_info.dataset_name
| 182 | 0 |
'''simple docstring'''
from __future__ import annotations
import math
def UpperCamelCase_( snake_case : int ):
'''simple docstring'''
if num <= 0:
snake_case_ = f'{num}: Invalid input, please enter a positive integer.'
raise ValueError(snake_case )
snake_case_ = [True] * (num + 1)
snake_case_ = []
snake_case_ = 2
snake_case_ = int(math.sqrt(snake_case ) )
while start <= end:
# If start is a prime
if sieve[start] is True:
prime.append(snake_case )
# Set multiples of start be False
for i in range(start * start , num + 1 , snake_case ):
if sieve[i] is True:
snake_case_ = False
start += 1
for j in range(end + 1 , num + 1 ):
if sieve[j] is True:
prime.append(snake_case )
return prime
if __name__ == "__main__":
print(prime_sieve(int(input("Enter a positive integer: ").strip())))
| 92 |
'''simple docstring'''
_SCREAMING_SNAKE_CASE : Optional[int] = "Alexander Joslin"
import operator as op
from .stack import Stack
def UpperCamelCase_( snake_case : str ):
'''simple docstring'''
snake_case_ = {"*": op.mul, "/": op.truediv, "+": op.add, "-": op.sub}
snake_case_ = Stack()
snake_case_ = Stack()
for i in equation:
if i.isdigit():
# RULE 1
operand_stack.push(int(snake_case ) )
elif i in operators:
# RULE 2
operator_stack.push(snake_case )
elif i == ")":
# RULE 4
snake_case_ = operator_stack.peek()
operator_stack.pop()
snake_case_ = operand_stack.peek()
operand_stack.pop()
snake_case_ = operand_stack.peek()
operand_stack.pop()
snake_case_ = operators[opr](snake_case , snake_case )
operand_stack.push(snake_case )
# RULE 5
return operand_stack.peek()
if __name__ == "__main__":
_SCREAMING_SNAKE_CASE : List[Any] = "(5 + ((4 * 2) * (2 + 3)))"
# answer = 45
print(F"{equation} = {dijkstras_two_stack_algorithm(equation)}")
| 92 | 1 |
"""simple docstring"""
import os
import re
import warnings
from shutil import copyfile
from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import PreTrainedTokenizer
if TYPE_CHECKING:
from ...tokenization_utils_base import TextInput
from ...utils import logging
lowerCamelCase__ : int = logging.get_logger(__name__)
lowerCamelCase__ : List[Any] = {'''vocab_file''': '''spiece.model'''}
lowerCamelCase__ : Dict = {
'''vocab_file''': {
'''t5-small''': '''https://huggingface.co/t5-small/resolve/main/spiece.model''',
'''t5-base''': '''https://huggingface.co/t5-base/resolve/main/spiece.model''',
'''t5-large''': '''https://huggingface.co/t5-large/resolve/main/spiece.model''',
'''t5-3b''': '''https://huggingface.co/t5-3b/resolve/main/spiece.model''',
'''t5-11b''': '''https://huggingface.co/t5-11b/resolve/main/spiece.model''',
}
}
# TODO(PVP) - this should be removed in Transformers v5
lowerCamelCase__ : Dict = {
'''t5-small''': 5_12,
'''t5-base''': 5_12,
'''t5-large''': 5_12,
'''t5-3b''': 5_12,
'''t5-11b''': 5_12,
}
lowerCamelCase__ : Dict = '''▁'''
class _UpperCAmelCase ( __a):
__a : Union[str, Any] = VOCAB_FILES_NAMES
__a : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP
__a : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
__a : Optional[Any] = ["""input_ids""", """attention_mask"""]
def __init__( self , _A , _A="</s>" , _A="<unk>" , _A="<pad>" , _A=1_00 , _A=None , _A = None , _A=True , **_A , ) -> None:
'''simple docstring'''
if extra_ids > 0 and additional_special_tokens is None:
_UpperCAmelCase : List[str] = [f'''<extra_id_{i}>''' for i in range(_A )]
elif extra_ids > 0 and additional_special_tokens is not None:
# Check that we have the right number of extra_id special tokens
_UpperCAmelCase : List[Any] = len(set(filter(lambda _A : bool("""extra_id""" in str(_A ) ) , _A ) ) )
if extra_tokens != extra_ids:
raise ValueError(
f'''Both extra_ids ({extra_ids}) and additional_special_tokens ({additional_special_tokens}) are'''
""" provided to T5Tokenizer. In this case the additional_special_tokens must include the extra_ids"""
""" tokens""" )
if legacy:
logger.warning_once(
f'''You are using the legacy behaviour of the {self.__class__}. This means that tokens that come after special tokens will not be properly handled. We recommend you to'''
""" read the related pull request available at https://github.com/huggingface/transformers/pull/24565""" )
_UpperCAmelCase : Any = legacy
_UpperCAmelCase : Union[str, Any] = {} if sp_model_kwargs is None else sp_model_kwargs
super().__init__(
eos_token=_A , unk_token=_A , pad_token=_A , extra_ids=_A , additional_special_tokens=_A , sp_model_kwargs=self.sp_model_kwargs , legacy=_A , **_A , )
_UpperCAmelCase : Dict = vocab_file
_UpperCAmelCase : str = extra_ids
_UpperCAmelCase : List[str] = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(_A )
@staticmethod
def __snake_case ( _A , _A , _A ) -> int:
'''simple docstring'''
if pretrained_model_name_or_path in TaTokenizer.max_model_input_sizes:
_UpperCAmelCase : Union[str, Any] = TaTokenizer.max_model_input_sizes[pretrained_model_name_or_path]
if init_max_model_length is not None and init_max_model_length != max_model_length:
return init_max_model_length
elif init_max_model_length is None:
warnings.warn(
"""This tokenizer was incorrectly instantiated with a model max length of"""
f''' {deprecated_max_model_length} which will be corrected in Transformers v5.\nFor now, this'''
""" behavior is kept to avoid breaking backwards compatibility when padding/encoding with"""
""" `truncation is True`.\n- Be aware that you SHOULD NOT rely on"""
f''' {pretrained_model_name_or_path} automatically truncating your input to'''
f''' {deprecated_max_model_length} when padding/encoding.\n- If you want to encode/pad to sequences'''
f''' longer than {deprecated_max_model_length} you can either instantiate this tokenizer with'''
""" `model_max_length` or pass `max_length` when encoding/padding.\n- To avoid this warning, please"""
""" instantiate this tokenizer with `model_max_length` set to your preferred value.""" , _A , )
return max_model_length
@property
def __snake_case ( self ) -> Any:
'''simple docstring'''
return self.sp_model.get_piece_size() + self._extra_ids
def __snake_case ( self ) -> Optional[int]:
'''simple docstring'''
_UpperCAmelCase : int = {self.convert_ids_to_tokens(_A ): i for i in range(self.vocab_size )}
vocab.update(self.added_tokens_encoder )
return vocab
def __snake_case ( self , _A , _A = None , _A = False ) -> List[int]:
'''simple docstring'''
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=_A , token_ids_a=_A , already_has_special_tokens=_A )
# normal case: some special tokens
if token_ids_a is None:
return ([0] * len(_A )) + [1]
return ([0] * len(_A )) + [1] + ([0] * len(_A )) + [1]
def __snake_case ( self ) -> Optional[int]:
'''simple docstring'''
return list(
set(filter(lambda _A : bool(re.search(r"""<extra_id_\d+>""" , _A ) ) is not None , self.additional_special_tokens ) ) )
def __snake_case ( self ) -> Union[str, Any]:
'''simple docstring'''
return [self._convert_token_to_id(_A ) for token in self.get_sentinel_tokens()]
def __snake_case ( self , _A ) -> List[int]:
'''simple docstring'''
if len(_A ) > 0 and token_ids[-1] == self.eos_token_id:
warnings.warn(
f'''This sequence already has {self.eos_token}. In future versions this behavior may lead to duplicated'''
""" eos tokens being added.""" )
return token_ids
else:
return token_ids + [self.eos_token_id]
def __snake_case ( self , _A , _A = None ) -> List[int]:
'''simple docstring'''
_UpperCAmelCase : Optional[int] = [self.eos_token_id]
if token_ids_a is None:
return len(token_ids_a + eos ) * [0]
return len(token_ids_a + eos + token_ids_a + eos ) * [0]
def __snake_case ( self , _A , _A = None ) -> List[int]:
'''simple docstring'''
_UpperCAmelCase : Dict = self._add_eos_if_not_present(_A )
if token_ids_a is None:
return token_ids_a
else:
_UpperCAmelCase : int = self._add_eos_if_not_present(_A )
return token_ids_a + token_ids_a
def __getstate__( self ) -> str:
'''simple docstring'''
_UpperCAmelCase : Any = self.__dict__.copy()
_UpperCAmelCase : int = None
return state
def __setstate__( self , _A ) -> List[Any]:
'''simple docstring'''
_UpperCAmelCase : Tuple = d
# for backward compatibility
if not hasattr(self , """sp_model_kwargs""" ):
_UpperCAmelCase : int = {}
_UpperCAmelCase : Any = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(self.vocab_file )
def __snake_case ( self , _A , **_A ) -> List[str]:
'''simple docstring'''
if not self.legacy:
_UpperCAmelCase : Any = SPIECE_UNDERLINE + text.replace(_A , """ """ )
return super().tokenize(_A , **_A )
def __snake_case ( self , _A , **_A ) -> int:
'''simple docstring'''
if not self.legacy:
_UpperCAmelCase : Union[str, Any] = text.startswith(_A )
if is_first:
_UpperCAmelCase : List[Any] = text[1:]
_UpperCAmelCase : List[Any] = self.sp_model.encode(_A , out_type=_A )
if not self.legacy and not is_first and not text.startswith(""" """ ) and tokens[0].startswith(_A ):
_UpperCAmelCase : Any = ([tokens[0][1:]] if len(tokens[0] ) > 1 else []) + tokens[1:]
return tokens
def __snake_case ( self , _A ) -> Tuple:
'''simple docstring'''
if token.startswith("""<extra_id_""" ):
_UpperCAmelCase : str = re.match(r"""<extra_id_(\d+)>""" , _A )
_UpperCAmelCase : List[Any] = int(match.group(1 ) )
return self.vocab_size - num - 1
return self.sp_model.piece_to_id(_A )
def __snake_case ( self , _A ) -> Any:
'''simple docstring'''
if index < self.sp_model.get_piece_size():
_UpperCAmelCase : List[Any] = self.sp_model.IdToPiece(_A )
else:
_UpperCAmelCase : int = f'''<extra_id_{self.vocab_size - 1 - index}>'''
return token
def __snake_case ( self , _A ) -> Tuple:
'''simple docstring'''
_UpperCAmelCase : int = []
_UpperCAmelCase : str = """"""
_UpperCAmelCase : Any = False
for token in tokens:
# make sure that special tokens are not decoded using sentencepiece model
if token in self.all_special_tokens:
if not prev_is_special:
out_string += " "
out_string += self.sp_model.decode(_A ) + token
_UpperCAmelCase : Tuple = True
_UpperCAmelCase : Dict = []
else:
current_sub_tokens.append(_A )
_UpperCAmelCase : List[str] = False
out_string += self.sp_model.decode(_A )
return out_string.strip()
def __snake_case ( self , _A , _A = None ) -> Tuple[str]:
'''simple docstring'''
if not os.path.isdir(_A ):
logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' )
return
_UpperCAmelCase : Tuple = os.path.join(
_A , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(_A ) and os.path.isfile(self.vocab_file ):
copyfile(self.vocab_file , _A )
elif not os.path.isfile(self.vocab_file ):
with open(_A , """wb""" ) as fi:
_UpperCAmelCase : List[str] = self.sp_model.serialized_model_proto()
fi.write(_A )
return (out_vocab_file,)
| 246 |
"""simple docstring"""
import shutil
import tempfile
import unittest
from transformers import SPIECE_UNDERLINE, BatchEncoding, MBartTokenizer, MBartTokenizerFast, is_torch_available
from transformers.testing_utils import (
get_tests_dir,
nested_simplify,
require_sentencepiece,
require_tokenizers,
require_torch,
)
from ...test_tokenization_common import TokenizerTesterMixin
lowerCamelCase__ : Tuple = get_tests_dir('''fixtures/test_sentencepiece.model''')
if is_torch_available():
from transformers.models.mbart.modeling_mbart import shift_tokens_right
lowerCamelCase__ : int = 25_00_04
lowerCamelCase__ : Any = 25_00_20
@require_sentencepiece
@require_tokenizers
class _UpperCAmelCase ( __a , unittest.TestCase):
__a : Optional[int] = MBartTokenizer
__a : Union[str, Any] = MBartTokenizerFast
__a : Union[str, Any] = True
__a : Union[str, Any] = True
def __snake_case ( self ) -> int:
'''simple docstring'''
super().setUp()
# We have a SentencePiece fixture for testing
_UpperCAmelCase : str = MBartTokenizer(_A , keep_accents=_A )
tokenizer.save_pretrained(self.tmpdirname )
def __snake_case ( self ) -> str:
'''simple docstring'''
_UpperCAmelCase : Dict = MBartTokenizer(_A , keep_accents=_A )
_UpperCAmelCase : int = tokenizer.tokenize("""This is a test""" )
self.assertListEqual(_A , ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] )
self.assertListEqual(
tokenizer.convert_tokens_to_ids(_A ) , [value + tokenizer.fairseq_offset for value in [2_85, 46, 10, 1_70, 3_82]] , )
_UpperCAmelCase : Tuple = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" )
self.assertListEqual(
_A , [
SPIECE_UNDERLINE + """I""",
SPIECE_UNDERLINE + """was""",
SPIECE_UNDERLINE + """b""",
"""or""",
"""n""",
SPIECE_UNDERLINE + """in""",
SPIECE_UNDERLINE + """""",
"""9""",
"""2""",
"""0""",
"""0""",
"""0""",
""",""",
SPIECE_UNDERLINE + """and""",
SPIECE_UNDERLINE + """this""",
SPIECE_UNDERLINE + """is""",
SPIECE_UNDERLINE + """f""",
"""al""",
"""s""",
"""é""",
""".""",
] , )
_UpperCAmelCase : Tuple = tokenizer.convert_tokens_to_ids(_A )
self.assertListEqual(
_A , [
value + tokenizer.fairseq_offset
for value in [8, 21, 84, 55, 24, 19, 7, 2, 6_02, 3_47, 3_47, 3_47, 3, 12, 66, 46, 72, 80, 6, 2, 4]
# ^ unk: 2 + 1 = 3 unk: 2 + 1 = 3 ^
] , )
_UpperCAmelCase : Tuple = tokenizer.convert_ids_to_tokens(_A )
self.assertListEqual(
_A , [
SPIECE_UNDERLINE + """I""",
SPIECE_UNDERLINE + """was""",
SPIECE_UNDERLINE + """b""",
"""or""",
"""n""",
SPIECE_UNDERLINE + """in""",
SPIECE_UNDERLINE + """""",
"""<unk>""",
"""2""",
"""0""",
"""0""",
"""0""",
""",""",
SPIECE_UNDERLINE + """and""",
SPIECE_UNDERLINE + """this""",
SPIECE_UNDERLINE + """is""",
SPIECE_UNDERLINE + """f""",
"""al""",
"""s""",
"""<unk>""",
""".""",
] , )
def __snake_case ( self ) -> Optional[Any]:
'''simple docstring'''
if not self.test_slow_tokenizer:
# as we don't have a slow version, we can't compare the outputs between slow and fast versions
return
_UpperCAmelCase : Tuple = (self.rust_tokenizer_class, """hf-internal-testing/tiny-random-mbart""", {})
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ):
_UpperCAmelCase : str = self.rust_tokenizer_class.from_pretrained(_A , **_A )
_UpperCAmelCase : str = self.tokenizer_class.from_pretrained(_A , **_A )
_UpperCAmelCase : Dict = tempfile.mkdtemp()
_UpperCAmelCase : str = tokenizer_r.save_pretrained(_A )
_UpperCAmelCase : str = tokenizer_p.save_pretrained(_A )
# Checks it save with the same files + the tokenizer.json file for the fast one
self.assertTrue(any("""tokenizer.json""" in f for f in tokenizer_r_files ) )
_UpperCAmelCase : Tuple = tuple(f for f in tokenizer_r_files if """tokenizer.json""" not in f )
self.assertSequenceEqual(_A , _A )
# Checks everything loads correctly in the same way
_UpperCAmelCase : List[Any] = tokenizer_r.from_pretrained(_A )
_UpperCAmelCase : int = tokenizer_p.from_pretrained(_A )
# Check special tokens are set accordingly on Rust and Python
for key in tokenizer_pp.special_tokens_map:
self.assertTrue(hasattr(_A , _A ) )
# self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key))
# self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id"))
shutil.rmtree(_A )
# Save tokenizer rust, legacy_format=True
_UpperCAmelCase : List[Any] = tempfile.mkdtemp()
_UpperCAmelCase : Any = tokenizer_r.save_pretrained(_A , legacy_format=_A )
_UpperCAmelCase : Dict = tokenizer_p.save_pretrained(_A )
# Checks it save with the same files
self.assertSequenceEqual(_A , _A )
# Checks everything loads correctly in the same way
_UpperCAmelCase : List[str] = tokenizer_r.from_pretrained(_A )
_UpperCAmelCase : Any = tokenizer_p.from_pretrained(_A )
# Check special tokens are set accordingly on Rust and Python
for key in tokenizer_pp.special_tokens_map:
self.assertTrue(hasattr(_A , _A ) )
shutil.rmtree(_A )
# Save tokenizer rust, legacy_format=False
_UpperCAmelCase : List[Any] = tempfile.mkdtemp()
_UpperCAmelCase : Tuple = tokenizer_r.save_pretrained(_A , legacy_format=_A )
_UpperCAmelCase : Dict = tokenizer_p.save_pretrained(_A )
# Checks it saved the tokenizer.json file
self.assertTrue(any("""tokenizer.json""" in f for f in tokenizer_r_files ) )
# Checks everything loads correctly in the same way
_UpperCAmelCase : List[Any] = tokenizer_r.from_pretrained(_A )
_UpperCAmelCase : Dict = tokenizer_p.from_pretrained(_A )
# Check special tokens are set accordingly on Rust and Python
for key in tokenizer_pp.special_tokens_map:
self.assertTrue(hasattr(_A , _A ) )
shutil.rmtree(_A )
@require_torch
@require_sentencepiece
@require_tokenizers
class _UpperCAmelCase ( unittest.TestCase):
__a : Optional[Any] = """facebook/mbart-large-en-ro"""
__a : Dict = [
""" UN Chief Says There Is No Military Solution in Syria""",
""" Secretary-General Ban Ki-moon says his response to Russia's stepped up military support for Syria is that \"there is no military solution\" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.""",
]
__a : List[str] = [
"""Şeful ONU declară că nu există o soluţie militară în Siria""",
"""Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al Rusiei"""
""" pentru Siria este că \"nu există o soluţie militară\" la conflictul de aproape cinci ani şi că noi arme nu vor"""
""" face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.""",
]
__a : int = [8_2_7_4, 1_2_7_8_7_3, 2_5_9_1_6, 7, 8_6_2_2, 2_0_7_1, 4_3_8, 6_7_4_8_5, 5_3, 1_8_7_8_9_5, 2_3, 5_1_7_1_2, 2, EN_CODE]
@classmethod
def __snake_case ( cls ) -> Optional[Any]:
'''simple docstring'''
_UpperCAmelCase : MBartTokenizer = MBartTokenizer.from_pretrained(
cls.checkpoint_name , src_lang="""en_XX""" , tgt_lang="""ro_RO""" )
_UpperCAmelCase : Tuple = 1
return cls
def __snake_case ( self ) -> Union[str, Any]:
'''simple docstring'''
self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["""ar_AR"""] , 25_00_01 )
self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["""en_EN"""] , 25_00_04 )
self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["""ro_RO"""] , 25_00_20 )
def __snake_case ( self ) -> Dict:
'''simple docstring'''
_UpperCAmelCase : Optional[int] = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0]
self.assertListEqual(self.expected_src_tokens , _A )
def __snake_case ( self ) -> str:
'''simple docstring'''
self.assertIn(_A , self.tokenizer.all_special_ids )
_UpperCAmelCase : List[Any] = [RO_CODE, 8_84, 90_19, 96, 9, 9_16, 8_67_92, 36, 1_87_43, 1_55_96, 5, 2]
_UpperCAmelCase : str = self.tokenizer.decode(_A , skip_special_tokens=_A )
_UpperCAmelCase : Optional[Any] = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=_A )
self.assertEqual(_A , _A )
self.assertNotIn(self.tokenizer.eos_token , _A )
def __snake_case ( self ) -> Dict:
'''simple docstring'''
_UpperCAmelCase : List[Any] = ["""this is gunna be a long sentence """ * 20]
assert isinstance(src_text[0] , _A )
_UpperCAmelCase : str = 10
_UpperCAmelCase : str = self.tokenizer(_A , max_length=_A , truncation=_A ).input_ids[0]
self.assertEqual(ids[-2] , 2 )
self.assertEqual(ids[-1] , _A )
self.assertEqual(len(_A ) , _A )
def __snake_case ( self ) -> int:
'''simple docstring'''
self.assertListEqual(self.tokenizer.convert_tokens_to_ids(["""<mask>""", """ar_AR"""] ) , [25_00_26, 25_00_01] )
def __snake_case ( self ) -> Optional[int]:
'''simple docstring'''
_UpperCAmelCase : Optional[int] = tempfile.mkdtemp()
_UpperCAmelCase : Union[str, Any] = self.tokenizer.fairseq_tokens_to_ids
self.tokenizer.save_pretrained(_A )
_UpperCAmelCase : Any = MBartTokenizer.from_pretrained(_A )
self.assertDictEqual(new_tok.fairseq_tokens_to_ids , _A )
@require_torch
def __snake_case ( self ) -> Union[str, Any]:
'''simple docstring'''
_UpperCAmelCase : str = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=_A , return_tensors="""pt""" )
_UpperCAmelCase : str = shift_tokens_right(batch["""labels"""] , self.tokenizer.pad_token_id )
# fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4
assert batch.input_ids[1][-2:].tolist() == [2, EN_CODE]
assert batch.decoder_input_ids[1][0].tolist() == RO_CODE
assert batch.decoder_input_ids[1][-1] == 2
assert batch.labels[1][-2:].tolist() == [2, RO_CODE]
@require_torch
def __snake_case ( self ) -> List[Any]:
'''simple docstring'''
_UpperCAmelCase : Tuple = self.tokenizer(
self.src_text , text_target=self.tgt_text , padding=_A , truncation=_A , max_length=len(self.expected_src_tokens ) , return_tensors="""pt""" , )
_UpperCAmelCase : Dict = shift_tokens_right(batch["""labels"""] , self.tokenizer.pad_token_id )
self.assertIsInstance(_A , _A )
self.assertEqual((2, 14) , batch.input_ids.shape )
self.assertEqual((2, 14) , batch.attention_mask.shape )
_UpperCAmelCase : Optional[Any] = batch.input_ids.tolist()[0]
self.assertListEqual(self.expected_src_tokens , _A )
self.assertEqual(2 , batch.decoder_input_ids[0, -1] ) # EOS
# Test that special tokens are reset
self.assertEqual(self.tokenizer.prefix_tokens , [] )
self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id, EN_CODE] )
def __snake_case ( self ) -> Union[str, Any]:
'''simple docstring'''
_UpperCAmelCase : int = self.tokenizer(self.src_text , padding=_A , truncation=_A , max_length=3 , return_tensors="""pt""" )
_UpperCAmelCase : List[str] = self.tokenizer(
text_target=self.tgt_text , padding=_A , truncation=_A , max_length=10 , return_tensors="""pt""" )
_UpperCAmelCase : str = targets["""input_ids"""]
_UpperCAmelCase : List[Any] = shift_tokens_right(_A , self.tokenizer.pad_token_id )
self.assertEqual(batch.input_ids.shape[1] , 3 )
self.assertEqual(batch.decoder_input_ids.shape[1] , 10 )
@require_torch
def __snake_case ( self ) -> str:
'''simple docstring'''
_UpperCAmelCase : Optional[Any] = self.tokenizer._build_translation_inputs(
"""A test""" , return_tensors="""pt""" , src_lang="""en_XX""" , tgt_lang="""ar_AR""" )
self.assertEqual(
nested_simplify(_A ) , {
# A, test, EOS, en_XX
"""input_ids""": [[62, 30_34, 2, 25_00_04]],
"""attention_mask""": [[1, 1, 1, 1]],
# ar_AR
"""forced_bos_token_id""": 25_00_01,
} , )
| 246 | 1 |
"""simple docstring"""
import json
import os
import unittest
from transformers.models.blenderbot_small.tokenization_blenderbot_small import (
VOCAB_FILES_NAMES,
BlenderbotSmallTokenizer,
)
from ...test_tokenization_common import TokenizerTesterMixin
class UpperCamelCase ( snake_case_ , unittest.TestCase ):
UpperCamelCase : List[Any] = BlenderbotSmallTokenizer
UpperCamelCase : Optional[int] = False
def _lowercase ( self : Optional[int] ) -> Optional[int]:
super().setUp()
_a : Dict = ["""__start__""", """adapt""", """act""", """ap@@""", """te""", """__end__""", """__unk__"""]
_a : Any = dict(zip(_a , range(len(_a ) ) ) )
_a : Optional[Any] = ["""#version: 0.2""", """a p""", """t e</w>""", """ap t</w>""", """a d""", """ad apt</w>""", """a c""", """ac t</w>""", """"""]
_a : Optional[int] = {"""unk_token""": """__unk__""", """bos_token""": """__start__""", """eos_token""": """__end__"""}
_a : Tuple = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] )
_a : str = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] )
with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp:
fp.write(json.dumps(_a ) + """\n""" )
with open(self.merges_file , """w""" , encoding="""utf-8""" ) as fp:
fp.write("""\n""".join(_a ) )
def _lowercase ( self : Optional[int] , **UpperCAmelCase__ : Union[str, Any] ) -> int:
kwargs.update(self.special_tokens_map )
return BlenderbotSmallTokenizer.from_pretrained(self.tmpdirname , **_a )
def _lowercase ( self : Optional[int] , UpperCAmelCase__ : str ) -> List[Any]:
_a : Any = """adapt act apte"""
_a : List[str] = """adapt act apte"""
return input_text, output_text
def _lowercase ( self : int ) -> Optional[Any]:
_a : Any = BlenderbotSmallTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map )
_a : List[Any] = """adapt act apte"""
_a : Union[str, Any] = ["""adapt""", """act""", """ap@@""", """te"""]
_a : List[Any] = tokenizer.tokenize(_a )
self.assertListEqual(_a , _a )
_a : Any = [tokenizer.bos_token] + tokens + [tokenizer.eos_token]
_a : Any = [0, 1, 2, 3, 4, 5]
self.assertListEqual(tokenizer.convert_tokens_to_ids(_a ) , _a )
def _lowercase ( self : Optional[int] ) -> Tuple:
_a : int = BlenderbotSmallTokenizer.from_pretrained("""facebook/blenderbot-90M""" )
assert tok("""sam""" ).input_ids == [1384]
_a : str = """I am a small frog."""
_a : int = tok([src_text] , padding=_a , truncation=_a )["""input_ids"""]
_a : Optional[int] = tok.batch_decode(_a , skip_special_tokens=_a , clean_up_tokenization_spaces=_a )[0]
assert src_text != decoded # I wish it did!
assert decoded == "i am a small frog ."
def _lowercase ( self : str ) -> List[str]:
_a : Dict = BlenderbotSmallTokenizer.from_pretrained("""facebook/blenderbot-90M""" )
_a : Union[str, Any] = """I am a small frog ."""
_a : Dict = """."""
_a : int = tok(_a )["""input_ids"""]
_a : Tuple = tok(_a )["""input_ids"""]
assert encoded[-1] == encoded_dot[0]
| 363 |
"""simple docstring"""
from math import factorial
def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ):
'''simple docstring'''
if successes > trials:
raise ValueError("""successes must be lower or equal to trials""" )
if trials < 0 or successes < 0:
raise ValueError("""the function is defined for non-negative integers""" )
if not isinstance(UpperCamelCase__ , UpperCamelCase__ ) or not isinstance(UpperCamelCase__ , UpperCamelCase__ ):
raise ValueError("""the function is defined for non-negative integers""" )
if not 0 < prob < 1:
raise ValueError("""prob has to be in range of 1 - 0""" )
_a : Optional[int] = (prob**successes) * ((1 - prob) ** (trials - successes))
# Calculate the binomial coefficient: n! / k!(n-k)!
_a : Optional[int] = float(factorial(UpperCamelCase__ ) )
coefficient /= factorial(UpperCamelCase__ ) * factorial(trials - successes )
return probability * coefficient
if __name__ == "__main__":
from doctest import testmod
testmod()
print('Probability of 2 successes out of 4 trails')
print('with probability of 0.75 is:', end=' ')
print(binomial_distribution(2, 4, 0.75))
| 324 | 0 |
"""simple docstring"""
import re
def _lowerCamelCase ( _UpperCamelCase ):
'''simple docstring'''
return [char.split() for char in re.split(R"[^ a-z A-Z 0-9 \s]" , str_ )]
def _lowerCamelCase ( _UpperCamelCase ):
'''simple docstring'''
__lowerCAmelCase = split_input(str_ )
return "".join(
["".join([char.capitalize() for char in sub_str] ) for sub_str in string_split] )
def _lowerCamelCase ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ):
'''simple docstring'''
try:
__lowerCAmelCase = split_input(_UpperCamelCase )
if upper:
__lowerCAmelCase = "".join(
[
separator.join([char.upper() for char in sub_str] )
for sub_str in string_split
] )
else:
__lowerCAmelCase = "".join(
[
separator.join([char.lower() for char in sub_str] )
for sub_str in string_split
] )
return res_str
except IndexError:
return "not valid string"
def _lowerCamelCase ( _UpperCamelCase ):
'''simple docstring'''
return to_simple_case(_UpperCamelCase )
def _lowerCamelCase ( _UpperCamelCase ):
'''simple docstring'''
try:
__lowerCAmelCase = to_simple_case(_UpperCamelCase )
return res_str[0].lower() + res_str[1:]
except IndexError:
return "not valid string"
def _lowerCamelCase ( _UpperCamelCase , _UpperCamelCase ):
'''simple docstring'''
return to_complex_case(_UpperCamelCase , _UpperCamelCase , "_" )
def _lowerCamelCase ( _UpperCamelCase , _UpperCamelCase ):
'''simple docstring'''
return to_complex_case(_UpperCamelCase , _UpperCamelCase , "-" )
if __name__ == "__main__":
__import__("doctest").testmod()
| 57 |
"""simple docstring"""
import sys
from collections import defaultdict
class _UpperCamelCase :
'''simple docstring'''
def __init__( self ):
__lowerCAmelCase = []
def snake_case ( self , __a ):
return self.node_position[vertex]
def snake_case ( self , __a , __a ):
__lowerCAmelCase = pos
def snake_case ( self , __a , __a , __a , __a ):
if start > size // 2 - 1:
return
else:
if 2 * start + 2 >= size:
__lowerCAmelCase = 2 * start + 1
else:
if heap[2 * start + 1] < heap[2 * start + 2]:
__lowerCAmelCase = 2 * start + 1
else:
__lowerCAmelCase = 2 * start + 2
if heap[smallest_child] < heap[start]:
__lowerCAmelCase , __lowerCAmelCase = heap[smallest_child], positions[smallest_child]
__lowerCAmelCase , __lowerCAmelCase = (
heap[start],
positions[start],
)
__lowerCAmelCase , __lowerCAmelCase = temp, tempa
__lowerCAmelCase = self.get_position(positions[smallest_child] )
self.set_position(
positions[smallest_child] , self.get_position(positions[start] ) )
self.set_position(positions[start] , __a )
self.top_to_bottom(__a , __a , __a , __a )
def snake_case ( self , __a , __a , __a , __a ):
__lowerCAmelCase = position[index]
while index != 0:
__lowerCAmelCase = int((index - 2) / 2 ) if index % 2 == 0 else int((index - 1) / 2 )
if val < heap[parent]:
__lowerCAmelCase = heap[parent]
__lowerCAmelCase = position[parent]
self.set_position(position[parent] , __a )
else:
__lowerCAmelCase = val
__lowerCAmelCase = temp
self.set_position(__a , __a )
break
__lowerCAmelCase = parent
else:
__lowerCAmelCase = val
__lowerCAmelCase = temp
self.set_position(__a , 0 )
def snake_case ( self , __a , __a ):
__lowerCAmelCase = len(__a ) // 2 - 1
for i in range(__a , -1 , -1 ):
self.top_to_bottom(__a , __a , len(__a ) , __a )
def snake_case ( self , __a , __a ):
__lowerCAmelCase = positions[0]
__lowerCAmelCase = sys.maxsize
self.top_to_bottom(__a , 0 , len(__a ) , __a )
return temp
def _lowerCamelCase ( _UpperCamelCase ):
'''simple docstring'''
__lowerCAmelCase = Heap()
__lowerCAmelCase = [0] * len(_UpperCamelCase )
__lowerCAmelCase = [-1] * len(_UpperCamelCase ) # Neighboring Tree Vertex of selected vertex
# Minimum Distance of explored vertex with neighboring vertex of partial tree
# formed in graph
__lowerCAmelCase = [] # Heap of Distance of vertices from their neighboring vertex
__lowerCAmelCase = []
for vertex in range(len(_UpperCamelCase ) ):
distance_tv.append(sys.maxsize )
positions.append(_UpperCamelCase )
heap.node_position.append(_UpperCamelCase )
__lowerCAmelCase = []
__lowerCAmelCase = 1
__lowerCAmelCase = sys.maxsize
for neighbor, distance in adjacency_list[0]:
__lowerCAmelCase = 0
__lowerCAmelCase = distance
heap.heapify(_UpperCamelCase , _UpperCamelCase )
for _ in range(1 , len(_UpperCamelCase ) ):
__lowerCAmelCase = heap.delete_minimum(_UpperCamelCase , _UpperCamelCase )
if visited[vertex] == 0:
tree_edges.append((nbr_tv[vertex], vertex) )
__lowerCAmelCase = 1
for neighbor, distance in adjacency_list[vertex]:
if (
visited[neighbor] == 0
and distance < distance_tv[heap.get_position(_UpperCamelCase )]
):
__lowerCAmelCase = distance
heap.bottom_to_top(
_UpperCamelCase , heap.get_position(_UpperCamelCase ) , _UpperCamelCase , _UpperCamelCase )
__lowerCAmelCase = vertex
return tree_edges
if __name__ == "__main__": # pragma: no cover
# < --------- Prims Algorithm --------- >
A : Optional[Any] = int(input("Enter number of edges: ").strip())
A : Dict = defaultdict(list)
for _ in range(edges_number):
A : str = [int(x) for x in input().strip().split()]
adjacency_list[edge[0]].append([edge[1], edge[2]])
adjacency_list[edge[1]].append([edge[0], edge[2]])
print(prisms_algorithm(adjacency_list))
| 57 | 1 |
"""simple docstring"""
import argparse
import json
from pathlib import Path
import requests
import torch
from huggingface_hub import cached_download, hf_hub_url
from PIL import Image
from transformers import DPTConfig, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTImageProcessor
from transformers.utils import logging
logging.set_verbosity_info()
_a = logging.get_logger(__name__)
def __a ( __lowerCamelCase ) -> Any:
UpperCAmelCase_ : List[Any] = DPTConfig()
if "large" in checkpoint_url:
UpperCAmelCase_ : str = 1024
UpperCAmelCase_ : Tuple = 4096
UpperCAmelCase_ : List[Any] = 24
UpperCAmelCase_ : Tuple = 16
UpperCAmelCase_ : Union[str, Any] = [5, 11, 17, 23]
UpperCAmelCase_ : str = [256, 512, 1024, 1024]
UpperCAmelCase_ : Dict = (1, 384, 384)
if "ade" in checkpoint_url:
UpperCAmelCase_ : str = True
UpperCAmelCase_ : Any = 150
UpperCAmelCase_ : Union[str, Any] = "huggingface/label-files"
UpperCAmelCase_ : Union[str, Any] = "ade20k-id2label.json"
UpperCAmelCase_ : int = json.load(open(cached_download(hf_hub_url(__lowerCamelCase, __lowerCamelCase, repo_type="dataset" ) ), "r" ) )
UpperCAmelCase_ : Tuple = {int(__lowerCamelCase ): v for k, v in idalabel.items()}
UpperCAmelCase_ : Optional[int] = idalabel
UpperCAmelCase_ : List[Any] = {v: k for k, v in idalabel.items()}
UpperCAmelCase_ : Optional[int] = [1, 150, 480, 480]
return config, expected_shape
def __a ( __lowerCamelCase ) -> Tuple:
UpperCAmelCase_ : int = ["pretrained.model.head.weight", "pretrained.model.head.bias"]
for k in ignore_keys:
state_dict.pop(__lowerCamelCase, __lowerCamelCase )
def __a ( __lowerCamelCase ) -> Optional[Any]:
if (
"pretrained.model" in name
and "cls_token" not in name
and "pos_embed" not in name
and "patch_embed" not in name
):
UpperCAmelCase_ : Dict = name.replace("pretrained.model", "dpt.encoder" )
if "pretrained.model" in name:
UpperCAmelCase_ : Dict = name.replace("pretrained.model", "dpt.embeddings" )
if "patch_embed" in name:
UpperCAmelCase_ : Optional[int] = name.replace("patch_embed", "patch_embeddings" )
if "pos_embed" in name:
UpperCAmelCase_ : List[str] = name.replace("pos_embed", "position_embeddings" )
if "attn.proj" in name:
UpperCAmelCase_ : List[str] = name.replace("attn.proj", "attention.output.dense" )
if "proj" in name and "project" not in name:
UpperCAmelCase_ : Union[str, Any] = name.replace("proj", "projection" )
if "blocks" in name:
UpperCAmelCase_ : int = name.replace("blocks", "layer" )
if "mlp.fc1" in name:
UpperCAmelCase_ : int = name.replace("mlp.fc1", "intermediate.dense" )
if "mlp.fc2" in name:
UpperCAmelCase_ : Optional[int] = name.replace("mlp.fc2", "output.dense" )
if "norm1" in name:
UpperCAmelCase_ : Tuple = name.replace("norm1", "layernorm_before" )
if "norm2" in name:
UpperCAmelCase_ : List[str] = name.replace("norm2", "layernorm_after" )
if "scratch.output_conv" in name:
UpperCAmelCase_ : List[str] = name.replace("scratch.output_conv", "head" )
if "scratch" in name:
UpperCAmelCase_ : Any = name.replace("scratch", "neck" )
if "layer1_rn" in name:
UpperCAmelCase_ : Optional[int] = name.replace("layer1_rn", "convs.0" )
if "layer2_rn" in name:
UpperCAmelCase_ : Any = name.replace("layer2_rn", "convs.1" )
if "layer3_rn" in name:
UpperCAmelCase_ : List[str] = name.replace("layer3_rn", "convs.2" )
if "layer4_rn" in name:
UpperCAmelCase_ : List[str] = name.replace("layer4_rn", "convs.3" )
if "refinenet" in name:
UpperCAmelCase_ : str = int(name[len("neck.refinenet" ) : len("neck.refinenet" ) + 1] )
# tricky here: we need to map 4 to 0, 3 to 1, 2 to 2 and 1 to 3
UpperCAmelCase_ : Optional[int] = name.replace(f"""refinenet{layer_idx}""", f"""fusion_stage.layers.{abs(layer_idx-4 )}""" )
if "out_conv" in name:
UpperCAmelCase_ : Optional[Any] = name.replace("out_conv", "projection" )
if "resConfUnit1" in name:
UpperCAmelCase_ : Optional[int] = name.replace("resConfUnit1", "residual_layer1" )
if "resConfUnit2" in name:
UpperCAmelCase_ : List[Any] = name.replace("resConfUnit2", "residual_layer2" )
if "conv1" in name:
UpperCAmelCase_ : Tuple = name.replace("conv1", "convolution1" )
if "conv2" in name:
UpperCAmelCase_ : Optional[int] = name.replace("conv2", "convolution2" )
# readout blocks
if "pretrained.act_postprocess1.0.project.0" in name:
UpperCAmelCase_ : List[Any] = name.replace("pretrained.act_postprocess1.0.project.0", "neck.reassemble_stage.readout_projects.0.0" )
if "pretrained.act_postprocess2.0.project.0" in name:
UpperCAmelCase_ : int = name.replace("pretrained.act_postprocess2.0.project.0", "neck.reassemble_stage.readout_projects.1.0" )
if "pretrained.act_postprocess3.0.project.0" in name:
UpperCAmelCase_ : Optional[int] = name.replace("pretrained.act_postprocess3.0.project.0", "neck.reassemble_stage.readout_projects.2.0" )
if "pretrained.act_postprocess4.0.project.0" in name:
UpperCAmelCase_ : str = name.replace("pretrained.act_postprocess4.0.project.0", "neck.reassemble_stage.readout_projects.3.0" )
# resize blocks
if "pretrained.act_postprocess1.3" in name:
UpperCAmelCase_ : int = name.replace("pretrained.act_postprocess1.3", "neck.reassemble_stage.layers.0.projection" )
if "pretrained.act_postprocess1.4" in name:
UpperCAmelCase_ : Dict = name.replace("pretrained.act_postprocess1.4", "neck.reassemble_stage.layers.0.resize" )
if "pretrained.act_postprocess2.3" in name:
UpperCAmelCase_ : Union[str, Any] = name.replace("pretrained.act_postprocess2.3", "neck.reassemble_stage.layers.1.projection" )
if "pretrained.act_postprocess2.4" in name:
UpperCAmelCase_ : Tuple = name.replace("pretrained.act_postprocess2.4", "neck.reassemble_stage.layers.1.resize" )
if "pretrained.act_postprocess3.3" in name:
UpperCAmelCase_ : Optional[Any] = name.replace("pretrained.act_postprocess3.3", "neck.reassemble_stage.layers.2.projection" )
if "pretrained.act_postprocess4.3" in name:
UpperCAmelCase_ : Union[str, Any] = name.replace("pretrained.act_postprocess4.3", "neck.reassemble_stage.layers.3.projection" )
if "pretrained.act_postprocess4.4" in name:
UpperCAmelCase_ : Any = name.replace("pretrained.act_postprocess4.4", "neck.reassemble_stage.layers.3.resize" )
if "pretrained" in name:
UpperCAmelCase_ : List[str] = name.replace("pretrained", "dpt" )
if "bn" in name:
UpperCAmelCase_ : List[str] = name.replace("bn", "batch_norm" )
if "head" in name:
UpperCAmelCase_ : Dict = name.replace("head", "head.head" )
if "encoder.norm" in name:
UpperCAmelCase_ : Optional[int] = name.replace("encoder.norm", "layernorm" )
if "auxlayer" in name:
UpperCAmelCase_ : Union[str, Any] = name.replace("auxlayer", "auxiliary_head.head" )
return name
def __a ( __lowerCamelCase, __lowerCamelCase ) -> Dict:
for i in range(config.num_hidden_layers ):
# read in weights + bias of input projection layer (in timm, this is a single matrix + bias)
UpperCAmelCase_ : int = state_dict.pop(f"""dpt.encoder.layer.{i}.attn.qkv.weight""" )
UpperCAmelCase_ : List[Any] = state_dict.pop(f"""dpt.encoder.layer.{i}.attn.qkv.bias""" )
# next, add query, keys and values (in that order) to the state dict
UpperCAmelCase_ : Union[str, Any] = in_proj_weight[: config.hidden_size, :]
UpperCAmelCase_ : Union[str, Any] = in_proj_bias[: config.hidden_size]
UpperCAmelCase_ : Union[str, Any] = in_proj_weight[
config.hidden_size : config.hidden_size * 2, :
]
UpperCAmelCase_ : str = in_proj_bias[
config.hidden_size : config.hidden_size * 2
]
UpperCAmelCase_ : Optional[Any] = in_proj_weight[
-config.hidden_size :, :
]
UpperCAmelCase_ : List[Any] = in_proj_bias[-config.hidden_size :]
def __a ( ) -> Dict:
UpperCAmelCase_ : Dict = "http://images.cocodataset.org/val2017/000000039769.jpg"
UpperCAmelCase_ : Any = Image.open(requests.get(__lowerCamelCase, stream=__lowerCamelCase ).raw )
return im
@torch.no_grad()
def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ) -> List[Any]:
UpperCAmelCase_ , UpperCAmelCase_ : List[Any] = get_dpt_config(__lowerCamelCase )
# load original state_dict from URL
UpperCAmelCase_ : Union[str, Any] = torch.hub.load_state_dict_from_url(__lowerCamelCase, map_location="cpu" )
# remove certain keys
remove_ignore_keys_(__lowerCamelCase )
# rename keys
for key in state_dict.copy().keys():
UpperCAmelCase_ : Optional[Any] = state_dict.pop(__lowerCamelCase )
UpperCAmelCase_ : str = val
# read in qkv matrices
read_in_q_k_v(__lowerCamelCase, __lowerCamelCase )
# load HuggingFace model
UpperCAmelCase_ : Optional[Any] = DPTForSemanticSegmentation(__lowerCamelCase ) if "ade" in checkpoint_url else DPTForDepthEstimation(__lowerCamelCase )
model.load_state_dict(__lowerCamelCase )
model.eval()
# Check outputs on an image
UpperCAmelCase_ : str = 480 if "ade" in checkpoint_url else 384
UpperCAmelCase_ : str = DPTImageProcessor(size=__lowerCamelCase )
UpperCAmelCase_ : Union[str, Any] = prepare_img()
UpperCAmelCase_ : List[str] = image_processor(__lowerCamelCase, return_tensors="pt" )
# forward pass
UpperCAmelCase_ : str = model(**__lowerCamelCase ).logits if "ade" in checkpoint_url else model(**__lowerCamelCase ).predicted_depth
# Assert logits
UpperCAmelCase_ : Tuple = torch.tensor([[6.3199, 6.3629, 6.4148], [6.3850, 6.3615, 6.4166], [6.3519, 6.3176, 6.3575]] )
if "ade" in checkpoint_url:
UpperCAmelCase_ : Union[str, Any] = torch.tensor([[4.0480, 4.2420, 4.4360], [4.3124, 4.5693, 4.8261], [4.5768, 4.8965, 5.2163]] )
assert outputs.shape == torch.Size(__lowerCamelCase )
assert (
torch.allclose(outputs[0, 0, :3, :3], __lowerCamelCase, atol=1E-4 )
if "ade" in checkpoint_url
else torch.allclose(outputs[0, :3, :3], __lowerCamelCase )
)
Path(__lowerCamelCase ).mkdir(exist_ok=__lowerCamelCase )
print(f"""Saving model to {pytorch_dump_folder_path}""" )
model.save_pretrained(__lowerCamelCase )
print(f"""Saving image processor to {pytorch_dump_folder_path}""" )
image_processor.save_pretrained(__lowerCamelCase )
if push_to_hub:
print("Pushing model to hub..." )
model.push_to_hub(
repo_path_or_name=Path(__lowerCamelCase, __lowerCamelCase ), organization="nielsr", commit_message="Add model", use_temp_dir=__lowerCamelCase, )
image_processor.push_to_hub(
repo_path_or_name=Path(__lowerCamelCase, __lowerCamelCase ), organization="nielsr", commit_message="Add image processor", use_temp_dir=__lowerCamelCase, )
if __name__ == "__main__":
_a = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--checkpoint_url',
default='https://github.com/intel-isl/DPT/releases/download/1_0/dpt_large-midas-2f21e586.pt',
type=str,
help='URL of the original DPT checkpoint you\'d like to convert.',
)
parser.add_argument(
'--pytorch_dump_folder_path',
default=None,
type=str,
required=True,
help='Path to the output PyTorch model directory.',
)
parser.add_argument(
'--push_to_hub',
action='store_true',
)
parser.add_argument(
'--model_name',
default='dpt-large',
type=str,
help='Name of the model, in case you\'re pushing to the hub.',
)
_a = parser.parse_args()
convert_dpt_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name)
| 371 |
"""simple docstring"""
import json
import os
from typing import Optional, Tuple
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
_a = logging.get_logger(__name__)
_a = {'vocab_file': 'vocab.json'}
_a = {
'vocab_file': {
'mgp-str': 'https://huggingface.co/alibaba-damo/mgp-str-base/blob/main/vocab.json',
}
}
_a = {'mgp-str': 27}
class A_ (lowercase__ ):
'''simple docstring'''
SCREAMING_SNAKE_CASE__ : Dict = VOCAB_FILES_NAMES
SCREAMING_SNAKE_CASE__ : List[str] = PRETRAINED_VOCAB_FILES_MAP
SCREAMING_SNAKE_CASE__ : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
def __init__( self , lowercase_ , lowercase_="[GO]" , lowercase_="[GO]" , lowercase_="[s]" , lowercase_="[GO]" , **lowercase_ ):
"""simple docstring"""
super().__init__(
unk_token=lowercase_ , bos_token=lowercase_ , eos_token=lowercase_ , pad_token=lowercase_ , **lowercase_ , )
with open(lowercase_ , encoding="utf-8" ) as vocab_handle:
UpperCAmelCase_ : Dict = json.load(lowercase_ )
UpperCAmelCase_ : Dict = {v: k for k, v in self.vocab.items()}
@property
def UpperCamelCase__ ( self ):
"""simple docstring"""
return len(self.vocab )
def UpperCamelCase__ ( self ):
"""simple docstring"""
return dict(self.vocab , **self.added_tokens_encoder )
def UpperCamelCase__ ( self , lowercase_ ):
"""simple docstring"""
UpperCAmelCase_ : Optional[int] = []
for s in text:
char_tokens.extend(lowercase_ )
return char_tokens
def UpperCamelCase__ ( self , lowercase_ ):
"""simple docstring"""
return self.vocab.get(lowercase_ , self.vocab.get(self.unk_token ) )
def UpperCamelCase__ ( self , lowercase_ ):
"""simple docstring"""
return self.decoder.get(lowercase_ )
def UpperCamelCase__ ( self , lowercase_ , lowercase_ = None ):
"""simple docstring"""
if not os.path.isdir(lowercase_ ):
logger.error("Vocabulary path ({}) should be a directory".format(lowercase_ ) )
return
UpperCAmelCase_ : Optional[int] = os.path.join(
lowercase_ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] )
with open(lowercase_ , "w" , encoding="utf-8" ) as f:
f.write(json.dumps(self.vocab , indent=2 , sort_keys=lowercase_ , ensure_ascii=lowercase_ ) + "\n" )
return (vocab_file,)
| 23 | 0 |
import os
# All paths are set with the intent you should run this script from the root of the repo with the command
# python utils/check_doctest_list.py
A__ = """."""
if __name__ == "__main__":
A__ = os.path.join(REPO_PATH, """utils/documentation_tests.txt""")
A__ = []
A__ = []
with open(doctest_file_path) as fp:
for line in fp:
A__ = line.strip()
A__ = os.path.join(REPO_PATH, line)
if not (os.path.isfile(path) or os.path.isdir(path)):
non_existent_paths.append(line)
all_paths.append(path)
if len(non_existent_paths) > 0:
A__ = """\n""".join(non_existent_paths)
raise ValueError(f"`utils/documentation_tests.txt` contains non-existent paths:\n{non_existent_paths}")
if all_paths != sorted(all_paths):
raise ValueError("""Files in `utils/documentation_tests.txt` are not in alphabetical order.""")
| 82 |
'''simple docstring'''
import argparse
import json
from pathlib import Path
import torch
import torchaudio
from datasets import load_dataset
from huggingface_hub import hf_hub_download
from transformers import ASTConfig, ASTFeatureExtractor, ASTForAudioClassification
from transformers.utils import logging
logging.set_verbosity_info()
A =logging.get_logger(__name__)
def snake_case_ (_a : List[str] ):
UpperCAmelCase = ASTConfig()
if "10-10" in model_name:
pass
elif "speech-commands" in model_name:
UpperCAmelCase = 1_2_8
elif "12-12" in model_name:
UpperCAmelCase = 1_2
UpperCAmelCase = 1_2
elif "14-14" in model_name:
UpperCAmelCase = 1_4
UpperCAmelCase = 1_4
elif "16-16" in model_name:
UpperCAmelCase = 1_6
UpperCAmelCase = 1_6
else:
raise ValueError('''Model not supported''' )
UpperCAmelCase = '''huggingface/label-files'''
if "speech-commands" in model_name:
UpperCAmelCase = 3_5
UpperCAmelCase = '''speech-commands-v2-id2label.json'''
else:
UpperCAmelCase = 5_2_7
UpperCAmelCase = '''audioset-id2label.json'''
UpperCAmelCase = json.load(open(hf_hub_download(_a , _a , repo_type='''dataset''' ) , '''r''' ) )
UpperCAmelCase = {int(_a ): v for k, v in idalabel.items()}
UpperCAmelCase = idalabel
UpperCAmelCase = {v: k for k, v in idalabel.items()}
return config
def snake_case_ (_a : Tuple ):
if "module.v" in name:
UpperCAmelCase = name.replace('''module.v''' , '''audio_spectrogram_transformer''' )
if "cls_token" in name:
UpperCAmelCase = name.replace('''cls_token''' , '''embeddings.cls_token''' )
if "dist_token" in name:
UpperCAmelCase = name.replace('''dist_token''' , '''embeddings.distillation_token''' )
if "pos_embed" in name:
UpperCAmelCase = name.replace('''pos_embed''' , '''embeddings.position_embeddings''' )
if "patch_embed.proj" in name:
UpperCAmelCase = name.replace('''patch_embed.proj''' , '''embeddings.patch_embeddings.projection''' )
# transformer blocks
if "blocks" in name:
UpperCAmelCase = name.replace('''blocks''' , '''encoder.layer''' )
if "attn.proj" in name:
UpperCAmelCase = name.replace('''attn.proj''' , '''attention.output.dense''' )
if "attn" in name:
UpperCAmelCase = name.replace('''attn''' , '''attention.self''' )
if "norm1" in name:
UpperCAmelCase = name.replace('''norm1''' , '''layernorm_before''' )
if "norm2" in name:
UpperCAmelCase = name.replace('''norm2''' , '''layernorm_after''' )
if "mlp.fc1" in name:
UpperCAmelCase = name.replace('''mlp.fc1''' , '''intermediate.dense''' )
if "mlp.fc2" in name:
UpperCAmelCase = name.replace('''mlp.fc2''' , '''output.dense''' )
# final layernorm
if "audio_spectrogram_transformer.norm" in name:
UpperCAmelCase = name.replace('''audio_spectrogram_transformer.norm''' , '''audio_spectrogram_transformer.layernorm''' )
# classifier head
if "module.mlp_head.0" in name:
UpperCAmelCase = name.replace('''module.mlp_head.0''' , '''classifier.layernorm''' )
if "module.mlp_head.1" in name:
UpperCAmelCase = name.replace('''module.mlp_head.1''' , '''classifier.dense''' )
return name
def snake_case_ (_a : Dict , _a : List[Any] ):
for key in orig_state_dict.copy().keys():
UpperCAmelCase = orig_state_dict.pop(_a )
if "qkv" in key:
UpperCAmelCase = key.split('''.''' )
UpperCAmelCase = int(key_split[3] )
UpperCAmelCase = config.hidden_size
if "weight" in key:
UpperCAmelCase = val[:dim, :]
UpperCAmelCase = val[dim : dim * 2, :]
UpperCAmelCase = val[-dim:, :]
else:
UpperCAmelCase = val[:dim]
UpperCAmelCase = val[dim : dim * 2]
UpperCAmelCase = val[-dim:]
else:
UpperCAmelCase = val
return orig_state_dict
def snake_case_ (_a : Tuple ):
UpperCAmelCase = [
'''module.v.head.weight''',
'''module.v.head.bias''',
'''module.v.head_dist.weight''',
'''module.v.head_dist.bias''',
]
for k in ignore_keys:
state_dict.pop(_a , _a )
@torch.no_grad()
def snake_case_ (_a : int , _a : Union[str, Any] , _a : Dict=False ):
UpperCAmelCase = get_audio_spectrogram_transformer_config(_a )
UpperCAmelCase = {
'''ast-finetuned-audioset-10-10-0.4593''': (
'''https://www.dropbox.com/s/ca0b1v2nlxzyeb4/audioset_10_10_0.4593.pth?dl=1'''
),
'''ast-finetuned-audioset-10-10-0.450''': (
'''https://www.dropbox.com/s/1tv0hovue1bxupk/audioset_10_10_0.4495.pth?dl=1'''
),
'''ast-finetuned-audioset-10-10-0.448''': (
'''https://www.dropbox.com/s/6u5sikl4b9wo4u5/audioset_10_10_0.4483.pth?dl=1'''
),
'''ast-finetuned-audioset-10-10-0.448-v2''': (
'''https://www.dropbox.com/s/kt6i0v9fvfm1mbq/audioset_10_10_0.4475.pth?dl=1'''
),
'''ast-finetuned-audioset-12-12-0.447''': (
'''https://www.dropbox.com/s/snfhx3tizr4nuc8/audioset_12_12_0.4467.pth?dl=1'''
),
'''ast-finetuned-audioset-14-14-0.443''': (
'''https://www.dropbox.com/s/z18s6pemtnxm4k7/audioset_14_14_0.4431.pth?dl=1'''
),
'''ast-finetuned-audioset-16-16-0.442''': (
'''https://www.dropbox.com/s/mdsa4t1xmcimia6/audioset_16_16_0.4422.pth?dl=1'''
),
'''ast-finetuned-speech-commands-v2''': (
'''https://www.dropbox.com/s/q0tbqpwv44pquwy/speechcommands_10_10_0.9812.pth?dl=1'''
),
}
# load original state_dict
UpperCAmelCase = model_name_to_url[model_name]
UpperCAmelCase = torch.hub.load_state_dict_from_url(_a , map_location='''cpu''' )
# remove some keys
remove_keys(_a )
# rename some keys
UpperCAmelCase = convert_state_dict(_a , _a )
# load 🤗 model
UpperCAmelCase = ASTForAudioClassification(_a )
model.eval()
model.load_state_dict(_a )
# verify outputs on dummy input
# source: https://github.com/YuanGongND/ast/blob/79e873b8a54d0a3b330dd522584ff2b9926cd581/src/run.py#L62
UpperCAmelCase = -4.267_7393 if '''speech-commands''' not in model_name else -6.84_5978
UpperCAmelCase = 4.568_9974 if '''speech-commands''' not in model_name else 5.565_4526
UpperCAmelCase = 1_0_2_4 if '''speech-commands''' not in model_name else 1_2_8
UpperCAmelCase = ASTFeatureExtractor(mean=_a , std=_a , max_length=_a )
if "speech-commands" in model_name:
UpperCAmelCase = load_dataset('''speech_commands''' , '''v0.02''' , split='''validation''' )
UpperCAmelCase = dataset[0]['''audio''']['''array''']
else:
UpperCAmelCase = hf_hub_download(
repo_id='''nielsr/audio-spectogram-transformer-checkpoint''' , filename='''sample_audio.flac''' , repo_type='''dataset''' , )
UpperCAmelCase , UpperCAmelCase = torchaudio.load(_a )
UpperCAmelCase = waveform.squeeze().numpy()
UpperCAmelCase = feature_extractor(_a , sampling_rate=1_6_0_0_0 , return_tensors='''pt''' )
# forward pass
UpperCAmelCase = model(**_a )
UpperCAmelCase = outputs.logits
if model_name == "ast-finetuned-audioset-10-10-0.4593":
UpperCAmelCase = torch.tensor([-0.8760, -7.0042, -8.6602] )
elif model_name == "ast-finetuned-audioset-10-10-0.450":
UpperCAmelCase = torch.tensor([-1.1986, -7.0903, -8.2718] )
elif model_name == "ast-finetuned-audioset-10-10-0.448":
UpperCAmelCase = torch.tensor([-2.6128, -8.0080, -9.4344] )
elif model_name == "ast-finetuned-audioset-10-10-0.448-v2":
UpperCAmelCase = torch.tensor([-1.5080, -7.4534, -8.8917] )
elif model_name == "ast-finetuned-audioset-12-12-0.447":
UpperCAmelCase = torch.tensor([-0.5050, -6.5833, -8.0843] )
elif model_name == "ast-finetuned-audioset-14-14-0.443":
UpperCAmelCase = torch.tensor([-0.3826, -7.0336, -8.2413] )
elif model_name == "ast-finetuned-audioset-16-16-0.442":
UpperCAmelCase = torch.tensor([-1.2113, -6.9101, -8.3470] )
elif model_name == "ast-finetuned-speech-commands-v2":
UpperCAmelCase = torch.tensor([6.1589, -8.0566, -8.7984] )
else:
raise ValueError('''Unknown model name''' )
if not torch.allclose(logits[0, :3] , _a , atol=1E-4 ):
raise ValueError('''Logits don\'t match''' )
print('''Looks ok!''' )
if pytorch_dump_folder_path is not None:
Path(_a ).mkdir(exist_ok=_a )
print(F"Saving model {model_name} to {pytorch_dump_folder_path}" )
model.save_pretrained(_a )
print(F"Saving feature extractor to {pytorch_dump_folder_path}" )
feature_extractor.save_pretrained(_a )
if push_to_hub:
print('''Pushing model and feature extractor to the hub...''' )
model.push_to_hub(F"MIT/{model_name}" )
feature_extractor.push_to_hub(F"MIT/{model_name}" )
if __name__ == "__main__":
A =argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--model_name',
default='ast-finetuned-audioset-10-10-0.4593',
type=str,
help='Name of the Audio Spectrogram Transformer model you\'d like to convert.',
)
parser.add_argument(
'--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.'
)
parser.add_argument(
'--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.'
)
A =parser.parse_args()
convert_audio_spectrogram_transformer_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
| 34 | 0 |
"""simple docstring"""
from __future__ import annotations
from typing import Any
class __lowerCAmelCase :
def __init__( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = 0 ):
'''simple docstring'''
__UpperCamelCase , __UpperCamelCase = row, column
__UpperCamelCase = [[default_value for c in range(__UpperCAmelCase )] for r in range(__UpperCAmelCase )]
def __str__( self ):
'''simple docstring'''
__UpperCamelCase = F'Matrix consist of {self.row} rows and {self.column} columns\n'
# Make string identifier
__UpperCamelCase = 0
for row_vector in self.array:
for obj in row_vector:
__UpperCamelCase = max(__UpperCAmelCase , len(str(__UpperCAmelCase ) ) )
__UpperCamelCase = F'%{max_element_length}s'
# Make string and return
def single_line(__UpperCAmelCase ) -> str:
nonlocal string_format_identifier
__UpperCamelCase = '['
line += ", ".join(string_format_identifier % (obj,) for obj in row_vector )
line += "]"
return line
s += "\n".join(single_line(__UpperCAmelCase ) for row_vector in self.array )
return s
def __repr__( self ):
'''simple docstring'''
return str(self )
def UpperCAmelCase ( self , __UpperCAmelCase ):
'''simple docstring'''
if not (isinstance(__UpperCAmelCase , (list, tuple) ) and len(__UpperCAmelCase ) == 2):
return False
elif not (0 <= loc[0] < self.row and 0 <= loc[1] < self.column):
return False
else:
return True
def __getitem__( self , __UpperCAmelCase ):
'''simple docstring'''
assert self.validate_indicies(__UpperCAmelCase )
return self.array[loc[0]][loc[1]]
def __setitem__( self , __UpperCAmelCase , __UpperCAmelCase ):
'''simple docstring'''
assert self.validate_indicies(__UpperCAmelCase )
__UpperCamelCase = value
def __add__( self , __UpperCAmelCase ):
'''simple docstring'''
assert isinstance(__UpperCAmelCase , __UpperCAmelCase )
assert self.row == another.row and self.column == another.column
# Add
__UpperCamelCase = Matrix(self.row , self.column )
for r in range(self.row ):
for c in range(self.column ):
__UpperCamelCase = self[r, c] + another[r, c]
return result
def __neg__( self ):
'''simple docstring'''
__UpperCamelCase = Matrix(self.row , self.column )
for r in range(self.row ):
for c in range(self.column ):
__UpperCamelCase = -self[r, c]
return result
def __sub__( self , __UpperCAmelCase ):
'''simple docstring'''
return self + (-another)
def __mul__( self , __UpperCAmelCase ):
'''simple docstring'''
if isinstance(__UpperCAmelCase , (int, float) ): # Scalar multiplication
__UpperCamelCase = Matrix(self.row , self.column )
for r in range(self.row ):
for c in range(self.column ):
__UpperCamelCase = self[r, c] * another
return result
elif isinstance(__UpperCAmelCase , __UpperCAmelCase ): # Matrix multiplication
assert self.column == another.row
__UpperCamelCase = Matrix(self.row , another.column )
for r in range(self.row ):
for c in range(another.column ):
for i in range(self.column ):
result[r, c] += self[r, i] * another[i, c]
return result
else:
__UpperCamelCase = F'Unsupported type given for another ({type(__UpperCAmelCase )})'
raise TypeError(__UpperCAmelCase )
def UpperCAmelCase ( self ):
'''simple docstring'''
__UpperCamelCase = Matrix(self.column , self.row )
for r in range(self.row ):
for c in range(self.column ):
__UpperCamelCase = self[r, c]
return result
def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase ):
'''simple docstring'''
assert isinstance(__UpperCAmelCase , __UpperCAmelCase ) and isinstance(__UpperCAmelCase , __UpperCAmelCase )
assert self.row == self.column == u.row == v.row # u, v should be column vector
assert u.column == v.column == 1 # u, v should be column vector
# Calculate
__UpperCamelCase = v.transpose()
__UpperCamelCase = (v_t * self * u)[0, 0] + 1
if numerator_factor == 0:
return None # It's not invertable
return self - ((self * u) * (v_t * self) * (1.0 / numerator_factor))
# Testing
if __name__ == "__main__":
def A ( ) -> None:
# a^(-1)
__UpperCamelCase = Matrix(3 , 3 , 0 )
for i in range(3 ):
__UpperCamelCase = 1
print(f'a^(-1) is {ainv}' )
# u, v
__UpperCamelCase = Matrix(3 , 1 , 0 )
__UpperCamelCase , __UpperCamelCase , __UpperCamelCase = 1, 2, -3
__UpperCamelCase = Matrix(3 , 1 , 0 )
__UpperCamelCase , __UpperCamelCase , __UpperCamelCase = 4, -2, 5
print(f'u is {u}' )
print(f'v is {v}' )
print(f'uv^T is {u * v.transpose()}' )
# Sherman Morrison
print(f'(a + uv^T)^(-1) is {ainv.sherman_morrison(snake_case , snake_case )}' )
def A ( ) -> None:
import doctest
doctest.testmod()
testa()
| 263 |
"""simple docstring"""
import heapq as hq
import math
from collections.abc import Iterator
class __lowerCAmelCase :
def __init__( self , __UpperCAmelCase ):
'''simple docstring'''
__UpperCamelCase = str(id_ )
__UpperCamelCase = None
__UpperCamelCase = None
__UpperCamelCase = []
__UpperCamelCase = {} # {vertex:distance}
def __lt__( self , __UpperCAmelCase ):
'''simple docstring'''
return self.key < other.key
def __repr__( self ):
'''simple docstring'''
return self.id
def UpperCAmelCase ( self , __UpperCAmelCase ):
'''simple docstring'''
self.neighbors.append(__UpperCAmelCase )
def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase ):
'''simple docstring'''
__UpperCamelCase = weight
def A ( snake_case :List[Any] , snake_case :Dict , snake_case :Any , snake_case :str ) -> List[str]:
# add the neighbors:
graph[a - 1].add_neighbor(graph[b - 1] )
graph[b - 1].add_neighbor(graph[a - 1] )
# add the edges:
graph[a - 1].add_edge(graph[b - 1] , snake_case )
graph[b - 1].add_edge(graph[a - 1] , snake_case )
def A ( snake_case :list , snake_case :Vertex ) -> list:
__UpperCamelCase = []
for u in graph:
__UpperCamelCase = math.inf
__UpperCamelCase = None
__UpperCamelCase = 0
__UpperCamelCase = graph[:]
while q:
__UpperCamelCase = min(snake_case )
q.remove(snake_case )
for v in u.neighbors:
if (v in q) and (u.edges[v.id] < v.key):
__UpperCamelCase = u
__UpperCamelCase = u.edges[v.id]
for i in range(1 , len(snake_case ) ):
a.append((int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1) )
return a
def A ( snake_case :list , snake_case :Vertex ) -> Iterator[tuple]:
for u in graph:
__UpperCamelCase = math.inf
__UpperCamelCase = None
__UpperCamelCase = 0
__UpperCamelCase = list(snake_case )
hq.heapify(snake_case )
while h:
__UpperCamelCase = hq.heappop(snake_case )
for v in u.neighbors:
if (v in h) and (u.edges[v.id] < v.key):
__UpperCamelCase = u
__UpperCamelCase = u.edges[v.id]
hq.heapify(snake_case )
for i in range(1 , len(snake_case ) ):
yield (int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1)
def A ( ) -> None:
pass
if __name__ == "__main__":
import doctest
doctest.testmod()
| 263 | 1 |
"""simple docstring"""
from typing import Optional
import pyspark
from .. import Features, NamedSplit
from ..download import DownloadMode
from ..packaged_modules.spark.spark import Spark
from .abc import AbstractDatasetReader
class A__ ( _lowerCamelCase):
def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = True , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = False , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = True , _SCREAMING_SNAKE_CASE = "arrow" , **_SCREAMING_SNAKE_CASE , ):
super().__init__(
split=_SCREAMING_SNAKE_CASE , features=_SCREAMING_SNAKE_CASE , cache_dir=_SCREAMING_SNAKE_CASE , keep_in_memory=_SCREAMING_SNAKE_CASE , streaming=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , )
__lowerCAmelCase : List[str] = load_from_cache_file
__lowerCAmelCase : Any = file_format
__lowerCAmelCase : Dict = Spark(
df=_SCREAMING_SNAKE_CASE , features=_SCREAMING_SNAKE_CASE , cache_dir=_SCREAMING_SNAKE_CASE , working_dir=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , )
def __lowerCamelCase ( self ):
if self.streaming:
return self.builder.as_streaming_dataset(split=self.split )
__lowerCAmelCase : Union[str, Any] = None if self._load_from_cache_file else DownloadMode.FORCE_REDOWNLOAD
self.builder.download_and_prepare(
download_mode=_SCREAMING_SNAKE_CASE , file_format=self._file_format , )
return self.builder.as_dataset(split=self.split ) | 86 |
"""simple docstring"""
import unittest
from typing import Dict, List, Optional, Union
import numpy as np
from transformers.testing_utils import require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import BridgeTowerImageProcessor
class snake_case_( unittest.TestCase ):
def __init__( self : Union[str, Any] , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : bool = True , UpperCamelCase_ : Dict[str, int] = None , UpperCamelCase_ : int = 3_2 , UpperCamelCase_ : bool = True , UpperCamelCase_ : Union[int, float] = 1 / 2_5_5 , UpperCamelCase_ : bool = True , UpperCamelCase_ : bool = True , UpperCamelCase_ : Optional[Union[float, List[float]]] = [0.48_145_466, 0.4_578_275, 0.40_821_073] , UpperCamelCase_ : Optional[Union[float, List[float]]] = [0.26_862_954, 0.26_130_258, 0.27_577_711] , UpperCamelCase_ : bool = True , UpperCamelCase_ : Optional[int]=7 , UpperCamelCase_ : int=3_0 , UpperCamelCase_ : str=4_0_0 , UpperCamelCase_ : List[Any]=3 , ):
lowerCAmelCase : Union[str, Any] = parent
lowerCAmelCase : Union[str, Any] = do_resize
lowerCAmelCase : List[str] = size if size is not None else {'''shortest_edge''': 2_8_8}
lowerCAmelCase : int = size_divisor
lowerCAmelCase : List[str] = do_rescale
lowerCAmelCase : Optional[Any] = rescale_factor
lowerCAmelCase : Dict = do_normalize
lowerCAmelCase : Any = do_center_crop
lowerCAmelCase : Union[str, Any] = image_mean
lowerCAmelCase : Optional[Any] = image_std
lowerCAmelCase : Union[str, Any] = do_pad
lowerCAmelCase : Union[str, Any] = batch_size
lowerCAmelCase : Any = num_channels
lowerCAmelCase : Union[str, Any] = min_resolution
lowerCAmelCase : int = max_resolution
def lowerCamelCase__ ( self : Dict ):
return {
"image_mean": self.image_mean,
"image_std": self.image_std,
"do_normalize": self.do_normalize,
"do_resize": self.do_resize,
"size": self.size,
"size_divisor": self.size_divisor,
}
def lowerCamelCase__ ( self : Any , UpperCamelCase_ : int , UpperCamelCase_ : List[str]=False ):
if not batched:
lowerCAmelCase : Dict = self.size['''shortest_edge''']
lowerCAmelCase : Dict = image_inputs[0]
if isinstance(UpperCamelCase_ , Image.Image ):
lowerCAmelCase, lowerCAmelCase : Optional[int] = image.size
else:
lowerCAmelCase, lowerCAmelCase : List[Any] = image.shape[1], image.shape[2]
lowerCAmelCase : Union[str, Any] = size / min(UpperCamelCase_ , UpperCamelCase_ )
if h < w:
lowerCAmelCase, lowerCAmelCase : Dict = size, scale * w
else:
lowerCAmelCase, lowerCAmelCase : Optional[int] = scale * h, size
lowerCAmelCase : List[Any] = int((1_3_3_3 / 8_0_0) * size )
if max(UpperCamelCase_ , UpperCamelCase_ ) > max_size:
lowerCAmelCase : int = max_size / max(UpperCamelCase_ , UpperCamelCase_ )
lowerCAmelCase : str = newh * scale
lowerCAmelCase : Tuple = neww * scale
lowerCAmelCase, lowerCAmelCase : List[str] = int(newh + 0.5 ), int(neww + 0.5 )
lowerCAmelCase, lowerCAmelCase : Tuple = (
newh // self.size_divisor * self.size_divisor,
neww // self.size_divisor * self.size_divisor,
)
else:
lowerCAmelCase : Optional[int] = []
for image in image_inputs:
lowerCAmelCase, lowerCAmelCase : List[str] = self.get_expected_values([image] )
expected_values.append((expected_height, expected_width) )
lowerCAmelCase : Union[str, Any] = max(UpperCamelCase_ , key=lambda UpperCamelCase_ : item[0] )[0]
lowerCAmelCase : Union[str, Any] = max(UpperCamelCase_ , key=lambda UpperCamelCase_ : item[1] )[1]
return expected_height, expected_width
@require_torch
@require_vision
class snake_case_( a__ , unittest.TestCase ):
__UpperCamelCase = BridgeTowerImageProcessor if is_vision_available() else None
def lowerCamelCase__ ( self : Optional[int] ):
lowerCAmelCase : Optional[int] = BridgeTowerImageProcessingTester(self )
@property
def lowerCamelCase__ ( self : List[str] ):
return self.image_processor_tester.prepare_image_processor_dict()
def lowerCamelCase__ ( self : List[str] ):
lowerCAmelCase : Optional[Any] = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(UpperCamelCase_ , '''image_mean''' ) )
self.assertTrue(hasattr(UpperCamelCase_ , '''image_std''' ) )
self.assertTrue(hasattr(UpperCamelCase_ , '''do_normalize''' ) )
self.assertTrue(hasattr(UpperCamelCase_ , '''do_resize''' ) )
self.assertTrue(hasattr(UpperCamelCase_ , '''size''' ) )
self.assertTrue(hasattr(UpperCamelCase_ , '''size_divisor''' ) )
def lowerCamelCase__ ( self : int ):
pass
def lowerCamelCase__ ( self : Optional[Any] ):
# Initialize image processor
lowerCAmelCase : str = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
lowerCAmelCase : Optional[int] = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCamelCase_ )
for image in image_inputs:
self.assertIsInstance(UpperCamelCase_ , Image.Image )
# Test not batched input
lowerCAmelCase : Optional[int] = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values
lowerCAmelCase, lowerCAmelCase : List[Any] = self.image_processor_tester.get_expected_values(UpperCamelCase_ )
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
lowerCAmelCase : Dict = image_processing(UpperCamelCase_ , return_tensors='''pt''' ).pixel_values
lowerCAmelCase, lowerCAmelCase : int = self.image_processor_tester.get_expected_values(UpperCamelCase_ , batched=UpperCamelCase_ )
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
def lowerCamelCase__ ( self : Optional[Any] ):
# Initialize image processor
lowerCAmelCase : Tuple = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
lowerCAmelCase : List[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCamelCase_ , numpify=UpperCamelCase_ )
for image in image_inputs:
self.assertIsInstance(UpperCamelCase_ , np.ndarray )
# Test not batched input
lowerCAmelCase : Any = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values
lowerCAmelCase, lowerCAmelCase : Optional[Any] = self.image_processor_tester.get_expected_values(UpperCamelCase_ )
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
lowerCAmelCase : Tuple = image_processing(UpperCamelCase_ , return_tensors='''pt''' ).pixel_values
lowerCAmelCase, lowerCAmelCase : str = self.image_processor_tester.get_expected_values(UpperCamelCase_ , batched=UpperCamelCase_ )
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
def lowerCamelCase__ ( self : Optional[int] ):
# Initialize image processor
lowerCAmelCase : Union[str, Any] = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
lowerCAmelCase : List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCamelCase_ , torchify=UpperCamelCase_ )
for image in image_inputs:
self.assertIsInstance(UpperCamelCase_ , torch.Tensor )
# Test not batched input
lowerCAmelCase : Any = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values
lowerCAmelCase, lowerCAmelCase : Tuple = self.image_processor_tester.get_expected_values(UpperCamelCase_ )
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
lowerCAmelCase : str = image_processing(UpperCamelCase_ , return_tensors='''pt''' ).pixel_values
lowerCAmelCase, lowerCAmelCase : str = self.image_processor_tester.get_expected_values(UpperCamelCase_ , batched=UpperCamelCase_ )
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
| 60 | 0 |
"""simple docstring"""
import os
import warnings
from typing import List, Optional
from ...tokenization_utils_base import BatchEncoding
from ...utils import logging
from .configuration_rag import RagConfig
_SCREAMING_SNAKE_CASE : Tuple = logging.get_logger(__name__)
class __a :
"""simple docstring"""
def __init__( self : Optional[Any] , lowercase_ : Any , lowercase_ : Optional[int] ):
UpperCamelCase__ : str =question_encoder
UpperCamelCase__ : Any =generator
UpperCamelCase__ : Optional[Any] =self.question_encoder
def _lowerCAmelCase ( self : Optional[Any] , lowercase_ : str ):
if os.path.isfile(__lowerCamelCase ):
raise ValueError(f'''Provided path ({save_directory}) should be a directory, not a file''' )
os.makedirs(__lowerCamelCase , exist_ok=__lowerCamelCase )
UpperCamelCase__ : Dict =os.path.join(__lowerCamelCase , '''question_encoder_tokenizer''' )
UpperCamelCase__ : Dict =os.path.join(__lowerCamelCase , '''generator_tokenizer''' )
self.question_encoder.save_pretrained(__lowerCamelCase )
self.generator.save_pretrained(__lowerCamelCase )
@classmethod
def _lowerCAmelCase ( cls : Tuple , lowercase_ : Optional[int] , **lowercase_ : str ):
from ..auto.tokenization_auto import AutoTokenizer
UpperCamelCase__ : Optional[Any] =kwargs.pop('''config''' , __lowerCamelCase )
if config is None:
UpperCamelCase__ : int =RagConfig.from_pretrained(__lowerCamelCase )
UpperCamelCase__ : Optional[Any] =AutoTokenizer.from_pretrained(
__lowerCamelCase , config=config.question_encoder , subfolder='''question_encoder_tokenizer''' )
UpperCamelCase__ : str =AutoTokenizer.from_pretrained(
__lowerCamelCase , config=config.generator , subfolder='''generator_tokenizer''' )
return cls(question_encoder=__lowerCamelCase , generator=__lowerCamelCase )
def __call__( self : int , *lowercase_ : str , **lowercase_ : Dict ):
return self.current_tokenizer(*__lowerCamelCase , **__lowerCamelCase )
def _lowerCAmelCase ( self : Optional[int] , *lowercase_ : Optional[Any] , **lowercase_ : Dict ):
return self.generator.batch_decode(*__lowerCamelCase , **__lowerCamelCase )
def _lowerCAmelCase ( self : List[Any] , *lowercase_ : Optional[Any] , **lowercase_ : Optional[int] ):
return self.generator.decode(*__lowerCamelCase , **__lowerCamelCase )
def _lowerCAmelCase ( self : List[str] ):
UpperCamelCase__ : Tuple =self.question_encoder
def _lowerCAmelCase ( self : str ):
UpperCamelCase__ : str =self.generator
def _lowerCAmelCase ( self : int , lowercase_ : Optional[Any] , lowercase_ : List[Any] = None , lowercase_ : int = None , lowercase_ : Dict = None , lowercase_ : Union[str, Any] = "longest" , lowercase_ : Union[str, Any] = None , lowercase_ : Optional[int] = True , **lowercase_ : str , ):
warnings.warn(
'''`prepare_seq2seq_batch` is deprecated and will be removed in version 5 of 🤗 Transformers. Use the '''
'''regular `__call__` method to prepare your inputs and the tokenizer under the `with_target_tokenizer` '''
'''context manager to prepare your targets. See the documentation of your specific tokenizer for more '''
'''details''' , __lowerCamelCase , )
if max_length is None:
UpperCamelCase__ : Union[str, Any] =self.current_tokenizer.model_max_length
UpperCamelCase__ : List[str] =self(
__lowerCamelCase , add_special_tokens=__lowerCamelCase , return_tensors=__lowerCamelCase , max_length=__lowerCamelCase , padding=__lowerCamelCase , truncation=__lowerCamelCase , **__lowerCamelCase , )
if tgt_texts is None:
return model_inputs
# Process tgt_texts
if max_target_length is None:
UpperCamelCase__ : str =self.current_tokenizer.model_max_length
UpperCamelCase__ : Optional[int] =self(
text_target=__lowerCamelCase , add_special_tokens=__lowerCamelCase , return_tensors=__lowerCamelCase , padding=__lowerCamelCase , max_length=__lowerCamelCase , truncation=__lowerCamelCase , **__lowerCamelCase , )
UpperCamelCase__ : Optional[Any] =labels['''input_ids''']
return model_inputs
| 356 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
_SCREAMING_SNAKE_CASE : List[str] = {
"""configuration_bigbird_pegasus""": [
"""BIGBIRD_PEGASUS_PRETRAINED_CONFIG_ARCHIVE_MAP""",
"""BigBirdPegasusConfig""",
"""BigBirdPegasusOnnxConfig""",
],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_SCREAMING_SNAKE_CASE : Optional[Any] = [
"""BIGBIRD_PEGASUS_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""BigBirdPegasusForCausalLM""",
"""BigBirdPegasusForConditionalGeneration""",
"""BigBirdPegasusForQuestionAnswering""",
"""BigBirdPegasusForSequenceClassification""",
"""BigBirdPegasusModel""",
"""BigBirdPegasusPreTrainedModel""",
]
if TYPE_CHECKING:
from .configuration_bigbird_pegasus import (
BIGBIRD_PEGASUS_PRETRAINED_CONFIG_ARCHIVE_MAP,
BigBirdPegasusConfig,
BigBirdPegasusOnnxConfig,
)
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_bigbird_pegasus import (
BIGBIRD_PEGASUS_PRETRAINED_MODEL_ARCHIVE_LIST,
BigBirdPegasusForCausalLM,
BigBirdPegasusForConditionalGeneration,
BigBirdPegasusForQuestionAnswering,
BigBirdPegasusForSequenceClassification,
BigBirdPegasusModel,
BigBirdPegasusPreTrainedModel,
)
else:
import sys
_SCREAMING_SNAKE_CASE : Optional[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 157 | 0 |
'''simple docstring'''
# coding=utf-8
# Copyright 2023 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# this script dumps information about the environment
import os
import platform
import sys
UpperCamelCase = '''3'''
print('''Python version:''', sys.version)
print('''OS platform:''', platform.platform())
print('''OS architecture:''', platform.machine())
try:
import torch
print('''Torch version:''', torch.__version__)
print('''Cuda available:''', torch.cuda.is_available())
print('''Cuda version:''', torch.version.cuda)
print('''CuDNN version:''', torch.backends.cudnn.version())
print('''Number of GPUs available:''', torch.cuda.device_count())
except ImportError:
print('''Torch version:''', None)
try:
import transformers
print('''transformers version:''', transformers.__version__)
except ImportError:
print('''transformers version:''', None)
| 319 |
'''simple docstring'''
import json
import os
from functools import lru_cache
from typing import List, Optional, Tuple
import regex as re
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...utils import logging
UpperCamelCase = logging.get_logger(__name__)
UpperCamelCase = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt'''}
UpperCamelCase = {
'''vocab_file''': {
'''allenai/longformer-base-4096''': '''https://huggingface.co/allenai/longformer-base-4096/resolve/main/vocab.json''',
'''allenai/longformer-large-4096''': (
'''https://huggingface.co/allenai/longformer-large-4096/resolve/main/vocab.json'''
),
'''allenai/longformer-large-4096-finetuned-triviaqa''': (
'''https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/vocab.json'''
),
'''allenai/longformer-base-4096-extra.pos.embd.only''': (
'''https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/vocab.json'''
),
'''allenai/longformer-large-4096-extra.pos.embd.only''': (
'''https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/vocab.json'''
),
},
'''merges_file''': {
'''allenai/longformer-base-4096''': '''https://huggingface.co/allenai/longformer-base-4096/resolve/main/merges.txt''',
'''allenai/longformer-large-4096''': (
'''https://huggingface.co/allenai/longformer-large-4096/resolve/main/merges.txt'''
),
'''allenai/longformer-large-4096-finetuned-triviaqa''': (
'''https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/merges.txt'''
),
'''allenai/longformer-base-4096-extra.pos.embd.only''': (
'''https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/merges.txt'''
),
'''allenai/longformer-large-4096-extra.pos.embd.only''': (
'''https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/merges.txt'''
),
},
}
UpperCamelCase = {
'''allenai/longformer-base-4096''': 4096,
'''allenai/longformer-large-4096''': 4096,
'''allenai/longformer-large-4096-finetuned-triviaqa''': 4096,
'''allenai/longformer-base-4096-extra.pos.embd.only''': 4096,
'''allenai/longformer-large-4096-extra.pos.embd.only''': 4096,
}
@lru_cache()
# Copied from transformers.models.roberta.tokenization_roberta.bytes_to_unicode
def SCREAMING_SNAKE_CASE( ) -> Dict:
A: Dict = (
list(range(ord('''!''' ) , ord('''~''' ) + 1 ) ) + list(range(ord('''¡''' ) , ord('''¬''' ) + 1 ) ) + list(range(ord('''®''' ) , ord('''ÿ''' ) + 1 ) )
)
A: Union[str, Any] = bs[:]
A: List[str] = 0
for b in range(2**8 ):
if b not in bs:
bs.append(__lowercase )
cs.append(2**8 + n )
n += 1
A: List[Any] = [chr(__lowercase ) for n in cs]
return dict(zip(__lowercase , __lowercase ) )
def SCREAMING_SNAKE_CASE( __lowercase ) -> Optional[int]:
A: Optional[Any] = set()
A: Tuple = word[0]
for char in word[1:]:
pairs.add((prev_char, char) )
A: List[Any] = char
return pairs
class lowerCAmelCase_ ( UpperCAmelCase_ ):
'''simple docstring'''
UpperCamelCase_ : int = VOCAB_FILES_NAMES
UpperCamelCase_ : int = PRETRAINED_VOCAB_FILES_MAP
UpperCamelCase_ : List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
UpperCamelCase_ : int = ["""input_ids""", """attention_mask"""]
def __init__( self : int , SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : str="replace" , SCREAMING_SNAKE_CASE_ : str="<s>" , SCREAMING_SNAKE_CASE_ : Any="</s>" , SCREAMING_SNAKE_CASE_ : int="</s>" , SCREAMING_SNAKE_CASE_ : List[Any]="<s>" , SCREAMING_SNAKE_CASE_ : str="<unk>" , SCREAMING_SNAKE_CASE_ : Dict="<pad>" , SCREAMING_SNAKE_CASE_ : Dict="<mask>" , SCREAMING_SNAKE_CASE_ : Union[str, Any]=False , **SCREAMING_SNAKE_CASE_ : Tuple , ) -> List[str]:
'''simple docstring'''
A: int = AddedToken(SCREAMING_SNAKE_CASE_ , lstrip=SCREAMING_SNAKE_CASE_ , rstrip=SCREAMING_SNAKE_CASE_ ) if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else bos_token
A: Dict = AddedToken(SCREAMING_SNAKE_CASE_ , lstrip=SCREAMING_SNAKE_CASE_ , rstrip=SCREAMING_SNAKE_CASE_ ) if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else eos_token
A: int = AddedToken(SCREAMING_SNAKE_CASE_ , lstrip=SCREAMING_SNAKE_CASE_ , rstrip=SCREAMING_SNAKE_CASE_ ) if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else sep_token
A: Dict = AddedToken(SCREAMING_SNAKE_CASE_ , lstrip=SCREAMING_SNAKE_CASE_ , rstrip=SCREAMING_SNAKE_CASE_ ) if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else cls_token
A: Any = AddedToken(SCREAMING_SNAKE_CASE_ , lstrip=SCREAMING_SNAKE_CASE_ , rstrip=SCREAMING_SNAKE_CASE_ ) if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else unk_token
A: str = AddedToken(SCREAMING_SNAKE_CASE_ , lstrip=SCREAMING_SNAKE_CASE_ , rstrip=SCREAMING_SNAKE_CASE_ ) if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else pad_token
# Mask token behave like a normal word, i.e. include the space before it
A: Dict = AddedToken(SCREAMING_SNAKE_CASE_ , lstrip=SCREAMING_SNAKE_CASE_ , rstrip=SCREAMING_SNAKE_CASE_ ) if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else mask_token
super().__init__(
errors=SCREAMING_SNAKE_CASE_ , bos_token=SCREAMING_SNAKE_CASE_ , eos_token=SCREAMING_SNAKE_CASE_ , unk_token=SCREAMING_SNAKE_CASE_ , sep_token=SCREAMING_SNAKE_CASE_ , cls_token=SCREAMING_SNAKE_CASE_ , pad_token=SCREAMING_SNAKE_CASE_ , mask_token=SCREAMING_SNAKE_CASE_ , add_prefix_space=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , )
with open(SCREAMING_SNAKE_CASE_ , encoding='''utf-8''' ) as vocab_handle:
A: str = json.load(SCREAMING_SNAKE_CASE_ )
A: str = {v: k for k, v in self.encoder.items()}
A: Union[str, Any] = errors # how to handle errors in decoding
A: Optional[int] = bytes_to_unicode()
A: Union[str, Any] = {v: k for k, v in self.byte_encoder.items()}
with open(SCREAMING_SNAKE_CASE_ , encoding='''utf-8''' ) as merges_handle:
A: int = merges_handle.read().split('''\n''' )[1:-1]
A: str = [tuple(merge.split() ) for merge in bpe_merges]
A: Any = dict(zip(SCREAMING_SNAKE_CASE_ , range(len(SCREAMING_SNAKE_CASE_ ) ) ) )
A: Union[str, Any] = {}
A: Tuple = add_prefix_space
# Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions
A: Dict = re.compile(R'''\'s|\'t|\'re|\'ve|\'m|\'ll|\'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+''' )
@property
def _snake_case ( self : int ) -> List[Any]:
'''simple docstring'''
return len(self.encoder )
def _snake_case ( self : Optional[Any] ) -> int:
'''simple docstring'''
return dict(self.encoder , **self.added_tokens_encoder )
def _snake_case ( self : str , SCREAMING_SNAKE_CASE_ : Optional[int] ) -> Optional[Any]:
'''simple docstring'''
if token in self.cache:
return self.cache[token]
A: str = tuple(SCREAMING_SNAKE_CASE_ )
A: str = get_pairs(SCREAMING_SNAKE_CASE_ )
if not pairs:
return token
while True:
A: Dict = min(SCREAMING_SNAKE_CASE_ , key=lambda SCREAMING_SNAKE_CASE_ : self.bpe_ranks.get(SCREAMING_SNAKE_CASE_ , float('''inf''' ) ) )
if bigram not in self.bpe_ranks:
break
A , A: Optional[Any] = bigram
A: Tuple = []
A: List[Any] = 0
while i < len(SCREAMING_SNAKE_CASE_ ):
try:
A: Union[str, Any] = word.index(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
except ValueError:
new_word.extend(word[i:] )
break
else:
new_word.extend(word[i:j] )
A: int = j
if word[i] == first and i < len(SCREAMING_SNAKE_CASE_ ) - 1 and word[i + 1] == second:
new_word.append(first + second )
i += 2
else:
new_word.append(word[i] )
i += 1
A: Optional[Any] = tuple(SCREAMING_SNAKE_CASE_ )
A: Any = new_word
if len(SCREAMING_SNAKE_CASE_ ) == 1:
break
else:
A: Union[str, Any] = get_pairs(SCREAMING_SNAKE_CASE_ )
A: str = ''' '''.join(SCREAMING_SNAKE_CASE_ )
A: str = word
return word
def _snake_case ( self : Union[str, Any] , SCREAMING_SNAKE_CASE_ : Optional[Any] ) -> Optional[int]:
'''simple docstring'''
A: Dict = []
for token in re.findall(self.pat , SCREAMING_SNAKE_CASE_ ):
A: Tuple = ''''''.join(
self.byte_encoder[b] for b in token.encode('''utf-8''' ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case)
bpe_tokens.extend(bpe_token for bpe_token in self.bpe(SCREAMING_SNAKE_CASE_ ).split(''' ''' ) )
return bpe_tokens
def _snake_case ( self : List[Any] , SCREAMING_SNAKE_CASE_ : Optional[Any] ) -> Optional[Any]:
'''simple docstring'''
return self.encoder.get(SCREAMING_SNAKE_CASE_ , self.encoder.get(self.unk_token ) )
def _snake_case ( self : Tuple , SCREAMING_SNAKE_CASE_ : Optional[Any] ) -> str:
'''simple docstring'''
return self.decoder.get(SCREAMING_SNAKE_CASE_ )
def _snake_case ( self : Union[str, Any] , SCREAMING_SNAKE_CASE_ : Optional[int] ) -> Tuple:
'''simple docstring'''
A: Optional[int] = ''''''.join(SCREAMING_SNAKE_CASE_ )
A: Tuple = bytearray([self.byte_decoder[c] for c in text] ).decode('''utf-8''' , errors=self.errors )
return text
def _snake_case ( self : int , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : Optional[str] = None ) -> Tuple[str]:
'''simple docstring'''
if not os.path.isdir(SCREAMING_SNAKE_CASE_ ):
logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" )
return
A: Union[str, Any] = os.path.join(
SCREAMING_SNAKE_CASE_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] )
A: int = os.path.join(
SCREAMING_SNAKE_CASE_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''merges_file'''] )
with open(SCREAMING_SNAKE_CASE_ , '''w''' , encoding='''utf-8''' ) as f:
f.write(json.dumps(self.encoder , indent=2 , sort_keys=SCREAMING_SNAKE_CASE_ , ensure_ascii=SCREAMING_SNAKE_CASE_ ) + '''\n''' )
A: Any = 0
with open(SCREAMING_SNAKE_CASE_ , '''w''' , encoding='''utf-8''' ) as writer:
writer.write('''#version: 0.2\n''' )
for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda SCREAMING_SNAKE_CASE_ : kv[1] ):
if index != token_index:
logger.warning(
f"""Saving vocabulary to {merge_file}: BPE merge indices are not consecutive."""
