code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
'''simple docstring''' def UpperCAmelCase_ ( __lowerCamelCase : float ,__lowerCamelCase : float ): if density <= 0: raise ValueError("Impossible fluid density" ) if bulk_modulus <= 0: raise ValueError("Impossible bulk modulus" ) return (bulk_modulus / density) ** 0.5 if __name__ == "__main__": import doctest doctest.testmod()
223
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase : Optional[Any] =logging.get_logger(__name__) lowerCAmelCase : Tuple ={ '''facebook/vit-mae-base''': '''https://huggingface.co/facebook/vit-mae-base/resolve/main/config.json''', # See all ViT MAE models at https://huggingface.co/models?filter=vit-mae } class a_ ( _lowerCAmelCase ): __A = "vit_mae" def __init__( self : Any , lowercase : int=768 , lowercase : Tuple=12 , lowercase : str=12 , lowercase : Optional[Any]=3_072 , lowercase : List[Any]="gelu" , lowercase : Tuple=0.0 , lowercase : Union[str, Any]=0.0 , lowercase : str=0.02 , lowercase : Optional[int]=1e-1_2 , lowercase : List[Any]=224 , lowercase : str=16 , lowercase : List[str]=3 , lowercase : Optional[Any]=True , lowercase : int=16 , lowercase : Optional[Any]=512 , lowercase : Optional[Any]=8 , lowercase : Optional[Any]=2_048 , lowercase : List[str]=0.75 , lowercase : str=False , **lowercase : Union[str, Any] , ): """simple docstring""" super().__init__(**lowercase ) lowercase_ :Any = hidden_size lowercase_ :Optional[Any] = num_hidden_layers lowercase_ :Optional[Any] = num_attention_heads lowercase_ :int = intermediate_size lowercase_ :Optional[int] = hidden_act lowercase_ :str = hidden_dropout_prob lowercase_ :Optional[Any] = attention_probs_dropout_prob lowercase_ :str = initializer_range lowercase_ :Optional[int] = layer_norm_eps lowercase_ :str = image_size lowercase_ :Union[str, Any] = patch_size lowercase_ :Dict = num_channels lowercase_ :Any = qkv_bias lowercase_ :Optional[int] = decoder_num_attention_heads lowercase_ :Optional[Any] = decoder_hidden_size lowercase_ :Union[str, Any] = decoder_num_hidden_layers lowercase_ :List[Any] = decoder_intermediate_size lowercase_ :Optional[Any] = mask_ratio lowercase_ :Optional[Any] = norm_pix_loss
223
1
import numpy as np from cva import COLOR_BGR2GRAY, CV_8UC3, cvtColor, filteraD, imread, imshow, waitKey def __lowerCAmelCase ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> List[str]: # prepare kernel # the kernel size have to be odd if (ksize % 2) == 0: lowercase__ = ksize + 1 lowercase__ = np.zeros((ksize, ksize) , dtype=np.floataa ) # each value for y in range(SCREAMING_SNAKE_CASE_ ): for x in range(SCREAMING_SNAKE_CASE_ ): # distance from center lowercase__ = x - ksize // 2 lowercase__ = y - ksize // 2 # degree to radiant lowercase__ = theta / 180 * np.pi lowercase__ = np.cos(_theta ) lowercase__ = np.sin(_theta ) # get kernel x lowercase__ = cos_theta * px + sin_theta * py # get kernel y lowercase__ = -sin_theta * px + cos_theta * py # fill kernel lowercase__ = np.exp( -(_x**2 + gamma**2 * _y**2) / (2 * sigma**2) ) * np.cos(2 * np.pi * _x / lambd + psi ) return gabor if __name__ == "__main__": import doctest doctest.testmod() # read original image lowercase_ = imread("""../image_data/lena.jpg""") # turn image in gray scale value lowercase_ = cvtColor(img, COLOR_BGR2GRAY) # Apply multiple Kernel to detect edges lowercase_ = np.zeros(gray.shape[:2]) for theta in [0, 30, 60, 90, 120, 150]: lowercase_ = gabor_filter_kernel(10, 8, theta, 10, 0, 0) out += filteraD(gray, CV_8UC3, kernel_aa) lowercase_ = out / out.max() * 255 lowercase_ = out.astype(np.uinta) imshow("""Original""", gray) imshow("""Gabor filter with 20x20 mask and 6 directions""", out) waitKey(0)
364
from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available() and is_transformers_version(""">=""", """4.25.0""")): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ( VersatileDiffusionDualGuidedPipeline, VersatileDiffusionImageVariationPipeline, VersatileDiffusionPipeline, VersatileDiffusionTextToImagePipeline, ) else: from .modeling_text_unet import UNetFlatConditionModel from .pipeline_versatile_diffusion import VersatileDiffusionPipeline from .pipeline_versatile_diffusion_dual_guided import VersatileDiffusionDualGuidedPipeline from .pipeline_versatile_diffusion_image_variation import VersatileDiffusionImageVariationPipeline from .pipeline_versatile_diffusion_text_to_image import VersatileDiffusionTextToImagePipeline
224
0
'''simple docstring''' import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING _A : Optional[Any] = logging.get_logger(__name__) _A : Union[str, Any] = { '''SenseTime/deformable-detr''': '''https://huggingface.co/sensetime/deformable-detr/resolve/main/config.json''', # See all Deformable DETR models at https://huggingface.co/models?filter=deformable-detr } class _lowercase ( UpperCAmelCase__ ): '''simple docstring''' _SCREAMING_SNAKE_CASE : Optional[int] = """deformable_detr""" _SCREAMING_SNAKE_CASE : str = { """hidden_size""": """d_model""", """num_attention_heads""": """encoder_attention_heads""", } def __init__( self : str , SCREAMING_SNAKE_CASE__ : Tuple=True , SCREAMING_SNAKE_CASE__ : str=None , SCREAMING_SNAKE_CASE__ : Union[str, Any]=3 , SCREAMING_SNAKE_CASE__ : Tuple=3_00 , SCREAMING_SNAKE_CASE__ : List[Any]=10_24 , SCREAMING_SNAKE_CASE__ : Tuple=6 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=10_24 , SCREAMING_SNAKE_CASE__ : List[Any]=8 , SCREAMING_SNAKE_CASE__ : Dict=6 , SCREAMING_SNAKE_CASE__ : str=10_24 , SCREAMING_SNAKE_CASE__ : List[str]=8 , SCREAMING_SNAKE_CASE__ : Dict=0.0 , SCREAMING_SNAKE_CASE__ : Dict=True , SCREAMING_SNAKE_CASE__ : Tuple="relu" , SCREAMING_SNAKE_CASE__ : List[Any]=2_56 , SCREAMING_SNAKE_CASE__ : List[Any]=0.1 , SCREAMING_SNAKE_CASE__ : List[str]=0.0 , SCREAMING_SNAKE_CASE__ : Optional[int]=0.0 , SCREAMING_SNAKE_CASE__ : Optional[Any]=0.0_2 , SCREAMING_SNAKE_CASE__ : str=1.0 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=True , SCREAMING_SNAKE_CASE__ : List[Any]=False , SCREAMING_SNAKE_CASE__ : Tuple="sine" , SCREAMING_SNAKE_CASE__ : str="resnet50" , SCREAMING_SNAKE_CASE__ : Any=True , SCREAMING_SNAKE_CASE__ : str=False , SCREAMING_SNAKE_CASE__ : List[str]=4 , SCREAMING_SNAKE_CASE__ : Tuple=4 , SCREAMING_SNAKE_CASE__ : Dict=4 , SCREAMING_SNAKE_CASE__ : Optional[Any]=False , SCREAMING_SNAKE_CASE__ : Optional[int]=3_00 , SCREAMING_SNAKE_CASE__ : List[Any]=False , SCREAMING_SNAKE_CASE__ : int=1 , SCREAMING_SNAKE_CASE__ : Optional[Any]=5 , SCREAMING_SNAKE_CASE__ : Optional[int]=2 , SCREAMING_SNAKE_CASE__ : Any=1 , SCREAMING_SNAKE_CASE__ : int=1 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=5 , SCREAMING_SNAKE_CASE__ : Any=2 , SCREAMING_SNAKE_CASE__ : Any=0.1 , SCREAMING_SNAKE_CASE__ : int=0.2_5 , SCREAMING_SNAKE_CASE__ : Optional[Any]=False , **SCREAMING_SNAKE_CASE__ : List[str] , ) -> Dict: if backbone_config is not None and use_timm_backbone: raise ValueError("""You can't specify both `backbone_config` and `use_timm_backbone`.""" ) if not use_timm_backbone: if backbone_config is None: logger.info("""`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.""" ) __lowerCAmelCase = CONFIG_MAPPING["""resnet"""](out_features=["""stage4"""] ) elif isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): __lowerCAmelCase = backbone_config.get("""model_type""" ) __lowerCAmelCase = CONFIG_MAPPING[backbone_model_type] __lowerCAmelCase = config_class.from_dict(SCREAMING_SNAKE_CASE__ ) __lowerCAmelCase = use_timm_backbone __lowerCAmelCase = backbone_config __lowerCAmelCase = num_channels __lowerCAmelCase = num_queries __lowerCAmelCase = max_position_embeddings __lowerCAmelCase = d_model __lowerCAmelCase = encoder_ffn_dim __lowerCAmelCase = encoder_layers __lowerCAmelCase = encoder_attention_heads __lowerCAmelCase = decoder_ffn_dim __lowerCAmelCase = decoder_layers __lowerCAmelCase = decoder_attention_heads __lowerCAmelCase = dropout __lowerCAmelCase = attention_dropout __lowerCAmelCase = activation_dropout __lowerCAmelCase = activation_function __lowerCAmelCase = init_std __lowerCAmelCase = init_xavier_std __lowerCAmelCase = encoder_layerdrop __lowerCAmelCase = auxiliary_loss __lowerCAmelCase = position_embedding_type __lowerCAmelCase = backbone __lowerCAmelCase = use_pretrained_backbone __lowerCAmelCase = dilation # deformable attributes __lowerCAmelCase = num_feature_levels __lowerCAmelCase = encoder_n_points __lowerCAmelCase = decoder_n_points __lowerCAmelCase = two_stage __lowerCAmelCase = two_stage_num_proposals __lowerCAmelCase = with_box_refine if two_stage is True and with_box_refine is False: raise ValueError("""If two_stage is True, with_box_refine must be True.""" ) # Hungarian matcher __lowerCAmelCase = class_cost __lowerCAmelCase = bbox_cost __lowerCAmelCase = giou_cost # Loss coefficients __lowerCAmelCase = mask_loss_coefficient __lowerCAmelCase = dice_loss_coefficient __lowerCAmelCase = bbox_loss_coefficient __lowerCAmelCase = giou_loss_coefficient __lowerCAmelCase = eos_coefficient __lowerCAmelCase = focal_alpha __lowerCAmelCase = disable_custom_kernels super().__init__(is_encoder_decoder=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) @property def a ( self : Dict ) -> int: return self.encoder_attention_heads @property def a ( self : int ) -> int: return self.d_model def a ( self : Tuple ) -> List[Any]: __lowerCAmelCase = copy.deepcopy(self.__dict__ ) if self.backbone_config is not None: __lowerCAmelCase = self.backbone_config.to_dict() __lowerCAmelCase = self.__class__.model_type return output
229
'''simple docstring''' import gc import random import unittest import numpy as np import torch from PIL import Image from diffusers import ( DDIMScheduler, KandinskyVaaControlnetImgaImgPipeline, KandinskyVaaPriorEmbaEmbPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class _lowercase ( UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' _SCREAMING_SNAKE_CASE : Any = KandinskyVaaControlnetImgaImgPipeline _SCREAMING_SNAKE_CASE : Dict = ["""image_embeds""", """negative_image_embeds""", """image""", """hint"""] _SCREAMING_SNAKE_CASE : List[Any] = ["""image_embeds""", """negative_image_embeds""", """image""", """hint"""] _SCREAMING_SNAKE_CASE : Dict = [ """generator""", """height""", """width""", """strength""", """guidance_scale""", """num_inference_steps""", """return_dict""", """guidance_scale""", """num_images_per_prompt""", """output_type""", """return_dict""", ] _SCREAMING_SNAKE_CASE : Optional[int] = False @property def a ( self : int ) -> Optional[Any]: return 32 @property def a ( self : Union[str, Any] ) -> Dict: return 32 @property def a ( self : str ) -> Union[str, Any]: return self.time_input_dim @property def a ( self : Tuple ) -> Optional[Any]: return self.time_input_dim * 4 @property def a ( self : Union[str, Any] ) -> List[Any]: return 1_00 @property def a ( self : Optional[int] ) -> Any: torch.manual_seed(0 ) __lowerCAmelCase = { """in_channels""": 8, # Out channels is double in channels because predicts mean and variance """out_channels""": 8, """addition_embed_type""": """image_hint""", """down_block_types""": ("""ResnetDownsampleBlock2D""", """SimpleCrossAttnDownBlock2D"""), """up_block_types""": ("""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""), """mid_block_type""": """UNetMidBlock2DSimpleCrossAttn""", """block_out_channels""": (self.block_out_channels_a, self.block_out_channels_a * 2), """layers_per_block""": 1, """encoder_hid_dim""": self.text_embedder_hidden_size, """encoder_hid_dim_type""": """image_proj""", """cross_attention_dim""": self.cross_attention_dim, """attention_head_dim""": 4, """resnet_time_scale_shift""": """scale_shift""", """class_embed_type""": None, } __lowerCAmelCase = UNetaDConditionModel(**SCREAMING_SNAKE_CASE__ ) return model @property def a ( self : Tuple ) -> Optional[Any]: return { "block_out_channels": [32, 32, 64, 64], "down_block_types": [ "DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D", "AttnDownEncoderBlock2D", ], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": ["AttnUpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"], "vq_embed_dim": 4, } @property def a ( self : Optional[Any] ) -> Union[str, Any]: torch.manual_seed(0 ) __lowerCAmelCase = VQModel(**self.dummy_movq_kwargs ) return model def a ( self : Any ) -> Dict: __lowerCAmelCase = self.dummy_unet __lowerCAmelCase = self.dummy_movq __lowerCAmelCase = { """num_train_timesteps""": 10_00, """beta_schedule""": """linear""", """beta_start""": 0.0_0_0_8_5, """beta_end""": 0.0_1_2, """clip_sample""": False, """set_alpha_to_one""": False, """steps_offset""": 0, """prediction_type""": """epsilon""", """thresholding""": False, } __lowerCAmelCase = DDIMScheduler(**SCREAMING_SNAKE_CASE__ ) __lowerCAmelCase = { """unet""": unet, """scheduler""": scheduler, """movq""": movq, } return components def a ( self : Optional[int] , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : List[str]=0 ) -> Dict: __lowerCAmelCase = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(SCREAMING_SNAKE_CASE__ ) ).to(SCREAMING_SNAKE_CASE__ ) __lowerCAmelCase = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( SCREAMING_SNAKE_CASE__ ) # create init_image __lowerCAmelCase = floats_tensor((1, 3, 64, 64) , rng=random.Random(SCREAMING_SNAKE_CASE__ ) ).to(SCREAMING_SNAKE_CASE__ ) __lowerCAmelCase = image.cpu().permute(0 , 2 , 3 , 1 )[0] __lowerCAmelCase = Image.fromarray(np.uinta(SCREAMING_SNAKE_CASE__ ) ).convert("""RGB""" ).resize((2_56, 2_56) ) # create hint __lowerCAmelCase = floats_tensor((1, 3, 64, 64) , rng=random.Random(SCREAMING_SNAKE_CASE__ ) ).to(SCREAMING_SNAKE_CASE__ ) if str(SCREAMING_SNAKE_CASE__ ).startswith("""mps""" ): __lowerCAmelCase = torch.manual_seed(SCREAMING_SNAKE_CASE__ ) else: __lowerCAmelCase = torch.Generator(device=SCREAMING_SNAKE_CASE__ ).manual_seed(SCREAMING_SNAKE_CASE__ ) __lowerCAmelCase = { """image""": init_image, """image_embeds""": image_embeds, """negative_image_embeds""": negative_image_embeds, """hint""": hint, """generator""": generator, """height""": 64, """width""": 64, """num_inference_steps""": 10, """guidance_scale""": 7.0, """strength""": 0.2, """output_type""": """np""", } return inputs def a ( self : List[Any] ) -> int: __lowerCAmelCase = """cpu""" __lowerCAmelCase = self.get_dummy_components() __lowerCAmelCase = self.pipeline_class(**SCREAMING_SNAKE_CASE__ ) __lowerCAmelCase = pipe.to(SCREAMING_SNAKE_CASE__ ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__ ) __lowerCAmelCase = pipe(**self.get_dummy_inputs(SCREAMING_SNAKE_CASE__ ) ) __lowerCAmelCase = output.images __lowerCAmelCase = pipe( **self.get_dummy_inputs(SCREAMING_SNAKE_CASE__ ) , return_dict=SCREAMING_SNAKE_CASE__ , )[0] __lowerCAmelCase = image[0, -3:, -3:, -1] __lowerCAmelCase = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) __lowerCAmelCase = np.array( [0.5_4_9_8_5_0_3_4, 0.5_5_5_0_9_3_6_5, 0.5_2_5_6_1_5_0_4, 0.5_5_7_0_4_9_4, 0.5_5_9_3_8_1_8, 0.5_2_6_3_9_7_9, 0.5_0_2_8_5_6_4_3, 0.5_0_6_9_8_4_6, 0.5_1_1_9_6_7_3_6] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), f""" expected_slice {expected_slice}, but got {image_slice.flatten()}""" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), f""" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}""" @slow @require_torch_gpu class _lowercase ( unittest.TestCase ): '''simple docstring''' def a ( self : Any ) -> Any: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def a ( self : int ) -> Optional[Any]: __lowerCAmelCase = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinskyv22/kandinskyv22_controlnet_img2img_robotcat_fp16.npy""" ) __lowerCAmelCase = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinsky/cat.png""" ) __lowerCAmelCase = init_image.resize((5_12, 5_12) ) __lowerCAmelCase = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinskyv22/hint_image_cat.png""" ) __lowerCAmelCase = torch.from_numpy(np.array(SCREAMING_SNAKE_CASE__ ) ).float() / 2_5_5.0 __lowerCAmelCase = hint.permute(2 , 0 , 1 ).unsqueeze(0 ) __lowerCAmelCase = """A robot, 4k photo""" __lowerCAmelCase = KandinskyVaaPriorEmbaEmbPipeline.from_pretrained( """kandinsky-community/kandinsky-2-2-prior""" , torch_dtype=torch.floataa ) pipe_prior.to(SCREAMING_SNAKE_CASE__ ) __lowerCAmelCase = KandinskyVaaControlnetImgaImgPipeline.from_pretrained( """kandinsky-community/kandinsky-2-2-controlnet-depth""" , torch_dtype=torch.floataa ) __lowerCAmelCase = pipeline.to(SCREAMING_SNAKE_CASE__ ) pipeline.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__ ) __lowerCAmelCase = torch.Generator(device="""cpu""" ).manual_seed(0 ) __lowerCAmelCase , __lowerCAmelCase = pipe_prior( SCREAMING_SNAKE_CASE__ , image=SCREAMING_SNAKE_CASE__ , strength=0.8_5 , generator=SCREAMING_SNAKE_CASE__ , negative_prompt="""""" , ).to_tuple() __lowerCAmelCase = pipeline( image=SCREAMING_SNAKE_CASE__ , image_embeds=SCREAMING_SNAKE_CASE__ , negative_image_embeds=SCREAMING_SNAKE_CASE__ , hint=SCREAMING_SNAKE_CASE__ , generator=SCREAMING_SNAKE_CASE__ , num_inference_steps=1_00 , height=5_12 , width=5_12 , strength=0.5 , output_type="""np""" , ) __lowerCAmelCase = output.images[0] assert image.shape == (5_12, 5_12, 3) assert_mean_pixel_difference(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
229
1
'''simple docstring''' import torch from diffusers import EulerDiscreteScheduler from diffusers.utils import torch_device from .test_schedulers import SchedulerCommonTest class _lowerCAmelCase ( __UpperCAmelCase ): __SCREAMING_SNAKE_CASE : Any = (EulerDiscreteScheduler,) __SCREAMING_SNAKE_CASE : List[Any] = 10 def _a (self , **lowercase ): A_ : Union[str, Any] = { """num_train_timesteps""": 1100, """beta_start""": 0.00_01, """beta_end""": 0.02, """beta_schedule""": """linear""", } config.update(**lowercase ) return config def _a (self ): for timesteps in [10, 50, 100, 1000]: self.check_over_configs(num_train_timesteps=lowercase ) def _a (self ): for beta_start, beta_end in zip([0.0_00_01, 0.00_01, 0.0_01] , [0.00_02, 0.0_02, 0.02] ): self.check_over_configs(beta_start=lowercase , beta_end=lowercase ) def _a (self ): for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=lowercase ) def _a (self ): for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=lowercase ) def _a (self ): A_ : Tuple = self.scheduler_classes[0] A_ : List[Any] = self.get_scheduler_config() A_ : int = scheduler_class(**lowercase ) scheduler.set_timesteps(self.num_inference_steps ) A_ : Optional[Any] = torch.manual_seed(0 ) A_ : Optional[int] = self.dummy_model() A_ : Optional[int] = self.dummy_sample_deter * scheduler.init_noise_sigma A_ : List[Any] = sample.to(lowercase ) for i, t in enumerate(scheduler.timesteps ): A_ : Tuple = scheduler.scale_model_input(lowercase , lowercase ) A_ : Tuple = model(lowercase , lowercase ) A_ : Any = scheduler.step(lowercase , lowercase , lowercase , generator=lowercase ) A_ : List[Any] = output.prev_sample A_ : Optional[Any] = torch.sum(torch.abs(lowercase ) ) A_ : Any = torch.mean(torch.abs(lowercase ) ) assert abs(result_sum.item() - 10.08_07 ) < 1E-2 assert abs(result_mean.item() - 0.01_31 ) < 1E-3 def _a (self ): A_ : Any = self.scheduler_classes[0] A_ : Optional[int] = self.get_scheduler_config(prediction_type="""v_prediction""" ) A_ : Optional[int] = scheduler_class(**lowercase ) scheduler.set_timesteps(self.num_inference_steps ) A_ : Optional[Any] = torch.manual_seed(0 ) A_ : Dict = self.dummy_model() A_ : int = self.dummy_sample_deter * scheduler.init_noise_sigma A_ : Optional[Any] = sample.to(lowercase ) for i, t in enumerate(scheduler.timesteps ): A_ : List[Any] = scheduler.scale_model_input(lowercase , lowercase ) A_ : str = model(lowercase , lowercase ) A_ : List[str] = scheduler.step(lowercase , lowercase , lowercase , generator=lowercase ) A_ : Optional[Any] = output.prev_sample A_ : Tuple = torch.sum(torch.abs(lowercase ) ) A_ : Optional[Any] = torch.mean(torch.abs(lowercase ) ) assert abs(result_sum.item() - 0.00_02 ) < 1E-2 assert abs(result_mean.item() - 2.2_676E-06 ) < 1E-3 def _a (self ): A_ : Optional[int] = self.scheduler_classes[0] A_ : Tuple = self.get_scheduler_config() A_ : Optional[Any] = scheduler_class(**lowercase ) scheduler.set_timesteps(self.num_inference_steps , device=lowercase ) A_ : int = torch.manual_seed(0 ) A_ : Any = self.dummy_model() A_ : str = self.dummy_sample_deter * scheduler.init_noise_sigma.cpu() A_ : Optional[int] = sample.to(lowercase ) for t in scheduler.timesteps: A_ : Union[str, Any] = scheduler.scale_model_input(lowercase , lowercase ) A_ : int = model(lowercase , lowercase ) A_ : Optional[Any] = scheduler.step(lowercase , lowercase , lowercase , generator=lowercase ) A_ : Optional[Any] = output.prev_sample A_ : str = torch.sum(torch.abs(lowercase ) ) A_ : Dict = torch.mean(torch.abs(lowercase ) ) assert abs(result_sum.item() - 10.08_07 ) < 1E-2 assert abs(result_mean.item() - 0.01_31 ) < 1E-3 def _a (self ): A_ : Optional[int] = self.scheduler_classes[0] A_ : Any = self.get_scheduler_config() A_ : Optional[int] = scheduler_class(**lowercase , use_karras_sigmas=lowercase ) scheduler.set_timesteps(self.num_inference_steps , device=lowercase ) A_ : Optional[int] = torch.manual_seed(0 ) A_ : int = self.dummy_model() A_ : Tuple = self.dummy_sample_deter * scheduler.init_noise_sigma.cpu() A_ : Union[str, Any] = sample.to(lowercase ) for t in scheduler.timesteps: A_ : List[str] = scheduler.scale_model_input(lowercase , lowercase ) A_ : Any = model(lowercase , lowercase ) A_ : List[str] = scheduler.step(lowercase , lowercase , lowercase , generator=lowercase ) A_ : Optional[int] = output.prev_sample A_ : List[Any] = torch.sum(torch.abs(lowercase ) ) A_ : str = torch.mean(torch.abs(lowercase ) ) assert abs(result_sum.item() - 1_24.52_29_94_99_51_17_19 ) < 1E-2 assert abs(result_mean.item() - 0.1_62_13_93_26_33_39_99_63 ) < 1E-3
135
'''simple docstring''' from typing import Dict from .base import GenericTensor, Pipeline class _lowerCAmelCase ( __UpperCAmelCase ): def _a (self , lowercase=None , lowercase=None , lowercase=None , **lowercase ): if tokenize_kwargs is None: A_ : Optional[Any] = {} if truncation is not None: if "truncation" in tokenize_kwargs: raise ValueError( """truncation parameter defined twice (given as keyword argument as well as in tokenize_kwargs)""" ) A_ : str = truncation A_ : List[str] = tokenize_kwargs A_ : Dict = {} if return_tensors is not None: A_ : List[Any] = return_tensors return preprocess_params, {}, postprocess_params def _a (self , lowercase , **lowercase ): A_ : Optional[int] = self.framework A_ : str = self.tokenizer(lowercase , return_tensors=lowercase , **lowercase ) return model_inputs def _a (self , lowercase ): A_ : str = self.model(**lowercase ) return model_outputs def _a (self , lowercase , lowercase=False ): # [0] is the first available tensor, logits or last_hidden_state. if return_tensors: return model_outputs[0] if self.framework == "pt": return model_outputs[0].tolist() elif self.framework == "tf": return model_outputs[0].numpy().tolist() def __call__(self , *lowercase , **lowercase ): return super().__call__(*lowercase , **lowercase )
135
1
'''simple docstring''' from typing import Optional, Tuple import jax import jax.numpy as jnp from flax import linen as nn from flax.core.frozen_dict import FrozenDict from transformers import CLIPConfig, FlaxPreTrainedModel from transformers.models.clip.modeling_flax_clip import FlaxCLIPVisionModule def UpperCAmelCase_ ( __lowerCamelCase : str ,__lowerCamelCase : List[Any] ,__lowerCamelCase : Union[str, Any]=1e-12 ): lowercase_ :List[str] = jnp.divide(emb_a.T ,jnp.clip(jnp.linalg.norm(__lowerCamelCase ,axis=1 ) ,a_min=__lowerCamelCase ) ).T lowercase_ :List[Any] = jnp.divide(emb_a.T ,jnp.clip(jnp.linalg.norm(__lowerCamelCase ,axis=1 ) ,a_min=__lowerCamelCase ) ).T return jnp.matmul(__lowerCamelCase ,norm_emb_a.T ) class a_ ( nn.Module ): __A = 42 __A = jnp.floataa def lowercase__ ( self : List[str] ): """simple docstring""" lowercase_ :int = FlaxCLIPVisionModule(self.config.vision_config ) lowercase_ :str = nn.Dense(self.config.projection_dim , use_bias=lowercase , dtype=self.dtype ) lowercase_ :Optional[Any] = self.param("concept_embeds" , jax.nn.initializers.ones , (17, self.config.projection_dim) ) lowercase_ :Tuple = self.param( "special_care_embeds" , jax.nn.initializers.ones , (3, self.config.projection_dim) ) lowercase_ :Tuple = self.param("concept_embeds_weights" , jax.nn.initializers.ones , (17,) ) lowercase_ :str = self.param("special_care_embeds_weights" , jax.nn.initializers.ones , (3,) ) def __call__( self : Dict , lowercase : Tuple ): """simple docstring""" lowercase_ :Optional[Any] = self.vision_model(lowercase )[1] lowercase_ :Optional[int] = self.visual_projection(lowercase ) lowercase_ :Tuple = jax_cosine_distance(lowercase , self.special_care_embeds ) lowercase_ :List[str] = jax_cosine_distance(lowercase , self.concept_embeds ) # increase this value to create a stronger `nfsw` filter # at the cost of increasing the possibility of filtering benign image inputs lowercase_ :Union[str, Any] = 0.0 lowercase_ :Dict = special_cos_dist - self.special_care_embeds_weights[None, :] + adjustment lowercase_ :str = jnp.round(lowercase , 3 ) lowercase_ :List[Any] = jnp.any(special_scores > 0 , axis=1 , keepdims=lowercase ) # Use a lower threshold if an image has any special care concept lowercase_ :Dict = is_special_care * 0.01 lowercase_ :Dict = cos_dist - self.concept_embeds_weights[None, :] + special_adjustment lowercase_ :Any = jnp.round(lowercase , 3 ) lowercase_ :List[str] = jnp.any(concept_scores > 0 , axis=1 ) return has_nsfw_concepts class a_ ( _lowerCAmelCase ): __A = CLIPConfig __A = "clip_input" __A = FlaxStableDiffusionSafetyCheckerModule def __init__( self : str , lowercase : CLIPConfig , lowercase : Optional[Tuple] = None , lowercase : int = 0 , lowercase : jnp.dtype = jnp.floataa , lowercase : bool = True , **lowercase : Optional[Any] , ): """simple docstring""" if input_shape is None: lowercase_ :Tuple = (1, 224, 224, 3) lowercase_ :Union[str, Any] = self.module_class(config=lowercase , dtype=lowercase , **lowercase ) super().__init__(lowercase , lowercase , input_shape=lowercase , seed=lowercase , dtype=lowercase , _do_init=_do_init ) def lowercase__ ( self : Optional[int] , lowercase : jax.random.KeyArray , lowercase : Tuple , lowercase : FrozenDict = None ): """simple docstring""" lowercase_ :Union[str, Any] = jax.random.normal(lowercase , lowercase ) lowercase_ , lowercase_ :Optional[Any] = jax.random.split(lowercase ) lowercase_ :List[Any] = {"params": params_rng, "dropout": dropout_rng} lowercase_ :Dict = self.module.init(lowercase , lowercase )["params"] return random_params def __call__( self : Optional[Any] , lowercase : Tuple , lowercase : dict = None , ): """simple docstring""" lowercase_ :int = jnp.transpose(lowercase , (0, 2, 3, 1) ) return self.module.apply( {"params": params or self.params} , jnp.array(lowercase , dtype=jnp.floataa ) , rngs={} , )
223
'''simple docstring''' from typing import List, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase : Optional[int] =logging.get_logger(__name__) lowerCAmelCase : Tuple ={ '''huggingface/autoformer-tourism-monthly''': '''https://huggingface.co/huggingface/autoformer-tourism-monthly/resolve/main/config.json''', } class a_ ( _lowerCAmelCase ): __A = "autoformer" __A = { "hidden_size": "d_model", "num_attention_heads": "encoder_attention_heads", "num_hidden_layers": "encoder_layers", } def __init__( self : Any , lowercase : Optional[int] = None , lowercase : Optional[int] = None , lowercase : str = "student_t" , lowercase : str = "nll" , lowercase : int = 1 , lowercase : List[int] = [1, 2, 3, 4, 5, 6, 7] , lowercase : bool = True , lowercase : int = 0 , lowercase : int = 0 , lowercase : int = 0 , lowercase : int = 0 , lowercase : Optional[List[int]] = None , lowercase : Optional[List[int]] = None , lowercase : int = 64 , lowercase : int = 2 , lowercase : int = 2 , lowercase : int = 2 , lowercase : int = 2 , lowercase : int = 32 , lowercase : int = 32 , lowercase : str = "gelu" , lowercase : float = 0.1 , lowercase : float = 0.1 , lowercase : float = 0.1 , lowercase : float = 0.1 , lowercase : float = 0.1 , lowercase : int = 100 , lowercase : float = 0.02 , lowercase : bool = True , lowercase : int=True , lowercase : int = 10 , lowercase : int = 25 , lowercase : int = 3 , **lowercase : Dict , ): """simple docstring""" lowercase_ :str = prediction_length lowercase_ :Dict = context_length if context_length is not None else prediction_length lowercase_ :Any = distribution_output lowercase_ :Tuple = loss lowercase_ :Dict = input_size lowercase_ :Tuple = num_time_features lowercase_ :int = lags_sequence lowercase_ :Tuple = scaling lowercase_ :List[Any] = num_dynamic_real_features lowercase_ :Union[str, Any] = num_static_real_features lowercase_ :str = num_static_categorical_features if cardinality is not None and num_static_categorical_features > 0: if len(lowercase ) != num_static_categorical_features: raise ValueError( "The cardinality should be a list of the same length as `num_static_categorical_features`" ) lowercase_ :Optional[int] = cardinality else: lowercase_ :Optional[int] = [0] if embedding_dimension is not None and num_static_categorical_features > 0: if len(lowercase ) != num_static_categorical_features: raise ValueError( "The embedding dimension should be a list of the same length as `num_static_categorical_features`" ) lowercase_ :Tuple = embedding_dimension else: lowercase_ :Dict = [min(50 , (cat + 1) // 2 ) for cat in self.cardinality] lowercase_ :Any = num_parallel_samples # Transformer architecture configuration lowercase_ :Tuple = input_size * len(self.lags_sequence ) + self._number_of_features lowercase_ :Union[str, Any] = d_model lowercase_ :Optional[Any] = encoder_attention_heads lowercase_ :Optional[Any] = decoder_attention_heads lowercase_ :Optional[int] = encoder_ffn_dim lowercase_ :int = decoder_ffn_dim lowercase_ :Any = encoder_layers lowercase_ :Optional[Any] = decoder_layers lowercase_ :Dict = dropout lowercase_ :Dict = attention_dropout lowercase_ :str = activation_dropout lowercase_ :int = encoder_layerdrop lowercase_ :Dict = decoder_layerdrop lowercase_ :List[str] = activation_function lowercase_ :int = init_std lowercase_ :Optional[int] = use_cache # Autoformer lowercase_ :List[str] = label_length lowercase_ :List[str] = moving_average lowercase_ :Optional[int] = autocorrelation_factor super().__init__(is_encoder_decoder=lowercase , **lowercase ) @property def lowercase__ ( self : int ): """simple docstring""" return ( sum(self.embedding_dimension ) + self.num_dynamic_real_features + self.num_time_features + self.num_static_real_features + self.input_size * 2 # the log1p(abs(loc)) and log(scale) features )
223
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available UpperCAmelCase_ = { 'configuration_altclip': [ 'ALTCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP', 'AltCLIPConfig', 'AltCLIPTextConfig', 'AltCLIPVisionConfig', ], 'processing_altclip': ['AltCLIPProcessor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = [ 'ALTCLIP_PRETRAINED_MODEL_ARCHIVE_LIST', 'AltCLIPPreTrainedModel', 'AltCLIPModel', 'AltCLIPTextModel', 'AltCLIPVisionModel', ] if TYPE_CHECKING: from .configuration_altclip import ( ALTCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, AltCLIPConfig, AltCLIPTextConfig, AltCLIPVisionConfig, ) from .processing_altclip import AltCLIPProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_altclip import ( ALTCLIP_PRETRAINED_MODEL_ARCHIVE_LIST, AltCLIPModel, AltCLIPPreTrainedModel, AltCLIPTextModel, AltCLIPVisionModel, ) else: import sys UpperCAmelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
247
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) UpperCAmelCase_ = { 'configuration_xlm_roberta': [ 'XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP', 'XLMRobertaConfig', 'XLMRobertaOnnxConfig', ], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = ['XLMRobertaTokenizer'] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = ['XLMRobertaTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = [ 'XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST', 'XLMRobertaForCausalLM', 'XLMRobertaForMaskedLM', 'XLMRobertaForMultipleChoice', 'XLMRobertaForQuestionAnswering', 'XLMRobertaForSequenceClassification', 'XLMRobertaForTokenClassification', 'XLMRobertaModel', 'XLMRobertaPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = [ 'TF_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFXLMRobertaForCausalLM', 'TFXLMRobertaForMaskedLM', 'TFXLMRobertaForMultipleChoice', 'TFXLMRobertaForQuestionAnswering', 'TFXLMRobertaForSequenceClassification', 'TFXLMRobertaForTokenClassification', 'TFXLMRobertaModel', 'TFXLMRobertaPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = [ 'FLAX_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST', 'FlaxXLMRobertaForMaskedLM', 'FlaxXLMRobertaForCausalLM', 'FlaxXLMRobertaForMultipleChoice', 'FlaxXLMRobertaForQuestionAnswering', 'FlaxXLMRobertaForSequenceClassification', 'FlaxXLMRobertaForTokenClassification', 'FlaxXLMRobertaModel', 'FlaxXLMRobertaPreTrainedModel', ] if TYPE_CHECKING: from .configuration_xlm_roberta import ( XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMRobertaConfig, XLMRobertaOnnxConfig, ) try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlm_roberta import XLMRobertaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlm_roberta_fast import XLMRobertaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlm_roberta import ( XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, XLMRobertaForCausalLM, XLMRobertaForMaskedLM, XLMRobertaForMultipleChoice, XLMRobertaForQuestionAnswering, XLMRobertaForSequenceClassification, XLMRobertaForTokenClassification, XLMRobertaModel, XLMRobertaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlm_roberta import ( TF_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLMRobertaForCausalLM, TFXLMRobertaForMaskedLM, TFXLMRobertaForMultipleChoice, TFXLMRobertaForQuestionAnswering, TFXLMRobertaForSequenceClassification, TFXLMRobertaForTokenClassification, TFXLMRobertaModel, TFXLMRobertaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_xlm_roberta import ( FLAX_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, FlaxXLMRobertaForCausalLM, FlaxXLMRobertaForMaskedLM, FlaxXLMRobertaForMultipleChoice, FlaxXLMRobertaForQuestionAnswering, FlaxXLMRobertaForSequenceClassification, FlaxXLMRobertaForTokenClassification, FlaxXLMRobertaModel, FlaxXLMRobertaPreTrainedModel, ) else: import sys UpperCAmelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
247
1
'''simple docstring''' import math def A_ ( snake_case , snake_case ): if initial_intensity < 0: raise ValueError("The value of intensity cannot be negative" ) # handling of negative values of initial intensity if angle < 0 or angle > 360: raise ValueError("In Malus Law, the angle is in the range 0-360 degrees" ) # handling of values out of allowed range return initial_intensity * (math.cos(math.radians(snake_case ) ) ** 2) if __name__ == "__main__": import doctest doctest.testmod(name="malus_law")
139
'''simple docstring''' import unittest from dataclasses import dataclass import pytest from accelerate.commands.config.config_args import SageMakerConfig from accelerate.utils import ComputeEnvironment from accelerate.utils.launch import _convert_nargs_to_dict @dataclass class _snake_case ( _a ): _A : int = ComputeEnvironment.AMAZON_SAGEMAKER _A : List[Any] = True _A : Dict = '''ml.p3.2xlarge''' _A : Any = '''accelerate_sagemaker_execution_role''' _A : Union[str, Any] = '''hf-sm''' _A : Dict = '''us-east-1''' _A : List[Any] = 1 _A : Union[str, Any] = '''accelerate-sagemaker-1''' _A : List[Any] = '''1.6''' _A : Optional[Any] = '''4.4''' _A : Any = '''train.py''' _A : int = [ '''--model_name_or_path''', '''bert''', '''--do_train''', '''False''', '''--epochs''', '''3''', '''--learning_rate''', '''5e-5''', '''--max_steps''', '''50.5''', ] _A : Optional[Any] = [ '''--model_name_or_path''', '''bert''', '''--do_train''', '''--do_test''', '''False''', '''--do_predict''', '''--epochs''', '''3''', '''--learning_rate''', '''5e-5''', '''--max_steps''', '''50.5''', ] class _snake_case ( unittest.TestCase ): def __UpperCamelCase ( self : List[str] ): # If no defaults are changed, `to_kwargs` returns an empty dict. SCREAMING_SNAKE_CASE:str = _convert_nargs_to_dict(MockLaunchConfig.success_training_script_args ) assert isinstance(converted_args["model_name_or_path"] ,SCREAMING_SNAKE_CASE__ ) assert isinstance(converted_args["do_train"] ,SCREAMING_SNAKE_CASE__ ) assert isinstance(converted_args["epochs"] ,SCREAMING_SNAKE_CASE__ ) assert isinstance(converted_args["learning_rate"] ,SCREAMING_SNAKE_CASE__ ) assert isinstance(converted_args["max_steps"] ,SCREAMING_SNAKE_CASE__ ) with pytest.raises(SCREAMING_SNAKE_CASE__ ): _convert_nargs_to_dict(MockLaunchConfig.fail_training_script_args )
139
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available __UpperCAmelCase :str = {'configuration_yolos': ['YOLOS_PRETRAINED_CONFIG_ARCHIVE_MAP', 'YolosConfig', 'YolosOnnxConfig']} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase :Tuple = ['YolosFeatureExtractor'] __UpperCAmelCase :str = ['YolosImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase :Any = [ 'YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST', 'YolosForObjectDetection', 'YolosModel', 'YolosPreTrainedModel', ] if TYPE_CHECKING: from .configuration_yolos import YOLOS_PRETRAINED_CONFIG_ARCHIVE_MAP, YolosConfig, YolosOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_yolos import YolosFeatureExtractor from .image_processing_yolos import YolosImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_yolos import ( YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST, YolosForObjectDetection, YolosModel, YolosPreTrainedModel, ) else: import sys __UpperCAmelCase :Any = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
356
'''simple docstring''' import copy import inspect import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers import TimesformerConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, TimesformerForVideoClassification, TimesformerModel, ) from transformers.models.timesformer.modeling_timesformer import TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from transformers import VideoMAEImageProcessor class a : """simple docstring""" def __init__( self : List[str] , snake_case : Any , snake_case : Tuple=13 , snake_case : Any=10 , snake_case : Any=3 , snake_case : Dict=2 , snake_case : Optional[Any]=2 , snake_case : Union[str, Any]=True , snake_case : Dict=True , snake_case : List[Any]=32 , snake_case : Dict=5 , snake_case : List[str]=4 , snake_case : Dict=37 , snake_case : Any="gelu" , snake_case : Optional[int]=0.1 , snake_case : Union[str, Any]=0.1 , snake_case : Optional[int]=10 , snake_case : Dict=0.02 , snake_case : Tuple="divided_space_time" , snake_case : List[Any]=None , ) -> Optional[int]: __UpperCAmelCase : Dict = parent __UpperCAmelCase : Tuple = batch_size __UpperCAmelCase : Optional[Any] = image_size __UpperCAmelCase : Optional[int] = num_channels __UpperCAmelCase : Optional[Any] = patch_size __UpperCAmelCase : List[str] = num_frames __UpperCAmelCase : Union[str, Any] = is_training __UpperCAmelCase : str = use_labels __UpperCAmelCase : Union[str, Any] = hidden_size __UpperCAmelCase : Any = num_hidden_layers __UpperCAmelCase : List[Any] = num_attention_heads __UpperCAmelCase : Dict = intermediate_size __UpperCAmelCase : List[str] = hidden_act __UpperCAmelCase : List[Any] = hidden_dropout_prob __UpperCAmelCase : int = attention_probs_dropout_prob __UpperCAmelCase : Any = attention_type __UpperCAmelCase : Optional[Any] = initializer_range __UpperCAmelCase : str = scope __UpperCAmelCase : List[str] = num_labels # in TimeSformer, the number of spatial tokens equals num_frames * num_patches per frame + 1 CLS token __UpperCAmelCase : str = (image_size // patch_size) ** 2 __UpperCAmelCase : int = (num_frames) * self.num_patches_per_frame + 1 def lowerCamelCase__ ( self : List[Any] ) -> Tuple: __UpperCAmelCase : List[str] = floats_tensor( [self.batch_size, self.num_frames, self.num_channels, self.image_size, self.image_size] ) __UpperCAmelCase : Dict = None if self.use_labels: __UpperCAmelCase : List[str] = ids_tensor([self.batch_size] , self.num_labels ) __UpperCAmelCase : Optional[int] = self.get_config() return config, pixel_values, labels def lowerCamelCase__ ( self : List[Any] ) -> Optional[Any]: __UpperCAmelCase : str = TimesformerConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , num_frames=self.num_frames , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , initializer_range=self.initializer_range , attention_type=self.attention_type , ) __UpperCAmelCase : Optional[int] = self.num_labels return config def lowerCamelCase__ ( self : Dict , snake_case : Any , snake_case : Optional[int] , snake_case : List[Any] ) -> Optional[Any]: __UpperCAmelCase : List[Any] = TimesformerModel(config=snake_case ) model.to(snake_case ) model.eval() __UpperCAmelCase : Tuple = model(snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCamelCase__ ( self : int , snake_case : Tuple , snake_case : List[Any] , snake_case : Optional[Any] ) -> str: __UpperCAmelCase : Union[str, Any] = TimesformerForVideoClassification(snake_case ) model.to(snake_case ) model.eval() __UpperCAmelCase : str = model(snake_case ) # verify the logits shape __UpperCAmelCase : List[str] = torch.Size((self.batch_size, self.num_labels) ) self.parent.assertEqual(result.logits.shape , snake_case ) def lowerCamelCase__ ( self : Any ) -> List[str]: __UpperCAmelCase : Optional[int] = self.prepare_config_and_inputs() __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : int = config_and_inputs __UpperCAmelCase : Optional[Any] = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class a ( _a , _a , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = (TimesformerModel, TimesformerForVideoClassification) if is_torch_available() else () SCREAMING_SNAKE_CASE : Optional[Any] = ( {"feature-extraction": TimesformerModel, "video-classification": TimesformerForVideoClassification} if is_torch_available() else {} ) SCREAMING_SNAKE_CASE : int = False SCREAMING_SNAKE_CASE : str = False SCREAMING_SNAKE_CASE : Union[str, Any] = False SCREAMING_SNAKE_CASE : List[Any] = False def lowerCamelCase__ ( self : int ) -> str: __UpperCAmelCase : Tuple = TimesformerModelTester(self ) __UpperCAmelCase : str = ConfigTester( self , config_class=snake_case , has_text_modality=snake_case , hidden_size=37 ) def lowerCamelCase__ ( self : Dict , snake_case : Optional[int] , snake_case : Optional[int] , snake_case : Optional[int]=False ) -> Union[str, Any]: __UpperCAmelCase : Union[str, Any] = copy.deepcopy(snake_case ) if return_labels: if model_class in get_values(snake_case ): __UpperCAmelCase : List[Any] = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=snake_case ) return inputs_dict def lowerCamelCase__ ( self : Optional[Any] ) -> Union[str, Any]: self.config_tester.run_common_tests() @unittest.skip(reason='''TimeSformer does not use inputs_embeds''' ) def lowerCamelCase__ ( self : Any ) -> Dict: pass def lowerCamelCase__ ( self : Optional[Any] ) -> int: __UpperCAmelCase , __UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCAmelCase : Optional[Any] = model_class(snake_case ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) __UpperCAmelCase : Dict = model.get_output_embeddings() self.assertTrue(x is None or isinstance(snake_case , nn.Linear ) ) def lowerCamelCase__ ( self : List[Any] ) -> List[Any]: __UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCAmelCase : Dict = model_class(snake_case ) __UpperCAmelCase : Tuple = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __UpperCAmelCase : int = [*signature.parameters.keys()] __UpperCAmelCase : List[str] = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , snake_case ) def lowerCamelCase__ ( self : Union[str, Any] ) -> Dict: __UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case ) def lowerCamelCase__ ( self : Tuple ) -> Dict: __UpperCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_video_classification(*snake_case ) @slow def lowerCamelCase__ ( self : Union[str, Any] ) -> str: for model_name in TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCAmelCase : Optional[int] = TimesformerModel.from_pretrained(snake_case ) self.assertIsNotNone(snake_case ) def lowerCamelCase__ ( self : Dict ) -> List[Any]: if not self.has_attentions: pass else: __UpperCAmelCase , __UpperCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs_for_common() __UpperCAmelCase : Optional[int] = True for model_class in self.all_model_classes: __UpperCAmelCase : Tuple = self.model_tester.seq_length __UpperCAmelCase : int = self.model_tester.num_frames __UpperCAmelCase : Optional[int] = True __UpperCAmelCase : Any = False __UpperCAmelCase : Optional[int] = True __UpperCAmelCase : Tuple = model_class(snake_case ) model.to(snake_case ) model.eval() with torch.no_grad(): __UpperCAmelCase : int = model(**self._prepare_for_class(snake_case , snake_case ) ) __UpperCAmelCase : str = outputs.attentions self.assertEqual(len(snake_case ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] __UpperCAmelCase : Dict = True __UpperCAmelCase : str = model_class(snake_case ) model.to(snake_case ) model.eval() with torch.no_grad(): __UpperCAmelCase : List[Any] = model(**self._prepare_for_class(snake_case , snake_case ) ) __UpperCAmelCase : List[Any] = outputs.attentions self.assertEqual(len(snake_case ) , self.model_tester.num_hidden_layers ) # attentions has shape (batch_size x num_frames) x num_heads x (num_patches per frame + 1) x (num_patches per frame + 1) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len // num_frames + 1, seq_len // num_frames + 1] , ) __UpperCAmelCase : Tuple = len(snake_case ) # Check attention is always last and order is fine __UpperCAmelCase : Optional[int] = True __UpperCAmelCase : Optional[int] = True __UpperCAmelCase : Union[str, Any] = model_class(snake_case ) model.to(snake_case ) model.eval() with torch.no_grad(): __UpperCAmelCase : Any = model(**self._prepare_for_class(snake_case , snake_case ) ) self.assertEqual(out_len + 1 , len(snake_case ) ) __UpperCAmelCase : Any = outputs.attentions self.assertEqual(len(snake_case ) , self.model_tester.num_hidden_layers ) # attentions has shape (batch_size x num_frames) x num_heads x (num_patches per frame + 1) x (num_patches per frame + 1) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len // num_frames + 1, seq_len // num_frames + 1] , ) def lowerCamelCase__ ( self : Dict ) -> Union[str, Any]: def check_hidden_states_output(snake_case : Optional[Any] , snake_case : Optional[int] , snake_case : Tuple ): __UpperCAmelCase : str = model_class(snake_case ) model.to(snake_case ) model.eval() with torch.no_grad(): __UpperCAmelCase : Any = model(**self._prepare_for_class(snake_case , snake_case ) ) __UpperCAmelCase : int = outputs.hidden_states __UpperCAmelCase : Union[str, Any] = self.model_tester.num_hidden_layers + 1 self.assertEqual(len(snake_case ) , snake_case ) __UpperCAmelCase : int = self.model_tester.seq_length self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , ) __UpperCAmelCase , __UpperCAmelCase : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCAmelCase : str = True check_hidden_states_output(snake_case , snake_case , snake_case ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __UpperCAmelCase : str = True check_hidden_states_output(snake_case , snake_case , snake_case ) def _a ( ): '''simple docstring''' __UpperCAmelCase : Union[str, Any] = hf_hub_download( repo_id='''hf-internal-testing/spaghetti-video''' , filename='''eating_spaghetti.npy''' , repo_type='''dataset''' ) __UpperCAmelCase : int = np.load(_lowercase ) return list(_lowercase ) @require_torch @require_vision class a ( unittest.TestCase ): """simple docstring""" @cached_property def lowerCamelCase__ ( self : Union[str, Any] ) -> str: # logits were tested with a different mean and std, so we use the same here return ( VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5] , image_std=[0.5, 0.5, 0.5] ) if is_vision_available() else None ) @slow def lowerCamelCase__ ( self : str ) -> List[Any]: __UpperCAmelCase : Union[str, Any] = TimesformerForVideoClassification.from_pretrained('''facebook/timesformer-base-finetuned-k400''' ).to( snake_case ) __UpperCAmelCase : str = self.default_image_processor __UpperCAmelCase : Dict = prepare_video() __UpperCAmelCase : Union[str, Any] = image_processor(video[:8] , return_tensors='''pt''' ).to(snake_case ) # forward pass with torch.no_grad(): __UpperCAmelCase : List[Any] = model(**snake_case ) # verify the logits __UpperCAmelCase : Optional[Any] = torch.Size((1, 400) ) self.assertEqual(outputs.logits.shape , snake_case ) __UpperCAmelCase : List[Any] = torch.tensor([-0.3_016, -0.7_713, -0.4_205] ).to(snake_case ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , snake_case , atol=1E-4 ) )
240
0
'''simple docstring''' def _A ( snake_case ) -> bool: _lowercase : Dict = (1 + 24 * n) ** 0.5 return ((1 + root) / 6) % 1 == 0 def _A ( snake_case = 50_00 ) -> int: _lowercase : Dict = [(i * (3 * i - 1)) // 2 for i in range(1 , snake_case )] for i, pentagonal_i in enumerate(snake_case ): for j in range(snake_case , len(snake_case ) ): _lowercase : Optional[int] = pentagonal_nums[j] _lowercase : Dict = pentagonal_i + pentagonal_j _lowercase : str = pentagonal_j - pentagonal_i if is_pentagonal(snake_case ) and is_pentagonal(snake_case ): return b return -1 if __name__ == "__main__": print(F'''{solution() = }''')
250
'''simple docstring''' import inspect import os import sys import unittest import accelerate from accelerate.test_utils import execute_subprocess_async, require_tpu class a__ ( unittest.TestCase ): def _lowerCamelCase ( self ): """simple docstring""" _lowercase : str = inspect.getfile(accelerate.test_utils ) _lowercase : List[str] = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ["scripts", "test_script.py"] ) _lowercase : str = os.path.sep.join(inspect.getfile(self.__class__ ).split(os.path.sep )[:-1] ) @require_tpu def _lowerCamelCase ( self ): """simple docstring""" _lowercase : Optional[Any] = f''' {self.test_dir}/xla_spawn.py --num_cores 8 {self.test_file_path} '''.split() _lowercase : Tuple = [sys.executable] + distributed_args execute_subprocess_async(_UpperCamelCase , env=os.environ.copy() )
250
1
# coding=utf-8 # Copyright 2023 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # this script dumps information about the environment import os import platform import sys _lowerCamelCase : Any = "3" print("Python version:", sys.version) print("OS platform:", platform.platform()) print("OS architecture:", platform.machine()) try: import torch print("Torch version:", torch.__version__) print("Cuda available:", torch.cuda.is_available()) print("Cuda version:", torch.version.cuda) print("CuDNN version:", torch.backends.cudnn.version()) print("Number of GPUs available:", torch.cuda.device_count()) except ImportError: print("Torch version:", None) try: import transformers print("transformers version:", transformers.__version__) except ImportError: print("transformers version:", None)
99
def a__ ( UpperCAmelCase : int , UpperCAmelCase : int ) -> str: if a < 0 or b < 0: raise ValueError('''the value of both inputs must be positive''' ) UpperCAmelCase : List[Any] = str(bin(UpperCAmelCase ) )[2:] # remove the leading "0b" UpperCAmelCase : List[str] = str(bin(UpperCAmelCase ) )[2:] UpperCAmelCase : Optional[Any] = max(len(UpperCAmelCase ) , len(UpperCAmelCase ) ) return "0b" + "".join( str(int('''1''' in (char_a, char_b) ) ) for char_a, char_b in zip(a_binary.zfill(UpperCAmelCase ) , b_binary.zfill(UpperCAmelCase ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
99
1
from typing import Optional import numpy as np import torch from torch import nn from transformers import GPTaConfig, GPTaLMHeadModel from transformers.modeling_utils import ModuleUtilsMixin from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class lowercase__( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ): """simple docstring""" a :Optional[int] = [r'h\.\d+\.attn\.bias', r'h\.\d+\.attn\.masked_bias'] @register_to_config def __init__( self : int , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : Optional[int] = None , SCREAMING_SNAKE_CASE_ : int = 5_0_2_5_7 , SCREAMING_SNAKE_CASE_ : int = 1_0_2_4 , SCREAMING_SNAKE_CASE_ : int = 7_6_8 , SCREAMING_SNAKE_CASE_ : int = 1_2 , SCREAMING_SNAKE_CASE_ : int = 1_2 , SCREAMING_SNAKE_CASE_ : Optional[int] = None , SCREAMING_SNAKE_CASE_ : str = "gelu_new" , SCREAMING_SNAKE_CASE_ : float = 0.1 , SCREAMING_SNAKE_CASE_ : float = 0.1 , SCREAMING_SNAKE_CASE_ : float = 0.1 , SCREAMING_SNAKE_CASE_ : float = 1e-5 , SCREAMING_SNAKE_CASE_ : float = 0.02 , SCREAMING_SNAKE_CASE_ : bool = True , SCREAMING_SNAKE_CASE_ : bool = True , SCREAMING_SNAKE_CASE_ : bool = False , SCREAMING_SNAKE_CASE_ : bool = False , ) -> List[str]: super().__init__() lowercase_ = prefix_length if prefix_inner_dim != n_embd and prefix_hidden_dim is None: raise ValueError( f'''`prefix_hidden_dim` cannot be `None` when `prefix_inner_dim`: {prefix_hidden_dim} and''' f''' `n_embd`: {n_embd} are not equal.''' ) lowercase_ = prefix_inner_dim lowercase_ = prefix_hidden_dim lowercase_ = ( nn.Linear(self.prefix_inner_dim , self.prefix_hidden_dim ) if self.prefix_hidden_dim is not None else nn.Identity() ) lowercase_ = ( nn.Linear(self.prefix_hidden_dim , SCREAMING_SNAKE_CASE_ ) if self.prefix_hidden_dim is not None else nn.Identity() ) lowercase_ = GPTaConfig( vocab_size=SCREAMING_SNAKE_CASE_ , n_positions=SCREAMING_SNAKE_CASE_ , n_embd=SCREAMING_SNAKE_CASE_ , n_layer=SCREAMING_SNAKE_CASE_ , n_head=SCREAMING_SNAKE_CASE_ , n_inner=SCREAMING_SNAKE_CASE_ , activation_function=SCREAMING_SNAKE_CASE_ , resid_pdrop=SCREAMING_SNAKE_CASE_ , embd_pdrop=SCREAMING_SNAKE_CASE_ , attn_pdrop=SCREAMING_SNAKE_CASE_ , layer_norm_epsilon=SCREAMING_SNAKE_CASE_ , initializer_range=SCREAMING_SNAKE_CASE_ , scale_attn_weights=SCREAMING_SNAKE_CASE_ , use_cache=SCREAMING_SNAKE_CASE_ , scale_attn_by_inverse_layer_idx=SCREAMING_SNAKE_CASE_ , reorder_and_upcast_attn=SCREAMING_SNAKE_CASE_ , ) lowercase_ = GPTaLMHeadModel(SCREAMING_SNAKE_CASE_ ) def _lowercase ( self : int , SCREAMING_SNAKE_CASE_ : torch.Tensor , SCREAMING_SNAKE_CASE_ : torch.Tensor , SCREAMING_SNAKE_CASE_ : Optional[torch.Tensor] = None , SCREAMING_SNAKE_CASE_ : Optional[torch.Tensor] = None , ) -> Union[str, Any]: lowercase_ = self.transformer.transformer.wte(SCREAMING_SNAKE_CASE_ ) lowercase_ = self.encode_prefix(SCREAMING_SNAKE_CASE_ ) lowercase_ = self.decode_prefix(SCREAMING_SNAKE_CASE_ ) lowercase_ = torch.cat((prefix_embeds, embedding_text) , dim=1 ) if labels is not None: lowercase_ = self.get_dummy_token(input_ids.shape[0] , input_ids.device ) lowercase_ = torch.cat((dummy_token, input_ids) , dim=1 ) lowercase_ = self.transformer(inputs_embeds=SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ ) if self.prefix_hidden_dim is not None: return out, hidden else: return out def _lowercase ( self : int , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : torch.device ) -> torch.Tensor: return torch.zeros(SCREAMING_SNAKE_CASE_ , self.prefix_length , dtype=torch.intaa , device=SCREAMING_SNAKE_CASE_ ) def _lowercase ( self : List[str] , SCREAMING_SNAKE_CASE_ : Dict ) -> List[str]: return self.encode_prefix(SCREAMING_SNAKE_CASE_ ) @torch.no_grad() def _lowercase ( self : Union[str, Any] , SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : str ) -> Optional[int]: lowercase_ = torch.split(SCREAMING_SNAKE_CASE_ , 1 , dim=0 ) lowercase_ = [] lowercase_ = [] for feature in features: lowercase_ = self.decode_prefix(feature.to(SCREAMING_SNAKE_CASE_ ) ) # back to the clip feature # Only support beam search for now lowercase_ , lowercase_ = self.generate_beam( input_embeds=SCREAMING_SNAKE_CASE_ , device=SCREAMING_SNAKE_CASE_ , eos_token_id=SCREAMING_SNAKE_CASE_ ) generated_tokens.append(output_tokens[0] ) generated_seq_lengths.append(seq_lengths[0] ) lowercase_ = torch.stack(SCREAMING_SNAKE_CASE_ ) lowercase_ = torch.stack(SCREAMING_SNAKE_CASE_ ) return generated_tokens, generated_seq_lengths @torch.no_grad() def _lowercase ( self : Tuple , SCREAMING_SNAKE_CASE_ : Optional[int]=None , SCREAMING_SNAKE_CASE_ : Dict=None , SCREAMING_SNAKE_CASE_ : str=None , SCREAMING_SNAKE_CASE_ : int = 5 , SCREAMING_SNAKE_CASE_ : int = 6_7 , SCREAMING_SNAKE_CASE_ : float = 1.0 , SCREAMING_SNAKE_CASE_ : Optional[int] = None , ) -> List[str]: lowercase_ = eos_token_id lowercase_ = None lowercase_ = None lowercase_ = torch.ones(SCREAMING_SNAKE_CASE_ , device=SCREAMING_SNAKE_CASE_ , dtype=torch.int ) lowercase_ = torch.zeros(SCREAMING_SNAKE_CASE_ , device=SCREAMING_SNAKE_CASE_ , dtype=torch.bool ) if input_embeds is not None: lowercase_ = input_embeds else: lowercase_ = self.transformer.transformer.wte(SCREAMING_SNAKE_CASE_ ) for i in range(SCREAMING_SNAKE_CASE_ ): lowercase_ = self.transformer(inputs_embeds=SCREAMING_SNAKE_CASE_ ) lowercase_ = outputs.logits lowercase_ = logits[:, -1, :] / (temperature if temperature > 0 else 1.0) lowercase_ = logits.softmax(-1 ).log() if scores is None: lowercase_ , lowercase_ = logits.topk(SCREAMING_SNAKE_CASE_ , -1 ) lowercase_ = generated.expand(SCREAMING_SNAKE_CASE_ , *generated.shape[1:] ) lowercase_ , lowercase_ = next_tokens.permute(1 , 0 ), scores.squeeze(0 ) if tokens is None: lowercase_ = next_tokens else: lowercase_ = tokens.expand(SCREAMING_SNAKE_CASE_ , *tokens.shape[1:] ) lowercase_ = torch.cat((tokens, next_tokens) , dim=1 ) else: lowercase_ = -float(np.inf ) lowercase_ = 0 lowercase_ = scores[:, None] + logits seq_lengths[~is_stopped] += 1 lowercase_ = scores_sum / seq_lengths[:, None] lowercase_ , lowercase_ = scores_sum_average.view(-1 ).topk(SCREAMING_SNAKE_CASE_ , -1 ) lowercase_ = next_tokens // scores_sum.shape[1] lowercase_ = seq_lengths[next_tokens_source] lowercase_ = next_tokens % scores_sum.shape[1] lowercase_ = next_tokens.unsqueeze(1 ) lowercase_ = tokens[next_tokens_source] lowercase_ = torch.cat((tokens, next_tokens) , dim=1 ) lowercase_ = generated[next_tokens_source] lowercase_ = scores_sum_average * seq_lengths lowercase_ = is_stopped[next_tokens_source] lowercase_ = self.transformer.transformer.wte(next_tokens.squeeze() ).view(generated.shape[0] , 1 , -1 ) lowercase_ = torch.cat((generated, next_token_embed) , dim=1 ) lowercase_ = is_stopped + next_tokens.eq(SCREAMING_SNAKE_CASE_ ).squeeze() if is_stopped.all(): break lowercase_ = scores / seq_lengths lowercase_ = scores.argsort(descending=SCREAMING_SNAKE_CASE_ ) # tokens tensors are already padded to max_seq_length lowercase_ = [tokens[i] for i in order] lowercase_ = torch.stack(SCREAMING_SNAKE_CASE_ , dim=0 ) lowercase_ = torch.tensor([seq_lengths[i] for i in order] , dtype=seq_lengths.dtype ) return output_texts, seq_lengths
30
from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available() and is_transformers_version('>=', '4.25.0')): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import UnCLIPImageVariationPipeline, UnCLIPPipeline else: from .pipeline_unclip import UnCLIPPipeline from .pipeline_unclip_image_variation import UnCLIPImageVariationPipeline from .text_proj import UnCLIPTextProjModel
30
1
'''simple docstring''' from __future__ import annotations import unittest from transformers import LEDConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFLEDForConditionalGeneration, TFLEDModel @require_tf class a__ : '''simple docstring''' lowercase__ : Tuple = LEDConfig lowercase__ : Optional[Any] = {} lowercase__ : str = "gelu" def __init__( self , lowerCamelCase_ , lowerCamelCase_=13 , lowerCamelCase_=7 , lowerCamelCase_=True , lowerCamelCase_=False , lowerCamelCase_=99 , lowerCamelCase_=32 , lowerCamelCase_=2 , lowerCamelCase_=4 , lowerCamelCase_=37 , lowerCamelCase_=0.1 , lowerCamelCase_=0.1 , lowerCamelCase_=20 , lowerCamelCase_=2 , lowerCamelCase_=1 , lowerCamelCase_=0 , lowerCamelCase_=4 , ) -> str: lowerCAmelCase__ = parent lowerCAmelCase__ = batch_size lowerCAmelCase__ = seq_length lowerCAmelCase__ = is_training lowerCAmelCase__ = use_labels lowerCAmelCase__ = vocab_size lowerCAmelCase__ = hidden_size lowerCAmelCase__ = num_hidden_layers lowerCAmelCase__ = num_attention_heads lowerCAmelCase__ = intermediate_size lowerCAmelCase__ = hidden_dropout_prob lowerCAmelCase__ = attention_probs_dropout_prob lowerCAmelCase__ = max_position_embeddings lowerCAmelCase__ = eos_token_id lowerCAmelCase__ = pad_token_id lowerCAmelCase__ = bos_token_id lowerCAmelCase__ = attention_window # `ModelTesterMixin.test_attention_outputs` is expecting attention tensors to be of size # [num_attention_heads, encoder_seq_length, encoder_key_length], but TFLongformerSelfAttention # returns attention of shape [num_attention_heads, encoder_seq_length, self.attention_window + 1] # because its local attention only attends to `self.attention_window` and one before and one after lowerCAmelCase__ = self.attention_window + 2 # because of padding `encoder_seq_length`, is different from `seq_length`. Relevant for # the `test_attention_outputs` and `test_hidden_states_output` tests lowerCAmelCase__ = ( self.seq_length + (self.attention_window - self.seq_length % self.attention_window) % self.attention_window ) def __SCREAMING_SNAKE_CASE ( self ) -> List[Any]: lowerCAmelCase__ = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) lowerCAmelCase__ = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) lowerCAmelCase__ = tf.concat([input_ids, eos_tensor] , axis=1 ) lowerCAmelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCAmelCase__ = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , attention_window=self.attention_window , **self.config_updates , ) lowerCAmelCase__ = prepare_led_inputs_dict(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) lowerCAmelCase__ = tf.concat( [tf.zeros_like(lowerCamelCase_ )[:, :-1], tf.ones_like(lowerCamelCase_ )[:, -1:]] , axis=-1 , ) lowerCAmelCase__ = global_attention_mask return config, inputs_dict def __SCREAMING_SNAKE_CASE ( self , lowerCamelCase_ , lowerCamelCase_ ) -> int: lowerCAmelCase__ = TFLEDModel(config=lowerCamelCase_ ).get_decoder() lowerCAmelCase__ = inputs_dict['''input_ids'''] lowerCAmelCase__ = input_ids[:1, :] lowerCAmelCase__ = inputs_dict['''attention_mask'''][:1, :] lowerCAmelCase__ = 1 # first forward pass lowerCAmelCase__ = model(lowerCamelCase_ , attention_mask=lowerCamelCase_ , use_cache=lowerCamelCase_ ) lowerCAmelCase__ , lowerCAmelCase__ = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids lowerCAmelCase__ = ids_tensor((self.batch_size, 3) , config.vocab_size ) lowerCAmelCase__ = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and lowerCAmelCase__ = tf.concat([input_ids, next_tokens] , axis=-1 ) lowerCAmelCase__ = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) lowerCAmelCase__ = model(lowerCamelCase_ , attention_mask=lowerCamelCase_ )[0] lowerCAmelCase__ = model(lowerCamelCase_ , attention_mask=lowerCamelCase_ , past_key_values=lowerCamelCase_ )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice lowerCAmelCase__ = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) lowerCAmelCase__ = output_from_no_past[:, -3:, random_slice_idx] lowerCAmelCase__ = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(lowerCamelCase_ , lowerCamelCase_ , rtol=1e-3 ) def _snake_case ( A , A , A , A=None , A=None , A=None , A=None , ) -> List[str]: if attention_mask is None: lowerCAmelCase__ = tf.cast(tf.math.not_equal(A , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: lowerCAmelCase__ = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: lowerCAmelCase__ = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: lowerCAmelCase__ = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "attention_mask": attention_mask, "decoder_input_ids": decoder_input_ids, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, } @require_tf class a__ ( a__ , a__ , unittest.TestCase ): '''simple docstring''' lowercase__ : str = (TFLEDForConditionalGeneration, TFLEDModel) if is_tf_available() else () lowercase__ : Union[str, Any] = (TFLEDForConditionalGeneration,) if is_tf_available() else () lowercase__ : str = ( { "conversational": TFLEDForConditionalGeneration, "feature-extraction": TFLEDModel, "summarization": TFLEDForConditionalGeneration, "text2text-generation": TFLEDForConditionalGeneration, "translation": TFLEDForConditionalGeneration, } if is_tf_available() else {} ) lowercase__ : Optional[int] = True lowercase__ : int = False lowercase__ : str = False lowercase__ : Any = False def __SCREAMING_SNAKE_CASE ( self ) -> List[str]: lowerCAmelCase__ = TFLEDModelTester(self ) lowerCAmelCase__ = ConfigTester(self , config_class=lowerCamelCase_ ) def __SCREAMING_SNAKE_CASE ( self ) -> Tuple: self.config_tester.run_common_tests() def __SCREAMING_SNAKE_CASE ( self ) -> List[str]: lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*lowerCamelCase_ ) def __SCREAMING_SNAKE_CASE ( self ) -> List[Any]: lowerCAmelCase__ , lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase__ = tf.zeros_like(inputs_dict['''attention_mask'''] ) lowerCAmelCase__ = 2 lowerCAmelCase__ = tf.where( tf.range(self.model_tester.seq_length )[None, :] < num_global_attn_indices , 1 , inputs_dict['''global_attention_mask'''] , ) lowerCAmelCase__ = True lowerCAmelCase__ = self.model_tester.seq_length lowerCAmelCase__ = self.model_tester.encoder_seq_length def check_decoder_attentions_output(lowerCamelCase_ ): lowerCAmelCase__ = outputs.decoder_attentions self.assertEqual(len(lowerCamelCase_ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_length, seq_length] , ) def check_encoder_attentions_output(lowerCamelCase_ ): lowerCAmelCase__ = [t.numpy() for t in outputs.encoder_attentions] lowerCAmelCase__ = [t.numpy() for t in outputs.encoder_global_attentions] self.assertEqual(len(lowerCamelCase_ ) , self.model_tester.num_hidden_layers ) self.assertEqual(len(lowerCamelCase_ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_length, seq_length] , ) self.assertListEqual( list(global_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, num_global_attn_indices] , ) for model_class in self.all_model_classes: lowerCAmelCase__ = True lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = model_class(lowerCamelCase_ ) lowerCAmelCase__ = model(self._prepare_for_class(lowerCamelCase_ , lowerCamelCase_ ) ) lowerCAmelCase__ = len(lowerCamelCase_ ) self.assertEqual(config.output_hidden_states , lowerCamelCase_ ) check_encoder_attentions_output(lowerCamelCase_ ) if self.is_encoder_decoder: lowerCAmelCase__ = model_class(lowerCamelCase_ ) lowerCAmelCase__ = model(self._prepare_for_class(lowerCamelCase_ , lowerCamelCase_ ) ) self.assertEqual(config.output_hidden_states , lowerCamelCase_ ) check_decoder_attentions_output(lowerCamelCase_ ) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] lowerCAmelCase__ = True lowerCAmelCase__ = model_class(lowerCamelCase_ ) lowerCAmelCase__ = model(self._prepare_for_class(lowerCamelCase_ , lowerCamelCase_ ) ) self.assertEqual(config.output_hidden_states , lowerCamelCase_ ) check_encoder_attentions_output(lowerCamelCase_ ) # Check attention is always last and order is fine lowerCAmelCase__ = True lowerCAmelCase__ = True lowerCAmelCase__ = model_class(lowerCamelCase_ ) lowerCAmelCase__ = model(self._prepare_for_class(lowerCamelCase_ , lowerCamelCase_ ) ) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(lowerCamelCase_ ) ) self.assertEqual(model.config.output_hidden_states , lowerCamelCase_ ) check_encoder_attentions_output(lowerCamelCase_ ) @unittest.skip('''LED keeps using potentially symbolic tensors in conditionals and breaks tracing.''' ) def __SCREAMING_SNAKE_CASE ( self ) -> Tuple: pass def __SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: # TODO: Head-masking not yet implement pass def _snake_case ( A ) -> Optional[int]: return tf.constant(A , dtype=tf.intaa ) __UpperCAmelCase = 1e-4 @slow @require_tf class a__ ( unittest.TestCase ): '''simple docstring''' def __SCREAMING_SNAKE_CASE ( self ) -> List[Any]: lowerCAmelCase__ = TFLEDForConditionalGeneration.from_pretrained('''allenai/led-base-16384''' ).led # change to intended input here lowerCAmelCase__ = _long_tensor([5_12 * [0, 3_14_14, 2_32, 3_28, 7_40, 11_40, 1_26_95, 69]] ) lowerCAmelCase__ = _long_tensor([1_28 * [0, 3_14_14, 2_32, 3_28, 7_40, 11_40, 1_26_95, 69]] ) lowerCAmelCase__ = prepare_led_inputs_dict(model.config , lowerCamelCase_ , lowerCamelCase_ ) lowerCAmelCase__ = model(**lowerCamelCase_ )[0] lowerCAmelCase__ = (1, 10_24, 7_68) self.assertEqual(output.shape , lowerCamelCase_ ) # change to expected output here lowerCAmelCase__ = tf.convert_to_tensor( [[2.3_050, 2.8_279, 0.6_531], [-1.8_457, -0.1_455, -3.5_661], [-1.0_186, 0.4_586, -2.2_043]] , ) tf.debugging.assert_near(output[:, :3, :3] , lowerCamelCase_ , atol=1e-3 ) def __SCREAMING_SNAKE_CASE ( self ) -> List[str]: lowerCAmelCase__ = TFLEDForConditionalGeneration.from_pretrained('''allenai/led-base-16384''' ) # change to intended input here lowerCAmelCase__ = _long_tensor([5_12 * [0, 3_14_14, 2_32, 3_28, 7_40, 11_40, 1_26_95, 69]] ) lowerCAmelCase__ = _long_tensor([1_28 * [0, 3_14_14, 2_32, 3_28, 7_40, 11_40, 1_26_95, 69]] ) lowerCAmelCase__ = prepare_led_inputs_dict(model.config , lowerCamelCase_ , lowerCamelCase_ ) lowerCAmelCase__ = model(**lowerCamelCase_ )[0] lowerCAmelCase__ = (1, 10_24, model.config.vocab_size) self.assertEqual(output.shape , lowerCamelCase_ ) # change to expected output here lowerCAmelCase__ = tf.convert_to_tensor( [[33.6_507, 6.4_572, 16.8_089], [5.8_739, -2.4_238, 11.2_902], [-3.2_139, -4.3_149, 4.2_783]] , ) tf.debugging.assert_near(output[:, :3, :3] , lowerCamelCase_ , atol=1e-3 , rtol=1e-3 )
228
'''simple docstring''' import argparse import json import subprocess def _snake_case ( A , A ) -> Tuple: lowerCAmelCase__ = [] lowerCAmelCase__ = ( F"""curl -H \"Accept: application/vnd.github+json\" -H \"Authorization: Bearer {token}\"""" ''' https://api.github.com/repos/huggingface/transformers/actions/runners''' ) lowerCAmelCase__ = subprocess.run(A , shell=A , stdout=subprocess.PIPE ) lowerCAmelCase__ = output.stdout.decode('''utf-8''' ) lowerCAmelCase__ = json.loads(A ) lowerCAmelCase__ = status['''runners'''] for runner in runners: if runner["name"] in target_runners: if runner["status"] == "offline": offline_runners.append(A ) # save the result so we can report them on Slack with open('''offline_runners.txt''' , '''w''' ) as fp: fp.write(json.dumps(A ) ) if len(A ) > 0: lowerCAmelCase__ = '''\n'''.join([x['''name'''] for x in offline_runners] ) raise ValueError(F"""The following runners are offline:\n{failed}""" ) if __name__ == "__main__": def _snake_case ( A ) -> Optional[Any]: return values.split(''',''' ) __UpperCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--target_runners''', default=None, type=list_str, required=True, help='''Comma-separated list of runners to check status.''', ) parser.add_argument( '''--token''', default=None, type=str, required=True, help='''A token that has actions:read permission.''' ) __UpperCAmelCase = parser.parse_args() get_runner_status(args.target_runners, args.token)
228
1
import flax.linen as nn import jax import jax.numpy as jnp class _snake_case ( nn.Module ): SCREAMING_SNAKE_CASE__ = 42 SCREAMING_SNAKE_CASE__ = jnp.floataa def SCREAMING_SNAKE_CASE__ ( self ): a :Optional[Any] = nn.Conv( self.out_channels , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) def __call__( self , _lowerCamelCase ): a , a , a , a :int = hidden_states.shape a :Dict = jax.image.resize( _lowerCamelCase , shape=(batch, height * 2, width * 2, channels) , method='''nearest''' , ) a :Dict = self.conv(_lowerCamelCase ) return hidden_states class _snake_case ( nn.Module ): SCREAMING_SNAKE_CASE__ = 42 SCREAMING_SNAKE_CASE__ = jnp.floataa def SCREAMING_SNAKE_CASE__ ( self ): a :int = nn.Conv( self.out_channels , kernel_size=(3, 3) , strides=(2, 2) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) def __call__( self , _lowerCamelCase ): # pad = ((0, 0), (0, 1), (0, 1), (0, 0)) # pad height and width dim # hidden_states = jnp.pad(hidden_states, pad_width=pad) a :Tuple = self.conv(_lowerCamelCase ) return hidden_states class _snake_case ( nn.Module ): SCREAMING_SNAKE_CASE__ = 42 SCREAMING_SNAKE_CASE__ = None SCREAMING_SNAKE_CASE__ = 0.0 SCREAMING_SNAKE_CASE__ = None SCREAMING_SNAKE_CASE__ = jnp.floataa def SCREAMING_SNAKE_CASE__ ( self ): a :str = self.in_channels if self.out_channels is None else self.out_channels a :Tuple = nn.GroupNorm(num_groups=32 , epsilon=1e-5 ) a :str = nn.Conv( _lowerCamelCase , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) a :Dict = nn.Dense(_lowerCamelCase , dtype=self.dtype ) a :Optional[int] = nn.GroupNorm(num_groups=32 , epsilon=1e-5 ) a :int = nn.Dropout(self.dropout_prob ) a :List[Any] = nn.Conv( _lowerCamelCase , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) a :Any = self.in_channels != out_channels if self.use_nin_shortcut is None else self.use_nin_shortcut a :Any = None if use_nin_shortcut: a :Dict = nn.Conv( _lowerCamelCase , kernel_size=(1, 1) , strides=(1, 1) , padding='''VALID''' , dtype=self.dtype , ) def __call__( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=True ): a :List[str] = hidden_states a :Dict = self.norma(_lowerCamelCase ) a :int = nn.swish(_lowerCamelCase ) a :str = self.conva(_lowerCamelCase ) a :Union[str, Any] = self.time_emb_proj(nn.swish(_lowerCamelCase ) ) a :Optional[int] = jnp.expand_dims(jnp.expand_dims(_lowerCamelCase , 1 ) , 1 ) a :Union[str, Any] = hidden_states + temb a :Optional[int] = self.norma(_lowerCamelCase ) a :Tuple = nn.swish(_lowerCamelCase ) a :Dict = self.dropout(_lowerCamelCase , _lowerCamelCase ) a :Optional[Any] = self.conva(_lowerCamelCase ) if self.conv_shortcut is not None: a :Dict = self.conv_shortcut(_lowerCamelCase ) return hidden_states + residual
94
import string import numpy def __lowerCamelCase ( UpperCAmelCase_ : int , UpperCAmelCase_ : int ): """simple docstring""" return b if a == 0 else greatest_common_divisor(b % a , UpperCAmelCase_ ) class _snake_case : SCREAMING_SNAKE_CASE__ = string.ascii_uppercase + string.digits # This cipher takes alphanumerics into account # i.e. a total of 36 characters # take x and return x % len(key_string) SCREAMING_SNAKE_CASE__ = numpy.vectorize(lambda _snake_case : x % 36 ) SCREAMING_SNAKE_CASE__ = numpy.vectorize(_snake_case ) def __init__( self , _lowerCamelCase ): a :List[Any] = self.modulus(_lowerCamelCase ) # mod36 calc's on the encrypt key self.check_determinant() # validate the determinant of the encryption key a :int = encrypt_key.shape[0] def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase ): return self.key_string.index(_lowerCamelCase ) def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase ): return self.key_string[round(_lowerCamelCase )] def SCREAMING_SNAKE_CASE__ ( self ): a :str = round(numpy.linalg.det(self.encrypt_key ) ) if det < 0: a :Any = det % len(self.key_string ) a :Dict = len(self.key_string ) if greatest_common_divisor(_lowerCamelCase , len(self.key_string ) ) != 1: a :int = ( F'''determinant modular {req_l} of encryption key({det}) ''' F'''is not co prime w.r.t {req_l}.\nTry another key.''' ) raise ValueError(_lowerCamelCase ) def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase ): a :Optional[Any] = [char for char in text.upper() if char in self.key_string] a :List[str] = chars[-1] while len(_lowerCamelCase ) % self.break_key != 0: chars.append(_lowerCamelCase ) return "".join(_lowerCamelCase ) def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase ): a :Dict = self.process_text(text.upper() ) a :List[str] = '''''' for i in range(0 , len(_lowerCamelCase ) - self.break_key + 1 , self.break_key ): a :int = text[i : i + self.break_key] a :Optional[int] = [self.replace_letters(_lowerCamelCase ) for char in batch] a :Union[str, Any] = numpy.array([vec] ).T a :str = self.modulus(self.encrypt_key.dot(_lowerCamelCase ) ).T.tolist()[ 0 ] a :List[Any] = ''''''.join( self.replace_digits(_lowerCamelCase ) for num in batch_encrypted ) encrypted += encrypted_batch return encrypted def SCREAMING_SNAKE_CASE__ ( self ): a :List[Any] = round(numpy.linalg.det(self.encrypt_key ) ) if det < 0: a :int = det % len(self.key_string ) a :Tuple = None for i in range(len(self.key_string ) ): if (det * i) % len(self.key_string ) == 1: a :Tuple = i break a :List[str] = ( det_inv * numpy.linalg.det(self.encrypt_key ) * numpy.linalg.inv(self.encrypt_key ) ) return self.to_int(self.modulus(_lowerCamelCase ) ) def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase ): a :List[Any] = self.make_decrypt_key() a :str = self.process_text(text.upper() ) a :List[Any] = '''''' for i in range(0 , len(_lowerCamelCase ) - self.break_key + 1 , self.break_key ): a :Optional[Any] = text[i : i + self.break_key] a :List[Any] = [self.replace_letters(_lowerCamelCase ) for char in batch] a :str = numpy.array([vec] ).T a :Dict = self.modulus(decrypt_key.dot(_lowerCamelCase ) ).T.tolist()[0] a :List[Any] = ''''''.join( self.replace_digits(_lowerCamelCase ) for num in batch_decrypted ) decrypted += decrypted_batch return decrypted def __lowerCamelCase ( ): """simple docstring""" a :Tuple = int(input('''Enter the order of the encryption key: ''' ) ) a :Dict = [] print('''Enter each row of the encryption key with space separated integers''' ) for _ in range(UpperCAmelCase_ ): a :List[str] = [int(UpperCAmelCase_ ) for x in input().split()] hill_matrix.append(UpperCAmelCase_ ) a :Any = HillCipher(numpy.array(UpperCAmelCase_ ) ) print('''Would you like to encrypt or decrypt some text? (1 or 2)''' ) a :Any = input('''\n1. Encrypt\n2. Decrypt\n''' ) if option == "1": a :str = input('''What text would you like to encrypt?: ''' ) print('''Your encrypted text is:''' ) print(hc.encrypt(UpperCAmelCase_ ) ) elif option == "2": a :Dict = input('''What text would you like to decrypt?: ''' ) print('''Your decrypted text is:''' ) print(hc.decrypt(UpperCAmelCase_ ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
94
1
"""simple docstring""" import warnings from ...utils import logging from .image_processing_perceiver import PerceiverImageProcessor _lowercase : List[str] = logging.get_logger(__name__) class __SCREAMING_SNAKE_CASE ( lowerCAmelCase_ ): '''simple docstring''' def __init__( self : Dict, *lowerCamelCase : Optional[int], **lowerCamelCase : int )-> None: warnings.warn( '''The class PerceiverFeatureExtractor is deprecated and will be removed in version 5 of Transformers.''' ''' Please use PerceiverImageProcessor instead.''', lowerCamelCase, ) super().__init__(*lowerCamelCase, **lowerCamelCase )
272
"""simple docstring""" import logging import os from typing import Dict, List, Optional, Union import torch import torch.nn as nn from accelerate.utils.imports import ( is_abit_bnb_available, is_abit_bnb_available, is_bnb_available, ) from ..big_modeling import dispatch_model, init_empty_weights from .dataclasses import BnbQuantizationConfig from .modeling import ( find_tied_parameters, get_balanced_memory, infer_auto_device_map, load_checkpoint_in_model, offload_weight, set_module_tensor_to_device, ) if is_bnb_available(): import bitsandbytes as bnb from copy import deepcopy _lowercase : Tuple = logging.getLogger(__name__) def snake_case__ ( __lowerCamelCase : torch.nn.Module , __lowerCamelCase : BnbQuantizationConfig , __lowerCamelCase : Union[str, os.PathLike] = None , __lowerCamelCase : Optional[Dict[str, Union[int, str, torch.device]]] = None , __lowerCamelCase : Optional[List[str]] = None , __lowerCamelCase : Optional[Dict[Union[int, str], Union[int, str]]] = None , __lowerCamelCase : Optional[Union[str, os.PathLike]] = None , __lowerCamelCase : bool = False , ): """simple docstring""" lowerCamelCase__ : str =bnb_quantization_config.load_in_abit lowerCamelCase__ : str =bnb_quantization_config.load_in_abit if load_in_abit and not is_abit_bnb_available(): raise ImportError( '''You have a version of `bitsandbytes` that is not compatible with 8bit quantization,''' ''' make sure you have the latest version of `bitsandbytes` installed.''' ) if load_in_abit and not is_abit_bnb_available(): raise ValueError( '''You have a version of `bitsandbytes` that is not compatible with 4bit quantization,''' '''make sure you have the latest version of `bitsandbytes` installed.''' ) lowerCamelCase__ : str =[] # custom device map if isinstance(__lowerCamelCase , __lowerCamelCase ) and len(device_map.keys() ) > 1: lowerCamelCase__ : Union[str, Any] =[key for key, value in device_map.items() if value in ['''disk''', '''cpu''']] # We keep some modules such as the lm_head in their original dtype for numerical stability reasons if bnb_quantization_config.skip_modules is None: lowerCamelCase__ : Any =get_keys_to_not_convert(__lowerCamelCase ) # add cpu modules to skip modules only for 4-bit modules if load_in_abit: bnb_quantization_config.skip_modules.extend(__lowerCamelCase ) lowerCamelCase__ : Tuple =bnb_quantization_config.skip_modules # We add the modules we want to keep in full precision if bnb_quantization_config.keep_in_fpaa_modules is None: lowerCamelCase__ : Optional[Any] =[] lowerCamelCase__ : List[Any] =bnb_quantization_config.keep_in_fpaa_modules modules_to_not_convert.extend(__lowerCamelCase ) # compatibility with peft lowerCamelCase__ : List[str] =load_in_abit lowerCamelCase__ : List[str] =load_in_abit lowerCamelCase__ : Union[str, Any] =get_parameter_device(__lowerCamelCase ) if model_device.type != "meta": # quantization of an already loaded model logger.warning( '''It is not recommended to quantize a loaded model. ''' '''The model should be instantiated under the `init_empty_weights` context manager.''' ) lowerCamelCase__ : str =replace_with_bnb_layers(__lowerCamelCase , __lowerCamelCase , modules_to_not_convert=__lowerCamelCase ) # convert param to the right dtype lowerCamelCase__ : Union[str, Any] =bnb_quantization_config.torch_dtype for name, param in model.state_dict().items(): if any(module_to_keep_in_fpaa in name for module_to_keep_in_fpaa in keep_in_fpaa_modules ): param.to(torch.floataa ) if param.dtype != torch.floataa: lowerCamelCase__ : Optional[int] =name.replace('''.weight''' , '''''' ).replace('''.bias''' , '''''' ) lowerCamelCase__ : Dict =getattr(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) if param is not None: param.to(torch.floataa ) elif torch.is_floating_point(__lowerCamelCase ): param.to(__lowerCamelCase ) if model_device.type == "cuda": # move everything to cpu in the first place because we can't do quantization if the weights are already on cuda model.cuda(torch.cuda.current_device() ) torch.cuda.empty_cache() elif torch.cuda.is_available(): model.to(torch.cuda.current_device() ) else: raise RuntimeError('''No GPU found. A GPU is needed for quantization.''' ) logger.info( f'''The model device type is {model_device.type}. However, cuda is needed for quantization.''' '''We move the model to cuda.''' ) return model elif weights_location is None: raise RuntimeError( f'''`weights_location` needs to be the folder path containing the weights of the model, but we found {weights_location} ''' ) else: with init_empty_weights(): lowerCamelCase__ : Dict =replace_with_bnb_layers( __lowerCamelCase , __lowerCamelCase , modules_to_not_convert=__lowerCamelCase ) lowerCamelCase__ : Optional[int] =get_quantized_model_device_map( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , max_memory=__lowerCamelCase , no_split_module_classes=__lowerCamelCase , ) if offload_state_dict is None and device_map is not None and "disk" in device_map.values(): lowerCamelCase__ : List[str] =True lowerCamelCase__ : Dict =any(x in list(device_map.values() ) for x in ['''cpu''', '''disk'''] ) load_checkpoint_in_model( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , dtype=bnb_quantization_config.torch_dtype , offload_folder=__lowerCamelCase , offload_state_dict=__lowerCamelCase , keep_in_fpaa_modules=bnb_quantization_config.keep_in_fpaa_modules , offload_abit_bnb=load_in_abit and offload , ) return dispatch_model(__lowerCamelCase , device_map=__lowerCamelCase , offload_dir=__lowerCamelCase ) def snake_case__ ( __lowerCamelCase : Dict , __lowerCamelCase : Any , __lowerCamelCase : Optional[Any]=None , __lowerCamelCase : Tuple=None , __lowerCamelCase : Optional[int]=None ): """simple docstring""" if device_map is None: if torch.cuda.is_available(): lowerCamelCase__ : List[Any] ={'''''': torch.cuda.current_device()} else: raise RuntimeError('''No GPU found. A GPU is needed for quantization.''' ) logger.info('''The device_map was not initialized.''' '''Setting device_map to `{\'\':torch.cuda.current_device()}`.''' ) if isinstance(__lowerCamelCase , __lowerCamelCase ): if device_map not in ["auto", "balanced", "balanced_low_0", "sequential"]: raise ValueError( '''If passing a string for `device_map`, please choose \'auto\', \'balanced\', \'balanced_low_0\' or ''' '''\'sequential\'.''' ) lowerCamelCase__ : List[Any] ={} special_dtypes.update( { name: bnb_quantization_config.torch_dtype for name, _ in model.named_parameters() if any(m in name for m in bnb_quantization_config.skip_modules ) } ) special_dtypes.update( { name: torch.floataa for name, _ in model.named_parameters() if any(m in name for m in bnb_quantization_config.keep_in_fpaa_modules ) } ) lowerCamelCase__ : int ={} lowerCamelCase__ : Optional[int] =special_dtypes lowerCamelCase__ : List[str] =no_split_module_classes lowerCamelCase__ : Tuple =bnb_quantization_config.target_dtype # get max_memory for each device. if device_map != "sequential": lowerCamelCase__ : List[str] =get_balanced_memory( __lowerCamelCase , low_zero=(device_map == '''balanced_low_0''') , max_memory=__lowerCamelCase , **__lowerCamelCase , ) lowerCamelCase__ : str =max_memory lowerCamelCase__ : Any =infer_auto_device_map(__lowerCamelCase , **__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ): # check if don't have any quantized module on the cpu lowerCamelCase__ : List[str] =bnb_quantization_config.skip_modules + bnb_quantization_config.keep_in_fpaa_modules lowerCamelCase__ : List[str] ={ key: device_map[key] for key in device_map.keys() if key not in modules_not_to_convert } for device in ["cpu", "disk"]: if device in device_map_without_some_modules.values(): if bnb_quantization_config.load_in_abit: raise ValueError( ''' Some modules are dispatched on the CPU or the disk. Make sure you have enough GPU RAM to fit the quantized model. If you want to dispatch the model on the CPU or the disk while keeping these modules in `torch_dtype`, you need to pass a custom `device_map` to `load_and_quantize_model`. Check https://huggingface.co/docs/accelerate/main/en/usage_guides/quantization#offload-modules-to-cpu-and-disk for more details. ''' ) else: logger.info( '''Some modules are are offloaded to the CPU or the disk. Note that these modules will be converted to 8-bit''' ) del device_map_without_some_modules return device_map def snake_case__ ( __lowerCamelCase : List[Any] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Union[str, Any]=None , __lowerCamelCase : str=None ): """simple docstring""" if modules_to_not_convert is None: lowerCamelCase__ : Dict =[] lowerCamelCase__ , lowerCamelCase__ : List[Any] =_replace_with_bnb_layers( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) if not has_been_replaced: logger.warning( '''You are loading your model in 8bit or 4bit but no linear modules were found in your model.''' ''' this can happen for some architectures such as gpt2 that uses Conv1D instead of Linear layers.''' ''' Please double check your model architecture, or submit an issue on github if you think this is''' ''' a bug.''' ) return model def snake_case__ ( __lowerCamelCase : List[Any] , __lowerCamelCase : int , __lowerCamelCase : int=None , __lowerCamelCase : Optional[Any]=None , ): """simple docstring""" lowerCamelCase__ : Tuple =False for name, module in model.named_children(): if current_key_name is None: lowerCamelCase__ : Optional[Any] =[] current_key_name.append(__lowerCamelCase ) if isinstance(__lowerCamelCase , nn.Linear ) and name not in modules_to_not_convert: # Check if the current key is not in the `modules_to_not_convert` lowerCamelCase__ : Optional[Any] ='''.'''.join(__lowerCamelCase ) lowerCamelCase__ : Tuple =True for key in modules_to_not_convert: if ( (key in current_key_name_str) and (key + "." in current_key_name_str) ) or key == current_key_name_str: lowerCamelCase__ : Any =False break if proceed: # Load bnb module with empty weight and replace ``nn.Linear` module if bnb_quantization_config.load_in_abit: lowerCamelCase__ : List[str] =bnb.nn.LinearabitLt( module.in_features , module.out_features , module.bias is not None , has_fpaa_weights=__lowerCamelCase , threshold=bnb_quantization_config.llm_inta_threshold , ) elif bnb_quantization_config.load_in_abit: lowerCamelCase__ : str =bnb.nn.Linearabit( module.in_features , module.out_features , module.bias is not None , bnb_quantization_config.bnb_abit_compute_dtype , compress_statistics=bnb_quantization_config.bnb_abit_use_double_quant , quant_type=bnb_quantization_config.bnb_abit_quant_type , ) else: raise ValueError('''load_in_8bit and load_in_4bit can\'t be both False''' ) lowerCamelCase__ : Any =module.weight.data if module.bias is not None: lowerCamelCase__ : Any =module.bias.data bnb_module.requires_grad_(__lowerCamelCase ) setattr(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) lowerCamelCase__ : str =True if len(list(module.children() ) ) > 0: lowerCamelCase__ , lowerCamelCase__ : Optional[int] =_replace_with_bnb_layers( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) lowerCamelCase__ : Any =has_been_replaced | _has_been_replaced # Remove the last key for recursion current_key_name.pop(-1 ) return model, has_been_replaced def snake_case__ ( __lowerCamelCase : Union[str, Any] ): """simple docstring""" # Create a copy of the model with init_empty_weights(): lowerCamelCase__ : Optional[Any] =deepcopy(__lowerCamelCase ) # this has 0 cost since it is done inside `init_empty_weights` context manager` lowerCamelCase__ : Union[str, Any] =find_tied_parameters(__lowerCamelCase ) # For compatibility with Accelerate < 0.18 if isinstance(__lowerCamelCase , __lowerCamelCase ): lowerCamelCase__ : List[str] =sum(list(tied_params.values() ) , [] ) + list(tied_params.keys() ) else: lowerCamelCase__ : Any =sum(__lowerCamelCase , [] ) lowerCamelCase__ : Any =len(__lowerCamelCase ) > 0 # Check if it is a base model lowerCamelCase__ : Optional[Any] =False if hasattr(__lowerCamelCase , '''base_model_prefix''' ): lowerCamelCase__ : Dict =not hasattr(__lowerCamelCase , model.base_model_prefix ) # Ignore this for base models (BertModel, GPT2Model, etc.) if (not has_tied_params) and is_base_model: return [] # otherwise they have an attached head lowerCamelCase__ : List[str] =list(model.named_children() ) lowerCamelCase__ : Any =[list_modules[-1][0]] # add last module together with tied weights lowerCamelCase__ : Optional[Any] =set(__lowerCamelCase ) - set(__lowerCamelCase ) lowerCamelCase__ : List[str] =list(set(__lowerCamelCase ) ) + list(__lowerCamelCase ) # remove ".weight" from the keys lowerCamelCase__ : Optional[Any] =['''.weight''', '''.bias'''] lowerCamelCase__ : List[Any] =[] for name in list_untouched: for name_to_remove in names_to_remove: if name_to_remove in name: lowerCamelCase__ : Union[str, Any] =name.replace(__lowerCamelCase , '''''' ) filtered_module_names.append(__lowerCamelCase ) return filtered_module_names def snake_case__ ( __lowerCamelCase : Tuple ): """simple docstring""" for m in model.modules(): if isinstance(__lowerCamelCase , bnb.nn.Linearabit ): return True return False def snake_case__ ( __lowerCamelCase : nn.Module ): """simple docstring""" return next(parameter.parameters() ).device def snake_case__ ( __lowerCamelCase : List[str] , __lowerCamelCase : Tuple , __lowerCamelCase : Any , __lowerCamelCase : Any , __lowerCamelCase : Optional[int] , __lowerCamelCase : int , __lowerCamelCase : Optional[int] ): """simple docstring""" # if it is not quantized, we quantize and offload the quantized weights and the SCB stats if fpaa_statistics is None: set_module_tensor_to_device(__lowerCamelCase , __lowerCamelCase , 0 , dtype=__lowerCamelCase , value=__lowerCamelCase ) lowerCamelCase__ : Union[str, Any] =param_name lowerCamelCase__ : Dict =model if "." in tensor_name: lowerCamelCase__ : Optional[int] =tensor_name.split('''.''' ) for split in splits[:-1]: lowerCamelCase__ : Union[str, Any] =getattr(__lowerCamelCase , __lowerCamelCase ) if new_module is None: raise ValueError(f'''{module} has no attribute {split}.''' ) lowerCamelCase__ : Union[str, Any] =new_module lowerCamelCase__ : List[Any] =splits[-1] # offload weights lowerCamelCase__ : Optional[Any] =False offload_weight(module._parameters[tensor_name] , __lowerCamelCase , __lowerCamelCase , index=__lowerCamelCase ) if hasattr(module._parameters[tensor_name] , '''SCB''' ): offload_weight( module._parameters[tensor_name].SCB , param_name.replace('''weight''' , '''SCB''' ) , __lowerCamelCase , index=__lowerCamelCase , ) else: offload_weight(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , index=__lowerCamelCase ) offload_weight(__lowerCamelCase , param_name.replace('''weight''' , '''SCB''' ) , __lowerCamelCase , index=__lowerCamelCase ) set_module_tensor_to_device(__lowerCamelCase , __lowerCamelCase , '''meta''' , dtype=__lowerCamelCase , value=torch.empty(*param.size() ) )
272
1
