code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
from __future__ import annotations from collections.abc import Iterator from typing import Generic, TypeVar a__ = TypeVar("""T""") class snake_case ( Generic[T] ): '''simple docstring''' def __init__( self : Optional[Any] , lowerCAmelCase : T) -> Tuple: """simple docstring""" _snake_case : Optional[Any] = data _snake_case : Node[T] | None = None def __str__( self : List[Any]) -> str: """simple docstring""" return F'''{self.data}''' class snake_case ( Generic[T] ): '''simple docstring''' def __init__( self : Union[str, Any]) -> None: """simple docstring""" _snake_case : Node[T] | None = None def __iter__( self : Optional[int]) -> Iterator[T]: """simple docstring""" _snake_case : Union[str, Any] = self.top while node: yield node.data _snake_case : Any = node.next def __str__( self : Any) -> str: """simple docstring""" return "->".join([str(lowerCAmelCase) for item in self]) def __len__( self : List[str]) -> int: """simple docstring""" return len(tuple(iter(self))) def UpperCamelCase_ ( self : int) -> bool: """simple docstring""" return self.top is None def UpperCamelCase_ ( self : List[str] , lowerCAmelCase : T) -> None: """simple docstring""" _snake_case : Dict = Node(lowerCAmelCase) if not self.is_empty(): _snake_case : Union[str, Any] = self.top _snake_case : int = node def UpperCamelCase_ ( self : str) -> T: """simple docstring""" if self.is_empty(): raise IndexError("""pop from empty stack""") assert isinstance(self.top , lowerCAmelCase) _snake_case : Any = self.top _snake_case : str = self.top.next return pop_node.data def UpperCamelCase_ ( self : Optional[Any]) -> T: """simple docstring""" if self.is_empty(): raise IndexError("""peek from empty stack""") assert self.top is not None return self.top.data def UpperCamelCase_ ( self : Optional[Any]) -> None: """simple docstring""" _snake_case : Dict = None if __name__ == "__main__": from doctest import testmod testmod()
317
import warnings from ...utils import logging from .image_processing_videomae import VideoMAEImageProcessor a__ = logging.get_logger(__name__) class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' def __init__( self : str , *lowerCAmelCase : str , **lowerCAmelCase : Dict) -> None: """simple docstring""" warnings.warn( """The class VideoMAEFeatureExtractor is deprecated and will be removed in version 5 of Transformers.""" """ Please use VideoMAEImageProcessor instead.""" , lowerCAmelCase , ) super().__init__(*lowerCAmelCase , **lowerCAmelCase)
317
1
class __lowerCAmelCase : def __init__( self: Dict , _lowerCAmelCase: str ): # we need a list not a string, so do something to change the type lowercase :Union[str, Any] = arr.split("," ) def SCREAMING_SNAKE_CASE ( self: Union[str, Any] ): lowercase :int = [int(self.array[0] )] * len(self.array ) lowercase :Dict = [int(self.array[0] )] * len(self.array ) for i in range(1 , len(self.array ) ): lowercase :Optional[int] = max( int(self.array[i] ) + sum_value[i - 1] , int(self.array[i] ) ) lowercase :List[str] = max(sum_value[i] , rear[i - 1] ) return rear[len(self.array ) - 1] if __name__ == "__main__": _UpperCAmelCase : Any = input("please input some numbers:") _UpperCAmelCase : Tuple = SubArray(whole_array) _UpperCAmelCase : int = array.solve_sub_array() print(("the results is:", re))
359
import fire from transformers import AutoConfig, AutoModelForSeqaSeqLM, AutoTokenizer def UpperCAmelCase__ ( lowerCamelCase, lowerCamelCase, **lowerCamelCase ): lowercase :List[Any] = AutoConfig.from_pretrained(lowerCamelCase, **lowerCamelCase ) lowercase :Union[str, Any] = AutoModelForSeqaSeqLM.from_config(lowerCamelCase ) model.save_pretrained(lowerCamelCase ) AutoTokenizer.from_pretrained(lowerCamelCase ).save_pretrained(lowerCamelCase ) return model if __name__ == "__main__": fire.Fire(save_randomly_initialized_version)
158
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available lowercase : Tuple = { "configuration_xlm": ["XLM_PRETRAINED_CONFIG_ARCHIVE_MAP", "XLMConfig", "XLMOnnxConfig"], "tokenization_xlm": ["XLMTokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase : int = [ "XLM_PRETRAINED_MODEL_ARCHIVE_LIST", "XLMForMultipleChoice", "XLMForQuestionAnswering", "XLMForQuestionAnsweringSimple", "XLMForSequenceClassification", "XLMForTokenClassification", "XLMModel", "XLMPreTrainedModel", "XLMWithLMHeadModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase : Tuple = [ "TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST", "TFXLMForMultipleChoice", "TFXLMForQuestionAnsweringSimple", "TFXLMForSequenceClassification", "TFXLMForTokenClassification", "TFXLMMainLayer", "TFXLMModel", "TFXLMPreTrainedModel", "TFXLMWithLMHeadModel", ] if TYPE_CHECKING: from .configuration_xlm import XLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMConfig, XLMOnnxConfig from .tokenization_xlm import XLMTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlm import ( XLM_PRETRAINED_MODEL_ARCHIVE_LIST, XLMForMultipleChoice, XLMForQuestionAnswering, XLMForQuestionAnsweringSimple, XLMForSequenceClassification, XLMForTokenClassification, XLMModel, XLMPreTrainedModel, XLMWithLMHeadModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlm import ( TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLMForMultipleChoice, TFXLMForQuestionAnsweringSimple, TFXLMForSequenceClassification, TFXLMForTokenClassification, TFXLMMainLayer, TFXLMModel, TFXLMPreTrainedModel, TFXLMWithLMHeadModel, ) else: import sys lowercase : Union[str, Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
42
import argparse from torch import nn # transformers_old should correspond to branch `save_old_prophetnet_model_structure` here # original prophetnet_checkpoints are saved under `patrickvonplaten/..._old` respectively from transformers_old.modeling_prophetnet import ( ProphetNetForConditionalGeneration as ProphetNetForConditionalGenerationOld, ) from transformers_old.modeling_xlm_prophetnet import ( XLMProphetNetForConditionalGeneration as XLMProphetNetForConditionalGenerationOld, ) from transformers import ProphetNetForConditionalGeneration, XLMProphetNetForConditionalGeneration, logging _UpperCAmelCase = logging.get_logger(__name__) logging.set_verbosity_info() def UpperCamelCase ( __lowercase : str ,__lowercase : str ): '''simple docstring''' if "xprophetnet" in prophetnet_checkpoint_path: A_ : Any = XLMProphetNetForConditionalGenerationOld.from_pretrained(__lowercase ) A_ , A_ : List[str] = XLMProphetNetForConditionalGeneration.from_pretrained( __lowercase ,output_loading_info=__lowercase ) else: A_ : List[Any] = ProphetNetForConditionalGenerationOld.from_pretrained(__lowercase ) A_ , A_ : str = ProphetNetForConditionalGeneration.from_pretrained( __lowercase ,output_loading_info=__lowercase ) A_ : Any = ['key_proj', 'value_proj', 'query_proj'] A_ : str = { 'self_attn': 'ngram_self_attn', 'cross_attn': 'encoder_attn', 'cross_attn_layer_norm': 'encoder_attn_layer_norm', 'feed_forward_layer_norm': 'final_layer_norm', 'feed_forward': '', 'intermediate': 'fc1', 'output': 'fc2', 'key_proj': 'k_proj', 'query_proj': 'q_proj', 'value_proj': 'v_proj', 'word_embeddings': 'embed_tokens', 'embeddings_layer_norm': 'emb_layer_norm', 'relative_pos_embeddings': 'relative_linear', 'ngram_embeddings': 'ngram_input_embed', 'position_embeddings': 'embed_positions', } for key in loading_info["missing_keys"]: A_ : Optional[Any] = key.split('.' ) if attributes[0] == "lm_head": A_ : int = prophet A_ : int = prophet_old else: A_ : Tuple = prophet.prophetnet A_ : Optional[Any] = prophet_old.model A_ : Optional[int] = False for attribute in attributes: if attribute in mapping: A_ : Dict = mapping[attribute] if not hasattr(__lowercase ,__lowercase ) and len(__lowercase ) > 0: A_ : Union[str, Any] = attribute elif hasattr(__lowercase ,__lowercase ): A_ : Optional[int] = attribute if attribute == "weight": assert old_model.weight.shape == model.weight.shape, "Shapes have to match!" A_ : List[Any] = old_model.weight logger.info(f'''{attribute} is initialized.''' ) A_ : Dict = True break elif attribute == "bias": assert old_model.bias.shape == model.bias.shape, "Shapes have to match!" A_ : Optional[int] = old_model.bias logger.info(f'''{attribute} is initialized''' ) A_ : List[str] = True break elif attribute in special_keys and hasattr(__lowercase ,'in_proj_weight' ): A_ : Union[str, Any] = old_model.in_proj_weight.shape[0] // 3 A_ : Optional[int] = getattr(__lowercase ,__lowercase ) param.weight.shape == old_model.in_proj_weight[:embed_dim, :].shape, "Shapes have to match" param.bias.shape == old_model.in_proj_bias[:embed_dim].shape, "Shapes have to match" if attribute == "query_proj": A_ : Tuple = nn.Parameter(old_model.in_proj_weight[:embed_dim, :] ) A_ : Any = nn.Parameter(old_model.in_proj_bias[:embed_dim] ) elif attribute == "key_proj": A_ : Tuple = nn.Parameter(old_model.in_proj_weight[embed_dim : 2 * embed_dim, :] ) A_ : Tuple = nn.Parameter(old_model.in_proj_bias[embed_dim : 2 * embed_dim] ) elif attribute == "value_proj": A_ : Dict = nn.Parameter(old_model.in_proj_weight[2 * embed_dim :, :] ) A_ : str = nn.Parameter(old_model.in_proj_bias[2 * embed_dim :] ) A_ : Union[str, Any] = True break elif attribute == "position_embeddings": assert ( model.position_embeddings.weight.shape[-1] == old_model.embed_positions.weight.shape[-1] ), "Hidden size has to match" assert model.position_embeddings.weight.shape[0] == 5_12, "We want 512 position_embeddings." A_ : Any = nn.Parameter(old_model.embed_positions.weight[:5_12, :] ) A_ : Union[str, Any] = True break if attribute.isdigit(): A_ : str = model[int(__lowercase )] A_ : List[str] = old_model[int(__lowercase )] else: A_ : int = getattr(__lowercase ,__lowercase ) if old_attribute == "": A_ : List[str] = old_model else: if not hasattr(__lowercase ,__lowercase ): raise ValueError(f'''{old_model} does not have {old_attribute}''' ) A_ : Union[str, Any] = getattr(__lowercase ,__lowercase ) if not is_key_init: raise ValueError(f'''{key} was not correctly initialized!''' ) print(f'''Saving model to {pytorch_dump_folder_path}''' ) prophet.save_pretrained(__lowercase ) if __name__ == "__main__": _UpperCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( """--prophetnet_checkpoint_path""", default=None, type=str, required=True, help="""Path the official PyTorch dump.""" ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) _UpperCAmelCase = parser.parse_args() convert_prophetnet_checkpoint_to_pytorch(args.prophetnet_checkpoint_path, args.pytorch_dump_folder_path)
140
0
import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase : Optional[int] = logging.get_logger(__name__) lowerCamelCase : List[str] = { "microsoft/git-base": "https://huggingface.co/microsoft/git-base/resolve/main/config.json", } class A( UpperCamelCase ): '''simple docstring''' UpperCamelCase = '''git_vision_model''' def __init__( self : Optional[Any] , A_ : str=768 , A_ : Any=3072 , A_ : str=12 , A_ : List[Any]=12 , A_ : List[str]=3 , A_ : Dict=224 , A_ : Dict=16 , A_ : Tuple="quick_gelu" , A_ : List[str]=1E-5 , A_ : List[Any]=0.0 , A_ : Any=0.02 , **A_ : Dict , ) -> Optional[int]: """simple docstring""" super().__init__(**A_ ) lowerCamelCase_ = hidden_size lowerCamelCase_ = intermediate_size lowerCamelCase_ = num_hidden_layers lowerCamelCase_ = num_attention_heads lowerCamelCase_ = num_channels lowerCamelCase_ = patch_size lowerCamelCase_ = image_size lowerCamelCase_ = initializer_range lowerCamelCase_ = attention_dropout lowerCamelCase_ = layer_norm_eps lowerCamelCase_ = hidden_act @classmethod def a__ ( cls : Any , A_ : Union[str, os.PathLike] , **A_ : List[Any] ) -> "PretrainedConfig": """simple docstring""" cls._set_token_in_kwargs(A_ ) lowerCamelCase_ , lowerCamelCase_ = cls.get_config_dict(A_ , **A_ ) # get the vision config dict if we are loading from GITConfig if config_dict.get('model_type' ) == "git": lowerCamelCase_ = config_dict['vision_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( f"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """ f"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(A_ , **A_ ) class A( UpperCamelCase ): '''simple docstring''' UpperCamelCase = '''git''' def __init__( self : Dict , A_ : Union[str, Any]=None , A_ : int=30522 , A_ : List[Any]=768 , A_ : Dict=6 , A_ : Union[str, Any]=12 , A_ : Dict=3072 , A_ : int="gelu" , A_ : Optional[int]=0.1 , A_ : List[str]=0.1 , A_ : Tuple=1024 , A_ : Optional[Any]=0.02 , A_ : str=1E-12 , A_ : Union[str, Any]=0 , A_ : Dict="absolute" , A_ : Union[str, Any]=True , A_ : Dict=False , A_ : Union[str, Any]=101 , A_ : str=102 , A_ : Union[str, Any]=None , **A_ : str , ) -> Union[str, Any]: """simple docstring""" super().__init__(bos_token_id=A_ , eos_token_id=A_ , pad_token_id=A_ , **A_ ) if vision_config is None: lowerCamelCase_ = {} logger.info('vision_config is None. initializing the GitVisionConfig with default values.' ) lowerCamelCase_ = GitVisionConfig(**A_ ) lowerCamelCase_ = vocab_size lowerCamelCase_ = hidden_size lowerCamelCase_ = num_hidden_layers lowerCamelCase_ = num_attention_heads lowerCamelCase_ = hidden_act lowerCamelCase_ = intermediate_size lowerCamelCase_ = hidden_dropout_prob lowerCamelCase_ = attention_probs_dropout_prob lowerCamelCase_ = max_position_embeddings lowerCamelCase_ = initializer_range lowerCamelCase_ = layer_norm_eps lowerCamelCase_ = position_embedding_type lowerCamelCase_ = use_cache lowerCamelCase_ = tie_word_embeddings lowerCamelCase_ = num_image_with_embedding lowerCamelCase_ = bos_token_id lowerCamelCase_ = eos_token_id def a__ ( self : Union[str, Any] ) -> Dict: """simple docstring""" lowerCamelCase_ = copy.deepcopy(self.__dict__ ) lowerCamelCase_ = self.vision_config.to_dict() lowerCamelCase_ = self.__class__.model_type return output
208
def _SCREAMING_SNAKE_CASE ( lowercase : str , lowercase : int ): '''simple docstring''' return [sentence[i : i + ngram_size] for i in range(len(lowercase ) - ngram_size + 1 )] if __name__ == "__main__": from doctest import testmod testmod()
208
1
"""simple docstring""" def UpperCamelCase_ ( lowerCAmelCase__ : Dict ) -> int: """simple docstring""" if not grid or not grid[0]: raise TypeError('The grid does not contain the appropriate information' ) for cell_n in range(1 , len(grid[0] ) ): grid[0][cell_n] += grid[0][cell_n - 1] lowerCAmelCase_ : List[Any] = grid[0] for row_n in range(1 , len(_lowerCAmelCase ) ): lowerCAmelCase_ : Any = grid[row_n] lowerCAmelCase_ : Optional[Any] = fill_row(_lowerCAmelCase , _lowerCAmelCase ) lowerCAmelCase_ : int = grid[row_n] return grid[-1][-1] def UpperCamelCase_ ( lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : List[str] ) -> list: """simple docstring""" current_row[0] += row_above[0] for cell_n in range(1 , len(_lowerCAmelCase ) ): current_row[cell_n] += min(current_row[cell_n - 1] , row_above[cell_n] ) return current_row if __name__ == "__main__": import doctest doctest.testmod()
224
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available _UpperCamelCase = {'configuration_speech_encoder_decoder': ['SpeechEncoderDecoderConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase = ['SpeechEncoderDecoderModel'] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase = ['FlaxSpeechEncoderDecoderModel'] if TYPE_CHECKING: from .configuration_speech_encoder_decoder import SpeechEncoderDecoderConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_speech_encoder_decoder import SpeechEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_speech_encoder_decoder import FlaxSpeechEncoderDecoderModel else: import sys _UpperCamelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
208
0
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os from accelerate.utils import ComputeEnvironment from .cluster import get_cluster_input from .config_args import cache_dir, default_config_file, default_yaml_config_file, load_config_from_file # noqa: F401 from .config_utils import _ask_field, _ask_options, _convert_compute_environment # noqa: F401 from .sagemaker import get_sagemaker_input UpperCAmelCase_ : List[str] = '''Launches a series of prompts to create and save a `default_config.yaml` configuration file for your training system. Should always be ran first on your machine''' def SCREAMING_SNAKE_CASE_ ( ) -> Optional[int]: """simple docstring""" UpperCamelCase :Any = _ask_options( """In which compute environment are you running?""" , ["""This machine""", """AWS (Amazon SageMaker)"""] , _convert_compute_environment , ) if compute_environment == ComputeEnvironment.AMAZON_SAGEMAKER: UpperCamelCase :str = get_sagemaker_input() else: UpperCamelCase :Optional[Any] = get_cluster_input() return config def SCREAMING_SNAKE_CASE_ ( __magic_name__ : int=None ) -> Dict: """simple docstring""" if subparsers is not None: UpperCamelCase :Optional[Any] = subparsers.add_parser("""config""" , description=a__ ) else: UpperCamelCase :str = argparse.ArgumentParser("""Accelerate config command""" , description=a__ ) parser.add_argument( """--config_file""" , default=a__ , help=( """The path to use to store the config file. Will default to a file named default_config.yaml in the cache """ """location, which is the content of the environment `HF_HOME` suffixed with \'accelerate\', or if you don\'t have """ """such an environment variable, your cache directory (\'~/.cache\' or the content of `XDG_CACHE_HOME`) suffixed """ """with \'huggingface\'.""" ) , ) if subparsers is not None: parser.set_defaults(func=a__ ) return parser def SCREAMING_SNAKE_CASE_ ( __magic_name__ : Dict ) -> Dict: """simple docstring""" UpperCamelCase :Tuple = get_user_input() if args.config_file is not None: UpperCamelCase :int = args.config_file else: if not os.path.isdir(a__ ): os.makedirs(a__ ) UpperCamelCase :Optional[int] = default_yaml_config_file if config_file.endswith(""".json""" ): config.to_json_file(a__ ) else: config.to_yaml_file(a__ ) print(f"""accelerate configuration saved at {config_file}""" ) def SCREAMING_SNAKE_CASE_ ( ) -> Dict: """simple docstring""" UpperCamelCase :Tuple = config_command_parser() UpperCamelCase :Optional[int] = parser.parse_args() config_command(a__ ) if __name__ == "__main__": main()
369
import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DeformableDetrImageProcessor class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): def __init__( self : Union[str, Any] , __lowerCamelCase : int , __lowerCamelCase : Any=7 , __lowerCamelCase : Tuple=3 , __lowerCamelCase : Optional[Any]=30 , __lowerCamelCase : Union[str, Any]=400 , __lowerCamelCase : Optional[int]=True , __lowerCamelCase : Tuple=None , __lowerCamelCase : int=True , __lowerCamelCase : Dict=[0.5, 0.5, 0.5] , __lowerCamelCase : int=[0.5, 0.5, 0.5] , __lowerCamelCase : Optional[int]=True , __lowerCamelCase : str=1 / 255 , __lowerCamelCase : str=True , ): # by setting size["longest_edge"] > max_resolution we're effectively not testing this :p UpperCamelCase :List[Any] = size if size is not None else {"""shortest_edge""": 18, """longest_edge""": 1_333} UpperCamelCase :Tuple = parent UpperCamelCase :int = batch_size UpperCamelCase :str = num_channels UpperCamelCase :Dict = min_resolution UpperCamelCase :Any = max_resolution UpperCamelCase :int = do_resize UpperCamelCase :str = size UpperCamelCase :Dict = do_normalize UpperCamelCase :Tuple = image_mean UpperCamelCase :Optional[int] = image_std UpperCamelCase :Tuple = do_rescale UpperCamelCase :Optional[Any] = rescale_factor UpperCamelCase :List[Any] = do_pad def _A ( self : List[Any] ): return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def _A ( self : Dict , __lowerCamelCase : Any , __lowerCamelCase : Optional[int]=False ): if not batched: UpperCamelCase :Optional[Any] = image_inputs[0] if isinstance(__lowerCamelCase , Image.Image ): UpperCamelCase , UpperCamelCase :Union[str, Any] = image.size else: UpperCamelCase , UpperCamelCase :Optional[int] = image.shape[1], image.shape[2] if w < h: UpperCamelCase :int = int(self.size["""shortest_edge"""] * h / w ) UpperCamelCase :Tuple = self.size["""shortest_edge"""] elif w > h: UpperCamelCase :List[Any] = self.size["""shortest_edge"""] UpperCamelCase :str = int(self.size["""shortest_edge"""] * w / h ) else: UpperCamelCase :List[Any] = self.size["""shortest_edge"""] UpperCamelCase :str = self.size["""shortest_edge"""] else: UpperCamelCase :List[Any] = [] for image in image_inputs: UpperCamelCase , UpperCamelCase :int = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) UpperCamelCase :int = max(__lowerCamelCase , key=lambda __lowerCamelCase : item[0] )[0] UpperCamelCase :Tuple = max(__lowerCamelCase , key=lambda __lowerCamelCase : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class _SCREAMING_SNAKE_CASE ( _a , unittest.TestCase ): snake_case__ : Optional[int] = DeformableDetrImageProcessor if is_vision_available() else None def _A ( self : Optional[Any] ): UpperCamelCase :str = DeformableDetrImageProcessingTester(self ) @property def _A ( self : Optional[Any] ): return self.image_processor_tester.prepare_image_processor_dict() def _A ( self : Dict ): UpperCamelCase :int = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__lowerCamelCase , """image_mean""" ) ) self.assertTrue(hasattr(__lowerCamelCase , """image_std""" ) ) self.assertTrue(hasattr(__lowerCamelCase , """do_normalize""" ) ) self.assertTrue(hasattr(__lowerCamelCase , """do_resize""" ) ) self.assertTrue(hasattr(__lowerCamelCase , """do_rescale""" ) ) self.assertTrue(hasattr(__lowerCamelCase , """do_pad""" ) ) self.assertTrue(hasattr(__lowerCamelCase , """size""" ) ) def _A ( self : str ): UpperCamelCase :Optional[Any] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""shortest_edge""": 18, """longest_edge""": 1_333} ) self.assertEqual(image_processor.do_pad , __lowerCamelCase ) UpperCamelCase :int = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=__lowerCamelCase ) self.assertEqual(image_processor.size , {"""shortest_edge""": 42, """longest_edge""": 84} ) self.assertEqual(image_processor.do_pad , __lowerCamelCase ) def _A ( self : List[Any] ): pass def _A ( self : Dict ): # Initialize image_processing UpperCamelCase :List[str] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images UpperCamelCase :List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowerCamelCase ) for image in image_inputs: self.assertIsInstance(__lowerCamelCase , Image.Image ) # Test not batched input UpperCamelCase :Dict = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values UpperCamelCase , UpperCamelCase :Optional[int] = self.image_processor_tester.get_expected_values(__lowerCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched UpperCamelCase , UpperCamelCase :str = self.image_processor_tester.get_expected_values(__lowerCamelCase , batched=__lowerCamelCase ) UpperCamelCase :int = image_processing(__lowerCamelCase , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def _A ( self : Tuple ): # Initialize image_processing UpperCamelCase :Any = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors UpperCamelCase :Union[str, Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowerCamelCase , numpify=__lowerCamelCase ) for image in image_inputs: self.assertIsInstance(__lowerCamelCase , np.ndarray ) # Test not batched input UpperCamelCase :Union[str, Any] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values UpperCamelCase , UpperCamelCase :Any = self.image_processor_tester.get_expected_values(__lowerCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched UpperCamelCase :Dict = image_processing(__lowerCamelCase , return_tensors="""pt""" ).pixel_values UpperCamelCase , UpperCamelCase :Optional[Any] = self.image_processor_tester.get_expected_values(__lowerCamelCase , batched=__lowerCamelCase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def _A ( self : Any ): # Initialize image_processing UpperCamelCase :Optional[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors UpperCamelCase :List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowerCamelCase , torchify=__lowerCamelCase ) for image in image_inputs: self.assertIsInstance(__lowerCamelCase , torch.Tensor ) # Test not batched input UpperCamelCase :Tuple = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values UpperCamelCase , UpperCamelCase :List[str] = self.image_processor_tester.get_expected_values(__lowerCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched UpperCamelCase :Union[str, Any] = image_processing(__lowerCamelCase , return_tensors="""pt""" ).pixel_values UpperCamelCase , UpperCamelCase :List[str] = self.image_processor_tester.get_expected_values(__lowerCamelCase , batched=__lowerCamelCase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def _A ( self : Optional[Any] ): # prepare image and target UpperCamelCase :int = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) with open("""./tests/fixtures/tests_samples/COCO/coco_annotations.txt""" , """r""" ) as f: UpperCamelCase :str = json.loads(f.read() ) UpperCamelCase :List[Any] = {"""image_id""": 39_769, """annotations""": target} # encode them UpperCamelCase :Optional[int] = DeformableDetrImageProcessor() UpperCamelCase :Dict = image_processing(images=__lowerCamelCase , annotations=__lowerCamelCase , return_tensors="""pt""" ) # verify pixel values UpperCamelCase :Union[str, Any] = torch.Size([1, 3, 800, 1_066] ) self.assertEqual(encoding["""pixel_values"""].shape , __lowerCamelCase ) UpperCamelCase :Optional[Any] = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding["""pixel_values"""][0, 0, 0, :3] , __lowerCamelCase , atol=1E-4 ) ) # verify area UpperCamelCase :str = torch.tensor([5887.9600, 11250.2061, 489353.8438, 837122.7500, 147967.5156, 165732.3438] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""area"""] , __lowerCamelCase ) ) # verify boxes UpperCamelCase :List[Any] = torch.Size([6, 4] ) self.assertEqual(encoding["""labels"""][0]["""boxes"""].shape , __lowerCamelCase ) UpperCamelCase :List[str] = torch.tensor([0.5503, 0.2765, 0.0604, 0.2215] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""boxes"""][0] , __lowerCamelCase , atol=1E-3 ) ) # verify image_id UpperCamelCase :Tuple = torch.tensor([39_769] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""image_id"""] , __lowerCamelCase ) ) # verify is_crowd UpperCamelCase :List[Any] = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""iscrowd"""] , __lowerCamelCase ) ) # verify class_labels UpperCamelCase :Union[str, Any] = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""class_labels"""] , __lowerCamelCase ) ) # verify orig_size UpperCamelCase :Dict = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""orig_size"""] , __lowerCamelCase ) ) # verify size UpperCamelCase :int = torch.tensor([800, 1_066] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""size"""] , __lowerCamelCase ) ) @slow def _A ( self : str ): # prepare image, target and masks_path UpperCamelCase :Any = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) with open("""./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt""" , """r""" ) as f: UpperCamelCase :Any = json.loads(f.read() ) UpperCamelCase :int = {"""file_name""": """000000039769.png""", """image_id""": 39_769, """segments_info""": target} UpperCamelCase :Any = pathlib.Path("""./tests/fixtures/tests_samples/COCO/coco_panoptic""" ) # encode them UpperCamelCase :Tuple = DeformableDetrImageProcessor(format="""coco_panoptic""" ) UpperCamelCase :Dict = image_processing(images=__lowerCamelCase , annotations=__lowerCamelCase , masks_path=__lowerCamelCase , return_tensors="""pt""" ) # verify pixel values UpperCamelCase :Optional[int] = torch.Size([1, 3, 800, 1_066] ) self.assertEqual(encoding["""pixel_values"""].shape , __lowerCamelCase ) UpperCamelCase :Optional[int] = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding["""pixel_values"""][0, 0, 0, :3] , __lowerCamelCase , atol=1E-4 ) ) # verify area UpperCamelCase :List[str] = torch.tensor([147979.6875, 165527.0469, 484638.5938, 11292.9375, 5879.6562, 7634.1147] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""area"""] , __lowerCamelCase ) ) # verify boxes UpperCamelCase :List[str] = torch.Size([6, 4] ) self.assertEqual(encoding["""labels"""][0]["""boxes"""].shape , __lowerCamelCase ) UpperCamelCase :List[Any] = torch.tensor([0.2625, 0.5437, 0.4688, 0.8625] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""boxes"""][0] , __lowerCamelCase , atol=1E-3 ) ) # verify image_id UpperCamelCase :str = torch.tensor([39_769] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""image_id"""] , __lowerCamelCase ) ) # verify is_crowd UpperCamelCase :Tuple = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""iscrowd"""] , __lowerCamelCase ) ) # verify class_labels UpperCamelCase :List[Any] = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""class_labels"""] , __lowerCamelCase ) ) # verify masks UpperCamelCase :Union[str, Any] = 822_873 self.assertEqual(encoding["""labels"""][0]["""masks"""].sum().item() , __lowerCamelCase ) # verify orig_size UpperCamelCase :Tuple = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""orig_size"""] , __lowerCamelCase ) ) # verify size UpperCamelCase :str = torch.tensor([800, 1_066] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""size"""] , __lowerCamelCase ) )
62
0
'''simple docstring''' from __future__ import annotations def SCREAMING_SNAKE_CASE__ ( __A ) -> int: _snake_case = len(__A ) // 2 # choose the middle 3 elements _snake_case = lst[m - 1 : m + 2] # if middle element is peak if three[1] > three[0] and three[1] > three[2]: return three[1] # if increasing, recurse on right elif three[0] < three[2]: if len(lst[:m] ) == 2: m -= 1 return peak(lst[m:] ) # decreasing else: if len(lst[:m] ) == 2: m += 1 return peak(lst[:m] ) if __name__ == "__main__": import doctest doctest.testmod()
42
def __lowercase ( lowerCamelCase : str , lowerCamelCase : str ): def get_matched_characters(lowerCamelCase : str , lowerCamelCase : str ) -> str: UpperCamelCase_ : Tuple = [] UpperCamelCase_ : List[Any] = min(len(_stra ) , len(_stra ) ) // 2 for i, l in enumerate(_stra ): UpperCamelCase_ : int = int(max(0 , i - limit ) ) UpperCamelCase_ : Dict = int(min(i + limit + 1 , len(_stra ) ) ) if l in _stra[left:right]: matched.append(lowerCamelCase ) UpperCamelCase_ : Dict = F"{_stra[0:_stra.index(lowerCamelCase )]} {_stra[_stra.index(lowerCamelCase ) + 1:]}" return "".join(lowerCamelCase ) # matching characters UpperCamelCase_ : str = get_matched_characters(lowerCamelCase , lowerCamelCase ) UpperCamelCase_ : str = get_matched_characters(lowerCamelCase , lowerCamelCase ) UpperCamelCase_ : Union[str, Any] = len(lowerCamelCase ) # transposition UpperCamelCase_ : int = ( len([(ca, ca) for ca, ca in zip(lowerCamelCase , lowerCamelCase ) if ca != ca] ) // 2 ) if not match_count: UpperCamelCase_ : Union[str, Any] = 0.0 else: UpperCamelCase_ : str = ( 1 / 3 * ( match_count / len(lowerCamelCase ) + match_count / len(lowerCamelCase ) + (match_count - transpositions) / match_count ) ) # common prefix up to 4 characters UpperCamelCase_ : Dict = 0 for ca, ca in zip(stra[:4] , stra[:4] ): if ca == ca: prefix_len += 1 else: break return jaro + 0.1 * prefix_len * (1 - jaro) if __name__ == "__main__": import doctest doctest.testmod() print(jaro_winkler('hello', 'world'))
175
0
import inspect import unittest from transformers import ViTConfig from transformers.testing_utils import ( require_accelerate, require_torch, require_torch_gpu, require_vision, slow, torch_device, ) from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTForImageClassification, ViTForMaskedImageModeling, ViTModel from transformers.models.vit.modeling_vit import VIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class _snake_case : def __init__( self , _a , _a=13 , _a=30 , _a=2 , _a=3 , _a=True , _a=True , _a=32 , _a=5 , _a=4 , _a=37 , _a="gelu" , _a=0.1 , _a=0.1 , _a=10 , _a=0.02 , _a=None , _a=2 , ): __magic_name__ : Optional[Any] = parent __magic_name__ : List[str] = batch_size __magic_name__ : Optional[Any] = image_size __magic_name__ : Dict = patch_size __magic_name__ : Dict = num_channels __magic_name__ : str = is_training __magic_name__ : str = use_labels __magic_name__ : Optional[Any] = hidden_size __magic_name__ : Union[str, Any] = num_hidden_layers __magic_name__ : Tuple = num_attention_heads __magic_name__ : Optional[Any] = intermediate_size __magic_name__ : Any = hidden_act __magic_name__ : str = hidden_dropout_prob __magic_name__ : Dict = attention_probs_dropout_prob __magic_name__ : Dict = type_sequence_label_size __magic_name__ : Union[str, Any] = initializer_range __magic_name__ : Tuple = scope __magic_name__ : str = encoder_stride # in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) __magic_name__ : Optional[int] = (image_size // patch_size) ** 2 __magic_name__ : Tuple = num_patches + 1 def SCREAMING_SNAKE_CASE ( self ): __magic_name__ : List[str] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __magic_name__ : List[Any] = None if self.use_labels: __magic_name__ : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __magic_name__ : List[Any] = self.get_config() return config, pixel_values, labels def SCREAMING_SNAKE_CASE ( self ): return ViTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=_a , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , ) def SCREAMING_SNAKE_CASE ( self , _a , _a , _a ): __magic_name__ : Tuple = ViTModel(config=_a ) model.to(_a ) model.eval() __magic_name__ : Optional[int] = model(_a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def SCREAMING_SNAKE_CASE ( self , _a , _a , _a ): __magic_name__ : Union[str, Any] = ViTForMaskedImageModeling(config=_a ) model.to(_a ) model.eval() __magic_name__ : Optional[Any] = model(_a ) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images __magic_name__ : int = 1 __magic_name__ : Tuple = ViTForMaskedImageModeling(_a ) model.to(_a ) model.eval() __magic_name__ : str = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __magic_name__ : Union[str, Any] = model(_a ) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def SCREAMING_SNAKE_CASE ( self , _a , _a , _a ): __magic_name__ : Union[str, Any] = self.type_sequence_label_size __magic_name__ : Dict = ViTForImageClassification(_a ) model.to(_a ) model.eval() __magic_name__ : str = model(_a , labels=_a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images __magic_name__ : Tuple = 1 __magic_name__ : int = ViTForImageClassification(_a ) model.to(_a ) model.eval() __magic_name__ : Optional[Any] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __magic_name__ : Optional[int] = model(_a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def SCREAMING_SNAKE_CASE ( self ): __magic_name__ : Tuple = self.prepare_config_and_inputs() ( ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ) : Optional[Any] = config_and_inputs __magic_name__ : Union[str, Any] = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class _snake_case ( snake_case , snake_case , unittest.TestCase ): UpperCamelCase__ = ( ( ViTModel, ViTForImageClassification, ViTForMaskedImageModeling, ) if is_torch_available() else () ) UpperCamelCase__ = ( {'feature-extraction': ViTModel, 'image-classification': ViTForImageClassification} if is_torch_available() else {} ) UpperCamelCase__ = True UpperCamelCase__ = False UpperCamelCase__ = False UpperCamelCase__ = False def SCREAMING_SNAKE_CASE ( self ): __magic_name__ : Tuple = ViTModelTester(self ) __magic_name__ : Optional[int] = ConfigTester(self , config_class=_a , has_text_modality=_a , hidden_size=37 ) def SCREAMING_SNAKE_CASE ( self ): self.config_tester.run_common_tests() @unittest.skip(reason="ViT does not use inputs_embeds" ) def SCREAMING_SNAKE_CASE ( self ): pass def SCREAMING_SNAKE_CASE ( self ): __magic_name__ , __magic_name__ : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __magic_name__ : int = model_class(_a ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) __magic_name__ : Optional[int] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_a , nn.Linear ) ) def SCREAMING_SNAKE_CASE ( self ): __magic_name__ , __magic_name__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __magic_name__ : Union[str, Any] = model_class(_a ) __magic_name__ : str = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __magic_name__ : Any = [*signature.parameters.keys()] __magic_name__ : List[str] = ["pixel_values"] self.assertListEqual(arg_names[:1] , _a ) def SCREAMING_SNAKE_CASE ( self ): __magic_name__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_a ) def SCREAMING_SNAKE_CASE ( self ): __magic_name__ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*_a ) def SCREAMING_SNAKE_CASE ( self ): __magic_name__ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_a ) @slow def SCREAMING_SNAKE_CASE ( self ): for model_name in VIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __magic_name__ : List[str] = ViTModel.from_pretrained(_a ) self.assertIsNotNone(_a ) def lowerCAmelCase_ ( ) -> Tuple: '''simple docstring''' __magic_name__ : Union[str, Any] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class _snake_case ( unittest.TestCase ): @cached_property def SCREAMING_SNAKE_CASE ( self ): return ViTImageProcessor.from_pretrained("google/vit-base-patch16-224" ) if is_vision_available() else None @slow def SCREAMING_SNAKE_CASE ( self ): __magic_name__ : Union[str, Any] = ViTForImageClassification.from_pretrained("google/vit-base-patch16-224" ).to(_a ) __magic_name__ : List[Any] = self.default_image_processor __magic_name__ : int = prepare_img() __magic_name__ : List[Any] = image_processor(images=_a , return_tensors="pt" ).to(_a ) # forward pass with torch.no_grad(): __magic_name__ : Optional[Any] = model(**_a ) # verify the logits __magic_name__ : Optional[Any] = torch.Size((1, 1_000) ) self.assertEqual(outputs.logits.shape , _a ) __magic_name__ : Optional[Any] = torch.tensor([-0.27_44, 0.82_15, -0.08_36] ).to(_a ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _a , atol=1e-4 ) ) @slow def SCREAMING_SNAKE_CASE ( self ): # ViT models have an `interpolate_pos_encoding` argument in their forward method, # allowing to interpolate the pre-trained position embeddings in order to use # the model on higher resolutions. The DINO model by Facebook AI leverages this # to visualize self-attention on higher resolution images. __magic_name__ : Optional[Any] = ViTModel.from_pretrained("facebook/dino-vits8" ).to(_a ) __magic_name__ : List[str] = ViTImageProcessor.from_pretrained("facebook/dino-vits8" , size=480 ) __magic_name__ : Any = prepare_img() __magic_name__ : int = image_processor(images=_a , return_tensors="pt" ) __magic_name__ : Dict = inputs.pixel_values.to(_a ) # forward pass with torch.no_grad(): __magic_name__ : str = model(_a , interpolate_pos_encoding=_a ) # verify the logits __magic_name__ : List[Any] = torch.Size((1, 3_601, 384) ) self.assertEqual(outputs.last_hidden_state.shape , _a ) __magic_name__ : Optional[int] = torch.tensor( [[4.23_40, 4.39_06, -6.66_92], [4.54_63, 1.89_28, -6.72_57], [4.44_29, 0.84_96, -5.85_85]] ).to(_a ) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :3, :3] , _a , atol=1e-4 ) ) @slow @require_accelerate @require_torch_gpu def SCREAMING_SNAKE_CASE ( self ): __magic_name__ : Dict = ViTModel.from_pretrained("facebook/dino-vits8" , torch_dtype=torch.floataa , device_map="auto" ) __magic_name__ : Dict = self.default_image_processor __magic_name__ : Optional[Any] = prepare_img() __magic_name__ : Tuple = image_processor(images=_a , return_tensors="pt" ) __magic_name__ : Optional[Any] = inputs.pixel_values.to(_a ) # forward pass to make sure inference works in fp16 with torch.no_grad(): __magic_name__ : Tuple = model(_a )
41
from .integrations import ( is_optuna_available, is_ray_available, is_sigopt_available, is_wandb_available, run_hp_search_optuna, run_hp_search_ray, run_hp_search_sigopt, run_hp_search_wandb, ) from .trainer_utils import ( HPSearchBackend, default_hp_space_optuna, default_hp_space_ray, default_hp_space_sigopt, default_hp_space_wandb, ) from .utils import logging snake_case : Union[str, Any] = logging.get_logger(__name__) class _snake_case : UpperCamelCase__ = 42 UpperCamelCase__ = None @staticmethod def SCREAMING_SNAKE_CASE ( ): raise NotImplementedError def SCREAMING_SNAKE_CASE ( self , _a , _a , _a , **_a ): raise NotImplementedError def SCREAMING_SNAKE_CASE ( self , _a ): raise NotImplementedError def SCREAMING_SNAKE_CASE ( self ): if not self.is_available(): raise RuntimeError( f'''You picked the {self.name} backend, but it is not installed. Run {self.pip_install()}.''' ) @classmethod def SCREAMING_SNAKE_CASE ( cls ): return f'''`pip install {cls.pip_package or cls.name}`''' class _snake_case ( snake_case ): UpperCamelCase__ = 'optuna' @staticmethod def SCREAMING_SNAKE_CASE ( ): return is_optuna_available() def SCREAMING_SNAKE_CASE ( self , _a , _a , _a , **_a ): return run_hp_search_optuna(_a , _a , _a , **_a ) def SCREAMING_SNAKE_CASE ( self , _a ): return default_hp_space_optuna(_a ) class _snake_case ( snake_case ): UpperCamelCase__ = 'ray' UpperCamelCase__ = '\'ray[tune]\'' @staticmethod def SCREAMING_SNAKE_CASE ( ): return is_ray_available() def SCREAMING_SNAKE_CASE ( self , _a , _a , _a , **_a ): return run_hp_search_ray(_a , _a , _a , **_a ) def SCREAMING_SNAKE_CASE ( self , _a ): return default_hp_space_ray(_a ) class _snake_case ( snake_case ): UpperCamelCase__ = 'sigopt' @staticmethod def SCREAMING_SNAKE_CASE ( ): return is_sigopt_available() def SCREAMING_SNAKE_CASE ( self , _a , _a , _a , **_a ): return run_hp_search_sigopt(_a , _a , _a , **_a ) def SCREAMING_SNAKE_CASE ( self , _a ): return default_hp_space_sigopt(_a ) class _snake_case ( snake_case ): UpperCamelCase__ = 'wandb' @staticmethod def SCREAMING_SNAKE_CASE ( ): return is_wandb_available() def SCREAMING_SNAKE_CASE ( self , _a , _a , _a , **_a ): return run_hp_search_wandb(_a , _a , _a , **_a ) def SCREAMING_SNAKE_CASE ( self , _a ): return default_hp_space_wandb(_a ) snake_case : int = { HPSearchBackend(backend.name): backend for backend in [OptunaBackend, RayTuneBackend, SigOptBackend, WandbBackend] } def lowerCAmelCase_ ( ) -> str: '''simple docstring''' __magic_name__ : List[Any] = [backend for backend in ALL_HYPERPARAMETER_SEARCH_BACKENDS.values() if backend.is_available()] if len(_snake_case ) > 0: __magic_name__ : Dict = available_backends[0].name if len(_snake_case ) > 1: logger.info( F'''{len(_snake_case )} hyperparameter search backends available. Using {name} as the default.''' ) return name raise RuntimeError( "No hyperparameter search backend available.\n" + "\n".join( F''' - To install {backend.name} run {backend.pip_install()}''' for backend in ALL_HYPERPARAMETER_SEARCH_BACKENDS.values() ) )
41
1
from datetime import datetime as dt import os from github import Github UpperCamelCase = [ "good first issue", "good second issue", "good difficult issue", "feature request", "new model", "wip", ] def lowercase_ ( ): lowercase__ : List[Any] = Github(os.environ["GITHUB_TOKEN"]) lowercase__ : Dict = g.get_repo("huggingface/transformers") lowercase__ : Optional[Any] = repo.get_issues(state="open") for issue in open_issues: lowercase__ : Dict = sorted([comment for comment in issue.get_comments()] , key=lambda _lowerCamelCase: i.created_at , reverse=lowerCAmelCase__) lowercase__ : Optional[Any] = comments[0] if len(lowerCAmelCase__) > 0 else None if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and (dt.utcnow() - issue.updated_at).days > 7 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels()) ): # print(f"Would close issue {issue.number} since it has been 7 days of inactivity since bot mention.") issue.edit(state="closed") elif ( (dt.utcnow() - issue.updated_at).days > 23 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels()) ): # print(f"Would add stale comment to {issue.number}") issue.create_comment( "This issue has been automatically marked as stale because it has not had " "recent activity. If you think this still needs to be addressed " "please comment on this thread.\n\nPlease note that issues that do not follow the " "[contributing guidelines](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md) " "are likely to be ignored.") if __name__ == "__main__": main()
87
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, is_vision_available, ) a_ : Union[str, Any] = { "configuration_layoutlmv3": [ "LAYOUTLMV3_PRETRAINED_CONFIG_ARCHIVE_MAP", "LayoutLMv3Config", "LayoutLMv3OnnxConfig", ], "processing_layoutlmv3": ["LayoutLMv3Processor"], "tokenization_layoutlmv3": ["LayoutLMv3Tokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ : Tuple = ["LayoutLMv3TokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ : str = [ "LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST", "LayoutLMv3ForQuestionAnswering", "LayoutLMv3ForSequenceClassification", "LayoutLMv3ForTokenClassification", "LayoutLMv3Model", "LayoutLMv3PreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ : Any = [ "TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST", "TFLayoutLMv3ForQuestionAnswering", "TFLayoutLMv3ForSequenceClassification", "TFLayoutLMv3ForTokenClassification", "TFLayoutLMv3Model", "TFLayoutLMv3PreTrainedModel", ] try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ : Any = ["LayoutLMv3FeatureExtractor"] a_ : List[str] = ["LayoutLMv3ImageProcessor"] if TYPE_CHECKING: from .configuration_layoutlmva import ( LAYOUTLMV3_PRETRAINED_CONFIG_ARCHIVE_MAP, LayoutLMvaConfig, LayoutLMvaOnnxConfig, ) from .processing_layoutlmva import LayoutLMvaProcessor from .tokenization_layoutlmva import LayoutLMvaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutlmva_fast import LayoutLMvaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_layoutlmva import ( LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST, LayoutLMvaForQuestionAnswering, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaModel, LayoutLMvaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_layoutlmva import ( TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST, TFLayoutLMvaForQuestionAnswering, TFLayoutLMvaForSequenceClassification, TFLayoutLMvaForTokenClassification, TFLayoutLMvaModel, TFLayoutLMvaPreTrainedModel, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_layoutlmva import LayoutLMvaFeatureExtractor from .image_processing_layoutlmva import LayoutLMvaImageProcessor else: import sys a_ : Tuple = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
168
0
'''simple docstring''' import argparse import os import torch from transformers.utils import WEIGHTS_NAME _snake_case : Dict = ['small', 'medium', 'large'] _snake_case : str = 'lm_head.decoder.weight' _snake_case : Dict = 'lm_head.weight' def snake_case_ (UpperCamelCase : str , UpperCamelCase : str ): '''simple docstring''' _a = torch.load(UpperCamelCase ) _a = d.pop(UpperCamelCase ) os.makedirs(UpperCamelCase , exist_ok=UpperCamelCase ) torch.save(UpperCamelCase , os.path.join(UpperCamelCase , UpperCamelCase ) ) if __name__ == "__main__": _snake_case : str = argparse.ArgumentParser() parser.add_argument('--dialogpt_path', default='.', type=str) _snake_case : List[Any] = parser.parse_args() for MODEL in DIALOGPT_MODELS: _snake_case : Optional[int] = os.path.join(args.dialogpt_path, F'''{MODEL}_ft.pkl''') _snake_case : Optional[Any] = F'''./DialoGPT-{MODEL}''' convert_dialogpt_checkpoint( checkpoint_path, pytorch_dump_folder_path, )
357
'''simple docstring''' import tempfile import unittest import numpy as np from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import BertConfig, is_flax_available from transformers.testing_utils import TOKEN, USER, is_staging_test, require_flax if is_flax_available(): import os from flax.core.frozen_dict import unfreeze from flax.traverse_util import flatten_dict from transformers import FlaxBertModel _snake_case : Optional[Any] = '0.12' # assumed parallelism: 8 @require_flax @is_staging_test class A ( unittest.TestCase ): @classmethod def __lowerCAmelCase ( cls : Tuple ) -> int: """simple docstring""" _a = TOKEN HfFolder.save_token(lowerCAmelCase_ ) @classmethod def __lowerCAmelCase ( cls : Tuple ) -> Optional[int]: """simple docstring""" try: delete_repo(token=cls._token , repo_id='''test-model-flax''' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''valid_org/test-model-flax-org''' ) except HTTPError: pass def __lowerCAmelCase ( self : Any ) -> Optional[Any]: """simple docstring""" _a = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) _a = FlaxBertModel(lowerCAmelCase_ ) model.push_to_hub('''test-model-flax''' , use_auth_token=self._token ) _a = FlaxBertModel.from_pretrained(F'{USER}/test-model-flax' ) _a = flatten_dict(unfreeze(model.params ) ) _a = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): _a = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(lowerCAmelCase_ , 1e-3 , msg=F'{key} not identical' ) # Reset repo delete_repo(token=self._token , repo_id='''test-model-flax''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(lowerCAmelCase_ , repo_id='''test-model-flax''' , push_to_hub=lowerCAmelCase_ , use_auth_token=self._token ) _a = FlaxBertModel.from_pretrained(F'{USER}/test-model-flax' ) _a = flatten_dict(unfreeze(model.params ) ) _a = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): _a = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(lowerCAmelCase_ , 1e-3 , msg=F'{key} not identical' ) def __lowerCAmelCase ( self : int ) -> Tuple: """simple docstring""" _a = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) _a = FlaxBertModel(lowerCAmelCase_ ) model.push_to_hub('''valid_org/test-model-flax-org''' , use_auth_token=self._token ) _a = FlaxBertModel.from_pretrained('''valid_org/test-model-flax-org''' ) _a = flatten_dict(unfreeze(model.params ) ) _a = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): _a = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(lowerCAmelCase_ , 1e-3 , msg=F'{key} not identical' ) # Reset repo delete_repo(token=self._token , repo_id='''valid_org/test-model-flax-org''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained( lowerCAmelCase_ , repo_id='''valid_org/test-model-flax-org''' , push_to_hub=lowerCAmelCase_ , use_auth_token=self._token ) _a = FlaxBertModel.from_pretrained('''valid_org/test-model-flax-org''' ) _a = flatten_dict(unfreeze(model.params ) ) _a = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): _a = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(lowerCAmelCase_ , 1e-3 , msg=F'{key} not identical' ) def snake_case_ (UpperCamelCase : List[str] , UpperCamelCase : Optional[Any] ): '''simple docstring''' _a = True _a = flatten_dict(modela.params ) _a = flatten_dict(modela.params ) for key in flat_params_a.keys(): if np.sum(np.abs(flat_params_a[key] - flat_params_a[key] ) ) > 1e-4: _a = False return models_are_equal @require_flax class A ( unittest.TestCase ): def __lowerCAmelCase ( self : Dict ) -> int: """simple docstring""" _a = BertConfig.from_pretrained('''hf-internal-testing/tiny-bert-flax-only''' ) _a = FlaxBertModel(lowerCAmelCase_ ) _a = '''bert''' with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(os.path.join(lowerCAmelCase_ , lowerCAmelCase_ ) ) with self.assertRaises(lowerCAmelCase_ ): _a = FlaxBertModel.from_pretrained(lowerCAmelCase_ ) _a = FlaxBertModel.from_pretrained(lowerCAmelCase_ , subfolder=lowerCAmelCase_ ) self.assertTrue(check_models_equal(lowerCAmelCase_ , lowerCAmelCase_ ) ) def __lowerCAmelCase ( self : Union[str, Any] ) -> Optional[int]: """simple docstring""" _a = BertConfig.from_pretrained('''hf-internal-testing/tiny-bert-flax-only''' ) _a = FlaxBertModel(lowerCAmelCase_ ) _a = '''bert''' with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(os.path.join(lowerCAmelCase_ , lowerCAmelCase_ ) , max_shard_size='''10KB''' ) with self.assertRaises(lowerCAmelCase_ ): _a = FlaxBertModel.from_pretrained(lowerCAmelCase_ ) _a = FlaxBertModel.from_pretrained(lowerCAmelCase_ , subfolder=lowerCAmelCase_ ) self.assertTrue(check_models_equal(lowerCAmelCase_ , lowerCAmelCase_ ) ) def __lowerCAmelCase ( self : Optional[Any] ) -> List[str]: """simple docstring""" _a = '''bert''' _a = '''hf-internal-testing/tiny-random-bert-subfolder''' with self.assertRaises(lowerCAmelCase_ ): _a = FlaxBertModel.from_pretrained(lowerCAmelCase_ ) _a = FlaxBertModel.from_pretrained(lowerCAmelCase_ , subfolder=lowerCAmelCase_ ) self.assertIsNotNone(lowerCAmelCase_ ) def __lowerCAmelCase ( self : Tuple ) -> Tuple: """simple docstring""" _a = '''bert''' _a = '''hf-internal-testing/tiny-random-bert-sharded-subfolder''' with self.assertRaises(lowerCAmelCase_ ): _a = FlaxBertModel.from_pretrained(lowerCAmelCase_ ) _a = FlaxBertModel.from_pretrained(lowerCAmelCase_ , subfolder=lowerCAmelCase_ ) self.assertIsNotNone(lowerCAmelCase_ )
179
0
import argparse import logging import os import time import timeit import datasets import numpy as np import pycuda.autoinit # noqa: F401 import pycuda.driver as cuda import tensorrt as trt import torch from absl import logging as absl_logging from accelerate import Accelerator from datasets import load_dataset, load_metric from torch.utils.data import DataLoader from utils_qa import postprocess_qa_predictions import transformers from transformers import AutoTokenizer, EvalPrediction, default_data_collator, set_seed from transformers.trainer_pt_utils import nested_concat, nested_truncate __UpperCAmelCase = trt.Logger(trt.Logger.WARNING) __UpperCAmelCase = absl_logging.get_absl_logger() absl_logger.setLevel(logging.WARNING) __UpperCAmelCase = logging.getLogger(__name__) __UpperCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--onnx_model_path''', default=None, type=str, required=True, help='''Path to ONNX model: ''', ) parser.add_argument( '''--output_dir''', default=None, type=str, required=True, help='''The output directory where the model checkpoints and predictions will be written.''', ) # Other parameters parser.add_argument( '''--tokenizer_name''', default='''''', type=str, required=True, help='''Pretrained tokenizer name or path if not the same as model_name''', ) parser.add_argument( '''--version_2_with_negative''', action='''store_true''', help='''If true, the SQuAD examples contain some that do not have an answer.''', ) parser.add_argument( '''--null_score_diff_threshold''', type=float, default=0.0, help='''If null_score - best_non_null is greater than the threshold predict null.''', ) parser.add_argument( '''--max_seq_length''', default=384, type=int, help=( '''The maximum total input sequence length after WordPiece tokenization. Sequences ''' '''longer than this will be truncated, and sequences shorter than this will be padded.''' ), ) parser.add_argument( '''--doc_stride''', default=128, type=int, help='''When splitting up a long document into chunks, how much stride to take between chunks.''', ) parser.add_argument('''--per_device_eval_batch_size''', default=8, type=int, help='''Batch size per GPU/CPU for evaluation.''') parser.add_argument( '''--n_best_size''', default=20, type=int, help='''The total number of n-best predictions to generate in the nbest_predictions.json output file.''', ) parser.add_argument( '''--max_answer_length''', default=30, type=int, help=( '''The maximum length of an answer that can be generated. This is needed because the start ''' '''and end predictions are not conditioned on one another.''' ), ) parser.add_argument('''--seed''', type=int, default=42, help='''random seed for initialization''') parser.add_argument( '''--dataset_name''', type=str, default=None, required=True, help='''The name of the dataset to use (via the datasets library).''', ) parser.add_argument( '''--dataset_config_name''', type=str, default=None, help='''The configuration name of the dataset to use (via the datasets library).''', ) parser.add_argument( '''--preprocessing_num_workers''', type=int, default=4, help='''A csv or a json file containing the training data.''' ) parser.add_argument('''--overwrite_cache''', action='''store_true''', help='''Overwrite the cached training and evaluation sets''') parser.add_argument( '''--fp16''', action='''store_true''', help='''Whether to use 16-bit (mixed) precision instead of 32-bit''', ) parser.add_argument( '''--int8''', action='''store_true''', help='''Whether to use INT8''', ) __UpperCAmelCase = parser.parse_args() if args.tokenizer_name: __UpperCAmelCase = AutoTokenizer.from_pretrained(args.tokenizer_name, use_fast=True) else: raise ValueError( '''You are instantiating a new tokenizer from scratch. This is not supported by this script.''' '''You can do it from another script, save it, and load it from here, using --tokenizer_name.''' ) logger.info('''Training/evaluation parameters %s''', args) __UpperCAmelCase = args.per_device_eval_batch_size __UpperCAmelCase = (args.eval_batch_size, args.max_seq_length) # TRT Engine properties __UpperCAmelCase = True __UpperCAmelCase = '''temp_engine/bert-fp32.engine''' if args.fpaa: __UpperCAmelCase = '''temp_engine/bert-fp16.engine''' if args.inta: __UpperCAmelCase = '''temp_engine/bert-int8.engine''' # import ONNX file if not os.path.exists('''temp_engine'''): os.makedirs('''temp_engine''') __UpperCAmelCase = 1 << (int)(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH) with trt.Builder(TRT_LOGGER) as builder, builder.create_network(EXPLICIT_BATCH) as network, trt.OnnxParser( network, TRT_LOGGER ) as parser: with open(args.onnx_model_path, '''rb''') as model: if not parser.parse(model.read()): for error in range(parser.num_errors): print(parser.get_error(error)) # Query input names and shapes from parsed TensorRT network __UpperCAmelCase = [network.get_input(i) for i in range(network.num_inputs)] __UpperCAmelCase = [_input.name for _input in network_inputs] # ex: ["actual_input1"] with builder.create_builder_config() as config: __UpperCAmelCase = 1 << 50 if STRICT_TYPES: config.set_flag(trt.BuilderFlag.STRICT_TYPES) if args.fpaa: config.set_flag(trt.BuilderFlag.FPaa) if args.inta: config.set_flag(trt.BuilderFlag.INTa) __UpperCAmelCase = builder.create_optimization_profile() config.add_optimization_profile(profile) for i in range(len(input_names)): profile.set_shape(input_names[i], INPUT_SHAPE, INPUT_SHAPE, INPUT_SHAPE) __UpperCAmelCase = builder.build_engine(network, config) # serialize_engine and store in file (can be directly loaded and deserialized): with open(engine_name, '''wb''') as f: f.write(engine.serialize()) def UpperCamelCase ( snake_case__ : List[str] , snake_case__ : Any , snake_case__ : List[Any] , snake_case__ : List[Any] , snake_case__ : Union[str, Any] , snake_case__ : Dict , snake_case__ : Tuple , snake_case__ : Optional[Any] ) -> Optional[int]: UpperCamelCase : int = np.asarray(inputs['input_ids'] , dtype=np.intaa ) UpperCamelCase : List[str] = np.asarray(inputs['attention_mask'] , dtype=np.intaa ) UpperCamelCase : List[Any] = np.asarray(inputs['token_type_ids'] , dtype=np.intaa ) # Copy inputs cuda.memcpy_htod_async(d_inputs[0] , input_ids.ravel() , snake_case__ ) cuda.memcpy_htod_async(d_inputs[1] , attention_mask.ravel() , snake_case__ ) cuda.memcpy_htod_async(d_inputs[2] , token_type_ids.ravel() , snake_case__ ) # start time UpperCamelCase : Union[str, Any] = time.time() # Run inference context.execute_async( bindings=[int(snake_case__ ) for d_inp in d_inputs] + [int(snake_case__ ), int(snake_case__ )] , stream_handle=stream.handle ) # Transfer predictions back from GPU cuda.memcpy_dtoh_async(snake_case__ , snake_case__ , snake_case__ ) cuda.memcpy_dtoh_async(snake_case__ , snake_case__ , snake_case__ ) # Synchronize the stream and take time stream.synchronize() # end time UpperCamelCase : int = time.time() UpperCamelCase : int = end_time - start_time UpperCamelCase : Tuple = (h_outputa, h_outputa) # print(outputs) return outputs, infer_time # Initialize the accelerator. We will let the accelerator handle device placement for us in this example. __UpperCAmelCase = Accelerator() # Make one log on every process with the configuration for debugging. logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''', datefmt='''%m/%d/%Y %H:%M:%S''', level=logging.INFO, ) # Setup logging, we only want one process per machine to log things on the screen. # accelerator.is_local_main_process is only True for one process per machine. logger.setLevel(logging.INFO if accelerator.is_local_main_process else logging.ERROR) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_info() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() # If passed along, set the training seed now. if args.seed is not None: set_seed(args.seed) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). if args.dataset_name is not None: # Downloading and loading a dataset from the hub. __UpperCAmelCase = load_dataset(args.dataset_name, args.dataset_config_name) else: raise ValueError('''Evaluation requires a dataset name''') # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Preprocessing the datasets. # Preprocessing is slighlty different for training and evaluation. __UpperCAmelCase = raw_datasets['''validation'''].column_names __UpperCAmelCase = '''question''' if '''question''' in column_names else column_names[0] __UpperCAmelCase = '''context''' if '''context''' in column_names else column_names[1] __UpperCAmelCase = '''answers''' if '''answers''' in column_names else column_names[2] # Padding side determines if we do (question|context) or (context|question). __UpperCAmelCase = tokenizer.padding_side == '''right''' if args.max_seq_length > tokenizer.model_max_length: logger.warning( F"""The max_seq_length passed ({args.max_seq_length}) is larger than the maximum length for the""" F"""model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.""" ) __UpperCAmelCase = min(args.max_seq_length, tokenizer.model_max_length) def UpperCamelCase ( snake_case__ : str ) -> Optional[Any]: # Some of the questions have lots of whitespace on the left, which is not useful and will make the # truncation of the context fail (the tokenized question will take a lots of space). So we remove that # left whitespace UpperCamelCase : Optional[int] = [q.lstrip() for q in examples[question_column_name]] # Tokenize our examples with truncation and maybe padding, but keep the overflows using a stride. This results # in one example possible giving several features when a context is long, each of those features having a # context that overlaps a bit the context of the previous feature. UpperCamelCase : Dict = tokenizer( examples[question_column_name if pad_on_right else context_column_name] , examples[context_column_name if pad_on_right else question_column_name] , truncation='only_second' if pad_on_right else 'only_first' , max_length=snake_case__ , stride=args.doc_stride , return_overflowing_tokens=snake_case__ , return_offsets_mapping=snake_case__ , padding='max_length' , ) # Since one example might give us several features if it has a long context, we need a map from a feature to # its corresponding example. This key gives us just that. UpperCamelCase : List[str] = tokenized_examples.pop('overflow_to_sample_mapping' ) # For evaluation, we will need to convert our predictions to substrings of the context, so we keep the # corresponding example_id and we will store the offset mappings. UpperCamelCase : str = [] for i in range(len(tokenized_examples['input_ids'] ) ): # Grab the sequence corresponding to that example (to know what is the context and what is the question). UpperCamelCase : str = tokenized_examples.sequence_ids(snake_case__ ) UpperCamelCase : Optional[Any] = 1 if pad_on_right else 0 # One example can give several spans, this is the index of the example containing this span of text. UpperCamelCase : Any = sample_mapping[i] tokenized_examples["example_id"].append(examples['id'][sample_index] ) # Set to None the offset_mapping that are not part of the context so it's easy to determine if a token # position is part of the context or not. UpperCamelCase : Optional[int] = [ (o if sequence_ids[k] == context_index else None) for k, o in enumerate(tokenized_examples['offset_mapping'][i] ) ] return tokenized_examples __UpperCAmelCase = raw_datasets['''validation'''] # Validation Feature Creation __UpperCAmelCase = eval_examples.map( prepare_validation_features, batched=True, num_proc=args.preprocessing_num_workers, remove_columns=column_names, load_from_cache_file=not args.overwrite_cache, desc='''Running tokenizer on validation dataset''', ) __UpperCAmelCase = default_data_collator __UpperCAmelCase = eval_dataset.remove_columns(['''example_id''', '''offset_mapping''']) __UpperCAmelCase = DataLoader( eval_dataset_for_model, collate_fn=data_collator, batch_size=args.per_device_eval_batch_size ) def UpperCamelCase ( snake_case__ : Optional[int] , snake_case__ : Tuple , snake_case__ : Any , snake_case__ : List[Any]="eval" ) -> Dict: # Post-processing: we match the start logits and end logits to answers in the original context. UpperCamelCase : Dict = postprocess_qa_predictions( examples=snake_case__ , features=snake_case__ , predictions=snake_case__ , version_2_with_negative=args.version_2_with_negative , n_best_size=args.n_best_size , max_answer_length=args.max_answer_length , null_score_diff_threshold=args.null_score_diff_threshold , output_dir=args.output_dir , prefix=snake_case__ , ) # Format the result to the format the metric expects. if args.version_2_with_negative: UpperCamelCase : Optional[int] = [ {'id': k, 'prediction_text': v, 'no_answer_probability': 0.0} for k, v in predictions.items() ] else: UpperCamelCase : Union[str, Any] = [{'id': k, 'prediction_text': v} for k, v in predictions.items()] UpperCamelCase : str = [{'id': ex['id'], 'answers': ex[answer_column_name]} for ex in examples] return EvalPrediction(predictions=snake_case__ , label_ids=snake_case__ ) __UpperCAmelCase = load_metric('''squad_v2''' if args.version_2_with_negative else '''squad''') # Evaluation! logger.info('''Loading ONNX model %s for evaluation''', args.onnx_model_path) with open(engine_name, '''rb''') as f, trt.Runtime(TRT_LOGGER) as runtime, runtime.deserialize_cuda_engine( f.read() ) as engine, engine.create_execution_context() as context: # setup for TRT inferrence for i in range(len(input_names)): context.set_binding_shape(i, INPUT_SHAPE) assert context.all_binding_shapes_specified def UpperCamelCase ( snake_case__ : Any ) -> Union[str, Any]: return trt.volume(engine.get_binding_shape(snake_case__ ) ) * engine.get_binding_dtype(snake_case__ ).itemsize # Allocate device memory for inputs and outputs. __UpperCAmelCase = [cuda.mem_alloc(binding_nbytes(binding)) for binding in engine if engine.binding_is_input(binding)] # Allocate output buffer __UpperCAmelCase = cuda.pagelocked_empty(tuple(context.get_binding_shape(3)), dtype=np.floataa) __UpperCAmelCase = cuda.pagelocked_empty(tuple(context.get_binding_shape(4)), dtype=np.floataa) __UpperCAmelCase = cuda.mem_alloc(h_outputa.nbytes) __UpperCAmelCase = cuda.mem_alloc(h_outputa.nbytes) # Create a stream in which to copy inputs/outputs and run inference. __UpperCAmelCase = cuda.Stream() # Evaluation logger.info('''***** Running Evaluation *****''') logger.info(F""" Num examples = {len(eval_dataset)}""") logger.info(F""" Batch size = {args.per_device_eval_batch_size}""") __UpperCAmelCase = 0.0 __UpperCAmelCase = 0 __UpperCAmelCase = timeit.default_timer() __UpperCAmelCase = None for step, batch in enumerate(eval_dataloader): __UpperCAmelCase , __UpperCAmelCase = model_infer(batch, context, d_inputs, h_outputa, h_outputa, d_outputa, d_outputa, stream) total_time += infer_time niter += 1 __UpperCAmelCase , __UpperCAmelCase = outputs __UpperCAmelCase = torch.tensor(start_logits) __UpperCAmelCase = torch.tensor(end_logits) # necessary to pad predictions and labels for being gathered __UpperCAmelCase = accelerator.pad_across_processes(start_logits, dim=1, pad_index=-100) __UpperCAmelCase = accelerator.pad_across_processes(end_logits, dim=1, pad_index=-100) __UpperCAmelCase = (accelerator.gather(start_logits).cpu().numpy(), accelerator.gather(end_logits).cpu().numpy()) __UpperCAmelCase = logits if all_preds is None else nested_concat(all_preds, logits, padding_index=-100) if all_preds is not None: __UpperCAmelCase = nested_truncate(all_preds, len(eval_dataset)) __UpperCAmelCase = timeit.default_timer() - start_time logger.info(''' Evaluation done in total %f secs (%f sec per example)''', evalTime, evalTime / len(eval_dataset)) # Inference time from TRT logger.info('''Average Inference Time = {:.3f} ms'''.format(total_time * 1_000 / niter)) logger.info('''Total Inference Time = {:.3f} ms'''.format(total_time * 1_000)) logger.info('''Total Number of Inference = %d''', niter) __UpperCAmelCase = post_processing_function(eval_examples, eval_dataset, all_preds) __UpperCAmelCase = metric.compute(predictions=prediction.predictions, references=prediction.label_ids) logger.info(F"""Evaluation metrics: {eval_metric}""")
119
from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = { '''facebook/s2t-wav2vec2-large-en-de''': ( '''https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/config.json''' ), # See all Speech2Text models at https://huggingface.co/models?filter=speech2text2 } class lowerCAmelCase_ ( a__ ): UpperCAmelCase__ : Optional[Any] = "speech_to_text_2" UpperCAmelCase__ : List[Any] = ["past_key_values"] UpperCAmelCase__ : Any = {"num_attention_heads": "decoder_attention_heads", "hidden_size": "d_model"} def __init__( self, SCREAMING_SNAKE_CASE_=1_0000, SCREAMING_SNAKE_CASE_=6, SCREAMING_SNAKE_CASE_=2048, SCREAMING_SNAKE_CASE_=4, SCREAMING_SNAKE_CASE_=0.0, SCREAMING_SNAKE_CASE_=True, SCREAMING_SNAKE_CASE_="relu", SCREAMING_SNAKE_CASE_=256, SCREAMING_SNAKE_CASE_=0.1, SCREAMING_SNAKE_CASE_=0.0, SCREAMING_SNAKE_CASE_=0.0, SCREAMING_SNAKE_CASE_=0.02, SCREAMING_SNAKE_CASE_=2, SCREAMING_SNAKE_CASE_=True, SCREAMING_SNAKE_CASE_=1, SCREAMING_SNAKE_CASE_=0, SCREAMING_SNAKE_CASE_=2, SCREAMING_SNAKE_CASE_=1024, **SCREAMING_SNAKE_CASE_, ) -> int: UpperCamelCase : Optional[int] = vocab_size UpperCamelCase : List[str] = d_model UpperCamelCase : List[str] = decoder_ffn_dim UpperCamelCase : Optional[Any] = decoder_layers UpperCamelCase : Any = decoder_attention_heads UpperCamelCase : Tuple = dropout UpperCamelCase : str = attention_dropout UpperCamelCase : str = activation_dropout UpperCamelCase : Union[str, Any] = activation_function UpperCamelCase : Optional[int] = init_std UpperCamelCase : Tuple = decoder_layerdrop UpperCamelCase : Dict = use_cache UpperCamelCase : Any = decoder_layers UpperCamelCase : Union[str, Any] = scale_embedding # scale factor will be sqrt(d_model) if True UpperCamelCase : Union[str, Any] = max_target_positions super().__init__( pad_token_id=SCREAMING_SNAKE_CASE_, bos_token_id=SCREAMING_SNAKE_CASE_, eos_token_id=SCREAMING_SNAKE_CASE_, decoder_start_token_id=SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_, )
119
1
"""simple docstring""" import unittest import numpy as np from transformers import RoFormerConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.roformer.modeling_flax_roformer import ( FlaxRoFormerForMaskedLM, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerModel, ) class __lowerCamelCase ( unittest.TestCase ): '''simple docstring''' def __init__( self : List[str] , a_ : int , a_ : Optional[int]=13 , a_ : Dict=7 , a_ : Any=True , a_ : int=True , a_ : Optional[int]=True , a_ : Optional[int]=True , a_ : List[Any]=99 , a_ : Optional[Any]=32 , a_ : Dict=5 , a_ : List[str]=4 , a_ : Optional[Any]=37 , a_ : Optional[Any]="gelu" , a_ : Tuple=0.1 , a_ : Union[str, Any]=0.1 , a_ : Union[str, Any]=5_12 , a_ : str=16 , a_ : int=2 , a_ : List[Any]=0.02 , a_ : str=4 , ): lowerCAmelCase_ : Any = parent lowerCAmelCase_ : List[str] = batch_size lowerCAmelCase_ : str = seq_length lowerCAmelCase_ : List[str] = is_training lowerCAmelCase_ : Optional[int] = use_attention_mask lowerCAmelCase_ : List[str] = use_token_type_ids lowerCAmelCase_ : Tuple = use_labels lowerCAmelCase_ : Tuple = vocab_size lowerCAmelCase_ : str = hidden_size lowerCAmelCase_ : List[str] = num_hidden_layers lowerCAmelCase_ : Tuple = num_attention_heads lowerCAmelCase_ : Tuple = intermediate_size lowerCAmelCase_ : Optional[int] = hidden_act lowerCAmelCase_ : Optional[int] = hidden_dropout_prob lowerCAmelCase_ : Optional[int] = attention_probs_dropout_prob lowerCAmelCase_ : Union[str, Any] = max_position_embeddings lowerCAmelCase_ : List[Any] = type_vocab_size lowerCAmelCase_ : List[str] = type_sequence_label_size lowerCAmelCase_ : Union[str, Any] = initializer_range lowerCAmelCase_ : List[str] = num_choices def lowerCamelCase ( self : Tuple ): lowerCAmelCase_ : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCAmelCase_ : List[str] = None if self.use_attention_mask: lowerCAmelCase_ : Optional[Any] = random_attention_mask([self.batch_size, self.seq_length] ) lowerCAmelCase_ : Any = None if self.use_token_type_ids: lowerCAmelCase_ : str = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowerCAmelCase_ : Tuple = RoFormerConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=a_ , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def lowerCamelCase ( self : Union[str, Any] ): lowerCAmelCase_ : Optional[int] = self.prepare_config_and_inputs() lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : List[Any] = config_and_inputs lowerCAmelCase_ : Tuple = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": attention_mask} return config, inputs_dict @require_flax class __lowerCamelCase ( A__ , unittest.TestCase ): '''simple docstring''' a_ : List[Any] = True a_ : List[Any] = ( ( FlaxRoFormerModel, FlaxRoFormerForMaskedLM, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, ) if is_flax_available() else () ) def lowerCamelCase ( self : int ): lowerCAmelCase_ : Optional[int] = FlaxRoFormerModelTester(self ) @slow def lowerCamelCase ( self : Optional[Any] ): for model_class_name in self.all_model_classes: lowerCAmelCase_ : Any = model_class_name.from_pretrained("junnyu/roformer_chinese_small" , from_pt=a_ ) lowerCAmelCase_ : Any = model(np.ones((1, 1) ) ) self.assertIsNotNone(a_ ) @require_flax class __lowerCamelCase ( unittest.TestCase ): '''simple docstring''' @slow def lowerCamelCase ( self : List[str] ): lowerCAmelCase_ : Optional[Any] = FlaxRoFormerForMaskedLM.from_pretrained("junnyu/roformer_chinese_base" ) lowerCAmelCase_ : Union[str, Any] = jnp.array([[0, 1, 2, 3, 4, 5]] ) lowerCAmelCase_ : Optional[int] = model(a_ )[0] lowerCAmelCase_ : str = 5_00_00 lowerCAmelCase_ : Tuple = (1, 6, vocab_size) self.assertEqual(output.shape , a_ ) lowerCAmelCase_ : str = jnp.array( [[[-0.1205, -1.0265, 0.2922], [-1.5134, 0.1974, 0.1519], [-5.0135, -3.9003, -0.8404]]] ) self.assertTrue(jnp.allclose(output[:, :3, :3] , a_ , atol=1e-4 ) )
161
"""simple docstring""" import numpy as np import pandas as pd from sklearn.preprocessing import Normalizer from sklearn.svm import SVR from statsmodels.tsa.statespace.sarimax import SARIMAX def __lowerCamelCase ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> float: """simple docstring""" lowerCAmelCase_ : Tuple = np.array([[1, item, train_mtch[i]] for i, item in enumerate(__UpperCamelCase )] ) lowerCAmelCase_ : str = np.array(__UpperCamelCase ) lowerCAmelCase_ : Optional[Any] = np.dot(np.dot(np.linalg.inv(np.dot(x.transpose() , __UpperCamelCase ) ) , x.transpose() ) , __UpperCamelCase ) return abs(beta[0] + test_dt[0] * beta[1] + test_mtch[0] + beta[2] ) def __lowerCamelCase ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> float: """simple docstring""" lowerCAmelCase_ : Union[str, Any] = (1, 2, 1) lowerCAmelCase_ : str = (1, 1, 0, 7) lowerCAmelCase_ : List[Any] = SARIMAX( __UpperCamelCase , exog=__UpperCamelCase , order=__UpperCamelCase , seasonal_order=__UpperCamelCase ) lowerCAmelCase_ : Optional[int] = model.fit(disp=__UpperCamelCase , maxiter=600 , method="nm" ) lowerCAmelCase_ : Optional[Any] = model_fit.predict(1 , len(__UpperCamelCase ) , exog=[test_match] ) return result[0] def __lowerCamelCase ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> float: """simple docstring""" lowerCAmelCase_ : int = SVR(kernel="rbf" , C=1 , gamma=0.1 , epsilon=0.1 ) regressor.fit(__UpperCamelCase , __UpperCamelCase ) lowerCAmelCase_ : Dict = regressor.predict(__UpperCamelCase ) return y_pred[0] def __lowerCamelCase ( __UpperCamelCase ) -> float: """simple docstring""" train_user.sort() lowerCAmelCase_ : Optional[Any] = np.percentile(__UpperCamelCase , 25 ) lowerCAmelCase_ : List[Any] = np.percentile(__UpperCamelCase , 75 ) lowerCAmelCase_ : Union[str, Any] = qa - qa lowerCAmelCase_ : List[Any] = qa - (iqr * 0.1) return low_lim def __lowerCamelCase ( __UpperCamelCase , __UpperCamelCase ) -> bool: """simple docstring""" lowerCAmelCase_ : Optional[Any] = 0 lowerCAmelCase_ : Union[str, Any] = 0 for i in list_vote: if i > actual_result: lowerCAmelCase_ : Tuple = not_safe + 1 else: if abs(abs(__UpperCamelCase ) - abs(__UpperCamelCase ) ) <= 0.1: safe += 1 else: not_safe += 1 return safe > not_safe if __name__ == "__main__": # data_input_df = pd.read_csv("ex_data.csv", header=None) lowercase__ = [[18231, 0.0, 1], [22621, 1.0, 2], [15675, 0.0, 3], [23583, 1.0, 4]] lowercase__ = pd.DataFrame( data_input, columns=["""total_user""", """total_even""", """days"""] ) lowercase__ = Normalizer().fit_transform(data_input_df.values) # split data lowercase__ = normalize_df[:, 2].tolist() lowercase__ = normalize_df[:, 0].tolist() lowercase__ = normalize_df[:, 1].tolist() # for svr (input variable = total date and total match) lowercase__ = normalize_df[:, [1, 2]].tolist() lowercase__ = x[: len(x) - 1] lowercase__ = x[len(x) - 1 :] # for linear regression & sarimax lowercase__ = total_date[: len(total_date) - 1] lowercase__ = total_user[: len(total_user) - 1] lowercase__ = total_match[: len(total_match) - 1] lowercase__ = total_date[len(total_date) - 1 :] lowercase__ = total_user[len(total_user) - 1 :] lowercase__ = total_match[len(total_match) - 1 :] # voting system with forecasting lowercase__ = [ linear_regression_prediction( trn_date, trn_user, trn_match, tst_date, tst_match ), sarimax_predictor(trn_user, trn_match, tst_match), support_vector_regressor(x_train, x_test, trn_user), ] # check the safety of today's data lowercase__ = """""" if data_safety_checker(res_vote, tst_user) else """not """ print("""Today's data is {not_str}safe.""")
