code
stringlengths 86
54.5k
| code_codestyle
int64 0
371
| style_context
stringlengths 87
49.2k
| style_context_codestyle
int64 0
349
| label
int64 0
1
|
---|---|---|---|---|
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
lowerCAmelCase : str = {
"""configuration_whisper""": ["""WHISPER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """WhisperConfig""", """WhisperOnnxConfig"""],
"""feature_extraction_whisper""": ["""WhisperFeatureExtractor"""],
"""processing_whisper""": ["""WhisperProcessor"""],
"""tokenization_whisper""": ["""WhisperTokenizer"""],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase : Any = ["""WhisperTokenizerFast"""]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase : int = [
"""WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""WhisperForConditionalGeneration""",
"""WhisperModel""",
"""WhisperPreTrainedModel""",
"""WhisperForAudioClassification""",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase : int = [
"""TF_WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""TFWhisperForConditionalGeneration""",
"""TFWhisperModel""",
"""TFWhisperPreTrainedModel""",
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase : str = [
"""FlaxWhisperForConditionalGeneration""",
"""FlaxWhisperModel""",
"""FlaxWhisperPreTrainedModel""",
"""FlaxWhisperForAudioClassification""",
]
if TYPE_CHECKING:
from .configuration_whisper import WHISPER_PRETRAINED_CONFIG_ARCHIVE_MAP, WhisperConfig, WhisperOnnxConfig
from .feature_extraction_whisper import WhisperFeatureExtractor
from .processing_whisper import WhisperProcessor
from .tokenization_whisper import WhisperTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_whisper_fast import WhisperTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_whisper import (
WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST,
WhisperForAudioClassification,
WhisperForConditionalGeneration,
WhisperModel,
WhisperPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_whisper import (
TF_WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST,
TFWhisperForConditionalGeneration,
TFWhisperModel,
TFWhisperPreTrainedModel,
)
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_whisper import (
FlaxWhisperForAudioClassification,
FlaxWhisperForConditionalGeneration,
FlaxWhisperModel,
FlaxWhisperPreTrainedModel,
)
else:
import sys
lowerCAmelCase : List[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 13 |
import json
import sys
import tempfile
import unittest
from pathlib import Path
import transformers
from transformers import (
CONFIG_MAPPING,
FEATURE_EXTRACTOR_MAPPING,
AutoConfig,
AutoFeatureExtractor,
WavaVecaConfig,
WavaVecaFeatureExtractor,
)
from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, get_tests_dir
sys.path.append(str(Path(__file__).parent.parent.parent.parent / 'utils'))
from test_module.custom_configuration import CustomConfig # noqa E402
from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402
UpperCAmelCase_ = get_tests_dir('fixtures')
UpperCAmelCase_ = get_tests_dir('fixtures/dummy_feature_extractor_config.json')
UpperCAmelCase_ = get_tests_dir('fixtures/dummy-config.json')
class lowerCamelCase__( unittest.TestCase):
def lowerCAmelCase__ ( self: List[str] ):
__lowerCamelCase = 0
def lowerCAmelCase__ ( self: List[str] ):
__lowerCamelCase = AutoFeatureExtractor.from_pretrained("""facebook/wav2vec2-base-960h""" )
self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ )
def lowerCAmelCase__ ( self: Union[str, Any] ):
__lowerCamelCase = AutoFeatureExtractor.from_pretrained(UpperCamelCase_ )
self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ )
def lowerCAmelCase__ ( self: int ):
with tempfile.TemporaryDirectory() as tmpdirname:
__lowerCamelCase = WavaVecaConfig()
# remove feature_extractor_type to make sure config.json alone is enough to load feature processor locally
__lowerCamelCase = AutoFeatureExtractor.from_pretrained(UpperCamelCase_ ).to_dict()
config_dict.pop("""feature_extractor_type""" )
__lowerCamelCase = WavaVecaFeatureExtractor(**UpperCamelCase_ )
# save in new folder
model_config.save_pretrained(UpperCamelCase_ )
config.save_pretrained(UpperCamelCase_ )
__lowerCamelCase = AutoFeatureExtractor.from_pretrained(UpperCamelCase_ )
# make sure private variable is not incorrectly saved
__lowerCamelCase = json.loads(config.to_json_string() )
self.assertTrue("""_processor_class""" not in dict_as_saved )
self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ )
def lowerCAmelCase__ ( self: Tuple ):
__lowerCamelCase = AutoFeatureExtractor.from_pretrained(UpperCamelCase_ )
self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ )
def lowerCAmelCase__ ( self: int ):
with self.assertRaisesRegex(
UpperCamelCase_ , """bert-base is not a local folder and is not a valid model identifier""" ):
__lowerCamelCase = AutoFeatureExtractor.from_pretrained("""bert-base""" )
def lowerCAmelCase__ ( self: Tuple ):
with self.assertRaisesRegex(
UpperCamelCase_ , r"""aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)""" ):
__lowerCamelCase = AutoFeatureExtractor.from_pretrained(UpperCamelCase_ , revision="""aaaaaa""" )
def lowerCAmelCase__ ( self: Optional[Any] ):
with self.assertRaisesRegex(
UpperCamelCase_ , """hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json.""" , ):
__lowerCamelCase = AutoFeatureExtractor.from_pretrained("""hf-internal-testing/config-no-model""" )
def lowerCAmelCase__ ( self: Tuple ):
# If remote code is not set, we will time out when asking whether to load the model.
with self.assertRaises(UpperCamelCase_ ):
__lowerCamelCase = AutoFeatureExtractor.from_pretrained(
"""hf-internal-testing/test_dynamic_feature_extractor""" )
# If remote code is disabled, we can't load this config.
with self.assertRaises(UpperCamelCase_ ):
__lowerCamelCase = AutoFeatureExtractor.from_pretrained(
"""hf-internal-testing/test_dynamic_feature_extractor""" , trust_remote_code=UpperCamelCase_ )
__lowerCamelCase = AutoFeatureExtractor.from_pretrained(
"""hf-internal-testing/test_dynamic_feature_extractor""" , trust_remote_code=UpperCamelCase_ )
self.assertEqual(feature_extractor.__class__.__name__ , """NewFeatureExtractor""" )
# Test feature extractor can be reloaded.
with tempfile.TemporaryDirectory() as tmp_dir:
feature_extractor.save_pretrained(UpperCamelCase_ )
__lowerCamelCase = AutoFeatureExtractor.from_pretrained(UpperCamelCase_ , trust_remote_code=UpperCamelCase_ )
self.assertEqual(reloaded_feature_extractor.__class__.__name__ , """NewFeatureExtractor""" )
def lowerCAmelCase__ ( self: Any ):
try:
AutoConfig.register("""custom""" , UpperCamelCase_ )
AutoFeatureExtractor.register(UpperCamelCase_ , UpperCamelCase_ )
# Trying to register something existing in the Transformers library will raise an error
with self.assertRaises(UpperCamelCase_ ):
AutoFeatureExtractor.register(UpperCamelCase_ , UpperCamelCase_ )
# Now that the config is registered, it can be used as any other config with the auto-API
__lowerCamelCase = CustomFeatureExtractor.from_pretrained(UpperCamelCase_ )
with tempfile.TemporaryDirectory() as tmp_dir:
feature_extractor.save_pretrained(UpperCamelCase_ )
__lowerCamelCase = AutoFeatureExtractor.from_pretrained(UpperCamelCase_ )
self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ )
finally:
if "custom" in CONFIG_MAPPING._extra_content:
del CONFIG_MAPPING._extra_content["custom"]
if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content:
del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig]
def lowerCAmelCase__ ( self: Dict ):
class lowerCamelCase__( __lowerCamelCase):
UpperCAmelCase__ : str = True
try:
AutoConfig.register("""custom""" , UpperCamelCase_ )
AutoFeatureExtractor.register(UpperCamelCase_ , UpperCamelCase_ )
# If remote code is not set, the default is to use local
__lowerCamelCase = AutoFeatureExtractor.from_pretrained(
"""hf-internal-testing/test_dynamic_feature_extractor""" )
self.assertEqual(feature_extractor.__class__.__name__ , """NewFeatureExtractor""" )
self.assertTrue(feature_extractor.is_local )
# If remote code is disabled, we load the local one.
__lowerCamelCase = AutoFeatureExtractor.from_pretrained(
"""hf-internal-testing/test_dynamic_feature_extractor""" , trust_remote_code=UpperCamelCase_ )
self.assertEqual(feature_extractor.__class__.__name__ , """NewFeatureExtractor""" )
self.assertTrue(feature_extractor.is_local )
# If remote is enabled, we load from the Hub
__lowerCamelCase = AutoFeatureExtractor.from_pretrained(
"""hf-internal-testing/test_dynamic_feature_extractor""" , trust_remote_code=UpperCamelCase_ )
self.assertEqual(feature_extractor.__class__.__name__ , """NewFeatureExtractor""" )
self.assertTrue(not hasattr(UpperCamelCase_ , """is_local""" ) )
finally:
if "custom" in CONFIG_MAPPING._extra_content:
del CONFIG_MAPPING._extra_content["custom"]
if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content:
del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig]
| 12 | 0 |
def UpperCAmelCase_( a__ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : List[str] = [0] * len(a__ )
for i in range(1 , len(a__ ) ):
# use last results for better performance - dynamic programming
SCREAMING_SNAKE_CASE : Union[str, Any] = prefix_result[i - 1]
while j > 0 and input_string[i] != input_string[j]:
SCREAMING_SNAKE_CASE : Optional[int] = prefix_result[j - 1]
if input_string[i] == input_string[j]:
j += 1
SCREAMING_SNAKE_CASE : int = j
return prefix_result
def UpperCAmelCase_( a__ ):
"""simple docstring"""
return max(prefix_function(a__ ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 19 |
import inspect
import unittest
from huggingface_hub import hf_hub_download
from transformers import ConvNextConfig, UperNetConfig
from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device
from transformers.utils import is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import UperNetForSemanticSegmentation
from transformers.models.upernet.modeling_upernet import UPERNET_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import AutoImageProcessor
class a_ :
"""simple docstring"""
def __init__( self , _lowerCamelCase , _lowerCamelCase=13 , _lowerCamelCase=32 , _lowerCamelCase=3 , _lowerCamelCase=4 , _lowerCamelCase=[10, 20, 30, 40] , _lowerCamelCase=[2, 2, 3, 2] , _lowerCamelCase=True , _lowerCamelCase=True , _lowerCamelCase=37 , _lowerCamelCase="gelu" , _lowerCamelCase=10 , _lowerCamelCase=0.0_2 , _lowerCamelCase=["stage2", "stage3", "stage4"] , _lowerCamelCase=3 , _lowerCamelCase=None , ) ->Dict:
SCREAMING_SNAKE_CASE : Any = parent
SCREAMING_SNAKE_CASE : Optional[Any] = batch_size
SCREAMING_SNAKE_CASE : Optional[Any] = image_size
SCREAMING_SNAKE_CASE : str = num_channels
SCREAMING_SNAKE_CASE : Any = num_stages
SCREAMING_SNAKE_CASE : List[str] = hidden_sizes
SCREAMING_SNAKE_CASE : Optional[Any] = depths
SCREAMING_SNAKE_CASE : Any = is_training
SCREAMING_SNAKE_CASE : Tuple = use_labels
SCREAMING_SNAKE_CASE : Any = intermediate_size
SCREAMING_SNAKE_CASE : Dict = hidden_act
SCREAMING_SNAKE_CASE : Optional[Any] = type_sequence_label_size
SCREAMING_SNAKE_CASE : str = initializer_range
SCREAMING_SNAKE_CASE : int = out_features
SCREAMING_SNAKE_CASE : List[str] = num_labels
SCREAMING_SNAKE_CASE : int = scope
SCREAMING_SNAKE_CASE : Optional[Any] = num_stages
def __lowerCAmelCase ( self ) ->Dict:
SCREAMING_SNAKE_CASE : Union[str, Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
SCREAMING_SNAKE_CASE : str = None
if self.use_labels:
SCREAMING_SNAKE_CASE : Tuple = ids_tensor([self.batch_size] , self.type_sequence_label_size )
SCREAMING_SNAKE_CASE : Union[str, Any] = self.get_config()
return config, pixel_values, labels
def __lowerCAmelCase ( self ) ->List[Any]:
return ConvNextConfig(
num_channels=self.num_channels , num_stages=self.num_stages , hidden_sizes=self.hidden_sizes , depths=self.depths , is_training=self.is_training , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , out_features=self.out_features , )
def __lowerCAmelCase ( self ) ->Any:
return UperNetConfig(
backbone_config=self.get_backbone_config() , hidden_size=512 , pool_scales=[1, 2, 3, 6] , use_auxiliary_head=_lowerCamelCase , auxiliary_loss_weight=0.4 , auxiliary_in_channels=40 , auxiliary_channels=256 , auxiliary_num_convs=1 , auxiliary_concat_input=_lowerCamelCase , loss_ignore_index=255 , num_labels=self.num_labels , )
def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) ->Any:
SCREAMING_SNAKE_CASE : List[Any] = UperNetForSemanticSegmentation(config=_lowerCamelCase )
model.to(_lowerCamelCase )
model.eval()
SCREAMING_SNAKE_CASE : Tuple = model(_lowerCamelCase )
self.parent.assertEqual(
result.logits.shape , (self.batch_size, self.num_labels, self.image_size, self.image_size) )
def __lowerCAmelCase ( self ) ->Tuple:
SCREAMING_SNAKE_CASE : Optional[int] = self.prepare_config_and_inputs()
(
(
SCREAMING_SNAKE_CASE
) , (
SCREAMING_SNAKE_CASE
) , (
SCREAMING_SNAKE_CASE
) ,
) : Tuple = config_and_inputs
SCREAMING_SNAKE_CASE : Optional[int] = {'''pixel_values''': pixel_values}
return config, inputs_dict
@require_torch
class a_ ( a__ , a__ , unittest.TestCase ):
"""simple docstring"""
__SCREAMING_SNAKE_CASE : Tuple = (UperNetForSemanticSegmentation,) if is_torch_available() else ()
__SCREAMING_SNAKE_CASE : List[str] = {'image-segmentation': UperNetForSemanticSegmentation} if is_torch_available() else {}
__SCREAMING_SNAKE_CASE : Tuple = False
__SCREAMING_SNAKE_CASE : Union[str, Any] = False
__SCREAMING_SNAKE_CASE : Any = False
__SCREAMING_SNAKE_CASE : Tuple = False
__SCREAMING_SNAKE_CASE : Dict = False
__SCREAMING_SNAKE_CASE : Any = False
def __lowerCAmelCase ( self ) ->Tuple:
SCREAMING_SNAKE_CASE : Optional[Any] = UperNetModelTester(self )
SCREAMING_SNAKE_CASE : Optional[Any] = ConfigTester(self , config_class=_lowerCamelCase , has_text_modality=_lowerCamelCase , hidden_size=37 )
def __lowerCAmelCase ( self ) ->str:
self.create_and_test_config_common_properties()
self.config_tester.create_and_test_config_to_json_string()
self.config_tester.create_and_test_config_to_json_file()
self.config_tester.create_and_test_config_from_and_save_pretrained()
self.config_tester.create_and_test_config_with_num_labels()
self.config_tester.check_config_can_be_init_without_params()
self.config_tester.check_config_arguments_init()
def __lowerCAmelCase ( self ) ->str:
return
def __lowerCAmelCase ( self ) ->Tuple:
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Tuple = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
SCREAMING_SNAKE_CASE : int = model_class(_lowerCamelCase )
SCREAMING_SNAKE_CASE : Dict = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
SCREAMING_SNAKE_CASE : Optional[int] = [*signature.parameters.keys()]
SCREAMING_SNAKE_CASE : Union[str, Any] = ['''pixel_values''']
self.assertListEqual(arg_names[:1] , _lowerCamelCase )
def __lowerCAmelCase ( self ) ->Union[str, Any]:
SCREAMING_SNAKE_CASE : str = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_semantic_segmentation(*_lowerCamelCase )
@unittest.skip(reason='''UperNet does not use inputs_embeds''' )
def __lowerCAmelCase ( self ) ->Union[str, Any]:
pass
@unittest.skip(reason='''UperNet does not support input and output embeddings''' )
def __lowerCAmelCase ( self ) ->int:
pass
@unittest.skip(reason='''UperNet does not have a base model''' )
def __lowerCAmelCase ( self ) ->int:
pass
@unittest.skip(reason='''UperNet does not have a base model''' )
def __lowerCAmelCase ( self ) ->str:
pass
@require_torch_multi_gpu
@unittest.skip(reason='''UperNet has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`''' )
def __lowerCAmelCase ( self ) ->str:
pass
@unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' )
def __lowerCAmelCase ( self ) ->Tuple:
pass
def __lowerCAmelCase ( self ) ->int:
def check_hidden_states_output(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ):
SCREAMING_SNAKE_CASE : Union[str, Any] = model_class(_lowerCamelCase )
model.to(_lowerCamelCase )
model.eval()
with torch.no_grad():
SCREAMING_SNAKE_CASE : List[str] = model(**self._prepare_for_class(_lowerCamelCase , _lowerCamelCase ) )
SCREAMING_SNAKE_CASE : str = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states
SCREAMING_SNAKE_CASE : List[Any] = self.model_tester.num_stages
self.assertEqual(len(_lowerCamelCase ) , expected_num_stages + 1 )
# ConvNext's feature maps are of shape (batch_size, num_channels, height, width)
self.assertListEqual(
list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , )
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Any = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
SCREAMING_SNAKE_CASE : Optional[int] = True
check_hidden_states_output(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
SCREAMING_SNAKE_CASE : Union[str, Any] = True
check_hidden_states_output(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase )
def __lowerCAmelCase ( self ) ->Any:
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common()
SCREAMING_SNAKE_CASE : str = _config_zero_init(_lowerCamelCase )
SCREAMING_SNAKE_CASE : List[str] = _config_zero_init(configs_no_init.backbone_config )
for model_class in self.all_model_classes:
SCREAMING_SNAKE_CASE : int = model_class(config=_lowerCamelCase )
for name, param in model.named_parameters():
if param.requires_grad:
self.assertIn(
((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=F"""Parameter {name} of model {model_class} seems not properly initialized""" , )
@unittest.skip(reason='''UperNet does not have tied weights''' )
def __lowerCAmelCase ( self ) ->List[Any]:
pass
@slow
def __lowerCAmelCase ( self ) ->List[Any]:
for model_name in UPERNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
SCREAMING_SNAKE_CASE : Any = UperNetForSemanticSegmentation.from_pretrained(_lowerCamelCase )
self.assertIsNotNone(_lowerCamelCase )
def UpperCAmelCase_( ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : Optional[int] = hf_hub_download(
repo_id='''hf-internal-testing/fixtures_ade20k''' , repo_type='''dataset''' , filename='''ADE_val_00000001.jpg''' )
SCREAMING_SNAKE_CASE : Any = Image.open(a__ ).convert('''RGB''' )
return image
@require_torch
@require_vision
@slow
class a_ ( unittest.TestCase ):
"""simple docstring"""
def __lowerCAmelCase ( self ) ->Dict:
SCREAMING_SNAKE_CASE : int = AutoImageProcessor.from_pretrained('''openmmlab/upernet-swin-tiny''' )
SCREAMING_SNAKE_CASE : Tuple = UperNetForSemanticSegmentation.from_pretrained('''openmmlab/upernet-swin-tiny''' ).to(_lowerCamelCase )
SCREAMING_SNAKE_CASE : str = prepare_img()
SCREAMING_SNAKE_CASE : Tuple = processor(images=_lowerCamelCase , return_tensors='''pt''' ).to(_lowerCamelCase )
with torch.no_grad():
SCREAMING_SNAKE_CASE : Optional[Any] = model(**_lowerCamelCase )
SCREAMING_SNAKE_CASE : Tuple = torch.Size((1, model.config.num_labels, 512, 512) )
self.assertEqual(outputs.logits.shape , _lowerCamelCase )
SCREAMING_SNAKE_CASE : List[str] = torch.tensor(
[[-7.5_9_5_8, -7.5_9_5_8, -7.4_3_0_2], [-7.5_9_5_8, -7.5_9_5_8, -7.4_3_0_2], [-7.4_7_9_7, -7.4_7_9_7, -7.3_0_6_8]] ).to(_lowerCamelCase )
self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3] , _lowerCamelCase , atol=1e-4 ) )
def __lowerCAmelCase ( self ) ->int:
SCREAMING_SNAKE_CASE : List[str] = AutoImageProcessor.from_pretrained('''openmmlab/upernet-convnext-tiny''' )
SCREAMING_SNAKE_CASE : str = UperNetForSemanticSegmentation.from_pretrained('''openmmlab/upernet-convnext-tiny''' ).to(_lowerCamelCase )
SCREAMING_SNAKE_CASE : Dict = prepare_img()
SCREAMING_SNAKE_CASE : Tuple = processor(images=_lowerCamelCase , return_tensors='''pt''' ).to(_lowerCamelCase )
with torch.no_grad():
SCREAMING_SNAKE_CASE : str = model(**_lowerCamelCase )
SCREAMING_SNAKE_CASE : Dict = torch.Size((1, model.config.num_labels, 512, 512) )
self.assertEqual(outputs.logits.shape , _lowerCamelCase )
SCREAMING_SNAKE_CASE : Optional[Any] = torch.tensor(
[[-8.8_1_1_0, -8.8_1_1_0, -8.6_5_2_1], [-8.8_1_1_0, -8.8_1_1_0, -8.6_5_2_1], [-8.7_7_4_6, -8.7_7_4_6, -8.6_1_3_0]] ).to(_lowerCamelCase )
self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3] , _lowerCamelCase , atol=1e-4 ) )
| 19 | 1 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available
lowerCAmelCase__ : List[Any] = {'configuration_speech_encoder_decoder': ['SpeechEncoderDecoderConfig']}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase__ : Optional[int] = ['SpeechEncoderDecoderModel']
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase__ : Optional[Any] = ['FlaxSpeechEncoderDecoderModel']
if TYPE_CHECKING:
from .configuration_speech_encoder_decoder import SpeechEncoderDecoderConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_speech_encoder_decoder import SpeechEncoderDecoderModel
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_speech_encoder_decoder import FlaxSpeechEncoderDecoderModel
else:
import sys
lowerCAmelCase__ : Any = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 98 | """simple docstring"""
from typing import TYPE_CHECKING
from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
lowerCAmelCase__ : str = {
'configuration_mctct': ['MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MCTCTConfig'],
'feature_extraction_mctct': ['MCTCTFeatureExtractor'],
'processing_mctct': ['MCTCTProcessor'],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase__ : Any = [
'MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST',
'MCTCTForCTC',
'MCTCTModel',
'MCTCTPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_mctct import MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP, MCTCTConfig
from .feature_extraction_mctct import MCTCTFeatureExtractor
from .processing_mctct import MCTCTProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_mctct import MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST, MCTCTForCTC, MCTCTModel, MCTCTPreTrainedModel
else:
import sys
lowerCAmelCase__ : Any = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 98 | 1 |
"""simple docstring"""
import os
import unittest
from transformers import LayoutLMTokenizer, LayoutLMTokenizerFast
from transformers.models.layoutlm.tokenization_layoutlm import VOCAB_FILES_NAMES
from transformers.testing_utils import require_tokenizers
from ...test_tokenization_common import TokenizerTesterMixin
@require_tokenizers
class lowerCAmelCase__ ( UpperCAmelCase__ , unittest.TestCase ):
'''simple docstring'''
__UpperCamelCase = LayoutLMTokenizer
__UpperCamelCase = LayoutLMTokenizerFast
__UpperCamelCase = True
__UpperCamelCase = True
def _SCREAMING_SNAKE_CASE ( self : int):
'''simple docstring'''
super().setUp()
SCREAMING_SNAKE_CASE_ : List[str] = [
'''[UNK]''',
'''[CLS]''',
'''[SEP]''',
'''want''',
'''##want''',
'''##ed''',
'''wa''',
'''un''',
'''runn''',
'''##ing''',
''',''',
'''low''',
'''lowest''',
]
SCREAMING_SNAKE_CASE_ : Optional[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''])
with open(self.vocab_file , '''w''' , encoding='''utf-8''') as vocab_writer:
vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens]))
def _SCREAMING_SNAKE_CASE ( self : Dict , **lowercase_ : List[str]):
'''simple docstring'''
return LayoutLMTokenizer.from_pretrained(self.tmpdirname , **lowercase_)
def _SCREAMING_SNAKE_CASE ( self : int , lowercase_ : Tuple):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : Dict = '''UNwant\u00E9d,running'''
SCREAMING_SNAKE_CASE_ : Any = '''unwanted, running'''
return input_text, output_text
def _SCREAMING_SNAKE_CASE ( self : Optional[int]):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : int = self.tokenizer_class(self.vocab_file)
SCREAMING_SNAKE_CASE_ : Optional[int] = tokenizer.tokenize('''UNwant\u00E9d,running''')
self.assertListEqual(lowercase_ , ['''un''', '''##want''', '''##ed''', ''',''', '''runn''', '''##ing'''])
self.assertListEqual(tokenizer.convert_tokens_to_ids(lowercase_) , [7, 4, 5, 10, 8, 9])
def _SCREAMING_SNAKE_CASE ( self : Optional[int]):
'''simple docstring'''
pass
| 318 |
"""simple docstring"""
import os
from typing import BinaryIO, Optional, Union
import numpy as np
import pyarrow.parquet as pq
from .. import Audio, Dataset, Features, Image, NamedSplit, Value, config
from ..features.features import FeatureType, _visit
from ..formatting import query_table
from ..packaged_modules import _PACKAGED_DATASETS_MODULES
from ..packaged_modules.parquet.parquet import Parquet
from ..utils import logging
from ..utils.typing import NestedDataStructureLike, PathLike
from .abc import AbstractDatasetReader
def _A (__a ) -> Optional[int]:
"""simple docstring"""
SCREAMING_SNAKE_CASE_ : List[str] = np.inf
def set_batch_size(__a ) -> None:
nonlocal batch_size
if isinstance(__a , __a ):
SCREAMING_SNAKE_CASE_ : Tuple = min(__a , config.PARQUET_ROW_GROUP_SIZE_FOR_IMAGE_DATASETS )
elif isinstance(__a , __a ):
SCREAMING_SNAKE_CASE_ : int = min(__a , config.PARQUET_ROW_GROUP_SIZE_FOR_AUDIO_DATASETS )
elif isinstance(__a , __a ) and feature.dtype == "binary":
SCREAMING_SNAKE_CASE_ : Union[str, Any] = min(__a , config.PARQUET_ROW_GROUP_SIZE_FOR_BINARY_DATASETS )
_visit(__a , __a )
return None if batch_size is np.inf else batch_size
class lowerCAmelCase__ ( UpperCAmelCase__ ):
'''simple docstring'''
def __init__( self : Any , lowercase_ : NestedDataStructureLike[PathLike] , lowercase_ : Optional[NamedSplit] = None , lowercase_ : Optional[Features] = None , lowercase_ : str = None , lowercase_ : bool = False , lowercase_ : bool = False , lowercase_ : Optional[int] = None , **lowercase_ : Optional[int] , ):
'''simple docstring'''
super().__init__(
lowercase_ , split=lowercase_ , features=lowercase_ , cache_dir=lowercase_ , keep_in_memory=lowercase_ , streaming=lowercase_ , num_proc=lowercase_ , **lowercase_ , )
SCREAMING_SNAKE_CASE_ : Any = path_or_paths if isinstance(lowercase_ , lowercase_) else {self.split: path_or_paths}
SCREAMING_SNAKE_CASE_ : Any = _PACKAGED_DATASETS_MODULES['''parquet'''][1]
SCREAMING_SNAKE_CASE_ : Union[str, Any] = Parquet(
cache_dir=lowercase_ , data_files=lowercase_ , features=lowercase_ , hash=lowercase_ , **lowercase_ , )
def _SCREAMING_SNAKE_CASE ( self : Tuple):
'''simple docstring'''
if self.streaming:
SCREAMING_SNAKE_CASE_ : str = self.builder.as_streaming_dataset(split=self.split)
# Build regular (map-style) dataset
else:
SCREAMING_SNAKE_CASE_ : Optional[Any] = None
SCREAMING_SNAKE_CASE_ : Optional[int] = None
SCREAMING_SNAKE_CASE_ : Tuple = None
SCREAMING_SNAKE_CASE_ : Dict = None
self.builder.download_and_prepare(
download_config=lowercase_ , download_mode=lowercase_ , verification_mode=lowercase_ , base_path=lowercase_ , num_proc=self.num_proc , )
SCREAMING_SNAKE_CASE_ : Any = self.builder.as_dataset(
split=self.split , verification_mode=lowercase_ , in_memory=self.keep_in_memory)
return dataset
class lowerCAmelCase__ :
'''simple docstring'''
def __init__( self : Tuple , lowercase_ : Dataset , lowercase_ : Union[PathLike, BinaryIO] , lowercase_ : Optional[int] = None , **lowercase_ : Dict , ):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : Dict = dataset
SCREAMING_SNAKE_CASE_ : Dict = path_or_buf
SCREAMING_SNAKE_CASE_ : List[Any] = batch_size or get_writer_batch_size(dataset.features)
SCREAMING_SNAKE_CASE_ : Any = parquet_writer_kwargs
def _SCREAMING_SNAKE_CASE ( self : List[Any]):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : List[str] = self.batch_size if self.batch_size else config.DEFAULT_MAX_BATCH_SIZE
if isinstance(self.path_or_buf , (str, bytes, os.PathLike)):
with open(self.path_or_buf , '''wb+''') as buffer:
SCREAMING_SNAKE_CASE_ : Optional[Any] = self._write(file_obj=lowercase_ , batch_size=lowercase_ , **self.parquet_writer_kwargs)
else:
SCREAMING_SNAKE_CASE_ : str = self._write(file_obj=self.path_or_buf , batch_size=lowercase_ , **self.parquet_writer_kwargs)
return written
def _SCREAMING_SNAKE_CASE ( self : Tuple , lowercase_ : BinaryIO , lowercase_ : int , **lowercase_ : List[str]):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : Any = 0
SCREAMING_SNAKE_CASE_ : Optional[int] = parquet_writer_kwargs.pop('''path_or_buf''' , lowercase_)
SCREAMING_SNAKE_CASE_ : List[str] = self.dataset.features.arrow_schema
SCREAMING_SNAKE_CASE_ : Tuple = pq.ParquetWriter(lowercase_ , schema=lowercase_ , **lowercase_)
for offset in logging.tqdm(
range(0 , len(self.dataset) , lowercase_) , unit='''ba''' , disable=not logging.is_progress_bar_enabled() , desc='''Creating parquet from Arrow format''' , ):
SCREAMING_SNAKE_CASE_ : List[Any] = query_table(
table=self.dataset._data , key=slice(lowercase_ , offset + batch_size) , indices=self.dataset._indices if self.dataset._indices is not None else None , )
writer.write_table(lowercase_)
written += batch.nbytes
writer.close()
return written
| 318 | 1 |
'''simple docstring'''
from ...configuration_utils import PretrainedConfig
from ...utils import logging
lowercase_ = logging.get_logger(__name__)
lowercase_ = {
"""abeja/gpt-neox-japanese-2.7b""": """https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/config.json""",
}
class a_ ( snake_case_ ):
'''simple docstring'''
UpperCamelCase = '''gpt_neox_japanese'''
def __init__( self , A=3_2000 , A=2560 , A=32 , A=32 , A=4 , A="gelu" , A=1.00 , A=1_0000 , A=2048 , A=0.02 , A=1e-5 , A=True , A=3_1996 , A=3_1999 , A=0.1 , A=0.0 , **A , ) -> List[str]:
super().__init__(bos_token_id=UpperCamelCase__ , eos_token_id=UpperCamelCase__ , **UpperCamelCase__ )
_SCREAMING_SNAKE_CASE = vocab_size
_SCREAMING_SNAKE_CASE = max_position_embeddings
_SCREAMING_SNAKE_CASE = hidden_size
_SCREAMING_SNAKE_CASE = num_hidden_layers
_SCREAMING_SNAKE_CASE = num_attention_heads
_SCREAMING_SNAKE_CASE = intermediate_multiple_size
_SCREAMING_SNAKE_CASE = hidden_act
_SCREAMING_SNAKE_CASE = rotary_pct
_SCREAMING_SNAKE_CASE = rotary_emb_base
_SCREAMING_SNAKE_CASE = initializer_range
_SCREAMING_SNAKE_CASE = layer_norm_eps
_SCREAMING_SNAKE_CASE = use_cache
_SCREAMING_SNAKE_CASE = attention_dropout
_SCREAMING_SNAKE_CASE = hidden_dropout
| 58 |
"""simple docstring"""
# Copyright 2021 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import json
import os
from ...utils.constants import SAGEMAKER_PARALLEL_EC2_INSTANCES, TORCH_DYNAMO_MODES
from ...utils.dataclasses import ComputeEnvironment, SageMakerDistributedType
from ...utils.imports import is_botoa_available
from .config_args import SageMakerConfig
from .config_utils import (
DYNAMO_BACKENDS,
_ask_field,
_ask_options,
_convert_dynamo_backend,
_convert_mixed_precision,
_convert_sagemaker_distributed_mode,
_convert_yes_no_to_bool,
)
if is_botoa_available():
import botoa # noqa: F401
def __lowerCAmelCase ( lowercase : List[str] ) -> str:
"""simple docstring"""
snake_case : Optional[int] = botoa.client("iam" )
snake_case : Any = {
"Version": "2012-10-17",
"Statement": [
{"Effect": "Allow", "Principal": {"Service": "sagemaker.amazonaws.com"}, "Action": "sts:AssumeRole"}
],
}
try:
# create the role, associated with the chosen trust policy
iam_client.create_role(
RoleName=lowercase , AssumeRolePolicyDocument=json.dumps(lowercase , indent=2 ) )
snake_case : Union[str, Any] = {
"Version": "2012-10-17",
"Statement": [
{
"Effect": "Allow",
"Action": [
"sagemaker:*",
"ecr:GetDownloadUrlForLayer",
"ecr:BatchGetImage",
"ecr:BatchCheckLayerAvailability",
"ecr:GetAuthorizationToken",
"cloudwatch:PutMetricData",
"cloudwatch:GetMetricData",
"cloudwatch:GetMetricStatistics",
"cloudwatch:ListMetrics",
"logs:CreateLogGroup",
"logs:CreateLogStream",
"logs:DescribeLogStreams",
"logs:PutLogEvents",
"logs:GetLogEvents",
"s3:CreateBucket",
"s3:ListBucket",
"s3:GetBucketLocation",
"s3:GetObject",
"s3:PutObject",
],
"Resource": "*",
}
],
}
# attach policy to role
iam_client.put_role_policy(
RoleName=lowercase , PolicyName=F'{role_name}_policy_permission' , PolicyDocument=json.dumps(lowercase , indent=2 ) , )
except iam_client.exceptions.EntityAlreadyExistsException:
print(F'role {role_name} already exists. Using existing one' )
def __lowerCAmelCase ( lowercase : Dict ) -> Optional[int]:
"""simple docstring"""
snake_case : Any = botoa.client("iam" )
return iam_client.get_role(RoleName=lowercase )["Role"]["Arn"]
def __lowerCAmelCase ( ) -> Union[str, Any]:
"""simple docstring"""
snake_case : Optional[int] = _ask_options(
"How do you want to authorize?" , ["AWS Profile", "Credentials (AWS_ACCESS_KEY_ID, AWS_SECRET_ACCESS_KEY) "] , lowercase , )
snake_case : int = None
if credentials_configuration == 0:
snake_case : Any = _ask_field("Enter your AWS Profile name: [default] " , default="default" )
snake_case : List[str] = aws_profile
else:
print(
"Note you will need to provide AWS_ACCESS_KEY_ID and AWS_SECRET_ACCESS_KEY when you launch you training script with,"
"`accelerate launch --aws_access_key_id XXX --aws_secret_access_key YYY`" )
snake_case : Any = _ask_field("AWS Access Key ID: " )
snake_case : List[str] = aws_access_key_id
snake_case : Optional[int] = _ask_field("AWS Secret Access Key: " )
snake_case : Union[str, Any] = aws_secret_access_key
snake_case : Optional[Any] = _ask_field("Enter your AWS Region: [us-east-1]" , default="us-east-1" )
snake_case : List[str] = aws_region
snake_case : List[str] = _ask_options(
"Do you already have an IAM Role for executing Amazon SageMaker Training Jobs?" , ["Provide IAM Role name", "Create new IAM role using credentials"] , lowercase , )
if role_management == 0:
snake_case : Tuple = _ask_field("Enter your IAM role name: " )
else:
snake_case : Union[str, Any] = "accelerate_sagemaker_execution_role"
print(F'Accelerate will create an iam role "{iam_role_name}" using the provided credentials' )
_create_iam_role_for_sagemaker(lowercase )
snake_case : Union[str, Any] = _ask_field(
"Do you want to use custom Docker image? [yes/NO]: " , _convert_yes_no_to_bool , default=lowercase , error_message="Please enter yes or no." , )
snake_case : Any = None
if is_custom_docker_image:
snake_case : Union[str, Any] = _ask_field("Enter your Docker image: " , lambda lowercase : str(lowercase ).lower() )
snake_case : List[Any] = _ask_field(
"Do you want to provide SageMaker input channels with data locations? [yes/NO]: " , _convert_yes_no_to_bool , default=lowercase , error_message="Please enter yes or no." , )
snake_case : List[str] = None
if is_sagemaker_inputs_enabled:
snake_case : Dict = _ask_field(
"Enter the path to the SageMaker inputs TSV file with columns (channel_name, data_location): " , lambda lowercase : str(lowercase ).lower() , )
snake_case : Tuple = _ask_field(
"Do you want to enable SageMaker metrics? [yes/NO]: " , _convert_yes_no_to_bool , default=lowercase , error_message="Please enter yes or no." , )
snake_case : int = None
if is_sagemaker_metrics_enabled:
snake_case : int = _ask_field(
"Enter the path to the SageMaker metrics TSV file with columns (metric_name, metric_regex): " , lambda lowercase : str(lowercase ).lower() , )
snake_case : str = _ask_options(
"What is the distributed mode?" , ["No distributed training", "Data parallelism"] , _convert_sagemaker_distributed_mode , )
snake_case : Tuple = {}
snake_case : Any = _ask_field(
"Do you wish to optimize your script with torch dynamo?[yes/NO]:" , _convert_yes_no_to_bool , default=lowercase , error_message="Please enter yes or no." , )
if use_dynamo:
snake_case : Any = "dynamo_"
snake_case : Optional[int] = _ask_options(
"Which dynamo backend would you like to use?" , [x.lower() for x in DYNAMO_BACKENDS] , _convert_dynamo_backend , default=2 , )
snake_case : Optional[int] = _ask_field(
"Do you want to customize the defaults sent to torch.compile? [yes/NO]: " , _convert_yes_no_to_bool , default=lowercase , error_message="Please enter yes or no." , )
if use_custom_options:
snake_case : Dict = _ask_options(
"Which mode do you want to use?" , lowercase , lambda lowercase : TORCH_DYNAMO_MODES[int(lowercase )] , default="default" , )
snake_case : Union[str, Any] = _ask_field(
"Do you want the fullgraph mode or it is ok to break model into several subgraphs? [yes/NO]: " , _convert_yes_no_to_bool , default=lowercase , error_message="Please enter yes or no." , )
snake_case : Dict = _ask_field(
"Do you want to enable dynamic shape tracing? [yes/NO]: " , _convert_yes_no_to_bool , default=lowercase , error_message="Please enter yes or no." , )
snake_case : List[str] = "Which EC2 instance type you want to use for your training?"
if distributed_type != SageMakerDistributedType.NO:
snake_case : str = _ask_options(
lowercase , lowercase , lambda lowercase : SAGEMAKER_PARALLEL_EC2_INSTANCES[int(lowercase )] )
else:
eca_instance_query += "? [ml.p3.2xlarge]:"
snake_case : Union[str, Any] = _ask_field(lowercase , lambda lowercase : str(lowercase ).lower() , default="ml.p3.2xlarge" )
snake_case : Any = 1
if distributed_type in (SageMakerDistributedType.DATA_PARALLEL, SageMakerDistributedType.MODEL_PARALLEL):
snake_case : Dict = _ask_field(
"How many machines do you want use? [1]: " , lowercase , default=1 , )
snake_case : Union[str, Any] = _ask_options(
"Do you wish to use FP16 or BF16 (mixed precision)?" , ["no", "fp16", "bf16", "fp8"] , _convert_mixed_precision , )
if use_dynamo and mixed_precision == "no":
print(
"Torch dynamo used without mixed precision requires TF32 to be efficient. Accelerate will enable it by default when launching your scripts." )
return SageMakerConfig(
image_uri=lowercase , compute_environment=ComputeEnvironment.AMAZON_SAGEMAKER , distributed_type=lowercase , use_cpu=lowercase , dynamo_config=lowercase , eca_instance_type=lowercase , profile=lowercase , region=lowercase , iam_role_name=lowercase , mixed_precision=lowercase , num_machines=lowercase , sagemaker_inputs_file=lowercase , sagemaker_metrics_file=lowercase , )
| 203 | 0 |
import json
import os
import shutil
import tempfile
from unittest import TestCase
from transformers import BartTokenizer, BartTokenizerFast, DPRQuestionEncoderTokenizer, DPRQuestionEncoderTokenizerFast
from transformers.models.bart.configuration_bart import BartConfig
from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES as DPR_VOCAB_FILES_NAMES
from transformers.models.dpr.configuration_dpr import DPRConfig
from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES as BART_VOCAB_FILES_NAMES
from transformers.testing_utils import require_faiss, require_tokenizers, require_torch, slow
from transformers.utils import is_datasets_available, is_faiss_available, is_torch_available
if is_torch_available() and is_datasets_available() and is_faiss_available():
from transformers.models.rag.configuration_rag import RagConfig
from transformers.models.rag.tokenization_rag import RagTokenizer
@require_faiss
@require_torch
class __A ( a ):
def _snake_case ( self ):
lowerCamelCase =tempfile.mkdtemp()
lowerCamelCase =8
# DPR tok
lowerCamelCase =[
"""[UNK]""",
"""[CLS]""",
"""[SEP]""",
"""[PAD]""",
"""[MASK]""",
"""want""",
"""##want""",
"""##ed""",
"""wa""",
"""un""",
"""runn""",
"""##ing""",
""",""",
"""low""",
"""lowest""",
]
lowerCamelCase =os.path.join(self.tmpdirname , """dpr_tokenizer""" )
os.makedirs(UpperCAmelCase_ , exist_ok=UpperCAmelCase_ )
lowerCamelCase =os.path.join(UpperCAmelCase_ , DPR_VOCAB_FILES_NAMES["""vocab_file"""] )
with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer:
vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) )
# BART tok
lowerCamelCase =[
"""l""",
"""o""",
"""w""",
"""e""",
"""r""",
"""s""",
"""t""",
"""i""",
"""d""",
"""n""",
"""\u0120""",
"""\u0120l""",
"""\u0120n""",
"""\u0120lo""",
"""\u0120low""",
"""er""",
"""\u0120lowest""",
"""\u0120newer""",
"""\u0120wider""",
"""<unk>""",
]
lowerCamelCase =dict(zip(UpperCAmelCase_ , range(len(UpperCAmelCase_ ) ) ) )
lowerCamelCase =["""#version: 0.2""", """\u0120 l""", """\u0120l o""", """\u0120lo w""", """e r""", """"""]
lowerCamelCase ={"""unk_token""": """<unk>"""}
lowerCamelCase =os.path.join(self.tmpdirname , """bart_tokenizer""" )
os.makedirs(UpperCAmelCase_ , exist_ok=UpperCAmelCase_ )
lowerCamelCase =os.path.join(UpperCAmelCase_ , BART_VOCAB_FILES_NAMES["""vocab_file"""] )
lowerCamelCase =os.path.join(UpperCAmelCase_ , BART_VOCAB_FILES_NAMES["""merges_file"""] )
with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp:
fp.write(json.dumps(UpperCAmelCase_ ) + """\n""" )
with open(self.merges_file , """w""" , encoding="""utf-8""" ) as fp:
fp.write("""\n""".join(UpperCAmelCase_ ) )
def _snake_case ( self ):
return DPRQuestionEncoderTokenizer.from_pretrained(os.path.join(self.tmpdirname , """dpr_tokenizer""" ) )
def _snake_case ( self ):
return BartTokenizer.from_pretrained(os.path.join(self.tmpdirname , """bart_tokenizer""" ) )
def _snake_case ( self ):
shutil.rmtree(self.tmpdirname )
@require_tokenizers
def _snake_case ( self ):
lowerCamelCase =os.path.join(self.tmpdirname , """rag_tokenizer""" )
lowerCamelCase =RagConfig(question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict() )
lowerCamelCase =RagTokenizer(question_encoder=self.get_dpr_tokenizer() , generator=self.get_bart_tokenizer() )
rag_config.save_pretrained(UpperCAmelCase_ )
rag_tokenizer.save_pretrained(UpperCAmelCase_ )
lowerCamelCase =RagTokenizer.from_pretrained(UpperCAmelCase_ , config=UpperCAmelCase_ )
self.assertIsInstance(new_rag_tokenizer.question_encoder , UpperCAmelCase_ )
self.assertEqual(new_rag_tokenizer.question_encoder.get_vocab() , rag_tokenizer.question_encoder.get_vocab() )
self.assertIsInstance(new_rag_tokenizer.generator , UpperCAmelCase_ )
self.assertEqual(new_rag_tokenizer.generator.get_vocab() , rag_tokenizer.generator.get_vocab() )
@slow
def _snake_case ( self ):
lowerCamelCase =RagTokenizer.from_pretrained("""facebook/rag-token-nq""" )
lowerCamelCase =[
"""who got the first nobel prize in physics""",
"""when is the next deadpool movie being released""",
"""which mode is used for short wave broadcast service""",
"""who is the owner of reading football club""",
"""when is the next scandal episode coming out""",
"""when is the last time the philadelphia won the superbowl""",
"""what is the most current adobe flash player version""",
"""how many episodes are there in dragon ball z""",
"""what is the first step in the evolution of the eye""",
"""where is gall bladder situated in human body""",
"""what is the main mineral in lithium batteries""",
"""who is the president of usa right now""",
"""where do the greasers live in the outsiders""",
"""panda is a national animal of which country""",
"""what is the name of manchester united stadium""",
]
lowerCamelCase =tokenizer(UpperCAmelCase_ )
self.assertIsNotNone(UpperCAmelCase_ )
@slow
def _snake_case ( self ):
lowerCamelCase =RagTokenizer.from_pretrained("""facebook/rag-sequence-nq""" )
lowerCamelCase =[
"""who got the first nobel prize in physics""",
"""when is the next deadpool movie being released""",
"""which mode is used for short wave broadcast service""",
"""who is the owner of reading football club""",
"""when is the next scandal episode coming out""",
"""when is the last time the philadelphia won the superbowl""",
"""what is the most current adobe flash player version""",
"""how many episodes are there in dragon ball z""",
"""what is the first step in the evolution of the eye""",
"""where is gall bladder situated in human body""",
"""what is the main mineral in lithium batteries""",
"""who is the president of usa right now""",
"""where do the greasers live in the outsiders""",
"""panda is a national animal of which country""",
"""what is the name of manchester united stadium""",
]
lowerCamelCase =tokenizer(UpperCAmelCase_ )
self.assertIsNotNone(UpperCAmelCase_ )
| 262 |
from typing import List, Optional, Tuple, Union
import torch
from ...utils import logging, randn_tensor
from ..pipeline_utils import AudioPipelineOutput, DiffusionPipeline
UpperCAmelCase__ : Dict =logging.get_logger(__name__) # pylint: disable=invalid-name
class __A ( a ):
def __init__( self , UpperCAmelCase_ , UpperCAmelCase_ ):
super().__init__()
self.register_modules(unet=UpperCAmelCase_ , scheduler=UpperCAmelCase_ )
@torch.no_grad()
def __call__( self , UpperCAmelCase_ = 1 , UpperCAmelCase_ = 100 , UpperCAmelCase_ = None , UpperCAmelCase_ = None , UpperCAmelCase_ = True , ):
if audio_length_in_s is None:
lowerCamelCase =self.unet.config.sample_size / self.unet.config.sample_rate
lowerCamelCase =audio_length_in_s * self.unet.config.sample_rate
lowerCamelCase =2 ** len(self.unet.up_blocks )
if sample_size < 3 * down_scale_factor:
raise ValueError(
f"""{audio_length_in_s} is too small. Make sure it's bigger or equal to"""
f""" {3 * down_scale_factor / self.unet.config.sample_rate}.""" )
lowerCamelCase =int(UpperCAmelCase_ )
if sample_size % down_scale_factor != 0:
lowerCamelCase =(
(audio_length_in_s * self.unet.config.sample_rate) // down_scale_factor + 1
) * down_scale_factor
logger.info(
f"""{audio_length_in_s} is increased to {sample_size / self.unet.config.sample_rate} so that it can be handled"""
f""" by the model. It will be cut to {original_sample_size / self.unet.config.sample_rate} after the denoising"""
""" process.""" )
lowerCamelCase =int(UpperCAmelCase_ )
lowerCamelCase =next(iter(self.unet.parameters() ) ).dtype
lowerCamelCase =(batch_size, self.unet.config.in_channels, sample_size)
if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) and len(UpperCAmelCase_ ) != batch_size:
raise ValueError(
f"""You have passed a list of generators of length {len(UpperCAmelCase_ )}, but requested an effective batch"""
f""" size of {batch_size}. Make sure the batch size matches the length of the generators.""" )
lowerCamelCase =randn_tensor(UpperCAmelCase_ , generator=UpperCAmelCase_ , device=self.device , dtype=UpperCAmelCase_ )
# set step values
self.scheduler.set_timesteps(UpperCAmelCase_ , device=audio.device )
lowerCamelCase =self.scheduler.timesteps.to(UpperCAmelCase_ )
for t in self.progress_bar(self.scheduler.timesteps ):
# 1. predict noise model_output
lowerCamelCase =self.unet(UpperCAmelCase_ , UpperCAmelCase_ ).sample
# 2. compute previous image: x_t -> t_t-1
lowerCamelCase =self.scheduler.step(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ).prev_sample
lowerCamelCase =audio.clamp(-1 , 1 ).float().cpu().numpy()
lowerCamelCase =audio[:, :, :original_sample_size]
if not return_dict:
return (audio,)
return AudioPipelineOutput(audios=UpperCAmelCase_ )
| 262 | 1 |
from collections import OrderedDict
from typing import Any, List, Mapping, Optional
from ... import PreTrainedTokenizer, TensorType, is_torch_available
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfigWithPast, PatchingSpec
from ...utils import logging
SCREAMING_SNAKE_CASE__ : Any = logging.get_logger(__name__)
SCREAMING_SNAKE_CASE__ : Union[str, Any] = {
'Salesforce/codegen-350M-nl': 'https://huggingface.co/Salesforce/codegen-350M-nl/resolve/main/config.json',
'Salesforce/codegen-350M-multi': 'https://huggingface.co/Salesforce/codegen-350M-multi/resolve/main/config.json',
'Salesforce/codegen-350M-mono': 'https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/config.json',
'Salesforce/codegen-2B-nl': 'https://huggingface.co/Salesforce/codegen-2B-nl/resolve/main/config.json',
'Salesforce/codegen-2B-multi': 'https://huggingface.co/Salesforce/codegen-2B-multi/resolve/main/config.json',
'Salesforce/codegen-2B-mono': 'https://huggingface.co/Salesforce/codegen-2B-mono/resolve/main/config.json',
'Salesforce/codegen-6B-nl': 'https://huggingface.co/Salesforce/codegen-6B-nl/resolve/main/config.json',
'Salesforce/codegen-6B-multi': 'https://huggingface.co/Salesforce/codegen-6B-multi/resolve/main/config.json',
'Salesforce/codegen-6B-mono': 'https://huggingface.co/Salesforce/codegen-6B-mono/resolve/main/config.json',
'Salesforce/codegen-16B-nl': 'https://huggingface.co/Salesforce/codegen-16B-nl/resolve/main/config.json',
'Salesforce/codegen-16B-multi': 'https://huggingface.co/Salesforce/codegen-16B-multi/resolve/main/config.json',
'Salesforce/codegen-16B-mono': 'https://huggingface.co/Salesforce/codegen-16B-mono/resolve/main/config.json',
}
class UpperCamelCase__ (lowerCAmelCase__ ):
'''simple docstring'''
lowerCamelCase_ : Tuple = """codegen"""
lowerCamelCase_ : Optional[int] = {
"""max_position_embeddings""": """n_positions""",
"""hidden_size""": """n_embd""",
"""num_attention_heads""": """n_head""",
"""num_hidden_layers""": """n_layer""",
}
def __init__( self , UpperCamelCase__=5_0400 , UpperCamelCase__=2048 , UpperCamelCase__=2048 , UpperCamelCase__=4096 , UpperCamelCase__=28 , UpperCamelCase__=16 , UpperCamelCase__=64 , UpperCamelCase__=None , UpperCamelCase__="gelu_new" , UpperCamelCase__=0.0 , UpperCamelCase__=0.0 , UpperCamelCase__=0.0 , UpperCamelCase__=1e-5 , UpperCamelCase__=0.02 , UpperCamelCase__=True , UpperCamelCase__=5_0256 , UpperCamelCase__=5_0256 , UpperCamelCase__=False , **UpperCamelCase__ , ) -> List[str]:
lowerCamelCase : Union[str, Any] = vocab_size
lowerCamelCase : Optional[Any] = n_ctx
lowerCamelCase : Optional[int] = n_positions
lowerCamelCase : int = n_embd
lowerCamelCase : Optional[Any] = n_layer
lowerCamelCase : List[Any] = n_head
lowerCamelCase : Optional[int] = n_inner
lowerCamelCase : Optional[int] = rotary_dim
lowerCamelCase : int = activation_function
lowerCamelCase : List[str] = resid_pdrop
lowerCamelCase : Optional[int] = embd_pdrop
lowerCamelCase : Tuple = attn_pdrop
lowerCamelCase : int = layer_norm_epsilon
lowerCamelCase : Optional[Any] = initializer_range
lowerCamelCase : str = use_cache
lowerCamelCase : List[Any] = bos_token_id
lowerCamelCase : Tuple = eos_token_id
super().__init__(
bos_token_id=UpperCamelCase__ , eos_token_id=UpperCamelCase__ , tie_word_embeddings=UpperCamelCase__ , **UpperCamelCase__ )
class UpperCamelCase__ (lowerCAmelCase__ ):
'''simple docstring'''
def __init__( self , UpperCamelCase__ , UpperCamelCase__ = "default" , UpperCamelCase__ = None , UpperCamelCase__ = False , ) -> List[Any]:
super().__init__(UpperCamelCase__ , task=UpperCamelCase__ , patching_specs=UpperCamelCase__ , use_past=UpperCamelCase__ )
if not getattr(self._config , "pad_token_id" , UpperCamelCase__ ):
# TODO: how to do that better?
lowerCamelCase : Union[str, Any] = 0
@property
def _lowercase ( self ) -> Mapping[str, Mapping[int, str]]:
lowerCamelCase : List[Any] = OrderedDict({"input_ids": {0: "batch", 1: "sequence"}} )
if self.use_past:
self.fill_with_past_key_values_(UpperCamelCase__ , direction="inputs" )
lowerCamelCase : Optional[Any] = {0: "batch", 1: "past_sequence + sequence"}
else:
lowerCamelCase : Dict = {0: "batch", 1: "sequence"}
return common_inputs
@property
def _lowercase ( self ) -> int:
return self._config.n_layer
@property
def _lowercase ( self ) -> int:
return self._config.n_head
def _lowercase ( self , UpperCamelCase__ , UpperCamelCase__ = -1 , UpperCamelCase__ = -1 , UpperCamelCase__ = False , UpperCamelCase__ = None , ) -> Mapping[str, Any]:
lowerCamelCase : int = super(UpperCamelCase__ , self ).generate_dummy_inputs(
UpperCamelCase__ , batch_size=UpperCamelCase__ , seq_length=UpperCamelCase__ , is_pair=UpperCamelCase__ , framework=UpperCamelCase__ )
# We need to order the input in the way they appears in the forward()
lowerCamelCase : int = OrderedDict({"input_ids": common_inputs["input_ids"]} )
# Need to add the past_keys
if self.use_past:
if not is_torch_available():
raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed." )
else:
import torch
lowerCamelCase , lowerCamelCase : Optional[int] = common_inputs["input_ids"].shape
# Not using the same length for past_key_values
lowerCamelCase : List[Any] = seqlen + 2
lowerCamelCase : Any = (
batch,
self.num_attention_heads,
past_key_values_length,
self._config.hidden_size // self.num_attention_heads,
)
lowerCamelCase : Union[str, Any] = [
(torch.zeros(UpperCamelCase__ ), torch.zeros(UpperCamelCase__ )) for _ in range(self.num_layers )
]
lowerCamelCase : str = common_inputs["attention_mask"]
if self.use_past:
lowerCamelCase : Optional[Any] = ordered_inputs["attention_mask"].dtype
lowerCamelCase : Union[str, Any] = torch.cat(
[ordered_inputs["attention_mask"], torch.ones(UpperCamelCase__ , UpperCamelCase__ , dtype=UpperCamelCase__ )] , dim=1 )
return ordered_inputs
@property
def _lowercase ( self ) -> int:
return 13
| 48 |
import argparse
import json
from pathlib import Path
import requests
import timm
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import DeiTConfig, DeiTForImageClassificationWithTeacher, DeiTImageProcessor
from transformers.utils import logging
logging.set_verbosity_info()
SCREAMING_SNAKE_CASE__ : str = logging.get_logger(__name__)
def A ( _SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE=False ) -> Any:
lowerCamelCase : Any = []
for i in range(config.num_hidden_layers ):
# encoder layers: output projection, 2 feedforward neural networks and 2 layernorms
rename_keys.append((f'''blocks.{i}.norm1.weight''', f'''deit.encoder.layer.{i}.layernorm_before.weight''') )
rename_keys.append((f'''blocks.{i}.norm1.bias''', f'''deit.encoder.layer.{i}.layernorm_before.bias''') )
rename_keys.append((f'''blocks.{i}.attn.proj.weight''', f'''deit.encoder.layer.{i}.attention.output.dense.weight''') )
rename_keys.append((f'''blocks.{i}.attn.proj.bias''', f'''deit.encoder.layer.{i}.attention.output.dense.bias''') )
rename_keys.append((f'''blocks.{i}.norm2.weight''', f'''deit.encoder.layer.{i}.layernorm_after.weight''') )
rename_keys.append((f'''blocks.{i}.norm2.bias''', f'''deit.encoder.layer.{i}.layernorm_after.bias''') )
rename_keys.append((f'''blocks.{i}.mlp.fc1.weight''', f'''deit.encoder.layer.{i}.intermediate.dense.weight''') )
rename_keys.append((f'''blocks.{i}.mlp.fc1.bias''', f'''deit.encoder.layer.{i}.intermediate.dense.bias''') )
rename_keys.append((f'''blocks.{i}.mlp.fc2.weight''', f'''deit.encoder.layer.{i}.output.dense.weight''') )
rename_keys.append((f'''blocks.{i}.mlp.fc2.bias''', f'''deit.encoder.layer.{i}.output.dense.bias''') )
# projection layer + position embeddings
rename_keys.extend(
[
("cls_token", "deit.embeddings.cls_token"),
("dist_token", "deit.embeddings.distillation_token"),
("patch_embed.proj.weight", "deit.embeddings.patch_embeddings.projection.weight"),
("patch_embed.proj.bias", "deit.embeddings.patch_embeddings.projection.bias"),
("pos_embed", "deit.embeddings.position_embeddings"),
] )
if base_model:
# layernorm + pooler
rename_keys.extend(
[
("norm.weight", "layernorm.weight"),
("norm.bias", "layernorm.bias"),
("pre_logits.fc.weight", "pooler.dense.weight"),
("pre_logits.fc.bias", "pooler.dense.bias"),
] )
# if just the base model, we should remove "deit" from all keys that start with "deit"
lowerCamelCase : Union[str, Any] = [(pair[0], pair[1][4:]) if pair[1].startswith("deit" ) else pair for pair in rename_keys]
else:
# layernorm + classification heads
rename_keys.extend(
[
("norm.weight", "deit.layernorm.weight"),
("norm.bias", "deit.layernorm.bias"),
("head.weight", "cls_classifier.weight"),
("head.bias", "cls_classifier.bias"),
("head_dist.weight", "distillation_classifier.weight"),
("head_dist.bias", "distillation_classifier.bias"),
] )
return rename_keys
def A ( _SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE=False ) -> str:
for i in range(config.num_hidden_layers ):
if base_model:
lowerCamelCase : Optional[int] = ""
else:
lowerCamelCase : List[str] = "deit."
# read in weights + bias of input projection layer (in timm, this is a single matrix + bias)
lowerCamelCase : List[str] = state_dict.pop(f'''blocks.{i}.attn.qkv.weight''' )
lowerCamelCase : Optional[int] = state_dict.pop(f'''blocks.{i}.attn.qkv.bias''' )
# next, add query, keys and values (in that order) to the state dict
lowerCamelCase : List[Any] = in_proj_weight[
: config.hidden_size, :
]
lowerCamelCase : Any = in_proj_bias[: config.hidden_size]
lowerCamelCase : List[str] = in_proj_weight[
config.hidden_size : config.hidden_size * 2, :
]
lowerCamelCase : Optional[Any] = in_proj_bias[
config.hidden_size : config.hidden_size * 2
]
lowerCamelCase : List[str] = in_proj_weight[
-config.hidden_size :, :
]
lowerCamelCase : List[Any] = in_proj_bias[-config.hidden_size :]
def A ( _SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) -> str:
lowerCamelCase : List[str] = dct.pop(_SCREAMING_SNAKE_CASE )
lowerCamelCase : Any = val
def A ( ) -> List[str]:
lowerCamelCase : Union[str, Any] = "http://images.cocodataset.org/val2017/000000039769.jpg"
lowerCamelCase : str = Image.open(requests.get(_SCREAMING_SNAKE_CASE ,stream=_SCREAMING_SNAKE_CASE ).raw )
return im
@torch.no_grad()
def A ( _SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) -> Optional[Any]:
lowerCamelCase : Union[str, Any] = DeiTConfig()
# all deit models have fine-tuned heads
lowerCamelCase : Optional[int] = False
# dataset (fine-tuned on ImageNet 2012), patch_size and image_size
lowerCamelCase : Dict = 1000
lowerCamelCase : Tuple = "huggingface/label-files"
lowerCamelCase : List[str] = "imagenet-1k-id2label.json"
lowerCamelCase : List[Any] = json.load(open(hf_hub_download(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,repo_type="dataset" ) ,"r" ) )
lowerCamelCase : Optional[int] = {int(_SCREAMING_SNAKE_CASE ): v for k, v in idalabel.items()}
lowerCamelCase : Tuple = idalabel
lowerCamelCase : str = {v: k for k, v in idalabel.items()}
lowerCamelCase : Dict = int(deit_name[-6:-4] )
lowerCamelCase : Optional[Any] = int(deit_name[-3:] )
# size of the architecture
if deit_name[9:].startswith("tiny" ):
lowerCamelCase : Optional[Any] = 192
lowerCamelCase : List[str] = 768
lowerCamelCase : Tuple = 12
lowerCamelCase : Optional[Any] = 3
elif deit_name[9:].startswith("small" ):
lowerCamelCase : str = 384
lowerCamelCase : Optional[Any] = 1536
lowerCamelCase : Dict = 12
lowerCamelCase : Optional[int] = 6
if deit_name[9:].startswith("base" ):
pass
elif deit_name[4:].startswith("large" ):
lowerCamelCase : str = 1024
lowerCamelCase : List[str] = 4096
lowerCamelCase : Any = 24
lowerCamelCase : Dict = 16
# load original model from timm
lowerCamelCase : List[Any] = timm.create_model(_SCREAMING_SNAKE_CASE ,pretrained=_SCREAMING_SNAKE_CASE )
timm_model.eval()
# load state_dict of original model, remove and rename some keys
lowerCamelCase : Dict = timm_model.state_dict()
lowerCamelCase : Dict = create_rename_keys(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE )
for src, dest in rename_keys:
rename_key(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE )
read_in_q_k_v(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE )
# load HuggingFace model
lowerCamelCase : Optional[Any] = DeiTForImageClassificationWithTeacher(_SCREAMING_SNAKE_CASE ).eval()
model.load_state_dict(_SCREAMING_SNAKE_CASE )
# Check outputs on an image, prepared by DeiTImageProcessor
lowerCamelCase : Any = int(
(256 / 224) * config.image_size ) # to maintain same ratio w.r.t. 224 images, see https://github.com/facebookresearch/deit/blob/ab5715372db8c6cad5740714b2216d55aeae052e/datasets.py#L103
lowerCamelCase : Union[str, Any] = DeiTImageProcessor(size=_SCREAMING_SNAKE_CASE ,crop_size=config.image_size )
lowerCamelCase : str = image_processor(images=prepare_img() ,return_tensors="pt" )
lowerCamelCase : int = encoding["pixel_values"]
lowerCamelCase : Optional[Any] = model(_SCREAMING_SNAKE_CASE )
lowerCamelCase : Union[str, Any] = timm_model(_SCREAMING_SNAKE_CASE )
assert timm_logits.shape == outputs.logits.shape
assert torch.allclose(_SCREAMING_SNAKE_CASE ,outputs.logits ,atol=1e-3 )
Path(_SCREAMING_SNAKE_CASE ).mkdir(exist_ok=_SCREAMING_SNAKE_CASE )
print(f'''Saving model {deit_name} to {pytorch_dump_folder_path}''' )
model.save_pretrained(_SCREAMING_SNAKE_CASE )
print(f'''Saving image processor to {pytorch_dump_folder_path}''' )
image_processor.save_pretrained(_SCREAMING_SNAKE_CASE )
if __name__ == "__main__":
SCREAMING_SNAKE_CASE__ : Optional[Any] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--deit_name',
default='vit_deit_base_distilled_patch16_224',
type=str,
help='Name of the DeiT timm model you\'d like to convert.',
)
parser.add_argument(
'--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.'
)
SCREAMING_SNAKE_CASE__ : List[str] = parser.parse_args()
convert_deit_checkpoint(args.deit_name, args.pytorch_dump_folder_path)
| 48 | 1 |
from math import pi
def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> float:
return 2 * pi * radius * (angle / 360)
if __name__ == "__main__":
print(arc_length(90, 10)) | 307 |
# Lint as: python3
# pylint: enable=line-too-long
# pylint: disable=g-import-not-at-top,g-bad-import-order,wrong-import-position
lowerCamelCase__ = """2.13.1"""
import platform
import pyarrow
from packaging import version
if version.parse(platform.python_version()) < version.parse("""3.7"""):
raise ImportWarning(
"""To use `datasets`, Python>=3.7 is required, and the current version of Python doesn't match this condition."""
)
if version.parse(pyarrow.__version__).major < 8:
raise ImportWarning(
"""To use `datasets`, the module `pyarrow>=8.0.0` is required, and the current version of `pyarrow` doesn't match this condition.\n"""
"""If you are running this in a Google Colab, you should probably just restart the runtime to use the right version of `pyarrow`."""
)
del platform
del pyarrow
del version
from .arrow_dataset import Dataset
from .arrow_reader import ReadInstruction
from .builder import ArrowBasedBuilder, BeamBasedBuilder, BuilderConfig, DatasetBuilder, GeneratorBasedBuilder
from .combine import concatenate_datasets, interleave_datasets
from .dataset_dict import DatasetDict, IterableDatasetDict
from .download import *
from .features import *
from .fingerprint import disable_caching, enable_caching, is_caching_enabled, set_caching_enabled
from .info import DatasetInfo, MetricInfo
from .inspect import (
get_dataset_config_info,
get_dataset_config_names,
get_dataset_infos,
get_dataset_split_names,
inspect_dataset,
inspect_metric,
list_datasets,
list_metrics,
)
from .iterable_dataset import IterableDataset
from .load import load_dataset, load_dataset_builder, load_from_disk, load_metric
from .metric import Metric
from .splits import (
NamedSplit,
NamedSplitAll,
Split,
SplitBase,
SplitDict,
SplitGenerator,
SplitInfo,
SubSplitInfo,
percent,
)
from .tasks import *
from .utils import *
from .utils import logging
# deprecated modules
from datasets import arrow_dataset as _arrow_dataset # isort:skip
from datasets import utils as _utils # isort:skip
from datasets.utils import download_manager as _deprecated_download_manager # isort:skip
lowerCamelCase__ = concatenate_datasets
lowerCamelCase__ = DownloadConfig
lowerCamelCase__ = DownloadManager
lowerCamelCase__ = DownloadMode
lowerCamelCase__ = DownloadConfig
lowerCamelCase__ = DownloadMode
lowerCamelCase__ = DownloadManager
del _arrow_dataset, _utils, _deprecated_download_manager | 307 | 1 |
class A_ :
def __init__( self : Any ,SCREAMING_SNAKE_CASE__ : list[int]):
__lowerCamelCase : int = len(SCREAMING_SNAKE_CASE__)
__lowerCamelCase : int = [0] * len_array
if len_array > 0:
__lowerCamelCase : Optional[int] = array[0]
for i in range(1 ,SCREAMING_SNAKE_CASE__):
__lowerCamelCase : Tuple = self.prefix_sum[i - 1] + array[i]
def lowerCAmelCase ( self : Tuple ,SCREAMING_SNAKE_CASE__ : int ,SCREAMING_SNAKE_CASE__ : int):
if start == 0:
return self.prefix_sum[end]
return self.prefix_sum[end] - self.prefix_sum[start - 1]
def lowerCAmelCase ( self : int ,SCREAMING_SNAKE_CASE__ : int):
__lowerCamelCase : Optional[Any] = {0}
for sum_item in self.prefix_sum:
if sum_item - target_sum in sums:
return True
sums.add(SCREAMING_SNAKE_CASE__)
return False
if __name__ == "__main__":
import doctest
doctest.testmod()
| 73 |
from __future__ import annotations
import time
a =list[tuple[int, int]]
a =[
[0, 0, 0, 0, 0, 0, 0],
[0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 1, 0, 0, 0, 0],
[1, 0, 1, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 1, 0, 0],
]
a =[[-1, 0], [0, -1], [1, 0], [0, 1]] # up, left, down, right
class A_ :
def __init__( self : List[str] ,SCREAMING_SNAKE_CASE__ : int ,SCREAMING_SNAKE_CASE__ : int ,SCREAMING_SNAKE_CASE__ : int ,SCREAMING_SNAKE_CASE__ : int ,SCREAMING_SNAKE_CASE__ : Node | None):
__lowerCamelCase : Tuple = pos_x
__lowerCamelCase : List[str] = pos_y
__lowerCamelCase : str = (pos_y, pos_x)
__lowerCamelCase : str = goal_x
__lowerCamelCase : int = goal_y
__lowerCamelCase : List[Any] = parent
class A_ :
def __init__( self : Union[str, Any] ,SCREAMING_SNAKE_CASE__ : tuple[int, int] ,SCREAMING_SNAKE_CASE__ : tuple[int, int]):
__lowerCamelCase : Any = Node(start[1] ,start[0] ,goal[1] ,goal[0] ,SCREAMING_SNAKE_CASE__)
__lowerCamelCase : List[Any] = Node(goal[1] ,goal[0] ,goal[1] ,goal[0] ,SCREAMING_SNAKE_CASE__)
__lowerCamelCase : Union[str, Any] = [self.start]
__lowerCamelCase : List[str] = False
def lowerCAmelCase ( self : List[Any]):
while self.node_queue:
__lowerCamelCase : Any = self.node_queue.pop(0)
if current_node.pos == self.target.pos:
__lowerCamelCase : Dict = True
return self.retrace_path(SCREAMING_SNAKE_CASE__)
__lowerCamelCase : Tuple = self.get_successors(SCREAMING_SNAKE_CASE__)
for node in successors:
self.node_queue.append(SCREAMING_SNAKE_CASE__)
if not self.reached:
return [self.start.pos]
return None
def lowerCAmelCase ( self : str ,SCREAMING_SNAKE_CASE__ : Node):
__lowerCamelCase : Union[str, Any] = []
for action in delta:
__lowerCamelCase : Optional[Any] = parent.pos_x + action[1]
__lowerCamelCase : Optional[int] = parent.pos_y + action[0]
if not (0 <= pos_x <= len(grid[0]) - 1 and 0 <= pos_y <= len(SCREAMING_SNAKE_CASE__) - 1):
continue
if grid[pos_y][pos_x] != 0:
continue
successors.append(
Node(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,self.target.pos_y ,self.target.pos_x ,SCREAMING_SNAKE_CASE__))
return successors
def lowerCAmelCase ( self : Optional[int] ,SCREAMING_SNAKE_CASE__ : Node | None):
__lowerCamelCase : List[Any] = node
__lowerCamelCase : int = []
while current_node is not None:
path.append((current_node.pos_y, current_node.pos_x))
__lowerCamelCase : int = current_node.parent
path.reverse()
return path
class A_ :
def __init__( self : Optional[Any] ,SCREAMING_SNAKE_CASE__ : Union[str, Any] ,SCREAMING_SNAKE_CASE__ : int):
__lowerCamelCase : int = BreadthFirstSearch(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__)
__lowerCamelCase : Optional[Any] = BreadthFirstSearch(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__)
__lowerCamelCase : Optional[Any] = False
def lowerCAmelCase ( self : str):
while self.fwd_bfs.node_queue or self.bwd_bfs.node_queue:
__lowerCamelCase : Any = self.fwd_bfs.node_queue.pop(0)
__lowerCamelCase : Any = self.bwd_bfs.node_queue.pop(0)
if current_bwd_node.pos == current_fwd_node.pos:
__lowerCamelCase : List[str] = True
return self.retrace_bidirectional_path(
SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__)
__lowerCamelCase : Optional[Any] = current_bwd_node
__lowerCamelCase : int = current_fwd_node
__lowerCamelCase : str = {
self.fwd_bfs: self.fwd_bfs.get_successors(SCREAMING_SNAKE_CASE__),
self.bwd_bfs: self.bwd_bfs.get_successors(SCREAMING_SNAKE_CASE__),
}
for bfs in [self.fwd_bfs, self.bwd_bfs]:
for node in successors[bfs]:
bfs.node_queue.append(SCREAMING_SNAKE_CASE__)
if not self.reached:
return [self.fwd_bfs.start.pos]
return None
def lowerCAmelCase ( self : Dict ,SCREAMING_SNAKE_CASE__ : Node ,SCREAMING_SNAKE_CASE__ : Node):
__lowerCamelCase : List[Any] = self.fwd_bfs.retrace_path(SCREAMING_SNAKE_CASE__)
__lowerCamelCase : str = self.bwd_bfs.retrace_path(SCREAMING_SNAKE_CASE__)
bwd_path.pop()
bwd_path.reverse()
__lowerCamelCase : List[Any] = fwd_path + bwd_path
return path
if __name__ == "__main__":
# all coordinates are given in format [y,x]
import doctest
doctest.testmod()
a =(0, 0)
a =(len(grid) - 1, len(grid[0]) - 1)
for elem in grid:
print(elem)
a =time.time()
a =BreadthFirstSearch(init, goal)
a =bfs.search()
a =time.time() - start_bfs_time
print("""Unidirectional BFS computation time : """, bfs_time)
a =time.time()
a =BidirectionalBreadthFirstSearch(init, goal)
a =bd_bfs.search()
a =time.time() - start_bd_bfs_time
print("""Bidirectional BFS computation time : """, bd_bfs_time)
| 73 | 1 |
from __future__ import annotations
def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : list[str] | None = None , SCREAMING_SNAKE_CASE__ : dict[str, float] | None = None , SCREAMING_SNAKE_CASE__ : bool = False , ):
__UpperCamelCase =cipher_alphabet or [chr(SCREAMING_SNAKE_CASE__ ) for i in range(97 , 1_23 )]
# If the argument is None or the user provided an empty dictionary
if not frequencies_dict:
# Frequencies of letters in the english language (how much they show up)
__UpperCamelCase ={
'a': 0.08497,
'b': 0.01492,
'c': 0.02202,
'd': 0.04253,
'e': 0.11162,
'f': 0.02228,
'g': 0.02015,
'h': 0.06094,
'i': 0.07546,
'j': 0.00153,
'k': 0.01292,
'l': 0.04025,
'm': 0.02406,
'n': 0.06749,
'o': 0.07507,
'p': 0.01929,
'q': 0.00095,
'r': 0.07587,
's': 0.06327,
't': 0.09356,
'u': 0.02758,
'v': 0.00978,
'w': 0.02560,
'x': 0.00150,
'y': 0.01994,
'z': 0.00077,
}
else:
# Custom frequencies dictionary
__UpperCamelCase =frequencies_dict
if not case_sensitive:
__UpperCamelCase =ciphertext.lower()
# Chi squared statistic values
__UpperCamelCase ={}
# cycle through all of the shifts
for shift in range(len(SCREAMING_SNAKE_CASE__ ) ):
__UpperCamelCase =''
# decrypt the message with the shift
for letter in ciphertext:
try:
# Try to index the letter in the alphabet
__UpperCamelCase =(alphabet_letters.index(letter.lower() ) - shift) % len(
SCREAMING_SNAKE_CASE__ )
decrypted_with_shift += (
alphabet_letters[new_key].upper()
if case_sensitive and letter.isupper()
else alphabet_letters[new_key]
)
except ValueError:
# Append the character if it isn't in the alphabet
decrypted_with_shift += letter
__UpperCamelCase =0.0
# Loop through each letter in the decoded message with the shift
for letter in decrypted_with_shift:
if case_sensitive:
__UpperCamelCase =letter.lower()
if letter in frequencies:
# Get the amount of times the letter occurs in the message
__UpperCamelCase =decrypted_with_shift.lower().count(SCREAMING_SNAKE_CASE__ )
# Get the excepcted amount of times the letter should appear based
# on letter frequencies
__UpperCamelCase =frequencies[letter] * occurrences
# Complete the chi squared statistic formula
__UpperCamelCase =((occurrences - expected) ** 2) / expected
# Add the margin of error to the total chi squared statistic
chi_squared_statistic += chi_letter_value
else:
if letter.lower() in frequencies:
# Get the amount of times the letter occurs in the message
__UpperCamelCase =decrypted_with_shift.count(SCREAMING_SNAKE_CASE__ )
# Get the excepcted amount of times the letter should appear based
# on letter frequencies
__UpperCamelCase =frequencies[letter] * occurrences
# Complete the chi squared statistic formula
__UpperCamelCase =((occurrences - expected) ** 2) / expected
# Add the margin of error to the total chi squared statistic
chi_squared_statistic += chi_letter_value
# Add the data to the chi_squared_statistic_values dictionary
__UpperCamelCase =(
chi_squared_statistic,
decrypted_with_shift,
)
# Get the most likely cipher by finding the cipher with the smallest chi squared
# statistic
def chi_squared_statistic_values_sorting_key(SCREAMING_SNAKE_CASE__ : int ) -> tuple[float, str]:
return chi_squared_statistic_values[key]
__UpperCamelCase =min(
SCREAMING_SNAKE_CASE__ , key=SCREAMING_SNAKE_CASE__ , )
# Get all the data from the most likely cipher (key, decoded message)
(
(
__UpperCamelCase
) , (
__UpperCamelCase
) ,
) =chi_squared_statistic_values[most_likely_cipher]
# Return the data on the most likely shift
return (
most_likely_cipher,
most_likely_cipher_chi_squared_value,
decoded_most_likely_cipher,
)
| 117 |
# Copyright 2021 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
from ...utils.dataclasses import (
ComputeEnvironment,
DistributedType,
DynamoBackend,
PrecisionType,
SageMakerDistributedType,
)
from ..menu import BulletMenu
_A = [
'EAGER',
'AOT_EAGER',
'INDUCTOR',
'NVFUSER',
'AOT_NVFUSER',
'AOT_CUDAGRAPHS',
'OFI',
'FX2TRT',
'ONNXRT',
'IPEX',
]
def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Optional[Any]=None , SCREAMING_SNAKE_CASE__ : Optional[Any]=None , SCREAMING_SNAKE_CASE__ : str=None ):
__UpperCamelCase =True
while ask_again:
__UpperCamelCase =input(SCREAMING_SNAKE_CASE__ )
try:
if default is not None and len(SCREAMING_SNAKE_CASE__ ) == 0:
return default
return convert_value(SCREAMING_SNAKE_CASE__ ) if convert_value is not None else result
except Exception:
if error_message is not None:
print(SCREAMING_SNAKE_CASE__ )
def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : List[str]=[] , SCREAMING_SNAKE_CASE__ : Union[str, Any]=None , SCREAMING_SNAKE_CASE__ : str=0 ):
__UpperCamelCase =BulletMenu(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
__UpperCamelCase =menu.run(default_choice=SCREAMING_SNAKE_CASE__ )
return convert_value(SCREAMING_SNAKE_CASE__ ) if convert_value is not None else result
def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : Union[str, Any] ):
__UpperCamelCase =int(SCREAMING_SNAKE_CASE__ )
return ComputeEnvironment(['LOCAL_MACHINE', 'AMAZON_SAGEMAKER'][value] )
def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : List[str] ):
__UpperCamelCase =int(SCREAMING_SNAKE_CASE__ )
return DistributedType(['NO', 'MULTI_CPU', 'MULTI_XPU', 'MULTI_GPU', 'MULTI_NPU', 'TPU'][value] )
def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : Optional[int] ):
__UpperCamelCase =int(SCREAMING_SNAKE_CASE__ )
return DynamoBackend(DYNAMO_BACKENDS[value] ).value
def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : Dict ):
__UpperCamelCase =int(SCREAMING_SNAKE_CASE__ )
return PrecisionType(['no', 'fp16', 'bf16', 'fp8'][value] )
def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : Optional[Any] ):
__UpperCamelCase =int(SCREAMING_SNAKE_CASE__ )
return SageMakerDistributedType(['NO', 'DATA_PARALLEL', 'MODEL_PARALLEL'][value] )
def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : Any ):
return {"yes": True, "no": False}[value.lower()]
class UpperCAmelCase__ ( argparse.RawDescriptionHelpFormatter ):
"""simple docstring"""
def _a ( self , A_ , A_ , A_ , A_ ) -> Optional[int]:
__UpperCamelCase =super()._format_usage(A_ , A_ , A_ , A_ )
__UpperCamelCase =usage.replace('<command> [<args>] ' , '' )
return usage
| 117 | 1 |
"""simple docstring"""
import collections
import gzip
import os
import urllib
import numpy
from tensorflow.python.framework import dtypes, random_seed
from tensorflow.python.platform import gfile
from tensorflow.python.util.deprecation import deprecated
lowerCamelCase__ : str = collections.namedtuple('''_Datasets''', ['''train''', '''validation''', '''test'''])
# CVDF mirror of http://yann.lecun.com/exdb/mnist/
lowerCamelCase__ : Union[str, Any] = '''https://storage.googleapis.com/cvdf-datasets/mnist/'''
def UpperCamelCase ( _lowerCAmelCase : List[str] ) -> Optional[Any]:
_UpperCAmelCase : str = numpy.dtype(numpy.uintaa ).newbyteorder(""">""" )
return numpy.frombuffer(bytestream.read(4 ), dtype=_lowerCAmelCase )[0]
@deprecated(_lowerCAmelCase, """Please use tf.data to implement this functionality.""" )
def UpperCamelCase ( _lowerCAmelCase : int ) -> Optional[Any]:
print("""Extracting""", f.name )
with gzip.GzipFile(fileobj=_lowerCAmelCase ) as bytestream:
_UpperCAmelCase : Tuple = _readaa(_lowerCAmelCase )
if magic != 2051:
raise ValueError(
"""Invalid magic number %d in MNIST image file: %s""" % (magic, f.name) )
_UpperCAmelCase : Optional[int] = _readaa(_lowerCAmelCase )
_UpperCAmelCase : Union[str, Any] = _readaa(_lowerCAmelCase )
_UpperCAmelCase : List[str] = _readaa(_lowerCAmelCase )
_UpperCAmelCase : List[str] = bytestream.read(rows * cols * num_images )
_UpperCAmelCase : Optional[Any] = numpy.frombuffer(_lowerCAmelCase, dtype=numpy.uinta )
_UpperCAmelCase : Any = data.reshape(_lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, 1 )
return data
@deprecated(_lowerCAmelCase, """Please use tf.one_hot on tensors.""" )
def UpperCamelCase ( _lowerCAmelCase : Tuple, _lowerCAmelCase : Tuple ) -> Union[str, Any]:
_UpperCAmelCase : int = labels_dense.shape[0]
_UpperCAmelCase : Any = numpy.arange(_lowerCAmelCase ) * num_classes
_UpperCAmelCase : Tuple = numpy.zeros((num_labels, num_classes) )
_UpperCAmelCase : Dict = 1
return labels_one_hot
@deprecated(_lowerCAmelCase, """Please use tf.data to implement this functionality.""" )
def UpperCamelCase ( _lowerCAmelCase : Optional[int], _lowerCAmelCase : Optional[int]=False, _lowerCAmelCase : Optional[Any]=10 ) -> Union[str, Any]:
print("""Extracting""", f.name )
with gzip.GzipFile(fileobj=_lowerCAmelCase ) as bytestream:
_UpperCAmelCase : Tuple = _readaa(_lowerCAmelCase )
if magic != 2049:
raise ValueError(
"""Invalid magic number %d in MNIST label file: %s""" % (magic, f.name) )
_UpperCAmelCase : str = _readaa(_lowerCAmelCase )
_UpperCAmelCase : Dict = bytestream.read(_lowerCAmelCase )
_UpperCAmelCase : Optional[Any] = numpy.frombuffer(_lowerCAmelCase, dtype=numpy.uinta )
if one_hot:
return _dense_to_one_hot(_lowerCAmelCase, _lowerCAmelCase )
return labels
class _UpperCAmelCase :
@deprecated(
_A , """Please use alternatives such as official/mnist/_DataSet.py"""
""" from tensorflow/models.""" , )
def __init__( self , _A , _A , _A=False , _A=False , _A=dtypes.floataa , _A=True , _A=None , ) -> str:
'''simple docstring'''
_UpperCAmelCase , _UpperCAmelCase : int = random_seed.get_seed(_A )
# If op level seed is not set, use whatever graph level seed is returned
numpy.random.seed(seeda if seed is None else seeda )
_UpperCAmelCase : Tuple = dtypes.as_dtype(_A ).base_dtype
if dtype not in (dtypes.uinta, dtypes.floataa):
raise TypeError("""Invalid image dtype %r, expected uint8 or float32""" % dtype )
if fake_data:
_UpperCAmelCase : Union[str, Any] = 1_00_00
_UpperCAmelCase : Union[str, Any] = one_hot
else:
assert (
images.shape[0] == labels.shape[0]
), f'''images.shape: {images.shape} labels.shape: {labels.shape}'''
_UpperCAmelCase : Any = images.shape[0]
# Convert shape from [num examples, rows, columns, depth]
# to [num examples, rows*columns] (assuming depth == 1)
if reshape:
assert images.shape[3] == 1
_UpperCAmelCase : int = images.reshape(
images.shape[0] , images.shape[1] * images.shape[2] )
if dtype == dtypes.floataa:
# Convert from [0, 255] -> [0.0, 1.0].
_UpperCAmelCase : Dict = images.astype(numpy.floataa )
_UpperCAmelCase : Any = numpy.multiply(_A , 1.0 / 255.0 )
_UpperCAmelCase : Union[str, Any] = images
_UpperCAmelCase : List[Any] = labels
_UpperCAmelCase : Optional[Any] = 0
_UpperCAmelCase : Optional[Any] = 0
@property
def __snake_case ( self ) -> Optional[int]:
'''simple docstring'''
return self._images
@property
def __snake_case ( self ) -> Any:
'''simple docstring'''
return self._labels
@property
def __snake_case ( self ) -> Union[str, Any]:
'''simple docstring'''
return self._num_examples
@property
def __snake_case ( self ) -> Optional[int]:
'''simple docstring'''
return self._epochs_completed
def __snake_case ( self , _A , _A=False , _A=True ) -> Tuple:
'''simple docstring'''
if fake_data:
_UpperCAmelCase : int = [1] * 7_84
_UpperCAmelCase : str = [1] + [0] * 9 if self.one_hot else 0
return (
[fake_image for _ in range(_A )],
[fake_label for _ in range(_A )],
)
_UpperCAmelCase : Tuple = self._index_in_epoch
# Shuffle for the first epoch
if self._epochs_completed == 0 and start == 0 and shuffle:
_UpperCAmelCase : str = numpy.arange(self._num_examples )
numpy.random.shuffle(_A )
_UpperCAmelCase : List[Any] = self.images[perma]
_UpperCAmelCase : Union[str, Any] = self.labels[perma]
# Go to the next epoch
if start + batch_size > self._num_examples:
# Finished epoch
self._epochs_completed += 1
# Get the rest examples in this epoch
_UpperCAmelCase : List[Any] = self._num_examples - start
_UpperCAmelCase : str = self._images[start : self._num_examples]
_UpperCAmelCase : List[str] = self._labels[start : self._num_examples]
# Shuffle the data
if shuffle:
_UpperCAmelCase : str = numpy.arange(self._num_examples )
numpy.random.shuffle(_A )
_UpperCAmelCase : Optional[int] = self.images[perm]
_UpperCAmelCase : str = self.labels[perm]
# Start next epoch
_UpperCAmelCase : List[Any] = 0
_UpperCAmelCase : Tuple = batch_size - rest_num_examples
_UpperCAmelCase : Union[str, Any] = self._index_in_epoch
_UpperCAmelCase : Optional[int] = self._images[start:end]
_UpperCAmelCase : str = self._labels[start:end]
return (
numpy.concatenate((images_rest_part, images_new_part) , axis=0 ),
numpy.concatenate((labels_rest_part, labels_new_part) , axis=0 ),
)
else:
self._index_in_epoch += batch_size
_UpperCAmelCase : List[Any] = self._index_in_epoch
return self._images[start:end], self._labels[start:end]
@deprecated(_lowerCAmelCase, """Please write your own downloading logic.""" )
def UpperCamelCase ( _lowerCAmelCase : int, _lowerCAmelCase : List[Any], _lowerCAmelCase : Optional[Any] ) -> Union[str, Any]:
if not gfile.Exists(_lowerCAmelCase ):
gfile.MakeDirs(_lowerCAmelCase )
_UpperCAmelCase : Optional[int] = os.path.join(_lowerCAmelCase, _lowerCAmelCase )
if not gfile.Exists(_lowerCAmelCase ):
urllib.request.urlretrieve(_lowerCAmelCase, _lowerCAmelCase ) # noqa: S310
with gfile.GFile(_lowerCAmelCase ) as f:
_UpperCAmelCase : Optional[int] = f.size()
print("""Successfully downloaded""", _lowerCAmelCase, _lowerCAmelCase, """bytes.""" )
return filepath
@deprecated(
_lowerCAmelCase, """Please use alternatives such as:""" """ tensorflow_datasets.load('mnist')""" )
def UpperCamelCase ( _lowerCAmelCase : Tuple, _lowerCAmelCase : str=False, _lowerCAmelCase : List[str]=False, _lowerCAmelCase : Tuple=dtypes.floataa, _lowerCAmelCase : List[str]=True, _lowerCAmelCase : Union[str, Any]=5000, _lowerCAmelCase : Optional[Any]=None, _lowerCAmelCase : int=DEFAULT_SOURCE_URL, ) -> Optional[Any]:
if fake_data:
def fake():
return _DataSet(
[], [], fake_data=_lowerCAmelCase, one_hot=_lowerCAmelCase, dtype=_lowerCAmelCase, seed=_lowerCAmelCase )
_UpperCAmelCase : List[Any] = fake()
_UpperCAmelCase : int = fake()
_UpperCAmelCase : Any = fake()
return _Datasets(train=_lowerCAmelCase, validation=_lowerCAmelCase, test=_lowerCAmelCase )
if not source_url: # empty string check
_UpperCAmelCase : Optional[Any] = DEFAULT_SOURCE_URL
_UpperCAmelCase : Optional[int] = """train-images-idx3-ubyte.gz"""
_UpperCAmelCase : int = """train-labels-idx1-ubyte.gz"""
_UpperCAmelCase : Optional[Any] = """t10k-images-idx3-ubyte.gz"""
_UpperCAmelCase : Tuple = """t10k-labels-idx1-ubyte.gz"""
_UpperCAmelCase : Tuple = _maybe_download(
_lowerCAmelCase, _lowerCAmelCase, source_url + train_images_file )
with gfile.Open(_lowerCAmelCase, """rb""" ) as f:
_UpperCAmelCase : Optional[int] = _extract_images(_lowerCAmelCase )
_UpperCAmelCase : Any = _maybe_download(
_lowerCAmelCase, _lowerCAmelCase, source_url + train_labels_file )
with gfile.Open(_lowerCAmelCase, """rb""" ) as f:
_UpperCAmelCase : Optional[int] = _extract_labels(_lowerCAmelCase, one_hot=_lowerCAmelCase )
_UpperCAmelCase : Optional[int] = _maybe_download(
_lowerCAmelCase, _lowerCAmelCase, source_url + test_images_file )
with gfile.Open(_lowerCAmelCase, """rb""" ) as f:
_UpperCAmelCase : Union[str, Any] = _extract_images(_lowerCAmelCase )
_UpperCAmelCase : Optional[int] = _maybe_download(
_lowerCAmelCase, _lowerCAmelCase, source_url + test_labels_file )
with gfile.Open(_lowerCAmelCase, """rb""" ) as f:
_UpperCAmelCase : List[Any] = _extract_labels(_lowerCAmelCase, one_hot=_lowerCAmelCase )
if not 0 <= validation_size <= len(_lowerCAmelCase ):
_UpperCAmelCase : int = (
"""Validation size should be between 0 and """
f'''{len(_lowerCAmelCase )}. Received: {validation_size}.'''
)
raise ValueError(_lowerCAmelCase )
_UpperCAmelCase : str = train_images[:validation_size]
_UpperCAmelCase : Union[str, Any] = train_labels[:validation_size]
_UpperCAmelCase : Optional[Any] = train_images[validation_size:]
_UpperCAmelCase : Optional[int] = train_labels[validation_size:]
_UpperCAmelCase : Optional[int] = {"""dtype""": dtype, """reshape""": reshape, """seed""": seed}
_UpperCAmelCase : Tuple = _DataSet(_lowerCAmelCase, _lowerCAmelCase, **_lowerCAmelCase )
_UpperCAmelCase : Dict = _DataSet(_lowerCAmelCase, _lowerCAmelCase, **_lowerCAmelCase )
_UpperCAmelCase : List[Any] = _DataSet(_lowerCAmelCase, _lowerCAmelCase, **_lowerCAmelCase )
return _Datasets(train=_lowerCAmelCase, validation=_lowerCAmelCase, test=_lowerCAmelCase )
| 246 |
"""simple docstring"""
import argparse
import OmegaConf
import torch
from diffusers import DDIMScheduler, LDMPipeline, UNetLDMModel, VQModel
def UpperCamelCase ( _lowerCAmelCase : Any, _lowerCAmelCase : List[str], _lowerCAmelCase : Dict ) -> str:
_UpperCAmelCase : Union[str, Any] = OmegaConf.load(_lowerCAmelCase )
_UpperCAmelCase : str = torch.load(_lowerCAmelCase, map_location="""cpu""" )["""model"""]
_UpperCAmelCase : Dict = list(state_dict.keys() )
# extract state_dict for VQVAE
_UpperCAmelCase : List[str] = {}
_UpperCAmelCase : List[str] = """first_stage_model."""
for key in keys:
if key.startswith(_lowerCAmelCase ):
_UpperCAmelCase : Dict = state_dict[key]
# extract state_dict for UNetLDM
_UpperCAmelCase : str = {}
_UpperCAmelCase : Tuple = """model.diffusion_model."""
for key in keys:
if key.startswith(_lowerCAmelCase ):
_UpperCAmelCase : Tuple = state_dict[key]
_UpperCAmelCase : Optional[Any] = config.model.params.first_stage_config.params
_UpperCAmelCase : Optional[Any] = config.model.params.unet_config.params
_UpperCAmelCase : List[str] = VQModel(**_lowerCAmelCase ).eval()
vqvae.load_state_dict(_lowerCAmelCase )
_UpperCAmelCase : List[Any] = UNetLDMModel(**_lowerCAmelCase ).eval()
unet.load_state_dict(_lowerCAmelCase )
_UpperCAmelCase : Union[str, Any] = DDIMScheduler(
timesteps=config.model.params.timesteps, beta_schedule="""scaled_linear""", beta_start=config.model.params.linear_start, beta_end=config.model.params.linear_end, clip_sample=_lowerCAmelCase, )
_UpperCAmelCase : Tuple = LDMPipeline(_lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase )
pipeline.save_pretrained(_lowerCAmelCase )
if __name__ == "__main__":
lowerCamelCase__ : Union[str, Any] = argparse.ArgumentParser()
parser.add_argument('''--checkpoint_path''', type=str, required=True)
parser.add_argument('''--config_path''', type=str, required=True)
parser.add_argument('''--output_path''', type=str, required=True)
lowerCamelCase__ : List[str] = parser.parse_args()
convert_ldm_original(args.checkpoint_path, args.config_path, args.output_path)
| 246 | 1 |
import inspect
import jax
import jax.lax as lax
import jax.numpy as jnp
from ..utils import add_start_docstrings
from ..utils.logging import get_logger
lowercase_ = get_logger(__name__)
lowercase_ = R'\n Args:\n input_ids (`jnp.ndarray` of shape `(batch_size, sequence_length)`):\n Indices of input sequence tokens in the vocabulary.\n\n Indices can be obtained using [`PreTrainedTokenizer`]. See [`PreTrainedTokenizer.encode`] and\n [`PreTrainedTokenizer.__call__`] for details.\n\n [What are input IDs?](../glossary#input-ids)\n scores (`jnp.ndarray` of shape `(batch_size, config.vocab_size)`):\n Prediction scores of a language modeling head. These can be logits for each vocabulary when not using beam\n search or log softmax for each vocabulary token when using beam search\n kwargs (`Dict[str, Any]`, *optional*):\n Additional logits processor specific kwargs.\n\n Return:\n `jnp.ndarray` of shape `(batch_size, config.vocab_size)`: The processed prediction scores.\n\n'
class A_ :
'''simple docstring'''
@add_start_docstrings(lowercase_ )
def __call__( self: Union[str, Any] , a: jnp.ndarray , a: jnp.ndarray ):
raise NotImplementedError(
F'{self.__class__} is an abstract class. Only classes inheriting this class can be called.' )
class A_ :
'''simple docstring'''
@add_start_docstrings(lowercase_ )
def __call__( self: Optional[int] , a: jnp.ndarray , a: jnp.ndarray ):
raise NotImplementedError(
F'{self.__class__} is an abstract class. Only classes inheriting this class can be called.' )
class A_ ( __UpperCamelCase ):
'''simple docstring'''
@add_start_docstrings(lowercase_ )
def __call__( self: Union[str, Any] , a: jnp.ndarray , a: jnp.ndarray , a: int , **a: List[Any] ):
for processor in self:
__lowerCamelCase : Optional[int] = inspect.signature(processor.__call__ ).parameters
if len(lowercase_ ) > 3:
if not all(arg in kwargs for arg in list(function_args.keys() )[2:] ):
raise ValueError(
F'Make sure that all the required parameters: {list(function_args.keys() )} for '
F'{processor.__class__} are passed to the logits processor.' )
__lowerCamelCase : Tuple = processor(lowercase_ , lowercase_ , lowercase_ , **lowercase_ )
else:
__lowerCamelCase : Optional[Any] = processor(lowercase_ , lowercase_ , lowercase_ )
return scores
class A_ ( __UpperCamelCase ):
'''simple docstring'''
def __init__( self: Optional[int] , a: float ):
if not isinstance(lowercase_ , lowercase_ ) or not (temperature > 0):
raise ValueError(F'`temperature` has to be a strictly positive float, but is {temperature}' )
__lowerCamelCase : List[Any] = temperature
def __call__( self: Tuple , a: jnp.ndarray , a: jnp.ndarray , a: int ):
__lowerCamelCase : Dict = scores / self.temperature
return scores
class A_ ( __UpperCamelCase ):
'''simple docstring'''
def __init__( self: Optional[Any] , a: float , a: float = -float('Inf' ) , a: int = 1 ):
if not isinstance(lowercase_ , lowercase_ ) or (top_p < 0 or top_p > 1.0):
raise ValueError(F'`top_p` has to be a float > 0 and < 1, but is {top_p}' )
if not isinstance(lowercase_ , lowercase_ ) or (min_tokens_to_keep < 1):
raise ValueError(F'`min_tokens_to_keep` has to be a positive integer, but is {min_tokens_to_keep}' )
__lowerCamelCase : Tuple = top_p
__lowerCamelCase : List[str] = filter_value
__lowerCamelCase : Union[str, Any] = min_tokens_to_keep
def __call__( self: Optional[Any] , a: jnp.ndarray , a: jnp.ndarray , a: int ):
__lowerCamelCase , __lowerCamelCase : List[Any] = lax.top_k(lowercase_ , scores.shape[-1] )
__lowerCamelCase : Union[str, Any] = jnp.full_like(lowercase_ , self.filter_value )
__lowerCamelCase : Union[str, Any] = jax.nn.softmax(lowercase_ , axis=-1 ).cumsum(axis=-1 )
__lowerCamelCase : List[Any] = cumulative_probs < self.top_p
# include the token that is higher than top_p as well
__lowerCamelCase : List[Any] = jnp.roll(lowercase_ , 1 )
score_mask |= score_mask.at[:, 0].set(lowercase_ )
# min tokens to keep
__lowerCamelCase : int = score_mask.at[:, : self.min_tokens_to_keep].set(lowercase_ )
__lowerCamelCase : Tuple = jnp.where(lowercase_ , lowercase_ , lowercase_ )
__lowerCamelCase : Optional[Any] = jax.lax.sort_key_val(lowercase_ , lowercase_ )[-1]
return next_scores
class A_ ( __UpperCamelCase ):
'''simple docstring'''
def __init__( self: Any , a: int , a: float = -float('Inf' ) , a: int = 1 ):
if not isinstance(lowercase_ , lowercase_ ) or top_k <= 0:
raise ValueError(F'`top_k` has to be a strictly positive integer, but is {top_k}' )
__lowerCamelCase : Tuple = max(lowercase_ , lowercase_ )
__lowerCamelCase : int = filter_value
def __call__( self: str , a: jnp.ndarray , a: jnp.ndarray , a: int ):
__lowerCamelCase , __lowerCamelCase : List[Any] = scores.shape
__lowerCamelCase : List[str] = jnp.full(batch_size * vocab_size , self.filter_value )
__lowerCamelCase : int = min(self.top_k , scores.shape[-1] ) # Safety check
__lowerCamelCase , __lowerCamelCase : int = lax.top_k(lowercase_ , lowercase_ )
__lowerCamelCase : Optional[int] = jnp.broadcast_to((jnp.arange(lowercase_ ) * vocab_size)[:, None] , (batch_size, topk) ).flatten()
__lowerCamelCase : List[Any] = topk_scores.flatten()
__lowerCamelCase : Union[str, Any] = topk_indices.flatten() + shift
__lowerCamelCase : Optional[Any] = next_scores_flat.at[topk_indices_flat].set(lowercase_ )
__lowerCamelCase : List[str] = next_scores_flat.reshape(lowercase_ , lowercase_ )
return next_scores
class A_ ( __UpperCamelCase ):
'''simple docstring'''
def __init__( self: Optional[Any] , a: int ):
__lowerCamelCase : Any = bos_token_id
def __call__( self: int , a: jnp.ndarray , a: jnp.ndarray , a: int ):
__lowerCamelCase : List[str] = jnp.full(scores.shape , -float('inf' ) )
__lowerCamelCase : List[str] = 1 - jnp.bool_(cur_len - 1 )
__lowerCamelCase : Union[str, Any] = jnp.where(lowercase_ , new_scores.at[:, self.bos_token_id].set(0 ) , lowercase_ )
return scores
class A_ ( __UpperCamelCase ):
'''simple docstring'''
def __init__( self: Optional[Any] , a: int , a: int ):
__lowerCamelCase : Optional[Any] = max_length
__lowerCamelCase : List[Any] = eos_token_id
def __call__( self: Tuple , a: jnp.ndarray , a: jnp.ndarray , a: int ):
__lowerCamelCase : List[str] = jnp.full(scores.shape , -float('inf' ) )
__lowerCamelCase : Union[str, Any] = 1 - jnp.bool_(cur_len - self.max_length + 1 )
__lowerCamelCase : str = jnp.where(lowercase_ , new_scores.at[:, self.eos_token_id].set(0 ) , lowercase_ )
return scores
class A_ ( __UpperCamelCase ):
'''simple docstring'''
def __init__( self: Union[str, Any] , a: int , a: int ):
if not isinstance(lowercase_ , lowercase_ ) or min_length < 0:
raise ValueError(F'`min_length` has to be a positive integer, but is {min_length}' )
if not isinstance(lowercase_ , lowercase_ ) or eos_token_id < 0:
raise ValueError(F'`eos_token_id` has to be a positive integer, but is {eos_token_id}' )
__lowerCamelCase : List[str] = min_length
__lowerCamelCase : int = eos_token_id
def __call__( self: str , a: jnp.ndarray , a: jnp.ndarray , a: int ):
__lowerCamelCase : List[Any] = 1 - jnp.clip(cur_len - self.min_length , 0 , 1 )
__lowerCamelCase : Tuple = jnp.where(lowercase_ , scores.at[:, self.eos_token_id].set(-float('inf' ) ) , lowercase_ )
return scores
class A_ ( __UpperCamelCase ):
'''simple docstring'''
def __init__( self: List[str] , a: Optional[int] , a: Optional[Any] ):
__lowerCamelCase : Any = list(lowercase_ )
__lowerCamelCase : List[Any] = begin_index
def __call__( self: Any , a: Optional[Any] , a: Optional[Any] , a: int ):
__lowerCamelCase : Optional[Any] = 1 - jnp.bool_(cur_len - self.begin_index )
__lowerCamelCase : Any = jnp.where(lowercase_ , scores.at[:, self.begin_suppress_tokens].set(-float('inf' ) ) , lowercase_ )
return scores
class A_ ( __UpperCamelCase ):
'''simple docstring'''
def __init__( self: Optional[Any] , a: list ):
__lowerCamelCase : List[Any] = list(lowercase_ )
def __call__( self: Union[str, Any] , a: jnp.ndarray , a: jnp.ndarray , a: int ):
__lowerCamelCase : Dict = scores.at[..., self.suppress_tokens].set(-float('inf' ) )
return scores
class A_ ( __UpperCamelCase ):
'''simple docstring'''
def __init__( self: Any , a: Union[str, Any] ):
__lowerCamelCase : List[Any] = dict(lowercase_ )
# Converts the dictionary of format {index: token} containing the tokens to be forced to an array, where the
# index of the array corresponds to the index of the token to be forced, for XLA compatibility.
# Indexes without forced tokens will have a negative value.
__lowerCamelCase : Dict = jnp.ones((max(force_token_map.keys() ) + 1) , dtype=jnp.intaa ) * -1
for index, token in force_token_map.items():
if token is not None:
__lowerCamelCase : Optional[int] = force_token_array.at[index].set(lowercase_ )
__lowerCamelCase : List[str] = jnp.intaa(lowercase_ )
def __call__( self: Dict , a: jnp.ndarray , a: jnp.ndarray , a: int ):
def _force_token(a: int ):
__lowerCamelCase : Tuple = scores.shape[0]
__lowerCamelCase : List[str] = self.force_token_array[generation_idx]
__lowerCamelCase : str = jnp.ones_like(lowercase_ , dtype=scores.dtype ) * -float('inf' )
__lowerCamelCase : Dict = jnp.zeros((batch_size, 1) , dtype=scores.dtype )
__lowerCamelCase : Optional[Any] = lax.dynamic_update_slice(lowercase_ , lowercase_ , (0, current_token) )
return new_scores
__lowerCamelCase : Optional[Any] = lax.cond(
cur_len >= self.force_token_array.shape[0] , lambda: scores , lambda: lax.cond(
self.force_token_array[cur_len] >= 0 , lambda: _force_token(lowercase_ ) , lambda: scores , ) , )
return scores
class A_ ( __UpperCamelCase ):
'''simple docstring'''
def __init__( self: Dict , a: List[Any] , a: List[Any] , a: List[str] ):
__lowerCamelCase : Optional[Any] = generate_config.eos_token_id
__lowerCamelCase : Optional[Any] = generate_config.no_timestamps_token_id
__lowerCamelCase : Dict = generate_config.no_timestamps_token_id + 1
__lowerCamelCase : Union[str, Any] = decoder_input_length + 1
if generate_config.is_multilingual:
# room for language token and task token
self.begin_index += 2
if hasattr(lowercase_ , 'max_initial_timestamp_index' ):
__lowerCamelCase : str = generate_config.max_initial_timestamp_index
else:
__lowerCamelCase : Union[str, Any] = model_config.vocab_size
if self.max_initial_timestamp_index is None:
__lowerCamelCase : Any = model_config.vocab_size
def __call__( self: Tuple , a: Tuple , a: Tuple , a: Optional[Any] ):
__lowerCamelCase : str = scores.at[:, self.no_timestamps_token_id].set(-float('inf' ) )
def handle_pairs(a: Optional[int] , a: Union[str, Any] ):
__lowerCamelCase : Union[str, Any] = jnp.where((cur_len - self.begin_index) >= 1 , lowercase_ , lowercase_ )
__lowerCamelCase : str = jnp.where(
input_ids_k[cur_len - 1] >= self.timestamp_begin , True and last_was_timestamp , lowercase_ , )
__lowerCamelCase : Optional[Any] = jnp.where((cur_len - self.begin_index) < 2 , lowercase_ , lowercase_ )
__lowerCamelCase : str = jnp.where(
input_ids_k[cur_len - 2] >= self.timestamp_begin , lowercase_ , lowercase_ , )
return jnp.where(
lowercase_ , jnp.where(
penultimate_was_timestamp > 0 , scores_k.at[self.timestamp_begin :].set(-float('inf' ) ) , scores_k.at[: self.eos_token_id].set(-float('inf' ) ) , ) , lowercase_ , )
__lowerCamelCase : int = jax.vmap(lowercase_ )(lowercase_ , lowercase_ )
__lowerCamelCase : Tuple = jnp.where(cur_len == self.begin_index , lowercase_ , lowercase_ )
__lowerCamelCase : str = jnp.where(
self.max_initial_timestamp_index is not None , True and apply_max_initial_timestamp , lowercase_ , )
__lowerCamelCase : Union[str, Any] = self.timestamp_begin + self.max_initial_timestamp_index
__lowerCamelCase : Optional[int] = jnp.where(
lowercase_ , scores.at[:, last_allowed + 1 :].set(-float('inf' ) ) , lowercase_ , )
# if sum of probability over timestamps is above any other token, sample timestamp
__lowerCamelCase : Union[str, Any] = jax.nn.log_softmax(lowercase_ , axis=-1 )
def handle_cumulative_probs(a: List[Any] , a: List[str] ):
__lowerCamelCase : List[Any] = jax.nn.logsumexp(logprobs_k[self.timestamp_begin :] , axis=-1 )
__lowerCamelCase : Union[str, Any] = jnp.max(logprobs_k[: self.timestamp_begin] )
return jnp.where(
timestamp_logprob > max_text_token_logprob , scores_k.at[: self.timestamp_begin].set(-float('inf' ) ) , lowercase_ , )
__lowerCamelCase : Any = jax.vmap(lowercase_ )(lowercase_ , lowercase_ )
return scores
| 369 |
def UpperCamelCase__ ( SCREAMING_SNAKE_CASE__ ):
__lowerCamelCase : str = 0
__lowerCamelCase : Tuple = len(SCREAMING_SNAKE_CASE__ )
for i in range(n - 1 ):
for j in range(i + 1 , SCREAMING_SNAKE_CASE__ ):
if arr[i] > arr[j]:
num_inversions += 1
return num_inversions
def UpperCamelCase__ ( SCREAMING_SNAKE_CASE__ ):
if len(SCREAMING_SNAKE_CASE__ ) <= 1:
return arr, 0
__lowerCamelCase : Optional[int] = len(SCREAMING_SNAKE_CASE__ ) // 2
__lowerCamelCase : Union[str, Any] = arr[0:mid]
__lowerCamelCase : List[Any] = arr[mid:]
__lowerCamelCase , __lowerCamelCase : Any = count_inversions_recursive(SCREAMING_SNAKE_CASE__ )
__lowerCamelCase , __lowerCamelCase : List[str] = count_inversions_recursive(SCREAMING_SNAKE_CASE__ )
__lowerCamelCase , __lowerCamelCase : Dict = _count_cross_inversions(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
__lowerCamelCase : List[str] = inversion_p + inversions_q + cross_inversions
return c, num_inversions
def UpperCamelCase__ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ):
__lowerCamelCase : Optional[int] = []
__lowerCamelCase : List[Any] = 0
while i < len(SCREAMING_SNAKE_CASE__ ) and j < len(SCREAMING_SNAKE_CASE__ ):
if p[i] > q[j]:
# if P[1] > Q[j], then P[k] > Q[k] for all i < k <= len(P)
# These are all inversions. The claim emerges from the
# property that P is sorted.
num_inversion += len(SCREAMING_SNAKE_CASE__ ) - i
r.append(q[j] )
j += 1
else:
r.append(p[i] )
i += 1
if i < len(SCREAMING_SNAKE_CASE__ ):
r.extend(p[i:] )
else:
r.extend(q[j:] )
return r, num_inversion
def UpperCamelCase__ ( ):
__lowerCamelCase : Optional[int] = [10, 2, 1, 5, 5, 2, 11]
# this arr has 8 inversions:
# (10, 2), (10, 1), (10, 5), (10, 5), (10, 2), (2, 1), (5, 2), (5, 2)
__lowerCamelCase : Optional[Any] = count_inversions_bf(SCREAMING_SNAKE_CASE__ )
__lowerCamelCase , __lowerCamelCase : Optional[Any] = count_inversions_recursive(SCREAMING_SNAKE_CASE__ )
assert num_inversions_bf == num_inversions_recursive == 8
print('number of inversions = ' , SCREAMING_SNAKE_CASE__ )
# testing an array with zero inversion (a sorted arr_1)
arr_a.sort()
__lowerCamelCase : Optional[Any] = count_inversions_bf(SCREAMING_SNAKE_CASE__ )
__lowerCamelCase , __lowerCamelCase : int = count_inversions_recursive(SCREAMING_SNAKE_CASE__ )
assert num_inversions_bf == num_inversions_recursive == 0
print('number of inversions = ' , SCREAMING_SNAKE_CASE__ )
# an empty list should also have zero inversions
__lowerCamelCase : List[str] = []
__lowerCamelCase : Dict = count_inversions_bf(SCREAMING_SNAKE_CASE__ )
__lowerCamelCase , __lowerCamelCase : Dict = count_inversions_recursive(SCREAMING_SNAKE_CASE__ )
assert num_inversions_bf == num_inversions_recursive == 0
print('number of inversions = ' , SCREAMING_SNAKE_CASE__ )
if __name__ == "__main__":
main()
| 194 | 0 |
'''simple docstring'''
from collections import OrderedDict
from typing import Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices
A =logging.get_logger(__name__)
A ={
'microsoft/swin-tiny-patch4-window7-224': (
'https://huggingface.co/microsoft/swin-tiny-patch4-window7-224/resolve/main/config.json'
),
# See all Swin models at https://huggingface.co/models?filter=swin
}
class _a ( __a , __a ):
__a : Optional[Any] = """swin"""
__a : Optional[Any] = {
"""num_attention_heads""": """num_heads""",
"""num_hidden_layers""": """num_layers""",
}
def __init__( self : str , lowercase : List[Any]=224 , lowercase : Union[str, Any]=4 , lowercase : str=3 , lowercase : Union[str, Any]=96 , lowercase : Any=[2, 2, 6, 2] , lowercase : Tuple=[3, 6, 12, 24] , lowercase : Any=7 , lowercase : Optional[Any]=4.0 , lowercase : int=True , lowercase : int=0.0 , lowercase : Optional[int]=0.0 , lowercase : Dict=0.1 , lowercase : Tuple="gelu" , lowercase : Any=False , lowercase : int=0.02 , lowercase : List[str]=1E-5 , lowercase : int=32 , lowercase : Any=None , lowercase : str=None , **lowercase : List[Any] , ):
'''simple docstring'''
super().__init__(**lowercase )
UpperCAmelCase = image_size
UpperCAmelCase = patch_size
UpperCAmelCase = num_channels
UpperCAmelCase = embed_dim
UpperCAmelCase = depths
UpperCAmelCase = len(lowercase )
UpperCAmelCase = num_heads
UpperCAmelCase = window_size
UpperCAmelCase = mlp_ratio
UpperCAmelCase = qkv_bias
UpperCAmelCase = hidden_dropout_prob
UpperCAmelCase = attention_probs_dropout_prob
UpperCAmelCase = drop_path_rate
UpperCAmelCase = hidden_act
UpperCAmelCase = use_absolute_embeddings
UpperCAmelCase = layer_norm_eps
UpperCAmelCase = initializer_range
UpperCAmelCase = encoder_stride
# we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel
# this indicates the channel dimension after the last stage of the model
UpperCAmelCase = int(embed_dim * 2 ** (len(lowercase ) - 1) )
UpperCAmelCase = ['''stem'''] + [f"stage{idx}" for idx in range(1 , len(lowercase ) + 1 )]
UpperCAmelCase , UpperCAmelCase = get_aligned_output_features_output_indices(
out_features=lowercase , out_indices=lowercase , stage_names=self.stage_names )
class _a ( __a ):
__a : Optional[Any] = version.parse("""1.11""" )
@property
def A ( self : Tuple ):
'''simple docstring'''
return OrderedDict(
[
('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}),
] )
@property
def A ( self : int ):
'''simple docstring'''
return 1E-4
| 34 | import random
from .binary_exp_mod import bin_exp_mod
def UpperCamelCase__ ( A__ , A__=1000 ) -> Optional[int]:
if n < 2:
return False
if n % 2 == 0:
return n == 2
# this means n is odd
snake_case__ : List[Any] = n - 1
snake_case__ : Optional[int] = 0
while d % 2 == 0:
d /= 2
exp += 1
# n - 1=d*(2**exp)
snake_case__ : Union[str, Any] = 0
while count < prec:
snake_case__ : Dict = random.randint(2 , n - 1 )
snake_case__ : Dict = bin_exp_mod(A__ , A__ , A__ )
if b != 1:
snake_case__ : Tuple = True
for _ in range(A__ ):
if b == n - 1:
snake_case__ : List[str] = False
break
snake_case__ : Dict = b * b
b %= n
if flag:
return False
count += 1
return True
if __name__ == "__main__":
lowerCAmelCase__ : str = abs(int(input('''Enter bound : ''').strip()))
print('''Here\'s the list of primes:''')
print(''', '''.join(str(i) for i in range(n + 1) if is_prime_big(i)))
| 143 | 0 |
import argparse
import torch
from transformers import LxmertConfig, LxmertForPreTraining, load_tf_weights_in_lxmert
from transformers.utils import logging
logging.set_verbosity_info()
def __UpperCamelCase ( _A : str , _A : List[Any] , _A : Optional[Any] ) ->Any:
"""simple docstring"""
# Initialise PyTorch model
lowerCamelCase_ =LxmertConfig.from_json_file(_A )
print(f'Building PyTorch model from configuration: {config}' )
lowerCamelCase_ =LxmertForPreTraining(_A )
# Load weights from tf checkpoint
load_tf_weights_in_lxmert(_A , _A , _A )
# Save pytorch-model
print(f'Save PyTorch model to {pytorch_dump_path}' )
torch.save(model.state_dict() , _A )
if __name__ == "__main__":
__A : Tuple = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--tf_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.'