import os import pickle import unittest from transformers import AutoTokenizer from transformers.models.bert.tokenization_bert import BertTokenizer from transformers.models.bert_japanese.tokenization_bert_japanese import ( VOCAB_FILES_NAMES, BertJapaneseTokenizer, CharacterTokenizer, JumanppTokenizer, MecabTokenizer, SudachiTokenizer, WordpieceTokenizer, ) from transformers.testing_utils import custom_tokenizers, require_jumanpp, require_sudachi from ...test_tokenization_common import TokenizerTesterMixin @custom_tokenizers class snake_case_ ( __A , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = BertJapaneseTokenizer SCREAMING_SNAKE_CASE : Dict = False SCREAMING_SNAKE_CASE : str = True def snake_case__( self : str ) ->Tuple: super().setUp() snake_case_ = [ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''こんにちは''', '''こん''', '''にちは''', '''ばんは''', '''##こん''', '''##にちは''', '''##ばんは''', '''世界''', '''##世界''', '''、''', '''##、''', '''。''', '''##。''', ] snake_case_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) def snake_case__( self : Optional[Any] , _UpperCamelCase : List[Any] ) ->List[str]: snake_case_ = '''こんにちは、世界。 \nこんばんは、世界。''' snake_case_ = '''こんにちは 、 世界 。 こんばんは 、 世界 。''' return input_text, output_text def snake_case__( self : Optional[Any] , _UpperCamelCase : Dict ) ->Tuple: snake_case_, snake_case_ = self.get_input_output_texts(_UpperCamelCase ) snake_case_ = tokenizer.encode(_UpperCamelCase , add_special_tokens=_UpperCamelCase ) snake_case_ = tokenizer.decode(_UpperCamelCase , clean_up_tokenization_spaces=_UpperCamelCase ) return text, ids def snake_case__( self : Any ) ->Dict: pass # TODO add if relevant def snake_case__( self : Optional[Any] ) ->Optional[Any]: pass # TODO add if relevant def snake_case__( self : Optional[Any] ) ->Any: pass # TODO add if relevant def snake_case__( self : Optional[int] ) ->int: snake_case_ = self.tokenizer_class(self.vocab_file ) snake_case_ = tokenizer.tokenize('''こんにちは、世界。\nこんばんは、世界。''' ) self.assertListEqual(_UpperCamelCase , ['''こんにちは''', '''、''', '''世界''', '''。''', '''こん''', '''##ばんは''', '''、''', '''世界''', '''。'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(_UpperCamelCase ) , [3, 1_2, 1_0, 1_4, 4, 9, 1_2, 1_0, 1_4] ) def snake_case__( self : Dict ) ->Any: snake_case_ = self.tokenizer_class(self.vocab_file , word_tokenizer_type='''mecab''' ) self.assertIsNotNone(_UpperCamelCase ) snake_case_ = '''こんにちは、世界。\nこんばんは、世界。''' snake_case_ = tokenizer.tokenize(_UpperCamelCase ) self.assertListEqual(_UpperCamelCase , ['''こんにちは''', '''、''', '''世界''', '''。''', '''こん''', '''##ばんは''', '''、''', '''世界''', '''。'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(_UpperCamelCase ) , [3, 1_2, 1_0, 1_4, 4, 9, 1_2, 1_0, 1_4] ) snake_case_ = os.path.join(self.tmpdirname , '''tokenizer.bin''' ) with open(_UpperCamelCase , '''wb''' ) as handle: pickle.dump(_UpperCamelCase , _UpperCamelCase ) with open(_UpperCamelCase , '''rb''' ) as handle: snake_case_ = pickle.load(_UpperCamelCase ) snake_case_ = tokenizer_new.tokenize(_UpperCamelCase ) self.assertListEqual(_UpperCamelCase , _UpperCamelCase ) def snake_case__( self : List[Any] ) ->Tuple: snake_case_ = MecabTokenizer(mecab_dic='''ipadic''' ) self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) , ['''アップルストア''', '''で''', '''iPhone''', '''8''', '''が''', '''発売''', '''さ''', '''れ''', '''た''', '''。'''] , ) def snake_case__( self : int ) ->List[Any]: try: snake_case_ = MecabTokenizer(mecab_dic='''unidic_lite''' ) except ModuleNotFoundError: return self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) , ['''アップル''', '''ストア''', '''で''', '''iPhone''', '''8''', '''が''', '''発売''', '''さ''', '''れ''', '''た''', '''。'''] , ) def snake_case__( self : Union[str, Any] ) ->str: try: snake_case_ = MecabTokenizer(mecab_dic='''unidic''' ) except ModuleNotFoundError: return self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) , ['''アップル''', '''ストア''', '''で''', '''iPhone''', '''8''', '''が''', '''発売''', '''さ''', '''れ''', '''た''', '''。'''] , ) def snake_case__( self : List[str] ) ->Dict: snake_case_ = MecabTokenizer(do_lower_case=_UpperCamelCase , mecab_dic='''ipadic''' ) self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) , ['''アップルストア''', '''で''', '''iphone''', '''8''', '''が''', '''発売''', '''さ''', '''れ''', '''た''', '''。'''] , ) def snake_case__( self : Optional[int] ) ->List[str]: try: snake_case_ = MecabTokenizer( do_lower_case=_UpperCamelCase , normalize_text=_UpperCamelCase , mecab_option='''-d /usr/local/lib/mecab/dic/jumandic''' ) except RuntimeError: # if dict doesn't exist in the system, previous code raises this error. return self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) , ['''アップルストア''', '''で''', '''iPhone''', '''8''', '''が''', '''発売''', '''さ''', '''れた''', '''\u3000''', '''。'''] , ) def snake_case__( self : Optional[int] ) ->Union[str, Any]: snake_case_ = MecabTokenizer(normalize_text=_UpperCamelCase , mecab_dic='''ipadic''' ) self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) , ['''アップルストア''', '''で''', '''iPhone''', '''8''', '''が''', '''発売''', '''さ''', '''れ''', '''た''', ''' ''', '''。'''] , ) @require_sudachi def snake_case__( self : Optional[Any] ) ->str: snake_case_ = self.tokenizer_class(self.vocab_file , word_tokenizer_type='''sudachi''' ) self.assertIsNotNone(_UpperCamelCase ) snake_case_ = '''こんにちは、世界。\nこんばんは、世界。''' snake_case_ = tokenizer.tokenize(_UpperCamelCase ) self.assertListEqual(_UpperCamelCase , ['''こんにちは''', '''、''', '''世界''', '''。''', '''こん''', '''##ばんは''', '''、''', '''世界''', '''。'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(_UpperCamelCase ) , [3, 1_2, 1_0, 1_4, 4, 9, 1_2, 1_0, 1_4] ) snake_case_ = os.path.join(self.tmpdirname , '''tokenizer.bin''' ) with open(_UpperCamelCase , '''wb''' ) as handle: pickle.dump(_UpperCamelCase , _UpperCamelCase ) with open(_UpperCamelCase , '''rb''' ) as handle: snake_case_ = pickle.load(_UpperCamelCase ) snake_case_ = tokenizer_new.tokenize(_UpperCamelCase ) self.assertListEqual(_UpperCamelCase , _UpperCamelCase ) @require_sudachi def snake_case__( self : Tuple ) ->Optional[int]: snake_case_ = SudachiTokenizer(sudachi_dict_type='''core''' ) self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) , [''' ''', '''\t''', '''アップル''', '''ストア''', '''で''', '''iPhone''', '''8''', ''' ''', '''が''', ''' ''', ''' ''', '''\n ''', '''発売''', '''さ''', '''れ''', '''た''', ''' ''', '''。''', ''' ''', ''' '''] , ) @require_sudachi def snake_case__( self : str ) ->Tuple: snake_case_ = SudachiTokenizer(sudachi_dict_type='''core''' , sudachi_split_mode='''A''' ) self.assertListEqual(tokenizer.tokenize('''外国人参政権''' ) , ['''外国''', '''人''', '''参政''', '''権'''] ) @require_sudachi def snake_case__( self : Dict ) ->List[Any]: snake_case_ = SudachiTokenizer(sudachi_dict_type='''core''' , sudachi_split_mode='''B''' ) self.assertListEqual(tokenizer.tokenize('''外国人参政権''' ) , ['''外国人''', '''参政権'''] ) @require_sudachi def snake_case__( self : Optional[int] ) ->Tuple: snake_case_ = SudachiTokenizer(sudachi_dict_type='''core''' , sudachi_split_mode='''C''' ) self.assertListEqual(tokenizer.tokenize('''外国人参政権''' ) , ['''外国人参政権'''] ) @require_sudachi def snake_case__( self : Optional[Any] ) ->int: snake_case_ = SudachiTokenizer(do_lower_case=_UpperCamelCase , sudachi_dict_type='''core''' ) self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) , [''' ''', '''\t''', '''アップル''', '''ストア''', '''で''', '''iphone''', '''8''', ''' ''', '''が''', ''' ''', ''' ''', '''\n ''', '''発売''', '''さ''', '''れ''', '''た''', ''' ''', '''。''', ''' ''', ''' '''] , ) @require_sudachi def snake_case__( self : Dict ) ->List[str]: snake_case_ = SudachiTokenizer(normalize_text=_UpperCamelCase , sudachi_dict_type='''core''' ) self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) , [''' ''', '''\t''', '''アップル''', '''ストア''', '''で''', '''iPhone''', '''8''', ''' ''', '''が''', ''' ''', ''' ''', '''\n ''', '''発売''', '''さ''', '''れ''', '''た''', '''\u3000''', '''。''', ''' ''', ''' '''] , ) @require_sudachi def snake_case__( self : List[str] ) ->List[Any]: snake_case_ = SudachiTokenizer(trim_whitespace=_UpperCamelCase , sudachi_dict_type='''core''' ) self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) , ['''アップル''', '''ストア''', '''で''', '''iPhone''', '''8''', '''が''', '''発売''', '''さ''', '''れ''', '''た''', '''。'''] , ) @require_jumanpp def snake_case__( self : int ) ->Union[str, Any]: snake_case_ = self.tokenizer_class(self.vocab_file , word_tokenizer_type='''jumanpp''' ) self.assertIsNotNone(_UpperCamelCase ) snake_case_ = '''こんにちは、世界。\nこんばんは、世界。''' snake_case_ = tokenizer.tokenize(_UpperCamelCase ) self.assertListEqual(_UpperCamelCase , ['''こんにちは''', '''、''', '''世界''', '''。''', '''こん''', '''##ばんは''', '''、''', '''世界''', '''。'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(_UpperCamelCase ) , [3, 1_2, 1_0, 1_4, 4, 9, 1_2, 1_0, 1_4] ) snake_case_ = os.path.join(self.tmpdirname , '''tokenizer.bin''' ) with open(_UpperCamelCase , '''wb''' ) as handle: pickle.dump(_UpperCamelCase , _UpperCamelCase ) with open(_UpperCamelCase , '''rb''' ) as handle: snake_case_ = pickle.load(_UpperCamelCase ) snake_case_ = tokenizer_new.tokenize(_UpperCamelCase ) self.assertListEqual(_UpperCamelCase , _UpperCamelCase ) @require_jumanpp def snake_case__( self : List[str] ) ->Dict: snake_case_ = JumanppTokenizer() self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) , ['''アップル''', '''ストア''', '''で''', '''iPhone''', '''8''', '''\u3000''', '''が''', '''\u3000''', '''\u3000''', '''\u3000''', '''発売''', '''さ''', '''れた''', '''\u3000''', '''。'''] , ) @require_jumanpp def snake_case__( self : Any ) ->Any: snake_case_ = JumanppTokenizer(do_lower_case=_UpperCamelCase ) self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) , ['''アップル''', '''ストア''', '''で''', '''iphone''', '''8''', '''\u3000''', '''が''', '''\u3000''', '''\u3000''', '''\u3000''', '''発売''', '''さ''', '''れた''', '''\u3000''', '''。'''] , ) @require_jumanpp def snake_case__( self : int ) ->Dict: snake_case_ = JumanppTokenizer(normalize_text=_UpperCamelCase ) self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) , ['''ア''', '''ッ''', '''フ''', '''゚''', '''ル''', '''ストア''', '''で''', '''iPhone''', '''8''', '''\u3000''', '''が''', '''\u3000''', '''\u3000''', '''\u3000''', '''発売''', '''さ''', '''れた''', '''\u3000''', '''。'''] , ) @require_jumanpp def snake_case__( self : int ) ->Optional[Any]: snake_case_ = JumanppTokenizer(trim_whitespace=_UpperCamelCase ) self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) , ['''アップル''', '''ストア''', '''で''', '''iPhone''', '''8''', '''が''', '''発売''', '''さ''', '''れた''', '''。'''] , ) @require_jumanpp def snake_case__( self : Any ) ->Optional[int]: snake_case_ = JumanppTokenizer() self.assertListEqual( tokenizer.tokenize('''ありがとうございますm(_ _)m見つけるのが大変です。''' ) , ['''ありがとう''', '''ございます''', '''m(_ _)m''', '''見つける''', '''の''', '''が''', '''大変です''', '''。'''] , ) def snake_case__( self : Any ) ->List[Any]: snake_case_ = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''こんにちは''', '''こん''', '''にちは''', '''ばんは''', '''##こん''', '''##にちは''', '''##ばんは'''] snake_case_ = {} for i, token in enumerate(_UpperCamelCase ): snake_case_ = i snake_case_ = WordpieceTokenizer(vocab=_UpperCamelCase , unk_token='''[UNK]''' ) self.assertListEqual(tokenizer.tokenize('''''' ) , [] ) self.assertListEqual(tokenizer.tokenize('''こんにちは''' ) , ['''こんにちは'''] ) self.assertListEqual(tokenizer.tokenize('''こんばんは''' ) , ['''こん''', '''##ばんは'''] ) self.assertListEqual(tokenizer.tokenize('''こんばんは こんばんにちは こんにちは''' ) , ['''こん''', '''##ばんは''', '''[UNK]''', '''こんにちは'''] ) def snake_case__( self : Optional[Any] ) ->Optional[int]: snake_case_ = BertJapaneseTokenizer.from_pretrained('''nlp-waseda/roberta-base-japanese-with-auto-jumanpp''' ) snake_case_ = tokenizer.subword_tokenizer snake_case_ = subword_tokenizer.tokenize('''国境 の 長い トンネル を 抜ける と 雪国 であった 。''' ) self.assertListEqual(_UpperCamelCase , ['''▁国境''', '''▁の''', '''▁長い''', '''▁トンネル''', '''▁を''', '''▁抜ける''', '''▁と''', '''▁雪''', '''国''', '''▁であった''', '''▁。'''] ) snake_case_ = subword_tokenizer.tokenize('''こんばんは こんばん にち は こんにちは''' ) self.assertListEqual(_UpperCamelCase , ['''▁こん''', '''ばん''', '''は''', '''▁こん''', '''ばん''', '''▁に''', '''ち''', '''▁は''', '''▁こんにちは'''] ) def snake_case__( self : str ) ->Tuple: snake_case_ = self.tokenizer_class.from_pretrained('''cl-tohoku/bert-base-japanese''' ) snake_case_ = tokenizer.encode('''ありがとう。''' , add_special_tokens=_UpperCamelCase ) snake_case_ = tokenizer.encode('''どういたしまして。''' , add_special_tokens=_UpperCamelCase ) snake_case_ = tokenizer.build_inputs_with_special_tokens(_UpperCamelCase ) snake_case_ = tokenizer.build_inputs_with_special_tokens(_UpperCamelCase , _UpperCamelCase ) # 2 is for "[CLS]", 3 is for "[SEP]" assert encoded_sentence == [2] + text + [3] assert encoded_pair == [2] + text + [3] + text_a + [3] @custom_tokenizers class snake_case_ ( __A , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = BertJapaneseTokenizer SCREAMING_SNAKE_CASE : int = False def snake_case__( self : List[str] ) ->int: super().setUp() snake_case_ = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''こ''', '''ん''', '''に''', '''ち''', '''は''', '''ば''', '''世''', '''界''', '''、''', '''。'''] snake_case_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) def snake_case__( self : Optional[Any] , **_UpperCamelCase : Union[str, Any] ) ->int: return BertJapaneseTokenizer.from_pretrained(self.tmpdirname , subword_tokenizer_type='''character''' , **_UpperCamelCase ) def snake_case__( self : Any , _UpperCamelCase : Union[str, Any] ) ->List[Any]: snake_case_ = '''こんにちは、世界。 \nこんばんは、世界。''' snake_case_ = '''こ ん に ち は 、 世 界 。 こ ん ば ん は 、 世 界 。''' return input_text, output_text def snake_case__( self : Dict ) ->Union[str, Any]: pass # TODO add if relevant def snake_case__( self : Any ) ->Union[str, Any]: pass # TODO add if relevant def snake_case__( self : Tuple ) ->Tuple: pass # TODO add if relevant def snake_case__( self : List[Any] ) ->int: snake_case_ = self.tokenizer_class(self.vocab_file , subword_tokenizer_type='''character''' ) snake_case_ = tokenizer.tokenize('''こんにちは、世界。 \nこんばんは、世界。''' ) self.assertListEqual( _UpperCamelCase , ['''こ''', '''ん''', '''に''', '''ち''', '''は''', '''、''', '''世''', '''界''', '''。''', '''こ''', '''ん''', '''ば''', '''ん''', '''は''', '''、''', '''世''', '''界''', '''。'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(_UpperCamelCase ) , [3, 4, 5, 6, 7, 1_1, 9, 1_0, 1_2, 3, 4, 8, 4, 7, 1_1, 9, 1_0, 1_2] ) def snake_case__( self : List[str] ) ->List[str]: snake_case_ = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''こ''', '''ん''', '''に''', '''ち''', '''は''', '''ば''', '''世''', '''界''', '''、''', '''。'''] snake_case_ = {} for i, token in enumerate(_UpperCamelCase ): snake_case_ = i snake_case_ = CharacterTokenizer(vocab=_UpperCamelCase , unk_token='''[UNK]''' ) self.assertListEqual(tokenizer.tokenize('''''' ) , [] ) self.assertListEqual(tokenizer.tokenize('''こんにちは''' ) , ['''こ''', '''ん''', '''に''', '''ち''', '''は'''] ) self.assertListEqual(tokenizer.tokenize('''こんにちほ''' ) , ['''こ''', '''ん''', '''に''', '''ち''', '''[UNK]'''] ) def snake_case__( self : Dict ) ->Tuple: snake_case_ = self.tokenizer_class.from_pretrained('''cl-tohoku/bert-base-japanese-char''' ) snake_case_ = tokenizer.encode('''ありがとう。''' , add_special_tokens=_UpperCamelCase ) snake_case_ = tokenizer.encode('''どういたしまして。''' , add_special_tokens=_UpperCamelCase ) snake_case_ = tokenizer.build_inputs_with_special_tokens(_UpperCamelCase ) snake_case_ = tokenizer.build_inputs_with_special_tokens(_UpperCamelCase , _UpperCamelCase ) # 2 is for "[CLS]", 3 is for "[SEP]" assert encoded_sentence == [2] + text + [3] assert encoded_pair == [2] + text + [3] + text_a + [3] @custom_tokenizers class snake_case_ ( unittest.TestCase ): '''simple docstring''' def snake_case__( self : str ) ->int: snake_case_ = '''cl-tohoku/bert-base-japanese''' snake_case_ = AutoTokenizer.from_pretrained(_UpperCamelCase ) self.assertIsInstance(_UpperCamelCase , _UpperCamelCase ) class snake_case_ ( unittest.TestCase ): '''simple docstring''' def snake_case__( self : Optional[int] ) ->Dict: snake_case_ = '''cl-tohoku/bert-base-japanese''' with self.assertLogs('''transformers''' , level='''WARNING''' ) as cm: BertTokenizer.from_pretrained(_UpperCamelCase ) self.assertTrue( cm.records[0].message.startswith( '''The tokenizer class you load from this checkpoint is not the same type as the class this function''' ''' is called from.''' ) ) snake_case_ = '''bert-base-cased''' with self.assertLogs('''transformers''' , level='''WARNING''' ) as cm: BertJapaneseTokenizer.from_pretrained(_UpperCamelCase ) self.assertTrue( cm.records[0].message.startswith( '''The tokenizer class you load from this checkpoint is not the same type as the class this function''' ''' is called from.''' ) )
8
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase : Dict = logging.get_logger(__name__) UpperCAmelCase : Tuple = { """caidas/swin2sr-classicalsr-x2-64""": ( """https://huggingface.co/caidas/swin2sr-classicalsr-x2-64/resolve/main/config.json""" ), } class __lowerCAmelCase ( UpperCamelCase__): _lowercase : Any = """swin2sr""" _lowercase : Tuple = { """hidden_size""": """embed_dim""", """num_attention_heads""": """num_heads""", """num_hidden_layers""": """num_layers""", } def __init__( self , lowerCAmelCase__=6_4 , lowerCAmelCase__=1 , lowerCAmelCase__=3 , lowerCAmelCase__=1_8_0 , lowerCAmelCase__=[6, 6, 6, 6, 6, 6] , lowerCAmelCase__=[6, 6, 6, 6, 6, 6] , lowerCAmelCase__=8 , lowerCAmelCase__=2.0 , lowerCAmelCase__=True , lowerCAmelCase__=0.0 , lowerCAmelCase__=0.0 , lowerCAmelCase__=0.1 , lowerCAmelCase__="gelu" , lowerCAmelCase__=False , lowerCAmelCase__=0.02 , lowerCAmelCase__=1E-5 , lowerCAmelCase__=2 , lowerCAmelCase__=1.0 , lowerCAmelCase__="1conv" , lowerCAmelCase__="pixelshuffle" , **lowerCAmelCase__ , ) -> int: '''simple docstring''' super().__init__(**lowerCAmelCase__ ) a__ : Optional[Any] =image_size a__ : Dict =patch_size a__ : Tuple =num_channels a__ : Union[str, Any] =embed_dim a__ : Optional[Any] =depths a__ : List[str] =len(lowerCAmelCase__ ) a__ : Any =num_heads a__ : Any =window_size a__ : str =mlp_ratio a__ : List[str] =qkv_bias a__ : Dict =hidden_dropout_prob a__ : List[str] =attention_probs_dropout_prob a__ : Dict =drop_path_rate a__ : Optional[Any] =hidden_act a__ : Union[str, Any] =use_absolute_embeddings a__ : Optional[Any] =layer_norm_eps a__ : List[Any] =initializer_range a__ : int =upscale a__ : Optional[int] =img_range a__ : Any =resi_connection a__ : Optional[Any] =upsampler
95
0
'''simple docstring''' import os import re from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging UpperCamelCase_ = logging.get_logger(__name__) UpperCamelCase_ = { "vocab_file": "vocab.txt", "merges_file": "bpe.codes", } UpperCamelCase_ = { "vocab_file": { "vinai/phobert-base": "https://huggingface.co/vinai/phobert-base/resolve/main/vocab.txt", "vinai/phobert-large": "https://huggingface.co/vinai/phobert-large/resolve/main/vocab.txt", }, "merges_file": { "vinai/phobert-base": "https://huggingface.co/vinai/phobert-base/resolve/main/bpe.codes", "vinai/phobert-large": "https://huggingface.co/vinai/phobert-large/resolve/main/bpe.codes", }, } UpperCamelCase_ = { "vinai/phobert-base": 2_5_6, "vinai/phobert-large": 2_5_6, } def lowercase__( __UpperCamelCase: str ): """simple docstring""" SCREAMING_SNAKE_CASE : Dict = set() SCREAMING_SNAKE_CASE : Union[str, Any] = word[0] for char in word[1:]: pairs.add((prev_char, char) ) SCREAMING_SNAKE_CASE : int = char SCREAMING_SNAKE_CASE : str = set(__UpperCamelCase ) return pairs class _a ( SCREAMING_SNAKE_CASE ): '''simple docstring''' A : Any = VOCAB_FILES_NAMES A : List[str] = PRETRAINED_VOCAB_FILES_MAP A : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self, A, A, A="<s>", A="</s>", A="</s>", A="<s>", A="<unk>", A="<pad>", A="<mask>", **A, ): '''simple docstring''' super().__init__( bos_token=A, eos_token=A, unk_token=A, sep_token=A, cls_token=A, pad_token=A, mask_token=A, **A, ) SCREAMING_SNAKE_CASE : Tuple = vocab_file SCREAMING_SNAKE_CASE : str = merges_file SCREAMING_SNAKE_CASE : Union[str, Any] = {} SCREAMING_SNAKE_CASE : Union[str, Any] = 0 SCREAMING_SNAKE_CASE : Any = 1 SCREAMING_SNAKE_CASE : List[str] = 2 SCREAMING_SNAKE_CASE : Dict = 3 self.add_from_file(A ) SCREAMING_SNAKE_CASE : Optional[Any] = {v: k for k, v in self.encoder.items()} with open(A, encoding='utf-8' ) as merges_handle: SCREAMING_SNAKE_CASE : int = merges_handle.read().split('\n' )[:-1] SCREAMING_SNAKE_CASE : List[Any] = [tuple(merge.split()[:-1] ) for merge in merges] SCREAMING_SNAKE_CASE : Tuple = dict(zip(A, range(len(A ) ) ) ) SCREAMING_SNAKE_CASE : List[Any] = {} def UpperCamelCase_ ( self, A, A = None ): '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] SCREAMING_SNAKE_CASE : int = [self.cls_token_id] SCREAMING_SNAKE_CASE : List[Any] = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def UpperCamelCase_ ( self, A, A = None, A = False ): '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=A, token_ids_a=A, already_has_special_tokens=A ) if token_ids_a is None: return [1] + ([0] * len(A )) + [1] return [1] + ([0] * len(A )) + [1, 1] + ([0] * len(A )) + [1] def UpperCamelCase_ ( self, A, A = None ): '''simple docstring''' SCREAMING_SNAKE_CASE : str = [self.sep_token_id] SCREAMING_SNAKE_CASE : Optional[int] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def UpperCamelCase_ ( self ): '''simple docstring''' return len(self.encoder ) def UpperCamelCase_ ( self ): '''simple docstring''' return dict(self.encoder, **self.added_tokens_encoder ) def UpperCamelCase_ ( self, A ): '''simple docstring''' if token in self.cache: return self.cache[token] SCREAMING_SNAKE_CASE : Any = tuple(A ) SCREAMING_SNAKE_CASE : List[Any] = tuple(list(word[:-1] ) + [word[-1] + '</w>'] ) SCREAMING_SNAKE_CASE : Optional[Any] = get_pairs(A ) if not pairs: return token while True: SCREAMING_SNAKE_CASE : int = min(A, key=lambda A : self.bpe_ranks.get(A, float('inf' ) ) ) if bigram not in self.bpe_ranks: break SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Any = bigram SCREAMING_SNAKE_CASE : str = [] SCREAMING_SNAKE_CASE : Optional[Any] = 0 while i < len(A ): try: SCREAMING_SNAKE_CASE : str = word.index(A, A ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) SCREAMING_SNAKE_CASE : List[str] = j if word[i] == first and i < len(A ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 SCREAMING_SNAKE_CASE : List[str] = tuple(A ) SCREAMING_SNAKE_CASE : Any = new_word if len(A ) == 1: break else: SCREAMING_SNAKE_CASE : Optional[Any] = get_pairs(A ) SCREAMING_SNAKE_CASE : Optional[Any] = '@@ '.join(A ) SCREAMING_SNAKE_CASE : Optional[int] = word[:-4] SCREAMING_SNAKE_CASE : Any = word return word def UpperCamelCase_ ( self, A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Any = [] SCREAMING_SNAKE_CASE : Tuple = re.findall(r'\S+\n?', A ) for token in words: split_tokens.extend(list(self.bpe(A ).split(' ' ) ) ) return split_tokens def UpperCamelCase_ ( self, A ): '''simple docstring''' return self.encoder.get(A, self.encoder.get(self.unk_token ) ) def UpperCamelCase_ ( self, A ): '''simple docstring''' return self.decoder.get(A, self.unk_token ) def UpperCamelCase_ ( self, A ): '''simple docstring''' SCREAMING_SNAKE_CASE : str = ' '.join(A ).replace('@@ ', '' ).strip() return out_string def UpperCamelCase_ ( self, A, A = None ): '''simple docstring''' if not os.path.isdir(A ): logger.error(F"Vocabulary path ({save_directory}) should be a directory" ) return SCREAMING_SNAKE_CASE : Optional[Any] = os.path.join( A, (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) SCREAMING_SNAKE_CASE : Optional[int] = os.path.join( A, (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['merges_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(A ): copyfile(self.vocab_file, A ) if os.path.abspath(self.merges_file ) != os.path.abspath(A ): copyfile(self.merges_file, A ) return out_vocab_file, out_merge_file def UpperCamelCase_ ( self, A ): '''simple docstring''' if isinstance(A, A ): try: with open(A, 'r', encoding='utf-8' ) as fd: self.add_from_file(A ) except FileNotFoundError as fnfe: raise fnfe except UnicodeError: raise Exception(F"Incorrect encoding detected in {f}, please rebuild the dataset" ) return SCREAMING_SNAKE_CASE : int = f.readlines() for lineTmp in lines: SCREAMING_SNAKE_CASE : List[str] = lineTmp.strip() SCREAMING_SNAKE_CASE : Optional[Any] = line.rfind(' ' ) if idx == -1: raise ValueError('Incorrect dictionary format, expected \'<token> <cnt>\'' ) SCREAMING_SNAKE_CASE : Optional[int] = line[:idx] SCREAMING_SNAKE_CASE : Optional[Any] = len(self.encoder )
246
'''simple docstring''' def lowercase__( __UpperCamelCase: list[list[float]] ): """simple docstring""" SCREAMING_SNAKE_CASE : list[list[float]] = [] for data in source_data: for i, el in enumerate(__UpperCamelCase ): if len(__UpperCamelCase ) < i + 1: data_lists.append([] ) data_lists[i].append(float(__UpperCamelCase ) ) return data_lists def lowercase__( __UpperCamelCase: list[list[float]] ,__UpperCamelCase: list[int] ): """simple docstring""" SCREAMING_SNAKE_CASE : list[list[float]] = [] for dlist, weight in zip(__UpperCamelCase ,__UpperCamelCase ): SCREAMING_SNAKE_CASE : Optional[int] = min(__UpperCamelCase ) SCREAMING_SNAKE_CASE : Any = max(__UpperCamelCase ) SCREAMING_SNAKE_CASE : list[float] = [] # for weight 0 score is 1 - actual score if weight == 0: for item in dlist: try: score.append(1 - ((item - mind) / (maxd - mind)) ) except ZeroDivisionError: score.append(1 ) elif weight == 1: for item in dlist: try: score.append((item - mind) / (maxd - mind) ) except ZeroDivisionError: score.append(0 ) # weight not 0 or 1 else: SCREAMING_SNAKE_CASE : List[Any] = f"Invalid weight of {weight:f} provided" raise ValueError(__UpperCamelCase ) score_lists.append(__UpperCamelCase ) return score_lists def lowercase__( __UpperCamelCase: list[list[float]] ): """simple docstring""" SCREAMING_SNAKE_CASE : list[float] = [0 for i in range(len(score_lists[0] ) )] for slist in score_lists: for j, ele in enumerate(__UpperCamelCase ): SCREAMING_SNAKE_CASE : Any = final_scores[j] + ele return final_scores def lowercase__( __UpperCamelCase: list[list[float]] ,__UpperCamelCase: list[int] ): """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = get_data(__UpperCamelCase ) SCREAMING_SNAKE_CASE : Dict = calculate_each_score(__UpperCamelCase ,__UpperCamelCase ) SCREAMING_SNAKE_CASE : Any = generate_final_scores(__UpperCamelCase ) # append scores to source data for i, ele in enumerate(__UpperCamelCase ): source_data[i].append(__UpperCamelCase ) return source_data
246
1
'''simple docstring''' import argparse import torch from torch import nn from transformers import MBartConfig, MBartForConditionalGeneration def snake_case_ (_a : List[Any] ): UpperCAmelCase = [ '''encoder.version''', '''decoder.version''', '''model.encoder.version''', '''model.decoder.version''', '''_float_tensor''', '''decoder.output_projection.weight''', ] for k in ignore_keys: state_dict.pop(_a , _a ) def snake_case_ (_a : Tuple ): UpperCAmelCase , UpperCAmelCase = emb.weight.shape UpperCAmelCase = nn.Linear(_a , _a , bias=_a ) UpperCAmelCase = emb.weight.data return lin_layer def snake_case_ (_a : Optional[int] , _a : Optional[int]="facebook/mbart-large-en-ro" , _a : Optional[Any]=False , _a : Any=False ): UpperCAmelCase = torch.load(_a , map_location='''cpu''' )['''model'''] remove_ignore_keys_(_a ) UpperCAmelCase = state_dict['''encoder.embed_tokens.weight'''].shape[0] UpperCAmelCase = MBartConfig.from_pretrained(_a , vocab_size=_a ) if mbart_aa and finetuned: UpperCAmelCase = '''relu''' UpperCAmelCase = state_dict['''decoder.embed_tokens.weight'''] UpperCAmelCase = MBartForConditionalGeneration(_a ) model.model.load_state_dict(_a ) if finetuned: UpperCAmelCase = make_linear_from_emb(model.model.shared ) return model if __name__ == "__main__": A =argparse.ArgumentParser() # Required parameters parser.add_argument( 'fairseq_path', type=str, help='bart.large, bart.large.cnn or a path to a model.pt on local filesystem.' ) parser.add_argument('pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument( '--hf_config', default='facebook/mbart-large-cc25', type=str, help='Which huggingface architecture to use: mbart-large', ) parser.add_argument('--mbart_50', action='store_true', help='whether the model is mMART-50 checkpoint') parser.add_argument('--finetuned', action='store_true', help='whether the model is a fine-tuned checkpoint') A =parser.parse_args() A =convert_fairseq_mbart_checkpoint_from_disk( args.fairseq_path, hf_config_path=args.hf_config, finetuned=args.finetuned, mbart_aa=args.mbart_aa ) model.save_pretrained(args.pytorch_dump_folder_path)
34
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase : Dict = logging.get_logger(__name__) lowerCamelCase : Union[str, Any] = { # See all MEGATRON_BERT models at https://huggingface.co/models?filter=bert } class __lowerCAmelCase (lowercase_ ): '''simple docstring''' lowerCAmelCase__ : List[str] = """megatron-bert""" def __init__(self : Tuple , UpperCamelCase : Optional[int]=29056 , UpperCamelCase : Optional[Any]=1024 , UpperCamelCase : Any=24 , UpperCamelCase : int=16 , UpperCamelCase : Optional[int]=4096 , UpperCamelCase : int="gelu" , UpperCamelCase : int=0.1 , UpperCamelCase : Tuple=0.1 , UpperCamelCase : Any=512 , UpperCamelCase : int=2 , UpperCamelCase : Dict=0.02 , UpperCamelCase : Dict=1E-12 , UpperCamelCase : List[Any]=0 , UpperCamelCase : Optional[int]="absolute" , UpperCamelCase : List[Any]=True , **UpperCamelCase : str , ): '''simple docstring''' super().__init__(pad_token_id=UpperCamelCase , **UpperCamelCase ) lowercase__ = vocab_size lowercase__ = hidden_size lowercase__ = num_hidden_layers lowercase__ = num_attention_heads lowercase__ = hidden_act lowercase__ = intermediate_size lowercase__ = hidden_dropout_prob lowercase__ = attention_probs_dropout_prob lowercase__ = max_position_embeddings lowercase__ = type_vocab_size lowercase__ = initializer_range lowercase__ = layer_norm_eps lowercase__ = position_embedding_type lowercase__ = use_cache
2
0
import inspect import unittest from transformers import ViTMSNConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTMSNForImageClassification, ViTMSNModel from transformers.models.vit_msn.modeling_vit_msn import VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class __lowerCamelCase : """simple docstring""" def __init__( self : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : List[str]=13 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=30 , SCREAMING_SNAKE_CASE__ : int=2 , SCREAMING_SNAKE_CASE__ : List[str]=3 , SCREAMING_SNAKE_CASE__ : int=True , SCREAMING_SNAKE_CASE__ : Optional[Any]=True , SCREAMING_SNAKE_CASE__ : Optional[Any]=32 , SCREAMING_SNAKE_CASE__ : Optional[Any]=5 , SCREAMING_SNAKE_CASE__ : List[Any]=4 , SCREAMING_SNAKE_CASE__ : List[str]=37 , SCREAMING_SNAKE_CASE__ : Optional[Any]="gelu" , SCREAMING_SNAKE_CASE__ : Optional[int]=0.1 , SCREAMING_SNAKE_CASE__ : Optional[Any]=0.1 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=10 , SCREAMING_SNAKE_CASE__ : Dict=0.02 , SCREAMING_SNAKE_CASE__ : Dict=None , ) -> Tuple: lowerCAmelCase__ = parent lowerCAmelCase__ = batch_size lowerCAmelCase__ = image_size lowerCAmelCase__ = patch_size lowerCAmelCase__ = num_channels lowerCAmelCase__ = is_training lowerCAmelCase__ = use_labels lowerCAmelCase__ = hidden_size lowerCAmelCase__ = num_hidden_layers lowerCAmelCase__ = num_attention_heads lowerCAmelCase__ = intermediate_size lowerCAmelCase__ = hidden_act lowerCAmelCase__ = hidden_dropout_prob lowerCAmelCase__ = attention_probs_dropout_prob lowerCAmelCase__ = type_sequence_label_size lowerCAmelCase__ = initializer_range lowerCAmelCase__ = scope # in ViT MSN, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) lowerCAmelCase__ = (image_size // patch_size) ** 2 lowerCAmelCase__ = num_patches + 1 def a ( self : str ) -> Any: lowerCAmelCase__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCAmelCase__ = None if self.use_labels: lowerCAmelCase__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase__ = self.get_config() return config, pixel_values, labels def a ( self : Optional[int] ) -> Tuple: return ViTMSNConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , initializer_range=self.initializer_range , ) def a ( self : Tuple , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Any ) -> List[Any]: lowerCAmelCase__ = ViTMSNModel(config=SCREAMING_SNAKE_CASE__ ) model.to(SCREAMING_SNAKE_CASE__ ) model.eval() lowerCAmelCase__ = model(SCREAMING_SNAKE_CASE__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def a ( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : Union[str, Any] ) -> Optional[int]: lowerCAmelCase__ = self.type_sequence_label_size lowerCAmelCase__ = ViTMSNForImageClassification(SCREAMING_SNAKE_CASE__ ) model.to(SCREAMING_SNAKE_CASE__ ) model.eval() lowerCAmelCase__ = model(SCREAMING_SNAKE_CASE__ , labels=SCREAMING_SNAKE_CASE__ ) print("Pixel and labels shape: {pixel_values.shape}, {labels.shape}" ) print("Labels: {labels}" ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images lowerCAmelCase__ = 1 lowerCAmelCase__ = ViTMSNForImageClassification(SCREAMING_SNAKE_CASE__ ) model.to(SCREAMING_SNAKE_CASE__ ) model.eval() lowerCAmelCase__ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowerCAmelCase__ = model(SCREAMING_SNAKE_CASE__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def a ( self : Optional[int] ) -> List[str]: lowerCAmelCase__ = self.prepare_config_and_inputs() lowerCAmelCase__ = config_and_inputs lowerCAmelCase__ = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class __lowerCamelCase ( snake_case_ , snake_case_ , unittest.TestCase ): """simple docstring""" snake_case__ = (ViTMSNModel, ViTMSNForImageClassification) if is_torch_available() else () snake_case__ = ( {"feature-extraction": ViTMSNModel, "image-classification": ViTMSNForImageClassification} if is_torch_available() else {} ) snake_case__ = False snake_case__ = False snake_case__ = False snake_case__ = False def a ( self : Union[str, Any] ) -> Optional[int]: lowerCAmelCase__ = ViTMSNModelTester(self ) lowerCAmelCase__ = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE__ , has_text_modality=SCREAMING_SNAKE_CASE__ , hidden_size=37 ) def a ( self : List[Any] ) -> int: self.config_tester.run_common_tests() @unittest.skip(reason="ViTMSN does not use inputs_embeds" ) def a ( self : Dict ) -> Dict: pass def a ( self : str ) -> Tuple: lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase__ = model_class(SCREAMING_SNAKE_CASE__ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) lowerCAmelCase__ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(SCREAMING_SNAKE_CASE__ , nn.Linear ) ) def a ( self : Dict ) -> int: lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase__ = model_class(SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCAmelCase__ = [*signature.parameters.keys()] lowerCAmelCase__ = ['pixel_values'] self.assertListEqual(arg_names[:1] , SCREAMING_SNAKE_CASE__ ) def a ( self : List[str] ) -> Dict: lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE__ ) def a ( self : Tuple ) -> int: lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*SCREAMING_SNAKE_CASE__ ) @slow def a ( self : Union[str, Any] ) -> Any: for model_name in VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase__ = ViTMSNModel.from_pretrained(SCREAMING_SNAKE_CASE__ ) self.assertIsNotNone(SCREAMING_SNAKE_CASE__ ) def _A ( ): """simple docstring""" lowerCAmelCase__ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class __lowerCamelCase ( unittest.TestCase ): """simple docstring""" @cached_property def a ( self : Tuple ) -> Dict: return ViTImageProcessor.from_pretrained("facebook/vit-msn-small" ) if is_vision_available() else None @slow def a ( self : int ) -> str: torch.manual_seed(2 ) lowerCAmelCase__ = ViTMSNForImageClassification.from_pretrained("facebook/vit-msn-small" ).to(SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = self.default_image_processor lowerCAmelCase__ = prepare_img() lowerCAmelCase__ = image_processor(images=SCREAMING_SNAKE_CASE__ , return_tensors="pt" ).to(SCREAMING_SNAKE_CASE__ ) # forward pass with torch.no_grad(): lowerCAmelCase__ = model(**SCREAMING_SNAKE_CASE__ ) # verify the logits lowerCAmelCase__ = torch.Size((1, 1_000) ) self.assertEqual(outputs.logits.shape , SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = torch.tensor([-0.0_803, -0.4_454, -0.2_375] ).to(SCREAMING_SNAKE_CASE__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , SCREAMING_SNAKE_CASE__ , atol=1e-4 ) )
356
import fire from transformers import AutoConfig, AutoModelForSeqaSeqLM, AutoTokenizer def _A ( lowerCAmelCase_ : str , lowerCAmelCase_ : str , **lowerCAmelCase_ : str ): """simple docstring""" lowerCAmelCase__ = AutoConfig.from_pretrained(lowerCAmelCase_ , **lowerCAmelCase_ ) lowerCAmelCase__ = AutoModelForSeqaSeqLM.from_config(lowerCAmelCase_ ) model.save_pretrained(lowerCAmelCase_ ) AutoTokenizer.from_pretrained(lowerCAmelCase_ ).save_pretrained(lowerCAmelCase_ ) return model if __name__ == "__main__": fire.Fire(save_randomly_initialized_version)
221
0
import math from collections.abc import Callable def __lowerCamelCase ( __a :Callable[[float], float] , __a :float , __a :float ) -> float: """simple docstring""" A__ = xa A__ = xa while True: if x_n == x_na or function(__a ) == function(__a ): raise ZeroDivisionError("""float division by zero, could not find root""" ) A__ = x_na - ( function(__a ) / ((function(__a ) - function(__a )) / (x_na - x_n)) ) if abs(x_na - x_na ) < 1_0**-5: return x_na A__ = x_na A__ = x_na def __lowerCamelCase ( __a :float ) -> float: """simple docstring""" return math.pow(__a , 3 ) - (2 * x) - 5 if __name__ == "__main__": print(intersection(f, 3, 3.5))
274
from multiprocessing import Lock, Pipe, Process # lock used to ensure that two processes do not access a pipe at the same time A : Dict = Lock() def __lowerCamelCase ( __a :Dict , __a :List[str] , __a :Optional[int] , __a :Optional[int] , __a :Optional[Any] , __a :Optional[int] , __a :int ) -> Dict: """simple docstring""" global process_lock # we perform n swaps since after n swaps we know we are sorted # we *could* stop early if we are sorted already, but it takes as long to # find out we are sorted as it does to sort the list with this algorithm for i in range(0 , 1_0 ): if (i + position) % 2 == 0 and r_send is not None: # send your value to your right neighbor process_lock.acquire() r_send[1].send(__a ) process_lock.release() # receive your right neighbor's value process_lock.acquire() A__ = rr_cv[0].recv() process_lock.release() # take the lower value since you are on the left A__ = min(__a , __a ) elif (i + position) % 2 != 0 and l_send is not None: # send your value to your left neighbor process_lock.acquire() l_send[1].send(__a ) process_lock.release() # receive your left neighbor's value process_lock.acquire() A__ = lr_cv[0].recv() process_lock.release() # take the higher value since you are on the right A__ = max(__a , __a ) # after all swaps are performed, send the values back to main result_pipe[1].send(__a ) def __lowerCamelCase ( __a :List[str] ) -> int: """simple docstring""" A__ = [] A__ = [] # initialize the list of pipes where the values will be retrieved for _ in arr: result_pipe.append(Pipe() ) # creates the processes # the first and last process only have one neighbor so they are made outside # of the loop A__ = Pipe() A__ = Pipe() process_array_.append( Process( target=__a , args=(0, arr[0], None, temp_rs, None, temp_rr, result_pipe[0]) , ) ) A__ = temp_rs A__ = temp_rr for i in range(1 , len(__a ) - 1 ): A__ = Pipe() A__ = Pipe() process_array_.append( Process( target=__a , args=(i, arr[i], temp_ls, temp_rs, temp_lr, temp_rr, result_pipe[i]) , ) ) A__ = temp_rs A__ = temp_rr process_array_.append( Process( target=__a , args=( len(__a ) - 1, arr[len(__a ) - 1], temp_ls, None, temp_lr, None, result_pipe[len(__a ) - 1], ) , ) ) # start the processes for p in process_array_: p.start() # wait for the processes to end and write their values to the list for p in range(0 , len(__a ) ): A__ = result_pipe[p][0].recv() process_array_[p].join() return arr def __lowerCamelCase ( ) -> str: """simple docstring""" A__ = list(range(1_0 , 0 , -1 ) ) print("""Initial List""" ) print(*__a ) A__ = odd_even_transposition(__a ) print("""Sorted List\n""" ) print(*__a ) if __name__ == "__main__": main()
274
1
import warnings from ...utils import logging from .image_processing_yolos import YolosImageProcessor __A = logging.get_logger(__name__) class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__(self : Union[str, Any] , *UpperCAmelCase_ : Any , **UpperCAmelCase_ : Optional[Any]) ->None: '''simple docstring''' warnings.warn( "The class YolosFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please" " use YolosImageProcessor instead." , UpperCAmelCase_ , ) super().__init__(*UpperCAmelCase_ , **UpperCAmelCase_)
362
from math import pow def lowerCAmelCase_ ( __a , __a , __a , __a , __a , ) -> tuple[int, int]: """simple docstring""" if current_sum == needed_sum: # If the sum of the powers is equal to needed_sum, then we have a solution. solutions_count += 1 return current_sum, solutions_count lowerCamelCase__: Optional[Any] =int(pow(__a , __a ) ) if current_sum + i_to_n <= needed_sum: # If the sum of the powers is less than needed_sum, then continue adding powers. current_sum += i_to_n lowerCamelCase__ , lowerCamelCase__: int =backtrack( __a , __a , current_number + 1 , __a , __a ) current_sum -= i_to_n if i_to_n < needed_sum: # If the power of i is less than needed_sum, then try with the next power. lowerCamelCase__ , lowerCamelCase__: Dict =backtrack( __a , __a , current_number + 1 , __a , __a ) return current_sum, solutions_count def lowerCAmelCase_ ( __a , __a ) -> int: """simple docstring""" if not (1 <= needed_sum <= 1000 and 2 <= power <= 10): raise ValueError( "Invalid input\n" "needed_sum must be between 1 and 1000, power between 2 and 10." ) return backtrack(__a , __a , 1 , 0 , 0 )[1] # Return the solutions_count if __name__ == "__main__": import doctest doctest.testmod()
273
0
'''simple docstring''' import inspect import unittest from transformers import SegformerConfig, is_torch_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_MAPPING, SegformerForImageClassification, SegformerForSemanticSegmentation, SegformerModel, ) from transformers.models.segformer.modeling_segformer import SEGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import SegformerImageProcessor class UpperCAmelCase ( snake_case_ ): def lowercase__ ( self : List[Any] ) -> Union[str, Any]: _lowerCAmelCase = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(__snake_case , """hidden_sizes""" ) ) self.parent.assertTrue(hasattr(__snake_case , """num_attention_heads""" ) ) self.parent.assertTrue(hasattr(__snake_case , """num_encoder_blocks""" ) ) class UpperCAmelCase : def __init__( self : Optional[int] , __snake_case : str , __snake_case : Dict=13 , __snake_case : str=64 , __snake_case : Dict=3 , __snake_case : Dict=4 , __snake_case : Tuple=[2, 2, 2, 2] , __snake_case : int=[8, 4, 2, 1] , __snake_case : List[str]=[16, 32, 64, 1_28] , __snake_case : Optional[Any]=[1, 4, 8, 16] , __snake_case : Dict=[1, 2, 4, 8] , __snake_case : Optional[Any]=True , __snake_case : List[str]=True , __snake_case : int="gelu" , __snake_case : Optional[Any]=0.1 , __snake_case : Any=0.1 , __snake_case : Tuple=0.02 , __snake_case : Union[str, Any]=3 , __snake_case : Tuple=None , ) -> List[str]: _lowerCAmelCase = parent _lowerCAmelCase = batch_size _lowerCAmelCase = image_size _lowerCAmelCase = num_channels _lowerCAmelCase = num_encoder_blocks _lowerCAmelCase = sr_ratios _lowerCAmelCase = depths _lowerCAmelCase = hidden_sizes _lowerCAmelCase = downsampling_rates _lowerCAmelCase = num_attention_heads _lowerCAmelCase = is_training _lowerCAmelCase = use_labels _lowerCAmelCase = hidden_act _lowerCAmelCase = hidden_dropout_prob _lowerCAmelCase = attention_probs_dropout_prob _lowerCAmelCase = initializer_range _lowerCAmelCase = num_labels _lowerCAmelCase = scope def lowercase__ ( self : int ) -> Union[str, Any]: _lowerCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _lowerCAmelCase = None if self.use_labels: _lowerCAmelCase = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) _lowerCAmelCase = self.get_config() return config, pixel_values, labels def lowercase__ ( self : List[Any] ) -> List[str]: return SegformerConfig( image_size=self.image_size , num_channels=self.num_channels , num_encoder_blocks=self.num_encoder_blocks , depths=self.depths , hidden_sizes=self.hidden_sizes , num_attention_heads=self.num_attention_heads , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , initializer_range=self.initializer_range , ) def lowercase__ ( self : Tuple , __snake_case : Optional[Any] , __snake_case : Union[str, Any] , __snake_case : Optional[int] ) -> Tuple: _lowerCAmelCase = SegformerModel(config=__snake_case ) model.to(__snake_case ) model.eval() _lowerCAmelCase = model(__snake_case ) _lowerCAmelCase = _lowerCAmelCase = self.image_size // (self.downsampling_rates[-1] * 2) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], expected_height, expected_width) ) def lowercase__ ( self : List[str] , __snake_case : List[Any] , __snake_case : Optional[Any] , __snake_case : Optional[int] ) -> List[str]: _lowerCAmelCase = self.num_labels _lowerCAmelCase = SegformerForSemanticSegmentation(__snake_case ) model.to(__snake_case ) model.eval() _lowerCAmelCase = model(__snake_case ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size // 4, self.image_size // 4) ) _lowerCAmelCase = model(__snake_case , labels=__snake_case ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size // 4, self.image_size // 4) ) self.parent.assertGreater(result.loss , 0.0 ) def lowercase__ ( self : str , __snake_case : Union[str, Any] , __snake_case : Optional[int] , __snake_case : Dict ) -> List[str]: _lowerCAmelCase = 1 _lowerCAmelCase = SegformerForSemanticSegmentation(config=__snake_case ) model.to(__snake_case ) model.eval() _lowerCAmelCase = torch.randint(0 , 1 , (self.batch_size, self.image_size, self.image_size) ).to(__snake_case ) _lowerCAmelCase = model(__snake_case , labels=__snake_case ) self.parent.assertGreater(result.loss , 0.0 ) def lowercase__ ( self : Optional[int] ) -> int: _lowerCAmelCase = self.prepare_config_and_inputs() _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = config_and_inputs _lowerCAmelCase = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class UpperCAmelCase ( snake_case_ , snake_case_ , unittest.TestCase ): _lowercase: Any = ( ( SegformerModel, SegformerForSemanticSegmentation, SegformerForImageClassification, ) if is_torch_available() else () ) _lowercase: Tuple = ( { '''feature-extraction''': SegformerModel, '''image-classification''': SegformerForImageClassification, '''image-segmentation''': SegformerForSemanticSegmentation, } if is_torch_available() else {} ) _lowercase: Tuple = True _lowercase: Union[str, Any] = False _lowercase: Dict = False _lowercase: Optional[Any] = False def lowercase__ ( self : Tuple ) -> Any: _lowerCAmelCase = SegformerModelTester(self ) _lowerCAmelCase = SegformerConfigTester(self , config_class=__snake_case ) def lowercase__ ( self : Optional[Any] ) -> Dict: self.config_tester.run_common_tests() def lowercase__ ( self : int ) -> Union[str, Any]: _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__snake_case ) def lowercase__ ( self : Dict ) -> int: _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_binary_image_segmentation(*__snake_case ) def lowercase__ ( self : Dict ) -> Dict: _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_segmentation(*__snake_case ) @unittest.skip("""SegFormer does not use inputs_embeds""" ) def lowercase__ ( self : int ) -> Union[str, Any]: pass @unittest.skip("""SegFormer does not have get_input_embeddings method and get_output_embeddings methods""" ) def lowercase__ ( self : Optional[int] ) -> int: pass def lowercase__ ( self : Union[str, Any] ) -> Optional[Any]: _lowerCAmelCase , _lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCAmelCase = model_class(__snake_case ) _lowerCAmelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _lowerCAmelCase = [*signature.parameters.keys()] _lowerCAmelCase = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , __snake_case ) def lowercase__ ( self : Tuple ) -> Tuple: _lowerCAmelCase , _lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() _lowerCAmelCase = True for model_class in self.all_model_classes: _lowerCAmelCase = True _lowerCAmelCase = False _lowerCAmelCase = True _lowerCAmelCase = model_class(__snake_case ) model.to(__snake_case ) model.eval() with torch.no_grad(): _lowerCAmelCase = model(**self._prepare_for_class(__snake_case , __snake_case ) ) _lowerCAmelCase = outputs.attentions _lowerCAmelCase = sum(self.model_tester.depths ) self.assertEqual(len(__snake_case ) , __snake_case ) # check that output_attentions also work using config del inputs_dict["output_attentions"] _lowerCAmelCase = True _lowerCAmelCase = model_class(__snake_case ) model.to(__snake_case ) model.eval() with torch.no_grad(): _lowerCAmelCase = model(**self._prepare_for_class(__snake_case , __snake_case ) ) _lowerCAmelCase = outputs.attentions self.assertEqual(len(__snake_case ) , __snake_case ) # verify the first attentions (first block, first layer) _lowerCAmelCase = (self.model_tester.image_size // 4) ** 2 _lowerCAmelCase = (self.model_tester.image_size // (4 * self.model_tester.sr_ratios[0])) ** 2 self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads[0], expected_seq_len, expected_reduced_seq_len] , ) # verify the last attentions (last block, last layer) _lowerCAmelCase = (self.model_tester.image_size // 32) ** 2 _lowerCAmelCase = (self.model_tester.image_size // (32 * self.model_tester.sr_ratios[-1])) ** 2 self.assertListEqual( list(attentions[-1].shape[-3:] ) , [self.model_tester.num_attention_heads[-1], expected_seq_len, expected_reduced_seq_len] , ) _lowerCAmelCase = len(__snake_case ) # Check attention is always last and order is fine _lowerCAmelCase = True _lowerCAmelCase = True _lowerCAmelCase = model_class(__snake_case ) model.to(__snake_case ) model.eval() with torch.no_grad(): _lowerCAmelCase = model(**self._prepare_for_class(__snake_case , __snake_case ) ) self.assertEqual(out_len + 1 , len(__snake_case ) ) _lowerCAmelCase = outputs.attentions self.assertEqual(len(__snake_case ) , __snake_case ) # verify the first attentions (first block, first layer) _lowerCAmelCase = (self.model_tester.image_size // 4) ** 2 _lowerCAmelCase = (self.model_tester.image_size // (4 * self.model_tester.sr_ratios[0])) ** 2 self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads[0], expected_seq_len, expected_reduced_seq_len] , ) def lowercase__ ( self : int ) -> List[str]: def check_hidden_states_output(__snake_case : str , __snake_case : Tuple , __snake_case : Optional[int] ): _lowerCAmelCase = model_class(__snake_case ) model.to(__snake_case ) model.eval() with torch.no_grad(): _lowerCAmelCase = model(**self._prepare_for_class(__snake_case , __snake_case ) ) _lowerCAmelCase = outputs.hidden_states _lowerCAmelCase = self.model_tester.num_encoder_blocks self.assertEqual(len(__snake_case ) , __snake_case ) # verify the first hidden states (first block) self.assertListEqual( list(hidden_states[0].shape[-3:] ) , [ self.model_tester.hidden_sizes[0], self.model_tester.image_size // 4, self.model_tester.image_size // 4, ] , ) _lowerCAmelCase , _lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCAmelCase = True check_hidden_states_output(__snake_case , __snake_case , __snake_case ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _lowerCAmelCase = True check_hidden_states_output(__snake_case , __snake_case , __snake_case ) def lowercase__ ( self : Optional[Any] ) -> Any: if not self.model_tester.is_training: return _lowerCAmelCase , _lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() _lowerCAmelCase = True for model_class in self.all_model_classes: if model_class in get_values(__snake_case ): continue _lowerCAmelCase = model_class(__snake_case ) model.to(__snake_case ) model.train() _lowerCAmelCase = self._prepare_for_class(__snake_case , __snake_case , return_labels=__snake_case ) _lowerCAmelCase = model(**__snake_case ).loss loss.backward() @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def lowercase__ ( self : Tuple ) -> Dict: pass @slow def lowercase__ ( self : str ) -> Optional[int]: for model_name in SEGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCAmelCase = SegformerModel.from_pretrained(__snake_case ) self.assertIsNotNone(__snake_case ) def UpperCamelCase__ ( ): """simple docstring""" _lowerCAmelCase = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch class UpperCAmelCase ( unittest.TestCase ): @slow def lowercase__ ( self : Union[str, Any] ) -> Any: # only resize + normalize _lowerCAmelCase = SegformerImageProcessor( image_scale=(5_12, 5_12) , keep_ratio=__snake_case , align=__snake_case , do_random_crop=__snake_case ) _lowerCAmelCase = SegformerForSemanticSegmentation.from_pretrained("""nvidia/segformer-b0-finetuned-ade-512-512""" ).to( __snake_case ) _lowerCAmelCase = prepare_img() _lowerCAmelCase = image_processor(images=__snake_case , return_tensors="""pt""" ) _lowerCAmelCase = encoded_inputs.pixel_values.to(__snake_case ) with torch.no_grad(): _lowerCAmelCase = model(__snake_case ) _lowerCAmelCase = torch.Size((1, model.config.num_labels, 1_28, 1_28) ) self.assertEqual(outputs.logits.shape , __snake_case ) _lowerCAmelCase = torch.tensor( [ [[-4.63_10, -5.52_32, -6.23_56], [-5.19_21, -6.14_44, -6.59_96], [-5.44_24, -6.27_90, -6.75_74]], [[-12.13_91, -13.31_22, -13.95_54], [-12.87_32, -13.93_52, -14.35_63], [-12.94_38, -13.82_26, -14.25_13]], [[-12.51_34, -13.46_86, -14.49_15], [-12.86_69, -14.43_43, -14.77_58], [-13.25_23, -14.58_19, -15.06_94]], ] ).to(__snake_case ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3, :3] , __snake_case , atol=1E-4 ) ) @slow def lowercase__ ( self : Optional[Any] ) -> Any: # only resize + normalize _lowerCAmelCase = SegformerImageProcessor( image_scale=(5_12, 5_12) , keep_ratio=__snake_case , align=__snake_case , do_random_crop=__snake_case ) _lowerCAmelCase = SegformerForSemanticSegmentation.from_pretrained( """nvidia/segformer-b1-finetuned-cityscapes-1024-1024""" ).to(__snake_case ) _lowerCAmelCase = prepare_img() _lowerCAmelCase = image_processor(images=__snake_case , return_tensors="""pt""" ) _lowerCAmelCase = encoded_inputs.pixel_values.to(__snake_case ) with torch.no_grad(): _lowerCAmelCase = model(__snake_case ) _lowerCAmelCase = torch.Size((1, model.config.num_labels, 1_28, 1_28) ) self.assertEqual(outputs.logits.shape , __snake_case ) _lowerCAmelCase = torch.tensor( [ [[-13.57_48, -13.91_11, -12.65_00], [-14.35_00, -15.36_83, -14.23_28], [-14.75_32, -16.04_24, -15.60_87]], [[-17.16_51, -15.87_25, -12.96_53], [-17.25_80, -17.37_18, -14.82_23], [-16.60_58, -16.87_83, -16.74_52]], [[-3.64_56, -3.02_09, -1.42_03], [-3.07_97, -3.19_59, -2.00_00], [-1.87_57, -1.92_17, -1.69_97]], ] ).to(__snake_case ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3, :3] , __snake_case , atol=1E-1 ) ) @slow def lowercase__ ( self : Any ) -> str: # only resize + normalize _lowerCAmelCase = SegformerImageProcessor( image_scale=(5_12, 5_12) , keep_ratio=__snake_case , align=__snake_case , do_random_crop=__snake_case ) _lowerCAmelCase = SegformerForSemanticSegmentation.from_pretrained("""nvidia/segformer-b0-finetuned-ade-512-512""" ).to( __snake_case ) _lowerCAmelCase = prepare_img() _lowerCAmelCase = image_processor(images=__snake_case , return_tensors="""pt""" ) _lowerCAmelCase = encoded_inputs.pixel_values.to(__snake_case ) with torch.no_grad(): _lowerCAmelCase = model(__snake_case ) _lowerCAmelCase = outputs.logits.detach().cpu() _lowerCAmelCase = image_processor.post_process_semantic_segmentation(outputs=__snake_case , target_sizes=[(5_00, 3_00)] ) _lowerCAmelCase = torch.Size((5_00, 3_00) ) self.assertEqual(segmentation[0].shape , __snake_case ) _lowerCAmelCase = image_processor.post_process_semantic_segmentation(outputs=__snake_case ) _lowerCAmelCase = torch.Size((1_28, 1_28) ) self.assertEqual(segmentation[0].shape , __snake_case )
70
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available A__ : Optional[Any] ={ '''configuration_bigbird_pegasus''': [ '''BIGBIRD_PEGASUS_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''BigBirdPegasusConfig''', '''BigBirdPegasusOnnxConfig''', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ : Union[str, Any] =[ '''BIGBIRD_PEGASUS_PRETRAINED_MODEL_ARCHIVE_LIST''', '''BigBirdPegasusForCausalLM''', '''BigBirdPegasusForConditionalGeneration''', '''BigBirdPegasusForQuestionAnswering''', '''BigBirdPegasusForSequenceClassification''', '''BigBirdPegasusModel''', '''BigBirdPegasusPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_bigbird_pegasus import ( BIGBIRD_PEGASUS_PRETRAINED_CONFIG_ARCHIVE_MAP, BigBirdPegasusConfig, BigBirdPegasusOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bigbird_pegasus import ( BIGBIRD_PEGASUS_PRETRAINED_MODEL_ARCHIVE_LIST, BigBirdPegasusForCausalLM, BigBirdPegasusForConditionalGeneration, BigBirdPegasusForQuestionAnswering, BigBirdPegasusForSequenceClassification, BigBirdPegasusModel, BigBirdPegasusPreTrainedModel, ) else: import sys A__ : Optional[Any] =_LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
70
1
"""simple docstring""" import os __A : Dict = {'''I''': 1, '''V''': 5, '''X''': 10, '''L''': 50, '''C''': 100, '''D''': 500, '''M''': 1000} def A_ ( snake_case_ : str ): '''simple docstring''' UpperCamelCase : Any = 0 UpperCamelCase : List[str] = 0 while index < len(snake_case_ ) - 1: UpperCamelCase : Optional[int] = SYMBOLS[numerals[index]] UpperCamelCase : Tuple = SYMBOLS[numerals[index + 1]] if current_value < next_value: total_value -= current_value else: total_value += current_value index += 1 total_value += SYMBOLS[numerals[index]] return total_value def A_ ( snake_case_ : int ): '''simple docstring''' UpperCamelCase : List[Any] = '' UpperCamelCase : int = num // 1_0_0_0 numerals += m_count * "M" num %= 1_0_0_0 UpperCamelCase : Tuple = num // 1_0_0 if c_count == 9: numerals += "CM" c_count -= 9 elif c_count == 4: numerals += "CD" c_count -= 4 if c_count >= 5: numerals += "D" c_count -= 5 numerals += c_count * "C" num %= 1_0_0 UpperCamelCase : Optional[int] = num // 1_0 if x_count == 9: numerals += "XC" x_count -= 9 elif x_count == 4: numerals += "XL" x_count -= 4 if x_count >= 5: numerals += "L" x_count -= 5 numerals += x_count * "X" num %= 1_0 if num == 9: numerals += "IX" num -= 9 elif num == 4: numerals += "IV" num -= 4 if num >= 5: numerals += "V" num -= 5 numerals += num * "I" return numerals def A_ ( snake_case_ : str = "/p089_roman.txt" ): '''simple docstring''' UpperCamelCase : Optional[Any] = 0 with open(os.path.dirname(snake_case_ ) + roman_numerals_filename ) as filea: UpperCamelCase : Union[str, Any] = filea.readlines() for line in lines: UpperCamelCase : Dict = line.strip() UpperCamelCase : str = parse_roman_numerals(snake_case_ ) UpperCamelCase : List[str] = generate_roman_numerals(snake_case_ ) savings += len(snake_case_ ) - len(snake_case_ ) return savings if __name__ == "__main__": print(F'''{solution() = }''')
355
"""simple docstring""" import gc import unittest import numpy as np import torch import torch.nn.functional as F from transformers import ( ClapTextConfig, ClapTextModelWithProjection, RobertaTokenizer, SpeechTaHifiGan, SpeechTaHifiGanConfig, ) from diffusers import ( AudioLDMPipeline, AutoencoderKL, DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.utils import is_xformers_available, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism from ..pipeline_params import TEXT_TO_AUDIO_BATCH_PARAMS, TEXT_TO_AUDIO_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class lowerCamelCase ( _UpperCAmelCase , unittest.TestCase ): lowercase : Any = AudioLDMPipeline lowercase : Union[str, Any] = TEXT_TO_AUDIO_PARAMS lowercase : List[str] = TEXT_TO_AUDIO_BATCH_PARAMS lowercase : Tuple = frozenset( [ 'num_inference_steps', 'num_waveforms_per_prompt', 'generator', 'latents', 'output_type', 'return_dict', 'callback', 'callback_steps', ] ) def a_ ( self ): torch.manual_seed(0 ) UpperCamelCase : Tuple = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=(32, 64) , class_embed_type="""simple_projection""" , projection_class_embeddings_input_dim=32 , class_embeddings_concat=SCREAMING_SNAKE_CASE_ , ) UpperCamelCase : Optional[Any] = DDIMScheduler( beta_start=0.00085 , beta_end=0.012 , beta_schedule="""scaled_linear""" , clip_sample=SCREAMING_SNAKE_CASE_ , set_alpha_to_one=SCREAMING_SNAKE_CASE_ , ) torch.manual_seed(0 ) UpperCamelCase : Optional[int] = AutoencoderKL( block_out_channels=[32, 64] , in_channels=1 , out_channels=1 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , ) torch.manual_seed(0 ) UpperCamelCase : int = ClapTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , projection_dim=32 , ) UpperCamelCase : Optional[int] = ClapTextModelWithProjection(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : List[str] = RobertaTokenizer.from_pretrained("""hf-internal-testing/tiny-random-roberta""" , model_max_length=77 ) UpperCamelCase : Tuple = SpeechTaHifiGanConfig( model_in_dim=8 , sampling_rate=1_6000 , upsample_initial_channel=16 , upsample_rates=[2, 2] , upsample_kernel_sizes=[4, 4] , resblock_kernel_sizes=[3, 7] , resblock_dilation_sizes=[[1, 3, 5], [1, 3, 5]] , normalize_before=SCREAMING_SNAKE_CASE_ , ) UpperCamelCase : Tuple = SpeechTaHifiGan(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Tuple = { """unet""": unet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """vocoder""": vocoder, } return components def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=0 ): if str(SCREAMING_SNAKE_CASE_ ).startswith("""mps""" ): UpperCamelCase : List[Any] = torch.manual_seed(SCREAMING_SNAKE_CASE_ ) else: UpperCamelCase : Any = torch.Generator(device=SCREAMING_SNAKE_CASE_ ).manual_seed(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Optional[int] = { """prompt""": """A hammer hitting a wooden surface""", """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 6.0, } return inputs def a_ ( self ): UpperCamelCase : str = """cpu""" # ensure determinism for the device-dependent torch.Generator UpperCamelCase : Any = self.get_dummy_components() UpperCamelCase : int = AudioLDMPipeline(**SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Dict = audioldm_pipe.to(SCREAMING_SNAKE_CASE_ ) audioldm_pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : int = self.get_dummy_inputs(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Union[str, Any] = audioldm_pipe(**SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Any = output.audios[0] assert audio.ndim == 1 assert len(SCREAMING_SNAKE_CASE_ ) == 256 UpperCamelCase : Tuple = audio[:10] UpperCamelCase : Dict = np.array( [-0.0050, 0.0050, -0.0060, 0.0033, -0.0026, 0.0033, -0.0027, 0.0033, -0.0028, 0.0033] ) assert np.abs(audio_slice - expected_slice ).max() < 1e-2 def a_ ( self ): UpperCamelCase : str = self.get_dummy_components() UpperCamelCase : Tuple = AudioLDMPipeline(**SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Optional[Any] = audioldm_pipe.to(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Tuple = audioldm_pipe.to(SCREAMING_SNAKE_CASE_ ) audioldm_pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Union[str, Any] = self.get_dummy_inputs(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Optional[Any] = 3 * [inputs["""prompt"""]] # forward UpperCamelCase : List[Any] = audioldm_pipe(**SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Tuple = output.audios[0] UpperCamelCase : Union[str, Any] = self.get_dummy_inputs(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Tuple = 3 * [inputs.pop("""prompt""" )] UpperCamelCase : List[str] = audioldm_pipe.tokenizer( SCREAMING_SNAKE_CASE_ , padding="""max_length""" , max_length=audioldm_pipe.tokenizer.model_max_length , truncation=SCREAMING_SNAKE_CASE_ , return_tensors="""pt""" , ) UpperCamelCase : Optional[int] = text_inputs["""input_ids"""].to(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Dict = audioldm_pipe.text_encoder( SCREAMING_SNAKE_CASE_ , ) UpperCamelCase : str = prompt_embeds.text_embeds # additional L_2 normalization over each hidden-state UpperCamelCase : Optional[int] = F.normalize(SCREAMING_SNAKE_CASE_ , dim=-1 ) UpperCamelCase : Tuple = prompt_embeds # forward UpperCamelCase : List[str] = audioldm_pipe(**SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Tuple = output.audios[0] assert np.abs(audio_a - audio_a ).max() < 1e-2 def a_ ( self ): UpperCamelCase : List[str] = self.get_dummy_components() UpperCamelCase : List[Any] = AudioLDMPipeline(**SCREAMING_SNAKE_CASE_ ) UpperCamelCase : List[str] = audioldm_pipe.to(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Optional[Any] = audioldm_pipe.to(SCREAMING_SNAKE_CASE_ ) audioldm_pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Optional[int] = self.get_dummy_inputs(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Tuple = 3 * ["""this is a negative prompt"""] UpperCamelCase : List[Any] = negative_prompt UpperCamelCase : str = 3 * [inputs["""prompt"""]] # forward UpperCamelCase : str = audioldm_pipe(**SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Any = output.audios[0] UpperCamelCase : Tuple = self.get_dummy_inputs(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Any = 3 * [inputs.pop("""prompt""" )] UpperCamelCase : List[Any] = [] for p in [prompt, negative_prompt]: UpperCamelCase : int = audioldm_pipe.tokenizer( SCREAMING_SNAKE_CASE_ , padding="""max_length""" , max_length=audioldm_pipe.tokenizer.model_max_length , truncation=SCREAMING_SNAKE_CASE_ , return_tensors="""pt""" , ) UpperCamelCase : Union[str, Any] = text_inputs["""input_ids"""].to(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Dict = audioldm_pipe.text_encoder( SCREAMING_SNAKE_CASE_ , ) UpperCamelCase : Tuple = text_embeds.text_embeds # additional L_2 normalization over each hidden-state UpperCamelCase : Optional[int] = F.normalize(SCREAMING_SNAKE_CASE_ , dim=-1 ) embeds.append(SCREAMING_SNAKE_CASE_ ) UpperCamelCase , UpperCamelCase : Tuple = embeds # forward UpperCamelCase : List[Any] = audioldm_pipe(**SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Optional[int] = output.audios[0] assert np.abs(audio_a - audio_a ).max() < 1e-2 def a_ ( self ): UpperCamelCase : Optional[int] = """cpu""" # ensure determinism for the device-dependent torch.Generator UpperCamelCase : Optional[int] = self.get_dummy_components() UpperCamelCase : List[str] = PNDMScheduler(skip_prk_steps=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Any = AudioLDMPipeline(**SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Union[str, Any] = audioldm_pipe.to(SCREAMING_SNAKE_CASE_ ) audioldm_pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : List[str] = self.get_dummy_inputs(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : List[Any] = """egg cracking""" UpperCamelCase : List[Any] = audioldm_pipe(**SCREAMING_SNAKE_CASE_ , negative_prompt=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Tuple = output.audios[0] assert audio.ndim == 1 assert len(SCREAMING_SNAKE_CASE_ ) == 256 UpperCamelCase : Union[str, Any] = audio[:10] UpperCamelCase : Dict = np.array( [-0.0051, 0.0050, -0.0060, 0.0034, -0.0026, 0.0033, -0.0027, 0.0033, -0.0028, 0.0032] ) assert np.abs(audio_slice - expected_slice ).max() < 1e-2 def a_ ( self ): UpperCamelCase : Optional[int] = """cpu""" # ensure determinism for the device-dependent torch.Generator UpperCamelCase : Union[str, Any] = self.get_dummy_components() UpperCamelCase : Tuple = PNDMScheduler(skip_prk_steps=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Tuple = AudioLDMPipeline(**SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Any = audioldm_pipe.to(SCREAMING_SNAKE_CASE_ ) audioldm_pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : List[str] = """A hammer hitting a wooden surface""" # test num_waveforms_per_prompt=1 (default) UpperCamelCase : List[Any] = audioldm_pipe(SCREAMING_SNAKE_CASE_ , num_inference_steps=2 ).audios assert audios.shape == (1, 256) # test num_waveforms_per_prompt=1 (default) for batch of prompts UpperCamelCase : Dict = 2 UpperCamelCase : List[str] = audioldm_pipe([prompt] * batch_size , num_inference_steps=2 ).audios assert audios.shape == (batch_size, 256) # test num_waveforms_per_prompt for single prompt UpperCamelCase : List[str] = 2 UpperCamelCase : Optional[Any] = audioldm_pipe(SCREAMING_SNAKE_CASE_ , num_inference_steps=2 , num_waveforms_per_prompt=SCREAMING_SNAKE_CASE_ ).audios assert audios.shape == (num_waveforms_per_prompt, 256) # test num_waveforms_per_prompt for batch of prompts UpperCamelCase : Any = 2 UpperCamelCase : str = audioldm_pipe( [prompt] * batch_size , num_inference_steps=2 , num_waveforms_per_prompt=SCREAMING_SNAKE_CASE_ ).audios assert audios.shape == (batch_size * num_waveforms_per_prompt, 256) def a_ ( self ): UpperCamelCase : Optional[int] = """cpu""" # ensure determinism for the device-dependent torch.Generator UpperCamelCase : Tuple = self.get_dummy_components() UpperCamelCase : Tuple = AudioLDMPipeline(**SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Union[str, Any] = audioldm_pipe.to(SCREAMING_SNAKE_CASE_ ) audioldm_pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Optional[int] = audioldm_pipe.vocoder.config.sampling_rate UpperCamelCase : List[str] = self.get_dummy_inputs(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Any = audioldm_pipe(audio_length_in_s=0.016 , **SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Any = output.audios[0] assert audio.ndim == 1 assert len(SCREAMING_SNAKE_CASE_ ) / vocoder_sampling_rate == 0.016 UpperCamelCase : Optional[Any] = audioldm_pipe(audio_length_in_s=0.032 , **SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Any = output.audios[0] assert audio.ndim == 1 assert len(SCREAMING_SNAKE_CASE_ ) / vocoder_sampling_rate == 0.032 def a_ ( self ): UpperCamelCase : str = self.get_dummy_components() UpperCamelCase : Optional[Any] = AudioLDMPipeline(**SCREAMING_SNAKE_CASE_ ) UpperCamelCase : List[Any] = audioldm_pipe.to(SCREAMING_SNAKE_CASE_ ) audioldm_pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Dict = ["""hey"""] UpperCamelCase : Dict = audioldm_pipe(SCREAMING_SNAKE_CASE_ , num_inference_steps=1 ) UpperCamelCase : str = output.audios.shape assert audio_shape == (1, 256) UpperCamelCase : Optional[Any] = audioldm_pipe.vocoder.config config.model_in_dim *= 2 UpperCamelCase : str = SpeechTaHifiGan(SCREAMING_SNAKE_CASE_ ).to(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Optional[Any] = audioldm_pipe(SCREAMING_SNAKE_CASE_ , num_inference_steps=1 ) UpperCamelCase : List[str] = output.audios.shape # waveform shape is unchanged, we just have 2x the number of mel channels in the spectrogram assert audio_shape == (1, 256) def a_ ( self ): self._test_attention_slicing_forward_pass(test_mean_pixel_difference=SCREAMING_SNAKE_CASE_ ) def a_ ( self ): self._test_inference_batch_single_identical(test_mean_pixel_difference=SCREAMING_SNAKE_CASE_ ) @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , ) def a_ ( self ): self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=SCREAMING_SNAKE_CASE_ ) @slow class lowerCamelCase ( unittest.TestCase ): def a_ ( self ): super().tearDown() gc.collect() torch.cuda.empty_cache() def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_="cpu" , SCREAMING_SNAKE_CASE_=torch.floataa , SCREAMING_SNAKE_CASE_=0 ): UpperCamelCase : str = torch.Generator(device=SCREAMING_SNAKE_CASE_ ).manual_seed(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Optional[Any] = np.random.RandomState(SCREAMING_SNAKE_CASE_ ).standard_normal((1, 8, 128, 16) ) UpperCamelCase : int = torch.from_numpy(SCREAMING_SNAKE_CASE_ ).to(device=SCREAMING_SNAKE_CASE_ , dtype=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Optional[Any] = { """prompt""": """A hammer hitting a wooden surface""", """latents""": latents, """generator""": generator, """num_inference_steps""": 3, """guidance_scale""": 2.5, } return inputs def a_ ( self ): UpperCamelCase : Optional[int] = AudioLDMPipeline.from_pretrained("""cvssp/audioldm""" ) UpperCamelCase : List[Any] = audioldm_pipe.to(SCREAMING_SNAKE_CASE_ ) audioldm_pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Optional[Any] = self.get_inputs(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : List[str] = 25 UpperCamelCase : Optional[Any] = audioldm_pipe(**SCREAMING_SNAKE_CASE_ ).audios[0] assert audio.ndim == 1 assert len(SCREAMING_SNAKE_CASE_ ) == 8_1920 UpperCamelCase : Union[str, Any] = audio[7_7230:7_7240] UpperCamelCase : Optional[Any] = np.array( [-0.4884, -0.4607, 0.0023, 0.5007, 0.5896, 0.5151, 0.3813, -0.0208, -0.3687, -0.4315] ) UpperCamelCase : Any = np.abs(expected_slice - audio_slice ).max() assert max_diff < 1e-2 def a_ ( self ): UpperCamelCase : Any = AudioLDMPipeline.from_pretrained("""cvssp/audioldm""" ) UpperCamelCase : Any = LMSDiscreteScheduler.from_config(audioldm_pipe.scheduler.config ) UpperCamelCase : str = audioldm_pipe.to(SCREAMING_SNAKE_CASE_ ) audioldm_pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : int = self.get_inputs(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : List[str] = audioldm_pipe(**SCREAMING_SNAKE_CASE_ ).audios[0] assert audio.ndim == 1 assert len(SCREAMING_SNAKE_CASE_ ) == 8_1920 UpperCamelCase : Union[str, Any] = audio[2_7780:2_7790] UpperCamelCase : Tuple = np.array([-0.2131, -0.0873, -0.0124, -0.0189, 0.0569, 0.1373, 0.1883, 0.2886, 0.3297, 0.2212] ) UpperCamelCase : Tuple = np.abs(expected_slice - audio_slice ).max() assert max_diff < 3e-2
27
0
'''simple docstring''' from __future__ import annotations import inspect import unittest from math import floor import numpy as np from transformers import CvtConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFCvtForImageClassification, TFCvtModel from transformers.models.cvt.modeling_tf_cvt import TF_CVT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class SCREAMING_SNAKE_CASE( lowerCAmelCase_ ): """simple docstring""" def A ( self : str ) -> List[str]: UpperCAmelCase : int = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(lowerCamelCase__ , '''embed_dim''' ) ) self.parent.assertTrue(hasattr(lowerCamelCase__ , '''num_heads''' ) ) class SCREAMING_SNAKE_CASE: """simple docstring""" def __init__( self : Any , __snake_case : Dict , __snake_case : Tuple=13 , __snake_case : Dict=64 , __snake_case : Union[str, Any]=3 , __snake_case : str=[16, 48, 96] , __snake_case : int=[1, 3, 6] , __snake_case : int=[1, 2, 10] , __snake_case : Tuple=[7, 3, 3] , __snake_case : Dict=[4, 2, 2] , __snake_case : str=[2, 1, 1] , __snake_case : Any=[2, 2, 2] , __snake_case : Optional[Any]=[False, False, True] , __snake_case : int=[0.0, 0.0, 0.0] , __snake_case : int=0.02 , __snake_case : Union[str, Any]=1E-12 , __snake_case : int=True , __snake_case : Union[str, Any]=True , __snake_case : Any=2 , ) -> str: UpperCAmelCase : Dict = parent UpperCAmelCase : Any = batch_size UpperCAmelCase : Optional[Any] = image_size UpperCAmelCase : Optional[Any] = patch_sizes UpperCAmelCase : List[str] = patch_stride UpperCAmelCase : Optional[int] = patch_padding UpperCAmelCase : Union[str, Any] = is_training UpperCAmelCase : Tuple = use_labels UpperCAmelCase : Tuple = num_labels UpperCAmelCase : List[str] = num_channels UpperCAmelCase : Any = embed_dim UpperCAmelCase : int = num_heads UpperCAmelCase : str = stride_kv UpperCAmelCase : str = depth UpperCAmelCase : int = cls_token UpperCAmelCase : Tuple = attention_drop_rate UpperCAmelCase : str = initializer_range UpperCAmelCase : Any = layer_norm_eps def A ( self : Dict ) -> Union[str, Any]: UpperCAmelCase : Dict = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase : str = None if self.use_labels: # create a random int32 tensor of given shape UpperCAmelCase : Optional[int] = ids_tensor([self.batch_size] , self.num_labels ) UpperCAmelCase : Union[str, Any] = self.get_config() return config, pixel_values, labels def A ( self : int ) -> Union[str, Any]: return CvtConfig( image_size=self.image_size , num_labels=self.num_labels , num_channels=self.num_channels , embed_dim=self.embed_dim , num_heads=self.num_heads , patch_sizes=self.patch_sizes , patch_padding=self.patch_padding , patch_stride=self.patch_stride , stride_kv=self.stride_kv , depth=self.depth , cls_token=self.cls_token , attention_drop_rate=self.attention_drop_rate , initializer_range=self.initializer_range , ) def A ( self : int , __snake_case : Dict , __snake_case : int , __snake_case : List[str] ) -> str: UpperCAmelCase : str = TFCvtModel(config=lowerCamelCase__ ) UpperCAmelCase : Union[str, Any] = model(lowerCamelCase__ , training=lowerCamelCase__ ) UpperCAmelCase : str = (self.image_size, self.image_size) UpperCAmelCase , UpperCAmelCase : Dict = image_size[0], image_size[1] for i in range(len(self.depth ) ): UpperCAmelCase : Optional[int] = floor(((height + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1 ) UpperCAmelCase : Union[str, Any] = floor(((width + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1 ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.embed_dim[-1], height, width) ) def A ( self : Union[str, Any] , __snake_case : Dict , __snake_case : List[Any] , __snake_case : List[str] ) -> List[Any]: UpperCAmelCase : Optional[Any] = self.num_labels UpperCAmelCase : Tuple = TFCvtForImageClassification(lowerCamelCase__ ) UpperCAmelCase : Optional[int] = model(lowerCamelCase__ , labels=lowerCamelCase__ , training=lowerCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def A ( self : str ) -> Any: UpperCAmelCase : Optional[Any] = self.prepare_config_and_inputs() UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Tuple = config_and_inputs UpperCAmelCase : Optional[int] = {'''pixel_values''': pixel_values} return config, inputs_dict @require_tf class SCREAMING_SNAKE_CASE( lowerCAmelCase_ , lowerCAmelCase_ , unittest.TestCase ): """simple docstring""" lowerCamelCase__ = (TFCvtModel, TFCvtForImageClassification) if is_tf_available() else () lowerCamelCase__ = ( {"feature-extraction": TFCvtModel, "image-classification": TFCvtForImageClassification} if is_tf_available() else {} ) lowerCamelCase__ = False lowerCamelCase__ = False lowerCamelCase__ = False lowerCamelCase__ = False lowerCamelCase__ = False def A ( self : str ) -> Any: UpperCAmelCase : Tuple = TFCvtModelTester(self ) UpperCAmelCase : List[str] = TFCvtConfigTester(self , config_class=lowerCamelCase__ , has_text_modality=lowerCamelCase__ , hidden_size=37 ) def A ( self : Dict ) -> Optional[Any]: self.config_tester.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() @unittest.skip(reason='''Cvt does not output attentions''' ) def A ( self : str ) -> Optional[Any]: pass @unittest.skip(reason='''Cvt does not use inputs_embeds''' ) def A ( self : str ) -> List[str]: pass @unittest.skip(reason='''Cvt does not support input and output embeddings''' ) def A ( self : int ) -> Optional[int]: pass @unittest.skipIf( not is_tf_available() or len(tf.config.list_physical_devices('''GPU''' ) ) == 0 , reason='''TF does not support backprop for grouped convolutions on CPU.''' , ) def A ( self : Optional[int] ) -> Optional[Any]: super().test_dataset_conversion() @unittest.skipIf( not is_tf_available() or len(tf.config.list_physical_devices('''GPU''' ) ) == 0 , reason='''TF does not support backprop for grouped convolutions on CPU.''' , ) @slow def A ( self : List[str] ) -> List[str]: super().test_keras_fit() @unittest.skip(reason='''Get `Failed to determine best cudnn convolution algo.` error after using TF 2.12+cuda 11.8''' ) def A ( self : Tuple ) -> Tuple: UpperCAmelCase : int = tf.keras.mixed_precision.Policy('''mixed_float16''' ) tf.keras.mixed_precision.set_global_policy(lowerCamelCase__ ) super().test_keras_fit() tf.keras.mixed_precision.set_global_policy('''float32''' ) def A ( self : Optional[int] ) -> str: UpperCAmelCase , UpperCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase : Optional[int] = model_class(lowerCamelCase__ ) UpperCAmelCase : Dict = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase : Optional[Any] = [*signature.parameters.keys()] UpperCAmelCase : Dict = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , lowerCamelCase__ ) def A ( self : str ) -> int: def check_hidden_states_output(__snake_case : str , __snake_case : str , __snake_case : List[str] ): UpperCAmelCase : List[Any] = model_class(lowerCamelCase__ ) UpperCAmelCase : Optional[Any] = model(**self._prepare_for_class(lowerCamelCase__ , lowerCamelCase__ ) ) UpperCAmelCase : Optional[Any] = outputs.hidden_states UpperCAmelCase : Optional[int] = len(self.model_tester.depth ) self.assertEqual(len(lowerCamelCase__ ) , lowerCamelCase__ ) # verify the first hidden states (first block) self.assertListEqual( list(hidden_states[0].shape[-3:] ) , [ self.model_tester.embed_dim[0], self.model_tester.image_size // 4, self.model_tester.image_size // 4, ] , ) UpperCAmelCase , UpperCAmelCase : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase : List[Any] = True check_hidden_states_output(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCAmelCase : Dict = True check_hidden_states_output(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) def A ( self : Optional[int] ) -> Dict: UpperCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase__ ) def A ( self : Any ) -> Tuple: UpperCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCamelCase__ ) @slow def A ( self : int ) -> Optional[int]: for model_name in TF_CVT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase : Union[str, Any] = TFCvtModel.from_pretrained(lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) def snake_case_ ( ) -> Any: UpperCAmelCase : List[Any] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_tf @require_vision class SCREAMING_SNAKE_CASE( unittest.TestCase ): """simple docstring""" @cached_property def A ( self : Optional[Any] ) -> List[Any]: return AutoImageProcessor.from_pretrained(TF_CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) @slow def A ( self : Tuple ) -> Optional[Any]: UpperCAmelCase : Union[str, Any] = TFCvtForImageClassification.from_pretrained(TF_CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) UpperCAmelCase : str = self.default_image_processor UpperCAmelCase : Tuple = prepare_img() UpperCAmelCase : Optional[int] = image_processor(images=lowerCamelCase__ , return_tensors='''tf''' ) # forward pass UpperCAmelCase : int = model(**lowerCamelCase__ ) # verify the logits UpperCAmelCase : Any = tf.TensorShape((1, 1000) ) self.assertEqual(outputs.logits.shape , lowerCamelCase__ ) UpperCAmelCase : Optional[int] = tf.constant([0.92_85, 0.90_15, -0.31_50] ) self.assertTrue(np.allclose(outputs.logits[0, :3].numpy() , lowerCamelCase__ , atol=1E-4 ) )
23
from pathlib import Path import fire def __lowercase ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> List[str]: '''simple docstring''' SCREAMING_SNAKE_CASE = Path(_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE = Path(_SCREAMING_SNAKE_CASE ) dest_dir.mkdir(exist_ok=_SCREAMING_SNAKE_CASE ) for path in src_dir.iterdir(): SCREAMING_SNAKE_CASE = [x.rstrip() for x in list(path.open().readlines() )][:n] SCREAMING_SNAKE_CASE = dest_dir.joinpath(path.name ) print(_SCREAMING_SNAKE_CASE ) dest_path.open("""w""" ).write("""\n""".join(_SCREAMING_SNAKE_CASE ) ) if __name__ == "__main__": fire.Fire(minify)
296
0
from __future__ import annotations class SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__( self : Tuple , UpperCAmelCase_ : int ): SCREAMING_SNAKE_CASE : Dict = order # a_{0} ... a_{k} SCREAMING_SNAKE_CASE : Dict = [1.0] + [0.0] * order # b_{0} ... b_{k} SCREAMING_SNAKE_CASE : Dict = [1.0] + [0.0] * order # x[n-1] ... x[n-k] SCREAMING_SNAKE_CASE : Optional[Any] = [0.0] * self.order # y[n-1] ... y[n-k] SCREAMING_SNAKE_CASE : str = [0.0] * self.order def _A ( self : List[Any] , UpperCAmelCase_ : list[float] , UpperCAmelCase_ : list[float] ): if len(_lowercase ) < self.order: SCREAMING_SNAKE_CASE : int = [1.0, *a_coeffs] if len(_lowercase ) != self.order + 1: SCREAMING_SNAKE_CASE : Tuple = ( f'''Expected a_coeffs to have {self.order + 1} elements ''' f'''for {self.order}-order filter, got {len(_lowercase )}''' ) raise ValueError(_lowercase ) if len(_lowercase ) != self.order + 1: SCREAMING_SNAKE_CASE : Optional[Any] = ( f'''Expected b_coeffs to have {self.order + 1} elements ''' f'''for {self.order}-order filter, got {len(_lowercase )}''' ) raise ValueError(_lowercase ) SCREAMING_SNAKE_CASE : Optional[Any] = a_coeffs SCREAMING_SNAKE_CASE : int = b_coeffs def _A ( self : Optional[int] , UpperCAmelCase_ : float ): SCREAMING_SNAKE_CASE : int = 0.0 # Start at index 1 and do index 0 at the end. for i in range(1 , self.order + 1 ): result += ( self.b_coeffs[i] * self.input_history[i - 1] - self.a_coeffs[i] * self.output_history[i - 1] ) SCREAMING_SNAKE_CASE : List[str] = (result + self.b_coeffs[0] * sample) / self.a_coeffs[0] SCREAMING_SNAKE_CASE : List[str] = self.input_history[:-1] SCREAMING_SNAKE_CASE : int = self.output_history[:-1] SCREAMING_SNAKE_CASE : Optional[Any] = sample SCREAMING_SNAKE_CASE : Optional[int] = result return result
370
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_pegasus import PegasusTokenizer else: snake_case = None snake_case = logging.get_logger(__name__) snake_case = """▁""" snake_case = {"""vocab_file""": """spiece.model""", """tokenizer_file""": """tokenizer.json"""} snake_case = { """vocab_file""": {"""google/pegasus-xsum""": """https://huggingface.co/google/pegasus-xsum/resolve/main/spiece.model"""}, """tokenizer_file""": { """google/pegasus-xsum""": """https://huggingface.co/google/pegasus-xsum/resolve/main/tokenizer.json""" }, } snake_case = { """google/pegasus-xsum""": 512, } class SCREAMING_SNAKE_CASE ( lowerCAmelCase ): '''simple docstring''' UpperCamelCase_ : Tuple = VOCAB_FILES_NAMES UpperCamelCase_ : List[str] = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase_ : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase_ : int = PegasusTokenizer UpperCamelCase_ : str = ['''input_ids''', '''attention_mask'''] def __init__( self : Union[str, Any] , UpperCAmelCase_ : Tuple=None , UpperCAmelCase_ : Dict=None , UpperCAmelCase_ : Optional[int]="<pad>" , UpperCAmelCase_ : int="</s>" , UpperCAmelCase_ : str="<unk>" , UpperCAmelCase_ : str="<mask_2>" , UpperCAmelCase_ : Optional[int]="<mask_1>" , UpperCAmelCase_ : int=None , UpperCAmelCase_ : str=103 , **UpperCAmelCase_ : Optional[int] , ): SCREAMING_SNAKE_CASE : Optional[Any] = offset if additional_special_tokens is not None: if not isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): raise TypeError( f'''additional_special_tokens should be of type {type(UpperCAmelCase_ )}, but is''' f''' {type(UpperCAmelCase_ )}''' ) SCREAMING_SNAKE_CASE : Optional[Any] = ( ([mask_token_sent] + additional_special_tokens) if mask_token_sent not in additional_special_tokens and mask_token_sent is not None else additional_special_tokens ) # fill additional tokens with ..., <unk_token_102> in case not all additional tokens are already taken additional_special_tokens_extended += [ f'''<unk_{i}>''' for i in range(len(UpperCAmelCase_ ) , self.offset - 1 ) ] if len(set(UpperCAmelCase_ ) ) != len(UpperCAmelCase_ ): raise ValueError( "Please make sure that the provided additional_special_tokens do not contain an incorrectly" f''' shifted list of <unk_x> tokens. Found {additional_special_tokens_extended}.''' ) SCREAMING_SNAKE_CASE : int = additional_special_tokens_extended else: SCREAMING_SNAKE_CASE : Tuple = [mask_token_sent] if mask_token_sent is not None else [] additional_special_tokens += [f'''<unk_{i}>''' for i in range(2 , self.offset )] super().__init__( UpperCAmelCase_ , tokenizer_file=UpperCAmelCase_ , pad_token=UpperCAmelCase_ , eos_token=UpperCAmelCase_ , unk_token=UpperCAmelCase_ , mask_token=UpperCAmelCase_ , mask_token_sent=UpperCAmelCase_ , offset=UpperCAmelCase_ , additional_special_tokens=UpperCAmelCase_ , **UpperCAmelCase_ , ) SCREAMING_SNAKE_CASE : str = vocab_file SCREAMING_SNAKE_CASE : str = False if not self.vocab_file else True def _A ( self : Optional[Any] , UpperCAmelCase_ : Tuple ): SCREAMING_SNAKE_CASE : Optional[int] = set(self.all_special_ids ) # call it once instead of inside list comp all_special_ids.remove(self.unk_token_id ) # <unk> is only sometimes special if all_special_ids != set(range(len(self.additional_special_tokens ) + 3 ) ): raise ValueError( "There should be 3 special tokens: mask_token, pad_token, and eos_token +" f''' {len(self.additional_special_tokens )} additional_special_tokens, but got {all_special_ids}''' ) return [1 if x in all_special_ids else 0 for x in seq] def _A ( self : int , UpperCAmelCase_ : List , UpperCAmelCase_ : Optional[List] = None , UpperCAmelCase_ : bool = False ): if already_has_special_tokens: return self._special_token_mask(UpperCAmelCase_ ) elif token_ids_a is None: return self._special_token_mask(UpperCAmelCase_ ) + [1] else: return self._special_token_mask(token_ids_a + token_ids_a ) + [1] def _A ( self : int , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Any=None ): if token_ids_a is None: return token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return token_ids_a + token_ids_a + [self.eos_token_id] def _A ( self : str , UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[str] = None ): if not self.can_save_slow_tokenizer: raise ValueError( "Your fast tokenizer does not have the necessary information to save the vocabulary for a slow " "tokenizer." ) if not os.path.isdir(UpperCAmelCase_ ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return SCREAMING_SNAKE_CASE : List[str] = os.path.join( UpperCAmelCase_ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCAmelCase_ ): copyfile(self.vocab_file , UpperCAmelCase_ ) return (out_vocab_file,)
319
0
def UpperCamelCase_( _snake_case : list ): """simple docstring""" if not isinstance(_snake_case , _snake_case ): raise ValueError('Input series is not valid, valid series - [2, 4, 6]' ) if len(_snake_case ) == 0: raise ValueError('Input list must be a non empty list' ) if len(_snake_case ) == 1: return True __a =series[1] - series[0] for index in range(len(_snake_case ) - 1 ): if series[index + 1] - series[index] != common_diff: return False return True def UpperCamelCase_( _snake_case : list ): """simple docstring""" if not isinstance(_snake_case , _snake_case ): raise ValueError('Input series is not valid, valid series - [2, 4, 6]' ) if len(_snake_case ) == 0: raise ValueError('Input list must be a non empty list' ) __a =0 for val in series: answer += val return answer / len(_snake_case ) if __name__ == "__main__": import doctest doctest.testmod()
218
import warnings from typing import List, Optional, Tuple, Union import numpy as np import PIL import torch from ...models import UNetaDModel from ...schedulers import RePaintScheduler from ...utils import PIL_INTERPOLATION, logging, randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput _lowerCAmelCase : Tuple = logging.get_logger(__name__) # pylint: disable=invalid-name def UpperCamelCase_( _snake_case : Union[List, PIL.Image.Image, torch.Tensor] ): """simple docstring""" warnings.warn( 'The preprocess method is deprecated and will be removed in a future version. Please' ' use VaeImageProcessor.preprocess instead' , _snake_case , ) if isinstance(_snake_case , torch.Tensor ): return image elif isinstance(_snake_case , PIL.Image.Image ): __a =[image] if isinstance(image[0] , PIL.Image.Image ): __a , __a =image[0].size __a , __a =(x - x % 8 for x in (w, h)) # resize to integer multiple of 8 __a =[np.array(i.resize((w, h) , resample=PIL_INTERPOLATION['lanczos'] ) )[None, :] for i in image] __a =np.concatenate(_snake_case , axis=0 ) __a =np.array(_snake_case ).astype(np.floataa ) / 255.0 __a =image.transpose(0 , 3 , 1 , 2 ) __a =2.0 * image - 1.0 __a =torch.from_numpy(_snake_case ) elif isinstance(image[0] , torch.Tensor ): __a =torch.cat(_snake_case , dim=0 ) return image def UpperCamelCase_( _snake_case : Union[List, PIL.Image.Image, torch.Tensor] ): """simple docstring""" if isinstance(_snake_case , torch.Tensor ): return mask elif isinstance(_snake_case , PIL.Image.Image ): __a =[mask] if isinstance(mask[0] , PIL.Image.Image ): __a , __a =mask[0].size __a , __a =(x - x % 32 for x in (w, h)) # resize to integer multiple of 32 __a =[np.array(m.convert('L' ).resize((w, h) , resample=PIL_INTERPOLATION['nearest'] ) )[None, :] for m in mask] __a =np.concatenate(_snake_case , axis=0 ) __a =mask.astype(np.floataa ) / 255.0 __a =0 __a =1 __a =torch.from_numpy(_snake_case ) elif isinstance(mask[0] , torch.Tensor ): __a =torch.cat(_snake_case , dim=0 ) return mask class __magic_name__ ( lowerCAmelCase_ ): SCREAMING_SNAKE_CASE = 42 SCREAMING_SNAKE_CASE = 42 def __init__( self , __snake_case , __snake_case ) -> Union[str, Any]: '''simple docstring''' super().__init__() self.register_modules(unet=__snake_case , scheduler=__snake_case ) @torch.no_grad() def __call__( self , __snake_case , __snake_case , __snake_case = 250 , __snake_case = 0.0 , __snake_case = 10 , __snake_case = 10 , __snake_case = None , __snake_case = "pil" , __snake_case = True , ) -> Union[ImagePipelineOutput, Tuple]: '''simple docstring''' __a =image __a =_preprocess_image(__snake_case ) __a =original_image.to(device=self.device , dtype=self.unet.dtype ) __a =_preprocess_mask(__snake_case ) __a =mask_image.to(device=self.device , dtype=self.unet.dtype ) __a =original_image.shape[0] # sample gaussian noise to begin the loop if isinstance(__snake_case , __snake_case ) and len(__snake_case ) != batch_size: raise ValueError( f'You have passed a list of generators of length {len(__snake_case )}, but requested an effective batch' f' size of {batch_size}. Make sure the batch size matches the length of the generators.' ) __a =original_image.shape __a =randn_tensor(__snake_case , generator=__snake_case , device=self.device , dtype=self.unet.dtype ) # set step values self.scheduler.set_timesteps(__snake_case , __snake_case , __snake_case , self.device ) __a =eta __a =self.scheduler.timesteps[0] + 1 __a =generator[0] if isinstance(__snake_case , __snake_case ) else generator for i, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ): if t < t_last: # predict the noise residual __a =self.unet(__snake_case , __snake_case ).sample # compute previous image: x_t -> x_t-1 __a =self.scheduler.step(__snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case ).prev_sample else: # compute the reverse: x_t-1 -> x_t __a =self.scheduler.undo_step(__snake_case , __snake_case , __snake_case ) __a =t __a =(image / 2 + 0.5).clamp(0 , 1 ) __a =image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": __a =self.numpy_to_pil(__snake_case ) if not return_dict: return (image,) return ImagePipelineOutput(images=__snake_case )
218
1
"""simple docstring""" def A_ ( snake_case_ : int = 2_0_0 ): '''simple docstring''' UpperCamelCase : Any = [1, 2, 5, 1_0, 2_0, 5_0, 1_0_0, 2_0_0] UpperCamelCase : int = [0] * (pence + 1) UpperCamelCase : Any = 1 # base case: 1 way to make 0 pence for coin in coins: for i in range(snake_case_ ,pence + 1 ,1 ): number_of_ways[i] += number_of_ways[i - coin] return number_of_ways[pence] if __name__ == "__main__": assert solution(200) == 73682