161
1
"""simple docstring""" def _snake_case ( lowerCamelCase__ : int | float | str ) -> tuple[int, int]: try: lowerCamelCase_ : List[Any] =float(lowerCamelCase__ ) except ValueError: raise ValueError("Please enter a valid number" ) lowerCamelCase_ : Optional[int] =decimal - int(lowerCamelCase__ ) if fractional_part == 0: return int(lowerCamelCase__ ), 1 else: lowerCamelCase_ : str =len(str(lowerCamelCase__ ).split("." )[1] ) lowerCamelCase_ : Union[str, Any] =int(decimal * (10**number_of_frac_digits) ) lowerCamelCase_ : int =10**number_of_frac_digits lowerCamelCase_ , lowerCamelCase_ : int =denominator, numerator while True: lowerCamelCase_ : List[Any] =dividend % divisor if remainder == 0: break lowerCamelCase_ , lowerCamelCase_ : Tuple =divisor, remainder lowerCamelCase_ , lowerCamelCase_ : List[str] =numerator / divisor, denominator / divisor return int(lowerCamelCase__ ), int(lowerCamelCase__ ) if __name__ == "__main__": print(f'{decimal_to_fraction(2) = }') print(f'{decimal_to_fraction(89.0) = }') print(f'{decimal_to_fraction("67") = }') print(f'{decimal_to_fraction("45.0") = }') print(f'{decimal_to_fraction(1.5) = }') print(f'{decimal_to_fraction("6.25") = }') print(f'{decimal_to_fraction("78td") = }')
144
"""simple docstring""" import inspect import tempfile import unittest from huggingface_hub import hf_hub_download from transformers import is_torch_available from transformers.testing_utils import is_flaky, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin A__ : Union[str, Any] = 1E-4 if is_torch_available(): import torch from transformers import AutoformerConfig, AutoformerForPrediction, AutoformerModel from transformers.models.autoformer.modeling_autoformer import AutoformerDecoder, AutoformerEncoder @require_torch class lowercase__ : def __init__( self : List[Any] , snake_case__ : int , snake_case__ : List[str]=16 , snake_case__ : Tuple=13 , snake_case__ : Dict=7 , snake_case__ : List[Any]=14 , snake_case__ : List[Any]=10 , snake_case__ : Dict=19 , snake_case__ : List[str]=5 , snake_case__ : Union[str, Any]=4 , snake_case__ : str=True , snake_case__ : int=16 , snake_case__ : Union[str, Any]=2 , snake_case__ : Tuple=4 , snake_case__ : Dict=4 , snake_case__ : int="gelu" , snake_case__ : Dict=0.1 , snake_case__ : str=0.1 , snake_case__ : List[str]=[1, 2, 3, 4, 5] , snake_case__ : Optional[int]=25 , snake_case__ : Dict=5 , ): lowerCamelCase_ : Dict =d_model lowerCamelCase_ : int =parent lowerCamelCase_ : Optional[Any] =batch_size lowerCamelCase_ : int =prediction_length lowerCamelCase_ : Optional[int] =context_length lowerCamelCase_ : Any =cardinality lowerCamelCase_ : List[str] =num_time_features lowerCamelCase_ : List[Any] =lags_sequence lowerCamelCase_ : Optional[int] =embedding_dimension lowerCamelCase_ : Union[str, Any] =is_training lowerCamelCase_ : Union[str, Any] =hidden_size lowerCamelCase_ : str =num_hidden_layers lowerCamelCase_ : Any =num_attention_heads lowerCamelCase_ : Any =intermediate_size lowerCamelCase_ : Union[str, Any] =hidden_act lowerCamelCase_ : Optional[int] =hidden_dropout_prob lowerCamelCase_ : Optional[int] =attention_probs_dropout_prob lowerCamelCase_ : List[Any] =context_length lowerCamelCase_ : str =prediction_length + label_length lowerCamelCase_ : int =label_length lowerCamelCase_ : Union[str, Any] =moving_average lowerCamelCase_ : str =autocorrelation_factor def UpperCAmelCase__ ( self : Any ): return AutoformerConfig( d_model=self.d_model , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , prediction_length=self.prediction_length , context_length=self.context_length , label_length=self.label_length , lags_sequence=self.lags_sequence , num_time_features=self.num_time_features , num_static_categorical_features=1 , cardinality=[self.cardinality] , embedding_dimension=[self.embedding_dimension] , moving_average=self.moving_average , ) def UpperCAmelCase__ ( self : Optional[Any] , snake_case__ : List[Any] ): lowerCamelCase_ : Optional[Any] =config.context_length + max(config.lags_sequence ) lowerCamelCase_ : Any =ids_tensor([self.batch_size, 1] , config.cardinality[0] ) lowerCamelCase_ : List[Any] =floats_tensor([self.batch_size, _past_length, config.num_time_features] ) lowerCamelCase_ : List[str] =floats_tensor([self.batch_size, _past_length] ) lowerCamelCase_ : Any =floats_tensor([self.batch_size, _past_length] ) > 0.5 # decoder inputs lowerCamelCase_ : Tuple =floats_tensor([self.batch_size, config.prediction_length, config.num_time_features] ) lowerCamelCase_ : Optional[Any] =floats_tensor([self.batch_size, config.prediction_length] ) lowerCamelCase_ : Any ={ "past_values": past_values, "static_categorical_features": static_categorical_features, "past_time_features": past_time_features, "past_observed_mask": past_observed_mask, "future_time_features": future_time_features, "future_values": future_values, } return inputs_dict def UpperCAmelCase__ ( self : Tuple ): lowerCamelCase_ : str =self.get_config() lowerCamelCase_ : List[Any] =self.prepare_autoformer_inputs_dict(snake_case__ ) return config, inputs_dict def UpperCAmelCase__ ( self : str ): lowerCamelCase_ , lowerCamelCase_ : List[str] =self.prepare_config_and_inputs() return config, inputs_dict def UpperCAmelCase__ ( self : List[Any] , snake_case__ : Union[str, Any] , snake_case__ : Union[str, Any] ): lowerCamelCase_ : str =AutoformerModel(config=snake_case__ ).to(snake_case__ ).eval() lowerCamelCase_ : int =model(**snake_case__ ) lowerCamelCase_ : str =outputs.encoder_last_hidden_state lowerCamelCase_ : Optional[Any] =outputs.last_hidden_state with tempfile.TemporaryDirectory() as tmpdirname: lowerCamelCase_ : Tuple =model.get_encoder() encoder.save_pretrained(snake_case__ ) lowerCamelCase_ : Any =AutoformerEncoder.from_pretrained(snake_case__ ).to(snake_case__ ) lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ : Optional[Any] =model.create_network_inputs(**snake_case__ ) lowerCamelCase_ , lowerCamelCase_ : Optional[int] =model.decomposition_layer(transformer_inputs[:, : config.context_length, ...] ) lowerCamelCase_ : Dict =torch.cat( (transformer_inputs[:, : config.context_length, ...], feature[:, : config.context_length, ...]) , dim=-1 , ) lowerCamelCase_ : int =encoder(inputs_embeds=snake_case__ )[0] self.parent.assertTrue((encoder_last_hidden_state_a - encoder_last_hidden_state).abs().max().item() < 1E-3 ) lowerCamelCase_ : str =( torch.mean(transformer_inputs[:, : config.context_length, ...] , dim=1 ) .unsqueeze(1 ) .repeat(1 , config.prediction_length , 1 ) ) lowerCamelCase_ : Optional[int] =torch.zeros( [transformer_inputs.shape[0], config.prediction_length, transformer_inputs.shape[2]] , device=enc_input.device , ) lowerCamelCase_ : Any =torch.cat( ( torch.cat((seasonal_input[:, -config.label_length :, ...], zeros) , dim=1 ), feature[:, config.context_length - config.label_length :, ...], ) , dim=-1 , ) lowerCamelCase_ : Optional[Any] =torch.cat( ( torch.cat((trend_input[:, -config.label_length :, ...], mean) , dim=1 ), feature[:, config.context_length - config.label_length :, ...], ) , dim=-1 , ) with tempfile.TemporaryDirectory() as tmpdirname: lowerCamelCase_ : List[str] =model.get_decoder() decoder.save_pretrained(snake_case__ ) lowerCamelCase_ : str =AutoformerDecoder.from_pretrained(snake_case__ ).to(snake_case__ ) lowerCamelCase_ : List[str] =decoder( trend=snake_case__ , inputs_embeds=snake_case__ , encoder_hidden_states=snake_case__ , )[0] self.parent.assertTrue((last_hidden_state_a - last_hidden_state).abs().max().item() < 1E-3 ) @require_torch class lowercase__ ( snake_case__, snake_case__, unittest.TestCase ): _UpperCAmelCase :Optional[int] = (AutoformerModel, AutoformerForPrediction) if is_torch_available() else () _UpperCAmelCase :Union[str, Any] = (AutoformerForPrediction,) if is_torch_available() else () _UpperCAmelCase :Optional[int] = {"feature-extraction": AutoformerModel} if is_torch_available() else {} _UpperCAmelCase :Tuple = False _UpperCAmelCase :int = False _UpperCAmelCase :int = False _UpperCAmelCase :Optional[int] = False _UpperCAmelCase :Optional[Any] = False _UpperCAmelCase :Dict = False def UpperCAmelCase__ ( self : Optional[int] ): lowerCamelCase_ : List[str] =AutoformerModelTester(self ) lowerCamelCase_ : List[str] =ConfigTester(self , config_class=snake_case__ , has_text_modality=snake_case__ ) def UpperCAmelCase__ ( self : Tuple ): self.config_tester.run_common_tests() def UpperCAmelCase__ ( self : Union[str, Any] ): lowerCamelCase_ , lowerCamelCase_ : str =self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: lowerCamelCase_ : List[Any] =model_class(snake_case__ ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(snake_case__ ) lowerCamelCase_ , lowerCamelCase_ : str =model_class.from_pretrained(snake_case__ , output_loading_info=snake_case__ ) self.assertEqual(info["missing_keys"] , [] ) def UpperCAmelCase__ ( self : Optional[Any] ): lowerCamelCase_ : List[str] =self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_encoder_decoder_model_standalone(*snake_case__ ) @unittest.skip(reason="Model has no tokens embeddings" ) def UpperCAmelCase__ ( self : Optional[Any] ): pass def UpperCAmelCase__ ( self : Any ): lowerCamelCase_ : Any =inspect.signature(getattr(snake_case__ , "forward" ) ) # The main input is the name of the argument after `self` lowerCamelCase_ : Optional[Any] =list(model_signature.parameters.keys() )[1] self.assertEqual(AutoformerModel.main_input_name , snake_case__ ) def UpperCAmelCase__ ( self : List[str] ): lowerCamelCase_ , lowerCamelCase_ : Tuple =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase_ : Optional[int] =model_class(snake_case__ ) lowerCamelCase_ : Optional[int] =inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCamelCase_ : Union[str, Any] =[*signature.parameters.keys()] lowerCamelCase_ : List[Any] =[ "past_values", "past_time_features", "past_observed_mask", "static_categorical_features", "static_real_features", "future_values", "future_time_features", ] if model.__class__.__name__ in ["AutoformerForPrediction"]: expected_arg_names.append("future_observed_mask" ) expected_arg_names.extend( [ "decoder_attention_mask", "head_mask", "decoder_head_mask", "cross_attn_head_mask", "encoder_outputs", "past_key_values", "output_hidden_states", "output_attentions", "use_cache", "return_dict", ] ) self.assertListEqual(arg_names[: len(snake_case__ )] , snake_case__ ) def UpperCAmelCase__ ( self : Tuple ): lowerCamelCase_ , lowerCamelCase_ : Union[str, Any] =self.model_tester.prepare_config_and_inputs_for_common() lowerCamelCase_ : Optional[int] =True lowerCamelCase_ : List[str] =getattr(self.model_tester , "seq_length" , snake_case__ ) lowerCamelCase_ : Dict =getattr(self.model_tester , "decoder_seq_length" , snake_case__ ) lowerCamelCase_ : List[Any] =getattr(self.model_tester , "encoder_seq_length" , snake_case__ ) lowerCamelCase_ : Optional[Any] =getattr(self.model_tester , "d_model" , snake_case__ ) lowerCamelCase_ : List[str] =getattr(self.model_tester , "num_attention_heads" , snake_case__ ) lowerCamelCase_ : Union[str, Any] =d_model // num_attention_heads for model_class in self.all_model_classes: lowerCamelCase_ : str =True lowerCamelCase_ : int =False lowerCamelCase_ : Any =True lowerCamelCase_ : Tuple =model_class(snake_case__ ) model.to(snake_case__ ) model.eval() with torch.no_grad(): lowerCamelCase_ : Union[str, Any] =model(**self._prepare_for_class(snake_case__ , snake_case__ ) ) lowerCamelCase_ : str =outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(snake_case__ ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] lowerCamelCase_ : List[Any] =True lowerCamelCase_ : Optional[int] =model_class(snake_case__ ) model.to(snake_case__ ) model.eval() with torch.no_grad(): lowerCamelCase_ : List[str] =model(**self._prepare_for_class(snake_case__ , snake_case__ ) ) lowerCamelCase_ : Union[str, Any] =outputs.encoder_attentions self.assertEqual(len(snake_case__ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, dim] , ) lowerCamelCase_ : Optional[Any] =len(snake_case__ ) lowerCamelCase_ : List[Any] =7 if "last_hidden_state" in outputs: correct_outlen += 1 if "trend" in outputs: correct_outlen += 1 if "past_key_values" in outputs: correct_outlen += 1 # past_key_values have been returned if "loss" in outputs: correct_outlen += 1 if "params" in outputs: correct_outlen += 1 self.assertEqual(snake_case__ , snake_case__ ) # decoder attentions lowerCamelCase_ : Union[str, Any] =outputs.decoder_attentions self.assertIsInstance(snake_case__ , (list, tuple) ) self.assertEqual(len(snake_case__ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, decoder_seq_length, dim] , ) # cross attentions lowerCamelCase_ : Tuple =outputs.cross_attentions self.assertIsInstance(snake_case__ , (list, tuple) ) self.assertEqual(len(snake_case__ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(cross_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, decoder_seq_length, dim] , ) # Check attention is always last and order is fine lowerCamelCase_ : Tuple =True lowerCamelCase_ : Optional[int] =True lowerCamelCase_ : Tuple =model_class(snake_case__ ) model.to(snake_case__ ) model.eval() with torch.no_grad(): lowerCamelCase_ : Dict =model(**self._prepare_for_class(snake_case__ , snake_case__ ) ) self.assertEqual(out_len + 2 , len(snake_case__ ) ) lowerCamelCase_ : Union[str, Any] =outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(snake_case__ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, dim] , ) @is_flaky() def UpperCAmelCase__ ( self : Optional[int] ): super().test_retain_grad_hidden_states_attentions() def _snake_case ( lowerCamelCase__ : Tuple="train-batch.pt" ) -> Any: lowerCamelCase_ : Tuple =hf_hub_download(repo_id="hf-internal-testing/tourism-monthly-batch" , filename=lowerCamelCase__ , repo_type="dataset" ) lowerCamelCase_ : List[Any] =torch.load(lowerCamelCase__ , map_location=lowerCamelCase__ ) return batch @require_torch @slow class lowercase__ ( unittest.TestCase ): def UpperCAmelCase__ ( self : Dict ): lowerCamelCase_ : int =AutoformerModel.from_pretrained("huggingface/autoformer-tourism-monthly" ).to(snake_case__ ) lowerCamelCase_ : List[str] =prepare_batch() with torch.no_grad(): lowerCamelCase_ : List[Any] =model( past_values=batch["past_values"] , past_time_features=batch["past_time_features"] , past_observed_mask=batch["past_observed_mask"] , static_categorical_features=batch["static_categorical_features"] , future_values=batch["future_values"] , future_time_features=batch["future_time_features"] , )[0] lowerCamelCase_ : Union[str, Any] =torch.Size( (64, model.config.prediction_length + model.config.label_length, model.config.feature_size) ) self.assertEqual(output.shape , snake_case__ ) lowerCamelCase_ : Dict =torch.tensor( [[0.3_593, -1.3_398, 0.6_330], [0.2_279, 1.5_396, -0.1_792], [0.0_450, 1.3_225, -0.2_335]] , device=snake_case__ ) self.assertTrue(torch.allclose(output[0, :3, :3] , snake_case__ , atol=snake_case__ ) ) def UpperCAmelCase__ ( self : Tuple ): lowerCamelCase_ : str =AutoformerForPrediction.from_pretrained("huggingface/autoformer-tourism-monthly" ).to(snake_case__ ) lowerCamelCase_ : Optional[int] =prepare_batch("val-batch.pt" ) with torch.no_grad(): lowerCamelCase_ : Union[str, Any] =model( past_values=batch["past_values"] , past_time_features=batch["past_time_features"] , past_observed_mask=batch["past_observed_mask"] , static_categorical_features=batch["static_categorical_features"] , ).encoder_last_hidden_state lowerCamelCase_ : List[Any] =torch.Size((64, model.config.context_length, model.config.d_model) ) self.assertEqual(output.shape , snake_case__ ) lowerCamelCase_ : Optional[Any] =torch.tensor( [[-0.0_734, -0.9_036, 0.8_358], [4.7_186, 2.4_113, 1.9_581], [1.7_953, 2.3_558, 1.2_970]] , device=snake_case__ ) self.assertTrue(torch.allclose(output[0, :3, :3] , snake_case__ , atol=snake_case__ ) ) def UpperCAmelCase__ ( self : List[str] ): lowerCamelCase_ : int =AutoformerForPrediction.from_pretrained("huggingface/autoformer-tourism-monthly" ).to(snake_case__ ) lowerCamelCase_ : Dict =prepare_batch("val-batch.pt" ) with torch.no_grad(): lowerCamelCase_ : Union[str, Any] =model.generate( static_categorical_features=batch["static_categorical_features"] , past_time_features=batch["past_time_features"] , past_values=batch["past_values"] , future_time_features=batch["future_time_features"] , past_observed_mask=batch["past_observed_mask"] , ) lowerCamelCase_ : Tuple =torch.Size((64, model.config.num_parallel_samples, model.config.prediction_length) ) self.assertEqual(outputs.sequences.shape , snake_case__ ) lowerCamelCase_ : List[str] =torch.tensor([3_130.6_763, 4_056.5_293, 7_053.0_786] , device=snake_case__ ) lowerCamelCase_ : Any =outputs.sequences.mean(dim=1 ) self.assertTrue(torch.allclose(mean_prediction[0, -3:] , snake_case__ , rtol=1E-1 ) )
144
1
'''simple docstring''' import requests lowerCAmelCase : Tuple = 'YOUR API KEY' def A_( A : str , A : str = giphy_api_key): UpperCamelCase = '+'.join(query.split()) UpperCamelCase = f'''https://api.giphy.com/v1/gifs/search?q={formatted_query}&api_key={api_key}''' UpperCamelCase = requests.get(A).json()['data'] return [gif["url"] for gif in gifs] if __name__ == "__main__": print('\n'.join(get_gifs('space ship')))
251
'''simple docstring''' import inspect import unittest from huggingface_hub import hf_hub_download from transformers import ASTConfig from transformers.testing_utils import require_torch, require_torchaudio, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_torchaudio_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ASTForAudioClassification, ASTModel from transformers.models.audio_spectrogram_transformer.modeling_audio_spectrogram_transformer import ( AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ) if is_torchaudio_available(): import torchaudio from transformers import ASTFeatureExtractor class SCREAMING_SNAKE_CASE__ : def __init__( self , A_ , A_=13 , A_=2 , A_=24 , A_=16 , A_=True , A_=True , A_=32 , A_=5 , A_=4 , A_=37 , A_="gelu" , A_=0.1 , A_=0.1 , A_=10 , A_=0.02 , A_=None , A_=2 , A_=2 , )-> int: '''simple docstring''' UpperCamelCase = parent UpperCamelCase = batch_size UpperCamelCase = patch_size UpperCamelCase = max_length UpperCamelCase = num_mel_bins UpperCamelCase = is_training UpperCamelCase = use_labels UpperCamelCase = hidden_size UpperCamelCase = num_hidden_layers UpperCamelCase = num_attention_heads UpperCamelCase = intermediate_size UpperCamelCase = hidden_act UpperCamelCase = hidden_dropout_prob UpperCamelCase = attention_probs_dropout_prob UpperCamelCase = type_sequence_label_size UpperCamelCase = initializer_range UpperCamelCase = scope UpperCamelCase = frequency_stride UpperCamelCase = time_stride # in AST, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distillation tokens) UpperCamelCase = (self.num_mel_bins - self.patch_size) // self.frequency_stride + 1 UpperCamelCase = (self.max_length - self.patch_size) // self.time_stride + 1 UpperCamelCase = frequency_out_dimension * time_out_dimension UpperCamelCase = num_patches + 2 def UpperCAmelCase_ ( self )-> int: '''simple docstring''' UpperCamelCase = floats_tensor([self.batch_size, self.max_length, self.num_mel_bins] ) UpperCamelCase = None if self.use_labels: UpperCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCamelCase = self.get_config() return config, input_values, labels def UpperCAmelCase_ ( self )-> int: '''simple docstring''' return ASTConfig( patch_size=self.patch_size , max_length=self.max_length , num_mel_bins=self.num_mel_bins , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=A_ , initializer_range=self.initializer_range , frequency_stride=self.frequency_stride , time_stride=self.time_stride , ) def UpperCAmelCase_ ( self , A_ , A_ , A_ )-> Optional[int]: '''simple docstring''' UpperCamelCase = ASTModel(config=A_ ) model.to(A_ ) model.eval() UpperCamelCase = model(A_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCAmelCase_ ( self )-> Tuple: '''simple docstring''' UpperCamelCase = self.prepare_config_and_inputs() ( ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ) = config_and_inputs UpperCamelCase = {'input_values': input_values} return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE__ ( snake_case_ , snake_case_ , unittest.TestCase): lowerCAmelCase_ = ( ( ASTModel, ASTForAudioClassification, ) if is_torch_available() else () ) lowerCAmelCase_ = ( {"""audio-classification""": ASTForAudioClassification, """feature-extraction""": ASTModel} if is_torch_available() else {} ) lowerCAmelCase_ = False lowerCAmelCase_ = False lowerCAmelCase_ = False lowerCAmelCase_ = False def UpperCAmelCase_ ( self , A_ , A_ , A_ , A_ , A_ )-> Dict: '''simple docstring''' if pipeline_test_casse_name == "AudioClassificationPipelineTests": return True return False def UpperCAmelCase_ ( self )-> Dict: '''simple docstring''' UpperCamelCase = ASTModelTester(self ) UpperCamelCase = ConfigTester(self , config_class=A_ , has_text_modality=A_ , hidden_size=37 ) def UpperCAmelCase_ ( self )-> Any: '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason='AST does not use inputs_embeds' ) def UpperCAmelCase_ ( self )-> List[Any]: '''simple docstring''' pass def UpperCAmelCase_ ( self )-> Any: '''simple docstring''' UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase = model_class(A_ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) UpperCamelCase = model.get_output_embeddings() self.assertTrue(x is None or isinstance(A_ , nn.Linear ) ) def UpperCAmelCase_ ( self )-> Optional[Any]: '''simple docstring''' UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase = model_class(A_ ) UpperCamelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCamelCase = [*signature.parameters.keys()] UpperCamelCase = ['input_values'] self.assertListEqual(arg_names[:1] , A_ ) def UpperCAmelCase_ ( self )-> str: '''simple docstring''' UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A_ ) @slow def UpperCAmelCase_ ( self )-> Optional[Any]: '''simple docstring''' for model_name in AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCamelCase = ASTModel.from_pretrained(A_ ) self.assertIsNotNone(A_ ) def A_( ): UpperCamelCase = hf_hub_download( repo_id='nielsr/audio-spectogram-transformer-checkpoint' , filename='sample_audio.flac' , repo_type='dataset') UpperCamelCase , UpperCamelCase = torchaudio.load(A) return audio, sampling_rate @require_torch @require_torchaudio class SCREAMING_SNAKE_CASE__ ( unittest.TestCase): @cached_property def UpperCAmelCase_ ( self )-> str: '''simple docstring''' return ( ASTFeatureExtractor.from_pretrained('MIT/ast-finetuned-audioset-10-10-0.4593' ) if is_torchaudio_available() else None ) @slow def UpperCAmelCase_ ( self )-> List[str]: '''simple docstring''' UpperCamelCase = self.default_feature_extractor UpperCamelCase = ASTForAudioClassification.from_pretrained('MIT/ast-finetuned-audioset-10-10-0.4593' ).to(A_ ) UpperCamelCase = self.default_feature_extractor UpperCamelCase , UpperCamelCase = prepare_audio() UpperCamelCase = audio.squeeze().numpy() UpperCamelCase = feature_extractor(A_ , sampling_rate=A_ , return_tensors='pt' ).to(A_ ) # forward pass with torch.no_grad(): UpperCamelCase = model(**A_ ) # verify the logits UpperCamelCase = torch.Size((1, 527) ) self.assertEqual(outputs.logits.shape , A_ ) UpperCamelCase = torch.tensor([-0.8_760, -7.0_042, -8.6_602] ).to(A_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , A_ , atol=1e-4 ) )
251
1
'''simple docstring''' def a__ ( a__ = 10 , a__ = 10_00 , a__ = True ): """simple docstring""" assert ( isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) and isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) and isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) ), "Invalid type of value(s) specified to function!" if min_val > max_val: raise ValueError("""Invalid value for min_val or max_val (min_value < max_value)""" ) return min_val if option else max_val def a__ ( a__ , a__ ): """simple docstring""" return int((number_a + number_a) / 2 ) def a__ ( a__ , a__ , a__ ): """simple docstring""" assert ( isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) and isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) and isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) ), 'argument values must be type of "int"' if lower > higher: raise ValueError("""argument value for lower and higher must be(lower > higher)""" ) if not lower < to_guess < higher: raise ValueError( """guess value must be within the range of lower and higher value""" ) def answer(a__ ) -> str: if number > to_guess: return "high" elif number < to_guess: return "low" else: return "same" print("""started...""" ) __SCREAMING_SNAKE_CASE = lower __SCREAMING_SNAKE_CASE = higher __SCREAMING_SNAKE_CASE = [] while True: __SCREAMING_SNAKE_CASE = get_avg(lowerCAmelCase_ , lowerCAmelCase_ ) last_numbers.append(lowerCAmelCase_ ) if answer(lowerCAmelCase_ ) == "low": __SCREAMING_SNAKE_CASE = number elif answer(lowerCAmelCase_ ) == "high": __SCREAMING_SNAKE_CASE = number else: break print(F'guess the number : {last_numbers[-1]}' ) print(F'details : {last_numbers!s}' ) def a__ ( ): """simple docstring""" __SCREAMING_SNAKE_CASE = int(input("""Enter lower value : """ ).strip() ) __SCREAMING_SNAKE_CASE = int(input("""Enter high value : """ ).strip() ) __SCREAMING_SNAKE_CASE = int(input("""Enter value to guess : """ ).strip() ) guess_the_number(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) if __name__ == "__main__": main()
267
from collections import namedtuple import requests from lxml import html # type: ignore SCREAMING_SNAKE_CASE :Union[str, Any] = namedtuple('''covid_data''', '''cases deaths recovered''') def _lowerCAmelCase ( lowerCAmelCase_ :str = "https://www.worldometers.info/coronavirus/" )->covid_data: '''simple docstring''' snake_case_ = "//div[@class = \"maincounter-number\"]/span/text()" return covid_data(*html.fromstring(requests.get(lowerCAmelCase_ ).content ).xpath(lowerCAmelCase_ ) ) SCREAMING_SNAKE_CASE :str = '''Total COVID-19 cases in the world: {} Total deaths due to COVID-19 in the world: {} Total COVID-19 patients recovered in the world: {}''' print(fmt.format(*covid_stats()))
159
0
"""simple docstring""" from __future__ import annotations class __lowercase : '''simple docstring''' def __init__( self , _UpperCAmelCase = 0 ): __a : Dict = key def _lowerCamelCase ( self , _UpperCAmelCase , _UpperCAmelCase ): assert isinstance(_lowerCamelCase , _lowerCamelCase ) and isinstance(_lowerCamelCase , _lowerCamelCase ) __a : Union[str, Any] = key or self.__key or 1 # make sure key is an appropriate size key %= 255 return [chr(ord(_lowerCamelCase ) ^ key ) for ch in content] def _lowerCamelCase ( self , _UpperCAmelCase , _UpperCAmelCase ): assert isinstance(_lowerCamelCase , _lowerCamelCase ) and isinstance(_lowerCamelCase , _lowerCamelCase ) __a : Dict = key or self.__key or 1 # make sure key is an appropriate size key %= 255 return [chr(ord(_lowerCamelCase ) ^ key ) for ch in content] def _lowerCamelCase ( self , _UpperCAmelCase , _UpperCAmelCase = 0 ): assert isinstance(_lowerCamelCase , _lowerCamelCase ) and isinstance(_lowerCamelCase , _lowerCamelCase ) __a : Tuple = key or self.__key or 1 # make sure key can be any size while key > 255: key -= 255 # This will be returned __a : str = '''''' for ch in content: ans += chr(ord(_lowerCamelCase ) ^ key ) return ans def _lowerCamelCase ( self , _UpperCAmelCase , _UpperCAmelCase = 0 ): assert isinstance(_lowerCamelCase , _lowerCamelCase ) and isinstance(_lowerCamelCase , _lowerCamelCase ) __a : int = key or self.__key or 1 # make sure key can be any size while key > 255: key -= 255 # This will be returned __a : List[str] = '''''' for ch in content: ans += chr(ord(_lowerCamelCase ) ^ key ) return ans def _lowerCamelCase ( self , _UpperCAmelCase , _UpperCAmelCase = 0 ): assert isinstance(_lowerCamelCase , _lowerCamelCase ) and isinstance(_lowerCamelCase , _lowerCamelCase ) try: with open(_lowerCamelCase ) as fin, open('''encrypt.out''' , '''w+''' ) as fout: # actual encrypt-process for line in fin: fout.write(self.encrypt_string(_lowerCamelCase , _lowerCamelCase ) ) except OSError: return False return True def _lowerCamelCase ( self , _UpperCAmelCase , _UpperCAmelCase ): assert isinstance(_lowerCamelCase , _lowerCamelCase ) and isinstance(_lowerCamelCase , _lowerCamelCase ) try: with open(_lowerCamelCase ) as fin, open('''decrypt.out''' , '''w+''' ) as fout: # actual encrypt-process for line in fin: fout.write(self.decrypt_string(_lowerCamelCase , _lowerCamelCase ) ) except OSError: return False return True # Tests # crypt = XORCipher() # key = 67 # # test encrypt # print(crypt.encrypt("hallo welt",key)) # # test decrypt # print(crypt.decrypt(crypt.encrypt("hallo welt",key), key)) # # test encrypt_string # print(crypt.encrypt_string("hallo welt",key)) # # test decrypt_string # print(crypt.decrypt_string(crypt.encrypt_string("hallo welt",key),key)) # if (crypt.encrypt_file("test.txt",key)): # print("encrypt successful") # else: # print("encrypt unsuccessful") # if (crypt.decrypt_file("encrypt.out",key)): # print("decrypt successful") # else: # print("decrypt unsuccessful")
368
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available A = { '''configuration_mvp''': ['''MVP_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MvpConfig''', '''MvpOnnxConfig'''], '''tokenization_mvp''': ['''MvpTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A = ['''MvpTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A = [ '''MVP_PRETRAINED_MODEL_ARCHIVE_LIST''', '''MvpForCausalLM''', '''MvpForConditionalGeneration''', '''MvpForQuestionAnswering''', '''MvpForSequenceClassification''', '''MvpModel''', '''MvpPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_mvp import MVP_PRETRAINED_CONFIG_ARCHIVE_MAP, MvpConfig, MvpOnnxConfig from .tokenization_mvp import MvpTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mvp_fast import MvpTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mvp import ( MVP_PRETRAINED_MODEL_ARCHIVE_LIST, MvpForCausalLM, MvpForConditionalGeneration, MvpForQuestionAnswering, MvpForSequenceClassification, MvpModel, MvpPreTrainedModel, ) else: import sys A = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
188
0
from typing import Optional, Union import torch from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...modeling_outputs import BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention from ...modeling_utils import PreTrainedModel from ...utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging from .configuration_mobilenet_va import MobileNetVaConfig __A =logging.get_logger(__name__) # General docstring __A ='''MobileNetV1Config''' # Base docstring __A ='''google/mobilenet_v1_1.0_224''' __A =[1, 1_0_2_4, 7, 7] # Image classification docstring __A ='''google/mobilenet_v1_1.0_224''' __A ='''tabby, tabby cat''' __A =[ '''google/mobilenet_v1_1.0_224''', '''google/mobilenet_v1_0.75_192''', # See all MobileNetV1 models at https://huggingface.co/models?filter=mobilenet_v1 ] def lowerCamelCase_ ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__=None ): lowerCamelCase_ = {} if isinstance(lowerCamelCase__ , lowerCamelCase__ ): lowerCamelCase_ = model.mobilenet_va else: lowerCamelCase_ = model lowerCamelCase_ = "MobilenetV1/Conv2d_0/" lowerCamelCase_ = backbone.conv_stem.convolution.weight lowerCamelCase_ = backbone.conv_stem.normalization.bias lowerCamelCase_ = backbone.conv_stem.normalization.weight lowerCamelCase_ = backbone.conv_stem.normalization.running_mean lowerCamelCase_ = backbone.conv_stem.normalization.running_var for i in range(1_3 ): lowerCamelCase_ = i + 1 lowerCamelCase_ = i * 2 lowerCamelCase_ = backbone.layer[pt_index] lowerCamelCase_ = F'MobilenetV1/Conv2d_{tf_index}_depthwise/' lowerCamelCase_ = pointer.convolution.weight lowerCamelCase_ = pointer.normalization.bias lowerCamelCase_ = pointer.normalization.weight lowerCamelCase_ = pointer.normalization.running_mean lowerCamelCase_ = pointer.normalization.running_var lowerCamelCase_ = backbone.layer[pt_index + 1] lowerCamelCase_ = F'MobilenetV1/Conv2d_{tf_index}_pointwise/' lowerCamelCase_ = pointer.convolution.weight lowerCamelCase_ = pointer.normalization.bias lowerCamelCase_ = pointer.normalization.weight lowerCamelCase_ = pointer.normalization.running_mean lowerCamelCase_ = pointer.normalization.running_var if isinstance(lowerCamelCase__ , lowerCamelCase__ ): lowerCamelCase_ = "MobilenetV1/Logits/Conv2d_1c_1x1/" lowerCamelCase_ = model.classifier.weight lowerCamelCase_ = model.classifier.bias return tf_to_pt_map def lowerCamelCase_ ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): try: import numpy as np import tensorflow as tf except ImportError: logger.error( "Loading a TensorFlow models in PyTorch, requires TensorFlow to be installed. Please see " "https://www.tensorflow.org/install/ for installation instructions." ) raise # Load weights from TF model lowerCamelCase_ = tf.train.list_variables(lowerCamelCase__ ) lowerCamelCase_ = {} for name, shape in init_vars: logger.info(F'Loading TF weight {name} with shape {shape}' ) lowerCamelCase_ = tf.train.load_variable(lowerCamelCase__ , lowerCamelCase__ ) lowerCamelCase_ = array # Build TF to PyTorch weights loading map lowerCamelCase_ = _build_tf_to_pytorch_map(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) for name, pointer in tf_to_pt_map.items(): logger.info(F'Importing {name}' ) if name not in tf_weights: logger.info(F'{name} not in tf pre-trained weights, skipping' ) continue lowerCamelCase_ = tf_weights[name] if "depthwise_weights" in name: logger.info("Transposing depthwise" ) lowerCamelCase_ = np.transpose(lowerCamelCase__ , (2, 3, 0, 1) ) elif "weights" in name: logger.info("Transposing" ) if len(pointer.shape ) == 2: # copying into linear layer lowerCamelCase_ = array.squeeze().transpose() else: lowerCamelCase_ = np.transpose(lowerCamelCase__ , (3, 2, 0, 1) ) if pointer.shape != array.shape: raise ValueError(F'Pointer shape {pointer.shape} and array shape {array.shape} mismatched' ) logger.info(F'Initialize PyTorch weight {name} {array.shape}' ) lowerCamelCase_ = torch.from_numpy(lowerCamelCase__ ) tf_weights.pop(lowerCamelCase__ , lowerCamelCase__ ) tf_weights.pop(name + "/RMSProp" , lowerCamelCase__ ) tf_weights.pop(name + "/RMSProp_1" , lowerCamelCase__ ) tf_weights.pop(name + "/ExponentialMovingAverage" , lowerCamelCase__ ) logger.info(F'Weights not copied to PyTorch model: {", ".join(tf_weights.keys() )}' ) return model def lowerCamelCase_ ( lowerCamelCase__ , lowerCamelCase__ ): lowerCamelCase_ , lowerCamelCase_ = features.shape[-2:] lowerCamelCase_ , lowerCamelCase_ = conv_layer.stride lowerCamelCase_ , lowerCamelCase_ = conv_layer.kernel_size if in_height % stride_height == 0: lowerCamelCase_ = max(kernel_height - stride_height , 0 ) else: lowerCamelCase_ = max(kernel_height - (in_height % stride_height) , 0 ) if in_width % stride_width == 0: lowerCamelCase_ = max(kernel_width - stride_width , 0 ) else: lowerCamelCase_ = max(kernel_width - (in_width % stride_width) , 0 ) lowerCamelCase_ = pad_along_width // 2 lowerCamelCase_ = pad_along_width - pad_left lowerCamelCase_ = pad_along_height // 2 lowerCamelCase_ = pad_along_height - pad_top lowerCamelCase_ = (pad_left, pad_right, pad_top, pad_bottom) return nn.functional.pad(lowerCamelCase__ , lowerCamelCase__ , "constant" , 0.0 ) class _SCREAMING_SNAKE_CASE ( nn.Module ): def __init__( self , lowercase , lowercase , lowercase , lowercase , lowercase = 1 , lowercase = 1 , lowercase = False , lowercase = True , lowercase = True , ) -> None: super().__init__() lowerCamelCase_ = config if in_channels % groups != 0: raise ValueError(f'Input channels ({in_channels}) are not divisible by {groups} groups.' ) if out_channels % groups != 0: raise ValueError(f'Output channels ({out_channels}) are not divisible by {groups} groups.' ) lowerCamelCase_ = 0 if config.tf_padding else int((kernel_size - 1) / 2 ) lowerCamelCase_ = nn.Convad( in_channels=lowercase , out_channels=lowercase , kernel_size=lowercase , stride=lowercase , padding=lowercase , groups=lowercase , bias=lowercase , padding_mode="zeros" , ) if use_normalization: lowerCamelCase_ = nn.BatchNormad( num_features=lowercase , eps=config.layer_norm_eps , momentum=0.9_9_9_7 , affine=lowercase , track_running_stats=lowercase , ) else: lowerCamelCase_ = None if use_activation: if isinstance(lowercase , lowercase ): lowerCamelCase_ = ACTaFN[use_activation] elif isinstance(config.hidden_act , lowercase ): lowerCamelCase_ = ACTaFN[config.hidden_act] else: lowerCamelCase_ = config.hidden_act else: lowerCamelCase_ = None def SCREAMING_SNAKE_CASE_( self , lowercase ) -> torch.Tensor: if self.config.tf_padding: lowerCamelCase_ = apply_tf_padding(lowercase , self.convolution ) lowerCamelCase_ = self.convolution(lowercase ) if self.normalization is not None: lowerCamelCase_ = self.normalization(lowercase ) if self.activation is not None: lowerCamelCase_ = self.activation(lowercase ) return features class _SCREAMING_SNAKE_CASE ( snake_case_ ): lowerCAmelCase__ = MobileNetVaConfig lowerCAmelCase__ = load_tf_weights_in_mobilenet_va lowerCAmelCase__ = 'mobilenet_v1' lowerCAmelCase__ = 'pixel_values' lowerCAmelCase__ = False def SCREAMING_SNAKE_CASE_( self , lowercase ) -> None: if isinstance(lowercase , (nn.Linear, nn.Convad) ): module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() elif isinstance(lowercase , nn.BatchNormad ): module.bias.data.zero_() module.weight.data.fill_(1.0 ) __A =R''' This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`MobileNetV1Config`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. ''' __A =R''' Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`MobileNetV1ImageProcessor.__call__`] for details. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. ''' @add_start_docstrings( 'The bare MobileNetV1 model outputting raw hidden-states without any specific head on top.' , snake_case_ , ) class _SCREAMING_SNAKE_CASE ( snake_case_ ): def __init__( self , lowercase , lowercase = True ) -> Optional[Any]: super().__init__(lowercase ) lowerCamelCase_ = config lowerCamelCase_ = 32 lowerCamelCase_ = max(int(depth * config.depth_multiplier ) , config.min_depth ) lowerCamelCase_ = MobileNetVaConvLayer( lowercase , in_channels=config.num_channels , out_channels=lowercase , kernel_size=3 , stride=2 , ) lowerCamelCase_ = [1, 2, 1, 2, 1, 2, 1, 1, 1, 1, 1, 2, 1] lowerCamelCase_ = nn.ModuleList() for i in range(13 ): lowerCamelCase_ = out_channels if strides[i] == 2 or i == 0: depth *= 2 lowerCamelCase_ = max(int(depth * config.depth_multiplier ) , config.min_depth ) self.layer.append( MobileNetVaConvLayer( lowercase , in_channels=lowercase , out_channels=lowercase , kernel_size=3 , stride=strides[i] , groups=lowercase , ) ) self.layer.append( MobileNetVaConvLayer( lowercase , in_channels=lowercase , out_channels=lowercase , kernel_size=1 , ) ) lowerCamelCase_ = nn.AdaptiveAvgPoolad((1, 1) ) if add_pooling_layer else None # Initialize weights and apply final processing self.post_init() def SCREAMING_SNAKE_CASE_( self , lowercase ) -> Optional[int]: raise NotImplementedError @add_start_docstrings_to_model_forward(lowercase ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=lowercase , config_class=_CONFIG_FOR_DOC , modality="vision" , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def SCREAMING_SNAKE_CASE_( self , lowercase = None , lowercase = None , lowercase = None , ) -> Union[tuple, BaseModelOutputWithPoolingAndNoAttention]: lowerCamelCase_ = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) lowerCamelCase_ = return_dict if return_dict is not None else self.config.use_return_dict if pixel_values is None: raise ValueError("You have to specify pixel_values" ) lowerCamelCase_ = self.conv_stem(lowercase ) lowerCamelCase_ = () if output_hidden_states else None for i, layer_module in enumerate(self.layer ): lowerCamelCase_ = layer_module(lowercase ) if output_hidden_states: lowerCamelCase_ = all_hidden_states + (hidden_states,) lowerCamelCase_ = hidden_states if self.pooler is not None: lowerCamelCase_ = torch.flatten(self.pooler(lowercase ) , start_dim=1 ) else: lowerCamelCase_ = None if not return_dict: return tuple(v for v in [last_hidden_state, pooled_output, all_hidden_states] if v is not None ) return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=lowercase , pooler_output=lowercase , hidden_states=lowercase , ) @add_start_docstrings( '\n MobileNetV1 model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n ' , snake_case_ , ) class _SCREAMING_SNAKE_CASE ( snake_case_ ): def __init__( self , lowercase ) -> None: super().__init__(lowercase ) lowerCamelCase_ = config.num_labels lowerCamelCase_ = MobileNetVaModel(lowercase ) lowerCamelCase_ = self.mobilenet_va.layer[-1].convolution.out_channels # Classifier head lowerCamelCase_ = nn.Dropout(config.classifier_dropout_prob , inplace=lowercase ) lowerCamelCase_ = nn.Linear(lowercase , config.num_labels ) if config.num_labels > 0 else nn.Identity() # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(lowercase ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=lowercase , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def SCREAMING_SNAKE_CASE_( self , lowercase = None , lowercase = None , lowercase = None , lowercase = None , ) -> Union[tuple, ImageClassifierOutputWithNoAttention]: lowerCamelCase_ = return_dict if return_dict is not None else self.config.use_return_dict lowerCamelCase_ = self.mobilenet_va(lowercase , output_hidden_states=lowercase , return_dict=lowercase ) lowerCamelCase_ = outputs.pooler_output if return_dict else outputs[1] lowerCamelCase_ = self.classifier(self.dropout(lowercase ) ) lowerCamelCase_ = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: lowerCamelCase_ = "regression" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): lowerCamelCase_ = "single_label_classification" else: lowerCamelCase_ = "multi_label_classification" if self.config.problem_type == "regression": lowerCamelCase_ = MSELoss() if self.num_labels == 1: lowerCamelCase_ = loss_fct(logits.squeeze() , labels.squeeze() ) else: lowerCamelCase_ = loss_fct(lowercase , lowercase ) elif self.config.problem_type == "single_label_classification": lowerCamelCase_ = CrossEntropyLoss() lowerCamelCase_ = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": lowerCamelCase_ = BCEWithLogitsLoss() lowerCamelCase_ = loss_fct(lowercase , lowercase ) if not return_dict: lowerCamelCase_ = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return ImageClassifierOutputWithNoAttention( loss=lowercase , logits=lowercase , hidden_states=outputs.hidden_states , )
19
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __A ={'''configuration_wavlm''': ['''WAVLM_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''WavLMConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A =[ '''WAVLM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''WavLMForAudioFrameClassification''', '''WavLMForCTC''', '''WavLMForSequenceClassification''', '''WavLMForXVector''', '''WavLMModel''', '''WavLMPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_wavlm import WAVLM_PRETRAINED_CONFIG_ARCHIVE_MAP, WavLMConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_wavlm import ( WAVLM_PRETRAINED_MODEL_ARCHIVE_LIST, WavLMForAudioFrameClassification, WavLMForCTC, WavLMForSequenceClassification, WavLMForXVector, WavLMModel, WavLMPreTrainedModel, ) else: import sys __A =_LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
19
1
'''simple docstring''' import argparse import json import torch from diffusers import DDPMScheduler, LDMPipeline, UNetaDModel, VQModel def A_( A : List[str] , A : Dict=1): if n_shave_prefix_segments >= 0: return ".".join(path.split('.')[n_shave_prefix_segments:]) else: return ".".join(path.split('.')[:n_shave_prefix_segments]) def A_( A : Tuple , A : Dict=0): UpperCamelCase = [] for old_item in old_list: UpperCamelCase = old_item.replace('in_layers.0' , 'norm1') UpperCamelCase = new_item.replace('in_layers.2' , 'conv1') UpperCamelCase = new_item.replace('out_layers.0' , 'norm2') UpperCamelCase = new_item.replace('out_layers.3' , 'conv2') UpperCamelCase = new_item.replace('emb_layers.1' , 'time_emb_proj') UpperCamelCase = new_item.replace('skip_connection' , 'conv_shortcut') UpperCamelCase = shave_segments(A , n_shave_prefix_segments=A) mapping.append({'old': old_item, 'new': new_item}) return mapping def A_( A : Optional[int] , A : Tuple=0): UpperCamelCase = [] for old_item in old_list: UpperCamelCase = old_item UpperCamelCase = new_item.replace('norm.weight' , 'group_norm.weight') UpperCamelCase = new_item.replace('norm.bias' , 'group_norm.bias') UpperCamelCase = new_item.replace('proj_out.weight' , 'proj_attn.weight') UpperCamelCase = new_item.replace('proj_out.bias' , 'proj_attn.bias') UpperCamelCase = shave_segments(A , n_shave_prefix_segments=A) mapping.append({'old': old_item, 'new': new_item}) return mapping def A_( A : Tuple , A : List[str] , A : int , A : int=None , A : List[Any]=None , A : Optional[Any]=None): assert isinstance(A , A), "Paths should be a list of dicts containing 'old' and 'new' keys." # Splits the attention layers into three variables. if attention_paths_to_split is not None: for path, path_map in attention_paths_to_split.items(): UpperCamelCase = old_checkpoint[path] UpperCamelCase = old_tensor.shape[0] // 3 UpperCamelCase = (-1, channels) if len(old_tensor.shape) == 3 else (-1) UpperCamelCase = old_tensor.shape[0] // config['num_head_channels'] // 3 UpperCamelCase = old_tensor.reshape((num_heads, 3 * channels // num_heads) + old_tensor.shape[1:]) UpperCamelCase , UpperCamelCase , UpperCamelCase = old_tensor.split(channels // num_heads , dim=1) UpperCamelCase = query.reshape(A) UpperCamelCase = key.reshape(A) UpperCamelCase = value.reshape(A) for path in paths: UpperCamelCase = path['new'] # These have already been assigned if attention_paths_to_split is not None and new_path in attention_paths_to_split: continue # Global renaming happens here UpperCamelCase = new_path.replace('middle_block.0' , 'mid_block.resnets.0') UpperCamelCase = new_path.replace('middle_block.1' , 'mid_block.attentions.0') UpperCamelCase = new_path.replace('middle_block.2' , 'mid_block.resnets.1') if additional_replacements is not None: for replacement in additional_replacements: UpperCamelCase = new_path.replace(replacement['old'] , replacement['new']) # proj_attn.weight has to be converted from conv 1D to linear if "proj_attn.weight" in new_path: UpperCamelCase = old_checkpoint[path['old']][:, :, 0] else: UpperCamelCase = old_checkpoint[path['old']] def A_( A : Any , A : Tuple): UpperCamelCase = {} UpperCamelCase = checkpoint['time_embed.0.weight'] UpperCamelCase = checkpoint['time_embed.0.bias'] UpperCamelCase = checkpoint['time_embed.2.weight'] UpperCamelCase = checkpoint['time_embed.2.bias'] UpperCamelCase = checkpoint['input_blocks.0.0.weight'] UpperCamelCase = checkpoint['input_blocks.0.0.bias'] UpperCamelCase = checkpoint['out.0.weight'] UpperCamelCase = checkpoint['out.0.bias'] UpperCamelCase = checkpoint['out.2.weight'] UpperCamelCase = checkpoint['out.2.bias'] # Retrieves the keys for the input blocks only UpperCamelCase = len({'.'.join(layer.split('.')[:2]) for layer in checkpoint if 'input_blocks' in layer}) UpperCamelCase = { layer_id: [key for key in checkpoint if f'''input_blocks.{layer_id}''' in key] for layer_id in range(A) } # Retrieves the keys for the middle blocks only UpperCamelCase = len({'.'.join(layer.split('.')[:2]) for layer in checkpoint if 'middle_block' in layer}) UpperCamelCase = { layer_id: [key for key in checkpoint if f'''middle_block.{layer_id}''' in key] for layer_id in range(A) } # Retrieves the keys for the output blocks only UpperCamelCase = len({'.'.join(layer.split('.')[:2]) for layer in checkpoint if 'output_blocks' in layer}) UpperCamelCase = { layer_id: [key for key in checkpoint if f'''output_blocks.{layer_id}''' in key] for layer_id in range(A) } for i in range(1 , A): UpperCamelCase = (i - 1) // (config['num_res_blocks'] + 1) UpperCamelCase = (i - 1) % (config['num_res_blocks'] + 1) UpperCamelCase = [key for key in input_blocks[i] if f'''input_blocks.{i}.0''' in key] UpperCamelCase = [key for key in input_blocks[i] if f'''input_blocks.{i}.1''' in key] if f'''input_blocks.{i}.0.op.weight''' in checkpoint: UpperCamelCase = checkpoint[ f'''input_blocks.{i}.0.op.weight''' ] UpperCamelCase = checkpoint[ f'''input_blocks.{i}.0.op.bias''' ] continue UpperCamelCase = renew_resnet_paths(A) UpperCamelCase = {'old': f'''input_blocks.{i}.0''', 'new': f'''down_blocks.{block_id}.resnets.{layer_in_block_id}'''} UpperCamelCase = {'old': 'resnets.2.op', 'new': 'downsamplers.0.op'} assign_to_checkpoint( A , A , A , additional_replacements=[meta_path, resnet_op] , config=A) if len(A): UpperCamelCase = renew_attention_paths(A) UpperCamelCase = { 'old': f'''input_blocks.{i}.1''', 'new': f'''down_blocks.{block_id}.attentions.{layer_in_block_id}''', } UpperCamelCase = { f'''input_blocks.{i}.1.qkv.bias''': { 'key': f'''down_blocks.{block_id}.attentions.{layer_in_block_id}.key.bias''', 'query': f'''down_blocks.{block_id}.attentions.{layer_in_block_id}.query.bias''', 'value': f'''down_blocks.{block_id}.attentions.{layer_in_block_id}.value.bias''', }, f'''input_blocks.{i}.1.qkv.weight''': { 'key': f'''down_blocks.{block_id}.attentions.{layer_in_block_id}.key.weight''', 'query': f'''down_blocks.{block_id}.attentions.{layer_in_block_id}.query.weight''', 'value': f'''down_blocks.{block_id}.attentions.{layer_in_block_id}.value.weight''', }, } assign_to_checkpoint( A , A , A , additional_replacements=[meta_path] , attention_paths_to_split=A , config=A , ) UpperCamelCase = middle_blocks[0] UpperCamelCase = middle_blocks[1] UpperCamelCase = middle_blocks[2] UpperCamelCase = renew_resnet_paths(A) assign_to_checkpoint(A , A , A , config=A) UpperCamelCase = renew_resnet_paths(A) assign_to_checkpoint(A , A , A , config=A) UpperCamelCase = renew_attention_paths(A) UpperCamelCase = { 'middle_block.1.qkv.bias': { 'key': 'mid_block.attentions.0.key.bias', 'query': 'mid_block.attentions.0.query.bias', 'value': 'mid_block.attentions.0.value.bias', }, 'middle_block.1.qkv.weight': { 'key': 'mid_block.attentions.0.key.weight', 'query': 'mid_block.attentions.0.query.weight', 'value': 'mid_block.attentions.0.value.weight', }, } assign_to_checkpoint( A , A , A , attention_paths_to_split=A , config=A) for i in range(A): UpperCamelCase = i // (config['num_res_blocks'] + 1) UpperCamelCase = i % (config['num_res_blocks'] + 1) UpperCamelCase = [shave_segments(A , 2) for name in output_blocks[i]] UpperCamelCase = {} for layer in output_block_layers: UpperCamelCase , UpperCamelCase = layer.split('.')[0], shave_segments(A , 1) if layer_id in output_block_list: output_block_list[layer_id].append(A) else: UpperCamelCase = [layer_name] if len(A) > 1: UpperCamelCase = [key for key in output_blocks[i] if f'''output_blocks.{i}.0''' in key] UpperCamelCase = [key for key in output_blocks[i] if f'''output_blocks.{i}.1''' in key] UpperCamelCase = renew_resnet_paths(A) UpperCamelCase = renew_resnet_paths(A) UpperCamelCase = {'old': f'''output_blocks.{i}.0''', 'new': f'''up_blocks.{block_id}.resnets.{layer_in_block_id}'''} assign_to_checkpoint(A , A , A , additional_replacements=[meta_path] , config=A) if ["conv.weight", "conv.bias"] in output_block_list.values(): UpperCamelCase = list(output_block_list.values()).index(['conv.weight', 'conv.bias']) UpperCamelCase = checkpoint[ f'''output_blocks.{i}.{index}.conv.weight''' ] UpperCamelCase = checkpoint[ f'''output_blocks.{i}.{index}.conv.bias''' ] # Clear attentions as they have been attributed above. if len(A) == 2: UpperCamelCase = [] if len(A): UpperCamelCase = renew_attention_paths(A) UpperCamelCase = { 'old': f'''output_blocks.{i}.1''', 'new': f'''up_blocks.{block_id}.attentions.{layer_in_block_id}''', } UpperCamelCase = { f'''output_blocks.{i}.1.qkv.bias''': { 'key': f'''up_blocks.{block_id}.attentions.{layer_in_block_id}.key.bias''', 'query': f'''up_blocks.{block_id}.attentions.{layer_in_block_id}.query.bias''', 'value': f'''up_blocks.{block_id}.attentions.{layer_in_block_id}.value.bias''', }, f'''output_blocks.{i}.1.qkv.weight''': { 'key': f'''up_blocks.{block_id}.attentions.{layer_in_block_id}.key.weight''', 'query': f'''up_blocks.{block_id}.attentions.{layer_in_block_id}.query.weight''', 'value': f'''up_blocks.{block_id}.attentions.{layer_in_block_id}.value.weight''', }, } assign_to_checkpoint( A , A , A , additional_replacements=[meta_path] , attention_paths_to_split=to_split if any('qkv' in key for key in attentions) else None , config=A , ) else: UpperCamelCase = renew_resnet_paths(A , n_shave_prefix_segments=1) for path in resnet_0_paths: UpperCamelCase = '.'.join(['output_blocks', str(A), path['old']]) UpperCamelCase = '.'.join(['up_blocks', str(A), 'resnets', str(A), path['new']]) UpperCamelCase = checkpoint[old_path] return new_checkpoint if __name__ == "__main__": lowerCAmelCase : Optional[int] = argparse.ArgumentParser() parser.add_argument( '--checkpoint_path', default=None, type=str, required=True, help='Path to the checkpoint to convert.' ) parser.add_argument( '--config_file', default=None, type=str, required=True, help='The config json file corresponding to the architecture.', ) parser.add_argument('--dump_path', default=None, type=str, required=True, help='Path to the output model.') lowerCAmelCase : List[Any] = parser.parse_args() lowerCAmelCase : Any = torch.load(args.checkpoint_path) with open(args.config_file) as f: lowerCAmelCase : Dict = json.loads(f.read()) lowerCAmelCase : Tuple = convert_ldm_checkpoint(checkpoint, config) if "ldm" in config: del config["ldm"] lowerCAmelCase : str = UNetaDModel(**config) model.load_state_dict(converted_checkpoint) try: lowerCAmelCase : Tuple = DDPMScheduler.from_config('/'.join(args.checkpoint_path.split('/')[:-1])) lowerCAmelCase : List[Any] = VQModel.from_pretrained('/'.join(args.checkpoint_path.split('/')[:-1])) lowerCAmelCase : Any = LDMPipeline(unet=model, scheduler=scheduler, vae=vqvae) pipe.save_pretrained(args.dump_path) except: # noqa: E722 model.save_pretrained(args.dump_path)
361
'''simple docstring''' from __future__ import annotations import unittest from transformers import BlenderbotConfig, BlenderbotTokenizer, is_tf_available from transformers.testing_utils import require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFBlenderbotForConditionalGeneration, TFBlenderbotModel @require_tf class SCREAMING_SNAKE_CASE__ : lowerCAmelCase_ = BlenderbotConfig lowerCAmelCase_ = {} lowerCAmelCase_ = """gelu""" def __init__( self , A_ , A_=13 , A_=7 , A_=True , A_=False , A_=99 , A_=32 , A_=2 , A_=4 , A_=37 , A_=0.1 , A_=0.1 , A_=20 , A_=2 , A_=1 , A_=0 , )-> List[Any]: '''simple docstring''' UpperCamelCase = parent UpperCamelCase = batch_size UpperCamelCase = seq_length UpperCamelCase = is_training UpperCamelCase = use_labels UpperCamelCase = vocab_size UpperCamelCase = hidden_size UpperCamelCase = num_hidden_layers UpperCamelCase = num_attention_heads UpperCamelCase = intermediate_size UpperCamelCase = hidden_dropout_prob UpperCamelCase = attention_probs_dropout_prob UpperCamelCase = max_position_embeddings UpperCamelCase = eos_token_id UpperCamelCase = pad_token_id UpperCamelCase = bos_token_id def UpperCAmelCase_ ( self )-> Tuple: '''simple docstring''' UpperCamelCase = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) UpperCamelCase = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) UpperCamelCase = tf.concat([input_ids, eos_tensor] , axis=1 ) UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCamelCase = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) UpperCamelCase = prepare_blenderbot_inputs_dict(A_ , A_ , A_ ) return config, inputs_dict def UpperCAmelCase_ ( self , A_ , A_ )-> int: '''simple docstring''' UpperCamelCase = TFBlenderbotModel(config=A_ ).get_decoder() UpperCamelCase = inputs_dict['input_ids'] UpperCamelCase = input_ids[:1, :] UpperCamelCase = inputs_dict['attention_mask'][:1, :] UpperCamelCase = inputs_dict['head_mask'] UpperCamelCase = 1 # first forward pass UpperCamelCase = model(A_ , attention_mask=A_ , head_mask=A_ , use_cache=A_ ) UpperCamelCase , UpperCamelCase = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids UpperCamelCase = ids_tensor((self.batch_size, 3) , config.vocab_size ) UpperCamelCase = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and UpperCamelCase = tf.concat([input_ids, next_tokens] , axis=-1 ) UpperCamelCase = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) UpperCamelCase = model(A_ , attention_mask=A_ )[0] UpperCamelCase = model(A_ , attention_mask=A_ , past_key_values=A_ )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice UpperCamelCase = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) UpperCamelCase = output_from_no_past[:, -3:, random_slice_idx] UpperCamelCase = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(A_ , A_ , rtol=1e-3 ) def A_( A : List[Any] , A : Tuple , A : Optional[Any] , A : List[str]=None , A : str=None , A : List[Any]=None , A : Dict=None , A : Any=None , ): if attention_mask is None: UpperCamelCase = tf.cast(tf.math.not_equal(A , config.pad_token_id) , tf.inta) if decoder_attention_mask is None: UpperCamelCase = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id) , tf.inta), ] , axis=-1 , ) if head_mask is None: UpperCamelCase = tf.ones((config.encoder_layers, config.encoder_attention_heads)) if decoder_head_mask is None: UpperCamelCase = tf.ones((config.decoder_layers, config.decoder_attention_heads)) if cross_attn_head_mask is None: UpperCamelCase = tf.ones((config.decoder_layers, config.decoder_attention_heads)) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class SCREAMING_SNAKE_CASE__ ( snake_case_ , snake_case_ , unittest.TestCase): lowerCAmelCase_ = (TFBlenderbotForConditionalGeneration, TFBlenderbotModel) if is_tf_available() else () lowerCAmelCase_ = (TFBlenderbotForConditionalGeneration,) if is_tf_available() else () lowerCAmelCase_ = ( { """conversational""": TFBlenderbotForConditionalGeneration, """feature-extraction""": TFBlenderbotModel, """summarization""": TFBlenderbotForConditionalGeneration, """text2text-generation""": TFBlenderbotForConditionalGeneration, """translation""": TFBlenderbotForConditionalGeneration, } if is_tf_available() else {} ) lowerCAmelCase_ = True lowerCAmelCase_ = False lowerCAmelCase_ = False def UpperCAmelCase_ ( self )-> List[Any]: '''simple docstring''' UpperCamelCase = TFBlenderbotModelTester(self ) UpperCamelCase = ConfigTester(self , config_class=A_ ) def UpperCAmelCase_ ( self )-> Dict: '''simple docstring''' self.config_tester.run_common_tests() def UpperCAmelCase_ ( self )-> List[Any]: '''simple docstring''' UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*A_ ) @require_tokenizers @require_tf class SCREAMING_SNAKE_CASE__ ( unittest.TestCase): lowerCAmelCase_ = ["""My friends are cool but they eat too many carbs."""] lowerCAmelCase_ = """facebook/blenderbot-400M-distill""" @cached_property def UpperCAmelCase_ ( self )-> List[str]: '''simple docstring''' return BlenderbotTokenizer.from_pretrained(self.model_name ) @cached_property def UpperCAmelCase_ ( self )-> Any: '''simple docstring''' UpperCamelCase = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model @slow def UpperCAmelCase_ ( self )-> Optional[Any]: '''simple docstring''' UpperCamelCase = self.tokenizer(self.src_text , return_tensors='tf' ) UpperCamelCase = self.model.generate( model_inputs.input_ids , ) UpperCamelCase = self.tokenizer.batch_decode(generated_ids.numpy() , skip_special_tokens=A_ )[0] assert ( generated_words == " That's unfortunate. Are they trying to lose weight or are they just trying to be healthier?" )
251
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __lowerCAmelCase = { """configuration_time_series_transformer""": [ """TIME_SERIES_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """TimeSeriesTransformerConfig""", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase = [ """TIME_SERIES_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """TimeSeriesTransformerForPrediction""", """TimeSeriesTransformerModel""", """TimeSeriesTransformerPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_time_series_transformer import ( TIME_SERIES_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TimeSeriesTransformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_time_series_transformer import ( TIME_SERIES_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TimeSeriesTransformerForPrediction, TimeSeriesTransformerModel, TimeSeriesTransformerPreTrainedModel, ) else: import sys __lowerCAmelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
271
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_rembert import RemBertTokenizer else: __A = None __A = logging.get_logger(__name__) __A = {"vocab_file": "sentencepiece.model", "tokenizer_file": "tokenizer.json"} __A = { "vocab_file": { "google/rembert": "https://huggingface.co/google/rembert/resolve/main/sentencepiece.model", }, "tokenizer_file": { "google/rembert": "https://huggingface.co/google/rembert/resolve/main/tokenizer.json", }, } __A = { "google/rembert": 256, } __A = "▁" class snake_case ( __snake_case ): SCREAMING_SNAKE_CASE_ : Tuple = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE_ : Any = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE_ : Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE_ : Dict = RemBertTokenizer def __init__( self : Tuple , UpperCamelCase__ : Dict=None , UpperCamelCase__ : List[Any]=None , UpperCamelCase__ : str=True , UpperCamelCase__ : Optional[int]=True , UpperCamelCase__ : Optional[Any]=False , UpperCamelCase__ : int="[CLS]" , UpperCamelCase__ : Optional[Any]="[SEP]" , UpperCamelCase__ : List[str]="<unk>" , UpperCamelCase__ : Dict="[SEP]" , UpperCamelCase__ : int="<pad>" , UpperCamelCase__ : Any="[CLS]" , UpperCamelCase__ : str="[MASK]" , **UpperCamelCase__ : Optional[Any] , )-> List[Any]: '''simple docstring''' __lowerCAmelCase: int = AddedToken(UpperCamelCase__ , lstrip=UpperCamelCase__ , rstrip=UpperCamelCase__) if isinstance(UpperCamelCase__ , UpperCamelCase__) else mask_token super().__init__( UpperCamelCase__ , tokenizer_file=UpperCamelCase__ , do_lower_case=UpperCamelCase__ , remove_space=UpperCamelCase__ , keep_accents=UpperCamelCase__ , bos_token=UpperCamelCase__ , eos_token=UpperCamelCase__ , unk_token=UpperCamelCase__ , sep_token=UpperCamelCase__ , pad_token=UpperCamelCase__ , cls_token=UpperCamelCase__ , mask_token=UpperCamelCase__ , **UpperCamelCase__ , ) __lowerCAmelCase: Optional[int] = do_lower_case __lowerCAmelCase: int = remove_space __lowerCAmelCase: int = keep_accents __lowerCAmelCase: str = vocab_file __lowerCAmelCase: Tuple = False if not self.vocab_file else True def lowercase_ ( self : Any , UpperCamelCase__ : List[int] , UpperCamelCase__ : Optional[List[int]] = None)-> List[int]: '''simple docstring''' __lowerCAmelCase: Optional[int] = [self.sep_token_id] __lowerCAmelCase: Any = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def lowercase_ ( self : Optional[Any] , UpperCamelCase__ : List[int] , UpperCamelCase__ : Optional[List[int]] = None , UpperCamelCase__ : bool = False)-> List[int]: '''simple docstring''' if already_has_special_tokens: if token_ids_a is not None: raise ValueError( "You should not supply a second sequence if the provided sequence of " "ids is already formatted with special tokens for the model.") return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is not None: return [1] + ([0] * len(UpperCamelCase__)) + [1] + ([0] * len(UpperCamelCase__)) + [1] return [1] + ([0] * len(UpperCamelCase__)) + [1] def lowercase_ ( self : Tuple , UpperCamelCase__ : List[int] , UpperCamelCase__ : Optional[List[int]] = None)-> List[int]: '''simple docstring''' __lowerCAmelCase: Optional[int] = [self.sep_token_id] __lowerCAmelCase: Dict = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep) * [0] + len(token_ids_a + sep) * [1] def lowercase_ ( self : Union[str, Any] , UpperCamelCase__ : str , UpperCamelCase__ : Optional[str] = None)-> Tuple[str]: '''simple docstring''' if not os.path.isdir(UpperCamelCase__): logger.error("Vocabulary path ({}) should be a directory".format(UpperCamelCase__)) return __lowerCAmelCase: Optional[Any] = os.path.join( UpperCamelCase__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]) if os.path.abspath(self.vocab_file) != os.path.abspath(UpperCamelCase__): copyfile(self.vocab_file , UpperCamelCase__) return (out_vocab_file,)
217
0
"""simple docstring""" import argparse import json import os import time import zipfile from get_ci_error_statistics import download_artifact, get_artifacts_links from transformers import logging __A : Tuple = logging.get_logger(__name__) def __SCREAMING_SNAKE_CASE ( lowercase__ , lowercase__ ): """simple docstring""" A = set() A = [] def parse_line(lowercase__ ): for line in fp: if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): A = line.decode("UTF-8" ) if "warnings summary (final)" in line: continue # This means we are outside the body of a warning elif not line.startswith(" " ): # process a single warning and move it to `selected_warnings`. if len(SCREAMING_SNAKE_CASE_ ) > 0: A = "\n".join(SCREAMING_SNAKE_CASE_ ) # Only keep the warnings specified in `targets` if any(F""": {x}: """ in warning for x in targets ): selected_warnings.add(SCREAMING_SNAKE_CASE_ ) buffer.clear() continue else: A = line.strip() buffer.append(SCREAMING_SNAKE_CASE_ ) if from_gh: for filename in os.listdir(SCREAMING_SNAKE_CASE_ ): A = os.path.join(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) if not os.path.isdir(SCREAMING_SNAKE_CASE_ ): # read the file if filename != "warnings.txt": continue with open(SCREAMING_SNAKE_CASE_ ) as fp: parse_line(SCREAMING_SNAKE_CASE_ ) else: try: with zipfile.ZipFile(SCREAMING_SNAKE_CASE_ ) as z: for filename in z.namelist(): if not os.path.isdir(SCREAMING_SNAKE_CASE_ ): # read the file if filename != "warnings.txt": continue with z.open(SCREAMING_SNAKE_CASE_ ) as fp: parse_line(SCREAMING_SNAKE_CASE_ ) except Exception: logger.warning( F"""{artifact_path} is either an invalid zip file or something else wrong. This file is skipped.""" ) return selected_warnings def __SCREAMING_SNAKE_CASE ( lowercase__ , lowercase__ ): """simple docstring""" A = set() A = [os.path.join(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) for p in os.listdir(SCREAMING_SNAKE_CASE_ ) if (p.endswith(".zip" ) or from_gh)] for p in paths: selected_warnings.update(extract_warnings_from_single_artifact(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) return selected_warnings if __name__ == "__main__": def __SCREAMING_SNAKE_CASE ( lowercase__ ): """simple docstring""" return values.split("," ) __A : List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument('--workflow_run_id', type=str, required=True, help='A GitHub Actions workflow run id.') parser.add_argument( '--output_dir', type=str, required=True, help='Where to store the downloaded artifacts and other result files.', ) parser.add_argument('--token', default=None, type=str, help='A token that has actions:read permission.') # optional parameters parser.add_argument( '--targets', default='DeprecationWarning,UserWarning,FutureWarning', type=list_str, help='Comma-separated list of target warning(s) which we want to extract.', ) parser.add_argument( '--from_gh', action='store_true', help='If running from a GitHub action workflow and collecting warnings from its artifacts.', ) __A : Union[str, Any] = parser.parse_args() __A : Any = args.from_gh if from_gh: # The artifacts have to be downloaded using `actions/download-artifact@v3` pass else: os.makedirs(args.output_dir, exist_ok=True) # get download links __A : List[Any] = get_artifacts_links(args.workflow_run_id, token=args.token) with open(os.path.join(args.output_dir, 'artifacts.json'), 'w', encoding='UTF-8') as fp: json.dump(artifacts, fp, ensure_ascii=False, indent=4) # download artifacts for idx, (name, url) in enumerate(artifacts.items()): print(name) print(url) print('=' * 80) download_artifact(name, url, args.output_dir, args.token) # Be gentle to GitHub time.sleep(1) # extract warnings from artifacts __A : Any = extract_warnings(args.output_dir, args.targets) __A : Dict = sorted(selected_warnings) with open(os.path.join(args.output_dir, 'selected_warnings.json'), 'w', encoding='UTF-8') as fp: json.dump(selected_warnings, fp, ensure_ascii=False, indent=4)
366
"""simple docstring""" __A : Optional[Any] = { 'Pillow': 'Pillow', 'accelerate': 'accelerate>=0.11.0', 'compel': 'compel==0.1.8', 'black': 'black~=23.1', 'datasets': 'datasets', 'filelock': 'filelock', 'flax': 'flax>=0.4.1', 'hf-doc-builder': 'hf-doc-builder>=0.3.0', 'huggingface-hub': 'huggingface-hub>=0.13.2', 'requests-mock': 'requests-mock==1.10.0', 'importlib_metadata': 'importlib_metadata', 'invisible-watermark': 'invisible-watermark', 'isort': 'isort>=5.5.4', 'jax': 'jax>=0.2.8,!=0.3.2', 'jaxlib': 'jaxlib>=0.1.65', 'Jinja2': 'Jinja2', 'k-diffusion': 'k-diffusion>=0.0.12', 'torchsde': 'torchsde', 'note_seq': 'note_seq', 'librosa': 'librosa', 'numpy': 'numpy', 'omegaconf': 'omegaconf', 'parameterized': 'parameterized', 'protobuf': 'protobuf>=3.20.3,<4', 'pytest': 'pytest', 'pytest-timeout': 'pytest-timeout', 'pytest-xdist': 'pytest-xdist', 'ruff': 'ruff>=0.0.241', 'safetensors': 'safetensors', 'sentencepiece': 'sentencepiece>=0.1.91,!=0.1.92', 'scipy': 'scipy', 'onnx': 'onnx', 'regex': 'regex!=2019.12.17', 'requests': 'requests', 'tensorboard': 'tensorboard', 'torch': 'torch>=1.4', 'torchvision': 'torchvision', 'transformers': 'transformers>=4.25.1', 'urllib3': 'urllib3<=2.0.0', }
57
0
"""simple docstring""" def _snake_case ( UpperCamelCase : Optional[int] ): UpperCAmelCase : List[str] = [0] * len(__SCREAMING_SNAKE_CASE ) UpperCAmelCase : Union[str, Any] = [] UpperCAmelCase : int = [] UpperCAmelCase : Optional[int] = 0 for values in graph.values(): for i in values: indegree[i] += 1 for i in range(len(__SCREAMING_SNAKE_CASE ) ): if indegree[i] == 0: queue.append(__SCREAMING_SNAKE_CASE ) while queue: UpperCAmelCase : List[str] = queue.pop(0 ) cnt += 1 topo.append(__SCREAMING_SNAKE_CASE ) for x in graph[vertex]: indegree[x] -= 1 if indegree[x] == 0: queue.append(__SCREAMING_SNAKE_CASE ) if cnt != len(__SCREAMING_SNAKE_CASE ): print("""Cycle exists""" ) else: print(__SCREAMING_SNAKE_CASE ) # Adjacency List of Graph A: Dict = {0: [1, 2], 1: [3], 2: [3], 3: [4, 5], 4: [], 5: []} topological_sort(graph)
109
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available _lowercase : Union[str, Any] = { "configuration_mask2former": [ "MASK2FORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "Mask2FormerConfig", ], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : Optional[int] = ["Mask2FormerImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : str = [ "MASK2FORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "Mask2FormerForUniversalSegmentation", "Mask2FormerModel", "Mask2FormerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_maskaformer import MASK2FORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, MaskaFormerConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_maskaformer import MaskaFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_maskaformer import ( MASK2FORMER_PRETRAINED_MODEL_ARCHIVE_LIST, MaskaFormerForUniversalSegmentation, MaskaFormerModel, MaskaFormerPreTrainedModel, ) else: import sys _lowercase : Dict = _LazyModule(__name__, globals()["__file__"], _import_structure)
93
0
'''simple docstring''' import torch from transformers import AutoModel class _a ( torch.nn.Module ): def __init__( self ,_SCREAMING_SNAKE_CASE="sayef/fsner-bert-base-uncased" ) -> List[str]: super(_SCREAMING_SNAKE_CASE ,self ).__init__() _snake_case = AutoModel.from_pretrained(_SCREAMING_SNAKE_CASE ,return_dict=_SCREAMING_SNAKE_CASE ) _snake_case = torch.nn.CosineSimilarity(3 ,1e-08 ) _snake_case = torch.nn.Softmax(dim=1 ) def _lowercase ( self ,**_SCREAMING_SNAKE_CASE ) -> Optional[int]: return self.bert(**_SCREAMING_SNAKE_CASE ).last_hidden_state def _lowercase ( self ,_SCREAMING_SNAKE_CASE ) -> str: return token_embeddings.sum(2 ,keepdim=_SCREAMING_SNAKE_CASE ) def _lowercase ( self ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE=1 ) -> Dict: return self.softmax(T * self.cos(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) ) def _lowercase ( self ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) -> Union[str, Any]: _snake_case = W_supports["sizes"].tolist() _snake_case = W_supports["start_token_id"].item() _snake_case = W_supports["end_token_id"].item() del W_supports["sizes"] del W_supports["start_token_id"] del W_supports["end_token_id"] _snake_case = self.BERT(**_SCREAMING_SNAKE_CASE ) _snake_case = self.BERT(**_SCREAMING_SNAKE_CASE ) _snake_case = None _snake_case = None _snake_case = W_supports["input_ids"] == start_token_id _snake_case = W_supports["input_ids"] == end_token_id for i, size in enumerate(_SCREAMING_SNAKE_CASE ): if i == 0: _snake_case = 0 else: _snake_case = support_sizes[i - 1] _snake_case = S[s : s + size][start_token_masks[s : s + size]] _snake_case = S[s : s + size][end_token_masks[s : s + size]] _snake_case = torch.matmul(q[i] ,s_start.T ).sum(1 ).softmax(0 ) _snake_case = torch.matmul(q[i] ,s_end.T ).sum(1 ).softmax(0 ) if p_starts is not None: _snake_case = torch.vstack((p_starts, p_start) ) _snake_case = torch.vstack((p_ends, p_end) ) else: _snake_case = p_start _snake_case = p_end return p_starts, p_ends
362
'''simple docstring''' def __a ( _UpperCamelCase: int ) -> None: """simple docstring""" _snake_case = generate_pascal_triangle(_UpperCamelCase ) for row_idx in range(_UpperCamelCase ): # Print left spaces for _ in range(num_rows - row_idx - 1 ): print(end=" " ) # Print row values for col_idx in range(row_idx + 1 ): if col_idx != row_idx: print(triangle[row_idx][col_idx] , end=" " ) else: print(triangle[row_idx][col_idx] , end="" ) print() def __a ( _UpperCamelCase: int ) -> list[list[int]]: """simple docstring""" if not isinstance(_UpperCamelCase , _UpperCamelCase ): raise TypeError("The input value of 'num_rows' should be 'int'" ) if num_rows == 0: return [] elif num_rows < 0: raise ValueError( "The input value of 'num_rows' should be greater than or equal to 0" ) _snake_case = [] for current_row_idx in range(_UpperCamelCase ): _snake_case = populate_current_row(_UpperCamelCase , _UpperCamelCase ) triangle.append(_UpperCamelCase ) return triangle def __a ( _UpperCamelCase: list[list[int]] , _UpperCamelCase: int ) -> list[int]: """simple docstring""" _snake_case = [-1] * (current_row_idx + 1) # first and last elements of current row are equal to 1 _snake_case , _snake_case = 1, 1 for current_col_idx in range(1 , _UpperCamelCase ): calculate_current_element( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) return current_row def __a ( _UpperCamelCase: list[list[int]] , _UpperCamelCase: list[int] , _UpperCamelCase: int , _UpperCamelCase: int , ) -> None: """simple docstring""" _snake_case = triangle[current_row_idx - 1][current_col_idx - 1] _snake_case = triangle[current_row_idx - 1][current_col_idx] _snake_case = above_to_left_elt + above_to_right_elt def __a ( _UpperCamelCase: int ) -> list[list[int]]: """simple docstring""" if not isinstance(_UpperCamelCase , _UpperCamelCase ): raise TypeError("The input value of 'num_rows' should be 'int'" ) if num_rows == 0: return [] elif num_rows < 0: raise ValueError( "The input value of 'num_rows' should be greater than or equal to 0" ) _snake_case = [[1]] for row_index in range(1 , _UpperCamelCase ): _snake_case = [0] + result[-1] + [0] _snake_case = row_index + 1 # Calculate the number of distinct elements in a row _snake_case = sum(divmod(_UpperCamelCase , 2 ) ) _snake_case = [ temp_row[i - 1] + temp_row[i] for i in range(1 , distinct_elements + 1 ) ] _snake_case = row_first_half[: (row_index + 1) // 2] row_second_half.reverse() _snake_case = row_first_half + row_second_half result.append(_UpperCamelCase ) return result def __a ( ) -> None: """simple docstring""" from collections.abc import Callable from timeit import timeit def benchmark_a_function(_UpperCamelCase: Callable , _UpperCamelCase: int ) -> None: _snake_case = F"""{func.__name__}({value})""" _snake_case = timeit(F"""__main__.{call}""" , setup="import __main__" ) # print(f"{call:38} = {func(value)} -- {timing:.4f} seconds") print(F"""{call:38} -- {timing:.4f} seconds""" ) for value in range(15 ): # (1, 7, 14): for func in (generate_pascal_triangle, generate_pascal_triangle_optimized): benchmark_a_function(_UpperCamelCase , _UpperCamelCase ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
142
0
'''simple docstring''' import os import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from huggingface_hub.file_download import http_get from requests.exceptions import HTTPError from transformers import ( AlbertTokenizer, AutoTokenizer, BertTokenizer, BertTokenizerFast, GPTaTokenizerFast, is_tokenizers_available, ) from transformers.testing_utils import TOKEN, USER, is_staging_test, require_tokenizers from transformers.tokenization_utils import Trie sys.path.append(str(Path(__file__).parent.parent / 'utils')) from test_module.custom_tokenization import CustomTokenizer # noqa E402 if is_tokenizers_available(): from test_module.custom_tokenization_fast import CustomTokenizerFast class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): def __magic_name__ ( self : int ) -> Union[str, Any]: # A mock response for an HTTP head request to emulate server down SCREAMING_SNAKE_CASE__ : Optional[int] =mock.Mock() SCREAMING_SNAKE_CASE__ : Any =5_00 SCREAMING_SNAKE_CASE__ : Tuple ={} SCREAMING_SNAKE_CASE__ : Tuple =HTTPError SCREAMING_SNAKE_CASE__ : Tuple ={} # Download this model to make sure it's in the cache. SCREAMING_SNAKE_CASE__ : Optional[int] =BertTokenizer.from_pretrained('''hf-internal-testing/tiny-random-bert''' ) # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch('''requests.Session.request''' , return_value=__lowercase ) as mock_head: SCREAMING_SNAKE_CASE__ : int =BertTokenizer.from_pretrained('''hf-internal-testing/tiny-random-bert''' ) # This check we did call the fake head request mock_head.assert_called() @require_tokenizers def __magic_name__ ( self : List[str] ) -> Tuple: # A mock response for an HTTP head request to emulate server down SCREAMING_SNAKE_CASE__ : Any =mock.Mock() SCREAMING_SNAKE_CASE__ : Dict =5_00 SCREAMING_SNAKE_CASE__ : Dict ={} SCREAMING_SNAKE_CASE__ : int =HTTPError SCREAMING_SNAKE_CASE__ : int ={} # Download this model to make sure it's in the cache. SCREAMING_SNAKE_CASE__ : Union[str, Any] =GPTaTokenizerFast.from_pretrained('''gpt2''' ) # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch('''requests.Session.request''' , return_value=__lowercase ) as mock_head: SCREAMING_SNAKE_CASE__ : Dict =GPTaTokenizerFast.from_pretrained('''gpt2''' ) # This check we did call the fake head request mock_head.assert_called() def __magic_name__ ( self : Optional[Any] ) -> Any: # This test is for deprecated behavior and can be removed in v5 try: SCREAMING_SNAKE_CASE__ : Any =tempfile.mktemp() with open(__lowercase , '''wb''' ) as f: http_get('''https://huggingface.co/albert-base-v1/resolve/main/spiece.model''' , __lowercase ) SCREAMING_SNAKE_CASE__ : Union[str, Any] =AlbertTokenizer.from_pretrained(__lowercase ) finally: os.remove(__lowercase ) # Supporting this legacy load introduced a weird bug where the tokenizer would load local files if they are in # the current folder and have the right name. if os.path.isfile('''tokenizer.json''' ): # We skip the test if the user has a `tokenizer.json` in this folder to avoid deleting it. return try: with open('''tokenizer.json''' , '''wb''' ) as f: http_get('''https://huggingface.co/hf-internal-testing/tiny-random-bert/blob/main/tokenizer.json''' , __lowercase ) SCREAMING_SNAKE_CASE__ : List[Any] =AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) # The tiny random BERT has a vocab size of 1024, tiny gpt2 as a vocab size of 1000 self.assertEqual(tokenizer.vocab_size , 10_00 ) # Tokenizer should depend on the remote checkpoint, not the local tokenizer.json file. finally: os.remove('''tokenizer.json''' ) def __magic_name__ ( self : Union[str, Any] ) -> int: # This test is for deprecated behavior and can be removed in v5 SCREAMING_SNAKE_CASE__ : Any =AlbertTokenizer.from_pretrained('''https://huggingface.co/albert-base-v1/resolve/main/spiece.model''' ) @is_staging_test class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): snake_case_ = ["""[UNK]""", """[CLS]""", """[SEP]""", """[PAD]""", """[MASK]""", """bla""", """blou"""] @classmethod def __magic_name__ ( cls : Any ) -> Tuple: SCREAMING_SNAKE_CASE__ : Optional[Any] =TOKEN HfFolder.save_token(__lowercase ) @classmethod def __magic_name__ ( cls : List[Any] ) -> Dict: try: delete_repo(token=cls._token , repo_id='''test-tokenizer''' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''valid_org/test-tokenizer-org''' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''test-dynamic-tokenizer''' ) except HTTPError: pass def __magic_name__ ( self : List[Any] ) -> List[str]: with tempfile.TemporaryDirectory() as tmp_dir: SCREAMING_SNAKE_CASE__ : Tuple =os.path.join(__lowercase , '''vocab.txt''' ) with open(__lowercase , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in self.vocab_tokens] ) ) SCREAMING_SNAKE_CASE__ : Optional[Any] =BertTokenizer(__lowercase ) tokenizer.push_to_hub('''test-tokenizer''' , use_auth_token=self._token ) SCREAMING_SNAKE_CASE__ : int =BertTokenizer.from_pretrained(F"{USER}/test-tokenizer" ) self.assertDictEqual(new_tokenizer.vocab , tokenizer.vocab ) # Reset repo delete_repo(token=self._token , repo_id='''test-tokenizer''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(__lowercase , repo_id='''test-tokenizer''' , push_to_hub=__lowercase , use_auth_token=self._token ) SCREAMING_SNAKE_CASE__ : Tuple =BertTokenizer.from_pretrained(F"{USER}/test-tokenizer" ) self.assertDictEqual(new_tokenizer.vocab , tokenizer.vocab ) def __magic_name__ ( self : int ) -> Union[str, Any]: with tempfile.TemporaryDirectory() as tmp_dir: SCREAMING_SNAKE_CASE__ : Optional[int] =os.path.join(__lowercase , '''vocab.txt''' ) with open(__lowercase , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in self.vocab_tokens] ) ) SCREAMING_SNAKE_CASE__ : int =BertTokenizer(__lowercase ) tokenizer.push_to_hub('''valid_org/test-tokenizer-org''' , use_auth_token=self._token ) SCREAMING_SNAKE_CASE__ : List[Any] =BertTokenizer.from_pretrained('''valid_org/test-tokenizer-org''' ) self.assertDictEqual(new_tokenizer.vocab , tokenizer.vocab ) # Reset repo delete_repo(token=self._token , repo_id='''valid_org/test-tokenizer-org''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained( __lowercase , repo_id='''valid_org/test-tokenizer-org''' , push_to_hub=__lowercase , use_auth_token=self._token ) SCREAMING_SNAKE_CASE__ : int =BertTokenizer.from_pretrained('''valid_org/test-tokenizer-org''' ) self.assertDictEqual(new_tokenizer.vocab , tokenizer.vocab ) @require_tokenizers def __magic_name__ ( self : Tuple ) -> str: CustomTokenizer.register_for_auto_class() with tempfile.TemporaryDirectory() as tmp_dir: SCREAMING_SNAKE_CASE__ : Dict =os.path.join(__lowercase , '''vocab.txt''' ) with open(__lowercase , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in self.vocab_tokens] ) ) SCREAMING_SNAKE_CASE__ : Union[str, Any] =CustomTokenizer(__lowercase ) # No fast custom tokenizer tokenizer.push_to_hub('''test-dynamic-tokenizer''' , use_auth_token=self._token ) SCREAMING_SNAKE_CASE__ : Union[str, Any] =AutoTokenizer.from_pretrained(F"{USER}/test-dynamic-tokenizer" , trust_remote_code=__lowercase ) # Can't make an isinstance check because the new_model.config is from the CustomTokenizer class of a dynamic module self.assertEqual(tokenizer.__class__.__name__ , '''CustomTokenizer''' ) # Fast and slow custom tokenizer CustomTokenizerFast.register_for_auto_class() with tempfile.TemporaryDirectory() as tmp_dir: SCREAMING_SNAKE_CASE__ : List[str] =os.path.join(__lowercase , '''vocab.txt''' ) with open(__lowercase , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in self.vocab_tokens] ) ) SCREAMING_SNAKE_CASE__ : int =BertTokenizerFast.from_pretrained(__lowercase ) bert_tokenizer.save_pretrained(__lowercase ) SCREAMING_SNAKE_CASE__ : Any =CustomTokenizerFast.from_pretrained(__lowercase ) tokenizer.push_to_hub('''test-dynamic-tokenizer''' , use_auth_token=self._token ) SCREAMING_SNAKE_CASE__ : Any =AutoTokenizer.from_pretrained(F"{USER}/test-dynamic-tokenizer" , trust_remote_code=__lowercase ) # Can't make an isinstance check because the new_model.config is from the FakeConfig class of a dynamic module self.assertEqual(tokenizer.__class__.__name__ , '''CustomTokenizerFast''' ) SCREAMING_SNAKE_CASE__ : List[str] =AutoTokenizer.from_pretrained( F"{USER}/test-dynamic-tokenizer" , use_fast=__lowercase , trust_remote_code=__lowercase ) # Can't make an isinstance check because the new_model.config is from the FakeConfig class of a dynamic module self.assertEqual(tokenizer.__class__.__name__ , '''CustomTokenizer''' ) class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): def __magic_name__ ( self : Tuple ) -> List[Any]: SCREAMING_SNAKE_CASE__ : str =Trie() trie.add('''Hello 友達''' ) self.assertEqual(trie.data , {'''H''': {'''e''': {'''l''': {'''l''': {'''o''': {''' ''': {'''友''': {'''達''': {'''''': 1}}}}}}}}} ) trie.add('''Hello''' ) trie.data self.assertEqual(trie.data , {'''H''': {'''e''': {'''l''': {'''l''': {'''o''': {'''''': 1, ''' ''': {'''友''': {'''達''': {'''''': 1}}}}}}}}} ) def __magic_name__ ( self : int ) -> int: SCREAMING_SNAKE_CASE__ : Dict =Trie() self.assertEqual(trie.split('''[CLS] This is a extra_id_100''' ) , ['''[CLS] This is a extra_id_100'''] ) trie.add('''[CLS]''' ) trie.add('''extra_id_1''' ) trie.add('''extra_id_100''' ) self.assertEqual(trie.split('''[CLS] This is a extra_id_100''' ) , ['''[CLS]''', ''' This is a ''', '''extra_id_100'''] ) def __magic_name__ ( self : int ) -> int: SCREAMING_SNAKE_CASE__ : Any =Trie() trie.add('''A''' ) self.assertEqual(trie.split('''ABC''' ) , ['''A''', '''BC'''] ) self.assertEqual(trie.split('''BCA''' ) , ['''BC''', '''A'''] ) def __magic_name__ ( self : Dict ) -> Any: SCREAMING_SNAKE_CASE__ : Union[str, Any] =Trie() trie.add('''TOKEN]''' ) trie.add('''[SPECIAL_TOKEN]''' ) self.assertEqual(trie.split('''This is something [SPECIAL_TOKEN]''' ) , ['''This is something ''', '''[SPECIAL_TOKEN]'''] ) def __magic_name__ ( self : str ) -> str: SCREAMING_SNAKE_CASE__ : List[Any] =Trie() trie.add('''A''' ) trie.add('''P''' ) trie.add('''[SPECIAL_TOKEN]''' ) self.assertEqual(trie.split('''This is something [SPECIAL_TOKEN]''' ) , ['''This is something ''', '''[SPECIAL_TOKEN]'''] ) def __magic_name__ ( self : Union[str, Any] ) -> List[str]: SCREAMING_SNAKE_CASE__ : Optional[int] =Trie() trie.add('''AB''' ) trie.add('''B''' ) trie.add('''C''' ) self.assertEqual(trie.split('''ABC''' ) , ['''AB''', '''C'''] ) def __magic_name__ ( self : Optional[int] ) -> str: SCREAMING_SNAKE_CASE__ : Union[str, Any] =Trie() trie.add('''ABC''' ) trie.add('''B''' ) trie.add('''CD''' ) self.assertEqual(trie.split('''ABCD''' ) , ['''ABC''', '''D'''] ) def __magic_name__ ( self : Optional[int] ) -> Dict: # Even if the offsets are wrong, we necessarily output correct string # parts. SCREAMING_SNAKE_CASE__ : Union[str, Any] =Trie() SCREAMING_SNAKE_CASE__ : Optional[Any] =trie.cut_text('''ABC''' , [0, 0, 2, 1, 2, 3] ) self.assertEqual(__lowercase , ['''AB''', '''C'''] )
152