)
parser.add_argument(
'--config_file',
default=None,
type=str,
required=True,
help='The config json file corresponding to the pre-trained model. \nThis specifies the model architecture.',
)
parser.add_argument(
'--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.'
)
__A : Optional[Any] = parser.parse_args()
convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path)
| 49 |
import os
import tempfile
import unittest
from transformers import NezhaConfig, is_torch_available
from transformers.models.auto import get_values
from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
MODEL_FOR_PRETRAINING_MAPPING,
NezhaForMaskedLM,
NezhaForMultipleChoice,
NezhaForNextSentencePrediction,
NezhaForPreTraining,
NezhaForQuestionAnswering,
NezhaForSequenceClassification,
NezhaForTokenClassification,
NezhaModel,
)
from transformers.models.nezha.modeling_nezha import NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST
class _SCREAMING_SNAKE_CASE :
def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=13 , _SCREAMING_SNAKE_CASE=7 , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=99 , _SCREAMING_SNAKE_CASE=32 , _SCREAMING_SNAKE_CASE=5 , _SCREAMING_SNAKE_CASE=4 , _SCREAMING_SNAKE_CASE=37 , _SCREAMING_SNAKE_CASE="gelu" , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=128 , _SCREAMING_SNAKE_CASE=32 , _SCREAMING_SNAKE_CASE=16 , _SCREAMING_SNAKE_CASE=2 , _SCREAMING_SNAKE_CASE=0.0_2 , _SCREAMING_SNAKE_CASE=3 , _SCREAMING_SNAKE_CASE=4 , _SCREAMING_SNAKE_CASE=None , )-> str:
lowerCamelCase_ =parent
lowerCamelCase_ =batch_size
lowerCamelCase_ =seq_length
lowerCamelCase_ =is_training
lowerCamelCase_ =use_input_mask
lowerCamelCase_ =use_token_type_ids
lowerCamelCase_ =use_labels
lowerCamelCase_ =vocab_size
lowerCamelCase_ =hidden_size
lowerCamelCase_ =num_hidden_layers
lowerCamelCase_ =num_attention_heads
lowerCamelCase_ =intermediate_size
lowerCamelCase_ =hidden_act
lowerCamelCase_ =hidden_dropout_prob
lowerCamelCase_ =attention_probs_dropout_prob
lowerCamelCase_ =max_position_embeddings
lowerCamelCase_ =type_vocab_size
lowerCamelCase_ =type_sequence_label_size
lowerCamelCase_ =initializer_range
lowerCamelCase_ =num_labels
lowerCamelCase_ =num_choices
lowerCamelCase_ =scope
def _snake_case ( self )-> int:
lowerCamelCase_ =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
lowerCamelCase_ =None
if self.use_input_mask:
lowerCamelCase_ =random_attention_mask([self.batch_size, self.seq_length] )
lowerCamelCase_ =None
if self.use_token_type_ids:
lowerCamelCase_ =ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
lowerCamelCase_ =None
lowerCamelCase_ =None
lowerCamelCase_ =None
if self.use_labels:
lowerCamelCase_ =ids_tensor([self.batch_size] , self.type_sequence_label_size )
lowerCamelCase_ =ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
lowerCamelCase_ =ids_tensor([self.batch_size] , self.num_choices )
lowerCamelCase_ =self.get_config()
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def _snake_case ( self )-> Dict:
return NezhaConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_SCREAMING_SNAKE_CASE , initializer_range=self.initializer_range , )
def _snake_case ( self )-> Tuple:
(
(
lowerCamelCase_
) , (
lowerCamelCase_
) , (
lowerCamelCase_
) , (
lowerCamelCase_
) , (
lowerCamelCase_
) , (
lowerCamelCase_
) , (
lowerCamelCase_
) ,
) =self.prepare_config_and_inputs()
lowerCamelCase_ =True
lowerCamelCase_ =floats_tensor([self.batch_size, self.seq_length, self.hidden_size] )
lowerCamelCase_ =ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 )
return (
config,
input_ids,
token_type_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
encoder_hidden_states,
encoder_attention_mask,
)
def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )-> Optional[int]:
lowerCamelCase_ =NezhaModel(config=_SCREAMING_SNAKE_CASE )
model.to(_SCREAMING_SNAKE_CASE )
model.eval()
lowerCamelCase_ =model(_SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE , token_type_ids=_SCREAMING_SNAKE_CASE )
lowerCamelCase_ =model(_SCREAMING_SNAKE_CASE , token_type_ids=_SCREAMING_SNAKE_CASE )
lowerCamelCase_ =model(_SCREAMING_SNAKE_CASE )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) )
def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , )-> Tuple:
lowerCamelCase_ =True
lowerCamelCase_ =NezhaModel(_SCREAMING_SNAKE_CASE )
model.to(_SCREAMING_SNAKE_CASE )
model.eval()
lowerCamelCase_ =model(
_SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE , token_type_ids=_SCREAMING_SNAKE_CASE , encoder_hidden_states=_SCREAMING_SNAKE_CASE , encoder_attention_mask=_SCREAMING_SNAKE_CASE , )
lowerCamelCase_ =model(
_SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE , token_type_ids=_SCREAMING_SNAKE_CASE , encoder_hidden_states=_SCREAMING_SNAKE_CASE , )
lowerCamelCase_ =model(_SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE , token_type_ids=_SCREAMING_SNAKE_CASE )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) )
def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )-> List[str]:
lowerCamelCase_ =NezhaForMaskedLM(config=_SCREAMING_SNAKE_CASE )
model.to(_SCREAMING_SNAKE_CASE )
model.eval()
lowerCamelCase_ =model(_SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE , token_type_ids=_SCREAMING_SNAKE_CASE , labels=_SCREAMING_SNAKE_CASE )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )-> Tuple:
lowerCamelCase_ =NezhaForNextSentencePrediction(config=_SCREAMING_SNAKE_CASE )
model.to(_SCREAMING_SNAKE_CASE )
model.eval()
lowerCamelCase_ =model(
_SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE , token_type_ids=_SCREAMING_SNAKE_CASE , labels=_SCREAMING_SNAKE_CASE , )
self.parent.assertEqual(result.logits.shape , (self.batch_size, 2) )
def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )-> int:
lowerCamelCase_ =NezhaForPreTraining(config=_SCREAMING_SNAKE_CASE )
model.to(_SCREAMING_SNAKE_CASE )
model.eval()
lowerCamelCase_ =model(
_SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE , token_type_ids=_SCREAMING_SNAKE_CASE , labels=_SCREAMING_SNAKE_CASE , next_sentence_label=_SCREAMING_SNAKE_CASE , )
self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2) )
def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )-> Dict:
lowerCamelCase_ =NezhaForQuestionAnswering(config=_SCREAMING_SNAKE_CASE )
model.to(_SCREAMING_SNAKE_CASE )
model.eval()
lowerCamelCase_ =model(
_SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE , token_type_ids=_SCREAMING_SNAKE_CASE , start_positions=_SCREAMING_SNAKE_CASE , end_positions=_SCREAMING_SNAKE_CASE , )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )-> int:
lowerCamelCase_ =self.num_labels
lowerCamelCase_ =NezhaForSequenceClassification(_SCREAMING_SNAKE_CASE )
model.to(_SCREAMING_SNAKE_CASE )
model.eval()
lowerCamelCase_ =model(_SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE , token_type_ids=_SCREAMING_SNAKE_CASE , labels=_SCREAMING_SNAKE_CASE )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )-> Dict:
lowerCamelCase_ =self.num_labels
lowerCamelCase_ =NezhaForTokenClassification(config=_SCREAMING_SNAKE_CASE )
model.to(_SCREAMING_SNAKE_CASE )
model.eval()
lowerCamelCase_ =model(_SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE , token_type_ids=_SCREAMING_SNAKE_CASE , labels=_SCREAMING_SNAKE_CASE )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )-> Tuple:
lowerCamelCase_ =self.num_choices
lowerCamelCase_ =NezhaForMultipleChoice(config=_SCREAMING_SNAKE_CASE )
model.to(_SCREAMING_SNAKE_CASE )
model.eval()
lowerCamelCase_ =input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
lowerCamelCase_ =token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
lowerCamelCase_ =input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
lowerCamelCase_ =model(
_SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE , token_type_ids=_SCREAMING_SNAKE_CASE , labels=_SCREAMING_SNAKE_CASE , )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) )
def _snake_case ( self )-> List[str]:
lowerCamelCase_ =self.prepare_config_and_inputs()
(
(
lowerCamelCase_
) , (
lowerCamelCase_
) , (
lowerCamelCase_
) , (
lowerCamelCase_
) , (
lowerCamelCase_
) , (
lowerCamelCase_
) , (
lowerCamelCase_
) ,
) =config_and_inputs
lowerCamelCase_ ={"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask}
return config, inputs_dict
@require_torch
class _SCREAMING_SNAKE_CASE ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , unittest.TestCase):
_UpperCamelCase:Optional[int] = (
(
NezhaModel,
NezhaForMaskedLM,
NezhaForMultipleChoice,
NezhaForNextSentencePrediction,
NezhaForPreTraining,
NezhaForQuestionAnswering,
NezhaForSequenceClassification,
NezhaForTokenClassification,
)
if is_torch_available()
else ()
)
_UpperCamelCase:int = (
{
"feature-extraction": NezhaModel,
"fill-mask": NezhaForMaskedLM,
"question-answering": NezhaForQuestionAnswering,
"text-classification": NezhaForSequenceClassification,
"token-classification": NezhaForTokenClassification,
"zero-shot": NezhaForSequenceClassification,
}
if is_torch_available()
else {}
)
_UpperCamelCase:Tuple = True
def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=False )-> Optional[Any]:
lowerCamelCase_ =super()._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , return_labels=_SCREAMING_SNAKE_CASE )
if return_labels:
if model_class in get_values(_SCREAMING_SNAKE_CASE ):
lowerCamelCase_ =torch.zeros(
(self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=_SCREAMING_SNAKE_CASE )
lowerCamelCase_ =torch.zeros(
self.model_tester.batch_size , dtype=torch.long , device=_SCREAMING_SNAKE_CASE )
return inputs_dict
def _snake_case ( self )-> Dict:
lowerCamelCase_ =NezhaModelTester(self )
lowerCamelCase_ =ConfigTester(self , config_class=_SCREAMING_SNAKE_CASE , hidden_size=37 )
def _snake_case ( self )-> List[str]:
self.config_tester.run_common_tests()
def _snake_case ( self )-> str:
lowerCamelCase_ =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*_SCREAMING_SNAKE_CASE )
def _snake_case ( self )-> Union[str, Any]:
lowerCamelCase_ =self.model_tester.prepare_config_and_inputs_for_decoder()
self.model_tester.create_and_check_model_as_decoder(*_SCREAMING_SNAKE_CASE )
def _snake_case ( self )-> List[Any]:
# This regression test was failing with PyTorch < 1.3
(
(
lowerCamelCase_
) , (
lowerCamelCase_
) , (
lowerCamelCase_
) , (
lowerCamelCase_
) , (
lowerCamelCase_
) , (
lowerCamelCase_
) , (
lowerCamelCase_
) , (
lowerCamelCase_
) , (
lowerCamelCase_
) ,
) =self.model_tester.prepare_config_and_inputs_for_decoder()
lowerCamelCase_ =None
self.model_tester.create_and_check_model_as_decoder(
_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , )
def _snake_case ( self )-> Dict:
lowerCamelCase_ =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_lm(*_SCREAMING_SNAKE_CASE )
def _snake_case ( self )-> List[Any]:
lowerCamelCase_ =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_multiple_choice(*_SCREAMING_SNAKE_CASE )
def _snake_case ( self )-> List[Any]:
lowerCamelCase_ =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_next_sequence_prediction(*_SCREAMING_SNAKE_CASE )
def _snake_case ( self )-> Optional[Any]:
lowerCamelCase_ =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_pretraining(*_SCREAMING_SNAKE_CASE )
def _snake_case ( self )-> Union[str, Any]:
lowerCamelCase_ =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(*_SCREAMING_SNAKE_CASE )
def _snake_case ( self )-> Tuple:
lowerCamelCase_ =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_sequence_classification(*_SCREAMING_SNAKE_CASE )
def _snake_case ( self )-> Any:
lowerCamelCase_ =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(*_SCREAMING_SNAKE_CASE )
@slow
def _snake_case ( self )-> Union[str, Any]:
for model_name in NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
lowerCamelCase_ =NezhaModel.from_pretrained(_SCREAMING_SNAKE_CASE )
self.assertIsNotNone(_SCREAMING_SNAKE_CASE )
@slow
@require_torch_gpu
def _snake_case ( self )-> Any:
lowerCamelCase_ , lowerCamelCase_ =self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
# NezhaForMultipleChoice behaves incorrectly in JIT environments.
if model_class == NezhaForMultipleChoice:
return
lowerCamelCase_ =True
lowerCamelCase_ =model_class(config=_SCREAMING_SNAKE_CASE )
lowerCamelCase_ =self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
lowerCamelCase_ =torch.jit.trace(
_SCREAMING_SNAKE_CASE , (inputs_dict["""input_ids"""].to("""cpu""" ), inputs_dict["""attention_mask"""].to("""cpu""" )) )
with tempfile.TemporaryDirectory() as tmp:
torch.jit.save(_SCREAMING_SNAKE_CASE , os.path.join(_SCREAMING_SNAKE_CASE , """bert.pt""" ) )
lowerCamelCase_ =torch.jit.load(os.path.join(_SCREAMING_SNAKE_CASE , """bert.pt""" ) , map_location=_SCREAMING_SNAKE_CASE )
loaded(inputs_dict["""input_ids"""].to(_SCREAMING_SNAKE_CASE ) , inputs_dict["""attention_mask"""].to(_SCREAMING_SNAKE_CASE ) )
@require_torch
class _SCREAMING_SNAKE_CASE ( unittest.TestCase):
@slow
def _snake_case ( self )-> Dict:
lowerCamelCase_ =NezhaModel.from_pretrained("""sijunhe/nezha-cn-base""" )
lowerCamelCase_ =torch.tensor([[0, 1, 2, 3, 4, 5]] )
lowerCamelCase_ =torch.tensor([[0, 1, 1, 1, 1, 1]] )
with torch.no_grad():
lowerCamelCase_ =model(_SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE )[0]
lowerCamelCase_ =torch.Size((1, 6, 768) )
self.assertEqual(output.shape , _SCREAMING_SNAKE_CASE )
lowerCamelCase_ =torch.tensor([[[0.0_6_8_5, 0.2_4_4_1, 0.1_1_0_2], [0.0_6_0_0, 0.1_9_0_6, 0.1_3_4_9], [0.0_2_2_1, 0.0_8_1_9, 0.0_5_8_6]]] )
self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , _SCREAMING_SNAKE_CASE , atol=1E-4 ) )
@slow
def _snake_case ( self )-> Optional[Any]:
lowerCamelCase_ =NezhaForMaskedLM.from_pretrained("""sijunhe/nezha-cn-base""" )
lowerCamelCase_ =torch.tensor([[0, 1, 2, 3, 4, 5]] )
lowerCamelCase_ =torch.tensor([[1, 1, 1, 1, 1, 1]] )
with torch.no_grad():
lowerCamelCase_ =model(_SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE )[0]
lowerCamelCase_ =torch.Size((1, 6, 2_1128) )
self.assertEqual(output.shape , _SCREAMING_SNAKE_CASE )
lowerCamelCase_ =torch.tensor(
[[-2.7_9_3_9, -1.7_9_0_2, -2.2_1_8_9], [-2.8_5_8_5, -1.8_9_0_8, -2.3_7_2_3], [-2.6_4_9_9, -1.7_7_5_0, -2.2_5_5_8]] )
self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , _SCREAMING_SNAKE_CASE , atol=1E-4 ) )
| 49 | 1 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
a : Tuple = {
"configuration_megatron_bert": ["MEGATRON_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "MegatronBertConfig"],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a : Tuple = [
"MEGATRON_BERT_PRETRAINED_MODEL_ARCHIVE_LIST",
"MegatronBertForCausalLM",
"MegatronBertForMaskedLM",
"MegatronBertForMultipleChoice",
"MegatronBertForNextSentencePrediction",
"MegatronBertForPreTraining",
"MegatronBertForQuestionAnswering",
"MegatronBertForSequenceClassification",
"MegatronBertForTokenClassification",
"MegatronBertModel",
"MegatronBertPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_megatron_bert import MEGATRON_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, MegatronBertConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_megatron_bert import (
MEGATRON_BERT_PRETRAINED_MODEL_ARCHIVE_LIST,
MegatronBertForCausalLM,
MegatronBertForMaskedLM,
MegatronBertForMultipleChoice,
MegatronBertForNextSentencePrediction,
MegatronBertForPreTraining,
MegatronBertForQuestionAnswering,
MegatronBertForSequenceClassification,
MegatronBertForTokenClassification,
MegatronBertModel,
MegatronBertPreTrainedModel,
)
else:
import sys
a : Dict = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 311 |
'''simple docstring'''
from datetime import datetime
import matplotlib.pyplot as plt
import torch
def lowercase ( __magic_name__ ):
'''simple docstring'''
for param in module.parameters():
UpperCAmelCase : Any = False
def lowercase ( ):
'''simple docstring'''
UpperCAmelCase : int = "cuda" if torch.cuda.is_available() else "cpu"
if torch.backends.mps.is_available() and torch.backends.mps.is_built():
UpperCAmelCase : int = "mps"
if device == "mps":
print(
"WARNING: MPS currently doesn't seem to work, and messes up backpropagation without any visible torch"
" errors. I recommend using CUDA on a colab notebook or CPU instead if you're facing inexplicable issues"
" with generations." )
return device
def lowercase ( __magic_name__ ):
'''simple docstring'''
UpperCAmelCase : str = plt.imshow(__magic_name__ )
fig.axes.get_xaxis().set_visible(__magic_name__ )
fig.axes.get_yaxis().set_visible(__magic_name__ )
plt.show()
def lowercase ( ):
'''simple docstring'''
UpperCAmelCase : str = datetime.now()
UpperCAmelCase : Tuple = current_time.strftime("%H:%M:%S" )
return timestamp
| 311 | 1 |
import argparse
import logging
from collections import namedtuple
import torch
from model_bertabs import BertAbsSummarizer
from models.model_builder import AbsSummarizer # The authors' implementation
from transformers import BertTokenizer
logging.basicConfig(level=logging.INFO)
lowerCAmelCase__ : Optional[int] =logging.getLogger(__name__)
lowerCAmelCase__ : str ='''Hello world! cécé herlolip'''
lowerCAmelCase__ : int =namedtuple(
'''BertAbsConfig''',
[
'''temp_dir''',
'''large''',
'''use_bert_emb''',
'''finetune_bert''',
'''encoder''',
'''share_emb''',
'''max_pos''',
'''enc_layers''',
'''enc_hidden_size''',
'''enc_heads''',
'''enc_ff_size''',
'''enc_dropout''',
'''dec_layers''',
'''dec_hidden_size''',
'''dec_heads''',
'''dec_ff_size''',
'''dec_dropout''',
],
)
def __lowercase ( a__ , a__ ) -> Optional[int]:
__SCREAMING_SNAKE_CASE = BertAbsConfig(
temp_dir='.' , finetune_bert=a__ , large=a__ , share_emb=a__ , use_bert_emb=a__ , encoder='bert' , max_pos=5_12 , enc_layers=6 , enc_hidden_size=5_12 , enc_heads=8 , enc_ff_size=5_12 , enc_dropout=0.2 , dec_layers=6 , dec_hidden_size=7_68 , dec_heads=8 , dec_ff_size=20_48 , dec_dropout=0.2 , )
__SCREAMING_SNAKE_CASE = torch.load(a__ , lambda a__ , a__ : storage )
__SCREAMING_SNAKE_CASE = AbsSummarizer(a__ , torch.device('cpu' ) , a__ )
original.eval()
__SCREAMING_SNAKE_CASE = BertAbsSummarizer(a__ , torch.device('cpu' ) )
new_model.eval()
# -------------------
# Convert the weights
# -------------------
logging.info('convert the model' )
new_model.bert.load_state_dict(original.bert.state_dict() )
new_model.decoder.load_state_dict(original.decoder.state_dict() )
new_model.generator.load_state_dict(original.generator.state_dict() )
# ----------------------------------
# Make sure the outpus are identical
# ----------------------------------
logging.info('Make sure that the models\' outputs are identical' )
__SCREAMING_SNAKE_CASE = BertTokenizer.from_pretrained('bert-base-uncased' )
# prepare the model inputs
__SCREAMING_SNAKE_CASE = tokenizer.encode('This is sample éàalj\'-.' )
encoder_input_ids.extend([tokenizer.pad_token_id] * (5_12 - len(a__ )) )
__SCREAMING_SNAKE_CASE = torch.tensor(a__ ).unsqueeze(0 )
__SCREAMING_SNAKE_CASE = tokenizer.encode('This is sample 3 éàalj\'-.' )
decoder_input_ids.extend([tokenizer.pad_token_id] * (5_12 - len(a__ )) )
__SCREAMING_SNAKE_CASE = torch.tensor(a__ ).unsqueeze(0 )
# failsafe to make sure the weights reset does not affect the
# loaded weights.
assert torch.max(torch.abs(original.generator[0].weight - new_model.generator[0].weight ) ) == 0
# forward pass
__SCREAMING_SNAKE_CASE = encoder_input_ids
__SCREAMING_SNAKE_CASE = decoder_input_ids
__SCREAMING_SNAKE_CASE = __SCREAMING_SNAKE_CASE = None
__SCREAMING_SNAKE_CASE = None
__SCREAMING_SNAKE_CASE = __SCREAMING_SNAKE_CASE = None
__SCREAMING_SNAKE_CASE = __SCREAMING_SNAKE_CASE = None
__SCREAMING_SNAKE_CASE = None
# The original model does not apply the geneator layer immediatly but rather in
# the beam search (where it combines softmax + linear layer). Since we already
# apply the softmax in our generation process we only apply the linear layer here.
# We make sure that the outputs of the full stack are identical
__SCREAMING_SNAKE_CASE = original(a__ , a__ , a__ , a__ , a__ , a__ , a__ )[0]
__SCREAMING_SNAKE_CASE = original.generator(a__ )
__SCREAMING_SNAKE_CASE = new_model(
a__ , a__ , a__ , a__ , a__ )[0]
__SCREAMING_SNAKE_CASE = new_model.generator(a__ )
__SCREAMING_SNAKE_CASE = torch.max(torch.abs(output_converted_model - output_original_model ) ).item()
print('Maximum absolute difference beween weights: {:.2f}'.format(a__ ) )
__SCREAMING_SNAKE_CASE = torch.max(torch.abs(output_converted_generator - output_original_generator ) ).item()
print('Maximum absolute difference beween weights: {:.2f}'.format(a__ ) )
__SCREAMING_SNAKE_CASE = torch.allclose(a__ , a__ , atol=1E-3 )
if are_identical:
logging.info('all weights are equal up to 1e-3' )
else:
raise ValueError('the weights are different. The new model is likely different from the original one.' )
# The model has been saved with torch.save(model) and this is bound to the exact
# directory structure. We save the state_dict instead.
logging.info('saving the model\'s state dictionary' )
torch.save(
new_model.state_dict() , './bertabs-finetuned-cnndm-extractive-abstractive-summarization/pytorch_model.bin' )
if __name__ == "__main__":
lowerCAmelCase__ : List[str] =argparse.ArgumentParser()
parser.add_argument(
'''--bertabs_checkpoint_path''',
default=None,
type=str,
required=True,
help='''Path the official PyTorch dump.''',
)
parser.add_argument(
'''--pytorch_dump_folder_path''',
default=None,
type=str,
required=True,
help='''Path to the output PyTorch model.''',
)
lowerCAmelCase__ : Tuple =parser.parse_args()
convert_bertabs_checkpoints(
args.bertabs_checkpoint_path,
args.pytorch_dump_folder_path,
)
| 118 |
import argparse
import json
from pathlib import Path
import requests
import timm
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import DeiTConfig, DeiTForImageClassificationWithTeacher, DeiTImageProcessor
from transformers.utils import logging
logging.set_verbosity_info()
lowerCAmelCase__ : Optional[int] =logging.get_logger(__name__)
def __lowercase ( a__ , a__=False ) -> Tuple:
__SCREAMING_SNAKE_CASE = []
for i in range(config.num_hidden_layers ):
# encoder layers: output projection, 2 feedforward neural networks and 2 layernorms
rename_keys.append((f"""blocks.{i}.norm1.weight""", f"""deit.encoder.layer.{i}.layernorm_before.weight""") )
rename_keys.append((f"""blocks.{i}.norm1.bias""", f"""deit.encoder.layer.{i}.layernorm_before.bias""") )
rename_keys.append((f"""blocks.{i}.attn.proj.weight""", f"""deit.encoder.layer.{i}.attention.output.dense.weight""") )
rename_keys.append((f"""blocks.{i}.attn.proj.bias""", f"""deit.encoder.layer.{i}.attention.output.dense.bias""") )
rename_keys.append((f"""blocks.{i}.norm2.weight""", f"""deit.encoder.layer.{i}.layernorm_after.weight""") )
rename_keys.append((f"""blocks.{i}.norm2.bias""", f"""deit.encoder.layer.{i}.layernorm_after.bias""") )
rename_keys.append((f"""blocks.{i}.mlp.fc1.weight""", f"""deit.encoder.layer.{i}.intermediate.dense.weight""") )
rename_keys.append((f"""blocks.{i}.mlp.fc1.bias""", f"""deit.encoder.layer.{i}.intermediate.dense.bias""") )
rename_keys.append((f"""blocks.{i}.mlp.fc2.weight""", f"""deit.encoder.layer.{i}.output.dense.weight""") )
rename_keys.append((f"""blocks.{i}.mlp.fc2.bias""", f"""deit.encoder.layer.{i}.output.dense.bias""") )
# projection layer + position embeddings
rename_keys.extend(
[
('cls_token', 'deit.embeddings.cls_token'),
('dist_token', 'deit.embeddings.distillation_token'),
('patch_embed.proj.weight', 'deit.embeddings.patch_embeddings.projection.weight'),
('patch_embed.proj.bias', 'deit.embeddings.patch_embeddings.projection.bias'),
('pos_embed', 'deit.embeddings.position_embeddings'),
] )
if base_model:
# layernorm + pooler
rename_keys.extend(
[
('norm.weight', 'layernorm.weight'),
('norm.bias', 'layernorm.bias'),
('pre_logits.fc.weight', 'pooler.dense.weight'),
('pre_logits.fc.bias', 'pooler.dense.bias'),
] )
# if just the base model, we should remove "deit" from all keys that start with "deit"
__SCREAMING_SNAKE_CASE = [(pair[0], pair[1][4:]) if pair[1].startswith('deit' ) else pair for pair in rename_keys]
else:
# layernorm + classification heads
rename_keys.extend(
[
('norm.weight', 'deit.layernorm.weight'),
('norm.bias', 'deit.layernorm.bias'),
('head.weight', 'cls_classifier.weight'),
('head.bias', 'cls_classifier.bias'),
('head_dist.weight', 'distillation_classifier.weight'),
('head_dist.bias', 'distillation_classifier.bias'),
] )
return rename_keys
def __lowercase ( a__ , a__ , a__=False ) -> Tuple:
for i in range(config.num_hidden_layers ):
if base_model:
__SCREAMING_SNAKE_CASE = ''
else:
__SCREAMING_SNAKE_CASE = 'deit.'
# read in weights + bias of input projection layer (in timm, this is a single matrix + bias)
__SCREAMING_SNAKE_CASE = state_dict.pop(f"""blocks.{i}.attn.qkv.weight""" )
__SCREAMING_SNAKE_CASE = state_dict.pop(f"""blocks.{i}.attn.qkv.bias""" )
# next, add query, keys and values (in that order) to the state dict
__SCREAMING_SNAKE_CASE = in_proj_weight[
: config.hidden_size, :
]
__SCREAMING_SNAKE_CASE = in_proj_bias[: config.hidden_size]
__SCREAMING_SNAKE_CASE = in_proj_weight[
config.hidden_size : config.hidden_size * 2, :
]
__SCREAMING_SNAKE_CASE = in_proj_bias[
config.hidden_size : config.hidden_size * 2
]
__SCREAMING_SNAKE_CASE = in_proj_weight[
-config.hidden_size :, :
]
__SCREAMING_SNAKE_CASE = in_proj_bias[-config.hidden_size :]
def __lowercase ( a__ , a__ , a__ ) -> str:
__SCREAMING_SNAKE_CASE = dct.pop(a__ )
__SCREAMING_SNAKE_CASE = val
def __lowercase ( ) -> List[Any]:
__SCREAMING_SNAKE_CASE = 'http://images.cocodataset.org/val2017/000000039769.jpg'
__SCREAMING_SNAKE_CASE = Image.open(requests.get(a__ , stream=a__ ).raw )
return im
@torch.no_grad()
def __lowercase ( a__ , a__ ) -> Dict:
__SCREAMING_SNAKE_CASE = DeiTConfig()
# all deit models have fine-tuned heads
__SCREAMING_SNAKE_CASE = False
# dataset (fine-tuned on ImageNet 2012), patch_size and image_size
__SCREAMING_SNAKE_CASE = 10_00
__SCREAMING_SNAKE_CASE = 'huggingface/label-files'
__SCREAMING_SNAKE_CASE = 'imagenet-1k-id2label.json'
__SCREAMING_SNAKE_CASE = json.load(open(hf_hub_download(a__ , a__ , repo_type='dataset' ) , 'r' ) )
__SCREAMING_SNAKE_CASE = {int(a__ ): v for k, v in idalabel.items()}
__SCREAMING_SNAKE_CASE = idalabel
__SCREAMING_SNAKE_CASE = {v: k for k, v in idalabel.items()}
__SCREAMING_SNAKE_CASE = int(deit_name[-6:-4] )
__SCREAMING_SNAKE_CASE = int(deit_name[-3:] )
# size of the architecture
if deit_name[9:].startswith('tiny' ):
__SCREAMING_SNAKE_CASE = 1_92
__SCREAMING_SNAKE_CASE = 7_68
__SCREAMING_SNAKE_CASE = 12
__SCREAMING_SNAKE_CASE = 3
elif deit_name[9:].startswith('small' ):
__SCREAMING_SNAKE_CASE = 3_84
__SCREAMING_SNAKE_CASE = 15_36
__SCREAMING_SNAKE_CASE = 12
__SCREAMING_SNAKE_CASE = 6
if deit_name[9:].startswith('base' ):
pass
elif deit_name[4:].startswith('large' ):
__SCREAMING_SNAKE_CASE = 10_24
__SCREAMING_SNAKE_CASE = 40_96
__SCREAMING_SNAKE_CASE = 24
__SCREAMING_SNAKE_CASE = 16
# load original model from timm
__SCREAMING_SNAKE_CASE = timm.create_model(a__ , pretrained=a__ )
timm_model.eval()
# load state_dict of original model, remove and rename some keys
__SCREAMING_SNAKE_CASE = timm_model.state_dict()
__SCREAMING_SNAKE_CASE = create_rename_keys(a__ , a__ )
for src, dest in rename_keys:
rename_key(a__ , a__ , a__ )
read_in_q_k_v(a__ , a__ , a__ )
# load HuggingFace model
__SCREAMING_SNAKE_CASE = DeiTForImageClassificationWithTeacher(a__ ).eval()
model.load_state_dict(a__ )
# Check outputs on an image, prepared by DeiTImageProcessor
__SCREAMING_SNAKE_CASE = int(
(2_56 / 2_24) * config.image_size ) # to maintain same ratio w.r.t. 224 images, see https://github.com/facebookresearch/deit/blob/ab5715372db8c6cad5740714b2216d55aeae052e/datasets.py#L103
__SCREAMING_SNAKE_CASE = DeiTImageProcessor(size=a__ , crop_size=config.image_size )
__SCREAMING_SNAKE_CASE = image_processor(images=prepare_img() , return_tensors='pt' )
__SCREAMING_SNAKE_CASE = encoding['pixel_values']
__SCREAMING_SNAKE_CASE = model(a__ )
__SCREAMING_SNAKE_CASE = timm_model(a__ )
assert timm_logits.shape == outputs.logits.shape
assert torch.allclose(a__ , outputs.logits , atol=1E-3 )
Path(a__ ).mkdir(exist_ok=a__ )
print(f"""Saving model {deit_name} to {pytorch_dump_folder_path}""" )
model.save_pretrained(a__ )
print(f"""Saving image processor to {pytorch_dump_folder_path}""" )
image_processor.save_pretrained(a__ )
if __name__ == "__main__":
lowerCAmelCase__ : Union[str, Any] =argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''--deit_name''',
default='''vit_deit_base_distilled_patch16_224''',
type=str,
help='''Name of the DeiT timm model you\'d like to convert.''',
)
parser.add_argument(
'''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.'''
)
lowerCAmelCase__ : str =parser.parse_args()
convert_deit_checkpoint(args.deit_name, args.pytorch_dump_folder_path)
| 118 | 1 |
import unittest
from transformers import MraConfig, is_torch_available
from transformers.testing_utils import require_torch, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
if is_torch_available():
import torch
from transformers import (
MraForMaskedLM,
MraForMultipleChoice,
MraForQuestionAnswering,
MraForSequenceClassification,
MraForTokenClassification,
MraModel,
)
from transformers.models.mra.modeling_mra import MRA_PRETRAINED_MODEL_ARCHIVE_LIST
class lowercase :
def __init__( self , snake_case , snake_case=2 , snake_case=8 , snake_case=True , snake_case=True , snake_case=True , snake_case=True , snake_case=99 , snake_case=16 , snake_case=5 , snake_case=2 , snake_case=36 , snake_case="gelu" , snake_case=0.0 , snake_case=0.0 , snake_case=512 , snake_case=16 , snake_case=2 , snake_case=0.02 , snake_case=3 , snake_case=4 , snake_case=None , ):
snake_case_ = parent
snake_case_ = batch_size
snake_case_ = seq_length
snake_case_ = is_training
snake_case_ = use_input_mask
snake_case_ = use_token_type_ids
snake_case_ = use_labels
snake_case_ = vocab_size
snake_case_ = hidden_size
snake_case_ = num_hidden_layers
snake_case_ = num_attention_heads
snake_case_ = intermediate_size
snake_case_ = hidden_act
snake_case_ = hidden_dropout_prob
snake_case_ = attention_probs_dropout_prob
snake_case_ = max_position_embeddings
snake_case_ = type_vocab_size
snake_case_ = type_sequence_label_size
snake_case_ = initializer_range
snake_case_ = num_labels
snake_case_ = num_choices
snake_case_ = scope
def a ( self ):
snake_case_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
snake_case_ = None
if self.use_input_mask:
snake_case_ = random_attention_mask([self.batch_size, self.seq_length] )
snake_case_ = None
if self.use_token_type_ids:
snake_case_ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
snake_case_ = None
snake_case_ = None
snake_case_ = None
if self.use_labels:
snake_case_ = ids_tensor([self.batch_size] , self.type_sequence_label_size )
snake_case_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
snake_case_ = ids_tensor([self.batch_size] , self.num_choices )
snake_case_ = self.get_config()
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def a ( self ):
return MraConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__UpperCAmelCase , initializer_range=self.initializer_range , )
def a ( self ):
snake_case_ = self.get_config()
snake_case_ = 300
return config
def a ( self ):
(
snake_case_
) = self.prepare_config_and_inputs()
snake_case_ = True
snake_case_ = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] )
snake_case_ = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 )
return (
config,
input_ids,
token_type_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
encoder_hidden_states,
encoder_attention_mask,
)
def a ( self , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case ):
snake_case_ = MraModel(config=__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
snake_case_ = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase )
snake_case_ = model(__UpperCAmelCase , token_type_ids=__UpperCAmelCase )
snake_case_ = model(__UpperCAmelCase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def a ( self , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , ):
snake_case_ = True
snake_case_ = MraModel(__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
snake_case_ = model(
__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , encoder_hidden_states=__UpperCAmelCase , encoder_attention_mask=__UpperCAmelCase , )
snake_case_ = model(
__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , encoder_hidden_states=__UpperCAmelCase , )
snake_case_ = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def a ( self , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case ):
snake_case_ = MraForMaskedLM(config=__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
snake_case_ = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , labels=__UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def a ( self , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case ):
snake_case_ = MraForQuestionAnswering(config=__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
snake_case_ = model(
__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , start_positions=__UpperCAmelCase , end_positions=__UpperCAmelCase , )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def a ( self , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case ):
snake_case_ = self.num_labels
snake_case_ = MraForSequenceClassification(__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
snake_case_ = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , labels=__UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def a ( self , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case ):
snake_case_ = self.num_labels
snake_case_ = MraForTokenClassification(config=__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
snake_case_ = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , labels=__UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def a ( self , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case ):
snake_case_ = self.num_choices
snake_case_ = MraForMultipleChoice(config=__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
snake_case_ = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
snake_case_ = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
snake_case_ = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
snake_case_ = model(
__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , labels=__UpperCAmelCase , )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) )
def a ( self ):
snake_case_ = self.prepare_config_and_inputs()
(
snake_case_
) = config_and_inputs
snake_case_ = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask}
return config, inputs_dict
@require_torch
class lowercase ( SCREAMING_SNAKE_CASE_ , unittest.TestCase ):
__SCREAMING_SNAKE_CASE : Dict = (
(
MraModel,
MraForMaskedLM,
MraForMultipleChoice,
MraForQuestionAnswering,
MraForSequenceClassification,
MraForTokenClassification,
)
if is_torch_available()
else ()
)
__SCREAMING_SNAKE_CASE : str = False
__SCREAMING_SNAKE_CASE : Union[str, Any] = False
__SCREAMING_SNAKE_CASE : Optional[Any] = False
__SCREAMING_SNAKE_CASE : int = False
__SCREAMING_SNAKE_CASE : int = ()
def a ( self ):
snake_case_ = MraModelTester(self )
snake_case_ = ConfigTester(self , config_class=__UpperCAmelCase , hidden_size=37 )
def a ( self ):
self.config_tester.run_common_tests()
def a ( self ):
snake_case_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*__UpperCAmelCase )
def a ( self ):
snake_case_ = self.model_tester.prepare_config_and_inputs()
for type in ["absolute", "relative_key", "relative_key_query"]:
snake_case_ = type
self.model_tester.create_and_check_model(*__UpperCAmelCase )
def a ( self ):
snake_case_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_lm(*__UpperCAmelCase )
def a ( self ):
snake_case_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_multiple_choice(*__UpperCAmelCase )
def a ( self ):
snake_case_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(*__UpperCAmelCase )
def a ( self ):
snake_case_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_sequence_classification(*__UpperCAmelCase )
def a ( self ):
snake_case_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(*__UpperCAmelCase )
@slow
def a ( self ):
for model_name in MRA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
snake_case_ = MraModel.from_pretrained(__UpperCAmelCase )
self.assertIsNotNone(__UpperCAmelCase )
@unittest.skip(reason='MRA does not output attentions' )
def a ( self ):
return
@require_torch
class lowercase ( unittest.TestCase ):
@slow
def a ( self ):
snake_case_ = MraModel.from_pretrained('uw-madison/mra-base-512-4' )
snake_case_ = torch.arange(256 ).unsqueeze(0 )
with torch.no_grad():
snake_case_ = model(__UpperCAmelCase )[0]
snake_case_ = torch.Size((1, 256, 768) )
self.assertEqual(output.shape , __UpperCAmelCase )
snake_case_ = torch.tensor(
[[[-0.01_40, 0.08_30, -0.03_81], [0.15_46, 0.14_02, 0.02_20], [0.11_62, 0.08_51, 0.01_65]]] )
self.assertTrue(torch.allclose(output[:, :3, :3] , __UpperCAmelCase , atol=1e-4 ) )
@slow
def a ( self ):
snake_case_ = MraForMaskedLM.from_pretrained('uw-madison/mra-base-512-4' )
snake_case_ = torch.arange(256 ).unsqueeze(0 )
with torch.no_grad():
snake_case_ = model(__UpperCAmelCase )[0]
snake_case_ = 5_0265
snake_case_ = torch.Size((1, 256, vocab_size) )
self.assertEqual(output.shape , __UpperCAmelCase )
snake_case_ = torch.tensor(
[[[9.25_95, -3.60_38, 11.8819], [9.38_69, -3.26_93, 11.0956], [11.8524, -3.49_38, 13.1210]]] )
self.assertTrue(torch.allclose(output[:, :3, :3] , __UpperCAmelCase , atol=1e-4 ) )
@slow
def a ( self ):
snake_case_ = MraForMaskedLM.from_pretrained('uw-madison/mra-base-4096-8-d3' )
snake_case_ = torch.arange(4096 ).unsqueeze(0 )
with torch.no_grad():
snake_case_ = model(__UpperCAmelCase )[0]
snake_case_ = 5_0265
snake_case_ = torch.Size((1, 4096, vocab_size) )
self.assertEqual(output.shape , __UpperCAmelCase )
snake_case_ = torch.tensor(
[[[5.47_89, -2.35_64, 7.50_64], [7.90_67, -1.33_69, 9.96_68], [9.07_12, -1.81_06, 7.03_80]]] )
self.assertTrue(torch.allclose(output[:, :3, :3] , __UpperCAmelCase , atol=1e-4 ) )
| 285 |
'''simple docstring'''
import unittest
from transformers import is_torch_available
from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow
if is_torch_available():
import torch
from transformers import XLMRobertaModel
@require_sentencepiece
@require_tokenizers
@require_torch
class lowerCAmelCase_( unittest.TestCase ):
'''simple docstring'''
@slow
def UpperCAmelCase_ ( self ) -> Union[str, Any]:
lowerCAmelCase__ : Tuple = XLMRobertaModel.from_pretrained("""xlm-roberta-base""" )
lowerCAmelCase__ : Optional[int] = torch.tensor([[0, 581, 1_0269, 83, 9_9942, 136, 6_0742, 23, 70, 8_0583, 1_8276, 2]] )
# The dog is cute and lives in the garden house
lowerCAmelCase__ : str = torch.Size((1, 12, 768) ) # batch_size, sequence_length, embedding_vector_dim
lowerCAmelCase__ : Dict = torch.tensor(
[[-0.0_1_0_1, 0.1_2_1_8, -0.0_8_0_3, 0.0_8_0_1, 0.1_3_2_7, 0.0_7_7_6, -0.1_2_1_5, 0.2_3_8_3, 0.3_3_3_8, 0.3_1_0_6, 0.0_3_0_0, 0.0_2_5_2]] )
# xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base')
# xlmr.eval()
# expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1]
with torch.no_grad():
lowerCAmelCase__ : Optional[int] = model(__UpperCAmelCase )["""last_hidden_state"""].detach()
self.assertEqual(output.shape ,__UpperCAmelCase )
# compare the actual values for a slice of last dim
self.assertTrue(torch.allclose(output[:, :, -1] ,__UpperCAmelCase ,atol=1E-3 ) )
@slow
def UpperCAmelCase_ ( self ) -> int:
lowerCAmelCase__ : Union[str, Any] = XLMRobertaModel.from_pretrained("""xlm-roberta-large""" )
lowerCAmelCase__ : Optional[Any] = torch.tensor([[0, 581, 1_0269, 83, 9_9942, 136, 6_0742, 23, 70, 8_0583, 1_8276, 2]] )
# The dog is cute and lives in the garden house
lowerCAmelCase__ : Dict = torch.Size((1, 12, 1024) ) # batch_size, sequence_length, embedding_vector_dim
lowerCAmelCase__ : Union[str, Any] = torch.tensor(
[[-0.0_6_9_9, -0.0_3_1_8, 0.0_7_0_5, -0.1_2_4_1, 0.0_9_9_9, -0.0_5_2_0, 0.1_0_0_4, -0.1_8_3_8, -0.4_7_0_4, 0.1_4_3_7, 0.0_8_2_1, 0.0_1_2_6]] )
# xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.large')
# xlmr.eval()
# expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1]
with torch.no_grad():
lowerCAmelCase__ : Union[str, Any] = model(__UpperCAmelCase )["""last_hidden_state"""].detach()
self.assertEqual(output.shape ,__UpperCAmelCase )
# compare the actual values for a slice of last dim
self.assertTrue(torch.allclose(output[:, :, -1] ,__UpperCAmelCase ,atol=1E-3 ) )
| 37 | 0 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_sentencepiece_available,
is_tokenizers_available,
is_torch_available,
)
__lowercase = {'''configuration_reformer''': ['''REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ReformerConfig''']}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__lowercase = ['''ReformerTokenizer''']
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__lowercase = ['''ReformerTokenizerFast''']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__lowercase = [
'''REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''ReformerAttention''',
'''ReformerForMaskedLM''',
'''ReformerForQuestionAnswering''',
'''ReformerForSequenceClassification''',
'''ReformerLayer''',
'''ReformerModel''',
'''ReformerModelWithLMHead''',
'''ReformerPreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_reformer import REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, ReformerConfig
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_reformer import ReformerTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_reformer_fast import ReformerTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_reformer import (
REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
ReformerAttention,
ReformerForMaskedLM,
ReformerForQuestionAnswering,
ReformerForSequenceClassification,
ReformerLayer,
ReformerModel,
ReformerModelWithLMHead,
ReformerPreTrainedModel,
)
else:
import sys
__lowercase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 369 | from __future__ import annotations
def lowerCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ):
'''simple docstring'''
print(f"""Vertex\tShortest Distance from vertex {src}""" )
for i, d in enumerate(SCREAMING_SNAKE_CASE ):
print(f"""{i}\t\t{d}""" )
def lowerCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ):
'''simple docstring'''
for j in range(SCREAMING_SNAKE_CASE ):
__UpperCamelCase , __UpperCamelCase , __UpperCamelCase :int = (graph[j][k] for k in ['''src''', '''dst''', '''weight'''])
if distance[u] != float('''inf''' ) and distance[u] + w < distance[v]:
return True
return False
def lowerCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ):
'''simple docstring'''
__UpperCamelCase :List[Any] = [float('''inf''' )] * vertex_count
__UpperCamelCase :str = 0.0
for _ in range(vertex_count - 1 ):
for j in range(SCREAMING_SNAKE_CASE ):
__UpperCamelCase , __UpperCamelCase , __UpperCamelCase :Dict = (graph[j][k] for k in ['''src''', '''dst''', '''weight'''])
if distance[u] != float('''inf''' ) and distance[u] + w < distance[v]:
__UpperCamelCase :Any = distance[u] + w
__UpperCamelCase :Tuple = check_negative_cycle(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
if negative_cycle_exists:
raise Exception('''Negative cycle found''' )
return distance
if __name__ == "__main__":
import doctest
doctest.testmod()
__lowercase = int(input('''Enter number of vertices: ''').strip())
__lowercase = int(input('''Enter number of edges: ''').strip())
__lowercase = [{} for _ in range(E)]
for i in range(E):
print('''Edge ''', i + 1)
__lowercase , __lowercase , __lowercase = (
int(x)
for x in input('''Enter source, destination, weight: ''').strip().split(''' ''')
)
__lowercase = {'''src''': src, '''dst''': dest, '''weight''': weight}
__lowercase = int(input('''\nEnter shortest path source:''').strip())
__lowercase = bellman_ford(graph, V, E, source)
print_distance(shortest_distance, 0)
| 105 | 0 |
import json
import os
import re
import unittest
from transformers import CodeGenTokenizer, CodeGenTokenizerFast
from transformers.models.codegen.tokenization_codegen import VOCAB_FILES_NAMES
from transformers.testing_utils import require_tokenizers, slow
from ...test_tokenization_common import TokenizerTesterMixin
@require_tokenizers
class __A( __lowerCamelCase , unittest.TestCase ):
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = CodeGenTokenizer
SCREAMING_SNAKE_CASE__ = CodeGenTokenizerFast
SCREAMING_SNAKE_CASE__ = True
SCREAMING_SNAKE_CASE__ = {"""add_prefix_space""": True}
SCREAMING_SNAKE_CASE__ = False
def UpperCAmelCase_ (self ):
super().setUp()
# Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt
UpperCamelCase__ = [
"""l""",
"""o""",
"""w""",
"""e""",
"""r""",
"""s""",
"""t""",
"""i""",
"""d""",
"""n""",
"""\u0120""",
"""\u0120l""",
"""\u0120n""",
"""\u0120lo""",
"""\u0120low""",
"""er""",
"""\u0120lowest""",
"""\u0120newer""",
"""\u0120wider""",
"""<unk>""",
"""<|endoftext|>""",
]
UpperCamelCase__ = dict(zip(SCREAMING_SNAKE_CASE_ , range(len(SCREAMING_SNAKE_CASE_ ) ) ) )
UpperCamelCase__ = ["""#version: 0.2""", """\u0120 l""", """\u0120l o""", """\u0120lo w""", """e r""", """"""]
UpperCamelCase__ = {"""unk_token""": """<unk>"""}
UpperCamelCase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] )
UpperCamelCase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] )
with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp:
fp.write(json.dumps(SCREAMING_SNAKE_CASE_ ) + """\n""" )
with open(self.merges_file , """w""" , encoding="""utf-8""" ) as fp:
fp.write("""\n""".join(SCREAMING_SNAKE_CASE_ ) )
def UpperCAmelCase_ (self , **SCREAMING_SNAKE_CASE_ ):
kwargs.update(self.special_tokens_map )
return CodeGenTokenizer.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE_ )
def UpperCAmelCase_ (self , **SCREAMING_SNAKE_CASE_ ):
kwargs.update(self.special_tokens_map )
return CodeGenTokenizerFast.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE_ )
def UpperCAmelCase_ (self , SCREAMING_SNAKE_CASE_ ):
UpperCamelCase__ = """lower newer"""
UpperCamelCase__ = """lower newer"""
return input_text, output_text
def UpperCAmelCase_ (self ):
UpperCamelCase__ = CodeGenTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map )
UpperCamelCase__ = """lower newer"""
UpperCamelCase__ = ["""\u0120low""", """er""", """\u0120""", """n""", """e""", """w""", """er"""]
UpperCamelCase__ = tokenizer.tokenize(SCREAMING_SNAKE_CASE_ , add_prefix_space=SCREAMING_SNAKE_CASE_ )
self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
UpperCamelCase__ = tokens + [tokenizer.unk_token]
UpperCamelCase__ = [14, 15, 10, 9, 3, 2, 15, 19]
self.assertListEqual(tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ )
def UpperCAmelCase_ (self ):
if not self.test_rust_tokenizer:
return
UpperCamelCase__ = self.get_tokenizer()
UpperCamelCase__ = self.get_rust_tokenizer(add_prefix_space=SCREAMING_SNAKE_CASE_ )
UpperCamelCase__ = """lower newer"""
# Testing tokenization
UpperCamelCase__ = tokenizer.tokenize(SCREAMING_SNAKE_CASE_ , add_prefix_space=SCREAMING_SNAKE_CASE_ )
UpperCamelCase__ = rust_tokenizer.tokenize(SCREAMING_SNAKE_CASE_ )
self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
# Testing conversion to ids without special tokens
UpperCamelCase__ = tokenizer.encode(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ , add_prefix_space=SCREAMING_SNAKE_CASE_ )
UpperCamelCase__ = rust_tokenizer.encode(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ )
self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
# Testing conversion to ids with special tokens
UpperCamelCase__ = self.get_rust_tokenizer(add_prefix_space=SCREAMING_SNAKE_CASE_ )
UpperCamelCase__ = tokenizer.encode(SCREAMING_SNAKE_CASE_ , add_prefix_space=SCREAMING_SNAKE_CASE_ )
UpperCamelCase__ = rust_tokenizer.encode(SCREAMING_SNAKE_CASE_ )
self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
# Testing the unknown token
UpperCamelCase__ = tokens + [rust_tokenizer.unk_token]
UpperCamelCase__ = [14, 15, 10, 9, 3, 2, 15, 19]
self.assertListEqual(rust_tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ )
def UpperCAmelCase_ (self , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ):
# It's very difficult to mix/test pretokenization with byte-level
# And get both CodeGen and Roberta to work at the same time (mostly an issue of adding a space before the string)
pass
def UpperCAmelCase_ (self , SCREAMING_SNAKE_CASE_=15 ):
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(F"{tokenizer.__class__.__name__} ({pretrained_name})" ):
UpperCamelCase__ = self.rust_tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
# Simple input
UpperCamelCase__ = """This is a simple input"""
UpperCamelCase__ = ["""This is a simple input 1""", """This is a simple input 2"""]
UpperCamelCase__ = ("""This is a simple input""", """This is a pair""")
UpperCamelCase__ = [
("""This is a simple input 1""", """This is a simple input 2"""),
("""This is a simple pair 1""", """This is a simple pair 2"""),
]
# Simple input tests
self.assertRaises(SCREAMING_SNAKE_CASE_ , tokenizer_r.encode , SCREAMING_SNAKE_CASE_ , max_length=SCREAMING_SNAKE_CASE_ , padding="""max_length""" )
# Simple input
self.assertRaises(SCREAMING_SNAKE_CASE_ , tokenizer_r.encode_plus , SCREAMING_SNAKE_CASE_ , max_length=SCREAMING_SNAKE_CASE_ , padding="""max_length""" )
# Simple input
self.assertRaises(
SCREAMING_SNAKE_CASE_ , tokenizer_r.batch_encode_plus , SCREAMING_SNAKE_CASE_ , max_length=SCREAMING_SNAKE_CASE_ , padding="""max_length""" , )
# Pair input
self.assertRaises(SCREAMING_SNAKE_CASE_ , tokenizer_r.encode , SCREAMING_SNAKE_CASE_ , max_length=SCREAMING_SNAKE_CASE_ , padding="""max_length""" )
# Pair input
self.assertRaises(SCREAMING_SNAKE_CASE_ , tokenizer_r.encode_plus , SCREAMING_SNAKE_CASE_ , max_length=SCREAMING_SNAKE_CASE_ , padding="""max_length""" )
# Pair input
self.assertRaises(
SCREAMING_SNAKE_CASE_ , tokenizer_r.batch_encode_plus , SCREAMING_SNAKE_CASE_ , max_length=SCREAMING_SNAKE_CASE_ , padding="""max_length""" , )
def UpperCAmelCase_ (self ):
UpperCamelCase__ = CodeGenTokenizer.from_pretrained(self.tmpdirname , pad_token="""<pad>""" )
# Simple input
UpperCamelCase__ = """This is a simple input"""
UpperCamelCase__ = ["""This is a simple input looooooooong""", """This is a simple input"""]
UpperCamelCase__ = ("""This is a simple input""", """This is a pair""")
UpperCamelCase__ = [
("""This is a simple input loooooong""", """This is a simple input"""),
("""This is a simple pair loooooong""", """This is a simple pair"""),
]
UpperCamelCase__ = tokenizer.pad_token_id
UpperCamelCase__ = tokenizer(SCREAMING_SNAKE_CASE_ , padding="""max_length""" , max_length=30 , return_tensors="""np""" )
UpperCamelCase__ = tokenizer(SCREAMING_SNAKE_CASE_ , padding=SCREAMING_SNAKE_CASE_ , truncate=SCREAMING_SNAKE_CASE_ , return_tensors="""np""" )
UpperCamelCase__ = tokenizer(*SCREAMING_SNAKE_CASE_ , padding="""max_length""" , max_length=60 , return_tensors="""np""" )
UpperCamelCase__ = tokenizer(SCREAMING_SNAKE_CASE_ , padding=SCREAMING_SNAKE_CASE_ , truncate=SCREAMING_SNAKE_CASE_ , return_tensors="""np""" )
# s
# test single string max_length padding
self.assertEqual(out_s["""input_ids"""].shape[-1] , 30 )
self.assertTrue(pad_token_id in out_s["""input_ids"""] )
self.assertTrue(0 in out_s["""attention_mask"""] )
# s2
# test automatic padding
self.assertEqual(out_sa["""input_ids"""].shape[-1] , 33 )
# long slice doesn't have padding
self.assertFalse(pad_token_id in out_sa["""input_ids"""][0] )
self.assertFalse(0 in out_sa["""attention_mask"""][0] )
# short slice does have padding
self.assertTrue(pad_token_id in out_sa["""input_ids"""][1] )
self.assertTrue(0 in out_sa["""attention_mask"""][1] )
# p
# test single pair max_length padding
self.assertEqual(out_p["""input_ids"""].shape[-1] , 60 )
self.assertTrue(pad_token_id in out_p["""input_ids"""] )
self.assertTrue(0 in out_p["""attention_mask"""] )
# p2
# test automatic padding pair
self.assertEqual(out_pa["""input_ids"""].shape[-1] , 52 )
# long slice pair doesn't have padding
self.assertFalse(pad_token_id in out_pa["""input_ids"""][0] )
self.assertFalse(0 in out_pa["""attention_mask"""][0] )
# short slice pair does have padding
self.assertTrue(pad_token_id in out_pa["""input_ids"""][1] )
self.assertTrue(0 in out_pa["""attention_mask"""][1] )
def UpperCAmelCase_ (self ):
UpperCamelCase__ = """$$$"""
UpperCamelCase__ = CodeGenTokenizer.from_pretrained(self.tmpdirname , bos_token=SCREAMING_SNAKE_CASE_ , add_bos_token=SCREAMING_SNAKE_CASE_ )
UpperCamelCase__ = """This is a simple input"""
UpperCamelCase__ = ["""This is a simple input 1""", """This is a simple input 2"""]
UpperCamelCase__ = tokenizer.bos_token_id
UpperCamelCase__ = tokenizer(SCREAMING_SNAKE_CASE_ )
UpperCamelCase__ = tokenizer(SCREAMING_SNAKE_CASE_ )
self.assertEqual(out_s.input_ids[0] , SCREAMING_SNAKE_CASE_ )
self.assertTrue(all(o[0] == bos_token_id for o in out_sa.input_ids ) )
UpperCamelCase__ = tokenizer.decode(out_s.input_ids )
UpperCamelCase__ = tokenizer.batch_decode(out_sa.input_ids )
self.assertEqual(decode_s.split()[0] , SCREAMING_SNAKE_CASE_ )
self.assertTrue(all(d.split()[0] == bos_token for d in decode_sa ) )
@slow
def UpperCAmelCase_ (self ):
UpperCamelCase__ = CodeGenTokenizer.from_pretrained("""Salesforce/codegen-350M-mono""" )
UpperCamelCase__ = """\nif len_a > len_b:\n result = a\nelse:\n result = b\n\n\n\n#"""
UpperCamelCase__ = """\nif len_a > len_b: result = a\nelse: result = b"""
UpperCamelCase__ = tokenizer.encode(SCREAMING_SNAKE_CASE_ )
UpperCamelCase__ = ["""^#""", re.escape("""<|endoftext|>""" ), """^'''""", """^\"\"\"""", """\n\n\n"""]
UpperCamelCase__ = tokenizer.decode(SCREAMING_SNAKE_CASE_ , truncate_before_pattern=SCREAMING_SNAKE_CASE_ )
self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
def UpperCAmelCase_ (self ):
pass
| 244 |
import torch
from diffusers import StableDiffusionPipeline
lowerCamelCase_ = '''path-to-your-trained-model'''
lowerCamelCase_ = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.floataa).to('''cuda''')
lowerCamelCase_ = '''A photo of sks dog in a bucket'''
lowerCamelCase_ = pipe(prompt, num_inference_steps=50, guidance_scale=7.5).images[0]
image.save('''dog-bucket.png''')
| 244 | 1 |
'''simple docstring'''
import logging
import os
import threading
import time
try:
import warnings
except ImportError:
__UpperCAmelCase =None
try:
import msvcrt
except ImportError:
__UpperCAmelCase =None
try:
import fcntl
except ImportError:
__UpperCAmelCase =None
# Backward compatibility
# ------------------------------------------------
try:
TimeoutError
except NameError:
__UpperCAmelCase =OSError
# Data
# ------------------------------------------------
__UpperCAmelCase =[
"Timeout",
"BaseFileLock",
"WindowsFileLock",
"UnixFileLock",
"SoftFileLock",
"FileLock",
]
__UpperCAmelCase ="3.0.12"
__UpperCAmelCase =None
def __lowerCAmelCase ( ) -> Tuple:
global _logger
__lowerCamelCase = _logger or logging.getLogger(__name__ )
return _logger
class a__ ( UpperCAmelCase__ ):
def __init__( self : Dict , a : int ):
"""simple docstring"""
__lowerCamelCase = lock_file
return None
def __str__( self : Optional[Any] ):
"""simple docstring"""
__lowerCamelCase = f"""The file lock '{self.lock_file}' could not be acquired."""
return temp
class a__ :
def __init__( self : List[str] , a : str ):
"""simple docstring"""
__lowerCamelCase = lock
return None
def __enter__( self : Dict ):
"""simple docstring"""
return self.lock
def __exit__( self : Optional[Any] , a : List[str] , a : int , a : str ):
"""simple docstring"""
self.lock.release()
return None
class a__ :
def __init__( self : Tuple , a : Union[str, Any] , a : Any=-1 , a : Optional[int]=None ):
"""simple docstring"""
__lowerCamelCase = max_filename_length if max_filename_length is not None else 2_55
# Hash the filename if it's too long
__lowerCamelCase = self.hash_filename_if_too_long(a , a )
# The path to the lock file.
__lowerCamelCase = lock_file
# The file descriptor for the *_lock_file* as it is returned by the
# os.open() function.
# This file lock is only NOT None, if the object currently holds the
# lock.
__lowerCamelCase = None
# The default timeout value.
__lowerCamelCase = timeout
# We use this lock primarily for the lock counter.
__lowerCamelCase = threading.Lock()
# The lock counter is used for implementing the nested locking
# mechanism. Whenever the lock is acquired, the counter is increased and
# the lock is only released, when this value is 0 again.
__lowerCamelCase = 0
return None
@property
def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ):
"""simple docstring"""
return self._lock_file
@property
def SCREAMING_SNAKE_CASE__ ( self : int ):
"""simple docstring"""
return self._timeout
@timeout.setter
def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] , a : str ):
"""simple docstring"""
__lowerCamelCase = float(a )
return None
def SCREAMING_SNAKE_CASE__ ( self : List[Any] ):
"""simple docstring"""
raise NotImplementedError()
def SCREAMING_SNAKE_CASE__ ( self : Any ):
"""simple docstring"""
raise NotImplementedError()
@property
def SCREAMING_SNAKE_CASE__ ( self : Any ):
"""simple docstring"""
return self._lock_file_fd is not None
def SCREAMING_SNAKE_CASE__ ( self : int , a : Dict=None , a : Optional[Any]=0.05 ):
"""simple docstring"""
if timeout is None:
__lowerCamelCase = self.timeout
# Increment the number right at the beginning.
# We can still undo it, if something fails.
with self._thread_lock:
self._lock_counter += 1
__lowerCamelCase = id(self )
__lowerCamelCase = self._lock_file
__lowerCamelCase = time.time()
try:
while True:
with self._thread_lock:
if not self.is_locked:
logger().debug(f"""Attempting to acquire lock {lock_id} on {lock_filename}""" )
self._acquire()
if self.is_locked:
logger().debug(f"""Lock {lock_id} acquired on {lock_filename}""" )
break
elif timeout >= 0 and time.time() - start_time > timeout:
logger().debug(f"""Timeout on acquiring lock {lock_id} on {lock_filename}""" )
raise Timeout(self._lock_file )
else:
logger().debug(
f"""Lock {lock_id} not acquired on {lock_filename}, waiting {poll_intervall} seconds ...""" )
time.sleep(a )
except: # noqa
# Something did go wrong, so decrement the counter.
with self._thread_lock:
__lowerCamelCase = max(0 , self._lock_counter - 1 )
raise
return _Acquire_ReturnProxy(lock=self )
def SCREAMING_SNAKE_CASE__ ( self : str , a : Optional[int]=False ):
"""simple docstring"""
with self._thread_lock:
if self.is_locked:
self._lock_counter -= 1
if self._lock_counter == 0 or force:
__lowerCamelCase = id(self )
__lowerCamelCase = self._lock_file
logger().debug(f"""Attempting to release lock {lock_id} on {lock_filename}""" )
self._release()
__lowerCamelCase = 0
logger().debug(f"""Lock {lock_id} released on {lock_filename}""" )
return None
def __enter__( self : List[str] ):
"""simple docstring"""
self.acquire()
return self
def __exit__( self : Optional[int] , a : str , a : Dict , a : Any ):
"""simple docstring"""
self.release()
return None
def __del__( self : Any ):
"""simple docstring"""
self.release(force=a )
return None
def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] , a : str , a : int ):
"""simple docstring"""
__lowerCamelCase = os.path.basename(a )
if len(a ) > max_length and max_length > 0:
__lowerCamelCase = os.path.dirname(a )
__lowerCamelCase = str(hash(a ) )
__lowerCamelCase = filename[: max_length - len(a ) - 8] + '''...''' + hashed_filename + '''.lock'''
return os.path.join(a , a )
else:
return path
class a__ ( UpperCAmelCase__ ):
def __init__( self : Union[str, Any] , a : Optional[int] , a : Optional[Any]=-1 , a : str=None ):
"""simple docstring"""
from .file_utils import relative_to_absolute_path
super().__init__(a , timeout=a , max_filename_length=a )
__lowerCamelCase = '''\\\\?\\''' + relative_to_absolute_path(self.lock_file )
def SCREAMING_SNAKE_CASE__ ( self : List[str] ):
"""simple docstring"""
__lowerCamelCase = os.O_RDWR | os.O_CREAT | os.O_TRUNC
try:
__lowerCamelCase = os.open(self._lock_file , a )
except OSError:
pass
else:
try:
msvcrt.locking(a , msvcrt.LK_NBLCK , 1 )
except OSError:
os.close(a )
else:
__lowerCamelCase = fd
return None
def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ):
"""simple docstring"""
__lowerCamelCase = self._lock_file_fd
__lowerCamelCase = None
msvcrt.locking(a , msvcrt.LK_UNLCK , 1 )
os.close(a )
try:
os.remove(self._lock_file )
# Probably another instance of the application
# that acquired the file lock.
except OSError:
pass
return None
class a__ ( UpperCAmelCase__ ):
def __init__( self : Dict , a : List[Any] , a : int=-1 , a : Any=None ):
"""simple docstring"""
__lowerCamelCase = os.statvfs(os.path.dirname(a ) ).f_namemax
super().__init__(a , timeout=a , max_filename_length=a )
def SCREAMING_SNAKE_CASE__ ( self : List[Any] ):
"""simple docstring"""
__lowerCamelCase = os.O_RDWR | os.O_CREAT | os.O_TRUNC
__lowerCamelCase = os.open(self._lock_file , a )
try:
fcntl.flock(a , fcntl.LOCK_EX | fcntl.LOCK_NB )
except OSError:
os.close(a )
else:
__lowerCamelCase = fd
return None
def SCREAMING_SNAKE_CASE__ ( self : List[Any] ):
"""simple docstring"""
__lowerCamelCase = self._lock_file_fd
__lowerCamelCase = None
fcntl.flock(a , fcntl.LOCK_UN )
os.close(a )
return None
class a__ ( UpperCAmelCase__ ):
def SCREAMING_SNAKE_CASE__ ( self : List[str] ):
"""simple docstring"""
__lowerCamelCase = os.O_WRONLY | os.O_CREAT | os.O_EXCL | os.O_TRUNC
try:
__lowerCamelCase = os.open(self._lock_file , a )
except OSError:
pass
else:
__lowerCamelCase = fd
return None
def SCREAMING_SNAKE_CASE__ ( self : List[str] ):
"""simple docstring"""
os.close(self._lock_file_fd )
__lowerCamelCase = None
try:
os.remove(self._lock_file )
# The file is already deleted and that's what we want.
except OSError:
pass
return None
__UpperCAmelCase =None
if msvcrt:
__UpperCAmelCase =WindowsFileLock
elif fcntl:
__UpperCAmelCase =UnixFileLock
else:
__UpperCAmelCase =SoftFileLock
if warnings is not None:
warnings.warn("only soft file lock is available")
| 237 | '''simple docstring'''
import itertools
import json
import os
import unittest
from transformers import AddedToken, LongformerTokenizer, LongformerTokenizerFast
from transformers.models.longformer.tokenization_longformer import VOCAB_FILES_NAMES
from transformers.testing_utils import require_tokenizers, slow
from ...test_tokenization_common import TokenizerTesterMixin
@require_tokenizers
class a__ ( UpperCAmelCase__ , unittest.TestCase ):
lowerCamelCase : Optional[Any] =LongformerTokenizer
lowerCamelCase : Optional[Any] =True
lowerCamelCase : List[str] =LongformerTokenizerFast
lowerCamelCase : Union[str, Any] =True
def SCREAMING_SNAKE_CASE__ ( self : List[Any] ):
"""simple docstring"""
super().setUp()
# Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt
__lowerCamelCase = [
'''l''',
'''o''',
'''w''',
'''e''',
'''r''',
'''s''',
'''t''',
'''i''',
'''d''',
'''n''',
'''\u0120''',
'''\u0120l''',
'''\u0120n''',
'''\u0120lo''',
'''\u0120low''',
'''er''',
'''\u0120lowest''',
'''\u0120newer''',
'''\u0120wider''',
'''<unk>''',
]
__lowerCamelCase = dict(zip(a , range(len(a ) ) ) )
__lowerCamelCase = ['''#version: 0.2''', '''\u0120 l''', '''\u0120l o''', '''\u0120lo w''', '''e r''', '''''']
__lowerCamelCase = {'''unk_token''': '''<unk>'''}
__lowerCamelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] )
__lowerCamelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] )
with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp:
fp.write(json.dumps(a ) + '''\n''' )
with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp:
fp.write('''\n'''.join(a ) )
def SCREAMING_SNAKE_CASE__ ( self : int , **a : int ):
"""simple docstring"""
kwargs.update(self.special_tokens_map )
return self.tokenizer_class.from_pretrained(self.tmpdirname , **a )
def SCREAMING_SNAKE_CASE__ ( self : str , **a : Dict ):
"""simple docstring"""
kwargs.update(self.special_tokens_map )
return self.rust_tokenizer_class.from_pretrained(self.tmpdirname , **a )
def SCREAMING_SNAKE_CASE__ ( self : List[str] , a : int ):
"""simple docstring"""
__lowerCamelCase = '''lower newer'''
__lowerCamelCase = '''lower newer'''
return input_text, output_text
def SCREAMING_SNAKE_CASE__ ( self : List[Any] ):
"""simple docstring"""
__lowerCamelCase = self.tokenizer_class(self.vocab_file , self.merges_file , **self.special_tokens_map )
__lowerCamelCase = '''lower newer'''
__lowerCamelCase = ['''l''', '''o''', '''w''', '''er''', '''\u0120''', '''n''', '''e''', '''w''', '''er''']
__lowerCamelCase = tokenizer.tokenize(a ) # , add_prefix_space=True)
self.assertListEqual(a , a )
__lowerCamelCase = tokens + [tokenizer.unk_token]
__lowerCamelCase = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19]
self.assertListEqual(tokenizer.convert_tokens_to_ids(a ) , a )
def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ):
"""simple docstring"""
__lowerCamelCase = self.get_tokenizer()
self.assertListEqual(tokenizer.encode('''Hello world!''' , add_special_tokens=a ) , [0, 3_14_14, 2_32, 3_28, 2] )
self.assertListEqual(
tokenizer.encode('''Hello world! cécé herlolip 418''' , add_special_tokens=a ) , [0, 3_14_14, 2_32, 3_28, 7_40, 11_40, 1_26_95, 69, 4_60_78, 15_88, 2] , )
@slow
def SCREAMING_SNAKE_CASE__ ( self : Any ):
"""simple docstring"""
__lowerCamelCase = self.tokenizer_class.from_pretrained('''allenai/longformer-base-4096''' )
__lowerCamelCase = tokenizer.encode('''sequence builders''' , add_special_tokens=a )
__lowerCamelCase = tokenizer.encode('''multi-sequence build''' , add_special_tokens=a )
__lowerCamelCase = tokenizer.encode(
'''sequence builders''' , add_special_tokens=a , add_prefix_space=a )
__lowerCamelCase = tokenizer.encode(
'''sequence builders''' , '''multi-sequence build''' , add_special_tokens=a , add_prefix_space=a )
__lowerCamelCase = tokenizer.build_inputs_with_special_tokens(a )
__lowerCamelCase = tokenizer.build_inputs_with_special_tokens(a , a )
assert encoded_sentence == encoded_text_from_decode
assert encoded_pair == encoded_pair_from_decode
def SCREAMING_SNAKE_CASE__ ( self : List[str] ):
"""simple docstring"""
__lowerCamelCase = self.get_tokenizer()
__lowerCamelCase = '''Encode this sequence.'''
__lowerCamelCase = tokenizer.byte_encoder[''' '''.encode('''utf-8''' )[0]]
# Testing encoder arguments
__lowerCamelCase = tokenizer.encode(a , add_special_tokens=a , add_prefix_space=a )
__lowerCamelCase = tokenizer.convert_ids_to_tokens(encoded[0] )[0]
self.assertNotEqual(a , a )
__lowerCamelCase = tokenizer.encode(a , add_special_tokens=a , add_prefix_space=a )
__lowerCamelCase = tokenizer.convert_ids_to_tokens(encoded[0] )[0]
self.assertEqual(a , a )
tokenizer.add_special_tokens({'''bos_token''': '''<s>'''} )
__lowerCamelCase = tokenizer.encode(a , add_special_tokens=a )
__lowerCamelCase = tokenizer.convert_ids_to_tokens(encoded[1] )[0]
self.assertNotEqual(a , a )
# Testing spaces after special tokens
__lowerCamelCase = '''<mask>'''
tokenizer.add_special_tokens(
{'''mask_token''': AddedToken(a , lstrip=a , rstrip=a )} ) # mask token has a left space
__lowerCamelCase = tokenizer.convert_tokens_to_ids(a )
__lowerCamelCase = '''Encode <mask> sequence'''
__lowerCamelCase = '''Encode <mask>sequence'''
__lowerCamelCase = tokenizer.encode(a )
__lowerCamelCase = encoded.index(a )
__lowerCamelCase = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0]
self.assertEqual(a , a )
__lowerCamelCase = tokenizer.encode(a )
__lowerCamelCase = encoded.index(a )
__lowerCamelCase = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0]
self.assertNotEqual(a , a )
def SCREAMING_SNAKE_CASE__ ( self : str ):
"""simple docstring"""
pass
def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ):
"""simple docstring"""
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ):
__lowerCamelCase = self.rust_tokenizer_class.from_pretrained(a , **a )
__lowerCamelCase = self.tokenizer_class.from_pretrained(a , **a )
__lowerCamelCase = '''A, <mask> AllenNLP sentence.'''
__lowerCamelCase = tokenizer_r.encode_plus(a , add_special_tokens=a , return_token_type_ids=a )
__lowerCamelCase = tokenizer_p.encode_plus(a , add_special_tokens=a , return_token_type_ids=a )
# token_type_ids should put 0 everywhere
self.assertEqual(sum(tokens_r['''token_type_ids'''] ) , sum(tokens_p['''token_type_ids'''] ) )
# attention_mask should put 1 everywhere, so sum over length should be 1
self.assertEqual(
sum(tokens_r['''attention_mask'''] ) / len(tokens_r['''attention_mask'''] ) , sum(tokens_p['''attention_mask'''] ) / len(tokens_p['''attention_mask'''] ) , )
__lowerCamelCase = tokenizer_r.convert_ids_to_tokens(tokens_r['''input_ids'''] )
__lowerCamelCase = tokenizer_p.convert_ids_to_tokens(tokens_p['''input_ids'''] )
# Rust correctly handles the space before the mask while python doesnt
self.assertSequenceEqual(tokens_p['''input_ids'''] , [0, 2_50, 6, 5_02_64, 38_23, 4_87, 2_19_92, 36_45, 4, 2] )
self.assertSequenceEqual(tokens_r['''input_ids'''] , [0, 2_50, 6, 5_02_64, 38_23, 4_87, 2_19_92, 36_45, 4, 2] )
self.assertSequenceEqual(
a , ['''<s>''', '''A''', ''',''', '''<mask>''', '''ĠAllen''', '''N''', '''LP''', '''Ġsentence''', '''.''', '''</s>'''] )
self.assertSequenceEqual(
a , ['''<s>''', '''A''', ''',''', '''<mask>''', '''ĠAllen''', '''N''', '''LP''', '''Ġsentence''', '''.''', '''</s>'''] )
def SCREAMING_SNAKE_CASE__ ( self : str ):
"""simple docstring"""
for trim_offsets, add_prefix_space in itertools.product([True, False] , repeat=2 ):
__lowerCamelCase = self.rust_tokenizer_class.from_pretrained(
self.tmpdirname , use_fast=a , add_prefix_space=a , trim_offsets=a )
__lowerCamelCase = json.loads(tokenizer_r.backend_tokenizer.pre_tokenizer.__getstate__() )
__lowerCamelCase = json.loads(tokenizer_r.backend_tokenizer.post_processor.__getstate__() )
self.assertEqual(pre_tokenizer_state['''add_prefix_space'''] , a )
self.assertEqual(post_processor_state['''add_prefix_space'''] , a )
self.assertEqual(post_processor_state['''trim_offsets'''] , a )
def SCREAMING_SNAKE_CASE__ ( self : Tuple ):
"""simple docstring"""
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ):
__lowerCamelCase = '''hello''' # `hello` is a token in the vocabulary of `pretrained_name`
__lowerCamelCase = f"""{text_of_1_token} {text_of_1_token}"""
__lowerCamelCase = self.rust_tokenizer_class.from_pretrained(
a , use_fast=a , add_prefix_space=a , trim_offsets=a )
__lowerCamelCase = tokenizer_r(a , return_offsets_mapping=a , add_special_tokens=a )
self.assertEqual(encoding.offset_mapping[0] , (0, len(a )) )
self.assertEqual(
encoding.offset_mapping[1] , (len(a ) + 1, len(a ) + 1 + len(a )) , )
__lowerCamelCase = self.rust_tokenizer_class.from_pretrained(
a , use_fast=a , add_prefix_space=a , trim_offsets=a )
__lowerCamelCase = tokenizer_r(a , return_offsets_mapping=a , add_special_tokens=a )
self.assertEqual(encoding.offset_mapping[0] , (0, len(a )) )
self.assertEqual(
encoding.offset_mapping[1] , (len(a ) + 1, len(a ) + 1 + len(a )) , )
__lowerCamelCase = self.rust_tokenizer_class.from_pretrained(
a , use_fast=a , add_prefix_space=a , trim_offsets=a )
__lowerCamelCase = tokenizer_r(a , return_offsets_mapping=a , add_special_tokens=a )
self.assertEqual(encoding.offset_mapping[0] , (0, len(a )) )
self.assertEqual(
encoding.offset_mapping[1] , (len(a ), len(a ) + 1 + len(a )) , )
__lowerCamelCase = self.rust_tokenizer_class.from_pretrained(
a , use_fast=a , add_prefix_space=a , trim_offsets=a )
__lowerCamelCase = tokenizer_r(a , return_offsets_mapping=a , add_special_tokens=a )
self.assertEqual(encoding.offset_mapping[0] , (0, len(a )) )
self.assertEqual(
encoding.offset_mapping[1] , (len(a ), len(a ) + 1 + len(a )) , )
__lowerCamelCase = f""" {text}"""
# tokenizer_r = self.rust_tokenizer_class.from_pretrained(
# pretrained_name, use_fast=True, add_prefix_space=True, trim_offsets=True
# )
# encoding = tokenizer_r(text, return_offsets_mapping=True, add_special_tokens=False)
# self.assertEqual(encoding.offset_mapping[0], (1, 1 + len(text_of_1_token)))
# self.assertEqual(
# encoding.offset_mapping[1],
# (1 + len(text_of_1_token) + 1, 1 + len(text_of_1_token) + 1 + len(text_of_1_token)),
# )
__lowerCamelCase = self.rust_tokenizer_class.from_pretrained(
a , use_fast=a , add_prefix_space=a , trim_offsets=a )
__lowerCamelCase = tokenizer_r(a , return_offsets_mapping=a , add_special_tokens=a )
self.assertEqual(encoding.offset_mapping[0] , (1, 1 + len(a )) )
self.assertEqual(
encoding.offset_mapping[1] , (1 + len(a ) + 1, 1 + len(a ) + 1 + len(a )) , )
__lowerCamelCase = self.rust_tokenizer_class.from_pretrained(
a , use_fast=a , add_prefix_space=a , trim_offsets=a )
__lowerCamelCase = tokenizer_r(a , return_offsets_mapping=a , add_special_tokens=a )
self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(a )) )
self.assertEqual(
encoding.offset_mapping[1] , (1 + len(a ), 1 + len(a ) + 1 + len(a )) , )
__lowerCamelCase = self.rust_tokenizer_class.from_pretrained(
a , use_fast=a , add_prefix_space=a , trim_offsets=a )
__lowerCamelCase = tokenizer_r(a , return_offsets_mapping=a , add_special_tokens=a )
self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(a )) )
self.assertEqual(
encoding.offset_mapping[1] , (1 + len(a ), 1 + len(a ) + 1 + len(a )) , )
| 237 | 1 |
from math import isqrt, loga
def _A ( SCREAMING_SNAKE_CASE : int ):
"""simple docstring"""
a__ : Optional[Any] =[True] * max_number
for i in range(2 , isqrt(max_number - 1 ) + 1 ):
if is_prime[i]:
for j in range(i**2 , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ):
a__ : List[Any] =False
return [i for i in range(2 , SCREAMING_SNAKE_CASE ) if is_prime[i]]
def _A ( SCREAMING_SNAKE_CASE : int = 800_800 , SCREAMING_SNAKE_CASE : int = 800_800 ):
"""simple docstring"""
a__ : Union[str, Any] =degree * loga(SCREAMING_SNAKE_CASE )
a__ : List[str] =int(SCREAMING_SNAKE_CASE )
a__ : List[Any] =calculate_prime_numbers(SCREAMING_SNAKE_CASE )
a__ : Dict =0
a__ : int =0
a__ : Optional[int] =len(SCREAMING_SNAKE_CASE ) - 1
while left < right:
while (
prime_numbers[right] * loga(prime_numbers[left] )
+ prime_numbers[left] * loga(prime_numbers[right] )
> upper_bound
):
right -= 1
hybrid_integers_count += right - left
left += 1
return hybrid_integers_count
if __name__ == "__main__":
print(F"""{solution() = }""")
| 95 | import argparse
import torch
from transformers import GPTaLMHeadModel, RobertaForMaskedLM
if __name__ == "__main__":
a_ = argparse.ArgumentParser(
description=(
'Extraction some layers of the full RobertaForMaskedLM or GPT2LMHeadModel for Transfer Learned'
' Distillation'
)
)
parser.add_argument('--model_type', default='roberta', choices=['roberta', 'gpt2'])
parser.add_argument('--model_name', default='roberta-large', type=str)
parser.add_argument('--dump_checkpoint', default='serialization_dir/tf_roberta_048131723.pth', type=str)
parser.add_argument('--vocab_transform', action='store_true')
a_ = parser.parse_args()
if args.model_type == "roberta":
a_ = RobertaForMaskedLM.from_pretrained(args.model_name)
a_ = 'roberta'
elif args.model_type == "gpt2":
a_ = GPTaLMHeadModel.from_pretrained(args.model_name)
a_ = 'transformer'
a_ = model.state_dict()
a_ = {}
# Embeddings #
if args.model_type == "gpt2":
for param_name in ["wte.weight", "wpe.weight"]:
a_ = state_dict[F"""{prefix}.{param_name}"""]
else:
for w in ["word_embeddings", "position_embeddings", "token_type_embeddings"]:
a_ = F"""{prefix}.embeddings.{w}.weight"""
a_ = state_dict[param_name]
for w in ["weight", "bias"]:
a_ = F"""{prefix}.embeddings.LayerNorm.{w}"""
a_ = state_dict[param_name]
# Transformer Blocks #
a_ = 0
for teacher_idx in [0, 2, 4, 7, 9, 11]:
if args.model_type == "gpt2":
for layer in ["ln_1", "attn.c_attn", "attn.c_proj", "ln_2", "mlp.c_fc", "mlp.c_proj"]:
for w in ["weight", "bias"]:
a_ = state_dict[
F"""{prefix}.h.{teacher_idx}.{layer}.{w}"""
]
a_ = state_dict[F"""{prefix}.h.{teacher_idx}.attn.bias"""]
else:
for layer in [
"attention.self.query",
"attention.self.key",
"attention.self.value",
"attention.output.dense",
"attention.output.LayerNorm",
"intermediate.dense",
"output.dense",
"output.LayerNorm",
]:
for w in ["weight", "bias"]:
a_ = state_dict[
F"""{prefix}.encoder.layer.{teacher_idx}.{layer}.{w}"""
]
std_idx += 1
# Language Modeling Head ###s
if args.model_type == "roberta":
for layer in ["lm_head.decoder.weight", "lm_head.bias"]:
a_ = state_dict[F"""{layer}"""]
if args.vocab_transform:
for w in ["weight", "bias"]:
a_ = state_dict[F"""lm_head.dense.{w}"""]
a_ = state_dict[F"""lm_head.layer_norm.{w}"""]
elif args.model_type == "gpt2":
for w in ["weight", "bias"]:
a_ = state_dict[F"""{prefix}.ln_f.{w}"""]
a_ = state_dict['lm_head.weight']
print(F"""N layers selected for distillation: {std_idx}""")
print(F"""Number of params transferred for distillation: {len(compressed_sd.keys())}""")
print(F"""Save transferred checkpoint to {args.dump_checkpoint}.""")
torch.save(compressed_sd, args.dump_checkpoint)
| 175 | 0 |
import copy
import os
from typing import Union
from ...configuration_utils import PretrainedConfig
from ...utils import logging
_lowerCAmelCase : int = logging.get_logger(__name__)
_lowerCAmelCase : Dict = {
'''microsoft/git-base''': '''https://huggingface.co/microsoft/git-base/resolve/main/config.json''',
}
class __magic_name__ ( lowerCamelCase__ ):
"""simple docstring"""
__UpperCamelCase = '''git_vision_model'''
def __init__( self :Union[str, Any] , snake_case :str=768 , snake_case :str=3_072 , snake_case :Optional[Any]=12 , snake_case :Any=12 , snake_case :Dict=3 , snake_case :Union[str, Any]=224 , snake_case :Optional[int]=16 , snake_case :Union[str, Any]="quick_gelu" , snake_case :Optional[int]=1e-5 , snake_case :List[str]=0.0 , snake_case :Any=0.02 , **snake_case :str , ):
'''simple docstring'''
super().__init__(**snake_case )
A_ : Optional[int] = hidden_size
A_ : Optional[Any] = intermediate_size
A_ : Dict = num_hidden_layers
A_ : int = num_attention_heads
A_ : int = num_channels
A_ : Tuple = patch_size
A_ : Dict = image_size
A_ : Optional[int] = initializer_range
A_ : str = attention_dropout
A_ : Tuple = layer_norm_eps
A_ : List[str] = hidden_act
@classmethod
def SCREAMING_SNAKE_CASE ( cls :Any , snake_case :Union[str, os.PathLike] , **snake_case :List[str] ):
'''simple docstring'''
cls._set_token_in_kwargs(snake_case )
A_ , A_ : Optional[Any] = cls.get_config_dict(snake_case , **snake_case )
# get the vision config dict if we are loading from GITConfig
if config_dict.get("model_type" ) == "git":
A_ : int = config_dict["vision_config"]
if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type:
logger.warning(
f"You are using a model of type {config_dict['model_type']} to instantiate a model of type "
f"{cls.model_type}. This is not supported for all configurations of models and can yield errors." )
return cls.from_dict(snake_case , **snake_case )
class __magic_name__ ( lowerCamelCase__ ):
"""simple docstring"""
__UpperCamelCase = '''git'''
def __init__( self :List[str] , snake_case :Any=None , snake_case :int=30_522 , snake_case :Dict=768 , snake_case :List[Any]=6 , snake_case :Any=12 , snake_case :Any=3_072 , snake_case :List[Any]="gelu" , snake_case :Union[str, Any]=0.1 , snake_case :Any=0.1 , snake_case :Optional[int]=1_024 , snake_case :str=0.02 , snake_case :int=1e-12 , snake_case :Optional[int]=0 , snake_case :int="absolute" , snake_case :Tuple=True , snake_case :List[str]=False , snake_case :List[str]=101 , snake_case :int=102 , snake_case :str=None , **snake_case :List[Any] , ):
'''simple docstring'''
super().__init__(bos_token_id=snake_case , eos_token_id=snake_case , pad_token_id=snake_case , **snake_case )
if vision_config is None:
A_ : Union[str, Any] = {}
logger.info("vision_config is None. initializing the GitVisionConfig with default values." )
A_ : List[Any] = GitVisionConfig(**snake_case )
A_ : Optional[int] = vocab_size
A_ : List[str] = hidden_size
A_ : int = num_hidden_layers
A_ : Union[str, Any] = num_attention_heads
A_ : List[str] = hidden_act
A_ : Dict = intermediate_size
A_ : Tuple = hidden_dropout_prob
A_ : str = attention_probs_dropout_prob
A_ : Any = max_position_embeddings
A_ : List[str] = initializer_range
A_ : int = layer_norm_eps
A_ : Dict = position_embedding_type
A_ : str = use_cache
A_ : str = tie_word_embeddings
A_ : Optional[Any] = num_image_with_embedding
A_ : int = bos_token_id
A_ : Optional[int] = eos_token_id
def SCREAMING_SNAKE_CASE ( self :Optional[Any] ):
'''simple docstring'''
A_ : Tuple = copy.deepcopy(self.__dict__ )
A_ : Optional[int] = self.vision_config.to_dict()
A_ : Optional[Any] = self.__class__.model_type
return output
| 70 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_tf_available,
is_torch_available,
is_vision_available,
)
_lowerCAmelCase : Dict = {
'''configuration_blip''': [
'''BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP''',
'''BlipConfig''',
'''BlipTextConfig''',
'''BlipVisionConfig''',
],
'''processing_blip''': ['''BlipProcessor'''],
}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_lowerCAmelCase : str = ['''BlipImageProcessor''']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_lowerCAmelCase : Union[str, Any] = [
'''BLIP_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''BlipModel''',
'''BlipPreTrainedModel''',
'''BlipForConditionalGeneration''',
'''BlipForQuestionAnswering''',
'''BlipVisionModel''',
'''BlipTextModel''',
'''BlipForImageTextRetrieval''',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_lowerCAmelCase : Dict = [
'''TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''TFBlipModel''',
'''TFBlipPreTrainedModel''',
'''TFBlipForConditionalGeneration''',
'''TFBlipForQuestionAnswering''',
'''TFBlipVisionModel''',
'''TFBlipTextModel''',
'''TFBlipForImageTextRetrieval''',
]
if TYPE_CHECKING:
from .configuration_blip import BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, BlipConfig, BlipTextConfig, BlipVisionConfig
from .processing_blip import BlipProcessor
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .image_processing_blip import BlipImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_blip import (
BLIP_PRETRAINED_MODEL_ARCHIVE_LIST,
BlipForConditionalGeneration,
BlipForImageTextRetrieval,
BlipForQuestionAnswering,
BlipModel,
BlipPreTrainedModel,
BlipTextModel,
BlipVisionModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_blip import (
TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST,
TFBlipForConditionalGeneration,
TFBlipForImageTextRetrieval,
TFBlipForQuestionAnswering,
TFBlipModel,
TFBlipPreTrainedModel,
TFBlipTextModel,
TFBlipVisionModel,
)
else:
import sys
_lowerCAmelCase : Dict = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 70 | 1 |
import gc
import unittest
from parameterized import parameterized
from diffusers import FlaxUNetaDConditionModel
from diffusers.utils import is_flax_available
from diffusers.utils.testing_utils import load_hf_numpy, require_flax, slow
if is_flax_available():
import jax
import jax.numpy as jnp
@slow
@require_flax
class __lowerCAmelCase ( unittest.TestCase ):
def snake_case ( self , _snake_case , _snake_case ):
"""simple docstring"""
return F'gaussian_noise_s={seed}_shape={"_".join([str(__UpperCamelCase ) for s in shape] )}.npy'
def snake_case ( self ):
"""simple docstring"""
super().tearDown()
gc.collect()
def snake_case ( self , _snake_case=0 , _snake_case=(4, 4, 64, 64) , _snake_case=False ):
"""simple docstring"""
_lowerCAmelCase = jnp.bfloataa if fpaa else jnp.floataa
_lowerCAmelCase = jnp.array(load_hf_numpy(self.get_file_format(__UpperCamelCase , __UpperCamelCase ) ) , dtype=__UpperCamelCase )
return image
def snake_case ( self , _snake_case=False , _snake_case="CompVis/stable-diffusion-v1-4" ):
"""simple docstring"""
_lowerCAmelCase = jnp.bfloataa if fpaa else jnp.floataa
_lowerCAmelCase = """bf16""" if fpaa else None
_lowerCAmelCase , _lowerCAmelCase = FlaxUNetaDConditionModel.from_pretrained(
__UpperCamelCase , subfolder="""unet""" , dtype=__UpperCamelCase , revision=__UpperCamelCase )
return model, params
def snake_case ( self , _snake_case=0 , _snake_case=(4, 77, 768) , _snake_case=False ):
"""simple docstring"""
_lowerCAmelCase = jnp.bfloataa if fpaa else jnp.floataa
_lowerCAmelCase = jnp.array(load_hf_numpy(self.get_file_format(__UpperCamelCase , __UpperCamelCase ) ) , dtype=__UpperCamelCase )
return hidden_states
@parameterized.expand(
[
# fmt: off
[83, 4, [-0.2323, -0.1304, 0.0813, -0.3093, -0.0919, -0.1571, -0.1125, -0.5806]],
[17, 0.55, [-0.0831, -0.2443, 0.0901, -0.0919, 0.3396, 0.0103, -0.3743, 0.0701]],
[8, 0.89, [-0.4863, 0.0859, 0.0875, -0.1658, 0.9199, -0.0114, 0.4839, 0.4639]],
[3, 1000, [-0.5649, 0.2402, -0.5518, 0.1248, 1.1328, -0.2443, -0.0325, -1.0078]],
# fmt: on
] )
def snake_case ( self , _snake_case , _snake_case , _snake_case ):
"""simple docstring"""
_lowerCAmelCase , _lowerCAmelCase = self.get_unet_model(model_id="""CompVis/stable-diffusion-v1-4""" , fpaa=__UpperCamelCase )
_lowerCAmelCase = self.get_latents(__UpperCamelCase , fpaa=__UpperCamelCase )
_lowerCAmelCase = self.get_encoder_hidden_states(__UpperCamelCase , fpaa=__UpperCamelCase )
_lowerCAmelCase = model.apply(
{"""params""": params} , __UpperCamelCase , jnp.array(__UpperCamelCase , dtype=jnp.intaa ) , encoder_hidden_states=__UpperCamelCase , ).sample
assert sample.shape == latents.shape
_lowerCAmelCase = jnp.asarray(jax.device_get((sample[-1, -2:, -2:, :2].flatten()) ) , dtype=jnp.floataa )
_lowerCAmelCase = jnp.array(__UpperCamelCase , dtype=jnp.floataa )
# Found torch (float16) and flax (bfloat16) outputs to be within this tolerance, in the same hardware
assert jnp.allclose(__UpperCamelCase , __UpperCamelCase , atol=1e-2 )
@parameterized.expand(
[
# fmt: off
[83, 4, [0.1514, 0.0807, 0.1624, 0.1016, -0.1896, 0.0263, 0.0677, 0.2310]],
[17, 0.55, [0.1164, -0.0216, 0.0170, 0.1589, -0.3120, 0.1005, -0.0581, -0.1458]],
[8, 0.89, [-0.1758, -0.0169, 0.1004, -0.1411, 0.1312, 0.1103, -0.1996, 0.2139]],
[3, 1000, [0.1214, 0.0352, -0.0731, -0.1562, -0.0994, -0.0906, -0.2340, -0.0539]],
# fmt: on
] )
def snake_case ( self , _snake_case , _snake_case , _snake_case ):
"""simple docstring"""
_lowerCAmelCase , _lowerCAmelCase = self.get_unet_model(model_id="""stabilityai/stable-diffusion-2""" , fpaa=__UpperCamelCase )
_lowerCAmelCase = self.get_latents(__UpperCamelCase , shape=(4, 4, 96, 96) , fpaa=__UpperCamelCase )
_lowerCAmelCase = self.get_encoder_hidden_states(__UpperCamelCase , shape=(4, 77, 1024) , fpaa=__UpperCamelCase )
_lowerCAmelCase = model.apply(
{"""params""": params} , __UpperCamelCase , jnp.array(__UpperCamelCase , dtype=jnp.intaa ) , encoder_hidden_states=__UpperCamelCase , ).sample
assert sample.shape == latents.shape
_lowerCAmelCase = jnp.asarray(jax.device_get((sample[-1, -2:, -2:, :2].flatten()) ) , dtype=jnp.floataa )
_lowerCAmelCase = jnp.array(__UpperCamelCase , dtype=jnp.floataa )
# Found torch (float16) and flax (bfloat16) outputs to be within this tolerance, on the same hardware
assert jnp.allclose(__UpperCamelCase , __UpperCamelCase , atol=1e-2 )
| 82 |
"""simple docstring"""
import argparse
import os
import torch
from transformers import FlavaConfig, FlavaForPreTraining
from transformers.models.flava.convert_dalle_to_flava_codebook import convert_dalle_checkpoint
def lowercase ( _SCREAMING_SNAKE_CASE : int ):
'''simple docstring'''
return sum(param.float().sum() if '''encoder.embeddings''' not in key else 0 for key, param in state_dict.items() )
def lowercase ( _SCREAMING_SNAKE_CASE : Tuple , _SCREAMING_SNAKE_CASE : Tuple ):
'''simple docstring'''
_UpperCAmelCase = {}
for key, value in state_dict.items():
if "text_encoder.embeddings" in key or "image_encoder.embeddings" in key:
continue
_UpperCAmelCase = key.replace('''heads.cmd.mim_head.cls.predictions''' , '''mmm_image_head''' )
_UpperCAmelCase = key.replace('''heads.cmd.mlm_head.cls.predictions''' , '''mmm_text_head''' )
_UpperCAmelCase = key.replace('''heads.cmd.itm_head.cls''' , '''itm_head''' )
_UpperCAmelCase = key.replace('''heads.cmd.itm_head.pooler''' , '''itm_head.pooler''' )
_UpperCAmelCase = key.replace('''heads.cmd.clip_head.logit_scale''' , '''flava.logit_scale''' )
_UpperCAmelCase = key.replace('''heads.fairseq_mlm.cls.predictions''' , '''mlm_head''' )
_UpperCAmelCase = key.replace('''heads.imagenet.mim_head.cls.predictions''' , '''mim_head''' )
_UpperCAmelCase = key.replace('''mm_text_projection''' , '''flava.text_to_mm_projection''' )
_UpperCAmelCase = key.replace('''mm_image_projection''' , '''flava.image_to_mm_projection''' )
_UpperCAmelCase = key.replace('''image_encoder.module''' , '''flava.image_model''' )
_UpperCAmelCase = key.replace('''text_encoder.module''' , '''flava.text_model''' )
_UpperCAmelCase = key.replace('''mm_encoder.module.encoder.cls_token''' , '''flava.multimodal_model.cls_token''' )
_UpperCAmelCase = key.replace('''mm_encoder.module''' , '''flava.multimodal_model''' )
_UpperCAmelCase = key.replace('''text_projection''' , '''flava.text_projection''' )
_UpperCAmelCase = key.replace('''image_projection''' , '''flava.image_projection''' )
_UpperCAmelCase = value.float()
for key, value in codebook_state_dict.items():
_UpperCAmelCase = value
return upgrade
@torch.no_grad()
def lowercase ( _SCREAMING_SNAKE_CASE : Union[str, Any] , _SCREAMING_SNAKE_CASE : Optional[int] , _SCREAMING_SNAKE_CASE : Optional[int] , _SCREAMING_SNAKE_CASE : Optional[int]=None ):
'''simple docstring'''
if config_path is not None:
_UpperCAmelCase = FlavaConfig.from_pretrained(_SCREAMING_SNAKE_CASE )
else:
_UpperCAmelCase = FlavaConfig()
_UpperCAmelCase = FlavaForPreTraining(_SCREAMING_SNAKE_CASE ).eval()
_UpperCAmelCase = convert_dalle_checkpoint(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , save_checkpoint=_SCREAMING_SNAKE_CASE )
if os.path.exists(_SCREAMING_SNAKE_CASE ):
_UpperCAmelCase = torch.load(_SCREAMING_SNAKE_CASE , map_location='''cpu''' )
else:
_UpperCAmelCase = torch.hub.load_state_dict_from_url(_SCREAMING_SNAKE_CASE , map_location='''cpu''' )
_UpperCAmelCase = upgrade_state_dict(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
hf_model.load_state_dict(_SCREAMING_SNAKE_CASE )
_UpperCAmelCase = hf_model.state_dict()
_UpperCAmelCase = count_parameters(_SCREAMING_SNAKE_CASE )
_UpperCAmelCase = count_parameters(_SCREAMING_SNAKE_CASE ) + count_parameters(_SCREAMING_SNAKE_CASE )
assert torch.allclose(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , atol=1E-3 )
hf_model.save_pretrained(_SCREAMING_SNAKE_CASE )
if __name__ == "__main__":
__A : Dict = argparse.ArgumentParser()
parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.")
parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to flava checkpoint")
parser.add_argument("--codebook_path", default=None, type=str, help="Path to flava codebook checkpoint")
parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert")
__A : Optional[Any] = parser.parse_args()
convert_flava_checkpoint(args.checkpoint_path, args.codebook_path, args.pytorch_dump_folder_path, args.config_path)
| 260 | 0 |
def __A ( __lowerCamelCase , __lowerCamelCase ) -> str:
if number < 0 or shift_amount < 0:
raise ValueError("""both inputs must be positive integers""" )
a = str(bin(__lowerCamelCase ) )
binary_number += "0" * shift_amount
return binary_number
def __A ( __lowerCamelCase , __lowerCamelCase ) -> str:
if number < 0 or shift_amount < 0:
raise ValueError("""both inputs must be positive integers""" )
a = str(bin(__lowerCamelCase ) )[2:]
if shift_amount >= len(__lowerCamelCase ):
return "0b0"
a = binary_number[: len(__lowerCamelCase ) - shift_amount]
return "0b" + shifted_binary_number
def __A ( __lowerCamelCase , __lowerCamelCase ) -> str:
if number >= 0: # Get binary representation of positive number
a = """0""" + str(bin(__lowerCamelCase ) ).strip("""-""" )[2:]
else: # Get binary (2's complement) representation of negative number
a = len(bin(__lowerCamelCase )[3:] ) # Find 2's complement of number
a = bin(abs(__lowerCamelCase ) - (1 << binary_number_length) )[3:]
a = (
"""1""" + """0""" * (binary_number_length - len(__lowerCamelCase )) + binary_number
)
if shift_amount >= len(__lowerCamelCase ):
return "0b" + binary_number[0] * len(__lowerCamelCase )
return (
"0b"
+ binary_number[0] * shift_amount
+ binary_number[: len(__lowerCamelCase ) - shift_amount]
)
if __name__ == "__main__":
import doctest
doctest.testmod()
| 347 |
import io
import itertools
import json
from dataclasses import dataclass
from typing import Optional
import pyarrow as pa
import pyarrow.json as paj
import datasets
from datasets.table import table_cast
from datasets.utils.file_utils import readline
__UpperCamelCase : Any = datasets.utils.logging.get_logger(__name__)
@dataclass
class __lowerCAmelCase ( datasets.BuilderConfig ):
UpperCamelCase__ = None
UpperCamelCase__ = "utf-8"
UpperCamelCase__ = None
UpperCamelCase__ = None
UpperCamelCase__ = True # deprecated
UpperCamelCase__ = None # deprecated
UpperCamelCase__ = 10 << 20 # 10MB
UpperCamelCase__ = None
class __lowerCAmelCase ( datasets.ArrowBasedBuilder ):
UpperCamelCase__ = JsonConfig
def lowerCamelCase__ ( self :str ):
'''simple docstring'''
if self.config.block_size is not None:
logger.warning("""The JSON loader parameter `block_size` is deprecated. Please use `chunksize` instead""" )
a = self.config.block_size
if self.config.use_threads is not True:
logger.warning(
"""The JSON loader parameter `use_threads` is deprecated and doesn't have any effect anymore.""" )
if self.config.newlines_in_values is not None:
raise ValueError("""The JSON loader parameter `newlines_in_values` is no longer supported""" )
return datasets.DatasetInfo(features=self.config.features )
def lowerCamelCase__ ( self :Tuple , __magic_name__ :str ):
'''simple docstring'''
if not self.config.data_files:
raise ValueError(F'At least one data file must be specified, but got data_files={self.config.data_files}' )
a = dl_manager.download_and_extract(self.config.data_files )
if isinstance(__magic_name__ , (str, list, tuple) ):
a = data_files
if isinstance(__magic_name__ , __magic_name__ ):
a = [files]
a = [dl_manager.iter_files(__magic_name__ ) for file in files]
return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"""files""": files} )]
a = []
for split_name, files in data_files.items():
if isinstance(__magic_name__ , __magic_name__ ):
a = [files]
a = [dl_manager.iter_files(__magic_name__ ) for file in files]
splits.append(datasets.SplitGenerator(name=__magic_name__ , gen_kwargs={"""files""": files} ) )
return splits
def lowerCamelCase__ ( self :List[str] , __magic_name__ :pa.Table ):
'''simple docstring'''
if self.config.features is not None:
# adding missing columns
for column_name in set(self.config.features ) - set(pa_table.column_names ):
a = self.config.features.arrow_schema.field(__magic_name__ ).type
a = pa_table.append_column(__magic_name__ , pa.array([None] * len(__magic_name__ ) , type=__magic_name__ ) )
# more expensive cast to support nested structures with keys in a different order
# allows str <-> int/float or str to Audio for example
a = table_cast(__magic_name__ , self.config.features.arrow_schema )
return pa_table
def lowerCamelCase__ ( self :Optional[int] , __magic_name__ :Union[str, Any] ):
'''simple docstring'''
for file_idx, file in enumerate(itertools.chain.from_iterable(__magic_name__ ) ):
# If the file is one json object and if we need to look at the list of items in one specific field
if self.config.field is not None:
with open(__magic_name__ , encoding=self.config.encoding , errors=self.config.encoding_errors ) as f:
a = json.load(__magic_name__ )
# We keep only the field we are interested in
a = dataset[self.config.field]
# We accept two format: a list of dicts or a dict of lists
if isinstance(__magic_name__ , (list, tuple) ):
a = set().union(*[row.keys() for row in dataset] )
a = {col: [row.get(__magic_name__ ) for row in dataset] for col in keys}
else:
a = dataset
a = pa.Table.from_pydict(__magic_name__ )
yield file_idx, self._cast_table(__magic_name__ )
# If the file has one json object per line
else:
with open(__magic_name__ , """rb""" ) as f:
a = 0
# Use block_size equal to the chunk size divided by 32 to leverage multithreading
# Set a default minimum value of 16kB if the chunk size is really small
a = max(self.config.chunksize // 32 , 16 << 10 )
a = (
self.config.encoding_errors if self.config.encoding_errors is not None else """strict"""
)
while True:
a = f.read(self.config.chunksize )
if not batch:
break
# Finish current line
try:
batch += f.readline()
except (AttributeError, io.UnsupportedOperation):
batch += readline(__magic_name__ )
# PyArrow only accepts utf-8 encoded bytes
if self.config.encoding != "utf-8":
a = batch.decode(self.config.encoding , errors=__magic_name__ ).encode("""utf-8""" )
try:
while True:
try:
a = paj.read_json(
io.BytesIO(__magic_name__ ) , read_options=paj.ReadOptions(block_size=__magic_name__ ) )
break
except (pa.ArrowInvalid, pa.ArrowNotImplementedError) as e:
if (
isinstance(__magic_name__ , pa.ArrowInvalid )
and "straddling" not in str(__magic_name__ )
or block_size > len(__magic_name__ )
):
raise
else:
# Increase the block size in case it was too small.
# The block size will be reset for the next file.
logger.debug(
F'Batch of {len(__magic_name__ )} bytes couldn\'t be parsed with block_size={block_size}. Retrying with block_size={block_size * 2}.' )
block_size *= 2
except pa.ArrowInvalid as e:
try:
with open(
__magic_name__ , encoding=self.config.encoding , errors=self.config.encoding_errors ) as f:
a = json.load(__magic_name__ )
except json.JSONDecodeError:
logger.error(F'Failed to read file \'{file}\' with error {type(__magic_name__ )}: {e}' )
raise e
# If possible, parse the file as a list of json objects and exit the loop
if isinstance(__magic_name__ , __magic_name__ ): # list is the only sequence type supported in JSON
try:
a = set().union(*[row.keys() for row in dataset] )
a = {col: [row.get(__magic_name__ ) for row in dataset] for col in keys}
a = pa.Table.from_pydict(__magic_name__ )
except (pa.ArrowInvalid, AttributeError) as e:
logger.error(F'Failed to read file \'{file}\' with error {type(__magic_name__ )}: {e}' )
raise ValueError(F'Not able to read records in the JSON file at {file}.' ) from None
yield file_idx, self._cast_table(__magic_name__ )
break
else:
logger.error(F'Failed to read file \'{file}\' with error {type(__magic_name__ )}: {e}' )
raise ValueError(
F'Not able to read records in the JSON file at {file}. '
F'You should probably indicate the field of the JSON file containing your records. '
F'This JSON file contain the following fields: {str(list(dataset.keys() ) )}. '
F'Select the correct one and provide it as `field=\'XXX\'` to the dataset loading method. ' ) from None
# Uncomment for debugging (will print the Arrow table size and elements)
# logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}")
# logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows)))
yield (file_idx, batch_idx), self._cast_table(__magic_name__ )
batch_idx += 1
| 347 | 1 |
'''simple docstring'''
import argparse
from collections import OrderedDict
from pathlib import Path
import torch
from transformers import (
VisualBertConfig,
VisualBertForMultipleChoice,
VisualBertForPreTraining,
VisualBertForQuestionAnswering,
VisualBertForVisualReasoning,
)
from transformers.utils import logging
logging.set_verbosity_info()
__UpperCAmelCase =logging.get_logger(__name__)
__UpperCAmelCase =[
("bert.bert", "visual_bert"),
("bert.cls", "cls"),
("bert.classifier", "cls"),
("token_type_embeddings_visual", "visual_token_type_embeddings"),
("position_embeddings_visual", "visual_position_embeddings"),
("projection", "visual_projection"),
]
__UpperCAmelCase =[
"nlvr2_coco_pre_trained.th",
"nlvr2_fine_tuned.th",
"nlvr2_pre_trained.th",
"vcr_coco_pre_train.th",
"vcr_fine_tune.th",
"vcr_pre_train.th",
"vqa_coco_pre_trained.th",
"vqa_fine_tuned.th",
"vqa_pre_trained.th",
]
def __lowerCAmelCase ( UpperCamelCase__ ) -> Optional[Any]:
__lowerCamelCase = torch.load(A__ , map_location='''cpu''' )
return sd
def __lowerCAmelCase ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__=rename_keys_prefix ) -> Dict:
__lowerCamelCase = OrderedDict()
__lowerCamelCase = torch.arange(config.max_position_embeddings ).expand((1, -1) )
# detector_d = OrderedDict()
for key in d:
if "detector" in key:
# detector_d[key.replace('detector.','')] = d[key]
continue
__lowerCamelCase = key
for name_pair in rename_keys_prefix:
__lowerCamelCase = new_key.replace(name_pair[0] , name_pair[1] )
__lowerCamelCase = d[key]
if key == "bert.cls.predictions.decoder.weight":
# Old bert code didn't have `decoder.bias`, but was added separately
__lowerCamelCase = new_d["""cls.predictions.bias"""]
return new_d
@torch.no_grad()
def __lowerCAmelCase ( UpperCamelCase__ , UpperCamelCase__ ) -> Union[str, Any]:
assert (
checkpoint_path.split('''/''' )[-1] in ACCEPTABLE_CHECKPOINTS
), f"""The checkpoint provided must be in {ACCEPTABLE_CHECKPOINTS}."""
# Get Config
if "pre" in checkpoint_path:
__lowerCamelCase = """pretraining"""
if "vcr" in checkpoint_path:
__lowerCamelCase = {"""visual_embedding_dim""": 5_12}
elif "vqa_advanced" in checkpoint_path:
__lowerCamelCase = {"""visual_embedding_dim""": 20_48}
elif "vqa" in checkpoint_path:
__lowerCamelCase = {"""visual_embedding_dim""": 20_48}
elif "nlvr" in checkpoint_path:
__lowerCamelCase = {"""visual_embedding_dim""": 10_24}
else:
raise NotImplementedError(f"""No implementation found for `{checkpoint_path}`.""" )
else:
if "vcr" in checkpoint_path:
__lowerCamelCase = {"""visual_embedding_dim""": 5_12}
__lowerCamelCase = """multichoice"""
elif "vqa_advanced" in checkpoint_path:
__lowerCamelCase = {"""visual_embedding_dim""": 20_48}
__lowerCamelCase = """vqa_advanced"""
elif "vqa" in checkpoint_path:
__lowerCamelCase = {"""visual_embedding_dim""": 20_48, """num_labels""": 31_29}
__lowerCamelCase = """vqa"""
elif "nlvr" in checkpoint_path:
__lowerCamelCase = {
"""visual_embedding_dim""": 10_24,
"""num_labels""": 2,
}
__lowerCamelCase = """nlvr"""
__lowerCamelCase = VisualBertConfig(**A__ )
# Load State Dict
__lowerCamelCase = load_state_dict(A__ )
__lowerCamelCase = get_new_dict(A__ , A__ )
if model_type == "pretraining":
__lowerCamelCase = VisualBertForPreTraining(A__ )
elif model_type == "vqa":
__lowerCamelCase = VisualBertForQuestionAnswering(A__ )
elif model_type == "nlvr":
__lowerCamelCase = VisualBertForVisualReasoning(A__ )
elif model_type == "multichoice":
__lowerCamelCase = VisualBertForMultipleChoice(A__ )
model.load_state_dict(A__ )
# Save Checkpoints
Path(A__ ).mkdir(exist_ok=A__ )
model.save_pretrained(A__ )
if __name__ == "__main__":
__UpperCAmelCase =argparse.ArgumentParser()
# Required parameters
parser.add_argument("orig_checkpoint_path", type=str, help="A path to .th on local filesystem.")
parser.add_argument("pytorch_dump_folder_path", type=str, help="Path to the output PyTorch model.")