''' Please check that the tokenizer is not corrupted!''' )
A: Union[str, Any] = token_index
writer.write(''' '''.join(SCREAMING_SNAKE_CASE_ ) + '''\n''' )
index += 1
return vocab_file, merge_file
def _snake_case ( self : List[Any] , SCREAMING_SNAKE_CASE_ : List[int] , SCREAMING_SNAKE_CASE_ : Optional[List[int]] = None ) -> List[int]:
'''simple docstring'''
if token_ids_a is None:
return [self.cls_token_id] + token_ids_a + [self.sep_token_id]
A: int = [self.cls_token_id]
A: str = [self.sep_token_id]
return cls + token_ids_a + sep + sep + token_ids_a + sep
def _snake_case ( self : Tuple , SCREAMING_SNAKE_CASE_ : List[int] , SCREAMING_SNAKE_CASE_ : Optional[List[int]] = None , SCREAMING_SNAKE_CASE_ : bool = False ) -> List[int]:
'''simple docstring'''
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=SCREAMING_SNAKE_CASE_ , token_ids_a=SCREAMING_SNAKE_CASE_ , already_has_special_tokens=SCREAMING_SNAKE_CASE_ )
if token_ids_a is None:
return [1] + ([0] * len(SCREAMING_SNAKE_CASE_ )) + [1]
return [1] + ([0] * len(SCREAMING_SNAKE_CASE_ )) + [1, 1] + ([0] * len(SCREAMING_SNAKE_CASE_ )) + [1]
def _snake_case ( self : Tuple , SCREAMING_SNAKE_CASE_ : List[int] , SCREAMING_SNAKE_CASE_ : Optional[List[int]] = None ) -> List[int]:
'''simple docstring'''
A: Dict = [self.sep_token_id]
A: Optional[Any] = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
def _snake_case ( self : int , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : Dict=False , **SCREAMING_SNAKE_CASE_ : Optional[int] ) -> int:
'''simple docstring'''
A: Tuple = kwargs.pop('''add_prefix_space''' , self.add_prefix_space )
if (is_split_into_words or add_prefix_space) and (len(SCREAMING_SNAKE_CASE_ ) > 0 and not text[0].isspace()):
A: List[Any] = ''' ''' + text
return (text, kwargs)
| 319 | 1 |
import asyncio
import os
import re
import sys
import tempfile
import unittest
from contextlib import contextmanager
from copy import deepcopy
from distutils.util import strtobool
from enum import Enum
from importlib.util import find_spec
from pathlib import Path
from unittest.mock import patch
import pyarrow as pa
import pytest
import requests
from packaging import version
from datasets import config
if config.PY_VERSION < version.parse("3.8"):
import importlib_metadata
else:
import importlib.metadata as importlib_metadata
def A__ ( __lowerCamelCase, __lowerCamelCase=False ):
try:
SCREAMING_SNAKE_CASE_ = os.environ[key]
except KeyError:
# KEY isn't set, default to `default`.
SCREAMING_SNAKE_CASE_ = default
else:
# KEY is set, convert it to True or False.
try:
SCREAMING_SNAKE_CASE_ = strtobool(__lowerCamelCase )
except ValueError:
# More values are supported, but let's keep the message simple.
raise ValueError(F'''If set, {key} must be yes or no.''' )
return _value
__UpperCAmelCase = parse_flag_from_env("RUN_SLOW", default=False)
__UpperCAmelCase = parse_flag_from_env("RUN_REMOTE", default=False)
__UpperCAmelCase = parse_flag_from_env("RUN_LOCAL", default=True)
__UpperCAmelCase = parse_flag_from_env("RUN_PACKAGED", default=True)
# Compression
__UpperCAmelCase = pytest.mark.skipif(not config.LZ4_AVAILABLE, reason="test requires lz4")
__UpperCAmelCase = pytest.mark.skipif(not config.PY7ZR_AVAILABLE, reason="test requires py7zr")
__UpperCAmelCase = pytest.mark.skipif(not config.ZSTANDARD_AVAILABLE, reason="test requires zstandard")
# Audio
__UpperCAmelCase = pytest.mark.skipif(
# On Windows and OS X, soundfile installs sndfile
find_spec("soundfile") is None or version.parse(importlib_metadata.version("soundfile")) < version.parse("0.12.0"),
reason="test requires sndfile>=0.12.1: 'pip install \"soundfile>=0.12.1\"'; ",
)
# Beam
__UpperCAmelCase = pytest.mark.skipif(
not config.BEAM_AVAILABLE or config.DILL_VERSION >= version.parse("0.3.2"),
reason="test requires apache-beam and a compatible dill version",
)
# Dill-cloudpickle compatibility
__UpperCAmelCase = pytest.mark.skipif(
config.DILL_VERSION <= version.parse("0.3.2"),
reason="test requires dill>0.3.2 for cloudpickle compatibility",
)
# Windows
__UpperCAmelCase = pytest.mark.skipif(
sys.platform == "win32",
reason="test should not be run on Windows",
)
def A__ ( __lowerCamelCase ):
try:
import faiss # noqa
except ImportError:
SCREAMING_SNAKE_CASE_ = unittest.skip('''test requires faiss''' )(__lowerCamelCase )
return test_case
def A__ ( __lowerCamelCase ):
try:
import regex # noqa
except ImportError:
SCREAMING_SNAKE_CASE_ = unittest.skip('''test requires regex''' )(__lowerCamelCase )
return test_case
def A__ ( __lowerCamelCase ):
try:
import elasticsearch # noqa
except ImportError:
SCREAMING_SNAKE_CASE_ = unittest.skip('''test requires elasticsearch''' )(__lowerCamelCase )
return test_case
def A__ ( __lowerCamelCase ):
try:
import sqlalchemy # noqa
except ImportError:
SCREAMING_SNAKE_CASE_ = unittest.skip('''test requires sqlalchemy''' )(__lowerCamelCase )
return test_case
def A__ ( __lowerCamelCase ):
if not config.TORCH_AVAILABLE:
SCREAMING_SNAKE_CASE_ = unittest.skip('''test requires PyTorch''' )(__lowerCamelCase )
return test_case
def A__ ( __lowerCamelCase ):
if not config.TF_AVAILABLE:
SCREAMING_SNAKE_CASE_ = unittest.skip('''test requires TensorFlow''' )(__lowerCamelCase )
return test_case
def A__ ( __lowerCamelCase ):
if not config.JAX_AVAILABLE:
SCREAMING_SNAKE_CASE_ = unittest.skip('''test requires JAX''' )(__lowerCamelCase )
return test_case
def A__ ( __lowerCamelCase ):
if not config.PIL_AVAILABLE:
SCREAMING_SNAKE_CASE_ = unittest.skip('''test requires Pillow''' )(__lowerCamelCase )
return test_case
def A__ ( __lowerCamelCase ):
try:
import transformers # noqa F401
except ImportError:
return unittest.skip('''test requires transformers''' )(__lowerCamelCase )
else:
return test_case
def A__ ( __lowerCamelCase ):
try:
import tiktoken # noqa F401
except ImportError:
return unittest.skip('''test requires tiktoken''' )(__lowerCamelCase )
else:
return test_case
def A__ ( __lowerCamelCase ):
try:
import spacy # noqa F401
except ImportError:
return unittest.skip('''test requires spacy''' )(__lowerCamelCase )
else:
return test_case
def A__ ( __lowerCamelCase ):
def _require_spacy_model(__lowerCamelCase ):
try:
import spacy # noqa F401
spacy.load(__lowerCamelCase )
except ImportError:
return unittest.skip('''test requires spacy''' )(__lowerCamelCase )
except OSError:
return unittest.skip('''test requires spacy model \'{}\''''.format(__lowerCamelCase ) )(__lowerCamelCase )
else:
return test_case
return _require_spacy_model
def A__ ( __lowerCamelCase ):
try:
import pyspark # noqa F401
except ImportError:
return unittest.skip('''test requires pyspark''' )(__lowerCamelCase )
else:
return test_case
def A__ ( __lowerCamelCase ):
try:
import joblibspark # noqa F401
except ImportError:
return unittest.skip('''test requires joblibspark''' )(__lowerCamelCase )
else:
return test_case
def A__ ( __lowerCamelCase ):
if not _run_slow_tests or _run_slow_tests == 0:
SCREAMING_SNAKE_CASE_ = unittest.skip('''test is slow''' )(__lowerCamelCase )
return test_case
def A__ ( __lowerCamelCase ):
if not _run_local_tests or _run_local_tests == 0:
SCREAMING_SNAKE_CASE_ = unittest.skip('''test is local''' )(__lowerCamelCase )
return test_case
def A__ ( __lowerCamelCase ):
if not _run_packaged_tests or _run_packaged_tests == 0:
SCREAMING_SNAKE_CASE_ = unittest.skip('''test is packaged''' )(__lowerCamelCase )
return test_case
def A__ ( __lowerCamelCase ):
if not _run_remote_tests or _run_remote_tests == 0:
SCREAMING_SNAKE_CASE_ = unittest.skip('''test requires remote''' )(__lowerCamelCase )
return test_case
def A__ ( *__lowerCamelCase ):
def decorate(cls ):
for name, fn in cls.__dict__.items():
if callable(__lowerCamelCase ) and name.startswith('''test''' ):
for decorator in decorators:
SCREAMING_SNAKE_CASE_ = decorator(__lowerCamelCase )
setattr(cls, __lowerCamelCase, __lowerCamelCase )
return cls
return decorate
class UpperCamelCase__ ( __SCREAMING_SNAKE_CASE ):
"""simple docstring"""
pass
class UpperCamelCase__ ( __SCREAMING_SNAKE_CASE ):
"""simple docstring"""
UpperCAmelCase_ =0
UpperCAmelCase_ =1
UpperCAmelCase_ =2
@contextmanager
def A__ ( __lowerCamelCase=OfflineSimulationMode.CONNECTION_FAILS, __lowerCamelCase=1E-16 ):
SCREAMING_SNAKE_CASE_ = requests.Session().request
def timeout_request(__lowerCamelCase, __lowerCamelCase, __lowerCamelCase, **__lowerCamelCase ):
# Change the url to an invalid url so that the connection hangs
SCREAMING_SNAKE_CASE_ = '''https://10.255.255.1'''
if kwargs.get('''timeout''' ) is None:
raise RequestWouldHangIndefinitelyError(
F'''Tried a call to {url} in offline mode with no timeout set. Please set a timeout.''' )
SCREAMING_SNAKE_CASE_ = timeout
try:
return online_request(__lowerCamelCase, __lowerCamelCase, **__lowerCamelCase )
except Exception as e:
# The following changes in the error are just here to make the offline timeout error prettier
SCREAMING_SNAKE_CASE_ = url
SCREAMING_SNAKE_CASE_ = e.args[0]
SCREAMING_SNAKE_CASE_ = (max_retry_error.args[0].replace('''10.255.255.1''', F'''OfflineMock[{url}]''' ),)
SCREAMING_SNAKE_CASE_ = (max_retry_error,)
raise
def raise_connection_error(__lowerCamelCase, __lowerCamelCase, **__lowerCamelCase ):
raise requests.ConnectionError('''Offline mode is enabled.''', request=__lowerCamelCase )
if mode is OfflineSimulationMode.CONNECTION_FAILS:
with patch('''requests.Session.send''', __lowerCamelCase ):
yield
elif mode is OfflineSimulationMode.CONNECTION_TIMES_OUT:
# inspired from https://stackoverflow.com/a/904609
with patch('''requests.Session.request''', __lowerCamelCase ):
yield
elif mode is OfflineSimulationMode.HF_DATASETS_OFFLINE_SET_TO_1:
with patch('''datasets.config.HF_DATASETS_OFFLINE''', __lowerCamelCase ):
yield
else:
raise ValueError('''Please use a value from the OfflineSimulationMode enum.''' )
@contextmanager
def A__ ( *__lowerCamelCase, **__lowerCamelCase ):
SCREAMING_SNAKE_CASE_ = str(Path().resolve() )
with tempfile.TemporaryDirectory(*__lowerCamelCase, **__lowerCamelCase ) as tmp_dir:
try:
os.chdir(__lowerCamelCase )
yield
finally:
os.chdir(__lowerCamelCase )
@contextmanager
def A__ ( ):
import gc
gc.collect()
SCREAMING_SNAKE_CASE_ = pa.total_allocated_bytes()
yield
assert pa.total_allocated_bytes() - previous_allocated_memory > 0, "Arrow memory didn't increase."
@contextmanager
def A__ ( ):
import gc
gc.collect()
SCREAMING_SNAKE_CASE_ = pa.total_allocated_bytes()
yield
assert pa.total_allocated_bytes() - previous_allocated_memory <= 0, "Arrow memory wasn't expected to increase."
def A__ ( __lowerCamelCase, __lowerCamelCase ):
return deepcopy(__lowerCamelCase ).integers(0, 1_00, 10 ).tolist() == deepcopy(__lowerCamelCase ).integers(0, 1_00, 10 ).tolist()
def A__ ( __lowerCamelCase ):
import decorator
from requests.exceptions import HTTPError
def _wrapper(__lowerCamelCase, *__lowerCamelCase, **__lowerCamelCase ):
try:
return func(*__lowerCamelCase, **__lowerCamelCase )
except HTTPError as err:
if str(__lowerCamelCase ).startswith('''500''' ) or str(__lowerCamelCase ).startswith('''502''' ):
pytest.xfail(str(__lowerCamelCase ) )
raise err
return decorator.decorator(_wrapper, __lowerCamelCase )
class UpperCamelCase__ :
"""simple docstring"""
def __init__( self , _A , _A , _A ) -> Dict:
SCREAMING_SNAKE_CASE_ = returncode
SCREAMING_SNAKE_CASE_ = stdout
SCREAMING_SNAKE_CASE_ = stderr
async def A__ ( __lowerCamelCase, __lowerCamelCase ):
while True:
SCREAMING_SNAKE_CASE_ = await stream.readline()
if line:
callback(__lowerCamelCase )
else:
break
async def A__ ( __lowerCamelCase, __lowerCamelCase=None, __lowerCamelCase=None, __lowerCamelCase=None, __lowerCamelCase=False, __lowerCamelCase=False ):
if echo:
print('''\nRunning: ''', ''' '''.join(__lowerCamelCase ) )
SCREAMING_SNAKE_CASE_ = await asyncio.create_subprocess_exec(
cmd[0], *cmd[1:], stdin=__lowerCamelCase, stdout=asyncio.subprocess.PIPE, stderr=asyncio.subprocess.PIPE, env=__lowerCamelCase, )
# note: there is a warning for a possible deadlock when using `wait` with huge amounts of data in the pipe
# https://docs.python.org/3/library/asyncio-subprocess.html#asyncio.asyncio.subprocess.Process.wait
#
# If it starts hanging, will need to switch to the following code. The problem is that no data
# will be seen until it's done and if it hangs for example there will be no debug info.
# out, err = await p.communicate()
# return _RunOutput(p.returncode, out, err)
SCREAMING_SNAKE_CASE_ = []
SCREAMING_SNAKE_CASE_ = []
def tee(__lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase="" ):
SCREAMING_SNAKE_CASE_ = line.decode('''utf-8''' ).rstrip()
sink.append(__lowerCamelCase )
if not quiet:
print(__lowerCamelCase, __lowerCamelCase, file=__lowerCamelCase )
# XXX: the timeout doesn't seem to make any difference here
await asyncio.wait(
[
_read_stream(p.stdout, lambda __lowerCamelCase : tee(__lowerCamelCase, __lowerCamelCase, sys.stdout, label='''stdout:''' ) ),
_read_stream(p.stderr, lambda __lowerCamelCase : tee(__lowerCamelCase, __lowerCamelCase, sys.stderr, label='''stderr:''' ) ),
], timeout=__lowerCamelCase, )
return _RunOutput(await p.wait(), __lowerCamelCase, __lowerCamelCase )
def A__ ( __lowerCamelCase, __lowerCamelCase=None, __lowerCamelCase=None, __lowerCamelCase=1_80, __lowerCamelCase=False, __lowerCamelCase=True ):
SCREAMING_SNAKE_CASE_ = asyncio.get_event_loop()
SCREAMING_SNAKE_CASE_ = loop.run_until_complete(
_stream_subprocess(__lowerCamelCase, env=__lowerCamelCase, stdin=__lowerCamelCase, timeout=__lowerCamelCase, quiet=__lowerCamelCase, echo=__lowerCamelCase ) )
SCREAMING_SNAKE_CASE_ = ''' '''.join(__lowerCamelCase )
if result.returncode > 0:
SCREAMING_SNAKE_CASE_ = '''\n'''.join(result.stderr )
raise RuntimeError(
F'''\'{cmd_str}\' failed with returncode {result.returncode}\n\n'''
F'''The combined stderr from workers follows:\n{stderr}''' )
# check that the subprocess actually did run and produced some output, should the test rely on
# the remote side to do the testing
if not result.stdout and not result.stderr:
raise RuntimeError(F'''\'{cmd_str}\' produced no output.''' )
return result
def A__ ( ):
SCREAMING_SNAKE_CASE_ = os.environ.get('''PYTEST_XDIST_WORKER''', '''gw0''' )
SCREAMING_SNAKE_CASE_ = re.sub(r'''^gw''', '''''', __lowerCamelCase, 0, re.M )
return int(__lowerCamelCase )
def A__ ( ):
SCREAMING_SNAKE_CASE_ = 2_95_00
SCREAMING_SNAKE_CASE_ = pytest_xdist_worker_id()
return port + uniq_delta
| 257 |
from .data_collator import (
DataCollatorForLanguageModeling,
DataCollatorForPermutationLanguageModeling,
DataCollatorForSeqaSeq,
DataCollatorForSOP,
DataCollatorForTokenClassification,
DataCollatorForWholeWordMask,
DataCollatorWithPadding,
DefaultDataCollator,
default_data_collator,
)
from .metrics import glue_compute_metrics, xnli_compute_metrics
from .processors import (
DataProcessor,
InputExample,
InputFeatures,
SingleSentenceClassificationProcessor,
SquadExample,
SquadFeatures,
SquadVaProcessor,
SquadVaProcessor,
glue_convert_examples_to_features,
glue_output_modes,
glue_processors,
glue_tasks_num_labels,
squad_convert_examples_to_features,
xnli_output_modes,
xnli_processors,
xnli_tasks_num_labels,
)
| 257 | 1 |
'''simple docstring'''
import os
def UpperCamelCase_ ( ) -> int:
'''simple docstring'''
with open(os.path.dirname(snake_case_ ) + """/p022_names.txt""" ) as file:
__lowerCAmelCase = str(file.readlines()[0] )
__lowerCAmelCase = names.replace("""\"""" , """""" ).split(""",""" )
names.sort()
__lowerCAmelCase = 0
__lowerCAmelCase = 0
for i, name in enumerate(snake_case_ ):
for letter in name:
name_score += ord(snake_case_ ) - 64
total_score += (i + 1) * name_score
__lowerCAmelCase = 0
return total_score
if __name__ == "__main__":
print(solution())
| 229 | '''simple docstring'''
import argparse
import gc
import json
import os
import torch
from datasets import load_dataset
from torch.optim import AdamW
from torch.utils.data import DataLoader
from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed
from accelerate import Accelerator, DistributedType
from accelerate.utils.deepspeed import DummyOptim, DummyScheduler
_A : Optional[Any] = 16
_A : Union[str, Any] = 32
def UpperCamelCase_ ( snake_case_ : List[str] ) -> str:
'''simple docstring'''
return int(x / 2**20 )
class _lowercase :
'''simple docstring'''
def __enter__( self : List[Any] ) -> int:
gc.collect()
torch.cuda.empty_cache()
torch.cuda.reset_max_memory_allocated() # reset the peak gauge to zero
__lowerCAmelCase = torch.cuda.memory_allocated()
return self
def __exit__( self : Tuple , *SCREAMING_SNAKE_CASE__ : List[Any] ) -> Optional[Any]:
gc.collect()
torch.cuda.empty_cache()
__lowerCAmelCase = torch.cuda.memory_allocated()
__lowerCAmelCase = torch.cuda.max_memory_allocated()
__lowerCAmelCase = bamb(self.end - self.begin )
__lowerCAmelCase = bamb(self.peak - self.begin )
# print(f"delta used/peak {self.used:4d}/{self.peaked:4d}")
def UpperCamelCase_ ( snake_case_ : Accelerator , snake_case_ : int = 16 , snake_case_ : str = "bert-base-cased" , snake_case_ : int = 3_20 , snake_case_ : int = 1_60 , ) -> Optional[int]:
'''simple docstring'''
__lowerCAmelCase = AutoTokenizer.from_pretrained(snake_case_ )
__lowerCAmelCase = load_dataset(
"""glue""" , """mrpc""" , split={"""train""": f"""train[:{n_train}]""", """validation""": f"""validation[:{n_val}]"""} )
def tokenize_function(snake_case_ : List[Any] ):
# max_length=None => use the model max length (it's actually the default)
__lowerCAmelCase = tokenizer(examples["""sentence1"""] , examples["""sentence2"""] , truncation=snake_case_ , max_length=snake_case_ )
return outputs
# Apply the method we just defined to all the examples in all the splits of the dataset
__lowerCAmelCase = datasets.map(
snake_case_ , batched=snake_case_ , remove_columns=["""idx""", """sentence1""", """sentence2"""] , load_from_cache_file=snake_case_ )
# We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the
# transformers library
__lowerCAmelCase = tokenized_datasets.rename_column("""label""" , """labels""" )
def collate_fn(snake_case_ : List[Any] ):
# On TPU it's best to pad everything to the same length or training will be very slow.
if accelerator.distributed_type == DistributedType.TPU:
return tokenizer.pad(snake_case_ , padding="""max_length""" , max_length=1_28 , return_tensors="""pt""" )
return tokenizer.pad(snake_case_ , padding="""longest""" , return_tensors="""pt""" )
# Instantiate dataloaders.
__lowerCAmelCase = DataLoader(
tokenized_datasets["""train"""] , shuffle=snake_case_ , collate_fn=snake_case_ , batch_size=snake_case_ )
__lowerCAmelCase = DataLoader(
tokenized_datasets["""validation"""] , shuffle=snake_case_ , collate_fn=snake_case_ , batch_size=snake_case_ )
return train_dataloader, eval_dataloader
def UpperCamelCase_ ( snake_case_ : List[Any] , snake_case_ : Tuple ) -> Optional[int]:
'''simple docstring'''
__lowerCAmelCase = Accelerator()
# Sample hyper-parameters for learning rate, batch size, seed and a few other HPs
__lowerCAmelCase = config["""lr"""]
__lowerCAmelCase = int(config["""num_epochs"""] )
__lowerCAmelCase = int(config["""seed"""] )
__lowerCAmelCase = int(config["""batch_size"""] )
__lowerCAmelCase = args.model_name_or_path
set_seed(snake_case_ )
__lowerCAmelCase , __lowerCAmelCase = get_dataloaders(snake_case_ , snake_case_ , snake_case_ , args.n_train , args.n_val )
# Instantiate the model (we build the model here so that the seed also control new weights initialization)
__lowerCAmelCase = AutoModelForSequenceClassification.from_pretrained(snake_case_ , return_dict=snake_case_ )
# Instantiate optimizer
__lowerCAmelCase = (
AdamW
if accelerator.state.deepspeed_plugin is None
or """optimizer""" not in accelerator.state.deepspeed_plugin.deepspeed_config
else DummyOptim
)
__lowerCAmelCase = optimizer_cls(params=model.parameters() , lr=snake_case_ )
if accelerator.state.deepspeed_plugin is not None:
__lowerCAmelCase = accelerator.state.deepspeed_plugin.deepspeed_config[
"""gradient_accumulation_steps"""
]
else:
__lowerCAmelCase = 1
__lowerCAmelCase = (len(snake_case_ ) * num_epochs) // gradient_accumulation_steps
# Instantiate scheduler
if (
accelerator.state.deepspeed_plugin is None
or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config
):
__lowerCAmelCase = get_linear_schedule_with_warmup(
optimizer=snake_case_ , num_warmup_steps=0 , num_training_steps=snake_case_ , )
else:
__lowerCAmelCase = DummyScheduler(snake_case_ , total_num_steps=snake_case_ , warmup_num_steps=0 )
# Prepare everything
# There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the
# prepare method.
__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = accelerator.prepare(
snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ )
# We need to keep track of how many total steps we have iterated over
__lowerCAmelCase = 0
# We also need to keep track of the stating epoch so files are named properly
__lowerCAmelCase = 0
# Now we train the model
__lowerCAmelCase = {}
for epoch in range(snake_case_ , snake_case_ ):
with TorchTracemalloc() as tracemalloc:
model.train()
for step, batch in enumerate(snake_case_ ):
__lowerCAmelCase = model(**snake_case_ )
__lowerCAmelCase = outputs.loss
__lowerCAmelCase = loss / gradient_accumulation_steps
accelerator.backward(snake_case_ )
if step % gradient_accumulation_steps == 0:
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
overall_step += 1
# Printing the GPU memory usage details such as allocated memory, peak memory, and total memory usage
accelerator.print("""Memory before entering the train : {}""".format(bamb(tracemalloc.begin ) ) )
accelerator.print("""Memory consumed at the end of the train (end-begin): {}""".format(tracemalloc.used ) )
accelerator.print("""Peak Memory consumed during the train (max-begin): {}""".format(tracemalloc.peaked ) )
accelerator.print(
"""Total Peak Memory consumed during the train (max): {}""".format(
tracemalloc.peaked + bamb(tracemalloc.begin ) ) )
__lowerCAmelCase = tracemalloc.peaked + bamb(tracemalloc.begin )
if args.peak_memory_upper_bound is not None:
assert (
train_total_peak_memory[f"""epoch-{epoch}"""] <= args.peak_memory_upper_bound
), "Peak memory usage exceeded the upper bound"
accelerator.wait_for_everyone()
if accelerator.is_main_process:
with open(os.path.join(args.output_dir , """peak_memory_utilization.json""" ) , """w""" ) as f:
json.dump(snake_case_ , snake_case_ )
def UpperCamelCase_ ( ) -> Any:
'''simple docstring'''
__lowerCAmelCase = argparse.ArgumentParser(description="""Simple example of training script tracking peak GPU memory usage.""" )
parser.add_argument(
"""--model_name_or_path""" , type=snake_case_ , default="""bert-base-cased""" , help="""Path to pretrained model or model identifier from huggingface.co/models.""" , required=snake_case_ , )
parser.add_argument(
"""--output_dir""" , type=snake_case_ , default=""".""" , help="""Optional save directory where all checkpoint folders will be stored. Default is the current working directory.""" , )
parser.add_argument(
"""--peak_memory_upper_bound""" , type=snake_case_ , default=snake_case_ , help="""The upper bound of peak memory usage in MB. If set, the training will throw an error if the peak memory usage exceeds this value.""" , )
parser.add_argument(
"""--n_train""" , type=snake_case_ , default=3_20 , help="""Number of training examples to use.""" , )
parser.add_argument(
"""--n_val""" , type=snake_case_ , default=1_60 , help="""Number of validation examples to use.""" , )
parser.add_argument(
"""--num_epochs""" , type=snake_case_ , default=1 , help="""Number of train epochs.""" , )
__lowerCAmelCase = parser.parse_args()
__lowerCAmelCase = {"""lr""": 2E-5, """num_epochs""": args.num_epochs, """seed""": 42, """batch_size""": 16}
training_function(snake_case_ , snake_case_ )
if __name__ == "__main__":
main()
| 229 | 1 |
"""simple docstring"""
# Copyright 2023 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import torch
from accelerate import PartialState
from accelerate.utils.operations import broadcast, gather, gather_object, pad_across_processes, reduce
def __UpperCamelCase ( lowercase__ : List[str] ) -> Optional[int]:
'''simple docstring'''
return (torch.arange(state.num_processes ) + 1.0 + (state.num_processes * state.process_index)).to(state.device )
def __UpperCamelCase ( lowercase__ : List[str] ) -> str:
'''simple docstring'''
lowerCAmelCase_ : str = create_tensor(lowercase__ )
lowerCAmelCase_ : int = gather(lowercase__ )
assert gathered_tensor.tolist() == list(range(1 , state.num_processes**2 + 1 ) )
def __UpperCamelCase ( lowercase__ : Optional[int] ) -> List[Any]:
'''simple docstring'''
lowerCAmelCase_ : Optional[int] = [state.process_index]
lowerCAmelCase_ : Optional[int] = gather_object(lowercase__ )
assert len(lowercase__ ) == state.num_processes, f'{gathered_obj}, {len(lowercase__ )} != {state.num_processes}'
assert gathered_obj == list(range(state.num_processes ) ), f'{gathered_obj} != {list(range(state.num_processes ) )}'
def __UpperCamelCase ( lowercase__ : int ) -> Optional[Any]:
'''simple docstring'''
lowerCAmelCase_ : int = create_tensor(lowercase__ )
lowerCAmelCase_ : Any = broadcast(lowercase__ )
assert broadcasted_tensor.shape == torch.Size([state.num_processes] )
assert broadcasted_tensor.tolist() == list(range(1 , state.num_processes + 1 ) )
def __UpperCamelCase ( lowercase__ : Tuple ) -> List[str]:
'''simple docstring'''
if state.is_main_process:
lowerCAmelCase_ : Dict = torch.arange(state.num_processes + 1 ).to(state.device )
else:
lowerCAmelCase_ : int = torch.arange(state.num_processes ).to(state.device )
lowerCAmelCase_ : Optional[Any] = pad_across_processes(lowercase__ )
assert padded_tensor.shape == torch.Size([state.num_processes + 1] )
if not state.is_main_process:
assert padded_tensor.tolist() == list(range(0 , state.num_processes ) ) + [0]
def __UpperCamelCase ( lowercase__ : Tuple ) -> Tuple:
'''simple docstring'''
if state.num_processes != 2:
return
lowerCAmelCase_ : Union[str, Any] = create_tensor(lowercase__ )
lowerCAmelCase_ : Optional[int] = reduce(lowercase__ , """sum""" )
lowerCAmelCase_ : int = torch.tensor([4.0, 6] ).to(state.device )
assert torch.allclose(lowercase__ , lowercase__ ), f'{reduced_tensor} != {truth_tensor}'
def __UpperCamelCase ( lowercase__ : int ) -> Optional[int]:
'''simple docstring'''
if state.num_processes != 2:
return
lowerCAmelCase_ : Tuple = create_tensor(lowercase__ )
lowerCAmelCase_ : str = reduce(lowercase__ , """mean""" )
lowerCAmelCase_ : List[str] = torch.tensor([2.0, 3] ).to(state.device )
assert torch.allclose(lowercase__ , lowercase__ ), f'{reduced_tensor} != {truth_tensor}'
def __UpperCamelCase ( lowercase__ : Dict ) -> Optional[Any]:
'''simple docstring'''
main()
def __UpperCamelCase ( ) -> Dict:
'''simple docstring'''
lowerCAmelCase_ : Tuple = PartialState()
state.print(f'State: {state}' )
state.print("""testing gather""" )
test_gather(lowercase__ )
state.print("""testing gather_object""" )
test_gather_object(lowercase__ )
state.print("""testing broadcast""" )
test_broadcast(lowercase__ )
state.print("""testing pad_across_processes""" )
test_pad_across_processes(lowercase__ )
state.print("""testing reduce_sum""" )
test_reduce_sum(lowercase__ )
state.print("""testing reduce_mean""" )
test_reduce_mean(lowercase__ )
if __name__ == "__main__":
main()
| 365 |
def __UpperCamelCase ( lowercase__ : str ) -> bool:
'''simple docstring'''
lowerCAmelCase_ : Any = 0
for ch in input_str:
lowerCAmelCase_ : Any = ord(lowercase__ )
lowerCAmelCase_ : Dict = pow(2 , lowercase__ )
# If we already turned on bit for current character's unicode
if bitmap >> ch_unicode & 1 == 1:
return False
bitmap |= ch_bit_index_on
return True
if __name__ == "__main__":
import doctest
doctest.testmod()
| 28 | 0 |
import argparse
import json
from pathlib import Path
import requests
import timm
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import DeiTImageProcessor, ViTConfig, ViTForImageClassification, ViTImageProcessor, ViTModel
from transformers.utils import logging
logging.set_verbosity_info()
_UpperCAmelCase : Optional[int] =logging.get_logger(__name__)
def lowerCAmelCase ( lowerCAmelCase_ , lowerCAmelCase_=False )-> List[Any]:
lowerCAmelCase_ : Any = []
for i in range(config.num_hidden_layers ):
# encoder layers: output projection, 2 feedforward neural networks and 2 layernorms
rename_keys.append((f"""blocks.{i}.norm1.weight""", f"""vit.encoder.layer.{i}.layernorm_before.weight""") )
rename_keys.append((f"""blocks.{i}.norm1.bias""", f"""vit.encoder.layer.{i}.layernorm_before.bias""") )
rename_keys.append((f"""blocks.{i}.attn.proj.weight""", f"""vit.encoder.layer.{i}.attention.output.dense.weight""") )
rename_keys.append((f"""blocks.{i}.attn.proj.bias""", f"""vit.encoder.layer.{i}.attention.output.dense.bias""") )
rename_keys.append((f"""blocks.{i}.norm2.weight""", f"""vit.encoder.layer.{i}.layernorm_after.weight""") )
rename_keys.append((f"""blocks.{i}.norm2.bias""", f"""vit.encoder.layer.{i}.layernorm_after.bias""") )
rename_keys.append((f"""blocks.{i}.mlp.fc1.weight""", f"""vit.encoder.layer.{i}.intermediate.dense.weight""") )
rename_keys.append((f"""blocks.{i}.mlp.fc1.bias""", f"""vit.encoder.layer.{i}.intermediate.dense.bias""") )
rename_keys.append((f"""blocks.{i}.mlp.fc2.weight""", f"""vit.encoder.layer.{i}.output.dense.weight""") )
rename_keys.append((f"""blocks.{i}.mlp.fc2.bias""", f"""vit.encoder.layer.{i}.output.dense.bias""") )
# projection layer + position embeddings
rename_keys.extend(
[
('''cls_token''', '''vit.embeddings.cls_token'''),
('''patch_embed.proj.weight''', '''vit.embeddings.patch_embeddings.projection.weight'''),
('''patch_embed.proj.bias''', '''vit.embeddings.patch_embeddings.projection.bias'''),
('''pos_embed''', '''vit.embeddings.position_embeddings'''),
] )
if base_model:
# layernorm + pooler
rename_keys.extend(
[
('''norm.weight''', '''layernorm.weight'''),
('''norm.bias''', '''layernorm.bias'''),
('''pre_logits.fc.weight''', '''pooler.dense.weight'''),
('''pre_logits.fc.bias''', '''pooler.dense.bias'''),
] )
# if just the base model, we should remove "vit" from all keys that start with "vit"
lowerCAmelCase_ : Union[str, Any] = [(pair[0], pair[1][4:]) if pair[1].startswith('''vit''' ) else pair for pair in rename_keys]
else:
# layernorm + classification head
rename_keys.extend(
[
('''norm.weight''', '''vit.layernorm.weight'''),
('''norm.bias''', '''vit.layernorm.bias'''),
('''head.weight''', '''classifier.weight'''),
('''head.bias''', '''classifier.bias'''),
] )
return rename_keys
def lowerCAmelCase ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_=False )-> str:
for i in range(config.num_hidden_layers ):
if base_model:
lowerCAmelCase_ : int = ''''''
else:
lowerCAmelCase_ : Tuple = '''vit.'''
# read in weights + bias of input projection layer (in timm, this is a single matrix + bias)
lowerCAmelCase_ : Optional[int] = state_dict.pop(f"""blocks.{i}.attn.qkv.weight""" )
lowerCAmelCase_ : Optional[int] = state_dict.pop(f"""blocks.{i}.attn.qkv.bias""" )
# next, add query, keys and values (in that order) to the state dict
lowerCAmelCase_ : List[str] = in_proj_weight[
: config.hidden_size, :
]
lowerCAmelCase_ : List[str] = in_proj_bias[: config.hidden_size]
lowerCAmelCase_ : Dict = in_proj_weight[
config.hidden_size : config.hidden_size * 2, :
]
lowerCAmelCase_ : Union[str, Any] = in_proj_bias[
config.hidden_size : config.hidden_size * 2
]
lowerCAmelCase_ : Tuple = in_proj_weight[
-config.hidden_size :, :
]
lowerCAmelCase_ : Optional[Any] = in_proj_bias[-config.hidden_size :]
def lowerCAmelCase ( lowerCAmelCase_ )-> int:
lowerCAmelCase_ : str = ['''head.weight''', '''head.bias''']
for k in ignore_keys:
state_dict.pop(lowerCAmelCase_ , lowerCAmelCase_ )
def lowerCAmelCase ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ )-> Union[str, Any]:
lowerCAmelCase_ : List[str] = dct.pop(lowerCAmelCase_ )
lowerCAmelCase_ : Dict = val
def lowerCAmelCase ( )-> List[Any]:
lowerCAmelCase_ : Dict = '''http://images.cocodataset.org/val2017/000000039769.jpg'''
lowerCAmelCase_ : Dict = Image.open(requests.get(lowerCAmelCase_ , stream=lowerCAmelCase_ ).raw )
return im
@torch.no_grad()
def lowerCAmelCase ( lowerCAmelCase_ , lowerCAmelCase_ )-> List[str]:
lowerCAmelCase_ : Tuple = ViTConfig()
lowerCAmelCase_ : Optional[int] = False
# dataset (ImageNet-21k only or also fine-tuned on ImageNet 2012), patch_size and image_size
if vit_name[-5:] == "in21k":
lowerCAmelCase_ : str = True
lowerCAmelCase_ : str = int(vit_name[-12:-10] )
lowerCAmelCase_ : Tuple = int(vit_name[-9:-6] )
else:
lowerCAmelCase_ : Optional[Any] = 1_000
lowerCAmelCase_ : List[Any] = '''huggingface/label-files'''
lowerCAmelCase_ : Dict = '''imagenet-1k-id2label.json'''
lowerCAmelCase_ : Dict = json.load(open(hf_hub_download(lowerCAmelCase_ , lowerCAmelCase_ , repo_type='''dataset''' ) , '''r''' ) )
lowerCAmelCase_ : Any = {int(lowerCAmelCase_ ): v for k, v in idalabel.items()}
lowerCAmelCase_ : Any = idalabel
lowerCAmelCase_ : List[str] = {v: k for k, v in idalabel.items()}
lowerCAmelCase_ : Optional[int] = int(vit_name[-6:-4] )
lowerCAmelCase_ : Dict = int(vit_name[-3:] )
# size of the architecture
if "deit" in vit_name:
if vit_name[9:].startswith('''tiny''' ):
lowerCAmelCase_ : str = 192
lowerCAmelCase_ : Tuple = 768
lowerCAmelCase_ : List[str] = 12
lowerCAmelCase_ : int = 3
elif vit_name[9:].startswith('''small''' ):
lowerCAmelCase_ : Dict = 384
lowerCAmelCase_ : List[str] = 1_536
lowerCAmelCase_ : List[Any] = 12
lowerCAmelCase_ : Union[str, Any] = 6
else:
pass
else:
if vit_name[4:].startswith('''small''' ):
lowerCAmelCase_ : Any = 768
lowerCAmelCase_ : str = 2_304
lowerCAmelCase_ : List[str] = 8
lowerCAmelCase_ : List[str] = 8
elif vit_name[4:].startswith('''base''' ):
pass
elif vit_name[4:].startswith('''large''' ):
lowerCAmelCase_ : Optional[Any] = 1_024
lowerCAmelCase_ : int = 4_096
lowerCAmelCase_ : List[Any] = 24
lowerCAmelCase_ : Union[str, Any] = 16
elif vit_name[4:].startswith('''huge''' ):
lowerCAmelCase_ : int = 1_280
lowerCAmelCase_ : Tuple = 5_120
lowerCAmelCase_ : List[Any] = 32
lowerCAmelCase_ : Optional[Any] = 16
# load original model from timm
lowerCAmelCase_ : Optional[Any] = timm.create_model(lowerCAmelCase_ , pretrained=lowerCAmelCase_ )
timm_model.eval()
# load state_dict of original model, remove and rename some keys
lowerCAmelCase_ : Union[str, Any] = timm_model.state_dict()
if base_model:
remove_classification_head_(lowerCAmelCase_ )
lowerCAmelCase_ : Any = create_rename_keys(lowerCAmelCase_ , lowerCAmelCase_ )
for src, dest in rename_keys:
rename_key(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ )
read_in_q_k_v(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ )
# load HuggingFace model
if vit_name[-5:] == "in21k":
lowerCAmelCase_ : List[str] = ViTModel(lowerCAmelCase_ ).eval()
else:
lowerCAmelCase_ : List[Any] = ViTForImageClassification(lowerCAmelCase_ ).eval()
model.load_state_dict(lowerCAmelCase_ )
# Check outputs on an image, prepared by ViTImageProcessor/DeiTImageProcessor
if "deit" in vit_name:
lowerCAmelCase_ : Tuple = DeiTImageProcessor(size=config.image_size )
else:
lowerCAmelCase_ : Optional[Any] = ViTImageProcessor(size=config.image_size )
lowerCAmelCase_ : List[Any] = image_processor(images=prepare_img() , return_tensors='''pt''' )
lowerCAmelCase_ : int = encoding['''pixel_values''']
lowerCAmelCase_ : List[str] = model(lowerCAmelCase_ )
if base_model:
lowerCAmelCase_ : int = timm_model.forward_features(lowerCAmelCase_ )
assert timm_pooled_output.shape == outputs.pooler_output.shape
assert torch.allclose(lowerCAmelCase_ , outputs.pooler_output , atol=1e-3 )
else:
lowerCAmelCase_ : Optional[Any] = timm_model(lowerCAmelCase_ )
assert timm_logits.shape == outputs.logits.shape
assert torch.allclose(lowerCAmelCase_ , outputs.logits , atol=1e-3 )
Path(lowerCAmelCase_ ).mkdir(exist_ok=lowerCAmelCase_ )
print(f"""Saving model {vit_name} to {pytorch_dump_folder_path}""" )
model.save_pretrained(lowerCAmelCase_ )
print(f"""Saving image processor to {pytorch_dump_folder_path}""" )
image_processor.save_pretrained(lowerCAmelCase_ )
if __name__ == "__main__":
_UpperCAmelCase : str =argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"""--vit_name""",
default="""vit_base_patch16_224""",
type=str,
help="""Name of the ViT timm model you'd like to convert.""",
)
parser.add_argument(
"""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory."""
)
_UpperCAmelCase : Dict =parser.parse_args()
convert_vit_checkpoint(args.vit_name, args.pytorch_dump_folder_path) | 262 |
from argparse import ArgumentParser
from .add_new_model import AddNewModelCommand
from .add_new_model_like import AddNewModelLikeCommand
from .convert import ConvertCommand
from .download import DownloadCommand
from .env import EnvironmentCommand
from .lfs import LfsCommands
from .pt_to_tf import PTtoTFCommand
from .run import RunCommand
from .serving import ServeCommand
from .user import UserCommands
def lowerCAmelCase ( )-> int:
lowerCAmelCase_ : int = ArgumentParser('''Transformers CLI tool''' , usage='''transformers-cli <command> [<args>]''' )
lowerCAmelCase_ : Dict = parser.add_subparsers(help='''transformers-cli command helpers''' )
# Register commands
ConvertCommand.register_subcommand(lowerCAmelCase_ )
DownloadCommand.register_subcommand(lowerCAmelCase_ )
EnvironmentCommand.register_subcommand(lowerCAmelCase_ )
RunCommand.register_subcommand(lowerCAmelCase_ )
ServeCommand.register_subcommand(lowerCAmelCase_ )
UserCommands.register_subcommand(lowerCAmelCase_ )
AddNewModelCommand.register_subcommand(lowerCAmelCase_ )
AddNewModelLikeCommand.register_subcommand(lowerCAmelCase_ )
LfsCommands.register_subcommand(lowerCAmelCase_ )
PTtoTFCommand.register_subcommand(lowerCAmelCase_ )
# Let's go
lowerCAmelCase_ : Union[str, Any] = parser.parse_args()
if not hasattr(lowerCAmelCase_ , '''func''' ):
parser.print_help()
exit(1 )
# Run
lowerCAmelCase_ : List[Any] = args.func(lowerCAmelCase_ )
service.run()
if __name__ == "__main__":
main() | 262 | 1 |
import logging
import torch
from accelerate import Accelerator
from arguments import EvaluationArguments
from datasets import load_dataset
from torch.utils.data import IterableDataset
from torch.utils.data.dataloader import DataLoader
from transformers import AutoModelForCausalLM, AutoTokenizer, HfArgumentParser, set_seed
class _UpperCAmelCase ( _UpperCamelCase ):
"""simple docstring"""
def __init__( self : Optional[int] , lowerCAmelCase_ : int , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Optional[Any]=1_0_2_4 , lowerCAmelCase_ : Optional[int]=1_0_2_4 , lowerCAmelCase_ : Optional[int]=3.6 ) -> Optional[int]:
__lowerCAmelCase = tokenizer
__lowerCAmelCase = tokenizer.bos_token_id
__lowerCAmelCase = dataset
__lowerCAmelCase = seq_length
__lowerCAmelCase = seq_length * chars_per_token * num_of_sequences
def __iter__( self : Dict ) -> Dict:
__lowerCAmelCase = iter(self.dataset )
__lowerCAmelCase = True
while more_examples:
__lowerCAmelCase , __lowerCAmelCase = [], 0
while True:
if buffer_len >= self.input_characters:
break
try:
buffer.append(next(lowerCAmelCase_ )['content'] )
buffer_len += len(buffer[-1] )
except StopIteration:
__lowerCAmelCase = False
break
__lowerCAmelCase = tokenizer(lowerCAmelCase_ , truncation=lowerCAmelCase_ )['input_ids']
__lowerCAmelCase = []
for tokenized_input in tokenized_inputs:
all_token_ids.extend(tokenized_input + [self.concat_token_id] )
for i in range(0 , len(lowerCAmelCase_ ) , self.seq_length ):
__lowerCAmelCase = all_token_ids[i : i + self.seq_length]
if len(lowerCAmelCase_ ) == self.seq_length:
yield torch.tensor(lowerCAmelCase_ )
def a_ ( lowerCAmelCase_ : Optional[int] ):
__lowerCAmelCase = {'streaming': True}
__lowerCAmelCase = load_dataset(args.dataset_name, split='train', **lowerCAmelCase_ )
__lowerCAmelCase = ConstantLengthDataset(lowerCAmelCase_, lowerCAmelCase_, seq_length=args.seq_length )
__lowerCAmelCase = DataLoader(lowerCAmelCase_, batch_size=args.batch_size )
return eval_dataloader
def a_ ( lowerCAmelCase_ : List[Any] ):
model.eval()
__lowerCAmelCase = []
for step, batch in enumerate(lowerCAmelCase_ ):
with torch.no_grad():
__lowerCAmelCase = model(lowerCAmelCase_, labels=lowerCAmelCase_ )
__lowerCAmelCase = outputs.loss.repeat(args.batch_size )
losses.append(accelerator.gather(lowerCAmelCase_ ) )
if args.max_eval_steps > 0 and step >= args.max_eval_steps:
break
__lowerCAmelCase = torch.mean(torch.cat(lowerCAmelCase_ ) )
try:
__lowerCAmelCase = torch.exp(lowerCAmelCase_ )
except OverflowError:
__lowerCAmelCase = float('inf' )
return loss.item(), perplexity.item()
# Setup Accelerator
_snake_case : List[str] = Accelerator()
# Parse configuration
_snake_case : int = HfArgumentParser(EvaluationArguments)
_snake_case : int = parser.parse_args()
set_seed(args.seed)
# Logging
_snake_case : Tuple = logging.getLogger(__name__)
logging.basicConfig(
format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt='%m/%d/%Y %H:%M:%S', level=logging.INFO
)
# Load model and tokenizer
_snake_case : List[str] = AutoModelForCausalLM.from_pretrained(args.model_ckpt)
_snake_case : Union[str, Any] = AutoTokenizer.from_pretrained(args.model_ckpt)
# Load dataset and dataloader
_snake_case : Union[str, Any] = create_dataloader(args)
# Prepare everything with our `accelerator`.
_snake_case : Dict = accelerator.prepare(model, eval_dataloader)
# Evaluate and save the last checkpoint
logger.info('Evaluating and saving model after training')
_snake_case : Dict = evaluate(args)
logger.info(F"""loss/eval: {eval_loss}, perplexity: {perplexity}""")
| 358 |
class _UpperCAmelCase :
"""simple docstring"""
def __init__( self : Union[str, Any] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : int , lowerCAmelCase_ : Dict ) -> List[str]:
__lowerCAmelCase = name
__lowerCAmelCase = value
__lowerCAmelCase = weight
def __repr__( self : Union[str, Any] ) -> List[str]:
return f"""{self.__class__.__name__}({self.name}, {self.value}, {self.weight})"""
def lowercase ( self : int ) -> Optional[int]:
return self.value
def lowercase ( self : Optional[Any] ) -> Union[str, Any]:
return self.name
def lowercase ( self : List[Any] ) -> Tuple:
return self.weight
def lowercase ( self : int ) -> Dict:
return self.value / self.weight
def a_ ( lowerCAmelCase_ : Dict, lowerCAmelCase_ : int, lowerCAmelCase_ : Optional[int] ):
__lowerCAmelCase = []
for i in range(len(lowerCAmelCase_ ) ):
menu.append(Things(name[i], value[i], weight[i] ) )
return menu
def a_ ( lowerCAmelCase_ : Optional[int], lowerCAmelCase_ : List[Any], lowerCAmelCase_ : Optional[Any] ):
__lowerCAmelCase = sorted(lowerCAmelCase_, key=lowerCAmelCase_, reverse=lowerCAmelCase_ )
__lowerCAmelCase = []
__lowerCAmelCase , __lowerCAmelCase = 0.0, 0.0
for i in range(len(lowerCAmelCase_ ) ):
if (total_cost + items_copy[i].get_weight()) <= max_cost:
result.append(items_copy[i] )
total_cost += items_copy[i].get_weight()
total_value += items_copy[i].get_value()
return (result, total_value)
def a_ ( ):
pass
if __name__ == "__main__":
import doctest
doctest.testmod()
| 207 | 0 |
"""simple docstring"""
from __future__ import annotations
snake_case_ = 10
def _lowerCAmelCase ( lowercase_ ):
UpperCAmelCase = 1
UpperCAmelCase = max(lowercase_ )
while placement <= max_digit:
# declare and initialize empty buckets
UpperCAmelCase = [[] for _ in range(lowercase_ )]
# split list_of_ints between the buckets
for i in list_of_ints:
UpperCAmelCase = int((i / placement) % RADIX )
buckets[tmp].append(lowercase_ )
# put each buckets' contents into list_of_ints
UpperCAmelCase = 0
for b in range(lowercase_ ):
for i in buckets[b]:
UpperCAmelCase = i
a += 1
# move to next
placement *= RADIX
return list_of_ints
if __name__ == "__main__":
import doctest
doctest.testmod()
| 78 |
"""simple docstring"""
from __future__ import annotations
def _lowerCAmelCase ( lowercase_ , lowercase_ , lowercase_ ):
UpperCAmelCase = list(range(len(lowercase_ ) ) )
UpperCAmelCase = [v / w for v, w in zip(lowercase_ , lowercase_ )]
index.sort(key=lambda lowercase_ : ratio[i] , reverse=lowercase_ )
UpperCAmelCase = 0
UpperCAmelCase = [0] * len(lowercase_ )
for i in index:
if weight[i] <= capacity:
UpperCAmelCase = 1
max_value += value[i]
capacity -= weight[i]
else:
UpperCAmelCase = capacity / weight[i]
max_value += value[i] * capacity / weight[i]
break
return max_value, fractions
if __name__ == "__main__":
import doctest
doctest.testmod()
| 78 | 1 |
from __future__ import annotations
from typing import Any
class __a :
def __init__( self , lowerCAmelCase__ ) -> None:
'''simple docstring'''
lowercase__: int = num_of_nodes
lowercase__: list[list[int]] = []
lowercase__: dict[int, int] = {}
def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> None:
'''simple docstring'''
self.m_edges.append([u_node, v_node, weight] )
def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__ ) -> int:
'''simple docstring'''
if self.m_component[u_node] == u_node:
return u_node
return self.find_component(self.m_component[u_node] )
def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__ ) -> None:
'''simple docstring'''
if self.m_component[u_node] != u_node:
for k in self.m_component:
lowercase__: str = self.find_component(lowerCAmelCase__ )
def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> None:
'''simple docstring'''
if component_size[u_node] <= component_size[v_node]:
lowercase__: Dict = v_node
component_size[v_node] += component_size[u_node]
self.set_component(lowerCAmelCase__ )
elif component_size[u_node] >= component_size[v_node]:
lowercase__: Tuple = self.find_component(lowerCAmelCase__ )
component_size[u_node] += component_size[v_node]
self.set_component(lowerCAmelCase__ )
def SCREAMING_SNAKE_CASE__ ( self ) -> None:
'''simple docstring'''
lowercase__: Union[str, Any] = []
lowercase__: Union[str, Any] = 0
lowercase__: list[Any] = [-1] * self.m_num_of_nodes
# A list of components (initialized to all of the nodes)
for node in range(self.m_num_of_nodes ):
self.m_component.update({node: node} )
component_size.append(1 )
lowercase__: Tuple = self.m_num_of_nodes
while num_of_components > 1:
for edge in self.m_edges:
lowercase__ , lowercase__ , lowercase__: Tuple = edge
lowercase__: int = self.m_component[u]
lowercase__: Union[str, Any] = self.m_component[v]
if u_component != v_component:
for component in (u_component, v_component):
if (
minimum_weight_edge[component] == -1
or minimum_weight_edge[component][2] > w
):
lowercase__: int = [u, v, w]
for edge in minimum_weight_edge:
if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ):
lowercase__ , lowercase__ , lowercase__: int = edge
lowercase__: List[Any] = self.m_component[u]
lowercase__: List[Any] = self.m_component[v]
if u_component != v_component:
mst_weight += w
self.union(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
print(F'Added edge [{u} - {v}]\nAdded weight: {w}\n' )
num_of_components -= 1
lowercase__: Optional[Any] = [-1] * self.m_num_of_nodes
print(F'The total weight of the minimal spanning tree is: {mst_weight}' )
def snake_case_ ( ) -> None:
pass
if __name__ == "__main__":
import doctest
doctest.testmod()
| 288 |
import math
import numpy as np
import qiskit
from qiskit import Aer, ClassicalRegister, QuantumCircuit, QuantumRegister, execute
def snake_case_ ( snake_case = 3 ) -> qiskit.result.counts.Counts:
if isinstance(snake_case , snake_case ):
raise TypeError('number of qubits must be a integer.' )
if number_of_qubits <= 0:
raise ValueError('number of qubits must be > 0.' )
if math.floor(snake_case ) != number_of_qubits:
raise ValueError('number of qubits must be exact integer.' )
if number_of_qubits > 10:
raise ValueError('number of qubits too large to simulate(>10).' )
lowercase__: str = QuantumRegister(snake_case , 'qr' )
lowercase__: str = ClassicalRegister(snake_case , 'cr' )
lowercase__: List[Any] = QuantumCircuit(snake_case , snake_case )
lowercase__: int = number_of_qubits
for i in range(snake_case ):
quantum_circuit.h(number_of_qubits - i - 1 )
counter -= 1
for j in range(snake_case ):
quantum_circuit.cp(np.pi / 2 ** (counter - j) , snake_case , snake_case )
for k in range(number_of_qubits // 2 ):
quantum_circuit.swap(snake_case , number_of_qubits - k - 1 )
# measure all the qubits
quantum_circuit.measure(snake_case , snake_case )
# simulate with 10000 shots
lowercase__: str = Aer.get_backend('qasm_simulator' )
lowercase__: Union[str, Any] = execute(snake_case , snake_case , shots=1_00_00 )
return job.result().get_counts(snake_case )
if __name__ == "__main__":
print(
F'''Total count for quantum fourier transform state is: \
{quantum_fourier_transform(3)}'''
)
| 288 | 1 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
A_ :List[str] = {
'''configuration_clap''': [
'''CLAP_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''ClapAudioConfig''',
'''ClapConfig''',
'''ClapTextConfig''',
],
'''processing_clap''': ['''ClapProcessor'''],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A_ :int = [
'''CLAP_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''ClapModel''',
'''ClapPreTrainedModel''',
'''ClapTextModel''',
'''ClapTextModelWithProjection''',
'''ClapAudioModel''',
'''ClapAudioModelWithProjection''',
]
A_ :Union[str, Any] = ['''ClapFeatureExtractor''']
if TYPE_CHECKING:
from .configuration_clap import (
CLAP_PRETRAINED_MODEL_ARCHIVE_LIST,
ClapAudioConfig,
ClapConfig,
ClapTextConfig,
)
from .processing_clap import ClapProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_clap import ClapFeatureExtractor
from .modeling_clap import (
CLAP_PRETRAINED_MODEL_ARCHIVE_LIST,
ClapAudioModel,
ClapAudioModelWithProjection,
ClapModel,
ClapPreTrainedModel,
ClapTextModel,
ClapTextModelWithProjection,
)
else:
import sys
A_ :Any = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 71 |
from datetime import datetime
import requests
from bsa import BeautifulSoup
if __name__ == "__main__":
lowerCAmelCase__ : List[Any] =input('''Enter image url: ''').strip()
print(F'''Downloading image from {url} ...''')
lowerCAmelCase__ : int =BeautifulSoup(requests.get(url).content, '''html.parser''')
# The image URL is in the content field of the first meta tag with property og:image
lowerCAmelCase__ : Union[str, Any] =soup.find('''meta''', {'''property''': '''og:image'''})['''content''']
lowerCAmelCase__ : int =requests.get(image_url).content
lowerCAmelCase__ : Optional[int] =F'''{datetime.now():%Y-%m-%d_%H:%M:%S}.jpg'''
with open(file_name, '''wb''') as fp:
fp.write(image_data)
print(F'''Done. Image saved to disk as {file_name}.''')
| 257 | 0 |
'''simple docstring'''
import unittest
from dataclasses import dataclass
import pytest
from accelerate.commands.config.config_args import SageMakerConfig
from accelerate.utils import ComputeEnvironment
from accelerate.utils.launch import _convert_nargs_to_dict
@dataclass
class __SCREAMING_SNAKE_CASE ( _lowercase ):
snake_case_ = ComputeEnvironment.AMAZON_SAGEMAKER
snake_case_ = True
snake_case_ = """ml.p3.2xlarge"""
snake_case_ = """accelerate_sagemaker_execution_role"""
snake_case_ = """hf-sm"""
snake_case_ = """us-east-1"""
snake_case_ = 1
snake_case_ = """accelerate-sagemaker-1"""
snake_case_ = """1.6"""
snake_case_ = """4.4"""
snake_case_ = """train.py"""
snake_case_ = [
"""--model_name_or_path""",
"""bert""",
"""--do_train""",
"""False""",
"""--epochs""",
"""3""",
"""--learning_rate""",
"""5e-5""",
"""--max_steps""",
"""50.5""",
]
snake_case_ = [
"""--model_name_or_path""",
"""bert""",
"""--do_train""",
"""--do_test""",
"""False""",
"""--do_predict""",
"""--epochs""",
"""3""",
"""--learning_rate""",
"""5e-5""",
"""--max_steps""",
"""50.5""",
]
class __SCREAMING_SNAKE_CASE ( unittest.TestCase ):
def __magic_name__ ( self : List[str] ) -> List[Any]:
# If no defaults are changed, `to_kwargs` returns an empty dict.
SCREAMING_SNAKE_CASE__ : Optional[Any] =_convert_nargs_to_dict(MockLaunchConfig.success_training_script_args )
assert isinstance(converted_args['''model_name_or_path'''] , __UpperCamelCase )
assert isinstance(converted_args['''do_train'''] , __UpperCamelCase )
assert isinstance(converted_args['''epochs'''] , __UpperCamelCase )
assert isinstance(converted_args['''learning_rate'''] , __UpperCamelCase )
assert isinstance(converted_args['''max_steps'''] , __UpperCamelCase )
with pytest.raises(__UpperCamelCase ):
_convert_nargs_to_dict(MockLaunchConfig.fail_training_script_args ) | 360 |
'''simple docstring'''
from math import factorial
def _a( UpperCamelCase__ : int = 1_0_0 ):
'''simple docstring'''
return sum(int(UpperCamelCase__ ) for x in str(factorial(UpperCamelCase__ ) ) )
if __name__ == "__main__":
print(solution(int(input('Enter the Number: ').strip()))) | 222 | 0 |
import cva
import numpy as np
class UpperCAmelCase__ :
"""simple docstring"""
def __init__( self , A_ , A_ ) -> Optional[Any]:
if k in (0.04, 0.06):
__UpperCamelCase =k
__UpperCamelCase =window_size
else:
raise ValueError('invalid k value' )
def __str__( self ) -> str:
return str(self.k )
def _a ( self , A_ ) -> tuple[cva.Mat, list[list[int]]]:
__UpperCamelCase =cva.imread(A_ , 0 )
__UpperCamelCase , __UpperCamelCase =img.shape
__UpperCamelCase =[]
__UpperCamelCase =img.copy()
__UpperCamelCase =cva.cvtColor(A_ , cva.COLOR_GRAY2RGB )
__UpperCamelCase , __UpperCamelCase =np.gradient(A_ )
__UpperCamelCase =dx**2
__UpperCamelCase =dy**2
__UpperCamelCase =dx * dy
__UpperCamelCase =0.04
__UpperCamelCase =self.window_size // 2
for y in range(A_ , h - offset ):
for x in range(A_ , w - offset ):
__UpperCamelCase =ixx[
y - offset : y + offset + 1, x - offset : x + offset + 1
].sum()
__UpperCamelCase =iyy[
y - offset : y + offset + 1, x - offset : x + offset + 1
].sum()
__UpperCamelCase =ixy[
y - offset : y + offset + 1, x - offset : x + offset + 1
].sum()
__UpperCamelCase =(wxx * wyy) - (wxy**2)
__UpperCamelCase =wxx + wyy
__UpperCamelCase =det - k * (trace**2)
# Can change the value
if r > 0.5:
corner_list.append([x, y, r] )
color_img.itemset((y, x, 0) , 0 )
color_img.itemset((y, x, 1) , 0 )
color_img.itemset((y, x, 2) , 255 )
return color_img, corner_list
if __name__ == "__main__":
_A = HarrisCorner(0.04, 3)
_A , _A = edge_detect.detect('path_to_image')
cva.imwrite('detect.png', color_img)
| 62 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
lowerCamelCase : Optional[Any] = {
"configuration_whisper": ["WHISPER_PRETRAINED_CONFIG_ARCHIVE_MAP", "WhisperConfig", "WhisperOnnxConfig"],
"feature_extraction_whisper": ["WhisperFeatureExtractor"],
"processing_whisper": ["WhisperProcessor"],
"tokenization_whisper": ["WhisperTokenizer"],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCamelCase : Tuple = ["WhisperTokenizerFast"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCamelCase : str = [
"WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST",
"WhisperForConditionalGeneration",
"WhisperModel",
"WhisperPreTrainedModel",
"WhisperForAudioClassification",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCamelCase : List[str] = [
"TF_WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST",
"TFWhisperForConditionalGeneration",
"TFWhisperModel",
"TFWhisperPreTrainedModel",
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCamelCase : str = [
"FlaxWhisperForConditionalGeneration",
"FlaxWhisperModel",
"FlaxWhisperPreTrainedModel",
"FlaxWhisperForAudioClassification",
]
if TYPE_CHECKING:
from .configuration_whisper import WHISPER_PRETRAINED_CONFIG_ARCHIVE_MAP, WhisperConfig, WhisperOnnxConfig
from .feature_extraction_whisper import WhisperFeatureExtractor
from .processing_whisper import WhisperProcessor
from .tokenization_whisper import WhisperTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_whisper_fast import WhisperTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_whisper import (
WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST,
WhisperForAudioClassification,
WhisperForConditionalGeneration,
WhisperModel,
WhisperPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_whisper import (
TF_WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST,
TFWhisperForConditionalGeneration,
TFWhisperModel,
TFWhisperPreTrainedModel,
)
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_whisper import (
FlaxWhisperForAudioClassification,
FlaxWhisperForConditionalGeneration,
FlaxWhisperModel,
FlaxWhisperPreTrainedModel,
)
else:
import sys
lowerCamelCase : Tuple = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 204 | 0 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available
__lowercase : Optional[int] = {
'configuration_graphormer': ['GRAPHORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'GraphormerConfig'],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__lowercase : Any = [
'GRAPHORMER_PRETRAINED_MODEL_ARCHIVE_LIST',
'GraphormerForGraphClassification',
'GraphormerModel',
'GraphormerPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_graphormer import GRAPHORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, GraphormerConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_graphormer import (
GRAPHORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
GraphormerForGraphClassification,
GraphormerModel,
GraphormerPreTrainedModel,
)
else:
import sys
__lowercase : Dict = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 294 |
'''simple docstring'''
from .imports import is_rich_available
if is_rich_available():
from rich.traceback import install
install(show_locals=False)
else:
raise ModuleNotFoundError('To use the rich extension, install rich with `pip install rich`')
| 294 | 1 |
import math
import random
from typing import Any
from .hill_climbing import SearchProblem
def _UpperCamelCase ( snake_case__, snake_case__ = True, snake_case__ = math.inf, snake_case__ = -math.inf, snake_case__ = math.inf, snake_case__ = -math.inf, snake_case__ = False, snake_case__ = 100, snake_case__ = 0.01, snake_case__ = 1, ) -> Any:
__UpperCAmelCase : Dict = False
__UpperCAmelCase : Dict = search_prob
__UpperCAmelCase : Tuple = start_temperate
__UpperCAmelCase : Dict = []
__UpperCAmelCase : List[Any] = 0
__UpperCAmelCase : int = None
while not search_end:
__UpperCAmelCase : str = current_state.score()
if best_state is None or current_score > best_state.score():
__UpperCAmelCase : Union[str, Any] = current_state
scores.append(snake_case__ )
iterations += 1
__UpperCAmelCase : List[str] = None
__UpperCAmelCase : int = current_state.get_neighbors()
while (
next_state is None and neighbors
): # till we do not find a neighbor that we can move to
__UpperCAmelCase : str = random.randint(0, len(snake_case__ ) - 1 ) # picking a random neighbor
__UpperCAmelCase : Tuple = neighbors.pop(snake_case__ )
__UpperCAmelCase : List[str] = picked_neighbor.score() - current_score
if (
picked_neighbor.x > max_x
or picked_neighbor.x < min_x
or picked_neighbor.y > max_y
or picked_neighbor.y < min_y
):
continue # neighbor outside our bounds
if not find_max:
__UpperCAmelCase : Dict = change * -1 # in case we are finding minimum
if change > 0: # improves the solution
__UpperCAmelCase : int = picked_neighbor
else:
__UpperCAmelCase : List[Any] = (math.e) ** (
change / current_temp
) # probability generation function
if random.random() < probability: # random number within probability
__UpperCAmelCase : Union[str, Any] = picked_neighbor
__UpperCAmelCase : int = current_temp - (current_temp * rate_of_decrease)
if current_temp < threshold_temp or next_state is None:
# temperature below threshold, or could not find a suitable neighbor
__UpperCAmelCase : Optional[Any] = True
else:
__UpperCAmelCase : int = next_state
if visualization:
from matplotlib import pyplot as plt
plt.plot(range(snake_case__ ), snake_case__ )
plt.xlabel("Iterations" )
plt.ylabel("Function values" )
plt.show()
return best_state
if __name__ == "__main__":
def _UpperCamelCase ( snake_case__, snake_case__ ) -> List[Any]:
return (x**2) + (y**2)
# starting the problem with initial coordinates (12, 47)
_snake_case = SearchProblem(x=12, y=47, step_size=1, function_to_optimize=test_fa)
_snake_case = simulated_annealing(
prob, find_max=False, max_x=100, min_x=5, max_y=50, min_y=-5, visualization=True
)
print(
'''The minimum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 '''
F'and 50 > y > - 5 found via hill climbing: {local_min.score()}'
)
# starting the problem with initial coordinates (12, 47)
_snake_case = SearchProblem(x=12, y=47, step_size=1, function_to_optimize=test_fa)
_snake_case = simulated_annealing(
prob, find_max=True, max_x=100, min_x=5, max_y=50, min_y=-5, visualization=True
)
print(
'''The maximum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 '''
F'and 50 > y > - 5 found via hill climbing: {local_min.score()}'
)
def _UpperCamelCase ( snake_case__, snake_case__ ) -> Tuple:
return (3 * x**2) - (6 * y)
_snake_case = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa)
_snake_case = simulated_annealing(prob, find_max=False, visualization=True)
print(
'''The minimum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: '''
F'{local_min.score()}'
)
_snake_case = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa)
_snake_case = simulated_annealing(prob, find_max=True, visualization=True)
print(
'''The maximum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: '''
F'{local_min.score()}'
)
| 157 | def _UpperCamelCase ( snake_case__ ) -> int:
__UpperCAmelCase : list[list[int]] = [[0 for _ in range(snake_case__ )] for _ in range(m + 1 )]
for i in range(m + 1 ):
__UpperCAmelCase : Optional[int] = 1
for n in range(m + 1 ):
for k in range(1, snake_case__ ):
memo[n][k] += memo[n][k - 1]
if n - k > 0:
memo[n][k] += memo[n - k - 1][k]
return memo[m][m - 1]
if __name__ == "__main__":
import sys
if len(sys.argv) == 1:
try:
_snake_case = int(input('''Enter a number: ''').strip())
print(partition(n))
except ValueError:
print('''Please enter a number.''')
else:
try:
_snake_case = int(sys.argv[1])
print(partition(n))
except ValueError:
print('''Please pass a number.''')
| 157 | 1 |
def a__ ( __SCREAMING_SNAKE_CASE = 5_0 ) -> int:
__lowerCAmelCase: List[str] = [1] * (length + 1)
for row_length in range(length + 1 ):
for tile_length in range(2 , 5 ):
for tile_start in range(row_length - tile_length + 1 ):
ways_number[row_length] += ways_number[
row_length - tile_start - tile_length
]
return ways_number[length]
if __name__ == "__main__":
print(F'''{solution() = }''')
| 357 |
"""simple docstring"""
def a__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> int:
return int((input_a, input_a).count(0 ) == 0 )
def a__ ( ) -> None:
assert and_gate(0 , 0 ) == 0
assert and_gate(0 , 1 ) == 0
assert and_gate(1 , 0 ) == 0
assert and_gate(1 , 1 ) == 1
if __name__ == "__main__":
test_and_gate()
print(and_gate(1, 0))
print(and_gate(0, 0))
print(and_gate(0, 1))
print(and_gate(1, 1))
| 108 | 0 |
"""simple docstring"""
from math import pi, sqrt
def __UpperCAmelCase ( __lowerCamelCase ) -> float:
if num <= 0:
raise ValueError('''math domain error''' )
if num > 1_7_1.5:
raise OverflowError('''math range error''' )
elif num - int(__lowerCamelCase ) not in (0, 0.5):
raise NotImplementedError('''num must be an integer or a half-integer''' )
elif num == 0.5:
return sqrt(__lowerCamelCase )
else:
return 1.0 if num == 1 else (num - 1) * gamma(num - 1 )
def __UpperCAmelCase ( ) -> None:
assert gamma(0.5 ) == sqrt(__lowerCamelCase )
assert gamma(1 ) == 1.0
assert gamma(2 ) == 1.0
if __name__ == "__main__":
from doctest import testmod
testmod()
lowerCAmelCase_ = 1.0
while num:
lowerCAmelCase_ = float(input('Gamma of: '))
print(F'''gamma({num}) = {gamma(num)}''')
print('\nEnter 0 to exit...')
| 16 |
"""simple docstring"""
def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase ) -> str:
if not isinstance(__lowerCamelCase , __lowerCamelCase ):
raise ValueError('''iterations must be defined as integers''' )
if not isinstance(__lowerCamelCase , __lowerCamelCase ) or not number >= 1:
raise ValueError(
'''starting number must be
and integer and be more than 0''' )
if not iterations >= 1:
raise ValueError('''Iterations must be done more than 0 times to play FizzBuzz''' )
lowercase__ : Tuple = ''''''
while number <= iterations:
if number % 3 == 0:
out += "Fizz"
if number % 5 == 0:
out += "Buzz"
if 0 not in (number % 3, number % 5):
out += str(__lowerCamelCase )
# print(out)
number += 1
out += " "
return out
if __name__ == "__main__":
import doctest
doctest.testmod()
| 16 | 1 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
__snake_case : Tuple ={
"configuration_git": ["GIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "GitConfig", "GitVisionConfig"],
"processing_git": ["GitProcessor"],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__snake_case : int =[
"GIT_PRETRAINED_MODEL_ARCHIVE_LIST",
"GitForCausalLM",
"GitModel",
"GitPreTrainedModel",
"GitVisionModel",
]
if TYPE_CHECKING:
from .configuration_git import GIT_PRETRAINED_CONFIG_ARCHIVE_MAP, GitConfig, GitVisionConfig
from .processing_git import GitProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_git import (
GIT_PRETRAINED_MODEL_ARCHIVE_LIST,
GitForCausalLM,
GitModel,
GitPreTrainedModel,
GitVisionModel,
)
else:
import sys
__snake_case : int =_LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 350 |
def lowerCAmelCase__ ( lowerCamelCase_ : int ,lowerCamelCase_ : int):
'''simple docstring'''
while b:
lowerCAmelCase__ , lowerCAmelCase__ : Optional[Any] = b, a % b
return a
def lowerCAmelCase__ ( lowerCamelCase_ : int ,lowerCamelCase_ : int):
'''simple docstring'''
return a if b == 0 else euclidean_gcd_recursive(lowerCamelCase_ ,a % b)
def lowerCAmelCase__ ( ):
'''simple docstring'''
print(f"""euclidean_gcd(3, 5) = {euclidean_gcd(3 ,5)}""")
print(f"""euclidean_gcd(5, 3) = {euclidean_gcd(5 ,3)}""")
print(f"""euclidean_gcd(1, 3) = {euclidean_gcd(1 ,3)}""")
print(f"""euclidean_gcd(3, 6) = {euclidean_gcd(3 ,6)}""")
print(f"""euclidean_gcd(6, 3) = {euclidean_gcd(6 ,3)}""")
print(f"""euclidean_gcd_recursive(3, 5) = {euclidean_gcd_recursive(3 ,5)}""")
print(f"""euclidean_gcd_recursive(5, 3) = {euclidean_gcd_recursive(5 ,3)}""")
print(f"""euclidean_gcd_recursive(1, 3) = {euclidean_gcd_recursive(1 ,3)}""")
print(f"""euclidean_gcd_recursive(3, 6) = {euclidean_gcd_recursive(3 ,6)}""")
print(f"""euclidean_gcd_recursive(6, 3) = {euclidean_gcd_recursive(6 ,3)}""")
if __name__ == "__main__":
main()
| 94 | 0 |
import argparse
import requests
import torch
# pip3 install salesforce-lavis
# I'm actually installing a slightly modified version: pip3 install git+https://github.com/nielsrogge/LAVIS.git@fix_lavis_float32 (there's also the fix_lavis branch)
# also note: to convert Vicuna checkpoints, we had to include /home/niels/python_projects/checkpoints/FastChat/vicuna-7b in lavis/configs/models/blip2/blip2_instruct_vicuna7b.yaml
# same for Vicuna-13b
from lavis.models import load_model_and_preprocess
from PIL import Image
from transformers import (
AutoTokenizer,
BlipImageProcessor,
InstructBlipConfig,
InstructBlipForConditionalGeneration,
InstructBlipProcessor,
InstructBlipQFormerConfig,
InstructBlipVisionConfig,
LlamaConfig,
LlamaTokenizerFast,
TaConfig,
TaTokenizerFast,
)
from transformers.utils.constants import OPENAI_CLIP_MEAN, OPENAI_CLIP_STD
def _a ( ):
"""simple docstring"""
lowercase__ = '''https://raw.githubusercontent.com/salesforce/LAVIS/main/docs/_static/Confusing-Pictures.jpg'''
lowercase__ = Image.open(requests.get(SCREAMING_SNAKE_CASE , stream=SCREAMING_SNAKE_CASE ).raw ).convert('''RGB''' )
return image
def _a ( SCREAMING_SNAKE_CASE ):
"""simple docstring"""
lowercase__ = []
# fmt: off
# vision encoder
rename_keys.append(('''visual_encoder.cls_token''', '''vision_model.embeddings.class_embedding''') )
rename_keys.append(('''visual_encoder.pos_embed''', '''vision_model.embeddings.position_embedding''') )
rename_keys.append(('''visual_encoder.patch_embed.proj.weight''', '''vision_model.embeddings.patch_embedding.weight''') )
rename_keys.append(('''visual_encoder.patch_embed.proj.bias''', '''vision_model.embeddings.patch_embedding.bias''') )
rename_keys.append(('''ln_vision.weight''', '''vision_model.post_layernorm.weight''') )
rename_keys.append(('''ln_vision.bias''', '''vision_model.post_layernorm.bias''') )
for i in range(config.vision_config.num_hidden_layers ):
rename_keys.append((f'visual_encoder.blocks.{i}.norm1.weight', f'vision_model.encoder.layers.{i}.layer_norm1.weight') )
rename_keys.append((f'visual_encoder.blocks.{i}.norm1.bias', f'vision_model.encoder.layers.{i}.layer_norm1.bias') )
rename_keys.append((f'visual_encoder.blocks.{i}.norm2.weight', f'vision_model.encoder.layers.{i}.layer_norm2.weight') )
rename_keys.append((f'visual_encoder.blocks.{i}.norm2.bias', f'vision_model.encoder.layers.{i}.layer_norm2.bias') )
rename_keys.append((f'visual_encoder.blocks.{i}.attn.qkv.weight', f'vision_model.encoder.layers.{i}.self_attn.qkv.weight') )
rename_keys.append((f'visual_encoder.blocks.{i}.attn.proj.weight', f'vision_model.encoder.layers.{i}.self_attn.projection.weight',) )
rename_keys.append((f'visual_encoder.blocks.{i}.attn.proj.bias', f'vision_model.encoder.layers.{i}.self_attn.projection.bias') )
rename_keys.append((f'visual_encoder.blocks.{i}.mlp.fc1.weight', f'vision_model.encoder.layers.{i}.mlp.fc1.weight') )
rename_keys.append((f'visual_encoder.blocks.{i}.mlp.fc1.bias', f'vision_model.encoder.layers.{i}.mlp.fc1.bias') )
rename_keys.append((f'visual_encoder.blocks.{i}.mlp.fc2.weight', f'vision_model.encoder.layers.{i}.mlp.fc2.weight') )
rename_keys.append((f'visual_encoder.blocks.{i}.mlp.fc2.bias', f'vision_model.encoder.layers.{i}.mlp.fc2.bias') )
# QFormer
rename_keys.append(('''Qformer.bert.embeddings.LayerNorm.weight''', '''qformer.embeddings.layernorm.weight''') )
rename_keys.append(('''Qformer.bert.embeddings.LayerNorm.bias''', '''qformer.embeddings.layernorm.bias''') )
# fmt: on
return rename_keys
def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ):
"""simple docstring"""
lowercase__ = dct.pop(SCREAMING_SNAKE_CASE )
lowercase__ = val
def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ):
"""simple docstring"""
for i in range(config.vision_config.num_hidden_layers ):
# read in original q and v biases
lowercase__ = state_dict.pop(f'visual_encoder.blocks.{i}.attn.q_bias' )
lowercase__ = state_dict.pop(f'visual_encoder.blocks.{i}.attn.v_bias' )
# next, set bias in the state dict
lowercase__ = torch.cat((q_bias, torch.zeros_like(SCREAMING_SNAKE_CASE , requires_grad=SCREAMING_SNAKE_CASE ), v_bias) )
lowercase__ = qkv_bias
def _a ( SCREAMING_SNAKE_CASE ):
"""simple docstring"""
lowercase__ = 3_64 if '''coco''' in model_name else 2_24
lowercase__ = InstructBlipVisionConfig(image_size=SCREAMING_SNAKE_CASE ).to_dict()
# make sure the models have proper bos_token_id and eos_token_id set (important for generation)
# seems like flan-T5 models don't have bos_token_id properly set?
if "t5-xl" in model_name:
lowercase__ = TaConfig.from_pretrained('''google/flan-t5-xl''' , dense_act_fn='''gelu''' , bos_token_id=1 ).to_dict()
elif "t5-xxl" in model_name:
lowercase__ = TaConfig.from_pretrained('''google/flan-t5-xxl''' , dense_act_fn='''gelu''' , bos_token_id=1 ).to_dict()
elif "vicuna-7b" in model_name:
lowercase__ = LlamaConfig.from_pretrained('''decapoda-research/llama-7b-hf''' , vocab_size=3_20_01 ).to_dict()
elif "vicuna-13b" in model_name:
lowercase__ = LlamaConfig.from_pretrained('''decapoda-research/llama-13b-hf''' , vocab_size=3_20_01 ).to_dict()
else:
raise ValueError('''Model name not supported''' )
# the authors add one special "[DEC]" token to the vocab of Q-Former, hence vocab size = 30522 + 1
lowercase__ = InstructBlipQFormerConfig(vocab_size=3_05_23 ).to_dict()
lowercase__ = InstructBlipConfig(vision_config=SCREAMING_SNAKE_CASE , text_config=SCREAMING_SNAKE_CASE , qformer_config=SCREAMING_SNAKE_CASE )
return config, image_size
@torch.no_grad()
def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=False ):
"""simple docstring"""
lowercase__ = AutoTokenizer.from_pretrained('''bert-base-uncased''' , truncation_side='''left''' )
qformer_tokenizer.add_special_tokens({'''bos_token''': '''[DEC]'''} )
if "t5" in model_name:
lowercase__ = TaTokenizerFast.from_pretrained('''google/flan-t5-xl''' , truncation_side='''left''' )
elif "vicuna" in model_name:
# the following was used in the original implementation:
# tokenizer = LlamaTokenizer.from_pretrained("huggyllama/llama-7b", use_fast=False, truncation_side="left")
# tokenizer.add_special_tokens({"pad_token": "[PAD]"})
# tokenizer.add_special_tokens({"bos_token": "</s>"})
# tokenizer.add_special_tokens({"eos_token": "</s>"})
# tokenizer.add_special_tokens({"unk_token": "</s>"})
lowercase__ = LlamaTokenizerFast.from_pretrained(
'''huggyllama/llama-7b''' , truncation_side='''left''' , bos_token='''</s>''' , unk_token='''</s>''' )
tokenizer.add_special_tokens({'''pad_token''': '''[PAD]'''} )
lowercase__ , lowercase__ = get_blipa_config(SCREAMING_SNAKE_CASE )
lowercase__ = InstructBlipForConditionalGeneration(SCREAMING_SNAKE_CASE ).eval()
lowercase__ = {
'''instructblip-vicuna-7b''': ('''blip2_vicuna_instruct''', '''vicuna7b'''),
'''instructblip-vicuna-13b''': ('''blip2_vicuna_instruct''', '''vicuna13b'''),
'''instructblip-flan-t5-xl''': ('''blip2_t5_instruct''', '''flant5xl'''),
'''instructblip-flan-t5-xxl''': ('''blip2_t5_instruct''', '''flant5xxl'''),
}
lowercase__ , lowercase__ = model_name_to_original[model_name]
# load original model
print('''Loading original model...''' )
lowercase__ = '''cuda:1''' if torch.cuda.is_available() else '''cpu'''
lowercase__ = '''cuda:2''' if torch.cuda.is_available() else '''cpu'''
lowercase__ , lowercase__ , lowercase__ = load_model_and_preprocess(
name=SCREAMING_SNAKE_CASE , model_type=SCREAMING_SNAKE_CASE , is_eval=SCREAMING_SNAKE_CASE , device=SCREAMING_SNAKE_CASE )
original_model.eval()
print('''Done!''' )
# update state dict keys
lowercase__ = original_model.state_dict()
lowercase__ = create_rename_keys(SCREAMING_SNAKE_CASE )
for src, dest in rename_keys:
rename_key(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
# some keys can be renamed efficiently
for key, val in state_dict.copy().items():
lowercase__ = state_dict.pop(SCREAMING_SNAKE_CASE )
if key.startswith('''Qformer.bert''' ):
lowercase__ = key.replace('''Qformer.bert''' , '''qformer''' )
if "attention.self" in key:
lowercase__ = key.replace('''self''' , '''attention''' )
if "llm_proj" in key:
lowercase__ = key.replace('''llm_proj''' , '''language_projection''' )
if "t5_proj" in key:
lowercase__ = key.replace('''t5_proj''' , '''language_projection''' )
if key.startswith('''llm_model''' ):
lowercase__ = key.replace('''llm_model''' , '''language_model''' )
if key.startswith('''t5''' ):
lowercase__ = key.replace('''t5''' , '''language''' )
lowercase__ = val
# read in qv biases
read_in_q_v_bias(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
# note: weights get loaded in torch.float32 by default
hf_model.load_state_dict(SCREAMING_SNAKE_CASE , strict=SCREAMING_SNAKE_CASE )
lowercase__ = load_demo_image()
lowercase__ = '''What is unusual about this image?'''
# create processor
lowercase__ = BlipImageProcessor(
size={'''height''': image_size, '''width''': image_size} , image_mean=SCREAMING_SNAKE_CASE , image_std=SCREAMING_SNAKE_CASE )
lowercase__ = InstructBlipProcessor(
image_processor=SCREAMING_SNAKE_CASE , tokenizer=SCREAMING_SNAKE_CASE , qformer_tokenizer=SCREAMING_SNAKE_CASE , )
lowercase__ = processor(images=SCREAMING_SNAKE_CASE , text=SCREAMING_SNAKE_CASE , return_tensors='''pt''' ).to(SCREAMING_SNAKE_CASE )
# make sure processor creates exact same pixel values
lowercase__ = vis_processors['''eval'''](SCREAMING_SNAKE_CASE ).unsqueeze(0 ).to(SCREAMING_SNAKE_CASE )
lowercase__ = inputs.pixel_values
assert torch.allclose(original_pixel_values.to(pixel_values.device ) , SCREAMING_SNAKE_CASE )
original_model.to(SCREAMING_SNAKE_CASE )
hf_model.to(SCREAMING_SNAKE_CASE )
with torch.no_grad():
if "vicuna" in model_name:
lowercase__ = original_model({'''image''': original_pixel_values, '''text_input''': [prompt]} ).logits
lowercase__ = hf_model(**SCREAMING_SNAKE_CASE ).logits
else:
lowercase__ = original_model(
{'''image''': original_pixel_values, '''text_input''': [prompt], '''text_output''': ['''\n''']} ).logits
lowercase__ = tokenizer('''\n''' , return_tensors='''pt''' ).input_ids.to(SCREAMING_SNAKE_CASE )
lowercase__ = label_input_ids.masked_fill(label_input_ids == tokenizer.pad_token_id , -1_00 )
lowercase__ = hf_model(**SCREAMING_SNAKE_CASE , labels=SCREAMING_SNAKE_CASE ).logits
print('''First values of original logits:''' , original_logits[0, :3, :3] )
print('''First values of HF logits:''' , logits[0, :3, :3] )
# assert values
assert original_logits.shape == logits.shape
lowercase__ = 1E-4 if '''vicuna''' in model_name else 1E-5
assert torch.allclose(original_logits.to(logits.device ) , SCREAMING_SNAKE_CASE , atol=SCREAMING_SNAKE_CASE )
print('''Looks ok!''' )
print('''Generating with original model...''' )
lowercase__ = original_model.generate({'''image''': original_pixel_values, '''prompt''': prompt} , num_beams=5 )
# important: we need to cast the weights of the HF model to the appropriate type
print('''Generating with HF model...''' )
lowercase__ = hf_model.generate(
**SCREAMING_SNAKE_CASE , do_sample=SCREAMING_SNAKE_CASE , num_beams=5 , max_length=2_56 , min_length=1 , top_p=0.9 , repetition_penalty=1.5 , length_penalty=1.0 , temperature=1 , )
if "vicuna" in model_name:
# convert output id 0 to 2 (eos_token_id)
# TODO add this in the generate method?
lowercase__ = 2
print('''Original generation:''' , SCREAMING_SNAKE_CASE )
lowercase__ = processor.batch_decode(SCREAMING_SNAKE_CASE , skip_special_tokens=SCREAMING_SNAKE_CASE )
lowercase__ = [text.strip() for text in output_text]
print('''HF generation:''' , SCREAMING_SNAKE_CASE )
if pytorch_dump_folder_path is not None:
processor.save_pretrained(SCREAMING_SNAKE_CASE )
hf_model.save_pretrained(SCREAMING_SNAKE_CASE )
if push_to_hub:
processor.push_to_hub(f'Salesforce/{model_name}' )
hf_model.push_to_hub(f'Salesforce/{model_name}' )
if __name__ == "__main__":
lowerCAmelCase = argparse.ArgumentParser()
lowerCAmelCase = [
'instructblip-vicuna-7b',
'instructblip-vicuna-13b',
'instructblip-flan-t5-xl',
'instructblip-flan-t5-xxl',
]
parser.add_argument(
'--model_name',
default='instructblip-flan-t5-xl',
choices=choices,
type=str,
help='Path to hf config.json of model to convert',
)
parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.')
parser.add_argument(
'--push_to_hub',
action='store_true',
help='Whether to push the model and processor to the hub after converting',
)
lowerCAmelCase = parser.parse_args()
convert_blipa_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
| 110 |
import numpy
# List of input, output pairs
UpperCAmelCase : str = (
((5, 2, 3), 15),
((6, 5, 9), 25),
((11, 12, 13), 41),
((1, 1, 1), 8),
((11, 12, 13), 41),
)
UpperCAmelCase : Optional[int] = (((515, 22, 13), 555), ((61, 35, 49), 150))
UpperCAmelCase : str = [2, 4, 1, 5]
UpperCAmelCase : List[str] = len(train_data)
UpperCAmelCase : Dict = 0.0_0_9
def _A ( SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : Tuple="train" ):
"""simple docstring"""
return calculate_hypothesis_value(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) - output(
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
def _A ( SCREAMING_SNAKE_CASE : Tuple ):
"""simple docstring"""
a__ : Tuple =0
for i in range(len(SCREAMING_SNAKE_CASE ) - 1 ):
hyp_val += data_input_tuple[i] * parameter_vector[i + 1]
hyp_val += parameter_vector[0]
return hyp_val
def _A ( SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : Dict ):
"""simple docstring"""
if data_set == "train":
return train_data[example_no][1]
elif data_set == "test":
return test_data[example_no][1]
return None
def _A ( SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : Tuple ):
"""simple docstring"""
if data_set == "train":
return _hypothesis_value(train_data[example_no][0] )
elif data_set == "test":
return _hypothesis_value(test_data[example_no][0] )
return None
def _A ( SCREAMING_SNAKE_CASE : Union[str, Any] , SCREAMING_SNAKE_CASE : int=m ):
"""simple docstring"""
a__ : Any =0
for i in range(SCREAMING_SNAKE_CASE ):
if index == -1:
summation_value += _error(SCREAMING_SNAKE_CASE )
else:
summation_value += _error(SCREAMING_SNAKE_CASE ) * train_data[i][0][index]
return summation_value
def _A ( SCREAMING_SNAKE_CASE : int ):
"""simple docstring"""
a__ : Any =summation_of_cost_derivative(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) / m
return cost_derivative_value
def _A ( ):
"""simple docstring"""
global parameter_vector
# Tune these values to set a tolerance value for predicted output
a__ : Dict =0.0_0_0_0_0_2
a__ : Union[str, Any] =0
a__ : Any =0
while True:
j += 1
a__ : Any =[0, 0, 0, 0]
for i in range(0 , len(SCREAMING_SNAKE_CASE ) ):
a__ : Tuple =get_cost_derivative(i - 1 )
a__ : List[Any] =(
parameter_vector[i] - LEARNING_RATE * cost_derivative
)
if numpy.allclose(
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , atol=SCREAMING_SNAKE_CASE , rtol=SCREAMING_SNAKE_CASE , ):
break
a__ : Optional[Any] =temp_parameter_vector
print(("Number of iterations:", j) )
def _A ( ):
"""simple docstring"""
for i in range(len(SCREAMING_SNAKE_CASE ) ):
print(("Actual output value:", output(SCREAMING_SNAKE_CASE , "test" )) )
print(("Hypothesis output:", calculate_hypothesis_value(SCREAMING_SNAKE_CASE , "test" )) )
if __name__ == "__main__":
run_gradient_descent()
print("""\nTesting gradient descent for a linear hypothesis function.\n""")
test_gradient_descent()
| 95 | 0 |
'''simple docstring'''
from collections import OrderedDict
from typing import Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
snake_case__ = logging.get_logger(__name__)
snake_case__ = {
"""facebook/levit-128S""": """https://huggingface.co/facebook/levit-128S/resolve/main/config.json""",
# See all LeViT models at https://huggingface.co/models?filter=levit
}
class UpperCamelCase_ (a__ ):
"""simple docstring"""
_lowerCAmelCase = 'levit'
def __init__( self : int , _lowerCamelCase : List[Any]=224 , _lowerCamelCase : Union[str, Any]=3 , _lowerCamelCase : int=3 , _lowerCamelCase : Tuple=2 , _lowerCamelCase : Optional[int]=1 , _lowerCamelCase : List[str]=16 , _lowerCamelCase : Tuple=[128, 256, 384] , _lowerCamelCase : List[str]=[4, 8, 12] , _lowerCamelCase : Optional[int]=[4, 4, 4] , _lowerCamelCase : Union[str, Any]=[16, 16, 16] , _lowerCamelCase : int=0 , _lowerCamelCase : Union[str, Any]=[2, 2, 2] , _lowerCamelCase : Optional[Any]=[2, 2, 2] , _lowerCamelCase : Optional[Any]=0.02 , **_lowerCamelCase : List[Any] , ):
"""simple docstring"""
super().__init__(**_lowerCamelCase )
A_ : List[Any] = image_size
A_ : List[str] = num_channels
A_ : Tuple = kernel_size
A_ : Optional[int] = stride
A_ : Dict = padding
A_ : Tuple = hidden_sizes
A_ : Tuple = num_attention_heads
A_ : int = depths
A_ : Any = key_dim
A_ : Any = drop_path_rate
A_ : Tuple = patch_size
A_ : Union[str, Any] = attention_ratio
A_ : str = mlp_ratio
A_ : Optional[Any] = initializer_range
A_ : Union[str, Any] = [
['''Subsample''', key_dim[0], hidden_sizes[0] // key_dim[0], 4, 2, 2],
['''Subsample''', key_dim[0], hidden_sizes[1] // key_dim[0], 4, 2, 2],
]
class UpperCamelCase_ (a__ ):
"""simple docstring"""
_lowerCAmelCase = version.parse('1.11' )
@property
def _a ( self : Optional[int] ):
"""simple docstring"""
return OrderedDict(
[
('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}),
] )
@property
def _a ( self : int ):
"""simple docstring"""
return 1E-4
| 4 |
'''simple docstring'''
class UpperCamelCase_ :
"""simple docstring"""
def __init__( self : Optional[Any] , _lowerCamelCase : Union[str, Any] ):
"""simple docstring"""
A_ : Union[str, Any] = val
A_ : Tuple = None
A_ : Any = None
def _a ( self : Tuple , _lowerCamelCase : List[Any] ):
"""simple docstring"""
if self.val:
if val < self.val:
if self.left is None:
A_ : int = Node(_lowerCamelCase )
else:
self.left.insert(_lowerCamelCase )
elif val > self.val:
if self.right is None:
A_ : List[str] = Node(_lowerCamelCase )
else:
self.right.insert(_lowerCamelCase )
else:
A_ : Any = val
def snake_case__ ( lowerCamelCase__ : Any , lowerCamelCase__ : Optional[int] ) -> str:
# Recursive traversal
if root:
inorder(root.left , lowerCamelCase__ )
res.append(root.val )
inorder(root.right , lowerCamelCase__ )
def snake_case__ ( lowerCamelCase__ : Optional[int] ) -> Tuple:
# Build BST
if len(lowerCamelCase__ ) == 0:
return arr
A_ : Dict = Node(arr[0] )
for i in range(1 , len(lowerCamelCase__ ) ):
root.insert(arr[i] )
# Traverse BST in order.
A_ : Tuple = []
inorder(lowerCamelCase__ , lowerCamelCase__ )
return res
if __name__ == "__main__":
print(tree_sort([10, 1, 3, 2, 9, 14, 13]))
| 4 | 1 |
import numpy as np
from cva import COLOR_BGR2GRAY, cvtColor, imread
from numpy import array, uinta
from PIL import Image
from digital_image_processing import change_contrast as cc
from digital_image_processing import convert_to_negative as cn
from digital_image_processing import sepia as sp
from digital_image_processing.dithering import burkes as bs
from digital_image_processing.edge_detection import canny
from digital_image_processing.filters import convolve as conv
from digital_image_processing.filters import gaussian_filter as gg
from digital_image_processing.filters import local_binary_pattern as lbp
from digital_image_processing.filters import median_filter as med
from digital_image_processing.filters import sobel_filter as sob
from digital_image_processing.resize import resize as rs
__lowerCAmelCase : Union[str, Any] =imread(r'digital_image_processing/image_data/lena_small.jpg')
__lowerCAmelCase : List[Any] =cvtColor(img, COLOR_BGR2GRAY)
def _UpperCamelCase ( ):
__SCREAMING_SNAKE_CASE : Optional[Any] = cn.convert_to_negative(lowercase__ )
# assert negative_img array for at least one True
assert negative_img.any()
def _UpperCamelCase ( ):
with Image.open('''digital_image_processing/image_data/lena_small.jpg''' ) as img:
# Work around assertion for response
assert str(cc.change_contrast(lowercase__ , 110 ) ).startswith(
'''<PIL.Image.Image image mode=RGB size=100x100 at''' )
def _UpperCamelCase ( ):
__SCREAMING_SNAKE_CASE : List[Any] = canny.gen_gaussian_kernel(9 , sigma=1.4 )
# Assert ambiguous array
assert resp.all()
def _UpperCamelCase ( ):
__SCREAMING_SNAKE_CASE : str = imread('''digital_image_processing/image_data/lena_small.jpg''' , 0 )
# assert ambiguous array for all == True
assert canny_img.all()
__SCREAMING_SNAKE_CASE : Dict = canny.canny(lowercase__ )
# assert canny array for at least one True
assert canny_array.any()
def _UpperCamelCase ( ):
assert gg.gaussian_filter(lowercase__ , 5 , sigma=0.9 ).all()
def _UpperCamelCase ( ):
# laplace diagonals
__SCREAMING_SNAKE_CASE : List[Any] = array([[0.25, 0.5, 0.25], [0.5, -3, 0.5], [0.25, 0.5, 0.25]] )
__SCREAMING_SNAKE_CASE : Tuple = conv.img_convolve(lowercase__ , lowercase__ ).astype(lowercase__ )
assert res.any()
def _UpperCamelCase ( ):
assert med.median_filter(lowercase__ , 3 ).any()
def _UpperCamelCase ( ):
__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : str = sob.sobel_filter(lowercase__ )
assert grad.any() and theta.any()
def _UpperCamelCase ( ):
__SCREAMING_SNAKE_CASE : List[str] = sp.make_sepia(lowercase__ , 20 )
assert sepia.all()
def _UpperCamelCase ( lowercase__ = "digital_image_processing/image_data/lena_small.jpg" ):
__SCREAMING_SNAKE_CASE : List[str] = bs.Burkes(imread(lowercase__ , 1 ) , 120 )
burkes.process()
assert burkes.output_img.any()
def _UpperCamelCase ( lowercase__ = "digital_image_processing/image_data/lena_small.jpg" , ):
__SCREAMING_SNAKE_CASE : Union[str, Any] = rs.NearestNeighbour(imread(lowercase__ , 1 ) , 400 , 200 )
nn.process()
assert nn.output.any()
def _UpperCamelCase ( ):
__SCREAMING_SNAKE_CASE : Union[str, Any] = '''digital_image_processing/image_data/lena.jpg'''
# Reading the image and converting it to grayscale.
__SCREAMING_SNAKE_CASE : Dict = imread(lowercase__ , 0 )
# Test for get_neighbors_pixel function() return not None
__SCREAMING_SNAKE_CASE : List[str] = 0
__SCREAMING_SNAKE_CASE : Optional[int] = 0
__SCREAMING_SNAKE_CASE : str = image[x_coordinate][y_coordinate]
__SCREAMING_SNAKE_CASE : Any = lbp.get_neighbors_pixel(
lowercase__ , lowercase__ , lowercase__ , lowercase__ )
assert neighbors_pixels is not None
# Test for local_binary_pattern function()
# Create a numpy array as the same height and width of read image
__SCREAMING_SNAKE_CASE : Dict = np.zeros((image.shape[0], image.shape[1]) )
# Iterating through the image and calculating the local binary pattern value
# for each pixel.
for i in range(0 , image.shape[0] ):
for j in range(0 , image.shape[1] ):
__SCREAMING_SNAKE_CASE : Optional[Any] = lbp.local_binary_value(lowercase__ , lowercase__ , lowercase__ )
assert lbp_image.any()
| 9 | """simple docstring"""
from dataclasses import dataclass
from typing import Optional
import numpy as np
import torch
import torch.nn as nn
from ..utils import BaseOutput, is_torch_version, randn_tensor
from .attention_processor import SpatialNorm
from .unet_ad_blocks import UNetMidBlockaD, get_down_block, get_up_block
@dataclass
class UpperCamelCase__( __A ):
lowerCAmelCase__ : torch.FloatTensor
class UpperCamelCase__( nn.Module ):
def __init__( self ,__UpperCAmelCase=3 ,__UpperCAmelCase=3 ,__UpperCAmelCase=("DownEncoderBlock2D",) ,__UpperCAmelCase=(64,) ,__UpperCAmelCase=2 ,__UpperCAmelCase=32 ,__UpperCAmelCase="silu" ,__UpperCAmelCase=True ,) -> Union[str, Any]:
super().__init__()
A__ = layers_per_block
A__ = torch.nn.Convad(
__UpperCAmelCase ,block_out_channels[0] ,kernel_size=3 ,stride=1 ,padding=1 ,)
A__ = None
A__ = nn.ModuleList([] )
# down
A__ = block_out_channels[0]
for i, down_block_type in enumerate(__UpperCAmelCase ):
A__ = output_channel
A__ = block_out_channels[i]
A__ = i == len(__UpperCAmelCase ) - 1
A__ = get_down_block(
__UpperCAmelCase ,num_layers=self.layers_per_block ,in_channels=__UpperCAmelCase ,out_channels=__UpperCAmelCase ,add_downsample=not is_final_block ,resnet_eps=1e-6 ,downsample_padding=0 ,resnet_act_fn=__UpperCAmelCase ,resnet_groups=__UpperCAmelCase ,attention_head_dim=__UpperCAmelCase ,temb_channels=__UpperCAmelCase ,)
self.down_blocks.append(__UpperCAmelCase )
# mid
A__ = UNetMidBlockaD(
in_channels=block_out_channels[-1] ,resnet_eps=1e-6 ,resnet_act_fn=__UpperCAmelCase ,output_scale_factor=1 ,resnet_time_scale_shift='default' ,attention_head_dim=block_out_channels[-1] ,resnet_groups=__UpperCAmelCase ,temb_channels=__UpperCAmelCase ,)
# out
A__ = nn.GroupNorm(num_channels=block_out_channels[-1] ,num_groups=__UpperCAmelCase ,eps=1e-6 )
A__ = nn.SiLU()
A__ = 2 * out_channels if double_z else out_channels
A__ = nn.Convad(block_out_channels[-1] ,__UpperCAmelCase ,3 ,padding=1 )
A__ = False
def snake_case__ ( self ,__UpperCAmelCase ) -> Optional[int]:
A__ = x
A__ = self.conv_in(__UpperCAmelCase )
if self.training and self.gradient_checkpointing:
def create_custom_forward(__UpperCAmelCase ):
def custom_forward(*__UpperCAmelCase ):
return module(*__UpperCAmelCase )
return custom_forward
# down
if is_torch_version('>=' ,'1.11.0' ):
for down_block in self.down_blocks:
A__ = torch.utils.checkpoint.checkpoint(
create_custom_forward(__UpperCAmelCase ) ,__UpperCAmelCase ,use_reentrant=__UpperCAmelCase )
# middle
A__ = torch.utils.checkpoint.checkpoint(
create_custom_forward(self.mid_block ) ,__UpperCAmelCase ,use_reentrant=__UpperCAmelCase )
else:
for down_block in self.down_blocks:
A__ = torch.utils.checkpoint.checkpoint(create_custom_forward(__UpperCAmelCase ) ,__UpperCAmelCase )
# middle
A__ = torch.utils.checkpoint.checkpoint(create_custom_forward(self.mid_block ) ,__UpperCAmelCase )
else:
# down
for down_block in self.down_blocks:
A__ = down_block(__UpperCAmelCase )
# middle
A__ = self.mid_block(__UpperCAmelCase )
# post-process
A__ = self.conv_norm_out(__UpperCAmelCase )
A__ = self.conv_act(__UpperCAmelCase )
A__ = self.conv_out(__UpperCAmelCase )
return sample
class UpperCamelCase__( nn.Module ):
def __init__( self ,__UpperCAmelCase=3 ,__UpperCAmelCase=3 ,__UpperCAmelCase=("UpDecoderBlock2D",) ,__UpperCAmelCase=(64,) ,__UpperCAmelCase=2 ,__UpperCAmelCase=32 ,__UpperCAmelCase="silu" ,__UpperCAmelCase="group" ,) -> Any:
super().__init__()
A__ = layers_per_block
A__ = nn.Convad(
__UpperCAmelCase ,block_out_channels[-1] ,kernel_size=3 ,stride=1 ,padding=1 ,)
A__ = None
A__ = nn.ModuleList([] )
A__ = in_channels if norm_type == 'spatial' else None
# mid
A__ = UNetMidBlockaD(
in_channels=block_out_channels[-1] ,resnet_eps=1e-6 ,resnet_act_fn=__UpperCAmelCase ,output_scale_factor=1 ,resnet_time_scale_shift='default' if norm_type == 'group' else norm_type ,attention_head_dim=block_out_channels[-1] ,resnet_groups=__UpperCAmelCase ,temb_channels=__UpperCAmelCase ,)
# up
A__ = list(reversed(__UpperCAmelCase ) )
A__ = reversed_block_out_channels[0]
for i, up_block_type in enumerate(__UpperCAmelCase ):
A__ = output_channel
A__ = reversed_block_out_channels[i]
A__ = i == len(__UpperCAmelCase ) - 1
A__ = get_up_block(
__UpperCAmelCase ,num_layers=self.layers_per_block + 1 ,in_channels=__UpperCAmelCase ,out_channels=__UpperCAmelCase ,prev_output_channel=__UpperCAmelCase ,add_upsample=not is_final_block ,resnet_eps=1e-6 ,resnet_act_fn=__UpperCAmelCase ,resnet_groups=__UpperCAmelCase ,attention_head_dim=__UpperCAmelCase ,temb_channels=__UpperCAmelCase ,resnet_time_scale_shift=__UpperCAmelCase ,)
self.up_blocks.append(__UpperCAmelCase )
A__ = output_channel
# out
if norm_type == "spatial":
A__ = SpatialNorm(block_out_channels[0] ,__UpperCAmelCase )
else:
A__ = nn.GroupNorm(num_channels=block_out_channels[0] ,num_groups=__UpperCAmelCase ,eps=1e-6 )
A__ = nn.SiLU()
A__ = nn.Convad(block_out_channels[0] ,__UpperCAmelCase ,3 ,padding=1 )
A__ = False
def snake_case__ ( self ,__UpperCAmelCase ,__UpperCAmelCase=None ) -> Dict:
A__ = z
A__ = self.conv_in(__UpperCAmelCase )
A__ = next(iter(self.up_blocks.parameters() ) ).dtype
if self.training and self.gradient_checkpointing:
def create_custom_forward(__UpperCAmelCase ):
def custom_forward(*__UpperCAmelCase ):
return module(*__UpperCAmelCase )
return custom_forward
if is_torch_version('>=' ,'1.11.0' ):
# middle
A__ = torch.utils.checkpoint.checkpoint(
create_custom_forward(self.mid_block ) ,__UpperCAmelCase ,__UpperCAmelCase ,use_reentrant=__UpperCAmelCase )
A__ = sample.to(__UpperCAmelCase )
# up
for up_block in self.up_blocks:
A__ = torch.utils.checkpoint.checkpoint(
create_custom_forward(__UpperCAmelCase ) ,__UpperCAmelCase ,__UpperCAmelCase ,use_reentrant=__UpperCAmelCase )
else:
# middle
A__ = torch.utils.checkpoint.checkpoint(
create_custom_forward(self.mid_block ) ,__UpperCAmelCase ,__UpperCAmelCase )
A__ = sample.to(__UpperCAmelCase )
# up
for up_block in self.up_blocks:
A__ = torch.utils.checkpoint.checkpoint(create_custom_forward(__UpperCAmelCase ) ,__UpperCAmelCase ,__UpperCAmelCase )
else:
# middle
A__ = self.mid_block(__UpperCAmelCase ,__UpperCAmelCase )
A__ = sample.to(__UpperCAmelCase )
# up
for up_block in self.up_blocks:
A__ = up_block(__UpperCAmelCase ,__UpperCAmelCase )
# post-process
if latent_embeds is None:
A__ = self.conv_norm_out(__UpperCAmelCase )
else:
A__ = self.conv_norm_out(__UpperCAmelCase ,__UpperCAmelCase )
A__ = self.conv_act(__UpperCAmelCase )
A__ = self.conv_out(__UpperCAmelCase )
return sample
class UpperCamelCase__( nn.Module ):
def __init__( self ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase=None ,__UpperCAmelCase="random" ,__UpperCAmelCase=False ,__UpperCAmelCase=True ) -> Tuple:
super().__init__()
A__ = n_e
A__ = vq_embed_dim
A__ = beta
A__ = legacy
A__ = nn.Embedding(self.n_e ,self.vq_embed_dim )
self.embedding.weight.data.uniform_(-1.0 / self.n_e ,1.0 / self.n_e )
A__ = remap
if self.remap is not None:
self.register_buffer('used' ,torch.tensor(np.load(self.remap ) ) )
A__ = self.used.shape[0]
A__ = unknown_index # "random" or "extra" or integer
if self.unknown_index == "extra":
A__ = self.re_embed
A__ = self.re_embed + 1
print(
f'''Remapping {self.n_e} indices to {self.re_embed} indices. '''
f'''Using {self.unknown_index} for unknown indices.''' )
else:
A__ = n_e
A__ = sane_index_shape
def snake_case__ ( self ,__UpperCAmelCase ) -> List[str]:
A__ = inds.shape
assert len(__UpperCAmelCase ) > 1
A__ = inds.reshape(ishape[0] ,-1 )
A__ = self.used.to(__UpperCAmelCase )
A__ = (inds[:, :, None] == used[None, None, ...]).long()
A__ = match.argmax(-1 )
A__ = match.sum(2 ) < 1
if self.unknown_index == "random":
A__ = torch.randint(0 ,self.re_embed ,size=new[unknown].shape ).to(device=new.device )
else:
A__ = self.unknown_index
return new.reshape(__UpperCAmelCase )
def snake_case__ ( self ,__UpperCAmelCase ) -> Optional[Any]:
A__ = inds.shape
assert len(__UpperCAmelCase ) > 1
A__ = inds.reshape(ishape[0] ,-1 )
A__ = self.used.to(__UpperCAmelCase )
if self.re_embed > self.used.shape[0]: # extra token
A__ = 0 # simply set to zero
A__ = torch.gather(used[None, :][inds.shape[0] * [0], :] ,1 ,__UpperCAmelCase )
return back.reshape(__UpperCAmelCase )
def snake_case__ ( self ,__UpperCAmelCase ) -> Dict:
# reshape z -> (batch, height, width, channel) and flatten
A__ = z.permute(0 ,2 ,3 ,1 ).contiguous()
A__ = z.view(-1 ,self.vq_embed_dim )
# distances from z to embeddings e_j (z - e)^2 = z^2 + e^2 - 2 e * z
A__ = torch.argmin(torch.cdist(__UpperCAmelCase ,self.embedding.weight ) ,dim=1 )
A__ = self.embedding(__UpperCAmelCase ).view(z.shape )
A__ = None
A__ = None
# compute loss for embedding
if not self.legacy:
A__ = self.beta * torch.mean((z_q.detach() - z) ** 2 ) + torch.mean((z_q - z.detach()) ** 2 )
else:
A__ = torch.mean((z_q.detach() - z) ** 2 ) + self.beta * torch.mean((z_q - z.detach()) ** 2 )
# preserve gradients
A__ = z + (z_q - z).detach()
# reshape back to match original input shape
A__ = z_q.permute(0 ,3 ,1 ,2 ).contiguous()
if self.remap is not None:
A__ = min_encoding_indices.reshape(z.shape[0] ,-1 ) # add batch axis
A__ = self.remap_to_used(__UpperCAmelCase )
A__ = min_encoding_indices.reshape(-1 ,1 ) # flatten
if self.sane_index_shape:
A__ = min_encoding_indices.reshape(z_q.shape[0] ,z_q.shape[2] ,z_q.shape[3] )
return z_q, loss, (perplexity, min_encodings, min_encoding_indices)
def snake_case__ ( self ,__UpperCAmelCase ,__UpperCAmelCase ) -> str:
# shape specifying (batch, height, width, channel)
if self.remap is not None:
A__ = indices.reshape(shape[0] ,-1 ) # add batch axis
A__ = self.unmap_to_all(__UpperCAmelCase )
A__ = indices.reshape(-1 ) # flatten again
# get quantized latent vectors
A__ = self.embedding(__UpperCAmelCase )
if shape is not None:
A__ = z_q.view(__UpperCAmelCase )
# reshape back to match original input shape
A__ = z_q.permute(0 ,3 ,1 ,2 ).contiguous()
return z_q
class UpperCamelCase__( __A ):
def __init__( self ,__UpperCAmelCase ,__UpperCAmelCase=False ) -> Any:
A__ = parameters
A__ , A__ = torch.chunk(__UpperCAmelCase ,2 ,dim=1 )
A__ = torch.clamp(self.logvar ,-3_0.0 ,2_0.0 )
A__ = deterministic
A__ = torch.exp(0.5 * self.logvar )
A__ = torch.exp(self.logvar )
if self.deterministic:
A__ = A__ = torch.zeros_like(
self.mean ,device=self.parameters.device ,dtype=self.parameters.dtype )
def snake_case__ ( self ,__UpperCAmelCase = None ) -> torch.FloatTensor:
# make sure sample is on the same device as the parameters and has same dtype
A__ = randn_tensor(
self.mean.shape ,generator=__UpperCAmelCase ,device=self.parameters.device ,dtype=self.parameters.dtype )
A__ = self.mean + self.std * sample
return x
def snake_case__ ( self ,__UpperCAmelCase=None ) -> int:
if self.deterministic:
return torch.Tensor([0.0] )
else:
if other is None:
return 0.5 * torch.sum(torch.pow(self.mean ,2 ) + self.var - 1.0 - self.logvar ,dim=[1, 2, 3] )
else:
return 0.5 * torch.sum(
torch.pow(self.mean - other.mean ,2 ) / other.var
+ self.var / other.var
- 1.0
- self.logvar
+ other.logvar ,dim=[1, 2, 3] ,)
def snake_case__ ( self ,__UpperCAmelCase ,__UpperCAmelCase=[1, 2, 3] ) -> List[Any]:
if self.deterministic:
return torch.Tensor([0.0] )
A__ = np.log(2.0 * np.pi )
return 0.5 * torch.sum(logtwopi + self.logvar + torch.pow(sample - self.mean ,2 ) / self.var ,dim=__UpperCAmelCase )
def snake_case__ ( self ) -> Optional[Any]:
return self.mean
| 221 | 0 |
"""simple docstring"""
import warnings
from ...utils import logging
from .image_processing_perceiver import PerceiverImageProcessor
UpperCAmelCase: Optional[int] = logging.get_logger(__name__)
class UpperCamelCase ( snake_case ):
"""simple docstring"""
def __init__( self ,*UpperCAmelCase_ ,**UpperCAmelCase_ ):
warnings.warn(
"""The class PerceiverFeatureExtractor is deprecated and will be removed in version 5 of Transformers."""