import os import tempfile from functools import partial from unittest import TestCase from unittest.mock import patch import numpy as np import pytest from datasets.arrow_dataset import Dataset from datasets.search import ElasticSearchIndex, FaissIndex, MissingIndex from .utils import require_elasticsearch, require_faiss __A =pytest.mark.integration @require_faiss class _SCREAMING_SNAKE_CASE ( snake_case_ ): def SCREAMING_SNAKE_CASE_( self ) -> List[str]: lowerCamelCase_ = Dataset.from_dict({"filename": ["my_name-train" + "_" + str(lowercase ) for x in np.arange(30 ).tolist()]} ) return dset def SCREAMING_SNAKE_CASE_( self ) -> Union[str, Any]: import faiss lowerCamelCase_ = self._create_dummy_dataset() lowerCamelCase_ = dset.map( lambda lowercase , lowercase : {"vecs": i * np.ones(5 , dtype=np.floataa )} , with_indices=lowercase , keep_in_memory=lowercase ) lowerCamelCase_ = dset.add_faiss_index("vecs" , batch_size=100 , metric_type=faiss.METRIC_INNER_PRODUCT ) lowerCamelCase_ , lowerCamelCase_ = dset.get_nearest_examples("vecs" , np.ones(5 , dtype=np.floataa ) ) self.assertEqual(examples["filename"][0] , "my_name-train_29" ) dset.drop_index("vecs" ) def SCREAMING_SNAKE_CASE_( self ) -> Dict: import faiss lowerCamelCase_ = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name="vecs" , batch_size=100 , metric_type=faiss.METRIC_INNER_PRODUCT , ) lowerCamelCase_ , lowerCamelCase_ = dset.get_nearest_examples("vecs" , np.ones(5 , dtype=np.floataa ) ) self.assertEqual(examples["filename"][0] , "my_name-train_29" ) def SCREAMING_SNAKE_CASE_( self ) -> Optional[int]: import faiss lowerCamelCase_ = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name="vecs" , metric_type=faiss.METRIC_INNER_PRODUCT , ) # Setting delete=False and unlinking manually is not pretty... but it is required on Windows to # ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue. # see https://bugs.python.org/issue14243 and # https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515 with tempfile.NamedTemporaryFile(delete=lowercase ) as tmp_file: dset.save_faiss_index("vecs" , tmp_file.name ) dset.load_faiss_index("vecs2" , tmp_file.name ) os.unlink(tmp_file.name ) lowerCamelCase_ , lowerCamelCase_ = dset.get_nearest_examples("vecs2" , np.ones(5 , dtype=np.floataa ) ) self.assertEqual(examples["filename"][0] , "my_name-train_29" ) def SCREAMING_SNAKE_CASE_( self ) -> Union[str, Any]: lowerCamelCase_ = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name="vecs" ) dset.drop_index("vecs" ) self.assertRaises(lowercase , partial(dset.get_nearest_examples , "vecs2" , np.ones(5 , dtype=np.floataa ) ) ) def SCREAMING_SNAKE_CASE_( self ) -> Optional[int]: from elasticsearch import Elasticsearch lowerCamelCase_ = self._create_dummy_dataset() with patch("elasticsearch.Elasticsearch.search" ) as mocked_search, patch( "elasticsearch.client.IndicesClient.create" ) as mocked_index_create, patch("elasticsearch.helpers.streaming_bulk" ) as mocked_bulk: lowerCamelCase_ = {"acknowledged": True} mocked_bulk.return_value([(True, None)] * 30 ) lowerCamelCase_ = {"hits": {"hits": [{"_score": 1, "_id": 29}]}} lowerCamelCase_ = Elasticsearch() dset.add_elasticsearch_index("filename" , es_client=lowercase ) lowerCamelCase_ , lowerCamelCase_ = dset.get_nearest_examples("filename" , "my_name-train_29" ) self.assertEqual(examples["filename"][0] , "my_name-train_29" ) @require_faiss class _SCREAMING_SNAKE_CASE ( snake_case_ ): def SCREAMING_SNAKE_CASE_( self ) -> Tuple: import faiss lowerCamelCase_ = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) # add vectors index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsNotNone(index.faiss_index ) self.assertEqual(index.faiss_index.ntotal , 5 ) index.add_vectors(np.zeros((5, 5) , dtype=np.floataa ) ) self.assertEqual(index.faiss_index.ntotal , 10 ) # single query lowerCamelCase_ = np.zeros(5 , dtype=np.floataa ) lowerCamelCase_ = 1 lowerCamelCase_ , lowerCamelCase_ = index.search(lowercase ) self.assertRaises(lowercase , index.search , query.reshape(-1 , 1 ) ) self.assertGreater(scores[0] , 0 ) self.assertEqual(indices[0] , 1 ) # batched queries lowerCamelCase_ = np.eye(5 , dtype=np.floataa )[::-1] lowerCamelCase_ , lowerCamelCase_ = index.search_batch(lowercase ) self.assertRaises(lowercase , index.search_batch , queries[0] ) lowerCamelCase_ = [scores[0] for scores in total_scores] lowerCamelCase_ = [indices[0] for indices in total_indices] self.assertGreater(np.min(lowercase ) , 0 ) self.assertListEqual([4, 3, 2, 1, 0] , lowercase ) def SCREAMING_SNAKE_CASE_( self ) -> Any: import faiss lowerCamelCase_ = FaissIndex(string_factory="Flat" ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index , faiss.IndexFlat ) lowerCamelCase_ = FaissIndex(string_factory="LSH" ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index , faiss.IndexLSH ) with self.assertRaises(lowercase ): lowerCamelCase_ = FaissIndex(string_factory="Flat" , custom_index=faiss.IndexFlat(5 ) ) def SCREAMING_SNAKE_CASE_( self ) -> Optional[int]: import faiss lowerCamelCase_ = faiss.IndexFlat(5 ) lowerCamelCase_ = FaissIndex(custom_index=lowercase ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index , faiss.IndexFlat ) def SCREAMING_SNAKE_CASE_( self ) -> List[str]: import faiss lowerCamelCase_ = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) # Setting delete=False and unlinking manually is not pretty... but it is required on Windows to # ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue. # see https://bugs.python.org/issue14243 and # https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515 with tempfile.NamedTemporaryFile(delete=lowercase ) as tmp_file: index.save(tmp_file.name ) lowerCamelCase_ = FaissIndex.load(tmp_file.name ) os.unlink(tmp_file.name ) lowerCamelCase_ = np.zeros(5 , dtype=np.floataa ) lowerCamelCase_ = 1 lowerCamelCase_ , lowerCamelCase_ = index.search(lowercase ) self.assertGreater(scores[0] , 0 ) self.assertEqual(indices[0] , 1 ) @require_faiss def lowerCamelCase_ ( lowerCamelCase__ ): import faiss lowerCamelCase_ = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) lowerCamelCase_ = "index.faiss" lowerCamelCase_ = F'mock://{index_name}' index.save(lowerCamelCase__ , storage_options=mockfs.storage_options ) lowerCamelCase_ = FaissIndex.load(lowerCamelCase__ , storage_options=mockfs.storage_options ) lowerCamelCase_ = np.zeros(5 , dtype=np.floataa ) lowerCamelCase_ = 1 lowerCamelCase_ , lowerCamelCase_ = index.search(lowerCamelCase__ ) assert scores[0] > 0 assert indices[0] == 1 @require_elasticsearch class _SCREAMING_SNAKE_CASE ( snake_case_ ): def SCREAMING_SNAKE_CASE_( self ) -> Optional[Any]: from elasticsearch import Elasticsearch with patch("elasticsearch.Elasticsearch.search" ) as mocked_search, patch( "elasticsearch.client.IndicesClient.create" ) as mocked_index_create, patch("elasticsearch.helpers.streaming_bulk" ) as mocked_bulk: lowerCamelCase_ = Elasticsearch() lowerCamelCase_ = {"acknowledged": True} lowerCamelCase_ = ElasticSearchIndex(es_client=lowercase ) mocked_bulk.return_value([(True, None)] * 3 ) index.add_documents(["foo", "bar", "foobar"] ) # single query lowerCamelCase_ = "foo" lowerCamelCase_ = {"hits": {"hits": [{"_score": 1, "_id": 0}]}} lowerCamelCase_ , lowerCamelCase_ = index.search(lowercase ) self.assertEqual(scores[0] , 1 ) self.assertEqual(indices[0] , 0 ) # single query with timeout lowerCamelCase_ = "foo" lowerCamelCase_ = {"hits": {"hits": [{"_score": 1, "_id": 0}]}} lowerCamelCase_ , lowerCamelCase_ = index.search(lowercase , request_timeout=30 ) self.assertEqual(scores[0] , 1 ) self.assertEqual(indices[0] , 0 ) # batched queries lowerCamelCase_ = ["foo", "bar", "foobar"] lowerCamelCase_ = {"hits": {"hits": [{"_score": 1, "_id": 1}]}} lowerCamelCase_ , lowerCamelCase_ = index.search_batch(lowercase ) lowerCamelCase_ = [scores[0] for scores in total_scores] lowerCamelCase_ = [indices[0] for indices in total_indices] self.assertGreater(np.min(lowercase ) , 0 ) self.assertListEqual([1, 1, 1] , lowercase ) # batched queries with timeout lowerCamelCase_ = ["foo", "bar", "foobar"] lowerCamelCase_ = {"hits": {"hits": [{"_score": 1, "_id": 1}]}} lowerCamelCase_ , lowerCamelCase_ = index.search_batch(lowercase , request_timeout=30 ) lowerCamelCase_ = [scores[0] for scores in total_scores] lowerCamelCase_ = [indices[0] for indices in total_indices] self.assertGreater(np.min(lowercase ) , 0 ) self.assertListEqual([1, 1, 1] , lowercase )
19
0
lowerCAmelCase__ : Optional[int] ='\n# Transformers installation\n! pip install transformers datasets\n# To install from source instead of the last release, comment the command above and uncomment the following one.\n# ! pip install git+https://github.com/huggingface/transformers.git\n' lowerCAmelCase__ : List[str] =[{'type': 'code', 'content': INSTALL_CONTENT}] lowerCAmelCase__ : Dict ={ '{processor_class}': 'FakeProcessorClass', '{model_class}': 'FakeModelClass', '{object_class}': 'FakeObjectClass', }
162
import os import tempfile import unittest from transformers import DistilBertConfig, is_torch_available from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, DistilBertModel, ) class __lowercase (__SCREAMING_SNAKE_CASE ): """simple docstring""" def __init__( self , lowerCAmelCase__ , lowerCAmelCase__=1_3 , lowerCAmelCase__=7 , lowerCAmelCase__=True , lowerCAmelCase__=True , lowerCAmelCase__=False , lowerCAmelCase__=True , lowerCAmelCase__=9_9 , lowerCAmelCase__=3_2 , lowerCAmelCase__=5 , lowerCAmelCase__=4 , lowerCAmelCase__=3_7 , lowerCAmelCase__="gelu" , lowerCAmelCase__=0.1 , lowerCAmelCase__=0.1 , lowerCAmelCase__=5_1_2 , lowerCAmelCase__=1_6 , lowerCAmelCase__=2 , lowerCAmelCase__=0.02 , lowerCAmelCase__=3 , lowerCAmelCase__=4 , lowerCAmelCase__=None , ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = parent SCREAMING_SNAKE_CASE_ : Any = batch_size SCREAMING_SNAKE_CASE_ : Optional[int] = seq_length SCREAMING_SNAKE_CASE_ : Any = is_training SCREAMING_SNAKE_CASE_ : int = use_input_mask SCREAMING_SNAKE_CASE_ : Union[str, Any] = use_token_type_ids SCREAMING_SNAKE_CASE_ : Dict = use_labels SCREAMING_SNAKE_CASE_ : List[str] = vocab_size SCREAMING_SNAKE_CASE_ : Dict = hidden_size SCREAMING_SNAKE_CASE_ : Dict = num_hidden_layers SCREAMING_SNAKE_CASE_ : Tuple = num_attention_heads SCREAMING_SNAKE_CASE_ : Dict = intermediate_size SCREAMING_SNAKE_CASE_ : Any = hidden_act SCREAMING_SNAKE_CASE_ : Optional[Any] = hidden_dropout_prob SCREAMING_SNAKE_CASE_ : List[Any] = attention_probs_dropout_prob SCREAMING_SNAKE_CASE_ : List[str] = max_position_embeddings SCREAMING_SNAKE_CASE_ : Any = type_vocab_size SCREAMING_SNAKE_CASE_ : List[Any] = type_sequence_label_size SCREAMING_SNAKE_CASE_ : Tuple = initializer_range SCREAMING_SNAKE_CASE_ : int = num_labels SCREAMING_SNAKE_CASE_ : List[str] = num_choices SCREAMING_SNAKE_CASE_ : Tuple = scope def UpperCamelCase__ ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) SCREAMING_SNAKE_CASE_ : Optional[int] = None if self.use_input_mask: SCREAMING_SNAKE_CASE_ : str = random_attention_mask([self.batch_size, self.seq_length] ) SCREAMING_SNAKE_CASE_ : str = None SCREAMING_SNAKE_CASE_ : Optional[int] = None SCREAMING_SNAKE_CASE_ : Any = None if self.use_labels: SCREAMING_SNAKE_CASE_ : List[str] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) SCREAMING_SNAKE_CASE_ : str = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) SCREAMING_SNAKE_CASE_ : Dict = ids_tensor([self.batch_size] , self.num_choices ) SCREAMING_SNAKE_CASE_ : Any = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCamelCase__ ( self ): """simple docstring""" return DistilBertConfig( vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , ) def UpperCamelCase__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = DistilBertModel(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() SCREAMING_SNAKE_CASE_ : int = model(lowerCAmelCase__ , lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : int = model(lowerCAmelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = DistilBertForMaskedLM(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() SCREAMING_SNAKE_CASE_ : Any = model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , labels=lowerCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCamelCase__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = DistilBertForQuestionAnswering(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() SCREAMING_SNAKE_CASE_ : str = model( lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , start_positions=lowerCAmelCase__ , end_positions=lowerCAmelCase__ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def UpperCamelCase__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = self.num_labels SCREAMING_SNAKE_CASE_ : Optional[int] = DistilBertForSequenceClassification(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() SCREAMING_SNAKE_CASE_ : str = model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , labels=lowerCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCamelCase__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = self.num_labels SCREAMING_SNAKE_CASE_ : Any = DistilBertForTokenClassification(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() SCREAMING_SNAKE_CASE_ : List[Any] = model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , labels=lowerCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCamelCase__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = self.num_choices SCREAMING_SNAKE_CASE_ : Union[str, Any] = DistilBertForMultipleChoice(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() SCREAMING_SNAKE_CASE_ : List[Any] = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() SCREAMING_SNAKE_CASE_ : Any = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() SCREAMING_SNAKE_CASE_ : Any = model( lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , labels=lowerCAmelCase__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def UpperCamelCase__ ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = self.prepare_config_and_inputs() ((SCREAMING_SNAKE_CASE_) , (SCREAMING_SNAKE_CASE_) , (SCREAMING_SNAKE_CASE_) , (SCREAMING_SNAKE_CASE_) , (SCREAMING_SNAKE_CASE_) , (SCREAMING_SNAKE_CASE_)) : Tuple = config_and_inputs SCREAMING_SNAKE_CASE_ : Optional[int] = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class __lowercase (__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): """simple docstring""" _UpperCAmelCase = ( ( DistilBertModel, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, ) if is_torch_available() else None ) _UpperCAmelCase = ( { """feature-extraction""": DistilBertModel, """fill-mask""": DistilBertForMaskedLM, """question-answering""": DistilBertForQuestionAnswering, """text-classification""": DistilBertForSequenceClassification, """token-classification""": DistilBertForTokenClassification, """zero-shot""": DistilBertForSequenceClassification, } if is_torch_available() else {} ) _UpperCAmelCase = True _UpperCAmelCase = True _UpperCAmelCase = True _UpperCAmelCase = True def UpperCamelCase__ ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = DistilBertModelTester(self ) SCREAMING_SNAKE_CASE_ : str = ConfigTester(self , config_class=lowerCAmelCase__ , dim=3_7 ) def UpperCamelCase__ ( self ): """simple docstring""" self.config_tester.run_common_tests() def UpperCamelCase__ ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_model(*lowerCAmelCase__ ) def UpperCamelCase__ ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_masked_lm(*lowerCAmelCase__ ) def UpperCamelCase__ ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_question_answering(*lowerCAmelCase__ ) def UpperCamelCase__ ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_sequence_classification(*lowerCAmelCase__ ) def UpperCamelCase__ ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_token_classification(*lowerCAmelCase__ ) def UpperCamelCase__ ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_multiple_choice(*lowerCAmelCase__ ) @slow def UpperCamelCase__ ( self ): """simple docstring""" for model_name in DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE_ : Any = DistilBertModel.from_pretrained(lowerCAmelCase__ ) self.assertIsNotNone(lowerCAmelCase__ ) @slow @require_torch_gpu def UpperCamelCase__ ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # BertForMultipleChoice behaves incorrectly in JIT environments. if model_class == DistilBertForMultipleChoice: return SCREAMING_SNAKE_CASE_ : Tuple = True SCREAMING_SNAKE_CASE_ : str = model_class(config=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : List[str] = torch.jit.trace( lowerCAmelCase__ , (inputs_dict['input_ids'].to('cpu' ), inputs_dict['attention_mask'].to('cpu' )) ) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(lowerCAmelCase__ , os.path.join(lowerCAmelCase__ , 'traced_model.pt' ) ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = torch.jit.load(os.path.join(lowerCAmelCase__ , 'traced_model.pt' ) , map_location=lowerCAmelCase__ ) loaded(inputs_dict['input_ids'].to(lowerCAmelCase__ ) , inputs_dict['attention_mask'].to(lowerCAmelCase__ ) ) @require_torch class __lowercase (unittest.TestCase ): """simple docstring""" @slow def UpperCamelCase__ ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[int] = DistilBertModel.from_pretrained('distilbert-base-uncased' ) SCREAMING_SNAKE_CASE_ : Tuple = torch.tensor([[0, 3_4_5, 2_3_2, 3_2_8, 7_4_0, 1_4_0, 1_6_9_5, 6_9, 6_0_7_8, 1_5_8_8, 2]] ) SCREAMING_SNAKE_CASE_ : Dict = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): SCREAMING_SNAKE_CASE_ : Any = model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ )[0] SCREAMING_SNAKE_CASE_ : int = torch.Size((1, 1_1, 7_6_8) ) self.assertEqual(output.shape , lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : List[Any] = torch.tensor( [[[-0.1_639, 0.3_299, 0.1_648], [-0.1_746, 0.3_289, 0.1_710], [-0.1_884, 0.3_357, 0.1_810]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , lowerCAmelCase__ , atol=1E-4 ) )
162
1
"""simple docstring""" import torch import torch.nn as nn from transformers import CLIPConfig, CLIPVisionModel, PreTrainedModel from ...utils import logging snake_case_ = logging.get_logger(__name__) def _lowerCAmelCase ( lowercase_ , lowercase_ ): UpperCAmelCase = nn.functional.normalize(lowercase_ ) UpperCAmelCase = nn.functional.normalize(lowercase_ ) return torch.mm(lowercase_ , normalized_text_embeds.t() ) class A_ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" __UpperCamelCase = CLIPConfig __UpperCamelCase = ["""CLIPEncoderLayer"""] def __init__( self :Union[str, Any] , lowercase_ :CLIPConfig ) -> Dict: super().__init__(lowercase_ ) UpperCAmelCase = CLIPVisionModel(config.vision_config ) UpperCAmelCase = nn.Linear(config.vision_config.hidden_size , config.projection_dim , bias=lowercase_ ) UpperCAmelCase = nn.Parameter(torch.ones(17 , config.projection_dim ) , requires_grad=lowercase_ ) UpperCAmelCase = nn.Parameter(torch.ones(3 , config.projection_dim ) , requires_grad=lowercase_ ) UpperCAmelCase = nn.Parameter(torch.ones(17 ) , requires_grad=lowercase_ ) UpperCAmelCase = nn.Parameter(torch.ones(3 ) , requires_grad=lowercase_ ) @torch.no_grad() def UpperCAmelCase__ ( self :Any , lowercase_ :Dict , lowercase_ :Union[str, Any] ) -> Optional[int]: UpperCAmelCase = self.vision_model(lowercase_ )[1] # pooled_output UpperCAmelCase = self.visual_projection(lowercase_ ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 UpperCAmelCase = cosine_distance(lowercase_ , self.special_care_embeds ).cpu().float().numpy() UpperCAmelCase = cosine_distance(lowercase_ , self.concept_embeds ).cpu().float().numpy() UpperCAmelCase = [] UpperCAmelCase = image_embeds.shape[0] for i in range(lowercase_ ): UpperCAmelCase = {'special_scores': {}, 'special_care': [], 'concept_scores': {}, 'bad_concepts': []} # increase this value to create a stronger `nfsw` filter # at the cost of increasing the possibility of filtering benign images UpperCAmelCase = 0.0 for concept_idx in range(len(special_cos_dist[0] ) ): UpperCAmelCase = special_cos_dist[i][concept_idx] UpperCAmelCase = self.special_care_embeds_weights[concept_idx].item() UpperCAmelCase = round(concept_cos - concept_threshold + adjustment , 3 ) if result_img["special_scores"][concept_idx] > 0: result_img["special_care"].append({concept_idx, result_img['special_scores'][concept_idx]} ) UpperCAmelCase = 0.01 for concept_idx in range(len(cos_dist[0] ) ): UpperCAmelCase = cos_dist[i][concept_idx] UpperCAmelCase = self.concept_embeds_weights[concept_idx].item() UpperCAmelCase = round(concept_cos - concept_threshold + adjustment , 3 ) if result_img["concept_scores"][concept_idx] > 0: result_img["bad_concepts"].append(lowercase_ ) result.append(lowercase_ ) UpperCAmelCase = [len(res['bad_concepts'] ) > 0 for res in result] return images, has_nsfw_concepts @torch.no_grad() def UpperCAmelCase__ ( self :Any , lowercase_ :torch.FloatTensor , lowercase_ :torch.FloatTensor ) -> List[Any]: UpperCAmelCase = self.vision_model(lowercase_ )[1] # pooled_output UpperCAmelCase = self.visual_projection(lowercase_ ) UpperCAmelCase = cosine_distance(lowercase_ , self.special_care_embeds ) UpperCAmelCase = cosine_distance(lowercase_ , self.concept_embeds ) # increase this value to create a stronger `nsfw` filter # at the cost of increasing the possibility of filtering benign images UpperCAmelCase = 0.0 UpperCAmelCase = special_cos_dist - self.special_care_embeds_weights + adjustment # special_scores = special_scores.round(decimals=3) UpperCAmelCase = torch.any(special_scores > 0 , dim=1 ) UpperCAmelCase = special_care * 0.01 UpperCAmelCase = special_adjustment.unsqueeze(1 ).expand(-1 , cos_dist.shape[1] ) UpperCAmelCase = (cos_dist - self.concept_embeds_weights) + special_adjustment # concept_scores = concept_scores.round(decimals=3) UpperCAmelCase = torch.any(concept_scores > 0 , dim=1 ) return images, has_nsfw_concepts
78
"""simple docstring""" from .glue import GlueDataset, GlueDataTrainingArguments from .language_modeling import ( LineByLineTextDataset, LineByLineWithRefDataset, LineByLineWithSOPTextDataset, TextDataset, TextDatasetForNextSentencePrediction, ) from .squad import SquadDataset, SquadDataTrainingArguments
78
1
'''simple docstring''' import os import unittest from transformers.models.transfo_xl.tokenization_transfo_xl import VOCAB_FILES_NAMES, TransfoXLTokenizer from ...test_tokenization_common import TokenizerTesterMixin class _A ( __lowercase , unittest.TestCase ): lowercase__: Optional[Any] = TransfoXLTokenizer lowercase__: str = False lowercase__: List[str] = False def lowercase__ ( self : Tuple ) -> Tuple: """simple docstring""" super().setUp() __snake_case : Any = [ """<unk>""", """[CLS]""", """[SEP]""", """want""", """unwanted""", """wa""", """un""", """running""", """,""", """low""", """l""", ] __snake_case : Tuple = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) def lowercase__ ( self : List[str] , **__magic_name__ : str ) -> List[Any]: """simple docstring""" __snake_case : str = True return TransfoXLTokenizer.from_pretrained(self.tmpdirname , **__magic_name__ ) def lowercase__ ( self : Optional[Any] , __magic_name__ : str ) -> int: """simple docstring""" __snake_case : List[str] = """<unk> UNwanted , running""" __snake_case : Optional[Any] = """<unk> unwanted, running""" return input_text, output_text def lowercase__ ( self : Optional[Any] ) -> Optional[Any]: """simple docstring""" __snake_case : Tuple = TransfoXLTokenizer(vocab_file=self.vocab_file , lower_case=__magic_name__ ) __snake_case : Optional[int] = tokenizer.tokenize("""<unk> UNwanted , running""" ) self.assertListEqual(__magic_name__ , ["""<unk>""", """unwanted""", """,""", """running"""] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(__magic_name__ ) , [0, 4, 8, 7] ) def lowercase__ ( self : Optional[Any] ) -> Tuple: """simple docstring""" __snake_case : Union[str, Any] = TransfoXLTokenizer(lower_case=__magic_name__ ) self.assertListEqual( tokenizer.tokenize(""" \tHeLLo ! how \n Are yoU ? """ ) , ["""hello""", """!""", """how""", """are""", """you""", """?"""] ) def lowercase__ ( self : Any ) -> Any: """simple docstring""" __snake_case : Tuple = TransfoXLTokenizer(lower_case=__magic_name__ ) self.assertListEqual( tokenizer.tokenize(""" \tHeLLo ! how \n Are yoU ? """ ) , ["""HeLLo""", """!""", """how""", """Are""", """yoU""", """?"""] ) def lowercase__ ( self : str ) -> Optional[int]: """simple docstring""" __snake_case : str = TransfoXLTokenizer(lower_case=__magic_name__ ) __snake_case : int = """Hello (bracket) and side-scrolled [and] Henry's $5,000 with 3.34 m. What's up!?""" __snake_case : Tuple = [ """Hello""", """(""", """bracket""", """)""", """and""", """side""", """@-@""", """scrolled""", """[""", """and""", """]""", """Henry""", """'s""", """$""", """5""", """@,@""", """000""", """with""", """3""", """@.@""", """34""", """m""", """.""", """What""", """'s""", """up""", """!""", """?""", ] self.assertListEqual(tokenizer.tokenize(__magic_name__ ) , __magic_name__ ) self.assertEqual(tokenizer.convert_tokens_to_string(__magic_name__ ) , __magic_name__ ) def lowercase__ ( self : Tuple ) -> str: """simple docstring""" __snake_case : int = self.get_tokenizer() __snake_case : List[Any] = len(__magic_name__ ) tokenizer.add_tokens(["""new1""", """new2"""] ) tokenizer.move_added_token("""new1""" , 1 ) # Check that moved token is not copied (duplicate) self.assertEqual(len(__magic_name__ ) , original_len + 2 ) # Check that token is moved to specified id self.assertEqual(tokenizer.encode("""new1""" ) , [1] ) self.assertEqual(tokenizer.decode([1] ) , """new1""" )
364
'''simple docstring''' import argparse import json import os import fairseq import torch from fairseq.data import Dictionary # Register SEW's fairseq modules from sew_asapp import tasks # noqa: F401 from transformers import ( SEWConfig, SEWForCTC, SEWModel, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaProcessor, logging, ) logging.set_verbosity_info() __UpperCamelCase = logging.get_logger(__name__) __UpperCamelCase = { "post_extract_proj": "feature_projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.k_proj": "encoder.layers.*.attention.k_proj", "self_attn.v_proj": "encoder.layers.*.attention.v_proj", "self_attn.q_proj": "encoder.layers.*.attention.q_proj", "self_attn.out_proj": "encoder.layers.*.attention.out_proj", "self_attn_layer_norm": "encoder.layers.*.layer_norm", "fc1": "encoder.layers.*.feed_forward.intermediate_dense", "fc2": "encoder.layers.*.feed_forward.output_dense", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.upsample.0": "encoder.upsample.projection", "encoder.layer_norm": "encoder.layer_norm", "w2v_model.layer_norm": "layer_norm", "w2v_encoder.proj": "lm_head", "mask_emb": "masked_spec_embed", } def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> List[Any]: """simple docstring""" for attribute in key.split(""".""" ): __snake_case : Optional[int] = getattr(_lowerCamelCase , _lowerCamelCase ) if weight_type is not None: __snake_case : Optional[Any] = getattr(_lowerCamelCase , _lowerCamelCase ).shape else: __snake_case : List[str] = hf_pointer.shape assert hf_shape == value.shape, ( F'''Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be''' F''' {value.shape} for {full_name}''' ) if weight_type == "weight": __snake_case : Union[str, Any] = value elif weight_type == "weight_g": __snake_case : str = value elif weight_type == "weight_v": __snake_case : Tuple = value elif weight_type == "bias": __snake_case : str = value else: __snake_case : List[Any] = value logger.info(F'''{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.''' ) def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Optional[int]: """simple docstring""" __snake_case : Tuple = [] __snake_case : List[Any] = fairseq_model.state_dict() __snake_case : int = hf_model.sew.feature_extractor if is_finetuned else hf_model.feature_extractor for name, value in fairseq_dict.items(): __snake_case : Any = False if "conv_layers" in name: load_conv_layer( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , hf_model.config.feat_extract_norm == """group""" , ) __snake_case : Optional[int] = True else: for key, mapped_key in MAPPING.items(): __snake_case : Optional[Any] = """sew.""" + mapped_key if (is_finetuned and mapped_key != """lm_head""") else mapped_key if key in name or key.split("""w2v_model.""" )[-1] == name.split(""".""" )[0]: __snake_case : Dict = True if "*" in mapped_key: __snake_case : List[Any] = name.split(_lowerCamelCase )[0].split(""".""" )[-2] __snake_case : Optional[int] = mapped_key.replace("""*""" , _lowerCamelCase ) if "weight_g" in name: __snake_case : Dict = """weight_g""" elif "weight_v" in name: __snake_case : List[str] = """weight_v""" elif "weight" in name: __snake_case : str = """weight""" elif "bias" in name: __snake_case : int = """bias""" else: __snake_case : int = None set_recursively(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) continue if not is_used: unused_weights.append(_lowerCamelCase ) logger.warning(F'''Unused weights: {unused_weights}''' ) def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Any: """simple docstring""" __snake_case : Dict = full_name.split("""conv_layers.""" )[-1] __snake_case : Optional[int] = name.split(""".""" ) __snake_case : Dict = int(items[0] ) __snake_case : Optional[Any] = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) __snake_case : Union[str, Any] = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) __snake_case : int = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F'''{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was''' " found." ) __snake_case : str = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.''' ) __snake_case : List[Any] = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) else: unused_weights.append(_lowerCamelCase ) def _a ( _lowerCamelCase , _lowerCamelCase ) -> Tuple: """simple docstring""" __snake_case : List[str] = SEWConfig() if is_finetuned: __snake_case : List[Any] = model.wav_encoder.wav_model.cfg else: __snake_case : Optional[Any] = model.cfg __snake_case : Tuple = fs_config.conv_bias __snake_case : List[Any] = eval(fs_config.conv_feature_layers ) __snake_case : List[Any] = [x[0] for x in conv_layers] __snake_case : Dict = [x[1] for x in conv_layers] __snake_case : Tuple = [x[2] for x in conv_layers] __snake_case : List[str] = """gelu""" __snake_case : Dict = """layer""" if fs_config.extractor_mode == """layer_norm""" else """group""" __snake_case : Optional[int] = 0.0 __snake_case : Optional[Any] = fs_config.activation_fn.name __snake_case : Dict = fs_config.encoder_embed_dim __snake_case : Dict = 0.02 __snake_case : Any = fs_config.encoder_ffn_embed_dim __snake_case : Tuple = 1E-5 __snake_case : Dict = fs_config.encoder_layerdrop __snake_case : Any = fs_config.encoder_attention_heads __snake_case : int = fs_config.conv_pos_groups __snake_case : Tuple = fs_config.conv_pos __snake_case : Optional[int] = len(_lowerCamelCase ) __snake_case : int = fs_config.encoder_layers __snake_case : Optional[int] = fs_config.squeeze_factor # take care of any params that are overridden by the Wav2VecCtc model if is_finetuned: __snake_case : Union[str, Any] = model.cfg __snake_case : Tuple = fs_config.final_dropout __snake_case : Tuple = fs_config.layerdrop __snake_case : Any = fs_config.activation_dropout __snake_case : int = fs_config.mask_prob > 0 or fs_config.mask_channel_prob > 0 __snake_case : Tuple = fs_config.attention_dropout __snake_case : List[Any] = fs_config.dropout_input __snake_case : Optional[Any] = fs_config.dropout __snake_case : str = fs_config.mask_channel_length __snake_case : Any = fs_config.mask_channel_prob __snake_case : int = fs_config.mask_length __snake_case : str = fs_config.mask_prob __snake_case : str = """Wav2Vec2FeatureExtractor""" __snake_case : Dict = """Wav2Vec2CTCTokenizer""" return config @torch.no_grad() def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase=True ) -> int: """simple docstring""" if is_finetuned: __snake_case , __snake_case , __snake_case : Any = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"""data""": """/""".join(dict_path.split("""/""" )[:-1] )} ) else: __snake_case , __snake_case , __snake_case : List[str] = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] ) if config_path is not None: __snake_case : Optional[Any] = SEWConfig.from_pretrained(_lowerCamelCase ) else: __snake_case : int = convert_config(model[0] , _lowerCamelCase ) __snake_case : Dict = model[0].eval() __snake_case : Optional[Any] = True if config.feat_extract_norm == """layer""" else False __snake_case : Optional[Any] = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_6000 , padding_value=0 , do_normalize=_lowerCamelCase , return_attention_mask=_lowerCamelCase , ) if is_finetuned: if dict_path: __snake_case : str = Dictionary.load(_lowerCamelCase ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq __snake_case : Union[str, Any] = target_dict.pad_index __snake_case : Optional[Any] = target_dict.bos_index __snake_case : Tuple = target_dict.pad_index __snake_case : List[str] = target_dict.bos_index __snake_case : Optional[Any] = target_dict.eos_index __snake_case : List[str] = len(target_dict.symbols ) __snake_case : Optional[Any] = os.path.join(_lowerCamelCase , """vocab.json""" ) if not os.path.isdir(_lowerCamelCase ): logger.error("""--pytorch_dump_folder_path ({}) should be a directory""".format(_lowerCamelCase ) ) return os.makedirs(_lowerCamelCase , exist_ok=_lowerCamelCase ) with open(_lowerCamelCase , """w""" , encoding="""utf-8""" ) as vocab_handle: json.dump(target_dict.indices , _lowerCamelCase ) __snake_case : List[Any] = WavaVecaCTCTokenizer( _lowerCamelCase , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="""|""" , do_lower_case=_lowerCamelCase , ) __snake_case : Optional[int] = WavaVecaProcessor(feature_extractor=_lowerCamelCase , tokenizer=_lowerCamelCase ) processor.save_pretrained(_lowerCamelCase ) __snake_case : List[str] = SEWForCTC(_lowerCamelCase ) else: __snake_case : List[str] = SEWModel(_lowerCamelCase ) feature_extractor.save_pretrained(_lowerCamelCase ) recursively_load_weights(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) hf_model.save_pretrained(_lowerCamelCase ) if __name__ == "__main__": __UpperCamelCase = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--is_finetuned", action="store_true", help="Whether the model to convert is a fine-tuned model or not" ) __UpperCamelCase = parser.parse_args() convert_sew_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, args.is_finetuned )
13
0
import argparse import json import os import re import shutil import torch from transformers import BioGptConfig, BioGptForCausalLM from transformers.models.biogpt.tokenization_biogpt import VOCAB_FILES_NAMES from transformers.tokenization_utils_base import TOKENIZER_CONFIG_FILE from transformers.utils import WEIGHTS_NAME, logging logging.set_verbosity_warning() a : Any = 2 class _a : def __init__(self, *, # begin keyword-only arguments SCREAMING_SNAKE_CASE_="<s>", SCREAMING_SNAKE_CASE_="<pad>", SCREAMING_SNAKE_CASE_="</s>", SCREAMING_SNAKE_CASE_="<unk>", SCREAMING_SNAKE_CASE_=None, ) -> List[str]: UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_: str = bos, unk, pad, eos UpperCAmelCase_: int = [] UpperCAmelCase_: Tuple = [] UpperCAmelCase_: Optional[int] = {} UpperCAmelCase_: Union[str, Any] = self.add_symbol(SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: str = self.add_symbol(SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: Optional[Any] = self.add_symbol(SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: int = self.add_symbol(SCREAMING_SNAKE_CASE_ ) if extra_special_symbols: for s in extra_special_symbols: self.add_symbol(SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: Any = len(self.symbols ) def __eq__(self, SCREAMING_SNAKE_CASE_ ) -> Any: return self.indices == other.indices def __getitem__(self, SCREAMING_SNAKE_CASE_ ) -> List[Any]: if idx < len(self.symbols ): return self.symbols[idx] return self.unk_word def __len__(self ) -> int: return len(self.symbols ) def __contains__(self, SCREAMING_SNAKE_CASE_ ) -> Any: return sym in self.indices @classmethod def __snake_case (cls, SCREAMING_SNAKE_CASE_ ) -> Optional[Any]: UpperCAmelCase_: Optional[Any] = cls() d.add_from_file(SCREAMING_SNAKE_CASE_ ) return d def __snake_case (self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_=1, SCREAMING_SNAKE_CASE_=False ) -> List[Any]: if word in self.indices and not overwrite: UpperCAmelCase_: Optional[Any] = self.indices[word] UpperCAmelCase_: Optional[int] = self.count[idx] + n return idx else: UpperCAmelCase_: str = len(self.symbols ) UpperCAmelCase_: Any = idx self.symbols.append(SCREAMING_SNAKE_CASE_ ) self.count.append(SCREAMING_SNAKE_CASE_ ) return idx def __snake_case (self, SCREAMING_SNAKE_CASE_ ) -> Tuple: return 0 def __snake_case (self, SCREAMING_SNAKE_CASE_ ) -> Optional[Any]: if isinstance(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ): try: with open(SCREAMING_SNAKE_CASE_, """r""", encoding="""utf-8""" ) as fd: self.add_from_file(SCREAMING_SNAKE_CASE_ ) except FileNotFoundError as fnfe: raise fnfe except UnicodeError: raise Exception("""Incorrect encoding detected in {}, please rebuild the dataset""".format(SCREAMING_SNAKE_CASE_ ) ) return UpperCAmelCase_: int = f.readlines() UpperCAmelCase_: Union[str, Any] = self._load_meta(SCREAMING_SNAKE_CASE_ ) for line in lines[indices_start_line:]: try: UpperCAmelCase_ , UpperCAmelCase_: Union[str, Any] = line.rstrip().rsplit(""" """, 1 ) if field == "#fairseq:overwrite": UpperCAmelCase_: Optional[Any] = True UpperCAmelCase_ , UpperCAmelCase_: Optional[Any] = line.rsplit(""" """, 1 ) else: UpperCAmelCase_: Dict = False UpperCAmelCase_: str = int(SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: Optional[int] = line if word in self and not overwrite: raise RuntimeError( """Duplicate word found when loading Dictionary: '{}'. """ """Duplicate words can overwrite earlier ones by adding the """ """#fairseq:overwrite flag at the end of the corresponding row """ """in the dictionary file. If using the Camembert model, please """ """download an updated copy of the model file.""".format(SCREAMING_SNAKE_CASE_ ) ) self.add_symbol(SCREAMING_SNAKE_CASE_, n=SCREAMING_SNAKE_CASE_, overwrite=SCREAMING_SNAKE_CASE_ ) except ValueError: raise ValueError("""Incorrect dictionary format, expected '<token> <cnt> [flags]'""" ) def lowerCAmelCase_ (lowerCAmelCase__: List[str] ): """simple docstring""" UpperCAmelCase_: Any = dict((re.sub(r"""@@$""" , """""" , lowerCAmelCase__ ), v) if k.endswith("""@@""" ) else (re.sub(r"""$""" , """</w>""" , lowerCAmelCase__ ), v) for k, v in d.items() ) UpperCAmelCase_: Tuple = """<s> <pad> </s> <unk>""".split() # restore the special tokens for k in keep_keys: del da[F'{k}</w>'] UpperCAmelCase_: List[str] = d[k] # restore return da def lowerCAmelCase_ (lowerCAmelCase__: Any , lowerCAmelCase__: Any ): """simple docstring""" if not os.path.exists(lowerCAmelCase__ ): raise ValueError(F'path {biogpt_checkpoint_path} does not exist!' ) os.makedirs(lowerCAmelCase__ , exist_ok=lowerCAmelCase__ ) print(F'Writing results to {pytorch_dump_folder_path}' ) # handle various types of models UpperCAmelCase_: Union[str, Any] = os.path.join(lowerCAmelCase__ , """checkpoint.pt""" ) if not os.path.isfile(lowerCAmelCase__ ): raise ValueError(F'path to the file {checkpoint_file} does not exist!' ) UpperCAmelCase_: List[Any] = torch.load(lowerCAmelCase__ , map_location="""cpu""" ) UpperCAmelCase_: Optional[int] = chkpt["""cfg"""]["""model"""] # dicts UpperCAmelCase_: Tuple = os.path.join(lowerCAmelCase__ , """dict.txt""" ) if not os.path.isfile(lowerCAmelCase__ ): raise ValueError(F'path to the file {dict_file} does not exist!' ) UpperCAmelCase_: Tuple = Dictionary.load(lowerCAmelCase__ ) UpperCAmelCase_: Dict = rewrite_dict_keys(src_dict.indices ) UpperCAmelCase_: Optional[Any] = len(lowerCAmelCase__ ) UpperCAmelCase_: List[str] = os.path.join(lowerCAmelCase__ , VOCAB_FILES_NAMES["""vocab_file"""] ) print(F'Generating {src_vocab_file} of {src_vocab_size} records' ) with open(lowerCAmelCase__ , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(lowerCAmelCase__ , ensure_ascii=lowerCAmelCase__ , indent=lowerCAmelCase__ ) ) # merges_file (bpecodes) UpperCAmelCase_: Dict = os.path.join(lowerCAmelCase__ , """bpecodes""" ) if not os.path.isfile(lowerCAmelCase__ ): raise ValueError(F'path to the file {bpecodes_file} does not exist!' ) UpperCAmelCase_: Any = os.path.join(lowerCAmelCase__ , VOCAB_FILES_NAMES["""merges_file"""] ) shutil.copyfile(lowerCAmelCase__ , lowerCAmelCase__ ) # model config UpperCAmelCase_: int = os.path.join(lowerCAmelCase__ , """config.json""" ) UpperCAmelCase_: Dict = { """activation_dropout""": args["""activation_dropout"""], """architectures""": ["""BioGptForCausalLM"""], """attention_probs_dropout_prob""": args["""attention_dropout"""], """bos_token_id""": 0, """eos_token_id""": 2, """hidden_act""": args["""activation_fn"""], """hidden_dropout_prob""": args["""dropout"""], """hidden_size""": args["""decoder_embed_dim"""], """initializer_range""": 0.02, """intermediate_size""": args["""decoder_ffn_embed_dim"""], """layer_norm_eps""": 1e-12, """layerdrop""": args["""decoder_layerdrop"""], """max_position_embeddings""": args["""max_target_positions"""], """model_type""": """biogpt""", """num_attention_heads""": args["""decoder_attention_heads"""], """num_hidden_layers""": args["""decoder_layers"""], """pad_token_id""": 1, """scale_embedding""": not args["""no_scale_embedding"""], """tie_word_embeddings""": args["""share_decoder_input_output_embed"""], """vocab_size""": src_vocab_size, } # good hparam defaults to start with print(F'Generating {biogpt_model_config_file}' ) with open(lowerCAmelCase__ , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(lowerCAmelCase__ , ensure_ascii=lowerCAmelCase__ , indent=lowerCAmelCase__ ) ) # tokenizer config UpperCAmelCase_: List[str] = os.path.join(lowerCAmelCase__ , lowerCAmelCase__ ) UpperCAmelCase_: str = { """bos_token""": """<s>""", """eos_token""": """</s>""", """model_max_length""": 1_0_2_4, """pad_token""": """<pad>""", """special_tokens_map_file""": None, """tokenizer_class""": """BioGptTokenizer""", """unk_token""": """<unk>""", } print(F'Generating {biogpt_tokenizer_config_file}' ) with open(lowerCAmelCase__ , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(lowerCAmelCase__ , ensure_ascii=lowerCAmelCase__ , indent=lowerCAmelCase__ ) ) # model UpperCAmelCase_: Union[str, Any] = chkpt["""model"""] # remove unneeded keys UpperCAmelCase_: str = [ """decoder.version""", ] for k in ignore_keys: model_state_dict.pop(lowerCAmelCase__ , lowerCAmelCase__ ) UpperCAmelCase_: Optional[Any] = list(model_state_dict.keys() ) for layer_name in layer_names: if layer_name.endswith("""output_projection.weight""" ): UpperCAmelCase_: Union[str, Any] = model_state_dict.pop(lowerCAmelCase__ ) else: UpperCAmelCase_: Union[str, Any] = model_state_dict.pop(lowerCAmelCase__ ) UpperCAmelCase_: str = BioGptConfig.from_pretrained(lowerCAmelCase__ ) UpperCAmelCase_: str = BioGptForCausalLM(lowerCAmelCase__ ) # check that it loads ok model_new.load_state_dict(lowerCAmelCase__ ) # save UpperCAmelCase_: int = os.path.join(lowerCAmelCase__ , lowerCAmelCase__ ) print(F'Generating {pytorch_weights_dump_path}' ) torch.save(lowerCAmelCase__ , lowerCAmelCase__ ) print("""Conversion is done!""" ) if __name__ == "__main__": a : int = argparse.ArgumentParser() # Required parameters parser.add_argument( '--biogpt_checkpoint_path', default=None, type=str, required=True, help=( 'Path to the official PyTorch checkpoint file which is expected to reside in the dump dir with dicts,' ' bpecodes, etc.' ), ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) a : Dict = parser.parse_args() convert_biogpt_checkpoint_to_pytorch(args.biogpt_checkpoint_path, args.pytorch_dump_folder_path)
147
from collections import namedtuple a : List[Any] = namedtuple('from_to', 'from_ to') a : Tuple = { 'cubicmeter': from_to(1, 1), 'litre': from_to(0.0_0_1, 1_000), 'kilolitre': from_to(1, 1), 'gallon': from_to(0.0_0_4_5_4, 2_6_4.1_7_2), 'cubicyard': from_to(0.7_6_4_5_5, 1.3_0_7_9_5), 'cubicfoot': from_to(0.0_2_8, 3_5.3_1_4_7), 'cup': from_to(0.0_0_0_2_3_6_5_8_8, 4_2_2_6.7_5), } def lowerCAmelCase_ (lowerCAmelCase__: float , lowerCAmelCase__: str , lowerCAmelCase__: str ): """simple docstring""" if from_type not in METRIC_CONVERSION: raise ValueError( F'Invalid \'from_type\' value: {from_type!r} Supported values are:\n' + """, """.join(lowerCAmelCase__ ) ) if to_type not in METRIC_CONVERSION: raise ValueError( F'Invalid \'to_type\' value: {to_type!r}. Supported values are:\n' + """, """.join(lowerCAmelCase__ ) ) return value * METRIC_CONVERSION[from_type].from_ * METRIC_CONVERSION[to_type].to if __name__ == "__main__": import doctest doctest.testmod()
147
1
"""simple docstring""" import random import unittest import numpy as np import transformers from transformers import is_flax_available, is_torch_available from transformers.testing_utils import is_pt_flax_cross_test, require_flax if is_flax_available(): import os import jax.numpy as jnp from jax import jit from transformers import AutoTokenizer, FlaxAutoModelForCausalLM from transformers.modeling_flax_pytorch_utils import load_flax_weights_in_pytorch_model lowercase__ : str = """0.12""" # assumed parallelism: 8 if is_torch_available(): import torch def __lowerCamelCase ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase=None ) -> List[Any]: """simple docstring""" if rng is None: lowerCAmelCase_ : Union[str, Any] = random.Random() lowerCAmelCase_ : Tuple = 1 for dim in shape: total_dims *= dim lowerCAmelCase_ : Optional[Any] = [] for _ in range(__UpperCamelCase ): values.append(rng.randint(0 , vocab_size - 1 ) ) lowerCAmelCase_ : List[Any] = np.array(__UpperCamelCase , dtype=jnp.intaa ).reshape(__UpperCamelCase ) return output def __lowerCamelCase ( __UpperCamelCase , __UpperCamelCase=None ) -> Union[str, Any]: """simple docstring""" lowerCAmelCase_ : List[Any] = ids_tensor(__UpperCamelCase , vocab_size=2 , rng=__UpperCamelCase ) # make sure that at least one token is attended to for each batch lowerCAmelCase_ : str = 1 return attn_mask @require_flax class __lowerCamelCase : '''simple docstring''' a_ : List[str] = None a_ : Optional[int] = () def lowerCamelCase ( self : Dict ): lowerCAmelCase_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() # cut to half length & take max batch_size 3 lowerCAmelCase_ : int = 2 lowerCAmelCase_ : str = inputs["input_ids"].shape[-1] // 2 lowerCAmelCase_ : List[str] = inputs["input_ids"][:max_batch_size, :sequence_length] lowerCAmelCase_ : str = jnp.ones_like(a_ ) lowerCAmelCase_ : Union[str, Any] = attention_mask[:max_batch_size, :sequence_length] # generate max 5 tokens lowerCAmelCase_ : Tuple = input_ids.shape[-1] + 5 if config.eos_token_id is not None and config.pad_token_id is None: # hack to allow generate for models such as GPT2 as is done in `generate()` lowerCAmelCase_ : str = config.eos_token_id return config, input_ids, attention_mask, max_length @is_pt_flax_cross_test def lowerCamelCase ( self : int ): lowerCAmelCase_ : int = self._get_input_ids_and_config() lowerCAmelCase_ : Optional[int] = False lowerCAmelCase_ : int = max_length lowerCAmelCase_ : Dict = 0 for model_class in self.all_generative_model_classes: lowerCAmelCase_ : str = model_class(a_ ) lowerCAmelCase_ : int = model_class.__name__[4:] # Skip the "Flax" at the beginning lowerCAmelCase_ : List[str] = getattr(a_ , a_ ) lowerCAmelCase_ : List[str] = pt_model_class(a_ ).eval() lowerCAmelCase_ : int = load_flax_weights_in_pytorch_model(a_ , flax_model.params ) lowerCAmelCase_ : int = flax_model.generate(a_ ).sequences lowerCAmelCase_ : Dict = pt_model.generate(torch.tensor(a_ , dtype=torch.long ) ) if flax_generation_outputs.shape[-1] > pt_generation_outputs.shape[-1]: lowerCAmelCase_ : Dict = flax_generation_outputs[:, : pt_generation_outputs.shape[-1]] self.assertListEqual(pt_generation_outputs.numpy().tolist() , flax_generation_outputs.tolist() ) def lowerCamelCase ( self : Optional[int] ): lowerCAmelCase_ : Dict = self._get_input_ids_and_config() lowerCAmelCase_ : int = False lowerCAmelCase_ : str = max_length for model_class in self.all_generative_model_classes: lowerCAmelCase_ : Dict = model_class(a_ ) lowerCAmelCase_ : List[Any] = model.generate(a_ ).sequences self.assertEqual(generation_outputs.shape[-1] , a_ ) lowerCAmelCase_ : List[Any] = jit(model.generate ) lowerCAmelCase_ : Any = jit_generate(a_ ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def lowerCamelCase ( self : List[str] ): lowerCAmelCase_ : List[Any] = self._get_input_ids_and_config() lowerCAmelCase_ : int = True lowerCAmelCase_ : str = max_length for model_class in self.all_generative_model_classes: lowerCAmelCase_ : int = model_class(a_ ) lowerCAmelCase_ : Optional[int] = model.generate(a_ ).sequences self.assertEqual(generation_outputs.shape[-1] , a_ ) lowerCAmelCase_ : Optional[int] = jit(model.generate ) lowerCAmelCase_ : int = jit_generate(a_ ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def lowerCamelCase ( self : str ): lowerCAmelCase_ : Union[str, Any] = self._get_input_ids_and_config() lowerCAmelCase_ : Optional[int] = False lowerCAmelCase_ : List[str] = max_length lowerCAmelCase_ : Tuple = 2 for model_class in self.all_generative_model_classes: lowerCAmelCase_ : Optional[int] = model_class(a_ ) lowerCAmelCase_ : str = model.generate(a_ ).sequences self.assertEqual(generation_outputs.shape[-1] , a_ ) lowerCAmelCase_ : Any = jit(model.generate ) lowerCAmelCase_ : Any = jit_generate(a_ ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def lowerCamelCase ( self : Optional[Any] ): lowerCAmelCase_ : Any = self._get_input_ids_and_config() lowerCAmelCase_ : Tuple = False lowerCAmelCase_ : Tuple = max_length lowerCAmelCase_ : List[Any] = 2 lowerCAmelCase_ : List[Any] = 2 for model_class in self.all_generative_model_classes: lowerCAmelCase_ : Tuple = model_class(a_ ) lowerCAmelCase_ : int = model.generate(a_ ).sequences self.assertEqual(generation_outputs.shape[0] , input_ids.shape[0] * config.num_return_sequences ) def lowerCamelCase ( self : Optional[Any] ): lowerCAmelCase_ : Optional[Any] = self._get_input_ids_and_config() lowerCAmelCase_ : Dict = True lowerCAmelCase_ : Optional[int] = max_length lowerCAmelCase_ : List[Any] = 0.8 lowerCAmelCase_ : List[str] = 10 lowerCAmelCase_ : Optional[int] = 0.3 lowerCAmelCase_ : Union[str, Any] = 1 lowerCAmelCase_ : Optional[Any] = 8 lowerCAmelCase_ : str = 9 for model_class in self.all_generative_model_classes: lowerCAmelCase_ : Optional[Any] = model_class(a_ ) lowerCAmelCase_ : Optional[Any] = model.generate(a_ ).sequences self.assertEqual(generation_outputs.shape[-1] , a_ ) lowerCAmelCase_ : Optional[int] = jit(model.generate ) lowerCAmelCase_ : Optional[int] = jit_generate(a_ ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def lowerCamelCase ( self : int ): lowerCAmelCase_ : List[str] = self._get_input_ids_and_config() lowerCAmelCase_ : Any = max_length lowerCAmelCase_ : Optional[int] = 1 lowerCAmelCase_ : int = 8 lowerCAmelCase_ : Union[str, Any] = 9 for model_class in self.all_generative_model_classes: lowerCAmelCase_ : Tuple = model_class(a_ ) lowerCAmelCase_ : Union[str, Any] = model.generate(a_ ).sequences self.assertEqual(generation_outputs.shape[-1] , a_ ) lowerCAmelCase_ : Union[str, Any] = jit(model.generate ) lowerCAmelCase_ : Tuple = jit_generate(a_ ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def lowerCamelCase ( self : Optional[int] ): lowerCAmelCase_ : Union[str, Any] = self._get_input_ids_and_config() lowerCAmelCase_ : Optional[Any] = max_length lowerCAmelCase_ : str = 2 lowerCAmelCase_ : List[str] = 1 lowerCAmelCase_ : List[Any] = 8 lowerCAmelCase_ : Any = 9 for model_class in self.all_generative_model_classes: lowerCAmelCase_ : Dict = model_class(a_ ) lowerCAmelCase_ : Tuple = model.generate(a_ ).sequences self.assertEqual(generation_outputs.shape[-1] , a_ ) lowerCAmelCase_ : List[Any] = jit(model.generate ) lowerCAmelCase_ : Dict = jit_generate(a_ ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def lowerCamelCase ( self : Union[str, Any] ): lowerCAmelCase_ : Any = self._get_input_ids_and_config() # pad attention mask on the left lowerCAmelCase_ : Optional[Any] = attention_mask.at[(0, 0)].set(0 ) lowerCAmelCase_ : Optional[Any] = False lowerCAmelCase_ : List[Any] = max_length for model_class in self.all_generative_model_classes: lowerCAmelCase_ : Optional[Any] = model_class(a_ ) lowerCAmelCase_ : Optional[int] = model.generate(a_ , attention_mask=a_ ).sequences self.assertEqual(generation_outputs.shape[-1] , a_ ) lowerCAmelCase_ : Dict = jit(model.generate ) lowerCAmelCase_ : Tuple = jit_generate(a_ , attention_mask=a_ ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def lowerCamelCase ( self : Union[str, Any] ): lowerCAmelCase_ : List[Any] = self._get_input_ids_and_config() # pad attention mask on the left lowerCAmelCase_ : List[str] = attention_mask.at[(0, 0)].set(0 ) lowerCAmelCase_ : Tuple = True lowerCAmelCase_ : int = max_length for model_class in self.all_generative_model_classes: lowerCAmelCase_ : Dict = model_class(a_ ) lowerCAmelCase_ : Optional[Any] = model.generate(a_ , attention_mask=a_ ).sequences self.assertEqual(generation_outputs.shape[-1] , a_ ) lowerCAmelCase_ : int = jit(model.generate ) lowerCAmelCase_ : Tuple = jit_generate(a_ , attention_mask=a_ ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def lowerCamelCase ( self : List[Any] ): lowerCAmelCase_ : Tuple = self._get_input_ids_and_config() # pad attention mask on the left lowerCAmelCase_ : int = attention_mask.at[(0, 0)].set(0 ) lowerCAmelCase_ : Any = 2 lowerCAmelCase_ : Dict = max_length for model_class in self.all_generative_model_classes: lowerCAmelCase_ : List[Any] = model_class(a_ ) lowerCAmelCase_ : Union[str, Any] = model.generate(a_ , attention_mask=a_ ).sequences self.assertEqual(generation_outputs.shape[-1] , a_ ) lowerCAmelCase_ : Union[str, Any] = jit(model.generate ) lowerCAmelCase_ : Union[str, Any] = jit_generate(a_ , attention_mask=a_ ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) @require_flax class __lowerCamelCase ( unittest.TestCase ): '''simple docstring''' def lowerCamelCase ( self : Any ): lowerCAmelCase_ : str = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-bert" ) lowerCAmelCase_ : Union[str, Any] = FlaxAutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-bert-flax-only" ) lowerCAmelCase_ : Optional[int] = "Hello world" lowerCAmelCase_ : str = tokenizer(a_ , return_tensors="np" ).input_ids # typos are quickly detected (the correct argument is `do_sample`) with self.assertRaisesRegex(a_ , "do_samples" ): model.generate(a_ , do_samples=a_ ) # arbitrary arguments that will not be used anywhere are also not accepted with self.assertRaisesRegex(a_ , "foo" ): lowerCAmelCase_ : Optional[Any] = {"foo": "bar"} model.generate(a_ , **a_ )
357
"""simple docstring""" class __lowerCamelCase ( A__ ): '''simple docstring''' pass class __lowerCamelCase ( A__ ): '''simple docstring''' pass class __lowerCamelCase : '''simple docstring''' def __init__( self : List[str] ): lowerCAmelCase_ : Optional[int] = [ [], [], [], ] def lowerCamelCase ( self : List[str] , a_ : int , a_ : int ): try: if len(self.queues[priority] ) >= 1_00: raise OverflowError("Maximum queue size is 100" ) self.queues[priority].append(a_ ) except IndexError: raise ValueError("Valid priorities are 0, 1, and 2" ) def lowerCamelCase ( self : Dict ): for queue in self.queues: if queue: return queue.pop(0 ) raise UnderFlowError("All queues are empty" ) def __str__( self : Any ): return "\n".join(f'''Priority {i}: {q}''' for i, q in enumerate(self.queues ) ) class __lowerCamelCase : '''simple docstring''' def __init__( self : List[Any] ): lowerCAmelCase_ : int = [] def lowerCamelCase ( self : int , a_ : int ): if len(self.queue ) == 1_00: raise OverFlowError("Maximum queue size is 100" ) self.queue.append(a_ ) def lowerCamelCase ( self : List[str] ): if not self.queue: raise UnderFlowError("The queue is empty" ) else: lowerCAmelCase_ : Optional[int] = min(self.queue ) self.queue.remove(a_ ) return data def __str__( self : List[str] ): return str(self.queue ) def __lowerCamelCase ( ) -> List[str]: """simple docstring""" lowerCAmelCase_ : Tuple = FixedPriorityQueue() fpq.enqueue(0 , 10 ) fpq.enqueue(1 , 70 ) fpq.enqueue(0 , 100 ) fpq.enqueue(2 , 1 ) fpq.enqueue(2 , 5 ) fpq.enqueue(1 , 7 ) fpq.enqueue(2 , 4 ) fpq.enqueue(1 , 64 ) fpq.enqueue(0 , 128 ) print(__UpperCamelCase ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(__UpperCamelCase ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) def __lowerCamelCase ( ) -> str: """simple docstring""" lowerCAmelCase_ : Union[str, Any] = ElementPriorityQueue() epq.enqueue(10 ) epq.enqueue(70 ) epq.enqueue(100 ) epq.enqueue(1 ) epq.enqueue(5 ) epq.enqueue(7 ) epq.enqueue(4 ) epq.enqueue(64 ) epq.enqueue(128 ) print(__UpperCamelCase ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(__UpperCamelCase ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) if __name__ == "__main__": fixed_priority_queue() element_priority_queue()
161
0
'''simple docstring''' import logging import os from typing import List, TextIO, Union from conllu import parse_incr from utils_ner import InputExample, Split, TokenClassificationTask a__ : List[str] = logging.getLogger(__name__) class UpperCAmelCase__ ( UpperCAmelCase_): def __init__( self , lowercase=-1 ) -> Optional[int]: # in NER datasets, the last column is usually reserved for NER label __UpperCamelCase = label_idx def __lowerCamelCase ( self , lowercase , lowercase ) -> List[InputExample]: if isinstance(lowercase , lowercase ): __UpperCamelCase = mode.value __UpperCamelCase = os.path.join(lowercase , f"{mode}.txt" ) __UpperCamelCase = 1 __UpperCamelCase = [] with open(lowercase , encoding="""utf-8""" ) as f: __UpperCamelCase = [] __UpperCamelCase = [] for line in f: if line.startswith("""-DOCSTART-""" ) or line == "" or line == "\n": if words: examples.append(InputExample(guid=f"{mode}-{guid_index}" , words=lowercase , labels=lowercase ) ) guid_index += 1 __UpperCamelCase = [] __UpperCamelCase = [] else: __UpperCamelCase = line.split(""" """ ) words.append(splits[0] ) if len(lowercase ) > 1: labels.append(splits[self.label_idx].replace("""\n""" , """""" ) ) else: # Examples could have no label for mode = "test" labels.append("""O""" ) if words: examples.append(InputExample(guid=f"{mode}-{guid_index}" , words=lowercase , labels=lowercase ) ) return examples def __lowerCamelCase ( self , lowercase , lowercase , lowercase ) -> Any: __UpperCamelCase = 0 for line in test_input_reader: if line.startswith("""-DOCSTART-""" ) or line == "" or line == "\n": writer.write(lowercase ) if not preds_list[example_id]: example_id += 1 elif preds_list[example_id]: __UpperCamelCase = line.split()[0] + """ """ + preds_list[example_id].pop(0 ) + """\n""" writer.write(lowercase ) else: logger.warning("""Maximum sequence length exceeded: No prediction for '%s'.""" , line.split()[0] ) def __lowerCamelCase ( self , lowercase ) -> List[str]: if path: with open(lowercase , """r""" ) as f: __UpperCamelCase = f.read().splitlines() if "O" not in labels: __UpperCamelCase = ["""O"""] + labels return labels else: return ["O", "B-MISC", "I-MISC", "B-PER", "I-PER", "B-ORG", "I-ORG", "B-LOC", "I-LOC"] class UpperCAmelCase__ ( UpperCAmelCase_): def __init__( self ) -> Optional[Any]: # in CONLL2003 dataset chunk column is second-to-last super().__init__(label_idx=-2 ) def __lowerCamelCase ( self , lowercase ) -> List[str]: if path: with open(lowercase , """r""" ) as f: __UpperCamelCase = f.read().splitlines() if "O" not in labels: __UpperCamelCase = ["""O"""] + labels return labels else: return [ "O", "B-ADVP", "B-INTJ", "B-LST", "B-PRT", "B-NP", "B-SBAR", "B-VP", "B-ADJP", "B-CONJP", "B-PP", "I-ADVP", "I-INTJ", "I-LST", "I-PRT", "I-NP", "I-SBAR", "I-VP", "I-ADJP", "I-CONJP", "I-PP", ] class UpperCAmelCase__ ( UpperCAmelCase_): def __lowerCamelCase ( self , lowercase , lowercase ) -> List[InputExample]: if isinstance(lowercase , lowercase ): __UpperCamelCase = mode.value __UpperCamelCase = os.path.join(lowercase , f"{mode}.txt" ) __UpperCamelCase = 1 __UpperCamelCase = [] with open(lowercase , encoding="""utf-8""" ) as f: for sentence in parse_incr(lowercase ): __UpperCamelCase = [] __UpperCamelCase = [] for token in sentence: words.append(token["""form"""] ) labels.append(token["""upos"""] ) assert len(lowercase ) == len(lowercase ) if words: examples.append(InputExample(guid=f"{mode}-{guid_index}" , words=lowercase , labels=lowercase ) ) guid_index += 1 return examples def __lowerCamelCase ( self , lowercase , lowercase , lowercase ) -> List[str]: __UpperCamelCase = 0 for sentence in parse_incr(lowercase ): __UpperCamelCase = preds_list[example_id] __UpperCamelCase = """""" for token in sentence: out += f"{token['form']} ({token['upos']}|{s_p.pop(0 )}) " out += "\n" writer.write(lowercase ) example_id += 1 def __lowerCamelCase ( self , lowercase ) -> List[str]: if path: with open(lowercase , """r""" ) as f: return f.read().splitlines() else: return [ "ADJ", "ADP", "ADV", "AUX", "CCONJ", "DET", "INTJ", "NOUN", "NUM", "PART", "PRON", "PROPN", "PUNCT", "SCONJ", "SYM", "VERB", "X", ]
349
'''simple docstring''' import pytest a__ : List[str] = '__dummy_dataset1__' a__ : Optional[int] = '\nimport json\nimport os\n\nimport datasets\n\n\nREPO_URL = "https://huggingface.co/datasets/albertvillanova/tests-raw-jsonl/resolve/main/"\nURLS = {"train": REPO_URL + "wikiann-bn-train.jsonl", "validation": REPO_URL + "wikiann-bn-validation.jsonl"}\n\n\nclass __DummyDataset1__(datasets.GeneratorBasedBuilder):\n\n def _info(self):\n features = datasets.Features(\n {\n "tokens": datasets.Sequence(datasets.Value("string")),\n "ner_tags": datasets.Sequence(\n datasets.features.ClassLabel(\n names=[\n "O",\n "B-PER",\n "I-PER",\n "B-ORG",\n "I-ORG",\n "B-LOC",\n "I-LOC",\n ]\n )\n ),\n "langs": datasets.Sequence(datasets.Value("string")),\n "spans": datasets.Sequence(datasets.Value("string")),\n }\n )\n return datasets.DatasetInfo(features=features)\n\n def _split_generators(self, dl_manager):\n dl_path = dl_manager.download(URLS)\n return [\n datasets.SplitGenerator(datasets.Split.TRAIN, gen_kwargs={"filepath": dl_path["train"]}),\n datasets.SplitGenerator(datasets.Split.VALIDATION, gen_kwargs={"filepath": dl_path["validation"]}),\n ]\n\n def _generate_examples(self, filepath):\n with open(filepath, "r", encoding="utf-8") as f:\n for i, line in enumerate(f):\n yield i, json.loads(line)\n' @pytest.fixture def _lowercase ( ): '''simple docstring''' return DATASET_LOADING_SCRIPT_NAME @pytest.fixture def _lowercase ( ): '''simple docstring''' return DATASET_LOADING_SCRIPT_CODE @pytest.fixture def _lowercase ( __A ,__A ,__A ): '''simple docstring''' __UpperCamelCase = dataset_loading_script_name __UpperCamelCase = tmp_path / """datasets""" / script_name script_dir.mkdir(parents=__A ) __UpperCamelCase = script_dir / f"{script_name}.py" with open(__A ,"""w""" ) as f: f.write(__A ) return str(__A )
349
1
__SCREAMING_SNAKE_CASE = { """joule""": 1.0, """kilojoule""": 1000, """megajoule""": 1000000, """gigajoule""": 1000000000, """wattsecond""": 1.0, """watthour""": 3600, """kilowatthour""": 3600000, """newtonmeter""": 1.0, """calorie_nutr""": 4186.8, """kilocalorie_nutr""": 418_6800.00, """electronvolt""": 1.6_0_2_1_7_6_6_3_4e-1_9, """britishthermalunit_it""": 1055.0_5585, """footpound""": 1.35_5818, } def UpperCAmelCase ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): if to_type not in ENERGY_CONVERSION or from_type not in ENERGY_CONVERSION: A : int = ( f"""Incorrect \'from_type\' or \'to_type\' value: {from_type!r}, {to_type!r}\n""" f"""Valid values are: {", ".join(__lowerCamelCase )}""" ) raise ValueError(__lowerCamelCase ) return value * ENERGY_CONVERSION[from_type] / ENERGY_CONVERSION[to_type] if __name__ == "__main__": import doctest doctest.testmod()
368
import argparse import logging import os import sys import numpy as np import onnxruntime import torch from bart_onnx.generation_onnx import BARTBeamSearchGenerator from bart_onnx.reduce_onnx_size import remove_dup_initializers import transformers from transformers import BartForConditionalGeneration, BartTokenizer logging.basicConfig( format="""%(asctime)s | %(levelname)s | %(name)s | [%(filename)s:%(lineno)d] %(message)s""", datefmt="""%Y-%m-%d %H:%M:%S""", level=os.environ.get("""LOGLEVEL""", """INFO""").upper(), stream=sys.stdout, ) __SCREAMING_SNAKE_CASE = logging.getLogger(__name__) __SCREAMING_SNAKE_CASE = {"""facebook/bart-base""": BartForConditionalGeneration} __SCREAMING_SNAKE_CASE = {"""facebook/bart-base""": BartTokenizer} def UpperCAmelCase ( ): A : List[Any] = argparse.ArgumentParser(description="Export Bart model + Beam Search to ONNX graph." ) parser.add_argument( "--validation_file" , type=_lowerCamelCase , default=_lowerCamelCase , help="A csv or a json file containing the validation data." ) parser.add_argument( "--max_length" , type=_lowerCamelCase , default=5 , help="The maximum total input sequence length after tokenization." , ) parser.add_argument( "--num_beams" , type=_lowerCamelCase , default=_lowerCamelCase , help=( "Number of beams to use for evaluation. This argument will be " "passed to ``model.generate``, which is used during ``evaluate`` and ``predict``." ) , ) parser.add_argument( "--model_name_or_path" , type=_lowerCamelCase , help="Path to pretrained model or model identifier from huggingface.co/models." , required=_lowerCamelCase , ) parser.add_argument( "--config_name" , type=_lowerCamelCase , default=_lowerCamelCase , help="Pretrained config name or path if not the same as model_name" , ) parser.add_argument( "--device" , type=_lowerCamelCase , default="cpu" , help="Device where the model will be run" , ) parser.add_argument("--output_file_path" , type=_lowerCamelCase , default=_lowerCamelCase , help="Where to store the final ONNX file." ) A : Any = parser.parse_args() return args def UpperCAmelCase ( _lowerCamelCase , _lowerCamelCase="cpu" ): A : int = model_dict[model_name].from_pretrained(_lowerCamelCase ).to(_lowerCamelCase ) A : List[Any] = tokenizer_dict[model_name].from_pretrained(_lowerCamelCase ) if model_name in ["facebook/bart-base"]: A : Optional[int] = 0 A : Union[str, Any] = None A : Optional[Any] = 0 return huggingface_model, tokenizer def UpperCAmelCase ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): model.eval() A : Optional[Any] = None A : List[Any] = torch.jit.script(BARTBeamSearchGenerator(_lowerCamelCase ) ) with torch.no_grad(): A : int = "My friends are cool but they eat too many carbs." A : List[Any] = tokenizer([ARTICLE_TO_SUMMARIZE] , max_length=1024 , return_tensors="pt" ).to(model.device ) A : int = model.generate( inputs["input_ids"] , attention_mask=inputs["attention_mask"] , num_beams=_lowerCamelCase , max_length=_lowerCamelCase , early_stopping=_lowerCamelCase , decoder_start_token_id=model.config.decoder_start_token_id , ) torch.onnx.export( _lowerCamelCase , ( inputs["input_ids"], inputs["attention_mask"], num_beams, max_length, model.config.decoder_start_token_id, ) , _lowerCamelCase , opset_version=14 , input_names=["input_ids", "attention_mask", "num_beams", "max_length", "decoder_start_token_id"] , output_names=["output_ids"] , dynamic_axes={ "input_ids": {0: "batch", 1: "seq"}, "output_ids": {0: "batch", 1: "seq_out"}, } , example_outputs=_lowerCamelCase , ) logger.info("Model exported to {}".format(_lowerCamelCase ) ) A : Optional[Any] = remove_dup_initializers(os.path.abspath(_lowerCamelCase ) ) logger.info("Deduplicated and optimized model written to {}".format(_lowerCamelCase ) ) A : List[Any] = onnxruntime.InferenceSession(_lowerCamelCase ) A : Dict = ort_sess.run( _lowerCamelCase , { "input_ids": inputs["input_ids"].cpu().numpy(), "attention_mask": inputs["attention_mask"].cpu().numpy(), "num_beams": np.array(_lowerCamelCase ), "max_length": np.array(_lowerCamelCase ), "decoder_start_token_id": np.array(model.config.decoder_start_token_id ), } , ) np.testing.assert_allclose(summary_ids.cpu().numpy() , ort_out[0] , rtol=1e-3 , atol=1e-3 ) logger.info("Model outputs from torch and ONNX Runtime are similar." ) logger.info("Success." ) def UpperCAmelCase ( ): A : Union[str, Any] = parse_args() A : List[Any] = 5 A : str = 4 # Make one log on every process with the configuration for debugging. logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , level=logging.INFO , ) logger.setLevel(logging.INFO ) transformers.utils.logging.set_verbosity_error() A : Union[str, Any] = torch.device(args.device ) A , A : Optional[int] = load_model_tokenizer(args.model_name_or_path , _lowerCamelCase ) if model.config.decoder_start_token_id is None: raise ValueError("Make sure that `config.decoder_start_token_id` is correctly defined" ) model.to(_lowerCamelCase ) if args.max_length: A : Optional[int] = args.max_length if args.num_beams: A : List[Any] = args.num_beams if args.output_file_path: A : int = args.output_file_path else: A : int = "BART.onnx" logger.info("Exporting model to ONNX" ) export_and_validate_model(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) if __name__ == "__main__": main()
256
0
"""simple docstring""" from __future__ import annotations # This is the precision for this function which can be altered. # It is recommended for users to keep this number greater than or equal to 10. UpperCAmelCase__ = 10 def _UpperCAmelCase ( __lowerCamelCase : int , __lowerCamelCase : int , __lowerCamelCase : list[int] , __lowerCamelCase : int ) -> int: for i in range(__lowerCamelCase , __lowerCamelCase ): if array[i] == target: return i return -1 def _UpperCAmelCase ( __lowerCamelCase : list[int] , __lowerCamelCase : int ) -> int: _snake_case = 0 _snake_case = len(__lowerCamelCase ) while left <= right: if right - left < precision: return lin_search(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) _snake_case = (left + right) // 3 + 1 _snake_case = 2 * (left + right) // 3 + 1 if array[one_third] == target: return one_third elif array[two_third] == target: return two_third elif target < array[one_third]: _snake_case = one_third - 1 elif array[two_third] < target: _snake_case = two_third + 1 else: _snake_case = one_third + 1 _snake_case = two_third - 1 else: return -1 def _UpperCAmelCase ( __lowerCamelCase : int , __lowerCamelCase : int , __lowerCamelCase : list[int] , __lowerCamelCase : int ) -> int: if left < right: if right - left < precision: return lin_search(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) _snake_case = (left + right) // 3 + 1 _snake_case = 2 * (left + right) // 3 + 1 if array[one_third] == target: return one_third elif array[two_third] == target: return two_third elif target < array[one_third]: return rec_ternary_search(__lowerCamelCase , one_third - 1 , __lowerCamelCase , __lowerCamelCase ) elif array[two_third] < target: return rec_ternary_search(two_third + 1 , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) else: return rec_ternary_search(one_third + 1 , two_third - 1 , __lowerCamelCase , __lowerCamelCase ) else: return -1 if __name__ == "__main__": import doctest doctest.testmod() UpperCAmelCase__ = input('Enter numbers separated by comma:\n').strip() UpperCAmelCase__ = [int(item.strip()) for item in user_input.split(',')] assert collection == sorted(collection), F"List must be ordered.\n{collection}." UpperCAmelCase__ = int(input('Enter the number to be found in the list:\n').strip()) UpperCAmelCase__ = ite_ternary_search(collection, target) UpperCAmelCase__ = rec_ternary_search(0, len(collection) - 1, collection, target) if resulta != -1: print(F"Iterative search: {target} found at positions: {resulta}") print(F"Recursive search: {target} found at positions: {resulta}") else: print('Not found')
288
"""simple docstring""" # This script creates a super tiny model that is useful inside tests, when we just want to test that # the machinery works, without needing to the check the quality of the outcomes. # # This version creates a tiny vocab first, and then a tiny model - so the outcome is truly tiny - # all files ~60KB. As compared to taking a full-size model, reducing to the minimum its layers and # emb dimensions, but keeping the full vocab + merges files, leading to ~3MB in total for all files. # The latter is done by `fsmt-make-super-tiny-model.py`. # # It will be used then as "stas/tiny-wmt19-en-ru" from pathlib import Path import json import tempfile from transformers import FSMTTokenizer, FSMTConfig, FSMTForConditionalGeneration from transformers.models.fsmt.tokenization_fsmt import VOCAB_FILES_NAMES UpperCAmelCase__ = 'tiny-wmt19-en-ru' # Build # borrowed from a test UpperCAmelCase__ = [ 'l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', 'w</w>', 'r</w>', 't</w>', 'lo', 'low', 'er</w>', 'low</w>', 'lowest</w>', 'newer</w>', 'wider</w>', '<unk>', ] UpperCAmelCase__ = dict(zip(vocab, range(len(vocab)))) UpperCAmelCase__ = ['l o 123', 'lo w 1456', 'e r</w> 1789', ''] with tempfile.TemporaryDirectory() as tmpdirname: UpperCAmelCase__ = Path(tmpdirname) UpperCAmelCase__ = build_dir / VOCAB_FILES_NAMES['src_vocab_file'] UpperCAmelCase__ = build_dir / VOCAB_FILES_NAMES['tgt_vocab_file'] UpperCAmelCase__ = build_dir / VOCAB_FILES_NAMES['merges_file'] with open(src_vocab_file, 'w') as fp: fp.write(json.dumps(vocab_tokens)) with open(tgt_vocab_file, 'w') as fp: fp.write(json.dumps(vocab_tokens)) with open(merges_file, 'w') as fp: fp.write('\n'.join(merges)) UpperCAmelCase__ = FSMTTokenizer( langs=['en', 'ru'], src_vocab_size=len(vocab), tgt_vocab_size=len(vocab), src_vocab_file=src_vocab_file, tgt_vocab_file=tgt_vocab_file, merges_file=merges_file, ) UpperCAmelCase__ = FSMTConfig( langs=['ru', 'en'], src_vocab_size=1000, tgt_vocab_size=1000, d_model=4, encoder_layers=1, decoder_layers=1, encoder_ffn_dim=4, decoder_ffn_dim=4, encoder_attention_heads=1, decoder_attention_heads=1, ) UpperCAmelCase__ = FSMTForConditionalGeneration(config) print(F"num of params {tiny_model.num_parameters()}") # Test UpperCAmelCase__ = tokenizer(['Making tiny model'], return_tensors='pt') UpperCAmelCase__ = tiny_model(**batch) print('test output:', len(outputs.logits[0])) # Save tiny_model.half() # makes it smaller tiny_model.save_pretrained(mname_tiny) tokenizer.save_pretrained(mname_tiny) print(F"Generated {mname_tiny}") # Upload # transformers-cli upload tiny-wmt19-en-ru
288
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) lowerCamelCase = { "configuration_vision_encoder_decoder": ["VisionEncoderDecoderConfig", "VisionEncoderDecoderOnnxConfig"] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase = ["VisionEncoderDecoderModel"] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase = ["TFVisionEncoderDecoderModel"] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase = ["FlaxVisionEncoderDecoderModel"] if TYPE_CHECKING: from .configuration_vision_encoder_decoder import VisionEncoderDecoderConfig, VisionEncoderDecoderOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vision_encoder_decoder import VisionEncoderDecoderModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vision_encoder_decoder import TFVisionEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_vision_encoder_decoder import FlaxVisionEncoderDecoderModel else: import sys lowerCamelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
365
'''simple docstring''' import json import multiprocessing import os import re from collections import defaultdict import torch from accelerate import Accelerator from accelerate.utils import set_seed from arguments import HumanEvalArguments from datasets import load_dataset, load_metric from torch.utils.data import IterableDataset from torch.utils.data.dataloader import DataLoader from tqdm import tqdm import transformers from transformers import AutoModelForCausalLM, AutoTokenizer, HfArgumentParser, StoppingCriteria, StoppingCriteriaList lowerCamelCase = ["""\nclass""", """\ndef""", """\n#""", """\n@""", """\nprint""", """\nif"""] class _UpperCamelCase ( A ): '''simple docstring''' def __init__( self : List[Any] , _lowerCAmelCase : int , _lowerCAmelCase : Any , _lowerCAmelCase : Optional[Any]=None , _lowerCAmelCase : Optional[int]=1): '''simple docstring''' __lowercase =tokenizer __lowercase =dataset __lowercase =len(_lowerCAmelCase) if n_tasks is None else n_tasks __lowercase =n_copies def __iter__( self : Union[str, Any]): '''simple docstring''' __lowercase =[] for task in range(self.n_tasks): # without strip, the model generate commented codes ... prompts.append(self.tokenizer.eos_token + self.dataset[task]['prompt'].strip()) __lowercase =self.tokenizer(_lowerCAmelCase , padding=_lowerCAmelCase , return_tensors='pt') for task in range(self.n_tasks): for _ in range(self.n_copies): yield { "ids": outputs.input_ids[task], "task_id": task, "input_len": outputs.attention_mask[task].sum(), } class _UpperCamelCase ( A ): '''simple docstring''' def __init__( self : List[str] , _lowerCAmelCase : Tuple , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Optional[Any]): '''simple docstring''' __lowercase =start_length __lowercase =eof_strings __lowercase =tokenizer def __call__( self : List[str] , _lowerCAmelCase : List[str] , _lowerCAmelCase : Union[str, Any] , **_lowerCAmelCase : Any): '''simple docstring''' __lowercase =self.tokenizer.batch_decode(input_ids[:, self.start_length :]) __lowercase =[] for decoded_generation in decoded_generations: done.append(any(stop_string in decoded_generation for stop_string in self.eof_strings)) return all(_lowerCAmelCase) def _A ( _lowerCAmelCase ): """simple docstring""" __lowercase =re.split('(%s)' % '|'.join(_lowerCAmelCase ) , _lowerCAmelCase ) # last string should be "" return "".join(string_list[:-2] ) def _A ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase=20 , **_lowerCAmelCase ): """simple docstring""" __lowercase =defaultdict(_lowerCAmelCase ) # dict of list of generated tokens for step, batch in tqdm(enumerate(_lowerCAmelCase ) ): with torch.no_grad(): __lowercase =batch['ids'].shape[-1] __lowercase =accelerator.unwrap_model(_lowerCAmelCase ).generate( input_ids=batch['ids'][:, : batch['input_len']] , num_return_sequences=_lowerCAmelCase , **_lowerCAmelCase ) # each task is generated batch_size times __lowercase =batch['task_id'].repeat(_lowerCAmelCase ) __lowercase =accelerator.pad_across_processes( _lowerCAmelCase , dim=1 , pad_index=tokenizer.pad_token_id ) __lowercase , __lowercase =accelerator.gather((generated_tokens, generated_tasks) ) __lowercase =generated_tokens.cpu().numpy() __lowercase =generated_tasks.cpu().numpy() for task, generated_tokens in zip(_lowerCAmelCase , _lowerCAmelCase ): gen_token_dict[task].append(_lowerCAmelCase ) __lowercase =[[] for _ in range(_lowerCAmelCase )] for task, generated_tokens in gen_token_dict.items(): for s in generated_tokens: __lowercase =tokenizer.decode(_lowerCAmelCase , skip_special_tokens=_lowerCAmelCase , clean_up_tokenization_spaces=_lowerCAmelCase ) code_gens[task].append(remove_last_block(_lowerCAmelCase ) ) return code_gens def _A ( ): """simple docstring""" __lowercase =HfArgumentParser(_lowerCAmelCase ) __lowercase =parser.parse_args() transformers.logging.set_verbosity_error() # enables code execution in code_eval metric __lowercase =args.HF_ALLOW_CODE_EVAL # make sure tokenizer plays nice with multiprocessing __lowercase ='false' if args.num_workers is None: __lowercase =multiprocessing.cpu_count() # Use dataset load to feed to accelerate __lowercase =Accelerator() set_seed(args.seed , device_specific=_lowerCAmelCase ) # Load model and tokenizer __lowercase =AutoTokenizer.from_pretrained(args.model_ckpt ) __lowercase =tokenizer.eos_token __lowercase =AutoModelForCausalLM.from_pretrained(args.model_ckpt ) # Generation settings __lowercase ={ 'do_sample': args.do_sample, 'temperature': args.temperature, 'max_new_tokens': args.max_new_tokens, 'top_p': args.top_p, 'top_k': args.top_k, 'stopping_criteria': StoppingCriteriaList([EndOfFunctionCriteria(0 , _lowerCAmelCase , _lowerCAmelCase )] ), } # Load evaluation dataset and metric __lowercase =load_dataset('openai_humaneval' ) __lowercase =load_metric('code_eval' ) __lowercase =args.num_tasks if args.num_tasks is not None else len(human_eval['test'] ) __lowercase =args.n_samples // args.batch_size __lowercase =TokenizedDataset(_lowerCAmelCase , human_eval['test'] , n_copies=_lowerCAmelCase , n_tasks=_lowerCAmelCase ) # do not confuse args.batch_size, which is actually the num_return_sequences __lowercase =DataLoader(_lowerCAmelCase , batch_size=1 ) # Run a quick test to see if code evaluation is enabled try: __lowercase =code_eval_metric.compute(references=[''] , predictions=[['']] ) except ValueError as exception: print( 'Code evaluation not enabled. Read the warning below carefully and then use `--HF_ALLOW_CODE_EVAL="1"`' ' flag to enable code evaluation.' ) raise exception __lowercase , __lowercase =accelerator.prepare(_lowerCAmelCase , _lowerCAmelCase ) __lowercase =complete_code( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , n_tasks=_lowerCAmelCase , batch_size=args.batch_size , **_lowerCAmelCase , ) if accelerator.is_main_process: __lowercase =[] for task in tqdm(range(_lowerCAmelCase ) ): __lowercase =human_eval['test'][task]['test'] __lowercase =f"""check({human_eval['test'][task]['entry_point']})""" references.append('\n' + test_func + '\n' + entry_point ) # Evaluate completions with "code_eval" metric __lowercase , __lowercase =code_eval_metric.compute( references=_lowerCAmelCase , predictions=_lowerCAmelCase , num_workers=args.num_workers ) print(f"""Results: {pass_at_k}""" ) # Save results to json file with open(args.output_file , 'w' ) as fp: json.dump(_lowerCAmelCase , _lowerCAmelCase ) # For some reason the folliwng seems to be necessary sometimes for code_eval to work nice with multiprocessing # https://stackoverflow.com/questions/60804599/python-multiprocessing-keeps-spawning-the-whole-script if __name__ == "__main__": main()
48
0
from unittest.mock import patch import pyspark from datasets.packaged_modules.spark.spark import ( Spark, SparkExamplesIterable, _generate_iterable_examples, ) from ..utils import ( require_dill_gt_0_3_2, require_not_windows, ) def __lowerCamelCase ( UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Union[str, Any] ): """simple docstring""" a :Dict = [] for part_id in partition_order: a :str = df.where(F'''SPARK_PARTITION_ID() = {part_id}''' ).collect() for row_idx, row in enumerate(UpperCAmelCase_ ): expected_row_ids_and_row_dicts.append((F'''{part_id}_{row_idx}''', row.asDict()) ) return expected_row_ids_and_row_dicts @require_not_windows @require_dill_gt_0_3_2 def __lowerCamelCase ( ): """simple docstring""" a :Union[str, Any] = pyspark.sql.SparkSession.builder.master('''local[*]''' ).appName('''pyspark''' ).getOrCreate() a :List[Any] = spark.range(100 ).repartition(1 ) a :Any = Spark(UpperCAmelCase_ ) # The id ints will be converted to Pyarrow int64s, so each row will be 8 bytes. Setting a max_shard_size of 16 means # that each partition can hold 2 rows. spark_builder._repartition_df_if_needed(max_shard_size=16 ) # Given that the dataframe has 100 rows and each partition has 2 rows, we expect 50 partitions. assert spark_builder.df.rdd.getNumPartitions() == 50 @require_not_windows @require_dill_gt_0_3_2 def __lowerCamelCase ( ): """simple docstring""" a :int = pyspark.sql.SparkSession.builder.master('''local[*]''' ).appName('''pyspark''' ).getOrCreate() a :Tuple = spark.range(10 ).repartition(2 ) a :Optional[Any] = [1, 0] a :Any = _generate_iterable_examples(UpperCAmelCase_ , UpperCAmelCase_ ) # Reverse the partitions. a :int = _get_expected_row_ids_and_row_dicts_for_partition_order(UpperCAmelCase_ , UpperCAmelCase_ ) for i, (row_id, row_dict) in enumerate(generate_fn() ): a , a :int = expected_row_ids_and_row_dicts[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def __lowerCamelCase ( ): """simple docstring""" a :int = pyspark.sql.SparkSession.builder.master('''local[*]''' ).appName('''pyspark''' ).getOrCreate() a :List[str] = spark.range(10 ).repartition(1 ) a :str = SparkExamplesIterable(UpperCAmelCase_ ) assert it.n_shards == 1 for i, (row_id, row_dict) in enumerate(UpperCAmelCase_ ): assert row_id == F'''0_{i}''' assert row_dict == {"id": i} @require_not_windows @require_dill_gt_0_3_2 def __lowerCamelCase ( ): """simple docstring""" a :List[Any] = pyspark.sql.SparkSession.builder.master('''local[*]''' ).appName('''pyspark''' ).getOrCreate() a :Dict = spark.range(30 ).repartition(3 ) # Mock the generator so that shuffle reverses the partition indices. with patch('''numpy.random.Generator''' ) as generator_mock: a :Optional[int] = lambda UpperCAmelCase_ : x.reverse() a :Tuple = _get_expected_row_ids_and_row_dicts_for_partition_order(UpperCAmelCase_ , [2, 1, 0] ) a :str = SparkExamplesIterable(UpperCAmelCase_ ).shuffle_data_sources(UpperCAmelCase_ ) assert shuffled_it.n_shards == 3 for i, (row_id, row_dict) in enumerate(UpperCAmelCase_ ): a , a :str = expected_row_ids_and_row_dicts[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def __lowerCamelCase ( ): """simple docstring""" a :List[str] = pyspark.sql.SparkSession.builder.master('''local[*]''' ).appName('''pyspark''' ).getOrCreate() a :Optional[Any] = spark.range(20 ).repartition(4 ) # Partitions 0 and 2 a :Tuple = SparkExamplesIterable(UpperCAmelCase_ ).shard_data_sources(worker_id=0 , num_workers=2 ) assert shard_it_a.n_shards == 2 a :List[str] = _get_expected_row_ids_and_row_dicts_for_partition_order(UpperCAmelCase_ , [0, 2] ) for i, (row_id, row_dict) in enumerate(UpperCAmelCase_ ): a , a :List[Any] = expected_row_ids_and_row_dicts_a[i] assert row_id == expected_row_id assert row_dict == expected_row_dict # Partitions 1 and 3 a :Tuple = SparkExamplesIterable(UpperCAmelCase_ ).shard_data_sources(worker_id=1 , num_workers=2 ) assert shard_it_a.n_shards == 2 a :Optional[int] = _get_expected_row_ids_and_row_dicts_for_partition_order(UpperCAmelCase_ , [1, 3] ) for i, (row_id, row_dict) in enumerate(UpperCAmelCase_ ): a , a :Any = expected_row_ids_and_row_dicts_a[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def __lowerCamelCase ( ): """simple docstring""" a :List[Any] = pyspark.sql.SparkSession.builder.master('''local[*]''' ).appName('''pyspark''' ).getOrCreate() a :Dict = spark.range(100 ).repartition(1 ) a :Dict = Spark(UpperCAmelCase_ ) # Choose a small max_shard_size for maximum partitioning. spark_builder._repartition_df_if_needed(max_shard_size=1 ) # The new number of partitions should not be greater than the number of rows. assert spark_builder.df.rdd.getNumPartitions() == 100
94
import collections import inspect import unittest from transformers import FocalNetConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( FocalNetBackbone, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetModel, ) from transformers.models.focalnet.modeling_focalnet import FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class __lowerCAmelCase : """simple docstring""" def __init__( self , lowerCamelCase__ , lowerCamelCase__=13 , lowerCamelCase__=32 , lowerCamelCase__=2 , lowerCamelCase__=3 , lowerCamelCase__=16 , lowerCamelCase__=[32, 64, 128] , lowerCamelCase__=[1, 2, 1] , lowerCamelCase__=[2, 2, 4] , lowerCamelCase__=2 , lowerCamelCase__=2.0 , lowerCamelCase__=True , lowerCamelCase__=0.0 , lowerCamelCase__=0.0 , lowerCamelCase__=0.1 , lowerCamelCase__="gelu" , lowerCamelCase__=False , lowerCamelCase__=True , lowerCamelCase__=0.02 , lowerCamelCase__=1e-5 , lowerCamelCase__=True , lowerCamelCase__=None , lowerCamelCase__=True , lowerCamelCase__=10 , lowerCamelCase__=8 , lowerCamelCase__=["stage1", "stage2"] , lowerCamelCase__=[1, 2] , ) -> int: '''simple docstring''' __lowerCamelCase = parent __lowerCamelCase = batch_size __lowerCamelCase = image_size __lowerCamelCase = patch_size __lowerCamelCase = num_channels __lowerCamelCase = embed_dim __lowerCamelCase = hidden_sizes __lowerCamelCase = depths __lowerCamelCase = num_heads __lowerCamelCase = window_size __lowerCamelCase = mlp_ratio __lowerCamelCase = qkv_bias __lowerCamelCase = hidden_dropout_prob __lowerCamelCase = attention_probs_dropout_prob __lowerCamelCase = drop_path_rate __lowerCamelCase = hidden_act __lowerCamelCase = use_absolute_embeddings __lowerCamelCase = patch_norm __lowerCamelCase = layer_norm_eps __lowerCamelCase = initializer_range __lowerCamelCase = is_training __lowerCamelCase = scope __lowerCamelCase = use_labels __lowerCamelCase = type_sequence_label_size __lowerCamelCase = encoder_stride __lowerCamelCase = out_features __lowerCamelCase = out_indices def lowercase_ ( self ) -> List[Any]: '''simple docstring''' __lowerCamelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __lowerCamelCase = None if self.use_labels: __lowerCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowerCamelCase = self.get_config() return config, pixel_values, labels def lowercase_ ( self ) -> List[str]: '''simple docstring''' return FocalNetConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , hidden_sizes=self.hidden_sizes , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , out_features=self.out_features , out_indices=self.out_indices , ) def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> int: '''simple docstring''' __lowerCamelCase = FocalNetModel(config=lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() __lowerCamelCase = model(lowerCamelCase__ ) __lowerCamelCase = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) __lowerCamelCase = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) ) def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> List[Any]: '''simple docstring''' __lowerCamelCase = FocalNetBackbone(config=lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() __lowerCamelCase = model(lowerCamelCase__ ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.image_size, 8, 8] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[:-1] ) # verify backbone works with out_features=None __lowerCamelCase = None __lowerCamelCase = FocalNetBackbone(config=lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() __lowerCamelCase = model(lowerCamelCase__ ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.image_size * 2, 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> int: '''simple docstring''' __lowerCamelCase = FocalNetForMaskedImageModeling(config=lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() __lowerCamelCase = model(lowerCamelCase__ ) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images __lowerCamelCase = 1 __lowerCamelCase = FocalNetForMaskedImageModeling(lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() __lowerCamelCase = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __lowerCamelCase = model(lowerCamelCase__ ) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> str: '''simple docstring''' __lowerCamelCase = self.type_sequence_label_size __lowerCamelCase = FocalNetForImageClassification(lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() __lowerCamelCase = model(lowerCamelCase__ , labels=lowerCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images __lowerCamelCase = 1 __lowerCamelCase = FocalNetForImageClassification(lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() __lowerCamelCase = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __lowerCamelCase = model(lowerCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def lowercase_ ( self ) -> Tuple: '''simple docstring''' __lowerCamelCase = self.prepare_config_and_inputs() __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = config_and_inputs __lowerCamelCase = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class __lowerCAmelCase ( __magic_name__ , __magic_name__ , unittest.TestCase ): """simple docstring""" snake_case_ = ( ( FocalNetModel, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetBackbone, ) if is_torch_available() else () ) snake_case_ = ( {'''feature-extraction''': FocalNetModel, '''image-classification''': FocalNetForImageClassification} if is_torch_available() else {} ) snake_case_ = False snake_case_ = False snake_case_ = False snake_case_ = False snake_case_ = False def lowercase_ ( self ) -> str: '''simple docstring''' __lowerCamelCase = FocalNetModelTester(self ) __lowerCamelCase = ConfigTester(self , config_class=lowerCamelCase__ , embed_dim=37 , has_text_modality=lowerCamelCase__ ) def lowercase_ ( self ) -> str: '''simple docstring''' self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowercase_ ( self ) -> str: '''simple docstring''' return def lowercase_ ( self ) -> List[Any]: '''simple docstring''' __lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase__ ) def lowercase_ ( self ) -> Optional[Any]: '''simple docstring''' __lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*lowerCamelCase__ ) def lowercase_ ( self ) -> str: '''simple docstring''' __lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*lowerCamelCase__ ) def lowercase_ ( self ) -> Any: '''simple docstring''' __lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCamelCase__ ) @unittest.skip(reason='FocalNet does not use inputs_embeds' ) def lowercase_ ( self ) -> Optional[int]: '''simple docstring''' pass @unittest.skip(reason='FocalNet does not use feedforward chunking' ) def lowercase_ ( self ) -> Union[str, Any]: '''simple docstring''' pass def lowercase_ ( self ) -> Dict: '''simple docstring''' __lowerCamelCase , __lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes[:-1]: __lowerCamelCase = model_class(lowerCamelCase__ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) __lowerCamelCase = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowerCamelCase__ , nn.Linear ) ) def lowercase_ ( self ) -> str: '''simple docstring''' __lowerCamelCase , __lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes[:-1]: __lowerCamelCase = model_class(lowerCamelCase__ ) __lowerCamelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowerCamelCase = [*signature.parameters.keys()] __lowerCamelCase = ['pixel_values'] self.assertListEqual(arg_names[:1] , lowerCamelCase__ ) def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> int: '''simple docstring''' __lowerCamelCase = model_class(lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() with torch.no_grad(): __lowerCamelCase = model(**self._prepare_for_class(lowerCamelCase__ , lowerCamelCase__ ) ) __lowerCamelCase = outputs.hidden_states __lowerCamelCase = getattr( self.model_tester , 'expected_num_hidden_layers' , len(self.model_tester.depths ) + 1 ) self.assertEqual(len(lowerCamelCase__ ) , lowerCamelCase__ ) # FocalNet has a different seq_length __lowerCamelCase = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) __lowerCamelCase = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) __lowerCamelCase = outputs.reshaped_hidden_states self.assertEqual(len(lowerCamelCase__ ) , lowerCamelCase__ ) __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = reshaped_hidden_states[0].shape __lowerCamelCase = ( reshaped_hidden_states[0].view(lowerCamelCase__ , lowerCamelCase__ , height * width ).permute(0 , 2 , 1 ) ) self.assertListEqual( list(reshaped_hidden_states.shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) def lowercase_ ( self ) -> Dict: '''simple docstring''' __lowerCamelCase , __lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() __lowerCamelCase = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes[:-1]: __lowerCamelCase = True self.check_hidden_states_output(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __lowerCamelCase = True self.check_hidden_states_output(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) def lowercase_ ( self ) -> Optional[Any]: '''simple docstring''' __lowerCamelCase , __lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() __lowerCamelCase = 3 __lowerCamelCase = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) __lowerCamelCase = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) __lowerCamelCase = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) __lowerCamelCase = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes[:-1]: __lowerCamelCase = True self.check_hidden_states_output(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , (padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __lowerCamelCase = True self.check_hidden_states_output(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , (padded_height, padded_width) ) @slow def lowercase_ ( self ) -> str: '''simple docstring''' for model_name in FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowerCamelCase = FocalNetModel.from_pretrained(lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) def lowercase_ ( self ) -> Optional[int]: '''simple docstring''' __lowerCamelCase , __lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() __lowerCamelCase = _config_zero_init(lowerCamelCase__ ) for model_class in self.all_model_classes: __lowerCamelCase = model_class(config=lowerCamelCase__ ) for name, param in model.named_parameters(): if "embeddings" not in name and param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=f"""Parameter {name} of model {model_class} seems not properly initialized""" , ) @require_vision @require_torch class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" @cached_property def lowercase_ ( self ) -> List[str]: '''simple docstring''' # TODO update organization return AutoImageProcessor.from_pretrained('microsoft/focalnet-tiny' ) if is_vision_available() else None @slow def lowercase_ ( self ) -> List[Any]: '''simple docstring''' __lowerCamelCase = FocalNetForImageClassification.from_pretrained('microsoft/focalnet-tiny' ).to(lowerCamelCase__ ) __lowerCamelCase = self.default_image_processor __lowerCamelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) __lowerCamelCase = image_processor(images=lowerCamelCase__ , return_tensors='pt' ).to(lowerCamelCase__ ) # forward pass with torch.no_grad(): __lowerCamelCase = model(**lowerCamelCase__ ) # verify the logits __lowerCamelCase = torch.Size((1, 1_000) ) self.assertEqual(outputs.logits.shape , lowerCamelCase__ ) __lowerCamelCase = torch.tensor([0.21_66, -0.43_68, 0.21_91] ).to(lowerCamelCase__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowerCamelCase__ , atol=1e-4 ) ) self.assertTrue(outputs.logits.argmax(dim=-1 ).item() , 281 ) @require_torch class __lowerCAmelCase ( __magic_name__ , unittest.TestCase ): """simple docstring""" snake_case_ = (FocalNetBackbone,) if is_torch_available() else () snake_case_ = FocalNetConfig snake_case_ = False def lowercase_ ( self ) -> Any: '''simple docstring''' __lowerCamelCase = FocalNetModelTester(self )