__UpperCAmelCase =parser.parse_args()
convert_visual_bert_checkpoint(args.orig_checkpoint_path, args.pytorch_dump_folder_path)
| 67 |
'''simple docstring'''
from sklearn.metrics import recall_score
import datasets
__A : Dict = "\nRecall is the fraction of the positive examples that were correctly labeled by the model as positive. It can be computed with the equation:\nRecall = TP / (TP + FN)\nWhere TP is the true positives and FN is the false negatives.\n"
__A : List[Any] = "\nArgs:\n- **predictions** (`list` of `int`): The predicted labels.\n- **references** (`list` of `int`): The ground truth labels.\n- **labels** (`list` of `int`): The set of labels to include when `average` is not set to `binary`, and their order when average is `None`. Labels present in the data can be excluded in this input, for example to calculate a multiclass average ignoring a majority negative class, while labels not present in the data will result in 0 components in a macro average. For multilabel targets, labels are column indices. By default, all labels in y_true and y_pred are used in sorted order. Defaults to None.\n- **pos_label** (`int`): The class label to use as the 'positive class' when calculating the recall. Defaults to `1`.\n- **average** (`string`): This parameter is required for multiclass/multilabel targets. If None, the scores for each class are returned. Otherwise, this determines the type of averaging performed on the data. Defaults to `'binary'`.\n - `'binary'`: Only report results for the class specified by `pos_label`. This is applicable only if the target labels and predictions are binary.\n - `'micro'`: Calculate metrics globally by counting the total true positives, false negatives, and false positives.\n - `'macro'`: Calculate metrics for each label, and find their unweighted mean. This does not take label imbalance into account.\n - `'weighted'`: Calculate metrics for each label, and find their average weighted by support (the number of true instances for each label). This alters `'macro'` to account for label imbalance. Note that it can result in an F-score that is not between precision and recall.\n - `'samples'`: Calculate metrics for each instance, and find their average (only meaningful for multilabel classification).\n- **sample_weight** (`list` of `float`): Sample weights Defaults to `None`.\n- **zero_division** (): Sets the value to return when there is a zero division. Defaults to .\n - `'warn'`: If there is a zero division, the return value is `0`, but warnings are also raised.\n - `0`: If there is a zero division, the return value is `0`.\n - `1`: If there is a zero division, the return value is `1`.\n\nReturns:\n- **recall** (`float`, or `array` of `float`): Either the general recall score, or the recall scores for individual classes, depending on the values input to `labels` and `average`. Minimum possible value is 0. Maximum possible value is 1. A higher recall means that more of the positive examples have been labeled correctly. Therefore, a higher recall is generally considered better.\n\nExamples:\n\n Example 1-A simple example with some errors\n >>> recall_metric = datasets.load_metric('recall')\n >>> results = recall_metric.compute(references=[0, 0, 1, 1, 1], predictions=[0, 1, 0, 1, 1])\n >>> print(results)\n {'recall': 0.6666666666666666}\n\n Example 2-The same example as Example 1, but with `pos_label=0` instead of the default `pos_label=1`.\n >>> recall_metric = datasets.load_metric('recall')\n >>> results = recall_metric.compute(references=[0, 0, 1, 1, 1], predictions=[0, 1, 0, 1, 1], pos_label=0)\n >>> print(results)\n {'recall': 0.5}\n\n Example 3-The same example as Example 1, but with `sample_weight` included.\n >>> recall_metric = datasets.load_metric('recall')\n >>> sample_weight = [0.9, 0.2, 0.9, 0.3, 0.8]\n >>> results = recall_metric.compute(references=[0, 0, 1, 1, 1], predictions=[0, 1, 0, 1, 1], sample_weight=sample_weight)\n >>> print(results)\n {'recall': 0.55}\n\n Example 4-A multiclass example, using different averages.\n >>> recall_metric = datasets.load_metric('recall')\n >>> predictions = [0, 2, 1, 0, 0, 1]\n >>> references = [0, 1, 2, 0, 1, 2]\n >>> results = recall_metric.compute(predictions=predictions, references=references, average='macro')\n >>> print(results)\n {'recall': 0.3333333333333333}\n >>> results = recall_metric.compute(predictions=predictions, references=references, average='micro')\n >>> print(results)\n {'recall': 0.3333333333333333}\n >>> results = recall_metric.compute(predictions=predictions, references=references, average='weighted')\n >>> print(results)\n {'recall': 0.3333333333333333}\n >>> results = recall_metric.compute(predictions=predictions, references=references, average=None)\n >>> print(results)\n {'recall': array([1., 0., 0.])}\n"
__A : str = "\n@article{scikit-learn, title={Scikit-learn: Machine Learning in {P}ython}, author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, journal={Journal of Machine Learning Research}, volume={12}, pages={2825--2830}, year={2011}\n"
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION)
class __snake_case ( datasets.Metric):
"""simple docstring"""
def __lowercase ( self : str ) -> Dict:
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
"""predictions""": datasets.Sequence(datasets.Value("""int32""" ) ),
"""references""": datasets.Sequence(datasets.Value("""int32""" ) ),
}
if self.config_name == """multilabel"""
else {
"""predictions""": datasets.Value("""int32""" ),
"""references""": datasets.Value("""int32""" ),
} ) , reference_urls=["""https://scikit-learn.org/stable/modules/generated/sklearn.metrics.recall_score.html"""] , )
def __lowercase ( self : Tuple , lowerCamelCase : Optional[Any] , lowerCamelCase : str , lowerCamelCase : Optional[Any]=None , lowerCamelCase : Optional[int]=1 , lowerCamelCase : Union[str, Any]="binary" , lowerCamelCase : Any=None , lowerCamelCase : str="warn" , ) -> List[Any]:
lowerCAmelCase_ : Optional[int] = recall_score(
lowerCamelCase , lowerCamelCase , labels=lowerCamelCase , pos_label=lowerCamelCase , average=lowerCamelCase , sample_weight=lowerCamelCase , zero_division=lowerCamelCase , )
return {"recall": float(lowerCamelCase ) if score.size == 1 else score}
| 120 | 0 |
import re
from pathlib import Path
from unittest import TestCase
import pytest
@pytest.mark.integration
class UpperCAmelCase__ ( A__ ):
"""simple docstring"""
def lowercase_ ( self : Any , __lowerCamelCase : str ) -> List[str]:
with open(__lowerCamelCase , encoding='''utf-8''' ) as input_file:
SCREAMING_SNAKE_CASE__ = re.compile(r'''(?!.*\b(?:encoding|rb|w|wb|w+|wb+|ab|ab+)\b)(?<=\s)(open)\((.*)\)''' )
SCREAMING_SNAKE_CASE__ = input_file.read()
SCREAMING_SNAKE_CASE__ = regexp.search(__lowerCamelCase )
return match
def lowercase_ ( self : Optional[Any] , __lowerCamelCase : str ) -> List[str]:
with open(__lowerCamelCase , encoding='''utf-8''' ) as input_file:
SCREAMING_SNAKE_CASE__ = re.compile(r'''#[^\r\n]*print\(|\"[^\r\n]*print\(|\"\"\".*?print\(.*?\"\"\"|(print\()''' , re.DOTALL )
SCREAMING_SNAKE_CASE__ = input_file.read()
# use `re.finditer` to handle the case where the ignored groups would be matched first by `re.search`
SCREAMING_SNAKE_CASE__ = regexp.finditer(__lowerCamelCase )
SCREAMING_SNAKE_CASE__ = [match for match in matches if match is not None and match.group(1 ) is not None]
return matches[0] if matches else None
def lowercase_ ( self : Union[str, Any] ) -> Optional[Any]:
SCREAMING_SNAKE_CASE__ = Path('''./datasets''' )
SCREAMING_SNAKE_CASE__ = list(dataset_paths.absolute().glob('''**/*.py''' ) )
for dataset in dataset_files:
if self._no_encoding_on_file_open(str(__lowerCamelCase ) ):
raise AssertionError(f'''open(...) must use utf-8 encoding in {dataset}''' )
def lowercase_ ( self : Union[str, Any] ) -> Optional[Any]:
SCREAMING_SNAKE_CASE__ = Path('''./datasets''' )
SCREAMING_SNAKE_CASE__ = list(dataset_paths.absolute().glob('''**/*.py''' ) )
for dataset in dataset_files:
if self._no_print_statements(str(__lowerCamelCase ) ):
raise AssertionError(f'''print statement found in {dataset}. Use datasets.logger/logging instead.''' )
| 218 |
import importlib
import json
import os
from collections import OrderedDict
from typing import Dict, Optional, Union
# Build the list of all image processors
from ...configuration_utils import PretrainedConfig
from ...dynamic_module_utils import get_class_from_dynamic_module, resolve_trust_remote_code
from ...image_processing_utils import ImageProcessingMixin
from ...utils import CONFIG_NAME, IMAGE_PROCESSOR_NAME, get_file_from_repo, logging
from .auto_factory import _LazyAutoMapping
from .configuration_auto import (
CONFIG_MAPPING_NAMES,
AutoConfig,
model_type_to_module_name,
replace_list_option_in_docstrings,
)
_SCREAMING_SNAKE_CASE : List[str] = logging.get_logger(__name__)
_SCREAMING_SNAKE_CASE : Tuple = OrderedDict(
[
('''align''', '''EfficientNetImageProcessor'''),
('''beit''', '''BeitImageProcessor'''),
('''bit''', '''BitImageProcessor'''),
('''blip''', '''BlipImageProcessor'''),
('''blip-2''', '''BlipImageProcessor'''),
('''bridgetower''', '''BridgeTowerImageProcessor'''),
('''chinese_clip''', '''ChineseCLIPImageProcessor'''),
('''clip''', '''CLIPImageProcessor'''),
('''clipseg''', '''ViTImageProcessor'''),
('''conditional_detr''', '''ConditionalDetrImageProcessor'''),
('''convnext''', '''ConvNextImageProcessor'''),
('''convnextv2''', '''ConvNextImageProcessor'''),
('''cvt''', '''ConvNextImageProcessor'''),
('''data2vec-vision''', '''BeitImageProcessor'''),
('''deformable_detr''', '''DeformableDetrImageProcessor'''),
('''deit''', '''DeiTImageProcessor'''),
('''deta''', '''DetaImageProcessor'''),
('''detr''', '''DetrImageProcessor'''),
('''dinat''', '''ViTImageProcessor'''),
('''donut-swin''', '''DonutImageProcessor'''),
('''dpt''', '''DPTImageProcessor'''),
('''efficientformer''', '''EfficientFormerImageProcessor'''),
('''efficientnet''', '''EfficientNetImageProcessor'''),
('''flava''', '''FlavaImageProcessor'''),
('''focalnet''', '''BitImageProcessor'''),
('''git''', '''CLIPImageProcessor'''),
('''glpn''', '''GLPNImageProcessor'''),
('''groupvit''', '''CLIPImageProcessor'''),
('''imagegpt''', '''ImageGPTImageProcessor'''),
('''instructblip''', '''BlipImageProcessor'''),
('''layoutlmv2''', '''LayoutLMv2ImageProcessor'''),
('''layoutlmv3''', '''LayoutLMv3ImageProcessor'''),
('''levit''', '''LevitImageProcessor'''),
('''mask2former''', '''Mask2FormerImageProcessor'''),
('''maskformer''', '''MaskFormerImageProcessor'''),
('''mgp-str''', '''ViTImageProcessor'''),
('''mobilenet_v1''', '''MobileNetV1ImageProcessor'''),
('''mobilenet_v2''', '''MobileNetV2ImageProcessor'''),
('''mobilevit''', '''MobileViTImageProcessor'''),
('''mobilevit''', '''MobileViTImageProcessor'''),
('''mobilevitv2''', '''MobileViTImageProcessor'''),
('''nat''', '''ViTImageProcessor'''),
('''oneformer''', '''OneFormerImageProcessor'''),
('''owlvit''', '''OwlViTImageProcessor'''),
('''perceiver''', '''PerceiverImageProcessor'''),
('''pix2struct''', '''Pix2StructImageProcessor'''),
('''poolformer''', '''PoolFormerImageProcessor'''),
('''regnet''', '''ConvNextImageProcessor'''),
('''resnet''', '''ConvNextImageProcessor'''),
('''sam''', '''SamImageProcessor'''),
('''segformer''', '''SegformerImageProcessor'''),
('''swiftformer''', '''ViTImageProcessor'''),
('''swin''', '''ViTImageProcessor'''),
('''swin2sr''', '''Swin2SRImageProcessor'''),
('''swinv2''', '''ViTImageProcessor'''),
('''table-transformer''', '''DetrImageProcessor'''),
('''timesformer''', '''VideoMAEImageProcessor'''),
('''tvlt''', '''TvltImageProcessor'''),
('''upernet''', '''SegformerImageProcessor'''),
('''van''', '''ConvNextImageProcessor'''),
('''videomae''', '''VideoMAEImageProcessor'''),
('''vilt''', '''ViltImageProcessor'''),
('''vit''', '''ViTImageProcessor'''),
('''vit_hybrid''', '''ViTHybridImageProcessor'''),
('''vit_mae''', '''ViTImageProcessor'''),
('''vit_msn''', '''ViTImageProcessor'''),
('''xclip''', '''CLIPImageProcessor'''),
('''yolos''', '''YolosImageProcessor'''),
]
)
_SCREAMING_SNAKE_CASE : str = _LazyAutoMapping(CONFIG_MAPPING_NAMES, IMAGE_PROCESSOR_MAPPING_NAMES)
def UpperCAmelCase_ ( _A ):
'''simple docstring'''
for module_name, extractors in IMAGE_PROCESSOR_MAPPING_NAMES.items():
if class_name in extractors:
SCREAMING_SNAKE_CASE__ = model_type_to_module_name(_A )
SCREAMING_SNAKE_CASE__ = importlib.import_module(F'''.{module_name}''' , '''transformers.models''' )
try:
return getattr(_A , _A )
except AttributeError:
continue
for _, extractor in IMAGE_PROCESSOR_MAPPING._extra_content.items():
if getattr(_A , '''__name__''' , _A ) == class_name:
return extractor
# We did not fine the class, but maybe it's because a dep is missing. In that case, the class will be in the main
# init and we return the proper dummy to get an appropriate error message.
SCREAMING_SNAKE_CASE__ = importlib.import_module('''transformers''' )
if hasattr(_A , _A ):
return getattr(_A , _A )
return None
def UpperCAmelCase_ ( _A , _A = None , _A = False , _A = False , _A = None , _A = None , _A = None , _A = False , **_A , ):
'''simple docstring'''
SCREAMING_SNAKE_CASE__ = get_file_from_repo(
_A , _A , cache_dir=_A , force_download=_A , resume_download=_A , proxies=_A , use_auth_token=_A , revision=_A , local_files_only=_A , )
if resolved_config_file is None:
logger.info(
'''Could not locate the image processor configuration file, will try to use the model config instead.''' )
return {}
with open(_A , encoding='''utf-8''' ) as reader:
return json.load(_A )
class UpperCAmelCase__ :
"""simple docstring"""
def __init__( self : List[Any] ) -> int:
raise EnvironmentError(
'''AutoImageProcessor is designed to be instantiated '''
'''using the `AutoImageProcessor.from_pretrained(pretrained_model_name_or_path)` method.''' )
@classmethod
@replace_list_option_in_docstrings(__lowerCamelCase )
def lowercase_ ( cls : Optional[int] , __lowerCamelCase : Any , **__lowerCamelCase : Tuple ) -> List[str]:
SCREAMING_SNAKE_CASE__ = kwargs.pop('''config''' , __lowerCamelCase )
SCREAMING_SNAKE_CASE__ = kwargs.pop('''trust_remote_code''' , __lowerCamelCase )
SCREAMING_SNAKE_CASE__ = True
SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__ = ImageProcessingMixin.get_image_processor_dict(__lowerCamelCase , **__lowerCamelCase )
SCREAMING_SNAKE_CASE__ = config_dict.get('''image_processor_type''' , __lowerCamelCase )
SCREAMING_SNAKE_CASE__ = None
if "AutoImageProcessor" in config_dict.get('''auto_map''' , {} ):
SCREAMING_SNAKE_CASE__ = config_dict['''auto_map''']['''AutoImageProcessor''']
# If we still don't have the image processor class, check if we're loading from a previous feature extractor config
# and if so, infer the image processor class from there.
if image_processor_class is None and image_processor_auto_map is None:
SCREAMING_SNAKE_CASE__ = config_dict.pop('''feature_extractor_type''' , __lowerCamelCase )
if feature_extractor_class is not None:
logger.warning(
'''Could not find image processor class in the image processor config or the model config. Loading'''
''' based on pattern matching with the model\'s feature extractor configuration.''' )
SCREAMING_SNAKE_CASE__ = feature_extractor_class.replace('''FeatureExtractor''' , '''ImageProcessor''' )
if "AutoFeatureExtractor" in config_dict.get('''auto_map''' , {} ):
SCREAMING_SNAKE_CASE__ = config_dict['''auto_map''']['''AutoFeatureExtractor''']
SCREAMING_SNAKE_CASE__ = feature_extractor_auto_map.replace('''FeatureExtractor''' , '''ImageProcessor''' )
logger.warning(
'''Could not find image processor auto map in the image processor config or the model config.'''
''' Loading based on pattern matching with the model\'s feature extractor configuration.''' )
# If we don't find the image processor class in the image processor config, let's try the model config.
if image_processor_class is None and image_processor_auto_map is None:
if not isinstance(__lowerCamelCase , __lowerCamelCase ):
SCREAMING_SNAKE_CASE__ = AutoConfig.from_pretrained(__lowerCamelCase , **__lowerCamelCase )
# It could be in `config.image_processor_type``
SCREAMING_SNAKE_CASE__ = getattr(__lowerCamelCase , '''image_processor_type''' , __lowerCamelCase )
if hasattr(__lowerCamelCase , '''auto_map''' ) and "AutoImageProcessor" in config.auto_map:
SCREAMING_SNAKE_CASE__ = config.auto_map['''AutoImageProcessor''']
if image_processor_class is not None:
SCREAMING_SNAKE_CASE__ = image_processor_class_from_name(__lowerCamelCase )
SCREAMING_SNAKE_CASE__ = image_processor_auto_map is not None
SCREAMING_SNAKE_CASE__ = image_processor_class is not None or type(__lowerCamelCase ) in IMAGE_PROCESSOR_MAPPING
SCREAMING_SNAKE_CASE__ = resolve_trust_remote_code(
__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase )
if has_remote_code and trust_remote_code:
SCREAMING_SNAKE_CASE__ = get_class_from_dynamic_module(
__lowerCamelCase , __lowerCamelCase , **__lowerCamelCase )
SCREAMING_SNAKE_CASE__ = kwargs.pop('''code_revision''' , __lowerCamelCase )
if os.path.isdir(__lowerCamelCase ):
image_processor_class.register_for_auto_class()
return image_processor_class.from_dict(__lowerCamelCase , **__lowerCamelCase )
elif image_processor_class is not None:
return image_processor_class.from_dict(__lowerCamelCase , **__lowerCamelCase )
# Last try: we use the IMAGE_PROCESSOR_MAPPING.
elif type(__lowerCamelCase ) in IMAGE_PROCESSOR_MAPPING:
SCREAMING_SNAKE_CASE__ = IMAGE_PROCESSOR_MAPPING[type(__lowerCamelCase )]
return image_processor_class.from_dict(__lowerCamelCase , **__lowerCamelCase )
raise ValueError(
f'''Unrecognized image processor in {pretrained_model_name_or_path}. Should have a '''
f'''`image_processor_type` key in its {IMAGE_PROCESSOR_NAME} of {CONFIG_NAME}, or one of the following '''
f'''`model_type` keys in its {CONFIG_NAME}: {", ".join(c for c in IMAGE_PROCESSOR_MAPPING_NAMES.keys() )}''' )
@staticmethod
def lowercase_ ( __lowerCamelCase : Dict , __lowerCamelCase : Optional[int] ) -> str:
IMAGE_PROCESSOR_MAPPING.register(__lowerCamelCase , __lowerCamelCase )
| 218 | 1 |
import copy
from typing import TYPE_CHECKING, Any, Mapping, Optional, OrderedDict
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
from ..auto.configuration_auto import AutoConfig
if TYPE_CHECKING:
from ... import PreTrainedTokenizerBase, TensorType
UpperCAmelCase = logging.get_logger(__name__)
class A_ ( __A ):
'''simple docstring'''
_UpperCamelCase : Any = """vision-encoder-decoder"""
_UpperCamelCase : int = True
def __init__( self , **snake_case ):
super().__init__(**_lowerCamelCase )
if "encoder" not in kwargs or "decoder" not in kwargs:
raise ValueError(
F'''A configuraton of type {self.model_type} cannot be instantiated because '''
F'''not both `encoder` and `decoder` sub-configurations are passed, but only {kwargs}''' )
lowercase = kwargs.pop('encoder' )
lowercase = encoder_config.pop('model_type' )
lowercase = kwargs.pop('decoder' )
lowercase = decoder_config.pop('model_type' )
lowercase = AutoConfig.for_model(_lowerCamelCase , **_lowerCamelCase )
lowercase = AutoConfig.for_model(_lowerCamelCase , **_lowerCamelCase )
lowercase = True
@classmethod
def SCREAMING_SNAKE_CASE__ ( cls , snake_case , snake_case , **snake_case ):
logger.info('Setting `config.is_decoder=True` and `config.add_cross_attention=True` for decoder_config' )
lowercase = True
lowercase = True
return cls(encoder=encoder_config.to_dict() , decoder=decoder_config.to_dict() , **_lowerCamelCase )
def SCREAMING_SNAKE_CASE__ ( self ):
lowercase = copy.deepcopy(self.__dict__ )
lowercase = self.encoder.to_dict()
lowercase = self.decoder.to_dict()
lowercase = self.__class__.model_type
return output
class A_ ( __A ):
'''simple docstring'''
_UpperCamelCase : List[str] = version.parse("""1.11""" )
@property
def SCREAMING_SNAKE_CASE__ ( self ):
return OrderedDict(
[
('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}),
] )
@property
def SCREAMING_SNAKE_CASE__ ( self ):
return 1E-4
@property
def SCREAMING_SNAKE_CASE__ ( self ):
return OrderedDict({'last_hidden_state': {0: 'batch', 1: 'encoder_sequence'}} )
class A_ ( __A ):
'''simple docstring'''
@property
def SCREAMING_SNAKE_CASE__ ( self ):
lowercase = OrderedDict()
lowercase = {0: """batch""", 1: """past_decoder_sequence + sequence"""}
lowercase = {0: """batch""", 1: """past_decoder_sequence + sequence"""}
lowercase = {0: """batch""", 1: """encoder_sequence"""}
return common_inputs
def SCREAMING_SNAKE_CASE__ ( self , snake_case , snake_case = -1 , snake_case = -1 , snake_case = False , snake_case = None , ):
import torch
lowercase = OrderedDict()
lowercase = super().generate_dummy_inputs(
_lowerCamelCase , batch_size=_lowerCamelCase , seq_length=_lowerCamelCase , is_pair=_lowerCamelCase , framework=_lowerCamelCase )
lowercase = dummy_input["""input_ids"""].shape
lowercase = (batch, encoder_sequence, self._config.encoder_hidden_size)
lowercase = dummy_input.pop('input_ids' )
lowercase = dummy_input.pop('attention_mask' )
lowercase = torch.zeros(_lowerCamelCase )
return common_inputs
class A_ ( __A ):
'''simple docstring'''
@property
def SCREAMING_SNAKE_CASE__ ( self ):
pass
def SCREAMING_SNAKE_CASE__ ( self , snake_case ):
return VisionEncoderDecoderEncoderOnnxConfig(_lowerCamelCase )
def SCREAMING_SNAKE_CASE__ ( self , snake_case , snake_case , snake_case = "default" ):
lowercase = encoder_config.hidden_size
return VisionEncoderDecoderDecoderOnnxConfig(_lowerCamelCase , _lowerCamelCase )
| 195 |
'''simple docstring'''
from __future__ import annotations
from math import pi, sqrt
def UpperCAmelCase ( a_ , a_ ) -> tuple:
"""simple docstring"""
if inductance <= 0:
raise ValueError("""Inductance cannot be 0 or negative""" )
elif capacitance <= 0:
raise ValueError("""Capacitance cannot be 0 or negative""" )
else:
return (
"Resonant frequency",
float(1 / (2 * pi * (sqrt(inductance * capacitance ))) ),
)
if __name__ == "__main__":
import doctest
doctest.testmod()
| 344 | 0 |
import subprocess
import sys
from transformers import BertConfig, BertModel, BertTokenizer, pipeline
from transformers.testing_utils import TestCasePlus, require_torch
class UpperCAmelCase__ ( A__ ):
"""simple docstring"""
@require_torch
def lowercase_ ( self : Optional[Any] ) -> Any:
# this test is a bit tricky since TRANSFORMERS_OFFLINE can only be changed before
# `transformers` is loaded, and it's too late for inside pytest - so we are changing it
# while running an external program
# python one-liner segments
# this must be loaded before socket.socket is monkey-patched
SCREAMING_SNAKE_CASE__ = '''
from transformers import BertConfig, BertModel, BertTokenizer, pipeline
'''
SCREAMING_SNAKE_CASE__ = '''
mname = "hf-internal-testing/tiny-random-bert"
BertConfig.from_pretrained(mname)
BertModel.from_pretrained(mname)
BertTokenizer.from_pretrained(mname)
pipe = pipeline(task="fill-mask", model=mname)
print("success")
'''
SCREAMING_SNAKE_CASE__ = '''
import socket
def offline_socket(*args, **kwargs): raise RuntimeError("Offline mode is enabled, we shouldn\'t access internet")
socket.socket = offline_socket
'''
# Force fetching the files so that we can use the cache
SCREAMING_SNAKE_CASE__ = '''hf-internal-testing/tiny-random-bert'''
BertConfig.from_pretrained(__lowerCamelCase )
BertModel.from_pretrained(__lowerCamelCase )
BertTokenizer.from_pretrained(__lowerCamelCase )
pipeline(task='''fill-mask''' , model=__lowerCamelCase )
# baseline - just load from_pretrained with normal network
SCREAMING_SNAKE_CASE__ = [sys.executable, '''-c''', '''\n'''.join([load, run, mock] )]
# should succeed
SCREAMING_SNAKE_CASE__ = self.get_env()
# should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files
SCREAMING_SNAKE_CASE__ = '''1'''
SCREAMING_SNAKE_CASE__ = subprocess.run(__lowerCamelCase , env=__lowerCamelCase , check=__lowerCamelCase , capture_output=__lowerCamelCase )
self.assertEqual(result.returncode , 0 , result.stderr )
self.assertIn('''success''' , result.stdout.decode() )
@require_torch
def lowercase_ ( self : List[str] ) -> Dict:
# python one-liner segments
# this must be loaded before socket.socket is monkey-patched
SCREAMING_SNAKE_CASE__ = '''
from transformers import BertConfig, BertModel, BertTokenizer, pipeline
'''
SCREAMING_SNAKE_CASE__ = '''
mname = "hf-internal-testing/tiny-random-bert"
BertConfig.from_pretrained(mname)
BertModel.from_pretrained(mname)
BertTokenizer.from_pretrained(mname)
pipe = pipeline(task="fill-mask", model=mname)
print("success")
'''
SCREAMING_SNAKE_CASE__ = '''
import socket
def offline_socket(*args, **kwargs): raise socket.error("Faking flaky internet")
socket.socket = offline_socket
'''
# Force fetching the files so that we can use the cache
SCREAMING_SNAKE_CASE__ = '''hf-internal-testing/tiny-random-bert'''
BertConfig.from_pretrained(__lowerCamelCase )
BertModel.from_pretrained(__lowerCamelCase )
BertTokenizer.from_pretrained(__lowerCamelCase )
pipeline(task='''fill-mask''' , model=__lowerCamelCase )
# baseline - just load from_pretrained with normal network
SCREAMING_SNAKE_CASE__ = [sys.executable, '''-c''', '''\n'''.join([load, run, mock] )]
# should succeed
SCREAMING_SNAKE_CASE__ = self.get_env()
SCREAMING_SNAKE_CASE__ = subprocess.run(__lowerCamelCase , env=__lowerCamelCase , check=__lowerCamelCase , capture_output=__lowerCamelCase )
self.assertEqual(result.returncode , 0 , result.stderr )
self.assertIn('''success''' , result.stdout.decode() )
@require_torch
def lowercase_ ( self : Optional[Any] ) -> Dict:
# this test is a bit tricky since TRANSFORMERS_OFFLINE can only be changed before
# `transformers` is loaded, and it's too late for inside pytest - so we are changing it
# while running an external program
# python one-liner segments
# this must be loaded before socket.socket is monkey-patched
SCREAMING_SNAKE_CASE__ = '''
from transformers import BertConfig, BertModel, BertTokenizer
'''
SCREAMING_SNAKE_CASE__ = '''
mname = "hf-internal-testing/tiny-random-bert-sharded"
BertConfig.from_pretrained(mname)
BertModel.from_pretrained(mname)
print("success")
'''
SCREAMING_SNAKE_CASE__ = '''
import socket
def offline_socket(*args, **kwargs): raise ValueError("Offline mode is enabled")
socket.socket = offline_socket
'''
# baseline - just load from_pretrained with normal network
SCREAMING_SNAKE_CASE__ = [sys.executable, '''-c''', '''\n'''.join([load, run] )]
# should succeed
SCREAMING_SNAKE_CASE__ = self.get_env()
SCREAMING_SNAKE_CASE__ = subprocess.run(__lowerCamelCase , env=__lowerCamelCase , check=__lowerCamelCase , capture_output=__lowerCamelCase )
self.assertEqual(result.returncode , 0 , result.stderr )
self.assertIn('''success''' , result.stdout.decode() )
# next emulate no network
SCREAMING_SNAKE_CASE__ = [sys.executable, '''-c''', '''\n'''.join([load, mock, run] )]
# Doesn't fail anymore since the model is in the cache due to other tests, so commenting this.
# env["TRANSFORMERS_OFFLINE"] = "0"
# result = subprocess.run(cmd, env=env, check=False, capture_output=True)
# self.assertEqual(result.returncode, 1, result.stderr)
# should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files
SCREAMING_SNAKE_CASE__ = '''1'''
SCREAMING_SNAKE_CASE__ = subprocess.run(__lowerCamelCase , env=__lowerCamelCase , check=__lowerCamelCase , capture_output=__lowerCamelCase )
self.assertEqual(result.returncode , 0 , result.stderr )
self.assertIn('''success''' , result.stdout.decode() )
@require_torch
def lowercase_ ( self : Tuple ) -> Union[str, Any]:
SCREAMING_SNAKE_CASE__ = '''
from transformers import pipeline
'''
SCREAMING_SNAKE_CASE__ = '''
mname = "hf-internal-testing/tiny-random-bert"
pipe = pipeline(model=mname)
'''
SCREAMING_SNAKE_CASE__ = '''
import socket
def offline_socket(*args, **kwargs): raise socket.error("Offline mode is enabled")
socket.socket = offline_socket
'''
SCREAMING_SNAKE_CASE__ = self.get_env()
SCREAMING_SNAKE_CASE__ = '''1'''
SCREAMING_SNAKE_CASE__ = [sys.executable, '''-c''', '''\n'''.join([load, mock, run] )]
SCREAMING_SNAKE_CASE__ = subprocess.run(__lowerCamelCase , env=__lowerCamelCase , check=__lowerCamelCase , capture_output=__lowerCamelCase )
self.assertEqual(result.returncode , 1 , result.stderr )
self.assertIn(
'''You cannot infer task automatically within `pipeline` when using offline mode''' , result.stderr.decode().replace('''\n''' , '''''' ) , )
@require_torch
def lowercase_ ( self : List[Any] ) -> Any:
SCREAMING_SNAKE_CASE__ = '''
from transformers import AutoModel
'''
SCREAMING_SNAKE_CASE__ = '''
mname = "hf-internal-testing/test_dynamic_model"
AutoModel.from_pretrained(mname, trust_remote_code=True)
print("success")
'''
# baseline - just load from_pretrained with normal network
SCREAMING_SNAKE_CASE__ = [sys.executable, '''-c''', '''\n'''.join([load, run] )]
# should succeed
SCREAMING_SNAKE_CASE__ = self.get_env()
SCREAMING_SNAKE_CASE__ = subprocess.run(__lowerCamelCase , env=__lowerCamelCase , check=__lowerCamelCase , capture_output=__lowerCamelCase )
self.assertEqual(result.returncode , 0 , result.stderr )
self.assertIn('''success''' , result.stdout.decode() )
# should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files
SCREAMING_SNAKE_CASE__ = '''1'''
SCREAMING_SNAKE_CASE__ = subprocess.run(__lowerCamelCase , env=__lowerCamelCase , check=__lowerCamelCase , capture_output=__lowerCamelCase )
self.assertEqual(result.returncode , 0 , result.stderr )
self.assertIn('''success''' , result.stdout.decode() )
| 350 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
_SCREAMING_SNAKE_CASE : Any = logging.get_logger(__name__)
_SCREAMING_SNAKE_CASE : int = {
'''edbeeching/decision-transformer-gym-hopper-medium''': (
'''https://huggingface.co/edbeeching/decision-transformer-gym-hopper-medium/resolve/main/config.json'''
),
# See all DecisionTransformer models at https://huggingface.co/models?filter=decision_transformer
}
class UpperCAmelCase__ ( A__ ):
"""simple docstring"""
a = "decision_transformer"
a = ["past_key_values"]
a = {
"max_position_embeddings": "n_positions",
"num_attention_heads": "n_head",
"num_hidden_layers": "n_layer",
}
def __init__( self : Tuple , __lowerCamelCase : Any=17 , __lowerCamelCase : Any=4 , __lowerCamelCase : List[Any]=128 , __lowerCamelCase : Union[str, Any]=4096 , __lowerCamelCase : Optional[Any]=True , __lowerCamelCase : Any=1 , __lowerCamelCase : List[Any]=1024 , __lowerCamelCase : Any=3 , __lowerCamelCase : Dict=1 , __lowerCamelCase : List[Any]=None , __lowerCamelCase : str="relu" , __lowerCamelCase : Dict=0.1 , __lowerCamelCase : int=0.1 , __lowerCamelCase : List[str]=0.1 , __lowerCamelCase : str=1e-5 , __lowerCamelCase : Optional[Any]=0.02 , __lowerCamelCase : int=True , __lowerCamelCase : Tuple=True , __lowerCamelCase : Optional[int]=5_0256 , __lowerCamelCase : Tuple=5_0256 , __lowerCamelCase : int=False , __lowerCamelCase : Optional[int]=False , **__lowerCamelCase : Tuple , ) -> Optional[Any]:
SCREAMING_SNAKE_CASE__ = state_dim
SCREAMING_SNAKE_CASE__ = act_dim
SCREAMING_SNAKE_CASE__ = hidden_size
SCREAMING_SNAKE_CASE__ = max_ep_len
SCREAMING_SNAKE_CASE__ = action_tanh
SCREAMING_SNAKE_CASE__ = vocab_size
SCREAMING_SNAKE_CASE__ = n_positions
SCREAMING_SNAKE_CASE__ = n_layer
SCREAMING_SNAKE_CASE__ = n_head
SCREAMING_SNAKE_CASE__ = n_inner
SCREAMING_SNAKE_CASE__ = activation_function
SCREAMING_SNAKE_CASE__ = resid_pdrop
SCREAMING_SNAKE_CASE__ = embd_pdrop
SCREAMING_SNAKE_CASE__ = attn_pdrop
SCREAMING_SNAKE_CASE__ = layer_norm_epsilon
SCREAMING_SNAKE_CASE__ = initializer_range
SCREAMING_SNAKE_CASE__ = scale_attn_weights
SCREAMING_SNAKE_CASE__ = use_cache
SCREAMING_SNAKE_CASE__ = scale_attn_by_inverse_layer_idx
SCREAMING_SNAKE_CASE__ = reorder_and_upcast_attn
SCREAMING_SNAKE_CASE__ = bos_token_id
SCREAMING_SNAKE_CASE__ = eos_token_id
super().__init__(bos_token_id=__lowerCamelCase , eos_token_id=__lowerCamelCase , **__lowerCamelCase )
| 218 | 0 |
import numpy as np
import skfuzzy as fuzz
if __name__ == "__main__":
# Create universe of discourse in Python using linspace ()
__a = np.linspace(start=0, stop=7_5, num=7_5, endpoint=True, retstep=False)
# Create two fuzzy sets by defining any membership function
# (trapmf(), gbellmf(), gaussmf(), etc).
__a = [0, 2_5, 5_0]
__a = [2_5, 5_0, 7_5]
__a = fuzz.membership.trimf(X, abca)
__a = fuzz.membership.trimf(X, abca)
# Compute the different operations using inbuilt functions.
__a = np.ones(7_5)
__a = np.zeros((7_5,))
# 1. Union = max(µA(x), µB(x))
__a = fuzz.fuzzy_or(X, young, X, middle_aged)[1]
# 2. Intersection = min(µA(x), µB(x))
__a = fuzz.fuzzy_and(X, young, X, middle_aged)[1]
# 3. Complement (A) = (1- min(µA(x))
__a = fuzz.fuzzy_not(young)
# 4. Difference (A/B) = min(µA(x),(1- µB(x)))
__a = fuzz.fuzzy_and(X, young, X, fuzz.fuzzy_not(middle_aged)[1])[1]
# 5. Algebraic Sum = [µA(x) + µB(x) – (µA(x) * µB(x))]
__a = young + middle_aged - (young * middle_aged)
# 6. Algebraic Product = (µA(x) * µB(x))
__a = young * middle_aged
# 7. Bounded Sum = min[1,(µA(x), µB(x))]
__a = fuzz.fuzzy_and(X, one, X, young + middle_aged)[1]
# 8. Bounded difference = min[0,(µA(x), µB(x))]
__a = fuzz.fuzzy_or(X, zero, X, young - middle_aged)[1]
# max-min composition
# max-product composition
# Plot each set A, set B and each operation result using plot() and subplot().
from matplotlib import pyplot as plt
plt.figure()
plt.subplot(4, 3, 1)
plt.plot(X, young)
plt.title('Young')
plt.grid(True)
plt.subplot(4, 3, 2)
plt.plot(X, middle_aged)
plt.title('Middle aged')
plt.grid(True)
plt.subplot(4, 3, 3)
plt.plot(X, union)
plt.title('union')
plt.grid(True)
plt.subplot(4, 3, 4)
plt.plot(X, intersection)
plt.title('intersection')
plt.grid(True)
plt.subplot(4, 3, 5)
plt.plot(X, complement_a)
plt.title('complement_a')
plt.grid(True)
plt.subplot(4, 3, 6)
plt.plot(X, difference)
plt.title('difference a/b')
plt.grid(True)
plt.subplot(4, 3, 7)
plt.plot(X, alg_sum)
plt.title('alg_sum')
plt.grid(True)
plt.subplot(4, 3, 8)
plt.plot(X, alg_product)
plt.title('alg_product')
plt.grid(True)
plt.subplot(4, 3, 9)
plt.plot(X, bdd_sum)
plt.title('bdd_sum')
plt.grid(True)
plt.subplot(4, 3, 1_0)
plt.plot(X, bdd_difference)
plt.title('bdd_difference')
plt.grid(True)
plt.subplots_adjust(hspace=0.5)
plt.show()
| 30 |
"""simple docstring"""
import os
from typing import List, Optional, Union
from ...image_processing_utils import BatchFeature
from ...image_utils import ImageInput
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy
from ...utils import TensorType
from ..auto import AutoTokenizer
class lowerCAmelCase__ ( lowercase ):
'''simple docstring'''
lowerCamelCase__ = ["""image_processor""", """tokenizer"""]
lowerCamelCase__ = """BlipImageProcessor"""
lowerCamelCase__ = """AutoTokenizer"""
def __init__( self , lowercase , lowercase , lowercase ):
super().__init__(lowercase , lowercase )
# add QFormer tokenizer
_lowerCamelCase : int = qformer_tokenizer
def __call__( self , lowercase = None , lowercase = None , lowercase = True , lowercase = False , lowercase = None , lowercase = None , lowercase = 0 , lowercase = None , lowercase = None , lowercase = False , lowercase = False , lowercase = False , lowercase = False , lowercase = False , lowercase = True , lowercase = None , **lowercase , ):
if images is None and text is None:
raise ValueError('You have to specify at least images or text.' )
_lowerCamelCase : int = BatchFeature()
if text is not None:
_lowerCamelCase : List[str] = self.tokenizer(
text=lowercase , add_special_tokens=lowercase , padding=lowercase , truncation=lowercase , max_length=lowercase , stride=lowercase , pad_to_multiple_of=lowercase , return_attention_mask=lowercase , return_overflowing_tokens=lowercase , return_special_tokens_mask=lowercase , return_offsets_mapping=lowercase , return_token_type_ids=lowercase , return_length=lowercase , verbose=lowercase , return_tensors=lowercase , **lowercase , )
encoding.update(lowercase )
_lowerCamelCase : List[str] = self.qformer_tokenizer(
text=lowercase , add_special_tokens=lowercase , padding=lowercase , truncation=lowercase , max_length=lowercase , stride=lowercase , pad_to_multiple_of=lowercase , return_attention_mask=lowercase , return_overflowing_tokens=lowercase , return_special_tokens_mask=lowercase , return_offsets_mapping=lowercase , return_token_type_ids=lowercase , return_length=lowercase , verbose=lowercase , return_tensors=lowercase , **lowercase , )
_lowerCamelCase : List[Any] = qformer_text_encoding.pop('input_ids' )
_lowerCamelCase : Tuple = qformer_text_encoding.pop('attention_mask' )
if images is not None:
_lowerCamelCase : int = self.image_processor(lowercase , return_tensors=lowercase )
encoding.update(lowercase )
return encoding
def A_ ( self , *lowercase , **lowercase ):
return self.tokenizer.batch_decode(*lowercase , **lowercase )
def A_ ( self , *lowercase , **lowercase ):
return self.tokenizer.decode(*lowercase , **lowercase )
@property
# Copied from transformers.models.blip.processing_blip.BlipProcessor.model_input_names
def A_ ( self ):
_lowerCamelCase : Union[str, Any] = self.tokenizer.model_input_names
_lowerCamelCase : Any = self.image_processor.model_input_names
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
def A_ ( self , lowercase , **lowercase ):
if os.path.isfile(lowercase ):
raise ValueError(F'''Provided path ({save_directory}) should be a directory, not a file''' )
os.makedirs(lowercase , exist_ok=lowercase )
_lowerCamelCase : Optional[Any] = os.path.join(lowercase , 'qformer_tokenizer' )
self.qformer_tokenizer.save_pretrained(lowercase )
return super().save_pretrained(lowercase , **lowercase )
@classmethod
def A_ ( cls , lowercase , **lowercase ):
_lowerCamelCase : Union[str, Any] = AutoTokenizer.from_pretrained(lowercase , subfolder='qformer_tokenizer' )
_lowerCamelCase : Dict = cls._get_arguments_from_pretrained(lowercase , **lowercase )
args.append(lowercase )
return cls(*lowercase ) | 96 | 0 |
import inspect
import unittest
import numpy as np
from transformers import BeitConfig
from transformers.testing_utils import require_flax, require_vision, slow
from transformers.utils import cached_property, is_flax_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor
if is_flax_available():
import jax
from transformers import FlaxBeitForImageClassification, FlaxBeitForMaskedImageModeling, FlaxBeitModel
if is_vision_available():
from PIL import Image
from transformers import BeitImageProcessor
class lowercase ( unittest.TestCase ):
def __init__( self , A_ , A_=100 , A_=13 , A_=30 , A_=2 , A_=3 , A_=True , A_=True , A_=32 , A_=5 , A_=4 , A_=37 , A_="gelu" , A_=0.1 , A_=0.1 , A_=10 , A_=0.02 , A_=3 , ) -> Tuple:
"""simple docstring"""
UpperCamelCase = parent
UpperCamelCase = vocab_size
UpperCamelCase = batch_size
UpperCamelCase = image_size
UpperCamelCase = patch_size
UpperCamelCase = num_channels
UpperCamelCase = is_training
UpperCamelCase = use_labels
UpperCamelCase = hidden_size
UpperCamelCase = num_hidden_layers
UpperCamelCase = num_attention_heads
UpperCamelCase = intermediate_size
UpperCamelCase = hidden_act
UpperCamelCase = hidden_dropout_prob
UpperCamelCase = attention_probs_dropout_prob
UpperCamelCase = type_sequence_label_size
UpperCamelCase = initializer_range
# in BeiT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token)
UpperCamelCase = (image_size // patch_size) ** 2
UpperCamelCase = num_patches + 1
def __UpperCamelCase ( self ) -> Optional[int]:
"""simple docstring"""
UpperCamelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
UpperCamelCase = None
if self.use_labels:
UpperCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size )
UpperCamelCase = BeitConfig(
vocab_size=self.vocab_size , image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=A_ , initializer_range=self.initializer_range , )
return config, pixel_values, labels
def __UpperCamelCase ( self , A_ , A_ , A_ ) -> int:
"""simple docstring"""
UpperCamelCase = FlaxBeitModel(config=A_ )
UpperCamelCase = model(A_ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def __UpperCamelCase ( self , A_ , A_ , A_ ) -> int:
"""simple docstring"""
UpperCamelCase = FlaxBeitForMaskedImageModeling(config=A_ )
UpperCamelCase = model(A_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length - 1, self.vocab_size) )
def __UpperCamelCase ( self , A_ , A_ , A_ ) -> Optional[int]:
"""simple docstring"""
UpperCamelCase = self.type_sequence_label_size
UpperCamelCase = FlaxBeitForImageClassification(config=A_ )
UpperCamelCase = model(A_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
# test greyscale images
UpperCamelCase = 1
UpperCamelCase = FlaxBeitForImageClassification(A_ )
UpperCamelCase = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] )
UpperCamelCase = model(A_ )
def __UpperCamelCase ( self ) -> Optional[Any]:
"""simple docstring"""
UpperCamelCase = self.prepare_config_and_inputs()
(
(
UpperCamelCase
) , (
UpperCamelCase
) , (
UpperCamelCase
) ,
) = config_and_inputs
UpperCamelCase = {'pixel_values': pixel_values}
return config, inputs_dict
@require_flax
class lowercase ( _SCREAMING_SNAKE_CASE , unittest.TestCase ):
__lowercase : int = (
(FlaxBeitModel, FlaxBeitForImageClassification, FlaxBeitForMaskedImageModeling) if is_flax_available() else ()
)
def __UpperCamelCase ( self ) -> None:
"""simple docstring"""
UpperCamelCase = FlaxBeitModelTester(self )
UpperCamelCase = ConfigTester(self , config_class=A_ , has_text_modality=A_ , hidden_size=37 )
def __UpperCamelCase ( self ) -> int:
"""simple docstring"""
self.config_tester.run_common_tests()
def __UpperCamelCase ( self ) -> int:
"""simple docstring"""
UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
UpperCamelCase = model_class(A_ )
UpperCamelCase = inspect.signature(model.__call__ )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
UpperCamelCase = [*signature.parameters.keys()]
UpperCamelCase = ['pixel_values']
self.assertListEqual(arg_names[:1] , A_ )
def __UpperCamelCase ( self ) -> str:
"""simple docstring"""
UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__ ):
UpperCamelCase = self._prepare_for_class(A_ , A_ )
UpperCamelCase = model_class(A_ )
@jax.jit
def model_jitted(A_ , **A_ ):
return model(pixel_values=A_ , **A_ )
with self.subTest('JIT Enabled' ):
UpperCamelCase = model_jitted(**A_ ).to_tuple()
with self.subTest('JIT Disabled' ):
with jax.disable_jit():
UpperCamelCase = model_jitted(**A_ ).to_tuple()
self.assertEqual(len(A_ ) , len(A_ ) )
for jitted_output, output in zip(A_ , A_ ):
self.assertEqual(jitted_output.shape , output.shape )
def __UpperCamelCase ( self ) -> Tuple:
"""simple docstring"""
UpperCamelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*A_ )
def __UpperCamelCase ( self ) -> int:
"""simple docstring"""
UpperCamelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_lm(*A_ )
def __UpperCamelCase ( self ) -> Any:
"""simple docstring"""
UpperCamelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*A_ )
@slow
def __UpperCamelCase ( self ) -> Union[str, Any]:
"""simple docstring"""
for model_class_name in self.all_model_classes:
UpperCamelCase = model_class_name.from_pretrained('microsoft/beit-base-patch16-224' )
UpperCamelCase = model(np.ones((1, 3, 224, 224) ) )
self.assertIsNotNone(A_ )
def A ( ) -> Tuple:
'''simple docstring'''
UpperCamelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' )
return image
@require_vision
@require_flax
class lowercase ( unittest.TestCase ):
@cached_property
def __UpperCamelCase ( self ) -> Dict:
"""simple docstring"""
return BeitImageProcessor.from_pretrained('microsoft/beit-base-patch16-224' ) if is_vision_available() else None
@slow
def __UpperCamelCase ( self ) -> int:
"""simple docstring"""
UpperCamelCase = FlaxBeitForMaskedImageModeling.from_pretrained('microsoft/beit-base-patch16-224-pt22k' )
UpperCamelCase = self.default_image_processor
UpperCamelCase = prepare_img()
UpperCamelCase = image_processor(images=A_ , return_tensors='np' ).pixel_values
# prepare bool_masked_pos
UpperCamelCase = np.ones((1, 196) , dtype=A_ )
# forward pass
UpperCamelCase = model(pixel_values=A_ , bool_masked_pos=A_ )
UpperCamelCase = outputs.logits
# verify the logits
UpperCamelCase = (1, 196, 8_192)
self.assertEqual(logits.shape , A_ )
UpperCamelCase = np.array(
[[-3.2437, 0.5072, -13.9174], [-3.2456, 0.4948, -13.9401], [-3.2033, 0.5121, -13.8550]] )
self.assertTrue(np.allclose(logits[bool_masked_pos][:3, :3] , A_ , atol=1e-2 ) )
@slow
def __UpperCamelCase ( self ) -> List[str]:
"""simple docstring"""
UpperCamelCase = FlaxBeitForImageClassification.from_pretrained('microsoft/beit-base-patch16-224' )
UpperCamelCase = self.default_image_processor
UpperCamelCase = prepare_img()
UpperCamelCase = image_processor(images=A_ , return_tensors='np' )
# forward pass
UpperCamelCase = model(**A_ )
UpperCamelCase = outputs.logits
# verify the logits
UpperCamelCase = (1, 1_000)
self.assertEqual(logits.shape , A_ )
UpperCamelCase = np.array([-1.2385, -1.0987, -1.0108] )
self.assertTrue(np.allclose(logits[0, :3] , A_ , atol=1e-4 ) )
UpperCamelCase = 281
self.assertEqual(logits.argmax(-1 ).item() , A_ )
@slow
def __UpperCamelCase ( self ) -> Optional[Any]:
"""simple docstring"""
UpperCamelCase = FlaxBeitForImageClassification.from_pretrained('microsoft/beit-large-patch16-224-pt22k-ft22k' )
UpperCamelCase = self.default_image_processor
UpperCamelCase = prepare_img()
UpperCamelCase = image_processor(images=A_ , return_tensors='np' )
# forward pass
UpperCamelCase = model(**A_ )
UpperCamelCase = outputs.logits
# verify the logits
UpperCamelCase = (1, 21_841)
self.assertEqual(logits.shape , A_ )
UpperCamelCase = np.array([1.6881, -0.2787, 0.5901] )
self.assertTrue(np.allclose(logits[0, :3] , A_ , atol=1e-4 ) )
UpperCamelCase = 2_396
self.assertEqual(logits.argmax(-1 ).item() , A_ )
| 110 |
import unittest
from parameterized import parameterized
from transformers import LlamaConfig, is_torch_available, set_seed
from transformers.testing_utils import require_torch, slow, torch_device
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import LlamaForCausalLM, LlamaForSequenceClassification, LlamaModel, LlamaTokenizer
class lowercase :
def __init__( self , A_ , A_=13 , A_=7 , A_=True , A_=True , A_=False , A_=True , A_=99 , A_=32 , A_=5 , A_=4 , A_=37 , A_="gelu" , A_=0.1 , A_=0.1 , A_=512 , A_=16 , A_=2 , A_=0.02 , A_=3 , A_=4 , A_=None , ) -> Tuple:
"""simple docstring"""
UpperCamelCase = parent
UpperCamelCase = batch_size
UpperCamelCase = seq_length
UpperCamelCase = is_training
UpperCamelCase = use_input_mask
UpperCamelCase = use_token_type_ids
UpperCamelCase = use_labels
UpperCamelCase = vocab_size
UpperCamelCase = hidden_size
UpperCamelCase = num_hidden_layers
UpperCamelCase = num_attention_heads
UpperCamelCase = intermediate_size
UpperCamelCase = hidden_act
UpperCamelCase = hidden_dropout_prob
UpperCamelCase = attention_probs_dropout_prob
UpperCamelCase = max_position_embeddings
UpperCamelCase = type_vocab_size
UpperCamelCase = type_sequence_label_size
UpperCamelCase = initializer_range
UpperCamelCase = num_labels
UpperCamelCase = num_choices
UpperCamelCase = scope
def __UpperCamelCase ( self ) -> Any:
"""simple docstring"""
UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
UpperCamelCase = None
if self.use_input_mask:
UpperCamelCase = random_attention_mask([self.batch_size, self.seq_length] )
UpperCamelCase = None
if self.use_token_type_ids:
UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
UpperCamelCase = None
UpperCamelCase = None
UpperCamelCase = None
if self.use_labels:
UpperCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size )
UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
UpperCamelCase = ids_tensor([self.batch_size] , self.num_choices )
UpperCamelCase = self.get_config()
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def __UpperCamelCase ( self ) -> List[Any]:
"""simple docstring"""
return LlamaConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=A_ , initializer_range=self.initializer_range , )
def __UpperCamelCase ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ ) -> int:
"""simple docstring"""
UpperCamelCase = LlamaModel(config=A_ )
model.to(A_ )
model.eval()
UpperCamelCase = model(A_ , attention_mask=A_ )
UpperCamelCase = model(A_ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def __UpperCamelCase ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ , ) -> List[Any]:
"""simple docstring"""
UpperCamelCase = True
UpperCamelCase = LlamaModel(A_ )
model.to(A_ )
model.eval()
UpperCamelCase = model(
A_ , attention_mask=A_ , encoder_hidden_states=A_ , encoder_attention_mask=A_ , )
UpperCamelCase = model(
A_ , attention_mask=A_ , encoder_hidden_states=A_ , )
UpperCamelCase = model(A_ , attention_mask=A_ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def __UpperCamelCase ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ , ) -> str:
"""simple docstring"""
UpperCamelCase = LlamaForCausalLM(config=A_ )
model.to(A_ )
model.eval()
UpperCamelCase = model(A_ , attention_mask=A_ , labels=A_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def __UpperCamelCase ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ , ) -> Optional[int]:
"""simple docstring"""
UpperCamelCase = True
UpperCamelCase = True
UpperCamelCase = LlamaForCausalLM(config=A_ )
model.to(A_ )
model.eval()
# first forward pass
UpperCamelCase = model(
A_ , attention_mask=A_ , encoder_hidden_states=A_ , encoder_attention_mask=A_ , use_cache=A_ , )
UpperCamelCase = outputs.past_key_values
# create hypothetical multiple next token and extent to next_input_ids
UpperCamelCase = ids_tensor((self.batch_size, 3) , config.vocab_size )
UpperCamelCase = ids_tensor((self.batch_size, 3) , vocab_size=2 )
# append to next input_ids and
UpperCamelCase = torch.cat([input_ids, next_tokens] , dim=-1 )
UpperCamelCase = torch.cat([input_mask, next_mask] , dim=-1 )
UpperCamelCase = model(
A_ , attention_mask=A_ , encoder_hidden_states=A_ , encoder_attention_mask=A_ , output_hidden_states=A_ , )['hidden_states'][0]
UpperCamelCase = model(
A_ , attention_mask=A_ , encoder_hidden_states=A_ , encoder_attention_mask=A_ , past_key_values=A_ , output_hidden_states=A_ , )['hidden_states'][0]
# select random slice
UpperCamelCase = ids_tensor((1,) , output_from_past.shape[-1] ).item()
UpperCamelCase = output_from_no_past[:, -3:, random_slice_idx].detach()
UpperCamelCase = output_from_past[:, :, random_slice_idx].detach()
self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] )
# test that outputs are equal for slice
self.parent.assertTrue(torch.allclose(A_ , A_ , atol=1e-3 ) )
def __UpperCamelCase ( self ) -> Tuple:
"""simple docstring"""
UpperCamelCase = self.prepare_config_and_inputs()
(
(
UpperCamelCase
) , (
UpperCamelCase
) , (
UpperCamelCase
) , (
UpperCamelCase
) , (
UpperCamelCase
) , (
UpperCamelCase
) , (
UpperCamelCase
) ,
) = config_and_inputs
UpperCamelCase = {'input_ids': input_ids, 'attention_mask': input_mask}
return config, inputs_dict
@require_torch
class lowercase ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , unittest.TestCase ):
__lowercase : str = (LlamaModel, LlamaForCausalLM, LlamaForSequenceClassification) if is_torch_available() else ()
__lowercase : str = (LlamaForCausalLM,) if is_torch_available() else ()
__lowercase : Any = (
{
"feature-extraction": LlamaModel,
"text-classification": LlamaForSequenceClassification,
"text-generation": LlamaForCausalLM,
"zero-shot": LlamaForSequenceClassification,
}
if is_torch_available()
else {}
)
__lowercase : int = False
__lowercase : Optional[int] = False
def __UpperCamelCase ( self ) -> int:
"""simple docstring"""
UpperCamelCase = LlamaModelTester(self )
UpperCamelCase = ConfigTester(self , config_class=A_ , hidden_size=37 )
def __UpperCamelCase ( self ) -> Union[str, Any]:
"""simple docstring"""
self.config_tester.run_common_tests()
def __UpperCamelCase ( self ) -> Optional[int]:
"""simple docstring"""
UpperCamelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*A_ )
def __UpperCamelCase ( self ) -> Optional[Any]:
"""simple docstring"""
UpperCamelCase = self.model_tester.prepare_config_and_inputs()
for type in ["absolute", "relative_key", "relative_key_query"]:
UpperCamelCase = type
self.model_tester.create_and_check_model(*A_ )
def __UpperCamelCase ( self ) -> Union[str, Any]:
"""simple docstring"""
UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common()
UpperCamelCase = 3
UpperCamelCase = input_dict['input_ids']
UpperCamelCase = input_ids.ne(1 ).to(A_ )
UpperCamelCase = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size )
UpperCamelCase = LlamaForSequenceClassification(A_ )
model.to(A_ )
model.eval()
UpperCamelCase = model(A_ , attention_mask=A_ , labels=A_ )
self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) )
def __UpperCamelCase ( self ) -> Dict:
"""simple docstring"""
UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common()
UpperCamelCase = 3
UpperCamelCase = 'single_label_classification'
UpperCamelCase = input_dict['input_ids']
UpperCamelCase = input_ids.ne(1 ).to(A_ )
UpperCamelCase = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size )
UpperCamelCase = LlamaForSequenceClassification(A_ )
model.to(A_ )
model.eval()
UpperCamelCase = model(A_ , attention_mask=A_ , labels=A_ )
self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) )
def __UpperCamelCase ( self ) -> List[str]:
"""simple docstring"""
UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common()
UpperCamelCase = 3
UpperCamelCase = 'multi_label_classification'
UpperCamelCase = input_dict['input_ids']
UpperCamelCase = input_ids.ne(1 ).to(A_ )
UpperCamelCase = ids_tensor(
[self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float )
UpperCamelCase = LlamaForSequenceClassification(A_ )
model.to(A_ )
model.eval()
UpperCamelCase = model(A_ , attention_mask=A_ , labels=A_ )
self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) )
@unittest.skip('LLaMA buffers include complex numbers, which breaks this test' )
def __UpperCamelCase ( self ) -> Union[str, Any]:
"""simple docstring"""
pass
@parameterized.expand([('linear',), ('dynamic',)] )
def __UpperCamelCase ( self , A_ ) -> Optional[int]:
"""simple docstring"""
UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common()
UpperCamelCase = ids_tensor([1, 10] , config.vocab_size )
UpperCamelCase = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size )
set_seed(42 ) # Fixed seed at init time so the two models get the same random weights
UpperCamelCase = LlamaModel(A_ )
original_model.to(A_ )
original_model.eval()
UpperCamelCase = original_model(A_ ).last_hidden_state
UpperCamelCase = original_model(A_ ).last_hidden_state
set_seed(42 ) # Fixed seed at init time so the two models get the same random weights
UpperCamelCase = {'type': scaling_type, 'factor': 10.0}
UpperCamelCase = LlamaModel(A_ )
scaled_model.to(A_ )
scaled_model.eval()
UpperCamelCase = scaled_model(A_ ).last_hidden_state
UpperCamelCase = scaled_model(A_ ).last_hidden_state
# Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original
# maximum sequence length, so the outputs for the short input should match.
if scaling_type == "dynamic":
self.assertTrue(torch.allclose(A_ , A_ , atol=1e-5 ) )
else:
self.assertFalse(torch.allclose(A_ , A_ , atol=1e-5 ) )
# The output should be different for long inputs
self.assertFalse(torch.allclose(A_ , A_ , atol=1e-5 ) )
@require_torch
class lowercase ( unittest.TestCase ):
@unittest.skip('Logits are not exactly the same, once we fix the instabalities somehow, will update!' )
@slow
def __UpperCamelCase ( self ) -> List[Any]:
"""simple docstring"""
UpperCamelCase = [1, 306, 4_658, 278, 6_593, 310, 2_834, 338]
UpperCamelCase = LlamaForCausalLM.from_pretrained('meta-llama/Llama-2-7b-hf' , device_map='auto' )
UpperCamelCase = model(torch.tensor([input_ids] ) )
# Expected mean on dim = -1
UpperCamelCase = torch.tensor([[-6.6550, -4.1227, -4.9859, -3.2406, 0.8262, -3.0033, 1.2964, -3.3699]] )
torch.testing.assert_close(out.mean(-1 ) , A_ , atol=1e-2 , rtol=1e-2 )
# slicing logits[0, 0, 0:30]
# fmt: off
UpperCamelCase = torch.tensor([-12.8281, -7.4453, -0.4639, -8.0625, -7.2500, -8.0000, -6.4883, -7.7695, -7.8438, -7.0312, -6.2188, -7.1328, -1.8496, 1.9961, -8.6250, -6.7227, -12.8281, -6.9492, -7.0742, -7.7852, -7.5820, -7.9062, -6.9375, -7.9805, -8.3438, -8.1562, -8.0469, -7.6250, -7.7422, -7.3398,] )
# fmt: on
torch.testing.assert_close(out[0, 0, :30] , A_ , atol=1e-5 , rtol=1e-5 )
@unittest.skip('Logits are not exactly the same, once we fix the instabalities somehow, will update!' )
@slow
def __UpperCamelCase ( self ) -> List[Any]:
"""simple docstring"""
UpperCamelCase = [1, 306, 4_658, 278, 6_593, 310, 2_834, 338]
UpperCamelCase = LlamaForCausalLM.from_pretrained('meta-llama/Llama-2-13b-hf' , device_map='auto' )
UpperCamelCase = model(torch.tensor(A_ ) )
# Expected mean on dim = -1
UpperCamelCase = torch.tensor([[-2.0622, -1.2794, -1.1638, -0.9788, -1.4603, -1.0238, -1.7893, -1.4411]] )
torch.testing.assert_close(out.mean(-1 ) , A_ , atol=1e-2 , rtol=1e-2 )
# slicing logits[0, 0, 0:30]
# fmt: off
UpperCamelCase = torch.tensor([-8.1406, -8.0547, 2.7461, -1.2344, -0.1448, -1.8262, -1.0020, -1.8154, -1.6895, -1.8516, -2.3574, -0.9277, 3.7598, 6.5742, -1.2998, -0.1177, -8.1406, -2.9688, -2.9199, -3.1699, -3.5254, -2.3555, -2.7988, -3.4141, -2.8262, -4.5195, -3.3379, -3.3164, -2.7832, -3.0273] )
# fmt: on
torch.testing.assert_close(out[0, 0, :30] , A_ , atol=1e-5 , rtol=1e-5 )
@unittest.skip('Logits are not exactly the same, once we fix the instabalities somehow, will update!' )
@slow
def __UpperCamelCase ( self ) -> List[Any]:
"""simple docstring"""
UpperCamelCase = [1, 306, 4_658, 278, 6_593, 310, 2_834, 338]
UpperCamelCase = LlamaForCausalLM.from_pretrained('meta-llama/Llama-2-13b-chat-hf' , device_map='auto' )
UpperCamelCase = model(torch.tensor(A_ ) )
# Expected mean on dim = -1
UpperCamelCase = torch.tensor([[-0.8562, -1.8520, -0.7551, -0.4162, -1.5161, -1.2038, -2.4823, -2.3254]] )
torch.testing.assert_close(out.mean(-1 ) , A_ , atol=1e-2 , rtol=1e-2 )
# slicing logits[0, 0, 0:30]
# fmt: off
UpperCamelCase = torch.tensor([-2.2227, 4.8828, 0.9023, -0.4578, -0.7871, -0.1033, -0.6221, -0.5786, -0.7803, -1.0674, -1.2920, -0.1570, 0.8008, 2.0723, -0.9497, 0.2771, -2.2227, -0.7612, -1.4346, -1.2061, -1.6426, -0.3000, -0.7139, -1.1934, -1.8691, -1.6973, -1.5947, -1.2705, -0.3523, -0.5513] )
# fmt: on
torch.testing.assert_close(out.mean(-1 ) , A_ , atol=1e-2 , rtol=1e-2 )
@unittest.skip(
'Logits are not exactly the same, once we fix the instabalities somehow, will update! Also it is gonna be a `too_slow` test' )
@slow
def __UpperCamelCase ( self ) -> List[str]:
"""simple docstring"""
UpperCamelCase = [1, 306, 4_658, 278, 6_593, 310, 2_834, 338]
UpperCamelCase = LlamaForCausalLM.from_pretrained('meta-llama/Llama-2-70b-hf' , device_map='auto' )
UpperCamelCase = model(torch.tensor(A_ ) )
UpperCamelCase = torch.tensor(
[[-4.2327, -3.3360, -4.6665, -4.7631, -1.8180, -3.4170, -1.4211, -3.1810]] , dtype=torch.floataa )
torch.testing.assert_close(out.mean(-1 ) , A_ , atol=1e-2 , rtol=1e-2 )
# fmt: off
UpperCamelCase = torch.tensor([-9.4922, -3.9551, 1.7998, -5.6758, -5.1055, -5.8984, -4.8320, -6.8086, -6.5391, -5.6172, -5.5820, -5.5352, 1.7881, 3.6289, -6.5117, -3.4785, -9.5000, -6.0352, -6.8125, -6.0195, -6.6836, -5.4727, -6.2812, -6.0391, -7.3398, -7.4297, -7.4844, -6.5820, -5.8789, -5.5312] )
# fmt: on
torch.testing.assert_close(out[0, 0, :30] , A_ , atol=1e-5 , rtol=1e-5 )
@unittest.skip('Model is curently gated' )
@slow
def __UpperCamelCase ( self ) -> Tuple:
"""simple docstring"""
UpperCamelCase = 'Simply put, the theory of relativity states that 1) the laws of physics are the same everywhere in the universe and 2) the passage of time and the length of objects can vary depending on the observer\'s frame of reference.\n\nThe first part of the theory, that the laws of physics are the same everywhere, is known as the "princi'
UpperCamelCase = 'Simply put, the theory of relativity states that '
UpperCamelCase = LlamaTokenizer.from_pretrained('meta-llama/Llama-2-13b-chat-hf' )
UpperCamelCase = tokenizer.encode(A_ , return_tensors='pt' )
UpperCamelCase = LlamaForCausalLM.from_pretrained(
'meta-llama/Llama-2-13b-chat-hf' , device_map='sequential' , use_safetensors=A_ )
# greedy generation outputs
UpperCamelCase = model.generate(A_ , max_new_tokens=64 , top_p=A_ , temperature=1 , do_sample=A_ )
UpperCamelCase = tokenizer.decode(generated_ids[0] , skip_special_tokens=A_ )
self.assertEqual(A_ , A_ )
| 110 | 1 |
"""simple docstring"""
import gc
import unittest
import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModel, XLMRobertaTokenizer
from diffusers import AltDiffusionPipeline, AutoencoderKL, DDIMScheduler, PNDMScheduler, UNetaDConditionModel
from diffusers.pipelines.alt_diffusion.modeling_roberta_series import (
RobertaSeriesConfig,
RobertaSeriesModelWithTransformation,
)
from diffusers.utils import slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS
from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin
enable_full_determinism()
class _lowerCamelCase ( a_ , a_ , a_ , unittest.TestCase ):
_lowerCamelCase :Union[str, Any] = AltDiffusionPipeline
_lowerCamelCase :List[str] = TEXT_TO_IMAGE_PARAMS
_lowerCamelCase :Any = TEXT_TO_IMAGE_BATCH_PARAMS
_lowerCamelCase :Optional[Any] = TEXT_TO_IMAGE_IMAGE_PARAMS
_lowerCamelCase :Union[str, Any] = TEXT_TO_IMAGE_IMAGE_PARAMS
def _lowerCAmelCase ( self : Any ) -> Optional[int]:
"""simple docstring"""
torch.manual_seed(0 )
lowerCAmelCase__ : str = UNetaDConditionModel(
block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , )
lowerCAmelCase__ : List[str] = DDIMScheduler(
beta_start=0.0_0085 , beta_end=0.012 , beta_schedule="""scaled_linear""" , clip_sample=UpperCamelCase , set_alpha_to_one=UpperCamelCase , )
torch.manual_seed(0 )
lowerCAmelCase__ : List[str] = AutoencoderKL(
block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , )
# TODO: address the non-deterministic text encoder (fails for save-load tests)
# torch.manual_seed(0)
# text_encoder_config = RobertaSeriesConfig(
# hidden_size=32,
# project_dim=32,
# intermediate_size=37,
# layer_norm_eps=1e-05,
# num_attention_heads=4,
# num_hidden_layers=5,
# vocab_size=5002,
# )
# text_encoder = RobertaSeriesModelWithTransformation(text_encoder_config)
torch.manual_seed(0 )
lowerCAmelCase__ : Optional[int] = CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=32 , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1E-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=50_02 , )
lowerCAmelCase__ : Union[str, Any] = CLIPTextModel(UpperCamelCase )
lowerCAmelCase__ : Optional[int] = XLMRobertaTokenizer.from_pretrained("""hf-internal-testing/tiny-xlm-roberta""" )
lowerCAmelCase__ : List[str] = 77
lowerCAmelCase__ : Any = {
"""unet""": unet,
"""scheduler""": scheduler,
"""vae""": vae,
"""text_encoder""": text_encoder,
"""tokenizer""": tokenizer,
"""safety_checker""": None,
"""feature_extractor""": None,
}
return components
def _lowerCAmelCase ( self : Dict , UpperCamelCase : int , UpperCamelCase : Any=0 ) -> Any:
"""simple docstring"""
if str(UpperCamelCase ).startswith("""mps""" ):
lowerCAmelCase__ : Optional[int] = torch.manual_seed(UpperCamelCase )
else:
lowerCAmelCase__ : Any = torch.Generator(device=UpperCamelCase ).manual_seed(UpperCamelCase )
lowerCAmelCase__ : Union[str, Any] = {
"""prompt""": """A painting of a squirrel eating a burger""",
"""generator""": generator,
"""num_inference_steps""": 2,
"""guidance_scale""": 6.0,
"""output_type""": """numpy""",
}
return inputs
def _lowerCAmelCase ( self : Optional[Any] ) -> int:
"""simple docstring"""
super().test_attention_slicing_forward_pass(expected_max_diff=3E-3 )
def _lowerCAmelCase ( self : Union[str, Any] ) -> List[Any]:
"""simple docstring"""
super().test_inference_batch_single_identical(expected_max_diff=3E-3 )
def _lowerCAmelCase ( self : List[Any] ) -> str:
"""simple docstring"""
lowerCAmelCase__ : Any = """cpu""" # ensure determinism for the device-dependent torch.Generator
lowerCAmelCase__ : List[Any] = self.get_dummy_components()
torch.manual_seed(0 )
lowerCAmelCase__ : Optional[Any] = RobertaSeriesConfig(
hidden_size=32 , project_dim=32 , intermediate_size=37 , layer_norm_eps=1E-0_5 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=50_02 , )
# TODO: remove after fixing the non-deterministic text encoder
lowerCAmelCase__ : Optional[int] = RobertaSeriesModelWithTransformation(UpperCamelCase )
lowerCAmelCase__ : Tuple = text_encoder
lowerCAmelCase__ : Dict = AltDiffusionPipeline(**UpperCamelCase )
lowerCAmelCase__ : Tuple = alt_pipe.to(UpperCamelCase )
alt_pipe.set_progress_bar_config(disable=UpperCamelCase )
lowerCAmelCase__ : List[str] = self.get_dummy_inputs(UpperCamelCase )
lowerCAmelCase__ : List[Any] = """A photo of an astronaut"""
lowerCAmelCase__ : int = alt_pipe(**UpperCamelCase )
lowerCAmelCase__ : Dict = output.images
lowerCAmelCase__ : Dict = image[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
lowerCAmelCase__ : List[str] = np.array(
[0.574_8162, 0.6044_7145, 0.4882_1217, 0.5010_0636, 0.543_1185, 0.4576_3683, 0.4965_7696, 0.4813_2733, 0.4757_3093] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
def _lowerCAmelCase ( self : Dict ) -> List[Any]:
"""simple docstring"""
lowerCAmelCase__ : int = """cpu""" # ensure determinism for the device-dependent torch.Generator
lowerCAmelCase__ : str = self.get_dummy_components()
lowerCAmelCase__ : Dict = PNDMScheduler(skip_prk_steps=UpperCamelCase )
torch.manual_seed(0 )
lowerCAmelCase__ : List[Any] = RobertaSeriesConfig(
hidden_size=32 , project_dim=32 , intermediate_size=37 , layer_norm_eps=1E-0_5 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=50_02 , )
# TODO: remove after fixing the non-deterministic text encoder
lowerCAmelCase__ : Optional[Any] = RobertaSeriesModelWithTransformation(UpperCamelCase )
lowerCAmelCase__ : List[str] = text_encoder
lowerCAmelCase__ : Dict = AltDiffusionPipeline(**UpperCamelCase )
lowerCAmelCase__ : Optional[Any] = alt_pipe.to(UpperCamelCase )
alt_pipe.set_progress_bar_config(disable=UpperCamelCase )
lowerCAmelCase__ : Dict = self.get_dummy_inputs(UpperCamelCase )
lowerCAmelCase__ : List[str] = alt_pipe(**UpperCamelCase )
lowerCAmelCase__ : int = output.images
lowerCAmelCase__ : Union[str, Any] = image[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
lowerCAmelCase__ : Union[str, Any] = np.array(
[0.5160_5093, 0.570_7241, 0.4736_5507, 0.5057_8886, 0.563_3877, 0.464_2503, 0.518_2081, 0.4876_3484, 0.4908_4237] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
@slow
@require_torch_gpu
class _lowerCamelCase ( unittest.TestCase ):
def _lowerCAmelCase ( self : str ) -> Tuple:
"""simple docstring"""
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def _lowerCAmelCase ( self : List[str] ) -> str:
"""simple docstring"""
# make sure here that pndm scheduler skips prk
lowerCAmelCase__ : str = AltDiffusionPipeline.from_pretrained("""BAAI/AltDiffusion""" , safety_checker=UpperCamelCase )
lowerCAmelCase__ : Optional[Any] = alt_pipe.to(UpperCamelCase )
alt_pipe.set_progress_bar_config(disable=UpperCamelCase )
lowerCAmelCase__ : Union[str, Any] = """A painting of a squirrel eating a burger"""
lowerCAmelCase__ : Optional[Any] = torch.manual_seed(0 )
lowerCAmelCase__ : Union[str, Any] = alt_pipe([prompt] , generator=UpperCamelCase , guidance_scale=6.0 , num_inference_steps=20 , output_type="""np""" )
lowerCAmelCase__ : int = output.images
lowerCAmelCase__ : int = image[0, -3:, -3:, -1]
assert image.shape == (1, 5_12, 5_12, 3)
lowerCAmelCase__ : Tuple = np.array([0.1010, 0.0800, 0.0794, 0.0885, 0.0843, 0.0762, 0.0769, 0.0729, 0.0586] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
def _lowerCAmelCase ( self : int ) -> List[str]:
"""simple docstring"""
lowerCAmelCase__ : List[Any] = DDIMScheduler.from_pretrained("""BAAI/AltDiffusion""" , subfolder="""scheduler""" )
lowerCAmelCase__ : int = AltDiffusionPipeline.from_pretrained("""BAAI/AltDiffusion""" , scheduler=UpperCamelCase , safety_checker=UpperCamelCase )
lowerCAmelCase__ : Dict = alt_pipe.to(UpperCamelCase )
alt_pipe.set_progress_bar_config(disable=UpperCamelCase )
lowerCAmelCase__ : Any = """A painting of a squirrel eating a burger"""
lowerCAmelCase__ : Union[str, Any] = torch.manual_seed(0 )
lowerCAmelCase__ : str = alt_pipe([prompt] , generator=UpperCamelCase , num_inference_steps=2 , output_type="""numpy""" )
lowerCAmelCase__ : Optional[int] = output.images
lowerCAmelCase__ : List[Any] = image[0, -3:, -3:, -1]
assert image.shape == (1, 5_12, 5_12, 3)
lowerCAmelCase__ : Any = np.array([0.4019, 0.4052, 0.3810, 0.4119, 0.3916, 0.3982, 0.4651, 0.4195, 0.5323] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
| 242 |
"""simple docstring"""
from itertools import product
def lowercase_ ( __UpperCAmelCase , __UpperCAmelCase ) -> list[int]:
lowerCAmelCase__ : Union[str, Any] = sides_number
lowerCAmelCase__ : Optional[int] = max_face_number * dice_number
lowerCAmelCase__ : List[str] = [0] * (max_total + 1)
lowerCAmelCase__ : Union[str, Any] = 1
lowerCAmelCase__ : Optional[int] = range(__UpperCAmelCase , max_face_number + 1 )
for dice_numbers in product(__UpperCAmelCase , repeat=__UpperCAmelCase ):
lowerCAmelCase__ : str = sum(__UpperCAmelCase )
totals_frequencies[total] += 1
return totals_frequencies
def lowercase_ ( ) -> float:
lowerCAmelCase__ : Union[str, Any] = total_frequency_distribution(
sides_number=4 , dice_number=9 )
lowerCAmelCase__ : Tuple = total_frequency_distribution(
sides_number=6 , dice_number=6 )
lowerCAmelCase__ : str = 0
lowerCAmelCase__ : int = 9
lowerCAmelCase__ : Tuple = 4 * 9
lowerCAmelCase__ : Optional[int] = 6
for peter_total in range(__UpperCAmelCase , max_peter_total + 1 ):
peter_wins_count += peter_totals_frequencies[peter_total] * sum(
colin_totals_frequencies[min_colin_total:peter_total] )
lowerCAmelCase__ : Tuple = (4**9) * (6**6)
lowerCAmelCase__ : Union[str, Any] = peter_wins_count / total_games_number
lowerCAmelCase__ : Optional[int] = round(__UpperCAmelCase , ndigits=7 )
return rounded_peter_win_probability
if __name__ == "__main__":
print(f"""{solution() = }""")
| 242 | 1 |
from manim import *
class lowerCAmelCase_ ( lowerCamelCase__ ):
def snake_case_ ( self ) -> int:
UpperCamelCase : Dict = Rectangle(height=0.5, width=0.5 )
UpperCamelCase : Union[str, Any] = Rectangle(height=0.46, width=0.46 ).set_stroke(width=0 )
UpperCamelCase : Optional[Any] = [mem.copy() for i in range(6 )]
UpperCamelCase : Dict = [mem.copy() for i in range(6 )]
UpperCamelCase : List[Any] = VGroup(*__snake_case ).arrange(__snake_case, buff=0 )
UpperCamelCase : int = VGroup(*__snake_case ).arrange(__snake_case, buff=0 )
UpperCamelCase : Union[str, Any] = VGroup(__snake_case, __snake_case ).arrange(__snake_case, buff=0 )
UpperCamelCase : Any = Text('CPU', font_size=24 )
UpperCamelCase : int = Group(__snake_case, __snake_case ).arrange(__snake_case, buff=0.5, aligned_edge=__snake_case )
cpu.move_to([-2.5, -0.5, 0] )
self.add(__snake_case )
UpperCamelCase : int = [mem.copy() for i in range(4 )]
UpperCamelCase : str = VGroup(*__snake_case ).arrange(__snake_case, buff=0 )
UpperCamelCase : List[Any] = Text('GPU', font_size=24 )
UpperCamelCase : Optional[int] = Group(__snake_case, __snake_case ).arrange(__snake_case, buff=0.5, aligned_edge=__snake_case )
gpu.move_to([-1, -1, 0] )
self.add(__snake_case )
UpperCamelCase : List[str] = [mem.copy() for i in range(6 )]
UpperCamelCase : List[str] = VGroup(*__snake_case ).arrange(__snake_case, buff=0 )
UpperCamelCase : int = Text('Model', font_size=24 )
UpperCamelCase : Dict = Group(__snake_case, __snake_case ).arrange(__snake_case, buff=0.5, aligned_edge=__snake_case )
model.move_to([3, -1.0, 0] )
self.add(__snake_case )
UpperCamelCase : Optional[Any] = []
for i, rect in enumerate(__snake_case ):
rect.set_stroke(__snake_case )
# target = fill.copy().set_fill(YELLOW, opacity=0.7)
# target.move_to(rect)
# self.add(target)
UpperCamelCase : Optional[int] = Rectangle(height=0.46 / 4, width=0.46 / 3 ).set_stroke(width=0.0 ).set_fill(__snake_case, opacity=0.7 )
if i == 0:
cpu_target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ), buff=0.02, direction=__snake_case )
cpu_target.set_x(cpu_target.get_x() + 0.1 )
elif i == 3:
cpu_target.next_to(cpu_targs[0], direction=__snake_case, buff=0.0 )
else:
cpu_target.next_to(cpu_targs[i - 1], direction=__snake_case, buff=0.0 )
self.add(__snake_case )
cpu_targs.append(__snake_case )
UpperCamelCase : List[Any] = [mem.copy() for i in range(6 )]
UpperCamelCase : Optional[int] = VGroup(*__snake_case ).arrange(__snake_case, buff=0 )
UpperCamelCase : Tuple = Text('Loaded Checkpoint', font_size=24 )
UpperCamelCase : str = Group(__snake_case, __snake_case ).arrange(__snake_case, aligned_edge=__snake_case, buff=0.4 )
checkpoint.move_to([3, 0.5, 0] )
UpperCamelCase : int = Square(side_length=2.2 )
key.move_to([-5, 2, 0] )
UpperCamelCase : Union[str, Any] = MarkupText(
F"""<b>Key:</b>\n\n<span fgcolor='{YELLOW}'>●</span> Empty Model""", font_size=18, )
key_text.move_to([-5, 2.4, 0] )
self.add(__snake_case, __snake_case )
UpperCamelCase : Tuple = MarkupText(
F"""<span fgcolor='{BLUE}'>●</span> Checkpoint""", font_size=18, )
blue_text.next_to(__snake_case, DOWN * 2.4, aligned_edge=key_text.get_left() )
UpperCamelCase : Optional[int] = MarkupText(
F"""Next, a <i><span fgcolor=\"{BLUE}\">second</span></i> model is loaded into memory,\nwith the weights of a <span fgcolor=\"{BLUE}\">single shard</span>.""", font_size=24, )
step_a.move_to([2, 2, 0] )
self.play(Write(__snake_case ), Write(__snake_case ) )
self.play(Write(__snake_case, run_time=1 ), Create(__snake_case, run_time=1 ) )
UpperCamelCase : List[str] = []
UpperCamelCase : Dict = []
for i, rect in enumerate(__snake_case ):
UpperCamelCase : Optional[int] = fill.copy().set_fill(__snake_case, opacity=0.7 )
target.move_to(__snake_case )
first_animations.append(GrowFromCenter(__snake_case, run_time=1 ) )
UpperCamelCase : List[Any] = target.copy()
cpu_target.generate_target()
if i < 5:
cpu_target.target.move_to(cpu_left_col_base[i + 1] )
else:
cpu_target.target.move_to(cpu_right_col_base[i - 5] )
second_animations.append(MoveToTarget(__snake_case, run_time=1.5 ) )
self.play(*__snake_case )
self.play(*__snake_case )
self.wait()
| 358 |
import unittest
import numpy as np
from transformers.testing_utils import require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import ViTImageProcessor
class lowerCAmelCase_ ( unittest.TestCase ):
def __init__( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_=13, SCREAMING_SNAKE_CASE_=3, SCREAMING_SNAKE_CASE_=224, SCREAMING_SNAKE_CASE_=30, SCREAMING_SNAKE_CASE_=400, SCREAMING_SNAKE_CASE_=True, SCREAMING_SNAKE_CASE_=None, SCREAMING_SNAKE_CASE_=True, SCREAMING_SNAKE_CASE_=[0.5, 0.5, 0.5], SCREAMING_SNAKE_CASE_=[0.5, 0.5, 0.5], ) -> List[str]:
UpperCamelCase : Optional[int] = size if size is not None else {'height': 18, 'width': 18}
UpperCamelCase : List[Any] = parent
UpperCamelCase : List[Any] = batch_size
UpperCamelCase : int = num_channels
UpperCamelCase : int = image_size
UpperCamelCase : List[Any] = min_resolution
UpperCamelCase : int = max_resolution
UpperCamelCase : Any = do_resize
UpperCamelCase : Optional[int] = size
UpperCamelCase : List[str] = do_normalize
UpperCamelCase : Optional[Any] = image_mean
UpperCamelCase : Tuple = image_std
def snake_case_ ( self ) -> List[Any]:
return {
"image_mean": self.image_mean,
"image_std": self.image_std,
"do_normalize": self.do_normalize,
"do_resize": self.do_resize,
"size": self.size,
}
@require_torch
@require_vision
class lowerCAmelCase_ ( a__ , unittest.TestCase ):
UpperCAmelCase__ : Optional[Any] = ViTImageProcessor if is_vision_available() else None
def snake_case_ ( self ) -> Any:
UpperCamelCase : Dict = EfficientFormerImageProcessorTester(self )
@property
def snake_case_ ( self ) -> List[Any]:
return self.image_proc_tester.prepare_image_processor_dict()
def snake_case_ ( self ) -> Optional[int]:
UpperCamelCase : Optional[int] = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_, 'image_mean' ) )
self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_, 'image_std' ) )
self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_, 'do_normalize' ) )
self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_, 'do_resize' ) )
self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_, 'size' ) )
def snake_case_ ( self ) -> Any:
pass
def snake_case_ ( self ) -> int:
# Initialize image_processor
UpperCamelCase : Union[str, Any] = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
UpperCamelCase : List[str] = prepare_image_inputs(self.image_proc_tester, equal_resolution=SCREAMING_SNAKE_CASE_ )
for image in image_inputs:
self.assertIsInstance(SCREAMING_SNAKE_CASE_, Image.Image )
# Test not batched input
UpperCamelCase : str = image_processor(image_inputs[0], return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape, (
1,
self.image_proc_tester.num_channels,
self.image_proc_tester.size['height'],
self.image_proc_tester.size['width'],
), )
# Test batched
UpperCamelCase : Optional[Any] = image_processor(SCREAMING_SNAKE_CASE_, return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape, (
self.image_proc_tester.batch_size,
self.image_proc_tester.num_channels,
self.image_proc_tester.size['height'],
self.image_proc_tester.size['width'],
), )
def snake_case_ ( self ) -> str:
# Initialize image_processor
UpperCamelCase : List[str] = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
UpperCamelCase : Union[str, Any] = prepare_image_inputs(self.image_proc_tester, equal_resolution=SCREAMING_SNAKE_CASE_, numpify=SCREAMING_SNAKE_CASE_ )
for image in image_inputs:
self.assertIsInstance(SCREAMING_SNAKE_CASE_, np.ndarray )
# Test not batched input
UpperCamelCase : Dict = image_processor(image_inputs[0], return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape, (
1,
self.image_proc_tester.num_channels,
self.image_proc_tester.size['height'],
self.image_proc_tester.size['width'],
), )
# Test batched
UpperCamelCase : Dict = image_processor(SCREAMING_SNAKE_CASE_, return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape, (
self.image_proc_tester.batch_size,
self.image_proc_tester.num_channels,
self.image_proc_tester.size['height'],
self.image_proc_tester.size['width'],
), )
def snake_case_ ( self ) -> Tuple:
# Initialize image_processor
UpperCamelCase : Any = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
UpperCamelCase : int = prepare_image_inputs(self.image_proc_tester, equal_resolution=SCREAMING_SNAKE_CASE_, torchify=SCREAMING_SNAKE_CASE_ )
for image in image_inputs:
self.assertIsInstance(SCREAMING_SNAKE_CASE_, torch.Tensor )
# Test not batched input
UpperCamelCase : Optional[int] = image_processor(image_inputs[0], return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape, (
1,
self.image_proc_tester.num_channels,
self.image_proc_tester.size['height'],
self.image_proc_tester.size['width'],
), )
# Test batched
UpperCamelCase : int = image_processor(SCREAMING_SNAKE_CASE_, return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape, (
self.image_proc_tester.batch_size,
self.image_proc_tester.num_channels,
self.image_proc_tester.size['height'],
self.image_proc_tester.size['width'],
), )
| 103 | 0 |
'''simple docstring'''
from __future__ import annotations
from PIL import Image
# Define glider example
__snake_case =[
[0, 1, 0, 0, 0, 0, 0, 0],
[0, 0, 1, 0, 0, 0, 0, 0],
[1, 1, 1, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0],
]
# Define blinker example
__snake_case =[[0, 1, 0], [0, 1, 0], [0, 1, 0]]
def a_ ( lowerCamelCase : list[list[int]] ):
lowerCAmelCase = []
for i in range(len(lowerCamelCase ) ):
lowerCAmelCase = []
for j in range(len(cells[i] ) ):
# Get the number of live neighbours
lowerCAmelCase = 0
if i > 0 and j > 0:
neighbour_count += cells[i - 1][j - 1]
if i > 0:
neighbour_count += cells[i - 1][j]
if i > 0 and j < len(cells[i] ) - 1:
neighbour_count += cells[i - 1][j + 1]
if j > 0:
neighbour_count += cells[i][j - 1]
if j < len(cells[i] ) - 1:
neighbour_count += cells[i][j + 1]
if i < len(lowerCamelCase ) - 1 and j > 0:
neighbour_count += cells[i + 1][j - 1]
if i < len(lowerCamelCase ) - 1:
neighbour_count += cells[i + 1][j]
if i < len(lowerCamelCase ) - 1 and j < len(cells[i] ) - 1:
neighbour_count += cells[i + 1][j + 1]
# Rules of the game of life (excerpt from Wikipedia):
# 1. Any live cell with two or three live neighbours survives.
# 2. Any dead cell with three live neighbours becomes a live cell.
# 3. All other live cells die in the next generation.
# Similarly, all other dead cells stay dead.
lowerCAmelCase = cells[i][j] == 1
if (
(alive and 2 <= neighbour_count <= 3)
or not alive
and neighbour_count == 3
):
next_generation_row.append(1 )
else:
next_generation_row.append(0 )
next_generation.append(lowerCamelCase )
return next_generation
def a_ ( lowerCamelCase : list[list[int]] , lowerCamelCase : int ):
lowerCAmelCase = []
for _ in range(lowerCamelCase ):
# Create output image
lowerCAmelCase = Image.new('RGB' , (len(cells[0] ), len(lowerCamelCase )) )
lowerCAmelCase = img.load()
# Save cells to image
for x in range(len(lowerCamelCase ) ):
for y in range(len(cells[0] ) ):
lowerCAmelCase = 255 - cells[y][x] * 255
lowerCAmelCase = (colour, colour, colour)
# Save image
images.append(lowerCamelCase )
lowerCAmelCase = new_generation(lowerCamelCase )
return images
if __name__ == "__main__":
__snake_case =generate_images(GLIDER, 16)
images[0].save("""out.gif""", save_all=True, append_images=images[1:])
| 4 |
"""simple docstring"""
from __future__ import annotations
import unittest
from transformers import is_tf_available
from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow
if is_tf_available():
import tensorflow as tf
from transformers import AutoTokenizer, TFAutoModelForSeqaSeqLM
@require_tf
@require_sentencepiece
@require_tokenizers
class a__ ( unittest.TestCase ):
@slow
def lowercase ( self : List[Any] ) -> List[Any]:
lowercase : Tuple = TFAutoModelForSeqaSeqLM.from_pretrained('google/mt5-small' )
lowercase : Dict = AutoTokenizer.from_pretrained('google/mt5-small' )
lowercase : List[Any] = tokenizer('Hello there', return_tensors='tf' ).input_ids
lowercase : Any = tokenizer('Hi I am', return_tensors='tf' ).input_ids
lowercase : Dict = model(lowerCAmelCase, labels=lowerCAmelCase ).loss
lowercase : Optional[int] = -tf.math.reduce_mean(lowerCAmelCase ).numpy()
lowercase : Tuple = -21.22_8168
self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 2e-4 )
| 255 | 0 |
import warnings
from .generation import TFGenerationMixin
class lowerCamelCase__ ( lowerCamelCase__):
'''simple docstring'''
warnings.warn(
"""Importing `TFGenerationMixin` from `src/transformers/generation_tf_utils.py` is deprecated and will """
"""be removed in Transformers v5. Import as `from transformers import TFGenerationMixin` instead.""" , lowerCamelCase__ , )
| 350 |
def lowerCAmelCase__ ( lowerCamelCase_ : int ,lowerCamelCase_ : int):
'''simple docstring'''
while b:
lowerCAmelCase__ , lowerCAmelCase__ : Optional[Any] = b, a % b
return a
def lowerCAmelCase__ ( lowerCamelCase_ : int ,lowerCamelCase_ : int):
'''simple docstring'''
return a if b == 0 else euclidean_gcd_recursive(lowerCamelCase_ ,a % b)
def lowerCAmelCase__ ( ):
'''simple docstring'''
print(f"""euclidean_gcd(3, 5) = {euclidean_gcd(3 ,5)}""")
print(f"""euclidean_gcd(5, 3) = {euclidean_gcd(5 ,3)}""")
print(f"""euclidean_gcd(1, 3) = {euclidean_gcd(1 ,3)}""")
print(f"""euclidean_gcd(3, 6) = {euclidean_gcd(3 ,6)}""")
print(f"""euclidean_gcd(6, 3) = {euclidean_gcd(6 ,3)}""")
print(f"""euclidean_gcd_recursive(3, 5) = {euclidean_gcd_recursive(3 ,5)}""")
print(f"""euclidean_gcd_recursive(5, 3) = {euclidean_gcd_recursive(5 ,3)}""")
print(f"""euclidean_gcd_recursive(1, 3) = {euclidean_gcd_recursive(1 ,3)}""")
print(f"""euclidean_gcd_recursive(3, 6) = {euclidean_gcd_recursive(3 ,6)}""")
print(f"""euclidean_gcd_recursive(6, 3) = {euclidean_gcd_recursive(6 ,3)}""")
if __name__ == "__main__":
main()
| 94 | 0 |
from ....configuration_utils import PretrainedConfig
from ....utils import logging
A__ = logging.get_logger(__name__)
A__ = {
"""speechbrain/m-ctc-t-large""": """https://huggingface.co/speechbrain/m-ctc-t-large/resolve/main/config.json""",
# See all M-CTC-T models at https://huggingface.co/models?filter=mctct
}
class __lowerCAmelCase ( lowerCamelCase__ ):
__lowerCamelCase = '''mctct'''
def __init__( self , _snake_case=8065 , _snake_case=1536 , _snake_case=36 , _snake_case=6144 , _snake_case=4 , _snake_case=384 , _snake_case=920 , _snake_case=1e-5 , _snake_case=0.3 , _snake_case="relu" , _snake_case=0.02 , _snake_case=0.3 , _snake_case=0.3 , _snake_case=1 , _snake_case=0 , _snake_case=2 , _snake_case=1 , _snake_case=0.3 , _snake_case=1 , _snake_case=(7,) , _snake_case=(3,) , _snake_case=80 , _snake_case=1 , _snake_case=None , _snake_case="sum" , _snake_case=False , **_snake_case , ):
"""simple docstring"""
super().__init__(**_snake_case , pad_token_id=_snake_case , bos_token_id=_snake_case , eos_token_id=_snake_case )
_lowerCAmelCase = vocab_size
_lowerCAmelCase = hidden_size
_lowerCAmelCase = num_hidden_layers
_lowerCAmelCase = intermediate_size
_lowerCAmelCase = num_attention_heads
_lowerCAmelCase = attention_head_dim
_lowerCAmelCase = max_position_embeddings
_lowerCAmelCase = layer_norm_eps
_lowerCAmelCase = layerdrop
_lowerCAmelCase = hidden_act
_lowerCAmelCase = initializer_range
_lowerCAmelCase = hidden_dropout_prob
_lowerCAmelCase = attention_probs_dropout_prob
_lowerCAmelCase = pad_token_id
_lowerCAmelCase = bos_token_id
_lowerCAmelCase = eos_token_id
_lowerCAmelCase = conv_glu_dim
_lowerCAmelCase = conv_dropout
_lowerCAmelCase = num_conv_layers
_lowerCAmelCase = input_feat_per_channel
_lowerCAmelCase = input_channels
_lowerCAmelCase = conv_channels
_lowerCAmelCase = ctc_loss_reduction
_lowerCAmelCase = ctc_zero_infinity
# prevents config testing fail with exporting to json
_lowerCAmelCase = list(_snake_case )
_lowerCAmelCase = list(_snake_case )
if len(self.conv_kernel ) != self.num_conv_layers:
raise ValueError(
"""Configuration for convolutional module is incorrect. """
"""It is required that `len(config.conv_kernel)` == `config.num_conv_layers` """
F'but is `len(config.conv_kernel) = {len(self.conv_kernel )}`, '
F'`config.num_conv_layers = {self.num_conv_layers}`.' )
| 82 |
from typing import Optional, Union
import torch
from torch import nn
from ...configuration_utils import ConfigMixin, register_to_config
from ...models.modeling_utils import ModelMixin
class __lowerCAmelCase ( lowerCamelCase__ , lowerCamelCase__ ):
@register_to_config
def __init__( self , _snake_case = 768 , ):
"""simple docstring"""
super().__init__()
_lowerCAmelCase = nn.Parameter(torch.zeros(1 , _snake_case ) )
_lowerCAmelCase = nn.Parameter(torch.ones(1 , _snake_case ) )
def snake_case ( self , _snake_case = None , _snake_case = None , ):
"""simple docstring"""
_lowerCAmelCase = nn.Parameter(self.mean.to(_snake_case ).to(_snake_case ) )
_lowerCAmelCase = nn.Parameter(self.std.to(_snake_case ).to(_snake_case ) )
return self
def snake_case ( self , _snake_case ):
"""simple docstring"""
_lowerCAmelCase = (embeds - self.mean) * 1.0 / self.std
return embeds
def snake_case ( self , _snake_case ):
"""simple docstring"""
_lowerCAmelCase = (embeds * self.std) + self.mean
return embeds
| 82 | 1 |
"""simple docstring"""
import unittest
import numpy as np
import requests
from transformers.testing_utils import require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
from transformers.pytorch_utils import is_torch_greater_or_equal_than_1_11
else:
__lowercase = False
if is_vision_available():
from PIL import Image
from transformers import PixaStructImageProcessor
class lowerCamelCase_ ( unittest.TestCase ):
'''simple docstring'''
def __init__( self , __lowercase , __lowercase=7 , __lowercase=3 , __lowercase=18 , __lowercase=30 , __lowercase=400 , __lowercase=None , __lowercase=True , __lowercase=True , __lowercase=None , ) -> Optional[int]:
__UpperCamelCase :Optional[Any] = size if size is not None else {'''height''': 20, '''width''': 20}
__UpperCamelCase :List[Any] = parent
__UpperCamelCase :Dict = batch_size
__UpperCamelCase :Any = num_channels
__UpperCamelCase :Dict = image_size
__UpperCamelCase :Union[str, Any] = min_resolution
__UpperCamelCase :Tuple = max_resolution
__UpperCamelCase :Any = size
__UpperCamelCase :Optional[int] = do_normalize
__UpperCamelCase :Tuple = do_convert_rgb
__UpperCamelCase :List[str] = [512, 1_024, 2_048, 4_096]
__UpperCamelCase :str = patch_size if patch_size is not None else {'''height''': 16, '''width''': 16}
def UpperCamelCase__ ( self) -> Tuple:
return {"do_normalize": self.do_normalize, "do_convert_rgb": self.do_convert_rgb}
def UpperCamelCase__ ( self) -> Tuple:
__UpperCamelCase :Union[str, Any] = '''https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/australia.jpg'''
__UpperCamelCase :Optional[Any] = Image.open(requests.get(__lowercase , stream=__lowercase).raw).convert('''RGB''')
return raw_image
@unittest.skipIf(
not is_torch_greater_or_equal_than_1_11 , reason="""`Pix2StructImageProcessor` requires `torch>=1.11.0`.""" , )
@require_torch
@require_vision
class lowerCamelCase_ ( UpperCAmelCase_ , unittest.TestCase ):
'''simple docstring'''
a__ : Optional[Any] = PixaStructImageProcessor if is_vision_available() else None
def UpperCamelCase__ ( self) -> Dict:
__UpperCamelCase :Union[str, Any] = PixaStructImageProcessingTester(self)
@property
def UpperCamelCase__ ( self) -> str:
return self.image_processor_tester.prepare_image_processor_dict()
def UpperCamelCase__ ( self) -> Optional[Any]:
__UpperCamelCase :Tuple = self.image_processing_class(**self.image_processor_dict)
self.assertTrue(hasattr(__lowercase , '''do_normalize'''))
self.assertTrue(hasattr(__lowercase , '''do_convert_rgb'''))
def UpperCamelCase__ ( self) -> Dict:
__UpperCamelCase :Union[str, Any] = self.image_processor_tester.prepare_dummy_image()
__UpperCamelCase :Any = self.image_processing_class(**self.image_processor_dict)
__UpperCamelCase :int = 2_048
__UpperCamelCase :Tuple = image_processor(__lowercase , return_tensors='''pt''' , max_patches=__lowercase)
self.assertTrue(torch.allclose(inputs.flattened_patches.mean() , torch.tensor(0.06_06) , atol=1E-3 , rtol=1E-3))
def UpperCamelCase__ ( self) -> List[Any]:
# Initialize image_processor
__UpperCamelCase :List[Any] = self.image_processing_class(**self.image_processor_dict)
# create random PIL images
__UpperCamelCase :Tuple = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowercase)
for image in image_inputs:
self.assertIsInstance(__lowercase , Image.Image)
# Test not batched input
__UpperCamelCase :Optional[int] = (
(self.image_processor_tester.patch_size['''height'''] * self.image_processor_tester.patch_size['''width'''])
* self.image_processor_tester.num_channels
) + 2
for max_patch in self.image_processor_tester.max_patches:
# Test not batched input
__UpperCamelCase :Union[str, Any] = image_processor(
image_inputs[0] , return_tensors='''pt''' , max_patches=__lowercase).flattened_patches
self.assertEqual(
encoded_images.shape , (1, max_patch, expected_hidden_dim) , )
# Test batched
__UpperCamelCase :Any = image_processor(
__lowercase , return_tensors='''pt''' , max_patches=__lowercase).flattened_patches
self.assertEqual(
encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , )
def UpperCamelCase__ ( self) -> Union[str, Any]:
# Initialize image_processor
__UpperCamelCase :Any = self.image_processing_class(**self.image_processor_dict)
# create random PIL images
__UpperCamelCase :str = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowercase)
for image in image_inputs:
self.assertIsInstance(__lowercase , Image.Image)
# Test not batched input
__UpperCamelCase :Any = (
(self.image_processor_tester.patch_size['''height'''] * self.image_processor_tester.patch_size['''width'''])
* self.image_processor_tester.num_channels
) + 2
__UpperCamelCase :str = True
for max_patch in self.image_processor_tester.max_patches:
# Test not batched input
with self.assertRaises(__lowercase):
__UpperCamelCase :Tuple = image_processor(
image_inputs[0] , return_tensors='''pt''' , max_patches=__lowercase).flattened_patches
__UpperCamelCase :int = '''Hello'''
__UpperCamelCase :str = image_processor(
image_inputs[0] , return_tensors='''pt''' , max_patches=__lowercase , header_text=__lowercase).flattened_patches
self.assertEqual(
encoded_images.shape , (1, max_patch, expected_hidden_dim) , )
# Test batched
__UpperCamelCase :List[Any] = image_processor(
__lowercase , return_tensors='''pt''' , max_patches=__lowercase , header_text=__lowercase).flattened_patches
self.assertEqual(
encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , )
def UpperCamelCase__ ( self) -> List[str]:
# Initialize image_processor
__UpperCamelCase :Optional[int] = self.image_processing_class(**self.image_processor_dict)
# create random numpy tensors
__UpperCamelCase :str = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowercase , numpify=__lowercase)
for image in image_inputs:
self.assertIsInstance(__lowercase , np.ndarray)
__UpperCamelCase :Optional[Any] = (
(self.image_processor_tester.patch_size['''height'''] * self.image_processor_tester.patch_size['''width'''])
* self.image_processor_tester.num_channels
) + 2
for max_patch in self.image_processor_tester.max_patches:
# Test not batched input
__UpperCamelCase :Dict = image_processor(
image_inputs[0] , return_tensors='''pt''' , max_patches=__lowercase).flattened_patches
self.assertEqual(
encoded_images.shape , (1, max_patch, expected_hidden_dim) , )
# Test batched
__UpperCamelCase :str = image_processor(
__lowercase , return_tensors='''pt''' , max_patches=__lowercase).flattened_patches
self.assertEqual(
encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , )
def UpperCamelCase__ ( self) -> Optional[int]:
# Initialize image_processor
__UpperCamelCase :Any = self.image_processing_class(**self.image_processor_dict)
# create random PyTorch tensors
__UpperCamelCase :Any = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowercase , torchify=__lowercase)
for image in image_inputs:
self.assertIsInstance(__lowercase , torch.Tensor)
# Test not batched input
__UpperCamelCase :Union[str, Any] = (
(self.image_processor_tester.patch_size['''height'''] * self.image_processor_tester.patch_size['''width'''])
* self.image_processor_tester.num_channels
) + 2
for max_patch in self.image_processor_tester.max_patches:
# Test not batched input
__UpperCamelCase :Tuple = image_processor(
image_inputs[0] , return_tensors='''pt''' , max_patches=__lowercase).flattened_patches
self.assertEqual(
encoded_images.shape , (1, max_patch, expected_hidden_dim) , )
# Test batched
__UpperCamelCase :Optional[Any] = image_processor(
__lowercase , return_tensors='''pt''' , max_patches=__lowercase).flattened_patches
self.assertEqual(
encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , )
@unittest.skipIf(
not is_torch_greater_or_equal_than_1_11 , reason="""`Pix2StructImageProcessor` requires `torch>=1.11.0`.""" , )
@require_torch
@require_vision
class lowerCamelCase_ ( UpperCAmelCase_ , unittest.TestCase ):
'''simple docstring'''
a__ : Tuple = PixaStructImageProcessor if is_vision_available() else None
def UpperCamelCase__ ( self) -> Dict:
__UpperCamelCase :List[Any] = PixaStructImageProcessingTester(self , num_channels=4)
__UpperCamelCase :int = 3
@property
def UpperCamelCase__ ( self) -> Union[str, Any]:
return self.image_processor_tester.prepare_image_processor_dict()
def UpperCamelCase__ ( self) -> Tuple:
__UpperCamelCase :Optional[int] = self.image_processing_class(**self.image_processor_dict)
self.assertTrue(hasattr(__lowercase , '''do_normalize'''))
self.assertTrue(hasattr(__lowercase , '''do_convert_rgb'''))
def UpperCamelCase__ ( self) -> Union[str, Any]:
# Initialize image_processor
__UpperCamelCase :List[str] = self.image_processing_class(**self.image_processor_dict)
# create random PIL images
__UpperCamelCase :str = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowercase)
for image in image_inputs:
self.assertIsInstance(__lowercase , Image.Image)
# Test not batched input
__UpperCamelCase :Union[str, Any] = (
(self.image_processor_tester.patch_size['''height'''] * self.image_processor_tester.patch_size['''width'''])
* (self.image_processor_tester.num_channels - 1)
) + 2
for max_patch in self.image_processor_tester.max_patches:
# Test not batched input
__UpperCamelCase :int = image_processor(
image_inputs[0] , return_tensors='''pt''' , max_patches=__lowercase).flattened_patches
self.assertEqual(
encoded_images.shape , (1, max_patch, expected_hidden_dim) , )
# Test batched
__UpperCamelCase :Any = image_processor(
__lowercase , return_tensors='''pt''' , max_patches=__lowercase).flattened_patches
self.assertEqual(
encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , )
| 358 | import json
import sys
import tempfile
import unittest
from pathlib import Path
import transformers
from transformers import (
CONFIG_MAPPING,
IMAGE_PROCESSOR_MAPPING,
AutoConfig,
AutoImageProcessor,
CLIPConfig,
CLIPImageProcessor,
)
from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER
sys.path.append(str(Path(__file__).parent.parent.parent.parent / '''utils'''))
from test_module.custom_configuration import CustomConfig # noqa E402
from test_module.custom_image_processing import CustomImageProcessor # noqa E402
class lowerCamelCase_ ( unittest.TestCase ):
'''simple docstring'''
def UpperCamelCase__ ( self) -> int:
__UpperCamelCase :str = 0
def UpperCamelCase__ ( self) -> Optional[Any]:
__UpperCamelCase :Dict = AutoImageProcessor.from_pretrained('''openai/clip-vit-base-patch32''')
self.assertIsInstance(__lowercase , __lowercase)
def UpperCamelCase__ ( self) -> Optional[int]:
with tempfile.TemporaryDirectory() as tmpdirname:
__UpperCamelCase :int = Path(__lowercase) / '''preprocessor_config.json'''
__UpperCamelCase :Dict = Path(__lowercase) / '''config.json'''
json.dump(
{'''image_processor_type''': '''CLIPImageProcessor''', '''processor_class''': '''CLIPProcessor'''} , open(__lowercase , '''w''') , )
json.dump({'''model_type''': '''clip'''} , open(__lowercase , '''w'''))
__UpperCamelCase :Union[str, Any] = AutoImageProcessor.from_pretrained(__lowercase)
self.assertIsInstance(__lowercase , __lowercase)
def UpperCamelCase__ ( self) -> Union[str, Any]:
# Ensure we can load the image processor from the feature extractor config
with tempfile.TemporaryDirectory() as tmpdirname:
__UpperCamelCase :str = Path(__lowercase) / '''preprocessor_config.json'''
__UpperCamelCase :Union[str, Any] = Path(__lowercase) / '''config.json'''
json.dump(
{'''feature_extractor_type''': '''CLIPFeatureExtractor''', '''processor_class''': '''CLIPProcessor'''} , open(__lowercase , '''w''') , )
json.dump({'''model_type''': '''clip'''} , open(__lowercase , '''w'''))
__UpperCamelCase :Dict = AutoImageProcessor.from_pretrained(__lowercase)
self.assertIsInstance(__lowercase , __lowercase)
def UpperCamelCase__ ( self) -> Optional[int]:
with tempfile.TemporaryDirectory() as tmpdirname:
__UpperCamelCase :int = CLIPConfig()
# Create a dummy config file with image_proceesor_type
__UpperCamelCase :Tuple = Path(__lowercase) / '''preprocessor_config.json'''
__UpperCamelCase :Optional[Any] = Path(__lowercase) / '''config.json'''
json.dump(
{'''image_processor_type''': '''CLIPImageProcessor''', '''processor_class''': '''CLIPProcessor'''} , open(__lowercase , '''w''') , )
json.dump({'''model_type''': '''clip'''} , open(__lowercase , '''w'''))
# remove image_processor_type to make sure config.json alone is enough to load image processor locally
__UpperCamelCase :Optional[Any] = AutoImageProcessor.from_pretrained(__lowercase).to_dict()
config_dict.pop('''image_processor_type''')
__UpperCamelCase :List[str] = CLIPImageProcessor(**__lowercase)
# save in new folder
model_config.save_pretrained(__lowercase)
config.save_pretrained(__lowercase)
__UpperCamelCase :Dict = AutoImageProcessor.from_pretrained(__lowercase)
# make sure private variable is not incorrectly saved
__UpperCamelCase :Union[str, Any] = json.loads(config.to_json_string())
self.assertTrue('''_processor_class''' not in dict_as_saved)
self.assertIsInstance(__lowercase , __lowercase)
def UpperCamelCase__ ( self) -> List[str]:
with tempfile.TemporaryDirectory() as tmpdirname:
__UpperCamelCase :Tuple = Path(__lowercase) / '''preprocessor_config.json'''
json.dump(
{'''image_processor_type''': '''CLIPImageProcessor''', '''processor_class''': '''CLIPProcessor'''} , open(__lowercase , '''w''') , )
__UpperCamelCase :List[str] = AutoImageProcessor.from_pretrained(__lowercase)
self.assertIsInstance(__lowercase , __lowercase)
def UpperCamelCase__ ( self) -> Optional[int]:
with self.assertRaisesRegex(
__lowercase , '''clip-base is not a local folder and is not a valid model identifier'''):
__UpperCamelCase :Optional[Any] = AutoImageProcessor.from_pretrained('''clip-base''')
def UpperCamelCase__ ( self) -> List[Any]:
with self.assertRaisesRegex(
__lowercase , r'''aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)'''):
__UpperCamelCase :str = AutoImageProcessor.from_pretrained(__lowercase , revision='''aaaaaa''')
def UpperCamelCase__ ( self) -> List[str]:
with self.assertRaisesRegex(
__lowercase , '''hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json.''' , ):
__UpperCamelCase :Optional[Any] = AutoImageProcessor.from_pretrained('''hf-internal-testing/config-no-model''')
def UpperCamelCase__ ( self) -> str:
# If remote code is not set, we will time out when asking whether to load the model.
with self.assertRaises(__lowercase):
__UpperCamelCase :Dict = AutoImageProcessor.from_pretrained('''hf-internal-testing/test_dynamic_image_processor''')
# If remote code is disabled, we can't load this config.
with self.assertRaises(__lowercase):
__UpperCamelCase :List[Any] = AutoImageProcessor.from_pretrained(
'''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=__lowercase)
__UpperCamelCase :Optional[Any] = AutoImageProcessor.from_pretrained(
'''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=__lowercase)
self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''')
# Test image processor can be reloaded.
with tempfile.TemporaryDirectory() as tmp_dir:
image_processor.save_pretrained(__lowercase)
__UpperCamelCase :List[Any] = AutoImageProcessor.from_pretrained(__lowercase , trust_remote_code=__lowercase)
self.assertEqual(reloaded_image_processor.__class__.__name__ , '''NewImageProcessor''')
def UpperCamelCase__ ( self) -> Optional[Any]:
try:
AutoConfig.register('''custom''' , __lowercase)
AutoImageProcessor.register(__lowercase , __lowercase)
# Trying to register something existing in the Transformers library will raise an error
with self.assertRaises(__lowercase):
AutoImageProcessor.register(__lowercase , __lowercase)
with tempfile.TemporaryDirectory() as tmpdirname:
__UpperCamelCase :int = Path(__lowercase) / '''preprocessor_config.json'''
__UpperCamelCase :List[str] = Path(__lowercase) / '''config.json'''
json.dump(
{'''feature_extractor_type''': '''CLIPFeatureExtractor''', '''processor_class''': '''CLIPProcessor'''} , open(__lowercase , '''w''') , )
json.dump({'''model_type''': '''clip'''} , open(__lowercase , '''w'''))
__UpperCamelCase :int = CustomImageProcessor.from_pretrained(__lowercase)
# Now that the config is registered, it can be used as any other config with the auto-API
with tempfile.TemporaryDirectory() as tmp_dir:
image_processor.save_pretrained(__lowercase)
__UpperCamelCase :int = AutoImageProcessor.from_pretrained(__lowercase)
self.assertIsInstance(__lowercase , __lowercase)
finally:
if "custom" in CONFIG_MAPPING._extra_content:
del CONFIG_MAPPING._extra_content["custom"]
if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content:
del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig]
def UpperCamelCase__ ( self) -> List[Any]:
class lowerCamelCase_ ( UpperCAmelCase_ ):
'''simple docstring'''
a__ : List[str] = True
try:
AutoConfig.register('''custom''' , __lowercase)
AutoImageProcessor.register(__lowercase , __lowercase)
# If remote code is not set, the default is to use local
__UpperCamelCase :str = AutoImageProcessor.from_pretrained('''hf-internal-testing/test_dynamic_image_processor''')
self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''')
self.assertTrue(image_processor.is_local)