""" Please use PerceiverImageProcessor instead.""" ,UpperCAmelCase_ ,)
super().__init__(*UpperCAmelCase_ ,**UpperCAmelCase_ )
| 336 |
"""simple docstring"""
from ....configuration_utils import PretrainedConfig
from ....utils import logging
UpperCAmelCase: Tuple = logging.get_logger(__name__)
UpperCAmelCase: List[Any] = {
"""CarlCochet/trajectory-transformer-halfcheetah-medium-v2""": (
"""https://huggingface.co/CarlCochet/trajectory-transformer-halfcheetah-medium-v2/resolve/main/config.json"""
),
# See all TrajectoryTransformer models at https://huggingface.co/models?filter=trajectory_transformer
}
class UpperCamelCase ( snake_case ):
"""simple docstring"""
SCREAMING_SNAKE_CASE_ : Any = "trajectory_transformer"
SCREAMING_SNAKE_CASE_ : Optional[int] = ["past_key_values"]
SCREAMING_SNAKE_CASE_ : Tuple = {
"hidden_size": "n_embd",
"num_attention_heads": "n_head",
"num_hidden_layers": "n_layer",
}
def __init__( self ,UpperCAmelCase_=1_00 ,UpperCAmelCase_=5 ,UpperCAmelCase_=1 ,UpperCAmelCase_=1 ,UpperCAmelCase_=2_49 ,UpperCAmelCase_=6 ,UpperCAmelCase_=17 ,UpperCAmelCase_=25 ,UpperCAmelCase_=4 ,UpperCAmelCase_=4 ,UpperCAmelCase_=1_28 ,UpperCAmelCase_=0.1 ,UpperCAmelCase_=0.1 ,UpperCAmelCase_=0.1 ,UpperCAmelCase_=0.0006 ,UpperCAmelCase_=5_12 ,UpperCAmelCase_=0.02 ,UpperCAmelCase_=1E-12 ,UpperCAmelCase_=1 ,UpperCAmelCase_=True ,UpperCAmelCase_=1 ,UpperCAmelCase_=5_02_56 ,UpperCAmelCase_=5_02_56 ,**UpperCAmelCase_ ,):
_lowercase : Dict = vocab_size
_lowercase : List[str] = action_weight
_lowercase : int = reward_weight
_lowercase : List[Any] = value_weight
_lowercase : List[str] = max_position_embeddings
_lowercase : Any = block_size
_lowercase : Any = action_dim
_lowercase : List[str] = observation_dim
_lowercase : Union[str, Any] = transition_dim
_lowercase : str = learning_rate
_lowercase : Tuple = n_layer
_lowercase : Optional[int] = n_head
_lowercase : List[str] = n_embd
_lowercase : List[str] = embd_pdrop
_lowercase : Optional[Any] = attn_pdrop
_lowercase : List[Any] = resid_pdrop
_lowercase : str = initializer_range
_lowercase : Optional[Any] = layer_norm_eps
_lowercase : List[Any] = kaiming_initializer_range
_lowercase : List[Any] = use_cache
super().__init__(pad_token_id=UpperCAmelCase_ ,bos_token_id=UpperCAmelCase_ ,eos_token_id=UpperCAmelCase_ ,**UpperCAmelCase_ )
| 336 | 1 |
import json
import logging
import os
import socket
import git
import numpy as np
import torch
logging.basicConfig(
format="""%(asctime)s - %(levelname)s - %(name)s - PID: %(process)d - %(message)s""",
datefmt="""%m/%d/%Y %H:%M:%S""",
level=logging.INFO,
)
__lowerCamelCase : Optional[int] = logging.getLogger(__name__)
def A_ ( _lowerCAmelCase ) -> Tuple:
UpperCamelCase : List[str] = git.Repo(search_parent_directories=lowercase_ )
UpperCamelCase : Tuple = {
"repo_id": str(lowercase_ ),
"repo_sha": str(repo.head.object.hexsha ),
"repo_branch": str(repo.active_branch ),
}
with open(os.path.join(lowercase_ , "git_log.json" ) , "w" ) as f:
json.dump(lowercase_ , lowercase_ , indent=4 )
def A_ ( _lowerCAmelCase ) -> str:
if params.n_gpu <= 0:
UpperCamelCase : Optional[Any] = 0
UpperCamelCase : Union[str, Any] = -1
UpperCamelCase : List[Any] = True
UpperCamelCase : Union[str, Any] = False
return
assert torch.cuda.is_available()
logger.info("Initializing GPUs" )
if params.n_gpu > 1:
assert params.local_rank != -1
UpperCamelCase : int = int(os.environ["WORLD_SIZE"] )
UpperCamelCase : Union[str, Any] = int(os.environ["N_GPU_NODE"] )
UpperCamelCase : Optional[int] = int(os.environ["RANK"] )
# number of nodes / node ID
UpperCamelCase : str = params.world_size // params.n_gpu_per_node
UpperCamelCase : int = params.global_rank // params.n_gpu_per_node
UpperCamelCase : Optional[int] = True
assert params.n_nodes == int(os.environ["N_NODES"] )
assert params.node_id == int(os.environ["NODE_RANK"] )
# local job (single GPU)
else:
assert params.local_rank == -1
UpperCamelCase : Tuple = 1
UpperCamelCase : int = 0
UpperCamelCase : Optional[Any] = 0
UpperCamelCase : Tuple = 0
UpperCamelCase : List[Any] = 1
UpperCamelCase : str = 1
UpperCamelCase : Union[str, Any] = False
# sanity checks
assert params.n_nodes >= 1
assert 0 <= params.node_id < params.n_nodes
assert 0 <= params.local_rank <= params.global_rank < params.world_size
assert params.world_size == params.n_nodes * params.n_gpu_per_node
# define whether this is the master process / if we are in multi-node distributed mode
UpperCamelCase : int = params.node_id == 0 and params.local_rank == 0
UpperCamelCase : Tuple = params.n_nodes > 1
# summary
UpperCamelCase : List[Any] = F"""--- Global rank: {params.global_rank} - """
logger.info(PREFIX + "Number of nodes: %i" % params.n_nodes )
logger.info(PREFIX + "Node ID : %i" % params.node_id )
logger.info(PREFIX + "Local rank : %i" % params.local_rank )
logger.info(PREFIX + "World size : %i" % params.world_size )
logger.info(PREFIX + "GPUs per node : %i" % params.n_gpu_per_node )
logger.info(PREFIX + "Master : %s" % str(params.is_master ) )
logger.info(PREFIX + "Multi-node : %s" % str(params.multi_node ) )
logger.info(PREFIX + "Multi-GPU : %s" % str(params.multi_gpu ) )
logger.info(PREFIX + "Hostname : %s" % socket.gethostname() )
# set GPU device
torch.cuda.set_device(params.local_rank )
# initialize multi-GPU
if params.multi_gpu:
logger.info("Initializing PyTorch distributed" )
torch.distributed.init_process_group(
init_method="env://" , backend="nccl" , )
def A_ ( _lowerCAmelCase ) -> int:
np.random.seed(args.seed )
torch.manual_seed(args.seed )
if args.n_gpu > 0:
torch.cuda.manual_seed_all(args.seed )
| 52 |
"""simple docstring"""
import qiskit
def _SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> qiskit.result.counts.Counts:
A__ = qiskit.Aer.get_backend("aer_simulator" )
# Create a Quantum Circuit acting on the q register
A__ = qiskit.QuantumCircuit(lowercase_ , lowercase_ )
# Apply X (NOT) Gate to Qubits 0 & 1
circuit.x(0 )
circuit.x(1 )
# Map the quantum measurement to the classical bits
circuit.measure([0, 1] , [0, 1] )
# Execute the circuit on the qasm simulator
A__ = qiskit.execute(lowercase_ , lowercase_ , shots=10_00 )
# Return the histogram data of the results of the experiment.
return job.result().get_counts(lowercase_ )
if __name__ == "__main__":
SCREAMING_SNAKE_CASE = single_qubit_measure(2, 2)
print(f'Total count for various states are: {counts}')
| 247 | 0 |
'''simple docstring'''
import json
from typing import List, Optional, Tuple
from tokenizers import normalizers
from ....tokenization_utils_fast import PreTrainedTokenizerFast
from ....utils import logging
from .tokenization_retribert import RetriBertTokenizer
__A : Tuple = logging.get_logger(__name__)
__A : Any = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"}
__A : List[str] = {
"vocab_file": {
"yjernite/retribert-base-uncased": (
"https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/vocab.txt"
),
},
"tokenizer_file": {
"yjernite/retribert-base-uncased": (
"https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/tokenizer.json"
),
},
}
__A : Optional[Any] = {
"yjernite/retribert-base-uncased": 512,
}
__A : int = {
"yjernite/retribert-base-uncased": {"do_lower_case": True},
}
class __snake_case ( _SCREAMING_SNAKE_CASE):
"""simple docstring"""
lowercase = VOCAB_FILES_NAMES
lowercase = PRETRAINED_VOCAB_FILES_MAP
lowercase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
lowercase = PRETRAINED_INIT_CONFIGURATION
lowercase = RetriBertTokenizer
lowercase = ['input_ids', 'attention_mask']
def __init__( self : List[Any] , lowerCamelCase : Union[str, Any]=None , lowerCamelCase : List[str]=None , lowerCamelCase : str=True , lowerCamelCase : str="[UNK]" , lowerCamelCase : str="[SEP]" , lowerCamelCase : Optional[int]="[PAD]" , lowerCamelCase : List[Any]="[CLS]" , lowerCamelCase : Optional[Any]="[MASK]" , lowerCamelCase : Dict=True , lowerCamelCase : int=None , **lowerCamelCase : str , ) -> Optional[int]:
super().__init__(
lowerCamelCase , tokenizer_file=lowerCamelCase , do_lower_case=lowerCamelCase , unk_token=lowerCamelCase , sep_token=lowerCamelCase , pad_token=lowerCamelCase , cls_token=lowerCamelCase , mask_token=lowerCamelCase , tokenize_chinese_chars=lowerCamelCase , strip_accents=lowerCamelCase , **lowerCamelCase , )
lowerCAmelCase_ : Union[str, Any] = json.loads(self.backend_tokenizer.normalizer.__getstate__() )
if (
normalizer_state.get("""lowercase""" , lowerCamelCase ) != do_lower_case
or normalizer_state.get("""strip_accents""" , lowerCamelCase ) != strip_accents
or normalizer_state.get("""handle_chinese_chars""" , lowerCamelCase ) != tokenize_chinese_chars
):
lowerCAmelCase_ : int = getattr(lowerCamelCase , normalizer_state.pop("""type""" ) )
lowerCAmelCase_ : Dict = do_lower_case
lowerCAmelCase_ : Optional[Any] = strip_accents
lowerCAmelCase_ : List[str] = tokenize_chinese_chars
lowerCAmelCase_ : Tuple = normalizer_class(**lowerCamelCase )
lowerCAmelCase_ : Tuple = do_lower_case
def __lowercase ( self : Union[str, Any] , lowerCamelCase : Optional[Any] , lowerCamelCase : Optional[Any]=None ) -> int:
lowerCAmelCase_ : Optional[Any] = [self.cls_token_id] + token_ids_a + [self.sep_token_id]
if token_ids_a:
output += token_ids_a + [self.sep_token_id]
return output
def __lowercase ( self : Dict , lowerCamelCase : List[int] , lowerCamelCase : Optional[List[int]] = None ) -> List[int]:
lowerCAmelCase_ : str = [self.sep_token_id]
lowerCAmelCase_ : Union[str, Any] = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def __lowercase ( self : Dict , lowerCamelCase : str , lowerCamelCase : Optional[str] = None ) -> Tuple[str]:
lowerCAmelCase_ : Optional[int] = self._tokenizer.model.save(lowerCamelCase , name=lowerCamelCase )
return tuple(lowerCamelCase )
| 89 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
is_vision_available,
)
__A : List[str] = {
"configuration_owlvit": [
"OWLVIT_PRETRAINED_CONFIG_ARCHIVE_MAP",
"OwlViTConfig",
"OwlViTOnnxConfig",
"OwlViTTextConfig",
"OwlViTVisionConfig",
],
"processing_owlvit": ["OwlViTProcessor"],
}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__A : Optional[int] = ["OwlViTFeatureExtractor"]
__A : str = ["OwlViTImageProcessor"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__A : Tuple = [
"OWLVIT_PRETRAINED_MODEL_ARCHIVE_LIST",
"OwlViTModel",
"OwlViTPreTrainedModel",
"OwlViTTextModel",
"OwlViTVisionModel",
"OwlViTForObjectDetection",
]
if TYPE_CHECKING:
from .configuration_owlvit import (
OWLVIT_PRETRAINED_CONFIG_ARCHIVE_MAP,
OwlViTConfig,
OwlViTOnnxConfig,
OwlViTTextConfig,
OwlViTVisionConfig,
)
from .processing_owlvit import OwlViTProcessor
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_owlvit import OwlViTFeatureExtractor
from .image_processing_owlvit import OwlViTImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_owlvit import (
OWLVIT_PRETRAINED_MODEL_ARCHIVE_LIST,
OwlViTForObjectDetection,
OwlViTModel,
OwlViTPreTrainedModel,
OwlViTTextModel,
OwlViTVisionModel,
)
else:
import sys
__A : List[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 89 | 1 |
from __future__ import annotations
from typing import Any
class __A :
"""simple docstring"""
def __init__( self , lowerCamelCase__ ):
"""simple docstring"""
__UpperCamelCase : Optional[Any] =num_of_nodes
__UpperCamelCase : Tuple =[]
__UpperCamelCase : Optional[int] ={}
def __lowercase ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ):
"""simple docstring"""
self.m_edges.append([u_node, v_node, weight] )
def __lowercase ( self , lowerCamelCase__ ):
"""simple docstring"""
if self.m_component[u_node] == u_node:
return u_node
return self.find_component(self.m_component[u_node] )
def __lowercase ( self , lowerCamelCase__ ):
"""simple docstring"""
if self.m_component[u_node] != u_node:
for k in self.m_component:
__UpperCamelCase : Any =self.find_component(UpperCAmelCase__ )
def __lowercase ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ):
"""simple docstring"""
if component_size[u_node] <= component_size[v_node]:
__UpperCamelCase : Dict =v_node
component_size[v_node] += component_size[u_node]
self.set_component(UpperCAmelCase__ )
elif component_size[u_node] >= component_size[v_node]:
__UpperCamelCase : int =self.find_component(UpperCAmelCase__ )
component_size[u_node] += component_size[v_node]
self.set_component(UpperCAmelCase__ )
def __lowercase ( self ):
"""simple docstring"""
__UpperCamelCase : Any =[]
__UpperCamelCase : List[Any] =0
__UpperCamelCase : int =[-1] * self.m_num_of_nodes
# A list of components (initialized to all of the nodes)
for node in range(self.m_num_of_nodes ):
self.m_component.update({node: node} )
component_size.append(1 )
__UpperCamelCase : Any =self.m_num_of_nodes
while num_of_components > 1:
for edge in self.m_edges:
__UpperCamelCase , __UpperCamelCase , __UpperCamelCase : List[str] =edge
__UpperCamelCase : Optional[Any] =self.m_component[u]
__UpperCamelCase : List[Any] =self.m_component[v]
if u_component != v_component:
for component in (u_component, v_component):
if (
minimum_weight_edge[component] == -1
or minimum_weight_edge[component][2] > w
):
__UpperCamelCase : List[str] =[u, v, w]
for edge in minimum_weight_edge:
if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ):
__UpperCamelCase , __UpperCamelCase , __UpperCamelCase : Union[str, Any] =edge
__UpperCamelCase : Union[str, Any] =self.m_component[u]
__UpperCamelCase : Dict =self.m_component[v]
if u_component != v_component:
mst_weight += w
self.union(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ )
print(f'Added edge [{u} - {v}]\nAdded weight: {w}\n' )
num_of_components -= 1
__UpperCamelCase : Optional[int] =[-1] * self.m_num_of_nodes
print(f'The total weight of the minimal spanning tree is: {mst_weight}' )
def A ( ) -> None:
pass
if __name__ == "__main__":
import doctest
doctest.testmod()
| 71 |
"""simple docstring"""
import inspect
import unittest
import numpy as np
from transformers import BeitConfig
from transformers.testing_utils import require_flax, require_vision, slow
from transformers.utils import cached_property, is_flax_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor
if is_flax_available():
import jax
from transformers import FlaxBeitForImageClassification, FlaxBeitForMaskedImageModeling, FlaxBeitModel
if is_vision_available():
from PIL import Image
from transformers import BeitImageProcessor
class _lowerCAmelCase ( unittest.TestCase ):
"""simple docstring"""
def __init__( self : str, UpperCAmelCase__ : List[Any], UpperCAmelCase__ : int=1_0_0, UpperCAmelCase__ : Any=1_3, UpperCAmelCase__ : List[Any]=3_0, UpperCAmelCase__ : Dict=2, UpperCAmelCase__ : Any=3, UpperCAmelCase__ : Optional[Any]=True, UpperCAmelCase__ : List[str]=True, UpperCAmelCase__ : Optional[Any]=3_2, UpperCAmelCase__ : Any=5, UpperCAmelCase__ : Any=4, UpperCAmelCase__ : Any=3_7, UpperCAmelCase__ : Optional[int]="gelu", UpperCAmelCase__ : Dict=0.1, UpperCAmelCase__ : Optional[int]=0.1, UpperCAmelCase__ : Dict=1_0, UpperCAmelCase__ : Tuple=0.02, UpperCAmelCase__ : List[Any]=3, ):
__lowercase = parent
__lowercase = vocab_size
__lowercase = batch_size
__lowercase = image_size
__lowercase = patch_size
__lowercase = num_channels
__lowercase = is_training
__lowercase = use_labels
__lowercase = hidden_size
__lowercase = num_hidden_layers
__lowercase = num_attention_heads
__lowercase = intermediate_size
__lowercase = hidden_act
__lowercase = hidden_dropout_prob
__lowercase = attention_probs_dropout_prob
__lowercase = type_sequence_label_size
__lowercase = initializer_range
# in BeiT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token)
__lowercase = (image_size // patch_size) ** 2
__lowercase = num_patches + 1
def _lowercase ( self : int ):
__lowercase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
__lowercase = None
if self.use_labels:
__lowercase = ids_tensor([self.batch_size], self.type_sequence_label_size )
__lowercase = BeitConfig(
vocab_size=self.vocab_size, image_size=self.image_size, patch_size=self.patch_size, num_channels=self.num_channels, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, is_decoder=UpperCAmelCase__, initializer_range=self.initializer_range, )
return config, pixel_values, labels
def _lowercase ( self : Any, UpperCAmelCase__ : List[Any], UpperCAmelCase__ : List[str], UpperCAmelCase__ : List[str] ):
__lowercase = FlaxBeitModel(config=UpperCAmelCase__ )
__lowercase = model(UpperCAmelCase__ )
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size) )
def _lowercase ( self : Optional[Any], UpperCAmelCase__ : Optional[Any], UpperCAmelCase__ : int, UpperCAmelCase__ : List[Any] ):
__lowercase = FlaxBeitForMaskedImageModeling(config=UpperCAmelCase__ )
__lowercase = model(UpperCAmelCase__ )
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length - 1, self.vocab_size) )
def _lowercase ( self : Dict, UpperCAmelCase__ : List[Any], UpperCAmelCase__ : Any, UpperCAmelCase__ : Union[str, Any] ):
__lowercase = self.type_sequence_label_size
__lowercase = FlaxBeitForImageClassification(config=UpperCAmelCase__ )
__lowercase = model(UpperCAmelCase__ )
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.type_sequence_label_size) )
# test greyscale images
__lowercase = 1
__lowercase = FlaxBeitForImageClassification(UpperCAmelCase__ )
__lowercase = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] )
__lowercase = model(UpperCAmelCase__ )
def _lowercase ( self : List[str] ):
__lowercase = self.prepare_config_and_inputs()
(
(
__lowercase
) ,(
__lowercase
) ,(
__lowercase
) ,
) = config_and_inputs
__lowercase = {"pixel_values": pixel_values}
return config, inputs_dict
@require_flax
class _lowerCAmelCase ( lowercase ,unittest.TestCase ):
"""simple docstring"""
__UpperCAmelCase : str = (
(FlaxBeitModel, FlaxBeitForImageClassification, FlaxBeitForMaskedImageModeling) if is_flax_available() else ()
)
def _lowercase ( self : List[Any] ):
__lowercase = FlaxBeitModelTester(self )
__lowercase = ConfigTester(self, config_class=UpperCAmelCase__, has_text_modality=UpperCAmelCase__, hidden_size=3_7 )
def _lowercase ( self : Union[str, Any] ):
self.config_tester.run_common_tests()
def _lowercase ( self : Optional[int] ):
__lowercase ,__lowercase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__lowercase = model_class(UpperCAmelCase__ )
__lowercase = inspect.signature(model.__call__ )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
__lowercase = [*signature.parameters.keys()]
__lowercase = ["pixel_values"]
self.assertListEqual(arg_names[:1], UpperCAmelCase__ )
def _lowercase ( self : Tuple ):
__lowercase ,__lowercase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__ ):
__lowercase = self._prepare_for_class(UpperCAmelCase__, UpperCAmelCase__ )
__lowercase = model_class(UpperCAmelCase__ )
@jax.jit
def model_jitted(UpperCAmelCase__ : str, **UpperCAmelCase__ : Dict ):
return model(pixel_values=UpperCAmelCase__, **UpperCAmelCase__ )
with self.subTest("JIT Enabled" ):
__lowercase = model_jitted(**UpperCAmelCase__ ).to_tuple()
with self.subTest("JIT Disabled" ):
with jax.disable_jit():
__lowercase = model_jitted(**UpperCAmelCase__ ).to_tuple()
self.assertEqual(len(UpperCAmelCase__ ), len(UpperCAmelCase__ ) )
for jitted_output, output in zip(UpperCAmelCase__, UpperCAmelCase__ ):
self.assertEqual(jitted_output.shape, output.shape )
def _lowercase ( self : List[str] ):
__lowercase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*UpperCAmelCase__ )
def _lowercase ( self : int ):
__lowercase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_lm(*UpperCAmelCase__ )
def _lowercase ( self : Tuple ):
__lowercase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*UpperCAmelCase__ )
@slow
def _lowercase ( self : Union[str, Any] ):
for model_class_name in self.all_model_classes:
__lowercase = model_class_name.from_pretrained("microsoft/beit-base-patch16-224" )
__lowercase = model(np.ones((1, 3, 2_2_4, 2_2_4) ) )
self.assertIsNotNone(UpperCAmelCase__ )
def _A ( ) -> str:
'''simple docstring'''
__lowercase = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png")
return image
@require_vision
@require_flax
class _lowerCAmelCase ( unittest.TestCase ):
"""simple docstring"""
@cached_property
def _lowercase ( self : Optional[int] ):
return BeitImageProcessor.from_pretrained("microsoft/beit-base-patch16-224" ) if is_vision_available() else None
@slow
def _lowercase ( self : Any ):
__lowercase = FlaxBeitForMaskedImageModeling.from_pretrained("microsoft/beit-base-patch16-224-pt22k" )
__lowercase = self.default_image_processor
__lowercase = prepare_img()
__lowercase = image_processor(images=UpperCAmelCase__, return_tensors="np" ).pixel_values
# prepare bool_masked_pos
__lowercase = np.ones((1, 1_9_6), dtype=UpperCAmelCase__ )
# forward pass
__lowercase = model(pixel_values=UpperCAmelCase__, bool_masked_pos=UpperCAmelCase__ )
__lowercase = outputs.logits
# verify the logits
__lowercase = (1, 1_9_6, 8_1_9_2)
self.assertEqual(logits.shape, UpperCAmelCase__ )
__lowercase = np.array(
[[-3.2_437, 0.5_072, -13.9_174], [-3.2_456, 0.4_948, -13.9_401], [-3.2_033, 0.5_121, -13.8_550]] )
self.assertTrue(np.allclose(logits[bool_masked_pos][:3, :3], UpperCAmelCase__, atol=1E-2 ) )
@slow
def _lowercase ( self : Any ):
__lowercase = FlaxBeitForImageClassification.from_pretrained("microsoft/beit-base-patch16-224" )
__lowercase = self.default_image_processor
__lowercase = prepare_img()
__lowercase = image_processor(images=UpperCAmelCase__, return_tensors="np" )
# forward pass
__lowercase = model(**UpperCAmelCase__ )
__lowercase = outputs.logits
# verify the logits
__lowercase = (1, 1_0_0_0)
self.assertEqual(logits.shape, UpperCAmelCase__ )
__lowercase = np.array([-1.2_385, -1.0_987, -1.0_108] )
self.assertTrue(np.allclose(logits[0, :3], UpperCAmelCase__, atol=1E-4 ) )
__lowercase = 2_8_1
self.assertEqual(logits.argmax(-1 ).item(), UpperCAmelCase__ )
@slow
def _lowercase ( self : List[str] ):
__lowercase = FlaxBeitForImageClassification.from_pretrained("microsoft/beit-large-patch16-224-pt22k-ft22k" )
__lowercase = self.default_image_processor
__lowercase = prepare_img()
__lowercase = image_processor(images=UpperCAmelCase__, return_tensors="np" )
# forward pass
__lowercase = model(**UpperCAmelCase__ )
__lowercase = outputs.logits
# verify the logits
__lowercase = (1, 2_1_8_4_1)
self.assertEqual(logits.shape, UpperCAmelCase__ )
__lowercase = np.array([1.6_881, -0.2_787, 0.5_901] )
self.assertTrue(np.allclose(logits[0, :3], UpperCAmelCase__, atol=1E-4 ) )
__lowercase = 2_3_9_6
self.assertEqual(logits.argmax(-1 ).item(), UpperCAmelCase__ )
| 17 | 0 |
import inspect
import unittest
import numpy as np
from tests.test_modeling_common import floats_tensor
from transformers import MaskaFormerConfig, is_torch_available, is_vision_available
from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device
from transformers.utils import cached_property
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import MaskaFormerForUniversalSegmentation, MaskaFormerModel
if is_vision_available():
from transformers import MaskaFormerImageProcessor
if is_vision_available():
from PIL import Image
class __A:
def __init__( self , _snake_case , _snake_case=2 , _snake_case=True , _snake_case=False , _snake_case=10 , _snake_case=3 , _snake_case=32 * 8 , _snake_case=32 * 8 , _snake_case=4 , _snake_case=64 , ) -> str:
'''simple docstring'''
__a = parent
__a = batch_size
__a = is_training
__a = use_auxiliary_loss
__a = num_queries
__a = num_channels
__a = min_size
__a = max_size
__a = num_labels
__a = hidden_dim
__a = hidden_dim
def SCREAMING_SNAKE_CASE_ ( self ) -> Any:
'''simple docstring'''
__a = floats_tensor([self.batch_size, self.num_channels, self.min_size, self.max_size] ).to(
_snake_case )
__a = torch.ones([self.batch_size, self.min_size, self.max_size] , device=_snake_case )
__a = (
torch.rand([self.batch_size, self.num_labels, self.min_size, self.max_size] , device=_snake_case ) > 0.5
).float()
__a = (torch.rand((self.batch_size, self.num_labels) , device=_snake_case ) > 0.5).long()
__a = self.get_config()
return config, pixel_values, pixel_mask, mask_labels, class_labels
def SCREAMING_SNAKE_CASE_ ( self ) -> List[str]:
'''simple docstring'''
__a = MaskaFormerConfig(
hidden_size=self.hidden_dim , )
__a = self.num_queries
__a = self.num_labels
__a = [1, 1, 1, 1]
__a = self.num_channels
__a = 64
__a = 128
__a = self.hidden_dim
__a = self.hidden_dim
__a = self.hidden_dim
return config
def SCREAMING_SNAKE_CASE_ ( self ) -> List[Any]:
'''simple docstring'''
__a , __a , __a , __a , __a = self.prepare_config_and_inputs()
__a = {'''pixel_values''': pixel_values, '''pixel_mask''': pixel_mask}
return config, inputs_dict
def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case ) -> str:
'''simple docstring'''
__a = output.encoder_hidden_states
__a = output.pixel_decoder_hidden_states
__a = output.transformer_decoder_hidden_states
self.parent.assertTrue(len(_snake_case ) , len(config.backbone_config.depths ) )
self.parent.assertTrue(len(_snake_case ) , len(config.backbone_config.depths ) )
self.parent.assertTrue(len(_snake_case ) , config.decoder_layers )
def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case , _snake_case , _snake_case=False ) -> Any:
'''simple docstring'''
with torch.no_grad():
__a = MaskaFormerModel(config=_snake_case )
model.to(_snake_case )
model.eval()
__a = model(pixel_values=_snake_case , pixel_mask=_snake_case )
__a = model(_snake_case , output_hidden_states=_snake_case )
self.parent.assertEqual(
output.transformer_decoder_last_hidden_state.shape , (self.batch_size, self.num_queries, self.hidden_dim) , )
# let's ensure the other two hidden state exists
self.parent.assertTrue(output.pixel_decoder_last_hidden_state is not None )
self.parent.assertTrue(output.encoder_last_hidden_state is not None )
if output_hidden_states:
self.check_output_hidden_state(_snake_case , _snake_case )
def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ) -> Union[str, Any]:
'''simple docstring'''
__a = MaskaFormerForUniversalSegmentation(config=_snake_case )
model.to(_snake_case )
model.eval()
def comm_check_on_output(_snake_case ):
# let's still check that all the required stuff is there
self.parent.assertTrue(result.transformer_decoder_last_hidden_state is not None )
self.parent.assertTrue(result.pixel_decoder_last_hidden_state is not None )
self.parent.assertTrue(result.encoder_last_hidden_state is not None )
# okay, now we need to check the logits shape
# due to the encoder compression, masks have a //4 spatial size
self.parent.assertEqual(
result.masks_queries_logits.shape , (self.batch_size, self.num_queries, self.min_size // 4, self.max_size // 4) , )
# + 1 for null class
self.parent.assertEqual(
result.class_queries_logits.shape , (self.batch_size, self.num_queries, self.num_labels + 1) )
with torch.no_grad():
__a = model(pixel_values=_snake_case , pixel_mask=_snake_case )
__a = model(_snake_case )
comm_check_on_output(_snake_case )
__a = model(
pixel_values=_snake_case , pixel_mask=_snake_case , mask_labels=_snake_case , class_labels=_snake_case )
comm_check_on_output(_snake_case )
self.parent.assertTrue(result.loss is not None )
self.parent.assertEqual(result.loss.shape , torch.Size([1] ) )
@require_torch
class __A( a , a , unittest.TestCase ):
snake_case_ = (MaskaFormerModel, MaskaFormerForUniversalSegmentation) if is_torch_available() else ()
snake_case_ = {'''feature-extraction''': MaskaFormerModel} if is_torch_available() else {}
snake_case_ = False
snake_case_ = False
snake_case_ = False
snake_case_ = False
def SCREAMING_SNAKE_CASE_ ( self ) -> Dict:
'''simple docstring'''
__a = MaskaFormerModelTester(self )
__a = ConfigTester(self , config_class=_snake_case , has_text_modality=_snake_case )
def SCREAMING_SNAKE_CASE_ ( self ) -> Optional[int]:
'''simple docstring'''
self.config_tester.run_common_tests()
def SCREAMING_SNAKE_CASE_ ( self ) -> List[str]:
'''simple docstring'''
__a , __a = self.model_tester.prepare_config_and_inputs_for_common()
self.model_tester.create_and_check_maskaformer_model(_snake_case , **_snake_case , output_hidden_states=_snake_case )
def SCREAMING_SNAKE_CASE_ ( self ) -> List[Any]:
'''simple docstring'''
__a = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_maskaformer_instance_segmentation_head_model(*_snake_case )
@unittest.skip(reason='''Mask2Former does not use inputs_embeds''' )
def SCREAMING_SNAKE_CASE_ ( self ) -> Union[str, Any]:
'''simple docstring'''
pass
@unittest.skip(reason='''Mask2Former does not have a get_input_embeddings method''' )
def SCREAMING_SNAKE_CASE_ ( self ) -> List[Any]:
'''simple docstring'''
pass
@unittest.skip(reason='''Mask2Former is not a generative model''' )
def SCREAMING_SNAKE_CASE_ ( self ) -> List[Any]:
'''simple docstring'''
pass
@unittest.skip(reason='''Mask2Former does not use token embeddings''' )
def SCREAMING_SNAKE_CASE_ ( self ) -> List[str]:
'''simple docstring'''
pass
@require_torch_multi_gpu
@unittest.skip(
reason='''Mask2Former has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`''' )
def SCREAMING_SNAKE_CASE_ ( self ) -> List[Any]:
'''simple docstring'''
pass
@unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' )
def SCREAMING_SNAKE_CASE_ ( self ) -> Optional[int]:
'''simple docstring'''
pass
def SCREAMING_SNAKE_CASE_ ( self ) -> str:
'''simple docstring'''
__a , __a = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__a = model_class(_snake_case )
__a = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
__a = [*signature.parameters.keys()]
__a = ['''pixel_values''']
self.assertListEqual(arg_names[:1] , _snake_case )
@slow
def SCREAMING_SNAKE_CASE_ ( self ) -> Any:
'''simple docstring'''
for model_name in ["facebook/mask2former-swin-small-coco-instance"]:
__a = MaskaFormerModel.from_pretrained(_snake_case )
self.assertIsNotNone(_snake_case )
def SCREAMING_SNAKE_CASE_ ( self ) -> Union[str, Any]:
'''simple docstring'''
__a = (self.model_tester.min_size,) * 2
__a = {
'''pixel_values''': torch.randn((2, 3, *size) , device=_snake_case ),
'''mask_labels''': torch.randn((2, 10, *size) , device=_snake_case ),
'''class_labels''': torch.zeros(2 , 10 , device=_snake_case ).long(),
}
__a = self.model_tester.get_config()
__a = MaskaFormerForUniversalSegmentation(_snake_case ).to(_snake_case )
__a = model(**_snake_case )
self.assertTrue(outputs.loss is not None )
def SCREAMING_SNAKE_CASE_ ( self ) -> Optional[Any]:
'''simple docstring'''
__a , __a = self.model_tester.prepare_config_and_inputs_for_common()
self.model_tester.create_and_check_maskaformer_model(_snake_case , **_snake_case , output_hidden_states=_snake_case )
def SCREAMING_SNAKE_CASE_ ( self ) -> Tuple:
'''simple docstring'''
__a , __a = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__a = model_class(_snake_case ).to(_snake_case )
__a = model(**_snake_case , output_attentions=_snake_case )
self.assertTrue(outputs.attentions is not None )
def SCREAMING_SNAKE_CASE_ ( self ) -> str:
'''simple docstring'''
if not self.model_tester.is_training:
return
__a = self.all_model_classes[1]
__a , __a , __a , __a , __a = self.model_tester.prepare_config_and_inputs()
__a = model_class(_snake_case )
model.to(_snake_case )
model.train()
__a = model(_snake_case , mask_labels=_snake_case , class_labels=_snake_case ).loss
loss.backward()
def SCREAMING_SNAKE_CASE_ ( self ) -> Union[str, Any]:
'''simple docstring'''
__a = self.all_model_classes[1]
__a , __a , __a , __a , __a = self.model_tester.prepare_config_and_inputs()
__a = True
__a = True
__a = model_class(_snake_case ).to(_snake_case )
model.train()
__a = model(_snake_case , mask_labels=_snake_case , class_labels=_snake_case )
__a = outputs.encoder_hidden_states[0]
encoder_hidden_states.retain_grad()
__a = outputs.pixel_decoder_hidden_states[0]
pixel_decoder_hidden_states.retain_grad()
__a = outputs.transformer_decoder_hidden_states[0]
transformer_decoder_hidden_states.retain_grad()
__a = outputs.attentions[0]
attentions.retain_grad()
outputs.loss.backward(retain_graph=_snake_case )
self.assertIsNotNone(encoder_hidden_states.grad )
self.assertIsNotNone(pixel_decoder_hidden_states.grad )
self.assertIsNotNone(transformer_decoder_hidden_states.grad )
self.assertIsNotNone(attentions.grad )
A : Any = 1E-4
def __lowerCAmelCase ( ) -> int:
__a = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' )
return image
@require_vision
@slow
class __A( unittest.TestCase ):
@cached_property
def SCREAMING_SNAKE_CASE_ ( self ) -> Dict:
'''simple docstring'''
return "facebook/mask2former-swin-small-coco-instance"
@cached_property
def SCREAMING_SNAKE_CASE_ ( self ) -> Dict:
'''simple docstring'''
return MaskaFormerImageProcessor.from_pretrained(self.model_checkpoints ) if is_vision_available() else None
def SCREAMING_SNAKE_CASE_ ( self ) -> str:
'''simple docstring'''
__a = MaskaFormerModel.from_pretrained(self.model_checkpoints ).to(_snake_case )
__a = self.default_image_processor
__a = prepare_img()
__a = image_processor(_snake_case , return_tensors='''pt''' ).to(_snake_case )
__a = inputs['''pixel_values'''].shape
# check size is divisible by 32
self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 )
# check size
self.assertEqual(_snake_case , (1, 3, 384, 384) )
with torch.no_grad():
__a = model(**_snake_case )
__a = torch.tensor(
[[-0.2790, -1.0717, -1.1668], [-0.5128, -0.3128, -0.4987], [-0.5832, 0.1971, -0.0197]] ).to(_snake_case )
self.assertTrue(
torch.allclose(
outputs.encoder_last_hidden_state[0, 0, :3, :3] , _snake_case , atol=_snake_case ) )
__a = torch.tensor(
[[0.8973, 1.1847, 1.1776], [1.1934, 1.5040, 1.5128], [1.1153, 1.4486, 1.4951]] ).to(_snake_case )
self.assertTrue(
torch.allclose(
outputs.pixel_decoder_last_hidden_state[0, 0, :3, :3] , _snake_case , atol=_snake_case ) )
__a = torch.tensor(
[[2.1152, 1.7000, -0.8603], [1.5808, 1.8004, -0.9353], [1.6043, 1.7495, -0.5999]] ).to(_snake_case )
self.assertTrue(
torch.allclose(
outputs.transformer_decoder_last_hidden_state[0, :3, :3] , _snake_case , atol=_snake_case ) )
def SCREAMING_SNAKE_CASE_ ( self ) -> List[str]:
'''simple docstring'''
__a = MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints ).to(_snake_case ).eval()
__a = self.default_image_processor
__a = prepare_img()
__a = image_processor(_snake_case , return_tensors='''pt''' ).to(_snake_case )
__a = inputs['''pixel_values'''].shape
# check size is divisible by 32
self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 )
# check size
self.assertEqual(_snake_case , (1, 3, 384, 384) )
with torch.no_grad():
__a = model(**_snake_case )
# masks_queries_logits
__a = outputs.masks_queries_logits
self.assertEqual(
masks_queries_logits.shape , (1, model.config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) )
__a = [
[-8.7839, -9.0056, -8.8121],
[-7.4104, -7.0313, -6.5401],
[-6.6105, -6.3427, -6.4675],
]
__a = torch.tensor(_snake_case ).to(_snake_case )
self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] , _snake_case , atol=_snake_case ) )
# class_queries_logits
__a = outputs.class_queries_logits
self.assertEqual(class_queries_logits.shape , (1, model.config.num_queries, model.config.num_labels + 1) )
__a = torch.tensor(
[
[1.8324, -8.0835, -4.1922],
[0.8450, -9.0050, -3.6053],
[0.3045, -7.7293, -3.0275],
] ).to(_snake_case )
self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] , _snake_case , atol=_snake_case ) )
def SCREAMING_SNAKE_CASE_ ( self ) -> int:
'''simple docstring'''
__a = MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints ).to(_snake_case ).eval()
__a = self.default_image_processor
__a = image_processor(
[np.zeros((3, 800, 1_333) ), np.zeros((3, 800, 1_333) )] , segmentation_maps=[np.zeros((384, 384) ).astype(np.floataa ), np.zeros((384, 384) ).astype(np.floataa )] , return_tensors='''pt''' , )
__a = inputs['''pixel_values'''].to(_snake_case )
__a = [el.to(_snake_case ) for el in inputs['''mask_labels''']]
__a = [el.to(_snake_case ) for el in inputs['''class_labels''']]
with torch.no_grad():
__a = model(**_snake_case )
self.assertTrue(outputs.loss is not None ) | 33 |
from collections import OrderedDict
from typing import Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
from ..auto import CONFIG_MAPPING
A : List[Any] = logging.get_logger(__name__)
A : Optional[Any] = {
'microsoft/table-transformer-detection': (
'https://huggingface.co/microsoft/table-transformer-detection/resolve/main/config.json'
),
}
class __A( a ):
snake_case_ = '''table-transformer'''
snake_case_ = ['''past_key_values''']
snake_case_ = {
'''hidden_size''': '''d_model''',
'''num_attention_heads''': '''encoder_attention_heads''',
}
def __init__( self , _snake_case=True , _snake_case=None , _snake_case=3 , _snake_case=100 , _snake_case=6 , _snake_case=2_048 , _snake_case=8 , _snake_case=6 , _snake_case=2_048 , _snake_case=8 , _snake_case=0.0 , _snake_case=0.0 , _snake_case=True , _snake_case="relu" , _snake_case=256 , _snake_case=0.1 , _snake_case=0.0 , _snake_case=0.0 , _snake_case=0.02 , _snake_case=1.0 , _snake_case=False , _snake_case="sine" , _snake_case="resnet50" , _snake_case=True , _snake_case=False , _snake_case=1 , _snake_case=5 , _snake_case=2 , _snake_case=1 , _snake_case=1 , _snake_case=5 , _snake_case=2 , _snake_case=0.1 , **_snake_case , ) -> int:
'''simple docstring'''
if backbone_config is not None and use_timm_backbone:
raise ValueError('''You can\'t specify both `backbone_config` and `use_timm_backbone`.''' )
if not use_timm_backbone:
if backbone_config is None:
logger.info('''`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.''' )
__a = CONFIG_MAPPING['''resnet'''](out_features=['''stage4'''] )
elif isinstance(_snake_case , _snake_case ):
__a = backbone_config.get('''model_type''' )
__a = CONFIG_MAPPING[backbone_model_type]
__a = config_class.from_dict(_snake_case )
# set timm attributes to None
__a , __a , __a = None, None, None
__a = use_timm_backbone
__a = backbone_config
__a = num_channels
__a = num_queries
__a = d_model
__a = encoder_ffn_dim
__a = encoder_layers
__a = encoder_attention_heads
__a = decoder_ffn_dim
__a = decoder_layers
__a = decoder_attention_heads
__a = dropout
__a = attention_dropout
__a = activation_dropout
__a = activation_function
__a = init_std
__a = init_xavier_std
__a = encoder_layerdrop
__a = decoder_layerdrop
__a = encoder_layers
__a = auxiliary_loss
__a = position_embedding_type
__a = backbone
__a = use_pretrained_backbone
__a = dilation
# Hungarian matcher
__a = class_cost
__a = bbox_cost
__a = giou_cost
# Loss coefficients
__a = mask_loss_coefficient
__a = dice_loss_coefficient
__a = bbox_loss_coefficient
__a = giou_loss_coefficient
__a = eos_coefficient
super().__init__(is_encoder_decoder=_snake_case , **_snake_case )
@property
def SCREAMING_SNAKE_CASE_ ( self ) -> int:
'''simple docstring'''
return self.encoder_attention_heads
@property
def SCREAMING_SNAKE_CASE_ ( self ) -> int:
'''simple docstring'''
return self.d_model
class __A( a ):
snake_case_ = version.parse('''1.11''' )
@property
def SCREAMING_SNAKE_CASE_ ( self ) -> Mapping[str, Mapping[int, str]]:
'''simple docstring'''
return OrderedDict(
[
('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}),
('''pixel_mask''', {0: '''batch'''}),
] )
@property
def SCREAMING_SNAKE_CASE_ ( self ) -> float:
'''simple docstring'''
return 1E-5
@property
def SCREAMING_SNAKE_CASE_ ( self ) -> int:
'''simple docstring'''
return 12 | 33 | 1 |
from google.protobuf import descriptor as _descriptor
from google.protobuf import descriptor_pool as _descriptor_pool
from google.protobuf import symbol_database as _symbol_database
from google.protobuf.internal import builder as _builder
# @@protoc_insertion_point(imports)
UpperCAmelCase : Tuple =_symbol_database.Default()
UpperCAmelCase : List[Any] =_descriptor_pool.Default().AddSerializedFile(
b"""\n\x19sentencepiece_model.proto\x12\rsentencepiece\"\x80\x0c\n\x0bTrainerSpec\x12\r\n\x05input\x18\x01 \x03(\t\x12\x14\n\x0cinput_format\x18\x07 \x01(\t\x12\x14\n\x0cmodel_prefix\x18\x02 \x01(\t\x12\x41\n\nmodel_type\x18\x03 \x01(\x0e\x32$.sentencepiece.TrainerSpec.ModelType:\x07UNIGRAM\x12\x18\n\nvocab_size\x18\x04 \x01(\x05:\x04\x38\x30\x30\x30\x12\x17\n\x0f\x61\x63\x63\x65pt_language\x18\x05 \x03(\t\x12 \n\x15self_test_sample_size\x18\x06 \x01(\x05:\x01\x30\x12*\n\x1b\x65nable_differential_privacy\x18\x32 \x01(\x08:\x05\x66\x61lse\x12+\n differential_privacy_noise_level\x18\x33 \x01(\x02:\x01\x30\x12\x32\n\'differential_privacy_clipping_threshold\x18\x34 \x01(\x04:\x01\x30\x12\"\n\x12\x63haracter_coverage\x18\n \x01(\x02:\x06\x30.9995\x12\x1e\n\x13input_sentence_size\x18\x0b \x01(\x04:\x01\x30\x12$\n\x16shuffle_input_sentence\x18\x13 \x01(\x08:\x04true\x12 \n\x14mining_sentence_size\x18\x0c \x01(\x05\x42\x02\x18\x01\x12\"\n\x16training_sentence_size\x18\r \x01(\x05\x42\x02\x18\x01\x12(\n\x17seed_sentencepiece_size\x18\x0e \x01(\x05:\x07\x31\x30\x30\x30\x30\x30\x30\x12\x1e\n\x10shrinking_factor\x18\x0f \x01(\x02:\x04\x30.75\x12!\n\x13max_sentence_length\x18\x12 \x01(\x05:\x04\x34\x31\x39\x32\x12\x17\n\x0bnum_threads\x18\x10 \x01(\x05:\x02\x31\x36\x12\x1d\n\x12num_sub_iterations\x18\x11 \x01(\x05:\x01\x32\x12$\n\x18max_sentencepiece_length\x18\x14 \x01(\x05:\x02\x31\x36\x12%\n\x17split_by_unicode_script\x18\x15 \x01(\x08:\x04true\x12\x1d\n\x0fsplit_by_number\x18\x17 \x01(\x08:\x04true\x12!\n\x13split_by_whitespace\x18\x16 \x01(\x08:\x04true\x12)\n\x1atreat_whitespace_as_suffix\x18\x18 \x01(\x08:\x05\x66\x61lse\x12+\n\x1c\x61llow_whitespace_only_pieces\x18\x1a \x01(\x08:\x05\x66\x61lse\x12\x1b\n\x0csplit_digits\x18\x19 \x01(\x08:\x05\x66\x61lse\x12#\n\x19pretokenization_delimiter\x18\x35 \x01(\t:\x00\x12\x17\n\x0f\x63ontrol_symbols\x18\x1e \x03(\t\x12\x1c\n\x14user_defined_symbols\x18\x1f \x03(\t\x12\x16\n\x0erequired_chars\x18$ \x01(\t\x12\x1c\n\rbyte_fallback\x18# \x01(\x08:\x05\x66\x61lse\x12+\n\x1dvocabulary_output_piece_score\x18 \x01(\x08:\x04true\x12\x1e\n\x10hard_vocab_limit\x18! \x01(\x08:\x04true\x12\x1c\n\ruse_all_vocab\x18\" \x01(\x08:\x05\x66\x61lse\x12\x11\n\x06unk_id\x18( \x01(\x05:\x01\x30\x12\x11\n\x06\x62os_id\x18) \x01(\x05:\x01\x31\x12\x11\n\x06\x65os_id\x18* \x01(\x05:\x01\x32\x12\x12\n\x06pad_id\x18+ \x01(\x05:\x02-1\x12\x18\n\tunk_piece\x18- \x01(\t:\x05<unk>\x12\x16\n\tbos_piece\x18. \x01(\t:\x03<s>\x12\x17\n\teos_piece\x18/ \x01(\t:\x04</s>\x12\x18\n\tpad_piece\x18\x30 \x01(\t:\x05<pad>\x12\x1a\n\x0bunk_surface\x18, \x01(\t:\x05 \xe2\x81\x87 \x12+\n\x1ctrain_extremely_large_corpus\x18\x31 \x01(\x08:\x05\x66\x61lse\"5\n\tModelType\x12\x0b\n\x07UNIGRAM\x10\x01\x12\x07\n\x03\x42PE\x10\x02\x12\x08\n\x04WORD\x10\x03\x12\x08\n\x04\x43HAR\x10\x04*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\"\xd1\x01\n\x0eNormalizerSpec\x12\x0c\n\x04name\x18\x01 \x01(\t\x12\x1c\n\x14precompiled_charsmap\x18\x02 \x01(\x0c\x12\x1e\n\x10\x61\x64\x64_dummy_prefix\x18\x03 \x01(\x08:\x04true\x12&\n\x18remove_extra_whitespaces\x18\x04 \x01(\x08:\x04true\x12 \n\x12\x65scape_whitespaces\x18\x05 \x01(\x08:\x04true\x12\x1e\n\x16normalization_rule_tsv\x18\x06 \x01(\t*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\"y\n\x0cSelfTestData\x12\x33\n\x07samples\x18\x01 \x03(\x0b\x32\".sentencepiece.SelfTestData.Sample\x1a)\n\x06Sample\x12\r\n\x05input\x18\x01 \x01(\t\x12\x10\n\x08\x65xpected\x18\x02 \x01(\t*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\"\xfe\x03\n\nModelProto\x12\x37\n\x06pieces\x18\x01 \x03(\x0b\x32\'.sentencepiece.ModelProto.SentencePiece\x12\x30\n\x0ctrainer_spec\x18\x02 \x01(\x0b\x32\x1a.sentencepiece.TrainerSpec\x12\x36\n\x0fnormalizer_spec\x18\x03 \x01(\x0b\x32\x1d.sentencepiece.NormalizerSpec\x12\x33\n\x0eself_test_data\x18\x04 \x01(\x0b\x32\x1b.sentencepiece.SelfTestData\x12\x38\n\x11\x64\x65normalizer_spec\x18\x05 \x01(\x0b\x32\x1d.sentencepiece.NormalizerSpec\x1a\xd2\x01\n\rSentencePiece\x12\r\n\x05piece\x18\x01 \x01(\t\x12\r\n\x05score\x18\x02 \x01(\x02\x12\x42\n\x04type\x18\x03 \x01(\x0e\x32,.sentencepiece.ModelProto.SentencePiece.Type:\x06NORMAL\"T\n\x04Type\x12\n\n\x06NORMAL\x10\x01\x12\x0b\n\x07UNKNOWN\x10\x02\x12\x0b\n\x07\x43ONTROL\x10\x03\x12\x10\n\x0cUSER_DEFINED\x10\x04\x12\x08\n\x04\x42YTE\x10\x06\x12\n\n\x06UNUSED\x10\x05*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\x42\x02H\x03"""
)
UpperCAmelCase : Optional[int] =globals()
_builder.BuildMessageAndEnumDescriptors(DESCRIPTOR, _globals)
_builder.BuildTopDescriptorsAndMessages(DESCRIPTOR, """sentencepiece_model_pb2""", _globals)
if _descriptor._USE_C_DESCRIPTORS is False:
UpperCAmelCase : str =None
UpperCAmelCase : List[Any] =b"""H\003"""
# (generated by protobuf compiler, but `_TRAINERSPEC` is not defined)
# _TRAINERSPEC.fields_by_name["mining_sentence_size"]._options = None
# _TRAINERSPEC.fields_by_name["mining_sentence_size"]._serialized_options = b"\030\001"
# _TRAINERSPEC.fields_by_name["training_sentence_size"]._options = None
# _TRAINERSPEC.fields_by_name["training_sentence_size"]._serialized_options = b"\030\001"
UpperCAmelCase : str =45
UpperCAmelCase : Optional[Any] =1581
UpperCAmelCase : Dict =1517
UpperCAmelCase : str =1570
UpperCAmelCase : Optional[int] =1584
UpperCAmelCase : str =1793
UpperCAmelCase : Any =1795
UpperCAmelCase : Dict =1916
UpperCAmelCase : str =1864
UpperCAmelCase : Dict =1905
UpperCAmelCase : Union[str, Any] =1919
UpperCAmelCase : Any =2429
UpperCAmelCase : Dict =2208
UpperCAmelCase : int =2418
UpperCAmelCase : str =2323
UpperCAmelCase : Any =2407
# @@protoc_insertion_point(module_scope)
| 128 |
import gc
import unittest
import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModel, XLMRobertaTokenizer
from diffusers import AltDiffusionPipeline, AutoencoderKL, DDIMScheduler, PNDMScheduler, UNetaDConditionModel
from diffusers.pipelines.alt_diffusion.modeling_roberta_series import (
RobertaSeriesConfig,
RobertaSeriesModelWithTransformation,
)
from diffusers.utils import slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS
from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin
enable_full_determinism()
class _lowercase (a_ , a_ , a_ , unittest.TestCase ):
'''simple docstring'''
lowercase__ = AltDiffusionPipeline
lowercase__ = TEXT_TO_IMAGE_PARAMS
lowercase__ = TEXT_TO_IMAGE_BATCH_PARAMS
lowercase__ = TEXT_TO_IMAGE_IMAGE_PARAMS
lowercase__ = TEXT_TO_IMAGE_IMAGE_PARAMS
def _lowerCamelCase ( self ):
'''simple docstring'''
torch.manual_seed(0 )
UpperCamelCase_ = UNetaDConditionModel(
block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "UpBlock2D") , cross_attention_dim=32 , )
UpperCamelCase_ = DDIMScheduler(
beta_start=0.00_085 , beta_end=0.012 , beta_schedule="scaled_linear" , clip_sample=snake_case__ , set_alpha_to_one=snake_case__ , )
torch.manual_seed(0 )
UpperCamelCase_ = AutoencoderKL(
block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , )
# TODO: address the non-deterministic text encoder (fails for save-load tests)
# torch.manual_seed(0)
# text_encoder_config = RobertaSeriesConfig(
# hidden_size=32,
# project_dim=32,
# intermediate_size=37,
# layer_norm_eps=1e-05,
# num_attention_heads=4,
# num_hidden_layers=5,
# vocab_size=5002,
# )
# text_encoder = RobertaSeriesModelWithTransformation(text_encoder_config)
torch.manual_seed(0 )
UpperCamelCase_ = CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=32 , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=5002 , )
UpperCamelCase_ = CLIPTextModel(snake_case__ )
UpperCamelCase_ = XLMRobertaTokenizer.from_pretrained("hf-internal-testing/tiny-xlm-roberta" )
UpperCamelCase_ = 77
UpperCamelCase_ = {
"unet": unet,
"scheduler": scheduler,
"vae": vae,
"text_encoder": text_encoder,
"tokenizer": tokenizer,
"safety_checker": None,
"feature_extractor": None,
}
return components
def _lowerCamelCase ( self , snake_case__ , snake_case__=0 ):
'''simple docstring'''
if str(snake_case__ ).startswith("mps" ):
UpperCamelCase_ = torch.manual_seed(snake_case__ )
else:
UpperCamelCase_ = torch.Generator(device=snake_case__ ).manual_seed(snake_case__ )
UpperCamelCase_ = {
"prompt": "A painting of a squirrel eating a burger",
"generator": generator,
"num_inference_steps": 2,
"guidance_scale": 6.0,
"output_type": "numpy",
}
return inputs
def _lowerCamelCase ( self ):
'''simple docstring'''
super().test_attention_slicing_forward_pass(expected_max_diff=3e-3 )
def _lowerCamelCase ( self ):
'''simple docstring'''
super().test_inference_batch_single_identical(expected_max_diff=3e-3 )
def _lowerCamelCase ( self ):
'''simple docstring'''
UpperCamelCase_ = "cpu" # ensure determinism for the device-dependent torch.Generator
UpperCamelCase_ = self.get_dummy_components()
torch.manual_seed(0 )
UpperCamelCase_ = RobertaSeriesConfig(
hidden_size=32 , project_dim=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=5002 , )
# TODO: remove after fixing the non-deterministic text encoder
UpperCamelCase_ = RobertaSeriesModelWithTransformation(snake_case__ )
UpperCamelCase_ = text_encoder
UpperCamelCase_ = AltDiffusionPipeline(**snake_case__ )
UpperCamelCase_ = alt_pipe.to(snake_case__ )
alt_pipe.set_progress_bar_config(disable=snake_case__ )
UpperCamelCase_ = self.get_dummy_inputs(snake_case__ )
UpperCamelCase_ = "A photo of an astronaut"
UpperCamelCase_ = alt_pipe(**snake_case__ )
UpperCamelCase_ = output.images
UpperCamelCase_ = image[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
UpperCamelCase_ = np.array(
[0.5_748_162, 0.60_447_145, 0.48_821_217, 0.50_100_636, 0.5_431_185, 0.45_763_683, 0.49_657_696, 0.48_132_733, 0.47_573_093] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
def _lowerCamelCase ( self ):
'''simple docstring'''
UpperCamelCase_ = "cpu" # ensure determinism for the device-dependent torch.Generator
UpperCamelCase_ = self.get_dummy_components()
UpperCamelCase_ = PNDMScheduler(skip_prk_steps=snake_case__ )
torch.manual_seed(0 )
UpperCamelCase_ = RobertaSeriesConfig(
hidden_size=32 , project_dim=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=5002 , )
# TODO: remove after fixing the non-deterministic text encoder
UpperCamelCase_ = RobertaSeriesModelWithTransformation(snake_case__ )
UpperCamelCase_ = text_encoder
UpperCamelCase_ = AltDiffusionPipeline(**snake_case__ )
UpperCamelCase_ = alt_pipe.to(snake_case__ )
alt_pipe.set_progress_bar_config(disable=snake_case__ )
UpperCamelCase_ = self.get_dummy_inputs(snake_case__ )
UpperCamelCase_ = alt_pipe(**snake_case__ )
UpperCamelCase_ = output.images
UpperCamelCase_ = image[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
UpperCamelCase_ = np.array(
[0.51_605_093, 0.5_707_241, 0.47_365_507, 0.50_578_886, 0.5_633_877, 0.4_642_503, 0.5_182_081, 0.48_763_484, 0.49_084_237] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
@slow
@require_torch_gpu
class _lowercase (unittest.TestCase ):
'''simple docstring'''
def _lowerCamelCase ( self ):
'''simple docstring'''
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def _lowerCamelCase ( self ):
'''simple docstring'''
UpperCamelCase_ = AltDiffusionPipeline.from_pretrained("BAAI/AltDiffusion" , safety_checker=snake_case__ )
UpperCamelCase_ = alt_pipe.to(snake_case__ )
alt_pipe.set_progress_bar_config(disable=snake_case__ )
UpperCamelCase_ = "A painting of a squirrel eating a burger"
UpperCamelCase_ = torch.manual_seed(0 )
UpperCamelCase_ = alt_pipe([prompt] , generator=snake_case__ , guidance_scale=6.0 , num_inference_steps=20 , output_type="np" )
UpperCamelCase_ = output.images
UpperCamelCase_ = image[0, -3:, -3:, -1]
assert image.shape == (1, 512, 512, 3)
UpperCamelCase_ = np.array([0.1_010, 0.0_800, 0.0_794, 0.0_885, 0.0_843, 0.0_762, 0.0_769, 0.0_729, 0.0_586] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
def _lowerCamelCase ( self ):
'''simple docstring'''
UpperCamelCase_ = DDIMScheduler.from_pretrained("BAAI/AltDiffusion" , subfolder="scheduler" )
UpperCamelCase_ = AltDiffusionPipeline.from_pretrained("BAAI/AltDiffusion" , scheduler=snake_case__ , safety_checker=snake_case__ )
UpperCamelCase_ = alt_pipe.to(snake_case__ )
alt_pipe.set_progress_bar_config(disable=snake_case__ )
UpperCamelCase_ = "A painting of a squirrel eating a burger"
UpperCamelCase_ = torch.manual_seed(0 )
UpperCamelCase_ = alt_pipe([prompt] , generator=snake_case__ , num_inference_steps=2 , output_type="numpy" )
UpperCamelCase_ = output.images
UpperCamelCase_ = image[0, -3:, -3:, -1]
assert image.shape == (1, 512, 512, 3)
UpperCamelCase_ = np.array([0.4_019, 0.4_052, 0.3_810, 0.4_119, 0.3_916, 0.3_982, 0.4_651, 0.4_195, 0.5_323] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
| 128 | 1 |
'''simple docstring'''
import gc
import importlib.metadata
import tempfile
import unittest
from packaging import version
from transformers import (
AutoModel,
AutoModelForCausalLM,
AutoModelForSeqaSeqLM,
AutoModelForSequenceClassification,
AutoTokenizer,
BitsAndBytesConfig,
pipeline,
)
from transformers.testing_utils import (
is_torch_available,
require_accelerate,
require_bitsandbytes,
require_torch,
require_torch_gpu,
require_torch_multi_gpu,
slow,
)
def lowerCamelCase ( lowerCAmelCase : Union[str, Any] ):
"""simple docstring"""
if model.config.model_type == "gpt2":
return model.transformer.h[0].mlp.c_fc
return model.transformer.h[0].mlp.dense_ah_to_h
if is_torch_available():
import torch
import torch.nn as nn
class _lowerCamelCase ( nn.Module ):
'''simple docstring'''
def __init__( self : str , _A : nn.Module , _A : int ) -> int:
super().__init__()
__magic_name__ : Tuple = module
__magic_name__ : Optional[int] = nn.Sequential(
nn.Linear(module.in_features , _A , bias=_A ) , nn.Linear(_A , module.out_features , bias=_A ) , )
__magic_name__ : Dict = (2.0 / (5 * min(module.in_features , module.out_features ))) ** 0.5
nn.init.normal_(self.adapter[0].weight , std=_A )
nn.init.zeros_(self.adapter[1].weight )
self.adapter.to(module.weight.device )
def __lowerCAmelCase ( self : Optional[Any] , _A : Union[str, Any] , *_A : List[Any] , **_A : Any ) -> Any:
return self.module(_A , *_A , **_A ) + self.adapter(_A )
@require_bitsandbytes
@require_accelerate
@require_torch
@require_torch_gpu
@slow
class _lowerCamelCase ( unittest.TestCase ):
'''simple docstring'''
A_ : str = """bigscience/bloom-1b7"""
# Constant values
A_ : Optional[int] = 2.109659552692574
A_ : Dict = """Hello my name is"""
A_ : str = set()
EXPECTED_OUTPUTS.add("""Hello my name is John and I am a professional photographer. I""" )
EXPECTED_OUTPUTS.add("""Hello my name is John.\nI am a friend of your father.\n""" )
EXPECTED_OUTPUTS.add("""Hello my name is John Doe, I am a student at the University""" )
A_ : str = 10
def __lowerCAmelCase ( self : str ) -> Optional[int]:
# Models and tokenizer
__magic_name__ : List[str] = AutoTokenizer.from_pretrained(self.model_name )
class _lowerCamelCase ( lowercase__ ):
'''simple docstring'''
def __lowerCAmelCase ( self : List[str] ) -> Union[str, Any]:
super().setUp()
# Models and tokenizer
__magic_name__ : Tuple = AutoModelForCausalLM.from_pretrained(
self.model_name , torch_dtype=torch.floataa , device_map='auto' )
__magic_name__ : List[str] = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=_A , device_map='auto' )
def __lowerCAmelCase ( self : Optional[int] ) -> List[Any]:
del self.model_fpaa
del self.model_abit
gc.collect()
torch.cuda.empty_cache()
def __lowerCAmelCase ( self : str ) -> Optional[Any]:
__magic_name__ : str = self.model_abit.config
self.assertTrue(hasattr(_A , 'quantization_config' ) )
__magic_name__ : Any = config.to_dict()
__magic_name__ : Union[str, Any] = config.to_diff_dict()
__magic_name__ : List[str] = config.to_json_string()
def __lowerCAmelCase ( self : Union[str, Any] ) -> int:
from bitsandbytes.nn import Paramsabit
__magic_name__ : str = self.model_fpaa.get_memory_footprint()
__magic_name__ : Tuple = self.model_abit.get_memory_footprint()
self.assertAlmostEqual(mem_fpaa / mem_abit , self.EXPECTED_RELATIVE_DIFFERENCE )
__magic_name__ : Tuple = get_some_linear_layer(self.model_abit )
self.assertTrue(linear.weight.__class__ == Paramsabit )
def __lowerCAmelCase ( self : Dict ) -> List[Any]:
from transformers import TaPreTrainedModel
self.model_fpaa.get_memory_footprint()
self.model_abit.get_memory_footprint()
for name, module in self.model_abit.named_modules():
if isinstance(_A , torch.nn.Linear ):
if name not in ["lm_head"] + TaPreTrainedModel._keep_in_fpaa_modules:
# 4-bit parameters are packed in uint8 variables
self.assertTrue(module.weight.dtype == torch.uinta )
def __lowerCAmelCase ( self : int ) -> Dict:
__magic_name__ : Dict = self.tokenizer(self.input_text , return_tensors='pt' )
__magic_name__ : Union[str, Any] = self.model_abit.generate(input_ids=encoded_input['input_ids'].to(0 ) , max_new_tokens=10 )
self.assertIn(self.tokenizer.decode(output_sequences[0] , skip_special_tokens=_A ) , self.EXPECTED_OUTPUTS )
def __lowerCAmelCase ( self : List[Any] ) -> Optional[int]:
__magic_name__ : int = BitsAndBytesConfig()
__magic_name__ : Any = True
__magic_name__ : Dict = AutoModelForCausalLM.from_pretrained(
self.model_name , quantization_config=_A , device_map='auto' )
__magic_name__ : str = self.tokenizer(self.input_text , return_tensors='pt' )
__magic_name__ : List[str] = model_abit_from_config.generate(
input_ids=encoded_input['input_ids'].to(0 ) , max_new_tokens=10 )
self.assertIn(self.tokenizer.decode(output_sequences[0] , skip_special_tokens=_A ) , self.EXPECTED_OUTPUTS )
def __lowerCAmelCase ( self : Dict ) -> Union[str, Any]:
with self.assertRaises(_A ), tempfile.TemporaryDirectory() as tmpdirname:
self.model_abit.save_pretrained(_A )
def __lowerCAmelCase ( self : int ) -> Union[str, Any]:
__magic_name__ : Any = BitsAndBytesConfig()
with self.assertRaises(_A ):
__magic_name__ : List[str] = AutoModelForCausalLM.from_pretrained(
self.model_name , quantization_config=_A , load_in_abit=_A , device_map='auto' , bnb_abit_quant_type='nf4' , )
def __lowerCAmelCase ( self : str ) -> Any:
with self.assertRaises(_A ):
# Tries with `str`
self.model_abit.to('cpu' )
with self.assertRaises(_A ):
# Tries with a `dtype``
self.model_abit.to(torch.floataa )
with self.assertRaises(_A ):
# Tries with a `device`
self.model_abit.to(torch.device('cuda:0' ) )
with self.assertRaises(_A ):
# Tries with a `device`
self.model_abit.float()
with self.assertRaises(_A ):
# Tries with a `device`
self.model_abit.half()
# Test if we did not break anything
__magic_name__ : Dict = self.tokenizer(self.input_text , return_tensors='pt' )
__magic_name__ : Dict = self.model_fpaa.to(torch.floataa )
__magic_name__ : int = self.model_fpaa.generate(input_ids=encoded_input['input_ids'].to(0 ) , max_new_tokens=10 )
# Check this does not throw an error
__magic_name__ : Optional[Any] = self.model_fpaa.to('cpu' )
# Check this does not throw an error
__magic_name__ : List[Any] = self.model_fpaa.half()
# Check this does not throw an error
__magic_name__ : str = self.model_fpaa.float()
def __lowerCAmelCase ( self : Dict ) -> Tuple:
__magic_name__ : Optional[int] = AutoModelForSeqaSeqLM.from_pretrained('t5-small' , load_in_abit=_A , device_map='auto' )
self.assertTrue(model.decoder.block[0].layer[2].DenseReluDense.wo.weight.dtype == torch.floataa )
@require_bitsandbytes
@require_accelerate
@require_torch
@require_torch_gpu
@slow
class _lowerCamelCase ( unittest.TestCase ):
'''simple docstring'''
@classmethod
def __lowerCAmelCase ( cls : str ) -> List[Any]:
__magic_name__ : Optional[Any] = 't5-small'
__magic_name__ : Optional[Any] = 'google/flan-t5-small' # flan-t5 uses dense-act instead of dense-relu-dense
__magic_name__ : int = AutoTokenizer.from_pretrained(cls.model_name )
__magic_name__ : Union[str, Any] = 'Translate in German: Hello, my dog is cute'
def __lowerCAmelCase ( self : Tuple ) -> Any:
gc.collect()
torch.cuda.empty_cache()
def __lowerCAmelCase ( self : Dict ) -> Dict:
from transformers import TaForConditionalGeneration
__magic_name__ : int = TaForConditionalGeneration._keep_in_fpaa_modules
__magic_name__ : Any = None
# test with `t5-small`
__magic_name__ : Union[str, Any] = TaForConditionalGeneration.from_pretrained(self.model_name , load_in_abit=_A , device_map='auto' )
__magic_name__ : Optional[int] = self.tokenizer(self.input_text , return_tensors='pt' ).to(0 )
__magic_name__ : Any = model.generate(**_A )
# test with `flan-t5-small`
__magic_name__ : int = TaForConditionalGeneration.from_pretrained(
self.dense_act_model_name , load_in_abit=_A , device_map='auto' )
__magic_name__ : Optional[Any] = self.tokenizer(self.input_text , return_tensors='pt' ).to(0 )
__magic_name__ : Optional[int] = model.generate(**_A )
__magic_name__ : Any = modules
def __lowerCAmelCase ( self : str ) -> Any:
import bitsandbytes as bnb
from transformers import TaForConditionalGeneration
# test with `t5-small`
__magic_name__ : Optional[int] = TaForConditionalGeneration.from_pretrained(self.model_name , load_in_abit=_A , device_map='auto' )
# there was a bug with decoders - this test checks that it is fixed
self.assertTrue(isinstance(model.decoder.block[0].layer[0].SelfAttention.q , bnb.nn.Linearabit ) )
__magic_name__ : List[str] = self.tokenizer(self.input_text , return_tensors='pt' ).to(0 )
__magic_name__ : Union[str, Any] = model.generate(**_A )
# test with `flan-t5-small`
__magic_name__ : Any = TaForConditionalGeneration.from_pretrained(
self.dense_act_model_name , load_in_abit=_A , device_map='auto' )
__magic_name__ : Tuple = self.tokenizer(self.input_text , return_tensors='pt' ).to(0 )
__magic_name__ : Dict = model.generate(**_A )
class _lowerCamelCase ( lowercase__ ):
'''simple docstring'''
def __lowerCAmelCase ( self : Tuple ) -> Optional[int]:
super().setUp()
# model_name
__magic_name__ : List[str] = 'bigscience/bloom-560m'
__magic_name__ : str = 't5-small'
# Different types of model
__magic_name__ : List[str] = AutoModel.from_pretrained(self.model_name , load_in_abit=_A , device_map='auto' )
# Sequence classification model
__magic_name__ : int = AutoModelForSequenceClassification.from_pretrained(
self.model_name , load_in_abit=_A , device_map='auto' )
# CausalLM model
__magic_name__ : Tuple = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=_A , device_map='auto' )
# Seq2seq model
__magic_name__ : Tuple = AutoModelForSeqaSeqLM.from_pretrained(
self.seq_to_seq_name , load_in_abit=_A , device_map='auto' )
def __lowerCAmelCase ( self : Optional[int] ) -> Dict:
del self.base_model
del self.sequence_model
del self.model_abit
del self.seq_to_seq_model
gc.collect()
torch.cuda.empty_cache()
def __lowerCAmelCase ( self : str ) -> Optional[int]:
from bitsandbytes.nn import Paramsabit
self.assertTrue(self.base_model.h[-1].mlp.dense_ah_to_h.weight.__class__ == Paramsabit )
# Other heads should be nn.Parameter
self.assertTrue(self.model_abit.lm_head.weight.__class__ == torch.nn.Parameter )
self.assertTrue(self.sequence_model.score.weight.__class__ == torch.nn.Parameter )
self.assertTrue(self.seq_to_seq_model.lm_head.weight.__class__ == torch.nn.Parameter )
class _lowerCamelCase ( lowercase__ ):
'''simple docstring'''
def __lowerCAmelCase ( self : List[str] ) -> Optional[int]:
super().setUp()
def __lowerCAmelCase ( self : Optional[int] ) -> List[Any]:
del self.pipe
gc.collect()
torch.cuda.empty_cache()
def __lowerCAmelCase ( self : Optional[Any] ) -> List[Any]:
__magic_name__ : Optional[int] = pipeline(
'text-generation' , model=self.model_name , model_kwargs={'device_map': 'auto', 'load_in_4bit': True, 'torch_dtype': torch.floataa} , max_new_tokens=self.MAX_NEW_TOKENS , )
# Real second forward pass
__magic_name__ : Tuple = self.pipe(self.input_text )
self.assertIn(pipeline_output[0]['generated_text'] , self.EXPECTED_OUTPUTS )
@require_torch_multi_gpu
class _lowerCamelCase ( lowercase__ ):
'''simple docstring'''
def __lowerCAmelCase ( self : Any ) -> List[str]:
super().setUp()
def __lowerCAmelCase ( self : Dict ) -> int:
__magic_name__ : Optional[int] = AutoModelForCausalLM.from_pretrained(
self.model_name , load_in_abit=_A , device_map='balanced' )
# Check correct device map
self.assertEqual(set(model_parallel.hf_device_map.values() ) , {0, 1} )
# Check that inference pass works on the model
__magic_name__ : int = self.tokenizer(self.input_text , return_tensors='pt' )
# Second real batch
__magic_name__ : Optional[Any] = model_parallel.generate(input_ids=encoded_input['input_ids'].to(0 ) , max_new_tokens=10 )
self.assertIn(self.tokenizer.decode(output_parallel[0] , skip_special_tokens=_A ) , self.EXPECTED_OUTPUTS )
class _lowerCamelCase ( lowercase__ ):
'''simple docstring'''
def __lowerCAmelCase ( self : str ) -> int:
__magic_name__ : int = 'facebook/opt-350m'
super().setUp()
def __lowerCAmelCase ( self : Any ) -> Tuple:
if version.parse(importlib.metadata.version('bitsandbytes' ) ) < version.parse('0.37.0' ):
return
# Step 1: freeze all parameters
__magic_name__ : Optional[Any] = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=_A )
self.assertEqual(set(model.hf_device_map.values() ) , {torch.cuda.current_device()} )
for param in model.parameters():
__magic_name__ : Optional[int] = False # freeze the model - train adapters later
if param.ndim == 1:
# cast the small parameters (e.g. layernorm) to fp32 for stability
__magic_name__ : Tuple = param.data.to(torch.floataa )
# Step 2: add adapters
for _, module in model.named_modules():
if "OPTAttention" in repr(type(_A ) ):
__magic_name__ : List[str] = LoRALayer(module.q_proj , rank=16 )
__magic_name__ : Tuple = LoRALayer(module.k_proj , rank=16 )
__magic_name__ : Optional[int] = LoRALayer(module.v_proj , rank=16 )
# Step 3: dummy batch
__magic_name__ : List[Any] = self.tokenizer('Test batch ' , return_tensors='pt' ).to(0 )
# Step 4: Check if the gradient is not None
with torch.cuda.amp.autocast():
__magic_name__ : List[str] = model.forward(**_A )
out.logits.norm().backward()
for module in model.modules():
if isinstance(_A , _A ):
self.assertTrue(module.adapter[1].weight.grad is not None )
self.assertTrue(module.adapter[1].weight.grad.norm().item() > 0 )
elif isinstance(_A , nn.Embedding ):
self.assertTrue(module.weight.grad is None )
class _lowerCamelCase ( lowercase__ ):
'''simple docstring'''
A_ : Tuple = """gpt2-xl"""
A_ : List[Any] = 3.3191854854152187 | 275 |
'''simple docstring'''
def lowerCamelCase ( lowerCAmelCase : int ):
"""simple docstring"""
if not isinstance(lowerCAmelCase , lowerCAmelCase ):
__magic_name__ : int = f'Input value of [number={number}] must be an integer'
raise TypeError(lowerCAmelCase )
if number < 0:
return False
__magic_name__ : Tuple = number * number
while number > 0:
if number % 10 != number_square % 10:
return False
number //= 10
number_square //= 10
return True
if __name__ == "__main__":
import doctest
doctest.testmod() | 275 | 1 |
from diffusers.utils.testing_utils import require_onnxruntime
@require_onnxruntime
class __lowerCAmelCase :
pass
| 205 |
import logging
import os
from typing import Dict, List, Optional, Union
import torch
import torch.nn as nn
from accelerate.utils.imports import (
is_abit_bnb_available,
is_abit_bnb_available,
is_bnb_available,
)
from ..big_modeling import dispatch_model, init_empty_weights
from .dataclasses import BnbQuantizationConfig
from .modeling import (
find_tied_parameters,
get_balanced_memory,
infer_auto_device_map,
load_checkpoint_in_model,
offload_weight,
set_module_tensor_to_device,
)
if is_bnb_available():
import bitsandbytes as bnb
from copy import deepcopy
__UpperCamelCase : str = logging.getLogger(__name__)
def _a ( SCREAMING_SNAKE_CASE : torch.nn.Module , SCREAMING_SNAKE_CASE : BnbQuantizationConfig , SCREAMING_SNAKE_CASE : Union[str, os.PathLike] = None , SCREAMING_SNAKE_CASE : Optional[Dict[str, Union[int, str, torch.device]]] = None , SCREAMING_SNAKE_CASE : Optional[List[str]] = None , SCREAMING_SNAKE_CASE : Optional[Dict[Union[int, str], Union[int, str]]] = None , SCREAMING_SNAKE_CASE : Optional[Union[str, os.PathLike]] = None , SCREAMING_SNAKE_CASE : bool = False , ):
"""simple docstring"""
UpperCamelCase__ : Union[str, Any] = bnb_quantization_config.load_in_abit
UpperCamelCase__ : List[Any] = bnb_quantization_config.load_in_abit
if load_in_abit and not is_abit_bnb_available():
raise ImportError(
'''You have a version of `bitsandbytes` that is not compatible with 8bit quantization,'''
''' make sure you have the latest version of `bitsandbytes` installed.''' )
if load_in_abit and not is_abit_bnb_available():
raise ValueError(
'''You have a version of `bitsandbytes` that is not compatible with 4bit quantization,'''
'''make sure you have the latest version of `bitsandbytes` installed.''' )
UpperCamelCase__ : int = []
# custom device map
if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) and len(device_map.keys() ) > 1:
UpperCamelCase__ : int = [key for key, value in device_map.items() if value in ['''disk''', '''cpu''']]
# We keep some modules such as the lm_head in their original dtype for numerical stability reasons
if bnb_quantization_config.skip_modules is None:
UpperCamelCase__ : List[Any] = get_keys_to_not_convert(SCREAMING_SNAKE_CASE )
# add cpu modules to skip modules only for 4-bit modules
if load_in_abit:
bnb_quantization_config.skip_modules.extend(SCREAMING_SNAKE_CASE )
UpperCamelCase__ : List[str] = bnb_quantization_config.skip_modules
# We add the modules we want to keep in full precision
if bnb_quantization_config.keep_in_fpaa_modules is None:
UpperCamelCase__ : Union[str, Any] = []
UpperCamelCase__ : List[Any] = bnb_quantization_config.keep_in_fpaa_modules
modules_to_not_convert.extend(SCREAMING_SNAKE_CASE )
# compatibility with peft
UpperCamelCase__ : Optional[Any] = load_in_abit
UpperCamelCase__ : List[str] = load_in_abit
UpperCamelCase__ : str = get_parameter_device(SCREAMING_SNAKE_CASE )
if model_device.type != "meta":
# quantization of an already loaded model
logger.warning(
'''It is not recommended to quantize a loaded model. '''
'''The model should be instantiated under the `init_empty_weights` context manager.''' )
UpperCamelCase__ : Union[str, Any] = replace_with_bnb_layers(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , modules_to_not_convert=SCREAMING_SNAKE_CASE )
# convert param to the right dtype
UpperCamelCase__ : str = bnb_quantization_config.torch_dtype
for name, param in model.state_dict().items():
if any(module_to_keep_in_fpaa in name for module_to_keep_in_fpaa in keep_in_fpaa_modules ):
param.to(torch.floataa )
if param.dtype != torch.floataa:
UpperCamelCase__ : Union[str, Any] = name.replace('''.weight''' , '''''' ).replace('''.bias''' , '''''' )
UpperCamelCase__ : Dict = getattr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
if param is not None:
param.to(torch.floataa )
elif torch.is_floating_point(SCREAMING_SNAKE_CASE ):
param.to(SCREAMING_SNAKE_CASE )
if model_device.type == "cuda":
# move everything to cpu in the first place because we can't do quantization if the weights are already on cuda
model.cuda(torch.cuda.current_device() )
torch.cuda.empty_cache()
elif torch.cuda.is_available():
model.to(torch.cuda.current_device() )
else:
raise RuntimeError('''No GPU found. A GPU is needed for quantization.''' )
logger.info(
F"The model device type is {model_device.type}. However, cuda is needed for quantization."
'''We move the model to cuda.''' )
return model
elif weights_location is None:
raise RuntimeError(
F"`weights_location` needs to be the folder path containing the weights of the model, but we found {weights_location} " )
else:
with init_empty_weights():
UpperCamelCase__ : str = replace_with_bnb_layers(
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , modules_to_not_convert=SCREAMING_SNAKE_CASE )
UpperCamelCase__ : List[Any] = get_quantized_model_device_map(
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , max_memory=SCREAMING_SNAKE_CASE , no_split_module_classes=SCREAMING_SNAKE_CASE , )
if offload_state_dict is None and device_map is not None and "disk" in device_map.values():
UpperCamelCase__ : Dict = True
UpperCamelCase__ : str = any(x in list(device_map.values() ) for x in ['''cpu''', '''disk'''] )
load_checkpoint_in_model(
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , dtype=bnb_quantization_config.torch_dtype , offload_folder=SCREAMING_SNAKE_CASE , offload_state_dict=SCREAMING_SNAKE_CASE , keep_in_fpaa_modules=bnb_quantization_config.keep_in_fpaa_modules , offload_abit_bnb=load_in_abit and offload , )
return dispatch_model(SCREAMING_SNAKE_CASE , device_map=SCREAMING_SNAKE_CASE , offload_dir=SCREAMING_SNAKE_CASE )
def _a ( SCREAMING_SNAKE_CASE : List[str] , SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : Dict=None , SCREAMING_SNAKE_CASE : int=None , SCREAMING_SNAKE_CASE : str=None ):
"""simple docstring"""
if device_map is None:
if torch.cuda.is_available():
UpperCamelCase__ : int = {'''''': torch.cuda.current_device()}
else:
raise RuntimeError('''No GPU found. A GPU is needed for quantization.''' )
logger.info('''The device_map was not initialized.''' '''Setting device_map to `{\'\':torch.cuda.current_device()}`.''' )
if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ):
if device_map not in ["auto", "balanced", "balanced_low_0", "sequential"]:
raise ValueError(
'''If passing a string for `device_map`, please choose \'auto\', \'balanced\', \'balanced_low_0\' or '''
'''\'sequential\'.''' )
UpperCamelCase__ : str = {}
special_dtypes.update(
{
name: bnb_quantization_config.torch_dtype
for name, _ in model.named_parameters()
if any(m in name for m in bnb_quantization_config.skip_modules )
} )
special_dtypes.update(
{
name: torch.floataa
for name, _ in model.named_parameters()
if any(m in name for m in bnb_quantization_config.keep_in_fpaa_modules )
} )
UpperCamelCase__ : Optional[Any] = {}
UpperCamelCase__ : Union[str, Any] = special_dtypes
UpperCamelCase__ : Optional[int] = no_split_module_classes
UpperCamelCase__ : int = bnb_quantization_config.target_dtype
# get max_memory for each device.
if device_map != "sequential":
UpperCamelCase__ : Dict = get_balanced_memory(
SCREAMING_SNAKE_CASE , low_zero=(device_map == '''balanced_low_0''') , max_memory=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE , )
UpperCamelCase__ : Tuple = max_memory
UpperCamelCase__ : Dict = infer_auto_device_map(SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE )
if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ):
# check if don't have any quantized module on the cpu
UpperCamelCase__ : List[Any] = bnb_quantization_config.skip_modules + bnb_quantization_config.keep_in_fpaa_modules
UpperCamelCase__ : Dict = {
key: device_map[key] for key in device_map.keys() if key not in modules_not_to_convert
}
for device in ["cpu", "disk"]:
if device in device_map_without_some_modules.values():
if bnb_quantization_config.load_in_abit:
raise ValueError(
'''
Some modules are dispatched on the CPU or the disk. Make sure you have enough GPU RAM to fit
the quantized model. If you want to dispatch the model on the CPU or the disk while keeping
these modules in `torch_dtype`, you need to pass a custom `device_map` to
`load_and_quantize_model`. Check
https://huggingface.co/docs/accelerate/main/en/usage_guides/quantization#offload-modules-to-cpu-and-disk
for more details.