90
0
import logging import numpy as np import pytest from scipy.linalg import eigh logging.basicConfig(level=logging.INFO, format='%(message)s') def _a ( UpperCAmelCase ) -> np.ndarray: """simple docstring""" return input_array.reshape((input_array.size, 1) ) def _a ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> np.ndarray: """simple docstring""" lowerCamelCase__ : Tuple = np.nan for i in range(UpperCAmelCase ): lowerCamelCase__ : str = features[:, labels == i] lowerCamelCase__ : Dict = data.mean(1 ) # Centralize the data of class i lowerCamelCase__ : Tuple = data - column_reshape(UpperCAmelCase ) if i > 0: # If covariance_sum is not None covariance_sum += np.dot(UpperCAmelCase , centered_data.T ) else: # If covariance_sum is np.nan (i.e. first loop) lowerCamelCase__ : Any = np.dot(UpperCAmelCase , centered_data.T ) return covariance_sum / features.shape[1] def _a ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> np.ndarray: """simple docstring""" lowerCamelCase__ : Optional[Any] = features.mean(1 ) lowerCamelCase__ : Optional[int] = np.nan for i in range(UpperCAmelCase ): lowerCamelCase__ : Optional[Any] = features[:, labels == i] lowerCamelCase__ : List[Any] = data.shape[1] lowerCamelCase__ : int = data.mean(1 ) if i > 0: # If covariance_sum is not None covariance_sum += device_data * np.dot( column_reshape(UpperCAmelCase ) - column_reshape(UpperCAmelCase ) , (column_reshape(UpperCAmelCase ) - column_reshape(UpperCAmelCase )).T , ) else: # If covariance_sum is np.nan (i.e. first loop) lowerCamelCase__ : Union[str, Any] = device_data * np.dot( column_reshape(UpperCAmelCase ) - column_reshape(UpperCAmelCase ) , (column_reshape(UpperCAmelCase ) - column_reshape(UpperCAmelCase )).T , ) return covariance_sum / features.shape[1] def _a ( UpperCAmelCase , UpperCAmelCase ) -> np.ndarray: """simple docstring""" # Check if the features have been loaded if features.any(): lowerCamelCase__ : int = features.mean(1 ) # Center the dataset lowerCamelCase__ : Any = features - np.reshape(UpperCAmelCase , (data_mean.size, 1) ) lowerCamelCase__ : int = np.dot(UpperCAmelCase , centered_data.T ) / features.shape[1] lowerCamelCase__ , lowerCamelCase__ : Tuple = np.linalg.eigh(UpperCAmelCase ) # Take all the columns in the reverse order (-1), and then takes only the first lowerCamelCase__ : Tuple = eigenvectors[:, ::-1][:, 0:dimensions] # Project the database on the new space lowerCamelCase__ : Union[str, Any] = np.dot(filtered_eigenvectors.T , UpperCAmelCase ) logging.info('''Principal Component Analysis computed''' ) return projected_data else: logging.basicConfig(level=logging.ERROR , format='''%(message)s''' , force=UpperCAmelCase ) logging.error('''Dataset empty''' ) raise AssertionError def _a ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> np.ndarray: """simple docstring""" assert classes > dimensions # Check if features have been already loaded if features.any: lowerCamelCase__ , lowerCamelCase__ : List[Any] = eigh( covariance_between_classes(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) , covariance_within_classes(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) , ) lowerCamelCase__ : List[Any] = eigenvectors[:, ::-1][:, :dimensions] lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : Optional[int] = np.linalg.svd(UpperCAmelCase ) lowerCamelCase__ : str = svd_matrix[:, 0:dimensions] lowerCamelCase__ : Dict = np.dot(filtered_svd_matrix.T , UpperCAmelCase ) logging.info('''Linear Discriminant Analysis computed''' ) return projected_data else: logging.basicConfig(level=logging.ERROR , format='''%(message)s''' , force=UpperCAmelCase ) logging.error('''Dataset empty''' ) raise AssertionError def _a ( ) -> None: """simple docstring""" # Create dummy dataset with 2 classes and 3 features lowerCamelCase__ : Union[str, Any] = np.array([[1, 2, 3, 4, 5], [2, 3, 4, 5, 6], [3, 4, 5, 6, 7]] ) lowerCamelCase__ : Optional[Any] = np.array([0, 0, 0, 1, 1] ) lowerCamelCase__ : List[str] = 2 lowerCamelCase__ : str = 2 # Assert that the function raises an AssertionError if dimensions > classes with pytest.raises(UpperCAmelCase ) as error_info: lowerCamelCase__ : Optional[Any] = linear_discriminant_analysis( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) if isinstance(UpperCAmelCase , np.ndarray ): raise AssertionError( '''Did not raise AssertionError for dimensions > classes''' ) assert error_info.type is AssertionError def _a ( ) -> None: """simple docstring""" lowerCamelCase__ : Optional[Any] = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]] ) lowerCamelCase__ : Tuple = 2 lowerCamelCase__ : Union[str, Any] = np.array([[6.92_82_03_23, 8.66_02_54_04, 10.39_23_04_85], [3.0, 3.0, 3.0]] ) with pytest.raises(UpperCAmelCase ) as error_info: lowerCamelCase__ : Any = principal_component_analysis(UpperCAmelCase , UpperCAmelCase ) if not np.allclose(UpperCAmelCase , UpperCAmelCase ): raise AssertionError assert error_info.type is AssertionError if __name__ == "__main__": import doctest doctest.testmod()
265
import inspect import warnings from typing import Any, Dict, Optional, Union from packaging import version def _a ( *UpperCAmelCase , UpperCAmelCase = None , UpperCAmelCase=True , UpperCAmelCase=2 ) -> str: """simple docstring""" from .. import __version__ lowerCamelCase__ : Optional[Any] = take_from lowerCamelCase__ : Any = () if not isinstance(args[0] , UpperCAmelCase ): lowerCamelCase__ : Optional[int] = (args,) for attribute, version_name, message in args: if version.parse(version.parse(UpperCAmelCase ).base_version ) >= version.parse(UpperCAmelCase ): raise ValueError( f"The deprecation tuple {(attribute, version_name, message)} should be removed since diffusers'" f" version {__version__} is >= {version_name}" ) lowerCamelCase__ : List[Any] = None if isinstance(UpperCAmelCase , UpperCAmelCase ) and attribute in deprecated_kwargs: values += (deprecated_kwargs.pop(UpperCAmelCase ),) lowerCamelCase__ : Tuple = f"The `{attribute}` argument is deprecated and will be removed in version {version_name}." elif hasattr(UpperCAmelCase , UpperCAmelCase ): values += (getattr(UpperCAmelCase , UpperCAmelCase ),) lowerCamelCase__ : Union[str, Any] = f"The `{attribute}` attribute is deprecated and will be removed in version {version_name}." elif deprecated_kwargs is None: lowerCamelCase__ : int = f"`{attribute}` is deprecated and will be removed in version {version_name}." if warning is not None: lowerCamelCase__ : int = warning + ''' ''' if standard_warn else '''''' warnings.warn(warning + message , UpperCAmelCase , stacklevel=UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ) and len(UpperCAmelCase ) > 0: lowerCamelCase__ : Tuple = inspect.getouterframes(inspect.currentframe() )[1] lowerCamelCase__ : Optional[Any] = call_frame.filename lowerCamelCase__ : List[Any] = call_frame.lineno lowerCamelCase__ : Optional[Any] = call_frame.function lowerCamelCase__ , lowerCamelCase__ : Union[str, Any] = next(iter(deprecated_kwargs.items() ) ) raise TypeError(f"{function} in {filename} line {line_number-1} got an unexpected keyword argument `{key}`" ) if len(UpperCAmelCase ) == 0: return elif len(UpperCAmelCase ) == 1: return values[0] return values
265
1
from ...configuration_utils import PretrainedConfig from ...utils import logging __lowerCAmelCase : List[Any] = logging.get_logger(__name__) __lowerCAmelCase : Union[str, Any] = { "microsoft/trocr-base-handwritten": ( "https://huggingface.co/microsoft/trocr-base-handwritten/resolve/main/config.json" ), # See all TrOCR models at https://huggingface.co/models?filter=trocr } class __lowerCAmelCase ( lowerCAmelCase_ ): """simple docstring""" A__ : Union[str, Any] = '''trocr''' A__ : Union[str, Any] = ['''past_key_values'''] A__ : List[Any] = { '''num_attention_heads''': '''decoder_attention_heads''', '''hidden_size''': '''d_model''', '''num_hidden_layers''': '''decoder_layers''', } def __init__( self : Optional[Any] , _snake_case : Any=5_0265 , _snake_case : Union[str, Any]=1024 , _snake_case : List[Any]=12 , _snake_case : List[Any]=16 , _snake_case : Optional[Any]=4096 , _snake_case : List[Any]="gelu" , _snake_case : List[str]=512 , _snake_case : List[str]=0.1 , _snake_case : Dict=0.0 , _snake_case : Optional[int]=0.0 , _snake_case : str=2 , _snake_case : Union[str, Any]=0.02 , _snake_case : Any=0.0 , _snake_case : Union[str, Any]=True , _snake_case : str=False , _snake_case : str=True , _snake_case : Optional[int]=True , _snake_case : List[Any]=1 , _snake_case : List[Any]=0 , _snake_case : int=2 , **_snake_case : str , ): __lowercase : List[Any] = vocab_size __lowercase : List[Any] = d_model __lowercase : Union[str, Any] = decoder_layers __lowercase : List[str] = decoder_attention_heads __lowercase : Any = decoder_ffn_dim __lowercase : str = activation_function __lowercase : str = max_position_embeddings __lowercase : Tuple = dropout __lowercase : Any = attention_dropout __lowercase : Dict = activation_dropout __lowercase : Any = init_std __lowercase : str = decoder_layerdrop __lowercase : Optional[Any] = use_cache __lowercase : List[Any] = scale_embedding __lowercase : int = use_learned_position_embeddings __lowercase : Any = layernorm_embedding super().__init__( pad_token_id=_snake_case , bos_token_id=_snake_case , eos_token_id=_snake_case , decoder_start_token_id=_snake_case , **_snake_case , )
156
import numpy as np from PIL import Image def UpperCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> np.ndarray: __lowercase : Optional[int] = np.array(__lowerCAmelCase ) if arr.shape[0] != arr.shape[1]: raise ValueError('''The input array is not a square matrix''' ) __lowercase : Optional[int] = 0 __lowercase : Union[str, Any] = 0 __lowercase : Optional[Any] = 0 __lowercase : str = 0 # compute the shape of the output matrix __lowercase : Optional[Any] = (arr.shape[0] - size) // stride + 1 # initialize the output matrix with zeros of shape maxpool_shape __lowercase : List[str] = np.zeros((maxpool_shape, maxpool_shape) ) while i < arr.shape[0]: if i + size > arr.shape[0]: # if the end of the matrix is reached, break break while j < arr.shape[1]: # if the end of the matrix is reached, break if j + size > arr.shape[1]: break # compute the maximum of the pooling matrix __lowercase : Optional[int] = np.max(arr[i : i + size, j : j + size] ) # shift the pooling matrix by stride of column pixels j += stride mat_j += 1 # shift the pooling matrix by stride of row pixels i += stride mat_i += 1 # reset the column index to 0 __lowercase : Any = 0 __lowercase : List[Any] = 0 return updated_arr def UpperCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> np.ndarray: __lowercase : Optional[Any] = np.array(__lowerCAmelCase ) if arr.shape[0] != arr.shape[1]: raise ValueError('''The input array is not a square matrix''' ) __lowercase : int = 0 __lowercase : str = 0 __lowercase : List[str] = 0 __lowercase : Dict = 0 # compute the shape of the output matrix __lowercase : List[Any] = (arr.shape[0] - size) // stride + 1 # initialize the output matrix with zeros of shape avgpool_shape __lowercase : Union[str, Any] = np.zeros((avgpool_shape, avgpool_shape) ) while i < arr.shape[0]: # if the end of the matrix is reached, break if i + size > arr.shape[0]: break while j < arr.shape[1]: # if the end of the matrix is reached, break if j + size > arr.shape[1]: break # compute the average of the pooling matrix __lowercase : str = int(np.average(arr[i : i + size, j : j + size] ) ) # shift the pooling matrix by stride of column pixels j += stride mat_j += 1 # shift the pooling matrix by stride of row pixels i += stride mat_i += 1 # reset the column index to 0 __lowercase : int = 0 __lowercase : Tuple = 0 return updated_arr # Main Function if __name__ == "__main__": from doctest import testmod testmod(name="avgpooling", verbose=True) # Loading the image __lowerCAmelCase : List[Any] = Image.open("path_to_image") # Converting the image to numpy array and maxpooling, displaying the result # Ensure that the image is a square matrix Image.fromarray(maxpooling(np.array(image), size=3, stride=2)).show() # Converting the image to numpy array and averagepooling, displaying the result # Ensure that the image is a square matrix Image.fromarray(avgpooling(np.array(image), size=3, stride=2)).show()
156
1
'''simple docstring''' import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class __UpperCAmelCase ( _UpperCamelCase ): '''simple docstring''' __lowercase : str = ['image_processor', 'tokenizer'] __lowercase : str = 'ChineseCLIPImageProcessor' __lowercase : List[Any] = ('BertTokenizer', 'BertTokenizerFast') def __init__( self , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , **_SCREAMING_SNAKE_CASE ) -> Any: A_ = None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , _SCREAMING_SNAKE_CASE , ) A_ = kwargs.pop('''feature_extractor''' ) A_ = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) A_ = self.image_processor def __call__( self , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , **_SCREAMING_SNAKE_CASE ) -> Optional[Any]: if text is None and images is None: raise ValueError('''You have to specify either text or images. Both cannot be none.''' ) if text is not None: A_ = self.tokenizer(_SCREAMING_SNAKE_CASE , return_tensors=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) if images is not None: A_ = self.image_processor(_SCREAMING_SNAKE_CASE , return_tensors=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) if text is not None and images is not None: A_ = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**_SCREAMING_SNAKE_CASE ) , tensor_type=_SCREAMING_SNAKE_CASE ) def __A ( self , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> Dict: return self.tokenizer.batch_decode(*_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) def __A ( self , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> Any: return self.tokenizer.decode(*_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) @property def __A ( self ) -> Optional[int]: A_ = self.tokenizer.model_input_names A_ = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def __A ( self ) -> Optional[int]: warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , _SCREAMING_SNAKE_CASE , ) return self.image_processor_class
18
'''simple docstring''' from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ShapEPipeline else: from .camera import create_pan_cameras from .pipeline_shap_e import ShapEPipeline from .pipeline_shap_e_img2img import ShapEImgaImgPipeline from .renderer import ( BoundingBoxVolume, ImportanceRaySampler, MLPNeRFModelOutput, MLPNeRSTFModel, ShapEParamsProjModel, ShapERenderer, StratifiedRaySampler, VoidNeRFModel, )
18
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) _a = { 'configuration_convbert': ['CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ConvBertConfig', 'ConvBertOnnxConfig'], 'tokenization_convbert': ['ConvBertTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a = ['ConvBertTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a = [ 'CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'ConvBertForMaskedLM', 'ConvBertForMultipleChoice', 'ConvBertForQuestionAnswering', 'ConvBertForSequenceClassification', 'ConvBertForTokenClassification', 'ConvBertLayer', 'ConvBertModel', 'ConvBertPreTrainedModel', 'load_tf_weights_in_convbert', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a = [ 'TF_CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFConvBertForMaskedLM', 'TFConvBertForMultipleChoice', 'TFConvBertForQuestionAnswering', 'TFConvBertForSequenceClassification', 'TFConvBertForTokenClassification', 'TFConvBertLayer', 'TFConvBertModel', 'TFConvBertPreTrainedModel', ] if TYPE_CHECKING: from .configuration_convbert import CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ConvBertConfig, ConvBertOnnxConfig from .tokenization_convbert import ConvBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_convbert_fast import ConvBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_convbert import ( CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST, ConvBertForMaskedLM, ConvBertForMultipleChoice, ConvBertForQuestionAnswering, ConvBertForSequenceClassification, ConvBertForTokenClassification, ConvBertLayer, ConvBertModel, ConvBertPreTrainedModel, load_tf_weights_in_convbert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_convbert import ( TF_CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFConvBertForMaskedLM, TFConvBertForMultipleChoice, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertLayer, TFConvBertModel, TFConvBertPreTrainedModel, ) else: import sys _a = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
61
"""simple docstring""" from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _a = { """configuration_autoformer""": [ """AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """AutoformerConfig""", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a = [ """AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """AutoformerForPrediction""", """AutoformerModel""", """AutoformerPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_autoformer import ( AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, AutoformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_autoformer import ( AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, AutoformerForPrediction, AutoformerModel, AutoformerPreTrainedModel, ) else: import sys _a = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
194
0
def SCREAMING_SNAKE_CASE__ ( __a , __a ): snake_case_ : Tuple = len(_lowerCAmelCase ) snake_case_ : int = [] for i in range(len(_lowerCAmelCase ) - pat_len + 1 ): snake_case_ : Optional[Any] = True for j in range(_lowerCAmelCase ): if s[i + j] != pattern[j]: snake_case_ : Tuple = False break if match_found: position.append(_lowerCAmelCase ) return position if __name__ == "__main__": assert naive_pattern_search("""ABCDEFG""", """DE""") == [3] print(naive_pattern_search("""ABAAABCDBBABCDDEBCABC""", """ABC"""))
354
from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _SCREAMING_SNAKE_CASE = { """configuration_informer""": [ """INFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """InformerConfig""", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = [ """INFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """InformerForPrediction""", """InformerModel""", """InformerPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_informer import INFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, InformerConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_informer import ( INFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, InformerForPrediction, InformerModel, InformerPreTrainedModel, ) else: import sys _SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
88
0
from typing import List, Optional, Union import numpy as np import tensorflow as tf from .utils import logging UpperCAmelCase__ = logging.get_logger(__name__) def _a ( a :Union[tf.Tensor, np.ndarray] ) -> List[int]: if isinstance(a , np.ndarray ): return list(tensor.shape ) a = tf.shape(a ) if tensor.shape == tf.TensorShape(a ): return dynamic a = tensor.shape.as_list() return [dynamic[i] if s is None else s for i, s in enumerate(a )] def _a ( a :tf.Tensor , a :Optional[int] = None , a :Optional[str] = None ) -> tf.Tensor: return tf.nn.softmax(logits=logits + 1e-9 , axis=a , name=a ) def _a ( a :Tuple , a :str , a :List[str] , a :str=1e-5 , a :List[str]=-1 ) -> Any: # This is a very simplified functional layernorm, designed to duplicate # the functionality of PyTorch nn.functional.layer_norm when this is needed to port # models in Transformers. if weight.shape.rank != 1 or bias.shape.rank != 1 or not isinstance(a , a ): raise NotImplementedError('''Only 1D weight and bias tensors are supported for now, with only a single axis.''' ) # Get mean and variance on the axis to be normalized a , a = tf.nn.moments(a , axes=[axis] , keepdims=a ) if axis != -1: # Reshape scale and weight to have the same rank as inputs, but with 1 dimensions # on every dimension except axis a = [1] * inputs.shape.rank a = shape_list(a )[axis] a = tf.reshape(a , a ) a = tf.reshape(a , a ) # Compute layer normalization using the batch_normalization # function. a = tf.nn.batch_normalization( a , a , a , offset=a , scale=a , variance_epsilon=a , ) return outputs def _a ( a :Optional[Any] , a :Dict=0 , a :Any=-1 ) -> List[Any]: # Replicates the behavior of torch.flatten in TF # If end_dim or start_dim is negative, count them from the end if end_dim < 0: end_dim += input.shape.rank if start_dim < 0: start_dim += input.shape.rank if start_dim == end_dim: return input a = tf.shape(a ) a = tf.math.reduce_prod(in_shape[start_dim : end_dim + 1] ) a = tf.concat([in_shape[:start_dim], [flattened_dim], in_shape[end_dim + 1 :]] , axis=0 ) return tf.reshape(a , a ) def _a ( a :tf.Tensor ) -> tf.Tensor: if not isinstance(a , tf.Tensor ): a = tf.convert_to_tensor(a ) # Catches stray NumPy inputs if encoder_attention_mask.shape.rank == 3: a = encoder_attention_mask[:, None, :, :] if encoder_attention_mask.shape.rank == 2: a = encoder_attention_mask[:, None, None, :] # T5 has a mask that can compare sequence ids, we can simulate this here with this transposition # Cf. https://github.com/tensorflow/mesh/blob/8d2465e9bc93129b913b5ccc6a59aa97abd96ec6/mesh_tensorflow # /transformer/transformer_layers.py#L270 # encoder_extended_attention_mask = (encoder_extended_attention_mask == # encoder_extended_attention_mask.transpose(-1, -2)) a = ( tf.cast(1 , encoder_attention_mask.dtype ) - encoder_extended_attention_mask ) * encoder_extended_attention_mask.dtype.min return encoder_extended_attention_mask def _a ( a :tf.Tensor , a :int , a :str = "input_ids" ) -> None: tf.debugging.assert_less( a , tf.cast(a , dtype=tensor.dtype ) , message=( F"""The maximum value of {tensor_name} ({tf.math.reduce_max(a )}) must be smaller than the embedding """ F"""layer's input dimension ({embed_dim}). The likely cause is some problem at tokenization time.""" ) , ) def _a ( a :Any , a :Optional[Any] , a :List[str] ) -> str: a = 64_512 # Check that no item in `data` is larger than `HDF5_OBJECT_HEADER_LIMIT` # because in that case even chunking the array would not make the saving # possible. a = [x for x in data if len(a ) > HDF5_OBJECT_HEADER_LIMIT] # Expecting this to never be true. if bad_attributes: raise RuntimeError( '''The following attributes cannot be saved to HDF5 file because ''' F"""they are larger than {HDF5_OBJECT_HEADER_LIMIT} """ F"""bytes: {bad_attributes}""" ) a = np.asarray(a ) a = 1 a = np.array_split(a , a ) # This will never loop forever thanks to the test above. while any(x.nbytes > HDF5_OBJECT_HEADER_LIMIT for x in chunked_data ): num_chunks += 1 a = np.array_split(a , a ) if num_chunks > 1: for chunk_id, chunk_data in enumerate(a ): a = chunk_data else: a = data def _a ( a :Optional[Any] , a :Dict ) -> Optional[int]: if name in group.attrs: a = [n.decode('''utf8''' ) if hasattr(a , '''decode''' ) else n for n in group.attrs[name]] else: a = [] a = 0 while "%s%d" % (name, chunk_id) in group.attrs: data.extend( [n.decode('''utf8''' ) if hasattr(a , '''decode''' ) else n for n in group.attrs['''%s%d''' % (name, chunk_id)]] ) chunk_id += 1 return data def _a ( a :Any ) -> str: def _expand_single_ad_tensor(a :Optional[int] ): if isinstance(a , tf.Tensor ) and t.shape.rank == 1: return tf.expand_dims(a , axis=-1 ) return t return tf.nest.map_structure(_expand_single_ad_tensor , a )
0
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, is_batched, to_numpy_array, valid_images, ) from ...utils import TensorType, logging __snake_case = logging.get_logger(__name__) class UpperCAmelCase_ ( lowercase ): """simple docstring""" UpperCamelCase_ : List[Any] =['pixel_values'] def __init__( self , SCREAMING_SNAKE_CASE_ = True , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = PILImageResampling.BICUBIC , SCREAMING_SNAKE_CASE_ = True , SCREAMING_SNAKE_CASE_ = True , SCREAMING_SNAKE_CASE_ = 1 / 255 , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = True , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , **SCREAMING_SNAKE_CASE_ , ) -> None: super().__init__(**SCREAMING_SNAKE_CASE_ ) UpperCamelCase :Dict = size if size is not None else {'''height''': 224, '''width''': 224} UpperCamelCase :Optional[Any] = get_size_dict(SCREAMING_SNAKE_CASE_ ) UpperCamelCase :List[Any] = crop_size if crop_size is not None else {'''height''': 224, '''width''': 224} UpperCamelCase :Dict = get_size_dict(SCREAMING_SNAKE_CASE_ , default_to_square=SCREAMING_SNAKE_CASE_ , param_name='''crop_size''' ) UpperCamelCase :Optional[int] = do_resize UpperCamelCase :int = do_rescale UpperCamelCase :Tuple = do_normalize UpperCamelCase :str = do_center_crop UpperCamelCase :int = crop_size UpperCamelCase :Tuple = size UpperCamelCase :List[str] = resample UpperCamelCase :Tuple = rescale_factor UpperCamelCase :Optional[Any] = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN UpperCamelCase :Optional[int] = image_std if image_std is not None else IMAGENET_DEFAULT_STD def UpperCAmelCase ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = PILImageResampling.BILINEAR , SCREAMING_SNAKE_CASE_ = None , **SCREAMING_SNAKE_CASE_ , ) -> np.ndarray: UpperCamelCase :Dict = get_size_dict(SCREAMING_SNAKE_CASE_ ) if "shortest_edge" in size: UpperCamelCase :str = get_resize_output_image_size(SCREAMING_SNAKE_CASE_ , size=size['''shortest_edge'''] , default_to_square=SCREAMING_SNAKE_CASE_ ) # size = get_resize_output_image_size(image, size["shortest_edge"], size["longest_edge"]) elif "height" in size and "width" in size: UpperCamelCase :Optional[int] = (size['''height'''], size['''width''']) else: raise ValueError(F'''Size must contain \'height\' and \'width\' keys or \'shortest_edge\' key. Got {size.keys()}''' ) return resize(SCREAMING_SNAKE_CASE_ , size=SCREAMING_SNAKE_CASE_ , resample=SCREAMING_SNAKE_CASE_ , data_format=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) def UpperCAmelCase ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , **SCREAMING_SNAKE_CASE_ , ) -> np.ndarray: UpperCamelCase :Union[str, Any] = get_size_dict(SCREAMING_SNAKE_CASE_ ) if "height" not in size or "width" not in size: raise ValueError(F'''The `size` parameter must contain the keys (height, width). Got {size.keys()}''' ) return center_crop(SCREAMING_SNAKE_CASE_ , size=(size['''height'''], size['''width''']) , data_format=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) def UpperCAmelCase ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , **SCREAMING_SNAKE_CASE_ ) -> np.ndarray: return rescale(SCREAMING_SNAKE_CASE_ , scale=SCREAMING_SNAKE_CASE_ , data_format=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) def UpperCAmelCase ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , **SCREAMING_SNAKE_CASE_ , ) -> np.ndarray: return normalize(SCREAMING_SNAKE_CASE_ , mean=SCREAMING_SNAKE_CASE_ , std=SCREAMING_SNAKE_CASE_ , data_format=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) def UpperCAmelCase ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = ChannelDimension.FIRST , **SCREAMING_SNAKE_CASE_ , ) -> BatchFeature: UpperCamelCase :Union[str, Any] = do_resize if do_resize is not None else self.do_resize UpperCamelCase :Optional[int] = do_rescale if do_rescale is not None else self.do_rescale UpperCamelCase :Optional[Any] = do_normalize if do_normalize is not None else self.do_normalize UpperCamelCase :Union[str, Any] = do_center_crop if do_center_crop is not None else self.do_center_crop UpperCamelCase :Optional[int] = crop_size if crop_size is not None else self.crop_size UpperCamelCase :Dict = get_size_dict(SCREAMING_SNAKE_CASE_ , param_name='''crop_size''' , default_to_square=SCREAMING_SNAKE_CASE_ ) UpperCamelCase :Dict = resample if resample is not None else self.resample UpperCamelCase :List[str] = rescale_factor if rescale_factor is not None else self.rescale_factor UpperCamelCase :Optional[Any] = image_mean if image_mean is not None else self.image_mean UpperCamelCase :Dict = image_std if image_std is not None else self.image_std UpperCamelCase :Dict = size if size is not None else self.size UpperCamelCase :Optional[int] = get_size_dict(SCREAMING_SNAKE_CASE_ ) if not is_batched(SCREAMING_SNAKE_CASE_ ): UpperCamelCase :str = [images] if not valid_images(SCREAMING_SNAKE_CASE_ ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''' ) if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) # All transformations expect numpy arrays. UpperCamelCase :Tuple = [to_numpy_array(SCREAMING_SNAKE_CASE_ ) for image in images] if do_resize: UpperCamelCase :List[Any] = [self.resize(image=SCREAMING_SNAKE_CASE_ , size=SCREAMING_SNAKE_CASE_ , resample=SCREAMING_SNAKE_CASE_ ) for image in images] if do_center_crop: UpperCamelCase :Tuple = [self.center_crop(image=SCREAMING_SNAKE_CASE_ , size=SCREAMING_SNAKE_CASE_ ) for image in images] if do_rescale: UpperCamelCase :Union[str, Any] = [self.rescale(image=SCREAMING_SNAKE_CASE_ , scale=SCREAMING_SNAKE_CASE_ ) for image in images] if do_normalize: UpperCamelCase :Union[str, Any] = [self.normalize(image=SCREAMING_SNAKE_CASE_ , mean=SCREAMING_SNAKE_CASE_ , std=SCREAMING_SNAKE_CASE_ ) for image in images] UpperCamelCase :List[str] = [to_channel_dimension_format(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) for image in images] UpperCamelCase :int = {'''pixel_values''': images} return BatchFeature(data=SCREAMING_SNAKE_CASE_ , tensor_type=SCREAMING_SNAKE_CASE_ )
259
0
from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE_ = { """unc-nlp/lxmert-base-uncased""": """https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/config.json""", } class UpperCamelCase__ ( lowerCAmelCase_ ): '''simple docstring''' __snake_case : Optional[Any] = "lxmert" __snake_case : Any = {} def __init__( self : Any ,lowerCamelCase__ : Tuple=30522 ,lowerCamelCase__ : Optional[int]=768 ,lowerCamelCase__ : str=12 ,lowerCamelCase__ : Any=9500 ,lowerCamelCase__ : List[str]=1600 ,lowerCamelCase__ : List[Any]=400 ,lowerCamelCase__ : List[Any]=3072 ,lowerCamelCase__ : List[str]="gelu" ,lowerCamelCase__ : Optional[int]=0.1 ,lowerCamelCase__ : Tuple=0.1 ,lowerCamelCase__ : Dict=512 ,lowerCamelCase__ : Optional[Any]=2 ,lowerCamelCase__ : str=0.02 ,lowerCamelCase__ : Any=1e-1_2 ,lowerCamelCase__ : Any=9 ,lowerCamelCase__ : Union[str, Any]=5 ,lowerCamelCase__ : Tuple=5 ,lowerCamelCase__ : Dict=2048 ,lowerCamelCase__ : List[str]=4 ,lowerCamelCase__ : Optional[Any]=6.67 ,lowerCamelCase__ : Union[str, Any]=True ,lowerCamelCase__ : List[Any]=True ,lowerCamelCase__ : List[Any]=True ,lowerCamelCase__ : Any=True ,lowerCamelCase__ : str=True ,lowerCamelCase__ : Dict=True ,lowerCamelCase__ : Optional[int]=True ,**lowerCamelCase__ : Optional[Any] ,) -> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = vocab_size SCREAMING_SNAKE_CASE = hidden_size SCREAMING_SNAKE_CASE = num_attention_heads SCREAMING_SNAKE_CASE = hidden_act SCREAMING_SNAKE_CASE = intermediate_size SCREAMING_SNAKE_CASE = hidden_dropout_prob SCREAMING_SNAKE_CASE = attention_probs_dropout_prob SCREAMING_SNAKE_CASE = max_position_embeddings SCREAMING_SNAKE_CASE = type_vocab_size SCREAMING_SNAKE_CASE = initializer_range SCREAMING_SNAKE_CASE = layer_norm_eps SCREAMING_SNAKE_CASE = num_qa_labels SCREAMING_SNAKE_CASE = num_object_labels SCREAMING_SNAKE_CASE = num_attr_labels SCREAMING_SNAKE_CASE = l_layers SCREAMING_SNAKE_CASE = x_layers SCREAMING_SNAKE_CASE = r_layers SCREAMING_SNAKE_CASE = visual_feat_dim SCREAMING_SNAKE_CASE = visual_pos_dim SCREAMING_SNAKE_CASE = visual_loss_normalizer SCREAMING_SNAKE_CASE = task_matched SCREAMING_SNAKE_CASE = task_mask_lm SCREAMING_SNAKE_CASE = task_obj_predict SCREAMING_SNAKE_CASE = task_qa SCREAMING_SNAKE_CASE = visual_obj_loss SCREAMING_SNAKE_CASE = visual_attr_loss SCREAMING_SNAKE_CASE = visual_feat_loss SCREAMING_SNAKE_CASE = {"""vision""": r_layers, """cross_encoder""": x_layers, """language""": l_layers} super().__init__(**lowerCamelCase__ )
193
def __lowercase ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> int: '''simple docstring''' if index == number_of_items: return 0 SCREAMING_SNAKE_CASE = 0 SCREAMING_SNAKE_CASE = 0 SCREAMING_SNAKE_CASE = knapsack(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , index + 1 ) if weights[index] <= max_weight: SCREAMING_SNAKE_CASE = values[index] + knapsack( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , max_weight - weights[index] , index + 1 ) return max(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if __name__ == "__main__": import doctest doctest.testmod()
193
1
import argparse import os # New Code # import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils import find_executable_batch_size ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing how to ensure out-of-memory errors never # interrupt training, and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## a =16 a =32 def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ , lowerCamelCase__ = 1_6 ) -> Optional[int]: __lowerCamelCase : Optional[Any] = AutoTokenizer.from_pretrained('bert-base-cased' ) __lowerCamelCase : int = load_dataset('glue' , 'mrpc' ) def tokenize_function(lowerCamelCase__ ): # max_length=None => use the model max length (it's actually the default) __lowerCamelCase : List[Any] = tokenizer(examples['sentence1'] , examples['sentence2'] , truncation=lowerCamelCase__ , max_length=lowerCamelCase__ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): __lowerCamelCase : int = datasets.map( lowerCamelCase__ , batched=lowerCamelCase__ , remove_columns=['idx', 'sentence1', 'sentence2'] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library __lowerCamelCase : Dict = tokenized_datasets.rename_column('label' , 'labels' ) def collate_fn(lowerCamelCase__ ): # On TPU it's best to pad everything to the same length or training will be very slow. __lowerCamelCase : List[str] = 1_2_8 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": __lowerCamelCase : Optional[int] = 1_6 elif accelerator.mixed_precision != "no": __lowerCamelCase : List[Any] = 8 else: __lowerCamelCase : Any = None return tokenizer.pad( lowerCamelCase__ , padding='longest' , max_length=lowerCamelCase__ , pad_to_multiple_of=lowerCamelCase__ , return_tensors='pt' , ) # Instantiate dataloaders. __lowerCamelCase : Any = DataLoader( tokenized_datasets['train'] , shuffle=lowerCamelCase__ , collate_fn=lowerCamelCase__ , batch_size=lowerCamelCase__ ) __lowerCamelCase : str = DataLoader( tokenized_datasets['validation'] , shuffle=lowerCamelCase__ , collate_fn=lowerCamelCase__ , batch_size=lowerCamelCase__ ) return train_dataloader, eval_dataloader # For testing only if os.environ.get("""TESTING_MOCKED_DATALOADERS""", None) == "1": from accelerate.test_utils.training import mocked_dataloaders a =mocked_dataloaders # noqa: F811 def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ , lowerCamelCase__ ) -> Any: # For testing only if os.environ.get('TESTING_MOCKED_DATALOADERS' , lowerCamelCase__ ) == "1": __lowerCamelCase : Union[str, Any] = 2 # Initialize accelerator __lowerCamelCase : List[Any] = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs __lowerCamelCase : Tuple = config['lr'] __lowerCamelCase : List[str] = int(config['num_epochs'] ) __lowerCamelCase : List[Any] = int(config['seed'] ) __lowerCamelCase : int = int(config['batch_size'] ) __lowerCamelCase : List[str] = evaluate.load('glue' , 'mrpc' ) # New Code # # We now can define an inner training loop function. It should take a batch size as the only parameter, # and build the dataloaders in there. # It also gets our decorator @find_executable_batch_size(starting_batch_size=lowerCamelCase__ ) def inner_training_loop(lowerCamelCase__ ): # And now just move everything below under this function # We need to bring in the Accelerator object from earlier nonlocal accelerator # And reset all of its attributes that could hold onto any memory: accelerator.free_memory() # Then we can declare the model, optimizer, and everything else: set_seed(lowerCamelCase__ ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) __lowerCamelCase : Optional[int] = AutoModelForSequenceClassification.from_pretrained('bert-base-cased' , return_dict=lowerCamelCase__ ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). __lowerCamelCase : Union[str, Any] = model.to(accelerator.device ) # Instantiate optimizer __lowerCamelCase : Any = AdamW(params=model.parameters() , lr=lowerCamelCase__ ) __lowerCamelCase , __lowerCamelCase : str = get_dataloaders(lowerCamelCase__ , lowerCamelCase__ ) # Instantiate scheduler __lowerCamelCase : int = get_linear_schedule_with_warmup( optimizer=lowerCamelCase__ , num_warmup_steps=1_0_0 , num_training_steps=(len(lowerCamelCase__ ) * num_epochs) , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase : Any = accelerator.prepare( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) # Now we train the model for epoch in range(lowerCamelCase__ ): model.train() for step, batch in enumerate(lowerCamelCase__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) __lowerCamelCase : Optional[Any] = model(**lowerCamelCase__ ) __lowerCamelCase : Tuple = outputs.loss accelerator.backward(lowerCamelCase__ ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(lowerCamelCase__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): __lowerCamelCase : List[str] = model(**lowerCamelCase__ ) __lowerCamelCase : str = outputs.logits.argmax(dim=-1 ) __lowerCamelCase , __lowerCamelCase : Optional[int] = accelerator.gather_for_metrics((predictions, batch['labels']) ) metric.add_batch( predictions=lowerCamelCase__ , references=lowerCamelCase__ , ) __lowerCamelCase : Optional[Any] = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F"epoch {epoch}:" , lowerCamelCase__ ) # New Code # # And call it at the end with no arguments # Note: You could also refactor this outside of your training loop function inner_training_loop() def SCREAMING_SNAKE_CASE__ ( ) -> Union[str, Any]: __lowerCamelCase : Union[str, Any] = argparse.ArgumentParser(description='Simple example of training script.' ) parser.add_argument( '--mixed_precision' , type=lowerCamelCase__ , default=lowerCamelCase__ , choices=['no', 'fp16', 'bf16', 'fp8'] , help='Whether to use mixed precision. Choose' 'between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.' 'and an Nvidia Ampere GPU.' , ) parser.add_argument('--cpu' , action='store_true' , help='If passed, will train on the CPU.' ) __lowerCamelCase : Optional[int] = parser.parse_args() __lowerCamelCase : Optional[int] = {'lr': 2e-5, 'num_epochs': 3, 'seed': 4_2, 'batch_size': 1_6} training_function(lowerCamelCase__ , lowerCamelCase__ ) if __name__ == "__main__": main()
73
import re import warnings from contextlib import contextmanager from ...processing_utils import ProcessorMixin class A_ ( SCREAMING_SNAKE_CASE ): _UpperCAmelCase : Any = ['''image_processor''', '''tokenizer'''] _UpperCAmelCase : List[Any] = '''AutoImageProcessor''' _UpperCAmelCase : Dict = '''AutoTokenizer''' def __init__( self : Union[str, Any] ,SCREAMING_SNAKE_CASE__ : Optional[int]=None ,SCREAMING_SNAKE_CASE__ : List[Any]=None ,**SCREAMING_SNAKE_CASE__ : Union[str, Any]): __lowerCamelCase : List[str] = None if "feature_extractor" in kwargs: warnings.warn( 'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`' ' instead.' ,SCREAMING_SNAKE_CASE__ ,) __lowerCamelCase : Union[str, Any] = kwargs.pop('feature_extractor') __lowerCamelCase : Dict = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('You need to specify an `image_processor`.') if tokenizer is None: raise ValueError('You need to specify a `tokenizer`.') super().__init__(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__) __lowerCamelCase : Dict = self.image_processor __lowerCamelCase : Optional[int] = False def __call__( self : int ,*SCREAMING_SNAKE_CASE__ : Union[str, Any] ,**SCREAMING_SNAKE_CASE__ : Union[str, Any]): # For backward compatibility if self._in_target_context_manager: return self.current_processor(*SCREAMING_SNAKE_CASE__ ,**SCREAMING_SNAKE_CASE__) __lowerCamelCase : Optional[int] = kwargs.pop('images' ,SCREAMING_SNAKE_CASE__) __lowerCamelCase : Union[str, Any] = kwargs.pop('text' ,SCREAMING_SNAKE_CASE__) if len(SCREAMING_SNAKE_CASE__) > 0: __lowerCamelCase : int = args[0] __lowerCamelCase : List[str] = args[1:] if images is None and text is None: raise ValueError('You need to specify either an `images` or `text` input to process.') if images is not None: __lowerCamelCase : Optional[int] = self.image_processor(SCREAMING_SNAKE_CASE__ ,*SCREAMING_SNAKE_CASE__ ,**SCREAMING_SNAKE_CASE__) if text is not None: __lowerCamelCase : List[Any] = self.tokenizer(SCREAMING_SNAKE_CASE__ ,**SCREAMING_SNAKE_CASE__) if text is None: return inputs elif images is None: return encodings else: __lowerCamelCase : Optional[Any] = encodings['input_ids'] return inputs def lowerCAmelCase ( self : int ,*SCREAMING_SNAKE_CASE__ : Union[str, Any] ,**SCREAMING_SNAKE_CASE__ : Dict): return self.tokenizer.batch_decode(*SCREAMING_SNAKE_CASE__ ,**SCREAMING_SNAKE_CASE__) def lowerCAmelCase ( self : Optional[Any] ,*SCREAMING_SNAKE_CASE__ : List[Any] ,**SCREAMING_SNAKE_CASE__ : Any): return self.tokenizer.decode(*SCREAMING_SNAKE_CASE__ ,**SCREAMING_SNAKE_CASE__) @contextmanager def lowerCAmelCase ( self : Tuple): warnings.warn( '`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your ' 'labels by using the argument `text` of the regular `__call__` method (either in the same call as ' 'your images inputs, or in a separate call.') __lowerCamelCase : List[Any] = True __lowerCamelCase : str = self.tokenizer yield __lowerCamelCase : Tuple = self.image_processor __lowerCamelCase : Tuple = False def lowerCAmelCase ( self : Any ,SCREAMING_SNAKE_CASE__ : str ,SCREAMING_SNAKE_CASE__ : int=False ,SCREAMING_SNAKE_CASE__ : List[Any]=None): if added_vocab is None: __lowerCamelCase : str = self.tokenizer.get_added_vocab() __lowerCamelCase : Union[str, Any] = {} while tokens: __lowerCamelCase : Tuple = re.search(R'<s_(.*?)>' ,SCREAMING_SNAKE_CASE__ ,re.IGNORECASE) if start_token is None: break __lowerCamelCase : Dict = start_token.group(1) __lowerCamelCase : List[str] = re.search(RF"</s_{key}>" ,SCREAMING_SNAKE_CASE__ ,re.IGNORECASE) __lowerCamelCase : Optional[int] = start_token.group() if end_token is None: __lowerCamelCase : List[Any] = tokens.replace(SCREAMING_SNAKE_CASE__ ,'') else: __lowerCamelCase : Tuple = end_token.group() __lowerCamelCase : int = re.escape(SCREAMING_SNAKE_CASE__) __lowerCamelCase : str = re.escape(SCREAMING_SNAKE_CASE__) __lowerCamelCase : Union[str, Any] = re.search(F"{start_token_escaped}(.*?){end_token_escaped}" ,SCREAMING_SNAKE_CASE__ ,re.IGNORECASE) if content is not None: __lowerCamelCase : List[Any] = content.group(1).strip() if r"<s_" in content and r"</s_" in content: # non-leaf node __lowerCamelCase : str = self.tokenajson(SCREAMING_SNAKE_CASE__ ,is_inner_value=SCREAMING_SNAKE_CASE__ ,added_vocab=SCREAMING_SNAKE_CASE__) if value: if len(SCREAMING_SNAKE_CASE__) == 1: __lowerCamelCase : Tuple = value[0] __lowerCamelCase : int = value else: # leaf nodes __lowerCamelCase : Tuple = [] for leaf in content.split(R'<sep/>'): __lowerCamelCase : List[Any] = leaf.strip() if leaf in added_vocab and leaf[0] == "<" and leaf[-2:] == "/>": __lowerCamelCase : str = leaf[1:-2] # for categorical special tokens output[key].append(SCREAMING_SNAKE_CASE__) if len(output[key]) == 1: __lowerCamelCase : Dict = output[key][0] __lowerCamelCase : Dict = tokens[tokens.find(SCREAMING_SNAKE_CASE__) + len(SCREAMING_SNAKE_CASE__) :].strip() if tokens[:6] == r"<sep/>": # non-leaf nodes return [output] + self.tokenajson(tokens[6:] ,is_inner_value=SCREAMING_SNAKE_CASE__ ,added_vocab=SCREAMING_SNAKE_CASE__) if len(SCREAMING_SNAKE_CASE__): return [output] if is_inner_value else output else: return [] if is_inner_value else {"text_sequence": tokens} @property def lowerCAmelCase ( self : List[str]): warnings.warn( '`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.' ,SCREAMING_SNAKE_CASE__ ,) return self.image_processor_class @property def lowerCAmelCase ( self : List[Any]): warnings.warn( '`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.' ,SCREAMING_SNAKE_CASE__ ,) return self.image_processor
73
1
from __future__ import annotations from math import pi # Define the Reduced Planck Constant ℏ (H bar), speed of light C, value of # Pi and the function UpperCAmelCase : Union[str, Any] = 1.054571817E-34 # unit of ℏ : J * s UpperCAmelCase : Union[str, Any] = 3E8 # unit of c : m * s^-1 def _A ( SCREAMING_SNAKE_CASE : float , SCREAMING_SNAKE_CASE : float , SCREAMING_SNAKE_CASE : float ): """simple docstring""" if (force, area, distance).count(0 ) != 1: raise ValueError("One and only one argument must be 0" ) if force < 0: raise ValueError("Magnitude of force can not be negative" ) if distance < 0: raise ValueError("Distance can not be negative" ) if area < 0: raise ValueError("Area can not be negative" ) if force == 0: a__ : Tuple =(REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2 * area) / ( 240 * (distance) ** 4 ) return {"force": force} elif area == 0: a__ : Any =(240 * force * (distance) ** 4) / ( REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2 ) return {"area": area} elif distance == 0: a__ : List[str] =( (REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2 * area) / (240 * force) ) ** (1 / 4) return {"distance": distance} raise ValueError("One and only one argument must be 0" ) # Run doctest if __name__ == "__main__": import doctest doctest.testmod()
148
from __future__ import annotations import math def _A ( SCREAMING_SNAKE_CASE : int ): """simple docstring""" if num <= 0: a__ : List[str] =f'''{num}: Invalid input, please enter a positive integer.''' raise ValueError(SCREAMING_SNAKE_CASE ) a__ : Union[str, Any] =[True] * (num + 1) a__ : Union[str, Any] =[] a__ : str =2 a__ : Any =int(math.sqrt(SCREAMING_SNAKE_CASE ) ) while start <= end: # If start is a prime if sieve[start] is True: prime.append(SCREAMING_SNAKE_CASE ) # Set multiples of start be False for i in range(start * start , num + 1 , SCREAMING_SNAKE_CASE ): if sieve[i] is True: a__ : Optional[int] =False start += 1 for j in range(end + 1 , num + 1 ): if sieve[j] is True: prime.append(SCREAMING_SNAKE_CASE ) return prime if __name__ == "__main__": print(prime_sieve(int(input("""Enter a positive integer: """).strip())))
148
1
import numpy as np from sklearn.datasets import fetch_california_housing from sklearn.metrics import mean_absolute_error, mean_squared_error from sklearn.model_selection import train_test_split from xgboost import XGBRegressor def _snake_case( SCREAMING_SNAKE_CASE__ ) -> tuple: return (data["data"], data["target"]) def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> np.ndarray: lowercase : int = XGBRegressor(verbosity=0 , random_state=42 ) xgb.fit(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # Predict target for test data lowercase : List[str] = xgb.predict(SCREAMING_SNAKE_CASE__ ) lowercase : Any = predictions.reshape(len(SCREAMING_SNAKE_CASE__ ) , 1 ) return predictions def _snake_case( ) -> None: lowercase : str = fetch_california_housing() lowercase , lowercase : str = data_handling(SCREAMING_SNAKE_CASE__ ) lowercase , lowercase , lowercase , lowercase : List[Any] = train_test_split( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , test_size=0.25 , random_state=1 ) lowercase : str = xgboost(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # Error printing print(f"Mean Absolute Error : {mean_absolute_error(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )}" ) print(f"Mean Square Error : {mean_squared_error(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )}" ) if __name__ == "__main__": import doctest doctest.testmod(verbose=True) main()
20
from collections import UserDict from typing import Union import numpy as np import requests from ..utils import ( add_end_docstrings, logging, ) from .audio_classification import ffmpeg_read from .base import PIPELINE_INIT_ARGS, Pipeline lowercase : Optional[Any] = logging.get_logger(__name__) @add_end_docstrings(lowerCAmelCase ) class __snake_case ( lowerCAmelCase ): def __init__( self ,**snake_case ): '''simple docstring''' super().__init__(**snake_case ) if self.framework != "pt": raise ValueError(f"The {self.__class__} is only available in PyTorch." ) # No specific FOR_XXX available yet def __call__( self ,snake_case ,**snake_case ): '''simple docstring''' return super().__call__(snake_case ,**snake_case ) def _SCREAMING_SNAKE_CASE ( self ,**snake_case ): '''simple docstring''' lowercase : Union[str, Any] = {} if "candidate_labels" in kwargs: lowercase : List[str] = kwargs["""candidate_labels"""] if "hypothesis_template" in kwargs: lowercase : Dict = kwargs["""hypothesis_template"""] return preprocess_params, {}, {} def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case=None ,snake_case="This is a sound of {}." ): '''simple docstring''' if isinstance(snake_case ,snake_case ): if audio.startswith("""http://""" ) or audio.startswith("""https://""" ): # We need to actually check for a real protocol, otherwise it's impossible to use a local file # like http_huggingface_co.png lowercase : Optional[Any] = requests.get(snake_case ).content else: with open(snake_case ,"""rb""" ) as f: lowercase : Union[str, Any] = f.read() if isinstance(snake_case ,snake_case ): lowercase : int = ffmpeg_read(snake_case ,self.feature_extractor.sampling_rate ) if not isinstance(snake_case ,np.ndarray ): raise ValueError("""We expect a numpy ndarray as input""" ) if len(audio.shape ) != 1: raise ValueError("""We expect a single channel audio input for ZeroShotAudioClassificationPipeline""" ) lowercase : Dict = self.feature_extractor( [audio] ,sampling_rate=self.feature_extractor.sampling_rate ,return_tensors="""pt""" ) lowercase : Tuple = candidate_labels lowercase : Tuple = [hypothesis_template.format(snake_case ) for x in candidate_labels] lowercase : Optional[Any] = self.tokenizer(snake_case ,return_tensors=self.framework ,padding=snake_case ) lowercase : Optional[Any] = [text_inputs] return inputs def _SCREAMING_SNAKE_CASE ( self ,snake_case ): '''simple docstring''' lowercase : List[str] = model_inputs.pop("""candidate_labels""" ) lowercase : Dict = model_inputs.pop("""text_inputs""" ) if isinstance(text_inputs[0] ,snake_case ): lowercase : List[Any] = text_inputs[0] else: # Batching case. lowercase : Dict = text_inputs[0][0] lowercase : Optional[Any] = self.model(**snake_case ,**snake_case ) lowercase : Any = { """candidate_labels""": candidate_labels, """logits""": outputs.logits_per_audio, } return model_outputs def _SCREAMING_SNAKE_CASE ( self ,snake_case ): '''simple docstring''' lowercase : List[Any] = model_outputs.pop("""candidate_labels""" ) lowercase : Any = model_outputs["""logits"""][0] if self.framework == "pt": lowercase : Any = logits.softmax(dim=0 ) lowercase : Tuple = probs.tolist() else: raise ValueError("""`tf` framework not supported.""" ) lowercase : Tuple = [ {"""score""": score, """label""": candidate_label} for score, candidate_label in sorted(zip(snake_case ,snake_case ) ,key=lambda snake_case : -x[0] ) ] return result
20
1
"""simple docstring""" import os def _snake_case ( ): lowerCAmelCase : Tuple = os.path.dirname(os.path.realpath(_snake_case ) ) lowerCAmelCase : Union[str, Any] = os.path.join(_snake_case , '''triangle.txt''' ) with open(_snake_case ) as f: lowerCAmelCase : List[Any] = f.readlines() lowerCAmelCase : int = [] for line in triangle: lowerCAmelCase : Optional[int] = [] for number in line.strip().split(''' ''' ): numbers_from_line.append(int(_snake_case ) ) a.append(_snake_case ) for i in range(1 , len(_snake_case ) ): for j in range(len(a[i] ) ): lowerCAmelCase : str = a[i - 1][j] if j != len(a[i - 1] ) else 0 lowerCAmelCase : int = a[i - 1][j - 1] if j > 0 else 0 a[i][j] += max(_snake_case , _snake_case ) return max(a[-1] ) if __name__ == "__main__": print(solution())
354
"""simple docstring""" import warnings from typing import List, Optional, Tuple, Union import numpy as np import PIL import torch from ...models import UNetaDModel from ...schedulers import RePaintScheduler from ...utils import PIL_INTERPOLATION, logging, randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput snake_case__ : List[str] = logging.get_logger(__name__) # pylint: disable=invalid-name def _snake_case ( _snake_case : Union[List, PIL.Image.Image, torch.Tensor] ): warnings.warn( '''The preprocess method is deprecated and will be removed in a future version. Please''' ''' use VaeImageProcessor.preprocess instead''' , _snake_case , ) if isinstance(_snake_case , torch.Tensor ): return image elif isinstance(_snake_case , PIL.Image.Image ): lowerCAmelCase : Optional[int] = [image] if isinstance(image[0] , PIL.Image.Image ): lowerCAmelCase, lowerCAmelCase : int = image[0].size lowerCAmelCase, lowerCAmelCase : Optional[int] = (x - x % 8 for x in (w, h)) # resize to integer multiple of 8 lowerCAmelCase : Union[str, Any] = [np.array(i.resize((w, h) , resample=PIL_INTERPOLATION['''lanczos'''] ) )[None, :] for i in image] lowerCAmelCase : int = np.concatenate(_snake_case , axis=0 ) lowerCAmelCase : Optional[Any] = np.array(_snake_case ).astype(np.floataa ) / 255.0 lowerCAmelCase : List[Any] = image.transpose(0 , 3 , 1 , 2 ) lowerCAmelCase : List[str] = 2.0 * image - 1.0 lowerCAmelCase : List[Any] = torch.from_numpy(_snake_case ) elif isinstance(image[0] , torch.Tensor ): lowerCAmelCase : Any = torch.cat(_snake_case , dim=0 ) return image def _snake_case ( _snake_case : Union[List, PIL.Image.Image, torch.Tensor] ): if isinstance(_snake_case , torch.Tensor ): return mask elif isinstance(_snake_case , PIL.Image.Image ): lowerCAmelCase : str = [mask] if isinstance(mask[0] , PIL.Image.Image ): lowerCAmelCase, lowerCAmelCase : int = mask[0].size lowerCAmelCase, lowerCAmelCase : Dict = (x - x % 32 for x in (w, h)) # resize to integer multiple of 32 lowerCAmelCase : List[str] = [np.array(m.convert('''L''' ).resize((w, h) , resample=PIL_INTERPOLATION['''nearest'''] ) )[None, :] for m in mask] lowerCAmelCase : Optional[int] = np.concatenate(_snake_case , axis=0 ) lowerCAmelCase : Dict = mask.astype(np.floataa ) / 255.0 lowerCAmelCase : List[str] = 0 lowerCAmelCase : Optional[int] = 1 lowerCAmelCase : List[Any] = torch.from_numpy(_snake_case ) elif isinstance(mask[0] , torch.Tensor ): lowerCAmelCase : Optional[int] = torch.cat(_snake_case , dim=0 ) return mask class snake_case_( a__ ): __UpperCamelCase = 42 __UpperCamelCase = 42 def __init__( self : List[Any] , UpperCamelCase_ : List[str] , UpperCamelCase_ : Optional[Any] ): super().__init__() self.register_modules(unet=UpperCamelCase_ , scheduler=UpperCamelCase_ ) @torch.no_grad() def __call__( self : Union[str, Any] , UpperCamelCase_ : Union[torch.Tensor, PIL.Image.Image] , UpperCamelCase_ : Union[torch.Tensor, PIL.Image.Image] , UpperCamelCase_ : int = 2_5_0 , UpperCamelCase_ : float = 0.0 , UpperCamelCase_ : int = 1_0 , UpperCamelCase_ : int = 1_0 , UpperCamelCase_ : Optional[Union[torch.Generator, List[torch.Generator]]] = None , UpperCamelCase_ : Optional[str] = "pil" , UpperCamelCase_ : bool = True , ): lowerCAmelCase : Optional[Any] = image lowerCAmelCase : Tuple = _preprocess_image(UpperCamelCase_ ) lowerCAmelCase : int = original_image.to(device=self.device , dtype=self.unet.dtype ) lowerCAmelCase : Optional[Any] = _preprocess_mask(UpperCamelCase_ ) lowerCAmelCase : str = mask_image.to(device=self.device , dtype=self.unet.dtype ) lowerCAmelCase : Union[str, Any] = original_image.shape[0] # sample gaussian noise to begin the loop if isinstance(UpperCamelCase_ , UpperCamelCase_ ) and len(UpperCamelCase_ ) != batch_size: raise ValueError( F'''You have passed a list of generators of length {len(UpperCamelCase_ )}, but requested an effective batch''' F''' size of {batch_size}. Make sure the batch size matches the length of the generators.''' ) lowerCAmelCase : Union[str, Any] = original_image.shape lowerCAmelCase : str = randn_tensor(UpperCamelCase_ , generator=UpperCamelCase_ , device=self.device , dtype=self.unet.dtype ) # set step values self.scheduler.set_timesteps(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , self.device ) lowerCAmelCase : Optional[int] = eta lowerCAmelCase : List[str] = self.scheduler.timesteps[0] + 1 lowerCAmelCase : List[str] = generator[0] if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else generator for i, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ): if t < t_last: # predict the noise residual lowerCAmelCase : Union[str, Any] = self.unet(UpperCamelCase_ , UpperCamelCase_ ).sample # compute previous image: x_t -> x_t-1 lowerCAmelCase : str = self.scheduler.step(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ).prev_sample else: # compute the reverse: x_t-1 -> x_t lowerCAmelCase : Optional[Any] = self.scheduler.undo_step(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) lowerCAmelCase : List[Any] = t lowerCAmelCase : int = (image / 2 + 0.5).clamp(0 , 1 ) lowerCAmelCase : Union[str, Any] = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": lowerCAmelCase : Tuple = self.numpy_to_pil(UpperCamelCase_ ) if not return_dict: return (image,) return ImagePipelineOutput(images=UpperCamelCase_ )
314
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, is_vision_available, ) SCREAMING_SNAKE_CASE : str = { """configuration_owlvit""": [ """OWLVIT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """OwlViTConfig""", """OwlViTOnnxConfig""", """OwlViTTextConfig""", """OwlViTVisionConfig""", ], """processing_owlvit""": ["""OwlViTProcessor"""], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE : Optional[Any] = ["""OwlViTFeatureExtractor"""] SCREAMING_SNAKE_CASE : List[Any] = ["""OwlViTImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE : Optional[int] = [ """OWLVIT_PRETRAINED_MODEL_ARCHIVE_LIST""", """OwlViTModel""", """OwlViTPreTrainedModel""", """OwlViTTextModel""", """OwlViTVisionModel""", """OwlViTForObjectDetection""", ] if TYPE_CHECKING: from .configuration_owlvit import ( OWLVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, OwlViTConfig, OwlViTOnnxConfig, OwlViTTextConfig, OwlViTVisionConfig, ) from .processing_owlvit import OwlViTProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_owlvit import OwlViTFeatureExtractor from .image_processing_owlvit import OwlViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_owlvit import ( OWLVIT_PRETRAINED_MODEL_ARCHIVE_LIST, OwlViTForObjectDetection, OwlViTModel, OwlViTPreTrainedModel, OwlViTTextModel, OwlViTVisionModel, ) else: import sys SCREAMING_SNAKE_CASE : str = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
102
"""simple docstring""" import argparse import struct import unittest class lowerCAmelCase_ : '''simple docstring''' def __init__( self : Tuple ,A_ : bytes ) -> None: A = data # Initialize hash values A = [ 0X6_A_0_9_E_6_6_7, 0XB_B_6_7_A_E_8_5, 0X3_C_6_E_F_3_7_2, 0XA_5_4_F_F_5_3_A, 0X5_1_0_E_5_2_7_F, 0X9_B_0_5_6_8_8_C, 0X1_F_8_3_D_9_A_B, 0X5_B_E_0_C_D_1_9, ] # Initialize round constants A = [ 0X4_2_8_A_2_F_9_8, 0X7_1_3_7_4_4_9_1, 0XB_5_C_0_F_B_C_F, 0XE_9_B_5_D_B_A_5, 0X3_9_5_6_C_2_5_B, 0X5_9_F_1_1_1_F_1, 0X9_2_3_F_8_2_A_4, 0XA_B_1_C_5_E_D_5, 0XD_8_0_7_A_A_9_8, 0X1_2_8_3_5_B_0_1, 0X2_4_3_1_8_5_B_E, 0X5_5_0_C_7_D_C_3, 0X7_2_B_E_5_D_7_4, 0X8_0_D_E_B_1_F_E, 0X9_B_D_C_0_6_A_7, 0XC_1_9_B_F_1_7_4, 0XE_4_9_B_6_9_C_1, 0XE_F_B_E_4_7_8_6, 0X0_F_C_1_9_D_C_6, 0X2_4_0_C_A_1_C_C, 0X2_D_E_9_2_C_6_F, 0X4_A_7_4_8_4_A_A, 0X5_C_B_0_A_9_D_C, 0X7_6_F_9_8_8_D_A, 0X9_8_3_E_5_1_5_2, 0XA_8_3_1_C_6_6_D, 0XB_0_0_3_2_7_C_8, 0XB_F_5_9_7_F_C_7, 0XC_6_E_0_0_B_F_3, 0XD_5_A_7_9_1_4_7, 0X0_6_C_A_6_3_5_1, 0X1_4_2_9_2_9_6_7, 0X2_7_B_7_0_A_8_5, 0X2_E_1_B_2_1_3_8, 0X4_D_2_C_6_D_F_C, 0X5_3_3_8_0_D_1_3, 0X6_5_0_A_7_3_5_4, 0X7_6_6_A_0_A_B_B, 0X8_1_C_2_C_9_2_E, 0X9_2_7_2_2_C_8_5, 0XA_2_B_F_E_8_A_1, 0XA_8_1_A_6_6_4_B, 0XC_2_4_B_8_B_7_0, 0XC_7_6_C_5_1_A_3, 0XD_1_9_2_E_8_1_9, 0XD_6_9_9_0_6_2_4, 0XF_4_0_E_3_5_8_5, 0X1_0_6_A_A_0_7_0, 0X1_9_A_4_C_1_1_6, 0X1_E_3_7_6_C_0_8, 0X2_7_4_8_7_7_4_C, 0X3_4_B_0_B_C_B_5, 0X3_9_1_C_0_C_B_3, 0X4_E_D_8_A_A_4_A, 0X5_B_9_C_C_A_4_F, 0X6_8_2_E_6_F_F_3, 0X7_4_8_F_8_2_E_E, 0X7_8_A_5_6_3_6_F, 0X8_4_C_8_7_8_1_4, 0X8_C_C_7_0_2_0_8, 0X9_0_B_E_F_F_F_A, 0XA_4_5_0_6_C_E_B, 0XB_E_F_9_A_3_F_7, 0XC_6_7_1_7_8_F_2, ] A = self.preprocessing(self.data ) self.final_hash() @staticmethod def _SCREAMING_SNAKE_CASE ( A_ : bytes ) -> bytes: A = B'\x80' + (B'\x00' * (63 - (len(A_ ) + 8) % 64)) A = struct.pack('>Q' ,(len(A_ ) * 8) ) return data + padding + big_endian_integer def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> None: # Convert into blocks of 64 bytes A = [ self.preprocessed_data[x : x + 64] for x in range(0 ,len(self.preprocessed_data ) ,64 ) ] for block in self.blocks: # Convert the given block into a list of 4 byte integers A = list(struct.unpack('>16L' ,A_ ) ) # add 48 0-ed integers words += [0] * 48 A , A , A , A , A , A , A , A = self.hashes for index in range(0 ,64 ): if index > 15: # modify the zero-ed indexes at the end of the array A = ( self.ror(words[index - 15] ,7 ) ^ self.ror(words[index - 15] ,18 ) ^ (words[index - 15] >> 3) ) A = ( self.ror(words[index - 2] ,17 ) ^ self.ror(words[index - 2] ,19 ) ^ (words[index - 2] >> 10) ) A = ( words[index - 16] + sa + words[index - 7] + sa ) % 0X1_0_0_0_0_0_0_0_0 # Compression A = self.ror(A_ ,6 ) ^ self.ror(A_ ,11 ) ^ self.ror(A_ ,25 ) A = (e & f) ^ ((~e & 0XF_F_F_F_F_F_F_F) & g) A = ( h + sa + ch + self.round_constants[index] + words[index] ) % 0X1_0_0_0_0_0_0_0_0 A = self.ror(A_ ,2 ) ^ self.ror(A_ ,13 ) ^ self.ror(A_ ,22 ) A = (a & b) ^ (a & c) ^ (b & c) A = (sa + maj) % 0X1_0_0_0_0_0_0_0_0 A , A , A , A , A , A , A , A = ( g, f, e, ((d + tempa) % 0X1_0_0_0_0_0_0_0_0), c, b, a, ((tempa + tempa) % 0X1_0_0_0_0_0_0_0_0), ) A = [a, b, c, d, e, f, g, h] # Modify final values A = [ ((element + mutated_hash_values[index]) % 0X1_0_0_0_0_0_0_0_0) for index, element in enumerate(self.hashes ) ] A = ''.join([hex(A_ )[2:].zfill(8 ) for value in self.hashes] ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] ,A_ : int ,A_ : int ) -> int: return 0XF_F_F_F_F_F_F_F & (value << (32 - rotations)) | (value >> rotations) class lowerCAmelCase_ ( unittest.TestCase ): '''simple docstring''' def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> None: import hashlib A = bytes('Test String' ,'utf-8' ) self.assertEqual(SHAaaa(A_ ).hash ,hashlib.shaaaa(A_ ).hexdigest() ) def _snake_case ( ): import doctest doctest.testmod() A = argparse.ArgumentParser() parser.add_argument( '-s' , '--string' , dest='input_string' , default='Hello World!! Welcome to Cryptography' , help='Hash the string' , ) parser.add_argument( '-f' , '--file' , dest='input_file' , help='Hash contents of a file' ) A = parser.parse_args() A = args.input_string # hash input should be a bytestring if args.input_file: with open(args.input_file , 'rb' ) as f: A = f.read() else: A = bytes(snake_case__ , 'utf-8' ) print(SHAaaa(snake_case__ ).hash ) if __name__ == "__main__": main()
74
0
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCAmelCase : Any = logging.get_logger(__name__) lowerCAmelCase : Any = { """facebook/data2vec-text-base""": """https://huggingface.co/data2vec/resolve/main/config.json""", } class __magic_name__ ( UpperCAmelCase__ ): '''simple docstring''' __UpperCamelCase = "data2vec-text" def __init__( self , _a=30_522 , _a=768 , _a=12 , _a=12 , _a=3_072 , _a="gelu" , _a=0.1 , _a=0.1 , _a=512 , _a=2 , _a=0.02 , _a=1e-1_2 , _a=1 , _a=0 , _a=2 , _a="absolute" , _a=True , _a=None , **_a , ): """simple docstring""" super().__init__(pad_token_id=_a , bos_token_id=_a , eos_token_id=_a , **_a ) lowerCamelCase = vocab_size lowerCamelCase = hidden_size lowerCamelCase = num_hidden_layers lowerCamelCase = num_attention_heads lowerCamelCase = hidden_act lowerCamelCase = intermediate_size lowerCamelCase = hidden_dropout_prob lowerCamelCase = attention_probs_dropout_prob lowerCamelCase = max_position_embeddings lowerCamelCase = type_vocab_size lowerCamelCase = initializer_range lowerCamelCase = layer_norm_eps lowerCamelCase = position_embedding_type lowerCamelCase = use_cache lowerCamelCase = classifier_dropout class __magic_name__ ( UpperCAmelCase__ ): '''simple docstring''' @property def _lowerCAmelCase ( self ): """simple docstring""" if self.task == "multiple-choice": lowerCamelCase = {0: """batch""", 1: """choice""", 2: """sequence"""} else: lowerCamelCase = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ] )
357
"""simple docstring""" from __future__ import annotations import unittest import numpy as np from transformers import OPTConfig, is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import GPTaTokenizer, TFOPTForCausalLM, TFOPTModel def a__ ( snake_case__ , snake_case__ , snake_case__=None , snake_case__=None ) -> Tuple: if attention_mask is None: lowerCamelCase = tf.cast(tf.math.not_equal(snake_case__ , config.pad_token_id ) , tf.inta ) return {"input_ids": input_ids, "attention_mask": attention_mask} @require_tf class __magic_name__ : '''simple docstring''' __UpperCamelCase = OPTConfig __UpperCamelCase = {} __UpperCamelCase = "gelu" def __init__( self , _a , _a=13 , _a=7 , _a=True , _a=False , _a=99 , _a=16 , _a=2 , _a=4 , _a=4 , _a="gelu" , _a=0.1 , _a=0.1 , _a=20 , _a=2 , _a=1 , _a=0 , _a=16 , _a=16 , ): """simple docstring""" lowerCamelCase = parent lowerCamelCase = batch_size lowerCamelCase = seq_length lowerCamelCase = is_training lowerCamelCase = use_labels lowerCamelCase = vocab_size lowerCamelCase = hidden_size lowerCamelCase = num_hidden_layers lowerCamelCase = num_attention_heads lowerCamelCase = intermediate_size lowerCamelCase = hidden_act lowerCamelCase = hidden_dropout_prob lowerCamelCase = attention_probs_dropout_prob lowerCamelCase = max_position_embeddings lowerCamelCase = eos_token_id lowerCamelCase = pad_token_id lowerCamelCase = bos_token_id lowerCamelCase = embed_dim lowerCamelCase = word_embed_proj_dim lowerCamelCase = False def _lowerCAmelCase ( self ): """simple docstring""" lowerCamelCase = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) lowerCamelCase = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) lowerCamelCase = tf.concat([input_ids, eos_tensor] , axis=1 ) lowerCamelCase = self.config_cls( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , embed_dim=self.embed_dim , word_embed_proj_dim=self.word_embed_proj_dim , is_encoder_decoder=_a , **self.config_updates , ) lowerCamelCase = prepare_opt_inputs_dict(_a , _a ) return config, inputs_dict def _lowerCAmelCase ( self , _a , _a ): """simple docstring""" lowerCamelCase = TFOPTModel(config=_a ) lowerCamelCase = inputs_dict["""input_ids"""] lowerCamelCase = input_ids[:1, :] lowerCamelCase = inputs_dict["""attention_mask"""][:1, :] lowerCamelCase = 1 # first forward pass lowerCamelCase = model(_a , attention_mask=_a , use_cache=_a ) lowerCamelCase , lowerCamelCase = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids lowerCamelCase = ids_tensor((self.batch_size, 3) , config.vocab_size ) lowerCamelCase = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and lowerCamelCase = tf.concat([input_ids, next_tokens] , axis=-1 ) lowerCamelCase = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) lowerCamelCase = model(_a , attention_mask=_a )[0] lowerCamelCase = model(_a , attention_mask=_a , past_key_values=_a )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice lowerCamelCase = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) lowerCamelCase = output_from_no_past[:, -3:, random_slice_idx] lowerCamelCase = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(_a , _a , rtol=1e-3 ) @require_tf class __magic_name__ ( UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' __UpperCamelCase = (TFOPTModel, TFOPTForCausalLM) if is_tf_available() else () __UpperCamelCase = (TFOPTForCausalLM,) if is_tf_available() else () __UpperCamelCase = ( {"feature-extraction": TFOPTModel, "text-generation": TFOPTForCausalLM} if is_tf_available() else {} ) __UpperCamelCase = False __UpperCamelCase = False __UpperCamelCase = False __UpperCamelCase = 10 def _lowerCAmelCase ( self ): """simple docstring""" lowerCamelCase = TFOPTModelTester(self ) lowerCamelCase = ConfigTester(self , config_class=_a ) def _lowerCAmelCase ( self ): """simple docstring""" self.config_tester.run_common_tests() def _lowerCAmelCase ( self ): """simple docstring""" lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*_a ) def _lowerCAmelCase ( self ): """simple docstring""" lowerCamelCase , lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() def _get_word_embedding_weight(_a , _a ): if hasattr(_a , """weight""" ): return embedding_layer.weight else: # Here we build the word embeddings weights if not exists. # And then we retry to get the attribute once built. model.build() if hasattr(_a , """weight""" ): return embedding_layer.weight else: return None for model_class in self.all_model_classes: for size in [config.vocab_size - 10, config.vocab_size + 10]: # build the embeddings lowerCamelCase = model_class(config=_a ) lowerCamelCase = _get_word_embedding_weight(_a , model.get_input_embeddings() ) lowerCamelCase = _get_word_embedding_weight(_a , model.get_output_embeddings() ) # reshape the embeddings model.resize_token_embeddings(_a ) lowerCamelCase = _get_word_embedding_weight(_a , model.get_input_embeddings() ) lowerCamelCase = _get_word_embedding_weight(_a , model.get_output_embeddings() ) # check that the resized embeddings size matches the desired size. lowerCamelCase = size if size is not None else config.vocab_size self.assertEqual(new_input_embeddings.shape[0] , _a ) # check that weights remain the same after resizing lowerCamelCase = True for pa, pa in zip(old_input_embeddings.value() , new_input_embeddings.value() ): if tf.math.reduce_sum(tf.math.abs(pa - pa ) ) > 0: lowerCamelCase = False self.assertTrue(_a ) if old_output_embeddings is not None and new_output_embeddings is not None: self.assertEqual(new_output_embeddings.shape[0] , _a ) lowerCamelCase = True for pa, pa in zip(old_output_embeddings.value() , new_output_embeddings.value() ): if tf.math.reduce_sum(tf.math.abs(pa - pa ) ) > 0: lowerCamelCase = False self.assertTrue(_a ) def a__ ( snake_case__ ) -> List[Any]: return tf.constant(snake_case__ , dtype=tf.intaa ) @require_tf class __magic_name__ ( unittest.TestCase ): '''simple docstring''' __UpperCamelCase = 99 def _lowerCAmelCase ( self ): """simple docstring""" lowerCamelCase = tf.ones((4, 1) , dtype=tf.intaa ) * 2 lowerCamelCase = tf.concat([ids_tensor((4, 6) , self.vocab_size - 3 ) + 3, eos_column_vector] , axis=1 ) lowerCamelCase = input_ids.shape[0] lowerCamelCase = OPTConfig( vocab_size=self.vocab_size , hidden_size=24 , num_hidden_layers=2 , num_attention_heads=2 , ffn_dim=32 , max_position_embeddings=48 , eos_token_id=2 , pad_token_id=1 , bos_token_id=0 , ) return config, input_ids, batch_size @require_sentencepiece @require_tf class __magic_name__ ( unittest.TestCase ): '''simple docstring''' @slow def _lowerCAmelCase ( self ): """simple docstring""" lowerCamelCase = TFOPTModel.from_pretrained("""facebook/opt-350m""" ) lowerCamelCase = _long_tensor([[0, 31_414, 232, 328, 740, 1_140, 12_695, 69, 46_078, 1_588, 2]] ) lowerCamelCase = tf.not_equal(_a , model.config.pad_token_id ) with tf.GradientTape(): lowerCamelCase = model(input_ids=_a , attention_mask=_a ).last_hidden_state lowerCamelCase = (1, 11, 512) self.assertEqual(output.shape , _a ) lowerCamelCase = tf.constant( [[-0.2_873, -1.9_218, -0.3_033], [-1.2_710, -0.1_338, -0.1_902], [0.4_095, 0.1_214, -1.3_121]] ) self.assertTrue(np.allclose(output[:, :3, :3] , _a , atol=4e-3 ) ) lowerCamelCase = tf.function(_a , jit_compile=_a ) lowerCamelCase = xla_generate(_a , _a )[0] self.assertTrue(np.allclose(output[:, :3, :3] , _a , atol=4e-2 ) ) @require_tf @slow class __magic_name__ ( unittest.TestCase ): '''simple docstring''' def _lowerCAmelCase ( self ): """simple docstring""" super().setUp() lowerCamelCase = """facebook/opt-350m""" def _lowerCAmelCase ( self ): """simple docstring""" lowerCamelCase = TFOPTForCausalLM.from_pretrained(self.path_model ) lowerCamelCase = GPTaTokenizer.from_pretrained(self.path_model ) lowerCamelCase = [ """Today is a beautiful day and I want to""", """In the city of""", """Paris is the capital of France and""", """Computers and mobile phones have taken""", ] # verify that prompt without BOS token is identical to Metaseq -> add_special_tokens=False lowerCamelCase = tokenizer(_a , return_tensors="""tf""" , padding=_a , add_special_tokens=_a ) lowerCamelCase = tf.math.reduce_mean(model(inputs.input_ids , attention_mask=inputs.attention_mask )[0] , axis=-1 ) lowerCamelCase = tf.constant( [ [1.3_851, -13.8_923, -10.5_229, -10.7_533, -0.2_309, -10.2_384, -0.5_365, -9.0_947, -5.1_670], [-4.7_073, -10.6_276, -3.9_415, -21.5_242, -0.2_822, -0.2_822, -0.2_822, -0.2_822, -0.2_822], [0.6_247, -3.4_229, -8.9_179, -1.4_297, -14.1_650, 1.4_146, -9.0_218, -0.2_703, -0.2_703], [6.4_783, -1.9_913, -10.7_926, -2.3_336, 1.5_092, -0.9_974, -6.8_213, 1.3_477, 1.3_477], ] ) self.assertTrue(np.allclose(_a , _a , atol=1e-4 ) ) lowerCamelCase = tf.function(_a , jit_compile=_a ) lowerCamelCase = tf.math.reduce_mean(xla_generate(inputs.input_ids , attention_mask=inputs.attention_mask )[0] , axis=-1 ) self.assertTrue(np.allclose(_a , _a , atol=1e-4 ) ) @require_tf @slow class __magic_name__ ( unittest.TestCase ): '''simple docstring''' @property def _lowerCAmelCase ( self ): """simple docstring""" return [ "Today is a beautiful day and I want", "In the city of", "Paris is the capital of France and", "Computers and mobile phones have taken", ] def _lowerCAmelCase ( self ): """simple docstring""" lowerCamelCase = """facebook/opt-125m""" lowerCamelCase = [ """Today is a beautiful day and I want to""", """In the city of New York, the city""", """Paris is the capital of France and the capital""", """Computers and mobile phones have taken over the""", ] lowerCamelCase = [] lowerCamelCase = GPTaTokenizer.from_pretrained(_a ) lowerCamelCase = TFOPTForCausalLM.from_pretrained(_a ) for prompt in self.prompts: lowerCamelCase = tokenizer(_a , return_tensors="""tf""" ).input_ids lowerCamelCase = model.generate(_a , max_length=10 ) lowerCamelCase = tokenizer.batch_decode(_a , skip_special_tokens=_a ) predicted_outputs += generated_string self.assertListEqual(_a , _a ) def _lowerCAmelCase ( self ): """simple docstring""" lowerCamelCase = """facebook/opt-350m""" lowerCamelCase = GPTaTokenizer.from_pretrained(_a ) lowerCamelCase = TFOPTForCausalLM.from_pretrained(_a ) lowerCamelCase = """left""" # use different length sentences to test batching lowerCamelCase = [ """Hello, my dog is a little""", """Today, I""", ] lowerCamelCase = tokenizer(_a , return_tensors="""tf""" , padding=_a ) lowerCamelCase = inputs["""input_ids"""] lowerCamelCase = model.generate(input_ids=_a , attention_mask=inputs["""attention_mask"""] ) lowerCamelCase = tokenizer(sentences[0] , return_tensors="""tf""" ).input_ids lowerCamelCase = model.generate(input_ids=_a ) lowerCamelCase = inputs_non_padded.shape[-1] - tf.math.reduce_sum( tf.cast(inputs["""attention_mask"""][-1] , tf.intaa ) ) lowerCamelCase = tokenizer(sentences[1] , return_tensors="""tf""" ).input_ids lowerCamelCase = model.generate(input_ids=_a , max_length=model.config.max_length - num_paddings ) lowerCamelCase = tokenizer.batch_decode(_a , skip_special_tokens=_a ) lowerCamelCase = tokenizer.decode(output_non_padded[0] , skip_special_tokens=_a ) lowerCamelCase = tokenizer.decode(output_padded[0] , skip_special_tokens=_a ) lowerCamelCase = [ """Hello, my dog is a little bit of a dork.\nI'm a little bit""", """Today, I was in the middle of a conversation with a friend about the""", ] self.assertListEqual(_a , _a ) self.assertListEqual(_a , [non_padded_sentence, padded_sentence] ) def _lowerCAmelCase ( self ): """simple docstring""" lowerCamelCase = """facebook/opt-350m""" lowerCamelCase = [ """Today is a beautiful day and I want to""", """In the city of San Francisco, the city""", """Paris is the capital of France and the capital""", """Computers and mobile phones have taken over the""", ] lowerCamelCase = [] lowerCamelCase = GPTaTokenizer.from_pretrained(_a ) lowerCamelCase = TFOPTForCausalLM.from_pretrained(_a ) for prompt in self.prompts: lowerCamelCase = tokenizer(_a , return_tensors="""tf""" ).input_ids lowerCamelCase = model.generate(_a , max_length=10 ) lowerCamelCase = tokenizer.batch_decode(_a , skip_special_tokens=_a ) predicted_outputs += generated_string self.assertListEqual(_a , _a )
168
0
import argparse import os import torch from transformers import FlavaConfig, FlavaForPreTraining from transformers.models.flava.convert_dalle_to_flava_codebook import convert_dalle_checkpoint def UpperCamelCase ( lowerCAmelCase__ ): '''simple docstring''' # encoder.embeddings are double copied in original FLAVA return sum(param.float().sum() if '''encoder.embeddings''' not in key else 0 for key, param in state_dict.items() ) def UpperCamelCase ( lowerCAmelCase__ , lowerCAmelCase__ ): '''simple docstring''' lowercase = {} for key, value in state_dict.items(): if "text_encoder.embeddings" in key or "image_encoder.embeddings" in key: continue lowercase = key.replace('''heads.cmd.mim_head.cls.predictions''' , '''mmm_image_head''' ) lowercase = key.replace('''heads.cmd.mlm_head.cls.predictions''' , '''mmm_text_head''' ) lowercase = key.replace('''heads.cmd.itm_head.cls''' , '''itm_head''' ) lowercase = key.replace('''heads.cmd.itm_head.pooler''' , '''itm_head.pooler''' ) lowercase = key.replace('''heads.cmd.clip_head.logit_scale''' , '''flava.logit_scale''' ) lowercase = key.replace('''heads.fairseq_mlm.cls.predictions''' , '''mlm_head''' ) lowercase = key.replace('''heads.imagenet.mim_head.cls.predictions''' , '''mim_head''' ) lowercase = key.replace('''mm_text_projection''' , '''flava.text_to_mm_projection''' ) lowercase = key.replace('''mm_image_projection''' , '''flava.image_to_mm_projection''' ) lowercase = key.replace('''image_encoder.module''' , '''flava.image_model''' ) lowercase = key.replace('''text_encoder.module''' , '''flava.text_model''' ) lowercase = key.replace('''mm_encoder.module.encoder.cls_token''' , '''flava.multimodal_model.cls_token''' ) lowercase = key.replace('''mm_encoder.module''' , '''flava.multimodal_model''' ) lowercase = key.replace('''text_projection''' , '''flava.text_projection''' ) lowercase = key.replace('''image_projection''' , '''flava.image_projection''' ) lowercase = value.float() for key, value in codebook_state_dict.items(): lowercase = value return upgrade @torch.no_grad() def UpperCamelCase ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__=None ): '''simple docstring''' if config_path is not None: lowercase = FlavaConfig.from_pretrained(lowerCAmelCase__ ) else: lowercase = FlavaConfig() lowercase = FlavaForPreTraining(lowerCAmelCase__ ).eval() lowercase = convert_dalle_checkpoint(lowerCAmelCase__ , lowerCAmelCase__ , save_checkpoint=lowerCAmelCase__ ) if os.path.exists(lowerCAmelCase__ ): lowercase = torch.load(lowerCAmelCase__ , map_location='''cpu''' ) else: lowercase = torch.hub.load_state_dict_from_url(lowerCAmelCase__ , map_location='''cpu''' ) lowercase = upgrade_state_dict(lowerCAmelCase__ , lowerCAmelCase__ ) hf_model.load_state_dict(lowerCAmelCase__ ) lowercase = hf_model.state_dict() lowercase = count_parameters(lowerCAmelCase__ ) lowercase = count_parameters(lowerCAmelCase__ ) + count_parameters(lowerCAmelCase__ ) assert torch.allclose(lowerCAmelCase__ , lowerCAmelCase__ , atol=1E-3 ) hf_model.save_pretrained(lowerCAmelCase__ ) if __name__ == "__main__": lowercase__ :List[str] = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to flava checkpoint") parser.add_argument("--codebook_path", default=None, type=str, help="Path to flava codebook checkpoint") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") lowercase__ :str = parser.parse_args() convert_flava_checkpoint(args.checkpoint_path, args.codebook_path, args.pytorch_dump_folder_path, args.config_path)
101
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) __lowerCAmelCase = { '''configuration_encodec''': [ '''ENCODEC_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''EncodecConfig''', ], '''feature_extraction_encodec''': ['''EncodecFeatureExtractor'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase = [ '''ENCODEC_PRETRAINED_MODEL_ARCHIVE_LIST''', '''EncodecModel''', '''EncodecPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_encodec import ( ENCODEC_PRETRAINED_CONFIG_ARCHIVE_MAP, EncodecConfig, ) from .feature_extraction_encodec import EncodecFeatureExtractor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_encodec import ( ENCODEC_PRETRAINED_MODEL_ARCHIVE_LIST, EncodecModel, EncodecPreTrainedModel, ) else: import sys __lowerCAmelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
196
0
import argparse from collections import OrderedDict from pathlib import Path import torch from transformers import ( VisualBertConfig, VisualBertForMultipleChoice, VisualBertForPreTraining, VisualBertForQuestionAnswering, VisualBertForVisualReasoning, ) from transformers.utils import logging logging.set_verbosity_info() UpperCAmelCase__ = logging.get_logger(__name__) UpperCAmelCase__ = [ ("bert.bert", "visual_bert"), ("bert.cls", "cls"), ("bert.classifier", "cls"), ("token_type_embeddings_visual", "visual_token_type_embeddings"), ("position_embeddings_visual", "visual_position_embeddings"), ("projection", "visual_projection"), ] UpperCAmelCase__ = [ "nlvr2_coco_pre_trained.th", "nlvr2_fine_tuned.th", "nlvr2_pre_trained.th", "vcr_coco_pre_train.th", "vcr_fine_tune.th", "vcr_pre_train.th", "vqa_coco_pre_trained.th", "vqa_fine_tuned.th", "vqa_pre_trained.th", ] def _a ( a :Any ) -> Optional[int]: a = torch.load(a , map_location='''cpu''' ) return sd def _a ( a :Tuple , a :Dict , a :Any=rename_keys_prefix ) -> Union[str, Any]: a = OrderedDict() a = torch.arange(config.max_position_embeddings ).expand((1, -1) ) # detector_d = OrderedDict() for key in d: if "detector" in key: # detector_d[key.replace('detector.','')] = d[key] continue a = key for name_pair in rename_keys_prefix: a = new_key.replace(name_pair[0] , name_pair[1] ) a = d[key] if key == "bert.cls.predictions.decoder.weight": # Old bert code didn't have `decoder.bias`, but was added separately a = new_d['''cls.predictions.bias'''] return new_d @torch.no_grad() def _a ( a :Optional[int] , a :int ) -> str: assert ( checkpoint_path.split('''/''' )[-1] in ACCEPTABLE_CHECKPOINTS ), F"""The checkpoint provided must be in {ACCEPTABLE_CHECKPOINTS}.""" # Get Config if "pre" in checkpoint_path: a = '''pretraining''' if "vcr" in checkpoint_path: a = {'''visual_embedding_dim''': 512} elif "vqa_advanced" in checkpoint_path: a = {'''visual_embedding_dim''': 2_048} elif "vqa" in checkpoint_path: a = {'''visual_embedding_dim''': 2_048} elif "nlvr" in checkpoint_path: a = {'''visual_embedding_dim''': 1_024} else: raise NotImplementedError(F"""No implementation found for `{checkpoint_path}`.""" ) else: if "vcr" in checkpoint_path: a = {'''visual_embedding_dim''': 512} a = '''multichoice''' elif "vqa_advanced" in checkpoint_path: a = {'''visual_embedding_dim''': 2_048} a = '''vqa_advanced''' elif "vqa" in checkpoint_path: a = {'''visual_embedding_dim''': 2_048, '''num_labels''': 3_129} a = '''vqa''' elif "nlvr" in checkpoint_path: a = { '''visual_embedding_dim''': 1_024, '''num_labels''': 2, } a = '''nlvr''' a = VisualBertConfig(**a ) # Load State Dict a = load_state_dict(a ) a = get_new_dict(a , a ) if model_type == "pretraining": a = VisualBertForPreTraining(a ) elif model_type == "vqa": a = VisualBertForQuestionAnswering(a ) elif model_type == "nlvr": a = VisualBertForVisualReasoning(a ) elif model_type == "multichoice": a = VisualBertForMultipleChoice(a ) model.load_state_dict(a ) # Save Checkpoints Path(a ).mkdir(exist_ok=a ) model.save_pretrained(a ) if __name__ == "__main__": UpperCAmelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument("orig_checkpoint_path", type=str, help="A path to .th on local filesystem.") parser.add_argument("pytorch_dump_folder_path", type=str, help="Path to the output PyTorch model.") UpperCAmelCase__ = parser.parse_args() convert_visual_bert_checkpoint(args.orig_checkpoint_path, args.pytorch_dump_folder_path)
369