# If remote code is disabled, we load the local one.
__UpperCamelCase :Optional[Any] = AutoImageProcessor.from_pretrained(
'''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=__lowercase)
self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''')
self.assertTrue(image_processor.is_local)
# If remote is enabled, we load from the Hub
__UpperCamelCase :List[str] = AutoImageProcessor.from_pretrained(
'''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=__lowercase)
self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''')
self.assertTrue(not hasattr(__lowercase , '''is_local'''))
finally:
if "custom" in CONFIG_MAPPING._extra_content:
del CONFIG_MAPPING._extra_content["custom"]
if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content:
del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig]
| 105 | 0 |
"""simple docstring"""
from __future__ import annotations
import os
from collections.abc import Mapping
__snake_case : Dict = tuple[int, int]
class A__ :
'''simple docstring'''
def __init__( self: Optional[Any] , _SCREAMING_SNAKE_CASE: set[int] , _SCREAMING_SNAKE_CASE: Mapping[EdgeT, int]) -> None:
"""simple docstring"""
__lowerCAmelCase : set[int] = vertices
__lowerCAmelCase : dict[EdgeT, int] = {
(min(_SCREAMING_SNAKE_CASE), max(_SCREAMING_SNAKE_CASE)): weight for edge, weight in edges.items()
}
def _SCREAMING_SNAKE_CASE ( self: Optional[Any] , _SCREAMING_SNAKE_CASE: EdgeT , _SCREAMING_SNAKE_CASE: int) -> None:
"""simple docstring"""
self.vertices.add(edge[0])
self.vertices.add(edge[1])
__lowerCAmelCase : str = weight
def _SCREAMING_SNAKE_CASE ( self: str) -> Graph:
"""simple docstring"""
__lowerCAmelCase : Graph = Graph({min(self.vertices)} , {})
__lowerCAmelCase : EdgeT
__lowerCAmelCase : int
__lowerCAmelCase : EdgeT
__lowerCAmelCase : int
while len(subgraph.vertices) < len(self.vertices):
__lowerCAmelCase : List[Any] = max(self.edges.values()) + 1
for edge, weight in self.edges.items():
if (edge[0] in subgraph.vertices) ^ (edge[1] in subgraph.vertices):
if weight < min_weight:
__lowerCAmelCase : str = edge
__lowerCAmelCase : List[Any] = weight
subgraph.add_edge(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE)
return subgraph
def _lowercase ( __snake_case = "p107_network.txt" ) -> int:
__lowerCAmelCase : str = os.path.abspath(os.path.dirname(__snake_case ) )
__lowerCAmelCase : str = os.path.join(__snake_case ,__snake_case )
__lowerCAmelCase : dict[EdgeT, int] = {}
__lowerCAmelCase : list[str]
__lowerCAmelCase : int
__lowerCAmelCase : int
with open(__snake_case ) as f:
__lowerCAmelCase : List[str] = f.read().strip().split("\n" )
__lowerCAmelCase : Optional[int] = [line.split("," ) for line in data]
for edgea in range(1 ,len(__snake_case ) ):
for edgea in range(__snake_case ):
if adjaceny_matrix[edgea][edgea] != "-":
__lowerCAmelCase : Dict = int(adjaceny_matrix[edgea][edgea] )
__lowerCAmelCase : Graph = Graph(set(range(len(__snake_case ) ) ) ,__snake_case )
__lowerCAmelCase : Graph = graph.prims_algorithm()
__lowerCAmelCase : int = sum(graph.edges.values() )
__lowerCAmelCase : int = sum(subgraph.edges.values() )
return initial_total - optimal_total
if __name__ == "__main__":
print(F"""{solution() = }""") | 269 |
"""simple docstring"""
import unittest
from transformers import SqueezeBertConfig, is_torch_available
from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
SqueezeBertForMaskedLM,
SqueezeBertForMultipleChoice,
SqueezeBertForQuestionAnswering,
SqueezeBertForSequenceClassification,
SqueezeBertForTokenClassification,
SqueezeBertModel,
)
class A__ ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
def __init__( self: Tuple , _SCREAMING_SNAKE_CASE: Dict , _SCREAMING_SNAKE_CASE: List[str]=13 , _SCREAMING_SNAKE_CASE: Tuple=7 , _SCREAMING_SNAKE_CASE: int=True , _SCREAMING_SNAKE_CASE: Optional[Any]=True , _SCREAMING_SNAKE_CASE: str=False , _SCREAMING_SNAKE_CASE: Optional[Any]=True , _SCREAMING_SNAKE_CASE: int=99 , _SCREAMING_SNAKE_CASE: int=32 , _SCREAMING_SNAKE_CASE: List[str]=5 , _SCREAMING_SNAKE_CASE: Union[str, Any]=4 , _SCREAMING_SNAKE_CASE: int=64 , _SCREAMING_SNAKE_CASE: List[str]="gelu" , _SCREAMING_SNAKE_CASE: str=0.1 , _SCREAMING_SNAKE_CASE: Any=0.1 , _SCREAMING_SNAKE_CASE: Optional[int]=512 , _SCREAMING_SNAKE_CASE: Tuple=16 , _SCREAMING_SNAKE_CASE: Any=2 , _SCREAMING_SNAKE_CASE: List[str]=0.02 , _SCREAMING_SNAKE_CASE: Tuple=3 , _SCREAMING_SNAKE_CASE: Optional[Any]=4 , _SCREAMING_SNAKE_CASE: int=None , _SCREAMING_SNAKE_CASE: int=2 , _SCREAMING_SNAKE_CASE: str=2 , _SCREAMING_SNAKE_CASE: Union[str, Any]=2 , _SCREAMING_SNAKE_CASE: List[Any]=2 , _SCREAMING_SNAKE_CASE: int=4 , _SCREAMING_SNAKE_CASE: List[str]=1 , ) -> Optional[Any]:
"""simple docstring"""
__lowerCAmelCase : List[str] = parent
__lowerCAmelCase : Optional[Any] = batch_size
__lowerCAmelCase : Union[str, Any] = seq_length
__lowerCAmelCase : Optional[Any] = is_training
__lowerCAmelCase : Optional[int] = use_input_mask
__lowerCAmelCase : Dict = use_token_type_ids
__lowerCAmelCase : Dict = use_labels
__lowerCAmelCase : Dict = vocab_size
__lowerCAmelCase : Tuple = hidden_size
__lowerCAmelCase : List[Any] = num_hidden_layers
__lowerCAmelCase : Union[str, Any] = num_attention_heads
__lowerCAmelCase : Tuple = intermediate_size
__lowerCAmelCase : List[Any] = hidden_act
__lowerCAmelCase : Optional[Any] = hidden_dropout_prob
__lowerCAmelCase : Optional[Any] = attention_probs_dropout_prob
__lowerCAmelCase : Optional[int] = max_position_embeddings
__lowerCAmelCase : Union[str, Any] = type_vocab_size
__lowerCAmelCase : Optional[int] = type_sequence_label_size
__lowerCAmelCase : Dict = initializer_range
__lowerCAmelCase : Tuple = num_labels
__lowerCAmelCase : Optional[Any] = num_choices
__lowerCAmelCase : Union[str, Any] = scope
__lowerCAmelCase : Optional[Any] = q_groups
__lowerCAmelCase : Optional[int] = k_groups
__lowerCAmelCase : Any = v_groups
__lowerCAmelCase : int = post_attention_groups
__lowerCAmelCase : List[str] = intermediate_groups
__lowerCAmelCase : Optional[Any] = output_groups
def _SCREAMING_SNAKE_CASE ( self: Dict) -> List[str]:
"""simple docstring"""
__lowerCAmelCase : str = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size)
__lowerCAmelCase : Union[str, Any] = None
if self.use_input_mask:
__lowerCAmelCase : Tuple = random_attention_mask([self.batch_size, self.seq_length])
__lowerCAmelCase : Optional[int] = None
__lowerCAmelCase : List[Any] = None
__lowerCAmelCase : str = None
if self.use_labels:
__lowerCAmelCase : Optional[int] = ids_tensor([self.batch_size] , self.type_sequence_label_size)
__lowerCAmelCase : str = ids_tensor([self.batch_size, self.seq_length] , self.num_labels)
__lowerCAmelCase : str = ids_tensor([self.batch_size] , self.num_choices)
__lowerCAmelCase : Any = self.get_config()
return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels
def _SCREAMING_SNAKE_CASE ( self: Tuple) -> int:
"""simple docstring"""
return SqueezeBertConfig(
embedding_size=self.hidden_size , vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , attention_probs_dropout_prob=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , q_groups=self.q_groups , k_groups=self.k_groups , v_groups=self.v_groups , post_attention_groups=self.post_attention_groups , intermediate_groups=self.intermediate_groups , output_groups=self.output_groups , )
def _SCREAMING_SNAKE_CASE ( self: Tuple , _SCREAMING_SNAKE_CASE: List[str] , _SCREAMING_SNAKE_CASE: List[Any] , _SCREAMING_SNAKE_CASE: Tuple , _SCREAMING_SNAKE_CASE: Dict , _SCREAMING_SNAKE_CASE: Dict , _SCREAMING_SNAKE_CASE: Tuple) -> Tuple:
"""simple docstring"""
__lowerCAmelCase : List[Any] = SqueezeBertModel(config=_SCREAMING_SNAKE_CASE)
model.to(_SCREAMING_SNAKE_CASE)
model.eval()
__lowerCAmelCase : List[Any] = model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE)
__lowerCAmelCase : Dict = model(_SCREAMING_SNAKE_CASE)
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size))
def _SCREAMING_SNAKE_CASE ( self: Optional[Any] , _SCREAMING_SNAKE_CASE: List[Any] , _SCREAMING_SNAKE_CASE: List[str] , _SCREAMING_SNAKE_CASE: str , _SCREAMING_SNAKE_CASE: List[Any] , _SCREAMING_SNAKE_CASE: int , _SCREAMING_SNAKE_CASE: Tuple) -> Dict:
"""simple docstring"""
__lowerCAmelCase : int = SqueezeBertForMaskedLM(config=_SCREAMING_SNAKE_CASE)
model.to(_SCREAMING_SNAKE_CASE)
model.eval()
__lowerCAmelCase : Dict = model(_SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE , labels=_SCREAMING_SNAKE_CASE)
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size))
def _SCREAMING_SNAKE_CASE ( self: Optional[int] , _SCREAMING_SNAKE_CASE: Union[str, Any] , _SCREAMING_SNAKE_CASE: Union[str, Any] , _SCREAMING_SNAKE_CASE: Union[str, Any] , _SCREAMING_SNAKE_CASE: Dict , _SCREAMING_SNAKE_CASE: Optional[int] , _SCREAMING_SNAKE_CASE: Union[str, Any]) -> int:
"""simple docstring"""
__lowerCAmelCase : str = SqueezeBertForQuestionAnswering(config=_SCREAMING_SNAKE_CASE)
model.to(_SCREAMING_SNAKE_CASE)
model.eval()
__lowerCAmelCase : Union[str, Any] = model(
_SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE , start_positions=_SCREAMING_SNAKE_CASE , end_positions=_SCREAMING_SNAKE_CASE)
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length))
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length))
def _SCREAMING_SNAKE_CASE ( self: Optional[Any] , _SCREAMING_SNAKE_CASE: Optional[int] , _SCREAMING_SNAKE_CASE: Optional[Any] , _SCREAMING_SNAKE_CASE: Optional[Any] , _SCREAMING_SNAKE_CASE: Tuple , _SCREAMING_SNAKE_CASE: Any , _SCREAMING_SNAKE_CASE: Tuple) -> Optional[Any]:
"""simple docstring"""
__lowerCAmelCase : List[Any] = self.num_labels
__lowerCAmelCase : Union[str, Any] = SqueezeBertForSequenceClassification(_SCREAMING_SNAKE_CASE)
model.to(_SCREAMING_SNAKE_CASE)
model.eval()
__lowerCAmelCase : int = model(_SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE , labels=_SCREAMING_SNAKE_CASE)
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels))
def _SCREAMING_SNAKE_CASE ( self: Tuple , _SCREAMING_SNAKE_CASE: List[Any] , _SCREAMING_SNAKE_CASE: Any , _SCREAMING_SNAKE_CASE: List[Any] , _SCREAMING_SNAKE_CASE: List[Any] , _SCREAMING_SNAKE_CASE: Optional[int] , _SCREAMING_SNAKE_CASE: Optional[int]) -> Union[str, Any]:
"""simple docstring"""
__lowerCAmelCase : Dict = self.num_labels
__lowerCAmelCase : Optional[int] = SqueezeBertForTokenClassification(config=_SCREAMING_SNAKE_CASE)
model.to(_SCREAMING_SNAKE_CASE)
model.eval()
__lowerCAmelCase : List[str] = model(_SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE , labels=_SCREAMING_SNAKE_CASE)
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels))
def _SCREAMING_SNAKE_CASE ( self: Optional[Any] , _SCREAMING_SNAKE_CASE: Optional[int] , _SCREAMING_SNAKE_CASE: Optional[int] , _SCREAMING_SNAKE_CASE: Union[str, Any] , _SCREAMING_SNAKE_CASE: Any , _SCREAMING_SNAKE_CASE: List[Any] , _SCREAMING_SNAKE_CASE: int) -> Tuple:
"""simple docstring"""
__lowerCAmelCase : List[str] = self.num_choices
__lowerCAmelCase : str = SqueezeBertForMultipleChoice(config=_SCREAMING_SNAKE_CASE)
model.to(_SCREAMING_SNAKE_CASE)
model.eval()
__lowerCAmelCase : int = input_ids.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous()
__lowerCAmelCase : Union[str, Any] = input_mask.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous()
__lowerCAmelCase : str = model(
_SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE , labels=_SCREAMING_SNAKE_CASE , )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices))
def _SCREAMING_SNAKE_CASE ( self: str) -> List[Any]:
"""simple docstring"""
__lowerCAmelCase : Optional[int] = self.prepare_config_and_inputs()
((__lowerCAmelCase) , (__lowerCAmelCase) , (__lowerCAmelCase) , (__lowerCAmelCase) , (__lowerCAmelCase) , (__lowerCAmelCase)) : Union[str, Any] = config_and_inputs
__lowerCAmelCase : int = {"input_ids": input_ids, "attention_mask": input_mask}
return config, inputs_dict
@require_torch
class A__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
SCREAMING_SNAKE_CASE = (
(
SqueezeBertModel,
SqueezeBertForMaskedLM,
SqueezeBertForMultipleChoice,
SqueezeBertForQuestionAnswering,
SqueezeBertForSequenceClassification,
SqueezeBertForTokenClassification,
)
if is_torch_available()
else None
)
SCREAMING_SNAKE_CASE = (
{
'feature-extraction': SqueezeBertModel,
'fill-mask': SqueezeBertForMaskedLM,
'question-answering': SqueezeBertForQuestionAnswering,
'text-classification': SqueezeBertForSequenceClassification,
'token-classification': SqueezeBertForTokenClassification,
'zero-shot': SqueezeBertForSequenceClassification,
}
if is_torch_available()
else {}
)
SCREAMING_SNAKE_CASE = False
SCREAMING_SNAKE_CASE = True
SCREAMING_SNAKE_CASE = False
def _SCREAMING_SNAKE_CASE ( self: Dict) -> Optional[Any]:
"""simple docstring"""
__lowerCAmelCase : Any = SqueezeBertModelTester(self)
__lowerCAmelCase : Optional[int] = ConfigTester(self , config_class=_SCREAMING_SNAKE_CASE , dim=37)
def _SCREAMING_SNAKE_CASE ( self: Any) -> Tuple:
"""simple docstring"""
self.config_tester.run_common_tests()
def _SCREAMING_SNAKE_CASE ( self: Optional[int]) -> Any:
"""simple docstring"""
__lowerCAmelCase : Any = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_squeezebert_model(*_SCREAMING_SNAKE_CASE)
def _SCREAMING_SNAKE_CASE ( self: Optional[Any]) -> List[Any]:
"""simple docstring"""
__lowerCAmelCase : int = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_squeezebert_for_masked_lm(*_SCREAMING_SNAKE_CASE)
def _SCREAMING_SNAKE_CASE ( self: Tuple) -> Union[str, Any]:
"""simple docstring"""
__lowerCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_squeezebert_for_question_answering(*_SCREAMING_SNAKE_CASE)
def _SCREAMING_SNAKE_CASE ( self: List[Any]) -> int:
"""simple docstring"""
__lowerCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_squeezebert_for_sequence_classification(*_SCREAMING_SNAKE_CASE)
def _SCREAMING_SNAKE_CASE ( self: Any) -> int:
"""simple docstring"""
__lowerCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_squeezebert_for_token_classification(*_SCREAMING_SNAKE_CASE)
def _SCREAMING_SNAKE_CASE ( self: Union[str, Any]) -> str:
"""simple docstring"""
__lowerCAmelCase : Any = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_squeezebert_for_multiple_choice(*_SCREAMING_SNAKE_CASE)
@slow
def _SCREAMING_SNAKE_CASE ( self: Any) -> Dict:
"""simple docstring"""
for model_name in SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
__lowerCAmelCase : Optional[Any] = SqueezeBertModel.from_pretrained(_SCREAMING_SNAKE_CASE)
self.assertIsNotNone(_SCREAMING_SNAKE_CASE)
@require_sentencepiece
@require_tokenizers
@require_torch
class A__ ( unittest.TestCase ):
'''simple docstring'''
@slow
def _SCREAMING_SNAKE_CASE ( self: int) -> List[Any]:
"""simple docstring"""
__lowerCAmelCase : Optional[Any] = SqueezeBertForSequenceClassification.from_pretrained("squeezebert/squeezebert-mnli")
__lowerCAmelCase : List[Any] = torch.tensor([[1, 2_9414, 232, 328, 740, 1140, 1_2695, 69, 13, 1588, 2]])
__lowerCAmelCase : List[Any] = model(_SCREAMING_SNAKE_CASE)[0]
__lowerCAmelCase : Any = torch.Size((1, 3))
self.assertEqual(output.shape , _SCREAMING_SNAKE_CASE)
__lowerCAmelCase : Union[str, Any] = torch.tensor([[0.6401, -0.0349, -0.6041]])
self.assertTrue(torch.allclose(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , atol=1e-4)) | 269 | 1 |
"""simple docstring"""
# A Bipartite Graph is a graph whose vertices can be divided into two independent sets,
# U and V such that every edge (u, v) either connects a vertex from U to V or a vertex
# from V to U. In other words, for every edge (u, v), either u belongs to U and v to V,
# or u belongs to V and v to U. We can also say that there is no edge that connects
# vertices of same set.
def _lowerCAmelCase ( UpperCamelCase_ ):
__SCREAMING_SNAKE_CASE = [False] * len(UpperCamelCase_ )
__SCREAMING_SNAKE_CASE = [-1] * len(UpperCamelCase_ )
def dfs(UpperCamelCase_ , UpperCamelCase_ ):
__SCREAMING_SNAKE_CASE = True
__SCREAMING_SNAKE_CASE = c
for u in graph[v]:
if not visited[u]:
dfs(UpperCamelCase_ , 1 - c )
for i in range(len(UpperCamelCase_ ) ):
if not visited[i]:
dfs(UpperCamelCase_ , 0 )
for i in range(len(UpperCamelCase_ ) ):
for j in graph[i]:
if color[i] == color[j]:
return False
return True
# Adjacency list of graph
__magic_name__ = {0: [1, 3], 1: [0, 2], 2: [1, 3], 3: [0, 2], 4: []}
print(check_bipartite_dfs(graph))
| 255 |
"""simple docstring"""
from __future__ import annotations
import unittest
from transformers import is_tf_available
from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow
if is_tf_available():
import tensorflow as tf
from transformers import AutoTokenizer, TFAutoModelForSeqaSeqLM
@require_tf
@require_sentencepiece
@require_tokenizers
class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ):
"""simple docstring"""
@slow
def snake_case_ ( self):
__SCREAMING_SNAKE_CASE = TFAutoModelForSeqaSeqLM.from_pretrained("""google/mt5-small""")
__SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained("""google/mt5-small""")
__SCREAMING_SNAKE_CASE = tokenizer("""Hello there""" , return_tensors="""tf""").input_ids
__SCREAMING_SNAKE_CASE = tokenizer("""Hi I am""" , return_tensors="""tf""").input_ids
__SCREAMING_SNAKE_CASE = model(lowerCAmelCase__ , labels=lowerCAmelCase__).loss
__SCREAMING_SNAKE_CASE = -tf.math.reduce_mean(lowerCAmelCase__).numpy()
__SCREAMING_SNAKE_CASE = -21.22_81_68
self.assertTrue(abs(mtf_score - EXPECTED_SCORE) < 2E-4)
| 255 | 1 |
'''simple docstring'''
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
UpperCAmelCase = logging.get_logger(__name__)
UpperCAmelCase = {
'''xlm-roberta-base''': '''https://huggingface.co/xlm-roberta-base/resolve/main/config.json''',
'''xlm-roberta-large''': '''https://huggingface.co/xlm-roberta-large/resolve/main/config.json''',
'''xlm-roberta-large-finetuned-conll02-dutch''': (
'''https://huggingface.co/xlm-roberta-large-finetuned-conll02-dutch/resolve/main/config.json'''
),
'''xlm-roberta-large-finetuned-conll02-spanish''': (
'''https://huggingface.co/xlm-roberta-large-finetuned-conll02-spanish/resolve/main/config.json'''
),
'''xlm-roberta-large-finetuned-conll03-english''': (
'''https://huggingface.co/xlm-roberta-large-finetuned-conll03-english/resolve/main/config.json'''
),
'''xlm-roberta-large-finetuned-conll03-german''': (
'''https://huggingface.co/xlm-roberta-large-finetuned-conll03-german/resolve/main/config.json'''
),
}
class lowerCAmelCase ( A ):
lowerCAmelCase_ = "xlm-roberta"
def __init__( self : str , __lowercase : int=30522 , __lowercase : Tuple=768 , __lowercase : str=12 , __lowercase : str=12 , __lowercase : Union[str, Any]=3072 , __lowercase : Optional[int]="gelu" , __lowercase : str=0.1 , __lowercase : str=0.1 , __lowercase : Optional[int]=512 , __lowercase : Tuple=2 , __lowercase : Tuple=0.0_2 , __lowercase : str=1E-12 , __lowercase : Any=1 , __lowercase : Union[str, Any]=0 , __lowercase : List[Any]=2 , __lowercase : List[str]="absolute" , __lowercase : List[str]=True , __lowercase : int=None , **__lowercase : List[str] , ):
"""simple docstring"""
super().__init__(pad_token_id=__lowercase , bos_token_id=__lowercase , eos_token_id=__lowercase , **__lowercase )
__lowercase =vocab_size
__lowercase =hidden_size
__lowercase =num_hidden_layers
__lowercase =num_attention_heads
__lowercase =hidden_act
__lowercase =intermediate_size
__lowercase =hidden_dropout_prob
__lowercase =attention_probs_dropout_prob
__lowercase =max_position_embeddings
__lowercase =type_vocab_size
__lowercase =initializer_range
__lowercase =layer_norm_eps
__lowercase =position_embedding_type
__lowercase =use_cache
__lowercase =classifier_dropout
class lowerCAmelCase ( A ):
@property
def snake_case ( self : List[str] ):
"""simple docstring"""
if self.task == "multiple-choice":
__lowercase ={0: 'batch', 1: 'choice', 2: 'sequence'}
else:
__lowercase ={0: 'batch', 1: 'sequence'}
return OrderedDict(
[
('input_ids', dynamic_axis),
('attention_mask', dynamic_axis),
] )
| 141 |
'''simple docstring'''
from collections.abc import Sequence
def __UpperCamelCase ( lowercase__ : Sequence[float], lowercase__ : float ):
'''simple docstring'''
return sum(c * (x**i) for i, c in enumerate(lowercase__ ) )
def __UpperCamelCase ( lowercase__ : Sequence[float], lowercase__ : float ):
'''simple docstring'''
__lowercase =0.0
for coeff in reversed(lowercase__ ):
__lowercase =result * x + coeff
return result
if __name__ == "__main__":
UpperCAmelCase = (0.0, 0.0, 5.0, 9.3, 7.0)
UpperCAmelCase = 10.0
print(evaluate_poly(poly, x))
print(horner(poly, x))
| 141 | 1 |
def UpperCamelCase_( _snake_case : int ):
"""simple docstring"""
__a =n ** (1 / 3)
return (val * val * val) == n
if __name__ == "__main__":
print(perfect_cube(27))
print(perfect_cube(4))
| 368 |
import json
import os
import subprocess
import unittest
from ast import literal_eval
import pytest
from parameterized import parameterized, parameterized_class
from . import is_sagemaker_available
if is_sagemaker_available():
from sagemaker import Session, TrainingJobAnalytics
from sagemaker.huggingface import HuggingFace
@pytest.mark.skipif(
literal_eval(os.getenv('TEST_SAGEMAKER' , 'False' ) ) is not True , reason='Skipping test because should only be run when releasing minor transformers version' , )
@pytest.mark.usefixtures('sm_env' )
@parameterized_class(
[
{
'framework': 'pytorch',
'script': 'run_glue.py',
'model_name_or_path': 'distilbert-base-cased',
'instance_type': 'ml.p3.16xlarge',
'results': {'train_runtime': 6_5_0, 'eval_accuracy': 0.7, 'eval_loss': 0.6},
},
{
'framework': 'pytorch',
'script': 'run_ddp.py',
'model_name_or_path': 'distilbert-base-cased',
'instance_type': 'ml.p3.16xlarge',
'results': {'train_runtime': 6_0_0, 'eval_accuracy': 0.7, 'eval_loss': 0.6},
},
{
'framework': 'tensorflow',
'script': 'run_tf_dist.py',
'model_name_or_path': 'distilbert-base-cased',
'instance_type': 'ml.p3.16xlarge',
'results': {'train_runtime': 6_0_0, 'eval_accuracy': 0.6, 'eval_loss': 0.7},
},
] )
class __magic_name__ ( unittest.TestCase ):
def __magic_name__ ( self ) -> int:
'''simple docstring'''
if self.framework == "pytorch":
subprocess.run(
f'cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py'.split() , encoding='utf-8' , check=__snake_case , )
assert hasattr(self , 'env' )
def __magic_name__ ( self , __snake_case ) -> int:
'''simple docstring'''
__a =f'{self.env.base_job_name}-{instance_count}-{"ddp" if "ddp" in self.script else "smd"}'
# distributed data settings
__a ={'smdistributed': {'dataparallel': {'enabled': True}}} if self.script != 'run_ddp.py' else None
# creates estimator
return HuggingFace(
entry_point=self.script , source_dir=self.env.test_path , role=self.env.role , image_uri=self.env.image_uri , base_job_name=__snake_case , instance_count=__snake_case , instance_type=self.instance_type , debugger_hook_config=__snake_case , hyperparameters={**self.env.distributed_hyperparameters, 'model_name_or_path': self.model_name_or_path} , metric_definitions=self.env.metric_definitions , distribution=__snake_case , py_version='py36' , )
def __magic_name__ ( self , __snake_case ) -> Optional[Any]:
'''simple docstring'''
TrainingJobAnalytics(__snake_case ).export_csv(f'{self.env.test_path}/{job_name}_metrics.csv' )
@parameterized.expand([(2,)] )
def __magic_name__ ( self , __snake_case ) -> Optional[int]:
'''simple docstring'''
# create estimator
__a =self.create_estimator(__snake_case )
# run training
estimator.fit()
# result dataframe
__a =TrainingJobAnalytics(estimator.latest_training_job.name ).dataframe()
# extract kpis
__a =list(result_metrics_df[result_metrics_df.metric_name == 'eval_accuracy']['value'] )
__a =list(result_metrics_df[result_metrics_df.metric_name == 'eval_loss']['value'] )
# get train time from SageMaker job, this includes starting, preprocessing, stopping
__a =(
Session().describe_training_job(estimator.latest_training_job.name ).get('TrainingTimeInSeconds' , 99_9999 )
)
# assert kpis
assert train_runtime <= self.results["train_runtime"]
assert all(t >= self.results['eval_accuracy'] for t in eval_accuracy )
assert all(t <= self.results['eval_loss'] for t in eval_loss )
# dump tests result into json file to share in PR
with open(f'{estimator.latest_training_job.name}.json' , 'w' ) as outfile:
json.dump({'train_time': train_runtime, 'eval_accuracy': eval_accuracy, 'eval_loss': eval_loss} , __snake_case )
| 308 | 0 |
import os
from typing import BinaryIO, Optional, Union
import numpy as np
import pyarrow.parquet as pq
from .. import Audio, Dataset, Features, Image, NamedSplit, Value, config
from ..features.features import FeatureType, _visit
from ..formatting import query_table
from ..packaged_modules import _PACKAGED_DATASETS_MODULES
from ..packaged_modules.parquet.parquet import Parquet
from ..utils import logging
from ..utils.typing import NestedDataStructureLike, PathLike
from .abc import AbstractDatasetReader
def _a ( a :Features ) -> Optional[int]:
a = np.inf
def set_batch_size(a :FeatureType ) -> None:
nonlocal batch_size
if isinstance(a , a ):
a = min(a , config.PARQUET_ROW_GROUP_SIZE_FOR_IMAGE_DATASETS )
elif isinstance(a , a ):
a = min(a , config.PARQUET_ROW_GROUP_SIZE_FOR_AUDIO_DATASETS )
elif isinstance(a , a ) and feature.dtype == "binary":
a = min(a , config.PARQUET_ROW_GROUP_SIZE_FOR_BINARY_DATASETS )
_visit(a , a )
return None if batch_size is np.inf else batch_size
class lowercase_ ( lowercase ):
'''simple docstring'''
def __init__( self : str , __UpperCAmelCase : NestedDataStructureLike[PathLike] , __UpperCAmelCase : Optional[NamedSplit] = None , __UpperCAmelCase : Optional[Features] = None , __UpperCAmelCase : str = None , __UpperCAmelCase : bool = False , __UpperCAmelCase : bool = False , __UpperCAmelCase : Optional[int] = None , **__UpperCAmelCase : List[Any] , ) ->List[Any]:
"""simple docstring"""
super().__init__(
__UpperCAmelCase , split=__UpperCAmelCase , features=__UpperCAmelCase , cache_dir=__UpperCAmelCase , keep_in_memory=__UpperCAmelCase , streaming=__UpperCAmelCase , num_proc=__UpperCAmelCase , **__UpperCAmelCase , )
a = path_or_paths if isinstance(__UpperCAmelCase , __UpperCAmelCase ) else {self.split: path_or_paths}
a = _PACKAGED_DATASETS_MODULES['''parquet'''][1]
a = Parquet(
cache_dir=__UpperCAmelCase , data_files=__UpperCAmelCase , features=__UpperCAmelCase , hash=__UpperCAmelCase , **__UpperCAmelCase , )
def __lowerCAmelCase ( self : List[Any] ) ->Optional[int]:
"""simple docstring"""
if self.streaming:
a = self.builder.as_streaming_dataset(split=self.split )
# Build regular (map-style) dataset
else:
a = None
a = None
a = None
a = None
self.builder.download_and_prepare(
download_config=__UpperCAmelCase , download_mode=__UpperCAmelCase , verification_mode=__UpperCAmelCase , base_path=__UpperCAmelCase , num_proc=self.num_proc , )
a = self.builder.as_dataset(
split=self.split , verification_mode=__UpperCAmelCase , in_memory=self.keep_in_memory )
return dataset
class lowercase_ :
'''simple docstring'''
def __init__( self : Union[str, Any] , __UpperCAmelCase : Dataset , __UpperCAmelCase : Union[PathLike, BinaryIO] , __UpperCAmelCase : Optional[int] = None , **__UpperCAmelCase : List[str] , ) ->Any:
"""simple docstring"""
a = dataset
a = path_or_buf
a = batch_size or get_writer_batch_size(dataset.features )
a = parquet_writer_kwargs
def __lowerCAmelCase ( self : Tuple ) ->int:
"""simple docstring"""
a = self.batch_size if self.batch_size else config.DEFAULT_MAX_BATCH_SIZE
if isinstance(self.path_or_buf , (str, bytes, os.PathLike) ):
with open(self.path_or_buf , '''wb+''' ) as buffer:
a = self._write(file_obj=__UpperCAmelCase , batch_size=__UpperCAmelCase , **self.parquet_writer_kwargs )
else:
a = self._write(file_obj=self.path_or_buf , batch_size=__UpperCAmelCase , **self.parquet_writer_kwargs )
return written
def __lowerCAmelCase ( self : List[Any] , __UpperCAmelCase : BinaryIO , __UpperCAmelCase : int , **__UpperCAmelCase : List[str] ) ->int:
"""simple docstring"""
a = 0
a = parquet_writer_kwargs.pop('''path_or_buf''' , __UpperCAmelCase )
a = self.dataset.features.arrow_schema
a = pq.ParquetWriter(__UpperCAmelCase , schema=__UpperCAmelCase , **__UpperCAmelCase )
for offset in logging.tqdm(
range(0 , len(self.dataset ) , __UpperCAmelCase ) , unit='''ba''' , disable=not logging.is_progress_bar_enabled() , desc='''Creating parquet from Arrow format''' , ):
a = query_table(
table=self.dataset._data , key=slice(__UpperCAmelCase , offset + batch_size ) , indices=self.dataset._indices if self.dataset._indices is not None else None , )
writer.write_table(__UpperCAmelCase )
written += batch.nbytes
writer.close()
return written
| 0 |
'''simple docstring'''
# Copyright 2021 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import os
from accelerate.test_utils import execute_subprocess_async
def __lowerCAmelCase ( snake_case__=None ):
if subparsers is not None:
__UpperCamelCase : Any = subparsers.add_parser("test" )
else:
__UpperCamelCase : Dict = argparse.ArgumentParser("Accelerate test command" )
parser.add_argument(
"--config_file" , default=snake_case__ , help=(
"The path to use to store the config file. Will default to a file named default_config.yaml in the cache "
"location, which is the content of the environment `HF_HOME` suffixed with 'accelerate', or if you don't have "
"such an environment variable, your cache directory ('~/.cache' or the content of `XDG_CACHE_HOME`) suffixed "
"with 'huggingface'."
) , )
if subparsers is not None:
parser.set_defaults(func=snake_case__ )
return parser
def __lowerCAmelCase ( snake_case__ ):
__UpperCamelCase : str = os.path.sep.join(__file__.split(os.path.sep )[:-2] + ["test_utils", "scripts", "test_script.py"] )
if args.config_file is None:
__UpperCamelCase : str = script_name
else:
__UpperCamelCase : Tuple = F"--config_file={args.config_file} {script_name}"
__UpperCamelCase : Optional[Any] = ["accelerate-launch"] + test_args.split()
__UpperCamelCase : Optional[Any] = execute_subprocess_async(snake_case__ , env=os.environ.copy() )
if result.returncode == 0:
print("Test is a success! You are ready for your distributed training!" )
def __lowerCAmelCase ( ):
__UpperCamelCase : int = test_command_parser()
__UpperCamelCase : Union[str, Any] = parser.parse_args()
test_command(snake_case__ )
if __name__ == "__main__":
main()
| 298 | 0 |
import heapq as hq
import math
from collections.abc import Iterator
class A :
def __init__(self : Union[str, Any] , __UpperCAmelCase : List[str] ) -> List[Any]:
"""simple docstring"""
UpperCAmelCase__ = str(id_ )
UpperCAmelCase__ = None
UpperCAmelCase__ = None
UpperCAmelCase__ = []
UpperCAmelCase__ = {} # {vertex:distance}
def __lt__(self : List[str] , __UpperCAmelCase : Tuple ) -> Tuple:
"""simple docstring"""
return self.key < other.key
def __repr__(self : List[str] ) -> Any:
"""simple docstring"""
return self.id
def lowercase_ (self : List[str] , __UpperCAmelCase : Union[str, Any] ) -> int:
"""simple docstring"""
self.neighbors.append(__UpperCAmelCase )
def lowercase_ (self : Optional[int] , __UpperCAmelCase : Optional[int] , __UpperCAmelCase : Union[str, Any] ) -> Union[str, Any]:
"""simple docstring"""
UpperCAmelCase__ = weight
def lowerCAmelCase_ ( __A, __A, __A, __A ) -> List[str]:
'''simple docstring'''
graph[a - 1].add_neighbor(graph[b - 1] )
graph[b - 1].add_neighbor(graph[a - 1] )
# add the edges:
graph[a - 1].add_edge(graph[b - 1], __A )
graph[b - 1].add_edge(graph[a - 1], __A )
def lowerCAmelCase_ ( __A, __A ) -> list:
'''simple docstring'''
UpperCAmelCase__ = []
for u in graph:
UpperCAmelCase__ = math.inf
UpperCAmelCase__ = None
UpperCAmelCase__ = 0
UpperCAmelCase__ = graph[:]
while q:
UpperCAmelCase__ = min(__A )
q.remove(__A )
for v in u.neighbors:
if (v in q) and (u.edges[v.id] < v.key):
UpperCAmelCase__ = u
UpperCAmelCase__ = u.edges[v.id]
for i in range(1, len(__A ) ):
a.append((int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1) )
return a
def lowerCAmelCase_ ( __A, __A ) -> Iterator[tuple]:
'''simple docstring'''
for u in graph:
UpperCAmelCase__ = math.inf
UpperCAmelCase__ = None
UpperCAmelCase__ = 0
UpperCAmelCase__ = list(__A )
hq.heapify(__A )
while h:
UpperCAmelCase__ = hq.heappop(__A )
for v in u.neighbors:
if (v in h) and (u.edges[v.id] < v.key):
UpperCAmelCase__ = u
UpperCAmelCase__ = u.edges[v.id]
hq.heapify(__A )
for i in range(1, len(__A ) ):
yield (int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1)
def lowerCAmelCase_ ( ) -> None:
'''simple docstring'''
if __name__ == "__main__":
import doctest
doctest.testmod()
| 143 | import os
from shutil import copyfile
from typing import List, Optional, Tuple
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import is_sentencepiece_available, logging
if is_sentencepiece_available():
from .tokenization_pegasus import PegasusTokenizer
else:
UpperCamelCase__ = None
UpperCamelCase__ = logging.get_logger(__name__)
UpperCamelCase__ = '▁'
UpperCamelCase__ = {'vocab_file': 'spiece.model', 'tokenizer_file': 'tokenizer.json'}
UpperCamelCase__ = {
'vocab_file': {'google/pegasus-xsum': 'https://huggingface.co/google/pegasus-xsum/resolve/main/spiece.model'},
'tokenizer_file': {
'google/pegasus-xsum': 'https://huggingface.co/google/pegasus-xsum/resolve/main/tokenizer.json'
},
}
UpperCamelCase__ = {
'google/pegasus-xsum': 5_1_2,
}
class A ( UpperCAmelCase_ ):
__UpperCAmelCase : str = VOCAB_FILES_NAMES
__UpperCAmelCase : Any = PRETRAINED_VOCAB_FILES_MAP
__UpperCAmelCase : List[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
__UpperCAmelCase : Union[str, Any] = PegasusTokenizer
__UpperCAmelCase : Any = ['input_ids', 'attention_mask']
def __init__(self : Optional[int] , __UpperCAmelCase : List[str]=None , __UpperCAmelCase : Any=None , __UpperCAmelCase : Union[str, Any]="<pad>" , __UpperCAmelCase : List[str]="</s>" , __UpperCAmelCase : Union[str, Any]="<unk>" , __UpperCAmelCase : int="<mask_2>" , __UpperCAmelCase : Optional[Any]="<mask_1>" , __UpperCAmelCase : Union[str, Any]=None , __UpperCAmelCase : str=1_0_3 , **__UpperCAmelCase : str , ) -> Optional[Any]:
"""simple docstring"""
UpperCAmelCase__ = offset
if additional_special_tokens is not None:
if not isinstance(__UpperCAmelCase , __UpperCAmelCase ):
raise TypeError(
f"""additional_special_tokens should be of type {type(__UpperCAmelCase )}, but is"""
f""" {type(__UpperCAmelCase )}""" )
UpperCAmelCase__ = (
([mask_token_sent] + additional_special_tokens)
if mask_token_sent not in additional_special_tokens and mask_token_sent is not None
else additional_special_tokens
)
# fill additional tokens with ..., <unk_token_102> in case not all additional tokens are already taken
additional_special_tokens_extended += [
f"""<unk_{i}>""" for i in range(len(__UpperCAmelCase ) , self.offset - 1 )
]
if len(set(__UpperCAmelCase ) ) != len(__UpperCAmelCase ):
raise ValueError(
"Please make sure that the provided additional_special_tokens do not contain an incorrectly"
f""" shifted list of <unk_x> tokens. Found {additional_special_tokens_extended}.""" )
UpperCAmelCase__ = additional_special_tokens_extended
else:
UpperCAmelCase__ = [mask_token_sent] if mask_token_sent is not None else []
additional_special_tokens += [f"""<unk_{i}>""" for i in range(2 , self.offset )]
super().__init__(
__UpperCAmelCase , tokenizer_file=__UpperCAmelCase , pad_token=__UpperCAmelCase , eos_token=__UpperCAmelCase , unk_token=__UpperCAmelCase , mask_token=__UpperCAmelCase , mask_token_sent=__UpperCAmelCase , offset=__UpperCAmelCase , additional_special_tokens=__UpperCAmelCase , **__UpperCAmelCase , )
UpperCAmelCase__ = vocab_file
UpperCAmelCase__ = False if not self.vocab_file else True
def lowercase_ (self : List[Any] , __UpperCAmelCase : Tuple ) -> int:
"""simple docstring"""
UpperCAmelCase__ = set(self.all_special_ids ) # call it once instead of inside list comp
all_special_ids.remove(self.unk_token_id ) # <unk> is only sometimes special
if all_special_ids != set(range(len(self.additional_special_tokens ) + 3 ) ):
raise ValueError(
"There should be 3 special tokens: mask_token, pad_token, and eos_token +"
f""" {len(self.additional_special_tokens )} additional_special_tokens, but got {all_special_ids}""" )
return [1 if x in all_special_ids else 0 for x in seq]
def lowercase_ (self : Union[str, Any] , __UpperCAmelCase : List , __UpperCAmelCase : Optional[List] = None , __UpperCAmelCase : bool = False ) -> List[int]:
"""simple docstring"""
if already_has_special_tokens:
return self._special_token_mask(__UpperCAmelCase )
elif token_ids_a is None:
return self._special_token_mask(__UpperCAmelCase ) + [1]
else:
return self._special_token_mask(token_ids_a + token_ids_a ) + [1]
def lowercase_ (self : str , __UpperCAmelCase : List[str] , __UpperCAmelCase : Optional[Any]=None ) -> List[int]:
"""simple docstring"""
if token_ids_a is None:
return token_ids_a + [self.eos_token_id]
# We don't expect to process pairs, but leave the pair logic for API consistency
return token_ids_a + token_ids_a + [self.eos_token_id]
def lowercase_ (self : List[str] , __UpperCAmelCase : str , __UpperCAmelCase : Optional[str] = None ) -> Tuple[str]:
"""simple docstring"""
if not self.can_save_slow_tokenizer:
raise ValueError(
"Your fast tokenizer does not have the necessary information to save the vocabulary for a slow "
"tokenizer." )
if not os.path.isdir(__UpperCAmelCase ):
logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" )
return
UpperCAmelCase__ = os.path.join(
__UpperCAmelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(__UpperCAmelCase ):
copyfile(self.vocab_file , __UpperCAmelCase )
return (out_vocab_file,)
| 143 | 1 |
"""simple docstring"""
import math
def _snake_case ( ):
lowerCAmelCase : Union[str, Any] = input('''Enter message: ''' )
lowerCAmelCase : Optional[int] = int(input(f'''Enter key [2-{len(_snake_case ) - 1}]: ''' ) )
lowerCAmelCase : str = input('''Encryption/Decryption [e/d]: ''' )
if mode.lower().startswith('''e''' ):
lowerCAmelCase : Any = encrypt_message(_snake_case , _snake_case )
elif mode.lower().startswith('''d''' ):
lowerCAmelCase : Union[str, Any] = decrypt_message(_snake_case , _snake_case )
# Append pipe symbol (vertical bar) to identify spaces at the end.
print(f'''Output:\n{text + "|"}''' )
def _snake_case ( _snake_case : int , _snake_case : str ):
lowerCAmelCase : Optional[Any] = [''''''] * key
for col in range(_snake_case ):
lowerCAmelCase : Optional[Any] = col
while pointer < len(_snake_case ):
cipher_text[col] += message[pointer]
pointer += key
return "".join(_snake_case )
def _snake_case ( _snake_case : int , _snake_case : str ):
lowerCAmelCase : Union[str, Any] = math.ceil(len(_snake_case ) / key )
lowerCAmelCase : str = key
lowerCAmelCase : Any = (num_cols * num_rows) - len(_snake_case )
lowerCAmelCase : Dict = [''''''] * num_cols
lowerCAmelCase : int = 0
lowerCAmelCase : int = 0
for symbol in message:
plain_text[col] += symbol
col += 1
if (
(col == num_cols)
or (col == num_cols - 1)
and (row >= num_rows - num_shaded_boxes)
):
lowerCAmelCase : int = 0
row += 1
return "".join(_snake_case )
if __name__ == "__main__":
import doctest
doctest.testmod()
main()
| 60 |
"""simple docstring"""
import collections
import inspect
import unittest
from transformers import SwinvaConfig
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import SwinvaForImageClassification, SwinvaForMaskedImageModeling, SwinvaModel
from transformers.models.swinva.modeling_swinva import SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import AutoImageProcessor
class snake_case_:
def __init__( self : Dict , UpperCamelCase_ : str , UpperCamelCase_ : Dict=1_3 , UpperCamelCase_ : Union[str, Any]=3_2 , UpperCamelCase_ : str=2 , UpperCamelCase_ : int=3 , UpperCamelCase_ : Any=1_6 , UpperCamelCase_ : int=[1, 2, 1] , UpperCamelCase_ : Optional[int]=[2, 2, 4] , UpperCamelCase_ : Any=2 , UpperCamelCase_ : Any=2.0 , UpperCamelCase_ : Union[str, Any]=True , UpperCamelCase_ : int=0.0 , UpperCamelCase_ : Optional[Any]=0.0 , UpperCamelCase_ : Any=0.1 , UpperCamelCase_ : Tuple="gelu" , UpperCamelCase_ : Union[str, Any]=False , UpperCamelCase_ : Any=True , UpperCamelCase_ : List[Any]=0.02 , UpperCamelCase_ : Tuple=1E-5 , UpperCamelCase_ : Optional[int]=True , UpperCamelCase_ : List[Any]=None , UpperCamelCase_ : str=True , UpperCamelCase_ : List[Any]=1_0 , UpperCamelCase_ : Dict=8 , ):
lowerCAmelCase : Union[str, Any] = parent
lowerCAmelCase : int = batch_size
lowerCAmelCase : List[str] = image_size
lowerCAmelCase : Union[str, Any] = patch_size
lowerCAmelCase : int = num_channels
lowerCAmelCase : Any = embed_dim
lowerCAmelCase : Any = depths
lowerCAmelCase : Any = num_heads
lowerCAmelCase : int = window_size
lowerCAmelCase : List[Any] = mlp_ratio
lowerCAmelCase : int = qkv_bias
lowerCAmelCase : Optional[Any] = hidden_dropout_prob
lowerCAmelCase : str = attention_probs_dropout_prob
lowerCAmelCase : str = drop_path_rate
lowerCAmelCase : Union[str, Any] = hidden_act
lowerCAmelCase : int = use_absolute_embeddings
lowerCAmelCase : Union[str, Any] = patch_norm
lowerCAmelCase : int = layer_norm_eps
lowerCAmelCase : str = initializer_range
lowerCAmelCase : Optional[int] = is_training
lowerCAmelCase : int = scope
lowerCAmelCase : List[str] = use_labels
lowerCAmelCase : str = type_sequence_label_size
lowerCAmelCase : Union[str, Any] = encoder_stride
def lowerCamelCase__ ( self : Any ):
lowerCAmelCase : str = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
lowerCAmelCase : Union[str, Any] = None
if self.use_labels:
lowerCAmelCase : Union[str, Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size )
lowerCAmelCase : Tuple = self.get_config()
return config, pixel_values, labels
def lowerCamelCase__ ( self : List[Any] ):
return SwinvaConfig(
image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , )
def lowerCamelCase__ ( self : Union[str, Any] , UpperCamelCase_ : Any , UpperCamelCase_ : str , UpperCamelCase_ : Dict ):
lowerCAmelCase : List[str] = SwinvaModel(config=UpperCamelCase_ )
model.to(UpperCamelCase_ )
model.eval()
lowerCAmelCase : List[str] = model(UpperCamelCase_ )
lowerCAmelCase : Tuple = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1))
lowerCAmelCase : List[Any] = int(config.embed_dim * 2 ** (len(config.depths ) - 1) )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) )
def lowerCamelCase__ ( self : Tuple , UpperCamelCase_ : int , UpperCamelCase_ : str , UpperCamelCase_ : Optional[int] ):
lowerCAmelCase : Tuple = SwinvaForMaskedImageModeling(config=UpperCamelCase_ )
model.to(UpperCamelCase_ )
model.eval()
lowerCAmelCase : Dict = model(UpperCamelCase_ )
self.parent.assertEqual(
result.logits.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) )
# test greyscale images
lowerCAmelCase : List[Any] = 1
lowerCAmelCase : List[str] = SwinvaForMaskedImageModeling(UpperCamelCase_ )
model.to(UpperCamelCase_ )
model.eval()
lowerCAmelCase : int = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] )
lowerCAmelCase : int = model(UpperCamelCase_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, 1, self.image_size, self.image_size) )
def lowerCamelCase__ ( self : Union[str, Any] , UpperCamelCase_ : Tuple , UpperCamelCase_ : List[str] , UpperCamelCase_ : int ):
lowerCAmelCase : List[str] = self.type_sequence_label_size
lowerCAmelCase : Optional[Any] = SwinvaForImageClassification(UpperCamelCase_ )
model.to(UpperCamelCase_ )
model.eval()
lowerCAmelCase : Optional[int] = model(UpperCamelCase_ , labels=UpperCamelCase_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
def lowerCamelCase__ ( self : str ):
lowerCAmelCase : Optional[int] = self.prepare_config_and_inputs()
lowerCAmelCase, lowerCAmelCase, lowerCAmelCase : str = config_and_inputs
lowerCAmelCase : Dict = {'''pixel_values''': pixel_values}
return config, inputs_dict
@require_torch
class snake_case_( a__ , a__ , unittest.TestCase ):
__UpperCamelCase = (
(SwinvaModel, SwinvaForImageClassification, SwinvaForMaskedImageModeling) if is_torch_available() else ()
)
__UpperCamelCase = (
{'''feature-extraction''': SwinvaModel, '''image-classification''': SwinvaForImageClassification}
if is_torch_available()
else {}
)
__UpperCamelCase = False
__UpperCamelCase = False
__UpperCamelCase = False
__UpperCamelCase = False
def lowerCamelCase__ ( self : int ):
lowerCAmelCase : Dict = SwinvaModelTester(self )
lowerCAmelCase : List[str] = ConfigTester(self , config_class=UpperCamelCase_ , embed_dim=3_7 )
def lowerCamelCase__ ( self : Optional[int] ):
self.config_tester.create_and_test_config_to_json_string()
self.config_tester.create_and_test_config_to_json_file()
self.config_tester.create_and_test_config_from_and_save_pretrained()
self.config_tester.create_and_test_config_with_num_labels()
self.config_tester.check_config_can_be_init_without_params()
self.config_tester.check_config_arguments_init()
def lowerCamelCase__ ( self : List[str] ):
lowerCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*UpperCamelCase_ )
@unittest.skip(reason='''Got `CUDA error: misaligned address` with PyTorch 2.0.0.''' )
def lowerCamelCase__ ( self : Dict ):
pass
@unittest.skip(reason='''Swinv2 does not use inputs_embeds''' )
def lowerCamelCase__ ( self : int ):
pass
def lowerCamelCase__ ( self : List[Any] ):
lowerCAmelCase, lowerCAmelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
lowerCAmelCase : Dict = model_class(UpperCamelCase_ )
self.assertIsInstance(model.get_input_embeddings() , (nn.Module) )
lowerCAmelCase : str = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(UpperCamelCase_ , nn.Linear ) )
def lowerCamelCase__ ( self : Optional[Any] ):
lowerCAmelCase, lowerCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
lowerCAmelCase : Tuple = model_class(UpperCamelCase_ )
lowerCAmelCase : Tuple = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
lowerCAmelCase : Optional[int] = [*signature.parameters.keys()]
lowerCAmelCase : int = ['''pixel_values''']
self.assertListEqual(arg_names[:1] , UpperCamelCase_ )
def lowerCamelCase__ ( self : Tuple ):
lowerCAmelCase, lowerCAmelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common()
lowerCAmelCase : Optional[Any] = True
for model_class in self.all_model_classes:
lowerCAmelCase : Any = True
lowerCAmelCase : List[str] = False
lowerCAmelCase : int = True
lowerCAmelCase : int = model_class(UpperCamelCase_ )
model.to(UpperCamelCase_ )
model.eval()
with torch.no_grad():
lowerCAmelCase : Optional[Any] = model(**self._prepare_for_class(UpperCamelCase_ , UpperCamelCase_ ) )
lowerCAmelCase : str = outputs.attentions
lowerCAmelCase : int = len(self.model_tester.depths )
self.assertEqual(len(UpperCamelCase_ ) , UpperCamelCase_ )
# check that output_attentions also work using config
del inputs_dict["output_attentions"]
lowerCAmelCase : Any = True
lowerCAmelCase : Union[str, Any] = config.window_size**2
lowerCAmelCase : int = model_class(UpperCamelCase_ )
model.to(UpperCamelCase_ )
model.eval()
with torch.no_grad():
lowerCAmelCase : Optional[int] = model(**self._prepare_for_class(UpperCamelCase_ , UpperCamelCase_ ) )
lowerCAmelCase : Dict = outputs.attentions
self.assertEqual(len(UpperCamelCase_ ) , UpperCamelCase_ )
self.assertListEqual(
list(attentions[0].shape[-3:] ) , [self.model_tester.num_heads[0], window_size_squared, window_size_squared] , )
lowerCAmelCase : str = len(UpperCamelCase_ )
# Check attention is always last and order is fine
lowerCAmelCase : Optional[int] = True
lowerCAmelCase : int = True
lowerCAmelCase : Optional[Any] = model_class(UpperCamelCase_ )
model.to(UpperCamelCase_ )
model.eval()
with torch.no_grad():
lowerCAmelCase : Tuple = model(**self._prepare_for_class(UpperCamelCase_ , UpperCamelCase_ ) )
if hasattr(self.model_tester , '''num_hidden_states_types''' ):
lowerCAmelCase : List[Any] = self.model_tester.num_hidden_states_types
else:
# also another +1 for reshaped_hidden_states
lowerCAmelCase : Union[str, Any] = 2
self.assertEqual(out_len + added_hidden_states , len(UpperCamelCase_ ) )
lowerCAmelCase : List[str] = outputs.attentions
self.assertEqual(len(UpperCamelCase_ ) , UpperCamelCase_ )
self.assertListEqual(
list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_heads[0], window_size_squared, window_size_squared] , )
def lowerCamelCase__ ( self : int , UpperCamelCase_ : Tuple , UpperCamelCase_ : Dict , UpperCamelCase_ : List[Any] , UpperCamelCase_ : Optional[Any] ):
lowerCAmelCase : int = model_class(UpperCamelCase_ )
model.to(UpperCamelCase_ )
model.eval()
with torch.no_grad():
lowerCAmelCase : Union[str, Any] = model(**self._prepare_for_class(UpperCamelCase_ , UpperCamelCase_ ) )
lowerCAmelCase : str = outputs.hidden_states
lowerCAmelCase : List[str] = getattr(
self.model_tester , '''expected_num_hidden_layers''' , len(self.model_tester.depths ) + 1 )
self.assertEqual(len(UpperCamelCase_ ) , UpperCamelCase_ )
# Swinv2 has a different seq_length
lowerCAmelCase : Any = (
config.patch_size
if isinstance(config.patch_size , collections.abc.Iterable )
else (config.patch_size, config.patch_size)
)
lowerCAmelCase : str = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0])
self.assertListEqual(
list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , )
lowerCAmelCase : List[str] = outputs.reshaped_hidden_states
self.assertEqual(len(UpperCamelCase_ ) , UpperCamelCase_ )
lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase : str = reshaped_hidden_states[0].shape
lowerCAmelCase : Optional[Any] = (
reshaped_hidden_states[0].view(UpperCamelCase_ , UpperCamelCase_ , height * width ).permute(0 , 2 , 1 )
)
self.assertListEqual(
list(reshaped_hidden_states.shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , )
def lowerCamelCase__ ( self : Optional[int] ):
lowerCAmelCase, lowerCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common()
lowerCAmelCase : Any = (
self.model_tester.image_size
if isinstance(self.model_tester.image_size , collections.abc.Iterable )
else (self.model_tester.image_size, self.model_tester.image_size)
)
for model_class in self.all_model_classes:
lowerCAmelCase : Union[str, Any] = True
self.check_hidden_states_output(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
lowerCAmelCase : Tuple = True
self.check_hidden_states_output(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ )
def lowerCamelCase__ ( self : Optional[Any] ):
lowerCAmelCase, lowerCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common()
lowerCAmelCase : Dict = 3
lowerCAmelCase : Dict = (
self.model_tester.image_size
if isinstance(self.model_tester.image_size , collections.abc.Iterable )
else (self.model_tester.image_size, self.model_tester.image_size)
)
lowerCAmelCase : Dict = (
config.patch_size
if isinstance(config.patch_size , collections.abc.Iterable )
else (config.patch_size, config.patch_size)
)
lowerCAmelCase : List[str] = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0])
lowerCAmelCase : Tuple = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1])
for model_class in self.all_model_classes:
lowerCAmelCase : str = True
self.check_hidden_states_output(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , (padded_height, padded_width) )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
lowerCAmelCase : Optional[int] = True
self.check_hidden_states_output(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , (padded_height, padded_width) )
def lowerCamelCase__ ( self : int ):
lowerCAmelCase : str = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_image_modeling(*UpperCamelCase_ )
def lowerCamelCase__ ( self : str ):
lowerCAmelCase : Dict = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*UpperCamelCase_ )
@slow
def lowerCamelCase__ ( self : int ):
for model_name in SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
lowerCAmelCase : int = SwinvaModel.from_pretrained(UpperCamelCase_ )
self.assertIsNotNone(UpperCamelCase_ )
def lowerCamelCase__ ( self : Optional[int] ):
lowerCAmelCase, lowerCAmelCase : int = self.model_tester.prepare_config_and_inputs_for_common()
lowerCAmelCase : Union[str, Any] = _config_zero_init(UpperCamelCase_ )
for model_class in self.all_model_classes:
lowerCAmelCase : Union[str, Any] = model_class(config=UpperCamelCase_ )
for name, param in model.named_parameters():
if "embeddings" not in name and "logit_scale" not in name and param.requires_grad:
self.assertIn(
((param.data.mean() * 1E9).round() / 1E9).item() , [0.0, 1.0] , msg=F'''Parameter {name} of model {model_class} seems not properly initialized''' , )
@require_vision
@require_torch
class snake_case_( unittest.TestCase ):
@cached_property
def lowerCamelCase__ ( self : Dict ):
return (
AutoImageProcessor.from_pretrained('''microsoft/swinv2-tiny-patch4-window8-256''' )
if is_vision_available()
else None
)
@slow
def lowerCamelCase__ ( self : Dict ):
lowerCAmelCase : str = SwinvaForImageClassification.from_pretrained('''microsoft/swinv2-tiny-patch4-window8-256''' ).to(
UpperCamelCase_ )
lowerCAmelCase : List[Any] = self.default_image_processor
lowerCAmelCase : int = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' )
lowerCAmelCase : Union[str, Any] = image_processor(images=UpperCamelCase_ , return_tensors='''pt''' ).to(UpperCamelCase_ )
# forward pass
with torch.no_grad():
lowerCAmelCase : Dict = model(**UpperCamelCase_ )
# verify the logits
lowerCAmelCase : List[Any] = torch.Size((1, 1_0_0_0) )
self.assertEqual(outputs.logits.shape , UpperCamelCase_ )
lowerCAmelCase : Any = torch.tensor([-0.3_947, -0.4_306, 0.0_026] ).to(UpperCamelCase_ )
self.assertTrue(torch.allclose(outputs.logits[0, :3] , UpperCamelCase_ , atol=1E-4 ) )
| 60 | 1 |
import argparse
import torch
from transformers import FunnelBaseModel, FunnelConfig, FunnelModel, load_tf_weights_in_funnel
from transformers.utils import logging
logging.set_verbosity_info()
def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> Any:
"""simple docstring"""
A__ = FunnelConfig.from_json_file(lowercase_ )
print(f"""Building PyTorch model from configuration: {config}""" )
A__ = FunnelBaseModel(lowercase_ ) if base_model else FunnelModel(lowercase_ )
# Load weights from tf checkpoint
load_tf_weights_in_funnel(lowercase_ , lowercase_ , lowercase_ )
# Save pytorch-model
print(f"""Save PyTorch model to {pytorch_dump_path}""" )
torch.save(model.state_dict() , lowercase_ )
if __name__ == "__main__":
_lowerCamelCase : Any = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"""--tf_checkpoint_path""", default=None, type=str, required=True, help="""Path to the TensorFlow checkpoint path."""
)
parser.add_argument(
"""--config_file""",
default=None,
type=str,
required=True,
help="""The config json file corresponding to the pre-trained model. \nThis specifies the model architecture.""",
)
parser.add_argument(
"""--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model."""
)
parser.add_argument(
"""--base_model""", action="""store_true""", help="""Whether you want just the base model (no decoder) or not."""
)
_lowerCamelCase : Optional[int] = parser.parse_args()
convert_tf_checkpoint_to_pytorch(
args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path, args.base_model
)
| 231 |
from __future__ import annotations
import csv
import requests
from bsa import BeautifulSoup
def SCREAMING_SNAKE_CASE ( lowercase_ = "" ) -> dict[str, float]:
"""simple docstring"""
A__ = url or '''https://www.imdb.com/chart/top/?ref_=nv_mv_250'''
A__ = BeautifulSoup(requests.get(lowercase_ ).text , '''html.parser''' )
A__ = soup.find_all('''td''' , attrs='''titleColumn''' )
A__ = soup.find_all('''td''' , class_='''ratingColumn imdbRating''' )
return {
title.a.text: float(rating.strong.text )
for title, rating in zip(lowercase_ , lowercase_ )
}
def SCREAMING_SNAKE_CASE ( lowercase_ = "IMDb_Top_250_Movies.csv" ) -> None:
"""simple docstring"""
A__ = get_imdb_top_aaa_movies()
with open(lowercase_ , '''w''' , newline='''''' ) as out_file:
A__ = csv.writer(lowercase_ )
writer.writerow(['''Movie title''', '''IMDb rating'''] )
for title, rating in movies.items():
writer.writerow([title, rating] )
if __name__ == "__main__":
write_movies()
| 231 | 1 |
'''simple docstring'''
def snake_case_ ( _lowerCAmelCase : Any ) -> List[str]:
if upper_limit < 0:
raise ValueError('''Limit for the Catalan sequence must be ≥ 0''' )
UpperCAmelCase : int = [0] * (upper_limit + 1)
# Base case: C(0) = C(1) = 1
UpperCAmelCase : int = 1
if upper_limit > 0:
UpperCAmelCase : Optional[Any] = 1
# Recurrence relation: C(i) = sum(C(j).C(i-j-1)), from j = 0 to i
for i in range(2 , upper_limit + 1 ):
for j in range(__lowerCAmelCase ):
catalan_list[i] += catalan_list[j] * catalan_list[i - j - 1]
return catalan_list
if __name__ == "__main__":
print("\n********* Catalan Numbers Using Dynamic Programming ************\n")
print("\n*** Enter -1 at any time to quit ***")
print("\nEnter the upper limit (≥ 0) for the Catalan number sequence: ", end="")
try:
while True:
UpperCamelCase__: Optional[Any] = int(input().strip())
if N < 0:
print("\n********* Goodbye!! ************")
break
else:
print(F"The Catalan numbers from 0 through {N} are:")
print(catalan_numbers(N))
print("Try another upper limit for the sequence: ", end="")
except (NameError, ValueError):
print("\n********* Invalid input, goodbye! ************\n")
import doctest
doctest.testmod()
| 23 |
'''simple docstring'''
import argparse
import json
import os
import torch
from torch import nn
from transformers import NllbMoeConfig, NllbMoeModel
from transformers.modeling_utils import dtype_byte_size
from transformers.utils import WEIGHTS_INDEX_NAME, WEIGHTS_NAME
def __lowerCAmelCase (__lowerCAmelCase ):
_UpperCAmelCase : List[str] = [
"encoder.version",
"decoder.version",
"model.encoder.version",
"model.decoder.version",
"decoder.output_projection.weight",
"_float_tensor",
"encoder.embed_positions._float_tensor",
"decoder.embed_positions._float_tensor",
]
for k in ignore_keys:
state_dict.pop(__lowerCAmelCase , __lowerCAmelCase )
def __lowerCAmelCase (__lowerCAmelCase ):
_UpperCAmelCase , _UpperCAmelCase : Optional[Any] = emb.weight.shape
_UpperCAmelCase : str = nn.Linear(__lowerCAmelCase , __lowerCAmelCase , bias=__lowerCAmelCase )
_UpperCAmelCase : Optional[int] = emb.weight.data
return lin_layer
def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase=None ):
_UpperCAmelCase : int = {}
for old_key in state_dict.keys():
_UpperCAmelCase : Tuple = old_key
if "moe_layer.experts." in key:
if expert_idx is not None:
_UpperCAmelCase : Optional[int] = key.replace("moe_layer.experts.0" , F"""ffn.experts.expert_{expert_idx}""" )
else:
_UpperCAmelCase : Any = key.replace("moe_layer.experts." , "ffn.experts.expert_" )
if "gate" in key:
_UpperCAmelCase : List[Any] = key.replace(".moe_layer.gate.wg" , ".ffn.router.classifier" )
if "fc2" and "experts" not in key:
_UpperCAmelCase : Tuple = key.replace(".fc2." , ".ffn.fc2." )
if "fc1" and "experts" not in key:
_UpperCAmelCase : List[Any] = key.replace(".fc1." , ".ffn.fc1." )
if ".encoder_attn." in key:
_UpperCAmelCase : List[Any] = key.replace(".encoder_attn." , ".cross_attention." )
if "encoder_attn_layer_norm" in key:
_UpperCAmelCase : Any = key.replace("encoder_attn_layer_norm" , "cross_attention_layer_norm" )
if "final_layer_norm" in key:
_UpperCAmelCase : int = key.replace("final_layer_norm" , "ff_layer_norm" )
_UpperCAmelCase : Tuple = state_dict[old_key]
return new_dict
def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = WEIGHTS_NAME ):
_UpperCAmelCase : Optional[int] = []
_UpperCAmelCase : Optional[Any] = 0
os.makedirs(__lowerCAmelCase , exist_ok=__lowerCAmelCase )
for expert in range(__lowerCAmelCase ):
_UpperCAmelCase : Tuple = switch_checkpoint_path + F"""-rank-{expert}.pt"""
if os.path.isfile(__lowerCAmelCase ):
_UpperCAmelCase : Tuple = torch.load(__lowerCAmelCase )["model"]
remove_ignore_keys_(__lowerCAmelCase )
_UpperCAmelCase : Dict = rename_fairseq_keys(__lowerCAmelCase , __lowerCAmelCase )
_UpperCAmelCase : List[str] = os.path.join(
__lowerCAmelCase , weights_name.replace(".bin" , F"""-{len(__lowerCAmelCase )+1:05d}-of-???.bin""" ) )
torch.save(__lowerCAmelCase , __lowerCAmelCase )
sharded_state_dicts.append(expert_state.keys() )
total_size += sum([value.numel() for key, value in expert_state.items()] ) * dtype_byte_size(
expert_state[list(__lowerCAmelCase )[0]].dtype )
# Add the last block
_UpperCAmelCase : Tuple = os.path.join(__lowerCAmelCase , weights_name.replace(".bin" , F"""-{len(__lowerCAmelCase )+1:05d}-of-???.bin""" ) )
_UpperCAmelCase : Union[str, Any] = torch.load(switch_checkpoint_path + "-shared.pt" )["model"]
remove_ignore_keys_(__lowerCAmelCase )
_UpperCAmelCase : Union[str, Any] = rename_fairseq_keys(__lowerCAmelCase , __lowerCAmelCase )
_UpperCAmelCase : Any = shared_weights["decoder.embed_tokens.weight"]
sharded_state_dicts.append(shared_weights.keys() )
# If we only have the shared weights (dummy model/experts saved on the same file)
if len(__lowerCAmelCase ) == 1:
_UpperCAmelCase : List[str] = os.path.join(__lowerCAmelCase , __lowerCAmelCase )
torch.save(__lowerCAmelCase , __lowerCAmelCase )
return {weights_name: sharded_state_dicts[0]}, None
else:
torch.save(__lowerCAmelCase , __lowerCAmelCase )
# Otherwise, let's build the index
_UpperCAmelCase : Union[str, Any] = {}
for idx, shard in enumerate(__lowerCAmelCase ):
_UpperCAmelCase : Tuple = weights_name.replace(".bin" , F"""-{idx+1:05d}-of-{len(__lowerCAmelCase ):05d}.bin""" )
_UpperCAmelCase : List[Any] = os.path.join(__lowerCAmelCase , weights_name.replace(".bin" , F"""-{idx+1:05d}-of-???.bin""" ) )
os.rename(__lowerCAmelCase , os.path.join(__lowerCAmelCase , __lowerCAmelCase ) )
for key in shard:
_UpperCAmelCase : List[Any] = shard_file
# Add the metadata
_UpperCAmelCase : Any = {"total_size": total_size}
_UpperCAmelCase : List[str] = {"metadata": metadata, "weight_map": weight_map}
with open(os.path.join(__lowerCAmelCase , __lowerCAmelCase ) , "w" , encoding="utf-8" ) as f:
_UpperCAmelCase : Tuple = json.dumps(__lowerCAmelCase , indent=2 , sort_keys=__lowerCAmelCase ) + "\n"
f.write(__lowerCAmelCase )
return metadata, index
if __name__ == "__main__":
lowerCamelCase__ = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--nllb_moe_checkpoint_path',
default='/home/arthur_huggingface_co/fairseq/weights/checkpoints/model_moe_54b/checkpoint_2_300000',
type=str,
required=False,
help='Path to a directory containing a folder per layer. Follows the original Google format.',
)
parser.add_argument('--dtype', default='float32', type=str, required=False, help='dtype of the saved model')
parser.add_argument(
'--pytorch_dump_folder_path',
default='/home/arthur_huggingface_co/fairseq/weights/checkpoints/hf-converted-moe-54b',
type=str,
required=False,
help='Path to the output pytorch model.',
)
lowerCamelCase__ = parser.parse_args()
lowerCamelCase__ ,lowerCamelCase__ = shard_on_the_fly(
args.nllb_moe_checkpoint_path,
args.pytorch_dump_folder_path,
128,
args.dtype,
)
lowerCamelCase__ = NllbMoeConfig.from_pretrained(
'facebook/nllb-200-3.3B', encoder_sparse_step=4, decoder_sparse_step=4, num_experts=128
)
config.save_pretrained(args.pytorch_dump_folder_path)
lowerCamelCase__ = NllbMoeModel.from_pretrained(args.pytorch_dump_folder_path)
print('Done')
model.save_pretrained(args.pytorch_dump_folder_path)
| 234 | 0 |
def lowerCAmelCase_ ( )-> Tuple:
'''simple docstring'''
UpperCAmelCase : Union[str, Any] =[]
UpperCAmelCase : Tuple =1
while len(__lowerCAmelCase ) < 1e6:
constant.append(str(__lowerCAmelCase ) )
i += 1
UpperCAmelCase : Dict =''''''.join(__lowerCAmelCase )
return (
int(constant[0] )
* int(constant[9] )
* int(constant[99] )
* int(constant[9_99] )
* int(constant[99_99] )
* int(constant[9_99_99] )
* int(constant[99_99_99] )
)
if __name__ == "__main__":
print(solution())
| 78 | import sys
def lowerCAmelCase_ ( __lowerCAmelCase )-> Any:
'''simple docstring'''
UpperCAmelCase : Optional[Any] =len(__lowerCAmelCase )
UpperCAmelCase : List[str] =[[0 for x in range(__lowerCAmelCase )] for x in range(__lowerCAmelCase )]
UpperCAmelCase : List[Any] =[[0 for x in range(__lowerCAmelCase )] for x in range(__lowerCAmelCase )]
for chain_length in range(2 , __lowerCAmelCase ):
for a in range(1 , n - chain_length + 1 ):
UpperCAmelCase : str =a + chain_length - 1
UpperCAmelCase : Union[str, Any] =sys.maxsize
for c in range(__lowerCAmelCase , __lowerCAmelCase ):
UpperCAmelCase : List[Any] =(
matrix[a][c] + matrix[c + 1][b] + array[a - 1] * array[c] * array[b]
)
if cost < matrix[a][b]:
UpperCAmelCase : Optional[Any] =cost
UpperCAmelCase : Dict =c
return matrix, sol
def lowerCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )-> Union[str, Any]:
'''simple docstring'''
if i == j:
print('''A''' + str(__lowerCAmelCase ) , end=''' ''' )
else:
print('''(''' , end=''' ''' )
print_optiomal_solution(__lowerCAmelCase , __lowerCAmelCase , optimal_solution[i][j] )
print_optiomal_solution(__lowerCAmelCase , optimal_solution[i][j] + 1 , __lowerCAmelCase )
print(''')''' , end=''' ''' )
def lowerCAmelCase_ ( )-> List[str]:
'''simple docstring'''
UpperCAmelCase : Dict =[30, 35, 15, 5, 10, 20, 25]
UpperCAmelCase : Optional[Any] =len(__lowerCAmelCase )
# Size of matrix created from above array will be
# 30*35 35*15 15*5 5*10 10*20 20*25
UpperCAmelCase , UpperCAmelCase : Optional[int] =matrix_chain_order(__lowerCAmelCase )
print('''No. of Operation required: ''' + str(matrix[1][n - 1] ) )
print_optiomal_solution(__lowerCAmelCase , 1 , n - 1 )
if __name__ == "__main__":
main()
| 78 | 1 |
'''simple docstring'''
from ...configuration_utils import PretrainedConfig
from ...utils import logging
UpperCamelCase__: int = logging.get_logger(__name__)
UpperCamelCase__: List[Any] = {
"naver-clova-ix/donut-base": "https://huggingface.co/naver-clova-ix/donut-base/resolve/main/config.json",
# See all Donut models at https://huggingface.co/models?filter=donut-swin
}
class SCREAMING_SNAKE_CASE( A__ ):
"""simple docstring"""
lowerCamelCase__ = """donut-swin"""
lowerCamelCase__ = {
"""num_attention_heads""": """num_heads""",
"""num_hidden_layers""": """num_layers""",
}
def __init__( self : Union[str, Any] , __snake_case : List[str]=224 , __snake_case : Optional[int]=4 , __snake_case : int=3 , __snake_case : Tuple=96 , __snake_case : Union[str, Any]=[2, 2, 6, 2] , __snake_case : str=[3, 6, 12, 24] , __snake_case : List[str]=7 , __snake_case : str=4.0 , __snake_case : Tuple=True , __snake_case : Union[str, Any]=0.0 , __snake_case : str=0.0 , __snake_case : Optional[Any]=0.1 , __snake_case : Union[str, Any]="gelu" , __snake_case : str=False , __snake_case : Optional[int]=0.02 , __snake_case : List[Any]=1E-5 , **__snake_case : int , ) -> Optional[Any]:
super().__init__(**__snake_case )
UpperCAmelCase : Any = image_size
UpperCAmelCase : List[str] = patch_size
UpperCAmelCase : List[Any] = num_channels
UpperCAmelCase : Union[str, Any] = embed_dim
UpperCAmelCase : Union[str, Any] = depths
UpperCAmelCase : Any = len(__snake_case )
UpperCAmelCase : Union[str, Any] = num_heads
UpperCAmelCase : Any = window_size
UpperCAmelCase : Tuple = mlp_ratio
UpperCAmelCase : Optional[Any] = qkv_bias
UpperCAmelCase : Any = hidden_dropout_prob
UpperCAmelCase : str = attention_probs_dropout_prob
UpperCAmelCase : Dict = drop_path_rate
UpperCAmelCase : List[Any] = hidden_act
UpperCAmelCase : Union[str, Any] = use_absolute_embeddings
UpperCAmelCase : Tuple = layer_norm_eps
UpperCAmelCase : Optional[int] = initializer_range
# we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel
# this indicates the channel dimension after the last stage of the model
UpperCAmelCase : str = int(embed_dim * 2 ** (len(__snake_case ) - 1) )
| 23 |
'''simple docstring'''
import argparse
import json
from pathlib import Path
import requests
import torch
from huggingface_hub import cached_download, hf_hub_url
from PIL import Image
from transformers import DPTConfig, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTImageProcessor
from transformers.utils import logging
logging.set_verbosity_info()
UpperCamelCase__: Optional[int] = logging.get_logger(__name__)
def snake_case_ ( _lowerCAmelCase : Optional[int] ) -> Optional[int]:
UpperCAmelCase : Tuple = DPTConfig(embedding_type='''hybrid''' )
if "large" in checkpoint_url:
UpperCAmelCase : Tuple = 1024
UpperCAmelCase : List[Any] = 4096
UpperCAmelCase : str = 24
UpperCAmelCase : List[Any] = 16
UpperCAmelCase : str = [5, 11, 17, 23]
UpperCAmelCase : List[Any] = [256, 512, 1024, 1024]
UpperCAmelCase : Tuple = (1, 384, 384)
if "nyu" or "midas" in checkpoint_url:
UpperCAmelCase : Optional[Any] = 768
UpperCAmelCase : Tuple = [1, 1, 1, 0.5]
UpperCAmelCase : int = [256, 512, 768, 768]
UpperCAmelCase : Any = 150
UpperCAmelCase : Tuple = 16
UpperCAmelCase : Any = (1, 384, 384)
UpperCAmelCase : Optional[Any] = False
UpperCAmelCase : Tuple = '''project'''
if "ade" in checkpoint_url:
UpperCAmelCase : Any = True
UpperCAmelCase : str = 768
UpperCAmelCase : Optional[int] = [1, 1, 1, 0.5]
UpperCAmelCase : List[Any] = 150
UpperCAmelCase : List[Any] = 16
UpperCAmelCase : str = '''huggingface/label-files'''
UpperCAmelCase : Tuple = '''ade20k-id2label.json'''
UpperCAmelCase : Any = json.load(open(cached_download(hf_hub_url(_lowerCAmelCase , _lowerCAmelCase , repo_type='''dataset''' ) ) , '''r''' ) )
UpperCAmelCase : Optional[Any] = {int(_lowerCAmelCase ): v for k, v in idalabel.items()}
UpperCAmelCase : List[Any] = idalabel
UpperCAmelCase : Optional[int] = {v: k for k, v in idalabel.items()}
UpperCAmelCase : Union[str, Any] = [1, 150, 480, 480]
return config, expected_shape
def snake_case_ ( _lowerCAmelCase : Union[str, Any] ) -> int:
UpperCAmelCase : List[str] = ['''pretrained.model.head.weight''', '''pretrained.model.head.bias''']
for k in ignore_keys:
state_dict.pop(_lowerCAmelCase , _lowerCAmelCase )
def snake_case_ ( _lowerCAmelCase : Tuple ) -> Any:
if (
"pretrained.model" in name
and "cls_token" not in name
and "pos_embed" not in name
and "patch_embed" not in name
):
UpperCAmelCase : Tuple = name.replace('''pretrained.model''' , '''dpt.encoder''' )
if "pretrained.model" in name:
UpperCAmelCase : Union[str, Any] = name.replace('''pretrained.model''' , '''dpt.embeddings''' )
if "patch_embed" in name:
UpperCAmelCase : int = name.replace('''patch_embed''' , '''''' )
if "pos_embed" in name:
UpperCAmelCase : Tuple = name.replace('''pos_embed''' , '''position_embeddings''' )
if "attn.proj" in name:
UpperCAmelCase : Any = name.replace('''attn.proj''' , '''attention.output.dense''' )
if "proj" in name and "project" not in name:
UpperCAmelCase : str = name.replace('''proj''' , '''projection''' )
if "blocks" in name:
UpperCAmelCase : Any = name.replace('''blocks''' , '''layer''' )
if "mlp.fc1" in name:
UpperCAmelCase : Optional[int] = name.replace('''mlp.fc1''' , '''intermediate.dense''' )
if "mlp.fc2" in name:
UpperCAmelCase : Optional[Any] = name.replace('''mlp.fc2''' , '''output.dense''' )
if "norm1" in name and "backbone" not in name:
UpperCAmelCase : Dict = name.replace('''norm1''' , '''layernorm_before''' )
if "norm2" in name and "backbone" not in name:
UpperCAmelCase : Tuple = name.replace('''norm2''' , '''layernorm_after''' )
if "scratch.output_conv" in name:
UpperCAmelCase : Tuple = name.replace('''scratch.output_conv''' , '''head''' )
if "scratch" in name:
UpperCAmelCase : str = name.replace('''scratch''' , '''neck''' )
if "layer1_rn" in name:
UpperCAmelCase : Dict = name.replace('''layer1_rn''' , '''convs.0''' )
if "layer2_rn" in name:
UpperCAmelCase : int = name.replace('''layer2_rn''' , '''convs.1''' )
if "layer3_rn" in name:
UpperCAmelCase : Tuple = name.replace('''layer3_rn''' , '''convs.2''' )
if "layer4_rn" in name:
UpperCAmelCase : int = name.replace('''layer4_rn''' , '''convs.3''' )
if "refinenet" in name:
UpperCAmelCase : List[str] = int(name[len('''neck.refinenet''' ) : len('''neck.refinenet''' ) + 1] )
# tricky here: we need to map 4 to 0, 3 to 1, 2 to 2 and 1 to 3
UpperCAmelCase : str = name.replace(f"""refinenet{layer_idx}""" , f"""fusion_stage.layers.{abs(layer_idx-4 )}""" )
if "out_conv" in name:
UpperCAmelCase : List[str] = name.replace('''out_conv''' , '''projection''' )
if "resConfUnit1" in name:
UpperCAmelCase : Union[str, Any] = name.replace('''resConfUnit1''' , '''residual_layer1''' )
if "resConfUnit2" in name:
UpperCAmelCase : Any = name.replace('''resConfUnit2''' , '''residual_layer2''' )
if "conv1" in name:
UpperCAmelCase : Optional[int] = name.replace('''conv1''' , '''convolution1''' )
if "conv2" in name:
UpperCAmelCase : Tuple = name.replace('''conv2''' , '''convolution2''' )
# readout blocks
if "pretrained.act_postprocess1.0.project.0" in name:
UpperCAmelCase : Dict = name.replace('''pretrained.act_postprocess1.0.project.0''' , '''neck.reassemble_stage.readout_projects.0.0''' )
if "pretrained.act_postprocess2.0.project.0" in name:
UpperCAmelCase : int = name.replace('''pretrained.act_postprocess2.0.project.0''' , '''neck.reassemble_stage.readout_projects.1.0''' )
if "pretrained.act_postprocess3.0.project.0" in name:
UpperCAmelCase : Any = name.replace('''pretrained.act_postprocess3.0.project.0''' , '''neck.reassemble_stage.readout_projects.2.0''' )
if "pretrained.act_postprocess4.0.project.0" in name:
UpperCAmelCase : Optional[Any] = name.replace('''pretrained.act_postprocess4.0.project.0''' , '''neck.reassemble_stage.readout_projects.3.0''' )
# resize blocks
if "pretrained.act_postprocess1.3" in name:
UpperCAmelCase : List[Any] = name.replace('''pretrained.act_postprocess1.3''' , '''neck.reassemble_stage.layers.0.projection''' )
if "pretrained.act_postprocess1.4" in name:
UpperCAmelCase : Any = name.replace('''pretrained.act_postprocess1.4''' , '''neck.reassemble_stage.layers.0.resize''' )
if "pretrained.act_postprocess2.3" in name:
UpperCAmelCase : Optional[int] = name.replace('''pretrained.act_postprocess2.3''' , '''neck.reassemble_stage.layers.1.projection''' )
if "pretrained.act_postprocess2.4" in name:
UpperCAmelCase : str = name.replace('''pretrained.act_postprocess2.4''' , '''neck.reassemble_stage.layers.1.resize''' )
if "pretrained.act_postprocess3.3" in name:
UpperCAmelCase : List[str] = name.replace('''pretrained.act_postprocess3.3''' , '''neck.reassemble_stage.layers.2.projection''' )
if "pretrained.act_postprocess4.3" in name:
UpperCAmelCase : Tuple = name.replace('''pretrained.act_postprocess4.3''' , '''neck.reassemble_stage.layers.3.projection''' )
if "pretrained.act_postprocess4.4" in name:
UpperCAmelCase : int = name.replace('''pretrained.act_postprocess4.4''' , '''neck.reassemble_stage.layers.3.resize''' )
if "pretrained" in name:
UpperCAmelCase : Optional[int] = name.replace('''pretrained''' , '''dpt''' )
if "bn" in name:
UpperCAmelCase : Dict = name.replace('''bn''' , '''batch_norm''' )
if "head" in name:
UpperCAmelCase : Any = name.replace('''head''' , '''head.head''' )
if "encoder.norm" in name:
UpperCAmelCase : Optional[int] = name.replace('''encoder.norm''' , '''layernorm''' )
if "auxlayer" in name:
UpperCAmelCase : Union[str, Any] = name.replace('''auxlayer''' , '''auxiliary_head.head''' )
if "backbone" in name:
UpperCAmelCase : List[Any] = name.replace('''backbone''' , '''backbone.bit.encoder''' )
if ".." in name:
UpperCAmelCase : Optional[int] = name.replace('''..''' , '''.''' )
if "stem.conv" in name:
UpperCAmelCase : Optional[Any] = name.replace('''stem.conv''' , '''bit.embedder.convolution''' )
if "blocks" in name:
UpperCAmelCase : Optional[int] = name.replace('''blocks''' , '''layers''' )
if "convolution" in name and "backbone" in name:
UpperCAmelCase : List[Any] = name.replace('''convolution''' , '''conv''' )
if "layer" in name and "backbone" in name:
UpperCAmelCase : List[str] = name.replace('''layer''' , '''layers''' )
if "backbone.bit.encoder.bit" in name:
UpperCAmelCase : List[Any] = name.replace('''backbone.bit.encoder.bit''' , '''backbone.bit''' )
if "embedder.conv" in name:
UpperCAmelCase : List[Any] = name.replace('''embedder.conv''' , '''embedder.convolution''' )
if "backbone.bit.encoder.stem.norm" in name:
UpperCAmelCase : Tuple = name.replace('''backbone.bit.encoder.stem.norm''' , '''backbone.bit.embedder.norm''' )
return name
def snake_case_ ( _lowerCAmelCase : List[str] , _lowerCAmelCase : List[Any] ) -> Optional[Any]:
for i in range(config.num_hidden_layers ):
# read in weights + bias of input projection layer (in timm, this is a single matrix + bias)
UpperCAmelCase : Optional[int] = state_dict.pop(f"""dpt.encoder.layer.{i}.attn.qkv.weight""" )
UpperCAmelCase : Tuple = state_dict.pop(f"""dpt.encoder.layer.{i}.attn.qkv.bias""" )
# next, add query, keys and values (in that order) to the state dict
UpperCAmelCase : Tuple = in_proj_weight[: config.hidden_size, :]
UpperCAmelCase : int = in_proj_bias[: config.hidden_size]
UpperCAmelCase : List[str] = in_proj_weight[
config.hidden_size : config.hidden_size * 2, :
]
UpperCAmelCase : List[str] = in_proj_bias[
config.hidden_size : config.hidden_size * 2
]
UpperCAmelCase : str = in_proj_weight[
-config.hidden_size :, :
]
UpperCAmelCase : Union[str, Any] = in_proj_bias[-config.hidden_size :]
def snake_case_ ( ) -> List[str]:
UpperCAmelCase : Optional[int] = '''http://images.cocodataset.org/val2017/000000039769.jpg'''
UpperCAmelCase : Optional[int] = Image.open(requests.get(_lowerCAmelCase , stream=_lowerCAmelCase ).raw )
return im
@torch.no_grad()
def snake_case_ ( _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : str , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : List[str] ) -> Any:
UpperCAmelCase , UpperCAmelCase : int = get_dpt_config(_lowerCAmelCase )
# load original state_dict from URL
# state_dict = torch.hub.load_state_dict_from_url(checkpoint_url, map_location="cpu")
UpperCAmelCase : List[Any] = torch.load(_lowerCAmelCase , map_location='''cpu''' )
# remove certain keys
remove_ignore_keys_(_lowerCAmelCase )
# rename keys
for key in state_dict.copy().keys():
UpperCAmelCase : Any = state_dict.pop(_lowerCAmelCase )
UpperCAmelCase : List[Any] = val
# read in qkv matrices
read_in_q_k_v(_lowerCAmelCase , _lowerCAmelCase )
# load HuggingFace model
UpperCAmelCase : Optional[Any] = DPTForSemanticSegmentation(_lowerCAmelCase ) if '''ade''' in checkpoint_url else DPTForDepthEstimation(_lowerCAmelCase )
model.load_state_dict(_lowerCAmelCase )
model.eval()
# Check outputs on an image
UpperCAmelCase : int = 480 if '''ade''' in checkpoint_url else 384
UpperCAmelCase : List[Any] = DPTImageProcessor(size=_lowerCAmelCase )
UpperCAmelCase : Dict = prepare_img()
UpperCAmelCase : Optional[int] = image_processor(_lowerCAmelCase , return_tensors='''pt''' )
# forward pass
UpperCAmelCase : Any = model(**_lowerCAmelCase ).logits if '''ade''' in checkpoint_url else model(**_lowerCAmelCase ).predicted_depth
if show_prediction:
UpperCAmelCase : Dict = (
torch.nn.functional.interpolate(
outputs.unsqueeze(1 ) , size=(image.size[1], image.size[0]) , mode='''bicubic''' , align_corners=_lowerCAmelCase , )
.squeeze()
.cpu()
.numpy()
)
Image.fromarray((prediction / prediction.max()) * 255 ).show()
if pytorch_dump_folder_path is not None:
Path(_lowerCAmelCase ).mkdir(exist_ok=_lowerCAmelCase )
print(f"""Saving model to {pytorch_dump_folder_path}""" )
model.save_pretrained(_lowerCAmelCase )
print(f"""Saving image processor to {pytorch_dump_folder_path}""" )
image_processor.save_pretrained(_lowerCAmelCase )
if push_to_hub:
model.push_to_hub('''ybelkada/dpt-hybrid-midas''' )
image_processor.push_to_hub('''ybelkada/dpt-hybrid-midas''' )
if __name__ == "__main__":
UpperCamelCase__: Dict = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--checkpoint_url",
default="https://github.com/intel-isl/DPT/releases/download/1_0/dpt_large-midas-2f21e586.pt",
type=str,
help="URL of the original DPT checkpoint you'd like to convert.",
)
parser.add_argument(
"--pytorch_dump_folder_path",
default=None,
type=str,
required=False,
help="Path to the output PyTorch model directory.",
)
parser.add_argument(
"--push_to_hub",
action="store_true",
)
parser.add_argument(
"--model_name",
default="dpt-large",
type=str,
help="Name of the model, in case you're pushing to the hub.",
)
parser.add_argument(
"--show_prediction",
action="store_true",
)
UpperCamelCase__: Tuple = parser.parse_args()
convert_dpt_checkpoint(
args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name, args.show_prediction
)
| 23 | 1 |
'''simple docstring'''
import fcntl
import os
import socket
import torch
import torch.distributed as dist
def __magic_name__ ( *__UpperCAmelCase ) -> Tuple:
'''simple docstring'''
with open(SCREAMING_SNAKE_CASE__, '''r''' ) as fh:
fcntl.flock(SCREAMING_SNAKE_CASE__, fcntl.LOCK_EX )
try:
print(*SCREAMING_SNAKE_CASE__ )
finally:
fcntl.flock(SCREAMING_SNAKE_CASE__, fcntl.LOCK_UN )
a : Tuple = int(os.environ['LOCAL_RANK'])
torch.cuda.set_device(local_rank)
a : int = torch.device('cuda', local_rank)
a : Union[str, Any] = socket.gethostname()
a : Union[str, Any] = f'''[{hostname}-{local_rank}]'''
try:
# test distributed
dist.init_process_group('nccl')
dist.all_reduce(torch.ones(1).to(device), op=dist.ReduceOp.SUM)
dist.barrier()
# test cuda is available and can allocate memory
torch.cuda.is_available()
torch.ones(1).cuda(local_rank)
# global rank
a : Union[str, Any] = dist.get_rank()
a : Optional[Any] = dist.get_world_size()
printflock(f'''{gpu} is OK (global rank: {rank}/{world_size})''')
dist.barrier()
if rank == 0:
printflock(f'''pt={torch.__version__}, cuda={torch.version.cuda}, nccl={torch.cuda.nccl.version()}''')
except Exception:
printflock(f'''{gpu} is broken''')
raise
| 367 |
'''simple docstring'''
from math import asin, atan, cos, radians, sin, sqrt, tan
a : Tuple = 6_378_137.0
a : int = 6_356_752.314_245
a : Dict = 637_8137
def __magic_name__ ( __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase ) -> float:
'''simple docstring'''
snake_case_ = (AXIS_A - AXIS_B) / AXIS_A
snake_case_ = atan((1 - flattening) * tan(radians(__UpperCAmelCase ) ) )
snake_case_ = atan((1 - flattening) * tan(radians(__UpperCAmelCase ) ) )
snake_case_ = radians(__UpperCAmelCase )
snake_case_ = radians(__UpperCAmelCase )
# Equation
snake_case_ = sin((phi_a - phi_a) / 2 )
snake_case_ = sin((lambda_a - lambda_a) / 2 )
# Square both values
sin_sq_phi *= sin_sq_phi
sin_sq_lambda *= sin_sq_lambda
snake_case_ = sqrt(sin_sq_phi + (cos(__UpperCAmelCase ) * cos(__UpperCAmelCase ) * sin_sq_lambda) )
return 2 * RADIUS * asin(__UpperCAmelCase )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 72 | 0 |
'''simple docstring'''
import copy
from ...configuration_utils import PretrainedConfig
from ...utils import logging
from ..auto import CONFIG_MAPPING
lowercase__ : str = logging.get_logger(__name__)
lowercase__ : Any = {
'SenseTime/deformable-detr': 'https://huggingface.co/sensetime/deformable-detr/resolve/main/config.json',
# See all Deformable DETR models at https://huggingface.co/models?filter=deformable-detr
}
class __lowerCAmelCase ( __magic_name__ ):
"""simple docstring"""
_snake_case : Tuple = 'deformable_detr'
_snake_case : Dict = {
'hidden_size': 'd_model',
'num_attention_heads': 'encoder_attention_heads',
}
def __init__( self : Optional[Any] , lowerCAmelCase__ : str=True , lowerCAmelCase__ : List[str]=None , lowerCAmelCase__ : Dict=3 , lowerCAmelCase__ : List[str]=300 , lowerCAmelCase__ : Union[str, Any]=1024 , lowerCAmelCase__ : Tuple=6 , lowerCAmelCase__ : Union[str, Any]=1024 , lowerCAmelCase__ : List[Any]=8 , lowerCAmelCase__ : List[Any]=6 , lowerCAmelCase__ : Tuple=1024 , lowerCAmelCase__ : List[Any]=8 , lowerCAmelCase__ : Union[str, Any]=0.0 , lowerCAmelCase__ : Tuple=True , lowerCAmelCase__ : Any="relu" , lowerCAmelCase__ : int=256 , lowerCAmelCase__ : Dict=0.1 , lowerCAmelCase__ : Tuple=0.0 , lowerCAmelCase__ : str=0.0 , lowerCAmelCase__ : int=0.02 , lowerCAmelCase__ : Any=1.0 , lowerCAmelCase__ : Optional[Any]=True , lowerCAmelCase__ : int=False , lowerCAmelCase__ : str="sine" , lowerCAmelCase__ : List[Any]="resnet50" , lowerCAmelCase__ : str=True , lowerCAmelCase__ : str=False , lowerCAmelCase__ : List[str]=4 , lowerCAmelCase__ : List[str]=4 , lowerCAmelCase__ : Optional[Any]=4 , lowerCAmelCase__ : Optional[Any]=False , lowerCAmelCase__ : Optional[int]=300 , lowerCAmelCase__ : int=False , lowerCAmelCase__ : Optional[Any]=1 , lowerCAmelCase__ : Dict=5 , lowerCAmelCase__ : int=2 , lowerCAmelCase__ : Tuple=1 , lowerCAmelCase__ : Optional[Any]=1 , lowerCAmelCase__ : Optional[int]=5 , lowerCAmelCase__ : Dict=2 , lowerCAmelCase__ : int=0.1 , lowerCAmelCase__ : int=0.25 , lowerCAmelCase__ : Any=False , **lowerCAmelCase__ : Optional[Any] , ) -> str:
'''simple docstring'''
if backbone_config is not None and use_timm_backbone:
raise ValueError('''You can\'t specify both `backbone_config` and `use_timm_backbone`.''' )
if not use_timm_backbone:
if backbone_config is None:
logger.info('''`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.''' )
_UpperCamelCase = CONFIG_MAPPING['''resnet'''](out_features=['''stage4'''] )
elif isinstance(lowerCAmelCase__ , lowerCAmelCase__ ):
_UpperCamelCase = backbone_config.get('''model_type''' )
_UpperCamelCase = CONFIG_MAPPING[backbone_model_type]
_UpperCamelCase = config_class.from_dict(lowerCAmelCase__ )
_UpperCamelCase = use_timm_backbone
_UpperCamelCase = backbone_config
_UpperCamelCase = num_channels
_UpperCamelCase = num_queries
_UpperCamelCase = max_position_embeddings
_UpperCamelCase = d_model
_UpperCamelCase = encoder_ffn_dim
_UpperCamelCase = encoder_layers
_UpperCamelCase = encoder_attention_heads
_UpperCamelCase = decoder_ffn_dim
_UpperCamelCase = decoder_layers
_UpperCamelCase = decoder_attention_heads
_UpperCamelCase = dropout
_UpperCamelCase = attention_dropout
_UpperCamelCase = activation_dropout
_UpperCamelCase = activation_function
_UpperCamelCase = init_std
_UpperCamelCase = init_xavier_std
_UpperCamelCase = encoder_layerdrop
_UpperCamelCase = auxiliary_loss
_UpperCamelCase = position_embedding_type
_UpperCamelCase = backbone
_UpperCamelCase = use_pretrained_backbone
_UpperCamelCase = dilation
# deformable attributes
_UpperCamelCase = num_feature_levels
_UpperCamelCase = encoder_n_points
_UpperCamelCase = decoder_n_points
_UpperCamelCase = two_stage
_UpperCamelCase = two_stage_num_proposals
_UpperCamelCase = with_box_refine
if two_stage is True and with_box_refine is False:
raise ValueError('''If two_stage is True, with_box_refine must be True.''' )
# Hungarian matcher
_UpperCamelCase = class_cost
_UpperCamelCase = bbox_cost
_UpperCamelCase = giou_cost
# Loss coefficients
_UpperCamelCase = mask_loss_coefficient
_UpperCamelCase = dice_loss_coefficient
_UpperCamelCase = bbox_loss_coefficient
_UpperCamelCase = giou_loss_coefficient
_UpperCamelCase = eos_coefficient
_UpperCamelCase = focal_alpha
_UpperCamelCase = disable_custom_kernels
super().__init__(is_encoder_decoder=lowerCAmelCase__ , **lowerCAmelCase__ )
@property
def snake_case__ ( self : List[str] ) -> int:
'''simple docstring'''
return self.encoder_attention_heads
@property
def snake_case__ ( self : int ) -> int:
'''simple docstring'''
return self.d_model
def snake_case__ ( self : Union[str, Any] ) -> Optional[int]:
'''simple docstring'''
_UpperCamelCase = copy.deepcopy(self.__dict__ )
if self.backbone_config is not None:
_UpperCamelCase = self.backbone_config.to_dict()
_UpperCamelCase = self.__class__.model_type
return output
| 324 |
'''simple docstring'''
from typing import Optional, Tuple, Union
import flax
import flax.linen as nn
import jax
import jax.numpy as jnp
from flax.core.frozen_dict import FrozenDict
from ..configuration_utils import ConfigMixin, flax_register_to_config
from ..utils import BaseOutput
from .embeddings_flax import FlaxTimestepEmbedding, FlaxTimesteps
from .modeling_flax_utils import FlaxModelMixin
from .unet_ad_blocks_flax import (
FlaxCrossAttnDownBlockaD,
FlaxCrossAttnUpBlockaD,
FlaxDownBlockaD,
FlaxUNetMidBlockaDCrossAttn,
FlaxUpBlockaD,
)
@flax.struct.dataclass
class __lowerCAmelCase ( __magic_name__ ):
"""simple docstring"""
_snake_case : jnp.ndarray
@flax_register_to_config
class __lowerCAmelCase ( nn.Module , __magic_name__ , __magic_name__ ):
"""simple docstring"""
_snake_case : int = 3_2
_snake_case : int = 4
_snake_case : int = 4
_snake_case : Tuple[str] = (
"CrossAttnDownBlock2D",
"CrossAttnDownBlock2D",
"CrossAttnDownBlock2D",
"DownBlock2D",
)
_snake_case : Tuple[str] = ("UpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D")
_snake_case : Union[bool, Tuple[bool]] = False
_snake_case : Tuple[int] = (3_2_0, 6_4_0, 1_2_8_0, 1_2_8_0)
_snake_case : int = 2
_snake_case : Union[int, Tuple[int]] = 8
_snake_case : Optional[Union[int, Tuple[int]]] = None
_snake_case : int = 1_2_8_0
_snake_case : float = 0.0
_snake_case : bool = False
_snake_case : jnp.dtype = jnp.floataa
_snake_case : bool = True
_snake_case : int = 0
_snake_case : bool = False
def snake_case__ ( self : List[Any] , lowerCAmelCase__ : jax.random.KeyArray ) -> FrozenDict:
'''simple docstring'''
_UpperCamelCase = (1, self.in_channels, self.sample_size, self.sample_size)
_UpperCamelCase = jnp.zeros(lowerCAmelCase__ , dtype=jnp.floataa )
_UpperCamelCase = jnp.ones((1,) , dtype=jnp.intaa )
_UpperCamelCase = jnp.zeros((1, 1, self.cross_attention_dim) , dtype=jnp.floataa )
_UpperCamelCase , _UpperCamelCase = jax.random.split(lowerCAmelCase__ )
_UpperCamelCase = {'''params''': params_rng, '''dropout''': dropout_rng}
return self.init(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )["params"]
def snake_case__ ( self : List[Any] ) -> Any:
'''simple docstring'''
_UpperCamelCase = self.block_out_channels
_UpperCamelCase = block_out_channels[0] * 4
if self.num_attention_heads is not None:
raise ValueError(
'''At the moment it is not possible to define the number of attention heads via `num_attention_heads` because of a naming issue as described in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131. Passing `num_attention_heads` will only be supported in diffusers v0.19.''' )
# If `num_attention_heads` is not defined (which is the case for most models)
# it will default to `attention_head_dim`. This looks weird upon first reading it and it is.
# The reason for this behavior is to correct for incorrectly named variables that were introduced
# when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131
# Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking
# which is why we correct for the naming here.
_UpperCamelCase = self.num_attention_heads or self.attention_head_dim
# input
_UpperCamelCase = nn.Conv(
block_out_channels[0] , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , )
# time
_UpperCamelCase = FlaxTimesteps(
block_out_channels[0] , flip_sin_to_cos=self.flip_sin_to_cos , freq_shift=self.config.freq_shift )
_UpperCamelCase = FlaxTimestepEmbedding(lowerCAmelCase__ , dtype=self.dtype )
_UpperCamelCase = self.only_cross_attention
if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ):
_UpperCamelCase = (only_cross_attention,) * len(self.down_block_types )
if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ):
_UpperCamelCase = (num_attention_heads,) * len(self.down_block_types )
# down
_UpperCamelCase = []
_UpperCamelCase = block_out_channels[0]
for i, down_block_type in enumerate(self.down_block_types ):
_UpperCamelCase = output_channel
_UpperCamelCase = block_out_channels[i]
_UpperCamelCase = i == len(lowerCAmelCase__ ) - 1
if down_block_type == "CrossAttnDownBlock2D":
_UpperCamelCase = FlaxCrossAttnDownBlockaD(
in_channels=lowerCAmelCase__ , out_channels=lowerCAmelCase__ , dropout=self.dropout , num_layers=self.layers_per_block , num_attention_heads=num_attention_heads[i] , add_downsample=not is_final_block , use_linear_projection=self.use_linear_projection , only_cross_attention=only_cross_attention[i] , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , )
else:
_UpperCamelCase = FlaxDownBlockaD(
in_channels=lowerCAmelCase__ , out_channels=lowerCAmelCase__ , dropout=self.dropout , num_layers=self.layers_per_block , add_downsample=not is_final_block , dtype=self.dtype , )
down_blocks.append(lowerCAmelCase__ )
_UpperCamelCase = down_blocks
# mid
_UpperCamelCase = FlaxUNetMidBlockaDCrossAttn(
in_channels=block_out_channels[-1] , dropout=self.dropout , num_attention_heads=num_attention_heads[-1] , use_linear_projection=self.use_linear_projection , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , )
# up
_UpperCamelCase = []
_UpperCamelCase = list(reversed(lowerCAmelCase__ ) )
_UpperCamelCase = list(reversed(lowerCAmelCase__ ) )
_UpperCamelCase = list(reversed(lowerCAmelCase__ ) )
_UpperCamelCase = reversed_block_out_channels[0]
for i, up_block_type in enumerate(self.up_block_types ):
_UpperCamelCase = output_channel
_UpperCamelCase = reversed_block_out_channels[i]
_UpperCamelCase = reversed_block_out_channels[min(i + 1 , len(lowerCAmelCase__ ) - 1 )]
_UpperCamelCase = i == len(lowerCAmelCase__ ) - 1
if up_block_type == "CrossAttnUpBlock2D":
_UpperCamelCase = FlaxCrossAttnUpBlockaD(
in_channels=lowerCAmelCase__ , out_channels=lowerCAmelCase__ , prev_output_channel=lowerCAmelCase__ , num_layers=self.layers_per_block + 1 , num_attention_heads=reversed_num_attention_heads[i] , add_upsample=not is_final_block , dropout=self.dropout , use_linear_projection=self.use_linear_projection , only_cross_attention=only_cross_attention[i] , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , )
else:
_UpperCamelCase = FlaxUpBlockaD(
in_channels=lowerCAmelCase__ , out_channels=lowerCAmelCase__ , prev_output_channel=lowerCAmelCase__ , num_layers=self.layers_per_block + 1 , add_upsample=not is_final_block , dropout=self.dropout , dtype=self.dtype , )
up_blocks.append(lowerCAmelCase__ )
_UpperCamelCase = output_channel
_UpperCamelCase = up_blocks
# out
_UpperCamelCase = nn.GroupNorm(num_groups=32 , epsilon=1e-5 )
_UpperCamelCase = nn.Conv(
self.out_channels , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , )
def __call__( self : List[str] , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : int=None , lowerCAmelCase__ : Any=None , lowerCAmelCase__ : bool = True , lowerCAmelCase__ : bool = False , ) -> Union[FlaxUNetaDConditionOutput, Tuple]:
'''simple docstring'''
if not isinstance(lowerCAmelCase__ , jnp.ndarray ):
_UpperCamelCase = jnp.array([timesteps] , dtype=jnp.intaa )
elif isinstance(lowerCAmelCase__ , jnp.ndarray ) and len(timesteps.shape ) == 0:
_UpperCamelCase = timesteps.astype(dtype=jnp.floataa )
_UpperCamelCase = jnp.expand_dims(lowerCAmelCase__ , 0 )
_UpperCamelCase = self.time_proj(lowerCAmelCase__ )
_UpperCamelCase = self.time_embedding(lowerCAmelCase__ )
# 2. pre-process
_UpperCamelCase = jnp.transpose(lowerCAmelCase__ , (0, 2, 3, 1) )
_UpperCamelCase = self.conv_in(lowerCAmelCase__ )
# 3. down
_UpperCamelCase = (sample,)
for down_block in self.down_blocks:
if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ):
_UpperCamelCase , _UpperCamelCase = down_block(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , deterministic=not train )
else:
_UpperCamelCase , _UpperCamelCase = down_block(lowerCAmelCase__ , lowerCAmelCase__ , deterministic=not train )
down_block_res_samples += res_samples
if down_block_additional_residuals is not None:
_UpperCamelCase = ()
for down_block_res_sample, down_block_additional_residual in zip(
lowerCAmelCase__ , lowerCAmelCase__ ):
down_block_res_sample += down_block_additional_residual
new_down_block_res_samples += (down_block_res_sample,)
_UpperCamelCase = new_down_block_res_samples
# 4. mid
_UpperCamelCase = self.mid_block(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , deterministic=not train )
if mid_block_additional_residual is not None:
sample += mid_block_additional_residual
# 5. up
for up_block in self.up_blocks:
_UpperCamelCase = down_block_res_samples[-(self.layers_per_block + 1) :]
_UpperCamelCase = down_block_res_samples[: -(self.layers_per_block + 1)]
if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ):
_UpperCamelCase = up_block(
lowerCAmelCase__ , temb=lowerCAmelCase__ , encoder_hidden_states=lowerCAmelCase__ , res_hidden_states_tuple=lowerCAmelCase__ , deterministic=not train , )
else:
_UpperCamelCase = up_block(lowerCAmelCase__ , temb=lowerCAmelCase__ , res_hidden_states_tuple=lowerCAmelCase__ , deterministic=not train )
# 6. post-process
_UpperCamelCase = self.conv_norm_out(lowerCAmelCase__ )
_UpperCamelCase = nn.silu(lowerCAmelCase__ )
_UpperCamelCase = self.conv_out(lowerCAmelCase__ )
_UpperCamelCase = jnp.transpose(lowerCAmelCase__ , (0, 3, 1, 2) )
if not return_dict:
return (sample,)
return FlaxUNetaDConditionOutput(sample=lowerCAmelCase__ )
| 324 | 1 |
'''simple docstring'''
from typing import Dict, List, Optional, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import (
center_crop,
get_resize_output_image_size,
normalize,
rescale,
resize,
to_channel_dimension_format,
)
from ...image_utils import (
IMAGENET_DEFAULT_MEAN,
IMAGENET_DEFAULT_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, is_vision_available, logging
if is_vision_available():
import PIL
lowerCAmelCase :str = logging.get_logger(__name__)
class _lowerCamelCase ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
A_ : int = ["pixel_values"]
def __init__( self : str , _A : Union[str, Any] = True , _A : Optional[int] = None , _A : Dict = 0.9 , _A : Optional[Any] = PILImageResampling.BICUBIC , _A : Tuple = True , _A : Any = None , _A : int = 1 / 255 , _A : Optional[int] = True , _A : Union[str, Any] = True , _A : str = None , _A : Union[str, Any] = None , **_A : int , ) -> None:
super().__init__(**__UpperCAmelCase )
__magic_name__ : List[str] = size if size is not None else {"""shortest_edge""": 224}
__magic_name__ : Any = get_size_dict(__UpperCAmelCase , default_to_square=__UpperCAmelCase )
__magic_name__ : Optional[int] = crop_size if crop_size is not None else {"""height""": 224, """width""": 224}
__magic_name__ : Union[str, Any] = get_size_dict(__UpperCAmelCase , param_name='crop_size' )
__magic_name__ : Dict = do_resize
__magic_name__ : int = size
__magic_name__ : Optional[int] = crop_pct
__magic_name__ : int = resample
__magic_name__ : int = do_center_crop
__magic_name__ : int = crop_size
__magic_name__ : List[Any] = do_rescale
__magic_name__ : int = rescale_factor
__magic_name__ : Dict = do_normalize
__magic_name__ : Any = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN
__magic_name__ : Optional[Any] = image_std if image_std is not None else IMAGENET_DEFAULT_STD
def __lowerCAmelCase ( self : Tuple , _A : Optional[Any] , _A : Union[str, Any] , _A : Tuple = None , _A : Any = PILImageResampling.BICUBIC , _A : int = None , **_A : Tuple , ) -> np.ndarray:
__magic_name__ : List[str] = get_size_dict(__UpperCAmelCase , default_to_square=__UpperCAmelCase )
if "shortest_edge" not in size and ("height" not in size or "width" not in size):
raise ValueError(F'size must contain \'height\' and \'width\' or \'shortest_edge\' as keys. Got {size.keys()}' )
if crop_pct is not None:
if "shortest_edge" in size:
__magic_name__ : Tuple = int(size['shortest_edge'] / crop_pct )
elif "height" in size and "width" in size:
if size["height"] == size["width"]:
__magic_name__ : List[Any] = int(size['height'] / crop_pct )
else:
__magic_name__ : str = (int(size['height'] / crop_pct ), int(size['width'] / crop_pct ))
else:
raise ValueError('Invalid size for resize: {}'.format(__UpperCAmelCase ) )
__magic_name__ : Union[str, Any] = get_resize_output_image_size(__UpperCAmelCase , size=__UpperCAmelCase , default_to_square=__UpperCAmelCase )
else:
if "shortest_edge" in size:
__magic_name__ : Tuple = get_resize_output_image_size(__UpperCAmelCase , size=size['shortest_edge'] , default_to_square=__UpperCAmelCase )
elif "height" in size and "width" in size:
__magic_name__ : int = (size["""height"""], size["""width"""])
else:
raise ValueError('Invalid size for resize: {}'.format(__UpperCAmelCase ) )
return resize(__UpperCAmelCase , size=__UpperCAmelCase , resample=__UpperCAmelCase , data_format=__UpperCAmelCase , **__UpperCAmelCase )
def __lowerCAmelCase ( self : List[str] , _A : Optional[int] , _A : Dict , _A : Dict = None , **_A : List[str] , ) -> np.ndarray:
__magic_name__ : Union[str, Any] = get_size_dict(__UpperCAmelCase )
if "height" not in size or "width" not in size:
raise ValueError(F'size must contain \'height\' and \'width\' as keys. Got {size.keys()}' )
return center_crop(__UpperCAmelCase , size=(size['height'], size['width']) , data_format=__UpperCAmelCase , **__UpperCAmelCase )
def __lowerCAmelCase ( self : Optional[int] , _A : Optional[int] , _A : int , _A : Optional[int] = None , **_A : Optional[int] , ) -> Union[str, Any]:
return rescale(__UpperCAmelCase , scale=__UpperCAmelCase , data_format=__UpperCAmelCase , **__UpperCAmelCase )
def __lowerCAmelCase ( self : int , _A : List[Any] , _A : str , _A : List[str] , _A : List[Any] = None , **_A : Optional[Any] , ) -> np.ndarray:
return normalize(__UpperCAmelCase , mean=__UpperCAmelCase , std=__UpperCAmelCase , data_format=__UpperCAmelCase , **__UpperCAmelCase )
def __lowerCAmelCase ( self : Any , _A : Optional[Any] , _A : List[Any] = None , _A : List[str] = None , _A : Union[str, Any] = None , _A : Optional[Any] = None , _A : Dict = None , _A : Any = None , _A : Optional[int] = None , _A : Optional[int] = None , _A : Any = None , _A : Tuple = None , _A : List[str] = None , _A : Tuple = None , _A : str = ChannelDimension.FIRST , **_A : Union[str, Any] , ) -> PIL.Image.Image:
__magic_name__ : Union[str, Any] = do_resize if do_resize is not None else self.do_resize
__magic_name__ : int = crop_pct if crop_pct is not None else self.crop_pct
__magic_name__ : Tuple = resample if resample is not None else self.resample
__magic_name__ : int = do_center_crop if do_center_crop is not None else self.do_center_crop
__magic_name__ : Optional[Any] = do_rescale if do_rescale is not None else self.do_rescale
__magic_name__ : Dict = rescale_factor if rescale_factor is not None else self.rescale_factor
__magic_name__ : Optional[Any] = do_normalize if do_normalize is not None else self.do_normalize
__magic_name__ : List[Any] = image_mean if image_mean is not None else self.image_mean
__magic_name__ : Dict = image_std if image_std is not None else self.image_std
__magic_name__ : Any = size if size is not None else self.size
__magic_name__ : Any = get_size_dict(__UpperCAmelCase , default_to_square=__UpperCAmelCase )
__magic_name__ : int = crop_size if crop_size is not None else self.crop_size
__magic_name__ : Optional[Any] = get_size_dict(__UpperCAmelCase , param_name='crop_size' )
__magic_name__ : List[Any] = make_list_of_images(__UpperCAmelCase )
if not valid_images(__UpperCAmelCase ):
raise ValueError(
'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, '
'torch.Tensor, tf.Tensor or jax.ndarray.' )
if do_resize and size is None or resample is None:
raise ValueError('Size and resample must be specified if do_resize is True.' )
if do_center_crop and crop_pct is None:
raise ValueError('Crop_pct must be specified if do_center_crop is True.' )
if do_rescale and rescale_factor is None:
raise ValueError('Rescale factor must be specified if do_rescale is True.' )
if do_normalize and (image_mean is None or image_std is None):
raise ValueError('Image mean and std must be specified if do_normalize is True.' )
# All transformations expect numpy arrays.
__magic_name__ : Union[str, Any] = [to_numpy_array(__UpperCAmelCase ) for image in images]
if do_resize:
__magic_name__ : int = [self.resize(image=__UpperCAmelCase , size=__UpperCAmelCase , crop_pct=__UpperCAmelCase , resample=__UpperCAmelCase ) for image in images]
if do_center_crop:
__magic_name__ : Union[str, Any] = [self.center_crop(image=__UpperCAmelCase , size=__UpperCAmelCase ) for image in images]
if do_rescale:
__magic_name__ : List[str] = [self.rescale(image=__UpperCAmelCase , scale=__UpperCAmelCase ) for image in images]
if do_normalize:
__magic_name__ : Optional[int] = [self.normalize(image=__UpperCAmelCase , mean=__UpperCAmelCase , std=__UpperCAmelCase ) for image in images]
__magic_name__ : Union[str, Any] = [to_channel_dimension_format(__UpperCAmelCase , __UpperCAmelCase ) for image in images]
__magic_name__ : Dict = {"""pixel_values""": images}
return BatchFeature(data=__UpperCAmelCase , tensor_type=__UpperCAmelCase ) | 366 |
'''simple docstring'''
from typing import Dict, List, Optional, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import (
center_crop,
get_resize_output_image_size,
normalize,
rescale,
resize,
to_channel_dimension_format,
)
from ...image_utils import (
IMAGENET_STANDARD_MEAN,
IMAGENET_STANDARD_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, logging
lowerCAmelCase :Tuple = logging.get_logger(__name__)
class _lowerCamelCase ( lowercase__ ):
'''simple docstring'''
A_ : int = ["""pixel_values"""]
def __init__( self : Any , _A : bool = True , _A : Optional[Dict[str, int]] = None , _A : PILImageResampling = PILImageResampling.BILINEAR , _A : bool = True , _A : Dict[str, int] = None , _A : bool = True , _A : Union[int, float] = 1 / 255 , _A : bool = True , _A : Optional[Union[float, List[float]]] = None , _A : Optional[Union[float, List[float]]] = None , **_A : Optional[Any] , ) -> None:
super().__init__(**_A )
__magic_name__ : List[str] = size if size is not None else {'shortest_edge': 256}
__magic_name__ : str = get_size_dict(_A , default_to_square=_A )
__magic_name__ : List[str] = crop_size if crop_size is not None else {'height': 224, 'width': 224}
__magic_name__ : Optional[int] = get_size_dict(_A )
__magic_name__ : Union[str, Any] = do_resize
__magic_name__ : List[Any] = size
__magic_name__ : List[str] = resample
__magic_name__ : Dict = do_center_crop
__magic_name__ : List[str] = crop_size
__magic_name__ : int = do_rescale
__magic_name__ : Tuple = rescale_factor
__magic_name__ : List[str] = do_normalize
__magic_name__ : Union[str, Any] = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN
__magic_name__ : Dict = image_std if image_std is not None else IMAGENET_STANDARD_STD
def __lowerCAmelCase ( self : Optional[Any] , _A : np.ndarray , _A : Dict[str, int] , _A : PILImageResampling = PILImageResampling.BICUBIC , _A : Optional[Union[str, ChannelDimension]] = None , **_A : List[str] , ) -> np.ndarray:
__magic_name__ : Optional[Any] = get_size_dict(_A , default_to_square=_A )
if "shortest_edge" not in size:
raise ValueError(F'The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}' )
__magic_name__ : Dict = get_resize_output_image_size(_A , size=size['shortest_edge'] , default_to_square=_A )
return resize(_A , size=_A , resample=_A , data_format=_A , **_A )
def __lowerCAmelCase ( self : Dict , _A : np.ndarray , _A : Dict[str, int] , _A : Optional[Union[str, ChannelDimension]] = None , **_A : Optional[int] , ) -> np.ndarray:
__magic_name__ : int = get_size_dict(_A )
return center_crop(_A , size=(size['height'], size['width']) , data_format=_A , **_A )
def __lowerCAmelCase ( self : List[str] , _A : np.ndarray , _A : float , _A : Optional[Union[str, ChannelDimension]] = None , **_A : Tuple ) -> np.ndarray:
return rescale(_A , scale=_A , data_format=_A , **_A )
def __lowerCAmelCase ( self : str , _A : np.ndarray , _A : Union[float, List[float]] , _A : Union[float, List[float]] , _A : Optional[Union[str, ChannelDimension]] = None , **_A : int , ) -> np.ndarray:
return normalize(_A , mean=_A , std=_A , data_format=_A , **_A )
def __lowerCAmelCase ( self : List[str] , _A : ImageInput , _A : Optional[bool] = None , _A : Dict[str, int] = None , _A : PILImageResampling = None , _A : bool = None , _A : Dict[str, int] = None , _A : Optional[bool] = None , _A : Optional[float] = None , _A : Optional[bool] = None , _A : Optional[Union[float, List[float]]] = None , _A : Optional[Union[float, List[float]]] = None , _A : Optional[Union[str, TensorType]] = None , _A : Union[str, ChannelDimension] = ChannelDimension.FIRST , **_A : List[Any] , ) -> List[str]:
__magic_name__ : int = do_resize if do_resize is not None else self.do_resize
__magic_name__ : Tuple = size if size is not None else self.size
__magic_name__ : Optional[Any] = get_size_dict(_A , default_to_square=_A )
__magic_name__ : Dict = resample if resample is not None else self.resample
__magic_name__ : Optional[Any] = do_center_crop if do_center_crop is not None else self.do_center_crop
__magic_name__ : Dict = crop_size if crop_size is not None else self.crop_size
__magic_name__ : List[str] = get_size_dict(_A )
__magic_name__ : Union[str, Any] = do_rescale if do_rescale is not None else self.do_rescale
__magic_name__ : str = rescale_factor if rescale_factor is not None else self.rescale_factor
__magic_name__ : Any = do_normalize if do_normalize is not None else self.do_normalize
__magic_name__ : Tuple = image_mean if image_mean is not None else self.image_mean
__magic_name__ : Union[str, Any] = image_std if image_std is not None else self.image_std
__magic_name__ : int = make_list_of_images(_A )
if not valid_images(_A ):
raise ValueError(
'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, '
'torch.Tensor, tf.Tensor or jax.ndarray.' )
if do_resize and size is None:
raise ValueError('Size must be specified if do_resize is True.' )
if do_center_crop and crop_size is None:
raise ValueError('Crop size must be specified if do_center_crop is True.' )
if do_rescale and rescale_factor is None:
raise ValueError('Rescale factor must be specified if do_rescale is True.' )
if do_normalize and (image_mean is None or image_std is None):
raise ValueError('Image mean and std must be specified if do_normalize is True.' )