27
"""simple docstring""" import unittest from transformers import XLMConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( XLMForMultipleChoice, XLMForQuestionAnswering, XLMForQuestionAnsweringSimple, XLMForSequenceClassification, XLMForTokenClassification, XLMModel, XLMWithLMHeadModel, ) from transformers.models.xlm.modeling_xlm import XLM_PRETRAINED_MODEL_ARCHIVE_LIST class lowerCamelCase : def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=13 , SCREAMING_SNAKE_CASE_=7 , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=99 , SCREAMING_SNAKE_CASE_=0 , SCREAMING_SNAKE_CASE_=32 , SCREAMING_SNAKE_CASE_=5 , SCREAMING_SNAKE_CASE_=4 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=512 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=0.02 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=4 , SCREAMING_SNAKE_CASE_="last" , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=0 , ): UpperCamelCase : Union[str, Any] = parent UpperCamelCase : str = batch_size UpperCamelCase : int = seq_length UpperCamelCase : Optional[Any] = is_training UpperCamelCase : Any = use_input_lengths UpperCamelCase : Tuple = use_token_type_ids UpperCamelCase : List[Any] = use_labels UpperCamelCase : Union[str, Any] = gelu_activation UpperCamelCase : Dict = sinusoidal_embeddings UpperCamelCase : Optional[int] = causal UpperCamelCase : List[Any] = asm UpperCamelCase : int = n_langs UpperCamelCase : Optional[Any] = vocab_size UpperCamelCase : str = n_special UpperCamelCase : Dict = hidden_size UpperCamelCase : Union[str, Any] = num_hidden_layers UpperCamelCase : Optional[Any] = num_attention_heads UpperCamelCase : Optional[Any] = hidden_dropout_prob UpperCamelCase : str = attention_probs_dropout_prob UpperCamelCase : int = max_position_embeddings UpperCamelCase : Any = type_sequence_label_size UpperCamelCase : str = initializer_range UpperCamelCase : str = num_labels UpperCamelCase : Union[str, Any] = num_choices UpperCamelCase : List[str] = summary_type UpperCamelCase : int = use_proj UpperCamelCase : List[str] = scope UpperCamelCase : Dict = bos_token_id def a_ ( self ): UpperCamelCase : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCamelCase : Dict = random_attention_mask([self.batch_size, self.seq_length] ) UpperCamelCase : Union[str, Any] = None if self.use_input_lengths: UpperCamelCase : str = ( ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length UpperCamelCase : Tuple = None if self.use_token_type_ids: UpperCamelCase : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.n_langs ) UpperCamelCase : int = None UpperCamelCase : Dict = None UpperCamelCase : str = None if self.use_labels: UpperCamelCase : str = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCamelCase : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCamelCase : Dict = ids_tensor([self.batch_size] , 2 ).float() UpperCamelCase : List[str] = ids_tensor([self.batch_size] , self.num_choices ) UpperCamelCase : List[str] = self.get_config() return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def a_ ( self ): return XLMConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , num_labels=self.num_labels , bos_token_id=self.bos_token_id , ) def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , ): UpperCamelCase : Optional[int] = XLMModel(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() UpperCamelCase : int = model(SCREAMING_SNAKE_CASE_ , lengths=SCREAMING_SNAKE_CASE_ , langs=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : List[str] = model(SCREAMING_SNAKE_CASE_ , langs=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Tuple = model(SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , ): UpperCamelCase : Optional[Any] = XLMWithLMHeadModel(SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() UpperCamelCase : Dict = model(SCREAMING_SNAKE_CASE_ , token_type_ids=SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , ): UpperCamelCase : List[str] = XLMForQuestionAnsweringSimple(SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() UpperCamelCase : int = model(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Union[str, Any] = model(SCREAMING_SNAKE_CASE_ , start_positions=SCREAMING_SNAKE_CASE_ , end_positions=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Dict = outputs self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , ): UpperCamelCase : int = XLMForQuestionAnswering(SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() UpperCamelCase : List[Any] = model(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : List[Any] = model( SCREAMING_SNAKE_CASE_ , start_positions=SCREAMING_SNAKE_CASE_ , end_positions=SCREAMING_SNAKE_CASE_ , cls_index=SCREAMING_SNAKE_CASE_ , is_impossible=SCREAMING_SNAKE_CASE_ , p_mask=SCREAMING_SNAKE_CASE_ , ) UpperCamelCase : Any = model( SCREAMING_SNAKE_CASE_ , start_positions=SCREAMING_SNAKE_CASE_ , end_positions=SCREAMING_SNAKE_CASE_ , cls_index=SCREAMING_SNAKE_CASE_ , is_impossible=SCREAMING_SNAKE_CASE_ , ) ((UpperCamelCase) , ) : Union[str, Any] = result_with_labels.to_tuple() UpperCamelCase : int = model(SCREAMING_SNAKE_CASE_ , start_positions=SCREAMING_SNAKE_CASE_ , end_positions=SCREAMING_SNAKE_CASE_ ) ((UpperCamelCase) , ) : Tuple = result_with_labels.to_tuple() self.parent.assertEqual(result_with_labels.loss.shape , () ) self.parent.assertEqual(result.start_top_log_probs.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual(result.start_top_index.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual( result.end_top_log_probs.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual( result.end_top_index.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual(result.cls_logits.shape , (self.batch_size,) ) def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , ): UpperCamelCase : Union[str, Any] = XLMForSequenceClassification(SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() UpperCamelCase : Optional[Any] = model(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : int = model(SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , ): UpperCamelCase : int = self.num_labels UpperCamelCase : int = XLMForTokenClassification(SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() UpperCamelCase : Optional[int] = model(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , ): UpperCamelCase : List[Any] = self.num_choices UpperCamelCase : Tuple = XLMForMultipleChoice(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() UpperCamelCase : Dict = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCamelCase : Dict = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCamelCase : Tuple = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCamelCase : Optional[Any] = model( SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , token_type_ids=SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def a_ ( self ): UpperCamelCase : int = self.prepare_config_and_inputs() ( ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ) : List[Any] = config_and_inputs UpperCamelCase : Dict = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """lengths""": input_lengths} return config, inputs_dict @require_torch class lowerCamelCase ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ): lowercase : Dict = ( ( XLMModel, XLMWithLMHeadModel, XLMForQuestionAnswering, XLMForSequenceClassification, XLMForQuestionAnsweringSimple, XLMForTokenClassification, XLMForMultipleChoice, ) if is_torch_available() else () ) lowercase : List[Any] = ( (XLMWithLMHeadModel,) if is_torch_available() else () ) # TODO (PVP): Check other models whether language generation is also applicable lowercase : Optional[Any] = ( { 'feature-extraction': XLMModel, 'fill-mask': XLMWithLMHeadModel, 'question-answering': XLMForQuestionAnsweringSimple, 'text-classification': XLMForSequenceClassification, 'text-generation': XLMWithLMHeadModel, 'token-classification': XLMForTokenClassification, 'zero-shot': XLMForSequenceClassification, } if is_torch_available() else {} ) def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith("""Fast""" ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=False ): UpperCamelCase : Union[str, Any] = super()._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , return_labels=SCREAMING_SNAKE_CASE_ ) if return_labels: if model_class.__name__ == "XLMForQuestionAnswering": UpperCamelCase : Optional[Any] = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : List[str] = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=SCREAMING_SNAKE_CASE_ ) return inputs_dict def a_ ( self ): UpperCamelCase : List[Any] = XLMModelTester(self ) UpperCamelCase : Optional[int] = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE_ , emb_dim=37 ) def a_ ( self ): self.config_tester.run_common_tests() def a_ ( self ): UpperCamelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_model(*SCREAMING_SNAKE_CASE_ ) def a_ ( self ): UpperCamelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_lm_head(*SCREAMING_SNAKE_CASE_ ) def a_ ( self ): UpperCamelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_simple_qa(*SCREAMING_SNAKE_CASE_ ) def a_ ( self ): UpperCamelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_qa(*SCREAMING_SNAKE_CASE_ ) def a_ ( self ): UpperCamelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_sequence_classif(*SCREAMING_SNAKE_CASE_ ) def a_ ( self ): UpperCamelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_token_classif(*SCREAMING_SNAKE_CASE_ ) def a_ ( self ): UpperCamelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_for_multiple_choice(*SCREAMING_SNAKE_CASE_ ) def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=1 ): self.assertIsInstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertListEqual( [isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) for iter_attentions in attentions] , [True] * len(SCREAMING_SNAKE_CASE_ ) ) self.assertEqual(len(SCREAMING_SNAKE_CASE_ ) , (max_length - min_length) * num_beam_groups ) for idx, iter_attentions in enumerate(SCREAMING_SNAKE_CASE_ ): # adds PAD dummy token UpperCamelCase : int = min_length + idx + 1 UpperCamelCase : Tuple = min_length + idx + 1 UpperCamelCase : Any = ( batch_size * num_beam_groups, config.num_attention_heads, tgt_len, src_len, ) # check attn size self.assertListEqual( [layer_attention.shape for layer_attention in iter_attentions] , [expected_shape] * len(SCREAMING_SNAKE_CASE_ ) ) def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=1 ): self.assertIsInstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertListEqual( [isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) for iter_hidden_states in hidden_states] , [True] * len(SCREAMING_SNAKE_CASE_ ) , ) self.assertEqual(len(SCREAMING_SNAKE_CASE_ ) , (max_length - min_length) * num_beam_groups ) for idx, iter_hidden_states in enumerate(SCREAMING_SNAKE_CASE_ ): # adds PAD dummy token UpperCamelCase : List[str] = min_length + idx + 1 UpperCamelCase : Optional[Any] = (batch_size * num_beam_groups, seq_len, config.hidden_size) # check hidden size self.assertListEqual( [layer_hidden_states.shape for layer_hidden_states in iter_hidden_states] , [expected_shape] * len(SCREAMING_SNAKE_CASE_ ) , ) pass @slow def a_ ( self ): for model_name in XLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCamelCase : str = XLMModel.from_pretrained(SCREAMING_SNAKE_CASE_ ) self.assertIsNotNone(SCREAMING_SNAKE_CASE_ ) @require_torch class lowerCamelCase ( unittest.TestCase ): @slow def a_ ( self ): UpperCamelCase : Dict = XLMWithLMHeadModel.from_pretrained("""xlm-mlm-en-2048""" ) model.to(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : List[str] = torch.tensor([[14, 447]] , dtype=torch.long , device=SCREAMING_SNAKE_CASE_ ) # the president UpperCamelCase : List[Any] = [ 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, ] # the president the president the president the president the president the president the president the president the president the president # TODO(PVP): this and other input_ids I tried for generation give pretty bad results. Not sure why. Model might just not be made for auto-regressive inference UpperCamelCase : Optional[int] = model.generate(SCREAMING_SNAKE_CASE_ , do_sample=SCREAMING_SNAKE_CASE_ ) self.assertListEqual(output_ids[0].cpu().numpy().tolist() , SCREAMING_SNAKE_CASE_ )
27
1
import argparse import logging import pickle import random import time import numpy as np from transformers import BertTokenizer, GPTaTokenizer, RobertaTokenizer logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""", datefmt="""%m/%d/%Y %H:%M:%S""", level=logging.INFO ) lowercase_ = logging.getLogger(__name__) def a__ ( ): """simple docstring""" __SCREAMING_SNAKE_CASE : Tuple = argparse.ArgumentParser( description='''Preprocess the data to avoid re-doing it several times by (tokenization + token_to_ids).''' ) parser.add_argument('''--file_path''' , type=snake_case , default='''data/dump.txt''' , help='''The path to the data.''' ) parser.add_argument('''--tokenizer_type''' , type=snake_case , default='''bert''' , choices=['''bert''', '''roberta''', '''gpt2'''] ) parser.add_argument('''--tokenizer_name''' , type=snake_case , default='''bert-base-uncased''' , help='''The tokenizer to use.''' ) parser.add_argument('''--dump_file''' , type=snake_case , default='''data/dump''' , help='''The dump file prefix.''' ) __SCREAMING_SNAKE_CASE : List[Any] = parser.parse_args() logger.info(F'''Loading Tokenizer ({args.tokenizer_name})''' ) if args.tokenizer_type == "bert": __SCREAMING_SNAKE_CASE : Union[str, Any] = BertTokenizer.from_pretrained(args.tokenizer_name ) __SCREAMING_SNAKE_CASE : List[str] = tokenizer.special_tokens_map['''cls_token'''] # `[CLS]` __SCREAMING_SNAKE_CASE : List[str] = tokenizer.special_tokens_map['''sep_token'''] # `[SEP]` elif args.tokenizer_type == "roberta": __SCREAMING_SNAKE_CASE : List[str] = RobertaTokenizer.from_pretrained(args.tokenizer_name ) __SCREAMING_SNAKE_CASE : List[Any] = tokenizer.special_tokens_map['''cls_token'''] # `<s>` __SCREAMING_SNAKE_CASE : Optional[int] = tokenizer.special_tokens_map['''sep_token'''] # `</s>` elif args.tokenizer_type == "gpt2": __SCREAMING_SNAKE_CASE : Dict = GPTaTokenizer.from_pretrained(args.tokenizer_name ) __SCREAMING_SNAKE_CASE : List[Any] = tokenizer.special_tokens_map['''bos_token'''] # `<|endoftext|>` __SCREAMING_SNAKE_CASE : str = tokenizer.special_tokens_map['''eos_token'''] # `<|endoftext|>` logger.info(F'''Loading text from {args.file_path}''' ) with open(args.file_path , '''r''' , encoding='''utf8''' ) as fp: __SCREAMING_SNAKE_CASE : str = fp.readlines() logger.info('''Start encoding''' ) logger.info(F'''{len(snake_case )} examples to process.''' ) __SCREAMING_SNAKE_CASE : Optional[Any] = [] __SCREAMING_SNAKE_CASE : Dict = 0 __SCREAMING_SNAKE_CASE : List[str] = 10_000 __SCREAMING_SNAKE_CASE : Dict = time.time() for text in data: __SCREAMING_SNAKE_CASE : Optional[int] = F'''{bos} {text.strip()} {sep}''' __SCREAMING_SNAKE_CASE : Tuple = tokenizer.encode(snake_case , add_special_tokens=snake_case ) rslt.append(snake_case ) iter += 1 if iter % interval == 0: __SCREAMING_SNAKE_CASE : List[str] = time.time() logger.info(F'''{iter} examples processed. - {(end-start):.2f}s/{interval}expl''' ) __SCREAMING_SNAKE_CASE : Optional[Any] = time.time() logger.info('''Finished binarization''' ) logger.info(F'''{len(snake_case )} examples processed.''' ) __SCREAMING_SNAKE_CASE : Optional[Any] = F'''{args.dump_file}.{args.tokenizer_name}.pickle''' __SCREAMING_SNAKE_CASE : str = tokenizer.vocab_size if vocab_size < (1 << 16): __SCREAMING_SNAKE_CASE : List[str] = [np.uintaa(snake_case ) for d in rslt] else: __SCREAMING_SNAKE_CASE : Optional[int] = [np.intaa(snake_case ) for d in rslt] random.shuffle(rslt_ ) logger.info(F'''Dump to {dp_file}''' ) with open(snake_case , '''wb''' ) as handle: pickle.dump(rslt_ , snake_case , protocol=pickle.HIGHEST_PROTOCOL ) if __name__ == "__main__": main()
303
import importlib import torch import yaml from omegaconf import OmegaConf from taming.models.vqgan import VQModel def a__ ( snake_case , snake_case=False ): """simple docstring""" __SCREAMING_SNAKE_CASE : Dict = OmegaConf.load(snake_case ) if display: print(yaml.dump(OmegaConf.to_container(snake_case ) ) ) return config def a__ ( snake_case , snake_case=None , snake_case=None ): """simple docstring""" if conf_path is None: __SCREAMING_SNAKE_CASE : Any = '''./model_checkpoints/vqgan_only.yaml''' __SCREAMING_SNAKE_CASE : List[str] = load_config(snake_case , display=snake_case ) __SCREAMING_SNAKE_CASE : str = VQModel(**config.model.params ) if ckpt_path is None: __SCREAMING_SNAKE_CASE : Optional[Any] = '''./model_checkpoints/vqgan_only.pt''' __SCREAMING_SNAKE_CASE : Optional[Any] = torch.load(snake_case , map_location=snake_case ) if ".ckpt" in ckpt_path: __SCREAMING_SNAKE_CASE : Optional[Any] = sd['''state_dict'''] model.load_state_dict(snake_case , strict=snake_case ) model.to(snake_case ) del sd return model def a__ ( snake_case , snake_case ): """simple docstring""" __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : Any = model.encode(snake_case ) print(F'''VQGAN --- {model.__class__.__name__}: latent shape: {z.shape[2:]}''' ) __SCREAMING_SNAKE_CASE : Any = model.decode(snake_case ) return xrec def a__ ( snake_case , snake_case=False ): """simple docstring""" __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : str = string.rsplit('''.''' , 1 ) if reload: __SCREAMING_SNAKE_CASE : Union[str, Any] = importlib.import_module(snake_case ) importlib.reload(snake_case ) return getattr(importlib.import_module(snake_case , package=snake_case ) , cls ) def a__ ( snake_case ): """simple docstring""" if "target" not in config: raise KeyError('''Expected key `target` to instantiate.''' ) return get_obj_from_str(config['''target'''] )(**config.get('''params''' , {} ) ) def a__ ( snake_case , snake_case , snake_case=True , snake_case=True ): """simple docstring""" __SCREAMING_SNAKE_CASE : Tuple = instantiate_from_config(snake_case ) if sd is not None: model.load_state_dict(snake_case ) if gpu: model.cuda() if eval_mode: model.eval() return {"model": model} def a__ ( snake_case , snake_case , snake_case , snake_case ): """simple docstring""" # load the specified checkpoint if ckpt: __SCREAMING_SNAKE_CASE : Dict = torch.load(snake_case , map_location='''cpu''' ) __SCREAMING_SNAKE_CASE : List[Any] = pl_sd['''global_step'''] print(F'''loaded model from global step {global_step}.''' ) else: __SCREAMING_SNAKE_CASE : Optional[Any] = {'''state_dict''': None} __SCREAMING_SNAKE_CASE : Optional[Any] = None __SCREAMING_SNAKE_CASE : Dict = load_model_from_config(config.model , pl_sd['''state_dict'''] , gpu=snake_case , eval_mode=snake_case )['''model'''] return model, global_step
303
1
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, BatchEncoding, PreTrainedTokenizer from ...utils import logging UpperCAmelCase__ : Any = logging.get_logger(__name__) UpperCAmelCase__ : Dict = '▁' UpperCAmelCase__ : Union[str, Any] = {'vocab_file': 'sentencepiece.bpe.model'} UpperCAmelCase__ : Any = { 'vocab_file': { 'facebook/mbart-large-50-one-to-many-mmt': ( 'https://huggingface.co/facebook/mbart-large-50-one-to-many-mmt/resolve/main/sentencepiece.bpe.model' ), } } UpperCAmelCase__ : Optional[int] = { 'facebook/mbart-large-50-one-to-many-mmt': 1024, } # fmt: off UpperCAmelCase__ : List[Any] = ['ar_AR', 'cs_CZ', 'de_DE', 'en_XX', 'es_XX', 'et_EE', 'fi_FI', 'fr_XX', 'gu_IN', 'hi_IN', 'it_IT', 'ja_XX', 'kk_KZ', 'ko_KR', 'lt_LT', 'lv_LV', 'my_MM', 'ne_NP', 'nl_XX', 'ro_RO', 'ru_RU', 'si_LK', 'tr_TR', 'vi_VN', 'zh_CN', 'af_ZA', 'az_AZ', 'bn_IN', 'fa_IR', 'he_IL', 'hr_HR', 'id_ID', 'ka_GE', 'km_KH', 'mk_MK', 'ml_IN', 'mn_MN', 'mr_IN', 'pl_PL', 'ps_AF', 'pt_XX', 'sv_SE', 'sw_KE', 'ta_IN', 'te_IN', 'th_TH', 'tl_XX', 'uk_UA', 'ur_PK', 'xh_ZA', 'gl_ES', 'sl_SI'] class UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' __UpperCamelCase : List[Any] = VOCAB_FILES_NAMES __UpperCamelCase : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCamelCase : Any = PRETRAINED_VOCAB_FILES_MAP __UpperCamelCase : Union[str, Any] = ['''input_ids''', '''attention_mask'''] __UpperCamelCase : List[int] = [] __UpperCamelCase : List[int] = [] def __init__( self : List[Any] , lowerCAmelCase_ : int , lowerCAmelCase_ : Dict=None , lowerCAmelCase_ : Dict=None , lowerCAmelCase_ : Union[str, Any]="</s>" , lowerCAmelCase_ : Union[str, Any]="</s>" , lowerCAmelCase_ : Optional[Any]="<s>" , lowerCAmelCase_ : Union[str, Any]="<unk>" , lowerCAmelCase_ : List[str]="<pad>" , lowerCAmelCase_ : List[str]="<mask>" , lowerCAmelCase_ : Optional[Dict[str, Any]] = None , **lowerCAmelCase_ : Optional[int] , ): """simple docstring""" # Mask token behave like a normal word, i.e. include the space before it _A: Optional[int] = AddedToken(lowerCAmelCase_ , lstrip=lowerCAmelCase_ , rstrip=lowerCAmelCase_ ) if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) else mask_token _A: Union[str, Any] = {} if sp_model_kwargs is None else sp_model_kwargs _A: Optional[Any] = kwargs.get('''additional_special_tokens''' , [] ) kwargs["additional_special_tokens"] += [ code for code in FAIRSEQ_LANGUAGE_CODES if code not in kwargs["additional_special_tokens"] ] super().__init__( src_lang=lowerCAmelCase_ , tgt_lang=lowerCAmelCase_ , eos_token=lowerCAmelCase_ , unk_token=lowerCAmelCase_ , sep_token=lowerCAmelCase_ , cls_token=lowerCAmelCase_ , pad_token=lowerCAmelCase_ , mask_token=lowerCAmelCase_ , sp_model_kwargs=self.sp_model_kwargs , **lowerCAmelCase_ , ) _A: List[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(lowerCAmelCase_ ) ) _A: Union[str, Any] = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # Mimic fairseq token-to-id alignment for the first 4 token _A: Optional[Any] = {'''<s>''': 0, '''<pad>''': 1, '''</s>''': 2, '''<unk>''': 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab _A: str = 1 _A: Optional[int] = len(self.sp_model ) _A: List[str] = { code: self.sp_model_size + i + self.fairseq_offset for i, code in enumerate(lowerCAmelCase_ ) } _A: Any = {v: k for k, v in self.lang_code_to_id.items()} _A: Any = len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset self.fairseq_tokens_to_ids.update(self.lang_code_to_id ) _A: Optional[Any] = {v: k for k, v in self.fairseq_tokens_to_ids.items()} _A: str = src_lang if src_lang is not None else '''en_XX''' _A: int = self.lang_code_to_id[self._src_lang] _A: Dict = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def __magic_name__ ( self : Tuple ): """simple docstring""" return len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset + 1 # Plus 1 for the mask token @property def __magic_name__ ( self : Dict ): """simple docstring""" return self._src_lang @src_lang.setter def __magic_name__ ( self : Tuple , lowerCAmelCase_ : str ): """simple docstring""" _A: Optional[int] = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def __getstate__( self : Optional[int] ): """simple docstring""" _A: Tuple = self.__dict__.copy() _A: List[str] = None return state def __setstate__( self : Union[str, Any] , lowerCAmelCase_ : Dict ): """simple docstring""" _A: Optional[int] = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): _A: List[str] = {} _A: List[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def __magic_name__ ( self : int ): """simple docstring""" _A: Optional[Any] = {self.convert_ids_to_tokens(lowerCAmelCase_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __magic_name__ ( self : Union[str, Any] , lowerCAmelCase_ : str ): """simple docstring""" return self.sp_model.encode(lowerCAmelCase_ , out_type=lowerCAmelCase_ ) def __magic_name__ ( self : Optional[int] , lowerCAmelCase_ : str ): """simple docstring""" if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] _A: int = self.sp_model.PieceToId(lowerCAmelCase_ ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def __magic_name__ ( self : List[Any] , lowerCAmelCase_ : int ): """simple docstring""" if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def __magic_name__ ( self : Dict , lowerCAmelCase_ : Dict ): """simple docstring""" _A: int = [] _A: int = '''''' _A: Optional[int] = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(lowerCAmelCase_ ) + token _A: Union[str, Any] = True _A: Dict = [] else: current_sub_tokens.append(lowerCAmelCase_ ) _A: Union[str, Any] = False out_string += self.sp_model.decode(lowerCAmelCase_ ) return out_string.strip() def __magic_name__ ( self : List[Any] , lowerCAmelCase_ : str , lowerCAmelCase_ : Optional[str] = None ): """simple docstring""" if not os.path.isdir(lowerCAmelCase_ ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return _A: Any = os.path.join( lowerCAmelCase_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCAmelCase_ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , lowerCAmelCase_ ) elif not os.path.isfile(self.vocab_file ): with open(lowerCAmelCase_ , '''wb''' ) as fi: _A: List[Any] = self.sp_model.serialized_model_proto() fi.write(lowerCAmelCase_ ) return (out_vocab_file,) def __magic_name__ ( self : Dict , lowerCAmelCase_ : List[int] , lowerCAmelCase_ : Optional[List[int]] = None , lowerCAmelCase_ : bool = False ): """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCAmelCase_ , token_ids_a=lowerCAmelCase_ , already_has_special_tokens=lowerCAmelCase_ ) _A: Optional[Any] = [1] * len(self.prefix_tokens ) _A: Tuple = [1] * len(self.suffix_tokens ) if token_ids_a is None: return prefix_ones + ([0] * len(lowerCAmelCase_ )) + suffix_ones return prefix_ones + ([0] * len(lowerCAmelCase_ )) + ([0] * len(lowerCAmelCase_ )) + suffix_ones def __magic_name__ ( self : Optional[Any] , lowerCAmelCase_ : List[int] , lowerCAmelCase_ : Optional[List[int]] = None ): """simple docstring""" if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def __magic_name__ ( self : Any , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : str , lowerCAmelCase_ : Optional[str] , lowerCAmelCase_ : Optional[str] , **lowerCAmelCase_ : List[str] ): """simple docstring""" if src_lang is None or tgt_lang is None: raise ValueError('''Translation requires a `src_lang` and a `tgt_lang` for this model''' ) _A: Dict = src_lang _A: Optional[Any] = self(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ , return_tensors=lowerCAmelCase_ , **lowerCAmelCase_ ) _A: Dict = self.convert_tokens_to_ids(lowerCAmelCase_ ) _A: Optional[Any] = tgt_lang_id return inputs def __magic_name__ ( self : Dict , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : str = "en_XX" , lowerCAmelCase_ : Optional[List[str]] = None , lowerCAmelCase_ : str = "ro_RO" , **lowerCAmelCase_ : List[str] , ): """simple docstring""" _A: List[str] = src_lang _A: List[Any] = tgt_lang return super().prepare_seqaseq_batch(lowerCAmelCase_ , lowerCAmelCase_ , **lowerCAmelCase_ ) def __magic_name__ ( self : Dict ): """simple docstring""" return self.set_src_lang_special_tokens(self.src_lang ) def __magic_name__ ( self : Dict ): """simple docstring""" return self.set_tgt_lang_special_tokens(self.tgt_lang ) def __magic_name__ ( self : Optional[int] , lowerCAmelCase_ : str ): """simple docstring""" _A: Optional[Any] = self.lang_code_to_id[src_lang] _A: List[str] = [self.cur_lang_code_id] _A: Optional[int] = [self.eos_token_id] def __magic_name__ ( self : Union[str, Any] , lowerCAmelCase_ : str ): """simple docstring""" _A: Any = self.lang_code_to_id[tgt_lang] _A: str = [self.cur_lang_code_id] _A: Any = [self.eos_token_id]
301
import json import os from typing import Optional, Tuple import regex as re from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging UpperCAmelCase__ : int = logging.get_logger(__name__) UpperCAmelCase__ : Union[str, Any] = { 'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', } UpperCAmelCase__ : str = { 'vocab_file': {'ctrl': 'https://raw.githubusercontent.com/salesforce/ctrl/master/ctrl-vocab.json'}, 'merges_file': {'ctrl': 'https://raw.githubusercontent.com/salesforce/ctrl/master/ctrl-merges.txt'}, } UpperCAmelCase__ : Dict = { 'ctrl': 256, } UpperCAmelCase__ : Any = { 'Pregnancy': 168629, 'Christianity': 7675, 'Explain': 106423, 'Fitness': 63440, 'Saving': 63163, 'Ask': 27171, 'Ass': 95985, 'Joke': 163509, 'Questions': 45622, 'Thoughts': 49605, 'Retail': 52342, 'Feminism': 164338, 'Writing': 11992, 'Atheism': 192263, 'Netflix': 48616, 'Computing': 39639, 'Opinion': 43213, 'Alone': 44967, 'Funny': 58917, 'Gaming': 40358, 'Human': 4088, 'India': 1331, 'Joker': 77138, 'Diet': 36206, 'Legal': 11859, 'Norman': 4939, 'Tip': 72689, 'Weight': 52343, 'Movies': 46273, 'Running': 23425, 'Science': 2090, 'Horror': 37793, 'Confession': 60572, 'Finance': 12250, 'Politics': 16360, 'Scary': 191985, 'Support': 12654, 'Technologies': 32516, 'Teenage': 66160, 'Event': 32769, 'Learned': 67460, 'Notion': 182770, 'Wikipedia': 37583, 'Books': 6665, 'Extract': 76050, 'Confessions': 102701, 'Conspiracy': 75932, 'Links': 63674, 'Narcissus': 150425, 'Relationship': 54766, 'Relationships': 134796, 'Reviews': 41671, 'News': 4256, 'Translation': 26820, 'multilingual': 128406, } def lowerCamelCase__ ( a ) -> Optional[Any]: _A: Optional[int] = set() _A: Dict = word[0] for char in word[1:]: pairs.add((prev_char, char) ) _A: Any = char _A: Dict = set(a ) return pairs class UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' __UpperCamelCase : Any = VOCAB_FILES_NAMES __UpperCamelCase : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP __UpperCamelCase : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCamelCase : Optional[int] = CONTROL_CODES def __init__( self : Dict , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Optional[Any]="<unk>" , **lowerCAmelCase_ : Optional[int] ): """simple docstring""" super().__init__(unk_token=lowerCAmelCase_ , **lowerCAmelCase_ ) with open(lowerCAmelCase_ , encoding='''utf-8''' ) as vocab_handle: _A: str = json.load(lowerCAmelCase_ ) _A: List[Any] = {v: k for k, v in self.encoder.items()} with open(lowerCAmelCase_ , encoding='''utf-8''' ) as merges_handle: _A: int = merges_handle.read().split('''\n''' )[1:-1] _A: List[Any] = [tuple(merge.split() ) for merge in merges] _A: List[str] = dict(zip(lowerCAmelCase_ , range(len(lowerCAmelCase_ ) ) ) ) _A: Union[str, Any] = {} @property def __magic_name__ ( self : Any ): """simple docstring""" return len(self.encoder ) def __magic_name__ ( self : Dict ): """simple docstring""" return dict(self.encoder , **self.added_tokens_encoder ) def __magic_name__ ( self : List[str] , lowerCAmelCase_ : Tuple ): """simple docstring""" if token in self.cache: return self.cache[token] _A: List[Any] = tuple(lowerCAmelCase_ ) _A: Optional[Any] = tuple(list(word[:-1] ) + [word[-1] + '''</w>'''] ) _A: Optional[int] = get_pairs(lowerCAmelCase_ ) if not pairs: return token while True: _A: Optional[int] = min(lowerCAmelCase_ , key=lambda lowerCAmelCase_ : self.bpe_ranks.get(lowerCAmelCase_ , float('''inf''' ) ) ) if bigram not in self.bpe_ranks: break _A , _A: Any = bigram _A: int = [] _A: int = 0 while i < len(lowerCAmelCase_ ): try: _A: Any = word.index(lowerCAmelCase_ , lowerCAmelCase_ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) _A: Optional[int] = j if word[i] == first and i < len(lowerCAmelCase_ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 _A: Dict = tuple(lowerCAmelCase_ ) _A: Union[str, Any] = new_word if len(lowerCAmelCase_ ) == 1: break else: _A: Tuple = get_pairs(lowerCAmelCase_ ) _A: Optional[int] = '''@@ '''.join(lowerCAmelCase_ ) _A: List[str] = word[:-4] _A: Optional[Any] = word return word def __magic_name__ ( self : Optional[Any] , lowerCAmelCase_ : Union[str, Any] ): """simple docstring""" _A: List[Any] = [] _A: List[str] = re.findall(R'''\S+\n?''' , lowerCAmelCase_ ) for token in words: split_tokens.extend(list(self.bpe(lowerCAmelCase_ ).split(''' ''' ) ) ) return split_tokens def __magic_name__ ( self : Dict , lowerCAmelCase_ : Optional[int] ): """simple docstring""" return self.encoder.get(lowerCAmelCase_ , self.encoder.get(self.unk_token ) ) def __magic_name__ ( self : Dict , lowerCAmelCase_ : Tuple ): """simple docstring""" return self.decoder.get(lowerCAmelCase_ , self.unk_token ) def __magic_name__ ( self : Any , lowerCAmelCase_ : Tuple ): """simple docstring""" _A: Any = ''' '''.join(lowerCAmelCase_ ).replace('''@@ ''' , '''''' ).strip() return out_string def __magic_name__ ( self : List[str] , lowerCAmelCase_ : str , lowerCAmelCase_ : Optional[str] = None ): """simple docstring""" if not os.path.isdir(lowerCAmelCase_ ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return _A: List[str] = os.path.join( lowerCAmelCase_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) _A: List[Any] = os.path.join( lowerCAmelCase_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''merges_file'''] ) with open(lowerCAmelCase_ , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=lowerCAmelCase_ , ensure_ascii=lowerCAmelCase_ ) + '''\n''' ) _A: str = 0 with open(lowerCAmelCase_ , '''w''' , encoding='''utf-8''' ) as writer: writer.write('''#version: 0.2\n''' ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda lowerCAmelCase_ : kv[1] ): if index != token_index: logger.warning( F"""Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.""" ''' Please check that the tokenizer is not corrupted!''' ) _A: Tuple = token_index writer.write(''' '''.join(lowerCAmelCase_ ) + '''\n''' ) index += 1 return vocab_file, merge_file # def decode(self, token_ids, skip_special_tokens=False, clean_up_tokenization_spaces=True): # filtered_tokens = ' '.join(self.convert_ids_to_tokens(token_ids, skip_special_tokens=skip_special_tokens)) # tokens_generated_so_far = re.sub('(@@ )', '', string=filtered_tokens) # tokens_generated_so_far = re.sub('(@@ ?$)', '', string=tokens_generated_so_far) # return ''.join(tokens_generated_so_far)
301
1
"""simple docstring""" def lowerCAmelCase_ ( snake_case_ : List[Any] ) ->List[Any]: lowerCamelCase__ : Union[str, Any] =len(snake_case_ ) while cur > 1: # Find the maximum number in arr lowerCamelCase__ : str =arr.index(max(arr[0:cur] ) ) # Reverse from 0 to mi lowerCamelCase__ : int =arr[mi::-1] + arr[mi + 1 : len(snake_case_ )] # Reverse whole list lowerCamelCase__ : Tuple =arr[cur - 1 :: -1] + arr[cur : len(snake_case_ )] cur -= 1 return arr if __name__ == "__main__": lowerCAmelCase = input("""Enter numbers separated by a comma:\n""").strip() lowerCAmelCase = [int(item) for item in user_input.split(""",""")] print(pancake_sort(unsorted))
126
"""simple docstring""" import pytest from datasets.splits import SplitDict, SplitInfo from datasets.utils.py_utils import asdict @pytest.mark.parametrize( 'split_dict' , [ SplitDict(), SplitDict({'train': SplitInfo(name='train' , num_bytes=1_3_3_7 , num_examples=4_2 , dataset_name='my_dataset' )} ), SplitDict({'train': SplitInfo(name='train' , num_bytes=1_3_3_7 , num_examples=4_2 )} ), SplitDict({'train': SplitInfo()} ), ] , ) def lowerCAmelCase_ ( snake_case_ : SplitDict ) ->str: lowerCamelCase__ : str =split_dict._to_yaml_list() assert len(snake_case_ ) == len(snake_case_ ) lowerCamelCase__ : Optional[Any] =SplitDict._from_yaml_list(snake_case_ ) for split_name, split_info in split_dict.items(): # dataset_name field is deprecated, and is therefore not part of the YAML dump lowerCamelCase__ : Dict =None # the split name of split_dict takes over the name of the split info object lowerCamelCase__ : Optional[int] =split_name assert split_dict == reloaded @pytest.mark.parametrize( 'split_info' , [SplitInfo(), SplitInfo(dataset_name=snake_case_ ), SplitInfo(dataset_name='my_dataset' )] ) def lowerCAmelCase_ ( snake_case_ : List[str] ) ->Union[str, Any]: # For backward compatibility, we need asdict(split_dict) to return split info dictrionaries with the "dataset_name" # field even if it's deprecated. This way old versionso of `datasets` can still reload dataset_infos.json files lowerCamelCase__ : List[str] =asdict(SplitDict({'train': split_info} ) ) assert "dataset_name" in split_dict_asdict["train"] assert split_dict_asdict["train"]["dataset_name"] == split_info.dataset_name
126
1
"""simple docstring""" import unittest from .lib import ( Matrix, Vector, axpy, square_zero_matrix, unit_basis_vector, zero_vector, ) class _lowerCamelCase ( unittest.TestCase ): def _lowerCAmelCase ( self : Dict ) -> None: """simple docstring""" lowerCAmelCase__ : Tuple = Vector([1, 2, 3] ) self.assertEqual(x.component(0 ) , 1 ) self.assertEqual(x.component(2 ) , 3 ) lowerCAmelCase__ : Union[str, Any] = Vector() def _lowerCAmelCase ( self : Union[str, Any] ) -> None: """simple docstring""" lowerCAmelCase__ : str = Vector([0, 0, 0, 0, 0, 1] ) self.assertEqual(str(UpperCamelCase ) , """(0,0,0,0,0,1)""" ) def _lowerCAmelCase ( self : Any ) -> None: """simple docstring""" lowerCAmelCase__ : List[Any] = Vector([1, 2, 3, 4] ) self.assertEqual(len(UpperCamelCase ) , 4 ) def _lowerCAmelCase ( self : List[str] ) -> None: """simple docstring""" lowerCAmelCase__ : str = Vector([1, 2] ) lowerCAmelCase__ : Optional[int] = Vector([1, 2, 3, 4, 5] ) lowerCAmelCase__ : Union[str, Any] = Vector([0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ) lowerCAmelCase__ : List[Any] = Vector([1, -1, 1, -1, 2, -3, 4, -5] ) self.assertAlmostEqual(x.euclidean_length() , 2.236 , 3 ) self.assertAlmostEqual(y.euclidean_length() , 7.416 , 3 ) self.assertEqual(z.euclidean_length() , 0 ) self.assertAlmostEqual(w.euclidean_length() , 7.616 , 3 ) def _lowerCAmelCase ( self : Any ) -> None: """simple docstring""" lowerCAmelCase__ : int = Vector([1, 2, 3] ) lowerCAmelCase__ : Optional[Any] = Vector([1, 1, 1] ) self.assertEqual((x + y).component(0 ) , 2 ) self.assertEqual((x + y).component(1 ) , 3 ) self.assertEqual((x + y).component(2 ) , 4 ) def _lowerCAmelCase ( self : Optional[Any] ) -> None: """simple docstring""" lowerCAmelCase__ : Union[str, Any] = Vector([1, 2, 3] ) lowerCAmelCase__ : Dict = Vector([1, 1, 1] ) self.assertEqual((x - y).component(0 ) , 0 ) self.assertEqual((x - y).component(1 ) , 1 ) self.assertEqual((x - y).component(2 ) , 2 ) def _lowerCAmelCase ( self : Optional[Any] ) -> None: """simple docstring""" lowerCAmelCase__ : Any = Vector([1, 2, 3] ) lowerCAmelCase__ : Any = Vector([2, -1, 4] ) # for test of dot product lowerCAmelCase__ : Any = Vector([1, -2, -1] ) self.assertEqual(str(x * 3.0 ) , """(3.0,6.0,9.0)""" ) self.assertEqual((a * b) , 0 ) def _lowerCAmelCase ( self : int ) -> None: """simple docstring""" self.assertEqual(str(zero_vector(10 ) ).count("""0""" ) , 10 ) def _lowerCAmelCase ( self : Tuple ) -> None: """simple docstring""" self.assertEqual(str(unit_basis_vector(3 , 1 ) ) , """(0,1,0)""" ) def _lowerCAmelCase ( self : Optional[Any] ) -> None: """simple docstring""" lowerCAmelCase__ : Tuple = Vector([1, 2, 3] ) lowerCAmelCase__ : Optional[Any] = Vector([1, 0, 1] ) self.assertEqual(str(axpy(2 , UpperCamelCase , UpperCamelCase ) ) , """(3,4,7)""" ) def _lowerCAmelCase ( self : Optional[int] ) -> None: """simple docstring""" lowerCAmelCase__ : Tuple = Vector([1, 0, 0, 0, 0, 0] ) lowerCAmelCase__ : Any = x.copy() self.assertEqual(str(UpperCamelCase ) , str(UpperCamelCase ) ) def _lowerCAmelCase ( self : Optional[Any] ) -> None: """simple docstring""" lowerCAmelCase__ : Tuple = Vector([1, 0, 0] ) x.change_component(0 , 0 ) x.change_component(1 , 1 ) self.assertEqual(str(UpperCamelCase ) , """(0,1,0)""" ) def _lowerCAmelCase ( self : int ) -> None: """simple docstring""" lowerCAmelCase__ : Optional[int] = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) self.assertEqual("""|1,2,3|\n|2,4,5|\n|6,7,8|\n""" , str(UpperCamelCase ) ) def _lowerCAmelCase ( self : Union[str, Any] ) -> None: """simple docstring""" lowerCAmelCase__ : Tuple = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) lowerCAmelCase__ : Dict = [[-3, -14, -10], [-5, -10, -5], [-2, -1, 0]] for x in range(a.height() ): for y in range(a.width() ): self.assertEqual(minors[x][y] , a.minor(UpperCamelCase , UpperCamelCase ) ) def _lowerCAmelCase ( self : List[Any] ) -> None: """simple docstring""" lowerCAmelCase__ : str = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) lowerCAmelCase__ : int = [[-3, 14, -10], [5, -10, 5], [-2, 1, 0]] for x in range(a.height() ): for y in range(a.width() ): self.assertEqual(cofactors[x][y] , a.cofactor(UpperCamelCase , UpperCamelCase ) ) def _lowerCAmelCase ( self : int ) -> None: """simple docstring""" lowerCAmelCase__ : Union[str, Any] = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) self.assertEqual(-5 , a.determinant() ) def _lowerCAmelCase ( self : int ) -> None: """simple docstring""" lowerCAmelCase__ : Optional[Any] = Matrix([[1, 2, 3], [4, 5, 6], [7, 8, 9]] , 3 , 3 ) lowerCAmelCase__ : Tuple = Vector([1, 2, 3] ) self.assertEqual("""(14,32,50)""" , str(a * x ) ) self.assertEqual("""|2,4,6|\n|8,10,12|\n|14,16,18|\n""" , str(a * 2 ) ) def _lowerCAmelCase ( self : str ) -> None: """simple docstring""" lowerCAmelCase__ : Dict = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) a.change_component(0 , 2 , 5 ) self.assertEqual("""|1,2,5|\n|2,4,5|\n|6,7,8|\n""" , str(UpperCamelCase ) ) def _lowerCAmelCase ( self : Tuple ) -> None: """simple docstring""" lowerCAmelCase__ : Tuple = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) self.assertEqual(7 , a.component(2 , 1 ) , 0.01 ) def _lowerCAmelCase ( self : Any ) -> None: """simple docstring""" lowerCAmelCase__ : Tuple = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) lowerCAmelCase__ : List[Any] = Matrix([[1, 2, 7], [2, 4, 5], [6, 7, 10]] , 3 , 3 ) self.assertEqual("""|2,4,10|\n|4,8,10|\n|12,14,18|\n""" , str(a + b ) ) def _lowerCAmelCase ( self : List[Any] ) -> None: """simple docstring""" lowerCAmelCase__ : Optional[Any] = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) lowerCAmelCase__ : Dict = Matrix([[1, 2, 7], [2, 4, 5], [6, 7, 10]] , 3 , 3 ) self.assertEqual("""|0,0,-4|\n|0,0,0|\n|0,0,-2|\n""" , str(a - b ) ) def _lowerCAmelCase ( self : Union[str, Any] ) -> None: """simple docstring""" self.assertEqual( """|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n""" , str(square_zero_matrix(5 ) ) , ) if __name__ == "__main__": unittest.main()
212
"""simple docstring""" from __future__ import annotations import math from collections import Counter from string import ascii_lowercase def lowercase_ ( __UpperCAmelCase ) -> None: lowerCAmelCase__ , lowerCAmelCase__ : int = analyze_text(__UpperCAmelCase ) lowerCAmelCase__ : Optional[Any] = list(""" """ + ascii_lowercase ) # what is our total sum of probabilities. lowerCAmelCase__ : List[str] = sum(single_char_strings.values() ) # one length string lowerCAmelCase__ : List[str] = 0 # for each alpha we go in our dict and if it is in it we calculate entropy for ch in my_alphas: if ch in single_char_strings: lowerCAmelCase__ : List[Any] = single_char_strings[ch] lowerCAmelCase__ : int = my_str / all_sum my_fir_sum += prob * math.loga(__UpperCAmelCase ) # entropy formula. # print entropy print(f"""{round(-1 * my_fir_sum ):.1f}""" ) # two len string lowerCAmelCase__ : Tuple = sum(two_char_strings.values() ) lowerCAmelCase__ : str = 0 # for each alpha (two in size) calculate entropy. for cha in my_alphas: for cha in my_alphas: lowerCAmelCase__ : Optional[int] = cha + cha if sequence in two_char_strings: lowerCAmelCase__ : int = two_char_strings[sequence] lowerCAmelCase__ : str = int(__UpperCAmelCase ) / all_sum my_sec_sum += prob * math.loga(__UpperCAmelCase ) # print second entropy print(f"""{round(-1 * my_sec_sum ):.1f}""" ) # print the difference between them print(f"""{round((-1 * my_sec_sum) - (-1 * my_fir_sum) ):.1f}""" ) def lowercase_ ( __UpperCAmelCase ) -> tuple[dict, dict]: lowerCAmelCase__ : Any = Counter() # type: ignore lowerCAmelCase__ : Tuple = Counter() # type: ignore single_char_strings[text[-1]] += 1 # first case when we have space at start. two_char_strings[" " + text[0]] += 1 for i in range(0 , len(__UpperCAmelCase ) - 1 ): single_char_strings[text[i]] += 1 two_char_strings[text[i : i + 2]] += 1 return single_char_strings, two_char_strings def lowercase_ ( ) -> Any: import doctest doctest.testmod() # text = ( # "Had repulsive dashwoods suspicion sincerity but advantage now him. Remark " # "easily garret nor nay. Civil those mrs enjoy shy fat merry. You greatest " # "jointure saw horrible. He private he on be imagine suppose. Fertile " # "beloved evident through no service elderly is. Blind there if every no so " # "at. Own neglected you preferred way sincerity delivered his attempted. To " # "of message cottage windows do besides against uncivil. Delightful " # "unreserved impossible few estimating men favourable see entreaties. She " # "propriety immediate was improving. He or entrance humoured likewise " # "moderate. Much nor game son say feel. Fat make met can must form into " # "gate. Me we offending prevailed discovery. " # ) # calculate_prob(text) if __name__ == "__main__": main()
212
1
import copy from ...configuration_utils import PretrainedConfig from ...utils import add_start_docstrings __A =R''' [`RagConfig`] stores the configuration of a *RagModel*. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: title_sep (`str`, *optional*, defaults to `" / "`): Separator inserted between the title and the text of the retrieved document when calling [`RagRetriever`]. doc_sep (`str`, *optional*, defaults to `" // "`): Separator inserted between the text of the retrieved document and the original input when calling [`RagRetriever`]. n_docs (`int`, *optional*, defaults to 5): Number of documents to retrieve. max_combined_length (`int`, *optional*, defaults to 300): Max length of contextualized input returned by [`~RagRetriever.__call__`]. retrieval_vector_size (`int`, *optional*, defaults to 768): Dimensionality of the document embeddings indexed by [`RagRetriever`]. retrieval_batch_size (`int`, *optional*, defaults to 8): Retrieval batch size, defined as the number of queries issues concurrently to the faiss index encapsulated [`RagRetriever`]. dataset (`str`, *optional*, defaults to `"wiki_dpr"`): A dataset identifier of the indexed dataset in HuggingFace Datasets (list all available datasets and ids using `datasets.list_datasets()`). dataset_split (`str`, *optional*, defaults to `"train"`) Which split of the `dataset` to load. index_name (`str`, *optional*, defaults to `"compressed"`) The index name of the index associated with the `dataset`. One can choose between `"legacy"`, `"exact"` and `"compressed"`. index_path (`str`, *optional*) The path to the serialized faiss index on disk. passages_path (`str`, *optional*): A path to text passages compatible with the faiss index. Required if using [`~models.rag.retrieval_rag.LegacyIndex`] use_dummy_dataset (`bool`, *optional*, defaults to `False`) Whether to load a "dummy" variant of the dataset specified by `dataset`. label_smoothing (`float`, *optional*, defaults to 0.0): Only relevant if `return_loss` is set to `True`. Controls the `epsilon` parameter value for label smoothing in the loss calculation. If set to 0, no label smoothing is performed. do_marginalize (`bool`, *optional*, defaults to `False`): If `True`, the logits are marginalized over all documents by making use of `torch.nn.functional.log_softmax`. reduce_loss (`bool`, *optional*, defaults to `False`): Whether or not to reduce the NLL loss using the `torch.Tensor.sum` operation. do_deduplication (`bool`, *optional*, defaults to `True`): Whether or not to deduplicate the generations from different context documents for a given input. Has to be set to `False` if used while training with distributed backend. exclude_bos_score (`bool`, *optional*, defaults to `False`): Whether or not to disregard the BOS token when computing the loss. output_retrieved(`bool`, *optional*, defaults to `False`): If set to `True`, `retrieved_doc_embeds`, `retrieved_doc_ids`, `context_input_ids` and `context_attention_mask` are returned. See returned tensors for more detail. use_cache (`bool`, *optional*, defaults to `True`): Whether or not the model should return the last key/values attentions (not used by all models). forced_eos_token_id (`int`, *optional*): The id of the token to force as the last generated token when `max_length` is reached. Usually set to `eos_token_id`. ''' @add_start_docstrings(snake_case_ ) class _SCREAMING_SNAKE_CASE ( snake_case_ ): lowerCAmelCase__ = 'rag' lowerCAmelCase__ = True def __init__( self , lowercase=None , lowercase=True , lowercase=None , lowercase=None , lowercase=None , lowercase=None , lowercase=None , lowercase=" / " , lowercase=" // " , lowercase=5 , lowercase=300 , lowercase=768 , lowercase=8 , lowercase="wiki_dpr" , lowercase="train" , lowercase="compressed" , lowercase=None , lowercase=None , lowercase=False , lowercase=False , lowercase=0.0 , lowercase=True , lowercase=False , lowercase=False , lowercase=False , lowercase=True , lowercase=None , **lowercase , ) -> Optional[Any]: super().__init__( bos_token_id=lowercase , pad_token_id=lowercase , eos_token_id=lowercase , decoder_start_token_id=lowercase , forced_eos_token_id=lowercase , is_encoder_decoder=lowercase , prefix=lowercase , vocab_size=lowercase , **lowercase , ) assert ( "question_encoder" in kwargs and "generator" in kwargs ), "Config has to be initialized with question_encoder and generator config" lowerCamelCase_ = kwargs.pop("question_encoder" ) lowerCamelCase_ = question_encoder_config.pop("model_type" ) lowerCamelCase_ = kwargs.pop("generator" ) lowerCamelCase_ = decoder_config.pop("model_type" ) from ..auto.configuration_auto import AutoConfig lowerCamelCase_ = AutoConfig.for_model(lowercase , **lowercase ) lowerCamelCase_ = AutoConfig.for_model(lowercase , **lowercase ) lowerCamelCase_ = reduce_loss lowerCamelCase_ = label_smoothing lowerCamelCase_ = exclude_bos_score lowerCamelCase_ = do_marginalize lowerCamelCase_ = title_sep lowerCamelCase_ = doc_sep lowerCamelCase_ = n_docs lowerCamelCase_ = max_combined_length lowerCamelCase_ = dataset lowerCamelCase_ = dataset_split lowerCamelCase_ = index_name lowerCamelCase_ = retrieval_vector_size lowerCamelCase_ = retrieval_batch_size lowerCamelCase_ = passages_path lowerCamelCase_ = index_path lowerCamelCase_ = use_dummy_dataset lowerCamelCase_ = output_retrieved lowerCamelCase_ = do_deduplication lowerCamelCase_ = use_cache if self.forced_eos_token_id is None: lowerCamelCase_ = getattr(self.generator , "forced_eos_token_id" , lowercase ) @classmethod def SCREAMING_SNAKE_CASE_( cls , lowercase , lowercase , **lowercase ) -> PretrainedConfig: return cls(question_encoder=question_encoder_config.to_dict() , generator=generator_config.to_dict() , **lowercase ) def SCREAMING_SNAKE_CASE_( self ) -> List[Any]: lowerCamelCase_ = copy.deepcopy(self.__dict__ ) lowerCamelCase_ = self.question_encoder.to_dict() lowerCamelCase_ = self.generator.to_dict() lowerCamelCase_ = self.__class__.model_type return output
19
import math def lowerCamelCase_ ( lowerCamelCase__ , lowerCamelCase__ = 0 , lowerCamelCase__ = 0 ): lowerCamelCase_ = end or len(lowerCamelCase__ ) for i in range(lowerCamelCase__ , lowerCamelCase__ ): lowerCamelCase_ = i lowerCamelCase_ = array[i] while temp_index != start and temp_index_value < array[temp_index - 1]: lowerCamelCase_ = array[temp_index - 1] temp_index -= 1 lowerCamelCase_ = temp_index_value return array def lowerCamelCase_ ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): # Max Heap lowerCamelCase_ = index lowerCamelCase_ = 2 * index + 1 # Left Node lowerCamelCase_ = 2 * index + 2 # Right Node if left_index < heap_size and array[largest] < array[left_index]: lowerCamelCase_ = left_index if right_index < heap_size and array[largest] < array[right_index]: lowerCamelCase_ = right_index if largest != index: lowerCamelCase_ , lowerCamelCase_ = array[largest], array[index] heapify(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) def lowerCamelCase_ ( lowerCamelCase__ ): lowerCamelCase_ = len(lowerCamelCase__ ) for i in range(n // 2 , -1 , -1 ): heapify(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) for i in range(n - 1 , 0 , -1 ): lowerCamelCase_ , lowerCamelCase_ = array[0], array[i] heapify(lowerCamelCase__ , 0 , lowerCamelCase__ ) return array def lowerCamelCase_ ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): if (array[first_index] > array[middle_index]) != ( array[first_index] > array[last_index] ): return array[first_index] elif (array[middle_index] > array[first_index]) != ( array[middle_index] > array[last_index] ): return array[middle_index] else: return array[last_index] def lowerCamelCase_ ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): lowerCamelCase_ = low lowerCamelCase_ = high while True: while array[i] < pivot: i += 1 j -= 1 while pivot < array[j]: j -= 1 if i >= j: return i lowerCamelCase_ , lowerCamelCase_ = array[j], array[i] i += 1 def lowerCamelCase_ ( lowerCamelCase__ ): if len(lowerCamelCase__ ) == 0: return array lowerCamelCase_ = 2 * math.ceil(math.loga(len(lowerCamelCase__ ) ) ) lowerCamelCase_ = 1_6 return intro_sort(lowerCamelCase__ , 0 , len(lowerCamelCase__ ) , lowerCamelCase__ , lowerCamelCase__ ) def lowerCamelCase_ ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): while end - start > size_threshold: if max_depth == 0: return heap_sort(lowerCamelCase__ ) max_depth -= 1 lowerCamelCase_ = median_of_a(lowerCamelCase__ , lowerCamelCase__ , start + ((end - start) // 2) + 1 , end - 1 ) lowerCamelCase_ = partition(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) intro_sort(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) lowerCamelCase_ = p return insertion_sort(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) if __name__ == "__main__": import doctest doctest.testmod() __A =input('''Enter numbers separated by a comma : ''').strip() __A =[float(item) for item in user_input.split(''',''')] print(sort(unsorted))
19
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) UpperCAmelCase ={ "configuration_swiftformer": [ "SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "SwiftFormerConfig", "SwiftFormerOnnxConfig", ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase =[ "SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "SwiftFormerForImageClassification", "SwiftFormerModel", "SwiftFormerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_swiftformer import ( SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, SwiftFormerConfig, SwiftFormerOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swiftformer import ( SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, SwiftFormerForImageClassification, SwiftFormerModel, SwiftFormerPreTrainedModel, ) else: import sys UpperCAmelCase =_LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
351
"""simple docstring""" import pytest UpperCAmelCase ="__dummy_dataset1__" UpperCAmelCase ="\nimport json\nimport os\n\nimport datasets\n\n\nREPO_URL = \"https://huggingface.co/datasets/albertvillanova/tests-raw-jsonl/resolve/main/\"\nURLS = {\"train\": REPO_URL + \"wikiann-bn-train.jsonl\", \"validation\": REPO_URL + \"wikiann-bn-validation.jsonl\"}\n\n\nclass __DummyDataset1__(datasets.GeneratorBasedBuilder):\n\n def _info(self):\n features = datasets.Features(\n {\n \"tokens\": datasets.Sequence(datasets.Value(\"string\")),\n \"ner_tags\": datasets.Sequence(\n datasets.features.ClassLabel(\n names=[\n \"O\",\n \"B-PER\",\n \"I-PER\",\n \"B-ORG\",\n \"I-ORG\",\n \"B-LOC\",\n \"I-LOC\",\n ]\n )\n ),\n \"langs\": datasets.Sequence(datasets.Value(\"string\")),\n \"spans\": datasets.Sequence(datasets.Value(\"string\")),\n }\n )\n return datasets.DatasetInfo(features=features)\n\n def _split_generators(self, dl_manager):\n dl_path = dl_manager.download(URLS)\n return [\n datasets.SplitGenerator(datasets.Split.TRAIN, gen_kwargs={\"filepath\": dl_path[\"train\"]}),\n datasets.SplitGenerator(datasets.Split.VALIDATION, gen_kwargs={\"filepath\": dl_path[\"validation\"]}),\n ]\n\n def _generate_examples(self, filepath):\n with open(filepath, \"r\", encoding=\"utf-8\") as f:\n for i, line in enumerate(f):\n yield i, json.loads(line)\n" @pytest.fixture def _A ( ): """simple docstring""" return DATASET_LOADING_SCRIPT_NAME @pytest.fixture def _A ( ): """simple docstring""" return DATASET_LOADING_SCRIPT_CODE @pytest.fixture def _A ( _a : str , _a : List[Any] , _a : List[Any] ): """simple docstring""" A = dataset_loading_script_name A = tmp_path / """datasets""" / script_name script_dir.mkdir(parents=_a ) A = script_dir / f'{script_name}.py' with open(_a , """w""" ) as f: f.write(_a ) return str(_a )
77
0
import numpy as np _lowerCAmelCase : str = [ ["a", "b", "c", "d", "e"], ["f", "g", "h", "i", "k"], ["l", "m", "n", "o", "p"], ["q", "r", "s", "t", "u"], ["v", "w", "x", "y", "z"], ] class __magic_name__ : def __init__( self ) -> None: '''simple docstring''' __a =np.array(__snake_case ) def __magic_name__ ( self , __snake_case ) -> np.ndarray: '''simple docstring''' __a , __a =np.where(letter == self.SQUARE ) __a =np.concatenate([indexa + 1, indexa + 1] ) return indexes def __magic_name__ ( self , __snake_case , __snake_case ) -> str: '''simple docstring''' __a =self.SQUARE[indexa - 1, indexa - 1] return letter def __magic_name__ ( self , __snake_case ) -> str: '''simple docstring''' __a =message.lower() __a =message.replace(' ' , '' ) __a =message.replace('j' , 'i' ) __a =np.empty((2, len(__snake_case )) ) for letter_index in range(len(__snake_case ) ): __a =self.letter_to_numbers(message[letter_index] ) __a =numbers[0] __a =numbers[1] __a =first_step.reshape(2 * len(__snake_case ) ) __a ='' for numbers_index in range(len(__snake_case ) ): __a =int(second_step[numbers_index * 2] ) __a =int(second_step[(numbers_index * 2) + 1] ) __a =self.numbers_to_letter(__snake_case , __snake_case ) __a =encoded_message + letter return encoded_message def __magic_name__ ( self , __snake_case ) -> str: '''simple docstring''' __a =message.lower() message.replace(' ' , '' ) __a =np.empty(2 * len(__snake_case ) ) for letter_index in range(len(__snake_case ) ): __a =self.letter_to_numbers(message[letter_index] ) __a =numbers[0] __a =numbers[1] __a =first_step.reshape((2, len(__snake_case )) ) __a ='' for numbers_index in range(len(__snake_case ) ): __a =int(second_step[0, numbers_index] ) __a =int(second_step[1, numbers_index] ) __a =self.numbers_to_letter(__snake_case , __snake_case ) __a =decoded_message + letter return decoded_message
218
import argparse import torch from transformers import OpenAIGPTConfig, OpenAIGPTModel, load_tf_weights_in_openai_gpt from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() def UpperCamelCase_( _snake_case : Dict , _snake_case : Optional[int] , _snake_case : str ): """simple docstring""" if openai_config_file == "": __a =OpenAIGPTConfig() else: __a =OpenAIGPTConfig.from_json_file(_snake_case ) __a =OpenAIGPTModel(_snake_case ) # Load weights from numpy load_tf_weights_in_openai_gpt(_snake_case , _snake_case , _snake_case ) # Save pytorch-model __a =pytorch_dump_folder_path + '/' + WEIGHTS_NAME __a =pytorch_dump_folder_path + '/' + CONFIG_NAME print(F'Save PyTorch model to {pytorch_weights_dump_path}' ) torch.save(model.state_dict() , _snake_case ) print(F'Save configuration file to {pytorch_config_dump_path}' ) with open(_snake_case , 'w' , encoding='utf-8' ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": _lowerCAmelCase : Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument( "--openai_checkpoint_folder_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) parser.add_argument( "--openai_config_file", default="", type=str, help=( "An optional config json file corresponding to the pre-trained OpenAI model. \n" "This specifies the model architecture." ), ) _lowerCAmelCase : int = parser.parse_args() convert_openai_checkpoint_to_pytorch( args.openai_checkpoint_folder_path, args.openai_config_file, args.pytorch_dump_folder_path )
218
1
from __future__ import annotations import collections import pprint from pathlib import Path def __snake_case ( __UpperCamelCase : Dict ): """simple docstring""" return "".join(sorted(lowerCAmelCase_ ) ) def __snake_case ( __UpperCamelCase : List[Any] ): """simple docstring""" return word_by_signature[signature(lowerCAmelCase_ )] __a :Union[str, Any] = Path(__file__).parent.joinpath('words.txt').read_text(encoding='utf-8') __a :List[str] = sorted({word.strip().lower() for word in data.splitlines()}) __a :Optional[Any] = collections.defaultdict(list) for word in word_list: word_by_signature[signature(word)].append(word) if __name__ == "__main__": __a :List[Any] = {word: anagram(word) for word in word_list if len(anagram(word)) > 1} with open('anagrams.txt', 'w') as file: file.write('all_anagrams = \n ') file.write(pprint.pformat(all_anagrams))
369
import math from dataclasses import dataclass from typing import Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, randn_tensor from .scheduling_utils import SchedulerMixin @dataclass # Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->UnCLIP class _a ( snake_case_ ): """simple docstring""" _lowerCamelCase : torch.FloatTensor _lowerCamelCase : Optional[torch.FloatTensor] = None def __snake_case ( __UpperCamelCase : Tuple ,__UpperCamelCase : Any=0.999 ,__UpperCamelCase : Any="cosine" ,): """simple docstring""" if alpha_transform_type == "cosine": def alpha_bar_fn(__UpperCamelCase : Any ): return math.cos((t + 0.008) / 1.008 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(__UpperCamelCase : int ): return math.exp(t * -12.0 ) else: raise ValueError(f'''Unsupported alpha_tranform_type: {alpha_transform_type}''' ) A_ = [] for i in range(__UpperCamelCase ): A_ = i / num_diffusion_timesteps A_ = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(__UpperCamelCase ) / alpha_bar_fn(__UpperCamelCase ) ,__UpperCamelCase ) ) return torch.tensor(__UpperCamelCase ,dtype=torch.floataa ) class _a ( snake_case_ , snake_case_ ): """simple docstring""" @register_to_config def __init__( self : Optional[int] , UpperCAmelCase : int = 1000 , UpperCAmelCase : str = "fixed_small_log" , UpperCAmelCase : bool = True , UpperCAmelCase : Optional[float] = 1.0 , UpperCAmelCase : str = "epsilon" , UpperCAmelCase : str = "squaredcos_cap_v2" , ): if beta_schedule != "squaredcos_cap_v2": raise ValueError("UnCLIPScheduler only supports `beta_schedule`: 'squaredcos_cap_v2'" ) A_ = betas_for_alpha_bar(UpperCAmelCase ) A_ = 1.0 - self.betas A_ = torch.cumprod(self.alphas , dim=0 ) A_ = torch.tensor(1.0 ) # standard deviation of the initial noise distribution A_ = 1.0 # setable values A_ = None A_ = torch.from_numpy(np.arange(0 , UpperCAmelCase )[::-1].copy() ) A_ = variance_type def __A ( self : Optional[Any] , UpperCAmelCase : torch.FloatTensor , UpperCAmelCase : Optional[int] = None ): return sample def __A ( self : List[Any] , UpperCAmelCase : int , UpperCAmelCase : Union[str, torch.device] = None ): A_ = num_inference_steps A_ = (self.config.num_train_timesteps - 1) / (self.num_inference_steps - 1) A_ = (np.arange(0 , UpperCAmelCase ) * step_ratio).round()[::-1].copy().astype(np.intaa ) A_ = torch.from_numpy(UpperCAmelCase ).to(UpperCAmelCase ) def __A ( self : List[Any] , UpperCAmelCase : Dict , UpperCAmelCase : str=None , UpperCAmelCase : Any=None , UpperCAmelCase : List[Any]=None ): if prev_timestep is None: A_ = t - 1 A_ = self.alphas_cumprod[t] A_ = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.one A_ = 1 - alpha_prod_t A_ = 1 - alpha_prod_t_prev if prev_timestep == t - 1: A_ = self.betas[t] else: A_ = 1 - alpha_prod_t / alpha_prod_t_prev # For t > 0, compute predicted variance βt (see formula (6) and (7) from https://arxiv.org/pdf/2006.11239.pdf) # and sample from it to get previous sample # x_{t-1} ~ N(pred_prev_sample, variance) == add variance to pred_sample A_ = beta_prod_t_prev / beta_prod_t * beta if variance_type is None: A_ = self.config.variance_type # hacks - were probably added for training stability if variance_type == "fixed_small_log": A_ = torch.log(torch.clamp(UpperCAmelCase , min=1E-20 ) ) A_ = torch.exp(0.5 * variance ) elif variance_type == "learned_range": # NOTE difference with DDPM scheduler A_ = variance.log() A_ = beta.log() A_ = (predicted_variance + 1) / 2 A_ = frac * max_log + (1 - frac) * min_log return variance def __A ( self : int , UpperCAmelCase : torch.FloatTensor , UpperCAmelCase : int , UpperCAmelCase : torch.FloatTensor , UpperCAmelCase : Optional[int] = None , UpperCAmelCase : Dict=None , UpperCAmelCase : bool = True , ): A_ = timestep if model_output.shape[1] == sample.shape[1] * 2 and self.variance_type == "learned_range": A_ , A_ = torch.split(UpperCAmelCase , sample.shape[1] , dim=1 ) else: A_ = None # 1. compute alphas, betas if prev_timestep is None: A_ = t - 1 A_ = self.alphas_cumprod[t] A_ = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.one A_ = 1 - alpha_prod_t A_ = 1 - alpha_prod_t_prev if prev_timestep == t - 1: A_ = self.betas[t] A_ = self.alphas[t] else: A_ = 1 - alpha_prod_t / alpha_prod_t_prev A_ = 1 - beta # 2. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf if self.config.prediction_type == "epsilon": A_ = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 elif self.config.prediction_type == "sample": A_ = model_output else: raise ValueError( f'''prediction_type given as {self.config.prediction_type} must be one of `epsilon` or `sample`''' " for the UnCLIPScheduler." ) # 3. Clip "predicted x_0" if self.config.clip_sample: A_ = torch.clamp( UpperCAmelCase , -self.config.clip_sample_range , self.config.clip_sample_range ) # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf A_ = (alpha_prod_t_prev ** 0.5 * beta) / beta_prod_t A_ = alpha ** 0.5 * beta_prod_t_prev / beta_prod_t # 5. Compute predicted previous sample µ_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf A_ = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample # 6. Add noise A_ = 0 if t > 0: A_ = randn_tensor( model_output.shape , dtype=model_output.dtype , generator=UpperCAmelCase , device=model_output.device ) A_ = self._get_variance( UpperCAmelCase , predicted_variance=UpperCAmelCase , prev_timestep=UpperCAmelCase , ) if self.variance_type == "fixed_small_log": A_ = variance elif self.variance_type == "learned_range": A_ = (0.5 * variance).exp() else: raise ValueError( f'''variance_type given as {self.variance_type} must be one of `fixed_small_log` or `learned_range`''' " for the UnCLIPScheduler." ) A_ = variance * variance_noise A_ = pred_prev_sample + variance if not return_dict: return (pred_prev_sample,) return UnCLIPSchedulerOutput(prev_sample=UpperCAmelCase , pred_original_sample=UpperCAmelCase ) def __A ( self : Optional[Any] , UpperCAmelCase : torch.FloatTensor , UpperCAmelCase : torch.FloatTensor , UpperCAmelCase : torch.IntTensor , ): # Make sure alphas_cumprod and timestep have same device and dtype as original_samples A_ = self.alphas_cumprod.to(device=original_samples.device , dtype=original_samples.dtype ) A_ = timesteps.to(original_samples.device ) A_ = alphas_cumprod[timesteps] ** 0.5 A_ = sqrt_alpha_prod.flatten() while len(sqrt_alpha_prod.shape ) < len(original_samples.shape ): A_ = sqrt_alpha_prod.unsqueeze(-1 ) A_ = (1 - alphas_cumprod[timesteps]) ** 0.5 A_ = sqrt_one_minus_alpha_prod.flatten() while len(sqrt_one_minus_alpha_prod.shape ) < len(original_samples.shape ): A_ = sqrt_one_minus_alpha_prod.unsqueeze(-1 ) A_ = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise return noisy_samples
329
0
import math from typing import List, Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils import SchedulerMixin, SchedulerOutput class _UpperCamelCase ( lowerCamelCase__ ,lowerCamelCase__ ): """simple docstring""" __a : Any = 1 @register_to_config def __init__( self , lowerCAmelCase__ = 10_00 , lowerCAmelCase__ = None ) -> Optional[Any]: '''simple docstring''' self.set_timesteps(__snake_case ) # standard deviation of the initial noise distribution __lowercase = 1.0 # For now we only support F-PNDM, i.e. the runge-kutta method # For more information on the algorithm please take a look at the paper: https://arxiv.org/pdf/2202.09778.pdf # mainly at formula (9), (12), (13) and the Algorithm 2. __lowercase = 4 # running values __lowercase = [] def _SCREAMING_SNAKE_CASE ( self , lowerCAmelCase__ , lowerCAmelCase__ = None ) -> Any: '''simple docstring''' __lowercase = num_inference_steps __lowercase = torch.linspace(1 , 0 , num_inference_steps + 1 )[:-1] __lowercase = torch.cat([steps, torch.tensor([0.0] )] ) if self.config.trained_betas is not None: __lowercase = torch.tensor(self.config.trained_betas , dtype=torch.floataa ) else: __lowercase = torch.sin(steps * math.pi / 2 ) ** 2 __lowercase = (1.0 - self.betas**2) ** 0.5 __lowercase = (torch.atana(self.betas , self.alphas ) / math.pi * 2)[:-1] __lowercase = timesteps.to(__snake_case ) __lowercase = [] def _SCREAMING_SNAKE_CASE ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = True , ) -> str: '''simple docstring''' if self.num_inference_steps is None: raise ValueError( '''Number of inference steps is \'None\', you need to run \'set_timesteps\' after creating the scheduler''' ) __lowercase = (self.timesteps == timestep).nonzero().item() __lowercase = timestep_index + 1 __lowercase = sample * self.betas[timestep_index] + model_output * self.alphas[timestep_index] self.ets.append(__snake_case ) if len(self.ets ) == 1: __lowercase = self.ets[-1] elif len(self.ets ) == 2: __lowercase = (3 * self.ets[-1] - self.ets[-2]) / 2 elif len(self.ets ) == 3: __lowercase = (23 * self.ets[-1] - 16 * self.ets[-2] + 5 * self.ets[-3]) / 12 else: __lowercase = (1 / 24) * (55 * self.ets[-1] - 59 * self.ets[-2] + 37 * self.ets[-3] - 9 * self.ets[-4]) __lowercase = self._get_prev_sample(__snake_case , __snake_case , __snake_case , __snake_case ) if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=__snake_case ) def _SCREAMING_SNAKE_CASE ( self , lowerCAmelCase__ , *lowerCAmelCase__ , **lowerCAmelCase__ ) -> Dict: '''simple docstring''' return sample def _SCREAMING_SNAKE_CASE ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Any: '''simple docstring''' __lowercase = self.alphas[timestep_index] __lowercase = self.betas[timestep_index] __lowercase = self.alphas[prev_timestep_index] __lowercase = self.betas[prev_timestep_index] __lowercase = (sample - sigma * ets) / max(__snake_case , 1E-8 ) __lowercase = next_alpha * pred + ets * next_sigma return prev_sample def __len__( self ) -> Dict: '''simple docstring''' return self.config.num_train_timesteps
210
'''simple docstring''' from itertools import zip_longest import requests from bsa import BeautifulSoup from pandas import DataFrame def lowerCamelCase__ ( _A = "laptop" ): a : Any = f"""https://www.amazon.in/laptop/s?k={product}""" a : Tuple = { 'User-Agent': 'Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36\n (KHTML, like Gecko)Chrome/44.0.2403.157 Safari/537.36', 'Accept-Language': 'en-US, en;q=0.5', } a : Any = BeautifulSoup(requests.get(_A , headers=_A ).text ) # Initialize a Pandas dataframe with the column titles a : Any = DataFrame( columns=[ 'Product Title', 'Product Link', 'Current Price of the product', 'Product Rating', 'MRP of the product', 'Discount', ] ) # Loop through each entry and store them in the dataframe for item, _ in zip_longest( soup.find_all( 'div' , attrs={'class': 's-result-item', 'data-component-type': 's-search-result'} , ) , soup.find_all('div' , attrs={'class': 'a-row a-size-base a-color-base'} ) , ): try: a : Optional[int] = item.ha.text a : str = 'https://www.amazon.in/' + item.ha.a['href'] a : List[str] = item.find('span' , attrs={'class': 'a-offscreen'} ).text try: a : Optional[Any] = item.find('span' , attrs={'class': 'a-icon-alt'} ).text except AttributeError: a : Union[str, Any] = 'Not available' try: a : str = ( '₹' + item.find( 'span' , attrs={'class': 'a-price a-text-price'} ).text.split('₹' )[1] ) except AttributeError: a : int = '' try: a : Union[str, Any] = float( ( ( float(product_mrp.strip('₹' ).replace(',' , '' ) ) - float(product_price.strip('₹' ).replace(',' , '' ) ) ) / float(product_mrp.strip('₹' ).replace(',' , '' ) ) ) * 100 ) except ValueError: a : Any = float('nan' ) except AttributeError: pass a : Any = [ product_title, product_link, product_price, product_rating, product_mrp, discount, ] a : Any = ' ' a : List[str] = ' ' data_frame.index += 1 return data_frame if __name__ == "__main__": lowerCAmelCase: str = 'headphones' get_amazon_product_data(product).to_csv(F"Amazon Product Data for {product}.csv")
297
0
"""simple docstring""" import argparse import json import os from tensorflow.core.protobuf.saved_model_pba import SavedModel # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_copies.py a : Union[str, Any] = """.""" # Internal TensorFlow ops that can be safely ignored (mostly specific to a saved model) a : int = [ """Assert""", """AssignVariableOp""", """EmptyTensorList""", """MergeV2Checkpoints""", """ReadVariableOp""", """ResourceGather""", """RestoreV2""", """SaveV2""", """ShardedFilename""", """StatefulPartitionedCall""", """StaticRegexFullMatch""", """VarHandleOp""", ] def lowercase__(A , A , A ) ->Tuple: """simple docstring""" lowercase__ : Any= SavedModel() lowercase__ : List[Any]= [] with open(os.path.join(A , "utils" , "tf_ops" , "onnx.json" ) ) as f: lowercase__ : Optional[Any]= json.load(A )["opsets"] for i in range(1 , opset + 1 ): onnx_ops.extend(onnx_opsets[str(A )] ) with open(A , "rb" ) as f: saved_model.ParseFromString(f.read() ) lowercase__ : List[Any]= set() # Iterate over every metagraph in case there is more than one (a saved model can contain multiple graphs) for meta_graph in saved_model.meta_graphs: # Add operations in the graph definition model_op_names.update(node.op for node in meta_graph.graph_def.node ) # Go through the functions in the graph definition for func in meta_graph.graph_def.library.function: # Add operations in each function model_op_names.update(node.op for node in func.node_def ) # Convert to list, sorted if you want lowercase__ : Union[str, Any]= sorted(A ) lowercase__ : Union[str, Any]= [] for op in model_op_names: if op not in onnx_ops and op not in INTERNAL_OPS: incompatible_ops.append(A ) if strict and len(A ) > 0: raise Exception(f'''Found the following incompatible ops for the opset {opset}:\n''' + incompatible_ops ) elif len(A ) > 0: print(f'''Found the following incompatible ops for the opset {opset}:''' ) print(*A , sep="\n" ) else: print(f'''The saved model {saved_model_path} can properly be converted with ONNX.''' ) if __name__ == "__main__": a : int = argparse.ArgumentParser() parser.add_argument("""--saved_model_path""", help="""Path of the saved model to check (the .pb file).""") parser.add_argument( """--opset""", default=12, type=int, help="""The ONNX opset against which the model has to be tested.""" ) parser.add_argument( """--framework""", choices=["""onnx"""], default="""onnx""", help="""Frameworks against which to test the saved model.""" ) parser.add_argument( """--strict""", action="""store_true""", help="""Whether make the checking strict (raise errors) or not (raise warnings)""" ) a : Optional[int] = parser.parse_args() if args.framework == "onnx": onnx_compliancy(args.saved_model_path, args.strict, args.opset)
150
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available a : List[str] = { """configuration_xlm_roberta_xl""": [ """XLM_ROBERTA_XL_PRETRAINED_CONFIG_ARCHIVE_MAP""", """XLMRobertaXLConfig""", """XLMRobertaXLOnnxConfig""", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : List[str] = [ """XLM_ROBERTA_XL_PRETRAINED_MODEL_ARCHIVE_LIST""", """XLMRobertaXLForCausalLM""", """XLMRobertaXLForMaskedLM""", """XLMRobertaXLForMultipleChoice""", """XLMRobertaXLForQuestionAnswering""", """XLMRobertaXLForSequenceClassification""", """XLMRobertaXLForTokenClassification""", """XLMRobertaXLModel""", """XLMRobertaXLPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_xlm_roberta_xl import ( XLM_ROBERTA_XL_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMRobertaXLConfig, XLMRobertaXLOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlm_roberta_xl import ( XLM_ROBERTA_XL_PRETRAINED_MODEL_ARCHIVE_LIST, XLMRobertaXLForCausalLM, XLMRobertaXLForMaskedLM, XLMRobertaXLForMultipleChoice, XLMRobertaXLForQuestionAnswering, XLMRobertaXLForSequenceClassification, XLMRobertaXLForTokenClassification, XLMRobertaXLModel, XLMRobertaXLPreTrainedModel, ) else: import sys a : List[str] = _LazyModule(__name__, globals()["""__file__"""], _import_structure)
150
1
"""simple docstring""" from math import isqrt def _snake_case ( lowercase__ ): return all(number % divisor != 0 for divisor in range(2 , isqrt(lowercase__ ) + 1 ) ) def _snake_case ( lowercase__ = 10**6 ): _lowerCamelCase : str = 0 _lowerCamelCase : int = 1 _lowerCamelCase : Union[str, Any] = 7 while prime_candidate < max_prime: primes_count += is_prime(lowercase__ ) cube_index += 1 prime_candidate += 6 * cube_index return primes_count if __name__ == "__main__": print(F"{solution() = }")
96
"""simple docstring""" import argparse from collections import defaultdict def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ): UpperCAmelCase_ : int = f"""{file}_{class_name}_{test_name}""" done_test[_id] += 1 with open(__lowerCamelCase, "r" ) as f: UpperCAmelCase_ : List[Any] = f.readlines() UpperCAmelCase_ : int = f"""class {class_name}(""" UpperCAmelCase_ : Optional[Any] = f"""{4 * " "}def {test_name}(""" UpperCAmelCase_ : Optional[Any] = f"""{8 * " "}{correct_line.split()[0]}""" UpperCAmelCase_ : Tuple = f"""{16 * " "}{correct_line.split()[0]}""" UpperCAmelCase_ : int = False UpperCAmelCase_ : Union[str, Any] = False UpperCAmelCase_ : str = False UpperCAmelCase_ : Optional[Any] = False UpperCAmelCase_ : List[str] = 0 UpperCAmelCase_ : Optional[int] = 0 UpperCAmelCase_ : int = [] for line in lines: if line.startswith(__lowerCamelCase ): UpperCAmelCase_ : Tuple = True elif in_class and line.startswith(__lowerCamelCase ): UpperCAmelCase_ : Optional[int] = True elif in_class and in_func and (line.startswith(__lowerCamelCase ) or line.startswith(__lowerCamelCase )): UpperCAmelCase_ : Any = len(line.split(correct_line.split()[0] )[0] ) count += 1 if count == done_test[_id]: UpperCAmelCase_ : Union[str, Any] = True if in_class and in_func and in_line: if ")" not in line: continue else: UpperCAmelCase_ : Any = True if in_class and in_func and in_line and insert_line: new_lines.append(f"""{spaces * " "}{correct_line}""" ) UpperCAmelCase_ : int = False else: new_lines.append(__lowerCamelCase ) with open(__lowerCamelCase, "w" ) as f: for line in new_lines: f.write(__lowerCamelCase ) def __a ( __lowerCamelCase, __lowerCamelCase=None ): if fail is not None: with open(__lowerCamelCase, "r" ) as f: UpperCAmelCase_ : Tuple = {l.strip() for l in f.readlines()} else: UpperCAmelCase_ : str = None with open(__lowerCamelCase, "r" ) as f: UpperCAmelCase_ : Optional[int] = f.readlines() UpperCAmelCase_ : Any = defaultdict(__lowerCamelCase ) for line in correct_lines: UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Any = line.split(";" ) if test_failures is None or "::".join([file, class_name, test_name] ) in test_failures: overwrite_file(__lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ) if __name__ == "__main__": _a = argparse.ArgumentParser() parser.add_argument('--correct_filename', help='filename of tests with expected result') parser.add_argument('--fail_filename', help='filename of test failures', type=str, default=None) _a = parser.parse_args() main(args.correct_filename, args.fail_filename)
61
0
'''simple docstring''' def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : int ): '''simple docstring''' UpperCAmelCase__ = abs(SCREAMING_SNAKE_CASE__ ) UpperCAmelCase__ = 0 while n > 0: res += n % 10 n //= 10 return res def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : int ): '''simple docstring''' UpperCAmelCase__ = abs(SCREAMING_SNAKE_CASE__ ) return n if n < 10 else n % 10 + sum_of_digits(n // 10 ) def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : int ): '''simple docstring''' return sum(int(SCREAMING_SNAKE_CASE__ ) for c in str(abs(SCREAMING_SNAKE_CASE__ ) ) ) def _UpperCamelCase ( ): '''simple docstring''' from collections.abc import Callable from timeit import timeit def benchmark_a_function(SCREAMING_SNAKE_CASE__ : Callable , SCREAMING_SNAKE_CASE__ : int ) -> None: UpperCAmelCase__ = F'''{func.__name__}({value})''' UpperCAmelCase__ = timeit(F'''__main__.{call}''' , setup="""import __main__""" ) print(F'''{call:56} = {func(SCREAMING_SNAKE_CASE__ )} -- {timing:.4f} seconds''' ) for value in (262144, 1125899906842624, 1267650600228229401496703205376): for func in (sum_of_digits, sum_of_digits_recursion, sum_of_digits_compact): benchmark_a_function(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
354
'''simple docstring''' def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : bool = False ): '''simple docstring''' if not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): UpperCAmelCase__ = F'''Expected string as input, found {type(SCREAMING_SNAKE_CASE__ )}''' raise ValueError(SCREAMING_SNAKE_CASE__ ) if not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): UpperCAmelCase__ = F'''Expected boolean as use_pascal parameter, found {type(SCREAMING_SNAKE_CASE__ )}''' raise ValueError(SCREAMING_SNAKE_CASE__ ) UpperCAmelCase__ = input_str.split("""_""" ) UpperCAmelCase__ = 0 if use_pascal else 1 UpperCAmelCase__ = words[start_index:] UpperCAmelCase__ = [word[0].upper() + word[1:] for word in words_to_capitalize] UpperCAmelCase__ = """""" if use_pascal else words[0] return "".join([initial_word, *capitalized_words] ) if __name__ == "__main__": from doctest import testmod testmod()
61
0
import logging import os from typing import List, TextIO, Union from conllu import parse_incr from utils_ner import InputExample, Split, TokenClassificationTask lowercase : Tuple = logging.getLogger(__name__) class __snake_case ( lowerCAmelCase ): def __init__( self ,snake_case=-1 ): '''simple docstring''' lowercase : List[str] = label_idx def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case ): '''simple docstring''' if isinstance(snake_case ,snake_case ): lowercase : int = mode.value lowercase : Any = os.path.join(snake_case ,f"{mode}.txt" ) lowercase : int = 1 lowercase : List[Any] = [] with open(snake_case ,encoding="""utf-8""" ) as f: lowercase : Dict = [] lowercase : List[Any] = [] for line in f: if line.startswith("""-DOCSTART-""" ) or line == "" or line == "\n": if words: examples.append(InputExample(guid=f"{mode}-{guid_index}" ,words=snake_case ,labels=snake_case ) ) guid_index += 1 lowercase : str = [] lowercase : Union[str, Any] = [] else: lowercase : str = line.split(""" """ ) words.append(splits[0] ) if len(snake_case ) > 1: labels.append(splits[self.label_idx].replace("""\n""" ,"""""" ) ) else: # Examples could have no label for mode = "test" labels.append("""O""" ) if words: examples.append(InputExample(guid=f"{mode}-{guid_index}" ,words=snake_case ,labels=snake_case ) ) return examples def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case ,snake_case ): '''simple docstring''' lowercase : Tuple = 0 for line in test_input_reader: if line.startswith("""-DOCSTART-""" ) or line == "" or line == "\n": writer.write(snake_case ) if not preds_list[example_id]: example_id += 1 elif preds_list[example_id]: lowercase : Optional[int] = line.split()[0] + """ """ + preds_list[example_id].pop(0 ) + """\n""" writer.write(snake_case ) else: logger.warning("""Maximum sequence length exceeded: No prediction for '%s'.""" ,line.split()[0] ) def _SCREAMING_SNAKE_CASE ( self ,snake_case ): '''simple docstring''' if path: with open(snake_case ,"""r""" ) as f: lowercase : str = f.read().splitlines() if "O" not in labels: lowercase : List[Any] = ["""O"""] + labels return labels else: return ["O", "B-MISC", "I-MISC", "B-PER", "I-PER", "B-ORG", "I-ORG", "B-LOC", "I-LOC"] class __snake_case ( lowerCAmelCase ): def __init__( self ): '''simple docstring''' super().__init__(label_idx=-2 ) def _SCREAMING_SNAKE_CASE ( self ,snake_case ): '''simple docstring''' if path: with open(snake_case ,"""r""" ) as f: lowercase : List[str] = f.read().splitlines() if "O" not in labels: lowercase : Any = ["""O"""] + labels return labels else: return [ "O", "B-ADVP", "B-INTJ", "B-LST", "B-PRT", "B-NP", "B-SBAR", "B-VP", "B-ADJP", "B-CONJP", "B-PP", "I-ADVP", "I-INTJ", "I-LST", "I-PRT", "I-NP", "I-SBAR", "I-VP", "I-ADJP", "I-CONJP", "I-PP", ] class __snake_case ( lowerCAmelCase ): def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case ): '''simple docstring''' if isinstance(snake_case ,snake_case ): lowercase : Optional[Any] = mode.value lowercase : int = os.path.join(snake_case ,f"{mode}.txt" ) lowercase : List[Any] = 1 lowercase : Optional[Any] = [] with open(snake_case ,encoding="""utf-8""" ) as f: for sentence in parse_incr(snake_case ): lowercase : Optional[int] = [] lowercase : str = [] for token in sentence: words.append(token["""form"""] ) labels.append(token["""upos"""] ) assert len(snake_case ) == len(snake_case ) if words: examples.append(InputExample(guid=f"{mode}-{guid_index}" ,words=snake_case ,labels=snake_case ) ) guid_index += 1 return examples def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case ,snake_case ): '''simple docstring''' lowercase : int = 0 for sentence in parse_incr(snake_case ): lowercase : str = preds_list[example_id] lowercase : int = """""" for token in sentence: out += f"{token['form']} ({token['upos']}|{s_p.pop(0 )}) " out += "\n" writer.write(snake_case ) example_id += 1 def _SCREAMING_SNAKE_CASE ( self ,snake_case ): '''simple docstring''' if path: with open(snake_case ,"""r""" ) as f: return f.read().splitlines() else: return [ "ADJ", "ADP", "ADV", "AUX", "CCONJ", "DET", "INTJ", "NOUN", "NUM", "PART", "PRON", "PROPN", "PUNCT", "SCONJ", "SYM", "VERB", "X", ]
20
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) lowercase : str = { """configuration_funnel""": ["""FUNNEL_PRETRAINED_CONFIG_ARCHIVE_MAP""", """FunnelConfig"""], """convert_funnel_original_tf_checkpoint_to_pytorch""": [], """tokenization_funnel""": ["""FunnelTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase : Tuple = ["""FunnelTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase : List[str] = [ """FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST""", """FunnelBaseModel""", """FunnelForMaskedLM""", """FunnelForMultipleChoice""", """FunnelForPreTraining""", """FunnelForQuestionAnswering""", """FunnelForSequenceClassification""", """FunnelForTokenClassification""", """FunnelModel""", """FunnelPreTrainedModel""", """load_tf_weights_in_funnel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase : Optional[Any] = [ """TF_FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFFunnelBaseModel""", """TFFunnelForMaskedLM""", """TFFunnelForMultipleChoice""", """TFFunnelForPreTraining""", """TFFunnelForQuestionAnswering""", """TFFunnelForSequenceClassification""", """TFFunnelForTokenClassification""", """TFFunnelModel""", """TFFunnelPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_funnel import FUNNEL_PRETRAINED_CONFIG_ARCHIVE_MAP, FunnelConfig from .tokenization_funnel import FunnelTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_funnel_fast import FunnelTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_funnel import ( FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST, FunnelBaseModel, FunnelForMaskedLM, FunnelForMultipleChoice, FunnelForPreTraining, FunnelForQuestionAnswering, FunnelForSequenceClassification, FunnelForTokenClassification, FunnelModel, FunnelPreTrainedModel, load_tf_weights_in_funnel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_funnel import ( TF_FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST, TFFunnelBaseModel, TFFunnelForMaskedLM, TFFunnelForMultipleChoice, TFFunnelForPreTraining, TFFunnelForQuestionAnswering, TFFunnelForSequenceClassification, TFFunnelForTokenClassification, TFFunnelModel, TFFunnelPreTrainedModel, ) else: import sys lowercase : Any = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
20
1