import importlib import json import os from collections import OrderedDict from typing import Dict, Optional, Union # Build the list of all feature extractors from ...configuration_utils import PretrainedConfig from ...dynamic_module_utils import get_class_from_dynamic_module, resolve_trust_remote_code from ...feature_extraction_utils import FeatureExtractionMixin from ...utils import CONFIG_NAME, FEATURE_EXTRACTOR_NAME, get_file_from_repo, logging from .auto_factory import _LazyAutoMapping from .configuration_auto import ( CONFIG_MAPPING_NAMES, AutoConfig, model_type_to_module_name, replace_list_option_in_docstrings, ) UpperCAmelCase__ = logging.get_logger(__name__) UpperCAmelCase__ = OrderedDict( [ ("audio-spectrogram-transformer", "ASTFeatureExtractor"), ("beit", "BeitFeatureExtractor"), ("chinese_clip", "ChineseCLIPFeatureExtractor"), ("clap", "ClapFeatureExtractor"), ("clip", "CLIPFeatureExtractor"), ("clipseg", "ViTFeatureExtractor"), ("conditional_detr", "ConditionalDetrFeatureExtractor"), ("convnext", "ConvNextFeatureExtractor"), ("cvt", "ConvNextFeatureExtractor"), ("data2vec-audio", "Wav2Vec2FeatureExtractor"), ("data2vec-vision", "BeitFeatureExtractor"), ("deformable_detr", "DeformableDetrFeatureExtractor"), ("deit", "DeiTFeatureExtractor"), ("detr", "DetrFeatureExtractor"), ("dinat", "ViTFeatureExtractor"), ("donut-swin", "DonutFeatureExtractor"), ("dpt", "DPTFeatureExtractor"), ("encodec", "EncodecFeatureExtractor"), ("flava", "FlavaFeatureExtractor"), ("glpn", "GLPNFeatureExtractor"), ("groupvit", "CLIPFeatureExtractor"), ("hubert", "Wav2Vec2FeatureExtractor"), ("imagegpt", "ImageGPTFeatureExtractor"), ("layoutlmv2", "LayoutLMv2FeatureExtractor"), ("layoutlmv3", "LayoutLMv3FeatureExtractor"), ("levit", "LevitFeatureExtractor"), ("maskformer", "MaskFormerFeatureExtractor"), ("mctct", "MCTCTFeatureExtractor"), ("mobilenet_v1", "MobileNetV1FeatureExtractor"), ("mobilenet_v2", "MobileNetV2FeatureExtractor"), ("mobilevit", "MobileViTFeatureExtractor"), ("nat", "ViTFeatureExtractor"), ("owlvit", "OwlViTFeatureExtractor"), ("perceiver", "PerceiverFeatureExtractor"), ("poolformer", "PoolFormerFeatureExtractor"), ("regnet", "ConvNextFeatureExtractor"), ("resnet", "ConvNextFeatureExtractor"), ("segformer", "SegformerFeatureExtractor"), ("sew", "Wav2Vec2FeatureExtractor"), ("sew-d", "Wav2Vec2FeatureExtractor"), ("speech_to_text", "Speech2TextFeatureExtractor"), ("speecht5", "SpeechT5FeatureExtractor"), ("swiftformer", "ViTFeatureExtractor"), ("swin", "ViTFeatureExtractor"), ("swinv2", "ViTFeatureExtractor"), ("table-transformer", "DetrFeatureExtractor"), ("timesformer", "VideoMAEFeatureExtractor"), ("tvlt", "TvltFeatureExtractor"), ("unispeech", "Wav2Vec2FeatureExtractor"), ("unispeech-sat", "Wav2Vec2FeatureExtractor"), ("van", "ConvNextFeatureExtractor"), ("videomae", "VideoMAEFeatureExtractor"), ("vilt", "ViltFeatureExtractor"), ("vit", "ViTFeatureExtractor"), ("vit_mae", "ViTFeatureExtractor"), ("vit_msn", "ViTFeatureExtractor"), ("wav2vec2", "Wav2Vec2FeatureExtractor"), ("wav2vec2-conformer", "Wav2Vec2FeatureExtractor"), ("wavlm", "Wav2Vec2FeatureExtractor"), ("whisper", "WhisperFeatureExtractor"), ("xclip", "CLIPFeatureExtractor"), ("yolos", "YolosFeatureExtractor"), ] ) UpperCAmelCase__ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FEATURE_EXTRACTOR_MAPPING_NAMES) def _a ( a :str ) -> Any: for module_name, extractors in FEATURE_EXTRACTOR_MAPPING_NAMES.items(): if class_name in extractors: a = model_type_to_module_name(a ) a = importlib.import_module(F""".{module_name}""" , '''transformers.models''' ) try: return getattr(a , a ) except AttributeError: continue for _, extractor in FEATURE_EXTRACTOR_MAPPING._extra_content.items(): if getattr(a , '''__name__''' , a ) == class_name: return extractor # We did not fine the class, but maybe it's because a dep is missing. In that case, the class will be in the main # init and we return the proper dummy to get an appropriate error message. a = importlib.import_module('''transformers''' ) if hasattr(a , a ): return getattr(a , a ) return None def _a ( a :Union[str, os.PathLike] , a :Optional[Union[str, os.PathLike]] = None , a :bool = False , a :bool = False , a :Optional[Dict[str, str]] = None , a :Optional[Union[bool, str]] = None , a :Optional[str] = None , a :bool = False , **a :int , ) -> Tuple: a = get_file_from_repo( a , a , cache_dir=a , force_download=a , resume_download=a , proxies=a , use_auth_token=a , revision=a , local_files_only=a , ) if resolved_config_file is None: logger.info( '''Could not locate the feature extractor configuration file, will try to use the model config instead.''' ) return {} with open(a , encoding='''utf-8''' ) as reader: return json.load(a ) class lowercase_ : '''simple docstring''' def __init__( self : Tuple ) ->int: """simple docstring""" raise EnvironmentError( '''AutoFeatureExtractor is designed to be instantiated ''' '''using the `AutoFeatureExtractor.from_pretrained(pretrained_model_name_or_path)` method.''' ) @classmethod @replace_list_option_in_docstrings(__UpperCAmelCase ) def __lowerCAmelCase ( cls : int , __UpperCAmelCase : Optional[Any] , **__UpperCAmelCase : Dict ) ->List[Any]: """simple docstring""" a = kwargs.pop('''config''' , __UpperCAmelCase ) a = kwargs.pop('''trust_remote_code''' , __UpperCAmelCase ) a = True a , a = FeatureExtractionMixin.get_feature_extractor_dict(__UpperCAmelCase , **__UpperCAmelCase ) a = config_dict.get('''feature_extractor_type''' , __UpperCAmelCase ) a = None if "AutoFeatureExtractor" in config_dict.get('''auto_map''' , {} ): a = config_dict['''auto_map''']['''AutoFeatureExtractor'''] # If we don't find the feature extractor class in the feature extractor config, let's try the model config. if feature_extractor_class is None and feature_extractor_auto_map is None: if not isinstance(__UpperCAmelCase , __UpperCAmelCase ): a = AutoConfig.from_pretrained(__UpperCAmelCase , **__UpperCAmelCase ) # It could be in `config.feature_extractor_type`` a = getattr(__UpperCAmelCase , '''feature_extractor_type''' , __UpperCAmelCase ) if hasattr(__UpperCAmelCase , '''auto_map''' ) and "AutoFeatureExtractor" in config.auto_map: a = config.auto_map['''AutoFeatureExtractor'''] if feature_extractor_class is not None: a = feature_extractor_class_from_name(__UpperCAmelCase ) a = feature_extractor_auto_map is not None a = feature_extractor_class is not None or type(__UpperCAmelCase ) in FEATURE_EXTRACTOR_MAPPING a = resolve_trust_remote_code( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) if has_remote_code and trust_remote_code: a = get_class_from_dynamic_module( __UpperCAmelCase , __UpperCAmelCase , **__UpperCAmelCase ) a = kwargs.pop('''code_revision''' , __UpperCAmelCase ) if os.path.isdir(__UpperCAmelCase ): feature_extractor_class.register_for_auto_class() return feature_extractor_class.from_dict(__UpperCAmelCase , **__UpperCAmelCase ) elif feature_extractor_class is not None: return feature_extractor_class.from_dict(__UpperCAmelCase , **__UpperCAmelCase ) # Last try: we use the FEATURE_EXTRACTOR_MAPPING. elif type(__UpperCAmelCase ) in FEATURE_EXTRACTOR_MAPPING: a = FEATURE_EXTRACTOR_MAPPING[type(__UpperCAmelCase )] return feature_extractor_class.from_dict(__UpperCAmelCase , **__UpperCAmelCase ) raise ValueError( F"""Unrecognized feature extractor in {pretrained_model_name_or_path}. Should have a """ F"""`feature_extractor_type` key in its {FEATURE_EXTRACTOR_NAME} of {CONFIG_NAME}, or one of the following """ F"""`model_type` keys in its {CONFIG_NAME}: {', '.join(c for c in FEATURE_EXTRACTOR_MAPPING_NAMES.keys() )}""" ) @staticmethod def __lowerCAmelCase ( __UpperCAmelCase : Optional[int] , __UpperCAmelCase : Tuple ) ->Optional[int]: """simple docstring""" FEATURE_EXTRACTOR_MAPPING.register(__UpperCAmelCase , __UpperCAmelCase )
26
0
from __future__ import annotations import unittest from transformers import RoFormerConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForMultipleChoice, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerModel, ) from transformers.models.roformer.modeling_tf_roformer import ( TFRoFormerSelfAttention, TFRoFormerSinusoidalPositionalEmbedding, ) class UpperCAmelCase__ : """simple docstring""" def __init__( self , A_ , A_=13 , A_=7 , A_=True , A_=True , A_=True , A_=True , A_=99 , A_=32 , A_=2 , A_=4 , A_=37 , A_="gelu" , A_=0.1 , A_=0.1 , A_=512 , A_=16 , A_=2 , A_=0.02 , A_=3 , A_=4 , A_=None , ) -> Tuple: __UpperCamelCase =parent __UpperCamelCase =13 __UpperCamelCase =7 __UpperCamelCase =True __UpperCamelCase =True __UpperCamelCase =True __UpperCamelCase =True __UpperCamelCase =99 __UpperCamelCase =32 __UpperCamelCase =2 __UpperCamelCase =4 __UpperCamelCase =37 __UpperCamelCase ='gelu' __UpperCamelCase =0.1 __UpperCamelCase =0.1 __UpperCamelCase =512 __UpperCamelCase =16 __UpperCamelCase =2 __UpperCamelCase =0.02 __UpperCamelCase =3 __UpperCamelCase =4 __UpperCamelCase =None def _a ( self ) -> List[Any]: __UpperCamelCase =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __UpperCamelCase =None if self.use_input_mask: __UpperCamelCase =random_attention_mask([self.batch_size, self.seq_length] ) __UpperCamelCase =None if self.use_token_type_ids: __UpperCamelCase =ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __UpperCamelCase =None __UpperCamelCase =None __UpperCamelCase =None if self.use_labels: __UpperCamelCase =ids_tensor([self.batch_size] , self.type_sequence_label_size ) __UpperCamelCase =ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __UpperCamelCase =ids_tensor([self.batch_size] , self.num_choices ) __UpperCamelCase =RoFormerConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=A_ , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _a ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ ) -> int: __UpperCamelCase =TFRoFormerModel(config=A_ ) __UpperCamelCase ={'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} __UpperCamelCase =[input_ids, input_mask] __UpperCamelCase =model(A_ ) __UpperCamelCase =model(A_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _a ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ ) -> int: __UpperCamelCase =True __UpperCamelCase =TFRoFormerForCausalLM(config=A_ ) __UpperCamelCase ={ 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } __UpperCamelCase =model(A_ )['logits'] self.parent.assertListEqual( list(prediction_scores.numpy().shape ) , [self.batch_size, self.seq_length, self.vocab_size] ) def _a ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ ) -> Union[str, Any]: __UpperCamelCase =TFRoFormerForMaskedLM(config=A_ ) __UpperCamelCase ={ 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } __UpperCamelCase =model(A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _a ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ ) -> Dict: __UpperCamelCase =self.num_labels __UpperCamelCase =TFRoFormerForSequenceClassification(config=A_ ) __UpperCamelCase ={ 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } __UpperCamelCase =model(A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _a ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ ) -> List[Any]: __UpperCamelCase =self.num_choices __UpperCamelCase =TFRoFormerForMultipleChoice(config=A_ ) __UpperCamelCase =tf.tile(tf.expand_dims(A_ , 1 ) , (1, self.num_choices, 1) ) __UpperCamelCase =tf.tile(tf.expand_dims(A_ , 1 ) , (1, self.num_choices, 1) ) __UpperCamelCase =tf.tile(tf.expand_dims(A_ , 1 ) , (1, self.num_choices, 1) ) __UpperCamelCase ={ 'input_ids': multiple_choice_inputs_ids, 'attention_mask': multiple_choice_input_mask, 'token_type_ids': multiple_choice_token_type_ids, } __UpperCamelCase =model(A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def _a ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ ) -> Tuple: __UpperCamelCase =self.num_labels __UpperCamelCase =TFRoFormerForTokenClassification(config=A_ ) __UpperCamelCase ={ 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } __UpperCamelCase =model(A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _a ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ ) -> List[Any]: __UpperCamelCase =TFRoFormerForQuestionAnswering(config=A_ ) __UpperCamelCase ={ 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } __UpperCamelCase =model(A_ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _a ( self ) -> Dict: __UpperCamelCase =self.prepare_config_and_inputs() ( ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ) =config_and_inputs __UpperCamelCase ={'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_tf class UpperCAmelCase__ ( A_ , A_ , unittest.TestCase ): """simple docstring""" UpperCAmelCase__ : List[Any] = ( ( TFRoFormerModel, TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerForMultipleChoice, ) if is_tf_available() else () ) UpperCAmelCase__ : int = ( { "feature-extraction": TFRoFormerModel, "fill-mask": TFRoFormerForMaskedLM, "question-answering": TFRoFormerForQuestionAnswering, "text-classification": TFRoFormerForSequenceClassification, "text-generation": TFRoFormerForCausalLM, "token-classification": TFRoFormerForTokenClassification, "zero-shot": TFRoFormerForSequenceClassification, } if is_tf_available() else {} ) UpperCAmelCase__ : Optional[int] = False UpperCAmelCase__ : Optional[Any] = False def _a ( self , A_ , A_ , A_ , A_ , A_ ) -> List[Any]: if pipeline_test_casse_name == "TextGenerationPipelineTests": return True return False def _a ( self ) -> str: __UpperCamelCase =TFRoFormerModelTester(self ) __UpperCamelCase =ConfigTester(self , config_class=A_ , hidden_size=37 ) def _a ( self ) -> Tuple: self.config_tester.run_common_tests() def _a ( self ) -> Union[str, Any]: __UpperCamelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A_ ) def _a ( self ) -> List[Any]: __UpperCamelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*A_ ) def _a ( self ) -> Any: __UpperCamelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head(*A_ ) def _a ( self ) -> List[Any]: __UpperCamelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*A_ ) def _a ( self ) -> int: __UpperCamelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*A_ ) def _a ( self ) -> Dict: __UpperCamelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*A_ ) def _a ( self ) -> List[Any]: __UpperCamelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*A_ ) @slow def _a ( self ) -> Union[str, Any]: __UpperCamelCase =TFRoFormerModel.from_pretrained('junnyu/roformer_chinese_base' ) self.assertIsNotNone(A_ ) @require_tf class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" @slow def _a ( self ) -> Any: __UpperCamelCase =TFRoFormerForMaskedLM.from_pretrained('junnyu/roformer_chinese_base' ) __UpperCamelCase =tf.constant([[0, 1, 2, 3, 4, 5]] ) __UpperCamelCase =model(A_ )[0] # TODO Replace vocab size __UpperCamelCase =50000 __UpperCamelCase =[1, 6, vocab_size] self.assertEqual(output.shape , A_ ) print(output[:, :3, :3] ) # TODO Replace values below with what was printed above. __UpperCamelCase =tf.constant( [ [ [-0.1205_3341, -1.026_4901, 0.2922_1946], [-1.513_3783, 0.19_7433, 0.1519_0607], [-5.013_5403, -3.90_0256, -0.8403_8764], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , A_ , atol=1E-4 ) @require_tf class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" UpperCAmelCase__ : Any = 1e-4 def _a ( self ) -> Any: __UpperCamelCase =tf.constant([[4, 10]] ) __UpperCamelCase =TFRoFormerSinusoidalPositionalEmbedding(num_positions=6 , embedding_dim=6 ) __UpperCamelCase =emba(input_ids.shape ) __UpperCamelCase =tf.constant( [[0.0000, 0.0000, 0.0000, 1.0000, 1.0000, 1.0000], [0.8415, 0.0464, 0.0022, 0.5403, 0.9989, 1.0000]] ) tf.debugging.assert_near(A_ , A_ , atol=self.tolerance ) def _a ( self ) -> Optional[Any]: __UpperCamelCase =tf.constant( [ [0.0000, 0.0000, 0.0000, 0.0000, 0.0000], [0.8415, 0.8219, 0.8020, 0.7819, 0.7617], [0.9093, 0.9364, 0.9581, 0.9749, 0.9870], ] ) __UpperCamelCase =TFRoFormerSinusoidalPositionalEmbedding(num_positions=512 , embedding_dim=512 ) emba([2, 16, 512] ) __UpperCamelCase =emba.weight[:3, :5] tf.debugging.assert_near(A_ , A_ , atol=self.tolerance ) @require_tf class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" UpperCAmelCase__ : List[str] = 1e-4 def _a ( self ) -> Optional[int]: # 2,12,16,64 __UpperCamelCase =tf.reshape(tf.range(2 * 12 * 16 * 64 , dtype=tf.floataa ) , shape=(2, 12, 16, 64) ) / 100 __UpperCamelCase =-tf.reshape(tf.range(2 * 12 * 16 * 64 , dtype=tf.floataa ) , shape=(2, 12, 16, 64) ) / 100 __UpperCamelCase =TFRoFormerSinusoidalPositionalEmbedding(num_positions=32 , embedding_dim=64 ) __UpperCamelCase =embed_positions([2, 16, 768] )[None, None, :, :] __UpperCamelCase , __UpperCamelCase =TFRoFormerSelfAttention.apply_rotary_position_embeddings( A_ , A_ , A_ ) __UpperCamelCase =tf.constant( [ [0.0000, 0.0100, 0.0200, 0.0300, 0.0400, 0.0500, 0.0600, 0.0700], [-0.2012, 0.8897, 0.0263, 0.9401, 0.2074, 0.9463, 0.3481, 0.9343], [-1.7057, 0.6271, -1.2145, 1.3897, -0.6303, 1.7647, -0.1173, 1.8985], [-2.1731, -1.6397, -2.7358, 0.2854, -2.1840, 1.7183, -1.3018, 2.4871], [0.2717, -3.6173, -2.9206, -2.1988, -3.6638, 0.3858, -2.9155, 2.2980], [3.9859, -2.1580, -0.7984, -4.4904, -4.1181, -2.0252, -4.4782, 1.1253], ] ) __UpperCamelCase =tf.constant( [ [0.0000, -0.0100, -0.0200, -0.0300, -0.0400, -0.0500, -0.0600, -0.0700], [0.2012, -0.8897, -0.0263, -0.9401, -0.2074, -0.9463, -0.3481, -0.9343], [1.7057, -0.6271, 1.2145, -1.3897, 0.6303, -1.7647, 0.1173, -1.8985], [2.1731, 1.6397, 2.7358, -0.2854, 2.1840, -1.7183, 1.3018, -2.4871], [-0.2717, 3.6173, 2.9206, 2.1988, 3.6638, -0.3858, 2.9155, -2.2980], [-3.9859, 2.1580, 0.7984, 4.4904, 4.1181, 2.0252, 4.4782, -1.1253], ] ) tf.debugging.assert_near(query_layer[0, 0, :6, :8] , A_ , atol=self.tolerance ) tf.debugging.assert_near(key_layer[0, 0, :6, :8] , A_ , atol=self.tolerance )
62
from __future__ import annotations from math import pi from typing import Protocol import matplotlib.pyplot as plt import numpy as np class UpperCAmelCase__ ( A_ ): """simple docstring""" def _a ( self , A_ ) -> float: return 0.0 def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : np.ndarray , SCREAMING_SNAKE_CASE__ : int ): __UpperCamelCase =min([-20, np.min(fft_results[1 : samplerate // 2 - 1] )] ) __UpperCamelCase =max([20, np.max(fft_results[1 : samplerate // 2 - 1] )] ) return lowest, highest def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : FilterType , SCREAMING_SNAKE_CASE__ : int ): __UpperCamelCase =5_12 __UpperCamelCase =[1] + [0] * (size - 1) __UpperCamelCase =[filter_type.process(SCREAMING_SNAKE_CASE__ ) for item in inputs] __UpperCamelCase =[0] * (samplerate - size) # zero-padding outputs += filler __UpperCamelCase =np.abs(np.fft.fft(SCREAMING_SNAKE_CASE__ ) ) __UpperCamelCase =20 * np.logaa(SCREAMING_SNAKE_CASE__ ) # Frequencies on log scale from 24 to nyquist frequency plt.xlim(24 , samplerate / 2 - 1 ) plt.xlabel('Frequency (Hz)' ) plt.xscale('log' ) # Display within reasonable bounds __UpperCamelCase =get_bounds(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) plt.ylim(max([-80, bounds[0]] ) , min([80, bounds[1]] ) ) plt.ylabel('Gain (dB)' ) plt.plot(SCREAMING_SNAKE_CASE__ ) plt.show() def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : FilterType , SCREAMING_SNAKE_CASE__ : int ): __UpperCamelCase =5_12 __UpperCamelCase =[1] + [0] * (size - 1) __UpperCamelCase =[filter_type.process(SCREAMING_SNAKE_CASE__ ) for item in inputs] __UpperCamelCase =[0] * (samplerate - size) # zero-padding outputs += filler __UpperCamelCase =np.angle(np.fft.fft(SCREAMING_SNAKE_CASE__ ) ) # Frequencies on log scale from 24 to nyquist frequency plt.xlim(24 , samplerate / 2 - 1 ) plt.xlabel('Frequency (Hz)' ) plt.xscale('log' ) plt.ylim(-2 * pi , 2 * pi ) plt.ylabel('Phase shift (Radians)' ) plt.plot(np.unwrap(SCREAMING_SNAKE_CASE__ , -2 * pi ) ) plt.show()
62
1
from ...configuration_utils import PretrainedConfig from ...utils import logging _A = logging.get_logger(__name__) _A = { 'google/realm-cc-news-pretrained-embedder': ( 'https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/config.json' ), 'google/realm-cc-news-pretrained-encoder': ( 'https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/config.json' ), 'google/realm-cc-news-pretrained-scorer': ( 'https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/config.json' ), 'google/realm-cc-news-pretrained-openqa': ( 'https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/config.json' ), 'google/realm-orqa-nq-openqa': 'https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/config.json', 'google/realm-orqa-nq-reader': 'https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/config.json', 'google/realm-orqa-wq-openqa': 'https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/config.json', 'google/realm-orqa-wq-reader': 'https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/config.json', # See all REALM models at https://huggingface.co/models?filter=realm } class UpperCAmelCase__ ( A_ ): """simple docstring""" UpperCAmelCase__ : str = "realm" def __init__( self , A_=30522 , A_=768 , A_=128 , A_=12 , A_=12 , A_=8 , A_=3072 , A_="gelu_new" , A_=0.1 , A_=0.1 , A_=512 , A_=2 , A_=0.02 , A_=1E-12 , A_=256 , A_=10 , A_=1E-3 , A_=5 , A_=320 , A_=13353718 , A_=5000 , A_=1 , A_=0 , A_=2 , **A_ , ) -> Dict: super().__init__(pad_token_id=A_ , bos_token_id=A_ , eos_token_id=A_ , **A_ ) # Common config __UpperCamelCase =vocab_size __UpperCamelCase =max_position_embeddings __UpperCamelCase =hidden_size __UpperCamelCase =retriever_proj_size __UpperCamelCase =num_hidden_layers __UpperCamelCase =num_attention_heads __UpperCamelCase =num_candidates __UpperCamelCase =intermediate_size __UpperCamelCase =hidden_act __UpperCamelCase =hidden_dropout_prob __UpperCamelCase =attention_probs_dropout_prob __UpperCamelCase =initializer_range __UpperCamelCase =type_vocab_size __UpperCamelCase =layer_norm_eps # Reader config __UpperCamelCase =span_hidden_size __UpperCamelCase =max_span_width __UpperCamelCase =reader_layer_norm_eps __UpperCamelCase =reader_beam_size __UpperCamelCase =reader_seq_len # Retrieval config __UpperCamelCase =num_block_records __UpperCamelCase =searcher_beam_size
117
import logging from pathlib import Path import numpy as np import pytorch_lightning as pl import torch from pytorch_lightning.callbacks import EarlyStopping, ModelCheckpoint from pytorch_lightning.utilities import rank_zero_only from utils_rag import save_json def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : Tuple ): __UpperCamelCase =filter(lambda SCREAMING_SNAKE_CASE__ : p.requires_grad , model.parameters() ) __UpperCamelCase =sum([np.prod(p.size() ) for p in model_parameters] ) return params _A = logging.getLogger(__name__) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Optional[Any] ): if metric == "rouge2": __UpperCamelCase ='{val_avg_rouge2:.4f}-{step_count}' elif metric == "bleu": __UpperCamelCase ='{val_avg_bleu:.4f}-{step_count}' elif metric == "em": __UpperCamelCase ='{val_avg_em:.4f}-{step_count}' elif metric == "loss": __UpperCamelCase ='{val_avg_loss:.4f}-{step_count}' else: raise NotImplementedError( F'seq2seq callbacks only support rouge2 and bleu, got {metric}, You can make your own by adding to this' ' function.' ) __UpperCamelCase =ModelCheckpoint( dirpath=SCREAMING_SNAKE_CASE__ , filename=SCREAMING_SNAKE_CASE__ , monitor=F'val_{metric}' , mode='max' , save_top_k=1 , every_n_epochs=1 , ) return checkpoint_callback def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Union[str, Any] ): return EarlyStopping( monitor=F'val_{metric}' , mode='min' if 'loss' in metric else 'max' , patience=SCREAMING_SNAKE_CASE__ , verbose=SCREAMING_SNAKE_CASE__ , ) class UpperCAmelCase__ ( pl.Callback ): """simple docstring""" def _a ( self , A_ , A_ ) -> int: __UpperCamelCase ={f'lr_group_{i}': param['lr'] for i, param in enumerate(pl_module.trainer.optimizers[0].param_groups )} pl_module.logger.log_metrics(A_ ) @rank_zero_only def _a ( self , A_ , A_ , A_ , A_=True ) -> None: logger.info(f'***** {type_path} results at step {trainer.global_step:05d} *****' ) __UpperCamelCase =trainer.callback_metrics trainer.logger.log_metrics({k: v for k, v in metrics.items() if k not in ['log', 'progress_bar', 'preds']} ) # Log results __UpperCamelCase =Path(pl_module.hparams.output_dir ) if type_path == "test": __UpperCamelCase =od / 'test_results.txt' __UpperCamelCase =od / 'test_generations.txt' else: # this never gets hit. I prefer not to save intermediate generations, and results are in metrics.json # If people want this it will be easy enough to add back. __UpperCamelCase =od / f'{type_path}_results/{trainer.global_step:05d}.txt' __UpperCamelCase =od / f'{type_path}_generations/{trainer.global_step:05d}.txt' results_file.parent.mkdir(exist_ok=A_ ) generations_file.parent.mkdir(exist_ok=A_ ) with open(A_ , 'a+' ) as writer: for key in sorted(A_ ): if key in ["log", "progress_bar", "preds"]: continue __UpperCamelCase =metrics[key] if isinstance(A_ , torch.Tensor ): __UpperCamelCase =val.item() __UpperCamelCase =f'{key}: {val:.6f}\n' writer.write(A_ ) if not save_generations: return if "preds" in metrics: __UpperCamelCase ='\n'.join(metrics['preds'] ) generations_file.open('w+' ).write(A_ ) @rank_zero_only def _a ( self , A_ , A_ ) -> Optional[int]: try: __UpperCamelCase =pl_module.model.model.num_parameters() except AttributeError: __UpperCamelCase =pl_module.model.num_parameters() __UpperCamelCase =count_trainable_parameters(A_ ) # mp stands for million parameters trainer.logger.log_metrics({'n_params': npars, 'mp': npars / 1E6, 'grad_mp': n_trainable_pars / 1E6} ) @rank_zero_only def _a ( self , A_ , A_ ) -> List[str]: save_json(pl_module.metrics , pl_module.metrics_save_path ) return self._write_logs(A_ , A_ , 'test' ) @rank_zero_only def _a ( self , A_ , A_ ) -> List[str]: save_json(pl_module.metrics , pl_module.metrics_save_path ) # Uncommenting this will save val generations # return self._write_logs(trainer, pl_module, "valid")
117
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available snake_case__ : str = { '''configuration_ctrl''': ['''CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''CTRLConfig'''], '''tokenization_ctrl''': ['''CTRLTokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ : Tuple = [ '''CTRL_PRETRAINED_MODEL_ARCHIVE_LIST''', '''CTRLForSequenceClassification''', '''CTRLLMHeadModel''', '''CTRLModel''', '''CTRLPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ : List[Any] = [ '''TF_CTRL_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFCTRLForSequenceClassification''', '''TFCTRLLMHeadModel''', '''TFCTRLModel''', '''TFCTRLPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_ctrl import CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP, CTRLConfig from .tokenization_ctrl import CTRLTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_ctrl import ( CTRL_PRETRAINED_MODEL_ARCHIVE_LIST, CTRLForSequenceClassification, CTRLLMHeadModel, CTRLModel, CTRLPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_ctrl import ( TF_CTRL_PRETRAINED_MODEL_ARCHIVE_LIST, TFCTRLForSequenceClassification, TFCTRLLMHeadModel, TFCTRLModel, TFCTRLPreTrainedModel, ) else: import sys snake_case__ : Optional[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
60
import argparse from argparse import Namespace import torch from torch import nn from transformers import XGLMConfig, XGLMForCausalLM def a__ ( A_ ): '''simple docstring''' __magic_name__ = [ """decoder.version""", """decoder.output_projection.weight""", """_float_tensor""", """decoder.embed_positions._float_tensor""", ] for k in ignore_keys: state_dict.pop(A_, A_ ) def a__ ( A_ ): '''simple docstring''' __magic_name__ , __magic_name__ = emb.weight.shape __magic_name__ = nn.Linear(A_, A_, bias=A_ ) __magic_name__ = emb.weight.data return lin_layer def a__ ( A_ ): '''simple docstring''' __magic_name__ = torch.load(A_, map_location="""cpu""" ) __magic_name__ = Namespace(**checkpoint["""cfg"""]["""model"""] ) __magic_name__ = checkpoint["""model"""] remove_ignore_keys_(A_ ) __magic_name__ = state_dict["""decoder.embed_tokens.weight"""].shape[0] __magic_name__ = {key.replace("""decoder""", """model""" ): val for key, val in state_dict.items()} __magic_name__ = XGLMConfig( vocab_size=A_, max_position_embeddings=args.max_target_positions, num_layers=args.decoder_layers, attention_heads=args.decoder_attention_heads, ffn_dim=args.decoder_ffn_embed_dim, d_model=args.decoder_embed_dim, layerdrop=args.decoder_layerdrop, dropout=args.dropout, attention_dropout=args.attention_dropout, activation_dropout=args.activation_dropout, activation_function="""gelu""", scale_embedding=not args.no_scale_embedding, tie_word_embeddings=args.share_decoder_input_output_embed, ) __magic_name__ = XGLMForCausalLM(A_ ) __magic_name__ = model.load_state_dict(A_, strict=A_ ) print(A_ ) __magic_name__ = make_linear_from_emb(model.model.embed_tokens ) return model if __name__ == "__main__": __lowerCAmelCase : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument('fairseq_path', type=str, help='path to a model.pt on local filesystem.') parser.add_argument('pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') __lowerCAmelCase : List[str] = parser.parse_args() __lowerCAmelCase : str = convert_fairseq_xglm_checkpoint_from_disk(args.fairseq_path) model.save_pretrained(args.pytorch_dump_folder_path)
88
0
from timeit import timeit UpperCAmelCase : Union[str, Any] = { "MALAYALAM": True, "String": False, "rotor": True, "level": True, "A": True, "BB": True, "ABC": False, "amanaplanacanalpanama": True, # "a man a plan a canal panama" } # Ensure our test data is valid assert all((key == key[::-1]) is value for key, value in test_data.items()) def __lowerCamelCase ( lowerCamelCase__ : str ): '''simple docstring''' lowerCamelCase = 0 lowerCamelCase = len(lowerCamelCase__ ) - 1 while start_i < end_i: if s[start_i] == s[end_i]: start_i += 1 end_i -= 1 else: return False return True def __lowerCamelCase ( lowerCamelCase__ : str ): '''simple docstring''' lowerCamelCase = len(lowerCamelCase__ ) // 2 lowerCamelCase = len(lowerCamelCase__ ) # We need to traverse till half of the length of string # as we can get access of the i'th last element from # i'th index. # eg: [0,1,2,3,4,5] => 4th index can be accessed # with the help of 1st index (i==n-i-1) # where n is length of string return all(s[i] == s[n - i - 1] for i in range(lowerCamelCase__ ) ) def __lowerCamelCase ( lowerCamelCase__ : str ): '''simple docstring''' if len(lowerCamelCase__ ) <= 2: return True if s[0] == s[len(lowerCamelCase__ ) - 1]: return is_palindrome_recursive(s[1:-1] ) else: return False def __lowerCamelCase ( lowerCamelCase__ : str ): '''simple docstring''' return s == s[::-1] def __lowerCamelCase ( lowerCamelCase__ : str ): '''simple docstring''' lowerCamelCase = f'all({name}(key) is value for key, value in test_data.items())' lowerCamelCase = f'from __main__ import test_data, {name}' lowerCamelCase = 500000 lowerCamelCase = timeit(stmt=lowerCamelCase__ , setup=lowerCamelCase__ , number=lowerCamelCase__ ) print(f'{name:<35} finished {number:,} runs in {result:.5f} seconds' ) if __name__ == "__main__": for key, value in test_data.items(): assert is_palindrome(key) is is_palindrome_recursive(key) assert is_palindrome(key) is is_palindrome_slice(key) print(f"""{key:21} {value}""") print("a man a plan a canal panama") # finished 500,000 runs in 0.46793 seconds benchmark_function("is_palindrome_slice") # finished 500,000 runs in 0.85234 seconds benchmark_function("is_palindrome") # finished 500,000 runs in 1.32028 seconds benchmark_function("is_palindrome_recursive") # finished 500,000 runs in 2.08679 seconds benchmark_function("is_palindrome_traversal")
66
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_distilbert import DistilBertTokenizer UpperCAmelCase : Tuple = logging.get_logger(__name__) UpperCAmelCase : List[str] = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} UpperCAmelCase : str = { "vocab_file": { "distilbert-base-uncased": "https://huggingface.co/distilbert-base-uncased/resolve/main/vocab.txt", "distilbert-base-uncased-distilled-squad": ( "https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/vocab.txt" ), "distilbert-base-cased": "https://huggingface.co/distilbert-base-cased/resolve/main/vocab.txt", "distilbert-base-cased-distilled-squad": ( "https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/vocab.txt" ), "distilbert-base-german-cased": "https://huggingface.co/distilbert-base-german-cased/resolve/main/vocab.txt", "distilbert-base-multilingual-cased": ( "https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/vocab.txt" ), }, "tokenizer_file": { "distilbert-base-uncased": "https://huggingface.co/distilbert-base-uncased/resolve/main/tokenizer.json", "distilbert-base-uncased-distilled-squad": ( "https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/tokenizer.json" ), "distilbert-base-cased": "https://huggingface.co/distilbert-base-cased/resolve/main/tokenizer.json", "distilbert-base-cased-distilled-squad": ( "https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/tokenizer.json" ), "distilbert-base-german-cased": ( "https://huggingface.co/distilbert-base-german-cased/resolve/main/tokenizer.json" ), "distilbert-base-multilingual-cased": ( "https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/tokenizer.json" ), }, } UpperCAmelCase : int = { "distilbert-base-uncased": 5_12, "distilbert-base-uncased-distilled-squad": 5_12, "distilbert-base-cased": 5_12, "distilbert-base-cased-distilled-squad": 5_12, "distilbert-base-german-cased": 5_12, "distilbert-base-multilingual-cased": 5_12, } UpperCAmelCase : str = { "distilbert-base-uncased": {"do_lower_case": True}, "distilbert-base-uncased-distilled-squad": {"do_lower_case": True}, "distilbert-base-cased": {"do_lower_case": False}, "distilbert-base-cased-distilled-squad": {"do_lower_case": False}, "distilbert-base-german-cased": {"do_lower_case": False}, "distilbert-base-multilingual-cased": {"do_lower_case": False}, } class __lowercase ( a_ ): """simple docstring""" UpperCamelCase : Any = VOCAB_FILES_NAMES UpperCamelCase : Any = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase : Tuple = PRETRAINED_INIT_CONFIGURATION UpperCamelCase : List[str] = ["input_ids", "attention_mask"] UpperCamelCase : List[str] = DistilBertTokenizer def __init__( self , A=None , A=None , A=True , A="[UNK]" , A="[SEP]" , A="[PAD]" , A="[CLS]" , A="[MASK]" , A=True , A=None , **A , ) -> Optional[Any]: '''simple docstring''' super().__init__( A , tokenizer_file=A , do_lower_case=A , unk_token=A , sep_token=A , pad_token=A , cls_token=A , mask_token=A , tokenize_chinese_chars=A , strip_accents=A , **A , ) lowerCamelCase = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("""lowercase""" , A ) != do_lower_case or normalizer_state.get("""strip_accents""" , A ) != strip_accents or normalizer_state.get("""handle_chinese_chars""" , A ) != tokenize_chinese_chars ): lowerCamelCase = getattr(A , normalizer_state.pop("""type""" ) ) lowerCamelCase = do_lower_case lowerCamelCase = strip_accents lowerCamelCase = tokenize_chinese_chars lowerCamelCase = normalizer_class(**A ) lowerCamelCase = do_lower_case def __A ( self , A , A=None ) -> Tuple: '''simple docstring''' lowerCamelCase = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def __A ( self , A , A = None ) -> List[int]: '''simple docstring''' lowerCamelCase = [self.sep_token_id] lowerCamelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __A ( self , A , A = None ) -> Tuple[str]: '''simple docstring''' lowerCamelCase = self._tokenizer.model.save(A , name=A ) return tuple(A )
66
1
import unittest from transformers import ( MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING, TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING, TextaTextGenerationPipeline, pipeline, ) from transformers.testing_utils import is_pipeline_test, require_tf, require_torch from transformers.utils import is_torch_available from .test_pipelines_common import ANY if is_torch_available(): import torch @is_pipeline_test class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): __SCREAMING_SNAKE_CASE = MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING __SCREAMING_SNAKE_CASE = TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING def UpperCamelCase ( self,__lowerCamelCase,__lowerCamelCase,__lowerCamelCase ): A__ = TextaTextGenerationPipeline(model=__lowerCamelCase,tokenizer=__lowerCamelCase ) return generator, ["Something to write", "Something else"] def UpperCamelCase ( self,__lowerCamelCase,__lowerCamelCase ): A__ = generator('''Something there''' ) self.assertEqual(__lowerCamelCase,[{'''generated_text''': ANY(__lowerCamelCase )}] ) # These are encoder decoder, they don't just append to incoming string self.assertFalse(outputs[0]['''generated_text'''].startswith('''Something there''' ) ) A__ = generator(['''This is great !''', '''Something else'''],num_return_sequences=2,do_sample=__lowerCamelCase ) self.assertEqual( __lowerCamelCase,[ [{'''generated_text''': ANY(__lowerCamelCase )}, {'''generated_text''': ANY(__lowerCamelCase )}], [{'''generated_text''': ANY(__lowerCamelCase )}, {'''generated_text''': ANY(__lowerCamelCase )}], ],) A__ = generator( ['''This is great !''', '''Something else'''],num_return_sequences=2,batch_size=2,do_sample=__lowerCamelCase ) self.assertEqual( __lowerCamelCase,[ [{'''generated_text''': ANY(__lowerCamelCase )}, {'''generated_text''': ANY(__lowerCamelCase )}], [{'''generated_text''': ANY(__lowerCamelCase )}, {'''generated_text''': ANY(__lowerCamelCase )}], ],) with self.assertRaises(__lowerCamelCase ): generator(4 ) @require_torch def UpperCamelCase ( self ): A__ = pipeline('''text2text-generation''',model='''patrickvonplaten/t5-tiny-random''',framework='''pt''' ) # do_sample=False necessary for reproducibility A__ = generator('''Something there''',do_sample=__lowerCamelCase ) self.assertEqual(__lowerCamelCase,[{'''generated_text''': ''''''}] ) A__ = 3 A__ = generator( '''Something there''',num_return_sequences=__lowerCamelCase,num_beams=__lowerCamelCase,) A__ = [ {'''generated_text''': '''Beide Beide Beide Beide Beide Beide Beide Beide Beide'''}, {'''generated_text''': '''Beide Beide Beide Beide Beide Beide Beide Beide'''}, {'''generated_text''': ''''''}, ] self.assertEqual(__lowerCamelCase,__lowerCamelCase ) A__ = generator('''This is a test''',do_sample=__lowerCamelCase,num_return_sequences=2,return_tensors=__lowerCamelCase ) self.assertEqual( __lowerCamelCase,[ {'''generated_token_ids''': ANY(torch.Tensor )}, {'''generated_token_ids''': ANY(torch.Tensor )}, ],) A__ = generator.model.config.eos_token_id A__ = '''<pad>''' A__ = generator( ['''This is a test''', '''This is a second test'''],do_sample=__lowerCamelCase,num_return_sequences=2,batch_size=2,return_tensors=__lowerCamelCase,) self.assertEqual( __lowerCamelCase,[ [ {'''generated_token_ids''': ANY(torch.Tensor )}, {'''generated_token_ids''': ANY(torch.Tensor )}, ], [ {'''generated_token_ids''': ANY(torch.Tensor )}, {'''generated_token_ids''': ANY(torch.Tensor )}, ], ],) @require_tf def UpperCamelCase ( self ): A__ = pipeline('''text2text-generation''',model='''patrickvonplaten/t5-tiny-random''',framework='''tf''' ) # do_sample=False necessary for reproducibility A__ = generator('''Something there''',do_sample=__lowerCamelCase ) self.assertEqual(__lowerCamelCase,[{'''generated_text''': ''''''}] )
193
import random def UpperCamelCase__( UpperCamelCase__ : list , UpperCamelCase__ : List[Any] )->tuple: A__ , A__ , A__ = [], [], [] for element in data: if element < pivot: less.append(UpperCamelCase__ ) elif element > pivot: greater.append(UpperCamelCase__ ) else: equal.append(UpperCamelCase__ ) return less, equal, greater def UpperCamelCase__( UpperCamelCase__ : list , UpperCamelCase__ : int )->Optional[int]: # index = len(items) // 2 when trying to find the median # (value of index when items is sorted) # invalid input if index >= len(UpperCamelCase__ ) or index < 0: return None A__ = items[random.randint(0 , len(UpperCamelCase__ ) - 1 )] A__ = 0 A__ , A__ , A__ = _partition(UpperCamelCase__ , UpperCamelCase__ ) A__ = len(UpperCamelCase__ ) A__ = len(UpperCamelCase__ ) # index is the pivot if m <= index < m + count: return pivot # must be in smaller elif m > index: return quick_select(UpperCamelCase__ , UpperCamelCase__ ) # must be in larger else: return quick_select(UpperCamelCase__ , index - (m + count) )
193
1
"""simple docstring""" import unittest from transformers import AutoTokenizer, is_flax_available from transformers.testing_utils import require_flax, require_sentencepiece, require_tokenizers, slow if is_flax_available(): import jax.numpy as jnp from transformers import FlaxXLMRobertaModel @require_sentencepiece @require_tokenizers @require_flax class UpperCamelCase ( unittest.TestCase ): @slow def _lowercase (self : Union[str, Any]) -> Dict: __snake_case : Union[str, Any] = FlaxXLMRobertaModel.from_pretrained('xlm-roberta-base') __snake_case : Tuple = AutoTokenizer.from_pretrained('xlm-roberta-base') __snake_case : int = 'The dog is cute and lives in the garden house' __snake_case : Dict = jnp.array([tokenizer.encode(_A)]) __snake_case : Dict = (1, 12, 7_68) # batch_size, sequence_length, embedding_vector_dim __snake_case : Tuple = jnp.array( [[-0.0_101, 0.1_218, -0.0_803, 0.0_801, 0.1_327, 0.0_776, -0.1_215, 0.2_383, 0.3_338, 0.3_106, 0.0_300, 0.0_252]]) __snake_case : Union[str, Any] = model(_A)['last_hidden_state'] self.assertEqual(output.shape , _A) # compare the actual values for a slice of last dim self.assertTrue(jnp.allclose(output[:, :, -1] , _A , atol=1E-3))
95
"""simple docstring""" import numpy # List of input, output pairs _a : Optional[int]= ( ((5, 2, 3), 15), ((6, 5, 9), 25), ((11, 12, 13), 41), ((1, 1, 1), 8), ((11, 12, 13), 41), ) _a : int= (((515, 22, 13), 555), ((61, 35, 49), 150)) _a : List[Any]= [2, 4, 1, 5] _a : Optional[int]= len(train_data) _a : str= 0.0_0_9 def __UpperCAmelCase ( UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : List[str]="train" ) -> int: '''simple docstring''' return calculate_hypothesis_value(UpperCAmelCase_ , UpperCAmelCase_ ) - output( UpperCAmelCase_ , UpperCAmelCase_ ) def __UpperCAmelCase ( UpperCAmelCase_ : Tuple ) -> Dict: '''simple docstring''' __snake_case : int = 0 for i in range(len(UpperCAmelCase_ ) - 1 ): hyp_val += data_input_tuple[i] * parameter_vector[i + 1] hyp_val += parameter_vector[0] return hyp_val def __UpperCAmelCase ( UpperCAmelCase_ : str , UpperCAmelCase_ : List[Any] ) -> List[Any]: '''simple docstring''' if data_set == "train": return train_data[example_no][1] elif data_set == "test": return test_data[example_no][1] return None def __UpperCAmelCase ( UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Optional[int] ) -> Any: '''simple docstring''' if data_set == "train": return _hypothesis_value(train_data[example_no][0] ) elif data_set == "test": return _hypothesis_value(test_data[example_no][0] ) return None def __UpperCAmelCase ( UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Any=m ) -> Union[str, Any]: '''simple docstring''' __snake_case : Union[str, Any] = 0 for i in range(UpperCAmelCase_ ): if index == -1: summation_value += _error(UpperCAmelCase_ ) else: summation_value += _error(UpperCAmelCase_ ) * train_data[i][0][index] return summation_value def __UpperCAmelCase ( UpperCAmelCase_ : int ) -> str: '''simple docstring''' __snake_case : Dict = summation_of_cost_derivative(UpperCAmelCase_ , UpperCAmelCase_ ) / m return cost_derivative_value def __UpperCAmelCase ( ) -> List[str]: '''simple docstring''' global parameter_vector # Tune these values to set a tolerance value for predicted output __snake_case : Dict = 0.000_002 __snake_case : Optional[int] = 0 __snake_case : str = 0 while True: j += 1 __snake_case : Optional[int] = [0, 0, 0, 0] for i in range(0 , len(UpperCAmelCase_ ) ): __snake_case : Union[str, Any] = get_cost_derivative(i - 1 ) __snake_case : Any = ( parameter_vector[i] - LEARNING_RATE * cost_derivative ) if numpy.allclose( UpperCAmelCase_ , UpperCAmelCase_ , atol=UpperCAmelCase_ , rtol=UpperCAmelCase_ , ): break __snake_case : Optional[Any] = temp_parameter_vector print(('Number of iterations:', j) ) def __UpperCAmelCase ( ) -> int: '''simple docstring''' for i in range(len(UpperCAmelCase_ ) ): print(('Actual output value:', output(UpperCAmelCase_ , 'test' )) ) print(('Hypothesis output:', calculate_hypothesis_value(UpperCAmelCase_ , 'test' )) ) if __name__ == "__main__": run_gradient_descent() print("\nTesting gradient descent for a linear hypothesis function.\n") test_gradient_descent()
95
1
"""simple docstring""" from __future__ import annotations import os import tempfile import unittest from transformers import ConvBertConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFConvBertForMaskedLM, TFConvBertForMultipleChoice, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertModel, ) class _SCREAMING_SNAKE_CASE: def __init__( self ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__=13 ,SCREAMING_SNAKE_CASE__=7 ,SCREAMING_SNAKE_CASE__=True ,SCREAMING_SNAKE_CASE__=True ,SCREAMING_SNAKE_CASE__=True ,SCREAMING_SNAKE_CASE__=True ,SCREAMING_SNAKE_CASE__=99 ,SCREAMING_SNAKE_CASE__=32 ,SCREAMING_SNAKE_CASE__=2 ,SCREAMING_SNAKE_CASE__=4 ,SCREAMING_SNAKE_CASE__=37 ,SCREAMING_SNAKE_CASE__="gelu" ,SCREAMING_SNAKE_CASE__=0.1 ,SCREAMING_SNAKE_CASE__=0.1 ,SCREAMING_SNAKE_CASE__=5_12 ,SCREAMING_SNAKE_CASE__=16 ,SCREAMING_SNAKE_CASE__=2 ,SCREAMING_SNAKE_CASE__=0.0_2 ,SCREAMING_SNAKE_CASE__=3 ,SCREAMING_SNAKE_CASE__=4 ,SCREAMING_SNAKE_CASE__=None ,) -> Optional[int]: """simple docstring""" __SCREAMING_SNAKE_CASE :Tuple = parent __SCREAMING_SNAKE_CASE :int = 13 __SCREAMING_SNAKE_CASE :Dict = 7 __SCREAMING_SNAKE_CASE :List[str] = True __SCREAMING_SNAKE_CASE :Any = True __SCREAMING_SNAKE_CASE :List[Any] = True __SCREAMING_SNAKE_CASE :Union[str, Any] = True __SCREAMING_SNAKE_CASE :Tuple = 99 __SCREAMING_SNAKE_CASE :Any = 3_84 __SCREAMING_SNAKE_CASE :Dict = 2 __SCREAMING_SNAKE_CASE :List[str] = 4 __SCREAMING_SNAKE_CASE :Tuple = 37 __SCREAMING_SNAKE_CASE :Union[str, Any] = '''gelu''' __SCREAMING_SNAKE_CASE :str = 0.1 __SCREAMING_SNAKE_CASE :List[Any] = 0.1 __SCREAMING_SNAKE_CASE :Dict = 5_12 __SCREAMING_SNAKE_CASE :Optional[Any] = 16 __SCREAMING_SNAKE_CASE :Optional[Any] = 2 __SCREAMING_SNAKE_CASE :Tuple = 0.0_2 __SCREAMING_SNAKE_CASE :Tuple = 3 __SCREAMING_SNAKE_CASE :Any = 4 __SCREAMING_SNAKE_CASE :List[Any] = 1_28 __SCREAMING_SNAKE_CASE :List[Any] = 2 __SCREAMING_SNAKE_CASE :Tuple = 9 __SCREAMING_SNAKE_CASE :Dict = 1 __SCREAMING_SNAKE_CASE :Any = None def _UpperCamelCase ( self ) -> Optional[int]: """simple docstring""" __SCREAMING_SNAKE_CASE :Optional[int] = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) __SCREAMING_SNAKE_CASE :List[str] = None if self.use_input_mask: __SCREAMING_SNAKE_CASE :Dict = random_attention_mask([self.batch_size, self.seq_length] ) __SCREAMING_SNAKE_CASE :List[Any] = None if self.use_token_type_ids: __SCREAMING_SNAKE_CASE :Optional[int] = ids_tensor([self.batch_size, self.seq_length] ,self.type_vocab_size ) __SCREAMING_SNAKE_CASE :Optional[int] = None __SCREAMING_SNAKE_CASE :str = None __SCREAMING_SNAKE_CASE :Dict = None if self.use_labels: __SCREAMING_SNAKE_CASE :Union[str, Any] = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) __SCREAMING_SNAKE_CASE :List[str] = ids_tensor([self.batch_size, self.seq_length] ,self.num_labels ) __SCREAMING_SNAKE_CASE :Union[str, Any] = ids_tensor([self.batch_size] ,self.num_choices ) __SCREAMING_SNAKE_CASE :int = ConvBertConfig( vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,type_vocab_size=self.type_vocab_size ,initializer_range=self.initializer_range ,return_dict=lowercase_ ,) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _UpperCamelCase ( self ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) -> List[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE :List[str] = TFConvBertModel(config=lowercase_ ) __SCREAMING_SNAKE_CASE :str = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} __SCREAMING_SNAKE_CASE :str = [input_ids, input_mask] __SCREAMING_SNAKE_CASE :Tuple = model(lowercase_ ) __SCREAMING_SNAKE_CASE :Optional[Any] = model(lowercase_ ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def _UpperCamelCase ( self ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) -> Tuple: """simple docstring""" __SCREAMING_SNAKE_CASE :str = TFConvBertForMaskedLM(config=lowercase_ ) __SCREAMING_SNAKE_CASE :int = { '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } __SCREAMING_SNAKE_CASE :Union[str, Any] = model(lowercase_ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) def _UpperCamelCase ( self ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) -> Union[str, Any]: """simple docstring""" __SCREAMING_SNAKE_CASE :Optional[Any] = self.num_labels __SCREAMING_SNAKE_CASE :Any = TFConvBertForSequenceClassification(config=lowercase_ ) __SCREAMING_SNAKE_CASE :Any = { '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } __SCREAMING_SNAKE_CASE :List[str] = model(lowercase_ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) ) def _UpperCamelCase ( self ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) -> int: """simple docstring""" __SCREAMING_SNAKE_CASE :int = self.num_choices __SCREAMING_SNAKE_CASE :Any = TFConvBertForMultipleChoice(config=lowercase_ ) __SCREAMING_SNAKE_CASE :List[Any] = tf.tile(tf.expand_dims(lowercase_ ,1 ) ,(1, self.num_choices, 1) ) __SCREAMING_SNAKE_CASE :Union[str, Any] = tf.tile(tf.expand_dims(lowercase_ ,1 ) ,(1, self.num_choices, 1) ) __SCREAMING_SNAKE_CASE :Union[str, Any] = tf.tile(tf.expand_dims(lowercase_ ,1 ) ,(1, self.num_choices, 1) ) __SCREAMING_SNAKE_CASE :Union[str, Any] = { '''input_ids''': multiple_choice_inputs_ids, '''attention_mask''': multiple_choice_input_mask, '''token_type_ids''': multiple_choice_token_type_ids, } __SCREAMING_SNAKE_CASE :Tuple = model(lowercase_ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_choices) ) def _UpperCamelCase ( self ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) -> Dict: """simple docstring""" __SCREAMING_SNAKE_CASE :Optional[int] = self.num_labels __SCREAMING_SNAKE_CASE :Optional[int] = TFConvBertForTokenClassification(config=lowercase_ ) __SCREAMING_SNAKE_CASE :Any = { '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } __SCREAMING_SNAKE_CASE :Union[str, Any] = model(lowercase_ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.num_labels) ) def _UpperCamelCase ( self ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) -> Tuple: """simple docstring""" __SCREAMING_SNAKE_CASE :Tuple = TFConvBertForQuestionAnswering(config=lowercase_ ) __SCREAMING_SNAKE_CASE :Dict = { '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } __SCREAMING_SNAKE_CASE :Any = model(lowercase_ ) self.parent.assertEqual(result.start_logits.shape ,(self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape ,(self.batch_size, self.seq_length) ) def _UpperCamelCase ( self ) -> Any: """simple docstring""" __SCREAMING_SNAKE_CASE :Optional[Any] = self.prepare_config_and_inputs() ( ( __SCREAMING_SNAKE_CASE ) ,( __SCREAMING_SNAKE_CASE ) ,( __SCREAMING_SNAKE_CASE ) ,( __SCREAMING_SNAKE_CASE ) ,( __SCREAMING_SNAKE_CASE ) ,( __SCREAMING_SNAKE_CASE ) ,( __SCREAMING_SNAKE_CASE ) , ) :List[str] = config_and_inputs __SCREAMING_SNAKE_CASE :List[Any] = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_tf class _SCREAMING_SNAKE_CASE( _UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ): SCREAMING_SNAKE_CASE_ : Dict = ( ( TFConvBertModel, TFConvBertForMaskedLM, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertForMultipleChoice, ) if is_tf_available() else () ) SCREAMING_SNAKE_CASE_ : Optional[int] = ( { '''feature-extraction''': TFConvBertModel, '''fill-mask''': TFConvBertForMaskedLM, '''question-answering''': TFConvBertForQuestionAnswering, '''text-classification''': TFConvBertForSequenceClassification, '''token-classification''': TFConvBertForTokenClassification, '''zero-shot''': TFConvBertForSequenceClassification, } if is_tf_available() else {} ) SCREAMING_SNAKE_CASE_ : Dict = False SCREAMING_SNAKE_CASE_ : List[str] = False SCREAMING_SNAKE_CASE_ : Union[str, Any] = False def _UpperCamelCase ( self ) -> Optional[int]: """simple docstring""" __SCREAMING_SNAKE_CASE :Tuple = TFConvBertModelTester(self ) __SCREAMING_SNAKE_CASE :List[Any] = ConfigTester(self ,config_class=lowercase_ ,hidden_size=37 ) def _UpperCamelCase ( self ) -> List[str]: """simple docstring""" self.config_tester.run_common_tests() def _UpperCamelCase ( self ) -> Any: """simple docstring""" __SCREAMING_SNAKE_CASE :Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase_ ) def _UpperCamelCase ( self ) -> int: """simple docstring""" __SCREAMING_SNAKE_CASE :List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*lowercase_ ) def _UpperCamelCase ( self ) -> Optional[int]: """simple docstring""" __SCREAMING_SNAKE_CASE :Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*lowercase_ ) def _UpperCamelCase ( self ) -> Tuple: """simple docstring""" __SCREAMING_SNAKE_CASE :List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*lowercase_ ) def _UpperCamelCase ( self ) -> List[str]: """simple docstring""" __SCREAMING_SNAKE_CASE :Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*lowercase_ ) def _UpperCamelCase ( self ) -> Union[str, Any]: """simple docstring""" __SCREAMING_SNAKE_CASE :str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*lowercase_ ) @slow def _UpperCamelCase ( self ) -> Dict: """simple docstring""" __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE :List[str] = self.model_tester.prepare_config_and_inputs_for_common() __SCREAMING_SNAKE_CASE :Union[str, Any] = True __SCREAMING_SNAKE_CASE :str = True if hasattr(lowercase_ ,'''use_cache''' ): __SCREAMING_SNAKE_CASE :Optional[Any] = True __SCREAMING_SNAKE_CASE :Union[str, Any] = getattr(self.model_tester ,'''encoder_seq_length''' ,self.model_tester.seq_length ) __SCREAMING_SNAKE_CASE :Optional[int] = getattr(self.model_tester ,'''key_length''' ,lowercase_ ) for model_class in self.all_model_classes: __SCREAMING_SNAKE_CASE :List[str] = self._prepare_for_class(lowercase_ ,lowercase_ ) __SCREAMING_SNAKE_CASE :Union[str, Any] = model_class(lowercase_ ) __SCREAMING_SNAKE_CASE :Tuple = len(model(lowercase_ ) ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(lowercase_ ,saved_model=lowercase_ ) __SCREAMING_SNAKE_CASE :Optional[int] = os.path.join(lowercase_ ,'''saved_model''' ,'''1''' ) __SCREAMING_SNAKE_CASE :Dict = tf.keras.models.load_model(lowercase_ ) __SCREAMING_SNAKE_CASE :Optional[Any] = model(lowercase_ ) if self.is_encoder_decoder: __SCREAMING_SNAKE_CASE :Optional[int] = outputs['''encoder_hidden_states'''] __SCREAMING_SNAKE_CASE :Union[str, Any] = outputs['''encoder_attentions'''] else: __SCREAMING_SNAKE_CASE :Dict = outputs['''hidden_states'''] __SCREAMING_SNAKE_CASE :Optional[Any] = outputs['''attentions'''] self.assertEqual(len(lowercase_ ) ,lowercase_ ) __SCREAMING_SNAKE_CASE :Any = getattr( self.model_tester ,'''expected_num_hidden_layers''' ,self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(lowercase_ ) ,lowercase_ ) self.assertListEqual( list(output_hidden_states[0].shape[-2:] ) ,[self.model_tester.seq_length, self.model_tester.hidden_size] ,) self.assertEqual(len(lowercase_ ) ,self.model_tester.num_hidden_layers ) self.assertListEqual( list(output_attentions[0].shape[-3:] ) ,[self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] ,) @slow def _UpperCamelCase ( self ) -> Union[str, Any]: """simple docstring""" __SCREAMING_SNAKE_CASE :Dict = TFConvBertModel.from_pretrained('''YituTech/conv-bert-base''' ) self.assertIsNotNone(lowercase_ ) def _UpperCamelCase ( self ) -> str: """simple docstring""" __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE :Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() __SCREAMING_SNAKE_CASE :int = True __SCREAMING_SNAKE_CASE :Dict = getattr(self.model_tester ,'''decoder_seq_length''' ,self.model_tester.seq_length ) __SCREAMING_SNAKE_CASE :Dict = getattr(self.model_tester ,'''encoder_seq_length''' ,self.model_tester.seq_length ) __SCREAMING_SNAKE_CASE :Optional[int] = getattr(self.model_tester ,'''key_length''' ,lowercase_ ) __SCREAMING_SNAKE_CASE :Optional[Any] = getattr(self.model_tester ,'''key_length''' ,lowercase_ ) def check_decoder_attentions_output(SCREAMING_SNAKE_CASE__ ): __SCREAMING_SNAKE_CASE :str = len(lowercase_ ) self.assertEqual(out_len % 2 ,0 ) __SCREAMING_SNAKE_CASE :Optional[Any] = outputs.decoder_attentions self.assertEqual(len(lowercase_ ) ,self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) ,[self.model_tester.num_attention_heads / 2, decoder_seq_length, decoder_key_length] ,) def check_encoder_attentions_output(SCREAMING_SNAKE_CASE__ ): __SCREAMING_SNAKE_CASE :str = [ t.numpy() for t in (outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions) ] self.assertEqual(len(lowercase_ ) ,self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) ,[self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] ,) for model_class in self.all_model_classes: __SCREAMING_SNAKE_CASE :Dict = True __SCREAMING_SNAKE_CASE :Dict = False __SCREAMING_SNAKE_CASE :Union[str, Any] = model_class(lowercase_ ) __SCREAMING_SNAKE_CASE :Optional[Any] = model(self._prepare_for_class(lowercase_ ,lowercase_ ) ) __SCREAMING_SNAKE_CASE :Optional[int] = len(lowercase_ ) self.assertEqual(config.output_hidden_states ,lowercase_ ) check_encoder_attentions_output(lowercase_ ) if self.is_encoder_decoder: __SCREAMING_SNAKE_CASE :str = model_class(lowercase_ ) __SCREAMING_SNAKE_CASE :Union[str, Any] = model(self._prepare_for_class(lowercase_ ,lowercase_ ) ) self.assertEqual(config.output_hidden_states ,lowercase_ ) check_decoder_attentions_output(lowercase_ ) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] __SCREAMING_SNAKE_CASE :int = True __SCREAMING_SNAKE_CASE :Optional[int] = model_class(lowercase_ ) __SCREAMING_SNAKE_CASE :Any = model(self._prepare_for_class(lowercase_ ,lowercase_ ) ) self.assertEqual(config.output_hidden_states ,lowercase_ ) check_encoder_attentions_output(lowercase_ ) # Check attention is always last and order is fine __SCREAMING_SNAKE_CASE :Optional[int] = True __SCREAMING_SNAKE_CASE :int = True __SCREAMING_SNAKE_CASE :Any = model_class(lowercase_ ) __SCREAMING_SNAKE_CASE :List[Any] = model(self._prepare_for_class(lowercase_ ,lowercase_ ) ) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) ,len(lowercase_ ) ) self.assertEqual(model.config.output_hidden_states ,lowercase_ ) check_encoder_attentions_output(lowercase_ ) @require_tf class _SCREAMING_SNAKE_CASE( unittest.TestCase ): @slow def _UpperCamelCase ( self ) -> str: """simple docstring""" __SCREAMING_SNAKE_CASE :int = TFConvBertModel.from_pretrained('''YituTech/conv-bert-base''' ) __SCREAMING_SNAKE_CASE :Dict = tf.constant([[0, 1, 2, 3, 4, 5]] ) __SCREAMING_SNAKE_CASE :List[Any] = model(lowercase_ )[0] __SCREAMING_SNAKE_CASE :str = [1, 6, 7_68] self.assertEqual(output.shape ,lowercase_ ) __SCREAMING_SNAKE_CASE :Tuple = tf.constant( [ [ [-0.0_3_4_7_5_4_9_3, -0.4_6_8_6_0_3_4, -0.3_0_6_3_8_8_3_2], [0.2_2_6_3_7_2_4_8, -0.2_6_9_8_8_6_4_6, -0.7_4_2_3_4_2_4], [0.1_0_3_2_4_8_6_8, -0.4_5_0_1_3_5_0_8, -0.5_8_2_8_0_7_8_4], ] ] ) tf.debugging.assert_near(output[:, :3, :3] ,lowercase_ ,atol=1E-4 )
191
import platform from argparse import ArgumentParser import huggingface_hub from .. import __version__ as version from ..utils import is_accelerate_available, is_torch_available, is_transformers_available, is_xformers_available from . import BaseDiffusersCLICommand def _snake_case( SCREAMING_SNAKE_CASE__ : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' return EnvironmentCommand() class A ( _UpperCAmelCase ): """simple docstring""" @staticmethod def snake_case__ ( lowercase_ : ArgumentParser )-> Dict: '''simple docstring''' A__ = parser.add_parser('env' ) download_parser.set_defaults(func=lowercase_ ) def snake_case__ ( self : List[Any] )-> List[str]: '''simple docstring''' A__ = huggingface_hub.__version__ A__ = 'not installed' A__ = 'NA' if is_torch_available(): import torch A__ = torch.__version__ A__ = torch.cuda.is_available() A__ = 'not installed' if is_transformers_available(): import transformers A__ = transformers.__version__ A__ = 'not installed' if is_accelerate_available(): import accelerate A__ = accelerate.__version__ A__ = 'not installed' if is_xformers_available(): import xformers A__ = xformers.__version__ A__ = { '`diffusers` version': version, 'Platform': platform.platform(), 'Python version': platform.python_version(), 'PyTorch version (GPU?)': F'{pt_version} ({pt_cuda_available})', 'Huggingface_hub version': hub_version, 'Transformers version': transformers_version, 'Accelerate version': accelerate_version, 'xFormers version': xformers_version, 'Using GPU in script?': '<fill in>', 'Using distributed or parallel set-up in script?': '<fill in>', } print('\nCopy-and-paste the text below in your GitHub issue and FILL OUT the two last points.\n' ) print(self.format_dict(lowercase_ ) ) return info @staticmethod def snake_case__ ( lowercase_ : int )-> Optional[Any]: '''simple docstring''' return "\n".join([F'- {prop}: {val}' for prop, val in d.items()] ) + "\n"
7
0
import argparse import json import math import os import time import traceback import zipfile from collections import Counter import requests def A ( _lowerCamelCase , _lowerCamelCase=None ): '''simple docstring''' _lowerCAmelCase : str = None if token is not None: _lowerCAmelCase : Optional[Any] = {"Accept": "application/vnd.github+json", "Authorization": F"Bearer {token}"} _lowerCAmelCase : Optional[Any] = F"https://api.github.com/repos/huggingface/transformers/actions/runs/{workflow_run_id}/jobs?per_page=100" _lowerCAmelCase : Dict = requests.get(_lowerCamelCase , headers=_lowerCamelCase ).json() _lowerCAmelCase : List[Any] = {} try: job_links.update({job["name"]: job["html_url"] for job in result["jobs"]} ) _lowerCAmelCase : str = math.ceil((result["total_count"] - 100) / 100 ) for i in range(_lowerCamelCase ): _lowerCAmelCase : int = requests.get(url + F"&page={i + 2}" , headers=_lowerCamelCase ).json() job_links.update({job["name"]: job["html_url"] for job in result["jobs"]} ) return job_links except Exception: print(F"Unknown error, could not fetch links:\n{traceback.format_exc()}" ) return {} def A ( _lowerCamelCase , _lowerCamelCase=None ): '''simple docstring''' _lowerCAmelCase : List[str] = None if token is not None: _lowerCAmelCase : List[str] = {"Accept": "application/vnd.github+json", "Authorization": F"Bearer {token}"} _lowerCAmelCase : Any = F"https://api.github.com/repos/huggingface/transformers/actions/runs/{worflow_run_id}/artifacts?per_page=100" _lowerCAmelCase : List[str] = requests.get(_lowerCamelCase , headers=_lowerCamelCase ).json() _lowerCAmelCase : Union[str, Any] = {} try: artifacts.update({artifact["name"]: artifact["archive_download_url"] for artifact in result["artifacts"]} ) _lowerCAmelCase : Tuple = math.ceil((result["total_count"] - 100) / 100 ) for i in range(_lowerCamelCase ): _lowerCAmelCase : int = requests.get(url + F"&page={i + 2}" , headers=_lowerCamelCase ).json() artifacts.update({artifact["name"]: artifact["archive_download_url"] for artifact in result["artifacts"]} ) return artifacts except Exception: print(F"Unknown error, could not fetch links:\n{traceback.format_exc()}" ) return {} def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Optional[int] = None if token is not None: _lowerCAmelCase : Union[str, Any] = {"Accept": "application/vnd.github+json", "Authorization": F"Bearer {token}"} _lowerCAmelCase : str = requests.get(_lowerCamelCase , headers=_lowerCamelCase , allow_redirects=_lowerCamelCase ) _lowerCAmelCase : Tuple = result.headers["Location"] _lowerCAmelCase : int = requests.get(_lowerCamelCase , allow_redirects=_lowerCamelCase ) _lowerCAmelCase : Any = os.path.join(_lowerCamelCase , F"{artifact_name}.zip" ) with open(_lowerCamelCase , "wb" ) as fp: fp.write(response.content ) def A ( _lowerCamelCase , _lowerCamelCase=None ): '''simple docstring''' _lowerCAmelCase : List[Any] = [] _lowerCAmelCase : List[Any] = [] _lowerCAmelCase : Optional[Any] = None with zipfile.ZipFile(_lowerCamelCase ) as z: for filename in z.namelist(): if not os.path.isdir(_lowerCamelCase ): # read the file if filename in ["failures_line.txt", "summary_short.txt", "job_name.txt"]: with z.open(_lowerCamelCase ) as f: for line in f: _lowerCAmelCase : Optional[Any] = line.decode("UTF-8" ).strip() if filename == "failures_line.txt": try: # `error_line` is the place where `error` occurs _lowerCAmelCase : List[str] = line[: line.index(": " )] _lowerCAmelCase : Union[str, Any] = line[line.index(": " ) + len(": " ) :] errors.append([error_line, error] ) except Exception: # skip un-related lines pass elif filename == "summary_short.txt" and line.startswith("FAILED " ): # `test` is the test method that failed _lowerCAmelCase : Tuple = line[len("FAILED " ) :] failed_tests.append(_lowerCamelCase ) elif filename == "job_name.txt": _lowerCAmelCase : Optional[int] = line if len(_lowerCamelCase ) != len(_lowerCamelCase ): raise ValueError( F"`errors` and `failed_tests` should have the same number of elements. Got {len(_lowerCamelCase )} for `errors` " F"and {len(_lowerCamelCase )} for `failed_tests` instead. The test reports in {artifact_zip_path} have some" " problem." ) _lowerCAmelCase : Any = None if job_name and job_links: _lowerCAmelCase : Dict = job_links.get(_lowerCamelCase , _lowerCamelCase ) # A list with elements of the form (line of error, error, failed test) _lowerCAmelCase : Union[str, Any] = [x + [y] + [job_link] for x, y in zip(_lowerCamelCase , _lowerCamelCase )] return result def A ( _lowerCamelCase , _lowerCamelCase=None ): '''simple docstring''' _lowerCAmelCase : int = [] _lowerCAmelCase : Any = [os.path.join(_lowerCamelCase , _lowerCamelCase ) for p in os.listdir(_lowerCamelCase ) if p.endswith(".zip" )] for p in paths: errors.extend(get_errors_from_single_artifact(_lowerCamelCase , job_links=_lowerCamelCase ) ) return errors def A ( _lowerCamelCase , _lowerCamelCase=None ): '''simple docstring''' _lowerCAmelCase : Dict = Counter() counter.update([x[1] for x in logs] ) _lowerCAmelCase : Any = counter.most_common() _lowerCAmelCase : int = {} for error, count in counts: if error_filter is None or error not in error_filter: _lowerCAmelCase : List[str] = {"count": count, "failed_tests": [(x[2], x[0]) for x in logs if x[1] == error]} _lowerCAmelCase : str = dict(sorted(r.items() , key=lambda _lowerCamelCase : item[1]["count"] , reverse=_lowerCamelCase ) ) return r def A ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Tuple = test.split("::" )[0] if test.startswith("tests/models/" ): _lowerCAmelCase : str = test.split("/" )[2] else: _lowerCAmelCase : Union[str, Any] = None return test def A ( _lowerCamelCase , _lowerCamelCase=None ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = [(x[0], x[1], get_model(x[2] )) for x in logs] _lowerCAmelCase : List[Any] = [x for x in logs if x[2] is not None] _lowerCAmelCase : Optional[int] = {x[2] for x in logs} _lowerCAmelCase : Optional[Any] = {} for test in tests: _lowerCAmelCase : Tuple = Counter() # count by errors in `test` counter.update([x[1] for x in logs if x[2] == test] ) _lowerCAmelCase : Tuple = counter.most_common() _lowerCAmelCase : Union[str, Any] = {error: count for error, count in counts if (error_filter is None or error not in error_filter)} _lowerCAmelCase : Any = sum(error_counts.values() ) if n_errors > 0: _lowerCAmelCase : Optional[Any] = {"count": n_errors, "errors": error_counts} _lowerCAmelCase : str = dict(sorted(r.items() , key=lambda _lowerCamelCase : item[1]["count"] , reverse=_lowerCamelCase ) ) return r def A ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Any = "| no. | error | status |" _lowerCAmelCase : Tuple = "|-:|:-|:-|" _lowerCAmelCase : Union[str, Any] = [header, sep] for error in reduced_by_error: _lowerCAmelCase : Optional[int] = reduced_by_error[error]["count"] _lowerCAmelCase : Union[str, Any] = F"| {count} | {error[:100]} | |" lines.append(_lowerCamelCase ) return "\n".join(_lowerCamelCase ) def A ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : List[Any] = "| model | no. of errors | major error | count |" _lowerCAmelCase : Optional[Any] = "|-:|-:|-:|-:|" _lowerCAmelCase : int = [header, sep] for model in reduced_by_model: _lowerCAmelCase : str = reduced_by_model[model]["count"] _lowerCAmelCase , _lowerCAmelCase : int = list(reduced_by_model[model]["errors"].items() )[0] _lowerCAmelCase : Dict = F"| {model} | {count} | {error[:60]} | {_count} |" lines.append(_lowerCamelCase ) return "\n".join(_lowerCamelCase ) if __name__ == "__main__": _snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument("--workflow_run_id", type=str, required=True, help="A GitHub Actions workflow run id.") parser.add_argument( "--output_dir", type=str, required=True, help="Where to store the downloaded artifacts and other result files.", ) parser.add_argument("--token", default=None, type=str, help="A token that has actions:read permission.") _snake_case = parser.parse_args() os.makedirs(args.output_dir, exist_ok=True) _snake_case = get_job_links(args.workflow_run_id, token=args.token) _snake_case = {} # To deal with `workflow_call` event, where a job name is the combination of the job names in the caller and callee. # For example, `PyTorch 1.11 / Model tests (models/albert, single-gpu)`. if _job_links: for k, v in _job_links.items(): # This is how GitHub actions combine job names. if " / " in k: _snake_case = k.find(" / ") _snake_case = k[index + len(" / ") :] _snake_case = v with open(os.path.join(args.output_dir, "job_links.json"), "w", encoding="UTF-8") as fp: json.dump(job_links, fp, ensure_ascii=False, indent=4) _snake_case = get_artifacts_links(args.workflow_run_id, token=args.token) with open(os.path.join(args.output_dir, "artifacts.json"), "w", encoding="UTF-8") as fp: json.dump(artifacts, fp, ensure_ascii=False, indent=4) for idx, (name, url) in enumerate(artifacts.items()): download_artifact(name, url, args.output_dir, args.token) # Be gentle to GitHub time.sleep(1) _snake_case = get_all_errors(args.output_dir, job_links=job_links) # `e[1]` is the error _snake_case = Counter() counter.update([e[1] for e in errors]) # print the top 30 most common test errors _snake_case = counter.most_common(30) for item in most_common: print(item) with open(os.path.join(args.output_dir, "errors.json"), "w", encoding="UTF-8") as fp: json.dump(errors, fp, ensure_ascii=False, indent=4) _snake_case = reduce_by_error(errors) _snake_case = reduce_by_model(errors) _snake_case = make_github_table(reduced_by_error) _snake_case = make_github_table_per_model(reduced_by_model) with open(os.path.join(args.output_dir, "reduced_by_error.txt"), "w", encoding="UTF-8") as fp: fp.write(sa) with open(os.path.join(args.output_dir, "reduced_by_model.txt"), "w", encoding="UTF-8") as fp: fp.write(sa)
300
# DISCLAIMER: This file is strongly influenced by https://github.com/yang-song/score_sde_pytorch import math from dataclasses import dataclass from typing import Optional, Tuple, Union import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, randn_tensor from .scheduling_utils import SchedulerMixin, SchedulerOutput @dataclass class UpperCAmelCase_ ( a): lowerCamelCase__ = 42 lowerCamelCase__ = 42 class UpperCAmelCase_ ( a , a): lowerCamelCase__ = 1 @register_to_config def __init__( self, __a = 2000, __a = 0.15, __a = 0.01, __a = 1_348.0, __a = 1E-5, __a = 1, ): '''simple docstring''' _lowerCAmelCase : Dict = sigma_max # setable values _lowerCAmelCase : str = None self.set_sigmas(__a, __a, __a, __a) def snake_case__ ( self, __a, __a = None): '''simple docstring''' return sample def snake_case__ ( self, __a, __a = None, __a = None): '''simple docstring''' _lowerCAmelCase : int = sampling_eps if sampling_eps is not None else self.config.sampling_eps _lowerCAmelCase : Dict = torch.linspace(1, __a, __a, device=__a) def snake_case__ ( self, __a, __a = None, __a = None, __a = None): '''simple docstring''' _lowerCAmelCase : List[str] = sigma_min if sigma_min is not None else self.config.sigma_min _lowerCAmelCase : Tuple = sigma_max if sigma_max is not None else self.config.sigma_max _lowerCAmelCase : str = sampling_eps if sampling_eps is not None else self.config.sampling_eps if self.timesteps is None: self.set_timesteps(__a, __a) _lowerCAmelCase : int = sigma_min * (sigma_max / sigma_min) ** (self.timesteps / sampling_eps) _lowerCAmelCase : Any = torch.exp(torch.linspace(math.log(__a), math.log(__a), __a)) _lowerCAmelCase : int = torch.tensor([sigma_min * (sigma_max / sigma_min) ** t for t in self.timesteps]) def snake_case__ ( self, __a, __a): '''simple docstring''' return torch.where( timesteps == 0, torch.zeros_like(t.to(timesteps.device)), self.discrete_sigmas[timesteps - 1].to(timesteps.device), ) def snake_case__ ( self, __a, __a, __a, __a = None, __a = True, ): '''simple docstring''' if self.timesteps is None: raise ValueError( "`self.timesteps` is not set, you need to run 'set_timesteps' after creating the scheduler") _lowerCAmelCase : Dict = timestep * torch.ones( sample.shape[0], device=sample.device) # torch.repeat_interleave(timestep, sample.shape[0]) _lowerCAmelCase : Dict = (timestep * (len(self.timesteps) - 1)).long() # mps requires indices to be in the same device, so we use cpu as is the default with cuda _lowerCAmelCase : Union[str, Any] = timesteps.to(self.discrete_sigmas.device) _lowerCAmelCase : Any = self.discrete_sigmas[timesteps].to(sample.device) _lowerCAmelCase : List[Any] = self.get_adjacent_sigma(__a, __a).to(sample.device) _lowerCAmelCase : List[str] = torch.zeros_like(__a) _lowerCAmelCase : Union[str, Any] = (sigma**2 - adjacent_sigma**2) ** 0.5 # equation 6 in the paper: the model_output modeled by the network is grad_x log pt(x) # also equation 47 shows the analog from SDE models to ancestral sampling methods _lowerCAmelCase : Union[str, Any] = diffusion.flatten() while len(diffusion.shape) < len(sample.shape): _lowerCAmelCase : Optional[int] = diffusion.unsqueeze(-1) _lowerCAmelCase : Dict = drift - diffusion**2 * model_output # equation 6: sample noise for the diffusion term of _lowerCAmelCase : Optional[Any] = randn_tensor( sample.shape, layout=sample.layout, generator=__a, device=sample.device, dtype=sample.dtype) _lowerCAmelCase : int = sample - drift # subtract because `dt` is a small negative timestep # TODO is the variable diffusion the correct scaling term for the noise? _lowerCAmelCase : Tuple = prev_sample_mean + diffusion * noise # add impact of diffusion field g if not return_dict: return (prev_sample, prev_sample_mean) return SdeVeOutput(prev_sample=__a, prev_sample_mean=__a) def snake_case__ ( self, __a, __a, __a = None, __a = True, ): '''simple docstring''' if self.timesteps is None: raise ValueError( "`self.timesteps` is not set, you need to run 'set_timesteps' after creating the scheduler") # For small batch sizes, the paper "suggest replacing norm(z) with sqrt(d), where d is the dim. of z" # sample noise for correction _lowerCAmelCase : Union[str, Any] = randn_tensor(sample.shape, layout=sample.layout, generator=__a).to(sample.device) # compute step size from the model_output, the noise, and the snr _lowerCAmelCase : Any = torch.norm(model_output.reshape(model_output.shape[0], -1), dim=-1).mean() _lowerCAmelCase : Dict = torch.norm(noise.reshape(noise.shape[0], -1), dim=-1).mean() _lowerCAmelCase : Optional[Any] = (self.config.snr * noise_norm / grad_norm) ** 2 * 2 _lowerCAmelCase : Dict = step_size * torch.ones(sample.shape[0]).to(sample.device) # self.repeat_scalar(step_size, sample.shape[0]) # compute corrected sample: model_output term and noise term _lowerCAmelCase : List[Any] = step_size.flatten() while len(step_size.shape) < len(sample.shape): _lowerCAmelCase : int = step_size.unsqueeze(-1) _lowerCAmelCase : List[Any] = sample + step_size * model_output _lowerCAmelCase : Tuple = prev_sample_mean + ((step_size * 2) ** 0.5) * noise if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=__a) def snake_case__ ( self, __a, __a, __a, ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = timesteps.to(original_samples.device) _lowerCAmelCase : Union[str, Any] = self.discrete_sigmas.to(original_samples.device)[timesteps] _lowerCAmelCase : Any = ( noise * sigmas[:, None, None, None] if noise is not None else torch.randn_like(__a) * sigmas[:, None, None, None] ) _lowerCAmelCase : int = noise + original_samples return noisy_samples def __len__( self): '''simple docstring''' return self.config.num_train_timesteps
300
1
'''simple docstring''' from __future__ import annotations a : Dict = [ [-1, 0], # left [0, -1], # down [1, 0], # right [0, 1], # up ] def lowercase ( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , ): '''simple docstring''' UpperCAmelCase : Dict = [ [0 for col in range(len(grid[0] ) )] for row in range(len(__magic_name__ ) ) ] # the reference grid UpperCAmelCase : Optional[Any] = 1 UpperCAmelCase : str = [ [0 for col in range(len(grid[0] ) )] for row in range(len(__magic_name__ ) ) ] # the action grid UpperCAmelCase : int = init[0] UpperCAmelCase : Dict = init[1] UpperCAmelCase : List[str] = 0 UpperCAmelCase : List[str] = g + heuristic[x][y] # cost from starting cell to destination cell UpperCAmelCase : List[Any] = [[f, g, x, y]] UpperCAmelCase : Union[str, Any] = False # flag that is set when search is complete UpperCAmelCase : int = False # flag set if we can't find expand while not found and not resign: if len(__magic_name__ ) == 0: raise ValueError("Algorithm is unable to find solution" ) else: # to choose the least costliest action so as to move closer to the goal cell.sort() cell.reverse() UpperCAmelCase : int = cell.pop() UpperCAmelCase : Dict = next_cell[2] UpperCAmelCase : Dict = next_cell[3] UpperCAmelCase : List[Any] = next_cell[1] if x == goal[0] and y == goal[1]: UpperCAmelCase : List[str] = True else: for i in range(len(__magic_name__ ) ): # to try out different valid actions UpperCAmelCase : Optional[int] = x + DIRECTIONS[i][0] UpperCAmelCase : Union[str, Any] = y + DIRECTIONS[i][1] if xa >= 0 and xa < len(__magic_name__ ) and ya >= 0 and ya < len(grid[0] ): if closed[xa][ya] == 0 and grid[xa][ya] == 0: UpperCAmelCase : Any = g + cost UpperCAmelCase : Optional[Any] = ga + heuristic[xa][ya] cell.append([fa, ga, xa, ya] ) UpperCAmelCase : Dict = 1 UpperCAmelCase : int = i UpperCAmelCase : Dict = [] UpperCAmelCase : Tuple = goal[0] UpperCAmelCase : List[str] = goal[1] invpath.append([x, y] ) # we get the reverse path from here while x != init[0] or y != init[1]: UpperCAmelCase : Tuple = x - DIRECTIONS[action[x][y]][0] UpperCAmelCase : Dict = y - DIRECTIONS[action[x][y]][1] UpperCAmelCase : Optional[int] = xa UpperCAmelCase : List[Any] = ya invpath.append([x, y] ) UpperCAmelCase : Optional[Any] = [] for i in range(len(__magic_name__ ) ): path.append(invpath[len(__magic_name__ ) - 1 - i] ) return path, action if __name__ == "__main__": a : str = [ [0, 1, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 1, 0, 0, 0, 0], [0, 1, 0, 0, 1, 0], [0, 0, 0, 0, 1, 0], ] a : Tuple = [0, 0] # all coordinates are given in format [y,x] a : int = [len(grid) - 1, len(grid[0]) - 1] a : Tuple = 1 # the cost map which pushes the path closer to the goal a : Optional[Any] = [[0 for row in range(len(grid[0]))] for col in range(len(grid))] for i in range(len(grid)): for j in range(len(grid[0])): a : Dict = abs(i - goal[0]) + abs(j - goal[1]) if grid[i][j] == 1: # added extra penalty in the heuristic map a : List[Any] = 99 a , a : Optional[Any] = search(grid, init, goal, cost, heuristic) print("ACTION MAP") for i in range(len(action)): print(action[i]) for i in range(len(path)): print(path[i])
311
'''simple docstring''' import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import YolosConfig, YolosForObjectDetection, YolosImageProcessor from transformers.utils import logging logging.set_verbosity_info() a : Dict = logging.get_logger(__name__) def lowercase ( __magic_name__ ): '''simple docstring''' UpperCAmelCase : List[str] = YolosConfig() # size of the architecture if "yolos_ti" in yolos_name: UpperCAmelCase : Tuple = 192 UpperCAmelCase : str = 768 UpperCAmelCase : List[Any] = 12 UpperCAmelCase : List[Any] = 3 UpperCAmelCase : List[Any] = [800, 1333] UpperCAmelCase : List[str] = False elif yolos_name == "yolos_s_dWr": UpperCAmelCase : Union[str, Any] = 330 UpperCAmelCase : Union[str, Any] = 14 UpperCAmelCase : Any = 6 UpperCAmelCase : int = 1320 elif "yolos_s" in yolos_name: UpperCAmelCase : Union[str, Any] = 384 UpperCAmelCase : Dict = 1536 UpperCAmelCase : str = 12 UpperCAmelCase : List[str] = 6 elif "yolos_b" in yolos_name: UpperCAmelCase : int = [800, 1344] UpperCAmelCase : Optional[int] = 91 UpperCAmelCase : int = "huggingface/label-files" UpperCAmelCase : Union[str, Any] = "coco-detection-id2label.json" UpperCAmelCase : Optional[Any] = json.load(open(hf_hub_download(__magic_name__ , __magic_name__ , repo_type="dataset" ) , "r" ) ) UpperCAmelCase : str = {int(__magic_name__ ): v for k, v in idalabel.items()} UpperCAmelCase : str = idalabel UpperCAmelCase : Union[str, Any] = {v: k for k, v in idalabel.items()} return config def lowercase ( __magic_name__ , __magic_name__ , __magic_name__ = False ): '''simple docstring''' for i in range(config.num_hidden_layers ): # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) UpperCAmelCase : Tuple = state_dict.pop(F"blocks.{i}.attn.qkv.weight" ) UpperCAmelCase : List[Any] = state_dict.pop(F"blocks.{i}.attn.qkv.bias" ) # next, add query, keys and values (in that order) to the state dict UpperCAmelCase : str = in_proj_weight[: config.hidden_size, :] UpperCAmelCase : Optional[int] = in_proj_bias[: config.hidden_size] UpperCAmelCase : Optional[Any] = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] UpperCAmelCase : int = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] UpperCAmelCase : str = in_proj_weight[-config.hidden_size :, :] UpperCAmelCase : Tuple = in_proj_bias[-config.hidden_size :] def lowercase ( __magic_name__ ): '''simple docstring''' if "backbone" in name: UpperCAmelCase : int = name.replace("backbone" , "vit" ) if "cls_token" in name: UpperCAmelCase : Dict = name.replace("cls_token" , "embeddings.cls_token" ) if "det_token" in name: UpperCAmelCase : int = name.replace("det_token" , "embeddings.detection_tokens" ) if "mid_pos_embed" in name: UpperCAmelCase : Tuple = name.replace("mid_pos_embed" , "encoder.mid_position_embeddings" ) if "pos_embed" in name: UpperCAmelCase : int = name.replace("pos_embed" , "embeddings.position_embeddings" ) if "patch_embed.proj" in name: UpperCAmelCase : str = name.replace("patch_embed.proj" , "embeddings.patch_embeddings.projection" ) if "blocks" in name: UpperCAmelCase : Tuple = name.replace("blocks" , "encoder.layer" ) if "attn.proj" in name: UpperCAmelCase : Tuple = name.replace("attn.proj" , "attention.output.dense" ) if "attn" in name: UpperCAmelCase : Any = name.replace("attn" , "attention.self" ) if "norm1" in name: UpperCAmelCase : int = name.replace("norm1" , "layernorm_before" ) if "norm2" in name: UpperCAmelCase : List[str] = name.replace("norm2" , "layernorm_after" ) if "mlp.fc1" in name: UpperCAmelCase : List[str] = name.replace("mlp.fc1" , "intermediate.dense" ) if "mlp.fc2" in name: UpperCAmelCase : Dict = name.replace("mlp.fc2" , "output.dense" ) if "class_embed" in name: UpperCAmelCase : Any = name.replace("class_embed" , "class_labels_classifier" ) if "bbox_embed" in name: UpperCAmelCase : Optional[int] = name.replace("bbox_embed" , "bbox_predictor" ) if "vit.norm" in name: UpperCAmelCase : Tuple = name.replace("vit.norm" , "vit.layernorm" ) return name def lowercase ( __magic_name__ , __magic_name__ ): '''simple docstring''' for key in orig_state_dict.copy().keys(): UpperCAmelCase : Optional[int] = orig_state_dict.pop(__magic_name__ ) if "qkv" in key: UpperCAmelCase : str = key.split("." ) UpperCAmelCase : List[Any] = int(key_split[2] ) UpperCAmelCase : int = model.vit.encoder.layer[layer_num].attention.attention.all_head_size if "weight" in key: UpperCAmelCase : Optional[int] = val[:dim, :] UpperCAmelCase : Union[str, Any] = val[ dim : dim * 2, : ] UpperCAmelCase : Any = val[-dim:, :] else: UpperCAmelCase : Tuple = val[:dim] UpperCAmelCase : List[str] = val[dim : dim * 2] UpperCAmelCase : Any = val[-dim:] else: UpperCAmelCase : Union[str, Any] = val return orig_state_dict def lowercase ( ): '''simple docstring''' UpperCAmelCase : Union[str, Any] = "http://images.cocodataset.org/val2017/000000039769.jpg" UpperCAmelCase : Tuple = Image.open(requests.get(__magic_name__ , stream=__magic_name__ ).raw ) return im @torch.no_grad() def lowercase ( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ = False ): '''simple docstring''' UpperCAmelCase : Tuple = get_yolos_config(__magic_name__ ) # load original state_dict UpperCAmelCase : int = torch.load(__magic_name__ , map_location="cpu" )["model"] # load 🤗 model UpperCAmelCase : int = YolosForObjectDetection(__magic_name__ ) model.eval() UpperCAmelCase : Dict = convert_state_dict(__magic_name__ , __magic_name__ ) model.load_state_dict(__magic_name__ ) # Check outputs on an image, prepared by YolosImageProcessor UpperCAmelCase : Dict = 800 if yolos_name != "yolos_ti" else 512 UpperCAmelCase : int = YolosImageProcessor(format="coco_detection" , size=__magic_name__ ) UpperCAmelCase : List[Any] = image_processor(images=prepare_img() , return_tensors="pt" ) UpperCAmelCase : List[str] = model(**__magic_name__ ) UpperCAmelCase , UpperCAmelCase : Optional[int] = outputs.logits, outputs.pred_boxes UpperCAmelCase , UpperCAmelCase : Optional[Any] = None, None if yolos_name == "yolos_ti": UpperCAmelCase : str = torch.tensor( [[-3_9.5_0_2_2, -1_1.9_8_2_0, -1_7.6_8_8_8], [-2_9.9_5_7_4, -9.9_7_6_9, -1_7.7_6_9_1], [-4_2.3_2_8_1, -2_0.7_2_0_0, -3_0.6_2_9_4]] ) UpperCAmelCase : Tuple = torch.tensor( [[0.4_0_2_1, 0.0_8_3_6, 0.7_9_7_9], [0.0_1_8_4, 0.2_6_0_9, 0.0_3_6_4], [0.1_7_8_1, 0.2_0_0_4, 0.2_0_9_5]] ) elif yolos_name == "yolos_s_200_pre": UpperCAmelCase : Union[str, Any] = torch.tensor( [[-2_4.0_2_4_8, -1_0.3_0_2_4, -1_4.8_2_9_0], [-4_2.0_3_9_2, -1_6.8_2_0_0, -2_7.4_3_3_4], [-2_7.2_7_4_3, -1_1.8_1_5_4, -1_8.7_1_4_8]] ) UpperCAmelCase : List[str] = torch.tensor( [[0.2_5_5_9, 0.5_4_5_5, 0.4_7_0_6], [0.2_9_8_9, 0.7_2_7_9, 0.1_8_7_5], [0.7_7_3_2, 0.4_0_1_7, 0.4_4_6_2]] ) elif yolos_name == "yolos_s_300_pre": UpperCAmelCase : List[str] = torch.tensor( [[-3_6.2_2_2_0, -1_4.4_3_8_5, -2_3.5_4_5_7], [-3_5.6_9_7_0, -1_4.7_5_8_3, -2_1.3_9_3_5], [-3_1.5_9_3_9, -1_3.6_0_4_2, -1_6.8_0_4_9]] ) UpperCAmelCase : Dict = torch.tensor( [[0.7_6_1_4, 0.2_3_1_6, 0.4_7_2_8], [0.7_1_6_8, 0.4_4_9_5, 0.3_8_5_5], [0.4_9_9_6, 0.1_4_6_6, 0.9_9_9_6]] ) elif yolos_name == "yolos_s_dWr": UpperCAmelCase : Dict = torch.tensor( [[-4_2.8_6_6_8, -2_4.1_0_4_9, -4_1.1_6_9_0], [-3_4.7_4_5_6, -1_4.1_2_7_4, -2_4.9_1_9_4], [-3_3.7_8_9_8, -1_2.1_9_4_6, -2_5.6_4_9_5]] ) UpperCAmelCase : List[Any] = torch.tensor( [[0.5_5_8_7, 0.2_7_7_3, 0.0_6_0_5], [0.5_0_0_4, 0.3_0_1_4, 0.9_9_9_4], [0.4_9_9_9, 0.1_5_4_8, 0.9_9_9_4]] ) elif yolos_name == "yolos_base": UpperCAmelCase : str = torch.tensor( [[-4_0.6_0_6_4, -2_4.3_0_8_4, -3_2.6_4_4_7], [-5_5.1_9_9_0, -3_0.7_7_1_9, -3_5.5_8_7_7], [-5_1.4_3_1_1, -3_3.3_5_0_7, -3_5.6_4_6_2]] ) UpperCAmelCase : Union[str, Any] = torch.tensor( [[0.5_5_5_5, 0.2_7_9_4, 0.0_6_5_5], [0.9_0_4_9, 0.2_6_6_4, 0.1_8_9_4], [0.9_1_8_3, 0.1_9_8_4, 0.1_6_3_5]] ) else: raise ValueError(F"Unknown yolos_name: {yolos_name}" ) assert torch.allclose(logits[0, :3, :3] , __magic_name__ , atol=1e-4 ) assert torch.allclose(pred_boxes[0, :3, :3] , __magic_name__ , atol=1e-4 ) Path(__magic_name__ ).mkdir(exist_ok=__magic_name__ ) print(F"Saving model {yolos_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(__magic_name__ ) print(F"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(__magic_name__ ) if push_to_hub: UpperCAmelCase : int = { "yolos_ti": "yolos-tiny", "yolos_s_200_pre": "yolos-small", "yolos_s_300_pre": "yolos-small-300", "yolos_s_dWr": "yolos-small-dwr", "yolos_base": "yolos-base", } print("Pushing to the hub..." ) UpperCAmelCase : Tuple = model_mapping[yolos_name] image_processor.push_to_hub(__magic_name__ , organization="hustvl" ) model.push_to_hub(__magic_name__ , organization="hustvl" ) if __name__ == "__main__": a : List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--yolos_name", default="yolos_s_200_pre", type=str, help=( "Name of the YOLOS model you'd like to convert. Should be one of 'yolos_ti', 'yolos_s_200_pre'," " 'yolos_s_300_pre', 'yolos_s_dWr', 'yolos_base'." ), ) parser.add_argument( "--checkpoint_path", default=None, type=str, help="Path to the original state dict (.pth file)." ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub." ) a : str = parser.parse_args() convert_yolos_checkpoint(args.yolos_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub)
311
1
'''simple docstring''' import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ConvNextConfig, SegformerImageProcessor, UperNetConfig, UperNetForSemanticSegmentation def snake_case_ ( lowerCAmelCase_ )-> Tuple: '''simple docstring''' _UpperCAmelCase : List[str] = 384 if "tiny" in model_name: _UpperCAmelCase : Any = [3, 3, 9, 3] _UpperCAmelCase : str = [96, 192, 384, 768] if "small" in model_name: _UpperCAmelCase : Any = [3, 3, 27, 3] _UpperCAmelCase : Dict = [96, 192, 384, 768] if "base" in model_name: _UpperCAmelCase : Union[str, Any] = [3, 3, 27, 3] _UpperCAmelCase : List[Any] = [128, 256, 512, 1024] _UpperCAmelCase : List[str] = 512 if "large" in model_name: _UpperCAmelCase : List[Any] = [3, 3, 27, 3] _UpperCAmelCase : int = [192, 384, 768, 1536] _UpperCAmelCase : str = 768 if "xlarge" in model_name: _UpperCAmelCase : Tuple = [3, 3, 27, 3] _UpperCAmelCase : Dict = [256, 512, 1024, 2048] _UpperCAmelCase : Optional[int] = 1024 # set label information _UpperCAmelCase : Optional[Any] = 150 _UpperCAmelCase : str = """huggingface/label-files""" _UpperCAmelCase : Tuple = """ade20k-id2label.json""" _UpperCAmelCase : List[str] = json.load(open(hf_hub_download(lowerCAmelCase_ , lowerCAmelCase_ , repo_type="""dataset""" ) , """r""" ) ) _UpperCAmelCase : Dict = {int(lowerCAmelCase_ ): v for k, v in idalabel.items()} _UpperCAmelCase : List[Any] = {v: k for k, v in idalabel.items()} _UpperCAmelCase : List[Any] = ConvNextConfig( depths=lowerCAmelCase_ , hidden_sizes=lowerCAmelCase_ , out_features=["""stage1""", """stage2""", """stage3""", """stage4"""] ) _UpperCAmelCase : int = UperNetConfig( backbone_config=lowerCAmelCase_ , auxiliary_in_channels=lowerCAmelCase_ , num_labels=lowerCAmelCase_ , idalabel=lowerCAmelCase_ , labelaid=lowerCAmelCase_ , ) return config def snake_case_ ( lowerCAmelCase_ )-> int: '''simple docstring''' _UpperCAmelCase : List[str] = [] # fmt: off # stem rename_keys.append(("""backbone.downsample_layers.0.0.weight""", """backbone.embeddings.patch_embeddings.weight""") ) rename_keys.append(("""backbone.downsample_layers.0.0.bias""", """backbone.embeddings.patch_embeddings.bias""") ) rename_keys.append(("""backbone.downsample_layers.0.1.weight""", """backbone.embeddings.layernorm.weight""") ) rename_keys.append(("""backbone.downsample_layers.0.1.bias""", """backbone.embeddings.layernorm.bias""") ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((F'''backbone.stages.{i}.{j}.gamma''', F'''backbone.encoder.stages.{i}.layers.{j}.layer_scale_parameter''') ) rename_keys.append((F'''backbone.stages.{i}.{j}.depthwise_conv.weight''', F'''backbone.encoder.stages.{i}.layers.{j}.dwconv.weight''') ) rename_keys.append((F'''backbone.stages.{i}.{j}.depthwise_conv.bias''', F'''backbone.encoder.stages.{i}.layers.{j}.dwconv.bias''') ) rename_keys.append((F'''backbone.stages.{i}.{j}.norm.weight''', F'''backbone.encoder.stages.{i}.layers.{j}.layernorm.weight''') ) rename_keys.append((F'''backbone.stages.{i}.{j}.norm.bias''', F'''backbone.encoder.stages.{i}.layers.{j}.layernorm.bias''') ) rename_keys.append((F'''backbone.stages.{i}.{j}.pointwise_conv1.weight''', F'''backbone.encoder.stages.{i}.layers.{j}.pwconv1.weight''') ) rename_keys.append((F'''backbone.stages.{i}.{j}.pointwise_conv1.bias''', F'''backbone.encoder.stages.{i}.layers.{j}.pwconv1.bias''') ) rename_keys.append((F'''backbone.stages.{i}.{j}.pointwise_conv2.weight''', F'''backbone.encoder.stages.{i}.layers.{j}.pwconv2.weight''') ) rename_keys.append((F'''backbone.stages.{i}.{j}.pointwise_conv2.bias''', F'''backbone.encoder.stages.{i}.layers.{j}.pwconv2.bias''') ) if i > 0: rename_keys.append((F'''backbone.downsample_layers.{i}.0.weight''', F'''backbone.encoder.stages.{i}.downsampling_layer.0.weight''') ) rename_keys.append((F'''backbone.downsample_layers.{i}.0.bias''', F'''backbone.encoder.stages.{i}.downsampling_layer.0.bias''') ) rename_keys.append((F'''backbone.downsample_layers.{i}.1.weight''', F'''backbone.encoder.stages.{i}.downsampling_layer.1.weight''') ) rename_keys.append((F'''backbone.downsample_layers.{i}.1.bias''', F'''backbone.encoder.stages.{i}.downsampling_layer.1.bias''') ) rename_keys.append((F'''backbone.norm{i}.weight''', F'''backbone.hidden_states_norms.stage{i+1}.weight''') ) rename_keys.append((F'''backbone.norm{i}.bias''', F'''backbone.hidden_states_norms.stage{i+1}.bias''') ) # decode head rename_keys.extend( [ ("""decode_head.conv_seg.weight""", """decode_head.classifier.weight"""), ("""decode_head.conv_seg.bias""", """decode_head.classifier.bias"""), ("""auxiliary_head.conv_seg.weight""", """auxiliary_head.classifier.weight"""), ("""auxiliary_head.conv_seg.bias""", """auxiliary_head.classifier.bias"""), ] ) # fmt: on return rename_keys def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ )-> Tuple: '''simple docstring''' _UpperCAmelCase : Union[str, Any] = dct.pop(lowerCAmelCase_ ) _UpperCAmelCase : Optional[int] = val def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ )-> List[Any]: '''simple docstring''' _UpperCAmelCase : Optional[Any] = { """upernet-convnext-tiny""": """https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_tiny_fp16_512x512_160k_ade20k/upernet_convnext_tiny_fp16_512x512_160k_ade20k_20220227_124553-cad485de.pth""", """upernet-convnext-small""": """https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_small_fp16_512x512_160k_ade20k/upernet_convnext_small_fp16_512x512_160k_ade20k_20220227_131208-1b1e394f.pth""", """upernet-convnext-base""": """https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_base_fp16_512x512_160k_ade20k/upernet_convnext_base_fp16_512x512_160k_ade20k_20220227_181227-02a24fc6.pth""", """upernet-convnext-large""": """https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_large_fp16_640x640_160k_ade20k/upernet_convnext_large_fp16_640x640_160k_ade20k_20220226_040532-e57aa54d.pth""", """upernet-convnext-xlarge""": """https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_xlarge_fp16_640x640_160k_ade20k/upernet_convnext_xlarge_fp16_640x640_160k_ade20k_20220226_080344-95fc38c2.pth""", } _UpperCAmelCase : Optional[Any] = model_name_to_url[model_name] _UpperCAmelCase : Union[str, Any] = torch.hub.load_state_dict_from_url(lowerCAmelCase_ , map_location="""cpu""" )["""state_dict"""] _UpperCAmelCase : List[Any] = get_upernet_config(lowerCAmelCase_ ) _UpperCAmelCase : str = UperNetForSemanticSegmentation(lowerCAmelCase_ ) model.eval() # replace "bn" => "batch_norm" for key in state_dict.copy().keys(): _UpperCAmelCase : Optional[int] = state_dict.pop(lowerCAmelCase_ ) if "bn" in key: _UpperCAmelCase : str = key.replace("""bn""" , """batch_norm""" ) _UpperCAmelCase : Union[str, Any] = val # rename keys _UpperCAmelCase : Optional[Any] = create_rename_keys(lowerCAmelCase_ ) for src, dest in rename_keys: rename_key(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) model.load_state_dict(lowerCAmelCase_ ) # verify on image _UpperCAmelCase : List[Any] = """https://huggingface.co/datasets/hf-internal-testing/fixtures_ade20k/resolve/main/ADE_val_00000001.jpg""" _UpperCAmelCase : Optional[int] = Image.open(requests.get(lowerCAmelCase_ , stream=lowerCAmelCase_ ).raw ).convert("""RGB""" ) _UpperCAmelCase : List[Any] = SegformerImageProcessor() _UpperCAmelCase : Tuple = processor(lowerCAmelCase_ , return_tensors="""pt""" ).pixel_values with torch.no_grad(): _UpperCAmelCase : Dict = model(lowerCAmelCase_ ) if model_name == "upernet-convnext-tiny": _UpperCAmelCase : List[Any] = torch.tensor( [[-8.8_1_1_0, -8.8_1_1_0, -8.6_5_2_1], [-8.8_1_1_0, -8.8_1_1_0, -8.6_5_2_1], [-8.7_7_4_6, -8.7_7_4_6, -8.6_1_3_0]] ) elif model_name == "upernet-convnext-small": _UpperCAmelCase : str = torch.tensor( [[-8.8_2_3_6, -8.8_2_3_6, -8.6_7_7_1], [-8.8_2_3_6, -8.8_2_3_6, -8.6_7_7_1], [-8.7_6_3_8, -8.7_6_3_8, -8.6_2_4_0]] ) elif model_name == "upernet-convnext-base": _UpperCAmelCase : str = torch.tensor( [[-8.8_5_5_8, -8.8_5_5_8, -8.6_9_0_5], [-8.8_5_5_8, -8.8_5_5_8, -8.6_9_0_5], [-8.7_6_6_9, -8.7_6_6_9, -8.6_0_2_1]] ) elif model_name == "upernet-convnext-large": _UpperCAmelCase : Tuple = torch.tensor( [[-8.6_6_6_0, -8.6_6_6_0, -8.6_2_1_0], [-8.6_6_6_0, -8.6_6_6_0, -8.6_2_1_0], [-8.6_3_1_0, -8.6_3_1_0, -8.5_9_6_4]] ) elif model_name == "upernet-convnext-xlarge": _UpperCAmelCase : List[Any] = torch.tensor( [[-8.4_9_8_0, -8.4_9_8_0, -8.3_9_7_7], [-8.4_9_8_0, -8.4_9_8_0, -8.3_9_7_7], [-8.4_3_7_9, -8.4_3_7_9, -8.3_4_1_2]] ) print("""Logits:""" , outputs.logits[0, 0, :3, :3] ) assert torch.allclose(outputs.logits[0, 0, :3, :3] , lowerCAmelCase_ , atol=1e-4 ) print("""Looks ok!""" ) if pytorch_dump_folder_path is not None: print(F'''Saving model {model_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(lowerCAmelCase_ ) print(F'''Saving processor to {pytorch_dump_folder_path}''' ) processor.save_pretrained(lowerCAmelCase_ ) if push_to_hub: print(F'''Pushing model and processor for {model_name} to hub''' ) model.push_to_hub(F'''openmmlab/{model_name}''' ) processor.push_to_hub(F'''openmmlab/{model_name}''' ) if __name__ == "__main__": A_ : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""upernet-convnext-tiny""", type=str, choices=[f"""upernet-convnext-{size}""" for size in ["""tiny""", """small""", """base""", """large""", """xlarge"""]], help="""Name of the ConvNext UperNet model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub.""" ) A_ : List[str] = parser.parse_args() convert_upernet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