# All transformations expect numpy arrays.
__magic_name__ : List[Any] = [to_numpy_array(_A ) for image in images]
if do_resize:
__magic_name__ : Union[str, Any] = [self.resize(image=_A , size=_A , resample=_A ) for image in images]
if do_center_crop:
__magic_name__ : Union[str, Any] = [self.center_crop(image=_A , size=_A ) for image in images]
if do_rescale:
__magic_name__ : List[Any] = [self.rescale(image=_A , scale=_A ) for image in images]
if do_normalize:
__magic_name__ : Optional[Any] = [self.normalize(image=_A , mean=_A , std=_A ) for image in images]
__magic_name__ : Union[str, Any] = [to_channel_dimension_format(_A , _A ) for image in images]
__magic_name__ : List[str] = {'pixel_values': images}
return BatchFeature(data=_A , tensor_type=_A ) | 275 | 0 |
"""simple docstring"""
import inspect
import unittest
from transformers import ViTHybridConfig
from transformers.testing_utils import require_accelerate, require_torch, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import ViTHybridForImageClassification, ViTHybridImageProcessor, ViTHybridModel
from transformers.models.vit_hybrid.modeling_vit_hybrid import VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
class _UpperCAmelCase :
def __init__( self :Optional[int] , __UpperCamelCase :List[Any] , __UpperCamelCase :List[Any]=13 , __UpperCamelCase :int=64 , __UpperCamelCase :Optional[int]=2 , __UpperCamelCase :str=3 , __UpperCamelCase :Any=True , __UpperCamelCase :Optional[int]=True , __UpperCamelCase :Dict=32 , __UpperCamelCase :List[Any]=5 , __UpperCamelCase :str=4 , __UpperCamelCase :str=37 , __UpperCamelCase :Optional[int]="gelu" , __UpperCamelCase :List[str]=0.1 , __UpperCamelCase :Any=0.1 , __UpperCamelCase :Tuple=10 , __UpperCamelCase :Dict=0.02 , __UpperCamelCase :List[Any]=[1, 16, 4, 4] , __UpperCamelCase :List[str]=None , ):
A = parent
A = batch_size
A = image_size
A = patch_size
A = num_channels
A = is_training
A = use_labels
A = hidden_size
A = num_hidden_layers
A = num_attention_heads
A = intermediate_size
A = hidden_act
A = hidden_dropout_prob
A = attention_probs_dropout_prob
A = type_sequence_label_size
A = initializer_range
A = scope
A = backbone_featmap_shape
# in ViT hybrid, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token)
# the number of patches is based on the feature map of the backbone, which by default uses an output stride
# of 32, which means that the feature map has a spatial resolution of 1/32 of the input image size
A = (self.image_size // 32) ** 2
A = num_patches + 1
def lowerCamelCase ( self :Optional[int] ):
A = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
A = None
if self.use_labels:
A = ids_tensor([self.batch_size] , self.type_sequence_label_size )
A = self.get_config()
return config, pixel_values, labels
def lowerCamelCase ( self :List[str] ):
A = {
"global_padding": "same",
"layer_type": "bottleneck",
"depths": [3, 4, 9],
"out_features": ["stage1", "stage2", "stage3"],
"embedding_dynamic_padding": True,
"hidden_sizes": [4, 8, 16, 32],
"num_groups": 2,
}
return ViTHybridConfig(
image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=__UpperCamelCase , initializer_range=self.initializer_range , backbone_featmap_shape=self.backbone_featmap_shape , backbone_config=__UpperCamelCase , )
def lowerCamelCase ( self :Tuple , __UpperCamelCase :Optional[int] , __UpperCamelCase :int , __UpperCamelCase :Union[str, Any] ):
A = ViTHybridModel(config=__UpperCamelCase )
model.to(__UpperCamelCase )
model.eval()
A = model(__UpperCamelCase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def lowerCamelCase ( self :Union[str, Any] , __UpperCamelCase :Tuple , __UpperCamelCase :Optional[Any] , __UpperCamelCase :List[Any] ):
A = self.type_sequence_label_size
A = ViTHybridForImageClassification(__UpperCamelCase )
model.to(__UpperCamelCase )
model.eval()
A = model(__UpperCamelCase , labels=__UpperCamelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
def lowerCamelCase ( self :str ):
A = self.prepare_config_and_inputs()
A, A, A = config_and_inputs
A = {"pixel_values": pixel_values}
return config, inputs_dict
@require_torch
class _UpperCAmelCase ( lowercase_ , lowercase_ , unittest.TestCase ):
UpperCamelCase = (ViTHybridModel, ViTHybridForImageClassification) if is_torch_available() else ()
UpperCamelCase = (
{'''feature-extraction''': ViTHybridModel, '''image-classification''': ViTHybridForImageClassification}
if is_torch_available()
else {}
)
UpperCamelCase = False
UpperCamelCase = False
UpperCamelCase = False
def lowerCamelCase ( self :Dict ):
A = ViTHybridModelTester(self )
A = ConfigTester(self , config_class=__UpperCamelCase , has_text_modality=__UpperCamelCase , hidden_size=37 )
def lowerCamelCase ( self :Any ):
self.config_tester.run_common_tests()
@unittest.skip(reason="ViT does not use inputs_embeds" )
def lowerCamelCase ( self :List[str] ):
pass
def lowerCamelCase ( self :Dict ):
A, A = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
A = model_class(__UpperCamelCase )
self.assertIsInstance(model.get_input_embeddings() , (nn.Module) )
A = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(__UpperCamelCase , nn.Linear ) )
def lowerCamelCase ( self :Any ):
A, A = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
A = model_class(__UpperCamelCase )
A = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
A = [*signature.parameters.keys()]
A = ["pixel_values"]
self.assertListEqual(arg_names[:1] , __UpperCamelCase )
def lowerCamelCase ( self :Dict ):
A = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*__UpperCamelCase )
def lowerCamelCase ( self :Union[str, Any] ):
A = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*__UpperCamelCase )
def lowerCamelCase ( self :List[str] ):
A, A = self.model_tester.prepare_config_and_inputs_for_common()
A = _config_zero_init(__UpperCamelCase )
for model_class in self.all_model_classes:
A = model_class(config=__UpperCamelCase )
# Skip the check for the backbone
for name, module in model.named_modules():
if module.__class__.__name__ == "ViTHybridPatchEmbeddings":
A = [f"{name}.{key}" for key in module.state_dict().keys()]
break
for name, param in model.named_parameters():
if param.requires_grad:
if name in backbone_params:
continue
self.assertIn(
((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=f"Parameter {name} of model {model_class} seems not properly initialized" , )
@slow
def lowerCamelCase ( self :Tuple ):
for model_name in VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
A = ViTHybridModel.from_pretrained(__UpperCamelCase )
self.assertIsNotNone(__UpperCamelCase )
def A__ ( ):
A = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" )
return image
@require_torch
@require_vision
class _UpperCAmelCase ( unittest.TestCase ):
@cached_property
def lowerCamelCase ( self :Optional[int] ):
return (
ViTHybridImageProcessor.from_pretrained(VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[0] )
if is_vision_available()
else None
)
@slow
def lowerCamelCase ( self :Optional[Any] ):
A = ViTHybridForImageClassification.from_pretrained(VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to(
__UpperCamelCase )
A = self.default_image_processor
A = prepare_img()
A = image_processor(images=__UpperCamelCase , return_tensors="pt" ).to(__UpperCamelCase )
# forward pass
with torch.no_grad():
A = model(**__UpperCamelCase )
# verify the logits
A = torch.Size((1, 10_00) )
self.assertEqual(outputs.logits.shape , __UpperCamelCase )
A = torch.tensor([-1.9_090, -0.4_993, -0.2_389] ).to(__UpperCamelCase )
self.assertTrue(torch.allclose(outputs.logits[0, :3] , __UpperCamelCase , atol=1e-4 ) )
@slow
@require_accelerate
def lowerCamelCase ( self :Dict ):
A = ViTHybridImageProcessor.from_pretrained("google/vit-hybrid-base-bit-384" )
A = ViTHybridForImageClassification.from_pretrained("google/vit-hybrid-base-bit-384" , device_map="auto" )
A = prepare_img()
A = image_processor(images=__UpperCamelCase , return_tensors="pt" )
A = model(**__UpperCamelCase )
A = outputs.logits
# model predicts one of the 1000 ImageNet classes
A = logits.argmax(-1 ).item()
self.assertTrue(model.config.idalabel[predicted_class_idx] , "tabby, tabby cat" )
| 292 |
"""simple docstring"""
from collections import OrderedDict
from typing import Any, Mapping, Optional
from ... import PreTrainedTokenizer
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast
from ...onnx.utils import compute_effective_axis_dimension
from ...utils import TensorType, is_torch_available, logging
_snake_case : List[Any] = logging.get_logger(__name__)
_snake_case : int = {
'Helsinki-NLP/opus-mt-en-de': 'https://huggingface.co/Helsinki-NLP/opus-mt-en-de/resolve/main/config.json',
# See all Marian models at https://huggingface.co/models?filter=marian
}
class _UpperCAmelCase ( lowercase_ ):
UpperCamelCase = '''marian'''
UpperCamelCase = ['''past_key_values''']
UpperCamelCase = {'''num_attention_heads''': '''encoder_attention_heads''', '''hidden_size''': '''d_model'''}
def __init__( self :int , __UpperCamelCase :Any=5_81_01 , __UpperCamelCase :int=None , __UpperCamelCase :Union[str, Any]=10_24 , __UpperCamelCase :Union[str, Any]=12 , __UpperCamelCase :str=40_96 , __UpperCamelCase :int=16 , __UpperCamelCase :int=12 , __UpperCamelCase :Optional[Any]=40_96 , __UpperCamelCase :Optional[Any]=16 , __UpperCamelCase :Dict=0.0 , __UpperCamelCase :Dict=0.0 , __UpperCamelCase :str=True , __UpperCamelCase :Optional[int]=True , __UpperCamelCase :Any="gelu" , __UpperCamelCase :Any=10_24 , __UpperCamelCase :List[Any]=0.1 , __UpperCamelCase :Optional[Any]=0.0 , __UpperCamelCase :Union[str, Any]=0.0 , __UpperCamelCase :Tuple=0.02 , __UpperCamelCase :List[str]=5_81_00 , __UpperCamelCase :str=False , __UpperCamelCase :Optional[int]=5_81_00 , __UpperCamelCase :List[Any]=0 , __UpperCamelCase :List[str]=0 , __UpperCamelCase :Dict=True , **__UpperCamelCase :Tuple , ):
A = vocab_size
A = decoder_vocab_size or vocab_size
A = max_position_embeddings
A = d_model
A = encoder_ffn_dim
A = encoder_layers
A = encoder_attention_heads
A = decoder_ffn_dim
A = decoder_layers
A = decoder_attention_heads
A = dropout
A = attention_dropout
A = activation_dropout
A = activation_function
A = init_std
A = encoder_layerdrop
A = decoder_layerdrop
A = use_cache
A = encoder_layers
A = scale_embedding # scale factor will be sqrt(d_model) if True
A = share_encoder_decoder_embeddings
super().__init__(
pad_token_id=__UpperCamelCase , eos_token_id=__UpperCamelCase , is_encoder_decoder=__UpperCamelCase , decoder_start_token_id=__UpperCamelCase , forced_eos_token_id=__UpperCamelCase , **__UpperCamelCase , )
class _UpperCAmelCase ( lowercase_ ):
@property
# Copied from transformers.models.bart.configuration_bart.BartOnnxConfig.inputs
def lowerCamelCase ( self :List[str] ):
if self.task in ["default", "seq2seq-lm"]:
A = OrderedDict(
[
("input_ids", {0: "batch", 1: "encoder_sequence"}),
("attention_mask", {0: "batch", 1: "encoder_sequence"}),
] )
if self.use_past:
A = {0: "batch"}
A = {0: "batch", 1: "past_decoder_sequence + sequence"}
else:
A = {0: "batch", 1: "decoder_sequence"}
A = {0: "batch", 1: "decoder_sequence"}
if self.use_past:
self.fill_with_past_key_values_(__UpperCamelCase , direction="inputs" )
elif self.task == "causal-lm":
# TODO: figure this case out.
A = OrderedDict(
[
("input_ids", {0: "batch", 1: "encoder_sequence"}),
("attention_mask", {0: "batch", 1: "encoder_sequence"}),
] )
if self.use_past:
A, A = self.num_layers
for i in range(__UpperCamelCase ):
A = {0: "batch", 2: "past_sequence + sequence"}
A = {0: "batch", 2: "past_sequence + sequence"}
else:
A = OrderedDict(
[
("input_ids", {0: "batch", 1: "encoder_sequence"}),
("attention_mask", {0: "batch", 1: "encoder_sequence"}),
("decoder_input_ids", {0: "batch", 1: "decoder_sequence"}),
("decoder_attention_mask", {0: "batch", 1: "decoder_sequence"}),
] )
return common_inputs
@property
# Copied from transformers.models.bart.configuration_bart.BartOnnxConfig.outputs
def lowerCamelCase ( self :List[str] ):
if self.task in ["default", "seq2seq-lm"]:
A = super().outputs
else:
A = super(__UpperCamelCase , self ).outputs
if self.use_past:
A, A = self.num_layers
for i in range(__UpperCamelCase ):
A = {0: "batch", 2: "past_sequence + sequence"}
A = {0: "batch", 2: "past_sequence + sequence"}
return common_outputs
def lowerCamelCase ( self :Optional[int] , __UpperCamelCase :PreTrainedTokenizer , __UpperCamelCase :int = -1 , __UpperCamelCase :int = -1 , __UpperCamelCase :bool = False , __UpperCamelCase :Optional[TensorType] = None , ):
A = self._generate_dummy_inputs_for_encoder_and_decoder(
__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase )
# Generate decoder inputs
A = seq_length if not self.use_past else 1
A = self._generate_dummy_inputs_for_encoder_and_decoder(
__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase )
A = {f"decoder_{name}": tensor for name, tensor in decoder_inputs.items()}
A = dict(**__UpperCamelCase , **__UpperCamelCase )
if self.use_past:
if not is_torch_available():
raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed." )
else:
import torch
A, A = common_inputs["input_ids"].shape
A = common_inputs["decoder_input_ids"].shape[1]
A, A = self.num_attention_heads
A = (
batch,
num_encoder_attention_heads,
encoder_seq_length,
self._config.hidden_size // num_encoder_attention_heads,
)
A = decoder_seq_length + 3
A = (
batch,
num_decoder_attention_heads,
decoder_past_length,
self._config.hidden_size // num_decoder_attention_heads,
)
A = torch.cat(
[common_inputs["decoder_attention_mask"], torch.ones(__UpperCamelCase , __UpperCamelCase )] , dim=1 )
A = []
# If the number of encoder and decoder layers are present in the model configuration, both are considered
A, A = self.num_layers
A = min(__UpperCamelCase , __UpperCamelCase )
A = max(__UpperCamelCase , __UpperCamelCase ) - min_num_layers
A = "encoder" if num_encoder_layers > num_decoder_layers else "decoder"
for _ in range(__UpperCamelCase ):
common_inputs["past_key_values"].append(
(
torch.zeros(__UpperCamelCase ),
torch.zeros(__UpperCamelCase ),
torch.zeros(__UpperCamelCase ),
torch.zeros(__UpperCamelCase ),
) )
# TODO: test this.
A = encoder_shape if remaining_side_name == "encoder" else decoder_shape
for _ in range(__UpperCamelCase , __UpperCamelCase ):
common_inputs["past_key_values"].append((torch.zeros(__UpperCamelCase ), torch.zeros(__UpperCamelCase )) )
return common_inputs
def lowerCamelCase ( self :Optional[int] , __UpperCamelCase :PreTrainedTokenizer , __UpperCamelCase :int = -1 , __UpperCamelCase :int = -1 , __UpperCamelCase :bool = False , __UpperCamelCase :Optional[TensorType] = None , ):
A = self._generate_dummy_inputs_for_encoder_and_decoder(
__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase )
if self.use_past:
if not is_torch_available():
raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed." )
else:
import torch
A, A = common_inputs["input_ids"].shape
# Not using the same length for past_key_values
A = seqlen + 2
A, A = self.num_layers
A, A = self.num_attention_heads
A = (
batch,
num_encoder_attention_heads,
past_key_values_length,
self._config.hidden_size // num_encoder_attention_heads,
)
A = common_inputs["attention_mask"].dtype
A = torch.cat(
[common_inputs["attention_mask"], torch.ones(__UpperCamelCase , __UpperCamelCase , dtype=__UpperCamelCase )] , dim=1 )
A = [
(torch.zeros(__UpperCamelCase ), torch.zeros(__UpperCamelCase )) for _ in range(__UpperCamelCase )
]
return common_inputs
def lowerCamelCase ( self :Tuple , __UpperCamelCase :PreTrainedTokenizer , __UpperCamelCase :int = -1 , __UpperCamelCase :int = -1 , __UpperCamelCase :bool = False , __UpperCamelCase :Optional[TensorType] = None , ):
# Copied from OnnxConfig.generate_dummy_inputs
# Did not use super(OnnxConfigWithPast, self).generate_dummy_inputs for code clarity.
# If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX
A = compute_effective_axis_dimension(
__UpperCamelCase , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 )
# If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX
A = tokenizer.num_special_tokens_to_add(__UpperCamelCase )
A = compute_effective_axis_dimension(
__UpperCamelCase , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=__UpperCamelCase )
# Generate dummy inputs according to compute batch and sequence
A = [" ".join([tokenizer.unk_token] ) * seq_length] * batch_size
A = dict(tokenizer(__UpperCamelCase , return_tensors=__UpperCamelCase ) )
return common_inputs
def lowerCamelCase ( self :List[Any] , __UpperCamelCase :PreTrainedTokenizer , __UpperCamelCase :int = -1 , __UpperCamelCase :int = -1 , __UpperCamelCase :bool = False , __UpperCamelCase :Optional[TensorType] = None , ):
if self.task in ["default", "seq2seq-lm"]:
A = self._generate_dummy_inputs_for_default_and_seqaseq_lm(
__UpperCamelCase , batch_size=__UpperCamelCase , seq_length=__UpperCamelCase , is_pair=__UpperCamelCase , framework=__UpperCamelCase )
else:
A = self._generate_dummy_inputs_for_causal_lm(
__UpperCamelCase , batch_size=__UpperCamelCase , seq_length=__UpperCamelCase , is_pair=__UpperCamelCase , framework=__UpperCamelCase )
return common_inputs
def lowerCamelCase ( self :List[Any] , __UpperCamelCase :Tuple , __UpperCamelCase :List[str] , __UpperCamelCase :str , __UpperCamelCase :str ):
if self.task in ["default", "seq2seq-lm"]:
A = super()._flatten_past_key_values_(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase )
else:
A = super(__UpperCamelCase , self )._flatten_past_key_values_(
__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase )
@property
def lowerCamelCase ( self :List[str] ):
return 1e-4
| 292 | 1 |
import os
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...utils import logging
lowercase : str = logging.get_logger(__name__)
lowercase : str = '''▁'''
lowercase : Dict = {'''vocab_file''': '''sentencepiece.bpe.model'''}
lowercase : Tuple = {
'''vocab_file''': {
'''xlm-roberta-base''': '''https://huggingface.co/xlm-roberta-base/resolve/main/sentencepiece.bpe.model''',
'''xlm-roberta-large''': '''https://huggingface.co/xlm-roberta-large/resolve/main/sentencepiece.bpe.model''',
'''xlm-roberta-large-finetuned-conll02-dutch''': (
'''https://huggingface.co/xlm-roberta-large-finetuned-conll02-dutch/resolve/main/sentencepiece.bpe.model'''
),
'''xlm-roberta-large-finetuned-conll02-spanish''': (
'''https://huggingface.co/xlm-roberta-large-finetuned-conll02-spanish/resolve/main/sentencepiece.bpe.model'''
),
'''xlm-roberta-large-finetuned-conll03-english''': (
'''https://huggingface.co/xlm-roberta-large-finetuned-conll03-english/resolve/main/sentencepiece.bpe.model'''
),
'''xlm-roberta-large-finetuned-conll03-german''': (
'''https://huggingface.co/xlm-roberta-large-finetuned-conll03-german/resolve/main/sentencepiece.bpe.model'''
),
}
}
lowercase : List[Any] = {
'''xlm-roberta-base''': 5_12,
'''xlm-roberta-large''': 5_12,
'''xlm-roberta-large-finetuned-conll02-dutch''': 5_12,
'''xlm-roberta-large-finetuned-conll02-spanish''': 5_12,
'''xlm-roberta-large-finetuned-conll03-english''': 5_12,
'''xlm-roberta-large-finetuned-conll03-german''': 5_12,
}
class UpperCAmelCase_ ( __lowerCAmelCase ):
'''simple docstring'''
A : Union[str, Any] = VOCAB_FILES_NAMES
A : List[Any] = PRETRAINED_VOCAB_FILES_MAP
A : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
A : Any = ['''input_ids''', '''attention_mask''']
def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE="<s>" , _SCREAMING_SNAKE_CASE="</s>" , _SCREAMING_SNAKE_CASE="</s>" , _SCREAMING_SNAKE_CASE="<s>" , _SCREAMING_SNAKE_CASE="<unk>" , _SCREAMING_SNAKE_CASE="<pad>" , _SCREAMING_SNAKE_CASE="<mask>" , _SCREAMING_SNAKE_CASE = None , **_SCREAMING_SNAKE_CASE , ) -> None:
# Mask token behave like a normal word, i.e. include the space before it
snake_case_ : Optional[int] = AddedToken(lowerCAmelCase_ , lstrip=lowerCAmelCase_ , rstrip=lowerCAmelCase_ ) if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) else mask_token
snake_case_ : int = {} if sp_model_kwargs is None else sp_model_kwargs
super().__init__(
bos_token=lowerCAmelCase_ , eos_token=lowerCAmelCase_ , unk_token=lowerCAmelCase_ , sep_token=lowerCAmelCase_ , cls_token=lowerCAmelCase_ , pad_token=lowerCAmelCase_ , mask_token=lowerCAmelCase_ , sp_model_kwargs=self.sp_model_kwargs , **lowerCAmelCase_ , )
snake_case_ : Union[str, Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(str(lowerCAmelCase_ ) )
snake_case_ : Dict = vocab_file
# Original fairseq vocab and spm vocab must be "aligned":
# Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
# -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ----
# fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-'
# spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a'
# Mimic fairseq token-to-id alignment for the first 4 token
snake_case_ : Union[str, Any] = {"<s>": 0, "<pad>": 1, "</s>": 2, "<unk>": 3}
# The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab
snake_case_ : Any = 1
snake_case_ : Dict = len(self.sp_model ) + self.fairseq_offset
snake_case_ : str = {v: k for k, v in self.fairseq_tokens_to_ids.items()}
def __getstate__( self ) -> int:
snake_case_ : Dict = self.__dict__.copy()
snake_case_ : Any = None
snake_case_ : Any = self.sp_model.serialized_model_proto()
return state
def __setstate__( self , _SCREAMING_SNAKE_CASE ) -> Dict:
snake_case_ : int = d
# for backward compatibility
if not hasattr(self , "sp_model_kwargs" ):
snake_case_ : Dict = {}
snake_case_ : List[str] = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.LoadFromSerializedProto(self.sp_model_proto )
def _lowerCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None ) -> List[int]:
if token_ids_a is None:
return [self.cls_token_id] + token_ids_a + [self.sep_token_id]
snake_case_ : Union[str, Any] = [self.cls_token_id]
snake_case_ : str = [self.sep_token_id]
return cls + token_ids_a + sep + sep + token_ids_a + sep
def _lowerCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = False ) -> List[int]:
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=lowerCAmelCase_ , token_ids_a=lowerCAmelCase_ , already_has_special_tokens=lowerCAmelCase_ )
if token_ids_a is None:
return [1] + ([0] * len(lowerCAmelCase_ )) + [1]
return [1] + ([0] * len(lowerCAmelCase_ )) + [1, 1] + ([0] * len(lowerCAmelCase_ )) + [1]
def _lowerCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None ) -> List[int]:
snake_case_ : Optional[int] = [self.sep_token_id]
snake_case_ : Any = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
@property
def _lowerCAmelCase ( self ) -> List[Any]:
return len(self.sp_model ) + self.fairseq_offset + 1 # Add the <mask> token
def _lowerCAmelCase ( self ) -> Optional[int]:
snake_case_ : List[str] = {self.convert_ids_to_tokens(lowerCAmelCase_ ): i for i in range(self.vocab_size )}
vocab.update(self.added_tokens_encoder )
return vocab
def _lowerCAmelCase ( self , _SCREAMING_SNAKE_CASE ) -> List[str]:
return self.sp_model.encode(lowerCAmelCase_ , out_type=lowerCAmelCase_ )
def _lowerCAmelCase ( self , _SCREAMING_SNAKE_CASE ) -> List[Any]:
if token in self.fairseq_tokens_to_ids:
return self.fairseq_tokens_to_ids[token]
snake_case_ : Any = self.sp_model.PieceToId(lowerCAmelCase_ )
# Need to return unknown token if the SP model returned 0
return spm_id + self.fairseq_offset if spm_id else self.unk_token_id
def _lowerCAmelCase ( self , _SCREAMING_SNAKE_CASE ) -> Any:
if index in self.fairseq_ids_to_tokens:
return self.fairseq_ids_to_tokens[index]
return self.sp_model.IdToPiece(index - self.fairseq_offset )
def _lowerCAmelCase ( self , _SCREAMING_SNAKE_CASE ) -> Union[str, Any]:
snake_case_ : Any = "".join(lowerCAmelCase_ ).replace(lowerCAmelCase_ , " " ).strip()
return out_string
def _lowerCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None ) -> Tuple[str]:
if not os.path.isdir(lowerCAmelCase_ ):
logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' )
return
snake_case_ : List[Any] = os.path.join(
lowerCAmelCase_ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCAmelCase_ ) and os.path.isfile(self.vocab_file ):
copyfile(self.vocab_file , lowerCAmelCase_ )
elif not os.path.isfile(self.vocab_file ):
with open(lowerCAmelCase_ , "wb" ) as fi:
snake_case_ : Dict = self.sp_model.serialized_model_proto()
fi.write(lowerCAmelCase_ )
return (out_vocab_file,)
| 364 |
import datasets
from .evaluate import evaluate
lowercase : Dict = '''\
@article{hendrycks2021cuad,
title={CUAD: An Expert-Annotated NLP Dataset for Legal Contract Review},
author={Dan Hendrycks and Collin Burns and Anya Chen and Spencer Ball},
journal={arXiv preprint arXiv:2103.06268},
year={2021}
}
'''
lowercase : int = '''
This metric wrap the official scoring script for version 1 of the Contract
Understanding Atticus Dataset (CUAD).
Contract Understanding Atticus Dataset (CUAD) v1 is a corpus of more than 13,000 labels in 510
commercial legal contracts that have been manually labeled to identify 41 categories of important
clauses that lawyers look for when reviewing contracts in connection with corporate transactions.
'''
lowercase : int = '''
Computes CUAD scores (EM, F1, AUPR, Precision@80%Recall, and Precision@90%Recall).
Args:
predictions: List of question-answers dictionaries with the following key-values:
- \'id\': id of the question-answer pair as given in the references (see below)
- \'prediction_text\': list of possible texts for the answer, as a list of strings
depending on a threshold on the confidence probability of each prediction.
references: List of question-answers dictionaries with the following key-values:
- \'id\': id of the question-answer pair (see above),
- \'answers\': a Dict in the CUAD dataset format
{
\'text\': list of possible texts for the answer, as a list of strings
\'answer_start\': list of start positions for the answer, as a list of ints
}
Note that answer_start values are not taken into account to compute the metric.
Returns:
\'exact_match\': Exact match (the normalized answer exactly match the gold answer)
\'f1\': The F-score of predicted tokens versus the gold answer
\'aupr\': Area Under the Precision-Recall curve
\'prec_at_80_recall\': Precision at 80% recall
\'prec_at_90_recall\': Precision at 90% recall
Examples:
>>> predictions = [{\'prediction_text\': [\'The seller:\', \'The buyer/End-User: Shenzhen LOHAS Supply Chain Management Co., Ltd.\'], \'id\': \'LohaCompanyltd_20191209_F-1_EX-10.16_11917878_EX-10.16_Supply Agreement__Parties\'}]
>>> references = [{\'answers\': {\'answer_start\': [143, 49], \'text\': [\'The seller:\', \'The buyer/End-User: Shenzhen LOHAS Supply Chain Management Co., Ltd.\']}, \'id\': \'LohaCompanyltd_20191209_F-1_EX-10.16_11917878_EX-10.16_Supply Agreement__Parties\'}]
>>> cuad_metric = datasets.load_metric("cuad")
>>> results = cuad_metric.compute(predictions=predictions, references=references)
>>> print(results)
{\'exact_match\': 100.0, \'f1\': 100.0, \'aupr\': 0.0, \'prec_at_80_recall\': 1.0, \'prec_at_90_recall\': 1.0}
'''
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class UpperCAmelCase_ ( datasets.Metric ):
'''simple docstring'''
def _lowerCAmelCase ( self ) -> Optional[Any]:
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
"predictions": {
"id": datasets.Value("string" ),
"prediction_text": datasets.features.Sequence(datasets.Value("string" ) ),
},
"references": {
"id": datasets.Value("string" ),
"answers": datasets.features.Sequence(
{
"text": datasets.Value("string" ),
"answer_start": datasets.Value("int32" ),
} ),
},
} ) , codebase_urls=["https://www.atticusprojectai.org/cuad"] , reference_urls=["https://www.atticusprojectai.org/cuad"] , )
def _lowerCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Tuple:
snake_case_ : Union[str, Any] = {prediction["id"]: prediction["prediction_text"] for prediction in predictions}
snake_case_ : Optional[Any] = [
{
"paragraphs": [
{
"qas": [
{
"answers": [{"text": answer_text} for answer_text in ref["answers"]["text"]],
"id": ref["id"],
}
for ref in references
]
}
]
}
]
snake_case_ : Any = evaluate(dataset=_SCREAMING_SNAKE_CASE , predictions=_SCREAMING_SNAKE_CASE )
return score
| 36 | 0 |
import numpy as np
def __SCREAMING_SNAKE_CASE ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = 1E-12 , UpperCamelCase__ = 100 , ) -> tuple[float, np.ndarray]:
'''simple docstring'''
assert np.shape(UpperCamelCase__ )[0] == np.shape(UpperCamelCase__ )[1]
# Ensure proper dimensionality.
assert np.shape(UpperCamelCase__ )[0] == np.shape(UpperCamelCase__ )[0]
# Ensure inputs are either both complex or both real
assert np.iscomplexobj(UpperCamelCase__ ) == np.iscomplexobj(UpperCamelCase__ )
UpperCAmelCase = np.iscomplexobj(UpperCamelCase__ )
if is_complex:
# Ensure complex input_matrix is Hermitian
assert np.array_equal(UpperCamelCase__ , input_matrix.conj().T )
# Set convergence to False. Will define convergence when we exceed max_iterations
# or when we have small changes from one iteration to next.
UpperCAmelCase = False
UpperCAmelCase = 0
UpperCAmelCase = 0
UpperCAmelCase = 1E12
while not convergence:
# Multiple matrix by the vector.
UpperCAmelCase = np.dot(UpperCamelCase__ , UpperCamelCase__ )
# Normalize the resulting output vector.
UpperCAmelCase = w / np.linalg.norm(UpperCamelCase__ )
# Find rayleigh quotient
# (faster than usual b/c we know vector is normalized already)
UpperCAmelCase = vector.conj().T if is_complex else vector.T
UpperCAmelCase = np.dot(UpperCamelCase__ , np.dot(UpperCamelCase__ , UpperCamelCase__ ) )
# Check convergence.
UpperCAmelCase = np.abs(lambda_ - lambda_previous ) / lambda_
iterations += 1
if error <= error_tol or iterations >= max_iterations:
UpperCAmelCase = True
UpperCAmelCase = lambda_
if is_complex:
UpperCAmelCase = np.real(lambda_ )
return lambda_, vector
def __SCREAMING_SNAKE_CASE ( ) -> None:
'''simple docstring'''
UpperCAmelCase = np.array([[41, 4, 20], [4, 26, 30], [20, 30, 50]] )
UpperCAmelCase = np.array([41, 4, 20] )
UpperCAmelCase = real_input_matrix.astype(np.complexaaa )
UpperCAmelCase = np.triu(1J * complex_input_matrix , 1 )
complex_input_matrix += imag_matrix
complex_input_matrix += -1 * imag_matrix.T
UpperCAmelCase = np.array([41, 4, 20] ).astype(np.complexaaa )
for problem_type in ["real", "complex"]:
if problem_type == "real":
UpperCAmelCase = real_input_matrix
UpperCAmelCase = real_vector
elif problem_type == "complex":
UpperCAmelCase = complex_input_matrix
UpperCAmelCase = complex_vector
# Our implementation.
UpperCAmelCase , UpperCAmelCase = power_iteration(UpperCamelCase__ , UpperCamelCase__ )
# Numpy implementation.
# Get eigenvalues and eigenvectors using built-in numpy
# eigh (eigh used for symmetric or hermetian matrices).
UpperCAmelCase , UpperCAmelCase = np.linalg.eigh(UpperCamelCase__ )
# Last eigenvalue is the maximum one.
UpperCAmelCase = eigen_values[-1]
# Last column in this matrix is eigenvector corresponding to largest eigenvalue.
UpperCAmelCase = eigen_vectors[:, -1]
# Check our implementation and numpy gives close answers.
assert np.abs(eigen_value - eigen_value_max ) <= 1E-6
# Take absolute values element wise of each eigenvector.
# as they are only unique to a minus sign.
assert np.linalg.norm(np.abs(UpperCamelCase__ ) - np.abs(UpperCamelCase__ ) ) <= 1E-6
if __name__ == "__main__":
import doctest
doctest.testmod()
test_power_iteration()
| 273 |
def __SCREAMING_SNAKE_CASE ( UpperCamelCase__ ) -> list[int]:
'''simple docstring'''
if length <= 0 or not isinstance(UpperCamelCase__ , UpperCamelCase__ ):
raise ValueError('''Length must be a positive integer.''' )
return [n * (2 * n - 1) for n in range(UpperCamelCase__ )]
if __name__ == "__main__":
print(hexagonal_numbers(length=5))
print(hexagonal_numbers(length=10))
| 273 | 1 |
"""simple docstring"""
import gc
import unittest
import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
from diffusers import (
AutoencoderKL,
DDIMScheduler,
StableDiffusionSAGPipeline,
UNetaDConditionModel,
)
from diffusers.utils import slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS
from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin
enable_full_determinism()
class _SCREAMING_SNAKE_CASE( A , A , unittest.TestCase ):
SCREAMING_SNAKE_CASE_ : str = StableDiffusionSAGPipeline
SCREAMING_SNAKE_CASE_ : List[str] = TEXT_TO_IMAGE_PARAMS
SCREAMING_SNAKE_CASE_ : Optional[Any] = TEXT_TO_IMAGE_BATCH_PARAMS
SCREAMING_SNAKE_CASE_ : List[Any] = TEXT_TO_IMAGE_IMAGE_PARAMS
SCREAMING_SNAKE_CASE_ : List[Any] = TEXT_TO_IMAGE_IMAGE_PARAMS
SCREAMING_SNAKE_CASE_ : str = False
def _UpperCamelCase ( self ) -> Union[str, Any]:
"""simple docstring"""
torch.manual_seed(0 )
__SCREAMING_SNAKE_CASE :List[str] = UNetaDConditionModel(
block_out_channels=(32, 64) ,layers_per_block=2 ,sample_size=32 ,in_channels=4 ,out_channels=4 ,down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') ,up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') ,cross_attention_dim=32 ,)
__SCREAMING_SNAKE_CASE :Dict = DDIMScheduler(
beta_start=0.0_0_0_8_5 ,beta_end=0.0_1_2 ,beta_schedule='''scaled_linear''' ,clip_sample=SCREAMING_SNAKE_CASE__ ,set_alpha_to_one=SCREAMING_SNAKE_CASE__ ,)
torch.manual_seed(0 )
__SCREAMING_SNAKE_CASE :Dict = AutoencoderKL(
block_out_channels=[32, 64] ,in_channels=3 ,out_channels=3 ,down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] ,up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] ,latent_channels=4 ,)
torch.manual_seed(0 )
__SCREAMING_SNAKE_CASE :List[str] = CLIPTextConfig(
bos_token_id=0 ,eos_token_id=2 ,hidden_size=32 ,intermediate_size=37 ,layer_norm_eps=1E-05 ,num_attention_heads=4 ,num_hidden_layers=5 ,pad_token_id=1 ,vocab_size=10_00 ,)
__SCREAMING_SNAKE_CASE :List[str] = CLIPTextModel(SCREAMING_SNAKE_CASE__ )
__SCREAMING_SNAKE_CASE :Any = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' )
__SCREAMING_SNAKE_CASE :int = {
'''unet''': unet,
'''scheduler''': scheduler,
'''vae''': vae,
'''text_encoder''': text_encoder,
'''tokenizer''': tokenizer,
'''safety_checker''': None,
'''feature_extractor''': None,
}
return components
def _UpperCamelCase ( self ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__=0 ) -> Dict:
"""simple docstring"""
if str(SCREAMING_SNAKE_CASE__ ).startswith('''mps''' ):
__SCREAMING_SNAKE_CASE :List[str] = torch.manual_seed(SCREAMING_SNAKE_CASE__ )
else:
__SCREAMING_SNAKE_CASE :Optional[int] = torch.Generator(device=SCREAMING_SNAKE_CASE__ ).manual_seed(SCREAMING_SNAKE_CASE__ )
__SCREAMING_SNAKE_CASE :int = {
'''prompt''': '''.''',
'''generator''': generator,
'''num_inference_steps''': 2,
'''guidance_scale''': 1.0,
'''sag_scale''': 1.0,
'''output_type''': '''numpy''',
}
return inputs
def _UpperCamelCase ( self ) -> List[str]:
"""simple docstring"""
super().test_inference_batch_single_identical(expected_max_diff=3E-3 )
@slow
@require_torch_gpu
class _SCREAMING_SNAKE_CASE( unittest.TestCase ):
def _UpperCamelCase ( self ) -> List[str]:
"""simple docstring"""
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def _UpperCamelCase ( self ) -> Tuple:
"""simple docstring"""
__SCREAMING_SNAKE_CASE :Tuple = StableDiffusionSAGPipeline.from_pretrained('''CompVis/stable-diffusion-v1-4''' )
__SCREAMING_SNAKE_CASE :Tuple = sag_pipe.to(SCREAMING_SNAKE_CASE__ )
sag_pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__ )
__SCREAMING_SNAKE_CASE :Any = '''.'''
__SCREAMING_SNAKE_CASE :Any = torch.manual_seed(0 )
__SCREAMING_SNAKE_CASE :Dict = sag_pipe(
[prompt] ,generator=SCREAMING_SNAKE_CASE__ ,guidance_scale=7.5 ,sag_scale=1.0 ,num_inference_steps=20 ,output_type='''np''' )
__SCREAMING_SNAKE_CASE :str = output.images
__SCREAMING_SNAKE_CASE :Union[str, Any] = image[0, -3:, -3:, -1]
assert image.shape == (1, 5_12, 5_12, 3)
__SCREAMING_SNAKE_CASE :int = np.array([0.1_5_6_8, 0.1_7_3_8, 0.1_6_9_5, 0.1_6_9_3, 0.1_5_0_7, 0.1_7_0_5, 0.1_5_4_7, 0.1_7_5_1, 0.1_9_4_9] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 5E-2
def _UpperCamelCase ( self ) -> int:
"""simple docstring"""
__SCREAMING_SNAKE_CASE :Any = StableDiffusionSAGPipeline.from_pretrained('''stabilityai/stable-diffusion-2-1-base''' )
__SCREAMING_SNAKE_CASE :Optional[int] = sag_pipe.to(SCREAMING_SNAKE_CASE__ )
sag_pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__ )
__SCREAMING_SNAKE_CASE :int = '''.'''
__SCREAMING_SNAKE_CASE :Any = torch.manual_seed(0 )
__SCREAMING_SNAKE_CASE :Dict = sag_pipe(
[prompt] ,generator=SCREAMING_SNAKE_CASE__ ,guidance_scale=7.5 ,sag_scale=1.0 ,num_inference_steps=20 ,output_type='''np''' )
__SCREAMING_SNAKE_CASE :Optional[int] = output.images
__SCREAMING_SNAKE_CASE :List[str] = image[0, -3:, -3:, -1]
assert image.shape == (1, 5_12, 5_12, 3)
__SCREAMING_SNAKE_CASE :List[str] = np.array([0.3_4_5_9, 0.2_8_7_6, 0.2_5_3_7, 0.3_0_0_2, 0.2_6_7_1, 0.2_1_6_0, 0.3_0_2_6, 0.2_2_6_2, 0.2_3_7_1] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 5E-2
def _UpperCamelCase ( self ) -> List[str]:
"""simple docstring"""
__SCREAMING_SNAKE_CASE :int = StableDiffusionSAGPipeline.from_pretrained('''stabilityai/stable-diffusion-2-1-base''' )
__SCREAMING_SNAKE_CASE :Optional[int] = sag_pipe.to(SCREAMING_SNAKE_CASE__ )
sag_pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__ )
__SCREAMING_SNAKE_CASE :Optional[Any] = '''.'''
__SCREAMING_SNAKE_CASE :List[str] = torch.manual_seed(0 )
__SCREAMING_SNAKE_CASE :Optional[int] = sag_pipe(
[prompt] ,width=7_68 ,height=5_12 ,generator=SCREAMING_SNAKE_CASE__ ,guidance_scale=7.5 ,sag_scale=1.0 ,num_inference_steps=20 ,output_type='''np''' ,)
__SCREAMING_SNAKE_CASE :List[str] = output.images
assert image.shape == (1, 5_12, 7_68, 3) | 365 |
"""simple docstring"""
import colorsys
from PIL import Image # type: ignore
def __lowerCamelCase ( a_ : float , a_ : float , a_ : int ) -> float:
__SCREAMING_SNAKE_CASE :List[Any] = x
__SCREAMING_SNAKE_CASE :List[Any] = y
for step in range(a_ ): # noqa: B007
__SCREAMING_SNAKE_CASE :Dict = a * a - b * b + x
__SCREAMING_SNAKE_CASE :Tuple = 2 * a * b + y
__SCREAMING_SNAKE_CASE :Dict = a_new
# divergence happens for all complex number with an absolute value
# greater than 4
if a * a + b * b > 4:
break
return step / (max_step - 1)
def __lowerCamelCase ( a_ : float ) -> tuple:
if distance == 1:
return (0, 0, 0)
else:
return (2_55, 2_55, 2_55)
def __lowerCamelCase ( a_ : float ) -> tuple:
if distance == 1:
return (0, 0, 0)
else:
return tuple(round(i * 2_55 ) for i in colorsys.hsv_to_rgb(a_ , 1 , 1 ) )
def __lowerCamelCase ( a_ : int = 8_00 , a_ : int = 6_00 , a_ : float = -0.6 , a_ : float = 0 , a_ : float = 3.2 , a_ : int = 50 , a_ : bool = True , ) -> Image.Image:
__SCREAMING_SNAKE_CASE :Optional[int] = Image.new('''RGB''' , (image_width, image_height) )
__SCREAMING_SNAKE_CASE :Tuple = img.load()
# loop through the image-coordinates
for image_x in range(a_ ):
for image_y in range(a_ ):
# determine the figure-coordinates based on the image-coordinates
__SCREAMING_SNAKE_CASE :Dict = figure_width / image_width * image_height
__SCREAMING_SNAKE_CASE :str = figure_center_x + (image_x / image_width - 0.5) * figure_width
__SCREAMING_SNAKE_CASE :Tuple = figure_center_y + (image_y / image_height - 0.5) * figure_height
__SCREAMING_SNAKE_CASE :List[Any] = get_distance(a_ , a_ , a_ )
# color the corresponding pixel based on the selected coloring-function
if use_distance_color_coding:
__SCREAMING_SNAKE_CASE :Optional[int] = get_color_coded_rgb(a_ )
else:
__SCREAMING_SNAKE_CASE :Optional[Any] = get_black_and_white_rgb(a_ )
return img
if __name__ == "__main__":
import doctest
doctest.testmod()
# colored version, full figure
lowerCamelCase_ = get_image()
# uncomment for colored version, different section, zoomed in
# img = get_image(figure_center_x = -0.6, figure_center_y = -0.4,
# figure_width = 0.8)
# uncomment for black and white version, full figure
# img = get_image(use_distance_color_coding = False)
# uncomment to save the image
# img.save("mandelbrot.png")
img.show() | 239 | 0 |
'''simple docstring'''
from itertools import product
def __lowercase ( __lowercase , __lowercase ) -> list[int]:
'''simple docstring'''
_A = sides_number
_A = max_face_number * dice_number
_A = [0] * (max_total + 1)
_A = 1
_A = range(__lowercase , max_face_number + 1 )
for dice_numbers in product(__lowercase , repeat=__lowercase ):
_A = sum(__lowercase )
totals_frequencies[total] += 1
return totals_frequencies
def __lowercase ( ) -> float:
'''simple docstring'''
_A = total_frequency_distribution(
sides_number=4 , dice_number=9 )
_A = total_frequency_distribution(
sides_number=6 , dice_number=6 )
_A = 0
_A = 9
_A = 4 * 9
_A = 6
for peter_total in range(__lowercase , max_peter_total + 1 ):
peter_wins_count += peter_totals_frequencies[peter_total] * sum(
colin_totals_frequencies[min_colin_total:peter_total] )
_A = (4**9) * (6**6)
_A = peter_wins_count / total_games_number
_A = round(__lowercase , ndigits=7 )
return rounded_peter_win_probability
if __name__ == "__main__":
print(F"""{solution() = }""")
| 79 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
lowerCamelCase_ = {
'''configuration_longformer''': [
'''LONGFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''',
'''LongformerConfig''',
'''LongformerOnnxConfig''',
],
'''tokenization_longformer''': ['''LongformerTokenizer'''],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCamelCase_ = ['''LongformerTokenizerFast''']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCamelCase_ = [
'''LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''LongformerForMaskedLM''',
'''LongformerForMultipleChoice''',
'''LongformerForQuestionAnswering''',
'''LongformerForSequenceClassification''',
'''LongformerForTokenClassification''',
'''LongformerModel''',
'''LongformerPreTrainedModel''',
'''LongformerSelfAttention''',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCamelCase_ = [
'''TF_LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''TFLongformerForMaskedLM''',
'''TFLongformerForMultipleChoice''',
'''TFLongformerForQuestionAnswering''',
'''TFLongformerForSequenceClassification''',
'''TFLongformerForTokenClassification''',
'''TFLongformerModel''',
'''TFLongformerPreTrainedModel''',
'''TFLongformerSelfAttention''',
]
if TYPE_CHECKING:
from .configuration_longformer import (
LONGFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP,
LongformerConfig,
LongformerOnnxConfig,
)
from .tokenization_longformer import LongformerTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_longformer_fast import LongformerTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_longformer import (
LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
LongformerForMaskedLM,
LongformerForMultipleChoice,
LongformerForQuestionAnswering,
LongformerForSequenceClassification,
LongformerForTokenClassification,
LongformerModel,
LongformerPreTrainedModel,
LongformerSelfAttention,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_longformer import (
TF_LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
TFLongformerForMaskedLM,
TFLongformerForMultipleChoice,
TFLongformerForQuestionAnswering,
TFLongformerForSequenceClassification,
TFLongformerForTokenClassification,
TFLongformerModel,
TFLongformerPreTrainedModel,
TFLongformerSelfAttention,
)
else:
import sys
lowerCamelCase_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 79 | 1 |
'''simple docstring'''
from __future__ import annotations
__lowerCAmelCase = [-10, -5, 0, 5, 5.1, 11, 13, 21, 3, 4, -21, -10, -5, -1, 0]
__lowerCAmelCase = [-5, 0, 5, 5.1, 11, 13, 21, -1, 4, -1, -10, -5, -1, 0, -1]
def __lowerCamelCase ( lowerCAmelCase_ ) -> list[float]:
_a : Optional[Any] = []
_a : int = len(lowerCAmelCase_ )
for i in range(lowerCAmelCase_ ):
_a : float = -1
for j in range(i + 1 , lowerCAmelCase_ ):
if arr[i] < arr[j]:
_a : List[Any] = arr[j]
break
result.append(lowerCAmelCase_ )
return result
def __lowerCamelCase ( lowerCAmelCase_ ) -> list[float]:
_a : Any = []
for i, outer in enumerate(lowerCAmelCase_ ):
_a : float = -1
for inner in arr[i + 1 :]:
if outer < inner:
_a : Any = inner
break
result.append(lowerCAmelCase_ )
return result
def __lowerCamelCase ( lowerCAmelCase_ ) -> list[float]:
_a : List[Any] = len(lowerCAmelCase_ )
_a : list[float] = []
_a : list[float] = [-1] * arr_size
for index in reversed(range(lowerCAmelCase_ ) ):
if stack:
while stack[-1] <= arr[index]:
stack.pop()
if not stack:
break
if stack:
_a : Any = stack[-1]
stack.append(arr[index] )
return result
if __name__ == "__main__":
from doctest import testmod
from timeit import timeit
testmod()
print(next_greatest_element_slow(arr))
print(next_greatest_element_fast(arr))
print(next_greatest_element(arr))
__lowerCAmelCase = (
'''from __main__ import arr, next_greatest_element_slow, '''
'''next_greatest_element_fast, next_greatest_element'''
)
print(
'''next_greatest_element_slow():''',
timeit('''next_greatest_element_slow(arr)''', setup=setup),
)
print(
'''next_greatest_element_fast():''',
timeit('''next_greatest_element_fast(arr)''', setup=setup),
)
print(
''' next_greatest_element():''',
timeit('''next_greatest_element(arr)''', setup=setup),
)
| 107 |
'''simple docstring'''
import unittest
from transformers import is_tf_available
from transformers.testing_utils import require_tf
if is_tf_available():
import tensorflow as tf
from tensorflow.python.eager import context
from tensorflow.python.framework import ops
from transformers import GradientAccumulator, create_optimizer
@require_tf
class __magic_name__ ( unittest.TestCase ):
def __lowercase ( self : int ,_UpperCAmelCase : int ,_UpperCAmelCase : str ,_UpperCAmelCase : Optional[Any] ):
self.assertEqual(len(_UpperCAmelCase ) ,len(_UpperCAmelCase ) )
for a, b in zip(_UpperCAmelCase ,_UpperCAmelCase ):
self.assertAlmostEqual(_UpperCAmelCase ,_UpperCAmelCase ,delta=_UpperCAmelCase )
def __lowercase ( self : int ):
_a : int = GradientAccumulator()
accumulator([tf.constant([1.0, 2.0] )] )
accumulator([tf.constant([-2.0, 1.0] )] )
accumulator([tf.constant([-1.0, 2.0] )] )
with self.assertRaises(_UpperCAmelCase ):
accumulator([tf.constant([1.0, 1.0] ), tf.constant([2.0, 2.0] )] )
self.assertEqual(accumulator.step ,3 )
self.assertEqual(len(accumulator.gradients ) ,1 )
self.assertListAlmostEqual(accumulator.gradients[0].numpy().tolist() ,[-2.0, 5.0] ,tol=1E-2 )
accumulator.reset()
self.assertEqual(accumulator.step ,0 )
self.assertListAlmostEqual(accumulator.gradients[0].numpy().tolist() ,[0.0, 0.0] ,tol=1E-2 )
def __lowercase ( self : Any ):
_a : int = None
ops.enable_eager_execution_internal()
_a : Optional[int] = tf.config.list_physical_devices('CPU' )
if len(_UpperCAmelCase ) == 1:
tf.config.set_logical_device_configuration(
physical_devices[0] ,[tf.config.LogicalDeviceConfiguration(), tf.config.LogicalDeviceConfiguration()] )
_a : Tuple = tf.config.list_logical_devices(device_type='CPU' )
_a : List[str] = tf.distribute.MirroredStrategy(devices=devices[:2] )
with strategy.scope():
_a : Tuple = GradientAccumulator()
_a : List[Any] = tf.Variable([4.0, 3.0] )
_a , _a : Dict = create_optimizer(5E-5 ,10 ,5 )
_a : Tuple = tf.Variable([0.0, 0.0] ,trainable=_UpperCAmelCase )
def accumulate_on_replica(_UpperCAmelCase : str ):
accumulator([gradient] )
def apply_on_replica():
optimizer.apply_gradients(list(zip(accumulator.gradients ,[variable] ) ) )
@tf.function
def accumulate(_UpperCAmelCase : Optional[int] ,_UpperCAmelCase : Optional[int] ):
with strategy.scope():
_a : Union[str, Any] = strategy.experimental_local_results(_UpperCAmelCase )
local_variables[0].assign(_UpperCAmelCase )
local_variables[1].assign(_UpperCAmelCase )
strategy.run(_UpperCAmelCase ,args=(gradient_placeholder,) )
@tf.function
def apply_grad():
with strategy.scope():
strategy.run(_UpperCAmelCase )
def _check_local_values(_UpperCAmelCase : Tuple ,_UpperCAmelCase : List[str] ):
_a : List[Any] = strategy.experimental_local_results(accumulator._gradients[0] )
self.assertListAlmostEqual(values[0].value() ,_UpperCAmelCase ,tol=1E-2 )
self.assertListAlmostEqual(values[1].value() ,_UpperCAmelCase ,tol=1E-2 )
accumulate([1.0, 2.0] ,[-1.0, 1.0] )
accumulate([3.0, -1.0] ,[-1.0, -1.0] )
accumulate([-2.0, 2.0] ,[3.0, -2.0] )
self.assertEqual(accumulator.step ,3 )
_check_local_values([2.0, 3.0] ,[1.0, -2.0] )
apply_grad()
self.assertListAlmostEqual(variable.value() ,[4.0, 3.0] ,tol=1E-2 )
accumulator.reset()
self.assertEqual(accumulator.step ,0 )
_check_local_values([0.0, 0.0] ,[0.0, 0.0] )
| 107 | 1 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
A__ : Union[str, Any] = {
"configuration_mgp_str": ["MGP_STR_PRETRAINED_CONFIG_ARCHIVE_MAP", "MgpstrConfig"],
"processing_mgp_str": ["MgpstrProcessor"],
"tokenization_mgp_str": ["MgpstrTokenizer"],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A__ : str = [
"MGP_STR_PRETRAINED_MODEL_ARCHIVE_LIST",
"MgpstrModel",
"MgpstrPreTrainedModel",
"MgpstrForSceneTextRecognition",
]
if TYPE_CHECKING:
from .configuration_mgp_str import MGP_STR_PRETRAINED_CONFIG_ARCHIVE_MAP, MgpstrConfig
from .processing_mgp_str import MgpstrProcessor
from .tokenization_mgp_str import MgpstrTokenizer
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_mgp_str import (
MGP_STR_PRETRAINED_MODEL_ARCHIVE_LIST,
MgpstrForSceneTextRecognition,
MgpstrModel,
MgpstrPreTrainedModel,
)
else:
import sys
A__ : Optional[int] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 144 |
'''simple docstring'''
import inspect
import unittest
from transformers import RegNetConfig, is_flax_available
from transformers.testing_utils import require_flax, slow
from transformers.utils import cached_property, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor
if is_flax_available():
import jax
import jax.numpy as jnp
from transformers.models.regnet.modeling_flax_regnet import FlaxRegNetForImageClassification, FlaxRegNetModel
if is_vision_available():
from PIL import Image
from transformers import AutoImageProcessor
class __a (unittest.TestCase ):
def __init__( self : int , __magic_name__ : Union[str, Any] , __magic_name__ : Tuple=3 , __magic_name__ : Tuple=32 , __magic_name__ : Optional[int]=3 , __magic_name__ : Optional[Any]=10 , __magic_name__ : str=[10, 20, 30, 40] , __magic_name__ : str=[1, 1, 2, 1] , __magic_name__ : Union[str, Any]=True , __magic_name__ : str=True , __magic_name__ : Dict="relu" , __magic_name__ : Any=3 , __magic_name__ : List[str]=None , ) -> List[Any]:
"""simple docstring"""
UpperCAmelCase_ : str = parent
UpperCAmelCase_ : List[str] = batch_size
UpperCAmelCase_ : int = image_size
UpperCAmelCase_ : Optional[int] = num_channels
UpperCAmelCase_ : Any = embeddings_size
UpperCAmelCase_ : Union[str, Any] = hidden_sizes
UpperCAmelCase_ : Optional[Any] = depths
UpperCAmelCase_ : Any = is_training
UpperCAmelCase_ : Optional[Any] = use_labels
UpperCAmelCase_ : List[Any] = hidden_act
UpperCAmelCase_ : List[str] = num_labels
UpperCAmelCase_ : Optional[Any] = scope
UpperCAmelCase_ : int = len(__magic_name__ )
def UpperCAmelCase__ ( self : Optional[Any] ) -> Union[str, Any]:
"""simple docstring"""
UpperCAmelCase_ : Dict = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
UpperCAmelCase_ : Union[str, Any] = self.get_config()
return config, pixel_values
def UpperCAmelCase__ ( self : List[Any] ) -> Dict:
"""simple docstring"""
return RegNetConfig(
num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , image_size=self.image_size , )
def UpperCAmelCase__ ( self : int , __magic_name__ : Union[str, Any] , __magic_name__ : str ) -> List[str]:
"""simple docstring"""
UpperCAmelCase_ : Optional[Any] = FlaxRegNetModel(config=__magic_name__ )
UpperCAmelCase_ : Optional[Any] = model(__magic_name__ )
# Output shape (b, c, h, w)
self.parent.assertEqual(
result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , )
def UpperCAmelCase__ ( self : List[str] , __magic_name__ : str , __magic_name__ : Tuple ) -> List[Any]:
"""simple docstring"""
UpperCAmelCase_ : Optional[int] = self.num_labels
UpperCAmelCase_ : str = FlaxRegNetForImageClassification(config=__magic_name__ )
UpperCAmelCase_ : Tuple = model(__magic_name__ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def UpperCAmelCase__ ( self : Tuple ) -> int:
"""simple docstring"""
UpperCAmelCase_ : List[Any] = self.prepare_config_and_inputs()
UpperCAmelCase_ , UpperCAmelCase_ : str = config_and_inputs
UpperCAmelCase_ : Optional[int] = {'''pixel_values''': pixel_values}
return config, inputs_dict
@require_flax
class __a (lowerCamelCase , unittest.TestCase ):
__a : Optional[Any] = (FlaxRegNetModel, FlaxRegNetForImageClassification) if is_flax_available() else ()
__a : int = False
__a : str = False
__a : List[str] = False
def UpperCAmelCase__ ( self : List[Any] ) -> None:
"""simple docstring"""
UpperCAmelCase_ : Optional[int] = FlaxRegNetModelTester(self )
UpperCAmelCase_ : List[Any] = ConfigTester(self , config_class=__magic_name__ , has_text_modality=__magic_name__ )
def UpperCAmelCase__ ( self : List[Any] ) -> str:
"""simple docstring"""
self.create_and_test_config_common_properties()
self.config_tester.create_and_test_config_to_json_string()
self.config_tester.create_and_test_config_to_json_file()
self.config_tester.create_and_test_config_from_and_save_pretrained()
self.config_tester.create_and_test_config_with_num_labels()
self.config_tester.check_config_can_be_init_without_params()
self.config_tester.check_config_arguments_init()
def UpperCAmelCase__ ( self : Any ) -> Optional[Any]:
"""simple docstring"""
return
def UpperCAmelCase__ ( self : List[str] ) -> List[Any]:
"""simple docstring"""
UpperCAmelCase_ : Dict = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*__magic_name__ )
def UpperCAmelCase__ ( self : Union[str, Any] ) -> str:
"""simple docstring"""
UpperCAmelCase_ : Dict = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*__magic_name__ )
@unittest.skip(reason='''RegNet does not use inputs_embeds''' )
def UpperCAmelCase__ ( self : Dict ) -> Tuple:
"""simple docstring"""
pass
@unittest.skip(reason='''RegNet does not support input and output embeddings''' )
def UpperCAmelCase__ ( self : str ) -> List[str]:
"""simple docstring"""
pass
def UpperCAmelCase__ ( self : str ) -> Optional[int]:
"""simple docstring"""
UpperCAmelCase_ , UpperCAmelCase_ : Dict = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
UpperCAmelCase_ : Optional[int] = model_class(__magic_name__ )
UpperCAmelCase_ : List[Any] = inspect.signature(model.__call__ )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
UpperCAmelCase_ : Dict = [*signature.parameters.keys()]
UpperCAmelCase_ : Optional[Any] = ['''pixel_values''']
self.assertListEqual(arg_names[:1] , __magic_name__ )
def UpperCAmelCase__ ( self : List[str] ) -> List[str]:
"""simple docstring"""
def check_hidden_states_output(__magic_name__ : Optional[int] , __magic_name__ : Union[str, Any] , __magic_name__ : Tuple ):
UpperCAmelCase_ : Optional[int] = model_class(__magic_name__ )
UpperCAmelCase_ : str = model(**self._prepare_for_class(__magic_name__ , __magic_name__ ) )
UpperCAmelCase_ : Optional[int] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states
UpperCAmelCase_ : str = self.model_tester.num_stages
self.assertEqual(len(__magic_name__ ) , expected_num_stages + 1 )
UpperCAmelCase_ , UpperCAmelCase_ : int = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
UpperCAmelCase_ : Any = True
check_hidden_states_output(__magic_name__ , __magic_name__ , __magic_name__ )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
UpperCAmelCase_ : Any = True
check_hidden_states_output(__magic_name__ , __magic_name__ , __magic_name__ )
def UpperCAmelCase__ ( self : Dict ) -> List[str]:
"""simple docstring"""
UpperCAmelCase_ , UpperCAmelCase_ : str = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__ ):
UpperCAmelCase_ : str = self._prepare_for_class(__magic_name__ , __magic_name__ )
UpperCAmelCase_ : Optional[int] = model_class(__magic_name__ )
@jax.jit
def model_jitted(__magic_name__ : Optional[int] , **__magic_name__ : Optional[Any] ):
return model(pixel_values=__magic_name__ , **__magic_name__ )
with self.subTest('''JIT Enabled''' ):
UpperCAmelCase_ : Dict = model_jitted(**__magic_name__ ).to_tuple()
with self.subTest('''JIT Disabled''' ):
with jax.disable_jit():
UpperCAmelCase_ : Any = model_jitted(**__magic_name__ ).to_tuple()
self.assertEqual(len(__magic_name__ ) , len(__magic_name__ ) )
for jitted_output, output in zip(__magic_name__ , __magic_name__ ):
self.assertEqual(jitted_output.shape , output.shape )
def lowerCamelCase_ ( ) -> Optional[int]:
UpperCAmelCase_ : Optional[Any] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' )
return image
@require_flax
class __a (unittest.TestCase ):
@cached_property
def UpperCAmelCase__ ( self : List[str] ) -> Dict:
"""simple docstring"""
return AutoImageProcessor.from_pretrained('''facebook/regnet-y-040''' ) if is_vision_available() else None
@slow
def UpperCAmelCase__ ( self : Tuple ) -> Tuple:
"""simple docstring"""
UpperCAmelCase_ : Dict = FlaxRegNetForImageClassification.from_pretrained('''facebook/regnet-y-040''' )
UpperCAmelCase_ : Tuple = self.default_image_processor
UpperCAmelCase_ : Tuple = prepare_img()
UpperCAmelCase_ : Union[str, Any] = image_processor(images=__magic_name__ , return_tensors='''np''' )
UpperCAmelCase_ : int = model(**__magic_name__ )
# verify the logits
UpperCAmelCase_ : int = (1, 10_00)
self.assertEqual(outputs.logits.shape , __magic_name__ )
UpperCAmelCase_ : Optional[int] = jnp.array([-0.4_1_8_0, -1.5_0_5_1, -3.4_8_3_6] )
self.assertTrue(jnp.allclose(outputs.logits[0, :3] , __magic_name__ , atol=1E-4 ) )
| 125 | 0 |
import numpy as np
import pandas as pd
from sklearn.preprocessing import MinMaxScaler
from tensorflow.keras.layers import LSTM, Dense
from tensorflow.keras.models import Sequential
if __name__ == "__main__":
snake_case : Optional[int] = pd.read_csv('''sample_data.csv''', header=None)
snake_case : Optional[Any] = df.shape[:1][0]
# If you're using some other dataset input the target column
snake_case : Tuple = df.iloc[:, 1:2]
snake_case : Tuple = actual_data.values.reshape(len_data, 1)
snake_case : str = MinMaxScaler().fit_transform(actual_data)
snake_case : List[str] = 10
snake_case : Any = 5
snake_case : Optional[Any] = 20
snake_case : List[str] = len_data - periods * look_back
snake_case : str = actual_data[:division]
snake_case : int = actual_data[division - look_back :]
snake_case : List[str] = [], []
snake_case : Union[str, Any] = [], []
for i in range(0, len(train_data) - forward_days - look_back + 1):
train_x.append(train_data[i : i + look_back])
train_y.append(train_data[i + look_back : i + look_back + forward_days])
for i in range(0, len(test_data) - forward_days - look_back + 1):
test_x.append(test_data[i : i + look_back])
test_y.append(test_data[i + look_back : i + look_back + forward_days])
snake_case : List[Any] = np.array(train_x)
snake_case : Tuple = np.array(test_x)
snake_case : Any = np.array([list(i.ravel()) for i in train_y])
snake_case : List[Any] = np.array([list(i.ravel()) for i in test_y])
snake_case : Union[str, Any] = Sequential()
model.add(LSTM(1_28, input_shape=(look_back, 1), return_sequences=True))
model.add(LSTM(64, input_shape=(1_28, 1)))
model.add(Dense(forward_days))
model.compile(loss='''mean_squared_error''', optimizer='''adam''')
snake_case : Tuple = model.fit(
x_train, y_train, epochs=1_50, verbose=1, shuffle=True, batch_size=4
)
snake_case : Optional[int] = model.predict(x_test)
| 355 |
from collections import defaultdict
from math import ceil, sqrt
def __lowercase ( __lowerCAmelCase : int = 1_0_0_0_0_0_0 , __lowerCAmelCase : int = 1_0 ):
a__ = defaultdict(__lowerCAmelCase )
for outer_width in range(3 , (t_limit // 4) + 2 ):
if outer_width * outer_width > t_limit:
a__ = max(
ceil(sqrt(outer_width * outer_width - t_limit ) ) , 1 )
else:
a__ = 1
hole_width_lower_bound += (outer_width - hole_width_lower_bound) % 2
for hole_width in range(__lowerCAmelCase , outer_width - 1 , 2 ):
count[outer_width * outer_width - hole_width * hole_width] += 1
return sum(1 for n in count.values() if 1 <= n <= 1_0 )
if __name__ == "__main__":
print(f"""{solution() = }""")
| 109 | 0 |
'''simple docstring'''
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
SCREAMING_SNAKE_CASE_: str =logging.get_logger(__name__)
SCREAMING_SNAKE_CASE_: Optional[Any] ={
'google/bigbird-roberta-base': 'https://huggingface.co/google/bigbird-roberta-base/resolve/main/config.json',
'google/bigbird-roberta-large': 'https://huggingface.co/google/bigbird-roberta-large/resolve/main/config.json',
'google/bigbird-base-trivia-itc': 'https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/config.json',
# See all BigBird models at https://huggingface.co/models?filter=big_bird
}
class __A ( UpperCamelCase__ ):
a__ : Tuple = """big_bird"""
def __init__(self : int , __a : Optional[Any]=50358 , __a : Any=768 , __a : Optional[Any]=12 , __a : List[Any]=12 , __a : Any=3072 , __a : Tuple="gelu_new" , __a : str=0.1 , __a : int=0.1 , __a : List[str]=4096 , __a : str=2 , __a : List[str]=0.02 , __a : Any=1E-12 , __a : Any=True , __a : Any=0 , __a : Optional[Any]=1 , __a : List[Any]=2 , __a : Dict=66 , __a : Optional[int]="block_sparse" , __a : List[Any]=True , __a : Tuple=False , __a : Any=64 , __a : Optional[Any]=3 , __a : Tuple=None , **__a : Union[str, Any] , ):
super().__init__(
pad_token_id=__a , bos_token_id=__a , eos_token_id=__a , sep_token_id=__a , **__a , )
UpperCAmelCase_ = vocab_size
UpperCAmelCase_ = max_position_embeddings
UpperCAmelCase_ = hidden_size
UpperCAmelCase_ = num_hidden_layers
UpperCAmelCase_ = num_attention_heads
UpperCAmelCase_ = intermediate_size
UpperCAmelCase_ = hidden_act
UpperCAmelCase_ = hidden_dropout_prob
UpperCAmelCase_ = attention_probs_dropout_prob
UpperCAmelCase_ = initializer_range
UpperCAmelCase_ = type_vocab_size
UpperCAmelCase_ = layer_norm_eps
UpperCAmelCase_ = use_cache
UpperCAmelCase_ = rescale_embeddings
UpperCAmelCase_ = attention_type
UpperCAmelCase_ = use_bias
UpperCAmelCase_ = block_size
UpperCAmelCase_ = num_random_blocks
UpperCAmelCase_ = classifier_dropout
class __A ( UpperCamelCase__ ):
@property
def _lowercase (self : Dict ):
if self.task == "multiple-choice":
UpperCAmelCase_ = {0: "batch", 1: "choice", 2: "sequence"}
else:
UpperCAmelCase_ = {0: "batch", 1: "sequence"}
return OrderedDict(
[
("input_ids", dynamic_axis),
("attention_mask", dynamic_axis),
] )
| 1 |
'''simple docstring'''
import unittest
import numpy as np
from datasets import load_dataset
from transformers.testing_utils import require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import BeitImageProcessor
class snake_case__ ( unittest.TestCase):
def __init__( self : int , _A : List[str] , _A : Dict=7 , _A : List[str]=3 , _A : List[str]=18 , _A : Dict=30 , _A : Union[str, Any]=4_00 , _A : List[str]=True , _A : List[str]=None , _A : int=True , _A : Tuple=None , _A : Union[str, Any]=True , _A : Tuple=[0.5, 0.5, 0.5] , _A : Union[str, Any]=[0.5, 0.5, 0.5] , _A : Tuple=False , ) -> List[Any]:
UpperCAmelCase_ : Union[str, Any] = size if size is not None else {'''height''': 20, '''width''': 20}
UpperCAmelCase_ : List[Any] = crop_size if crop_size is not None else {'''height''': 18, '''width''': 18}
UpperCAmelCase_ : Tuple = parent
UpperCAmelCase_ : Optional[int] = batch_size
UpperCAmelCase_ : Any = num_channels
UpperCAmelCase_ : Optional[Any] = image_size
UpperCAmelCase_ : Tuple = min_resolution
UpperCAmelCase_ : Tuple = max_resolution
UpperCAmelCase_ : Optional[int] = do_resize
UpperCAmelCase_ : Tuple = size
UpperCAmelCase_ : Optional[Any] = do_center_crop
UpperCAmelCase_ : Optional[int] = crop_size
UpperCAmelCase_ : Tuple = do_normalize
UpperCAmelCase_ : Optional[Any] = image_mean
UpperCAmelCase_ : int = image_std
UpperCAmelCase_ : List[Any] = do_reduce_labels
def A ( self : Union[str, Any] ) -> str:
return {
"do_resize": self.do_resize,
"size": self.size,
"do_center_crop": self.do_center_crop,
"crop_size": self.crop_size,
"do_normalize": self.do_normalize,
"image_mean": self.image_mean,
"image_std": self.image_std,
"do_reduce_labels": self.do_reduce_labels,
}
def __UpperCAmelCase ( ) -> Optional[Any]:
UpperCAmelCase_ : Union[str, Any] = load_dataset('''hf-internal-testing/fixtures_ade20k''' , split='''test''' )
UpperCAmelCase_ : Optional[Any] = Image.open(dataset[0]['''file'''] )
UpperCAmelCase_ : str = Image.open(dataset[1]['''file'''] )
return image, map
def __UpperCAmelCase ( ) -> Any:
UpperCAmelCase_ : int = load_dataset('''hf-internal-testing/fixtures_ade20k''' , split='''test''' )
UpperCAmelCase_ : int = Image.open(ds[0]['''file'''] )
UpperCAmelCase_ : Optional[Any] = Image.open(ds[1]['''file'''] )
UpperCAmelCase_ : Dict = Image.open(ds[2]['''file'''] )
UpperCAmelCase_ : List[str] = Image.open(ds[3]['''file'''] )
return [imagea, imagea], [mapa, mapa]
@require_torch
@require_vision
class snake_case__ ( UpperCamelCase , unittest.TestCase):
a_ = BeitImageProcessor if is_vision_available() else None
def A ( self : Optional[Any] ) -> Union[str, Any]:
UpperCAmelCase_ : Tuple = BeitImageProcessingTester(self )
@property
def A ( self : List[Any] ) -> Tuple:
return self.image_processor_tester.prepare_image_processor_dict()
def A ( self : List[Any] ) -> Optional[Any]:
UpperCAmelCase_ : Dict = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(_A , '''do_resize''' ) )
self.assertTrue(hasattr(_A , '''size''' ) )
self.assertTrue(hasattr(_A , '''do_center_crop''' ) )
self.assertTrue(hasattr(_A , '''center_crop''' ) )
self.assertTrue(hasattr(_A , '''do_normalize''' ) )
self.assertTrue(hasattr(_A , '''image_mean''' ) )
self.assertTrue(hasattr(_A , '''image_std''' ) )
def A ( self : List[str] ) -> Optional[int]:
UpperCAmelCase_ : List[str] = self.image_processing_class.from_dict(self.image_processor_dict )
self.assertEqual(image_processor.size , {'''height''': 20, '''width''': 20} )
self.assertEqual(image_processor.crop_size , {'''height''': 18, '''width''': 18} )
self.assertEqual(image_processor.do_reduce_labels , _A )
UpperCAmelCase_ : Union[str, Any] = self.image_processing_class.from_dict(
self.image_processor_dict , size=42 , crop_size=84 , reduce_labels=_A )
self.assertEqual(image_processor.size , {'''height''': 42, '''width''': 42} )
self.assertEqual(image_processor.crop_size , {'''height''': 84, '''width''': 84} )
self.assertEqual(image_processor.do_reduce_labels , _A )
def A ( self : Optional[Any] ) -> Any:
pass
def A ( self : List[str] ) -> Optional[int]:
# Initialize image_processing
UpperCAmelCase_ : List[str] = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
UpperCAmelCase_ : Tuple = prepare_image_inputs(self.image_processor_tester , equal_resolution=_A )
for image in image_inputs:
self.assertIsInstance(_A , Image.Image )
# Test not batched input
UpperCAmelCase_ : Tuple = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['''height'''],
self.image_processor_tester.crop_size['''width'''],
) , )
# Test batched
UpperCAmelCase_ : Any = image_processing(_A , return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['''height'''],
self.image_processor_tester.crop_size['''width'''],
) , )
def A ( self : Union[str, Any] ) -> Union[str, Any]:
# Initialize image_processing
UpperCAmelCase_ : Any = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
UpperCAmelCase_ : Optional[int] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_A , numpify=_A )
for image in image_inputs:
self.assertIsInstance(_A , np.ndarray )
# Test not batched input
UpperCAmelCase_ : List[Any] = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['''height'''],
self.image_processor_tester.crop_size['''width'''],
) , )
# Test batched
UpperCAmelCase_ : int = image_processing(_A , return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['''height'''],
self.image_processor_tester.crop_size['''width'''],
) , )
def A ( self : Optional[int] ) -> str:
# Initialize image_processing
UpperCAmelCase_ : List[Any] = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
UpperCAmelCase_ : Optional[int] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_A , torchify=_A )
for image in image_inputs:
self.assertIsInstance(_A , torch.Tensor )
# Test not batched input
UpperCAmelCase_ : Any = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['''height'''],
self.image_processor_tester.crop_size['''width'''],
) , )
# Test batched
UpperCAmelCase_ : int = image_processing(_A , return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['''height'''],
self.image_processor_tester.crop_size['''width'''],
) , )
def A ( self : Any ) -> Optional[Any]:
# Initialize image_processing
UpperCAmelCase_ : Union[str, Any] = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
UpperCAmelCase_ : Dict = prepare_image_inputs(self.image_processor_tester , equal_resolution=_A , torchify=_A )
UpperCAmelCase_ : Union[str, Any] = []
for image in image_inputs:
self.assertIsInstance(_A , torch.Tensor )
maps.append(torch.zeros(image.shape[-2:] ).long() )
# Test not batched input
UpperCAmelCase_ : str = image_processing(image_inputs[0] , maps[0] , return_tensors='''pt''' )
self.assertEqual(
encoding['''pixel_values'''].shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['''height'''],
self.image_processor_tester.crop_size['''width'''],
) , )
self.assertEqual(
encoding['''labels'''].shape , (
1,
self.image_processor_tester.crop_size['''height'''],
self.image_processor_tester.crop_size['''width'''],
) , )
self.assertEqual(encoding['''labels'''].dtype , torch.long )
self.assertTrue(encoding['''labels'''].min().item() >= 0 )
self.assertTrue(encoding['''labels'''].max().item() <= 2_55 )
# Test batched
UpperCAmelCase_ : List[Any] = image_processing(_A , _A , return_tensors='''pt''' )
self.assertEqual(
encoding['''pixel_values'''].shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['''height'''],
self.image_processor_tester.crop_size['''width'''],
) , )
self.assertEqual(
encoding['''labels'''].shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.crop_size['''height'''],
self.image_processor_tester.crop_size['''width'''],
) , )
self.assertEqual(encoding['''labels'''].dtype , torch.long )
self.assertTrue(encoding['''labels'''].min().item() >= 0 )
self.assertTrue(encoding['''labels'''].max().item() <= 2_55 )
# Test not batched input (PIL images)
UpperCAmelCase_ , UpperCAmelCase_ : Any = prepare_semantic_single_inputs()
UpperCAmelCase_ : List[str] = image_processing(_A , _A , return_tensors='''pt''' )
self.assertEqual(
encoding['''pixel_values'''].shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['''height'''],
self.image_processor_tester.crop_size['''width'''],
) , )
self.assertEqual(
encoding['''labels'''].shape , (
1,
self.image_processor_tester.crop_size['''height'''],
self.image_processor_tester.crop_size['''width'''],
) , )
self.assertEqual(encoding['''labels'''].dtype , torch.long )
self.assertTrue(encoding['''labels'''].min().item() >= 0 )
self.assertTrue(encoding['''labels'''].max().item() <= 2_55 )
# Test batched input (PIL images)
UpperCAmelCase_ , UpperCAmelCase_ : List[str] = prepare_semantic_batch_inputs()
UpperCAmelCase_ : int = image_processing(_A , _A , return_tensors='''pt''' )
self.assertEqual(
encoding['''pixel_values'''].shape , (
2,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['''height'''],
self.image_processor_tester.crop_size['''width'''],
) , )
self.assertEqual(
encoding['''labels'''].shape , (
2,
self.image_processor_tester.crop_size['''height'''],
self.image_processor_tester.crop_size['''width'''],
) , )
self.assertEqual(encoding['''labels'''].dtype , torch.long )
self.assertTrue(encoding['''labels'''].min().item() >= 0 )
self.assertTrue(encoding['''labels'''].max().item() <= 2_55 )
def A ( self : List[Any] ) -> Union[str, Any]:
# Initialize image_processing
UpperCAmelCase_ : Union[str, Any] = self.image_processing_class(**self.image_processor_dict )
# ADE20k has 150 classes, and the background is included, so labels should be between 0 and 150
UpperCAmelCase_ , UpperCAmelCase_ : Any = prepare_semantic_single_inputs()
UpperCAmelCase_ : Dict = image_processing(_A , _A , return_tensors='''pt''' )
self.assertTrue(encoding['''labels'''].min().item() >= 0 )
self.assertTrue(encoding['''labels'''].max().item() <= 1_50 )
UpperCAmelCase_ : int = True
UpperCAmelCase_ : Dict = image_processing(_A , _A , return_tensors='''pt''' )
self.assertTrue(encoding['''labels'''].min().item() >= 0 )
self.assertTrue(encoding['''labels'''].max().item() <= 2_55 )
| 304 | 0 |
'''simple docstring'''
import copy
from typing import Any, Dict, List, Optional, Union
import numpy as np
from ...audio_utils import mel_filter_bank, spectrogram, window_function
from ...feature_extraction_sequence_utils import SequenceFeatureExtractor
from ...feature_extraction_utils import BatchFeature
from ...utils import TensorType, logging
lowerCAmelCase : Optional[int] =logging.get_logger(__name__)
class a_ ( _lowerCAmelCase ):
__A = ["input_features"]
def __init__( self : Any , lowercase : Tuple=80 , lowercase : Optional[int]=16_000 , lowercase : Optional[Any]=160 , lowercase : Optional[int]=30 , lowercase : List[Any]=400 , lowercase : Dict=0.0 , lowercase : Tuple=False , **lowercase : Optional[int] , ):
"""simple docstring"""
super().__init__(
feature_size=lowercase , sampling_rate=lowercase , padding_value=lowercase , return_attention_mask=lowercase , **lowercase , )
lowercase_ :Optional[int] = n_fft
lowercase_ :List[Any] = hop_length
lowercase_ :Tuple = chunk_length
lowercase_ :List[str] = chunk_length * sampling_rate
lowercase_ :Optional[Any] = self.n_samples // hop_length
lowercase_ :Any = sampling_rate
lowercase_ :List[Any] = mel_filter_bank(
num_frequency_bins=1 + n_fft // 2 , num_mel_filters=lowercase , min_frequency=0.0 , max_frequency=8_000.0 , sampling_rate=lowercase , norm="slaney" , mel_scale="slaney" , )
def lowercase__ ( self : str , lowercase : np.array ):
"""simple docstring"""
lowercase_ :Any = spectrogram(
lowercase , window_function(self.n_fft , "hann" ) , frame_length=self.n_fft , hop_length=self.hop_length , power=2.0 , mel_filters=self.mel_filters , log_mel="log10" , )
lowercase_ :Any = log_spec[:, :-1]
lowercase_ :List[Any] = np.maximum(lowercase , log_spec.max() - 8.0 )
lowercase_ :Dict = (log_spec + 4.0) / 4.0
return log_spec
@staticmethod
# Copied from transformers.models.wav2vec2.feature_extraction_wav2vec2.Wav2Vec2FeatureExtractor.zero_mean_unit_var_norm
def lowercase__ ( lowercase : List[np.ndarray] , lowercase : List[np.ndarray] , lowercase : float = 0.0 ):
"""simple docstring"""
if attention_mask is not None:
lowercase_ :Optional[int] = np.array(lowercase , np.intaa )
lowercase_ :Any = []
for vector, length in zip(lowercase , attention_mask.sum(-1 ) ):
lowercase_ :Dict = (vector - vector[:length].mean()) / np.sqrt(vector[:length].var() + 1e-7 )
if length < normed_slice.shape[0]:
lowercase_ :List[Any] = padding_value
normed_input_values.append(lowercase )
else:
lowercase_ :List[Any] = [(x - x.mean()) / np.sqrt(x.var() + 1e-7 ) for x in input_values]
return normed_input_values
def __call__( self : Tuple , lowercase : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , lowercase : bool = True , lowercase : Optional[int] = None , lowercase : Optional[Union[str, TensorType]] = None , lowercase : Optional[bool] = None , lowercase : Optional[str] = "max_length" , lowercase : Optional[int] = None , lowercase : Optional[int] = None , lowercase : Optional[bool] = None , **lowercase : Union[str, Any] , ):
"""simple docstring"""
if sampling_rate is not None:
if sampling_rate != self.sampling_rate:
raise ValueError(
F'The model corresponding to this feature extractor: {self.__class__.__name__} was trained using a'
F' sampling rate of {self.sampling_rate}. Please make sure that the provided `raw_speech` input'
F' was sampled with {self.sampling_rate} and not {sampling_rate}.' )
else:
logger.warning(
"It is strongly recommended to pass the `sampling_rate` argument to this function. "
"Failing to do so can result in silent errors that might be hard to debug." )
lowercase_ :List[str] = isinstance(lowercase , np.ndarray ) and len(raw_speech.shape ) > 1
if is_batched_numpy and len(raw_speech.shape ) > 2:
raise ValueError(F'Only mono-channel audio is supported for input to {self}' )
lowercase_ :Optional[Any] = is_batched_numpy or (
isinstance(lowercase , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) ))
)
if is_batched:
lowercase_ :Any = [np.asarray([speech] , dtype=np.floataa ).T for speech in raw_speech]
elif not is_batched and not isinstance(lowercase , np.ndarray ):
lowercase_ :List[Any] = np.asarray(lowercase , dtype=np.floataa )
elif isinstance(lowercase , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ):
lowercase_ :Union[str, Any] = raw_speech.astype(np.floataa )
# always return batch
if not is_batched:
lowercase_ :Optional[int] = [np.asarray([raw_speech] ).T]
lowercase_ :int = BatchFeature({"input_features": raw_speech} )
# convert into correct format for padding
lowercase_ :Tuple = self.pad(
lowercase , padding=lowercase , max_length=max_length if max_length else self.n_samples , truncation=lowercase , pad_to_multiple_of=lowercase , return_attention_mask=return_attention_mask or do_normalize , )
# zero-mean and unit-variance normalization
if do_normalize:
lowercase_ :Union[str, Any] = self.zero_mean_unit_var_norm(
padded_inputs["input_features"] , attention_mask=padded_inputs["attention_mask"] , padding_value=self.padding_value , )
lowercase_ :List[Any] = np.stack(padded_inputs["input_features"] , axis=0 )
# make sure list is in array format
lowercase_ :Union[str, Any] = padded_inputs.get("input_features" ).transpose(2 , 0 , 1 )
lowercase_ :List[str] = [self._np_extract_fbank_features(lowercase ) for waveform in input_features[0]]
if isinstance(input_features[0] , lowercase ):
lowercase_ :Tuple = [np.asarray(lowercase , dtype=np.floataa ) for feature in input_features]
else:
lowercase_ :Union[str, Any] = input_features
if return_attention_mask:
# rescale from sample (48000) to feature (3000)
lowercase_ :Dict = padded_inputs["attention_mask"][:, :: self.hop_length]
if return_tensors is not None:
lowercase_ :Tuple = padded_inputs.convert_to_tensors(lowercase )
return padded_inputs
def lowercase__ ( self : List[str] ):
"""simple docstring"""
lowercase_ :Union[str, Any] = copy.deepcopy(self.__dict__ )
lowercase_ :List[str] = self.__class__.__name__
if "mel_filters" in output:
del output["mel_filters"]
return output
| 365 |
'''simple docstring'''
from ...configuration_utils import PretrainedConfig
from ...utils import logging
lowerCAmelCase : Tuple =logging.get_logger(__name__)
lowerCAmelCase : str ={
'''microsoft/cvt-13''': '''https://huggingface.co/microsoft/cvt-13/resolve/main/config.json''',
# See all Cvt models at https://huggingface.co/models?filter=cvt
}
class a_ ( _lowerCAmelCase ):
__A = "cvt"
def __init__( self : Tuple , lowercase : str=3 , lowercase : str=[7, 3, 3] , lowercase : List[str]=[4, 2, 2] , lowercase : Dict=[2, 1, 1] , lowercase : int=[64, 192, 384] , lowercase : Dict=[1, 3, 6] , lowercase : Dict=[1, 2, 10] , lowercase : Any=[4.0, 4.0, 4.0] , lowercase : Tuple=[0.0, 0.0, 0.0] , lowercase : List[str]=[0.0, 0.0, 0.0] , lowercase : List[str]=[0.0, 0.0, 0.1] , lowercase : Any=[True, True, True] , lowercase : Any=[False, False, True] , lowercase : Optional[Any]=["dw_bn", "dw_bn", "dw_bn"] , lowercase : int=[3, 3, 3] , lowercase : str=[1, 1, 1] , lowercase : List[Any]=[2, 2, 2] , lowercase : Tuple=[1, 1, 1] , lowercase : Optional[Any]=[1, 1, 1] , lowercase : str=0.02 , lowercase : str=1e-1_2 , **lowercase : str , ):
"""simple docstring"""
super().__init__(**lowercase )
lowercase_ :List[Any] = num_channels
lowercase_ :Union[str, Any] = patch_sizes
lowercase_ :Tuple = patch_stride
lowercase_ :List[Any] = patch_padding
lowercase_ :List[Any] = embed_dim
lowercase_ :Union[str, Any] = num_heads
lowercase_ :Any = depth
lowercase_ :str = mlp_ratio
lowercase_ :List[str] = attention_drop_rate
lowercase_ :List[Any] = drop_rate
lowercase_ :Union[str, Any] = drop_path_rate
lowercase_ :Any = qkv_bias
lowercase_ :Dict = cls_token
lowercase_ :int = qkv_projection_method
lowercase_ :Union[str, Any] = kernel_qkv
lowercase_ :Optional[Any] = padding_kv
lowercase_ :Optional[Any] = stride_kv
lowercase_ :Dict = padding_q
lowercase_ :Any = stride_q
lowercase_ :Dict = initializer_range
lowercase_ :Optional[Any] = layer_norm_eps
| 147 | 0 |
from packaging import version
from .import_utils import is_accelerate_available
if is_accelerate_available():
import accelerate
def lowerCAmelCase__ ( lowerCamelCase_ : str):
'''simple docstring'''
if not is_accelerate_available():
return method
lowerCAmelCase__ : Optional[Any] = version.parse(accelerate.__version__).base_version
if version.parse(lowerCamelCase_) < version.parse('''0.17.0'''):
return method
def wrapper(self : str ,*lowerCamelCase_ : Union[str, Any] ,**lowerCamelCase_ : List[Any]):
if hasattr(self ,'''_hf_hook''') and hasattr(self._hf_hook ,'''pre_forward'''):
self._hf_hook.pre_forward(self)
return method(self ,*lowerCamelCase_ ,**lowerCamelCase_)
return wrapper
| 129 |
import json
import os
import subprocess
import unittest
from ast import literal_eval
import pytest
from parameterized import parameterized, parameterized_class
from . import is_sagemaker_available
if is_sagemaker_available():
from sagemaker import Session, TrainingJobAnalytics
from sagemaker.huggingface import HuggingFace
@pytest.mark.skipif(
literal_eval(os.getenv("""TEST_SAGEMAKER""" , """False""")) is not True , reason="""Skipping test because should only be run when releasing minor transformers version""" , )
@pytest.mark.usefixtures("""sm_env""")
@parameterized_class(
[
{
"""framework""": """pytorch""",
"""script""": """run_glue.py""",
"""model_name_or_path""": """distilbert-base-cased""",
"""instance_type""": """ml.p3.16xlarge""",
"""results""": {"""train_runtime""": 650, """eval_accuracy""": 0.7, """eval_loss""": 0.6},
},
{
"""framework""": """pytorch""",
"""script""": """run_ddp.py""",
"""model_name_or_path""": """distilbert-base-cased""",
"""instance_type""": """ml.p3.16xlarge""",
"""results""": {"""train_runtime""": 600, """eval_accuracy""": 0.7, """eval_loss""": 0.6},
},
{
"""framework""": """tensorflow""",
"""script""": """run_tf_dist.py""",
"""model_name_or_path""": """distilbert-base-cased""",
"""instance_type""": """ml.p3.16xlarge""",
"""results""": {"""train_runtime""": 600, """eval_accuracy""": 0.6, """eval_loss""": 0.7},
},
])
class lowerCamelCase__ ( unittest.TestCase):
'''simple docstring'''
def lowerCAmelCase__ (self ) -> List[str]:
"""simple docstring"""
if self.framework == "pytorch":
subprocess.run(
f"""cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py""".split() ,encoding='''utf-8''' ,check=__lowerCamelCase ,)
assert hasattr(self ,'''env''' )
def lowerCAmelCase__ (self ,__lowerCamelCase ) -> str:
"""simple docstring"""
lowerCAmelCase__ : Optional[int] = f"""{self.env.base_job_name}-{instance_count}-{'ddp' if 'ddp' in self.script else 'smd'}"""
# distributed data settings
lowerCAmelCase__ : Optional[Any] = {'''smdistributed''': {'''dataparallel''': {'''enabled''': True}}} if self.script != '''run_ddp.py''' else None
# creates estimator
return HuggingFace(
entry_point=self.script ,source_dir=self.env.test_path ,role=self.env.role ,image_uri=self.env.image_uri ,base_job_name=__lowerCamelCase ,instance_count=__lowerCamelCase ,instance_type=self.instance_type ,debugger_hook_config=__lowerCamelCase ,hyperparameters={**self.env.distributed_hyperparameters, '''model_name_or_path''': self.model_name_or_path} ,metric_definitions=self.env.metric_definitions ,distribution=__lowerCamelCase ,py_version='''py36''' ,)
def lowerCAmelCase__ (self ,__lowerCamelCase ) -> str:
"""simple docstring"""
TrainingJobAnalytics(__lowerCamelCase ).export_csv(f"""{self.env.test_path}/{job_name}_metrics.csv""" )
@parameterized.expand([(2,)] )
def lowerCAmelCase__ (self ,__lowerCamelCase ) -> Optional[Any]:
"""simple docstring"""
lowerCAmelCase__ : Optional[Any] = self.create_estimator(__lowerCamelCase )
# run training
estimator.fit()
# result dataframe
lowerCAmelCase__ : Dict = TrainingJobAnalytics(estimator.latest_training_job.name ).dataframe()
# extract kpis
lowerCAmelCase__ : List[Any] = list(result_metrics_df[result_metrics_df.metric_name == '''eval_accuracy''']['''value'''] )
lowerCAmelCase__ : Union[str, Any] = list(result_metrics_df[result_metrics_df.metric_name == '''eval_loss''']['''value'''] )
# get train time from SageMaker job, this includes starting, preprocessing, stopping
lowerCAmelCase__ : Optional[Any] = (
Session().describe_training_job(estimator.latest_training_job.name ).get('''TrainingTimeInSeconds''' ,99_99_99 )
)
# assert kpis
assert train_runtime <= self.results["train_runtime"]
assert all(t >= self.results['''eval_accuracy'''] for t in eval_accuracy )
assert all(t <= self.results['''eval_loss'''] for t in eval_loss )
# dump tests result into json file to share in PR
with open(f"""{estimator.latest_training_job.name}.json""" ,'''w''' ) as outfile:
json.dump({'''train_time''': train_runtime, '''eval_accuracy''': eval_accuracy, '''eval_loss''': eval_loss} ,__lowerCamelCase )
| 129 | 1 |
'''simple docstring'''
from math import sqrt
def lowercase (_A ):
"""simple docstring"""
if 1 < number < 4:
# 2 and 3 are primes
return True
elif number < 2 or number % 2 == 0 or number % 3 == 0:
# Negatives, 0, 1, all even numbers, all multiples of 3 are not primes
return False
# All primes number are in format of 6k +/- 1
for i in range(5 , int(sqrt(_A ) + 1 ) , 6 ):
if number % i == 0 or number % (i + 2) == 0:
return False
return True
def lowercase (_A = 1_0_0_0_1 ):
"""simple docstring"""
_lowerCAmelCase : Tuple = 0
_lowerCAmelCase : Optional[Any] = 1
while count != nth and number < 3:
number += 1
if is_prime(_A ):
count += 1
while count != nth:
number += 2
if is_prime(_A ):
count += 1
return number
if __name__ == "__main__":
print(F'''{solution() = }''')
| 25 |
'''simple docstring'''
import gc
import random
import unittest
import numpy as np
import torch
from PIL import Image
from diffusers import (
DDIMScheduler,
KandinskyVaaInpaintPipeline,
KandinskyVaaPriorPipeline,
UNetaDConditionModel,
VQModel,
)
from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference
enable_full_determinism()
class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ , unittest.TestCase ):
"""simple docstring"""
__magic_name__ = KandinskyVaaInpaintPipeline
__magic_name__ = ["image_embeds", "negative_image_embeds", "image", "mask_image"]
__magic_name__ = [
"image_embeds",
"negative_image_embeds",
"image",
"mask_image",
]
__magic_name__ = [
"generator",
"height",
"width",
"latents",
"guidance_scale",
"num_inference_steps",
"return_dict",
"guidance_scale",
"num_images_per_prompt",
"output_type",
"return_dict",
]
__magic_name__ = False
@property
def a ( self ):
'''simple docstring'''
return 32
@property
def a ( self ):
'''simple docstring'''
return 32
@property
def a ( self ):
'''simple docstring'''
return self.time_input_dim
@property
def a ( self ):
'''simple docstring'''
return self.time_input_dim * 4
@property
def a ( self ):
'''simple docstring'''
return 100
@property
def a ( self ):
'''simple docstring'''
torch.manual_seed(0 )
_lowerCAmelCase : Optional[int] = {
'in_channels': 9,
# Out channels is double in channels because predicts mean and variance
'out_channels': 8,
'addition_embed_type': 'image',
'down_block_types': ('ResnetDownsampleBlock2D', 'SimpleCrossAttnDownBlock2D'),
'up_block_types': ('SimpleCrossAttnUpBlock2D', 'ResnetUpsampleBlock2D'),
'mid_block_type': 'UNetMidBlock2DSimpleCrossAttn',
'block_out_channels': (self.block_out_channels_a, self.block_out_channels_a * 2),
'layers_per_block': 1,
'encoder_hid_dim': self.text_embedder_hidden_size,
'encoder_hid_dim_type': 'image_proj',
'cross_attention_dim': self.cross_attention_dim,
'attention_head_dim': 4,
'resnet_time_scale_shift': 'scale_shift',
'class_embed_type': None,
}
_lowerCAmelCase : Union[str, Any] = UNetaDConditionModel(**snake_case__ )
return model
@property
def a ( self ):
'''simple docstring'''
return {
"block_out_channels": [32, 64],
"down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"],
"in_channels": 3,
"latent_channels": 4,
"layers_per_block": 1,
"norm_num_groups": 8,
"norm_type": "spatial",
"num_vq_embeddings": 12,
"out_channels": 3,
"up_block_types": [
"AttnUpDecoderBlock2D",
"UpDecoderBlock2D",
],
"vq_embed_dim": 4,
}
@property
def a ( self ):
'''simple docstring'''
torch.manual_seed(0 )
_lowerCAmelCase : Dict = VQModel(**self.dummy_movq_kwargs )
return model
def a ( self ):
'''simple docstring'''
_lowerCAmelCase : Optional[int] = self.dummy_unet
_lowerCAmelCase : List[Any] = self.dummy_movq
_lowerCAmelCase : Union[str, Any] = DDIMScheduler(
num_train_timesteps=1000 , beta_schedule='linear' , beta_start=0.0_0085 , beta_end=0.012 , clip_sample=snake_case__ , set_alpha_to_one=snake_case__ , steps_offset=1 , prediction_type='epsilon' , thresholding=snake_case__ , )
_lowerCAmelCase : Any = {
'unet': unet,
'scheduler': scheduler,
'movq': movq,
}
return components
def a ( self , snake_case__ , snake_case__=0 ):
'''simple docstring'''
_lowerCAmelCase : List[Any] = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(snake_case__ ) ).to(snake_case__ )
_lowerCAmelCase : Optional[Any] = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to(
snake_case__ )
# create init_image
_lowerCAmelCase : Tuple = floats_tensor((1, 3, 64, 64) , rng=random.Random(snake_case__ ) ).to(snake_case__ )
_lowerCAmelCase : int = image.cpu().permute(0 , 2 , 3 , 1 )[0]
_lowerCAmelCase : Union[str, Any] = Image.fromarray(np.uinta(snake_case__ ) ).convert('RGB' ).resize((256, 256) )
# create mask
_lowerCAmelCase : List[str] = np.ones((64, 64) , dtype=np.floataa )
_lowerCAmelCase : Dict = 0
if str(snake_case__ ).startswith('mps' ):
_lowerCAmelCase : Optional[Any] = torch.manual_seed(snake_case__ )
else:
_lowerCAmelCase : List[Any] = torch.Generator(device=snake_case__ ).manual_seed(snake_case__ )
_lowerCAmelCase : Optional[int] = {
'image': init_image,
'mask_image': mask,
'image_embeds': image_embeds,
'negative_image_embeds': negative_image_embeds,
'generator': generator,
'height': 64,
'width': 64,
'num_inference_steps': 2,
'guidance_scale': 4.0,
'output_type': 'np',
}
return inputs
def a ( self ):
'''simple docstring'''
_lowerCAmelCase : Dict = 'cpu'
_lowerCAmelCase : int = self.get_dummy_components()
_lowerCAmelCase : Dict = self.pipeline_class(**snake_case__ )
_lowerCAmelCase : Optional[int] = pipe.to(snake_case__ )
pipe.set_progress_bar_config(disable=snake_case__ )
_lowerCAmelCase : Union[str, Any] = pipe(**self.get_dummy_inputs(snake_case__ ) )
_lowerCAmelCase : int = output.images
_lowerCAmelCase : int = pipe(
**self.get_dummy_inputs(snake_case__ ) , return_dict=snake_case__ , )[0]
_lowerCAmelCase : Optional[int] = image[0, -3:, -3:, -1]
_lowerCAmelCase : Optional[int] = image_from_tuple[0, -3:, -3:, -1]
print(F'image.shape {image.shape}' )
assert image.shape == (1, 64, 64, 3)
_lowerCAmelCase : List[str] = np.array(
[0.5077_5903, 0.4952_7195, 0.4882_4543, 0.5019_2237, 0.4864_4906, 0.4937_3814, 0.478_0598, 0.4723_4827, 0.4832_7848] )
assert (
np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
), F' expected_slice {expected_slice}, but got {image_slice.flatten()}'
assert (
np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2
), F' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}'
def a ( self ):
'''simple docstring'''
super().test_inference_batch_single_identical(expected_max_diff=3E-3 )
@slow
@require_torch_gpu
class UpperCamelCase__ ( unittest.TestCase ):
"""simple docstring"""
def a ( self ):
'''simple docstring'''
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def a ( self ):
'''simple docstring'''
_lowerCAmelCase : Tuple = load_numpy(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'
'/kandinskyv22/kandinskyv22_inpaint_cat_with_hat_fp16.npy' )
_lowerCAmelCase : List[str] = load_image(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinsky/cat.png' )
_lowerCAmelCase : Dict = np.ones((768, 768) , dtype=np.floataa )
_lowerCAmelCase : Tuple = 0
_lowerCAmelCase : List[str] = 'a hat'
_lowerCAmelCase : Any = KandinskyVaaPriorPipeline.from_pretrained(
'kandinsky-community/kandinsky-2-2-prior' , torch_dtype=torch.floataa )
pipe_prior.to(snake_case__ )
_lowerCAmelCase : Union[str, Any] = KandinskyVaaInpaintPipeline.from_pretrained(
'kandinsky-community/kandinsky-2-2-decoder-inpaint' , torch_dtype=torch.floataa )
_lowerCAmelCase : Optional[Any] = pipeline.to(snake_case__ )
pipeline.set_progress_bar_config(disable=snake_case__ )
_lowerCAmelCase : Optional[Any] = torch.Generator(device='cpu' ).manual_seed(0 )
_lowerCAmelCase , _lowerCAmelCase : Dict = pipe_prior(
snake_case__ , generator=snake_case__ , num_inference_steps=5 , negative_prompt='' , ).to_tuple()
_lowerCAmelCase : Optional[Any] = pipeline(
image=snake_case__ , mask_image=snake_case__ , image_embeds=snake_case__ , negative_image_embeds=snake_case__ , generator=snake_case__ , num_inference_steps=100 , height=768 , width=768 , output_type='np' , )
_lowerCAmelCase : Union[str, Any] = output.images[0]
assert image.shape == (768, 768, 3)
assert_mean_pixel_difference(snake_case__ , snake_case__ )
| 25 | 1 |
def A ( _lowerCamelCase , _lowerCamelCase ):
'''simple docstring'''
return (pointa[0] - pointa[0]) ** 2 + (pointa[1] - pointa[1]) ** 2
def A ( _lowerCamelCase , _lowerCamelCase=0 ):
'''simple docstring'''
return sorted(_lowerCamelCase , key=lambda _lowerCamelCase : x[column] )
def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=float("inf" ) ):
'''simple docstring'''
for i in range(points_counts - 1 ):
for j in range(i + 1 , _lowerCamelCase ):
_lowerCAmelCase : int = euclidean_distance_sqr(points[i] , points[j] )
if current_dis < min_dis:
_lowerCAmelCase : List[str] = current_dis
return min_dis
def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=float("inf" ) ):
'''simple docstring'''
for i in range(min(6 , points_counts - 1 ) , _lowerCamelCase ):
for j in range(max(0 , i - 6 ) , _lowerCamelCase ):
_lowerCAmelCase : str = euclidean_distance_sqr(points[i] , points[j] )
if current_dis < min_dis:
_lowerCAmelCase : List[Any] = current_dis
return min_dis
def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ):
'''simple docstring'''
if points_counts <= 3:
return dis_between_closest_pair(_lowerCamelCase , _lowerCamelCase )
# recursion
_lowerCAmelCase : Any = points_counts // 2
_lowerCAmelCase : Dict = closest_pair_of_points_sqr(
_lowerCamelCase , points_sorted_on_y[:mid] , _lowerCamelCase )
_lowerCAmelCase : str = closest_pair_of_points_sqr(
_lowerCamelCase , points_sorted_on_y[mid:] , points_counts - mid )
_lowerCAmelCase : Union[str, Any] = min(_lowerCamelCase , _lowerCamelCase )
_lowerCAmelCase : str = []
for point in points_sorted_on_x:
if abs(point[0] - points_sorted_on_x[mid][0] ) < closest_pair_dis:
cross_strip.append(_lowerCamelCase )
_lowerCAmelCase : str = dis_between_closest_in_strip(
_lowerCamelCase , len(_lowerCamelCase ) , _lowerCamelCase )
return min(_lowerCamelCase , _lowerCamelCase )
def A ( _lowerCamelCase , _lowerCamelCase ):
'''simple docstring'''
_lowerCAmelCase : Any = column_based_sort(_lowerCamelCase , column=0 )
_lowerCAmelCase : Optional[int] = column_based_sort(_lowerCamelCase , column=1 )
return (
closest_pair_of_points_sqr(
_lowerCamelCase , _lowerCamelCase , _lowerCamelCase )
) ** 0.5
if __name__ == "__main__":
_snake_case = [(2, 3), (12, 30), (40, 50), (5, 1), (12, 10), (3, 4)]
print("Distance:", closest_pair_of_points(points, len(points)))
| 36 |
def A ( _lowerCamelCase , _lowerCamelCase ):
'''simple docstring'''
if density <= 0:
raise ValueError("Impossible fluid density" )
if bulk_modulus <= 0:
raise ValueError("Impossible bulk modulus" )
return (bulk_modulus / density) ** 0.5
if __name__ == "__main__":
import doctest
doctest.testmod()
| 36 | 1 |
'''simple docstring'''
import json
import os
from functools import lru_cache
from typing import List, Optional, Tuple
import regex as re
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...utils import logging
__lowercase: int = logging.get_logger(__name__)
__lowercase: int = {"vocab_file": "vocab.json", "merges_file": "merges.txt"}
# See all BART models at https://huggingface.co/models?filter=bart
__lowercase: Optional[int] = {
"vocab_file": {
"facebook/bart-base": "https://huggingface.co/facebook/bart-base/resolve/main/vocab.json",
"facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/vocab.json",
"facebook/bart-large-mnli": "https://huggingface.co/facebook/bart-large-mnli/resolve/main/vocab.json",
"facebook/bart-large-cnn": "https://huggingface.co/facebook/bart-large-cnn/resolve/main/vocab.json",
"facebook/bart-large-xsum": "https://huggingface.co/facebook/bart-large-xsum/resolve/main/vocab.json",
"yjernite/bart_eli5": "https://huggingface.co/yjernite/bart_eli5/resolve/main/vocab.json",
},
"merges_file": {
"facebook/bart-base": "https://huggingface.co/facebook/bart-base/resolve/main/merges.txt",
"facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/merges.txt",
"facebook/bart-large-mnli": "https://huggingface.co/facebook/bart-large-mnli/resolve/main/merges.txt",
"facebook/bart-large-cnn": "https://huggingface.co/facebook/bart-large-cnn/resolve/main/merges.txt",
"facebook/bart-large-xsum": "https://huggingface.co/facebook/bart-large-xsum/resolve/main/merges.txt",
"yjernite/bart_eli5": "https://huggingface.co/yjernite/bart_eli5/resolve/main/merges.txt",
},
}
__lowercase: Optional[Any] = {
"facebook/bart-base": 1_024,
"facebook/bart-large": 1_024,
"facebook/bart-large-mnli": 1_024,
"facebook/bart-large-cnn": 1_024,
"facebook/bart-large-xsum": 1_024,
"yjernite/bart_eli5": 1_024,
}
@lru_cache()
def SCREAMING_SNAKE_CASE__( ) -> Dict:
'''simple docstring'''
UpperCamelCase__ = (
list(range(ord("!" ) , ord("~" ) + 1 ) ) + list(range(ord("¡" ) , ord("¬" ) + 1 ) ) + list(range(ord("®" ) , ord("ÿ" ) + 1 ) )
)
UpperCamelCase__ = bs[:]
UpperCamelCase__ = 0
for b in range(2**8 ):
if b not in bs:
bs.append(_UpperCamelCase )
cs.append(2**8 + n )
n += 1
UpperCamelCase__ = [chr(_UpperCamelCase ) for n in cs]
return dict(zip(_UpperCamelCase , _UpperCamelCase ) )
def SCREAMING_SNAKE_CASE__( _UpperCamelCase : List[Any] ) -> int:
'''simple docstring'''
UpperCamelCase__ = set()
UpperCamelCase__ = word[0]
for char in word[1:]:
pairs.add((prev_char, char) )
UpperCamelCase__ = char
return pairs
class UpperCAmelCase ( SCREAMING_SNAKE_CASE__):
_lowerCamelCase : Optional[Any] = VOCAB_FILES_NAMES
_lowerCamelCase : str = PRETRAINED_VOCAB_FILES_MAP
_lowerCamelCase : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
_lowerCamelCase : List[str] = ['input_ids', 'attention_mask']
def __init__( self : Optional[int], a_ : int, a_ : List[str], a_ : Optional[int]="replace", a_ : int="<s>", a_ : List[Any]="</s>", a_ : List[Any]="</s>", a_ : Tuple="<s>", a_ : Tuple="<unk>", a_ : Any="<pad>", a_ : Optional[int]="<mask>", a_ : Any=False, **a_ : Optional[Any], ):
"""simple docstring"""
UpperCamelCase__ = AddedToken(a_, lstrip=a_, rstrip=a_ ) if isinstance(a_, a_ ) else bos_token
UpperCamelCase__ = AddedToken(a_, lstrip=a_, rstrip=a_ ) if isinstance(a_, a_ ) else eos_token
UpperCamelCase__ = AddedToken(a_, lstrip=a_, rstrip=a_ ) if isinstance(a_, a_ ) else sep_token
UpperCamelCase__ = AddedToken(a_, lstrip=a_, rstrip=a_ ) if isinstance(a_, a_ ) else cls_token
UpperCamelCase__ = AddedToken(a_, lstrip=a_, rstrip=a_ ) if isinstance(a_, a_ ) else unk_token
UpperCamelCase__ = AddedToken(a_, lstrip=a_, rstrip=a_ ) if isinstance(a_, a_ ) else pad_token
# Mask token behave like a normal word, i.e. include the space before it
UpperCamelCase__ = AddedToken(a_, lstrip=a_, rstrip=a_ ) if isinstance(a_, a_ ) else mask_token
super().__init__(
errors=a_, bos_token=a_, eos_token=a_, unk_token=a_, sep_token=a_, cls_token=a_, pad_token=a_, mask_token=a_, add_prefix_space=a_, **a_, )
with open(a_, encoding="utf-8" ) as vocab_handle:
UpperCamelCase__ = json.load(a_ )
UpperCamelCase__ = {v: k for k, v in self.encoder.items()}
UpperCamelCase__ = errors # how to handle errors in decoding
UpperCamelCase__ = bytes_to_unicode()
UpperCamelCase__ = {v: k for k, v in self.byte_encoder.items()}
with open(a_, encoding="utf-8" ) as merges_handle:
UpperCamelCase__ = merges_handle.read().split("\n" )[1:-1]
UpperCamelCase__ = [tuple(merge.split() ) for merge in bpe_merges]
UpperCamelCase__ = dict(zip(a_, range(len(a_ ) ) ) )
UpperCamelCase__ = {}
UpperCamelCase__ = add_prefix_space
# Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions
UpperCamelCase__ = re.compile(R"'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+" )
@property
def lowercase_ ( self : int ):
"""simple docstring"""
return len(self.encoder )
def lowercase_ ( self : List[str] ):
"""simple docstring"""
return dict(self.encoder, **self.added_tokens_encoder )
def lowercase_ ( self : List[Any], a_ : int ):
"""simple docstring"""
if token in self.cache:
return self.cache[token]
UpperCamelCase__ = tuple(a_ )
UpperCamelCase__ = get_pairs(a_ )
if not pairs:
return token
while True:
UpperCamelCase__ = min(a_, key=lambda a_ : self.bpe_ranks.get(a_, float("inf" ) ) )
if bigram not in self.bpe_ranks:
break
UpperCamelCase__ , UpperCamelCase__ = bigram
UpperCamelCase__ = []
UpperCamelCase__ = 0
while i < len(a_ ):
try:
UpperCamelCase__ = word.index(a_, a_ )
except ValueError:
new_word.extend(word[i:] )
break
else:
new_word.extend(word[i:j] )
UpperCamelCase__ = j
if word[i] == first and i < len(a_ ) - 1 and word[i + 1] == second:
new_word.append(first + second )
i += 2
else:
new_word.append(word[i] )
i += 1
UpperCamelCase__ = tuple(a_ )
UpperCamelCase__ = new_word
if len(a_ ) == 1:
break
else:
UpperCamelCase__ = get_pairs(a_ )
UpperCamelCase__ = " ".join(a_ )
UpperCamelCase__ = word
return word
def lowercase_ ( self : Any, a_ : List[str] ):
"""simple docstring"""
UpperCamelCase__ = []
for token in re.findall(self.pat, a_ ):
UpperCamelCase__ = "".join(
self.byte_encoder[b] for b in token.encode("utf-8" ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case)
bpe_tokens.extend(bpe_token for bpe_token in self.bpe(a_ ).split(" " ) )
return bpe_tokens
def lowercase_ ( self : Any, a_ : Optional[int] ):
"""simple docstring"""
return self.encoder.get(a_, self.encoder.get(self.unk_token ) )
def lowercase_ ( self : Optional[int], a_ : str ):
"""simple docstring"""
return self.decoder.get(a_ )
def lowercase_ ( self : List[str], a_ : List[str] ):
"""simple docstring"""
UpperCamelCase__ = "".join(a_ )
UpperCamelCase__ = bytearray([self.byte_decoder[c] for c in text] ).decode("utf-8", errors=self.errors )
return text
def lowercase_ ( self : Tuple, a_ : str, a_ : Optional[str] = None ):
"""simple docstring"""
if not os.path.isdir(a_ ):
logger.error(f'Vocabulary path ({save_directory}) should be a directory' )
return
UpperCamelCase__ = os.path.join(
a_, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] )
UpperCamelCase__ = os.path.join(
a_, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] )
with open(a_, "w", encoding="utf-8" ) as f:
f.write(json.dumps(self.encoder, indent=2, sort_keys=a_, ensure_ascii=a_ ) + "\n" )
UpperCamelCase__ = 0
with open(a_, "w", encoding="utf-8" ) as writer:
writer.write("#version: 0.2\n" )
for bpe_tokens, token_index in sorted(self.bpe_ranks.items(), key=lambda a_ : kv[1] ):
if index != token_index:
logger.warning(
f'Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.'
" Please check that the tokenizer is not corrupted!" )
UpperCamelCase__ = token_index
writer.write(" ".join(a_ ) + "\n" )
index += 1
return vocab_file, merge_file
def lowercase_ ( self : Optional[Any], a_ : List[int], a_ : Optional[List[int]] = None ):
"""simple docstring"""
if token_ids_a is None:
return [self.cls_token_id] + token_ids_a + [self.sep_token_id]
UpperCamelCase__ = [self.cls_token_id]
UpperCamelCase__ = [self.sep_token_id]
return cls + token_ids_a + sep + sep + token_ids_a + sep
def lowercase_ ( self : str, a_ : List[int], a_ : Optional[List[int]] = None, a_ : bool = False ):
"""simple docstring"""
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=a_, token_ids_a=a_, already_has_special_tokens=a_ )
if token_ids_a is None:
return [1] + ([0] * len(a_ )) + [1]
return [1] + ([0] * len(a_ )) + [1, 1] + ([0] * len(a_ )) + [1]
def lowercase_ ( self : Tuple, a_ : List[int], a_ : Optional[List[int]] = None ):
"""simple docstring"""
UpperCamelCase__ = [self.sep_token_id]
UpperCamelCase__ = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
def lowercase_ ( self : Tuple, a_ : Dict, a_ : str=False, **a_ : Optional[Any] ):
"""simple docstring"""
UpperCamelCase__ = kwargs.pop("add_prefix_space", self.add_prefix_space )
if (is_split_into_words or add_prefix_space) and (len(a_ ) > 0 and not text[0].isspace()):
UpperCamelCase__ = " " + text
return (text, kwargs) | 368 |
'''simple docstring'''
from __future__ import annotations
def SCREAMING_SNAKE_CASE__( _UpperCamelCase : float , _UpperCamelCase : float , _UpperCamelCase : float , ) -> tuple:
'''simple docstring'''
if (electron_conc, hole_conc, intrinsic_conc).count(0 ) != 1:
raise ValueError("You cannot supply more or less than 2 values" )
elif electron_conc < 0:
raise ValueError("Electron concentration cannot be negative in a semiconductor" )
elif hole_conc < 0:
raise ValueError("Hole concentration cannot be negative in a semiconductor" )
elif intrinsic_conc < 0:
raise ValueError(
"Intrinsic concentration cannot be negative in a semiconductor" )
elif electron_conc == 0:
return (
"electron_conc",
intrinsic_conc**2 / hole_conc,
)
elif hole_conc == 0:
return (
"hole_conc",
intrinsic_conc**2 / electron_conc,
)
elif intrinsic_conc == 0:
return (
"intrinsic_conc",
(electron_conc * hole_conc) ** 0.5,
)
else:
return (-1, -1)
if __name__ == "__main__":
import doctest
doctest.testmod() | 31 | 0 |
import argparse
import json
import os
import fairseq
import torch
from fairseq.data import Dictionary
from transformers import (
UniSpeechConfig,
UniSpeechForCTC,
UniSpeechForPreTraining,
WavaVecaFeatureExtractor,
WavaVecaPhonemeCTCTokenizer,
WavaVecaProcessor,
logging,
)
logging.set_verbosity_info()
__lowercase = logging.get_logger(__name__)
__lowercase = {
'''post_extract_proj''': '''feature_projection.projection''',
'''encoder.pos_conv.0''': '''encoder.pos_conv_embed.conv''',
'''self_attn.k_proj''': '''encoder.layers.*.attention.k_proj''',
'''self_attn.v_proj''': '''encoder.layers.*.attention.v_proj''',
'''self_attn.q_proj''': '''encoder.layers.*.attention.q_proj''',
'''self_attn.out_proj''': '''encoder.layers.*.attention.out_proj''',
'''self_attn_layer_norm''': '''encoder.layers.*.layer_norm''',
'''fc1''': '''encoder.layers.*.feed_forward.intermediate_dense''',
'''fc2''': '''encoder.layers.*.feed_forward.output_dense''',
'''final_layer_norm''': '''encoder.layers.*.final_layer_norm''',
'''encoder.layer_norm''': '''encoder.layer_norm''',
'''w2v_model.layer_norm''': '''feature_projection.layer_norm''',
'''quantizer.weight_proj''': '''quantizer.weight_proj''',
'''quantizer.vars''': '''quantizer.codevectors''',
'''project_q''': '''project_q''',
'''final_proj''': '''project_hid''',
'''w2v_encoder.proj''': '''ctc_proj''',
'''mask_emb''': '''masked_spec_embed''',
}
__lowercase = [
'''ctc_proj''',
'''quantizer.weight_proj''',
'''quantizer.codevectors''',
'''project_q''',
'''project_hid''',
]
def lowerCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ):
'''simple docstring'''
for attribute in key.split('''.''' ):
if is_finetuned:
if attribute in ["quantizer", "project_q", "project_hid"]:
# those layers are only relevant for pretraining and should be dropped
return
if attribute == "ctc_proj":
# we should rename `ctc_proj` to `lm_head` for fine-tuned phoneme models
__UpperCamelCase :str = '''lm_head'''
__UpperCamelCase :Any = getattr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
if weight_type is not None:
__UpperCamelCase :int = getattr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ).shape
else:
__UpperCamelCase :Any = hf_pointer.shape
assert hf_shape == value.shape, (
f"""Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be"""
f""" {value.shape} for {full_name}"""
)
if weight_type == "weight":
__UpperCamelCase :Optional[Any] = value
elif weight_type == "weight_g":
__UpperCamelCase :Any = value
elif weight_type == "weight_v":
__UpperCamelCase :Any = value
elif weight_type == "bias":
__UpperCamelCase :Any = value
else:
__UpperCamelCase :Optional[Any] = value
logger.info(f"""{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.""" )
def lowerCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ):
'''simple docstring'''
__UpperCamelCase :Any = []
__UpperCamelCase :Tuple = fairseq_model.state_dict()
__UpperCamelCase :Tuple = hf_model.unispeech.feature_extractor
for name, value in fairseq_dict.items():
__UpperCamelCase :Optional[Any] = False
if "conv_layers" in name:
load_conv_layer(
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , hf_model.config.feat_extract_norm == '''group''' , )
__UpperCamelCase :List[Any] = True
else:
for key, mapped_key in MAPPING.items():
__UpperCamelCase :Optional[int] = '''unispeech.''' + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key
if key in name or key.split('''w2v_model.''' )[-1] == name.split('''.''' )[0]:
__UpperCamelCase :Optional[int] = True
if "*" in mapped_key:
__UpperCamelCase :str = name.split(SCREAMING_SNAKE_CASE )[0].split('''.''' )[-2]
__UpperCamelCase :Tuple = mapped_key.replace('''*''' , SCREAMING_SNAKE_CASE )
if "weight_g" in name:
__UpperCamelCase :Union[str, Any] = '''weight_g'''
elif "weight_v" in name:
__UpperCamelCase :Optional[int] = '''weight_v'''
elif "bias" in name:
__UpperCamelCase :str = '''bias'''
elif "weight" in name:
# TODO: don't match quantizer.weight_proj
__UpperCamelCase :int = '''weight'''
else:
__UpperCamelCase :str = None
set_recursively(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
continue
if not is_used:
unused_weights.append(SCREAMING_SNAKE_CASE )
logger.warning(f"""Unused weights: {unused_weights}""" )
def lowerCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ):
'''simple docstring'''
__UpperCamelCase :Optional[int] = full_name.split('''conv_layers.''' )[-1]
__UpperCamelCase :Optional[int] = name.split('''.''' )
__UpperCamelCase :int = int(items[0] )
__UpperCamelCase :List[str] = int(items[1] )
if type_id == 0:
if "bias" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, (
f"""{full_name} has size {value.shape}, but"""
f""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found."""