''' )
else:
logger.info(
'''Some modules are are offloaded to the CPU or the disk. Note that these modules will be converted to 8-bit''' )
del device_map_without_some_modules
return device_map
def _a ( SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : Tuple=None , SCREAMING_SNAKE_CASE : int=None ):
"""simple docstring"""
if modules_to_not_convert is None:
UpperCamelCase__ : Optional[Any] = []
UpperCamelCase__ , UpperCamelCase__ : Dict = _replace_with_bnb_layers(
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
if not has_been_replaced:
logger.warning(
'''You are loading your model in 8bit or 4bit but no linear modules were found in your model.'''
''' this can happen for some architectures such as gpt2 that uses Conv1D instead of Linear layers.'''
''' Please double check your model architecture, or submit an issue on github if you think this is'''
''' a bug.''' )
return model
def _a ( SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : List[str]=None , SCREAMING_SNAKE_CASE : Optional[Any]=None , ):
"""simple docstring"""
UpperCamelCase__ : str = False
for name, module in model.named_children():
if current_key_name is None:
UpperCamelCase__ : Tuple = []
current_key_name.append(SCREAMING_SNAKE_CASE )
if isinstance(SCREAMING_SNAKE_CASE , nn.Linear ) and name not in modules_to_not_convert:
# Check if the current key is not in the `modules_to_not_convert`
UpperCamelCase__ : int = '''.'''.join(SCREAMING_SNAKE_CASE )
UpperCamelCase__ : Tuple = True
for key in modules_to_not_convert:
if (
(key in current_key_name_str) and (key + "." in current_key_name_str)
) or key == current_key_name_str:
UpperCamelCase__ : List[str] = False
break
if proceed:
# Load bnb module with empty weight and replace ``nn.Linear` module
if bnb_quantization_config.load_in_abit:
UpperCamelCase__ : int = bnb.nn.LinearabitLt(
module.in_features , module.out_features , module.bias is not None , has_fpaa_weights=SCREAMING_SNAKE_CASE , threshold=bnb_quantization_config.llm_inta_threshold , )
elif bnb_quantization_config.load_in_abit:
UpperCamelCase__ : Optional[int] = bnb.nn.Linearabit(
module.in_features , module.out_features , module.bias is not None , bnb_quantization_config.bnb_abit_compute_dtype , compress_statistics=bnb_quantization_config.bnb_abit_use_double_quant , quant_type=bnb_quantization_config.bnb_abit_quant_type , )
else:
raise ValueError('''load_in_8bit and load_in_4bit can\'t be both False''' )
UpperCamelCase__ : List[Any] = module.weight.data
if module.bias is not None:
UpperCamelCase__ : List[str] = module.bias.data
bnb_module.requires_grad_(SCREAMING_SNAKE_CASE )
setattr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
UpperCamelCase__ : Dict = True
if len(list(module.children() ) ) > 0:
UpperCamelCase__ , UpperCamelCase__ : Tuple = _replace_with_bnb_layers(
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
UpperCamelCase__ : Tuple = has_been_replaced | _has_been_replaced
# Remove the last key for recursion
current_key_name.pop(-1 )
return model, has_been_replaced
def _a ( SCREAMING_SNAKE_CASE : List[Any] ):
"""simple docstring"""
with init_empty_weights():
UpperCamelCase__ : Dict = deepcopy(SCREAMING_SNAKE_CASE ) # this has 0 cost since it is done inside `init_empty_weights` context manager`
UpperCamelCase__ : str = find_tied_parameters(SCREAMING_SNAKE_CASE )
# For compatibility with Accelerate < 0.18
if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ):
UpperCamelCase__ : List[str] = sum(list(tied_params.values() ) , [] ) + list(tied_params.keys() )
else:
UpperCamelCase__ : int = sum(SCREAMING_SNAKE_CASE , [] )
UpperCamelCase__ : Union[str, Any] = len(SCREAMING_SNAKE_CASE ) > 0
# Check if it is a base model
UpperCamelCase__ : str = False
if hasattr(SCREAMING_SNAKE_CASE , '''base_model_prefix''' ):
UpperCamelCase__ : int = not hasattr(SCREAMING_SNAKE_CASE , model.base_model_prefix )
# Ignore this for base models (BertModel, GPT2Model, etc.)
if (not has_tied_params) and is_base_model:
return []
# otherwise they have an attached head
UpperCamelCase__ : Tuple = list(model.named_children() )
UpperCamelCase__ : str = [list_modules[-1][0]]
# add last module together with tied weights
UpperCamelCase__ : Dict = set(SCREAMING_SNAKE_CASE ) - set(SCREAMING_SNAKE_CASE )
UpperCamelCase__ : List[Any] = list(set(SCREAMING_SNAKE_CASE ) ) + list(SCREAMING_SNAKE_CASE )
# remove ".weight" from the keys
UpperCamelCase__ : int = ['''.weight''', '''.bias''']
UpperCamelCase__ : Optional[int] = []
for name in list_untouched:
for name_to_remove in names_to_remove:
if name_to_remove in name:
UpperCamelCase__ : int = name.replace(SCREAMING_SNAKE_CASE , '''''' )
filtered_module_names.append(SCREAMING_SNAKE_CASE )
return filtered_module_names
def _a ( SCREAMING_SNAKE_CASE : Optional[int] ):
"""simple docstring"""
for m in model.modules():
if isinstance(SCREAMING_SNAKE_CASE , bnb.nn.Linearabit ):
return True
return False
def _a ( SCREAMING_SNAKE_CASE : nn.Module ):
"""simple docstring"""
return next(parameter.parameters() ).device
def _a ( SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : List[Any] ):
"""simple docstring"""
if fpaa_statistics is None:
set_module_tensor_to_device(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , 0 , dtype=SCREAMING_SNAKE_CASE , value=SCREAMING_SNAKE_CASE )
UpperCamelCase__ : Optional[int] = param_name
UpperCamelCase__ : str = model
if "." in tensor_name:
UpperCamelCase__ : List[Any] = tensor_name.split('''.''' )
for split in splits[:-1]:
UpperCamelCase__ : Dict = getattr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
if new_module is None:
raise ValueError(F"{module} has no attribute {split}." )
UpperCamelCase__ : Optional[int] = new_module
UpperCamelCase__ : List[str] = splits[-1]
# offload weights
UpperCamelCase__ : Any = False
offload_weight(module._parameters[tensor_name] , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , index=SCREAMING_SNAKE_CASE )
if hasattr(module._parameters[tensor_name] , '''SCB''' ):
offload_weight(
module._parameters[tensor_name].SCB , param_name.replace('''weight''' , '''SCB''' ) , SCREAMING_SNAKE_CASE , index=SCREAMING_SNAKE_CASE , )
else:
offload_weight(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , index=SCREAMING_SNAKE_CASE )
offload_weight(SCREAMING_SNAKE_CASE , param_name.replace('''weight''' , '''SCB''' ) , SCREAMING_SNAKE_CASE , index=SCREAMING_SNAKE_CASE )
set_module_tensor_to_device(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , '''meta''' , dtype=SCREAMING_SNAKE_CASE , value=torch.empty(*param.size() ) )
| 146 | 0 |
'''simple docstring'''
import numpy as np
import torch
from torch.utils.data import DataLoader
from accelerate.utils.dataclasses import DistributedType
class A_ :
def __init__( self : Union[str, Any] , snake_case_ : str=2 , snake_case_ : List[str]=3 , snake_case_ : List[Any]=6_4 , snake_case_ : Any=None ):
_UpperCAmelCase = np.random.default_rng(snake_case_ )
_UpperCAmelCase = length
_UpperCAmelCase = rng.normal(size=(length,) ).astype(np.floataa )
_UpperCAmelCase = a * self.x + b + rng.normal(scale=0.1 , size=(length,) ).astype(np.floataa )
def __len__( self : int ):
return self.length
def __getitem__( self : Dict , snake_case_ : str ):
return {"x": self.x[i], "y": self.y[i]}
class A_ ( torch.nn.Module ):
def __init__( self : Optional[Any] , snake_case_ : Union[str, Any]=0 , snake_case_ : Union[str, Any]=0 , snake_case_ : int=False ):
super().__init__()
_UpperCAmelCase = torch.nn.Parameter(torch.tensor([2, 3] ).float() )
_UpperCAmelCase = torch.nn.Parameter(torch.tensor([2, 3] ).float() )
_UpperCAmelCase = True
def lowercase ( self : Any , snake_case_ : Optional[Any]=None ):
if self.first_batch:
print(f'Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}' )
_UpperCAmelCase = False
return x * self.a[0] + self.b[0]
class A_ ( torch.nn.Module ):
def __init__( self : Tuple , snake_case_ : List[Any]=0 , snake_case_ : Optional[int]=0 , snake_case_ : Optional[Any]=False ):
super().__init__()
_UpperCAmelCase = torch.nn.Parameter(torch.tensor(snake_case_ ).float() )
_UpperCAmelCase = torch.nn.Parameter(torch.tensor(snake_case_ ).float() )
_UpperCAmelCase = True
def lowercase ( self : int , snake_case_ : Optional[int]=None ):
if self.first_batch:
print(f'Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}' )
_UpperCAmelCase = False
return x * self.a + self.b
def UpperCAmelCase_ ( __lowercase : Dict , __lowercase : int = 16 ) -> Union[str, Any]:
'''simple docstring'''
from datasets import load_dataset
from transformers import AutoTokenizer
_UpperCAmelCase = AutoTokenizer.from_pretrained("bert-base-cased" )
_UpperCAmelCase = {"train": "tests/test_samples/MRPC/train.csv", "validation": "tests/test_samples/MRPC/dev.csv"}
_UpperCAmelCase = load_dataset("csv" , data_files=__snake_case )
_UpperCAmelCase = datasets["train"].unique("label" )
_UpperCAmelCase = {v: i for i, v in enumerate(__snake_case )}
def tokenize_function(__lowercase : List[str] ):
# max_length=None => use the model max length (it's actually the default)
_UpperCAmelCase = tokenizer(
examples["sentence1"] , examples["sentence2"] , truncation=__snake_case , max_length=__snake_case , padding="max_length" )
if "label" in examples:
_UpperCAmelCase = [label_to_id[l] for l in examples["label"]]
return outputs
# Apply the method we just defined to all the examples in all the splits of the dataset
_UpperCAmelCase = datasets.map(
__snake_case , batched=__snake_case , remove_columns=["sentence1", "sentence2", "label"] , )
def collate_fn(__lowercase : Tuple ):
# On TPU it's best to pad everything to the same length or training will be very slow.
if accelerator.distributed_type == DistributedType.TPU:
return tokenizer.pad(__snake_case , padding="max_length" , max_length=128 , return_tensors="pt" )
return tokenizer.pad(__snake_case , padding="longest" , return_tensors="pt" )
# Instantiate dataloaders.
_UpperCAmelCase = DataLoader(tokenized_datasets["train"] , shuffle=__snake_case , collate_fn=__snake_case , batch_size=2 )
_UpperCAmelCase = DataLoader(tokenized_datasets["validation"] , shuffle=__snake_case , collate_fn=__snake_case , batch_size=1 )
return train_dataloader, eval_dataloader
| 356 |
'''simple docstring'''
def UpperCAmelCase_ ( __lowercase : int = 100_0000 ) -> int:
'''simple docstring'''
_UpperCAmelCase = limit + 1
_UpperCAmelCase = [0] * limit
for first_term in range(1 , __lowercase ):
for n in range(__lowercase , __lowercase , __lowercase ):
_UpperCAmelCase = first_term + n / first_term
if common_difference % 4: # d must be divisble by 4
continue
else:
common_difference /= 4
if (
first_term > common_difference
and first_term < 4 * common_difference
): # since x,y,z are positive integers
frequency[n] += 1 # so z>0 and a>d ,also 4d<a
_UpperCAmelCase = sum(1 for x in frequency[1:limit] if x == 10 )
return count
if __name__ == "__main__":
print(F"{solution() = }")
| 156 | 0 |
"""simple docstring"""
# This model implementation is heavily inspired by https://github.com/haofanwang/ControlNet-for-Diffusers/
import gc
import random
import tempfile
import unittest
import numpy as np
import torch
from PIL import Image
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
from diffusers import (
AutoencoderKL,
ControlNetModel,
DDIMScheduler,
StableDiffusionControlNetImgaImgPipeline,
UNetaDConditionModel,
)
from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_controlnet import MultiControlNetModel
from diffusers.utils import floats_tensor, load_image, load_numpy, randn_tensor, slow, torch_device
from diffusers.utils.import_utils import is_xformers_available
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
from ..pipeline_params import (
IMAGE_TO_IMAGE_IMAGE_PARAMS,
TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS,
TEXT_GUIDED_IMAGE_VARIATION_PARAMS,
)
from ..test_pipelines_common import (
PipelineKarrasSchedulerTesterMixin,
PipelineLatentTesterMixin,
PipelineTesterMixin,
)
enable_full_determinism()
class _UpperCAmelCase ( __snake_case, __snake_case, __snake_case, unittest.TestCase ):
'''simple docstring'''
lowerCamelCase__ =StableDiffusionControlNetImgaImgPipeline
lowerCamelCase__ =TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {'height', 'width'}
lowerCamelCase__ =TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS
lowerCamelCase__ =IMAGE_TO_IMAGE_IMAGE_PARAMS.union({'control_image'} )
lowerCamelCase__ =IMAGE_TO_IMAGE_IMAGE_PARAMS
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
torch.manual_seed(0 )
__snake_case : List[Any] = UNetaDConditionModel(
block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , )
torch.manual_seed(0 )
__snake_case : Optional[Any] = ControlNetModel(
block_out_channels=(32, 64) , layers_per_block=2 , in_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , cross_attention_dim=32 , conditioning_embedding_out_channels=(16, 32) , )
torch.manual_seed(0 )
__snake_case : Any = DDIMScheduler(
beta_start=0.0_0085 , beta_end=0.012 , beta_schedule='''scaled_linear''' , clip_sample=a_ , set_alpha_to_one=a_ , )
torch.manual_seed(0 )
__snake_case : Any = AutoencoderKL(
block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , )
torch.manual_seed(0 )
__snake_case : List[str] = CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , )
__snake_case : Any = CLIPTextModel(a_ )
__snake_case : List[str] = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' )
__snake_case : Tuple = {
'''unet''': unet,
'''controlnet''': controlnet,
'''scheduler''': scheduler,
'''vae''': vae,
'''text_encoder''': text_encoder,
'''tokenizer''': tokenizer,
'''safety_checker''': None,
'''feature_extractor''': None,
}
return components
def SCREAMING_SNAKE_CASE (self , a_ , a_=0 ):
'''simple docstring'''
if str(a_ ).startswith('''mps''' ):
__snake_case : int = torch.manual_seed(a_ )
else:
__snake_case : int = torch.Generator(device=a_ ).manual_seed(a_ )
__snake_case : List[str] = 2
__snake_case : List[str] = randn_tensor(
(1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor) , generator=a_ , device=torch.device(a_ ) , )
__snake_case : Any = floats_tensor(control_image.shape , rng=random.Random(a_ ) ).to(a_ )
__snake_case : str = image.cpu().permute(0 , 2 , 3 , 1 )[0]
__snake_case : int = Image.fromarray(np.uinta(a_ ) ).convert('''RGB''' ).resize((64, 64) )
__snake_case : Any = {
'''prompt''': '''A painting of a squirrel eating a burger''',
'''generator''': generator,
'''num_inference_steps''': 2,
'''guidance_scale''': 6.0,
'''output_type''': '''numpy''',
'''image''': image,
'''control_image''': control_image,
}
return inputs
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
return self._test_attention_slicing_forward_pass(expected_max_diff=2E-3 )
@unittest.skipIf(
torch_device != '''cuda''' or not is_xformers_available() , reason='''XFormers attention is only available with CUDA and `xformers` installed''' , )
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=2E-3 )
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
self._test_inference_batch_single_identical(expected_max_diff=2E-3 )
class _UpperCAmelCase ( __snake_case, __snake_case, unittest.TestCase ):
'''simple docstring'''
lowerCamelCase__ =StableDiffusionControlNetImgaImgPipeline
lowerCamelCase__ =TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {'height', 'width'}
lowerCamelCase__ =TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS
lowerCamelCase__ =frozenset([] ) # TO_DO: add image_params once refactored VaeImageProcessor.preprocess
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
torch.manual_seed(0 )
__snake_case : Optional[int] = UNetaDConditionModel(
block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , )
torch.manual_seed(0 )
def init_weights(a_ ):
if isinstance(a_ , torch.nn.Convad ):
torch.nn.init.normal(m.weight )
m.bias.data.fill_(1.0 )
__snake_case : Dict = ControlNetModel(
block_out_channels=(32, 64) , layers_per_block=2 , in_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , cross_attention_dim=32 , conditioning_embedding_out_channels=(16, 32) , )
controlneta.controlnet_down_blocks.apply(a_ )
torch.manual_seed(0 )
__snake_case : Any = ControlNetModel(
block_out_channels=(32, 64) , layers_per_block=2 , in_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , cross_attention_dim=32 , conditioning_embedding_out_channels=(16, 32) , )
controlneta.controlnet_down_blocks.apply(a_ )
torch.manual_seed(0 )
__snake_case : List[Any] = DDIMScheduler(
beta_start=0.0_0085 , beta_end=0.012 , beta_schedule='''scaled_linear''' , clip_sample=a_ , set_alpha_to_one=a_ , )
torch.manual_seed(0 )
__snake_case : Union[str, Any] = AutoencoderKL(
block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , )
torch.manual_seed(0 )
__snake_case : Optional[Any] = CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , )
__snake_case : Dict = CLIPTextModel(a_ )
__snake_case : List[str] = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' )
__snake_case : Any = MultiControlNetModel([controlneta, controlneta] )
__snake_case : Any = {
'''unet''': unet,
'''controlnet''': controlnet,
'''scheduler''': scheduler,
'''vae''': vae,
'''text_encoder''': text_encoder,
'''tokenizer''': tokenizer,
'''safety_checker''': None,
'''feature_extractor''': None,
}
return components
def SCREAMING_SNAKE_CASE (self , a_ , a_=0 ):
'''simple docstring'''
if str(a_ ).startswith('''mps''' ):
__snake_case : Dict = torch.manual_seed(a_ )
else:
__snake_case : Optional[int] = torch.Generator(device=a_ ).manual_seed(a_ )
__snake_case : Union[str, Any] = 2
__snake_case : Any = [
randn_tensor(
(1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor) , generator=a_ , device=torch.device(a_ ) , ),
randn_tensor(
(1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor) , generator=a_ , device=torch.device(a_ ) , ),
]
__snake_case : List[str] = floats_tensor(control_image[0].shape , rng=random.Random(a_ ) ).to(a_ )
__snake_case : Union[str, Any] = image.cpu().permute(0 , 2 , 3 , 1 )[0]
__snake_case : Optional[Any] = Image.fromarray(np.uinta(a_ ) ).convert('''RGB''' ).resize((64, 64) )
__snake_case : Any = {
'''prompt''': '''A painting of a squirrel eating a burger''',
'''generator''': generator,
'''num_inference_steps''': 2,
'''guidance_scale''': 6.0,
'''output_type''': '''numpy''',
'''image''': image,
'''control_image''': control_image,
}
return inputs
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case : str = self.get_dummy_components()
__snake_case : List[Any] = self.pipeline_class(**a_ )
pipe.to(a_ )
__snake_case : List[Any] = 10.0
__snake_case : List[str] = 4
__snake_case : Optional[Any] = self.get_dummy_inputs(a_ )
__snake_case : int = steps
__snake_case : Union[str, Any] = scale
__snake_case : str = pipe(**a_ )[0]
__snake_case : int = self.get_dummy_inputs(a_ )
__snake_case : Tuple = steps
__snake_case : Any = scale
__snake_case : str = pipe(**a_ , control_guidance_start=0.1 , control_guidance_end=0.2 )[0]
__snake_case : str = self.get_dummy_inputs(a_ )
__snake_case : Union[str, Any] = steps
__snake_case : Tuple = scale
__snake_case : List[str] = pipe(**a_ , control_guidance_start=[0.1, 0.3] , control_guidance_end=[0.2, 0.7] )[0]
__snake_case : int = self.get_dummy_inputs(a_ )
__snake_case : Tuple = steps
__snake_case : List[Any] = scale
__snake_case : str = pipe(**a_ , control_guidance_start=0.4 , control_guidance_end=[0.5, 0.8] )[0]
# make sure that all outputs are different
assert np.sum(np.abs(output_a - output_a ) ) > 1E-3
assert np.sum(np.abs(output_a - output_a ) ) > 1E-3
assert np.sum(np.abs(output_a - output_a ) ) > 1E-3
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
return self._test_attention_slicing_forward_pass(expected_max_diff=2E-3 )
@unittest.skipIf(
torch_device != '''cuda''' or not is_xformers_available() , reason='''XFormers attention is only available with CUDA and `xformers` installed''' , )
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=2E-3 )
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
self._test_inference_batch_single_identical(expected_max_diff=2E-3 )
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case : str = self.get_dummy_components()
__snake_case : Union[str, Any] = self.pipeline_class(**a_ )
pipe.to(a_ )
pipe.set_progress_bar_config(disable=a_ )
with tempfile.TemporaryDirectory() as tmpdir:
try:
# save_pretrained is not implemented for Multi-ControlNet
pipe.save_pretrained(a_ )
except NotImplementedError:
pass
@slow
@require_torch_gpu
class _UpperCAmelCase ( unittest.TestCase ):
'''simple docstring'''
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case : Any = ControlNetModel.from_pretrained('''lllyasviel/sd-controlnet-canny''' )
__snake_case : Union[str, Any] = StableDiffusionControlNetImgaImgPipeline.from_pretrained(
'''runwayml/stable-diffusion-v1-5''' , safety_checker=a_ , controlnet=a_ )
pipe.enable_model_cpu_offload()
pipe.set_progress_bar_config(disable=a_ )
__snake_case : Any = torch.Generator(device='''cpu''' ).manual_seed(0 )
__snake_case : List[Any] = '''evil space-punk bird'''
__snake_case : Union[str, Any] = load_image(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny.png''' ).resize((5_12, 5_12) )
__snake_case : List[str] = load_image(
'''https://huggingface.co/lllyasviel/sd-controlnet-canny/resolve/main/images/bird.png''' ).resize((5_12, 5_12) )
__snake_case : Any = pipe(
a_ , a_ , control_image=a_ , generator=a_ , output_type='''np''' , num_inference_steps=50 , strength=0.6 , )
__snake_case : List[str] = output.images[0]
assert image.shape == (5_12, 5_12, 3)
__snake_case : Union[str, Any] = load_numpy(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/img2img.npy''' )
assert np.abs(expected_image - image ).max() < 9E-2
| 102 |
"""simple docstring"""
import numpy as np
def lowercase ( _snake_case : int , _snake_case : Optional[Any] , _snake_case : Optional[int] , _snake_case : int , _snake_case : Union[str, Any] ) ->Dict:
"""simple docstring"""
__snake_case : Union[str, Any] = int(np.ceil((x_end - xa) / h ) )
__snake_case : Dict = np.zeros((n + 1,) )
__snake_case : List[Any] = ya
__snake_case : int = xa
for k in range(_snake_case ):
__snake_case : Any = f(_snake_case , y[k] )
__snake_case : List[Any] = f(x + 0.5 * h , y[k] + 0.5 * h * ka )
__snake_case : int = f(x + 0.5 * h , y[k] + 0.5 * h * ka )
__snake_case : Optional[int] = f(x + h , y[k] + h * ka )
__snake_case : Optional[int] = y[k] + (1 / 6) * h * (ka + 2 * ka + 2 * ka + ka)
x += h
return y
if __name__ == "__main__":
import doctest
doctest.testmod()
| 102 | 1 |
"""simple docstring"""
def A (__A : List[str] , __A : List[Any] , __A : Dict , __A : List[str] ) -> Tuple:
"""simple docstring"""
global f # a global dp table for knapsack
if f[i][j] < 0:
if j < wt[i - 1]:
UpperCAmelCase_ = mf_knapsack(i - 1 , __A , __A , __A )
else:
UpperCAmelCase_ = max(
mf_knapsack(i - 1 , __A , __A , __A ) , mf_knapsack(i - 1 , __A , __A , j - wt[i - 1] ) + val[i - 1] , )
UpperCAmelCase_ = val
return f[i][j]
def A (__A : Optional[Any] , __A : int , __A : Tuple , __A : int ) -> str:
"""simple docstring"""
UpperCAmelCase_ = [[0] * (w + 1) for _ in range(n + 1 )]
for i in range(1 , n + 1 ):
for w_ in range(1 , w + 1 ):
if wt[i - 1] <= w_:
UpperCAmelCase_ = max(val[i - 1] + dp[i - 1][w_ - wt[i - 1]] , dp[i - 1][w_] )
else:
UpperCAmelCase_ = dp[i - 1][w_]
return dp[n][w_], dp
def A (__A : int , __A : list , __A : list ) -> List[str]:
"""simple docstring"""
if not (isinstance(__A , (list, tuple) ) and isinstance(__A , (list, tuple) )):
raise ValueError(
'''Both the weights and values vectors must be either lists or tuples''' )
UpperCAmelCase_ = len(__A )
if num_items != len(__A ):
UpperCAmelCase_ = (
'''The number of weights must be the same as the number of values.\n'''
F"""But got {num_items} weights and {len(__A )} values"""
)
raise ValueError(__A )
for i in range(__A ):
if not isinstance(wt[i] , __A ):
UpperCAmelCase_ = (
'''All weights must be integers but got weight of '''
F"""type {type(wt[i] )} at index {i}"""
)
raise TypeError(__A )
UpperCAmelCase_ , UpperCAmelCase_ = knapsack(__A , __A , __A , __A )
UpperCAmelCase_ = set()
_construct_solution(__A , __A , __A , __A , __A )
return optimal_val, example_optional_set
def A (__A : list , __A : list , __A : int , __A : int , __A : set ) -> Tuple:
"""simple docstring"""
if i > 0 and j > 0:
if dp[i - 1][j] == dp[i][j]:
_construct_solution(__A , __A , i - 1 , __A , __A )
else:
optimal_set.add(__A )
_construct_solution(__A , __A , i - 1 , j - wt[i - 1] , __A )
if __name__ == "__main__":
snake_case_ : str = [3, 2, 4, 4]
snake_case_ : Optional[Any] = [4, 3, 2, 3]
snake_case_ : str = 4
snake_case_ : Any = 6
snake_case_ : List[Any] = [[0] * (w + 1)] + [[0] + [-1] * (w + 1) for _ in range(n + 1)]
snake_case_ : Any = knapsack(w, wt, val, n)
print(optimal_solution)
print(mf_knapsack(n, wt, val, w)) # switched the n and w
# testing the dynamic programming problem with example
# the optimal subset for the above example are items 3 and 4
snake_case_ : List[Any] = knapsack_with_example_solution(w, wt, val)
assert optimal_solution == 8
assert optimal_subset == {3, 4}
print("optimal_value = ", optimal_solution)
print("An optimal subset corresponding to the optimal value", optimal_subset)
| 359 |
import inspect
import os
import re
from transformers.configuration_utils import PretrainedConfig
from transformers.utils import direct_transformers_import
# All paths are set with the intent you should run this script from the root of the repo with the command
# python utils/check_config_docstrings.py
snake_case_ : int = "src/transformers"
# This is to make sure the transformers module imported is the one in the repo.
snake_case_ : Union[str, Any] = direct_transformers_import(PATH_TO_TRANSFORMERS)
snake_case_ : Union[str, Any] = transformers.models.auto.configuration_auto.CONFIG_MAPPING
snake_case_ : Union[str, Any] = {
# used to compute the property `self.chunk_length`
"EncodecConfig": ["overlap"],
# used as `self.bert_model = BertModel(config, ...)`
"DPRConfig": True,
# not used in modeling files, but it's an important information
"FSMTConfig": ["langs"],
# used internally in the configuration class file
"GPTNeoConfig": ["attention_types"],
# used internally in the configuration class file
"EsmConfig": ["is_folding_model"],
# used during training (despite we don't have training script for these models yet)
"Mask2FormerConfig": ["ignore_value"],
# `ignore_value` used during training (despite we don't have training script for these models yet)
# `norm` used in conversion script (despite not using in the modeling file)
"OneFormerConfig": ["ignore_value", "norm"],
# used during preprocessing and collation, see `collating_graphormer.py`
"GraphormerConfig": ["spatial_pos_max"],
# used internally in the configuration class file
"T5Config": ["feed_forward_proj"],
# used internally in the configuration class file
# `tokenizer_class` get default value `T5Tokenizer` intentionally
"MT5Config": ["feed_forward_proj", "tokenizer_class"],
"UMT5Config": ["feed_forward_proj", "tokenizer_class"],
# used internally in the configuration class file
"LongT5Config": ["feed_forward_proj"],
# used internally in the configuration class file
"SwitchTransformersConfig": ["feed_forward_proj"],
# having default values other than `1e-5` - we can't fix them without breaking
"BioGptConfig": ["layer_norm_eps"],
# having default values other than `1e-5` - we can't fix them without breaking
"GLPNConfig": ["layer_norm_eps"],
# having default values other than `1e-5` - we can't fix them without breaking
"SegformerConfig": ["layer_norm_eps"],
# having default values other than `1e-5` - we can't fix them without breaking
"CvtConfig": ["layer_norm_eps"],
# having default values other than `1e-5` - we can't fix them without breaking
"PerceiverConfig": ["layer_norm_eps"],
# used internally to calculate the feature size
"InformerConfig": ["num_static_real_features", "num_time_features"],
# used internally to calculate the feature size
"TimeSeriesTransformerConfig": ["num_static_real_features", "num_time_features"],
# used internally to calculate the feature size
"AutoformerConfig": ["num_static_real_features", "num_time_features"],
# used internally to calculate `mlp_dim`
"SamVisionConfig": ["mlp_ratio"],
# For (head) training, but so far not implemented
"ClapAudioConfig": ["num_classes"],
# Not used, but providing useful information to users
"SpeechT5HifiGanConfig": ["sampling_rate"],
}
# TODO (ydshieh): Check the failing cases, try to fix them or move some cases to the above block once we are sure
SPECIAL_CASES_TO_ALLOW.update(
{
"CLIPSegConfig": True,
"DeformableDetrConfig": True,
"DetaConfig": True,
"DinatConfig": True,
"DonutSwinConfig": True,
"EfficientFormerConfig": True,
"FSMTConfig": True,
"JukeboxConfig": True,
"LayoutLMv2Config": True,
"MaskFormerSwinConfig": True,
"MT5Config": True,
"NatConfig": True,
"OneFormerConfig": True,
"PerceiverConfig": True,
"RagConfig": True,
"SpeechT5Config": True,
"SwinConfig": True,
"Swin2SRConfig": True,
"Swinv2Config": True,
"SwitchTransformersConfig": True,
"TableTransformerConfig": True,
"TapasConfig": True,
"TransfoXLConfig": True,
"UniSpeechConfig": True,
"UniSpeechSatConfig": True,
"WavLMConfig": True,
"WhisperConfig": True,
# TODO: @Arthur (for `alignment_head` and `alignment_layer`)
"JukeboxPriorConfig": True,
# TODO: @Younes (for `is_decoder`)
"Pix2StructTextConfig": True,
}
)
def A (__A : List[Any] , __A : Optional[int] , __A : str , __A : Dict ) -> Union[str, Any]:
"""simple docstring"""
UpperCAmelCase_ = False
for attribute in attributes:
for modeling_source in source_strings:
# check if we can find `config.xxx`, `getattr(config, "xxx", ...)` or `getattr(self.config, "xxx", ...)`
if (
F"""config.{attribute}""" in modeling_source
or F"""getattr(config, \"{attribute}\"""" in modeling_source
or F"""getattr(self.config, \"{attribute}\"""" in modeling_source
):
UpperCAmelCase_ = True
# Deal with multi-line cases
elif (
re.search(
RF"""getattr[ \t\v\n\r\f]*\([ \t\v\n\r\f]*(self\.)?config,[ \t\v\n\r\f]*\"{attribute}\"""" , __A , )
is not None
):
UpperCAmelCase_ = True
# `SequenceSummary` is called with `SequenceSummary(config)`
elif attribute in [
"summary_type",
"summary_use_proj",
"summary_activation",
"summary_last_dropout",
"summary_proj_to_labels",
"summary_first_dropout",
]:
if "SequenceSummary" in modeling_source:
UpperCAmelCase_ = True
if attribute_used:
break
if attribute_used:
break
# common and important attributes, even if they do not always appear in the modeling files
UpperCAmelCase_ = [
'''bos_index''',
'''eos_index''',
'''pad_index''',
'''unk_index''',
'''mask_index''',
'''image_size''',
'''use_cache''',
'''out_features''',
'''out_indices''',
]
UpperCAmelCase_ = ['''encoder_no_repeat_ngram_size''']
# Special cases to be allowed
UpperCAmelCase_ = True
if not attribute_used:
UpperCAmelCase_ = False
for attribute in attributes:
# Allow if the default value in the configuration class is different from the one in `PretrainedConfig`
if attribute in ["is_encoder_decoder"] and default_value is True:
UpperCAmelCase_ = True
elif attribute in ["tie_word_embeddings"] and default_value is False:
UpperCAmelCase_ = True
# Allow cases without checking the default value in the configuration class
elif attribute in attributes_to_allow + attributes_used_in_generation:
UpperCAmelCase_ = True
elif attribute.endswith('''_token_id''' ):
UpperCAmelCase_ = True
# configuration class specific cases
if not case_allowed:
UpperCAmelCase_ = SPECIAL_CASES_TO_ALLOW.get(config_class.__name__ , [] )
UpperCAmelCase_ = allowed_cases is True or attribute in allowed_cases
return attribute_used or case_allowed
def A (__A : Tuple ) -> List[Any]:
"""simple docstring"""
UpperCAmelCase_ = dict(inspect.signature(config_class.__init__ ).parameters )
UpperCAmelCase_ = [x for x in list(signature.keys() ) if x not in ['''self''', '''kwargs''']]
UpperCAmelCase_ = [signature[param].default for param in parameter_names]
# If `attribute_map` exists, an attribute can have different names to be used in the modeling files, and as long
# as one variant is used, the test should pass
UpperCAmelCase_ = {}
if len(config_class.attribute_map ) > 0:
UpperCAmelCase_ = {v: k for k, v in config_class.attribute_map.items()}
# Get the path to modeling source files
UpperCAmelCase_ = inspect.getsourcefile(__A )
UpperCAmelCase_ = os.path.dirname(__A )
# Let's check against all frameworks: as long as one framework uses an attribute, we are good.
UpperCAmelCase_ = [os.path.join(__A , __A ) for fn in os.listdir(__A ) if fn.startswith('''modeling_''' )]
# Get the source code strings
UpperCAmelCase_ = []
for path in modeling_paths:
if os.path.isfile(__A ):
with open(__A ) as fp:
modeling_sources.append(fp.read() )
UpperCAmelCase_ = []
for config_param, default_value in zip(__A , __A ):
# `attributes` here is all the variant names for `config_param`
UpperCAmelCase_ = [config_param]
# some configuration classes have non-empty `attribute_map`, and both names could be used in the
# corresponding modeling files. As long as one of them appears, it is fine.
if config_param in reversed_attribute_map:
attributes.append(reversed_attribute_map[config_param] )
if not check_attribute_being_used(__A , __A , __A , __A ):
unused_attributes.append(attributes[0] )
return sorted(__A )
def A () -> Any:
"""simple docstring"""
UpperCAmelCase_ = {}
for _config_class in list(CONFIG_MAPPING.values() ):
# Skip deprecated models
if "models.deprecated" in _config_class.__module__:
continue
# Some config classes are not in `CONFIG_MAPPING` (e.g. `CLIPVisionConfig`, `Blip2VisionConfig`, etc.)
UpperCAmelCase_ = [
cls
for name, cls in inspect.getmembers(
inspect.getmodule(_config_class ) , lambda __A : inspect.isclass(__A )
and issubclass(__A , __A )
and inspect.getmodule(__A ) == inspect.getmodule(_config_class ) , )
]
for config_class in config_classes_in_module:
UpperCAmelCase_ = check_config_attributes_being_used(__A )
if len(__A ) > 0:
UpperCAmelCase_ = unused_attributes
if len(__A ) > 0:
UpperCAmelCase_ = '''The following configuration classes contain unused attributes in the corresponding modeling files:\n'''
for name, attributes in configs_with_unused_attributes.items():
error += F"""{name}: {attributes}\n"""
raise ValueError(__A )
if __name__ == "__main__":
check_config_attributes()
| 7 | 0 |
import importlib.util
import json
import os
import warnings
from dataclasses import dataclass, field
import torch
from ..training_args import TrainingArguments
from ..utils import cached_property, is_sagemaker_dp_enabled, logging
SCREAMING_SNAKE_CASE_:List[Any] = logging.get_logger(__name__)
def __UpperCamelCase ( ) -> str:
"""simple docstring"""
A : Optional[int] = os.getenv("""SM_HP_MP_PARAMETERS""" , """{}""" )
try:
# Parse it and check the field "partitions" is included, it is required for model parallel.
A : Any = json.loads(_lowerCAmelCase )
if "partitions" not in smp_options:
return False
except json.JSONDecodeError:
return False
# Get the sagemaker specific framework parameters from mpi_options variable.
A : int = os.getenv("""SM_FRAMEWORK_PARAMS""" , """{}""" )
try:
# Parse it and check the field "sagemaker_distributed_dataparallel_enabled".
A : List[str] = json.loads(_lowerCAmelCase )
if not mpi_options.get("""sagemaker_mpi_enabled""" , _lowerCAmelCase ):
return False
except json.JSONDecodeError:
return False
# Lastly, check if the `smdistributed` module is present.
return importlib.util.find_spec("""smdistributed""" ) is not None
if is_sagemaker_model_parallel_available():
import smdistributed.modelparallel.torch as smp
smp.init()
@dataclass
class SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ ):
'''simple docstring'''
__lowerCamelCase : Optional[int] = field(
default="" , metadata={"help": "Used by the SageMaker launcher to send mp-specific args. Ignored in SageMakerTrainer"} , )
def _lowerCAmelCase ( self ):
super().__post_init__()
warnings.warn(
"""`SageMakerTrainingArguments` is deprecated and will be removed in v5 of Transformers. You can use """
"""`TrainingArguments` instead.""", _lowerCAmelCase, )
@cached_property
def _lowerCAmelCase ( self ):
logger.info("""PyTorch: setting up devices""" )
if torch.distributed.is_available() and torch.distributed.is_initialized() and self.local_rank == -1:
logger.warning(
"""torch.distributed process group is initialized, but local_rank == -1. """
"""In order to use Torch DDP, launch your script with `python -m torch.distributed.launch""" )
if self.no_cuda:
A : Tuple = torch.device("""cpu""" )
A : Tuple = 0
elif is_sagemaker_model_parallel_available():
A : Optional[int] = smp.local_rank()
A : Dict = torch.device("""cuda""", _lowerCAmelCase )
A : int = 1
elif is_sagemaker_dp_enabled():
import smdistributed.dataparallel.torch.torch_smddp # noqa: F401
torch.distributed.init_process_group(backend="""smddp""", timeout=self.ddp_timeout_delta )
A : Any = int(os.getenv("""SMDATAPARALLEL_LOCAL_RANK""" ) )
A : int = torch.device("""cuda""", self.local_rank )
A : Any = 1
elif self.local_rank == -1:
# if n_gpu is > 1 we'll use nn.DataParallel.
# If you only want to use a specific subset of GPUs use `CUDA_VISIBLE_DEVICES=0`
# Explicitly set CUDA to the first (index 0) CUDA device, otherwise `set_device` will
# trigger an error that a device index is missing. Index 0 takes into account the
# GPUs available in the environment, so `CUDA_VISIBLE_DEVICES=1,2` with `cuda:0`
# will use the first GPU in that env, i.e. GPU#1
A : List[str] = torch.device("""cuda:0""" if torch.cuda.is_available() else """cpu""" )
# Sometimes the line in the postinit has not been run before we end up here, so just checking we're not at
# the default value.
A : List[str] = torch.cuda.device_count()
else:
# Here, we'll use torch.distributed.
# Initializes the distributed backend which will take care of synchronizing nodes/GPUs
if not torch.distributed.is_initialized():
torch.distributed.init_process_group(backend="""nccl""", timeout=self.ddp_timeout_delta )
A : Optional[int] = torch.device("""cuda""", self.local_rank )
A : int = 1
if device.type == "cuda":
torch.cuda.set_device(_lowerCAmelCase )
return device
@property
def _lowerCAmelCase ( self ):
if is_sagemaker_model_parallel_available():
return smp.dp_size()
return super().world_size
@property
def _lowerCAmelCase ( self ):
return not is_sagemaker_model_parallel_available()
@property
def _lowerCAmelCase ( self ):
return False
| 116 |
'''simple docstring'''
from collections import OrderedDict
from typing import Any, Mapping, Optional
from ... import PreTrainedTokenizer
from ...configuration_utils import PretrainedConfig
from ...file_utils import TensorType, is_torch_available
from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast
from ...onnx.utils import compute_effective_axis_dimension
from ...utils import logging
lowerCamelCase = logging.get_logger(__name__)
lowerCamelCase = {
"""facebook/blenderbot_small-90M""": """https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/config.json""",
# See all BlenderbotSmall models at https://huggingface.co/models?filter=blenderbot_small
}
class _UpperCamelCase ( A ):
'''simple docstring'''
lowerCAmelCase__ = """blenderbot-small"""
lowerCAmelCase__ = ["""past_key_values"""]
lowerCAmelCase__ = {"""num_attention_heads""": """encoder_attention_heads""", """hidden_size""": """d_model"""}
def __init__( self : Tuple , _lowerCAmelCase : Any=5_0_2_6_5 , _lowerCAmelCase : str=5_1_2 , _lowerCAmelCase : List[Any]=8 , _lowerCAmelCase : Tuple=2_0_4_8 , _lowerCAmelCase : str=1_6 , _lowerCAmelCase : Optional[int]=8 , _lowerCAmelCase : str=2_0_4_8 , _lowerCAmelCase : Dict=1_6 , _lowerCAmelCase : Dict=0.0 , _lowerCAmelCase : List[Any]=0.0 , _lowerCAmelCase : str=True , _lowerCAmelCase : Union[str, Any]=True , _lowerCAmelCase : Tuple="gelu" , _lowerCAmelCase : int=5_1_2 , _lowerCAmelCase : Optional[int]=0.1 , _lowerCAmelCase : Dict=0.0 , _lowerCAmelCase : int=0.0 , _lowerCAmelCase : Dict=0.02 , _lowerCAmelCase : Optional[int]=1 , _lowerCAmelCase : List[Any]=False , _lowerCAmelCase : str=0 , _lowerCAmelCase : Dict=1 , _lowerCAmelCase : Any=2 , _lowerCAmelCase : Any=2 , **_lowerCAmelCase : List[Any] , ):
'''simple docstring'''
__lowercase =vocab_size
__lowercase =max_position_embeddings
__lowercase =d_model
__lowercase =encoder_ffn_dim
__lowercase =encoder_layers
__lowercase =encoder_attention_heads
__lowercase =decoder_ffn_dim
__lowercase =decoder_layers
__lowercase =decoder_attention_heads
__lowercase =dropout
__lowercase =attention_dropout
__lowercase =activation_dropout
__lowercase =activation_function
__lowercase =init_std
__lowercase =encoder_layerdrop
__lowercase =decoder_layerdrop
__lowercase =use_cache
__lowercase =encoder_layers
__lowercase =scale_embedding # scale factor will be sqrt(d_model) if True
super().__init__(
pad_token_id=_lowerCAmelCase , bos_token_id=_lowerCAmelCase , eos_token_id=_lowerCAmelCase , is_encoder_decoder=_lowerCAmelCase , decoder_start_token_id=_lowerCAmelCase , forced_eos_token_id=_lowerCAmelCase , **_lowerCAmelCase , )
class _UpperCamelCase ( A ):
'''simple docstring'''
@property
def __lowerCamelCase ( self : str):
'''simple docstring'''
if self.task in ["default", "seq2seq-lm"]:
__lowercase =OrderedDict(
[
('input_ids', {0: 'batch', 1: 'encoder_sequence'}),
('attention_mask', {0: 'batch', 1: 'encoder_sequence'}),
])
if self.use_past:
__lowercase ={0: 'batch'}
__lowercase ={0: 'batch', 1: 'past_decoder_sequence + sequence'}
else:
__lowercase ={0: 'batch', 1: 'decoder_sequence'}
__lowercase ={0: 'batch', 1: 'decoder_sequence'}
if self.use_past:
self.fill_with_past_key_values_(_lowerCAmelCase , direction='inputs')
elif self.task == "causal-lm":
# TODO: figure this case out.
__lowercase =OrderedDict(
[
('input_ids', {0: 'batch', 1: 'encoder_sequence'}),
('attention_mask', {0: 'batch', 1: 'encoder_sequence'}),
])
if self.use_past:
__lowercase , __lowercase =self.num_layers
for i in range(_lowerCAmelCase):
__lowercase ={0: 'batch', 2: 'past_sequence + sequence'}
__lowercase ={0: 'batch', 2: 'past_sequence + sequence'}
else:
__lowercase =OrderedDict(
[
('input_ids', {0: 'batch', 1: 'encoder_sequence'}),
('attention_mask', {0: 'batch', 1: 'encoder_sequence'}),
('decoder_input_ids', {0: 'batch', 1: 'decoder_sequence'}),
('decoder_attention_mask', {0: 'batch', 1: 'decoder_sequence'}),
])
return common_inputs
@property
def __lowerCamelCase ( self : Optional[int]):
'''simple docstring'''
if self.task in ["default", "seq2seq-lm"]:
__lowercase =super().outputs
else:
__lowercase =super(_lowerCAmelCase , self).outputs
if self.use_past:
__lowercase , __lowercase =self.num_layers
for i in range(_lowerCAmelCase):
__lowercase ={0: 'batch', 2: 'past_sequence + sequence'}
__lowercase ={0: 'batch', 2: 'past_sequence + sequence'}
return common_outputs
def __lowerCamelCase ( self : Tuple , _lowerCAmelCase : PreTrainedTokenizer , _lowerCAmelCase : int = -1 , _lowerCAmelCase : int = -1 , _lowerCAmelCase : bool = False , _lowerCAmelCase : Optional[TensorType] = None , ):
'''simple docstring'''
__lowercase =self._generate_dummy_inputs_for_sequence_classification_and_question_answering(
_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase)
# Generate decoder inputs
__lowercase =seq_length if not self.use_past else 1
__lowercase =self._generate_dummy_inputs_for_sequence_classification_and_question_answering(
_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase)
__lowercase ={f"""decoder_{name}""": tensor for name, tensor in decoder_inputs.items()}
__lowercase =dict(**_lowerCAmelCase , **_lowerCAmelCase)
if self.use_past:
if not is_torch_available():
raise ValueError('Cannot generate dummy past_keys inputs without PyTorch installed.')
else:
import torch
__lowercase , __lowercase =common_inputs['input_ids'].shape
__lowercase =common_inputs['decoder_input_ids'].shape[1]
__lowercase , __lowercase =self.num_attention_heads
__lowercase =(
batch,
num_encoder_attention_heads,
encoder_seq_length,
self._config.hidden_size // num_encoder_attention_heads,
)
__lowercase =decoder_seq_length + 3
__lowercase =(
batch,
num_decoder_attention_heads,
decoder_past_length,
self._config.hidden_size // num_decoder_attention_heads,
)
__lowercase =torch.cat(
[common_inputs['decoder_attention_mask'], torch.ones(_lowerCAmelCase , _lowerCAmelCase)] , dim=1)
__lowercase =[]
# If the number of encoder and decoder layers are present in the model configuration, both are considered
__lowercase , __lowercase =self.num_layers
__lowercase =min(_lowerCAmelCase , _lowerCAmelCase)
__lowercase =max(_lowerCAmelCase , _lowerCAmelCase) - min_num_layers
__lowercase ='encoder' if num_encoder_layers > num_decoder_layers else 'decoder'
for _ in range(_lowerCAmelCase):
common_inputs["past_key_values"].append(
(
torch.zeros(_lowerCAmelCase),
torch.zeros(_lowerCAmelCase),
torch.zeros(_lowerCAmelCase),
torch.zeros(_lowerCAmelCase),
))
# TODO: test this.
__lowercase =encoder_shape if remaining_side_name == 'encoder' else decoder_shape
for _ in range(_lowerCAmelCase , _lowerCAmelCase):
common_inputs["past_key_values"].append((torch.zeros(_lowerCAmelCase), torch.zeros(_lowerCAmelCase)))
return common_inputs
def __lowerCamelCase ( self : Tuple , _lowerCAmelCase : PreTrainedTokenizer , _lowerCAmelCase : int = -1 , _lowerCAmelCase : int = -1 , _lowerCAmelCase : bool = False , _lowerCAmelCase : Optional[TensorType] = None , ):
'''simple docstring'''
__lowercase =self._generate_dummy_inputs_for_sequence_classification_and_question_answering(
_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase)
if self.use_past:
if not is_torch_available():
raise ValueError('Cannot generate dummy past_keys inputs without PyTorch installed.')
else:
import torch
__lowercase , __lowercase =common_inputs['input_ids'].shape
# Not using the same length for past_key_values
__lowercase =seqlen + 2
__lowercase , __lowercase =self.num_layers
__lowercase , __lowercase =self.num_attention_heads
__lowercase =(
batch,
num_encoder_attention_heads,
past_key_values_length,
self._config.hidden_size // num_encoder_attention_heads,
)
__lowercase =common_inputs['attention_mask'].dtype
__lowercase =torch.cat(
[common_inputs['attention_mask'], torch.ones(_lowerCAmelCase , _lowerCAmelCase , dtype=_lowerCAmelCase)] , dim=1)
__lowercase =[
(torch.zeros(_lowerCAmelCase), torch.zeros(_lowerCAmelCase)) for _ in range(_lowerCAmelCase)
]
return common_inputs
def __lowerCamelCase ( self : Tuple , _lowerCAmelCase : PreTrainedTokenizer , _lowerCAmelCase : int = -1 , _lowerCAmelCase : int = -1 , _lowerCAmelCase : bool = False , _lowerCAmelCase : Optional[TensorType] = None , ):
'''simple docstring'''
__lowercase =compute_effective_axis_dimension(
_lowerCAmelCase , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0)
# If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX
__lowercase =tokenizer.num_special_tokens_to_add(_lowerCAmelCase)
__lowercase =compute_effective_axis_dimension(
_lowerCAmelCase , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=_lowerCAmelCase)
# Generate dummy inputs according to compute batch and sequence
__lowercase =[' '.join([tokenizer.unk_token]) * seq_length] * batch_size
__lowercase =dict(tokenizer(_lowerCAmelCase , return_tensors=_lowerCAmelCase))
return common_inputs
def __lowerCamelCase ( self : Optional[int] , _lowerCAmelCase : PreTrainedTokenizer , _lowerCAmelCase : int = -1 , _lowerCAmelCase : int = -1 , _lowerCAmelCase : bool = False , _lowerCAmelCase : Optional[TensorType] = None , ):
'''simple docstring'''
if self.task in ["default", "seq2seq-lm"]:
__lowercase =self._generate_dummy_inputs_for_default_and_seqaseq_lm(
_lowerCAmelCase , batch_size=_lowerCAmelCase , seq_length=_lowerCAmelCase , is_pair=_lowerCAmelCase , framework=_lowerCAmelCase)
elif self.task == "causal-lm":
__lowercase =self._generate_dummy_inputs_for_causal_lm(
_lowerCAmelCase , batch_size=_lowerCAmelCase , seq_length=_lowerCAmelCase , is_pair=_lowerCAmelCase , framework=_lowerCAmelCase)
else:
__lowercase =self._generate_dummy_inputs_for_sequence_classification_and_question_answering(
_lowerCAmelCase , batch_size=_lowerCAmelCase , seq_length=_lowerCAmelCase , is_pair=_lowerCAmelCase , framework=_lowerCAmelCase)
return common_inputs
def __lowerCamelCase ( self : Tuple , _lowerCAmelCase : Any , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Any):
'''simple docstring'''
if self.task in ["default", "seq2seq-lm"]:
__lowercase =super()._flatten_past_key_values_(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase)
else:
__lowercase =super(_lowerCAmelCase , self)._flatten_past_key_values_(
_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase)
| 166 | 0 |
# We ignore warnings about stepping the scheduler since we step it ourselves during gradient accumulation
import warnings
from .state import AcceleratorState, GradientState
warnings.filterwarnings('''ignore''', category=UserWarning, module='''torch.optim.lr_scheduler''')
class __a :
def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = True , _SCREAMING_SNAKE_CASE = False ) -> str:
"""simple docstring"""
_UpperCAmelCase = scheduler
_UpperCAmelCase = optimizers if isinstance(_SCREAMING_SNAKE_CASE , (list, tuple) ) else [optimizers]
_UpperCAmelCase = split_batches
_UpperCAmelCase = step_with_optimizer
_UpperCAmelCase = GradientState()
def UpperCAmelCase__ ( self , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> List[Any]:
"""simple docstring"""
if not self.step_with_optimizer:
# No link between scheduler and optimizer -> just step
self.scheduler.step(*_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE )
return
# Otherwise, first make sure the optimizer was stepped.
if not self.gradient_state.sync_gradients:
if self.gradient_state.adjust_scheduler:
self.scheduler._step_count += 1
return
for opt in self.optimizers:
if opt.step_was_skipped:
return
if self.split_batches:
# Split batches -> the training dataloader batch size is not changed so one step per training step
self.scheduler.step(*_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE )
else:
# Otherwise the training dataloader batch size was multiplied by `num_processes`, so we need to do
# num_processes steps per training step
_UpperCAmelCase = AcceleratorState().num_processes
for _ in range(_SCREAMING_SNAKE_CASE ):
# Special case when using OneCycle and `drop_last` was not used
if hasattr(self.scheduler , 'total_steps' ):
if self.scheduler._step_count <= self.scheduler.total_steps:
self.scheduler.step(*_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE )
else:
self.scheduler.step(*_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE )
def UpperCAmelCase__ ( self ) -> Any:
"""simple docstring"""
return self.scheduler.get_last_lr()
def UpperCAmelCase__ ( self ) -> int:
"""simple docstring"""
return self.scheduler.state_dict()
def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE ) -> Any:
"""simple docstring"""
self.scheduler.load_state_dict(_SCREAMING_SNAKE_CASE )
def UpperCAmelCase__ ( self ) -> Optional[int]:
"""simple docstring"""
return self.scheduler.get_lr()
def UpperCAmelCase__ ( self , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> Any:
"""simple docstring"""
return self.scheduler.print_lr(*_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE )
| 366 |
def lowerCAmelCase__ ( a__: int ) -> None:
'''simple docstring'''
_UpperCAmelCase = generate_pascal_triangle(a__ )
for row_idx in range(a__ ):
# Print left spaces
for _ in range(num_rows - row_idx - 1 ):
print(end=' ' )
# Print row values
for col_idx in range(row_idx + 1 ):
if col_idx != row_idx:
print(triangle[row_idx][col_idx] , end=' ' )
else:
print(triangle[row_idx][col_idx] , end='' )
print()
def lowerCAmelCase__ ( a__: int ) -> list[list[int]]:
'''simple docstring'''
if not isinstance(a__ , a__ ):
raise TypeError('The input value of \'num_rows\' should be \'int\'' )
if num_rows == 0:
return []
elif num_rows < 0:
raise ValueError(
'The input value of \'num_rows\' should be greater than or equal to 0' )
_UpperCAmelCase = []
for current_row_idx in range(a__ ):
_UpperCAmelCase = populate_current_row(a__ , a__ )
triangle.append(a__ )
return triangle
def lowerCAmelCase__ ( a__: list[list[int]] , a__: int ) -> list[int]:
'''simple docstring'''
_UpperCAmelCase = [-1] * (current_row_idx + 1)
# first and last elements of current row are equal to 1
_UpperCAmelCase , _UpperCAmelCase = 1, 1
for current_col_idx in range(1 , a__ ):
calculate_current_element(
a__ , a__ , a__ , a__ )
return current_row
def lowerCAmelCase__ ( a__: list[list[int]] , a__: list[int] , a__: int , a__: int , ) -> None:
'''simple docstring'''
_UpperCAmelCase = triangle[current_row_idx - 1][current_col_idx - 1]
_UpperCAmelCase = triangle[current_row_idx - 1][current_col_idx]
_UpperCAmelCase = above_to_left_elt + above_to_right_elt
def lowerCAmelCase__ ( a__: int ) -> list[list[int]]:
'''simple docstring'''
if not isinstance(a__ , a__ ):
raise TypeError('The input value of \'num_rows\' should be \'int\'' )
if num_rows == 0:
return []
elif num_rows < 0:
raise ValueError(
'The input value of \'num_rows\' should be greater than or equal to 0' )
_UpperCAmelCase = [[1]]
for row_index in range(1 , a__ ):
_UpperCAmelCase = [0] + result[-1] + [0]
_UpperCAmelCase = row_index + 1
# Calculate the number of distinct elements in a row
_UpperCAmelCase = sum(divmod(a__ , 2 ) )
_UpperCAmelCase = [
temp_row[i - 1] + temp_row[i] for i in range(1 , distinct_elements + 1 )
]
_UpperCAmelCase = row_first_half[: (row_index + 1) // 2]
row_second_half.reverse()
_UpperCAmelCase = row_first_half + row_second_half
result.append(a__ )
return result
def lowerCAmelCase__ ( ) -> None:
'''simple docstring'''
from collections.abc import Callable
from timeit import timeit
def benchmark_a_function(a__: Callable , a__: int ) -> None:
_UpperCAmelCase = F'''{func.__name__}({value})'''
_UpperCAmelCase = timeit(F'''__main__.{call}''' , setup='import __main__' )
# print(f"{call:38} = {func(value)} -- {timing:.4f} seconds")
print(F'''{call:38} -- {timing:.4f} seconds''' )
for value in range(1_5 ): # (1, 7, 14):
for func in (generate_pascal_triangle, generate_pascal_triangle_optimized):
benchmark_a_function(a__ , a__ )
print()
if __name__ == "__main__":
import doctest
doctest.testmod()
benchmark()
| 185 | 0 |
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
__lowerCamelCase : List[Any] = logging.get_logger(__name__)
__lowerCamelCase : str = {
"""roberta-base""": """https://huggingface.co/roberta-base/resolve/main/config.json""",
"""roberta-large""": """https://huggingface.co/roberta-large/resolve/main/config.json""",
"""roberta-large-mnli""": """https://huggingface.co/roberta-large-mnli/resolve/main/config.json""",
"""distilroberta-base""": """https://huggingface.co/distilroberta-base/resolve/main/config.json""",
"""roberta-base-openai-detector""": """https://huggingface.co/roberta-base-openai-detector/resolve/main/config.json""",
"""roberta-large-openai-detector""": """https://huggingface.co/roberta-large-openai-detector/resolve/main/config.json""",
}
class A__ ( __snake_case ):
_UpperCAmelCase :Union[str, Any] = 'roberta'
def __init__( self , A_=5_0265 , A_=768 , A_=12 , A_=12 , A_=3072 , A_="gelu" , A_=0.1 , A_=0.1 , A_=512 , A_=2 , A_=0.02 , A_=1e-12 , A_=1 , A_=0 , A_=2 , A_="absolute" , A_=True , A_=None , **A_ , ):
'''simple docstring'''
super().__init__(pad_token_id=A_ , bos_token_id=A_ , eos_token_id=A_ , **A_ )
UpperCamelCase : Optional[int] = vocab_size
UpperCamelCase : Dict = hidden_size
UpperCamelCase : str = num_hidden_layers
UpperCamelCase : Any = num_attention_heads
UpperCamelCase : List[str] = hidden_act
UpperCamelCase : Optional[Any] = intermediate_size
UpperCamelCase : Tuple = hidden_dropout_prob
UpperCamelCase : Tuple = attention_probs_dropout_prob
UpperCamelCase : Tuple = max_position_embeddings
UpperCamelCase : Any = type_vocab_size
UpperCamelCase : int = initializer_range
UpperCamelCase : str = layer_norm_eps
UpperCamelCase : Dict = position_embedding_type
UpperCamelCase : Any = use_cache
UpperCamelCase : Union[str, Any] = classifier_dropout
class A__ ( __snake_case ):
@property
def __UpperCamelCase( self ):
'''simple docstring'''
if self.task == "multiple-choice":
UpperCamelCase : Optional[int] = {0: "batch", 1: "choice", 2: "sequence"}
else:
UpperCamelCase : Optional[int] = {0: "batch", 1: "sequence"}
return OrderedDict(
[
("input_ids", dynamic_axis),
("attention_mask", dynamic_axis),
] )
| 52 |
'''simple docstring'''
import shutil
import tempfile
import unittest
import numpy as np
import pytest
from transformers.testing_utils import require_vision
from transformers.utils import is_vision_available
if is_vision_available():
from PIL import Image
from transformers import AutoProcessor, BertTokenizer, BlipImageProcessor, BlipProcessor, PreTrainedTokenizerFast
@require_vision
class A_ ( unittest.TestCase ):
def lowercase ( self : int ):
_UpperCAmelCase = tempfile.mkdtemp()
_UpperCAmelCase = BlipImageProcessor()
_UpperCAmelCase = BertTokenizer.from_pretrained("hf-internal-testing/tiny-random-BertModel" )
_UpperCAmelCase = BlipProcessor(snake_case_ , snake_case_ )
processor.save_pretrained(self.tmpdirname )
def lowercase ( self : Tuple , **snake_case_ : int ):
return AutoProcessor.from_pretrained(self.tmpdirname , **snake_case_ ).tokenizer
def lowercase ( self : Dict , **snake_case_ : Any ):
return AutoProcessor.from_pretrained(self.tmpdirname , **snake_case_ ).image_processor
def lowercase ( self : int ):
shutil.rmtree(self.tmpdirname )
def lowercase ( self : Optional[Any] ):
_UpperCAmelCase = [np.random.randint(2_5_5 , size=(3, 3_0, 4_0_0) , dtype=np.uinta )]
_UpperCAmelCase = [Image.fromarray(np.moveaxis(snake_case_ , 0 , -1 ) ) for x in image_inputs]
return image_inputs
def lowercase ( self : int ):
_UpperCAmelCase = BlipProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() )
processor.save_pretrained(self.tmpdirname )
_UpperCAmelCase = self.get_tokenizer(bos_token="(BOS)" , eos_token="(EOS)" )
_UpperCAmelCase = self.get_image_processor(do_normalize=snake_case_ , padding_value=1.0 )
_UpperCAmelCase = BlipProcessor.from_pretrained(
self.tmpdirname , bos_token="(BOS)" , eos_token="(EOS)" , do_normalize=snake_case_ , padding_value=1.0 )
self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() )
self.assertIsInstance(processor.tokenizer , snake_case_ )
self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() )
self.assertIsInstance(processor.image_processor , snake_case_ )
def lowercase ( self : Any ):
_UpperCAmelCase = self.get_image_processor()
_UpperCAmelCase = self.get_tokenizer()
_UpperCAmelCase = BlipProcessor(tokenizer=snake_case_ , image_processor=snake_case_ )
_UpperCAmelCase = self.prepare_image_inputs()
_UpperCAmelCase = image_processor(snake_case_ , return_tensors="np" )
_UpperCAmelCase = processor(images=snake_case_ , return_tensors="np" )
for key in input_feat_extract.keys():
self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 )
def lowercase ( self : Optional[int] ):
_UpperCAmelCase = self.get_image_processor()
_UpperCAmelCase = self.get_tokenizer()
_UpperCAmelCase = BlipProcessor(tokenizer=snake_case_ , image_processor=snake_case_ )
_UpperCAmelCase = "lower newer"
_UpperCAmelCase = processor(text=snake_case_ )
_UpperCAmelCase = tokenizer(snake_case_ , return_token_type_ids=snake_case_ )
for key in encoded_tok.keys():
self.assertListEqual(encoded_tok[key] , encoded_processor[key] )
def lowercase ( self : Optional[Any] ):
_UpperCAmelCase = self.get_image_processor()
_UpperCAmelCase = self.get_tokenizer()
_UpperCAmelCase = BlipProcessor(tokenizer=snake_case_ , image_processor=snake_case_ )
_UpperCAmelCase = "lower newer"
_UpperCAmelCase = self.prepare_image_inputs()
_UpperCAmelCase = processor(text=snake_case_ , images=snake_case_ )
self.assertListEqual(list(inputs.keys() ) , ["pixel_values", "input_ids", "attention_mask"] )
# test if it raises when no input is passed
with pytest.raises(snake_case_ ):
processor()
def lowercase ( self : Union[str, Any] ):
_UpperCAmelCase = self.get_image_processor()
_UpperCAmelCase = self.get_tokenizer()
_UpperCAmelCase = BlipProcessor(tokenizer=snake_case_ , image_processor=snake_case_ )
_UpperCAmelCase = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]]
_UpperCAmelCase = processor.batch_decode(snake_case_ )
_UpperCAmelCase = tokenizer.batch_decode(snake_case_ )
self.assertListEqual(snake_case_ , snake_case_ )
def lowercase ( self : str ):
_UpperCAmelCase = self.get_image_processor()
_UpperCAmelCase = self.get_tokenizer()
_UpperCAmelCase = BlipProcessor(tokenizer=snake_case_ , image_processor=snake_case_ )
_UpperCAmelCase = "lower newer"
_UpperCAmelCase = self.prepare_image_inputs()
_UpperCAmelCase = processor(text=snake_case_ , images=snake_case_ )
# For now the processor supports only ['pixel_values', 'input_ids', 'attention_mask']
self.assertListEqual(list(inputs.keys() ) , ["pixel_values", "input_ids", "attention_mask"] )
| 22 | 0 |
'''simple docstring'''
import torch
from diffusers import EulerDiscreteScheduler
from diffusers.utils import torch_device
from .test_schedulers import SchedulerCommonTest
class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ):
'''simple docstring'''
_lowercase : Optional[Any] = (EulerDiscreteScheduler,)
_lowercase : Optional[Any] = 1_0
def _lowercase ( self , **_lowercase ):
"""simple docstring"""
_lowerCAmelCase = {
"""num_train_timesteps""": 1_100,
"""beta_start""": 0.0001,
"""beta_end""": 0.02,
"""beta_schedule""": """linear""",
}
config.update(**_lowercase )
return config
def _lowercase ( self ):
"""simple docstring"""
for timesteps in [10, 50, 100, 1_000]:
self.check_over_configs(num_train_timesteps=_lowercase )
def _lowercase ( self ):
"""simple docstring"""
for beta_start, beta_end in zip([0.0_0001, 0.0001, 0.001] , [0.0002, 0.002, 0.02] ):
self.check_over_configs(beta_start=_lowercase , beta_end=_lowercase )
def _lowercase ( self ):
"""simple docstring"""
for schedule in ["linear", "scaled_linear"]:
self.check_over_configs(beta_schedule=_lowercase )
def _lowercase ( self ):
"""simple docstring"""
for prediction_type in ["epsilon", "v_prediction"]:
self.check_over_configs(prediction_type=_lowercase )
def _lowercase ( self ):
"""simple docstring"""
_lowerCAmelCase = self.scheduler_classes[0]
_lowerCAmelCase = self.get_scheduler_config()
_lowerCAmelCase = scheduler_class(**_lowercase )
scheduler.set_timesteps(self.num_inference_steps )
_lowerCAmelCase = torch.manual_seed(0 )
_lowerCAmelCase = self.dummy_model()
_lowerCAmelCase = self.dummy_sample_deter * scheduler.init_noise_sigma
_lowerCAmelCase = sample.to(_lowercase )
for i, t in enumerate(scheduler.timesteps ):
_lowerCAmelCase = scheduler.scale_model_input(_lowercase , _lowercase )
_lowerCAmelCase = model(_lowercase , _lowercase )
_lowerCAmelCase = scheduler.step(_lowercase , _lowercase , _lowercase , generator=_lowercase )
_lowerCAmelCase = output.prev_sample
_lowerCAmelCase = torch.sum(torch.abs(_lowercase ) )
_lowerCAmelCase = torch.mean(torch.abs(_lowercase ) )
assert abs(result_sum.item() - 10.0807 ) < 1e-2
assert abs(result_mean.item() - 0.0131 ) < 1e-3
def _lowercase ( self ):
"""simple docstring"""
_lowerCAmelCase = self.scheduler_classes[0]
_lowerCAmelCase = self.get_scheduler_config(prediction_type="""v_prediction""" )
_lowerCAmelCase = scheduler_class(**_lowercase )
scheduler.set_timesteps(self.num_inference_steps )
_lowerCAmelCase = torch.manual_seed(0 )
_lowerCAmelCase = self.dummy_model()
_lowerCAmelCase = self.dummy_sample_deter * scheduler.init_noise_sigma
_lowerCAmelCase = sample.to(_lowercase )
for i, t in enumerate(scheduler.timesteps ):
_lowerCAmelCase = scheduler.scale_model_input(_lowercase , _lowercase )
_lowerCAmelCase = model(_lowercase , _lowercase )
_lowerCAmelCase = scheduler.step(_lowercase , _lowercase , _lowercase , generator=_lowercase )
_lowerCAmelCase = output.prev_sample
_lowerCAmelCase = torch.sum(torch.abs(_lowercase ) )
_lowerCAmelCase = torch.mean(torch.abs(_lowercase ) )
assert abs(result_sum.item() - 0.0002 ) < 1e-2
assert abs(result_mean.item() - 2.2676e-06 ) < 1e-3
def _lowercase ( self ):
"""simple docstring"""
_lowerCAmelCase = self.scheduler_classes[0]
_lowerCAmelCase = self.get_scheduler_config()
_lowerCAmelCase = scheduler_class(**_lowercase )
scheduler.set_timesteps(self.num_inference_steps , device=_lowercase )
_lowerCAmelCase = torch.manual_seed(0 )
_lowerCAmelCase = self.dummy_model()
_lowerCAmelCase = self.dummy_sample_deter * scheduler.init_noise_sigma.cpu()
_lowerCAmelCase = sample.to(_lowercase )
for t in scheduler.timesteps:
_lowerCAmelCase = scheduler.scale_model_input(_lowercase , _lowercase )
_lowerCAmelCase = model(_lowercase , _lowercase )
_lowerCAmelCase = scheduler.step(_lowercase , _lowercase , _lowercase , generator=_lowercase )
_lowerCAmelCase = output.prev_sample
_lowerCAmelCase = torch.sum(torch.abs(_lowercase ) )
_lowerCAmelCase = torch.mean(torch.abs(_lowercase ) )
assert abs(result_sum.item() - 10.0807 ) < 1e-2
assert abs(result_mean.item() - 0.0131 ) < 1e-3
def _lowercase ( self ):
"""simple docstring"""
_lowerCAmelCase = self.scheduler_classes[0]
_lowerCAmelCase = self.get_scheduler_config()
_lowerCAmelCase = scheduler_class(**_lowercase , use_karras_sigmas=_lowercase )
scheduler.set_timesteps(self.num_inference_steps , device=_lowercase )
_lowerCAmelCase = torch.manual_seed(0 )
_lowerCAmelCase = self.dummy_model()
_lowerCAmelCase = self.dummy_sample_deter * scheduler.init_noise_sigma.cpu()
_lowerCAmelCase = sample.to(_lowercase )
for t in scheduler.timesteps:
_lowerCAmelCase = scheduler.scale_model_input(_lowercase , _lowercase )
_lowerCAmelCase = model(_lowercase , _lowercase )
_lowerCAmelCase = scheduler.step(_lowercase , _lowercase , _lowercase , generator=_lowercase )
_lowerCAmelCase = output.prev_sample
_lowerCAmelCase = torch.sum(torch.abs(_lowercase ) )
_lowerCAmelCase = torch.mean(torch.abs(_lowercase ) )
assert abs(result_sum.item() - 124.52_2994_9951_1719 ) < 1e-2
assert abs(result_mean.item() - 0.1_6213_9326_3339_9963 ) < 1e-3
| 229 |
'''simple docstring'''
from ...configuration_utils import PretrainedConfig
class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ):
'''simple docstring'''
_lowercase : Tuple = '''bert-generation'''
def __init__( self , _lowercase=50_358 , _lowercase=1_024 , _lowercase=24 , _lowercase=16 , _lowercase=4_096 , _lowercase="gelu" , _lowercase=0.1 , _lowercase=0.1 , _lowercase=512 , _lowercase=0.02 , _lowercase=1e-12 , _lowercase=0 , _lowercase=2 , _lowercase=1 , _lowercase="absolute" , _lowercase=True , **_lowercase , ):
"""simple docstring"""
super().__init__(pad_token_id=_lowercase , bos_token_id=_lowercase , eos_token_id=_lowercase , **_lowercase )
_lowerCAmelCase = vocab_size
_lowerCAmelCase = hidden_size
_lowerCAmelCase = num_hidden_layers
_lowerCAmelCase = num_attention_heads
_lowerCAmelCase = hidden_act
_lowerCAmelCase = intermediate_size
_lowerCAmelCase = hidden_dropout_prob
_lowerCAmelCase = attention_probs_dropout_prob
_lowerCAmelCase = max_position_embeddings
_lowerCAmelCase = initializer_range
_lowerCAmelCase = layer_norm_eps
_lowerCAmelCase = position_embedding_type
_lowerCAmelCase = use_cache
| 229 | 1 |
"""simple docstring"""
from typing import List
import numpy as np
def UpperCAmelCase__ ( lowerCAmelCase__ :dict ) -> int:
'''simple docstring'''
lowercase = {key: len(lowerCAmelCase__ ) for key, value in gen_kwargs.items() if isinstance(lowerCAmelCase__ , lowerCAmelCase__ )}
if len(set(lists_lengths.values() ) ) > 1:
raise RuntimeError(
(
"""Sharding is ambiguous for this dataset: """
+ """we found several data sources lists of different lengths, and we don't know over which list we should parallelize:\n"""
+ """\n""".join(f'\t- key {key} has length {length}' for key, length in lists_lengths.items() )
+ """\nTo fix this, check the 'gen_kwargs' and make sure to use lists only for data sources, """
+ """and use tuples otherwise. In the end there should only be one single list, or several lists with the same length."""
) )
lowercase = max(lists_lengths.values() , default=0 )
return max(1 , lowerCAmelCase__ )
def UpperCAmelCase__ ( lowerCAmelCase__ :int , lowerCAmelCase__ :int ) -> List[range]:
'''simple docstring'''
lowercase = []
for group_idx in range(lowerCAmelCase__ ):
lowercase = num_shards // max_num_jobs + (group_idx < (num_shards % max_num_jobs))
if num_shards_to_add == 0:
break
lowercase = shards_indices_per_group[-1].stop if shards_indices_per_group else 0
lowercase = range(lowerCAmelCase__ , start + num_shards_to_add )
shards_indices_per_group.append(lowerCAmelCase__ )
return shards_indices_per_group
def UpperCAmelCase__ ( lowerCAmelCase__ :dict , lowerCAmelCase__ :int ) -> List[dict]:
'''simple docstring'''
lowercase = _number_of_shards_in_gen_kwargs(lowerCAmelCase__ )
if num_shards == 1:
return [dict(lowerCAmelCase__ )]
else:
lowercase = _distribute_shards(num_shards=lowerCAmelCase__ , max_num_jobs=lowerCAmelCase__ )
return [
{
key: [value[shard_idx] for shard_idx in shard_indices_per_group[group_idx]]
if isinstance(lowerCAmelCase__ , lowerCAmelCase__ )
else value
for key, value in gen_kwargs.items()
}
for group_idx in range(len(lowerCAmelCase__ ) )
]
def UpperCAmelCase__ ( lowerCAmelCase__ :List[dict] ) -> dict:
'''simple docstring'''
return {
key: [value for gen_kwargs in gen_kwargs_list for value in gen_kwargs[key]]
if isinstance(gen_kwargs_list[0][key] , lowerCAmelCase__ )
else gen_kwargs_list[0][key]
for key in gen_kwargs_list[0]
}
def UpperCAmelCase__ ( lowerCAmelCase__ :np.random.Generator , lowerCAmelCase__ :dict ) -> dict:
'''simple docstring'''
lowercase = {len(lowerCAmelCase__ ) for value in gen_kwargs.values() if isinstance(lowerCAmelCase__ , lowerCAmelCase__ )}
lowercase = {}
for size in list_sizes:
lowercase = list(range(lowerCAmelCase__ ) )
rng.shuffle(indices_per_size[size] )
# Now let's copy the gen_kwargs and shuffle the lists based on their sizes
lowercase = dict(lowerCAmelCase__ )
for key, value in shuffled_kwargs.items():
if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ):
lowercase = [value[i] for i in indices_per_size[len(lowerCAmelCase__ )]]
return shuffled_kwargs
| 197 | """simple docstring"""
import logging
import random
import ray
from transformers import RagConfig, RagRetriever, RagTokenizer
from transformers.models.rag.retrieval_rag import CustomHFIndex
__lowerCAmelCase : int =logging.getLogger(__name__)
class _A :
def __init__( self ):
"""simple docstring"""
lowercase = False
def A__ ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ):
"""simple docstring"""
if not self.initialized:
lowercase = RagRetriever(
__lowerCAmelCase , question_encoder_tokenizer=__lowerCAmelCase , generator_tokenizer=__lowerCAmelCase , index=__lowerCAmelCase , init_retrieval=__lowerCAmelCase , )
lowercase = True
def A__ ( self ):
"""simple docstring"""
self.retriever.index.init_index()
def A__ ( self , __lowerCAmelCase , __lowerCAmelCase ):
"""simple docstring"""
lowercase , lowercase = self.retriever._main_retrieve(__lowerCAmelCase , __lowerCAmelCase )
return doc_ids, retrieved_doc_embeds
class _A ( lowerCAmelCase ):
def __init__( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=None ):
"""simple docstring"""
if index is not None and index.is_initialized() and len(__lowerCAmelCase ) > 0:
raise ValueError(
"""When using Ray for distributed fine-tuning, """
"""you'll need to provide the paths instead, """
"""as the dataset and the index are loaded """
"""separately. More info in examples/rag/use_own_knowledge_dataset.py """ )
super().__init__(
__lowerCAmelCase , question_encoder_tokenizer=__lowerCAmelCase , generator_tokenizer=__lowerCAmelCase , index=__lowerCAmelCase , init_retrieval=__lowerCAmelCase , )
lowercase = retrieval_workers
if len(self.retrieval_workers ) > 0:
ray.get(
[
worker.create_rag_retriever.remote(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )
for worker in self.retrieval_workers
] )
def A__ ( self ):
"""simple docstring"""
logger.info("""initializing retrieval""" )
if len(self.retrieval_workers ) > 0:
ray.get([worker.init_retrieval.remote() for worker in self.retrieval_workers] )
else:
# Non-distributed training. Load index into this same process.
self.index.init_index()
def A__ ( self , __lowerCAmelCase , __lowerCAmelCase ):
"""simple docstring"""
if len(self.retrieval_workers ) > 0:
# Select a random retrieval actor.
lowercase = self.retrieval_workers[random.randint(0 , len(self.retrieval_workers ) - 1 )]
lowercase , lowercase = ray.get(random_worker.retrieve.remote(__lowerCAmelCase , __lowerCAmelCase ) )
else:
lowercase , lowercase = self._main_retrieve(__lowerCAmelCase , __lowerCAmelCase )
return retrieved_doc_embeds, doc_ids, self.index.get_doc_dicts(__lowerCAmelCase )
@classmethod
def A__ ( cls , __lowerCAmelCase , __lowerCAmelCase=None , **__lowerCAmelCase ):
"""simple docstring"""
return super(__lowerCAmelCase , cls ).get_tokenizers(__lowerCAmelCase , __lowerCAmelCase , **__lowerCAmelCase )
@classmethod
def A__ ( cls , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=None , **__lowerCAmelCase ):
"""simple docstring"""
lowercase = kwargs.pop("""config""" , __lowerCAmelCase ) or RagConfig.from_pretrained(__lowerCAmelCase , **__lowerCAmelCase )
lowercase = RagTokenizer.from_pretrained(__lowerCAmelCase , config=__lowerCAmelCase )
lowercase = rag_tokenizer.question_encoder
lowercase = rag_tokenizer.generator
if indexed_dataset is not None:
lowercase = """custom"""
lowercase = CustomHFIndex(config.retrieval_vector_size , __lowerCAmelCase )
else:
lowercase = cls._build_index(__lowerCAmelCase )
return cls(
__lowerCAmelCase , question_encoder_tokenizer=__lowerCAmelCase , generator_tokenizer=__lowerCAmelCase , retrieval_workers=__lowerCAmelCase , index=__lowerCAmelCase , )
| 197 | 1 |
'''simple docstring'''
import json
import pathlib
import unittest
import numpy as np
from transformers.testing_utils import require_torch, require_vision, slow
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import DetaImageProcessor
class a__ ( unittest.TestCase ):
'''simple docstring'''
def __init__( self , lowerCamelCase_ , lowerCamelCase_=7 , lowerCamelCase_=3 , lowerCamelCase_=30 , lowerCamelCase_=4_00 , lowerCamelCase_=True , lowerCamelCase_=None , lowerCamelCase_=True , lowerCamelCase_=[0.5, 0.5, 0.5] , lowerCamelCase_=[0.5, 0.5, 0.5] , lowerCamelCase_=True , lowerCamelCase_=1 / 2_55 , lowerCamelCase_=True , ) -> List[Any]:
lowerCAmelCase__ = size if size is not None else {'''shortest_edge''': 18, '''longest_edge''': 13_33}
lowerCAmelCase__ = parent
lowerCAmelCase__ = batch_size
lowerCAmelCase__ = num_channels
lowerCAmelCase__ = min_resolution
lowerCAmelCase__ = max_resolution
lowerCAmelCase__ = do_resize
lowerCAmelCase__ = size
lowerCAmelCase__ = do_normalize
lowerCAmelCase__ = image_mean
lowerCAmelCase__ = image_std
lowerCAmelCase__ = do_rescale
lowerCAmelCase__ = rescale_factor
lowerCAmelCase__ = do_pad
def __SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]:
return {
"do_resize": self.do_resize,
"size": self.size,
"do_normalize": self.do_normalize,
"image_mean": self.image_mean,
"image_std": self.image_std,
"do_rescale": self.do_rescale,
"rescale_factor": self.rescale_factor,
"do_pad": self.do_pad,
}
def __SCREAMING_SNAKE_CASE ( self , lowerCamelCase_ , lowerCamelCase_=False ) -> Dict:
if not batched:
lowerCAmelCase__ = image_inputs[0]
if isinstance(_UpperCAmelCase , Image.Image ):
lowerCAmelCase__ , lowerCAmelCase__ = image.size
else:
lowerCAmelCase__ , lowerCAmelCase__ = image.shape[1], image.shape[2]
if w < h:
lowerCAmelCase__ = int(self.size['''shortest_edge'''] * h / w )
lowerCAmelCase__ = self.size['''shortest_edge''']
elif w > h:
lowerCAmelCase__ = self.size['''shortest_edge''']
lowerCAmelCase__ = int(self.size['''shortest_edge'''] * w / h )
else:
lowerCAmelCase__ = self.size['''shortest_edge''']
lowerCAmelCase__ = self.size['''shortest_edge''']
else:
lowerCAmelCase__ = []
for image in image_inputs:
lowerCAmelCase__ , lowerCAmelCase__ = self.get_expected_values([image] )
expected_values.append((expected_height, expected_width) )
lowerCAmelCase__ = max(_UpperCAmelCase , key=lambda lowerCamelCase_ : item[0] )[0]
lowerCAmelCase__ = max(_UpperCAmelCase , key=lambda lowerCamelCase_ : item[1] )[1]
return expected_height, expected_width
@require_torch
@require_vision
class a__ ( lowerCamelCase_ , unittest.TestCase ):
'''simple docstring'''
lowercase__ : Union[str, Any] = DetaImageProcessor if is_vision_available() else None
def __SCREAMING_SNAKE_CASE ( self ) -> List[Any]:
lowerCAmelCase__ = DetaImageProcessingTester(self )
@property
def __SCREAMING_SNAKE_CASE ( self ) -> str:
return self.image_processor_tester.prepare_image_processor_dict()
def __SCREAMING_SNAKE_CASE ( self ) -> List[Any]:
lowerCAmelCase__ = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(_UpperCAmelCase , '''image_mean''' ) )
self.assertTrue(hasattr(_UpperCAmelCase , '''image_std''' ) )
self.assertTrue(hasattr(_UpperCAmelCase , '''do_normalize''' ) )
self.assertTrue(hasattr(_UpperCAmelCase , '''do_resize''' ) )
self.assertTrue(hasattr(_UpperCAmelCase , '''do_rescale''' ) )
self.assertTrue(hasattr(_UpperCAmelCase , '''do_pad''' ) )
self.assertTrue(hasattr(_UpperCAmelCase , '''size''' ) )
def __SCREAMING_SNAKE_CASE ( self ) -> List[Any]:
lowerCAmelCase__ = self.image_processing_class.from_dict(self.image_processor_dict )
self.assertEqual(image_processor.size , {'''shortest_edge''': 18, '''longest_edge''': 13_33} )
self.assertEqual(image_processor.do_pad , _UpperCAmelCase )
def __SCREAMING_SNAKE_CASE ( self ) -> Optional[Any]:
pass
def __SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]:
lowerCAmelCase__ = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
lowerCAmelCase__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCAmelCase )
for image in image_inputs:
self.assertIsInstance(_UpperCAmelCase , Image.Image )
# Test not batched input
lowerCAmelCase__ = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values
lowerCAmelCase__ , lowerCAmelCase__ = self.image_processor_tester.get_expected_values(_UpperCAmelCase )
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
lowerCAmelCase__ , lowerCAmelCase__ = self.image_processor_tester.get_expected_values(_UpperCAmelCase , batched=_UpperCAmelCase )
lowerCAmelCase__ = image_processing(_UpperCAmelCase , return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
def __SCREAMING_SNAKE_CASE ( self ) -> int:
lowerCAmelCase__ = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
lowerCAmelCase__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCAmelCase , numpify=_UpperCAmelCase )
for image in image_inputs:
self.assertIsInstance(_UpperCAmelCase , np.ndarray )
# Test not batched input
lowerCAmelCase__ = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values
lowerCAmelCase__ , lowerCAmelCase__ = self.image_processor_tester.get_expected_values(_UpperCAmelCase )
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
lowerCAmelCase__ = image_processing(_UpperCAmelCase , return_tensors='''pt''' ).pixel_values
lowerCAmelCase__ , lowerCAmelCase__ = self.image_processor_tester.get_expected_values(_UpperCAmelCase , batched=_UpperCAmelCase )
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
def __SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]:
lowerCAmelCase__ = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
lowerCAmelCase__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCAmelCase , torchify=_UpperCAmelCase )
for image in image_inputs:
self.assertIsInstance(_UpperCAmelCase , torch.Tensor )
# Test not batched input
lowerCAmelCase__ = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values
lowerCAmelCase__ , lowerCAmelCase__ = self.image_processor_tester.get_expected_values(_UpperCAmelCase )
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
lowerCAmelCase__ = image_processing(_UpperCAmelCase , return_tensors='''pt''' ).pixel_values
lowerCAmelCase__ , lowerCAmelCase__ = self.image_processor_tester.get_expected_values(_UpperCAmelCase , batched=_UpperCAmelCase )
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
@slow
def __SCREAMING_SNAKE_CASE ( self ) -> List[str]:
lowerCAmelCase__ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' )
with open('''./tests/fixtures/tests_samples/COCO/coco_annotations.txt''' , '''r''' ) as f:
lowerCAmelCase__ = json.loads(f.read() )
lowerCAmelCase__ = {'''image_id''': 3_97_69, '''annotations''': target}
# encode them
lowerCAmelCase__ = DetaImageProcessor()
lowerCAmelCase__ = image_processing(images=_UpperCAmelCase , annotations=_UpperCAmelCase , return_tensors='''pt''' )
# verify pixel values
lowerCAmelCase__ = torch.Size([1, 3, 8_00, 10_66] )
self.assertEqual(encoding['''pixel_values'''].shape , _UpperCAmelCase )
lowerCAmelCase__ = torch.tensor([0.2_796, 0.3_138, 0.3_481] )
self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] , _UpperCAmelCase , atol=1e-4 ) )
# verify area
lowerCAmelCase__ = torch.tensor([5_887.9_600, 1_12_50.20_61, 48_93_53.84_38, 83_71_22.75_00, 14_79_67.51_56, 16_57_32.34_38] )
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] , _UpperCAmelCase ) )
# verify boxes
lowerCAmelCase__ = torch.Size([6, 4] )
self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape , _UpperCAmelCase )
lowerCAmelCase__ = torch.tensor([0.5_503, 0.2_765, 0.0_604, 0.2_215] )
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] , _UpperCAmelCase , atol=1e-3 ) )
# verify image_id
lowerCAmelCase__ = torch.tensor([3_97_69] )
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] , _UpperCAmelCase ) )
# verify is_crowd
lowerCAmelCase__ = torch.tensor([0, 0, 0, 0, 0, 0] )
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] , _UpperCAmelCase ) )
# verify class_labels
lowerCAmelCase__ = torch.tensor([75, 75, 63, 65, 17, 17] )
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] , _UpperCAmelCase ) )
# verify orig_size
lowerCAmelCase__ = torch.tensor([4_80, 6_40] )
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] , _UpperCAmelCase ) )
# verify size
lowerCAmelCase__ = torch.tensor([8_00, 10_66] )
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] , _UpperCAmelCase ) )
@slow
def __SCREAMING_SNAKE_CASE ( self ) -> List[Any]:
lowerCAmelCase__ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' )
with open('''./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt''' , '''r''' ) as f:
lowerCAmelCase__ = json.loads(f.read() )
lowerCAmelCase__ = {'''file_name''': '''000000039769.png''', '''image_id''': 3_97_69, '''segments_info''': target}
lowerCAmelCase__ = pathlib.Path('''./tests/fixtures/tests_samples/COCO/coco_panoptic''' )
# encode them
lowerCAmelCase__ = DetaImageProcessor(format='''coco_panoptic''' )
lowerCAmelCase__ = image_processing(images=_UpperCAmelCase , annotations=_UpperCAmelCase , masks_path=_UpperCAmelCase , return_tensors='''pt''' )
# verify pixel values
lowerCAmelCase__ = torch.Size([1, 3, 8_00, 10_66] )
self.assertEqual(encoding['''pixel_values'''].shape , _UpperCAmelCase )
lowerCAmelCase__ = torch.tensor([0.2_796, 0.3_138, 0.3_481] )
self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] , _UpperCAmelCase , atol=1e-4 ) )
# verify area
lowerCAmelCase__ = torch.tensor([14_79_79.68_75, 16_55_27.04_69, 48_46_38.59_38, 1_12_92.93_75, 5_879.6_562, 7_634.1_147] )
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] , _UpperCAmelCase ) )
# verify boxes
lowerCAmelCase__ = torch.Size([6, 4] )
self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape , _UpperCAmelCase )
lowerCAmelCase__ = torch.tensor([0.2_625, 0.5_437, 0.4_688, 0.8_625] )
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] , _UpperCAmelCase , atol=1e-3 ) )
# verify image_id
lowerCAmelCase__ = torch.tensor([3_97_69] )
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] , _UpperCAmelCase ) )
# verify is_crowd
lowerCAmelCase__ = torch.tensor([0, 0, 0, 0, 0, 0] )
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] , _UpperCAmelCase ) )
# verify class_labels
lowerCAmelCase__ = torch.tensor([17, 17, 63, 75, 75, 93] )
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] , _UpperCAmelCase ) )
# verify masks
lowerCAmelCase__ = 82_28_73
self.assertEqual(encoding['''labels'''][0]['''masks'''].sum().item() , _UpperCAmelCase )
# verify orig_size
lowerCAmelCase__ = torch.tensor([4_80, 6_40] )
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] , _UpperCAmelCase ) )
# verify size
lowerCAmelCase__ = torch.tensor([8_00, 10_66] )
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] , _UpperCAmelCase ) ) | 367 |
'''simple docstring'''
from __future__ import annotations
import math
from collections.abc import Callable
def _snake_case ( A , A , A , A = 100 , ) -> float:
lowerCAmelCase__ = x_start
lowerCAmelCase__ = fnc(A )
lowerCAmelCase__ = 0.0
for _ in range(A ):
# Approximates curve as a sequence of linear lines and sums their length
lowerCAmelCase__ = (x_end - x_start) / steps + xa
lowerCAmelCase__ = fnc(A )
length += math.hypot(xa - xa , fxa - fxa )
# Increment step
lowerCAmelCase__ = xa
lowerCAmelCase__ = fxa
return length
if __name__ == "__main__":
def _snake_case ( A ) -> List[Any]:
return math.sin(10 * x )
print('''f(x) = sin(10 * x)''')
print('''The length of the curve from x = -10 to x = 10 is:''')
__UpperCAmelCase = 10
while i <= 100_000:
print(f"""With {i} steps: {line_length(f, -10, 10, i)}""")
i *= 10 | 228 | 0 |
import numpy as np
import torch
from imwatermark import WatermarkEncoder
# Copied from https://github.com/Stability-AI/generative-models/blob/613af104c6b85184091d42d374fef420eddb356d/scripts/demo/streamlit_helpers.py#L66
A__ : List[str] = 0b10_11_00_11_11_10_11_00_10_01_00_00_01_11_10_11_10_11_00_01_10_01_11_10
# bin(x)[2:] gives bits of x as str, use int to convert them to 0/1
A__ : List[str] = [int(bit) for bit in bin(WATERMARK_MESSAGE)[2:]]
class __snake_case :
def __init__( self : List[Any]):
lowerCAmelCase_ : Tuple = WATERMARK_BITS
lowerCAmelCase_ : int = WatermarkEncoder()
self.encoder.set_watermark('''bits''' , self.watermark)
def UpperCAmelCase__ ( self : Optional[Any] , A_ : torch.FloatTensor):
# can't encode images that are smaller than 256
if images.shape[-1] < 2_5_6:
return images
lowerCAmelCase_ : Optional[Any] = (2_5_5 * (images / 2 + 0.5)).cpu().permute(0 , 2 , 3 , 1).float().numpy()
lowerCAmelCase_ : Any = [self.encoder.encode(A_ , '''dwtDct''') for image in images]
lowerCAmelCase_ : Optional[Any] = torch.from_numpy(np.array(A_)).permute(0 , 3 , 1 , 2)
lowerCAmelCase_ : Optional[Any] = torch.clamp(2 * (images / 2_5_5 - 0.5) , min=-1.0 , max=1.0)
return images
| 103 | import math
def A ( _lowercase ):
return math.sqrt(_lowercase ) * math.sqrt(_lowercase ) == num
def A ( _lowercase ):
SCREAMING_SNAKE_CASE : Dict = 0
SCREAMING_SNAKE_CASE : Tuple = n
while left <= right:
SCREAMING_SNAKE_CASE : Union[str, Any] = (left + right) // 2
if mid**2 == n:
return True
elif mid**2 > n:
SCREAMING_SNAKE_CASE : Optional[Any] = mid - 1
else:
SCREAMING_SNAKE_CASE : Optional[int] = mid + 1
return False
if __name__ == "__main__":
import doctest
doctest.testmod()
| 182 | 0 |
'''simple docstring'''
import copy
import re
class lowercase :
"""simple docstring"""
UpperCAmelCase = """hp"""
UpperCAmelCase = {}
UpperCAmelCase = None
@classmethod
def _snake_case ( cls ,a_ ,a_ ) -> int:
_UpperCAmelCase : List[str] = prefix
_UpperCAmelCase : int = defaults
cls.build_naming_info()
@staticmethod
def _snake_case ( a_ ,a_ ) -> List[Any]:
if len(a_ ) == 0:
return ""
_UpperCAmelCase : Dict = None
if any(char.isdigit() for char in word ):
raise Exception(f'''Parameters should not contain numbers: \'{word}\' contains a number''' )
if word in info["short_word"]:
return info["short_word"][word]
for prefix_len in range(1 ,len(a_ ) + 1 ):
_UpperCAmelCase : Any = word[:prefix_len]
if prefix in info["reverse_short_word"]:
continue
else:
_UpperCAmelCase : List[Any] = prefix
break
if short_word is None:
# Paranoid fallback
def int_to_alphabetic(a_ ):
_UpperCAmelCase : Optional[int] = """"""
while integer != 0:
_UpperCAmelCase : Union[str, Any] = chr(ord("""A""" ) + integer % 10 ) + s
integer //= 10
return s
_UpperCAmelCase : Optional[int] = 0
while True:
_UpperCAmelCase : Union[str, Any] = word + """#""" + int_to_alphabetic(a_ )
if sword in info["reverse_short_word"]:
continue
else:
_UpperCAmelCase : List[Any] = sword
break
_UpperCAmelCase : int = short_word
_UpperCAmelCase : Any = word
return short_word
@staticmethod
def _snake_case ( a_ ,a_ ) -> int:
_UpperCAmelCase : int = param_name.split("""_""" )
_UpperCAmelCase : Optional[Any] = [TrialShortNamer.shortname_for_word(a_ ,a_ ) for word in words]
# We try to create a separatorless short name, but if there is a collision we have to fallback
# to a separated short name
_UpperCAmelCase : List[str] = ["""""", """_"""]
for separator in separators:
_UpperCAmelCase : Tuple = separator.join(a_ )
if shortname not in info["reverse_short_param"]:
_UpperCAmelCase : Optional[int] = shortname
_UpperCAmelCase : Optional[int] = param_name
return shortname
return param_name
@staticmethod
def _snake_case ( a_ ,a_ ) -> Tuple:
_UpperCAmelCase : int = TrialShortNamer.shortname_for_key(a_ ,a_ )
_UpperCAmelCase : Optional[int] = short_name
_UpperCAmelCase : str = param_name
@classmethod
def _snake_case ( cls ) -> Union[str, Any]:
if cls.NAMING_INFO is not None:
return
_UpperCAmelCase : Tuple = {
"""short_word""": {},
"""reverse_short_word""": {},
"""short_param""": {},
"""reverse_short_param""": {},
}
_UpperCAmelCase : Any = list(cls.DEFAULTS.keys() )
for k in field_keys:
cls.add_new_param_name(a_ ,a_ )
_UpperCAmelCase : Optional[Any] = info
@classmethod
def _snake_case ( cls ,a_ ) -> Any:
cls.build_naming_info()
assert cls.PREFIX is not None
_UpperCAmelCase : Any = [copy.copy(cls.PREFIX )]
for k, v in params.items():
if k not in cls.DEFAULTS:
raise Exception(f'''You should provide a default value for the param name {k} with value {v}''' )
if v == cls.DEFAULTS[k]:
# The default value is not added to the name
continue
_UpperCAmelCase : Union[str, Any] = cls.NAMING_INFO["""short_param"""][k]
if isinstance(a_ ,a_ ):
_UpperCAmelCase : Optional[Any] = 1 if v else 0
_UpperCAmelCase : int = """""" if isinstance(a_ ,(int, float) ) else """-"""
_UpperCAmelCase : Union[str, Any] = f'''{key}{sep}{v}'''
name.append(a_ )
return "_".join(a_ )
@classmethod
def _snake_case ( cls ,a_ ) -> str:
_UpperCAmelCase : Union[str, Any] = repr[len(cls.PREFIX ) + 1 :]
if repr == "":
_UpperCAmelCase : Optional[Any] = []
else:
_UpperCAmelCase : Optional[int] = repr.split("""_""" )
_UpperCAmelCase : List[Any] = {}
for value in values:
if "-" in value:
_UpperCAmelCase : Union[str, Any] = value.split("""-""" )
else:
_UpperCAmelCase : int = re.sub("""[0-9.]""" ,"""""" ,a_ )
_UpperCAmelCase : Union[str, Any] = float(re.sub("""[^0-9.]""" ,"""""" ,a_ ) )
_UpperCAmelCase : Union[str, Any] = cls.NAMING_INFO["""reverse_short_param"""][p_k]
_UpperCAmelCase : List[str] = p_v
for k in cls.DEFAULTS:
if k not in parameters:
_UpperCAmelCase : List[str] = cls.DEFAULTS[k]
return parameters
| 351 |
'''simple docstring'''
def snake_case_ ( lowerCAmelCase_ )-> int:
'''simple docstring'''
if not isinstance(lowerCAmelCase_ , lowerCAmelCase_ ):
raise TypeError("""only integers accepted as input""" )
else:
_UpperCAmelCase : Dict = str(abs(lowerCAmelCase_ ) )
_UpperCAmelCase : Optional[Any] = [list(lowerCAmelCase_ ) for char in range(len(lowerCAmelCase_ ) )]
for index in range(len(lowerCAmelCase_ ) ):
num_transpositions[index].pop(lowerCAmelCase_ )
return max(
int("""""".join(list(lowerCAmelCase_ ) ) ) for transposition in num_transpositions )
if __name__ == "__main__":
__import__("""doctest""").testmod()
| 349 | 0 |
import unittest
import numpy as np
from transformers import is_flax_available
from transformers.testing_utils import require_flax
from ..test_modeling_flax_common import ids_tensor
if is_flax_available():
import jax
import jax.numpy as jnp
from transformers.generation import (
FlaxForcedBOSTokenLogitsProcessor,
FlaxForcedEOSTokenLogitsProcessor,
FlaxLogitsProcessorList,
FlaxMinLengthLogitsProcessor,
FlaxTemperatureLogitsWarper,
FlaxTopKLogitsWarper,
FlaxTopPLogitsWarper,
)
@require_flax
class UpperCamelCase__ (unittest.TestCase ):
'''simple docstring'''
def _lowercase ( self , UpperCamelCase__ , UpperCamelCase__ ) -> List[str]:
lowerCamelCase : str = jnp.ones((batch_size, length) ) / length
return scores
def _lowercase ( self ) -> Tuple:
lowerCamelCase : Optional[int] = None
lowerCamelCase : Optional[int] = 20
lowerCamelCase : Dict = self._get_uniform_logits(batch_size=2 , length=UpperCamelCase__ )
# tweak scores to not be uniform anymore
lowerCamelCase : Union[str, Any] = scores.at[1, 5].set((1 / length) + 0.1 ) # peak, 1st batch
lowerCamelCase : int = scores.at[1, 10].set((1 / length) - 0.4 ) # valley, 1st batch
# compute softmax
lowerCamelCase : Any = jax.nn.softmax(UpperCamelCase__ , axis=-1 )
lowerCamelCase : Optional[Any] = FlaxTemperatureLogitsWarper(temperature=0.5 )
lowerCamelCase : List[Any] = FlaxTemperatureLogitsWarper(temperature=1.3 )
lowerCamelCase : Dict = jax.nn.softmax(temp_dist_warper_sharper(UpperCamelCase__ , scores.copy() , cur_len=UpperCamelCase__ ) , axis=-1 )
lowerCamelCase : Any = jax.nn.softmax(temp_dist_warper_smoother(UpperCamelCase__ , scores.copy() , cur_len=UpperCamelCase__ ) , axis=-1 )
# uniform distribution stays uniform
self.assertTrue(jnp.allclose(probs[0, :] , warped_prob_sharp[0, :] , atol=1e-3 ) )
self.assertTrue(jnp.allclose(probs[0, :] , warped_prob_smooth[0, :] , atol=1e-3 ) )
# sharp peaks get higher, valleys get lower
self.assertLess(probs[1, :].max() , warped_prob_sharp[1, :].max() )
self.assertGreater(probs[1, :].min() , warped_prob_sharp[1, :].min() )
# smooth peaks get lower, valleys get higher
self.assertGreater(probs[1, :].max() , warped_prob_smooth[1, :].max() )
self.assertLess(probs[1, :].min() , warped_prob_smooth[1, :].min() )
def _lowercase ( self ) -> Any:
lowerCamelCase : Dict = None
lowerCamelCase : Tuple = 10
lowerCamelCase : Dict = 2
# create ramp distribution
lowerCamelCase : str = np.broadcast_to(np.arange(UpperCamelCase__ )[None, :] , (batch_size, vocab_size) ).copy()
lowerCamelCase : str = ramp_logits[1:, : vocab_size // 2] + vocab_size
lowerCamelCase : Dict = FlaxTopKLogitsWarper(3 )
lowerCamelCase : str = top_k_warp(UpperCamelCase__ , UpperCamelCase__ , cur_len=UpperCamelCase__ )
# check that correct tokens are filtered
self.assertListEqual(jnp.isinf(scores[0] ).tolist() , 7 * [True] + 3 * [False] )
self.assertListEqual(jnp.isinf(scores[1] ).tolist() , 2 * [True] + 3 * [False] + 5 * [True] )
# check special case
lowerCamelCase : int = 5
lowerCamelCase : List[Any] = FlaxTopKLogitsWarper(top_k=1 , filter_value=0.0 , min_tokens_to_keep=3 )
lowerCamelCase : int = np.broadcast_to(np.arange(UpperCamelCase__ )[None, :] , (batch_size, length) ).copy()
lowerCamelCase : List[str] = top_k_warp_safety_check(UpperCamelCase__ , UpperCamelCase__ , cur_len=UpperCamelCase__ )
# min_tokens overwrites k: 3 tokens are kept => 2 tokens are nullified
self.assertListEqual((scores == 0.0).sum(axis=-1 ).tolist() , [2, 2] )
def _lowercase ( self ) -> List[Any]:
lowerCamelCase : Union[str, Any] = None
lowerCamelCase : int = 10
lowerCamelCase : Optional[Any] = 2
# create distribution and take log (inverse to Softmax as taken in TopPLogitsWarper)
lowerCamelCase : Optional[Any] = np.log(np.array([[0.3, 0.1, 0.1, 0.5], [0.15, 0.3, 0.3, 0.25]] ) )
lowerCamelCase : Any = FlaxTopPLogitsWarper(0.8 )
lowerCamelCase : Optional[int] = np.exp(top_p_warp(UpperCamelCase__ , UpperCamelCase__ , cur_len=UpperCamelCase__ ) )
# dist should be filtered to keep min num values so that sum is >= top_p
# exp (-inf) => 0
lowerCamelCase : str = np.array([[0.3, 0.0, 0.0, 0.5], [0.0, 0.3, 0.3, 0.25]] )
self.assertTrue(np.allclose(UpperCamelCase__ , UpperCamelCase__ , atol=1e-3 ) )
# check edge cases with negative and extreme logits
lowerCamelCase : Optional[int] = np.broadcast_to(np.arange(UpperCamelCase__ )[None, :] , (batch_size, vocab_size) ).copy() - (
vocab_size // 2
)
# make ramp_logits more extreme
lowerCamelCase : int = ramp_logits[1] * 100.0
# make sure at least 2 tokens are kept
lowerCamelCase : Union[str, Any] = FlaxTopPLogitsWarper(0.9 , min_tokens_to_keep=2 , filter_value=0.0 )
lowerCamelCase : Optional[int] = top_p_warp(UpperCamelCase__ , UpperCamelCase__ , cur_len=UpperCamelCase__ )