364
'''simple docstring''' import argparse import copy def snake_case_ ( lowerCAmelCase_ )-> Dict: '''simple docstring''' _UpperCAmelCase : Dict = {} with open(lowerCAmelCase_ ) as f: for line in f: if line.split()[0] not in dict_of_neighbours: _UpperCAmelCase : Optional[int] = [] _list.append([line.split()[1], line.split()[2]] ) _UpperCAmelCase : List[str] = _list else: dict_of_neighbours[line.split()[0]].append( [line.split()[1], line.split()[2]] ) if line.split()[1] not in dict_of_neighbours: _UpperCAmelCase : List[str] = [] _list.append([line.split()[0], line.split()[2]] ) _UpperCAmelCase : Optional[int] = _list else: dict_of_neighbours[line.split()[1]].append( [line.split()[0], line.split()[2]] ) return dict_of_neighbours def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ )-> List[Any]: '''simple docstring''' with open(lowerCAmelCase_ ) as f: _UpperCAmelCase : List[Any] = f.read(1 ) _UpperCAmelCase : int = start_node _UpperCAmelCase : List[Any] = [] _UpperCAmelCase : Dict = start_node _UpperCAmelCase : Any = 0 while visiting not in first_solution: _UpperCAmelCase : Optional[int] = 10000 for k in dict_of_neighbours[visiting]: if int(k[1] ) < int(lowerCAmelCase_ ) and k[0] not in first_solution: _UpperCAmelCase : Optional[int] = k[1] _UpperCAmelCase : List[str] = k[0] first_solution.append(lowerCAmelCase_ ) _UpperCAmelCase : Optional[int] = distance_of_first_solution + int(lowerCAmelCase_ ) _UpperCAmelCase : Dict = best_node first_solution.append(lowerCAmelCase_ ) _UpperCAmelCase : List[str] = 0 for k in dict_of_neighbours[first_solution[-2]]: if k[0] == start_node: break position += 1 _UpperCAmelCase : int = ( distance_of_first_solution + int(dict_of_neighbours[first_solution[-2]][position][1] ) - 10000 ) return first_solution, distance_of_first_solution def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ )-> int: '''simple docstring''' _UpperCAmelCase : int = [] for n in solution[1:-1]: _UpperCAmelCase : Tuple = solution.index(lowerCAmelCase_ ) for kn in solution[1:-1]: _UpperCAmelCase : int = solution.index(lowerCAmelCase_ ) if n == kn: continue _UpperCAmelCase : Tuple = copy.deepcopy(lowerCAmelCase_ ) _UpperCAmelCase : Union[str, Any] = kn _UpperCAmelCase : List[str] = n _UpperCAmelCase : Optional[int] = 0 for k in _tmp[:-1]: _UpperCAmelCase : List[str] = _tmp[_tmp.index(lowerCAmelCase_ ) + 1] for i in dict_of_neighbours[k]: if i[0] == next_node: _UpperCAmelCase : Dict = distance + int(i[1] ) _tmp.append(lowerCAmelCase_ ) if _tmp not in neighborhood_of_solution: neighborhood_of_solution.append(_tmp ) _UpperCAmelCase : Dict = len(neighborhood_of_solution[0] ) - 1 neighborhood_of_solution.sort(key=lambda lowerCAmelCase_ : x[index_of_last_item_in_the_list] ) return neighborhood_of_solution def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ )-> int: '''simple docstring''' _UpperCAmelCase : List[Any] = 1 _UpperCAmelCase : Optional[Any] = first_solution _UpperCAmelCase : List[Any] = [] _UpperCAmelCase : List[Any] = distance_of_first_solution _UpperCAmelCase : Dict = solution while count <= iters: _UpperCAmelCase : Any = find_neighborhood(lowerCAmelCase_ , lowerCAmelCase_ ) _UpperCAmelCase : Dict = 0 _UpperCAmelCase : Optional[Any] = neighborhood[index_of_best_solution] _UpperCAmelCase : Optional[Any] = len(lowerCAmelCase_ ) - 1 _UpperCAmelCase : Optional[Any] = False while not found: _UpperCAmelCase : Tuple = 0 while i < len(lowerCAmelCase_ ): if best_solution[i] != solution[i]: _UpperCAmelCase : Any = best_solution[i] _UpperCAmelCase : str = solution[i] break _UpperCAmelCase : int = i + 1 if [first_exchange_node, second_exchange_node] not in tabu_list and [ second_exchange_node, first_exchange_node, ] not in tabu_list: tabu_list.append([first_exchange_node, second_exchange_node] ) _UpperCAmelCase : Tuple = True _UpperCAmelCase : List[Any] = best_solution[:-1] _UpperCAmelCase : str = neighborhood[index_of_best_solution][best_cost_index] if cost < best_cost: _UpperCAmelCase : Tuple = cost _UpperCAmelCase : List[Any] = solution else: _UpperCAmelCase : Any = index_of_best_solution + 1 _UpperCAmelCase : Dict = neighborhood[index_of_best_solution] if len(lowerCAmelCase_ ) >= size: tabu_list.pop(0 ) _UpperCAmelCase : Optional[Any] = count + 1 return best_solution_ever, best_cost def snake_case_ ( lowerCAmelCase_=None )-> Optional[int]: '''simple docstring''' _UpperCAmelCase : Tuple = generate_neighbours(args.File ) _UpperCAmelCase ,_UpperCAmelCase : Tuple = generate_first_solution( args.File , lowerCAmelCase_ ) _UpperCAmelCase ,_UpperCAmelCase : str = tabu_search( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , args.Iterations , args.Size , ) print(F'''Best solution: {best_sol}, with total distance: {best_cost}.''' ) if __name__ == "__main__": A_ : Optional[int] = argparse.ArgumentParser(description="""Tabu Search""") parser.add_argument( """-f""", """--File""", type=str, help="""Path to the file containing the data""", required=True, ) parser.add_argument( """-i""", """--Iterations""", type=int, help="""How many iterations the algorithm should perform""", required=True, ) parser.add_argument( """-s""", """--Size""", type=int, help="""Size of the tabu list""", required=True ) # Pass the arguments to main method main(parser.parse_args())
349
0
'''simple docstring''' from __future__ import annotations import numpy as np def UpperCamelCase__ ( lowerCAmelCase ): """simple docstring""" return np.maximum(0 , lowerCAmelCase ) if __name__ == "__main__": print(np.array(relu([-1, 0, 5]))) # --> [0, 0, 5]
70
import numpy as np def __magic_name__ ( A : np.array ): '''simple docstring''' return 1 / (1 + np.exp(-vector )) def __magic_name__ ( A : np.array ): '''simple docstring''' return vector * sigmoid(1.7_02 * vector ) if __name__ == "__main__": import doctest doctest.testmod()
107
0
"""simple docstring""" import argparse import torch from transformers import BertConfig, BertForPreTraining, load_tf_weights_in_bert from transformers.utils import logging logging.set_verbosity_info() def __A ( a_ :Dict , a_ :str , a_ :Dict) -> str: # Initialise PyTorch model __a : Union[str, Any] = BertConfig.from_json_file(a_) print(F"""Building PyTorch model from configuration: {config}""") __a : Any = BertForPreTraining(a_) # Load weights from tf checkpoint load_tf_weights_in_bert(a_ , a_ , a_) # Save pytorch-model print(F"""Save PyTorch model to {pytorch_dump_path}""") torch.save(model.state_dict() , a_) if __name__ == "__main__": A = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--tf_checkpoint_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.''' ) parser.add_argument( '''--bert_config_file''', default=None, type=str, required=True, help=( '''The config json file corresponding to the pre-trained BERT model. \n''' '''This specifies the model architecture.''' ), ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) A = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.bert_config_file, args.pytorch_dump_path)
188
"""simple docstring""" def __A ( a_ :int = 1_00_00_00) -> int: __a : Tuple = [i - 1 for i in range(limit + 1)] for i in range(2 , limit + 1): if phi[i] == i - 1: for j in range(2 * i , limit + 1 , a_): phi[j] -= phi[j] // i return sum(phi[2 : limit + 1]) if __name__ == "__main__": print(solution())
188
1
from typing import List, Optional, TypeVar from .arrow_dataset import Dataset, _concatenate_map_style_datasets, _interleave_map_style_datasets from .dataset_dict import DatasetDict, IterableDatasetDict from .info import DatasetInfo from .iterable_dataset import IterableDataset, _concatenate_iterable_datasets, _interleave_iterable_datasets from .splits import NamedSplit from .utils import logging from .utils.py_utils import Literal snake_case_ = logging.get_logger(__name__) snake_case_ = TypeVar('DatasetType', Dataset, IterableDataset) def lowerCamelCase__ ( snake_case_ : List[DatasetType] , snake_case_ : Optional[List[float]] = None , snake_case_ : Optional[int] = None , snake_case_ : Optional[DatasetInfo] = None , snake_case_ : Optional[NamedSplit] = None , snake_case_ : Literal["first_exhausted", "all_exhausted"] = "first_exhausted" , ) -> DatasetType: from .arrow_dataset import Dataset from .iterable_dataset import IterableDataset if not datasets: raise ValueError('''Unable to interleave an empty list of datasets.''' ) for i, dataset in enumerate(snake_case_ ): if not isinstance(snake_case_ , (Dataset, IterableDataset) ): if isinstance(snake_case_ , (DatasetDict, IterableDatasetDict) ): if not dataset: raise ValueError( f"""Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} """ '''is an empty dataset dictionary.''' ) raise ValueError( f"""Dataset at position {i} has at least one split: {list(snake_case_ )}\n""" f"""Please pick one to interleave with the other datasets, for example: dataset['{next(iter(snake_case_ ) )}']""" ) raise ValueError( f"""Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} is a {type(snake_case_ ).__name__}.""" ) if i == 0: __snake_case , __snake_case = ( (Dataset, IterableDataset) if isinstance(snake_case_ , snake_case_ ) else (IterableDataset, Dataset) ) elif not isinstance(snake_case_ , snake_case_ ): raise ValueError( f"""Unable to interleave a {dataset_type.__name__} (at position 0) with a {other_type.__name__} (at position {i}). Expected a list of Dataset objects or a list of IterableDataset objects.""" ) if stopping_strategy not in ["first_exhausted", "all_exhausted"]: raise ValueError(f"""{stopping_strategy} is not supported. Please enter a valid stopping_strategy.""" ) if dataset_type is Dataset: return _interleave_map_style_datasets( snake_case_ , snake_case_ , snake_case_ , info=snake_case_ , split=snake_case_ , stopping_strategy=snake_case_ ) else: return _interleave_iterable_datasets( snake_case_ , snake_case_ , snake_case_ , info=snake_case_ , split=snake_case_ , stopping_strategy=snake_case_ ) def lowerCamelCase__ ( snake_case_ : List[DatasetType] , snake_case_ : Optional[DatasetInfo] = None , snake_case_ : Optional[NamedSplit] = None , snake_case_ : int = 0 , ) -> DatasetType: if not dsets: raise ValueError('''Unable to concatenate an empty list of datasets.''' ) for i, dataset in enumerate(snake_case_ ): if not isinstance(snake_case_ , (Dataset, IterableDataset) ): if isinstance(snake_case_ , (DatasetDict, IterableDatasetDict) ): if not dataset: raise ValueError( f"""Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} """ '''is an empty dataset dictionary.''' ) raise ValueError( f"""Dataset at position {i} has at least one split: {list(snake_case_ )}\n""" f"""Please pick one to interleave with the other datasets, for example: dataset['{next(iter(snake_case_ ) )}']""" ) raise ValueError( f"""Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} is a {type(snake_case_ ).__name__}.""" ) if i == 0: __snake_case , __snake_case = ( (Dataset, IterableDataset) if isinstance(snake_case_ , snake_case_ ) else (IterableDataset, Dataset) ) elif not isinstance(snake_case_ , snake_case_ ): raise ValueError( f"""Unable to interleave a {dataset_type.__name__} (at position 0) with a {other_type.__name__} (at position {i}). Expected a list of Dataset objects or a list of IterableDataset objects.""" ) if dataset_type is Dataset: return _concatenate_map_style_datasets(snake_case_ , info=snake_case_ , split=snake_case_ , axis=snake_case_ ) else: return _concatenate_iterable_datasets(snake_case_ , info=snake_case_ , split=snake_case_ , axis=snake_case_ )
24
import logging import os from dataclasses import dataclass from typing import List, Optional, Union import tqdm from filelock import FileLock from transformers import ( BartTokenizer, BartTokenizerFast, DataProcessor, PreTrainedTokenizer, RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, is_tf_available, is_torch_available, ) snake_case_ = logging.getLogger(__name__) @dataclass(frozen=_UpperCAmelCase ) class SCREAMING_SNAKE_CASE__ : A_ : str A_ : str A_ : Optional[str] = None A_ : Optional[str] = None A_ : Optional[str] = None @dataclass(frozen=_UpperCAmelCase ) class SCREAMING_SNAKE_CASE__ : A_ : List[int] A_ : Optional[List[int]] = None A_ : Optional[List[int]] = None A_ : Optional[Union[int, float]] = None A_ : Optional[int] = None if is_torch_available(): import torch from torch.utils.data import Dataset class SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ): A_ : List[InputFeatures] def __init__(self : int , a__ : str , a__ : PreTrainedTokenizer , a__ : str , a__ : Optional[int] = None , a__ : List[Any]=False , a__ : bool = False , ): """simple docstring""" __snake_case = hans_processors[task]() __snake_case = os.path.join( a__ , '''cached_{}_{}_{}_{}'''.format( '''dev''' if evaluate else '''train''' , tokenizer.__class__.__name__ , str(a__ ) , a__ , ) , ) __snake_case = processor.get_labels() if tokenizer.__class__ in ( RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, BartTokenizer, BartTokenizerFast, ): # HACK(label indices are swapped in RoBERTa pretrained model) __snake_case , __snake_case = label_list[2], label_list[1] __snake_case = label_list # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. __snake_case = cached_features_file + '''.lock''' with FileLock(a__ ): if os.path.exists(a__ ) and not overwrite_cache: logger.info(f"""Loading features from cached file {cached_features_file}""" ) __snake_case = torch.load(a__ ) else: logger.info(f"""Creating features from dataset file at {data_dir}""" ) __snake_case = ( processor.get_dev_examples(a__ ) if evaluate else processor.get_train_examples(a__ ) ) logger.info('''Training examples: %s''' , len(a__ ) ) __snake_case = hans_convert_examples_to_features(a__ , a__ , a__ , a__ ) logger.info('''Saving features into cached file %s''' , a__ ) torch.save(self.features , a__ ) def __len__(self : int ): """simple docstring""" return len(self.features ) def __getitem__(self : Dict , a__ : List[Any] ): """simple docstring""" return self.features[i] def a (self : List[Any] ): """simple docstring""" return self.label_list if is_tf_available(): import tensorflow as tf class SCREAMING_SNAKE_CASE__ : A_ : List[InputFeatures] def __init__(self : Tuple , a__ : str , a__ : PreTrainedTokenizer , a__ : str , a__ : Optional[int] = 128 , a__ : Any=False , a__ : bool = False , ): """simple docstring""" __snake_case = hans_processors[task]() __snake_case = processor.get_labels() if tokenizer.__class__ in ( RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, BartTokenizer, BartTokenizerFast, ): # HACK(label indices are swapped in RoBERTa pretrained model) __snake_case , __snake_case = label_list[2], label_list[1] __snake_case = label_list __snake_case = processor.get_dev_examples(a__ ) if evaluate else processor.get_train_examples(a__ ) __snake_case = hans_convert_examples_to_features(a__ , a__ , a__ , a__ ) def gen(): for ex_index, ex in tqdm.tqdm(enumerate(self.features ) , desc='''convert examples to features''' ): if ex_index % 1_0000 == 0: logger.info('''Writing example %d of %d''' % (ex_index, len(a__ )) ) yield ( { "example_id": 0, "input_ids": ex.input_ids, "attention_mask": ex.attention_mask, "token_type_ids": ex.token_type_ids, }, ex.label, ) __snake_case = tf.data.Dataset.from_generator( a__ , ( { '''example_id''': tf.intaa, '''input_ids''': tf.intaa, '''attention_mask''': tf.intaa, '''token_type_ids''': tf.intaa, }, tf.intaa, ) , ( { '''example_id''': tf.TensorShape([] ), '''input_ids''': tf.TensorShape([None, None] ), '''attention_mask''': tf.TensorShape([None, None] ), '''token_type_ids''': tf.TensorShape([None, None] ), }, tf.TensorShape([] ), ) , ) def a (self : Union[str, Any] ): """simple docstring""" return self.dataset def __len__(self : Dict ): """simple docstring""" return len(self.features ) def __getitem__(self : Any , a__ : Dict ): """simple docstring""" return self.features[i] def a (self : str ): """simple docstring""" return self.label_list class SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ): def a (self : Dict , a__ : Dict ): """simple docstring""" return self._create_examples(self._read_tsv(os.path.join(a__ , '''heuristics_train_set.txt''' ) ) , '''train''' ) def a (self : Optional[int] , a__ : Tuple ): """simple docstring""" return self._create_examples(self._read_tsv(os.path.join(a__ , '''heuristics_evaluation_set.txt''' ) ) , '''dev''' ) def a (self : int ): """simple docstring""" return ["contradiction", "entailment", "neutral"] def a (self : Any , a__ : Optional[int] , a__ : List[Any] ): """simple docstring""" __snake_case = [] for i, line in enumerate(a__ ): if i == 0: continue __snake_case = '''%s-%s''' % (set_type, line[0]) __snake_case = line[5] __snake_case = line[6] __snake_case = line[7][2:] if line[7].startswith('''ex''' ) else line[7] __snake_case = line[0] examples.append(InputExample(guid=a__ , text_a=a__ , text_b=a__ , label=a__ , pairID=a__ ) ) return examples def lowerCamelCase__ ( snake_case_ : List[InputExample] , snake_case_ : List[str] , snake_case_ : int , snake_case_ : PreTrainedTokenizer , ) -> List[str]: __snake_case = {label: i for i, label in enumerate(snake_case_ )} __snake_case = [] for ex_index, example in tqdm.tqdm(enumerate(snake_case_ ) , desc='''convert examples to features''' ): if ex_index % 1_0000 == 0: logger.info('''Writing example %d''' % (ex_index) ) __snake_case = tokenizer( example.text_a , example.text_b , add_special_tokens=snake_case_ , max_length=snake_case_ , padding='''max_length''' , truncation=snake_case_ , return_overflowing_tokens=snake_case_ , ) __snake_case = label_map[example.label] if example.label in label_map else 0 __snake_case = int(example.pairID ) features.append(InputFeatures(**snake_case_ , label=snake_case_ , pairID=snake_case_ ) ) for i, example in enumerate(examples[:5] ): logger.info('''*** Example ***''' ) logger.info(f"""guid: {example}""" ) logger.info(f"""features: {features[i]}""" ) return features snake_case_ = { 'hans': 3, } snake_case_ = { 'hans': HansProcessor, }
24
1
import argparse import json import os import numpy as np import PIL import requests import tensorflow.keras.applications.efficientnet as efficientnet import torch from huggingface_hub import hf_hub_download from PIL import Image from tensorflow.keras.preprocessing import image from transformers import ( EfficientNetConfig, EfficientNetForImageClassification, EfficientNetImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = { '''b0''': efficientnet.EfficientNetBa, '''b1''': efficientnet.EfficientNetBa, '''b2''': efficientnet.EfficientNetBa, '''b3''': efficientnet.EfficientNetBa, '''b4''': efficientnet.EfficientNetBa, '''b5''': efficientnet.EfficientNetBa, '''b6''': efficientnet.EfficientNetBa, '''b7''': efficientnet.EfficientNetBa, } lowerCAmelCase_ = { '''b0''': { '''hidden_dim''': 1_2_8_0, '''width_coef''': 1.0, '''depth_coef''': 1.0, '''image_size''': 2_2_4, '''dropout_rate''': 0.2, '''dw_padding''': [], }, '''b1''': { '''hidden_dim''': 1_2_8_0, '''width_coef''': 1.0, '''depth_coef''': 1.1, '''image_size''': 2_4_0, '''dropout_rate''': 0.2, '''dw_padding''': [1_6], }, '''b2''': { '''hidden_dim''': 1_4_0_8, '''width_coef''': 1.1, '''depth_coef''': 1.2, '''image_size''': 2_6_0, '''dropout_rate''': 0.3, '''dw_padding''': [5, 8, 1_6], }, '''b3''': { '''hidden_dim''': 1_5_3_6, '''width_coef''': 1.2, '''depth_coef''': 1.4, '''image_size''': 3_0_0, '''dropout_rate''': 0.3, '''dw_padding''': [5, 1_8], }, '''b4''': { '''hidden_dim''': 1_7_9_2, '''width_coef''': 1.4, '''depth_coef''': 1.8, '''image_size''': 3_8_0, '''dropout_rate''': 0.4, '''dw_padding''': [6], }, '''b5''': { '''hidden_dim''': 2_0_4_8, '''width_coef''': 1.6, '''depth_coef''': 2.2, '''image_size''': 4_5_6, '''dropout_rate''': 0.4, '''dw_padding''': [1_3, 2_7], }, '''b6''': { '''hidden_dim''': 2_3_0_4, '''width_coef''': 1.8, '''depth_coef''': 2.6, '''image_size''': 5_2_8, '''dropout_rate''': 0.5, '''dw_padding''': [3_1], }, '''b7''': { '''hidden_dim''': 2_5_6_0, '''width_coef''': 2.0, '''depth_coef''': 3.1, '''image_size''': 6_0_0, '''dropout_rate''': 0.5, '''dw_padding''': [1_8], }, } def lowerCamelCase_ ( _UpperCamelCase ) -> List[str]: """simple docstring""" snake_case_ : List[str] = EfficientNetConfig() snake_case_ : List[str] = CONFIG_MAP[model_name]['''hidden_dim'''] snake_case_ : List[str] = CONFIG_MAP[model_name]['''width_coef'''] snake_case_ : Dict = CONFIG_MAP[model_name]['''depth_coef'''] snake_case_ : int = CONFIG_MAP[model_name]['''image_size'''] snake_case_ : Any = CONFIG_MAP[model_name]['''dropout_rate'''] snake_case_ : List[Any] = CONFIG_MAP[model_name]['''dw_padding'''] snake_case_ : Any = '''huggingface/label-files''' snake_case_ : Tuple = '''imagenet-1k-id2label.json''' snake_case_ : List[Any] = 1_000 snake_case_ : Dict = json.load(open(hf_hub_download(_UpperCamelCase , _UpperCamelCase , repo_type='''dataset''' ) , '''r''' ) ) snake_case_ : Optional[int] = {int(_UpperCamelCase ): v for k, v in idalabel.items()} snake_case_ : Optional[int] = idalabel snake_case_ : List[Any] = {v: k for k, v in idalabel.items()} return config def lowerCamelCase_ ( ) -> int: """simple docstring""" snake_case_ : List[Any] = '''http://images.cocodataset.org/val2017/000000039769.jpg''' snake_case_ : Tuple = Image.open(requests.get(_UpperCamelCase , stream=_UpperCamelCase ).raw ) return im def lowerCamelCase_ ( _UpperCamelCase ) -> Optional[int]: """simple docstring""" snake_case_ : Union[str, Any] = CONFIG_MAP[model_name]['''image_size'''] snake_case_ : Any = EfficientNetImageProcessor( size={'''height''': size, '''width''': size} , image_mean=[0.485, 0.456, 0.406] , image_std=[0.47_853_944, 0.4_732_864, 0.47_434_163] , do_center_crop=_UpperCamelCase , ) return preprocessor def lowerCamelCase_ ( _UpperCamelCase ) -> List[str]: """simple docstring""" snake_case_ : Any = [v.split('''_''' )[0].split('''block''' )[1] for v in original_param_names if v.startswith('''block''' )] snake_case_ : List[Any] = sorted(set(_UpperCamelCase ) ) snake_case_ : Union[str, Any] = len(_UpperCamelCase ) snake_case_ : Any = {b: str(_UpperCamelCase ) for b, i in zip(_UpperCamelCase , range(_UpperCamelCase ) )} snake_case_ : Union[str, Any] = [] rename_keys.append(('''stem_conv/kernel:0''', '''embeddings.convolution.weight''') ) rename_keys.append(('''stem_bn/gamma:0''', '''embeddings.batchnorm.weight''') ) rename_keys.append(('''stem_bn/beta:0''', '''embeddings.batchnorm.bias''') ) rename_keys.append(('''stem_bn/moving_mean:0''', '''embeddings.batchnorm.running_mean''') ) rename_keys.append(('''stem_bn/moving_variance:0''', '''embeddings.batchnorm.running_var''') ) for b in block_names: snake_case_ : Optional[Any] = block_name_mapping[b] rename_keys.append((f'''block{b}_expand_conv/kernel:0''', f'''encoder.blocks.{hf_b}.expansion.expand_conv.weight''') ) rename_keys.append((f'''block{b}_expand_bn/gamma:0''', f'''encoder.blocks.{hf_b}.expansion.expand_bn.weight''') ) rename_keys.append((f'''block{b}_expand_bn/beta:0''', f'''encoder.blocks.{hf_b}.expansion.expand_bn.bias''') ) rename_keys.append( (f'''block{b}_expand_bn/moving_mean:0''', f'''encoder.blocks.{hf_b}.expansion.expand_bn.running_mean''') ) rename_keys.append( (f'''block{b}_expand_bn/moving_variance:0''', f'''encoder.blocks.{hf_b}.expansion.expand_bn.running_var''') ) rename_keys.append( (f'''block{b}_dwconv/depthwise_kernel:0''', f'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_conv.weight''') ) rename_keys.append((f'''block{b}_bn/gamma:0''', f'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.weight''') ) rename_keys.append((f'''block{b}_bn/beta:0''', f'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.bias''') ) rename_keys.append( (f'''block{b}_bn/moving_mean:0''', f'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.running_mean''') ) rename_keys.append( (f'''block{b}_bn/moving_variance:0''', f'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.running_var''') ) rename_keys.append((f'''block{b}_se_reduce/kernel:0''', f'''encoder.blocks.{hf_b}.squeeze_excite.reduce.weight''') ) rename_keys.append((f'''block{b}_se_reduce/bias:0''', f'''encoder.blocks.{hf_b}.squeeze_excite.reduce.bias''') ) rename_keys.append((f'''block{b}_se_expand/kernel:0''', f'''encoder.blocks.{hf_b}.squeeze_excite.expand.weight''') ) rename_keys.append((f'''block{b}_se_expand/bias:0''', f'''encoder.blocks.{hf_b}.squeeze_excite.expand.bias''') ) rename_keys.append( (f'''block{b}_project_conv/kernel:0''', f'''encoder.blocks.{hf_b}.projection.project_conv.weight''') ) rename_keys.append((f'''block{b}_project_bn/gamma:0''', f'''encoder.blocks.{hf_b}.projection.project_bn.weight''') ) rename_keys.append((f'''block{b}_project_bn/beta:0''', f'''encoder.blocks.{hf_b}.projection.project_bn.bias''') ) rename_keys.append( (f'''block{b}_project_bn/moving_mean:0''', f'''encoder.blocks.{hf_b}.projection.project_bn.running_mean''') ) rename_keys.append( (f'''block{b}_project_bn/moving_variance:0''', f'''encoder.blocks.{hf_b}.projection.project_bn.running_var''') ) rename_keys.append(('''top_conv/kernel:0''', '''encoder.top_conv.weight''') ) rename_keys.append(('''top_bn/gamma:0''', '''encoder.top_bn.weight''') ) rename_keys.append(('''top_bn/beta:0''', '''encoder.top_bn.bias''') ) rename_keys.append(('''top_bn/moving_mean:0''', '''encoder.top_bn.running_mean''') ) rename_keys.append(('''top_bn/moving_variance:0''', '''encoder.top_bn.running_var''') ) snake_case_ : Optional[int] = {} for item in rename_keys: if item[0] in original_param_names: snake_case_ : List[str] = '''efficientnet.''' + item[1] snake_case_ : Tuple = '''classifier.weight''' snake_case_ : List[Any] = '''classifier.bias''' return key_mapping def lowerCamelCase_ ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) -> Any: """simple docstring""" for key, value in tf_params.items(): if "normalization" in key: continue snake_case_ : Dict = key_mapping[key] if "_conv" in key and "kernel" in key: snake_case_ : Dict = torch.from_numpy(_UpperCamelCase ).permute(3 , 2 , 0 , 1 ) elif "depthwise_kernel" in key: snake_case_ : str = torch.from_numpy(_UpperCamelCase ).permute(2 , 3 , 0 , 1 ) elif "kernel" in key: snake_case_ : int = torch.from_numpy(np.transpose(_UpperCamelCase ) ) else: snake_case_ : List[str] = torch.from_numpy(_UpperCamelCase ) # Replace HF parameters with original TF model parameters assert hf_params[hf_key].shape == new_hf_value.shape hf_params[hf_key].copy_(_UpperCamelCase ) @torch.no_grad() def lowerCamelCase_ ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) -> Union[str, Any]: """simple docstring""" snake_case_ : int = model_classes[model_name]( include_top=_UpperCamelCase , weights='''imagenet''' , input_tensor=_UpperCamelCase , input_shape=_UpperCamelCase , pooling=_UpperCamelCase , classes=1_000 , classifier_activation='''softmax''' , ) snake_case_ : Dict = original_model.trainable_variables snake_case_ : Union[str, Any] = original_model.non_trainable_variables snake_case_ : Optional[int] = {param.name: param.numpy() for param in tf_params} for param in tf_non_train_params: snake_case_ : Dict = param.numpy() snake_case_ : Any = list(tf_params.keys() ) # Load HuggingFace model snake_case_ : int = get_efficientnet_config(_UpperCamelCase ) snake_case_ : List[str] = EfficientNetForImageClassification(_UpperCamelCase ).eval() snake_case_ : List[Any] = hf_model.state_dict() # Create src-to-dst parameter name mapping dictionary print('''Converting parameters...''' ) snake_case_ : Tuple = rename_keys(_UpperCamelCase ) replace_params(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) # Initialize preprocessor and preprocess input image snake_case_ : List[Any] = convert_image_processor(_UpperCamelCase ) snake_case_ : Optional[Any] = preprocessor(images=prepare_img() , return_tensors='''pt''' ) # HF model inference hf_model.eval() with torch.no_grad(): snake_case_ : Optional[int] = hf_model(**_UpperCamelCase ) snake_case_ : Optional[Any] = outputs.logits.detach().numpy() # Original model inference snake_case_ : Any = False snake_case_ : Optional[int] = CONFIG_MAP[model_name]['''image_size'''] snake_case_ : Tuple = prepare_img().resize((image_size, image_size) , resample=PIL.Image.NEAREST ) snake_case_ : Dict = image.img_to_array(_UpperCamelCase ) snake_case_ : str = np.expand_dims(_UpperCamelCase , axis=0 ) snake_case_ : List[Any] = original_model.predict(_UpperCamelCase ) # Check whether original and HF model outputs match -> np.allclose assert np.allclose(_UpperCamelCase , _UpperCamelCase , atol=1E-3 ), "The predicted logits are not the same." print('''Model outputs match!''' ) if save_model: # Create folder to save model if not os.path.isdir(_UpperCamelCase ): os.mkdir(_UpperCamelCase ) # Save converted model and image processor hf_model.save_pretrained(_UpperCamelCase ) preprocessor.save_pretrained(_UpperCamelCase ) if push_to_hub: # Push model and image processor to hub print(f'''Pushing converted {model_name} to the hub...''' ) snake_case_ : Tuple = f'''efficientnet-{model_name}''' preprocessor.push_to_hub(_UpperCamelCase ) hf_model.push_to_hub(_UpperCamelCase ) if __name__ == "__main__": lowerCAmelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default='''b0''', type=str, help='''Version name of the EfficientNet model you want to convert, select from [b0, b1, b2, b3, b4, b5, b6, b7].''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default='''hf_model''', type=str, help='''Path to the output PyTorch model directory.''', ) parser.add_argument('''--save_model''', action='''store_true''', help='''Save model to local''') parser.add_argument('''--push_to_hub''', action='''store_true''', help='''Push model and image processor to the hub''') lowerCAmelCase_ = parser.parse_args() convert_efficientnet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.save_model, args.push_to_hub)
279
import time from contextlib import contextmanager from pathlib import Path import pytest import requests from huggingface_hub.hf_api import HfApi, HfFolder lowerCAmelCase_ = '''__DUMMY_TRANSFORMERS_USER__''' lowerCAmelCase_ = '''Dummy User''' lowerCAmelCase_ = '''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''' lowerCAmelCase_ = '''https://hub-ci.huggingface.co''' lowerCAmelCase_ = CI_HUB_ENDPOINT + '''/datasets/{repo_id}/resolve/{revision}/{path}''' lowerCAmelCase_ = CI_HUB_ENDPOINT + '''/{repo_id}/resolve/{revision}/{filename}''' lowerCAmelCase_ = Path('''~/.huggingface/hub_ci_token''').expanduser() @pytest.fixture def lowerCamelCase_ ( _UpperCamelCase ) -> Optional[int]: """simple docstring""" monkeypatch.setattr( '''huggingface_hub.file_download.HUGGINGFACE_CO_URL_TEMPLATE''' , _UpperCamelCase ) @pytest.fixture def lowerCamelCase_ ( _UpperCamelCase ) -> Optional[int]: """simple docstring""" monkeypatch.setattr('''datasets.config.HF_ENDPOINT''' , _UpperCamelCase ) monkeypatch.setattr('''datasets.config.HUB_DATASETS_URL''' , _UpperCamelCase ) @pytest.fixture def lowerCamelCase_ ( _UpperCamelCase ) -> Any: """simple docstring""" monkeypatch.setattr('''huggingface_hub.hf_api.HfFolder.path_token''' , _UpperCamelCase ) @pytest.fixture def lowerCamelCase_ ( _UpperCamelCase , _UpperCamelCase ) -> Optional[Any]: """simple docstring""" HfFolder.save_token(_UpperCamelCase ) yield HfFolder.delete_token() @pytest.fixture(scope='''session''' ) def lowerCamelCase_ ( ) -> List[str]: """simple docstring""" return HfApi(endpoint=_UpperCamelCase ) @pytest.fixture(scope='''session''' ) def lowerCamelCase_ ( _UpperCamelCase ) -> Dict: """simple docstring""" snake_case_ : Union[str, Any] = HfFolder.get_token() HfFolder.save_token(_UpperCamelCase ) yield CI_HUB_USER_TOKEN if previous_token is not None: HfFolder.save_token(_UpperCamelCase ) @pytest.fixture def lowerCamelCase_ ( _UpperCamelCase ) -> List[str]: """simple docstring""" def _cleanup_repo(_UpperCamelCase ): hf_api.delete_repo(_UpperCamelCase , token=_UpperCamelCase , repo_type='''dataset''' ) return _cleanup_repo @pytest.fixture def lowerCamelCase_ ( _UpperCamelCase ) -> List[str]: """simple docstring""" @contextmanager def _temporary_repo(_UpperCamelCase ): try: yield repo_id finally: cleanup_repo(_UpperCamelCase ) return _temporary_repo @pytest.fixture(scope='''session''' ) def lowerCamelCase_ ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) -> Dict: """simple docstring""" snake_case_ : Optional[int] = f'''repo_txt_data-{int(time.time() * 10E3 )}''' snake_case_ : Any = f'''{CI_HUB_USER}/{repo_name}''' hf_api.create_repo(_UpperCamelCase , token=_UpperCamelCase , repo_type='''dataset''' , private=_UpperCamelCase ) hf_api.upload_file( token=_UpperCamelCase , path_or_fileobj=str(_UpperCamelCase ) , path_in_repo='''data/text_data.txt''' , repo_id=_UpperCamelCase , repo_type='''dataset''' , ) yield repo_id try: hf_api.delete_repo(_UpperCamelCase , token=_UpperCamelCase , repo_type='''dataset''' ) except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error pass @pytest.fixture() def lowerCamelCase_ ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) -> Dict: """simple docstring""" return hf_private_dataset_repo_txt_data_ @pytest.fixture(scope='''session''' ) def lowerCamelCase_ ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) -> Optional[Any]: """simple docstring""" snake_case_ : int = f'''repo_zipped_txt_data-{int(time.time() * 10E3 )}''' snake_case_ : Tuple = f'''{CI_HUB_USER}/{repo_name}''' hf_api.create_repo(_UpperCamelCase , token=_UpperCamelCase , repo_type='''dataset''' , private=_UpperCamelCase ) hf_api.upload_file( token=_UpperCamelCase , path_or_fileobj=str(_UpperCamelCase ) , path_in_repo='''data.zip''' , repo_id=_UpperCamelCase , repo_type='''dataset''' , ) yield repo_id try: hf_api.delete_repo(_UpperCamelCase , token=_UpperCamelCase , repo_type='''dataset''' ) except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error pass @pytest.fixture() def lowerCamelCase_ ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) -> Dict: """simple docstring""" return hf_private_dataset_repo_zipped_txt_data_ @pytest.fixture(scope='''session''' ) def lowerCamelCase_ ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) -> Optional[Any]: """simple docstring""" snake_case_ : List[str] = f'''repo_zipped_img_data-{int(time.time() * 10E3 )}''' snake_case_ : str = f'''{CI_HUB_USER}/{repo_name}''' hf_api.create_repo(_UpperCamelCase , token=_UpperCamelCase , repo_type='''dataset''' , private=_UpperCamelCase ) hf_api.upload_file( token=_UpperCamelCase , path_or_fileobj=str(_UpperCamelCase ) , path_in_repo='''data.zip''' , repo_id=_UpperCamelCase , repo_type='''dataset''' , ) yield repo_id try: hf_api.delete_repo(_UpperCamelCase , token=_UpperCamelCase , repo_type='''dataset''' ) except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error pass @pytest.fixture() def lowerCamelCase_ ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) -> int: """simple docstring""" return hf_private_dataset_repo_zipped_img_data_
279
1
def UpperCAmelCase_ ( __lowerCAmelCase ) -> int: if divisor % 5 == 0 or divisor % 2 == 0: return 0 __lowercase : List[Any] = 1 __lowercase : Any = 1 while repunit: __lowercase : Any = (10 * repunit + 1) % divisor repunit_index += 1 return repunit_index def UpperCAmelCase_ ( __lowerCAmelCase = 1_000_000 ) -> int: __lowercase : Union[str, Any] = limit - 1 if divisor % 2 == 0: divisor += 1 while least_divisible_repunit(__lowerCAmelCase ) <= limit: divisor += 2 return divisor if __name__ == "__main__": print(F'{solution() = }')
156
from typing import List, Optional import numpy as np from ...processing_utils import ProcessorMixin from ...utils import to_numpy class __lowerCAmelCase ( lowerCAmelCase_ ): """simple docstring""" A__ : Any = '''EncodecFeatureExtractor''' A__ : Optional[int] = ('''T5Tokenizer''', '''T5TokenizerFast''') def __init__( self : Optional[int] , _snake_case : Optional[Any] , _snake_case : Optional[Any] ): super().__init__(_snake_case , _snake_case ) __lowercase : List[Any] = self.feature_extractor __lowercase : Tuple = False def snake_case_ ( self : Optional[int] , _snake_case : Union[str, Any]=None , _snake_case : Optional[Any]=None , _snake_case : List[str]=True ): return self.tokenizer.get_decoder_prompt_ids(task=_snake_case , language=_snake_case , no_timestamps=_snake_case ) def __call__( self : str , *_snake_case : Tuple , **_snake_case : str ): # For backward compatibility if self._in_target_context_manager: return self.current_processor(*_snake_case , **_snake_case ) __lowercase : Optional[Any] = kwargs.pop('''audio''' , _snake_case ) __lowercase : str = kwargs.pop('''sampling_rate''' , _snake_case ) __lowercase : Any = kwargs.pop('''text''' , _snake_case ) if len(_snake_case ) > 0: __lowercase : Dict = args[0] __lowercase : Any = args[1:] if audio is None and text is None: raise ValueError('''You need to specify either an `audio` or `text` input to process.''' ) if text is not None: __lowercase : str = self.tokenizer(_snake_case , **_snake_case ) if audio is not None: __lowercase : List[str] = self.feature_extractor(_snake_case , *_snake_case , sampling_rate=_snake_case , **_snake_case ) if audio is None: return inputs elif text is None: return audio_inputs else: __lowercase : Tuple = audio_inputs['''input_values'''] if "padding_mask" in audio_inputs: __lowercase : Tuple = audio_inputs['''padding_mask'''] return inputs def snake_case_ ( self : int , *_snake_case : int , **_snake_case : Any ): __lowercase : Dict = kwargs.pop('''audio''' , _snake_case ) __lowercase : Tuple = kwargs.pop('''padding_mask''' , _snake_case ) if len(_snake_case ) > 0: __lowercase : str = args[0] __lowercase : Tuple = args[1:] if audio_values is not None: return self._decode_audio(_snake_case , padding_mask=_snake_case ) else: return self.tokenizer.batch_decode(*_snake_case , **_snake_case ) def snake_case_ ( self : Optional[int] , *_snake_case : int , **_snake_case : List[str] ): return self.tokenizer.decode(*_snake_case , **_snake_case ) def snake_case_ ( self : Dict , _snake_case : List[Any] , _snake_case : Optional = None ): __lowercase : Union[str, Any] = to_numpy(_snake_case ) __lowercase , __lowercase , __lowercase : Optional[int] = audio_values.shape if padding_mask is None: return list(_snake_case ) __lowercase : Optional[int] = to_numpy(_snake_case ) # match the sequence length of the padding mask to the generated audio arrays by padding with the **non-padding** # token (so that the generated audio values are **not** treated as padded tokens) __lowercase : int = seq_len - padding_mask.shape[-1] __lowercase : Optional[int] = 1 - self.feature_extractor.padding_value __lowercase : Tuple = np.pad(_snake_case , ((0, 0), (0, difference)) , '''constant''' , constant_values=_snake_case ) __lowercase : str = audio_values.tolist() for i in range(_snake_case ): __lowercase : str = np.asarray(audio_values[i] )[ padding_mask[i][None, :] != self.feature_extractor.padding_value ] __lowercase : Any = sliced_audio.reshape(_snake_case , -1 ) return audio_values
156
1
import random import unittest import torch from diffusers import IFImgaImgSuperResolutionPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , unittest.TestCase ): '''simple docstring''' __lowerCamelCase : List[Any] = IFImgaImgSuperResolutionPipeline __lowerCamelCase : Any = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {"width", "height"} __lowerCamelCase : Tuple = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({"original_image"} ) __lowerCamelCase : str = PipelineTesterMixin.required_optional_params - {"latents"} def _lowerCAmelCase ( self ): return self._get_superresolution_dummy_components() def _lowerCAmelCase ( self, lowerCamelCase__, lowerCamelCase__=0 ): if str(lowerCamelCase__ ).startswith("""mps""" ): A : str = torch.manual_seed(lowerCamelCase__ ) else: A : List[str] = torch.Generator(device=lowerCamelCase__ ).manual_seed(lowerCamelCase__ ) A : List[str] = floats_tensor((1, 3, 32, 32), rng=random.Random(lowerCamelCase__ ) ).to(lowerCamelCase__ ) A : str = floats_tensor((1, 3, 16, 16), rng=random.Random(lowerCamelCase__ ) ).to(lowerCamelCase__ ) A : int = { """prompt""": """A painting of a squirrel eating a burger""", """image""": image, """original_image""": original_image, """generator""": generator, """num_inference_steps""": 2, """output_type""": """numpy""", } return inputs @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available(), reason="""XFormers attention is only available with CUDA and `xformers` installed""", ) def _lowerCAmelCase ( self ): self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 ) def _lowerCAmelCase ( self ): self._test_save_load_optional_components() @unittest.skipIf(torch_device != """cuda""", reason="""float16 requires CUDA""" ) def _lowerCAmelCase ( self ): # Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder super().test_save_load_floataa(expected_max_diff=1e-1 ) def _lowerCAmelCase ( self ): self._test_attention_slicing_forward_pass(expected_max_diff=1e-2 ) def _lowerCAmelCase ( self ): self._test_save_load_local() def _lowerCAmelCase ( self ): self._test_inference_batch_single_identical( expected_max_diff=1e-2, )
115
import json import os from typing import Dict, List, Optional, Tuple import regex as re from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging SCREAMING_SNAKE_CASE_:Dict = logging.get_logger(__name__) SCREAMING_SNAKE_CASE_:int = { """vocab_file""": """vocab.json""", """merges_file""": """merges.txt""", """tokenizer_config_file""": """tokenizer_config.json""", } SCREAMING_SNAKE_CASE_:Tuple = { """vocab_file""": { """facebook/blenderbot_small-90M""": """https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/vocab.json""" }, """merges_file""": { """facebook/blenderbot_small-90M""": """https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/merges.txt""" }, """tokenizer_config_file""": { """facebook/blenderbot_small-90M""": ( """https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/tokenizer_config.json""" ) }, } SCREAMING_SNAKE_CASE_:Optional[int] = {"""facebook/blenderbot_small-90M""": 512} def __UpperCamelCase ( _lowerCAmelCase ) -> Dict: """simple docstring""" A : Optional[int] = set() A : Any = word[0] for char in word[1:]: pairs.add((prev_char, char) ) A : List[Any] = char A : Optional[int] = set(_lowerCAmelCase ) return pairs class SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' __lowerCamelCase : Union[str, Any] = VOCAB_FILES_NAMES __lowerCamelCase : Any = PRETRAINED_VOCAB_FILES_MAP __lowerCamelCase : Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowerCamelCase : int = ["input_ids", "attention_mask"] def __init__( self, lowerCamelCase__, lowerCamelCase__, lowerCamelCase__="__start__", lowerCamelCase__="__end__", lowerCamelCase__="__unk__", lowerCamelCase__="__null__", **lowerCamelCase__, ): super().__init__(unk_token=lowerCamelCase__, bos_token=lowerCamelCase__, eos_token=lowerCamelCase__, pad_token=lowerCamelCase__, **lowerCamelCase__ ) with open(lowerCamelCase__, encoding="""utf-8""" ) as vocab_handle: A : Tuple = json.load(lowerCamelCase__ ) A : Optional[Any] = {v: k for k, v in self.encoder.items()} with open(lowerCamelCase__, encoding="""utf-8""" ) as merges_handle: A : str = merges_handle.read().split("""\n""" )[1:-1] A : List[str] = [tuple(merge.split() ) for merge in merges] A : int = dict(zip(lowerCamelCase__, range(len(lowerCamelCase__ ) ) ) ) A : Optional[int] = {} @property def _lowerCAmelCase ( self ): return len(self.encoder ) def _lowerCAmelCase ( self ): return dict(self.encoder, **self.added_tokens_encoder ) def _lowerCAmelCase ( self, lowerCamelCase__ ): if token in self.cache: return self.cache[token] A : Optional[int] = re.sub("""([.,!?()])""", R""" \1""", lowerCamelCase__ ) A : List[Any] = re.sub("""(')""", R""" \1 """, lowerCamelCase__ ) A : int = re.sub(R"""\s{2,}""", """ """, lowerCamelCase__ ) if "\n" in token: A : Dict = token.replace("""\n""", """ __newln__""" ) A : Tuple = token.split(""" """ ) A : Union[str, Any] = [] for token in tokens: if not len(lowerCamelCase__ ): continue A : Optional[int] = token.lower() A : Optional[Any] = tuple(lowerCamelCase__ ) A : int = tuple(list(word[:-1] ) + [word[-1] + """</w>"""] ) A : Tuple = get_pairs(lowerCamelCase__ ) if not pairs: words.append(lowerCamelCase__ ) continue while True: A : Any = min(lowerCamelCase__, key=lambda lowerCamelCase__ : self.bpe_ranks.get(lowerCamelCase__, float("""inf""" ) ) ) if bigram not in self.bpe_ranks: break A , A : Any = bigram A : Optional[Any] = [] A : Any = 0 while i < len(lowerCamelCase__ ): try: A : List[str] = word.index(lowerCamelCase__, lowerCamelCase__ ) new_word.extend(word[i:j] ) A : Dict = j except ValueError: new_word.extend(word[i:] ) break if word[i] == first and i < len(lowerCamelCase__ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 A : Tuple = tuple(lowerCamelCase__ ) A : int = new_word if len(lowerCamelCase__ ) == 1: break else: A : Dict = get_pairs(lowerCamelCase__ ) A : Any = """@@ """.join(lowerCamelCase__ ) A : Dict = word[:-4] A : Union[str, Any] = word words.append(lowerCamelCase__ ) return " ".join(lowerCamelCase__ ) def _lowerCAmelCase ( self, lowerCamelCase__ ): A : int = [] A : Optional[Any] = re.findall(R"""\S+\n?""", lowerCamelCase__ ) for token in words: split_tokens.extend(list(self.bpe(lowerCamelCase__ ).split(""" """ ) ) ) return split_tokens def _lowerCAmelCase ( self, lowerCamelCase__ ): A : List[Any] = token.lower() return self.encoder.get(lowerCamelCase__, self.encoder.get(self.unk_token ) ) def _lowerCAmelCase ( self, lowerCamelCase__ ): return self.decoder.get(lowerCamelCase__, self.unk_token ) def _lowerCAmelCase ( self, lowerCamelCase__ ): A : Dict = """ """.join(lowerCamelCase__ ).replace("""@@ """, """""" ).strip() return out_string def _lowerCAmelCase ( self, lowerCamelCase__, lowerCamelCase__ = None ): if not os.path.isdir(lowerCamelCase__ ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return A : str = os.path.join( lowerCamelCase__, (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) A : int = os.path.join( lowerCamelCase__, (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""merges_file"""] ) with open(lowerCamelCase__, """w""", encoding="""utf-8""" ) as f: f.write(json.dumps(self.encoder, indent=2, sort_keys=lowerCamelCase__, ensure_ascii=lowerCamelCase__ ) + """\n""" ) A : str = 0 with open(lowerCamelCase__, """w""", encoding="""utf-8""" ) as writer: writer.write("""#version: 0.2\n""" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items(), key=lambda lowerCamelCase__ : kv[1] ): if index != token_index: logger.warning( f'''Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.''' """ Please check that the tokenizer is not corrupted!""" ) A : List[Any] = token_index writer.write(""" """.join(lowerCamelCase__ ) + """\n""" ) index += 1 return vocab_file, merge_file
115
1
import argparse import json import numpy import torch from transformers.models.xlm.tokenization_xlm import VOCAB_FILES_NAMES from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() def __lowercase ( lowerCamelCase : Any , lowerCamelCase : Any ): # Load checkpoint UpperCamelCase_ : Any = torch.load(lowerCamelCase , map_location='cpu' ) UpperCamelCase_ : List[Any] = chkpt['model'] # We have the base model one level deeper than the original XLM repository UpperCamelCase_ : int = {} for k, v in state_dict.items(): if "pred_layer" in k: UpperCamelCase_ : List[Any] = v else: UpperCamelCase_ : Union[str, Any] = v UpperCamelCase_ : List[str] = chkpt['params'] UpperCamelCase_ : List[str] = {n: v for n, v in config.items() if not isinstance(lowerCamelCase , (torch.FloatTensor, numpy.ndarray) )} UpperCamelCase_ : int = chkpt['dico_word2id'] UpperCamelCase_ : Dict = {s + '</w>' if s.find('@@' ) == -1 and i > 13 else s.replace('@@' , '' ): i for s, i in vocab.items()} # Save pytorch-model UpperCamelCase_ : Dict = pytorch_dump_folder_path + '/' + WEIGHTS_NAME UpperCamelCase_ : Optional[Any] = pytorch_dump_folder_path + '/' + CONFIG_NAME UpperCamelCase_ : Optional[int] = pytorch_dump_folder_path + '/' + VOCAB_FILES_NAMES['vocab_file'] print(F"Save PyTorch model to {pytorch_weights_dump_path}" ) torch.save(lowerCamelCase , lowerCamelCase ) print(F"Save configuration file to {pytorch_config_dump_path}" ) with open(lowerCamelCase , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(lowerCamelCase , indent=2 ) + '\n' ) print(F"Save vocab file to {pytorch_config_dump_path}" ) with open(lowerCamelCase , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(lowerCamelCase , indent=2 ) + '\n' ) if __name__ == "__main__": a_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--xlm_checkpoint_path', default=None, type=str, required=True, help='Path the official PyTorch dump.' ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) a_ = parser.parse_args() convert_xlm_checkpoint_to_pytorch(args.xlm_checkpoint_path, args.pytorch_dump_folder_path)
175
from maths.prime_check import is_prime def __lowercase ( lowerCamelCase : int ): if not isinstance(lowerCamelCase , lowerCamelCase ): UpperCamelCase_ : List[str] = F"Input value of [number={number}] must be an integer" raise TypeError(lowerCamelCase ) if is_prime(lowerCamelCase ) and is_prime(number + 2 ): return number + 2 else: return -1 if __name__ == "__main__": import doctest doctest.testmod()
175
1
from typing import List, Optional, Tuple, Union import torch from ...models import UNetaDModel from ...schedulers import KarrasVeScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class UpperCAmelCase ( __A ): '''simple docstring''' lowerCamelCase_ = 42 lowerCamelCase_ = 42 def __init__( self , lowercase , lowercase ): """simple docstring""" super().__init__() self.register_modules(unet=lowercase , scheduler=lowercase ) @torch.no_grad() def __call__( self , lowercase = 1 , lowercase = 5_0 , lowercase = None , lowercase = "pil" , lowercase = True , **lowercase , ): """simple docstring""" A_ : Optional[Any] = self.unet.config.sample_size A_ : Union[str, Any] = (batch_size, 3, img_size, img_size) A_ : Dict = self.unet # sample x_0 ~ N(0, sigma_0^2 * I) A_ : Optional[int] = randn_tensor(lowercase , generator=lowercase , device=self.device ) * self.scheduler.init_noise_sigma self.scheduler.set_timesteps(lowercase ) for t in self.progress_bar(self.scheduler.timesteps ): # here sigma_t == t_i from the paper A_ : int = self.scheduler.schedule[t] A_ : Tuple = self.scheduler.schedule[t - 1] if t > 0 else 0 # 1. Select temporarily increased noise level sigma_hat # 2. Add new noise to move from sample_i to sample_hat A_ , A_ : List[str] = self.scheduler.add_noise_to_input(lowercase , lowercase , generator=lowercase ) # 3. Predict the noise residual given the noise magnitude `sigma_hat` # The model inputs and output are adjusted by following eq. (213) in [1]. A_ : Optional[int] = (sigma_hat / 2) * model((sample_hat + 1) / 2 , sigma_hat / 2 ).sample # 4. Evaluate dx/dt at sigma_hat # 5. Take Euler step from sigma to sigma_prev A_ : Optional[int] = self.scheduler.step(lowercase , lowercase , lowercase , lowercase ) if sigma_prev != 0: # 6. Apply 2nd order correction # The model inputs and output are adjusted by following eq. (213) in [1]. A_ : Union[str, Any] = (sigma_prev / 2) * model((step_output.prev_sample + 1) / 2 , sigma_prev / 2 ).sample A_ : List[str] = self.scheduler.step_correct( lowercase , lowercase , lowercase , lowercase , step_output.prev_sample , step_output['derivative'] , ) A_ : Optional[Any] = step_output.prev_sample A_ : Any = (sample / 2 + 0.5).clamp(0 , 1 ) A_ : Dict = sample.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": A_ : Dict = self.numpy_to_pil(lowercase ) if not return_dict: return (image,) return ImagePipelineOutput(images=lowercase )
192
from ..utils import DummyObject, requires_backends class UpperCAmelCase ( metaclass=__A ): '''simple docstring''' lowerCamelCase_ = ['''onnx'''] def __init__( self , *lowercase , **lowercase ): """simple docstring""" requires_backends(self , ['onnx'] ) @classmethod def lowerCAmelCase_ ( cls , *lowercase , **lowercase ): """simple docstring""" requires_backends(cls , ['onnx'] ) @classmethod def lowerCAmelCase_ ( cls , *lowercase , **lowercase ): """simple docstring""" requires_backends(cls , ['onnx'] )
192
1
from copy import deepcopy from typing import Optional, Union import numpy as np from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, is_tf_available, is_torch_available if is_torch_available(): import torch if is_tf_available(): import tensorflow as tf class A ( lowerCamelCase__ ): '''simple docstring''' A__ = ['image_processor'] A__ = 'SamImageProcessor' def __init__(self : Optional[Any] , _UpperCAmelCase : Any ) -> Tuple: """simple docstring""" super().__init__(lowercase_ ) lowercase__ = self.image_processor lowercase__ = -10 lowercase__ = self.image_processor.size["""longest_edge"""] def __call__(self : Any , _UpperCAmelCase : Any=None , _UpperCAmelCase : Tuple=None , _UpperCAmelCase : List[Any]=None , _UpperCAmelCase : List[str]=None , _UpperCAmelCase : Union[str, Any] = None , **_UpperCAmelCase : Optional[int] , ) -> BatchEncoding: """simple docstring""" lowercase__ = self.image_processor( lowercase_ , return_tensors=lowercase_ , **lowercase_ , ) # pop arguments that are not used in the foward but used nevertheless lowercase__ = encoding_image_processor["""original_sizes"""] if hasattr(lowercase_ , """numpy""" ): # Checks if Torch or TF tensor lowercase__ = original_sizes.numpy() lowercase__ , lowercase__ , lowercase__ = self._check_and_preprocess_points( input_points=lowercase_ , input_labels=lowercase_ , input_boxes=lowercase_ , ) lowercase__ = self._normalize_and_convert( lowercase_ , lowercase_ , input_points=lowercase_ , input_labels=lowercase_ , input_boxes=lowercase_ , return_tensors=lowercase_ , ) return encoding_image_processor def lowerCamelCase__ (self : Union[str, Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Dict , _UpperCAmelCase : List[Any]=None , _UpperCAmelCase : List[Any]=None , _UpperCAmelCase : str=None , _UpperCAmelCase : List[Any]="pt" , ) -> int: """simple docstring""" if input_points is not None: if len(lowercase_ ) != len(lowercase_ ): lowercase__ = [ self._normalize_coordinates(self.target_size , lowercase_ , original_sizes[0] ) for point in input_points ] else: lowercase__ = [ self._normalize_coordinates(self.target_size , lowercase_ , lowercase_ ) for point, original_size in zip(lowercase_ , lowercase_ ) ] # check that all arrays have the same shape if not all(point.shape == input_points[0].shape for point in input_points ): if input_labels is not None: lowercase__ , lowercase__ = self._pad_points_and_labels(lowercase_ , lowercase_ ) lowercase__ = np.array(lowercase_ ) if input_labels is not None: lowercase__ = np.array(lowercase_ ) if input_boxes is not None: if len(lowercase_ ) != len(lowercase_ ): lowercase__ = [ self._normalize_coordinates(self.target_size , lowercase_ , original_sizes[0] , is_bounding_box=lowercase_ ) for box in input_boxes ] else: lowercase__ = [ self._normalize_coordinates(self.target_size , lowercase_ , lowercase_ , is_bounding_box=lowercase_ ) for box, original_size in zip(lowercase_ , lowercase_ ) ] lowercase__ = np.array(lowercase_ ) if input_boxes is not None: if return_tensors == "pt": lowercase__ = torch.from_numpy(lowercase_ ) # boxes batch size of 1 by default lowercase__ = input_boxes.unsqueeze(1 ) if len(input_boxes.shape ) != 3 else input_boxes elif return_tensors == "tf": lowercase__ = tf.convert_to_tensor(lowercase_ ) # boxes batch size of 1 by default lowercase__ = tf.expand_dims(lowercase_ , 1 ) if len(input_boxes.shape ) != 3 else input_boxes encoding_image_processor.update({"""input_boxes""": input_boxes} ) if input_points is not None: if return_tensors == "pt": lowercase__ = torch.from_numpy(lowercase_ ) # point batch size of 1 by default lowercase__ = input_points.unsqueeze(1 ) if len(input_points.shape ) != 4 else input_points elif return_tensors == "tf": lowercase__ = tf.convert_to_tensor(lowercase_ ) # point batch size of 1 by default lowercase__ = tf.expand_dims(lowercase_ , 1 ) if len(input_points.shape ) != 4 else input_points encoding_image_processor.update({"""input_points""": input_points} ) if input_labels is not None: if return_tensors == "pt": lowercase__ = torch.from_numpy(lowercase_ ) # point batch size of 1 by default lowercase__ = input_labels.unsqueeze(1 ) if len(input_labels.shape ) != 3 else input_labels elif return_tensors == "tf": lowercase__ = tf.convert_to_tensor(lowercase_ ) # point batch size of 1 by default lowercase__ = tf.expand_dims(lowercase_ , 1 ) if len(input_labels.shape ) != 3 else input_labels encoding_image_processor.update({"""input_labels""": input_labels} ) return encoding_image_processor def lowerCamelCase__ (self : Dict , _UpperCAmelCase : str , _UpperCAmelCase : Optional[Any] ) -> str: """simple docstring""" lowercase__ = max([point.shape[0] for point in input_points] ) lowercase__ = [] for i, point in enumerate(lowercase_ ): if point.shape[0] != expected_nb_points: lowercase__ = np.concatenate( [point, np.zeros((expected_nb_points - point.shape[0], 2) ) + self.point_pad_value] , axis=0 ) lowercase__ = np.append(input_labels[i] , [self.point_pad_value] ) processed_input_points.append(lowercase_ ) lowercase__ = processed_input_points return input_points, input_labels def lowerCamelCase__ (self : Dict , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Dict , _UpperCAmelCase : Any , _UpperCAmelCase : List[Any]=False ) -> np.ndarray: """simple docstring""" lowercase__ , lowercase__ = original_size lowercase__ , lowercase__ = self.image_processor._get_preprocess_shape(lowercase_ , longest_edge=lowercase_ ) lowercase__ = deepcopy(lowercase_ ).astype(lowercase_ ) if is_bounding_box: lowercase__ = coords.reshape(-1 , 2 , 2 ) lowercase__ = coords[..., 0] * (new_w / old_w) lowercase__ = coords[..., 1] * (new_h / old_h) if is_bounding_box: lowercase__ = coords.reshape(-1 , 4 ) return coords def lowerCamelCase__ (self : Optional[int] , _UpperCAmelCase : List[str]=None , _UpperCAmelCase : Union[str, Any]=None , _UpperCAmelCase : Tuple=None , ) -> List[Any]: """simple docstring""" if input_points is not None: if hasattr(lowercase_ , """numpy""" ): # Checks for TF or Torch tensor lowercase__ = input_points.numpy().tolist() if not isinstance(lowercase_ , lowercase_ ) or not isinstance(input_points[0] , lowercase_ ): raise ValueError("""Input points must be a list of list of floating points.""" ) lowercase__ = [np.array(lowercase_ ) for input_point in input_points] else: lowercase__ = None if input_labels is not None: if hasattr(lowercase_ , """numpy""" ): lowercase__ = input_labels.numpy().tolist() if not isinstance(lowercase_ , lowercase_ ) or not isinstance(input_labels[0] , lowercase_ ): raise ValueError("""Input labels must be a list of list integers.""" ) lowercase__ = [np.array(lowercase_ ) for label in input_labels] else: lowercase__ = None if input_boxes is not None: if hasattr(lowercase_ , """numpy""" ): lowercase__ = input_boxes.numpy().tolist() if ( not isinstance(lowercase_ , lowercase_ ) or not isinstance(input_boxes[0] , lowercase_ ) or not isinstance(input_boxes[0][0] , lowercase_ ) ): raise ValueError("""Input boxes must be a list of list of list of floating points.""" ) lowercase__ = [np.array(lowercase_ ).astype(np.floataa ) for box in input_boxes] else: lowercase__ = None return input_points, input_labels, input_boxes @property def lowerCamelCase__ (self : str ) -> Optional[Any]: """simple docstring""" lowercase__ = self.image_processor.model_input_names return list(dict.fromkeys(lowercase_ ) ) def lowerCamelCase__ (self : Optional[Any] , *_UpperCAmelCase : Optional[int] , **_UpperCAmelCase : Dict ) -> Tuple: """simple docstring""" return self.image_processor.post_process_masks(*lowercase_ , **lowercase_ )
305
from .glue import GlueDataset, GlueDataTrainingArguments from .language_modeling import ( LineByLineTextDataset, LineByLineWithRefDataset, LineByLineWithSOPTextDataset, TextDataset, TextDatasetForNextSentencePrediction, ) from .squad import SquadDataset, SquadDataTrainingArguments
188
0
"""simple docstring""" import unittest from pathlib import Path from tempfile import TemporaryDirectory from transformers import AutoConfig, TFAutoModel, is_tensorflow_text_available, is_tf_available from transformers.models.bert.tokenization_bert import BertTokenizer from transformers.testing_utils import require_tensorflow_text, require_tf, slow if is_tf_available(): import tensorflow as tf if is_tensorflow_text_available(): from transformers.models.bert import TFBertTokenizer lowerCAmelCase__ = ['''bert-base-uncased''', '''bert-base-cased'''] lowerCAmelCase__ = '''hf-internal-testing/tiny-bert-tf-only''' if is_tf_available(): class SCREAMING_SNAKE_CASE__ ( tf.keras.Model ): """simple docstring""" def __init__( self , snake_case__ ): """simple docstring""" super().__init__() lowerCAmelCase : Tuple = tokenizer lowerCAmelCase : int = AutoConfig.from_pretrained(snake_case__ ) lowerCAmelCase : Dict = TFAutoModel.from_config(snake_case__ ) def lowercase__ ( self , snake_case__ ): """simple docstring""" lowerCAmelCase : Any = self.tokenizer(snake_case__ ) lowerCAmelCase : Optional[Any] = self.bert(**snake_case__ ) return out["pooler_output"] @require_tf @require_tensorflow_text class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): """simple docstring""" def lowercase__ ( self ): """simple docstring""" super().setUp() lowerCAmelCase : Tuple = [ BertTokenizer.from_pretrained(snake_case__ ) for checkpoint in (TOKENIZER_CHECKPOINTS * 2) ] # repeat for when fast_bert_tokenizer=false lowerCAmelCase : Optional[int] = [TFBertTokenizer.from_pretrained(snake_case__ ) for checkpoint in TOKENIZER_CHECKPOINTS] + [ TFBertTokenizer.from_pretrained(snake_case__ , use_fast_bert_tokenizer=snake_case__ ) for checkpoint in TOKENIZER_CHECKPOINTS ] assert len(self.tokenizers ) == len(self.tf_tokenizers ) lowerCAmelCase : Union[str, Any] = [ "This is a straightforward English test sentence.", "This one has some weird characters\rto\nsee\r\nif those\u00E9break things.", "Now we're going to add some Chinese: 一 二 三 一二三", "And some much more rare Chinese: 齉 堃 齉堃", "Je vais aussi écrire en français pour tester les accents", "Classical Irish also has some unusual characters, so in they go: Gaelaċ, ꝼ", ] lowerCAmelCase : int = list(zip(self.test_sentences , self.test_sentences[::-1] ) ) def lowercase__ ( self ): """simple docstring""" for tokenizer, tf_tokenizer in zip(self.tokenizers , self.tf_tokenizers ): for test_inputs in (self.test_sentences, self.paired_sentences): lowerCAmelCase : List[str] = tokenizer(snake_case__ , return_tensors="tf" , padding="longest" ) lowerCAmelCase : str = tf_tokenizer(snake_case__ ) for key in python_outputs.keys(): self.assertTrue(tf.reduce_all(python_outputs[key].shape == tf_outputs[key].shape ) ) self.assertTrue(tf.reduce_all(tf.cast(python_outputs[key] , tf.intaa ) == tf_outputs[key] ) ) @slow def lowercase__ ( self ): """simple docstring""" for tf_tokenizer in self.tf_tokenizers: lowerCAmelCase : Dict = tf_tokenizer(self.paired_sentences ) lowerCAmelCase : Union[str, Any] = tf_tokenizer( text=[sentence[0] for sentence in self.paired_sentences] , text_pair=[sentence[1] for sentence in self.paired_sentences] , ) for key in merged_outputs.keys(): self.assertTrue(tf.reduce_all(tf.cast(merged_outputs[key] , tf.intaa ) == separated_outputs[key] ) ) @slow def lowercase__ ( self ): """simple docstring""" for tf_tokenizer in self.tf_tokenizers: lowerCAmelCase : List[Any] = tf.function(snake_case__ ) for test_inputs in (self.test_sentences, self.paired_sentences): lowerCAmelCase : Union[str, Any] = tf.constant(snake_case__ ) lowerCAmelCase : Dict = compiled_tokenizer(snake_case__ ) lowerCAmelCase : str = tf_tokenizer(snake_case__ ) for key in eager_outputs.keys(): self.assertTrue(tf.reduce_all(eager_outputs[key] == compiled_outputs[key] ) ) @slow def lowercase__ ( self ): """simple docstring""" for tf_tokenizer in self.tf_tokenizers: lowerCAmelCase : Optional[int] = ModelToSave(tokenizer=snake_case__ ) lowerCAmelCase : Optional[Any] = tf.convert_to_tensor(self.test_sentences ) lowerCAmelCase : Dict = model(snake_case__ ) # Build model with some sample inputs with TemporaryDirectory() as tempdir: lowerCAmelCase : Tuple = Path(snake_case__ ) / "saved.model" model.save(snake_case__ ) lowerCAmelCase : Optional[Any] = tf.keras.models.load_model(snake_case__ ) lowerCAmelCase : int = loaded_model(snake_case__ ) # We may see small differences because the loaded model is compiled, so we need an epsilon for the test self.assertLessEqual(tf.reduce_max(tf.abs(out - loaded_output ) ) , 1e-5 )
359
"""simple docstring""" import unittest from transformers import MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING, is_vision_available, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class SCREAMING_SNAKE_CASE__ : """simple docstring""" @staticmethod def lowercase__ ( *snake_case__ , **snake_case__ ): """simple docstring""" pass @is_pipeline_test @require_vision @require_torch class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): """simple docstring""" a : Optional[Any] =MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING def lowercase__ ( self , snake_case__ , snake_case__ , snake_case__ ): """simple docstring""" lowerCAmelCase : str = pipeline( "zero-shot-object-detection" , model="hf-internal-testing/tiny-random-owlvit-object-detection" ) lowerCAmelCase : Dict = [ { "image": "./tests/fixtures/tests_samples/COCO/000000039769.png", "candidate_labels": ["cat", "remote", "couch"], } ] return object_detector, examples def lowercase__ ( self , snake_case__ , snake_case__ ): """simple docstring""" lowerCAmelCase : Optional[Any] = object_detector(examples[0] , threshold=0.0 ) lowerCAmelCase : Dict = len(snake_case__ ) self.assertGreater(snake_case__ , 0 ) self.assertEqual( snake_case__ , [ { "score": ANY(snake_case__ ), "label": ANY(snake_case__ ), "box": {"xmin": ANY(snake_case__ ), "ymin": ANY(snake_case__ ), "xmax": ANY(snake_case__ ), "ymax": ANY(snake_case__ )}, } for i in range(snake_case__ ) ] , ) @require_tf @unittest.skip("Zero Shot Object Detection not implemented in TF" ) def lowercase__ ( self ): """simple docstring""" pass @require_torch def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : str = pipeline( "zero-shot-object-detection" , model="hf-internal-testing/tiny-random-owlvit-object-detection" ) lowerCAmelCase : Tuple = object_detector( "./tests/fixtures/tests_samples/COCO/000000039769.png" , candidate_labels=["cat", "remote", "couch"] , threshold=0.64 , ) self.assertEqual( nested_simplify(snake_case__ , decimals=4 ) , [ {"score": 0.7235, "label": "cat", "box": {"xmin": 204, "ymin": 167, "xmax": 232, "ymax": 190}}, {"score": 0.7218, "label": "remote", "box": {"xmin": 204, "ymin": 167, "xmax": 232, "ymax": 190}}, {"score": 0.7184, "label": "couch", "box": {"xmin": 204, "ymin": 167, "xmax": 232, "ymax": 190}}, {"score": 0.6748, "label": "remote", "box": {"xmin": 571, "ymin": 83, "xmax": 598, "ymax": 103}}, {"score": 0.6656, "label": "cat", "box": {"xmin": 571, "ymin": 83, "xmax": 598, "ymax": 103}}, {"score": 0.6614, "label": "couch", "box": {"xmin": 571, "ymin": 83, "xmax": 598, "ymax": 103}}, {"score": 0.6456, "label": "remote", "box": {"xmin": 494, "ymin": 105, "xmax": 521, "ymax": 127}}, {"score": 0.642, "label": "remote", "box": {"xmin": 67, "ymin": 274, "xmax": 93, "ymax": 297}}, {"score": 0.6419, "label": "cat", "box": {"xmin": 494, "ymin": 105, "xmax": 521, "ymax": 127}}, ] , ) lowerCAmelCase : Optional[Any] = object_detector( [ { "image": "./tests/fixtures/tests_samples/COCO/000000039769.png", "candidate_labels": ["cat", "remote", "couch"], } ] , threshold=0.64 , ) self.assertEqual( nested_simplify(snake_case__ , decimals=4 ) , [ [ {"score": 0.7235, "label": "cat", "box": {"xmin": 204, "ymin": 167, "xmax": 232, "ymax": 190}}, {"score": 0.7218, "label": "remote", "box": {"xmin": 204, "ymin": 167, "xmax": 232, "ymax": 190}}, {"score": 0.7184, "label": "couch", "box": {"xmin": 204, "ymin": 167, "xmax": 232, "ymax": 190}}, {"score": 0.6748, "label": "remote", "box": {"xmin": 571, "ymin": 83, "xmax": 598, "ymax": 103}}, {"score": 0.6656, "label": "cat", "box": {"xmin": 571, "ymin": 83, "xmax": 598, "ymax": 103}}, {"score": 0.6614, "label": "couch", "box": {"xmin": 571, "ymin": 83, "xmax": 598, "ymax": 103}}, {"score": 0.6456, "label": "remote", "box": {"xmin": 494, "ymin": 105, "xmax": 521, "ymax": 127}}, {"score": 0.642, "label": "remote", "box": {"xmin": 67, "ymin": 274, "xmax": 93, "ymax": 297}}, {"score": 0.6419, "label": "cat", "box": {"xmin": 494, "ymin": 105, "xmax": 521, "ymax": 127}}, ] ] , ) @require_torch @slow def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Dict = pipeline("zero-shot-object-detection" ) lowerCAmelCase : Dict = object_detector( "http://images.cocodataset.org/val2017/000000039769.jpg" , candidate_labels=["cat", "remote", "couch"] , ) self.assertEqual( nested_simplify(snake_case__ , decimals=4 ) , [ {"score": 0.2868, "label": "cat", "box": {"xmin": 324, "ymin": 20, "xmax": 640, "ymax": 373}}, {"score": 0.277, "label": "remote", "box": {"xmin": 40, "ymin": 72, "xmax": 177, "ymax": 115}}, {"score": 0.2537, "label": "cat", "box": {"xmin": 1, "ymin": 55, "xmax": 315, "ymax": 472}}, {"score": 0.1474, "label": "remote", "box": {"xmin": 335, "ymin": 74, "xmax": 371, "ymax": 187}}, {"score": 0.1208, "label": "couch", "box": {"xmin": 4, "ymin": 0, "xmax": 642, "ymax": 476}}, ] , ) lowerCAmelCase : Dict = object_detector( [ { "image": "http://images.cocodataset.org/val2017/000000039769.jpg", "candidate_labels": ["cat", "remote", "couch"], }, { "image": "http://images.cocodataset.org/val2017/000000039769.jpg", "candidate_labels": ["cat", "remote", "couch"], }, ] , ) self.assertEqual( nested_simplify(snake_case__ , decimals=4 ) , [ [ {"score": 0.2868, "label": "cat", "box": {"xmin": 324, "ymin": 20, "xmax": 640, "ymax": 373}}, {"score": 0.277, "label": "remote", "box": {"xmin": 40, "ymin": 72, "xmax": 177, "ymax": 115}}, {"score": 0.2537, "label": "cat", "box": {"xmin": 1, "ymin": 55, "xmax": 315, "ymax": 472}}, {"score": 0.1474, "label": "remote", "box": {"xmin": 335, "ymin": 74, "xmax": 371, "ymax": 187}}, {"score": 0.1208, "label": "couch", "box": {"xmin": 4, "ymin": 0, "xmax": 642, "ymax": 476}}, ], [ {"score": 0.2868, "label": "cat", "box": {"xmin": 324, "ymin": 20, "xmax": 640, "ymax": 373}}, {"score": 0.277, "label": "remote", "box": {"xmin": 40, "ymin": 72, "xmax": 177, "ymax": 115}}, {"score": 0.2537, "label": "cat", "box": {"xmin": 1, "ymin": 55, "xmax": 315, "ymax": 472}}, {"score": 0.1474, "label": "remote", "box": {"xmin": 335, "ymin": 74, "xmax": 371, "ymax": 187}}, {"score": 0.1208, "label": "couch", "box": {"xmin": 4, "ymin": 0, "xmax": 642, "ymax": 476}}, ], ] , ) @require_tf @unittest.skip("Zero Shot Object Detection not implemented in TF" ) def lowercase__ ( self ): """simple docstring""" pass @require_torch @slow def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Dict = 0.2 lowerCAmelCase : List[Any] = pipeline("zero-shot-object-detection" ) lowerCAmelCase : Union[str, Any] = object_detector( "http://images.cocodataset.org/val2017/000000039769.jpg" , candidate_labels=["cat", "remote", "couch"] , threshold=snake_case__ , ) self.assertEqual( nested_simplify(snake_case__ , decimals=4 ) , [ {"score": 0.2868, "label": "cat", "box": {"xmin": 324, "ymin": 20, "xmax": 640, "ymax": 373}}, {"score": 0.277, "label": "remote", "box": {"xmin": 40, "ymin": 72, "xmax": 177, "ymax": 115}}, {"score": 0.2537, "label": "cat", "box": {"xmin": 1, "ymin": 55, "xmax": 315, "ymax": 472}}, ] , ) @require_torch @slow def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : int = 2 lowerCAmelCase : Any = pipeline("zero-shot-object-detection" ) lowerCAmelCase : Any = object_detector( "http://images.cocodataset.org/val2017/000000039769.jpg" , candidate_labels=["cat", "remote", "couch"] , top_k=snake_case__ , ) self.assertEqual( nested_simplify(snake_case__ , decimals=4 ) , [ {"score": 0.2868, "label": "cat", "box": {"xmin": 324, "ymin": 20, "xmax": 640, "ymax": 373}}, {"score": 0.277, "label": "remote", "box": {"xmin": 40, "ymin": 72, "xmax": 177, "ymax": 115}}, ] , )
133
0
"""simple docstring""" import json import logging import os import sys from time import time from unittest.mock import patch from transformers.testing_utils import TestCasePlus, require_torch_tpu logging.basicConfig(level=logging.DEBUG) lowercase__ = logging.getLogger() def __a ( _SCREAMING_SNAKE_CASE ) ->Any: a__: Union[str, Any] = {} a__: List[str] = os.path.join(_SCREAMING_SNAKE_CASE , 'all_results.json' ) if os.path.exists(_SCREAMING_SNAKE_CASE ): with open(_SCREAMING_SNAKE_CASE , 'r' ) as f: a__: List[Any] = json.load(_SCREAMING_SNAKE_CASE ) else: raise ValueError(F'can\'t find {path}' ) return results lowercase__ = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) @require_torch_tpu class __snake_case ( __lowerCAmelCase ): def lowerCamelCase_ ( self) -> Dict: '''simple docstring''' import xla_spawn a__: Optional[Any] = self.get_auto_remove_tmp_dir() a__: Optional[Any] = f'\n ./examples/pytorch/text-classification/run_glue.py\n --num_cores=8\n ./examples/pytorch/text-classification/run_glue.py\n --model_name_or_path distilbert-base-uncased\n --output_dir {tmp_dir}\n --overwrite_output_dir\n --train_file ./tests/fixtures/tests_samples/MRPC/train.csv\n --validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv\n --do_train\n --do_eval\n --debug tpu_metrics_debug\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --learning_rate=1e-4\n --max_steps=10\n --warmup_steps=2\n --seed=42\n --max_seq_length=128\n '.split() with patch.object(lowercase , 'argv' , lowercase): a__: Any = time() xla_spawn.main() a__: Union[str, Any] = time() a__: Tuple = get_results(lowercase) self.assertGreaterEqual(result['eval_accuracy'] , 0.75) # Assert that the script takes less than 500 seconds to make sure it doesn't hang. self.assertLess(end - start , 5_00) def lowerCamelCase_ ( self) -> List[str]: '''simple docstring''' import xla_spawn a__: Tuple = '\n ./tests/test_trainer_tpu.py\n --num_cores=8\n ./tests/test_trainer_tpu.py\n '.split() with patch.object(lowercase , 'argv' , lowercase): xla_spawn.main()
290
"""simple docstring""" def __a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = False ) ->str: if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): a__: Optional[int] = F'Expected string as input, found {type(_SCREAMING_SNAKE_CASE )}' raise ValueError(_SCREAMING_SNAKE_CASE ) if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): a__: List[str] = F'Expected boolean as use_pascal parameter, found {type(_SCREAMING_SNAKE_CASE )}' raise ValueError(_SCREAMING_SNAKE_CASE ) a__: int = input_str.split('_' ) a__: List[str] = 0 if use_pascal else 1 a__: List[str] = words[start_index:] a__: List[str] = [word[0].upper() + word[1:] for word in words_to_capitalize] a__: List[str] = '' if use_pascal else words[0] return "".join([initial_word, *capitalized_words] ) if __name__ == "__main__": from doctest import testmod testmod()
290
1
'''simple docstring''' import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..bit import BitConfig SCREAMING_SNAKE_CASE_: Optional[Any] =logging.get_logger(__name__) SCREAMING_SNAKE_CASE_: Union[str, Any] ={ 'Intel/dpt-large': 'https://huggingface.co/Intel/dpt-large/resolve/main/config.json', # See all DPT models at https://huggingface.co/models?filter=dpt } class __A ( UpperCamelCase__ ): a__ : Union[str, Any] = """dpt""" def __init__(self : Dict , __a : Any=768 , __a : List[Any]=12 , __a : Any=12 , __a : Tuple=3072 , __a : List[str]="gelu" , __a : Any=0.0 , __a : Any=0.0 , __a : int=0.02 , __a : Optional[Any]=1E-12 , __a : Union[str, Any]=384 , __a : Optional[Any]=16 , __a : List[str]=3 , __a : Optional[int]=False , __a : Tuple=True , __a : int=[2, 5, 8, 11] , __a : str="project" , __a : List[str]=[4, 2, 1, 0.5] , __a : List[Any]=[96, 192, 384, 768] , __a : List[str]=256 , __a : Union[str, Any]=-1 , __a : Dict=False , __a : str=True , __a : Tuple=0.4 , __a : List[Any]=255 , __a : List[str]=0.1 , __a : int=[1, 1024, 24, 24] , __a : Any=[0, 1] , __a : str=None , **__a : Dict , ): super().__init__(**__a ) UpperCAmelCase_ = hidden_size UpperCAmelCase_ = is_hybrid if self.is_hybrid: if backbone_config is None: logger.info("Initializing the config with a `BiT` backbone." ) UpperCAmelCase_ = { "global_padding": "same", "layer_type": "bottleneck", "depths": [3, 4, 9], "out_features": ["stage1", "stage2", "stage3"], "embedding_dynamic_padding": True, } UpperCAmelCase_ = BitConfig(**__a ) elif isinstance(__a , __a ): logger.info("Initializing the config with a `BiT` backbone." ) UpperCAmelCase_ = BitConfig(**__a ) elif isinstance(__a , __a ): UpperCAmelCase_ = backbone_config else: raise ValueError( f"""backbone_config must be a dictionary or a `PretrainedConfig`, got {backbone_config.__class__}.""" ) UpperCAmelCase_ = backbone_featmap_shape UpperCAmelCase_ = neck_ignore_stages if readout_type != "project": raise ValueError("Readout type must be 'project' when using `DPT-hybrid` mode." ) else: UpperCAmelCase_ = None UpperCAmelCase_ = None UpperCAmelCase_ = [] UpperCAmelCase_ = num_hidden_layers UpperCAmelCase_ = num_attention_heads UpperCAmelCase_ = intermediate_size UpperCAmelCase_ = hidden_act UpperCAmelCase_ = hidden_dropout_prob UpperCAmelCase_ = attention_probs_dropout_prob UpperCAmelCase_ = initializer_range UpperCAmelCase_ = layer_norm_eps UpperCAmelCase_ = image_size UpperCAmelCase_ = patch_size UpperCAmelCase_ = num_channels UpperCAmelCase_ = qkv_bias UpperCAmelCase_ = backbone_out_indices if readout_type not in ["ignore", "add", "project"]: raise ValueError("Readout_type must be one of ['ignore', 'add', 'project']" ) UpperCAmelCase_ = readout_type UpperCAmelCase_ = reassemble_factors UpperCAmelCase_ = neck_hidden_sizes UpperCAmelCase_ = fusion_hidden_size UpperCAmelCase_ = head_in_index UpperCAmelCase_ = use_batch_norm_in_fusion_residual # auxiliary head attributes (semantic segmentation) UpperCAmelCase_ = use_auxiliary_head UpperCAmelCase_ = auxiliary_loss_weight UpperCAmelCase_ = semantic_loss_ignore_index UpperCAmelCase_ = semantic_classifier_dropout def _lowercase (self : Dict ): UpperCAmelCase_ = copy.deepcopy(self.__dict__ ) if output["backbone_config"] is not None: UpperCAmelCase_ = self.backbone_config.to_dict() UpperCAmelCase_ = self.__class__.model_type return output
360
'''simple docstring''' def lowerCAmelCase_ ( snake_case_ : int = 1_00_00_00 ) -> int: '''simple docstring''' UpperCAmelCase_ = limit + 1 UpperCAmelCase_ = [0] * limit for first_term in range(1 , snake_case_ ): for n in range(snake_case_ , snake_case_ , snake_case_ ): UpperCAmelCase_ = first_term + n / first_term if common_difference % 4: # d must be divisble by 4 continue else: common_difference /= 4 if ( first_term > common_difference and first_term < 4 * common_difference ): # since x,y,z are positive integers frequency[n] += 1 # so z>0 and a>d ,also 4d<a UpperCAmelCase_ = sum(1 for x in frequency[1:limit] if x == 10 ) return count if __name__ == "__main__": print(f"{solution() = }")
106
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available a = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a = ['MLukeTokenizer'] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mluke import MLukeTokenizer else: import sys a = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
155
'''simple docstring''' import string def _lowercase ( __A ): '''simple docstring''' for key in range(len(string.ascii_uppercase ) ): __UpperCamelCase = """""" for symbol in message: if symbol in string.ascii_uppercase: __UpperCamelCase = string.ascii_uppercase.find(__A ) __UpperCamelCase = num - key if num < 0: __UpperCamelCase = num + len(string.ascii_uppercase ) __UpperCamelCase = translated + string.ascii_uppercase[num] else: __UpperCamelCase = translated + symbol print(f"Decryption using Key #{key}: {translated}" ) def _lowercase ( ): '''simple docstring''' __UpperCamelCase = input("""Encrypted message: """ ) __UpperCamelCase = message.upper() decrypt(__A ) if __name__ == "__main__": import doctest doctest.testmod() main()
349
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging __A = logging.get_logger(__name__) __A = {'ctrl': 'https://huggingface.co/ctrl/resolve/main/config.json'} class lowerCamelCase__ ( __lowerCamelCase ): '''simple docstring''' lowerCamelCase = 'ctrl' lowerCamelCase = ['past_key_values'] lowerCamelCase = { 'max_position_embeddings': 'n_positions', 'hidden_size': 'n_embd', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__( self , __UpperCAmelCase=24_65_34 , __UpperCAmelCase=2_56 , __UpperCAmelCase=12_80 , __UpperCAmelCase=81_92 , __UpperCAmelCase=48 , __UpperCAmelCase=16 , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=1e-6 , __UpperCAmelCase=0.0_2 , __UpperCAmelCase=True , **__UpperCAmelCase , ) -> List[str]: _lowerCAmelCase =vocab_size _lowerCAmelCase =n_positions _lowerCAmelCase =n_embd _lowerCAmelCase =n_layer _lowerCAmelCase =n_head _lowerCAmelCase =dff _lowerCAmelCase =resid_pdrop _lowerCAmelCase =embd_pdrop _lowerCAmelCase =layer_norm_epsilon _lowerCAmelCase =initializer_range _lowerCAmelCase =use_cache super().__init__(**UpperCamelCase_ )
357
"""simple docstring""" import copy from dataclasses import dataclass from pathlib import Path from typing import Dict, Optional, Union @dataclass class lowerCamelCase__ : '''simple docstring''' lowerCamelCase = None lowerCamelCase = False lowerCamelCase = False lowerCamelCase = False lowerCamelCase = None lowerCamelCase = None lowerCamelCase = False lowerCamelCase = False lowerCamelCase = False lowerCamelCase = True lowerCamelCase = None lowerCamelCase = 1 lowerCamelCase = None lowerCamelCase = False lowerCamelCase = None lowerCamelCase = None def _lowerCAmelCase ( self ) -> "DownloadConfig": return self.__class__(**{k: copy.deepcopy(__UpperCAmelCase ) for k, v in self.__dict__.items()} )
341
0
'''simple docstring''' a : Optional[int] = "Input must be a string of 8 numbers plus letter" a : Any = "TRWAGMYFPDXBNJZSQVHLCKE" def lowercase ( __magic_name__ ): '''simple docstring''' if not isinstance(_UpperCamelCase , _UpperCamelCase ): UpperCAmelCase : Optional[Any] = F"Expected string as input, found {type(_UpperCamelCase ).__name__}" raise TypeError(_UpperCamelCase ) UpperCAmelCase : Optional[int] = spanish_id.replace("-" , "" ).upper() if len(_UpperCamelCase ) != 9: raise ValueError(_UpperCamelCase ) try: UpperCAmelCase : Optional[Any] = int(spanish_id_clean[0:8] ) UpperCAmelCase : Tuple = spanish_id_clean[8] except ValueError as ex: raise ValueError(_UpperCamelCase ) from ex if letter.isdigit(): raise ValueError(_UpperCamelCase ) return letter == LOOKUP_LETTERS[number % 23] if __name__ == "__main__": import doctest doctest.testmod()
311
import warnings from ...utils import logging from .image_processing_deit import DeiTImageProcessor __a = logging.get_logger(__name__) class __SCREAMING_SNAKE_CASE ( A__ ): def __init__( self , *SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ): warnings.warn( '''The class DeiTFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please''' ''' use DeiTImageProcessor instead.''' , SCREAMING_SNAKE_CASE__ , ) super().__init__(*SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ )
337
0
'''simple docstring''' import io import itertools import json from dataclasses import dataclass from typing import Optional import pyarrow as pa import pyarrow.json as paj import datasets from datasets.table import table_cast from datasets.utils.file_utils import readline lowercase__ = datasets.utils.logging.get_logger(__name__) @dataclass class snake_case__ ( datasets.BuilderConfig ): """simple docstring""" lowerCamelCase = None lowerCamelCase = "utf-8" lowerCamelCase = None lowerCamelCase = None lowerCamelCase = True # deprecated lowerCamelCase = None # deprecated lowerCamelCase = 10 << 20 # 10MB lowerCamelCase = None class snake_case__ ( datasets.ArrowBasedBuilder ): """simple docstring""" lowerCamelCase = JsonConfig def lowerCAmelCase ( self : Any ) -> Dict: """simple docstring""" if self.config.block_size is not None: logger.warning('''The JSON loader parameter `block_size` is deprecated. Please use `chunksize` instead''' ) snake_case : Dict = self.config.block_size if self.config.use_threads is not True: logger.warning( '''The JSON loader parameter `use_threads` is deprecated and doesn\'t have any effect anymore.''' ) if self.config.newlines_in_values is not None: raise ValueError('''The JSON loader parameter `newlines_in_values` is no longer supported''' ) return datasets.DatasetInfo(features=self.config.features ) def lowerCAmelCase ( self : str , UpperCamelCase__ : List[str] ) -> int: """simple docstring""" if not self.config.data_files: raise ValueError(f'At least one data file must be specified, but got data_files={self.config.data_files}' ) snake_case : str = dl_manager.download_and_extract(self.config.data_files ) if isinstance(UpperCamelCase__ , (str, list, tuple) ): snake_case : Union[str, Any] = data_files if isinstance(UpperCamelCase__ , UpperCamelCase__ ): snake_case : Union[str, Any] = [files] snake_case : List[Any] = [dl_manager.iter_files(UpperCamelCase__ ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'''files''': files} )] snake_case : Dict = [] for split_name, files in data_files.items(): if isinstance(UpperCamelCase__ , UpperCamelCase__ ): snake_case : str = [files] snake_case : Any = [dl_manager.iter_files(UpperCamelCase__ ) for file in files] splits.append(datasets.SplitGenerator(name=UpperCamelCase__ , gen_kwargs={'''files''': files} ) ) return splits def lowerCAmelCase ( self : Any , UpperCamelCase__ : pa.Table ) -> pa.Table: """simple docstring""" if self.config.features is not None: # adding missing columns for column_name in set(self.config.features ) - set(pa_table.column_names ): snake_case : List[str] = self.config.features.arrow_schema.field(UpperCamelCase__ ).type snake_case : Any = pa_table.append_column(UpperCamelCase__ , pa.array([None] * len(UpperCamelCase__ ) , type=UpperCamelCase__ ) ) # more expensive cast to support nested structures with keys in a different order # allows str <-> int/float or str to Audio for example snake_case : int = table_cast(UpperCamelCase__ , self.config.features.arrow_schema ) return pa_table def lowerCAmelCase ( self : Dict , UpperCamelCase__ : int ) -> Optional[int]: """simple docstring""" for file_idx, file in enumerate(itertools.chain.from_iterable(UpperCamelCase__ ) ): # If the file is one json object and if we need to look at the list of items in one specific field if self.config.field is not None: with open(UpperCamelCase__ , encoding=self.config.encoding , errors=self.config.encoding_errors ) as f: snake_case : List[str] = json.load(UpperCamelCase__ ) # We keep only the field we are interested in snake_case : Dict = dataset[self.config.field] # We accept two format: a list of dicts or a dict of lists if isinstance(UpperCamelCase__ , (list, tuple) ): snake_case : Tuple = set().union(*[row.keys() for row in dataset] ) snake_case : Optional[int] = {col: [row.get(UpperCamelCase__ ) for row in dataset] for col in keys} else: snake_case : Union[str, Any] = dataset snake_case : str = pa.Table.from_pydict(UpperCamelCase__ ) yield file_idx, self._cast_table(UpperCamelCase__ ) # If the file has one json object per line else: with open(UpperCamelCase__ , '''rb''' ) as f: snake_case : Optional[int] = 0 # Use block_size equal to the chunk size divided by 32 to leverage multithreading # Set a default minimum value of 16kB if the chunk size is really small snake_case : Optional[int] = max(self.config.chunksize // 32 , 16 << 10 ) snake_case : int = ( self.config.encoding_errors if self.config.encoding_errors is not None else '''strict''' ) while True: snake_case : int = f.read(self.config.chunksize ) if not batch: break # Finish current line try: batch += f.readline() except (AttributeError, io.UnsupportedOperation): batch += readline(UpperCamelCase__ ) # PyArrow only accepts utf-8 encoded bytes if self.config.encoding != "utf-8": snake_case : List[Any] = batch.decode(self.config.encoding , errors=UpperCamelCase__ ).encode('''utf-8''' ) try: while True: try: snake_case : int = paj.read_json( io.BytesIO(UpperCamelCase__ ) , read_options=paj.ReadOptions(block_size=UpperCamelCase__ ) ) break except (pa.ArrowInvalid, pa.ArrowNotImplementedError) as e: if ( isinstance(UpperCamelCase__ , pa.ArrowInvalid ) and "straddling" not in str(UpperCamelCase__ ) or block_size > len(UpperCamelCase__ ) ): raise else: # Increase the block size in case it was too small. # The block size will be reset for the next file. logger.debug( f'Batch of {len(UpperCamelCase__ )} bytes couldn\'t be parsed with block_size={block_size}. Retrying with block_size={block_size * 2}.' ) block_size *= 2 except pa.ArrowInvalid as e: try: with open( UpperCamelCase__ , encoding=self.config.encoding , errors=self.config.encoding_errors ) as f: snake_case : List[str] = json.load(UpperCamelCase__ ) except json.JSONDecodeError: logger.error(f'Failed to read file \'{file}\' with error {type(UpperCamelCase__ )}: {e}' ) raise e # If possible, parse the file as a list of json objects and exit the loop if isinstance(UpperCamelCase__ , UpperCamelCase__ ): # list is the only sequence type supported in JSON try: snake_case : Optional[Any] = set().union(*[row.keys() for row in dataset] ) snake_case : Optional[int] = {col: [row.get(UpperCamelCase__ ) for row in dataset] for col in keys} snake_case : List[Any] = pa.Table.from_pydict(UpperCamelCase__ ) except (pa.ArrowInvalid, AttributeError) as e: logger.error(f'Failed to read file \'{file}\' with error {type(UpperCamelCase__ )}: {e}' ) raise ValueError(f'Not able to read records in the JSON file at {file}.' ) from None yield file_idx, self._cast_table(UpperCamelCase__ ) break else: logger.error(f'Failed to read file \'{file}\' with error {type(UpperCamelCase__ )}: {e}' ) raise ValueError( f'Not able to read records in the JSON file at {file}. ' f'You should probably indicate the field of the JSON file containing your records. ' f'This JSON file contain the following fields: {str(list(dataset.keys() ) )}. ' f'Select the correct one and provide it as `field=\'XXX\'` to the dataset loading method. ' ) from None # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield (file_idx, batch_idx), self._cast_table(UpperCamelCase__ ) batch_idx += 1