'''simple docstring''' import math import unittest from transformers import BioGptConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification, BioGptModel, BioGptTokenizer, ) from transformers.models.biogpt.modeling_biogpt import BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST class _UpperCamelCase : '''simple docstring''' def __init__( self : Optional[Any] , _lowerCAmelCase : Tuple , _lowerCAmelCase : Optional[int]=1_3 , _lowerCAmelCase : str=7 , _lowerCAmelCase : Union[str, Any]=True , _lowerCAmelCase : str=True , _lowerCAmelCase : Optional[Any]=False , _lowerCAmelCase : int=True , _lowerCAmelCase : List[str]=9_9 , _lowerCAmelCase : Union[str, Any]=3_2 , _lowerCAmelCase : Any=5 , _lowerCAmelCase : int=4 , _lowerCAmelCase : List[str]=3_7 , _lowerCAmelCase : Optional[Any]="gelu" , _lowerCAmelCase : Any=0.1 , _lowerCAmelCase : Any=0.1 , _lowerCAmelCase : Tuple=5_1_2 , _lowerCAmelCase : Any=1_6 , _lowerCAmelCase : int=2 , _lowerCAmelCase : List[str]=0.02 , _lowerCAmelCase : Dict=3 , _lowerCAmelCase : Optional[int]=4 , _lowerCAmelCase : List[Any]=None , ): '''simple docstring''' __lowercase =parent __lowercase =batch_size __lowercase =seq_length __lowercase =is_training __lowercase =use_input_mask __lowercase =use_token_type_ids __lowercase =use_labels __lowercase =vocab_size __lowercase =hidden_size __lowercase =num_hidden_layers __lowercase =num_attention_heads __lowercase =intermediate_size __lowercase =hidden_act __lowercase =hidden_dropout_prob __lowercase =attention_probs_dropout_prob __lowercase =max_position_embeddings __lowercase =type_vocab_size __lowercase =type_sequence_label_size __lowercase =initializer_range __lowercase =num_labels __lowercase =num_choices __lowercase =scope def __lowerCamelCase ( self : Dict): '''simple docstring''' __lowercase =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) __lowercase =None if self.use_input_mask: __lowercase =random_attention_mask([self.batch_size, self.seq_length]) __lowercase =None if self.use_token_type_ids: __lowercase =ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size) __lowercase =None __lowercase =None __lowercase =None if self.use_labels: __lowercase =ids_tensor([self.batch_size] , self.type_sequence_label_size) __lowercase =ids_tensor([self.batch_size, self.seq_length] , self.num_labels) __lowercase =ids_tensor([self.batch_size] , self.num_choices) __lowercase =self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __lowerCamelCase ( self : Union[str, Any]): '''simple docstring''' return BioGptConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=snake_case_ , initializer_range=self.initializer_range , ) def __lowerCamelCase ( self : Any , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Dict , _lowerCAmelCase : int , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : str , _lowerCAmelCase : List[str] , _lowerCAmelCase : Union[str, Any]): '''simple docstring''' __lowercase =BioGptModel(config=snake_case_) model.to(snake_case_) model.eval() __lowercase =model(snake_case_ , attention_mask=snake_case_) __lowercase =model(snake_case_) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def __lowerCamelCase ( self : Optional[int] , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Dict , _lowerCAmelCase : List[Any] , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : str , _lowerCAmelCase : Dict , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : int , _lowerCAmelCase : Optional[int] , ): '''simple docstring''' __lowercase =BioGptForCausalLM(config=snake_case_) model.to(snake_case_) model.eval() __lowercase =model(snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ , labels=snake_case_) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) def __lowerCamelCase ( self : List[Any] , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : List[str] , _lowerCAmelCase : Dict , *_lowerCAmelCase : Union[str, Any]): '''simple docstring''' __lowercase =BioGptModel(config=snake_case_) model.to(snake_case_) model.eval() # create attention mask __lowercase =torch.ones(input_ids.shape , dtype=torch.long , device=snake_case_) __lowercase =self.seq_length // 2 __lowercase =0 # first forward pass __lowercase =model(snake_case_ , attention_mask=snake_case_).to_tuple() # create hypothetical next token and extent to next_input_ids __lowercase =ids_tensor((self.batch_size, 1) , config.vocab_size) # change a random masked slice from input_ids __lowercase =ids_tensor((1,) , snake_case_).item() + 1 __lowercase =ids_tensor((self.batch_size, 1) , config.vocab_size).squeeze(-1) __lowercase =random_other_next_tokens # append to next input_ids and attn_mask __lowercase =torch.cat([input_ids, next_tokens] , dim=-1) __lowercase =torch.cat( [attn_mask, torch.ones((attn_mask.shape[0], 1) , dtype=torch.long , device=snake_case_)] , dim=1 , ) # get two different outputs __lowercase =model(snake_case_ , attention_mask=snake_case_)['''last_hidden_state'''] __lowercase =model(snake_case_ , past_key_values=snake_case_ , attention_mask=snake_case_)['''last_hidden_state'''] # select random slice __lowercase =ids_tensor((1,) , output_from_past.shape[-1]).item() __lowercase =output_from_no_past[:, -1, random_slice_idx].detach() __lowercase =output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(snake_case_ , snake_case_ , atol=1e-3)) def __lowerCamelCase ( self : Tuple , _lowerCAmelCase : List[str] , _lowerCAmelCase : List[Any] , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Any , *_lowerCAmelCase : Dict): '''simple docstring''' __lowercase =BioGptModel(config=snake_case_).to(snake_case_).eval() __lowercase =torch.ones(input_ids.shape , dtype=torch.long , device=snake_case_) # first forward pass __lowercase =model(snake_case_ , attention_mask=snake_case_ , use_cache=snake_case_) __lowercase =outputs.to_tuple() # create hypothetical multiple next token and extent to next_input_ids __lowercase =ids_tensor((self.batch_size, 3) , config.vocab_size) __lowercase =ids_tensor((self.batch_size, 3) , 2) # append to next input_ids and __lowercase =torch.cat([input_ids, next_tokens] , dim=-1) __lowercase =torch.cat([attention_mask, next_attn_mask] , dim=-1) __lowercase =model(snake_case_ , attention_mask=snake_case_)['''last_hidden_state'''] __lowercase =model(snake_case_ , attention_mask=snake_case_ , past_key_values=snake_case_)[ '''last_hidden_state''' ] # select random slice __lowercase =ids_tensor((1,) , output_from_past.shape[-1]).item() __lowercase =output_from_no_past[:, -3:, random_slice_idx].detach() __lowercase =output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1]) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(snake_case_ , snake_case_ , atol=1e-3)) def __lowerCamelCase ( self : Union[str, Any] , _lowerCAmelCase : Any , _lowerCAmelCase : int , _lowerCAmelCase : Dict , _lowerCAmelCase : Any , _lowerCAmelCase : Optional[Any] , *_lowerCAmelCase : str , _lowerCAmelCase : Optional[Any]=False): '''simple docstring''' __lowercase =BioGptForCausalLM(snake_case_) model.to(snake_case_) if gradient_checkpointing: model.gradient_checkpointing_enable() __lowercase =model(snake_case_ , labels=snake_case_) self.parent.assertEqual(result.loss.shape , ()) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) result.loss.backward() def __lowerCamelCase ( self : Dict , _lowerCAmelCase : int , *_lowerCAmelCase : Any): '''simple docstring''' __lowercase =BioGptModel(snake_case_) __lowercase =model.config.initializer_range / math.sqrt(2 * model.config.num_hidden_layers) for key in model.state_dict().keys(): if "c_proj" in key and "weight" in key: self.parent.assertLessEqual(abs(torch.std(model.state_dict()[key]) - model_std) , 0.001) self.parent.assertLessEqual(abs(torch.mean(model.state_dict()[key]) - 0.0) , 0.01) def __lowerCamelCase ( self : Tuple , _lowerCAmelCase : int , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Tuple , _lowerCAmelCase : Any , _lowerCAmelCase : Union[str, Any] , *_lowerCAmelCase : Optional[int]): '''simple docstring''' __lowercase =self.num_labels __lowercase =BioGptForTokenClassification(snake_case_) model.to(snake_case_) model.eval() __lowercase =model(snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels)) def __lowerCamelCase ( self : int): '''simple docstring''' __lowercase =self.prepare_config_and_inputs() ( __lowercase ) =config_and_inputs __lowercase ={'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class _UpperCamelCase ( __lowercase , __lowercase , __lowercase , unittest.TestCase ): '''simple docstring''' lowerCAmelCase__ = ( (BioGptModel, BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification) if is_torch_available() else () ) lowerCAmelCase__ = (BioGptForCausalLM,) if is_torch_available() else () lowerCAmelCase__ = ( { "feature-extraction": BioGptModel, "text-classification": BioGptForSequenceClassification, "text-generation": BioGptForCausalLM, "token-classification": BioGptForTokenClassification, "zero-shot": BioGptForSequenceClassification, } if is_torch_available() else {} ) lowerCAmelCase__ = False def __lowerCamelCase ( self : List[str]): '''simple docstring''' __lowercase =BioGptModelTester(self) __lowercase =ConfigTester(self , config_class=snake_case_ , hidden_size=3_7) def __lowerCamelCase ( self : Optional[int]): '''simple docstring''' self.config_tester.run_common_tests() def __lowerCamelCase ( self : Any): '''simple docstring''' __lowercase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case_) def __lowerCamelCase ( self : Tuple): '''simple docstring''' __lowercase =self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: __lowercase =type self.model_tester.create_and_check_model(*snake_case_) def __lowerCamelCase ( self : List[str]): '''simple docstring''' __lowercase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_model_attention_mask_past(*snake_case_) def __lowerCamelCase ( self : Any): '''simple docstring''' __lowercase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_forward_and_backwards(*snake_case_ , gradient_checkpointing=snake_case_) def __lowerCamelCase ( self : Dict): '''simple docstring''' __lowercase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_model_past_large_inputs(*snake_case_) def __lowerCamelCase ( self : Union[str, Any]): '''simple docstring''' __lowercase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_weight_initialization(*snake_case_) def __lowerCamelCase ( self : int): '''simple docstring''' __lowercase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_for_token_classification(*snake_case_) @slow def __lowerCamelCase ( self : int): '''simple docstring''' __lowercase =BioGptForCausalLM.from_pretrained('microsoft/biogpt') model.to(snake_case_) __lowercase =BioGptTokenizer.from_pretrained('microsoft/biogpt') __lowercase ='''left''' # Define PAD Token = EOS Token = 50256 __lowercase =tokenizer.eos_token __lowercase =model.config.eos_token_id # use different length sentences to test batching __lowercase =[ '''Hello, my dog is a little''', '''Today, I''', ] __lowercase =tokenizer(snake_case_ , return_tensors='pt' , padding=snake_case_) __lowercase =inputs['''input_ids'''].to(snake_case_) __lowercase =model.generate( input_ids=snake_case_ , attention_mask=inputs['attention_mask'].to(snake_case_) , ) __lowercase =tokenizer(sentences[0] , return_tensors='pt').input_ids.to(snake_case_) __lowercase =model.generate(input_ids=snake_case_) __lowercase =inputs_non_padded.shape[-1] - inputs['''attention_mask'''][-1].long().sum().cpu().item() __lowercase =tokenizer(sentences[1] , return_tensors='pt').input_ids.to(snake_case_) __lowercase =model.generate(input_ids=snake_case_ , max_length=model.config.max_length - num_paddings) __lowercase =tokenizer.batch_decode(snake_case_ , skip_special_tokens=snake_case_) __lowercase =tokenizer.decode(output_non_padded[0] , skip_special_tokens=snake_case_) __lowercase =tokenizer.decode(output_padded[0] , skip_special_tokens=snake_case_) __lowercase =[ '''Hello, my dog is a little bit bigger than a little bit.''', '''Today, I have a good idea of how to use the information''', ] self.assertListEqual(snake_case_ , snake_case_) self.assertListEqual(snake_case_ , [non_padded_sentence, padded_sentence]) @slow def __lowerCamelCase ( self : Tuple): '''simple docstring''' for model_name in BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowercase =BioGptModel.from_pretrained(snake_case_) self.assertIsNotNone(snake_case_) def __lowerCamelCase ( self : Tuple): '''simple docstring''' __lowercase =self.model_tester.prepare_config_and_inputs_for_common() __lowercase =3 __lowercase =input_dict['''input_ids'''] __lowercase =input_ids.ne(1).to(snake_case_) __lowercase =ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size) __lowercase =BioGptForSequenceClassification(snake_case_) model.to(snake_case_) model.eval() __lowercase =model(snake_case_ , attention_mask=snake_case_ , labels=snake_case_) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels)) def __lowerCamelCase ( self : Any): '''simple docstring''' __lowercase =self.model_tester.prepare_config_and_inputs_for_common() __lowercase =3 __lowercase ='''multi_label_classification''' __lowercase =input_dict['''input_ids'''] __lowercase =input_ids.ne(1).to(snake_case_) __lowercase =ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size).to(torch.float) __lowercase =BioGptForSequenceClassification(snake_case_) model.to(snake_case_) model.eval() __lowercase =model(snake_case_ , attention_mask=snake_case_ , labels=snake_case_) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels)) @require_torch class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' @slow def __lowerCamelCase ( self : Dict): '''simple docstring''' __lowercase =BioGptForCausalLM.from_pretrained('microsoft/biogpt') __lowercase =torch.tensor([[2, 4_8_0_5, 9, 6_5_6, 2_1]]) __lowercase =model(snake_case_)[0] __lowercase =4_2_3_8_4 __lowercase =torch.Size((1, 5, vocab_size)) self.assertEqual(output.shape , snake_case_) __lowercase =torch.tensor( [[[-9.5236, -9.8918, 10.4557], [-11.0469, -9.6423, 8.1022], [-8.8664, -7.8826, 5.5325]]]) self.assertTrue(torch.allclose(output[:, :3, :3] , snake_case_ , atol=1e-4)) @slow def __lowerCamelCase ( self : Union[str, Any]): '''simple docstring''' __lowercase =BioGptTokenizer.from_pretrained('microsoft/biogpt') __lowercase =BioGptForCausalLM.from_pretrained('microsoft/biogpt') model.to(snake_case_) torch.manual_seed(0) __lowercase =tokenizer('COVID-19 is' , return_tensors='pt').to(snake_case_) __lowercase =model.generate( **snake_case_ , min_length=1_0_0 , max_length=1_0_2_4 , num_beams=5 , early_stopping=snake_case_ , ) __lowercase =tokenizer.decode(output_ids[0] , skip_special_tokens=snake_case_) __lowercase =( '''COVID-19 is a global pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the''' ''' causative agent of coronavirus disease 2019 (COVID-19), which has spread to more than 200 countries and''' ''' territories, including the United States (US), Canada, Australia, New Zealand, the United Kingdom (UK),''' ''' and the United States of America (USA), as of March 11, 2020, with more than 800,000 confirmed cases and''' ''' more than 800,000 deaths.''' ) self.assertEqual(snake_case_ , snake_case_)
351
'''simple docstring''' import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase = logging.get_logger(__name__) lowerCamelCase = { """microsoft/wavlm-base""": """https://huggingface.co/microsoft/wavlm-base/resolve/main/config.json""", # See all WavLM models at https://huggingface.co/models?filter=wavlm } class _UpperCamelCase ( A ): '''simple docstring''' lowerCAmelCase__ = """wavlm""" def __init__( self : List[str] , _lowerCAmelCase : List[Any]=3_2 , _lowerCAmelCase : int=7_6_8 , _lowerCAmelCase : Any=1_2 , _lowerCAmelCase : Union[str, Any]=1_2 , _lowerCAmelCase : List[Any]=3_0_7_2 , _lowerCAmelCase : Dict="gelu" , _lowerCAmelCase : Any=0.1 , _lowerCAmelCase : Any=0.1 , _lowerCAmelCase : Optional[Any]=0.1 , _lowerCAmelCase : List[Any]=0.0 , _lowerCAmelCase : str=0.1 , _lowerCAmelCase : Dict=0.1 , _lowerCAmelCase : List[Any]=0.02 , _lowerCAmelCase : Dict=1e-5 , _lowerCAmelCase : List[Any]="group" , _lowerCAmelCase : Optional[Any]="gelu" , _lowerCAmelCase : Dict=(5_1_2, 5_1_2, 5_1_2, 5_1_2, 5_1_2, 5_1_2, 5_1_2) , _lowerCAmelCase : Any=(5, 2, 2, 2, 2, 2, 2) , _lowerCAmelCase : Optional[Any]=(1_0, 3, 3, 3, 3, 2, 2) , _lowerCAmelCase : Optional[int]=False , _lowerCAmelCase : int=1_2_8 , _lowerCAmelCase : Tuple=1_6 , _lowerCAmelCase : Optional[int]=3_2_0 , _lowerCAmelCase : Union[str, Any]=8_0_0 , _lowerCAmelCase : Optional[Any]=False , _lowerCAmelCase : Union[str, Any]=True , _lowerCAmelCase : Any=0.05 , _lowerCAmelCase : List[Any]=1_0 , _lowerCAmelCase : Any=2 , _lowerCAmelCase : List[Any]=0.0 , _lowerCAmelCase : Union[str, Any]=1_0 , _lowerCAmelCase : List[Any]=3_2_0 , _lowerCAmelCase : int=2 , _lowerCAmelCase : Dict=0.1 , _lowerCAmelCase : Optional[int]=1_0_0 , _lowerCAmelCase : Tuple=2_5_6 , _lowerCAmelCase : Union[str, Any]=2_5_6 , _lowerCAmelCase : Any=0.1 , _lowerCAmelCase : Tuple="mean" , _lowerCAmelCase : Any=False , _lowerCAmelCase : Union[str, Any]=False , _lowerCAmelCase : Any=2_5_6 , _lowerCAmelCase : Tuple=(5_1_2, 5_1_2, 5_1_2, 5_1_2, 1_5_0_0) , _lowerCAmelCase : Dict=(5, 3, 3, 1, 1) , _lowerCAmelCase : Dict=(1, 2, 3, 1, 1) , _lowerCAmelCase : int=5_1_2 , _lowerCAmelCase : Optional[int]=8_0 , _lowerCAmelCase : Any=0 , _lowerCAmelCase : int=1 , _lowerCAmelCase : Tuple=2 , _lowerCAmelCase : List[str]=False , _lowerCAmelCase : Any=3 , _lowerCAmelCase : List[Any]=2 , _lowerCAmelCase : List[Any]=3 , _lowerCAmelCase : List[str]=None , **_lowerCAmelCase : List[str] , ): '''simple docstring''' super().__init__(**_lowerCAmelCase , pad_token_id=_lowerCAmelCase , bos_token_id=_lowerCAmelCase , eos_token_id=_lowerCAmelCase) __lowercase =hidden_size __lowercase =feat_extract_norm __lowercase =feat_extract_activation __lowercase =list(_lowerCAmelCase) __lowercase =list(_lowerCAmelCase) __lowercase =list(_lowerCAmelCase) __lowercase =conv_bias __lowercase =num_buckets __lowercase =max_bucket_distance __lowercase =num_conv_pos_embeddings __lowercase =num_conv_pos_embedding_groups __lowercase =len(self.conv_dim) __lowercase =num_hidden_layers __lowercase =intermediate_size __lowercase =hidden_act __lowercase =num_attention_heads __lowercase =hidden_dropout __lowercase =attention_dropout __lowercase =activation_dropout __lowercase =feat_proj_dropout __lowercase =final_dropout __lowercase =layerdrop __lowercase =layer_norm_eps __lowercase =initializer_range __lowercase =num_ctc_classes __lowercase =vocab_size __lowercase =do_stable_layer_norm __lowercase =use_weighted_layer_sum __lowercase =classifier_proj_size if ( (len(self.conv_stride) != self.num_feat_extract_layers) or (len(self.conv_kernel) != self.num_feat_extract_layers) or (len(self.conv_dim) != self.num_feat_extract_layers) ): raise ValueError( 'Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==' ' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =' f""" {len(self.conv_dim)}`, `len(config.conv_stride) = {len(self.conv_stride)}`,""" f""" `len(config.conv_kernel) = {len(self.conv_kernel)}`.""") # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 __lowercase =apply_spec_augment __lowercase =mask_time_prob __lowercase =mask_time_length __lowercase =mask_time_min_masks __lowercase =mask_feature_prob __lowercase =mask_feature_length # parameters for pretraining with codevector quantized representations __lowercase =num_codevectors_per_group __lowercase =num_codevector_groups __lowercase =contrastive_logits_temperature __lowercase =num_negatives __lowercase =codevector_dim __lowercase =proj_codevector_dim __lowercase =diversity_loss_weight # ctc loss __lowercase =ctc_loss_reduction __lowercase =ctc_zero_infinity # adapter __lowercase =add_adapter __lowercase =adapter_kernel_size __lowercase =adapter_stride __lowercase =num_adapter_layers __lowercase =output_hidden_size or hidden_size # SequenceClassification-specific parameter. Feel free to ignore for other classes. __lowercase =classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. __lowercase =list(_lowerCAmelCase) __lowercase =list(_lowerCAmelCase) __lowercase =list(_lowerCAmelCase) __lowercase =xvector_output_dim @property def __lowerCamelCase ( self : Optional[int]): '''simple docstring''' return functools.reduce(operator.mul , self.conv_stride , 1)
48
0
_lowerCamelCase : Any = "\n# Transformers installation\n! pip install transformers datasets\n# To install from source instead of the last release, comment the command above and uncomment the following one.\n# ! pip install git+https://github.com/huggingface/transformers.git\n" _lowerCamelCase : int = [{"type": "code", "content": INSTALL_CONTENT}] _lowerCamelCase : Optional[Any] = { "{processor_class}": "FakeProcessorClass", "{model_class}": "FakeModelClass", "{object_class}": "FakeObjectClass", }
336
from __future__ import annotations import copy import inspect import json import math import os import tempfile import unittest from importlib import import_module import numpy as np from transformers import ViTMAEConfig from transformers.file_utils import cached_property, is_tf_available, is_vision_available from transformers.testing_utils import require_tf, require_vision, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFViTMAEForPreTraining, TFViTMAEModel if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class __UpperCAmelCase : def __init__( self : Any, __A : str, __A : Dict=1_3, __A : int=3_0, __A : Tuple=2, __A : Union[str, Any]=3, __A : Any=True, __A : str=True, __A : Dict=3_2, __A : List[Any]=2, __A : Optional[Any]=4, __A : Union[str, Any]=3_7, __A : int="gelu", __A : int=0.1, __A : List[Any]=0.1, __A : Tuple=1_0, __A : Tuple=0.0_2, __A : Any=3, __A : List[str]=0.6, __A : Any=None, ): UpperCAmelCase : Union[str, Any] = parent UpperCAmelCase : Dict = batch_size UpperCAmelCase : List[str] = image_size UpperCAmelCase : Dict = patch_size UpperCAmelCase : int = num_channels UpperCAmelCase : Union[str, Any] = is_training UpperCAmelCase : Union[str, Any] = use_labels UpperCAmelCase : Union[str, Any] = hidden_size UpperCAmelCase : Optional[int] = num_hidden_layers UpperCAmelCase : Union[str, Any] = num_attention_heads UpperCAmelCase : List[str] = intermediate_size UpperCAmelCase : Optional[int] = hidden_act UpperCAmelCase : Tuple = hidden_dropout_prob UpperCAmelCase : List[Any] = attention_probs_dropout_prob UpperCAmelCase : Any = type_sequence_label_size UpperCAmelCase : Tuple = initializer_range UpperCAmelCase : Tuple = mask_ratio UpperCAmelCase : Any = scope # in ViTMAE, the expected sequence length = (num_patches + 1) * (1 - config.mask_ratio), rounded above # (we add 1 for the [CLS] token) UpperCAmelCase : Tuple = (image_size // patch_size) ** 2 UpperCAmelCase : List[Any] = int(math.ceil((1 - mask_ratio) * (num_patches + 1) ) ) def __magic_name__ ( self : Optional[int] ): UpperCAmelCase : int = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase : Any = None if self.use_labels: UpperCAmelCase : Optional[Any] = ids_tensor([self.batch_size], self.type_sequence_label_size ) UpperCAmelCase : str = self.get_config() return config, pixel_values, labels def __magic_name__ ( self : Optional[Any] ): return ViTMAEConfig( image_size=self.image_size, patch_size=self.patch_size, num_channels=self.num_channels, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, decoder_hidden_size=self.hidden_size, decoder_num_hidden_layers=self.num_hidden_layers, decoder_num_attention_heads=self.num_attention_heads, decoder_intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, is_decoder=__A, initializer_range=self.initializer_range, mask_ratio=self.mask_ratio, ) def __magic_name__ ( self : str, __A : List[Any], __A : Any, __A : Any ): UpperCAmelCase : Optional[Any] = TFViTMAEModel(config=__A ) UpperCAmelCase : Tuple = model(__A, training=__A ) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size) ) def __magic_name__ ( self : Tuple, __A : str, __A : int, __A : str ): UpperCAmelCase : Dict = TFViTMAEForPreTraining(__A ) UpperCAmelCase : int = model(__A, training=__A ) # expected sequence length = num_patches UpperCAmelCase : int = (self.image_size // self.patch_size) ** 2 UpperCAmelCase : Optional[Any] = self.patch_size**2 * self.num_channels self.parent.assertEqual(result.logits.shape, (self.batch_size, num_patches, expected_num_channels) ) # test greyscale images UpperCAmelCase : Tuple = 1 UpperCAmelCase : List[Any] = TFViTMAEForPreTraining(__A ) UpperCAmelCase : Union[str, Any] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) UpperCAmelCase : List[Any] = model(__A, training=__A ) UpperCAmelCase : Union[str, Any] = self.patch_size**2 self.parent.assertEqual(result.logits.shape, (self.batch_size, num_patches, expected_num_channels) ) def __magic_name__ ( self : List[Any] ): UpperCAmelCase : Dict = self.prepare_config_and_inputs() ((UpperCAmelCase) , (UpperCAmelCase) , (UpperCAmelCase)) : Union[str, Any] = config_and_inputs UpperCAmelCase : Optional[Any] = {'''pixel_values''': pixel_values} return config, inputs_dict @require_tf class __UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ): UpperCamelCase = (TFViTMAEModel, TFViTMAEForPreTraining) if is_tf_available() else () UpperCamelCase = {"""feature-extraction""": TFViTMAEModel} if is_tf_available() else {} UpperCamelCase = False UpperCamelCase = False UpperCamelCase = False UpperCamelCase = False def __magic_name__ ( self : List[str] ): UpperCAmelCase : List[Any] = TFViTMAEModelTester(self ) UpperCAmelCase : int = ConfigTester(self, config_class=__A, has_text_modality=__A, hidden_size=3_7 ) def __magic_name__ ( self : List[str] ): self.config_tester.run_common_tests() @unittest.skip(reason='''ViTMAE does not use inputs_embeds''' ) def __magic_name__ ( self : List[Any] ): pass def __magic_name__ ( self : List[str] ): UpperCAmelCase , UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase : List[str] = model_class(__A ) self.assertIsInstance(model.get_input_embeddings(), (tf.keras.layers.Layer) ) UpperCAmelCase : Union[str, Any] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__A, tf.keras.layers.Layer ) ) def __magic_name__ ( self : str ): UpperCAmelCase , UpperCAmelCase : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase : Any = model_class(__A ) UpperCAmelCase : Any = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase : int = [*signature.parameters.keys()] UpperCAmelCase : Tuple = ['''pixel_values'''] self.assertListEqual(arg_names[:1], __A ) def __magic_name__ ( self : List[str] ): UpperCAmelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__A ) def __magic_name__ ( self : str ): UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*__A ) def __magic_name__ ( self : int ): # make the mask reproducible np.random.seed(2 ) UpperCAmelCase , UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase : Tuple = int((config.image_size // config.patch_size) ** 2 ) UpperCAmelCase : List[Any] = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) for model_class in self.all_model_classes: UpperCAmelCase : str = model_class(__A ) UpperCAmelCase : int = self._prepare_for_class(__A, __A ) UpperCAmelCase : Dict = model(__A, noise=__A ) UpperCAmelCase : Any = copy.deepcopy(self._prepare_for_class(__A, __A ) ) UpperCAmelCase : Union[str, Any] = model(**__A, noise=__A ) UpperCAmelCase : Dict = outputs_dict[0].numpy() UpperCAmelCase : Tuple = outputs_keywords[0].numpy() self.assertLess(np.sum(np.abs(output_dict - output_keywords ) ), 1E-6 ) def __magic_name__ ( self : Optional[Any] ): # make the mask reproducible np.random.seed(2 ) UpperCAmelCase , UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase : str = int((config.image_size // config.patch_size) ** 2 ) UpperCAmelCase : Union[str, Any] = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) def prepare_numpy_arrays(__A : Union[str, Any] ): UpperCAmelCase : str = {} for k, v in inputs_dict.items(): if tf.is_tensor(__A ): UpperCAmelCase : Tuple = v.numpy() else: UpperCAmelCase : str = np.array(__A ) return inputs_np_dict for model_class in self.all_model_classes: UpperCAmelCase : Dict = model_class(__A ) UpperCAmelCase : Any = self._prepare_for_class(__A, __A ) UpperCAmelCase : Optional[int] = prepare_numpy_arrays(__A ) UpperCAmelCase : str = model(__A, noise=__A ) UpperCAmelCase : str = model(**__A, noise=__A ) self.assert_outputs_same(__A, __A ) def __magic_name__ ( self : int, __A : str, __A : Union[str, Any], __A : Optional[Any] ): # make masks reproducible np.random.seed(2 ) UpperCAmelCase : Any = int((tf_model.config.image_size // tf_model.config.patch_size) ** 2 ) UpperCAmelCase : Tuple = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) UpperCAmelCase : int = tf.constant(__A ) # Add `noise` argument. # PT inputs will be prepared in `super().check_pt_tf_models()` with this added `noise` argument UpperCAmelCase : List[Any] = tf_noise super().check_pt_tf_models(__A, __A, __A ) def __magic_name__ ( self : str ): # make mask reproducible np.random.seed(2 ) UpperCAmelCase , UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase : Union[str, Any] = { module_member for model_class in self.all_model_classes for module in (import_module(model_class.__module__ ),) for module_member_name in dir(__A ) if module_member_name.endswith('''MainLayer''' ) # This condition is required, since `modeling_tf_clip.py` has 3 classes whose names end with `MainLayer`. and module_member_name[: -len('''MainLayer''' )] == model_class.__name__[: -len('''Model''' )] for module_member in (getattr(__A, __A ),) if isinstance(__A, __A ) and tf.keras.layers.Layer in module_member.__bases__ and getattr(__A, '''_keras_serializable''', __A ) } UpperCAmelCase : Union[str, Any] = int((config.image_size // config.patch_size) ** 2 ) UpperCAmelCase : Optional[Any] = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) UpperCAmelCase : str = tf.convert_to_tensor(__A ) inputs_dict.update({'''noise''': noise} ) for main_layer_class in tf_main_layer_classes: UpperCAmelCase : Tuple = main_layer_class(__A ) UpperCAmelCase : int = { name: tf.keras.Input(tensor.shape[1:], dtype=tensor.dtype ) for name, tensor in inputs_dict.items() } UpperCAmelCase : List[Any] = tf.keras.Model(__A, outputs=main_layer(__A ) ) UpperCAmelCase : List[Any] = model(__A ) with tempfile.TemporaryDirectory() as tmpdirname: UpperCAmelCase : Any = os.path.join(__A, '''keras_model.h5''' ) model.save(__A ) UpperCAmelCase : List[str] = tf.keras.models.load_model( __A, custom_objects={main_layer_class.__name__: main_layer_class} ) assert isinstance(__A, tf.keras.Model ) UpperCAmelCase : Tuple = model(__A ) self.assert_outputs_same(__A, __A ) @slow def __magic_name__ ( self : Dict ): # make mask reproducible np.random.seed(2 ) UpperCAmelCase , UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase : Optional[Any] = int((config.image_size // config.patch_size) ** 2 ) UpperCAmelCase : Optional[Any] = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) for model_class in self.all_model_classes: UpperCAmelCase : int = model_class(__A ) UpperCAmelCase : List[str] = self._prepare_for_class(__A, __A ) UpperCAmelCase : Union[str, Any] = model(__A, noise=__A ) if model_class.__name__ == "TFViTMAEModel": UpperCAmelCase : Optional[int] = outputs.last_hidden_state.numpy() UpperCAmelCase : Union[str, Any] = 0 else: UpperCAmelCase : Optional[int] = outputs.logits.numpy() UpperCAmelCase : int = 0 with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(__A, saved_model=__A ) UpperCAmelCase : Dict = model_class.from_pretrained(__A ) UpperCAmelCase : str = model(__A, noise=__A ) if model_class.__name__ == "TFViTMAEModel": UpperCAmelCase : int = after_outputs['''last_hidden_state'''].numpy() UpperCAmelCase : Dict = 0 else: UpperCAmelCase : Any = after_outputs['''logits'''].numpy() UpperCAmelCase : Dict = 0 UpperCAmelCase : Union[str, Any] = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(__A, 1E-5 ) def __magic_name__ ( self : Optional[Any] ): # make mask reproducible np.random.seed(2 ) UpperCAmelCase , UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase : List[Any] = int((config.image_size // config.patch_size) ** 2 ) UpperCAmelCase : Tuple = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) for model_class in self.all_model_classes: UpperCAmelCase : Dict = model_class(__A ) UpperCAmelCase : int = self._prepare_for_class(__A, __A ) UpperCAmelCase : List[Any] = model(__A, noise=__A ) UpperCAmelCase : str = model.get_config() # make sure that returned config is jsonifiable, which is required by keras json.dumps(__A ) UpperCAmelCase : int = model_class.from_config(model.get_config() ) # make sure it also accepts a normal config UpperCAmelCase : str = model_class.from_config(model.config ) UpperCAmelCase : List[str] = new_model(__A ) # Build model new_model.set_weights(model.get_weights() ) UpperCAmelCase : Tuple = new_model(__A, noise=__A ) self.assert_outputs_same(__A, __A ) @unittest.skip( reason='''ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load to get deterministic results.''' ) def __magic_name__ ( self : Optional[int] ): pass @unittest.skip(reason='''ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load''' ) def __magic_name__ ( self : Tuple ): pass @slow def __magic_name__ ( self : str ): UpperCAmelCase : Tuple = TFViTMAEModel.from_pretrained('''google/vit-base-patch16-224''' ) self.assertIsNotNone(__A ) def a__ ( ) -> Dict: UpperCAmelCase : int = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_tf @require_vision class __UpperCAmelCase ( unittest.TestCase ): @cached_property def __magic_name__ ( self : List[str] ): return ViTImageProcessor.from_pretrained('''facebook/vit-mae-base''' ) if is_vision_available() else None @slow def __magic_name__ ( self : str ): # make random mask reproducible across the PT and TF model np.random.seed(2 ) UpperCAmelCase : Tuple = TFViTMAEForPreTraining.from_pretrained('''facebook/vit-mae-base''' ) UpperCAmelCase : List[str] = self.default_image_processor UpperCAmelCase : Any = prepare_img() UpperCAmelCase : str = image_processor(images=__A, return_tensors='''tf''' ) # prepare a noise vector that will be also used for testing the TF model # (this way we can ensure that the PT and TF models operate on the same inputs) UpperCAmelCase : Optional[int] = ViTMAEConfig() UpperCAmelCase : int = int((vit_mae_config.image_size // vit_mae_config.patch_size) ** 2 ) UpperCAmelCase : Tuple = np.random.uniform(size=(1, num_patches) ) # forward pass UpperCAmelCase : Optional[int] = model(**__A, noise=__A ) # verify the logits UpperCAmelCase : Union[str, Any] = tf.convert_to_tensor([1, 1_9_6, 7_6_8] ) self.assertEqual(outputs.logits.shape, __A ) UpperCAmelCase : List[str] = tf.convert_to_tensor( [[-0.0_5_4_8, -1.7_0_2_3, -0.9_3_2_5], [0.3_7_2_1, -0.5_6_7_0, -0.2_2_3_3], [0.8_2_3_5, -1.3_8_7_8, -0.3_5_2_4]] ) tf.debugging.assert_near(outputs.logits[0, :3, :3], __A, atol=1E-4 )
336
1
def lowerCAmelCase_ ( __lowerCamelCase = 3 , __lowerCamelCase = 7 , __lowerCamelCase = 1_0_0_0_0_0_0 ): __snake_case : Dict = 0 __snake_case : int = 1 for current_denominator in range(1 , limit + 1 ): __snake_case : Tuple = current_denominator * numerator // denominator if current_denominator % denominator == 0: current_numerator -= 1 if current_numerator * max_denominator > current_denominator * max_numerator: __snake_case : Union[str, Any] = current_numerator __snake_case : Union[str, Any] = current_denominator return max_numerator if __name__ == "__main__": print(solution(numerator=3, denominator=7, limit=1_000_000))
363
import argparse import json import pickle from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import MaskFormerConfig, MaskFormerForInstanceSegmentation, MaskFormerImageProcessor, SwinConfig from transformers.utils import logging logging.set_verbosity_info() _snake_case : Union[str, Any] = logging.get_logger(__name__) def lowerCAmelCase_ ( __lowerCamelCase ): __snake_case : Dict = SwinConfig.from_pretrained( "microsoft/swin-tiny-patch4-window7-224" , out_features=["stage1", "stage2", "stage3", "stage4"] ) __snake_case : List[Any] = MaskFormerConfig(backbone_config=__lowerCamelCase ) __snake_case : List[Any] = "huggingface/label-files" if "ade20k-full" in model_name: # this should be ok __snake_case : Any = 8_4_7 __snake_case : List[Any] = "maskformer-ade20k-full-id2label.json" elif "ade" in model_name: # this should be ok __snake_case : Optional[int] = 1_5_0 __snake_case : int = "ade20k-id2label.json" elif "coco-stuff" in model_name: # this should be ok __snake_case : Optional[Any] = 1_7_1 __snake_case : List[str] = "maskformer-coco-stuff-id2label.json" elif "coco" in model_name: # TODO __snake_case : Optional[int] = 1_3_3 __snake_case : int = "coco-panoptic-id2label.json" elif "cityscapes" in model_name: # this should be ok __snake_case : Union[str, Any] = 1_9 __snake_case : Dict = "cityscapes-id2label.json" elif "vistas" in model_name: # this should be ok __snake_case : Any = 6_5 __snake_case : Any = "mapillary-vistas-id2label.json" __snake_case : str = json.load(open(hf_hub_download(__lowerCamelCase , __lowerCamelCase , repo_type="dataset" ) , "r" ) ) __snake_case : Tuple = {int(__lowerCamelCase ): v for k, v in idalabel.items()} return config def lowerCAmelCase_ ( __lowerCamelCase ): __snake_case : Dict = [] # stem # fmt: off rename_keys.append(("backbone.patch_embed.proj.weight", "model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.weight") ) rename_keys.append(("backbone.patch_embed.proj.bias", "model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.bias") ) rename_keys.append(("backbone.patch_embed.norm.weight", "model.pixel_level_module.encoder.model.embeddings.norm.weight") ) rename_keys.append(("backbone.patch_embed.norm.bias", "model.pixel_level_module.encoder.model.embeddings.norm.bias") ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((F'backbone.layers.{i}.blocks.{j}.norm1.weight', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.weight') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.norm1.bias', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.bias') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.attn.relative_position_bias_table', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.attn.relative_position_index', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.attn.proj.weight', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.attn.proj.bias', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.norm2.weight', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.weight') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.norm2.bias', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.bias') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.mlp.fc1.weight', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.mlp.fc1.bias', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.mlp.fc2.weight', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.weight') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.mlp.fc2.bias', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.bias') ) if i < 3: rename_keys.append((F'backbone.layers.{i}.downsample.reduction.weight', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.reduction.weight') ) rename_keys.append((F'backbone.layers.{i}.downsample.norm.weight', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.weight') ) rename_keys.append((F'backbone.layers.{i}.downsample.norm.bias', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.bias') ) rename_keys.append((F'backbone.norm{i}.weight', F'model.pixel_level_module.encoder.hidden_states_norms.{i}.weight') ) rename_keys.append((F'backbone.norm{i}.bias', F'model.pixel_level_module.encoder.hidden_states_norms.{i}.bias') ) # FPN rename_keys.append(("sem_seg_head.layer_4.weight", "model.pixel_level_module.decoder.fpn.stem.0.weight") ) rename_keys.append(("sem_seg_head.layer_4.norm.weight", "model.pixel_level_module.decoder.fpn.stem.1.weight") ) rename_keys.append(("sem_seg_head.layer_4.norm.bias", "model.pixel_level_module.decoder.fpn.stem.1.bias") ) for source_index, target_index in zip(range(3 , 0 , -1 ) , range(0 , 3 ) ): rename_keys.append((F'sem_seg_head.adapter_{source_index}.weight', F'model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.0.weight') ) rename_keys.append((F'sem_seg_head.adapter_{source_index}.norm.weight', F'model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.weight') ) rename_keys.append((F'sem_seg_head.adapter_{source_index}.norm.bias', F'model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.bias') ) rename_keys.append((F'sem_seg_head.layer_{source_index}.weight', F'model.pixel_level_module.decoder.fpn.layers.{target_index}.block.0.weight') ) rename_keys.append((F'sem_seg_head.layer_{source_index}.norm.weight', F'model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.weight') ) rename_keys.append((F'sem_seg_head.layer_{source_index}.norm.bias', F'model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.bias') ) rename_keys.append(("sem_seg_head.mask_features.weight", "model.pixel_level_module.decoder.mask_projection.weight") ) rename_keys.append(("sem_seg_head.mask_features.bias", "model.pixel_level_module.decoder.mask_projection.bias") ) # Transformer decoder for idx in range(config.decoder_config.decoder_layers ): # self-attention out projection rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.weight', F'model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.weight') ) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.bias', F'model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.bias') ) # cross-attention out projection rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.weight', F'model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.weight') ) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.bias', F'model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.bias') ) # MLP 1 rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.weight', F'model.transformer_module.decoder.layers.{idx}.fc1.weight') ) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.bias', F'model.transformer_module.decoder.layers.{idx}.fc1.bias') ) # MLP 2 rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.weight', F'model.transformer_module.decoder.layers.{idx}.fc2.weight') ) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.bias', F'model.transformer_module.decoder.layers.{idx}.fc2.bias') ) # layernorm 1 (self-attention layernorm) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.weight', F'model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.weight') ) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.bias', F'model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.bias') ) # layernorm 2 (cross-attention layernorm) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.weight', F'model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.weight') ) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.bias', F'model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.bias') ) # layernorm 3 (final layernorm) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.weight', F'model.transformer_module.decoder.layers.{idx}.final_layer_norm.weight') ) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.bias', F'model.transformer_module.decoder.layers.{idx}.final_layer_norm.bias') ) rename_keys.append(("sem_seg_head.predictor.transformer.decoder.norm.weight", "model.transformer_module.decoder.layernorm.weight") ) rename_keys.append(("sem_seg_head.predictor.transformer.decoder.norm.bias", "model.transformer_module.decoder.layernorm.bias") ) # heads on top rename_keys.append(("sem_seg_head.predictor.query_embed.weight", "model.transformer_module.queries_embedder.weight") ) rename_keys.append(("sem_seg_head.predictor.input_proj.weight", "model.transformer_module.input_projection.weight") ) rename_keys.append(("sem_seg_head.predictor.input_proj.bias", "model.transformer_module.input_projection.bias") ) rename_keys.append(("sem_seg_head.predictor.class_embed.weight", "class_predictor.weight") ) rename_keys.append(("sem_seg_head.predictor.class_embed.bias", "class_predictor.bias") ) for i in range(3 ): rename_keys.append((F'sem_seg_head.predictor.mask_embed.layers.{i}.weight', F'mask_embedder.{i}.0.weight') ) rename_keys.append((F'sem_seg_head.predictor.mask_embed.layers.{i}.bias', F'mask_embedder.{i}.0.bias') ) # fmt: on return rename_keys def lowerCAmelCase_ ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ): __snake_case : Dict = dct.pop(__lowerCamelCase ) __snake_case : Any = val def lowerCAmelCase_ ( __lowerCamelCase , __lowerCamelCase ): __snake_case : List[Any] = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )] for i in range(len(backbone_config.depths ) ): __snake_case : Optional[int] = num_features[i] for j in range(backbone_config.depths[i] ): # fmt: off # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) __snake_case : Tuple = state_dict.pop(F'backbone.layers.{i}.blocks.{j}.attn.qkv.weight' ) __snake_case : Tuple = state_dict.pop(F'backbone.layers.{i}.blocks.{j}.attn.qkv.bias' ) # next, add query, keys and values (in that order) to the state dict __snake_case : Tuple = in_proj_weight[:dim, :] __snake_case : Tuple = in_proj_bias[: dim] __snake_case : Union[str, Any] = in_proj_weight[ dim : dim * 2, : ] __snake_case : Tuple = in_proj_bias[ dim : dim * 2 ] __snake_case : str = in_proj_weight[ -dim :, : ] __snake_case : Any = in_proj_bias[-dim :] # fmt: on def lowerCAmelCase_ ( __lowerCamelCase , __lowerCamelCase ): # fmt: off __snake_case : Optional[int] = config.decoder_config.hidden_size for idx in range(config.decoder_config.decoder_layers ): # read in weights + bias of self-attention input projection layer (in the original implementation, this is a single matrix + bias) __snake_case : List[str] = state_dict.pop(F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_weight' ) __snake_case : Union[str, Any] = state_dict.pop(F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_bias' ) # next, add query, keys and values (in that order) to the state dict __snake_case : Any = in_proj_weight[: hidden_size, :] __snake_case : Optional[int] = in_proj_bias[:config.hidden_size] __snake_case : Any = in_proj_weight[hidden_size : hidden_size * 2, :] __snake_case : Any = in_proj_bias[hidden_size : hidden_size * 2] __snake_case : Tuple = in_proj_weight[-hidden_size :, :] __snake_case : Optional[Any] = in_proj_bias[-hidden_size :] # read in weights + bias of cross-attention input projection layer (in the original implementation, this is a single matrix + bias) __snake_case : Optional[Any] = state_dict.pop(F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_weight' ) __snake_case : Union[str, Any] = state_dict.pop(F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_bias' ) # next, add query, keys and values (in that order) to the state dict __snake_case : int = in_proj_weight[: hidden_size, :] __snake_case : Tuple = in_proj_bias[:config.hidden_size] __snake_case : str = in_proj_weight[hidden_size : hidden_size * 2, :] __snake_case : Optional[Any] = in_proj_bias[hidden_size : hidden_size * 2] __snake_case : Optional[Any] = in_proj_weight[-hidden_size :, :] __snake_case : Tuple = in_proj_bias[-hidden_size :] # fmt: on def lowerCAmelCase_ ( ): __snake_case : List[str] = "http://images.cocodataset.org/val2017/000000039769.jpg" __snake_case : List[str] = Image.open(requests.get(__lowerCamelCase , stream=__lowerCamelCase ).raw ) return im @torch.no_grad() def lowerCAmelCase_ ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = False ): __snake_case : Optional[int] = get_maskformer_config(__lowerCamelCase ) # load original state_dict with open(__lowerCamelCase , "rb" ) as f: __snake_case : int = pickle.load(__lowerCamelCase ) __snake_case : Optional[int] = data["model"] # for name, param in state_dict.items(): # print(name, param.shape) # rename keys __snake_case : Tuple = create_rename_keys(__lowerCamelCase ) for src, dest in rename_keys: rename_key(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) read_in_swin_q_k_v(__lowerCamelCase , config.backbone_config ) read_in_decoder_q_k_v(__lowerCamelCase , __lowerCamelCase ) # update to torch tensors for key, value in state_dict.items(): __snake_case : int = torch.from_numpy(__lowerCamelCase ) # load 🤗 model __snake_case : List[str] = MaskFormerForInstanceSegmentation(__lowerCamelCase ) model.eval() for name, param in model.named_parameters(): print(__lowerCamelCase , param.shape ) __snake_case , __snake_case : List[str] = model.load_state_dict(__lowerCamelCase , strict=__lowerCamelCase ) assert missing_keys == [ "model.pixel_level_module.encoder.model.layernorm.weight", "model.pixel_level_module.encoder.model.layernorm.bias", ] assert len(__lowerCamelCase ) == 0, F'Unexpected keys: {unexpected_keys}' # verify results __snake_case : Union[str, Any] = prepare_img() if "vistas" in model_name: __snake_case : Optional[int] = 6_5 elif "cityscapes" in model_name: __snake_case : Optional[int] = 6_5_5_3_5 else: __snake_case : Union[str, Any] = 2_5_5 __snake_case : Union[str, Any] = True if "ade" in model_name else False __snake_case : str = MaskFormerImageProcessor(ignore_index=__lowerCamelCase , reduce_labels=__lowerCamelCase ) __snake_case : List[str] = image_processor(__lowerCamelCase , return_tensors="pt" ) __snake_case : Tuple = model(**__lowerCamelCase ) print("Logits:" , outputs.class_queries_logits[0, :3, :3] ) if model_name == "maskformer-swin-tiny-ade": __snake_case : Optional[Any] = torch.tensor( [[3.6_3_5_3, -4.4_7_7_0, -2.6_0_6_5], [0.5_0_8_1, -4.2_3_9_4, -3.5_3_4_3], [2.1_9_0_9, -5.0_3_5_3, -1.9_3_2_3]] ) assert torch.allclose(outputs.class_queries_logits[0, :3, :3] , __lowerCamelCase , atol=1e-4 ) print("Looks ok!" ) if pytorch_dump_folder_path is not None: print(F'Saving model and image processor to {pytorch_dump_folder_path}' ) Path(__lowerCamelCase ).mkdir(exist_ok=__lowerCamelCase ) model.save_pretrained(__lowerCamelCase ) image_processor.save_pretrained(__lowerCamelCase ) if push_to_hub: print("Pushing model and image processor to the hub..." ) model.push_to_hub(F'nielsr/{model_name}' ) image_processor.push_to_hub(F'nielsr/{model_name}' ) if __name__ == "__main__": _snake_case : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="maskformer-swin-tiny-ade", type=str, help=("Name of the MaskFormer model you'd like to convert",), ) parser.add_argument( "--checkpoint_path", default="/Users/nielsrogge/Documents/MaskFormer_checkpoints/MaskFormer-Swin-tiny-ADE20k/model.pkl", type=str, help="Path to the original state dict (.pth file).", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub." ) _snake_case : List[str] = parser.parse_args() convert_maskformer_checkpoint( args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
134
0
import argparse import logging import pickle import random import time import numpy as np from transformers import BertTokenizer, GPTaTokenizer, RobertaTokenizer logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO ) _snake_case = logging.getLogger(__name__) def lowerCAmelCase_ ( ): _A : List[str] = argparse.ArgumentParser( description="""Preprocess the data to avoid re-doing it several times by (tokenization + token_to_ids).""" ) parser.add_argument("""--file_path""",type=A__,default="""data/dump.txt""",help="""The path to the data.""" ) parser.add_argument("""--tokenizer_type""",type=A__,default="""bert""",choices=["""bert""", """roberta""", """gpt2"""] ) parser.add_argument("""--tokenizer_name""",type=A__,default="""bert-base-uncased""",help="""The tokenizer to use.""" ) parser.add_argument("""--dump_file""",type=A__,default="""data/dump""",help="""The dump file prefix.""" ) _A : Dict = parser.parse_args() logger.info(f'''Loading Tokenizer ({args.tokenizer_name})''' ) if args.tokenizer_type == "bert": _A : Optional[Any] = BertTokenizer.from_pretrained(args.tokenizer_name ) _A : Union[str, Any] = tokenizer.special_tokens_map["""cls_token"""] # `[CLS]` _A : Tuple = tokenizer.special_tokens_map["""sep_token"""] # `[SEP]` elif args.tokenizer_type == "roberta": _A : Optional[int] = RobertaTokenizer.from_pretrained(args.tokenizer_name ) _A : Optional[int] = tokenizer.special_tokens_map["""cls_token"""] # `<s>` _A : List[str] = tokenizer.special_tokens_map["""sep_token"""] # `</s>` elif args.tokenizer_type == "gpt2": _A : Tuple = GPTaTokenizer.from_pretrained(args.tokenizer_name ) _A : Union[str, Any] = tokenizer.special_tokens_map["""bos_token"""] # `<|endoftext|>` _A : List[Any] = tokenizer.special_tokens_map["""eos_token"""] # `<|endoftext|>` logger.info(f'''Loading text from {args.file_path}''' ) with open(args.file_path,"""r""",encoding="""utf8""" ) as fp: _A : int = fp.readlines() logger.info("""Start encoding""" ) logger.info(f'''{len(A__ )} examples to process.''' ) _A : Optional[Any] = [] _A : Optional[Any] = 0 _A : str = 10000 _A : int = time.time() for text in data: _A : List[str] = f'''{bos} {text.strip()} {sep}''' _A : int = tokenizer.encode(A__,add_special_tokens=A__ ) rslt.append(A__ ) iter += 1 if iter % interval == 0: _A : List[Any] = time.time() logger.info(f'''{iter} examples processed. - {(end-start):.2f}s/{interval}expl''' ) _A : List[Any] = time.time() logger.info("""Finished binarization""" ) logger.info(f'''{len(A__ )} examples processed.''' ) _A : str = f'''{args.dump_file}.{args.tokenizer_name}.pickle''' _A : Optional[int] = tokenizer.vocab_size if vocab_size < (1 << 16): _A : Any = [np.uintaa(A__ ) for d in rslt] else: _A : int = [np.intaa(A__ ) for d in rslt] random.shuffle(rslt_ ) logger.info(f'''Dump to {dp_file}''' ) with open(A__,"""wb""" ) as handle: pickle.dump(rslt_,A__,protocol=pickle.HIGHEST_PROTOCOL ) if __name__ == "__main__": main()
26
'''simple docstring''' import inspect import unittest from transformers import ConvNextConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ConvNextBackbone, ConvNextForImageClassification, ConvNextModel from transformers.models.convnext.modeling_convnext import CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class SCREAMING_SNAKE_CASE : """simple docstring""" def __init__( self : Optional[int] , UpperCamelCase__ : List[str] , UpperCamelCase__ : Any=1_3 , UpperCamelCase__ : Optional[int]=3_2 , UpperCamelCase__ : Any=3 , UpperCamelCase__ : Tuple=4 , UpperCamelCase__ : str=[1_0, 2_0, 3_0, 4_0] , UpperCamelCase__ : str=[2, 2, 3, 2] , UpperCamelCase__ : Dict=True , UpperCamelCase__ : List[str]=True , UpperCamelCase__ : str=3_7 , UpperCamelCase__ : Union[str, Any]="gelu" , UpperCamelCase__ : Dict=1_0 , UpperCamelCase__ : Union[str, Any]=0.0_2 , UpperCamelCase__ : int=["stage2", "stage3", "stage4"] , UpperCamelCase__ : List[str]=[2, 3, 4] , UpperCamelCase__ : Any=None , ): """simple docstring""" UpperCamelCase = parent UpperCamelCase = batch_size UpperCamelCase = image_size UpperCamelCase = num_channels UpperCamelCase = num_stages UpperCamelCase = hidden_sizes UpperCamelCase = depths UpperCamelCase = is_training UpperCamelCase = use_labels UpperCamelCase = intermediate_size UpperCamelCase = hidden_act UpperCamelCase = num_labels UpperCamelCase = initializer_range UpperCamelCase = out_features UpperCamelCase = out_indices UpperCamelCase = scope def A ( self : Union[str, Any] ): """simple docstring""" UpperCamelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCamelCase = None if self.use_labels: UpperCamelCase = ids_tensor([self.batch_size] , self.num_labels ) UpperCamelCase = self.get_config() return config, pixel_values, labels def A ( self : List[str] ): """simple docstring""" return ConvNextConfig( num_channels=self.num_channels , hidden_sizes=self.hidden_sizes , depths=self.depths , num_stages=self.num_stages , hidden_act=self.hidden_act , is_decoder=UpperCamelCase__ , initializer_range=self.initializer_range , out_features=self.out_features , out_indices=self.out_indices , num_labels=self.num_labels , ) def A ( self : Union[str, Any] , UpperCamelCase__ : List[Any] , UpperCamelCase__ : Any , UpperCamelCase__ : str ): """simple docstring""" UpperCamelCase = ConvNextModel(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() UpperCamelCase = model(UpperCamelCase__ ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 3_2, self.image_size // 3_2) , ) def A ( self : List[str] , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : int ): """simple docstring""" UpperCamelCase = ConvNextForImageClassification(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() UpperCamelCase = model(UpperCamelCase__ , labels=UpperCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def A ( self : Tuple , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Tuple , UpperCamelCase__ : str ): """simple docstring""" UpperCamelCase = ConvNextBackbone(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() UpperCamelCase = model(UpperCamelCase__ ) # verify hidden states self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] ) # verify backbone works with out_features=None UpperCamelCase = None UpperCamelCase = ConvNextBackbone(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() UpperCamelCase = model(UpperCamelCase__ ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def A ( self : Any ): """simple docstring""" UpperCamelCase = self.prepare_config_and_inputs() UpperCamelCase , UpperCamelCase , UpperCamelCase = config_and_inputs UpperCamelCase = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE ( _a , _a , unittest.TestCase ): """simple docstring""" _SCREAMING_SNAKE_CASE = ( ( ConvNextModel, ConvNextForImageClassification, ConvNextBackbone, ) if is_torch_available() else () ) _SCREAMING_SNAKE_CASE = ( {"""feature-extraction""": ConvNextModel, """image-classification""": ConvNextForImageClassification} if is_torch_available() else {} ) _SCREAMING_SNAKE_CASE = True _SCREAMING_SNAKE_CASE = False _SCREAMING_SNAKE_CASE = False _SCREAMING_SNAKE_CASE = False _SCREAMING_SNAKE_CASE = False def A ( self : Tuple ): """simple docstring""" UpperCamelCase = ConvNextModelTester(self ) UpperCamelCase = ConfigTester(self , config_class=UpperCamelCase__ , has_text_modality=UpperCamelCase__ , hidden_size=3_7 ) def A ( self : List[str] ): """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def A ( self : Optional[int] ): """simple docstring""" return @unittest.skip(reason='ConvNext does not use inputs_embeds' ) def A ( self : List[str] ): """simple docstring""" pass @unittest.skip(reason='ConvNext does not support input and output embeddings' ) def A ( self : List[Any] ): """simple docstring""" pass @unittest.skip(reason='ConvNext does not use feedforward chunking' ) def A ( self : Optional[int] ): """simple docstring""" pass def A ( self : Any ): """simple docstring""" UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase = model_class(UpperCamelCase__ ) UpperCamelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCamelCase = [*signature.parameters.keys()] UpperCamelCase = ['pixel_values'] self.assertListEqual(arg_names[:1] , UpperCamelCase__ ) def A ( self : Union[str, Any] ): """simple docstring""" UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCamelCase__ ) def A ( self : Tuple ): """simple docstring""" UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*UpperCamelCase__ ) def A ( self : Optional[Any] ): """simple docstring""" def check_hidden_states_output(UpperCamelCase__ : Dict , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : Tuple ): UpperCamelCase = model_class(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() with torch.no_grad(): UpperCamelCase = model(**self._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ ) ) UpperCamelCase = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states UpperCamelCase = self.model_tester.num_stages self.assertEqual(len(UpperCamelCase__ ) , expected_num_stages + 1 ) # ConvNext's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase = True check_hidden_states_output(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCamelCase = True check_hidden_states_output(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) def A ( self : Dict ): """simple docstring""" UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*UpperCamelCase__ ) @slow def A ( self : Dict ): """simple docstring""" for model_name in CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCamelCase = ConvNextModel.from_pretrained(UpperCamelCase__ ) self.assertIsNotNone(UpperCamelCase__ ) def __lowerCamelCase ( ) -> Any: """simple docstring""" UpperCamelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class SCREAMING_SNAKE_CASE ( unittest.TestCase ): """simple docstring""" @cached_property def A ( self : Optional[Any] ): """simple docstring""" return AutoImageProcessor.from_pretrained('facebook/convnext-tiny-224' ) if is_vision_available() else None @slow def A ( self : List[Any] ): """simple docstring""" UpperCamelCase = ConvNextForImageClassification.from_pretrained('facebook/convnext-tiny-224' ).to(UpperCamelCase__ ) UpperCamelCase = self.default_image_processor UpperCamelCase = prepare_img() UpperCamelCase = image_processor(images=UpperCamelCase__ , return_tensors='pt' ).to(UpperCamelCase__ ) # forward pass with torch.no_grad(): UpperCamelCase = model(**UpperCamelCase__ ) # verify the logits UpperCamelCase = torch.Size((1, 1_0_0_0) ) self.assertEqual(outputs.logits.shape , UpperCamelCase__ ) UpperCamelCase = torch.tensor([-0.0_2_6_0, -0.4_7_3_9, 0.1_9_1_1] ).to(UpperCamelCase__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , UpperCamelCase__ , atol=1E-4 ) ) @require_torch class SCREAMING_SNAKE_CASE ( unittest.TestCase , _a ): """simple docstring""" _SCREAMING_SNAKE_CASE = (ConvNextBackbone,) if is_torch_available() else () _SCREAMING_SNAKE_CASE = ConvNextConfig _SCREAMING_SNAKE_CASE = False def A ( self : Tuple ): """simple docstring""" UpperCamelCase = ConvNextModelTester(self )
28
0
"""simple docstring""" import os import jsonlines import numpy as np from tqdm import tqdm lowerCAmelCase__ = 2048 lowerCAmelCase__ = 4096 lowerCAmelCase__ = 42 lowerCAmelCase__ = os.environ.pop('''PROCESS_TRAIN''', '''false''') lowerCAmelCase__ = {'''null''': 0, '''short''': 1, '''long''': 2, '''yes''': 3, '''no''': 4} def snake_case_ ( A_ : Dict ): '''simple docstring''' def choose_first(A_ : List[Any], A_ : List[str]=False ): assert isinstance(A_, A_ ) if len(A_ ) == 1: _lowerCamelCase : Optional[int] = answer[0] return {k: [answer[k]] for k in answer} if is_long_answer else answer for a in answer: if is_long_answer: _lowerCamelCase : Dict = {k: [a[k]] for k in a} if len(a['''start_token'''] ) > 0: break return a _lowerCamelCase : Tuple = {'''id''': example['''id''']} _lowerCamelCase : Optional[Any] = example['''annotations'''] _lowerCamelCase : str = annotation['''yes_no_answer'''] if 0 in yes_no_answer or 1 in yes_no_answer: _lowerCamelCase : Any = ['''yes'''] if 1 in yes_no_answer else ['''no'''] _lowerCamelCase : Union[str, Any] = [] _lowerCamelCase : List[Any] = [] _lowerCamelCase : Any = ['''<cls>'''] else: _lowerCamelCase : Dict = ['''short'''] _lowerCamelCase : str = choose_first(annotation['''short_answers'''] ) if len(out['''start_token'''] ) == 0: # answer will be long if short is not available _lowerCamelCase : Union[str, Any] = ['''long'''] _lowerCamelCase : Union[str, Any] = choose_first(annotation['''long_answer'''], is_long_answer=A_ ) _lowerCamelCase : Dict = [] answer.update(A_ ) # disregard some samples if len(answer['''start_token'''] ) > 1 or answer["start_token"] == answer["end_token"]: _lowerCamelCase : Union[str, Any] = True else: _lowerCamelCase : Tuple = False _lowerCamelCase : Union[str, Any] = ['''start_token''', '''end_token''', '''start_byte''', '''end_byte''', '''text'''] if not all(isinstance(answer[k], A_ ) for k in cols ): raise ValueError('''Issue in ID''', example['''id'''] ) return answer def snake_case_ ( A_ : List[Any], A_ : Dict=False ): '''simple docstring''' _lowerCamelCase : Union[str, Any] = _get_single_answer(A_ ) # bytes are of no use del answer["start_byte"] del answer["end_byte"] # handle yes_no answers explicitly if answer["category"][0] in ["yes", "no"]: # category is list with one element _lowerCamelCase : Optional[int] = example['''document''']['''tokens'''] _lowerCamelCase : Optional[Any] = [] for i in range(len(doc['''token'''] ) ): if not doc["is_html"][i]: context.append(doc['''token'''][i] ) return { "context": " ".join(A_ ), "answer": { "start_token": -1_00, # ignore index in cross-entropy "end_token": -1_00, # ignore index in cross-entropy "category": answer["category"], "span": answer["category"], # extra }, } # later, help in removing all no answers if answer["start_token"] == [-1]: return { "context": "None", "answer": { "start_token": -1, "end_token": -1, "category": "null", "span": "None", # extra }, } # handling normal samples _lowerCamelCase : List[str] = ['''start_token''', '''end_token'''] answer.update({k: answer[k][0] if len(answer[k] ) > 0 else answer[k] for k in cols} ) # e.g. [10] == 10 _lowerCamelCase : Optional[int] = example['''document''']['''tokens'''] _lowerCamelCase : Dict = answer['''start_token'''] _lowerCamelCase : Optional[Any] = answer['''end_token'''] _lowerCamelCase : Union[str, Any] = [] for i in range(len(doc['''token'''] ) ): if not doc["is_html"][i]: context.append(doc['''token'''][i] ) else: if answer["start_token"] > i: start_token -= 1 if answer["end_token"] > i: end_token -= 1 _lowerCamelCase : Tuple = ''' '''.join(context[start_token:end_token] ) # checking above code if assertion: _lowerCamelCase : Dict = doc['''is_html'''][answer['''start_token'''] : answer['''end_token''']] _lowerCamelCase : Tuple = doc['''token'''][answer['''start_token'''] : answer['''end_token''']] _lowerCamelCase : Any = ''' '''.join([old[i] for i in range(len(A_ ) ) if not is_html[i]] ) if new != old: print('''ID:''', example['''id'''] ) print('''New:''', A_, end='''\n''' ) print('''Old:''', A_, end='''\n\n''' ) return { "context": " ".join(A_ ), "answer": { "start_token": start_token, "end_token": end_token - 1, # this makes it inclusive "category": answer["category"], # either long or short "span": new, # extra }, } def snake_case_ ( A_ : int, A_ : List[Any], A_ : Dict=20_48, A_ : Dict=40_96, A_ : Optional[int]=True ): '''simple docstring''' _lowerCamelCase : Union[str, Any] = get_context_and_ans(A_, assertion=A_ ) _lowerCamelCase : Optional[Any] = out['''answer'''] # later, removing these samples if answer["start_token"] == -1: return { "example_id": example["id"], "input_ids": [[-1]], "labels": { "start_token": [-1], "end_token": [-1], "category": ["null"], }, } _lowerCamelCase : Any = tokenizer(example['''question''']['''text'''], out['''context'''] ).input_ids _lowerCamelCase : Union[str, Any] = input_ids.index(tokenizer.sep_token_id ) + 1 # return yes/no if answer["category"][0] in ["yes", "no"]: # category is list with one element _lowerCamelCase : List[str] = [] _lowerCamelCase : int = [] _lowerCamelCase : Tuple = input_ids[:q_len] _lowerCamelCase : str = range(A_, len(A_ ), max_length - doc_stride ) for i in doc_start_indices: _lowerCamelCase : List[str] = i + max_length - q_len _lowerCamelCase : Any = input_ids[i:end_index] inputs.append(q_indices + slice ) category.append(answer['''category'''][0] ) if slice[-1] == tokenizer.sep_token_id: break return { "example_id": example["id"], "input_ids": inputs, "labels": { "start_token": [-1_00] * len(A_ ), "end_token": [-1_00] * len(A_ ), "category": category, }, } _lowerCamelCase : Optional[int] = out['''context'''].split() _lowerCamelCase : List[str] = splitted_context[answer['''end_token''']] _lowerCamelCase : Dict = len( tokenizer( ''' '''.join(splitted_context[: answer['''start_token''']] ), add_special_tokens=A_, ).input_ids ) _lowerCamelCase : Optional[int] = len( tokenizer(''' '''.join(splitted_context[: answer['''end_token''']] ), add_special_tokens=A_ ).input_ids ) answer["start_token"] += q_len answer["end_token"] += q_len # fixing end token _lowerCamelCase : Any = len(tokenizer(A_, add_special_tokens=A_ ).input_ids ) if num_sub_tokens > 1: answer["end_token"] += num_sub_tokens - 1 _lowerCamelCase : List[Any] = input_ids[answer['''start_token'''] : answer['''end_token'''] + 1] # right & left are inclusive _lowerCamelCase : int = answer['''start_token'''] _lowerCamelCase : Tuple = answer['''end_token'''] if assertion: _lowerCamelCase : List[str] = tokenizer.decode(A_ ) if answer["span"] != new: print('''ISSUE IN TOKENIZATION''' ) print('''OLD:''', answer['''span'''] ) print('''NEW:''', A_, end='''\n\n''' ) if len(A_ ) <= max_length: return { "example_id": example["id"], "input_ids": [input_ids], "labels": { "start_token": [answer["start_token"]], "end_token": [answer["end_token"]], "category": answer["category"], }, } _lowerCamelCase : Tuple = input_ids[:q_len] _lowerCamelCase : Union[str, Any] = range(A_, len(A_ ), max_length - doc_stride ) _lowerCamelCase : str = [] _lowerCamelCase : Union[str, Any] = [] _lowerCamelCase : List[str] = [] _lowerCamelCase : List[Any] = [] # null, yes, no, long, short for i in doc_start_indices: _lowerCamelCase : List[Any] = i + max_length - q_len _lowerCamelCase : Union[str, Any] = input_ids[i:end_index] inputs.append(q_indices + slice ) assert len(inputs[-1] ) <= max_length, "Issue in truncating length" if start_token >= i and end_token <= end_index - 1: _lowerCamelCase : Optional[int] = start_token - i + q_len _lowerCamelCase : Union[str, Any] = end_token - i + q_len answers_category.append(answer['''category'''][0] ) # ["short"] -> "short" else: _lowerCamelCase : Tuple = -1_00 _lowerCamelCase : Optional[Any] = -1_00 answers_category.append('''null''' ) _lowerCamelCase : Tuple = inputs[-1][start_token : end_token + 1] answers_start_token.append(A_ ) answers_end_token.append(A_ ) if assertion: if new != old and new != [tokenizer.cls_token_id]: print('''ISSUE in strided for ID:''', example['''id'''] ) print('''New:''', tokenizer.decode(A_ ) ) print('''Old:''', tokenizer.decode(A_ ), end='''\n\n''' ) if slice[-1] == tokenizer.sep_token_id: break return { "example_id": example["id"], "input_ids": inputs, "labels": { "start_token": answers_start_token, "end_token": answers_end_token, "category": answers_category, }, } def snake_case_ ( A_ : Optional[int], A_ : int, A_ : Any=20_48, A_ : Union[str, Any]=40_96, A_ : Optional[Any]=False ): '''simple docstring''' _lowerCamelCase : Union[str, Any] = get_strided_contexts_and_ans( A_, A_, doc_stride=A_, max_length=A_, assertion=A_, ) return example def snake_case_ ( A_ : List[str], A_ : Union[str, Any] ): '''simple docstring''' with jsonlines.open(A_, '''a''' ) as writer: for example in tqdm(A_, total=len(A_ ), desc='''Saving samples ... ''' ): _lowerCamelCase : Optional[Any] = example['''labels'''] for ids, start, end, cat in zip( example['''input_ids'''], labels['''start_token'''], labels['''end_token'''], labels['''category'''], ): if start == -1 and end == -1: continue # leave waste samples with no answer if cat == "null" and np.random.rand() < 0.6: continue # removing 50 % samples writer.write( { '''input_ids''': ids, '''start_token''': start, '''end_token''': end, '''category''': CATEGORY_MAPPING[cat], } ) if __name__ == "__main__": from datasets import load_dataset from transformers import BigBirdTokenizer lowerCAmelCase__ = load_dataset('''natural_questions''') lowerCAmelCase__ = BigBirdTokenizer.from_pretrained('''google/bigbird-roberta-base''') lowerCAmelCase__ = data['''train''' if PROCESS_TRAIN == '''true''' else '''validation'''] lowerCAmelCase__ = { '''tokenizer''': tokenizer, '''doc_stride''': DOC_STRIDE, '''max_length''': MAX_LENGTH, '''assertion''': False, } lowerCAmelCase__ = data.map(prepare_inputs, fn_kwargs=fn_kwargs) lowerCAmelCase__ = data.remove_columns(['''annotations''', '''document''', '''id''', '''question''']) print(data) np.random.seed(SEED) lowerCAmelCase__ = '''nq-training.jsonl''' if PROCESS_TRAIN == '''true''' else '''nq-validation.jsonl''' save_to_disk(data, file_name=cache_file_name)
361
"""simple docstring""" import os import posixpath import uuid from dataclasses import dataclass from typing import TYPE_CHECKING, Iterable, List, Optional, Tuple, Union import numpy as np import pyarrow as pa import datasets from datasets.arrow_writer import ArrowWriter, ParquetWriter from datasets.config import MAX_SHARD_SIZE from datasets.filesystems import ( is_remote_filesystem, rename, ) from datasets.iterable_dataset import _BaseExamplesIterable from datasets.utils.py_utils import convert_file_size_to_int lowerCAmelCase__ = datasets.utils.logging.get_logger(__name__) if TYPE_CHECKING: import pyspark @dataclass class __snake_case ( datasets.BuilderConfig): snake_case__ : Optional[datasets.Features] = None def snake_case_ ( A_ : "pyspark.sql.DataFrame", A_ : List[int], ): '''simple docstring''' import pyspark def generate_fn(): _lowerCamelCase : int = df.select('''*''', pyspark.sql.functions.spark_partition_id().alias('''part_id''' ) ) for partition_id in partition_order: _lowerCamelCase : Any = df_with_partition_id.select('''*''' ).where(F'''part_id = {partition_id}''' ).drop('''part_id''' ) _lowerCamelCase : Optional[int] = partition_df.collect() _lowerCamelCase : List[str] = 0 for row in rows: yield F'''{partition_id}_{row_id}''', row.asDict() row_id += 1 return generate_fn class __snake_case ( _BaseExamplesIterable): def __init__( self : Tuple , __lowerCAmelCase : "pyspark.sql.DataFrame" , __lowerCAmelCase : Optional[int]=None , ): """simple docstring""" _lowerCamelCase : Dict = df _lowerCamelCase : Union[str, Any] = partition_order or range(self.df.rdd.getNumPartitions() ) _lowerCamelCase : Dict = _generate_iterable_examples(self.df , self.partition_order ) def __iter__( self : List[Any] ): """simple docstring""" yield from self.generate_examples_fn() def SCREAMING_SNAKE_CASE ( self : Tuple , __lowerCAmelCase : np.random.Generator ): """simple docstring""" _lowerCamelCase : Optional[Any] = list(range(self.df.rdd.getNumPartitions() ) ) generator.shuffle(__lowerCAmelCase ) return SparkExamplesIterable(self.df , partition_order=__lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] , __lowerCAmelCase : int , __lowerCAmelCase : int ): """simple docstring""" _lowerCamelCase : List[Any] = self.split_shard_indices_by_worker(__lowerCAmelCase , __lowerCAmelCase ) return SparkExamplesIterable(self.df , partition_order=__lowerCAmelCase ) @property def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): """simple docstring""" return len(self.partition_order ) class __snake_case ( datasets.DatasetBuilder): snake_case__ : List[Any] = SparkConfig def __init__( self : Union[str, Any] , __lowerCAmelCase : "pyspark.sql.DataFrame" , __lowerCAmelCase : str = None , __lowerCAmelCase : str = None , **__lowerCAmelCase : int , ): """simple docstring""" import pyspark _lowerCamelCase : Optional[int] = pyspark.sql.SparkSession.builder.getOrCreate() _lowerCamelCase : int = df _lowerCamelCase : Any = working_dir super().__init__( cache_dir=__lowerCAmelCase , config_name=str(self.df.semanticHash() ) , **__lowerCAmelCase , ) def SCREAMING_SNAKE_CASE ( self : List[Any] ): """simple docstring""" def create_cache_and_write_probe(__lowerCAmelCase : Optional[int] ): # makedirs with exist_ok will recursively create the directory. It will not throw an error if directories # already exist. os.makedirs(self._cache_dir , exist_ok=__lowerCAmelCase ) _lowerCamelCase : Optional[int] = os.path.join(self._cache_dir , '''fs_test''' + uuid.uuida().hex ) # Opening the file in append mode will create a new file unless it already exists, in which case it will not # change the file contents. open(__lowerCAmelCase , '''a''' ) return [probe_file] if self._spark.conf.get('''spark.master''' , '''''' ).startswith('''local''' ): return # If the cluster is multi-node, make sure that the user provided a cache_dir and that it is on an NFS # accessible to the driver. # TODO: Stream batches to the driver using ArrowCollectSerializer instead of throwing an error. if self._cache_dir: _lowerCamelCase : Optional[Any] = ( self._spark.sparkContext.parallelize(range(1 ) , 1 ).mapPartitions(__lowerCAmelCase ).collect() ) if os.path.isfile(probe[0] ): return raise ValueError( '''When using Dataset.from_spark on a multi-node cluster, the driver and all workers should be able to access cache_dir''' ) def SCREAMING_SNAKE_CASE ( self : Any ): """simple docstring""" return datasets.DatasetInfo(features=self.config.features ) def SCREAMING_SNAKE_CASE ( self : int , __lowerCAmelCase : datasets.download.download_manager.DownloadManager ): """simple docstring""" return [datasets.SplitGenerator(name=datasets.Split.TRAIN )] def SCREAMING_SNAKE_CASE ( self : Tuple , __lowerCAmelCase : Union[str, Any] ): """simple docstring""" import pyspark def get_arrow_batch_size(__lowerCAmelCase : Dict ): for batch in it: yield pa.RecordBatch.from_pydict({'''batch_bytes''': [batch.nbytes]} ) _lowerCamelCase : Any = self.df.count() _lowerCamelCase : Union[str, Any] = df_num_rows if df_num_rows <= 1_0_0 else 1_0_0 # Approximate the size of each row (in Arrow format) by averaging over a max-100-row sample. _lowerCamelCase : List[Any] = ( self.df.limit(__lowerCAmelCase ) .repartition(1 ) .mapInArrow(__lowerCAmelCase , '''batch_bytes: long''' ) .agg(pyspark.sql.functions.sum('''batch_bytes''' ).alias('''sample_bytes''' ) ) .collect()[0] .sample_bytes / sample_num_rows ) _lowerCamelCase : Dict = approx_bytes_per_row * df_num_rows if approx_total_size > max_shard_size: # Make sure there is at least one row per partition. _lowerCamelCase : List[str] = min(__lowerCAmelCase , int(approx_total_size / max_shard_size ) ) _lowerCamelCase : Optional[int] = self.df.repartition(__lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __lowerCAmelCase : str , __lowerCAmelCase : str , __lowerCAmelCase : int , ): """simple docstring""" import pyspark _lowerCamelCase : Optional[Any] = ParquetWriter if file_format == '''parquet''' else ArrowWriter _lowerCamelCase : List[Any] = os.path.join(self._working_dir , os.path.basename(__lowerCAmelCase ) ) if self._working_dir else fpath _lowerCamelCase : Dict = file_format == '''parquet''' # Define these so that we don't reference self in write_arrow, which will result in a pickling error due to # pickling the SparkContext. _lowerCamelCase : str = self.config.features _lowerCamelCase : Dict = self._writer_batch_size _lowerCamelCase : List[str] = self._fs.storage_options def write_arrow(__lowerCAmelCase : List[str] ): # Within the same SparkContext, no two task attempts will share the same attempt ID. _lowerCamelCase : List[str] = pyspark.TaskContext().taskAttemptId() _lowerCamelCase : Any = next(__lowerCAmelCase , __lowerCAmelCase ) if first_batch is None: # Some partitions might not receive any data. return pa.RecordBatch.from_arrays( [[task_id], [0], [0]] , names=['''task_id''', '''num_examples''', '''num_bytes'''] , ) _lowerCamelCase : List[Any] = 0 _lowerCamelCase : Optional[int] = writer_class( features=__lowerCAmelCase , path=working_fpath.replace('''SSSSS''' , f'''{shard_id:05d}''' ).replace('''TTTTT''' , f'''{task_id:05d}''' ) , writer_batch_size=__lowerCAmelCase , storage_options=__lowerCAmelCase , embed_local_files=__lowerCAmelCase , ) _lowerCamelCase : int = pa.Table.from_batches([first_batch] ) writer.write_table(__lowerCAmelCase ) for batch in it: if max_shard_size is not None and writer._num_bytes >= max_shard_size: _lowerCamelCase , _lowerCamelCase : Any = writer.finalize() writer.close() yield pa.RecordBatch.from_arrays( [[task_id], [num_examples], [num_bytes]] , names=['''task_id''', '''num_examples''', '''num_bytes'''] , ) shard_id += 1 _lowerCamelCase : Optional[int] = writer_class( features=writer._features , path=working_fpath.replace('''SSSSS''' , f'''{shard_id:05d}''' ).replace('''TTTTT''' , f'''{task_id:05d}''' ) , writer_batch_size=__lowerCAmelCase , storage_options=__lowerCAmelCase , embed_local_files=__lowerCAmelCase , ) _lowerCamelCase : Optional[int] = pa.Table.from_batches([batch] ) writer.write_table(__lowerCAmelCase ) if writer._num_bytes > 0: _lowerCamelCase , _lowerCamelCase : Optional[int] = writer.finalize() writer.close() yield pa.RecordBatch.from_arrays( [[task_id], [num_examples], [num_bytes]] , names=['''task_id''', '''num_examples''', '''num_bytes'''] , ) if working_fpath != fpath: for file in os.listdir(os.path.dirname(__lowerCAmelCase ) ): _lowerCamelCase : Optional[Any] = os.path.join(os.path.dirname(__lowerCAmelCase ) , os.path.basename(__lowerCAmelCase ) ) shutil.move(__lowerCAmelCase , __lowerCAmelCase ) _lowerCamelCase : List[Any] = ( self.df.mapInArrow(__lowerCAmelCase , '''task_id: long, num_examples: long, num_bytes: long''' ) .groupBy('''task_id''' ) .agg( pyspark.sql.functions.sum('''num_examples''' ).alias('''total_num_examples''' ) , pyspark.sql.functions.sum('''num_bytes''' ).alias('''total_num_bytes''' ) , pyspark.sql.functions.count('''num_bytes''' ).alias('''num_shards''' ) , pyspark.sql.functions.collect_list('''num_examples''' ).alias('''shard_lengths''' ) , ) .collect() ) for row in stats: yield row.task_id, (row.total_num_examples, row.total_num_bytes, row.num_shards, row.shard_lengths) def SCREAMING_SNAKE_CASE ( self : Tuple , __lowerCAmelCase : "datasets.SplitGenerator" , __lowerCAmelCase : str = "arrow" , __lowerCAmelCase : Optional[Union[str, int]] = None , __lowerCAmelCase : Optional[int] = None , **__lowerCAmelCase : Tuple , ): """simple docstring""" self._validate_cache_dir() _lowerCamelCase : str = convert_file_size_to_int(max_shard_size or MAX_SHARD_SIZE ) self._repartition_df_if_needed(__lowerCAmelCase ) _lowerCamelCase : str = not is_remote_filesystem(self._fs ) _lowerCamelCase : Tuple = os.path.join if is_local else posixpath.join _lowerCamelCase : int = '''-TTTTT-SSSSS-of-NNNNN''' _lowerCamelCase : Tuple = f'''{self.name}-{split_generator.name}{SUFFIX}.{file_format}''' _lowerCamelCase : List[Any] = path_join(self._output_dir , __lowerCAmelCase ) _lowerCamelCase : List[Any] = 0 _lowerCamelCase : Any = 0 _lowerCamelCase : str = 0 _lowerCamelCase : int = [] _lowerCamelCase : List[str] = [] for task_id, content in self._prepare_split_single(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): ( ( _lowerCamelCase ) , ( _lowerCamelCase ) , ( _lowerCamelCase ) , ( _lowerCamelCase ) , ) : str = content if num_bytes > 0: total_num_examples += num_examples total_num_bytes += num_bytes total_shards += num_shards task_id_and_num_shards.append((task_id, num_shards) ) all_shard_lengths.extend(__lowerCAmelCase ) _lowerCamelCase : int = total_num_examples _lowerCamelCase : str = total_num_bytes # should rename everything at the end logger.debug(f'''Renaming {total_shards} shards.''' ) if total_shards > 1: _lowerCamelCase : Optional[Any] = all_shard_lengths # Define fs outside of _rename_shard so that we don't reference self in the function, which will result in a # pickling error due to pickling the SparkContext. _lowerCamelCase : str = self._fs # use the -SSSSS-of-NNNNN pattern def _rename_shard( __lowerCAmelCase : int , __lowerCAmelCase : int , __lowerCAmelCase : int , ): rename( __lowerCAmelCase , fpath.replace('''SSSSS''' , f'''{shard_id:05d}''' ).replace('''TTTTT''' , f'''{task_id:05d}''' ) , fpath.replace('''TTTTT-SSSSS''' , f'''{global_shard_id:05d}''' ).replace('''NNNNN''' , f'''{total_shards:05d}''' ) , ) _lowerCamelCase : Union[str, Any] = [] _lowerCamelCase : Any = 0 for i in range(len(__lowerCAmelCase ) ): _lowerCamelCase , _lowerCamelCase : Dict = task_id_and_num_shards[i] for shard_id in range(__lowerCAmelCase ): args.append([task_id, shard_id, global_shard_id] ) global_shard_id += 1 self._spark.sparkContext.parallelize(__lowerCAmelCase , len(__lowerCAmelCase ) ).map(lambda __lowerCAmelCase : _rename_shard(*__lowerCAmelCase ) ).collect() else: # don't use any pattern _lowerCamelCase : Any = 0 _lowerCamelCase : List[str] = task_id_and_num_shards[0][0] self._rename( fpath.replace('''SSSSS''' , f'''{shard_id:05d}''' ).replace('''TTTTT''' , f'''{task_id:05d}''' ) , fpath.replace(__lowerCAmelCase , '''''' ) , ) def SCREAMING_SNAKE_CASE ( self : Any , __lowerCAmelCase : "datasets.SplitGenerator" , ): """simple docstring""" return SparkExamplesIterable(self.df )
175
0
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_pegasus import PegasusTokenizer else: __lowercase = None __lowercase = logging.get_logger(__name__) __lowercase = """▁""" __lowercase = {"""vocab_file""": """spiece.model""", """tokenizer_file""": """tokenizer.json"""} __lowercase = { """vocab_file""": {"""google/pegasus-xsum""": """https://huggingface.co/google/pegasus-xsum/resolve/main/spiece.model"""}, """tokenizer_file""": { """google/pegasus-xsum""": """https://huggingface.co/google/pegasus-xsum/resolve/main/tokenizer.json""" }, } __lowercase = { """google/pegasus-xsum""": 512, } class _A ( _a ): """simple docstring""" UpperCAmelCase : Optional[int] = VOCAB_FILES_NAMES UpperCAmelCase : int = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase : Optional[Any] = PegasusTokenizer UpperCAmelCase : str = ["""input_ids""", """attention_mask"""] def __init__( self : Dict , __UpperCAmelCase : Dict=None , __UpperCAmelCase : Optional[int]=None , __UpperCAmelCase : List[Any]="<pad>" , __UpperCAmelCase : Optional[int]="</s>" , __UpperCAmelCase : Optional[int]="<unk>" , __UpperCAmelCase : str="<mask_2>" , __UpperCAmelCase : List[str]="<mask_1>" , __UpperCAmelCase : str=None , __UpperCAmelCase : Any=103 , **__UpperCAmelCase : Union[str, Any] , ): a : List[Any] = offset if additional_special_tokens is not None: if not isinstance(__UpperCAmelCase , __UpperCAmelCase): raise TypeError( f'''additional_special_tokens should be of type {type(__UpperCAmelCase)}, but is''' f''' {type(__UpperCAmelCase)}''') a : Dict = ( ([mask_token_sent] + additional_special_tokens) if mask_token_sent not in additional_special_tokens and mask_token_sent is not None else additional_special_tokens ) # fill additional tokens with ..., <unk_token_102> in case not all additional tokens are already taken additional_special_tokens_extended += [ f'''<unk_{i}>''' for i in range(len(__UpperCAmelCase) , self.offset - 1) ] if len(set(__UpperCAmelCase)) != len(__UpperCAmelCase): raise ValueError( "Please make sure that the provided additional_special_tokens do not contain an incorrectly" f''' shifted list of <unk_x> tokens. Found {additional_special_tokens_extended}.''') a : int = additional_special_tokens_extended else: a : List[str] = [mask_token_sent] if mask_token_sent is not None else [] additional_special_tokens += [f'''<unk_{i}>''' for i in range(2 , self.offset)] super().__init__( __UpperCAmelCase , tokenizer_file=__UpperCAmelCase , pad_token=__UpperCAmelCase , eos_token=__UpperCAmelCase , unk_token=__UpperCAmelCase , mask_token=__UpperCAmelCase , mask_token_sent=__UpperCAmelCase , offset=__UpperCAmelCase , additional_special_tokens=__UpperCAmelCase , **__UpperCAmelCase , ) a : str = vocab_file a : str = False if not self.vocab_file else True def __snake_case ( self : Tuple , __UpperCAmelCase : int): a : int = set(self.all_special_ids) # call it once instead of inside list comp all_special_ids.remove(self.unk_token_id) # <unk> is only sometimes special if all_special_ids != set(range(len(self.additional_special_tokens) + 3)): raise ValueError( "There should be 3 special tokens: mask_token, pad_token, and eos_token +" f''' {len(self.additional_special_tokens)} additional_special_tokens, but got {all_special_ids}''') return [1 if x in all_special_ids else 0 for x in seq] def __snake_case ( self : Any , __UpperCAmelCase : List , __UpperCAmelCase : Optional[List] = None , __UpperCAmelCase : bool = False): if already_has_special_tokens: return self._special_token_mask(__UpperCAmelCase) elif token_ids_a is None: return self._special_token_mask(__UpperCAmelCase) + [1] else: return self._special_token_mask(token_ids_a + token_ids_a) + [1] def __snake_case ( self : Optional[int] , __UpperCAmelCase : Tuple , __UpperCAmelCase : Optional[int]=None): if token_ids_a is None: return token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return token_ids_a + token_ids_a + [self.eos_token_id] def __snake_case ( self : Optional[int] , __UpperCAmelCase : str , __UpperCAmelCase : Optional[str] = None): if not self.can_save_slow_tokenizer: raise ValueError( "Your fast tokenizer does not have the necessary information to save the vocabulary for a slow " "tokenizer.") if not os.path.isdir(__UpperCAmelCase): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''') return a : Dict = os.path.join( __UpperCAmelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]) if os.path.abspath(self.vocab_file) != os.path.abspath(__UpperCAmelCase): copyfile(self.vocab_file , __UpperCAmelCase) return (out_vocab_file,)
40
'''simple docstring''' import collections.abc from typing import Optional, Tuple, Union import torch import torch.utils.checkpoint from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...modeling_outputs import BaseModelOutputWithNoAttention, ImageClassifierOutputWithNoAttention from ...modeling_utils import PreTrainedModel from ...utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging from .configuration_poolformer import PoolFormerConfig lowercase_ = logging.get_logger(__name__) # General docstring lowercase_ = """PoolFormerConfig""" # Base docstring lowercase_ = """sail/poolformer_s12""" lowercase_ = [1, 512, 7, 7] # Image classification docstring lowercase_ = """sail/poolformer_s12""" lowercase_ = """tabby, tabby cat""" lowercase_ = [ """sail/poolformer_s12""", # See all PoolFormer models at https://huggingface.co/models?filter=poolformer ] def lowerCamelCase ( __lowerCamelCase : List[Any] , __lowerCamelCase : float = 0.0 , __lowerCamelCase : bool = False ) ->int: if drop_prob == 0.0 or not training: return input _SCREAMING_SNAKE_CASE = 1 - drop_prob _SCREAMING_SNAKE_CASE = (input.shape[0],) + (1,) * (input.ndim - 1) # work with diff dim tensors, not just 2D ConvNets _SCREAMING_SNAKE_CASE = keep_prob + torch.rand(__lowerCamelCase , dtype=input.dtype , device=input.device ) random_tensor.floor_() # binarize _SCREAMING_SNAKE_CASE = input.div(__lowerCamelCase ) * random_tensor return output class a_ ( nn.Module ): '''simple docstring''' def __init__( self , A = None ) -> None: super().__init__() _SCREAMING_SNAKE_CASE = drop_prob def snake_case_( self , A ) -> torch.Tensor: return drop_path(A , self.drop_prob , self.training ) def snake_case_( self ) -> str: return "p={}".format(self.drop_prob ) class a_ ( nn.Module ): '''simple docstring''' def __init__( self , A , A , A , A , A , A=None ) -> Union[str, Any]: super().__init__() _SCREAMING_SNAKE_CASE = patch_size if isinstance(A , collections.abc.Iterable ) else (patch_size, patch_size) _SCREAMING_SNAKE_CASE = stride if isinstance(A , collections.abc.Iterable ) else (stride, stride) _SCREAMING_SNAKE_CASE = padding if isinstance(A , collections.abc.Iterable ) else (padding, padding) _SCREAMING_SNAKE_CASE = nn.Convad(A , A , kernel_size=A , stride=A , padding=A ) _SCREAMING_SNAKE_CASE = norm_layer(A ) if norm_layer else nn.Identity() def snake_case_( self , A ) -> Optional[Any]: _SCREAMING_SNAKE_CASE = self.projection(A ) _SCREAMING_SNAKE_CASE = self.norm(A ) return embeddings class a_ ( nn.GroupNorm ): '''simple docstring''' def __init__( self , A , **A ) -> Union[str, Any]: super().__init__(1 , A , **A ) class a_ ( nn.Module ): '''simple docstring''' def __init__( self , A ) -> Union[str, Any]: super().__init__() _SCREAMING_SNAKE_CASE = nn.AvgPoolad(A , stride=1 , padding=pool_size // 2 , count_include_pad=A ) def snake_case_( self , A ) -> Union[str, Any]: return self.pool(A ) - hidden_states class a_ ( nn.Module ): '''simple docstring''' def __init__( self , A , A , A , A ) -> List[Any]: super().__init__() _SCREAMING_SNAKE_CASE = nn.Convad(A , A , 1 ) _SCREAMING_SNAKE_CASE = nn.Convad(A , A , 1 ) _SCREAMING_SNAKE_CASE = PoolFormerDropPath(A ) if isinstance(config.hidden_act , A ): _SCREAMING_SNAKE_CASE = ACTaFN[config.hidden_act] else: _SCREAMING_SNAKE_CASE = config.hidden_act def snake_case_( self , A ) -> Optional[int]: _SCREAMING_SNAKE_CASE = self.conva(A ) _SCREAMING_SNAKE_CASE = self.act_fn(A ) _SCREAMING_SNAKE_CASE = self.drop(A ) _SCREAMING_SNAKE_CASE = self.conva(A ) _SCREAMING_SNAKE_CASE = self.drop(A ) return hidden_states class a_ ( nn.Module ): '''simple docstring''' def __init__( self , A , A , A , A , A , A ) -> Union[str, Any]: super().__init__() _SCREAMING_SNAKE_CASE = PoolFormerPooling(A ) _SCREAMING_SNAKE_CASE = PoolFormerOutput(A , A , A , A ) _SCREAMING_SNAKE_CASE = PoolFormerGroupNorm(A ) _SCREAMING_SNAKE_CASE = PoolFormerGroupNorm(A ) # Useful for training neural nets _SCREAMING_SNAKE_CASE = PoolFormerDropPath(A ) if drop_path > 0.0 else nn.Identity() _SCREAMING_SNAKE_CASE = config.use_layer_scale if config.use_layer_scale: _SCREAMING_SNAKE_CASE = nn.Parameter( config.layer_scale_init_value * torch.ones((A) ) , requires_grad=A ) _SCREAMING_SNAKE_CASE = nn.Parameter( config.layer_scale_init_value * torch.ones((A) ) , requires_grad=A ) def snake_case_( self , A ) -> Optional[Any]: if self.use_layer_scale: _SCREAMING_SNAKE_CASE = self.pooling(self.before_norm(A ) ) _SCREAMING_SNAKE_CASE = self.layer_scale_a.unsqueeze(-1 ).unsqueeze(-1 ) * pooling_output # First residual connection _SCREAMING_SNAKE_CASE = hidden_states + self.drop_path(A ) _SCREAMING_SNAKE_CASE = () _SCREAMING_SNAKE_CASE = self.output(self.after_norm(A ) ) _SCREAMING_SNAKE_CASE = self.layer_scale_a.unsqueeze(-1 ).unsqueeze(-1 ) * layer_output # Second residual connection _SCREAMING_SNAKE_CASE = hidden_states + self.drop_path(A ) _SCREAMING_SNAKE_CASE = (output,) + outputs return outputs else: _SCREAMING_SNAKE_CASE = self.drop_path(self.pooling(self.before_norm(A ) ) ) # First residual connection _SCREAMING_SNAKE_CASE = pooling_output + hidden_states _SCREAMING_SNAKE_CASE = () # Second residual connection inside the PoolFormerOutput block _SCREAMING_SNAKE_CASE = self.drop_path(self.output(self.after_norm(A ) ) ) _SCREAMING_SNAKE_CASE = hidden_states + layer_output _SCREAMING_SNAKE_CASE = (output,) + outputs return outputs class a_ ( nn.Module ): '''simple docstring''' def __init__( self , A ) -> Any: super().__init__() _SCREAMING_SNAKE_CASE = config # stochastic depth decay rule _SCREAMING_SNAKE_CASE = [x.item() for x in torch.linspace(0 , config.drop_path_rate , sum(config.depths ) )] # patch embeddings _SCREAMING_SNAKE_CASE = [] for i in range(config.num_encoder_blocks ): embeddings.append( PoolFormerEmbeddings( patch_size=config.patch_sizes[i] , stride=config.strides[i] , padding=config.padding[i] , num_channels=config.num_channels if i == 0 else config.hidden_sizes[i - 1] , hidden_size=config.hidden_sizes[i] , ) ) _SCREAMING_SNAKE_CASE = nn.ModuleList(A ) # Transformer blocks _SCREAMING_SNAKE_CASE = [] _SCREAMING_SNAKE_CASE = 0 for i in range(config.num_encoder_blocks ): # each block consists of layers _SCREAMING_SNAKE_CASE = [] if i != 0: cur += config.depths[i - 1] for j in range(config.depths[i] ): layers.append( PoolFormerLayer( A , num_channels=config.hidden_sizes[i] , pool_size=config.pool_size , hidden_size=config.hidden_sizes[i] , intermediate_size=int(config.hidden_sizes[i] * config.mlp_ratio ) , drop_path=dpr[cur + j] , ) ) blocks.append(nn.ModuleList(A ) ) _SCREAMING_SNAKE_CASE = nn.ModuleList(A ) def snake_case_( self , A , A=False , A=True ) -> List[Any]: _SCREAMING_SNAKE_CASE = () if output_hidden_states else None _SCREAMING_SNAKE_CASE = pixel_values for idx, layers in enumerate(zip(self.patch_embeddings , self.block ) ): _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = layers # Get patch embeddings from hidden_states _SCREAMING_SNAKE_CASE = embedding_layer(A ) # Send the embeddings through the blocks for _, blk in enumerate(A ): _SCREAMING_SNAKE_CASE = blk(A ) _SCREAMING_SNAKE_CASE = layer_outputs[0] if output_hidden_states: _SCREAMING_SNAKE_CASE = all_hidden_states + (hidden_states,) if not return_dict: return tuple(v for v in [hidden_states, all_hidden_states] if v is not None ) return BaseModelOutputWithNoAttention(last_hidden_state=A , hidden_states=A ) class a_ ( snake_case_ ): '''simple docstring''' UpperCamelCase = PoolFormerConfig UpperCamelCase = '''poolformer''' UpperCamelCase = '''pixel_values''' UpperCamelCase = True def snake_case_( self , A ) -> int: if isinstance(A , (nn.Linear, nn.Convad) ): module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() elif isinstance(A , nn.LayerNorm ): module.bias.data.zero_() module.weight.data.fill_(1.0 ) def snake_case_( self , A , A=False ) -> Dict: if isinstance(A , A ): _SCREAMING_SNAKE_CASE = value lowercase_ = R""" This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`PoolFormerConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ lowercase_ = R""" Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`PoolFormerImageProcessor.__call__`] for details. """ @add_start_docstrings( '''The bare PoolFormer Model transformer outputting raw hidden-states without any specific head on top.''' , snake_case_ , ) class a_ ( snake_case_ ): '''simple docstring''' def __init__( self , A ) -> int: super().__init__(A ) _SCREAMING_SNAKE_CASE = config _SCREAMING_SNAKE_CASE = PoolFormerEncoder(A ) # Initialize weights and apply final processing self.post_init() def snake_case_( self ) -> Any: return self.embeddings.patch_embeddings @add_start_docstrings_to_model_forward(A ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=A , config_class=_CONFIG_FOR_DOC , modality="""vision""" , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def snake_case_( self , A = None , A = None , A = None , ) -> Union[Tuple, BaseModelOutputWithNoAttention]: _SCREAMING_SNAKE_CASE = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) _SCREAMING_SNAKE_CASE = return_dict if return_dict is not None else self.config.use_return_dict if pixel_values is None: raise ValueError("""You have to specify pixel_values""" ) _SCREAMING_SNAKE_CASE = self.encoder( A , output_hidden_states=A , return_dict=A , ) _SCREAMING_SNAKE_CASE = encoder_outputs[0] if not return_dict: return (sequence_output, None) + encoder_outputs[1:] return BaseModelOutputWithNoAttention( last_hidden_state=A , hidden_states=encoder_outputs.hidden_states , ) class a_ ( nn.Module ): '''simple docstring''' def __init__( self , A ) -> Dict: super().__init__() _SCREAMING_SNAKE_CASE = nn.Linear(config.hidden_size , config.hidden_size ) def snake_case_( self , A ) -> str: _SCREAMING_SNAKE_CASE = self.dense(A ) return output @add_start_docstrings( ''' PoolFormer Model transformer with an image classification head on top ''' , snake_case_ , ) class a_ ( snake_case_ ): '''simple docstring''' def __init__( self , A ) -> Optional[Any]: super().__init__(A ) _SCREAMING_SNAKE_CASE = config.num_labels _SCREAMING_SNAKE_CASE = PoolFormerModel(A ) # Final norm _SCREAMING_SNAKE_CASE = PoolFormerGroupNorm(config.hidden_sizes[-1] ) # Classifier head _SCREAMING_SNAKE_CASE = ( nn.Linear(config.hidden_sizes[-1] , config.num_labels ) if config.num_labels > 0 else nn.Identity() ) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(A ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=A , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def snake_case_( self , A = None , A = None , A = None , A = None , ) -> Union[Tuple, ImageClassifierOutputWithNoAttention]: _SCREAMING_SNAKE_CASE = return_dict if return_dict is not None else self.config.use_return_dict _SCREAMING_SNAKE_CASE = self.poolformer( A , output_hidden_states=A , return_dict=A , ) _SCREAMING_SNAKE_CASE = outputs[0] _SCREAMING_SNAKE_CASE = self.classifier(self.norm(A ).mean([-2, -1] ) ) _SCREAMING_SNAKE_CASE = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: _SCREAMING_SNAKE_CASE = """regression""" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): _SCREAMING_SNAKE_CASE = """single_label_classification""" else: _SCREAMING_SNAKE_CASE = """multi_label_classification""" if self.config.problem_type == "regression": _SCREAMING_SNAKE_CASE = MSELoss() if self.num_labels == 1: _SCREAMING_SNAKE_CASE = loss_fct(logits.squeeze() , labels.squeeze() ) else: _SCREAMING_SNAKE_CASE = loss_fct(A , A ) elif self.config.problem_type == "single_label_classification": _SCREAMING_SNAKE_CASE = CrossEntropyLoss() _SCREAMING_SNAKE_CASE = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": _SCREAMING_SNAKE_CASE = BCEWithLogitsLoss() _SCREAMING_SNAKE_CASE = loss_fct(A , A ) if not return_dict: _SCREAMING_SNAKE_CASE = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return ImageClassifierOutputWithNoAttention(loss=A , logits=A , hidden_states=outputs.hidden_states )
58
0
"""simple docstring""" def _A ( _a : str ): """simple docstring""" A = [int(_a ) for i in ip_va_address.split(""".""" ) if i.isdigit()] return len(_a ) == 4 and all(0 <= int(_a ) <= 2_5_4 for octet in octets ) if __name__ == "__main__": UpperCAmelCase =input().strip() UpperCAmelCase ="valid" if is_ip_va_address_valid(ip) else "invalid" print(f"""{ip} is a {valid_or_invalid} IP v4 address.""")