)
__UpperCamelCase :Union[str, Any] = value
logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" )
elif "weight" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, (
f"""{full_name} has size {value.shape}, but"""
f""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found."""
)
__UpperCamelCase :int = value
logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" )
elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm):
if "bias" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, (
f"""{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was"""
" found."
)
__UpperCamelCase :str = value
logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" )
elif "weight" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, (
f"""{full_name} has size {value.shape}, but"""
f""" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found."""
)
__UpperCamelCase :List[str] = value
logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" )
else:
unused_weights.append(SCREAMING_SNAKE_CASE )
@torch.no_grad()
def lowerCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=True ):
'''simple docstring'''
if config_path is not None:
__UpperCamelCase :str = UniSpeechConfig.from_pretrained(SCREAMING_SNAKE_CASE )
else:
__UpperCamelCase :Optional[Any] = UniSpeechConfig()
if is_finetuned:
if dict_path:
__UpperCamelCase :Tuple = Dictionary.load_from_json(SCREAMING_SNAKE_CASE )
# important change bos & pad token id since CTC symbol is <pad> and
# not <s> as in fairseq
__UpperCamelCase :Tuple = target_dict.pad_index
__UpperCamelCase :Any = target_dict.bos_index
__UpperCamelCase :List[str] = target_dict.eos_index
__UpperCamelCase :int = len(target_dict.symbols )
__UpperCamelCase :Optional[Any] = os.path.join(SCREAMING_SNAKE_CASE , '''vocab.json''' )
if not os.path.isdir(SCREAMING_SNAKE_CASE ):
logger.error('''--pytorch_dump_folder_path ({}) should be a directory'''.format(SCREAMING_SNAKE_CASE ) )
return
os.makedirs(SCREAMING_SNAKE_CASE , exist_ok=SCREAMING_SNAKE_CASE )
__UpperCamelCase :List[str] = target_dict.indices
# fairseq has the <pad> and <s> switched
__UpperCamelCase :int = 42
__UpperCamelCase :str = 43
with open(SCREAMING_SNAKE_CASE , '''w''' , encoding='''utf-8''' ) as vocab_handle:
json.dump(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
__UpperCamelCase :Optional[int] = WavaVecaPhonemeCTCTokenizer(
SCREAMING_SNAKE_CASE , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token='''|''' , do_lower_case=SCREAMING_SNAKE_CASE , )
__UpperCamelCase :int = True if config.feat_extract_norm == '''layer''' else False
__UpperCamelCase :List[Any] = WavaVecaFeatureExtractor(
feature_size=1 , sampling_rate=16_000 , padding_value=0 , do_normalize=SCREAMING_SNAKE_CASE , return_attention_mask=SCREAMING_SNAKE_CASE , )
__UpperCamelCase :List[str] = WavaVecaProcessor(feature_extractor=SCREAMING_SNAKE_CASE , tokenizer=SCREAMING_SNAKE_CASE )
processor.save_pretrained(SCREAMING_SNAKE_CASE )
__UpperCamelCase :str = UniSpeechForCTC(SCREAMING_SNAKE_CASE )
else:
__UpperCamelCase :List[Any] = UniSpeechForPreTraining(SCREAMING_SNAKE_CASE )
if is_finetuned:
__UpperCamelCase , __UpperCamelCase , __UpperCamelCase :int = fairseq.checkpoint_utils.load_model_ensemble_and_task(
[checkpoint_path] , arg_overrides={'''data''': '''/'''.join(dict_path.split('''/''' )[:-1] ), '''w2v_path''': checkpoint_path} )
else:
__UpperCamelCase , __UpperCamelCase , __UpperCamelCase :Dict = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] )
__UpperCamelCase :Optional[int] = model[0].eval()
recursively_load_weights(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
hf_unispeech.save_pretrained(SCREAMING_SNAKE_CASE )
if __name__ == "__main__":
__lowercase = argparse.ArgumentParser()
parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''')
parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to fairseq checkpoint''')
parser.add_argument('''--dict_path''', default=None, type=str, help='''Path to dict of fine-tuned model''')
parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''')
parser.add_argument(
'''--not_finetuned''', action='''store_true''', help='''Whether the model to convert is a fine-tuned model or not'''
)
__lowercase = parser.parse_args()
convert_unispeech_checkpoint(
args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned
)
| 43 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available
UpperCamelCase_ = {
"""configuration_groupvit""": [
"""GROUPVIT_PRETRAINED_CONFIG_ARCHIVE_MAP""",
"""GroupViTConfig""",
"""GroupViTOnnxConfig""",
"""GroupViTTextConfig""",
"""GroupViTVisionConfig""",
],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCamelCase_ = [
"""GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""GroupViTModel""",
"""GroupViTPreTrainedModel""",
"""GroupViTTextModel""",
"""GroupViTVisionModel""",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCamelCase_ = [
"""TF_GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""TFGroupViTModel""",
"""TFGroupViTPreTrainedModel""",
"""TFGroupViTTextModel""",
"""TFGroupViTVisionModel""",
]
if TYPE_CHECKING:
from .configuration_groupvit import (
GROUPVIT_PRETRAINED_CONFIG_ARCHIVE_MAP,
GroupViTConfig,
GroupViTOnnxConfig,
GroupViTTextConfig,
GroupViTVisionConfig,
)
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_groupvit import (
GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST,
GroupViTModel,
GroupViTPreTrainedModel,
GroupViTTextModel,
GroupViTVisionModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_groupvit import (
TF_GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST,
TFGroupViTModel,
TFGroupViTPreTrainedModel,
TFGroupViTTextModel,
TFGroupViTVisionModel,
)
else:
import sys
UpperCamelCase_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 309 | 0 |
'''simple docstring'''
import tempfile
import torch
from diffusers import PNDMScheduler
from .test_schedulers import SchedulerCommonTest
class __UpperCamelCase ( __snake_case ):
lowercase : Optional[int] = (PNDMScheduler,)
lowercase : Optional[int] = (('num_inference_steps', 5_0),)
def a__ ( self :List[Any] ,**_UpperCamelCase :List[Any] ):
snake_case_ : Optional[Any] = {
"""num_train_timesteps""": 1_0_0_0,
"""beta_start""": 0.00_01,
"""beta_end""": 0.02,
"""beta_schedule""": """linear""",
}
config.update(**_UpperCamelCase )
return config
def a__ ( self :Optional[int] ,_UpperCamelCase :Any=0 ,**_UpperCamelCase :Any ):
snake_case_ : str = dict(self.forward_default_kwargs )
snake_case_ : str = kwargs.pop("""num_inference_steps""" ,_UpperCamelCase )
snake_case_ : List[Any] = self.dummy_sample
snake_case_ : Tuple = 0.1 * sample
snake_case_ : Optional[Any] = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05]
for scheduler_class in self.scheduler_classes:
snake_case_ : Optional[Any] = self.get_scheduler_config(**_UpperCamelCase )
snake_case_ : Tuple = scheduler_class(**_UpperCamelCase )
scheduler.set_timesteps(_UpperCamelCase )
# copy over dummy past residuals
snake_case_ : List[str] = dummy_past_residuals[:]
with tempfile.TemporaryDirectory() as tmpdirname:
scheduler.save_config(_UpperCamelCase )
snake_case_ : Optional[Any] = scheduler_class.from_pretrained(_UpperCamelCase )
new_scheduler.set_timesteps(_UpperCamelCase )
# copy over dummy past residuals
snake_case_ : int = dummy_past_residuals[:]
snake_case_ : Dict = scheduler.step_prk(_UpperCamelCase ,_UpperCamelCase ,_UpperCamelCase ,**_UpperCamelCase ).prev_sample
snake_case_ : int = new_scheduler.step_prk(_UpperCamelCase ,_UpperCamelCase ,_UpperCamelCase ,**_UpperCamelCase ).prev_sample
assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical"
snake_case_ : int = scheduler.step_plms(_UpperCamelCase ,_UpperCamelCase ,_UpperCamelCase ,**_UpperCamelCase ).prev_sample
snake_case_ : Dict = new_scheduler.step_plms(_UpperCamelCase ,_UpperCamelCase ,_UpperCamelCase ,**_UpperCamelCase ).prev_sample
assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical"
def a__ ( self :int ):
pass
def a__ ( self :Any ,_UpperCamelCase :List[str]=0 ,**_UpperCamelCase :Union[str, Any] ):
snake_case_ : Dict = dict(self.forward_default_kwargs )
snake_case_ : Any = kwargs.pop("""num_inference_steps""" ,_UpperCamelCase )
snake_case_ : List[str] = self.dummy_sample
snake_case_ : List[Any] = 0.1 * sample
snake_case_ : List[str] = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05]
for scheduler_class in self.scheduler_classes:
snake_case_ : Optional[int] = self.get_scheduler_config()
snake_case_ : Any = scheduler_class(**_UpperCamelCase )
scheduler.set_timesteps(_UpperCamelCase )
# copy over dummy past residuals (must be after setting timesteps)
snake_case_ : List[str] = dummy_past_residuals[:]
with tempfile.TemporaryDirectory() as tmpdirname:
scheduler.save_config(_UpperCamelCase )
snake_case_ : str = scheduler_class.from_pretrained(_UpperCamelCase )
# copy over dummy past residuals
new_scheduler.set_timesteps(_UpperCamelCase )
# copy over dummy past residual (must be after setting timesteps)
snake_case_ : Union[str, Any] = dummy_past_residuals[:]
snake_case_ : Optional[Any] = scheduler.step_prk(_UpperCamelCase ,_UpperCamelCase ,_UpperCamelCase ,**_UpperCamelCase ).prev_sample
snake_case_ : List[Any] = new_scheduler.step_prk(_UpperCamelCase ,_UpperCamelCase ,_UpperCamelCase ,**_UpperCamelCase ).prev_sample
assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical"
snake_case_ : str = scheduler.step_plms(_UpperCamelCase ,_UpperCamelCase ,_UpperCamelCase ,**_UpperCamelCase ).prev_sample
snake_case_ : int = new_scheduler.step_plms(_UpperCamelCase ,_UpperCamelCase ,_UpperCamelCase ,**_UpperCamelCase ).prev_sample
assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical"
def a__ ( self :List[Any] ,**_UpperCamelCase :Optional[Any] ):
snake_case_ : Dict = self.scheduler_classes[0]
snake_case_ : int = self.get_scheduler_config(**_UpperCamelCase )
snake_case_ : Union[str, Any] = scheduler_class(**_UpperCamelCase )
snake_case_ : Optional[int] = 1_0
snake_case_ : Optional[int] = self.dummy_model()
snake_case_ : Union[str, Any] = self.dummy_sample_deter
scheduler.set_timesteps(_UpperCamelCase )
for i, t in enumerate(scheduler.prk_timesteps ):
snake_case_ : int = model(_UpperCamelCase ,_UpperCamelCase )
snake_case_ : Union[str, Any] = scheduler.step_prk(_UpperCamelCase ,_UpperCamelCase ,_UpperCamelCase ).prev_sample
for i, t in enumerate(scheduler.plms_timesteps ):
snake_case_ : List[str] = model(_UpperCamelCase ,_UpperCamelCase )
snake_case_ : Any = scheduler.step_plms(_UpperCamelCase ,_UpperCamelCase ,_UpperCamelCase ).prev_sample
return sample
def a__ ( self :Optional[Any] ):
snake_case_ : Any = dict(self.forward_default_kwargs )
snake_case_ : Optional[int] = kwargs.pop("""num_inference_steps""" ,_UpperCamelCase )
for scheduler_class in self.scheduler_classes:
snake_case_ : List[Any] = self.get_scheduler_config()
snake_case_ : Optional[Any] = scheduler_class(**_UpperCamelCase )
snake_case_ : List[str] = self.dummy_sample
snake_case_ : Union[str, Any] = 0.1 * sample
if num_inference_steps is not None and hasattr(_UpperCamelCase ,"""set_timesteps""" ):
scheduler.set_timesteps(_UpperCamelCase )
elif num_inference_steps is not None and not hasattr(_UpperCamelCase ,"""set_timesteps""" ):
snake_case_ : int = num_inference_steps
# copy over dummy past residuals (must be done after set_timesteps)
snake_case_ : List[str] = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05]
snake_case_ : Tuple = dummy_past_residuals[:]
snake_case_ : Tuple = scheduler.step_prk(_UpperCamelCase ,0 ,_UpperCamelCase ,**_UpperCamelCase ).prev_sample
snake_case_ : int = scheduler.step_prk(_UpperCamelCase ,1 ,_UpperCamelCase ,**_UpperCamelCase ).prev_sample
self.assertEqual(output_a.shape ,sample.shape )
self.assertEqual(output_a.shape ,output_a.shape )
snake_case_ : str = scheduler.step_plms(_UpperCamelCase ,0 ,_UpperCamelCase ,**_UpperCamelCase ).prev_sample
snake_case_ : List[str] = scheduler.step_plms(_UpperCamelCase ,1 ,_UpperCamelCase ,**_UpperCamelCase ).prev_sample
self.assertEqual(output_a.shape ,sample.shape )
self.assertEqual(output_a.shape ,output_a.shape )
def a__ ( self :int ):
for timesteps in [1_0_0, 1_0_0_0]:
self.check_over_configs(num_train_timesteps=_UpperCamelCase )
def a__ ( self :Tuple ):
for steps_offset in [0, 1]:
self.check_over_configs(steps_offset=_UpperCamelCase )
snake_case_ : int = self.scheduler_classes[0]
snake_case_ : Tuple = self.get_scheduler_config(steps_offset=1 )
snake_case_ : Union[str, Any] = scheduler_class(**_UpperCamelCase )
scheduler.set_timesteps(1_0 )
assert torch.equal(
scheduler.timesteps ,torch.LongTensor(
[9_0_1, 8_5_1, 8_5_1, 8_0_1, 8_0_1, 7_5_1, 7_5_1, 7_0_1, 7_0_1, 6_5_1, 6_5_1, 6_0_1, 6_0_1, 5_0_1, 4_0_1, 3_0_1, 2_0_1, 1_0_1, 1] ) ,)
def a__ ( self :Dict ):
for beta_start, beta_end in zip([0.00_01, 0.0_01] ,[0.0_02, 0.02] ):
self.check_over_configs(beta_start=_UpperCamelCase ,beta_end=_UpperCamelCase )
def a__ ( self :List[str] ):
for schedule in ["linear", "squaredcos_cap_v2"]:
self.check_over_configs(beta_schedule=_UpperCamelCase )
def a__ ( self :Optional[int] ):
for prediction_type in ["epsilon", "v_prediction"]:
self.check_over_configs(prediction_type=_UpperCamelCase )
def a__ ( self :Tuple ):
for t in [1, 5, 1_0]:
self.check_over_forward(time_step=_UpperCamelCase )
def a__ ( self :Any ):
for t, num_inference_steps in zip([1, 5, 1_0] ,[1_0, 5_0, 1_0_0] ):
self.check_over_forward(num_inference_steps=_UpperCamelCase )
def a__ ( self :Union[str, Any] ):
# earlier version of set_timesteps() caused an error indexing alpha's with inference steps as power of 3
snake_case_ : int = 2_7
for scheduler_class in self.scheduler_classes:
snake_case_ : Optional[Any] = self.dummy_sample
snake_case_ : Tuple = 0.1 * sample
snake_case_ : Tuple = self.get_scheduler_config()
snake_case_ : Optional[Any] = scheduler_class(**_UpperCamelCase )
scheduler.set_timesteps(_UpperCamelCase )
# before power of 3 fix, would error on first step, so we only need to do two
for i, t in enumerate(scheduler.prk_timesteps[:2] ):
snake_case_ : Optional[Any] = scheduler.step_prk(_UpperCamelCase ,_UpperCamelCase ,_UpperCamelCase ).prev_sample
def a__ ( self :Union[str, Any] ):
with self.assertRaises(_UpperCamelCase ):
snake_case_ : Dict = self.scheduler_classes[0]
snake_case_ : str = self.get_scheduler_config()
snake_case_ : Any = scheduler_class(**_UpperCamelCase )
scheduler.step_plms(self.dummy_sample ,1 ,self.dummy_sample ).prev_sample
def a__ ( self :List[str] ):
snake_case_ : Any = self.full_loop()
snake_case_ : Tuple = torch.sum(torch.abs(_UpperCamelCase ) )
snake_case_ : Dict = torch.mean(torch.abs(_UpperCamelCase ) )
assert abs(result_sum.item() - 1_98.13_18 ) < 1E-2
assert abs(result_mean.item() - 0.25_80 ) < 1E-3
def a__ ( self :List[Any] ):
snake_case_ : Tuple = self.full_loop(prediction_type="""v_prediction""" )
snake_case_ : Tuple = torch.sum(torch.abs(_UpperCamelCase ) )
snake_case_ : Optional[int] = torch.mean(torch.abs(_UpperCamelCase ) )
assert abs(result_sum.item() - 67.39_86 ) < 1E-2
assert abs(result_mean.item() - 0.08_78 ) < 1E-3
def a__ ( self :List[str] ):
# We specify different beta, so that the first alpha is 0.99
snake_case_ : Tuple = self.full_loop(set_alpha_to_one=_UpperCamelCase ,beta_start=0.01 )
snake_case_ : Optional[Any] = torch.sum(torch.abs(_UpperCamelCase ) )
snake_case_ : Tuple = torch.mean(torch.abs(_UpperCamelCase ) )
assert abs(result_sum.item() - 2_30.03_99 ) < 1E-2
assert abs(result_mean.item() - 0.29_95 ) < 1E-3
def a__ ( self :str ):
# We specify different beta, so that the first alpha is 0.99
snake_case_ : Tuple = self.full_loop(set_alpha_to_one=_UpperCamelCase ,beta_start=0.01 )
snake_case_ : Union[str, Any] = torch.sum(torch.abs(_UpperCamelCase ) )
snake_case_ : List[Any] = torch.mean(torch.abs(_UpperCamelCase ) )
assert abs(result_sum.item() - 1_86.94_82 ) < 1E-2
assert abs(result_mean.item() - 0.24_34 ) < 1E-3 | 361 |
'''simple docstring'''
from typing import List, Optional
from tokenizers import ByteLevelBPETokenizer
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
from .tokenization_blenderbot_small import BlenderbotSmallTokenizer
__A : Tuple = logging.get_logger(__name__)
__A : List[Any] = {
'vocab_file': 'vocab.json',
'merges_file': 'merges.txt',
'tokenizer_config_file': 'tokenizer_config.json',
}
__A : str = {
'vocab_file': {
'facebook/blenderbot_small-90M': 'https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/vocab.json'
},
'merges_file': {
'facebook/blenderbot_small-90M': 'https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/merges.txt'
},
'tokenizer_config_file': {
'facebook/blenderbot_small-90M': (
'https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/tokenizer_config.json'
)
},
}
__A : Optional[Any] = {
'facebook/blenderbot_small-90M': 512,
}
class __UpperCamelCase ( lowercase__ ):
lowercase : str = VOCAB_FILES_NAMES
lowercase : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP
lowercase : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
lowercase : Dict = BlenderbotSmallTokenizer
def __init__( self :str ,_UpperCamelCase :Optional[int]=None ,_UpperCamelCase :Union[str, Any]=None ,_UpperCamelCase :Tuple="<|endoftext|>" ,_UpperCamelCase :int="<|endoftext|>" ,_UpperCamelCase :Dict="<|endoftext|>" ,_UpperCamelCase :Optional[Any]=False ,_UpperCamelCase :List[Any]=True ,**_UpperCamelCase :Any ,):
super().__init__(
ByteLevelBPETokenizer(
vocab=_UpperCamelCase ,merges=_UpperCamelCase ,add_prefix_space=_UpperCamelCase ,trim_offsets=_UpperCamelCase ,) ,bos_token=_UpperCamelCase ,eos_token=_UpperCamelCase ,unk_token=_UpperCamelCase ,**_UpperCamelCase ,)
snake_case_ : Any = add_prefix_space
def a__ ( self :Optional[Any] ,_UpperCamelCase :int ,_UpperCamelCase :Optional[Any]=None ):
snake_case_ : List[Any] = [self.bos_token_id] + token_ids_a + [self.eos_token_id]
if token_ids_a is None:
return output
return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id]
def a__ ( self :int ,_UpperCamelCase :List[int] ,_UpperCamelCase :Optional[List[int]] = None ):
snake_case_ : int = [self.sep_token_id]
snake_case_ : Tuple = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] | 8 | 0 |
"""simple docstring"""
from __future__ import annotations
lowercase_ = 1.6_021e-19 # units = C
def lowercase ( lowerCAmelCase__ : float , lowerCAmelCase__ : float , lowerCAmelCase__ : float , ) -> tuple[str, float]:
if (conductivity, electron_conc, mobility).count(0 ) != 1:
raise ValueError('''You cannot supply more or less than 2 values''' )
elif conductivity < 0:
raise ValueError('''Conductivity cannot be negative''' )
elif electron_conc < 0:
raise ValueError('''Electron concentration cannot be negative''' )
elif mobility < 0:
raise ValueError('''mobility cannot be negative''' )
elif conductivity == 0:
return (
"conductivity",
mobility * electron_conc * ELECTRON_CHARGE,
)
elif electron_conc == 0:
return (
"electron_conc",
conductivity / (mobility * ELECTRON_CHARGE),
)
else:
return (
"mobility",
conductivity / (electron_conc * ELECTRON_CHARGE),
)
if __name__ == "__main__":
import doctest
doctest.testmod()
| 45 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_sentencepiece_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
lowercase_ = {"configuration_xglm": ["XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP", "XGLMConfig"]}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowercase_ = ["XGLMTokenizer"]
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowercase_ = ["XGLMTokenizerFast"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowercase_ = [
"XGLM_PRETRAINED_MODEL_ARCHIVE_LIST",
"XGLMForCausalLM",
"XGLMModel",
"XGLMPreTrainedModel",
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowercase_ = [
"FlaxXGLMForCausalLM",
"FlaxXGLMModel",
"FlaxXGLMPreTrainedModel",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowercase_ = [
"TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST",
"TFXGLMForCausalLM",
"TFXGLMModel",
"TFXGLMPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_xglm import XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XGLMConfig
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_xglm import XGLMTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_xglm_fast import XGLMTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_xglm import XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, XGLMForCausalLM, XGLMModel, XGLMPreTrainedModel
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_xglm import FlaxXGLMForCausalLM, FlaxXGLMModel, FlaxXGLMPreTrainedModel
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_xglm import (
TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST,
TFXGLMForCausalLM,
TFXGLMModel,
TFXGLMPreTrainedModel,
)
else:
import sys
lowercase_ = _LazyModule(__name__, globals()["__file__"], _import_structure)
| 45 | 1 |
"""simple docstring"""
import gzip
import hashlib
import json
import multiprocessing
import os
import re
import shutil
import time
from pathlib import Path
import numpy as np
from arguments import PreprocessingArguments
from datasets import load_dataset
from minhash_deduplication import deduplicate_dataset
from transformers import AutoTokenizer, HfArgumentParser
lowercase__ = re.compile(r'\s+')
def __a ( _SCREAMING_SNAKE_CASE ) ->str:
return {"hash": hashlib.mda(re.sub(_SCREAMING_SNAKE_CASE , '' , example['content'] ).encode('utf-8' ) ).hexdigest()}
def __a ( _SCREAMING_SNAKE_CASE ) ->Dict:
a__: Dict = [len(_SCREAMING_SNAKE_CASE ) for line in example['content'].splitlines()]
return {"line_mean": np.mean(_SCREAMING_SNAKE_CASE ), "line_max": max(_SCREAMING_SNAKE_CASE )}
def __a ( _SCREAMING_SNAKE_CASE ) ->Any:
a__: List[Any] = np.mean([c.isalnum() for c in example['content']] )
return {"alpha_frac": alpha_frac}
def __a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ->Union[str, Any]:
if example["hash"] in uniques:
uniques.remove(example['hash'] )
return True
else:
return False
def __a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=5 ) ->Union[str, Any]:
a__: Optional[Any] = ['auto-generated', 'autogenerated', 'automatically generated']
a__: List[Any] = example['content'].splitlines()
for _, line in zip(range(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ):
for keyword in keywords:
if keyword in line.lower():
return {"autogenerated": True}
else:
return {"autogenerated": False}
def __a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=5 , _SCREAMING_SNAKE_CASE=0.05 ) ->Union[str, Any]:
a__: Optional[int] = ['unit tests', 'test file', 'configuration file']
a__: Optional[Any] = example['content'].splitlines()
a__: Any = 0
a__: Optional[Any] = 0
# first test
for _, line in zip(range(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ):
for keyword in keywords:
if keyword in line.lower():
return {"config_or_test": True}
# second test
a__: List[Any] = example['content'].count('\n' )
a__: List[Any] = int(coeff * nlines )
for line in lines:
count_config += line.lower().count('config' )
count_test += line.lower().count('test' )
if count_config > threshold or count_test > threshold:
return {"config_or_test": True}
return {"config_or_test": False}
def __a ( _SCREAMING_SNAKE_CASE ) ->Dict:
a__: Optional[Any] = ['def ', 'class ', 'for ', 'while ']
a__: str = example['content'].splitlines()
for line in lines:
for keyword in keywords:
if keyword in line.lower():
return {"has_no_keywords": False}
return {"has_no_keywords": True}
def __a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=4 ) ->Union[str, Any]:
a__: str = example['content'].splitlines()
a__: List[str] = 0
for line in lines:
counter += line.lower().count('=' )
if counter > minimum:
return {"has_few_assignments": False}
return {"has_few_assignments": True}
def __a ( _SCREAMING_SNAKE_CASE ) ->str:
a__: Optional[Any] = tokenizer(example['content'] , truncation=_SCREAMING_SNAKE_CASE )['input_ids']
a__: List[str] = len(example['content'] ) / len(_SCREAMING_SNAKE_CASE )
return {"ratio": ratio}
def __a ( _SCREAMING_SNAKE_CASE ) ->str:
a__: int = {}
results.update(get_hash(_SCREAMING_SNAKE_CASE ) )
results.update(line_stats(_SCREAMING_SNAKE_CASE ) )
results.update(alpha_stats(_SCREAMING_SNAKE_CASE ) )
results.update(char_token_ratio(_SCREAMING_SNAKE_CASE ) )
results.update(is_autogenerated(_SCREAMING_SNAKE_CASE ) )
results.update(is_config_or_test(_SCREAMING_SNAKE_CASE ) )
results.update(has_no_keywords(_SCREAMING_SNAKE_CASE ) )
results.update(has_few_assignments(_SCREAMING_SNAKE_CASE ) )
return results
def __a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ->Union[str, Any]:
if not check_uniques(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
return False
elif example["autogenerated"]:
return False
elif example["line_max"] > args.line_max:
return False
elif example["line_mean"] > args.line_mean:
return False
elif example["alpha_frac"] < args.alpha_frac:
return False
elif example["ratio"] < args.min_token_ratio:
return False
elif example["config_or_test"] and np.random.rand() <= args.filter_proba:
return False
elif example["has_no_keywords"] and np.random.rand() <= args.filter_proba:
return False
elif example["has_few_assignments"]:
return False
else:
return True
def __a ( _SCREAMING_SNAKE_CASE ) ->Tuple:
with open(_SCREAMING_SNAKE_CASE , 'rb' ) as f_in:
with gzip.open(str(_SCREAMING_SNAKE_CASE ) + '.gz' , 'wb' , compresslevel=6 ) as f_out:
shutil.copyfileobj(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
os.unlink(_SCREAMING_SNAKE_CASE )
# Settings
lowercase__ = HfArgumentParser(PreprocessingArguments)
lowercase__ = parser.parse_args()
if args.num_workers is None:
lowercase__ = multiprocessing.cpu_count()
lowercase__ = AutoTokenizer.from_pretrained(args.tokenizer_dir)
# Load dataset
lowercase__ = time.time()
lowercase__ = load_dataset(args.dataset_name, split='train')
print(f"Time to load dataset: {time.time()-t_start:.2f}")
# Run preprocessing
lowercase__ = time.time()
lowercase__ = ds.map(preprocess, num_proc=args.num_workers)
print(f"Time to preprocess dataset: {time.time()-t_start:.2f}")
# Deduplicate hashes
lowercase__ = set(ds.unique('hash'))
lowercase__ = len(uniques) / len(ds)
print(f"Fraction of duplicates: {1-frac:.2%}")
# Deduplicate data and apply heuristics
lowercase__ = time.time()
lowercase__ = ds.filter(filter, fn_kwargs={'uniques': uniques, 'args': args})
print(f"Time to filter dataset: {time.time()-t_start:.2f}")
print(f"Size of filtered dataset: {len(ds_filter)}")
# Deduplicate with minhash and jaccard similarity
if args.near_deduplication:
lowercase__ = time.time()
lowercase__ , lowercase__ = deduplicate_dataset(ds_filter, args.jaccard_threshold)
print(f"Time to deduplicate dataset: {time.time()-t_start:.2f}")
print(f"Size of deduplicate dataset: {len(ds_filter)}")
# Save data in batches of samples_per_file
lowercase__ = Path(args.output_dir)
output_dir.mkdir(exist_ok=True)
# save duplicate_clusters in the output_dir as artifacts
# not sure it is the right place the save it
if args.near_deduplication:
with open(output_dir / 'duplicate_clusters.json', 'w') as f:
json.dump(duplicate_clusters, f)
lowercase__ = output_dir / 'data'
data_dir.mkdir(exist_ok=True)
lowercase__ = time.time()
for file_number, index in enumerate(range(0, len(ds_filter), args.samples_per_file)):
lowercase__ = str(data_dir / f"file-{file_number+1:012}.json")
lowercase__ = min(len(ds_filter), index + args.samples_per_file)
ds_filter.select(list(range(index, end_index))).to_json(file_path)
compress_file(file_path)
print(f"Time to save dataset: {time.time()-t_start:.2f}")
| 203 | """simple docstring"""
from __future__ import annotations
class __snake_case :
def __init__( self , lowercase=None) -> Optional[Any]:
'''simple docstring'''
a__: int = data
a__: str = None
def __repr__( self) -> List[str]:
'''simple docstring'''
a__: Optional[Any] = []
a__: Union[str, Any] = self
while temp:
string_rep.append(f'{temp.data}')
a__: Tuple = temp.next
return "->".join(lowercase)
def __a ( _SCREAMING_SNAKE_CASE ) ->str:
if not elements_list:
raise Exception('The Elements List is empty' )
a__: Any = Node(elements_list[0] )
for i in range(1 , len(_SCREAMING_SNAKE_CASE ) ):
a__: Optional[Any] = Node(elements_list[i] )
a__: Tuple = current.next
return head
def __a ( _SCREAMING_SNAKE_CASE ) ->None:
if head_node is not None and isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
print_reverse(head_node.next )
print(head_node.data )
def __a ( ) ->Optional[Any]:
from doctest import testmod
testmod()
a__: Tuple = make_linked_list([14, 52, 14, 12, 43] )
print('Linked List:' )
print(_SCREAMING_SNAKE_CASE )
print('Elements in Reverse:' )
print_reverse(_SCREAMING_SNAKE_CASE )
if __name__ == "__main__":
main()
| 203 | 1 |
from datetime import datetime as dt
import os
from github import Github
_a = [
"good first issue",
"good second issue",
"good difficult issue",
"feature request",
"new model",
"wip",
]
def lowerCAmelCase__() -> List[Any]:
'''simple docstring'''
lowerCamelCase__ = Github(os.environ['''GITHUB_TOKEN'''] )
lowerCamelCase__ = g.get_repo('''huggingface/transformers''' )
lowerCamelCase__ = repo.get_issues(state='''open''' )
for issue in open_issues:
lowerCamelCase__ = sorted([comment for comment in issue.get_comments()] ,key=lambda __snake_case : i.created_at ,reverse=__snake_case )
lowerCamelCase__ = comments[0] if len(__snake_case ) > 0 else None
if (
last_comment is not None
and last_comment.user.login == "github-actions[bot]"
and (dt.utcnow() - issue.updated_at).days > 7
and (dt.utcnow() - issue.created_at).days >= 30
and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() )
):
# print(f"Would close issue {issue.number} since it has been 7 days of inactivity since bot mention.")
issue.edit(state='''closed''' )
elif (
(dt.utcnow() - issue.updated_at).days > 23
and (dt.utcnow() - issue.created_at).days >= 30
and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() )
):
# print(f"Would add stale comment to {issue.number}")
issue.create_comment(
'''This issue has been automatically marked as stale because it has not had '''
'''recent activity. If you think this still needs to be addressed '''
'''please comment on this thread.\n\nPlease note that issues that do not follow the '''
'''[contributing guidelines](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md) '''
'''are likely to be ignored.''' )
if __name__ == "__main__":
main()
| 209 |
import os
from shutil import copyfile
from typing import List, Optional, Tuple
from ...tokenization_utils import AddedToken
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import is_sentencepiece_available, logging
if is_sentencepiece_available():
from .tokenization_xlnet import XLNetTokenizer
else:
_a = None
_a = logging.get_logger(__name__)
_a = {"vocab_file": "spiece.model", "tokenizer_file": "tokenizer.json"}
_a = {
"vocab_file": {
"xlnet-base-cased": "https://huggingface.co/xlnet-base-cased/resolve/main/spiece.model",
"xlnet-large-cased": "https://huggingface.co/xlnet-large-cased/resolve/main/spiece.model",
},
"tokenizer_file": {
"xlnet-base-cased": "https://huggingface.co/xlnet-base-cased/resolve/main/tokenizer.json",
"xlnet-large-cased": "https://huggingface.co/xlnet-large-cased/resolve/main/tokenizer.json",
},
}
_a = {
"xlnet-base-cased": None,
"xlnet-large-cased": None,
}
_a = "▁"
# Segments (not really needed)
_a = 0
_a = 1
_a = 2
_a = 3
_a = 4
class __A ( lowerCAmelCase ):
'''simple docstring'''
lowerCAmelCase_ = VOCAB_FILES_NAMES
lowerCAmelCase_ = PRETRAINED_VOCAB_FILES_MAP
lowerCAmelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
lowerCAmelCase_ = """left"""
lowerCAmelCase_ = XLNetTokenizer
def __init__( self , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase=False , __lowerCAmelCase=True , __lowerCAmelCase=False , __lowerCAmelCase="<s>" , __lowerCAmelCase="</s>" , __lowerCAmelCase="<unk>" , __lowerCAmelCase="<sep>" , __lowerCAmelCase="<pad>" , __lowerCAmelCase="<cls>" , __lowerCAmelCase="<mask>" , __lowerCAmelCase=["<eop>", "<eod>"] , **__lowerCAmelCase , ):
'''simple docstring'''
lowerCamelCase__ = AddedToken(__lowerCAmelCase , lstrip=__lowerCAmelCase , rstrip=__lowerCAmelCase ) if isinstance(__lowerCAmelCase , __lowerCAmelCase ) else mask_token
super().__init__(
vocab_file=__lowerCAmelCase , tokenizer_file=__lowerCAmelCase , do_lower_case=__lowerCAmelCase , remove_space=__lowerCAmelCase , keep_accents=__lowerCAmelCase , bos_token=__lowerCAmelCase , eos_token=__lowerCAmelCase , unk_token=__lowerCAmelCase , sep_token=__lowerCAmelCase , pad_token=__lowerCAmelCase , cls_token=__lowerCAmelCase , mask_token=__lowerCAmelCase , additional_special_tokens=__lowerCAmelCase , **__lowerCAmelCase , )
lowerCamelCase__ = 3
lowerCamelCase__ = do_lower_case
lowerCamelCase__ = remove_space
lowerCamelCase__ = keep_accents
lowerCamelCase__ = vocab_file
lowerCamelCase__ = False if not self.vocab_file else True
def __lowerCamelCase ( self , __lowerCAmelCase , __lowerCAmelCase = None ):
'''simple docstring'''
lowerCamelCase__ = [self.sep_token_id]
lowerCamelCase__ = [self.cls_token_id]
if token_ids_a is None:
return token_ids_a + sep + cls
return token_ids_a + sep + token_ids_a + sep + cls
def __lowerCamelCase ( self , __lowerCAmelCase , __lowerCAmelCase = None ):
'''simple docstring'''
lowerCamelCase__ = [self.sep_token_id]
lowerCamelCase__ = [2]
if token_ids_a is None:
return len(token_ids_a + sep ) * [0] + cls_segment_id
return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id
def __lowerCamelCase ( self , __lowerCAmelCase , __lowerCAmelCase = None ):
'''simple docstring'''
if not self.can_save_slow_tokenizer:
raise ValueError(
'''Your fast tokenizer does not have the necessary information to save the vocabulary for a slow '''
'''tokenizer.''' )
if not os.path.isdir(__lowerCAmelCase ):
logger.error(F'Vocabulary path ({save_directory}) should be a directory' )
return
lowerCamelCase__ = os.path.join(
__lowerCAmelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(__lowerCAmelCase ):
copyfile(self.vocab_file , __lowerCAmelCase )
return (out_vocab_file,)
| 209 | 1 |
import argparse
from collections import defaultdict
def _a ( lowerCamelCase: Union[str, Any] , lowerCamelCase: Tuple , lowerCamelCase: Union[str, Any] , lowerCamelCase: Optional[Any] , lowerCamelCase: Any ) -> Any:
'''simple docstring'''
__A = F"""{file}_{class_name}_{test_name}"""
done_test[_id] += 1
with open(_snake_case , '''r''' ) as f:
__A = f.readlines()
__A = F"""class {class_name}("""
__A = F"""{4 * ' '}def {test_name}("""
__A = F"""{8 * ' '}{correct_line.split()[0]}"""
__A = F"""{16 * ' '}{correct_line.split()[0]}"""
__A = False
__A = False
__A = False
__A = False
__A = 0
__A = 0
__A = []
for line in lines:
if line.startswith(_snake_case ):
__A = True
elif in_class and line.startswith(_snake_case ):
__A = True
elif in_class and in_func and (line.startswith(_snake_case ) or line.startswith(_snake_case )):
__A = len(line.split(correct_line.split()[0] )[0] )
count += 1
if count == done_test[_id]:
__A = True
if in_class and in_func and in_line:
if ")" not in line:
continue
else:
__A = True
if in_class and in_func and in_line and insert_line:
new_lines.append(F"""{spaces * ' '}{correct_line}""" )
__A = False
else:
new_lines.append(_snake_case )
with open(_snake_case , '''w''' ) as f:
for line in new_lines:
f.write(_snake_case )
def _a ( lowerCamelCase: Dict , lowerCamelCase: Any=None ) -> List[Any]:
'''simple docstring'''
if fail is not None:
with open(_snake_case , '''r''' ) as f:
__A = {l.strip() for l in f.readlines()}
else:
__A = None
with open(_snake_case , '''r''' ) as f:
__A = f.readlines()
__A = defaultdict(_snake_case )
for line in correct_lines:
__A = line.split(''';''' )
if test_failures is None or "::".join([file, class_name, test_name] ) in test_failures:
overwrite_file(_snake_case , _snake_case , _snake_case , _snake_case , _snake_case )
if __name__ == "__main__":
snake_case__ = argparse.ArgumentParser()
parser.add_argument('--correct_filename', help='filename of tests with expected result')
parser.add_argument('--fail_filename', help='filename of test failures', type=str, default=None)
snake_case__ = parser.parse_args()
main(args.correct_filename, args.fail_filename)
| 352 |
import argparse
import requests
import torch
from PIL import Image
from torchvision.transforms import Compose, Normalize, Resize, ToTensor
from transformers import SwinaSRConfig, SwinaSRForImageSuperResolution, SwinaSRImageProcessor
def _a ( lowerCamelCase: List[str] ) -> Tuple:
'''simple docstring'''
__A = SwinaSRConfig()
if "Swin2SR_ClassicalSR_X4_64" in checkpoint_url:
__A = 4
elif "Swin2SR_CompressedSR_X4_48" in checkpoint_url:
__A = 4
__A = 48
__A = '''pixelshuffle_aux'''
elif "Swin2SR_Lightweight_X2_64" in checkpoint_url:
__A = [6, 6, 6, 6]
__A = 60
__A = [6, 6, 6, 6]
__A = '''pixelshuffledirect'''
elif "Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR" in checkpoint_url:
__A = 4
__A = '''nearest+conv'''
elif "Swin2SR_Jpeg_dynamic" in checkpoint_url:
__A = 1
__A = 1
__A = 1_26
__A = 7
__A = 255.0
__A = ''''''
return config
def _a ( lowerCamelCase: List[Any] , lowerCamelCase: Optional[int] ) -> Optional[int]:
'''simple docstring'''
if "patch_embed.proj" in name and "layers" not in name:
__A = name.replace('''patch_embed.proj''' , '''embeddings.patch_embeddings.projection''' )
if "patch_embed.norm" in name:
__A = name.replace('''patch_embed.norm''' , '''embeddings.patch_embeddings.layernorm''' )
if "layers" in name:
__A = name.replace('''layers''' , '''encoder.stages''' )
if "residual_group.blocks" in name:
__A = name.replace('''residual_group.blocks''' , '''layers''' )
if "attn.proj" in name:
__A = name.replace('''attn.proj''' , '''attention.output.dense''' )
if "attn" in name:
__A = name.replace('''attn''' , '''attention.self''' )
if "norm1" in name:
__A = name.replace('''norm1''' , '''layernorm_before''' )
if "norm2" in name:
__A = name.replace('''norm2''' , '''layernorm_after''' )
if "mlp.fc1" in name:
__A = name.replace('''mlp.fc1''' , '''intermediate.dense''' )
if "mlp.fc2" in name:
__A = name.replace('''mlp.fc2''' , '''output.dense''' )
if "q_bias" in name:
__A = name.replace('''q_bias''' , '''query.bias''' )
if "k_bias" in name:
__A = name.replace('''k_bias''' , '''key.bias''' )
if "v_bias" in name:
__A = name.replace('''v_bias''' , '''value.bias''' )
if "cpb_mlp" in name:
__A = name.replace('''cpb_mlp''' , '''continuous_position_bias_mlp''' )
if "patch_embed.proj" in name:
__A = name.replace('''patch_embed.proj''' , '''patch_embed.projection''' )
if name == "norm.weight":
__A = '''layernorm.weight'''
if name == "norm.bias":
__A = '''layernorm.bias'''
if "conv_first" in name:
__A = name.replace('''conv_first''' , '''first_convolution''' )
if (
"upsample" in name
or "conv_before_upsample" in name
or "conv_bicubic" in name
or "conv_up" in name
or "conv_hr" in name
or "conv_last" in name
or "aux" in name
):
# heads
if "conv_last" in name:
__A = name.replace('''conv_last''' , '''final_convolution''' )
if config.upsampler in ["pixelshuffle", "pixelshuffle_aux", "nearest+conv"]:
if "conv_before_upsample.0" in name:
__A = name.replace('''conv_before_upsample.0''' , '''conv_before_upsample''' )
if "upsample.0" in name:
__A = name.replace('''upsample.0''' , '''upsample.convolution_0''' )
if "upsample.2" in name:
__A = name.replace('''upsample.2''' , '''upsample.convolution_1''' )
__A = '''upsample.''' + name
elif config.upsampler == "pixelshuffledirect":
__A = name.replace('''upsample.0.weight''' , '''upsample.conv.weight''' )
__A = name.replace('''upsample.0.bias''' , '''upsample.conv.bias''' )
else:
pass
else:
__A = '''swin2sr.''' + name
return name
def _a ( lowerCamelCase: int , lowerCamelCase: Union[str, Any] ) -> Union[str, Any]:
'''simple docstring'''
for key in orig_state_dict.copy().keys():
__A = orig_state_dict.pop(lowerCamelCase )
if "qkv" in key:
__A = key.split('''.''' )
__A = int(key_split[1] )
__A = int(key_split[4] )
__A = config.embed_dim
if "weight" in key:
__A = val[:dim, :]
__A = val[dim : dim * 2, :]
__A = val[-dim:, :]
else:
__A = val[:dim]
__A = val[dim : dim * 2]
__A = val[-dim:]
pass
else:
__A = val
return orig_state_dict
def _a ( lowerCamelCase: List[Any] , lowerCamelCase: int , lowerCamelCase: Optional[int] ) -> List[Any]:
'''simple docstring'''
__A = get_config(lowerCamelCase )
__A = SwinaSRForImageSuperResolution(lowerCamelCase )
model.eval()
__A = torch.hub.load_state_dict_from_url(lowerCamelCase , map_location='''cpu''' )
__A = convert_state_dict(lowerCamelCase , lowerCamelCase )
__A , __A = model.load_state_dict(lowerCamelCase , strict=lowerCamelCase )
if len(lowerCamelCase ) > 0:
raise ValueError('''Missing keys when converting: {}'''.format(lowerCamelCase ) )
for key in unexpected_keys:
if not ("relative_position_index" in key or "relative_coords_table" in key or "self_mask" in key):
raise ValueError(F"""Unexpected key {key} in state_dict""" )
# verify values
__A = '''https://github.com/mv-lab/swin2sr/blob/main/testsets/real-inputs/shanghai.jpg?raw=true'''
__A = Image.open(requests.get(lowerCamelCase , stream=lowerCamelCase ).raw ).convert('''RGB''' )
__A = SwinaSRImageProcessor()
# pixel_values = processor(image, return_tensors="pt").pixel_values
__A = 1_26 if '''Jpeg''' in checkpoint_url else 2_56
__A = Compose(
[
Resize((image_size, image_size) ),
ToTensor(),
Normalize(mean=[0.485, 0.456, 0.406] , std=[0.229, 0.224, 0.225] ),
] )
__A = transforms(lowerCamelCase ).unsqueeze(0 )
if config.num_channels == 1:
__A = pixel_values[:, 0, :, :].unsqueeze(1 )
__A = model(lowerCamelCase )
# assert values
if "Swin2SR_ClassicalSR_X2_64" in checkpoint_url:
__A = torch.Size([1, 3, 5_12, 5_12] )
__A = torch.tensor(
[[-0.7_087, -0.7_138, -0.6_721], [-0.8_340, -0.8_095, -0.7_298], [-0.9_149, -0.8_414, -0.7_940]] )
elif "Swin2SR_ClassicalSR_X4_64" in checkpoint_url:
__A = torch.Size([1, 3, 10_24, 10_24] )
__A = torch.tensor(
[[-0.7_775, -0.8_105, -0.8_933], [-0.7_764, -0.8_356, -0.9_225], [-0.7_976, -0.8_686, -0.9_579]] )
elif "Swin2SR_CompressedSR_X4_48" in checkpoint_url:
# TODO values didn't match exactly here
__A = torch.Size([1, 3, 10_24, 10_24] )
__A = torch.tensor(
[[-0.8_035, -0.7_504, -0.7_491], [-0.8_538, -0.8_124, -0.7_782], [-0.8_804, -0.8_651, -0.8_493]] )
elif "Swin2SR_Lightweight_X2_64" in checkpoint_url:
__A = torch.Size([1, 3, 5_12, 5_12] )
__A = torch.tensor(
[[-0.7_669, -0.8_662, -0.8_767], [-0.8_810, -0.9_962, -0.9_820], [-0.9_340, -1.0_322, -1.1_149]] )
elif "Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR" in checkpoint_url:
__A = torch.Size([1, 3, 10_24, 10_24] )
__A = torch.tensor(
[[-0.5_238, -0.5_557, -0.6_321], [-0.6_016, -0.5_903, -0.6_391], [-0.6_244, -0.6_334, -0.6_889]] )
assert (
outputs.reconstruction.shape == expected_shape
), F"""Shape of reconstruction should be {expected_shape}, but is {outputs.reconstruction.shape}"""
assert torch.allclose(outputs.reconstruction[0, 0, :3, :3] , lowerCamelCase , atol=1e-3 )
print('''Looks ok!''' )
__A = {
'''https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X2_64.pth''': (
'''swin2SR-classical-sr-x2-64'''
),
'''https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X4_64.pth''': (
'''swin2SR-classical-sr-x4-64'''
),
'''https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_CompressedSR_X4_48.pth''': (
'''swin2SR-compressed-sr-x4-48'''
),
'''https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_Lightweight_X2_64.pth''': (
'''swin2SR-lightweight-x2-64'''
),
'''https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR.pth''': (
'''swin2SR-realworld-sr-x4-64-bsrgan-psnr'''
),
}
__A = url_to_name[checkpoint_url]
if pytorch_dump_folder_path is not None:
print(F"""Saving model {model_name} to {pytorch_dump_folder_path}""" )
model.save_pretrained(lowerCamelCase )
print(F"""Saving image processor to {pytorch_dump_folder_path}""" )
processor.save_pretrained(lowerCamelCase )
if push_to_hub:
model.push_to_hub(F"""caidas/{model_name}""" )
processor.push_to_hub(F"""caidas/{model_name}""" )
if __name__ == "__main__":
snake_case__ : str = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--checkpoint_url',
default='https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X2_64.pth',
type=str,
help='URL of the original Swin2SR checkpoint you\'d like to convert.',
)
parser.add_argument(
'--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.'
)
parser.add_argument('--push_to_hub', action='store_true', help='Whether to push the converted model to the hub.')
snake_case__ : str = parser.parse_args()
convert_swinasr_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
| 250 | 0 |
'''simple docstring'''
from collections import OrderedDict
from typing import Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
__lowercase : List[Any] = logging.get_logger(__name__)
__lowercase : str = {
'google/mobilenet_v2_1.4_224': 'https://huggingface.co/google/mobilenet_v2_1.4_224/resolve/main/config.json',
'google/mobilenet_v2_1.0_224': 'https://huggingface.co/google/mobilenet_v2_1.0_224/resolve/main/config.json',
'google/mobilenet_v2_0.75_160': 'https://huggingface.co/google/mobilenet_v2_0.75_160/resolve/main/config.json',
'google/mobilenet_v2_0.35_96': 'https://huggingface.co/google/mobilenet_v2_0.35_96/resolve/main/config.json',
# See all MobileNetV2 models at https://huggingface.co/models?filter=mobilenet_v2
}
class __UpperCamelCase ( lowerCAmelCase_ ):
A_ = "mobilenet_v2"
def __init__( self , __a=3 , __a=224 , __a=1.0 , __a=8 , __a=8 , __a=6 , __a=32 , __a=True , __a=True , __a="relu6" , __a=True , __a=0.8 , __a=0.02 , __a=0.001 , __a=255 , **__a , ):
'''simple docstring'''
super().__init__(**__a )
if depth_multiplier <= 0:
raise ValueError('depth_multiplier must be greater than zero.' )
__a : Any = num_channels
__a : Dict = image_size
__a : Optional[Any] = depth_multiplier
__a : List[str] = depth_divisible_by
__a : List[str] = min_depth
__a : Any = expand_ratio
__a : Optional[Any] = output_stride
__a : str = first_layer_is_expansion
__a : Optional[Any] = finegrained_output
__a : Optional[Any] = hidden_act
__a : List[Any] = tf_padding
__a : Optional[int] = classifier_dropout_prob
__a : Union[str, Any] = initializer_range
__a : int = layer_norm_eps
__a : str = semantic_loss_ignore_index
class __UpperCamelCase ( lowerCAmelCase_ ):
A_ = version.parse("1.11" )
@property
def __UpperCAmelCase ( self ):
'''simple docstring'''
return OrderedDict([('pixel_values', {0: 'batch'})] )
@property
def __UpperCAmelCase ( self ):
'''simple docstring'''
if self.task == "image-classification":
return OrderedDict([('logits', {0: 'batch'})] )
else:
return OrderedDict([('last_hidden_state', {0: 'batch'}), ('pooler_output', {0: 'batch'})] )
@property
def __UpperCAmelCase ( self ):
'''simple docstring'''
return 1E-4
| 27 |
'''simple docstring'''
from __future__ import annotations
from fractions import Fraction
from math import gcd, sqrt
def lowerCamelCase (_SCREAMING_SNAKE_CASE : int ):
__a : int = int(number**0.5 )
return number == sq * sq
def lowerCamelCase (_SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int ):
__a : int = x_num * y_den * z_den + y_num * x_den * z_den + z_num * x_den * y_den
__a : int = x_den * y_den * z_den
__a : int = gcd(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
top //= hcf
bottom //= hcf
return top, bottom
def lowerCamelCase (_SCREAMING_SNAKE_CASE : int = 35 ):
__a : set = set()
__a : int
__a : Fraction = Fraction(0 )
__a : tuple[int, int]
for x_num in range(1 , order + 1 ):
for x_den in range(x_num + 1 , order + 1 ):
for y_num in range(1 , order + 1 ):
for y_den in range(y_num + 1 , order + 1 ):
# n=1
__a : Union[str, Any] = x_num * y_den + x_den * y_num
__a : Optional[Any] = x_den * y_den
__a : int = gcd(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
z_num //= hcf
z_den //= hcf
if 0 < z_num < z_den <= order:
__a : Any = add_three(
_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
unique_s.add(_SCREAMING_SNAKE_CASE )
# n=2
__a : Optional[int] = (
x_num * x_num * y_den * y_den + x_den * x_den * y_num * y_num
)
__a : Union[str, Any] = x_den * x_den * y_den * y_den
if is_sq(_SCREAMING_SNAKE_CASE ) and is_sq(_SCREAMING_SNAKE_CASE ):
__a : List[Any] = int(sqrt(_SCREAMING_SNAKE_CASE ) )
__a : Any = int(sqrt(_SCREAMING_SNAKE_CASE ) )
__a : Optional[int] = gcd(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
z_num //= hcf
z_den //= hcf
if 0 < z_num < z_den <= order:
__a : List[Any] = add_three(
_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
unique_s.add(_SCREAMING_SNAKE_CASE )
# n=-1
__a : int = x_num * y_num
__a : Optional[Any] = x_den * y_num + x_num * y_den
__a : Tuple = gcd(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
z_num //= hcf
z_den //= hcf
if 0 < z_num < z_den <= order:
__a : Any = add_three(
_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
unique_s.add(_SCREAMING_SNAKE_CASE )
# n=2
__a : List[Any] = x_num * x_num * y_num * y_num
__a : List[Any] = (
x_den * x_den * y_num * y_num + x_num * x_num * y_den * y_den
)
if is_sq(_SCREAMING_SNAKE_CASE ) and is_sq(_SCREAMING_SNAKE_CASE ):
__a : Optional[Any] = int(sqrt(_SCREAMING_SNAKE_CASE ) )
__a : Union[str, Any] = int(sqrt(_SCREAMING_SNAKE_CASE ) )
__a : int = gcd(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
z_num //= hcf
z_den //= hcf
if 0 < z_num < z_den <= order:
__a : List[str] = add_three(
_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
unique_s.add(_SCREAMING_SNAKE_CASE )
for num, den in unique_s:
total += Fraction(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
return total.denominator + total.numerator
if __name__ == "__main__":
print(f'''{solution() = }''')
| 27 | 1 |
'''simple docstring'''
class _lowercase :
def __init__( self: str , UpperCamelCase__: int ):
lowerCamelCase__ : int = size
lowerCamelCase__ : Optional[Any] = [0] * size
lowerCamelCase__ : str = [0] * size
@staticmethod
def lowerCamelCase_ ( UpperCamelCase__: int ):
return index | (index + 1)
@staticmethod
def lowerCamelCase_ ( UpperCamelCase__: int ):
return (index & (index + 1)) - 1
def lowerCamelCase_ ( self: Optional[int] , UpperCamelCase__: int , UpperCamelCase__: int ):
lowerCamelCase__ : int = value
while index < self.size:
lowerCamelCase__ : Union[str, Any] = self.get_prev(UpperCamelCase__ ) + 1
if current_left_border == index:
lowerCamelCase__ : Dict = value
else:
lowerCamelCase__ : List[Any] = max(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ )
lowerCamelCase__ : Optional[Any] = self.get_next(UpperCamelCase__ )
def lowerCamelCase_ ( self: int , UpperCamelCase__: int , UpperCamelCase__: int ):
right -= 1 # Because of right is exclusive
lowerCamelCase__ : Union[str, Any] = 0
while left <= right:
lowerCamelCase__ : Any = self.get_prev(UpperCamelCase__ )
if left <= current_left:
lowerCamelCase__ : Union[str, Any] = max(UpperCamelCase__ , self.tree[right] )
lowerCamelCase__ : Tuple = current_left
else:
lowerCamelCase__ : Any = max(UpperCamelCase__ , self.arr[right] )
right -= 1
return result
if __name__ == "__main__":
import doctest
doctest.testmod()
| 359 |
'''simple docstring'''
from math import asin, atan, cos, radians, sin, sqrt, tan
_A : List[str] =637_8137.0
_A : Dict =635_6752.31_4245
_A : int =6_378_137
def SCREAMING_SNAKE_CASE_ (UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ) -> float:
lowerCamelCase__ : str = (AXIS_A - AXIS_B) / AXIS_A
lowerCamelCase__ : Dict = atan((1 - flattening) * tan(radians(UpperCamelCase ) ) )
lowerCamelCase__ : Dict = atan((1 - flattening) * tan(radians(UpperCamelCase ) ) )
lowerCamelCase__ : Optional[Any] = radians(UpperCamelCase )
lowerCamelCase__ : List[Any] = radians(UpperCamelCase )
# Equation
lowerCamelCase__ : Tuple = sin((phi_a - phi_a) / 2 )
lowerCamelCase__ : List[Any] = sin((lambda_a - lambda_a) / 2 )
# Square both values
sin_sq_phi *= sin_sq_phi
sin_sq_lambda *= sin_sq_lambda
lowerCamelCase__ : Tuple = sqrt(sin_sq_phi + (cos(UpperCamelCase ) * cos(UpperCamelCase ) * sin_sq_lambda) )
return 2 * RADIUS * asin(UpperCamelCase )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 129 | 0 |
'''simple docstring'''
from collections.abc import Iterator, MutableMapping
from dataclasses import dataclass
from typing import Generic, TypeVar
lowercase__ : List[str] = TypeVar('''KEY''')
lowercase__ : int = TypeVar('''VAL''')
@dataclass(frozen=__snake_case , slots=__snake_case )
class SCREAMING_SNAKE_CASE (Generic[KEY, VAL] ):
lowerCAmelCase = 42
lowerCAmelCase = 42
class SCREAMING_SNAKE_CASE (_Item ):
def __init__( self):
'''simple docstring'''
super().__init__(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE)
def __bool__( self):
'''simple docstring'''
return False
lowercase__ : Optional[int] = _DeletedItem()
class SCREAMING_SNAKE_CASE (MutableMapping[KEY, VAL] ):
def __init__( self , _UpperCAmelCase = 8 , _UpperCAmelCase = 0.75):
'''simple docstring'''
__A : Dict = initial_block_size
__A : Optional[Any] = [None] * initial_block_size
assert 0.0 < capacity_factor < 1.0
__A : Union[str, Any] = capacity_factor
__A : Optional[Any] = 0
def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase):
'''simple docstring'''
return hash(__SCREAMING_SNAKE_CASE) % len(self._buckets)
def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase):
'''simple docstring'''
return (ind + 1) % len(self._buckets)
def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase):
'''simple docstring'''
__A : Tuple = self._buckets[ind]
if not stored:
__A : Optional[Any] = _Item(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE)
self._len += 1
return True
elif stored.key == key:
__A : Optional[int] = _Item(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE)
return True
else:
return False
def SCREAMING_SNAKE_CASE ( self):
'''simple docstring'''
__A : Tuple = len(self._buckets) * self._capacity_factor
return len(self) >= int(__SCREAMING_SNAKE_CASE)
def SCREAMING_SNAKE_CASE ( self):
'''simple docstring'''
if len(self._buckets) <= self._initial_block_size:
return False
__A : int = len(self._buckets) * self._capacity_factor / 2
return len(self) < limit
def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase):
'''simple docstring'''
__A : List[str] = self._buckets
__A : Dict = [None] * new_size
__A : Optional[Any] = 0
for item in old_buckets:
if item:
self._add_item(item.key , item.val)
def SCREAMING_SNAKE_CASE ( self):
'''simple docstring'''
self._resize(len(self._buckets) * 2)
def SCREAMING_SNAKE_CASE ( self):
'''simple docstring'''
self._resize(len(self._buckets) // 2)
def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase):
'''simple docstring'''
__A : List[Any] = self._get_bucket_index(__SCREAMING_SNAKE_CASE)
for _ in range(len(self._buckets)):
yield ind
__A : List[str] = self._get_next_ind(__SCREAMING_SNAKE_CASE)
def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase):
'''simple docstring'''
for ind in self._iterate_buckets(__SCREAMING_SNAKE_CASE):
if self._try_set(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE):
break
def __setitem__( self , _UpperCAmelCase , _UpperCAmelCase):
'''simple docstring'''
if self._is_full():
self._size_up()
self._add_item(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE)
def __delitem__( self , _UpperCAmelCase):
'''simple docstring'''
for ind in self._iterate_buckets(__SCREAMING_SNAKE_CASE):
__A : int = self._buckets[ind]
if item is None:
raise KeyError(__SCREAMING_SNAKE_CASE)
if item is _deleted:
continue
if item.key == key:
__A : Optional[int] = _deleted
self._len -= 1
break
if self._is_sparse():
self._size_down()
def __getitem__( self , _UpperCAmelCase):
'''simple docstring'''
for ind in self._iterate_buckets(__SCREAMING_SNAKE_CASE):
__A : Dict = self._buckets[ind]
if item is None:
break
if item is _deleted:
continue
if item.key == key:
return item.val
raise KeyError(__SCREAMING_SNAKE_CASE)
def __len__( self):
'''simple docstring'''
return self._len
def __iter__( self):
'''simple docstring'''
yield from (item.key for item in self._buckets if item)
def __repr__( self):
'''simple docstring'''
__A : Optional[int] = ' ,'.join(
F'{item.key}: {item.val}' for item in self._buckets if item)
return F'HashMap({val_string})' | 190 |
"""simple docstring"""
def lowerCamelCase__ ( _lowerCamelCase : int , _lowerCamelCase : int ) -> int:
lowerCamelCase_ = 1 # To kept the Calculated Value
# Since C(n, k) = C(n, n-k)
if k > (n - k):
lowerCamelCase_ = n - k
# Calculate C(n,k)
for i in range(_lowerCamelCase ):
result *= n - i
result //= i + 1
return result
def lowerCamelCase__ ( _lowerCamelCase : int ) -> int:
return binomial_coefficient(2 * node_count , _lowerCamelCase ) // (node_count + 1)
def lowerCamelCase__ ( _lowerCamelCase : int ) -> int:
if n < 0:
raise ValueError('factorial() not defined for negative values' )
lowerCamelCase_ = 1
for i in range(1 , n + 1 ):
result *= i
return result
def lowerCamelCase__ ( _lowerCamelCase : int ) -> int:
return catalan_number(_lowerCamelCase ) * factorial(_lowerCamelCase )
if __name__ == "__main__":
_SCREAMING_SNAKE_CASE : int = int(input('''Enter the number of nodes: ''').strip() or 0)
if node_count <= 0:
raise ValueError('''We need some nodes to work with.''')
print(
F'''Given {node_count} nodes, there are {binary_tree_count(node_count)} '''
F'''binary trees and {catalan_number(node_count)} binary search trees.'''
)
| 183 | 0 |
'''simple docstring'''
from __future__ import annotations
from random import choice
def UpperCamelCase_ ( A__ : Dict ):
'''simple docstring'''
return choice(A__ )
def UpperCamelCase_ ( A__ : list[int] , A__ : int ):
'''simple docstring'''
lowerCAmelCase_ : List[Any] = random_pivot(A__ )
# partition based on pivot
# linear time
lowerCAmelCase_ : Union[str, Any] = [e for e in lst if e < pivot]
lowerCAmelCase_ : Union[str, Any] = [e for e in lst if e > pivot]
# if we get lucky, pivot might be the element we want.
# we can easily see this:
# small (elements smaller than k)
# + pivot (kth element)
# + big (elements larger than k)
if len(A__ ) == k - 1:
return pivot
# pivot is in elements bigger than k
elif len(A__ ) < k - 1:
return kth_number(A__ , k - len(A__ ) - 1 )
# pivot is in elements smaller than k
else:
return kth_number(A__ , A__ )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 369 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
__A : List[str] = {
"configuration_bigbird_pegasus": [
"BIGBIRD_PEGASUS_PRETRAINED_CONFIG_ARCHIVE_MAP",
"BigBirdPegasusConfig",
"BigBirdPegasusOnnxConfig",
],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__A : Union[str, Any] = [
"BIGBIRD_PEGASUS_PRETRAINED_MODEL_ARCHIVE_LIST",
"BigBirdPegasusForCausalLM",
"BigBirdPegasusForConditionalGeneration",
"BigBirdPegasusForQuestionAnswering",
"BigBirdPegasusForSequenceClassification",
"BigBirdPegasusModel",
"BigBirdPegasusPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_bigbird_pegasus import (
BIGBIRD_PEGASUS_PRETRAINED_CONFIG_ARCHIVE_MAP,
BigBirdPegasusConfig,
BigBirdPegasusOnnxConfig,
)
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_bigbird_pegasus import (
BIGBIRD_PEGASUS_PRETRAINED_MODEL_ARCHIVE_LIST,
BigBirdPegasusForCausalLM,
BigBirdPegasusForConditionalGeneration,
BigBirdPegasusForQuestionAnswering,
BigBirdPegasusForSequenceClassification,
BigBirdPegasusModel,
BigBirdPegasusPreTrainedModel,
)
else:
import sys
__A : List[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 89 | 0 |
'''simple docstring'''
import hashlib
import unittest
from typing import Dict
import numpy as np
from transformers import (
MODEL_FOR_MASK_GENERATION_MAPPING,
TF_MODEL_FOR_MASK_GENERATION_MAPPING,
is_vision_available,
pipeline,
)
from transformers.pipelines import MaskGenerationPipeline
from transformers.testing_utils import (
is_pipeline_test,
nested_simplify,
require_tf,
require_torch,
require_vision,
slow,
)
if is_vision_available():
from PIL import Image
else:
class __a :
@staticmethod
def UpperCAmelCase__ ( *__magic_name__ : List[str] , **__magic_name__ : Any ) -> str:
"""simple docstring"""
pass
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : Image ) -> str:
UpperCAmelCase_ : Dict = hashlib.mda(image.tobytes() )
return m.hexdigest()[:10]
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : Image ) -> Dict:
UpperCAmelCase_ : List[str] = np.array(SCREAMING_SNAKE_CASE__ )
UpperCAmelCase_ : List[Any] = npimg.shape
return {"hash": hashimage(SCREAMING_SNAKE_CASE__ ), "shape": shape}
@is_pipeline_test
@require_vision
@require_torch
class __a (unittest.TestCase ):
__a : Optional[int] = dict(
(list(MODEL_FOR_MASK_GENERATION_MAPPING.items() ) if MODEL_FOR_MASK_GENERATION_MAPPING else []) )
__a : Optional[Any] = dict(
(list(TF_MODEL_FOR_MASK_GENERATION_MAPPING.items() ) if TF_MODEL_FOR_MASK_GENERATION_MAPPING else []) )
def UpperCAmelCase__ ( self : List[str] , __magic_name__ : Any , __magic_name__ : Tuple , __magic_name__ : str ) -> str:
"""simple docstring"""
UpperCAmelCase_ : int = MaskGenerationPipeline(model=__magic_name__ , image_processor=__magic_name__ )
return image_segmenter, [
"./tests/fixtures/tests_samples/COCO/000000039769.png",
"./tests/fixtures/tests_samples/COCO/000000039769.png",
]
def UpperCAmelCase__ ( self : str , __magic_name__ : int , __magic_name__ : Optional[Any] ) -> Tuple:
"""simple docstring"""
pass
@require_tf
@unittest.skip('''Image segmentation not implemented in TF''' )
def UpperCAmelCase__ ( self : List[Any] ) -> int:
"""simple docstring"""
pass
@slow
@require_torch
def UpperCAmelCase__ ( self : Optional[Any] ) -> Tuple:
"""simple docstring"""
UpperCAmelCase_ : Union[str, Any] = pipeline('''mask-generation''' , model='''facebook/sam-vit-huge''' )
UpperCAmelCase_ : Optional[int] = image_segmenter('''http://images.cocodataset.org/val2017/000000039769.jpg''' , points_per_batch=2_56 )
# Shortening by hashing
UpperCAmelCase_ : Dict = []
for i, o in enumerate(outputs['''masks'''] ):
new_outupt += [{"mask": mask_to_test_readable(__magic_name__ ), "scores": outputs["scores"][i]}]
# fmt: off
self.assertEqual(
nested_simplify(__magic_name__ , decimals=4 ) , [
{'''mask''': {'''hash''': '''115ad19f5f''', '''shape''': (4_80, 6_40)}, '''scores''': 1.0_4_4_4},
{'''mask''': {'''hash''': '''6affa964c6''', '''shape''': (4_80, 6_40)}, '''scores''': 1.0_2_1},
{'''mask''': {'''hash''': '''dfe28a0388''', '''shape''': (4_80, 6_40)}, '''scores''': 1.0_1_6_7},
{'''mask''': {'''hash''': '''c0a5f4a318''', '''shape''': (4_80, 6_40)}, '''scores''': 1.0_1_3_2},
{'''mask''': {'''hash''': '''fe8065c197''', '''shape''': (4_80, 6_40)}, '''scores''': 1.0_0_5_3},
{'''mask''': {'''hash''': '''e2d0b7a0b7''', '''shape''': (4_80, 6_40)}, '''scores''': 0.9_9_6_7},
{'''mask''': {'''hash''': '''453c7844bd''', '''shape''': (4_80, 6_40)}, '''scores''': 0.9_9_3},
{'''mask''': {'''hash''': '''3d44f2926d''', '''shape''': (4_80, 6_40)}, '''scores''': 0.9_9_0_9},
{'''mask''': {'''hash''': '''64033ddc3f''', '''shape''': (4_80, 6_40)}, '''scores''': 0.9_8_7_9},
{'''mask''': {'''hash''': '''801064ff79''', '''shape''': (4_80, 6_40)}, '''scores''': 0.9_8_3_4},
{'''mask''': {'''hash''': '''6172f276ef''', '''shape''': (4_80, 6_40)}, '''scores''': 0.9_7_1_6},
{'''mask''': {'''hash''': '''b49e60e084''', '''shape''': (4_80, 6_40)}, '''scores''': 0.9_6_1_2},
{'''mask''': {'''hash''': '''a811e775fd''', '''shape''': (4_80, 6_40)}, '''scores''': 0.9_5_9_9},
{'''mask''': {'''hash''': '''a6a8ebcf4b''', '''shape''': (4_80, 6_40)}, '''scores''': 0.9_5_5_2},
{'''mask''': {'''hash''': '''9d8257e080''', '''shape''': (4_80, 6_40)}, '''scores''': 0.9_5_3_2},
{'''mask''': {'''hash''': '''32de6454a8''', '''shape''': (4_80, 6_40)}, '''scores''': 0.9_5_1_6},
{'''mask''': {'''hash''': '''af3d4af2c8''', '''shape''': (4_80, 6_40)}, '''scores''': 0.9_4_9_9},
{'''mask''': {'''hash''': '''3c6db475fb''', '''shape''': (4_80, 6_40)}, '''scores''': 0.9_4_8_3},
{'''mask''': {'''hash''': '''c290813fb9''', '''shape''': (4_80, 6_40)}, '''scores''': 0.9_4_6_4},
{'''mask''': {'''hash''': '''b6f0b8f606''', '''shape''': (4_80, 6_40)}, '''scores''': 0.9_4_3},
{'''mask''': {'''hash''': '''92ce16bfdf''', '''shape''': (4_80, 6_40)}, '''scores''': 0.9_4_3},
{'''mask''': {'''hash''': '''c749b25868''', '''shape''': (4_80, 6_40)}, '''scores''': 0.9_4_0_8},
{'''mask''': {'''hash''': '''efb6cab859''', '''shape''': (4_80, 6_40)}, '''scores''': 0.9_3_3_5},
{'''mask''': {'''hash''': '''1ff2eafb30''', '''shape''': (4_80, 6_40)}, '''scores''': 0.9_3_2_6},
{'''mask''': {'''hash''': '''788b798e24''', '''shape''': (4_80, 6_40)}, '''scores''': 0.9_2_6_2},
{'''mask''': {'''hash''': '''abea804f0e''', '''shape''': (4_80, 6_40)}, '''scores''': 0.8_9_9_9},
{'''mask''': {'''hash''': '''7b9e8ddb73''', '''shape''': (4_80, 6_40)}, '''scores''': 0.8_9_8_6},
{'''mask''': {'''hash''': '''cd24047c8a''', '''shape''': (4_80, 6_40)}, '''scores''': 0.8_9_8_4},
{'''mask''': {'''hash''': '''6943e6bcbd''', '''shape''': (4_80, 6_40)}, '''scores''': 0.8_8_7_3},
{'''mask''': {'''hash''': '''b5f47c9191''', '''shape''': (4_80, 6_40)}, '''scores''': 0.8_8_7_1}
] , )
# fmt: on
@require_torch
@slow
def UpperCAmelCase__ ( self : Optional[int] ) -> List[str]:
"""simple docstring"""
UpperCAmelCase_ : Dict = '''facebook/sam-vit-huge'''
UpperCAmelCase_ : int = pipeline('''mask-generation''' , model=__magic_name__ )
UpperCAmelCase_ : Union[str, Any] = image_segmenter(
'''http://images.cocodataset.org/val2017/000000039769.jpg''' , pred_iou_thresh=1 , points_per_batch=2_56 )
# Shortening by hashing
UpperCAmelCase_ : Union[str, Any] = []
for i, o in enumerate(outputs['''masks'''] ):
new_outupt += [{"mask": mask_to_test_readable(__magic_name__ ), "scores": outputs["scores"][i]}]
self.assertEqual(
nested_simplify(__magic_name__ , decimals=4 ) , [
{'''mask''': {'''hash''': '''115ad19f5f''', '''shape''': (4_80, 6_40)}, '''scores''': 1.0_4_4_4},
{'''mask''': {'''hash''': '''6affa964c6''', '''shape''': (4_80, 6_40)}, '''scores''': 1.0_2_1_0},
{'''mask''': {'''hash''': '''dfe28a0388''', '''shape''': (4_80, 6_40)}, '''scores''': 1.0_1_6_7},
{'''mask''': {'''hash''': '''c0a5f4a318''', '''shape''': (4_80, 6_40)}, '''scores''': 1.0_1_3_2},
{'''mask''': {'''hash''': '''fe8065c197''', '''shape''': (4_80, 6_40)}, '''scores''': 1.0_0_5_3},
] , )
| 125 |
'''simple docstring'''
from __future__ import annotations
import unittest
from transformers import is_tf_available
from transformers.testing_utils import require_tf, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import numpy
import tensorflow as tf
from transformers import (
TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST,
TF_DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST,
TF_DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST,
BertConfig,
DPRConfig,
TFDPRContextEncoder,
TFDPRQuestionEncoder,
TFDPRReader,
)
class __a :
def __init__( self : Optional[Any] , __magic_name__ : Tuple , __magic_name__ : Optional[int]=13 , __magic_name__ : str=7 , __magic_name__ : Dict=True , __magic_name__ : Dict=True , __magic_name__ : Union[str, Any]=True , __magic_name__ : Union[str, Any]=True , __magic_name__ : Tuple=99 , __magic_name__ : List[str]=32 , __magic_name__ : int=2 , __magic_name__ : List[str]=4 , __magic_name__ : Tuple=37 , __magic_name__ : Dict="gelu" , __magic_name__ : int=0.1 , __magic_name__ : Optional[int]=0.1 , __magic_name__ : Optional[int]=5_12 , __magic_name__ : Tuple=16 , __magic_name__ : Optional[int]=2 , __magic_name__ : Optional[int]=0.0_2 , __magic_name__ : Dict=3 , __magic_name__ : str=4 , __magic_name__ : Optional[Any]=None , __magic_name__ : Any=0 , ) -> Any:
"""simple docstring"""
UpperCAmelCase_ : str = parent
UpperCAmelCase_ : List[Any] = batch_size
UpperCAmelCase_ : List[Any] = seq_length
UpperCAmelCase_ : Dict = is_training
UpperCAmelCase_ : Optional[Any] = use_input_mask
UpperCAmelCase_ : Tuple = use_token_type_ids
UpperCAmelCase_ : int = use_labels
UpperCAmelCase_ : Union[str, Any] = vocab_size
UpperCAmelCase_ : Union[str, Any] = hidden_size
UpperCAmelCase_ : Dict = num_hidden_layers
UpperCAmelCase_ : Any = num_attention_heads
UpperCAmelCase_ : Any = intermediate_size
UpperCAmelCase_ : Dict = hidden_act
UpperCAmelCase_ : Tuple = hidden_dropout_prob
UpperCAmelCase_ : List[Any] = attention_probs_dropout_prob
UpperCAmelCase_ : str = max_position_embeddings
UpperCAmelCase_ : str = type_vocab_size
UpperCAmelCase_ : List[str] = type_sequence_label_size
UpperCAmelCase_ : Tuple = initializer_range
UpperCAmelCase_ : str = num_labels
UpperCAmelCase_ : Tuple = num_choices
UpperCAmelCase_ : Union[str, Any] = scope
UpperCAmelCase_ : Union[str, Any] = projection_dim
def UpperCAmelCase__ ( self : Optional[Any] ) -> int:
"""simple docstring"""
UpperCAmelCase_ : int = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
UpperCAmelCase_ : Dict = None
if self.use_input_mask:
# follow test_modeling_tf_ctrl.py
UpperCAmelCase_ : List[Any] = random_attention_mask([self.batch_size, self.seq_length] )
UpperCAmelCase_ : Tuple = None
if self.use_token_type_ids:
UpperCAmelCase_ : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
UpperCAmelCase_ : Optional[int] = None
UpperCAmelCase_ : Optional[Any] = None
UpperCAmelCase_ : int = None
if self.use_labels:
UpperCAmelCase_ : List[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size )
UpperCAmelCase_ : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
UpperCAmelCase_ : Optional[int] = ids_tensor([self.batch_size] , self.num_choices )
UpperCAmelCase_ : Optional[Any] = BertConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__magic_name__ , initializer_range=self.initializer_range , )
UpperCAmelCase_ : List[str] = DPRConfig(projection_dim=self.projection_dim , **config.to_dict() )
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def UpperCAmelCase__ ( self : str , __magic_name__ : str , __magic_name__ : Tuple , __magic_name__ : int , __magic_name__ : List[str] , __magic_name__ : List[str] , __magic_name__ : Tuple , __magic_name__ : Any ) -> List[str]:
"""simple docstring"""
UpperCAmelCase_ : Optional[Any] = TFDPRContextEncoder(config=__magic_name__ )
UpperCAmelCase_ : Tuple = model(__magic_name__ , attention_mask=__magic_name__ , token_type_ids=__magic_name__ )
UpperCAmelCase_ : int = model(__magic_name__ , token_type_ids=__magic_name__ )
UpperCAmelCase_ : Any = model(__magic_name__ )
self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.projection_dim or self.hidden_size) )
def UpperCAmelCase__ ( self : List[str] , __magic_name__ : int , __magic_name__ : Dict , __magic_name__ : Tuple , __magic_name__ : Dict , __magic_name__ : str , __magic_name__ : Any , __magic_name__ : Tuple ) -> int:
"""simple docstring"""
UpperCAmelCase_ : List[str] = TFDPRQuestionEncoder(config=__magic_name__ )
UpperCAmelCase_ : Optional[int] = model(__magic_name__ , attention_mask=__magic_name__ , token_type_ids=__magic_name__ )
UpperCAmelCase_ : Optional[int] = model(__magic_name__ , token_type_ids=__magic_name__ )
UpperCAmelCase_ : List[Any] = model(__magic_name__ )
self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.projection_dim or self.hidden_size) )
def UpperCAmelCase__ ( self : List[Any] , __magic_name__ : List[Any] , __magic_name__ : List[Any] , __magic_name__ : Any , __magic_name__ : int , __magic_name__ : Optional[int] , __magic_name__ : Tuple , __magic_name__ : List[Any] ) -> List[str]:
"""simple docstring"""
UpperCAmelCase_ : int = TFDPRReader(config=__magic_name__ )
UpperCAmelCase_ : Tuple = model(__magic_name__ , attention_mask=__magic_name__ )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.relevance_logits.shape , (self.batch_size,) )
def UpperCAmelCase__ ( self : Optional[Any] ) -> Any:
"""simple docstring"""
UpperCAmelCase_ : List[Any] = self.prepare_config_and_inputs()
(
(
UpperCAmelCase_
) , (
UpperCAmelCase_
) , (
UpperCAmelCase_
) , (
UpperCAmelCase_
) , (
UpperCAmelCase_
) , (
UpperCAmelCase_
) , (
UpperCAmelCase_
) ,
) : Optional[int] = config_and_inputs
UpperCAmelCase_ : Any = {'''input_ids''': input_ids}
return config, inputs_dict
@require_tf
class __a (lowerCamelCase , lowerCamelCase , unittest.TestCase ):
__a : Any = (
(
TFDPRContextEncoder,
TFDPRQuestionEncoder,
TFDPRReader,
)
if is_tf_available()
else ()
)
__a : int = {"feature-extraction": TFDPRQuestionEncoder} if is_tf_available() else {}
__a : str = False
__a : str = False
__a : Dict = False
__a : Optional[Any] = False
__a : Any = False
def UpperCAmelCase__ ( self : int ) -> Tuple:
"""simple docstring"""
UpperCAmelCase_ : Optional[int] = TFDPRModelTester(self )
UpperCAmelCase_ : Dict = ConfigTester(self , config_class=__magic_name__ , hidden_size=37 )
def UpperCAmelCase__ ( self : List[str] ) -> Dict:
"""simple docstring"""
self.config_tester.run_common_tests()
def UpperCAmelCase__ ( self : Optional[int] ) -> Optional[Any]:
"""simple docstring"""
UpperCAmelCase_ : List[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_dpr_context_encoder(*__magic_name__ )
def UpperCAmelCase__ ( self : Optional[Any] ) -> Any:
"""simple docstring"""
UpperCAmelCase_ : Optional[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_dpr_question_encoder(*__magic_name__ )
def UpperCAmelCase__ ( self : int ) -> List[str]:
"""simple docstring"""
UpperCAmelCase_ : str = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_dpr_reader(*__magic_name__ )
@slow
def UpperCAmelCase__ ( self : Tuple ) -> Union[str, Any]:
"""simple docstring"""
for model_name in TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
UpperCAmelCase_ : Union[str, Any] = TFDPRContextEncoder.from_pretrained(__magic_name__ )
self.assertIsNotNone(__magic_name__ )
for model_name in TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
UpperCAmelCase_ : Optional[Any] = TFDPRContextEncoder.from_pretrained(__magic_name__ )
self.assertIsNotNone(__magic_name__ )
for model_name in TF_DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
UpperCAmelCase_ : Tuple = TFDPRQuestionEncoder.from_pretrained(__magic_name__ )
self.assertIsNotNone(__magic_name__ )
for model_name in TF_DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
UpperCAmelCase_ : Tuple = TFDPRReader.from_pretrained(__magic_name__ )
self.assertIsNotNone(__magic_name__ )
@require_tf
class __a (unittest.TestCase ):
@slow
def UpperCAmelCase__ ( self : Optional[int] ) -> str:
"""simple docstring"""
UpperCAmelCase_ : Any = TFDPRQuestionEncoder.from_pretrained('''facebook/dpr-question_encoder-single-nq-base''' )
UpperCAmelCase_ : Optional[int] = tf.constant(
[[1_01, 75_92, 10_10, 20_03, 20_26, 38_99, 1_01_40, 10_29, 1_02]] ) # [CLS] hello, is my dog cute? [SEP]
UpperCAmelCase_ : List[Any] = model(__magic_name__ )[0] # embedding shape = (1, 768)
# compare the actual values for a slice.
UpperCAmelCase_ : List[str] = tf.constant(
[
[
0.0_3_2_3_6_2_5_3,
0.1_2_7_5_3_3_3_5,
0.1_6_8_1_8_5_0_9,
0.0_0_2_7_9_7_8_6,
0.3_8_9_6_9_3_3,
0.2_4_2_6_4_9_4_5,
0.2_1_7_8_9_7_1,
-0.0_2_3_3_5_2_2_7,
-0.0_8_4_8_1_9_5_9,
-0.1_4_3_2_4_1_1_7,
]
] )
self.assertTrue(numpy.allclose(output[:, :10].numpy() , expected_slice.numpy() , atol=1E-4 ) )
| 125 | 1 |
'''simple docstring'''
import importlib
import inspect
import os
import re
# All paths are set with the intent you should run this script from the root of the repo with the command
# python utils/check_config_docstrings.py
UpperCamelCase_ : Any = '''src/transformers'''
# This is to make sure the transformers module imported is the one in the repo.
UpperCamelCase_ : List[str] = importlib.util.spec_from_file_location(
'''transformers''',
os.path.join(PATH_TO_TRANSFORMERS, '''__init__.py'''),
submodule_search_locations=[PATH_TO_TRANSFORMERS],
)
UpperCamelCase_ : List[Any] = spec.loader.load_module()
UpperCamelCase_ : str = transformers.models.auto.configuration_auto.CONFIG_MAPPING
# Regex pattern used to find the checkpoint mentioned in the docstring of `config_class`.
# For example, `[bert-base-uncased](https://huggingface.co/bert-base-uncased)`
UpperCamelCase_ : List[Any] = re.compile('''\[(.+?)\]\((https://huggingface\.co/.+?)\)''')
UpperCamelCase_ : int = {
'''CLIPConfigMixin''',
'''DecisionTransformerConfigMixin''',
'''EncoderDecoderConfigMixin''',
'''RagConfigMixin''',
'''SpeechEncoderDecoderConfigMixin''',
'''VisionEncoderDecoderConfigMixin''',
'''VisionTextDualEncoderConfigMixin''',
}
def __a ( ) -> Optional[int]:
"""simple docstring"""
_snake_case = []
for config_class in list(CONFIG_MAPPING.values() ):
_snake_case = False
# source code of `config_class`
_snake_case = inspect.getsource(_UpperCamelCase )
_snake_case = _re_checkpoint.findall(_UpperCamelCase )
for checkpoint in checkpoints:
# Each `checkpoint` is a tuple of a checkpoint name and a checkpoint link.
# For example, `('bert-base-uncased', 'https://huggingface.co/bert-base-uncased')`
_snake_case , _snake_case = checkpoint
# verify the checkpoint name corresponds to the checkpoint link
_snake_case = F"""https://huggingface.co/{ckpt_name}"""
if ckpt_link == ckpt_link_from_name:
_snake_case = True
break
_snake_case = config_class.__name__
if not checkpoint_found and name not in CONFIG_CLASSES_TO_IGNORE_FOR_DOCSTRING_CHECKPOINT_CHECK:
configs_without_checkpoint.append(_UpperCamelCase )
if len(_UpperCamelCase ) > 0:
_snake_case = "\n".join(sorted(_UpperCamelCase ) )
raise ValueError(F"""The following configurations don't contain any valid checkpoint:\n{message}""" )
if __name__ == "__main__":
check_config_docstrings_have_checkpoints()
| 142 |
'''simple docstring'''
from manim import *
class _a ( __lowerCAmelCase ):
def _lowercase ( self ) -> Optional[int]:
_snake_case = Rectangle(height=0.5 ,width=0.5 )
_snake_case = Rectangle(height=0.4_6 ,width=0.4_6 ).set_stroke(width=0 )
_snake_case = [mem.copy() for i in range(6 )]
_snake_case = [mem.copy() for i in range(6 )]
_snake_case = VGroup(*_SCREAMING_SNAKE_CASE ).arrange(_SCREAMING_SNAKE_CASE ,buff=0 )
_snake_case = VGroup(*_SCREAMING_SNAKE_CASE ).arrange(_SCREAMING_SNAKE_CASE ,buff=0 )
_snake_case = VGroup(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ).arrange(_SCREAMING_SNAKE_CASE ,buff=0 )
_snake_case = Text("CPU" ,font_size=24 )
_snake_case = Group(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ).arrange(_SCREAMING_SNAKE_CASE ,buff=0.5 ,aligned_edge=_SCREAMING_SNAKE_CASE )
cpu.move_to([-2.5, -0.5, 0] )
self.add(_SCREAMING_SNAKE_CASE )
_snake_case = [mem.copy() for i in range(4 )]
_snake_case = VGroup(*_SCREAMING_SNAKE_CASE ).arrange(_SCREAMING_SNAKE_CASE ,buff=0 )
_snake_case = Text("GPU" ,font_size=24 )
_snake_case = Group(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ).arrange(_SCREAMING_SNAKE_CASE ,buff=0.5 ,aligned_edge=_SCREAMING_SNAKE_CASE )
gpu.move_to([-1, -1, 0] )
self.add(_SCREAMING_SNAKE_CASE )
_snake_case = [mem.copy() for i in range(6 )]
_snake_case = VGroup(*_SCREAMING_SNAKE_CASE ).arrange(_SCREAMING_SNAKE_CASE ,buff=0 )
_snake_case = Text("Model" ,font_size=24 )
_snake_case = Group(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ).arrange(_SCREAMING_SNAKE_CASE ,buff=0.5 ,aligned_edge=_SCREAMING_SNAKE_CASE )
model.move_to([3, -1.0, 0] )
self.add(_SCREAMING_SNAKE_CASE )
_snake_case = []
for i, rect in enumerate(_SCREAMING_SNAKE_CASE ):
rect.set_stroke(_SCREAMING_SNAKE_CASE )
# target = fill.copy().set_fill(YELLOW, opacity=0.7)
# target.move_to(rect)
# self.add(target)
_snake_case = Rectangle(height=0.4_6 / 4 ,width=0.4_6 / 3 ).set_stroke(width=0.0 ).set_fill(_SCREAMING_SNAKE_CASE ,opacity=0.7 )
if i == 0:
cpu_target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) ,buff=0.0_2 ,direction=_SCREAMING_SNAKE_CASE )
cpu_target.set_x(cpu_target.get_x() + 0.1 )
elif i == 3:
cpu_target.next_to(cpu_targs[0] ,direction=_SCREAMING_SNAKE_CASE ,buff=0.0 )
else:
cpu_target.next_to(cpu_targs[i - 1] ,direction=_SCREAMING_SNAKE_CASE ,buff=0.0 )
self.add(_SCREAMING_SNAKE_CASE )
cpu_targs.append(_SCREAMING_SNAKE_CASE )
_snake_case = [mem.copy() for i in range(6 )]
_snake_case = VGroup(*_SCREAMING_SNAKE_CASE ).arrange(_SCREAMING_SNAKE_CASE ,buff=0 )
_snake_case = Text("Loaded Checkpoint" ,font_size=24 )
_snake_case = Group(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ).arrange(_SCREAMING_SNAKE_CASE ,aligned_edge=_SCREAMING_SNAKE_CASE ,buff=0.4 )
checkpoint.move_to([3, 0.5, 0] )
_snake_case = Square(side_length=2.2 )
key.move_to([-5, 2, 0] )
_snake_case = MarkupText(
f"""<b>Key:</b>\n\n<span fgcolor='{YELLOW}'>●</span> Empty Model""" ,font_size=18 ,)
key_text.move_to([-5, 2.4, 0] )
self.add(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE )
_snake_case = MarkupText(
f"""<span fgcolor='{BLUE}'>●</span> Checkpoint""" ,font_size=18 ,)
blue_text.next_to(_SCREAMING_SNAKE_CASE ,DOWN * 2.4 ,aligned_edge=key_text.get_left() )
_snake_case = MarkupText(
f"""Next, a <i><span fgcolor=\"{BLUE}\">second</span></i> model is loaded into memory,\nwith the weights of a <span fgcolor=\"{BLUE}\">single shard</span>.""" ,font_size=24 ,)
step_a.move_to([2, 2, 0] )
self.play(Write(_SCREAMING_SNAKE_CASE ) ,Write(_SCREAMING_SNAKE_CASE ) )
self.play(Write(_SCREAMING_SNAKE_CASE ,run_time=1 ) ,Create(_SCREAMING_SNAKE_CASE ,run_time=1 ) )
_snake_case = []
_snake_case = []
for i, rect in enumerate(_SCREAMING_SNAKE_CASE ):
_snake_case = fill.copy().set_fill(_SCREAMING_SNAKE_CASE ,opacity=0.7 )
target.move_to(_SCREAMING_SNAKE_CASE )
first_animations.append(GrowFromCenter(_SCREAMING_SNAKE_CASE ,run_time=1 ) )
_snake_case = target.copy()
cpu_target.generate_target()
if i < 5:
cpu_target.target.move_to(cpu_left_col_base[i + 1] )
else:
cpu_target.target.move_to(cpu_right_col_base[i - 5] )
second_animations.append(MoveToTarget(_SCREAMING_SNAKE_CASE ,run_time=1.5 ) )
self.play(*_SCREAMING_SNAKE_CASE )
self.play(*_SCREAMING_SNAKE_CASE )
self.wait()
| 142 | 1 |
import argparse
from pathlib import Path
from transformers import AutoConfig, AutoTokenizer, RagConfig, RagSequenceForGeneration, RagTokenForGeneration
def lowerCAmelCase ( _lowerCAmelCase : Any , _lowerCAmelCase : str , _lowerCAmelCase : str , _lowerCAmelCase : Path , _lowerCAmelCase : str = None , _lowerCAmelCase : str = None , _lowerCAmelCase : str = None , ):
"""simple docstring"""
if config_name_or_path is None:
UpperCAmelCase__ = "facebook/rag-token-base" if model_type == "rag_token" else "facebook/rag-sequence-base"
if generator_tokenizer_name_or_path is None:
UpperCAmelCase__ = generator_name_or_path
if question_encoder_tokenizer_name_or_path is None:
UpperCAmelCase__ = question_encoder_name_or_path
UpperCAmelCase__ = RagTokenForGeneration if model_type == "rag_token" else RagSequenceForGeneration
# Save model.
UpperCAmelCase__ = RagConfig.from_pretrained(_lowerCAmelCase )
UpperCAmelCase__ = AutoConfig.from_pretrained(_lowerCAmelCase )
UpperCAmelCase__ = AutoConfig.from_pretrained(_lowerCAmelCase )
UpperCAmelCase__ = gen_config
UpperCAmelCase__ = question_encoder_config
UpperCAmelCase__ = model_class.from_pretrained_question_encoder_generator(
_lowerCAmelCase , _lowerCAmelCase , config=_lowerCAmelCase )
rag_model.save_pretrained(_lowerCAmelCase )
# Sanity check.
model_class.from_pretrained(_lowerCAmelCase )
# Save tokenizers.
UpperCAmelCase__ = AutoTokenizer.from_pretrained(_lowerCAmelCase )
gen_tokenizer.save_pretrained(dest_dir / "generator_tokenizer/" )
UpperCAmelCase__ = AutoTokenizer.from_pretrained(_lowerCAmelCase )
question_encoder_tokenizer.save_pretrained(dest_dir / "question_encoder_tokenizer/" )
if __name__ == "__main__":
_lowerCAmelCase : Optional[Any] = argparse.ArgumentParser()
parser.add_argument(
"--model_type",
choices=["rag_sequence", "rag_token"],
required=True,
type=str,
help="RAG model type: rag_sequence, rag_token",
)
parser.add_argument("--dest", type=str, required=True, help="Path to the output checkpoint directory.")
parser.add_argument("--generator_name_or_path", type=str, required=True, help="Generator model identifier")
parser.add_argument(
"--question_encoder_name_or_path", type=str, required=True, help="Question encoder model identifier"
)
parser.add_argument(
"--generator_tokenizer_name_or_path",
type=str,
help="Generator tokenizer identifier, if not specified, resolves to ``generator_name_or_path``",
)
parser.add_argument(
"--question_encoder_tokenizer_name_or_path",
type=str,
help="Question encoder tokenizer identifier, if not specified, resolves to ``question_encoder_name_or_path``",
)
parser.add_argument(
"--config_name_or_path",
type=str,
help=(
"Identifier of the model config to use, if not provided, resolves to a base config for a given"
" ``model_type``"
),
)
_lowerCAmelCase : Union[str, Any] = parser.parse_args()
_lowerCAmelCase : str = Path(args.dest)
dest_dir.mkdir(exist_ok=True)
consolidate(
args.model_type,
args.generator_name_or_path,
args.question_encoder_name_or_path,
dest_dir,
args.config_name_or_path,
args.generator_tokenizer_name_or_path,
args.question_encoder_tokenizer_name_or_path,
)
| 169 |
import argparse
import os
import transformers
from .convert_slow_tokenizer import SLOW_TO_FAST_CONVERTERS
from .utils import logging
logging.set_verbosity_info()
_lowerCAmelCase : Any = logging.get_logger(__name__)
_lowerCAmelCase : Tuple = {name: getattr(transformers, name + "Fast") for name in SLOW_TO_FAST_CONVERTERS}
def lowerCAmelCase ( _lowerCAmelCase : Tuple , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Union[str, Any] ):
"""simple docstring"""
if tokenizer_name is not None and tokenizer_name not in TOKENIZER_CLASSES:
raise ValueError(F'''Unrecognized tokenizer name, should be one of {list(TOKENIZER_CLASSES.keys() )}.''' )
if tokenizer_name is None:
UpperCAmelCase__ = TOKENIZER_CLASSES
else:
UpperCAmelCase__ = {tokenizer_name: getattr(_lowerCAmelCase , tokenizer_name + "Fast" )}
logger.info(F'''Loading tokenizer classes: {tokenizer_names}''' )
for tokenizer_name in tokenizer_names:
UpperCAmelCase__ = TOKENIZER_CLASSES[tokenizer_name]
UpperCAmelCase__ = True
if checkpoint_name is None:
UpperCAmelCase__ = list(tokenizer_class.max_model_input_sizes.keys() )
else:
UpperCAmelCase__ = [checkpoint_name]
logger.info(F'''For tokenizer {tokenizer_class.__class__.__name__} loading checkpoints: {checkpoint_names}''' )
for checkpoint in checkpoint_names:
logger.info(F'''Loading {tokenizer_class.__class__.__name__} {checkpoint}''' )
# Load tokenizer
UpperCAmelCase__ = tokenizer_class.from_pretrained(_lowerCAmelCase , force_download=_lowerCAmelCase )
# Save fast tokenizer
logger.info(F'''Save fast tokenizer to {dump_path} with prefix {checkpoint} add_prefix {add_prefix}''' )
# For organization names we create sub-directories
if "/" in checkpoint:
UpperCAmelCase__ , UpperCAmelCase__ = checkpoint.split("/" )
UpperCAmelCase__ = os.path.join(_lowerCAmelCase , _lowerCAmelCase )
elif add_prefix:
UpperCAmelCase__ = checkpoint
UpperCAmelCase__ = dump_path
else:
UpperCAmelCase__ = None
UpperCAmelCase__ = dump_path
logger.info(F'''=> {dump_path_full} with prefix {checkpoint_prefix_name}, add_prefix {add_prefix}''' )
if checkpoint in list(tokenizer.pretrained_vocab_files_map.values() )[0]:
UpperCAmelCase__ = list(tokenizer.pretrained_vocab_files_map.values() )[0][checkpoint]
UpperCAmelCase__ = file_path.split(_lowerCAmelCase )[-1][0]
if next_char == "/":
UpperCAmelCase__ = os.path.join(_lowerCAmelCase , _lowerCAmelCase )
UpperCAmelCase__ = None
logger.info(F'''=> {dump_path_full} with prefix {checkpoint_prefix_name}, add_prefix {add_prefix}''' )
UpperCAmelCase__ = tokenizer.save_pretrained(
_lowerCAmelCase , legacy_format=_lowerCAmelCase , filename_prefix=_lowerCAmelCase )
logger.info(F'''=> File names {file_names}''' )
for file_name in file_names:
if not file_name.endswith("tokenizer.json" ):
os.remove(_lowerCAmelCase )
logger.info(F'''=> removing {file_name}''' )
if __name__ == "__main__":
_lowerCAmelCase : Tuple = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--dump_path", default=None, type=str, required=True, help="Path to output generated fast tokenizer files."
)
parser.add_argument(
"--tokenizer_name",
default=None,
type=str,
help=(
F'''Optional tokenizer type selected in the list of {list(TOKENIZER_CLASSES.keys())}. If not given, will '''
"download and convert all the checkpoints from AWS."
),
)
parser.add_argument(
"--checkpoint_name",
default=None,
type=str,
help="Optional checkpoint name. If not given, will download and convert the canonical checkpoints from AWS.",
)
parser.add_argument(
"--force_download",
action="store_true",
help="Re-download checkpoints.",
)
_lowerCAmelCase : str = parser.parse_args()
convert_slow_checkpoint_to_fast(args.tokenizer_name, args.checkpoint_name, args.dump_path, args.force_download)
| 169 | 1 |
"""simple docstring"""
from collections import deque
from math import floor
from random import random
from time import time
class lowerCamelCase__ :
def __init__( self ):
UpperCAmelCase = {}
def _UpperCamelCase ( self ,A ,A ,A=1 ):
if self.graph.get(A ):
if self.graph[u].count([w, v] ) == 0:
self.graph[u].append([w, v] )
else:
UpperCAmelCase = [[w, v]]
if not self.graph.get(A ):
UpperCAmelCase = []
def _UpperCamelCase ( self ):
return list(self.graph )
def _UpperCamelCase ( self ,A ,A ):
if self.graph.get(A ):
for _ in self.graph[u]:
if _[1] == v:
self.graph[u].remove(A )
def _UpperCamelCase ( self ,A=-2 ,A=-1 ):
if s == d:
return []
UpperCAmelCase = []
UpperCAmelCase = []
if s == -2:
UpperCAmelCase = list(self.graph )[0]
stack.append(A )
visited.append(A )
UpperCAmelCase = s
while True:
# check if there is any non isolated nodes
if len(self.graph[s] ) != 0:
UpperCAmelCase = s
for node in self.graph[s]:
if visited.count(node[1] ) < 1:
if node[1] == d:
visited.append(A )
return visited
else:
stack.append(node[1] )
visited.append(node[1] )
UpperCAmelCase = node[1]
break
# check if all the children are visited
if s == ss:
stack.pop()
if len(A ) != 0:
UpperCAmelCase = stack[len(A ) - 1]
else:
UpperCAmelCase = ss
# check if se have reached the starting point
if len(A ) == 0:
return visited
def _UpperCamelCase ( self ,A=-1 ):
if c == -1:
UpperCAmelCase = floor(random() * 10_000 ) + 10
for i in range(A ):
# every vertex has max 100 edges
for _ in range(floor(random() * 102 ) + 1 ):
UpperCAmelCase = floor(random() * c ) + 1
if n != i:
self.add_pair(A ,A ,1 )
def _UpperCamelCase ( self ,A=-2 ):
UpperCAmelCase = deque()
UpperCAmelCase = []
if s == -2:
UpperCAmelCase = list(self.graph )[0]
d.append(A )
visited.append(A )
while d:
UpperCAmelCase = d.popleft()
if len(self.graph[s] ) != 0:
for node in self.graph[s]:
if visited.count(node[1] ) < 1:
d.append(node[1] )
visited.append(node[1] )
return visited
def _UpperCamelCase ( self ,A ):
UpperCAmelCase = 0
for x in self.graph:
for y in self.graph[x]:
if y[1] == u:
count += 1
return count
def _UpperCamelCase ( self ,A ):
return len(self.graph[u] )
def _UpperCamelCase ( self ,A=-2 ):
UpperCAmelCase = []
UpperCAmelCase = []
if s == -2:
UpperCAmelCase = list(self.graph )[0]
stack.append(A )
visited.append(A )
UpperCAmelCase = s
UpperCAmelCase = []
while True:
# check if there is any non isolated nodes
if len(self.graph[s] ) != 0:
UpperCAmelCase = s
for node in self.graph[s]:
if visited.count(node[1] ) < 1:
stack.append(node[1] )
visited.append(node[1] )
UpperCAmelCase = node[1]
break
# check if all the children are visited
if s == ss:
sorted_nodes.append(stack.pop() )
if len(A ) != 0:
UpperCAmelCase = stack[len(A ) - 1]
else:
UpperCAmelCase = ss
# check if se have reached the starting point
if len(A ) == 0:
return sorted_nodes
def _UpperCamelCase ( self ):
UpperCAmelCase = []
UpperCAmelCase = []
UpperCAmelCase = list(self.graph )[0]
stack.append(A )
visited.append(A )
UpperCAmelCase = -2
UpperCAmelCase = []
UpperCAmelCase = s
UpperCAmelCase = False
UpperCAmelCase = set()
while True:
# check if there is any non isolated nodes
if len(self.graph[s] ) != 0:
UpperCAmelCase = s
for node in self.graph[s]:
if (
visited.count(node[1] ) > 0
and node[1] != parent
and indirect_parents.count(node[1] ) > 0
and not on_the_way_back
):
UpperCAmelCase = len(A ) - 1
while len_stack >= 0:
if stack[len_stack] == node[1]:
anticipating_nodes.add(node[1] )
break
else:
anticipating_nodes.add(stack[len_stack] )
len_stack -= 1
if visited.count(node[1] ) < 1:
stack.append(node[1] )
visited.append(node[1] )
UpperCAmelCase = node[1]
break
# check if all the children are visited
if s == ss:
stack.pop()
UpperCAmelCase = True
if len(A ) != 0:
UpperCAmelCase = stack[len(A ) - 1]
else:
UpperCAmelCase = False
indirect_parents.append(A )
UpperCAmelCase = s
UpperCAmelCase = ss
# check if se have reached the starting point
if len(A ) == 0:
return list(A )
def _UpperCamelCase ( self ):
UpperCAmelCase = []
UpperCAmelCase = []
UpperCAmelCase = list(self.graph )[0]
stack.append(A )
visited.append(A )
UpperCAmelCase = -2
UpperCAmelCase = []
UpperCAmelCase = s
UpperCAmelCase = False
UpperCAmelCase = set()
while True:
# check if there is any non isolated nodes
if len(self.graph[s] ) != 0:
UpperCAmelCase = s
for node in self.graph[s]:
if (
visited.count(node[1] ) > 0
and node[1] != parent
and indirect_parents.count(node[1] ) > 0
and not on_the_way_back
):
UpperCAmelCase = len(A ) - 1
while len_stack_minus_one >= 0:
if stack[len_stack_minus_one] == node[1]:
anticipating_nodes.add(node[1] )
break
else:
return True
if visited.count(node[1] ) < 1:
stack.append(node[1] )
visited.append(node[1] )
UpperCAmelCase = node[1]
break
# check if all the children are visited
if s == ss:
stack.pop()
UpperCAmelCase = True
if len(A ) != 0:
UpperCAmelCase = stack[len(A ) - 1]
else:
UpperCAmelCase = False
indirect_parents.append(A )
UpperCAmelCase = s
UpperCAmelCase = ss
# check if se have reached the starting point
if len(A ) == 0:
return False
def _UpperCamelCase ( self ,A=-2 ,A=-1 ):
UpperCAmelCase = time()
self.dfs(A ,A )
UpperCAmelCase = time()
return end - begin
def _UpperCamelCase ( self ,A=-2 ):
UpperCAmelCase = time()
self.bfs(A )
UpperCAmelCase = time()
return end - begin
class lowerCamelCase__ :
def __init__( self ):
UpperCAmelCase = {}
def _UpperCamelCase ( self ,A ,A ,A=1 ):
# check if the u exists
if self.graph.get(A ):
# if there already is a edge
if self.graph[u].count([w, v] ) == 0:
self.graph[u].append([w, v] )
else:
# if u does not exist
UpperCAmelCase = [[w, v]]
# add the other way
if self.graph.get(A ):
# if there already is a edge
if self.graph[v].count([w, u] ) == 0:
self.graph[v].append([w, u] )
else:
# if u does not exist
UpperCAmelCase = [[w, u]]
def _UpperCamelCase ( self ,A ,A ):
if self.graph.get(A ):
for _ in self.graph[u]:
if _[1] == v:
self.graph[u].remove(A )
# the other way round
if self.graph.get(A ):
for _ in self.graph[v]:
if _[1] == u:
self.graph[v].remove(A )
def _UpperCamelCase ( self ,A=-2 ,A=-1 ):
if s == d:
return []
UpperCAmelCase = []
UpperCAmelCase = []
if s == -2:
UpperCAmelCase = list(self.graph )[0]
stack.append(A )
visited.append(A )
UpperCAmelCase = s
while True:
# check if there is any non isolated nodes
if len(self.graph[s] ) != 0:
UpperCAmelCase = s
for node in self.graph[s]:
if visited.count(node[1] ) < 1:
if node[1] == d:
visited.append(A )
return visited
else:
stack.append(node[1] )
visited.append(node[1] )
UpperCAmelCase = node[1]
break
# check if all the children are visited
if s == ss:
stack.pop()
if len(A ) != 0:
UpperCAmelCase = stack[len(A ) - 1]
else:
UpperCAmelCase = ss
# check if se have reached the starting point
if len(A ) == 0:
return visited
def _UpperCamelCase ( self ,A=-1 ):
if c == -1:
UpperCAmelCase = floor(random() * 10_000 ) + 10
for i in range(A ):
# every vertex has max 100 edges
for _ in range(floor(random() * 102 ) + 1 ):
UpperCAmelCase = floor(random() * c ) + 1
if n != i:
self.add_pair(A ,A ,1 )
def _UpperCamelCase ( self ,A=-2 ):
UpperCAmelCase = deque()
UpperCAmelCase = []
if s == -2:
UpperCAmelCase = list(self.graph )[0]
d.append(A )
visited.append(A )
while d:
UpperCAmelCase = d.popleft()
if len(self.graph[s] ) != 0:
for node in self.graph[s]:
if visited.count(node[1] ) < 1:
d.append(node[1] )
visited.append(node[1] )
return visited
def _UpperCamelCase ( self ,A ):
return len(self.graph[u] )
def _UpperCamelCase ( self ):
UpperCAmelCase = []
UpperCAmelCase = []
UpperCAmelCase = list(self.graph )[0]
stack.append(A )
visited.append(A )
UpperCAmelCase = -2
UpperCAmelCase = []
UpperCAmelCase = s
UpperCAmelCase = False
UpperCAmelCase = set()
while True:
# check if there is any non isolated nodes
if len(self.graph[s] ) != 0:
UpperCAmelCase = s
for node in self.graph[s]:
if (
visited.count(node[1] ) > 0
and node[1] != parent
and indirect_parents.count(node[1] ) > 0
and not on_the_way_back
):
UpperCAmelCase = len(A ) - 1
while len_stack >= 0:
if stack[len_stack] == node[1]:
anticipating_nodes.add(node[1] )
break
else:
anticipating_nodes.add(stack[len_stack] )
len_stack -= 1
if visited.count(node[1] ) < 1:
stack.append(node[1] )
visited.append(node[1] )
UpperCAmelCase = node[1]
break
# check if all the children are visited
if s == ss:
stack.pop()
UpperCAmelCase = True
if len(A ) != 0:
UpperCAmelCase = stack[len(A ) - 1]
else:
UpperCAmelCase = False
indirect_parents.append(A )
UpperCAmelCase = s
UpperCAmelCase = ss
# check if se have reached the starting point
if len(A ) == 0:
return list(A )
def _UpperCamelCase ( self ):
UpperCAmelCase = []
UpperCAmelCase = []
UpperCAmelCase = list(self.graph )[0]
stack.append(A )
visited.append(A )
UpperCAmelCase = -2
UpperCAmelCase = []
UpperCAmelCase = s
UpperCAmelCase = False
UpperCAmelCase = set()
while True:
# check if there is any non isolated nodes
if len(self.graph[s] ) != 0:
UpperCAmelCase = s
for node in self.graph[s]:
if (
visited.count(node[1] ) > 0
and node[1] != parent
and indirect_parents.count(node[1] ) > 0
and not on_the_way_back
):
UpperCAmelCase = len(A ) - 1
while len_stack_minus_one >= 0:
if stack[len_stack_minus_one] == node[1]:
anticipating_nodes.add(node[1] )
break
else:
return True
if visited.count(node[1] ) < 1:
stack.append(node[1] )
visited.append(node[1] )
UpperCAmelCase = node[1]
break
# check if all the children are visited
if s == ss:
stack.pop()
UpperCAmelCase = True
if len(A ) != 0:
UpperCAmelCase = stack[len(A ) - 1]
else:
UpperCAmelCase = False
indirect_parents.append(A )
UpperCAmelCase = s
UpperCAmelCase = ss
# check if se have reached the starting point
if len(A ) == 0:
return False
def _UpperCamelCase ( self ):
return list(self.graph )
def _UpperCamelCase ( self ,A=-2 ,A=-1 ):
UpperCAmelCase = time()
self.dfs(A ,A )
UpperCAmelCase = time()
return end - begin
def _UpperCamelCase ( self ,A=-2 ):
UpperCAmelCase = time()
self.bfs(A )
UpperCAmelCase = time()
return end - begin
| 358 |
"""simple docstring"""
from pathlib import Path
from typing import List
from transformers import is_torch_available, is_vision_available
from transformers.testing_utils import get_tests_dir, is_tool_test
from transformers.tools.agent_types import AGENT_TYPE_MAPPING, AgentAudio, AgentImage, AgentText
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
_UpperCamelCase = ["""text""", """image""", """audio"""]
def _a ( _snake_case ):
"""simple docstring"""
UpperCAmelCase = []
for input_type in input_types:
if input_type == "text":
inputs.append("""Text input""" )
elif input_type == "image":
inputs.append(
Image.open(Path(get_tests_dir("""fixtures/tests_samples/COCO""" ) ) / """000000039769.png""" ).resize((512, 512) ) )
elif input_type == "audio":
inputs.append(torch.ones(3000 ) )
elif isinstance(_snake_case , _snake_case ):
inputs.append(create_inputs(_snake_case ) )
else:
raise ValueError(F'''Invalid type requested: {input_type}''' )
return inputs
def _a ( _snake_case ):
"""simple docstring"""
UpperCAmelCase = []
for output in outputs:
if isinstance(_snake_case , (str, AgentText) ):
output_types.append("""text""" )
elif isinstance(_snake_case , (Image.Image, AgentImage) ):
output_types.append("""image""" )
elif isinstance(_snake_case , (torch.Tensor, AgentAudio) ):
output_types.append("""audio""" )
else:
raise ValueError(F'''Invalid output: {output}''' )
return output_types
@is_tool_test
class lowerCamelCase__ :
def _UpperCamelCase ( self ):
self.assertTrue(hasattr(self.tool ,"""inputs""" ) )
self.assertTrue(hasattr(self.tool ,"""outputs""" ) )
UpperCAmelCase = self.tool.inputs
for _input in inputs:
if isinstance(_input ,A ):
for __input in _input:
self.assertTrue(__input in authorized_types )
else:
self.assertTrue(_input in authorized_types )
UpperCAmelCase = self.tool.outputs
for _output in outputs:
self.assertTrue(_output in authorized_types )
def _UpperCamelCase ( self ):
UpperCAmelCase = create_inputs(self.tool.inputs )
UpperCAmelCase = self.tool(*A )
# There is a single output
if len(self.tool.outputs ) == 1:
UpperCAmelCase = [outputs]
self.assertListEqual(output_types(A ) ,self.tool.outputs )
def _UpperCamelCase ( self ):
self.assertTrue(hasattr(self.tool ,"""description""" ) )
self.assertTrue(hasattr(self.tool ,"""default_checkpoint""" ) )
self.assertTrue(self.tool.description.startswith("""This is a tool that""" ) )
def _UpperCamelCase ( self ):
UpperCAmelCase = create_inputs(self.tool.inputs )
UpperCAmelCase = self.tool(*A )
if not isinstance(A ,A ):
UpperCAmelCase = [outputs]
self.assertEqual(len(A ) ,len(self.tool.outputs ) )
for output, output_type in zip(A ,self.tool.outputs ):
UpperCAmelCase = AGENT_TYPE_MAPPING[output_type]
self.assertTrue(isinstance(A ,A ) )
def _UpperCamelCase ( self ):
UpperCAmelCase = create_inputs(self.tool.inputs )
UpperCAmelCase = []
for _input, input_type in zip(A ,self.tool.inputs ):
if isinstance(A ,A ):
_inputs.append([AGENT_TYPE_MAPPING[_input_type](_input ) for _input_type in input_type] )
else:
_inputs.append(AGENT_TYPE_MAPPING[input_type](_input ) )
# Should not raise an error
UpperCAmelCase = self.tool(*A )
if not isinstance(A ,A ):
UpperCAmelCase = [outputs]
self.assertEqual(len(A ) ,len(self.tool.outputs ) )
| 234 | 0 |
import unittest
from huggingface_hub import hf_hub_download
from transformers import MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, VideoMAEFeatureExtractor
from transformers.pipelines import VideoClassificationPipeline, pipeline
from transformers.testing_utils import (
is_pipeline_test,
nested_simplify,
require_decord,
require_tf,
require_torch,
require_torch_or_tf,
require_vision,
)
from .test_pipelines_common import ANY
@is_pipeline_test
@require_torch_or_tf
@require_vision
@require_decord
class lowercase__ ( unittest.TestCase ):
a_ =MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING
def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase )-> Union[str, Any]:
'''simple docstring'''
lowerCAmelCase__ = hf_hub_download(
repo_id="nateraw/video-demo" , filename="archery.mp4" , repo_type="dataset" )
lowerCAmelCase__ = VideoClassificationPipeline(model=__UpperCAmelCase , image_processor=__UpperCAmelCase , top_k=2 )
lowerCAmelCase__ = [
example_video_filepath,
"https://huggingface.co/datasets/nateraw/video-demo/resolve/main/archery.mp4",
]
return video_classifier, examples
def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase )-> List[str]:
'''simple docstring'''
for example in examples:
lowerCAmelCase__ = video_classifier(__UpperCAmelCase )
self.assertEqual(
__UpperCAmelCase , [
{"score": ANY(__UpperCAmelCase ), "label": ANY(__UpperCAmelCase )},
{"score": ANY(__UpperCAmelCase ), "label": ANY(__UpperCAmelCase )},
] , )
@require_torch
def UpperCAmelCase ( self )-> Optional[Any]:
'''simple docstring'''
lowerCAmelCase__ = "hf-internal-testing/tiny-random-VideoMAEForVideoClassification"
lowerCAmelCase__ = VideoMAEFeatureExtractor(
size={"shortest_edge": 10} , crop_size={"height": 10, "width": 10} )
lowerCAmelCase__ = pipeline(
"video-classification" , model=__UpperCAmelCase , feature_extractor=__UpperCAmelCase , frame_sampling_rate=4 )
lowerCAmelCase__ = hf_hub_download(repo_id="nateraw/video-demo" , filename="archery.mp4" , repo_type="dataset" )
lowerCAmelCase__ = video_classifier(__UpperCAmelCase , top_k=2 )
self.assertEqual(
nested_simplify(__UpperCAmelCase , decimals=4 ) , [{"score": 0.5_199, "label": "LABEL_0"}, {"score": 0.4_801, "label": "LABEL_1"}] , )
lowerCAmelCase__ = video_classifier(
[
video_file_path,
video_file_path,
] , top_k=2 , )
self.assertEqual(
nested_simplify(__UpperCAmelCase , decimals=4 ) , [
[{"score": 0.5_199, "label": "LABEL_0"}, {"score": 0.4_801, "label": "LABEL_1"}],
[{"score": 0.5_199, "label": "LABEL_0"}, {"score": 0.4_801, "label": "LABEL_1"}],
] , )
@require_tf
def UpperCAmelCase ( self )-> Any:
'''simple docstring'''
pass
| 340 |
import argparse
import json
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import ViTImageProcessor, ViTMSNConfig, ViTMSNModel
from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
torch.set_grad_enabled(False)
def _a ( UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : int=False ) -> Tuple:
"""simple docstring"""
lowerCAmelCase__ = []
for i in range(config.num_hidden_layers ):
# encoder layers: output projection, 2 feedforward neural networks and 2 layernorms
rename_keys.append((F"module.blocks.{i}.norm1.weight", F"vit.encoder.layer.{i}.layernorm_before.weight") )
rename_keys.append((F"module.blocks.{i}.norm1.bias", F"vit.encoder.layer.{i}.layernorm_before.bias") )
rename_keys.append(
(F"module.blocks.{i}.attn.proj.weight", F"vit.encoder.layer.{i}.attention.output.dense.weight") )
rename_keys.append((F"module.blocks.{i}.attn.proj.bias", F"vit.encoder.layer.{i}.attention.output.dense.bias") )
rename_keys.append((F"module.blocks.{i}.norm2.weight", F"vit.encoder.layer.{i}.layernorm_after.weight") )
rename_keys.append((F"module.blocks.{i}.norm2.bias", F"vit.encoder.layer.{i}.layernorm_after.bias") )
rename_keys.append((F"module.blocks.{i}.mlp.fc1.weight", F"vit.encoder.layer.{i}.intermediate.dense.weight") )
rename_keys.append((F"module.blocks.{i}.mlp.fc1.bias", F"vit.encoder.layer.{i}.intermediate.dense.bias") )
rename_keys.append((F"module.blocks.{i}.mlp.fc2.weight", F"vit.encoder.layer.{i}.output.dense.weight") )
rename_keys.append((F"module.blocks.{i}.mlp.fc2.bias", F"vit.encoder.layer.{i}.output.dense.bias") )
# projection layer + position embeddings
rename_keys.extend(
[
("module.cls_token", "vit.embeddings.cls_token"),
("module.patch_embed.proj.weight", "vit.embeddings.patch_embeddings.projection.weight"),
("module.patch_embed.proj.bias", "vit.embeddings.patch_embeddings.projection.bias"),
("module.pos_embed", "vit.embeddings.position_embeddings"),
] )
if base_model:
# layernorm + pooler
rename_keys.extend(
[
("module.norm.weight", "layernorm.weight"),
("module.norm.bias", "layernorm.bias"),
] )
# if just the base model, we should remove "vit" from all keys that start with "vit"
lowerCAmelCase__ = [(pair[0], pair[1][4:]) if pair[1].startswith("vit" ) else pair for pair in rename_keys]
else:
# layernorm + classification head
rename_keys.extend(
[
("norm.weight", "vit.layernorm.weight"),
("norm.bias", "vit.layernorm.bias"),
("head.weight", "classifier.weight"),
("head.bias", "classifier.bias"),
] )
return rename_keys
def _a ( UpperCamelCase_ : List[str] , UpperCamelCase_ : int , UpperCamelCase_ : str=False ) -> List[str]:
"""simple docstring"""
for i in range(config.num_hidden_layers ):
if base_model:
lowerCAmelCase__ = ""
else:
lowerCAmelCase__ = "vit."