# first batch should keep three tokens, second batch would keep only 1, but due to `min_tokens_to_keep=2` keeps 2.
self.assertListEqual((filtered_dist != 0.0).sum(axis=-1 ).tolist() , [3, 2] )
def _lowercase ( self ) -> Union[str, Any]:
lowerCamelCase : List[str] = 20
lowerCamelCase : List[str] = 4
lowerCamelCase : List[str] = 0
lowerCamelCase : Dict = FlaxMinLengthLogitsProcessor(min_length=10 , eos_token_id=UpperCamelCase__ )
# check that min length is applied at length 5
lowerCamelCase : Dict = ids_tensor((batch_size, 20) , vocab_size=20 )
lowerCamelCase : Tuple = 5
lowerCamelCase : Optional[Any] = self._get_uniform_logits(UpperCamelCase__ , UpperCamelCase__ )
lowerCamelCase : Optional[int] = min_dist_processor(UpperCamelCase__ , UpperCamelCase__ , cur_len=UpperCamelCase__ )
self.assertListEqual(scores_before_min_length[:, eos_token_id].tolist() , 4 * [-float("inf" )] )
# check that min length is not applied anymore at length 15
lowerCamelCase : Optional[Any] = self._get_uniform_logits(UpperCamelCase__ , UpperCamelCase__ )
lowerCamelCase : str = 15
lowerCamelCase : List[Any] = min_dist_processor(UpperCamelCase__ , UpperCamelCase__ , cur_len=UpperCamelCase__ )
self.assertFalse(jnp.isinf(UpperCamelCase__ ).any() )
def _lowercase ( self ) -> str:
lowerCamelCase : List[str] = 20
lowerCamelCase : List[Any] = 4
lowerCamelCase : str = 0
lowerCamelCase : List[str] = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=UpperCamelCase__ )
# check that all scores are -inf except the bos_token_id score
lowerCamelCase : Any = ids_tensor((batch_size, 1) , vocab_size=20 )
lowerCamelCase : str = 1
lowerCamelCase : Tuple = self._get_uniform_logits(UpperCamelCase__ , UpperCamelCase__ )
lowerCamelCase : int = logits_processor(UpperCamelCase__ , UpperCamelCase__ , cur_len=UpperCamelCase__ )
self.assertTrue(jnp.isneginf(scores[:, bos_token_id + 1 :] ).all() )
self.assertListEqual(scores[:, bos_token_id].tolist() , 4 * [0] ) # score for bos_token_id shold be zero
# check that bos_token_id is not forced if current length is greater than 1
lowerCamelCase : List[str] = 3
lowerCamelCase : Optional[Any] = self._get_uniform_logits(UpperCamelCase__ , UpperCamelCase__ )
lowerCamelCase : Optional[Any] = logits_processor(UpperCamelCase__ , UpperCamelCase__ , cur_len=UpperCamelCase__ )
self.assertFalse(jnp.isinf(UpperCamelCase__ ).any() )
def _lowercase ( self ) -> List[str]:
lowerCamelCase : Dict = 20
lowerCamelCase : Optional[int] = 4
lowerCamelCase : int = 0
lowerCamelCase : Optional[int] = 5
lowerCamelCase : int = FlaxForcedEOSTokenLogitsProcessor(max_length=UpperCamelCase__ , eos_token_id=UpperCamelCase__ )
# check that all scores are -inf except the eos_token_id when max_length is reached
lowerCamelCase : Tuple = ids_tensor((batch_size, 4) , vocab_size=20 )
lowerCamelCase : Optional[int] = 4
lowerCamelCase : int = self._get_uniform_logits(UpperCamelCase__ , UpperCamelCase__ )
lowerCamelCase : Tuple = logits_processor(UpperCamelCase__ , UpperCamelCase__ , cur_len=UpperCamelCase__ )
self.assertTrue(jnp.isneginf(scores[:, eos_token_id + 1 :] ).all() )
self.assertListEqual(scores[:, eos_token_id].tolist() , 4 * [0] ) # score for eos_token_id should be zero
# check that eos_token_id is not forced if max_length is not reached
lowerCamelCase : int = 3
lowerCamelCase : List[str] = self._get_uniform_logits(UpperCamelCase__ , UpperCamelCase__ )
lowerCamelCase : Dict = logits_processor(UpperCamelCase__ , UpperCamelCase__ , cur_len=UpperCamelCase__ )
self.assertFalse(jnp.isinf(UpperCamelCase__ ).any() )
def _lowercase ( self ) -> Any:
lowerCamelCase : List[str] = 4
lowerCamelCase : Union[str, Any] = 10
lowerCamelCase : Dict = 15
lowerCamelCase : int = 2
lowerCamelCase : List[str] = 1
lowerCamelCase : List[str] = 15
# dummy input_ids and scores
lowerCamelCase : Dict = ids_tensor((batch_size, sequence_length) , UpperCamelCase__ )
lowerCamelCase : Tuple = input_ids.copy()
lowerCamelCase : Any = self._get_uniform_logits(UpperCamelCase__ , UpperCamelCase__ )
lowerCamelCase : str = scores.copy()
# instantiate all dist processors
lowerCamelCase : Dict = FlaxTemperatureLogitsWarper(temperature=0.5 )
lowerCamelCase : Dict = FlaxTopKLogitsWarper(3 )
lowerCamelCase : Tuple = FlaxTopPLogitsWarper(0.8 )
# instantiate all logits processors
lowerCamelCase : List[Any] = FlaxMinLengthLogitsProcessor(min_length=10 , eos_token_id=UpperCamelCase__ )
lowerCamelCase : Optional[Any] = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=UpperCamelCase__ )
lowerCamelCase : Union[str, Any] = FlaxForcedEOSTokenLogitsProcessor(max_length=UpperCamelCase__ , eos_token_id=UpperCamelCase__ )
lowerCamelCase : Union[str, Any] = 10
# no processor list
lowerCamelCase : Any = temp_dist_warp(UpperCamelCase__ , UpperCamelCase__ , cur_len=UpperCamelCase__ )
lowerCamelCase : Tuple = top_k_warp(UpperCamelCase__ , UpperCamelCase__ , cur_len=UpperCamelCase__ )
lowerCamelCase : Dict = top_p_warp(UpperCamelCase__ , UpperCamelCase__ , cur_len=UpperCamelCase__ )
lowerCamelCase : List[str] = min_dist_proc(UpperCamelCase__ , UpperCamelCase__ , cur_len=UpperCamelCase__ )
lowerCamelCase : Optional[int] = bos_dist_proc(UpperCamelCase__ , UpperCamelCase__ , cur_len=UpperCamelCase__ )
lowerCamelCase : Dict = eos_dist_proc(UpperCamelCase__ , UpperCamelCase__ , cur_len=UpperCamelCase__ )
# with processor list
lowerCamelCase : List[Any] = FlaxLogitsProcessorList(
[temp_dist_warp, top_k_warp, top_p_warp, min_dist_proc, bos_dist_proc, eos_dist_proc] )
lowerCamelCase : int = processor(UpperCamelCase__ , UpperCamelCase__ , cur_len=UpperCamelCase__ )
# scores should be equal
self.assertTrue(jnp.allclose(UpperCamelCase__ , UpperCamelCase__ , atol=1e-3 ) )
# input_ids should never be changed
self.assertListEqual(input_ids.tolist() , input_ids_comp.tolist() )
def _lowercase ( self ) -> Union[str, Any]:
lowerCamelCase : List[str] = 4
lowerCamelCase : int = 10
lowerCamelCase : List[str] = 15
lowerCamelCase : Optional[Any] = 2
lowerCamelCase : Optional[int] = 1
lowerCamelCase : Any = 15
# dummy input_ids and scores
lowerCamelCase : Dict = ids_tensor((batch_size, sequence_length) , UpperCamelCase__ )
lowerCamelCase : Optional[Any] = input_ids.copy()
lowerCamelCase : List[Any] = self._get_uniform_logits(UpperCamelCase__ , UpperCamelCase__ )
lowerCamelCase : str = scores.copy()
# instantiate all dist processors
lowerCamelCase : Optional[int] = FlaxTemperatureLogitsWarper(temperature=0.5 )
lowerCamelCase : Tuple = FlaxTopKLogitsWarper(3 )
lowerCamelCase : str = FlaxTopPLogitsWarper(0.8 )
# instantiate all logits processors
lowerCamelCase : List[str] = FlaxMinLengthLogitsProcessor(min_length=10 , eos_token_id=UpperCamelCase__ )
lowerCamelCase : int = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=UpperCamelCase__ )
lowerCamelCase : Optional[Any] = FlaxForcedEOSTokenLogitsProcessor(max_length=UpperCamelCase__ , eos_token_id=UpperCamelCase__ )
lowerCamelCase : Optional[Any] = 10
# no processor list
def run_no_processor_list(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ):
lowerCamelCase : Tuple = temp_dist_warp(UpperCamelCase__ , UpperCamelCase__ , cur_len=UpperCamelCase__ )
lowerCamelCase : Union[str, Any] = top_k_warp(UpperCamelCase__ , UpperCamelCase__ , cur_len=UpperCamelCase__ )
lowerCamelCase : Optional[Any] = top_p_warp(UpperCamelCase__ , UpperCamelCase__ , cur_len=UpperCamelCase__ )
lowerCamelCase : Dict = min_dist_proc(UpperCamelCase__ , UpperCamelCase__ , cur_len=UpperCamelCase__ )
lowerCamelCase : List[str] = bos_dist_proc(UpperCamelCase__ , UpperCamelCase__ , cur_len=UpperCamelCase__ )
lowerCamelCase : Tuple = eos_dist_proc(UpperCamelCase__ , UpperCamelCase__ , cur_len=UpperCamelCase__ )
return scores
# with processor list
def run_processor_list(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ):
lowerCamelCase : Optional[int] = FlaxLogitsProcessorList(
[temp_dist_warp, top_k_warp, top_p_warp, min_dist_proc, bos_dist_proc, eos_dist_proc] )
lowerCamelCase : Optional[Any] = processor(UpperCamelCase__ , UpperCamelCase__ , cur_len=UpperCamelCase__ )
return scores
lowerCamelCase : List[Any] = jax.jit(UpperCamelCase__ )
lowerCamelCase : Optional[int] = jax.jit(UpperCamelCase__ )
lowerCamelCase : Optional[Any] = jitted_run_no_processor_list(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ )
lowerCamelCase : Dict = jitted_run_processor_list(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ )
# scores should be equal
self.assertTrue(jnp.allclose(UpperCamelCase__ , UpperCamelCase__ , atol=1e-3 ) )
# input_ids should never be changed
self.assertListEqual(input_ids.tolist() , input_ids_comp.tolist() )
| 48 |
'''simple docstring'''
import argparse
import json
from pathlib import Path
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import (
SwiftFormerConfig,
SwiftFormerForImageClassification,
ViTImageProcessor,
)
from transformers.utils import logging
logging.set_verbosity_info()
a : List[Any] = logging.get_logger(__name__)
a : Union[str, Any] = torch.device("""cpu""")
def __lowerCamelCase ( ) -> Any:
UpperCAmelCase : Optional[Any] = """http://images.cocodataset.org/val2017/000000039769.jpg"""
UpperCAmelCase : Dict = Image.open(requests.get(_lowercase , stream=_lowercase ).raw )
return im
def __lowerCamelCase ( _lowercase ) -> Dict:
if swiftformer_name == "swiftformer_xs":
return torch.tensor([-2.1_703e00, 2.1_107e00, -2.0_811e00, 8.8_685e-01, 2.4_360e-01] )
elif swiftformer_name == "swiftformer_s":
return torch.tensor([3.9_636e-01, 2.3_478e-01, -1.6_963e00, -1.7_381e00, -8.6_337e-01] )
elif swiftformer_name == "swiftformer_l1":
return torch.tensor([-4.2_768e-01, -4.7_429e-01, -1.0_897e00, -1.0_248e00, 3.5_523e-02] )
elif swiftformer_name == "swiftformer_l3":
return torch.tensor([-2.5_330e-01, 2.4_211e-01, -6.0_185e-01, -8.2_789e-01, -6.0_446e-02] )
def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> str:
UpperCAmelCase : Union[str, Any] = dct.pop(_lowercase )
UpperCAmelCase : str = val
def __lowerCamelCase ( _lowercase ) -> List[str]:
UpperCAmelCase : Tuple = []
for k in state_dict.keys():
UpperCAmelCase : Dict = k
if ".pwconv" in k:
UpperCAmelCase : Union[str, Any] = k_new.replace(""".pwconv""" , """.point_wise_conv""" )
if ".dwconv" in k:
UpperCAmelCase : Dict = k_new.replace(""".dwconv""" , """.depth_wise_conv""" )
if ".Proj." in k:
UpperCAmelCase : str = k_new.replace(""".Proj.""" , """.proj.""" )
if "patch_embed" in k_new:
UpperCAmelCase : Dict = k_new.replace("""patch_embed""" , """swiftformer.patch_embed.patch_embedding""" )
if "network" in k_new:
UpperCAmelCase : Optional[Any] = k_new.split(""".""" )
if ls[2].isdigit():
UpperCAmelCase : Any = """swiftformer.encoder.network.""" + ls[1] + """.blocks.""" + ls[2] + """.""" + """.""".join(ls[3:] )
else:
UpperCAmelCase : Any = k_new.replace("""network""" , """swiftformer.encoder.network""" )
rename_keys.append((k, k_new) )
return rename_keys
@torch.no_grad()
def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> Optional[int]:
UpperCAmelCase : Optional[Any] = SwiftFormerConfig()
# dataset (ImageNet-21k only or also fine-tuned on ImageNet 2012), patch_size and image_size
UpperCAmelCase : List[Any] = 1_0_0_0
UpperCAmelCase : List[str] = """huggingface/label-files"""
UpperCAmelCase : Tuple = """imagenet-1k-id2label.json"""
UpperCAmelCase : Dict = json.load(open(hf_hub_download(_lowercase , _lowercase , repo_type="""dataset""" ) , """r""" ) )
UpperCAmelCase : Tuple = {int(_lowercase ): v for k, v in idalabel.items()}
UpperCAmelCase : Tuple = idalabel
UpperCAmelCase : List[Any] = {v: k for k, v in idalabel.items()}
# size of the architecture
if swiftformer_name == "swiftformer_xs":
UpperCAmelCase : List[Any] = [3, 3, 6, 4]
UpperCAmelCase : int = [4_8, 5_6, 1_1_2, 2_2_0]
elif swiftformer_name == "swiftformer_s":
UpperCAmelCase : str = [3, 3, 9, 6]
UpperCAmelCase : str = [4_8, 6_4, 1_6_8, 2_2_4]
elif swiftformer_name == "swiftformer_l1":
UpperCAmelCase : List[Any] = [4, 3, 1_0, 5]
UpperCAmelCase : Union[str, Any] = [4_8, 9_6, 1_9_2, 3_8_4]
elif swiftformer_name == "swiftformer_l3":
UpperCAmelCase : Any = [4, 4, 1_2, 6]
UpperCAmelCase : List[Any] = [6_4, 1_2_8, 3_2_0, 5_1_2]
# load state_dict of original model, remove and rename some keys
if original_ckpt:
if original_ckpt.startswith("""https""" ):
UpperCAmelCase : Dict = torch.hub.load_state_dict_from_url(_lowercase , map_location="""cpu""" , check_hash=_lowercase )
else:
UpperCAmelCase : Dict = torch.load(_lowercase , map_location="""cpu""" )
UpperCAmelCase : str = checkpoint
UpperCAmelCase : Tuple = create_rename_keys(_lowercase )
for rename_key_src, rename_key_dest in rename_keys:
rename_key(_lowercase , _lowercase , _lowercase )
# load HuggingFace model
UpperCAmelCase : str = SwiftFormerForImageClassification(_lowercase ).eval()
hf_model.load_state_dict(_lowercase )
# prepare test inputs
UpperCAmelCase : Any = prepare_img()
UpperCAmelCase : List[Any] = ViTImageProcessor.from_pretrained("""preprocessor_config""" )
UpperCAmelCase : List[str] = processor(images=_lowercase , return_tensors="""pt""" )
# compare outputs from both models
UpperCAmelCase : List[str] = get_expected_output(_lowercase )
UpperCAmelCase : Dict = hf_model(inputs["""pixel_values"""] ).logits
assert hf_logits.shape == torch.Size([1, 1_0_0_0] )
assert torch.allclose(hf_logits[0, 0:5] , _lowercase , atol=1e-3 )
Path(_lowercase ).mkdir(exist_ok=_lowercase )
print(F'''Saving model {swiftformer_name} to {pytorch_dump_folder_path}''' )
hf_model.save_pretrained(_lowercase )
if __name__ == "__main__":
a : Tuple = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"""--swiftformer_name""",
default="""swiftformer_xs""",
choices=["""swiftformer_xs""", """swiftformer_s""", """swiftformer_l1""", """swiftformer_l3"""],
type=str,
help="""Name of the SwiftFormer model you'd like to convert.""",
)
parser.add_argument(
"""--pytorch_dump_folder_path""",
default="""./converted_outputs/""",
type=str,
help="""Path to the output PyTorch model directory.""",
)
parser.add_argument("""--original_ckpt""", default=None, type=str, help="""Path to the original model checkpoint.""")
a : Union[str, Any] = parser.parse_args()
convert_swiftformer_checkpoint(args.swiftformer_name, args.pytorch_dump_folder_path, args.original_ckpt)
| 265 | 0 |
"""simple docstring"""
import json
from typing import List, Optional, Tuple
from tokenizers import normalizers
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
from .tokenization_convbert import ConvBertTokenizer
_lowerCAmelCase :Any = logging.get_logger(__name__)
_lowerCAmelCase :Dict = {'''vocab_file''': '''vocab.txt'''}
_lowerCAmelCase :Dict = {
'''vocab_file''': {
'''YituTech/conv-bert-base''': '''https://huggingface.co/YituTech/conv-bert-base/resolve/main/vocab.txt''',
'''YituTech/conv-bert-medium-small''': (
'''https://huggingface.co/YituTech/conv-bert-medium-small/resolve/main/vocab.txt'''
),
'''YituTech/conv-bert-small''': '''https://huggingface.co/YituTech/conv-bert-small/resolve/main/vocab.txt''',
}
}
_lowerCAmelCase :Optional[int] = {
'''YituTech/conv-bert-base''': 512,
'''YituTech/conv-bert-medium-small''': 512,
'''YituTech/conv-bert-small''': 512,
}
_lowerCAmelCase :Dict = {
'''YituTech/conv-bert-base''': {'''do_lower_case''': True},
'''YituTech/conv-bert-medium-small''': {'''do_lower_case''': True},
'''YituTech/conv-bert-small''': {'''do_lower_case''': True},
}
class _UpperCAmelCase ( A__ ):
'''simple docstring'''
a__ =VOCAB_FILES_NAMES
a__ =PRETRAINED_VOCAB_FILES_MAP
a__ =PRETRAINED_INIT_CONFIGURATION
a__ =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
a__ =ConvBertTokenizer
def __init__( self , A=None , A=None , A=True , A="[UNK]" , A="[SEP]" , A="[PAD]" , A="[CLS]" , A="[MASK]" , A=True , A=None , **A , ) -> int:
super().__init__(
lowerCamelCase__ , tokenizer_file=lowerCamelCase__ , do_lower_case=lowerCamelCase__ , unk_token=lowerCamelCase__ , sep_token=lowerCamelCase__ , pad_token=lowerCamelCase__ , cls_token=lowerCamelCase__ , mask_token=lowerCamelCase__ , tokenize_chinese_chars=lowerCamelCase__ , strip_accents=lowerCamelCase__ , **lowerCamelCase__ , )
_UpperCAmelCase : int = json.loads(self.backend_tokenizer.normalizer.__getstate__() )
if (
normalizer_state.get('''lowercase''' , lowerCamelCase__ ) != do_lower_case
or normalizer_state.get('''strip_accents''' , lowerCamelCase__ ) != strip_accents
or normalizer_state.get('''handle_chinese_chars''' , lowerCamelCase__ ) != tokenize_chinese_chars
):
_UpperCAmelCase : List[Any] = getattr(lowerCamelCase__ , normalizer_state.pop('''type''' ) )
_UpperCAmelCase : Any = do_lower_case
_UpperCAmelCase : Dict = strip_accents
_UpperCAmelCase : int = tokenize_chinese_chars
_UpperCAmelCase : int = normalizer_class(**lowerCamelCase__ )
_UpperCAmelCase : Dict = do_lower_case
def __lowerCAmelCase ( self , A , A=None ) -> int:
_UpperCAmelCase : List[str] = [self.cls_token_id] + token_ids_a + [self.sep_token_id]
if token_ids_a:
output += token_ids_a + [self.sep_token_id]
return output
def __lowerCAmelCase ( self , A , A = None ) -> Optional[Any]:
_UpperCAmelCase : Any = [self.sep_token_id]
_UpperCAmelCase : List[str] = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def __lowerCAmelCase ( self , A , A = None ) -> Dict:
_UpperCAmelCase : str = self._tokenizer.model.save(lowerCamelCase__ , name=lowerCamelCase__ )
return tuple(lowerCamelCase__ )
| 356 |
"""simple docstring"""
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
_lowerCAmelCase :int = logging.get_logger(__name__)
_lowerCAmelCase :Union[str, Any] = {
'xlm-mlm-en-2048': 'https://huggingface.co/xlm-mlm-en-2048/resolve/main/config.json',
'xlm-mlm-ende-1024': 'https://huggingface.co/xlm-mlm-ende-1024/resolve/main/config.json',
'xlm-mlm-enfr-1024': 'https://huggingface.co/xlm-mlm-enfr-1024/resolve/main/config.json',
'xlm-mlm-enro-1024': 'https://huggingface.co/xlm-mlm-enro-1024/resolve/main/config.json',
'xlm-mlm-tlm-xnli15-1024': 'https://huggingface.co/xlm-mlm-tlm-xnli15-1024/resolve/main/config.json',
'xlm-mlm-xnli15-1024': 'https://huggingface.co/xlm-mlm-xnli15-1024/resolve/main/config.json',
'xlm-clm-enfr-1024': 'https://huggingface.co/xlm-clm-enfr-1024/resolve/main/config.json',
'xlm-clm-ende-1024': 'https://huggingface.co/xlm-clm-ende-1024/resolve/main/config.json',
'xlm-mlm-17-1280': 'https://huggingface.co/xlm-mlm-17-1280/resolve/main/config.json',
'xlm-mlm-100-1280': 'https://huggingface.co/xlm-mlm-100-1280/resolve/main/config.json',
}
class _UpperCAmelCase ( a ):
'''simple docstring'''
a__ ='''xlm'''
a__ ={
'''hidden_size''': '''emb_dim''',
'''num_attention_heads''': '''n_heads''',
'''num_hidden_layers''': '''n_layers''',
'''n_words''': '''vocab_size''', # For backward compatibility
}
def __init__( self , A=3_0_1_4_5 , A=2_0_4_8 , A=1_2 , A=1_6 , A=0.1 , A=0.1 , A=True , A=False , A=False , A=False , A=1 , A=True , A=5_1_2 , A=2_0_4_8**-0.5 , A=1E-12 , A=0.02 , A=0 , A=1 , A=2 , A=3 , A=5 , A=True , A="first" , A=True , A=None , A=True , A=0.1 , A=5 , A=5 , A=0 , A=0 , A=2 , A=0 , **A , ) -> Tuple:
_UpperCAmelCase : Dict = vocab_size
_UpperCAmelCase : Tuple = emb_dim
_UpperCAmelCase : Optional[Any] = n_layers
_UpperCAmelCase : Optional[Any] = n_heads
_UpperCAmelCase : Dict = dropout
_UpperCAmelCase : int = attention_dropout
_UpperCAmelCase : Optional[Any] = gelu_activation
_UpperCAmelCase : str = sinusoidal_embeddings
_UpperCAmelCase : Any = causal
_UpperCAmelCase : Optional[int] = asm
_UpperCAmelCase : List[str] = n_langs
_UpperCAmelCase : int = use_lang_emb
_UpperCAmelCase : Any = layer_norm_eps
_UpperCAmelCase : Any = bos_index
_UpperCAmelCase : Optional[Any] = eos_index
_UpperCAmelCase : List[str] = pad_index
_UpperCAmelCase : Optional[int] = unk_index
_UpperCAmelCase : Dict = mask_index
_UpperCAmelCase : Any = is_encoder
_UpperCAmelCase : Optional[Any] = max_position_embeddings
_UpperCAmelCase : List[Any] = embed_init_std
_UpperCAmelCase : Union[str, Any] = init_std
_UpperCAmelCase : List[str] = summary_type
_UpperCAmelCase : Dict = summary_use_proj
_UpperCAmelCase : str = summary_activation
_UpperCAmelCase : Union[str, Any] = summary_proj_to_labels
_UpperCAmelCase : Tuple = summary_first_dropout
_UpperCAmelCase : List[str] = start_n_top
_UpperCAmelCase : Tuple = end_n_top
_UpperCAmelCase : List[str] = mask_token_id
_UpperCAmelCase : Optional[int] = lang_id
if "n_words" in kwargs:
_UpperCAmelCase : Tuple = kwargs['''n_words''']
super().__init__(pad_token_id=A , bos_token_id=A , **A )
class _UpperCAmelCase ( a ):
'''simple docstring'''
@property
def __lowerCAmelCase ( self ) -> Mapping[str, Mapping[int, str]]:
if self.task == "multiple-choice":
_UpperCAmelCase : Tuple = {0: '''batch''', 1: '''choice''', 2: '''sequence'''}
else:
_UpperCAmelCase : Dict = {0: '''batch''', 1: '''sequence'''}
return OrderedDict(
[
('''input_ids''', dynamic_axis),
('''attention_mask''', dynamic_axis),
('''token_type_ids''', dynamic_axis),
] )
| 68 | 0 |
import os
import tempfile
import unittest
from transformers import DistilBertConfig, is_torch_available
from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
DistilBertForMaskedLM,
DistilBertForMultipleChoice,
DistilBertForQuestionAnswering,
DistilBertForSequenceClassification,
DistilBertForTokenClassification,
DistilBertModel,
)
class __SCREAMING_SNAKE_CASE( a_ ):
def __init__( self: Tuple , UpperCamelCase: str , UpperCamelCase: List[Any]=13 , UpperCamelCase: Tuple=7 , UpperCamelCase: int=True , UpperCamelCase: Union[str, Any]=True , UpperCamelCase: Tuple=False , UpperCamelCase: Any=True , UpperCamelCase: str=99 , UpperCamelCase: Optional[int]=32 , UpperCamelCase: Optional[Any]=5 , UpperCamelCase: Any=4 , UpperCamelCase: int=37 , UpperCamelCase: Any="gelu" , UpperCamelCase: str=0.1 , UpperCamelCase: Dict=0.1 , UpperCamelCase: Dict=5_12 , UpperCamelCase: str=16 , UpperCamelCase: List[str]=2 , UpperCamelCase: Optional[int]=0.02 , UpperCamelCase: Tuple=3 , UpperCamelCase: Any=4 , UpperCamelCase: List[Any]=None , ) -> List[str]:
snake_case__ = parent
snake_case__ = batch_size
snake_case__ = seq_length
snake_case__ = is_training
snake_case__ = use_input_mask
snake_case__ = use_token_type_ids
snake_case__ = use_labels
snake_case__ = vocab_size
snake_case__ = hidden_size
snake_case__ = num_hidden_layers
snake_case__ = num_attention_heads
snake_case__ = intermediate_size
snake_case__ = hidden_act
snake_case__ = hidden_dropout_prob
snake_case__ = attention_probs_dropout_prob
snake_case__ = max_position_embeddings
snake_case__ = type_vocab_size
snake_case__ = type_sequence_label_size
snake_case__ = initializer_range
snake_case__ = num_labels
snake_case__ = num_choices
snake_case__ = scope
def lowerCAmelCase_ ( self: List[str] ) -> int:
snake_case__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
snake_case__ = None
if self.use_input_mask:
snake_case__ = random_attention_mask([self.batch_size, self.seq_length] )
snake_case__ = None
snake_case__ = None
snake_case__ = None
if self.use_labels:
snake_case__ = ids_tensor([self.batch_size] , self.type_sequence_label_size )
snake_case__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
snake_case__ = ids_tensor([self.batch_size] , self.num_choices )
snake_case__ = self.get_config()
return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels
def lowerCAmelCase_ ( self: Any ) -> int:
return DistilBertConfig(
vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , )
def lowerCAmelCase_ ( self: Optional[Any] , UpperCamelCase: Union[str, Any] , UpperCamelCase: Optional[int] , UpperCamelCase: Tuple , UpperCamelCase: Dict , UpperCamelCase: int , UpperCamelCase: Tuple ) -> Optional[int]:
snake_case__ = DistilBertModel(config=UpperCamelCase )
model.to(UpperCamelCase )
model.eval()
snake_case__ = model(UpperCamelCase , UpperCamelCase )
snake_case__ = model(UpperCamelCase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def lowerCAmelCase_ ( self: Optional[Any] , UpperCamelCase: Optional[int] , UpperCamelCase: Optional[Any] , UpperCamelCase: List[str] , UpperCamelCase: Tuple , UpperCamelCase: Any , UpperCamelCase: Optional[int] ) -> List[Any]:
snake_case__ = DistilBertForMaskedLM(config=UpperCamelCase )
model.to(UpperCamelCase )
model.eval()
snake_case__ = model(UpperCamelCase , attention_mask=UpperCamelCase , labels=UpperCamelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def lowerCAmelCase_ ( self: Union[str, Any] , UpperCamelCase: Optional[int] , UpperCamelCase: Optional[Any] , UpperCamelCase: int , UpperCamelCase: Optional[Any] , UpperCamelCase: List[Any] , UpperCamelCase: Union[str, Any] ) -> Any:
snake_case__ = DistilBertForQuestionAnswering(config=UpperCamelCase )
model.to(UpperCamelCase )
model.eval()
snake_case__ = model(
UpperCamelCase , attention_mask=UpperCamelCase , start_positions=UpperCamelCase , end_positions=UpperCamelCase )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def lowerCAmelCase_ ( self: Tuple , UpperCamelCase: Optional[int] , UpperCamelCase: Any , UpperCamelCase: Dict , UpperCamelCase: Tuple , UpperCamelCase: Dict , UpperCamelCase: Union[str, Any] ) -> List[str]:
snake_case__ = self.num_labels
snake_case__ = DistilBertForSequenceClassification(UpperCamelCase )
model.to(UpperCamelCase )
model.eval()
snake_case__ = model(UpperCamelCase , attention_mask=UpperCamelCase , labels=UpperCamelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def lowerCAmelCase_ ( self: List[Any] , UpperCamelCase: Optional[Any] , UpperCamelCase: Union[str, Any] , UpperCamelCase: Any , UpperCamelCase: Optional[int] , UpperCamelCase: Tuple , UpperCamelCase: Any ) -> int:
snake_case__ = self.num_labels
snake_case__ = DistilBertForTokenClassification(config=UpperCamelCase )
model.to(UpperCamelCase )
model.eval()
snake_case__ = model(UpperCamelCase , attention_mask=UpperCamelCase , labels=UpperCamelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def lowerCAmelCase_ ( self: Optional[Any] , UpperCamelCase: Dict , UpperCamelCase: List[Any] , UpperCamelCase: Union[str, Any] , UpperCamelCase: Any , UpperCamelCase: Optional[Any] , UpperCamelCase: Optional[int] ) -> str:
snake_case__ = self.num_choices
snake_case__ = DistilBertForMultipleChoice(config=UpperCamelCase )
model.to(UpperCamelCase )
model.eval()
snake_case__ = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
snake_case__ = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
snake_case__ = model(
UpperCamelCase , attention_mask=UpperCamelCase , labels=UpperCamelCase , )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) )
def lowerCAmelCase_ ( self: str ) -> List[str]:
snake_case__ = self.prepare_config_and_inputs()
((snake_case__) , (snake_case__) , (snake_case__) , (snake_case__) , (snake_case__) , (snake_case__)) = config_and_inputs
snake_case__ = {'input_ids': input_ids, 'attention_mask': input_mask}
return config, inputs_dict
@require_torch
class __SCREAMING_SNAKE_CASE( a_ , a_ , unittest.TestCase ):
_UpperCAmelCase = (
(
DistilBertModel,
DistilBertForMaskedLM,
DistilBertForMultipleChoice,
DistilBertForQuestionAnswering,
DistilBertForSequenceClassification,
DistilBertForTokenClassification,
)
if is_torch_available()
else None
)
_UpperCAmelCase = (
{
"feature-extraction": DistilBertModel,
"fill-mask": DistilBertForMaskedLM,
"question-answering": DistilBertForQuestionAnswering,
"text-classification": DistilBertForSequenceClassification,
"token-classification": DistilBertForTokenClassification,
"zero-shot": DistilBertForSequenceClassification,
}
if is_torch_available()
else {}
)
_UpperCAmelCase = True
_UpperCAmelCase = True
_UpperCAmelCase = True
_UpperCAmelCase = True
def lowerCAmelCase_ ( self: Dict ) -> int:
snake_case__ = DistilBertModelTester(self )
snake_case__ = ConfigTester(self , config_class=UpperCamelCase , dim=37 )
def lowerCAmelCase_ ( self: List[str] ) -> Optional[int]:
self.config_tester.run_common_tests()
def lowerCAmelCase_ ( self: List[Any] ) -> int:
snake_case__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_distilbert_model(*UpperCamelCase )
def lowerCAmelCase_ ( self: List[Any] ) -> Dict:
snake_case__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_distilbert_for_masked_lm(*UpperCamelCase )
def lowerCAmelCase_ ( self: Tuple ) -> List[Any]:
snake_case__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_distilbert_for_question_answering(*UpperCamelCase )
def lowerCAmelCase_ ( self: Dict ) -> Union[str, Any]:
snake_case__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_distilbert_for_sequence_classification(*UpperCamelCase )
def lowerCAmelCase_ ( self: Optional[Any] ) -> Dict:
snake_case__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_distilbert_for_token_classification(*UpperCamelCase )
def lowerCAmelCase_ ( self: Any ) -> Union[str, Any]:
snake_case__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_distilbert_for_multiple_choice(*UpperCamelCase )
@slow
def lowerCAmelCase_ ( self: int ) -> str:
for model_name in DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
snake_case__ = DistilBertModel.from_pretrained(UpperCamelCase )
self.assertIsNotNone(UpperCamelCase )
@slow
@require_torch_gpu
def lowerCAmelCase_ ( self: str ) -> Union[str, Any]:
snake_case__ , snake_case__ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
# BertForMultipleChoice behaves incorrectly in JIT environments.
if model_class == DistilBertForMultipleChoice:
return
snake_case__ = True
snake_case__ = model_class(config=UpperCamelCase )
snake_case__ = self._prepare_for_class(UpperCamelCase , UpperCamelCase )
snake_case__ = torch.jit.trace(
UpperCamelCase , (inputs_dict['input_ids'].to('cpu' ), inputs_dict['attention_mask'].to('cpu' )) )
with tempfile.TemporaryDirectory() as tmp:
torch.jit.save(UpperCamelCase , os.path.join(UpperCamelCase , 'traced_model.pt' ) )
snake_case__ = torch.jit.load(os.path.join(UpperCamelCase , 'traced_model.pt' ) , map_location=UpperCamelCase )
loaded(inputs_dict['input_ids'].to(UpperCamelCase ) , inputs_dict['attention_mask'].to(UpperCamelCase ) )
@require_torch
class __SCREAMING_SNAKE_CASE( unittest.TestCase ):
@slow
def lowerCAmelCase_ ( self: Dict ) -> List[str]:
snake_case__ = DistilBertModel.from_pretrained('distilbert-base-uncased' )
snake_case__ = torch.tensor([[0, 3_45, 2_32, 3_28, 7_40, 1_40, 16_95, 69, 60_78, 15_88, 2]] )
snake_case__ = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] )
with torch.no_grad():
snake_case__ = model(UpperCamelCase , attention_mask=UpperCamelCase )[0]
snake_case__ = torch.Size((1, 11, 7_68) )
self.assertEqual(output.shape , UpperCamelCase )
snake_case__ = torch.tensor(
[[[-0.1_639, 0.3_299, 0.1_648], [-0.1_746, 0.3_289, 0.1_710], [-0.1_884, 0.3_357, 0.1_810]]] )
self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , UpperCamelCase , atol=1e-4 ) )
| 307 |
import math
from collections import defaultdict
from typing import List, Optional, Tuple, Union
import numpy as np
import torch
from ..configuration_utils import ConfigMixin, register_to_config
from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin, SchedulerOutput
def a_ ( _A , _A=0.999 , _A="cosine" , ) -> Optional[int]:
"""simple docstring"""
if alpha_transform_type == "cosine":
def alpha_bar_fn(_A ):
return math.cos((t + 0.008) / 1.008 * math.pi / 2 ) ** 2
elif alpha_transform_type == "exp":
def alpha_bar_fn(_A ):
return math.exp(t * -12.0 )
else:
raise ValueError(f'''Unsupported alpha_tranform_type: {alpha_transform_type}''' )
snake_case__ = []
for i in range(_A ):
snake_case__ = i / num_diffusion_timesteps
snake_case__ = (i + 1) / num_diffusion_timesteps
betas.append(min(1 - alpha_bar_fn(_A ) / alpha_bar_fn(_A ) , _A ) )
return torch.tensor(_A , dtype=torch.floataa )
class __SCREAMING_SNAKE_CASE( a_ , a_ ):
_UpperCAmelCase = [e.name for e in KarrasDiffusionSchedulers]
_UpperCAmelCase = 2
@register_to_config
def __init__( self: Dict , UpperCamelCase: int = 10_00 , UpperCamelCase: float = 0.00_085 , UpperCamelCase: float = 0.012 , UpperCamelCase: str = "linear" , UpperCamelCase: Optional[Union[np.ndarray, List[float]]] = None , UpperCamelCase: str = "epsilon" , UpperCamelCase: Optional[bool] = False , UpperCamelCase: Optional[bool] = False , UpperCamelCase: float = 1.0 , UpperCamelCase: str = "linspace" , UpperCamelCase: int = 0 , ) -> str:
if trained_betas is not None:
snake_case__ = torch.tensor(UpperCamelCase , dtype=torch.floataa )
elif beta_schedule == "linear":
snake_case__ = torch.linspace(UpperCamelCase , UpperCamelCase , UpperCamelCase , dtype=torch.floataa )
elif beta_schedule == "scaled_linear":
# this schedule is very specific to the latent diffusion model.
snake_case__ = (
torch.linspace(beta_start**0.5 , beta_end**0.5 , UpperCamelCase , dtype=torch.floataa ) ** 2
)
elif beta_schedule == "squaredcos_cap_v2":
# Glide cosine schedule
snake_case__ = betas_for_alpha_bar(UpperCamelCase , alpha_transform_type='cosine' )
elif beta_schedule == "exp":
snake_case__ = betas_for_alpha_bar(UpperCamelCase , alpha_transform_type='exp' )
else:
raise NotImplementedError(F'''{beta_schedule} does is not implemented for {self.__class__}''' )
snake_case__ = 1.0 - self.betas
snake_case__ = torch.cumprod(self.alphas , dim=0 )
# set all values
self.set_timesteps(UpperCamelCase , UpperCamelCase , UpperCamelCase )
snake_case__ = use_karras_sigmas
def lowerCAmelCase_ ( self: str , UpperCamelCase: int , UpperCamelCase: Optional[int]=None ) -> str:
if schedule_timesteps is None:
snake_case__ = self.timesteps
snake_case__ = (schedule_timesteps == timestep).nonzero()
# The sigma index that is taken for the **very** first `step`
# is always the second index (or the last index if there is only 1)
# This way we can ensure we don't accidentally skip a sigma in
# case we start in the middle of the denoising schedule (e.g. for image-to-image)
if len(self._index_counter ) == 0:
snake_case__ = 1 if len(UpperCamelCase ) > 1 else 0
else:
snake_case__ = timestep.cpu().item() if torch.is_tensor(UpperCamelCase ) else timestep
snake_case__ = self._index_counter[timestep_int]
return indices[pos].item()
@property
def lowerCAmelCase_ ( self: Optional[Any] ) -> List[Any]:
# standard deviation of the initial noise distribution
if self.config.timestep_spacing in ["linspace", "trailing"]:
return self.sigmas.max()
return (self.sigmas.max() ** 2 + 1) ** 0.5
def lowerCAmelCase_ ( self: Tuple , UpperCamelCase: torch.FloatTensor , UpperCamelCase: Union[float, torch.FloatTensor] , ) -> torch.FloatTensor:
snake_case__ = self.index_for_timestep(UpperCamelCase )
snake_case__ = self.sigmas[step_index]
snake_case__ = sample / ((sigma**2 + 1) ** 0.5)
return sample
def lowerCAmelCase_ ( self: Tuple , UpperCamelCase: int , UpperCamelCase: Union[str, torch.device] = None , UpperCamelCase: Optional[int] = None , ) -> str:
snake_case__ = num_inference_steps
snake_case__ = num_train_timesteps or self.config.num_train_timesteps
# "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891
if self.config.timestep_spacing == "linspace":
snake_case__ = np.linspace(0 , num_train_timesteps - 1 , UpperCamelCase , dtype=UpperCamelCase )[::-1].copy()
elif self.config.timestep_spacing == "leading":
snake_case__ = num_train_timesteps // self.num_inference_steps
# creates integer timesteps by multiplying by ratio
# casting to int to avoid issues when num_inference_step is power of 3
snake_case__ = (np.arange(0 , UpperCamelCase ) * step_ratio).round()[::-1].copy().astype(UpperCamelCase )
timesteps += self.config.steps_offset
elif self.config.timestep_spacing == "trailing":
snake_case__ = num_train_timesteps / self.num_inference_steps
# creates integer timesteps by multiplying by ratio
# casting to int to avoid issues when num_inference_step is power of 3
snake_case__ = (np.arange(UpperCamelCase , 0 , -step_ratio )).round().copy().astype(UpperCamelCase )
timesteps -= 1
else:
raise ValueError(
F'''{self.config.timestep_spacing} is not supported. Please make sure to choose one of \'linspace\', \'leading\' or \'trailing\'.''' )
snake_case__ = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5 )
snake_case__ = np.log(UpperCamelCase )
snake_case__ = np.interp(UpperCamelCase , np.arange(0 , len(UpperCamelCase ) ) , UpperCamelCase )
if self.config.use_karras_sigmas:
snake_case__ = self._convert_to_karras(in_sigmas=UpperCamelCase , num_inference_steps=self.num_inference_steps )
snake_case__ = np.array([self._sigma_to_t(UpperCamelCase , UpperCamelCase ) for sigma in sigmas] )
snake_case__ = np.concatenate([sigmas, [0.0]] ).astype(np.floataa )
snake_case__ = torch.from_numpy(UpperCamelCase ).to(device=UpperCamelCase )
snake_case__ = torch.cat([sigmas[:1], sigmas[1:-1].repeat_interleave(2 ), sigmas[-1:]] )
snake_case__ = torch.from_numpy(UpperCamelCase )
snake_case__ = torch.cat([timesteps[:1], timesteps[1:].repeat_interleave(2 )] )
if str(UpperCamelCase ).startswith('mps' ):
# mps does not support float64
snake_case__ = timesteps.to(UpperCamelCase , dtype=torch.floataa )
else:
snake_case__ = timesteps.to(device=UpperCamelCase )
# empty dt and derivative
snake_case__ = None
snake_case__ = None
# for exp beta schedules, such as the one for `pipeline_shap_e.py`
# we need an index counter
snake_case__ = defaultdict(UpperCamelCase )
def lowerCAmelCase_ ( self: List[str] , UpperCamelCase: List[str] , UpperCamelCase: Dict ) -> Tuple:
# get log sigma
snake_case__ = np.log(UpperCamelCase )
# get distribution
snake_case__ = log_sigma - log_sigmas[:, np.newaxis]
# get sigmas range
snake_case__ = np.cumsum((dists >= 0) , axis=0 ).argmax(axis=0 ).clip(max=log_sigmas.shape[0] - 2 )
snake_case__ = low_idx + 1
snake_case__ = log_sigmas[low_idx]
snake_case__ = log_sigmas[high_idx]
# interpolate sigmas
snake_case__ = (low - log_sigma) / (low - high)
snake_case__ = np.clip(UpperCamelCase , 0 , 1 )
# transform interpolation to time range
snake_case__ = (1 - w) * low_idx + w * high_idx
snake_case__ = t.reshape(sigma.shape )
return t
def lowerCAmelCase_ ( self: List[str] , UpperCamelCase: torch.FloatTensor , UpperCamelCase: Dict ) -> torch.FloatTensor:
snake_case__ = in_sigmas[-1].item()
snake_case__ = in_sigmas[0].item()
snake_case__ = 7.0 # 7.0 is the value used in the paper
snake_case__ = np.linspace(0 , 1 , UpperCamelCase )
snake_case__ = sigma_min ** (1 / rho)
snake_case__ = sigma_max ** (1 / rho)
snake_case__ = (max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho
return sigmas
@property
def lowerCAmelCase_ ( self: Dict ) -> Optional[Any]:
return self.dt is None
def lowerCAmelCase_ ( self: int , UpperCamelCase: Union[torch.FloatTensor, np.ndarray] , UpperCamelCase: Union[float, torch.FloatTensor] , UpperCamelCase: Union[torch.FloatTensor, np.ndarray] , UpperCamelCase: bool = True , ) -> Union[SchedulerOutput, Tuple]:
snake_case__ = self.index_for_timestep(UpperCamelCase )
# advance index counter by 1
snake_case__ = timestep.cpu().item() if torch.is_tensor(UpperCamelCase ) else timestep
self._index_counter[timestep_int] += 1
if self.state_in_first_order:
snake_case__ = self.sigmas[step_index]
snake_case__ = self.sigmas[step_index + 1]
else:
# 2nd order / Heun's method
snake_case__ = self.sigmas[step_index - 1]
snake_case__ = self.sigmas[step_index]
# currently only gamma=0 is supported. This usually works best anyways.
# We can support gamma in the future but then need to scale the timestep before
# passing it to the model which requires a change in API
snake_case__ = 0
snake_case__ = sigma * (gamma + 1) # Note: sigma_hat == sigma for now
# 1. compute predicted original sample (x_0) from sigma-scaled predicted noise
if self.config.prediction_type == "epsilon":
snake_case__ = sigma_hat if self.state_in_first_order else sigma_next
snake_case__ = sample - sigma_input * model_output
elif self.config.prediction_type == "v_prediction":
snake_case__ = sigma_hat if self.state_in_first_order else sigma_next
snake_case__ = model_output * (-sigma_input / (sigma_input**2 + 1) ** 0.5) + (
sample / (sigma_input**2 + 1)
)
elif self.config.prediction_type == "sample":
snake_case__ = model_output
else:
raise ValueError(
F'''prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`''' )
if self.config.clip_sample:
snake_case__ = pred_original_sample.clamp(
-self.config.clip_sample_range , self.config.clip_sample_range )
if self.state_in_first_order:
# 2. Convert to an ODE derivative for 1st order
snake_case__ = (sample - pred_original_sample) / sigma_hat
# 3. delta timestep
snake_case__ = sigma_next - sigma_hat
# store for 2nd order step
snake_case__ = derivative
snake_case__ = dt
snake_case__ = sample
else:
# 2. 2nd order / Heun's method
snake_case__ = (sample - pred_original_sample) / sigma_next
snake_case__ = (self.prev_derivative + derivative) / 2
# 3. take prev timestep & sample
snake_case__ = self.dt
snake_case__ = self.sample
# free dt and derivative
# Note, this puts the scheduler in "first order mode"
snake_case__ = None
snake_case__ = None
snake_case__ = None
snake_case__ = sample + derivative * dt
if not return_dict:
return (prev_sample,)
return SchedulerOutput(prev_sample=UpperCamelCase )
def lowerCAmelCase_ ( self: Any , UpperCamelCase: torch.FloatTensor , UpperCamelCase: torch.FloatTensor , UpperCamelCase: torch.FloatTensor , ) -> torch.FloatTensor:
# Make sure sigmas and timesteps have the same device and dtype as original_samples
snake_case__ = self.sigmas.to(device=original_samples.device , dtype=original_samples.dtype )
if original_samples.device.type == "mps" and torch.is_floating_point(UpperCamelCase ):
# mps does not support float64
snake_case__ = self.timesteps.to(original_samples.device , dtype=torch.floataa )
snake_case__ = timesteps.to(original_samples.device , dtype=torch.floataa )
else:
snake_case__ = self.timesteps.to(original_samples.device )
snake_case__ = timesteps.to(original_samples.device )
snake_case__ = [self.index_for_timestep(UpperCamelCase , UpperCamelCase ) for t in timesteps]
snake_case__ = sigmas[step_indices].flatten()
while len(sigma.shape ) < len(original_samples.shape ):
snake_case__ = sigma.unsqueeze(-1 )
snake_case__ = original_samples + noise * sigma
return noisy_samples
def __len__( self: List[Any] ) -> Union[str, Any]:
return self.config.num_train_timesteps
| 307 | 1 |
from __future__ import annotations
import time
from collections.abc import Sequence
from random import randint
from matplotlib import pyplot as plt
def lowerCAmelCase_ ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ):
if not arr:
return None, None, 0
if low == high:
return low, high, arr[low]
__snake_case : Optional[int] = (low + high) // 2
__snake_case , __snake_case , __snake_case : Union[str, Any] = max_subarray(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase )
__snake_case , __snake_case , __snake_case : int = max_subarray(__lowerCamelCase , mid + 1 , __lowerCamelCase )
__snake_case , __snake_case , __snake_case : List[Any] = max_cross_sum(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase )
if left_sum >= right_sum and left_sum >= cross_sum:
return left_low, left_high, left_sum
elif right_sum >= left_sum and right_sum >= cross_sum:
return right_low, right_high, right_sum
return cross_left, cross_right, cross_sum
def lowerCAmelCase_ ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ):
__snake_case , __snake_case : int = float("-inf" ), -1
__snake_case , __snake_case : Tuple = float("-inf" ), -1
__snake_case : int | float = 0
for i in range(__lowerCamelCase , low - 1 , -1 ):
summ += arr[i]
if summ > left_sum:
__snake_case : int = summ
__snake_case : str = i
__snake_case : Dict = 0
for i in range(mid + 1 , high + 1 ):
summ += arr[i]
if summ > right_sum:
__snake_case : Any = summ
__snake_case : Dict = i
return max_left, max_right, (left_sum + right_sum)
def lowerCAmelCase_ ( __lowerCamelCase ):
__snake_case : Union[str, Any] = [randint(1 , __lowerCamelCase ) for _ in range(__lowerCamelCase )]
__snake_case : Dict = time.time()
max_subarray(__lowerCamelCase , 0 , input_size - 1 )
__snake_case : Dict = time.time()
return end - start
def lowerCAmelCase_ ( ):
__snake_case : Dict = [1_0, 1_0_0, 1_0_0_0, 1_0_0_0_0, 5_0_0_0_0, 1_0_0_0_0_0, 2_0_0_0_0_0, 3_0_0_0_0_0, 4_0_0_0_0_0, 5_0_0_0_0_0]
__snake_case : Optional[Any] = [time_max_subarray(__lowerCamelCase ) for input_size in input_sizes]
print("No of Inputs\t\tTime Taken" )
for input_size, runtime in zip(__lowerCamelCase , __lowerCamelCase ):
print(__lowerCamelCase , "\t\t" , __lowerCamelCase )
plt.plot(__lowerCamelCase , __lowerCamelCase )
plt.xlabel("Number of Inputs" )
plt.ylabel("Time taken in seconds" )
plt.show()
if __name__ == "__main__":
from doctest import testmod
testmod()
| 134 |
from collections import OrderedDict
from typing import Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
_snake_case : int = logging.get_logger(__name__)
_snake_case : int = {
"microsoft/beit-base-patch16-224-pt22k": (
"https://huggingface.co/microsoft/beit-base-patch16-224-pt22k/resolve/main/config.json"
),
# See all BEiT models at https://huggingface.co/models?filter=beit
}
class a (_lowerCAmelCase ):
"""simple docstring"""
__UpperCAmelCase : Union[str, Any] = "beit"
def __init__( self : Union[str, Any] , lowerCamelCase : Any=8192 , lowerCamelCase : Dict=768 , lowerCamelCase : int=12 , lowerCamelCase : Optional[Any]=12 , lowerCamelCase : List[str]=3072 , lowerCamelCase : Tuple="gelu" , lowerCamelCase : Union[str, Any]=0.0 , lowerCamelCase : int=0.0 , lowerCamelCase : Dict=0.02 , lowerCamelCase : List[str]=1E-12 , lowerCamelCase : Optional[Any]=224 , lowerCamelCase : Optional[int]=16 , lowerCamelCase : Any=3 , lowerCamelCase : Optional[int]=False , lowerCamelCase : Any=False , lowerCamelCase : Optional[Any]=False , lowerCamelCase : int=False , lowerCamelCase : Any=0.1 , lowerCamelCase : Tuple=0.1 , lowerCamelCase : Optional[int]=True , lowerCamelCase : int=[3, 5, 7, 11] , lowerCamelCase : str=[1, 2, 3, 6] , lowerCamelCase : int=True , lowerCamelCase : List[Any]=0.4 , lowerCamelCase : int=256 , lowerCamelCase : str=1 , lowerCamelCase : List[str]=False , lowerCamelCase : List[str]=255 , **lowerCamelCase : Dict , ) -> int:
super().__init__(**lowerCamelCase )
__snake_case : Any = vocab_size
__snake_case : List[str] = hidden_size
__snake_case : List[Any] = num_hidden_layers
__snake_case : Tuple = num_attention_heads
__snake_case : Dict = intermediate_size
__snake_case : Union[str, Any] = hidden_act
__snake_case : Optional[Any] = hidden_dropout_prob
__snake_case : Optional[int] = attention_probs_dropout_prob
__snake_case : Union[str, Any] = initializer_range
__snake_case : str = layer_norm_eps
__snake_case : Optional[Any] = image_size
__snake_case : List[str] = patch_size
__snake_case : Optional[Any] = num_channels
__snake_case : Any = use_mask_token
__snake_case : List[str] = use_absolute_position_embeddings
__snake_case : List[Any] = use_relative_position_bias
__snake_case : str = use_shared_relative_position_bias
__snake_case : str = layer_scale_init_value
__snake_case : Any = drop_path_rate
__snake_case : int = use_mean_pooling
# decode head attributes (semantic segmentation)
__snake_case : Optional[Any] = out_indices
__snake_case : List[str] = pool_scales
# auxiliary head attributes (semantic segmentation)
__snake_case : int = use_auxiliary_head
__snake_case : int = auxiliary_loss_weight
__snake_case : Optional[int] = auxiliary_channels
__snake_case : int = auxiliary_num_convs
__snake_case : str = auxiliary_concat_input
__snake_case : List[str] = semantic_loss_ignore_index
class a (_lowerCAmelCase ):
"""simple docstring"""
__UpperCAmelCase : Union[str, Any] = version.parse("1.11" )
@property
def __snake_case ( self : Dict ) -> Mapping[str, Mapping[int, str]]:
return OrderedDict(
[
("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}),
] )
@property
def __snake_case ( self : str ) -> float:
return 1E-4
| 134 | 1 |
"""simple docstring"""
from pathlib import Path
import fire
from tqdm import tqdm
def lowercase ( _snake_case : int="ro" , _snake_case : Dict="en" , _snake_case : int="wmt16" , _snake_case : List[str]=None ) ->None:
"""simple docstring"""
try:
import datasets
except (ModuleNotFoundError, ImportError):
raise ImportError('''run pip install datasets''' )
__snake_case : Union[str, Any] = f"""{src_lang}-{tgt_lang}"""
print(f"""Converting {dataset}-{pair}""" )
__snake_case : Optional[Any] = datasets.load_dataset(_snake_case , _snake_case )
if save_dir is None:
__snake_case : int = f"""{dataset}-{pair}"""
__snake_case : Union[str, Any] = Path(_snake_case )
save_dir.mkdir(exist_ok=_snake_case )
for split in ds.keys():
print(f"""Splitting {split} with {ds[split].num_rows} records""" )
# to save to val.source, val.target like summary datasets
__snake_case : Union[str, Any] = '''val''' if split == '''validation''' else split
__snake_case : List[str] = save_dir.joinpath(f"""{fn}.source""" )
__snake_case : int = save_dir.joinpath(f"""{fn}.target""" )
__snake_case : Union[str, Any] = src_path.open('''w+''' )
__snake_case : Union[str, Any] = tgt_path.open('''w+''' )
# reader is the bottleneck so writing one record at a time doesn't slow things down
for x in tqdm(ds[split] ):
__snake_case : List[str] = x['''translation''']
src_fp.write(ex[src_lang] + '''\n''' )
tgt_fp.write(ex[tgt_lang] + '''\n''' )
print(f"""Saved {dataset} dataset to {save_dir}""" )
if __name__ == "__main__":
fire.Fire(download_wmt_dataset)
| 102 |
'''simple docstring'''
import pytest
from datasets.utils.sharding import _distribute_shards, _number_of_shards_in_gen_kwargs, _split_gen_kwargs
@pytest.mark.parametrize(
"kwargs, expected" , [
({"num_shards": 0, "max_num_jobs": 1}, []),
({"num_shards": 10, "max_num_jobs": 1}, [range(10 )]),
({"num_shards": 10, "max_num_jobs": 10}, [range(__lowercase , i + 1 ) for i in range(10 )]),
({"num_shards": 1, "max_num_jobs": 10}, [range(1 )]),
({"num_shards": 10, "max_num_jobs": 3}, [range(0 , 4 ), range(4 , 7 ), range(7 , 10 )]),
({"num_shards": 3, "max_num_jobs": 10}, [range(0 , 1 ), range(1 , 2 ), range(2 , 3 )]),
] , )
def UpperCAmelCase_ ( __lowercase : int , __lowercase : Dict ) -> List[Any]:
'''simple docstring'''
_UpperCAmelCase = _distribute_shards(**__lowercase )
assert out == expected
@pytest.mark.parametrize(
"gen_kwargs, max_num_jobs, expected" , [
({"foo": 0}, 10, [{"foo": 0}]),
({"shards": [0, 1, 2, 3]}, 1, [{"shards": [0, 1, 2, 3]}]),
({"shards": [0, 1, 2, 3]}, 4, [{"shards": [0]}, {"shards": [1]}, {"shards": [2]}, {"shards": [3]}]),
({"shards": [0, 1]}, 4, [{"shards": [0]}, {"shards": [1]}]),
({"shards": [0, 1, 2, 3]}, 2, [{"shards": [0, 1]}, {"shards": [2, 3]}]),
] , )
def UpperCAmelCase_ ( __lowercase : Dict , __lowercase : Optional[Any] , __lowercase : int ) -> str:
'''simple docstring'''
_UpperCAmelCase = _split_gen_kwargs(__lowercase , __lowercase )
assert out == expected
@pytest.mark.parametrize(
"gen_kwargs, expected" , [
({"foo": 0}, 1),
({"shards": [0]}, 1),
({"shards": [0, 1, 2, 3]}, 4),
({"shards": [0, 1, 2, 3], "foo": 0}, 4),
({"shards": [0, 1, 2, 3], "other": (0, 1)}, 4),
({"shards": [0, 1, 2, 3], "shards2": [0, 1]}, RuntimeError),
] , )
def UpperCAmelCase_ ( __lowercase : Optional[Any] , __lowercase : List[Any] ) -> List[Any]:
'''simple docstring'''
if expected is RuntimeError:
with pytest.raises(__lowercase ):
_number_of_shards_in_gen_kwargs(__lowercase )
else:
_UpperCAmelCase = _number_of_shards_in_gen_kwargs(__lowercase )
assert out == expected
| 22 | 0 |
'''simple docstring'''
from __future__ import annotations
import random
# Maximum size of the population. Bigger could be faster but is more memory expensive.
lowercase : str = 200
# Number of elements selected in every generation of evolution. The selection takes
# place from best to worst of that generation and must be smaller than N_POPULATION.
lowercase : List[Any] = 50
# Probability that an element of a generation can mutate, changing one of its genes.
# This will guarantee that all genes will be used during evolution.
lowercase : str = 0.4
# Just a seed to improve randomness required by the algorithm.
random.seed(random.randint(0, 1000))
def SCREAMING_SNAKE_CASE__ ( __A , __A ) -> tuple[str, float]:
_snake_case = len([g for position, g in enumerate(__A ) if g == main_target[position]] )
return (item, float(__A ))
def SCREAMING_SNAKE_CASE__ ( __A , __A ) -> tuple[str, str]:
_snake_case = random.randint(0 , len(__A ) - 1 )
_snake_case = parent_a[:random_slice] + parent_a[random_slice:]
_snake_case = parent_a[:random_slice] + parent_a[random_slice:]
return (child_a, child_a)
def SCREAMING_SNAKE_CASE__ ( __A , __A ) -> str:
_snake_case = list(__A )
if random.uniform(0 , 1 ) < MUTATION_PROBABILITY:
_snake_case = random.choice(__A )
return "".join(__A )
def SCREAMING_SNAKE_CASE__ ( __A , __A , __A , ) -> list[str]:
_snake_case = []
# Generate more children proportionally to the fitness score.
_snake_case = int(parent_a[1] * 100 ) + 1
_snake_case = 10 if child_n >= 10 else child_n
for _ in range(__A ):
_snake_case = population_score[random.randint(0 , __A )][0]
_snake_case , _snake_case = crossover(parent_a[0] , __A )
# Append new string to the population list.
pop.append(mutate(__A , __A ) )
pop.append(mutate(__A , __A ) )
return pop
def SCREAMING_SNAKE_CASE__ ( __A , __A , __A = True ) -> tuple[int, int, str]:
# Verify if N_POPULATION is bigger than N_SELECTED
if N_POPULATION < N_SELECTED:
_snake_case = F'{N_POPULATION} must be bigger than {N_SELECTED}'
raise ValueError(__A )
# Verify that the target contains no genes besides the ones inside genes variable.
_snake_case = sorted({c for c in target if c not in genes} )
if not_in_genes_list:
_snake_case = F'{not_in_genes_list} is not in genes list, evolution cannot converge'
raise ValueError(__A )
# Generate random starting population.
_snake_case = []
for _ in range(__A ):
population.append(''.join([random.choice(__A ) for i in range(len(__A ) )] ) )
# Just some logs to know what the algorithms is doing.
_snake_case , _snake_case = 0, 0
# This loop will end when we find a perfect match for our target.
while True:
generation += 1
total_population += len(__A )
# Random population created. Now it's time to evaluate.
# Adding a bit of concurrency can make everything faster,
#
# import concurrent.futures
# population_score: list[tuple[str, float]] = []
# with concurrent.futures.ThreadPoolExecutor(
# max_workers=NUM_WORKERS) as executor:
# futures = {executor.submit(evaluate, item) for item in population}
# concurrent.futures.wait(futures)
# population_score = [item.result() for item in futures]
#
# but with a simple algorithm like this, it will probably be slower.
# We just need to call evaluate for every item inside the population.
_snake_case = [evaluate(__A , __A ) for item in population]
# Check if there is a matching evolution.
_snake_case = sorted(__A , key=lambda __A : x[1] , reverse=__A )
if population_score[0][0] == target:
return (generation, total_population, population_score[0][0])
# Print the best result every 10 generation.
# Just to know that the algorithm is working.
if debug and generation % 10 == 0:
print(
F'\nGeneration: {generation}'
F'\nTotal Population:{total_population}'
F'\nBest score: {population_score[0][1]}'
F'\nBest string: {population_score[0][0]}' )
# Flush the old population, keeping some of the best evolutions.
# Keeping this avoid regression of evolution.
_snake_case = population[: int(N_POPULATION / 3 )]
population.clear()
population.extend(__A )
# Normalize population score to be between 0 and 1.
_snake_case = [
(item, score / len(__A )) for item, score in population_score
]
# This is selection
for i in range(__A ):
population.extend(select(population_score[int(__A )] , __A , __A ) )
# Check if the population has already reached the maximum value and if so,
# break the cycle. If this check is disabled, the algorithm will take
# forever to compute large strings, but will also calculate small strings in
# a far fewer generations.
if len(__A ) > N_POPULATION:
break
if __name__ == "__main__":
lowercase : Tuple = (
"This is a genetic algorithm to evaluate, combine, evolve, and mutate a string!"
)
lowercase : Tuple = list(
" ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklm"
"nopqrstuvwxyz.,;!?+-*#@^'èéòà€ù=)(&%$£/\\"
)
lowercase , lowercase , lowercase : int = basic(target_str, genes_list)
print(
F'''\nGeneration: {generation}\nTotal Population: {population}\nTarget: {target}'''
)
| 160 |
'''simple docstring'''
from ...processing_utils import ProcessorMixin
class __UpperCAmelCase ( _lowerCamelCase ):
__lowercase = """SpeechT5FeatureExtractor"""
__lowercase = """SpeechT5Tokenizer"""
def __init__( self , lowerCAmelCase_ , lowerCAmelCase_ ):
"""simple docstring"""
super().__init__(lowerCAmelCase_ , lowerCAmelCase_ )
def __call__( self , *lowerCAmelCase_ , **lowerCAmelCase_ ):
"""simple docstring"""
_snake_case = kwargs.pop('audio' , lowerCAmelCase_ )
_snake_case = kwargs.pop('text' , lowerCAmelCase_ )
_snake_case = kwargs.pop('text_target' , lowerCAmelCase_ )
_snake_case = kwargs.pop('audio_target' , lowerCAmelCase_ )
_snake_case = kwargs.pop('sampling_rate' , lowerCAmelCase_ )
if audio is not None and text is not None:
raise ValueError(
'Cannot process both `audio` and `text` inputs. Did you mean `audio_target` or `text_target`?' )
if audio_target is not None and text_target is not None:
raise ValueError(
'Cannot process both `audio_target` and `text_target` inputs. Did you mean `audio` or `text`?' )
if audio is None and audio_target is None and text is None and text_target is None:
raise ValueError(
'You need to specify either an `audio`, `audio_target`, `text`, or `text_target` input to process.' )
if audio is not None:
_snake_case = self.feature_extractor(lowerCAmelCase_ , *lowerCAmelCase_ , sampling_rate=lowerCAmelCase_ , **lowerCAmelCase_ )
elif text is not None:
_snake_case = self.tokenizer(lowerCAmelCase_ , **lowerCAmelCase_ )
else:
_snake_case = None
if audio_target is not None:
_snake_case = self.feature_extractor(audio_target=lowerCAmelCase_ , *lowerCAmelCase_ , sampling_rate=lowerCAmelCase_ , **lowerCAmelCase_ )
_snake_case = targets['input_values']
elif text_target is not None:
_snake_case = self.tokenizer(lowerCAmelCase_ , **lowerCAmelCase_ )
_snake_case = targets['input_ids']
else:
_snake_case = None
if inputs is None:
return targets
if targets is not None:
_snake_case = labels
_snake_case = targets.get('attention_mask' )
if decoder_attention_mask is not None:
_snake_case = decoder_attention_mask
return inputs
def lowerCamelCase ( self , *lowerCAmelCase_ , **lowerCAmelCase_ ):
"""simple docstring"""
_snake_case = kwargs.pop('input_values' , lowerCAmelCase_ )
_snake_case = kwargs.pop('input_ids' , lowerCAmelCase_ )
_snake_case = kwargs.pop('labels' , lowerCAmelCase_ )
if input_values is not None and input_ids is not None:
raise ValueError('Cannot process both `input_values` and `input_ids` inputs.' )
if input_values is None and input_ids is None and labels is None:
raise ValueError(
'You need to specify either an `input_values`, `input_ids`, or `labels` input to be padded.' )
if input_values is not None:
_snake_case = self.feature_extractor.pad(lowerCAmelCase_ , *lowerCAmelCase_ , **lowerCAmelCase_ )
elif input_ids is not None:
_snake_case = self.tokenizer.pad(lowerCAmelCase_ , **lowerCAmelCase_ )
else:
_snake_case = None
if labels is not None:
if "input_ids" in labels or (isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) and "input_ids" in labels[0]):
_snake_case = self.tokenizer.pad(lowerCAmelCase_ , **lowerCAmelCase_ )
_snake_case = targets['input_ids']
else:
_snake_case = self.feature_extractor.feature_size
_snake_case = self.feature_extractor.num_mel_bins
_snake_case = self.feature_extractor.pad(lowerCAmelCase_ , *lowerCAmelCase_ , **lowerCAmelCase_ )
_snake_case = feature_size_hack
_snake_case = targets['input_values']
else:
_snake_case = None
if inputs is None:
return targets
if targets is not None:
_snake_case = labels
_snake_case = targets.get('attention_mask' )
if decoder_attention_mask is not None:
_snake_case = decoder_attention_mask
return inputs
def lowerCamelCase ( self , *lowerCAmelCase_ , **lowerCAmelCase_ ):
"""simple docstring"""
return self.tokenizer.batch_decode(*lowerCAmelCase_ , **lowerCAmelCase_ )
def lowerCamelCase ( self , *lowerCAmelCase_ , **lowerCAmelCase_ ):
"""simple docstring"""
return self.tokenizer.decode(*lowerCAmelCase_ , **lowerCAmelCase_ )
| 160 | 1 |
"""simple docstring"""
from heapq import heappop, heappush
import numpy as np
def __lowercase ( _a , _a , _a , _a , ):
snake_case_ : Dict = grid.shape
snake_case_ : str = [-1, 1, 0, 0]
snake_case_ : Union[str, Any] = [0, 0, -1, 1]
if allow_diagonal:
dx += [-1, -1, 1, 1]
dy += [-1, 1, -1, 1]
snake_case_ : Dict = [(0, source)], set()
snake_case_ : List[Any] = np.full((rows, cols) , np.inf )
snake_case_ : Any = 0
snake_case_ : Optional[int] = np.empty((rows, cols) , dtype=_UpperCAmelCase )
snake_case_ : List[Any] = None
while queue:
(snake_case_) : Any = heappop(_UpperCAmelCase )
if (x, y) in visited:
continue
visited.add((x, y) )
if (x, y) == destination:
snake_case_ : Tuple = []
while (x, y) != source:
path.append((x, y) )
snake_case_ : str = predecessors[x, y]
path.append(_UpperCAmelCase ) # add the source manually
path.reverse()
return matrix[destination], path
for i in range(len(_UpperCAmelCase ) ):
snake_case_ : str = x + dx[i], y + dy[i]
if 0 <= nx < rows and 0 <= ny < cols:
snake_case_ : Optional[Any] = grid[nx][ny]
if next_node == 1 and matrix[nx, ny] > dist + 1:
heappush(_UpperCAmelCase , (dist + 1, (nx, ny)) )
snake_case_ : Union[str, Any] = dist + 1
snake_case_ : Dict = (x, y)
return np.inf, []
if __name__ == "__main__":
import doctest
doctest.testmod()
| 264 |
import unittest
import numpy as np
from transformers.testing_utils import require_pytesseract, require_torch
from transformers.utils import is_pytesseract_available, is_torch_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_pytesseract_available():
from PIL import Image
from transformers import LayoutLMvaImageProcessor
class UpperCAmelCase__ ( unittest.TestCase ):
'''simple docstring'''
def __init__( self : Dict , a_ : Dict , a_ : Union[str, Any]=7 , a_ : Optional[Any]=3 , a_ : List[str]=18 , a_ : Union[str, Any]=30 , a_ : Union[str, Any]=4_00 , a_ : Union[str, Any]=True , a_ : Tuple=None , a_ : Optional[int]=True , ):
'''simple docstring'''
__UpperCAmelCase : Optional[int] = size if size is not None else {'''height''': 18, '''width''': 18}
__UpperCAmelCase : Dict = parent
__UpperCAmelCase : str = batch_size
__UpperCAmelCase : List[str] = num_channels
__UpperCAmelCase : Union[str, Any] = image_size
__UpperCAmelCase : Optional[int] = min_resolution
__UpperCAmelCase : Union[str, Any] = max_resolution
__UpperCAmelCase : Tuple = do_resize
__UpperCAmelCase : List[str] = size
__UpperCAmelCase : List[Any] = apply_ocr
def snake_case__ ( self : Optional[int] ):
'''simple docstring'''
return {"do_resize": self.do_resize, "size": self.size, "apply_ocr": self.apply_ocr}
@require_torch
@require_pytesseract
class UpperCAmelCase__ ( __UpperCamelCase ,unittest.TestCase ):
'''simple docstring'''
UpperCamelCase = LayoutLMvaImageProcessor if is_pytesseract_available() else None
def snake_case__ ( self : List[Any] ):
'''simple docstring'''
__UpperCAmelCase : str = LayoutLMvaImageProcessingTester(self )
@property
def snake_case__ ( self : Union[str, Any] ):
'''simple docstring'''
return self.image_processor_tester.prepare_image_processor_dict()
def snake_case__ ( self : List[str] ):
'''simple docstring'''
__UpperCAmelCase : Optional[int] = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(a_ , '''do_resize''' ) )
self.assertTrue(hasattr(a_ , '''size''' ) )
self.assertTrue(hasattr(a_ , '''apply_ocr''' ) )
def snake_case__ ( self : List[str] ):
'''simple docstring'''
__UpperCAmelCase : Any = self.image_processing_class.from_dict(self.image_processor_dict )
self.assertEqual(image_processor.size , {'''height''': 18, '''width''': 18} )
__UpperCAmelCase : int = self.image_processing_class.from_dict(self.image_processor_dict , size=42 )
self.assertEqual(image_processor.size , {'''height''': 42, '''width''': 42} )
def snake_case__ ( self : int ):
'''simple docstring'''
pass
def snake_case__ ( self : List[str] ):
'''simple docstring'''
__UpperCAmelCase : Dict = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
__UpperCAmelCase : Dict = prepare_image_inputs(self.image_processor_tester , equal_resolution=a_ )
for image in image_inputs:
self.assertIsInstance(a_ , Image.Image )
# Test not batched input
__UpperCAmelCase : List[Any] = image_processing(image_inputs[0] , return_tensors='''pt''' )
self.assertEqual(
encoding.pixel_values.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.size['''height'''],
self.image_processor_tester.size['''width'''],
) , )
self.assertIsInstance(encoding.words , a_ )
self.assertIsInstance(encoding.boxes , a_ )
# Test batched
__UpperCAmelCase : Optional[Any] = image_processing(a_ , return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.size['''height'''],
self.image_processor_tester.size['''width'''],
) , )
def snake_case__ ( self : List[Any] ):
'''simple docstring'''
__UpperCAmelCase : Dict = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
__UpperCAmelCase : Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=a_ , numpify=a_ )
for image in image_inputs:
self.assertIsInstance(a_ , np.ndarray )
# Test not batched input
__UpperCAmelCase : Dict = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.size['''height'''],
self.image_processor_tester.size['''width'''],
) , )
# Test batched
__UpperCAmelCase : int = image_processing(a_ , return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.size['''height'''],
self.image_processor_tester.size['''width'''],
) , )
def snake_case__ ( self : Tuple ):
'''simple docstring'''
__UpperCAmelCase : List[str] = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
__UpperCAmelCase : Tuple = prepare_image_inputs(self.image_processor_tester , equal_resolution=a_ , torchify=a_ )
for image in image_inputs:
self.assertIsInstance(a_ , torch.Tensor )
# Test not batched input
__UpperCAmelCase : str = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.size['''height'''],
self.image_processor_tester.size['''width'''],
) , )
# Test batched
__UpperCAmelCase : List[Any] = image_processing(a_ , return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.size['''height'''],
self.image_processor_tester.size['''width'''],
) , )
def snake_case__ ( self : Optional[Any] ):
'''simple docstring'''
__UpperCAmelCase : Any = LayoutLMvaImageProcessor()
from datasets import load_dataset
__UpperCAmelCase : Any = load_dataset('''hf-internal-testing/fixtures_docvqa''' , split='''test''' )
__UpperCAmelCase : Optional[int] = Image.open(ds[0]['''file'''] ).convert('''RGB''' )
__UpperCAmelCase : Any = image_processing(a_ , return_tensors='''pt''' )
self.assertEqual(encoding.pixel_values.shape , (1, 3, 2_24, 2_24) )
self.assertEqual(len(encoding.words ) , len(encoding.boxes ) )
# fmt: off
# the words and boxes were obtained with Tesseract 4.1.1
__UpperCAmelCase : Any = [['''11:14''', '''to''', '''11:39''', '''a.m''', '''11:39''', '''to''', '''11:44''', '''a.m.''', '''11:44''', '''a.m.''', '''to''', '''12:25''', '''p.m.''', '''12:25''', '''to''', '''12:58''', '''p.m.''', '''12:58''', '''to''', '''4:00''', '''p.m.''', '''2:00''', '''to''', '''5:00''', '''p.m.''', '''Coffee''', '''Break''', '''Coffee''', '''will''', '''be''', '''served''', '''for''', '''men''', '''and''', '''women''', '''in''', '''the''', '''lobby''', '''adjacent''', '''to''', '''exhibit''', '''area.''', '''Please''', '''move''', '''into''', '''exhibit''', '''area.''', '''(Exhibits''', '''Open)''', '''TRRF''', '''GENERAL''', '''SESSION''', '''(PART''', '''|)''', '''Presiding:''', '''Lee''', '''A.''', '''Waller''', '''TRRF''', '''Vice''', '''President''', '''“Introductory''', '''Remarks”''', '''Lee''', '''A.''', '''Waller,''', '''TRRF''', '''Vice''', '''Presi-''', '''dent''', '''Individual''', '''Interviews''', '''with''', '''TRRF''', '''Public''', '''Board''', '''Members''', '''and''', '''Sci-''', '''entific''', '''Advisory''', '''Council''', '''Mem-''', '''bers''', '''Conducted''', '''by''', '''TRRF''', '''Treasurer''', '''Philip''', '''G.''', '''Kuehn''', '''to''', '''get''', '''answers''', '''which''', '''the''', '''public''', '''refrigerated''', '''warehousing''', '''industry''', '''is''', '''looking''', '''for.''', '''Plus''', '''questions''', '''from''', '''the''', '''floor.''', '''Dr.''', '''Emil''', '''M.''', '''Mrak,''', '''University''', '''of''', '''Cal-''', '''ifornia,''', '''Chairman,''', '''TRRF''', '''Board;''', '''Sam''', '''R.''', '''Cecil,''', '''University''', '''of''', '''Georgia''', '''College''', '''of''', '''Agriculture;''', '''Dr.''', '''Stanley''', '''Charm,''', '''Tufts''', '''University''', '''School''', '''of''', '''Medicine;''', '''Dr.''', '''Robert''', '''H.''', '''Cotton,''', '''ITT''', '''Continental''', '''Baking''', '''Company;''', '''Dr.''', '''Owen''', '''Fennema,''', '''University''', '''of''', '''Wis-''', '''consin;''', '''Dr.''', '''Robert''', '''E.''', '''Hardenburg,''', '''USDA.''', '''Questions''', '''and''', '''Answers''', '''Exhibits''', '''Open''', '''Capt.''', '''Jack''', '''Stoney''', '''Room''', '''TRRF''', '''Scientific''', '''Advisory''', '''Council''', '''Meeting''', '''Ballroom''', '''Foyer''']] # noqa: E231
__UpperCAmelCase : Tuple = [[[1_41, 57, 2_14, 69], [2_28, 58, 2_52, 69], [1_41, 75, 2_16, 88], [2_30, 79, 2_80, 88], [1_42, 2_60, 2_18, 2_73], [2_30, 2_61, 2_55, 2_73], [1_43, 2_79, 2_18, 2_90], [2_31, 2_82, 2_90, 2_91], [1_43, 3_42, 2_18, 3_54], [2_31, 3_45, 2_89, 3_55], [2_02, 3_62, 2_27, 3_73], [1_43, 3_79, 2_20, 3_92], [2_31, 3_82, 2_91, 3_94], [1_44, 7_14, 2_20, 7_26], [2_31, 7_15, 2_56, 7_26], [1_44, 7_32, 2_20, 7_45], [2_32, 7_36, 2_91, 7_47], [1_44, 7_69, 2_18, 7_82], [2_31, 7_70, 2_56, 7_82], [1_41, 7_88, 2_02, 8_01], [2_15, 7_91, 2_74, 8_04], [1_43, 8_26, 2_04, 8_38], [2_15, 8_26, 2_40, 8_38], [1_42, 8_44, 2_02, 8_57], [2_15, 8_47, 2_74, 8_59], [3_34, 57, 4_27, 69], [4_40, 57, 5_22, 69], [3_69, 75, 4_61, 88], [4_69, 75, 5_16, 88], [5_28, 76, 5_62, 88], [5_70, 76, 6_67, 88], [6_75, 75, 7_11, 87], [7_21, 79, 7_78, 88], [7_89, 75, 8_40, 88], [3_69, 97, 4_70, 1_07], [4_84, 94, 5_07, 1_06], [5_18, 94, 5_62, 1_07], [5_76, 94, 6_55, 1_10], [6_68, 94, 7_92, 1_09], [8_04, 95, 8_29, 1_07], [3_69, 1_13, 4_65, 1_25], [4_77, 1_16, 5_47, 1_25], [5_62, 1_13, 6_58, 1_25], [6_71, 1_16, 7_48, 1_25], [7_61, 1_13, 8_11, 1_25], [3_69, 1_31, 4_65, 1_43], [4_77, 1_33, 5_48, 1_43], [5_63, 1_30, 6_98, 1_45], [7_10, 1_30, 8_02, 1_46], [3_36, 1_71, 4_12, 1_83], [4_23, 1_71, 5_72, 1_83], [5_82, 1_70, 7_16, 1_84], [7_28, 1_71, 8_17, 1_87], [8_29, 1_71, 8_44, 1_86], [3_38, 1_97, 4_82, 2_12], [5_07, 1_96, 5_57, 2_09], [5_69, 1_96, 5_95, 2_08], [6_10, 1_96, 7_02, 2_09], [5_05, 2_14, 5_83, 2_26], [5_95, 2_14, 6_56, 2_27], [6_70, 2_15, 8_07, 2_27], [3_35, 2_59, 5_43, 2_74], [5_56, 2_59, 7_08, 2_72], [3_72, 2_79, 4_22, 2_91], [4_35, 2_79, 4_60, 2_91], [4_74, 2_79, 5_74, 2_92], [5_87, 2_78, 6_64, 2_91], [6_76, 2_78, 7_38, 2_91], [7_51, 2_79, 8_34, 2_91], [3_72, 2_98, 4_34, 3_10], [3_35, 3_41, 4_83, 3_54], [4_97, 3_41, 6_55, 3_54], [6_67, 3_41, 7_28, 3_54], [7_40, 3_41, 8_25, 3_54], [3_35, 3_60, 4_30, 3_72], [4_42, 3_60, 5_34, 3_72], [5_45, 3_59, 6_87, 3_72], [6_97, 3_60, 7_54, 3_72], [7_65, 3_60, 8_23, 3_73], [3_34, 3_78, 4_28, 3_91], [4_40, 3_78, 5_77, 3_94], [5_90, 3_78, 7_05, 3_91], [7_20, 3_78, 8_01, 3_91], [3_34, 3_97, 4_00, 4_09], [3_70, 4_16, 5_29, 4_29], [5_44, 4_16, 5_76, 4_32], [5_87, 4_16, 6_65, 4_28], [6_77, 4_16, 8_14, 4_29], [3_72, 4_35, 4_52, 4_50], [4_65, 4_34, 4_95, 4_47], [5_11, 4_34, 6_00, 4_47], [6_11, 4_36, 6_37, 4_47], [6_49, 4_36, 6_94, 4_51], [7_05, 4_38, 8_24, 4_47], [3_69, 4_53, 4_52, 4_66], [4_64, 4_54, 5_09, 4_66], [5_22, 4_53, 6_11, 4_69], [6_25, 4_53, 7_92, 4_69], [3_70, 4_72, 5_56, 4_88], [5_70, 4_72, 6_84, 4_87], [6_97, 4_72, 7_18, 4_85], [7_32, 4_72, 8_35, 4_88], [3_69, 4_90, 4_11, 5_03], [4_25, 4_90, 4_84, 5_03], [4_96, 4_90, 6_35, 5_06], [6_45, 4_90, 7_07, 5_03], [7_18, 4_91, 7_61, 5_03], [7_71, 4_90, 8_40, 5_03], [3_36, 5_10, 3_74, 5_21], [3_88, 5_10, 4_47, 5_22], [4_60, 5_10, 4_89, 5_21], [5_03, 5_10, 5_80, 5_22], [5_92, 5_09, 7_36, 5_25], [7_45, 5_09, 7_70, 5_22], [7_81, 5_09, 8_40, 5_22], [3_38, 5_28, 4_34, 5_41], [4_48, 5_28, 5_96, 5_41], [6_09, 5_27, 6_87, 5_40], [7_00, 5_28, 7_92, 5_41], [3_36, 5_46, 3_97, 5_59], [4_07, 5_46, 4_31, 5_59], [4_43, 5_46, 5_25, 5_60], [5_37, 5_46, 6_80, 5_62], [6_88, 5_46, 7_14, 5_59], [7_22, 5_46, 8_37, 5_62], [3_36, 5_65, 4_49, 5_81], [4_61, 5_65, 4_85, 5_77], [4_97, 5_65, 6_65, 5_81], [6_81, 5_65, 7_18, 5_77], [7_32, 5_65, 8_37, 5_80], [3_37, 5_84, 4_38, 5_97], [4_52, 5_83, 5_21, 5_96], [5_35, 5_84, 6_77, 5_99], [6_90, 5_83, 7_87, 5_96], [8_01, 5_83, 8_25, 5_96], [3_38, 6_02, 4_78, 6_15], [4_92, 6_02, 5_30, 6_14], [5_43, 6_02, 6_38, 6_15], [6_50, 6_02, 6_76, 6_14], [6_88, 6_02, 7_88, 6_15], [8_02, 6_02, 8_43, 6_14], [3_37, 6_21, 5_02, 6_33], [5_16, 6_21, 6_15, 6_37], [6_29, 6_21, 7_74, 6_36], [7_89, 6_21, 8_27, 6_33], [3_37, 6_39, 4_18, 6_52], [4_32, 6_40, 5_71, 6_53], [5_87, 6_39, 7_31, 6_55], [7_43, 6_39, 7_69, 6_52], [7_80, 6_39, 8_41, 6_52], [3_38, 6_58, 4_40, 6_73], [4_55, 6_58, 4_91, 6_70], [5_08, 6_58, 6_02, 6_71], [6_16, 6_58, 6_38, 6_70], [6_54, 6_58, 8_35, 6_74], [3_37, 6_77, 4_29, 6_89], [3_37, 7_14, 4_82, 7_26], [4_95, 7_14, 5_48, 7_26], [5_61, 7_14, 6_83, 7_26], [3_38, 7_70, 4_61, 7_82], [4_74, 7_69, 5_54, 7_85], [4_89, 7_88, 5_62, 8_03], [5_76, 7_88, 6_43, 8_01], [6_56, 7_87, 7_51, 8_04], [7_64, 7_88, 8_44, 8_01], [3_34, 8_25, 4_21, 8_38], [4_30, 8_24, 5_74, 8_38], [5_84, 8_24, 7_23, 8_41], [3_35, 8_44, 4_50, 8_57], [4_64, 8_43, 5_83, 8_60], [6_28, 8_62, 7_55, 8_75], [7_69, 8_61, 8_48, 8_78]]] # noqa: E231
# fmt: on
self.assertListEqual(encoding.words , a_ )
self.assertListEqual(encoding.boxes , a_ )
# with apply_OCR = False
__UpperCAmelCase : List[str] = LayoutLMvaImageProcessor(apply_ocr=a_ )
__UpperCAmelCase : List[Any] = image_processing(a_ , return_tensors='''pt''' )
self.assertEqual(encoding.pixel_values.shape , (1, 3, 2_24, 2_24) )
| 226 | 0 |
import argparse
import torch
# Step 1. clone https://github.com/microsoft/unilm
# Step 2. git checkout to https://github.com/microsoft/unilm/commit/b94ec76c36f02fb2b0bf0dcb0b8554a2185173cd
# Step 3. cd unilm
# Step 4. ln -s $(realpath wavlm/modules.py) ./ # create simlink
# import classes
from unilm.wavlm.WavLM import WavLM as WavLMOrig
from unilm.wavlm.WavLM import WavLMConfig as WavLMConfigOrig
from transformers import WavLMConfig, WavLMModel, logging
logging.set_verbosity_info()
_UpperCAmelCase = logging.get_logger(__name__)
_UpperCAmelCase = {
'post_extract_proj': 'feature_projection.projection',
'encoder.pos_conv.0': 'encoder.pos_conv_embed.conv',
'self_attn.k_proj': 'encoder.layers.*.attention.k_proj',
'self_attn.v_proj': 'encoder.layers.*.attention.v_proj',
'self_attn.q_proj': 'encoder.layers.*.attention.q_proj',
'self_attn.out_proj': 'encoder.layers.*.attention.out_proj',
'self_attn.grep_linear': 'encoder.layers.*.attention.gru_rel_pos_linear',
'self_attn.relative_attention_bias': 'encoder.layers.*.attention.rel_attn_embed',
'self_attn.grep_a': 'encoder.layers.*.attention.gru_rel_pos_const',
'self_attn_layer_norm': 'encoder.layers.*.layer_norm',
'fc1': 'encoder.layers.*.feed_forward.intermediate_dense',
'fc2': 'encoder.layers.*.feed_forward.output_dense',
'final_layer_norm': 'encoder.layers.*.final_layer_norm',
'encoder.layer_norm': 'encoder.layer_norm',
'w2v_model.layer_norm': 'feature_projection.layer_norm',
'quantizer.weight_proj': 'quantizer.weight_proj',
'quantizer.vars': 'quantizer.codevectors',
'project_q': 'project_q',
'final_proj': 'project_hid',
'w2v_encoder.proj': 'ctc_proj',
'mask_emb': 'masked_spec_embed',
}
_UpperCAmelCase = [
'ctc_proj',
'quantizer.weight_proj',
'quantizer.codevectors',
'project_q',
'project_hid',
]
def lowerCAmelCase_ ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) -> Tuple:
for attribute in key.split("." ):
UpperCamelCase_ = getattr(__lowerCAmelCase , __lowerCAmelCase )
if weight_type is not None:
UpperCamelCase_ = getattr(__lowerCAmelCase , __lowerCAmelCase ).shape
else:
UpperCamelCase_ = hf_pointer.shape
assert hf_shape == value.shape, (
F'''Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be'''
F''' {value.shape} for {full_name}'''
)
if weight_type == "weight":
UpperCamelCase_ = value
elif weight_type == "weight_g":
UpperCamelCase_ = value
elif weight_type == "weight_v":
UpperCamelCase_ = value
elif weight_type == "bias":
UpperCamelCase_ = value
else:
UpperCamelCase_ = value
logger.info(F'''{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.''' )
def lowerCAmelCase_ ( UpperCamelCase_ , UpperCamelCase_ ) -> str:
UpperCamelCase_ = []
UpperCamelCase_ = fairseq_model.state_dict()
UpperCamelCase_ = hf_model.feature_extractor
for name, value in fairseq_dict.items():
UpperCamelCase_ = False
if "conv_layers" in name:
load_conv_layer(
__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , hf_model.config.feat_extract_norm == "group" , )
UpperCamelCase_ = True
else:
for key, mapped_key in MAPPING.items():
if key in name or key.split("w2v_model." )[-1] == name.split("." )[0]:
UpperCamelCase_ = True
if "*" in mapped_key:
UpperCamelCase_ = name.split(__lowerCAmelCase )[0].split("." )[-2]
UpperCamelCase_ = mapped_key.replace("*" , __lowerCAmelCase )
if "weight_g" in name:
UpperCamelCase_ = '''weight_g'''
elif "weight_v" in name:
UpperCamelCase_ = '''weight_v'''
elif "bias" in name and "relative_attention_bias" not in name:
UpperCamelCase_ = '''bias'''
elif "weight" in name:
# TODO: don't match quantizer.weight_proj
UpperCamelCase_ = '''weight'''
else:
UpperCamelCase_ = None
set_recursively(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )
continue
if not is_used:
unused_weights.append(__lowerCAmelCase )
logger.warning(F'''Unused weights: {unused_weights}''' )
def lowerCAmelCase_ ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) -> int:
UpperCamelCase_ = full_name.split("conv_layers." )[-1]
UpperCamelCase_ = name.split("." )
UpperCamelCase_ = int(items[0] )
UpperCamelCase_ = int(items[1] )
if type_id == 0:
if "bias" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, (
F'''{full_name} has size {value.shape}, but'''
F''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.'''