363
"""simple docstring""" import warnings from typing import List import numpy as np from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding from ...utils import is_flax_available, is_tf_available, is_torch_available class lowerCamelCase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' _lowerCamelCase = ['''image_processor''', '''tokenizer'''] _lowerCamelCase = '''OwlViTImageProcessor''' _lowerCamelCase = ('''CLIPTokenizer''', '''CLIPTokenizerFast''') def __init__( self ,lowerCamelCase_=None ,lowerCamelCase_=None ,**lowerCamelCase_ ) -> Tuple: A = None if "feature_extractor" in kwargs: warnings.warn( """The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`""" """ instead.""" ,lowerCamelCase_ ,) A = kwargs.pop("""feature_extractor""" ) A = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("""You need to specify an `image_processor`.""" ) if tokenizer is None: raise ValueError("""You need to specify a `tokenizer`.""" ) super().__init__(lowerCamelCase_ ,lowerCamelCase_ ) def __call__( self ,lowerCamelCase_=None ,lowerCamelCase_=None ,lowerCamelCase_=None ,lowerCamelCase_="max_length" ,lowerCamelCase_="np" ,**lowerCamelCase_ ) -> Optional[Any]: if text is None and query_images is None and images is None: raise ValueError( """You have to specify at least one text or query image or image. All three cannot be none.""" ) if text is not None: if isinstance(lowerCamelCase_ ,lowerCamelCase_ ) or (isinstance(lowerCamelCase_ ,lowerCamelCase_ ) and not isinstance(text[0] ,lowerCamelCase_ )): A = [self.tokenizer(lowerCamelCase_ ,padding=lowerCamelCase_ ,return_tensors=lowerCamelCase_ ,**lowerCamelCase_ )] elif isinstance(lowerCamelCase_ ,lowerCamelCase_ ) and isinstance(text[0] ,lowerCamelCase_ ): A = [] # Maximum number of queries across batch A = max([len(lowerCamelCase_ ) for t in text] ) # Pad all batch samples to max number of text queries for t in text: if len(lowerCamelCase_ ) != max_num_queries: A = t + [""" """] * (max_num_queries - len(lowerCamelCase_ )) A = self.tokenizer(lowerCamelCase_ ,padding=lowerCamelCase_ ,return_tensors=lowerCamelCase_ ,**lowerCamelCase_ ) encodings.append(lowerCamelCase_ ) else: raise TypeError("""Input text should be a string, a list of strings or a nested list of strings""" ) if return_tensors == "np": A = np.concatenate([encoding["""input_ids"""] for encoding in encodings] ,axis=0 ) A = np.concatenate([encoding["""attention_mask"""] for encoding in encodings] ,axis=0 ) elif return_tensors == "jax" and is_flax_available(): import jax.numpy as jnp A = jnp.concatenate([encoding["""input_ids"""] for encoding in encodings] ,axis=0 ) A = jnp.concatenate([encoding["""attention_mask"""] for encoding in encodings] ,axis=0 ) elif return_tensors == "pt" and is_torch_available(): import torch A = torch.cat([encoding["""input_ids"""] for encoding in encodings] ,dim=0 ) A = torch.cat([encoding["""attention_mask"""] for encoding in encodings] ,dim=0 ) elif return_tensors == "tf" and is_tf_available(): import tensorflow as tf A = tf.stack([encoding["""input_ids"""] for encoding in encodings] ,axis=0 ) A = tf.stack([encoding["""attention_mask"""] for encoding in encodings] ,axis=0 ) else: raise ValueError("""Target return tensor type could not be returned""" ) A = BatchEncoding() A = input_ids A = attention_mask if query_images is not None: A = BatchEncoding() A = self.image_processor( lowerCamelCase_ ,return_tensors=lowerCamelCase_ ,**lowerCamelCase_ ).pixel_values A = query_pixel_values if images is not None: A = self.image_processor(lowerCamelCase_ ,return_tensors=lowerCamelCase_ ,**lowerCamelCase_ ) if text is not None and images is not None: A = image_features.pixel_values return encoding elif query_images is not None and images is not None: A = image_features.pixel_values return encoding elif text is not None or query_images is not None: return encoding else: return BatchEncoding(data=dict(**lowerCamelCase_ ) ,tensor_type=lowerCamelCase_ ) def UpperCamelCase__ ( self ,*lowerCamelCase_ ,**lowerCamelCase_ ) -> int: return self.image_processor.post_process(*lowerCamelCase_ ,**lowerCamelCase_ ) def UpperCamelCase__ ( self ,*lowerCamelCase_ ,**lowerCamelCase_ ) -> Optional[Any]: return self.image_processor.post_process_object_detection(*lowerCamelCase_ ,**lowerCamelCase_ ) def UpperCamelCase__ ( self ,*lowerCamelCase_ ,**lowerCamelCase_ ) -> Optional[Any]: return self.image_processor.post_process_image_guided_detection(*lowerCamelCase_ ,**lowerCamelCase_ ) def UpperCamelCase__ ( self ,*lowerCamelCase_ ,**lowerCamelCase_ ) -> List[str]: return self.tokenizer.batch_decode(*lowerCamelCase_ ,**lowerCamelCase_ ) def UpperCamelCase__ ( self ,*lowerCamelCase_ ,**lowerCamelCase_ ) -> List[str]: return self.tokenizer.decode(*lowerCamelCase_ ,**lowerCamelCase_ ) @property def UpperCamelCase__ ( self ) -> Union[str, Any]: warnings.warn( """`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.""" ,lowerCamelCase_ ,) return self.image_processor_class @property def UpperCamelCase__ ( self ) -> Union[str, Any]: warnings.warn( """`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.""" ,lowerCamelCase_ ,) return self.image_processor
77
0
"""simple docstring""" import os import string import sys _a = 1 << 8 _a = { 'tab': ord('\t'), 'newline': ord('\r'), 'esc': 27, 'up': 65 + ARROW_KEY_FLAG, 'down': 66 + ARROW_KEY_FLAG, 'right': 67 + ARROW_KEY_FLAG, 'left': 68 + ARROW_KEY_FLAG, 'mod_int': 91, 'undefined': sys.maxsize, 'interrupt': 3, 'insert': 50, 'delete': 51, 'pg_up': 53, 'pg_down': 54, } _a = KEYMAP['up'] _a = KEYMAP['left'] if sys.platform == "win32": _a = [] _a = { B'\xe0H': KEYMAP['up'] - ARROW_KEY_FLAG, B'\x00H': KEYMAP['up'] - ARROW_KEY_FLAG, B'\xe0P': KEYMAP['down'] - ARROW_KEY_FLAG, B'\x00P': KEYMAP['down'] - ARROW_KEY_FLAG, B'\xe0M': KEYMAP['right'] - ARROW_KEY_FLAG, B'\x00M': KEYMAP['right'] - ARROW_KEY_FLAG, B'\xe0K': KEYMAP['left'] - ARROW_KEY_FLAG, B'\x00K': KEYMAP['left'] - ARROW_KEY_FLAG, } for i in range(10): _a = ord(str(i)) def __a ( ): if os.name == "nt": import msvcrt UpperCAmelCase_ : Optional[Any] = "mbcs" # Flush the keyboard buffer while msvcrt.kbhit(): msvcrt.getch() if len(__lowerCamelCase ) == 0: # Read the keystroke UpperCAmelCase_ : Any = msvcrt.getch() # If it is a prefix char, get second part if ch in (b"\x00", b"\xe0"): UpperCAmelCase_ : List[str] = ch + msvcrt.getch() # Translate actual Win chars to bullet char types try: UpperCAmelCase_ : Optional[int] = chr(WIN_KEYMAP[cha] ) WIN_CH_BUFFER.append(chr(KEYMAP["mod_int"] ) ) WIN_CH_BUFFER.append(__lowerCamelCase ) if ord(__lowerCamelCase ) in ( KEYMAP["insert"] - 1 << 9, KEYMAP["delete"] - 1 << 9, KEYMAP["pg_up"] - 1 << 9, KEYMAP["pg_down"] - 1 << 9, ): WIN_CH_BUFFER.append(chr(126 ) ) UpperCAmelCase_ : Dict = chr(KEYMAP["esc"] ) except KeyError: UpperCAmelCase_ : List[Any] = cha[1] else: UpperCAmelCase_ : Dict = ch.decode(__lowerCamelCase ) else: UpperCAmelCase_ : Optional[Any] = WIN_CH_BUFFER.pop(0 ) elif os.name == "posix": import termios import tty UpperCAmelCase_ : Dict = sys.stdin.fileno() UpperCAmelCase_ : Union[str, Any] = termios.tcgetattr(__lowerCamelCase ) try: tty.setraw(__lowerCamelCase ) UpperCAmelCase_ : str = sys.stdin.read(1 ) finally: termios.tcsetattr(__lowerCamelCase, termios.TCSADRAIN, __lowerCamelCase ) return ch def __a ( ): UpperCAmelCase_ : Union[str, Any] = get_raw_chars() if ord(__lowerCamelCase ) in [KEYMAP["interrupt"], KEYMAP["newline"]]: return char elif ord(__lowerCamelCase ) == KEYMAP["esc"]: UpperCAmelCase_ : Tuple = get_raw_chars() if ord(__lowerCamelCase ) == KEYMAP["mod_int"]: UpperCAmelCase_ : Tuple = get_raw_chars() if ord(__lowerCamelCase ) >= KEYMAP["arrow_begin"] - ARROW_KEY_FLAG and ord(__lowerCamelCase ) <= KEYMAP["arrow_end"] - ARROW_KEY_FLAG: return chr(ord(__lowerCamelCase ) + ARROW_KEY_FLAG ) else: return KEYMAP["undefined"] else: return get_raw_chars() else: if char in string.printable: return char else: return KEYMAP["undefined"]
61
"""simple docstring""" import argparse import json import pickle from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import MaskFormerConfig, MaskFormerForInstanceSegmentation, MaskFormerImageProcessor, SwinConfig from transformers.utils import logging logging.set_verbosity_info() _a = logging.get_logger(__name__) def __a ( __lowerCamelCase ): UpperCAmelCase_ : Optional[Any] = SwinConfig.from_pretrained( "microsoft/swin-tiny-patch4-window7-224", out_features=["stage1", "stage2", "stage3", "stage4"] ) UpperCAmelCase_ : Dict = MaskFormerConfig(backbone_config=__lowerCamelCase ) UpperCAmelCase_ : int = "huggingface/label-files" if "ade20k-full" in model_name: # this should be ok UpperCAmelCase_ : Dict = 847 UpperCAmelCase_ : str = "maskformer-ade20k-full-id2label.json" elif "ade" in model_name: # this should be ok UpperCAmelCase_ : Tuple = 150 UpperCAmelCase_ : int = "ade20k-id2label.json" elif "coco-stuff" in model_name: # this should be ok UpperCAmelCase_ : str = 171 UpperCAmelCase_ : Optional[int] = "maskformer-coco-stuff-id2label.json" elif "coco" in model_name: # TODO UpperCAmelCase_ : int = 133 UpperCAmelCase_ : Tuple = "coco-panoptic-id2label.json" elif "cityscapes" in model_name: # this should be ok UpperCAmelCase_ : List[Any] = 19 UpperCAmelCase_ : Optional[int] = "cityscapes-id2label.json" elif "vistas" in model_name: # this should be ok UpperCAmelCase_ : Any = 65 UpperCAmelCase_ : Union[str, Any] = "mapillary-vistas-id2label.json" UpperCAmelCase_ : Any = json.load(open(hf_hub_download(__lowerCamelCase, __lowerCamelCase, repo_type="dataset" ), "r" ) ) UpperCAmelCase_ : int = {int(__lowerCamelCase ): v for k, v in idalabel.items()} return config def __a ( __lowerCamelCase ): UpperCAmelCase_ : Dict = [] # stem # fmt: off rename_keys.append(("backbone.patch_embed.proj.weight", "model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.weight") ) rename_keys.append(("backbone.patch_embed.proj.bias", "model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.bias") ) rename_keys.append(("backbone.patch_embed.norm.weight", "model.pixel_level_module.encoder.model.embeddings.norm.weight") ) rename_keys.append(("backbone.patch_embed.norm.bias", "model.pixel_level_module.encoder.model.embeddings.norm.bias") ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.norm1.weight""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.weight""") ) rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.norm1.bias""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.bias""") ) rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.attn.relative_position_bias_table""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table""") ) rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.attn.relative_position_index""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index""") ) rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.attn.proj.weight""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight""") ) rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.attn.proj.bias""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias""") ) rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.norm2.weight""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.weight""") ) rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.norm2.bias""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.bias""") ) rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.mlp.fc1.weight""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight""") ) rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.mlp.fc1.bias""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias""") ) rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.mlp.fc2.weight""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.weight""") ) rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.mlp.fc2.bias""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.bias""") ) if i < 3: rename_keys.append((f"""backbone.layers.{i}.downsample.reduction.weight""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.reduction.weight""") ) rename_keys.append((f"""backbone.layers.{i}.downsample.norm.weight""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.weight""") ) rename_keys.append((f"""backbone.layers.{i}.downsample.norm.bias""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.bias""") ) rename_keys.append((f"""backbone.norm{i}.weight""", f"""model.pixel_level_module.encoder.hidden_states_norms.{i}.weight""") ) rename_keys.append((f"""backbone.norm{i}.bias""", f"""model.pixel_level_module.encoder.hidden_states_norms.{i}.bias""") ) # FPN rename_keys.append(("sem_seg_head.layer_4.weight", "model.pixel_level_module.decoder.fpn.stem.0.weight") ) rename_keys.append(("sem_seg_head.layer_4.norm.weight", "model.pixel_level_module.decoder.fpn.stem.1.weight") ) rename_keys.append(("sem_seg_head.layer_4.norm.bias", "model.pixel_level_module.decoder.fpn.stem.1.bias") ) for source_index, target_index in zip(range(3, 0, -1 ), range(0, 3 ) ): rename_keys.append((f"""sem_seg_head.adapter_{source_index}.weight""", f"""model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.0.weight""") ) rename_keys.append((f"""sem_seg_head.adapter_{source_index}.norm.weight""", f"""model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.weight""") ) rename_keys.append((f"""sem_seg_head.adapter_{source_index}.norm.bias""", f"""model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.bias""") ) rename_keys.append((f"""sem_seg_head.layer_{source_index}.weight""", f"""model.pixel_level_module.decoder.fpn.layers.{target_index}.block.0.weight""") ) rename_keys.append((f"""sem_seg_head.layer_{source_index}.norm.weight""", f"""model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.weight""") ) rename_keys.append((f"""sem_seg_head.layer_{source_index}.norm.bias""", f"""model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.bias""") ) rename_keys.append(("sem_seg_head.mask_features.weight", "model.pixel_level_module.decoder.mask_projection.weight") ) rename_keys.append(("sem_seg_head.mask_features.bias", "model.pixel_level_module.decoder.mask_projection.bias") ) # Transformer decoder for idx in range(config.decoder_config.decoder_layers ): # self-attention out projection rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.weight""", f"""model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.weight""") ) rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.bias""", f"""model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.bias""") ) # cross-attention out projection rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.weight""", f"""model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.weight""") ) rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.bias""", f"""model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.bias""") ) # MLP 1 rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.weight""", f"""model.transformer_module.decoder.layers.{idx}.fc1.weight""") ) rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.bias""", f"""model.transformer_module.decoder.layers.{idx}.fc1.bias""") ) # MLP 2 rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.weight""", f"""model.transformer_module.decoder.layers.{idx}.fc2.weight""") ) rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.bias""", f"""model.transformer_module.decoder.layers.{idx}.fc2.bias""") ) # layernorm 1 (self-attention layernorm) rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.weight""", f"""model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.weight""") ) rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.bias""", f"""model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.bias""") ) # layernorm 2 (cross-attention layernorm) rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.weight""", f"""model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.weight""") ) rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.bias""", f"""model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.bias""") ) # layernorm 3 (final layernorm) rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.weight""", f"""model.transformer_module.decoder.layers.{idx}.final_layer_norm.weight""") ) rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.bias""", f"""model.transformer_module.decoder.layers.{idx}.final_layer_norm.bias""") ) rename_keys.append(("sem_seg_head.predictor.transformer.decoder.norm.weight", "model.transformer_module.decoder.layernorm.weight") ) rename_keys.append(("sem_seg_head.predictor.transformer.decoder.norm.bias", "model.transformer_module.decoder.layernorm.bias") ) # heads on top rename_keys.append(("sem_seg_head.predictor.query_embed.weight", "model.transformer_module.queries_embedder.weight") ) rename_keys.append(("sem_seg_head.predictor.input_proj.weight", "model.transformer_module.input_projection.weight") ) rename_keys.append(("sem_seg_head.predictor.input_proj.bias", "model.transformer_module.input_projection.bias") ) rename_keys.append(("sem_seg_head.predictor.class_embed.weight", "class_predictor.weight") ) rename_keys.append(("sem_seg_head.predictor.class_embed.bias", "class_predictor.bias") ) for i in range(3 ): rename_keys.append((f"""sem_seg_head.predictor.mask_embed.layers.{i}.weight""", f"""mask_embedder.{i}.0.weight""") ) rename_keys.append((f"""sem_seg_head.predictor.mask_embed.layers.{i}.bias""", f"""mask_embedder.{i}.0.bias""") ) # fmt: on return rename_keys def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ): UpperCAmelCase_ : Union[str, Any] = dct.pop(__lowerCamelCase ) UpperCAmelCase_ : str = val def __a ( __lowerCamelCase, __lowerCamelCase ): UpperCAmelCase_ : int = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )] for i in range(len(backbone_config.depths ) ): UpperCAmelCase_ : List[Any] = num_features[i] for j in range(backbone_config.depths[i] ): # fmt: off # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) UpperCAmelCase_ : Tuple = state_dict.pop(f"""backbone.layers.{i}.blocks.{j}.attn.qkv.weight""" ) UpperCAmelCase_ : Optional[int] = state_dict.pop(f"""backbone.layers.{i}.blocks.{j}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict UpperCAmelCase_ : Tuple = in_proj_weight[:dim, :] UpperCAmelCase_ : List[Any] = in_proj_bias[: dim] UpperCAmelCase_ : Any = in_proj_weight[ dim : dim * 2, : ] UpperCAmelCase_ : Optional[int] = in_proj_bias[ dim : dim * 2 ] UpperCAmelCase_ : Tuple = in_proj_weight[ -dim :, : ] UpperCAmelCase_ : Tuple = in_proj_bias[-dim :] # fmt: on def __a ( __lowerCamelCase, __lowerCamelCase ): # fmt: off UpperCAmelCase_ : Dict = config.decoder_config.hidden_size for idx in range(config.decoder_config.decoder_layers ): # read in weights + bias of self-attention input projection layer (in the original implementation, this is a single matrix + bias) UpperCAmelCase_ : int = state_dict.pop(f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_weight""" ) UpperCAmelCase_ : int = state_dict.pop(f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_bias""" ) # next, add query, keys and values (in that order) to the state dict UpperCAmelCase_ : Any = in_proj_weight[: hidden_size, :] UpperCAmelCase_ : int = in_proj_bias[:config.hidden_size] UpperCAmelCase_ : Any = in_proj_weight[hidden_size : hidden_size * 2, :] UpperCAmelCase_ : List[Any] = in_proj_bias[hidden_size : hidden_size * 2] UpperCAmelCase_ : Dict = in_proj_weight[-hidden_size :, :] UpperCAmelCase_ : List[Any] = in_proj_bias[-hidden_size :] # read in weights + bias of cross-attention input projection layer (in the original implementation, this is a single matrix + bias) UpperCAmelCase_ : str = state_dict.pop(f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_weight""" ) UpperCAmelCase_ : Dict = state_dict.pop(f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_bias""" ) # next, add query, keys and values (in that order) to the state dict UpperCAmelCase_ : str = in_proj_weight[: hidden_size, :] UpperCAmelCase_ : Tuple = in_proj_bias[:config.hidden_size] UpperCAmelCase_ : int = in_proj_weight[hidden_size : hidden_size * 2, :] UpperCAmelCase_ : List[str] = in_proj_bias[hidden_size : hidden_size * 2] UpperCAmelCase_ : List[Any] = in_proj_weight[-hidden_size :, :] UpperCAmelCase_ : Optional[Any] = in_proj_bias[-hidden_size :] # fmt: on def __a ( ): UpperCAmelCase_ : List[Any] = "http://images.cocodataset.org/val2017/000000039769.jpg" UpperCAmelCase_ : Tuple = Image.open(requests.get(__lowerCamelCase, stream=__lowerCamelCase ).raw ) return im @torch.no_grad() def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase = False ): UpperCAmelCase_ : List[str] = get_maskformer_config(__lowerCamelCase ) # load original state_dict with open(__lowerCamelCase, "rb" ) as f: UpperCAmelCase_ : Union[str, Any] = pickle.load(__lowerCamelCase ) UpperCAmelCase_ : str = data["model"] # for name, param in state_dict.items(): # print(name, param.shape) # rename keys UpperCAmelCase_ : int = create_rename_keys(__lowerCamelCase ) for src, dest in rename_keys: rename_key(__lowerCamelCase, __lowerCamelCase, __lowerCamelCase ) read_in_swin_q_k_v(__lowerCamelCase, config.backbone_config ) read_in_decoder_q_k_v(__lowerCamelCase, __lowerCamelCase ) # update to torch tensors for key, value in state_dict.items(): UpperCAmelCase_ : Optional[int] = torch.from_numpy(__lowerCamelCase ) # load 🤗 model UpperCAmelCase_ : Dict = MaskFormerForInstanceSegmentation(__lowerCamelCase ) model.eval() for name, param in model.named_parameters(): print(__lowerCamelCase, param.shape ) UpperCAmelCase_ , UpperCAmelCase_ : str = model.load_state_dict(__lowerCamelCase, strict=__lowerCamelCase ) assert missing_keys == [ "model.pixel_level_module.encoder.model.layernorm.weight", "model.pixel_level_module.encoder.model.layernorm.bias", ] assert len(__lowerCamelCase ) == 0, f"""Unexpected keys: {unexpected_keys}""" # verify results UpperCAmelCase_ : Optional[int] = prepare_img() if "vistas" in model_name: UpperCAmelCase_ : List[str] = 65 elif "cityscapes" in model_name: UpperCAmelCase_ : Tuple = 6_5535 else: UpperCAmelCase_ : Dict = 255 UpperCAmelCase_ : Optional[Any] = True if "ade" in model_name else False UpperCAmelCase_ : Dict = MaskFormerImageProcessor(ignore_index=__lowerCamelCase, reduce_labels=__lowerCamelCase ) UpperCAmelCase_ : Union[str, Any] = image_processor(__lowerCamelCase, return_tensors="pt" ) UpperCAmelCase_ : Dict = model(**__lowerCamelCase ) print("Logits:", outputs.class_queries_logits[0, :3, :3] ) if model_name == "maskformer-swin-tiny-ade": UpperCAmelCase_ : Any = torch.tensor( [[3.6353, -4.4770, -2.6065], [0.5081, -4.2394, -3.5343], [2.1909, -5.0353, -1.9323]] ) assert torch.allclose(outputs.class_queries_logits[0, :3, :3], __lowerCamelCase, atol=1E-4 ) print("Looks ok!" ) if pytorch_dump_folder_path is not None: print(f"""Saving model and image processor to {pytorch_dump_folder_path}""" ) Path(__lowerCamelCase ).mkdir(exist_ok=__lowerCamelCase ) model.save_pretrained(__lowerCamelCase ) image_processor.save_pretrained(__lowerCamelCase ) if push_to_hub: print("Pushing model and image processor to the hub..." ) model.push_to_hub(f"""nielsr/{model_name}""" ) image_processor.push_to_hub(f"""nielsr/{model_name}""" ) if __name__ == "__main__": _a = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='maskformer-swin-tiny-ade', type=str, help=('Name of the MaskFormer model you\'d like to convert',), ) parser.add_argument( '--checkpoint_path', default='/Users/nielsrogge/Documents/MaskFormer_checkpoints/MaskFormer-Swin-tiny-ADE20k/model.pkl', type=str, help='Path to the original state dict (.pth file).', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.' ) _a = parser.parse_args() convert_maskformer_checkpoint( args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
61
1
from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_tf_available(): import tensorflow as tf from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING from ..tf_utils import stable_softmax if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING lowerCamelCase = logging.get_logger(__name__) @add_end_docstrings(a__) class _a ( a__): def __init__( self : Optional[int] , *_SCREAMING_SNAKE_CASE : str , **_SCREAMING_SNAKE_CASE : Dict )-> int: super().__init__(*_lowerCamelCase , **_lowerCamelCase ) requires_backends(self , '''vision''' ) self.check_model_type( TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING if self.framework == '''tf''' else MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING ) def UpperCAmelCase__( self : Dict , _SCREAMING_SNAKE_CASE : str=None )-> str: lowerCAmelCase__ : Union[str, Any] = {} if top_k is not None: lowerCAmelCase__ : str = top_k return {}, {}, postprocess_params def __call__( self : Dict , _SCREAMING_SNAKE_CASE : List[str] , **_SCREAMING_SNAKE_CASE : Optional[int] )-> Optional[Any]: return super().__call__(_lowerCamelCase , **_lowerCamelCase ) def UpperCAmelCase__( self : Any , _SCREAMING_SNAKE_CASE : Any )-> Union[str, Any]: lowerCAmelCase__ : Union[str, Any] = load_image(_lowerCamelCase ) lowerCAmelCase__ : List[Any] = self.image_processor(images=_lowerCamelCase , return_tensors=self.framework ) return model_inputs def UpperCAmelCase__( self : Tuple , _SCREAMING_SNAKE_CASE : Any )-> Optional[Any]: lowerCAmelCase__ : int = self.model(**_lowerCamelCase ) return model_outputs def UpperCAmelCase__( self : Tuple , _SCREAMING_SNAKE_CASE : Optional[Any] , _SCREAMING_SNAKE_CASE : Tuple=5 )-> Optional[int]: if top_k > self.model.config.num_labels: lowerCAmelCase__ : Optional[int] = self.model.config.num_labels if self.framework == "pt": lowerCAmelCase__ : List[str] = model_outputs.logits.softmax(-1 )[0] lowerCAmelCase__ : Union[str, Any] = probs.topk(_lowerCamelCase ) elif self.framework == "tf": lowerCAmelCase__ : str = stable_softmax(model_outputs.logits , axis=-1 )[0] lowerCAmelCase__ : Tuple = tf.math.top_k(_lowerCamelCase , k=_lowerCamelCase ) lowerCAmelCase__ : Union[str, Any] = topk.values.numpy(), topk.indices.numpy() else: raise ValueError(F'Unsupported framework: {self.framework}' ) lowerCAmelCase__ : Dict = scores.tolist() lowerCAmelCase__ : List[Any] = ids.tolist() return [{"score": score, "label": self.model.config.idalabel[_id]} for score, _id in zip(_lowerCamelCase , _lowerCamelCase )]
369
# using dfs for finding eulerian path traversal def lowerCamelCase_ ( _a , _a , _a , _a=None ): """simple docstring""" lowerCAmelCase__ : Optional[Any] = (path or []) + [u] for v in graph[u]: if visited_edge[u][v] is False: lowerCAmelCase__ , lowerCAmelCase__ : List[Any] = True, True lowerCAmelCase__ : Any = dfs(_a , _a , _a , _a ) return path def lowerCamelCase_ ( _a , _a ): """simple docstring""" lowerCAmelCase__ : Union[str, Any] = 0 lowerCAmelCase__ : str = -1 for i in range(_a ): if i not in graph.keys(): continue if len(graph[i] ) % 2 == 1: odd_degree_nodes += 1 lowerCAmelCase__ : Tuple = i if odd_degree_nodes == 0: return 1, odd_node if odd_degree_nodes == 2: return 2, odd_node return 3, odd_node def lowerCamelCase_ ( _a , _a ): """simple docstring""" lowerCAmelCase__ : Optional[Any] = [[False for _ in range(max_node + 1 )] for _ in range(max_node + 1 )] lowerCAmelCase__ , lowerCAmelCase__ : Optional[int] = check_circuit_or_path(_a , _a ) if check == 3: print('''graph is not Eulerian''' ) print('''no path''' ) return lowerCAmelCase__ : Optional[int] = 1 if check == 2: lowerCAmelCase__ : Any = odd_node print('''graph has a Euler path''' ) if check == 1: print('''graph has a Euler cycle''' ) lowerCAmelCase__ : Optional[int] = dfs(_a , _a , _a ) print(_a ) def lowerCamelCase_ ( ): """simple docstring""" lowerCAmelCase__ : List[str] = {1: [2, 3, 4], 2: [1, 3], 3: [1, 2], 4: [1, 5], 5: [4]} lowerCAmelCase__ : Tuple = {1: [2, 3, 4, 5], 2: [1, 3], 3: [1, 2], 4: [1, 5], 5: [1, 4]} lowerCAmelCase__ : str = {1: [2, 3, 4], 2: [1, 3, 4], 3: [1, 2], 4: [1, 2, 5], 5: [4]} lowerCAmelCase__ : List[str] = {1: [2, 3], 2: [1, 3], 3: [1, 2]} lowerCAmelCase__ : List[Any] = { 1: [], 2: [] # all degree is zero } lowerCAmelCase__ : Optional[Any] = 10 check_euler(_a , _a ) check_euler(_a , _a ) check_euler(_a , _a ) check_euler(_a , _a ) check_euler(_a , _a ) if __name__ == "__main__": main()
211
0
"""simple docstring""" from __future__ import annotations import json import requests from bsa import BeautifulSoup from fake_useragent import UserAgent A__ : int = {'UserAgent': UserAgent().random} def _snake_case ( lowerCamelCase__ : int ) -> str: lowerCamelCase_ : Optional[Any] =script.contents[0] lowerCamelCase_ : List[str] =json.loads(data[data.find("{\"config\"" ) : -1] ) return info["entry_data"]["ProfilePage"][0]["graphql"]["user"] class lowercase__ : def __init__( self : str , snake_case__ : int ): lowerCamelCase_ : Tuple =F"""https://www.instagram.com/{username}/""" lowerCamelCase_ : Tuple =self.get_json() def UpperCAmelCase__ ( self : Tuple ): lowerCamelCase_ : Optional[Any] =requests.get(self.url , headers=snake_case__ ).text lowerCamelCase_ : Dict =BeautifulSoup(snake_case__ , "html.parser" ).find_all("script" ) try: return extract_user_profile(scripts[4] ) except (json.decoder.JSONDecodeError, KeyError): return extract_user_profile(scripts[3] ) def __repr__( self : int ): return F"""{self.__class__.__name__}(\'{self.username}\')""" def __str__( self : Dict ): return F"""{self.fullname} ({self.username}) is {self.biography}""" @property def UpperCAmelCase__ ( self : Optional[int] ): return self.user_data["username"] @property def UpperCAmelCase__ ( self : Union[str, Any] ): return self.user_data["full_name"] @property def UpperCAmelCase__ ( self : Any ): return self.user_data["biography"] @property def UpperCAmelCase__ ( self : Optional[int] ): return self.user_data["business_email"] @property def UpperCAmelCase__ ( self : Tuple ): return self.user_data["external_url"] @property def UpperCAmelCase__ ( self : str ): return self.user_data["edge_followed_by"]["count"] @property def UpperCAmelCase__ ( self : Optional[Any] ): return self.user_data["edge_follow"]["count"] @property def UpperCAmelCase__ ( self : Dict ): return self.user_data["edge_owner_to_timeline_media"]["count"] @property def UpperCAmelCase__ ( self : Union[str, Any] ): return self.user_data["profile_pic_url_hd"] @property def UpperCAmelCase__ ( self : List[str] ): return self.user_data["is_verified"] @property def UpperCAmelCase__ ( self : List[Any] ): return self.user_data["is_private"] def _snake_case ( lowerCamelCase__ : str = "github" ) -> Union[str, Any]: import os if os.environ.get("CI" ): return # test failing on GitHub Actions lowerCamelCase_ : int =InstagramUser(__UpperCamelCase ) assert instagram_user.user_data assert isinstance(instagram_user.user_data , __UpperCamelCase ) assert instagram_user.username == username if username != "github": return assert instagram_user.fullname == "GitHub" assert instagram_user.biography == "Built for developers." assert instagram_user.number_of_posts > 150 assert instagram_user.number_of_followers > 120_000 assert instagram_user.number_of_followings > 15 assert instagram_user.email == "[email protected]" assert instagram_user.website == "https://github.com/readme" assert instagram_user.profile_picture_url.startswith("https://instagram." ) assert instagram_user.is_verified is True assert instagram_user.is_private is False if __name__ == "__main__": import doctest doctest.testmod() A__ : Optional[int] = InstagramUser('github') print(instagram_user) print(f'{instagram_user.number_of_posts = }') print(f'{instagram_user.number_of_followers = }') print(f'{instagram_user.number_of_followings = }') print(f'{instagram_user.email = }') print(f'{instagram_user.website = }') print(f'{instagram_user.profile_picture_url = }') print(f'{instagram_user.is_verified = }') print(f'{instagram_user.is_private = }')
144
import copy import fnmatch import json import os import pickle as pkl import shutil import sys import tarfile import tempfile from collections import OrderedDict from contextlib import contextmanager from functools import partial from hashlib import shaaaa from io import BytesIO from pathlib import Path from urllib.parse import urlparse from zipfile import ZipFile, is_zipfile import cva import numpy as np import requests import wget from filelock import FileLock from PIL import Image from tqdm.auto import tqdm from yaml import Loader, dump, load try: import torch __a :int = True except ImportError: __a :Optional[Any] = False try: from torch.hub import _get_torch_home __a :Optional[Any] = _get_torch_home() except ImportError: __a :Tuple = os.path.expanduser( os.getenv('TORCH_HOME', os.path.join(os.getenv('XDG_CACHE_HOME', '~/.cache'), 'torch')) ) __a :Optional[Any] = os.path.join(torch_cache_home, 'transformers') __a :int = 'https://cdn.huggingface.co' __a :Any = 'https://s3.amazonaws.com/models.huggingface.co/bert' __a :Optional[Any] = '/'.join(str(Path(__file__).resolve()).split('/')[:-1]) __a :str = os.path.join(PATH, 'config.yaml') __a :str = os.path.join(PATH, 'attributes.txt') __a :Optional[Any] = os.path.join(PATH, 'objects.txt') __a :Optional[int] = os.getenv('PYTORCH_PRETRAINED_BERT_CACHE', default_cache_path) __a :Dict = os.getenv('PYTORCH_TRANSFORMERS_CACHE', PYTORCH_PRETRAINED_BERT_CACHE) __a :List[Any] = os.getenv('TRANSFORMERS_CACHE', PYTORCH_TRANSFORMERS_CACHE) __a :List[str] = 'pytorch_model.bin' __a :Tuple = 'config.yaml' def __snake_case ( __UpperCamelCase : Optional[Any]=OBJECTS ,__UpperCamelCase : List[str]=ATTRIBUTES ): """simple docstring""" A_ = [] with open(__UpperCamelCase ) as f: for object in f.readlines(): vg_classes.append(object.split("," )[0].lower().strip() ) A_ = [] with open(__UpperCamelCase ) as f: for object in f.readlines(): vg_attrs.append(object.split("," )[0].lower().strip() ) return vg_classes, vg_attrs def __snake_case ( __UpperCamelCase : List[Any] ): """simple docstring""" A_ = OrderedDict() with open(__UpperCamelCase ,"rb" ) as f: A_ = pkl.load(__UpperCamelCase )["model"] for k in copy.deepcopy(list(ckp.keys() ) ): A_ = ckp.pop(__UpperCamelCase ) if isinstance(__UpperCamelCase ,np.ndarray ): A_ = torch.tensor(__UpperCamelCase ) else: assert isinstance(__UpperCamelCase ,torch.tensor ), type(__UpperCamelCase ) A_ = v return r class _a : """simple docstring""" _lowerCamelCase : Union[str, Any] = {} def __init__( self : str , UpperCAmelCase : dict , UpperCAmelCase : str = "root" , UpperCAmelCase : List[str]=0 ): A_ = name A_ = level A_ = {} for k, v in dictionary.items(): if v is None: raise ValueError() A_ = copy.deepcopy(UpperCAmelCase ) A_ = copy.deepcopy(UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ): A_ = Config(UpperCAmelCase , name=UpperCAmelCase , level=level + 1 ) A_ = v setattr(self , UpperCAmelCase , UpperCAmelCase ) A_ = d def __repr__( self : Optional[Any] ): return str(list((self._pointer.keys()) ) ) def __setattr__( self : Any , UpperCAmelCase : Any , UpperCAmelCase : Any ): A_ = val A_ = val A_ = key.split("." ) A_ = len(UpperCAmelCase ) - 1 A_ = self._pointer if len(UpperCAmelCase ) > 1: for i, l in enumerate(UpperCAmelCase ): if hasattr(self , UpperCAmelCase ) and isinstance(getattr(self , UpperCAmelCase ) , UpperCAmelCase ): setattr(getattr(self , UpperCAmelCase ) , ".".join(levels[i:] ) , UpperCAmelCase ) if l == last_level: A_ = val else: A_ = pointer[l] def __A ( self : List[str] ): return self._pointer def __A ( self : int , UpperCAmelCase : Tuple , UpperCAmelCase : int ): with open(f'''{file_name}''' , "w" ) as stream: dump(UpperCAmelCase , UpperCAmelCase ) def __A ( self : List[Any] , UpperCAmelCase : str , UpperCAmelCase : Tuple ): with open(f'''{file_name}''' , "w" ) as stream: json.dump(UpperCAmelCase , UpperCAmelCase ) @staticmethod def __A ( UpperCAmelCase : Optional[int] ): with open(UpperCAmelCase ) as stream: A_ = load(UpperCAmelCase , Loader=UpperCAmelCase ) return data def __str__( self : str ): A_ = " " if self._name != "root": A_ = f'''{t * (self._level-1)}{self._name}:\n''' else: A_ = "" A_ = self._level for i, (k, v) in enumerate(self._pointer.items() ): if isinstance(UpperCAmelCase , UpperCAmelCase ): r += f'''{t * (self._level)}{v}\n''' self._level += 1 else: r += f'''{t * (self._level)}{k}: {v} ({type(UpperCAmelCase ).__name__})\n''' A_ = level return r[:-1] @classmethod def __A ( cls : Optional[Any] , UpperCAmelCase : str , **UpperCAmelCase : str ): A_ , A_ = cls.get_config_dict(UpperCAmelCase , **UpperCAmelCase ) return cls(UpperCAmelCase ) @classmethod def __A ( cls : int , UpperCAmelCase : str , **UpperCAmelCase : int ): A_ = kwargs.pop("cache_dir" , UpperCAmelCase ) A_ = kwargs.pop("force_download" , UpperCAmelCase ) A_ = kwargs.pop("resume_download" , UpperCAmelCase ) A_ = kwargs.pop("proxies" , UpperCAmelCase ) A_ = kwargs.pop("local_files_only" , UpperCAmelCase ) if os.path.isdir(UpperCAmelCase ): A_ = os.path.join(UpperCAmelCase , UpperCAmelCase ) elif os.path.isfile(UpperCAmelCase ) or is_remote_url(UpperCAmelCase ): A_ = pretrained_model_name_or_path else: A_ = hf_bucket_url(UpperCAmelCase , filename=UpperCAmelCase , use_cdn=UpperCAmelCase ) try: # Load from URL or cache if already cached A_ = cached_path( UpperCAmelCase , cache_dir=UpperCAmelCase , force_download=UpperCAmelCase , proxies=UpperCAmelCase , resume_download=UpperCAmelCase , local_files_only=UpperCAmelCase , ) # Load config dict if resolved_config_file is None: raise EnvironmentError A_ = Config.load_yaml(UpperCAmelCase ) except EnvironmentError: A_ = "Can't load config for" raise EnvironmentError(UpperCAmelCase ) if resolved_config_file == config_file: print("loading configuration file from path" ) else: print("loading configuration file cache" ) return Config.load_yaml(UpperCAmelCase ), kwargs def __snake_case ( __UpperCamelCase : Union[str, Any] ): """simple docstring""" A_ = torch.load("dump.pt" ,map_location=in_tensor.device ) A_ = in_tensor.numpy() A_ = out_tensor.numpy()[0] print(na.shape ,na[0, 0, :5] ) print(na.shape ,na[0, 0, :5] ) assert np.allclose(__UpperCamelCase ,__UpperCamelCase ,rtol=0.01 ,atol=0.1 ), ( f'''{sum([1 for x in np.isclose(__UpperCamelCase ,__UpperCamelCase ,rtol=0.01 ,atol=0.1 ).flatten() if x is False] )/len(na.flatten() )*100:.4f} %''' " element-wise mismatch" ) raise Exception("tensors are all good" ) # Hugging face functions below def __snake_case ( __UpperCamelCase : Optional[int] ): """simple docstring""" A_ = urlparse(__UpperCamelCase ) return parsed.scheme in ("http", "https") def __snake_case ( __UpperCamelCase : str ,__UpperCamelCase : str ,__UpperCamelCase : str=True ): """simple docstring""" A_ = CLOUDFRONT_DISTRIB_PREFIX if use_cdn else S3_BUCKET_PREFIX A_ = "/" not in model_id if legacy_format: return f'''{endpoint}/{model_id}-{filename}''' else: return f'''{endpoint}/{model_id}/{filename}''' def __snake_case ( __UpperCamelCase : List[str] ,__UpperCamelCase : Union[str, Any] ,__UpperCamelCase : List[str]=None ,__UpperCamelCase : int=0 ,__UpperCamelCase : int=None ,): """simple docstring""" A_ = "python/{}".format(sys.version.split()[0] ) if _torch_available: ua += "; torch/{}".format(torch.__version__ ) if isinstance(__UpperCamelCase ,__UpperCamelCase ): ua += "; " + "; ".join("{}/{}".format(__UpperCamelCase ,__UpperCamelCase ) for k, v in user_agent.items() ) elif isinstance(__UpperCamelCase ,__UpperCamelCase ): ua += "; " + user_agent A_ = {"user-agent": ua} if resume_size > 0: A_ = "bytes=%d-" % (resume_size,) A_ = requests.get(__UpperCamelCase ,stream=__UpperCamelCase ,proxies=__UpperCamelCase ,headers=__UpperCamelCase ) if response.status_code == 416: # Range not satisfiable return A_ = response.headers.get("Content-Length" ) A_ = resume_size + int(__UpperCamelCase ) if content_length is not None else None A_ = tqdm( unit="B" ,unit_scale=__UpperCamelCase ,total=__UpperCamelCase ,initial=__UpperCamelCase ,desc="Downloading" ,) for chunk in response.iter_content(chunk_size=1024 ): if chunk: # filter out keep-alive new chunks progress.update(len(__UpperCamelCase ) ) temp_file.write(__UpperCamelCase ) progress.close() def __snake_case ( __UpperCamelCase : str ,__UpperCamelCase : Any=None ,__UpperCamelCase : Dict=False ,__UpperCamelCase : Union[str, Any]=None ,__UpperCamelCase : Any=10 ,__UpperCamelCase : int=False ,__UpperCamelCase : Optional[Any]=None ,__UpperCamelCase : str=False ,): """simple docstring""" if cache_dir is None: A_ = TRANSFORMERS_CACHE if isinstance(__UpperCamelCase ,__UpperCamelCase ): A_ = str(__UpperCamelCase ) os.makedirs(__UpperCamelCase ,exist_ok=__UpperCamelCase ) A_ = None if not local_files_only: try: A_ = requests.head(__UpperCamelCase ,allow_redirects=__UpperCamelCase ,proxies=__UpperCamelCase ,timeout=__UpperCamelCase ) if response.status_code == 200: A_ = response.headers.get("ETag" ) except (EnvironmentError, requests.exceptions.Timeout): # etag is already None pass A_ = url_to_filename(__UpperCamelCase ,__UpperCamelCase ) # get cache path to put the file A_ = os.path.join(__UpperCamelCase ,__UpperCamelCase ) # etag is None = we don't have a connection, or url doesn't exist, or is otherwise inaccessible. # try to get the last downloaded one if etag is None: if os.path.exists(__UpperCamelCase ): return cache_path else: A_ = [ file for file in fnmatch.filter(os.listdir(__UpperCamelCase ) ,filename + ".*" ) if not file.endswith(".json" ) and not file.endswith(".lock" ) ] if len(__UpperCamelCase ) > 0: return os.path.join(__UpperCamelCase ,matching_files[-1] ) else: # If files cannot be found and local_files_only=True, # the models might've been found if local_files_only=False # Notify the user about that if local_files_only: raise ValueError( "Cannot find the requested files in the cached path and outgoing traffic has been" " disabled. To enable model look-ups and downloads online, set 'local_files_only'" " to False." ) return None # From now on, etag is not None. if os.path.exists(__UpperCamelCase ) and not force_download: return cache_path # Prevent parallel downloads of the same file with a lock. A_ = cache_path + ".lock" with FileLock(__UpperCamelCase ): # If the download just completed while the lock was activated. if os.path.exists(__UpperCamelCase ) and not force_download: # Even if returning early like here, the lock will be released. return cache_path if resume_download: A_ = cache_path + ".incomplete" @contextmanager def _resumable_file_manager(): with open(__UpperCamelCase ,"a+b" ) as f: yield f A_ = _resumable_file_manager if os.path.exists(__UpperCamelCase ): A_ = os.stat(__UpperCamelCase ).st_size else: A_ = 0 else: A_ = partial(tempfile.NamedTemporaryFile ,dir=__UpperCamelCase ,delete=__UpperCamelCase ) A_ = 0 # Download to temporary file, then copy to cache dir once finished. # Otherwise you get corrupt cache entries if the download gets interrupted. with temp_file_manager() as temp_file: print( "%s not found in cache or force_download set to True, downloading to %s" ,__UpperCamelCase ,temp_file.name ,) http_get( __UpperCamelCase ,__UpperCamelCase ,proxies=__UpperCamelCase ,resume_size=__UpperCamelCase ,user_agent=__UpperCamelCase ,) os.replace(temp_file.name ,__UpperCamelCase ) A_ = {"url": url, "etag": etag} A_ = cache_path + ".json" with open(__UpperCamelCase ,"w" ) as meta_file: json.dump(__UpperCamelCase ,__UpperCamelCase ) return cache_path def __snake_case ( __UpperCamelCase : List[Any] ,__UpperCamelCase : str=None ): """simple docstring""" A_ = url.encode("utf-8" ) A_ = shaaaa(__UpperCamelCase ) A_ = url_hash.hexdigest() if etag: A_ = etag.encode("utf-8" ) A_ = shaaaa(__UpperCamelCase ) filename += "." + etag_hash.hexdigest() if url.endswith(".h5" ): filename += ".h5" return filename def __snake_case ( __UpperCamelCase : Union[str, Any] ,__UpperCamelCase : Union[str, Any]=None ,__UpperCamelCase : List[Any]=False ,__UpperCamelCase : List[str]=None ,__UpperCamelCase : Any=False ,__UpperCamelCase : Optional[int]=None ,__UpperCamelCase : Optional[Any]=False ,__UpperCamelCase : Dict=False ,__UpperCamelCase : Optional[Any]=False ,): """simple docstring""" if cache_dir is None: A_ = TRANSFORMERS_CACHE if isinstance(__UpperCamelCase ,__UpperCamelCase ): A_ = str(__UpperCamelCase ) if isinstance(__UpperCamelCase ,__UpperCamelCase ): A_ = str(__UpperCamelCase ) if is_remote_url(__UpperCamelCase ): # URL, so get it from the cache (downloading if necessary) A_ = get_from_cache( __UpperCamelCase ,cache_dir=__UpperCamelCase ,force_download=__UpperCamelCase ,proxies=__UpperCamelCase ,resume_download=__UpperCamelCase ,user_agent=__UpperCamelCase ,local_files_only=__UpperCamelCase ,) elif os.path.exists(__UpperCamelCase ): # File, and it exists. A_ = url_or_filename elif urlparse(__UpperCamelCase ).scheme == "": # File, but it doesn't exist. raise EnvironmentError("file {} not found".format(__UpperCamelCase ) ) else: # Something unknown raise ValueError("unable to parse {} as a URL or as a local path".format(__UpperCamelCase ) ) if extract_compressed_file: if not is_zipfile(__UpperCamelCase ) and not tarfile.is_tarfile(__UpperCamelCase ): return output_path # Path where we extract compressed archives # We avoid '.' in dir name and add "-extracted" at the end: "./model.zip" => "./model-zip-extracted/" A_ , A_ = os.path.split(__UpperCamelCase ) A_ = output_file.replace("." ,"-" ) + "-extracted" A_ = os.path.join(__UpperCamelCase ,__UpperCamelCase ) if os.path.isdir(__UpperCamelCase ) and os.listdir(__UpperCamelCase ) and not force_extract: return output_path_extracted # Prevent parallel extractions A_ = output_path + ".lock" with FileLock(__UpperCamelCase ): shutil.rmtree(__UpperCamelCase ,ignore_errors=__UpperCamelCase ) os.makedirs(__UpperCamelCase ) if is_zipfile(__UpperCamelCase ): with ZipFile(__UpperCamelCase ,"r" ) as zip_file: zip_file.extractall(__UpperCamelCase ) zip_file.close() elif tarfile.is_tarfile(__UpperCamelCase ): A_ = tarfile.open(__UpperCamelCase ) tar_file.extractall(__UpperCamelCase ) tar_file.close() else: raise EnvironmentError("Archive format of {} could not be identified".format(__UpperCamelCase ) ) return output_path_extracted return output_path def __snake_case ( __UpperCamelCase : str ,__UpperCamelCase : Any="," ): """simple docstring""" assert isinstance(__UpperCamelCase ,__UpperCamelCase ) if os.path.isfile(__UpperCamelCase ): with open(__UpperCamelCase ) as f: A_ = eval(f.read() ) else: A_ = requests.get(__UpperCamelCase ) try: A_ = requests.json() except Exception: A_ = req.content.decode() assert data is not None, "could not connect" try: A_ = eval(__UpperCamelCase ) except Exception: A_ = data.split("\n" ) req.close() return data def __snake_case ( __UpperCamelCase : int ): """simple docstring""" A_ = requests.get(__UpperCamelCase ) A_ = np.array(Image.open(BytesIO(response.content ) ) ) return img def __snake_case ( __UpperCamelCase : Tuple ): """simple docstring""" A_ = url.split("/" )[-1] if fn not in os.listdir(os.getcwd() ): wget.download(__UpperCamelCase ) with open(__UpperCamelCase ,"rb" ) as stream: A_ = pkl.load(__UpperCamelCase ) A_ = weights.pop("model" ) A_ = {} for k, v in model.items(): A_ = torch.from_numpy(__UpperCamelCase ) if "running_var" in k: A_ = torch.tensor([0] ) A_ = k.replace("running_var" ,"num_batches_tracked" ) A_ = zero return new def __snake_case ( ): """simple docstring""" print(f'''{os.path.abspath(os.path.join(__UpperCamelCase ,os.pardir ) )}/demo.ipynb''' ) def __snake_case ( __UpperCamelCase : Optional[Any] ,__UpperCamelCase : Optional[int]="RGB" ): """simple docstring""" assert isinstance(__UpperCamelCase ,__UpperCamelCase ) if os.path.isfile(__UpperCamelCase ): A_ = cva.imread(__UpperCamelCase ) else: A_ = get_image_from_url(__UpperCamelCase ) assert img is not None, f'''could not connect to: {im}''' A_ = cva.cvtColor(__UpperCamelCase ,cva.COLOR_BGR2RGB ) if input_format == "RGB": A_ = img[:, :, ::-1] return img def __snake_case ( __UpperCamelCase : List[str] ,__UpperCamelCase : List[str]=1 ): """simple docstring""" return (images[i : i + batch] for i in range(0 ,len(__UpperCamelCase ) ,__UpperCamelCase ))
312
0
import torch from torch import nn from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class SCREAMING_SNAKE_CASE_ ( snake_case_ , snake_case_ ): @register_to_config def __init__( self : Optional[Any] , *, _A : int = 4 , _A : int = 768 , _A : int , _A : Tuple , ) -> Dict: """simple docstring""" super().__init__() snake_case_ : int = nn.Parameter(torch.zeros(_A ) ) # parameters for additional clip time embeddings snake_case_ : Tuple = nn.Linear(_A , _A ) snake_case_ : List[Any] = nn.Linear(_A , _A ) # parameters for encoder hidden states snake_case_ : Union[str, Any] = clip_extra_context_tokens snake_case_ : str = nn.Linear( _A , self.clip_extra_context_tokens * cross_attention_dim ) snake_case_ : Any = nn.Linear(_A , _A ) snake_case_ : Tuple = nn.LayerNorm(_A ) def UpperCAmelCase_ ( self : List[str] , *, _A : Tuple , _A : List[Any] , _A : str , _A : Optional[Any] ) -> List[Any]: """simple docstring""" if do_classifier_free_guidance: # Add the classifier free guidance embeddings to the image embeddings snake_case_ : Optional[int] = image_embeddings.shape[0] snake_case_ : Optional[Any] = self.learned_classifier_free_guidance_embeddings.unsqueeze(0 ) snake_case_ : Optional[Any] = classifier_free_guidance_embeddings.expand( _A , -1 ) snake_case_ : Any = torch.cat([classifier_free_guidance_embeddings, image_embeddings] , dim=0 ) # The image embeddings batch size and the text embeddings batch size are equal assert image_embeddings.shape[0] == prompt_embeds.shape[0] snake_case_ : str = prompt_embeds.shape[0] # "Specifically, we modify the architecture described in Nichol et al. (2021) by projecting and # adding CLIP embeddings to the existing timestep embedding, ... snake_case_ : str = self.embedding_proj(_A ) snake_case_ : Dict = self.clip_image_embeddings_project_to_time_embeddings(_A ) snake_case_ : Tuple = time_projected_image_embeddings + time_projected_prompt_embeds # ... and by projecting CLIP embeddings into four # extra tokens of context that are concatenated to the sequence of outputs from the GLIDE text encoder" snake_case_ : List[str] = self.clip_extra_context_tokens_proj(_A ) snake_case_ : Optional[Any] = clip_extra_context_tokens.reshape(_A , -1 , self.clip_extra_context_tokens ) snake_case_ : int = clip_extra_context_tokens.permute(0 , 2 , 1 ) snake_case_ : Optional[int] = self.encoder_hidden_states_proj(_A ) snake_case_ : Any = self.text_encoder_hidden_states_norm(_A ) snake_case_ : Dict = torch.cat([clip_extra_context_tokens, text_encoder_hidden_states] , dim=1 ) return text_encoder_hidden_states, additive_clip_time_embeddings
88
import json import multiprocessing import os import re from collections import defaultdict import torch from accelerate import Accelerator from accelerate.utils import set_seed from arguments import HumanEvalArguments from datasets import load_dataset, load_metric from torch.utils.data import IterableDataset from torch.utils.data.dataloader import DataLoader from tqdm import tqdm import transformers from transformers import AutoModelForCausalLM, AutoTokenizer, HfArgumentParser, StoppingCriteria, StoppingCriteriaList _SCREAMING_SNAKE_CASE = ["""\nclass""", """\ndef""", """\n#""", """\n@""", """\nprint""", """\nif"""] class SCREAMING_SNAKE_CASE_ ( snake_case_ ): def __init__( self : Tuple , _A : Any , _A : str , _A : int=None , _A : str=1 ) -> List[str]: """simple docstring""" snake_case_ : Union[str, Any] = tokenizer snake_case_ : Optional[int] = dataset snake_case_ : List[str] = len(_A ) if n_tasks is None else n_tasks snake_case_ : List[Any] = n_copies def __iter__( self : Any ) -> List[str]: """simple docstring""" snake_case_ : List[str] = [] for task in range(self.n_tasks ): # without strip, the model generate commented codes ... prompts.append(self.tokenizer.eos_token + self.dataset[task]['prompt'].strip() ) snake_case_ : Optional[int] = self.tokenizer(_A , padding=_A , return_tensors='pt' ) for task in range(self.n_tasks ): for _ in range(self.n_copies ): yield { "ids": outputs.input_ids[task], "task_id": task, "input_len": outputs.attention_mask[task].sum(), } class SCREAMING_SNAKE_CASE_ ( snake_case_ ): def __init__( self : List[Any] , _A : Optional[int] , _A : str , _A : Dict ) -> Any: """simple docstring""" snake_case_ : List[str] = start_length snake_case_ : int = eof_strings snake_case_ : Dict = tokenizer def __call__( self : Any , _A : Union[str, Any] , _A : Dict , **_A : List[Any] ) -> List[str]: """simple docstring""" snake_case_ : Optional[int] = self.tokenizer.batch_decode(input_ids[:, self.start_length :] ) snake_case_ : Optional[int] = [] for decoded_generation in decoded_generations: done.append(any(stop_string in decoded_generation for stop_string in self.eof_strings ) ) return all(_A ) def SCREAMING_SNAKE_CASE__ ( __a ): snake_case_ : List[str] = re.split('(%s)' % '|'.join(__a ) , __a ) # last string should be "" return "".join(string_list[:-2] ) def SCREAMING_SNAKE_CASE__ ( __a , __a , __a , __a , __a , __a=20 , **__a ): snake_case_ : Tuple = defaultdict(__a ) # dict of list of generated tokens for step, batch in tqdm(enumerate(__a ) ): with torch.no_grad(): snake_case_ : Optional[Any] = batch['ids'].shape[-1] snake_case_ : List[str] = accelerator.unwrap_model(__a ).generate( input_ids=batch['ids'][:, : batch['input_len']] , num_return_sequences=__a , **__a ) # each task is generated batch_size times snake_case_ : List[str] = batch['task_id'].repeat(__a ) snake_case_ : Union[str, Any] = accelerator.pad_across_processes( __a , dim=1 , pad_index=tokenizer.pad_token_id ) snake_case_ ,snake_case_ : Union[str, Any] = accelerator.gather((generated_tokens, generated_tasks) ) snake_case_ : Optional[Any] = generated_tokens.cpu().numpy() snake_case_ : Dict = generated_tasks.cpu().numpy() for task, generated_tokens in zip(__a , __a ): gen_token_dict[task].append(__a ) snake_case_ : Tuple = [[] for _ in range(__a )] for task, generated_tokens in gen_token_dict.items(): for s in generated_tokens: snake_case_ : int = tokenizer.decode(__a , skip_special_tokens=__a , clean_up_tokenization_spaces=__a ) code_gens[task].append(remove_last_block(__a ) ) return code_gens def SCREAMING_SNAKE_CASE__ ( ): # Setup configuration snake_case_ : Optional[int] = HfArgumentParser(__a ) snake_case_ : Tuple = parser.parse_args() transformers.logging.set_verbosity_error() # enables code execution in code_eval metric snake_case_ : Optional[int] = args.HF_ALLOW_CODE_EVAL # make sure tokenizer plays nice with multiprocessing snake_case_ : int = 'false' if args.num_workers is None: snake_case_ : Any = multiprocessing.cpu_count() # Use dataset load to feed to accelerate snake_case_ : List[Any] = Accelerator() set_seed(args.seed , device_specific=__a ) # Load model and tokenizer snake_case_ : Any = AutoTokenizer.from_pretrained(args.model_ckpt ) snake_case_ : int = tokenizer.eos_token snake_case_ : List[str] = AutoModelForCausalLM.from_pretrained(args.model_ckpt ) # Generation settings snake_case_ : List[Any] = { 'do_sample': args.do_sample, 'temperature': args.temperature, 'max_new_tokens': args.max_new_tokens, 'top_p': args.top_p, 'top_k': args.top_k, 'stopping_criteria': StoppingCriteriaList([EndOfFunctionCriteria(0 , __a , __a )] ), } # Load evaluation dataset and metric snake_case_ : Dict = load_dataset('openai_humaneval' ) snake_case_ : Optional[Any] = load_metric('code_eval' ) snake_case_ : Union[str, Any] = args.num_tasks if args.num_tasks is not None else len(human_eval['test'] ) snake_case_ : Optional[int] = args.n_samples // args.batch_size snake_case_ : Dict = TokenizedDataset(__a , human_eval['test'] , n_copies=__a , n_tasks=__a ) # do not confuse args.batch_size, which is actually the num_return_sequences snake_case_ : Optional[Any] = DataLoader(__a , batch_size=1 ) # Run a quick test to see if code evaluation is enabled try: snake_case_ : Union[str, Any] = code_eval_metric.compute(references=[''] , predictions=[['']] ) except ValueError as exception: print( 'Code evaluation not enabled. Read the warning below carefully and then use `--HF_ALLOW_CODE_EVAL="1"`' ' flag to enable code evaluation.' ) raise exception snake_case_ ,snake_case_ : Union[str, Any] = accelerator.prepare(__a , __a ) snake_case_ : str = complete_code( __a , __a , __a , __a , n_tasks=__a , batch_size=args.batch_size , **__a , ) if accelerator.is_main_process: snake_case_ : Tuple = [] for task in tqdm(range(__a ) ): snake_case_ : Union[str, Any] = human_eval['test'][task]['test'] snake_case_ : Union[str, Any] = f"""check({human_eval['test'][task]['entry_point']})""" references.append('\n' + test_func + '\n' + entry_point ) # Evaluate completions with "code_eval" metric snake_case_ ,snake_case_ : int = code_eval_metric.compute( references=__a , predictions=__a , num_workers=args.num_workers ) print(f"""Results: {pass_at_k}""" ) # Save results to json file with open(args.output_file , 'w' ) as fp: json.dump(__a , __a ) # For some reason the folliwng seems to be necessary sometimes for code_eval to work nice with multiprocessing # https://stackoverflow.com/questions/60804599/python-multiprocessing-keeps-spawning-the-whole-script if __name__ == "__main__": main()
88
1
"""simple docstring""" import argparse from collections import defaultdict def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ): UpperCAmelCase_ : int = f"""{file}_{class_name}_{test_name}""" done_test[_id] += 1 with open(__lowerCamelCase, "r" ) as f: UpperCAmelCase_ : List[Any] = f.readlines() UpperCAmelCase_ : int = f"""class {class_name}(""" UpperCAmelCase_ : Optional[Any] = f"""{4 * " "}def {test_name}(""" UpperCAmelCase_ : Optional[Any] = f"""{8 * " "}{correct_line.split()[0]}""" UpperCAmelCase_ : Tuple = f"""{16 * " "}{correct_line.split()[0]}""" UpperCAmelCase_ : int = False UpperCAmelCase_ : Union[str, Any] = False UpperCAmelCase_ : str = False UpperCAmelCase_ : Optional[Any] = False UpperCAmelCase_ : List[str] = 0 UpperCAmelCase_ : Optional[int] = 0 UpperCAmelCase_ : int = [] for line in lines: if line.startswith(__lowerCamelCase ): UpperCAmelCase_ : Tuple = True elif in_class and line.startswith(__lowerCamelCase ): UpperCAmelCase_ : Optional[int] = True elif in_class and in_func and (line.startswith(__lowerCamelCase ) or line.startswith(__lowerCamelCase )): UpperCAmelCase_ : Any = len(line.split(correct_line.split()[0] )[0] ) count += 1 if count == done_test[_id]: UpperCAmelCase_ : Union[str, Any] = True if in_class and in_func and in_line: if ")" not in line: continue else: UpperCAmelCase_ : Any = True if in_class and in_func and in_line and insert_line: new_lines.append(f"""{spaces * " "}{correct_line}""" ) UpperCAmelCase_ : int = False else: new_lines.append(__lowerCamelCase ) with open(__lowerCamelCase, "w" ) as f: for line in new_lines: f.write(__lowerCamelCase ) def __a ( __lowerCamelCase, __lowerCamelCase=None ): if fail is not None: with open(__lowerCamelCase, "r" ) as f: UpperCAmelCase_ : Tuple = {l.strip() for l in f.readlines()} else: UpperCAmelCase_ : str = None with open(__lowerCamelCase, "r" ) as f: UpperCAmelCase_ : Optional[int] = f.readlines() UpperCAmelCase_ : Any = defaultdict(__lowerCamelCase ) for line in correct_lines: UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Any = line.split(";" ) if test_failures is None or "::".join([file, class_name, test_name] ) in test_failures: overwrite_file(__lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ) if __name__ == "__main__": _a = argparse.ArgumentParser() parser.add_argument('--correct_filename', help='filename of tests with expected result') parser.add_argument('--fail_filename', help='filename of test failures', type=str, default=None) _a = parser.parse_args() main(args.correct_filename, args.fail_filename)
61
'''simple docstring''' import itertools import random import unittest import numpy as np from transformers import is_speech_available from transformers.testing_utils import require_torch, require_torchaudio from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_speech_available(): from transformers import SpeechaTextFeatureExtractor a_ : Union[str, Any] = random.Random() def a_ ( __snake_case : int , __snake_case : int=1.0 , __snake_case : Tuple=None , __snake_case : Union[str, Any]=None ) -> str: """simple docstring""" if rng is None: lowerCamelCase_ =global_rng lowerCamelCase_ =[] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values @require_torch @require_torchaudio class __UpperCamelCase ( unittest.TestCase ): def __init__( self, lowerCAmelCase, lowerCAmelCase=7, lowerCAmelCase=400, lowerCAmelCase=2_000, lowerCAmelCase=24, lowerCAmelCase=24, lowerCAmelCase=0.0, lowerCAmelCase=16_000, lowerCAmelCase=True, lowerCAmelCase=True, ): """simple docstring""" lowerCamelCase_ =parent lowerCamelCase_ =batch_size lowerCamelCase_ =min_seq_length lowerCamelCase_ =max_seq_length lowerCamelCase_ =(self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) lowerCamelCase_ =feature_size lowerCamelCase_ =num_mel_bins lowerCamelCase_ =padding_value lowerCamelCase_ =sampling_rate lowerCamelCase_ =return_attention_mask lowerCamelCase_ =do_normalize def lowercase__ ( self ): """simple docstring""" return { "feature_size": self.feature_size, "num_mel_bins": self.num_mel_bins, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def lowercase__ ( self, lowerCAmelCase=False, lowerCAmelCase=False ): """simple docstring""" def _flatten(lowerCAmelCase ): return list(itertools.chain(*lowerCAmelCase ) ) if equal_length: lowerCamelCase_ =[floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size lowerCamelCase_ =[ floats_list((x, self.feature_size) ) for x in range(self.min_seq_length, self.max_seq_length, self.seq_length_diff ) ] if numpify: lowerCamelCase_ =[np.asarray(lowerCAmelCase ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class __UpperCamelCase ( lowerCamelCase__ , unittest.TestCase ): lowercase : Any =SpeechaTextFeatureExtractor if is_speech_available() else None def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =SpeechaTextFeatureExtractionTester(self ) def lowercase__ ( self, lowerCAmelCase ): """simple docstring""" self.assertTrue(np.all(np.mean(lowerCAmelCase, axis=0 ) < 1e-3 ) ) self.assertTrue(np.all(np.abs(np.var(lowerCAmelCase, axis=0 ) - 1 ) < 1e-3 ) ) def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 lowerCamelCase_ =[floats_list((1, x) )[0] for x in range(800, 1_400, 200 )] lowerCamelCase_ =[np.asarray(lowerCAmelCase ) for speech_input in speech_inputs] # Test feature size lowerCamelCase_ =feature_extractor(lowerCAmelCase, padding=lowerCAmelCase, return_tensors='''np''' ).input_features self.assertTrue(input_features.ndim == 3 ) self.assertTrue(input_features.shape[-1] == feature_extractor.feature_size ) # Test not batched input lowerCamelCase_ =feature_extractor(speech_inputs[0], return_tensors='''np''' ).input_features lowerCamelCase_ =feature_extractor(np_speech_inputs[0], return_tensors='''np''' ).input_features self.assertTrue(np.allclose(lowerCAmelCase, lowerCAmelCase, atol=1e-3 ) ) # Test batched lowerCamelCase_ =feature_extractor(lowerCAmelCase, return_tensors='''np''' ).input_features lowerCamelCase_ =feature_extractor(lowerCAmelCase, return_tensors='''np''' ).input_features for enc_seq_a, enc_seq_a in zip(lowerCAmelCase, lowerCAmelCase ): self.assertTrue(np.allclose(lowerCAmelCase, lowerCAmelCase, atol=1e-3 ) ) # Test 2-D numpy arrays are batched. lowerCamelCase_ =[floats_list((1, x) )[0] for x in (800, 800, 800)] lowerCamelCase_ =np.asarray(lowerCAmelCase ) lowerCamelCase_ =feature_extractor(lowerCAmelCase, return_tensors='''np''' ).input_features lowerCamelCase_ =feature_extractor(lowerCAmelCase, return_tensors='''np''' ).input_features for enc_seq_a, enc_seq_a in zip(lowerCAmelCase, lowerCAmelCase ): self.assertTrue(np.allclose(lowerCAmelCase, lowerCAmelCase, atol=1e-3 ) ) def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) lowerCamelCase_ =[floats_list((1, x) )[0] for x in range(800, 1_400, 200 )] lowerCamelCase_ =['''longest''', '''max_length''', '''do_not_pad'''] lowerCamelCase_ =[None, 16, None] for max_length, padding in zip(lowerCAmelCase, lowerCAmelCase ): lowerCamelCase_ =feature_extractor( lowerCAmelCase, padding=lowerCAmelCase, max_length=lowerCAmelCase, return_attention_mask=lowerCAmelCase ) lowerCamelCase_ =inputs.input_features lowerCamelCase_ =inputs.attention_mask lowerCamelCase_ =[np.sum(lowerCAmelCase ) for x in attention_mask] self._check_zero_mean_unit_variance(input_features[0][: fbank_feat_lengths[0]] ) self._check_zero_mean_unit_variance(input_features[1][: fbank_feat_lengths[1]] ) self._check_zero_mean_unit_variance(input_features[2][: fbank_feat_lengths[2]] ) def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) lowerCamelCase_ =[floats_list((1, x) )[0] for x in range(800, 1_400, 200 )] lowerCamelCase_ =['''longest''', '''max_length''', '''do_not_pad'''] lowerCamelCase_ =[None, 16, None] for max_length, padding in zip(lowerCAmelCase, lowerCAmelCase ): lowerCamelCase_ =feature_extractor( lowerCAmelCase, max_length=lowerCAmelCase, padding=lowerCAmelCase, return_tensors='''np''', return_attention_mask=lowerCAmelCase ) lowerCamelCase_ =inputs.input_features lowerCamelCase_ =inputs.attention_mask lowerCamelCase_ =[np.sum(lowerCAmelCase ) for x in attention_mask] self._check_zero_mean_unit_variance(input_features[0][: fbank_feat_lengths[0]] ) self.assertTrue(input_features[0][fbank_feat_lengths[0] :].sum() < 1e-6 ) self._check_zero_mean_unit_variance(input_features[1][: fbank_feat_lengths[1]] ) self.assertTrue(input_features[0][fbank_feat_lengths[1] :].sum() < 1e-6 ) self._check_zero_mean_unit_variance(input_features[2][: fbank_feat_lengths[2]] ) def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) lowerCamelCase_ =[floats_list((1, x) )[0] for x in range(800, 1_400, 200 )] lowerCamelCase_ =feature_extractor( lowerCAmelCase, padding='''max_length''', max_length=4, truncation=lowerCAmelCase, return_tensors='''np''', return_attention_mask=lowerCAmelCase, ) lowerCamelCase_ =inputs.input_features lowerCamelCase_ =inputs.attention_mask lowerCamelCase_ =np.sum(attention_mask == 1, axis=1 ) self._check_zero_mean_unit_variance(input_features[0, : fbank_feat_lengths[0]] ) self._check_zero_mean_unit_variance(input_features[1] ) self._check_zero_mean_unit_variance(input_features[2] ) def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) lowerCamelCase_ =[floats_list((1, x) )[0] for x in range(800, 1_400, 200 )] lowerCamelCase_ =feature_extractor( lowerCAmelCase, padding='''longest''', max_length=4, truncation=lowerCAmelCase, return_tensors='''np''', return_attention_mask=lowerCAmelCase, ) lowerCamelCase_ =inputs.input_features lowerCamelCase_ =inputs.attention_mask lowerCamelCase_ =np.sum(attention_mask == 1, axis=1 ) self._check_zero_mean_unit_variance(input_features[0, : fbank_feat_lengths[0]] ) self._check_zero_mean_unit_variance(input_features[1, : fbank_feat_lengths[1]] ) self._check_zero_mean_unit_variance(input_features[2] ) # make sure that if max_length < longest -> then pad to max_length self.assertEqual(input_features.shape, (3, 4, 24) ) lowerCamelCase_ =[floats_list((1, x) )[0] for x in range(800, 1_400, 200 )] lowerCamelCase_ =feature_extractor( lowerCAmelCase, padding='''longest''', max_length=16, truncation=lowerCAmelCase, return_tensors='''np''', return_attention_mask=lowerCAmelCase, ) lowerCamelCase_ =inputs.input_features lowerCamelCase_ =inputs.attention_mask lowerCamelCase_ =np.sum(attention_mask == 1, axis=1 ) self._check_zero_mean_unit_variance(input_features[0, : fbank_feat_lengths[0]] ) self._check_zero_mean_unit_variance(input_features[1, : fbank_feat_lengths[1]] ) self._check_zero_mean_unit_variance(input_features[2] ) # make sure that if max_length < longest -> then pad to max_length self.assertEqual(input_features.shape, (3, 6, 24) ) def lowercase__ ( self ): """simple docstring""" import torch lowerCamelCase_ =self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) lowerCamelCase_ =np.random.rand(100, 32 ).astype(np.floataa ) lowerCamelCase_ =np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: lowerCamelCase_ =feature_extractor.pad([{'''input_features''': inputs}], return_tensors='''np''' ) self.assertTrue(np_processed.input_features.dtype == np.floataa ) lowerCamelCase_ =feature_extractor.pad([{'''input_features''': inputs}], return_tensors='''pt''' ) self.assertTrue(pt_processed.input_features.dtype == torch.floataa ) def lowercase__ ( self, lowerCAmelCase ): """simple docstring""" from datasets import load_dataset lowerCamelCase_ =load_dataset('''hf-internal-testing/librispeech_asr_dummy''', '''clean''', split='''validation''' ) # automatic decoding with librispeech lowerCamelCase_ =ds.sort('''id''' ).select(range(lowerCAmelCase ) )[:num_samples]['''audio'''] return [x["array"] for x in speech_samples] def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =np.array([ -1.5_7_4_5, -1.7_7_1_3, -1.7_0_2_0, -1.6_0_6_9, -1.2_2_5_0, -1.1_1_0_5, -0.9_0_7_2, -0.8_2_4_1, -1.2_3_1_0, -0.8_0_9_8, -0.3_3_2_0, -0.4_1_0_1, -0.7_9_8_5, -0.4_9_9_6, -0.8_2_1_3, -0.9_1_2_8, -1.0_4_2_0, -1.1_2_8_6, -1.0_4_4_0, -0.7_9_9_9, -0.8_4_0_5, -1.2_2_7_5, -1.5_4_4_3, -1.4_6_2_5, ] ) # fmt: on lowerCamelCase_ =self._load_datasamples(1 ) lowerCamelCase_ =self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) lowerCamelCase_ =feature_extractor(lowerCAmelCase, return_tensors='''pt''' ).input_features self.assertEquals(input_features.shape, (1, 584, 24) ) self.assertTrue(np.allclose(input_features[0, 0, :30], lowerCAmelCase, atol=1e-4 ) )
75
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_torch_available, ) _a : Tuple = { 'configuration_speecht5': [ 'SPEECHT5_PRETRAINED_CONFIG_ARCHIVE_MAP', 'SPEECHT5_PRETRAINED_HIFIGAN_CONFIG_ARCHIVE_MAP', 'SpeechT5Config', 'SpeechT5HifiGanConfig', ], 'feature_extraction_speecht5': ['SpeechT5FeatureExtractor'], 'processing_speecht5': ['SpeechT5Processor'], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : Any = ['SpeechT5Tokenizer'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : Optional[Any] = [ 'SPEECHT5_PRETRAINED_MODEL_ARCHIVE_LIST', 'SpeechT5ForSpeechToText', 'SpeechT5ForSpeechToSpeech', 'SpeechT5ForTextToSpeech', 'SpeechT5Model', 'SpeechT5PreTrainedModel', 'SpeechT5HifiGan', ] if TYPE_CHECKING: from .configuration_speechta import ( SPEECHT5_PRETRAINED_CONFIG_ARCHIVE_MAP, SPEECHT5_PRETRAINED_HIFIGAN_CONFIG_ARCHIVE_MAP, SpeechTaConfig, SpeechTaHifiGanConfig, ) from .feature_extraction_speechta import SpeechTaFeatureExtractor from .processing_speechta import SpeechTaProcessor try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_speechta import SpeechTaTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_speechta import ( SPEECHT5_PRETRAINED_MODEL_ARCHIVE_LIST, SpeechTaForSpeechToSpeech, SpeechTaForSpeechToText, SpeechTaForTextToSpeech, SpeechTaHifiGan, SpeechTaModel, SpeechTaPreTrainedModel, ) else: import sys _a : Tuple = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
126
"""simple docstring""" import math def SCREAMING_SNAKE_CASE ( ) -> None: _lowerCAmelCase : Any = input("""Enter message: """ ) _lowerCAmelCase : List[Any] = int(input(f"Enter key [2-{len(_lowerCamelCase ) - 1}]: " ) ) _lowerCAmelCase : Optional[Any] = input("""Encryption/Decryption [e/d]: """ ) if mode.lower().startswith("""e""" ): _lowerCAmelCase : Tuple = encrypt_message(_lowerCamelCase ,_lowerCamelCase ) elif mode.lower().startswith("""d""" ): _lowerCAmelCase : Dict = decrypt_message(_lowerCamelCase ,_lowerCamelCase ) # Append pipe symbol (vertical bar) to identify spaces at the end. print(f"Output:\n{text + '|'}" ) def SCREAMING_SNAKE_CASE ( _lowerCamelCase : int ,_lowerCamelCase : str ) -> str: _lowerCAmelCase : Dict = [""""""] * key for col in range(_lowerCamelCase ): _lowerCAmelCase : List[str] = col while pointer < len(_lowerCamelCase ): cipher_text[col] += message[pointer] pointer += key return "".join(_lowerCamelCase ) def SCREAMING_SNAKE_CASE ( _lowerCamelCase : int ,_lowerCamelCase : str ) -> str: _lowerCAmelCase : str = math.ceil(len(_lowerCamelCase ) / key ) _lowerCAmelCase : Union[str, Any] = key _lowerCAmelCase : Any = (num_cols * num_rows) - len(_lowerCamelCase ) _lowerCAmelCase : Dict = [""""""] * num_cols _lowerCAmelCase : Optional[Any] = 0 _lowerCAmelCase : Dict = 0 for symbol in message: plain_text[col] += symbol col += 1 if ( (col == num_cols) or (col == num_cols - 1) and (row >= num_rows - num_shaded_boxes) ): _lowerCAmelCase : str = 0 row += 1 return "".join(_lowerCamelCase ) if __name__ == "__main__": import doctest doctest.testmod() main()
126
1
"""simple docstring""" import os def __lowercase ( snake_case_ : Optional[Any] ) ->Union[str, Any]: '''simple docstring''' __A : Optional[int] = len(grid[0] ) __A : int = len(snake_case_ ) __A : str = 0 __A : Tuple = 0 __A : Dict = 0 # Check vertically, horizontally, diagonally at the same time (only works # for nxn grid) for i in range(snake_case_ ): for j in range(n_rows - 3 ): __A : Union[str, Any] = grid[j][i] * grid[j + 1][i] * grid[j + 2][i] * grid[j + 3][i] __A : int = grid[i][j] * grid[i][j + 1] * grid[i][j + 2] * grid[i][j + 3] # Left-to-right diagonal (\) product if i < n_columns - 3: __A : Optional[Any] = ( grid[i][j] * grid[i + 1][j + 1] * grid[i + 2][j + 2] * grid[i + 3][j + 3] ) # Right-to-left diagonal(/) product if i > 2: __A : List[Any] = ( grid[i][j] * grid[i - 1][j + 1] * grid[i - 2][j + 2] * grid[i - 3][j + 3] ) __A : Tuple = max( snake_case_ ,snake_case_ ,snake_case_ ,snake_case_ ) if max_product > largest: __A : Union[str, Any] = max_product return largest def __lowercase ( ) ->Dict: '''simple docstring''' __A : Union[str, Any] = [] with open(os.path.dirname(snake_case_ ) + '''/grid.txt''' ) as file: for line in file: grid.append(line.strip('''\n''' ).split(''' ''' ) ) __A : int = [[int(snake_case_ ) for i in grid[j]] for j in range(len(snake_case_ ) )] return largest_product(snake_case_ ) if __name__ == "__main__": print(solution())
179
"""simple docstring""" import dataclasses import json import sys import types from argparse import ArgumentDefaultsHelpFormatter, ArgumentParser, ArgumentTypeError from copy import copy from enum import Enum from inspect import isclass from pathlib import Path from typing import Any, Callable, Dict, Iterable, List, Literal, NewType, Optional, Tuple, Union, get_type_hints import yaml a_ = NewType("""DataClass""", Any) a_ = NewType("""DataClassType""", Any) def __lowercase ( snake_case_ : List[str] ) ->List[str]: '''simple docstring''' if isinstance(snake_case_ ,snake_case_ ): return v if v.lower() in ("yes", "true", "t", "y", "1"): return True elif v.lower() in ("no", "false", "f", "n", "0"): return False else: raise ArgumentTypeError( F"""Truthy value expected: got {v} but expected one of yes/no, true/false, t/f, y/n, 1/0 (case insensitive).""" ) def __lowercase ( snake_case_ : list ) ->Callable[[str], Any]: '''simple docstring''' __A : List[Any] = {str(snake_case_ ): choice for choice in choices} return lambda snake_case_ : str_to_choice.get(snake_case_ ,snake_case_ ) def __lowercase ( *, snake_case_ : Union[str, List[str]] = None ,snake_case_ : str = None ,snake_case_ : Any = dataclasses.MISSING ,snake_case_ : Callable[[], Any] = dataclasses.MISSING ,snake_case_ : dict = None ,**snake_case_ : str ,) ->dataclasses.Field: '''simple docstring''' if metadata is None: # Important, don't use as default param in function signature because dict is mutable and shared across function calls __A : Optional[Any] = {} if aliases is not None: __A : List[Any] = aliases if help is not None: __A : str = help return dataclasses.field(metadata=snake_case_ ,default=snake_case_ ,default_factory=snake_case_ ,**snake_case_ ) class __snake_case ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" _lowerCamelCase = 42 def __init__( self , __lowerCamelCase , **__lowerCamelCase ): '''simple docstring''' if "formatter_class" not in kwargs: __A : str = ArgumentDefaultsHelpFormatter super().__init__(**__lowerCamelCase ) if dataclasses.is_dataclass(__lowerCamelCase ): __A : Union[str, Any] = [dataclass_types] __A : Optional[Any] = list(__lowerCamelCase ) for dtype in self.dataclass_types: self._add_dataclass_arguments(__lowerCamelCase ) @staticmethod def UpperCamelCase__( __lowerCamelCase , __lowerCamelCase ): '''simple docstring''' __A : Optional[Any] = F"""--{field.name}""" __A : List[Any] = field.metadata.copy() # field.metadata is not used at all by Data Classes, # it is provided as a third-party extension mechanism. if isinstance(field.type , __lowerCamelCase ): raise RuntimeError( '''Unresolved type detected, which should have been done with the help of ''' '''`typing.get_type_hints` method by default''' ) __A : Tuple = kwargs.pop('''aliases''' , [] ) if isinstance(__lowerCamelCase , __lowerCamelCase ): __A : Optional[int] = [aliases] __A : str = getattr(field.type , '''__origin__''' , field.type ) if origin_type is Union or (hasattr(__lowerCamelCase , '''UnionType''' ) and isinstance(__lowerCamelCase , types.UnionType )): if str not in field.type.__args__ and ( len(field.type.__args__ ) != 2 or type(__lowerCamelCase ) not in field.type.__args__ ): raise ValueError( '''Only `Union[X, NoneType]` (i.e., `Optional[X]`) is allowed for `Union` because''' ''' the argument parser only supports one type per argument.''' F""" Problem encountered in field '{field.name}'.""" ) if type(__lowerCamelCase ) not in field.type.__args__: # filter `str` in Union __A : int = field.type.__args__[0] if field.type.__args__[1] == str else field.type.__args__[1] __A : int = getattr(field.type , '''__origin__''' , field.type ) elif bool not in field.type.__args__: # filter `NoneType` in Union (except for `Union[bool, NoneType]`) __A : int = ( field.type.__args__[0] if isinstance(__lowerCamelCase , field.type.__args__[1] ) else field.type.__args__[1] ) __A : Tuple = getattr(field.type , '''__origin__''' , field.type ) # A variable to store kwargs for a boolean field, if needed # so that we can init a `no_*` complement argument (see below) __A : Union[str, Any] = {} if origin_type is Literal or (isinstance(field.type , __lowerCamelCase ) and issubclass(field.type , __lowerCamelCase )): if origin_type is Literal: __A : Union[str, Any] = field.type.__args__ else: __A : Union[str, Any] = [x.value for x in field.type] __A : Optional[int] = make_choice_type_function(kwargs['''choices'''] ) if field.default is not dataclasses.MISSING: __A : Dict = field.default else: __A : Optional[Any] = True elif field.type is bool or field.type == Optional[bool]: # Copy the currect kwargs to use to instantiate a `no_*` complement argument below. # We do not initialize it here because the `no_*` alternative must be instantiated after the real argument __A : Any = copy(__lowerCamelCase ) # Hack because type=bool in argparse does not behave as we want. __A : Dict = string_to_bool if field.type is bool or (field.default is not None and field.default is not dataclasses.MISSING): # Default value is False if we have no default when of type bool. __A : Optional[Any] = False if field.default is dataclasses.MISSING else field.default # This is the value that will get picked if we don't include --field_name in any way __A : Tuple = default # This tells argparse we accept 0 or 1 value after --field_name __A : str = '''?''' # This is the value that will get picked if we do --field_name (without value) __A : int = True elif isclass(__lowerCamelCase ) and issubclass(__lowerCamelCase , __lowerCamelCase ): __A : str = field.type.__args__[0] __A : List[str] = '''+''' if field.default_factory is not dataclasses.MISSING: __A : Optional[int] = field.default_factory() elif field.default is dataclasses.MISSING: __A : Tuple = True else: __A : Union[str, Any] = field.type if field.default is not dataclasses.MISSING: __A : Dict = field.default elif field.default_factory is not dataclasses.MISSING: __A : List[str] = field.default_factory() else: __A : str = True parser.add_argument(__lowerCamelCase , *__lowerCamelCase , **__lowerCamelCase ) # Add a complement `no_*` argument for a boolean field AFTER the initial field has already been added. # Order is important for arguments with the same destination! # We use a copy of earlier kwargs because the original kwargs have changed a lot before reaching down # here and we do not need those changes/additional keys. if field.default is True and (field.type is bool or field.type == Optional[bool]): __A : List[str] = False parser.add_argument(F"""--no_{field.name}""" , action='''store_false''' , dest=field.name , **__lowerCamelCase ) def UpperCamelCase__( self , __lowerCamelCase ): '''simple docstring''' if hasattr(__lowerCamelCase , '''_argument_group_name''' ): __A : Tuple = self.add_argument_group(dtype._argument_group_name ) else: __A : List[Any] = self try: __A : Dict[str, type] = get_type_hints(__lowerCamelCase ) except NameError: raise RuntimeError( F"""Type resolution failed for {dtype}. Try declaring the class in global scope or """ '''removing line of `from __future__ import annotations` which opts in Postponed ''' '''Evaluation of Annotations (PEP 563)''' ) except TypeError as ex: # Remove this block when we drop Python 3.9 support if sys.version_info[:2] < (3, 10) and "unsupported operand type(s) for |" in str(__lowerCamelCase ): __A : List[str] = '''.'''.join(map(__lowerCamelCase , sys.version_info[:3] ) ) raise RuntimeError( F"""Type resolution failed for {dtype} on Python {python_version}. Try removing """ '''line of `from __future__ import annotations` which opts in union types as ''' '''`X | Y` (PEP 604) via Postponed Evaluation of Annotations (PEP 563). To ''' '''support Python versions that lower than 3.10, you need to use ''' '''`typing.Union[X, Y]` instead of `X | Y` and `typing.Optional[X]` instead of ''' '''`X | None`.''' ) from ex raise for field in dataclasses.fields(__lowerCamelCase ): if not field.init: continue __A : int = type_hints[field.name] self._parse_dataclass_field(__lowerCamelCase , __lowerCamelCase ) def UpperCamelCase__( self , __lowerCamelCase=None , __lowerCamelCase=False , __lowerCamelCase=True , __lowerCamelCase=None , __lowerCamelCase=None , ): '''simple docstring''' if args_file_flag or args_filename or (look_for_args_file and len(sys.argv )): __A : Tuple = [] if args_filename: args_files.append(Path(__lowerCamelCase ) ) elif look_for_args_file and len(sys.argv ): args_files.append(Path(sys.argv[0] ).with_suffix('''.args''' ) ) # args files specified via command line flag should overwrite default args files so we add them last if args_file_flag: # Create special parser just to extract the args_file_flag values __A : Dict = ArgumentParser() args_file_parser.add_argument(__lowerCamelCase , type=__lowerCamelCase , action='''append''' ) # Use only remaining args for further parsing (remove the args_file_flag) __A , __A : List[Any] = args_file_parser.parse_known_args(args=__lowerCamelCase ) __A : Dict = vars(__lowerCamelCase ).get(args_file_flag.lstrip('''-''' ) , __lowerCamelCase ) if cmd_args_file_paths: args_files.extend([Path(__lowerCamelCase ) for p in cmd_args_file_paths] ) __A : Any = [] for args_file in args_files: if args_file.exists(): file_args += args_file.read_text().split() # in case of duplicate arguments the last one has precedence # args specified via the command line should overwrite args from files, so we add them last __A : List[Any] = file_args + args if args is not None else file_args + sys.argv[1:] __A , __A : Tuple = self.parse_known_args(args=__lowerCamelCase ) __A : int = [] for dtype in self.dataclass_types: __A : List[str] = {f.name for f in dataclasses.fields(__lowerCamelCase ) if f.init} __A : List[str] = {k: v for k, v in vars(__lowerCamelCase ).items() if k in keys} for k in keys: delattr(__lowerCamelCase , __lowerCamelCase ) __A : int = dtype(**__lowerCamelCase ) outputs.append(__lowerCamelCase ) if len(namespace.__dict__ ) > 0: # additional namespace. outputs.append(__lowerCamelCase ) if return_remaining_strings: return (*outputs, remaining_args) else: if remaining_args: raise ValueError(F"""Some specified arguments are not used by the HfArgumentParser: {remaining_args}""" ) return (*outputs,) def UpperCamelCase__( self , __lowerCamelCase , __lowerCamelCase = False ): '''simple docstring''' __A : Tuple = set(args.keys() ) __A : Union[str, Any] = [] for dtype in self.dataclass_types: __A : str = {f.name for f in dataclasses.fields(__lowerCamelCase ) if f.init} __A : Optional[int] = {k: v for k, v in args.items() if k in keys} unused_keys.difference_update(inputs.keys() ) __A : int = dtype(**__lowerCamelCase ) outputs.append(__lowerCamelCase ) if not allow_extra_keys and unused_keys: raise ValueError(F"""Some keys are not used by the HfArgumentParser: {sorted(__lowerCamelCase )}""" ) return tuple(__lowerCamelCase ) def UpperCamelCase__( self , __lowerCamelCase , __lowerCamelCase = False ): '''simple docstring''' with open(Path(__lowerCamelCase ) , encoding='''utf-8''' ) as open_json_file: __A : List[str] = json.loads(open_json_file.read() ) __A : List[str] = self.parse_dict(__lowerCamelCase , allow_extra_keys=__lowerCamelCase ) return tuple(__lowerCamelCase ) def UpperCamelCase__( self , __lowerCamelCase , __lowerCamelCase = False ): '''simple docstring''' __A : Dict = self.parse_dict(yaml.safe_load(Path(__lowerCamelCase ).read_text() ) , allow_extra_keys=__lowerCamelCase ) return tuple(__lowerCamelCase )
179
1
'''simple docstring''' import gc import unittest from parameterized import parameterized from diffusers import FlaxUNetaDConditionModel from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import load_hf_numpy, require_flax, slow if is_flax_available(): import jax import jax.numpy as jnp @slow @require_flax class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' def _UpperCamelCase ( self , snake_case_ , snake_case_ ): '''simple docstring''' return F'''gaussian_noise_s={seed}_shape={'_'.join([str(snake_case_ ) for s in shape] )}.npy''' def _UpperCamelCase ( self ): '''simple docstring''' super().tearDown() gc.collect() def _UpperCamelCase ( self , snake_case_=0 , snake_case_=(4, 4, 6_4, 6_4) , snake_case_=False ): '''simple docstring''' UpperCAmelCase_ : Tuple = jnp.bfloataa if fpaa else jnp.floataa UpperCAmelCase_ : Optional[int] = jnp.array(load_hf_numpy(self.get_file_format(snake_case_ , snake_case_ ) ) , dtype=snake_case_ ) return image def _UpperCamelCase ( self , snake_case_=False , snake_case_="CompVis/stable-diffusion-v1-4" ): '''simple docstring''' UpperCAmelCase_ : Tuple = jnp.bfloataa if fpaa else jnp.floataa UpperCAmelCase_ : List[Any] = 'bf16' if fpaa else None UpperCAmelCase_ , UpperCAmelCase_ : Optional[Any] = FlaxUNetaDConditionModel.from_pretrained( snake_case_ , subfolder='unet' , dtype=snake_case_ , revision=snake_case_ ) return model, params def _UpperCamelCase ( self , snake_case_=0 , snake_case_=(4, 7_7, 7_6_8) , snake_case_=False ): '''simple docstring''' UpperCAmelCase_ : Any = jnp.bfloataa if fpaa else jnp.floataa UpperCAmelCase_ : Dict = jnp.array(load_hf_numpy(self.get_file_format(snake_case_ , snake_case_ ) ) , dtype=snake_case_ ) return hidden_states @parameterized.expand( [ # fmt: off [8_3, 4, [-0.23_23, -0.13_04, 0.08_13, -0.30_93, -0.09_19, -0.15_71, -0.11_25, -0.58_06]], [1_7, 0.55, [-0.08_31, -0.24_43, 0.09_01, -0.09_19, 0.33_96, 0.01_03, -0.37_43, 0.07_01]], [8, 0.89, [-0.48_63, 0.08_59, 0.08_75, -0.16_58, 0.91_99, -0.01_14, 0.48_39, 0.46_39]], [3, 1_0_0_0, [-0.56_49, 0.24_02, -0.55_18, 0.12_48, 1.13_28, -0.24_43, -0.03_25, -1.00_78]], # fmt: on ] ) def _UpperCamelCase ( self , snake_case_ , snake_case_ , snake_case_ ): '''simple docstring''' UpperCAmelCase_ , UpperCAmelCase_ : Optional[Any] = self.get_unet_model(model_id='CompVis/stable-diffusion-v1-4' , fpaa=snake_case_ ) UpperCAmelCase_ : int = self.get_latents(snake_case_ , fpaa=snake_case_ ) UpperCAmelCase_ : Any = self.get_encoder_hidden_states(snake_case_ , fpaa=snake_case_ ) UpperCAmelCase_ : List[Any] = model.apply( {'params': params} , snake_case_ , jnp.array(snake_case_ , dtype=jnp.intaa ) , encoder_hidden_states=snake_case_ , ).sample assert sample.shape == latents.shape UpperCAmelCase_ : List[Any] = jnp.asarray(jax.device_get((sample[-1, -2:, -2:, :2].flatten()) ) , dtype=jnp.floataa ) UpperCAmelCase_ : int = jnp.array(snake_case_ , dtype=jnp.floataa ) # Found torch (float16) and flax (bfloat16) outputs to be within this tolerance, in the same hardware assert jnp.allclose(snake_case_ , snake_case_ , atol=1E-2 ) @parameterized.expand( [ # fmt: off [8_3, 4, [0.15_14, 0.08_07, 0.16_24, 0.10_16, -0.18_96, 0.02_63, 0.06_77, 0.23_10]], [1_7, 0.55, [0.11_64, -0.02_16, 0.01_70, 0.15_89, -0.31_20, 0.10_05, -0.05_81, -0.14_58]], [8, 0.89, [-0.17_58, -0.01_69, 0.10_04, -0.14_11, 0.13_12, 0.11_03, -0.19_96, 0.21_39]], [3, 1_0_0_0, [0.12_14, 0.03_52, -0.07_31, -0.15_62, -0.09_94, -0.09_06, -0.23_40, -0.05_39]], # fmt: on ] ) def _UpperCamelCase ( self , snake_case_ , snake_case_ , snake_case_ ): '''simple docstring''' UpperCAmelCase_ , UpperCAmelCase_ : int = self.get_unet_model(model_id='stabilityai/stable-diffusion-2' , fpaa=snake_case_ ) UpperCAmelCase_ : List[str] = self.get_latents(snake_case_ , shape=(4, 4, 9_6, 9_6) , fpaa=snake_case_ ) UpperCAmelCase_ : str = self.get_encoder_hidden_states(snake_case_ , shape=(4, 7_7, 1_0_2_4) , fpaa=snake_case_ ) UpperCAmelCase_ : int = model.apply( {'params': params} , snake_case_ , jnp.array(snake_case_ , dtype=jnp.intaa ) , encoder_hidden_states=snake_case_ , ).sample assert sample.shape == latents.shape UpperCAmelCase_ : Union[str, Any] = jnp.asarray(jax.device_get((sample[-1, -2:, -2:, :2].flatten()) ) , dtype=jnp.floataa ) UpperCAmelCase_ : List[Any] = jnp.array(snake_case_ , dtype=jnp.floataa ) # Found torch (float16) and flax (bfloat16) outputs to be within this tolerance, on the same hardware assert jnp.allclose(snake_case_ , snake_case_ , atol=1E-2 )
274
'''simple docstring''' import os import time import numpy as np import onnxruntime as ort snake_case__ : Optional[int] = '''1''' snake_case__ : str = '''0''' snake_case__ : List[str] = '''1''' snake_case__ : List[str] = ort.SessionOptions() snake_case__ : str = ort.GraphOptimizationLevel.ORT_DISABLE_ALL print('''Create inference session...''') snake_case__ : Dict = ['''TensorrtExecutionProvider''', '''CUDAExecutionProvider'''] snake_case__ : Dict = ort.InferenceSession('''model.onnx''', sess_options=sess_opt, providers=execution_provider) snake_case__ : str = ort.RunOptions() snake_case__ : List[Any] = 128 snake_case__ : Union[str, Any] = 1 snake_case__ : Tuple = np.ones((batch, sequence), dtype=np.intaa) snake_case__ : Tuple = np.ones((batch, sequence), dtype=np.intaa) snake_case__ : Union[str, Any] = np.ones((batch, sequence), dtype=np.intaa) print('''Warm up phase...''') sess.run( None, { sess.get_inputs()[0].name: input_ids, sess.get_inputs()[1].name: attention_mask, sess.get_inputs()[2].name: token_type_ids, }, run_options=run_opt, ) print('''Start inference...''') snake_case__ : Union[str, Any] = time.time() snake_case__ : str = 2000 snake_case__ : Tuple = {} for iter in range(max_iters): snake_case__ : str = sess.run( None, { sess.get_inputs()[0].name: input_ids, sess.get_inputs()[1].name: attention_mask, sess.get_inputs()[2].name: token_type_ids, }, run_options=run_opt, ) print('''Average Inference Time = {:.3f} ms'''.format((time.time() - start_time) * 1000 / max_iters))
274
1
'''simple docstring''' import unittest from transformers.models.xlm_prophetnet.tokenization_xlm_prophetnet import SPIECE_UNDERLINE, XLMProphetNetTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin _lowercase : Dict = get_tests_dir("fixtures/test_sentencepiece.model") @require_sentencepiece class __magic_name__ ( __SCREAMING_SNAKE_CASE, unittest.TestCase): UpperCamelCase__ = XLMProphetNetTokenizer UpperCamelCase__ = False UpperCamelCase__ = True def SCREAMING_SNAKE_CASE_ ( self : Dict ): super().setUp() # We have a SentencePiece fixture for testing lowercase_ : List[Any] = XLMProphetNetTokenizer(__UpperCAmelCase , keep_accents=__UpperCAmelCase ) tokenizer.save_pretrained(self.tmpdirname ) def SCREAMING_SNAKE_CASE_ ( self : List[str] ): lowercase_ : List[Any] = """[PAD]""" lowercase_ : Tuple = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__UpperCAmelCase ) , __UpperCAmelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__UpperCAmelCase ) , __UpperCAmelCase ) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ): lowercase_ : List[str] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """[PAD]""" ) self.assertEqual(vocab_keys[1] , """[CLS]""" ) self.assertEqual(vocab_keys[-1] , """j""" ) self.assertEqual(len(__UpperCAmelCase ) , 1012 ) def SCREAMING_SNAKE_CASE_ ( self : List[str] ): self.assertEqual(self.get_tokenizer().vocab_size , 1012 ) def SCREAMING_SNAKE_CASE_ ( self : Any ): lowercase_ : Optional[int] = XLMProphetNetTokenizer(__UpperCAmelCase , keep_accents=__UpperCAmelCase ) lowercase_ : List[str] = tokenizer.tokenize("""This is a test""" ) self.assertListEqual(__UpperCAmelCase , ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(__UpperCAmelCase ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) lowercase_ : Optional[int] = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( __UpperCAmelCase , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """é""", """.""", ] , ) lowercase_ : List[Any] = tokenizer.convert_tokens_to_ids(__UpperCAmelCase ) self.assertListEqual( __UpperCAmelCase , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, -9, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, -9, 4] ] , ) lowercase_ : int = tokenizer.convert_ids_to_tokens(__UpperCAmelCase ) self.assertListEqual( __UpperCAmelCase , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """[UNK]""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """[UNK]""", """.""", ] , ) @cached_property def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ): return XLMProphetNetTokenizer.from_pretrained("""microsoft/xprophetnet-large-wiki100-cased""" ) @slow def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ): lowercase_ : Any = """Hello World!""" lowercase_ : Any = [35389, 6672, 49, 2] self.assertListEqual(__UpperCAmelCase , self.big_tokenizer.encode(__UpperCAmelCase ) ) @slow def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ): lowercase_ : int = {"""input_ids""": [[11073, 82783, 18, 26, 82783, 549, 51540, 248, 17209, 1301, 217, 20, 215186, 1325, 147, 17209, 1301, 217, 20, 56370, 53, 122020, 20, 16477, 27, 87355, 4548, 20, 4728, 78392, 17, 159969, 18, 26, 24491, 629, 15, 538, 22704, 5439, 15, 2788, 24491, 9885, 15, 43534, 605, 15, 814, 18403, 33200, 29, 15, 43534, 24458, 12410, 111, 24966, 83669, 9637, 144068, 26, 850, 22346, 27, 147, 24966, 83669, 83490, 26, 39113, 735, 27, 689, 656, 2800, 1339, 4600, 53, 122020, 115785, 34, 816, 1339, 46887, 18, 147, 53905, 1951, 42238, 41170, 17732, 834, 436, 15, 27523, 98733, 217, 147, 5542, 4981, 930, 17347, 16, 2], [20091, 629, 94, 82786, 58, 490, 20, 1528, 84, 53905, 344, 80592, 110128, 18822, 5267, 1306, 62, 152537, 308, 7997, 401, 124427, 549, 35442, 225, 109, 15055, 25748, 147, 7119, 43712, 34, 767, 135366, 18, 16, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [592, 63784, 119466, 17, 147808, 88214, 18, 656, 81, 32, 3296, 10280, 16, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=__UpperCAmelCase , model_name="""microsoft/xprophetnet-large-wiki100-cased""" , revision="""1acad1643ddd54a44df6a1b797ada8373685d90e""" , )
239
"""simple docstring""" def A ( snake_case :int ) -> list: # bit count represents no. of bits in the gray code if bit_count < 0: raise ValueError('The given input must be positive' ) # get the generated string sequence __UpperCamelCase = gray_code_sequence_string(snake_case ) # # convert them to integers for i in range(len(snake_case ) ): __UpperCamelCase = int(sequence[i] , 2 ) return sequence def A ( snake_case :int ) -> list: # The approach is a recursive one # Base case achieved when either n = 0 or n=1 if bit_count == 0: return ["0"] if bit_count == 1: return ["0", "1"] __UpperCamelCase = 1 << bit_count # defines the length of the sequence # 1<< n is equivalent to 2^n # recursive answer will generate answer for n-1 bits __UpperCamelCase = gray_code_sequence_string(bit_count - 1 ) __UpperCamelCase = [] # append 0 to first half of the smaller sequence generated for i in range(seq_len // 2 ): __UpperCamelCase = '0' + smaller_sequence[i] sequence.append(snake_case ) # append 1 to second half ... start from the end of the list for i in reversed(range(seq_len // 2 ) ): __UpperCamelCase = '1' + smaller_sequence[i] sequence.append(snake_case ) return sequence if __name__ == "__main__": import doctest doctest.testmod()
316
0