# read in weights + bias of input projection layer (in timm, this is a single matrix + bias)
lowerCAmelCase__ = state_dict.pop(F"module.blocks.{i}.attn.qkv.weight" )
lowerCAmelCase__ = state_dict.pop(F"module.blocks.{i}.attn.qkv.bias" )
# next, add query, keys and values (in that order) to the state dict
lowerCAmelCase__ = in_proj_weight[
: config.hidden_size, :
]
lowerCAmelCase__ = in_proj_bias[: config.hidden_size]
lowerCAmelCase__ = in_proj_weight[
config.hidden_size : config.hidden_size * 2, :
]
lowerCAmelCase__ = in_proj_bias[
config.hidden_size : config.hidden_size * 2
]
lowerCAmelCase__ = in_proj_weight[
-config.hidden_size :, :
]
lowerCAmelCase__ = in_proj_bias[-config.hidden_size :]
def _a ( UpperCamelCase_ : Dict ) -> Tuple:
"""simple docstring"""
lowerCAmelCase__ = ["head.weight", "head.bias"]
for k in ignore_keys:
state_dict.pop(UpperCamelCase_ , UpperCamelCase_ )
def _a ( UpperCamelCase_ : Union[str, Any] ) -> Optional[int]:
"""simple docstring"""
lowerCAmelCase__ = [
"module.fc.fc1.weight",
"module.fc.fc1.bias",
"module.fc.bn1.weight",
"module.fc.bn1.bias",
"module.fc.bn1.running_mean",
"module.fc.bn1.running_var",
"module.fc.bn1.num_batches_tracked",
"module.fc.fc2.weight",
"module.fc.fc2.bias",
"module.fc.bn2.weight",
"module.fc.bn2.bias",
"module.fc.bn2.running_mean",
"module.fc.bn2.running_var",
"module.fc.bn2.num_batches_tracked",
"module.fc.fc3.weight",
"module.fc.fc3.bias",
]
for k in ignore_keys:
state_dict.pop(UpperCamelCase_ , UpperCamelCase_ )
def _a ( UpperCamelCase_ : Optional[int] , UpperCamelCase_ : List[Any] , UpperCamelCase_ : Any ) -> List[Any]:
"""simple docstring"""
lowerCAmelCase__ = dct.pop(UpperCamelCase_ )
lowerCAmelCase__ = val
def _a ( UpperCamelCase_ : List[str] , UpperCamelCase_ : Union[str, Any] ) -> Tuple:
"""simple docstring"""
lowerCAmelCase__ = ViTMSNConfig()
lowerCAmelCase__ = 1_000
lowerCAmelCase__ = "datasets/huggingface/label-files"
lowerCAmelCase__ = "imagenet-1k-id2label.json"
lowerCAmelCase__ = json.load(open(hf_hub_download(UpperCamelCase_ , UpperCamelCase_ ) , "r" ) )
lowerCAmelCase__ = {int(UpperCamelCase_ ): v for k, v in idalabel.items()}
lowerCAmelCase__ = idalabel
lowerCAmelCase__ = {v: k for k, v in idalabel.items()}
if "s16" in checkpoint_url:
lowerCAmelCase__ = 384
lowerCAmelCase__ = 1_536
lowerCAmelCase__ = 6
elif "l16" in checkpoint_url:
lowerCAmelCase__ = 1_024
lowerCAmelCase__ = 4_096
lowerCAmelCase__ = 24
lowerCAmelCase__ = 16
lowerCAmelCase__ = 0.1
elif "b4" in checkpoint_url:
lowerCAmelCase__ = 4
elif "l7" in checkpoint_url:
lowerCAmelCase__ = 7
lowerCAmelCase__ = 1_024
lowerCAmelCase__ = 4_096
lowerCAmelCase__ = 24
lowerCAmelCase__ = 16
lowerCAmelCase__ = 0.1
lowerCAmelCase__ = ViTMSNModel(UpperCamelCase_ )
lowerCAmelCase__ = torch.hub.load_state_dict_from_url(UpperCamelCase_ , map_location="cpu" )["target_encoder"]
lowerCAmelCase__ = ViTImageProcessor(size=config.image_size )
remove_projection_head(UpperCamelCase_ )
lowerCAmelCase__ = create_rename_keys(UpperCamelCase_ , base_model=UpperCamelCase_ )
for src, dest in rename_keys:
rename_key(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ )
read_in_q_k_v(UpperCamelCase_ , UpperCamelCase_ , base_model=UpperCamelCase_ )
model.load_state_dict(UpperCamelCase_ )
model.eval()
lowerCAmelCase__ = "http://images.cocodataset.org/val2017/000000039769.jpg"
lowerCAmelCase__ = Image.open(requests.get(UpperCamelCase_ , stream=UpperCamelCase_ ).raw )
lowerCAmelCase__ = ViTImageProcessor(
size=config.image_size , image_mean=UpperCamelCase_ , image_std=UpperCamelCase_ )
lowerCAmelCase__ = image_processor(images=UpperCamelCase_ , return_tensors="pt" )
# forward pass
torch.manual_seed(2 )
lowerCAmelCase__ = model(**UpperCamelCase_ )
lowerCAmelCase__ = outputs.last_hidden_state
# The following Colab Notebook was used to generate these outputs:
# https://colab.research.google.com/gist/sayakpaul/3672419a04f5997827503fd84079bdd1/scratchpad.ipynb
if "s16" in checkpoint_url:
lowerCAmelCase__ = torch.tensor([[-1.0_915, -1.4_876, -1.1_809]] )
elif "b16" in checkpoint_url:
lowerCAmelCase__ = torch.tensor([[14.2_889, -18.9_045, 11.7_281]] )
elif "l16" in checkpoint_url:
lowerCAmelCase__ = torch.tensor([[41.5_028, -22.8_681, 45.6_475]] )
elif "b4" in checkpoint_url:
lowerCAmelCase__ = torch.tensor([[-4.3_868, 5.2_932, -0.4_137]] )
else:
lowerCAmelCase__ = torch.tensor([[-0.1_792, -0.6_465, 2.4_263]] )
# verify logits
assert torch.allclose(last_hidden_state[:, 0, :3] , UpperCamelCase_ , atol=1e-4 )
print(F"Saving model to {pytorch_dump_folder_path}" )
model.save_pretrained(UpperCamelCase_ )
print(F"Saving image processor to {pytorch_dump_folder_path}" )
image_processor.save_pretrained(UpperCamelCase_ )
if __name__ == "__main__":
a_ = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''--checkpoint_url''',
default='''https://dl.fbaipublicfiles.com/msn/vits16_800ep.pth.tar''',
type=str,
help='''URL of the checkpoint you\'d like to convert.''',
)
parser.add_argument(
'''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.'''
)
a_ = parser.parse_args()
convert_vit_msn_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
| 340 | 1 |
import unittest
import numpy as np
import timeout_decorator # noqa
from transformers import BlenderbotConfig, is_flax_available
from transformers.testing_utils import jax_device, require_flax, slow
from ...generation.test_flax_utils import FlaxGenerationTesterMixin
from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor
if is_flax_available():
import os
# The slow tests are often failing with OOM error on GPU
# This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed
# but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html
lowercase : List[str] = 'platform'
import jax
import jax.numpy as jnp
from transformers import BlenderbotTokenizer
from transformers.models.blenderbot.modeling_flax_blenderbot import (
FlaxBlenderbotForConditionalGeneration,
FlaxBlenderbotModel,
shift_tokens_right,
)
def _SCREAMING_SNAKE_CASE ( _lowerCamelCase : str , _lowerCamelCase : Tuple , _lowerCamelCase : Tuple=None , _lowerCamelCase : Optional[Any]=None , _lowerCamelCase : int=None , _lowerCamelCase : List[Any]=None , _lowerCamelCase : Optional[int]=None , _lowerCamelCase : Optional[Any]=None , ) -> List[str]:
'''simple docstring'''
if attention_mask is None:
__UpperCamelCase : Union[str, Any] = np.where(input_ids != config.pad_token_id , 1 , 0)
if decoder_attention_mask is None:
__UpperCamelCase : Any = np.where(decoder_input_ids != config.pad_token_id , 1 , 0)
if head_mask is None:
__UpperCamelCase : Union[str, Any] = np.ones((config.encoder_layers, config.encoder_attention_heads))
if decoder_head_mask is None:
__UpperCamelCase : str = np.ones((config.decoder_layers, config.decoder_attention_heads))
if cross_attn_head_mask is None:
__UpperCamelCase : str = np.ones((config.decoder_layers, config.decoder_attention_heads))
return {
"input_ids": input_ids,
"decoder_input_ids": decoder_input_ids,
"attention_mask": attention_mask,
"decoder_attention_mask": attention_mask,
}
class lowerCamelCase__ :
'''simple docstring'''
def __init__( self :List[str] , a :List[str] , a :Optional[Any]=1_3 , a :List[Any]=7 , a :Optional[Any]=True , a :Any=False , a :Union[str, Any]=9_9 , a :List[str]=1_6 , a :Tuple=2 , a :Dict=4 , a :List[Any]=4 , a :Optional[int]="gelu" , a :str=0.1 , a :Union[str, Any]=0.1 , a :List[Any]=3_2 , a :Optional[Any]=2 , a :Optional[Any]=1 , a :Union[str, Any]=0 , a :Tuple=0.02 , ) -> Optional[Any]:
__UpperCamelCase : str = parent
__UpperCamelCase : Any = batch_size
__UpperCamelCase : List[Any] = seq_length
__UpperCamelCase : List[str] = is_training
__UpperCamelCase : Any = use_labels
__UpperCamelCase : Optional[int] = vocab_size
__UpperCamelCase : Optional[Any] = hidden_size
__UpperCamelCase : List[Any] = num_hidden_layers
__UpperCamelCase : int = num_attention_heads
__UpperCamelCase : int = intermediate_size
__UpperCamelCase : List[Any] = hidden_act
__UpperCamelCase : int = hidden_dropout_prob
__UpperCamelCase : Any = attention_probs_dropout_prob
__UpperCamelCase : List[str] = max_position_embeddings
__UpperCamelCase : Optional[int] = eos_token_id
__UpperCamelCase : Any = pad_token_id
__UpperCamelCase : Any = bos_token_id
__UpperCamelCase : Optional[int] = initializer_range
def _lowerCamelCase ( self :Dict ) -> List[str]:
__UpperCamelCase : Optional[Any] = np.clip(ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) , 3 , self.vocab_size )
__UpperCamelCase : int = np.concatenate((input_ids, 2 * np.ones((self.batch_size, 1) , dtype=np.intaa )) , -1 )
__UpperCamelCase : Union[str, Any] = shift_tokens_right(a , 1 , 2 )
__UpperCamelCase : Any = BlenderbotConfig(
vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , initializer_range=self.initializer_range , use_cache=a , )
__UpperCamelCase : int = prepare_blenderbot_inputs_dict(a , a , a )
return config, inputs_dict
def _lowerCamelCase ( self :Dict ) -> str:
__UpperCamelCase : List[Any] = self.prepare_config_and_inputs()
return config, inputs_dict
def _lowerCamelCase ( self :Tuple , a :Any , a :Union[str, Any] , a :Any ) -> int:
__UpperCamelCase : Union[str, Any] = 2_0
__UpperCamelCase : Dict = model_class_name(a )
__UpperCamelCase : Optional[int] = model.encode(inputs_dict["input_ids"] )
__UpperCamelCase : Optional[int] = (
inputs_dict["decoder_input_ids"],
inputs_dict["decoder_attention_mask"],
)
__UpperCamelCase : Dict = model.init_cache(decoder_input_ids.shape[0] , a , a )
__UpperCamelCase : Optional[int] = jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype="i4" )
__UpperCamelCase : Union[str, Any] = jnp.broadcast_to(
jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , )
__UpperCamelCase : int = model.decode(
decoder_input_ids[:, :-1] , a , decoder_attention_mask=a , past_key_values=a , decoder_position_ids=a , )
__UpperCamelCase : Tuple = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="i4" )
__UpperCamelCase : Dict = model.decode(
decoder_input_ids[:, -1:] , a , decoder_attention_mask=a , past_key_values=outputs_cache.past_key_values , decoder_position_ids=a , )
__UpperCamelCase : Optional[Any] = model.decode(a , a )
__UpperCamelCase : str = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) )
self.parent.assertTrue(diff < 1E-3 , msg=f'Max diff is {diff}' )
def _lowerCamelCase ( self :Dict , a :Optional[int] , a :Dict , a :Union[str, Any] ) -> List[str]:
__UpperCamelCase : Union[str, Any] = 2_0
__UpperCamelCase : List[Any] = model_class_name(a )
__UpperCamelCase : List[Any] = model.encode(inputs_dict["input_ids"] )
__UpperCamelCase : Optional[int] = (
inputs_dict["decoder_input_ids"],
inputs_dict["decoder_attention_mask"],
)
__UpperCamelCase : int = jnp.concatenate(
[
decoder_attention_mask,
jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1]) ),
] , axis=-1 , )
__UpperCamelCase : Any = model.init_cache(decoder_input_ids.shape[0] , a , a )
__UpperCamelCase : List[Any] = jnp.broadcast_to(
jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , )
__UpperCamelCase : List[Any] = model.decode(
decoder_input_ids[:, :-1] , a , decoder_attention_mask=a , past_key_values=a , decoder_position_ids=a , )
__UpperCamelCase : List[str] = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="i4" )
__UpperCamelCase : List[Any] = model.decode(
decoder_input_ids[:, -1:] , a , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=a , decoder_position_ids=a , )
__UpperCamelCase : int = model.decode(a , a , decoder_attention_mask=a )
__UpperCamelCase : Optional[Any] = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) )
self.parent.assertTrue(diff < 1E-3 , msg=f'Max diff is {diff}' )
@require_flax
class lowerCamelCase__ ( unittest.TestCase):
'''simple docstring'''
_A = 9_9
def _lowerCamelCase ( self :int ) -> str:
__UpperCamelCase : Any = np.array(
[
[7_1, 8_2, 1_8, 3_3, 4_6, 9_1, 2],
[6_8, 3_4, 2_6, 5_8, 3_0, 8_2, 2],
[5, 9_7, 1_7, 3_9, 9_4, 4_0, 2],
[7_6, 8_3, 9_4, 2_5, 7_0, 7_8, 2],
[8_7, 5_9, 4_1, 3_5, 4_8, 6_6, 2],
[5_5, 1_3, 1_6, 5_8, 5, 2, 1], # note padding
[6_4, 2_7, 3_1, 5_1, 1_2, 7_5, 2],
[5_2, 6_4, 8_6, 1_7, 8_3, 3_9, 2],
[4_8, 6_1, 9, 2_4, 7_1, 8_2, 2],
[2_6, 1, 6_0, 4_8, 2_2, 1_3, 2],
[2_1, 5, 6_2, 2_8, 1_4, 7_6, 2],
[4_5, 9_8, 3_7, 8_6, 5_9, 4_8, 2],
[7_0, 7_0, 5_0, 9, 2_8, 0, 2],
] , dtype=np.intaa , )
__UpperCamelCase : Dict = input_ids.shape[0]
__UpperCamelCase : List[Any] = BlenderbotConfig(
vocab_size=self.vocab_size , d_model=2_4 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=3_2 , decoder_ffn_dim=3_2 , max_position_embeddings=4_8 , eos_token_id=2 , pad_token_id=1 , bos_token_id=0 , )
return config, input_ids, batch_size
def _lowerCamelCase ( self :int ) -> int:
__UpperCamelCase : Tuple = self._get_config_and_data()
__UpperCamelCase : Union[str, Any] = FlaxBlenderbotForConditionalGeneration(a )
__UpperCamelCase : Dict = lm_model(input_ids=a )
__UpperCamelCase : str = (batch_size, input_ids.shape[1], config.vocab_size)
self.assertEqual(outputs["logits"].shape , a )
def _lowerCamelCase ( self :List[str] ) -> Union[str, Any]:
__UpperCamelCase : Any = BlenderbotConfig(
vocab_size=self.vocab_size , d_model=1_4 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=8 , decoder_ffn_dim=8 , max_position_embeddings=4_8 , )
__UpperCamelCase : List[str] = FlaxBlenderbotForConditionalGeneration(a )
__UpperCamelCase : Optional[Any] = np.array([[7_1, 8_2, 1_8, 3_3, 4_6, 9_1, 2], [6_8, 3_4, 2_6, 5_8, 3_0, 2, 1]] , dtype=np.intaa )
__UpperCamelCase : Tuple = np.array([[8_2, 7_1, 8_2, 1_8, 2], [5_8, 6_8, 2, 1, 1]] , dtype=np.intaa )
__UpperCamelCase : Dict = lm_model(input_ids=a , decoder_input_ids=a )
__UpperCamelCase : List[str] = (*summary.shape, config.vocab_size)
self.assertEqual(outputs["logits"].shape , a )
def _lowerCamelCase ( self :Dict ) -> Dict:
__UpperCamelCase : Optional[Any] = np.array([[7_1, 8_2, 1_8, 3_3, 2, 1, 1], [6_8, 3_4, 2_6, 5_8, 3_0, 8_2, 2]] , dtype=np.intaa )
__UpperCamelCase : List[Any] = shift_tokens_right(a , 1 , 2 )
__UpperCamelCase : int = np.equal(a , 1 ).astype(np.floataa ).sum()
__UpperCamelCase : Optional[Any] = np.equal(a , 1 ).astype(np.floataa ).sum()
self.assertEqual(shifted.shape , input_ids.shape )
self.assertEqual(a , n_pad_before - 1 )
self.assertTrue(np.equal(shifted[:, 0] , 2 ).all() )
@require_flax
class lowerCamelCase__ ( __lowercase , unittest.TestCase , __lowercase):
'''simple docstring'''
_A = True
_A = (
(
FlaxBlenderbotModel,
FlaxBlenderbotForConditionalGeneration,
)
if is_flax_available()
else ()
)
_A = (FlaxBlenderbotForConditionalGeneration,) if is_flax_available() else ()
def _lowerCamelCase ( self :Tuple ) -> int:
__UpperCamelCase : Any = FlaxBlenderbotModelTester(self )
def _lowerCamelCase ( self :str ) -> int:
__UpperCamelCase : int = self.model_tester.prepare_config_and_inputs()
for model_class in self.all_model_classes:
self.model_tester.check_use_cache_forward(a , a , a )
def _lowerCamelCase ( self :List[Any] ) -> List[Any]:
__UpperCamelCase : List[str] = self.model_tester.prepare_config_and_inputs()
for model_class in self.all_model_classes:
self.model_tester.check_use_cache_forward_with_attn_mask(a , a , a )
def _lowerCamelCase ( self :str ) -> Union[str, Any]:
__UpperCamelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__ ):
__UpperCamelCase : List[str] = self._prepare_for_class(a , a )
__UpperCamelCase : Dict = model_class(a )
@jax.jit
def encode_jitted(a :List[Any] , a :Any=None , **a :Dict ):
return model.encode(input_ids=a , attention_mask=a )
with self.subTest("JIT Enabled" ):
__UpperCamelCase : List[str] = encode_jitted(**a ).to_tuple()
with self.subTest("JIT Disabled" ):
with jax.disable_jit():
__UpperCamelCase : List[str] = encode_jitted(**a ).to_tuple()
self.assertEqual(len(a ) , len(a ) )
for jitted_output, output in zip(a , a ):
self.assertEqual(jitted_output.shape , output.shape )
def _lowerCamelCase ( self :List[str] ) -> List[Any]:
__UpperCamelCase : List[str] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__ ):
__UpperCamelCase : List[str] = model_class(a )
__UpperCamelCase : Any = model.encode(inputs_dict["input_ids"] , inputs_dict["attention_mask"] )
__UpperCamelCase : List[str] = {
"decoder_input_ids": inputs_dict["decoder_input_ids"],
"decoder_attention_mask": inputs_dict["decoder_attention_mask"],
"encoder_outputs": encoder_outputs,
}
@jax.jit
def decode_jitted(a :Tuple , a :Optional[Any] , a :Optional[int] ):
return model.decode(
decoder_input_ids=a , decoder_attention_mask=a , encoder_outputs=a , )
with self.subTest("JIT Enabled" ):
__UpperCamelCase : Optional[Any] = decode_jitted(**a ).to_tuple()
with self.subTest("JIT Disabled" ):
with jax.disable_jit():
__UpperCamelCase : Any = decode_jitted(**a ).to_tuple()
self.assertEqual(len(a ) , len(a ) )
for jitted_output, output in zip(a , a ):
self.assertEqual(jitted_output.shape , output.shape )
@slow
def _lowerCamelCase ( self :Any ) -> int:
for model_class_name in self.all_model_classes:
__UpperCamelCase : int = model_class_name.from_pretrained("facebook/blenderbot-400M-distill" )
# FlaxBlenderbotForSequenceClassification expects eos token in input_ids
__UpperCamelCase : Optional[int] = np.ones((1, 1) ) * model.config.eos_token_id
__UpperCamelCase : Optional[int] = model(a )
self.assertIsNotNone(a )
@unittest.skipUnless(jax_device != "cpu" , "3B test too slow on CPU." )
@slow
def _lowerCamelCase ( self :int ) -> Dict:
__UpperCamelCase : Dict = {"num_beams": 1, "early_stopping": True, "min_length": 1_5, "max_length": 2_5}
__UpperCamelCase : List[Any] = {"skip_special_tokens": True, "clean_up_tokenization_spaces": True}
__UpperCamelCase : Optional[int] = FlaxBlenderbotForConditionalGeneration.from_pretrained("facebook/blenderbot-3B" , from_pt=a )
__UpperCamelCase : Tuple = BlenderbotTokenizer.from_pretrained("facebook/blenderbot-3B" )
__UpperCamelCase : Optional[int] = ["Sam"]
__UpperCamelCase : int = tokenizer(a , return_tensors="jax" )
__UpperCamelCase : Tuple = model.generate(**a , **a )
__UpperCamelCase : int = "Sam is a great name. It means \"sun\" in Gaelic."
__UpperCamelCase : str = tokenizer.batch_decode(a , **a )
assert generated_txt[0].strip() == tgt_text | 361 |
import importlib.util
import os
import platform
from argparse import ArgumentParser
import huggingface_hub
from .. import __version__ as version
from ..utils import (
is_accelerate_available,
is_flax_available,
is_safetensors_available,
is_tf_available,
is_torch_available,
)
from . import BaseTransformersCLICommand
def _SCREAMING_SNAKE_CASE ( _lowerCamelCase : Optional[int]) -> Dict:
'''simple docstring'''
return EnvironmentCommand()
def _SCREAMING_SNAKE_CASE ( _lowerCamelCase : Dict) -> Dict:
'''simple docstring'''
return EnvironmentCommand(args.accelerate_config_file)
class lowerCamelCase__ ( __lowercase):
'''simple docstring'''
@staticmethod
def _lowerCamelCase ( a :ArgumentParser ) -> str:
__UpperCamelCase : List[Any] = parser.add_parser("env" )
download_parser.set_defaults(func=a )
download_parser.add_argument(
"--accelerate-config_file" , default=a , help="The accelerate config file to use for the default values in the launching script." , )
download_parser.set_defaults(func=a )
def __init__( self :Tuple , a :Dict , *a :List[str] ) -> None:
__UpperCamelCase : List[str] = accelerate_config_file
def _lowerCamelCase ( self :int ) -> Dict:
__UpperCamelCase : int = "not installed"
if is_safetensors_available():
import safetensors
__UpperCamelCase : List[str] = safetensors.__version__
elif importlib.util.find_spec("safetensors" ) is not None:
import safetensors
__UpperCamelCase : Optional[Any] = f'{safetensors.__version__} but is ignored because of PyTorch version too old.'
__UpperCamelCase : List[str] = "not installed"
__UpperCamelCase : List[str] = "not found"
if is_accelerate_available():
import accelerate
from accelerate.commands.config import default_config_file, load_config_from_file
__UpperCamelCase : Tuple = accelerate.__version__
# Get the default from the config file.
if self._accelerate_config_file is not None or os.path.isfile(a ):
__UpperCamelCase : Dict = load_config_from_file(self._accelerate_config_file ).to_dict()
__UpperCamelCase : int = (
"\n".join([f'\t- {prop}: {val}' for prop, val in accelerate_config.items()] )
if isinstance(a , a )
else f'\t{accelerate_config}'
)
__UpperCamelCase : List[Any] = "not installed"
__UpperCamelCase : Dict = "NA"
if is_torch_available():
import torch
__UpperCamelCase : Optional[int] = torch.__version__
__UpperCamelCase : Optional[Any] = torch.cuda.is_available()
__UpperCamelCase : Dict = "not installed"
__UpperCamelCase : str = "NA"
if is_tf_available():
import tensorflow as tf
__UpperCamelCase : Optional[Any] = tf.__version__
try:
# deprecated in v2.1
__UpperCamelCase : Dict = tf.test.is_gpu_available()
except AttributeError:
# returns list of devices, convert to bool
__UpperCamelCase : Optional[Any] = bool(tf.config.list_physical_devices("GPU" ) )
__UpperCamelCase : List[Any] = "not installed"
__UpperCamelCase : Any = "not installed"
__UpperCamelCase : Tuple = "not installed"
__UpperCamelCase : Optional[int] = "NA"
if is_flax_available():
import flax
import jax
import jaxlib
__UpperCamelCase : int = flax.__version__
__UpperCamelCase : Any = jax.__version__
__UpperCamelCase : Optional[int] = jaxlib.__version__
__UpperCamelCase : List[Any] = jax.lib.xla_bridge.get_backend().platform
__UpperCamelCase : Optional[Any] = {
"`transformers` version": version,
"Platform": platform.platform(),
"Python version": platform.python_version(),
"Huggingface_hub version": huggingface_hub.__version__,
"Safetensors version": f'{safetensors_version}',
"Accelerate version": f'{accelerate_version}',
"Accelerate config": f'{accelerate_config_str}',
"PyTorch version (GPU?)": f'{pt_version} ({pt_cuda_available})',
"Tensorflow version (GPU?)": f'{tf_version} ({tf_cuda_available})',
"Flax version (CPU?/GPU?/TPU?)": f'{flax_version} ({jax_backend})',
"Jax version": f'{jax_version}',
"JaxLib version": f'{jaxlib_version}',
"Using GPU in script?": "<fill in>",
"Using distributed or parallel set-up in script?": "<fill in>",
}
print("\nCopy-and-paste the text below in your GitHub issue and FILL OUT the two last points.\n" )
print(self.format_dict(a ) )
return info
@staticmethod
def _lowerCamelCase ( a :str ) -> int:
return "\n".join([f'- {prop}: {val}' for prop, val in d.items()] ) + "\n" | 151 | 0 |
from manim import *
class a__ ( UpperCAmelCase ):
"""simple docstring"""
def _lowercase ( self : Tuple ) ->int:
"""simple docstring"""
SCREAMING_SNAKE_CASE : Union[str, Any] = Rectangle(height=0.5 , width=0.5 )
SCREAMING_SNAKE_CASE : List[Any] = Rectangle(height=0.25 , width=0.25 )
SCREAMING_SNAKE_CASE : Any = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 )
SCREAMING_SNAKE_CASE : Union[str, Any] = [mem.copy() for i in range(6 )]
SCREAMING_SNAKE_CASE : Any = [mem.copy() for i in range(6 )]
SCREAMING_SNAKE_CASE : int = VGroup(*UpperCAmelCase__ ).arrange(UpperCAmelCase__ , buff=0 )
SCREAMING_SNAKE_CASE : Tuple = VGroup(*UpperCAmelCase__ ).arrange(UpperCAmelCase__ , buff=0 )
SCREAMING_SNAKE_CASE : Optional[Any] = VGroup(UpperCAmelCase__ , UpperCAmelCase__ ).arrange(UpperCAmelCase__ , buff=0 )
SCREAMING_SNAKE_CASE : Optional[int] = Text("""CPU""" , font_size=2_4 )
SCREAMING_SNAKE_CASE : Optional[int] = Group(UpperCAmelCase__ , UpperCAmelCase__ ).arrange(UpperCAmelCase__ , buff=0.5 , aligned_edge=UpperCAmelCase__ )
cpu.move_to([-2.5, -0.5, 0] )
self.add(UpperCAmelCase__ )
SCREAMING_SNAKE_CASE : List[Any] = [mem.copy() for i in range(4 )]
SCREAMING_SNAKE_CASE : Any = VGroup(*UpperCAmelCase__ ).arrange(UpperCAmelCase__ , buff=0 )
SCREAMING_SNAKE_CASE : List[Any] = Text("""GPU""" , font_size=2_4 )
SCREAMING_SNAKE_CASE : Tuple = Group(UpperCAmelCase__ , UpperCAmelCase__ ).arrange(UpperCAmelCase__ , buff=0.5 , aligned_edge=UpperCAmelCase__ )
gpu.move_to([-1, -1, 0] )
self.add(UpperCAmelCase__ )
SCREAMING_SNAKE_CASE : Optional[int] = [mem.copy() for i in range(6 )]
SCREAMING_SNAKE_CASE : Any = VGroup(*UpperCAmelCase__ ).arrange(UpperCAmelCase__ , buff=0 )
SCREAMING_SNAKE_CASE : Tuple = Text("""Model""" , font_size=2_4 )
SCREAMING_SNAKE_CASE : Tuple = Group(UpperCAmelCase__ , UpperCAmelCase__ ).arrange(UpperCAmelCase__ , buff=0.5 , aligned_edge=UpperCAmelCase__ )
model.move_to([3, -1.0, 0] )
self.add(UpperCAmelCase__ )
SCREAMING_SNAKE_CASE : str = []
SCREAMING_SNAKE_CASE : str = []
SCREAMING_SNAKE_CASE : Any = []
for i, rect in enumerate(UpperCAmelCase__ ):
rect.set_stroke(UpperCAmelCase__ )
SCREAMING_SNAKE_CASE : Tuple = Rectangle(height=0.46 / 4 , width=0.46 / 3 ).set_stroke(width=0.0 ).set_fill(UpperCAmelCase__ , opacity=0.7 )
if i == 0:
cpu_target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) , buff=0.02 , direction=UpperCAmelCase__ )
cpu_target.set_x(cpu_target.get_x() + 0.1 )
elif i == 3:
cpu_target.next_to(model_cpu_arr[0] , direction=UpperCAmelCase__ , buff=0.0 )
else:
cpu_target.next_to(model_cpu_arr[i - 1] , direction=UpperCAmelCase__ , buff=0.0 )
self.add(UpperCAmelCase__ )
model_cpu_arr.append(UpperCAmelCase__ )
self.add(*UpperCAmelCase__ , *UpperCAmelCase__ , *UpperCAmelCase__ )
SCREAMING_SNAKE_CASE : Tuple = [mem.copy() for i in range(6 )]
SCREAMING_SNAKE_CASE : Any = VGroup(*UpperCAmelCase__ ).arrange(UpperCAmelCase__ , buff=0 )
SCREAMING_SNAKE_CASE : List[str] = Text("""Loaded Checkpoint""" , font_size=2_4 )
SCREAMING_SNAKE_CASE : int = Group(UpperCAmelCase__ , UpperCAmelCase__ ).arrange(UpperCAmelCase__ , buff=0.5 , aligned_edge=UpperCAmelCase__ )
checkpoint.move_to([3, 0.5, 0] )
self.add(UpperCAmelCase__ )
SCREAMING_SNAKE_CASE : Tuple = []
SCREAMING_SNAKE_CASE : Dict = []
for i, rect in enumerate(UpperCAmelCase__ ):
SCREAMING_SNAKE_CASE : Dict = fill.copy().set_fill(UpperCAmelCase__ , opacity=0.7 )
target.move_to(UpperCAmelCase__ )
ckpt_arr.append(UpperCAmelCase__ )
SCREAMING_SNAKE_CASE : Any = target.copy()
if i < 5:
cpu_target.move_to(cpu_left_col_base[i + 1] )
else:
cpu_target.move_to(cpu_right_col_base[i - 5] )
ckpt_cpu_arr.append(UpperCAmelCase__ )
self.add(*UpperCAmelCase__ , *UpperCAmelCase__ )
SCREAMING_SNAKE_CASE : Optional[Any] = Square(side_length=2.2 )
key.move_to([-5, 2, 0] )
SCREAMING_SNAKE_CASE : List[str] = MarkupText(
f"<b>Key:</b>\n\n<span fgcolor='{YELLOW}'>●</span> Empty Model" , font_size=1_8 , )
key_text.move_to([-5, 2.4, 0] )
self.add(UpperCAmelCase__ , UpperCAmelCase__ )
SCREAMING_SNAKE_CASE : List[str] = MarkupText(
f"<span fgcolor='{BLUE}'>●</span> Checkpoint" , font_size=1_8 , )
blue_text.next_to(UpperCAmelCase__ , DOWN * 2.4 , aligned_edge=key_text.get_left() )
self.add(UpperCAmelCase__ )
SCREAMING_SNAKE_CASE : List[Any] = MarkupText(
f"Based on the passed in configuration, weights are stored in\na variety of np.memmaps on disk or to a particular device." , font_size=2_4 , )
step_a.move_to([2, 2, 0] )
SCREAMING_SNAKE_CASE : Union[str, Any] = [meta_mem.copy() for i in range(6 )]
SCREAMING_SNAKE_CASE : List[str] = [meta_mem.copy() for i in range(6 )]
SCREAMING_SNAKE_CASE : List[Any] = VGroup(*UpperCAmelCase__ ).arrange(UpperCAmelCase__ , buff=0 )
SCREAMING_SNAKE_CASE : Optional[int] = VGroup(*UpperCAmelCase__ ).arrange(UpperCAmelCase__ , buff=0 )
SCREAMING_SNAKE_CASE : List[str] = VGroup(UpperCAmelCase__ , UpperCAmelCase__ ).arrange(UpperCAmelCase__ , buff=0 )
SCREAMING_SNAKE_CASE : List[Any] = Text("""Disk""" , font_size=2_4 )
SCREAMING_SNAKE_CASE : Tuple = Group(UpperCAmelCase__ , UpperCAmelCase__ ).arrange(UpperCAmelCase__ , buff=0.5 , aligned_edge=UpperCAmelCase__ )
disk.move_to([-4.0, -1.25, 0] )
self.play(Write(UpperCAmelCase__ , run_time=3 ) , Write(UpperCAmelCase__ , run_time=1 ) , Create(UpperCAmelCase__ , run_time=1 ) )
SCREAMING_SNAKE_CASE : int = []
for i, rect in enumerate(UpperCAmelCase__ ):
SCREAMING_SNAKE_CASE : Dict = rect.copy()
target.generate_target()
target.target.move_to(disk_left_col_base[i] ).scale(0.5 )
animations.append(MoveToTarget(UpperCAmelCase__ , run_time=1.5 ) )
self.play(*UpperCAmelCase__ )
self.play(FadeOut(UpperCAmelCase__ ) )
SCREAMING_SNAKE_CASE : Union[str, Any] = MarkupText(f"Then, the checkpoint is removed from memory\nthrough garbage collection." , font_size=2_4 )
step_a.move_to([2, 2, 0] )
self.play(Write(UpperCAmelCase__ , run_time=3 ) )
self.play(
FadeOut(UpperCAmelCase__ , UpperCAmelCase__ , *UpperCAmelCase__ , *UpperCAmelCase__ ) , )
self.wait()
| 245 |
from __future__ import annotations
import os
import tempfile
import unittest
import numpy as np
from huggingface_hub import hf_hub_download
from transformers import is_tensorflow_text_available, is_tf_available
from transformers.testing_utils import require_tensorflow_text, require_tf, slow
from ..test_modeling_tf_common import floats_tensor
from .test_framework_agnostic import GenerationIntegrationTestsMixin
if is_tf_available():
import tensorflow as tf
from transformers import (
AutoTokenizer,
TFAutoModelForCausalLM,
TFAutoModelForSeqaSeqLM,
TFAutoModelForSpeechSeqaSeq,
TFAutoModelForVisionaSeq,
TFBartForConditionalGeneration,
TFLogitsProcessorList,
TFMinLengthLogitsProcessor,
tf_top_k_top_p_filtering,
)
if is_tensorflow_text_available():
import tensorflow_text as text
@require_tf
class a__ ( unittest.TestCase ):
"""simple docstring"""
def _lowercase ( self : Union[str, Any] ) ->List[Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE : Dict = tf.convert_to_tensor(
[
[
8.2_22_09_91, # 3rd highest value; idx. 0
-0.5_62_00_44,
5.23_22_97_52,
4.0_38_63_93,
-6.8_79_83_78,
-0.54_78_58_02,
-3.2_01_21_53,
2.92_77_71_76,
1.88_17_19_53,
7.35_34_12_76, # 5th highest value; idx. 9
8.43_20_78_33, # 2nd highest value; idx. 10
-9.85_71_18_36,
-5.96_20_92_36,
-1.13_03_91_61,
-7.1_11_52_94,
-0.8_36_96_33,
-5.3_18_64_08,
7.06_42_74_07,
0.81_36_93_44,
-0.82_02_38_17,
-5.9_17_97_96,
0.58_81_34_43,
-6.99_77_84_38,
4.71_55_11_89,
-0.18_77_16_37,
7.44_02_07_59, # 4th highest value; idx. 25
9.38_45_09_87, # 1st highest value; idx. 26
2.12_66_29_41,
-9.32_56_20_38,
2.35_65_25_22,
], # cummulative prob of 5 highest values <= 0.6
[
0.58_42_55_18,
4.53_13_92_38,
-5.57_51_04_64,
-6.28_03_06_99,
-7.19_52_95_03,
-4.02_12_25_51,
1.39_33_70_37,
-6.06_70_70_57,
1.59_48_05_17,
-9.64_31_19,
0.03_90_77_99,
0.67_23_17_62,
-8.88_20_67_26,
6.27_11_59_22, # 4th highest value; idx. 13
2.28_52_07_23,
4.82_76_75_06,
4.30_42_13_68,
8.8_27_53_13, # 2nd highest value; idx. 17
5.44_02_99_58, # 5th highest value; idx. 18
-4.4_73_57_94,
7.38_57_95_36, # 3rd highest value; idx. 20
-2.91_05_16_63,
2.61_94_60_77,
-2.5_67_47_62,
-9.48_95_93_02,
-4.02_92_26_45,
-1.35_41_69_18,
9.67_70_23_23, # 1st highest value; idx. 27
-5.89_47_85_53,
1.85_37_04_67,
], # cummulative prob of 5 highest values <= 0.6
] , dtype=tf.floataa , )
SCREAMING_SNAKE_CASE : List[Any] = tf.convert_to_tensor(
[[0, 0], [0, 9], [0, 1_0], [0, 2_5], [0, 2_6], [1, 1_3], [1, 1_7], [1, 1_8], [1, 2_0], [1, 2_7]] , dtype=tf.intaa , ) # expected non filtered idx as noted above
SCREAMING_SNAKE_CASE : Optional[int] = tf.convert_to_tensor(
[8.22_20_99, 7.3_53_41_26, 8.43_20_78, 7.4_40_20_75, 9.3_84_51, 6.27_11_59, 8.82_75_31, 5.4_40_29_95, 7.3_85_79_56, 9.67_70_23] , dtype=tf.floataa , ) # expected non filtered values as noted above
SCREAMING_SNAKE_CASE : Dict = tf_top_k_top_p_filtering(UpperCAmelCase__ , top_k=1_0 , top_p=0.6 , min_tokens_to_keep=4 )
SCREAMING_SNAKE_CASE : str = output[output != -float("""inf""" )]
SCREAMING_SNAKE_CASE : Optional[int] = tf.cast(
tf.where(tf.not_equal(UpperCAmelCase__ , tf.constant(-float("""inf""" ) , dtype=tf.floataa ) ) ) , dtype=tf.intaa , )
tf.debugging.assert_near(UpperCAmelCase__ , UpperCAmelCase__ , rtol=1e-12 )
tf.debugging.assert_equal(UpperCAmelCase__ , UpperCAmelCase__ )
@require_tf
class a__ ( unittest.TestCase , UpperCAmelCase ):
"""simple docstring"""
if is_tf_available():
UpperCAmelCase__ : Optional[Any] ={
"""AutoModelForCausalLM""": TFAutoModelForCausalLM,
"""AutoModelForSpeechSeq2Seq""": TFAutoModelForSpeechSeqaSeq,
"""AutoModelForSeq2SeqLM""": TFAutoModelForSeqaSeqLM,
"""AutoModelForVision2Seq""": TFAutoModelForVisionaSeq,
"""LogitsProcessorList""": TFLogitsProcessorList,
"""MinLengthLogitsProcessor""": TFMinLengthLogitsProcessor,
"""create_tensor_fn""": tf.convert_to_tensor,
"""floats_tensor""": floats_tensor,
"""return_tensors""": """tf""",
}
@slow
def _lowercase ( self : int ) ->List[Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE : Optional[Any] = TFAutoModelForCausalLM.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" )
SCREAMING_SNAKE_CASE : str = 2
SCREAMING_SNAKE_CASE : Tuple = 2
class a__ ( tf.Module ):
"""simple docstring"""
def __init__( self : Tuple , UpperCAmelCase__ : Optional[int] ) ->str:
"""simple docstring"""
super(UpperCAmelCase__ , self ).__init__()
SCREAMING_SNAKE_CASE : Optional[int] = model
@tf.function(
input_signature=(
tf.TensorSpec((None, input_length) , tf.intaa , name="""input_ids""" ),
tf.TensorSpec((None, input_length) , tf.intaa , name="""attention_mask""" ),
) , jit_compile=UpperCAmelCase__ , )
def _lowercase ( self : List[Any] , UpperCAmelCase__ : Any , UpperCAmelCase__ : List[str] ) ->List[str]:
"""simple docstring"""
SCREAMING_SNAKE_CASE : List[Any] = self.model.generate(
input_ids=UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , max_new_tokens=UpperCAmelCase__ , return_dict_in_generate=UpperCAmelCase__ , )
return {"sequences": outputs["sequences"]}
SCREAMING_SNAKE_CASE : Any = [[2, 0], [1_0_2, 1_0_3]]
SCREAMING_SNAKE_CASE : Tuple = [[1, 0], [1, 1]]
SCREAMING_SNAKE_CASE : Dict = DummyModel(model=UpperCAmelCase__ )
with tempfile.TemporaryDirectory() as tmp_dir:
tf.saved_model.save(UpperCAmelCase__ , UpperCAmelCase__ , signatures={"""serving_default""": dummy_model.serving} )
SCREAMING_SNAKE_CASE : Optional[int] = tf.saved_model.load(UpperCAmelCase__ ).signatures["""serving_default"""]
for batch_size in range(1 , len(UpperCAmelCase__ ) + 1 ):
SCREAMING_SNAKE_CASE : int = {
"""input_ids""": tf.constant(dummy_input_ids[:batch_size] ),
"""attention_mask""": tf.constant(dummy_attention_masks[:batch_size] ),
}
SCREAMING_SNAKE_CASE : Tuple = serving_func(**UpperCAmelCase__ )["""sequences"""]
SCREAMING_SNAKE_CASE : List[str] = test_model.generate(**UpperCAmelCase__ , max_new_tokens=UpperCAmelCase__ )
tf.debugging.assert_equal(UpperCAmelCase__ , UpperCAmelCase__ )
@slow
def _lowercase ( self : Dict ) ->int:
"""simple docstring"""
SCREAMING_SNAKE_CASE : Union[str, Any] = TFAutoModelForCausalLM.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" )
SCREAMING_SNAKE_CASE : Any = 1
SCREAMING_SNAKE_CASE : int = 2
class a__ ( tf.Module ):
"""simple docstring"""
def __init__( self : List[Any] , UpperCAmelCase__ : Optional[Any] ) ->Optional[int]:
"""simple docstring"""
super(UpperCAmelCase__ , self ).__init__()
SCREAMING_SNAKE_CASE : List[str] = model
@tf.function(
input_signature=(
tf.TensorSpec((batch_size, None) , tf.intaa , name="""input_ids""" ),
tf.TensorSpec((batch_size, None) , tf.intaa , name="""attention_mask""" ),
) , jit_compile=UpperCAmelCase__ , )
def _lowercase ( self : List[Any] , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : str ) ->Any:
"""simple docstring"""
SCREAMING_SNAKE_CASE : int = self.model.generate(
input_ids=UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , max_new_tokens=UpperCAmelCase__ , return_dict_in_generate=UpperCAmelCase__ , )
return {"sequences": outputs["sequences"]}
SCREAMING_SNAKE_CASE : List[Any] = [[2], [1_0_2, 1_0_3]]
SCREAMING_SNAKE_CASE : List[Any] = [[1], [1, 1]]
SCREAMING_SNAKE_CASE : Union[str, Any] = DummyModel(model=UpperCAmelCase__ )
with tempfile.TemporaryDirectory() as tmp_dir:
tf.saved_model.save(UpperCAmelCase__ , UpperCAmelCase__ , signatures={"""serving_default""": dummy_model.serving} )
SCREAMING_SNAKE_CASE : int = tf.saved_model.load(UpperCAmelCase__ ).signatures["""serving_default"""]
for input_row in range(len(UpperCAmelCase__ ) ):
SCREAMING_SNAKE_CASE : str = {
"""input_ids""": tf.constant([dummy_input_ids[input_row]] ),
"""attention_mask""": tf.constant([dummy_attention_masks[input_row]] ),
}
SCREAMING_SNAKE_CASE : List[str] = serving_func(**UpperCAmelCase__ )["""sequences"""]
SCREAMING_SNAKE_CASE : List[Any] = test_model.generate(**UpperCAmelCase__ , max_new_tokens=UpperCAmelCase__ )
tf.debugging.assert_equal(UpperCAmelCase__ , UpperCAmelCase__ )
@slow
@require_tensorflow_text
def _lowercase ( self : Optional[Any] ) ->Tuple:
"""simple docstring"""
with tempfile.TemporaryDirectory() as tmp_dir:
# file needed to load the TF tokenizer
hf_hub_download(repo_id="""google/flan-t5-small""" , filename="""spiece.model""" , local_dir=UpperCAmelCase__ )
class a__ ( tf.keras.layers.Layer ):
"""simple docstring"""
def __init__( self : Optional[Any] ) ->List[str]:
"""simple docstring"""
super().__init__()
SCREAMING_SNAKE_CASE : Any = text.SentencepieceTokenizer(
model=tf.io.gfile.GFile(os.path.join(UpperCAmelCase__ , """spiece.model""" ) , """rb""" ).read() )
SCREAMING_SNAKE_CASE : Dict = TFAutoModelForSeqaSeqLM.from_pretrained("""hf-internal-testing/tiny-random-t5""" )
def _lowercase ( self : int , UpperCAmelCase__ : Any , *UpperCAmelCase__ : Optional[Any] , **UpperCAmelCase__ : str ) ->int:
"""simple docstring"""
SCREAMING_SNAKE_CASE : Optional[Any] = self.tokenizer.tokenize(UpperCAmelCase__ )
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : str = text.pad_model_inputs(
UpperCAmelCase__ , max_seq_length=6_4 , pad_value=self.model.config.pad_token_id )
SCREAMING_SNAKE_CASE : Union[str, Any] = self.model.generate(input_ids=UpperCAmelCase__ , attention_mask=UpperCAmelCase__ )
return self.tokenizer.detokenize(UpperCAmelCase__ )
SCREAMING_SNAKE_CASE : str = CompleteSentenceTransformer()
SCREAMING_SNAKE_CASE : Tuple = tf.keras.layers.Input(shape=(1,) , dtype=tf.string , name="""inputs""" )
SCREAMING_SNAKE_CASE : str = complete_model(UpperCAmelCase__ )
SCREAMING_SNAKE_CASE : Optional[int] = tf.keras.Model(UpperCAmelCase__ , UpperCAmelCase__ )
keras_model.save(UpperCAmelCase__ )
def _lowercase ( self : Optional[Any] ) ->List[str]:
"""simple docstring"""
SCREAMING_SNAKE_CASE : List[Any] = {
"""do_sample""": True,
"""num_beams""": 1,
"""top_p""": 0.7,
"""top_k""": 1_0,
"""temperature""": 0.7,
}
SCREAMING_SNAKE_CASE : Tuple = 1_4
SCREAMING_SNAKE_CASE : List[Any] = AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" )
SCREAMING_SNAKE_CASE : List[Any] = """Hello, my dog is cute and"""
SCREAMING_SNAKE_CASE : Tuple = tokenizer(UpperCAmelCase__ , return_tensors="""tf""" )
SCREAMING_SNAKE_CASE : Optional[int] = TFAutoModelForCausalLM.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" )
SCREAMING_SNAKE_CASE : Dict = 6_3_8
# forces the generation to happen on CPU, to avoid GPU-related quirks
with tf.device(""":/CPU:0""" ):
tf.random.set_seed(0 )
SCREAMING_SNAKE_CASE : int = model.generate(**UpperCAmelCase__ , eos_token_id=UpperCAmelCase__ , **UpperCAmelCase__ )
self.assertTrue(expectation == len(generated_tokens[0] ) )
SCREAMING_SNAKE_CASE : Dict = [6_3_8, 1_9_8]
with tf.device(""":/CPU:0""" ):
tf.random.set_seed(0 )
SCREAMING_SNAKE_CASE : Dict = model.generate(**UpperCAmelCase__ , eos_token_id=UpperCAmelCase__ , **UpperCAmelCase__ )
self.assertTrue(expectation == len(generated_tokens[0] ) )
def _lowercase ( self : str ) ->List[Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE : Optional[int] = AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-bart""" )
SCREAMING_SNAKE_CASE : List[Any] = """Hugging Face is a technology company based in New York and Paris."""
SCREAMING_SNAKE_CASE : Optional[int] = bart_tokenizer(UpperCAmelCase__ , return_tensors="""tf""" ).input_ids
SCREAMING_SNAKE_CASE : int = TFBartForConditionalGeneration.from_pretrained("""hf-internal-testing/tiny-random-bart""" )
SCREAMING_SNAKE_CASE : Optional[int] = bart_model.generate(UpperCAmelCase__ ).numpy()
class a__ ( UpperCAmelCase ):
"""simple docstring"""
def _lowercase ( self : Any , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : Dict=None , **UpperCAmelCase__ : Dict ) ->List[str]:
"""simple docstring"""
return super().call(UpperCAmelCase__ , **UpperCAmelCase__ )
SCREAMING_SNAKE_CASE : Optional[int] = FakeBart.from_pretrained("""hf-internal-testing/tiny-random-bart""" )
SCREAMING_SNAKE_CASE : Optional[int] = bart_model.generate(UpperCAmelCase__ , foo="""bar""" ).numpy()
self.assertTrue(np.array_equal(UpperCAmelCase__ , UpperCAmelCase__ ) )
class a__ ( bart_model.model.encoder.__class__ ):
"""simple docstring"""
def _lowercase ( self : List[Any] , UpperCAmelCase__ : List[Any] , **UpperCAmelCase__ : Optional[int] ) ->Union[str, Any]:
"""simple docstring"""
return super().call(UpperCAmelCase__ , **UpperCAmelCase__ )
SCREAMING_SNAKE_CASE : Optional[Any] = FakeEncoder(bart_model.config , bart_model.model.shared )
SCREAMING_SNAKE_CASE : Tuple = fake_encoder
# Normal generation still works (the output will be different because the encoder weights are different)
SCREAMING_SNAKE_CASE : Tuple = bart_model.generate(UpperCAmelCase__ ).numpy()
with self.assertRaises(UpperCAmelCase__ ):
# FakeEncoder.call() accepts **kwargs -> no filtering -> value error due to unexpected input "foo"
bart_model.generate(UpperCAmelCase__ , foo="""bar""" )
| 245 | 1 |
'''simple docstring'''
import inspect
import unittest
import numpy as np
from tests.test_modeling_common import floats_tensor
from transformers import DetrConfig, MaskFormerConfig, SwinConfig, is_torch_available, is_vision_available
from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device
from transformers.utils import cached_property
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import MaskFormerForInstanceSegmentation, MaskFormerModel
if is_vision_available():
from transformers import MaskFormerImageProcessor
if is_vision_available():
from PIL import Image
class _a :
'''simple docstring'''
def __init__( self, A, A=2, A=True, A=False, A=10, A=3, A=32 * 4, A=32 * 6, A=4, A=32, ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Tuple = parent
SCREAMING_SNAKE_CASE : int = batch_size
SCREAMING_SNAKE_CASE : Tuple = is_training
SCREAMING_SNAKE_CASE : str = use_auxiliary_loss
SCREAMING_SNAKE_CASE : Optional[Any] = num_queries
SCREAMING_SNAKE_CASE : List[str] = num_channels
SCREAMING_SNAKE_CASE : Optional[Any] = min_size
SCREAMING_SNAKE_CASE : Dict = max_size
SCREAMING_SNAKE_CASE : List[Any] = num_labels
SCREAMING_SNAKE_CASE : List[Any] = mask_feature_size
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Union[str, Any] = floats_tensor([self.batch_size, self.num_channels, self.min_size, self.max_size] ).to(
A )
SCREAMING_SNAKE_CASE : int = torch.ones([self.batch_size, self.min_size, self.max_size], device=A )
SCREAMING_SNAKE_CASE : List[Any] = (
torch.rand([self.batch_size, self.num_labels, self.min_size, self.max_size], device=A ) > 0.5
).float()
SCREAMING_SNAKE_CASE : Union[str, Any] = (torch.rand((self.batch_size, self.num_labels), device=A ) > 0.5).long()
SCREAMING_SNAKE_CASE : List[Any] = self.get_config()
return config, pixel_values, pixel_mask, mask_labels, class_labels
def UpperCamelCase_ ( self ):
'''simple docstring'''
return MaskFormerConfig.from_backbone_and_decoder_configs(
backbone_config=SwinConfig(
depths=[1, 1, 1, 1], ), decoder_config=DetrConfig(
decoder_ffn_dim=128, num_queries=self.num_queries, decoder_attention_heads=2, d_model=self.mask_feature_size, ), mask_feature_size=self.mask_feature_size, fpn_feature_size=self.mask_feature_size, num_channels=self.num_channels, num_labels=self.num_labels, )
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : List[Any] = self.prepare_config_and_inputs()
SCREAMING_SNAKE_CASE : Union[str, Any] = {"""pixel_values""": pixel_values, """pixel_mask""": pixel_mask}
return config, inputs_dict
def UpperCamelCase_ ( self, A, A ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Any = output.encoder_hidden_states
SCREAMING_SNAKE_CASE : Dict = output.pixel_decoder_hidden_states
SCREAMING_SNAKE_CASE : str = output.transformer_decoder_hidden_states
self.parent.assertTrue(len(A ), len(config.backbone_config.depths ) )
self.parent.assertTrue(len(A ), len(config.backbone_config.depths ) )
self.parent.assertTrue(len(A ), config.decoder_config.decoder_layers )
def UpperCamelCase_ ( self, A, A, A, A=False ):
'''simple docstring'''
with torch.no_grad():
SCREAMING_SNAKE_CASE : int = MaskFormerModel(config=A )
model.to(A )
model.eval()
SCREAMING_SNAKE_CASE : List[Any] = model(pixel_values=A, pixel_mask=A )
SCREAMING_SNAKE_CASE : Union[str, Any] = model(A, output_hidden_states=A )
# the correct shape of output.transformer_decoder_hidden_states ensure the correcteness of the
# encoder and pixel decoder
self.parent.assertEqual(
output.transformer_decoder_last_hidden_state.shape, (self.batch_size, self.num_queries, self.mask_feature_size), )
# let's ensure the other two hidden state exists
self.parent.assertTrue(output.pixel_decoder_last_hidden_state is not None )
self.parent.assertTrue(output.encoder_last_hidden_state is not None )
if output_hidden_states:
self.check_output_hidden_state(A, A )
def UpperCamelCase_ ( self, A, A, A, A, A ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Tuple = MaskFormerForInstanceSegmentation(config=A )
model.to(A )
model.eval()
def comm_check_on_output(A ):
# let's still check that all the required stuff is there
self.parent.assertTrue(result.transformer_decoder_last_hidden_state is not None )
self.parent.assertTrue(result.pixel_decoder_last_hidden_state is not None )
self.parent.assertTrue(result.encoder_last_hidden_state is not None )
# okay, now we need to check the logits shape
# due to the encoder compression, masks have a //4 spatial size
self.parent.assertEqual(
result.masks_queries_logits.shape, (self.batch_size, self.num_queries, self.min_size // 4, self.max_size // 4), )
# + 1 for null class
self.parent.assertEqual(
result.class_queries_logits.shape, (self.batch_size, self.num_queries, self.num_labels + 1) )
with torch.no_grad():
SCREAMING_SNAKE_CASE : Dict = model(pixel_values=A, pixel_mask=A )
SCREAMING_SNAKE_CASE : List[str] = model(A )
comm_check_on_output(A )
SCREAMING_SNAKE_CASE : Union[str, Any] = model(
pixel_values=A, pixel_mask=A, mask_labels=A, class_labels=A )
comm_check_on_output(A )
self.parent.assertTrue(result.loss is not None )
self.parent.assertEqual(result.loss.shape, torch.Size([1] ) )
@require_torch
class _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
A : Tuple = (MaskFormerModel, MaskFormerForInstanceSegmentation) if is_torch_available() else ()
A : Any = (
{'''feature-extraction''': MaskFormerModel, '''image-segmentation''': MaskFormerForInstanceSegmentation}
if is_torch_available()
else {}
)
A : int = False
A : Dict = False
A : str = False
A : List[Any] = False
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Tuple = MaskFormerModelTester(self )
SCREAMING_SNAKE_CASE : str = ConfigTester(self, config_class=A, has_text_modality=A )
def UpperCamelCase_ ( self ):
'''simple docstring'''
self.config_tester.run_common_tests()
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : List[str] = self.model_tester.prepare_config_and_inputs_for_common()
self.model_tester.create_and_check_maskformer_model(A, **A, output_hidden_states=A )
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Dict = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_maskformer_instance_segmentation_head_model(*A )
@unittest.skip(reason='MaskFormer does not use inputs_embeds' )
def UpperCamelCase_ ( self ):
'''simple docstring'''
pass
@unittest.skip(reason='MaskFormer does not have a get_input_embeddings method' )
def UpperCamelCase_ ( self ):
'''simple docstring'''
pass
@unittest.skip(reason='MaskFormer is not a generative model' )
def UpperCamelCase_ ( self ):
'''simple docstring'''
pass
@unittest.skip(reason='MaskFormer does not use token embeddings' )
def UpperCamelCase_ ( self ):
'''simple docstring'''
pass
@require_torch_multi_gpu
@unittest.skip(
reason='MaskFormer has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`' )
def UpperCamelCase_ ( self ):
'''simple docstring'''
pass
@unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' )
def UpperCamelCase_ ( self ):
'''simple docstring'''
pass
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Any = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
SCREAMING_SNAKE_CASE : Optional[Any] = model_class(A )
SCREAMING_SNAKE_CASE : int = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
SCREAMING_SNAKE_CASE : List[str] = [*signature.parameters.keys()]
SCREAMING_SNAKE_CASE : int = ["""pixel_values"""]
self.assertListEqual(arg_names[:1], A )
@slow
def UpperCamelCase_ ( self ):
'''simple docstring'''
for model_name in ["facebook/maskformer-swin-small-coco"]:
SCREAMING_SNAKE_CASE : List[str] = MaskFormerModel.from_pretrained(A )
self.assertIsNotNone(A )
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Any = (self.model_tester.min_size,) * 2
SCREAMING_SNAKE_CASE : Dict = {
"""pixel_values""": torch.randn((2, 3, *size), device=A ),
"""mask_labels""": torch.randn((2, 10, *size), device=A ),
"""class_labels""": torch.zeros(2, 10, device=A ).long(),
}
SCREAMING_SNAKE_CASE : Dict = MaskFormerForInstanceSegmentation(MaskFormerConfig() ).to(A )
SCREAMING_SNAKE_CASE : str = model(**A )
self.assertTrue(outputs.loss is not None )
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common()
self.model_tester.create_and_check_maskformer_model(A, **A, output_hidden_states=A )
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
SCREAMING_SNAKE_CASE : List[str] = model_class(A ).to(A )
SCREAMING_SNAKE_CASE : Tuple = model(**A, output_attentions=A )
self.assertTrue(outputs.attentions is not None )
def UpperCamelCase_ ( self ):
'''simple docstring'''
if not self.model_tester.is_training:
return
# only MaskFormerForInstanceSegmentation has the loss
SCREAMING_SNAKE_CASE : Optional[int] = self.all_model_classes[1]
SCREAMING_SNAKE_CASE : str = self.model_tester.prepare_config_and_inputs()
SCREAMING_SNAKE_CASE : Union[str, Any] = model_class(A )
model.to(A )
model.train()
SCREAMING_SNAKE_CASE : str = model(A, mask_labels=A, class_labels=A ).loss
loss.backward()
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : List[str] = self.all_model_classes[1]
SCREAMING_SNAKE_CASE : Any = self.model_tester.prepare_config_and_inputs()
SCREAMING_SNAKE_CASE : List[str] = True
SCREAMING_SNAKE_CASE : List[str] = True
SCREAMING_SNAKE_CASE : Dict = model_class(A )
model.to(A )
model.train()
SCREAMING_SNAKE_CASE : Union[str, Any] = model(A, mask_labels=A, class_labels=A )
SCREAMING_SNAKE_CASE : Optional[Any] = outputs.encoder_hidden_states[0]
encoder_hidden_states.retain_grad()
SCREAMING_SNAKE_CASE : List[str] = outputs.pixel_decoder_hidden_states[0]
pixel_decoder_hidden_states.retain_grad()
# we requires_grad=True in inputs_embeds (line 2152), the original implementation don't
SCREAMING_SNAKE_CASE : Optional[int] = outputs.transformer_decoder_hidden_states[0]
transformer_decoder_hidden_states.retain_grad()
SCREAMING_SNAKE_CASE : Tuple = outputs.attentions[0]
attentions.retain_grad()
outputs.loss.backward(retain_graph=A )
self.assertIsNotNone(encoder_hidden_states.grad )
self.assertIsNotNone(pixel_decoder_hidden_states.grad )
self.assertIsNotNone(transformer_decoder_hidden_states.grad )
self.assertIsNotNone(attentions.grad )
UpperCamelCase_ = 1E-4
def lowercase__( ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : int = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' )
return image
@require_vision
@slow
class _a ( unittest.TestCase ):
'''simple docstring'''
@cached_property
def UpperCamelCase_ ( self ):
'''simple docstring'''
return (
MaskFormerImageProcessor.from_pretrained('facebook/maskformer-swin-small-coco' )
if is_vision_available()
else None
)
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Optional[int] = MaskFormerModel.from_pretrained('facebook/maskformer-swin-small-coco' ).to(A )
SCREAMING_SNAKE_CASE : Dict = self.default_image_processor
SCREAMING_SNAKE_CASE : Optional[int] = prepare_img()
SCREAMING_SNAKE_CASE : Dict = image_processor(A, return_tensors='pt' ).to(A )
SCREAMING_SNAKE_CASE : Union[str, Any] = inputs["""pixel_values"""].shape
# check size is divisible by 32
self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 )
# check size
self.assertEqual(A, (1, 3, 800, 1_088) )
with torch.no_grad():
SCREAMING_SNAKE_CASE : List[str] = model(**A )
SCREAMING_SNAKE_CASE : Any = torch.tensor(
[[-0.04_82, 0.92_28, 0.49_51], [-0.25_47, 0.80_17, 0.85_27], [-0.00_69, 0.33_85, -0.00_89]] ).to(A )
self.assertTrue(
torch.allclose(
outputs.encoder_last_hidden_state[0, 0, :3, :3], A, atol=A ) )
SCREAMING_SNAKE_CASE : Union[str, Any] = torch.tensor(
[[-0.84_22, -0.84_34, -0.97_18], [-1.01_44, -0.55_65, -0.41_95], [-1.00_38, -0.44_84, -0.19_61]] ).to(A )
self.assertTrue(
torch.allclose(
outputs.pixel_decoder_last_hidden_state[0, 0, :3, :3], A, atol=A ) )
SCREAMING_SNAKE_CASE : Optional[Any] = torch.tensor(
[[0.28_52, -0.01_59, 0.97_35], [0.62_54, 0.18_58, 0.85_29], [-0.06_80, -0.41_16, 1.84_13]] ).to(A )
self.assertTrue(
torch.allclose(
outputs.transformer_decoder_last_hidden_state[0, :3, :3], A, atol=A ) )
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Union[str, Any] = (
MaskFormerForInstanceSegmentation.from_pretrained('facebook/maskformer-swin-small-coco' )
.to(A )
.eval()
)
SCREAMING_SNAKE_CASE : Union[str, Any] = self.default_image_processor
SCREAMING_SNAKE_CASE : Optional[Any] = prepare_img()
SCREAMING_SNAKE_CASE : Optional[int] = image_processor(A, return_tensors='pt' ).to(A )
SCREAMING_SNAKE_CASE : Optional[int] = inputs["""pixel_values"""].shape
# check size is divisible by 32
self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 )
# check size
self.assertEqual(A, (1, 3, 800, 1_088) )
with torch.no_grad():
SCREAMING_SNAKE_CASE : List[str] = model(**A )
# masks_queries_logits
SCREAMING_SNAKE_CASE : Dict = outputs.masks_queries_logits
self.assertEqual(
masks_queries_logits.shape, (1, model.config.decoder_config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4), )
SCREAMING_SNAKE_CASE : Any = [
[-1.3_73_71_24, -1.7_72_49_37, -1.9_36_42_33],
[-1.5_97_72_81, -1.9_86_79_39, -2.1_52_36_95],
[-1.5_79_53_98, -1.9_26_98_32, -2.09_39_42],
]
SCREAMING_SNAKE_CASE : Optional[int] = torch.tensor(A ).to(A )
self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3], A, atol=A ) )
# class_queries_logits
SCREAMING_SNAKE_CASE : Optional[Any] = outputs.class_queries_logits
self.assertEqual(
class_queries_logits.shape, (1, model.config.decoder_config.num_queries, model.config.num_labels + 1) )
SCREAMING_SNAKE_CASE : Tuple = torch.tensor(
[
[1.6512E00, -5.2572E00, -3.3519E00],
[3.6169E-02, -5.9025E00, -2.9313E00],
[1.0766E-04, -7.7630E00, -5.1263E00],
] ).to(A )
self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3], A, atol=A ) )
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : List[str] = (
MaskFormerForInstanceSegmentation.from_pretrained('facebook/maskformer-resnet101-coco-stuff' )
.to(A )
.eval()
)
SCREAMING_SNAKE_CASE : Tuple = self.default_image_processor
SCREAMING_SNAKE_CASE : int = prepare_img()
SCREAMING_SNAKE_CASE : Any = image_processor(A, return_tensors='pt' ).to(A )
SCREAMING_SNAKE_CASE : List[str] = inputs["""pixel_values"""].shape
# check size is divisible by 32
self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 )
# check size
self.assertEqual(A, (1, 3, 800, 1_088) )
with torch.no_grad():
SCREAMING_SNAKE_CASE : Optional[Any] = model(**A )
# masks_queries_logits
SCREAMING_SNAKE_CASE : List[Any] = outputs.masks_queries_logits
self.assertEqual(
masks_queries_logits.shape, (1, model.config.decoder_config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4), )
SCREAMING_SNAKE_CASE : Optional[Any] = [[-0.90_46, -2.63_66, -4.60_62], [-3.41_79, -5.78_90, -8.80_57], [-4.91_79, -7.65_60, -10.77_11]]
SCREAMING_SNAKE_CASE : Union[str, Any] = torch.tensor(A ).to(A )
self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3], A, atol=A ) )
# class_queries_logits
SCREAMING_SNAKE_CASE : Dict = outputs.class_queries_logits
self.assertEqual(
class_queries_logits.shape, (1, model.config.decoder_config.num_queries, model.config.num_labels + 1) )
SCREAMING_SNAKE_CASE : int = torch.tensor(
[[4.71_88, -3.25_85, -2.88_57], [6.68_71, -2.91_81, -1.24_87], [7.24_49, -2.27_64, -2.18_74]] ).to(A )
self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3], A, atol=A ) )
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Dict = (
MaskFormerForInstanceSegmentation.from_pretrained('facebook/maskformer-swin-small-coco' )
.to(A )
.eval()
)
SCREAMING_SNAKE_CASE : List[str] = self.default_image_processor
SCREAMING_SNAKE_CASE : int = image_processor(
[np.zeros((3, 800, 1_333) ), np.zeros((3, 800, 1_333) )], segmentation_maps=[np.zeros((384, 384) ).astype(np.floataa ), np.zeros((384, 384) ).astype(np.floataa )], return_tensors='pt', )
SCREAMING_SNAKE_CASE : List[str] = inputs["""pixel_values"""].to(A )
SCREAMING_SNAKE_CASE : Tuple = [el.to(A ) for el in inputs["""mask_labels"""]]
SCREAMING_SNAKE_CASE : Union[str, Any] = [el.to(A ) for el in inputs["""class_labels"""]]
with torch.no_grad():
SCREAMING_SNAKE_CASE : Any = model(**A )
self.assertTrue(outputs.loss is not None )
| 351 |
'''simple docstring'''
def lowercase__( __UpperCamelCase: int ):
"""simple docstring"""
if divisor % 5 == 0 or divisor % 2 == 0:
return 0
SCREAMING_SNAKE_CASE : str = 1
SCREAMING_SNAKE_CASE : Optional[int] = 1
while repunit:
SCREAMING_SNAKE_CASE : List[str] = (10 * repunit + 1) % divisor
repunit_index += 1
return repunit_index
def lowercase__( __UpperCamelCase: int = 1_00_00_00 ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : Optional[int] = limit - 1
if divisor % 2 == 0:
divisor += 1
while least_divisible_repunit(__UpperCamelCase ) <= limit:
divisor += 2
return divisor
if __name__ == "__main__":
print(F"""{solution() = }""")
| 246 | 0 |
'''simple docstring'''
from __future__ import annotations
import math
def lowercase_ ( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) -> int:
'''simple docstring'''
if depth < 0:
raise ValueError('''Depth cannot be less than 0''' )
if not scores:
raise ValueError('''Scores cannot be empty''' )
if depth == height:
return scores[node_index]
return (
max(
minimax(depth + 1 , node_index * 2 , _lowercase , _lowercase , _lowercase ) , minimax(depth + 1 , node_index * 2 + 1 , _lowercase , _lowercase , _lowercase ) , )
if is_max
else min(
minimax(depth + 1 , node_index * 2 , _lowercase , _lowercase , _lowercase ) , minimax(depth + 1 , node_index * 2 + 1 , _lowercase , _lowercase , _lowercase ) , )
)
def lowercase_ ( ) -> None:
'''simple docstring'''
lowerCamelCase_ : List[str] = [90, 23, 6, 33, 21, 65, 123, 34_423]
lowerCamelCase_ : List[Any] = math.log(len(_lowercase ) , 2 )
print(F"""Optimal value : {minimax(0 , 0 , _lowercase , _lowercase , _lowercase )}""" )
if __name__ == "__main__":
import doctest
doctest.testmod()
main()
| 318 |
'''simple docstring'''
from dataclasses import dataclass
from typing import Tuple
import numpy as np
import torch
@dataclass
class snake_case__ :
a_ = 42 # [batch_size x 3]
a_ = 42 # [batch_size x 3]
a_ = 42 # [batch_size x 3]
a_ = 42 # [batch_size x 3]
a_ = 42
a_ = 42
a_ = 42
a_ = 42
a_ = 42
def A ( self : Tuple ) -> Optional[int]:
assert self.x.shape[0] == self.y.shape[0] == self.z.shape[0] == self.origin.shape[0]
assert self.x.shape[1] == self.y.shape[1] == self.z.shape[1] == self.origin.shape[1] == 3
assert len(self.x.shape ) == len(self.y.shape ) == len(self.z.shape ) == len(self.origin.shape ) == 2
def A ( self : List[Any] ) -> Union[str, Any]:
return torch.from_numpy(np.array([self.width, self.height] , dtype=np.floataa ) )
def A ( self : Any ) -> Optional[Any]:
return torch.from_numpy(np.array([self.x_fov, self.y_fov] , dtype=np.floataa ) )
def A ( self : Optional[int] ) -> torch.Tensor:
UpperCAmelCase_ : Dict = torch.arange(self.height * self.width )
UpperCAmelCase_ : int = torch.stack(
[
pixel_indices % self.width,
torch.div(_A , self.width , rounding_mode='''trunc''' ),
] , axis=1 , )
return coords
@property
def A ( self : Optional[Any] ) -> Optional[Any]:
UpperCAmelCase_ , *UpperCAmelCase_ : Union[str, Any] = self.shape
UpperCAmelCase_ : Optional[Any] = int(np.prod(_A ) )
UpperCAmelCase_ : Any = self.get_image_coords()
UpperCAmelCase_ : Any = torch.broadcast_to(coords.unsqueeze(0 ) , [batch_size * inner_batch_size, *coords.shape] )
UpperCAmelCase_ : Union[str, Any] = self.get_camera_rays(_A )
UpperCAmelCase_ : str = rays.view(_A , inner_batch_size * self.height * self.width , 2 , 3 )
return rays
def A ( self : Optional[int] , _A : torch.Tensor ) -> torch.Tensor:
UpperCAmelCase_ , *UpperCAmelCase_ , UpperCAmelCase_ : Optional[Any] = coords.shape
assert n_coords == 2
assert batch_size == self.origin.shape[0]
UpperCAmelCase_ : Dict = coords.view(_A , -1 , 2 )
UpperCAmelCase_ : Union[str, Any] = self.resolution()
UpperCAmelCase_ : int = self.fov()
UpperCAmelCase_ : Dict = (flat.float() / (res - 1)) * 2 - 1
UpperCAmelCase_ : Optional[int] = fracs * torch.tan(fov / 2 )
UpperCAmelCase_ : Any = fracs.view(_A , -1 , 2 )
UpperCAmelCase_ : List[Any] = (
self.z.view(_A , 1 , 3 )
+ self.x.view(_A , 1 , 3 ) * fracs[:, :, :1]
+ self.y.view(_A , 1 , 3 ) * fracs[:, :, 1:]
)
UpperCAmelCase_ : Optional[Any] = directions / directions.norm(dim=-1 , keepdim=_A )
UpperCAmelCase_ : Union[str, Any] = torch.stack(
[
torch.broadcast_to(self.origin.view(_A , 1 , 3 ) , [batch_size, directions.shape[1], 3] ),
directions,
] , dim=2 , )
return rays.view(_A , *_A , 2 , 3 )
def A ( self : Tuple , _A : int , _A : int ) -> "DifferentiableProjectiveCamera":
assert width * self.height == height * self.width, "The aspect ratio should not change."
return DifferentiableProjectiveCamera(
origin=self.origin , x=self.x , y=self.y , z=self.z , width=_A , height=_A , x_fov=self.x_fov , y_fov=self.y_fov , )
def __UpperCAmelCase ( A : int ) -> DifferentiableProjectiveCamera:
UpperCAmelCase_ : List[str] = []
UpperCAmelCase_ : Optional[int] = []
UpperCAmelCase_ : Optional[Any] = []
UpperCAmelCase_ : str = []
for theta in np.linspace(0 , 2 * np.pi , num=2_0 ):
UpperCAmelCase_ : str = np.array([np.sin(A ), np.cos(A ), -0.5] )
z /= np.sqrt(np.sum(z**2 ) )
UpperCAmelCase_ : Optional[int] = -z * 4
UpperCAmelCase_ : Optional[int] = np.array([np.cos(A ), -np.sin(A ), 0.0] )
UpperCAmelCase_ : List[Any] = np.cross(A , A )
origins.append(A )
xs.append(A )
ys.append(A )
zs.append(A )
return DifferentiableProjectiveCamera(
origin=torch.from_numpy(np.stack(A , axis=0 ) ).float() , x=torch.from_numpy(np.stack(A , axis=0 ) ).float() , y=torch.from_numpy(np.stack(A , axis=0 ) ).float() , z=torch.from_numpy(np.stack(A , axis=0 ) ).float() , width=A , height=A , x_fov=0.7 , y_fov=0.7 , shape=(1, len(A )) , )
| 304 | 0 |
import gc
import random
import tempfile
import unittest
import numpy as np
import torch
from PIL import Image
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
from diffusers import (
AutoencoderKL,
ControlNetModel,
DDIMScheduler,
StableDiffusionControlNetImgaImgPipeline,
UNetaDConditionModel,
)
from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_controlnet import MultiControlNetModel
from diffusers.utils import floats_tensor, load_image, load_numpy, randn_tensor, slow, torch_device
from diffusers.utils.import_utils import is_xformers_available
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
from ..pipeline_params import (
IMAGE_TO_IMAGE_IMAGE_PARAMS,
TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS,
TEXT_GUIDED_IMAGE_VARIATION_PARAMS,
)
from ..test_pipelines_common import (
PipelineKarrasSchedulerTesterMixin,
PipelineLatentTesterMixin,
PipelineTesterMixin,
)
enable_full_determinism()
class __SCREAMING_SNAKE_CASE ( A__ ,A__ ,A__ ,unittest.TestCase ):
_UpperCAmelCase : int = StableDiffusionControlNetImgaImgPipeline
_UpperCAmelCase : str = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {"height", "width"}
_UpperCAmelCase : Tuple = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS
_UpperCAmelCase : List[str] = IMAGE_TO_IMAGE_IMAGE_PARAMS.union({"control_image"} )
_UpperCAmelCase : Optional[Any] = IMAGE_TO_IMAGE_IMAGE_PARAMS
def __lowerCamelCase ( self : Dict ) ->List[str]:
torch.manual_seed(0 )
lowerCamelCase__ : Tuple = UNetaDConditionModel(
block_out_channels=(3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=3_2 , )
torch.manual_seed(0 )
lowerCamelCase__ : List[Any] = ControlNetModel(
block_out_channels=(3_2, 6_4) , layers_per_block=2 , in_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , cross_attention_dim=3_2 , conditioning_embedding_out_channels=(1_6, 3_2) , )
torch.manual_seed(0 )
lowerCamelCase__ : Optional[Any] = DDIMScheduler(
beta_start=0.0_00_85 , beta_end=0.0_12 , beta_schedule='''scaled_linear''' , clip_sample=__A , set_alpha_to_one=__A , )
torch.manual_seed(0 )
lowerCamelCase__ : List[str] = AutoencoderKL(
block_out_channels=[3_2, 6_4] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , )
torch.manual_seed(0 )
lowerCamelCase__ : Union[str, Any] = CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=3_2 , intermediate_size=3_7 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , )
lowerCamelCase__ : List[Any] = CLIPTextModel(__A )
lowerCamelCase__ : int = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' )
lowerCamelCase__ : Union[str, Any] = {
"""unet""": unet,
"""controlnet""": controlnet,
"""scheduler""": scheduler,
"""vae""": vae,
"""text_encoder""": text_encoder,
"""tokenizer""": tokenizer,
"""safety_checker""": None,
"""feature_extractor""": None,
}
return components
def __lowerCamelCase ( self : Union[str, Any] , A : Dict , A : Tuple=0 ) ->List[str]:
if str(__A ).startswith('''mps''' ):
lowerCamelCase__ : Tuple = torch.manual_seed(__A )
else:
lowerCamelCase__ : Optional[int] = torch.Generator(device=__A ).manual_seed(__A )
lowerCamelCase__ : List[Any] = 2
lowerCamelCase__ : int = randn_tensor(
(1, 3, 3_2 * controlnet_embedder_scale_factor, 3_2 * controlnet_embedder_scale_factor) , generator=__A , device=torch.device(__A ) , )
lowerCamelCase__ : Optional[int] = floats_tensor(control_image.shape , rng=random.Random(__A ) ).to(__A )
lowerCamelCase__ : Tuple = image.cpu().permute(0 , 2 , 3 , 1 )[0]
lowerCamelCase__ : List[Any] = Image.fromarray(np.uinta(__A ) ).convert('''RGB''' ).resize((6_4, 6_4) )
lowerCamelCase__ : Union[str, Any] = {
"""prompt""": """A painting of a squirrel eating a burger""",
"""generator""": generator,
"""num_inference_steps""": 2,
"""guidance_scale""": 6.0,
"""output_type""": """numpy""",
"""image""": image,
"""control_image""": control_image,
}
return inputs
def __lowerCamelCase ( self : Tuple ) ->int:
return self._test_attention_slicing_forward_pass(expected_max_diff=2e-3 )
@unittest.skipIf(
torch_device != '''cuda''' or not is_xformers_available() , reason='''XFormers attention is only available with CUDA and `xformers` installed''' , )
def __lowerCamelCase ( self : List[Any] ) ->Union[str, Any]:
self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=2e-3 )
def __lowerCamelCase ( self : Tuple ) ->List[str]:
self._test_inference_batch_single_identical(expected_max_diff=2e-3 )
class __SCREAMING_SNAKE_CASE ( A__ ,A__ ,unittest.TestCase ):
_UpperCAmelCase : List[str] = StableDiffusionControlNetImgaImgPipeline
_UpperCAmelCase : int = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {"height", "width"}
_UpperCAmelCase : str = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS
_UpperCAmelCase : int = frozenset([] ) # TO_DO: add image_params once refactored VaeImageProcessor.preprocess
def __lowerCamelCase ( self : Optional[Any] ) ->Optional[int]:
torch.manual_seed(0 )
lowerCamelCase__ : Dict = UNetaDConditionModel(
block_out_channels=(3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=3_2 , )
torch.manual_seed(0 )
def init_weights(A : Dict ):
if isinstance(__A , torch.nn.Convad ):
torch.nn.init.normal(m.weight )
m.bias.data.fill_(1.0 )
lowerCamelCase__ : List[Any] = ControlNetModel(
block_out_channels=(3_2, 6_4) , layers_per_block=2 , in_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , cross_attention_dim=3_2 , conditioning_embedding_out_channels=(1_6, 3_2) , )
controlneta.controlnet_down_blocks.apply(__A )
torch.manual_seed(0 )
lowerCamelCase__ : Optional[Any] = ControlNetModel(
block_out_channels=(3_2, 6_4) , layers_per_block=2 , in_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , cross_attention_dim=3_2 , conditioning_embedding_out_channels=(1_6, 3_2) , )
controlneta.controlnet_down_blocks.apply(__A )
torch.manual_seed(0 )
lowerCamelCase__ : Optional[Any] = DDIMScheduler(
beta_start=0.0_00_85 , beta_end=0.0_12 , beta_schedule='''scaled_linear''' , clip_sample=__A , set_alpha_to_one=__A , )
torch.manual_seed(0 )
lowerCamelCase__ : Optional[int] = AutoencoderKL(
block_out_channels=[3_2, 6_4] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , )
torch.manual_seed(0 )
lowerCamelCase__ : Optional[Any] = CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=3_2 , intermediate_size=3_7 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , )
lowerCamelCase__ : str = CLIPTextModel(__A )
lowerCamelCase__ : str = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' )
lowerCamelCase__ : Optional[Any] = MultiControlNetModel([controlneta, controlneta] )
lowerCamelCase__ : List[Any] = {
"""unet""": unet,
"""controlnet""": controlnet,
"""scheduler""": scheduler,
"""vae""": vae,
"""text_encoder""": text_encoder,
"""tokenizer""": tokenizer,
"""safety_checker""": None,
"""feature_extractor""": None,
}
return components
def __lowerCamelCase ( self : List[str] , A : Union[str, Any] , A : Dict=0 ) ->str:
if str(__A ).startswith('''mps''' ):
lowerCamelCase__ : Optional[Any] = torch.manual_seed(__A )
else:
lowerCamelCase__ : List[Any] = torch.Generator(device=__A ).manual_seed(__A )
lowerCamelCase__ : Optional[Any] = 2
lowerCamelCase__ : Optional[int] = [
randn_tensor(
(1, 3, 3_2 * controlnet_embedder_scale_factor, 3_2 * controlnet_embedder_scale_factor) , generator=__A , device=torch.device(__A ) , ),
randn_tensor(
(1, 3, 3_2 * controlnet_embedder_scale_factor, 3_2 * controlnet_embedder_scale_factor) , generator=__A , device=torch.device(__A ) , ),
]
lowerCamelCase__ : int = floats_tensor(control_image[0].shape , rng=random.Random(__A ) ).to(__A )
lowerCamelCase__ : Optional[Any] = image.cpu().permute(0 , 2 , 3 , 1 )[0]
lowerCamelCase__ : List[Any] = Image.fromarray(np.uinta(__A ) ).convert('''RGB''' ).resize((6_4, 6_4) )
lowerCamelCase__ : List[str] = {
"""prompt""": """A painting of a squirrel eating a burger""",
"""generator""": generator,
"""num_inference_steps""": 2,
"""guidance_scale""": 6.0,
"""output_type""": """numpy""",
"""image""": image,
"""control_image""": control_image,
}
return inputs
def __lowerCamelCase ( self : Optional[Any] ) ->Optional[Any]:
lowerCamelCase__ : List[str] = self.get_dummy_components()
lowerCamelCase__ : Tuple = self.pipeline_class(**__A )
pipe.to(__A )
lowerCamelCase__ : Union[str, Any] = 1_0.0
lowerCamelCase__ : Union[str, Any] = 4
lowerCamelCase__ : Tuple = self.get_dummy_inputs(__A )
lowerCamelCase__ : List[str] = steps
lowerCamelCase__ : int = scale
lowerCamelCase__ : Union[str, Any] = pipe(**__A )[0]
lowerCamelCase__ : Any = self.get_dummy_inputs(__A )
lowerCamelCase__ : str = steps
lowerCamelCase__ : str = scale
lowerCamelCase__ : Tuple = pipe(**__A , control_guidance_start=0.1 , control_guidance_end=0.2 )[0]
lowerCamelCase__ : Optional[Any] = self.get_dummy_inputs(__A )
lowerCamelCase__ : Union[str, Any] = steps
lowerCamelCase__ : Union[str, Any] = scale
lowerCamelCase__ : str = pipe(**__A , control_guidance_start=[0.1, 0.3] , control_guidance_end=[0.2, 0.7] )[0]
lowerCamelCase__ : List[str] = self.get_dummy_inputs(__A )
lowerCamelCase__ : Optional[int] = steps
lowerCamelCase__ : Tuple = scale
lowerCamelCase__ : str = pipe(**__A , control_guidance_start=0.4 , control_guidance_end=[0.5, 0.8] )[0]
# make sure that all outputs are different
assert np.sum(np.abs(output_a - output_a ) ) > 1e-3
assert np.sum(np.abs(output_a - output_a ) ) > 1e-3
assert np.sum(np.abs(output_a - output_a ) ) > 1e-3
def __lowerCamelCase ( self : Optional[int] ) ->Dict:
return self._test_attention_slicing_forward_pass(expected_max_diff=2e-3 )
@unittest.skipIf(
torch_device != '''cuda''' or not is_xformers_available() , reason='''XFormers attention is only available with CUDA and `xformers` installed''' , )
def __lowerCamelCase ( self : Optional[int] ) ->Tuple:
self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=2e-3 )
def __lowerCamelCase ( self : Optional[int] ) ->Optional[int]:
self._test_inference_batch_single_identical(expected_max_diff=2e-3 )
def __lowerCamelCase ( self : Optional[int] ) ->List[str]:
lowerCamelCase__ : str = self.get_dummy_components()
lowerCamelCase__ : Tuple = self.pipeline_class(**__A )
pipe.to(__A )
pipe.set_progress_bar_config(disable=__A )
with tempfile.TemporaryDirectory() as tmpdir:
try:
# save_pretrained is not implemented for Multi-ControlNet
pipe.save_pretrained(__A )
except NotImplementedError:
pass
@slow
@require_torch_gpu
class __SCREAMING_SNAKE_CASE ( unittest.TestCase ):
def __lowerCamelCase ( self : Optional[Any] ) ->int:
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def __lowerCamelCase ( self : Dict ) ->str:
lowerCamelCase__ : Any = ControlNetModel.from_pretrained('''lllyasviel/sd-controlnet-canny''' )
lowerCamelCase__ : int = StableDiffusionControlNetImgaImgPipeline.from_pretrained(
'''runwayml/stable-diffusion-v1-5''' , safety_checker=__A , controlnet=__A )
pipe.enable_model_cpu_offload()
pipe.set_progress_bar_config(disable=__A )
lowerCamelCase__ : List[str] = torch.Generator(device='''cpu''' ).manual_seed(0 )
lowerCamelCase__ : List[Any] = """evil space-punk bird"""
lowerCamelCase__ : List[Any] = load_image(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny.png''' ).resize((5_1_2, 5_1_2) )
lowerCamelCase__ : int = load_image(
'''https://huggingface.co/lllyasviel/sd-controlnet-canny/resolve/main/images/bird.png''' ).resize((5_1_2, 5_1_2) )
lowerCamelCase__ : Union[str, Any] = pipe(
__A , __A , control_image=__A , generator=__A , output_type='''np''' , num_inference_steps=5_0 , strength=0.6 , )
lowerCamelCase__ : Tuple = output.images[0]
assert image.shape == (5_1_2, 5_1_2, 3)
lowerCamelCase__ : Tuple = load_numpy(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/img2img.npy''' )
assert np.abs(expected_image - image ).max() < 9e-2
| 351 |
from __future__ import annotations
_A : List[str] = '#'
class __SCREAMING_SNAKE_CASE :
def __init__( self : List[Any] ) ->None:
lowerCamelCase__ : dict = {}
def __lowerCamelCase ( self : Union[str, Any] , A : str ) ->None:
lowerCamelCase__ : Any = self._trie
for char in text:
if char not in trie:
lowerCamelCase__ : Any = {}
lowerCamelCase__ : Any = trie[char]
lowerCamelCase__ : List[str] = True
def __lowerCamelCase ( self : List[Any] , A : str ) ->tuple | list:
lowerCamelCase__ : Dict = self._trie
for char in prefix:
if char in trie:
lowerCamelCase__ : List[Any] = trie[char]
else:
return []
return self._elements(A )
def __lowerCamelCase ( self : Dict , A : dict ) ->tuple:
lowerCamelCase__ : Optional[Any] = []
for c, v in d.items():
lowerCamelCase__ : Any = [''' '''] if c == END else [(c + s) for s in self._elements(A )]
result.extend(A )
return tuple(A )
_A : str = Trie()
_A : List[Any] = ('depart', 'detergent', 'daring', 'dog', 'deer', 'deal')
for word in words:
trie.insert_word(word)
def _a ( UpperCAmelCase ) -> tuple:
"""simple docstring"""
lowerCamelCase__ : Optional[int] = trie.find_word(UpperCAmelCase )
return tuple(string + word for word in suffixes )
def _a ( ) -> None:
"""simple docstring"""
print(autocomplete_using_trie('''de''' ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
main()
| 265 | 0 |
"""simple docstring"""
from . import __version__
# Backward compatibility imports, to make sure all those objects can be found in file_utils
from .utils import (
CLOUDFRONT_DISTRIB_PREFIX,
CONFIG_NAME,
DISABLE_TELEMETRY,
DUMMY_INPUTS,
DUMMY_MASK,
ENV_VARS_TRUE_AND_AUTO_VALUES,
ENV_VARS_TRUE_VALUES,
FEATURE_EXTRACTOR_NAME,
FLAX_WEIGHTS_NAME,
HF_MODULES_CACHE,
HUGGINGFACE_CO_PREFIX,
HUGGINGFACE_CO_RESOLVE_ENDPOINT,
MODEL_CARD_NAME,
MULTIPLE_CHOICE_DUMMY_INPUTS,
PYTORCH_PRETRAINED_BERT_CACHE,
PYTORCH_TRANSFORMERS_CACHE,
S3_BUCKET_PREFIX,
SENTENCEPIECE_UNDERLINE,
SPIECE_UNDERLINE,
TF2_WEIGHTS_NAME,
TF_WEIGHTS_NAME,
TORCH_FX_REQUIRED_VERSION,
TRANSFORMERS_CACHE,
TRANSFORMERS_DYNAMIC_MODULE_NAME,
USE_JAX,
USE_TF,
USE_TORCH,
WEIGHTS_INDEX_NAME,
WEIGHTS_NAME,
ContextManagers,
DummyObject,
EntryNotFoundError,
ExplicitEnum,
ModelOutput,
PaddingStrategy,
PushToHubMixin,
RepositoryNotFoundError,
RevisionNotFoundError,
TensorType,
_LazyModule,
add_code_sample_docstrings,
add_end_docstrings,
add_start_docstrings,
add_start_docstrings_to_model_forward,
cached_property,
copy_func,
default_cache_path,
define_sagemaker_information,
get_cached_models,
get_file_from_repo,
get_full_repo_name,
get_torch_version,
has_file,
http_user_agent,
is_apex_available,
is_bsa_available,
is_coloredlogs_available,
is_datasets_available,
is_detectrona_available,
is_faiss_available,
is_flax_available,
is_ftfy_available,
is_in_notebook,
is_ipex_available,
is_librosa_available,
is_offline_mode,
is_onnx_available,
is_pandas_available,
is_phonemizer_available,
is_protobuf_available,
is_psutil_available,
is_pyanvml_available,
is_pyctcdecode_available,
is_pytesseract_available,
is_pytorch_quantization_available,
is_rjieba_available,
is_sagemaker_dp_enabled,
is_sagemaker_mp_enabled,
is_scipy_available,
is_sentencepiece_available,
is_seqio_available,
is_sklearn_available,
is_soundfile_availble,
is_spacy_available,
is_speech_available,
is_tensor,
is_tensorflow_probability_available,
is_tfaonnx_available,
is_tf_available,
is_timm_available,
is_tokenizers_available,
is_torch_available,
is_torch_bfaa_available,
is_torch_cuda_available,
is_torch_fx_available,
is_torch_fx_proxy,
is_torch_mps_available,
is_torch_tfaa_available,
is_torch_tpu_available,
is_torchaudio_available,
is_training_run_on_sagemaker,
is_vision_available,
replace_return_docstrings,
requires_backends,
to_numpy,
to_py_obj,
torch_only_method,
)
| 77 |
import argparse
import datetime
import json
import time
import warnings
from logging import getLogger
from pathlib import Path
from typing import Dict, List
import torch
from tqdm import tqdm
from transformers import AutoModelForSeqaSeqLM, AutoTokenizer
from utils import calculate_bleu, calculate_rouge, chunks, parse_numeric_n_bool_cl_kwargs, use_task_specific_params
lowercase__ : Any = getLogger(__name__)
lowercase__ : List[str] = "cuda" if torch.cuda.is_available() else "cpu"
def A_ ( snake_case : List[str] , snake_case : str , snake_case : str , snake_case : int = 8 , snake_case : str = DEFAULT_DEVICE , snake_case : List[str]=False , snake_case : Union[str, Any]="summarization" , snake_case : str=None , **snake_case : List[Any] , ) -> Dict:
'''simple docstring'''
__UpperCamelCase = Path(snake_case ).open('''w''' , encoding='''utf-8''' )
__UpperCamelCase = str(snake_case )
__UpperCamelCase = AutoModelForSeqaSeqLM.from_pretrained(snake_case ).to(snake_case )
if fpaa:
__UpperCamelCase = model.half()
__UpperCamelCase = AutoTokenizer.from_pretrained(snake_case )
logger.info(f"Inferred tokenizer type: {tokenizer.__class__}" ) # if this is wrong, check config.model_type.
__UpperCamelCase = time.time()
# update config with task specific params
use_task_specific_params(snake_case , snake_case )
if prefix is None:
__UpperCamelCase = prefix or getattr(model.config , '''prefix''' , '''''' ) or ''''''
for examples_chunk in tqdm(list(chunks(snake_case , snake_case ) ) ):
__UpperCamelCase = [prefix + text for text in examples_chunk]
__UpperCamelCase = tokenizer(snake_case , return_tensors='''pt''' , truncation=snake_case , padding='''longest''' ).to(snake_case )
__UpperCamelCase = model.generate(
input_ids=batch.input_ids , attention_mask=batch.attention_mask , **snake_case , )
__UpperCamelCase = tokenizer.batch_decode(snake_case , skip_special_tokens=snake_case , clean_up_tokenization_spaces=snake_case )
for hypothesis in dec:
fout.write(hypothesis + '''\n''' )
fout.flush()
fout.close()
__UpperCamelCase = int(time.time() - start_time ) # seconds
__UpperCamelCase = len(snake_case )
return {"n_obs": n_obs, "runtime": runtime, "seconds_per_sample": round(runtime / n_obs , 4 )}
def A_ ( ) -> Tuple:
'''simple docstring'''
return datetime.datetime.now().strftime('''%Y-%m-%d %H:%M:%S''' )
def A_ ( snake_case : str=True ) -> int:
'''simple docstring'''
__UpperCamelCase = argparse.ArgumentParser()
parser.add_argument('''model_name''' , type=snake_case , help='''like facebook/bart-large-cnn,t5-base, etc.''' )
parser.add_argument('''input_path''' , type=snake_case , help='''like cnn_dm/test.source''' )
parser.add_argument('''save_path''' , type=snake_case , help='''where to save summaries''' )
parser.add_argument('''--reference_path''' , type=snake_case , required=snake_case , help='''like cnn_dm/test.target''' )
parser.add_argument('''--score_path''' , type=snake_case , required=snake_case , default='''metrics.json''' , help='''where to save metrics''' )
parser.add_argument('''--device''' , type=snake_case , required=snake_case , default=snake_case , help='''cuda, cuda:1, cpu etc.''' )
parser.add_argument(
'''--prefix''' , type=snake_case , required=snake_case , default=snake_case , help='''will be added to the begininng of src examples''' )
parser.add_argument('''--task''' , type=snake_case , default='''summarization''' , help='''used for task_specific_params + metrics''' )
parser.add_argument('''--bs''' , type=snake_case , default=8 , required=snake_case , help='''batch size''' )
parser.add_argument(
'''--n_obs''' , type=snake_case , default=-1 , required=snake_case , help='''How many observations. Defaults to all.''' )
parser.add_argument('''--fp16''' , action='''store_true''' )
parser.add_argument('''--dump-args''' , action='''store_true''' , help='''print the custom hparams with the results''' )
parser.add_argument(
'''--info''' , nargs='''?''' , type=snake_case , const=datetime_now() , help=(
'''use in conjunction w/ --dump-args to print with the results whatever other info you\'d like, e.g.'''
''' lang=en-ru. If no value is passed, the current datetime string will be used.'''
) , )
# Unspecified args like --num_beams=2 --decoder_start_token_id=4 are passed to model.generate
__UpperCamelCase , __UpperCamelCase = parser.parse_known_args()
__UpperCamelCase = parse_numeric_n_bool_cl_kwargs(snake_case )
if parsed_args and verbose:
print(f"parsed the following generate kwargs: {parsed_args}" )
__UpperCamelCase = [''' ''' + x.rstrip() if '''t5''' in args.model_name else x.rstrip() for x in open(args.input_path ).readlines()]
if args.n_obs > 0:
__UpperCamelCase = examples[: args.n_obs]
Path(args.save_path ).parent.mkdir(exist_ok=snake_case )
if args.reference_path is None and Path(args.score_path ).exists():
warnings.warn(f"score_path {args.score_path} will be overwritten unless you type ctrl-c." )
if args.device == "cpu" and args.fpaa:
# this mix leads to RuntimeError: "threshold_cpu" not implemented for 'Half'
raise ValueError('''Can\'t mix --fp16 and --device cpu''' )
__UpperCamelCase = generate_summaries_or_translations(
snake_case , args.save_path , args.model_name , batch_size=args.bs , device=args.device , fpaa=args.fpaa , task=args.task , prefix=args.prefix , **snake_case , )
if args.reference_path is None:
return {}
# Compute scores
__UpperCamelCase = calculate_bleu if '''translation''' in args.task else calculate_rouge
__UpperCamelCase = [x.rstrip() for x in open(args.save_path ).readlines()]
__UpperCamelCase = [x.rstrip() for x in open(args.reference_path ).readlines()][: len(snake_case )]
__UpperCamelCase = score_fn(snake_case , snake_case )
scores.update(snake_case )
if args.dump_args:
scores.update(snake_case )
if args.info:
__UpperCamelCase = args.info
if verbose:
print(snake_case )
if args.score_path is not None:
json.dump(snake_case , open(args.score_path , '''w''' ) )
return scores
if __name__ == "__main__":
# Usage for MT:
# python run_eval.py MODEL_NAME $DATA_DIR/test.source $save_dir/test_translations.txt --reference_path $DATA_DIR/test.target --score_path $save_dir/test_bleu.json --task translation $@
run_generate(verbose=True)
| 328 | 0 |
from collections.abc import Iterator, MutableMapping
from dataclasses import dataclass
from typing import Generic, TypeVar
lowerCAmelCase__ :int = TypeVar('''KEY''')
lowerCAmelCase__ :List[str] = TypeVar('''VAL''')
@dataclass(frozen=UpperCAmelCase , slots=UpperCAmelCase )
class __a ( Generic[KEY, VAL] ):
_a : KEY
_a : VAL
class __a ( _Item ):
def __init__( self ) -> None:
"""simple docstring"""
super().__init__(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
def __bool__( self ) -> bool:
"""simple docstring"""
return False
lowerCAmelCase__ :Optional[Any] = _DeletedItem()
class __a ( MutableMapping[KEY, VAL] ):
def __init__( self , _SCREAMING_SNAKE_CASE = 8 , _SCREAMING_SNAKE_CASE = 0.75 ) -> None:
"""simple docstring"""
_UpperCAmelCase = initial_block_size
_UpperCAmelCase = [None] * initial_block_size
assert 0.0 < capacity_factor < 1.0
_UpperCAmelCase = capacity_factor
_UpperCAmelCase = 0
def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE ) -> int:
"""simple docstring"""
return hash(_SCREAMING_SNAKE_CASE ) % len(self._buckets )
def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE ) -> int:
"""simple docstring"""
return (ind + 1) % len(self._buckets )
def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> bool:
"""simple docstring"""
_UpperCAmelCase = self._buckets[ind]
if not stored:
_UpperCAmelCase = _Item(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
self._len += 1
return True
elif stored.key == key:
_UpperCAmelCase = _Item(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
return True
else:
return False
def UpperCAmelCase__ ( self ) -> bool:
"""simple docstring"""
_UpperCAmelCase = len(self._buckets ) * self._capacity_factor
return len(self ) >= int(_SCREAMING_SNAKE_CASE )
def UpperCAmelCase__ ( self ) -> bool:
"""simple docstring"""
if len(self._buckets ) <= self._initial_block_size:
return False
_UpperCAmelCase = len(self._buckets ) * self._capacity_factor / 2
return len(self ) < limit
def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE ) -> None:
"""simple docstring"""
_UpperCAmelCase = self._buckets
_UpperCAmelCase = [None] * new_size
_UpperCAmelCase = 0
for item in old_buckets:
if item:
self._add_item(item.key , item.val )
def UpperCAmelCase__ ( self ) -> None:
"""simple docstring"""
self._resize(len(self._buckets ) * 2 )
def UpperCAmelCase__ ( self ) -> None:
"""simple docstring"""
self._resize(len(self._buckets ) // 2 )
def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE ) -> Iterator[int]:
"""simple docstring"""
_UpperCAmelCase = self._get_bucket_index(_SCREAMING_SNAKE_CASE )
for _ in range(len(self._buckets ) ):
yield ind
_UpperCAmelCase = self._get_next_ind(_SCREAMING_SNAKE_CASE )
def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> None:
"""simple docstring"""
for ind in self._iterate_buckets(_SCREAMING_SNAKE_CASE ):
if self._try_set(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
break
def __setitem__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> None:
"""simple docstring"""
if self._is_full():
self._size_up()
self._add_item(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
def __delitem__( self , _SCREAMING_SNAKE_CASE ) -> None:
"""simple docstring"""
for ind in self._iterate_buckets(_SCREAMING_SNAKE_CASE ):
_UpperCAmelCase = self._buckets[ind]
if item is None:
raise KeyError(_SCREAMING_SNAKE_CASE )
if item is _deleted:
continue
if item.key == key:
_UpperCAmelCase = _deleted
self._len -= 1
break
if self._is_sparse():
self._size_down()
def __getitem__( self , _SCREAMING_SNAKE_CASE ) -> VAL:
"""simple docstring"""
for ind in self._iterate_buckets(_SCREAMING_SNAKE_CASE ):
_UpperCAmelCase = self._buckets[ind]
if item is None:
break
if item is _deleted:
continue
if item.key == key:
return item.val
raise KeyError(_SCREAMING_SNAKE_CASE )
def __len__( self ) -> int:
"""simple docstring"""
return self._len
def __iter__( self ) -> Iterator[KEY]:
"""simple docstring"""
yield from (item.key for item in self._buckets if item)
def __repr__( self ) -> str:
"""simple docstring"""
_UpperCAmelCase = ' ,'.join(
f'''{item.key}: {item.val}''' for item in self._buckets if item )
return f'''HashMap({val_string})'''
| 369 |
from dataclasses import dataclass
from typing import List, Optional, Union
import numpy as np
import torch
from ...utils import BaseOutput, OptionalDependencyNotAvailable, is_torch_available, is_transformers_available
@dataclass
class __a ( UpperCAmelCase ):
_a : Union[List[np.ndarray], torch.FloatTensor]
try:
if not (is_transformers_available() and is_torch_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ...utils.dummy_torch_and_transformers_objects import * # noqa F403
else:
from .pipeline_text_to_video_synth import TextToVideoSDPipeline
from .pipeline_text_to_video_synth_imgaimg import VideoToVideoSDPipeline # noqa: F401
from .pipeline_text_to_video_zero import TextToVideoZeroPipeline
| 185 | 0 |
'''simple docstring'''
import logging
import os
import random
import sys
from dataclasses import dataclass, field
from typing import Optional
import datasets
import numpy as np
import pandas as pd
from datasets import load_dataset
import transformers
from transformers import (
AutoConfig,
BartForSequenceClassification,
DataCollatorWithPadding,
EvalPrediction,
HfArgumentParser,
TapexTokenizer,
Trainer,
TrainingArguments,
default_data_collator,
set_seed,
)
from transformers.trainer_utils import get_last_checkpoint
from transformers.utils import check_min_version
from transformers.utils.versions import require_version
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
check_min_version('4.17.0.dev0')
require_version('datasets>=1.8.0', 'To fix: pip install -r examples/pytorch/text-classification/requirements.txt')
A =logging.getLogger(__name__)
@dataclass
class _a :
__a : Optional[str] = field(
default="""tab_fact""" , metadata={"""help""": """The name of the dataset to use (via the datasets library)."""} )
__a : Optional[str] = field(
default="""tab_fact""" , metadata={"""help""": """The configuration name of the dataset to use (via the datasets library)."""} , )
__a : int = field(
default=1_024 , metadata={
"""help""": (
"""The maximum total input sequence length after tokenization. Sequences longer """
"""than this will be truncated, sequences shorter will be padded."""
)
} , )
__a : bool = field(
default=__snake_case , metadata={"""help""": """Overwrite the cached preprocessed datasets or not."""} )
__a : bool = field(
default=__snake_case , metadata={
"""help""": (
"""Whether to pad all samples to `max_seq_length`. """
"""If False, will pad the samples dynamically when batching to the maximum length in the batch."""
)
} , )
__a : Optional[int] = field(
default=__snake_case , metadata={
"""help""": (
"""For debugging purposes or quicker training, truncate the number of training examples to this """
"""value if set."""
)
} , )
__a : Optional[int] = field(
default=__snake_case , metadata={
"""help""": (
"""For debugging purposes or quicker training, truncate the number of evaluation examples to this """
"""value if set."""
)
} , )
__a : Optional[int] = field(
default=__snake_case , metadata={
"""help""": (
"""For debugging purposes or quicker training, truncate the number of prediction examples to this """
"""value if set."""
)
} , )
__a : Optional[str] = field(
default=__snake_case , metadata={"""help""": """A csv or a json file containing the training data."""} )
__a : Optional[str] = field(
default=__snake_case , metadata={"""help""": """A csv or a json file containing the validation data."""} )
__a : Optional[str] = field(default=__snake_case , metadata={"""help""": """A csv or a json file containing the test data."""} )
def A ( self : List[str] ):
'''simple docstring'''
if self.dataset_name is not None:
pass
elif self.train_file is None or self.validation_file is None:
raise ValueError('''Need either a GLUE task, a training/validation file or a dataset name.''' )
else:
UpperCAmelCase = self.train_file.split('''.''' )[-1]
assert train_extension in ["csv", "json"], "`train_file` should be a csv or a json file."
UpperCAmelCase = self.validation_file.split('''.''' )[-1]
assert (
validation_extension == train_extension
), "`validation_file` should have the same extension (csv or json) as `train_file`."
@dataclass
class _a :
__a : str = field(
default=__snake_case , metadata={"""help""": """Path to pretrained model or model identifier from huggingface.co/models"""} )
__a : Optional[str] = field(
default=__snake_case , metadata={"""help""": """Pretrained config name or path if not the same as model_name"""} )
__a : Optional[str] = field(
default=__snake_case , metadata={"""help""": """Pretrained tokenizer name or path if not the same as model_name"""} )
__a : Optional[str] = field(
default=__snake_case , metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} , )
__a : bool = field(
default=__snake_case , metadata={"""help""": """Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."""} , )
__a : str = field(
default="""main""" , metadata={"""help""": """The specific model version to use (can be a branch name, tag name or commit id)."""} , )
__a : bool = field(
default=__snake_case , metadata={
"""help""": (
"""Will use the token generated when running `huggingface-cli login` (necessary to use this script """
"""with private models)."""
)
} , )
def snake_case_ ():
UpperCAmelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) )
if len(sys.argv ) == 2 and sys.argv[1].endswith('''.json''' ):
# If we pass only one argument to the script and it's the path to a json file,
# let's parse it to get our arguments.
UpperCAmelCase = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) )
else:
UpperCAmelCase = parser.parse_args_into_dataclasses()
# Setup logging
logging.basicConfig(
format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , handlers=[logging.StreamHandler(sys.stdout )] , )
UpperCAmelCase = training_args.get_process_log_level()
logger.setLevel(_a )
datasets.utils.logging.set_verbosity(_a )
transformers.utils.logging.set_verbosity(_a )
transformers.utils.logging.enable_default_handler()
transformers.utils.logging.enable_explicit_format()
# Log on each process the small summary:
logger.warning(
F"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"
+ F"distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}" )
logger.info(F"Training/evaluation parameters {training_args}" )
# Detecting last checkpoint.
UpperCAmelCase = None
if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir:
UpperCAmelCase = get_last_checkpoint(training_args.output_dir )
if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0:
raise ValueError(
F"Output directory ({training_args.output_dir}) already exists and is not empty. "
'''Use --overwrite_output_dir to overcome.''' )
elif last_checkpoint is not None and training_args.resume_from_checkpoint is None:
logger.info(
F"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change "
'''the `--output_dir` or add `--overwrite_output_dir` to train from scratch.''' )
# Set seed before initializing model.
set_seed(training_args.seed )
# Get the datasets: you can either provide your own CSV/JSON training and evaluation files (see below)
# or specify a GLUE benchmark task (the dataset will be downloaded automatically from the datasets Hub).
#
# For JSON files, this script will use the `question` column for the input question and `table` column for the corresponding table.
#
# If the CSVs/JSONs contain only one non-label column, the script does single sentence classification on this
# single column. You can easily tweak this behavior (see below)
#
# In distributed training, the load_dataset function guarantee that only one local process can concurrently
# download the dataset.
if data_args.dataset_name is not None:
# Downloading and loading a dataset from the hub.
UpperCAmelCase = load_dataset(
data_args.dataset_name , data_args.dataset_config_name , cache_dir=model_args.cache_dir )
else:
# Loading a dataset from your local files.
# CSV/JSON training and evaluation files are needed.
UpperCAmelCase = {"""train""": data_args.train_file, """validation""": data_args.validation_file}
# Get the test dataset: you can provide your own CSV/JSON test file (see below)
# when you use `do_predict` without specifying a GLUE benchmark task.
if training_args.do_predict:
if data_args.test_file is not None:
UpperCAmelCase = data_args.train_file.split('''.''' )[-1]
UpperCAmelCase = data_args.test_file.split('''.''' )[-1]
assert (
test_extension == train_extension
), "`test_file` should have the same extension (csv or json) as `train_file`."