)
UpperCamelCase_ = value
logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' )
elif "weight" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, (
F'''{full_name} has size {value.shape}, but'''
F''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.'''
)
UpperCamelCase_ = value
logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' )
elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm):
if "bias" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, (
F'''{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was'''
" found."
)
UpperCamelCase_ = value
logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' )
elif "weight" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, (
F'''{full_name} has size {value.shape}, but'''
F''' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.'''
)
UpperCamelCase_ = value
logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' )
else:
unused_weights.append(__lowerCAmelCase )
@torch.no_grad()
def lowerCAmelCase_ ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_=None ) -> Dict:
UpperCamelCase_ = torch.load(__lowerCAmelCase )
UpperCamelCase_ = WavLMConfigOrig(checkpoint["cfg"] )
UpperCamelCase_ = WavLMOrig(__lowerCAmelCase )
model.load_state_dict(checkpoint["model"] )
model.eval()
if config_path is not None:
UpperCamelCase_ = WavLMConfig.from_pretrained(__lowerCAmelCase )
else:
UpperCamelCase_ = WavLMConfig()
UpperCamelCase_ = WavLMModel(__lowerCAmelCase )
recursively_load_weights(__lowerCAmelCase , __lowerCAmelCase )
hf_wavlm.save_pretrained(__lowerCAmelCase )
if __name__ == "__main__":
_UpperCAmelCase = argparse.ArgumentParser()
parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.')
parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint')
parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert')
_UpperCAmelCase = parser.parse_args()
convert_wavlm_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
| 350 |
from sklearn.metrics import fa_score, matthews_corrcoef
import datasets
from .record_evaluation import evaluate as evaluate_record
_UpperCAmelCase = '\\n@article{wang2019superglue,\n title={SuperGLUE: A Stickier Benchmark for General-Purpose Language Understanding Systems},\n author={Wang, Alex and Pruksachatkun, Yada and Nangia, Nikita and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R},\n journal={arXiv preprint arXiv:1905.00537},\n year={2019}\n}\n'
_UpperCAmelCase = '\\nSuperGLUE (https://super.gluebenchmark.com/) is a new benchmark styled after\nGLUE with a new set of more difficult language understanding tasks, improved\nresources, and a new public leaderboard.\n'
_UpperCAmelCase = '\nCompute SuperGLUE evaluation metric associated to each SuperGLUE dataset.\nArgs:\n predictions: list of predictions to score. Depending on the SuperGlUE subset:\n - for \'record\': list of question-answer dictionaries with the following keys:\n - \'idx\': index of the question as specified by the dataset\n - \'prediction_text\': the predicted answer text\n - for \'multirc\': list of question-answer dictionaries with the following keys:\n - \'idx\': index of the question-answer pair as specified by the dataset\n - \'prediction\': the predicted answer label\n - otherwise: list of predicted labels\n references: list of reference labels. Depending on the SuperGLUE subset:\n - for \'record\': list of question-answers dictionaries with the following keys:\n - \'idx\': index of the question as specified by the dataset\n - \'answers\': list of possible answers\n - otherwise: list of reference labels\nReturns: depending on the SuperGLUE subset:\n - for \'record\':\n - \'exact_match\': Exact match between answer and gold answer\n - \'f1\': F1 score\n - for \'multirc\':\n - \'exact_match\': Exact match between answer and gold answer\n - \'f1_m\': Per-question macro-F1 score\n - \'f1_a\': Average F1 score over all answers\n - for \'axb\':\n \'matthews_correlation\': Matthew Correlation\n - for \'cb\':\n - \'accuracy\': Accuracy\n - \'f1\': F1 score\n - for all others:\n - \'accuracy\': Accuracy\nExamples:\n\n >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'copa\') # any of ["copa", "rte", "wic", "wsc", "wsc.fixed", "boolq", "axg"]\n >>> predictions = [0, 1]\n >>> references = [0, 1]\n >>> results = super_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'accuracy\': 1.0}\n\n >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'cb\')\n >>> predictions = [0, 1]\n >>> references = [0, 1]\n >>> results = super_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'accuracy\': 1.0, \'f1\': 1.0}\n\n >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'record\')\n >>> predictions = [{\'idx\': {\'passage\': 0, \'query\': 0}, \'prediction_text\': \'answer\'}]\n >>> references = [{\'idx\': {\'passage\': 0, \'query\': 0}, \'answers\': [\'answer\', \'another_answer\']}]\n >>> results = super_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'exact_match\': 1.0, \'f1\': 1.0}\n\n >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'multirc\')\n >>> predictions = [{\'idx\': {\'answer\': 0, \'paragraph\': 0, \'question\': 0}, \'prediction\': 0}, {\'idx\': {\'answer\': 1, \'paragraph\': 2, \'question\': 3}, \'prediction\': 1}]\n >>> references = [0, 1]\n >>> results = super_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'exact_match\': 1.0, \'f1_m\': 1.0, \'f1_a\': 1.0}\n\n >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'axb\')\n >>> references = [0, 1]\n >>> predictions = [0, 1]\n >>> results = super_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'matthews_correlation\': 1.0}\n'
def lowerCAmelCase_ ( UpperCamelCase_ , UpperCamelCase_ ) -> Optional[Any]:
return float((preds == labels).mean() )
def lowerCAmelCase_ ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_="binary" ) -> Tuple:
UpperCamelCase_ = simple_accuracy(UpperCamelCase_ , UpperCamelCase_ )
UpperCamelCase_ = float(fa_score(y_true=UpperCamelCase_ , y_pred=UpperCamelCase_ , average=UpperCamelCase_ ) )
return {
"accuracy": acc,
"f1": fa,
}
def lowerCAmelCase_ ( UpperCamelCase_ , UpperCamelCase_ ) -> List[Any]:
UpperCamelCase_ = {}
for id_pred, label in zip(UpperCamelCase_ , UpperCamelCase_ ):
UpperCamelCase_ = F'''{id_pred["idx"]["paragraph"]}-{id_pred["idx"]["question"]}'''
UpperCamelCase_ = id_pred["prediction"]
if question_id in question_map:
question_map[question_id].append((pred, label) )
else:
UpperCamelCase_ = [(pred, label)]
UpperCamelCase_ , UpperCamelCase_ = [], []
for question, preds_labels in question_map.items():
UpperCamelCase_ , UpperCamelCase_ = zip(*UpperCamelCase_ )
UpperCamelCase_ = fa_score(y_true=UpperCamelCase_ , y_pred=UpperCamelCase_ , average="macro" )
fas.append(UpperCamelCase_ )
UpperCamelCase_ = int(sum(pred == label for pred, label in preds_labels ) == len(UpperCamelCase_ ) )
ems.append(UpperCamelCase_ )
UpperCamelCase_ = float(sum(UpperCamelCase_ ) / len(UpperCamelCase_ ) )
UpperCamelCase_ = sum(UpperCamelCase_ ) / len(UpperCamelCase_ )
UpperCamelCase_ = float(fa_score(y_true=UpperCamelCase_ , y_pred=[id_pred["prediction"] for id_pred in ids_preds] ) )
return {"exact_match": em, "f1_m": fa_m, "f1_a": fa_a}
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class _UpperCamelCase ( datasets.Metric ):
def lowercase ( self: Optional[int] ) -> Optional[int]:
"""simple docstring"""
if self.config_name not in [
"boolq",
"cb",
"copa",
"multirc",
"record",
"rte",
"wic",
"wsc",
"wsc.fixed",
"axb",
"axg",
]:
raise KeyError(
"You should supply a configuration name selected in "
"[\"boolq\", \"cb\", \"copa\", \"multirc\", \"record\", \"rte\", \"wic\", \"wsc\", \"wsc.fixed\", \"axb\", \"axg\",]" )
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(self._get_feature_types() ) , codebase_urls=[] , reference_urls=[] , format="numpy" if not self.config_name == "record" and not self.config_name == "multirc" else None , )
def lowercase ( self: List[Any] ) -> int:
"""simple docstring"""
if self.config_name == "record":
return {
"predictions": {
"idx": {
"passage": datasets.Value("int64" ),
"query": datasets.Value("int64" ),
},
"prediction_text": datasets.Value("string" ),
},
"references": {
"idx": {
"passage": datasets.Value("int64" ),
"query": datasets.Value("int64" ),
},
"answers": datasets.Sequence(datasets.Value("string" ) ),
},
}
elif self.config_name == "multirc":
return {
"predictions": {
"idx": {
"answer": datasets.Value("int64" ),
"paragraph": datasets.Value("int64" ),
"question": datasets.Value("int64" ),
},
"prediction": datasets.Value("int64" ),
},
"references": datasets.Value("int64" ),
}
else:
return {
"predictions": datasets.Value("int64" ),
"references": datasets.Value("int64" ),
}
def lowercase ( self: Tuple , _SCREAMING_SNAKE_CASE: Optional[Any] , _SCREAMING_SNAKE_CASE: List[str] ) -> Dict:
"""simple docstring"""
if self.config_name == "axb":
return {"matthews_correlation": matthews_corrcoef(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )}
elif self.config_name == "cb":
return acc_and_fa(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , fa_avg="macro" )
elif self.config_name == "record":
UpperCamelCase_ = [
{
"qas": [
{"id": ref["idx"]["query"], "answers": [{"text": ans} for ans in ref["answers"]]}
for ref in references
]
}
]
UpperCamelCase_ = {pred["idx"]["query"]: pred["prediction_text"] for pred in predictions}
return evaluate_record(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )[0]
elif self.config_name == "multirc":
return evaluate_multirc(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
elif self.config_name in ["copa", "rte", "wic", "wsc", "wsc.fixed", "boolq", "axg"]:
return {"accuracy": simple_accuracy(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )}
else:
raise KeyError(
"You should supply a configuration name selected in "
"[\"boolq\", \"cb\", \"copa\", \"multirc\", \"record\", \"rte\", \"wic\", \"wsc\", \"wsc.fixed\", \"axb\", \"axg\",]" )
| 328 | 0 |
from collections.abc import Sequence
def _UpperCAmelCase ( snake_case , snake_case ):
"""simple docstring"""
return sum(c * (x**i) for i, c in enumerate(snake_case ) )
def _UpperCAmelCase ( snake_case , snake_case ):
"""simple docstring"""
_lowerCAmelCase = 0.0
for coeff in reversed(snake_case ):
_lowerCAmelCase = result * x + coeff
return result
if __name__ == "__main__":
A__ = (0.0, 0.0, 5.0, 9.3, 7.0)
A__ = 1_0.0
print(evaluate_poly(poly, x))
print(horner(poly, x))
| 82 |
from typing import Optional, Union
import torch
from torch import nn
from ...configuration_utils import ConfigMixin, register_to_config
from ...models.modeling_utils import ModelMixin
class __lowerCAmelCase ( lowerCamelCase__ , lowerCamelCase__ ):
@register_to_config
def __init__( self , _snake_case = 768 , ):
"""simple docstring"""
super().__init__()
_lowerCAmelCase = nn.Parameter(torch.zeros(1 , _snake_case ) )
_lowerCAmelCase = nn.Parameter(torch.ones(1 , _snake_case ) )
def snake_case ( self , _snake_case = None , _snake_case = None , ):
"""simple docstring"""
_lowerCAmelCase = nn.Parameter(self.mean.to(_snake_case ).to(_snake_case ) )
_lowerCAmelCase = nn.Parameter(self.std.to(_snake_case ).to(_snake_case ) )
return self
def snake_case ( self , _snake_case ):
"""simple docstring"""
_lowerCAmelCase = (embeds - self.mean) * 1.0 / self.std
return embeds
def snake_case ( self , _snake_case ):
"""simple docstring"""
_lowerCAmelCase = (embeds * self.std) + self.mean
return embeds
| 82 | 1 |
import unittest
from transformers import AlbertConfig, is_torch_available
from transformers.models.auto import get_values
from transformers.testing_utils import require_torch, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
MODEL_FOR_PRETRAINING_MAPPING,
AlbertForMaskedLM,
AlbertForMultipleChoice,
AlbertForPreTraining,
AlbertForQuestionAnswering,
AlbertForSequenceClassification,
AlbertForTokenClassification,
AlbertModel,
)
from transformers.models.albert.modeling_albert import ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST
class SCREAMING_SNAKE_CASE__ :
def __init__( self : Optional[int] , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Optional[Any]=13 , _lowerCAmelCase : Optional[Any]=7 , _lowerCAmelCase : Optional[int]=True , _lowerCAmelCase : Tuple=True , _lowerCAmelCase : Optional[int]=True , _lowerCAmelCase : Union[str, Any]=True , _lowerCAmelCase : Any=99 , _lowerCAmelCase : Union[str, Any]=16 , _lowerCAmelCase : Optional[Any]=36 , _lowerCAmelCase : Dict=6 , _lowerCAmelCase : Dict=6 , _lowerCAmelCase : Tuple=6 , _lowerCAmelCase : Optional[Any]=37 , _lowerCAmelCase : Optional[int]="gelu" , _lowerCAmelCase : int=0.1 , _lowerCAmelCase : Optional[int]=0.1 , _lowerCAmelCase : Dict=5_12 , _lowerCAmelCase : Tuple=16 , _lowerCAmelCase : Any=2 , _lowerCAmelCase : Dict=0.02 , _lowerCAmelCase : Optional[int]=3 , _lowerCAmelCase : Union[str, Any]=4 , _lowerCAmelCase : str=None , ):
__snake_case : Any = parent
__snake_case : str = batch_size
__snake_case : List[str] = seq_length
__snake_case : str = is_training
__snake_case : Optional[int] = use_input_mask
__snake_case : Optional[Any] = use_token_type_ids
__snake_case : Optional[Any] = use_labels
__snake_case : str = vocab_size
__snake_case : int = embedding_size
__snake_case : Any = hidden_size
__snake_case : List[Any] = num_hidden_layers
__snake_case : Tuple = num_hidden_groups
__snake_case : List[str] = num_attention_heads
__snake_case : List[str] = intermediate_size
__snake_case : Dict = hidden_act
__snake_case : Optional[int] = hidden_dropout_prob
__snake_case : int = attention_probs_dropout_prob
__snake_case : Any = max_position_embeddings
__snake_case : List[str] = type_vocab_size
__snake_case : List[Any] = type_sequence_label_size
__snake_case : List[Any] = initializer_range
__snake_case : Tuple = num_labels
__snake_case : Tuple = num_choices
__snake_case : Dict = scope
def snake_case__ ( self : int ):
__snake_case : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
__snake_case : List[str] = None
if self.use_input_mask:
__snake_case : List[str] = random_attention_mask([self.batch_size, self.seq_length] )
__snake_case : List[Any] = None
if self.use_token_type_ids:
__snake_case : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
__snake_case : List[Any] = None
__snake_case : Optional[Any] = None
__snake_case : Optional[Any] = None
if self.use_labels:
__snake_case : Optional[int] = ids_tensor([self.batch_size] , self.type_sequence_label_size )
__snake_case : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
__snake_case : str = ids_tensor([self.batch_size] , self.num_choices )
__snake_case : List[Any] = self.get_config()
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def snake_case__ ( self : Dict ):
return AlbertConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , num_hidden_groups=self.num_hidden_groups , )
def snake_case__ ( self : Optional[int] , _lowerCAmelCase : List[str] , _lowerCAmelCase : List[Any] , _lowerCAmelCase : Tuple , _lowerCAmelCase : Tuple , _lowerCAmelCase : List[Any] , _lowerCAmelCase : Any , _lowerCAmelCase : Optional[Any] ):
__snake_case : List[Any] = AlbertModel(config=_lowerCAmelCase )
model.to(_lowerCAmelCase )
model.eval()
__snake_case : Any = model(_lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase )
__snake_case : List[Any] = model(_lowerCAmelCase , token_type_ids=_lowerCAmelCase )
__snake_case : Tuple = model(_lowerCAmelCase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) )
def snake_case__ ( self : Dict , _lowerCAmelCase : Any , _lowerCAmelCase : int , _lowerCAmelCase : List[Any] , _lowerCAmelCase : str , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : int ):
__snake_case : Union[str, Any] = AlbertForPreTraining(config=_lowerCAmelCase )
model.to(_lowerCAmelCase )
model.eval()
__snake_case : Optional[int] = model(
_lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , labels=_lowerCAmelCase , sentence_order_label=_lowerCAmelCase , )
self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
self.parent.assertEqual(result.sop_logits.shape , (self.batch_size, config.num_labels) )
def snake_case__ ( self : Union[str, Any] , _lowerCAmelCase : int , _lowerCAmelCase : List[str] , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Any , _lowerCAmelCase : int , _lowerCAmelCase : List[Any] ):
__snake_case : Union[str, Any] = AlbertForMaskedLM(config=_lowerCAmelCase )
model.to(_lowerCAmelCase )
model.eval()
__snake_case : Union[str, Any] = model(_lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , labels=_lowerCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def snake_case__ ( self : Any , _lowerCAmelCase : List[str] , _lowerCAmelCase : int , _lowerCAmelCase : str , _lowerCAmelCase : List[str] , _lowerCAmelCase : List[str] , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : str ):
__snake_case : Tuple = AlbertForQuestionAnswering(config=_lowerCAmelCase )
model.to(_lowerCAmelCase )
model.eval()
__snake_case : Dict = model(
_lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , start_positions=_lowerCAmelCase , end_positions=_lowerCAmelCase , )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def snake_case__ ( self : Any , _lowerCAmelCase : List[str] , _lowerCAmelCase : int , _lowerCAmelCase : str , _lowerCAmelCase : str , _lowerCAmelCase : Dict , _lowerCAmelCase : int , _lowerCAmelCase : List[str] ):
__snake_case : Dict = self.num_labels
__snake_case : Optional[Any] = AlbertForSequenceClassification(_lowerCAmelCase )
model.to(_lowerCAmelCase )
model.eval()
__snake_case : Any = model(_lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , labels=_lowerCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def snake_case__ ( self : Optional[Any] , _lowerCAmelCase : List[str] , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Any , _lowerCAmelCase : Any , _lowerCAmelCase : int , _lowerCAmelCase : str , _lowerCAmelCase : str ):
__snake_case : List[str] = self.num_labels
__snake_case : Dict = AlbertForTokenClassification(config=_lowerCAmelCase )
model.to(_lowerCAmelCase )
model.eval()
__snake_case : List[str] = model(_lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , labels=_lowerCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def snake_case__ ( self : Any , _lowerCAmelCase : str , _lowerCAmelCase : Any , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Any , _lowerCAmelCase : int , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Tuple ):
__snake_case : Optional[Any] = self.num_choices
__snake_case : Union[str, Any] = AlbertForMultipleChoice(config=_lowerCAmelCase )
model.to(_lowerCAmelCase )
model.eval()
__snake_case : int = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
__snake_case : Optional[Any] = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
__snake_case : int = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
__snake_case : List[Any] = model(
_lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , labels=_lowerCAmelCase , )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) )
def snake_case__ ( self : Optional[Any] ):
__snake_case : int = self.prepare_config_and_inputs()
(
(
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) ,
) : Any = config_and_inputs
__snake_case : Any = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask}
return config, inputs_dict
@require_torch
class SCREAMING_SNAKE_CASE__ ( __UpperCamelCase , __UpperCamelCase , unittest.TestCase ):
A : List[str] = (
(
AlbertModel,
AlbertForPreTraining,
AlbertForMaskedLM,
AlbertForMultipleChoice,
AlbertForSequenceClassification,
AlbertForTokenClassification,
AlbertForQuestionAnswering,
)
if is_torch_available()
else ()
)
A : Any = (
{
"feature-extraction": AlbertModel,
"fill-mask": AlbertForMaskedLM,
"question-answering": AlbertForQuestionAnswering,
"text-classification": AlbertForSequenceClassification,
"token-classification": AlbertForTokenClassification,
"zero-shot": AlbertForSequenceClassification,
}
if is_torch_available()
else {}
)
A : Tuple = True
def snake_case__ ( self : List[str] , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Any , _lowerCAmelCase : Optional[int]=False ):
__snake_case : Union[str, Any] = super()._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase , return_labels=_lowerCAmelCase )
if return_labels:
if model_class in get_values(_lowerCAmelCase ):
__snake_case : Optional[Any] = torch.zeros(
(self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=_lowerCAmelCase )
__snake_case : Any = torch.zeros(
self.model_tester.batch_size , dtype=torch.long , device=_lowerCAmelCase )
return inputs_dict
def snake_case__ ( self : Optional[Any] ):
__snake_case : Dict = AlbertModelTester(self )
__snake_case : Union[str, Any] = ConfigTester(self , config_class=_lowerCAmelCase , hidden_size=37 )
def snake_case__ ( self : Optional[Any] ):
self.config_tester.run_common_tests()
def snake_case__ ( self : Any ):
__snake_case : Union[str, Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*_lowerCAmelCase )
def snake_case__ ( self : Any ):
__snake_case : List[str] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_pretraining(*_lowerCAmelCase )
def snake_case__ ( self : Optional[Any] ):
__snake_case : int = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_lm(*_lowerCAmelCase )
def snake_case__ ( self : str ):
__snake_case : Any = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_multiple_choice(*_lowerCAmelCase )
def snake_case__ ( self : Dict ):
__snake_case : List[str] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(*_lowerCAmelCase )
def snake_case__ ( self : Union[str, Any] ):
__snake_case : List[str] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_sequence_classification(*_lowerCAmelCase )
def snake_case__ ( self : Union[str, Any] ):
__snake_case : Tuple = self.model_tester.prepare_config_and_inputs()
for type in ["absolute", "relative_key", "relative_key_query"]:
__snake_case : List[str] = type
self.model_tester.create_and_check_model(*_lowerCAmelCase )
@slow
def snake_case__ ( self : Tuple ):
for model_name in ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
__snake_case : Optional[Any] = AlbertModel.from_pretrained(_lowerCAmelCase )
self.assertIsNotNone(_lowerCAmelCase )
@require_torch
class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ):
@slow
def snake_case__ ( self : int ):
__snake_case : str = AlbertModel.from_pretrained("""albert-base-v2""" )
__snake_case : Optional[Any] = torch.tensor([[0, 3_45, 2_32, 3_28, 7_40, 1_40, 16_95, 69, 60_78, 15_88, 2]] )
__snake_case : Optional[int] = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] )
with torch.no_grad():
__snake_case : Any = model(_lowerCAmelCase , attention_mask=_lowerCAmelCase )[0]
__snake_case : Tuple = torch.Size((1, 11, 7_68) )
self.assertEqual(output.shape , _lowerCAmelCase )
__snake_case : List[str] = torch.tensor(
[[[-0.6513, 1.5035, -0.2766], [-0.6515, 1.5046, -0.2780], [-0.6512, 1.5049, -0.2784]]] )
self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , _lowerCAmelCase , atol=1e-4 ) )
| 20 | from __future__ import annotations
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : list[int] , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int ):
'''simple docstring'''
if (direction == 1 and array[indexa] > array[indexa]) or (
direction == 0 and array[indexa] < array[indexa]
):
__snake_case , __snake_case : str = array[indexa], array[indexa]
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : list[int] , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int ):
'''simple docstring'''
if length > 1:
__snake_case : Tuple = int(length / 2 )
for i in range(__SCREAMING_SNAKE_CASE , low + middle ):
comp_and_swap(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , i + middle , __SCREAMING_SNAKE_CASE )
bitonic_merge(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
bitonic_merge(__SCREAMING_SNAKE_CASE , low + middle , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : list[int] , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int ):
'''simple docstring'''
if length > 1:
__snake_case : Optional[Any] = int(length / 2 )
bitonic_sort(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , 1 )
bitonic_sort(__SCREAMING_SNAKE_CASE , low + middle , __SCREAMING_SNAKE_CASE , 0 )
bitonic_merge(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
if __name__ == "__main__":
lowercase_ = input("Enter numbers separated by a comma:\n").strip()
lowercase_ = [int(item.strip()) for item in user_input.split(",")]
bitonic_sort(unsorted, 0, len(unsorted), 1)
print("\nSorted array in ascending order is: ", end="")
print(*unsorted, sep=", ")
bitonic_merge(unsorted, 0, len(unsorted), 0)
print("Sorted array in descending order is: ", end="")
print(*unsorted, sep=", ")
| 20 | 1 |
"""simple docstring"""
from collections import OrderedDict
from typing import Any, List, Mapping, Optional
from ... import PreTrainedTokenizer, TensorType, is_torch_available
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfigWithPast, PatchingSpec
from ...utils import logging
__a = logging.get_logger(__name__)
__a = {
"EleutherAI/gpt-j-6B": "https://huggingface.co/EleutherAI/gpt-j-6B/resolve/main/config.json",
# See all GPT-J models at https://huggingface.co/models?filter=gpt_j
}
class lowerCamelCase ( _lowerCAmelCase ):
'''simple docstring'''
_A : List[Any] = """gptj"""
_A : Union[str, Any] = {
"""max_position_embeddings""": """n_positions""",
"""hidden_size""": """n_embd""",
"""num_attention_heads""": """n_head""",
"""num_hidden_layers""": """n_layer""",
}
def __init__( self: int , snake_case: int=50_400 , snake_case: Optional[Any]=2_048 , snake_case: Any=4_096 , snake_case: Dict=28 , snake_case: Union[str, Any]=16 , snake_case: Optional[int]=64 , snake_case: List[Any]=None , snake_case: List[str]="gelu_new" , snake_case: Dict=0.0 , snake_case: Union[str, Any]=0.0 , snake_case: List[Any]=0.0 , snake_case: List[Any]=1E-5 , snake_case: Any=0.0_2 , snake_case: Union[str, Any]=True , snake_case: int=50_256 , snake_case: int=50_256 , snake_case: List[Any]=False , **snake_case: List[str] , ) -> Optional[Any]:
snake_case_ :Optional[Any] = vocab_size
snake_case_ :List[Any] = n_positions
snake_case_ :List[str] = n_embd
snake_case_ :List[str] = n_layer
snake_case_ :int = n_head
snake_case_ :int = n_inner
snake_case_ :List[str] = rotary_dim
snake_case_ :Optional[Any] = activation_function
snake_case_ :int = resid_pdrop
snake_case_ :List[str] = embd_pdrop
snake_case_ :str = attn_pdrop
snake_case_ :Union[str, Any] = layer_norm_epsilon
snake_case_ :Optional[Any] = initializer_range
snake_case_ :Any = use_cache
snake_case_ :Tuple = bos_token_id
snake_case_ :Any = eos_token_id
super().__init__(
bos_token_id=snake_case , eos_token_id=snake_case , tie_word_embeddings=snake_case , **snake_case )
class lowerCamelCase ( _lowerCAmelCase ):
'''simple docstring'''
def __init__( self: int , snake_case: PretrainedConfig , snake_case: str = "default" , snake_case: List[PatchingSpec] = None , snake_case: bool = False , ) -> Any:
super().__init__(snake_case , task=snake_case , patching_specs=snake_case , use_past=snake_case )
if not getattr(self._config , """pad_token_id""" , snake_case ):
# TODO: how to do that better?
snake_case_ :Optional[Any] = 0
@property
def lowerCAmelCase_ ( self: Optional[int] ) -> Mapping[str, Mapping[int, str]]:
snake_case_ :Tuple = OrderedDict({"""input_ids""": {0: """batch""", 1: """sequence"""}} )
if self.use_past:
self.fill_with_past_key_values_(snake_case , direction="""inputs""" )
snake_case_ :Optional[Any] = {0: """batch""", 1: """past_sequence + sequence"""}
else:
snake_case_ :Tuple = {0: """batch""", 1: """sequence"""}
return common_inputs
@property
def lowerCAmelCase_ ( self: Tuple ) -> int:
return self._config.n_layer
@property
def lowerCAmelCase_ ( self: Optional[int] ) -> int:
return self._config.n_head
def lowerCAmelCase_ ( self: int , snake_case: PreTrainedTokenizer , snake_case: int = -1 , snake_case: int = -1 , snake_case: bool = False , snake_case: Optional[TensorType] = None , ) -> Mapping[str, Any]:
snake_case_ :Tuple = super(snake_case , self ).generate_dummy_inputs(
snake_case , batch_size=snake_case , seq_length=snake_case , is_pair=snake_case , framework=snake_case )
# We need to order the input in the way they appears in the forward()
snake_case_ :int = OrderedDict({"""input_ids""": common_inputs["""input_ids"""]} )
# Need to add the past_keys
if self.use_past:
if not is_torch_available():
raise ValueError("""Cannot generate dummy past_keys inputs without PyTorch installed.""" )
else:
import torch
snake_case_, snake_case_ :List[str] = common_inputs["""input_ids"""].shape
# Not using the same length for past_key_values
snake_case_ :Dict = seqlen + 2
snake_case_ :List[Any] = (
batch,
self.num_attention_heads,
past_key_values_length,
self._config.hidden_size // self.num_attention_heads,
)
snake_case_ :Optional[int] = [
(torch.zeros(snake_case ), torch.zeros(snake_case )) for _ in range(self.num_layers )
]
snake_case_ :Dict = common_inputs["""attention_mask"""]
if self.use_past:
snake_case_ :Optional[int] = ordered_inputs["""attention_mask"""].dtype
snake_case_ :List[str] = torch.cat(
[ordered_inputs["""attention_mask"""], torch.ones(snake_case , snake_case , dtype=snake_case )] , dim=1 )
return ordered_inputs
@property
def lowerCAmelCase_ ( self: List[str] ) -> int:
return 13
| 66 |
import unittest
from transformers import LiltConfig, is_torch_available
from transformers.testing_utils import require_torch, slow, torch_device
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
LiltForQuestionAnswering,
LiltForSequenceClassification,
LiltForTokenClassification,
LiltModel,
)
from transformers.models.lilt.modeling_lilt import LILT_PRETRAINED_MODEL_ARCHIVE_LIST
class SCREAMING_SNAKE_CASE__ :
def __init__(self : Any , a__ : Union[str, Any] , a__ : int=13 , a__ : int=7 , a__ : Optional[Any]=True , a__ : Optional[int]=True , a__ : Any=True , a__ : str=True , a__ : List[Any]=99 , a__ : Any=24 , a__ : List[str]=2 , a__ : Optional[int]=6 , a__ : int=37 , a__ : List[str]="gelu" , a__ : List[Any]=0.1 , a__ : Optional[int]=0.1 , a__ : Union[str, Any]=512 , a__ : List[str]=16 , a__ : Optional[int]=2 , a__ : Union[str, Any]=0.0_2 , a__ : str=3 , a__ : Optional[Any]=None , a__ : Any=1000 , ):
"""simple docstring"""
__snake_case = parent
__snake_case = batch_size
__snake_case = seq_length
__snake_case = is_training
__snake_case = use_input_mask
__snake_case = use_token_type_ids
__snake_case = use_labels
__snake_case = vocab_size
__snake_case = hidden_size
__snake_case = num_hidden_layers
__snake_case = num_attention_heads
__snake_case = intermediate_size
__snake_case = hidden_act
__snake_case = hidden_dropout_prob
__snake_case = attention_probs_dropout_prob
__snake_case = max_position_embeddings
__snake_case = type_vocab_size
__snake_case = type_sequence_label_size
__snake_case = initializer_range
__snake_case = num_labels
__snake_case = scope
__snake_case = range_bbox
def a (self : Optional[int] ):
"""simple docstring"""
__snake_case = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
__snake_case = ids_tensor([self.batch_size, self.seq_length, 4] , self.range_bbox )
# Ensure that bbox is legal
for i in range(bbox.shape[0] ):
for j in range(bbox.shape[1] ):
if bbox[i, j, 3] < bbox[i, j, 1]:
__snake_case = bbox[i, j, 3]
__snake_case = bbox[i, j, 1]
__snake_case = t
if bbox[i, j, 2] < bbox[i, j, 0]:
__snake_case = bbox[i, j, 2]
__snake_case = bbox[i, j, 0]
__snake_case = t
__snake_case = None
if self.use_input_mask:
__snake_case = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 )
__snake_case = None
if self.use_token_type_ids:
__snake_case = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
__snake_case = None
__snake_case = None
if self.use_labels:
__snake_case = ids_tensor([self.batch_size] , self.type_sequence_label_size )
__snake_case = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
__snake_case = self.get_config()
return config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels
def a (self : List[str] ):
"""simple docstring"""
return LiltConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , )
def a (self : List[Any] , a__ : List[Any] , a__ : Optional[Any] , a__ : List[str] , a__ : int , a__ : Optional[int] , a__ : str , a__ : Optional[int] , ):
"""simple docstring"""
__snake_case = LiltModel(config=a__ )
model.to(a__ )
model.eval()
__snake_case = model(a__ , bbox=a__ , attention_mask=a__ , token_type_ids=a__ )
__snake_case = model(a__ , bbox=a__ , token_type_ids=a__ )
__snake_case = model(a__ , bbox=a__ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) )
def a (self : Any , a__ : Tuple , a__ : Dict , a__ : Optional[int] , a__ : Dict , a__ : Union[str, Any] , a__ : str , a__ : Tuple , ):
"""simple docstring"""
__snake_case = self.num_labels
__snake_case = LiltForTokenClassification(config=a__ )
model.to(a__ )
model.eval()
__snake_case = model(
a__ , bbox=a__ , attention_mask=a__ , token_type_ids=a__ , labels=a__ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def a (self : int , a__ : Optional[Any] , a__ : int , a__ : int , a__ : Optional[Any] , a__ : Tuple , a__ : Union[str, Any] , a__ : str , ):
"""simple docstring"""
__snake_case = LiltForQuestionAnswering(config=a__ )
model.to(a__ )
model.eval()
__snake_case = model(
a__ , bbox=a__ , attention_mask=a__ , token_type_ids=a__ , start_positions=a__ , end_positions=a__ , )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def a (self : Tuple ):
"""simple docstring"""
__snake_case = self.prepare_config_and_inputs()
(
(
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) ,
) = config_and_inputs
__snake_case = {
'''input_ids''': input_ids,
'''bbox''': bbox,
'''token_type_ids''': token_type_ids,
'''attention_mask''': input_mask,
}
return config, inputs_dict
@require_torch
class SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ):
A_ : List[Any] = (
(
LiltModel,
LiltForSequenceClassification,
LiltForTokenClassification,
LiltForQuestionAnswering,
)
if is_torch_available()
else ()
)
A_ : Any = (
{
'feature-extraction': LiltModel,
'question-answering': LiltForQuestionAnswering,
'text-classification': LiltForSequenceClassification,
'token-classification': LiltForTokenClassification,
'zero-shot': LiltForSequenceClassification,
}
if is_torch_available()
else {}
)
A_ : Optional[int] = False
A_ : List[Any] = False
def a (self : Dict , a__ : Tuple , a__ : Tuple , a__ : Tuple , a__ : Union[str, Any] , a__ : Any ):
"""simple docstring"""
return True
def a (self : Union[str, Any] ):
"""simple docstring"""
__snake_case = LiltModelTester(self )
__snake_case = ConfigTester(self , config_class=a__ , hidden_size=37 )
def a (self : Optional[int] ):
"""simple docstring"""
self.config_tester.run_common_tests()
def a (self : int ):
"""simple docstring"""
__snake_case = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*a__ )
def a (self : List[Any] ):
"""simple docstring"""
__snake_case = self.model_tester.prepare_config_and_inputs()
for type in ["absolute", "relative_key", "relative_key_query"]:
__snake_case = type
self.model_tester.create_and_check_model(*a__ )
def a (self : Optional[Any] ):
"""simple docstring"""
__snake_case = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(*a__ )
def a (self : Union[str, Any] ):
"""simple docstring"""
__snake_case = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(*a__ )
@slow
def a (self : Optional[int] ):
"""simple docstring"""
for model_name in LILT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
__snake_case = LiltModel.from_pretrained(a__ )
self.assertIsNotNone(a__ )
@require_torch
@slow
class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ):
def a (self : Tuple ):
"""simple docstring"""
__snake_case = LiltModel.from_pretrained('''SCUT-DLVCLab/lilt-roberta-en-base''' ).to(a__ )
__snake_case = torch.tensor([[1, 2]] , device=a__ )
__snake_case = torch.tensor([[[1, 2, 3, 4], [5, 6, 7, 8]]] , device=a__ )
# forward pass
with torch.no_grad():
__snake_case = model(input_ids=a__ , bbox=a__ )
__snake_case = torch.Size([1, 2, 768] )
__snake_case = torch.tensor(
[[-0.0_6_5_3, 0.0_9_5_0, -0.0_0_6_1], [-0.0_5_4_5, 0.0_9_2_6, -0.0_3_2_4]] , device=a__ , )
self.assertTrue(outputs.last_hidden_state.shape , a__ )
self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :, :3] , a__ , atol=1E-3 ) )
| 24 | 0 |
import pickle
import shutil
import tempfile
import unittest
from transformers import SPIECE_UNDERLINE, XLMRobertaTokenizer, XLMRobertaTokenizerFast
from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow
from transformers.utils import cached_property
from ...test_tokenization_common import TokenizerTesterMixin
SCREAMING_SNAKE_CASE__ : List[Any] = get_tests_dir("fixtures/test_sentencepiece.model")
@require_sentencepiece
@require_tokenizers
class lowerCAmelCase__ ( __lowercase , unittest.TestCase ):
a__ : int = XLMRobertaTokenizer
a__ : Optional[Any] = XLMRobertaTokenizerFast
a__ : Any = True
a__ : Optional[int] = True
def __A ( self : Union[str, Any] ) -> str:
super().setUp()
# We have a SentencePiece fixture for testing
__lowerCamelCase = XLMRobertaTokenizer(__lowerCAmelCase , keep_accents=__lowerCAmelCase )
tokenizer.save_pretrained(self.tmpdirname )
def __A ( self : int ) -> Optional[int]:
__lowerCamelCase = '''<pad>'''
__lowerCamelCase = 1
self.assertEqual(self.get_tokenizer()._convert_token_to_id(__lowerCAmelCase ) , __lowerCAmelCase )
self.assertEqual(self.get_tokenizer()._convert_id_to_token(__lowerCAmelCase ) , __lowerCAmelCase )
def __A ( self : str ) -> str:
__lowerCamelCase = list(self.get_tokenizer().get_vocab().keys() )
self.assertEqual(vocab_keys[0] , '''<s>''' )
self.assertEqual(vocab_keys[1] , '''<pad>''' )
self.assertEqual(vocab_keys[-1] , '''<mask>''' )
self.assertEqual(len(__lowerCAmelCase ) , 10_02 )
def __A ( self : str ) -> Optional[int]:
self.assertEqual(self.get_tokenizer().vocab_size , 10_02 )
def __A ( self : Union[str, Any] ) -> int:
__lowerCamelCase = XLMRobertaTokenizer(__lowerCAmelCase , keep_accents=__lowerCAmelCase )
__lowerCamelCase = tokenizer.tokenize('''This is a test''' )
self.assertListEqual(__lowerCAmelCase , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] )
self.assertListEqual(
tokenizer.convert_tokens_to_ids(__lowerCAmelCase ) , [value + tokenizer.fairseq_offset for value in [2_85, 46, 10, 1_70, 3_82]] , )
__lowerCamelCase = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' )
self.assertListEqual(
__lowerCAmelCase , [
SPIECE_UNDERLINE + '''I''',
SPIECE_UNDERLINE + '''was''',
SPIECE_UNDERLINE + '''b''',
'''or''',
'''n''',
SPIECE_UNDERLINE + '''in''',
SPIECE_UNDERLINE + '''''',
'''9''',
'''2''',
'''0''',
'''0''',
'''0''',
''',''',
SPIECE_UNDERLINE + '''and''',
SPIECE_UNDERLINE + '''this''',
SPIECE_UNDERLINE + '''is''',
SPIECE_UNDERLINE + '''f''',
'''al''',
'''s''',
'''é''',
'''.''',
] , )
__lowerCamelCase = tokenizer.convert_tokens_to_ids(__lowerCAmelCase )
self.assertListEqual(
__lowerCAmelCase , [
value + tokenizer.fairseq_offset
for value in [8, 21, 84, 55, 24, 19, 7, 2, 6_02, 3_47, 3_47, 3_47, 3, 12, 66, 46, 72, 80, 6, 2, 4]
# ^ unk: 2 + 1 = 3 unk: 2 + 1 = 3 ^
] , )
__lowerCamelCase = tokenizer.convert_ids_to_tokens(__lowerCAmelCase )
self.assertListEqual(
__lowerCAmelCase , [
SPIECE_UNDERLINE + '''I''',
SPIECE_UNDERLINE + '''was''',
SPIECE_UNDERLINE + '''b''',
'''or''',
'''n''',
SPIECE_UNDERLINE + '''in''',
SPIECE_UNDERLINE + '''''',
'''<unk>''',
'''2''',
'''0''',
'''0''',
'''0''',
''',''',
SPIECE_UNDERLINE + '''and''',
SPIECE_UNDERLINE + '''this''',
SPIECE_UNDERLINE + '''is''',
SPIECE_UNDERLINE + '''f''',
'''al''',
'''s''',
'''<unk>''',
'''.''',
] , )
def __A ( self : str ) -> str:
if not self.test_slow_tokenizer:
# as we don't have a slow version, we can't compare the outputs between slow and fast versions
return
__lowerCamelCase = (self.rust_tokenizer_class, '''hf-internal-testing/tiny-xlm-roberta''', {})
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ):
__lowerCamelCase = self.rust_tokenizer_class.from_pretrained(__lowerCAmelCase , **__lowerCAmelCase )
__lowerCamelCase = self.tokenizer_class.from_pretrained(__lowerCAmelCase , **__lowerCAmelCase )
__lowerCamelCase = tempfile.mkdtemp()
__lowerCamelCase = tokenizer_r.save_pretrained(__lowerCAmelCase )
__lowerCamelCase = tokenizer_p.save_pretrained(__lowerCAmelCase )
# Checks it save with the same files + the tokenizer.json file for the fast one
self.assertTrue(any('''tokenizer.json''' in f for f in tokenizer_r_files ) )
__lowerCamelCase = tuple(f for f in tokenizer_r_files if '''tokenizer.json''' not in f )
self.assertSequenceEqual(__lowerCAmelCase , __lowerCAmelCase )
# Checks everything loads correctly in the same way
__lowerCamelCase = tokenizer_r.from_pretrained(__lowerCAmelCase )
__lowerCamelCase = tokenizer_p.from_pretrained(__lowerCAmelCase )
# Check special tokens are set accordingly on Rust and Python
for key in tokenizer_pp.special_tokens_map:
self.assertTrue(hasattr(__lowerCAmelCase , __lowerCAmelCase ) )
# self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key))
# self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id"))
shutil.rmtree(__lowerCAmelCase )
# Save tokenizer rust, legacy_format=True
__lowerCamelCase = tempfile.mkdtemp()
__lowerCamelCase = tokenizer_r.save_pretrained(__lowerCAmelCase , legacy_format=__lowerCAmelCase )
__lowerCamelCase = tokenizer_p.save_pretrained(__lowerCAmelCase )
# Checks it save with the same files
self.assertSequenceEqual(__lowerCAmelCase , __lowerCAmelCase )
# Checks everything loads correctly in the same way
__lowerCamelCase = tokenizer_r.from_pretrained(__lowerCAmelCase )
__lowerCamelCase = tokenizer_p.from_pretrained(__lowerCAmelCase )
# Check special tokens are set accordingly on Rust and Python
for key in tokenizer_pp.special_tokens_map:
self.assertTrue(hasattr(__lowerCAmelCase , __lowerCAmelCase ) )
shutil.rmtree(__lowerCAmelCase )
# Save tokenizer rust, legacy_format=False
__lowerCamelCase = tempfile.mkdtemp()
__lowerCamelCase = tokenizer_r.save_pretrained(__lowerCAmelCase , legacy_format=__lowerCAmelCase )
__lowerCamelCase = tokenizer_p.save_pretrained(__lowerCAmelCase )
# Checks it saved the tokenizer.json file
self.assertTrue(any('''tokenizer.json''' in f for f in tokenizer_r_files ) )
# Checks everything loads correctly in the same way
__lowerCamelCase = tokenizer_r.from_pretrained(__lowerCAmelCase )
__lowerCamelCase = tokenizer_p.from_pretrained(__lowerCAmelCase )
# Check special tokens are set accordingly on Rust and Python
for key in tokenizer_pp.special_tokens_map:
self.assertTrue(hasattr(__lowerCAmelCase , __lowerCAmelCase ) )
shutil.rmtree(__lowerCAmelCase )
@cached_property
def __A ( self : Union[str, Any] ) -> Optional[Any]:
return XLMRobertaTokenizer.from_pretrained('''xlm-roberta-base''' )
def __A ( self : Any ) -> List[str]:
with tempfile.NamedTemporaryFile() as f:
shutil.copyfile(__lowerCAmelCase , f.name )
__lowerCamelCase = XLMRobertaTokenizer(f.name , keep_accents=__lowerCAmelCase )
__lowerCamelCase = pickle.dumps(__lowerCAmelCase )
pickle.loads(__lowerCAmelCase )
def __A ( self : int ) -> str:
if not self.test_rust_tokenizer:
return
__lowerCamelCase = self.get_tokenizer()
__lowerCamelCase = self.get_rust_tokenizer()
__lowerCamelCase = '''I was born in 92000, and this is falsé.'''
__lowerCamelCase = tokenizer.tokenize(__lowerCAmelCase )
__lowerCamelCase = rust_tokenizer.tokenize(__lowerCAmelCase )
self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase )
__lowerCamelCase = tokenizer.encode(__lowerCAmelCase , add_special_tokens=__lowerCAmelCase )
__lowerCamelCase = rust_tokenizer.encode(__lowerCAmelCase , add_special_tokens=__lowerCAmelCase )
self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase )
__lowerCamelCase = self.get_rust_tokenizer()
__lowerCamelCase = tokenizer.encode(__lowerCAmelCase )
__lowerCamelCase = rust_tokenizer.encode(__lowerCAmelCase )
self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase )
@slow
def __A ( self : Optional[Any] ) -> Optional[int]:
__lowerCamelCase = '''Hello World!'''
__lowerCamelCase = [0, 3_53_78, 66_61, 38, 2]
# xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.large has same tokenizer
# xlmr.eval()
# xlmr.encode(symbols)
self.assertListEqual(__lowerCAmelCase , self.big_tokenizer.encode(__lowerCAmelCase ) )
@slow
def __A ( self : List[str] ) -> str:
__lowerCamelCase = (
'''This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) \" [ ] ! : - . Also we will'''
''' add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth'''
)
__lowerCamelCase = [
0,
32_93,
83,
10,
45_52,
49_89,
79_86,
6_78,
10,
59_15,
1_11,
17_94_59,
12_48_50,
4,
60_44,
2_37,
12,
6,
5,
6,
4,
67_80,
7_05,
15,
13_88,
44,
3_78,
1_01_14,
7_11,
1_52,
20,
6,
5,
2_23_76,
6_42,
12_21,
1_51_90,
3_41_53,
4_50,
56_08,
9_59,
11_19,
5_77_02,
1_36,
1_86,
47,
10_98,
2_93_67,
47,
# 4426, # What fairseq tokenizes from "<unk>": "_<"
# 3678, # What fairseq tokenizes from "<unk>": "unk"
# 2740, # What fairseq tokenizes from "<unk>": ">"
3, # What we tokenize from "<unk>": "<unk>"
6, # Residue from the tokenization: an extra sentencepiece underline
4,
60_44,
2_37,
62_84,
5_09_01,
5_28,
31,
90,
34,
9_27,
2,
]
# xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.large has same tokenizer
# xlmr.eval()
# xlmr.encode(symbols)
self.assertListEqual(__lowerCAmelCase , self.big_tokenizer.encode(__lowerCAmelCase ) )
@slow
def __A ( self : Tuple ) -> Optional[int]:
__lowerCamelCase = {'''input_ids''': [[0, 1_10_62, 8_27_72, 7, 15, 8_27_72, 5_38, 5_15_29, 2_37, 1_71_98, 12_90, 2_06, 9, 21_51_75, 13_14, 1_36, 1_71_98, 12_90, 2_06, 9, 5_63_59, 42, 12_20_09, 9, 1_64_66, 16, 8_73_44, 45_37, 9, 47_17, 7_83_81, 6, 15_99_58, 7, 15, 2_44_80, 6_18, 4, 5_27, 2_26_93, 54_28, 4, 27_77, 2_44_80, 98_74, 4, 4_35_23, 5_94, 4, 8_03, 1_83_92, 3_31_89, 18, 4, 4_35_23, 2_44_47, 1_23_99, 1_00, 2_49_55, 8_36_58, 96_26, 14_40_57, 15, 8_39, 2_23_35, 16, 1_36, 2_49_55, 8_36_58, 8_34_79, 15, 3_91_02, 7_24, 16, 6_78, 6_45, 27_89, 13_28, 45_89, 42, 12_20_09, 11_57_74, 23, 8_05, 13_28, 4_68_76, 7, 1_36, 5_38_94, 19_40, 4_22_27, 4_11_59, 1_77_21, 8_23, 4_25, 4, 2_75_12, 9_87_22, 2_06, 1_36, 55_31, 49_70, 9_19, 1_73_36, 5, 2], [0, 2_00_80, 6_18, 83, 8_27_75, 47, 4_79, 9, 15_17, 73, 5_38_94, 3_33, 8_05_81, 11_01_17, 1_88_11, 52_56, 12_95, 51, 15_25_26, 2_97, 79_86, 3_90, 12_44_16, 5_38, 3_54_31, 2_14, 98, 1_50_44, 2_57_37, 1_36, 71_08, 4_37_01, 23, 7_56, 13_53_55, 7, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 5_81, 6_37_73, 11_94_55, 6, 14_77_97, 8_82_03, 7, 6_45, 70, 21, 32_85, 1_02_69, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501
# fmt: on
self.tokenizer_integration_test_util(
expected_encoding=__lowerCAmelCase , model_name='''xlm-roberta-base''' , revision='''d9d8a8ea5eb94b1c6654ae9249df7793cd2933d3''' , )
| 360 |
from collections.abc import Iterator, MutableMapping
from dataclasses import dataclass
from typing import Generic, TypeVar
SCREAMING_SNAKE_CASE__ : Any = TypeVar("KEY")
SCREAMING_SNAKE_CASE__ : Dict = TypeVar("VAL")
@dataclass(frozen=__lowercase , slots=__lowercase )
class lowerCAmelCase__ ( Generic[KEY, VAL] ):
a__ : KEY
a__ : VAL
class lowerCAmelCase__ ( _Item ):
def __init__( self : str ) -> None:
super().__init__(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
def __bool__( self : Tuple ) -> bool:
return False
SCREAMING_SNAKE_CASE__ : List[Any] = _DeletedItem()
class lowerCAmelCase__ ( MutableMapping[KEY, VAL] ):
def __init__( self : int , SCREAMING_SNAKE_CASE__ : int = 8 , SCREAMING_SNAKE_CASE__ : float = 0.75 ) -> None:
__lowerCamelCase = initial_block_size
__lowerCamelCase = [None] * initial_block_size
assert 0.0 < capacity_factor < 1.0
__lowerCamelCase = capacity_factor
__lowerCamelCase = 0
def __A ( self : Any , SCREAMING_SNAKE_CASE__ : KEY ) -> int:
return hash(SCREAMING_SNAKE_CASE__ ) % len(self._buckets )
def __A ( self : Any , SCREAMING_SNAKE_CASE__ : int ) -> int:
return (ind + 1) % len(self._buckets )
def __A ( self : Optional[int] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : KEY , SCREAMING_SNAKE_CASE__ : VAL ) -> bool:
__lowerCamelCase = self._buckets[ind]
if not stored:
__lowerCamelCase = _Item(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
self._len += 1
return True
elif stored.key == key:
__lowerCamelCase = _Item(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
return True
else:
return False
def __A ( self : Any ) -> bool:
__lowerCamelCase = len(self._buckets ) * self._capacity_factor
return len(self ) >= int(SCREAMING_SNAKE_CASE__ )
def __A ( self : List[Any] ) -> bool:
if len(self._buckets ) <= self._initial_block_size:
return False
__lowerCamelCase = len(self._buckets ) * self._capacity_factor / 2
return len(self ) < limit
def __A ( self : int , SCREAMING_SNAKE_CASE__ : int ) -> None:
__lowerCamelCase = self._buckets
__lowerCamelCase = [None] * new_size
__lowerCamelCase = 0
for item in old_buckets:
if item:
self._add_item(item.key , item.val )
def __A ( self : str ) -> None:
self._resize(len(self._buckets ) * 2 )
def __A ( self : Dict ) -> None:
self._resize(len(self._buckets ) // 2 )
def __A ( self : Tuple , SCREAMING_SNAKE_CASE__ : KEY ) -> Iterator[int]:
__lowerCamelCase = self._get_bucket_index(SCREAMING_SNAKE_CASE__ )
for _ in range(len(self._buckets ) ):
yield ind
__lowerCamelCase = self._get_next_ind(SCREAMING_SNAKE_CASE__ )
def __A ( self : Optional[int] , SCREAMING_SNAKE_CASE__ : KEY , SCREAMING_SNAKE_CASE__ : VAL ) -> None:
for ind in self._iterate_buckets(SCREAMING_SNAKE_CASE__ ):
if self._try_set(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ):
break
def __setitem__( self : Tuple , SCREAMING_SNAKE_CASE__ : KEY , SCREAMING_SNAKE_CASE__ : VAL ) -> None:
if self._is_full():
self._size_up()
self._add_item(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
def __delitem__( self : List[Any] , SCREAMING_SNAKE_CASE__ : KEY ) -> None:
for ind in self._iterate_buckets(SCREAMING_SNAKE_CASE__ ):
__lowerCamelCase = self._buckets[ind]
if item is None:
raise KeyError(SCREAMING_SNAKE_CASE__ )
if item is _deleted:
continue
if item.key == key:
__lowerCamelCase = _deleted
self._len -= 1
break
if self._is_sparse():
self._size_down()
def __getitem__( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : KEY ) -> VAL:
for ind in self._iterate_buckets(SCREAMING_SNAKE_CASE__ ):
__lowerCamelCase = self._buckets[ind]
if item is None:
break
if item is _deleted:
continue
if item.key == key:
return item.val
raise KeyError(SCREAMING_SNAKE_CASE__ )
def __len__( self : int ) -> int:
return self._len
def __iter__( self : Tuple ) -> Iterator[KEY]:
yield from (item.key for item in self._buckets if item)
def __repr__( self : Optional[Any] ) -> str:
__lowerCamelCase = ''' ,'''.join(
f'''{item.key}: {item.val}''' for item in self._buckets if item )
return f'''HashMap({val_string})'''
| 339 | 0 |
'''simple docstring'''
def __lowerCamelCase ( _lowercase , _lowercase ) -> int:
return int((input_a, input_a).count(1 ) != 0 )
def __lowerCamelCase ( ) -> None:
assert or_gate(0 , 0 ) == 0
assert or_gate(0 , 1 ) == 1
assert or_gate(1 , 0 ) == 1
assert or_gate(1 , 1 ) == 1
if __name__ == "__main__":
print(or_gate(0, 1))
print(or_gate(1, 0))
print(or_gate(0, 0))
print(or_gate(1, 1))
| 265 |
'''simple docstring'''
from PIL import Image
def __lowerCamelCase ( _lowercase , _lowercase ) -> Image:
def brightness(_lowercase ) -> float:
return 1_2_8 + level + (c - 1_2_8)
if not -255.0 <= level <= 255.0:
raise ValueError("""level must be between -255.0 (black) and 255.0 (white)""" )
return img.point(_lowercase )
if __name__ == "__main__":
# Load image
with Image.open("""image_data/lena.jpg""") as img:
# Change brightness to 100
a : Optional[Any] = change_brightness(img, 1_0_0)
brigt_img.save("""image_data/lena_brightness.png""", format="""png""")
| 265 | 1 |
import argparse
import gdown
import numpy as np
import torch
from huggingface_hub import hf_hub_download
from transformers import (
CLIPTokenizer,
CLIPTokenizerFast,
VideoMAEImageProcessor,
XCLIPConfig,
XCLIPModel,
XCLIPProcessor,
XCLIPTextConfig,
XCLIPVisionConfig,
)
def _UpperCamelCase ( snake_case__, snake_case__ ) -> str:
__UpperCAmelCase : Optional[int] = XCLIPTextConfig()
# derive patch size from model name
__UpperCAmelCase : int = model_name.find("patch" )
__UpperCAmelCase : Tuple = int(model_name[start_idx + len("patch" ) : start_idx + len("patch" ) + 2] )
__UpperCAmelCase : Union[str, Any] = XCLIPVisionConfig(patch_size=__snake_case, num_frames=__snake_case )
if "large" in model_name:
__UpperCAmelCase : List[Any] = 768
__UpperCAmelCase : Dict = 3072
__UpperCAmelCase : Dict = 12
__UpperCAmelCase : str = 1024
__UpperCAmelCase : List[Any] = 4096
__UpperCAmelCase : Union[str, Any] = 16
__UpperCAmelCase : Any = 24
__UpperCAmelCase : Dict = 768
__UpperCAmelCase : List[str] = 3072
if model_name == "xclip-large-patch14-16-frames":
__UpperCAmelCase : int = 336
__UpperCAmelCase : str = XCLIPConfig.from_text_vision_configs(__snake_case, __snake_case )
if "large" in model_name:
__UpperCAmelCase : str = 768
return config
def _UpperCamelCase ( snake_case__ ) -> List[Any]:
if name == "token_embedding.weight":
__UpperCAmelCase : Tuple = name.replace("token_embedding.weight", "text_model.embeddings.token_embedding.weight" )
if name == "positional_embedding":
__UpperCAmelCase : List[Any] = name.replace("positional_embedding", "text_model.embeddings.position_embedding.weight" )
if "ln_1" in name:
__UpperCAmelCase : Union[str, Any] = name.replace("ln_1", "layer_norm1" )
if "ln_2" in name:
__UpperCAmelCase : Any = name.replace("ln_2", "layer_norm2" )
if "c_fc" in name:
__UpperCAmelCase : List[str] = name.replace("c_fc", "fc1" )
if "c_proj" in name:
__UpperCAmelCase : str = name.replace("c_proj", "fc2" )
if name.startswith("transformer.resblocks" ):
__UpperCAmelCase : str = name.replace("transformer.resblocks", "text_model.encoder.layers" )
if "attn.out_proj" in name and "message" not in name:
__UpperCAmelCase : List[str] = name.replace("attn.out_proj", "self_attn.out_proj" )
if "ln_final" in name:
__UpperCAmelCase : Tuple = name.replace("ln_final", "text_model.final_layer_norm" )
# visual encoder
if name == "visual.class_embedding":
__UpperCAmelCase : Dict = name.replace("visual.class_embedding", "vision_model.embeddings.class_embedding" )
if name == "visual.positional_embedding":
__UpperCAmelCase : Optional[Any] = name.replace("visual.positional_embedding", "vision_model.embeddings.position_embedding.weight" )
if name.startswith("visual.transformer.resblocks" ):
__UpperCAmelCase : Any = name.replace("visual.transformer.resblocks", "vision_model.encoder.layers" )
if "visual.conv1" in name:
__UpperCAmelCase : Tuple = name.replace("visual.conv1", "vision_model.embeddings.patch_embedding" )
if "visual.ln_pre" in name:
__UpperCAmelCase : Union[str, Any] = name.replace("visual.ln_pre", "vision_model.pre_layernorm" )
if "visual.ln_post" in name:
__UpperCAmelCase : Dict = name.replace("visual.ln_post", "vision_model.post_layernorm" )
if "visual.proj" in name:
__UpperCAmelCase : Tuple = name.replace("visual.proj", "visual_projection.weight" )
if "text_projection" in name:
__UpperCAmelCase : List[str] = name.replace("text_projection", "text_projection.weight" )
# things on top
if "prompts_visual_proj" in name:
__UpperCAmelCase : Optional[int] = name.replace("prompts_visual_proj", "prompts_visual_projection" )
if "prompts_visual_ln" in name:
__UpperCAmelCase : Dict = name.replace("prompts_visual_ln", "prompts_visual_layernorm" )
# mit
if name == "mit.positional_embedding":
__UpperCAmelCase : Union[str, Any] = name.replace("positional", "position" )
if name.startswith("mit.resblocks" ):
__UpperCAmelCase : List[str] = name.replace("mit.resblocks", "mit.encoder.layers" )
# prompts generator
if name.startswith("prompts_generator.norm" ):
__UpperCAmelCase : List[Any] = name.replace("prompts_generator.norm", "prompts_generator.layernorm" )
return name
def _UpperCamelCase ( snake_case__, snake_case__ ) -> Optional[int]:
for key in orig_state_dict.copy().keys():
__UpperCAmelCase : List[str] = orig_state_dict.pop(__snake_case )
if "attn.in_proj" in key:
__UpperCAmelCase : Optional[int] = key.split("." )
if key.startswith("visual" ):
__UpperCAmelCase : Union[str, Any] = key_split[3]
__UpperCAmelCase : Any = config.vision_config.hidden_size
if "message_attn" in key:
if "weight" in key:
__UpperCAmelCase : int = val[
:dim, :
]
__UpperCAmelCase : List[str] = val[
dim : dim * 2, :
]
__UpperCAmelCase : Dict = val[
-dim:, :
]
else:
__UpperCAmelCase : str = val[
:dim
]
__UpperCAmelCase : int = val[
dim : dim * 2
]
__UpperCAmelCase : Optional[int] = val[
-dim:
]
else:
if "weight" in key:
__UpperCAmelCase : Optional[Any] = val[
:dim, :
]
__UpperCAmelCase : Optional[Any] = val[
dim : dim * 2, :
]
__UpperCAmelCase : int = val[
-dim:, :
]
else:
__UpperCAmelCase : Union[str, Any] = val[:dim]
__UpperCAmelCase : str = val[
dim : dim * 2
]
__UpperCAmelCase : Dict = val[-dim:]
elif key.startswith("mit" ):
__UpperCAmelCase : int = key_split[2]
__UpperCAmelCase : Optional[Any] = config.vision_config.mit_hidden_size
if "weight" in key:
__UpperCAmelCase : Union[str, Any] = val[:dim, :]
__UpperCAmelCase : Any = val[dim : dim * 2, :]
__UpperCAmelCase : Any = val[-dim:, :]
else:
__UpperCAmelCase : List[Any] = val[:dim]
__UpperCAmelCase : List[Any] = val[dim : dim * 2]
__UpperCAmelCase : List[Any] = val[-dim:]
else:
__UpperCAmelCase : Any = key_split[2]
__UpperCAmelCase : Any = config.text_config.hidden_size
if "weight" in key:
__UpperCAmelCase : int = val[:dim, :]
__UpperCAmelCase : int = val[
dim : dim * 2, :
]
__UpperCAmelCase : Tuple = val[-dim:, :]
else:
__UpperCAmelCase : str = val[:dim]
__UpperCAmelCase : Union[str, Any] = val[
dim : dim * 2
]
__UpperCAmelCase : Optional[int] = val[-dim:]
else:
__UpperCAmelCase : Optional[int] = rename_key(__snake_case )
if new_key_name in ["visual_projection.weight", "text_projection.weight"]:
__UpperCAmelCase : Dict = val.T
__UpperCAmelCase : Tuple = val
return orig_state_dict
def _UpperCamelCase ( snake_case__ ) -> Union[str, Any]:
if num_frames == 8:
__UpperCAmelCase : Any = "eating_spaghetti_8_frames.npy"
elif num_frames == 16:
__UpperCAmelCase : List[str] = "eating_spaghetti.npy"
elif num_frames == 32:
__UpperCAmelCase : Union[str, Any] = "eating_spaghetti_32_frames.npy"
__UpperCAmelCase : str = hf_hub_download(
repo_id="hf-internal-testing/spaghetti-video", filename=__snake_case, repo_type="dataset", )
__UpperCAmelCase : str = np.load(__snake_case )
return list(__snake_case )
def _UpperCamelCase ( snake_case__, snake_case__=None, snake_case__=False ) -> Union[str, Any]:
__UpperCAmelCase : Optional[Any] = {
# fully supervised kinetics-400 checkpoints
"xclip-base-patch32": "https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_32_8.pth",
"xclip-base-patch32-16-frames": (
"https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_32_16.pth"
),
"xclip-base-patch16": "https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_16_8.pth",
"xclip-base-patch16-16-frames": (
"https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_16_16.pth"
),
"xclip-large-patch14": "https://drive.google.com/u/0/uc?id=1NUOImq0o5DlQTST17iIP3vG7DgmHQuCx&export=download&confirm=t&uuid=b26caedc-88e2-473e-830a-9d158b653cdb",
"xclip-large-patch14-16-frames": "https://drive.google.com/u/0/uc?id=1FOYgnJc097OJ4lGwtRCCydQyVPJEOH7d&export=download&confirm=t&uuid=538fa810-e671-4050-b385-9a623f89804f",
# fully supervised kinetics-600 checkpoints
"xclip-base-patch16-kinetics-600": (
"https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k600_16_8.pth"
),
"xclip-base-patch16-kinetics-600-16-frames": (
"https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k600_16_16.pth"
),
"xclip-large-patch14-kinetics-600": "https://drive.google.com/u/0/uc?id=1FV8C1INuM91sLAN4ImjzePLIlpMSihwV&export=download&confirm=t&uuid=141d4977-4a65-44ae-864f-4b0c19f838be",
# few shot
"xclip-base-patch16-hmdb-2-shot": (
"https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_2.pth"
),
"xclip-base-patch16-hmdb-4-shot": (
"https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_4.pth"
),
"xclip-base-patch16-hmdb-8-shot": (
"https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_8.pth"
),
"xclip-base-patch16-hmdb-16-shot": (
"https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_16.pth"
),
"xclip-base-patch16-ucf-2-shot": (
"https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_2.pth"
),
"xclip-base-patch16-ucf-4-shot": (
"https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_4.pth"
),
"xclip-base-patch16-ucf-8-shot": (
"https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_8.pth"
),
"xclip-base-patch16-ucf-16-shot": (
"https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_16.pth"
),
# zero shot
"xclip-base-patch16-zero-shot": "https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/zero.pth",
}
__UpperCAmelCase : Dict = model_to_url[model_name]
__UpperCAmelCase : Tuple = 8
if "16-frames" in model_name:
__UpperCAmelCase : Optional[Any] = 16
elif "shot" in model_name:
__UpperCAmelCase : Union[str, Any] = 32
__UpperCAmelCase : Any = get_xclip_config(__snake_case, __snake_case )
__UpperCAmelCase : Optional[int] = XCLIPModel(__snake_case )
model.eval()
if "drive" in checkpoint_url:
__UpperCAmelCase : Dict = "pytorch_model.bin"
gdown.cached_download(__snake_case, __snake_case, quiet=__snake_case )
__UpperCAmelCase : str = torch.load(__snake_case, map_location="cpu" )["model"]
else:
__UpperCAmelCase : List[Any] = torch.hub.load_state_dict_from_url(__snake_case )["model"]
__UpperCAmelCase : str = convert_state_dict(__snake_case, __snake_case )
__UpperCAmelCase : Optional[int] = XCLIPModel(__snake_case )
__UpperCAmelCase , __UpperCAmelCase : Optional[int] = model.load_state_dict(__snake_case, strict=__snake_case )
assert missing_keys == ["text_model.embeddings.position_ids", "vision_model.embeddings.position_ids"]
model.eval()
__UpperCAmelCase : Optional[Any] = 336 if model_name == "xclip-large-patch14-16-frames" else 224
__UpperCAmelCase : List[str] = VideoMAEImageProcessor(size=__snake_case )
__UpperCAmelCase : str = CLIPTokenizer.from_pretrained("openai/clip-vit-base-patch32" )
__UpperCAmelCase : Tuple = CLIPTokenizerFast.from_pretrained("openai/clip-vit-base-patch32" )
__UpperCAmelCase : Tuple = XCLIPProcessor(image_processor=__snake_case, tokenizer=__snake_case )
__UpperCAmelCase : List[Any] = prepare_video(__snake_case )
__UpperCAmelCase : Tuple = processor(
text=["playing sports", "eating spaghetti", "go shopping"], videos=__snake_case, return_tensors="pt", padding=__snake_case )
print("Shape of pixel values:", inputs.pixel_values.shape )
with torch.no_grad():
__UpperCAmelCase : str = model(**__snake_case )
# Verify outputs
__UpperCAmelCase : Any = outputs.logits_per_video
__UpperCAmelCase : Union[str, Any] = logits_per_video.softmax(dim=1 )
print("Probs:", __snake_case )
# kinetics-400
if model_name == "xclip-base-patch32":
__UpperCAmelCase : Tuple = torch.tensor([[0.0019, 0.9951, 0.0030]] )
elif model_name == "xclip-base-patch32-16-frames":
__UpperCAmelCase : List[str] = torch.tensor([[7.0_9_9_9e-0_4, 9.9_8_8_3e-0_1, 4.5_5_8_0e-0_4]] )
elif model_name == "xclip-base-patch16":
__UpperCAmelCase : str = torch.tensor([[0.0083, 0.9681, 0.0236]] )
elif model_name == "xclip-base-patch16-16-frames":
__UpperCAmelCase : Optional[int] = torch.tensor([[7.6_9_3_7e-0_4, 9.9_7_2_8e-0_1, 1.9_4_7_3e-0_3]] )
elif model_name == "xclip-large-patch14":
__UpperCAmelCase : Optional[int] = torch.tensor([[0.0062, 0.9864, 0.0075]] )
elif model_name == "xclip-large-patch14-16-frames":
__UpperCAmelCase : Tuple = torch.tensor([[3.3_8_7_7e-0_4, 9.9_9_3_7e-0_1, 2.8_8_8_8e-0_4]] )
# kinetics-600
elif model_name == "xclip-base-patch16-kinetics-600":
__UpperCAmelCase : Dict = torch.tensor([[0.0555, 0.8914, 0.0531]] )
elif model_name == "xclip-base-patch16-kinetics-600-16-frames":
__UpperCAmelCase : Tuple = torch.tensor([[3.8_5_5_4e-0_4, 9.9_9_2_9e-0_1, 3.2_7_5_4e-0_4]] )
elif model_name == "xclip-large-patch14-kinetics-600":
__UpperCAmelCase : List[str] = torch.tensor([[0.0036, 0.9920, 0.0045]] )
# few shot
elif model_name == "xclip-base-patch16-hmdb-2-shot":
__UpperCAmelCase : Any = torch.tensor([[7.1_8_9_0e-0_6, 9.9_9_9_4e-0_1, 5.6_5_5_9e-0_5]] )
elif model_name == "xclip-base-patch16-hmdb-4-shot":
__UpperCAmelCase : Optional[Any] = torch.tensor([[1.0_3_2_0e-0_5, 9.9_9_9_3e-0_1, 6.2_4_3_5e-0_5]] )
elif model_name == "xclip-base-patch16-hmdb-8-shot":
__UpperCAmelCase : Union[str, Any] = torch.tensor([[4.1_3_7_7e-0_6, 9.9_9_9_0e-0_1, 9.8_3_8_6e-0_5]] )
elif model_name == "xclip-base-patch16-hmdb-16-shot":
__UpperCAmelCase : Tuple = torch.tensor([[4.1_3_4_7e-0_5, 9.9_9_6_2e-0_1, 3.3_4_1_1e-0_4]] )
elif model_name == "xclip-base-patch16-ucf-2-shot":
__UpperCAmelCase : Dict = torch.tensor([[8.5_8_5_7e-0_5, 9.9_9_2_8e-0_1, 6.3_2_9_1e-0_4]] )
elif model_name == "xclip-base-patch16-ucf-4-shot":
__UpperCAmelCase : Dict = torch.tensor([[8.5_8_5_7e-0_5, 9.9_9_2_8e-0_1, 6.3_2_9_1e-0_4]] )
elif model_name == "xclip-base-patch16-ucf-8-shot":
__UpperCAmelCase : Optional[Any] = torch.tensor([[0.0027, 0.9904, 0.0070]] )
elif model_name == "xclip-base-patch16-ucf-16-shot":
__UpperCAmelCase : Dict = torch.tensor([[9.8_2_1_9e-0_4, 9.9_5_9_3e-0_1, 3.0_8_6_3e-0_3]] )
# zero shot
elif model_name == "xclip-base-patch16-zero-shot":
__UpperCAmelCase : List[str] = torch.tensor([[3.5_0_8_2e-0_4, 9.9_7_8_5e-0_1, 1.7_9_6_6e-0_3]] )
else:
raise ValueError(f'''Model name {model_name} not supported''' )
assert torch.allclose(__snake_case, __snake_case, atol=1e-3 )
print("Looks ok!" )
if pytorch_dump_folder_path is not None:
print(f'''Saving model {model_name} to {pytorch_dump_folder_path}''' )
model.save_pretrained(__snake_case )
if push_to_hub:
print("Pushing model, processor and slow tokenizer files to the hub..." )
model.push_to_hub(__snake_case, organization="nielsr" )
processor.push_to_hub(__snake_case, organization="nielsr" )
slow_tokenizer.push_to_hub(__snake_case, organization="nielsr" )
if __name__ == "__main__":
_snake_case = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''--model_name''',
default='''xclip-base-patch32''',
type=str,
help='''Name of the model.''',
)
parser.add_argument(
'''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.'''
)
parser.add_argument(
'''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.'''
)
_snake_case = parser.parse_args()
convert_xclip_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
| 362 | import json
import os
import shutil
import tempfile
import unittest
from transformers import BatchEncoding, CanineTokenizer
from transformers.testing_utils import require_tokenizers, require_torch
from transformers.tokenization_utils import AddedToken
from transformers.utils import cached_property
from ...test_tokenization_common import TokenizerTesterMixin
class _snake_case ( _lowercase , unittest.TestCase ):
lowerCamelCase__: List[Any] = CanineTokenizer
lowerCamelCase__: Optional[int] = False
def _lowerCamelCase ( self: Optional[Any] ) -> Optional[int]:
super().setUp()
__UpperCAmelCase : Tuple = CanineTokenizer()
tokenizer.save_pretrained(self.tmpdirname )
@cached_property
def _lowerCamelCase ( self: Union[str, Any] ) -> List[Any]:
return CanineTokenizer.from_pretrained("google/canine-s" )
def _lowerCamelCase ( self: Any , **__lowerCamelCase: List[Any] ) -> CanineTokenizer:
__UpperCAmelCase : Optional[int] = self.tokenizer_class.from_pretrained(self.tmpdirname , **__lowerCamelCase )
__UpperCAmelCase : Optional[int] = 10_24
return tokenizer
@require_torch
def _lowerCamelCase ( self: List[str] ) -> int:
__UpperCAmelCase : Union[str, Any] = self.canine_tokenizer
__UpperCAmelCase : List[str] = ["Life is like a box of chocolates.", "You never know what you're gonna get."]
# fmt: off
__UpperCAmelCase : Dict = [5_73_44, 76, 1_05, 1_02, 1_01, 32, 1_05, 1_15, 32, 1_08, 1_05, 1_07, 1_01, 32, 97, 32, 98, 1_11, 1_20, 32, 1_11, 1_02, 32, 99, 1_04, 1_11, 99, 1_11, 1_08, 97, 1_16, 1_01, 1_15, 46, 5_73_45, 0, 0, 0, 0]
# fmt: on
__UpperCAmelCase : Union[str, Any] = tokenizer(__lowerCamelCase , padding=__lowerCamelCase , return_tensors="pt" )
self.assertIsInstance(__lowerCamelCase , __lowerCamelCase )
__UpperCAmelCase : Optional[Any] = list(batch.input_ids.numpy()[0] )
self.assertListEqual(__lowerCamelCase , __lowerCamelCase )
self.assertEqual((2, 39) , batch.input_ids.shape )
self.assertEqual((2, 39) , batch.attention_mask.shape )
@require_torch
def _lowerCamelCase ( self: Optional[Any] ) -> Tuple:
__UpperCAmelCase : Optional[Any] = self.canine_tokenizer
__UpperCAmelCase : Dict = ["Once there was a man.", "He wrote a test in HuggingFace Tranformers."]
__UpperCAmelCase : Union[str, Any] = tokenizer(__lowerCamelCase , padding=__lowerCamelCase , return_tensors="pt" )
# check if input_ids, attention_mask and token_type_ids are returned
self.assertIn("input_ids" , __lowerCamelCase )
self.assertIn("attention_mask" , __lowerCamelCase )
self.assertIn("token_type_ids" , __lowerCamelCase )
@require_torch
def _lowerCamelCase ( self: Any ) -> List[str]:
__UpperCAmelCase : Optional[Any] = self.canine_tokenizer
__UpperCAmelCase : int = [
"What's the weater?",
"It's about 25 degrees.",
]
__UpperCAmelCase : List[Any] = tokenizer(
text_target=__lowerCamelCase , max_length=32 , padding="max_length" , truncation=__lowerCamelCase , return_tensors="pt" )
self.assertEqual(32 , targets["input_ids"].shape[1] )
def _lowerCamelCase ( self: List[Any] ) -> Tuple:
# safety check on max_len default value so we are sure the test works
__UpperCAmelCase : Optional[int] = self.get_tokenizers()
for tokenizer in tokenizers:
with self.subTest(f'''{tokenizer.__class__.__name__}''' ):
self.assertNotEqual(tokenizer.model_max_length , 42 )
# Now let's start the test
__UpperCAmelCase : str = self.get_tokenizers()
for tokenizer in tokenizers:
with self.subTest(f'''{tokenizer.__class__.__name__}''' ):
# Isolate this from the other tests because we save additional tokens/etc
__UpperCAmelCase : int = tempfile.mkdtemp()
__UpperCAmelCase : List[Any] = " He is very happy, UNwant\u00E9d,running"
__UpperCAmelCase : Union[str, Any] = tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase )
tokenizer.save_pretrained(__lowerCamelCase )
__UpperCAmelCase : Tuple = tokenizer.__class__.from_pretrained(__lowerCamelCase )
__UpperCAmelCase : Dict = after_tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase )
self.assertListEqual(__lowerCamelCase , __lowerCamelCase )
shutil.rmtree(__lowerCamelCase )
__UpperCAmelCase : Optional[Any] = self.get_tokenizers(model_max_length=42 )
for tokenizer in tokenizers:
with self.subTest(f'''{tokenizer.__class__.__name__}''' ):
# Isolate this from the other tests because we save additional tokens/etc
__UpperCAmelCase : List[Any] = tempfile.mkdtemp()
__UpperCAmelCase : Optional[int] = " He is very happy, UNwant\u00E9d,running"
__UpperCAmelCase : str = tokenizer.additional_special_tokens
# We can add a new special token for Canine as follows:
__UpperCAmelCase : Tuple = chr(0xE_0_0_7 )
additional_special_tokens.append(__lowerCamelCase )
tokenizer.add_special_tokens({"additional_special_tokens": additional_special_tokens} )
__UpperCAmelCase : Optional[int] = tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase )
tokenizer.save_pretrained(__lowerCamelCase )
__UpperCAmelCase : str = tokenizer.__class__.from_pretrained(__lowerCamelCase )
__UpperCAmelCase : Union[str, Any] = after_tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase )
self.assertListEqual(__lowerCamelCase , __lowerCamelCase )
self.assertIn(__lowerCamelCase , after_tokenizer.additional_special_tokens )
self.assertEqual(after_tokenizer.model_max_length , 42 )
__UpperCAmelCase : Optional[Any] = tokenizer.__class__.from_pretrained(__lowerCamelCase , model_max_length=43 )
self.assertEqual(tokenizer.model_max_length , 43 )
shutil.rmtree(__lowerCamelCase )
def _lowerCamelCase ( self: str ) -> Optional[int]:
__UpperCAmelCase : List[Any] = self.get_tokenizers(do_lower_case=__lowerCamelCase )
for tokenizer in tokenizers:
with self.subTest(f'''{tokenizer.__class__.__name__}''' ):
__UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = self.get_clean_sequence(__lowerCamelCase )
# a special token for Canine can be defined as follows:
__UpperCAmelCase : int = 0xE_0_0_5
__UpperCAmelCase : Tuple = chr(__lowerCamelCase )
tokenizer.add_special_tokens({"cls_token": special_token} )
__UpperCAmelCase : Union[str, Any] = tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase )
self.assertEqual(len(__lowerCamelCase ) , 1 )
__UpperCAmelCase : Any = tokenizer.decode(ids + encoded_special_token , clean_up_tokenization_spaces=__lowerCamelCase )
__UpperCAmelCase : Union[str, Any] = tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase )
__UpperCAmelCase : Dict = tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase )
__UpperCAmelCase : int = tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase )
self.assertEqual(__lowerCamelCase , input_encoded + special_token_id )
__UpperCAmelCase : Optional[int] = tokenizer.decode(__lowerCamelCase , skip_special_tokens=__lowerCamelCase )
self.assertTrue(special_token not in decoded )
def _lowerCamelCase ( self: Optional[int] ) -> Optional[Any]:
__UpperCAmelCase : List[str] = self.get_tokenizers(do_lower_case=__lowerCamelCase )
for tokenizer in tokenizers:
with self.subTest(f'''{tokenizer.__class__.__name__}''' ):
__UpperCAmelCase : Optional[int] = chr(0xE_0_0_5 )
__UpperCAmelCase : List[str] = chr(0xE_0_0_6 )
# `add_tokens` method stores special tokens only in `tokenizer.unique_no_split_tokens`. (in tokenization_utils.py)
tokenizer.add_tokens([SPECIAL_TOKEN_1] , special_tokens=__lowerCamelCase )
# `add_special_tokens` method stores special tokens in `tokenizer.additional_special_tokens`,
# which also occur in `tokenizer.all_special_tokens`. (in tokenization_utils_base.py)
tokenizer.add_special_tokens({"additional_special_tokens": [SPECIAL_TOKEN_2]} )
__UpperCAmelCase : Tuple = tokenizer.tokenize(__lowerCamelCase )
__UpperCAmelCase : Optional[Any] = tokenizer.tokenize(__lowerCamelCase )
self.assertEqual(len(__lowerCamelCase ) , 1 )
self.assertEqual(len(__lowerCamelCase ) , 1 )
self.assertEqual(token_a[0] , __lowerCamelCase )
self.assertEqual(token_a[0] , __lowerCamelCase )
@require_tokenizers
def _lowerCamelCase ( self: str ) -> Union[str, Any]:
__UpperCAmelCase : Any = self.get_tokenizers(do_lower_case=__lowerCamelCase )
for tokenizer in tokenizers:
with self.subTest(f'''{tokenizer.__class__.__name__}''' ):
# a special token for Canine can be defined as follows:
__UpperCAmelCase : Union[str, Any] = 0xE_0_0_6
__UpperCAmelCase : int = chr(__lowerCamelCase )
__UpperCAmelCase : int = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase )
tokenizer.add_special_tokens({"additional_special_tokens": [new_token]} )
with tempfile.TemporaryDirectory() as tmp_dir_name:
tokenizer.save_pretrained(__lowerCamelCase )
tokenizer.from_pretrained(__lowerCamelCase )
def _lowerCamelCase ( self: Dict ) -> List[str]:
__UpperCAmelCase : str = []
if self.test_slow_tokenizer:
tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) )
if self.test_rust_tokenizer:
tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) )
for tokenizer_class, tokenizer_utils in tokenizer_list:
with tempfile.TemporaryDirectory() as tmp_dir:
tokenizer_utils.save_pretrained(__lowerCamelCase )
with open(os.path.join(__lowerCamelCase , "special_tokens_map.json" ) , encoding="utf-8" ) as json_file:
__UpperCAmelCase : Tuple = json.load(__lowerCamelCase )
with open(os.path.join(__lowerCamelCase , "tokenizer_config.json" ) , encoding="utf-8" ) as json_file:
__UpperCAmelCase : Optional[int] = json.load(__lowerCamelCase )
# a special token for Canine can be defined as follows:
__UpperCAmelCase : Any = 0xE_0_0_6
__UpperCAmelCase : Union[str, Any] = chr(__lowerCamelCase )
__UpperCAmelCase : Dict = [new_token_a]
__UpperCAmelCase : int = [new_token_a]
with open(os.path.join(__lowerCamelCase , "special_tokens_map.json" ) , "w" , encoding="utf-8" ) as outfile:
json.dump(__lowerCamelCase , __lowerCamelCase )
with open(os.path.join(__lowerCamelCase , "tokenizer_config.json" ) , "w" , encoding="utf-8" ) as outfile:
json.dump(__lowerCamelCase , __lowerCamelCase )
# the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes
# into account the new value of additional_special_tokens given in the "tokenizer_config.json" and
# "special_tokens_map.json" files
__UpperCAmelCase : List[str] = tokenizer_class.from_pretrained(__lowerCamelCase , extra_ids=0 )
self.assertIn(__lowerCamelCase , tokenizer_without_change_in_init.additional_special_tokens )
# self.assertIn("an_additional_special_token",tokenizer_without_change_in_init.get_vocab()) # ByT5Tokenization no vocab
self.assertEqual(
[new_token_a] , tokenizer_without_change_in_init.convert_ids_to_tokens(
tokenizer_without_change_in_init.convert_tokens_to_ids([new_token_a] ) ) , )
__UpperCAmelCase : List[Any] = 0xE_0_0_7
__UpperCAmelCase : List[Any] = chr(__lowerCamelCase )
# Now we test that we can change the value of additional_special_tokens in the from_pretrained
__UpperCAmelCase : str = [AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase )]
__UpperCAmelCase : Dict = tokenizer_class.from_pretrained(
__lowerCamelCase , additional_special_tokens=__lowerCamelCase , extra_ids=0 )
self.assertIn(__lowerCamelCase , tokenizer.additional_special_tokens )
# self.assertIn(new_token_2,tokenizer.get_vocab()) # ByT5Tokenization no vocab
self.assertEqual(
[new_token_a] , tokenizer.convert_ids_to_tokens(tokenizer.convert_tokens_to_ids([new_token_a] ) ) )
@require_tokenizers
def _lowerCamelCase ( self: Optional[Any] ) -> Optional[int]:
__UpperCAmelCase : Optional[int] = self.get_tokenizers(do_lower_case=__lowerCamelCase )
for tokenizer in tokenizers:
with self.subTest(f'''{tokenizer.__class__.__name__}''' ):
__UpperCAmelCase : int = "hello world"
if self.space_between_special_tokens:
__UpperCAmelCase : Any = "[CLS] hello world [SEP]"
else:
__UpperCAmelCase : Union[str, Any] = input
__UpperCAmelCase : List[Any] = tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase )
__UpperCAmelCase : Any = tokenizer.decode(__lowerCamelCase , spaces_between_special_tokens=self.space_between_special_tokens )
self.assertIn(__lowerCamelCase , [output, output.lower()] )
def _lowerCamelCase ( self: Dict ) -> Any:
__UpperCAmelCase : Any = self.get_tokenizers()
for tokenizer in tokenizers:
with self.subTest(f'''{tokenizer.__class__.__name__}''' ):
__UpperCAmelCase : List[str] = [
"bos_token",
"eos_token",
"unk_token",
"sep_token",
"pad_token",
"cls_token",
"mask_token",
]
__UpperCAmelCase : List[str] = "a"
__UpperCAmelCase : Any = ord(__lowerCamelCase )
for attr in attributes_list:
setattr(__lowerCamelCase , attr + "_id" , __lowerCamelCase )
self.assertEqual(getattr(__lowerCamelCase , __lowerCamelCase ) , __lowerCamelCase )
self.assertEqual(getattr(__lowerCamelCase , attr + "_id" ) , __lowerCamelCase )
setattr(__lowerCamelCase , attr + "_id" , __lowerCamelCase )
self.assertEqual(getattr(__lowerCamelCase , __lowerCamelCase ) , __lowerCamelCase )
self.assertEqual(getattr(__lowerCamelCase , attr + "_id" ) , __lowerCamelCase )
setattr(__lowerCamelCase , "additional_special_tokens_ids" , [] )
self.assertListEqual(getattr(__lowerCamelCase , "additional_special_tokens" ) , [] )
self.assertListEqual(getattr(__lowerCamelCase , "additional_special_tokens_ids" ) , [] )
__UpperCAmelCase : Tuple = 0xE_0_0_6
__UpperCAmelCase : Optional[Any] = chr(__lowerCamelCase )
setattr(__lowerCamelCase , "additional_special_tokens_ids" , [additional_special_token_id] )
self.assertListEqual(getattr(__lowerCamelCase , "additional_special_tokens" ) , [additional_special_token] )
self.assertListEqual(getattr(__lowerCamelCase , "additional_special_tokens_ids" ) , [additional_special_token_id] )
def _lowerCamelCase ( self: str ) -> Union[str, Any]:
pass
def _lowerCamelCase ( self: Any ) -> Any:
pass
def _lowerCamelCase ( self: Union[str, Any] ) -> Tuple:
pass
def _lowerCamelCase ( self: Optional[int] ) -> Any:
pass
def _lowerCamelCase ( self: List[str] ) -> str:
pass
def _lowerCamelCase ( self: Union[str, Any] ) -> Optional[int]:
pass
def _lowerCamelCase ( self: Optional[Any] ) -> Tuple:
pass
def _lowerCamelCase ( self: str ) -> Tuple:
pass
| 342 | 0 |
from ..utils import (
OptionalDependencyNotAvailable,
is_flax_available,
is_scipy_available,
is_torch_available,
is_torchsde_available,
)
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ..utils.dummy_pt_objects import * # noqa F403
else:
from .scheduling_consistency_models import CMStochasticIterativeScheduler
from .scheduling_ddim import DDIMScheduler
from .scheduling_ddim_inverse import DDIMInverseScheduler
from .scheduling_ddim_parallel import DDIMParallelScheduler
from .scheduling_ddpm import DDPMScheduler
from .scheduling_ddpm_parallel import DDPMParallelScheduler
from .scheduling_deis_multistep import DEISMultistepScheduler
from .scheduling_dpmsolver_multistep import DPMSolverMultistepScheduler
from .scheduling_dpmsolver_multistep_inverse import DPMSolverMultistepInverseScheduler
from .scheduling_dpmsolver_singlestep import DPMSolverSinglestepScheduler
from .scheduling_euler_ancestral_discrete import EulerAncestralDiscreteScheduler
from .scheduling_euler_discrete import EulerDiscreteScheduler
from .scheduling_heun_discrete import HeunDiscreteScheduler
from .scheduling_ipndm import IPNDMScheduler
from .scheduling_k_dpm_2_ancestral_discrete import KDPMaAncestralDiscreteScheduler
from .scheduling_k_dpm_2_discrete import KDPMaDiscreteScheduler
from .scheduling_karras_ve import KarrasVeScheduler
from .scheduling_pndm import PNDMScheduler
from .scheduling_repaint import RePaintScheduler
from .scheduling_sde_ve import ScoreSdeVeScheduler
from .scheduling_sde_vp import ScoreSdeVpScheduler
from .scheduling_unclip import UnCLIPScheduler
from .scheduling_unipc_multistep import UniPCMultistepScheduler
from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin
from .scheduling_vq_diffusion import VQDiffusionScheduler
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ..utils.dummy_flax_objects import * # noqa F403
else:
from .scheduling_ddim_flax import FlaxDDIMScheduler
from .scheduling_ddpm_flax import FlaxDDPMScheduler
from .scheduling_dpmsolver_multistep_flax import FlaxDPMSolverMultistepScheduler
from .scheduling_karras_ve_flax import FlaxKarrasVeScheduler
from .scheduling_lms_discrete_flax import FlaxLMSDiscreteScheduler
from .scheduling_pndm_flax import FlaxPNDMScheduler
from .scheduling_sde_ve_flax import FlaxScoreSdeVeScheduler
from .scheduling_utils_flax import (
FlaxKarrasDiffusionSchedulers,
FlaxSchedulerMixin,
FlaxSchedulerOutput,
broadcast_to_shape_from_left,
)
try:
if not (is_torch_available() and is_scipy_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ..utils.dummy_torch_and_scipy_objects import * # noqa F403
else:
from .scheduling_lms_discrete import LMSDiscreteScheduler
try:
if not (is_torch_available() and is_torchsde_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ..utils.dummy_torch_and_torchsde_objects import * # noqa F403
else:
from .scheduling_dpmsolver_sde import DPMSolverSDEScheduler
| 196 |
'''simple docstring'''
import argparse
import json
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import SegformerImageProcessor, SwinConfig, UperNetConfig, UperNetForSemanticSegmentation
def __A ( lowerCamelCase_ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : str = 3_84
SCREAMING_SNAKE_CASE : Union[str, Any] = 7
if "tiny" in model_name:
SCREAMING_SNAKE_CASE : List[str] = 96
SCREAMING_SNAKE_CASE : List[str] = (2, 2, 6, 2)
SCREAMING_SNAKE_CASE : List[Any] = (3, 6, 12, 24)
elif "small" in model_name:
SCREAMING_SNAKE_CASE : Any = 96
SCREAMING_SNAKE_CASE : List[str] = (2, 2, 18, 2)
SCREAMING_SNAKE_CASE : int = (3, 6, 12, 24)
elif "base" in model_name:
SCREAMING_SNAKE_CASE : int = 1_28
SCREAMING_SNAKE_CASE : Any = (2, 2, 18, 2)
SCREAMING_SNAKE_CASE : int = (4, 8, 16, 32)
SCREAMING_SNAKE_CASE : Optional[Any] = 12
SCREAMING_SNAKE_CASE : str = 5_12
elif "large" in model_name:
SCREAMING_SNAKE_CASE : Tuple = 1_92
SCREAMING_SNAKE_CASE : Tuple = (2, 2, 18, 2)
SCREAMING_SNAKE_CASE : List[str] = (6, 12, 24, 48)
SCREAMING_SNAKE_CASE : Tuple = 12
SCREAMING_SNAKE_CASE : Union[str, Any] = 7_68
# set label information
SCREAMING_SNAKE_CASE : List[str] = 1_50
SCREAMING_SNAKE_CASE : Optional[Any] = """huggingface/label-files"""
SCREAMING_SNAKE_CASE : List[str] = """ade20k-id2label.json"""
SCREAMING_SNAKE_CASE : Optional[int] = json.load(open(hf_hub_download(lowerCamelCase_ , lowerCamelCase_ , repo_type="""dataset""" ) , """r""" ) )
SCREAMING_SNAKE_CASE : str = {int(lowerCamelCase_ ): v for k, v in idalabel.items()}
SCREAMING_SNAKE_CASE : int = {v: k for k, v in idalabel.items()}
SCREAMING_SNAKE_CASE : Optional[Any] = SwinConfig(
embed_dim=lowerCamelCase_ , depths=lowerCamelCase_ , num_heads=lowerCamelCase_ , window_size=lowerCamelCase_ , out_features=["""stage1""", """stage2""", """stage3""", """stage4"""] , )
SCREAMING_SNAKE_CASE : List[str] = UperNetConfig(
backbone_config=lowerCamelCase_ , auxiliary_in_channels=lowerCamelCase_ , num_labels=lowerCamelCase_ , idalabel=lowerCamelCase_ , labelaid=lowerCamelCase_ , )
return config
def __A ( lowerCamelCase_ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : List[str] = []
# fmt: off
# stem
rename_keys.append(("""backbone.patch_embed.projection.weight""", """backbone.embeddings.patch_embeddings.projection.weight""") )
rename_keys.append(("""backbone.patch_embed.projection.bias""", """backbone.embeddings.patch_embeddings.projection.bias""") )
rename_keys.append(("""backbone.patch_embed.norm.weight""", """backbone.embeddings.norm.weight""") )
rename_keys.append(("""backbone.patch_embed.norm.bias""", """backbone.embeddings.norm.bias""") )
# stages
for i in range(len(config.backbone_config.depths ) ):
for j in range(config.backbone_config.depths[i] ):
rename_keys.append((f'''backbone.stages.{i}.blocks.{j}.norm1.weight''', f'''backbone.encoder.layers.{i}.blocks.{j}.layernorm_before.weight''') )
rename_keys.append((f'''backbone.stages.{i}.blocks.{j}.norm1.bias''', f'''backbone.encoder.layers.{i}.blocks.{j}.layernorm_before.bias''') )
rename_keys.append((f'''backbone.stages.{i}.blocks.{j}.attn.w_msa.relative_position_bias_table''', f'''backbone.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table''') )
rename_keys.append((f'''backbone.stages.{i}.blocks.{j}.attn.w_msa.relative_position_index''', f'''backbone.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index''') )
rename_keys.append((f'''backbone.stages.{i}.blocks.{j}.attn.w_msa.proj.weight''', f'''backbone.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight''') )
rename_keys.append((f'''backbone.stages.{i}.blocks.{j}.attn.w_msa.proj.bias''', f'''backbone.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias''') )
rename_keys.append((f'''backbone.stages.{i}.blocks.{j}.norm2.weight''', f'''backbone.encoder.layers.{i}.blocks.{j}.layernorm_after.weight''') )
rename_keys.append((f'''backbone.stages.{i}.blocks.{j}.norm2.bias''', f'''backbone.encoder.layers.{i}.blocks.{j}.layernorm_after.bias''') )
rename_keys.append((f'''backbone.stages.{i}.blocks.{j}.ffn.layers.0.0.weight''', f'''backbone.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight''') )
rename_keys.append((f'''backbone.stages.{i}.blocks.{j}.ffn.layers.0.0.bias''', f'''backbone.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias''') )
rename_keys.append((f'''backbone.stages.{i}.blocks.{j}.ffn.layers.1.weight''', f'''backbone.encoder.layers.{i}.blocks.{j}.output.dense.weight''') )
rename_keys.append((f'''backbone.stages.{i}.blocks.{j}.ffn.layers.1.bias''', f'''backbone.encoder.layers.{i}.blocks.{j}.output.dense.bias''') )
if i < 3:
rename_keys.append((f'''backbone.stages.{i}.downsample.reduction.weight''', f'''backbone.encoder.layers.{i}.downsample.reduction.weight''') )
rename_keys.append((f'''backbone.stages.{i}.downsample.norm.weight''', f'''backbone.encoder.layers.{i}.downsample.norm.weight''') )
rename_keys.append((f'''backbone.stages.{i}.downsample.norm.bias''', f'''backbone.encoder.layers.{i}.downsample.norm.bias''') )
rename_keys.append((f'''backbone.norm{i}.weight''', f'''backbone.hidden_states_norms.stage{i+1}.weight''') )
rename_keys.append((f'''backbone.norm{i}.bias''', f'''backbone.hidden_states_norms.stage{i+1}.bias''') )
# decode head
rename_keys.extend(
[
("""decode_head.conv_seg.weight""", """decode_head.classifier.weight"""),
("""decode_head.conv_seg.bias""", """decode_head.classifier.bias"""),
("""auxiliary_head.conv_seg.weight""", """auxiliary_head.classifier.weight"""),
("""auxiliary_head.conv_seg.bias""", """auxiliary_head.classifier.bias"""),
] )
# fmt: on
return rename_keys
def __A ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : int = dct.pop(lowerCamelCase_ )
SCREAMING_SNAKE_CASE : List[Any] = val
def __A ( lowerCamelCase_ , lowerCamelCase_ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : Optional[Any] = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )]
for i in range(len(backbone_config.depths ) ):
SCREAMING_SNAKE_CASE : Dict = num_features[i]
for j in range(backbone_config.depths[i] ):
# fmt: off
# read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias)
SCREAMING_SNAKE_CASE : Union[str, Any] = state_dict.pop(f'''backbone.stages.{i}.blocks.{j}.attn.w_msa.qkv.weight''' )
SCREAMING_SNAKE_CASE : Union[str, Any] = state_dict.pop(f'''backbone.stages.{i}.blocks.{j}.attn.w_msa.qkv.bias''' )
# next, add query, keys and values (in that order) to the state dict
SCREAMING_SNAKE_CASE : int = in_proj_weight[:dim, :]
SCREAMING_SNAKE_CASE : Optional[int] = in_proj_bias[: dim]
SCREAMING_SNAKE_CASE : Union[str, Any] = in_proj_weight[
dim : dim * 2, :
]
SCREAMING_SNAKE_CASE : Any = in_proj_bias[
dim : dim * 2
]
SCREAMING_SNAKE_CASE : List[Any] = in_proj_weight[
-dim :, :
]
SCREAMING_SNAKE_CASE : str = in_proj_bias[-dim :]
# fmt: on
def __A ( lowerCamelCase_ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : Tuple = x.shape
SCREAMING_SNAKE_CASE : Any = x.reshape(lowerCamelCase_ , 4 , in_channel // 4 )
SCREAMING_SNAKE_CASE : Any = x[:, [0, 2, 1, 3], :].transpose(1 , 2 ).reshape(lowerCamelCase_ , lowerCamelCase_ )
return x
def __A ( lowerCamelCase_ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : Dict = x.shape
SCREAMING_SNAKE_CASE : Dict = x.reshape(lowerCamelCase_ , in_channel // 4 , 4 )
SCREAMING_SNAKE_CASE : str = x[:, :, [0, 2, 1, 3]].transpose(1 , 2 ).reshape(lowerCamelCase_ , lowerCamelCase_ )
return x
def __A ( lowerCamelCase_ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : str = x.shape[0]
SCREAMING_SNAKE_CASE : List[str] = x.reshape(4 , in_channel // 4 )
SCREAMING_SNAKE_CASE : str = x[[0, 2, 1, 3], :].transpose(0 , 1 ).reshape(lowerCamelCase_ )
return x
def __A ( lowerCamelCase_ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : Tuple = x.shape[0]
SCREAMING_SNAKE_CASE : Optional[int] = x.reshape(in_channel // 4 , 4 )
SCREAMING_SNAKE_CASE : str = x[:, [0, 2, 1, 3]].transpose(0 , 1 ).reshape(lowerCamelCase_ )
return x
def __A ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : Dict = {
"""upernet-swin-tiny""": """https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_tiny_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K/upernet_swin_tiny_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K_20210531_112542-e380ad3e.pth""",
"""upernet-swin-small""": """https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_small_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K/upernet_swin_small_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K_20210526_192015-ee2fff1c.pth""",
"""upernet-swin-base""": """https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_base_patch4_window12_512x512_160k_ade20k_pretrain_384x384_22K/upernet_swin_base_patch4_window12_512x512_160k_ade20k_pretrain_384x384_22K_20210531_125459-429057bf.pth""",
"""upernet-swin-large""": """https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_large_patch4_window12_512x512_pretrain_384x384_22K_160k_ade20k/upernet_swin_large_patch4_window12_512x512_pretrain_384x384_22K_160k_ade20k_20220318_091743-9ba68901.pth""",
}
SCREAMING_SNAKE_CASE : List[str] = model_name_to_url[model_name]
SCREAMING_SNAKE_CASE : Optional[int] = torch.hub.load_state_dict_from_url(lowerCamelCase_ , map_location="""cpu""" , file_name=lowerCamelCase_ )[
"""state_dict"""
]
for name, param in state_dict.items():
print(lowerCamelCase_ , param.shape )
SCREAMING_SNAKE_CASE : Dict = get_upernet_config(lowerCamelCase_ )
SCREAMING_SNAKE_CASE : Union[str, Any] = UperNetForSemanticSegmentation(lowerCamelCase_ )
model.eval()
# replace "bn" => "batch_norm"
for key in state_dict.copy().keys():
SCREAMING_SNAKE_CASE : Union[str, Any] = state_dict.pop(lowerCamelCase_ )
if "bn" in key:
SCREAMING_SNAKE_CASE : List[str] = key.replace("""bn""" , """batch_norm""" )
SCREAMING_SNAKE_CASE : Optional[Any] = val
# rename keys
SCREAMING_SNAKE_CASE : Union[str, Any] = create_rename_keys(lowerCamelCase_ )
for src, dest in rename_keys:
rename_key(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ )
read_in_q_k_v(lowerCamelCase_ , config.backbone_config )
# fix downsample parameters
for key, value in state_dict.items():
if "downsample" in key:
if "reduction" in key:
SCREAMING_SNAKE_CASE : Tuple = reverse_correct_unfold_reduction_order(lowerCamelCase_ )
if "norm" in key:
SCREAMING_SNAKE_CASE : Optional[int] = reverse_correct_unfold_norm_order(lowerCamelCase_ )
model.load_state_dict(lowerCamelCase_ )
# verify on image
SCREAMING_SNAKE_CASE : Optional[int] = """https://huggingface.co/datasets/hf-internal-testing/fixtures_ade20k/resolve/main/ADE_val_00000001.jpg"""
SCREAMING_SNAKE_CASE : Tuple = Image.open(requests.get(lowerCamelCase_ , stream=lowerCamelCase_ ).raw ).convert("""RGB""" )
SCREAMING_SNAKE_CASE : Optional[int] = SegformerImageProcessor()
SCREAMING_SNAKE_CASE : str = processor(lowerCamelCase_ , return_tensors="""pt""" ).pixel_values
with torch.no_grad():
SCREAMING_SNAKE_CASE : List[str] = model(lowerCamelCase_ )
SCREAMING_SNAKE_CASE : Dict = outputs.logits
print(logits.shape )
print("""First values of logits:""" , logits[0, 0, :3, :3] )
# assert values
if model_name == "upernet-swin-tiny":
SCREAMING_SNAKE_CASE : Optional[Any] = torch.tensor(
[[-7.5_958, -7.5_958, -7.4_302], [-7.5_958, -7.5_958, -7.4_302], [-7.4_797, -7.4_797, -7.3_068]] )
elif model_name == "upernet-swin-small":
SCREAMING_SNAKE_CASE : Optional[Any] = torch.tensor(
[[-7.1_921, -7.1_921, -6.9_532], [-7.1_921, -7.1_921, -6.9_532], [-7.0_908, -7.0_908, -6.8_534]] )
elif model_name == "upernet-swin-base":
SCREAMING_SNAKE_CASE : str = torch.tensor(
[[-6.5_851, -6.5_851, -6.4_330], [-6.5_851, -6.5_851, -6.4_330], [-6.4_763, -6.4_763, -6.3_254]] )
elif model_name == "upernet-swin-large":
SCREAMING_SNAKE_CASE : str = torch.tensor(
[[-7.5_297, -7.5_297, -7.3_802], [-7.5_297, -7.5_297, -7.3_802], [-7.4_044, -7.4_044, -7.2_586]] )
print("""Logits:""" , outputs.logits[0, 0, :3, :3] )
assert torch.allclose(outputs.logits[0, 0, :3, :3] , lowerCamelCase_ , atol=1E-4 )
print("""Looks ok!""" )
if pytorch_dump_folder_path is not None:
print(f'''Saving model {model_name} to {pytorch_dump_folder_path}''' )
model.save_pretrained(lowerCamelCase_ )
print(f'''Saving processor to {pytorch_dump_folder_path}''' )
processor.save_pretrained(lowerCamelCase_ )
if push_to_hub:
print(f'''Pushing model and processor for {model_name} to hub''' )
model.push_to_hub(f'''openmmlab/{model_name}''' )
processor.push_to_hub(f'''openmmlab/{model_name}''' )
if __name__ == "__main__":
__UpperCAmelCase = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"""--model_name""",
default="""upernet-swin-tiny""",
type=str,
choices=[f'''upernet-swin-{size}''' for size in ["""tiny""", """small""", """base""", """large"""]],
help="""Name of the Swin + UperNet model you'd like to convert.""",
)
parser.add_argument(
"""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory."""