"""simple docstring""" import copy from typing import Any, Dict, List, Optional, Union import numpy as np from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import TensorType, logging lowerCAmelCase : List[str] = logging.get_logger(__name__) class __magic_name__ ( UpperCAmelCase__ ): '''simple docstring''' __UpperCamelCase = ["input_features"] def __init__( self , _a=80 , _a=16_000 , _a=160 , _a=30 , _a=400 , _a=0.0 , _a=False , **_a , ): """simple docstring""" super().__init__( feature_size=_a , sampling_rate=_a , padding_value=_a , return_attention_mask=_a , **_a , ) lowerCamelCase = n_fft lowerCamelCase = hop_length lowerCamelCase = chunk_length lowerCamelCase = chunk_length * sampling_rate lowerCamelCase = self.n_samples // hop_length lowerCamelCase = sampling_rate lowerCamelCase = mel_filter_bank( num_frequency_bins=1 + n_fft // 2 , num_mel_filters=_a , min_frequency=0.0 , max_frequency=8_000.0 , sampling_rate=_a , norm="""slaney""" , mel_scale="""slaney""" , ) def _lowerCAmelCase ( self , _a ): """simple docstring""" lowerCamelCase = spectrogram( _a , window_function(self.n_fft , """hann""" ) , frame_length=self.n_fft , hop_length=self.hop_length , power=2.0 , mel_filters=self.mel_filters , log_mel="""log10""" , ) lowerCamelCase = log_spec[:, :-1] lowerCamelCase = np.maximum(_a , log_spec.max() - 8.0 ) lowerCamelCase = (log_spec + 4.0) / 4.0 return log_spec @staticmethod # Copied from transformers.models.wav2vec2.feature_extraction_wav2vec2.Wav2Vec2FeatureExtractor.zero_mean_unit_var_norm def _lowerCAmelCase ( _a , _a , _a = 0.0 ): """simple docstring""" if attention_mask is not None: lowerCamelCase = np.array(_a , np.intaa ) lowerCamelCase = [] for vector, length in zip(_a , attention_mask.sum(-1 ) ): lowerCamelCase = (vector - vector[:length].mean()) / np.sqrt(vector[:length].var() + 1e-7 ) if length < normed_slice.shape[0]: lowerCamelCase = padding_value normed_input_values.append(_a ) else: lowerCamelCase = [(x - x.mean()) / np.sqrt(x.var() + 1e-7 ) for x in input_values] return normed_input_values def __call__( self , _a , _a = True , _a = None , _a = None , _a = None , _a = "max_length" , _a = None , _a = None , _a = None , **_a , ): """simple docstring""" if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f'The model corresponding to this feature extractor: {self.__class__.__name__} was trained using a' f' sampling rate of {self.sampling_rate}. Please make sure that the provided `raw_speech` input' f' was sampled with {self.sampling_rate} and not {sampling_rate}.' ) else: logger.warning( """It is strongly recommended to pass the `sampling_rate` argument to this function. """ """Failing to do so can result in silent errors that might be hard to debug.""" ) lowerCamelCase = isinstance(_a , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(f'Only mono-channel audio is supported for input to {self}' ) lowerCamelCase = is_batched_numpy or ( isinstance(_a , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: lowerCamelCase = [np.asarray([speech] , dtype=np.floataa ).T for speech in raw_speech] elif not is_batched and not isinstance(_a , np.ndarray ): lowerCamelCase = np.asarray(_a , dtype=np.floataa ) elif isinstance(_a , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): lowerCamelCase = raw_speech.astype(np.floataa ) # always return batch if not is_batched: lowerCamelCase = [np.asarray([raw_speech] ).T] lowerCamelCase = BatchFeature({"""input_features""": raw_speech} ) # convert into correct format for padding lowerCamelCase = self.pad( _a , padding=_a , max_length=max_length if max_length else self.n_samples , truncation=_a , pad_to_multiple_of=_a , return_attention_mask=return_attention_mask or do_normalize , ) # zero-mean and unit-variance normalization if do_normalize: lowerCamelCase = self.zero_mean_unit_var_norm( padded_inputs["""input_features"""] , attention_mask=padded_inputs["""attention_mask"""] , padding_value=self.padding_value , ) lowerCamelCase = np.stack(padded_inputs["""input_features"""] , axis=0 ) # make sure list is in array format lowerCamelCase = padded_inputs.get("""input_features""" ).transpose(2 , 0 , 1 ) lowerCamelCase = [self._np_extract_fbank_features(_a ) for waveform in input_features[0]] if isinstance(input_features[0] , _a ): lowerCamelCase = [np.asarray(_a , dtype=np.floataa ) for feature in input_features] else: lowerCamelCase = input_features if return_attention_mask: # rescale from sample (48000) to feature (3000) lowerCamelCase = padded_inputs["""attention_mask"""][:, :: self.hop_length] if return_tensors is not None: lowerCamelCase = padded_inputs.convert_to_tensors(_a ) return padded_inputs def _lowerCAmelCase ( self ): """simple docstring""" lowerCamelCase = copy.deepcopy(self.__dict__ ) lowerCamelCase = self.__class__.__name__ if "mel_filters" in output: del output["mel_filters"] return output
168
"""simple docstring""" import json import os import torch from diffusers import UNetaDModel os.makedirs("""hub/hopper-medium-v2/unet/hor32""", exist_ok=True) os.makedirs("""hub/hopper-medium-v2/unet/hor128""", exist_ok=True) os.makedirs("""hub/hopper-medium-v2/value_function""", exist_ok=True) def a__ ( snake_case__ ) -> Tuple: if hor == 1_28: lowerCamelCase = ("""DownResnetBlock1D""", """DownResnetBlock1D""", """DownResnetBlock1D""") lowerCamelCase = (32, 1_28, 2_56) lowerCamelCase = ("""UpResnetBlock1D""", """UpResnetBlock1D""") elif hor == 32: lowerCamelCase = ("""DownResnetBlock1D""", """DownResnetBlock1D""", """DownResnetBlock1D""", """DownResnetBlock1D""") lowerCamelCase = (32, 64, 1_28, 2_56) lowerCamelCase = ("""UpResnetBlock1D""", """UpResnetBlock1D""", """UpResnetBlock1D""") lowerCamelCase = torch.load(F'/Users/bglickenhaus/Documents/diffuser/temporal_unet-hopper-mediumv2-hor{hor}.torch' ) lowerCamelCase = model.state_dict() lowerCamelCase = { """down_block_types""": down_block_types, """block_out_channels""": block_out_channels, """up_block_types""": up_block_types, """layers_per_block""": 1, """use_timestep_embedding""": True, """out_block_type""": """OutConv1DBlock""", """norm_num_groups""": 8, """downsample_each_block""": False, """in_channels""": 14, """out_channels""": 14, """extra_in_channels""": 0, """time_embedding_type""": """positional""", """flip_sin_to_cos""": False, """freq_shift""": 1, """sample_size""": 6_55_36, """mid_block_type""": """MidResTemporalBlock1D""", """act_fn""": """mish""", } lowerCamelCase = UNetaDModel(**snake_case__ ) print(F'length of state dict: {len(state_dict.keys() )}' ) print(F'length of value function dict: {len(hf_value_function.state_dict().keys() )}' ) lowerCamelCase = dict(zip(model.state_dict().keys() , hf_value_function.state_dict().keys() ) ) for k, v in mapping.items(): lowerCamelCase = state_dict.pop(snake_case__ ) hf_value_function.load_state_dict(snake_case__ ) torch.save(hf_value_function.state_dict() , F'hub/hopper-medium-v2/unet/hor{hor}/diffusion_pytorch_model.bin' ) with open(F'hub/hopper-medium-v2/unet/hor{hor}/config.json' , """w""" ) as f: json.dump(snake_case__ , snake_case__ ) def a__ ( ) -> Optional[int]: lowerCamelCase = { """in_channels""": 14, """down_block_types""": ("""DownResnetBlock1D""", """DownResnetBlock1D""", """DownResnetBlock1D""", """DownResnetBlock1D"""), """up_block_types""": (), """out_block_type""": """ValueFunction""", """mid_block_type""": """ValueFunctionMidBlock1D""", """block_out_channels""": (32, 64, 1_28, 2_56), """layers_per_block""": 1, """downsample_each_block""": True, """sample_size""": 6_55_36, """out_channels""": 14, """extra_in_channels""": 0, """time_embedding_type""": """positional""", """use_timestep_embedding""": True, """flip_sin_to_cos""": False, """freq_shift""": 1, """norm_num_groups""": 8, """act_fn""": """mish""", } lowerCamelCase = torch.load("""/Users/bglickenhaus/Documents/diffuser/value_function-hopper-mediumv2-hor32.torch""" ) lowerCamelCase = model lowerCamelCase = UNetaDModel(**snake_case__ ) print(F'length of state dict: {len(state_dict.keys() )}' ) print(F'length of value function dict: {len(hf_value_function.state_dict().keys() )}' ) lowerCamelCase = dict(zip(state_dict.keys() , hf_value_function.state_dict().keys() ) ) for k, v in mapping.items(): lowerCamelCase = state_dict.pop(snake_case__ ) hf_value_function.load_state_dict(snake_case__ ) torch.save(hf_value_function.state_dict() , """hub/hopper-medium-v2/value_function/diffusion_pytorch_model.bin""" ) with open("""hub/hopper-medium-v2/value_function/config.json""" , """w""" ) as f: json.dump(snake_case__ , snake_case__ ) if __name__ == "__main__": unet(32) # unet(128) value_function()
168
1
'''simple docstring''' def _A ( _lowerCAmelCase ): """simple docstring""" __lowercase =abs(a__ ) __lowercase =0 while n > 0: res += n % 10 n //= 10 return res def _A ( _lowerCAmelCase ): """simple docstring""" __lowercase =abs(a__ ) return n if n < 10 else n % 10 + sum_of_digits(n // 10 ) def _A ( _lowerCAmelCase ): """simple docstring""" return sum(int(a__ ) for c in str(abs(a__ ) ) ) def _A ( ): """simple docstring""" from collections.abc import Callable from timeit import timeit def benchmark_a_function(_lowerCAmelCase , _lowerCAmelCase ) -> None: __lowercase =f"""{func.__name__}({value})""" __lowercase =timeit(f"""__main__.{call}""" , setup='import __main__' ) print(f"""{call:56} = {func(a__ )} -- {timing:.4f} seconds""" ) for value in (262_144, 1_125_899_906_842_624, 1_267_650_600_228_229_401_496_703_205_376): for func in (sum_of_digits, sum_of_digits_recursion, sum_of_digits_compact): benchmark_a_function(a__ , a__ ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
166
from abc import ABC, abstractmethod from typing import List, Optional class a_ ( a__ ): """simple docstring""" def __init__( self ) ->List[str]: # test for the above condition self.test() def __lowerCAmelCase ( self ) ->List[str]: SCREAMING_SNAKE_CASE : int = 0 SCREAMING_SNAKE_CASE : Union[str, Any] = False while not completed: if counter == 1: self.reset() SCREAMING_SNAKE_CASE : List[Any] = self.advance() if not self.does_advance(_lowerCamelCase ): raise Exception( '''Custom Constraint is not defined correctly. self.does_advance(self.advance()) must be true.''' ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Dict = self.update(_lowerCamelCase ) counter += 1 if counter > 1_0000: raise Exception('''update() does not fulfill the constraint.''' ) if self.remaining() != 0: raise Exception('''Custom Constraint is not defined correctly.''' ) @abstractmethod def __lowerCAmelCase ( self ) ->Optional[int]: raise NotImplementedError( F"""{self.__class__} is an abstract class. Only classes inheriting this class can be called.""" ) @abstractmethod def __lowerCAmelCase ( self , _lowerCamelCase ) ->Optional[Any]: raise NotImplementedError( F"""{self.__class__} is an abstract class. Only classes inheriting this class can be called.""" ) @abstractmethod def __lowerCAmelCase ( self , _lowerCamelCase ) ->Optional[Any]: raise NotImplementedError( F"""{self.__class__} is an abstract class. Only classes inheriting this class can be called.""" ) @abstractmethod def __lowerCAmelCase ( self ) ->Optional[Any]: raise NotImplementedError( F"""{self.__class__} is an abstract class. Only classes inheriting this class can be called.""" ) @abstractmethod def __lowerCAmelCase ( self ) ->Union[str, Any]: raise NotImplementedError( F"""{self.__class__} is an abstract class. Only classes inheriting this class can be called.""" ) @abstractmethod def __lowerCAmelCase ( self , _lowerCamelCase=False ) ->Any: raise NotImplementedError( F"""{self.__class__} is an abstract class. Only classes inheriting this class can be called.""" ) class a_ ( a__ ): """simple docstring""" def __init__( self , _lowerCamelCase ) ->int: super(_lowerCamelCase , self ).__init__() if not isinstance(_lowerCamelCase , _lowerCamelCase ) or len(_lowerCamelCase ) == 0: raise ValueError(F"""`token_ids` has to be a non-empty list, but is {token_ids}.""" ) if any((not isinstance(_lowerCamelCase , _lowerCamelCase ) or token_id < 0) for token_id in token_ids ): raise ValueError(F"""Each list in `token_ids` has to be a list of positive integers, but is {token_ids}.""" ) SCREAMING_SNAKE_CASE : Optional[Any] = token_ids SCREAMING_SNAKE_CASE : Union[str, Any] = len(self.token_ids ) SCREAMING_SNAKE_CASE : Any = -1 # the index of the currently fulfilled step SCREAMING_SNAKE_CASE : Any = False def __lowerCAmelCase ( self ) ->List[Any]: if self.completed: return None return self.token_ids[self.fulfilled_idx + 1] def __lowerCAmelCase ( self , _lowerCamelCase ) ->Union[str, Any]: if not isinstance(_lowerCamelCase , _lowerCamelCase ): raise ValueError(F"""`token_id` has to be an `int`, but is {token_id} of type {type(_lowerCamelCase )}""" ) if self.completed: return False return token_id == self.token_ids[self.fulfilled_idx + 1] def __lowerCAmelCase ( self , _lowerCamelCase ) ->List[str]: if not isinstance(_lowerCamelCase , _lowerCamelCase ): raise ValueError(F"""`token_id` has to be an `int`, but is {token_id} of type {type(_lowerCamelCase )}""" ) SCREAMING_SNAKE_CASE : str = False SCREAMING_SNAKE_CASE : Any = False SCREAMING_SNAKE_CASE : List[Any] = False if self.does_advance(_lowerCamelCase ): self.fulfilled_idx += 1 SCREAMING_SNAKE_CASE : str = True if self.fulfilled_idx == (self.seqlen - 1): SCREAMING_SNAKE_CASE : Any = True SCREAMING_SNAKE_CASE : Union[str, Any] = completed else: # failed to make progress. SCREAMING_SNAKE_CASE : Dict = True self.reset() return stepped, completed, reset def __lowerCAmelCase ( self ) ->List[Any]: SCREAMING_SNAKE_CASE : List[Any] = False SCREAMING_SNAKE_CASE : Union[str, Any] = 0 def __lowerCAmelCase ( self ) ->Any: return self.seqlen - (self.fulfilled_idx + 1) def __lowerCAmelCase ( self , _lowerCamelCase=False ) ->Dict: SCREAMING_SNAKE_CASE : Any = PhrasalConstraint(self.token_ids ) if stateful: SCREAMING_SNAKE_CASE : Dict = self.seqlen SCREAMING_SNAKE_CASE : int = self.fulfilled_idx SCREAMING_SNAKE_CASE : Tuple = self.completed return new_constraint class a_ : """simple docstring""" def __init__( self , _lowerCamelCase , _lowerCamelCase=True ) ->Dict: SCREAMING_SNAKE_CASE : Any = max([len(_lowerCamelCase ) for one in nested_token_ids] ) SCREAMING_SNAKE_CASE : List[str] = {} for token_ids in nested_token_ids: SCREAMING_SNAKE_CASE : Optional[Any] = root for tidx, token_id in enumerate(_lowerCamelCase ): if token_id not in level: SCREAMING_SNAKE_CASE : Any = {} SCREAMING_SNAKE_CASE : Tuple = level[token_id] if no_subsets and self.has_subsets(_lowerCamelCase , _lowerCamelCase ): raise ValueError( '''Each list in `nested_token_ids` can\'t be a complete subset of another list, but is''' F""" {nested_token_ids}.""" ) SCREAMING_SNAKE_CASE : List[Any] = root def __lowerCAmelCase ( self , _lowerCamelCase ) ->int: SCREAMING_SNAKE_CASE : List[Any] = self.trie for current_token in current_seq: SCREAMING_SNAKE_CASE : int = start[current_token] SCREAMING_SNAKE_CASE : Optional[int] = list(start.keys() ) return next_tokens def __lowerCAmelCase ( self , _lowerCamelCase ) ->Dict: SCREAMING_SNAKE_CASE : Any = self.next_tokens(_lowerCamelCase ) return len(_lowerCamelCase ) == 0 def __lowerCAmelCase ( self , _lowerCamelCase ) ->Optional[Any]: SCREAMING_SNAKE_CASE : Any = list(root.values() ) if len(_lowerCamelCase ) == 0: return 1 else: return sum([self.count_leaves(_lowerCamelCase ) for nn in next_nodes] ) def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase ) ->Dict: SCREAMING_SNAKE_CASE : List[str] = self.count_leaves(_lowerCamelCase ) return len(_lowerCamelCase ) != leaf_count class a_ ( a__ ): """simple docstring""" def __init__( self , _lowerCamelCase ) ->str: super(_lowerCamelCase , self ).__init__() if not isinstance(_lowerCamelCase , _lowerCamelCase ) or len(_lowerCamelCase ) == 0: raise ValueError(F"""`nested_token_ids` has to be a non-empty list, but is {nested_token_ids}.""" ) if any(not isinstance(_lowerCamelCase , _lowerCamelCase ) for token_ids in nested_token_ids ): raise ValueError(F"""`nested_token_ids` has to be a list of lists, but is {nested_token_ids}.""" ) if any( any((not isinstance(_lowerCamelCase , _lowerCamelCase ) or token_id < 0) for token_id in token_ids ) for token_ids in nested_token_ids ): raise ValueError( F"""Each list in `nested_token_ids` has to be a list of positive integers, but is {nested_token_ids}.""" ) SCREAMING_SNAKE_CASE : List[Any] = DisjunctiveTrie(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Any = nested_token_ids SCREAMING_SNAKE_CASE : Optional[int] = self.trie.max_height SCREAMING_SNAKE_CASE : Union[str, Any] = [] SCREAMING_SNAKE_CASE : Optional[int] = False def __lowerCAmelCase ( self ) ->int: SCREAMING_SNAKE_CASE : str = self.trie.next_tokens(self.current_seq ) if len(_lowerCamelCase ) == 0: return None else: return token_list def __lowerCAmelCase ( self , _lowerCamelCase ) ->Dict: if not isinstance(_lowerCamelCase , _lowerCamelCase ): raise ValueError(F"""`token_id` is supposed to be type `int`, but is {token_id} of type {type(_lowerCamelCase )}""" ) SCREAMING_SNAKE_CASE : List[str] = self.trie.next_tokens(self.current_seq ) return token_id in next_tokens def __lowerCAmelCase ( self , _lowerCamelCase ) ->Any: if not isinstance(_lowerCamelCase , _lowerCamelCase ): raise ValueError(F"""`token_id` is supposed to be type `int`, but is {token_id} of type {type(_lowerCamelCase )}""" ) SCREAMING_SNAKE_CASE : int = False SCREAMING_SNAKE_CASE : List[Any] = False SCREAMING_SNAKE_CASE : Union[str, Any] = False if self.does_advance(_lowerCamelCase ): self.current_seq.append(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Union[str, Any] = True else: SCREAMING_SNAKE_CASE : Dict = True self.reset() SCREAMING_SNAKE_CASE : Any = self.trie.reached_leaf(self.current_seq ) SCREAMING_SNAKE_CASE : List[Any] = completed return stepped, completed, reset def __lowerCAmelCase ( self ) ->Optional[Any]: SCREAMING_SNAKE_CASE : Any = False SCREAMING_SNAKE_CASE : List[Any] = [] def __lowerCAmelCase ( self ) ->Optional[Any]: if self.completed: # since this can be completed without reaching max height return 0 else: return self.seqlen - len(self.current_seq ) def __lowerCAmelCase ( self , _lowerCamelCase=False ) ->List[str]: SCREAMING_SNAKE_CASE : str = DisjunctiveConstraint(self.token_ids ) if stateful: SCREAMING_SNAKE_CASE : str = self.seqlen SCREAMING_SNAKE_CASE : int = self.current_seq SCREAMING_SNAKE_CASE : Optional[int] = self.completed return new_constraint class a_ : """simple docstring""" def __init__( self , _lowerCamelCase ) ->Union[str, Any]: SCREAMING_SNAKE_CASE : List[Any] = constraints # max # of steps required to fulfill a given constraint SCREAMING_SNAKE_CASE : str = max([c.seqlen for c in constraints] ) SCREAMING_SNAKE_CASE : List[str] = len(_lowerCamelCase ) SCREAMING_SNAKE_CASE : int = False self.init_state() def __lowerCAmelCase ( self ) ->int: SCREAMING_SNAKE_CASE : Any = [] SCREAMING_SNAKE_CASE : List[Any] = None SCREAMING_SNAKE_CASE : Tuple = [constraint.copy(stateful=_lowerCamelCase ) for constraint in self.constraints] def __lowerCAmelCase ( self ) ->str: SCREAMING_SNAKE_CASE : str = 0 if self.inprogress_constraint: # extra points for having a constraint mid-fulfilled add += self.max_seqlen - self.inprogress_constraint.remaining() return (len(self.complete_constraints ) * self.max_seqlen) + add def __lowerCAmelCase ( self ) ->Optional[int]: SCREAMING_SNAKE_CASE : Tuple = [] if self.inprogress_constraint is None: for constraint in self.pending_constraints: # "pending" == "unfulfilled yet" SCREAMING_SNAKE_CASE : Optional[int] = constraint.advance() if isinstance(_lowerCamelCase , _lowerCamelCase ): token_list.append(_lowerCamelCase ) elif isinstance(_lowerCamelCase , _lowerCamelCase ): token_list.extend(_lowerCamelCase ) else: SCREAMING_SNAKE_CASE : List[str] = self.inprogress_constraint.advance() if isinstance(_lowerCamelCase , _lowerCamelCase ): token_list.append(_lowerCamelCase ) elif isinstance(_lowerCamelCase , _lowerCamelCase ): token_list.extend(_lowerCamelCase ) if len(_lowerCamelCase ) == 0: return None else: return token_list def __lowerCAmelCase ( self , _lowerCamelCase ) ->Union[str, Any]: self.init_state() if token_ids is not None: for token in token_ids: # completes or steps **one** constraint SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[str] = self.add(_lowerCamelCase ) # the entire list of constraints are fulfilled if self.completed: break def __lowerCAmelCase ( self , _lowerCamelCase ) ->List[Any]: if not isinstance(_lowerCamelCase , _lowerCamelCase ): raise ValueError(F"""`token_id` should be an `int`, but is `{token_id}`.""" ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[Any] = False, False if self.completed: SCREAMING_SNAKE_CASE : List[str] = True SCREAMING_SNAKE_CASE : Optional[int] = False return complete, stepped if self.inprogress_constraint is not None: # In the middle of fulfilling a constraint. If the `token_id` *does* makes an incremental progress to current # job, simply update the state SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : int = self.inprogress_constraint.update(_lowerCamelCase ) if reset: # 1. If the next token breaks the progress, then we must restart. # e.g. constraint = "I love pies" and sequence so far is "I love" but `token_id` == "books". # But that doesn't mean we self.init_state(), since we only reset the state for this particular # constraint, not the full list of constraints. self.pending_constraints.append(self.inprogress_constraint.copy(stateful=_lowerCamelCase ) ) SCREAMING_SNAKE_CASE : Optional[int] = None if complete: # 2. If the next token completes the constraint, move it to completed list, set # inprogress to None. If there are no pending constraints either, then this full list of constraints # is complete. self.complete_constraints.append(self.inprogress_constraint ) SCREAMING_SNAKE_CASE : str = None if len(self.pending_constraints ) == 0: # we're done! SCREAMING_SNAKE_CASE : Optional[Any] = True else: # Not in the middle of fulfilling a constraint. So does this `token_id` helps us step towards any of our list # of constraints? for cidx, pending_constraint in enumerate(self.pending_constraints ): if pending_constraint.does_advance(_lowerCamelCase ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Tuple = pending_constraint.update(_lowerCamelCase ) if not stepped: raise Exception( '''`constraint.update(token_id)` is not yielding incremental progress, ''' '''even though `constraint.does_advance(token_id)` is true.''' ) if complete: self.complete_constraints.append(_lowerCamelCase ) SCREAMING_SNAKE_CASE : str = None if not complete and stepped: SCREAMING_SNAKE_CASE : Optional[Any] = pending_constraint if complete or stepped: # If we made any progress at all, then it's at least not a "pending constraint". SCREAMING_SNAKE_CASE : Union[str, Any] = ( self.pending_constraints[:cidx] + self.pending_constraints[cidx + 1 :] ) if len(self.pending_constraints ) == 0 and self.inprogress_constraint is None: # If there's no longer any pending after this and no inprogress either, then we must be # complete. SCREAMING_SNAKE_CASE : str = True break # prevent accidentally stepping through multiple constraints with just one token. return complete, stepped def __lowerCAmelCase ( self , _lowerCamelCase=True ) ->str: SCREAMING_SNAKE_CASE : Dict = ConstraintListState(self.constraints ) # we actually never though self.constraints objects # throughout this process. So it's at initialization state. if stateful: SCREAMING_SNAKE_CASE : str = [ constraint.copy(stateful=_lowerCamelCase ) for constraint in self.complete_constraints ] if self.inprogress_constraint is not None: SCREAMING_SNAKE_CASE : Optional[int] = self.inprogress_constraint.copy(stateful=_lowerCamelCase ) SCREAMING_SNAKE_CASE : Optional[int] = [constraint.copy() for constraint in self.pending_constraints] return new_state
313
0
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_bart import BartTokenizer a : Optional[int] = logging.get_logger(__name__) a : Any = {'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_file': 'tokenizer.json'} # See all BART models at https://huggingface.co/models?filter=bart a : str = { 'vocab_file': { 'facebook/bart-base': 'https://huggingface.co/facebook/bart-base/resolve/main/vocab.json', 'facebook/bart-large': 'https://huggingface.co/facebook/bart-large/resolve/main/vocab.json', 'facebook/bart-large-mnli': 'https://huggingface.co/facebook/bart-large-mnli/resolve/main/vocab.json', 'facebook/bart-large-cnn': 'https://huggingface.co/facebook/bart-large-cnn/resolve/main/vocab.json', 'facebook/bart-large-xsum': 'https://huggingface.co/facebook/bart-large-xsum/resolve/main/vocab.json', 'yjernite/bart_eli5': 'https://huggingface.co/yjernite/bart_eli5/resolve/main/vocab.json', }, 'merges_file': { 'facebook/bart-base': 'https://huggingface.co/facebook/bart-base/resolve/main/merges.txt', 'facebook/bart-large': 'https://huggingface.co/facebook/bart-large/resolve/main/merges.txt', 'facebook/bart-large-mnli': 'https://huggingface.co/facebook/bart-large-mnli/resolve/main/merges.txt', 'facebook/bart-large-cnn': 'https://huggingface.co/facebook/bart-large-cnn/resolve/main/merges.txt', 'facebook/bart-large-xsum': 'https://huggingface.co/facebook/bart-large-xsum/resolve/main/merges.txt', 'yjernite/bart_eli5': 'https://huggingface.co/yjernite/bart_eli5/resolve/main/merges.txt', }, 'tokenizer_file': { 'facebook/bart-base': 'https://huggingface.co/facebook/bart-base/resolve/main/tokenizer.json', 'facebook/bart-large': 'https://huggingface.co/facebook/bart-large/resolve/main/tokenizer.json', 'facebook/bart-large-mnli': 'https://huggingface.co/facebook/bart-large-mnli/resolve/main/tokenizer.json', 'facebook/bart-large-cnn': 'https://huggingface.co/facebook/bart-large-cnn/resolve/main/tokenizer.json', 'facebook/bart-large-xsum': 'https://huggingface.co/facebook/bart-large-xsum/resolve/main/tokenizer.json', 'yjernite/bart_eli5': 'https://huggingface.co/yjernite/bart_eli5/resolve/main/tokenizer.json', }, } a : List[str] = { 'facebook/bart-base': 1_0_2_4, 'facebook/bart-large': 1_0_2_4, 'facebook/bart-large-mnli': 1_0_2_4, 'facebook/bart-large-cnn': 1_0_2_4, 'facebook/bart-large-xsum': 1_0_2_4, 'yjernite/bart_eli5': 1_0_2_4, } class UpperCamelCase_ ( UpperCamelCase__ ): lowercase = VOCAB_FILES_NAMES lowercase = PRETRAINED_VOCAB_FILES_MAP lowercase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase = ["""input_ids""", """attention_mask"""] lowercase = BartTokenizer def __init__( self , A=None , A=None , A=None , A="replace" , A="<s>" , A="</s>" , A="</s>" , A="<s>" , A="<unk>" , A="<pad>" , A="<mask>" , A=False , A=True , **A , ) -> Dict: super().__init__( __a , __a , tokenizer_file=__a , errors=__a , bos_token=__a , eos_token=__a , sep_token=__a , cls_token=__a , unk_token=__a , pad_token=__a , mask_token=__a , add_prefix_space=__a , trim_offsets=__a , **__a , ) UpperCAmelCase : Any = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("""add_prefix_space""" , __a ) != add_prefix_space: UpperCAmelCase : List[Any] = getattr(__a , pre_tok_state.pop("""type""" ) ) UpperCAmelCase : Optional[Any] = add_prefix_space UpperCAmelCase : Optional[Any] = pre_tok_class(**__a ) UpperCAmelCase : Any = add_prefix_space # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` UpperCAmelCase : str = """post_processor""" UpperCAmelCase : List[str] = getattr(self.backend_tokenizer , __a , __a ) if tokenizer_component_instance: UpperCAmelCase : Union[str, Any] = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: UpperCAmelCase : Tuple = tuple(state["""sep"""] ) if "cls" in state: UpperCAmelCase : str = tuple(state["""cls"""] ) UpperCAmelCase : Union[str, Any] = False if state.get("""add_prefix_space""" , __a ) != add_prefix_space: UpperCAmelCase : List[str] = add_prefix_space UpperCAmelCase : int = True if state.get("""trim_offsets""" , __a ) != trim_offsets: UpperCAmelCase : Union[str, Any] = trim_offsets UpperCAmelCase : int = True if changes_to_apply: UpperCAmelCase : Dict = getattr(__a , state.pop("""type""" ) ) UpperCAmelCase : Any = component_class(**__a ) setattr(self.backend_tokenizer , __a , __a ) @property def _lowercase( self ) -> str: if self._mask_token is None: if self.verbose: logger.error("""Using mask_token, but it is not set yet.""" ) return None return str(self._mask_token ) @mask_token.setter def _lowercase( self , A ) -> List[str]: UpperCAmelCase : Union[str, Any] = AddedToken(__a , lstrip=__a , rstrip=__a ) if isinstance(__a , __a ) else value UpperCAmelCase : Optional[Any] = value def _lowercase( self , *A , **A ) -> List[Any]: UpperCAmelCase : Optional[int] = kwargs.get("""is_split_into_words""" , __a ) if is_split_into_words and not self.add_prefix_space: raise ValueError( f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' """to use it with pretokenized inputs.""" ) return super()._batch_encode_plus(*__a , **__a ) def _lowercase( self , *A , **A ) -> List[Any]: UpperCAmelCase : Optional[int] = kwargs.get("""is_split_into_words""" , __a ) if is_split_into_words and not self.add_prefix_space: raise ValueError( f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' """to use it with pretokenized inputs.""" ) return super()._encode_plus(*__a , **__a ) def _lowercase( self , A , A = None ) -> Union[str, Any]: UpperCAmelCase : Optional[int] = self._tokenizer.model.save(__a , name=__a ) return tuple(__a ) def _lowercase( self , A , A=None ) -> Optional[Any]: UpperCAmelCase : Dict = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def _lowercase( self , A , A = None ) -> Tuple: UpperCAmelCase : Any = [self.sep_token_id] UpperCAmelCase : List[str] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
368
'''simple docstring''' import argparse from pathlib import Path import fairseq import torch from fairseq.models.xmod import XMODModel as FairseqXmodModel from packaging import version from transformers import XmodConfig, XmodForMaskedLM, XmodForSequenceClassification from transformers.utils import logging if version.parse(fairseq.__version__) < version.parse("""0.12.2"""): raise Exception("""requires fairseq >= 0.12.2""") if version.parse(fairseq.__version__) > version.parse("""2"""): raise Exception("""requires fairseq < v2""") logging.set_verbosity_info() a : Dict = logging.get_logger(__name__) a : List[str] = """Hello, World!""" a : List[Any] = """en_XX""" def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> Dict: UpperCAmelCase : Dict = Path("""data_bin""" ) UpperCAmelCase : Union[str, Any] = FairseqXmodModel.from_pretrained( model_name_or_path=str(Path(_lowercase ).parent ) , checkpoint_file=Path(_lowercase ).name , _name="""xmod_base""" , arch="""xmod_base""" , task="""multilingual_masked_lm""" , data_name_or_path=str(_lowercase ) , bpe="""sentencepiece""" , sentencepiece_model=str(Path(_lowercase ).parent / """sentencepiece.bpe.model""" ) , src_dict=str(data_dir / """dict.txt""" ) , ) xmod.eval() # disable dropout print(_lowercase ) UpperCAmelCase : List[str] = xmod.model.encoder.sentence_encoder UpperCAmelCase : Tuple = XmodConfig( vocab_size=xmod_sent_encoder.embed_tokens.num_embeddings , hidden_size=xmod.cfg.model.encoder_embed_dim , num_hidden_layers=xmod.cfg.model.encoder_layers , num_attention_heads=xmod.cfg.model.encoder_attention_heads , intermediate_size=xmod.cfg.model.encoder_ffn_embed_dim , max_position_embeddings=5_1_4 , type_vocab_size=1 , layer_norm_eps=1e-5 , pre_norm=xmod.cfg.model.encoder_normalize_before , adapter_reduction_factor=getattr(xmod.cfg.model , """bottleneck""" , 2 ) , adapter_layer_norm=xmod.cfg.model.adapter_layer_norm , adapter_reuse_layer_norm=xmod.cfg.model.adapter_reuse_layer_norm , ln_before_adapter=xmod.cfg.model.ln_before_adapter , languages=xmod.cfg.model.languages , ) if classification_head: UpperCAmelCase : List[str] = xmod.model.classification_heads["""mnli"""].out_proj.weight.shape[0] print("""Our X-MOD config:""" , _lowercase ) UpperCAmelCase : str = XmodForSequenceClassification(_lowercase ) if classification_head else XmodForMaskedLM(_lowercase ) model.eval() # Now let's copy all the weights. # Embeddings UpperCAmelCase : Union[str, Any] = xmod_sent_encoder.embed_tokens.weight UpperCAmelCase : int = xmod_sent_encoder.embed_positions.weight UpperCAmelCase : int = torch.zeros_like( model.roberta.embeddings.token_type_embeddings.weight ) # just zero them out b/c xmod doesn't use them. UpperCAmelCase : Union[str, Any] = xmod_sent_encoder.layernorm_embedding.weight UpperCAmelCase : Optional[int] = xmod_sent_encoder.layernorm_embedding.bias for i in range(config.num_hidden_layers ): # Encoder: start of layer UpperCAmelCase : List[str] = model.roberta.encoder.layer[i] UpperCAmelCase : Optional[Any] = xmod_sent_encoder.layers[i] # self attention UpperCAmelCase : Optional[Any] = layer.attention.self if not ( xmod_layer.self_attn.k_proj.weight.data.shape == xmod_layer.self_attn.q_proj.weight.data.shape == xmod_layer.self_attn.v_proj.weight.data.shape == torch.Size((config.hidden_size, config.hidden_size) ) ): raise AssertionError("""Dimensions of self-attention weights do not match.""" ) UpperCAmelCase : List[Any] = xmod_layer.self_attn.q_proj.weight UpperCAmelCase : Optional[int] = xmod_layer.self_attn.q_proj.bias UpperCAmelCase : Any = xmod_layer.self_attn.k_proj.weight UpperCAmelCase : Optional[int] = xmod_layer.self_attn.k_proj.bias UpperCAmelCase : int = xmod_layer.self_attn.v_proj.weight UpperCAmelCase : List[Any] = xmod_layer.self_attn.v_proj.bias # self-attention output UpperCAmelCase : Optional[Any] = layer.attention.output if self_output.dense.weight.shape != xmod_layer.self_attn.out_proj.weight.shape: raise AssertionError("""Dimensions of self-attention output weights do not match.""" ) UpperCAmelCase : Any = xmod_layer.self_attn.out_proj.weight UpperCAmelCase : List[str] = xmod_layer.self_attn.out_proj.bias UpperCAmelCase : int = xmod_layer.self_attn_layer_norm.weight UpperCAmelCase : str = xmod_layer.self_attn_layer_norm.bias # intermediate UpperCAmelCase : Tuple = layer.intermediate if intermediate.dense.weight.shape != xmod_layer.fca.weight.shape: raise AssertionError("""Dimensions of intermediate weights do not match.""" ) UpperCAmelCase : List[str] = xmod_layer.fca.weight UpperCAmelCase : str = xmod_layer.fca.bias # output UpperCAmelCase : Any = layer.output if bert_output.dense.weight.shape != xmod_layer.fca.weight.shape: raise AssertionError("""Dimensions of feed-forward weights do not match.""" ) UpperCAmelCase : Dict = xmod_layer.fca.weight UpperCAmelCase : Dict = xmod_layer.fca.bias UpperCAmelCase : Any = xmod_layer.final_layer_norm.weight UpperCAmelCase : Union[str, Any] = xmod_layer.final_layer_norm.bias if bert_output.adapter_layer_norm is not None: UpperCAmelCase : str = xmod_layer.adapter_layer_norm.weight UpperCAmelCase : List[str] = xmod_layer.adapter_layer_norm.bias if sorted(bert_output.adapter_modules.keys() ) != sorted(xmod_layer.adapter_modules.keys() ): raise AssertionError("""Lists of language adapters do not match.""" ) for lang_code, adapter in xmod_layer.adapter_modules.items(): UpperCAmelCase : List[Any] = bert_output.adapter_modules[lang_code] UpperCAmelCase : Dict = xmod_layer.adapter_modules[lang_code] UpperCAmelCase : Any = from_adapter.fca.weight UpperCAmelCase : int = from_adapter.fca.bias UpperCAmelCase : Dict = from_adapter.fca.weight UpperCAmelCase : Dict = from_adapter.fca.bias # end of layer if xmod_sent_encoder.layer_norm is not None: UpperCAmelCase : Tuple = xmod_sent_encoder.layer_norm.weight UpperCAmelCase : List[Any] = xmod_sent_encoder.layer_norm.bias if classification_head: UpperCAmelCase : str = xmod.model.classification_heads["""mnli"""].dense.weight UpperCAmelCase : Tuple = xmod.model.classification_heads["""mnli"""].dense.bias UpperCAmelCase : str = xmod.model.classification_heads["""mnli"""].out_proj.weight UpperCAmelCase : Tuple = xmod.model.classification_heads["""mnli"""].out_proj.bias else: # LM Head UpperCAmelCase : Dict = xmod.model.encoder.lm_head.dense.weight UpperCAmelCase : List[Any] = xmod.model.encoder.lm_head.dense.bias UpperCAmelCase : Optional[Any] = xmod.model.encoder.lm_head.layer_norm.weight UpperCAmelCase : List[Any] = xmod.model.encoder.lm_head.layer_norm.bias UpperCAmelCase : str = xmod.model.encoder.lm_head.weight UpperCAmelCase : str = xmod.model.encoder.lm_head.bias # Let's check that we get the same results. UpperCAmelCase : Any = xmod.encode(_lowercase ).unsqueeze(0 ) # batch of size 1 model.roberta.set_default_language(_lowercase ) UpperCAmelCase : Optional[int] = model(_lowercase )[0] if classification_head: UpperCAmelCase : List[Any] = xmod.model.classification_heads["""mnli"""](xmod.extract_features(_lowercase ) ) else: UpperCAmelCase : Optional[Any] = xmod.model(_lowercase , lang_id=[SAMPLE_LANGUAGE] )[0] print(our_output.shape , their_output.shape ) UpperCAmelCase : Tuple = torch.max(torch.abs(our_output - their_output ) ).item() print(F'''max_absolute_diff = {max_absolute_diff}''' ) # ~ 1e-7 UpperCAmelCase : Dict = torch.allclose(_lowercase , _lowercase , atol=1e-3 ) print("""Do both models output the same tensors?""" , """🔥""" if success else """💩""" ) if not success: raise Exception("""Something went wRoNg""" ) Path(_lowercase ).mkdir(parents=_lowercase , exist_ok=_lowercase ) print(F'''Saving model to {pytorch_dump_folder_path}''' ) model.save_pretrained(_lowercase ) if __name__ == "__main__": a : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--xmod_checkpoint_path""", default=None, type=str, required=True, help="""Path the official PyTorch dump.""" ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) parser.add_argument( """--classification_head""", action="""store_true""", help="""Whether to convert a final classification head.""" ) a : List[str] = parser.parse_args() convert_xmod_checkpoint_to_pytorch( args.xmod_checkpoint_path, args.pytorch_dump_folder_path, args.classification_head )
338
0
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging __a: List[str] = logging.get_logger(__name__) __a: Union[str, Any] = """▁""" __a: Optional[int] = {"""vocab_file""": """sentencepiece.bpe.model""", """monolingual_vocab_file""": """dict.txt"""} __a: Optional[Any] = { """vocab_file""": { """vinai/bartpho-syllable""": """https://huggingface.co/vinai/bartpho-syllable/resolve/main/sentencepiece.bpe.model""", }, """monolingual_vocab_file""": { """vinai/bartpho-syllable""": """https://huggingface.co/vinai/bartpho-syllable/resolve/main/dict.txt""", }, } __a: List[str] = {"""vinai/bartpho-syllable""": 10_24} class UpperCAmelCase ( A__ ): '''simple docstring''' SCREAMING_SNAKE_CASE = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE = ["""input_ids""", """attention_mask"""] def __init__( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase="<s>" , __lowerCAmelCase="</s>" , __lowerCAmelCase="</s>" , __lowerCAmelCase="<s>" , __lowerCAmelCase="<unk>" , __lowerCAmelCase="<pad>" , __lowerCAmelCase="<mask>" , __lowerCAmelCase = None , **__lowerCAmelCase , ) -> Tuple: # Mask token behave like a normal word, i.e. include the space before it lowercase__ : Optional[Any] = AddedToken(a_ , lstrip=a_ , rstrip=a_ ) if isinstance(a_ , a_ ) else mask_token lowercase__ : Tuple = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=a_ , eos_token=a_ , unk_token=a_ , sep_token=a_ , cls_token=a_ , pad_token=a_ , mask_token=a_ , sp_model_kwargs=self.sp_model_kwargs , **a_ , ) lowercase__ : List[Any] = vocab_file lowercase__ : Union[str, Any] = monolingual_vocab_file lowercase__ : Any = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(a_ ) ) # Load the reduced vocab # Keep order of special tokens for backward compatibility lowercase__ : Dict = {} lowercase__ : Tuple = 0 for token in [bos_token, pad_token, eos_token, unk_token, sep_token, cls_token]: if str(a_ ) not in self.fairseq_tokens_to_ids: lowercase__ : List[str] = cnt cnt += 1 with open(a_ , '''r''' , encoding='''utf-8''' ) as f: for line in f.readlines(): lowercase__ : Optional[Any] = line.strip().split()[0] lowercase__ : List[Any] = len(self.fairseq_tokens_to_ids ) if str(a_ ) not in self.fairseq_tokens_to_ids: lowercase__ : Any = len(self.fairseq_tokens_to_ids ) lowercase__ : Any = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__( self ) -> Union[str, Any]: lowercase__ : Dict = self.__dict__.copy() lowercase__ : List[Any] = None lowercase__ : List[str] = self.sp_model.serialized_model_proto() return state def __setstate__( self , __lowerCAmelCase ) -> Optional[Any]: lowercase__ : Tuple = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): lowercase__ : Dict = {} lowercase__ : Optional[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) def _lowerCAmelCase( self , __lowerCAmelCase , __lowerCAmelCase = None ) -> Dict: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] lowercase__ : Dict = [self.cls_token_id] lowercase__ : Optional[int] = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def _lowerCAmelCase( self , __lowerCAmelCase , __lowerCAmelCase = None , __lowerCAmelCase = False ) -> Any: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=a_ , token_ids_a=a_ , already_has_special_tokens=a_ ) if token_ids_a is None: return [1] + ([0] * len(a_ )) + [1] return [1] + ([0] * len(a_ )) + [1, 1] + ([0] * len(a_ )) + [1] def _lowerCAmelCase( self , __lowerCAmelCase , __lowerCAmelCase = None ) -> List[Any]: lowercase__ : Union[str, Any] = [self.sep_token_id] lowercase__ : Optional[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def _lowerCAmelCase( self ) -> Optional[Any]: return len(self.fairseq_ids_to_tokens ) def _lowerCAmelCase( self ) -> List[str]: lowercase__ : Any = {self.convert_ids_to_tokens(a_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def _lowerCAmelCase( self , __lowerCAmelCase ) -> int: return self.sp_model.encode(a_ , out_type=a_ ) def _lowerCAmelCase( self , __lowerCAmelCase ) -> List[Any]: if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] else: return self.unk_token_id def _lowerCAmelCase( self , __lowerCAmelCase ) -> Dict: return self.fairseq_ids_to_tokens[index] def _lowerCAmelCase( self , __lowerCAmelCase ) -> List[Any]: lowercase__ : List[str] = "".join(a_ ).replace(a_ , ''' ''' ).strip() return out_string def _lowerCAmelCase( self , __lowerCAmelCase , __lowerCAmelCase = None ) -> Union[str, Any]: if not os.path.isdir(a_ ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return lowercase__ : Union[str, Any] = os.path.join( a_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) lowercase__ : Optional[int] = os.path.join( a_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''monolingual_vocab_file'''] , ) if os.path.abspath(self.vocab_file ) != os.path.abspath(a_ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , a_ ) elif not os.path.isfile(self.vocab_file ): with open(a_ , '''wb''' ) as fi: lowercase__ : Optional[Any] = self.sp_model.serialized_model_proto() fi.write(a_ ) if os.path.abspath(self.monolingual_vocab_file ) != os.path.abspath( a_ ) and os.path.isfile(self.monolingual_vocab_file ): copyfile(self.monolingual_vocab_file , a_ ) elif not os.path.isfile(self.monolingual_vocab_file ): with open(a_ , '''w''' , encoding='''utf-8''' ) as fp: for token in self.fairseq_tokens_to_ids: if token not in self.all_special_tokens: fp.write(F"""{str(a_ )} \n""" ) return out_vocab_file, out_monolingual_vocab_file
198
"""simple docstring""" # coding=utf-8 # Copyright 2023 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # this script dumps information about the environment import os import platform import sys lowercase__ = """3""" print("""Python version:""", sys.version) print("""OS platform:""", platform.platform()) print("""OS architecture:""", platform.machine()) try: import torch print("""Torch version:""", torch.__version__) print("""Cuda available:""", torch.cuda.is_available()) print("""Cuda version:""", torch.version.cuda) print("""CuDNN version:""", torch.backends.cudnn.version()) print("""Number of GPUs available:""", torch.cuda.device_count()) except ImportError: print("""Torch version:""", None) try: import transformers print("""transformers version:""", transformers.__version__) except ImportError: print("""transformers version:""", None)
241
0
from collections.abc import Generator def lowerCAmelCase__ ( ): snake_case_ : Optional[int] = 0, 1 while True: snake_case_ : str = b, a + b yield b def lowerCAmelCase__ ( _a : int = 10_00 ): snake_case_ : int = 1 snake_case_ : Tuple = fibonacci_generator() while len(str(next(_a ) ) ) < n: answer += 1 return answer + 1 if __name__ == "__main__": print(solution(int(str(input()).strip())))
361
def lowerCAmelCase__ ( _a : float , _a : float ): if density <= 0: raise ValueError("Impossible fluid density" ) if bulk_modulus <= 0: raise ValueError("Impossible bulk modulus" ) return (bulk_modulus / density) ** 0.5 if __name__ == "__main__": import doctest doctest.testmod()
36
0
import random from typing import Any def UpperCamelCase_( lowerCamelCase_ ) -> list[Any]: for _ in range(len(lowerCamelCase_ ) ): _lowercase : Optional[int] = random.randint(0 , len(lowerCamelCase_ ) - 1 ) _lowercase : str = random.randint(0 , len(lowerCamelCase_ ) - 1 ) _lowercase , _lowercase : Optional[int] = data[b], data[a] return data if __name__ == "__main__": SCREAMING_SNAKE_CASE : str = [0, 1, 2, 3, 4, 5, 6, 7] SCREAMING_SNAKE_CASE : int = ["python", "says", "hello", "!"] print("Fisher-Yates Shuffle:") print("List", integers, strings) print("FY Shuffle", fisher_yates_shuffle(integers), fisher_yates_shuffle(strings))
21
from collections import OrderedDict from typing import Any, List, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import logging UpperCAmelCase__ : Optional[int] = logging.get_logger(__name__) UpperCAmelCase__ : int = { """EleutherAI/gpt-j-6B""": """https://huggingface.co/EleutherAI/gpt-j-6B/resolve/main/config.json""", # See all GPT-J models at https://huggingface.co/models?filter=gpt_j } class a__ ( UpperCAmelCase ): """simple docstring""" UpperCAmelCase__ : List[str] ="""gptj""" UpperCAmelCase__ : Any ={ """max_position_embeddings""": """n_positions""", """hidden_size""": """n_embd""", """num_attention_heads""": """n_head""", """num_hidden_layers""": """n_layer""", } def __init__( self : List[str] , UpperCAmelCase__ : int=5_0_4_0_0 , UpperCAmelCase__ : str=2_0_4_8 , UpperCAmelCase__ : str=4_0_9_6 , UpperCAmelCase__ : List[Any]=2_8 , UpperCAmelCase__ : Union[str, Any]=1_6 , UpperCAmelCase__ : str=6_4 , UpperCAmelCase__ : Union[str, Any]=None , UpperCAmelCase__ : List[Any]="gelu_new" , UpperCAmelCase__ : Union[str, Any]=0.0 , UpperCAmelCase__ : List[Any]=0.0 , UpperCAmelCase__ : int=0.0 , UpperCAmelCase__ : Optional[int]=1e-5 , UpperCAmelCase__ : Optional[Any]=0.02 , UpperCAmelCase__ : Tuple=True , UpperCAmelCase__ : str=5_0_2_5_6 , UpperCAmelCase__ : Dict=5_0_2_5_6 , UpperCAmelCase__ : int=False , **UpperCAmelCase__ : Dict , ) ->Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = vocab_size SCREAMING_SNAKE_CASE : str = n_positions SCREAMING_SNAKE_CASE : int = n_embd SCREAMING_SNAKE_CASE : Any = n_layer SCREAMING_SNAKE_CASE : Optional[Any] = n_head SCREAMING_SNAKE_CASE : Union[str, Any] = n_inner SCREAMING_SNAKE_CASE : Dict = rotary_dim SCREAMING_SNAKE_CASE : Union[str, Any] = activation_function SCREAMING_SNAKE_CASE : Any = resid_pdrop SCREAMING_SNAKE_CASE : List[Any] = embd_pdrop SCREAMING_SNAKE_CASE : Tuple = attn_pdrop SCREAMING_SNAKE_CASE : Any = layer_norm_epsilon SCREAMING_SNAKE_CASE : Union[str, Any] = initializer_range SCREAMING_SNAKE_CASE : Any = use_cache SCREAMING_SNAKE_CASE : Any = bos_token_id SCREAMING_SNAKE_CASE : List[Any] = eos_token_id super().__init__( bos_token_id=UpperCAmelCase__ , eos_token_id=UpperCAmelCase__ , tie_word_embeddings=UpperCAmelCase__ , **UpperCAmelCase__ ) class a__ ( UpperCAmelCase ): """simple docstring""" def __init__( self : int , UpperCAmelCase__ : PretrainedConfig , UpperCAmelCase__ : str = "default" , UpperCAmelCase__ : List[PatchingSpec] = None , UpperCAmelCase__ : bool = False , ) ->Optional[int]: """simple docstring""" super().__init__(UpperCAmelCase__ , task=UpperCAmelCase__ , patching_specs=UpperCAmelCase__ , use_past=UpperCAmelCase__ ) if not getattr(self._config , """pad_token_id""" , UpperCAmelCase__ ): # TODO: how to do that better? SCREAMING_SNAKE_CASE : str = 0 @property def _lowercase ( self : Tuple ) ->Mapping[str, Mapping[int, str]]: """simple docstring""" SCREAMING_SNAKE_CASE : Any = OrderedDict({"""input_ids""": {0: """batch""", 1: """sequence"""}} ) if self.use_past: self.fill_with_past_key_values_(UpperCAmelCase__ , direction="""inputs""" ) SCREAMING_SNAKE_CASE : Optional[Any] = {0: """batch""", 1: """past_sequence + sequence"""} else: SCREAMING_SNAKE_CASE : List[str] = {0: """batch""", 1: """sequence"""} return common_inputs @property def _lowercase ( self : List[str] ) ->int: """simple docstring""" return self._config.n_layer @property def _lowercase ( self : Tuple ) ->int: """simple docstring""" return self._config.n_head def _lowercase ( self : str , UpperCAmelCase__ : PreTrainedTokenizer , UpperCAmelCase__ : int = -1 , UpperCAmelCase__ : int = -1 , UpperCAmelCase__ : bool = False , UpperCAmelCase__ : Optional[TensorType] = None , ) ->Mapping[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE : int = super(UpperCAmelCase__ , self ).generate_dummy_inputs( UpperCAmelCase__ , batch_size=UpperCAmelCase__ , seq_length=UpperCAmelCase__ , is_pair=UpperCAmelCase__ , framework=UpperCAmelCase__ ) # We need to order the input in the way they appears in the forward() SCREAMING_SNAKE_CASE : Tuple = OrderedDict({"""input_ids""": common_inputs["""input_ids"""]} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError("""Cannot generate dummy past_keys inputs without PyTorch installed.""" ) else: import torch SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : str = common_inputs["""input_ids"""].shape # Not using the same length for past_key_values SCREAMING_SNAKE_CASE : Dict = seqlen + 2 SCREAMING_SNAKE_CASE : Any = ( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) SCREAMING_SNAKE_CASE : Optional[int] = [ (torch.zeros(UpperCAmelCase__ ), torch.zeros(UpperCAmelCase__ )) for _ in range(self.num_layers ) ] SCREAMING_SNAKE_CASE : Dict = common_inputs["""attention_mask"""] if self.use_past: SCREAMING_SNAKE_CASE : Optional[int] = ordered_inputs["""attention_mask"""].dtype SCREAMING_SNAKE_CASE : Union[str, Any] = torch.cat( [ordered_inputs["""attention_mask"""], torch.ones(UpperCAmelCase__ , UpperCAmelCase__ , dtype=UpperCAmelCase__ )] , dim=1 ) return ordered_inputs @property def _lowercase ( self : Dict ) ->int: """simple docstring""" return 1_3
245
0
'''simple docstring''' from __future__ import annotations from collections.abc import Iterable, Iterator from dataclasses import dataclass _lowerCAmelCase = (3, 9, -11, 0, 7, 5, 1, -1) _lowerCAmelCase = (4, 6, 2, 0, 8, 10, 3, -2) @dataclass class lowerCAmelCase_: '''simple docstring''' __lowercase : int __lowercase : Node | None class lowerCAmelCase_: '''simple docstring''' def __init__( self ,__UpperCAmelCase ) -> None: lowerCAmelCase__ : Node | None = None for i in sorted(__UpperCAmelCase ,reverse=__UpperCAmelCase ): lowerCAmelCase__ : List[Any] = Node(__UpperCAmelCase ,self.head ) def __iter__( self ) -> Iterator[int]: lowerCAmelCase__ : Optional[int] = self.head while node: yield node.data lowerCAmelCase__ : Optional[Any] = node.next_node def __len__( self ) -> int: return sum(1 for _ in self ) def __str__( self ) -> str: return " -> ".join([str(__UpperCAmelCase ) for node in self] ) def _SCREAMING_SNAKE_CASE ( UpperCamelCase , UpperCamelCase ): """simple docstring""" return SortedLinkedList(list(UpperCamelCase ) + list(UpperCamelCase ) ) if __name__ == "__main__": import doctest doctest.testmod() _lowerCAmelCase = SortedLinkedList print(merge_lists(SSL(test_data_odd), SSL(test_data_even)))
351
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices _lowerCAmelCase = logging.get_logger(__name__) _lowerCAmelCase = { '''facebook/convnextv2-tiny-1k-224''': '''https://huggingface.co/facebook/convnextv2-tiny-1k-224/resolve/main/config.json''', } class lowerCAmelCase_( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): '''simple docstring''' __lowercase : Tuple = '''convnextv2''' def __init__( self ,__UpperCAmelCase=3 ,__UpperCAmelCase=4 ,__UpperCAmelCase=4 ,__UpperCAmelCase=None ,__UpperCAmelCase=None ,__UpperCAmelCase="gelu" ,__UpperCAmelCase=0.0_2 ,__UpperCAmelCase=1E-12 ,__UpperCAmelCase=0.0 ,__UpperCAmelCase=224 ,__UpperCAmelCase=None ,__UpperCAmelCase=None ,**__UpperCAmelCase ,) -> Union[str, Any]: super().__init__(**__UpperCAmelCase ) lowerCAmelCase__ : int = num_channels lowerCAmelCase__ : List[Any] = patch_size lowerCAmelCase__ : Union[str, Any] = num_stages lowerCAmelCase__ : Tuple = [96, 192, 384, 768] if hidden_sizes is None else hidden_sizes lowerCAmelCase__ : str = [3, 3, 9, 3] if depths is None else depths lowerCAmelCase__ : Optional[Any] = hidden_act lowerCAmelCase__ : str = initializer_range lowerCAmelCase__ : List[str] = layer_norm_eps lowerCAmelCase__ : Dict = drop_path_rate lowerCAmelCase__ : int = image_size lowerCAmelCase__ : int = ["""stem"""] + [F"""stage{idx}""" for idx in range(1 ,len(self.depths ) + 1 )] lowerCAmelCase__ , lowerCAmelCase__ : Tuple = get_aligned_output_features_output_indices( out_features=__UpperCAmelCase ,out_indices=__UpperCAmelCase ,stage_names=self.stage_names )
184
0
'''simple docstring''' import pytest import datasets # Import fixture modules as plugins snake_case_ : str = ['tests.fixtures.files', 'tests.fixtures.hub', 'tests.fixtures.fsspec'] def A__ ( UpperCAmelCase_ , UpperCAmelCase_ ): # Mark tests as "unit" by default if not marked as "integration" (or already marked as "unit") for item in items: if any(marker in item.keywords for marker in ['integration', 'unit'] ): continue item.add_marker(pytest.mark.unit ) def A__ ( UpperCAmelCase_ ): config.addinivalue_line('markers' , 'torchaudio_latest: mark test to run with torchaudio>=0.12' ) @pytest.fixture(autouse=UpperCAmelCase_ ) def A__ ( UpperCAmelCase_ , UpperCAmelCase_ ): # test_hf_cache_home = tmp_path_factory.mktemp("cache") # TODO: why a cache dir per test function does not work? _UpperCamelCase : str = tmp_path_factory.getbasetemp() / 'cache' _UpperCamelCase : List[str] = test_hf_cache_home / 'datasets' _UpperCamelCase : List[Any] = test_hf_cache_home / 'metrics' _UpperCamelCase : List[str] = test_hf_cache_home / 'modules' monkeypatch.setattr('datasets.config.HF_DATASETS_CACHE' , str(UpperCAmelCase_ ) ) monkeypatch.setattr('datasets.config.HF_METRICS_CACHE' , str(UpperCAmelCase_ ) ) monkeypatch.setattr('datasets.config.HF_MODULES_CACHE' , str(UpperCAmelCase_ ) ) _UpperCamelCase : Optional[Any] = test_hf_datasets_cache / 'downloads' monkeypatch.setattr('datasets.config.DOWNLOADED_DATASETS_PATH' , str(UpperCAmelCase_ ) ) _UpperCamelCase : Optional[int] = test_hf_datasets_cache / 'downloads' / 'extracted' monkeypatch.setattr('datasets.config.EXTRACTED_DATASETS_PATH' , str(UpperCAmelCase_ ) ) @pytest.fixture(autouse=UpperCAmelCase_ , scope='session' ) def A__ ( ): datasets.disable_progress_bar() @pytest.fixture(autouse=UpperCAmelCase_ ) def A__ ( UpperCAmelCase_ ): # don't take tests into account when counting downloads monkeypatch.setattr('datasets.config.HF_UPDATE_DOWNLOAD_COUNTS' , UpperCAmelCase_ ) @pytest.fixture def A__ ( UpperCAmelCase_ ): # Required to suppress RemovedIn20Warning when feature(s) are not compatible with SQLAlchemy 2.0 # To be removed once SQLAlchemy 2.0 supported monkeypatch.setattr('sqlalchemy.util.deprecations.SILENCE_UBER_WARNING' , UpperCAmelCase_ )
83
from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available a_ = {"""configuration_mmbt""": ["""MMBTConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = ["""MMBTForClassification""", """MMBTModel""", """ModalEmbeddings"""] if TYPE_CHECKING: from .configuration_mmbt import MMBTConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mmbt import MMBTForClassification, MMBTModel, ModalEmbeddings else: import sys a_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
330
0
import pytest from datasets.utils.sharding import _distribute_shards, _number_of_shards_in_gen_kwargs, _split_gen_kwargs @pytest.mark.parametrize( """kwargs, expected""" , [ ({"""num_shards""": 0, """max_num_jobs""": 1}, []), ({"""num_shards""": 10, """max_num_jobs""": 1}, [range(10 )]), ({"""num_shards""": 10, """max_num_jobs""": 10}, [range(_a , i + 1 ) for i in range(10 )]), ({"""num_shards""": 1, """max_num_jobs""": 10}, [range(1 )]), ({"""num_shards""": 10, """max_num_jobs""": 3}, [range(0 , 4 ), range(4 , 7 ), range(7 , 10 )]), ({"""num_shards""": 3, """max_num_jobs""": 10}, [range(0 , 1 ), range(1 , 2 ), range(2 , 3 )]), ] , ) def lowerCamelCase_ ( _a : int , _a : Dict ): '''simple docstring''' UpperCAmelCase_ : str = _distribute_shards(**_a ) assert out == expected @pytest.mark.parametrize( """gen_kwargs, max_num_jobs, expected""" , [ ({"""foo""": 0}, 10, [{"""foo""": 0}]), ({"""shards""": [0, 1, 2, 3]}, 1, [{"""shards""": [0, 1, 2, 3]}]), ({"""shards""": [0, 1, 2, 3]}, 4, [{"""shards""": [0]}, {"""shards""": [1]}, {"""shards""": [2]}, {"""shards""": [3]}]), ({"""shards""": [0, 1]}, 4, [{"""shards""": [0]}, {"""shards""": [1]}]), ({"""shards""": [0, 1, 2, 3]}, 2, [{"""shards""": [0, 1]}, {"""shards""": [2, 3]}]), ] , ) def lowerCamelCase_ ( _a : List[str] , _a : List[str] , _a : str ): '''simple docstring''' UpperCAmelCase_ : List[Any] = _split_gen_kwargs(_a , _a ) assert out == expected @pytest.mark.parametrize( """gen_kwargs, expected""" , [ ({"""foo""": 0}, 1), ({"""shards""": [0]}, 1), ({"""shards""": [0, 1, 2, 3]}, 4), ({"""shards""": [0, 1, 2, 3], """foo""": 0}, 4), ({"""shards""": [0, 1, 2, 3], """other""": (0, 1)}, 4), ({"""shards""": [0, 1, 2, 3], """shards2""": [0, 1]}, RuntimeError), ] , ) def lowerCamelCase_ ( _a : Union[str, Any] , _a : str ): '''simple docstring''' if expected is RuntimeError: with pytest.raises(_a ): _number_of_shards_in_gen_kwargs(_a ) else: UpperCAmelCase_ : Any = _number_of_shards_in_gen_kwargs(_a ) assert out == expected
59
import os def lowerCamelCase_ ( _a : str = "input.txt" ): '''simple docstring''' with open(os.path.join(os.path.dirname(_a ) , _a ) ) as input_file: UpperCAmelCase_ : Dict = [ [int(_a ) for element in line.split(""",""" )] for line in input_file.readlines() ] UpperCAmelCase_ : Any = len(_a ) UpperCAmelCase_ : Tuple = len(matrix[0] ) UpperCAmelCase_ : Optional[int] = [[-1 for _ in range(_a )] for _ in range(_a )] for i in range(_a ): UpperCAmelCase_ : Optional[Any] = matrix[i][0] for j in range(1 , _a ): for i in range(_a ): UpperCAmelCase_ : str = minimal_path_sums[i][j - 1] + matrix[i][j] for i in range(1 , _a ): UpperCAmelCase_ : Optional[int] = min( minimal_path_sums[i][j] , minimal_path_sums[i - 1][j] + matrix[i][j] ) for i in range(rows - 2 , -1 , -1 ): UpperCAmelCase_ : Union[str, Any] = min( minimal_path_sums[i][j] , minimal_path_sums[i + 1][j] + matrix[i][j] ) return min(minimal_path_sums_row[-1] for minimal_path_sums_row in minimal_path_sums ) if __name__ == "__main__": print(F"{solution() = }")
59
1
'''simple docstring''' import requests from bsa import BeautifulSoup def _lowerCamelCase ( lowercase : str = "https://www.worldometers.info/coronavirus" ) -> dict: _a = BeautifulSoup(requests.get(lowercase ).text , "html.parser" ) _a = soup.findAll("h1" ) _a = soup.findAll("div" , {"class": "maincounter-number"} ) keys += soup.findAll("span" , {"class": "panel-title"} ) values += soup.findAll("div" , {"class": "number-table-main"} ) return {key.text.strip(): value.text.strip() for key, value in zip(lowercase , lowercase )} if __name__ == "__main__": print('\033[1m' + 'COVID-19 Status of the World' + '\033[0m\n') for key, value in world_covidaa_stats().items(): print(f"""{key}\n{value}\n""")
63
'''simple docstring''' import builtins import sys from ...utils.imports import _is_package_available from . import cursor, input from .helpers import Direction, clear_line, forceWrite, linebreak, move_cursor, reset_cursor, writeColor from .keymap import KEYMAP _SCREAMING_SNAKE_CASE : Any = False try: _SCREAMING_SNAKE_CASE : Optional[Any] = _is_package_available("google.colab") except ModuleNotFoundError: pass @input.register class _snake_case : def __init__( self , a__ = None , a__ = [] ) -> List[str]: '''simple docstring''' snake_case_ = 0 snake_case_ = choices snake_case_ = prompt if sys.platform == "win32": snake_case_ = "*" else: snake_case_ = "➔ " def lowerCAmelCase__ ( self , a__ , a__ = "" ) -> int: '''simple docstring''' if sys.platform != "win32": writeColor(self.choices[index] , 32 , a__ ) else: forceWrite(self.choices[index] , a__ ) def lowerCAmelCase__ ( self , a__ ) -> Tuple: '''simple docstring''' if index == self.position: forceWrite(F' {self.arrow_char} ' ) self.write_choice(a__ ) else: forceWrite(F' {self.choices[index]}' ) reset_cursor() def lowerCAmelCase__ ( self , a__ , a__ = 1 ) -> List[str]: '''simple docstring''' snake_case_ = self.position if direction == Direction.DOWN: if self.position + 1 >= len(self.choices ): return self.position += num_spaces else: if self.position - 1 < 0: return self.position -= num_spaces clear_line() self.print_choice(a__ ) move_cursor(a__ , direction.name ) self.print_choice(self.position ) @input.mark(KEYMAP["up"] ) def lowerCAmelCase__ ( self ) -> Dict: '''simple docstring''' self.move_direction(Direction.UP ) @input.mark(KEYMAP["down"] ) def lowerCAmelCase__ ( self ) -> int: '''simple docstring''' self.move_direction(Direction.DOWN ) @input.mark(KEYMAP["newline"] ) def lowerCAmelCase__ ( self ) -> str: '''simple docstring''' move_cursor(len(self.choices ) - self.position , "DOWN" ) return self.position @input.mark(KEYMAP["interrupt"] ) def lowerCAmelCase__ ( self ) -> Tuple: '''simple docstring''' move_cursor(len(self.choices ) - self.position , "DOWN" ) raise KeyboardInterrupt @input.mark_multiple(*[KEYMAP[str(a__ )] for number in range(10 )] ) def lowerCAmelCase__ ( self ) -> int: '''simple docstring''' snake_case_ = int(chr(self.current_selection ) ) snake_case_ = index - self.position if index == self.position: return if index < len(self.choices ): if self.position > index: self.move_direction(Direction.UP , -movement ) elif self.position < index: self.move_direction(Direction.DOWN , a__ ) else: return else: return def lowerCAmelCase__ ( self , a__ = 0 ) -> List[str]: '''simple docstring''' if self.prompt: linebreak() forceWrite(self.prompt , "\n" ) if in_colab: forceWrite("Please input a choice index (starting from 0), and press enter" , "\n" ) else: forceWrite("Please select a choice using the arrow or number keys, and selecting with enter" , "\n" ) snake_case_ = default_choice for i in range(len(self.choices ) ): self.print_choice(a__ ) forceWrite("\n" ) move_cursor(len(self.choices ) - self.position , "UP" ) with cursor.hide(): while True: if in_colab: try: snake_case_ = int(builtins.input() ) except ValueError: snake_case_ = default_choice else: snake_case_ = self.handle_input() if choice is not None: reset_cursor() for _ in range(len(self.choices ) + 1 ): move_cursor(1 , "UP" ) clear_line() self.write_choice(a__ , "\n" ) return choice
85
0
"""simple docstring""" from __future__ import annotations import copy import inspect import json import math import os import tempfile import unittest from importlib import import_module import numpy as np from transformers import ViTMAEConfig from transformers.file_utils import cached_property, is_tf_available, is_vision_available from transformers.testing_utils import require_tf, require_vision, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFViTMAEForPreTraining, TFViTMAEModel if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class __a : '''simple docstring''' def __init__( self , _a , _a=13 , _a=30 , _a=2 , _a=3 , _a=True , _a=True , _a=32 , _a=2 , _a=4 , _a=37 , _a="gelu" , _a=0.1 , _a=0.1 , _a=10 , _a=0.02 , _a=3 , _a=0.6 , _a=None , ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE__ : Any = parent SCREAMING_SNAKE_CASE__ : int = batch_size SCREAMING_SNAKE_CASE__ : Dict = image_size SCREAMING_SNAKE_CASE__ : Optional[int] = patch_size SCREAMING_SNAKE_CASE__ : List[Any] = num_channels SCREAMING_SNAKE_CASE__ : Optional[Any] = is_training SCREAMING_SNAKE_CASE__ : Dict = use_labels SCREAMING_SNAKE_CASE__ : List[str] = hidden_size SCREAMING_SNAKE_CASE__ : str = num_hidden_layers SCREAMING_SNAKE_CASE__ : List[str] = num_attention_heads SCREAMING_SNAKE_CASE__ : int = intermediate_size SCREAMING_SNAKE_CASE__ : Optional[Any] = hidden_act SCREAMING_SNAKE_CASE__ : int = hidden_dropout_prob SCREAMING_SNAKE_CASE__ : Any = attention_probs_dropout_prob SCREAMING_SNAKE_CASE__ : List[Any] = type_sequence_label_size SCREAMING_SNAKE_CASE__ : int = initializer_range SCREAMING_SNAKE_CASE__ : List[str] = mask_ratio SCREAMING_SNAKE_CASE__ : Dict = scope # in ViTMAE, the expected sequence length = (num_patches + 1) * (1 - config.mask_ratio), rounded above # (we add 1 for the [CLS] token) SCREAMING_SNAKE_CASE__ : Optional[int] = (image_size // patch_size) ** 2 SCREAMING_SNAKE_CASE__ : Union[str, Any] = int(math.ceil((1 - mask_ratio) * (num_patches + 1) ) ) def _a ( self ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[str] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE__ : List[str] = None if self.use_labels: SCREAMING_SNAKE_CASE__ : Optional[int] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) SCREAMING_SNAKE_CASE__ : List[Any] = self.get_config() return config, pixel_values, labels def _a ( self ) -> Any: """simple docstring""" return ViTMAEConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , decoder_hidden_size=self.hidden_size , decoder_num_hidden_layers=self.num_hidden_layers , decoder_num_attention_heads=self.num_attention_heads , decoder_intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=A_ , initializer_range=self.initializer_range , mask_ratio=self.mask_ratio , ) def _a ( self , _a , _a , _a ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE__ : int = TFViTMAEModel(config=A_ ) SCREAMING_SNAKE_CASE__ : List[Any] = model(A_ , training=A_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _a ( self , _a , _a , _a ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[Any] = TFViTMAEForPreTraining(A_ ) SCREAMING_SNAKE_CASE__ : Tuple = model(A_ , training=A_ ) # expected sequence length = num_patches SCREAMING_SNAKE_CASE__ : str = (self.image_size // self.patch_size) ** 2 SCREAMING_SNAKE_CASE__ : Optional[Any] = self.patch_size**2 * self.num_channels self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) ) # test greyscale images SCREAMING_SNAKE_CASE__ : Tuple = 1 SCREAMING_SNAKE_CASE__ : Tuple = TFViTMAEForPreTraining(A_ ) SCREAMING_SNAKE_CASE__ : Any = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE__ : str = model(A_ , training=A_ ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.patch_size**2 self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) ) def _a ( self ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.prepare_config_and_inputs() ((SCREAMING_SNAKE_CASE__) , (SCREAMING_SNAKE_CASE__) , (SCREAMING_SNAKE_CASE__)) : Optional[int] = config_and_inputs SCREAMING_SNAKE_CASE__ : Union[str, Any] = {"""pixel_values""": pixel_values} return config, inputs_dict @require_tf class __a (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , unittest.TestCase): '''simple docstring''' _SCREAMING_SNAKE_CASE :Union[str, Any] = (TFViTMAEModel, TFViTMAEForPreTraining) if is_tf_available() else () _SCREAMING_SNAKE_CASE :Optional[int] = {"feature-extraction": TFViTMAEModel} if is_tf_available() else {} _SCREAMING_SNAKE_CASE :Optional[Any] = False _SCREAMING_SNAKE_CASE :Optional[Any] = False _SCREAMING_SNAKE_CASE :Dict = False _SCREAMING_SNAKE_CASE :List[str] = False def _a ( self ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[Any] = TFViTMAEModelTester(self ) SCREAMING_SNAKE_CASE__ : Dict = ConfigTester(self , config_class=A_ , has_text_modality=A_ , hidden_size=37 ) def _a ( self ) -> Dict: """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason="""ViTMAE does not use inputs_embeds""" ) def _a ( self ) -> List[Any]: """simple docstring""" pass def _a ( self ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE__ : List[Any] = model_class(A_ ) self.assertIsInstance(model.get_input_embeddings() , (tf.keras.layers.Layer) ) SCREAMING_SNAKE_CASE__ : Tuple = model.get_output_embeddings() self.assertTrue(x is None or isinstance(A_ , tf.keras.layers.Layer ) ) def _a ( self ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE__ : int = model_class(A_ ) SCREAMING_SNAKE_CASE__ : List[str] = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic SCREAMING_SNAKE_CASE__ : Dict = [*signature.parameters.keys()] SCREAMING_SNAKE_CASE__ : Any = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , A_ ) def _a ( self ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A_ ) def _a ( self ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*A_ ) def _a ( self ) -> List[str]: """simple docstring""" np.random.seed(2 ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : str = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE__ : Union[str, Any] = int((config.image_size // config.patch_size) ** 2 ) SCREAMING_SNAKE_CASE__ : int = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE__ : List[Any] = model_class(A_ ) SCREAMING_SNAKE_CASE__ : int = self._prepare_for_class(A_ , A_ ) SCREAMING_SNAKE_CASE__ : str = model(A_ , noise=A_ ) SCREAMING_SNAKE_CASE__ : List[Any] = copy.deepcopy(self._prepare_for_class(A_ , A_ ) ) SCREAMING_SNAKE_CASE__ : str = model(**A_ , noise=A_ ) SCREAMING_SNAKE_CASE__ : str = outputs_dict[0].numpy() SCREAMING_SNAKE_CASE__ : Optional[int] = outputs_keywords[0].numpy() self.assertLess(np.sum(np.abs(output_dict - output_keywords ) ) , 1E-6 ) def _a ( self ) -> int: """simple docstring""" np.random.seed(2 ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Any = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE__ : Dict = int((config.image_size // config.patch_size) ** 2 ) SCREAMING_SNAKE_CASE__ : List[str] = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) def prepare_numpy_arrays(_a ): SCREAMING_SNAKE_CASE__ : List[Any] = {} for k, v in inputs_dict.items(): if tf.is_tensor(A_ ): SCREAMING_SNAKE_CASE__ : int = v.numpy() else: SCREAMING_SNAKE_CASE__ : Tuple = np.array(A_ ) return inputs_np_dict for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE__ : List[Any] = model_class(A_ ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = self._prepare_for_class(A_ , A_ ) SCREAMING_SNAKE_CASE__ : Any = prepare_numpy_arrays(A_ ) SCREAMING_SNAKE_CASE__ : Tuple = model(A_ , noise=A_ ) SCREAMING_SNAKE_CASE__ : str = model(**A_ , noise=A_ ) self.assert_outputs_same(A_ , A_ ) def _a ( self , _a , _a , _a ) -> List[Any]: """simple docstring""" np.random.seed(2 ) SCREAMING_SNAKE_CASE__ : List[Any] = int((tf_model.config.image_size // tf_model.config.patch_size) ** 2 ) SCREAMING_SNAKE_CASE__ : Optional[Any] = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) SCREAMING_SNAKE_CASE__ : Optional[Any] = tf.constant(A_ ) # Add `noise` argument. # PT inputs will be prepared in `super().check_pt_tf_models()` with this added `noise` argument SCREAMING_SNAKE_CASE__ : Any = tf_noise super().check_pt_tf_models(A_ , A_ , A_ ) def _a ( self ) -> Dict: """simple docstring""" np.random.seed(2 ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE__ : List[Any] = { module_member for model_class in self.all_model_classes for module in (import_module(model_class.__module__ ),) for module_member_name in dir(A_ ) if module_member_name.endswith("""MainLayer""" ) # This condition is required, since `modeling_tf_clip.py` has 3 classes whose names end with `MainLayer`. and module_member_name[: -len("""MainLayer""" )] == model_class.__name__[: -len("""Model""" )] for module_member in (getattr(A_ , A_ ),) if isinstance(A_ , A_ ) and tf.keras.layers.Layer in module_member.__bases__ and getattr(A_ , """_keras_serializable""" , A_ ) } SCREAMING_SNAKE_CASE__ : Union[str, Any] = int((config.image_size // config.patch_size) ** 2 ) SCREAMING_SNAKE_CASE__ : List[str] = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) SCREAMING_SNAKE_CASE__ : Optional[Any] = tf.convert_to_tensor(A_ ) inputs_dict.update({"""noise""": noise} ) for main_layer_class in tf_main_layer_classes: SCREAMING_SNAKE_CASE__ : Optional[int] = main_layer_class(A_ ) SCREAMING_SNAKE_CASE__ : Any = { name: tf.keras.Input(tensor.shape[1:] , dtype=tensor.dtype ) for name, tensor in inputs_dict.items() } SCREAMING_SNAKE_CASE__ : Tuple = tf.keras.Model(A_ , outputs=main_layer(A_ ) ) SCREAMING_SNAKE_CASE__ : Dict = model(A_ ) with tempfile.TemporaryDirectory() as tmpdirname: SCREAMING_SNAKE_CASE__ : int = os.path.join(A_ , """keras_model.h5""" ) model.save(A_ ) SCREAMING_SNAKE_CASE__ : str = tf.keras.models.load_model( A_ , custom_objects={main_layer_class.__name__: main_layer_class} ) assert isinstance(A_ , tf.keras.Model ) SCREAMING_SNAKE_CASE__ : Optional[Any] = model(A_ ) self.assert_outputs_same(A_ , A_ ) @slow def _a ( self ) -> int: """simple docstring""" np.random.seed(2 ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Dict = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE__ : Optional[int] = int((config.image_size // config.patch_size) ** 2 ) SCREAMING_SNAKE_CASE__ : Optional[Any] = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE__ : Optional[Any] = model_class(A_ ) SCREAMING_SNAKE_CASE__ : Any = self._prepare_for_class(A_ , A_ ) SCREAMING_SNAKE_CASE__ : Dict = model(A_ , noise=A_ ) if model_class.__name__ == "TFViTMAEModel": SCREAMING_SNAKE_CASE__ : Any = outputs.last_hidden_state.numpy() SCREAMING_SNAKE_CASE__ : Tuple = 0 else: SCREAMING_SNAKE_CASE__ : List[Any] = outputs.logits.numpy() SCREAMING_SNAKE_CASE__ : List[str] = 0 with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(A_ , saved_model=A_ ) SCREAMING_SNAKE_CASE__ : List[Any] = model_class.from_pretrained(A_ ) SCREAMING_SNAKE_CASE__ : Optional[int] = model(A_ , noise=A_ ) if model_class.__name__ == "TFViTMAEModel": SCREAMING_SNAKE_CASE__ : Optional[int] = after_outputs["""last_hidden_state"""].numpy() SCREAMING_SNAKE_CASE__ : int = 0 else: SCREAMING_SNAKE_CASE__ : Union[str, Any] = after_outputs["""logits"""].numpy() SCREAMING_SNAKE_CASE__ : int = 0 SCREAMING_SNAKE_CASE__ : Dict = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(A_ , 1E-5 ) def _a ( self ) -> Optional[Any]: """simple docstring""" np.random.seed(2 ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : List[str] = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE__ : Any = int((config.image_size // config.patch_size) ** 2 ) SCREAMING_SNAKE_CASE__ : List[str] = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE__ : Optional[Any] = model_class(A_ ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = self._prepare_for_class(A_ , A_ ) SCREAMING_SNAKE_CASE__ : Dict = model(A_ , noise=A_ ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = model.get_config() # make sure that returned config is jsonifiable, which is required by keras json.dumps(A_ ) SCREAMING_SNAKE_CASE__ : List[str] = model_class.from_config(model.get_config() ) # make sure it also accepts a normal config SCREAMING_SNAKE_CASE__ : Optional[Any] = model_class.from_config(model.config ) SCREAMING_SNAKE_CASE__ : Dict = new_model(A_ ) # Build model new_model.set_weights(model.get_weights() ) SCREAMING_SNAKE_CASE__ : Optional[Any] = new_model(A_ , noise=A_ ) self.assert_outputs_same(A_ , A_ ) @unittest.skip( reason="""ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load\n to get deterministic results.""" ) def _a ( self ) -> List[str]: """simple docstring""" pass @unittest.skip(reason="""ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load""" ) def _a ( self ) -> Optional[Any]: """simple docstring""" pass @slow def _a ( self ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Tuple = TFViTMAEModel.from_pretrained("""google/vit-base-patch16-224""" ) self.assertIsNotNone(A_ ) def _lowercase ( ) -> Optional[int]: SCREAMING_SNAKE_CASE__ : str = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_tf @require_vision class __a (unittest.TestCase): '''simple docstring''' @cached_property def _a ( self ) -> Tuple: """simple docstring""" return ViTImageProcessor.from_pretrained("""facebook/vit-mae-base""" ) if is_vision_available() else None @slow def _a ( self ) -> List[str]: """simple docstring""" np.random.seed(2 ) SCREAMING_SNAKE_CASE__ : Optional[Any] = TFViTMAEForPreTraining.from_pretrained("""facebook/vit-mae-base""" ) SCREAMING_SNAKE_CASE__ : str = self.default_image_processor SCREAMING_SNAKE_CASE__ : Any = prepare_img() SCREAMING_SNAKE_CASE__ : Any = image_processor(images=A_ , return_tensors="""tf""" ) # prepare a noise vector that will be also used for testing the TF model # (this way we can ensure that the PT and TF models operate on the same inputs) SCREAMING_SNAKE_CASE__ : List[Any] = ViTMAEConfig() SCREAMING_SNAKE_CASE__ : Optional[Any] = int((vit_mae_config.image_size // vit_mae_config.patch_size) ** 2 ) SCREAMING_SNAKE_CASE__ : List[str] = np.random.uniform(size=(1, num_patches) ) # forward pass SCREAMING_SNAKE_CASE__ : Union[str, Any] = model(**A_ , noise=A_ ) # verify the logits SCREAMING_SNAKE_CASE__ : Any = tf.convert_to_tensor([1, 196, 768] ) self.assertEqual(outputs.logits.shape , A_ ) SCREAMING_SNAKE_CASE__ : Optional[int] = tf.convert_to_tensor( [[-0.0_548, -1.7_023, -0.9_325], [0.3_721, -0.5_670, -0.2_233], [0.8_235, -1.3_878, -0.3_524]] ) tf.debugging.assert_near(outputs.logits[0, :3, :3] , A_ , atol=1E-4 )
371
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available a :Dict = { "configuration_rag": ["RagConfig"], "retrieval_rag": ["RagRetriever"], "tokenization_rag": ["RagTokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a :Optional[int] = [ "RagModel", "RagPreTrainedModel", "RagSequenceForGeneration", "RagTokenForGeneration", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a :List[str] = [ "TFRagModel", "TFRagPreTrainedModel", "TFRagSequenceForGeneration", "TFRagTokenForGeneration", ] if TYPE_CHECKING: from .configuration_rag import RagConfig from .retrieval_rag import RagRetriever from .tokenization_rag import RagTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_rag import RagModel, RagPreTrainedModel, RagSequenceForGeneration, RagTokenForGeneration try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_rag import ( TFRagModel, TFRagPreTrainedModel, TFRagSequenceForGeneration, TFRagTokenForGeneration, ) else: import sys a :List[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
56
0
from collections import defaultdict def lowerCAmelCase__( lowercase : int ) -> int: __snake_case : str = 1 __snake_case : Optional[Any] = True for v in tree[start]: if v not in visited: ret += dfs(__A ) if ret % 2 == 0: cuts.append(__A ) return ret def lowerCAmelCase__( ) -> Dict: dfs(1 ) if __name__ == "__main__": _UpperCamelCase = 10, 9 _UpperCamelCase = defaultdict(list) _UpperCamelCase = {} _UpperCamelCase = [] _UpperCamelCase = 0 _UpperCamelCase = [(2, 1), (3, 1), (4, 3), (5, 2), (6, 1), (7, 2), (8, 6), (9, 8), (10, 8)] for u, v in edges: tree[u].append(v) tree[v].append(u) even_tree() print(len(cuts) - 1)
326
import inspect import re from hashlib import shaaaa from typing import Dict, List from .arrow import arrow from .audiofolder import audiofolder from .csv import csv from .imagefolder import imagefolder from .json import json from .pandas import pandas from .parquet import parquet from .sql import sql # noqa F401 from .text import text def SCREAMING_SNAKE_CASE_ ( __A : List[str] ) -> str: """simple docstring""" a_ : Tuple = [] for line in lines: a_ : Any = re.sub(R'#.*' , '' , __A ) # remove comments if line: filtered_lines.append(__A ) a_ : Tuple = '\n'.join(__A ) # Make a hash from all this code a_ : Tuple = full_str.encode('utf-8' ) return shaaaa(__A ).hexdigest() # get importable module names and hash for caching UpperCAmelCase_ : List[Any] = { 'csv': (csv.__name__, _hash_python_lines(inspect.getsource(csv).splitlines())), 'json': (json.__name__, _hash_python_lines(inspect.getsource(json).splitlines())), 'pandas': (pandas.__name__, _hash_python_lines(inspect.getsource(pandas).splitlines())), 'parquet': (parquet.__name__, _hash_python_lines(inspect.getsource(parquet).splitlines())), 'arrow': (arrow.__name__, _hash_python_lines(inspect.getsource(arrow).splitlines())), 'text': (text.__name__, _hash_python_lines(inspect.getsource(text).splitlines())), 'imagefolder': (imagefolder.__name__, _hash_python_lines(inspect.getsource(imagefolder).splitlines())), 'audiofolder': (audiofolder.__name__, _hash_python_lines(inspect.getsource(audiofolder).splitlines())), } # Used to infer the module to use based on the data files extensions UpperCAmelCase_ : Dict = { '.csv': ('csv', {}), '.tsv': ('csv', {'sep': '\t'}), '.json': ('json', {}), '.jsonl': ('json', {}), '.parquet': ('parquet', {}), '.arrow': ('arrow', {}), '.txt': ('text', {}), } _EXTENSION_TO_MODULE.update({ext: ('imagefolder', {}) for ext in imagefolder.ImageFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext.upper(): ('imagefolder', {}) for ext in imagefolder.ImageFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext: ('audiofolder', {}) for ext in audiofolder.AudioFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext.upper(): ('audiofolder', {}) for ext in audiofolder.AudioFolder.EXTENSIONS}) UpperCAmelCase_ : Optional[int] = {'imagefolder', 'audiofolder'} # Used to filter data files based on extensions given a module name UpperCAmelCase_ : Dict[str, List[str]] = {} for _ext, (_module, _) in _EXTENSION_TO_MODULE.items(): _MODULE_TO_EXTENSIONS.setdefault(_module, []).append(_ext) _MODULE_TO_EXTENSIONS["imagefolder"].append('.zip') _MODULE_TO_EXTENSIONS["audiofolder"].append('.zip')
32
0
'''simple docstring''' class UpperCAmelCase : '''simple docstring''' def __init__( self , __lowerCAmelCase ) -> Tuple: lowercase__ : Tuple = set_counts lowercase__ : Union[str, Any] = max(_a ) lowercase__ : Optional[int] = len(_a ) lowercase__ : Union[str, Any] = [1] * num_sets lowercase__ : List[str] = list(range(_a ) ) def _lowerCAmelCase( self , __lowerCAmelCase , __lowerCAmelCase ) -> Tuple: lowercase__ : Tuple = self.get_parent(_a ) lowercase__ : Any = self.get_parent(_a ) if src_parent == dst_parent: return False if self.ranks[dst_parent] >= self.ranks[src_parent]: self.set_counts[dst_parent] += self.set_counts[src_parent] lowercase__ : Any = 0 lowercase__ : List[str] = dst_parent if self.ranks[dst_parent] == self.ranks[src_parent]: self.ranks[dst_parent] += 1 lowercase__ : Optional[int] = self.set_counts[dst_parent] else: self.set_counts[src_parent] += self.set_counts[dst_parent] lowercase__ : Tuple = 0 lowercase__ : Union[str, Any] = src_parent lowercase__ : List[Any] = self.set_counts[src_parent] lowercase__ : List[str] = max(self.max_set , _a ) return True def _lowerCAmelCase( self , __lowerCAmelCase ) -> str: if self.parents[disj_set] == disj_set: return disj_set lowercase__ : Any = self.get_parent(self.parents[disj_set] ) return self.parents[disj_set]
355
'''simple docstring''' import re from filelock import FileLock try: import nltk __a: Tuple = True except (ImportError, ModuleNotFoundError): __a: List[Any] = False if NLTK_AVAILABLE: with FileLock(""".lock""") as lock: nltk.download("""punkt""", quiet=True) def __UpperCamelCase ( UpperCAmelCase ): re.sub('''<n>''' , '''''' , UpperCAmelCase ) # remove pegasus newline char assert NLTK_AVAILABLE, "nltk must be installed to separate newlines between sentences. (pip install nltk)" return "\n".join(nltk.sent_tokenize(UpperCAmelCase ) )
214
0
'''simple docstring''' def _A ( snake_case ) -> int: _lowercase : Optional[Any] = 1 for i in range(1 , num + 1 ): fact *= i return fact def _A ( snake_case ) -> int: _lowercase : List[str] = 0 while number > 0: _lowercase : int = number % 10 sum_of_digits += last_digit _lowercase : Optional[int] = number // 10 # Removing the last_digit from the given number return sum_of_digits def _A ( snake_case = 1_00 ) -> int: _lowercase : List[str] = factorial(snake_case ) _lowercase : int = split_and_add(snake_case ) return result if __name__ == "__main__": print(solution(int(input('Enter the Number: ').strip())))
250
'''simple docstring''' _snake_case = 8.3_1_4_4_5_9_8 def _A ( snake_case , snake_case ) -> float: if temperature < 0: raise Exception("Temperature cannot be less than 0 K" ) if molar_mass <= 0: raise Exception("Molar mass cannot be less than or equal to 0 kg/mol" ) else: return (3 * UNIVERSAL_GAS_CONSTANT * temperature / molar_mass) ** 0.5 if __name__ == "__main__": import doctest # run doctest doctest.testmod() # example _snake_case = 300 _snake_case = 28 _snake_case = rms_speed_of_molecule(temperature, molar_mass) print(F'''Vrms of Nitrogen gas at 300 K is {vrms} m/s''')
250
1
import argparse import logging import sys from unittest.mock import patch import run_glue_deebert from transformers.testing_utils import TestCasePlus, get_gpu_count, require_torch_non_multi_gpu, slow logging.basicConfig(level=logging.DEBUG) __UpperCAmelCase : Union[str, Any] = logging.getLogger() def a ( ): """simple docstring""" UpperCamelCase : List[Any] = argparse.ArgumentParser() parser.add_argument('''-f''' ) UpperCamelCase : List[str] = parser.parse_args() return args.f class UpperCAmelCase_ ( _a): '''simple docstring''' def _lowercase ( self ): """simple docstring""" UpperCamelCase : List[str] = logging.StreamHandler(sys.stdout ) logger.addHandler(__SCREAMING_SNAKE_CASE ) def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase : Dict = get_gpu_count() if n_gpu > 1: pass # XXX: doesn't quite work with n_gpu > 1 https://github.com/huggingface/transformers/issues/10560 # script = f"{self.examples_dir_str}/research_projects/deebert/run_glue_deebert.py" # distributed_args = f"-m torch.distributed.launch --nproc_per_node={n_gpu} {script}".split() # cmd = [sys.executable] + distributed_args + args # execute_subprocess_async(cmd, env=self.get_env()) # XXX: test the results - need to save them first into .json file else: args.insert(0 , '''run_glue_deebert.py''' ) with patch.object(__SCREAMING_SNAKE_CASE , '''argv''' , __SCREAMING_SNAKE_CASE ): UpperCamelCase : int = run_glue_deebert.main() for value in result.values(): self.assertGreaterEqual(__SCREAMING_SNAKE_CASE , 0.666 ) @slow @require_torch_non_multi_gpu def _lowercase ( self ): """simple docstring""" UpperCamelCase : Any = ''' --model_type roberta --model_name_or_path roberta-base --task_name MRPC --do_train --do_eval --do_lower_case --data_dir ./tests/fixtures/tests_samples/MRPC/ --max_seq_length 128 --per_gpu_eval_batch_size=1 --per_gpu_train_batch_size=8 --learning_rate 2e-4 --num_train_epochs 3 --overwrite_output_dir --seed 42 --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage --plot_data_dir ./examples/deebert/results/ --save_steps 0 --overwrite_cache --eval_after_first_stage '''.split() self.run_and_check(__SCREAMING_SNAKE_CASE ) UpperCamelCase : Dict = ''' --model_type roberta --model_name_or_path ./examples/deebert/saved_models/roberta-base/MRPC/two_stage --task_name MRPC --do_eval --do_lower_case --data_dir ./tests/fixtures/tests_samples/MRPC/ --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage --plot_data_dir ./examples/deebert/results/ --max_seq_length 128 --eval_each_highway --eval_highway --overwrite_cache --per_gpu_eval_batch_size=1 '''.split() self.run_and_check(__SCREAMING_SNAKE_CASE ) UpperCamelCase : Union[str, Any] = ''' --model_type roberta --model_name_or_path ./examples/deebert/saved_models/roberta-base/MRPC/two_stage --task_name MRPC --do_eval --do_lower_case --data_dir ./tests/fixtures/tests_samples/MRPC/ --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage --plot_data_dir ./examples/deebert/results/ --max_seq_length 128 --early_exit_entropy 0.1 --eval_highway --overwrite_cache --per_gpu_eval_batch_size=1 '''.split() self.run_and_check(__SCREAMING_SNAKE_CASE )
351
from __future__ import annotations import collections import pprint from pathlib import Path def a ( SCREAMING_SNAKE_CASE_ : str ): """simple docstring""" return "".join(sorted(SCREAMING_SNAKE_CASE_ ) ) def a ( SCREAMING_SNAKE_CASE_ : str ): """simple docstring""" return word_by_signature[signature(SCREAMING_SNAKE_CASE_ )] __UpperCAmelCase : str = Path(__file__).parent.joinpath("words.txt").read_text(encoding="utf-8") __UpperCAmelCase : Tuple = sorted({word.strip().lower() for word in data.splitlines()}) __UpperCAmelCase : Union[str, Any] = collections.defaultdict(list) for word in word_list: word_by_signature[signature(word)].append(word) if __name__ == "__main__": __UpperCAmelCase : int = {word: anagram(word) for word in word_list if len(anagram(word)) > 1} with open("anagrams.txt", "w") as file: file.write("all_anagrams = \n ") file.write(pprint.pformat(all_anagrams))
315
0
"""simple docstring""" import argparse import requests import torch from PIL import Image from transformers import CLIPProcessor, GroupViTConfig, GroupViTModel def lowerCamelCase_ (UpperCamelCase__ : List[Any] ): # vision encoder if "img_encoder.pos_embed" in name: _UpperCAmelCase : Union[str, Any] = name.replace('''img_encoder.pos_embed''' , '''vision_model.embeddings.position_embeddings''' ) if "img_encoder.patch_embed.proj" in name: _UpperCAmelCase : int = name.replace('''img_encoder.patch_embed.proj''' , '''vision_model.embeddings.patch_embeddings.projection''' ) if "img_encoder.patch_embed.norm" in name: _UpperCAmelCase : List[str] = name.replace('''img_encoder.patch_embed.norm''' , '''vision_model.embeddings.layernorm''' ) if "img_encoder.layers" in name: _UpperCAmelCase : Any = name.replace('''img_encoder.layers''' , '''vision_model.encoder.stages''' ) if "blocks" in name and "res" not in name: _UpperCAmelCase : Union[str, Any] = name.replace('''blocks''' , '''layers''' ) if "attn" in name and "pre_assign" not in name: _UpperCAmelCase : Union[str, Any] = name.replace('''attn''' , '''self_attn''' ) if "proj" in name and "self_attn" in name and "text" not in name: _UpperCAmelCase : List[str] = name.replace('''proj''' , '''out_proj''' ) if "pre_assign_attn.attn.proj" in name: _UpperCAmelCase : List[Any] = name.replace('''pre_assign_attn.attn.proj''' , '''pre_assign_attn.attn.out_proj''' ) if "norm1" in name: _UpperCAmelCase : str = name.replace('''norm1''' , '''layer_norm1''' ) if "norm2" in name and "pre_assign" not in name: _UpperCAmelCase : Any = name.replace('''norm2''' , '''layer_norm2''' ) if "img_encoder.norm" in name: _UpperCAmelCase : Optional[Any] = name.replace('''img_encoder.norm''' , '''vision_model.layernorm''' ) # text encoder if "text_encoder.token_embedding" in name: _UpperCAmelCase : Union[str, Any] = name.replace('''text_encoder.token_embedding''' , '''text_model.embeddings.token_embedding''' ) if "text_encoder.positional_embedding" in name: _UpperCAmelCase : List[str] = name.replace('''text_encoder.positional_embedding''' , '''text_model.embeddings.position_embedding.weight''' ) if "text_encoder.transformer.resblocks." in name: _UpperCAmelCase : List[Any] = name.replace('''text_encoder.transformer.resblocks.''' , '''text_model.encoder.layers.''' ) if "ln_1" in name: _UpperCAmelCase : Optional[int] = name.replace('''ln_1''' , '''layer_norm1''' ) if "ln_2" in name: _UpperCAmelCase : int = name.replace('''ln_2''' , '''layer_norm2''' ) if "c_fc" in name: _UpperCAmelCase : List[str] = name.replace('''c_fc''' , '''fc1''' ) if "c_proj" in name: _UpperCAmelCase : str = name.replace('''c_proj''' , '''fc2''' ) if "text_encoder" in name: _UpperCAmelCase : List[str] = name.replace('''text_encoder''' , '''text_model''' ) if "ln_final" in name: _UpperCAmelCase : Dict = name.replace('''ln_final''' , '''final_layer_norm''' ) # projection layers if "img_projector.linear_hidden." in name: _UpperCAmelCase : Dict = name.replace('''img_projector.linear_hidden.''' , '''visual_projection.''' ) if "img_projector.linear_out." in name: _UpperCAmelCase : Union[str, Any] = name.replace('''img_projector.linear_out.''' , '''visual_projection.3.''' ) if "text_projector.linear_hidden" in name: _UpperCAmelCase : Dict = name.replace('''text_projector.linear_hidden''' , '''text_projection''' ) if "text_projector.linear_out" in name: _UpperCAmelCase : Tuple = name.replace('''text_projector.linear_out''' , '''text_projection.3''' ) return name def lowerCamelCase_ (UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : str ): for key in orig_state_dict.copy().keys(): _UpperCAmelCase : Union[str, Any] = orig_state_dict.pop(UpperCamelCase__ ) if "qkv" in key: # weights and biases of the key, value and query projections of vision encoder's attention layers require special treatment: # we need to split them up into separate matrices/vectors _UpperCAmelCase : int = key.split('''.''' ) _UpperCAmelCase , _UpperCAmelCase : List[Any] = int(key_split[2] ), int(key_split[4] ) _UpperCAmelCase : Tuple = config.vision_config.hidden_size if "weight" in key: _UpperCAmelCase : Optional[Any] = val[:dim, :] _UpperCAmelCase : List[Any] = val[dim : dim * 2, :] _UpperCAmelCase : str = val[-dim:, :] else: _UpperCAmelCase : Dict = val[:dim] _UpperCAmelCase : List[Any] = val[dim : dim * 2] _UpperCAmelCase : List[Any] = val[-dim:] elif "in_proj" in key: # weights and biases of the key, value and query projections of text encoder's attention layers require special treatment: # we need to split them up into separate matrices/vectors _UpperCAmelCase : Optional[int] = key.split('''.''' ) _UpperCAmelCase : int = int(key_split[3] ) _UpperCAmelCase : int = config.text_config.hidden_size if "weight" in key: _UpperCAmelCase : Union[str, Any] = val[:dim, :] _UpperCAmelCase : Any = val[ dim : dim * 2, : ] _UpperCAmelCase : Optional[Any] = val[-dim:, :] else: _UpperCAmelCase : Optional[int] = val[:dim] _UpperCAmelCase : List[str] = val[dim : dim * 2] _UpperCAmelCase : List[str] = val[-dim:] else: _UpperCAmelCase : Optional[Any] = rename_key(UpperCamelCase__ ) # squeeze if necessary if ( "text_projection.0" in new_name or "text_projection.3" in new_name or "visual_projection.0" in new_name or "visual_projection.3" in new_name ): _UpperCAmelCase : Union[str, Any] = val.squeeze_() else: _UpperCAmelCase : str = val return orig_state_dict def lowerCamelCase_ (): _UpperCAmelCase : List[str] = '''http://images.cocodataset.org/val2017/000000039769.jpg''' _UpperCAmelCase : int = Image.open(requests.get(UpperCamelCase__ , stream=UpperCamelCase__ ).raw ) return im @torch.no_grad() def lowerCamelCase_ (UpperCamelCase__ : Any , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : Optional[Any]="groupvit-gcc-yfcc" , UpperCamelCase__ : Any=False ): _UpperCAmelCase : Any = GroupViTConfig() _UpperCAmelCase : int = GroupViTModel(UpperCamelCase__ ).eval() _UpperCAmelCase : Any = torch.load(UpperCamelCase__ , map_location='''cpu''' )['''model'''] _UpperCAmelCase : List[Any] = convert_state_dict(UpperCamelCase__ , UpperCamelCase__ ) _UpperCAmelCase , _UpperCAmelCase : List[Any] = model.load_state_dict(UpperCamelCase__ , strict=UpperCamelCase__ ) assert missing_keys == ["text_model.embeddings.position_ids"] assert (unexpected_keys == ["multi_label_logit_scale"]) or (len(UpperCamelCase__ ) == 0) # verify result _UpperCAmelCase : Any = CLIPProcessor.from_pretrained('''openai/clip-vit-base-patch32''' ) _UpperCAmelCase : Optional[Any] = prepare_img() _UpperCAmelCase : Dict = processor(text=['''a photo of a cat''', '''a photo of a dog'''] , images=UpperCamelCase__ , padding=UpperCamelCase__ , return_tensors='''pt''' ) with torch.no_grad(): _UpperCAmelCase : Dict = model(**UpperCamelCase__ ) if model_name == "groupvit-gcc-yfcc": _UpperCAmelCase : Tuple = torch.tensor([[13.3523, 6.3629]] ) elif model_name == "groupvit-gcc-redcaps": _UpperCAmelCase : str = torch.tensor([[16.1873, 8.6230]] ) else: raise ValueError(F'Model name {model_name} not supported.' ) assert torch.allclose(outputs.logits_per_image , UpperCamelCase__ , atol=1E-3 ) processor.save_pretrained(UpperCamelCase__ ) model.save_pretrained(UpperCamelCase__ ) print('''Successfully saved processor and model to''' , UpperCamelCase__ ) if push_to_hub: print('''Pushing to the hub...''' ) processor.push_to_hub(UpperCamelCase__ , organization='''nielsr''' ) model.push_to_hub(UpperCamelCase__ , organization='''nielsr''' ) if __name__ == "__main__": _lowerCAmelCase :Optional[int] = argparse.ArgumentParser() parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to dump the processor and PyTorch model.' ) parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to GroupViT checkpoint') parser.add_argument( '--model_name', default='groupvit-gccy-fcc', type=str, help='Name of the model. Expecting either \'groupvit-gcc-yfcc\' or \'groupvit-gcc-redcaps\'', ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model and processor to the 🤗 hub using the provided `model_name`.', ) _lowerCAmelCase :Any = parser.parse_args() convert_groupvit_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.model_name, args.push_to_hub)
263