UpperCAmelCase = data_args.test_file
else:
raise ValueError('''Need either a GLUE task or a test file for `do_predict`.''' )
for key in data_files.keys():
logger.info(F"load a local file for {key}: {data_files[key]}" )
if data_args.train_file.endswith('''.csv''' ):
# Loading a dataset from local csv files
UpperCAmelCase = load_dataset('''csv''' , data_files=_a , cache_dir=model_args.cache_dir )
else:
# Loading a dataset from local json files
UpperCAmelCase = load_dataset('''json''' , data_files=_a , cache_dir=model_args.cache_dir )
# See more about loading any type of standard or custom dataset at
# https://huggingface.co/docs/datasets/loading_datasets.html.
# Labels
UpperCAmelCase = raw_datasets["""train"""].features["""label"""].names
UpperCAmelCase = len(_a )
# Load pretrained model and tokenizer
#
# In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently
# download model & vocab.
UpperCAmelCase = AutoConfig.from_pretrained(
model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=_a , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , )
# load tapex tokenizer
UpperCAmelCase = TapexTokenizer.from_pretrained(
model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast_tokenizer , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , add_prefix_space=_a , )
UpperCAmelCase = BartForSequenceClassification.from_pretrained(
model_args.model_name_or_path , from_tf=bool('''.ckpt''' in model_args.model_name_or_path ) , config=_a , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , )
# Padding strategy
if data_args.pad_to_max_length:
UpperCAmelCase = """max_length"""
else:
# We will pad later, dynamically at batch creation, to the max sequence length in each batch
UpperCAmelCase = False
# Some models have set the order of the labels to use, so let's make sure we do use it.
UpperCAmelCase = {"""Refused""": 0, """Entailed""": 1}
UpperCAmelCase = {0: """Refused""", 1: """Entailed"""}
if data_args.max_seq_length > tokenizer.model_max_length:
logger.warning(
F"The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the"
F"model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}." )
UpperCAmelCase = min(data_args.max_seq_length , tokenizer.model_max_length )
def preprocess_tabfact_function(_a : Optional[Any] ):
# Tokenize the texts
def _convert_table_text_to_pandas(_a : Optional[Any] ):
UpperCAmelCase = [_table_row.split('''#''' ) for _table_row in _table_text.strip('''\n''' ).split('''\n''' )]
UpperCAmelCase = pd.DataFrame.from_records(_table_content[1:] , columns=_table_content[0] )
return _table_pd
UpperCAmelCase = examples["""statement"""]
UpperCAmelCase = list(map(_convert_table_text_to_pandas , examples['''table_text'''] ) )
UpperCAmelCase = tokenizer(_a , _a , padding=_a , max_length=_a , truncation=_a )
UpperCAmelCase = examples["""label"""]
return result
with training_args.main_process_first(desc='''dataset map pre-processing''' ):
UpperCAmelCase = raw_datasets.map(
_a , batched=_a , load_from_cache_file=not data_args.overwrite_cache , desc='''Running tokenizer on dataset''' , )
if training_args.do_train:
if "train" not in raw_datasets:
raise ValueError('''--do_train requires a train dataset''' )
UpperCAmelCase = raw_datasets["""train"""]
if data_args.max_train_samples is not None:
UpperCAmelCase = train_dataset.select(range(data_args.max_train_samples ) )
if training_args.do_eval:
if "validation" not in raw_datasets and "validation_matched" not in raw_datasets:
raise ValueError('''--do_eval requires a validation dataset''' )
UpperCAmelCase = raw_datasets["""validation"""]
if data_args.max_eval_samples is not None:
UpperCAmelCase = eval_dataset.select(range(data_args.max_eval_samples ) )
if training_args.do_predict or data_args.test_file is not None:
if "test" not in raw_datasets and "test_matched" not in raw_datasets:
raise ValueError('''--do_predict requires a test dataset''' )
UpperCAmelCase = raw_datasets["""test"""]
if data_args.max_predict_samples is not None:
UpperCAmelCase = predict_dataset.select(range(data_args.max_predict_samples ) )
# Log a few random samples from the training set:
if training_args.do_train:
for index in random.sample(range(len(_a ) ) , 3 ):
logger.info(F"Sample {index} of the training set: {train_dataset[index]}." )
# You can define your custom compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a
# predictions and label_ids field) and has to return a dictionary string to float.
def compute_metrics(_a : EvalPrediction ):
UpperCAmelCase = p.predictions[0] if isinstance(p.predictions , _a ) else p.predictions
UpperCAmelCase = np.argmax(_a , axis=1 )
return {"accuracy": (preds == p.label_ids).astype(np.floataa ).mean().item()}
# Data collator will default to DataCollatorWithPadding, so we change it if we already did the padding.
if data_args.pad_to_max_length:
UpperCAmelCase = default_data_collator
elif training_args.fpaa:
UpperCAmelCase = DataCollatorWithPadding(_a , pad_to_multiple_of=8 )
else:
UpperCAmelCase = None
# Initialize our Trainer
UpperCAmelCase = Trainer(
model=_a , args=_a , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , compute_metrics=_a , tokenizer=_a , data_collator=_a , )
# Training
if training_args.do_train:
UpperCAmelCase = None
if training_args.resume_from_checkpoint is not None:
UpperCAmelCase = training_args.resume_from_checkpoint
elif last_checkpoint is not None:
UpperCAmelCase = last_checkpoint
UpperCAmelCase = trainer.train(resume_from_checkpoint=_a )
UpperCAmelCase = train_result.metrics
UpperCAmelCase = (
data_args.max_train_samples if data_args.max_train_samples is not None else len(_a )
)
UpperCAmelCase = min(_a , len(_a ) )
trainer.save_model() # Saves the tokenizer too for easy upload
trainer.log_metrics('''train''' , _a )
trainer.save_metrics('''train''' , _a )
trainer.save_state()
# Evaluation
if training_args.do_eval:
logger.info('''*** Evaluate ***''' )
UpperCAmelCase = trainer.evaluate(eval_dataset=_a )
UpperCAmelCase = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(_a )
UpperCAmelCase = min(_a , len(_a ) )
trainer.log_metrics('''eval''' , _a )
trainer.save_metrics('''eval''' , _a )
if training_args.do_predict:
logger.info('''*** Predict ***''' )
# Removing the `label` columns because it contains -1 and Trainer won't like that.
UpperCAmelCase = predict_dataset.remove_columns('''label''' )
UpperCAmelCase = trainer.predict(_a , metric_key_prefix='''predict''' ).predictions
UpperCAmelCase = np.argmax(_a , axis=1 )
UpperCAmelCase = os.path.join(training_args.output_dir , '''predict_results_tabfact.txt''' )
if trainer.is_world_process_zero():
with open(_a , '''w''' ) as writer:
logger.info('''***** Predict Results *****''' )
writer.write('''index\tprediction\n''' )
for index, item in enumerate(_a ):
UpperCAmelCase = label_list[item]
writer.write(F"{index}\t{item}\n" )
UpperCAmelCase = {"""finetuned_from""": model_args.model_name_or_path, """tasks""": """text-classification"""}
if training_args.push_to_hub:
trainer.push_to_hub(**_a )
else:
trainer.create_model_card(**_a )
def snake_case_ (_a : Dict ):
main()
if __name__ == "__main__":
main()
| 34 |
import json
import os
from functools import lru_cache
from typing import Dict, List, Optional, Tuple, Union
import regex as re
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...tokenization_utils_base import BatchEncoding, EncodedInput
from ...utils import PaddingStrategy, logging
UpperCamelCase_ = logging.get_logger(__name__)
UpperCamelCase_ = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt'''}
# See all LED models at https://huggingface.co/models?filter=LED
UpperCamelCase_ = {
'''vocab_file''': {
'''allenai/led-base-16384''': '''https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json''',
},
'''merges_file''': {
'''allenai/led-base-16384''': '''https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt''',
},
'''tokenizer_file''': {
'''allenai/led-base-16384''': '''https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json''',
},
}
UpperCamelCase_ = {
'''allenai/led-base-16384''': 16384,
}
@lru_cache()
# Copied from transformers.models.bart.tokenization_bart.bytes_to_unicode
def lowerCamelCase_ ( ):
'''simple docstring'''
UpperCAmelCase_ : int = (
list(range(ord("""!""" ) , ord("""~""" ) + 1 ) ) + list(range(ord("""¡""" ) , ord("""¬""" ) + 1 ) ) + list(range(ord("""®""" ) , ord("""ÿ""" ) + 1 ) )
)
UpperCAmelCase_ : Dict = bs[:]
UpperCAmelCase_ : Any = 0
for b in range(2**8 ):
if b not in bs:
bs.append(_a )
cs.append(2**8 + n )
n += 1
UpperCAmelCase_ : Any = [chr(_a ) for n in cs]
return dict(zip(_a , _a ) )
def lowerCamelCase_ ( _a : List[str] ):
'''simple docstring'''
UpperCAmelCase_ : Union[str, Any] = set()
UpperCAmelCase_ : List[Any] = word[0]
for char in word[1:]:
pairs.add((prev_char, char) )
UpperCAmelCase_ : Optional[int] = char
return pairs
class _snake_case ( __snake_case ):
'''simple docstring'''
A__ : str = VOCAB_FILES_NAMES
A__ : List[str] = PRETRAINED_VOCAB_FILES_MAP
A__ : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
A__ : Optional[int] = ["input_ids", "attention_mask"]
def __init__( self: Union[str, Any] ,lowerCamelCase_: Tuple ,lowerCamelCase_: Any ,lowerCamelCase_: Union[str, Any]="replace" ,lowerCamelCase_: Optional[Any]="<s>" ,lowerCamelCase_: List[Any]="</s>" ,lowerCamelCase_: List[str]="</s>" ,lowerCamelCase_: int="<s>" ,lowerCamelCase_: int="<unk>" ,lowerCamelCase_: str="<pad>" ,lowerCamelCase_: Optional[Any]="<mask>" ,lowerCamelCase_: List[str]=False ,**lowerCamelCase_: Tuple ,) -> Any:
UpperCAmelCase_ : Union[str, Any] = AddedToken(lowerCamelCase_ ,lstrip=lowerCamelCase_ ,rstrip=lowerCamelCase_ ) if isinstance(lowerCamelCase_ ,lowerCamelCase_ ) else bos_token
UpperCAmelCase_ : int = AddedToken(lowerCamelCase_ ,lstrip=lowerCamelCase_ ,rstrip=lowerCamelCase_ ) if isinstance(lowerCamelCase_ ,lowerCamelCase_ ) else eos_token
UpperCAmelCase_ : List[str] = AddedToken(lowerCamelCase_ ,lstrip=lowerCamelCase_ ,rstrip=lowerCamelCase_ ) if isinstance(lowerCamelCase_ ,lowerCamelCase_ ) else sep_token
UpperCAmelCase_ : List[str] = AddedToken(lowerCamelCase_ ,lstrip=lowerCamelCase_ ,rstrip=lowerCamelCase_ ) if isinstance(lowerCamelCase_ ,lowerCamelCase_ ) else cls_token
UpperCAmelCase_ : Optional[Any] = AddedToken(lowerCamelCase_ ,lstrip=lowerCamelCase_ ,rstrip=lowerCamelCase_ ) if isinstance(lowerCamelCase_ ,lowerCamelCase_ ) else unk_token
UpperCAmelCase_ : List[str] = AddedToken(lowerCamelCase_ ,lstrip=lowerCamelCase_ ,rstrip=lowerCamelCase_ ) if isinstance(lowerCamelCase_ ,lowerCamelCase_ ) else pad_token
# Mask token behave like a normal word, i.e. include the space before it
UpperCAmelCase_ : str = AddedToken(lowerCamelCase_ ,lstrip=lowerCamelCase_ ,rstrip=lowerCamelCase_ ) if isinstance(lowerCamelCase_ ,lowerCamelCase_ ) else mask_token
super().__init__(
errors=lowerCamelCase_ ,bos_token=lowerCamelCase_ ,eos_token=lowerCamelCase_ ,unk_token=lowerCamelCase_ ,sep_token=lowerCamelCase_ ,cls_token=lowerCamelCase_ ,pad_token=lowerCamelCase_ ,mask_token=lowerCamelCase_ ,add_prefix_space=lowerCamelCase_ ,**lowerCamelCase_ ,)
with open(lowerCamelCase_ ,encoding="""utf-8""" ) as vocab_handle:
UpperCAmelCase_ : Union[str, Any] = json.load(lowerCamelCase_ )
UpperCAmelCase_ : Optional[int] = {v: k for k, v in self.encoder.items()}
UpperCAmelCase_ : Any = errors # how to handle errors in decoding
UpperCAmelCase_ : int = bytes_to_unicode()
UpperCAmelCase_ : Dict = {v: k for k, v in self.byte_encoder.items()}
with open(lowerCamelCase_ ,encoding="""utf-8""" ) as merges_handle:
UpperCAmelCase_ : Any = merges_handle.read().split("""\n""" )[1:-1]
UpperCAmelCase_ : int = [tuple(merge.split() ) for merge in bpe_merges]
UpperCAmelCase_ : Union[str, Any] = dict(zip(lowerCamelCase_ ,range(len(lowerCamelCase_ ) ) ) )
UpperCAmelCase_ : Tuple = {}
UpperCAmelCase_ : Optional[int] = add_prefix_space
# Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions
UpperCAmelCase_ : int = re.compile(R"""'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+""" )
@property
# Copied from transformers.models.bart.tokenization_bart.BartTokenizer.vocab_size
def A__ ( self: List[str] ) -> List[str]:
return len(self.encoder )
def A__ ( self: Any ) -> Union[str, Any]:
return dict(self.encoder ,**self.added_tokens_encoder )
def A__ ( self: Tuple ,lowerCamelCase_: Dict ) -> Optional[Any]:
if token in self.cache:
return self.cache[token]
UpperCAmelCase_ : Union[str, Any] = tuple(lowerCamelCase_ )
UpperCAmelCase_ : Union[str, Any] = get_pairs(lowerCamelCase_ )
if not pairs:
return token
while True:
UpperCAmelCase_ : Union[str, Any] = min(lowerCamelCase_ ,key=lambda lowerCamelCase_ : self.bpe_ranks.get(lowerCamelCase_ ,float("""inf""" ) ) )
if bigram not in self.bpe_ranks:
break
UpperCAmelCase_ , UpperCAmelCase_ : Any = bigram
UpperCAmelCase_ : Optional[Any] = []
UpperCAmelCase_ : List[str] = 0
while i < len(lowerCamelCase_ ):
try:
UpperCAmelCase_ : str = word.index(lowerCamelCase_ ,lowerCamelCase_ )
except ValueError:
new_word.extend(word[i:] )
break
else:
new_word.extend(word[i:j] )
UpperCAmelCase_ : Union[str, Any] = j
if word[i] == first and i < len(lowerCamelCase_ ) - 1 and word[i + 1] == second:
new_word.append(first + second )
i += 2
else:
new_word.append(word[i] )
i += 1
UpperCAmelCase_ : List[str] = tuple(lowerCamelCase_ )
UpperCAmelCase_ : List[Any] = new_word
if len(lowerCamelCase_ ) == 1:
break
else:
UpperCAmelCase_ : List[str] = get_pairs(lowerCamelCase_ )
UpperCAmelCase_ : int = """ """.join(lowerCamelCase_ )
UpperCAmelCase_ : Optional[Any] = word
return word
def A__ ( self: Union[str, Any] ,lowerCamelCase_: Tuple ) -> List[str]:
UpperCAmelCase_ : str = []
for token in re.findall(self.pat ,lowerCamelCase_ ):
UpperCAmelCase_ : List[Any] = """""".join(
self.byte_encoder[b] for b in token.encode("""utf-8""" ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case)
bpe_tokens.extend(bpe_token for bpe_token in self.bpe(lowerCamelCase_ ).split(""" """ ) )
return bpe_tokens
def A__ ( self: List[Any] ,lowerCamelCase_: Optional[Any] ) -> Optional[int]:
return self.encoder.get(lowerCamelCase_ ,self.encoder.get(self.unk_token ) )
def A__ ( self: List[str] ,lowerCamelCase_: str ) -> Optional[Any]:
return self.decoder.get(lowerCamelCase_ )
def A__ ( self: List[str] ,lowerCamelCase_: List[str] ) -> List[Any]:
UpperCAmelCase_ : str = """""".join(lowerCamelCase_ )
UpperCAmelCase_ : int = bytearray([self.byte_decoder[c] for c in text] ).decode("""utf-8""" ,errors=self.errors )
return text
def A__ ( self: Optional[Any] ,lowerCamelCase_: str ,lowerCamelCase_: Optional[str] = None ) -> Tuple[str]:
if not os.path.isdir(lowerCamelCase_ ):
logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' )
return
UpperCAmelCase_ : List[Any] = os.path.join(
lowerCamelCase_ ,(filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] )
UpperCAmelCase_ : List[str] = os.path.join(
lowerCamelCase_ ,(filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""merges_file"""] )
with open(lowerCamelCase_ ,"""w""" ,encoding="""utf-8""" ) as f:
f.write(json.dumps(self.encoder ,indent=2 ,sort_keys=lowerCamelCase_ ,ensure_ascii=lowerCamelCase_ ) + """\n""" )
UpperCAmelCase_ : str = 0
with open(lowerCamelCase_ ,"""w""" ,encoding="""utf-8""" ) as writer:
writer.write("""#version: 0.2\n""" )
for bpe_tokens, token_index in sorted(self.bpe_ranks.items() ,key=lambda lowerCamelCase_ : kv[1] ):
if index != token_index:
logger.warning(
F'''Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.'''
""" Please check that the tokenizer is not corrupted!""" )
UpperCAmelCase_ : Tuple = token_index
writer.write(""" """.join(lowerCamelCase_ ) + """\n""" )
index += 1
return vocab_file, merge_file
def A__ ( self: str ,lowerCamelCase_: List[int] ,lowerCamelCase_: Optional[List[int]] = None ) -> List[int]:
if token_ids_a is None:
return [self.cls_token_id] + token_ids_a + [self.sep_token_id]
UpperCAmelCase_ : int = [self.cls_token_id]
UpperCAmelCase_ : Optional[int] = [self.sep_token_id]
return cls + token_ids_a + sep + sep + token_ids_a + sep
def A__ ( self: Union[str, Any] ,lowerCamelCase_: List[int] ,lowerCamelCase_: Optional[List[int]] = None ,lowerCamelCase_: bool = False ) -> List[int]:
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=lowerCamelCase_ ,token_ids_a=lowerCamelCase_ ,already_has_special_tokens=lowerCamelCase_ )
if token_ids_a is None:
return [1] + ([0] * len(lowerCamelCase_ )) + [1]
return [1] + ([0] * len(lowerCamelCase_ )) + [1, 1] + ([0] * len(lowerCamelCase_ )) + [1]
def A__ ( self: str ,lowerCamelCase_: List[int] ,lowerCamelCase_: Optional[List[int]] = None ) -> List[int]:
UpperCAmelCase_ : Optional[Any] = [self.sep_token_id]
UpperCAmelCase_ : Optional[Any] = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
def A__ ( self: Optional[Any] ,lowerCamelCase_: Optional[Any] ,lowerCamelCase_: str=False ,**lowerCamelCase_: List[str] ) -> Optional[int]:
UpperCAmelCase_ : Optional[int] = kwargs.pop("""add_prefix_space""" ,self.add_prefix_space )
if (is_split_into_words or add_prefix_space) and (len(lowerCamelCase_ ) > 0 and not text[0].isspace()):
UpperCAmelCase_ : Dict = """ """ + text
return (text, kwargs)
def A__ ( self: List[str] ,lowerCamelCase_: Union[Dict[str, EncodedInput], BatchEncoding] ,lowerCamelCase_: Optional[int] = None ,lowerCamelCase_: PaddingStrategy = PaddingStrategy.DO_NOT_PAD ,lowerCamelCase_: Optional[int] = None ,lowerCamelCase_: Optional[bool] = None ,) -> dict:
UpperCAmelCase_ : Optional[int] = super()._pad(
encoded_inputs=lowerCamelCase_ ,max_length=lowerCamelCase_ ,padding_strategy=lowerCamelCase_ ,pad_to_multiple_of=lowerCamelCase_ ,return_attention_mask=lowerCamelCase_ ,)
# Load from model defaults
if return_attention_mask is None:
UpperCAmelCase_ : str = """attention_mask""" in self.model_input_names
if return_attention_mask and "global_attention_mask" in encoded_inputs:
UpperCAmelCase_ : str = encoded_inputs[self.model_input_names[0]]
# `global_attention_mask` need to have the same length as other (sequential) inputs.
UpperCAmelCase_ : List[Any] = len(encoded_inputs["""global_attention_mask"""] ) != len(lowerCamelCase_ )
if needs_to_be_padded:
UpperCAmelCase_ : Dict = len(lowerCamelCase_ ) - len(encoded_inputs["""global_attention_mask"""] )
if self.padding_side == "right":
# Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend`
UpperCAmelCase_ : str = (
encoded_inputs["""global_attention_mask"""] + [-1] * difference
)
elif self.padding_side == "left":
UpperCAmelCase_ : List[str] = [-1] * difference + encoded_inputs[
"""global_attention_mask"""
]
else:
raise ValueError("""Invalid padding strategy:""" + str(self.padding_side ) )
return encoded_inputs
| 345 | 0 |
'''simple docstring'''
import os
import tempfile
import unittest
import uuid
from pathlib import Path
from transformers.testing_utils import get_tests_dir, require_soundfile, require_torch, require_vision
from transformers.tools.agent_types import AgentAudio, AgentImage, AgentText
from transformers.utils import is_soundfile_availble, is_torch_available, is_vision_available
if is_torch_available():
import torch
if is_soundfile_availble():
import soundfile as sf
if is_vision_available():
from PIL import Image
def a_ ( lowerCamelCase : Dict="" ):
lowerCAmelCase = tempfile.mkdtemp()
return os.path.join(lowerCamelCase , str(uuid.uuida() ) + suffix )
@require_soundfile
@require_torch
class UpperCAmelCase_ ( unittest.TestCase ):
def __UpperCAmelCase ( self : str ) -> Dict:
lowerCAmelCase = torch.rand(1_2 , dtype=torch.floataa ) - 0.5
lowerCAmelCase = AgentAudio(UpperCAmelCase__ )
lowerCAmelCase = str(agent_type.to_string() )
# Ensure that the tensor and the agent_type's tensor are the same
self.assertTrue(torch.allclose(UpperCAmelCase__ , agent_type.to_raw() , atol=1E-4 ) )
del agent_type
# Ensure the path remains even after the object deletion
self.assertTrue(os.path.exists(UpperCAmelCase__ ) )
# Ensure that the file contains the same value as the original tensor
lowerCAmelCase , lowerCAmelCase = sf.read(UpperCAmelCase__ )
self.assertTrue(torch.allclose(UpperCAmelCase__ , torch.tensor(UpperCAmelCase__ ) , atol=1E-4 ) )
def __UpperCAmelCase ( self : Union[str, Any] ) -> Union[str, Any]:
lowerCAmelCase = torch.rand(1_2 , dtype=torch.floataa ) - 0.5
lowerCAmelCase = get_new_path(suffix='.wav' )
sf.write(UpperCAmelCase__ , UpperCAmelCase__ , 1_6_0_0_0 )
lowerCAmelCase = AgentAudio(UpperCAmelCase__ )
self.assertTrue(torch.allclose(UpperCAmelCase__ , agent_type.to_raw() , atol=1E-4 ) )
self.assertEqual(agent_type.to_string() , UpperCAmelCase__ )
@require_vision
@require_torch
class UpperCAmelCase_ ( unittest.TestCase ):
def __UpperCAmelCase ( self : str ) -> List[Any]:
lowerCAmelCase = torch.randint(0 , 2_5_6 , (6_4, 6_4, 3) )
lowerCAmelCase = AgentImage(UpperCAmelCase__ )
lowerCAmelCase = str(agent_type.to_string() )
# Ensure that the tensor and the agent_type's tensor are the same
self.assertTrue(torch.allclose(UpperCAmelCase__ , agent_type._tensor , atol=1E-4 ) )
self.assertIsInstance(agent_type.to_raw() , Image.Image )
# Ensure the path remains even after the object deletion
del agent_type
self.assertTrue(os.path.exists(UpperCAmelCase__ ) )
def __UpperCAmelCase ( self : Optional[int] ) -> int:
lowerCAmelCase = Path(get_tests_dir('fixtures/tests_samples/COCO' ) ) / '000000039769.png'
lowerCAmelCase = Image.open(UpperCAmelCase__ )
lowerCAmelCase = AgentImage(UpperCAmelCase__ )
self.assertTrue(path.samefile(agent_type.to_string() ) )
self.assertTrue(image == agent_type.to_raw() )
# Ensure the path remains even after the object deletion
del agent_type
self.assertTrue(os.path.exists(UpperCAmelCase__ ) )
def __UpperCAmelCase ( self : Optional[Any] ) -> Union[str, Any]:
lowerCAmelCase = Path(get_tests_dir('fixtures/tests_samples/COCO' ) ) / '000000039769.png'
lowerCAmelCase = Image.open(UpperCAmelCase__ )
lowerCAmelCase = AgentImage(UpperCAmelCase__ )
self.assertFalse(path.samefile(agent_type.to_string() ) )
self.assertTrue(image == agent_type.to_raw() )
# Ensure the path remains even after the object deletion
del agent_type
self.assertTrue(os.path.exists(UpperCAmelCase__ ) )
class UpperCAmelCase_ ( unittest.TestCase ):
def __UpperCAmelCase ( self : Optional[Any] ) -> Dict:
lowerCAmelCase = 'Hey!'
lowerCAmelCase = AgentText(UpperCAmelCase__ )
self.assertEqual(UpperCAmelCase__ , agent_type.to_string() )
self.assertEqual(UpperCAmelCase__ , agent_type.to_raw() )
self.assertEqual(UpperCAmelCase__ , UpperCAmelCase__ )
| 55 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_torch_available,
)
__snake_case ={
"""configuration_swiftformer""": [
"""SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""",
"""SwiftFormerConfig""",
"""SwiftFormerOnnxConfig""",
]
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__snake_case =[
"""SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""SwiftFormerForImageClassification""",
"""SwiftFormerModel""",
"""SwiftFormerPreTrainedModel""",
]
if TYPE_CHECKING:
from .configuration_swiftformer import (
SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP,
SwiftFormerConfig,
SwiftFormerOnnxConfig,
)
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_swiftformer import (
SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
SwiftFormerForImageClassification,
SwiftFormerModel,
SwiftFormerPreTrainedModel,
)
else:
import sys
__snake_case =_LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 55 | 1 |
import inspect
import unittest
from transformers import ConvNextVaConfig
from transformers.models.auto import get_values
from transformers.models.auto.modeling_auto import MODEL_FOR_BACKBONE_MAPPING_NAMES, MODEL_MAPPING_NAMES
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import ConvNextVaBackbone, ConvNextVaForImageClassification, ConvNextVaModel
from transformers.models.convnextva.modeling_convnextva import CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import AutoImageProcessor
class SCREAMING_SNAKE_CASE :
def __init__( self : int , __lowercase : Optional[Any] , __lowercase : int=13 , __lowercase : int=32 , __lowercase : str=3 , __lowercase : List[str]=4 , __lowercase : Dict=[10, 20, 30, 40] , __lowercase : str=[2, 2, 3, 2] , __lowercase : str=True , __lowercase : Union[str, Any]=True , __lowercase : Optional[int]=37 , __lowercase : Dict="gelu" , __lowercase : Dict=10 , __lowercase : Any=0.02 , __lowercase : Tuple=["stage2", "stage3", "stage4"] , __lowercase : int=[2, 3, 4] , __lowercase : List[str]=None , ):
'''simple docstring'''
__a = parent
__a = batch_size
__a = image_size
__a = num_channels
__a = num_stages
__a = hidden_sizes
__a = depths
__a = is_training
__a = use_labels
__a = intermediate_size
__a = hidden_act
__a = num_labels
__a = initializer_range
__a = out_features
__a = out_indices
__a = scope
def UpperCamelCase_ ( self : Union[str, Any] ):
'''simple docstring'''
__a = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
__a = None
if self.use_labels:
__a = ids_tensor([self.batch_size] , self.num_labels )
__a = self.get_config()
return config, pixel_values, labels
def UpperCamelCase_ ( self : Union[str, Any] ):
'''simple docstring'''
return ConvNextVaConfig(
num_channels=self.num_channels , hidden_sizes=self.hidden_sizes , depths=self.depths , num_stages=self.num_stages , hidden_act=self.hidden_act , is_decoder=__lowercase , initializer_range=self.initializer_range , out_features=self.out_features , out_indices=self.out_indices , num_labels=self.num_labels , )
def UpperCamelCase_ ( self : Any , __lowercase : Tuple , __lowercase : List[Any] , __lowercase : Tuple ):
'''simple docstring'''
__a = ConvNextVaModel(config=__lowercase )
model.to(__lowercase )
model.eval()
__a = model(__lowercase )
# expected last hidden states: B, C, H // 32, W // 32
self.parent.assertEqual(
result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , )
def UpperCamelCase_ ( self : Any , __lowercase : Dict , __lowercase : Dict , __lowercase : List[Any] ):
'''simple docstring'''
__a = ConvNextVaForImageClassification(__lowercase )
model.to(__lowercase )
model.eval()
__a = model(__lowercase , labels=__lowercase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def UpperCamelCase_ ( self : int , __lowercase : Union[str, Any] , __lowercase : List[str] , __lowercase : Tuple ):
'''simple docstring'''
__a = ConvNextVaBackbone(config=__lowercase )
model.to(__lowercase )
model.eval()
__a = model(__lowercase )
# verify hidden states
self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) )
self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] )
# verify channels
self.parent.assertEqual(len(model.channels ) , len(config.out_features ) )
self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] )
# verify backbone works with out_features=None
__a = None
__a = ConvNextVaBackbone(config=__lowercase )
model.to(__lowercase )
model.eval()
__a = model(__lowercase )
# verify feature maps
self.parent.assertEqual(len(result.feature_maps ) , 1 )
self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] )
# verify channels
self.parent.assertEqual(len(model.channels ) , 1 )
self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] )
def UpperCamelCase_ ( self : Tuple ):
'''simple docstring'''
__a = self.prepare_config_and_inputs()
__a , __a , __a = config_and_inputs
__a = {"""pixel_values""": pixel_values}
return config, inputs_dict
def UpperCamelCase_ ( self : List[str] ):
'''simple docstring'''
__a = self.prepare_config_and_inputs()
__a , __a , __a = config_and_inputs
__a = {"""pixel_values""": pixel_values, """labels""": labels}
return config, inputs_dict
@require_torch
class SCREAMING_SNAKE_CASE ( lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ):
__lowerCamelCase : List[Any] =(
(
ConvNextVaModel,
ConvNextVaForImageClassification,
ConvNextVaBackbone,
)
if is_torch_available()
else ()
)
__lowerCamelCase : List[str] =(
{'feature-extraction': ConvNextVaModel, 'image-classification': ConvNextVaForImageClassification}
if is_torch_available()
else {}
)
__lowerCamelCase : int =False
__lowerCamelCase : Optional[Any] =False
__lowerCamelCase : List[Any] =False
__lowerCamelCase : Union[str, Any] =False
__lowerCamelCase : Optional[Any] =False
def UpperCamelCase_ ( self : Optional[int] ):
'''simple docstring'''
__a = ConvNextVaModelTester(self )
__a = ConfigTester(self , config_class=__lowercase , has_text_modality=__lowercase , hidden_size=37 )
def UpperCamelCase_ ( self : Dict ):
'''simple docstring'''
self.create_and_test_config_common_properties()
self.config_tester.create_and_test_config_to_json_string()
self.config_tester.create_and_test_config_to_json_file()
self.config_tester.create_and_test_config_from_and_save_pretrained()
self.config_tester.create_and_test_config_with_num_labels()
self.config_tester.check_config_can_be_init_without_params()
self.config_tester.check_config_arguments_init()
def UpperCamelCase_ ( self : str ):
'''simple docstring'''
return
@unittest.skip(reason="""ConvNextV2 does not use inputs_embeds""" )
def UpperCamelCase_ ( self : List[Any] ):
'''simple docstring'''
pass
@unittest.skip(reason="""ConvNextV2 does not support input and output embeddings""" )
def UpperCamelCase_ ( self : Tuple ):
'''simple docstring'''
pass
@unittest.skip(reason="""ConvNextV2 does not use feedforward chunking""" )
def UpperCamelCase_ ( self : List[Any] ):
'''simple docstring'''
pass
def UpperCamelCase_ ( self : List[Any] ):
'''simple docstring'''
if not self.model_tester.is_training:
return
for model_class in self.all_model_classes:
__a , __a = self.model_tester.prepare_config_and_inputs_with_labels()
__a = True
if model_class.__name__ in [
*get_values(__lowercase ),
*get_values(__lowercase ),
]:
continue
__a = model_class(__lowercase )
model.to(__lowercase )
model.train()
__a = self._prepare_for_class(__lowercase , __lowercase , return_labels=__lowercase )
__a = model(**__lowercase ).loss
loss.backward()
def UpperCamelCase_ ( self : Dict ):
'''simple docstring'''
if not self.model_tester.is_training:
return
for model_class in self.all_model_classes:
__a , __a = self.model_tester.prepare_config_and_inputs_with_labels()
__a = False
__a = True
if (
model_class.__name__
in [*get_values(__lowercase ), *get_values(__lowercase )]
or not model_class.supports_gradient_checkpointing
):
continue
__a = model_class(__lowercase )
model.to(__lowercase )
model.gradient_checkpointing_enable()
model.train()
__a = self._prepare_for_class(__lowercase , __lowercase , return_labels=__lowercase )
__a = model(**__lowercase ).loss
loss.backward()
def UpperCamelCase_ ( self : int ):
'''simple docstring'''
__a , __a = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__a = model_class(__lowercase )
__a = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
__a = [*signature.parameters.keys()]
__a = ["""pixel_values"""]
self.assertListEqual(arg_names[:1] , __lowercase )
def UpperCamelCase_ ( self : Any ):
'''simple docstring'''
__a = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*__lowercase )
def UpperCamelCase_ ( self : Optional[Any] ):
'''simple docstring'''
def check_hidden_states_output(__lowercase : List[Any] , __lowercase : Optional[int] , __lowercase : Optional[Any] ):
__a = model_class(__lowercase )
model.to(__lowercase )
model.eval()
with torch.no_grad():
__a = model(**self._prepare_for_class(__lowercase , __lowercase ) )
__a = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states
__a = self.model_tester.num_stages
self.assertEqual(len(__lowercase ) , expected_num_stages + 1 )
# ConvNextV2's feature maps are of shape (batch_size, num_channels, height, width)
self.assertListEqual(
list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , )
__a , __a = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__a = True
check_hidden_states_output(__lowercase , __lowercase , __lowercase )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
__a = True
check_hidden_states_output(__lowercase , __lowercase , __lowercase )
def UpperCamelCase_ ( self : List[Any] ):
'''simple docstring'''
__a = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*__lowercase )
@slow
def UpperCamelCase_ ( self : Optional[int] ):
'''simple docstring'''
for model_name in CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
__a = ConvNextVaModel.from_pretrained(__lowercase )
self.assertIsNotNone(__lowercase )
def lowerCAmelCase__ ( ):
"""simple docstring"""
__a = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" )
return image
@require_torch
@require_vision
class SCREAMING_SNAKE_CASE ( unittest.TestCase ):
@cached_property
def UpperCamelCase_ ( self : str ):
'''simple docstring'''
return AutoImageProcessor.from_pretrained("""facebook/convnextv2-tiny-1k-224""" ) if is_vision_available() else None
@slow
def UpperCamelCase_ ( self : Dict ):
'''simple docstring'''
__a = ConvNextVaForImageClassification.from_pretrained("""facebook/convnextv2-tiny-1k-224""" ).to(__lowercase )
__a = self.default_image_processor
__a = prepare_img()
__a = preprocessor(images=__lowercase , return_tensors="""pt""" ).to(__lowercase )
# forward pass
with torch.no_grad():
__a = model(**__lowercase )
# verify the logits
__a = torch.Size((1, 1000) )
self.assertEqual(outputs.logits.shape , __lowercase )
__a = torch.tensor([0.9996, 0.1966, -0.4386] ).to(__lowercase )
self.assertTrue(torch.allclose(outputs.logits[0, :3] , __lowercase , atol=1E-4 ) )
| 302 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
lowerCamelCase__ = {
"""configuration_electra""": ["""ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP""", """ElectraConfig""", """ElectraOnnxConfig"""],
"""tokenization_electra""": ["""ElectraTokenizer"""],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCamelCase__ = ["""ElectraTokenizerFast"""]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCamelCase__ = [
"""ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""ElectraForCausalLM""",
"""ElectraForMaskedLM""",
"""ElectraForMultipleChoice""",
"""ElectraForPreTraining""",
"""ElectraForQuestionAnswering""",
"""ElectraForSequenceClassification""",
"""ElectraForTokenClassification""",
"""ElectraModel""",
"""ElectraPreTrainedModel""",
"""load_tf_weights_in_electra""",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCamelCase__ = [
"""TF_ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""TFElectraForMaskedLM""",
"""TFElectraForMultipleChoice""",
"""TFElectraForPreTraining""",
"""TFElectraForQuestionAnswering""",
"""TFElectraForSequenceClassification""",
"""TFElectraForTokenClassification""",
"""TFElectraModel""",
"""TFElectraPreTrainedModel""",
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCamelCase__ = [
"""FlaxElectraForCausalLM""",
"""FlaxElectraForMaskedLM""",
"""FlaxElectraForMultipleChoice""",
"""FlaxElectraForPreTraining""",
"""FlaxElectraForQuestionAnswering""",
"""FlaxElectraForSequenceClassification""",
"""FlaxElectraForTokenClassification""",
"""FlaxElectraModel""",
"""FlaxElectraPreTrainedModel""",
]
if TYPE_CHECKING:
from .configuration_electra import ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP, ElectraConfig, ElectraOnnxConfig
from .tokenization_electra import ElectraTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_electra_fast import ElectraTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_electra import (
ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST,
ElectraForCausalLM,
ElectraForMaskedLM,
ElectraForMultipleChoice,
ElectraForPreTraining,
ElectraForQuestionAnswering,
ElectraForSequenceClassification,
ElectraForTokenClassification,
ElectraModel,
ElectraPreTrainedModel,
load_tf_weights_in_electra,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_electra import (
TF_ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST,
TFElectraForMaskedLM,
TFElectraForMultipleChoice,
TFElectraForPreTraining,
TFElectraForQuestionAnswering,
TFElectraForSequenceClassification,
TFElectraForTokenClassification,
TFElectraModel,
TFElectraPreTrainedModel,
)
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_electra import (
FlaxElectraForCausalLM,
FlaxElectraForMaskedLM,
FlaxElectraForMultipleChoice,
FlaxElectraForPreTraining,
FlaxElectraForQuestionAnswering,
FlaxElectraForSequenceClassification,
FlaxElectraForTokenClassification,
FlaxElectraModel,
FlaxElectraPreTrainedModel,
)
else:
import sys
lowerCamelCase__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 302 | 1 |
'''simple docstring'''
def _lowercase ( __A ):
'''simple docstring'''
return " ".join(
"""""".join(word[::-1] ) if len(__A ) > 4 else word for word in sentence.split() )
if __name__ == "__main__":
import doctest
doctest.testmod()
print(reverse_long_words('Hey wollef sroirraw'))
| 243 |
'''simple docstring'''
import functools
import gc
import inspect
import torch
from .imports import is_npu_available, is_xpu_available
def _lowercase ( *__A ):
'''simple docstring'''
if not isinstance(__A ,__A ):
__UpperCamelCase = list(__A )
for i in range(len(__A ) ):
__UpperCamelCase = None
gc.collect()
if is_xpu_available():
torch.xpu.empty_cache()
elif is_npu_available():
torch.npu.empty_cache()
else:
torch.cuda.empty_cache()
return objects
def _lowercase ( __A ):
'''simple docstring'''
__UpperCamelCase = [
"""CUDA out of memory.""", # CUDA OOM
"""cuDNN error: CUDNN_STATUS_NOT_SUPPORTED.""", # CUDNN SNAFU
"""DefaultCPUAllocator: can't allocate memory""", # CPU OOM
]
if isinstance(__A ,__A ) and len(exception.args ) == 1:
return any(err in exception.args[0] for err in _statements )
return False
def _lowercase ( __A = None ,__A = 128 ):
'''simple docstring'''
if function is None:
return functools.partial(__A ,starting_batch_size=__A )
__UpperCamelCase = starting_batch_size
def decorator(*__A ,**__A ):
nonlocal batch_size
gc.collect()
if is_xpu_available():
torch.xpu.empty_cache()
elif is_npu_available():
torch.npu.empty_cache()
else:
torch.cuda.empty_cache()
__UpperCamelCase = list(inspect.signature(__A ).parameters.keys() )
# Guard against user error
if len(__A ) < (len(__A ) + 1):
__UpperCamelCase = """, """.join([f"{arg}={value}" for arg, value in zip(params[1:] ,args[1:] )] )
raise TypeError(
f"Batch size was passed into `{function.__name__}` as the first argument when called."
f"Remove this as the decorator already does so: `{function.__name__}({arg_str})`" )
while True:
if batch_size == 0:
raise RuntimeError("""No executable batch size found, reached zero.""" )
try:
return function(__A ,*__A ,**__A )
except Exception as e:
if should_reduce_batch_size(__A ):
gc.collect()
if is_xpu_available():
torch.xpu.empty_cache()
elif is_npu_available():
torch.npu.empty_cache()
else:
torch.cuda.empty_cache()
batch_size //= 2
else:
raise
return decorator
| 243 | 1 |
'''simple docstring'''
from dataclasses import dataclass
from typing import Tuple
import numpy as np
import torch
@dataclass
class lowerCAmelCase__ :
lowerCAmelCase_ = 42 # [batch_size x 3]
lowerCAmelCase_ = 42 # [batch_size x 3]
lowerCAmelCase_ = 42 # [batch_size x 3]
lowerCAmelCase_ = 42 # [batch_size x 3]
lowerCAmelCase_ = 42
lowerCAmelCase_ = 42
lowerCAmelCase_ = 42
lowerCAmelCase_ = 42
lowerCAmelCase_ = 42
def _snake_case ( self ):
"""simple docstring"""
assert self.x.shape[0] == self.y.shape[0] == self.z.shape[0] == self.origin.shape[0]
assert self.x.shape[1] == self.y.shape[1] == self.z.shape[1] == self.origin.shape[1] == 3
assert len(self.x.shape ) == len(self.y.shape ) == len(self.z.shape ) == len(self.origin.shape ) == 2
def _snake_case ( self ):
"""simple docstring"""
return torch.from_numpy(np.array([self.width, self.height] , dtype=np.floataa ) )
def _snake_case ( self ):
"""simple docstring"""
return torch.from_numpy(np.array([self.x_fov, self.y_fov] , dtype=np.floataa ) )
def _snake_case ( self ):
"""simple docstring"""
lowercase_ : Tuple = torch.arange(self.height * self.width )
lowercase_ : Union[str, Any] = torch.stack(
[
pixel_indices % self.width,
torch.div(__SCREAMING_SNAKE_CASE , self.width , rounding_mode='''trunc''' ),
] , axis=1 , )
return coords
@property
def _snake_case ( self ):
"""simple docstring"""
lowercase_ , *lowercase_ : str = self.shape
lowercase_ : List[Any] = int(np.prod(__SCREAMING_SNAKE_CASE ) )
lowercase_ : Union[str, Any] = self.get_image_coords()
lowercase_ : Tuple = torch.broadcast_to(coords.unsqueeze(0 ) , [batch_size * inner_batch_size, *coords.shape] )
lowercase_ : Dict = self.get_camera_rays(__SCREAMING_SNAKE_CASE )
lowercase_ : Tuple = rays.view(__SCREAMING_SNAKE_CASE , inner_batch_size * self.height * self.width , 2 , 3 )
return rays
def _snake_case ( self , __SCREAMING_SNAKE_CASE ):
"""simple docstring"""
lowercase_ , *lowercase_ , lowercase_ : str = coords.shape
assert n_coords == 2
assert batch_size == self.origin.shape[0]
lowercase_ : Any = coords.view(__SCREAMING_SNAKE_CASE , -1 , 2 )
lowercase_ : str = self.resolution()
lowercase_ : Dict = self.fov()
lowercase_ : Optional[Any] = (flat.float() / (res - 1)) * 2 - 1
lowercase_ : Any = fracs * torch.tan(fov / 2 )
lowercase_ : Optional[int] = fracs.view(__SCREAMING_SNAKE_CASE , -1 , 2 )
lowercase_ : Optional[Any] = (
self.z.view(__SCREAMING_SNAKE_CASE , 1 , 3 )
+ self.x.view(__SCREAMING_SNAKE_CASE , 1 , 3 ) * fracs[:, :, :1]
+ self.y.view(__SCREAMING_SNAKE_CASE , 1 , 3 ) * fracs[:, :, 1:]
)
lowercase_ : List[str] = directions / directions.norm(dim=-1 , keepdim=__SCREAMING_SNAKE_CASE )
lowercase_ : str = torch.stack(
[
torch.broadcast_to(self.origin.view(__SCREAMING_SNAKE_CASE , 1 , 3 ) , [batch_size, directions.shape[1], 3] ),
directions,
] , dim=2 , )
return rays.view(__SCREAMING_SNAKE_CASE , *__SCREAMING_SNAKE_CASE , 2 , 3 )
def _snake_case ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ):
"""simple docstring"""
assert width * self.height == height * self.width, "The aspect ratio should not change."
return DifferentiableProjectiveCamera(
origin=self.origin , x=self.x , y=self.y , z=self.z , width=__SCREAMING_SNAKE_CASE , height=__SCREAMING_SNAKE_CASE , x_fov=self.x_fov , y_fov=self.y_fov , )
def snake_case_ ( __SCREAMING_SNAKE_CASE : int ):
"""simple docstring"""
lowercase_ : Any = []
lowercase_ : List[str] = []
lowercase_ : int = []
lowercase_ : str = []
for theta in np.linspace(0 , 2 * np.pi , num=20 ):
lowercase_ : Dict = np.array([np.sin(__SCREAMING_SNAKE_CASE ), np.cos(__SCREAMING_SNAKE_CASE ), -0.5] )
z /= np.sqrt(np.sum(z**2 ) )
lowercase_ : Tuple = -z * 4
lowercase_ : str = np.array([np.cos(__SCREAMING_SNAKE_CASE ), -np.sin(__SCREAMING_SNAKE_CASE ), 0.0] )
lowercase_ : Optional[Any] = np.cross(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
origins.append(__SCREAMING_SNAKE_CASE )
xs.append(__SCREAMING_SNAKE_CASE )
ys.append(__SCREAMING_SNAKE_CASE )
zs.append(__SCREAMING_SNAKE_CASE )
return DifferentiableProjectiveCamera(
origin=torch.from_numpy(np.stack(__SCREAMING_SNAKE_CASE , axis=0 ) ).float() , x=torch.from_numpy(np.stack(__SCREAMING_SNAKE_CASE , axis=0 ) ).float() , y=torch.from_numpy(np.stack(__SCREAMING_SNAKE_CASE , axis=0 ) ).float() , z=torch.from_numpy(np.stack(__SCREAMING_SNAKE_CASE , axis=0 ) ).float() , width=__SCREAMING_SNAKE_CASE , height=__SCREAMING_SNAKE_CASE , x_fov=0.7 , y_fov=0.7 , shape=(1, len(__SCREAMING_SNAKE_CASE )) , )
| 93 |
'''simple docstring'''
import copy
import os
from typing import Union
from ...configuration_utils import PretrainedConfig
from ...utils import logging
_lowercase : Optional[Any] = logging.get_logger(__name__)
_lowercase : List[str] = {
"google/pix2struct-textcaps-base": (
"https://huggingface.co/google/pix2struct-textcaps-base/resolve/main/config.json"
),
}
class lowerCAmelCase__ ( lowerCamelCase_ ):
lowerCAmelCase_ = '''pix2struct_text_model'''
lowerCAmelCase_ = ['''past_key_values''']
lowerCAmelCase_ = {
'''hidden_size''': '''hidden_size''',
'''num_attention_heads''': '''num_heads''',
'''num_hidden_layers''': '''num_layers''',
}
def __init__( self , __SCREAMING_SNAKE_CASE=5_02_44 , __SCREAMING_SNAKE_CASE=7_68 , __SCREAMING_SNAKE_CASE=64 , __SCREAMING_SNAKE_CASE=20_48 , __SCREAMING_SNAKE_CASE=12 , __SCREAMING_SNAKE_CASE=12 , __SCREAMING_SNAKE_CASE=32 , __SCREAMING_SNAKE_CASE=1_28 , __SCREAMING_SNAKE_CASE=0.1 , __SCREAMING_SNAKE_CASE=1E-6 , __SCREAMING_SNAKE_CASE=1.0 , __SCREAMING_SNAKE_CASE="gelu_new" , __SCREAMING_SNAKE_CASE=0 , __SCREAMING_SNAKE_CASE=False , __SCREAMING_SNAKE_CASE=0 , __SCREAMING_SNAKE_CASE=1 , __SCREAMING_SNAKE_CASE=False , __SCREAMING_SNAKE_CASE=True , **__SCREAMING_SNAKE_CASE , ):
"""simple docstring"""
lowercase_ : Any = vocab_size
lowercase_ : Tuple = hidden_size
lowercase_ : Optional[Any] = d_kv
lowercase_ : List[str] = d_ff
lowercase_ : List[str] = num_layers
lowercase_ : Optional[Any] = num_heads
lowercase_ : Union[str, Any] = relative_attention_num_buckets
lowercase_ : Optional[int] = relative_attention_max_distance
lowercase_ : Union[str, Any] = dropout_rate
lowercase_ : Dict = layer_norm_epsilon
lowercase_ : Dict = initializer_factor
lowercase_ : List[Any] = use_cache
lowercase_ : Optional[int] = eos_token_id
lowercase_ : Optional[int] = decoder_start_token_id
# for backwards compatibility
lowercase_ : Any = dense_act_fn
super().__init__(
pad_token_id=__SCREAMING_SNAKE_CASE , eos_token_id=__SCREAMING_SNAKE_CASE , decoder_start_token_id=__SCREAMING_SNAKE_CASE , tie_word_embeddings=__SCREAMING_SNAKE_CASE , is_decoder=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE , )
@classmethod
def _snake_case ( cls , __SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ):
"""simple docstring"""
cls._set_token_in_kwargs(__SCREAMING_SNAKE_CASE )
lowercase_ , lowercase_ : Optional[int] = cls.get_config_dict(__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE )
# get the text config dict if we are loading from Pix2StructConfig
if config_dict.get('''model_type''' ) == "pix2struct":
lowercase_ : List[Any] = config_dict['''text_config''']
if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type:
logger.warning(
F'''You are using a model of type {config_dict['model_type']} to instantiate a model of type '''
F'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' )
return cls.from_dict(__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE )
class lowerCAmelCase__ ( lowerCamelCase_ ):
lowerCAmelCase_ = '''pix2struct_vision_model'''
def __init__( self , __SCREAMING_SNAKE_CASE=7_68 , __SCREAMING_SNAKE_CASE=7_68 , __SCREAMING_SNAKE_CASE=20_48 , __SCREAMING_SNAKE_CASE=64 , __SCREAMING_SNAKE_CASE=12 , __SCREAMING_SNAKE_CASE=12 , __SCREAMING_SNAKE_CASE="gelu_new" , __SCREAMING_SNAKE_CASE=1E-6 , __SCREAMING_SNAKE_CASE=0.0 , __SCREAMING_SNAKE_CASE=0.0 , __SCREAMING_SNAKE_CASE=1E-1_0 , __SCREAMING_SNAKE_CASE=1.0 , __SCREAMING_SNAKE_CASE=40_96 , __SCREAMING_SNAKE_CASE=32 , __SCREAMING_SNAKE_CASE=1_28 , **__SCREAMING_SNAKE_CASE , ):
"""simple docstring"""
super().__init__(**__SCREAMING_SNAKE_CASE )
lowercase_ : Union[str, Any] = hidden_size
lowercase_ : Any = patch_embed_hidden_size
lowercase_ : List[Any] = d_ff
lowercase_ : Dict = dropout_rate
lowercase_ : Any = num_hidden_layers
lowercase_ : Any = num_attention_heads
lowercase_ : int = initializer_range
lowercase_ : Dict = initializer_factor
lowercase_ : Dict = attention_dropout
lowercase_ : Optional[Any] = layer_norm_eps
lowercase_ : str = dense_act_fn
lowercase_ : Dict = seq_len
lowercase_ : List[Any] = relative_attention_num_buckets
lowercase_ : int = relative_attention_max_distance
lowercase_ : Optional[int] = d_kv
@classmethod
def _snake_case ( cls , __SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ):
"""simple docstring"""
cls._set_token_in_kwargs(__SCREAMING_SNAKE_CASE )
lowercase_ , lowercase_ : str = cls.get_config_dict(__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE )
# get the vision config dict if we are loading from Pix2StructConfig
if config_dict.get('''model_type''' ) == "pix2struct":
lowercase_ : Optional[int] = config_dict['''vision_config''']
if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type:
logger.warning(
F'''You are using a model of type {config_dict['model_type']} to instantiate a model of type '''
F'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' )
return cls.from_dict(__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE )
class lowerCAmelCase__ ( lowerCamelCase_ ):
lowerCAmelCase_ = '''pix2struct'''
lowerCAmelCase_ = True
def __init__( self , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=1.0 , __SCREAMING_SNAKE_CASE=0.02 , __SCREAMING_SNAKE_CASE=False , __SCREAMING_SNAKE_CASE=False , __SCREAMING_SNAKE_CASE=True , **__SCREAMING_SNAKE_CASE , ):
"""simple docstring"""
super().__init__(tie_word_embeddings=__SCREAMING_SNAKE_CASE , is_encoder_decoder=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE )
if text_config is None:
lowercase_ : Optional[Any] = {}
logger.info('''text_config is None. Initializing the Pix2StructTextConfig with default values.''' )
if vision_config is None:
lowercase_ : Dict = {}
logger.info('''vision_config is None. Initializing the Pix2StructVisionConfig with default values.''' )
lowercase_ : str = PixaStructTextConfig(**__SCREAMING_SNAKE_CASE )
lowercase_ : Tuple = PixaStructVisionConfig(**__SCREAMING_SNAKE_CASE )
lowercase_ : Optional[Any] = self.text_config.decoder_start_token_id
lowercase_ : Union[str, Any] = self.text_config.pad_token_id
lowercase_ : Union[str, Any] = self.text_config.eos_token_id
lowercase_ : int = initializer_factor
lowercase_ : Any = initializer_range
lowercase_ : str = self.initializer_range
lowercase_ : str = self.initializer_range
lowercase_ : int = is_vqa
@classmethod
def _snake_case ( cls , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ):
"""simple docstring"""
return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **__SCREAMING_SNAKE_CASE )
def _snake_case ( self ):
"""simple docstring"""
lowercase_ : Tuple = copy.deepcopy(self.__dict__ )
lowercase_ : Any = self.text_config.to_dict()
lowercase_ : Optional[Any] = self.vision_config.to_dict()
lowercase_ : Optional[int] = self.__class__.model_type
return output
| 93 | 1 |
"""simple docstring"""
from collections import defaultdict
def _A (__a , __a ) -> bool:
"""simple docstring"""
SCREAMING_SNAKE_CASE_ : Dict = first_str.lower().strip()
SCREAMING_SNAKE_CASE_ : List[Any] = second_str.lower().strip()
# Remove whitespace
SCREAMING_SNAKE_CASE_ : Dict = first_str.replace(''' ''' , '''''' )
SCREAMING_SNAKE_CASE_ : Optional[Any] = second_str.replace(''' ''' , '''''' )
# Strings of different lengths are not anagrams
if len(__a ) != len(__a ):
return False
# Default values for count should be 0
SCREAMING_SNAKE_CASE_ : defaultdict[str, int] = defaultdict(__a )
# For each character in input strings,
# increment count in the corresponding
for i in range(len(__a ) ):
count[first_str[i]] += 1
count[second_str[i]] -= 1
return all(_count == 0 for _count in count.values() )
if __name__ == "__main__":
from doctest import testmod
testmod()
UpperCAmelCase_ : Any = input("""Enter the first string """).strip()
UpperCAmelCase_ : Optional[int] = input("""Enter the second string """).strip()
UpperCAmelCase_ : Union[str, Any] = check_anagrams(input_a, input_b)
print(f'''{input_a} and {input_b} are {'' if status else 'not '}anagrams.''')
| 318 |
"""simple docstring"""
import argparse
import os
import re
import packaging.version
UpperCAmelCase_ : Any = """examples/"""
UpperCAmelCase_ : Optional[int] = {
"""examples""": (re.compile(r"""^check_min_version\(\"[^\"]+\"\)\s*$""", re.MULTILINE), """check_min_version(\"VERSION\")\n"""),
"""init""": (re.compile(r"""^__version__\s+=\s+\"([^\"]+)\"\s*$""", re.MULTILINE), """__version__ = \"VERSION\"\n"""),
"""setup""": (re.compile(r"""^(\s*)version\s*=\s*\"[^\"]+\",""", re.MULTILINE), r"""\1version=\"VERSION\","""),
"""doc""": (re.compile(r"""^(\s*)release\s*=\s*\"[^\"]+\"$""", re.MULTILINE), """release = \"VERSION\"\n"""),
}
UpperCAmelCase_ : List[Any] = {
"""init""": """src/transformers/__init__.py""",
"""setup""": """setup.py""",
}
UpperCAmelCase_ : Optional[int] = """README.md"""
def _A (__a , __a , __a ) -> int:
"""simple docstring"""
with open(__a , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f:
SCREAMING_SNAKE_CASE_ : Optional[Any] = f.read()
SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : List[Any] = REPLACE_PATTERNS[pattern]
SCREAMING_SNAKE_CASE_ : Optional[int] = replace.replace('''VERSION''' , __a )
SCREAMING_SNAKE_CASE_ : Tuple = re_pattern.sub(__a , __a )
with open(__a , '''w''' , encoding='''utf-8''' , newline='''\n''' ) as f:
f.write(__a )
def _A (__a ) -> int:
"""simple docstring"""
for folder, directories, fnames in os.walk(__a ):
# Removing some of the folders with non-actively maintained examples from the walk
if "research_projects" in directories:
directories.remove('''research_projects''' )
if "legacy" in directories:
directories.remove('''legacy''' )
for fname in fnames:
if fname.endswith('''.py''' ):
update_version_in_file(os.path.join(__a , __a ) , __a , pattern='''examples''' )
def _A (__a , __a=False ) -> List[str]:
"""simple docstring"""
for pattern, fname in REPLACE_FILES.items():
update_version_in_file(__a , __a , __a )
if not patch:
update_version_in_examples(__a )
def _A () -> int:
"""simple docstring"""
SCREAMING_SNAKE_CASE_ : Optional[Any] = '''🤗 Transformers currently provides the following architectures'''
SCREAMING_SNAKE_CASE_ : Optional[int] = '''1. Want to contribute a new model?'''
with open(__a , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f:
SCREAMING_SNAKE_CASE_ : Tuple = f.readlines()
# Find the start of the list.
SCREAMING_SNAKE_CASE_ : Tuple = 0
while not lines[start_index].startswith(_start_prompt ):
start_index += 1
start_index += 1
SCREAMING_SNAKE_CASE_ : Dict = start_index
# Update the lines in the model list.
while not lines[index].startswith(_end_prompt ):
if lines[index].startswith('''1.''' ):
SCREAMING_SNAKE_CASE_ : List[Any] = lines[index].replace(
'''https://huggingface.co/docs/transformers/main/model_doc''' , '''https://huggingface.co/docs/transformers/model_doc''' , )
index += 1
with open(__a , '''w''' , encoding='''utf-8''' , newline='''\n''' ) as f:
f.writelines(__a )
def _A () -> List[str]:
"""simple docstring"""
with open(REPLACE_FILES['''init'''] , '''r''' ) as f:
SCREAMING_SNAKE_CASE_ : Any = f.read()
SCREAMING_SNAKE_CASE_ : Dict = REPLACE_PATTERNS['''init'''][0].search(__a ).groups()[0]
return packaging.version.parse(__a )
def _A (__a=False ) -> List[Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE_ : Tuple = get_version()
if patch and default_version.is_devrelease:
raise ValueError('''Can\'t create a patch version from the dev branch, checkout a released version!''' )
if default_version.is_devrelease:
SCREAMING_SNAKE_CASE_ : List[Any] = default_version.base_version
elif patch:
SCREAMING_SNAKE_CASE_ : int = f'{default_version.major}.{default_version.minor}.{default_version.micro + 1}'
else:
SCREAMING_SNAKE_CASE_ : Any = f'{default_version.major}.{default_version.minor + 1}.0'
# Now let's ask nicely if that's the right one.
SCREAMING_SNAKE_CASE_ : int = input(f'Which version are you releasing? [{default_version}]' )
if len(__a ) == 0:
SCREAMING_SNAKE_CASE_ : Optional[Any] = default_version
print(f'Updating version to {version}.' )
global_version_update(__a , patch=__a )
if not patch:
print('''Cleaning main README, don\'t forget to run `make fix-copies`.''' )
clean_main_ref_in_model_list()
def _A () -> Any:
"""simple docstring"""
SCREAMING_SNAKE_CASE_ : Any = get_version()
SCREAMING_SNAKE_CASE_ : Any = f'{current_version.major}.{current_version.minor + 1}.0.dev0'
SCREAMING_SNAKE_CASE_ : Union[str, Any] = current_version.base_version
# Check with the user we got that right.
SCREAMING_SNAKE_CASE_ : int = input(f'Which version are we developing now? [{dev_version}]' )
if len(__a ) == 0:
SCREAMING_SNAKE_CASE_ : Optional[int] = dev_version
print(f'Updating version to {version}.' )
global_version_update(__a )
print('''Cleaning main README, don\'t forget to run `make fix-copies`.''' )
clean_main_ref_in_model_list()
if __name__ == "__main__":
UpperCAmelCase_ : Optional[int] = argparse.ArgumentParser()
parser.add_argument("""--post_release""", action="""store_true""", help="""Whether this is pre or post release.""")
parser.add_argument("""--patch""", action="""store_true""", help="""Whether or not this is a patch release.""")
UpperCAmelCase_ : int = parser.parse_args()
if not args.post_release:
pre_release_work(patch=args.patch)
elif args.patch:
print("""Nothing to do after a patch :-)""")
else:
post_release_work()
| 318 | 1 |
"""simple docstring"""
import argparse
import logging
import pickle
from collections import Counter
logging.basicConfig(
format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt='%m/%d/%Y %H:%M:%S', level=logging.INFO
)
__snake_case : int = logging.getLogger(__name__)
if __name__ == "__main__":
__snake_case : int = argparse.ArgumentParser(
description='Token Counts for smoothing the masking probabilities in MLM (cf XLM/word2vec)'
)
parser.add_argument(
'--data_file', type=str, default='data/dump.bert-base-uncased.pickle', help='The binarized dataset.'
)
parser.add_argument(
'--token_counts_dump', type=str, default='data/token_counts.bert-base-uncased.pickle', help='The dump file.'
)
parser.add_argument('--vocab_size', default=30_522, type=int)
__snake_case : Optional[Any] = parser.parse_args()
logger.info(F"""Loading data from {args.data_file}""")
with open(args.data_file, 'rb') as fp:
__snake_case : Optional[Any] = pickle.load(fp)
logger.info('Counting occurrences for MLM.')
__snake_case : Optional[Any] = Counter()
for tk_ids in data:
counter.update(tk_ids)
__snake_case : Optional[Any] = [0] * args.vocab_size
for k, v in counter.items():
__snake_case : Union[str, Any] = v
logger.info(F"""Dump to {args.token_counts_dump}""")
with open(args.token_counts_dump, 'wb') as handle:
pickle.dump(counts, handle, protocol=pickle.HIGHEST_PROTOCOL) | 269 |
"""simple docstring"""
from __future__ import annotations
import time
import numpy as np
__snake_case : Optional[Any] = [8, 5, 9, 7]
__snake_case : List[Any] = [
[2, 0, 1, 1],
[0, 1, 2, 1],
[4, 0, 0, 3],
[0, 2, 1, 0],
[1, 0, 3, 0],
]
__snake_case : Optional[int] = [
[3, 2, 1, 4],
[0, 2, 5, 2],
[5, 1, 0, 5],
[1, 5, 3, 0],
[3, 0, 3, 3],
]
class A__ :
'''simple docstring'''
def __init__( self: Any , _SCREAMING_SNAKE_CASE: list[int] , _SCREAMING_SNAKE_CASE: list[list[int]] , _SCREAMING_SNAKE_CASE: list[list[int]] , ) -> None:
"""simple docstring"""
__lowerCAmelCase : Any = claim_vector
__lowerCAmelCase : Tuple = allocated_resources_table
__lowerCAmelCase : Tuple = maximum_claim_table
def _SCREAMING_SNAKE_CASE ( self: Union[str, Any]) -> list[int]:
"""simple docstring"""
return [
sum(p_item[i] for p_item in self.__allocated_resources_table)
for i in range(len(self.__allocated_resources_table[0]))
]
def _SCREAMING_SNAKE_CASE ( self: int) -> list[int]:
"""simple docstring"""
return np.array(self.__claim_vector) - np.array(
self.__processes_resource_summation())
def _SCREAMING_SNAKE_CASE ( self: int) -> list[list[int]]:
"""simple docstring"""
return [
list(np.array(self.__maximum_claim_table[i]) - np.array(_SCREAMING_SNAKE_CASE))
for i, allocated_resource in enumerate(self.__allocated_resources_table)
]
def _SCREAMING_SNAKE_CASE ( self: List[Any]) -> dict[int, list[int]]:
"""simple docstring"""
return {self.__need().index(_SCREAMING_SNAKE_CASE): i for i in self.__need()}
def _SCREAMING_SNAKE_CASE ( self: Optional[Any] , **_SCREAMING_SNAKE_CASE: List[Any]) -> None:
"""simple docstring"""
__lowerCAmelCase : Optional[int] = self.__need()
__lowerCAmelCase : int = self.__allocated_resources_table
__lowerCAmelCase : Dict = self.__available_resources()
__lowerCAmelCase : str = self.__need_index_manager()
for kw, val in kwargs.items():
if kw and val is True:
self.__pretty_data()
print("_" * 50 + "\n")
while need_list:
__lowerCAmelCase : int = False
for each_need in need_list:
__lowerCAmelCase : Dict = True
for index, need in enumerate(_SCREAMING_SNAKE_CASE):
if need > available_resources[index]:
__lowerCAmelCase : Dict = False
break
if execution:
__lowerCAmelCase : Any = True
# get the original index of the process from ind_ctrl db
for original_need_index, need_clone in need_index_manager.items():
if each_need == need_clone:
__lowerCAmelCase : Union[str, Any] = original_need_index
print(F"""Process {process_number + 1} is executing.""")
# remove the process run from stack
need_list.remove(_SCREAMING_SNAKE_CASE)
# update available/freed resources stack
__lowerCAmelCase : Dict = np.array(_SCREAMING_SNAKE_CASE) + np.array(
alloc_resources_table[process_number])
print(
"Updated available resource stack for processes: "
+ " ".join([str(_SCREAMING_SNAKE_CASE) for x in available_resources]))
break
if safe:
print("The process is in a safe state.\n")
else:
print("System in unsafe state. Aborting...\n")
break
def _SCREAMING_SNAKE_CASE ( self: Union[str, Any]) -> List[Any]:
"""simple docstring"""
print(" " * 9 + "Allocated Resource Table")
for item in self.__allocated_resources_table:
print(
F"""P{self.__allocated_resources_table.index(_SCREAMING_SNAKE_CASE) + 1}"""
+ " ".join(F"""{it:>8}""" for it in item)
+ "\n")
print(" " * 9 + "System Resource Table")
for item in self.__maximum_claim_table:
print(
F"""P{self.__maximum_claim_table.index(_SCREAMING_SNAKE_CASE) + 1}"""
+ " ".join(F"""{it:>8}""" for it in item)
+ "\n")
print(
"Current Usage by Active Processes: "
+ " ".join(str(_SCREAMING_SNAKE_CASE) for x in self.__claim_vector))
print(
"Initial Available Resources: "
+ " ".join(str(_SCREAMING_SNAKE_CASE) for x in self.__available_resources()))
time.sleep(1)
if __name__ == "__main__":
import doctest
doctest.testmod() | 269 | 1 |
from __future__ import annotations
from statistics import mean
def UpperCamelCase_( _snake_case : list[int] , _snake_case : list[int] , _snake_case : int ):
"""simple docstring"""
__a =[0] * no_of_processes
__a =[0] * no_of_processes
# Initialize remaining_time to waiting_time.
for i in range(_snake_case ):
__a =burst_time[i]
__a =[]
__a =0
__a =0
# When processes are not completed,
# A process whose arrival time has passed \
# and has remaining execution time is put into the ready_process.
# The shortest process in the ready_process, target_process is executed.
while completed != no_of_processes:
__a =[]
__a =-1
for i in range(_snake_case ):
if (arrival_time[i] <= total_time) and (remaining_time[i] > 0):
ready_process.append(_snake_case )
if len(_snake_case ) > 0:
__a =ready_process[0]
for i in ready_process:
if remaining_time[i] < remaining_time[target_process]:
__a =i
total_time += burst_time[target_process]
completed += 1
__a =0
__a =(
total_time - arrival_time[target_process] - burst_time[target_process]
)
else:
total_time += 1
return waiting_time
def UpperCamelCase_( _snake_case : list[int] , _snake_case : int , _snake_case : list[int] ):
"""simple docstring"""
__a =[0] * no_of_processes
for i in range(_snake_case ):
__a =burst_time[i] + waiting_time[i]
return turn_around_time
if __name__ == "__main__":
print("[TEST CASE 01]")
_lowerCAmelCase : Union[str, Any] = 4
_lowerCAmelCase : Tuple = [2, 5, 3, 7]
_lowerCAmelCase : Union[str, Any] = [0, 0, 0, 0]
_lowerCAmelCase : Optional[Any] = calculate_waitingtime(arrival_time, burst_time, no_of_processes)
_lowerCAmelCase : Optional[Any] = calculate_turnaroundtime(
burst_time, no_of_processes, waiting_time
)
# Printing the Result
print("PID\tBurst Time\tArrival Time\tWaiting Time\tTurnaround Time")
for i, process_id in enumerate(list(range(1, 5))):
print(
f'''{process_id}\t{burst_time[i]}\t\t\t{arrival_time[i]}\t\t\t\t'''
f'''{waiting_time[i]}\t\t\t\t{turn_around_time[i]}'''
)
print(f'''\nAverage waiting time = {mean(waiting_time):.5f}''')
print(f'''Average turnaround time = {mean(turn_around_time):.5f}''')
| 308 |
import argparse
import dataclasses
import json
import logging
import os
import shutil
from typing import List, Optional
import datasets
from accelerate import Accelerator
from datasets import load_dataset
from finetuning import finetune
from tqdm.auto import tqdm
import transformers
from transformers import AutoConfig, set_seed
from transformers.trainer_utils import IntervalStrategy
_lowerCAmelCase : Optional[int] = logging.getLogger(__name__)
_lowerCAmelCase : Any = "pytorch_model.bin"
@dataclasses.dataclass
class __magic_name__ :
SCREAMING_SNAKE_CASE = dataclasses.field(
metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models.'} )
SCREAMING_SNAKE_CASE = dataclasses.field(
default=lowerCAmelCase_ , metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co.'} , )
@dataclasses.dataclass
class __magic_name__ :
SCREAMING_SNAKE_CASE = dataclasses.field(metadata={'help': 'A csv or a json file containing the training data.'} )
SCREAMING_SNAKE_CASE = dataclasses.field(metadata={'help': 'A csv or a json file containing the data to predict on.'} )
SCREAMING_SNAKE_CASE = dataclasses.field(
default=lowerCAmelCase_ , metadata={'help': 'A csv or a json file containing the validation data.'} )
SCREAMING_SNAKE_CASE = dataclasses.field(
default=lowerCAmelCase_ , metadata={'help': 'The name of the task to train on.'} , )
SCREAMING_SNAKE_CASE = dataclasses.field(
default=lowerCAmelCase_ , metadata={'help': 'The list of labels for the task.'} )
@dataclasses.dataclass
class __magic_name__ :
SCREAMING_SNAKE_CASE = dataclasses.field(
metadata={'help': 'The output directory where the model predictions and checkpoints will be written.'} )
SCREAMING_SNAKE_CASE = dataclasses.field(
default='accuracy' , metadata={'help': 'The evaluation metric used for the task.'} )
SCREAMING_SNAKE_CASE = dataclasses.field(
default='no' , metadata={
'help': 'The evaluation strategy to adopt during training. Possible values are: ["no", "step", "epoch]'
} , )
SCREAMING_SNAKE_CASE = dataclasses.field(
default=1_0 , metadata={'help': 'Number of evaluation calls with no improvement after which training will be stopped.'} , )
SCREAMING_SNAKE_CASE = dataclasses.field(
default=0.0 , metadata={
'help': 'How much the specified evaluation metric must improve to satisfy early stopping conditions.'
} , )
SCREAMING_SNAKE_CASE = dataclasses.field(
default=lowerCAmelCase_ , metadata={'help': 'Whether to filter the pseudo-labeled data based on the confidence score.'} , )
SCREAMING_SNAKE_CASE = dataclasses.field(
default=lowerCAmelCase_ , metadata={'help': 'Whether to filter the pseudo-labeled data based on the validation performance.'} , )
SCREAMING_SNAKE_CASE = dataclasses.field(
default=lowerCAmelCase_ , metadata={'help': 'Whether to fine-tune on labeled data after pseudo training.'} , )
SCREAMING_SNAKE_CASE = dataclasses.field(
default=0.0 , metadata={'help': 'Confidence threshold for pseudo-labeled data filtering.'} , )
SCREAMING_SNAKE_CASE = dataclasses.field(
default=1_0_0 , metadata={'help': 'Number of evaluation calls with no improvement after which training will be stopped.'} , )
SCREAMING_SNAKE_CASE = dataclasses.field(
default=lowerCAmelCase_ , metadata={'help': 'Random seed for initialization.'} , )
def UpperCamelCase_( _snake_case : int , _snake_case : str , _snake_case : Optional[int] , _snake_case : str , _snake_case : Union[str, Any] , _snake_case : List[Any] ):
"""simple docstring"""
__a =datasets.concatenate_datasets([infer_input, infer_output] , axis=1 )
if args.do_filter_by_confidence:
__a =dataset.filter(lambda _snake_case : example["probability"] > args.confidence_threshold )
if args.do_filter_by_val_performance:
assert eval_result >= 0.0 and eval_result <= 1.0
__a =int(eval_result * len(_snake_case ) )
print(_snake_case )
__a =dataset.sort('probability' , reverse=_snake_case )
__a =dataset.select(range(_snake_case ) )
__a =dataset.remove_columns(['label', 'probability'] )
__a =dataset.rename_column('prediction' , 'label' )
__a =dataset.map(lambda _snake_case : {"label": idalabel[example["label"]]} )
__a =dataset.shuffle(seed=args.seed )
__a =os.path.join(_snake_case , F'train_pseudo.{args.data_file_extension}' )
if args.data_file_extension == "csv":
dataset.to_csv(_snake_case , index=_snake_case )
else:
dataset.to_json(_snake_case )
def UpperCamelCase_( _snake_case : List[Any] , _snake_case : str , _snake_case : int , _snake_case : Optional[int] , **_snake_case : List[str] ):
"""simple docstring"""
__a =Accelerator()
# Make one log on every process with the configuration for debugging.
logging.basicConfig(
format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , level=logging.INFO , )
logger.info(accelerator.state )
# Setup logging, we only want one process per machine to log things on the
# screen. accelerator.is_local_main_process is only True for one process per
# machine.
logger.setLevel(logging.INFO if accelerator.is_local_main_process else logging.ERROR )
if accelerator.is_local_main_process:
datasets.utils.logging.set_verbosity_warning()
transformers.utils.logging.set_verbosity_info()
else:
datasets.utils.logging.set_verbosity_error()
transformers.utils.logging.set_verbosity_error()
__a =STModelArguments(model_name_or_path=_snake_case )
__a =STDataArguments(train_file=_snake_case , infer_file=_snake_case )
__a =STTrainingArguments(output_dir=_snake_case )
__a =argparse.Namespace()
for arg_class in (model_args, data_args, training_args):
for key, value in vars(_snake_case ).items():
setattr(_snake_case , _snake_case , _snake_case )
for key, value in kwargs.items():
if hasattr(_snake_case , _snake_case ):
setattr(_snake_case , _snake_case , _snake_case )
# Sanity checks
__a ={}
__a =None
# You need to provide the training data and the data to predict on
assert args.train_file is not None
assert args.infer_file is not None
__a =args.train_file
__a =args.infer_file
if args.evaluation_strategy != IntervalStrategy.NO.value:
assert args.eval_file is not None
__a =args.eval_file
for key in data_files:
__a =data_files[key].split('.' )[-1]
assert extension in ["csv", "json"], F'`{key}_file` should be a csv or a json file.'
if args.data_file_extension is None:
__a =extension
else:
assert extension == args.data_file_extension, F'`{key}_file` should be a {args.data_file_extension} file`.'
assert (
args.eval_metric in datasets.list_metrics()
), F'{args.eval_metric} not in the list of supported metrics {datasets.list_metrics()}.'
# If passed along, set the training seed now.
if args.seed is not None:
set_seed(args.seed )
logger.info('Creating the initial data directory for self-training...' )
__a =F'{args.output_dir}/self-train_iter-{{}}'.format
__a =data_dir_format(0 )
if accelerator.is_main_process:
if args.output_dir is not None:
os.makedirs(args.output_dir , exist_ok=_snake_case )
os.makedirs(_snake_case , exist_ok=_snake_case )
accelerator.wait_for_everyone()
__a =None
__a =None
__a =0
__a =False
# Show the progress bar
__a =tqdm(range(args.max_selftrain_iterations ) , disable=not accelerator.is_local_main_process )
# Self-train
for iteration in range(0 , int(args.max_selftrain_iterations ) ):
__a =data_dir_format(_snake_case )
assert os.path.exists(_snake_case )
# Stage 1: initial fine-tuning for iteration = 0 or pseudo-training for
# iteration > 0
__a =os.path.join(_snake_case , 'stage-1' )
__a ={
'accelerator': accelerator,
'model_name_or_path': args.model_name_or_path,
'cache_dir': args.cache_dir,
'do_train': True,
'train_file': data_files['train'] if iteration == 0 else data_files['train_pseudo'],
'do_eval': True if args.eval_file is not None else False,
'eval_file': data_files['eval'],
'do_predict': True,
'infer_file': data_files['infer'],
'task_name': args.task_name,
'label_list': args.label_list,
'output_dir': current_output_dir,
'eval_metric': args.eval_metric,
'evaluation_strategy': args.evaluation_strategy,
'early_stopping_patience': args.early_stopping_patience,
'early_stopping_threshold': args.early_stopping_threshold,
'seed': args.seed,
}
# Add additional training arguments
for key, value in kwargs.items():
if key not in arguments_dict and not hasattr(_snake_case , _snake_case ):
arguments_dict.update({key: value} )
__a =os.path.join(_snake_case , 'best-checkpoint' , _snake_case )
if os.path.exists(_snake_case ):
logger.info(
'Found existing model checkpoint at %s. Skipping self-training: iteration: %d, stage: 1.' , _snake_case , _snake_case , )
else:
logger.info('***** Running self-training: iteration: %d, stage: 1 *****' , _snake_case )
finetune(**_snake_case )
accelerator.wait_for_everyone()
assert os.path.exists(_snake_case )
logger.info('Self-training job completed: iteration: %d, stage: 1.' , _snake_case )
if iteration > 0 and args.finetune_on_labeled_data:
# Stage 2 (optional): fine-tuning on the original labeled data
__a =os.path.join(_snake_case , 'best-checkpoint' )
__a =os.path.join(_snake_case , 'stage-2' )
# Update arguments_dict
__a =model_path
__a =data_files['train']
__a =current_output_dir
__a =os.path.join(_snake_case , 'best-checkpoint' , _snake_case )
if os.path.exists(_snake_case ):
logger.info(
'Found existing model checkpoint at %s. Skipping self-training: iteration: %d, stage: 2.' , _snake_case , _snake_case , )
else:
logger.info('***** Running self-training: iteration: %d, stage: 2 *****' , _snake_case )
finetune(**_snake_case )
accelerator.wait_for_everyone()
assert os.path.exists(_snake_case )
logger.info('Self-training job completed: iteration: %d, stage: 2.' , _snake_case )
__a =iteration
__a =data_dir_format(iteration + 1 )
__a =AutoConfig.from_pretrained(os.path.join(_snake_case , 'best-checkpoint' ) )
__a =config.idalabel
__a =os.path.join(_snake_case , 'eval_results_best-checkpoint.json' )
__a =os.path.join(_snake_case , 'test_results_best-checkpoint.json' )
assert os.path.exists(_snake_case )
with open(_snake_case , 'r' ) as f:
__a =float(json.load(_snake_case )[args.eval_metric] )
__a =os.path.join(_snake_case , 'infer_output_best-checkpoint.csv' )
assert os.path.exists(_snake_case )
# Loading the dataset from local csv or json files.
__a =load_dataset(args.data_file_extension , data_files={'data': data_files['infer']} )['data']
__a =load_dataset('csv' , data_files={'data': infer_output_file} )['data']
if accelerator.is_main_process:
os.makedirs(_snake_case , exist_ok=_snake_case )
shutil.copy(_snake_case , os.path.join(_snake_case , F'eval_results_iter-{iteration}.json' ) )
if os.path.exists(_snake_case ):
shutil.copy(_snake_case , os.path.join(_snake_case , F'test_results_iter-{iteration}.json' ) )
create_pseudo_labeled_data(_snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case )
accelerator.wait_for_everyone()
__a =os.path.join(_snake_case , F'train_pseudo.{args.data_file_extension}' )
if args.evaluation_strategy != IntervalStrategy.NO.value:
__a =eval_result
if best_iteration is None:
__a =new_iteration
__a =new_eval_result
else:
if new_eval_result - best_eval_result > args.early_stopping_threshold:
__a =new_iteration
__a =new_eval_result
__a =0
else:
if new_eval_result == best_eval_result:
__a =new_iteration
__a =new_eval_result
early_stopping_patience_counter += 1
if early_stopping_patience_counter >= args.early_stopping_patience:
__a =True
progress_bar.update(1 )
if should_training_stop:
break
if best_iteration is not None:
# Save the best iteration
logger.info('Best iteration: %d' , _snake_case )
logger.info('Best evaluation result: %s = %f' , args.eval_metric , _snake_case )
accelerator.wait_for_everyone()
if accelerator.is_main_process:
shutil.copy(
os.path.join(_snake_case , F'eval_results_iter-{iteration}.json' ) , os.path.join(_snake_case , 'eval_results_best-iteration.json' ) , )
else:
# Assume that the last iteration is the best
logger.info('Best iteration: %d' , args.max_selftrain_iterations - 1 )
logger.info('Best evaluation result: %s = %f' , args.eval_metric , _snake_case )
accelerator.wait_for_everyone()
if accelerator.is_main_process:
shutil.copy(
os.path.join(_snake_case , F'eval_results_iter-{args.max_selftrain_iterations - 1}.json' ) , os.path.join(_snake_case , 'eval_results_best-iteration.json' ) , )
| 308 | 1 |
'''simple docstring'''
import os
from shutil import copyfile
from typing import List, Optional, Tuple
from ...tokenization_utils import AddedToken
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import is_sentencepiece_available, logging
if is_sentencepiece_available():
from .tokenization_xlnet import XLNetTokenizer
else:
lowerCAmelCase_ : Optional[Any] = None
lowerCAmelCase_ : Union[str, Any] = logging.get_logger(__name__)
lowerCAmelCase_ : Tuple = {'vocab_file': 'spiece.model', 'tokenizer_file': 'tokenizer.json'}
lowerCAmelCase_ : Tuple = {
'vocab_file': {
'xlnet-base-cased': 'https://huggingface.co/xlnet-base-cased/resolve/main/spiece.model',
'xlnet-large-cased': 'https://huggingface.co/xlnet-large-cased/resolve/main/spiece.model',
},
'tokenizer_file': {
'xlnet-base-cased': 'https://huggingface.co/xlnet-base-cased/resolve/main/tokenizer.json',
'xlnet-large-cased': 'https://huggingface.co/xlnet-large-cased/resolve/main/tokenizer.json',
},
}
lowerCAmelCase_ : Union[str, Any] = {
'xlnet-base-cased': None,
'xlnet-large-cased': None,
}
lowerCAmelCase_ : int = '▁'
# Segments (not really needed)
lowerCAmelCase_ : Optional[Any] = 0
lowerCAmelCase_ : int = 1
lowerCAmelCase_ : Optional[Any] = 2
lowerCAmelCase_ : List[str] = 3
lowerCAmelCase_ : List[str] = 4
class __SCREAMING_SNAKE_CASE (lowerCamelCase_ ):
"""simple docstring"""
__a =VOCAB_FILES_NAMES
__a =PRETRAINED_VOCAB_FILES_MAP
__a =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
__a ='left'
__a =XLNetTokenizer
def __init__( self : Optional[int] , __a : Optional[int]=None , __a : str=None , __a : Any=False , __a : List[Any]=True , __a : List[Any]=False , __a : List[str]="<s>" , __a : Optional[Any]="</s>" , __a : str="<unk>" , __a : Union[str, Any]="<sep>" , __a : List[str]="<pad>" , __a : int="<cls>" , __a : Tuple="<mask>" , __a : Any=["<eop>", "<eod>"] , **__a : int , ):
# Mask token behave like a normal word, i.e. include the space before it
_a = AddedToken(__a , lstrip=__a , rstrip=__a ) if isinstance(__a , __a ) else mask_token
super().__init__(
vocab_file=__a , tokenizer_file=__a , do_lower_case=__a , remove_space=__a , keep_accents=__a , bos_token=__a , eos_token=__a , unk_token=__a , sep_token=__a , pad_token=__a , cls_token=__a , mask_token=__a , additional_special_tokens=__a , **__a , )
_a = 3
_a = do_lower_case
_a = remove_space
_a = keep_accents
_a = vocab_file
_a = False if not self.vocab_file else True
def UpperCamelCase__ ( self : str , __a : List[int] , __a : Optional[List[int]] = None ):
_a = [self.sep_token_id]
_a = [self.cls_token_id]
if token_ids_a is None:
return token_ids_a + sep + cls
return token_ids_a + sep + token_ids_a + sep + cls
def UpperCamelCase__ ( self : List[Any] , __a : List[int] , __a : Optional[List[int]] = None ):
_a = [self.sep_token_id]
_a = [2]
if token_ids_a is None:
return len(token_ids_a + sep ) * [0] + cls_segment_id
return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id
def UpperCamelCase__ ( self : Optional[int] , __a : str , __a : Optional[str] = None ):
if not self.can_save_slow_tokenizer:
raise ValueError(
"Your fast tokenizer does not have the necessary information to save the vocabulary for a slow "
"tokenizer." )
if not os.path.isdir(__a ):
logger.error(f'Vocabulary path ({save_directory}) should be a directory' )
return
_a = os.path.join(
__a , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(__a ):
copyfile(self.vocab_file , __a )
return (out_vocab_file,)
| 63 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...file_utils import _LazyModule, is_tokenizers_available, is_torch_available
from ...utils import OptionalDependencyNotAvailable
lowerCAmelCase_ : int = {'configuration_gpt_neox': ['GPT_NEOX_PRETRAINED_CONFIG_ARCHIVE_MAP', 'GPTNeoXConfig']}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase_ : Optional[int] = ['GPTNeoXTokenizerFast']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase_ : List[str] = [
'GPT_NEOX_PRETRAINED_MODEL_ARCHIVE_LIST',
'GPTNeoXForCausalLM',
'GPTNeoXForQuestionAnswering',
'GPTNeoXForSequenceClassification',
'GPTNeoXForTokenClassification',
'GPTNeoXLayer',
'GPTNeoXModel',
'GPTNeoXPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_gpt_neox import GPT_NEOX_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTNeoXConfig
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_gpt_neox_fast import GPTNeoXTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_gpt_neox import (
GPT_NEOX_PRETRAINED_MODEL_ARCHIVE_LIST,
GPTNeoXForCausalLM,
GPTNeoXForQuestionAnswering,
GPTNeoXForSequenceClassification,
GPTNeoXForTokenClassification,
GPTNeoXLayer,
GPTNeoXModel,
GPTNeoXPreTrainedModel,
)
else:
import sys
lowerCAmelCase_ : List[str] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 63 | 1 |
from typing import List, Optional, Union
import numpy as np
import torch
import torchaudio.compliance.kaldi as ta_kaldi
from ...feature_extraction_sequence_utils import SequenceFeatureExtractor
from ...feature_extraction_utils import BatchFeature
from ...utils import PaddingStrategy, TensorType, logging
UpperCamelCase__ : Dict = logging.get_logger(__name__)
class lowerCamelCase_ ( a_ ):
SCREAMING_SNAKE_CASE_ = ['input_features', 'attention_mask']
def __init__( self : int ,__lowerCamelCase : str=80 ,__lowerCamelCase : str=1_60_00 ,__lowerCamelCase : Any=80 ,__lowerCamelCase : List[Any]=0.0 ,__lowerCamelCase : Any=True ,__lowerCamelCase : Any=True ,__lowerCamelCase : int=True ,**__lowerCamelCase : Optional[int] ,):
'''simple docstring'''
super().__init__(feature_size=__lowerCamelCase ,sampling_rate=__lowerCamelCase ,padding_value=__lowerCamelCase ,**__lowerCamelCase )
a = num_mel_bins
a = do_ceptral_normalize
a = normalize_means
a = normalize_vars
a = True
def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ,__lowerCamelCase : np.ndarray ,):
'''simple docstring'''
a = waveform * (2**15) # Kaldi compliance: 16-bit signed integers
a = torch.from_numpy(__lowerCamelCase ).unsqueeze(0 )
a = ta_kaldi.fbank(__lowerCamelCase ,num_mel_bins=self.num_mel_bins ,sample_frequency=self.sampling_rate )
return features.numpy()
@staticmethod
def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase : np.ndarray ,__lowerCamelCase : int ,__lowerCamelCase : Optional[bool] = True ,__lowerCamelCase : Optional[bool] = True ,__lowerCamelCase : float = 0.0 ,):
'''simple docstring'''
if normalize_means:
a = x[:input_length].mean(axis=0 )
a = np.subtract(__lowerCamelCase ,__lowerCamelCase )
if normalize_vars:
a = x[:input_length].std(axis=0 )
a = np.divide(__lowerCamelCase ,__lowerCamelCase )
if input_length < x.shape[0]:
a = padding_value
# make sure array is in float32
a = x.astype(np.floataa )
return x
def SCREAMING_SNAKE_CASE_ ( self : str ,__lowerCamelCase : List[np.ndarray] ,__lowerCamelCase : Optional[np.ndarray] = None ):
'''simple docstring'''
a = attention_mask.sum(-1 ) if attention_mask is not None else [x.shape[0] for x in input_features]
return [
self.utterance_cmvn(__lowerCamelCase ,__lowerCamelCase ,self.normalize_means ,self.normalize_vars ,self.padding_value )
for x, n in zip(__lowerCamelCase ,__lowerCamelCase )
]
def __call__( self : Optional[Any] ,__lowerCamelCase : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] ,__lowerCamelCase : Union[bool, str, PaddingStrategy] = False ,__lowerCamelCase : Optional[int] = None ,__lowerCamelCase : bool = False ,__lowerCamelCase : Optional[int] = None ,__lowerCamelCase : Optional[Union[str, TensorType]] = None ,__lowerCamelCase : Optional[int] = None ,__lowerCamelCase : Optional[bool] = None ,**__lowerCamelCase : Tuple ,):
'''simple docstring'''
if sampling_rate is not None:
if sampling_rate != self.sampling_rate:
raise ValueError(
F"""The model corresponding to this feature extractor: {self} was trained using a sampling rate of"""
F""" {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled with"""
F""" {self.sampling_rate} and not {sampling_rate}.""" )
else:
logger.warning(
'''It is strongly recommended to pass the `sampling_rate` argument to this function. '''
'''Failing to do so can result in silent errors that might be hard to debug.''' )
a = isinstance(__lowerCamelCase ,np.ndarray ) and len(raw_speech.shape ) > 1
if is_batched_numpy and len(raw_speech.shape ) > 2:
raise ValueError(F"""Only mono-channel audio is supported for input to {self}""" )
a = is_batched_numpy or (
isinstance(__lowerCamelCase ,(list, tuple) ) and (isinstance(raw_speech[0] ,(np.ndarray, tuple, list) ))
)
if is_batched:
a = [np.asarray(__lowerCamelCase ,dtype=np.floataa ) for speech in raw_speech]
elif not is_batched and not isinstance(__lowerCamelCase ,np.ndarray ):
a = np.asarray(__lowerCamelCase ,dtype=np.floataa )
elif isinstance(__lowerCamelCase ,np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ):
a = raw_speech.astype(np.floataa )
# always return batch
if not is_batched:
a = [raw_speech]
# extract fbank features
a = [self._extract_fbank_features(__lowerCamelCase ) for waveform in raw_speech]
# convert into correct format for padding
a = BatchFeature({'''input_features''': features} )
a = self.pad(
__lowerCamelCase ,padding=__lowerCamelCase ,max_length=__lowerCamelCase ,truncation=__lowerCamelCase ,pad_to_multiple_of=__lowerCamelCase ,return_attention_mask=__lowerCamelCase ,**__lowerCamelCase ,)
# make sure list is in array format
a = padded_inputs.get('''input_features''' )
if isinstance(input_features[0] ,__lowerCamelCase ):
a = [np.asarray(__lowerCamelCase ,dtype=np.floataa ) for feature in input_features]
a = padded_inputs.get('''attention_mask''' )
if attention_mask is not None:
a = [np.asarray(__lowerCamelCase ,dtype=np.intaa ) for array in attention_mask]
# Utterance-level cepstral mean and variance normalization
if self.do_ceptral_normalize:
a = (
np.array(__lowerCamelCase ,dtype=np.intaa )
if self._get_padding_strategies(__lowerCamelCase ,max_length=__lowerCamelCase ) is not PaddingStrategy.DO_NOT_PAD
else None
)
a = self.normalize(
padded_inputs['''input_features'''] ,attention_mask=__lowerCamelCase )
if return_tensors is not None:
a = padded_inputs.convert_to_tensors(__lowerCamelCase )
return padded_inputs
| 330 |
from typing import List, Union
import numpy as np
from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends
from .base import PIPELINE_INIT_ARGS, Pipeline
if is_vision_available():
from PIL import Image
from ..image_utils import load_image
if is_torch_available():
import torch
from ..models.auto.modeling_auto import MODEL_FOR_DEPTH_ESTIMATION_MAPPING
UpperCamelCase__ : List[str] = logging.get_logger(__name__)
@add_end_docstrings(a_ )
class lowerCamelCase_ ( a_ ):
def __init__( self : int ,*__lowerCamelCase : str ,**__lowerCamelCase : Optional[Any] ):
'''simple docstring'''
super().__init__(*__lowerCamelCase ,**__lowerCamelCase )
requires_backends(self ,'''vision''' )
self.check_model_type(__lowerCamelCase )
def __call__( self : int ,__lowerCamelCase : Union[str, List[str], "Image.Image", List["Image.Image"]] ,**__lowerCamelCase : str ):
'''simple docstring'''
return super().__call__(__lowerCamelCase ,**__lowerCamelCase )
def SCREAMING_SNAKE_CASE_ ( self : Any ,**__lowerCamelCase : Dict ):
'''simple docstring'''
return {}, {}, {}
def SCREAMING_SNAKE_CASE_ ( self : int ,__lowerCamelCase : Union[str, Any] ):
'''simple docstring'''
a = load_image(__lowerCamelCase )
a = image.size
a = self.image_processor(images=__lowerCamelCase ,return_tensors=self.framework )
return model_inputs
def SCREAMING_SNAKE_CASE_ ( self : str ,__lowerCamelCase : Union[str, Any] ):
'''simple docstring'''
a = self.model(**__lowerCamelCase )
return model_outputs
def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ,__lowerCamelCase : Union[str, Any] ):
'''simple docstring'''
a = model_outputs.predicted_depth
a = torch.nn.functional.interpolate(
predicted_depth.unsqueeze(1 ) ,size=self.image_size[::-1] ,mode='''bicubic''' ,align_corners=__lowerCamelCase )
a = prediction.squeeze().cpu().numpy()
a = (output * 2_55 / np.max(__lowerCamelCase )).astype('''uint8''' )
a = Image.fromarray(__lowerCamelCase )
a = {}
a = predicted_depth
a = depth
return output_dict
| 330 | 1 |
import sys
UpperCAmelCase__ = (
"73167176531330624919225119674426574742355349194934"
"96983520312774506326239578318016984801869478851843"
"85861560789112949495459501737958331952853208805511"
"12540698747158523863050715693290963295227443043557"
"66896648950445244523161731856403098711121722383113"
"62229893423380308135336276614282806444486645238749"
"30358907296290491560440772390713810515859307960866"
"70172427121883998797908792274921901699720888093776"
"65727333001053367881220235421809751254540594752243"
"52584907711670556013604839586446706324415722155397"
"53697817977846174064955149290862569321978468622482"
"83972241375657056057490261407972968652414535100474"
"82166370484403199890008895243450658541227588666881"
"16427171479924442928230863465674813919123162824586"
"17866458359124566529476545682848912883142607690042"
"24219022671055626321111109370544217506941658960408"
"07198403850962455444362981230987879927244284909188"
"84580156166097919133875499200524063689912560717606"
"05886116467109405077541002256983155200055935729725"
"71636269561882670428252483600823257530420752963450"
)
def A ( _UpperCAmelCase : str = N ) -> int:
'''simple docstring'''
_UpperCAmelCase = -sys.maxsize - 1
for i in range(len(_UpperCAmelCase ) - 12 ):
_UpperCAmelCase = 1
for j in range(13 ):
product *= int(n[i + j] )
if product > largest_product:
_UpperCAmelCase = product
return largest_product
if __name__ == "__main__":
print(f"""{solution() = }""")
| 339 |
import requests
from bsa import BeautifulSoup
def A ( _UpperCAmelCase : str , _UpperCAmelCase : dict ) -> str:
'''simple docstring'''
_UpperCAmelCase = BeautifulSoup(requests.get(_UpperCAmelCase , params=_UpperCAmelCase ).content , 'html.parser' )
_UpperCAmelCase = soup.find('div' , attrs={'class': 'gs_ri'} )
_UpperCAmelCase = div.find('div' , attrs={'class': 'gs_fl'} ).find_all('a' )
return anchors[2].get_text()
if __name__ == "__main__":
UpperCAmelCase__ = {
"title": (
"Precisely geometry controlled microsupercapacitors for ultrahigh areal "
"capacitance, volumetric capacitance, and energy density"
),
"journal": "Chem. Mater.",
"volume": 30,
"pages": "3979-3990",
"year": 2018,
"hl": "en",
}
print(get_citation("https://scholar.google.com/scholar_lookup", params=params))
| 339 | 1 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available
__UpperCAmelCase = {
'configuration_groupvit': [
'GROUPVIT_PRETRAINED_CONFIG_ARCHIVE_MAP',
'GroupViTConfig',
'GroupViTOnnxConfig',
'GroupViTTextConfig',
'GroupViTVisionConfig',
],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCAmelCase = [
'GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST',
'GroupViTModel',
'GroupViTPreTrainedModel',
'GroupViTTextModel',
'GroupViTVisionModel',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCAmelCase = [
'TF_GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST',
'TFGroupViTModel',
'TFGroupViTPreTrainedModel',
'TFGroupViTTextModel',
'TFGroupViTVisionModel',
]
if TYPE_CHECKING:
from .configuration_groupvit import (
GROUPVIT_PRETRAINED_CONFIG_ARCHIVE_MAP,
GroupViTConfig,
GroupViTOnnxConfig,
GroupViTTextConfig,
GroupViTVisionConfig,
)
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_groupvit import (
GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST,
GroupViTModel,
GroupViTPreTrainedModel,
GroupViTTextModel,
GroupViTVisionModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_groupvit import (
TF_GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST,
TFGroupViTModel,
TFGroupViTPreTrainedModel,
TFGroupViTTextModel,
TFGroupViTVisionModel,
)
else:
import sys
__UpperCAmelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 355 |
import argparse
import collections
import torch
from flax import traverse_util
from tax import checkpoints
from transformers import TaConfig, TaEncoderModel, TaForConditionalGeneration
from transformers.utils import logging
logging.set_verbosity_info()
def __UpperCamelCase ( lowercase__ : Optional[int] , lowercase__ : List[Any] , lowercase__ : Any , lowercase__ : Tuple="attention" ) -> Dict:
'''simple docstring'''
lowerCAmelCase_ : Any = params[f'{prefix}/layers_{i}/{layer_name}/key/kernel']
lowerCAmelCase_ : Optional[Any] = params[f'{prefix}/layers_{i}/{layer_name}/out/kernel']
lowerCAmelCase_ : str = params[f'{prefix}/layers_{i}/{layer_name}/query/kernel']
lowerCAmelCase_ : Tuple = params[f'{prefix}/layers_{i}/{layer_name}/value/kernel']
return k, o, q, v
def __UpperCamelCase ( lowercase__ : List[str] , lowercase__ : Dict , lowercase__ : List[str] , lowercase__ : str=False ) -> int:
'''simple docstring'''
if split_mlp_wi:
lowerCAmelCase_ : List[Any] = params[f'{prefix}/layers_{i}/mlp/wi_0/kernel']
lowerCAmelCase_ : List[Any] = params[f'{prefix}/layers_{i}/mlp/wi_1/kernel']
lowerCAmelCase_ : int = (wi_a, wi_a)
else:
lowerCAmelCase_ : str = params[f'{prefix}/layers_{i}/mlp/wi/kernel']
lowerCAmelCase_ : int = params[f'{prefix}/layers_{i}/mlp/wo/kernel']
return wi, wo
def __UpperCamelCase ( lowercase__ : Optional[int] , lowercase__ : Dict , lowercase__ : Optional[Any] , lowercase__ : Tuple ) -> int:
'''simple docstring'''
return params[f'{prefix}/layers_{i}/{layer_name}/scale']
def __UpperCamelCase ( lowercase__ : dict , *, lowercase__ : int , lowercase__ : bool ) -> Optional[int]:
'''simple docstring'''
lowerCAmelCase_ : List[str] = traverse_util.flatten_dict(variables["""target"""] )
lowerCAmelCase_ : List[Any] = {"""/""".join(lowercase__ ): v for k, v in old.items()}
# v1.1 models have a gated GeLU with wi_0 and wi_1 instead of wi
lowerCAmelCase_ : Dict = """encoder/layers_0/mlp/wi_0/kernel""" in old
print("""Split MLP:""" , lowercase__ )
lowerCAmelCase_ : Optional[Any] = collections.OrderedDict()
# Shared embeddings.
lowerCAmelCase_ : Tuple = old["""token_embedder/embedding"""]
# Encoder.
for i in range(lowercase__ ):
# Block i, layer 0 (Self Attention).
lowerCAmelCase_ : Optional[Any] = tax_layer_norm_lookup(lowercase__ , lowercase__ , """encoder""" , """pre_attention_layer_norm""" )
lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : Tuple = tax_attention_lookup(lowercase__ , lowercase__ , """encoder""" , """attention""" )
lowerCAmelCase_ : Optional[int] = layer_norm
lowerCAmelCase_ : Optional[int] = k.T
lowerCAmelCase_ : List[Any] = o.T
lowerCAmelCase_ : Union[str, Any] = q.T
lowerCAmelCase_ : Any = v.T
# Block i, layer 1 (MLP).
lowerCAmelCase_ : Any = tax_layer_norm_lookup(lowercase__ , lowercase__ , """encoder""" , """pre_mlp_layer_norm""" )
lowerCAmelCase_ , lowerCAmelCase_ : Optional[int] = tax_mlp_lookup(lowercase__ , lowercase__ , """encoder""" , lowercase__ )
lowerCAmelCase_ : str = layer_norm
if split_mlp_wi:
lowerCAmelCase_ : Optional[int] = wi[0].T
lowerCAmelCase_ : Optional[Any] = wi[1].T
else:
lowerCAmelCase_ : int = wi.T
lowerCAmelCase_ : Optional[Any] = wo.T
lowerCAmelCase_ : Tuple = old[
"""encoder/relpos_bias/rel_embedding"""
].T
lowerCAmelCase_ : str = old["""encoder/encoder_norm/scale"""]
if not is_encoder_only:
# Decoder.
for i in range(lowercase__ ):
# Block i, layer 0 (Self Attention).
lowerCAmelCase_ : int = tax_layer_norm_lookup(lowercase__ , lowercase__ , """decoder""" , """pre_self_attention_layer_norm""" )
lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : Union[str, Any] = tax_attention_lookup(lowercase__ , lowercase__ , """decoder""" , """self_attention""" )
lowerCAmelCase_ : Dict = layer_norm
lowerCAmelCase_ : Union[str, Any] = k.T
lowerCAmelCase_ : Union[str, Any] = o.T
lowerCAmelCase_ : Any = q.T
lowerCAmelCase_ : Tuple = v.T
# Block i, layer 1 (Cross Attention).
lowerCAmelCase_ : Optional[Any] = tax_layer_norm_lookup(lowercase__ , lowercase__ , """decoder""" , """pre_cross_attention_layer_norm""" )
lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : Tuple = tax_attention_lookup(lowercase__ , lowercase__ , """decoder""" , """encoder_decoder_attention""" )
lowerCAmelCase_ : Optional[int] = layer_norm
lowerCAmelCase_ : Any = k.T
lowerCAmelCase_ : Any = o.T
lowerCAmelCase_ : Optional[int] = q.T
lowerCAmelCase_ : Dict = v.T
# Block i, layer 2 (MLP).
lowerCAmelCase_ : List[str] = tax_layer_norm_lookup(lowercase__ , lowercase__ , """decoder""" , """pre_mlp_layer_norm""" )
lowerCAmelCase_ , lowerCAmelCase_ : int = tax_mlp_lookup(lowercase__ , lowercase__ , """decoder""" , lowercase__ )
lowerCAmelCase_ : Any = layer_norm
if split_mlp_wi:
lowerCAmelCase_ : List[str] = wi[0].T
lowerCAmelCase_ : List[Any] = wi[1].T
else:
lowerCAmelCase_ : Optional[Any] = wi.T
lowerCAmelCase_ : str = wo.T
lowerCAmelCase_ : int = old["""decoder/decoder_norm/scale"""]
lowerCAmelCase_ : Union[str, Any] = old[
"""decoder/relpos_bias/rel_embedding"""
].T
# LM Head (only in v1.1 checkpoints, in v1.0 embeddings are used instead)
if "decoder/logits_dense/kernel" in old:
lowerCAmelCase_ : Optional[Any] = old["""decoder/logits_dense/kernel"""].T
return new
def __UpperCamelCase ( lowercase__ : Union[str, Any] , lowercase__ : bool ) -> Any:
'''simple docstring'''
lowerCAmelCase_ : Tuple = collections.OrderedDict([(k, torch.from_numpy(v.copy() )) for (k, v) in converted_params.items()] )
# Add what is missing.
if "encoder.embed_tokens.weight" not in state_dict:
lowerCAmelCase_ : List[Any] = state_dict["""shared.weight"""]
if not is_encoder_only:
if "decoder.embed_tokens.weight" not in state_dict:
lowerCAmelCase_ : Union[str, Any] = state_dict["""shared.weight"""]
if "lm_head.weight" not in state_dict: # For old 1.0 models.
print("""Using shared word embeddings as lm_head.""" )
lowerCAmelCase_ : List[str] = state_dict["""shared.weight"""]
return state_dict
def __UpperCamelCase ( lowercase__ : Dict , lowercase__ : Optional[int] , lowercase__ : Union[str, Any] , lowercase__ : List[str] ) -> Tuple:
'''simple docstring'''
lowerCAmelCase_ : Tuple = checkpoints.load_tax_checkpoint(lowercase__ )
lowerCAmelCase_ : List[str] = convert_tax_to_pytorch(lowercase__ , num_layers=config.num_layers , is_encoder_only=lowercase__ )
lowerCAmelCase_ : List[str] = make_state_dict(lowercase__ , lowercase__ )
model.load_state_dict(lowercase__ , strict=lowercase__ )
def __UpperCamelCase ( lowercase__ : str , lowercase__ : Optional[Any] , lowercase__ : List[Any] , lowercase__ : bool = False ) -> int:
'''simple docstring'''
lowerCAmelCase_ : Any = TaConfig.from_json_file(lowercase__ )
print(f'Building PyTorch model from configuration: {config}' )
# Non-v1.1 checkpoints could also use T5Model, but this works for all.
# The v1.0 checkpoints will simply have an LM head that is the word embeddings.
if is_encoder_only:
lowerCAmelCase_ : Optional[int] = TaEncoderModel(lowercase__ )
else:
lowerCAmelCase_ : Dict = TaForConditionalGeneration(lowercase__ )
# Load weights from tf checkpoint
load_tax_weights_in_ta(lowercase__ , lowercase__ , lowercase__ , lowercase__ )
# Save pytorch-model
print(f'Save PyTorch model to {pytorch_dump_path}' )
model.save_pretrained(lowercase__ )
# Verify that we can load the checkpoint.
model.from_pretrained(lowercase__ )
print("""Done""" )
if __name__ == "__main__":
__UpperCAmelCase = argparse.ArgumentParser(description='Converts a native T5X checkpoint into a PyTorch checkpoint.')
# Required parameters
parser.add_argument(
'--t5x_checkpoint_path', default=None, type=str, required=True, help='Path to the T5X checkpoint.'
)
parser.add_argument(
'--config_file',
default=None,
type=str,
required=True,
help='The config json file corresponding to the pre-trained T5 model.\nThis specifies the model architecture.',
)
parser.add_argument(
'--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.'
)
parser.add_argument(
'--is_encoder_only', action='store_true', help='Check if the model is encoder-decoder model', default=False
)
__UpperCAmelCase = parser.parse_args()
convert_tax_checkpoint_to_pytorch(
args.tax_checkpoint_path, args.config_file, args.pytorch_dump_path, args.is_encoder_only
)
| 28 | 0 |
import os
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...utils import logging
snake_case_ : Union[str, Any] = logging.get_logger(__name__)
snake_case_ : Any = {"vocab_file": "sentencepiece.bpe.model"}
snake_case_ : Optional[int] = {
"vocab_file": {
"camembert-base": "https://huggingface.co/camembert-base/resolve/main/sentencepiece.bpe.model",
}
}
snake_case_ : int = {
"camembert-base": 512,
}
snake_case_ : Dict = "▁"
class __snake_case ( A_ ):
UpperCAmelCase__ : Dict = VOCAB_FILES_NAMES
UpperCAmelCase__ : List[str] = PRETRAINED_VOCAB_FILES_MAP
UpperCAmelCase__ : List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
UpperCAmelCase__ : Union[str, Any] = ['''input_ids''', '''attention_mask''']
def __init__( self : Union[str, Any] , _snake_case : Optional[Any] , _snake_case : int="<s>" , _snake_case : Union[str, Any]="</s>" , _snake_case : str="</s>" , _snake_case : Dict="<s>" , _snake_case : int="<unk>" , _snake_case : int="<pad>" , _snake_case : Union[str, Any]="<mask>" , _snake_case : Optional[Any]=["<s>NOTUSED", "</s>NOTUSED"] , _snake_case : Optional[Dict[str, Any]] = None , **_snake_case : List[Any] , ):
"""simple docstring"""
UpperCAmelCase_ = AddedToken(_lowerCamelCase , lstrip=_lowerCamelCase , rstrip=_lowerCamelCase) if isinstance(_lowerCamelCase , _lowerCamelCase) else mask_token
UpperCAmelCase_ = {} if sp_model_kwargs is None else sp_model_kwargs
super().__init__(
bos_token=_lowerCamelCase , eos_token=_lowerCamelCase , unk_token=_lowerCamelCase , sep_token=_lowerCamelCase , cls_token=_lowerCamelCase , pad_token=_lowerCamelCase , mask_token=_lowerCamelCase , additional_special_tokens=_lowerCamelCase , sp_model_kwargs=self.sp_model_kwargs , **_lowerCamelCase , )
UpperCAmelCase_ = spm.SentencePieceProcessor(**self.sp_model_kwargs)
self.sp_model.Load(str(_lowerCamelCase))
UpperCAmelCase_ = vocab_file
# HACK: These tokens were added by fairseq but don't seem to be actually used when duplicated in the actual
# sentencepiece vocabulary (this is the case for <s> and </s>
UpperCAmelCase_ = {'''<s>NOTUSED''': 0, '''<pad>''': 1, '''</s>NOTUSED''': 2, '''<unk>''': 3}
UpperCAmelCase_ = len(self.fairseq_tokens_to_ids)
UpperCAmelCase_ = len(self.sp_model) + len(self.fairseq_tokens_to_ids)
UpperCAmelCase_ = {v: k for k, v in self.fairseq_tokens_to_ids.items()}
def lowerCamelCase ( self : str , _snake_case : List[int] , _snake_case : Optional[List[int]] = None):
"""simple docstring"""
if token_ids_a is None:
return [self.cls_token_id] + token_ids_a + [self.sep_token_id]
UpperCAmelCase_ = [self.cls_token_id]
UpperCAmelCase_ = [self.sep_token_id]
return cls + token_ids_a + sep + sep + token_ids_a + sep
def lowerCamelCase ( self : List[Any] , _snake_case : List[int] , _snake_case : Optional[List[int]] = None , _snake_case : bool = False):
"""simple docstring"""
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=_lowerCamelCase , token_ids_a=_lowerCamelCase , already_has_special_tokens=_lowerCamelCase)
if token_ids_a is None:
return [1] + ([0] * len(_lowerCamelCase)) + [1]
return [1] + ([0] * len(_lowerCamelCase)) + [1, 1] + ([0] * len(_lowerCamelCase)) + [1]
def lowerCamelCase ( self : Dict , _snake_case : List[int] , _snake_case : Optional[List[int]] = None):
"""simple docstring"""
UpperCAmelCase_ = [self.sep_token_id]
UpperCAmelCase_ = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep) * [0]
@property
def lowerCamelCase ( self : List[Any]):
"""simple docstring"""
return len(self.fairseq_tokens_to_ids) + len(self.sp_model)
def lowerCamelCase ( self : Any):
"""simple docstring"""
UpperCAmelCase_ = {self.convert_ids_to_tokens(_lowerCamelCase): i for i in range(self.vocab_size)}
vocab.update(self.added_tokens_encoder)
return vocab
def lowerCamelCase ( self : List[str] , _snake_case : str):
"""simple docstring"""
return self.sp_model.encode(_lowerCamelCase , out_type=_lowerCamelCase)
def lowerCamelCase ( self : Tuple , _snake_case : int):
"""simple docstring"""
if token in self.fairseq_tokens_to_ids:
return self.fairseq_tokens_to_ids[token]
elif self.sp_model.PieceToId(_lowerCamelCase) == 0:
# Convert sentence piece unk token to fairseq unk token index
return self.unk_token_id
return self.fairseq_offset + self.sp_model.PieceToId(_lowerCamelCase)
def lowerCamelCase ( self : List[Any] , _snake_case : Optional[int]):
"""simple docstring"""
if index in self.fairseq_ids_to_tokens:
return self.fairseq_ids_to_tokens[index]
return self.sp_model.IdToPiece(index - self.fairseq_offset)
def lowerCamelCase ( self : int , _snake_case : Union[str, Any]):
"""simple docstring"""
UpperCAmelCase_ = []
UpperCAmelCase_ = ''''''
UpperCAmelCase_ = False
for token in tokens:
# make sure that special tokens are not decoded using sentencepiece model
if token in self.all_special_tokens:
if not prev_is_special:
out_string += " "
out_string += self.sp_model.decode(_lowerCamelCase) + token
UpperCAmelCase_ = True
UpperCAmelCase_ = []
else:
current_sub_tokens.append(_lowerCamelCase)
UpperCAmelCase_ = False
out_string += self.sp_model.decode(_lowerCamelCase)
return out_string.strip()
def __getstate__( self : str):
"""simple docstring"""
UpperCAmelCase_ = self.__dict__.copy()
UpperCAmelCase_ = None
return state
def __setstate__( self : Dict , _snake_case : int):
"""simple docstring"""
UpperCAmelCase_ = d
# for backward compatibility
if not hasattr(self , '''sp_model_kwargs'''):
UpperCAmelCase_ = {}
UpperCAmelCase_ = spm.SentencePieceProcessor(**self.sp_model_kwargs)
self.sp_model.Load(self.vocab_file)
def lowerCamelCase ( self : str , _snake_case : str , _snake_case : Optional[str] = None):
"""simple docstring"""
if not os.path.isdir(_lowerCamelCase):
logger.error(F"""Vocabulary path ({save_directory}) should be a directory""")
return
UpperCAmelCase_ = os.path.join(
_lowerCamelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''])
if os.path.abspath(self.vocab_file) != os.path.abspath(_lowerCamelCase) and os.path.isfile(self.vocab_file):
copyfile(self.vocab_file , _lowerCamelCase)
elif not os.path.isfile(self.vocab_file):
with open(_lowerCamelCase , '''wb''') as fi:
UpperCAmelCase_ = self.sp_model.serialized_model_proto()
fi.write(_lowerCamelCase)
return (out_vocab_file,)
| 51 |
"""simple docstring"""
import math
import numpy as np
import qiskit
from qiskit import Aer, ClassicalRegister, QuantumCircuit, QuantumRegister, execute
def _UpperCAmelCase ( __lowerCamelCase : int = 3 ) -> qiskit.result.counts.Counts:
if isinstance(__lowerCamelCase , __lowerCamelCase ):
raise TypeError('''number of qubits must be a integer.''' )
if number_of_qubits <= 0:
raise ValueError('''number of qubits must be > 0.''' )
if math.floor(__lowerCamelCase ) != number_of_qubits:
raise ValueError('''number of qubits must be exact integer.''' )
if number_of_qubits > 10:
raise ValueError('''number of qubits too large to simulate(>10).''' )
_snake_case = QuantumRegister(__lowerCamelCase , '''qr''' )
_snake_case = ClassicalRegister(__lowerCamelCase , '''cr''' )
_snake_case = QuantumCircuit(__lowerCamelCase , __lowerCamelCase )
_snake_case = number_of_qubits
for i in range(__lowerCamelCase ):
quantum_circuit.h(number_of_qubits - i - 1 )
counter -= 1
for j in range(__lowerCamelCase ):
quantum_circuit.cp(np.pi / 2 ** (counter - j) , __lowerCamelCase , __lowerCamelCase )
for k in range(number_of_qubits // 2 ):
quantum_circuit.swap(__lowerCamelCase , number_of_qubits - k - 1 )
# measure all the qubits
quantum_circuit.measure(__lowerCamelCase , __lowerCamelCase )
# simulate with 10000 shots
_snake_case = Aer.get_backend('''qasm_simulator''' )
_snake_case = execute(__lowerCamelCase , __lowerCamelCase , shots=1_00_00 )
return job.result().get_counts(__lowerCamelCase )
if __name__ == "__main__":
print(
F"Total count for quantum fourier transform state is: \
{quantum_fourier_transform(3)}"
)
| 288 | 0 |
from __future__ import annotations
a__: str = {
'A': ['B', 'C', 'E'],
'B': ['A', 'D', 'E'],
'C': ['A', 'F', 'G'],
'D': ['B'],
'E': ['A', 'B', 'D'],
'F': ['C'],
'G': ['C'],
}
class SCREAMING_SNAKE_CASE__ :
def __init__( self,__lowerCamelCase,__lowerCamelCase ):
A__ = graph
# mapping node to its parent in resulting breadth first tree
A__ = {}
A__ = source_vertex
def UpperCamelCase ( self ):
A__ = {self.source_vertex}
A__ = None
A__ = [self.source_vertex] # first in first out queue
while queue:
A__ = queue.pop(0 )
for adjacent_vertex in self.graph[vertex]:
if adjacent_vertex not in visited:
visited.add(__lowerCamelCase )
A__ = vertex
queue.append(__lowerCamelCase )
def UpperCamelCase ( self,__lowerCamelCase ):
if target_vertex == self.source_vertex:
return self.source_vertex
A__ = self.parent.get(__lowerCamelCase )
if target_vertex_parent is None:
A__ = (
f"No path from vertex: {self.source_vertex} to vertex: {target_vertex}"
)
raise ValueError(__lowerCamelCase )
return self.shortest_path(__lowerCamelCase ) + f"->{target_vertex}"
if __name__ == "__main__":
a__: List[Any] = Graph(graph, 'G')
g.breath_first_search()
print(g.shortest_path('D'))
print(g.shortest_path('G'))
print(g.shortest_path('Foo'))
| 368 |
def UpperCamelCase__( UpperCamelCase__ : int = 1_00 )->int:
A__ = (n * (n + 1) // 2) ** 2
A__ = n * (n + 1) * (2 * n + 1) // 6
return sum_cubes - sum_squares
if __name__ == "__main__":
print(F"{solution() = }")
| 39 | 0 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.