)
parser.add_argument(
"""--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub."""
)
__UpperCAmelCase = parser.parse_args()
convert_upernet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
| 323 | 0 |
'''simple docstring'''
import operator as op
a_ : List[str] = """scaler.pt"""
a_ : Union[str, Any] = """pytorch_model"""
a_ : int = """random_states"""
a_ : str = """optimizer"""
a_ : Tuple = """scheduler"""
a_ : Dict = """pytorch_model.bin"""
a_ : Optional[int] = """pytorch_model.bin.index.json"""
a_ : int = """model.safetensors"""
a_ : str = """model.safetensors.index.json"""
a_ : List[Any] = """1.10.2"""
a_ : int = """py38"""
a_ : Optional[int] = """4.17.0"""
a_ : Any = ["""ml.p3.16xlarge""", """ml.p3dn.24xlarge""", """ml.p4dn.24xlarge"""]
a_ : Any = ["""FULL_SHARD""", """SHARD_GRAD_OP""", """NO_SHARD""", """HYBRID_SHARD""", """HYBRID_SHARD_ZERO2"""]
a_ : Optional[Any] = ["""TRANSFORMER_BASED_WRAP""", """SIZE_BASED_WRAP""", """NO_WRAP"""]
a_ : Any = ["""BACKWARD_PRE""", """BACKWARD_POST""", """NO_PREFETCH"""]
a_ : Union[str, Any] = ["""FULL_STATE_DICT""", """LOCAL_STATE_DICT""", """SHARDED_STATE_DICT"""]
a_ : int = """2.0.1"""
a_ : int = ["""pdsh""", """standard""", """openmpi""", """mvapich"""]
a_ : Optional[Any] = ["""default""", """reduce-overhead""", """max-autotune"""]
a_ : Optional[Any] = {""">""": op.gt, """>=""": op.ge, """==""": op.eq, """!=""": op.ne, """<=""": op.le, """<""": op.lt}
# These are the args for `torch.distributed.launch` for pytorch < 1.9
a_ : Optional[int] = [
"""nnodes""",
"""nproc_per_node""",
"""rdzv_backend""",
"""rdzv_endpoint""",
"""rdzv_id""",
"""rdzv_conf""",
"""standalone""",
"""max_restarts""",
"""monitor_interval""",
"""start_method""",
"""role""",
"""module""",
"""m""",
"""no_python""",
"""run_path""",
"""log_dir""",
"""r""",
"""redirects""",
"""t""",
"""tee""",
"""node_rank""",
"""master_addr""",
"""master_port""",
]
a_ : Optional[Any] = ["""DEEPSPEED""", """MULTI_GPU""", """FSDP""", """MEGATRON_LM"""]
a_ : Optional[Any] = ["""DEEPSPEED""", """MULTI_XPU""", """FSDP"""]
| 352 |
'''simple docstring'''
from unittest import TestCase
from datasets import Dataset
from minhash_deduplication import deduplicate_dataset, make_duplicate_clusters
def a_ ( ) -> Tuple:
"""simple docstring"""
lowerCamelCase_ ={
'''repo_name''': ['''test_repo1''', '''test_repo2''', '''test_repo3'''],
'''path''': ['''test_1.py''', '''test_2.py''', '''unit_test.py'''],
'''content''': ['''a ''' * 20, '''a ''' * 30, '''b ''' * 7],
}
lowerCamelCase_ =Dataset.from_dict(__snake_case )
return dataset
class __UpperCamelCase ( lowerCamelCase__ ):
def lowercase__ ( self ):
"""simple docstring"""
lowerCamelCase_ =get_dataset()
lowerCamelCase_ =make_duplicate_clusters(lowerCAmelCase, 0.8_5 )
self.assertEqual(len(duplicate_clusters[0] ), 2 )
def lowercase__ ( self ):
"""simple docstring"""
lowerCamelCase_ =get_dataset()
lowerCamelCase_, lowerCamelCase_ =deduplicate_dataset(lowerCAmelCase )
self.assertEqual(len(lowerCAmelCase ), 2 )
print(lowerCAmelCase )
self.assertEqual(duplicate_clusters[0][0]['''copies'''], 2 )
self.assertEqual(duplicate_clusters[0][0]['''is_extreme'''], lowerCAmelCase )
| 6 | 0 |
"""simple docstring"""
import argparse
from torch import nn
# transformers_old should correspond to branch `save_old_prophetnet_model_structure` here
# original prophetnet_checkpoints are saved under `patrickvonplaten/..._old` respectively
from transformers_old.modeling_prophetnet import (
ProphetNetForConditionalGeneration as ProphetNetForConditionalGenerationOld,
)
from transformers_old.modeling_xlm_prophetnet import (
XLMProphetNetForConditionalGeneration as XLMProphetNetForConditionalGenerationOld,
)
from transformers import ProphetNetForConditionalGeneration, XLMProphetNetForConditionalGeneration, logging
_UpperCamelCase: Tuple = logging.get_logger(__name__)
logging.set_verbosity_info()
def lowercase__ ( _UpperCAmelCase , _UpperCAmelCase ) -> Optional[Any]:
'''simple docstring'''
if "xprophetnet" in prophetnet_checkpoint_path:
lowercase : List[Any] = XLMProphetNetForConditionalGenerationOld.from_pretrained(lowerCAmelCase_ )
lowercase : int = XLMProphetNetForConditionalGeneration.from_pretrained(
lowerCAmelCase_ , output_loading_info=lowerCAmelCase_ )
else:
lowercase : Union[str, Any] = ProphetNetForConditionalGenerationOld.from_pretrained(lowerCAmelCase_ )
lowercase : Union[str, Any] = ProphetNetForConditionalGeneration.from_pretrained(
lowerCAmelCase_ , output_loading_info=lowerCAmelCase_ )
lowercase : Any = ['key_proj', 'value_proj', 'query_proj']
lowercase : Dict = {
'self_attn': 'ngram_self_attn',
'cross_attn': 'encoder_attn',
'cross_attn_layer_norm': 'encoder_attn_layer_norm',
'feed_forward_layer_norm': 'final_layer_norm',
'feed_forward': '',
'intermediate': 'fc1',
'output': 'fc2',
'key_proj': 'k_proj',
'query_proj': 'q_proj',
'value_proj': 'v_proj',
'word_embeddings': 'embed_tokens',
'embeddings_layer_norm': 'emb_layer_norm',
'relative_pos_embeddings': 'relative_linear',
'ngram_embeddings': 'ngram_input_embed',
'position_embeddings': 'embed_positions',
}
for key in loading_info["missing_keys"]:
lowercase : Union[str, Any] = key.split('.' )
if attributes[0] == "lm_head":
lowercase : Optional[Any] = prophet
lowercase : str = prophet_old
else:
lowercase : List[str] = prophet.prophetnet
lowercase : Optional[Any] = prophet_old.model
lowercase : Optional[Any] = False
for attribute in attributes:
if attribute in mapping:
lowercase : Tuple = mapping[attribute]
if not hasattr(lowerCAmelCase_ , lowerCAmelCase_ ) and len(lowerCAmelCase_ ) > 0:
lowercase : Tuple = attribute
elif hasattr(lowerCAmelCase_ , lowerCAmelCase_ ):
lowercase : Optional[int] = attribute
if attribute == "weight":
assert old_model.weight.shape == model.weight.shape, "Shapes have to match!"
lowercase : Any = old_model.weight
logger.info(f'''{attribute} is initialized.''' )
lowercase : List[Any] = True
break
elif attribute == "bias":
assert old_model.bias.shape == model.bias.shape, "Shapes have to match!"
lowercase : Optional[Any] = old_model.bias
logger.info(f'''{attribute} is initialized''' )
lowercase : List[str] = True
break
elif attribute in special_keys and hasattr(lowerCAmelCase_ , 'in_proj_weight' ):
lowercase : Optional[Any] = old_model.in_proj_weight.shape[0] // 3
lowercase : Dict = getattr(lowerCAmelCase_ , lowerCAmelCase_ )
param.weight.shape == old_model.in_proj_weight[:embed_dim, :].shape, "Shapes have to match"
param.bias.shape == old_model.in_proj_bias[:embed_dim].shape, "Shapes have to match"
if attribute == "query_proj":
lowercase : Dict = nn.Parameter(old_model.in_proj_weight[:embed_dim, :] )
lowercase : Tuple = nn.Parameter(old_model.in_proj_bias[:embed_dim] )
elif attribute == "key_proj":
lowercase : str = nn.Parameter(old_model.in_proj_weight[embed_dim : 2 * embed_dim, :] )
lowercase : Optional[Any] = nn.Parameter(old_model.in_proj_bias[embed_dim : 2 * embed_dim] )
elif attribute == "value_proj":
lowercase : Optional[Any] = nn.Parameter(old_model.in_proj_weight[2 * embed_dim :, :] )
lowercase : Union[str, Any] = nn.Parameter(old_model.in_proj_bias[2 * embed_dim :] )
lowercase : Dict = True
break
elif attribute == "position_embeddings":
assert (
model.position_embeddings.weight.shape[-1] == old_model.embed_positions.weight.shape[-1]
), "Hidden size has to match"
assert model.position_embeddings.weight.shape[0] == 5_12, "We want 512 position_embeddings."
lowercase : Union[str, Any] = nn.Parameter(old_model.embed_positions.weight[:5_12, :] )
lowercase : Optional[int] = True
break
if attribute.isdigit():
lowercase : Tuple = model[int(lowerCAmelCase_ )]
lowercase : Dict = old_model[int(lowerCAmelCase_ )]
else:
lowercase : List[Any] = getattr(lowerCAmelCase_ , lowerCAmelCase_ )
if old_attribute == "":
lowercase : Optional[Any] = old_model
else:
if not hasattr(lowerCAmelCase_ , lowerCAmelCase_ ):
raise ValueError(f'''{old_model} does not have {old_attribute}''' )
lowercase : List[Any] = getattr(lowerCAmelCase_ , lowerCAmelCase_ )
if not is_key_init:
raise ValueError(f'''{key} was not correctly initialized!''' )
print(f'''Saving model to {pytorch_dump_folder_path}''' )
prophet.save_pretrained(lowerCAmelCase_ )
if __name__ == "__main__":
_UpperCamelCase: Optional[int] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--prophetnet_checkpoint_path', default=None, type=str, required=True, help='Path the official PyTorch dump.'
)
parser.add_argument(
'--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.'
)
_UpperCamelCase: Any = parser.parse_args()
convert_prophetnet_checkpoint_to_pytorch(args.prophetnet_checkpoint_path, args.pytorch_dump_folder_path)
| 255 |
'''simple docstring'''
import multiprocessing
from typing import TYPE_CHECKING, Optional, Union
from .. import Dataset, Features, config
from ..formatting import query_table
from ..packaged_modules.sql.sql import Sql
from ..utils import logging
from .abc import AbstractDatasetInputStream
if TYPE_CHECKING:
import sqlitea
import sqlalchemy
class __magic_name__ ( _UpperCamelCase ):
def __init__( self : Optional[int] ,_UpperCAmelCase : Union[str, "sqlalchemy.sql.Selectable"] ,_UpperCAmelCase : Union[str, "sqlalchemy.engine.Connection", "sqlalchemy.engine.Engine", "sqlite3.Connection"] ,_UpperCAmelCase : Optional[Features] = None ,_UpperCAmelCase : str = None ,_UpperCAmelCase : bool = False ,**_UpperCAmelCase : Dict ,):
super().__init__(features=_UpperCAmelCase ,cache_dir=_UpperCAmelCase ,keep_in_memory=_UpperCAmelCase ,**_UpperCAmelCase )
_a : Tuple = Sql(
cache_dir=_UpperCAmelCase ,features=_UpperCAmelCase ,sql=_UpperCAmelCase ,con=_UpperCAmelCase ,**_UpperCAmelCase ,)
def __lowercase ( self : Dict ):
_a : Optional[Any] = None
_a : Dict = None
_a : Dict = None
_a : Optional[int] = None
self.builder.download_and_prepare(
download_config=_UpperCAmelCase ,download_mode=_UpperCAmelCase ,verification_mode=_UpperCAmelCase ,base_path=_UpperCAmelCase ,)
# Build dataset for splits
_a : List[str] = self.builder.as_dataset(
split='train' ,verification_mode=_UpperCAmelCase ,in_memory=self.keep_in_memory )
return dataset
class __magic_name__ :
def __init__( self : Optional[int] ,_UpperCAmelCase : Dataset ,_UpperCAmelCase : str ,_UpperCAmelCase : Union[str, "sqlalchemy.engine.Connection", "sqlalchemy.engine.Engine", "sqlite3.Connection"] ,_UpperCAmelCase : Optional[int] = None ,_UpperCAmelCase : Optional[int] = None ,**_UpperCAmelCase : Dict ,):
if num_proc is not None and num_proc <= 0:
raise ValueError(F"""num_proc {num_proc} must be an integer > 0.""" )
_a : Dict = dataset
_a : List[Any] = name
_a : Tuple = con
_a : Union[str, Any] = batch_size if batch_size else config.DEFAULT_MAX_BATCH_SIZE
_a : List[Any] = num_proc
_a : Tuple = to_sql_kwargs
def __lowercase ( self : List[Any] ):
_a : Tuple = self.to_sql_kwargs.pop('sql' ,_UpperCAmelCase )
_a : str = self.to_sql_kwargs.pop('con' ,_UpperCAmelCase )
_a : Optional[Any] = self.to_sql_kwargs.pop('index' ,_UpperCAmelCase )
_a : Any = self._write(index=_UpperCAmelCase ,**self.to_sql_kwargs )
return written
def __lowercase ( self : Optional[int] ,_UpperCAmelCase : Dict ):
_a , _a , _a : Any = args
_a : Tuple = {**to_sql_kwargs, 'if_exists': 'append'} if offset > 0 else to_sql_kwargs
_a : Dict = query_table(
table=self.dataset.data ,key=slice(_UpperCAmelCase ,offset + self.batch_size ) ,indices=self.dataset._indices ,)
_a : Tuple = batch.to_pandas()
_a : Dict = df.to_sql(self.name ,self.con ,index=_UpperCAmelCase ,**_UpperCAmelCase )
return num_rows or len(_UpperCAmelCase )
def __lowercase ( self : int ,_UpperCAmelCase : Optional[int] ,**_UpperCAmelCase : List[Any] ):
_a : Union[str, Any] = 0
if self.num_proc is None or self.num_proc == 1:
for offset in logging.tqdm(
range(0 ,len(self.dataset ) ,self.batch_size ) ,unit='ba' ,disable=not logging.is_progress_bar_enabled() ,desc='Creating SQL from Arrow format' ,):
written += self._batch_sql((offset, index, to_sql_kwargs) )
else:
_a , _a : List[Any] = len(self.dataset ), self.batch_size
with multiprocessing.Pool(self.num_proc ) as pool:
for num_rows in logging.tqdm(
pool.imap(
self._batch_sql ,[(offset, index, to_sql_kwargs) for offset in range(0 ,_UpperCAmelCase ,_UpperCAmelCase )] ,) ,total=(num_rows // batch_size) + 1 if num_rows % batch_size else num_rows // batch_size ,unit='ba' ,disable=not logging.is_progress_bar_enabled() ,desc='Creating SQL from Arrow format' ,):
written += num_rows
return written
| 89 | 0 |
import importlib.metadata
import operator
import re
import sys
from typing import Optional
from packaging import version
SCREAMING_SNAKE_CASE_ = {
'<': operator.lt,
'<=': operator.le,
'==': operator.eq,
'!=': operator.ne,
'>=': operator.ge,
'>': operator.gt,
}
def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: Tuple , lowerCAmelCase: Any , lowerCAmelCase: Union[str, Any] , lowerCAmelCase: int , lowerCAmelCase: Union[str, Any] , lowerCAmelCase: Tuple ) -> List[str]:
if got_ver is None or want_ver is None:
raise ValueError(
F'Unable to compare versions for {requirement}: need={want_ver} found={got_ver}. This is unusual. Consider'
F' reinstalling {pkg}.' )
if not ops[op](version.parse(lowerCAmelCase ) , version.parse(lowerCAmelCase ) ):
raise ImportError(
F'{requirement} is required for a normal functioning of this module, but found {pkg}=={got_ver}.{hint}' )
def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: str , lowerCAmelCase: Optional[str] = None ) -> None:
_UpperCAmelCase : Dict = F'\n{hint}' if hint is not None else ""
# non-versioned check
if re.match(R"^[\w_\-\d]+$" , lowerCAmelCase ):
_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : int = requirement, None, None
else:
_UpperCAmelCase : Any = re.findall(R"^([^!=<>\s]+)([\s!=<>]{1,2}.+)" , lowerCAmelCase )
if not match:
raise ValueError(
"requirement needs to be in the pip package format, .e.g., package_a==1.23, or package_b>=1.23, but"
F' got {requirement}' )
_UpperCAmelCase , _UpperCAmelCase : List[str] = match[0]
_UpperCAmelCase : List[str] = want_full.split("," ) # there could be multiple requirements
_UpperCAmelCase : Dict = {}
for w in want_range:
_UpperCAmelCase : str = re.findall(R"^([\s!=<>]{1,2})(.+)" , lowerCAmelCase )
if not match:
raise ValueError(
"requirement needs to be in the pip package format, .e.g., package_a==1.23, or package_b>=1.23,"
F' but got {requirement}' )
_UpperCAmelCase , _UpperCAmelCase : Dict = match[0]
_UpperCAmelCase : Optional[Any] = want_ver
if op not in ops:
raise ValueError(F'{requirement}: need one of {list(ops.keys() )}, but got {op}' )
# special case
if pkg == "python":
_UpperCAmelCase : Tuple = ".".join([str(lowerCAmelCase ) for x in sys.version_info[:3]] )
for op, want_ver in wanted.items():
_compare_versions(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase )
return
# check if any version is installed
try:
_UpperCAmelCase : Optional[int] = importlib.metadata.version(lowerCAmelCase )
except importlib.metadata.PackageNotFoundError:
raise importlib.metadata.PackageNotFoundError(
F'The \'{requirement}\' distribution was not found and is required by this application. {hint}' )
# check that the right version is installed if version number or a range was provided
if want_ver is not None:
for op, want_ver in wanted.items():
_compare_versions(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase )
def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: Any ) -> Tuple:
_UpperCAmelCase : List[Any] = "Try: pip install transformers -U or pip install -e '.[dev]' if you're working with git main"
return require_version(lowerCAmelCase , lowerCAmelCase )
| 189 |
from typing import Optional
import torch
import torch.utils.checkpoint
from torch import Tensor, nn
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
from ...activations import ACTaFN
from ...modeling_outputs import (
BackboneOutput,
BaseModelOutputWithNoAttention,
BaseModelOutputWithPoolingAndNoAttention,
ImageClassifierOutputWithNoAttention,
)
from ...modeling_utils import PreTrainedModel
from ...utils import (
add_code_sample_docstrings,
add_start_docstrings,
add_start_docstrings_to_model_forward,
logging,
replace_return_docstrings,
)
from ...utils.backbone_utils import BackboneMixin
from .configuration_resnet import ResNetConfig
SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__)
# General docstring
SCREAMING_SNAKE_CASE_ = 'ResNetConfig'
# Base docstring
SCREAMING_SNAKE_CASE_ = 'microsoft/resnet-50'
SCREAMING_SNAKE_CASE_ = [1, 2048, 7, 7]
# Image classification docstring
SCREAMING_SNAKE_CASE_ = 'microsoft/resnet-50'
SCREAMING_SNAKE_CASE_ = 'tiger cat'
SCREAMING_SNAKE_CASE_ = [
'microsoft/resnet-50',
# See all resnet models at https://huggingface.co/models?filter=resnet
]
class a ( nn.Module ):
def __init__( self , A_ , A_ , A_ = 3 , A_ = 1 , A_ = "relu" ):
'''simple docstring'''
super().__init__()
_UpperCAmelCase : Union[str, Any] = nn.Convad(
A_ , A_ , kernel_size=A_ , stride=A_ , padding=kernel_size // 2 , bias=A_ )
_UpperCAmelCase : List[Any] = nn.BatchNormad(A_ )
_UpperCAmelCase : Union[str, Any] = ACTaFN[activation] if activation is not None else nn.Identity()
def _UpperCAmelCase ( self , A_ ):
'''simple docstring'''
_UpperCAmelCase : List[Any] = self.convolution(A_ )
_UpperCAmelCase : Optional[int] = self.normalization(A_ )
_UpperCAmelCase : Optional[Any] = self.activation(A_ )
return hidden_state
class a ( nn.Module ):
def __init__( self , A_ ):
'''simple docstring'''
super().__init__()
_UpperCAmelCase : Any = ResNetConvLayer(
config.num_channels , config.embedding_size , kernel_size=7 , stride=2 , activation=config.hidden_act )
_UpperCAmelCase : List[str] = nn.MaxPoolad(kernel_size=3 , stride=2 , padding=1 )
_UpperCAmelCase : List[Any] = config.num_channels
def _UpperCAmelCase ( self , A_ ):
'''simple docstring'''
_UpperCAmelCase : int = pixel_values.shape[1]
if num_channels != self.num_channels:
raise ValueError(
"Make sure that the channel dimension of the pixel values match with the one set in the configuration." )
_UpperCAmelCase : int = self.embedder(A_ )
_UpperCAmelCase : int = self.pooler(A_ )
return embedding
class a ( nn.Module ):
def __init__( self , A_ , A_ , A_ = 2 ):
'''simple docstring'''
super().__init__()
_UpperCAmelCase : Union[str, Any] = nn.Convad(A_ , A_ , kernel_size=1 , stride=A_ , bias=A_ )
_UpperCAmelCase : Optional[int] = nn.BatchNormad(A_ )
def _UpperCAmelCase ( self , A_ ):
'''simple docstring'''
_UpperCAmelCase : str = self.convolution(A_ )
_UpperCAmelCase : List[str] = self.normalization(A_ )
return hidden_state
class a ( nn.Module ):
def __init__( self , A_ , A_ , A_ = 1 , A_ = "relu" ):
'''simple docstring'''
super().__init__()
_UpperCAmelCase : Optional[int] = in_channels != out_channels or stride != 1
_UpperCAmelCase : Dict = (
ResNetShortCut(A_ , A_ , stride=A_ ) if should_apply_shortcut else nn.Identity()
)
_UpperCAmelCase : int = nn.Sequential(
ResNetConvLayer(A_ , A_ , stride=A_ ) , ResNetConvLayer(A_ , A_ , activation=A_ ) , )
_UpperCAmelCase : Dict = ACTaFN[activation]
def _UpperCAmelCase ( self , A_ ):
'''simple docstring'''
_UpperCAmelCase : Optional[Any] = hidden_state
_UpperCAmelCase : Any = self.layer(A_ )
_UpperCAmelCase : Optional[int] = self.shortcut(A_ )
hidden_state += residual
_UpperCAmelCase : Optional[int] = self.activation(A_ )
return hidden_state
class a ( nn.Module ):
def __init__( self , A_ , A_ , A_ = 1 , A_ = "relu" , A_ = 4 ):
'''simple docstring'''
super().__init__()
_UpperCAmelCase : Optional[Any] = in_channels != out_channels or stride != 1
_UpperCAmelCase : Optional[int] = out_channels // reduction
_UpperCAmelCase : List[str] = (
ResNetShortCut(A_ , A_ , stride=A_ ) if should_apply_shortcut else nn.Identity()
)
_UpperCAmelCase : Dict = nn.Sequential(
ResNetConvLayer(A_ , A_ , kernel_size=1 ) , ResNetConvLayer(A_ , A_ , stride=A_ ) , ResNetConvLayer(A_ , A_ , kernel_size=1 , activation=A_ ) , )
_UpperCAmelCase : List[str] = ACTaFN[activation]
def _UpperCAmelCase ( self , A_ ):
'''simple docstring'''
_UpperCAmelCase : List[Any] = hidden_state
_UpperCAmelCase : List[str] = self.layer(A_ )
_UpperCAmelCase : List[str] = self.shortcut(A_ )
hidden_state += residual
_UpperCAmelCase : Dict = self.activation(A_ )
return hidden_state
class a ( nn.Module ):
def __init__( self , A_ , A_ , A_ , A_ = 2 , A_ = 2 , ):
'''simple docstring'''
super().__init__()
_UpperCAmelCase : Any = ResNetBottleNeckLayer if config.layer_type == "bottleneck" else ResNetBasicLayer
_UpperCAmelCase : Optional[Any] = nn.Sequential(
# downsampling is done in the first layer with stride of 2
layer(A_ , A_ , stride=A_ , activation=config.hidden_act ) , *[layer(A_ , A_ , activation=config.hidden_act ) for _ in range(depth - 1 )] , )
def _UpperCAmelCase ( self , A_ ):
'''simple docstring'''
_UpperCAmelCase : List[Any] = input
for layer in self.layers:
_UpperCAmelCase : Optional[Any] = layer(A_ )
return hidden_state
class a ( nn.Module ):
def __init__( self , A_ ):
'''simple docstring'''
super().__init__()
_UpperCAmelCase : Any = nn.ModuleList([] )
# based on `downsample_in_first_stage` the first layer of the first stage may or may not downsample the input
self.stages.append(
ResNetStage(
A_ , config.embedding_size , config.hidden_sizes[0] , stride=2 if config.downsample_in_first_stage else 1 , depth=config.depths[0] , ) )
_UpperCAmelCase : Union[str, Any] = zip(config.hidden_sizes , config.hidden_sizes[1:] )
for (in_channels, out_channels), depth in zip(A_ , config.depths[1:] ):
self.stages.append(ResNetStage(A_ , A_ , A_ , depth=A_ ) )
def _UpperCAmelCase ( self , A_ , A_ = False , A_ = True ):
'''simple docstring'''
_UpperCAmelCase : List[Any] = () if output_hidden_states else None
for stage_module in self.stages:
if output_hidden_states:
_UpperCAmelCase : Dict = hidden_states + (hidden_state,)
_UpperCAmelCase : str = stage_module(A_ )
if output_hidden_states:
_UpperCAmelCase : int = hidden_states + (hidden_state,)
if not return_dict:
return tuple(v for v in [hidden_state, hidden_states] if v is not None )
return BaseModelOutputWithNoAttention(
last_hidden_state=A_ , hidden_states=A_ , )
class a ( UpperCAmelCase ):
_lowercase = ResNetConfig
_lowercase = "resnet"
_lowercase = "pixel_values"
_lowercase = True
def _UpperCAmelCase ( self , A_ ):
'''simple docstring'''
if isinstance(A_ , nn.Convad ):
nn.init.kaiming_normal_(module.weight , mode="fan_out" , nonlinearity="relu" )
elif isinstance(A_ , (nn.BatchNormad, nn.GroupNorm) ):
nn.init.constant_(module.weight , 1 )
nn.init.constant_(module.bias , 0 )
def _UpperCAmelCase ( self , A_ , A_=False ):
'''simple docstring'''
if isinstance(A_ , A_ ):
_UpperCAmelCase : Optional[Any] = value
SCREAMING_SNAKE_CASE_ = R'\n This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it\n as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and\n behavior.\n\n Parameters:\n config ([`ResNetConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.\n'
SCREAMING_SNAKE_CASE_ = R'\n Args:\n pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See\n [`ConvNextImageProcessor.__call__`] for details.\n\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for\n more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.\n'
@add_start_docstrings(
"The bare ResNet model outputting raw features without any specific head on top." , UpperCAmelCase , )
class a ( UpperCAmelCase ):
def __init__( self , A_ ):
'''simple docstring'''
super().__init__(A_ )
_UpperCAmelCase : List[str] = config
_UpperCAmelCase : Any = ResNetEmbeddings(A_ )
_UpperCAmelCase : str = ResNetEncoder(A_ )
_UpperCAmelCase : Any = nn.AdaptiveAvgPoolad((1, 1) )
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(A_ )
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC , output_type=A_ , config_class=_CONFIG_FOR_DOC , modality="vision" , expected_output=_EXPECTED_OUTPUT_SHAPE , )
def _UpperCAmelCase ( self , A_ , A_ = None , A_ = None ):
'''simple docstring'''
_UpperCAmelCase : Optional[int] = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
_UpperCAmelCase : List[str] = return_dict if return_dict is not None else self.config.use_return_dict
_UpperCAmelCase : List[Any] = self.embedder(A_ )
_UpperCAmelCase : str = self.encoder(
A_ , output_hidden_states=A_ , return_dict=A_ )
_UpperCAmelCase : List[Any] = encoder_outputs[0]
_UpperCAmelCase : int = self.pooler(A_ )
if not return_dict:
return (last_hidden_state, pooled_output) + encoder_outputs[1:]
return BaseModelOutputWithPoolingAndNoAttention(
last_hidden_state=A_ , pooler_output=A_ , hidden_states=encoder_outputs.hidden_states , )
@add_start_docstrings(
"\n ResNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n " , UpperCAmelCase , )
class a ( UpperCAmelCase ):
def __init__( self , A_ ):
'''simple docstring'''
super().__init__(A_ )
_UpperCAmelCase : Optional[int] = config.num_labels
_UpperCAmelCase : str = ResNetModel(A_ )
# classification head
_UpperCAmelCase : int = nn.Sequential(
nn.Flatten() , nn.Linear(config.hidden_sizes[-1] , config.num_labels ) if config.num_labels > 0 else nn.Identity() , )
# initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(A_ )
@add_code_sample_docstrings(
checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=A_ , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , )
def _UpperCAmelCase ( self , A_ = None , A_ = None , A_ = None , A_ = None , ):
'''simple docstring'''
_UpperCAmelCase : Optional[int] = return_dict if return_dict is not None else self.config.use_return_dict
_UpperCAmelCase : Tuple = self.resnet(A_ , output_hidden_states=A_ , return_dict=A_ )
_UpperCAmelCase : Optional[int] = outputs.pooler_output if return_dict else outputs[1]
_UpperCAmelCase : int = self.classifier(A_ )
_UpperCAmelCase : Dict = None
if labels is not None:
if self.config.problem_type is None:
if self.num_labels == 1:
_UpperCAmelCase : Optional[Any] = "regression"
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
_UpperCAmelCase : Optional[Any] = "single_label_classification"
else:
_UpperCAmelCase : Any = "multi_label_classification"
if self.config.problem_type == "regression":
_UpperCAmelCase : str = MSELoss()
if self.num_labels == 1:
_UpperCAmelCase : Any = loss_fct(logits.squeeze() , labels.squeeze() )
else:
_UpperCAmelCase : Optional[int] = loss_fct(A_ , A_ )
elif self.config.problem_type == "single_label_classification":
_UpperCAmelCase : Any = CrossEntropyLoss()
_UpperCAmelCase : Any = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) )
elif self.config.problem_type == "multi_label_classification":
_UpperCAmelCase : Any = BCEWithLogitsLoss()
_UpperCAmelCase : Tuple = loss_fct(A_ , A_ )
if not return_dict:
_UpperCAmelCase : Any = (logits,) + outputs[2:]
return (loss,) + output if loss is not None else output
return ImageClassifierOutputWithNoAttention(loss=A_ , logits=A_ , hidden_states=outputs.hidden_states )
@add_start_docstrings(
"\n ResNet backbone, to be used with frameworks like DETR and MaskFormer.\n " , UpperCAmelCase , )
class a ( UpperCAmelCase , UpperCAmelCase ):
def __init__( self , A_ ):
'''simple docstring'''
super().__init__(A_ )
super()._init_backbone(A_ )
_UpperCAmelCase : Optional[int] = [config.embedding_size] + config.hidden_sizes
_UpperCAmelCase : str = ResNetEmbeddings(A_ )
_UpperCAmelCase : List[Any] = ResNetEncoder(A_ )
# initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(A_ )
@replace_return_docstrings(output_type=A_ , config_class=_CONFIG_FOR_DOC )
def _UpperCAmelCase ( self , A_ , A_ = None , A_ = None ):
'''simple docstring'''
_UpperCAmelCase : Tuple = return_dict if return_dict is not None else self.config.use_return_dict
_UpperCAmelCase : Tuple = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
_UpperCAmelCase : Tuple = self.embedder(A_ )
_UpperCAmelCase : Optional[int] = self.encoder(A_ , output_hidden_states=A_ , return_dict=A_ )
_UpperCAmelCase : Optional[int] = outputs.hidden_states
_UpperCAmelCase : Any = ()
for idx, stage in enumerate(self.stage_names ):
if stage in self.out_features:
feature_maps += (hidden_states[idx],)
if not return_dict:
_UpperCAmelCase : Union[str, Any] = (feature_maps,)
if output_hidden_states:
output += (outputs.hidden_states,)
return output
return BackboneOutput(
feature_maps=A_ , hidden_states=outputs.hidden_states if output_hidden_states else None , attentions=A_ , )
| 189 | 1 |
from math import sqrt
def snake_case__ ( SCREAMING_SNAKE_CASE_ : int ):
'''simple docstring'''
lowercase__ : List[str] = 0
for i in range(1 , int(sqrt(SCREAMING_SNAKE_CASE_ ) + 1 ) ):
if n % i == 0 and i != sqrt(SCREAMING_SNAKE_CASE_ ):
total += i + n // i
elif i == sqrt(SCREAMING_SNAKE_CASE_ ):
total += i
return total - n
def snake_case__ ( SCREAMING_SNAKE_CASE_ : int = 10_000 ):
'''simple docstring'''
lowercase__ : Union[str, Any] = sum(
i
for i in range(1 , SCREAMING_SNAKE_CASE_ )
if sum_of_divisors(sum_of_divisors(SCREAMING_SNAKE_CASE_ ) ) == i and sum_of_divisors(SCREAMING_SNAKE_CASE_ ) != i )
return total
if __name__ == "__main__":
print(solution(int(str(input()).strip())))
| 214 |
def snake_case__ ( SCREAMING_SNAKE_CASE_ : str ):
'''simple docstring'''
if not all(x.isalpha() for x in string ):
raise ValueError('String must only contain alphabetic characters.' )
lowercase__ : Optional[int] = sorted(string.lower() )
return len(SCREAMING_SNAKE_CASE_ ) == len(set(SCREAMING_SNAKE_CASE_ ) )
if __name__ == "__main__":
snake_case_ = input('''Enter a string ''').strip()
snake_case_ = is_isogram(input_str)
print(F'''{input_str} is {'an' if isogram else 'not an'} isogram.''')
| 214 | 1 |
from typing import Tuple, Union
from ...modeling_outputs import BackboneOutput
from ...modeling_utils import PreTrainedModel
from ...utils import is_timm_available, is_torch_available, requires_backends
from ...utils.backbone_utils import BackboneMixin
from .configuration_timm_backbone import TimmBackboneConfig
if is_timm_available():
import timm
if is_torch_available():
from torch import Tensor
class __a ( __UpperCamelCase ,__UpperCamelCase ):
__snake_case : Union[str, Any] = """pixel_values"""
__snake_case : Optional[Any] = False
__snake_case : Dict = TimmBackboneConfig
def __init__( self : List[str] , UpperCAmelCase : int , **UpperCAmelCase : List[str] ):
requires_backends(self , """timm""" )
super().__init__(UpperCAmelCase )
lowerCAmelCase_ : List[Any] = config
if config.backbone is None:
raise ValueError("""backbone is not set in the config. Please set it to a timm model name.""" )
if config.backbone not in timm.list_models():
raise ValueError(F'backbone {config.backbone} is not supported by timm.' )
if hasattr(UpperCAmelCase , """out_features""" ) and config.out_features is not None:
raise ValueError("""out_features is not supported by TimmBackbone. Please use out_indices instead.""" )
lowerCAmelCase_ : List[str] = getattr(UpperCAmelCase , """use_pretrained_backbone""" , UpperCAmelCase )
if pretrained is None:
raise ValueError("""use_pretrained_backbone is not set in the config. Please set it to True or False.""" )
# We just take the final layer by default. This matches the default for the transformers models.
lowerCAmelCase_ : str = config.out_indices if getattr(UpperCAmelCase , """out_indices""" , UpperCAmelCase ) is not None else (-1,)
lowerCAmelCase_ : Optional[int] = timm.create_model(
config.backbone , pretrained=UpperCAmelCase , features_only=config.features_only , in_chans=config.num_channels , out_indices=UpperCAmelCase , **UpperCAmelCase , )
# These are used to control the output of the model when called. If output_hidden_states is True, then
# return_layers is modified to include all layers.
lowerCAmelCase_ : Union[str, Any] = self._backbone.return_layers
lowerCAmelCase_ : Dict = {layer["""module"""]: str(UpperCAmelCase ) for i, layer in enumerate(self._backbone.feature_info.info )}
super()._init_backbone(UpperCAmelCase )
@classmethod
def A ( cls : Dict , UpperCAmelCase : Union[str, Any] , *UpperCAmelCase : List[Any] , **UpperCAmelCase : Dict ):
requires_backends(cls , ["""vision""", """timm"""] )
from ...models.timm_backbone import TimmBackboneConfig
lowerCAmelCase_ : Optional[Any] = kwargs.pop("""config""" , TimmBackboneConfig() )
lowerCAmelCase_ : Union[str, Any] = kwargs.pop("""use_timm_backbone""" , UpperCAmelCase )
if not use_timm:
raise ValueError("""use_timm_backbone must be True for timm backbones""" )
lowerCAmelCase_ : Union[str, Any] = kwargs.pop("""num_channels""" , config.num_channels )
lowerCAmelCase_ : Tuple = kwargs.pop("""features_only""" , config.features_only )
lowerCAmelCase_ : List[str] = kwargs.pop("""use_pretrained_backbone""" , config.use_pretrained_backbone )
lowerCAmelCase_ : Optional[Any] = kwargs.pop("""out_indices""" , config.out_indices )
lowerCAmelCase_ : Optional[Any] = TimmBackboneConfig(
backbone=UpperCAmelCase , num_channels=UpperCAmelCase , features_only=UpperCAmelCase , use_pretrained_backbone=UpperCAmelCase , out_indices=UpperCAmelCase , )
return super()._from_config(UpperCAmelCase , **UpperCAmelCase )
def A ( self : Union[str, Any] , UpperCAmelCase : Union[str, Any] ):
pass
def A ( self : Union[str, Any] , UpperCAmelCase : List[Any] , UpperCAmelCase : Optional[Any]=None , UpperCAmelCase : List[Any]=None , UpperCAmelCase : int=None , **UpperCAmelCase : Any ):
lowerCAmelCase_ : int = return_dict if return_dict is not None else self.config.use_return_dict
lowerCAmelCase_ : Dict = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
lowerCAmelCase_ : Any = output_attentions if output_attentions is not None else self.config.output_attentions
if output_attentions:
raise ValueError("""Cannot output attentions for timm backbones at the moment""" )
if output_hidden_states:
# We modify the return layers to include all the stages of the backbone
lowerCAmelCase_ : Optional[Any] = self._all_layers
lowerCAmelCase_ : List[Any] = self._backbone(UpperCAmelCase , **UpperCAmelCase )
lowerCAmelCase_ : str = self._return_layers
lowerCAmelCase_ : Any = tuple(hidden_states[i] for i in self.out_indices )
else:
lowerCAmelCase_ : Tuple = self._backbone(UpperCAmelCase , **UpperCAmelCase )
lowerCAmelCase_ : Optional[int] = None
lowerCAmelCase_ : List[str] = tuple(UpperCAmelCase )
lowerCAmelCase_ : int = tuple(UpperCAmelCase ) if hidden_states is not None else None
if not return_dict:
lowerCAmelCase_ : Optional[Any] = (feature_maps,)
if output_hidden_states:
lowerCAmelCase_ : Tuple = output + (hidden_states,)
return output
return BackboneOutput(feature_maps=UpperCAmelCase , hidden_states=UpperCAmelCase , attentions=UpperCAmelCase )
| 350 |
from collections import OrderedDict
from typing import Any, List, Mapping, Optional
from ... import PreTrainedTokenizer, TensorType, is_torch_available
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfigWithPast, PatchingSpec
from ...utils import logging
__UpperCAmelCase = logging.get_logger(__name__)
__UpperCAmelCase = {
'EleutherAI/gpt-j-6B': 'https://huggingface.co/EleutherAI/gpt-j-6B/resolve/main/config.json',
# See all GPT-J models at https://huggingface.co/models?filter=gpt_j
}
class __a ( __UpperCamelCase ):
__snake_case : Union[str, Any] = """gptj"""
__snake_case : int = {
"""max_position_embeddings""": """n_positions""",
"""hidden_size""": """n_embd""",
"""num_attention_heads""": """n_head""",
"""num_hidden_layers""": """n_layer""",
}
def __init__( self : List[str] , UpperCAmelCase : Optional[int]=5_04_00 , UpperCAmelCase : Optional[int]=20_48 , UpperCAmelCase : str=40_96 , UpperCAmelCase : Any=28 , UpperCAmelCase : Dict=16 , UpperCAmelCase : List[str]=64 , UpperCAmelCase : int=None , UpperCAmelCase : Union[str, Any]="gelu_new" , UpperCAmelCase : Tuple=0.0 , UpperCAmelCase : Dict=0.0 , UpperCAmelCase : str=0.0 , UpperCAmelCase : Optional[Any]=1e-5 , UpperCAmelCase : List[Any]=0.02 , UpperCAmelCase : Optional[int]=True , UpperCAmelCase : Dict=5_02_56 , UpperCAmelCase : int=5_02_56 , UpperCAmelCase : Tuple=False , **UpperCAmelCase : Any , ):
lowerCAmelCase_ : Tuple = vocab_size
lowerCAmelCase_ : Union[str, Any] = n_positions
lowerCAmelCase_ : Union[str, Any] = n_embd
lowerCAmelCase_ : List[Any] = n_layer
lowerCAmelCase_ : List[Any] = n_head
lowerCAmelCase_ : Tuple = n_inner
lowerCAmelCase_ : Optional[Any] = rotary_dim
lowerCAmelCase_ : str = activation_function
lowerCAmelCase_ : str = resid_pdrop
lowerCAmelCase_ : List[Any] = embd_pdrop
lowerCAmelCase_ : Dict = attn_pdrop
lowerCAmelCase_ : Any = layer_norm_epsilon
lowerCAmelCase_ : Optional[int] = initializer_range
lowerCAmelCase_ : Optional[int] = use_cache
lowerCAmelCase_ : Optional[int] = bos_token_id
lowerCAmelCase_ : Any = eos_token_id
super().__init__(
bos_token_id=UpperCAmelCase , eos_token_id=UpperCAmelCase , tie_word_embeddings=UpperCAmelCase , **UpperCAmelCase )
class __a ( __UpperCamelCase ):
def __init__( self : Any , UpperCAmelCase : PretrainedConfig , UpperCAmelCase : str = "default" , UpperCAmelCase : List[PatchingSpec] = None , UpperCAmelCase : bool = False , ):
super().__init__(UpperCAmelCase , task=UpperCAmelCase , patching_specs=UpperCAmelCase , use_past=UpperCAmelCase )
if not getattr(self._config , """pad_token_id""" , UpperCAmelCase ):
# TODO: how to do that better?
lowerCAmelCase_ : List[Any] = 0
@property
def A ( self : List[Any] ):
lowerCAmelCase_ : Optional[int] = OrderedDict({"""input_ids""": {0: """batch""", 1: """sequence"""}} )
if self.use_past:
self.fill_with_past_key_values_(UpperCAmelCase , direction="""inputs""" )
lowerCAmelCase_ : Any = {0: """batch""", 1: """past_sequence + sequence"""}
else:
lowerCAmelCase_ : List[Any] = {0: """batch""", 1: """sequence"""}
return common_inputs
@property
def A ( self : Union[str, Any] ):
return self._config.n_layer
@property
def A ( self : Optional[Any] ):
return self._config.n_head
def A ( self : Optional[Any] , UpperCAmelCase : PreTrainedTokenizer , UpperCAmelCase : int = -1 , UpperCAmelCase : int = -1 , UpperCAmelCase : bool = False , UpperCAmelCase : Optional[TensorType] = None , ):
lowerCAmelCase_ : Optional[Any] = super(UpperCAmelCase , self ).generate_dummy_inputs(
UpperCAmelCase , batch_size=UpperCAmelCase , seq_length=UpperCAmelCase , is_pair=UpperCAmelCase , framework=UpperCAmelCase )
# We need to order the input in the way they appears in the forward()
lowerCAmelCase_ : List[Any] = OrderedDict({"""input_ids""": common_inputs["""input_ids"""]} )
# Need to add the past_keys
if self.use_past:
if not is_torch_available():
raise ValueError("""Cannot generate dummy past_keys inputs without PyTorch installed.""" )
else:
import torch
lowerCAmelCase_ , lowerCAmelCase_ : int = common_inputs["""input_ids"""].shape
# Not using the same length for past_key_values
lowerCAmelCase_ : Optional[Any] = seqlen + 2
lowerCAmelCase_ : Optional[int] = (
batch,
self.num_attention_heads,
past_key_values_length,
self._config.hidden_size // self.num_attention_heads,
)
lowerCAmelCase_ : Optional[int] = [
(torch.zeros(UpperCAmelCase ), torch.zeros(UpperCAmelCase )) for _ in range(self.num_layers )
]
lowerCAmelCase_ : Dict = common_inputs["""attention_mask"""]
if self.use_past:
lowerCAmelCase_ : Union[str, Any] = ordered_inputs["""attention_mask"""].dtype
lowerCAmelCase_ : str = torch.cat(
[ordered_inputs["""attention_mask"""], torch.ones(UpperCAmelCase , UpperCAmelCase , dtype=UpperCAmelCase )] , dim=1 )
return ordered_inputs
@property
def A ( self : Optional[int] ):
return 13
| 28 | 0 |
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
__lowerCamelCase = logging.get_logger(__name__)
__lowerCamelCase = {
"""junnyu/roformer_chinese_small""": """https://huggingface.co/junnyu/roformer_chinese_small/resolve/main/config.json""",
"""junnyu/roformer_chinese_base""": """https://huggingface.co/junnyu/roformer_chinese_base/resolve/main/config.json""",
"""junnyu/roformer_chinese_char_small""": (
"""https://huggingface.co/junnyu/roformer_chinese_char_small/resolve/main/config.json"""
),
"""junnyu/roformer_chinese_char_base""": (
"""https://huggingface.co/junnyu/roformer_chinese_char_base/resolve/main/config.json"""
),
"""junnyu/roformer_small_discriminator""": (
"""https://huggingface.co/junnyu/roformer_small_discriminator/resolve/main/config.json"""
),
"""junnyu/roformer_small_generator""": (
"""https://huggingface.co/junnyu/roformer_small_generator/resolve/main/config.json"""
),
# See all RoFormer models at https://huggingface.co/models?filter=roformer
}
class UpperCAmelCase ( A_ ):
A__ : Tuple = "roformer"
def __init__(self : int , snake_case__ : Optional[Any]=5_00_00 , snake_case__ : Optional[int]=None , snake_case__ : Any=7_68 , snake_case__ : Optional[int]=12 , snake_case__ : Optional[int]=12 , snake_case__ : Union[str, Any]=30_72 , snake_case__ : Optional[int]="gelu" , snake_case__ : int=0.1 , snake_case__ : Dict=0.1 , snake_case__ : Tuple=15_36 , snake_case__ : List[str]=2 , snake_case__ : str=0.02 , snake_case__ : Dict=1e-12 , snake_case__ : Any=0 , snake_case__ : str=False , snake_case__ : Dict=True , **snake_case__ : Optional[Any] , ) -> Dict:
'''simple docstring'''
super().__init__(pad_token_id=snake_case__ , **snake_case__ )
snake_case : List[Any] = vocab_size
snake_case : Any = hidden_size if embedding_size is None else embedding_size
snake_case : Tuple = hidden_size
snake_case : str = num_hidden_layers
snake_case : int = num_attention_heads
snake_case : Optional[int] = hidden_act
snake_case : Optional[int] = intermediate_size
snake_case : int = hidden_dropout_prob
snake_case : List[str] = attention_probs_dropout_prob
snake_case : str = max_position_embeddings
snake_case : Union[str, Any] = type_vocab_size
snake_case : List[Any] = initializer_range
snake_case : Optional[int] = layer_norm_eps
snake_case : Optional[Any] = rotary_value
snake_case : Union[str, Any] = use_cache
class UpperCAmelCase ( A_ ):
@property
def _SCREAMING_SNAKE_CASE (self : Optional[int] ) -> Mapping[str, Mapping[int, str]]:
'''simple docstring'''
if self.task == "multiple-choice":
snake_case : Any = {0: "batch", 1: "choice", 2: "sequence"}
else:
snake_case : Tuple = {0: "batch", 1: "sequence"}
snake_case : str = {0: "batch", 1: "sequence"}
return OrderedDict(
[
("input_ids", dynamic_axis),
("attention_mask", dynamic_axis),
("token_type_ids", dynamic_axis),
] )
| 59 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_sentencepiece_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
__lowerCamelCase = {"""configuration_xglm""": ["""XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP""", """XGLMConfig"""]}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__lowerCamelCase = ["""XGLMTokenizer"""]
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__lowerCamelCase = ["""XGLMTokenizerFast"""]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__lowerCamelCase = [
"""XGLM_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""XGLMForCausalLM""",
"""XGLMModel""",
"""XGLMPreTrainedModel""",
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__lowerCamelCase = [
"""FlaxXGLMForCausalLM""",
"""FlaxXGLMModel""",
"""FlaxXGLMPreTrainedModel""",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__lowerCamelCase = [
"""TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""TFXGLMForCausalLM""",
"""TFXGLMModel""",
"""TFXGLMPreTrainedModel""",
]
if TYPE_CHECKING:
from .configuration_xglm import XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XGLMConfig
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_xglm import XGLMTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_xglm_fast import XGLMTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_xglm import XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, XGLMForCausalLM, XGLMModel, XGLMPreTrainedModel
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_xglm import FlaxXGLMForCausalLM, FlaxXGLMModel, FlaxXGLMPreTrainedModel
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_xglm import (
TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST,
TFXGLMForCausalLM,
TFXGLMModel,
TFXGLMPreTrainedModel,
)
else:
import sys
__lowerCamelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure)
| 59 | 1 |
"""simple docstring"""
from manim import *
class snake_case__ ( snake_case_ ):
def a__ ( self ):
__a = Rectangle(height=0.5 , width=0.5 )
__a = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 )
__a = Rectangle(height=0.25 , width=0.25 )
__a = [mem.copy() for i in range(6 )]
__a = [mem.copy() for i in range(6 )]
__a = VGroup(*lowerCamelCase ).arrange(lowerCamelCase , buff=0 )
__a = VGroup(*lowerCamelCase ).arrange(lowerCamelCase , buff=0 )
__a = VGroup(lowerCamelCase , lowerCamelCase ).arrange(lowerCamelCase , buff=0 )
__a = Text("CPU" , font_size=24 )
__a = Group(lowerCamelCase , lowerCamelCase ).arrange(lowerCamelCase , buff=0.5 , aligned_edge=lowerCamelCase )
cpu.move_to([-2.5, -0.5, 0] )
self.add(lowerCamelCase )
__a = [mem.copy() for i in range(4 )]
__a = VGroup(*lowerCamelCase ).arrange(lowerCamelCase , buff=0 )
__a = Text("GPU" , font_size=24 )
__a = Group(lowerCamelCase , lowerCamelCase ).arrange(lowerCamelCase , buff=0.5 , aligned_edge=lowerCamelCase )
gpu.move_to([-1, -1, 0] )
self.add(lowerCamelCase )
__a = [mem.copy() for i in range(6 )]
__a = VGroup(*lowerCamelCase ).arrange(lowerCamelCase , buff=0 )
__a = Text("Model" , font_size=24 )
__a = Group(lowerCamelCase , lowerCamelCase ).arrange(lowerCamelCase , buff=0.5 , aligned_edge=lowerCamelCase )
model.move_to([3, -1.0, 0] )
self.add(lowerCamelCase )
__a = []
__a = []
for i, rect in enumerate(lowerCamelCase ):
__a = fill.copy().set_fill(lowerCamelCase , opacity=0.8 )
target.move_to(lowerCamelCase )
model_arr.append(lowerCamelCase )
__a = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0.0 ).set_fill(lowerCamelCase , opacity=0.8 )
cpu_target.move_to(cpu_left_col_base[i] )
model_cpu_arr.append(lowerCamelCase )
self.add(*lowerCamelCase , *lowerCamelCase )
__a = [meta_mem.copy() for i in range(6 )]
__a = [meta_mem.copy() for i in range(6 )]
__a = VGroup(*lowerCamelCase ).arrange(lowerCamelCase , buff=0 )
__a = VGroup(*lowerCamelCase ).arrange(lowerCamelCase , buff=0 )
__a = VGroup(lowerCamelCase , lowerCamelCase ).arrange(lowerCamelCase , buff=0 )
__a = Text("Disk" , font_size=24 )
__a = Group(lowerCamelCase , lowerCamelCase ).arrange(lowerCamelCase , buff=0.5 , aligned_edge=lowerCamelCase )
disk.move_to([-4, -1.25, 0] )
self.add(lowerCamelCase , lowerCamelCase )
__a = Square(side_length=2.2 )
key.move_to([-5, 2, 0] )
__a = MarkupText(
F"<b>Key:</b>\n\n<span fgcolor='{YELLOW}'>●</span> Empty Model" , font_size=18 , )
key_text.move_to([-5, 2.4, 0] )
self.add(lowerCamelCase , lowerCamelCase )
__a = MarkupText(
F"<span fgcolor='{BLUE}'>●</span> Checkpoint" , font_size=18 , )
blue_text.next_to(lowerCamelCase , DOWN * 2.4 , aligned_edge=key_text.get_left() )
self.add(lowerCamelCase )
__a = MarkupText(
F"Now watch as an input is passed through the model\nand how the memory is utilized and handled." , font_size=24 , )
step_a.move_to([2, 2, 0] )
self.play(Write(lowerCamelCase ) )
__a = Square(0.3 )
input.set_fill(lowerCamelCase , opacity=1.0 )
input.set_stroke(width=0.0 )
input.next_to(model_base[0] , lowerCamelCase , buff=0.5 )
self.play(Write(lowerCamelCase ) )
input.generate_target()
input.target.next_to(model_arr[0] , direction=lowerCamelCase , buff=0.02 )
self.play(MoveToTarget(lowerCamelCase ) )
self.play(FadeOut(lowerCamelCase ) )
__a = Arrow(start=lowerCamelCase , end=lowerCamelCase , color=lowerCamelCase , buff=0.5 )
a.next_to(model_arr[0].get_left() , lowerCamelCase , buff=0.2 )
model_cpu_arr[0].generate_target()
model_cpu_arr[0].target.move_to(gpu_rect[0] )
__a = MarkupText(
F"As the input reaches a layer, the hook triggers\nand weights are moved from the CPU\nto the GPU and back." , font_size=24 , )
step_a.move_to([2, 2, 0] )
self.play(Write(lowerCamelCase , run_time=3 ) )
__a = {"run_time": 1, "fade_in": True, "fade_out": True, "buff": 0.02}
self.play(
Write(lowerCamelCase ) , Circumscribe(model_arr[0] , color=lowerCamelCase , **lowerCamelCase ) , Circumscribe(model_cpu_arr[0] , color=lowerCamelCase , **lowerCamelCase ) , Circumscribe(gpu_rect[0] , color=lowerCamelCase , **lowerCamelCase ) , )
self.play(MoveToTarget(model_cpu_arr[0] ) )
__a = a.copy()
for i in range(6 ):
a_c.next_to(model_arr[i].get_right() + 0.02 , lowerCamelCase , buff=0.2 )
input.generate_target()
input.target.move_to(model_arr[i].get_right() + 0.02 )
__a = AnimationGroup(
FadeOut(lowerCamelCase , run_time=0.5 ) , MoveToTarget(lowerCamelCase , run_time=0.5 ) , FadeIn(lowerCamelCase , run_time=0.5 ) , lag_ratio=0.2 )
self.play(lowerCamelCase )
model_cpu_arr[i].generate_target()
model_cpu_arr[i].target.move_to(cpu_left_col_base[i] )
if i < 5:
model_cpu_arr[i + 1].generate_target()
model_cpu_arr[i + 1].target.move_to(gpu_rect[0] )
if i >= 1:
__a = 0.7
self.play(
Circumscribe(model_arr[i] , **lowerCamelCase ) , Circumscribe(cpu_left_col_base[i] , **lowerCamelCase ) , Circumscribe(cpu_left_col_base[i + 1] , color=lowerCamelCase , **lowerCamelCase ) , Circumscribe(gpu_rect[0] , color=lowerCamelCase , **lowerCamelCase ) , Circumscribe(model_arr[i + 1] , color=lowerCamelCase , **lowerCamelCase ) , )
if i < 1:
self.play(
MoveToTarget(model_cpu_arr[i] ) , MoveToTarget(model_cpu_arr[i + 1] ) , )
else:
self.play(
MoveToTarget(model_cpu_arr[i] , run_time=0.7 ) , MoveToTarget(model_cpu_arr[i + 1] , run_time=0.7 ) , )
else:
model_cpu_arr[i].generate_target()
model_cpu_arr[i].target.move_to(cpu_left_col_base[-1] )
input.generate_target()
input.target.next_to(model_arr[-1].get_right() , RIGHT + 0.02 , buff=0.2 )
self.play(
Circumscribe(model_arr[-1] , color=lowerCamelCase , **lowerCamelCase ) , Circumscribe(cpu_left_col_base[-1] , color=lowerCamelCase , **lowerCamelCase ) , Circumscribe(gpu_rect[0] , color=lowerCamelCase , **lowerCamelCase ) , )
self.play(MoveToTarget(model_cpu_arr[i] ) )
__a = a_c
__a = a_c.copy()
input.generate_target()
input.target.next_to(model_base[-1] , RIGHT + 0.02 , buff=0.5 )
self.play(
FadeOut(lowerCamelCase ) , FadeOut(lowerCamelCase , run_time=0.5 ) , )
__a = MarkupText(F"Inference on a model too large for GPU memory\nis successfully completed." , font_size=24 )
step_a.move_to([2, 2, 0] )
self.play(Write(lowerCamelCase , run_time=3 ) , MoveToTarget(lowerCamelCase ) )
self.wait()
| 268 | """simple docstring"""
import os
import random
import sys
from . import cryptomath_module as cryptomath
from . import rabin_miller
SCREAMING_SNAKE_CASE__:List[str] = 3
def _lowerCamelCase( a ):
print("Generating primitive root of p" )
while True:
__a = random.randrange(3 , a )
if pow(a , 2 , a ) == 1:
continue
if pow(a , a , a ) == 1:
continue
return g
def _lowerCamelCase( a ):
print("Generating prime p..." )
__a = rabin_miller.generate_large_prime(a ) # select large prime number.
__a = primitive_root(a ) # one primitive root on modulo p.
__a = random.randrange(3 , a ) # private_key -> have to be greater than 2 for safety.
__a = cryptomath.find_mod_inverse(pow(a , a , a ) , a )
__a = (key_size, e_a, e_a, p)
__a = (key_size, d)
return public_key, private_key
def _lowerCamelCase( a , a ):
if os.path.exists(F"{name}_pubkey.txt" ) or os.path.exists(F"{name}_privkey.txt" ):
print("\nWARNING:" )
print(
F"\"{name}_pubkey.txt\" or \"{name}_privkey.txt\" already exists. \n"
"Use a different name or delete these files and re-run this program." )
sys.exit()
__a , __a = generate_key(a )
print(F"\nWriting public key to file {name}_pubkey.txt..." )
with open(F"{name}_pubkey.txt" , "w" ) as fo:
fo.write(F"{public_key[0]},{public_key[1]},{public_key[2]},{public_key[3]}" )
print(F"Writing private key to file {name}_privkey.txt..." )
with open(F"{name}_privkey.txt" , "w" ) as fo:
fo.write(F"{private_key[0]},{private_key[1]}" )
def _lowerCamelCase( ):
print("Making key files..." )
make_key_files("elgamal" , 2_0_4_8 )
print("Key files generation successful" )
if __name__ == "__main__":
main()
| 268 | 1 |
'''simple docstring'''
def lowercase__( __UpperCamelCase: list ,__UpperCamelCase: int = 0 ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : int = length or len(SCREAMING_SNAKE_CASE__ )
SCREAMING_SNAKE_CASE : str = False
for i in range(length - 1 ):
if list_data[i] > list_data[i + 1]:
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : str = list_data[i + 1], list_data[i]
SCREAMING_SNAKE_CASE : Any = True
return list_data if not swapped else bubble_sort(SCREAMING_SNAKE_CASE__ ,length - 1 )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 251 |
'''simple docstring'''
import os
import unicodedata
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...utils import SPIECE_UNDERLINE, logging
UpperCAmelCase_ = logging.get_logger(__name__)
UpperCAmelCase_ = {'vocab_file': 'spiece.model'}
UpperCAmelCase_ = {
'vocab_file': {
'TsinghuaAI/CPM-Generate': 'https://huggingface.co/TsinghuaAI/CPM-Generate/resolve/main/spiece.model',
}
}
class lowerCAmelCase_ ( lowerCamelCase_ ):
'''simple docstring'''
def __init__( self : Dict , _UpperCAmelCase : str , _UpperCAmelCase : Any=False , _UpperCAmelCase : int=True , _UpperCAmelCase : Union[str, Any]=False , _UpperCAmelCase : Dict="<s>" , _UpperCAmelCase : int="</s>" , _UpperCAmelCase : Dict="<unk>" , _UpperCAmelCase : Tuple="<sep>" , _UpperCAmelCase : List[Any]="<pad>" , _UpperCAmelCase : int="<cls>" , _UpperCAmelCase : Union[str, Any]="<mask>" , _UpperCAmelCase : List[str]=["<eop>", "<eod>"] , _UpperCAmelCase : Optional[Dict[str, Any]] = None , **_UpperCAmelCase : int , ):
"""simple docstring"""
UpperCAmelCase__ = AddedToken(_UpperCAmelCase , lstrip=_UpperCAmelCase , rstrip=_UpperCAmelCase ) if isinstance(_UpperCAmelCase , _UpperCAmelCase ) else mask_token
UpperCAmelCase__ = {} if sp_model_kwargs is None else sp_model_kwargs
super().__init__(
do_lower_case=_UpperCAmelCase , remove_space=_UpperCAmelCase , keep_accents=_UpperCAmelCase , bos_token=_UpperCAmelCase , eos_token=_UpperCAmelCase , unk_token=_UpperCAmelCase , sep_token=_UpperCAmelCase , pad_token=_UpperCAmelCase , cls_token=_UpperCAmelCase , mask_token=_UpperCAmelCase , additional_special_tokens=_UpperCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **_UpperCAmelCase , )
UpperCAmelCase__ = 3
UpperCAmelCase__ = do_lower_case
UpperCAmelCase__ = remove_space
UpperCAmelCase__ = keep_accents
UpperCAmelCase__ = vocab_file
UpperCAmelCase__ = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(_UpperCAmelCase )
try:
import jieba
except ModuleNotFoundError as error:
raise error.__class__(
"""You need to install jieba to use CpmTokenizer or CpmTokenizerFast. """
"""See https://pypi.org/project/jieba/ for installation.""" )
UpperCAmelCase__ = jieba
UpperCAmelCase__ = str.maketrans(""" \n""" , """\u2582\u2583""" )
@property
# Copied from transformers.models.xlnet.tokenization_xlnet.XLNetTokenizer.vocab_size
def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ):
"""simple docstring"""
return len(self.sp_model )
def SCREAMING_SNAKE_CASE__ ( self : List[str] ):
"""simple docstring"""
UpperCAmelCase__ = {self.convert_ids_to_tokens(_UpperCAmelCase ): i for i in range(self.vocab_size )}
vocab.update(self.added_tokens_encoder )
return vocab
def __getstate__( self : Dict ):
"""simple docstring"""
UpperCAmelCase__ = self.__dict__.copy()
UpperCAmelCase__ = None
return state
def __setstate__( self : Union[str, Any] , _UpperCAmelCase : Union[str, Any] ):
"""simple docstring"""
UpperCAmelCase__ = d
# for backward compatibility
if not hasattr(self , """sp_model_kwargs""" ):
UpperCAmelCase__ = {}
UpperCAmelCase__ = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(self.vocab_file )
def SCREAMING_SNAKE_CASE__ ( self : int , _UpperCAmelCase : Optional[Any] ):
"""simple docstring"""
if self.remove_space:
UpperCAmelCase__ = """ """.join(inputs.strip().split() )
else:
UpperCAmelCase__ = inputs
UpperCAmelCase__ = outputs.replace("""``""" , """\"""" ).replace("""''""" , """\"""" )
if not self.keep_accents:
UpperCAmelCase__ = unicodedata.normalize("""NFKD""" , _UpperCAmelCase )
UpperCAmelCase__ = """""".join([c for c in outputs if not unicodedata.combining(_UpperCAmelCase )] )
if self.do_lower_case:
UpperCAmelCase__ = outputs.lower()
return outputs
def SCREAMING_SNAKE_CASE__ ( self : Tuple , _UpperCAmelCase : str ):
"""simple docstring"""
UpperCAmelCase__ = self.preprocess_text(_UpperCAmelCase )
UpperCAmelCase__ = self.sp_model.encode(_UpperCAmelCase , out_type=_UpperCAmelCase )
UpperCAmelCase__ = []
for piece in pieces:
if len(_UpperCAmelCase ) > 1 and piece[-1] == str(""",""" ) and piece[-2].isdigit():
UpperCAmelCase__ = self.sp_model.EncodeAsPieces(piece[:-1].replace(_UpperCAmelCase , """""" ) )
if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE:
if len(cur_pieces[0] ) == 1:
UpperCAmelCase__ = cur_pieces[1:]
else:
UpperCAmelCase__ = cur_pieces[0][1:]
cur_pieces.append(piece[-1] )
new_pieces.extend(_UpperCAmelCase )
else:
new_pieces.append(_UpperCAmelCase )
return new_pieces
def SCREAMING_SNAKE_CASE__ ( self : Optional[int] , _UpperCAmelCase : Union[str, Any] ):
"""simple docstring"""
return self.sp_model.PieceToId(_UpperCAmelCase )
def SCREAMING_SNAKE_CASE__ ( self : Dict , _UpperCAmelCase : Any ):
"""simple docstring"""
return self.sp_model.IdToPiece(_UpperCAmelCase )
def SCREAMING_SNAKE_CASE__ ( self : int , _UpperCAmelCase : Dict ):
"""simple docstring"""
UpperCAmelCase__ = """""".join(_UpperCAmelCase ).replace(_UpperCAmelCase , """ """ ).strip()
return out_string
def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] , _UpperCAmelCase : List[int] , _UpperCAmelCase : Optional[List[int]] = None ):
"""simple docstring"""
UpperCAmelCase__ = [self.sep_token_id]
UpperCAmelCase__ = [self.cls_token_id]
if token_ids_a is None:
return token_ids_a + sep + cls
return token_ids_a + sep + token_ids_a + sep + cls
def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] , _UpperCAmelCase : List[int] , _UpperCAmelCase : Optional[List[int]] = None , _UpperCAmelCase : bool = False ):
"""simple docstring"""
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=_UpperCAmelCase , token_ids_a=_UpperCAmelCase , already_has_special_tokens=_UpperCAmelCase )
if token_ids_a is not None:
return ([0] * len(_UpperCAmelCase )) + [1] + ([0] * len(_UpperCAmelCase )) + [1, 1]
return ([0] * len(_UpperCAmelCase )) + [1, 1]
def SCREAMING_SNAKE_CASE__ ( self : Dict , _UpperCAmelCase : List[int] , _UpperCAmelCase : Optional[List[int]] = None ):
"""simple docstring"""
UpperCAmelCase__ = [self.sep_token_id]
UpperCAmelCase__ = [2]
if token_ids_a is None:
return len(token_ids_a + sep ) * [0] + cls_segment_id
return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id
def SCREAMING_SNAKE_CASE__ ( self : List[Any] , _UpperCAmelCase : str , _UpperCAmelCase : Optional[str] = None ):
"""simple docstring"""
if not os.path.isdir(_UpperCAmelCase ):
logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' )
return
UpperCAmelCase__ = os.path.join(
_UpperCAmelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(_UpperCAmelCase ) and os.path.isfile(self.vocab_file ):
copyfile(self.vocab_file , _UpperCAmelCase )
elif not os.path.isfile(self.vocab_file ):
with open(_UpperCAmelCase , """wb""" ) as fi:
UpperCAmelCase__ = self.sp_model.serialized_model_proto()
fi.write(_UpperCAmelCase )
return (out_vocab_file,)
def SCREAMING_SNAKE_CASE__ ( self : Tuple , *_UpperCAmelCase : Tuple , **_UpperCAmelCase : Optional[Any] ):
"""simple docstring"""
UpperCAmelCase__ = super()._decode(*_UpperCAmelCase , **_UpperCAmelCase )
UpperCAmelCase__ = text.replace(""" """ , """""" ).replace("""\u2582""" , """ """ ).replace("""\u2583""" , """\n""" )
return text
| 346 | 0 |
"""simple docstring"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
SCREAMING_SNAKE_CASE__:Tuple = logging.get_logger(__name__)
SCREAMING_SNAKE_CASE__:Tuple = {
'facebook/dpr-ctx_encoder-single-nq-base': (
'https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/config.json'
),
'facebook/dpr-question_encoder-single-nq-base': (
'https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/config.json'
),
'facebook/dpr-reader-single-nq-base': (
'https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/config.json'
),
'facebook/dpr-ctx_encoder-multiset-base': (
'https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/config.json'
),
'facebook/dpr-question_encoder-multiset-base': (
'https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/config.json'
),
'facebook/dpr-reader-multiset-base': (
'https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/config.json'
),
}
class snake_case__ ( _lowerCAmelCase ):
_snake_case : Union[str, Any] = """dpr"""
def __init__( self , lowerCamelCase=30522 , lowerCamelCase=768 , lowerCamelCase=12 , lowerCamelCase=12 , lowerCamelCase=3072 , lowerCamelCase="gelu" , lowerCamelCase=0.1 , lowerCamelCase=0.1 , lowerCamelCase=512 , lowerCamelCase=2 , lowerCamelCase=0.02 , lowerCamelCase=1E-12 , lowerCamelCase=0 , lowerCamelCase="absolute" , lowerCamelCase = 0 , **lowerCamelCase , ):
super().__init__(pad_token_id=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
__a = vocab_size
__a = hidden_size
__a = num_hidden_layers
__a = num_attention_heads
__a = hidden_act
__a = intermediate_size
__a = hidden_dropout_prob
__a = attention_probs_dropout_prob
__a = max_position_embeddings
__a = type_vocab_size
__a = initializer_range
__a = layer_norm_eps
__a = projection_dim
__a = position_embedding_type
| 366 | """simple docstring"""
import collections
import os
from typing import List, Optional, Tuple
from transformers.utils import is_jieba_available, requires_backends
if is_jieba_available():
import jieba
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
SCREAMING_SNAKE_CASE__:Tuple = logging.get_logger(__name__)
SCREAMING_SNAKE_CASE__:List[Any] = {"""vocab_file""": """vocab.txt"""}
SCREAMING_SNAKE_CASE__:Optional[int] = {
"""vocab_file""": {
"""openbmb/cpm-ant-10b""": """https://huggingface.co/openbmb/cpm-ant-10b/blob/main/vocab.txt""",
},
}
SCREAMING_SNAKE_CASE__:Tuple = {
"""openbmb/cpm-ant-10b""": 1024,
}
def _lowerCamelCase( a ):
__a = collections.OrderedDict()
with open(a , "r" , encoding="utf-8" ) as reader:
__a = reader.readlines()
for index, token in enumerate(a ):
__a = token.rstrip("\n" )
__a = index
return vocab
class snake_case__ ( snake_case_ ):
def __init__( self , lowerCamelCase , lowerCamelCase="<unk>" , lowerCamelCase=200 ):
__a = vocab
__a = unk_token
__a = max_input_chars_per_word
def a__ ( self , lowerCamelCase ):
__a = list(lowerCamelCase )
if len(lowerCamelCase ) > self.max_input_chars_per_word:
return [self.unk_token]
__a = 0
__a = []
while start < len(lowerCamelCase ):
__a = len(lowerCamelCase )
__a = None
while start < end:
__a = "".join(chars[start:end] )
if substr in self.vocab:
__a = substr
break
end -= 1
if cur_substr is None:
sub_tokens.append(self.unk_token )
start += 1
else:
sub_tokens.append(lowerCamelCase )
__a = end
return sub_tokens
class snake_case__ ( snake_case_ ):
_snake_case : Optional[int] = VOCAB_FILES_NAMES
_snake_case : Optional[int] = PRETRAINED_VOCAB_FILES_MAP
_snake_case : Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
_snake_case : int = ["""input_ids""", """attention_mask"""]
_snake_case : int = False
def __init__( self , lowerCamelCase , lowerCamelCase="<d>" , lowerCamelCase="</d>" , lowerCamelCase="<s>" , lowerCamelCase="</s>" , lowerCamelCase="<pad>" , lowerCamelCase="<unk>" , lowerCamelCase="</n>" , lowerCamelCase="</_>" , lowerCamelCase="left" , **lowerCamelCase , ):
requires_backends(self , ["jieba"] )
super().__init__(
bod_token=lowerCamelCase , eod_token=lowerCamelCase , bos_token=lowerCamelCase , eos_token=lowerCamelCase , pad_token=lowerCamelCase , unk_token=lowerCamelCase , line_token=lowerCamelCase , space_token=lowerCamelCase , padding_side=lowerCamelCase , **lowerCamelCase , )
__a = bod_token
__a = eod_token
__a = load_vocab(lowerCamelCase )
__a = self.encoder[space_token]
__a = self.encoder[line_token]
del self.encoder[space_token]
del self.encoder[line_token]
__a = collections.OrderedDict(sorted(self.encoder.items() , key=lambda lowerCamelCase : x[1] ) )
__a = {v: k for k, v in self.encoder.items()}
__a = WordpieceTokenizer(vocab=self.encoder , unk_token=self.unk_token )
@property
def a__ ( self ):
return self.encoder[self.bod_token]
@property
def a__ ( self ):
return self.encoder[self.eod_token]
@property
def a__ ( self ):
return self.encoder["\n"]
@property
def a__ ( self ):
return len(self.encoder )
def a__ ( self ):
return dict(self.encoder , **self.added_tokens_encoder )
def a__ ( self , lowerCamelCase ):
__a = []
for x in jieba.cut(lowerCamelCase , cut_all=lowerCamelCase ):
output_tokens.extend(self.wordpiece_tokenizer.tokenize(lowerCamelCase ) )
return output_tokens
def a__ ( self , lowerCamelCase , **lowerCamelCase ):
__a = [i for i in token_ids if i >= 0]
__a = [
x for x in token_ids if x != self.pad_token_id and x != self.eos_token_id and x != self.bos_token_id
]
return super()._decode(lowerCamelCase , **lowerCamelCase )
def a__ ( self , lowerCamelCase ):
return token in self.encoder
def a__ ( self , lowerCamelCase ):
return "".join(lowerCamelCase )
def a__ ( self , lowerCamelCase ):
return self.encoder.get(lowerCamelCase , self.encoder.get(self.unk_token ) )
def a__ ( self , lowerCamelCase ):
return self.decoder.get(lowerCamelCase , self.unk_token )
def a__ ( self , lowerCamelCase , lowerCamelCase = None ):
if os.path.isdir(lowerCamelCase ):
__a = os.path.join(
lowerCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] )
else:
__a = (filename_prefix + "-" if filename_prefix else "") + save_directory
__a = 0
if " " in self.encoder:
__a = self.encoder[" "]
del self.encoder[" "]
if "\n" in self.encoder:
__a = self.encoder["\n"]
del self.encoder["\n"]
__a = collections.OrderedDict(sorted(self.encoder.items() , key=lambda lowerCamelCase : x[1] ) )
with open(lowerCamelCase , "w" , encoding="utf-8" ) as writer:
for token, token_index in self.encoder.items():
if index != token_index:
logger.warning(
F"Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive."
" Please check that the vocabulary is not corrupted!" )
__a = token_index
writer.write(token + "\n" )
index += 1
return (vocab_file,)
def a__ ( self , lowerCamelCase , lowerCamelCase = None ):
if token_ids_a is None:
return [self.bos_token_id] + token_ids_a
return [self.bos_token_id] + token_ids_a + [self.bos_token_id] + token_ids_a
def a__ ( self , lowerCamelCase , lowerCamelCase = None , lowerCamelCase = False ):
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=lowerCamelCase , token_ids_a=lowerCamelCase , already_has_special_tokens=lowerCamelCase )
if token_ids_a is not None:
return [1] + ([0] * len(lowerCamelCase )) + [1] + ([0] * len(lowerCamelCase ))
return [1] + ([0] * len(lowerCamelCase ))
| 268 | 0 |
import inspect
import unittest
import numpy as np
from transformers import ViTConfig, is_flax_available
from transformers.testing_utils import require_flax, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor
if is_flax_available():
import jax
from transformers.models.vit.modeling_flax_vit import FlaxViTForImageClassification, FlaxViTModel
class lowercase ( unittest.TestCase ):
def __init__( self , snake_case , snake_case=13 , snake_case=30 , snake_case=2 , snake_case=3 , snake_case=True , snake_case=True , snake_case=32 , snake_case=5 , snake_case=4 , snake_case=37 , snake_case="gelu" , snake_case=0.1 , snake_case=0.1 , snake_case=10 , snake_case=0.02 , ):
snake_case_ = parent
snake_case_ = batch_size
snake_case_ = image_size
snake_case_ = patch_size
snake_case_ = num_channels
snake_case_ = is_training
snake_case_ = use_labels
snake_case_ = hidden_size
snake_case_ = num_hidden_layers
snake_case_ = num_attention_heads
snake_case_ = intermediate_size
snake_case_ = hidden_act
snake_case_ = hidden_dropout_prob
snake_case_ = attention_probs_dropout_prob
snake_case_ = type_sequence_label_size
snake_case_ = initializer_range
# in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token)
snake_case_ = (image_size // patch_size) ** 2
snake_case_ = num_patches + 1
def a ( self ):
snake_case_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
snake_case_ = ViTConfig(
image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=UpperCAmelCase_ , initializer_range=self.initializer_range , )
return config, pixel_values
def a ( self , snake_case , snake_case ):
snake_case_ = FlaxViTModel(config=UpperCAmelCase_ )
snake_case_ = model(UpperCAmelCase_ )
# expected sequence length = num_patches + 1 (we add 1 for the [CLS] token)
snake_case_ = (self.image_size, self.image_size)
snake_case_ = (self.patch_size, self.patch_size)
snake_case_ = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0])
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, num_patches + 1, self.hidden_size) )
def a ( self , snake_case , snake_case ):
snake_case_ = self.type_sequence_label_size
snake_case_ = FlaxViTForImageClassification(config=UpperCAmelCase_ )
snake_case_ = model(UpperCAmelCase_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
# test greyscale images
snake_case_ = 1
snake_case_ = FlaxViTForImageClassification(UpperCAmelCase_ )
snake_case_ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] )
snake_case_ = model(UpperCAmelCase_ )
def a ( self ):
snake_case_ = self.prepare_config_and_inputs()
(
(
snake_case_
) , (
snake_case_
) ,
) = config_and_inputs
snake_case_ = {'pixel_values': pixel_values}
return config, inputs_dict
@require_flax
class lowercase ( _UpperCAmelCase , unittest.TestCase ):
__SCREAMING_SNAKE_CASE : Union[str, Any] = (FlaxViTModel, FlaxViTForImageClassification) if is_flax_available() else ()
def a ( self ):
snake_case_ = FlaxViTModelTester(self )
snake_case_ = ConfigTester(self , config_class=UpperCAmelCase_ , has_text_modality=UpperCAmelCase_ , hidden_size=37 )
def a ( self ):
self.config_tester.run_common_tests()
def a ( self ):
snake_case_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*UpperCAmelCase_ )
def a ( self ):
snake_case_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*UpperCAmelCase_ )
def a ( self ):
snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
snake_case_ = model_class(UpperCAmelCase_ )
snake_case_ = inspect.signature(model.__call__ )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
snake_case_ = [*signature.parameters.keys()]
snake_case_ = ['pixel_values']
self.assertListEqual(arg_names[:1] , UpperCAmelCase_ )
def a ( self ):
snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__ ):
snake_case_ = self._prepare_for_class(UpperCAmelCase_ , UpperCAmelCase_ )
snake_case_ = model_class(UpperCAmelCase_ )
@jax.jit
def model_jitted(snake_case , **snake_case ):
return model(pixel_values=UpperCAmelCase_ , **UpperCAmelCase_ )
with self.subTest('JIT Enabled' ):
snake_case_ = model_jitted(**UpperCAmelCase_ ).to_tuple()
with self.subTest('JIT Disabled' ):
with jax.disable_jit():
snake_case_ = model_jitted(**UpperCAmelCase_ ).to_tuple()
self.assertEqual(len(UpperCAmelCase_ ) , len(UpperCAmelCase_ ) )
for jitted_output, output in zip(UpperCAmelCase_ , UpperCAmelCase_ ):
self.assertEqual(jitted_output.shape , output.shape )
@slow
def a ( self ):
for model_class_name in self.all_model_classes:
snake_case_ = model_class_name.from_pretrained('google/vit-base-patch16-224' )
snake_case_ = model(np.ones((1, 3, 224, 224) ) )
self.assertIsNotNone(UpperCAmelCase_ )
| 285 |
import os
from typing import List, Optional, Union
from ...tokenization_utils import PreTrainedTokenizer
from ...tokenization_utils_base import AddedToken
from ...utils import logging
__snake_case = logging.get_logger(__name__)
__snake_case = {"""vocab_file""": """vocab.txt"""}
__snake_case = {
"""vocab_file""": {
"""facebook/esm2_t6_8M_UR50D""": """https://huggingface.co/facebook/esm2_t6_8M_UR50D/resolve/main/vocab.txt""",
"""facebook/esm2_t12_35M_UR50D""": """https://huggingface.co/facebook/esm2_t12_35M_UR50D/resolve/main/vocab.txt""",
},
}
__snake_case = {
"""facebook/esm2_t6_8M_UR50D""": 10_24,
"""facebook/esm2_t12_35M_UR50D""": 10_24,
}
def _lowercase ( UpperCamelCase_ ) -> List[str]:
'''simple docstring'''
with open(UpperCamelCase_ , 'r' ) as f:
SCREAMING_SNAKE_CASE__ = f.read().splitlines()
return [l.strip() for l in lines]
class lowercase__ ( _UpperCAmelCase ):
A__ : Tuple =VOCAB_FILES_NAMES
A__ : Union[str, Any] =PRETRAINED_VOCAB_FILES_MAP
A__ : Any =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
A__ : Any =["""input_ids""", """attention_mask"""]
def __init__( self : Optional[int] , UpperCAmelCase_ : str , UpperCAmelCase_ : Tuple="<unk>" , UpperCAmelCase_ : Optional[Any]="<cls>" , UpperCAmelCase_ : List[Any]="<pad>" , UpperCAmelCase_ : Optional[int]="<mask>" , UpperCAmelCase_ : Optional[int]="<eos>" , **UpperCAmelCase_ : Optional[int] , ):
super().__init__(**UpperCAmelCase_ )
SCREAMING_SNAKE_CASE__ = load_vocab_file(UpperCAmelCase_ )
SCREAMING_SNAKE_CASE__ = dict(enumerate(self.all_tokens ) )
SCREAMING_SNAKE_CASE__ = {tok: ind for ind, tok in enumerate(self.all_tokens )}
SCREAMING_SNAKE_CASE__ = unk_token
SCREAMING_SNAKE_CASE__ = cls_token
SCREAMING_SNAKE_CASE__ = pad_token
SCREAMING_SNAKE_CASE__ = mask_token
SCREAMING_SNAKE_CASE__ = eos_token
SCREAMING_SNAKE_CASE__ = self.all_tokens
self._create_trie(self.unique_no_split_tokens )
def A_ ( self : Any , UpperCAmelCase_ : int ):
return self._id_to_token.get(UpperCAmelCase_ , self.unk_token )
def A_ ( self : Dict , UpperCAmelCase_ : str ):
return self._token_to_id.get(UpperCAmelCase_ , self._token_to_id.get(self.unk_token ) )
def A_ ( self : List[str] , UpperCAmelCase_ : Tuple , **UpperCAmelCase_ : List[Any] ):
return text.split()
def A_ ( self : str , UpperCAmelCase_ : Optional[Any]=False ):
return len(self._id_to_token )
def A_ ( self : Union[str, Any] ):
return {token: i for i, token in enumerate(self.all_tokens )}
def A_ ( self : Any , UpperCAmelCase_ : str ):
return self._token_to_id.get(UpperCAmelCase_ , self._token_to_id.get(self.unk_token ) )
def A_ ( self : List[str] , UpperCAmelCase_ : int ):
return self._id_to_token.get(UpperCAmelCase_ , self.unk_token )
def A_ ( self : List[str] , UpperCAmelCase_ : List[int] , UpperCAmelCase_ : Optional[List[int]] = None ):
SCREAMING_SNAKE_CASE__ = [self.cls_token_id]
SCREAMING_SNAKE_CASE__ = [self.eos_token_id] # No sep token in ESM vocabulary
if token_ids_a is None:
if self.eos_token_id is None:
return cls + token_ids_a
else:
return cls + token_ids_a + sep
elif self.eos_token_id is None:
raise ValueError('Cannot tokenize multiple sequences when EOS token is not set!' )
return cls + token_ids_a + sep + token_ids_a + sep # Multiple inputs always have an EOS token
def A_ ( self : Dict , UpperCAmelCase_ : List , UpperCAmelCase_ : Optional[List] = None , UpperCAmelCase_ : bool = False ):
if already_has_special_tokens:
if token_ids_a is not None:
raise ValueError(
'You should not supply a second sequence if the provided sequence of '
'ids is already formatted with special tokens for the model.' )
return [1 if token in self.all_special_ids else 0 for token in token_ids_a]
SCREAMING_SNAKE_CASE__ = [1] + ([0] * len(UpperCAmelCase_ )) + [1]
if token_ids_a is not None:
mask += [0] * len(UpperCAmelCase_ ) + [1]
return mask
def A_ ( self : int , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Any ):
SCREAMING_SNAKE_CASE__ = os.path.join(UpperCAmelCase_ , (filename_prefix + '-' if filename_prefix else '') + 'vocab.txt' )
with open(UpperCAmelCase_ , 'w' ) as f:
f.write('\n'.join(self.all_tokens ) )
return (vocab_file,)
@property
def A_ ( self : int ):
return self.get_vocab_size(with_added_tokens=UpperCAmelCase_ )
def A_ ( self : List[str] , UpperCAmelCase_ : Union[List[str], List[AddedToken]] , UpperCAmelCase_ : bool = False ):
return super()._add_tokens(UpperCAmelCase_ , special_tokens=UpperCAmelCase_ )
| 176 | 0 |
import gc
import math
import unittest
import torch
from diffusers import UNetaDModel
from diffusers.utils import floats_tensor, logging, slow, torch_all_close, torch_device
from diffusers.utils.testing_utils import enable_full_determinism
from .test_modeling_common import ModelTesterMixin, UNetTesterMixin
A__ = logging.get_logger(__name__)
enable_full_determinism()
class a ( __lowerCamelCase , __lowerCamelCase , unittest.TestCase ):
__lowerCAmelCase : Optional[int] = UNetaDModel
__lowerCAmelCase : Union[str, Any] = """sample"""
@property
def __lowerCamelCase ( self :List[str] ):
snake_case__ : Optional[Any] = 4
snake_case__ : Optional[Any] = 3
snake_case__ : Any = (3_2, 3_2)
snake_case__ : Any = floats_tensor((batch_size, num_channels) + sizes ).to(__lowercase )
snake_case__ : Optional[Any] = torch.tensor([1_0] ).to(__lowercase )
return {"sample": noise, "timestep": time_step}
@property
def __lowerCamelCase ( self :int ):
return (3, 3_2, 3_2)
@property
def __lowerCamelCase ( self :Union[str, Any] ):
return (3, 3_2, 3_2)
def __lowerCamelCase ( self :Optional[int] ):
snake_case__ : Any = {
'''block_out_channels''': (3_2, 6_4),
'''down_block_types''': ('''DownBlock2D''', '''AttnDownBlock2D'''),
'''up_block_types''': ('''AttnUpBlock2D''', '''UpBlock2D'''),
'''attention_head_dim''': 3,
'''out_channels''': 3,
'''in_channels''': 3,
'''layers_per_block''': 2,
'''sample_size''': 3_2,
}
snake_case__ : int = self.dummy_input
return init_dict, inputs_dict
class a ( __lowerCamelCase , __lowerCamelCase , unittest.TestCase ):
__lowerCAmelCase : Optional[Any] = UNetaDModel
__lowerCAmelCase : str = """sample"""
@property
def __lowerCamelCase ( self :Union[str, Any] ):
snake_case__ : Any = 4
snake_case__ : Optional[Any] = 4
snake_case__ : str = (3_2, 3_2)
snake_case__ : Any = floats_tensor((batch_size, num_channels) + sizes ).to(__lowercase )
snake_case__ : int = torch.tensor([1_0] ).to(__lowercase )
return {"sample": noise, "timestep": time_step}
@property
def __lowerCamelCase ( self :Any ):
return (4, 3_2, 3_2)
@property
def __lowerCamelCase ( self :List[Any] ):
return (4, 3_2, 3_2)
def __lowerCamelCase ( self :Optional[int] ):
snake_case__ : Optional[int] = {
'''sample_size''': 3_2,
'''in_channels''': 4,
'''out_channels''': 4,
'''layers_per_block''': 2,
'''block_out_channels''': (3_2, 6_4),
'''attention_head_dim''': 3_2,
'''down_block_types''': ('''DownBlock2D''', '''DownBlock2D'''),
'''up_block_types''': ('''UpBlock2D''', '''UpBlock2D'''),
}
snake_case__ : Tuple = self.dummy_input
return init_dict, inputs_dict
def __lowerCamelCase ( self :List[str] ):
snake_case__ , snake_case__ : Optional[int] = UNetaDModel.from_pretrained('''fusing/unet-ldm-dummy-update''' ,output_loading_info=__lowercase )
self.assertIsNotNone(__lowercase )
self.assertEqual(len(loading_info['''missing_keys'''] ) ,0 )
model.to(__lowercase )
snake_case__ : Optional[Any] = model(**self.dummy_input ).sample
assert image is not None, "Make sure output is not None"
@unittest.skipIf(torch_device != '''cuda''' ,'''This test is supposed to run on GPU''' )
def __lowerCamelCase ( self :List[Any] ):
snake_case__ , snake_case__ : str = UNetaDModel.from_pretrained('''fusing/unet-ldm-dummy-update''' ,output_loading_info=__lowercase )
model.to(__lowercase )
snake_case__ : Any = model(**self.dummy_input ).sample
assert image is not None, "Make sure output is not None"
@unittest.skipIf(torch_device != '''cuda''' ,'''This test is supposed to run on GPU''' )
def __lowerCamelCase ( self :Optional[Any] ):
# by defautl model loading will use accelerate as `low_cpu_mem_usage=True`
snake_case__ , snake_case__ : str = UNetaDModel.from_pretrained('''fusing/unet-ldm-dummy-update''' ,output_loading_info=__lowercase )
model_accelerate.to(__lowercase )
model_accelerate.eval()
snake_case__ : Union[str, Any] = torch.randn(
1 ,model_accelerate.config.in_channels ,model_accelerate.config.sample_size ,model_accelerate.config.sample_size ,generator=torch.manual_seed(0 ) ,)
snake_case__ : Any = noise.to(__lowercase )
snake_case__ : Optional[Any] = torch.tensor([1_0] * noise.shape[0] ).to(__lowercase )
snake_case__ : Optional[Any] = model_accelerate(__lowercase ,__lowercase )['''sample''']
# two models don't need to stay in the device at the same time
del model_accelerate
torch.cuda.empty_cache()
gc.collect()
snake_case__ , snake_case__ : Union[str, Any] = UNetaDModel.from_pretrained(
'''fusing/unet-ldm-dummy-update''' ,output_loading_info=__lowercase ,low_cpu_mem_usage=__lowercase )
model_normal_load.to(__lowercase )
model_normal_load.eval()
snake_case__ : Optional[Any] = model_normal_load(__lowercase ,__lowercase )['''sample''']
assert torch_all_close(__lowercase ,__lowercase ,rtol=1e-3 )
def __lowerCamelCase ( self :List[str] ):
snake_case__ : Union[str, Any] = UNetaDModel.from_pretrained('''fusing/unet-ldm-dummy-update''' )
model.eval()
model.to(__lowercase )
snake_case__ : List[Any] = torch.randn(
1 ,model.config.in_channels ,model.config.sample_size ,model.config.sample_size ,generator=torch.manual_seed(0 ) ,)
snake_case__ : List[Any] = noise.to(__lowercase )
snake_case__ : Dict = torch.tensor([1_0] * noise.shape[0] ).to(__lowercase )
with torch.no_grad():
snake_case__ : Any = model(__lowercase ,__lowercase ).sample
snake_case__ : Optional[Any] = output[0, -1, -3:, -3:].flatten().cpu()
# fmt: off
snake_case__ : str = torch.tensor([-13.3258, -20.1100, -15.9873, -17.6617, -23.0596, -17.9419, -13.3675, -16.1889, -12.3800] )
# fmt: on
self.assertTrue(torch_all_close(__lowercase ,__lowercase ,rtol=1e-3 ) )
class a ( __lowerCamelCase , __lowerCamelCase , unittest.TestCase ):
__lowerCAmelCase : Any = UNetaDModel
__lowerCAmelCase : Tuple = """sample"""
@property
def __lowerCamelCase ( self :Dict ,__lowercase :Union[str, Any]=(3_2, 3_2) ):
snake_case__ : Union[str, Any] = 4
snake_case__ : Optional[int] = 3
snake_case__ : Optional[int] = floats_tensor((batch_size, num_channels) + sizes ).to(__lowercase )
snake_case__ : Optional[int] = torch.tensor(batch_size * [1_0] ).to(dtype=torch.intaa ,device=__lowercase )
return {"sample": noise, "timestep": time_step}
@property
def __lowerCamelCase ( self :Any ):
return (3, 3_2, 3_2)
@property
def __lowerCamelCase ( self :Union[str, Any] ):
return (3, 3_2, 3_2)
def __lowerCamelCase ( self :List[str] ):
snake_case__ : Optional[int] = {
'''block_out_channels''': [3_2, 6_4, 6_4, 6_4],
'''in_channels''': 3,
'''layers_per_block''': 1,
'''out_channels''': 3,
'''time_embedding_type''': '''fourier''',
'''norm_eps''': 1e-6,
'''mid_block_scale_factor''': math.sqrt(2.0 ),
'''norm_num_groups''': None,
'''down_block_types''': [
'''SkipDownBlock2D''',
'''AttnSkipDownBlock2D''',
'''SkipDownBlock2D''',
'''SkipDownBlock2D''',
],
'''up_block_types''': [
'''SkipUpBlock2D''',
'''SkipUpBlock2D''',
'''AttnSkipUpBlock2D''',
'''SkipUpBlock2D''',
],
}
snake_case__ : Dict = self.dummy_input
return init_dict, inputs_dict
@slow
def __lowerCamelCase ( self :int ):
snake_case__ , snake_case__ : Optional[int] = UNetaDModel.from_pretrained('''google/ncsnpp-celebahq-256''' ,output_loading_info=__lowercase )
self.assertIsNotNone(__lowercase )
self.assertEqual(len(loading_info['''missing_keys'''] ) ,0 )
model.to(__lowercase )
snake_case__ : int = self.dummy_input
snake_case__ : Union[str, Any] = floats_tensor((4, 3) + (2_5_6, 2_5_6) ).to(__lowercase )
snake_case__ : List[Any] = noise
snake_case__ : Optional[int] = model(**__lowercase )
assert image is not None, "Make sure output is not None"
@slow
def __lowerCamelCase ( self :Tuple ):
snake_case__ : Union[str, Any] = UNetaDModel.from_pretrained('''google/ncsnpp-celebahq-256''' )
model.to(__lowercase )
snake_case__ : Union[str, Any] = 4
snake_case__ : Any = 3
snake_case__ : Any = (2_5_6, 2_5_6)
snake_case__ : Tuple = torch.ones((batch_size, num_channels) + sizes ).to(__lowercase )
snake_case__ : Optional[Any] = torch.tensor(batch_size * [1e-4] ).to(__lowercase )
with torch.no_grad():
snake_case__ : Optional[int] = model(__lowercase ,__lowercase ).sample
snake_case__ : Dict = output[0, -3:, -3:, -1].flatten().cpu()
# fmt: off
snake_case__ : Optional[int] = torch.tensor([-4842.8691, -6499.6631, -3800.1953, -7978.2686, -1_0980.7129, -2_0028.8535, 8148.2822, 2342.2905, 567.7608] )
# fmt: on
self.assertTrue(torch_all_close(__lowercase ,__lowercase ,rtol=1e-2 ) )
def __lowerCamelCase ( self :str ):
snake_case__ : Union[str, Any] = UNetaDModel.from_pretrained('''fusing/ncsnpp-ffhq-ve-dummy-update''' )
model.to(__lowercase )
snake_case__ : Tuple = 4
snake_case__ : int = 3
snake_case__ : Optional[Any] = (3_2, 3_2)
snake_case__ : Tuple = torch.ones((batch_size, num_channels) + sizes ).to(__lowercase )
snake_case__ : str = torch.tensor(batch_size * [1e-4] ).to(__lowercase )
with torch.no_grad():
snake_case__ : Dict = model(__lowercase ,__lowercase ).sample
snake_case__ : Tuple = output[0, -3:, -3:, -1].flatten().cpu()
# fmt: off
snake_case__ : List[str] = torch.tensor([-0.0325, -0.0900, -0.0869, -0.0332, -0.0725, -0.0270, -0.0101, 0.0227, 0.0256] )
# fmt: on
self.assertTrue(torch_all_close(__lowercase ,__lowercase ,rtol=1e-2 ) )
def __lowerCamelCase ( self :List[str] ):
# not required for this model
pass
| 44 |
from sklearn.metrics import mean_squared_error
import datasets
A__ = '''\
@article{scikit-learn,
title={Scikit-learn: Machine Learning in {P}ython},
author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V.
and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P.
and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and
Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.},
journal={Journal of Machine Learning Research},
volume={12},
pages={2825--2830},
year={2011}
}
'''
A__ = '''\
Mean Squared Error(MSE) is the average of the square of difference between the predicted
and actual values.