"""simple docstring""" import unittest from queue import Empty from threading import Thread from transformers import AutoTokenizer, TextIteratorStreamer, TextStreamer, is_torch_available from transformers.testing_utils import CaptureStdout, require_torch, torch_device from ..test_modeling_common import ids_tensor if is_torch_available(): import torch from transformers import AutoModelForCausalLM @require_torch class _UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def __lowerCAmelCase ( self ) -> List[str]: _UpperCAmelCase : Any = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) _UpperCAmelCase : Dict = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(A ) _UpperCAmelCase : List[str] = -1 _UpperCAmelCase : List[str] = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(A ) _UpperCAmelCase : List[str] = model.generate(A , max_new_tokens=1_0 , do_sample=A ) _UpperCAmelCase : List[Any] = tokenizer.decode(greedy_ids[0] ) with CaptureStdout() as cs: _UpperCAmelCase : str = TextStreamer(A ) model.generate(A , max_new_tokens=1_0 , do_sample=A , streamer=A ) # The greedy text should be printed to stdout, except for the final "\n" in the streamer _UpperCAmelCase : List[str] = cs.out[:-1] self.assertEqual(A , A ) def __lowerCAmelCase ( self ) -> Dict: _UpperCAmelCase : List[str] = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) _UpperCAmelCase : List[Any] = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(A ) _UpperCAmelCase : List[Any] = -1 _UpperCAmelCase : Union[str, Any] = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(A ) _UpperCAmelCase : List[Any] = model.generate(A , max_new_tokens=1_0 , do_sample=A ) _UpperCAmelCase : str = tokenizer.decode(greedy_ids[0] ) _UpperCAmelCase : Union[str, Any] = TextIteratorStreamer(A ) _UpperCAmelCase : Any = {'''input_ids''': input_ids, '''max_new_tokens''': 1_0, '''do_sample''': False, '''streamer''': streamer} _UpperCAmelCase : Any = Thread(target=model.generate , kwargs=A ) thread.start() _UpperCAmelCase : Any = '''''' for new_text in streamer: streamer_text += new_text self.assertEqual(A , A ) def __lowerCAmelCase ( self ) -> str: _UpperCAmelCase : Any = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) _UpperCAmelCase : str = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(A ) _UpperCAmelCase : Any = -1 _UpperCAmelCase : Dict = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(A ) _UpperCAmelCase : Dict = model.generate(A , max_new_tokens=1_0 , do_sample=A ) _UpperCAmelCase : Dict = greedy_ids[:, input_ids.shape[1] :] _UpperCAmelCase : List[str] = tokenizer.decode(new_greedy_ids[0] ) with CaptureStdout() as cs: _UpperCAmelCase : Any = TextStreamer(A , skip_prompt=A ) model.generate(A , max_new_tokens=1_0 , do_sample=A , streamer=A ) # The greedy text should be printed to stdout, except for the final "\n" in the streamer _UpperCAmelCase : Union[str, Any] = cs.out[:-1] self.assertEqual(A , A ) def __lowerCAmelCase ( self ) -> Optional[int]: # Tests that we can pass `decode_kwargs` to the streamer to control how the tokens are decoded. Must be tested # with actual models -- the dummy models' tokenizers are not aligned with their models, and # `skip_special_tokens=True` has no effect on them _UpperCAmelCase : int = AutoTokenizer.from_pretrained('''distilgpt2''' ) _UpperCAmelCase : Union[str, Any] = AutoModelForCausalLM.from_pretrained('''distilgpt2''' ).to(A ) _UpperCAmelCase : Tuple = -1 _UpperCAmelCase : int = torch.ones((1, 5) , device=A ).long() * model.config.bos_token_id with CaptureStdout() as cs: _UpperCAmelCase : Optional[Any] = TextStreamer(A , skip_special_tokens=A ) model.generate(A , max_new_tokens=1 , do_sample=A , streamer=A ) # The prompt contains a special token, so the streamer should not print it. As such, the output text, when # re-tokenized, must only contain one token _UpperCAmelCase : Tuple = cs.out[:-1] # Remove the final "\n" _UpperCAmelCase : int = tokenizer(A , return_tensors='''pt''' ) self.assertEqual(streamer_text_tokenized.input_ids.shape , (1, 1) ) def __lowerCAmelCase ( self ) -> Union[str, Any]: _UpperCAmelCase : Any = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) _UpperCAmelCase : Any = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(A ) _UpperCAmelCase : Dict = -1 _UpperCAmelCase : str = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(A ) _UpperCAmelCase : List[Any] = TextIteratorStreamer(A , timeout=0.001 ) _UpperCAmelCase : Union[str, Any] = {'''input_ids''': input_ids, '''max_new_tokens''': 1_0, '''do_sample''': False, '''streamer''': streamer} _UpperCAmelCase : Optional[Any] = Thread(target=model.generate , kwargs=A ) thread.start() # The streamer will timeout after 0.001 seconds, so an exception will be raised with self.assertRaises(A ): _UpperCAmelCase : Optional[Any] = '''''' for new_text in streamer: streamer_text += new_text
263
1
class __lowerCAmelCase ( UpperCamelCase__): pass class __lowerCAmelCase ( UpperCamelCase__): pass class __lowerCAmelCase : def __init__( self ) -> Tuple: '''simple docstring''' a__ : List[Any] =[ [], [], [], ] def _lowercase ( self , lowerCAmelCase__ , lowerCAmelCase__ ) -> None: '''simple docstring''' try: if len(self.queues[priority] ) >= 1_0_0: raise OverflowError("Maximum queue size is 100" ) self.queues[priority].append(lowerCAmelCase__ ) except IndexError: raise ValueError("Valid priorities are 0, 1, and 2" ) def _lowercase ( self ) -> int: '''simple docstring''' for queue in self.queues: if queue: return queue.pop(0 ) raise UnderFlowError("All queues are empty" ) def __str__( self ) -> str: '''simple docstring''' return "\n".join(F'''Priority {i}: {q}''' for i, q in enumerate(self.queues ) ) class __lowerCAmelCase : def __init__( self ) -> List[Any]: '''simple docstring''' a__ : Dict =[] def _lowercase ( self , lowerCAmelCase__ ) -> None: '''simple docstring''' if len(self.queue ) == 1_0_0: raise OverFlowError("Maximum queue size is 100" ) self.queue.append(lowerCAmelCase__ ) def _lowercase ( self ) -> int: '''simple docstring''' if not self.queue: raise UnderFlowError("The queue is empty" ) else: a__ : str =min(self.queue ) self.queue.remove(lowerCAmelCase__ ) return data def __str__( self ) -> str: '''simple docstring''' return str(self.queue ) def _A ( ): """simple docstring""" a__ : str =FixedPriorityQueue() fpq.enqueue(0 , 10 ) fpq.enqueue(1 , 70 ) fpq.enqueue(0 , 100 ) fpq.enqueue(2 , 1 ) fpq.enqueue(2 , 5 ) fpq.enqueue(1 , 7 ) fpq.enqueue(2 , 4 ) fpq.enqueue(1 , 64 ) fpq.enqueue(0 , 128 ) print(SCREAMING_SNAKE_CASE ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(SCREAMING_SNAKE_CASE ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) def _A ( ): """simple docstring""" a__ : Union[str, Any] =ElementPriorityQueue() epq.enqueue(10 ) epq.enqueue(70 ) epq.enqueue(100 ) epq.enqueue(1 ) epq.enqueue(5 ) epq.enqueue(7 ) epq.enqueue(4 ) epq.enqueue(64 ) epq.enqueue(128 ) print(SCREAMING_SNAKE_CASE ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(SCREAMING_SNAKE_CASE ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) if __name__ == "__main__": fixed_priority_queue() element_priority_queue()
148
def _A ( SCREAMING_SNAKE_CASE : float , SCREAMING_SNAKE_CASE : float ): """simple docstring""" return price * (1 + tax_rate) if __name__ == "__main__": print(F"""{price_plus_tax(100, 0.2_5) = }""") print(F"""{price_plus_tax(1_2_5.5_0, 0.0_5) = }""")
148
1
'''simple docstring''' import os from typing import Dict, List, Tuple, TypeVar, Union lowerCAmelCase_ : Optional[Any] = TypeVar('T') lowerCAmelCase_ : int = Union[List[T], Tuple[T, ...]] lowerCAmelCase_ : int = Union[T, List[T], Dict[str, T]] lowerCAmelCase_ : Tuple = Union[str, bytes, os.PathLike]
63
'''simple docstring''' import json import sys import tempfile import unittest from pathlib import Path import transformers from transformers import ( CONFIG_MAPPING, FEATURE_EXTRACTOR_MAPPING, AutoConfig, AutoFeatureExtractor, WavaVecaConfig, WavaVecaFeatureExtractor, ) from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, get_tests_dir sys.path.append(str(Path(__file__).parent.parent.parent.parent / 'utils')) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402 lowerCAmelCase_ : Any = get_tests_dir('fixtures') lowerCAmelCase_ : Union[str, Any] = get_tests_dir('fixtures/dummy_feature_extractor_config.json') lowerCAmelCase_ : Dict = get_tests_dir('fixtures/dummy-config.json') class __SCREAMING_SNAKE_CASE (unittest.TestCase ): """simple docstring""" def UpperCamelCase__ ( self : Optional[int] ): _a = 0 def UpperCamelCase__ ( self : str ): _a = AutoFeatureExtractor.from_pretrained("facebook/wav2vec2-base-960h" ) self.assertIsInstance(__a , __a ) def UpperCamelCase__ ( self : Tuple ): _a = AutoFeatureExtractor.from_pretrained(__a ) self.assertIsInstance(__a , __a ) def UpperCamelCase__ ( self : List[Any] ): with tempfile.TemporaryDirectory() as tmpdirname: _a = WavaVecaConfig() # remove feature_extractor_type to make sure config.json alone is enough to load feature processor locally _a = AutoFeatureExtractor.from_pretrained(__a ).to_dict() config_dict.pop("feature_extractor_type" ) _a = WavaVecaFeatureExtractor(**__a ) # save in new folder model_config.save_pretrained(__a ) config.save_pretrained(__a ) _a = AutoFeatureExtractor.from_pretrained(__a ) # make sure private variable is not incorrectly saved _a = json.loads(config.to_json_string() ) self.assertTrue("_processor_class" not in dict_as_saved ) self.assertIsInstance(__a , __a ) def UpperCamelCase__ ( self : Tuple ): _a = AutoFeatureExtractor.from_pretrained(__a ) self.assertIsInstance(__a , __a ) def UpperCamelCase__ ( self : Union[str, Any] ): with self.assertRaisesRegex( __a , "bert-base is not a local folder and is not a valid model identifier" ): _a = AutoFeatureExtractor.from_pretrained("bert-base" ) def UpperCamelCase__ ( self : Optional[Any] ): with self.assertRaisesRegex( __a , r"aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)" ): _a = AutoFeatureExtractor.from_pretrained(__a , revision="aaaaaa" ) def UpperCamelCase__ ( self : List[Any] ): with self.assertRaisesRegex( __a , "hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json." , ): _a = AutoFeatureExtractor.from_pretrained("hf-internal-testing/config-no-model" ) def UpperCamelCase__ ( self : List[Any] ): # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(__a ): _a = AutoFeatureExtractor.from_pretrained( "hf-internal-testing/test_dynamic_feature_extractor" ) # If remote code is disabled, we can't load this config. with self.assertRaises(__a ): _a = AutoFeatureExtractor.from_pretrained( "hf-internal-testing/test_dynamic_feature_extractor" , trust_remote_code=__a ) _a = AutoFeatureExtractor.from_pretrained( "hf-internal-testing/test_dynamic_feature_extractor" , trust_remote_code=__a ) self.assertEqual(feature_extractor.__class__.__name__ , "NewFeatureExtractor" ) # Test feature extractor can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained(__a ) _a = AutoFeatureExtractor.from_pretrained(__a , trust_remote_code=__a ) self.assertEqual(reloaded_feature_extractor.__class__.__name__ , "NewFeatureExtractor" ) def UpperCamelCase__ ( self : Any ): try: AutoConfig.register("custom" , __a ) AutoFeatureExtractor.register(__a , __a ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(__a ): AutoFeatureExtractor.register(__a , __a ) # Now that the config is registered, it can be used as any other config with the auto-API _a = CustomFeatureExtractor.from_pretrained(__a ) with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained(__a ) _a = AutoFeatureExtractor.from_pretrained(__a ) self.assertIsInstance(__a , __a ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig] def UpperCamelCase__ ( self : Tuple ): class __SCREAMING_SNAKE_CASE (lowerCamelCase_ ): """simple docstring""" __a =True try: AutoConfig.register("custom" , __a ) AutoFeatureExtractor.register(__a , __a ) # If remote code is not set, the default is to use local _a = AutoFeatureExtractor.from_pretrained( "hf-internal-testing/test_dynamic_feature_extractor" ) self.assertEqual(feature_extractor.__class__.__name__ , "NewFeatureExtractor" ) self.assertTrue(feature_extractor.is_local ) # If remote code is disabled, we load the local one. _a = AutoFeatureExtractor.from_pretrained( "hf-internal-testing/test_dynamic_feature_extractor" , trust_remote_code=__a ) self.assertEqual(feature_extractor.__class__.__name__ , "NewFeatureExtractor" ) self.assertTrue(feature_extractor.is_local ) # If remote is enabled, we load from the Hub _a = AutoFeatureExtractor.from_pretrained( "hf-internal-testing/test_dynamic_feature_extractor" , trust_remote_code=__a ) self.assertEqual(feature_extractor.__class__.__name__ , "NewFeatureExtractor" ) self.assertTrue(not hasattr(__a , "is_local" ) ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig]
63
1
from __future__ import annotations def lowerCamelCase_ ( _a : list[int] ): '''simple docstring''' return len(set(_a ) ) == len(_a ) if __name__ == "__main__": import doctest doctest.testmod()
59
from typing import Callable, List, Optional, Tuple, Union import torch from transformers import CLIPTextModel, CLIPTokenizer from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin, TransformeraDModel, VQModel from ...schedulers import VQDiffusionScheduler from ...utils import logging from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput UpperCamelCase_ = logging.get_logger(__name__) # pylint: disable=invalid-name class _snake_case ( __snake_case , __snake_case ): '''simple docstring''' @register_to_config def __init__( self: Dict ,lowerCamelCase_: bool ,lowerCamelCase_: Optional[int] = None ,lowerCamelCase_: Optional[int] = None ) -> str: super().__init__() UpperCAmelCase_ : Tuple = learnable if self.learnable: assert hidden_size is not None, "learnable=True requires `hidden_size` to be set" assert length is not None, "learnable=True requires `length` to be set" UpperCAmelCase_ : str = torch.zeros(lowerCamelCase_ ,lowerCamelCase_ ) else: UpperCAmelCase_ : Any = None UpperCAmelCase_ : Optional[int] = torch.nn.Parameter(lowerCamelCase_ ) class _snake_case ( __snake_case ): '''simple docstring''' A__ : VQModel A__ : CLIPTextModel A__ : CLIPTokenizer A__ : TransformeraDModel A__ : LearnedClassifierFreeSamplingEmbeddings A__ : VQDiffusionScheduler def __init__( self: List[Any] ,lowerCamelCase_: VQModel ,lowerCamelCase_: CLIPTextModel ,lowerCamelCase_: CLIPTokenizer ,lowerCamelCase_: TransformeraDModel ,lowerCamelCase_: VQDiffusionScheduler ,lowerCamelCase_: LearnedClassifierFreeSamplingEmbeddings ,) -> Tuple: super().__init__() self.register_modules( vqvae=lowerCamelCase_ ,transformer=lowerCamelCase_ ,text_encoder=lowerCamelCase_ ,tokenizer=lowerCamelCase_ ,scheduler=lowerCamelCase_ ,learned_classifier_free_sampling_embeddings=lowerCamelCase_ ,) def A__ ( self: Optional[int] ,lowerCamelCase_: Optional[Any] ,lowerCamelCase_: Tuple ,lowerCamelCase_: Union[str, Any] ) -> Optional[int]: UpperCAmelCase_ : Union[str, Any] = len(lowerCamelCase_ ) if isinstance(lowerCamelCase_ ,lowerCamelCase_ ) else 1 # get prompt text embeddings UpperCAmelCase_ : Optional[int] = self.tokenizer( lowerCamelCase_ ,padding="""max_length""" ,max_length=self.tokenizer.model_max_length ,return_tensors="""pt""" ,) UpperCAmelCase_ : Optional[int] = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: UpperCAmelCase_ : List[str] = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] ) logger.warning( """The following part of your input was truncated because CLIP can only handle sequences up to""" F''' {self.tokenizer.model_max_length} tokens: {removed_text}''' ) UpperCAmelCase_ : Any = text_input_ids[:, : self.tokenizer.model_max_length] UpperCAmelCase_ : List[Any] = self.text_encoder(text_input_ids.to(self.device ) )[0] # NOTE: This additional step of normalizing the text embeddings is from VQ-Diffusion. # While CLIP does normalize the pooled output of the text transformer when combining # the image and text embeddings, CLIP does not directly normalize the last hidden state. # # CLIP normalizing the pooled output. # https://github.com/huggingface/transformers/blob/d92e22d1f28324f513f3080e5c47c071a3916721/src/transformers/models/clip/modeling_clip.py#L1052-L1053 UpperCAmelCase_ : Dict = prompt_embeds / prompt_embeds.norm(dim=-1 ,keepdim=lowerCamelCase_ ) # duplicate text embeddings for each generation per prompt UpperCAmelCase_ : Optional[int] = prompt_embeds.repeat_interleave(lowerCamelCase_ ,dim=0 ) if do_classifier_free_guidance: if self.learned_classifier_free_sampling_embeddings.learnable: UpperCAmelCase_ : str = self.learned_classifier_free_sampling_embeddings.embeddings UpperCAmelCase_ : str = negative_prompt_embeds.unsqueeze(0 ).repeat(lowerCamelCase_ ,1 ,1 ) else: UpperCAmelCase_ : Dict = [""""""] * batch_size UpperCAmelCase_ : Tuple = text_input_ids.shape[-1] UpperCAmelCase_ : Optional[Any] = self.tokenizer( lowerCamelCase_ ,padding="""max_length""" ,max_length=lowerCamelCase_ ,truncation=lowerCamelCase_ ,return_tensors="""pt""" ,) UpperCAmelCase_ : str = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # See comment for normalizing text embeddings UpperCAmelCase_ : Optional[int] = negative_prompt_embeds / negative_prompt_embeds.norm(dim=-1 ,keepdim=lowerCamelCase_ ) # duplicate unconditional embeddings for each generation per prompt, using mps friendly method UpperCAmelCase_ : List[str] = negative_prompt_embeds.shape[1] UpperCAmelCase_ : Optional[Any] = negative_prompt_embeds.repeat(1 ,lowerCamelCase_ ,1 ) UpperCAmelCase_ : List[str] = negative_prompt_embeds.view(batch_size * num_images_per_prompt ,lowerCamelCase_ ,-1 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes UpperCAmelCase_ : Optional[Any] = torch.cat([negative_prompt_embeds, prompt_embeds] ) return prompt_embeds @torch.no_grad() def __call__( self: Tuple ,lowerCamelCase_: Union[str, List[str]] ,lowerCamelCase_: int = 100 ,lowerCamelCase_: float = 5.0 ,lowerCamelCase_: float = 1.0 ,lowerCamelCase_: int = 1 ,lowerCamelCase_: Optional[Union[torch.Generator, List[torch.Generator]]] = None ,lowerCamelCase_: Optional[torch.FloatTensor] = None ,lowerCamelCase_: Optional[str] = "pil" ,lowerCamelCase_: bool = True ,lowerCamelCase_: Optional[Callable[[int, int, torch.FloatTensor], None]] = None ,lowerCamelCase_: int = 1 ,) -> Union[ImagePipelineOutput, Tuple]: if isinstance(lowerCamelCase_ ,lowerCamelCase_ ): UpperCAmelCase_ : Tuple = 1 elif isinstance(lowerCamelCase_ ,lowerCamelCase_ ): UpperCAmelCase_ : Optional[Any] = len(lowerCamelCase_ ) else: raise ValueError(F'''`prompt` has to be of type `str` or `list` but is {type(lowerCamelCase_ )}''' ) UpperCAmelCase_ : Any = batch_size * num_images_per_prompt UpperCAmelCase_ : Optional[Any] = guidance_scale > 1.0 UpperCAmelCase_ : int = self._encode_prompt(lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(lowerCamelCase_ ,lowerCamelCase_ ) or callback_steps <= 0) ): raise ValueError( F'''`callback_steps` has to be a positive integer but is {callback_steps} of type''' F''' {type(lowerCamelCase_ )}.''' ) # get the initial completely masked latents unless the user supplied it UpperCAmelCase_ : Tuple = (batch_size, self.transformer.num_latent_pixels) if latents is None: UpperCAmelCase_ : Optional[int] = self.transformer.num_vector_embeds - 1 UpperCAmelCase_ : Tuple = torch.full(lowerCamelCase_ ,lowerCamelCase_ ).to(self.device ) else: if latents.shape != latents_shape: raise ValueError(F'''Unexpected latents shape, got {latents.shape}, expected {latents_shape}''' ) if (latents < 0).any() or (latents >= self.transformer.num_vector_embeds).any(): raise ValueError( """Unexpected latents value(s). All latents be valid embedding indices i.e. in the range 0,""" F''' {self.transformer.num_vector_embeds - 1} (inclusive).''' ) UpperCAmelCase_ : Any = latents.to(self.device ) # set timesteps self.scheduler.set_timesteps(lowerCamelCase_ ,device=self.device ) UpperCAmelCase_ : Optional[int] = self.scheduler.timesteps.to(self.device ) UpperCAmelCase_ : str = latents for i, t in enumerate(self.progress_bar(lowerCamelCase_ ) ): # expand the sample if we are doing classifier free guidance UpperCAmelCase_ : Any = torch.cat([sample] * 2 ) if do_classifier_free_guidance else sample # predict the un-noised image # model_output == `log_p_x_0` UpperCAmelCase_ : Optional[Any] = self.transformer(lowerCamelCase_ ,encoder_hidden_states=lowerCamelCase_ ,timestep=lowerCamelCase_ ).sample if do_classifier_free_guidance: UpperCAmelCase_ , UpperCAmelCase_ : Any = model_output.chunk(2 ) UpperCAmelCase_ : Dict = model_output_uncond + guidance_scale * (model_output_text - model_output_uncond) model_output -= torch.logsumexp(lowerCamelCase_ ,dim=1 ,keepdim=lowerCamelCase_ ) UpperCAmelCase_ : Any = self.truncate(lowerCamelCase_ ,lowerCamelCase_ ) # remove `log(0)`'s (`-inf`s) UpperCAmelCase_ : List[Any] = model_output.clamp(-70 ) # compute the previous noisy sample x_t -> x_t-1 UpperCAmelCase_ : Dict = self.scheduler.step(lowerCamelCase_ ,timestep=lowerCamelCase_ ,sample=lowerCamelCase_ ,generator=lowerCamelCase_ ).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ) UpperCAmelCase_ : Optional[Any] = self.vqvae.config.vq_embed_dim UpperCAmelCase_ : str = (batch_size, self.transformer.height, self.transformer.width, embedding_channels) UpperCAmelCase_ : Any = self.vqvae.quantize.get_codebook_entry(lowerCamelCase_ ,shape=lowerCamelCase_ ) UpperCAmelCase_ : Union[str, Any] = self.vqvae.decode(lowerCamelCase_ ,force_not_quantize=lowerCamelCase_ ).sample UpperCAmelCase_ : Optional[int] = (image / 2 + 0.5).clamp(0 ,1 ) UpperCAmelCase_ : str = image.cpu().permute(0 ,2 ,3 ,1 ).numpy() if output_type == "pil": UpperCAmelCase_ : Tuple = self.numpy_to_pil(lowerCamelCase_ ) if not return_dict: return (image,) return ImagePipelineOutput(images=lowerCamelCase_ ) def A__ ( self: Any ,lowerCamelCase_: torch.FloatTensor ,lowerCamelCase_: float ) -> torch.FloatTensor: UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = torch.sort(lowerCamelCase_ ,1 ,descending=lowerCamelCase_ ) UpperCAmelCase_ : Any = torch.exp(lowerCamelCase_ ) UpperCAmelCase_ : Union[str, Any] = sorted_p_x_0.cumsum(dim=1 ) < truncation_rate # Ensure that at least the largest probability is not zeroed out UpperCAmelCase_ : Any = torch.full_like(keep_mask[:, 0:1, :] ,lowerCamelCase_ ) UpperCAmelCase_ : Any = torch.cat((all_true, keep_mask) ,dim=1 ) UpperCAmelCase_ : Tuple = keep_mask[:, :-1, :] UpperCAmelCase_ : Dict = keep_mask.gather(1 ,indices.argsort(1 ) ) UpperCAmelCase_ : List[Any] = log_p_x_0.clone() UpperCAmelCase_ : Optional[int] = -torch.inf # -inf = log(0) return rv
59
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available lowercase__ = { """configuration_graphormer""": ["""GRAPHORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """GraphormerConfig"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ = [ """GRAPHORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """GraphormerForGraphClassification""", """GraphormerModel""", """GraphormerPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_graphormer import GRAPHORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, GraphormerConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_graphormer import ( GRAPHORMER_PRETRAINED_MODEL_ARCHIVE_LIST, GraphormerForGraphClassification, GraphormerModel, GraphormerPreTrainedModel, ) else: import sys lowercase__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
96
"""simple docstring""" import os from typing import List, Optional, Union from ...image_processing_utils import BatchFeature from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType from ..auto import AutoTokenizer class lowerCAmelCase__ ( lowercase ): '''simple docstring''' lowerCamelCase__ = ["""image_processor""", """tokenizer"""] lowerCamelCase__ = """BlipImageProcessor""" lowerCamelCase__ = """AutoTokenizer""" def __init__( self , lowercase , lowercase , lowercase ): super().__init__(lowercase , lowercase ) # add QFormer tokenizer _lowerCamelCase : int = qformer_tokenizer def __call__( self , lowercase = None , lowercase = None , lowercase = True , lowercase = False , lowercase = None , lowercase = None , lowercase = 0 , lowercase = None , lowercase = None , lowercase = False , lowercase = False , lowercase = False , lowercase = False , lowercase = False , lowercase = True , lowercase = None , **lowercase , ): if images is None and text is None: raise ValueError('You have to specify at least images or text.' ) _lowerCamelCase : int = BatchFeature() if text is not None: _lowerCamelCase : List[str] = self.tokenizer( text=lowercase , add_special_tokens=lowercase , padding=lowercase , truncation=lowercase , max_length=lowercase , stride=lowercase , pad_to_multiple_of=lowercase , return_attention_mask=lowercase , return_overflowing_tokens=lowercase , return_special_tokens_mask=lowercase , return_offsets_mapping=lowercase , return_token_type_ids=lowercase , return_length=lowercase , verbose=lowercase , return_tensors=lowercase , **lowercase , ) encoding.update(lowercase ) _lowerCamelCase : List[str] = self.qformer_tokenizer( text=lowercase , add_special_tokens=lowercase , padding=lowercase , truncation=lowercase , max_length=lowercase , stride=lowercase , pad_to_multiple_of=lowercase , return_attention_mask=lowercase , return_overflowing_tokens=lowercase , return_special_tokens_mask=lowercase , return_offsets_mapping=lowercase , return_token_type_ids=lowercase , return_length=lowercase , verbose=lowercase , return_tensors=lowercase , **lowercase , ) _lowerCamelCase : List[Any] = qformer_text_encoding.pop('input_ids' ) _lowerCamelCase : Tuple = qformer_text_encoding.pop('attention_mask' ) if images is not None: _lowerCamelCase : int = self.image_processor(lowercase , return_tensors=lowercase ) encoding.update(lowercase ) return encoding def A_ ( self , *lowercase , **lowercase ): return self.tokenizer.batch_decode(*lowercase , **lowercase ) def A_ ( self , *lowercase , **lowercase ): return self.tokenizer.decode(*lowercase , **lowercase ) @property # Copied from transformers.models.blip.processing_blip.BlipProcessor.model_input_names def A_ ( self ): _lowerCamelCase : Union[str, Any] = self.tokenizer.model_input_names _lowerCamelCase : Any = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) def A_ ( self , lowercase , **lowercase ): if os.path.isfile(lowercase ): raise ValueError(F'''Provided path ({save_directory}) should be a directory, not a file''' ) os.makedirs(lowercase , exist_ok=lowercase ) _lowerCamelCase : Optional[Any] = os.path.join(lowercase , 'qformer_tokenizer' ) self.qformer_tokenizer.save_pretrained(lowercase ) return super().save_pretrained(lowercase , **lowercase ) @classmethod def A_ ( cls , lowercase , **lowercase ): _lowerCamelCase : Union[str, Any] = AutoTokenizer.from_pretrained(lowercase , subfolder='qformer_tokenizer' ) _lowerCamelCase : Dict = cls._get_arguments_from_pretrained(lowercase , **lowercase ) args.append(lowercase ) return cls(*lowercase )
96
1
import os import unittest from transformers import LayoutLMTokenizer, LayoutLMTokenizerFast from transformers.models.layoutlm.tokenization_layoutlm import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class _SCREAMING_SNAKE_CASE ( snake_case_ , unittest.TestCase ): lowerCAmelCase__ = LayoutLMTokenizer lowerCAmelCase__ = LayoutLMTokenizerFast lowerCAmelCase__ = True lowerCAmelCase__ = True def SCREAMING_SNAKE_CASE_( self ) -> List[str]: super().setUp() lowerCamelCase_ = [ "[UNK]", "[CLS]", "[SEP]", "want", "##want", "##ed", "wa", "un", "runn", "##ing", ",", "low", "lowest", ] lowerCamelCase_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) def SCREAMING_SNAKE_CASE_( self , **lowercase ) -> int: return LayoutLMTokenizer.from_pretrained(self.tmpdirname , **lowercase ) def SCREAMING_SNAKE_CASE_( self , lowercase ) -> int: lowerCamelCase_ = "UNwant\u00E9d,running" lowerCamelCase_ = "unwanted, running" return input_text, output_text def SCREAMING_SNAKE_CASE_( self ) -> List[Any]: lowerCamelCase_ = self.tokenizer_class(self.vocab_file ) lowerCamelCase_ = tokenizer.tokenize("UNwant\u00E9d,running" ) self.assertListEqual(lowercase , ["un", "##want", "##ed", ",", "runn", "##ing"] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(lowercase ) , [7, 4, 5, 10, 8, 9] ) def SCREAMING_SNAKE_CASE_( self ) -> Optional[Any]: pass
47
import os import socket from contextlib import contextmanager import torch from ..commands.config.default import write_basic_config # noqa: F401 from ..state import PartialState from .dataclasses import DistributedType from .imports import is_deepspeed_available, is_tpu_available from .transformer_engine import convert_model from .versions import is_torch_version if is_deepspeed_available(): from deepspeed import DeepSpeedEngine if is_tpu_available(check_device=False): import torch_xla.core.xla_model as xm def lowerCamelCase_ ( lowerCamelCase__ ): if is_torch_version("<" , "2.0.0" ) or not hasattr(lowerCamelCase__ , "_dynamo" ): return False return isinstance(lowerCamelCase__ , torch._dynamo.eval_frame.OptimizedModule ) def lowerCamelCase_ ( lowerCamelCase__ , lowerCamelCase__ = True ): lowerCamelCase_ = (torch.nn.parallel.DistributedDataParallel, torch.nn.DataParallel) lowerCamelCase_ = is_compiled_module(lowerCamelCase__ ) if is_compiled: lowerCamelCase_ = model lowerCamelCase_ = model._orig_mod if is_deepspeed_available(): options += (DeepSpeedEngine,) while isinstance(lowerCamelCase__ , lowerCamelCase__ ): lowerCamelCase_ = model.module if not keep_fpaa_wrapper: lowerCamelCase_ = getattr(lowerCamelCase__ , "forward" ) lowerCamelCase_ = model.__dict__.pop("_original_forward" , lowerCamelCase__ ) if original_forward is not None: while hasattr(lowerCamelCase__ , "__wrapped__" ): lowerCamelCase_ = forward.__wrapped__ if forward == original_forward: break lowerCamelCase_ = forward if getattr(lowerCamelCase__ , "_converted_to_transformer_engine" , lowerCamelCase__ ): convert_model(lowerCamelCase__ , to_transformer_engine=lowerCamelCase__ ) if is_compiled: lowerCamelCase_ = model lowerCamelCase_ = compiled_model return model def lowerCamelCase_ ( ): PartialState().wait_for_everyone() def lowerCamelCase_ ( lowerCamelCase__ , lowerCamelCase__ ): if PartialState().distributed_type == DistributedType.TPU: xm.save(lowerCamelCase__ , lowerCamelCase__ ) elif PartialState().local_process_index == 0: torch.save(lowerCamelCase__ , lowerCamelCase__ ) @contextmanager def lowerCamelCase_ ( **lowerCamelCase__ ): for key, value in kwargs.items(): lowerCamelCase_ = str(lowerCamelCase__ ) yield for key in kwargs: if key.upper() in os.environ: del os.environ[key.upper()] def lowerCamelCase_ ( lowerCamelCase__ ): if not hasattr(lowerCamelCase__ , "__qualname__" ) and not hasattr(lowerCamelCase__ , "__name__" ): lowerCamelCase_ = getattr(lowerCamelCase__ , "__class__" , lowerCamelCase__ ) if hasattr(lowerCamelCase__ , "__qualname__" ): return obj.__qualname__ if hasattr(lowerCamelCase__ , "__name__" ): return obj.__name__ return str(lowerCamelCase__ ) def lowerCamelCase_ ( lowerCamelCase__ , lowerCamelCase__ ): for key, value in source.items(): if isinstance(lowerCamelCase__ , lowerCamelCase__ ): lowerCamelCase_ = destination.setdefault(lowerCamelCase__ , {} ) merge_dicts(lowerCamelCase__ , lowerCamelCase__ ) else: lowerCamelCase_ = value return destination def lowerCamelCase_ ( lowerCamelCase__ = None ): if port is None: lowerCamelCase_ = 2_9_5_0_0 with socket.socket(socket.AF_INET , socket.SOCK_STREAM ) as s: return s.connect_ex(("localhost", port) ) == 0
47
1
import warnings from ...utils import logging from .image_processing_beit import BeitImageProcessor a_ = logging.get_logger(__name__) class _UpperCamelCase ( __A ): '''simple docstring''' def __init__( self : List[str] , *a : Any , **a : Tuple ) -> None: """simple docstring""" warnings.warn( "The class BeitFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please" " use BeitImageProcessor instead." , a , ) super().__init__(*a , **a )
76
import numpy as np from PIL import Image def UpperCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> np.ndarray: __lowercase : Optional[int] = np.array(__lowerCAmelCase ) if arr.shape[0] != arr.shape[1]: raise ValueError('''The input array is not a square matrix''' ) __lowercase : Optional[int] = 0 __lowercase : Union[str, Any] = 0 __lowercase : Optional[Any] = 0 __lowercase : str = 0 # compute the shape of the output matrix __lowercase : Optional[Any] = (arr.shape[0] - size) // stride + 1 # initialize the output matrix with zeros of shape maxpool_shape __lowercase : List[str] = np.zeros((maxpool_shape, maxpool_shape) ) while i < arr.shape[0]: if i + size > arr.shape[0]: # if the end of the matrix is reached, break break while j < arr.shape[1]: # if the end of the matrix is reached, break if j + size > arr.shape[1]: break # compute the maximum of the pooling matrix __lowercase : Optional[int] = np.max(arr[i : i + size, j : j + size] ) # shift the pooling matrix by stride of column pixels j += stride mat_j += 1 # shift the pooling matrix by stride of row pixels i += stride mat_i += 1 # reset the column index to 0 __lowercase : Any = 0 __lowercase : List[Any] = 0 return updated_arr def UpperCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> np.ndarray: __lowercase : Optional[Any] = np.array(__lowerCAmelCase ) if arr.shape[0] != arr.shape[1]: raise ValueError('''The input array is not a square matrix''' ) __lowercase : int = 0 __lowercase : str = 0 __lowercase : List[str] = 0 __lowercase : Dict = 0 # compute the shape of the output matrix __lowercase : List[Any] = (arr.shape[0] - size) // stride + 1 # initialize the output matrix with zeros of shape avgpool_shape __lowercase : Union[str, Any] = np.zeros((avgpool_shape, avgpool_shape) ) while i < arr.shape[0]: # if the end of the matrix is reached, break if i + size > arr.shape[0]: break while j < arr.shape[1]: # if the end of the matrix is reached, break if j + size > arr.shape[1]: break # compute the average of the pooling matrix __lowercase : str = int(np.average(arr[i : i + size, j : j + size] ) ) # shift the pooling matrix by stride of column pixels j += stride mat_j += 1 # shift the pooling matrix by stride of row pixels i += stride mat_i += 1 # reset the column index to 0 __lowercase : int = 0 __lowercase : Tuple = 0 return updated_arr # Main Function if __name__ == "__main__": from doctest import testmod testmod(name="avgpooling", verbose=True) # Loading the image __lowerCAmelCase : List[Any] = Image.open("path_to_image") # Converting the image to numpy array and maxpooling, displaying the result # Ensure that the image is a square matrix Image.fromarray(maxpooling(np.array(image), size=3, stride=2)).show() # Converting the image to numpy array and averagepooling, displaying the result # Ensure that the image is a square matrix Image.fromarray(avgpooling(np.array(image), size=3, stride=2)).show()
156
0
'''simple docstring''' import warnings from ...utils import logging from .image_processing_clip import CLIPImageProcessor __UpperCamelCase = logging.get_logger(__name__) class _A ( __lowercase ): def __init__( self : Tuple , *__magic_name__ : str , **__magic_name__ : Optional[Any] ) -> None: """simple docstring""" warnings.warn( """The class CLIPFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please""" """ use CLIPImageProcessor instead.""" , __magic_name__ , ) super().__init__(*__magic_name__ , **__magic_name__ )
13
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available __UpperCamelCase = { "configuration_conditional_detr": [ "CONDITIONAL_DETR_PRETRAINED_CONFIG_ARCHIVE_MAP", "ConditionalDetrConfig", "ConditionalDetrOnnxConfig", ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase = ["ConditionalDetrFeatureExtractor"] __UpperCamelCase = ["ConditionalDetrImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase = [ "CONDITIONAL_DETR_PRETRAINED_MODEL_ARCHIVE_LIST", "ConditionalDetrForObjectDetection", "ConditionalDetrForSegmentation", "ConditionalDetrModel", "ConditionalDetrPreTrainedModel", ] if TYPE_CHECKING: from .configuration_conditional_detr import ( CONDITIONAL_DETR_PRETRAINED_CONFIG_ARCHIVE_MAP, ConditionalDetrConfig, ConditionalDetrOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_conditional_detr import ConditionalDetrFeatureExtractor from .image_processing_conditional_detr import ConditionalDetrImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_conditional_detr import ( CONDITIONAL_DETR_PRETRAINED_MODEL_ARCHIVE_LIST, ConditionalDetrForObjectDetection, ConditionalDetrForSegmentation, ConditionalDetrModel, ConditionalDetrPreTrainedModel, ) else: import sys __UpperCamelCase = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
13
1
'''simple docstring''' import numpy as np import skfuzzy as fuzz if __name__ == "__main__": # Create universe of discourse in Python using linspace () lowerCAmelCase: Any = np.linspace(start=0, stop=7_5, num=7_5, endpoint=True, retstep=False) # Create two fuzzy sets by defining any membership function # (trapmf(), gbellmf(), gaussmf(), etc). lowerCAmelCase: Optional[Any] = [0, 2_5, 5_0] lowerCAmelCase: Any = [2_5, 5_0, 7_5] lowerCAmelCase: Dict = fuzz.membership.trimf(X, abca) lowerCAmelCase: Dict = fuzz.membership.trimf(X, abca) # Compute the different operations using inbuilt functions. lowerCAmelCase: Any = np.ones(7_5) lowerCAmelCase: Any = np.zeros((7_5,)) # 1. Union = max(µA(x), µB(x)) lowerCAmelCase: Any = fuzz.fuzzy_or(X, young, X, middle_aged)[1] # 2. Intersection = min(µA(x), µB(x)) lowerCAmelCase: Dict = fuzz.fuzzy_and(X, young, X, middle_aged)[1] # 3. Complement (A) = (1- min(µA(x)) lowerCAmelCase: List[Any] = fuzz.fuzzy_not(young) # 4. Difference (A/B) = min(µA(x),(1- µB(x))) lowerCAmelCase: Optional[int] = fuzz.fuzzy_and(X, young, X, fuzz.fuzzy_not(middle_aged)[1])[1] # 5. Algebraic Sum = [µA(x) + µB(x) – (µA(x) * µB(x))] lowerCAmelCase: Tuple = young + middle_aged - (young * middle_aged) # 6. Algebraic Product = (µA(x) * µB(x)) lowerCAmelCase: Dict = young * middle_aged # 7. Bounded Sum = min[1,(µA(x), µB(x))] lowerCAmelCase: Union[str, Any] = fuzz.fuzzy_and(X, one, X, young + middle_aged)[1] # 8. Bounded difference = min[0,(µA(x), µB(x))] lowerCAmelCase: Any = fuzz.fuzzy_or(X, zero, X, young - middle_aged)[1] # max-min composition # max-product composition # Plot each set A, set B and each operation result using plot() and subplot(). from matplotlib import pyplot as plt plt.figure() plt.subplot(4, 3, 1) plt.plot(X, young) plt.title('Young') plt.grid(True) plt.subplot(4, 3, 2) plt.plot(X, middle_aged) plt.title('Middle aged') plt.grid(True) plt.subplot(4, 3, 3) plt.plot(X, union) plt.title('union') plt.grid(True) plt.subplot(4, 3, 4) plt.plot(X, intersection) plt.title('intersection') plt.grid(True) plt.subplot(4, 3, 5) plt.plot(X, complement_a) plt.title('complement_a') plt.grid(True) plt.subplot(4, 3, 6) plt.plot(X, difference) plt.title('difference a/b') plt.grid(True) plt.subplot(4, 3, 7) plt.plot(X, alg_sum) plt.title('alg_sum') plt.grid(True) plt.subplot(4, 3, 8) plt.plot(X, alg_product) plt.title('alg_product') plt.grid(True) plt.subplot(4, 3, 9) plt.plot(X, bdd_sum) plt.title('bdd_sum') plt.grid(True) plt.subplot(4, 3, 1_0) plt.plot(X, bdd_difference) plt.title('bdd_difference') plt.grid(True) plt.subplots_adjust(hspace=0.5) plt.show()
297
'''simple docstring''' from typing import Optional from torch import nn from .transformer_ad import TransformeraDModel, TransformeraDModelOutput class a__( nn.Module ): def __init__( self : Any , __snake_case : int = 16 , __snake_case : int = 88 , __snake_case : Optional[int] = None , __snake_case : int = 1 , __snake_case : float = 0.0 , __snake_case : int = 32 , __snake_case : Optional[int] = None , __snake_case : bool = False , __snake_case : Optional[int] = None , __snake_case : Optional[int] = None , __snake_case : str = "geglu" , __snake_case : Optional[int] = None , ): super().__init__() a : Optional[int] = nn.ModuleList( [ TransformeraDModel( num_attention_heads=__snake_case , attention_head_dim=__snake_case , in_channels=__snake_case , num_layers=__snake_case , dropout=__snake_case , norm_num_groups=__snake_case , cross_attention_dim=__snake_case , attention_bias=__snake_case , sample_size=__snake_case , num_vector_embeds=__snake_case , activation_fn=__snake_case , num_embeds_ada_norm=__snake_case , ) for _ in range(2 ) ] ) # Variables that can be set by a pipeline: # The ratio of transformer1 to transformer2's output states to be combined during inference a : Union[str, Any] = 0.5 # The shape of `encoder_hidden_states` is expected to be # `(batch_size, condition_lengths[0]+condition_lengths[1], num_features)` a : Tuple = [77, 2_57] # Which transformer to use to encode which condition. # E.g. `(1, 0)` means that we'll use `transformers[1](conditions[0])` and `transformers[0](conditions[1])` a : Any = [1, 0] def lowercase_ ( self : str , __snake_case : List[Any] , __snake_case : List[Any] , __snake_case : Optional[Any]=None , __snake_case : int=None , __snake_case : Dict=None , __snake_case : bool = True , ): a : Dict = hidden_states a : Tuple = [] a : Optional[int] = 0 # attention_mask is not used yet for i in range(2 ): # for each of the two transformers, pass the corresponding condition tokens a : Union[str, Any] = encoder_hidden_states[:, tokens_start : tokens_start + self.condition_lengths[i]] a : Tuple = self.transformer_index_for_condition[i] a : Union[str, Any] = self.transformers[transformer_index]( __snake_case , encoder_hidden_states=__snake_case , timestep=__snake_case , cross_attention_kwargs=__snake_case , return_dict=__snake_case , )[0] encoded_states.append(encoded_state - input_states ) tokens_start += self.condition_lengths[i] a : Optional[Any] = encoded_states[0] * self.mix_ratio + encoded_states[1] * (1 - self.mix_ratio) a : int = output_states + input_states if not return_dict: return (output_states,) return TransformeraDModelOutput(sample=__snake_case )
297
1
import os def lowerCamelCase_ ( lowerCamelCase__ ): lowerCamelCase_ = len(grid[0] ) lowerCamelCase_ = len(lowerCamelCase__ ) lowerCamelCase_ = 0 lowerCamelCase_ = 0 lowerCamelCase_ = 0 # Check vertically, horizontally, diagonally at the same time (only works # for nxn grid) for i in range(lowerCamelCase__ ): for j in range(n_rows - 3 ): lowerCamelCase_ = grid[j][i] * grid[j + 1][i] * grid[j + 2][i] * grid[j + 3][i] lowerCamelCase_ = grid[i][j] * grid[i][j + 1] * grid[i][j + 2] * grid[i][j + 3] # Left-to-right diagonal (\) product if i < n_columns - 3: lowerCamelCase_ = ( grid[i][j] * grid[i + 1][j + 1] * grid[i + 2][j + 2] * grid[i + 3][j + 3] ) # Right-to-left diagonal(/) product if i > 2: lowerCamelCase_ = ( grid[i][j] * grid[i - 1][j + 1] * grid[i - 2][j + 2] * grid[i - 3][j + 3] ) lowerCamelCase_ = max( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) if max_product > largest: lowerCamelCase_ = max_product return largest def lowerCamelCase_ ( ): lowerCamelCase_ = [] with open(os.path.dirname(lowerCamelCase__ ) + "/grid.txt" ) as file: for line in file: grid.append(line.strip("\n" ).split(" " ) ) lowerCamelCase_ = [[int(lowerCamelCase__ ) for i in grid[j]] for j in range(len(lowerCamelCase__ ) )] return largest_product(lowerCamelCase__ ) if __name__ == "__main__": print(solution())
365
from sklearn.metrics import recall_score import datasets __A =''' Recall is the fraction of the positive examples that were correctly labeled by the model as positive. It can be computed with the equation: Recall = TP / (TP + FN) Where TP is the true positives and FN is the false negatives. ''' __A =''' Args: - **predictions** (`list` of `int`): The predicted labels. - **references** (`list` of `int`): The ground truth labels. - **labels** (`list` of `int`): The set of labels to include when `average` is not set to `binary`, and their order when average is `None`. Labels present in the data can be excluded in this input, for example to calculate a multiclass average ignoring a majority negative class, while labels not present in the data will result in 0 components in a macro average. For multilabel targets, labels are column indices. By default, all labels in y_true and y_pred are used in sorted order. Defaults to None. - **pos_label** (`int`): The class label to use as the \'positive class\' when calculating the recall. Defaults to `1`. - **average** (`string`): This parameter is required for multiclass/multilabel targets. If None, the scores for each class are returned. Otherwise, this determines the type of averaging performed on the data. Defaults to `\'binary\'`. - `\'binary\'`: Only report results for the class specified by `pos_label`. This is applicable only if the target labels and predictions are binary. - `\'micro\'`: Calculate metrics globally by counting the total true positives, false negatives, and false positives. - `\'macro\'`: Calculate metrics for each label, and find their unweighted mean. This does not take label imbalance into account. - `\'weighted\'`: Calculate metrics for each label, and find their average weighted by support (the number of true instances for each label). This alters `\'macro\'` to account for label imbalance. Note that it can result in an F-score that is not between precision and recall. - `\'samples\'`: Calculate metrics for each instance, and find their average (only meaningful for multilabel classification). - **sample_weight** (`list` of `float`): Sample weights Defaults to `None`. - **zero_division** (): Sets the value to return when there is a zero division. Defaults to . - `\'warn\'`: If there is a zero division, the return value is `0`, but warnings are also raised. - `0`: If there is a zero division, the return value is `0`. - `1`: If there is a zero division, the return value is `1`. Returns: - **recall** (`float`, or `array` of `float`): Either the general recall score, or the recall scores for individual classes, depending on the values input to `labels` and `average`. Minimum possible value is 0. Maximum possible value is 1. A higher recall means that more of the positive examples have been labeled correctly. Therefore, a higher recall is generally considered better. Examples: Example 1-A simple example with some errors >>> recall_metric = datasets.load_metric(\'recall\') >>> results = recall_metric.compute(references=[0, 0, 1, 1, 1], predictions=[0, 1, 0, 1, 1]) >>> print(results) {\'recall\': 0.6666666666666666} Example 2-The same example as Example 1, but with `pos_label=0` instead of the default `pos_label=1`. >>> recall_metric = datasets.load_metric(\'recall\') >>> results = recall_metric.compute(references=[0, 0, 1, 1, 1], predictions=[0, 1, 0, 1, 1], pos_label=0) >>> print(results) {\'recall\': 0.5} Example 3-The same example as Example 1, but with `sample_weight` included. >>> recall_metric = datasets.load_metric(\'recall\') >>> sample_weight = [0.9, 0.2, 0.9, 0.3, 0.8] >>> results = recall_metric.compute(references=[0, 0, 1, 1, 1], predictions=[0, 1, 0, 1, 1], sample_weight=sample_weight) >>> print(results) {\'recall\': 0.55} Example 4-A multiclass example, using different averages. >>> recall_metric = datasets.load_metric(\'recall\') >>> predictions = [0, 2, 1, 0, 0, 1] >>> references = [0, 1, 2, 0, 1, 2] >>> results = recall_metric.compute(predictions=predictions, references=references, average=\'macro\') >>> print(results) {\'recall\': 0.3333333333333333} >>> results = recall_metric.compute(predictions=predictions, references=references, average=\'micro\') >>> print(results) {\'recall\': 0.3333333333333333} >>> results = recall_metric.compute(predictions=predictions, references=references, average=\'weighted\') >>> print(results) {\'recall\': 0.3333333333333333} >>> results = recall_metric.compute(predictions=predictions, references=references, average=None) >>> print(results) {\'recall\': array([1., 0., 0.])} ''' __A =''' @article{scikit-learn, title={Scikit-learn: Machine Learning in {P}ython}, author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, journal={Journal of Machine Learning Research}, volume={12}, pages={2825--2830}, year={2011} ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _SCREAMING_SNAKE_CASE ( datasets.Metric ): def SCREAMING_SNAKE_CASE_( self ) -> Optional[int]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Sequence(datasets.Value("int32" ) ), "references": datasets.Sequence(datasets.Value("int32" ) ), } if self.config_name == "multilabel" else { "predictions": datasets.Value("int32" ), "references": datasets.Value("int32" ), } ) , reference_urls=["https://scikit-learn.org/stable/modules/generated/sklearn.metrics.recall_score.html"] , ) def SCREAMING_SNAKE_CASE_( self , lowercase , lowercase , lowercase=None , lowercase=1 , lowercase="binary" , lowercase=None , lowercase="warn" , ) -> Optional[int]: lowerCamelCase_ = recall_score( lowercase , lowercase , labels=lowercase , pos_label=lowercase , average=lowercase , sample_weight=lowercase , zero_division=lowercase , ) return {"recall": float(lowercase ) if score.size == 1 else score}
47
0
import logging from pathlib import Path import numpy as np import pytorch_lightning as pl import torch from pytorch_lightning.callbacks import EarlyStopping, ModelCheckpoint from pytorch_lightning.utilities import rank_zero_only from utils_rag import save_json def lowerCamelCase ( SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCamelCase :Any = filter(lambda SCREAMING_SNAKE_CASE : p.requires_grad , model.parameters() ) __UpperCamelCase :Optional[int] = sum([np.prod(p.size() ) for p in model_parameters] ) return params __lowercase = logging.getLogger(__name__) def lowerCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): '''simple docstring''' if metric == "rouge2": __UpperCamelCase :Union[str, Any] = "{val_avg_rouge2:.4f}-{step_count}" elif metric == "bleu": __UpperCamelCase :Any = "{val_avg_bleu:.4f}-{step_count}" elif metric == "em": __UpperCamelCase :Optional[int] = "{val_avg_em:.4f}-{step_count}" elif metric == "loss": __UpperCamelCase :Optional[Any] = "{val_avg_loss:.4f}-{step_count}" else: raise NotImplementedError( f"""seq2seq callbacks only support rouge2 and bleu, got {metric}, You can make your own by adding to this""" ''' function.''' ) __UpperCamelCase :Union[str, Any] = ModelCheckpoint( dirpath=A_ , filename=A_ , monitor=f"""val_{metric}""" , mode='''max''' , save_top_k=1 , every_n_epochs=1 , ) return checkpoint_callback def lowerCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): '''simple docstring''' return EarlyStopping( monitor=f"""val_{metric}""" , mode='''min''' if '''loss''' in metric else '''max''' , patience=A_ , verbose=A_ , ) class lowerCamelCase_ ( pl.Callback ): '''simple docstring''' def UpperCamelCase__ ( self , __lowercase , __lowercase) -> List[Any]: __UpperCamelCase :Optional[Any] = {f"""lr_group_{i}""": param["lr"] for i, param in enumerate(pl_module.trainer.optimizers[0].param_groups)} pl_module.logger.log_metrics(__UpperCAmelCase) @rank_zero_only def UpperCamelCase__ ( self , __lowercase , __lowercase , __lowercase , __lowercase=True) -> int: logger.info(f"""***** {type_path} results at step {trainer.global_step:05d} *****""") __UpperCamelCase :Dict = trainer.callback_metrics trainer.logger.log_metrics({k: v for k, v in metrics.items() if k not in ['''log''', '''progress_bar''', '''preds''']}) # Log results __UpperCamelCase :Optional[Any] = Path(pl_module.hparams.output_dir) if type_path == "test": __UpperCamelCase :str = od / "test_results.txt" __UpperCamelCase :str = od / "test_generations.txt" else: # this never gets hit. I prefer not to save intermediate generations, and results are in metrics.json # If people want this it will be easy enough to add back. __UpperCamelCase :str = od / f"""{type_path}_results/{trainer.global_step:05d}.txt""" __UpperCamelCase :List[Any] = od / f"""{type_path}_generations/{trainer.global_step:05d}.txt""" results_file.parent.mkdir(exist_ok=__UpperCAmelCase) generations_file.parent.mkdir(exist_ok=__UpperCAmelCase) with open(__UpperCAmelCase , '''a+''') as writer: for key in sorted(__UpperCAmelCase): if key in ["log", "progress_bar", "preds"]: continue __UpperCamelCase :List[str] = metrics[key] if isinstance(__UpperCAmelCase , torch.Tensor): __UpperCamelCase :str = val.item() __UpperCamelCase :Dict = f"""{key}: {val:.6f}\n""" writer.write(__UpperCAmelCase) if not save_generations: return if "preds" in metrics: __UpperCamelCase :Any = "\n".join(metrics['''preds''']) generations_file.open('''w+''').write(__UpperCAmelCase) @rank_zero_only def UpperCamelCase__ ( self , __lowercase , __lowercase) -> int: try: __UpperCamelCase :Optional[Any] = pl_module.model.model.num_parameters() except AttributeError: __UpperCamelCase :Any = pl_module.model.num_parameters() __UpperCamelCase :Dict = count_trainable_parameters(__UpperCAmelCase) # mp stands for million parameters trainer.logger.log_metrics({'''n_params''': npars, '''mp''': npars / 1E6, '''grad_mp''': n_trainable_pars / 1E6}) @rank_zero_only def UpperCamelCase__ ( self , __lowercase , __lowercase) -> int: save_json(pl_module.metrics , pl_module.metrics_save_path) return self._write_logs(__UpperCAmelCase , __UpperCAmelCase , '''test''') @rank_zero_only def UpperCamelCase__ ( self , __lowercase , __lowercase) -> Any: save_json(pl_module.metrics , pl_module.metrics_save_path) # Uncommenting this will save val generations # return self._write_logs(trainer, pl_module, "valid")
43
"""simple docstring""" import os import unittest from transformers import LayoutLMTokenizer, LayoutLMTokenizerFast from transformers.models.layoutlm.tokenization_layoutlm import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class _A ( _a ,unittest.TestCase ): """simple docstring""" UpperCAmelCase : str = LayoutLMTokenizer UpperCAmelCase : int = LayoutLMTokenizerFast UpperCAmelCase : Union[str, Any] = True UpperCAmelCase : Optional[Any] = True def __snake_case ( self : Optional[int]): super().setUp() a : Tuple = [ "[UNK]", "[CLS]", "[SEP]", "want", "##want", "##ed", "wa", "un", "runn", "##ing", ",", "low", "lowest", ] a : Optional[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"]) with open(self.vocab_file , "w" , encoding="utf-8") as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens])) def __snake_case ( self : Optional[int] , **__UpperCAmelCase : Tuple): return LayoutLMTokenizer.from_pretrained(self.tmpdirname , **__UpperCAmelCase) def __snake_case ( self : Union[str, Any] , __UpperCAmelCase : str): a : Tuple = "UNwant\u00E9d,running" a : Dict = "unwanted, running" return input_text, output_text def __snake_case ( self : Any): a : List[Any] = self.tokenizer_class(self.vocab_file) a : str = tokenizer.tokenize("UNwant\u00E9d,running") self.assertListEqual(__UpperCAmelCase , ["un", "##want", "##ed", ",", "runn", "##ing"]) self.assertListEqual(tokenizer.convert_tokens_to_ids(__UpperCAmelCase) , [7, 4, 5, 10, 8, 9]) def __snake_case ( self : Dict): pass
40
0
'''simple docstring''' import logging import os from typing import List, TextIO, Union from conllu import parse_incr from utils_ner import InputExample, Split, TokenClassificationTask lowerCAmelCase_ : str = logging.getLogger(__name__) class __lowerCAmelCase ( __a ): def __init__(self , lowerCAmelCase__=-1 ): # in NER datasets, the last column is usually reserved for NER label _UpperCAmelCase : Optional[int] = label_idx def snake_case_ (self , lowerCAmelCase__ , lowerCAmelCase__ ): if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): _UpperCAmelCase : List[Any] = mode.value _UpperCAmelCase : int = os.path.join(lowerCAmelCase__ , F"{mode}.txt" ) _UpperCAmelCase : List[str] = 1 _UpperCAmelCase : List[str] = [] with open(lowerCAmelCase__ , encoding="""utf-8""" ) as f: _UpperCAmelCase : Union[str, Any] = [] _UpperCAmelCase : List[str] = [] for line in f: if line.startswith("""-DOCSTART-""" ) or line == "" or line == "\n": if words: examples.append(InputExample(guid=F"{mode}-{guid_index}" , words=lowerCAmelCase__ , labels=lowerCAmelCase__ ) ) guid_index += 1 _UpperCAmelCase : int = [] _UpperCAmelCase : Dict = [] else: _UpperCAmelCase : Any = line.split(""" """ ) words.append(splits[0] ) if len(lowerCAmelCase__ ) > 1: labels.append(splits[self.label_idx].replace("""\n""" , """""" ) ) else: # Examples could have no label for mode = "test" labels.append("""O""" ) if words: examples.append(InputExample(guid=F"{mode}-{guid_index}" , words=lowerCAmelCase__ , labels=lowerCAmelCase__ ) ) return examples def snake_case_ (self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): _UpperCAmelCase : Optional[Any] = 0 for line in test_input_reader: if line.startswith("""-DOCSTART-""" ) or line == "" or line == "\n": writer.write(lowerCAmelCase__ ) if not preds_list[example_id]: example_id += 1 elif preds_list[example_id]: _UpperCAmelCase : Union[str, Any] = line.split()[0] + """ """ + preds_list[example_id].pop(0 ) + """\n""" writer.write(lowerCAmelCase__ ) else: logger.warning("""Maximum sequence length exceeded: No prediction for '%s'.""" , line.split()[0] ) def snake_case_ (self , lowerCAmelCase__ ): if path: with open(lowerCAmelCase__ , """r""" ) as f: _UpperCAmelCase : int = f.read().splitlines() if "O" not in labels: _UpperCAmelCase : Dict = ["""O"""] + labels return labels else: return ["O", "B-MISC", "I-MISC", "B-PER", "I-PER", "B-ORG", "I-ORG", "B-LOC", "I-LOC"] class __lowerCAmelCase ( __a ): def __init__(self ): # in CONLL2003 dataset chunk column is second-to-last super().__init__(label_idx=-2 ) def snake_case_ (self , lowerCAmelCase__ ): if path: with open(lowerCAmelCase__ , """r""" ) as f: _UpperCAmelCase : Union[str, Any] = f.read().splitlines() if "O" not in labels: _UpperCAmelCase : str = ["""O"""] + labels return labels else: return [ "O", "B-ADVP", "B-INTJ", "B-LST", "B-PRT", "B-NP", "B-SBAR", "B-VP", "B-ADJP", "B-CONJP", "B-PP", "I-ADVP", "I-INTJ", "I-LST", "I-PRT", "I-NP", "I-SBAR", "I-VP", "I-ADJP", "I-CONJP", "I-PP", ] class __lowerCAmelCase ( __a ): def snake_case_ (self , lowerCAmelCase__ , lowerCAmelCase__ ): if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): _UpperCAmelCase : str = mode.value _UpperCAmelCase : Optional[int] = os.path.join(lowerCAmelCase__ , F"{mode}.txt" ) _UpperCAmelCase : Tuple = 1 _UpperCAmelCase : Dict = [] with open(lowerCAmelCase__ , encoding="""utf-8""" ) as f: for sentence in parse_incr(lowerCAmelCase__ ): _UpperCAmelCase : str = [] _UpperCAmelCase : Tuple = [] for token in sentence: words.append(token["""form"""] ) labels.append(token["""upos"""] ) assert len(lowerCAmelCase__ ) == len(lowerCAmelCase__ ) if words: examples.append(InputExample(guid=F"{mode}-{guid_index}" , words=lowerCAmelCase__ , labels=lowerCAmelCase__ ) ) guid_index += 1 return examples def snake_case_ (self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): _UpperCAmelCase : List[Any] = 0 for sentence in parse_incr(lowerCAmelCase__ ): _UpperCAmelCase : Optional[Any] = preds_list[example_id] _UpperCAmelCase : int = """""" for token in sentence: out += F"{token['form']} ({token['upos']}|{s_p.pop(0 )}) " out += "\n" writer.write(lowerCAmelCase__ ) example_id += 1 def snake_case_ (self , lowerCAmelCase__ ): if path: with open(lowerCAmelCase__ , """r""" ) as f: return f.read().splitlines() else: return [ "ADJ", "ADP", "ADV", "AUX", "CCONJ", "DET", "INTJ", "NOUN", "NUM", "PART", "PRON", "PROPN", "PUNCT", "SCONJ", "SYM", "VERB", "X", ]
170
'''simple docstring''' import logging import torch from torch import nn from torch.nn import CrossEntropyLoss, MSELoss from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward from transformers.models.bert.modeling_bert import ( BERT_INPUTS_DOCSTRING, BERT_START_DOCSTRING, BertEncoder, BertModel, BertPreTrainedModel, ) lowerCAmelCase_ : Any = logging.getLogger(__name__) class __lowerCAmelCase ( __a ): def snake_case_ (self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__=None , lowerCAmelCase__=None ): _UpperCAmelCase : str = self.layer[current_layer](lowerCAmelCase__ , lowerCAmelCase__ , head_mask[current_layer] ) _UpperCAmelCase : List[Any] = layer_outputs[0] return hidden_states @add_start_docstrings( """The bare Bert Model transformer with PABEE outputting raw hidden-states without any specific head on top.""" , __a , ) class __lowerCAmelCase ( __a ): def __init__(self , lowerCAmelCase__ ): super().__init__(lowerCAmelCase__ ) _UpperCAmelCase : Tuple = BertEncoderWithPabee(lowerCAmelCase__ ) self.init_weights() _UpperCAmelCase : List[str] = 0 _UpperCAmelCase : Union[str, Any] = 0 _UpperCAmelCase : Tuple = 0 _UpperCAmelCase : int = 0 def snake_case_ (self , lowerCAmelCase__ ): _UpperCAmelCase : Union[str, Any] = threshold def snake_case_ (self , lowerCAmelCase__ ): _UpperCAmelCase : Union[str, Any] = patience def snake_case_ (self ): _UpperCAmelCase : int = 0 _UpperCAmelCase : Optional[Any] = 0 def snake_case_ (self ): _UpperCAmelCase : Union[str, Any] = self.inference_layers_num / self.inference_instances_num _UpperCAmelCase : Optional[int] = ( F"*** Patience = {self.patience} Avg. Inference Layers = {avg_inf_layers:.2f} Speed Up =" F" {1 - avg_inf_layers / self.config.num_hidden_layers:.2f} ***" ) print(lowerCAmelCase__ ) @add_start_docstrings_to_model_forward(lowerCAmelCase__ ) def snake_case_ (self , lowerCAmelCase__=None , lowerCAmelCase__=None , lowerCAmelCase__=None , lowerCAmelCase__=None , lowerCAmelCase__=None , lowerCAmelCase__=None , lowerCAmelCase__=None , lowerCAmelCase__=None , lowerCAmelCase__=None , lowerCAmelCase__=None , lowerCAmelCase__=False , ): if input_ids is not None and inputs_embeds is not None: raise ValueError("""You cannot specify both input_ids and inputs_embeds at the same time""" ) elif input_ids is not None: _UpperCAmelCase : Optional[Any] = input_ids.size() elif inputs_embeds is not None: _UpperCAmelCase : str = inputs_embeds.size()[:-1] else: raise ValueError("""You have to specify either input_ids or inputs_embeds""" ) _UpperCAmelCase : Optional[Any] = input_ids.device if input_ids is not None else inputs_embeds.device if attention_mask is None: _UpperCAmelCase : Optional[Any] = torch.ones(lowerCAmelCase__ , device=lowerCAmelCase__ ) if token_type_ids is None: _UpperCAmelCase : Optional[int] = torch.zeros(lowerCAmelCase__ , dtype=torch.long , device=lowerCAmelCase__ ) # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] # ourselves in which case we just need to make it broadcastable to all heads. _UpperCAmelCase : torch.Tensor = self.get_extended_attention_mask(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) # If a 2D ou 3D attention mask is provided for the cross-attention # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] if self.config.is_decoder and encoder_hidden_states is not None: _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : Optional[Any] = encoder_hidden_states.size() _UpperCAmelCase : List[str] = (encoder_batch_size, encoder_sequence_length) if encoder_attention_mask is None: _UpperCAmelCase : Tuple = torch.ones(lowerCAmelCase__ , device=lowerCAmelCase__ ) _UpperCAmelCase : Union[str, Any] = self.invert_attention_mask(lowerCAmelCase__ ) else: _UpperCAmelCase : List[str] = None # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] _UpperCAmelCase : Any = self.get_head_mask(lowerCAmelCase__ , self.config.num_hidden_layers ) _UpperCAmelCase : int = self.embeddings( input_ids=lowerCAmelCase__ , position_ids=lowerCAmelCase__ , token_type_ids=lowerCAmelCase__ , inputs_embeds=lowerCAmelCase__ ) _UpperCAmelCase : Optional[int] = embedding_output if self.training: _UpperCAmelCase : Union[str, Any] = [] for i in range(self.config.num_hidden_layers ): _UpperCAmelCase : Tuple = self.encoder.adaptive_forward( lowerCAmelCase__ , current_layer=lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , head_mask=lowerCAmelCase__ ) _UpperCAmelCase : Any = self.pooler(lowerCAmelCase__ ) _UpperCAmelCase : List[Any] = output_layers[i](output_dropout(lowerCAmelCase__ ) ) res.append(lowerCAmelCase__ ) elif self.patience == 0: # Use all layers for inference _UpperCAmelCase : int = self.encoder( lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , head_mask=lowerCAmelCase__ , encoder_hidden_states=lowerCAmelCase__ , encoder_attention_mask=lowerCAmelCase__ , ) _UpperCAmelCase : List[str] = self.pooler(encoder_outputs[0] ) _UpperCAmelCase : List[Any] = [output_layers[self.config.num_hidden_layers - 1](lowerCAmelCase__ )] else: _UpperCAmelCase : Union[str, Any] = 0 _UpperCAmelCase : Optional[Any] = None _UpperCAmelCase : int = 0 for i in range(self.config.num_hidden_layers ): calculated_layer_num += 1 _UpperCAmelCase : int = self.encoder.adaptive_forward( lowerCAmelCase__ , current_layer=lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , head_mask=lowerCAmelCase__ ) _UpperCAmelCase : Tuple = self.pooler(lowerCAmelCase__ ) _UpperCAmelCase : int = output_layers[i](lowerCAmelCase__ ) if regression: _UpperCAmelCase : List[Any] = logits.detach() if patient_result is not None: _UpperCAmelCase : Union[str, Any] = patient_result.detach() if (patient_result is not None) and torch.abs(patient_result - labels ) < self.regression_threshold: patient_counter += 1 else: _UpperCAmelCase : List[str] = 0 else: _UpperCAmelCase : Optional[int] = logits.detach().argmax(dim=1 ) if patient_result is not None: _UpperCAmelCase : str = patient_result.detach().argmax(dim=1 ) if (patient_result is not None) and torch.all(labels.eq(lowerCAmelCase__ ) ): patient_counter += 1 else: _UpperCAmelCase : Tuple = 0 _UpperCAmelCase : List[str] = logits if patient_counter == self.patience: break _UpperCAmelCase : List[str] = [patient_result] self.inference_layers_num += calculated_layer_num self.inference_instances_num += 1 return res @add_start_docstrings( """Bert Model transformer with PABEE and a sequence classification/regression head on top (a linear layer on top of the pooled output) e.g. for GLUE tasks. """ , __a , ) class __lowerCAmelCase ( __a ): def __init__(self , lowerCAmelCase__ ): super().__init__(lowerCAmelCase__ ) _UpperCAmelCase : int = config.num_labels _UpperCAmelCase : List[Any] = BertModelWithPabee(lowerCAmelCase__ ) _UpperCAmelCase : int = nn.Dropout(config.hidden_dropout_prob ) _UpperCAmelCase : str = nn.ModuleList( [nn.Linear(config.hidden_size , self.config.num_labels ) for _ in range(config.num_hidden_layers )] ) self.init_weights() @add_start_docstrings_to_model_forward(lowerCAmelCase__ ) def snake_case_ (self , lowerCAmelCase__=None , lowerCAmelCase__=None , lowerCAmelCase__=None , lowerCAmelCase__=None , lowerCAmelCase__=None , lowerCAmelCase__=None , lowerCAmelCase__=None , ): _UpperCAmelCase : Optional[int] = self.bert( input_ids=lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , token_type_ids=lowerCAmelCase__ , position_ids=lowerCAmelCase__ , head_mask=lowerCAmelCase__ , inputs_embeds=lowerCAmelCase__ , output_dropout=self.dropout , output_layers=self.classifiers , regression=self.num_labels == 1 , ) _UpperCAmelCase : Any = (logits[-1],) if labels is not None: _UpperCAmelCase : Union[str, Any] = None _UpperCAmelCase : int = 0 for ix, logits_item in enumerate(lowerCAmelCase__ ): if self.num_labels == 1: # We are doing regression _UpperCAmelCase : Dict = MSELoss() _UpperCAmelCase : List[Any] = loss_fct(logits_item.view(-1 ) , labels.view(-1 ) ) else: _UpperCAmelCase : Optional[Any] = CrossEntropyLoss() _UpperCAmelCase : Union[str, Any] = loss_fct(logits_item.view(-1 , self.num_labels ) , labels.view(-1 ) ) if total_loss is None: _UpperCAmelCase : Any = loss else: total_loss += loss * (ix + 1) total_weights += ix + 1 _UpperCAmelCase : Tuple = (total_loss / total_weights,) + outputs return outputs
170
1
"""simple docstring""" # coding=utf-8 # Copyright 2023 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # this script dumps information about the environment import os import platform import sys UpperCamelCase_ = '3' print('Python version:', sys.version) print('OS platform:', platform.platform()) print('OS architecture:', platform.machine()) try: import torch print('Torch version:', torch.__version__) print('Cuda available:', torch.cuda.is_available()) print('Cuda version:', torch.version.cuda) print('CuDNN version:', torch.backends.cudnn.version()) print('Number of GPUs available:', torch.cuda.device_count()) except ImportError: print('Torch version:', None) try: import transformers print('transformers version:', transformers.__version__) except ImportError: print('transformers version:', None)
243
"""simple docstring""" import argparse import glob import importlib.util import os import re import black from doc_builder.style_doc import style_docstrings_in_code # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_copies.py UpperCamelCase_ = 'src/diffusers' UpperCamelCase_ = '.' # This is to make sure the diffusers module imported is the one in the repo. UpperCamelCase_ = importlib.util.spec_from_file_location( 'diffusers', os.path.join(DIFFUSERS_PATH, '__init__.py'), submodule_search_locations=[DIFFUSERS_PATH], ) UpperCamelCase_ = spec.loader.load_module() def UpperCamelCase ( UpperCAmelCase , UpperCAmelCase ) ->Dict: """simple docstring""" return line.startswith(UpperCAmelCase ) or len(UpperCAmelCase ) <= 1 or re.search(r"^\s*\)(\s*->.*:|:)\s*$" , UpperCAmelCase ) is not None def UpperCamelCase ( UpperCAmelCase ) ->Any: """simple docstring""" a_ = object_name.split("." ) a_ = 0 # First let's find the module where our object lives. a_ = parts[i] while i < len(UpperCAmelCase ) and not os.path.isfile(os.path.join(UpperCAmelCase , F'''{module}.py''' ) ): i += 1 if i < len(UpperCAmelCase ): a_ = os.path.join(UpperCAmelCase , parts[i] ) if i >= len(UpperCAmelCase ): raise ValueError(F'''`object_name` should begin with the name of a module of diffusers but got {object_name}.''' ) with open(os.path.join(UpperCAmelCase , F'''{module}.py''' ) , "r" , encoding="utf-8" , newline="\n" ) as f: a_ = f.readlines() # Now let's find the class / func in the code! a_ = "" a_ = 0 for name in parts[i + 1 :]: while ( line_index < len(UpperCAmelCase ) and re.search(rF'''^{indent}(class|def)\s+{name}(\(|\:)''' , lines[line_index] ) is None ): line_index += 1 indent += " " line_index += 1 if line_index >= len(UpperCAmelCase ): raise ValueError(F''' {object_name} does not match any function or class in {module}.''' ) # We found the beginning of the class / func, now let's find the end (when the indent diminishes). a_ = line_index while line_index < len(UpperCAmelCase ) and _should_continue(lines[line_index] , UpperCAmelCase ): line_index += 1 # Clean up empty lines at the end (if any). while len(lines[line_index - 1] ) <= 1: line_index -= 1 a_ = lines[start_index:line_index] return "".join(UpperCAmelCase ) UpperCamelCase_ = re.compile(R'^(\s*)#\s*Copied from\s+diffusers\.(\S+\.\S+)\s*($|\S.*$)') UpperCamelCase_ = re.compile(R'^\s*(\S+)->(\S+)(\s+.*|$)') UpperCamelCase_ = re.compile(R'<FILL\s+[^>]*>') def UpperCamelCase ( UpperCAmelCase ) ->int: """simple docstring""" a_ = code.split("\n" ) a_ = 0 while idx < len(UpperCAmelCase ) and len(lines[idx] ) == 0: idx += 1 if idx < len(UpperCAmelCase ): return re.search(r"^(\s*)\S" , lines[idx] ).groups()[0] return "" def UpperCamelCase ( UpperCAmelCase ) ->int: """simple docstring""" a_ = len(get_indent(UpperCAmelCase ) ) > 0 if has_indent: a_ = F'''class Bla:\n{code}''' a_ = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=119 , preview=UpperCAmelCase ) a_ = black.format_str(UpperCAmelCase , mode=UpperCAmelCase ) a_ , a_ = style_docstrings_in_code(UpperCAmelCase ) return result[len("class Bla:\n" ) :] if has_indent else result def UpperCamelCase ( UpperCAmelCase , UpperCAmelCase=False ) ->str: """simple docstring""" with open(UpperCAmelCase , "r" , encoding="utf-8" , newline="\n" ) as f: a_ = f.readlines() a_ = [] a_ = 0 # Not a for loop cause `lines` is going to change (if `overwrite=True`). while line_index < len(UpperCAmelCase ): a_ = _re_copy_warning.search(lines[line_index] ) if search is None: line_index += 1 continue # There is some copied code here, let's retrieve the original. a_ , a_ , a_ = search.groups() a_ = find_code_in_diffusers(UpperCAmelCase ) a_ = get_indent(UpperCAmelCase ) a_ = line_index + 1 if indent == theoretical_indent else line_index + 2 a_ = theoretical_indent a_ = start_index # Loop to check the observed code, stop when indentation diminishes or if we see a End copy comment. a_ = True while line_index < len(UpperCAmelCase ) and should_continue: line_index += 1 if line_index >= len(UpperCAmelCase ): break a_ = lines[line_index] a_ = _should_continue(UpperCAmelCase , UpperCAmelCase ) and re.search(F'''^{indent}# End copy''' , UpperCAmelCase ) is None # Clean up empty lines at the end (if any). while len(lines[line_index - 1] ) <= 1: line_index -= 1 a_ = lines[start_index:line_index] a_ = "".join(UpperCAmelCase ) # Remove any nested `Copied from` comments to avoid circular copies a_ = [line for line in theoretical_code.split("\n" ) if _re_copy_warning.search(UpperCAmelCase ) is None] a_ = "\n".join(UpperCAmelCase ) # Before comparing, use the `replace_pattern` on the original code. if len(UpperCAmelCase ) > 0: a_ = replace_pattern.replace("with" , "" ).split("," ) a_ = [_re_replace_pattern.search(UpperCAmelCase ) for p in patterns] for pattern in patterns: if pattern is None: continue a_ , a_ , a_ = pattern.groups() a_ = re.sub(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) if option.strip() == "all-casing": a_ = re.sub(obja.lower() , obja.lower() , UpperCAmelCase ) a_ = re.sub(obja.upper() , obja.upper() , UpperCAmelCase ) # Blackify after replacement. To be able to do that, we need the header (class or function definition) # from the previous line a_ = blackify(lines[start_index - 1] + theoretical_code ) a_ = theoretical_code[len(lines[start_index - 1] ) :] # Test for a diff and act accordingly. if observed_code != theoretical_code: diffs.append([object_name, start_index] ) if overwrite: a_ = lines[:start_index] + [theoretical_code] + lines[line_index:] a_ = start_index + 1 if overwrite and len(UpperCAmelCase ) > 0: # Warn the user a file has been modified. print(F'''Detected changes, rewriting {filename}.''' ) with open(UpperCAmelCase , "w" , encoding="utf-8" , newline="\n" ) as f: f.writelines(UpperCAmelCase ) return diffs def UpperCamelCase ( UpperCAmelCase = False ) ->int: """simple docstring""" a_ = glob.glob(os.path.join(UpperCAmelCase , "**/*.py" ) , recursive=UpperCAmelCase ) a_ = [] for filename in all_files: a_ = is_copy_consistent(UpperCAmelCase , UpperCAmelCase ) diffs += [F'''- {filename}: copy does not match {d[0]} at line {d[1]}''' for d in new_diffs] if not overwrite and len(UpperCAmelCase ) > 0: a_ = "\n".join(UpperCAmelCase ) raise Exception( "Found the following copy inconsistencies:\n" + diff + "\nRun `make fix-copies` or `python utils/check_copies.py --fix_and_overwrite` to fix them." ) if __name__ == "__main__": UpperCamelCase_ = argparse.ArgumentParser() parser.add_argument('--fix_and_overwrite', action='store_true', help='Whether to fix inconsistencies.') UpperCamelCase_ = parser.parse_args() check_copies(args.fix_and_overwrite)
243
1
"""simple docstring""" import unittest from transformers import AutoTokenizer, is_flax_available from transformers.testing_utils import require_flax, require_sentencepiece, require_tokenizers, slow if is_flax_available(): import jax.numpy as jnp from transformers import FlaxXLMRobertaModel @require_sentencepiece @require_tokenizers @require_flax class UpperCamelCase ( unittest.TestCase ): @slow def _lowercase (self : Union[str, Any]) -> Dict: __snake_case : Union[str, Any] = FlaxXLMRobertaModel.from_pretrained('xlm-roberta-base') __snake_case : Tuple = AutoTokenizer.from_pretrained('xlm-roberta-base') __snake_case : int = 'The dog is cute and lives in the garden house' __snake_case : Dict = jnp.array([tokenizer.encode(_A)]) __snake_case : Dict = (1, 12, 7_68) # batch_size, sequence_length, embedding_vector_dim __snake_case : Tuple = jnp.array( [[-0.0_101, 0.1_218, -0.0_803, 0.0_801, 0.1_327, 0.0_776, -0.1_215, 0.2_383, 0.3_338, 0.3_106, 0.0_300, 0.0_252]]) __snake_case : Union[str, Any] = model(_A)['last_hidden_state'] self.assertEqual(output.shape , _A) # compare the actual values for a slice of last dim self.assertTrue(jnp.allclose(output[:, :, -1] , _A , atol=1E-3))
352
"""simple docstring""" import warnings from ...utils import logging from .image_processing_clip import CLIPImageProcessor _a : Dict= logging.get_logger(__name__) class UpperCamelCase ( lowercase ): def __init__(self : List[str] , *_A : Dict , **_A : Optional[Any]) -> None: warnings.warn( 'The class CLIPFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please' ' use CLIPImageProcessor instead.' , _A , ) super().__init__(*_A , **_A)
95
0
'''simple docstring''' import html from ...feature_extraction_utils import BatchFeature, FeatureExtractionMixin from ...utils import is_bsa_available, logging, requires_backends if is_bsa_available(): import bsa from bsa import BeautifulSoup a_ : Optional[int] = logging.get_logger(__name__) class snake_case ( a_ ): """simple docstring""" def __init__( self , **UpperCamelCase ): """simple docstring""" requires_backends(self , ["bs4"] ) super().__init__(**UpperCamelCase ) def snake_case ( self , UpperCamelCase ): """simple docstring""" lowerCamelCase_ = [] lowerCamelCase_ = [] lowerCamelCase_ = element if element.name else element.parent for parent in child.parents: # type: bs4.element.Tag lowerCamelCase_ = parent.find_all(child.name , recursive=UpperCamelCase ) xpath_tags.append(child.name ) xpath_subscripts.append( 0 if 1 == len(UpperCamelCase ) else next(i for i, s in enumerate(UpperCamelCase , 1 ) if s is child ) ) lowerCamelCase_ = parent xpath_tags.reverse() xpath_subscripts.reverse() return xpath_tags, xpath_subscripts def snake_case ( self , UpperCamelCase ): """simple docstring""" lowerCamelCase_ = BeautifulSoup(UpperCamelCase , "html.parser" ) lowerCamelCase_ = [] lowerCamelCase_ = [] lowerCamelCase_ = [] for element in html_code.descendants: if type(UpperCamelCase ) == bsa.element.NavigableString: if type(element.parent ) != bsa.element.Tag: continue lowerCamelCase_ = html.unescape(UpperCamelCase ).strip() if not text_in_this_tag: continue all_doc_strings.append(UpperCamelCase ) lowerCamelCase_ ,lowerCamelCase_ = self.xpath_soup(UpperCamelCase ) stringaxtag_seq.append(UpperCamelCase ) stringaxsubs_seq.append(UpperCamelCase ) if len(UpperCamelCase ) != len(UpperCamelCase ): raise ValueError("Number of doc strings and xtags does not correspond" ) if len(UpperCamelCase ) != len(UpperCamelCase ): raise ValueError("Number of doc strings and xsubs does not correspond" ) return all_doc_strings, stringaxtag_seq, stringaxsubs_seq def snake_case ( self , UpperCamelCase , UpperCamelCase ): """simple docstring""" lowerCamelCase_ = "" for tagname, subs in zip(UpperCamelCase , UpperCamelCase ): xpath += f'''/{tagname}''' if subs != 0: xpath += f'''[{subs}]''' return xpath def __call__( self , UpperCamelCase ): """simple docstring""" lowerCamelCase_ = False # Check that strings has a valid type if isinstance(UpperCamelCase , UpperCamelCase ): lowerCamelCase_ = True elif isinstance(UpperCamelCase , (list, tuple) ): if len(UpperCamelCase ) == 0 or isinstance(html_strings[0] , UpperCamelCase ): lowerCamelCase_ = True if not valid_strings: raise ValueError( "HTML strings must of type `str`, `List[str]` (batch of examples), " f'''but is of type {type(UpperCamelCase )}.''' ) lowerCamelCase_ = bool(isinstance(UpperCamelCase , (list, tuple) ) and (isinstance(html_strings[0] , UpperCamelCase )) ) if not is_batched: lowerCamelCase_ = [html_strings] # Get nodes + xpaths lowerCamelCase_ = [] lowerCamelCase_ = [] for html_string in html_strings: lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ = self.get_three_from_single(UpperCamelCase ) nodes.append(UpperCamelCase ) lowerCamelCase_ = [] for node, tag_list, sub_list in zip(UpperCamelCase , UpperCamelCase , UpperCamelCase ): lowerCamelCase_ = self.construct_xpath(UpperCamelCase , UpperCamelCase ) xpath_strings.append(UpperCamelCase ) xpaths.append(UpperCamelCase ) # return as Dict lowerCamelCase_ = {"nodes": nodes, "xpaths": xpaths} lowerCamelCase_ = BatchFeature(data=UpperCamelCase , tensor_type=UpperCamelCase ) return encoded_inputs
55
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCAmelCase : List[str] = { "configuration_x_clip": [ "XCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP", "XCLIPConfig", "XCLIPTextConfig", "XCLIPVisionConfig", ], "processing_x_clip": ["XCLIPProcessor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase : Union[str, Any] = [ "XCLIP_PRETRAINED_MODEL_ARCHIVE_LIST", "XCLIPModel", "XCLIPPreTrainedModel", "XCLIPTextModel", "XCLIPVisionModel", ] if TYPE_CHECKING: from .configuration_x_clip import ( XCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, XCLIPConfig, XCLIPTextConfig, XCLIPVisionConfig, ) from .processing_x_clip import XCLIPProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_x_clip import ( XCLIP_PRETRAINED_MODEL_ARCHIVE_LIST, XCLIPModel, XCLIPPreTrainedModel, XCLIPTextModel, XCLIPVisionModel, ) else: import sys UpperCAmelCase : Any = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
252
0
'''simple docstring''' import random from .binary_exp_mod import bin_exp_mod def SCREAMING_SNAKE_CASE__ ( __A , __A=1_000 ) -> str: if n < 2: return False if n % 2 == 0: return n == 2 # this means n is odd _snake_case = n - 1 _snake_case = 0 while d % 2 == 0: d /= 2 exp += 1 # n - 1=d*(2**exp) _snake_case = 0 while count < prec: _snake_case = random.randint(2 , n - 1 ) _snake_case = bin_exp_mod(__A , __A , __A ) if b != 1: _snake_case = True for _ in range(__A ): if b == n - 1: _snake_case = False break _snake_case = b * b b %= n if flag: return False count += 1 return True if __name__ == "__main__": lowercase : Optional[int] = abs(int(input("Enter bound : ").strip())) print("Here's the list of primes:") print(", ".join(str(i) for i in range(n + 1) if is_prime_big(i)))
160
'''simple docstring''' import numpy as np from cva import destroyAllWindows, imread, imshow, waitKey class __UpperCAmelCase : def __init__( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" if dst_width < 0 or dst_height < 0: raise ValueError('Destination width/height should be > 0' ) _snake_case = img _snake_case = img.shape[1] _snake_case = img.shape[0] _snake_case = dst_width _snake_case = dst_height _snake_case = self.src_w / self.dst_w _snake_case = self.src_h / self.dst_h _snake_case = _snake_case = ( np.ones((self.dst_h, self.dst_w, 3) , np.uinta ) * 2_55 ) def lowerCamelCase ( self ): """simple docstring""" for i in range(self.dst_h ): for j in range(self.dst_w ): _snake_case = self.img[self.get_y(lowerCAmelCase_ )][self.get_x(lowerCAmelCase_ )] def lowerCamelCase ( self , lowerCAmelCase_ ): """simple docstring""" return int(self.ratio_x * x ) def lowerCamelCase ( self , lowerCAmelCase_ ): """simple docstring""" return int(self.ratio_y * y ) if __name__ == "__main__": lowercase , lowercase : Optional[Any] = 800, 600 lowercase : Tuple = imread("image_data/lena.jpg", 1) lowercase : Any = NearestNeighbour(im, dst_w, dst_h) n.process() imshow( F'''Image resized from: {im.shape[1]}x{im.shape[0]} to {dst_w}x{dst_h}''', n.output ) waitKey(0) destroyAllWindows()
160
1
import colorsys from PIL import Image # type: ignore def a_ ( lowerCAmelCase_ : int, lowerCAmelCase_ : List[str], lowerCAmelCase_ : Union[str, Any] ): __lowerCAmelCase = x __lowerCAmelCase = y for step in range(UpperCamelCase__ ): # noqa: B007 __lowerCAmelCase = a * a - b * b + x __lowerCAmelCase = 2 * a * b + y __lowerCAmelCase = a_new # divergence happens for all complex number with an absolute value # greater than 4 if a * a + b * b > 4: break return step / (max_step - 1) def a_ ( lowerCAmelCase_ : str ): if distance == 1: return (0, 0, 0) else: return (255, 255, 255) def a_ ( lowerCAmelCase_ : Tuple ): if distance == 1: return (0, 0, 0) else: return tuple(round(i * 255 ) for i in colorsys.hsv_to_rgb(UpperCamelCase__, 1, 1 ) ) def a_ ( lowerCAmelCase_ : Optional[int] = 800, lowerCAmelCase_ : Tuple = 600, lowerCAmelCase_ : str = -0.6, lowerCAmelCase_ : str = 0, lowerCAmelCase_ : List[str] = 3.2, lowerCAmelCase_ : List[Any] = 50, lowerCAmelCase_ : Optional[Any] = True, ): __lowerCAmelCase = Image.new('RGB', (image_width, image_height) ) __lowerCAmelCase = img.load() # loop through the image-coordinates for image_x in range(UpperCamelCase__ ): for image_y in range(UpperCamelCase__ ): # determine the figure-coordinates based on the image-coordinates __lowerCAmelCase = figure_width / image_width * image_height __lowerCAmelCase = figure_center_x + (image_x / image_width - 0.5) * figure_width __lowerCAmelCase = figure_center_y + (image_y / image_height - 0.5) * figure_height __lowerCAmelCase = get_distance(UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ ) # color the corresponding pixel based on the selected coloring-function if use_distance_color_coding: __lowerCAmelCase = get_color_coded_rgb(UpperCamelCase__ ) else: __lowerCAmelCase = get_black_and_white_rgb(UpperCamelCase__ ) return img if __name__ == "__main__": import doctest doctest.testmod() # colored version, full figure _snake_case : List[str] = get_image() # uncomment for colored version, different section, zoomed in # img = get_image(figure_center_x = -0.6, figure_center_y = -0.4, # figure_width = 0.8) # uncomment for black and white version, full figure # img = get_image(use_distance_color_coding = False) # uncomment to save the image # img.save("mandelbrot.png") img.show()
284
'''simple docstring''' from math import log from scipy.constants import Boltzmann, physical_constants __A =3_00 # TEMPERATURE (unit = K) def _UpperCamelCase ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , ): if donor_conc <= 0: raise ValueError("""Donor concentration should be positive""" ) elif acceptor_conc <= 0: raise ValueError("""Acceptor concentration should be positive""" ) elif intrinsic_conc <= 0: raise ValueError("""Intrinsic concentration should be positive""" ) elif donor_conc <= intrinsic_conc: raise ValueError( """Donor concentration should be greater than intrinsic concentration""" ) elif acceptor_conc <= intrinsic_conc: raise ValueError( """Acceptor concentration should be greater than intrinsic concentration""" ) else: return ( Boltzmann * T * log((donor_conc * acceptor_conc) / intrinsic_conc**2 ) / physical_constants["electron volt"][0] ) if __name__ == "__main__": import doctest doctest.testmod()
163
0
def _lowerCAmelCase ( A__: Optional[int] , A__: List[str] ): '''simple docstring''' UpperCAmelCase = [0 for i in range(r + 1 )] # nc0 = 1 UpperCAmelCase = 1 for i in range(1 , n + 1 ): # to compute current row from previous row. UpperCAmelCase = min(_lowerCAmelCase , _lowerCAmelCase ) while j > 0: c[j] += c[j - 1] j -= 1 return c[r] print(binomial_coefficient(n=10, r=5))
354
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available, is_vision_available, ) __magic_name__ = {"configuration_beit": ["BEIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "BeitConfig", "BeitOnnxConfig"]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __magic_name__ = ["BeitFeatureExtractor"] __magic_name__ = ["BeitImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __magic_name__ = [ "BEIT_PRETRAINED_MODEL_ARCHIVE_LIST", "BeitForImageClassification", "BeitForMaskedImageModeling", "BeitForSemanticSegmentation", "BeitModel", "BeitPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __magic_name__ = [ "FlaxBeitForImageClassification", "FlaxBeitForMaskedImageModeling", "FlaxBeitModel", "FlaxBeitPreTrainedModel", ] if TYPE_CHECKING: from .configuration_beit import BEIT_PRETRAINED_CONFIG_ARCHIVE_MAP, BeitConfig, BeitOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_beit import BeitFeatureExtractor from .image_processing_beit import BeitImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_beit import ( BEIT_PRETRAINED_MODEL_ARCHIVE_LIST, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation, BeitModel, BeitPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_beit import ( FlaxBeitForImageClassification, FlaxBeitForMaskedImageModeling, FlaxBeitModel, FlaxBeitPreTrainedModel, ) else: import sys __magic_name__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
152
0
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import OwlViTImageProcessor, OwlViTProcessor @require_vision class A__ ( unittest.TestCase ): def __UpperCamelCase( self ): '''simple docstring''' UpperCamelCase : Optional[int] = tempfile.mkdtemp() # fmt: off UpperCamelCase : Optional[Any] = ["", "l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "lo", "l</w>", "w</w>", "r</w>", "t</w>", "low</w>", "er</w>", "lowest</w>", "newer</w>", "wider", "<unk>", "<|startoftext|>", "<|endoftext|>"] # fmt: on UpperCamelCase : Any = dict(zip(__UpperCamelCase , range(len(__UpperCamelCase ) ) ) ) UpperCamelCase : Optional[Any] = ["#version: 0.2", "l o", "lo w</w>", "e r</w>", ""] UpperCamelCase : int = {"unk_token": "<unk>"} UpperCamelCase : Optional[int] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) UpperCamelCase : Union[str, Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as fp: fp.write(json.dumps(__UpperCamelCase ) + "\n" ) with open(self.merges_file , "w" , encoding="utf-8" ) as fp: fp.write("\n".join(__UpperCamelCase ) ) UpperCamelCase : Optional[int] = { "do_resize": True, "size": 20, "do_center_crop": True, "crop_size": 18, "do_normalize": True, "image_mean": [0.48_14_54_66, 0.4_57_82_75, 0.40_82_10_73], "image_std": [0.26_86_29_54, 0.26_13_02_58, 0.27_57_77_11], } UpperCamelCase : Any = os.path.join(self.tmpdirname , __UpperCamelCase ) with open(self.image_processor_file , "w" , encoding="utf-8" ) as fp: json.dump(__UpperCamelCase , __UpperCamelCase ) def __UpperCamelCase( self , **A_ ): '''simple docstring''' return CLIPTokenizer.from_pretrained(self.tmpdirname , pad_token="!" , **__UpperCamelCase ) def __UpperCamelCase( self , **A_ ): '''simple docstring''' return CLIPTokenizerFast.from_pretrained(self.tmpdirname , pad_token="!" , **__UpperCamelCase ) def __UpperCamelCase( self , **A_ ): '''simple docstring''' return OwlViTImageProcessor.from_pretrained(self.tmpdirname , **__UpperCamelCase ) def __UpperCamelCase( self ): '''simple docstring''' shutil.rmtree(self.tmpdirname ) def __UpperCamelCase( self ): '''simple docstring''' UpperCamelCase : Optional[int] = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] UpperCamelCase : int = [Image.fromarray(np.moveaxis(__UpperCamelCase , 0 , -1 ) ) for x in image_inputs] return image_inputs def __UpperCamelCase( self ): '''simple docstring''' UpperCamelCase : Union[str, Any] = self.get_tokenizer() UpperCamelCase : Optional[int] = self.get_rust_tokenizer() UpperCamelCase : str = self.get_image_processor() UpperCamelCase : Any = OwlViTProcessor(tokenizer=__UpperCamelCase , image_processor=__UpperCamelCase ) processor_slow.save_pretrained(self.tmpdirname ) UpperCamelCase : int = OwlViTProcessor.from_pretrained(self.tmpdirname , use_fast=__UpperCamelCase ) UpperCamelCase : Any = OwlViTProcessor(tokenizer=__UpperCamelCase , image_processor=__UpperCamelCase ) processor_fast.save_pretrained(self.tmpdirname ) UpperCamelCase : Dict = OwlViTProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , __UpperCamelCase ) self.assertIsInstance(processor_fast.tokenizer , __UpperCamelCase ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , __UpperCamelCase ) self.assertIsInstance(processor_fast.image_processor , __UpperCamelCase ) def __UpperCamelCase( self ): '''simple docstring''' UpperCamelCase : Union[str, Any] = OwlViTProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) UpperCamelCase : Optional[Any] = self.get_tokenizer(bos_token="(BOS)" , eos_token="(EOS)" ) UpperCamelCase : List[Any] = self.get_image_processor(do_normalize=__UpperCamelCase ) UpperCamelCase : str = OwlViTProcessor.from_pretrained( self.tmpdirname , bos_token="(BOS)" , eos_token="(EOS)" , do_normalize=__UpperCamelCase ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , __UpperCamelCase ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , __UpperCamelCase ) def __UpperCamelCase( self ): '''simple docstring''' UpperCamelCase : Any = self.get_image_processor() UpperCamelCase : List[str] = self.get_tokenizer() UpperCamelCase : Union[str, Any] = OwlViTProcessor(tokenizer=__UpperCamelCase , image_processor=__UpperCamelCase ) UpperCamelCase : Dict = self.prepare_image_inputs() UpperCamelCase : Any = image_processor(__UpperCamelCase , return_tensors="np" ) UpperCamelCase : Dict = processor(images=__UpperCamelCase , return_tensors="np" ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1e-2 ) def __UpperCamelCase( self ): '''simple docstring''' UpperCamelCase : List[Any] = self.get_image_processor() UpperCamelCase : int = self.get_tokenizer() UpperCamelCase : int = OwlViTProcessor(tokenizer=__UpperCamelCase , image_processor=__UpperCamelCase ) UpperCamelCase : str = "lower newer" UpperCamelCase : Optional[int] = processor(text=__UpperCamelCase , return_tensors="np" ) UpperCamelCase : List[Any] = tokenizer(__UpperCamelCase , return_tensors="np" ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key][0].tolist() , encoded_processor[key][0].tolist() ) def __UpperCamelCase( self ): '''simple docstring''' UpperCamelCase : List[Any] = self.get_image_processor() UpperCamelCase : str = self.get_tokenizer() UpperCamelCase : int = OwlViTProcessor(tokenizer=__UpperCamelCase , image_processor=__UpperCamelCase ) UpperCamelCase : str = "lower newer" UpperCamelCase : Tuple = self.prepare_image_inputs() UpperCamelCase : Dict = processor(text=__UpperCamelCase , images=__UpperCamelCase ) self.assertListEqual(list(inputs.keys() ) , ["input_ids", "attention_mask", "pixel_values"] ) # test if it raises when no input is passed with pytest.raises(__UpperCamelCase ): processor() def __UpperCamelCase( self ): '''simple docstring''' UpperCamelCase : str = "google/owlvit-base-patch32" UpperCamelCase : Tuple = OwlViTProcessor.from_pretrained(__UpperCamelCase ) UpperCamelCase : Any = ["cat", "nasa badge"] UpperCamelCase : Optional[Any] = processor(text=__UpperCamelCase ) UpperCamelCase : List[str] = 16 self.assertListEqual(list(inputs.keys() ) , ["input_ids", "attention_mask"] ) self.assertEqual(inputs["input_ids"].shape , (2, seq_length) ) # test if it raises when no input is passed with pytest.raises(__UpperCamelCase ): processor() def __UpperCamelCase( self ): '''simple docstring''' UpperCamelCase : Optional[Any] = "google/owlvit-base-patch32" UpperCamelCase : Optional[Any] = OwlViTProcessor.from_pretrained(__UpperCamelCase ) UpperCamelCase : List[str] = [["cat", "nasa badge"], ["person"]] UpperCamelCase : Tuple = processor(text=__UpperCamelCase ) UpperCamelCase : Dict = 16 UpperCamelCase : List[str] = len(__UpperCamelCase ) UpperCamelCase : List[str] = max([len(__UpperCamelCase ) for texts in input_texts] ) self.assertListEqual(list(inputs.keys() ) , ["input_ids", "attention_mask"] ) self.assertEqual(inputs["input_ids"].shape , (batch_size * num_max_text_queries, seq_length) ) # test if it raises when no input is passed with pytest.raises(__UpperCamelCase ): processor() def __UpperCamelCase( self ): '''simple docstring''' UpperCamelCase : Optional[Any] = "google/owlvit-base-patch32" UpperCamelCase : Dict = OwlViTProcessor.from_pretrained(__UpperCamelCase ) UpperCamelCase : int = ["cat", "nasa badge"] UpperCamelCase : Union[str, Any] = processor(text=__UpperCamelCase ) UpperCamelCase : List[Any] = 16 UpperCamelCase : Tuple = inputs["input_ids"] UpperCamelCase : List[Any] = [ [4_9406, 2368, 4_9407, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [4_9406, 6841, 1_1301, 4_9407, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], ] self.assertListEqual(list(inputs.keys() ) , ["input_ids", "attention_mask"] ) self.assertEqual(inputs["input_ids"].shape , (2, seq_length) ) self.assertListEqual(list(input_ids[0] ) , predicted_ids[0] ) self.assertListEqual(list(input_ids[1] ) , predicted_ids[1] ) def __UpperCamelCase( self ): '''simple docstring''' UpperCamelCase : str = self.get_image_processor() UpperCamelCase : Optional[int] = self.get_tokenizer() UpperCamelCase : Optional[int] = OwlViTProcessor(tokenizer=__UpperCamelCase , image_processor=__UpperCamelCase ) UpperCamelCase : Tuple = self.prepare_image_inputs() UpperCamelCase : Optional[Any] = self.prepare_image_inputs() UpperCamelCase : Any = processor(images=__UpperCamelCase , query_images=__UpperCamelCase ) self.assertListEqual(list(inputs.keys() ) , ["query_pixel_values", "pixel_values"] ) # test if it raises when no input is passed with pytest.raises(__UpperCamelCase ): processor() def __UpperCamelCase( self ): '''simple docstring''' UpperCamelCase : Dict = self.get_image_processor() UpperCamelCase : Optional[Any] = self.get_tokenizer() UpperCamelCase : Optional[int] = OwlViTProcessor(tokenizer=__UpperCamelCase , image_processor=__UpperCamelCase ) UpperCamelCase : Union[str, Any] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] UpperCamelCase : List[Any] = processor.batch_decode(__UpperCamelCase ) UpperCamelCase : str = tokenizer.batch_decode(__UpperCamelCase ) self.assertListEqual(__UpperCamelCase , __UpperCamelCase )
52
"""simple docstring""" def lowercase ( _SCREAMING_SNAKE_CASE : list ): '''simple docstring''' if len(_SCREAMING_SNAKE_CASE ) <= 1: return lst _UpperCAmelCase = 1 while i < len(_SCREAMING_SNAKE_CASE ): if lst[i - 1] <= lst[i]: i += 1 else: _UpperCAmelCase , _UpperCAmelCase = lst[i], lst[i - 1] i -= 1 if i == 0: _UpperCAmelCase = 1 return lst if __name__ == "__main__": __A : Dict = input("Enter numbers separated by a comma:\n").strip() __A : List[Any] = [int(item) for item in user_input.split(",")] print(gnome_sort(unsorted))
260
0