83
'''simple docstring''' print((lambda quine: quine % quine)("print((lambda quine: quine %% quine)(%r))"))
83
1
import numpy as np from cva import destroyAllWindows, imread, imshow, waitKey class a__ : def __init__( self : Union[str, Any],_A : Tuple,_A : int,_A : int ): """simple docstring""" if dst_width < 0 or dst_height < 0: raise ValueError("Destination width/height should be > 0" ) SCREAMING_SNAKE_CASE_ : Optional[Any] = img SCREAMING_SNAKE_CASE_ : Union[str, Any] = img.shape[1] SCREAMING_SNAKE_CASE_ : Tuple = img.shape[0] SCREAMING_SNAKE_CASE_ : Optional[Any] = dst_width SCREAMING_SNAKE_CASE_ : Optional[int] = dst_height SCREAMING_SNAKE_CASE_ : Dict = self.src_w / self.dst_w SCREAMING_SNAKE_CASE_ : str = self.src_h / self.dst_h SCREAMING_SNAKE_CASE_ : Dict = ( np.ones((self.dst_h, self.dst_w, 3),np.uinta ) * 255 ) def __UpperCamelCase ( self : Optional[int] ): """simple docstring""" for i in range(self.dst_h ): for j in range(self.dst_w ): SCREAMING_SNAKE_CASE_ : List[str] = self.img[self.get_y(_A )][self.get_x(_A )] def __UpperCamelCase ( self : str,_A : int ): """simple docstring""" return int(self.ratio_x * x ) def __UpperCamelCase ( self : Tuple,_A : int ): """simple docstring""" return int(self.ratio_y * y ) if __name__ == "__main__": __lowerCamelCase , __lowerCamelCase : Dict = 8_00, 6_00 __lowerCamelCase : Dict = imread('''image_data/lena.jpg''', 1) __lowerCamelCase : Any = NearestNeighbour(im, dst_w, dst_h) n.process() imshow( f'''Image resized from: {im.shape[1]}x{im.shape[0]} to {dst_w}x{dst_h}''', n.output ) waitKey(0) destroyAllWindows()
18
"""simple docstring""" import math def snake_case_ ( A_ : int ): '''simple docstring''' if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5, int(math.sqrt(A_ ) + 1 ), 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def snake_case_ ( A_ : float = 0.1 ): '''simple docstring''' _lowerCamelCase : Optional[int] = 3 _lowerCamelCase : List[str] = 3 while primes / (2 * j - 1) >= ratio: for i in range(j * j + j + 1, (j + 2) * (j + 2), j + 1 ): primes += is_prime(A_ ) j += 2 return j if __name__ == "__main__": import doctest doctest.testmod()
72
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available A: str = { "configuration_gpt_neo": ["GPT_NEO_PRETRAINED_CONFIG_ARCHIVE_MAP", "GPTNeoConfig", "GPTNeoOnnxConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A: List[Any] = [ "GPT_NEO_PRETRAINED_MODEL_ARCHIVE_LIST", "GPTNeoForCausalLM", "GPTNeoForQuestionAnswering", "GPTNeoForSequenceClassification", "GPTNeoForTokenClassification", "GPTNeoModel", "GPTNeoPreTrainedModel", "load_tf_weights_in_gpt_neo", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A: int = [ "FlaxGPTNeoForCausalLM", "FlaxGPTNeoModel", "FlaxGPTNeoPreTrainedModel", ] if TYPE_CHECKING: from .configuration_gpt_neo import GPT_NEO_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTNeoConfig, GPTNeoOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_neo import ( GPT_NEO_PRETRAINED_MODEL_ARCHIVE_LIST, GPTNeoForCausalLM, GPTNeoForQuestionAnswering, GPTNeoForSequenceClassification, GPTNeoForTokenClassification, GPTNeoModel, GPTNeoPreTrainedModel, load_tf_weights_in_gpt_neo, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_gpt_neo import FlaxGPTNeoForCausalLM, FlaxGPTNeoModel, FlaxGPTNeoPreTrainedModel else: import sys A: Optional[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
76
"""simple docstring""" def _snake_case ( UpperCamelCase : list , UpperCamelCase : list ): _validate_point(UpperCamelCase ) _validate_point(UpperCamelCase ) if len(UpperCamelCase ) != len(UpperCamelCase ): raise ValueError("""Both points must be in the same n-dimensional space""" ) return float(sum(abs(a - b ) for a, b in zip(UpperCamelCase , UpperCamelCase ) ) ) def _snake_case ( UpperCamelCase : list[float] ): if point: if isinstance(UpperCamelCase , UpperCamelCase ): for item in point: if not isinstance(UpperCamelCase , (int, float) ): UpperCAmelCase : Any = ( """Expected a list of numbers as input, found """ F"{type(UpperCamelCase ).__name__}" ) raise TypeError(UpperCamelCase ) else: UpperCAmelCase : int = F"Expected a list of numbers as input, found {type(UpperCamelCase ).__name__}" raise TypeError(UpperCamelCase ) else: raise ValueError("""Missing an input""" ) def _snake_case ( UpperCamelCase : list , UpperCamelCase : list ): _validate_point(UpperCamelCase ) _validate_point(UpperCamelCase ) if len(UpperCamelCase ) != len(UpperCamelCase ): raise ValueError("""Both points must be in the same n-dimensional space""" ) return float(sum(abs(x - y ) for x, y in zip(UpperCamelCase , UpperCamelCase ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
76
1
from __future__ import annotations def a__ ( __UpperCamelCase , __UpperCamelCase ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = set(__UpperCamelCase ), [start] while stack: SCREAMING_SNAKE_CASE_ = stack.pop() explored.add(__UpperCamelCase ) # Differences from BFS: # 1) pop last element instead of first one # 2) add adjacent elements to stack without exploring them for adj in reversed(graph[v] ): if adj not in explored: stack.append(__UpperCamelCase ) return explored A : Optional[Any] = { "A": ["B", "C", "D"], "B": ["A", "D", "E"], "C": ["A", "F"], "D": ["B", "D"], "E": ["B", "F"], "F": ["C", "E", "G"], "G": ["F"], } if __name__ == "__main__": import doctest doctest.testmod() print(depth_first_search(G, "A"))
118
import io import itertools import json from dataclasses import dataclass from typing import Optional import pyarrow as pa import pyarrow.json as paj import datasets from datasets.table import table_cast from datasets.utils.file_utils import readline A : Tuple = datasets.utils.logging.get_logger(__name__) @dataclass class lowerCamelCase (datasets.BuilderConfig ): """simple docstring""" lowerCamelCase__ = None lowerCamelCase__ = "utf-8" lowerCamelCase__ = None lowerCamelCase__ = None lowerCamelCase__ = True # deprecated lowerCamelCase__ = None # deprecated lowerCamelCase__ = 1_0 << 2_0 # 10MB lowerCamelCase__ = None class lowerCamelCase (datasets.ArrowBasedBuilder ): """simple docstring""" lowerCamelCase__ = JsonConfig def __A ( self : Optional[int] ) -> Optional[int]: if self.config.block_size is not None: logger.warning("The JSON loader parameter `block_size` is deprecated. Please use `chunksize` instead" ) SCREAMING_SNAKE_CASE_ = self.config.block_size if self.config.use_threads is not True: logger.warning( "The JSON loader parameter `use_threads` is deprecated and doesn't have any effect anymore." ) if self.config.newlines_in_values is not None: raise ValueError("The JSON loader parameter `newlines_in_values` is no longer supported" ) return datasets.DatasetInfo(features=self.config.features ) def __A ( self : List[str] , __magic_name__ : str ) -> Tuple: if not self.config.data_files: raise ValueError(F'''At least one data file must be specified, but got data_files={self.config.data_files}''' ) SCREAMING_SNAKE_CASE_ = dl_manager.download_and_extract(self.config.data_files ) if isinstance(__magic_name__ , (str, list, tuple) ): SCREAMING_SNAKE_CASE_ = data_files if isinstance(__magic_name__ , __magic_name__ ): SCREAMING_SNAKE_CASE_ = [files] SCREAMING_SNAKE_CASE_ = [dl_manager.iter_files(__magic_name__ ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"files": files} )] SCREAMING_SNAKE_CASE_ = [] for split_name, files in data_files.items(): if isinstance(__magic_name__ , __magic_name__ ): SCREAMING_SNAKE_CASE_ = [files] SCREAMING_SNAKE_CASE_ = [dl_manager.iter_files(__magic_name__ ) for file in files] splits.append(datasets.SplitGenerator(name=__magic_name__ , gen_kwargs={"files": files} ) ) return splits def __A ( self : str , __magic_name__ : pa.Table ) -> pa.Table: if self.config.features is not None: # adding missing columns for column_name in set(self.config.features ) - set(pa_table.column_names ): SCREAMING_SNAKE_CASE_ = self.config.features.arrow_schema.field(__magic_name__ ).type SCREAMING_SNAKE_CASE_ = pa_table.append_column(__magic_name__ , pa.array([None] * len(__magic_name__ ) , type=__magic_name__ ) ) # more expensive cast to support nested structures with keys in a different order # allows str <-> int/float or str to Audio for example SCREAMING_SNAKE_CASE_ = table_cast(__magic_name__ , self.config.features.arrow_schema ) return pa_table def __A ( self : List[str] , __magic_name__ : List[str] ) -> int: for file_idx, file in enumerate(itertools.chain.from_iterable(__magic_name__ ) ): # If the file is one json object and if we need to look at the list of items in one specific field if self.config.field is not None: with open(__magic_name__ , encoding=self.config.encoding , errors=self.config.encoding_errors ) as f: SCREAMING_SNAKE_CASE_ = json.load(__magic_name__ ) # We keep only the field we are interested in SCREAMING_SNAKE_CASE_ = dataset[self.config.field] # We accept two format: a list of dicts or a dict of lists if isinstance(__magic_name__ , (list, tuple) ): SCREAMING_SNAKE_CASE_ = set().union(*[row.keys() for row in dataset] ) SCREAMING_SNAKE_CASE_ = {col: [row.get(__magic_name__ ) for row in dataset] for col in keys} else: SCREAMING_SNAKE_CASE_ = dataset SCREAMING_SNAKE_CASE_ = pa.Table.from_pydict(__magic_name__ ) yield file_idx, self._cast_table(__magic_name__ ) # If the file has one json object per line else: with open(__magic_name__ , "rb" ) as f: SCREAMING_SNAKE_CASE_ = 0 # Use block_size equal to the chunk size divided by 32 to leverage multithreading # Set a default minimum value of 16kB if the chunk size is really small SCREAMING_SNAKE_CASE_ = max(self.config.chunksize // 32 , 16 << 10 ) SCREAMING_SNAKE_CASE_ = ( self.config.encoding_errors if self.config.encoding_errors is not None else "strict" ) while True: SCREAMING_SNAKE_CASE_ = f.read(self.config.chunksize ) if not batch: break # Finish current line try: batch += f.readline() except (AttributeError, io.UnsupportedOperation): batch += readline(__magic_name__ ) # PyArrow only accepts utf-8 encoded bytes if self.config.encoding != "utf-8": SCREAMING_SNAKE_CASE_ = batch.decode(self.config.encoding , errors=__magic_name__ ).encode("utf-8" ) try: while True: try: SCREAMING_SNAKE_CASE_ = paj.read_json( io.BytesIO(__magic_name__ ) , read_options=paj.ReadOptions(block_size=__magic_name__ ) ) break except (pa.ArrowInvalid, pa.ArrowNotImplementedError) as e: if ( isinstance(__magic_name__ , pa.ArrowInvalid ) and "straddling" not in str(__magic_name__ ) or block_size > len(__magic_name__ ) ): raise else: # Increase the block size in case it was too small. # The block size will be reset for the next file. logger.debug( F'''Batch of {len(__magic_name__ )} bytes couldn\'t be parsed with block_size={block_size}. Retrying with block_size={block_size * 2}.''' ) block_size *= 2 except pa.ArrowInvalid as e: try: with open( __magic_name__ , encoding=self.config.encoding , errors=self.config.encoding_errors ) as f: SCREAMING_SNAKE_CASE_ = json.load(__magic_name__ ) except json.JSONDecodeError: logger.error(F'''Failed to read file \'{file}\' with error {type(__magic_name__ )}: {e}''' ) raise e # If possible, parse the file as a list of json objects and exit the loop if isinstance(__magic_name__ , __magic_name__ ): # list is the only sequence type supported in JSON try: SCREAMING_SNAKE_CASE_ = set().union(*[row.keys() for row in dataset] ) SCREAMING_SNAKE_CASE_ = {col: [row.get(__magic_name__ ) for row in dataset] for col in keys} SCREAMING_SNAKE_CASE_ = pa.Table.from_pydict(__magic_name__ ) except (pa.ArrowInvalid, AttributeError) as e: logger.error(F'''Failed to read file \'{file}\' with error {type(__magic_name__ )}: {e}''' ) raise ValueError(F'''Not able to read records in the JSON file at {file}.''' ) from None yield file_idx, self._cast_table(__magic_name__ ) break else: logger.error(F'''Failed to read file \'{file}\' with error {type(__magic_name__ )}: {e}''' ) raise ValueError( F'''Not able to read records in the JSON file at {file}. ''' F'''You should probably indicate the field of the JSON file containing your records. ''' F'''This JSON file contain the following fields: {str(list(dataset.keys() ) )}. ''' F'''Select the correct one and provide it as `field=\'XXX\'` to the dataset loading method. ''' ) from None # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield (file_idx, batch_idx), self._cast_table(__magic_name__ ) batch_idx += 1
118
1
"""simple docstring""" from __future__ import annotations import numpy as np def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> Any: '''simple docstring''' return np.maximum(0 , __lowerCAmelCase ) if __name__ == "__main__": print(np.array(relu([-1, 0, 5]))) # --> [0, 0, 5]
313
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCAmelCase : Union[str, Any] = { "configuration_upernet": ["UperNetConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase : int = [ "UperNetForSemanticSegmentation", "UperNetPreTrainedModel", ] if TYPE_CHECKING: from .configuration_upernet import UperNetConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_upernet import UperNetForSemanticSegmentation, UperNetPreTrainedModel else: import sys UpperCAmelCase : List[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
313
1
'''simple docstring''' def _A ( A__ ): """simple docstring""" __lowercase = 0 while len(A__ ) > 1: __lowercase = 0 # Consider two files with minimum cost to be merged for _ in range(2 ): __lowercase = files.index(min(A__ ) ) temp += files[min_index] files.pop(A__ ) files.append(A__ ) optimal_merge_cost += temp return optimal_merge_cost if __name__ == "__main__": import doctest doctest.testmod()
104
import re import string import numpy as np import datasets __lowerCAmelCase : Optional[int] = '\nReturns the rate at which the input predicted strings exactly match their references, ignoring any strings input as part of the regexes_to_ignore list.\n' __lowerCAmelCase : Optional[int] = '\nArgs:\n predictions: List of predicted texts.\n references: List of reference texts.\n regexes_to_ignore: List, defaults to None. Regex expressions of characters to\n ignore when calculating the exact matches. Note: these regexes are removed\n from the input data before the changes based on the options below (e.g. ignore_case,\n ignore_punctuation, ignore_numbers) are applied.\n ignore_case: Boolean, defaults to False. If true, turns everything\n to lowercase so that capitalization differences are ignored.\n ignore_punctuation: Boolean, defaults to False. If true, removes all punctuation before\n comparing predictions and references.\n ignore_numbers: Boolean, defaults to False. If true, removes all punctuation before\n comparing predictions and references.\nReturns:\n exact_match: Dictionary containing exact_match rate. Possible values are between 0.0 and 100.0, inclusive.\nExamples:\n >>> exact_match = datasets.load_metric("exact_match")\n >>> refs = ["the cat", "theater", "YELLING", "agent007"]\n >>> preds = ["cat?", "theater", "yelling", "agent"]\n >>> results = exact_match.compute(references=refs, predictions=preds)\n >>> print(round(results["exact_match"], 1))\n 25.0\n\n >>> exact_match = datasets.load_metric("exact_match")\n >>> refs = ["the cat", "theater", "YELLING", "agent007"]\n >>> preds = ["cat?", "theater", "yelling", "agent"]\n >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=["the ", "yell"], ignore_case=True, ignore_punctuation=True)\n >>> print(round(results["exact_match"], 1))\n 50.0\n\n\n >>> exact_match = datasets.load_metric("exact_match")\n >>> refs = ["the cat", "theater", "YELLING", "agent007"]\n >>> preds = ["cat?", "theater", "yelling", "agent"]\n >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=["the ", "yell", "YELL"], ignore_case=True, ignore_punctuation=True)\n >>> print(round(results["exact_match"], 1))\n 75.0\n\n >>> exact_match = datasets.load_metric("exact_match")\n >>> refs = ["the cat", "theater", "YELLING", "agent007"]\n >>> preds = ["cat?", "theater", "yelling", "agent"]\n >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=["the ", "yell", "YELL"], ignore_case=True, ignore_punctuation=True, ignore_numbers=True)\n >>> print(round(results["exact_match"], 1))\n 100.0\n\n >>> exact_match = datasets.load_metric("exact_match")\n >>> refs = ["The cat sat on the mat.", "Theaters are great.", "It\'s like comparing oranges and apples."]\n >>> preds = ["The cat sat on the mat?", "Theaters are great.", "It\'s like comparing apples and oranges."]\n >>> results = exact_match.compute(references=refs, predictions=preds)\n >>> print(round(results["exact_match"], 1))\n 33.3\n\n' __lowerCAmelCase : Optional[int] = '\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCAmelCase_ ( datasets.Metric ): '''simple docstring''' def _lowercase ( self : str ) -> Optional[int]: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""string""" , id="""sequence""" ), """references""": datasets.Value("""string""" , id="""sequence""" ), } ) , reference_urls=[] , ) def _lowercase ( self : Optional[int] , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Tuple , UpperCamelCase__ : Optional[Any]=None , UpperCamelCase__ : Optional[Any]=False , UpperCamelCase__ : int=False , UpperCamelCase__ : Tuple=False , ) -> Dict: """simple docstring""" if regexes_to_ignore is not None: for s in regexes_to_ignore: __magic_name__ = np.array([re.sub(UpperCamelCase__ , """""" , UpperCamelCase__ ) for x in predictions] ) __magic_name__ = np.array([re.sub(UpperCamelCase__ , """""" , UpperCamelCase__ ) for x in references] ) else: __magic_name__ = np.asarray(UpperCamelCase__ ) __magic_name__ = np.asarray(UpperCamelCase__ ) if ignore_case: __magic_name__ = np.char.lower(UpperCamelCase__ ) __magic_name__ = np.char.lower(UpperCamelCase__ ) if ignore_punctuation: __magic_name__ = string.punctuation.maketrans("""""" , """""" , string.punctuation ) __magic_name__ = np.char.translate(UpperCamelCase__ , table=UpperCamelCase__ ) __magic_name__ = np.char.translate(UpperCamelCase__ , table=UpperCamelCase__ ) if ignore_numbers: __magic_name__ = string.digits.maketrans("""""" , """""" , string.digits ) __magic_name__ = np.char.translate(UpperCamelCase__ , table=UpperCamelCase__ ) __magic_name__ = np.char.translate(UpperCamelCase__ , table=UpperCamelCase__ ) __magic_name__ = predictions == references return {"exact_match": np.mean(UpperCamelCase__ ) * 100}
88
0
"""simple docstring""" def _a ( _snake_case , _snake_case ): """simple docstring""" def get_matched_characters(_snake_case , _snake_case ) -> str: UpperCAmelCase = [] UpperCAmelCase = min(len(_stra ) , len(_stra ) ) // 2 for i, l in enumerate(_stra ): UpperCAmelCase = int(max(0 , i - limit ) ) UpperCAmelCase = int(min(i + limit + 1 , len(_stra ) ) ) if l in _stra[left:right]: matched.append(_snake_case ) UpperCAmelCase = F'''{_stra[0:_stra.index(_snake_case )]} {_stra[_stra.index(_snake_case ) + 1:]}''' return "".join(_snake_case ) # matching characters UpperCAmelCase = get_matched_characters(_snake_case , _snake_case ) UpperCAmelCase = get_matched_characters(_snake_case , _snake_case ) UpperCAmelCase = len(_snake_case ) # transposition UpperCAmelCase = ( len([(ca, ca) for ca, ca in zip(_snake_case , _snake_case ) if ca != ca] ) // 2 ) if not match_count: UpperCAmelCase = 0.0 else: UpperCAmelCase = ( 1 / 3 * ( match_count / len(_snake_case ) + match_count / len(_snake_case ) + (match_count - transpositions) / match_count ) ) # common prefix up to 4 characters UpperCAmelCase = 0 for ca, ca in zip(stra[:4] , stra[:4] ): if ca == ca: prefix_len += 1 else: break return jaro + 0.1 * prefix_len * (1 - jaro) if __name__ == "__main__": import doctest doctest.testmod() print(jaro_winkler("""hello""", """world"""))
234
"""simple docstring""" from pathlib import Path from typing import List from transformers import is_torch_available, is_vision_available from transformers.testing_utils import get_tests_dir, is_tool_test from transformers.tools.agent_types import AGENT_TYPE_MAPPING, AgentAudio, AgentImage, AgentText if is_torch_available(): import torch if is_vision_available(): from PIL import Image _UpperCamelCase = ["""text""", """image""", """audio"""] def _a ( _snake_case ): """simple docstring""" UpperCAmelCase = [] for input_type in input_types: if input_type == "text": inputs.append("""Text input""" ) elif input_type == "image": inputs.append( Image.open(Path(get_tests_dir("""fixtures/tests_samples/COCO""" ) ) / """000000039769.png""" ).resize((512, 512) ) ) elif input_type == "audio": inputs.append(torch.ones(3000 ) ) elif isinstance(_snake_case , _snake_case ): inputs.append(create_inputs(_snake_case ) ) else: raise ValueError(F'''Invalid type requested: {input_type}''' ) return inputs def _a ( _snake_case ): """simple docstring""" UpperCAmelCase = [] for output in outputs: if isinstance(_snake_case , (str, AgentText) ): output_types.append("""text""" ) elif isinstance(_snake_case , (Image.Image, AgentImage) ): output_types.append("""image""" ) elif isinstance(_snake_case , (torch.Tensor, AgentAudio) ): output_types.append("""audio""" ) else: raise ValueError(F'''Invalid output: {output}''' ) return output_types @is_tool_test class lowerCamelCase__ : def _UpperCamelCase ( self ): self.assertTrue(hasattr(self.tool ,"""inputs""" ) ) self.assertTrue(hasattr(self.tool ,"""outputs""" ) ) UpperCAmelCase = self.tool.inputs for _input in inputs: if isinstance(_input ,A ): for __input in _input: self.assertTrue(__input in authorized_types ) else: self.assertTrue(_input in authorized_types ) UpperCAmelCase = self.tool.outputs for _output in outputs: self.assertTrue(_output in authorized_types ) def _UpperCamelCase ( self ): UpperCAmelCase = create_inputs(self.tool.inputs ) UpperCAmelCase = self.tool(*A ) # There is a single output if len(self.tool.outputs ) == 1: UpperCAmelCase = [outputs] self.assertListEqual(output_types(A ) ,self.tool.outputs ) def _UpperCamelCase ( self ): self.assertTrue(hasattr(self.tool ,"""description""" ) ) self.assertTrue(hasattr(self.tool ,"""default_checkpoint""" ) ) self.assertTrue(self.tool.description.startswith("""This is a tool that""" ) ) def _UpperCamelCase ( self ): UpperCAmelCase = create_inputs(self.tool.inputs ) UpperCAmelCase = self.tool(*A ) if not isinstance(A ,A ): UpperCAmelCase = [outputs] self.assertEqual(len(A ) ,len(self.tool.outputs ) ) for output, output_type in zip(A ,self.tool.outputs ): UpperCAmelCase = AGENT_TYPE_MAPPING[output_type] self.assertTrue(isinstance(A ,A ) ) def _UpperCamelCase ( self ): UpperCAmelCase = create_inputs(self.tool.inputs ) UpperCAmelCase = [] for _input, input_type in zip(A ,self.tool.inputs ): if isinstance(A ,A ): _inputs.append([AGENT_TYPE_MAPPING[_input_type](_input ) for _input_type in input_type] ) else: _inputs.append(AGENT_TYPE_MAPPING[input_type](_input ) ) # Should not raise an error UpperCAmelCase = self.tool(*A ) if not isinstance(A ,A ): UpperCAmelCase = [outputs] self.assertEqual(len(A ) ,len(self.tool.outputs ) )
234
1
"""simple docstring""" import numpy # List of input, output pairs SCREAMING_SNAKE_CASE_ : Optional[Any] = ( ((5, 2, 3), 1_5), ((6, 5, 9), 2_5), ((1_1, 1_2, 1_3), 4_1), ((1, 1, 1), 8), ((1_1, 1_2, 1_3), 4_1), ) SCREAMING_SNAKE_CASE_ : Optional[int] = (((5_1_5, 2_2, 1_3), 5_5_5), ((6_1, 3_5, 4_9), 1_5_0)) SCREAMING_SNAKE_CASE_ : List[str] = [2, 4, 1, 5] SCREAMING_SNAKE_CASE_ : List[Any] = len(train_data) SCREAMING_SNAKE_CASE_ : int = 0.009 def _snake_case ( UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : List[Any]="train" ): return calculate_hypothesis_value(__UpperCamelCase , __UpperCamelCase ) - output( __UpperCamelCase , __UpperCamelCase ) def _snake_case ( UpperCAmelCase_ : Union[str, Any] ): A__ = 0 for i in range(len(__UpperCamelCase ) - 1 ): hyp_val += data_input_tuple[i] * parameter_vector[i + 1] hyp_val += parameter_vector[0] return hyp_val def _snake_case ( UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : List[str] ): if data_set == "train": return train_data[example_no][1] elif data_set == "test": return test_data[example_no][1] return None def _snake_case ( UpperCAmelCase_ : str , UpperCAmelCase_ : Dict ): if data_set == "train": return _hypothesis_value(train_data[example_no][0] ) elif data_set == "test": return _hypothesis_value(test_data[example_no][0] ) return None def _snake_case ( UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Dict=m ): A__ = 0 for i in range(__UpperCamelCase ): if index == -1: summation_value += _error(__UpperCamelCase ) else: summation_value += _error(__UpperCamelCase ) * train_data[i][0][index] return summation_value def _snake_case ( UpperCAmelCase_ : Tuple ): A__ = summation_of_cost_derivative(__UpperCamelCase , __UpperCamelCase ) / m return cost_derivative_value def _snake_case ( ): global parameter_vector # Tune these values to set a tolerance value for predicted output A__ = 0.00_00_02 A__ = 0 A__ = 0 while True: j += 1 A__ = [0, 0, 0, 0] for i in range(0 , len(__UpperCamelCase ) ): A__ = get_cost_derivative(i - 1 ) A__ = ( parameter_vector[i] - LEARNING_RATE * cost_derivative ) if numpy.allclose( __UpperCamelCase , __UpperCamelCase , atol=__UpperCamelCase , rtol=__UpperCamelCase , ): break A__ = temp_parameter_vector print(("""Number of iterations:""", j) ) def _snake_case ( ): for i in range(len(__UpperCamelCase ) ): print(("""Actual output value:""", output(__UpperCamelCase , """test""" )) ) print(("""Hypothesis output:""", calculate_hypothesis_value(__UpperCamelCase , """test""" )) ) if __name__ == "__main__": run_gradient_descent() print('\nTesting gradient descent for a linear hypothesis function.\n') test_gradient_descent()
335
"""simple docstring""" from typing import Dict, List from nltk.translate import gleu_score import datasets from datasets import MetricInfo lowercase_ = '\\n@misc{wu2016googles,\n title={Google\'s Neural Machine Translation System: Bridging the Gap between Human and Machine Translation},\n author={Yonghui Wu and Mike Schuster and Zhifeng Chen and Quoc V. Le and Mohammad Norouzi and Wolfgang Macherey\n and Maxim Krikun and Yuan Cao and Qin Gao and Klaus Macherey and Jeff Klingner and Apurva Shah and Melvin\n Johnson and Xiaobing Liu and Łukasz Kaiser and Stephan Gouws and Yoshikiyo Kato and Taku Kudo and Hideto\n Kazawa and Keith Stevens and George Kurian and Nishant Patil and Wei Wang and Cliff Young and\n Jason Smith and Jason Riesa and Alex Rudnick and Oriol Vinyals and Greg Corrado and Macduff Hughes\n and Jeffrey Dean},\n year={2016},\n eprint={1609.08144},\n archivePrefix={arXiv},\n primaryClass={cs.CL}\n}\n' lowercase_ = '\\nThe BLEU score has some undesirable properties when used for single\nsentences, as it was designed to be a corpus measure. We therefore\nuse a slightly different score for our RL experiments which we call\nthe \'GLEU score\'. For the GLEU score, we record all sub-sequences of\n1, 2, 3 or 4 tokens in output and target sequence (n-grams). We then\ncompute a recall, which is the ratio of the number of matching n-grams\nto the number of total n-grams in the target (ground truth) sequence,\nand a precision, which is the ratio of the number of matching n-grams\nto the number of total n-grams in the generated output sequence. Then\nGLEU score is simply the minimum of recall and precision. This GLEU\nscore\'s range is always between 0 (no matches) and 1 (all match) and\nit is symmetrical when switching output and target. According to\nour experiments, GLEU score correlates quite well with the BLEU\nmetric on a corpus level but does not have its drawbacks for our per\nsentence reward objective.\n' lowercase_ = '\\nComputes corpus-level Google BLEU (GLEU) score of translated segments against one or more references.\nInstead of averaging the sentence level GLEU scores (i.e. macro-average precision), Wu et al. (2016) sum up the matching\ntokens and the max of hypothesis and reference tokens for each sentence, then compute using the aggregate values.\n\nArgs:\n predictions (list of str): list of translations to score.\n Each translation should be tokenized into a list of tokens.\n references (list of list of str): list of lists of references for each translation.\n Each reference should be tokenized into a list of tokens.\n min_len (int): The minimum order of n-gram this function should extract. Defaults to 1.\n max_len (int): The maximum order of n-gram this function should extract. Defaults to 4.\n\nReturns:\n \'google_bleu\': google_bleu score\n\nExamples:\n Example 1:\n >>> hyp1 = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'which\',\n ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'always\',\n ... \'disobeys\', \'the\', \'commands\', \'of\', \'the\', \'cat\']\n >>> ref1a = [\'It\', \'is\', \'the\', \'guiding\', \'principle\', \'which\',\n ... \'guarantees\', \'the\', \'rubber\', \'duck\', \'forces\', \'never\',\n ... \'being\', \'under\', \'the\', \'command\', \'of\', \'the\', \'cat\']\n\n >>> hyp2 = [\'he\', \'read\', \'the\', \'book\', \'because\', \'he\', \'was\',\n ... \'interested\', \'in\', \'world\', \'history\']\n >>> ref2a = [\'he\', \'was\', \'interested\', \'in\', \'world\', \'history\',\n ... \'because\', \'he\', \'read\', \'the\', \'book\']\n\n >>> list_of_references = [[ref1a], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric("google_bleu")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references)\n >>> print(round(results["google_bleu"], 2))\n 0.44\n\n Example 2:\n >>> hyp1 = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'which\',\n ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'always\',\n ... \'disobeys\', \'the\', \'commands\', \'of\', \'the\', \'cat\']\n >>> ref1a = [\'It\', \'is\', \'the\', \'guiding\', \'principle\', \'which\',\n ... \'guarantees\', \'the\', \'rubber\', \'duck\', \'forces\', \'never\',\n ... \'being\', \'under\', \'the\', \'command\', \'of\', \'the\', \'cat\']\n >>> ref1b = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'that\',\n ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'will\', \'never\',\n ... \'heed\', \'the\', \'cat\', \'commands\']\n >>> ref1c = [\'It\', \'is\', \'the\', \'practical\', \'guide\', \'for\', \'the\',\n ... \'rubber\', \'duck\', \'army\', \'never\', \'to\', \'heed\', \'the\', \'directions\',\n ... \'of\', \'the\', \'cat\']\n\n >>> hyp2 = [\'he\', \'read\', \'the\', \'book\', \'because\', \'he\', \'was\',\n ... \'interested\', \'in\', \'world\', \'history\']\n >>> ref2a = [\'he\', \'was\', \'interested\', \'in\', \'world\', \'history\',\n ... \'because\', \'he\', \'read\', \'the\', \'book\']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric("google_bleu")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references)\n >>> print(round(results["google_bleu"], 2))\n 0.61\n\n Example 3:\n >>> hyp1 = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'which\',\n ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'always\',\n ... \'disobeys\', \'the\', \'commands\', \'of\', \'the\', \'cat\']\n >>> ref1a = [\'It\', \'is\', \'the\', \'guiding\', \'principle\', \'which\',\n ... \'guarantees\', \'the\', \'rubber\', \'duck\', \'forces\', \'never\',\n ... \'being\', \'under\', \'the\', \'command\', \'of\', \'the\', \'cat\']\n >>> ref1b = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'that\',\n ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'will\', \'never\',\n ... \'heed\', \'the\', \'cat\', \'commands\']\n >>> ref1c = [\'It\', \'is\', \'the\', \'practical\', \'guide\', \'for\', \'the\',\n ... \'rubber\', \'duck\', \'army\', \'never\', \'to\', \'heed\', \'the\', \'directions\',\n ... \'of\', \'the\', \'cat\']\n\n >>> hyp2 = [\'he\', \'read\', \'the\', \'book\', \'because\', \'he\', \'was\',\n ... \'interested\', \'in\', \'world\', \'history\']\n >>> ref2a = [\'he\', \'was\', \'interested\', \'in\', \'world\', \'history\',\n ... \'because\', \'he\', \'read\', \'the\', \'book\']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric("google_bleu")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references, min_len=2)\n >>> print(round(results["google_bleu"], 2))\n 0.53\n\n Example 4:\n >>> hyp1 = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'which\',\n ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'always\',\n ... \'disobeys\', \'the\', \'commands\', \'of\', \'the\', \'cat\']\n >>> ref1a = [\'It\', \'is\', \'the\', \'guiding\', \'principle\', \'which\',\n ... \'guarantees\', \'the\', \'rubber\', \'duck\', \'forces\', \'never\',\n ... \'being\', \'under\', \'the\', \'command\', \'of\', \'the\', \'cat\']\n >>> ref1b = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'that\',\n ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'will\', \'never\',\n ... \'heed\', \'the\', \'cat\', \'commands\']\n >>> ref1c = [\'It\', \'is\', \'the\', \'practical\', \'guide\', \'for\', \'the\',\n ... \'rubber\', \'duck\', \'army\', \'never\', \'to\', \'heed\', \'the\', \'directions\',\n ... \'of\', \'the\', \'cat\']\n\n >>> hyp2 = [\'he\', \'read\', \'the\', \'book\', \'because\', \'he\', \'was\',\n ... \'interested\', \'in\', \'world\', \'history\']\n >>> ref2a = [\'he\', \'was\', \'interested\', \'in\', \'world\', \'history\',\n ... \'because\', \'he\', \'read\', \'the\', \'book\']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric("google_bleu")\n >>> results = google_bleu.compute(predictions=hypotheses,references=list_of_references, min_len=2, max_len=6)\n >>> print(round(results["google_bleu"], 2))\n 0.4\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class snake_case ( datasets.Metric ): '''simple docstring''' def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION, citation=_CITATION, inputs_description=_KWARGS_DESCRIPTION, features=datasets.Features( { '''predictions''': datasets.Sequence(datasets.Value('''string''', id='''token''' ), id='''sequence''' ), '''references''': datasets.Sequence( datasets.Sequence(datasets.Value('''string''', id='''token''' ), id='''sequence''' ), id='''references''' ), } ), ) def _SCREAMING_SNAKE_CASE ( self : str, _lowerCamelCase : List[List[List[str]]], _lowerCamelCase : List[List[str]], _lowerCamelCase : int = 1, _lowerCamelCase : int = 4, ): '''simple docstring''' return { "google_bleu": gleu_score.corpus_gleu( list_of_references=_lowerCamelCase, hypotheses=_lowerCamelCase, min_len=_lowerCamelCase, max_len=_lowerCamelCase ) }
266
0
from __future__ import annotations class __a : def __init__( self : List[str] , UpperCAmelCase : Any=None ): lowerCAmelCase_ : Dict = data lowerCAmelCase_ : str = None def __repr__( self : int ): lowerCAmelCase_ : List[Any] = [] lowerCAmelCase_ : int = self while temp: string_rep.append(F'{temp.data}' ) lowerCAmelCase_ : Optional[Any] = temp.next return "->".join(__lowercase ) def __UpperCamelCase ( lowercase__ : List[Any] ) -> List[Any]: '''simple docstring''' if not elements_list: raise Exception("""The Elements List is empty""" ) lowerCAmelCase_ : Dict = Node(elements_list[0] ) for i in range(1 , len(__lowerCAmelCase ) ): lowerCAmelCase_ : str = Node(elements_list[i] ) lowerCAmelCase_ : Tuple = current.next return head def __UpperCamelCase ( lowercase__ : int ) -> None: '''simple docstring''' if head_node is not None and isinstance(__lowerCAmelCase , __lowerCAmelCase ): print_reverse(head_node.next ) print(head_node.data ) def __UpperCamelCase ( ) -> int: '''simple docstring''' from doctest import testmod testmod() lowerCAmelCase_ : Optional[int] = make_linked_list([14, 52, 14, 12, 43] ) print("""Linked List:""" ) print(__lowerCAmelCase ) print("""Elements in Reverse:""" ) print_reverse(__lowerCAmelCase ) if __name__ == "__main__": main()
371
from decimal import Decimal, getcontext from math import ceil, factorial def __UpperCamelCase ( lowercase__ : int ) -> str: '''simple docstring''' if not isinstance(lowercase__ , lowercase__ ): raise TypeError("""Undefined for non-integers""" ) elif precision < 1: raise ValueError("""Undefined for non-natural numbers""" ) lowerCAmelCase_ : Any = precision lowerCAmelCase_ : Any = ceil(precision / 14 ) lowerCAmelCase_ : Optional[Any] = 426880 * Decimal(10005 ).sqrt() lowerCAmelCase_ : Optional[int] = 1 lowerCAmelCase_ : Optional[int] = 13591409 lowerCAmelCase_ : Union[str, Any] = Decimal(lowercase__ ) for k in range(1 , lowercase__ ): lowerCAmelCase_ : Optional[Any] = factorial(6 * k ) // (factorial(3 * k ) * factorial(lowercase__ ) ** 3) linear_term += 545140134 exponential_term *= -262537412640768000 partial_sum += Decimal(multinomial_term * linear_term ) / exponential_term return str(constant_term / partial_sum )[:-1] if __name__ == "__main__": __UpperCAmelCase = 50 print(f"""The first {n} digits of pi is: {pi(n)}""")
28
0
"""simple docstring""" def A_ ( _lowercase ): '''simple docstring''' return number & 1 == 0 if __name__ == "__main__": import doctest doctest.testmod()
66
"""simple docstring""" import unittest import numpy as np import torch from .utils_summarization import build_mask, compute_token_type_ids, process_story, truncate_or_pad class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :Dict = 1_0 def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :Optional[int] = [1, 2, 3, 4] lowerCAmelCase__ :Tuple = [1, 2, 3, 4, 0, 0, 0, 0, 0, 0] self.assertEqual(truncate_or_pad(__UpperCAmelCase , self.block_size , 0 ) , __UpperCAmelCase ) def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :Optional[Any] = [1, 2, 3, 4, 5, 6, 7, 8, 9, 1_0] lowerCAmelCase__ :List[Any] = [1, 2, 3, 4, 5, 6, 7, 8, 9, 1_0] self.assertEqual(truncate_or_pad(__UpperCAmelCase , self.block_size , 0 ) , __UpperCAmelCase ) def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :Dict = [1, 2, 3, 4, 5, 6, 7, 8, 9, 1_0, 1_1, 1_2, 1_3] lowerCAmelCase__ :List[Any] = [1, 2, 3, 4, 5, 6, 7, 8, 9, 1_0] self.assertEqual(truncate_or_pad(__UpperCAmelCase , self.block_size , 0 ) , __UpperCAmelCase ) def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :Tuple = 'It was the year of Our Lord one thousand seven hundred and\n seventy-five.\n\nSpiritual revelations were conceded to England at that\n favoured period, as at this.' lowerCAmelCase__ , lowerCAmelCase__ :List[Any] = process_story(__UpperCAmelCase ) self.assertEqual(__UpperCAmelCase , [] ) def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :Any = '' lowerCAmelCase__ , lowerCAmelCase__ :Any = process_story(__UpperCAmelCase ) self.assertEqual(__UpperCAmelCase , [] ) self.assertEqual(__UpperCAmelCase , [] ) def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :List[str] = ( 'It was the year of Our Lord one thousand seven hundred and ' 'seventy-five\n\nSpiritual revelations were conceded to England ' 'at that favoured period, as at this.\n@highlight\n\nIt was the best of times' ) lowerCAmelCase__ , lowerCAmelCase__ :str = process_story(__UpperCAmelCase ) lowerCAmelCase__ :List[str] = [ 'It was the year of Our Lord one thousand seven hundred and seventy-five.', 'Spiritual revelations were conceded to England at that favoured period, as at this.', ] self.assertEqual(__UpperCAmelCase , __UpperCAmelCase ) lowerCAmelCase__ :List[str] = ['It was the best of times.'] self.assertEqual(__UpperCAmelCase , __UpperCAmelCase ) def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :Tuple = torch.tensor([1, 2, 3, 4] ) lowerCAmelCase__ :List[str] = torch.tensor([1, 1, 1, 1] ) np.testing.assert_array_equal(build_mask(__UpperCAmelCase , 0 ).numpy() , expected.numpy() ) def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :List[Any] = torch.tensor([1, 2, 3, 4, 2_3, 2_3, 2_3] ) lowerCAmelCase__ :Optional[int] = torch.tensor([1, 1, 1, 1, 0, 0, 0] ) np.testing.assert_array_equal(build_mask(__UpperCAmelCase , 2_3 ).numpy() , expected.numpy() ) def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :List[Any] = torch.tensor([8, 2, 3, 4, 1, 1, 1] ) lowerCAmelCase__ :Optional[Any] = torch.tensor([1, 1, 1, 1, 0, 0, 0] ) np.testing.assert_array_equal(build_mask(__UpperCAmelCase , 1 ).numpy() , expected.numpy() ) def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :Optional[Any] = 1_0_1 lowerCAmelCase__ :str = torch.tensor([[1, 2, 3, 4, 5, 6], [1, 2, 3, 1_0_1, 5, 6], [1, 1_0_1, 3, 4, 1_0_1, 6]] ) lowerCAmelCase__ :Any = torch.tensor([[1, 1, 1, 1, 1, 1], [1, 1, 1, 0, 0, 0], [1, 0, 0, 0, 1, 1]] ) lowerCAmelCase__ :List[Any] = compute_token_type_ids(__UpperCAmelCase , __UpperCAmelCase ) np.testing.assert_array_equal(__UpperCAmelCase , __UpperCAmelCase )
293
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) a_ = {'configuration_mbart': ['MBART_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MBartConfig', 'MBartOnnxConfig']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = ['MBartTokenizer'] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = ['MBartTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = [ 'MBART_PRETRAINED_MODEL_ARCHIVE_LIST', 'MBartForCausalLM', 'MBartForConditionalGeneration', 'MBartForQuestionAnswering', 'MBartForSequenceClassification', 'MBartModel', 'MBartPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = [ 'TFMBartForConditionalGeneration', 'TFMBartModel', 'TFMBartPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = [ 'FlaxMBartForConditionalGeneration', 'FlaxMBartForQuestionAnswering', 'FlaxMBartForSequenceClassification', 'FlaxMBartModel', 'FlaxMBartPreTrainedModel', ] if TYPE_CHECKING: from .configuration_mbart import MBART_PRETRAINED_CONFIG_ARCHIVE_MAP, MBartConfig, MBartOnnxConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mbart import MBartTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mbart_fast import MBartTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mbart import ( MBART_PRETRAINED_MODEL_ARCHIVE_LIST, MBartForCausalLM, MBartForConditionalGeneration, MBartForQuestionAnswering, MBartForSequenceClassification, MBartModel, MBartPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mbart import TFMBartForConditionalGeneration, TFMBartModel, TFMBartPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_mbart import ( FlaxMBartForConditionalGeneration, FlaxMBartForQuestionAnswering, FlaxMBartForSequenceClassification, FlaxMBartModel, FlaxMBartPreTrainedModel, ) else: import sys a_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
353
"""simple docstring""" import inspect import unittest from datasets import load_dataset from packaging import version from transformers import BeitConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_MAPPING, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation, BeitModel, ) from transformers.models.beit.modeling_beit import BEIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): import PIL from PIL import Image from transformers import BeitImageProcessor class snake_case : def __init__( self : Optional[int] , a__ : Tuple , a__ : str=1_00 , a__ : Dict=13 , a__ : Tuple=30 , a__ : str=2 , a__ : List[Any]=3 , a__ : Dict=True , a__ : Optional[Any]=True , a__ : List[Any]=32 , a__ : Tuple=4 , a__ : Tuple=4 , a__ : Optional[int]=37 , a__ : Tuple="gelu" , a__ : Optional[int]=0.1 , a__ : int=0.1 , a__ : Optional[Any]=10 , a__ : Optional[int]=0.0_2 , a__ : Dict=3 , a__ : str=None , a__ : Any=[0, 1, 2, 3] , ) -> Tuple: '''simple docstring''' _A = parent _A = 1_00 _A = batch_size _A = image_size _A = patch_size _A = num_channels _A = is_training _A = use_labels _A = hidden_size _A = num_hidden_layers _A = num_attention_heads _A = intermediate_size _A = hidden_act _A = hidden_dropout_prob _A = attention_probs_dropout_prob _A = type_sequence_label_size _A = initializer_range _A = scope _A = out_indices _A = num_labels # in BeiT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) _A = (image_size // patch_size) ** 2 _A = num_patches + 1 def a_ ( self : List[str] ) -> str: '''simple docstring''' _A = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _A = None _A = None if self.use_labels: _A = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _A = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) _A = self.get_config() return config, pixel_values, labels, pixel_labels def a_ ( self : Tuple ) -> Union[str, Any]: '''simple docstring''' return BeitConfig( vocab_size=self.vocab_size , image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=a__ , initializer_range=self.initializer_range , out_indices=self.out_indices , ) def a_ ( self : Any , a__ : List[str] , a__ : Tuple , a__ : List[str] , a__ : str ) -> Any: '''simple docstring''' _A = BeitModel(config=a__ ) model.to(a__ ) model.eval() _A = model(a__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def a_ ( self : List[str] , a__ : Optional[Any] , a__ : Tuple , a__ : Any , a__ : Optional[Any] ) -> Tuple: '''simple docstring''' _A = BeitForMaskedImageModeling(config=a__ ) model.to(a__ ) model.eval() _A = model(a__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length - 1, self.vocab_size) ) def a_ ( self : Optional[Any] , a__ : Optional[int] , a__ : Optional[Any] , a__ : List[str] , a__ : Dict ) -> Dict: '''simple docstring''' _A = self.type_sequence_label_size _A = BeitForImageClassification(a__ ) model.to(a__ ) model.eval() _A = model(a__ , labels=a__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images _A = 1 _A = BeitForImageClassification(a__ ) model.to(a__ ) model.eval() _A = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) _A = model(a__ , labels=a__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def a_ ( self : Optional[Any] , a__ : Optional[Any] , a__ : Union[str, Any] , a__ : Union[str, Any] , a__ : Dict ) -> str: '''simple docstring''' _A = self.num_labels _A = BeitForSemanticSegmentation(a__ ) model.to(a__ ) model.eval() _A = model(a__ ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2) ) _A = model(a__ , labels=a__ ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2) ) def a_ ( self : List[Any] ) -> Any: '''simple docstring''' _A = self.prepare_config_and_inputs() _A , _A , _A , _A = config_and_inputs _A = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class snake_case ( _UpperCamelCase , _UpperCamelCase , unittest.TestCase): __UpperCamelCase = ( (BeitModel, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation) if is_torch_available() else () ) __UpperCamelCase = ( { 'feature-extraction': BeitModel, 'image-classification': BeitForImageClassification, 'image-segmentation': BeitForSemanticSegmentation, } if is_torch_available() else {} ) __UpperCamelCase = False __UpperCamelCase = False __UpperCamelCase = False def a_ ( self : List[Any] ) -> List[Any]: '''simple docstring''' _A = BeitModelTester(self ) _A = ConfigTester(self , config_class=a__ , has_text_modality=a__ , hidden_size=37 ) def a_ ( self : Any ) -> Union[str, Any]: '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason="BEiT does not use inputs_embeds" ) def a_ ( self : Optional[Any] ) -> Tuple: '''simple docstring''' pass @require_torch_multi_gpu @unittest.skip(reason="BEiT has some layers using `add_module` which doesn't work well with `nn.DataParallel`" ) def a_ ( self : Any ) -> int: '''simple docstring''' pass def a_ ( self : Optional[int] ) -> Dict: '''simple docstring''' _A , _A = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _A = model_class(a__ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) _A = model.get_output_embeddings() self.assertTrue(x is None or isinstance(a__ , nn.Linear ) ) def a_ ( self : Tuple ) -> List[Any]: '''simple docstring''' _A , _A = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _A = model_class(a__ ) _A = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _A = [*signature.parameters.keys()] _A = ["pixel_values"] self.assertListEqual(arg_names[:1] , a__ ) def a_ ( self : Dict ) -> Any: '''simple docstring''' _A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*a__ ) def a_ ( self : Dict ) -> Optional[int]: '''simple docstring''' _A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*a__ ) def a_ ( self : int ) -> List[Any]: '''simple docstring''' _A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*a__ ) def a_ ( self : Optional[int] ) -> Tuple: '''simple docstring''' _A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*a__ ) def a_ ( self : Dict ) -> Optional[Any]: '''simple docstring''' if not self.model_tester.is_training: return _A , _A = self.model_tester.prepare_config_and_inputs_for_common() _A = True for model_class in self.all_model_classes: # we don't test BeitForMaskedImageModeling if model_class in [*get_values(a__ ), BeitForMaskedImageModeling]: continue _A = model_class(a__ ) model.to(a__ ) model.train() _A = self._prepare_for_class(a__ , a__ , return_labels=a__ ) _A = model(**a__ ).loss loss.backward() def a_ ( self : List[str] ) -> Dict: '''simple docstring''' _A , _A = self.model_tester.prepare_config_and_inputs_for_common() if not self.model_tester.is_training: return _A = False _A = True for model_class in self.all_model_classes: # we don't test BeitForMaskedImageModeling if ( model_class in [*get_values(a__ ), BeitForMaskedImageModeling] or not model_class.supports_gradient_checkpointing ): continue _A = model_class(a__ ) model.gradient_checkpointing_enable() model.to(a__ ) model.train() _A = self._prepare_for_class(a__ , a__ , return_labels=a__ ) _A = model(**a__ ).loss loss.backward() def a_ ( self : Dict ) -> Optional[int]: '''simple docstring''' _A , _A = self.model_tester.prepare_config_and_inputs_for_common() _A = _config_zero_init(a__ ) for model_class in self.all_model_classes: _A = model_class(config=a__ ) for name, param in model.named_parameters(): # we skip lambda parameters as these require special initial values # determined by config.layer_scale_init_value if "lambda" in name: continue if param.requires_grad: self.assertIn( ((param.data.mean() * 1E9).round() / 1E9).item() , [0.0, 1.0] , msg=F"""Parameter {name} of model {model_class} seems not properly initialized""" , ) @slow def a_ ( self : List[str] ) -> int: '''simple docstring''' for model_name in BEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _A = BeitModel.from_pretrained(a__ ) self.assertIsNotNone(a__ ) def a__ ( ) -> Tuple: _A = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class snake_case ( unittest.TestCase): @cached_property def a_ ( self : Optional[int] ) -> List[str]: '''simple docstring''' return BeitImageProcessor.from_pretrained("microsoft/beit-base-patch16-224" ) if is_vision_available() else None @slow def a_ ( self : Union[str, Any] ) -> Tuple: '''simple docstring''' _A = BeitForMaskedImageModeling.from_pretrained("microsoft/beit-base-patch16-224-pt22k" ).to(a__ ) _A = self.default_image_processor _A = prepare_img() _A = image_processor(images=a__ , return_tensors="pt" ).pixel_values.to(a__ ) # prepare bool_masked_pos _A = torch.ones((1, 1_96) , dtype=torch.bool ).to(a__ ) # forward pass with torch.no_grad(): _A = model(pixel_values=a__ , bool_masked_pos=a__ ) _A = outputs.logits # verify the logits _A = torch.Size((1, 1_96, 81_92) ) self.assertEqual(logits.shape , a__ ) _A = torch.tensor( [[-3.2_4_3_7, 0.5_0_7_2, -1_3.9_1_7_4], [-3.2_4_5_6, 0.4_9_4_8, -1_3.9_4_0_1], [-3.2_0_3_3, 0.5_1_2_1, -1_3.8_5_5_0]] ).to(a__ ) self.assertTrue(torch.allclose(logits[bool_masked_pos][:3, :3] , a__ , atol=1E-2 ) ) @slow def a_ ( self : List[Any] ) -> Optional[int]: '''simple docstring''' _A = BeitForImageClassification.from_pretrained("microsoft/beit-base-patch16-224" ).to(a__ ) _A = self.default_image_processor _A = prepare_img() _A = image_processor(images=a__ , return_tensors="pt" ).to(a__ ) # forward pass with torch.no_grad(): _A = model(**a__ ) _A = outputs.logits # verify the logits _A = torch.Size((1, 10_00) ) self.assertEqual(logits.shape , a__ ) _A = torch.tensor([-1.2_3_8_5, -1.0_9_8_7, -1.0_1_0_8] ).to(a__ ) self.assertTrue(torch.allclose(logits[0, :3] , a__ , atol=1E-4 ) ) _A = 2_81 self.assertEqual(logits.argmax(-1 ).item() , a__ ) @slow def a_ ( self : List[Any] ) -> int: '''simple docstring''' _A = BeitForImageClassification.from_pretrained("microsoft/beit-large-patch16-224-pt22k-ft22k" ).to( a__ ) _A = self.default_image_processor _A = prepare_img() _A = image_processor(images=a__ , return_tensors="pt" ).to(a__ ) # forward pass with torch.no_grad(): _A = model(**a__ ) _A = outputs.logits # verify the logits _A = torch.Size((1, 2_18_41) ) self.assertEqual(logits.shape , a__ ) _A = torch.tensor([1.6_8_8_1, -0.2_7_8_7, 0.5_9_0_1] ).to(a__ ) self.assertTrue(torch.allclose(logits[0, :3] , a__ , atol=1E-4 ) ) _A = 23_96 self.assertEqual(logits.argmax(-1 ).item() , a__ ) @slow def a_ ( self : Tuple ) -> Optional[Any]: '''simple docstring''' _A = BeitForSemanticSegmentation.from_pretrained("microsoft/beit-base-finetuned-ade-640-640" ) _A = model.to(a__ ) _A = BeitImageProcessor(do_resize=a__ , size=6_40 , do_center_crop=a__ ) _A = load_dataset("hf-internal-testing/fixtures_ade20k" , split="test" ) _A = Image.open(ds[0]["file"] ) _A = image_processor(images=a__ , return_tensors="pt" ).to(a__ ) # forward pass with torch.no_grad(): _A = model(**a__ ) _A = outputs.logits # verify the logits _A = torch.Size((1, 1_50, 1_60, 1_60) ) self.assertEqual(logits.shape , a__ ) _A = version.parse(PIL.__version__ ) < version.parse("9.0.0" ) if is_pillow_less_than_a: _A = torch.tensor( [ [[-4.9_2_2_5, -2.3_9_5_4, -3.0_5_2_2], [-2.8_8_2_2, -1.0_0_4_6, -1.7_5_6_1], [-2.9_5_4_9, -1.3_2_2_8, -2.1_3_4_7]], [[-5.8_1_6_8, -3.4_1_2_9, -4.0_7_7_8], [-3.8_6_5_1, -2.2_2_1_4, -3.0_2_7_7], [-3.8_3_5_6, -2.4_6_4_3, -3.3_5_3_5]], [[-0.0_0_7_8, 3.9_9_5_2, 4.0_7_5_4], [2.9_8_5_6, 4.6_9_4_4, 5.0_0_3_5], [3.2_4_1_3, 4.7_8_1_3, 4.9_9_6_9]], ] , device=a__ , ) else: _A = torch.tensor( [ [[-4.8_9_6_0, -2.3_6_8_8, -3.0_3_5_5], [-2.8_4_7_8, -0.9_8_3_6, -1.7_4_1_8], [-2.9_4_4_9, -1.3_3_3_2, -2.1_4_5_6]], [[-5.8_0_8_1, -3.4_1_2_4, -4.1_0_0_6], [-3.8_5_6_1, -2.2_0_8_1, -3.0_3_2_3], [-3.8_3_6_5, -2.4_6_0_1, -3.3_6_6_9]], [[-0.0_3_0_9, 3.9_8_6_8, 4.0_5_4_0], [2.9_6_4_0, 4.6_8_7_7, 4.9_9_7_6], [3.2_0_8_1, 4.7_6_9_0, 4.9_9_4_2]], ] , device=a__ , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , a__ , atol=1E-4 ) ) @slow def a_ ( self : Union[str, Any] ) -> List[Any]: '''simple docstring''' _A = BeitForSemanticSegmentation.from_pretrained("microsoft/beit-base-finetuned-ade-640-640" ) _A = model.to(a__ ) _A = BeitImageProcessor(do_resize=a__ , size=6_40 , do_center_crop=a__ ) _A = load_dataset("hf-internal-testing/fixtures_ade20k" , split="test" ) _A = Image.open(ds[0]["file"] ) _A = image_processor(images=a__ , return_tensors="pt" ).to(a__ ) # forward pass with torch.no_grad(): _A = model(**a__ ) _A = outputs.logits.detach().cpu() _A = image_processor.post_process_semantic_segmentation(outputs=a__ , target_sizes=[(5_00, 3_00)] ) _A = torch.Size((5_00, 3_00) ) self.assertEqual(segmentation[0].shape , a__ ) _A = image_processor.post_process_semantic_segmentation(outputs=a__ ) _A = torch.Size((1_60, 1_60) ) self.assertEqual(segmentation[0].shape , a__ )
163
0
'''simple docstring''' import unittest from transformers import DebertaVaConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( DebertaVaForMaskedLM, DebertaVaForMultipleChoice, DebertaVaForQuestionAnswering, DebertaVaForSequenceClassification, DebertaVaForTokenClassification, DebertaVaModel, ) from transformers.models.deberta_va.modeling_deberta_va import DEBERTA_V2_PRETRAINED_MODEL_ARCHIVE_LIST class __A ( snake_case_ ): def __init__(self : str , __a : Tuple , __a : Tuple=13 , __a : Dict=7 , __a : Any=True , __a : Tuple=True , __a : List[str]=True , __a : Optional[int]=True , __a : Optional[Any]=99 , __a : Optional[int]=32 , __a : Dict=5 , __a : Union[str, Any]=4 , __a : int=37 , __a : Union[str, Any]="gelu" , __a : Tuple=0.1 , __a : Tuple=0.1 , __a : int=512 , __a : Union[str, Any]=16 , __a : List[str]=2 , __a : Any=0.02 , __a : Dict=False , __a : List[Any]=True , __a : List[Any]="None" , __a : List[str]=3 , __a : Any=4 , __a : int=None , ): UpperCAmelCase_ = parent UpperCAmelCase_ = batch_size UpperCAmelCase_ = seq_length UpperCAmelCase_ = is_training UpperCAmelCase_ = use_input_mask UpperCAmelCase_ = use_token_type_ids UpperCAmelCase_ = use_labels UpperCAmelCase_ = vocab_size UpperCAmelCase_ = hidden_size UpperCAmelCase_ = num_hidden_layers UpperCAmelCase_ = num_attention_heads UpperCAmelCase_ = intermediate_size UpperCAmelCase_ = hidden_act UpperCAmelCase_ = hidden_dropout_prob UpperCAmelCase_ = attention_probs_dropout_prob UpperCAmelCase_ = max_position_embeddings UpperCAmelCase_ = type_vocab_size UpperCAmelCase_ = type_sequence_label_size UpperCAmelCase_ = initializer_range UpperCAmelCase_ = num_labels UpperCAmelCase_ = num_choices UpperCAmelCase_ = relative_attention UpperCAmelCase_ = position_biased_input UpperCAmelCase_ = pos_att_type UpperCAmelCase_ = scope def _lowercase (self : int ): UpperCAmelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase_ = None if self.use_input_mask: UpperCAmelCase_ = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) UpperCAmelCase_ = None if self.use_token_type_ids: UpperCAmelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCAmelCase_ = None UpperCAmelCase_ = None UpperCAmelCase_ = None if self.use_labels: UpperCAmelCase_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCAmelCase_ = ids_tensor([self.batch_size] , self.num_choices ) UpperCAmelCase_ = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _lowercase (self : Dict ): return DebertaVaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , relative_attention=self.relative_attention , position_biased_input=self.position_biased_input , pos_att_type=self.pos_att_type , ) def _lowercase (self : List[str] , __a : str ): self.parent.assertListEqual(list(result.loss.size() ) , [] ) def _lowercase (self : Any , __a : int , __a : List[Any] , __a : List[Any] , __a : str , __a : str , __a : Tuple , __a : Tuple ): UpperCAmelCase_ = DebertaVaModel(config=__a ) model.to(__a ) model.eval() UpperCAmelCase_ = model(__a , attention_mask=__a , token_type_ids=__a )[0] UpperCAmelCase_ = model(__a , token_type_ids=__a )[0] UpperCAmelCase_ = model(__a )[0] self.parent.assertListEqual(list(sequence_output.size() ) , [self.batch_size, self.seq_length, self.hidden_size] ) def _lowercase (self : int , __a : List[str] , __a : Any , __a : Any , __a : List[Any] , __a : Optional[int] , __a : Optional[int] , __a : Union[str, Any] ): UpperCAmelCase_ = DebertaVaForMaskedLM(config=__a ) model.to(__a ) model.eval() UpperCAmelCase_ = model(__a , attention_mask=__a , token_type_ids=__a , labels=__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _lowercase (self : List[str] , __a : Optional[Any] , __a : List[Any] , __a : Optional[Any] , __a : Dict , __a : List[Any] , __a : List[Any] , __a : Tuple ): UpperCAmelCase_ = self.num_labels UpperCAmelCase_ = DebertaVaForSequenceClassification(__a ) model.to(__a ) model.eval() UpperCAmelCase_ = model(__a , attention_mask=__a , token_type_ids=__a , labels=__a ) self.parent.assertListEqual(list(result.logits.size() ) , [self.batch_size, self.num_labels] ) self.check_loss_output(__a ) def _lowercase (self : str , __a : List[Any] , __a : List[str] , __a : Any , __a : Optional[int] , __a : Any , __a : Optional[Any] , __a : Dict ): UpperCAmelCase_ = self.num_labels UpperCAmelCase_ = DebertaVaForTokenClassification(config=__a ) model.to(__a ) model.eval() UpperCAmelCase_ = model(__a , attention_mask=__a , token_type_ids=__a , labels=__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _lowercase (self : Tuple , __a : Dict , __a : int , __a : str , __a : Union[str, Any] , __a : List[str] , __a : Union[str, Any] , __a : Any ): UpperCAmelCase_ = DebertaVaForQuestionAnswering(config=__a ) model.to(__a ) model.eval() UpperCAmelCase_ = model( __a , attention_mask=__a , token_type_ids=__a , start_positions=__a , end_positions=__a , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _lowercase (self : int , __a : Dict , __a : Tuple , __a : Dict , __a : int , __a : Tuple , __a : Tuple , __a : Optional[Any] ): UpperCAmelCase_ = DebertaVaForMultipleChoice(config=__a ) model.to(__a ) model.eval() UpperCAmelCase_ = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCAmelCase_ = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCAmelCase_ = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCAmelCase_ = model( __a , attention_mask=__a , token_type_ids=__a , labels=__a , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def _lowercase (self : int ): UpperCAmelCase_ = self.prepare_config_and_inputs() ( ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ) = config_and_inputs UpperCAmelCase_ = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class __A ( snake_case_ , snake_case_ , unittest.TestCase ): a__ : Dict = ( ( DebertaVaModel, DebertaVaForMaskedLM, DebertaVaForSequenceClassification, DebertaVaForTokenClassification, DebertaVaForQuestionAnswering, DebertaVaForMultipleChoice, ) if is_torch_available() else () ) a__ : Dict = ( { """feature-extraction""": DebertaVaModel, """fill-mask""": DebertaVaForMaskedLM, """question-answering""": DebertaVaForQuestionAnswering, """text-classification""": DebertaVaForSequenceClassification, """token-classification""": DebertaVaForTokenClassification, """zero-shot""": DebertaVaForSequenceClassification, } if is_torch_available() else {} ) a__ : List[Any] = True a__ : Optional[Any] = False a__ : Tuple = False a__ : List[Any] = False a__ : Optional[int] = False def _lowercase (self : str ): UpperCAmelCase_ = DebertaVaModelTester(self ) UpperCAmelCase_ = ConfigTester(self , config_class=__a , hidden_size=37 ) def _lowercase (self : Optional[int] ): self.config_tester.run_common_tests() def _lowercase (self : Optional[Any] ): UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_model(*__a ) def _lowercase (self : Optional[int] ): UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_sequence_classification(*__a ) def _lowercase (self : Dict ): UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_masked_lm(*__a ) def _lowercase (self : Optional[Any] ): UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_question_answering(*__a ) def _lowercase (self : int ): UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_token_classification(*__a ) def _lowercase (self : List[Any] ): UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_multiple_choice(*__a ) @slow def _lowercase (self : Union[str, Any] ): for model_name in DEBERTA_V2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase_ = DebertaVaModel.from_pretrained(__a ) self.assertIsNotNone(__a ) @require_torch @require_sentencepiece @require_tokenizers class __A ( unittest.TestCase ): @unittest.skip(reason="Model not available yet" ) def _lowercase (self : List[str] ): pass @slow def _lowercase (self : Union[str, Any] ): UpperCAmelCase_ = DebertaVaModel.from_pretrained("microsoft/deberta-v2-xlarge" ) UpperCAmelCase_ = torch.tensor([[0, 31414, 232, 328, 740, 1140, 12695, 69, 46078, 1588, 2]] ) UpperCAmelCase_ = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): UpperCAmelCase_ = model(__a , attention_mask=__a )[0] # compare the actual values for a slice. UpperCAmelCase_ = torch.tensor( [[[0.23_56, 0.19_48, 0.03_69], [-0.10_63, 0.35_86, -0.51_52], [-0.63_99, -0.02_59, -0.25_25]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , __a , atol=1E-4 ) , f"""{output[:, 1:4, 1:4]}""" )
1
"""simple docstring""" import json import logging import os import socket import git import numpy as np import torch logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - PID: %(process)d - %(message)s""", datefmt="""%m/%d/%Y %H:%M:%S""", level=logging.INFO, ) SCREAMING_SNAKE_CASE__:Any = logging.getLogger(__name__) def _lowerCamelCase( a ): __a = git.Repo(search_parent_directories=a ) __a = { "repo_id": str(a ), "repo_sha": str(repo.head.object.hexsha ), "repo_branch": str(repo.active_branch ), } with open(os.path.join(a , "git_log.json" ) , "w" ) as f: json.dump(a , a , indent=4 ) def _lowerCamelCase( a ): if params.n_gpu <= 0: __a = 0 __a = -1 __a = True __a = False return assert torch.cuda.is_available() logger.info("Initializing GPUs" ) if params.n_gpu > 1: assert params.local_rank != -1 __a = int(os.environ["WORLD_SIZE"] ) __a = int(os.environ["N_GPU_NODE"] ) __a = int(os.environ["RANK"] ) # number of nodes / node ID __a = params.world_size // params.n_gpu_per_node __a = params.global_rank // params.n_gpu_per_node __a = True assert params.n_nodes == int(os.environ["N_NODES"] ) assert params.node_id == int(os.environ["NODE_RANK"] ) # local job (single GPU) else: assert params.local_rank == -1 __a = 1 __a = 0 __a = 0 __a = 0 __a = 1 __a = 1 __a = False # sanity checks assert params.n_nodes >= 1 assert 0 <= params.node_id < params.n_nodes assert 0 <= params.local_rank <= params.global_rank < params.world_size assert params.world_size == params.n_nodes * params.n_gpu_per_node # define whether this is the master process / if we are in multi-node distributed mode __a = params.node_id == 0 and params.local_rank == 0 __a = params.n_nodes > 1 # summary __a = F"--- Global rank: {params.global_rank} - " logger.info(PREFIX + "Number of nodes: %i" % params.n_nodes ) logger.info(PREFIX + "Node ID : %i" % params.node_id ) logger.info(PREFIX + "Local rank : %i" % params.local_rank ) logger.info(PREFIX + "World size : %i" % params.world_size ) logger.info(PREFIX + "GPUs per node : %i" % params.n_gpu_per_node ) logger.info(PREFIX + "Master : %s" % str(params.is_master ) ) logger.info(PREFIX + "Multi-node : %s" % str(params.multi_node ) ) logger.info(PREFIX + "Multi-GPU : %s" % str(params.multi_gpu ) ) logger.info(PREFIX + "Hostname : %s" % socket.gethostname() ) # set GPU device torch.cuda.set_device(params.local_rank ) # initialize multi-GPU if params.multi_gpu: logger.info("Initializing PyTorch distributed" ) torch.distributed.init_process_group( init_method="env://" , backend="nccl" , ) def _lowerCamelCase( a ): np.random.seed(args.seed ) torch.manual_seed(args.seed ) if args.n_gpu > 0: torch.cuda.manual_seed_all(args.seed )
261
0
'''simple docstring''' import os import tempfile import unittest from pathlib import Path from transformers import AutoConfig, is_tf_available from transformers.testing_utils import require_tf if is_tf_available(): import tensorflow as tf from transformers import TensorFlowBenchmark, TensorFlowBenchmarkArguments @require_tf class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" def lowerCAmelCase ( self : str , __UpperCAmelCase : List[Any] ): '''simple docstring''' for model_result in results.values(): for batch_size, sequence_length in zip(model_result["bs"] , model_result["ss"] ): _A = model_result["result"][batch_size][sequence_length] self.assertIsNotNone(__UpperCAmelCase ) def lowerCAmelCase ( self : List[str] ): '''simple docstring''' _A = "sshleifer/tiny-gpt2" _A = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=__UpperCAmelCase , inference=__UpperCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , eager_mode=__UpperCAmelCase , multi_process=__UpperCAmelCase , ) _A = TensorFlowBenchmark(__UpperCAmelCase ) _A = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def lowerCAmelCase ( self : Tuple ): '''simple docstring''' _A = "sgugger/tiny-distilbert-classification" _A = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=__UpperCAmelCase , inference=__UpperCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__UpperCAmelCase , only_pretrain_model=__UpperCAmelCase , ) _A = TensorFlowBenchmark(__UpperCAmelCase ) _A = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def lowerCAmelCase ( self : Optional[Any] ): '''simple docstring''' _A = "sshleifer/tiny-gpt2" _A = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=__UpperCAmelCase , inference=__UpperCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__UpperCAmelCase , ) _A = TensorFlowBenchmark(__UpperCAmelCase ) _A = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def lowerCAmelCase ( self : str ): '''simple docstring''' _A = "sshleifer/tiny-gpt2" _A = AutoConfig.from_pretrained(__UpperCAmelCase ) _A = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=__UpperCAmelCase , inference=__UpperCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , eager_mode=__UpperCAmelCase , multi_process=__UpperCAmelCase , ) _A = TensorFlowBenchmark(__UpperCAmelCase , [config] ) _A = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def lowerCAmelCase ( self : str ): '''simple docstring''' _A = "sshleifer/tiny-gpt2" _A = AutoConfig.from_pretrained(__UpperCAmelCase ) _A = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=__UpperCAmelCase , inference=__UpperCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__UpperCAmelCase , ) _A = TensorFlowBenchmark(__UpperCAmelCase , [config] ) _A = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def lowerCAmelCase ( self : Any ): '''simple docstring''' _A = "sshleifer/tiny-gpt2" _A = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=__UpperCAmelCase , inference=__UpperCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__UpperCAmelCase , ) _A = TensorFlowBenchmark(__UpperCAmelCase ) _A = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def lowerCAmelCase ( self : Optional[int] ): '''simple docstring''' _A = "sshleifer/tiny-gpt2" _A = AutoConfig.from_pretrained(__UpperCAmelCase ) _A = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=__UpperCAmelCase , inference=__UpperCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__UpperCAmelCase , ) _A = TensorFlowBenchmark(__UpperCAmelCase , [config] ) _A = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def lowerCAmelCase ( self : int ): '''simple docstring''' _A = "patrickvonplaten/t5-tiny-random" _A = AutoConfig.from_pretrained(__UpperCAmelCase ) _A = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=__UpperCAmelCase , inference=__UpperCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__UpperCAmelCase , ) _A = TensorFlowBenchmark(__UpperCAmelCase , configs=[config] ) _A = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) @unittest.skipIf(is_tf_available() and len(tf.config.list_physical_devices("GPU" ) ) == 0 , "Cannot do xla on CPU." ) def lowerCAmelCase ( self : str ): '''simple docstring''' _A = "sshleifer/tiny-gpt2" _A = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=__UpperCAmelCase , inference=__UpperCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , use_xla=__UpperCAmelCase , multi_process=__UpperCAmelCase , ) _A = TensorFlowBenchmark(__UpperCAmelCase ) _A = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def lowerCAmelCase ( self : Dict ): '''simple docstring''' _A = "sshleifer/tiny-gpt2" with tempfile.TemporaryDirectory() as tmp_dir: _A = TensorFlowBenchmarkArguments( models=[MODEL_ID] , inference=__UpperCAmelCase , save_to_csv=__UpperCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , inference_time_csv_file=os.path.join(__UpperCAmelCase , "inf_time.csv" ) , inference_memory_csv_file=os.path.join(__UpperCAmelCase , "inf_mem.csv" ) , env_info_csv_file=os.path.join(__UpperCAmelCase , "env.csv" ) , multi_process=__UpperCAmelCase , ) _A = TensorFlowBenchmark(__UpperCAmelCase ) benchmark.run() self.assertTrue(Path(os.path.join(__UpperCAmelCase , "inf_time.csv" ) ).exists() ) self.assertTrue(Path(os.path.join(__UpperCAmelCase , "inf_mem.csv" ) ).exists() ) self.assertTrue(Path(os.path.join(__UpperCAmelCase , "env.csv" ) ).exists() ) def lowerCAmelCase ( self : List[Any] ): '''simple docstring''' _A = "sshleifer/tiny-gpt2" def _check_summary_is_not_empty(__UpperCAmelCase : Any ): self.assertTrue(hasattr(__UpperCAmelCase , "sequential" ) ) self.assertTrue(hasattr(__UpperCAmelCase , "cumulative" ) ) self.assertTrue(hasattr(__UpperCAmelCase , "current" ) ) self.assertTrue(hasattr(__UpperCAmelCase , "total" ) ) with tempfile.TemporaryDirectory() as tmp_dir: _A = TensorFlowBenchmarkArguments( models=[MODEL_ID] , inference=__UpperCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , log_filename=os.path.join(__UpperCAmelCase , "log.txt" ) , log_print=__UpperCAmelCase , trace_memory_line_by_line=__UpperCAmelCase , eager_mode=__UpperCAmelCase , multi_process=__UpperCAmelCase , ) _A = TensorFlowBenchmark(__UpperCAmelCase ) _A = benchmark.run() _check_summary_is_not_empty(result.inference_summary ) self.assertTrue(Path(os.path.join(__UpperCAmelCase , "log.txt" ) ).exists() )
364
'''simple docstring''' import unittest import numpy as np import requests from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch from transformers.pytorch_utils import is_torch_greater_or_equal_than_1_11 else: lowerCamelCase_ = False if is_vision_available(): from PIL import Image from transformers import PixaStructImageProcessor class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" def __init__( self : Optional[int] , __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : Optional[Any]=7 , __UpperCAmelCase : Dict=3 , __UpperCAmelCase : List[str]=18 , __UpperCAmelCase : Union[str, Any]=30 , __UpperCAmelCase : Union[str, Any]=400 , __UpperCAmelCase : List[Any]=None , __UpperCAmelCase : str=True , __UpperCAmelCase : List[str]=True , __UpperCAmelCase : Union[str, Any]=None , ): '''simple docstring''' _A = size if size is not None else {"height": 20, "width": 20} _A = parent _A = batch_size _A = num_channels _A = image_size _A = min_resolution _A = max_resolution _A = size _A = do_normalize _A = do_convert_rgb _A = [512, 1024, 2048, 4096] _A = patch_size if patch_size is not None else {"height": 16, "width": 16} def lowerCAmelCase ( self : Union[str, Any] ): '''simple docstring''' return {"do_normalize": self.do_normalize, "do_convert_rgb": self.do_convert_rgb} def lowerCAmelCase ( self : List[Any] ): '''simple docstring''' _A = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/australia.jpg" _A = Image.open(requests.get(__UpperCAmelCase , stream=__UpperCAmelCase ).raw ).convert("RGB" ) return raw_image @unittest.skipIf( not is_torch_greater_or_equal_than_1_11 , reason='''`Pix2StructImageProcessor` requires `torch>=1.11.0`.''' , ) @require_torch @require_vision class _UpperCAmelCase ( snake_case_ , unittest.TestCase ): """simple docstring""" snake_case = PixaStructImageProcessor if is_vision_available() else None def lowerCAmelCase ( self : int ): '''simple docstring''' _A = PixaStructImageProcessingTester(self ) @property def lowerCAmelCase ( self : Union[str, Any] ): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def lowerCAmelCase ( self : Union[str, Any] ): '''simple docstring''' _A = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__UpperCAmelCase , "do_normalize" ) ) self.assertTrue(hasattr(__UpperCAmelCase , "do_convert_rgb" ) ) def lowerCAmelCase ( self : Tuple ): '''simple docstring''' _A = self.image_processor_tester.prepare_dummy_image() _A = self.image_processing_class(**self.image_processor_dict ) _A = 2048 _A = image_processor(__UpperCAmelCase , return_tensors="pt" , max_patches=__UpperCAmelCase ) self.assertTrue(torch.allclose(inputs.flattened_patches.mean() , torch.tensor(0.0606 ) , atol=1E-3 , rtol=1E-3 ) ) def lowerCAmelCase ( self : Tuple ): '''simple docstring''' _A = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _A = prepare_image_inputs(self.image_processor_tester , equal_resolution=__UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(__UpperCAmelCase , Image.Image ) # Test not batched input _A = ( (self.image_processor_tester.patch_size["height"] * self.image_processor_tester.patch_size["width"]) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input _A = image_processor( image_inputs[0] , return_tensors="pt" , max_patches=__UpperCAmelCase ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched _A = image_processor( __UpperCAmelCase , return_tensors="pt" , max_patches=__UpperCAmelCase ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) def lowerCAmelCase ( self : Tuple ): '''simple docstring''' _A = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _A = prepare_image_inputs(self.image_processor_tester , equal_resolution=__UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(__UpperCAmelCase , Image.Image ) # Test not batched input _A = ( (self.image_processor_tester.patch_size["height"] * self.image_processor_tester.patch_size["width"]) * self.image_processor_tester.num_channels ) + 2 _A = True for max_patch in self.image_processor_tester.max_patches: # Test not batched input with self.assertRaises(__UpperCAmelCase ): _A = image_processor( image_inputs[0] , return_tensors="pt" , max_patches=__UpperCAmelCase ).flattened_patches _A = "Hello" _A = image_processor( image_inputs[0] , return_tensors="pt" , max_patches=__UpperCAmelCase , header_text=__UpperCAmelCase ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched _A = image_processor( __UpperCAmelCase , return_tensors="pt" , max_patches=__UpperCAmelCase , header_text=__UpperCAmelCase ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) def lowerCAmelCase ( self : Optional[int] ): '''simple docstring''' _A = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _A = prepare_image_inputs(self.image_processor_tester , equal_resolution=__UpperCAmelCase , numpify=__UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(__UpperCAmelCase , np.ndarray ) _A = ( (self.image_processor_tester.patch_size["height"] * self.image_processor_tester.patch_size["width"]) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input _A = image_processor( image_inputs[0] , return_tensors="pt" , max_patches=__UpperCAmelCase ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched _A = image_processor( __UpperCAmelCase , return_tensors="pt" , max_patches=__UpperCAmelCase ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) def lowerCAmelCase ( self : int ): '''simple docstring''' _A = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _A = prepare_image_inputs(self.image_processor_tester , equal_resolution=__UpperCAmelCase , torchify=__UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(__UpperCAmelCase , torch.Tensor ) # Test not batched input _A = ( (self.image_processor_tester.patch_size["height"] * self.image_processor_tester.patch_size["width"]) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input _A = image_processor( image_inputs[0] , return_tensors="pt" , max_patches=__UpperCAmelCase ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched _A = image_processor( __UpperCAmelCase , return_tensors="pt" , max_patches=__UpperCAmelCase ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) @unittest.skipIf( not is_torch_greater_or_equal_than_1_11 , reason='''`Pix2StructImageProcessor` requires `torch>=1.11.0`.''' , ) @require_torch @require_vision class _UpperCAmelCase ( snake_case_ , unittest.TestCase ): """simple docstring""" snake_case = PixaStructImageProcessor if is_vision_available() else None def lowerCAmelCase ( self : Optional[int] ): '''simple docstring''' _A = PixaStructImageProcessingTester(self , num_channels=4 ) _A = 3 @property def lowerCAmelCase ( self : Optional[int] ): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def lowerCAmelCase ( self : int ): '''simple docstring''' _A = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__UpperCAmelCase , "do_normalize" ) ) self.assertTrue(hasattr(__UpperCAmelCase , "do_convert_rgb" ) ) def lowerCAmelCase ( self : Tuple ): '''simple docstring''' _A = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _A = prepare_image_inputs(self.image_processor_tester , equal_resolution=__UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(__UpperCAmelCase , Image.Image ) # Test not batched input _A = ( (self.image_processor_tester.patch_size["height"] * self.image_processor_tester.patch_size["width"]) * (self.image_processor_tester.num_channels - 1) ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input _A = image_processor( image_inputs[0] , return_tensors="pt" , max_patches=__UpperCAmelCase ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched _A = image_processor( __UpperCAmelCase , return_tensors="pt" , max_patches=__UpperCAmelCase ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , )
174
0
import copy from collections import OrderedDict from typing import Dict, Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING lowerCamelCase : Optional[int] =logging.get_logger(__name__) lowerCamelCase : Optional[Any] ={ '''facebook/detr-resnet-50''': '''https://huggingface.co/facebook/detr-resnet-50/resolve/main/config.json''', # See all DETR models at https://huggingface.co/models?filter=detr } class __a ( A__ ): _lowerCAmelCase : List[str] = '''detr''' _lowerCAmelCase : Optional[Any] = ['''past_key_values'''] _lowerCAmelCase : Optional[Any] = { '''hidden_size''': '''d_model''', '''num_attention_heads''': '''encoder_attention_heads''', } def __init__( self : Optional[int] , SCREAMING_SNAKE_CASE : Tuple=True , SCREAMING_SNAKE_CASE : Any=None , SCREAMING_SNAKE_CASE : Optional[Any]=3 , SCREAMING_SNAKE_CASE : Any=1_00 , SCREAMING_SNAKE_CASE : str=6 , SCREAMING_SNAKE_CASE : List[str]=20_48 , SCREAMING_SNAKE_CASE : Any=8 , SCREAMING_SNAKE_CASE : Any=6 , SCREAMING_SNAKE_CASE : Optional[Any]=20_48 , SCREAMING_SNAKE_CASE : Any=8 , SCREAMING_SNAKE_CASE : int=0.0 , SCREAMING_SNAKE_CASE : int=0.0 , SCREAMING_SNAKE_CASE : Dict=True , SCREAMING_SNAKE_CASE : str="relu" , SCREAMING_SNAKE_CASE : List[str]=2_56 , SCREAMING_SNAKE_CASE : Optional[int]=0.1 , SCREAMING_SNAKE_CASE : Any=0.0 , SCREAMING_SNAKE_CASE : List[str]=0.0 , SCREAMING_SNAKE_CASE : Tuple=0.0_2 , SCREAMING_SNAKE_CASE : List[Any]=1.0 , SCREAMING_SNAKE_CASE : Optional[int]=False , SCREAMING_SNAKE_CASE : Optional[int]="sine" , SCREAMING_SNAKE_CASE : Optional[int]="resnet50" , SCREAMING_SNAKE_CASE : Optional[Any]=True , SCREAMING_SNAKE_CASE : Optional[Any]=False , SCREAMING_SNAKE_CASE : Optional[Any]=1 , SCREAMING_SNAKE_CASE : List[str]=5 , SCREAMING_SNAKE_CASE : Optional[int]=2 , SCREAMING_SNAKE_CASE : str=1 , SCREAMING_SNAKE_CASE : List[str]=1 , SCREAMING_SNAKE_CASE : Dict=5 , SCREAMING_SNAKE_CASE : str=2 , SCREAMING_SNAKE_CASE : Tuple=0.1 , **SCREAMING_SNAKE_CASE : str , ): '''simple docstring''' if backbone_config is not None and use_timm_backbone: raise ValueError("You can't specify both `backbone_config` and `use_timm_backbone`." ) if not use_timm_backbone: if backbone_config is None: logger.info("`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone." ) UpperCamelCase__ : List[str] = CONFIG_MAPPING["resnet"](out_features=["stage4"] ) elif isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): UpperCamelCase__ : Any = backbone_config.get("model_type" ) UpperCamelCase__ : int = CONFIG_MAPPING[backbone_model_type] UpperCamelCase__ : Union[str, Any] = config_class.from_dict(SCREAMING_SNAKE_CASE ) # set timm attributes to None UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ : str = None, None, None UpperCamelCase__ : Optional[Any] = use_timm_backbone UpperCamelCase__ : Optional[Any] = backbone_config UpperCamelCase__ : Dict = num_channels UpperCamelCase__ : Any = num_queries UpperCamelCase__ : List[str] = d_model UpperCamelCase__ : List[str] = encoder_ffn_dim UpperCamelCase__ : Union[str, Any] = encoder_layers UpperCamelCase__ : Dict = encoder_attention_heads UpperCamelCase__ : Optional[int] = decoder_ffn_dim UpperCamelCase__ : Tuple = decoder_layers UpperCamelCase__ : Any = decoder_attention_heads UpperCamelCase__ : Union[str, Any] = dropout UpperCamelCase__ : Optional[Any] = attention_dropout UpperCamelCase__ : Optional[int] = activation_dropout UpperCamelCase__ : Tuple = activation_function UpperCamelCase__ : List[Any] = init_std UpperCamelCase__ : List[str] = init_xavier_std UpperCamelCase__ : Optional[Any] = encoder_layerdrop UpperCamelCase__ : Any = decoder_layerdrop UpperCamelCase__ : Optional[int] = encoder_layers UpperCamelCase__ : str = auxiliary_loss UpperCamelCase__ : List[Any] = position_embedding_type UpperCamelCase__ : Tuple = backbone UpperCamelCase__ : Tuple = use_pretrained_backbone UpperCamelCase__ : Optional[Any] = dilation # Hungarian matcher UpperCamelCase__ : Optional[int] = class_cost UpperCamelCase__ : int = bbox_cost UpperCamelCase__ : Dict = giou_cost # Loss coefficients UpperCamelCase__ : Dict = mask_loss_coefficient UpperCamelCase__ : Tuple = dice_loss_coefficient UpperCamelCase__ : Optional[int] = bbox_loss_coefficient UpperCamelCase__ : str = giou_loss_coefficient UpperCamelCase__ : List[str] = eos_coefficient super().__init__(is_encoder_decoder=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) @property def __lowercase ( self : Union[str, Any] ): '''simple docstring''' return self.encoder_attention_heads @property def __lowercase ( self : Tuple ): '''simple docstring''' return self.d_model @classmethod def __lowercase ( cls : str , SCREAMING_SNAKE_CASE : PretrainedConfig , **SCREAMING_SNAKE_CASE : Tuple ): '''simple docstring''' return cls(backbone_config=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) def __lowercase ( self : str ): '''simple docstring''' UpperCamelCase__ : List[Any] = copy.deepcopy(self.__dict__ ) if output["backbone_config"] is not None: UpperCamelCase__ : int = self.backbone_config.to_dict() UpperCamelCase__ : str = self.__class__.model_type return output class __a ( A__ ): _lowerCAmelCase : Union[str, Any] = version.parse('''1.11''' ) @property def __lowercase ( self : str ): '''simple docstring''' return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ("pixel_mask", {0: "batch"}), ] ) @property def __lowercase ( self : str ): '''simple docstring''' return 1e-5 @property def __lowercase ( self : Dict ): '''simple docstring''' return 12
189
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from ..models.auto import AutoModelForSequenceClassification, AutoTokenizer from .base import PipelineTool class __a ( A__ ): _lowerCAmelCase : str = '''facebook/bart-large-mnli''' _lowerCAmelCase : Tuple = ( '''This is a tool that classifies an English text using provided labels. It takes two inputs: `text`, which ''' '''should be the text to classify, and `labels`, which should be the list of labels to use for classification. ''' '''It returns the most likely label in the list of provided `labels` for the input text.''' ) _lowerCAmelCase : Any = '''text_classifier''' _lowerCAmelCase : int = AutoTokenizer _lowerCAmelCase : Union[str, Any] = AutoModelForSequenceClassification _lowerCAmelCase : Union[str, Any] = ['''text''', ['''text''']] _lowerCAmelCase : Dict = ['''text'''] def __lowercase ( self : int ): '''simple docstring''' super().setup() UpperCamelCase__ : Dict = self.model.config UpperCamelCase__ : Union[str, Any] = -1 for idx, label in config.idalabel.items(): if label.lower().startswith("entail" ): UpperCamelCase__ : List[str] = int(SCREAMING_SNAKE_CASE ) if self.entailment_id == -1: raise ValueError("Could not determine the entailment ID from the model config, please pass it at init." ) def __lowercase ( self : Tuple , SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : List[Any] ): '''simple docstring''' UpperCamelCase__ : Any = labels return self.pre_processor( [text] * len(SCREAMING_SNAKE_CASE ) , [F'This example is {label}' for label in labels] , return_tensors="pt" , padding="max_length" , ) def __lowercase ( self : Optional[Any] , SCREAMING_SNAKE_CASE : Dict ): '''simple docstring''' UpperCamelCase__ : List[Any] = outputs.logits UpperCamelCase__ : Any = torch.argmax(logits[:, 2] ).item() return self._labels[label_id]
189
1