'''
A__ = '''
Args:
predictions: array-like of shape (n_samples,) or (n_samples, n_outputs)
Estimated target values.
references: array-like of shape (n_samples,) or (n_samples, n_outputs)
Ground truth (correct) target values.
sample_weight: array-like of shape (n_samples,), default=None
Sample weights.
multioutput: {"raw_values", "uniform_average"} or array-like of shape (n_outputs,), default="uniform_average"
Defines aggregating of multiple output values. Array-like value defines weights used to average errors.
"raw_values" : Returns a full set of errors in case of multioutput input.
"uniform_average" : Errors of all outputs are averaged with uniform weight.
squared : bool, default=True
If True returns MSE value, if False returns RMSE (Root Mean Squared Error) value.
Returns:
mse : mean squared error.
Examples:
>>> mse_metric = datasets.load_metric("mse")
>>> predictions = [2.5, 0.0, 2, 8]
>>> references = [3, -0.5, 2, 7]
>>> results = mse_metric.compute(predictions=predictions, references=references)
>>> print(results)
{\'mse\': 0.375}
>>> rmse_result = mse_metric.compute(predictions=predictions, references=references, squared=False)
>>> print(rmse_result)
{\'mse\': 0.6123724356957945}
If you\'re using multi-dimensional lists, then set the config as follows :
>>> mse_metric = datasets.load_metric("mse", "multilist")
>>> predictions = [[0.5, 1], [-1, 1], [7, -6]]
>>> references = [[0, 2], [-1, 2], [8, -5]]
>>> results = mse_metric.compute(predictions=predictions, references=references)
>>> print(results)
{\'mse\': 0.7083333333333334}
>>> results = mse_metric.compute(predictions=predictions, references=references, multioutput=\'raw_values\')
>>> print(results) # doctest: +NORMALIZE_WHITESPACE
{\'mse\': array([0.41666667, 1. ])}
'''
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class a ( datasets.Metric ):
def __lowerCamelCase ( self :List[Any] ):
return datasets.MetricInfo(
description=_DESCRIPTION ,citation=_CITATION ,inputs_description=_KWARGS_DESCRIPTION ,features=datasets.Features(self._get_feature_types() ) ,reference_urls=[
'''https://scikit-learn.org/stable/modules/generated/sklearn.metrics.mean_squared_error.html'''
] ,)
def __lowerCamelCase ( self :Tuple ):
if self.config_name == "multilist":
return {
"predictions": datasets.Sequence(datasets.Value('''float''' ) ),
"references": datasets.Sequence(datasets.Value('''float''' ) ),
}
else:
return {
"predictions": datasets.Value('''float''' ),
"references": datasets.Value('''float''' ),
}
def __lowerCamelCase ( self :List[str] ,__lowercase :Optional[int] ,__lowercase :int ,__lowercase :Any=None ,__lowercase :List[str]="uniform_average" ,__lowercase :List[Any]=True ):
snake_case__ : Union[str, Any] = mean_squared_error(
__lowercase ,__lowercase ,sample_weight=__lowercase ,multioutput=__lowercase ,squared=__lowercase )
return {"mse": mse}
| 44 | 1 |
A__ = """Input must be a string of 8 numbers plus letter"""
A__ = """TRWAGMYFPDXBNJZSQVHLCKE"""
def _UpperCAmelCase ( snake_case ):
"""simple docstring"""
if not isinstance(snake_case , snake_case ):
_lowerCAmelCase = F'Expected string as input, found {type(snake_case ).__name__}'
raise TypeError(snake_case )
_lowerCAmelCase = spanish_id.replace("""-""" , """""" ).upper()
if len(snake_case ) != 9:
raise ValueError(snake_case )
try:
_lowerCAmelCase = int(spanish_id_clean[0:8] )
_lowerCAmelCase = spanish_id_clean[8]
except ValueError as ex:
raise ValueError(snake_case ) from ex
if letter.isdigit():
raise ValueError(snake_case )
return letter == LOOKUP_LETTERS[number % 23]
if __name__ == "__main__":
import doctest
doctest.testmod()
| 82 |
"""simple docstring"""
from typing import Dict, List, Optional, Tuple, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import (
center_crop,
get_resize_output_image_size,
normalize,
rescale,
resize,
to_channel_dimension_format,
)
from ...image_utils import (
IMAGENET_STANDARD_MEAN,
IMAGENET_STANDARD_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, is_torch_available, is_torch_tensor, logging
if is_torch_available():
import torch
__A = logging.get_logger(__name__)
class snake_case ( __snake_case ):
SCREAMING_SNAKE_CASE_ : Dict = ["""pixel_values"""]
def __init__( self : List[Any] , UpperCamelCase__ : bool = True , UpperCamelCase__ : Optional[Dict[str, int]] = None , UpperCamelCase__ : PILImageResampling = PILImageResampling.BILINEAR , UpperCamelCase__ : bool = True , UpperCamelCase__ : Dict[str, int] = None , UpperCamelCase__ : bool = True , UpperCamelCase__ : Union[int, float] = 1 / 2_5_5 , UpperCamelCase__ : bool = True , UpperCamelCase__ : Optional[Union[float, List[float]]] = None , UpperCamelCase__ : Optional[Union[float, List[float]]] = None , **UpperCamelCase__ : Optional[int] , )-> None:
'''simple docstring'''
super().__init__(**UpperCamelCase__)
__lowerCAmelCase: int = size if size is not None else {"shortest_edge": 2_5_6}
__lowerCAmelCase: str = get_size_dict(UpperCamelCase__ , default_to_square=UpperCamelCase__)
__lowerCAmelCase: Any = crop_size if crop_size is not None else {"height": 2_2_4, "width": 2_2_4}
__lowerCAmelCase: Optional[Any] = get_size_dict(UpperCamelCase__ , param_name="crop_size")
__lowerCAmelCase: str = do_resize
__lowerCAmelCase: Any = size
__lowerCAmelCase: Dict = resample
__lowerCAmelCase: Tuple = do_center_crop
__lowerCAmelCase: str = crop_size
__lowerCAmelCase: List[Any] = do_rescale
__lowerCAmelCase: int = rescale_factor
__lowerCAmelCase: List[Any] = do_normalize
__lowerCAmelCase: Any = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN
__lowerCAmelCase: Optional[Any] = image_std if image_std is not None else IMAGENET_STANDARD_STD
def lowercase_ ( self : Tuple , UpperCamelCase__ : np.ndarray , UpperCamelCase__ : Dict[str, int] , UpperCamelCase__ : PILImageResampling = PILImageResampling.BICUBIC , UpperCamelCase__ : Optional[Union[str, ChannelDimension]] = None , **UpperCamelCase__ : Dict , )-> np.ndarray:
'''simple docstring'''
__lowerCAmelCase: int = get_size_dict(UpperCamelCase__ , default_to_square=UpperCamelCase__)
if "shortest_edge" not in size:
raise ValueError(f"The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}")
__lowerCAmelCase: Optional[Any] = get_resize_output_image_size(UpperCamelCase__ , size=size["shortest_edge"] , default_to_square=UpperCamelCase__)
return resize(UpperCamelCase__ , size=UpperCamelCase__ , resample=UpperCamelCase__ , data_format=UpperCamelCase__ , **UpperCamelCase__)
def lowercase_ ( self : Optional[int] , UpperCamelCase__ : np.ndarray , UpperCamelCase__ : Dict[str, int] , UpperCamelCase__ : Optional[Union[str, ChannelDimension]] = None , **UpperCamelCase__ : Tuple , )-> np.ndarray:
'''simple docstring'''
__lowerCAmelCase: Union[str, Any] = get_size_dict(UpperCamelCase__)
if "height" not in size or "width" not in size:
raise ValueError(f"The `size` parameter must contain the keys `height` and `width`. Got {size.keys()}")
return center_crop(UpperCamelCase__ , size=(size["height"], size["width"]) , data_format=UpperCamelCase__ , **UpperCamelCase__)
def lowercase_ ( self : str , UpperCamelCase__ : np.ndarray , UpperCamelCase__ : float , UpperCamelCase__ : Optional[Union[str, ChannelDimension]] = None , **UpperCamelCase__ : Optional[int])-> np.ndarray:
'''simple docstring'''
return rescale(UpperCamelCase__ , scale=UpperCamelCase__ , data_format=UpperCamelCase__ , **UpperCamelCase__)
def lowercase_ ( self : Dict , UpperCamelCase__ : np.ndarray , UpperCamelCase__ : Union[float, List[float]] , UpperCamelCase__ : Union[float, List[float]] , UpperCamelCase__ : Optional[Union[str, ChannelDimension]] = None , **UpperCamelCase__ : Optional[Any] , )-> np.ndarray:
'''simple docstring'''
return normalize(UpperCamelCase__ , mean=UpperCamelCase__ , std=UpperCamelCase__ , data_format=UpperCamelCase__ , **UpperCamelCase__)
def lowercase_ ( self : Union[str, Any] , UpperCamelCase__ : ImageInput , UpperCamelCase__ : Optional[bool] = None , UpperCamelCase__ : Dict[str, int] = None , UpperCamelCase__ : PILImageResampling = None , UpperCamelCase__ : bool = None , UpperCamelCase__ : Dict[str, int] = None , UpperCamelCase__ : Optional[bool] = None , UpperCamelCase__ : Optional[float] = None , UpperCamelCase__ : Optional[bool] = None , UpperCamelCase__ : Optional[Union[float, List[float]]] = None , UpperCamelCase__ : Optional[Union[float, List[float]]] = None , UpperCamelCase__ : Optional[Union[str, TensorType]] = None , UpperCamelCase__ : Union[str, ChannelDimension] = ChannelDimension.FIRST , **UpperCamelCase__ : Optional[Any] , )-> Dict:
'''simple docstring'''
__lowerCAmelCase: Any = do_resize if do_resize is not None else self.do_resize
__lowerCAmelCase: str = size if size is not None else self.size
__lowerCAmelCase: Tuple = get_size_dict(UpperCamelCase__ , default_to_square=UpperCamelCase__)
__lowerCAmelCase: List[str] = resample if resample is not None else self.resample
__lowerCAmelCase: str = do_center_crop if do_center_crop is not None else self.do_center_crop
__lowerCAmelCase: Tuple = crop_size if crop_size is not None else self.crop_size
__lowerCAmelCase: List[Any] = get_size_dict(UpperCamelCase__ , param_name="crop_size")
__lowerCAmelCase: List[Any] = do_rescale if do_rescale is not None else self.do_rescale
__lowerCAmelCase: Optional[int] = rescale_factor if rescale_factor is not None else self.rescale_factor
__lowerCAmelCase: Optional[int] = do_normalize if do_normalize is not None else self.do_normalize
__lowerCAmelCase: Union[str, Any] = image_mean if image_mean is not None else self.image_mean
__lowerCAmelCase: Tuple = image_std if image_std is not None else self.image_std
__lowerCAmelCase: Union[str, Any] = make_list_of_images(UpperCamelCase__)
if not valid_images(UpperCamelCase__):
raise ValueError(
"Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
"torch.Tensor, tf.Tensor or jax.ndarray.")
if do_resize and size is None:
raise ValueError("Size must be specified if do_resize is True.")
if do_center_crop and crop_size is None:
raise ValueError("Crop size must be specified if do_center_crop is True.")
if do_rescale and rescale_factor is None:
raise ValueError("Rescale factor must be specified if do_rescale is True.")
if do_normalize and (image_mean is None or image_std is None):
raise ValueError("Image mean and std must be specified if do_normalize is True.")
# All transformations expect numpy arrays.
__lowerCAmelCase: Tuple = [to_numpy_array(UpperCamelCase__) for image in images]
if do_resize:
__lowerCAmelCase: Union[str, Any] = [self.resize(image=UpperCamelCase__ , size=UpperCamelCase__ , resample=UpperCamelCase__) for image in images]
if do_center_crop:
__lowerCAmelCase: Optional[Any] = [self.center_crop(image=UpperCamelCase__ , size=UpperCamelCase__) for image in images]
if do_rescale:
__lowerCAmelCase: Optional[Any] = [self.rescale(image=UpperCamelCase__ , scale=UpperCamelCase__) for image in images]
if do_normalize:
__lowerCAmelCase: List[str] = [self.normalize(image=UpperCamelCase__ , mean=UpperCamelCase__ , std=UpperCamelCase__) for image in images]
__lowerCAmelCase: Optional[Any] = [to_channel_dimension_format(UpperCamelCase__ , UpperCamelCase__) for image in images]
__lowerCAmelCase: List[str] = {"pixel_values": images}
return BatchFeature(data=UpperCamelCase__ , tensor_type=UpperCamelCase__)
def lowercase_ ( self : int , UpperCamelCase__ : List[str] , UpperCamelCase__ : List[Tuple] = None)-> Dict:
'''simple docstring'''
__lowerCAmelCase: Union[str, Any] = outputs.logits
# Resize logits and compute semantic segmentation maps
if target_sizes is not None:
if len(UpperCamelCase__) != len(UpperCamelCase__):
raise ValueError(
"Make sure that you pass in as many target sizes as the batch dimension of the logits")
if is_torch_tensor(UpperCamelCase__):
__lowerCAmelCase: Optional[int] = target_sizes.numpy()
__lowerCAmelCase: List[Any] = []
for idx in range(len(UpperCamelCase__)):
__lowerCAmelCase: List[str] = torch.nn.functional.interpolate(
logits[idx].unsqueeze(dim=0) , size=target_sizes[idx] , mode="bilinear" , align_corners=UpperCamelCase__)
__lowerCAmelCase: Optional[Any] = resized_logits[0].argmax(dim=0)
semantic_segmentation.append(UpperCamelCase__)
else:
__lowerCAmelCase: Tuple = logits.argmax(dim=1)
__lowerCAmelCase: Optional[Any] = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0])]
return semantic_segmentation
| 217 | 0 |
"""simple docstring"""
from __future__ import annotations
import copy
import inspect
import json
import math
import os
import tempfile
import unittest
from importlib import import_module
import numpy as np
from transformers import ViTMAEConfig
from transformers.file_utils import cached_property, is_tf_available, is_vision_available
from transformers.testing_utils import require_tf, require_vision, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import TFViTMAEForPreTraining, TFViTMAEModel
if is_vision_available():
from PIL import Image
from transformers import ViTImageProcessor
class UpperCamelCase :
def __init__( self, lowerCAmelCase__, lowerCAmelCase__=13, lowerCAmelCase__=30, lowerCAmelCase__=2, lowerCAmelCase__=3, lowerCAmelCase__=True, lowerCAmelCase__=True, lowerCAmelCase__=32, lowerCAmelCase__=2, lowerCAmelCase__=4, lowerCAmelCase__=37, lowerCAmelCase__="gelu", lowerCAmelCase__=0.1, lowerCAmelCase__=0.1, lowerCAmelCase__=10, lowerCAmelCase__=0.02, lowerCAmelCase__=3, lowerCAmelCase__=0.6, lowerCAmelCase__=None, ) -> Dict:
snake_case_ = parent
snake_case_ = batch_size
snake_case_ = image_size
snake_case_ = patch_size
snake_case_ = num_channels
snake_case_ = is_training
snake_case_ = use_labels
snake_case_ = hidden_size
snake_case_ = num_hidden_layers
snake_case_ = num_attention_heads
snake_case_ = intermediate_size
snake_case_ = hidden_act
snake_case_ = hidden_dropout_prob
snake_case_ = attention_probs_dropout_prob
snake_case_ = type_sequence_label_size
snake_case_ = initializer_range
snake_case_ = mask_ratio
snake_case_ = scope
# in ViTMAE, the expected sequence length = (num_patches + 1) * (1 - config.mask_ratio), rounded above
# (we add 1 for the [CLS] token)
snake_case_ = (image_size // patch_size) ** 2
snake_case_ = int(math.ceil((1 - mask_ratio) * (num_patches + 1)))
def a_ ( self) -> Optional[Any]:
snake_case_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size])
snake_case_ = None
if self.use_labels:
snake_case_ = ids_tensor([self.batch_size], self.type_sequence_label_size)
snake_case_ = self.get_config()
return config, pixel_values, labels
def a_ ( self) -> int:
return ViTMAEConfig(
image_size=self.image_size, patch_size=self.patch_size, num_channels=self.num_channels, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, decoder_hidden_size=self.hidden_size, decoder_num_hidden_layers=self.num_hidden_layers, decoder_num_attention_heads=self.num_attention_heads, decoder_intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, is_decoder=lowerCAmelCase__, initializer_range=self.initializer_range, mask_ratio=self.mask_ratio, )
def a_ ( self, lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__) -> int:
snake_case_ = TFViTMAEModel(config=lowerCAmelCase__)
snake_case_ = model(lowerCAmelCase__, training=lowerCAmelCase__)
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
def a_ ( self, lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__) -> Union[str, Any]:
snake_case_ = TFViTMAEForPreTraining(lowerCAmelCase__)
snake_case_ = model(lowerCAmelCase__, training=lowerCAmelCase__)
# expected sequence length = num_patches
snake_case_ = (self.image_size // self.patch_size) ** 2
snake_case_ = self.patch_size**2 * self.num_channels
self.parent.assertEqual(result.logits.shape, (self.batch_size, num_patches, expected_num_channels))
# test greyscale images
snake_case_ = 1
snake_case_ = TFViTMAEForPreTraining(lowerCAmelCase__)
snake_case_ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size])
snake_case_ = model(lowerCAmelCase__, training=lowerCAmelCase__)
snake_case_ = self.patch_size**2
self.parent.assertEqual(result.logits.shape, (self.batch_size, num_patches, expected_num_channels))
def a_ ( self) -> Tuple:
snake_case_ = self.prepare_config_and_inputs()
((snake_case_) , (snake_case_) , (snake_case_)) = config_and_inputs
snake_case_ = {'pixel_values': pixel_values}
return config, inputs_dict
@require_tf
class UpperCamelCase ( lowerCAmelCase__ , lowerCAmelCase__ , unittest.TestCase ):
SCREAMING_SNAKE_CASE_ = (TFViTMAEModel, TFViTMAEForPreTraining) if is_tf_available() else ()
SCREAMING_SNAKE_CASE_ = {"feature-extraction": TFViTMAEModel} if is_tf_available() else {}
SCREAMING_SNAKE_CASE_ = False
SCREAMING_SNAKE_CASE_ = False
SCREAMING_SNAKE_CASE_ = False
SCREAMING_SNAKE_CASE_ = False
def a_ ( self) -> Tuple:
snake_case_ = TFViTMAEModelTester(self)
snake_case_ = ConfigTester(self, config_class=lowerCAmelCase__, has_text_modality=lowerCAmelCase__, hidden_size=37)
def a_ ( self) -> List[Any]:
self.config_tester.run_common_tests()
@unittest.skip(reason='ViTMAE does not use inputs_embeds')
def a_ ( self) -> int:
pass
def a_ ( self) -> Tuple:
snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
snake_case_ = model_class(lowerCAmelCase__)
self.assertIsInstance(model.get_input_embeddings(), (tf.keras.layers.Layer))
snake_case_ = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(lowerCAmelCase__, tf.keras.layers.Layer))
def a_ ( self) -> str:
snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
snake_case_ = model_class(lowerCAmelCase__)
snake_case_ = inspect.signature(model.call)
# signature.parameters is an OrderedDict => so arg_names order is deterministic
snake_case_ = [*signature.parameters.keys()]
snake_case_ = ['pixel_values']
self.assertListEqual(arg_names[:1], lowerCAmelCase__)
def a_ ( self) -> Optional[int]:
snake_case_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*lowerCAmelCase__)
def a_ ( self) -> List[Any]:
snake_case_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_pretraining(*lowerCAmelCase__)
def a_ ( self) -> Optional[int]:
# make the mask reproducible
np.random.seed(2)
snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs_for_common()
snake_case_ = int((config.image_size // config.patch_size) ** 2)
snake_case_ = np.random.uniform(size=(self.model_tester.batch_size, num_patches))
for model_class in self.all_model_classes:
snake_case_ = model_class(lowerCAmelCase__)
snake_case_ = self._prepare_for_class(lowerCAmelCase__, lowerCAmelCase__)
snake_case_ = model(lowerCAmelCase__, noise=lowerCAmelCase__)
snake_case_ = copy.deepcopy(self._prepare_for_class(lowerCAmelCase__, lowerCAmelCase__))
snake_case_ = model(**lowerCAmelCase__, noise=lowerCAmelCase__)
snake_case_ = outputs_dict[0].numpy()
snake_case_ = outputs_keywords[0].numpy()
self.assertLess(np.sum(np.abs(output_dict - output_keywords)), 1e-6)
def a_ ( self) -> Union[str, Any]:
# make the mask reproducible
np.random.seed(2)
snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs_for_common()
snake_case_ = int((config.image_size // config.patch_size) ** 2)
snake_case_ = np.random.uniform(size=(self.model_tester.batch_size, num_patches))
def prepare_numpy_arrays(lowerCAmelCase__):
snake_case_ = {}
for k, v in inputs_dict.items():
if tf.is_tensor(lowerCAmelCase__):
snake_case_ = v.numpy()
else:
snake_case_ = np.array(lowerCAmelCase__)
return inputs_np_dict
for model_class in self.all_model_classes:
snake_case_ = model_class(lowerCAmelCase__)
snake_case_ = self._prepare_for_class(lowerCAmelCase__, lowerCAmelCase__)
snake_case_ = prepare_numpy_arrays(lowerCAmelCase__)
snake_case_ = model(lowerCAmelCase__, noise=lowerCAmelCase__)
snake_case_ = model(**lowerCAmelCase__, noise=lowerCAmelCase__)
self.assert_outputs_same(lowerCAmelCase__, lowerCAmelCase__)
def a_ ( self, lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__) -> Union[str, Any]:
# make masks reproducible
np.random.seed(2)
snake_case_ = int((tf_model.config.image_size // tf_model.config.patch_size) ** 2)
snake_case_ = np.random.uniform(size=(self.model_tester.batch_size, num_patches))
snake_case_ = tf.constant(lowerCAmelCase__)
# Add `noise` argument.
# PT inputs will be prepared in `super().check_pt_tf_models()` with this added `noise` argument
snake_case_ = tf_noise
super().check_pt_tf_models(lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__)
def a_ ( self) -> Optional[int]:
# make mask reproducible
np.random.seed(2)
snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs_for_common()
snake_case_ = {
module_member
for model_class in self.all_model_classes
for module in (import_module(model_class.__module__),)
for module_member_name in dir(lowerCAmelCase__)
if module_member_name.endswith('MainLayer')
# This condition is required, since `modeling_tf_clip.py` has 3 classes whose names end with `MainLayer`.
and module_member_name[: -len('MainLayer')] == model_class.__name__[: -len('Model')]
for module_member in (getattr(lowerCAmelCase__, lowerCAmelCase__),)
if isinstance(lowerCAmelCase__, lowerCAmelCase__)
and tf.keras.layers.Layer in module_member.__bases__
and getattr(lowerCAmelCase__, '_keras_serializable', lowerCAmelCase__)
}
snake_case_ = int((config.image_size // config.patch_size) ** 2)
snake_case_ = np.random.uniform(size=(self.model_tester.batch_size, num_patches))
snake_case_ = tf.convert_to_tensor(lowerCAmelCase__)
inputs_dict.update({'noise': noise})
for main_layer_class in tf_main_layer_classes:
snake_case_ = main_layer_class(lowerCAmelCase__)
snake_case_ = {
name: tf.keras.Input(tensor.shape[1:], dtype=tensor.dtype) for name, tensor in inputs_dict.items()
}
snake_case_ = tf.keras.Model(lowerCAmelCase__, outputs=main_layer(lowerCAmelCase__))
snake_case_ = model(lowerCAmelCase__)
with tempfile.TemporaryDirectory() as tmpdirname:
snake_case_ = os.path.join(lowerCAmelCase__, 'keras_model.h5')
model.save(lowerCAmelCase__)
snake_case_ = tf.keras.models.load_model(
lowerCAmelCase__, custom_objects={main_layer_class.__name__: main_layer_class})
assert isinstance(lowerCAmelCase__, tf.keras.Model)
snake_case_ = model(lowerCAmelCase__)
self.assert_outputs_same(lowerCAmelCase__, lowerCAmelCase__)
@slow
def a_ ( self) -> str:
# make mask reproducible
np.random.seed(2)
snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs_for_common()
snake_case_ = int((config.image_size // config.patch_size) ** 2)
snake_case_ = np.random.uniform(size=(self.model_tester.batch_size, num_patches))
for model_class in self.all_model_classes:
snake_case_ = model_class(lowerCAmelCase__)
snake_case_ = self._prepare_for_class(lowerCAmelCase__, lowerCAmelCase__)
snake_case_ = model(lowerCAmelCase__, noise=lowerCAmelCase__)
if model_class.__name__ == "TFViTMAEModel":
snake_case_ = outputs.last_hidden_state.numpy()
snake_case_ = 0
else:
snake_case_ = outputs.logits.numpy()
snake_case_ = 0
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_pretrained(lowerCAmelCase__, saved_model=lowerCAmelCase__)
snake_case_ = model_class.from_pretrained(lowerCAmelCase__)
snake_case_ = model(lowerCAmelCase__, noise=lowerCAmelCase__)
if model_class.__name__ == "TFViTMAEModel":
snake_case_ = after_outputs['last_hidden_state'].numpy()
snake_case_ = 0
else:
snake_case_ = after_outputs['logits'].numpy()
snake_case_ = 0
snake_case_ = np.amax(np.abs(out_a - out_a))
self.assertLessEqual(lowerCAmelCase__, 1e-5)
def a_ ( self) -> List[str]:
# make mask reproducible
np.random.seed(2)
snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs_for_common()
snake_case_ = int((config.image_size // config.patch_size) ** 2)
snake_case_ = np.random.uniform(size=(self.model_tester.batch_size, num_patches))
for model_class in self.all_model_classes:
snake_case_ = model_class(lowerCAmelCase__)
snake_case_ = self._prepare_for_class(lowerCAmelCase__, lowerCAmelCase__)
snake_case_ = model(lowerCAmelCase__, noise=lowerCAmelCase__)
snake_case_ = model.get_config()
# make sure that returned config is jsonifiable, which is required by keras
json.dumps(lowerCAmelCase__)
snake_case_ = model_class.from_config(model.get_config())
# make sure it also accepts a normal config
snake_case_ = model_class.from_config(model.config)
snake_case_ = new_model(lowerCAmelCase__) # Build model
new_model.set_weights(model.get_weights())
snake_case_ = new_model(lowerCAmelCase__, noise=lowerCAmelCase__)
self.assert_outputs_same(lowerCAmelCase__, lowerCAmelCase__)
@unittest.skip(
reason='ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load\n to get deterministic results.')
def a_ ( self) -> Dict:
pass
@unittest.skip(reason='ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load')
def a_ ( self) -> Any:
pass
@slow
def a_ ( self) -> List[Any]:
snake_case_ = TFViTMAEModel.from_pretrained('google/vit-base-patch16-224')
self.assertIsNotNone(lowerCAmelCase__)
def UpperCAmelCase ( ) -> List[str]:
snake_case_ = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' )
return image
@require_tf
@require_vision
class UpperCamelCase ( unittest.TestCase ):
@cached_property
def a_ ( self) -> Optional[Any]:
return ViTImageProcessor.from_pretrained('facebook/vit-mae-base') if is_vision_available() else None
@slow
def a_ ( self) -> Dict:
# make random mask reproducible across the PT and TF model
np.random.seed(2)
snake_case_ = TFViTMAEForPreTraining.from_pretrained('facebook/vit-mae-base')
snake_case_ = self.default_image_processor
snake_case_ = prepare_img()
snake_case_ = image_processor(images=lowerCAmelCase__, return_tensors='tf')
# prepare a noise vector that will be also used for testing the TF model
# (this way we can ensure that the PT and TF models operate on the same inputs)
snake_case_ = ViTMAEConfig()
snake_case_ = int((vit_mae_config.image_size // vit_mae_config.patch_size) ** 2)
snake_case_ = np.random.uniform(size=(1, num_patches))
# forward pass
snake_case_ = model(**lowerCAmelCase__, noise=lowerCAmelCase__)
# verify the logits
snake_case_ = tf.convert_to_tensor([1, 196, 768])
self.assertEqual(outputs.logits.shape, lowerCAmelCase__)
snake_case_ = tf.convert_to_tensor(
[[-0.0548, -1.7023, -0.9325], [0.3721, -0.5670, -0.2233], [0.8235, -1.3878, -0.3524]])
tf.debugging.assert_near(outputs.logits[0, :3, :3], lowerCAmelCase__, atol=1e-4)
| 312 | """simple docstring"""
import random
import unittest
import numpy as np
from diffusers import (
DPMSolverMultistepScheduler,
EulerAncestralDiscreteScheduler,
EulerDiscreteScheduler,
LMSDiscreteScheduler,
OnnxStableDiffusionImgaImgPipeline,
PNDMScheduler,
)
from diffusers.utils import floats_tensor
from diffusers.utils.testing_utils import (
is_onnx_available,
load_image,
nightly,
require_onnxruntime,
require_torch_gpu,
)
from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin
if is_onnx_available():
import onnxruntime as ort
class UpperCamelCase ( lowerCAmelCase__ , unittest.TestCase ):
SCREAMING_SNAKE_CASE_ = "hf-internal-testing/tiny-random-OnnxStableDiffusionPipeline"
def a_ ( self, lowerCAmelCase__=0) -> List[Any]:
snake_case_ = floats_tensor((1, 3, 128, 128), rng=random.Random(lowerCAmelCase__))
snake_case_ = np.random.RandomState(lowerCAmelCase__)
snake_case_ = {
'prompt': 'A painting of a squirrel eating a burger',
'image': image,
'generator': generator,
'num_inference_steps': 3,
'strength': 0.75,
'guidance_scale': 7.5,
'output_type': 'numpy',
}
return inputs
def a_ ( self) -> Optional[Any]:
snake_case_ = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint, provider='CPUExecutionProvider')
pipe.set_progress_bar_config(disable=lowerCAmelCase__)
snake_case_ = self.get_dummy_inputs()
snake_case_ = pipe(**lowerCAmelCase__).images
snake_case_ = image[0, -3:, -3:, -1].flatten()
assert image.shape == (1, 128, 128, 3)
snake_case_ = np.array([0.69643, 0.58484, 0.50314, 0.58760, 0.55368, 0.59643, 0.51529, 0.41217, 0.49087])
assert np.abs(image_slice - expected_slice).max() < 1e-1
def a_ ( self) -> List[str]:
snake_case_ = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint, provider='CPUExecutionProvider')
snake_case_ = PNDMScheduler.from_config(pipe.scheduler.config, skip_prk_steps=lowerCAmelCase__)
pipe.set_progress_bar_config(disable=lowerCAmelCase__)
snake_case_ = self.get_dummy_inputs()
snake_case_ = pipe(**lowerCAmelCase__).images
snake_case_ = image[0, -3:, -3:, -1]
assert image.shape == (1, 128, 128, 3)
snake_case_ = np.array([0.61737, 0.54642, 0.53183, 0.54465, 0.52742, 0.60525, 0.49969, 0.40655, 0.48154])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-1
def a_ ( self) -> str:
snake_case_ = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint, provider='CPUExecutionProvider')
snake_case_ = LMSDiscreteScheduler.from_config(pipe.scheduler.config)
pipe.set_progress_bar_config(disable=lowerCAmelCase__)
# warmup pass to apply optimizations
snake_case_ = pipe(**self.get_dummy_inputs())
snake_case_ = self.get_dummy_inputs()
snake_case_ = pipe(**lowerCAmelCase__).images
snake_case_ = image[0, -3:, -3:, -1]
assert image.shape == (1, 128, 128, 3)
snake_case_ = np.array([0.52761, 0.59977, 0.49033, 0.49619, 0.54282, 0.50311, 0.47600, 0.40918, 0.45203])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-1
def a_ ( self) -> int:
snake_case_ = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint, provider='CPUExecutionProvider')
snake_case_ = EulerDiscreteScheduler.from_config(pipe.scheduler.config)
pipe.set_progress_bar_config(disable=lowerCAmelCase__)
snake_case_ = self.get_dummy_inputs()
snake_case_ = pipe(**lowerCAmelCase__).images
snake_case_ = image[0, -3:, -3:, -1]
assert image.shape == (1, 128, 128, 3)
snake_case_ = np.array([0.52911, 0.60004, 0.49229, 0.49805, 0.54502, 0.50680, 0.47777, 0.41028, 0.45304])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-1
def a_ ( self) -> Dict:
snake_case_ = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint, provider='CPUExecutionProvider')
snake_case_ = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config)
pipe.set_progress_bar_config(disable=lowerCAmelCase__)
snake_case_ = self.get_dummy_inputs()
snake_case_ = pipe(**lowerCAmelCase__).images
snake_case_ = image[0, -3:, -3:, -1]
assert image.shape == (1, 128, 128, 3)
snake_case_ = np.array([0.52911, 0.60004, 0.49229, 0.49805, 0.54502, 0.50680, 0.47777, 0.41028, 0.45304])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-1
def a_ ( self) -> Dict:
snake_case_ = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint, provider='CPUExecutionProvider')
snake_case_ = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config)
pipe.set_progress_bar_config(disable=lowerCAmelCase__)
snake_case_ = self.get_dummy_inputs()
snake_case_ = pipe(**lowerCAmelCase__).images
snake_case_ = image[0, -3:, -3:, -1]
assert image.shape == (1, 128, 128, 3)
snake_case_ = np.array([0.65331, 0.58277, 0.48204, 0.56059, 0.53665, 0.56235, 0.50969, 0.40009, 0.46552])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-1
@nightly
@require_onnxruntime
@require_torch_gpu
class UpperCamelCase ( unittest.TestCase ):
@property
def a_ ( self) -> int:
return (
"CUDAExecutionProvider",
{
"gpu_mem_limit": "15000000000", # 15GB
"arena_extend_strategy": "kSameAsRequested",
},
)
@property
def a_ ( self) -> str:
snake_case_ = ort.SessionOptions()
snake_case_ = False
return options
def a_ ( self) -> Any:
snake_case_ = load_image(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'
'/img2img/sketch-mountains-input.jpg')
snake_case_ = init_image.resize((768, 512))
# using the PNDM scheduler by default
snake_case_ = OnnxStableDiffusionImgaImgPipeline.from_pretrained(
'CompVis/stable-diffusion-v1-4', revision='onnx', safety_checker=lowerCAmelCase__, feature_extractor=lowerCAmelCase__, provider=self.gpu_provider, sess_options=self.gpu_options, )
pipe.set_progress_bar_config(disable=lowerCAmelCase__)
snake_case_ = 'A fantasy landscape, trending on artstation'
snake_case_ = np.random.RandomState(0)
snake_case_ = pipe(
prompt=lowerCAmelCase__, image=lowerCAmelCase__, strength=0.75, guidance_scale=7.5, num_inference_steps=10, generator=lowerCAmelCase__, output_type='np', )
snake_case_ = output.images
snake_case_ = images[0, 255:258, 383:386, -1]
assert images.shape == (1, 512, 768, 3)
snake_case_ = np.array([0.4909, 0.5059, 0.5372, 0.4623, 0.4876, 0.5049, 0.4820, 0.4956, 0.5019])
# TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues
assert np.abs(image_slice.flatten() - expected_slice).max() < 2e-2
def a_ ( self) -> List[Any]:
snake_case_ = load_image(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'
'/img2img/sketch-mountains-input.jpg')
snake_case_ = init_image.resize((768, 512))
snake_case_ = LMSDiscreteScheduler.from_pretrained(
'runwayml/stable-diffusion-v1-5', subfolder='scheduler', revision='onnx')
snake_case_ = OnnxStableDiffusionImgaImgPipeline.from_pretrained(
'runwayml/stable-diffusion-v1-5', revision='onnx', scheduler=lowerCAmelCase__, safety_checker=lowerCAmelCase__, feature_extractor=lowerCAmelCase__, provider=self.gpu_provider, sess_options=self.gpu_options, )
pipe.set_progress_bar_config(disable=lowerCAmelCase__)
snake_case_ = 'A fantasy landscape, trending on artstation'
snake_case_ = np.random.RandomState(0)
snake_case_ = pipe(
prompt=lowerCAmelCase__, image=lowerCAmelCase__, strength=0.75, guidance_scale=7.5, num_inference_steps=20, generator=lowerCAmelCase__, output_type='np', )
snake_case_ = output.images
snake_case_ = images[0, 255:258, 383:386, -1]
assert images.shape == (1, 512, 768, 3)
snake_case_ = np.array([0.8043, 0.926, 0.9581, 0.8119, 0.8954, 0.913, 0.7209, 0.7463, 0.7431])
# TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues
assert np.abs(image_slice.flatten() - expected_slice).max() < 2e-2
| 312 | 1 |
import os
import shutil
import tempfile
from unittest import TestCase
from unittest.mock import patch
import numpy as np
from datasets import Dataset
from transformers.models.realm.configuration_realm import RealmConfig
from transformers.models.realm.retrieval_realm import _REALM_BLOCK_RECORDS_FILENAME, RealmRetriever
from transformers.models.realm.tokenization_realm import VOCAB_FILES_NAMES, RealmTokenizer
class _a ( _UpperCamelCase ):
def lowerCamelCase_ ( self: int ) -> Union[str, Any]:
"""simple docstring"""
lowercase__ = tempfile.mkdtemp()
lowercase__ = 5
# Realm tok
lowercase__ = [
'''[UNK]''',
'''[CLS]''',
'''[SEP]''',
'''[PAD]''',
'''[MASK]''',
'''test''',
'''question''',
'''this''',
'''is''',
'''the''',
'''first''',
'''second''',
'''third''',
'''fourth''',
'''fifth''',
'''record''',
'''want''',
'''##want''',
'''##ed''',
'''wa''',
'''un''',
'''runn''',
'''##ing''',
''',''',
'''low''',
'''lowest''',
]
lowercase__ = os.path.join(self.tmpdirname , '''realm_tokenizer''' )
os.makedirs(lowerCAmelCase_ , exist_ok=lowerCAmelCase_ )
lowercase__ = os.path.join(lowerCAmelCase_ , VOCAB_FILES_NAMES['''vocab_file'''] )
with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer:
vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) )
lowercase__ = os.path.join(self.tmpdirname , '''realm_block_records''' )
os.makedirs(lowerCAmelCase_ , exist_ok=lowerCAmelCase_ )
def lowerCamelCase_ ( self: Tuple ) -> RealmTokenizer:
"""simple docstring"""
return RealmTokenizer.from_pretrained(os.path.join(self.tmpdirname , '''realm_tokenizer''' ) )
def lowerCamelCase_ ( self: int ) -> Optional[Any]:
"""simple docstring"""
shutil.rmtree(self.tmpdirname )
def lowerCamelCase_ ( self: Optional[Any] ) -> List[Any]:
"""simple docstring"""
lowercase__ = RealmConfig(num_block_records=self.num_block_records )
return config
def lowerCamelCase_ ( self: int ) -> List[Any]:
"""simple docstring"""
lowercase__ = Dataset.from_dict(
{
'''id''': ['''0''', '''1'''],
'''question''': ['''foo''', '''bar'''],
'''answers''': [['''Foo''', '''Bar'''], ['''Bar''']],
} )
return dataset
def lowerCamelCase_ ( self: Optional[int] ) -> Optional[int]:
"""simple docstring"""
lowercase__ = np.array(
[
b'''This is the first record''',
b'''This is the second record''',
b'''This is the third record''',
b'''This is the fourth record''',
b'''This is the fifth record''',
b'''This is a longer longer longer record''',
] , dtype=lowerCAmelCase_ , )
return block_records
def lowerCamelCase_ ( self: str ) -> int:
"""simple docstring"""
lowercase__ = RealmRetriever(
block_records=self.get_dummy_block_records() , tokenizer=self.get_tokenizer() , )
return retriever
def lowerCamelCase_ ( self: Union[str, Any] ) -> List[Any]:
"""simple docstring"""
lowercase__ = self.get_config()
lowercase__ = self.get_dummy_retriever()
lowercase__ = retriever.tokenizer
lowercase__ = np.array([0, 3] , dtype='''long''' )
lowercase__ = tokenizer(['''Test question'''] ).input_ids
lowercase__ = tokenizer(
['''the fourth'''] , add_special_tokens=lowerCAmelCase_ , return_token_type_ids=lowerCAmelCase_ , return_attention_mask=lowerCAmelCase_ , ).input_ids
lowercase__ = config.reader_seq_len
lowercase__ , lowercase__ , lowercase__ , lowercase__ = retriever(
lowerCAmelCase_ , lowerCAmelCase_ , answer_ids=lowerCAmelCase_ , max_length=lowerCAmelCase_ , return_tensors='''np''' )
self.assertEqual(len(lowerCAmelCase_ ) , 2 )
self.assertEqual(len(lowerCAmelCase_ ) , 2 )
self.assertEqual(len(lowerCAmelCase_ ) , 2 )
self.assertEqual(concat_inputs.input_ids.shape , (2, 10) )
self.assertEqual(concat_inputs.attention_mask.shape , (2, 10) )
self.assertEqual(concat_inputs.token_type_ids.shape , (2, 10) )
self.assertEqual(concat_inputs.special_tokens_mask.shape , (2, 10) )
self.assertEqual(
tokenizer.convert_ids_to_tokens(concat_inputs.input_ids[0] ) , ['''[CLS]''', '''test''', '''question''', '''[SEP]''', '''this''', '''is''', '''the''', '''first''', '''record''', '''[SEP]'''] , )
self.assertEqual(
tokenizer.convert_ids_to_tokens(concat_inputs.input_ids[1] ) , ['''[CLS]''', '''test''', '''question''', '''[SEP]''', '''this''', '''is''', '''the''', '''fourth''', '''record''', '''[SEP]'''] , )
def lowerCamelCase_ ( self: Tuple ) -> List[Any]:
"""simple docstring"""
lowercase__ = self.get_config()
lowercase__ = self.get_dummy_retriever()
lowercase__ = retriever.tokenizer
lowercase__ = np.array([0, 3, 5] , dtype='''long''' )
lowercase__ = tokenizer(['''Test question'''] ).input_ids
lowercase__ = tokenizer(
['''the fourth''', '''longer longer'''] , add_special_tokens=lowerCAmelCase_ , return_token_type_ids=lowerCAmelCase_ , return_attention_mask=lowerCAmelCase_ , ).input_ids
lowercase__ = config.reader_seq_len
lowercase__ , lowercase__ , lowercase__ , lowercase__ = retriever(
lowerCAmelCase_ , lowerCAmelCase_ , answer_ids=lowerCAmelCase_ , max_length=lowerCAmelCase_ , return_tensors='''np''' )
self.assertEqual([False, True, True] , lowerCAmelCase_ )
self.assertEqual([[-1, -1, -1], [6, -1, -1], [6, 7, 8]] , lowerCAmelCase_ )
self.assertEqual([[-1, -1, -1], [7, -1, -1], [7, 8, 9]] , lowerCAmelCase_ )
def lowerCamelCase_ ( self: str ) -> Dict:
"""simple docstring"""
lowercase__ = self.get_dummy_retriever()
retriever.save_pretrained(os.path.join(self.tmpdirname , '''realm_block_records''' ) )
# Test local path
lowercase__ = retriever.from_pretrained(os.path.join(self.tmpdirname , '''realm_block_records''' ) )
self.assertEqual(retriever.block_records[0] , b'''This is the first record''' )
# Test mocked remote path
with patch('''transformers.models.realm.retrieval_realm.hf_hub_download''' ) as mock_hf_hub_download:
lowercase__ = os.path.join(
os.path.join(self.tmpdirname , '''realm_block_records''' ) , _REALM_BLOCK_RECORDS_FILENAME )
lowercase__ = RealmRetriever.from_pretrained('''google/realm-cc-news-pretrained-openqa''' )
self.assertEqual(retriever.block_records[0] , b'''This is the first record''' )
| 110 |
import gc
import random
import unittest
import numpy as np
import torch
from PIL import Image
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
from diffusers import (
AutoencoderKL,
DDIMScheduler,
EulerAncestralDiscreteScheduler,
LMSDiscreteScheduler,
PNDMScheduler,
StableDiffusionInstructPixaPixPipeline,
UNetaDConditionModel,
)
from diffusers.image_processor import VaeImageProcessor
from diffusers.utils import floats_tensor, load_image, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
from ..pipeline_params import (
IMAGE_TO_IMAGE_IMAGE_PARAMS,
TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS,
TEXT_GUIDED_IMAGE_VARIATION_PARAMS,
)
from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin
enable_full_determinism()
class _UpperCAmelCase ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , unittest.TestCase ):
"""simple docstring"""
a_ = StableDiffusionInstructPixaPixPipeline
a_ = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {"""height""", """width""", """cross_attention_kwargs"""}
a_ = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS
a_ = IMAGE_TO_IMAGE_IMAGE_PARAMS
a_ = IMAGE_TO_IMAGE_IMAGE_PARAMS
def lowercase ( self : Optional[int] ) -> Optional[int]:
torch.manual_seed(0 )
__lowerCAmelCase = UNetaDConditionModel(
block_out_channels=(3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=8 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=3_2 , )
__lowerCAmelCase = PNDMScheduler(skip_prk_steps=lowerCAmelCase_ )
torch.manual_seed(0 )
__lowerCAmelCase = AutoencoderKL(
block_out_channels=[3_2, 6_4] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , )
torch.manual_seed(0 )
__lowerCAmelCase = CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=3_2 , intermediate_size=3_7 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , )
__lowerCAmelCase = CLIPTextModel(lowerCAmelCase_ )
__lowerCAmelCase = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' )
__lowerCAmelCase = {
'unet': unet,
'scheduler': scheduler,
'vae': vae,
'text_encoder': text_encoder,
'tokenizer': tokenizer,
'safety_checker': None,
'feature_extractor': None,
}
return components
def lowercase ( self : Optional[Any] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Tuple=0 ) -> Dict:
__lowerCAmelCase = floats_tensor((1, 3, 3_2, 3_2) , rng=random.Random(lowerCAmelCase_ ) ).to(lowerCAmelCase_ )
__lowerCAmelCase = image.cpu().permute(0 , 2 , 3 , 1 )[0]
__lowerCAmelCase = Image.fromarray(np.uinta(lowerCAmelCase_ ) ).convert('RGB' )
if str(lowerCAmelCase_ ).startswith('mps' ):
__lowerCAmelCase = torch.manual_seed(lowerCAmelCase_ )
else:
__lowerCAmelCase = torch.Generator(device=lowerCAmelCase_ ).manual_seed(lowerCAmelCase_ )
__lowerCAmelCase = {
'prompt': 'A painting of a squirrel eating a burger',
'image': image,
'generator': generator,
'num_inference_steps': 2,
'guidance_scale': 6.0,
'image_guidance_scale': 1,
'output_type': 'numpy',
}
return inputs
def lowercase ( self : Tuple ) -> List[Any]:
__lowerCAmelCase = 'cpu' # ensure determinism for the device-dependent torch.Generator
__lowerCAmelCase = self.get_dummy_components()
__lowerCAmelCase = StableDiffusionInstructPixaPixPipeline(**lowerCAmelCase_ )
__lowerCAmelCase = sd_pipe.to(lowerCAmelCase_ )
sd_pipe.set_progress_bar_config(disable=lowerCAmelCase_ )
__lowerCAmelCase = self.get_dummy_inputs(lowerCAmelCase_ )
__lowerCAmelCase = sd_pipe(**lowerCAmelCase_ ).images
__lowerCAmelCase = image[0, -3:, -3:, -1]
assert image.shape == (1, 3_2, 3_2, 3)
__lowerCAmelCase = np.array([0.75_26, 0.37_50, 0.45_47, 0.61_17, 0.58_66, 0.50_16, 0.43_27, 0.56_42, 0.48_15] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3
def lowercase ( self : List[str] ) -> Dict:
__lowerCAmelCase = 'cpu' # ensure determinism for the device-dependent torch.Generator
__lowerCAmelCase = self.get_dummy_components()
__lowerCAmelCase = StableDiffusionInstructPixaPixPipeline(**lowerCAmelCase_ )
__lowerCAmelCase = sd_pipe.to(lowerCAmelCase_ )
sd_pipe.set_progress_bar_config(disable=lowerCAmelCase_ )
__lowerCAmelCase = self.get_dummy_inputs(lowerCAmelCase_ )
__lowerCAmelCase = 'french fries'
__lowerCAmelCase = sd_pipe(**lowerCAmelCase_ , negative_prompt=lowerCAmelCase_ )
__lowerCAmelCase = output.images
__lowerCAmelCase = image[0, -3:, -3:, -1]
assert image.shape == (1, 3_2, 3_2, 3)
__lowerCAmelCase = np.array([0.75_11, 0.36_42, 0.45_53, 0.62_36, 0.57_97, 0.50_13, 0.43_43, 0.56_11, 0.48_31] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3
def lowercase ( self : List[str] ) -> Any:
__lowerCAmelCase = 'cpu' # ensure determinism for the device-dependent torch.Generator
__lowerCAmelCase = self.get_dummy_components()
__lowerCAmelCase = StableDiffusionInstructPixaPixPipeline(**lowerCAmelCase_ )
__lowerCAmelCase = sd_pipe.to(lowerCAmelCase_ )
sd_pipe.set_progress_bar_config(disable=lowerCAmelCase_ )
__lowerCAmelCase = self.get_dummy_inputs(lowerCAmelCase_ )
__lowerCAmelCase = [inputs['prompt']] * 2
__lowerCAmelCase = np.array(inputs['image'] ).astype(np.floataa ) / 2_55.0
__lowerCAmelCase = torch.from_numpy(lowerCAmelCase_ ).unsqueeze(0 ).to(lowerCAmelCase_ )
__lowerCAmelCase = image / 2 + 0.5
__lowerCAmelCase = image.permute(0 , 3 , 1 , 2 )
__lowerCAmelCase = image.repeat(2 , 1 , 1 , 1 )
__lowerCAmelCase = sd_pipe(**lowerCAmelCase_ ).images
__lowerCAmelCase = image[-1, -3:, -3:, -1]
assert image.shape == (2, 3_2, 3_2, 3)
__lowerCAmelCase = np.array([0.58_12, 0.57_48, 0.52_22, 0.59_08, 0.56_95, 0.71_74, 0.68_04, 0.55_23, 0.55_79] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3
def lowercase ( self : Dict ) -> Optional[Any]:
__lowerCAmelCase = 'cpu' # ensure determinism for the device-dependent torch.Generator
__lowerCAmelCase = self.get_dummy_components()
__lowerCAmelCase = EulerAncestralDiscreteScheduler(
beta_start=0.0_00_85 , beta_end=0.0_12 , beta_schedule='scaled_linear' )
__lowerCAmelCase = StableDiffusionInstructPixaPixPipeline(**lowerCAmelCase_ )
__lowerCAmelCase = sd_pipe.to(lowerCAmelCase_ )
sd_pipe.set_progress_bar_config(disable=lowerCAmelCase_ )
__lowerCAmelCase = self.get_dummy_inputs(lowerCAmelCase_ )
__lowerCAmelCase = sd_pipe(**lowerCAmelCase_ ).images
__lowerCAmelCase = image[0, -3:, -3:, -1]
__lowerCAmelCase = [round(lowerCAmelCase_ , 4 ) for x in image_slice.flatten().tolist()]
print(','.join([str(lowerCAmelCase_ ) for x in slice] ) )
assert image.shape == (1, 3_2, 3_2, 3)
__lowerCAmelCase = np.array([0.74_17, 0.38_42, 0.47_32, 0.57_76, 0.58_91, 0.51_39, 0.40_52, 0.56_73, 0.49_86] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3
def lowercase ( self : Optional[int] ) -> Optional[int]:
super().test_inference_batch_single_identical(expected_max_diff=3e-3 )
def lowercase ( self : Optional[Any] ) -> Optional[Any]:
__lowerCAmelCase = self.get_dummy_components()
__lowerCAmelCase = StableDiffusionInstructPixaPixPipeline(**lowerCAmelCase_ )
__lowerCAmelCase = VaeImageProcessor(do_resize=lowerCAmelCase_ , do_normalize=lowerCAmelCase_ )
__lowerCAmelCase = pipe.to(lowerCAmelCase_ )
pipe.set_progress_bar_config(disable=lowerCAmelCase_ )
__lowerCAmelCase = pipe(**self.get_dummy_inputs_by_type(lowerCAmelCase_ , input_image_type='pt' ) )[0]
__lowerCAmelCase = components['vae']
__lowerCAmelCase = self.get_dummy_inputs_by_type(lowerCAmelCase_ , input_image_type='pt' )
for image_param in self.image_latents_params:
if image_param in inputs.keys():
__lowerCAmelCase = vae.encode(inputs[image_param] ).latent_dist.mode()
__lowerCAmelCase = pipe(**lowerCAmelCase_ )[0]
__lowerCAmelCase = np.abs(out - out_latents_inputs ).max()
self.assertLess(lowerCAmelCase_ , 1e-4 , 'passing latents as image input generate different result from passing image' )
@slow
@require_torch_gpu
class _UpperCAmelCase ( unittest.TestCase ):
"""simple docstring"""
def lowercase ( self : int ) -> Optional[int]:
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def lowercase ( self : List[str] , lowerCAmelCase_ : List[Any]=0 ) -> Any:
__lowerCAmelCase = torch.manual_seed(lowerCAmelCase_ )
__lowerCAmelCase = load_image(
'https://huggingface.co/datasets/diffusers/test-arrays/resolve/main/stable_diffusion_pix2pix/example.jpg' )
__lowerCAmelCase = {
'prompt': 'turn him into a cyborg',
'image': image,
'generator': generator,
'num_inference_steps': 3,
'guidance_scale': 7.5,
'image_guidance_scale': 1.0,
'output_type': 'numpy',
}
return inputs
def lowercase ( self : List[Any] ) -> str:
__lowerCAmelCase = StableDiffusionInstructPixaPixPipeline.from_pretrained(
'timbrooks/instruct-pix2pix' , safety_checker=lowerCAmelCase_ )
pipe.to(lowerCAmelCase_ )
pipe.set_progress_bar_config(disable=lowerCAmelCase_ )
pipe.enable_attention_slicing()
__lowerCAmelCase = self.get_inputs()
__lowerCAmelCase = pipe(**lowerCAmelCase_ ).images
__lowerCAmelCase = image[0, -3:, -3:, -1].flatten()
assert image.shape == (1, 5_1_2, 5_1_2, 3)
__lowerCAmelCase = np.array([0.59_02, 0.60_15, 0.60_27, 0.59_83, 0.60_92, 0.60_61, 0.57_65, 0.57_85, 0.55_55] )
assert np.abs(expected_slice - image_slice ).max() < 1e-3
def lowercase ( self : Tuple ) -> List[str]:
__lowerCAmelCase = StableDiffusionInstructPixaPixPipeline.from_pretrained(
'timbrooks/instruct-pix2pix' , safety_checker=lowerCAmelCase_ )
__lowerCAmelCase = LMSDiscreteScheduler.from_config(pipe.scheduler.config )
pipe.to(lowerCAmelCase_ )
pipe.set_progress_bar_config(disable=lowerCAmelCase_ )
pipe.enable_attention_slicing()
__lowerCAmelCase = self.get_inputs()
__lowerCAmelCase = pipe(**lowerCAmelCase_ ).images
__lowerCAmelCase = image[0, -3:, -3:, -1].flatten()
assert image.shape == (1, 5_1_2, 5_1_2, 3)
__lowerCAmelCase = np.array([0.65_78, 0.68_17, 0.69_72, 0.67_61, 0.68_56, 0.69_16, 0.64_28, 0.65_16, 0.63_01] )
assert np.abs(expected_slice - image_slice ).max() < 1e-3
def lowercase ( self : Optional[Any] ) -> Dict:
__lowerCAmelCase = StableDiffusionInstructPixaPixPipeline.from_pretrained(
'timbrooks/instruct-pix2pix' , safety_checker=lowerCAmelCase_ )
__lowerCAmelCase = DDIMScheduler.from_config(pipe.scheduler.config )
pipe.to(lowerCAmelCase_ )
pipe.set_progress_bar_config(disable=lowerCAmelCase_ )
pipe.enable_attention_slicing()
__lowerCAmelCase = self.get_inputs()
__lowerCAmelCase = pipe(**lowerCAmelCase_ ).images
__lowerCAmelCase = image[0, -3:, -3:, -1].flatten()
assert image.shape == (1, 5_1_2, 5_1_2, 3)
__lowerCAmelCase = np.array([0.38_28, 0.38_34, 0.38_18, 0.37_92, 0.38_65, 0.37_52, 0.37_92, 0.38_47, 0.37_53] )
assert np.abs(expected_slice - image_slice ).max() < 1e-3
def lowercase ( self : Optional[int] ) -> int:
__lowerCAmelCase = 0
def callback_fn(lowerCAmelCase_ : int , lowerCAmelCase_ : int , lowerCAmelCase_ : torch.FloatTensor ) -> None:
__lowerCAmelCase = True
nonlocal number_of_steps
number_of_steps += 1
if step == 1:
__lowerCAmelCase = latents.detach().cpu().numpy()
assert latents.shape == (1, 4, 6_4, 6_4)
__lowerCAmelCase = latents[0, -3:, -3:, -1]
__lowerCAmelCase = np.array([-0.24_63, -0.46_44, -0.97_56, 1.51_76, 1.44_14, 0.78_66, 0.98_97, 0.85_21, 0.79_83] )
assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5e-2
elif step == 2:
__lowerCAmelCase = latents.detach().cpu().numpy()
assert latents.shape == (1, 4, 6_4, 6_4)
__lowerCAmelCase = latents[0, -3:, -3:, -1]
__lowerCAmelCase = np.array([-0.26_44, -0.46_26, -0.96_53, 1.51_76, 1.45_51, 0.76_86, 0.98_05, 0.84_52, 0.81_15] )
assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5e-2
__lowerCAmelCase = False
__lowerCAmelCase = StableDiffusionInstructPixaPixPipeline.from_pretrained(
'timbrooks/instruct-pix2pix' , safety_checker=lowerCAmelCase_ , torch_dtype=torch.floataa )
__lowerCAmelCase = pipe.to(lowerCAmelCase_ )
pipe.set_progress_bar_config(disable=lowerCAmelCase_ )
pipe.enable_attention_slicing()
__lowerCAmelCase = self.get_inputs()
pipe(**lowerCAmelCase_ , callback=lowerCAmelCase_ , callback_steps=1 )
assert callback_fn.has_been_called
assert number_of_steps == 3
def lowercase ( self : Optional[int] ) -> Any:
torch.cuda.empty_cache()
torch.cuda.reset_max_memory_allocated()
torch.cuda.reset_peak_memory_stats()
__lowerCAmelCase = StableDiffusionInstructPixaPixPipeline.from_pretrained(
'timbrooks/instruct-pix2pix' , safety_checker=lowerCAmelCase_ , torch_dtype=torch.floataa )
__lowerCAmelCase = pipe.to(lowerCAmelCase_ )
pipe.set_progress_bar_config(disable=lowerCAmelCase_ )
pipe.enable_attention_slicing(1 )
pipe.enable_sequential_cpu_offload()
__lowerCAmelCase = self.get_inputs()
__lowerCAmelCase = pipe(**lowerCAmelCase_ )
__lowerCAmelCase = torch.cuda.max_memory_allocated()
# make sure that less than 2.2 GB is allocated
assert mem_bytes < 2.2 * 1_0**9
def lowercase ( self : List[Any] ) -> Any:
__lowerCAmelCase = self.get_inputs()
# resize to resolution that is divisible by 8 but not 16 or 32
__lowerCAmelCase = inputs['image'].resize((5_0_4, 5_0_4) )
__lowerCAmelCase = 'timbrooks/instruct-pix2pix'
__lowerCAmelCase = StableDiffusionInstructPixaPixPipeline.from_pretrained(
lowerCAmelCase_ , safety_checker=lowerCAmelCase_ , )
pipe.to(lowerCAmelCase_ )
pipe.set_progress_bar_config(disable=lowerCAmelCase_ )
pipe.enable_attention_slicing()
__lowerCAmelCase = pipe(**lowerCAmelCase_ )
__lowerCAmelCase = output.images[0]
__lowerCAmelCase = image[2_5_5:2_5_8, 3_8_3:3_8_6, -1]
assert image.shape == (5_0_4, 5_0_4, 3)
__lowerCAmelCase = np.array([0.27_26, 0.25_29, 0.26_64, 0.26_55, 0.26_41, 0.26_42, 0.25_91, 0.26_49, 0.25_90] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-3
| 284 | 0 |
"""simple docstring"""
import argparse
import os
import re
# All paths are set with the intent you should run this script from the root of the repo with the command
# python utils/check_dummies.py
lowerCAmelCase : List[str] = """src/diffusers"""
# Matches is_xxx_available()
lowerCAmelCase : int = re.compile(r"""is\_([a-z_]*)_available\(\)""")
# Matches from xxx import bla
lowerCAmelCase : List[str] = re.compile(r"""\s+from\s+\S*\s+import\s+([^\(\s].*)\n""")
lowerCAmelCase : Optional[Any] = """
{0} = None
"""
lowerCAmelCase : List[Any] = """
class {0}(metaclass=DummyObject):
_backends = {1}
def __init__(self, *args, **kwargs):
requires_backends(self, {1})
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, {1})
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, {1})
"""
lowerCAmelCase : Optional[Any] = """
def {0}(*args, **kwargs):
requires_backends({0}, {1})
"""
def a__ ( snake_case__ ) -> List[Any]:
lowerCamelCase = _re_backend.findall(__snake_case )
if len(__snake_case ) == 0:
return None
return "_and_".join(__snake_case )
def a__ ( ) -> Optional[int]:
with open(os.path.join(__snake_case , """__init__.py""" ) , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f:
lowerCamelCase = f.readlines()
# Get to the point we do the actual imports for type checking
lowerCamelCase = 0
lowerCamelCase = {}
# Go through the end of the file
while line_index < len(__snake_case ):
# If the line contains is_backend_available, we grab all objects associated with the `else` block
lowerCamelCase = find_backend(lines[line_index] )
if backend is not None:
while not lines[line_index].startswith("""else:""" ):
line_index += 1
line_index += 1
lowerCamelCase = []
# Until we unindent, add backend objects to the list
while line_index < len(__snake_case ) and len(lines[line_index] ) > 1:
lowerCamelCase = lines[line_index]
lowerCamelCase = _re_single_line_import.search(__snake_case )
if single_line_import_search is not None:
objects.extend(single_line_import_search.groups()[0].split(""", """ ) )
elif line.startswith(""" """ * 8 ):
objects.append(line[8:-2] )
line_index += 1
if len(__snake_case ) > 0:
lowerCamelCase = objects
else:
line_index += 1
return backend_specific_objects
def a__ ( snake_case__ , snake_case__ ) -> Union[str, Any]:
if name.isupper():
return DUMMY_CONSTANT.format(__snake_case )
elif name.islower():
return DUMMY_FUNCTION.format(__snake_case , __snake_case )
else:
return DUMMY_CLASS.format(__snake_case , __snake_case )
def a__ ( snake_case__=None ) -> List[str]:
if backend_specific_objects is None:
lowerCamelCase = read_init()
# For special correspondence backend to module name as used in the function requires_modulename
lowerCamelCase = {}
for backend, objects in backend_specific_objects.items():
lowerCamelCase = """[""" + """, """.join(F'"{b}"' for b in backend.split("""_and_""" ) ) + """]"""
lowerCamelCase = """# This file is autogenerated by the command `make fix-copies`, do not edit.\n"""
dummy_file += "from ..utils import DummyObject, requires_backends\n\n"
dummy_file += "\n".join([create_dummy_object(__snake_case , __snake_case ) for o in objects] )
lowerCamelCase = dummy_file
return dummy_files
def a__ ( snake_case__=False ) -> Union[str, Any]:
lowerCamelCase = create_dummy_files()
# For special correspondence backend to shortcut as used in utils/dummy_xxx_objects.py
lowerCamelCase = {"""torch""": """pt"""}
# Locate actual dummy modules and read their content.
lowerCamelCase = os.path.join(__snake_case , """utils""" )
lowerCamelCase = {
backend: os.path.join(__snake_case , F'dummy_{short_names.get(__snake_case , __snake_case )}_objects.py' )
for backend in dummy_files.keys()
}
lowerCamelCase = {}
for backend, file_path in dummy_file_paths.items():
if os.path.isfile(__snake_case ):
with open(__snake_case , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f:
lowerCamelCase = f.read()
else:
lowerCamelCase = """"""
for backend in dummy_files.keys():
if dummy_files[backend] != actual_dummies[backend]:
if overwrite:
print(
F'Updating diffusers.utils.dummy_{short_names.get(__snake_case , __snake_case )}_objects.py as the main '
"""__init__ has new objects.""" )
with open(dummy_file_paths[backend] , """w""" , encoding="""utf-8""" , newline="""\n""" ) as f:
f.write(dummy_files[backend] )
else:
raise ValueError(
"""The main __init__ has objects that are not present in """
F'diffusers.utils.dummy_{short_names.get(__snake_case , __snake_case )}_objects.py. Run `make fix-copies` '
"""to fix this.""" )
if __name__ == "__main__":
lowerCAmelCase : Tuple = argparse.ArgumentParser()
parser.add_argument("""--fix_and_overwrite""", action="""store_true""", help="""Whether to fix inconsistencies.""")
lowerCAmelCase : Tuple = parser.parse_args()
check_dummies(args.fix_and_overwrite)
| 356 |
"""simple docstring"""
import math
import random
def a__ ( snake_case__ , snake_case__ = False ) -> float:
if deriv:
return value * (1 - value)
return 1 / (1 + math.exp(-value ))
# Initial Value
lowerCAmelCase : Dict = 0.0_2
def a__ ( snake_case__ , snake_case__ ) -> float:
lowerCamelCase = float(2 * (random.randint(1 , 1_00 )) - 1 )
for _ in range(snake_case__ ):
# Forward propagation
lowerCamelCase = sigmoid_function(INITIAL_VALUE * weight )
# How much did we miss?
lowerCamelCase = (expected / 1_00) - layer_a
# Error delta
lowerCamelCase = layer_1_error * sigmoid_function(snake_case__ , snake_case__ )
# Update weight
weight += INITIAL_VALUE * layer_1_delta
return layer_a * 1_00
if __name__ == "__main__":
import doctest
doctest.testmod()
lowerCAmelCase : Any = int(input("""Expected value: """))
lowerCAmelCase : List[Any] = int(input("""Number of propagations: """))
print(forward_propagation(expected, number_propagations))
| 168 | 0 |
"""simple docstring"""
import random
def _snake_case ( UpperCAmelCase_ : int ):
A__ = num - 1
A__ = 0
while s % 2 == 0:
A__ = s // 2
t += 1
for _ in range(5 ):
A__ = random.randrange(2 , num - 1 )
A__ = pow(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ )
if v != 1:
A__ = 0
while v != (num - 1):
if i == t - 1:
return False
else:
A__ = i + 1
A__ = (v**2) % num
return True
def _snake_case ( UpperCAmelCase_ : int ):
if num < 2:
return False
A__ = [
2,
3,
5,
7,
11,
13,
17,
19,
23,
29,
31,
37,
41,
43,
47,
53,
59,
61,
67,
71,
73,
79,
83,
89,
97,
101,
103,
107,
109,
113,
127,
131,
137,
139,
149,
151,
157,
163,
167,
173,
179,
181,
191,
193,
197,
199,
211,
223,
227,
229,
233,
239,
241,
251,
257,
263,
269,
271,
277,
281,
283,
293,
307,
311,
313,
317,
331,
337,
347,
349,
353,
359,
367,
373,
379,
383,
389,
397,
401,
409,
419,
421,
431,
433,
439,
443,
449,
457,
461,
463,
467,
479,
487,
491,
499,
503,
509,
521,
523,
541,
547,
557,
563,
569,
571,
577,
587,
593,
599,
601,
607,
613,
617,
619,
631,
641,
643,
647,
653,
659,
661,
673,
677,
683,
691,
701,
709,
719,
727,
733,
739,
743,
751,
757,
761,
769,
773,
787,
797,
809,
811,
821,
823,
827,
829,
839,
853,
857,
859,
863,
877,
881,
883,
887,
907,
911,
919,
929,
937,
941,
947,
953,
967,
971,
977,
983,
991,
997,
]
if num in low_primes:
return True
for prime in low_primes:
if (num % prime) == 0:
return False
return rabin_miller(UpperCAmelCase_ )
def _snake_case ( UpperCAmelCase_ : int = 1024 ):
while True:
A__ = random.randrange(2 ** (keysize - 1) , 2 ** (keysize) )
if is_prime_low_num(UpperCAmelCase_ ):
return num
if __name__ == "__main__":
SCREAMING_SNAKE_CASE_ : Dict = generate_large_prime()
print(('Prime number:', num))
print(('is_prime_low_num:', is_prime_low_num(num)))
| 335 |
"""simple docstring"""
def _snake_case ( UpperCAmelCase_ : int = 10 ):
if not isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) or n < 0:
raise ValueError("""Invalid input""" )
A__ = 10**n
A__ = 2_8433 * (pow(2 , 783_0457 , UpperCAmelCase_ )) + 1
return str(number % modulus )
if __name__ == "__main__":
from doctest import testmod
testmod()
print(f"""{solution(1_0) = }""")
| 335 | 1 |
'''simple docstring'''
from typing import List, Optional, Tuple, Union
import PIL
import torch
from torchvision import transforms
from diffusers.pipeline_utils import DiffusionPipeline, ImagePipelineOutput
from diffusers.schedulers import DDIMScheduler
from diffusers.utils import randn_tensor
_lowercase : Any = transforms.Compose(
[
transforms.Resize((2_5_6, 2_5_6)),
transforms.ToTensor(),
transforms.Normalize([0.5], [0.5]),
]
)
def snake_case_ ( __SCREAMING_SNAKE_CASE : str ):
"""simple docstring"""
if isinstance(__lowerCamelCase , torch.Tensor ):
return image
elif isinstance(__lowerCamelCase , PIL.Image.Image ):
lowercase_ : Any = [image]
lowercase_ : List[Any] = [trans(img.convert('''RGB''' ) ) for img in image]
lowercase_ : Union[str, Any] = torch.stack(__lowerCamelCase )
return image
class lowerCAmelCase__ ( A_ ):
def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ):
"""simple docstring"""
super().__init__()
# make sure scheduler can always be converted to DDIM
lowercase_ : List[str] = DDIMScheduler.from_config(scheduler.config )
self.register_modules(unet=snake_case__ , scheduler=snake_case__ )
def _snake_case ( self , __SCREAMING_SNAKE_CASE ):
"""simple docstring"""
if strength < 0 or strength > 1:
raise ValueError(F'''The value of strength should in [0.0, 1.0] but is {strength}''' )
def _snake_case ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ):
"""simple docstring"""
lowercase_ : str = min(int(num_inference_steps * strength ) , snake_case__ )
lowercase_ : Optional[int] = max(num_inference_steps - init_timestep , 0 )
lowercase_ : Any = self.scheduler.timesteps[t_start:]
return timesteps, num_inference_steps - t_start
def _snake_case ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=None ):
"""simple docstring"""
if not isinstance(snake_case__ , (torch.Tensor, PIL.Image.Image, list) ):
raise ValueError(
F'''`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(snake_case__ )}''' )
lowercase_ : str = image.to(device=snake_case__ , dtype=snake_case__ )
if isinstance(snake_case__ , snake_case__ ) and len(snake_case__ ) != batch_size:
raise ValueError(
F'''You have passed a list of generators of length {len(snake_case__ )}, but requested an effective batch'''
F''' size of {batch_size}. Make sure the batch size matches the length of the generators.''' )
lowercase_ : Union[str, Any] = init_latents.shape
lowercase_ : Optional[int] = randn_tensor(snake_case__ , generator=snake_case__ , device=snake_case__ , dtype=snake_case__ )
# get latents
print('''add noise to latents at timestep''' , snake_case__ )
lowercase_ : Dict = self.scheduler.add_noise(snake_case__ , snake_case__ , snake_case__ )
lowercase_ : Tuple = init_latents
return latents
@torch.no_grad()
def __call__( self , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = 0.8 , __SCREAMING_SNAKE_CASE = 1 , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = 0.0 , __SCREAMING_SNAKE_CASE = 50 , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = "pil" , __SCREAMING_SNAKE_CASE = True , ):
"""simple docstring"""
self.check_inputs(snake_case__ )
# 2. Preprocess image
lowercase_ : Dict = preprocess(snake_case__ )
# 3. set timesteps
self.scheduler.set_timesteps(snake_case__ , device=self.device )
lowercase_ : List[str] = self.get_timesteps(snake_case__ , snake_case__ , self.device )
lowercase_ : Optional[Any] = timesteps[:1].repeat(snake_case__ )
# 4. Prepare latent variables
lowercase_ : Any = self.prepare_latents(snake_case__ , snake_case__ , snake_case__ , self.unet.dtype , self.device , snake_case__ )
lowercase_ : Union[str, Any] = latents
# 5. Denoising loop
for t in self.progress_bar(snake_case__ ):
# 1. predict noise model_output
lowercase_ : Dict = self.unet(snake_case__ , snake_case__ ).sample
# 2. predict previous mean of image x_t-1 and add variance depending on eta
# eta corresponds to η in paper and should be between [0, 1]
# do x_t -> x_t-1
lowercase_ : Optional[int] = self.scheduler.step(
snake_case__ , snake_case__ , snake_case__ , eta=snake_case__ , use_clipped_model_output=snake_case__ , generator=snake_case__ , ).prev_sample
lowercase_ : Optional[int] = (image / 2 + 0.5).clamp(0 , 1 )
lowercase_ : str = image.cpu().permute(0 , 2 , 3 , 1 ).numpy()
if output_type == "pil":
lowercase_ : Union[str, Any] = self.numpy_to_pil(snake_case__ )
if not return_dict:
return (image, latent_timestep.item())
return ImagePipelineOutput(images=snake_case__ )
| 360 |
'''simple docstring'''
from typing import Optional
from urllib.parse import quote
import huggingface_hub as hfh
from packaging import version
def snake_case_ ( __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Optional[str] = None ):
"""simple docstring"""
if version.parse(hfh.__version__ ).release < version.parse('''0.11.0''' ).release:
# old versions of hfh don't url-encode the file path
lowercase_ : int = quote(__SCREAMING_SNAKE_CASE )
return hfh.hf_hub_url(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , repo_type='''dataset''' , revision=__SCREAMING_SNAKE_CASE )
| 264 | 0 |
from scipy.stats import pearsonr, spearmanr
from sklearn.metrics import fa_score, matthews_corrcoef
import datasets
UpperCAmelCase : Any = '''\
@inproceedings{wang2019glue,
title={{GLUE}: A Multi-Task Benchmark and Analysis Platform for Natural Language Understanding},
author={Wang, Alex and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R.},
note={In the Proceedings of ICLR.},
year={2019}
}
'''
UpperCAmelCase : Union[str, Any] = '''\
GLUE, the General Language Understanding Evaluation benchmark
(https://gluebenchmark.com/) is a collection of resources for training,
evaluating, and analyzing natural language understanding systems.
'''
UpperCAmelCase : List[Any] = '''
Compute GLUE evaluation metric associated to each GLUE dataset.
Args:
predictions: list of predictions to score.
Each translation should be tokenized into a list of tokens.
references: list of lists of references for each translation.
Each reference should be tokenized into a list of tokens.
Returns: depending on the GLUE subset, one or several of:
"accuracy": Accuracy
"f1": F1 score
"pearson": Pearson Correlation
"spearmanr": Spearman Correlation
"matthews_correlation": Matthew Correlation
Examples:
>>> glue_metric = datasets.load_metric(\'glue\', \'sst2\') # \'sst2\' or any of ["mnli", "mnli_mismatched", "mnli_matched", "qnli", "rte", "wnli", "hans"]
>>> references = [0, 1]
>>> predictions = [0, 1]
>>> results = glue_metric.compute(predictions=predictions, references=references)
>>> print(results)
{\'accuracy\': 1.0}
>>> glue_metric = datasets.load_metric(\'glue\', \'mrpc\') # \'mrpc\' or \'qqp\'
>>> references = [0, 1]
>>> predictions = [0, 1]
>>> results = glue_metric.compute(predictions=predictions, references=references)
>>> print(results)
{\'accuracy\': 1.0, \'f1\': 1.0}
>>> glue_metric = datasets.load_metric(\'glue\', \'stsb\')
>>> references = [0., 1., 2., 3., 4., 5.]
>>> predictions = [0., 1., 2., 3., 4., 5.]
>>> results = glue_metric.compute(predictions=predictions, references=references)
>>> print({"pearson": round(results["pearson"], 2), "spearmanr": round(results["spearmanr"], 2)})
{\'pearson\': 1.0, \'spearmanr\': 1.0}
>>> glue_metric = datasets.load_metric(\'glue\', \'cola\')
>>> references = [0, 1]
>>> predictions = [0, 1]
>>> results = glue_metric.compute(predictions=predictions, references=references)
>>> print(results)
{\'matthews_correlation\': 1.0}
'''
def _SCREAMING_SNAKE_CASE ( a , a ) -> Tuple:
return float((preds == labels).mean() )
def _SCREAMING_SNAKE_CASE ( a , a ) -> int:
__A : Optional[int] = simple_accuracy(a , a )
__A : Tuple = float(fa_score(y_true=a , y_pred=a ) )
return {
"accuracy": acc,
"f1": fa,
}
def _SCREAMING_SNAKE_CASE ( a , a ) -> List[Any]:
__A : Optional[Any] = float(pearsonr(a , a )[0] )
__A : Tuple = float(spearmanr(a , a )[0] )
return {
"pearson": pearson_corr,
"spearmanr": spearman_corr,
}
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class _A( datasets.Metric ):
"""simple docstring"""
def UpperCAmelCase_ ( self ):
if self.config_name not in [
"sst2",
"mnli",
"mnli_mismatched",
"mnli_matched",
"cola",
"stsb",
"mrpc",
"qqp",
"qnli",
"rte",
"wnli",
"hans",
]:
raise KeyError(
'You should supply a configuration name selected in '
'["sst2", "mnli", "mnli_mismatched", "mnli_matched", '
'"cola", "stsb", "mrpc", "qqp", "qnli", "rte", "wnli", "hans"]' )
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
'predictions': datasets.Value('int64' if self.config_name != 'stsb' else 'float32' ),
'references': datasets.Value('int64' if self.config_name != 'stsb' else 'float32' ),
} ) , codebase_urls=[] , reference_urls=[] , format='numpy' , )
def UpperCAmelCase_ ( self , _A , _A ):
if self.config_name == "cola":
return {"matthews_correlation": matthews_corrcoef(_A , _A )}
elif self.config_name == "stsb":
return pearson_and_spearman(_A , _A )
elif self.config_name in ["mrpc", "qqp"]:
return acc_and_fa(_A , _A )
elif self.config_name in ["sst2", "mnli", "mnli_mismatched", "mnli_matched", "qnli", "rte", "wnli", "hans"]:
return {"accuracy": simple_accuracy(_A , _A )}
else:
raise KeyError(
'You should supply a configuration name selected in '
'["sst2", "mnli", "mnli_mismatched", "mnli_matched", '
'"cola", "stsb", "mrpc", "qqp", "qnli", "rte", "wnli", "hans"]' )
| 280 |
from __future__ import annotations
def _SCREAMING_SNAKE_CASE ( a ) -> int:
if not nums:
return 0
__A : Optional[int] = nums[0]
__A : str = 0
for num in nums[1:]:
__A , __A : Tuple = (
max_excluding + num,
max(a , a ),
)
return max(a , a )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 280 | 1 |
def lowerCAmelCase_ ( UpperCamelCase_ , UpperCamelCase_ ) -> int:
return 1 if input_a == input_a else 0
def lowerCAmelCase_ ( ) -> None:
assert xnor_gate(0 , 0 ) == 1
assert xnor_gate(0 , 1 ) == 0
assert xnor_gate(1 , 0 ) == 0
assert xnor_gate(1 , 1 ) == 1
if __name__ == "__main__":
print(xnor_gate(0, 0))
print(xnor_gate(0, 1))
print(xnor_gate(1, 0))
print(xnor_gate(1, 1))
| 328 |
import logging
import os
import sys
from dataclasses import dataclass, field
from typing import Optional
from seqaseq_trainer import SeqaSeqTrainer
from seqaseq_training_args import SeqaSeqTrainingArguments
import transformers
from transformers import (
AutoConfig,
AutoModelForSeqaSeqLM,
AutoTokenizer,
HfArgumentParser,
MBartTokenizer,
MBartTokenizerFast,
set_seed,
)
from transformers.trainer_utils import EvaluationStrategy, is_main_process
from transformers.training_args import ParallelMode
from utils import (
SeqaSeqDataCollator,
SeqaSeqDataset,
assert_all_frozen,
build_compute_metrics_fn,
check_output_dir,
freeze_embeds,
freeze_params,
lmap,
save_json,
use_task_specific_params,
write_txt_file,
)
_UpperCAmelCase = logging.getLogger(__name__)
@dataclass
class _UpperCamelCase :
_UpperCamelCase : str = field(
metadata={'''help''': '''Path to pretrained model or model identifier from huggingface.co/models'''} )
_UpperCamelCase : Optional[str] = field(
default=lowerCAmelCase_ , metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} )
_UpperCamelCase : Optional[str] = field(
default=lowerCAmelCase_ , metadata={'''help''': '''Pretrained tokenizer name or path if not the same as model_name'''} )
_UpperCamelCase : Optional[str] = field(
default=lowerCAmelCase_ , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co'''} , )
_UpperCamelCase : bool = field(default=lowerCAmelCase_ , metadata={'''help''': '''Whether tp freeze the encoder.'''} )
_UpperCamelCase : bool = field(default=lowerCAmelCase_ , metadata={'''help''': '''Whether to freeze the embeddings.'''} )
@dataclass
class _UpperCamelCase :
_UpperCamelCase : str = field(
metadata={'''help''': '''The input data dir. Should contain the .tsv files (or other data files) for the task.'''} )
_UpperCamelCase : Optional[str] = field(
default='''summarization''' , metadata={'''help''': '''Task name, summarization (or summarization_{dataset} for pegasus) or translation'''} , )
_UpperCamelCase : Optional[int] = field(
default=1_0_2_4 , metadata={
'''help''': (
'''The maximum total input sequence length after tokenization. Sequences longer '''
'''than this will be truncated, sequences shorter will be padded.'''
)
} , )
_UpperCamelCase : Optional[int] = field(
default=1_2_8 , metadata={
'''help''': (
'''The maximum total sequence length for target text after tokenization. Sequences longer '''
'''than this will be truncated, sequences shorter will be padded.'''
)
} , )
_UpperCamelCase : Optional[int] = field(
default=1_4_2 , metadata={
'''help''': (
'''The maximum total sequence length for validation target text after tokenization. Sequences longer '''
'''than this will be truncated, sequences shorter will be padded. '''
'''This argument is also used to override the ``max_length`` param of ``model.generate``, which is used '''
'''during ``evaluate`` and ``predict``.'''
)
} , )
_UpperCamelCase : Optional[int] = field(
default=1_4_2 , metadata={
'''help''': (
'''The maximum total sequence length for test target text after tokenization. Sequences longer '''
'''than this will be truncated, sequences shorter will be padded.'''
)
} , )
_UpperCamelCase : Optional[int] = field(default=-1 , metadata={'''help''': '''# training examples. -1 means use all.'''} )
_UpperCamelCase : Optional[int] = field(default=-1 , metadata={'''help''': '''# validation examples. -1 means use all.'''} )
_UpperCamelCase : Optional[int] = field(default=-1 , metadata={'''help''': '''# test examples. -1 means use all.'''} )
_UpperCamelCase : Optional[str] = field(default=lowerCAmelCase_ , metadata={'''help''': '''Source language id for translation.'''} )
_UpperCamelCase : Optional[str] = field(default=lowerCAmelCase_ , metadata={'''help''': '''Target language id for translation.'''} )
_UpperCamelCase : Optional[int] = field(default=lowerCAmelCase_ , metadata={'''help''': '''# num_beams to use for evaluation.'''} )
_UpperCamelCase : bool = field(
default=lowerCAmelCase_ , metadata={'''help''': '''If only pad tokens should be ignored. This assumes that `config.pad_token_id` is defined.'''} , )
def lowerCAmelCase_ ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) -> Optional[int]:
logger.info(F'''***** {split} metrics *****''' )
for key in sorted(metrics.keys() ):
logger.info(F''' {key} = {metrics[key]}''' )
save_json(UpperCamelCase_ , os.path.join(UpperCamelCase_ , F'''{split}_results.json''' ) )
def lowerCAmelCase_ ( ) -> Optional[int]:
# See all possible arguments in src/transformers/training_args.py
# or by passing the --help flag to this script.
# We now keep distinct sets of args, for a cleaner separation of concerns.
UpperCamelCase_ = HfArgumentParser((ModelArguments, DataTrainingArguments, SeqaSeqTrainingArguments) )
if len(sys.argv ) == 2 and sys.argv[1].endswith(".json" ):
# If we pass only one argument to the script and it's the path to a json file,
# let's parse it to get our arguments.
UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) )
else:
UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = parser.parse_args_into_dataclasses()
check_output_dir(UpperCamelCase_ )
# Setup logging
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , )
logger.warning(
"Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s" , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.parallel_mode == ParallelMode.DISTRIBUTED ) , training_args.fpaa , )
transformers.utils.logging.enable_default_handler()
transformers.utils.logging.enable_explicit_format()
# Set the verbosity to info of the Transformers logger (on main process only):
if is_main_process(training_args.local_rank ):
transformers.utils.logging.set_verbosity_info()
logger.info("Training/evaluation parameters %s" , UpperCamelCase_ )
# Set seed
set_seed(training_args.seed )
# Load pretrained model and tokenizer
#
# Distributed training:
# The .from_pretrained methods guarantee that only one local process can concurrently
# download model & vocab.
UpperCamelCase_ = AutoConfig.from_pretrained(
model_args.config_name if model_args.config_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , )
UpperCamelCase_ = ("encoder_layerdrop", "decoder_layerdrop", "dropout", "attention_dropout")
for p in extra_model_params:
if getattr(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ):
assert hasattr(UpperCamelCase_ , UpperCamelCase_ ), F'''({config.__class__.__name__}) doesn\'t have a `{p}` attribute'''
setattr(UpperCamelCase_ , UpperCamelCase_ , getattr(UpperCamelCase_ , UpperCamelCase_ ) )
UpperCamelCase_ = AutoTokenizer.from_pretrained(
model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , )
UpperCamelCase_ = AutoModelForSeqaSeqLM.from_pretrained(
model_args.model_name_or_path , from_tf=".ckpt" in model_args.model_name_or_path , config=UpperCamelCase_ , cache_dir=model_args.cache_dir , )
# use task specific params
use_task_specific_params(UpperCamelCase_ , data_args.task )
# set num_beams for evaluation
if data_args.eval_beams is None:
UpperCamelCase_ = model.config.num_beams
# set decoder_start_token_id for MBart
if model.config.decoder_start_token_id is None and isinstance(UpperCamelCase_ , (MBartTokenizer, MBartTokenizerFast) ):
assert (
data_args.tgt_lang is not None and data_args.src_lang is not None
), "mBart requires --tgt_lang and --src_lang"
if isinstance(UpperCamelCase_ , UpperCamelCase_ ):
UpperCamelCase_ = tokenizer.lang_code_to_id[data_args.tgt_lang]
else:
UpperCamelCase_ = tokenizer.convert_tokens_to_ids(data_args.tgt_lang )
if model_args.freeze_embeds:
freeze_embeds(UpperCamelCase_ )
if model_args.freeze_encoder:
freeze_params(model.get_encoder() )
assert_all_frozen(model.get_encoder() )
UpperCamelCase_ = SeqaSeqDataset
# Get datasets
UpperCamelCase_ = (
dataset_class(
UpperCamelCase_ , type_path="train" , data_dir=data_args.data_dir , n_obs=data_args.n_train , max_target_length=data_args.max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or "" , )
if training_args.do_train
else None
)
UpperCamelCase_ = (
dataset_class(
UpperCamelCase_ , type_path="val" , data_dir=data_args.data_dir , n_obs=data_args.n_val , max_target_length=data_args.val_max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or "" , )
if training_args.do_eval or training_args.evaluation_strategy != EvaluationStrategy.NO
else None
)
UpperCamelCase_ = (
dataset_class(
UpperCamelCase_ , type_path="test" , data_dir=data_args.data_dir , n_obs=data_args.n_test , max_target_length=data_args.test_max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or "" , )
if training_args.do_predict
else None
)
# Initialize our Trainer
UpperCamelCase_ = (
build_compute_metrics_fn(data_args.task , UpperCamelCase_ ) if training_args.predict_with_generate else None
)
UpperCamelCase_ = SeqaSeqTrainer(
model=UpperCamelCase_ , args=UpperCamelCase_ , data_args=UpperCamelCase_ , train_dataset=UpperCamelCase_ , eval_dataset=UpperCamelCase_ , data_collator=SeqaSeqDataCollator(
UpperCamelCase_ , UpperCamelCase_ , model.config.decoder_start_token_id , training_args.tpu_num_cores ) , compute_metrics=UpperCamelCase_ , tokenizer=UpperCamelCase_ , )
UpperCamelCase_ = {}
# Training
if training_args.do_train:
logger.info("*** Train ***" )
UpperCamelCase_ = trainer.train(
model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None )
UpperCamelCase_ = train_result.metrics
UpperCamelCase_ = data_args.n_train
trainer.save_model() # this also saves the tokenizer
if trainer.is_world_process_zero():
handle_metrics("train" , UpperCamelCase_ , training_args.output_dir )
all_metrics.update(UpperCamelCase_ )
# Need to save the state, since Trainer.save_model saves only the tokenizer with the model
trainer.state.save_to_json(os.path.join(training_args.output_dir , "trainer_state.json" ) )
# For convenience, we also re-save the tokenizer to the same directory,
# so that you can share your model easily on huggingface.co/models =)
tokenizer.save_pretrained(training_args.output_dir )
# Evaluation
if training_args.do_eval:
logger.info("*** Evaluate ***" )
UpperCamelCase_ = trainer.evaluate(metric_key_prefix="val" )
UpperCamelCase_ = data_args.n_val
UpperCamelCase_ = round(metrics["val_loss"] , 4 )
if trainer.is_world_process_zero():
handle_metrics("val" , UpperCamelCase_ , training_args.output_dir )
all_metrics.update(UpperCamelCase_ )
if training_args.do_predict:
logger.info("*** Predict ***" )
UpperCamelCase_ = trainer.predict(test_dataset=UpperCamelCase_ , metric_key_prefix="test" )
UpperCamelCase_ = test_output.metrics
UpperCamelCase_ = data_args.n_test
if trainer.is_world_process_zero():
UpperCamelCase_ = round(metrics["test_loss"] , 4 )
handle_metrics("test" , UpperCamelCase_ , training_args.output_dir )
all_metrics.update(UpperCamelCase_ )
if training_args.predict_with_generate:
UpperCamelCase_ = tokenizer.batch_decode(
test_output.predictions , skip_special_tokens=UpperCamelCase_ , clean_up_tokenization_spaces=UpperCamelCase_ )
UpperCamelCase_ = lmap(str.strip , UpperCamelCase_ )
write_txt_file(UpperCamelCase_ , os.path.join(training_args.output_dir , "test_generations.txt" ) )
if trainer.is_world_process_zero():
save_json(UpperCamelCase_ , os.path.join(training_args.output_dir , "all_results.json" ) )
return all_metrics
def lowerCAmelCase_ ( UpperCamelCase_ ) -> Optional[Any]:
# For xla_spawn (TPUs)
main()
if __name__ == "__main__":
main()
| 328 | 1 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.