import sacrebleu as scb from packaging import version from sacrebleu import TER import datasets UpperCamelCase = '\\n@inproceedings{snover-etal-2006-study,\n title = "A Study of Translation Edit Rate with Targeted Human Annotation",\n author = "Snover, Matthew and\n Dorr, Bonnie and\n Schwartz, Rich and\n Micciulla, Linnea and\n Makhoul, John",\n booktitle = "Proceedings of the 7th Conference of the Association for Machine Translation in the Americas: Technical Papers",\n month = aug # " 8-12",\n year = "2006",\n address = "Cambridge, Massachusetts, USA",\n publisher = "Association for Machine Translation in the Americas",\n url = "https://aclanthology.org/2006.amta-papers.25",\n pages = "223--231",\n}\n@inproceedings{post-2018-call,\n title = "A Call for Clarity in Reporting {BLEU} Scores",\n author = "Post, Matt",\n booktitle = "Proceedings of the Third Conference on Machine Translation: Research Papers",\n month = oct,\n year = "2018",\n address = "Belgium, Brussels",\n publisher = "Association for Computational Linguistics",\n url = "https://www.aclweb.org/anthology/W18-6319",\n pages = "186--191",\n}\n' UpperCamelCase = '\\nTER (Translation Edit Rate, also called Translation Error Rate) is a metric to quantify the edit operations that a\nhypothesis requires to match a reference translation. We use the implementation that is already present in sacrebleu\n(https://github.com/mjpost/sacreBLEU#ter), which in turn is inspired by the TERCOM implementation, which can be found\nhere: https://github.com/jhclark/tercom.\n\nThe implementation here is slightly different from sacrebleu in terms of the required input format. The length of\nthe references and hypotheses lists need to be the same, so you may need to transpose your references compared to\nsacrebleu\'s required input format. See https://github.com/huggingface/datasets/issues/3154#issuecomment-950746534\n\nSee the README.md file at https://github.com/mjpost/sacreBLEU#ter for more information.\n' UpperCamelCase = '\nProduces TER scores alongside the number of edits and reference length.\n\nArgs:\n predictions (list of str): The system stream (a sequence of segments).\n references (list of list of str): A list of one or more reference streams (each a sequence of segments).\n normalized (boolean): If `True`, applies basic tokenization and normalization to sentences. Defaults to `False`.\n ignore_punct (boolean): If `True`, applies basic tokenization and normalization to sentences. Defaults to `False`.\n support_zh_ja_chars (boolean): If `True`, tokenization/normalization supports processing of Chinese characters,\n as well as Japanese Kanji, Hiragana, Katakana, and Phonetic Extensions of Katakana.\n Only applies if `normalized = True`. Defaults to `False`.\n case_sensitive (boolean): If `False`, makes all predictions and references lowercase to ignore differences in case. Defaults to `False`.\n\nReturns:\n \'score\' (float): TER score (num_edits / sum_ref_lengths * 100)\n \'num_edits\' (int): The cumulative number of edits\n \'ref_length\' (float): The cumulative average reference length\n\nExamples:\n Example 1:\n >>> predictions = ["does this sentence match??",\n ... "what about this sentence?",\n ... "What did the TER metric user say to the developer?"]\n >>> references = [["does this sentence match", "does this sentence match!?!"],\n ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"],\n ... ["Your jokes are...", "...TERrible"]]\n >>> ter = datasets.load_metric("ter")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... case_sensitive=True)\n >>> print(results)\n {\'score\': 150.0, \'num_edits\': 15, \'ref_length\': 10.0}\n\n Example 2:\n >>> predictions = ["does this sentence match??",\n ... "what about this sentence?"]\n >>> references = [["does this sentence match", "does this sentence match!?!"],\n ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"]]\n >>> ter = datasets.load_metric("ter")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... case_sensitive=True)\n >>> print(results)\n {\'score\': 62.5, \'num_edits\': 5, \'ref_length\': 8.0}\n\n Example 3:\n >>> predictions = ["does this sentence match??",\n ... "what about this sentence?"]\n >>> references = [["does this sentence match", "does this sentence match!?!"],\n ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"]]\n >>> ter = datasets.load_metric("ter")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... normalized=True,\n ... case_sensitive=True)\n >>> print(results)\n {\'score\': 57.14285714285714, \'num_edits\': 6, \'ref_length\': 10.5}\n\n Example 4:\n >>> predictions = ["does this sentence match??",\n ... "what about this sentence?"]\n >>> references = [["does this sentence match", "does this sentence match!?!"],\n ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"]]\n >>> ter = datasets.load_metric("ter")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... ignore_punct=True,\n ... case_sensitive=False)\n >>> print(results)\n {\'score\': 0.0, \'num_edits\': 0, \'ref_length\': 8.0}\n\n Example 5:\n >>> predictions = ["does this sentence match??",\n ... "what about this sentence?",\n ... "What did the TER metric user say to the developer?"]\n >>> references = [["does this sentence match", "does this sentence match!?!"],\n ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"],\n ... ["Your jokes are...", "...TERrible"]]\n >>> ter = datasets.load_metric("ter")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... ignore_punct=True,\n ... case_sensitive=False)\n >>> print(results)\n {\'score\': 100.0, \'num_edits\': 10, \'ref_length\': 10.0}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __lowerCamelCase ( datasets.Metric ): """simple docstring""" def a ( self : str ) -> Dict: if version.parse(scb.__version__ ) < version.parse("1.4.12" ): raise ImportWarning( "To use `sacrebleu`, the module `sacrebleu>=1.4.12` is required, and the current version of `sacrebleu` doesn't match this condition.\n" "You can install it with `pip install \"sacrebleu>=1.4.12\"`." ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage="http://www.cs.umd.edu/~snover/tercom/" , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("string" , id="sequence" ), "references": datasets.Sequence(datasets.Value("string" , id="sequence" ) , id="references" ), } ) , codebase_urls=["https://github.com/mjpost/sacreBLEU#ter"] , reference_urls=[ "https://github.com/jhclark/tercom", ] , ) def a ( self : Optional[int] , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : bool = False , SCREAMING_SNAKE_CASE__ : bool = False , SCREAMING_SNAKE_CASE__ : bool = False , SCREAMING_SNAKE_CASE__ : bool = False , ) -> str: lowerCAmelCase__ = len(references[0] ) if any(len(SCREAMING_SNAKE_CASE__ ) != references_per_prediction for refs in references ): raise ValueError("Sacrebleu requires the same number of references for each prediction" ) lowerCAmelCase__ = [[refs[i] for refs in references] for i in range(SCREAMING_SNAKE_CASE__ )] lowerCAmelCase__ = TER( normalized=SCREAMING_SNAKE_CASE__ , no_punct=SCREAMING_SNAKE_CASE__ , asian_support=SCREAMING_SNAKE_CASE__ , case_sensitive=SCREAMING_SNAKE_CASE__ , ) lowerCAmelCase__ = sb_ter.corpus_score(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) return {"score": output.score, "num_edits": output.num_edits, "ref_length": output.ref_length}
221
import os import tempfile import unittest from pathlib import Path from transformers import AutoConfig, is_torch_available from transformers.testing_utils import require_torch, torch_device if is_torch_available(): from transformers import PyTorchBenchmark, PyTorchBenchmarkArguments @require_torch class __lowerCamelCase ( unittest.TestCase ): """simple docstring""" def a ( self : Any , SCREAMING_SNAKE_CASE__ : Any ) -> int: for model_result in results.values(): for batch_size, sequence_length in zip(model_result["bs"] , model_result["ss"] ): lowerCAmelCase__ = model_result["result"][batch_size][sequence_length] self.assertIsNotNone(SCREAMING_SNAKE_CASE__ ) def a ( self : Optional[Any] ) -> Any: lowerCAmelCase__ = "sshleifer/tiny-gpt2" lowerCAmelCase__ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=SCREAMING_SNAKE_CASE__ , inference=SCREAMING_SNAKE_CASE__ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=SCREAMING_SNAKE_CASE__ , ) lowerCAmelCase__ = PyTorchBenchmark(SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def a ( self : int ) -> Optional[Any]: lowerCAmelCase__ = "sgugger/tiny-distilbert-classification" lowerCAmelCase__ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=SCREAMING_SNAKE_CASE__ , inference=SCREAMING_SNAKE_CASE__ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=SCREAMING_SNAKE_CASE__ , only_pretrain_model=SCREAMING_SNAKE_CASE__ , ) lowerCAmelCase__ = PyTorchBenchmark(SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def a ( self : Optional[Any] ) -> int: lowerCAmelCase__ = "sshleifer/tiny-gpt2" lowerCAmelCase__ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=SCREAMING_SNAKE_CASE__ , inference=SCREAMING_SNAKE_CASE__ , torchscript=SCREAMING_SNAKE_CASE__ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=SCREAMING_SNAKE_CASE__ , ) lowerCAmelCase__ = PyTorchBenchmark(SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) @unittest.skipIf(torch_device == "cpu" , "Cant do half precision" ) def a ( self : Dict ) -> Optional[Any]: lowerCAmelCase__ = "sshleifer/tiny-gpt2" lowerCAmelCase__ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=SCREAMING_SNAKE_CASE__ , inference=SCREAMING_SNAKE_CASE__ , fpaa=SCREAMING_SNAKE_CASE__ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=SCREAMING_SNAKE_CASE__ , ) lowerCAmelCase__ = PyTorchBenchmark(SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def a ( self : Union[str, Any] ) -> Tuple: lowerCAmelCase__ = "sshleifer/tiny-gpt2" lowerCAmelCase__ = AutoConfig.from_pretrained(SCREAMING_SNAKE_CASE__ ) # set architectures equal to `None` lowerCAmelCase__ = None lowerCAmelCase__ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=SCREAMING_SNAKE_CASE__ , inference=SCREAMING_SNAKE_CASE__ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=SCREAMING_SNAKE_CASE__ , ) lowerCAmelCase__ = PyTorchBenchmark(SCREAMING_SNAKE_CASE__ , configs=[config] ) lowerCAmelCase__ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def a ( self : Any ) -> Optional[Any]: lowerCAmelCase__ = "sshleifer/tiny-gpt2" lowerCAmelCase__ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=SCREAMING_SNAKE_CASE__ , inference=SCREAMING_SNAKE_CASE__ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=SCREAMING_SNAKE_CASE__ , ) lowerCAmelCase__ = PyTorchBenchmark(SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) @unittest.skipIf(torch_device == "cpu" , "Can't do half precision" ) def a ( self : int ) -> Dict: lowerCAmelCase__ = "sshleifer/tiny-gpt2" lowerCAmelCase__ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=SCREAMING_SNAKE_CASE__ , inference=SCREAMING_SNAKE_CASE__ , sequence_lengths=[8] , batch_sizes=[1] , fpaa=SCREAMING_SNAKE_CASE__ , multi_process=SCREAMING_SNAKE_CASE__ , ) lowerCAmelCase__ = PyTorchBenchmark(SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def a ( self : Optional[int] ) -> Union[str, Any]: lowerCAmelCase__ = "sshleifer/tiny-gpt2" lowerCAmelCase__ = AutoConfig.from_pretrained(SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=SCREAMING_SNAKE_CASE__ , inference=SCREAMING_SNAKE_CASE__ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=SCREAMING_SNAKE_CASE__ , ) lowerCAmelCase__ = PyTorchBenchmark(SCREAMING_SNAKE_CASE__ , configs=[config] ) lowerCAmelCase__ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def a ( self : Optional[Any] ) -> Optional[Any]: lowerCAmelCase__ = "sshleifer/tinier_bart" lowerCAmelCase__ = AutoConfig.from_pretrained(SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=SCREAMING_SNAKE_CASE__ , inference=SCREAMING_SNAKE_CASE__ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=SCREAMING_SNAKE_CASE__ , ) lowerCAmelCase__ = PyTorchBenchmark(SCREAMING_SNAKE_CASE__ , configs=[config] ) lowerCAmelCase__ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def a ( self : List[str] ) -> Dict: lowerCAmelCase__ = "sshleifer/tiny-gpt2" lowerCAmelCase__ = AutoConfig.from_pretrained(SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=SCREAMING_SNAKE_CASE__ , inference=SCREAMING_SNAKE_CASE__ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=SCREAMING_SNAKE_CASE__ , ) lowerCAmelCase__ = PyTorchBenchmark(SCREAMING_SNAKE_CASE__ , configs=[config] ) lowerCAmelCase__ = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def a ( self : Optional[int] ) -> Optional[int]: lowerCAmelCase__ = "sshleifer/tinier_bart" lowerCAmelCase__ = AutoConfig.from_pretrained(SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=SCREAMING_SNAKE_CASE__ , inference=SCREAMING_SNAKE_CASE__ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=SCREAMING_SNAKE_CASE__ , ) lowerCAmelCase__ = PyTorchBenchmark(SCREAMING_SNAKE_CASE__ , configs=[config] ) lowerCAmelCase__ = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def a ( self : List[Any] ) -> Optional[int]: lowerCAmelCase__ = "sshleifer/tiny-gpt2" with tempfile.TemporaryDirectory() as tmp_dir: lowerCAmelCase__ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=SCREAMING_SNAKE_CASE__ , inference=SCREAMING_SNAKE_CASE__ , save_to_csv=SCREAMING_SNAKE_CASE__ , sequence_lengths=[8] , batch_sizes=[1] , inference_time_csv_file=os.path.join(SCREAMING_SNAKE_CASE__ , "inf_time.csv" ) , train_memory_csv_file=os.path.join(SCREAMING_SNAKE_CASE__ , "train_mem.csv" ) , inference_memory_csv_file=os.path.join(SCREAMING_SNAKE_CASE__ , "inf_mem.csv" ) , train_time_csv_file=os.path.join(SCREAMING_SNAKE_CASE__ , "train_time.csv" ) , env_info_csv_file=os.path.join(SCREAMING_SNAKE_CASE__ , "env.csv" ) , multi_process=SCREAMING_SNAKE_CASE__ , ) lowerCAmelCase__ = PyTorchBenchmark(SCREAMING_SNAKE_CASE__ ) benchmark.run() self.assertTrue(Path(os.path.join(SCREAMING_SNAKE_CASE__ , "inf_time.csv" ) ).exists() ) self.assertTrue(Path(os.path.join(SCREAMING_SNAKE_CASE__ , "train_time.csv" ) ).exists() ) self.assertTrue(Path(os.path.join(SCREAMING_SNAKE_CASE__ , "inf_mem.csv" ) ).exists() ) self.assertTrue(Path(os.path.join(SCREAMING_SNAKE_CASE__ , "train_mem.csv" ) ).exists() ) self.assertTrue(Path(os.path.join(SCREAMING_SNAKE_CASE__ , "env.csv" ) ).exists() ) def a ( self : Optional[Any] ) -> Any: lowerCAmelCase__ = "sshleifer/tiny-gpt2" def _check_summary_is_not_empty(SCREAMING_SNAKE_CASE__ : List[Any] ): self.assertTrue(hasattr(SCREAMING_SNAKE_CASE__ , "sequential" ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE__ , "cumulative" ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE__ , "current" ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE__ , "total" ) ) with tempfile.TemporaryDirectory() as tmp_dir: lowerCAmelCase__ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=SCREAMING_SNAKE_CASE__ , inference=SCREAMING_SNAKE_CASE__ , sequence_lengths=[8] , batch_sizes=[1] , log_filename=os.path.join(SCREAMING_SNAKE_CASE__ , "log.txt" ) , log_print=SCREAMING_SNAKE_CASE__ , trace_memory_line_by_line=SCREAMING_SNAKE_CASE__ , multi_process=SCREAMING_SNAKE_CASE__ , ) lowerCAmelCase__ = PyTorchBenchmark(SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = benchmark.run() _check_summary_is_not_empty(result.inference_summary ) _check_summary_is_not_empty(result.train_summary ) self.assertTrue(Path(os.path.join(SCREAMING_SNAKE_CASE__ , "log.txt" ) ).exists() )
221
1
import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from transformers.generation import DisjunctiveConstraint @require_torch class A__ ( unittest.TestCase ): """simple docstring""" def a_ ( self ): # For consistency across different places the DisjunctiveConstraint is called, # dc.token_ids is a list of integers. It is also initialized only by integers. snake_case = [[1, 2, 4], [1, 2, 3, 4]] snake_case = DisjunctiveConstraint(__snake_case ) self.assertTrue(isinstance(dc.token_ids , __snake_case ) ) with self.assertRaises(__snake_case ): DisjunctiveConstraint(torch.LongTensor([[1, 2, 4], [1, 2, 3]] ) ) with self.assertRaises(__snake_case ): DisjunctiveConstraint([torch.LongTensor([1, 2, 4] ), torch.LongTensor([1, 2, 3, 4, 5] )] ) def a_ ( self ): # We can't have constraints that are complete subsets of another. This leads to a preverse # interpretation of "constraint fulfillment": does generating [1,2,3] fulfill the constraint? # It would mean that it generated [1,2] which fulfills it, but it's in the middle of potentially # fulfilling [1,2,3,4]. If we believe that [1,2,3] does fulfill the constraint, then the algorithm # will necessarily never reach [1,2,3,4], giving users a false sense of control (better to just not allow it). snake_case = [[1, 2], [1, 2, 3, 4]] with self.assertRaises(__snake_case ): DisjunctiveConstraint(__snake_case ) # fails here def a_ ( self ): snake_case = [[1, 2, 3], [1, 2, 4]] snake_case = DisjunctiveConstraint(__snake_case ) snake_case , snake_case , snake_case = dc.update(1 ) snake_case = stepped is True and completed is False and reset is False self.assertTrue(__snake_case ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1] ) snake_case , snake_case , snake_case = dc.update(2 ) snake_case = stepped is True and completed is False and reset is False self.assertTrue(__snake_case ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2] ) snake_case , snake_case , snake_case = dc.update(3 ) snake_case = stepped is True and completed is True and reset is False self.assertTrue(__snake_case ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.current_seq == [1, 2, 3] ) def a_ ( self ): snake_case = [[1, 2, 3], [1, 2, 4, 5], [1, 2, 5]] snake_case = DisjunctiveConstraint(__snake_case ) snake_case , snake_case , snake_case = dc.update(1 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1] ) snake_case , snake_case , snake_case = dc.update(2 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2] ) snake_case , snake_case , snake_case = dc.update(4 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2, 4] ) snake_case , snake_case , snake_case = dc.update(5 ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.current_seq == [1, 2, 4, 5] ) dc.reset() snake_case , snake_case , snake_case = dc.update(1 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.remaining() == 3 ) self.assertTrue(dc.current_seq == [1] ) snake_case , snake_case , snake_case = dc.update(2 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.remaining() == 2 ) self.assertTrue(dc.current_seq == [1, 2] ) snake_case , snake_case , snake_case = dc.update(5 ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.remaining() == 0 ) self.assertTrue(dc.current_seq == [1, 2, 5] )
127
def UpperCAmelCase__ (UpperCamelCase_ ,UpperCamelCase_ ,UpperCamelCase_=False ): """simple docstring""" if isinstance(UpperCamelCase_ ,UpperCamelCase_ ) and isinstance(UpperCamelCase_ ,UpperCamelCase_ ): snake_case = len(set_a.intersection(UpperCamelCase_ ) ) if alternative_union: snake_case = len(UpperCamelCase_ ) + len(UpperCamelCase_ ) else: snake_case = len(set_a.union(UpperCamelCase_ ) ) return intersection / union if isinstance(UpperCamelCase_ ,(list, tuple) ) and isinstance(UpperCamelCase_ ,(list, tuple) ): snake_case = [element for element in set_a if element in set_b] if alternative_union: snake_case = len(UpperCamelCase_ ) + len(UpperCamelCase_ ) return len(UpperCamelCase_ ) / union else: snake_case = set_a + [element for element in set_b if element not in set_a] return len(UpperCamelCase_ ) / len(UpperCamelCase_ ) return len(UpperCamelCase_ ) / len(UpperCamelCase_ ) return None if __name__ == "__main__": _SCREAMING_SNAKE_CASE : Optional[int] = {"a", "b", "c", "d", "e"} _SCREAMING_SNAKE_CASE : List[str] = {"c", "d", "e", "f", "h", "i"} print(jaccard_similarity(set_a, set_b))
127
1
"""simple docstring""" def _lowerCAmelCase ( UpperCAmelCase__ : bytes ) ->str: return "".join([hex(lowercase__ )[2:].zfill(2 ).upper() for byte in list(lowercase__ )] ) def _lowerCAmelCase ( UpperCAmelCase__ : str ) ->bytes: if (len(lowercase__ ) % 2) != 0: raise ValueError( """Base16 encoded data is invalid: Data does not have an even number of hex digits.""" ) # Check the character set - the standard base16 alphabet # is uppercase according to RFC3548 section 6 if not set(lowercase__ ) <= set("""0123456789ABCDEF""" ): raise ValueError( """Base16 encoded data is invalid: Data is not uppercase hex or it contains invalid characters.""" ) # For every two hexadecimal digits (= a byte), turn it into an integer. # Then, string the result together into bytes, and return it. return bytes(int(data[i] + data[i + 1], 1_6 ) for i in range(0, len(lowercase__ ), 2 ) ) if __name__ == "__main__": import doctest doctest.testmod()
356
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING A_ = logging.get_logger(__name__) A_ = { '''microsoft/table-transformer-detection''': ( '''https://huggingface.co/microsoft/table-transformer-detection/resolve/main/config.json''' ), } class __SCREAMING_SNAKE_CASE ( UpperCamelCase ): snake_case_ = 'table-transformer' snake_case_ = ['past_key_values'] snake_case_ = { 'hidden_size': 'd_model', 'num_attention_heads': 'encoder_attention_heads', } def __init__( self : Dict , snake_case : int=True , snake_case : Dict=None , snake_case : Union[str, Any]=3 , snake_case : Dict=100 , snake_case : Tuple=6 , snake_case : Optional[int]=2048 , snake_case : int=8 , snake_case : Dict=6 , snake_case : Any=2048 , snake_case : str=8 , snake_case : Union[str, Any]=0.0 , snake_case : List[str]=0.0 , snake_case : List[str]=True , snake_case : Any="relu" , snake_case : str=256 , snake_case : int=0.1 , snake_case : Dict=0.0 , snake_case : str=0.0 , snake_case : Union[str, Any]=0.02 , snake_case : Union[str, Any]=1.0 , snake_case : Optional[Any]=False , snake_case : int="sine" , snake_case : Optional[Any]="resnet50" , snake_case : Optional[int]=True , snake_case : Any=False , snake_case : int=1 , snake_case : Tuple=5 , snake_case : Optional[int]=2 , snake_case : Tuple=1 , snake_case : Optional[Any]=1 , snake_case : Optional[Any]=5 , snake_case : Dict=2 , snake_case : Any=0.1 , **snake_case : Any , ): '''simple docstring''' if backbone_config is not None and use_timm_backbone: raise ValueError("""You can't specify both `backbone_config` and `use_timm_backbone`.""" ) if not use_timm_backbone: if backbone_config is None: logger.info("""`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.""" ) A__ : Optional[Any] = CONFIG_MAPPING["""resnet"""](out_features=["""stage4"""] ) elif isinstance(snake_case , snake_case ): A__ : Optional[int] = backbone_config.get("""model_type""" ) A__ : Optional[int] = CONFIG_MAPPING[backbone_model_type] A__ : List[str] = config_class.from_dict(snake_case ) # set timm attributes to None A__ , A__ , A__ : str = None, None, None A__ : Tuple = use_timm_backbone A__ : str = backbone_config A__ : str = num_channels A__ : List[Any] = num_queries A__ : Optional[Any] = d_model A__ : Tuple = encoder_ffn_dim A__ : Union[str, Any] = encoder_layers A__ : List[Any] = encoder_attention_heads A__ : Optional[int] = decoder_ffn_dim A__ : Any = decoder_layers A__ : int = decoder_attention_heads A__ : Any = dropout A__ : Dict = attention_dropout A__ : Dict = activation_dropout A__ : Tuple = activation_function A__ : List[str] = init_std A__ : List[str] = init_xavier_std A__ : Any = encoder_layerdrop A__ : Optional[Any] = decoder_layerdrop A__ : Union[str, Any] = encoder_layers A__ : Dict = auxiliary_loss A__ : List[Any] = position_embedding_type A__ : Optional[Any] = backbone A__ : str = use_pretrained_backbone A__ : Union[str, Any] = dilation # Hungarian matcher A__ : Tuple = class_cost A__ : Optional[Any] = bbox_cost A__ : Dict = giou_cost # Loss coefficients A__ : Any = mask_loss_coefficient A__ : str = dice_loss_coefficient A__ : str = bbox_loss_coefficient A__ : Union[str, Any] = giou_loss_coefficient A__ : List[str] = eos_coefficient super().__init__(is_encoder_decoder=snake_case , **snake_case ) @property def _UpperCamelCase ( self : List[str] ): '''simple docstring''' return self.encoder_attention_heads @property def _UpperCamelCase ( self : Dict ): '''simple docstring''' return self.d_model class __SCREAMING_SNAKE_CASE ( UpperCamelCase ): snake_case_ = version.parse('1.11' ) @property def _UpperCamelCase ( self : Any ): '''simple docstring''' return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ("""pixel_mask""", {0: """batch"""}), ] ) @property def _UpperCamelCase ( self : Optional[int] ): '''simple docstring''' return 1e-5 @property def _UpperCamelCase ( self : List[str] ): '''simple docstring''' return 12
296
0
'''simple docstring''' import warnings from .state import AcceleratorState, GradientState warnings.filterwarnings('ignore', category=UserWarning, module='torch.optim.lr_scheduler') class lowerCAmelCase__ : def __init__( self : Tuple , lowerCamelCase__ : Optional[Any] , lowerCamelCase__ : Any , lowerCamelCase__ : Optional[int] = True , lowerCamelCase__ : Dict = False ) ->int: '''simple docstring''' _UpperCAmelCase : int = scheduler _UpperCAmelCase : Optional[int] = optimizers if isinstance(__SCREAMING_SNAKE_CASE , (list, tuple) ) else [optimizers] _UpperCAmelCase : Optional[Any] = split_batches _UpperCAmelCase : Union[str, Any] = step_with_optimizer _UpperCAmelCase : List[Any] = GradientState() def lowerCAmelCase__ ( self : Optional[Any] , *lowerCamelCase__ : List[str] , **lowerCamelCase__ : int ) ->Optional[Any]: '''simple docstring''' if not self.step_with_optimizer: # No link between scheduler and optimizer -> just step self.scheduler.step(*__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) return # Otherwise, first make sure the optimizer was stepped. if not self.gradient_state.sync_gradients: if self.gradient_state.adjust_scheduler: self.scheduler._step_count += 1 return for opt in self.optimizers: if opt.step_was_skipped: return if self.split_batches: # Split batches -> the training dataloader batch size is not changed so one step per training step self.scheduler.step(*__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) else: # Otherwise the training dataloader batch size was multiplied by `num_processes`, so we need to do # num_processes steps per training step _UpperCAmelCase : Union[str, Any] = AcceleratorState().num_processes for _ in range(__SCREAMING_SNAKE_CASE ): # Special case when using OneCycle and `drop_last` was not used if hasattr(self.scheduler , "total_steps" ): if self.scheduler._step_count <= self.scheduler.total_steps: self.scheduler.step(*__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) else: self.scheduler.step(*__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) def lowerCAmelCase__ ( self : List[str] ) ->Dict: '''simple docstring''' return self.scheduler.get_last_lr() def lowerCAmelCase__ ( self : Optional[Any] ) ->List[Any]: '''simple docstring''' return self.scheduler.state_dict() def lowerCAmelCase__ ( self : Optional[int] , lowerCamelCase__ : Optional[Any] ) ->int: '''simple docstring''' self.scheduler.load_state_dict(__SCREAMING_SNAKE_CASE ) def lowerCAmelCase__ ( self : str ) ->int: '''simple docstring''' return self.scheduler.get_lr() def lowerCAmelCase__ ( self : Optional[int] , *lowerCamelCase__ : Union[str, Any] , **lowerCamelCase__ : str ) ->Tuple: '''simple docstring''' return self.scheduler.print_lr(*__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE )
234
'''simple docstring''' import argparse import copy def snake_case_ ( __SCREAMING_SNAKE_CASE : Optional[int] ): """simple docstring""" lowercase_ : List[Any] = {} with open(__SCREAMING_SNAKE_CASE ) as f: for line in f: if line.split()[0] not in dict_of_neighbours: lowercase_ : Union[str, Any] = [] _list.append([line.split()[1], line.split()[2]] ) lowercase_ : str = _list else: dict_of_neighbours[line.split()[0]].append( [line.split()[1], line.split()[2]] ) if line.split()[1] not in dict_of_neighbours: lowercase_ : Optional[int] = [] _list.append([line.split()[0], line.split()[2]] ) lowercase_ : Dict = _list else: dict_of_neighbours[line.split()[1]].append( [line.split()[0], line.split()[2]] ) return dict_of_neighbours def snake_case_ ( __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Tuple ): """simple docstring""" with open(__SCREAMING_SNAKE_CASE ) as f: lowercase_ : List[str] = f.read(1 ) lowercase_ : Optional[int] = start_node lowercase_ : Any = [] lowercase_ : List[str] = start_node lowercase_ : Optional[Any] = 0 while visiting not in first_solution: lowercase_ : Any = 10000 for k in dict_of_neighbours[visiting]: if int(k[1] ) < int(__SCREAMING_SNAKE_CASE ) and k[0] not in first_solution: lowercase_ : List[Any] = k[1] lowercase_ : List[Any] = k[0] first_solution.append(__SCREAMING_SNAKE_CASE ) lowercase_ : Optional[Any] = distance_of_first_solution + int(__SCREAMING_SNAKE_CASE ) lowercase_ : int = best_node first_solution.append(__SCREAMING_SNAKE_CASE ) lowercase_ : Tuple = 0 for k in dict_of_neighbours[first_solution[-2]]: if k[0] == start_node: break position += 1 lowercase_ : Optional[Any] = ( distance_of_first_solution + int(dict_of_neighbours[first_solution[-2]][position][1] ) - 10000 ) return first_solution, distance_of_first_solution def snake_case_ ( __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Union[str, Any] ): """simple docstring""" lowercase_ : Tuple = [] for n in solution[1:-1]: lowercase_ : List[str] = solution.index(__SCREAMING_SNAKE_CASE ) for kn in solution[1:-1]: lowercase_ : Any = solution.index(__SCREAMING_SNAKE_CASE ) if n == kn: continue lowercase_ : Dict = copy.deepcopy(__SCREAMING_SNAKE_CASE ) lowercase_ : Dict = kn lowercase_ : List[Any] = n lowercase_ : str = 0 for k in _tmp[:-1]: lowercase_ : Tuple = _tmp[_tmp.index(__SCREAMING_SNAKE_CASE ) + 1] for i in dict_of_neighbours[k]: if i[0] == next_node: lowercase_ : Optional[Any] = distance + int(i[1] ) _tmp.append(__SCREAMING_SNAKE_CASE ) if _tmp not in neighborhood_of_solution: neighborhood_of_solution.append(_tmp ) lowercase_ : Union[str, Any] = len(neighborhood_of_solution[0] ) - 1 neighborhood_of_solution.sort(key=lambda __SCREAMING_SNAKE_CASE : x[index_of_last_item_in_the_list] ) return neighborhood_of_solution def snake_case_ ( __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : Optional[Any] ): """simple docstring""" lowercase_ : Optional[int] = 1 lowercase_ : List[str] = first_solution lowercase_ : Dict = [] lowercase_ : List[str] = distance_of_first_solution lowercase_ : Optional[Any] = solution while count <= iters: lowercase_ : int = find_neighborhood(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) lowercase_ : Any = 0 lowercase_ : Dict = neighborhood[index_of_best_solution] lowercase_ : Optional[Any] = len(__SCREAMING_SNAKE_CASE ) - 1 lowercase_ : Tuple = False while not found: lowercase_ : Optional[int] = 0 while i < len(__SCREAMING_SNAKE_CASE ): if best_solution[i] != solution[i]: lowercase_ : Tuple = best_solution[i] lowercase_ : Optional[int] = solution[i] break lowercase_ : int = i + 1 if [first_exchange_node, second_exchange_node] not in tabu_list and [ second_exchange_node, first_exchange_node, ] not in tabu_list: tabu_list.append([first_exchange_node, second_exchange_node] ) lowercase_ : Tuple = True lowercase_ : Optional[int] = best_solution[:-1] lowercase_ : Optional[Any] = neighborhood[index_of_best_solution][best_cost_index] if cost < best_cost: lowercase_ : Optional[Any] = cost lowercase_ : int = solution else: lowercase_ : Any = index_of_best_solution + 1 lowercase_ : Any = neighborhood[index_of_best_solution] if len(__SCREAMING_SNAKE_CASE ) >= size: tabu_list.pop(0 ) lowercase_ : List[Any] = count + 1 return best_solution_ever, best_cost def snake_case_ ( __SCREAMING_SNAKE_CASE : List[str]=None ): """simple docstring""" lowercase_ : Any = generate_neighbours(args.File ) lowercase_ , lowercase_ : Union[str, Any] = generate_first_solution( args.File , __SCREAMING_SNAKE_CASE ) lowercase_ , lowercase_ : Optional[int] = tabu_search( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , args.Iterations , args.Size , ) print(F'''Best solution: {best_sol}, with total distance: {best_cost}.''' ) if __name__ == "__main__": _lowercase : Any = argparse.ArgumentParser(description="Tabu Search") parser.add_argument( "-f", "--File", type=str, help="Path to the file containing the data", required=True, ) parser.add_argument( "-i", "--Iterations", type=int, help="How many iterations the algorithm should perform", required=True, ) parser.add_argument( "-s", "--Size", type=int, help="Size of the tabu list", required=True ) # Pass the arguments to main method main(parser.parse_args())
93
0
"""simple docstring""" import copy import tempfile import unittest from transformers import MaMaaaConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from transformers.utils import cached_property from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MaMaaaForConditionalGeneration, MaMaaaModel, MaMaaaTokenizer from transformers.models.mam_aaa.modeling_mam_aaa import MaMaaaDecoder, MaMaaaEncoder def UpperCamelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase=None , ) ->Optional[int]: """simple docstring""" if attention_mask is None: a_ = input_ids.ne(config.pad_token_id ) if decoder_attention_mask is None: a_ = decoder_input_ids.ne(config.pad_token_id ) if head_mask is None: a_ = torch.ones(config.encoder_layers , config.encoder_attention_heads , device=UpperCAmelCase ) if decoder_head_mask is None: a_ = torch.ones(config.decoder_layers , config.decoder_attention_heads , device=UpperCAmelCase ) if cross_attn_head_mask is None: a_ = torch.ones(config.decoder_layers , config.decoder_attention_heads , device=UpperCAmelCase ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } class snake_case : def __init__( self , __UpperCAmelCase , __UpperCAmelCase=13 , __UpperCAmelCase=7 , __UpperCAmelCase=True , __UpperCAmelCase=False , __UpperCAmelCase=99 , __UpperCAmelCase=16 , __UpperCAmelCase=2 , __UpperCAmelCase=4 , __UpperCAmelCase=4 , __UpperCAmelCase="relu" , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.0 , __UpperCAmelCase=20 , __UpperCAmelCase=2 , __UpperCAmelCase=1 , __UpperCAmelCase=0 , ) ->List[str]: a_ = parent a_ = batch_size a_ = seq_length a_ = is_training a_ = use_labels a_ = vocab_size a_ = hidden_size a_ = num_hidden_layers a_ = num_attention_heads a_ = intermediate_size a_ = hidden_act a_ = hidden_dropout_prob a_ = attention_probs_dropout_prob a_ = encoder_layerdrop a_ = decoder_layerdrop a_ = max_position_embeddings a_ = eos_token_id a_ = pad_token_id a_ = bos_token_id def UpperCAmelCase__ ( self) ->str: a_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) a_ = self.eos_token_id # Eos Token a_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) # we need to clamp the input ids here to avoid having pad token in between # this is because for M2M100 the position_ids are prepared such that # all pad tokens have pos id = 2 and rest are between 2..seq_length # and the seq_length here is seq_length - num_pad_tokens # but when using past, there is no way of knowing if the past input ids had # pad tokens in them, which results in incorrect seq_lenth and which in turn results in # position_ids being off by num_pad_tokens in past input a_ = input_ids.clamp(self.pad_token_id + 1) a_ = decoder_input_ids.clamp(self.pad_token_id + 1) a_ = self.get_config() a_ = prepare_mam_aaa_inputs_dict(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase) return config, inputs_dict def UpperCAmelCase__ ( self) ->str: return MaMaaaConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , encoder_layerdrop=self.encoder_layerdrop , decoder_layerdrop=self.decoder_layerdrop , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , ) def UpperCAmelCase__ ( self) ->List[Any]: a_ , a_ = self.prepare_config_and_inputs() return config, inputs_dict def UpperCAmelCase__ ( self , __UpperCAmelCase , __UpperCAmelCase) ->Optional[int]: a_ = MaMaaaModel(config=__UpperCAmelCase).get_decoder().to(__UpperCAmelCase).eval() a_ = inputs_dict["input_ids"] a_ = inputs_dict["attention_mask"] a_ = inputs_dict["head_mask"] # first forward pass a_ = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , head_mask=__UpperCAmelCase , use_cache=__UpperCAmelCase) a_ , a_ = outputs.to_tuple() # create hypothetical multiple next token and extent to next_input_ids a_ = ids_tensor((self.batch_size, 3) , config.vocab_size) a_ = ids_tensor((self.batch_size, 3) , 2) # append to next input_ids and a_ = torch.cat([input_ids, next_tokens] , dim=-1) a_ = torch.cat([attention_mask, next_attn_mask] , dim=-1) a_ = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase)["last_hidden_state"] a_ = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , past_key_values=__UpperCAmelCase)[ "last_hidden_state" ] # select random slice a_ = ids_tensor((1,) , output_from_past.shape[-1]).item() a_ = output_from_no_past[:, -3:, random_slice_idx].detach() a_ = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1]) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(__UpperCAmelCase , __UpperCAmelCase , atol=1E-2)) def UpperCAmelCase__ ( self , __UpperCAmelCase , __UpperCAmelCase) ->Dict: a_ = MaMaaaModel(config=__UpperCAmelCase).to(__UpperCAmelCase).eval() a_ = model(**__UpperCAmelCase) a_ = outputs.encoder_last_hidden_state a_ = outputs.last_hidden_state with tempfile.TemporaryDirectory() as tmpdirname: a_ = model.get_encoder() encoder.save_pretrained(__UpperCAmelCase) a_ = MaMaaaEncoder.from_pretrained(__UpperCAmelCase).to(__UpperCAmelCase) a_ = encoder(inputs_dict["input_ids"] , attention_mask=inputs_dict["attention_mask"])[ 0 ] self.parent.assertTrue((encoder_last_hidden_state_a - encoder_last_hidden_state).abs().max().item() < 1E-3) with tempfile.TemporaryDirectory() as tmpdirname: a_ = model.get_decoder() decoder.save_pretrained(__UpperCAmelCase) a_ = MaMaaaDecoder.from_pretrained(__UpperCAmelCase).to(__UpperCAmelCase) a_ = decoder( input_ids=inputs_dict["decoder_input_ids"] , attention_mask=inputs_dict["decoder_attention_mask"] , encoder_hidden_states=__UpperCAmelCase , encoder_attention_mask=inputs_dict["attention_mask"] , )[0] self.parent.assertTrue((last_hidden_state_a - last_hidden_state).abs().max().item() < 1E-3) @require_torch class snake_case ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , unittest.TestCase ): a_ : Union[str, Any] = ( ( MaMaaaModel, MaMaaaForConditionalGeneration, ) if is_torch_available() else () ) a_ : List[str] = (MaMaaaForConditionalGeneration,) if is_torch_available() else () a_ : Optional[int] = ( { """conversational""": MaMaaaForConditionalGeneration, """feature-extraction""": MaMaaaModel, """summarization""": MaMaaaForConditionalGeneration, """text2text-generation""": MaMaaaForConditionalGeneration, """translation""": MaMaaaForConditionalGeneration, } if is_torch_available() else {} ) a_ : Union[str, Any] = True a_ : Optional[int] = True a_ : Dict = False a_ : Optional[int] = False def UpperCAmelCase__ ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase) ->int: if pipeline_test_casse_name == "TranslationPipelineTests": # Get `ValueError: Translation requires a `src_lang` and a `tgt_lang` for this model`. # `M2M100Config` was never used in pipeline tests: cannot create a simple tokenizer. return True return False def UpperCAmelCase__ ( self) ->Dict: a_ = MaMaaaModelTester(self) a_ = ConfigTester(self , config_class=__UpperCAmelCase) def UpperCAmelCase__ ( self) ->int: self.config_tester.run_common_tests() def UpperCAmelCase__ ( self) ->List[Any]: a_ , a_ = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: a_ = model_class(__UpperCAmelCase) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(__UpperCAmelCase) a_ , a_ = model_class.from_pretrained(__UpperCAmelCase , output_loading_info=__UpperCAmelCase) self.assertEqual(info["missing_keys"] , []) def UpperCAmelCase__ ( self) ->Tuple: a_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past_large_inputs(*__UpperCAmelCase) def UpperCAmelCase__ ( self) ->Optional[Any]: a_ = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_encoder_decoder_model_standalone(*__UpperCAmelCase) def UpperCAmelCase__ ( self) ->Union[str, Any]: a_ , a_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in (MaMaaaModel, MaMaaaForConditionalGeneration): a_ = model_class(__UpperCAmelCase) model.to(__UpperCAmelCase) model.eval() a_ = copy.deepcopy(self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase)) if not self.is_encoder_decoder: a_ = inputs["input_ids"] del inputs["input_ids"] else: a_ = inputs["input_ids"] a_ = inputs.get("decoder_input_ids" , __UpperCAmelCase) del inputs["input_ids"] inputs.pop("decoder_input_ids" , __UpperCAmelCase) a_ = model.get_input_embeddings() if not self.is_encoder_decoder: a_ = wte(__UpperCAmelCase) else: a_ = wte(__UpperCAmelCase) a_ = wte(__UpperCAmelCase) with torch.no_grad(): model(**__UpperCAmelCase)[0] def UpperCAmelCase__ ( self) ->List[str]: a_ , a_ = self.model_tester.prepare_config_and_inputs() a_ = input_dict["input_ids"] a_ = input_ids.ne(1).to(__UpperCAmelCase) a_ = MaMaaaForConditionalGeneration(__UpperCAmelCase).eval().to(__UpperCAmelCase) if torch_device == "cuda": model.half() model.generate(__UpperCAmelCase , attention_mask=__UpperCAmelCase) model.generate(num_beams=4 , do_sample=__UpperCAmelCase , early_stopping=__UpperCAmelCase , num_return_sequences=3) def UpperCamelCase ( UpperCAmelCase ) ->Tuple: """simple docstring""" return torch.tensor(UpperCAmelCase , dtype=torch.long , device=UpperCAmelCase ) UpperCamelCase_ = 1E-4 @require_torch @require_sentencepiece @require_tokenizers @slow class snake_case ( unittest.TestCase ): @cached_property def UpperCAmelCase__ ( self) ->Tuple: return MaMaaaTokenizer.from_pretrained("facebook/m2m100_418M") def UpperCAmelCase__ ( self) ->List[Any]: a_ = MaMaaaModel.from_pretrained("facebook/m2m100_418M").to(__UpperCAmelCase) a_ = _long_tensor([[12_80_28, 98, 12, 3_05_27, 27_32, 1_59, 77_55, 6_19_04, 3_91_44, 38, 2]]) a_ = _long_tensor([[2, 12_80_28, 98, 12, 3_05_27, 27_32, 1_59, 77_55, 6_19_04, 3_91_44, 38]]) a_ = prepare_mam_aaa_inputs_dict(model.config , __UpperCAmelCase , __UpperCAmelCase) with torch.no_grad(): a_ = model(**__UpperCAmelCase)[0] a_ = torch.Size((1, 11, 10_24)) self.assertEqual(output.shape , __UpperCAmelCase) # change to expected output here a_ = torch.tensor( [[-0.7_780, -0.1_676, 0.1_038], [-6.7_556, -1.3_992, 0.0_567], [-7.5_383, -0.5_920, -0.2_779]] , device=__UpperCAmelCase) self.assertTrue(torch.allclose(output[:, :3, :3] , __UpperCAmelCase , atol=__UpperCAmelCase)) def UpperCAmelCase__ ( self) ->Dict: a_ = MaMaaaForConditionalGeneration.from_pretrained("facebook/m2m100_418M").to(__UpperCAmelCase) # change to intended input a_ = _long_tensor([[12_80_28, 98, 12, 3_05_27, 27_32, 1_59, 77_55, 6_19_04, 3_91_44, 38, 2]]) a_ = _long_tensor([[2, 12_80_28, 98, 12, 3_05_27, 27_32, 1_59, 77_55, 6_19_04, 3_91_44, 38]]) a_ = prepare_mam_aaa_inputs_dict(model.config , __UpperCAmelCase , __UpperCAmelCase) with torch.no_grad(): a_ = model(**__UpperCAmelCase)[0] a_ = torch.Size((1, 11, model.config.vocab_size)) self.assertEqual(output.shape , __UpperCAmelCase) # change to expected output here a_ = torch.tensor( [[-1.0_448, -1.0_411, 3.7_992], [-3.2_191, -3.2_386, -1.3_451], [-3.6_210, -3.5_993, 0.4_925]] , device=__UpperCAmelCase) self.assertTrue(torch.allclose(output[:, :3, :3] , __UpperCAmelCase , atol=__UpperCAmelCase)) def UpperCAmelCase__ ( self) ->Union[str, Any]: a_ = MaMaaaForConditionalGeneration.from_pretrained("facebook/m2m100_418M").to(__UpperCAmelCase) a_ = MaMaaaTokenizer.from_pretrained("facebook/m2m100_418M" , src_lang="fr" , tgt_lang="en") a_ = [ "L'affaire NSA souligne l'absence totale de débat sur le renseignement", "Selon moi, il y a deux niveaux de réponse de la part du gouvernement français.", "Lorsque François Hollande téléphone à Barack Obama ou quand le ministre des affaires étrangères Laurent" " Fabius convoque l'ambassadeur des Etats-Unis, ils réagissent à une vraie découverte, qui est celle de" " l'ampleur de la surveillance américaine sur l'ensemble des communications en France.", ] # The below article tests that we don't add any hypotheses outside of the top n_beams a_ = tokenizer(__UpperCAmelCase , padding=__UpperCAmelCase , return_tensors="pt") a_ = model.generate( input_ids=dct["input_ids"].to(__UpperCAmelCase) , attention_mask=dct["attention_mask"].to(__UpperCAmelCase) , num_beams=5 , forced_bos_token_id=tokenizer.get_lang_id("en") , ) a_ = [ "The NSA case highlights the total absence of intelligence debate", "I think there are two levels of response from the French government.", "When François Hollande calls Barack Obama or when Foreign Minister Laurent Fabius calls the U.S." " Ambassador, they respond to a real discovery, which is that of the scale of U.S. surveillance on all" " communications in France.", ] a_ = tokenizer.batch_decode( hypotheses_batch.tolist() , clean_up_tokenization_spaces=__UpperCAmelCase , skip_special_tokens=__UpperCAmelCase) assert generated == expected_en
303
"""simple docstring""" import unittest from transformers import BertGenerationConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import BertGenerationDecoder, BertGenerationEncoder class snake_case : def __init__( self , __UpperCAmelCase , __UpperCAmelCase=13 , __UpperCAmelCase=7 , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=99 , __UpperCAmelCase=32 , __UpperCAmelCase=5 , __UpperCAmelCase=4 , __UpperCAmelCase=37 , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=50 , __UpperCAmelCase=0.02 , __UpperCAmelCase=True , __UpperCAmelCase=None , ) ->Dict: a_ = parent a_ = batch_size a_ = seq_length a_ = is_training a_ = use_input_mask a_ = vocab_size a_ = hidden_size a_ = num_hidden_layers a_ = num_attention_heads a_ = intermediate_size a_ = hidden_act a_ = hidden_dropout_prob a_ = attention_probs_dropout_prob a_ = max_position_embeddings a_ = initializer_range a_ = use_labels a_ = scope def UpperCAmelCase__ ( self) ->Any: a_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) a_ = None if self.use_input_mask: a_ = random_attention_mask([self.batch_size, self.seq_length]) if self.use_labels: a_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) a_ = self.get_config() return config, input_ids, input_mask, token_labels def UpperCAmelCase__ ( self) ->Optional[Any]: return BertGenerationConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , is_decoder=__UpperCAmelCase , initializer_range=self.initializer_range , ) def UpperCAmelCase__ ( self) ->List[str]: ( ( a_ ) , ( a_ ) , ( a_ ) , ( a_ ) , ) = self.prepare_config_and_inputs() a_ = True a_ = floats_tensor([self.batch_size, self.seq_length, self.hidden_size]) a_ = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2) return ( config, input_ids, input_mask, token_labels, encoder_hidden_states, encoder_attention_mask, ) def UpperCAmelCase__ ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , **__UpperCAmelCase , ) ->str: a_ = BertGenerationEncoder(config=__UpperCAmelCase) model.to(__UpperCAmelCase) model.eval() a_ = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase) a_ = model(__UpperCAmelCase) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def UpperCAmelCase__ ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , **__UpperCAmelCase , ) ->Union[str, Any]: a_ = True a_ = BertGenerationEncoder(config=__UpperCAmelCase) model.to(__UpperCAmelCase) model.eval() a_ = model( __UpperCAmelCase , attention_mask=__UpperCAmelCase , encoder_hidden_states=__UpperCAmelCase , encoder_attention_mask=__UpperCAmelCase , ) a_ = model( __UpperCAmelCase , attention_mask=__UpperCAmelCase , encoder_hidden_states=__UpperCAmelCase , ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def UpperCAmelCase__ ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , **__UpperCAmelCase , ) ->List[str]: a_ = True a_ = True a_ = BertGenerationDecoder(config=__UpperCAmelCase).to(__UpperCAmelCase).eval() # first forward pass a_ = model( __UpperCAmelCase , attention_mask=__UpperCAmelCase , encoder_hidden_states=__UpperCAmelCase , encoder_attention_mask=__UpperCAmelCase , use_cache=__UpperCAmelCase , ) a_ = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids a_ = ids_tensor((self.batch_size, 3) , config.vocab_size) a_ = ids_tensor((self.batch_size, 3) , vocab_size=2) # append to next input_ids and a_ = torch.cat([input_ids, next_tokens] , dim=-1) a_ = torch.cat([input_mask, next_mask] , dim=-1) a_ = model( __UpperCAmelCase , attention_mask=__UpperCAmelCase , encoder_hidden_states=__UpperCAmelCase , encoder_attention_mask=__UpperCAmelCase , output_hidden_states=__UpperCAmelCase , )["hidden_states"][0] a_ = model( __UpperCAmelCase , attention_mask=__UpperCAmelCase , encoder_hidden_states=__UpperCAmelCase , encoder_attention_mask=__UpperCAmelCase , past_key_values=__UpperCAmelCase , output_hidden_states=__UpperCAmelCase , )["hidden_states"][0] # select random slice a_ = ids_tensor((1,) , output_from_past.shape[-1]).item() a_ = output_from_no_past[:, -3:, random_slice_idx].detach() a_ = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1]) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(__UpperCAmelCase , __UpperCAmelCase , atol=1E-3)) def UpperCAmelCase__ ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , *__UpperCAmelCase , ) ->Tuple: a_ = BertGenerationDecoder(__UpperCAmelCase) model.to(__UpperCAmelCase) model.eval() a_ = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , labels=__UpperCAmelCase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) def UpperCAmelCase__ ( self) ->str: a_ , a_ , a_ , a_ = self.prepare_config_and_inputs() a_ = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class snake_case ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , unittest.TestCase ): a_ : List[str] = (BertGenerationEncoder, BertGenerationDecoder) if is_torch_available() else () a_ : Optional[int] = (BertGenerationDecoder,) if is_torch_available() else () a_ : List[Any] = ( {"""feature-extraction""": BertGenerationEncoder, """text-generation""": BertGenerationDecoder} if is_torch_available() else {} ) def UpperCAmelCase__ ( self) ->List[Any]: a_ = BertGenerationEncoderTester(self) a_ = ConfigTester(self , config_class=__UpperCAmelCase , hidden_size=37) def UpperCAmelCase__ ( self) ->Optional[Any]: self.config_tester.run_common_tests() def UpperCAmelCase__ ( self) ->Tuple: a_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCAmelCase) def UpperCAmelCase__ ( self) ->Tuple: a_ , a_ , a_ , a_ = self.model_tester.prepare_config_and_inputs() a_ = "bert" self.model_tester.create_and_check_model(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase) def UpperCAmelCase__ ( self) ->int: a_ = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(*__UpperCAmelCase) def UpperCAmelCase__ ( self) ->List[str]: a_ = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_decoder_model_past_large_inputs(*__UpperCAmelCase) def UpperCAmelCase__ ( self) ->Optional[int]: # This regression test was failing with PyTorch < 1.3 ( ( a_ ) , ( a_ ) , ( a_ ) , ( a_ ) , ( a_ ) , ( a_ ) , ) = self.model_tester.prepare_config_and_inputs_for_decoder() a_ = None self.model_tester.create_and_check_model_as_decoder( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ) def UpperCAmelCase__ ( self) ->List[Any]: a_ = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_for_causal_lm(*__UpperCAmelCase) @slow def UpperCAmelCase__ ( self) ->str: a_ = BertGenerationEncoder.from_pretrained("google/bert_for_seq_generation_L-24_bbc_encoder") self.assertIsNotNone(__UpperCAmelCase) @require_torch class snake_case ( unittest.TestCase ): @slow def UpperCAmelCase__ ( self) ->int: a_ = BertGenerationEncoder.from_pretrained("google/bert_for_seq_generation_L-24_bbc_encoder") a_ = torch.tensor([[1_01, 75_92, 10_10, 20_26, 38_99, 20_03, 1_01_40, 1_02]]) with torch.no_grad(): a_ = model(__UpperCAmelCase)[0] a_ = torch.Size([1, 8, 10_24]) self.assertEqual(output.shape , __UpperCAmelCase) a_ = torch.tensor( [[[0.1_775, 0.0_083, -0.0_321], [1.6_002, 0.1_287, 0.3_912], [2.1_473, 0.5_791, 0.6_066]]]) self.assertTrue(torch.allclose(output[:, :3, :3] , __UpperCAmelCase , atol=1E-4)) @require_torch class snake_case ( unittest.TestCase ): @slow def UpperCAmelCase__ ( self) ->List[str]: a_ = BertGenerationDecoder.from_pretrained("google/bert_for_seq_generation_L-24_bbc_encoder") a_ = torch.tensor([[1_01, 75_92, 10_10, 20_26, 38_99, 20_03, 1_01_40, 1_02]]) with torch.no_grad(): a_ = model(__UpperCAmelCase)[0] a_ = torch.Size([1, 8, 5_03_58]) self.assertEqual(output.shape , __UpperCAmelCase) a_ = torch.tensor( [[[-0.5_788, -2.5_994, -3.7_054], [0.0_438, 4.7_997, 1.8_795], [1.5_862, 6.6_409, 4.4_638]]]) self.assertTrue(torch.allclose(output[:, :3, :3] , __UpperCAmelCase , atol=1E-4))
303
1
import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging __A = logging.get_logger(__name__) __A = {"vocab_file": "spiece.model"} __A = { "vocab_file": { "albert-base-v1": "https://huggingface.co/albert-base-v1/resolve/main/spiece.model", "albert-large-v1": "https://huggingface.co/albert-large-v1/resolve/main/spiece.model", "albert-xlarge-v1": "https://huggingface.co/albert-xlarge-v1/resolve/main/spiece.model", "albert-xxlarge-v1": "https://huggingface.co/albert-xxlarge-v1/resolve/main/spiece.model", "albert-base-v2": "https://huggingface.co/albert-base-v2/resolve/main/spiece.model", "albert-large-v2": "https://huggingface.co/albert-large-v2/resolve/main/spiece.model", "albert-xlarge-v2": "https://huggingface.co/albert-xlarge-v2/resolve/main/spiece.model", "albert-xxlarge-v2": "https://huggingface.co/albert-xxlarge-v2/resolve/main/spiece.model", } } __A = { "albert-base-v1": 5_12, "albert-large-v1": 5_12, "albert-xlarge-v1": 5_12, "albert-xxlarge-v1": 5_12, "albert-base-v2": 5_12, "albert-large-v2": 5_12, "albert-xlarge-v2": 5_12, "albert-xxlarge-v2": 5_12, } __A = "▁" class __lowerCAmelCase ( __magic_name__ ): """simple docstring""" snake_case_ = VOCAB_FILES_NAMES snake_case_ = PRETRAINED_VOCAB_FILES_MAP snake_case_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self , lowerCamelCase__ , lowerCamelCase__=True , lowerCamelCase__=True , lowerCamelCase__=False , lowerCamelCase__="[CLS]" , lowerCamelCase__="[SEP]" , lowerCamelCase__="<unk>" , lowerCamelCase__="[SEP]" , lowerCamelCase__="<pad>" , lowerCamelCase__="[CLS]" , lowerCamelCase__="[MASK]" , lowerCamelCase__ = None , **lowerCamelCase__ , ) -> None: '''simple docstring''' # Mask token behave like a normal word, i.e. include the space before it and # is included in the raw text, there should be a match in a non-normalized sentence. __lowerCamelCase = ( AddedToken(lowerCamelCase__ , lstrip=lowerCamelCase__ , rstrip=lowerCamelCase__ , normalized=lowerCamelCase__ ) if isinstance(lowerCamelCase__ , lowerCamelCase__ ) else mask_token ) __lowerCamelCase = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=lowerCamelCase__ , remove_space=lowerCamelCase__ , keep_accents=lowerCamelCase__ , bos_token=lowerCamelCase__ , eos_token=lowerCamelCase__ , unk_token=lowerCamelCase__ , sep_token=lowerCamelCase__ , pad_token=lowerCamelCase__ , cls_token=lowerCamelCase__ , mask_token=lowerCamelCase__ , sp_model_kwargs=self.sp_model_kwargs , **lowerCamelCase__ , ) __lowerCamelCase = do_lower_case __lowerCamelCase = remove_space __lowerCamelCase = keep_accents __lowerCamelCase = vocab_file __lowerCamelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(lowerCamelCase__ ) @property def lowercase_ ( self ) -> List[str]: '''simple docstring''' return len(self.sp_model ) def lowercase_ ( self ) -> Dict: '''simple docstring''' __lowerCamelCase = {self.convert_ids_to_tokens(lowerCamelCase__ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ) -> int: '''simple docstring''' __lowerCamelCase = self.__dict__.copy() __lowerCamelCase = None return state def __setstate__( self , lowerCamelCase__ ) -> List[Any]: '''simple docstring''' __lowerCamelCase = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): __lowerCamelCase = {} __lowerCamelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def lowercase_ ( self , lowerCamelCase__ ) -> Optional[Any]: '''simple docstring''' if self.remove_space: __lowerCamelCase = ' '.join(inputs.strip().split() ) else: __lowerCamelCase = inputs __lowerCamelCase = outputs.replace('``' , '"' ).replace('\'\'' , '"' ) if not self.keep_accents: __lowerCamelCase = unicodedata.normalize('NFKD' , lowerCamelCase__ ) __lowerCamelCase = ''.join([c for c in outputs if not unicodedata.combining(lowerCamelCase__ )] ) if self.do_lower_case: __lowerCamelCase = outputs.lower() return outputs def lowercase_ ( self , lowerCamelCase__ ) -> List[str]: '''simple docstring''' __lowerCamelCase = self.preprocess_text(lowerCamelCase__ ) __lowerCamelCase = self.sp_model.encode(lowerCamelCase__ , out_type=lowerCamelCase__ ) __lowerCamelCase = [] for piece in pieces: if len(lowerCamelCase__ ) > 1 and piece[-1] == str(',' ) and piece[-2].isdigit(): __lowerCamelCase = self.sp_model.EncodeAsPieces(piece[:-1].replace(lowerCamelCase__ , '' ) ) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0] ) == 1: __lowerCamelCase = cur_pieces[1:] else: __lowerCamelCase = cur_pieces[0][1:] cur_pieces.append(piece[-1] ) new_pieces.extend(lowerCamelCase__ ) else: new_pieces.append(lowerCamelCase__ ) return new_pieces def lowercase_ ( self , lowerCamelCase__ ) -> str: '''simple docstring''' return self.sp_model.PieceToId(lowerCamelCase__ ) def lowercase_ ( self , lowerCamelCase__ ) -> Optional[int]: '''simple docstring''' return self.sp_model.IdToPiece(lowerCamelCase__ ) def lowercase_ ( self , lowerCamelCase__ ) -> Optional[Any]: '''simple docstring''' __lowerCamelCase = [] __lowerCamelCase = '' __lowerCamelCase = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(lowerCamelCase__ ) + token __lowerCamelCase = True __lowerCamelCase = [] else: current_sub_tokens.append(lowerCamelCase__ ) __lowerCamelCase = False out_string += self.sp_model.decode(lowerCamelCase__ ) return out_string.strip() def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ = None ) -> List[int]: '''simple docstring''' __lowerCamelCase = [self.sep_token_id] __lowerCamelCase = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ = None , lowerCamelCase__ = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCamelCase__ , token_ids_a=lowerCamelCase__ , already_has_special_tokens=lowerCamelCase__ ) if token_ids_a is not None: return [1] + ([0] * len(lowerCamelCase__ )) + [1] + ([0] * len(lowerCamelCase__ )) + [1] return [1] + ([0] * len(lowerCamelCase__ )) + [1] def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ = None ) -> List[int]: '''simple docstring''' __lowerCamelCase = [self.sep_token_id] __lowerCamelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ = None ) -> Tuple[str]: '''simple docstring''' if not os.path.isdir(lowerCamelCase__ ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return __lowerCamelCase = os.path.join( lowerCamelCase__ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCamelCase__ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , lowerCamelCase__ ) elif not os.path.isfile(self.vocab_file ): with open(lowerCamelCase__ , 'wb' ) as fi: __lowerCamelCase = self.sp_model.serialized_model_proto() fi.write(lowerCamelCase__ ) return (out_vocab_file,)
90
import argparse import os import pickle import sys import torch from transformers import TransfoXLConfig, TransfoXLLMHeadModel, load_tf_weights_in_transfo_xl from transformers.models.transfo_xl import tokenization_transfo_xl as data_utils from transformers.models.transfo_xl.tokenization_transfo_xl import CORPUS_NAME, VOCAB_FILES_NAMES from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() # We do this to be able to load python 2 datasets pickles # See e.g. https://stackoverflow.com/questions/2121874/python-pickling-after-changing-a-modules-directory/2121918#2121918 __A = data_utils.TransfoXLTokenizer __A = data_utils.TransfoXLCorpus __A = data_utils __A = data_utils def lowerCamelCase_ ( UpperCamelCase__ : List[str] , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : Optional[Any] ) -> Union[str, Any]: """simple docstring""" if transfo_xl_dataset_file: # Convert a pre-processed corpus (see original TensorFlow repo) with open(UpperCamelCase__ , 'rb' ) as fp: __lowerCamelCase = pickle.load(UpperCamelCase__ , encoding='latin1' ) # Save vocabulary and dataset cache as Dictionaries (should be better than pickles for the long-term) __lowerCamelCase = pytorch_dump_folder_path + '/' + VOCAB_FILES_NAMES['pretrained_vocab_file'] print(F"""Save vocabulary to {pytorch_vocab_dump_path}""" ) __lowerCamelCase = corpus.vocab.__dict__ torch.save(UpperCamelCase__ , UpperCamelCase__ ) __lowerCamelCase = corpus.__dict__ corpus_dict_no_vocab.pop('vocab' , UpperCamelCase__ ) __lowerCamelCase = pytorch_dump_folder_path + '/' + CORPUS_NAME print(F"""Save dataset to {pytorch_dataset_dump_path}""" ) torch.save(UpperCamelCase__ , UpperCamelCase__ ) if tf_checkpoint_path: # Convert a pre-trained TensorFlow model __lowerCamelCase = os.path.abspath(UpperCamelCase__ ) __lowerCamelCase = os.path.abspath(UpperCamelCase__ ) print(F"""Converting Transformer XL checkpoint from {tf_path} with config at {config_path}.""" ) # Initialise PyTorch model if transfo_xl_config_file == "": __lowerCamelCase = TransfoXLConfig() else: __lowerCamelCase = TransfoXLConfig.from_json_file(UpperCamelCase__ ) print(F"""Building PyTorch model from configuration: {config}""" ) __lowerCamelCase = TransfoXLLMHeadModel(UpperCamelCase__ ) __lowerCamelCase = load_tf_weights_in_transfo_xl(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) # Save pytorch-model __lowerCamelCase = os.path.join(UpperCamelCase__ , UpperCamelCase__ ) __lowerCamelCase = os.path.join(UpperCamelCase__ , UpperCamelCase__ ) print(F"""Save PyTorch model to {os.path.abspath(UpperCamelCase__ )}""" ) torch.save(model.state_dict() , UpperCamelCase__ ) print(F"""Save configuration file to {os.path.abspath(UpperCamelCase__ )}""" ) with open(UpperCamelCase__ , 'w' , encoding='utf-8' ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": __A = argparse.ArgumentParser() parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the folder to store the PyTorch model or dataset/vocab.", ) parser.add_argument( "--tf_checkpoint_path", default="", type=str, help="An optional path to a TensorFlow checkpoint path to be converted.", ) parser.add_argument( "--transfo_xl_config_file", default="", type=str, help=( "An optional config json file corresponding to the pre-trained BERT model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--transfo_xl_dataset_file", default="", type=str, help="An optional dataset file to be converted in a vocabulary.", ) __A = parser.parse_args() convert_transfo_xl_checkpoint_to_pytorch( args.tf_checkpoint_path, args.transfo_xl_config_file, args.pytorch_dump_folder_path, args.transfo_xl_dataset_file, )
90
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_speech_available, is_tf_available, is_torch_available, ) lowerCamelCase__ = { """configuration_speech_to_text""": ["""SPEECH_TO_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """Speech2TextConfig"""], """processing_speech_to_text""": ["""Speech2TextProcessor"""], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = ["""Speech2TextTokenizer"""] try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = ["""Speech2TextFeatureExtractor"""] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = [ """TF_SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFSpeech2TextForConditionalGeneration""", """TFSpeech2TextModel""", """TFSpeech2TextPreTrainedModel""", ] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = [ """SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST""", """Speech2TextForConditionalGeneration""", """Speech2TextModel""", """Speech2TextPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_speech_to_text import SPEECH_TO_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, SpeechaTextConfig from .processing_speech_to_text import SpeechaTextProcessor try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_speech_to_text import SpeechaTextTokenizer try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_speech_to_text import SpeechaTextFeatureExtractor try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_speech_to_text import ( TF_SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, TFSpeechaTextForConditionalGeneration, TFSpeechaTextModel, TFSpeechaTextPreTrainedModel, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_speech_to_text import ( SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, SpeechaTextForConditionalGeneration, SpeechaTextModel, SpeechaTextPreTrainedModel, ) else: import sys lowerCamelCase__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
307
from ..utils import DummyObject, requires_backends class A__ ( metaclass=__magic_name__ ): lowercase = ['torch', 'transformers', 'onnx'] def __init__( self : Any , *a : Any , **a : Any ): '''simple docstring''' requires_backends(self , ['torch', 'transformers', 'onnx'] ) @classmethod def _lowerCamelCase ( cls : Union[str, Any] , *a : Optional[int] , **a : Optional[Any] ): '''simple docstring''' requires_backends(cls , ['torch', 'transformers', 'onnx'] ) @classmethod def _lowerCamelCase ( cls : int , *a : List[Any] , **a : int ): '''simple docstring''' requires_backends(cls , ['torch', 'transformers', 'onnx'] ) class A__ ( metaclass=__magic_name__ ): lowercase = ['torch', 'transformers', 'onnx'] def __init__( self : str , *a : Any , **a : Optional[Any] ): '''simple docstring''' requires_backends(self , ['torch', 'transformers', 'onnx'] ) @classmethod def _lowerCamelCase ( cls : Optional[int] , *a : List[str] , **a : Dict ): '''simple docstring''' requires_backends(cls , ['torch', 'transformers', 'onnx'] ) @classmethod def _lowerCamelCase ( cls : Optional[Any] , *a : Optional[Any] , **a : Any ): '''simple docstring''' requires_backends(cls , ['torch', 'transformers', 'onnx'] ) class A__ ( metaclass=__magic_name__ ): lowercase = ['torch', 'transformers', 'onnx'] def __init__( self : Optional[int] , *a : List[Any] , **a : str ): '''simple docstring''' requires_backends(self , ['torch', 'transformers', 'onnx'] ) @classmethod def _lowerCamelCase ( cls : List[Any] , *a : List[str] , **a : List[str] ): '''simple docstring''' requires_backends(cls , ['torch', 'transformers', 'onnx'] ) @classmethod def _lowerCamelCase ( cls : Optional[Any] , *a : Union[str, Any] , **a : Optional[int] ): '''simple docstring''' requires_backends(cls , ['torch', 'transformers', 'onnx'] ) class A__ ( metaclass=__magic_name__ ): lowercase = ['torch', 'transformers', 'onnx'] def __init__( self : List[Any] , *a : Dict , **a : List[str] ): '''simple docstring''' requires_backends(self , ['torch', 'transformers', 'onnx'] ) @classmethod def _lowerCamelCase ( cls : Optional[int] , *a : Dict , **a : List[Any] ): '''simple docstring''' requires_backends(cls , ['torch', 'transformers', 'onnx'] ) @classmethod def _lowerCamelCase ( cls : Optional[int] , *a : List[str] , **a : Dict ): '''simple docstring''' requires_backends(cls , ['torch', 'transformers', 'onnx'] ) class A__ ( metaclass=__magic_name__ ): lowercase = ['torch', 'transformers', 'onnx'] def __init__( self : Dict , *a : str , **a : Union[str, Any] ): '''simple docstring''' requires_backends(self , ['torch', 'transformers', 'onnx'] ) @classmethod def _lowerCamelCase ( cls : Any , *a : Any , **a : Any ): '''simple docstring''' requires_backends(cls , ['torch', 'transformers', 'onnx'] ) @classmethod def _lowerCamelCase ( cls : Any , *a : List[Any] , **a : str ): '''simple docstring''' requires_backends(cls , ['torch', 'transformers', 'onnx'] ) class A__ ( metaclass=__magic_name__ ): lowercase = ['torch', 'transformers', 'onnx'] def __init__( self : str , *a : Union[str, Any] , **a : Optional[Any] ): '''simple docstring''' requires_backends(self , ['torch', 'transformers', 'onnx'] ) @classmethod def _lowerCamelCase ( cls : int , *a : Union[str, Any] , **a : Dict ): '''simple docstring''' requires_backends(cls , ['torch', 'transformers', 'onnx'] ) @classmethod def _lowerCamelCase ( cls : Optional[int] , *a : Tuple , **a : List[str] ): '''simple docstring''' requires_backends(cls , ['torch', 'transformers', 'onnx'] )
307
1
'''simple docstring''' import unittest from transformers import DonutProcessor _lowercase : int = "naver-clova-ix/donut-base" class lowerCAmelCase__ ( unittest.TestCase ): def _snake_case ( self ): """simple docstring""" lowercase_ : List[str] = DonutProcessor.from_pretrained(__SCREAMING_SNAKE_CASE ) def _snake_case ( self ): """simple docstring""" lowercase_ : int = { '''name''': '''John Doe''', '''age''': '''99''', '''city''': '''Atlanta''', '''state''': '''GA''', '''zip''': '''30301''', '''phone''': '''123-4567''', '''nicknames''': [{'''nickname''': '''Johnny'''}, {'''nickname''': '''JD'''}], } lowercase_ : Optional[int] = ( '''<s_name>John Doe</s_name><s_age>99</s_age><s_city>Atlanta</s_city>''' '''<s_state>GA</s_state><s_zip>30301</s_zip><s_phone>123-4567</s_phone>''' '''<s_nicknames><s_nickname>Johnny</s_nickname>''' '''<sep/><s_nickname>JD</s_nickname></s_nicknames>''' ) lowercase_ : str = self.processor.tokenajson(__SCREAMING_SNAKE_CASE ) self.assertDictEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
93
"""simple docstring""" import numpy as np import torch import tqdm from ...models.unet_ad import UNetaDModel from ...pipelines import DiffusionPipeline from ...utils import randn_tensor from ...utils.dummy_pt_objects import DDPMScheduler class _UpperCAmelCase( lowerCamelCase ): def __init__( self , __a , __a , __a , __a , ) -> Optional[int]: '''simple docstring''' super().__init__() _UpperCamelCase = value_function _UpperCamelCase = unet _UpperCamelCase = scheduler _UpperCamelCase = env _UpperCamelCase = env.get_dataset() _UpperCamelCase = {} for key in self.data.keys(): try: _UpperCamelCase = self.data[key].mean() except: # noqa: E722 pass _UpperCamelCase = {} for key in self.data.keys(): try: _UpperCamelCase = self.data[key].std() except: # noqa: E722 pass _UpperCamelCase = env.observation_space.shape[0] _UpperCamelCase = env.action_space.shape[0] def UpperCAmelCase ( self , __a , __a) -> int: '''simple docstring''' return (x_in - self.means[key]) / self.stds[key] def UpperCAmelCase ( self , __a , __a) -> List[str]: '''simple docstring''' return x_in * self.stds[key] + self.means[key] def UpperCAmelCase ( self , __a) -> Union[str, Any]: '''simple docstring''' if type(__a) is dict: return {k: self.to_torch(__a) for k, v in x_in.items()} elif torch.is_tensor(__a): return x_in.to(self.unet.device) return torch.tensor(__a , device=self.unet.device) def UpperCAmelCase ( self , __a , __a , __a) -> str: '''simple docstring''' for key, val in cond.items(): _UpperCamelCase = val.clone() return x_in def UpperCAmelCase ( self , __a , __a , __a , __a) -> int: '''simple docstring''' _UpperCamelCase = x.shape[0] _UpperCamelCase = None for i in tqdm.tqdm(self.scheduler.timesteps): # create batch of timesteps to pass into model _UpperCamelCase = torch.full((batch_size,) , __a , device=self.unet.device , dtype=torch.long) for _ in range(__a): with torch.enable_grad(): x.requires_grad_() # permute to match dimension for pre-trained models _UpperCamelCase = self.value_function(x.permute(0 , 2 , 1) , __a).sample _UpperCamelCase = torch.autograd.grad([y.sum()] , [x])[0] _UpperCamelCase = self.scheduler._get_variance(__a) _UpperCamelCase = torch.exp(0.5 * posterior_variance) _UpperCamelCase = model_std * grad _UpperCamelCase = 0 _UpperCamelCase = x.detach() _UpperCamelCase = x + scale * grad _UpperCamelCase = self.reset_xa(__a , __a , self.action_dim) _UpperCamelCase = self.unet(x.permute(0 , 2 , 1) , __a).sample.permute(0 , 2 , 1) # TODO: verify deprecation of this kwarg _UpperCamelCase = self.scheduler.step(__a , __a , __a , predict_epsilon=__a)['''prev_sample'''] # apply conditions to the trajectory (set the initial state) _UpperCamelCase = self.reset_xa(__a , __a , self.action_dim) _UpperCamelCase = self.to_torch(__a) return x, y def __call__( self , __a , __a=64 , __a=32 , __a=2 , __a=0.1) -> Optional[Any]: '''simple docstring''' # normalize the observations and create batch dimension _UpperCamelCase = self.normalize(__a , '''observations''') _UpperCamelCase = obs[None].repeat(__a , axis=0) _UpperCamelCase = {0: self.to_torch(__a)} _UpperCamelCase = (batch_size, planning_horizon, self.state_dim + self.action_dim) # generate initial noise and apply our conditions (to make the trajectories start at current state) _UpperCamelCase = randn_tensor(__a , device=self.unet.device) _UpperCamelCase = self.reset_xa(__a , __a , self.action_dim) _UpperCamelCase = self.to_torch(__a) # run the diffusion process _UpperCamelCase , _UpperCamelCase = self.run_diffusion(__a , __a , __a , __a) # sort output trajectories by value _UpperCamelCase = y.argsort(0 , descending=__a).squeeze() _UpperCamelCase = x[sorted_idx] _UpperCamelCase = sorted_values[:, :, : self.action_dim] _UpperCamelCase = actions.detach().cpu().numpy() _UpperCamelCase = self.de_normalize(__a , key='''actions''') # select the action with the highest value if y is not None: _UpperCamelCase = 0 else: # if we didn't run value guiding, select a random action _UpperCamelCase = np.random.randint(0 , __a) _UpperCamelCase = denorm_actions[selected_index, 0] return denorm_actions
194
0
'''simple docstring''' import logging import os import threading import time try: import warnings except ImportError: snake_case__ : List[str] = None try: import msvcrt except ImportError: snake_case__ : Optional[Any] = None try: import fcntl except ImportError: snake_case__ : int = None # Backward compatibility # ------------------------------------------------ try: TimeoutError except NameError: snake_case__ : Union[str, Any] = OSError # Data # ------------------------------------------------ snake_case__ : str = [ '''Timeout''', '''BaseFileLock''', '''WindowsFileLock''', '''UnixFileLock''', '''SoftFileLock''', '''FileLock''', ] snake_case__ : Any = '''3.0.12''' snake_case__ : List[str] = None def _lowerCamelCase ( ): """simple docstring""" global _logger UpperCAmelCase_ : List[str] = _logger or logging.getLogger(__name__ ) return _logger class __SCREAMING_SNAKE_CASE ( lowerCamelCase_ ): '''simple docstring''' def __init__( self , snake_case_ ): '''simple docstring''' UpperCAmelCase_ : Dict = lock_file return None def __str__( self ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = F'''The file lock \'{self.lock_file}\' could not be acquired.''' return temp class __SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__( self , snake_case_ ): '''simple docstring''' UpperCAmelCase_ : int = lock return None def __enter__( self ): '''simple docstring''' return self.lock def __exit__( self , snake_case_ , snake_case_ , snake_case_ ): '''simple docstring''' self.lock.release() return None class __SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__( self , snake_case_ , snake_case_=-1 , snake_case_=None ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = max_filename_length if max_filename_length is not None else 2_5_5 # Hash the filename if it's too long UpperCAmelCase_ : Any = self.hash_filename_if_too_long(snake_case_ , snake_case_ ) # The path to the lock file. UpperCAmelCase_ : Dict = lock_file # The file descriptor for the *_lock_file* as it is returned by the # os.open() function. # This file lock is only NOT None, if the object currently holds the # lock. UpperCAmelCase_ : Any = None # The default timeout value. UpperCAmelCase_ : Optional[int] = timeout # We use this lock primarily for the lock counter. UpperCAmelCase_ : Optional[Any] = threading.Lock() # The lock counter is used for implementing the nested locking # mechanism. Whenever the lock is acquired, the counter is increased and # the lock is only released, when this value is 0 again. UpperCAmelCase_ : List[str] = 0 return None @property def _UpperCamelCase ( self ): '''simple docstring''' return self._lock_file @property def _UpperCamelCase ( self ): '''simple docstring''' return self._timeout @timeout.setter def _UpperCamelCase ( self , snake_case_ ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = float(snake_case_ ) return None def _UpperCamelCase ( self ): '''simple docstring''' raise NotImplementedError() def _UpperCamelCase ( self ): '''simple docstring''' raise NotImplementedError() @property def _UpperCamelCase ( self ): '''simple docstring''' return self._lock_file_fd is not None def _UpperCamelCase ( self , snake_case_=None , snake_case_=0.05 ): '''simple docstring''' if timeout is None: UpperCAmelCase_ : Any = self.timeout # Increment the number right at the beginning. # We can still undo it, if something fails. with self._thread_lock: self._lock_counter += 1 UpperCAmelCase_ : List[str] = id(self ) UpperCAmelCase_ : Optional[Any] = self._lock_file UpperCAmelCase_ : Optional[Any] = time.time() try: while True: with self._thread_lock: if not self.is_locked: logger().debug(F'''Attempting to acquire lock {lock_id} on {lock_filename}''' ) self._acquire() if self.is_locked: logger().debug(F'''Lock {lock_id} acquired on {lock_filename}''' ) break elif timeout >= 0 and time.time() - start_time > timeout: logger().debug(F'''Timeout on acquiring lock {lock_id} on {lock_filename}''' ) raise Timeout(self._lock_file ) else: logger().debug( F'''Lock {lock_id} not acquired on {lock_filename}, waiting {poll_intervall} seconds ...''' ) time.sleep(snake_case_ ) except: # noqa # Something did go wrong, so decrement the counter. with self._thread_lock: UpperCAmelCase_ : str = max(0 , self._lock_counter - 1 ) raise return _Acquire_ReturnProxy(lock=self ) def _UpperCamelCase ( self , snake_case_=False ): '''simple docstring''' with self._thread_lock: if self.is_locked: self._lock_counter -= 1 if self._lock_counter == 0 or force: UpperCAmelCase_ : Optional[int] = id(self ) UpperCAmelCase_ : Any = self._lock_file logger().debug(F'''Attempting to release lock {lock_id} on {lock_filename}''' ) self._release() UpperCAmelCase_ : Tuple = 0 logger().debug(F'''Lock {lock_id} released on {lock_filename}''' ) return None def __enter__( self ): '''simple docstring''' self.acquire() return self def __exit__( self , snake_case_ , snake_case_ , snake_case_ ): '''simple docstring''' self.release() return None def __del__( self ): '''simple docstring''' self.release(force=snake_case_ ) return None def _UpperCamelCase ( self , snake_case_ , snake_case_ ): '''simple docstring''' UpperCAmelCase_ : Tuple = os.path.basename(snake_case_ ) if len(snake_case_ ) > max_length and max_length > 0: UpperCAmelCase_ : Dict = os.path.dirname(snake_case_ ) UpperCAmelCase_ : Any = str(hash(snake_case_ ) ) UpperCAmelCase_ : Dict = filename[: max_length - len(snake_case_ ) - 8] + '...' + hashed_filename + '.lock' return os.path.join(snake_case_ , snake_case_ ) else: return path class __SCREAMING_SNAKE_CASE ( lowerCamelCase_ ): '''simple docstring''' def __init__( self , snake_case_ , snake_case_=-1 , snake_case_=None ): '''simple docstring''' from .file_utils import relative_to_absolute_path super().__init__(snake_case_ , timeout=snake_case_ , max_filename_length=snake_case_ ) UpperCAmelCase_ : List[Any] = '\\\\?\\' + relative_to_absolute_path(self.lock_file ) def _UpperCamelCase ( self ): '''simple docstring''' UpperCAmelCase_ : List[Any] = os.O_RDWR | os.O_CREAT | os.O_TRUNC try: UpperCAmelCase_ : Dict = os.open(self._lock_file , snake_case_ ) except OSError: pass else: try: msvcrt.locking(snake_case_ , msvcrt.LK_NBLCK , 1 ) except OSError: os.close(snake_case_ ) else: UpperCAmelCase_ : List[Any] = fd return None def _UpperCamelCase ( self ): '''simple docstring''' UpperCAmelCase_ : int = self._lock_file_fd UpperCAmelCase_ : Union[str, Any] = None msvcrt.locking(snake_case_ , msvcrt.LK_UNLCK , 1 ) os.close(snake_case_ ) try: os.remove(self._lock_file ) # Probably another instance of the application # that acquired the file lock. except OSError: pass return None class __SCREAMING_SNAKE_CASE ( lowerCamelCase_ ): '''simple docstring''' def __init__( self , snake_case_ , snake_case_=-1 , snake_case_=None ): '''simple docstring''' UpperCAmelCase_ : List[str] = os.statvfs(os.path.dirname(snake_case_ ) ).f_namemax super().__init__(snake_case_ , timeout=snake_case_ , max_filename_length=snake_case_ ) def _UpperCamelCase ( self ): '''simple docstring''' UpperCAmelCase_ : int = os.O_RDWR | os.O_CREAT | os.O_TRUNC UpperCAmelCase_ : List[str] = os.open(self._lock_file , snake_case_ ) try: fcntl.flock(snake_case_ , fcntl.LOCK_EX | fcntl.LOCK_NB ) except OSError: os.close(snake_case_ ) else: UpperCAmelCase_ : List[str] = fd return None def _UpperCamelCase ( self ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = self._lock_file_fd UpperCAmelCase_ : str = None fcntl.flock(snake_case_ , fcntl.LOCK_UN ) os.close(snake_case_ ) return None class __SCREAMING_SNAKE_CASE ( lowerCamelCase_ ): '''simple docstring''' def _UpperCamelCase ( self ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = os.O_WRONLY | os.O_CREAT | os.O_EXCL | os.O_TRUNC try: UpperCAmelCase_ : List[str] = os.open(self._lock_file , snake_case_ ) except OSError: pass else: UpperCAmelCase_ : Dict = fd return None def _UpperCamelCase ( self ): '''simple docstring''' os.close(self._lock_file_fd ) UpperCAmelCase_ : Optional[Any] = None try: os.remove(self._lock_file ) # The file is already deleted and that's what we want. except OSError: pass return None snake_case__ : List[str] = None if msvcrt: snake_case__ : Any = WindowsFileLock elif fcntl: snake_case__ : List[str] = UnixFileLock else: snake_case__ : Optional[Any] = SoftFileLock if warnings is not None: warnings.warn('''only soft file lock is available''')
274
'''simple docstring''' import os from glob import glob import imageio import torch import torchvision import wandb from img_processing import custom_to_pil, loop_post_process, preprocess, preprocess_vqgan from loaders import load_vqgan from PIL import Image from torch import nn from transformers import CLIPModel, CLIPTokenizerFast from utils import get_device, get_timestamp, show_pil class __SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__( self , snake_case_ = "cpu" , snake_case_ = "openai/clip-vit-large-patch14" ): '''simple docstring''' UpperCAmelCase_ : Any = device UpperCAmelCase_ : Tuple = CLIPTokenizerFast.from_pretrained(snake_case_ ) UpperCAmelCase_ : Optional[Any] = [0.48_14_54_66, 0.4_57_82_75, 0.40_82_10_73] UpperCAmelCase_ : Union[str, Any] = [0.26_86_29_54, 0.26_13_02_58, 0.27_57_77_11] UpperCAmelCase_ : Tuple = torchvision.transforms.Normalize(self.image_mean , self.image_std ) UpperCAmelCase_ : Optional[Any] = torchvision.transforms.Resize(2_2_4 ) UpperCAmelCase_ : Any = torchvision.transforms.CenterCrop(2_2_4 ) def _UpperCamelCase ( self , snake_case_ ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = self.resize(snake_case_ ) UpperCAmelCase_ : Tuple = self.center_crop(snake_case_ ) UpperCAmelCase_ : Optional[Any] = self.normalize(snake_case_ ) return images def __call__( self , snake_case_=None , snake_case_=None , **snake_case_ ): '''simple docstring''' UpperCAmelCase_ : str = self.tokenizer(text=snake_case_ , **snake_case_ ) UpperCAmelCase_ : Optional[Any] = self.preprocess_img(snake_case_ ) UpperCAmelCase_ : Optional[int] = {key: value.to(self.device ) for (key, value) in encoding.items()} return encoding class __SCREAMING_SNAKE_CASE ( nn.Module ): '''simple docstring''' def __init__( self , snake_case_=1_0 , snake_case_=0.01 , snake_case_=None , snake_case_=None , snake_case_=None , snake_case_=None , snake_case_=None , snake_case_=None , snake_case_=False , snake_case_=True , snake_case_="image" , snake_case_=True , snake_case_=False , snake_case_=False , snake_case_=False , ): '''simple docstring''' super().__init__() UpperCAmelCase_ : List[str] = None UpperCAmelCase_ : Dict = device if device else get_device() if vqgan: UpperCAmelCase_ : Any = vqgan else: UpperCAmelCase_ : Dict = load_vqgan(self.device , conf_path=snake_case_ , ckpt_path=snake_case_ ) self.vqgan.eval() if clip: UpperCAmelCase_ : List[str] = clip else: UpperCAmelCase_ : List[Any] = CLIPModel.from_pretrained('openai/clip-vit-base-patch32' ) self.clip.to(self.device ) UpperCAmelCase_ : Tuple = ProcessorGradientFlow(device=self.device ) UpperCAmelCase_ : Dict = iterations UpperCAmelCase_ : Dict = lr UpperCAmelCase_ : str = log UpperCAmelCase_ : Tuple = make_grid UpperCAmelCase_ : Union[str, Any] = return_val UpperCAmelCase_ : List[Any] = quantize UpperCAmelCase_ : int = self.vqgan.decoder.z_shape def _UpperCamelCase ( self , snake_case_=None , snake_case_=None , snake_case_=5 , snake_case_=True ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = [] if output_path is None: UpperCAmelCase_ : List[str] = './animation.gif' if input_path is None: UpperCAmelCase_ : List[str] = self.save_path UpperCAmelCase_ : List[str] = sorted(glob(input_path + '/*' ) ) if not len(snake_case_ ): raise ValueError( 'No images found in save path, aborting (did you pass save_intermediate=True to the generate' ' function?)' ) if len(snake_case_ ) == 1: print('Only one image found in save path, (did you pass save_intermediate=True to the generate function?)' ) UpperCAmelCase_ : Tuple = total_duration / len(snake_case_ ) UpperCAmelCase_ : str = [frame_duration] * len(snake_case_ ) if extend_frames: UpperCAmelCase_ : List[str] = 1.5 UpperCAmelCase_ : Any = 3 for file_name in paths: if file_name.endswith('.png' ): images.append(imageio.imread(snake_case_ ) ) imageio.mimsave(snake_case_ , snake_case_ , duration=snake_case_ ) print(F'''gif saved to {output_path}''' ) def _UpperCamelCase ( self , snake_case_=None , snake_case_=None ): '''simple docstring''' if not (path or img): raise ValueError('Input either path or tensor' ) if img is not None: raise NotImplementedError UpperCAmelCase_ : Optional[Any] = preprocess(Image.open(snake_case_ ) , target_image_size=2_5_6 ).to(self.device ) UpperCAmelCase_ : Dict = preprocess_vqgan(snake_case_ ) UpperCAmelCase_ , *UpperCAmelCase_ : Tuple = self.vqgan.encode(snake_case_ ) return z def _UpperCamelCase ( self , snake_case_ ): '''simple docstring''' UpperCAmelCase_ : Optional[Any] = self.latent.detach().requires_grad_() UpperCAmelCase_ : List[Any] = base_latent + transform_vector if self.quantize: UpperCAmelCase_ , *UpperCAmelCase_ : Tuple = self.vqgan.quantize(snake_case_ ) else: UpperCAmelCase_ : Optional[int] = trans_latent return self.vqgan.decode(snake_case_ ) def _UpperCamelCase ( self , snake_case_ , snake_case_ , snake_case_=None ): '''simple docstring''' UpperCAmelCase_ : int = self.clip_preprocessor(text=snake_case_ , images=snake_case_ , return_tensors='pt' , padding=snake_case_ ) UpperCAmelCase_ : Any = self.clip(**snake_case_ ) UpperCAmelCase_ : Dict = clip_outputs.logits_per_image if weights is not None: UpperCAmelCase_ : Union[str, Any] = similarity_logits * weights return similarity_logits.sum() def _UpperCamelCase ( self , snake_case_ , snake_case_ , snake_case_ ): '''simple docstring''' UpperCAmelCase_ : Optional[Any] = self._get_clip_similarity(pos_prompts['prompts'] , snake_case_ , weights=(1 / pos_prompts['weights']) ) if neg_prompts: UpperCAmelCase_ : List[Any] = self._get_clip_similarity(neg_prompts['prompts'] , snake_case_ , weights=neg_prompts['weights'] ) else: UpperCAmelCase_ : Union[str, Any] = torch.tensor([1] , device=self.device ) UpperCAmelCase_ : Dict = -torch.log(snake_case_ ) + torch.log(snake_case_ ) return loss def _UpperCamelCase ( self , snake_case_ , snake_case_ , snake_case_ ): '''simple docstring''' UpperCAmelCase_ : Optional[Any] = torch.randn_like(self.latent , requires_grad=snake_case_ , device=self.device ) UpperCAmelCase_ : int = torch.optim.Adam([vector] , lr=self.lr ) for i in range(self.iterations ): optim.zero_grad() UpperCAmelCase_ : Dict = self._add_vector(snake_case_ ) UpperCAmelCase_ : List[Any] = loop_post_process(snake_case_ ) UpperCAmelCase_ : Union[str, Any] = self._get_CLIP_loss(snake_case_ , snake_case_ , snake_case_ ) print('CLIP loss' , snake_case_ ) if self.log: wandb.log({'CLIP Loss': clip_loss} ) clip_loss.backward(retain_graph=snake_case_ ) optim.step() if self.return_val == "image": yield custom_to_pil(transformed_img[0] ) else: yield vector def _UpperCamelCase ( self , snake_case_ , snake_case_ , snake_case_ ): '''simple docstring''' wandb.init(reinit=snake_case_ , project='face-editor' ) wandb.config.update({'Positive Prompts': positive_prompts} ) wandb.config.update({'Negative Prompts': negative_prompts} ) wandb.config.update({'lr': self.lr, 'iterations': self.iterations} ) if image_path: UpperCAmelCase_ : str = Image.open(snake_case_ ) UpperCAmelCase_ : str = image.resize((2_5_6, 2_5_6) ) wandb.log('Original Image' , wandb.Image(snake_case_ ) ) def _UpperCamelCase ( self , snake_case_ ): '''simple docstring''' if not prompts: return [] UpperCAmelCase_ : int = [] UpperCAmelCase_ : Optional[int] = [] if isinstance(snake_case_ , snake_case_ ): UpperCAmelCase_ : Union[str, Any] = [prompt.strip() for prompt in prompts.split('|' )] for prompt in prompts: if isinstance(snake_case_ , (tuple, list) ): UpperCAmelCase_ : Tuple = prompt[0] UpperCAmelCase_ : Optional[Any] = float(prompt[1] ) elif ":" in prompt: UpperCAmelCase_ , UpperCAmelCase_ : int = prompt.split(':' ) UpperCAmelCase_ : List[str] = float(snake_case_ ) else: UpperCAmelCase_ : Optional[int] = prompt UpperCAmelCase_ : List[str] = 1.0 processed_prompts.append(snake_case_ ) weights.append(snake_case_ ) return { "prompts": processed_prompts, "weights": torch.tensor(snake_case_ , device=self.device ), } def _UpperCamelCase ( self , snake_case_ , snake_case_=None , snake_case_=None , snake_case_=True , snake_case_=False , snake_case_=True , snake_case_=True , snake_case_=None , ): '''simple docstring''' if image_path: UpperCAmelCase_ : List[Any] = self._get_latent(snake_case_ ) else: UpperCAmelCase_ : Any = torch.randn(self.latent_dim , device=self.device ) if self.log: self._init_logging(snake_case_ , snake_case_ , snake_case_ ) assert pos_prompts, "You must provide at least one positive prompt." UpperCAmelCase_ : Optional[int] = self.process_prompts(snake_case_ ) UpperCAmelCase_ : int = self.process_prompts(snake_case_ ) if save_final and save_path is None: UpperCAmelCase_ : Union[str, Any] = os.path.join('./outputs/' , '_'.join(pos_prompts['prompts'] ) ) if not os.path.exists(snake_case_ ): os.makedirs(snake_case_ ) else: UpperCAmelCase_ : Any = save_path + '_' + get_timestamp() os.makedirs(snake_case_ ) UpperCAmelCase_ : List[Any] = save_path UpperCAmelCase_ : Dict = self.vqgan.decode(self.latent )[0] if show_intermediate: print('Original Image' ) show_pil(custom_to_pil(snake_case_ ) ) UpperCAmelCase_ : Optional[int] = loop_post_process(snake_case_ ) for iter, transformed_img in enumerate(self._optimize_CLIP(snake_case_ , snake_case_ , snake_case_ ) ): if show_intermediate: show_pil(snake_case_ ) if save_intermediate: transformed_img.save(os.path.join(self.save_path , F'''iter_{iter:03d}.png''' ) ) if self.log: wandb.log({'Image': wandb.Image(snake_case_ )} ) if show_final: show_pil(snake_case_ ) if save_final: transformed_img.save(os.path.join(self.save_path , F'''iter_{iter:03d}_final.png''' ) )
274
1
'''simple docstring''' import warnings from ...utils import logging from .image_processing_beit import BeitImageProcessor A =logging.get_logger(__name__) class _a ( __a ): def __init__( self : List[str] , *lowercase : Optional[Any] , **lowercase : Union[str, Any] ): '''simple docstring''' warnings.warn( '''The class BeitFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please''' ''' use BeitImageProcessor instead.''' , lowercase , ) super().__init__(*lowercase , **lowercase )
34
'''simple docstring''' # Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _snake_case = {'configuration_timm_backbone': ['TimmBackboneConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = ['TimmBackbone'] if TYPE_CHECKING: from .configuration_timm_backbone import TimmBackboneConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_timm_backbone import TimmBackbone else: import sys _snake_case = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
250
0
"""simple docstring""" import argparse import os from pathlib import Path from typing import Dict import tensorflow as tf import torch from tqdm import tqdm from transformers import PegasusConfig, PegasusForConditionalGeneration, PegasusTokenizer from transformers.models.pegasus.configuration_pegasus import DEFAULTS, task_specific_params UpperCAmelCase : Union[str, Any] = [ # replace left string with right string to get the relevant state_dict key (identical state dict to bart) ["memory_attention", "encoder_attn"], ["attention", "attn"], ["/", "."], [".LayerNorm.gamma", "_layer_norm.weight"], [".LayerNorm.beta", "_layer_norm.bias"], ["r.layer_", "r.layers."], ["output_proj", "out_proj"], ["ffn.dense_1.", "fc2."], ["ffn.dense.", "fc1."], ["ffn_layer_norm", "final_layer_norm"], ["kernel", "weight"], ["encoder_layer_norm.", "encoder.layer_norm."], ["decoder_layer_norm.", "decoder.layer_norm."], ["embeddings.weights", "shared.weight"], ] def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> List[Any]: '''simple docstring''' for pegasus_name, hf_name in PATTERNS: lowercase_ = k.replace(__lowerCAmelCase , __lowerCAmelCase ) return k def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase ) -> PegasusForConditionalGeneration: '''simple docstring''' lowercase_ = DEFAULTS.copy() cfg_kwargs.update(__lowerCAmelCase ) lowercase_ = PegasusConfig(**__lowerCAmelCase ) lowercase_ = PegasusForConditionalGeneration(__lowerCAmelCase ) lowercase_ = torch_model.model.state_dict() lowercase_ = {} for k, v in tf_weights.items(): lowercase_ = rename_state_dict_key(__lowerCAmelCase ) if new_k not in sd: raise ValueError(F'''could not find new key {new_k} in state dict. (converted from {k})''' ) if "dense" in k or "proj" in new_k: lowercase_ = v.T lowercase_ = torch.tensor(__lowerCAmelCase , dtype=sd[new_k].dtype ) assert v.shape == sd[new_k].shape, F'''{new_k}, {k}, {v.shape}, {sd[new_k].shape}''' # make sure embedding.padding_idx is respected lowercase_ = torch.zeros_like(mapping["""shared.weight"""][cfg.pad_token_id + 1] ) lowercase_ = mapping["""shared.weight"""] lowercase_ = mapping["""shared.weight"""] lowercase_ = {k: torch.zeros_like(__lowerCAmelCase ) for k, v in sd.items() if k.endswith("""bias""" ) and k not in mapping} mapping.update(**__lowerCAmelCase ) lowercase_ , lowercase_ = torch_model.model.load_state_dict(__lowerCAmelCase , strict=__lowerCAmelCase ) lowercase_ = [ k for k in missing if k not in ["""encoder.embed_positions.weight""", """decoder.embed_positions.weight"""] ] assert unexpected_missing == [], F'''no matches found for the following torch keys {unexpected_missing}''' assert extra == [], F'''no matches found for the following tf keys {extra}''' return torch_model def _SCREAMING_SNAKE_CASE (__lowerCAmelCase="./ckpt/aeslc/model.ckpt-32000" ) -> Dict: '''simple docstring''' lowercase_ = tf.train.list_variables(__lowerCAmelCase ) lowercase_ = {} lowercase_ = ["""Adafactor""", """global_step"""] for name, shape in tqdm(__lowerCAmelCase , desc="""converting tf checkpoint to dict""" ): lowercase_ = any(pat in name for pat in ignore_name ) if skip_key: continue lowercase_ = tf.train.load_variable(__lowerCAmelCase , __lowerCAmelCase ) lowercase_ = array return tf_weights def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase ) -> str: '''simple docstring''' lowercase_ = Path(__lowerCAmelCase ).parent.name lowercase_ = task_specific_params[F'''summarization_{dataset}''']["""max_position_embeddings"""] lowercase_ = PegasusTokenizer.from_pretrained("""sshleifer/pegasus""" , model_max_length=__lowerCAmelCase ) assert tok.model_max_length == desired_max_model_length tok.save_pretrained(__lowerCAmelCase ) # convert model lowercase_ = get_tf_weights_as_numpy(__lowerCAmelCase ) lowercase_ = task_specific_params[F'''summarization_{dataset}'''] if dataset == "large": lowercase_ = task_specific_params lowercase_ = convert_pegasus(__lowerCAmelCase , __lowerCAmelCase ) torch_model.save_pretrained(__lowerCAmelCase ) lowercase_ = torch_model.state_dict() sd.pop("""model.decoder.embed_positions.weight""" ) sd.pop("""model.encoder.embed_positions.weight""" ) torch.save(__lowerCAmelCase , Path(__lowerCAmelCase ) / """pytorch_model.bin""" ) if __name__ == "__main__": UpperCAmelCase : List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument("tf_ckpt_path", type=str, help="passed to tf.train.list_variables") parser.add_argument("save_dir", default=None, type=str, help="Path to the output PyTorch model.") UpperCAmelCase : List[Any] = parser.parse_args() if args.save_dir is None: UpperCAmelCase : List[str] = Path(args.tf_ckpt_path).parent.name UpperCAmelCase : int = os.path.join("pegasus", dataset) convert_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir)
313
"""simple docstring""" from __future__ import annotations from collections.abc import Generator def _SCREAMING_SNAKE_CASE () -> Generator[int, None, None]: '''simple docstring''' lowercase_ = {} lowercase_ = 2 while True: lowercase_ = factor_map.pop(__lowerCAmelCase , __lowerCAmelCase ) if factor: lowercase_ = factor + prime while x in factor_map: x += factor lowercase_ = factor else: lowercase_ = prime yield prime prime += 1 def _SCREAMING_SNAKE_CASE (__lowerCAmelCase = 1E10 ) -> int: '''simple docstring''' lowercase_ = sieve() lowercase_ = 1 while True: lowercase_ = next(__lowerCAmelCase ) if (2 * prime * n) > limit: return n # Ignore the next prime as the reminder will be 2. next(__lowerCAmelCase ) n += 2 if __name__ == "__main__": print(solution())
313
1