import argparse import torch from torch import nn from transformers import SpeechaTextConfig, SpeechaTextForConditionalGeneration def __lowerCamelCase ( lowerCamelCase__ : List[Any] ): '''simple docstring''' lowerCamelCase = [ """encoder.version""", """decoder.version""", """model.encoder.version""", """model.decoder.version""", """decoder.output_projection.weight""", """_float_tensor""", """encoder.embed_positions._float_tensor""", """decoder.embed_positions._float_tensor""", ] for k in ignore_keys: state_dict.pop(lowerCamelCase__ , lowerCamelCase__ ) def __lowerCamelCase ( lowerCamelCase__ : Union[str, Any] ): '''simple docstring''' lowerCamelCase = list(s_dict.keys() ) for key in keys: if "transformer_layers" in key: lowerCamelCase = s_dict.pop(lowerCamelCase__ ) elif "subsample" in key: lowerCamelCase = s_dict.pop(lowerCamelCase__ ) def __lowerCamelCase ( lowerCamelCase__ : Any ): '''simple docstring''' lowerCamelCase , lowerCamelCase = emb.weight.shape lowerCamelCase = nn.Linear(lowerCamelCase__ , lowerCamelCase__ , bias=lowerCamelCase__ ) lowerCamelCase = emb.weight.data return lin_layer def __lowerCamelCase ( lowerCamelCase__ : Optional[Any] , lowerCamelCase__ : Dict ): '''simple docstring''' lowerCamelCase = torch.load(lowerCamelCase__ , map_location="""cpu""" ) lowerCamelCase = mam_aaa["""args"""] lowerCamelCase = mam_aaa["""model"""] lowerCamelCase = state_dict["""decoder.output_projection.weight"""] remove_ignore_keys_(lowerCamelCase__ ) rename_keys(lowerCamelCase__ ) lowerCamelCase = state_dict["""decoder.embed_tokens.weight"""].shape[0] lowerCamelCase = args.share_decoder_input_output_embed lowerCamelCase = [int(lowerCamelCase__ ) for i in args.conv_kernel_sizes.split(""",""" )] lowerCamelCase = SpeechaTextConfig( vocab_size=lowerCamelCase__ , max_source_positions=args.max_source_positions , max_target_positions=args.max_target_positions , encoder_layers=args.encoder_layers , decoder_layers=args.decoder_layers , encoder_attention_heads=args.encoder_attention_heads , decoder_attention_heads=args.decoder_attention_heads , encoder_ffn_dim=args.encoder_ffn_embed_dim , decoder_ffn_dim=args.decoder_ffn_embed_dim , d_model=args.encoder_embed_dim , dropout=args.dropout , attention_dropout=args.attention_dropout , activation_dropout=args.activation_dropout , activation_function="""relu""" , num_conv_layers=len(lowerCamelCase__ ) , conv_channels=args.conv_channels , conv_kernel_sizes=lowerCamelCase__ , input_feat_per_channel=args.input_feat_per_channel , input_channels=args.input_channels , tie_word_embeddings=lowerCamelCase__ , num_beams=5 , max_length=200 , use_cache=lowerCamelCase__ , decoder_start_token_id=2 , early_stopping=lowerCamelCase__ , ) lowerCamelCase = SpeechaTextForConditionalGeneration(lowerCamelCase__ ) lowerCamelCase , lowerCamelCase = model.model.load_state_dict(lowerCamelCase__ , strict=lowerCamelCase__ ) if len(lowerCamelCase__ ) > 0 and not set(lowerCamelCase__ ) <= { "encoder.embed_positions.weights", "decoder.embed_positions.weights", }: raise ValueError( """Only `encoder.embed_positions.weights` and `decoder.embed_positions.weights` are allowed to be missing,""" f' but all the following weights are missing {missing}' ) if tie_embeds: lowerCamelCase = make_linear_from_emb(model.model.decoder.embed_tokens ) else: lowerCamelCase = lm_head_weights model.save_pretrained(lowerCamelCase__ ) if __name__ == "__main__": UpperCAmelCase : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument("--fairseq_path", type=str, help="Path to the fairseq model (.pt) file.") parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") UpperCAmelCase : Dict = parser.parse_args() convert_fairseq_sat_checkpoint_to_tfms(args.fairseq_path, args.pytorch_dump_folder_path)
66
import argparse import re import torch from CLAP import create_model from transformers import AutoFeatureExtractor, ClapConfig, ClapModel UpperCAmelCase : str = { "text_branch": "text_model", "audio_branch": "audio_model.audio_encoder", "attn": "attention.self", "self.proj": "output.dense", "attention.self_mask": "attn_mask", "mlp.fc1": "intermediate.dense", "mlp.fc2": "output.dense", "norm1": "layernorm_before", "norm2": "layernorm_after", "bn0": "batch_norm", } UpperCAmelCase : Tuple = AutoFeatureExtractor.from_pretrained("laion/clap-htsat-unfused", truncation="rand_trunc") def __lowerCamelCase ( lowerCamelCase__ : List[str] , lowerCamelCase__ : Tuple=False ): '''simple docstring''' lowerCamelCase , lowerCamelCase = create_model( """HTSAT-tiny""" , """roberta""" , lowerCamelCase__ , precision="""fp32""" , device="""cuda:0""" if torch.cuda.is_available() else """cpu""" , enable_fusion=lowerCamelCase__ , fusion_type="""aff_2d""" if enable_fusion else None , ) return model, model_cfg def __lowerCamelCase ( lowerCamelCase__ : str ): '''simple docstring''' lowerCamelCase = {} lowerCamelCase = R""".*sequential.(\d+).*""" lowerCamelCase = R""".*_projection.(\d+).*""" for key, value in state_dict.items(): # check if any key needs to be modified for key_to_modify, new_key in KEYS_TO_MODIFY_MAPPING.items(): if key_to_modify in key: lowerCamelCase = key.replace(lowerCamelCase__ , lowerCamelCase__ ) if re.match(lowerCamelCase__ , lowerCamelCase__ ): # replace sequential layers with list lowerCamelCase = re.match(lowerCamelCase__ , lowerCamelCase__ ).group(1 ) lowerCamelCase = key.replace(f'sequential.{sequential_layer}.' , f'layers.{int(lowerCamelCase__ )//3}.linear.' ) elif re.match(lowerCamelCase__ , lowerCamelCase__ ): lowerCamelCase = int(re.match(lowerCamelCase__ , lowerCamelCase__ ).group(1 ) ) # Because in CLAP they use `nn.Sequential`... lowerCamelCase = 1 if projecton_layer == 0 else 2 lowerCamelCase = key.replace(f'_projection.{projecton_layer}.' , f'_projection.linear{transformers_projection_layer}.' ) if "audio" and "qkv" in key: # split qkv into query key and value lowerCamelCase = value lowerCamelCase = mixed_qkv.size(0 ) // 3 lowerCamelCase = mixed_qkv[:qkv_dim] lowerCamelCase = mixed_qkv[qkv_dim : qkv_dim * 2] lowerCamelCase = mixed_qkv[qkv_dim * 2 :] lowerCamelCase = query_layer lowerCamelCase = key_layer lowerCamelCase = value_layer else: lowerCamelCase = value return model_state_dict def __lowerCamelCase ( lowerCamelCase__ : Any , lowerCamelCase__ : Optional[int] , lowerCamelCase__ : List[Any] , lowerCamelCase__ : Any=False ): '''simple docstring''' lowerCamelCase , lowerCamelCase = init_clap(lowerCamelCase__ , enable_fusion=lowerCamelCase__ ) clap_model.eval() lowerCamelCase = clap_model.state_dict() lowerCamelCase = rename_state_dict(lowerCamelCase__ ) lowerCamelCase = ClapConfig() lowerCamelCase = enable_fusion lowerCamelCase = ClapModel(lowerCamelCase__ ) # ignore the spectrogram embedding layer model.load_state_dict(lowerCamelCase__ , strict=lowerCamelCase__ ) model.save_pretrained(lowerCamelCase__ ) transformers_config.save_pretrained(lowerCamelCase__ ) if __name__ == "__main__": UpperCAmelCase : Dict = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument("--enable_fusion", action="store_true", help="Whether to enable fusion or not") UpperCAmelCase : int = parser.parse_args() convert_clap_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.enable_fusion)
66
1
# Lint as: python3 import dataclasses import re from dataclasses import dataclass from functools import total_ordering from typing import Optional, Union a_ = re.compile(r'^(?P<major>\d+)' r'\.(?P<minor>\d+)' r'\.(?P<patch>\d+)$') @total_ordering @dataclass class _UpperCamelCase : '''simple docstring''' lowerCamelCase__ =42 lowerCamelCase__ =None lowerCamelCase__ =None lowerCamelCase__ =None lowerCamelCase__ =None def __UpperCamelCase ( self : Tuple ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : int = _str_to_version_tuple(self.version_str ) def __repr__( self : Optional[int] ) -> str: """simple docstring""" return F"{self.tuple[0]}.{self.tuple[1]}.{self.tuple[2]}" @property def __UpperCamelCase ( self : Any ) -> Any: """simple docstring""" return self.major, self.minor, self.patch def __UpperCamelCase ( self : List[Any] , a : int ) -> str: """simple docstring""" if isinstance(a , a ): return Version(a ) elif isinstance(a , a ): return other raise TypeError(F"{other} (type {type(a )}) cannot be compared to version." ) def __eq__( self : Dict , a : Tuple ) -> str: """simple docstring""" try: SCREAMING_SNAKE_CASE : List[Any] = self._validate_operand(a ) except (TypeError, ValueError): return False else: return self.tuple == other.tuple def __lt__( self : Optional[Any] , a : str ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = self._validate_operand(a ) return self.tuple < other.tuple def __hash__( self : Optional[int] ) -> Tuple: """simple docstring""" return hash(_version_tuple_to_str(self.tuple ) ) @classmethod def __UpperCamelCase ( cls : str , a : Tuple ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : Union[str, Any] = {f.name for f in dataclasses.fields(cls )} return cls(**{k: v for k, v in dic.items() if k in field_names} ) def __UpperCamelCase ( self : Dict ) -> str: """simple docstring""" return self.version_str def lowerCamelCase__ ( _a): SCREAMING_SNAKE_CASE : Optional[int] = _VERSION_REG.match(_a) if not res: raise ValueError(f"Invalid version '{version_str}'. Format should be x.y.z with {{x,y,z}} being digits.") return tuple(int(_a) for v in [res.group("major"), res.group("minor"), res.group("patch")]) def lowerCamelCase__ ( _a): return ".".join(str(_a) for v in version_tuple)
76
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_convbert import ConvBertTokenizer a_ = logging.get_logger(__name__) a_ = {'vocab_file': 'vocab.txt'} a_ = { 'vocab_file': { 'YituTech/conv-bert-base': 'https://huggingface.co/YituTech/conv-bert-base/resolve/main/vocab.txt', 'YituTech/conv-bert-medium-small': ( 'https://huggingface.co/YituTech/conv-bert-medium-small/resolve/main/vocab.txt' ), 'YituTech/conv-bert-small': 'https://huggingface.co/YituTech/conv-bert-small/resolve/main/vocab.txt', } } a_ = { 'YituTech/conv-bert-base': 512, 'YituTech/conv-bert-medium-small': 512, 'YituTech/conv-bert-small': 512, } a_ = { 'YituTech/conv-bert-base': {'do_lower_case': True}, 'YituTech/conv-bert-medium-small': {'do_lower_case': True}, 'YituTech/conv-bert-small': {'do_lower_case': True}, } class _UpperCamelCase ( __A ): '''simple docstring''' lowerCamelCase__ =VOCAB_FILES_NAMES lowerCamelCase__ =PRETRAINED_VOCAB_FILES_MAP lowerCamelCase__ =PRETRAINED_INIT_CONFIGURATION lowerCamelCase__ =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase__ =ConvBertTokenizer def __init__( self : List[str] , a : Union[str, Any]=None , a : Optional[int]=None , a : int=True , a : Tuple="[UNK]" , a : Dict="[SEP]" , a : Dict="[PAD]" , a : List[Any]="[CLS]" , a : Tuple="[MASK]" , a : Dict=True , a : Optional[Any]=None , **a : str , ) -> Dict: """simple docstring""" super().__init__( a , tokenizer_file=a , do_lower_case=a , unk_token=a , sep_token=a , pad_token=a , cls_token=a , mask_token=a , tokenize_chinese_chars=a , strip_accents=a , **a , ) SCREAMING_SNAKE_CASE : Optional[Any] = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("lowercase" , a ) != do_lower_case or normalizer_state.get("strip_accents" , a ) != strip_accents or normalizer_state.get("handle_chinese_chars" , a ) != tokenize_chinese_chars ): SCREAMING_SNAKE_CASE : List[str] = getattr(a , normalizer_state.pop("type" ) ) SCREAMING_SNAKE_CASE : Optional[Any] = do_lower_case SCREAMING_SNAKE_CASE : Any = strip_accents SCREAMING_SNAKE_CASE : Optional[int] = tokenize_chinese_chars SCREAMING_SNAKE_CASE : List[str] = normalizer_class(**a ) SCREAMING_SNAKE_CASE : str = do_lower_case def __UpperCamelCase ( self : Union[str, Any] , a : List[Any] , a : int=None ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : str = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def __UpperCamelCase ( self : Dict , a : List[int] , a : Optional[List[int]] = None ) -> List[int]: """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = [self.sep_token_id] SCREAMING_SNAKE_CASE : Union[str, Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __UpperCamelCase ( self : Tuple , a : str , a : Optional[str] = None ) -> Tuple[str]: """simple docstring""" SCREAMING_SNAKE_CASE : Dict = self._tokenizer.model.save(a , name=a ) return tuple(a )
76
1
'''simple docstring''' import os from datetime import datetime as dt from github import Github lowerCAmelCase :List[str] = [ '''good first issue''', '''good second issue''', '''good difficult issue''', '''enhancement''', '''new pipeline/model''', '''new scheduler''', '''wip''', ] def lowerCamelCase ( ): """simple docstring""" __magic_name__ : Any = Github(os.environ['GITHUB_TOKEN'] ) __magic_name__ : Optional[int] = g.get_repo('huggingface/diffusers' ) __magic_name__ : int = repo.get_issues(state='open' ) for issue in open_issues: __magic_name__ : Optional[Any] = sorted(issue.get_comments() , key=lambda lowerCAmelCase : i.created_at , reverse=lowerCAmelCase ) __magic_name__ : Tuple = comments[0] if len(lowerCAmelCase ) > 0 else None if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and (dt.utcnow() - issue.updated_at).days > 7 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Closes the issue after 7 days of inactivity since the Stalebot notification. issue.edit(state='closed' ) elif ( "stale" in issue.get_labels() and last_comment is not None and last_comment.user.login != "github-actions[bot]" ): # Opens the issue if someone other than Stalebot commented. issue.edit(state='open' ) issue.remove_from_labels('stale' ) elif ( (dt.utcnow() - issue.updated_at).days > 23 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Post a Stalebot notification after 23 days of inactivity. issue.create_comment( 'This issue has been automatically marked as stale because it has not had ' 'recent activity. If you think this still needs to be addressed ' 'please comment on this thread.\n\nPlease note that issues that do not follow the ' '[contributing guidelines](https://github.com/huggingface/diffusers/blob/main/CONTRIBUTING.md) ' 'are likely to be ignored.' ) issue.add_to_labels('stale' ) if __name__ == "__main__": main()
275
'''simple docstring''' import gc import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import ( AutoencoderKL, DiffusionPipeline, EulerDiscreteScheduler, StableDiffusionXLImgaImgPipeline, UNetaDConditionModel, ) from diffusers.utils import floats_tensor, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class _lowerCamelCase ( lowercase__ , lowercase__ , unittest.TestCase ): '''simple docstring''' A_ : int = StableDiffusionXLImgaImgPipeline A_ : str = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {"""height""", """width"""} A_ : Optional[Any] = PipelineTesterMixin.required_optional_params - {"""latents"""} A_ : Any = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS A_ : Any = IMAGE_TO_IMAGE_IMAGE_PARAMS A_ : Optional[int] = IMAGE_TO_IMAGE_IMAGE_PARAMS def __lowerCAmelCase ( self : Dict ) -> Optional[int]: torch.manual_seed(0 ) __magic_name__ : int = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , attention_head_dim=(2, 4) , use_linear_projection=_A , addition_embed_type='text_time' , addition_time_embed_dim=8 , transformer_layers_per_block=(1, 2) , projection_class_embeddings_input_dim=80 , cross_attention_dim=64 , ) __magic_name__ : str = EulerDiscreteScheduler( beta_start=0.0_0085 , beta_end=0.012 , steps_offset=1 , beta_schedule='scaled_linear' , timestep_spacing='leading' , ) torch.manual_seed(0 ) __magic_name__ : str = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , sample_size=128 , ) torch.manual_seed(0 ) __magic_name__ : Any = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , hidden_act='gelu' , projection_dim=32 , ) __magic_name__ : Dict = CLIPTextModel(_A ) __magic_name__ : List[str] = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' , local_files_only=_A ) __magic_name__ : Optional[Any] = CLIPTextModelWithProjection(_A ) __magic_name__ : Dict = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' , local_files_only=_A ) __magic_name__ : List[Any] = { 'unet': unet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'text_encoder_2': text_encoder_a, 'tokenizer_2': tokenizer_a, # "safety_checker": None, # "feature_extractor": None, } return components def __lowerCAmelCase ( self : List[Any] , _A : List[str] , _A : Any=0 ) -> Union[str, Any]: __magic_name__ : Any = floats_tensor((1, 3, 32, 32) , rng=random.Random(_A ) ).to(_A ) __magic_name__ : Dict = image / 2 + 0.5 if str(_A ).startswith('mps' ): __magic_name__ : Any = torch.manual_seed(_A ) else: __magic_name__ : int = torch.Generator(device=_A ).manual_seed(_A ) __magic_name__ : List[Any] = { 'prompt': 'A painting of a squirrel eating a burger', 'image': image, 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 5.0, 'output_type': 'numpy', 'strength': 0.75, } return inputs def __lowerCAmelCase ( self : Optional[Any] ) -> List[Any]: __magic_name__ : str = 'cpu' # ensure determinism for the device-dependent torch.Generator __magic_name__ : str = self.get_dummy_components() __magic_name__ : Any = StableDiffusionXLImgaImgPipeline(**_A ) __magic_name__ : List[Any] = sd_pipe.to(_A ) sd_pipe.set_progress_bar_config(disable=_A ) __magic_name__ : Any = self.get_dummy_inputs(_A ) __magic_name__ : Optional[int] = sd_pipe(**_A ).images __magic_name__ : str = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) __magic_name__ : Any = np.array([0.4656, 0.4840, 0.4439, 0.6698, 0.5574, 0.4524, 0.5799, 0.5943, 0.5165] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def __lowerCAmelCase ( self : Optional[int] ) -> Optional[Any]: super().test_attention_slicing_forward_pass(expected_max_diff=3E-3 ) def __lowerCAmelCase ( self : List[Any] ) -> int: super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) def __lowerCAmelCase ( self : Any ) -> Union[str, Any]: pass def __lowerCAmelCase ( self : List[Any] ) -> Optional[int]: __magic_name__ : Dict = self.get_dummy_components() __magic_name__ : Optional[Any] = StableDiffusionXLImgaImgPipeline(**_A ) __magic_name__ : List[Any] = sd_pipe.to(_A ) __magic_name__ : str = sd_pipe.to(_A ) sd_pipe.set_progress_bar_config(disable=_A ) # forward without prompt embeds __magic_name__ : Union[str, Any] = self.get_dummy_inputs(_A ) __magic_name__ : Union[str, Any] = 3 * ['this is a negative prompt'] __magic_name__ : List[str] = negative_prompt __magic_name__ : int = 3 * [inputs['prompt']] __magic_name__ : Tuple = sd_pipe(**_A ) __magic_name__ : str = output.images[0, -3:, -3:, -1] # forward with prompt embeds __magic_name__ : Optional[Any] = self.get_dummy_inputs(_A ) __magic_name__ : Tuple = 3 * ['this is a negative prompt'] __magic_name__ : List[str] = 3 * [inputs.pop('prompt' )] ( ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ) : List[Any] = sd_pipe.encode_prompt(_A , negative_prompt=_A ) __magic_name__ : Tuple = sd_pipe( **_A , prompt_embeds=_A , negative_prompt_embeds=_A , pooled_prompt_embeds=_A , negative_pooled_prompt_embeds=_A , ) __magic_name__ : int = output.images[0, -3:, -3:, -1] # make sure that it's equal assert np.abs(image_slice_a.flatten() - image_slice_a.flatten() ).max() < 1E-4 @slow @require_torch_gpu class _lowerCamelCase ( unittest.TestCase ): '''simple docstring''' def __lowerCAmelCase ( self : List[Any] ) -> Tuple: super().tearDown() gc.collect() torch.cuda.empty_cache() def __lowerCAmelCase ( self : str , _A : Optional[int] , _A : Optional[Any]="cpu" , _A : List[str]=torch.floataa , _A : Any=0 ) -> str: __magic_name__ : List[str] = torch.Generator(device=_A ).manual_seed(_A ) __magic_name__ : Optional[Any] = np.random.RandomState(_A ).standard_normal((1, 4, 64, 64) ) __magic_name__ : Union[str, Any] = torch.from_numpy(_A ).to(device=_A , dtype=_A ) __magic_name__ : Optional[int] = { 'prompt': 'a photograph of an astronaut riding a horse', 'latents': latents, 'generator': generator, 'num_inference_steps': 3, 'guidance_scale': 7.5, 'output_type': 'numpy', } return inputs def __lowerCAmelCase ( self : Union[str, Any] ) -> Dict: __magic_name__ : str = DiffusionPipeline.from_pretrained('stabilityai/stable-diffusion-2-base' ) pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) __magic_name__ : Optional[int] = self.get_inputs(_A ) __magic_name__ : Union[str, Any] = pipe(**_A ).images __magic_name__ : Any = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 512, 3) __magic_name__ : List[Any] = np.array([0.4_9493, 0.4_7896, 0.4_0798, 0.5_4214, 0.5_3212, 0.4_8202, 0.4_7656, 0.4_6329, 0.4_8506] ) assert np.abs(image_slice - expected_slice ).max() < 7E-3
275
1
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging SCREAMING_SNAKE_CASE :Optional[Any] = logging.get_logger(__name__) SCREAMING_SNAKE_CASE :List[Any] = { 'hustvl/yolos-small': 'https://huggingface.co/hustvl/yolos-small/resolve/main/config.json', # See all YOLOS models at https://huggingface.co/models?filter=yolos } class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' snake_case_ = "yolos" def __init__( self : Any ,A : Optional[Any]=7_68 ,A : Dict=12 ,A : Any=12 ,A : str=30_72 ,A : Any="gelu" ,A : str=0.0 ,A : List[str]=0.0 ,A : Dict=0.02 ,A : int=1E-12 ,A : Tuple=[5_12, 8_64] ,A : List[Any]=16 ,A : str=3 ,A : str=True ,A : Any=1_00 ,A : Dict=True ,A : Dict=False ,A : Tuple=1 ,A : Union[str, Any]=5 ,A : Optional[Any]=2 ,A : Union[str, Any]=5 ,A : int=2 ,A : int=0.1 ,**A : List[str] ,): super().__init__(**A ) __A = hidden_size __A = num_hidden_layers __A = num_attention_heads __A = intermediate_size __A = hidden_act __A = hidden_dropout_prob __A = attention_probs_dropout_prob __A = initializer_range __A = layer_norm_eps __A = image_size __A = patch_size __A = num_channels __A = qkv_bias __A = num_detection_tokens __A = use_mid_position_embeddings __A = auxiliary_loss # Hungarian matcher __A = class_cost __A = bbox_cost __A = giou_cost # Loss coefficients __A = bbox_loss_coefficient __A = giou_loss_coefficient __A = eos_coefficient class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' snake_case_ = version.parse("1.11" ) @property def UpperCamelCase_ ( self : str ): return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ] ) @property def UpperCamelCase_ ( self : List[Any] ): return 1E-4 @property def UpperCamelCase_ ( self : Optional[Any] ): return 12
15
class __lowerCAmelCase : """simple docstring""" def __init__( self ) -> Any: '''simple docstring''' __lowerCamelCase = 0 __lowerCamelCase = 0 __lowerCamelCase = {} def lowercase_ ( self , lowerCamelCase__ ) -> Tuple: '''simple docstring''' if vertex not in self.adjacency: __lowerCamelCase = {} self.num_vertices += 1 def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> str: '''simple docstring''' self.add_vertex(lowerCamelCase__ ) self.add_vertex(lowerCamelCase__ ) if head == tail: return __lowerCamelCase = weight __lowerCamelCase = weight def lowercase_ ( self ) -> List[str]: '''simple docstring''' __lowerCamelCase = self.get_edges() for edge in edges: __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = edge edges.remove((tail, head, weight) ) for i in range(len(lowerCamelCase__ ) ): __lowerCamelCase = list(edges[i] ) edges.sort(key=lambda lowerCamelCase__ : e[2] ) for i in range(len(lowerCamelCase__ ) - 1 ): if edges[i][2] >= edges[i + 1][2]: __lowerCamelCase = edges[i][2] + 1 for edge in edges: __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = edge __lowerCamelCase = weight __lowerCamelCase = weight def __str__( self ) -> Union[str, Any]: '''simple docstring''' __lowerCamelCase = '' for tail in self.adjacency: for head in self.adjacency[tail]: __lowerCamelCase = self.adjacency[head][tail] string += f"""{head} -> {tail} == {weight}\n""" return string.rstrip('\n' ) def lowercase_ ( self ) -> Optional[Any]: '''simple docstring''' __lowerCamelCase = [] for tail in self.adjacency: for head in self.adjacency[tail]: output.append((tail, head, self.adjacency[head][tail]) ) return output def lowercase_ ( self ) -> List[Any]: '''simple docstring''' return self.adjacency.keys() @staticmethod def lowercase_ ( lowerCamelCase__=None , lowerCamelCase__=None ) -> str: '''simple docstring''' __lowerCamelCase = Graph() if vertices is None: __lowerCamelCase = [] if edges is None: __lowerCamelCase = [] for vertex in vertices: g.add_vertex(lowerCamelCase__ ) for edge in edges: g.add_edge(*lowerCamelCase__ ) return g class __lowerCAmelCase : """simple docstring""" def __init__( self ) -> Tuple: '''simple docstring''' __lowerCamelCase = {} __lowerCamelCase = {} def __len__( self ) -> Tuple: '''simple docstring''' return len(self.parent ) def lowercase_ ( self , lowerCamelCase__ ) -> List[Any]: '''simple docstring''' if item in self.parent: return self.find(lowerCamelCase__ ) __lowerCamelCase = item __lowerCamelCase = 0 return item def lowercase_ ( self , lowerCamelCase__ ) -> List[str]: '''simple docstring''' if item not in self.parent: return self.make_set(lowerCamelCase__ ) if item != self.parent[item]: __lowerCamelCase = self.find(self.parent[item] ) return self.parent[item] def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ ) -> int: '''simple docstring''' __lowerCamelCase = self.find(lowerCamelCase__ ) __lowerCamelCase = self.find(lowerCamelCase__ ) if roota == roota: return roota if self.rank[roota] > self.rank[roota]: __lowerCamelCase = roota return roota if self.rank[roota] < self.rank[roota]: __lowerCamelCase = roota return roota if self.rank[roota] == self.rank[roota]: self.rank[roota] += 1 __lowerCamelCase = roota return roota return None @staticmethod def lowercase_ ( lowerCamelCase__ ) -> str: '''simple docstring''' __lowerCamelCase = graph.num_vertices __lowerCamelCase = Graph.UnionFind() __lowerCamelCase = [] while num_components > 1: __lowerCamelCase = {} for vertex in graph.get_vertices(): __lowerCamelCase = -1 __lowerCamelCase = graph.get_edges() for edge in edges: __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = edge edges.remove((tail, head, weight) ) for edge in edges: __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = edge __lowerCamelCase = union_find.find(lowerCamelCase__ ) __lowerCamelCase = union_find.find(lowerCamelCase__ ) if seta != seta: if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight: __lowerCamelCase = [head, tail, weight] if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight: __lowerCamelCase = [head, tail, weight] for vertex in cheap_edge: if cheap_edge[vertex] != -1: __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = cheap_edge[vertex] if union_find.find(lowerCamelCase__ ) != union_find.find(lowerCamelCase__ ): union_find.union(lowerCamelCase__ , lowerCamelCase__ ) mst_edges.append(cheap_edge[vertex] ) __lowerCamelCase = num_components - 1 __lowerCamelCase = Graph.build(edges=lowerCamelCase__ ) return mst
90
0
import inspect import unittest import numpy as np from transformers import BeitConfig from transformers.testing_utils import require_flax, require_vision, slow from transformers.utils import cached_property, is_flax_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor if is_flax_available(): import jax from transformers import FlaxBeitForImageClassification, FlaxBeitForMaskedImageModeling, FlaxBeitModel if is_vision_available(): from PIL import Image from transformers import BeitImageProcessor class a__ ( unittest.TestCase ): def __init__( self , A , A=100 , A=13 , A=30 , A=2 , A=3 , A=True , A=True , A=32 , A=5 , A=4 , A=37 , A="gelu" , A=0.1 , A=0.1 , A=10 , A=0.0_2 , A=3 , ) -> Any: '''simple docstring''' a = parent a = vocab_size a = batch_size a = image_size a = patch_size a = num_channels a = is_training a = use_labels a = hidden_size a = num_hidden_layers a = num_attention_heads a = intermediate_size a = hidden_act a = hidden_dropout_prob a = attention_probs_dropout_prob a = type_sequence_label_size a = initializer_range # in BeiT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) a = (image_size // patch_size) ** 2 a = num_patches + 1 def lowerCAmelCase_ ( self ) -> List[str]: '''simple docstring''' a = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) a = None if self.use_labels: a = ids_tensor([self.batch_size] , self.type_sequence_label_size ) a = BeitConfig( vocab_size=self.vocab_size , image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=A , initializer_range=self.initializer_range , ) return config, pixel_values, labels def lowerCAmelCase_ ( self , A , A , A ) -> List[Any]: '''simple docstring''' a = FlaxBeitModel(config=A ) a = model(A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCAmelCase_ ( self , A , A , A ) -> str: '''simple docstring''' a = FlaxBeitForMaskedImageModeling(config=A ) a = model(A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length - 1, self.vocab_size) ) def lowerCAmelCase_ ( self , A , A , A ) -> Dict: '''simple docstring''' a = self.type_sequence_label_size a = FlaxBeitForImageClassification(config=A ) a = model(A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images a = 1 a = FlaxBeitForImageClassification(A ) a = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) a = model(A ) def lowerCAmelCase_ ( self ) -> Dict: '''simple docstring''' a = self.prepare_config_and_inputs() ( ( a ) , ( a ) , ( a ) , ) = config_and_inputs a = {"pixel_values": pixel_values} return config, inputs_dict @require_flax class a__ ( UpperCamelCase__ , unittest.TestCase ): a : Optional[int] = ( (FlaxBeitModel, FlaxBeitForImageClassification, FlaxBeitForMaskedImageModeling) if is_flax_available() else () ) def lowerCAmelCase_ ( self ) -> None: '''simple docstring''' a = FlaxBeitModelTester(self ) a = ConfigTester(self , config_class=A , has_text_modality=A , hidden_size=37 ) def lowerCAmelCase_ ( self ) -> List[str]: '''simple docstring''' self.config_tester.run_common_tests() def lowerCAmelCase_ ( self ) -> List[str]: '''simple docstring''' a , a = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a = model_class(A ) a = inspect.signature(model.__call__ ) # signature.parameters is an OrderedDict => so arg_names order is deterministic a = [*signature.parameters.keys()] a = ["pixel_values"] self.assertListEqual(arg_names[:1] , A ) def lowerCAmelCase_ ( self ) -> Tuple: '''simple docstring''' a , a = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): a = self._prepare_for_class(A , A ) a = model_class(A ) @jax.jit def model_jitted(A , **A ): return model(pixel_values=A , **A ) with self.subTest("JIT Enabled" ): a = model_jitted(**A ).to_tuple() with self.subTest("JIT Disabled" ): with jax.disable_jit(): a = model_jitted(**A ).to_tuple() self.assertEqual(len(A ) , len(A ) ) for jitted_output, output in zip(A , A ): self.assertEqual(jitted_output.shape , output.shape ) def lowerCAmelCase_ ( self ) -> Any: '''simple docstring''' a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A ) def lowerCAmelCase_ ( self ) -> Optional[Any]: '''simple docstring''' a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*A ) def lowerCAmelCase_ ( self ) -> Union[str, Any]: '''simple docstring''' a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*A ) @slow def lowerCAmelCase_ ( self ) -> Optional[int]: '''simple docstring''' for model_class_name in self.all_model_classes: a = model_class_name.from_pretrained("microsoft/beit-base-patch16-224" ) a = model(np.ones((1, 3, 224, 224) ) ) self.assertIsNotNone(A ) def SCREAMING_SNAKE_CASE ( ) -> Any: a = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png") return image @require_vision @require_flax class a__ ( unittest.TestCase ): @cached_property def lowerCAmelCase_ ( self ) -> Any: '''simple docstring''' return BeitImageProcessor.from_pretrained("microsoft/beit-base-patch16-224" ) if is_vision_available() else None @slow def lowerCAmelCase_ ( self ) -> Union[str, Any]: '''simple docstring''' a = FlaxBeitForMaskedImageModeling.from_pretrained("microsoft/beit-base-patch16-224-pt22k" ) a = self.default_image_processor a = prepare_img() a = image_processor(images=A , return_tensors="np" ).pixel_values # prepare bool_masked_pos a = np.ones((1, 196) , dtype=A ) # forward pass a = model(pixel_values=A , bool_masked_pos=A ) a = outputs.logits # verify the logits a = (1, 196, 8192) self.assertEqual(logits.shape , A ) a = np.array( [[-3.2_4_3_7, 0.5_0_7_2, -13.9174], [-3.2_4_5_6, 0.4_9_4_8, -13.9401], [-3.2_0_3_3, 0.5_1_2_1, -13.8550]] ) self.assertTrue(np.allclose(logits[bool_masked_pos][:3, :3] , A , atol=1e-2 ) ) @slow def lowerCAmelCase_ ( self ) -> str: '''simple docstring''' a = FlaxBeitForImageClassification.from_pretrained("microsoft/beit-base-patch16-224" ) a = self.default_image_processor a = prepare_img() a = image_processor(images=A , return_tensors="np" ) # forward pass a = model(**A ) a = outputs.logits # verify the logits a = (1, 1000) self.assertEqual(logits.shape , A ) a = np.array([-1.2_3_8_5, -1.0_9_8_7, -1.0_1_0_8] ) self.assertTrue(np.allclose(logits[0, :3] , A , atol=1e-4 ) ) a = 281 self.assertEqual(logits.argmax(-1 ).item() , A ) @slow def lowerCAmelCase_ ( self ) -> int: '''simple docstring''' a = FlaxBeitForImageClassification.from_pretrained("microsoft/beit-large-patch16-224-pt22k-ft22k" ) a = self.default_image_processor a = prepare_img() a = image_processor(images=A , return_tensors="np" ) # forward pass a = model(**A ) a = outputs.logits # verify the logits a = (1, 21841) self.assertEqual(logits.shape , A ) a = np.array([1.6_8_8_1, -0.2_7_8_7, 0.5_9_0_1] ) self.assertTrue(np.allclose(logits[0, :3] , A , atol=1e-4 ) ) a = 2396 self.assertEqual(logits.argmax(-1 ).item() , A )
370
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase__ : Any = logging.get_logger(__name__) lowercase__ : int = { "asapp/sew-d-tiny-100k": "https://huggingface.co/asapp/sew-d-tiny-100k/resolve/main/config.json", # See all SEW-D models at https://huggingface.co/models?filter=sew-d } class a__ ( UpperCamelCase__ ): a : Optional[Any] = """sew-d""" def __init__( self , A=32 , A=768 , A=12 , A=12 , A=3072 , A=2 , A=512 , A=256 , A=True , A=True , A=("p2c", "c2p") , A="layer_norm" , A="gelu_python" , A=0.1 , A=0.1 , A=0.1 , A=0.0 , A=0.1 , A=0.0_2 , A=1e-7 , A=1e-5 , A="group" , A="gelu" , A=(64, 128, 128, 128, 128, 256, 256, 256, 256, 512, 512, 512, 512) , A=(5, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1) , A=(10, 3, 1, 3, 1, 3, 1, 3, 1, 2, 1, 2, 1) , A=False , A=128 , A=16 , A=True , A=0.0_5 , A=10 , A=2 , A=0.0 , A=10 , A=0 , A="mean" , A=False , A=False , A=256 , A=0 , A=1 , A=2 , **A , ) -> Dict: '''simple docstring''' super().__init__(**A , pad_token_id=A , bos_token_id=A , eos_token_id=A ) a = hidden_size a = feat_extract_norm a = feat_extract_activation a = list(A ) a = list(A ) a = list(A ) a = conv_bias a = num_conv_pos_embeddings a = num_conv_pos_embedding_groups a = len(self.conv_dim ) a = num_hidden_layers a = intermediate_size a = squeeze_factor a = max_position_embeddings a = position_buckets a = share_att_key a = relative_attention a = norm_rel_ebd a = list(A ) a = hidden_act a = num_attention_heads a = hidden_dropout a = attention_dropout a = activation_dropout a = feat_proj_dropout a = final_dropout a = layer_norm_eps a = feature_layer_norm_eps a = initializer_range a = vocab_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( "Configuration for convolutional layers is incorrect." "It is required that `len(config.conv_dim)` == `len(config.conv_stride)` == `len(config.conv_kernel)`," F'''but is `len(config.conv_dim) = {len(self.conv_dim )}`, `len(config.conv_stride)''' F'''= {len(self.conv_stride )}`, `len(config.conv_kernel) = {len(self.conv_kernel )}`.''' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 a = apply_spec_augment a = mask_time_prob a = mask_time_length a = mask_time_min_masks a = mask_feature_prob a = mask_feature_length a = mask_feature_min_masks # ctc loss a = ctc_loss_reduction a = ctc_zero_infinity # sequence classification a = use_weighted_layer_sum a = classifier_proj_size @property def lowerCAmelCase_ ( self ) -> List[str]: '''simple docstring''' return functools.reduce(operator.mul , self.conv_stride , 1 )
180
0
"""simple docstring""" import datasets from .evaluate import evaluate lowerCAmelCase : Tuple = """\ @article{hendrycks2021cuad, title={CUAD: An Expert-Annotated NLP Dataset for Legal Contract Review}, author={Dan Hendrycks and Collin Burns and Anya Chen and Spencer Ball}, journal={arXiv preprint arXiv:2103.06268}, year={2021} } """ lowerCAmelCase : str = """ This metric wrap the official scoring script for version 1 of the Contract Understanding Atticus Dataset (CUAD). Contract Understanding Atticus Dataset (CUAD) v1 is a corpus of more than 13,000 labels in 510 commercial legal contracts that have been manually labeled to identify 41 categories of important clauses that lawyers look for when reviewing contracts in connection with corporate transactions. """ lowerCAmelCase : Optional[int] = """ Computes CUAD scores (EM, F1, AUPR, Precision@80%Recall, and Precision@90%Recall). Args: predictions: List of question-answers dictionaries with the following key-values: - 'id': id of the question-answer pair as given in the references (see below) - 'prediction_text': list of possible texts for the answer, as a list of strings depending on a threshold on the confidence probability of each prediction. references: List of question-answers dictionaries with the following key-values: - 'id': id of the question-answer pair (see above), - 'answers': a Dict in the CUAD dataset format { 'text': list of possible texts for the answer, as a list of strings 'answer_start': list of start positions for the answer, as a list of ints } Note that answer_start values are not taken into account to compute the metric. Returns: 'exact_match': Exact match (the normalized answer exactly match the gold answer) 'f1': The F-score of predicted tokens versus the gold answer 'aupr': Area Under the Precision-Recall curve 'prec_at_80_recall': Precision at 80% recall 'prec_at_90_recall': Precision at 90% recall Examples: >>> predictions = [{'prediction_text': ['The seller:', 'The buyer/End-User: Shenzhen LOHAS Supply Chain Management Co., Ltd.'], 'id': 'LohaCompanyltd_20191209_F-1_EX-10.16_11917878_EX-10.16_Supply Agreement__Parties'}] >>> references = [{'answers': {'answer_start': [143, 49], 'text': ['The seller:', 'The buyer/End-User: Shenzhen LOHAS Supply Chain Management Co., Ltd.']}, 'id': 'LohaCompanyltd_20191209_F-1_EX-10.16_11917878_EX-10.16_Supply Agreement__Parties'}] >>> cuad_metric = datasets.load_metric(\"cuad\") >>> results = cuad_metric.compute(predictions=predictions, references=references) >>> print(results) {'exact_match': 100.0, 'f1': 100.0, 'aupr': 0.0, 'prec_at_80_recall': 1.0, 'prec_at_90_recall': 1.0} """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __magic_name__ ( datasets.Metric ): '''simple docstring''' def _lowerCAmelCase ( self ): """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": { """id""": datasets.Value("""string""" ), """prediction_text""": datasets.features.Sequence(datasets.Value("""string""" ) ), }, """references""": { """id""": datasets.Value("""string""" ), """answers""": datasets.features.Sequence( { """text""": datasets.Value("""string""" ), """answer_start""": datasets.Value("""int32""" ), } ), }, } ) , codebase_urls=["""https://www.atticusprojectai.org/cuad"""] , reference_urls=["""https://www.atticusprojectai.org/cuad"""] , ) def _lowerCAmelCase ( self , _a , _a ): """simple docstring""" lowerCamelCase = {prediction["id"]: prediction["prediction_text"] for prediction in predictions} lowerCamelCase = [ { "paragraphs": [ { "qas": [ { "answers": [{"text": answer_text} for answer_text in ref["answers"]["text"]], "id": ref["id"], } for ref in references ] } ] } ] lowerCamelCase = evaluate(dataset=_a , predictions=_a ) return score
291
'''simple docstring''' import shutil import tempfile import unittest from transformers import ( SPIECE_UNDERLINE, AddedToken, BatchEncoding, NllbTokenizer, NllbTokenizerFast, is_torch_available, ) from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, ) from ...test_tokenization_common import TokenizerTesterMixin __SCREAMING_SNAKE_CASE : Union[str, Any] = get_tests_dir("""fixtures/test_sentencepiece.model""") if is_torch_available(): from transformers.models.mam_aaa.modeling_mam_aaa import shift_tokens_right __SCREAMING_SNAKE_CASE : Optional[int] = 256_047 __SCREAMING_SNAKE_CASE : Optional[int] = 256_145 @require_sentencepiece @require_tokenizers class lowerCamelCase_ (snake_case__ , unittest.TestCase ): '''simple docstring''' __UpperCamelCase: int = NllbTokenizer __UpperCamelCase: Tuple = NllbTokenizerFast __UpperCamelCase: Union[str, Any] = True __UpperCamelCase: Dict = True __UpperCamelCase: Optional[Any] = {} def _A ( self : Union[str, Any] ): super().setUp() # We have a SentencePiece fixture for testing _UpperCAmelCase : Tuple = NllbTokenizer(A , keep_accents=A ) tokenizer.save_pretrained(self.tmpdirname ) def _A ( self : Dict ): _UpperCAmelCase : Tuple = NllbTokenizer(A , keep_accents=A ) _UpperCAmelCase : Optional[Any] = tokenizer.tokenize("This is a test" ) self.assertListEqual(A , ["▁This", "▁is", "▁a", "▁t", "est"] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(A ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) _UpperCAmelCase : List[str] = tokenizer.tokenize("I was born in 92000, and this is falsé." ) self.assertListEqual( A , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "é", ".", ] , ) _UpperCAmelCase : Optional[Any] = tokenizer.convert_tokens_to_ids(A ) self.assertListEqual( A , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) _UpperCAmelCase : Union[str, Any] = tokenizer.convert_ids_to_tokens(A ) self.assertListEqual( A , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "<unk>", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "<unk>", ".", ] , ) def _A ( self : List[Any] ): _UpperCAmelCase : Any = (self.rust_tokenizer_class, "hf-internal-testing/tiny-random-nllb", {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): _UpperCAmelCase : Dict = self.rust_tokenizer_class.from_pretrained(A , **A ) _UpperCAmelCase : str = self.tokenizer_class.from_pretrained(A , **A ) _UpperCAmelCase : Optional[int] = tempfile.mkdtemp() _UpperCAmelCase : Dict = tokenizer_r.save_pretrained(A ) _UpperCAmelCase : Dict = tokenizer_p.save_pretrained(A ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any("tokenizer.json" in f for f in tokenizer_r_files ) ) _UpperCAmelCase : Optional[int] = tuple(f for f in tokenizer_r_files if "tokenizer.json" not in f ) self.assertSequenceEqual(A , A ) # Checks everything loads correctly in the same way _UpperCAmelCase : List[Any] = tokenizer_r.from_pretrained(A ) _UpperCAmelCase : List[str] = tokenizer_p.from_pretrained(A ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(A , A ) ) shutil.rmtree(A ) # Save tokenizer rust, legacy_format=True _UpperCAmelCase : Optional[Any] = tempfile.mkdtemp() _UpperCAmelCase : str = tokenizer_r.save_pretrained(A , legacy_format=A ) _UpperCAmelCase : str = tokenizer_p.save_pretrained(A ) # Checks it save with the same files self.assertSequenceEqual(A , A ) # Checks everything loads correctly in the same way _UpperCAmelCase : Optional[int] = tokenizer_r.from_pretrained(A ) _UpperCAmelCase : Dict = tokenizer_p.from_pretrained(A ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(A , A ) ) shutil.rmtree(A ) # Save tokenizer rust, legacy_format=False _UpperCAmelCase : Optional[int] = tempfile.mkdtemp() _UpperCAmelCase : Optional[int] = tokenizer_r.save_pretrained(A , legacy_format=A ) _UpperCAmelCase : Dict = tokenizer_p.save_pretrained(A ) # Checks it saved the tokenizer.json file self.assertTrue(any("tokenizer.json" in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way _UpperCAmelCase : List[Any] = tokenizer_r.from_pretrained(A ) _UpperCAmelCase : Optional[int] = tokenizer_p.from_pretrained(A ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(A , A ) ) shutil.rmtree(A ) @require_torch def _A ( self : Tuple ): if not self.test_seqaseq: return _UpperCAmelCase : Union[str, Any] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): # Longer text that will definitely require truncation. _UpperCAmelCase : Optional[Any] = [ " UN Chief Says There Is No Military Solution in Syria", " Secretary-General Ban Ki-moon says his response to Russia's stepped up military support for" " Syria is that 'there is no military solution' to the nearly five-year conflict and more weapons" " will only worsen the violence and misery for millions of people.", ] _UpperCAmelCase : Optional[Any] = [ "Şeful ONU declară că nu există o soluţie militară în Siria", "Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al" " Rusiei pentru Siria este că \"nu există o soluţie militară\" la conflictul de aproape cinci ani şi" " că noi arme nu vor face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.", ] try: _UpperCAmelCase : Optional[int] = tokenizer.prepare_seqaseq_batch( src_texts=A , tgt_texts=A , max_length=3 , max_target_length=10 , return_tensors="pt" , src_lang="eng_Latn" , tgt_lang="ron_Latn" , ) except NotImplementedError: return self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.labels.shape[1] , 10 ) # max_target_length will default to max_length if not specified _UpperCAmelCase : Tuple = tokenizer.prepare_seqaseq_batch( A , tgt_texts=A , max_length=3 , return_tensors="pt" ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.labels.shape[1] , 3 ) _UpperCAmelCase : Union[str, Any] = tokenizer.prepare_seqaseq_batch( src_texts=A , max_length=3 , max_target_length=10 , return_tensors="pt" ) self.assertEqual(batch_encoder_only.input_ids.shape[1] , 3 ) self.assertEqual(batch_encoder_only.attention_mask.shape[1] , 3 ) self.assertNotIn("decoder_input_ids" , A ) @unittest.skip("Unfortunately way too slow to build a BPE with SentencePiece." ) def _A ( self : List[Any] ): pass def _A ( self : Union[str, Any] ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): _UpperCAmelCase : Any = [AddedToken("<special>" , lstrip=A )] _UpperCAmelCase : List[Any] = self.rust_tokenizer_class.from_pretrained( A , additional_special_tokens=A , **A ) _UpperCAmelCase : Dict = tokenizer_r.encode("Hey this is a <special> token" ) _UpperCAmelCase : Any = tokenizer_r.encode("<special>" , add_special_tokens=A )[0] self.assertTrue(special_token_id in r_output ) if self.test_slow_tokenizer: _UpperCAmelCase : Dict = self.rust_tokenizer_class.from_pretrained( A , additional_special_tokens=A , **A , ) _UpperCAmelCase : Optional[int] = self.tokenizer_class.from_pretrained( A , additional_special_tokens=A , **A ) _UpperCAmelCase : Union[str, Any] = tokenizer_p.encode("Hey this is a <special> token" ) _UpperCAmelCase : Any = tokenizer_cr.encode("Hey this is a <special> token" ) self.assertEqual(A , A ) self.assertEqual(A , A ) self.assertTrue(special_token_id in p_output ) self.assertTrue(special_token_id in cr_output ) @require_torch @require_sentencepiece @require_tokenizers class lowerCamelCase_ (unittest.TestCase ): '''simple docstring''' __UpperCamelCase: Dict = "facebook/nllb-200-distilled-600M" __UpperCamelCase: Optional[int] = [ " UN Chief Says There Is No Military Solution in Syria", " Secretary-General Ban Ki-moon says his response to Russia's stepped up military support for Syria is that \"there is no military solution\" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.", ] __UpperCamelCase: str = [ "Şeful ONU declară că nu există o soluţie militară în Siria", "Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al Rusiei" " pentru Siria este că \"nu există o soluţie militară\" la conflictul de aproape cinci ani şi că noi arme nu vor" " face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.", ] __UpperCamelCase: str = [ 2_5_6_0_4_7, 1_6_2_9_7, 1_3_4_4_0_8, 8_1_6_5, 2_4_8_0_6_6, 1_4_7_3_4, 9_5_0, 1_1_3_5, 1_0_5_7_2_1, 3_5_7_3, 8_3, 2_7_3_5_2, 1_0_8, 4_9_4_8_6, 2, ] @classmethod def _A ( cls : int ): _UpperCAmelCase : NllbTokenizer = NllbTokenizer.from_pretrained( cls.checkpoint_name , src_lang="eng_Latn" , tgt_lang="ron_Latn" ) _UpperCAmelCase : Union[str, Any] = 1 return cls def _A ( self : Any ): self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["ace_Arab"] , 256001 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["ace_Latn"] , 256002 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["fra_Latn"] , 256057 ) def _A ( self : Union[str, Any] ): _UpperCAmelCase : Optional[int] = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , A ) def _A ( self : Tuple ): self.assertIn(A , self.tokenizer.all_special_ids ) # fmt: off _UpperCAmelCase : List[Any] = [RO_CODE, 4254, 98068, 112923, 39072, 3909, 713, 102767, 26, 17314, 35642, 14683, 33118, 2022, 66987, 2, 256047] # fmt: on _UpperCAmelCase : Tuple = self.tokenizer.decode(A , skip_special_tokens=A ) _UpperCAmelCase : Optional[Any] = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=A ) self.assertEqual(A , A ) self.assertNotIn(self.tokenizer.eos_token , A ) def _A ( self : Optional[int] ): _UpperCAmelCase : List[Any] = ["this is gunna be a long sentence " * 20] assert isinstance(src_text[0] , A ) _UpperCAmelCase : Dict = 10 _UpperCAmelCase : Tuple = self.tokenizer(A , max_length=A , truncation=A ).input_ids[0] self.assertEqual(ids[-1] , 2 ) self.assertEqual(ids[0] , A ) self.assertEqual(len(A ) , A ) def _A ( self : Dict ): self.assertListEqual(self.tokenizer.convert_tokens_to_ids(["<mask>", "ar_AR"] ) , [256203, 3] ) def _A ( self : Optional[Any] ): _UpperCAmelCase : Dict = tempfile.mkdtemp() _UpperCAmelCase : str = self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(A ) _UpperCAmelCase : Tuple = NllbTokenizer.from_pretrained(A ) self.assertDictEqual(new_tok.fairseq_tokens_to_ids , A ) @require_torch def _A ( self : Dict ): _UpperCAmelCase : List[str] = self.tokenizer( self.src_text , text_target=self.tgt_text , padding=A , truncation=A , max_length=len(self.expected_src_tokens ) , return_tensors="pt" , ) _UpperCAmelCase : Tuple = shift_tokens_right( batch["labels"] , self.tokenizer.pad_token_id , self.tokenizer.lang_code_to_id["ron_Latn"] ) self.assertIsInstance(A , A ) self.assertEqual((2, 15) , batch.input_ids.shape ) self.assertEqual((2, 15) , batch.attention_mask.shape ) _UpperCAmelCase : Dict = batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens , A ) self.assertEqual(A , batch.decoder_input_ids[0, 0] ) # EOS # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens , [EN_CODE] ) self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) def _A ( self : str ): _UpperCAmelCase : Optional[Any] = self.tokenizer(self.src_text , padding=A , truncation=A , max_length=3 , return_tensors="pt" ) _UpperCAmelCase : Dict = self.tokenizer( text_target=self.tgt_text , padding=A , truncation=A , max_length=10 , return_tensors="pt" ) _UpperCAmelCase : List[Any] = targets["input_ids"] _UpperCAmelCase : Union[str, Any] = shift_tokens_right( A , self.tokenizer.pad_token_id , decoder_start_token_id=self.tokenizer.lang_code_to_id[self.tokenizer.tgt_lang] , ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.decoder_input_ids.shape[1] , 10 ) @require_torch def _A ( self : List[Any] ): _UpperCAmelCase : str = self.tokenizer._build_translation_inputs( "A test" , return_tensors="pt" , src_lang="eng_Latn" , tgt_lang="fra_Latn" ) self.assertEqual( nested_simplify(A ) , { # A, test, EOS, en_XX "input_ids": [[256047, 70, 7356, 2]], "attention_mask": [[1, 1, 1, 1]], # ar_AR "forced_bos_token_id": 256057, } , ) @require_torch def _A ( self : Any ): _UpperCAmelCase : Dict = True _UpperCAmelCase : Any = self.tokenizer( "UN Chief says there is no military solution in Syria" , src_lang="eng_Latn" , tgt_lang="fra_Latn" ) self.assertEqual( inputs.input_ids , [16297, 134408, 25653, 6370, 248, 254, 103929, 94995, 108, 49486, 2, 256047] ) _UpperCAmelCase : Optional[int] = False _UpperCAmelCase : str = self.tokenizer( "UN Chief says there is no military solution in Syria" , src_lang="eng_Latn" , tgt_lang="fra_Latn" ) self.assertEqual( inputs.input_ids , [256047, 16297, 134408, 25653, 6370, 248, 254, 103929, 94995, 108, 49486, 2] )
31
0
import importlib import shutil import threading import warnings from typing import List import fsspec import fsspec.asyn from . import compression from .hffilesystem import HfFileSystem a__ : Optional[int] = importlib.util.find_spec('''s3fs''') is not None if _has_safs: from .safilesystem import SaFileSystem # noqa: F401 a__ : List[compression.BaseCompressedFileFileSystem] = [ compression.BzaFileSystem, compression.GzipFileSystem, compression.LzaFileSystem, compression.XzFileSystem, compression.ZstdFileSystem, ] # Register custom filesystems for fs_class in COMPRESSION_FILESYSTEMS + [HfFileSystem]: if fs_class.protocol in fsspec.registry and fsspec.registry[fs_class.protocol] is not fs_class: warnings.warn(F"A filesystem protocol was already set for {fs_class.protocol} and will be overwritten.") fsspec.register_implementation(fs_class.protocol, fs_class, clobber=True) def UpperCAmelCase_( a__ ): """simple docstring""" if "://" in dataset_path: SCREAMING_SNAKE_CASE : Union[str, Any] = dataset_path.split('''://''' )[1] return dataset_path def UpperCAmelCase_( a__ ): """simple docstring""" if fs is not None and fs.protocol != "file": return True else: return False def UpperCAmelCase_( a__ , a__ , a__ ): """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = not is_remote_filesystem(a__ ) if is_local: # LocalFileSystem.mv does copy + rm, it is more efficient to simply move a local directory shutil.move(fs._strip_protocol(a__ ) , fs._strip_protocol(a__ ) ) else: fs.mv(a__ , a__ , recursive=a__ ) def UpperCAmelCase_( ): """simple docstring""" if hasattr(fsspec.asyn , '''reset_lock''' ): # for future fsspec>2022.05.0 fsspec.asyn.reset_lock() else: SCREAMING_SNAKE_CASE : List[Any] = None SCREAMING_SNAKE_CASE : List[str] = None SCREAMING_SNAKE_CASE : int = threading.Lock()
351
def UpperCAmelCase_( a__ ): """simple docstring""" if divisor % 5 == 0 or divisor % 2 == 0: return 0 SCREAMING_SNAKE_CASE : Tuple = 1 SCREAMING_SNAKE_CASE : Tuple = 1 while repunit: SCREAMING_SNAKE_CASE : Dict = (10 * repunit + 1) % divisor repunit_index += 1 return repunit_index def UpperCAmelCase_( a__ = 1_000_000 ): """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = limit - 1 if divisor % 2 == 0: divisor += 1 while least_divisible_repunit(a__ ) <= limit: divisor += 2 return divisor if __name__ == "__main__": print(F"{solution() = }")
19
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging __A = logging.get_logger(__name__) __A = { "facebook/vit-mae-base": "https://huggingface.co/facebook/vit-mae-base/resolve/main/config.json", # See all ViT MAE models at https://huggingface.co/models?filter=vit-mae } class snake_case ( __snake_case ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = """vit_mae""" def __init__( self : Dict , UpperCamelCase__ : Tuple=7_6_8 , UpperCamelCase__ : Dict=1_2 , UpperCamelCase__ : Union[str, Any]=1_2 , UpperCamelCase__ : int=3_0_7_2 , UpperCamelCase__ : Optional[Any]="gelu" , UpperCamelCase__ : Any=0.0 , UpperCamelCase__ : List[str]=0.0 , UpperCamelCase__ : Optional[int]=0.02 , UpperCamelCase__ : str=1e-12 , UpperCamelCase__ : List[str]=2_2_4 , UpperCamelCase__ : Optional[Any]=1_6 , UpperCamelCase__ : Any=3 , UpperCamelCase__ : Union[str, Any]=True , UpperCamelCase__ : Tuple=1_6 , UpperCamelCase__ : Dict=5_1_2 , UpperCamelCase__ : Optional[int]=8 , UpperCamelCase__ : Optional[int]=2_0_4_8 , UpperCamelCase__ : str=0.75 , UpperCamelCase__ : Dict=False , **UpperCamelCase__ : Optional[Any] , )-> Optional[Any]: '''simple docstring''' super().__init__(**UpperCamelCase__) __lowerCAmelCase: Optional[Any] = hidden_size __lowerCAmelCase: List[Any] = num_hidden_layers __lowerCAmelCase: List[Any] = num_attention_heads __lowerCAmelCase: str = intermediate_size __lowerCAmelCase: Optional[int] = hidden_act __lowerCAmelCase: Optional[int] = hidden_dropout_prob __lowerCAmelCase: List[str] = attention_probs_dropout_prob __lowerCAmelCase: Optional[int] = initializer_range __lowerCAmelCase: Tuple = layer_norm_eps __lowerCAmelCase: Optional[Any] = image_size __lowerCAmelCase: Union[str, Any] = patch_size __lowerCAmelCase: List[Any] = num_channels __lowerCAmelCase: List[Any] = qkv_bias __lowerCAmelCase: List[str] = decoder_num_attention_heads __lowerCAmelCase: List[str] = decoder_hidden_size __lowerCAmelCase: int = decoder_num_hidden_layers __lowerCAmelCase: Optional[int] = decoder_intermediate_size __lowerCAmelCase: Tuple = mask_ratio __lowerCAmelCase: Tuple = norm_pix_loss
217
"""simple docstring""" from typing import Dict, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_torch_tensor, logging if is_torch_available(): import torch __A = logging.get_logger(__name__) class snake_case ( __snake_case ): SCREAMING_SNAKE_CASE_ : Dict = ["""pixel_values"""] def __init__( self : List[Any] , UpperCamelCase__ : bool = True , UpperCamelCase__ : Optional[Dict[str, int]] = None , UpperCamelCase__ : PILImageResampling = PILImageResampling.BILINEAR , UpperCamelCase__ : bool = True , UpperCamelCase__ : Dict[str, int] = None , UpperCamelCase__ : bool = True , UpperCamelCase__ : Union[int, float] = 1 / 2_5_5 , UpperCamelCase__ : bool = True , UpperCamelCase__ : Optional[Union[float, List[float]]] = None , UpperCamelCase__ : Optional[Union[float, List[float]]] = None , **UpperCamelCase__ : Optional[int] , )-> None: '''simple docstring''' super().__init__(**UpperCamelCase__) __lowerCAmelCase: int = size if size is not None else {"shortest_edge": 2_5_6} __lowerCAmelCase: str = get_size_dict(UpperCamelCase__ , default_to_square=UpperCamelCase__) __lowerCAmelCase: Any = crop_size if crop_size is not None else {"height": 2_2_4, "width": 2_2_4} __lowerCAmelCase: Optional[Any] = get_size_dict(UpperCamelCase__ , param_name="crop_size") __lowerCAmelCase: str = do_resize __lowerCAmelCase: Any = size __lowerCAmelCase: Dict = resample __lowerCAmelCase: Tuple = do_center_crop __lowerCAmelCase: str = crop_size __lowerCAmelCase: List[Any] = do_rescale __lowerCAmelCase: int = rescale_factor __lowerCAmelCase: List[Any] = do_normalize __lowerCAmelCase: Any = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN __lowerCAmelCase: Optional[Any] = image_std if image_std is not None else IMAGENET_STANDARD_STD def lowercase_ ( self : Tuple , UpperCamelCase__ : np.ndarray , UpperCamelCase__ : Dict[str, int] , UpperCamelCase__ : PILImageResampling = PILImageResampling.BICUBIC , UpperCamelCase__ : Optional[Union[str, ChannelDimension]] = None , **UpperCamelCase__ : Dict , )-> np.ndarray: '''simple docstring''' __lowerCAmelCase: int = get_size_dict(UpperCamelCase__ , default_to_square=UpperCamelCase__) if "shortest_edge" not in size: raise ValueError(f"The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}") __lowerCAmelCase: Optional[Any] = get_resize_output_image_size(UpperCamelCase__ , size=size["shortest_edge"] , default_to_square=UpperCamelCase__) return resize(UpperCamelCase__ , size=UpperCamelCase__ , resample=UpperCamelCase__ , data_format=UpperCamelCase__ , **UpperCamelCase__) def lowercase_ ( self : Optional[int] , UpperCamelCase__ : np.ndarray , UpperCamelCase__ : Dict[str, int] , UpperCamelCase__ : Optional[Union[str, ChannelDimension]] = None , **UpperCamelCase__ : Tuple , )-> np.ndarray: '''simple docstring''' __lowerCAmelCase: Union[str, Any] = get_size_dict(UpperCamelCase__) if "height" not in size or "width" not in size: raise ValueError(f"The `size` parameter must contain the keys `height` and `width`. Got {size.keys()}") return center_crop(UpperCamelCase__ , size=(size["height"], size["width"]) , data_format=UpperCamelCase__ , **UpperCamelCase__) def lowercase_ ( self : str , UpperCamelCase__ : np.ndarray , UpperCamelCase__ : float , UpperCamelCase__ : Optional[Union[str, ChannelDimension]] = None , **UpperCamelCase__ : Optional[int])-> np.ndarray: '''simple docstring''' return rescale(UpperCamelCase__ , scale=UpperCamelCase__ , data_format=UpperCamelCase__ , **UpperCamelCase__) def lowercase_ ( self : Dict , UpperCamelCase__ : np.ndarray , UpperCamelCase__ : Union[float, List[float]] , UpperCamelCase__ : Union[float, List[float]] , UpperCamelCase__ : Optional[Union[str, ChannelDimension]] = None , **UpperCamelCase__ : Optional[Any] , )-> np.ndarray: '''simple docstring''' return normalize(UpperCamelCase__ , mean=UpperCamelCase__ , std=UpperCamelCase__ , data_format=UpperCamelCase__ , **UpperCamelCase__) def lowercase_ ( self : Union[str, Any] , UpperCamelCase__ : ImageInput , UpperCamelCase__ : Optional[bool] = None , UpperCamelCase__ : Dict[str, int] = None , UpperCamelCase__ : PILImageResampling = None , UpperCamelCase__ : bool = None , UpperCamelCase__ : Dict[str, int] = None , UpperCamelCase__ : Optional[bool] = None , UpperCamelCase__ : Optional[float] = None , UpperCamelCase__ : Optional[bool] = None , UpperCamelCase__ : Optional[Union[float, List[float]]] = None , UpperCamelCase__ : Optional[Union[float, List[float]]] = None , UpperCamelCase__ : Optional[Union[str, TensorType]] = None , UpperCamelCase__ : Union[str, ChannelDimension] = ChannelDimension.FIRST , **UpperCamelCase__ : Optional[Any] , )-> Dict: '''simple docstring''' __lowerCAmelCase: Any = do_resize if do_resize is not None else self.do_resize __lowerCAmelCase: str = size if size is not None else self.size __lowerCAmelCase: Tuple = get_size_dict(UpperCamelCase__ , default_to_square=UpperCamelCase__) __lowerCAmelCase: List[str] = resample if resample is not None else self.resample __lowerCAmelCase: str = do_center_crop if do_center_crop is not None else self.do_center_crop __lowerCAmelCase: Tuple = crop_size if crop_size is not None else self.crop_size __lowerCAmelCase: List[Any] = get_size_dict(UpperCamelCase__ , param_name="crop_size") __lowerCAmelCase: List[Any] = do_rescale if do_rescale is not None else self.do_rescale __lowerCAmelCase: Optional[int] = rescale_factor if rescale_factor is not None else self.rescale_factor __lowerCAmelCase: Optional[int] = do_normalize if do_normalize is not None else self.do_normalize __lowerCAmelCase: Union[str, Any] = image_mean if image_mean is not None else self.image_mean __lowerCAmelCase: Tuple = image_std if image_std is not None else self.image_std __lowerCAmelCase: Union[str, Any] = make_list_of_images(UpperCamelCase__) if not valid_images(UpperCamelCase__): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray.") if do_resize and size is None: raise ValueError("Size must be specified if do_resize is True.") if do_center_crop and crop_size is None: raise ValueError("Crop size must be specified if do_center_crop is True.") if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True.") if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True.") # All transformations expect numpy arrays. __lowerCAmelCase: Tuple = [to_numpy_array(UpperCamelCase__) for image in images] if do_resize: __lowerCAmelCase: Union[str, Any] = [self.resize(image=UpperCamelCase__ , size=UpperCamelCase__ , resample=UpperCamelCase__) for image in images] if do_center_crop: __lowerCAmelCase: Optional[Any] = [self.center_crop(image=UpperCamelCase__ , size=UpperCamelCase__) for image in images] if do_rescale: __lowerCAmelCase: Optional[Any] = [self.rescale(image=UpperCamelCase__ , scale=UpperCamelCase__) for image in images] if do_normalize: __lowerCAmelCase: List[str] = [self.normalize(image=UpperCamelCase__ , mean=UpperCamelCase__ , std=UpperCamelCase__) for image in images] __lowerCAmelCase: Optional[Any] = [to_channel_dimension_format(UpperCamelCase__ , UpperCamelCase__) for image in images] __lowerCAmelCase: List[str] = {"pixel_values": images} return BatchFeature(data=UpperCamelCase__ , tensor_type=UpperCamelCase__) def lowercase_ ( self : int , UpperCamelCase__ : List[str] , UpperCamelCase__ : List[Tuple] = None)-> Dict: '''simple docstring''' __lowerCAmelCase: Union[str, Any] = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(UpperCamelCase__) != len(UpperCamelCase__): raise ValueError( "Make sure that you pass in as many target sizes as the batch dimension of the logits") if is_torch_tensor(UpperCamelCase__): __lowerCAmelCase: Optional[int] = target_sizes.numpy() __lowerCAmelCase: List[Any] = [] for idx in range(len(UpperCamelCase__)): __lowerCAmelCase: List[str] = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0) , size=target_sizes[idx] , mode="bilinear" , align_corners=UpperCamelCase__) __lowerCAmelCase: Optional[Any] = resized_logits[0].argmax(dim=0) semantic_segmentation.append(UpperCamelCase__) else: __lowerCAmelCase: Tuple = logits.argmax(dim=1) __lowerCAmelCase: Optional[Any] = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0])] return semantic_segmentation
217
1
'''simple docstring''' from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxSeqaSeqConfigWithPast from ...utils import logging _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE = { '''google/umt5-small''': '''https://huggingface.co/google/umt5-small/resolve/main/config.json''', # See all umt5 models at https://huggingface.co/models?filter=umt5 } class __lowercase ( lowerCAmelCase__ ): '''simple docstring''' a : Optional[Any] = "umt5" a : str = ["past_key_values"] def __init__(self ,_lowerCamelCase=250112 ,_lowerCamelCase=512 ,_lowerCamelCase=64 ,_lowerCamelCase=1024 ,_lowerCamelCase=8 ,_lowerCamelCase=None ,_lowerCamelCase=6 ,_lowerCamelCase=32 ,_lowerCamelCase=128 ,_lowerCamelCase=0.1 ,_lowerCamelCase=1E-6 ,_lowerCamelCase=1.0 ,_lowerCamelCase="gated-gelu" ,_lowerCamelCase=True ,_lowerCamelCase=True ,_lowerCamelCase="T5Tokenizer" ,_lowerCamelCase=True ,_lowerCamelCase=0 ,_lowerCamelCase=1 ,_lowerCamelCase=0 ,**_lowerCamelCase ,) -> str: '''simple docstring''' super().__init__( is_encoder_decoder=_lowerCamelCase ,tokenizer_class=_lowerCamelCase ,tie_word_embeddings=_lowerCamelCase ,pad_token_id=_lowerCamelCase ,eos_token_id=_lowerCamelCase ,decoder_start_token_id=_lowerCamelCase ,**_lowerCamelCase ,) __lowercase = vocab_size __lowercase = d_model __lowercase = d_kv __lowercase = d_ff __lowercase = num_layers __lowercase = ( num_decoder_layers if num_decoder_layers is not None else self.num_layers ) # default = symmetry __lowercase = num_heads __lowercase = relative_attention_num_buckets __lowercase = relative_attention_max_distance __lowercase = dropout_rate __lowercase = layer_norm_epsilon __lowercase = initializer_factor __lowercase = feed_forward_proj __lowercase = use_cache __lowercase = self.feed_forward_proj.split('''-''' ) __lowercase = act_info[-1] __lowercase = act_info[0] == '''gated''' if len(_lowerCamelCase ) > 1 and act_info[0] != "gated" or len(_lowerCamelCase ) > 2: raise ValueError( f"`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer." '''Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. ''' '''\'gated-gelu\' or \'relu\'''' ) if feed_forward_proj == "gated-gelu": __lowercase = '''gelu_new''' @property def _UpperCAmelCase (self ) -> List[str]: '''simple docstring''' return self.d_model @property def _UpperCAmelCase (self ) -> str: '''simple docstring''' return self.num_heads @property def _UpperCAmelCase (self ) -> List[Any]: '''simple docstring''' return self.num_layers class __lowercase ( lowerCAmelCase__ ): '''simple docstring''' @property # Copied from transformers.models.t5.configuration_t5.T5OnnxConfig.inputs def _UpperCAmelCase (self ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' __lowercase = { '''input_ids''': {0: '''batch''', 1: '''encoder_sequence'''}, '''attention_mask''': {0: '''batch''', 1: '''encoder_sequence'''}, } if self.use_past: __lowercase = '''past_encoder_sequence + sequence''' __lowercase = {0: '''batch'''} __lowercase = {0: '''batch''', 1: '''past_decoder_sequence + sequence'''} else: __lowercase = {0: '''batch''', 1: '''decoder_sequence'''} __lowercase = {0: '''batch''', 1: '''decoder_sequence'''} if self.use_past: self.fill_with_past_key_values_(_lowerCamelCase ,direction='''inputs''' ) return common_inputs @property # Copied from transformers.models.t5.configuration_t5.T5OnnxConfig.default_onnx_opset def _UpperCAmelCase (self ) -> int: '''simple docstring''' return 13 @property def _UpperCAmelCase (self ) -> float: '''simple docstring''' return 5E-4
217
'''simple docstring''' def _lowerCAmelCase ( lowerCamelCase_ : int = 6_0_0_8_5_1_4_7_5_1_4_3 ): try: __lowercase = int(lowerCamelCase_ ) except (TypeError, ValueError): raise TypeError('''Parameter n must be int or castable to int.''' ) if n <= 0: raise ValueError('''Parameter n must be greater than or equal to one.''' ) __lowercase = 1 __lowercase = 2 while i * i <= n: while n % i == 0: __lowercase = i n //= i i += 1 if n > 1: __lowercase = n return int(lowerCamelCase_ ) if __name__ == "__main__": print(f'''{solution() = }''')
217
1
import os import pytest from transformers.dynamic_module_utils import get_imports lowerCAmelCase : str = """ import os """ lowerCAmelCase : Optional[Any] = """ def foo(): import os return False """ lowerCAmelCase : str = """ def foo(): def bar(): if True: import os return False return bar() """ lowerCAmelCase : Any = """ import os try: import bar except ImportError: raise ValueError() """ lowerCAmelCase : int = """ import os def foo(): try: import bar except ImportError: raise ValueError() """ lowerCAmelCase : Tuple = """ import os try: import bar except (ImportError, AttributeError): raise ValueError() """ lowerCAmelCase : Optional[Any] = """ import os try: import bar except ImportError as e: raise ValueError() """ lowerCAmelCase : List[str] = """ import os try: import bar except: raise ValueError() """ lowerCAmelCase : List[Any] = """ import os try: import bar import baz except ImportError: raise ValueError() """ lowerCAmelCase : Optional[Any] = """ import os try: import bar import baz except ImportError: x = 1 raise ValueError() """ lowerCAmelCase : Any = [ TOP_LEVEL_IMPORT, IMPORT_IN_FUNCTION, DEEPLY_NESTED_IMPORT, TOP_LEVEL_TRY_IMPORT, GENERIC_EXCEPT_IMPORT, MULTILINE_TRY_IMPORT, MULTILINE_BOTH_IMPORT, MULTIPLE_EXCEPTS_IMPORT, EXCEPT_AS_IMPORT, TRY_IMPORT_IN_FUNCTION, ] @pytest.mark.parametrize("case" , _UpperCAmelCase ) def A_ ( _UpperCAmelCase , _UpperCAmelCase ): SCREAMING_SNAKE_CASE_: Optional[int] = os.path.join(_UpperCAmelCase , "test_file.py" ) with open(_UpperCAmelCase , "w" ) as _tmp_file: _tmp_file.write(_UpperCAmelCase ) SCREAMING_SNAKE_CASE_: Any = get_imports(_UpperCAmelCase ) assert parsed_imports == ["os"]
13
"""simple docstring""" lowerCamelCase_ : Any = [ """DownloadConfig""", """DownloadManager""", """DownloadMode""", """StreamingDownloadManager""", ] from .download_config import DownloadConfig from .download_manager import DownloadManager, DownloadMode from .streaming_download_manager import StreamingDownloadManager
81
0
"""simple docstring""" import collections from typing import List, Optional, Union from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, add_end_docstrings, add_start_docstrings, logging from ..bert.tokenization_bert import BertTokenizer UpperCamelCase_ = logging.get_logger(__name__) UpperCamelCase_ = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} UpperCamelCase_ = { 'vocab_file': { 'facebook/dpr-ctx_encoder-single-nq-base': ( 'https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/vocab.txt' ), 'facebook/dpr-ctx_encoder-multiset-base': ( 'https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'facebook/dpr-ctx_encoder-single-nq-base': ( 'https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/tokenizer.json' ), 'facebook/dpr-ctx_encoder-multiset-base': ( 'https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/tokenizer.json' ), }, } UpperCamelCase_ = { 'vocab_file': { 'facebook/dpr-question_encoder-single-nq-base': ( 'https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/vocab.txt' ), 'facebook/dpr-question_encoder-multiset-base': ( 'https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'facebook/dpr-question_encoder-single-nq-base': ( 'https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/tokenizer.json' ), 'facebook/dpr-question_encoder-multiset-base': ( 'https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/tokenizer.json' ), }, } UpperCamelCase_ = { 'vocab_file': { 'facebook/dpr-reader-single-nq-base': ( 'https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/vocab.txt' ), 'facebook/dpr-reader-multiset-base': ( 'https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'facebook/dpr-reader-single-nq-base': ( 'https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/tokenizer.json' ), 'facebook/dpr-reader-multiset-base': ( 'https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/tokenizer.json' ), }, } UpperCamelCase_ = { 'facebook/dpr-ctx_encoder-single-nq-base': 512, 'facebook/dpr-ctx_encoder-multiset-base': 512, } UpperCamelCase_ = { 'facebook/dpr-question_encoder-single-nq-base': 512, 'facebook/dpr-question_encoder-multiset-base': 512, } UpperCamelCase_ = { 'facebook/dpr-reader-single-nq-base': 512, 'facebook/dpr-reader-multiset-base': 512, } UpperCamelCase_ = { 'facebook/dpr-ctx_encoder-single-nq-base': {'do_lower_case': True}, 'facebook/dpr-ctx_encoder-multiset-base': {'do_lower_case': True}, } UpperCamelCase_ = { 'facebook/dpr-question_encoder-single-nq-base': {'do_lower_case': True}, 'facebook/dpr-question_encoder-multiset-base': {'do_lower_case': True}, } UpperCamelCase_ = { 'facebook/dpr-reader-single-nq-base': {'do_lower_case': True}, 'facebook/dpr-reader-multiset-base': {'do_lower_case': True}, } class snake_case ( SCREAMING_SNAKE_CASE_ ): a_ : str = VOCAB_FILES_NAMES a_ : Optional[Any] = CONTEXT_ENCODER_PRETRAINED_VOCAB_FILES_MAP a_ : List[Any] = CONTEXT_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a_ : str = CONTEXT_ENCODER_PRETRAINED_INIT_CONFIGURATION class snake_case ( SCREAMING_SNAKE_CASE_ ): a_ : List[str] = VOCAB_FILES_NAMES a_ : Optional[Any] = QUESTION_ENCODER_PRETRAINED_VOCAB_FILES_MAP a_ : str = QUESTION_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a_ : Union[str, Any] = QUESTION_ENCODER_PRETRAINED_INIT_CONFIGURATION UpperCamelCase_ = collections.namedtuple( 'DPRSpanPrediction', ['span_score', 'relevance_score', 'doc_id', 'start_index', 'end_index', 'text'] ) UpperCamelCase_ = collections.namedtuple('DPRReaderOutput', ['start_logits', 'end_logits', 'relevance_logits']) UpperCamelCase_ = R'\n Return a dictionary with the token ids of the input strings and other information to give to `.decode_best_spans`.\n It converts the strings of a question and different passages (title and text) in a sequence of IDs (integers),\n using the tokenizer and vocabulary. The resulting `input_ids` is a matrix of size `(n_passages, sequence_length)`\n with the format:\n\n ```\n [CLS] <question token ids> [SEP] <titles ids> [SEP] <texts ids>\n ```\n\n Args:\n questions (`str` or `List[str]`):\n The questions to be encoded. You can specify one question for many passages. In this case, the question\n will be duplicated like `[questions] * n_passages`. Otherwise you have to specify as many questions as in\n `titles` or `texts`.\n titles (`str` or `List[str]`):\n The passages titles to be encoded. This can be a string or a list of strings if there are several passages.\n texts (`str` or `List[str]`):\n The passages texts to be encoded. This can be a string or a list of strings if there are several passages.\n padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`):\n Activates and controls padding. Accepts the following values:\n\n - `True` or `\'longest\'`: Pad to the longest sequence in the batch (or no padding if only a single sequence\n if provided).\n - `\'max_length\'`: Pad to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided.\n - `False` or `\'do_not_pad\'` (default): No padding (i.e., can output a batch with sequences of different\n lengths).\n truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`):\n Activates and controls truncation. Accepts the following values:\n\n - `True` or `\'longest_first\'`: Truncate to a maximum length specified with the argument `max_length` or to\n the maximum acceptable input length for the model if that argument is not provided. This will truncate\n token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch\n of pairs) is provided.\n - `\'only_first\'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the first\n sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `\'only_second\'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the\n second sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `False` or `\'do_not_truncate\'` (default): No truncation (i.e., can output batch with sequence lengths\n greater than the model maximum admissible input size).\n max_length (`int`, *optional*):\n Controls the maximum length to use by one of the truncation/padding parameters.\n\n If left unset or set to `None`, this will use the predefined model maximum length if a maximum length\n is required by one of the truncation/padding parameters. If the model has no specific maximum input\n length (like XLNet) truncation/padding to a maximum length will be deactivated.\n return_tensors (`str` or [`~utils.TensorType`], *optional*):\n If set, will return tensors instead of list of python integers. Acceptable values are:\n\n - `\'tf\'`: Return TensorFlow `tf.constant` objects.\n - `\'pt\'`: Return PyTorch `torch.Tensor` objects.\n - `\'np\'`: Return Numpy `np.ndarray` objects.\n return_attention_mask (`bool`, *optional*):\n Whether or not to return the attention mask. If not set, will return the attention mask according to the\n specific tokenizer\'s default, defined by the `return_outputs` attribute.\n\n [What are attention masks?](../glossary#attention-mask)\n\n Returns:\n `Dict[str, List[List[int]]]`: A dictionary with the following keys:\n\n - `input_ids`: List of token ids to be fed to a model.\n - `attention_mask`: List of indices specifying which tokens should be attended to by the model.\n ' @add_start_docstrings(SCREAMING_SNAKE_CASE_ ) class snake_case : def __call__( self , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = False , __UpperCAmelCase = False , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , **__UpperCAmelCase , ) ->BatchEncoding: if titles is None and texts is None: return super().__call__( __UpperCAmelCase , padding=__UpperCAmelCase , truncation=__UpperCAmelCase , max_length=__UpperCAmelCase , return_tensors=__UpperCAmelCase , return_attention_mask=__UpperCAmelCase , **__UpperCAmelCase , ) elif titles is None or texts is None: a_ = titles if texts is None else texts return super().__call__( __UpperCAmelCase , __UpperCAmelCase , padding=__UpperCAmelCase , truncation=__UpperCAmelCase , max_length=__UpperCAmelCase , return_tensors=__UpperCAmelCase , return_attention_mask=__UpperCAmelCase , **__UpperCAmelCase , ) a_ = titles if not isinstance(__UpperCAmelCase , __UpperCAmelCase) else [titles] a_ = texts if not isinstance(__UpperCAmelCase , __UpperCAmelCase) else [texts] a_ = len(__UpperCAmelCase) a_ = questions if not isinstance(__UpperCAmelCase , __UpperCAmelCase) else [questions] * n_passages if len(__UpperCAmelCase) != len(__UpperCAmelCase): raise ValueError( F'''There should be as many titles than texts but got {len(__UpperCAmelCase)} titles and {len(__UpperCAmelCase)} texts.''') a_ = super().__call__(__UpperCAmelCase , __UpperCAmelCase , padding=__UpperCAmelCase , truncation=__UpperCAmelCase)["input_ids"] a_ = super().__call__(__UpperCAmelCase , add_special_tokens=__UpperCAmelCase , padding=__UpperCAmelCase , truncation=__UpperCAmelCase)["input_ids"] a_ = { "input_ids": [ (encoded_question_and_title + encoded_text)[:max_length] if max_length is not None and truncation else encoded_question_and_title + encoded_text for encoded_question_and_title, encoded_text in zip(__UpperCAmelCase , __UpperCAmelCase) ] } if return_attention_mask is not False: a_ = [] for input_ids in encoded_inputs["input_ids"]: attention_mask.append([int(input_id != self.pad_token_id) for input_id in input_ids]) a_ = attention_mask return self.pad(__UpperCAmelCase , padding=__UpperCAmelCase , max_length=__UpperCAmelCase , return_tensors=__UpperCAmelCase) def UpperCAmelCase__ ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = 16 , __UpperCAmelCase = 64 , __UpperCAmelCase = 4 , ) ->List[DPRSpanPrediction]: a_ = reader_input["input_ids"] a_ , a_ , a_ = reader_output[:3] a_ = len(__UpperCAmelCase) a_ = sorted(range(__UpperCAmelCase) , reverse=__UpperCAmelCase , key=relevance_logits.__getitem__) a_ = [] for doc_id in sorted_docs: a_ = list(input_ids[doc_id]) # assuming question & title information is at the beginning of the sequence a_ = sequence_ids.index(self.sep_token_id , 2) + 1 # second sep id if sequence_ids[-1] == self.pad_token_id: a_ = sequence_ids.index(self.pad_token_id) else: a_ = len(__UpperCAmelCase) a_ = self._get_best_spans( start_logits=start_logits[doc_id][passage_offset:sequence_len] , end_logits=end_logits[doc_id][passage_offset:sequence_len] , max_answer_length=__UpperCAmelCase , top_spans=__UpperCAmelCase , ) for start_index, end_index in best_spans: start_index += passage_offset end_index += passage_offset nbest_spans_predictions.append( DPRSpanPrediction( span_score=start_logits[doc_id][start_index] + end_logits[doc_id][end_index] , relevance_score=relevance_logits[doc_id] , doc_id=__UpperCAmelCase , start_index=__UpperCAmelCase , end_index=__UpperCAmelCase , text=self.decode(sequence_ids[start_index : end_index + 1]) , )) if len(__UpperCAmelCase) >= num_spans: break return nbest_spans_predictions[:num_spans] def UpperCAmelCase__ ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ) ->List[DPRSpanPrediction]: a_ = [] for start_index, start_score in enumerate(__UpperCAmelCase): for answer_length, end_score in enumerate(end_logits[start_index : start_index + max_answer_length]): scores.append(((start_index, start_index + answer_length), start_score + end_score)) a_ = sorted(__UpperCAmelCase , key=lambda __UpperCAmelCase: x[1] , reverse=__UpperCAmelCase) a_ = [] for (start_index, end_index), score in scores: if start_index > end_index: raise ValueError(F'''Wrong span indices: [{start_index}:{end_index}]''') a_ = end_index - start_index + 1 if length > max_answer_length: raise ValueError(F'''Span is too long: {length} > {max_answer_length}''') if any( start_index <= prev_start_index <= prev_end_index <= end_index or prev_start_index <= start_index <= end_index <= prev_end_index for (prev_start_index, prev_end_index) in chosen_span_intervals): continue chosen_span_intervals.append((start_index, end_index)) if len(__UpperCAmelCase) == top_spans: break return chosen_span_intervals @add_end_docstrings(SCREAMING_SNAKE_CASE_ ) class snake_case ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): a_ : Any = VOCAB_FILES_NAMES a_ : List[str] = READER_PRETRAINED_VOCAB_FILES_MAP a_ : Dict = READER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a_ : Union[str, Any] = READER_PRETRAINED_INIT_CONFIGURATION a_ : Optional[Any] = ["""input_ids""", """attention_mask"""]
303
"""simple docstring""" import warnings from contextlib import contextmanager from ...processing_utils import ProcessorMixin class snake_case ( SCREAMING_SNAKE_CASE_ ): a_ : Dict = """Speech2TextFeatureExtractor""" a_ : str = """Speech2TextTokenizer""" def __init__( self , __UpperCAmelCase , __UpperCAmelCase) ->List[str]: super().__init__(__UpperCAmelCase , __UpperCAmelCase) a_ = self.feature_extractor a_ = False def __call__( self , *__UpperCAmelCase , **__UpperCAmelCase) ->Optional[int]: # For backward compatibility if self._in_target_context_manager: return self.current_processor(*__UpperCAmelCase , **__UpperCAmelCase) if "raw_speech" in kwargs: warnings.warn("Using `raw_speech` as a keyword argument is deprecated. Use `audio` instead.") a_ = kwargs.pop("raw_speech") else: a_ = kwargs.pop("audio" , __UpperCAmelCase) a_ = kwargs.pop("sampling_rate" , __UpperCAmelCase) a_ = kwargs.pop("text" , __UpperCAmelCase) if len(__UpperCAmelCase) > 0: a_ = args[0] a_ = args[1:] if audio is None and text is None: raise ValueError("You need to specify either an `audio` or `text` input to process.") if audio is not None: a_ = self.feature_extractor(__UpperCAmelCase , *__UpperCAmelCase , sampling_rate=__UpperCAmelCase , **__UpperCAmelCase) if text is not None: a_ = self.tokenizer(__UpperCAmelCase , **__UpperCAmelCase) if text is None: return inputs elif audio is None: return encodings else: a_ = encodings["input_ids"] return inputs def UpperCAmelCase__ ( self , *__UpperCAmelCase , **__UpperCAmelCase) ->str: return self.tokenizer.batch_decode(*__UpperCAmelCase , **__UpperCAmelCase) def UpperCAmelCase__ ( self , *__UpperCAmelCase , **__UpperCAmelCase) ->int: return self.tokenizer.decode(*__UpperCAmelCase , **__UpperCAmelCase) @contextmanager def UpperCAmelCase__ ( self) ->Tuple: warnings.warn( "`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your " "labels by using the argument `text` of the regular `__call__` method (either in the same call as " "your audio inputs, or in a separate call.") a_ = True a_ = self.tokenizer yield a_ = self.feature_extractor a_ = False
303
1
from typing import Dict, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, flip_channel_order, get_resize_output_image_size, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_torch_tensor, is_vision_available, logging if is_vision_available(): import PIL if is_torch_available(): import torch __snake_case = logging.get_logger(__name__) class UpperCAmelCase_ ( lowercase ): """simple docstring""" UpperCamelCase_ : Optional[int] =['pixel_values'] def __init__( self , SCREAMING_SNAKE_CASE_ = True , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = PILImageResampling.BILINEAR , SCREAMING_SNAKE_CASE_ = True , SCREAMING_SNAKE_CASE_ = 1 / 255 , SCREAMING_SNAKE_CASE_ = True , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = True , **SCREAMING_SNAKE_CASE_ , ) -> None: super().__init__(**SCREAMING_SNAKE_CASE_ ) UpperCamelCase :List[Any] = size if size is not None else {'''shortest_edge''': 224} UpperCamelCase :Union[str, Any] = get_size_dict(SCREAMING_SNAKE_CASE_ , default_to_square=SCREAMING_SNAKE_CASE_ ) UpperCamelCase :List[Any] = crop_size if crop_size is not None else {'''height''': 256, '''width''': 256} UpperCamelCase :Union[str, Any] = get_size_dict(SCREAMING_SNAKE_CASE_ , param_name='''crop_size''' ) UpperCamelCase :int = do_resize UpperCamelCase :str = size UpperCamelCase :str = resample UpperCamelCase :Dict = do_rescale UpperCamelCase :Dict = rescale_factor UpperCamelCase :List[Any] = do_center_crop UpperCamelCase :Optional[Any] = crop_size UpperCamelCase :Union[str, Any] = do_flip_channel_order def UpperCAmelCase ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = PIL.Image.BILINEAR , SCREAMING_SNAKE_CASE_ = None , **SCREAMING_SNAKE_CASE_ , ) -> np.ndarray: UpperCamelCase :List[str] = get_size_dict(SCREAMING_SNAKE_CASE_ , default_to_square=SCREAMING_SNAKE_CASE_ ) if "shortest_edge" not in size: raise ValueError(F'''The `size` dictionary must contain the key `shortest_edge`. Got {size.keys()}''' ) UpperCamelCase :Any = get_resize_output_image_size(SCREAMING_SNAKE_CASE_ , size=size['''shortest_edge'''] , default_to_square=SCREAMING_SNAKE_CASE_ ) return resize(SCREAMING_SNAKE_CASE_ , size=SCREAMING_SNAKE_CASE_ , resample=SCREAMING_SNAKE_CASE_ , data_format=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) def UpperCAmelCase ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , **SCREAMING_SNAKE_CASE_ , ) -> np.ndarray: UpperCamelCase :Union[str, Any] = get_size_dict(SCREAMING_SNAKE_CASE_ ) if "height" not in size or "width" not in size: raise ValueError(F'''The `size` dictionary must contain the keys `height` and `width`. Got {size.keys()}''' ) return center_crop(SCREAMING_SNAKE_CASE_ , size=(size['''height'''], size['''width''']) , data_format=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) def UpperCAmelCase ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , **SCREAMING_SNAKE_CASE_ , ) -> Any: return rescale(SCREAMING_SNAKE_CASE_ , scale=SCREAMING_SNAKE_CASE_ , data_format=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) def UpperCAmelCase ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None ) -> np.ndarray: return flip_channel_order(SCREAMING_SNAKE_CASE_ , data_format=SCREAMING_SNAKE_CASE_ ) def UpperCAmelCase ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = ChannelDimension.FIRST , **SCREAMING_SNAKE_CASE_ , ) -> PIL.Image.Image: UpperCamelCase :Any = do_resize if do_resize is not None else self.do_resize UpperCamelCase :Tuple = resample if resample is not None else self.resample UpperCamelCase :Union[str, Any] = do_rescale if do_rescale is not None else self.do_rescale UpperCamelCase :Optional[int] = rescale_factor if rescale_factor is not None else self.rescale_factor UpperCamelCase :Any = do_center_crop if do_center_crop is not None else self.do_center_crop UpperCamelCase :Any = ( do_flip_channel_order if do_flip_channel_order is not None else self.do_flip_channel_order ) UpperCamelCase :Dict = size if size is not None else self.size UpperCamelCase :str = get_size_dict(SCREAMING_SNAKE_CASE_ , default_to_square=SCREAMING_SNAKE_CASE_ ) UpperCamelCase :List[str] = crop_size if crop_size is not None else self.crop_size UpperCamelCase :Optional[Any] = get_size_dict(SCREAMING_SNAKE_CASE_ , param_name='''crop_size''' ) UpperCamelCase :str = make_list_of_images(SCREAMING_SNAKE_CASE_ ) if not valid_images(SCREAMING_SNAKE_CASE_ ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''' ) # All transformations expect numpy arrays. UpperCamelCase :Union[str, Any] = [to_numpy_array(SCREAMING_SNAKE_CASE_ ) for image in images] if do_resize: UpperCamelCase :List[str] = [self.resize(image=SCREAMING_SNAKE_CASE_ , size=SCREAMING_SNAKE_CASE_ , resample=SCREAMING_SNAKE_CASE_ ) for image in images] if do_center_crop: UpperCamelCase :Tuple = [self.center_crop(image=SCREAMING_SNAKE_CASE_ , size=SCREAMING_SNAKE_CASE_ ) for image in images] if do_rescale: UpperCamelCase :Optional[int] = [self.rescale(image=SCREAMING_SNAKE_CASE_ , scale=SCREAMING_SNAKE_CASE_ ) for image in images] # the pretrained checkpoints assume images are BGR, not RGB if do_flip_channel_order: UpperCamelCase :str = [self.flip_channel_order(image=SCREAMING_SNAKE_CASE_ ) for image in images] UpperCamelCase :Any = [to_channel_dimension_format(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) for image in images] UpperCamelCase :Optional[int] = {'''pixel_values''': images} return BatchFeature(data=SCREAMING_SNAKE_CASE_ , tensor_type=SCREAMING_SNAKE_CASE_ ) def UpperCAmelCase ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None ) -> Dict: UpperCamelCase :str = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(SCREAMING_SNAKE_CASE_ ) != len(SCREAMING_SNAKE_CASE_ ): raise ValueError( '''Make sure that you pass in as many target sizes as the batch dimension of the logits''' ) if is_torch_tensor(SCREAMING_SNAKE_CASE_ ): UpperCamelCase :Tuple = target_sizes.numpy() UpperCamelCase :Union[str, Any] = [] for idx in range(len(SCREAMING_SNAKE_CASE_ ) ): UpperCamelCase :str = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode='''bilinear''' , align_corners=SCREAMING_SNAKE_CASE_ ) UpperCamelCase :Optional[Any] = resized_logits[0].argmax(dim=0 ) semantic_segmentation.append(SCREAMING_SNAKE_CASE_ ) else: UpperCamelCase :Union[str, Any] = logits.argmax(dim=1 ) UpperCamelCase :str = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )] return semantic_segmentation
259
import argparse import collections import numpy as np import torch from flax import traverse_util from tax import checkpoints from transformers import MTaConfig, UMTaEncoderModel, UMTaForConditionalGeneration from transformers.utils import logging logging.set_verbosity_info() def _A ( SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Tuple ): return params[F'''{prefix}/{prefix}/relpos_bias/rel_embedding'''][:, i, :] def _A ( SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : Any="attention" ): UpperCamelCase :str = np.ascontiguousarray(params[F'''{prefix}/{prefix}/{layer_name}/key/kernel'''][:, i, :, :] ) UpperCamelCase :Optional[Any] = k_tmp.reshape(k_tmp.shape[0] , k_tmp.shape[1] * k_tmp.shape[2] ) UpperCamelCase :Optional[int] = np.ascontiguousarray(params[F'''{prefix}/{prefix}/{layer_name}/out/kernel'''][:, i, :, :] ) UpperCamelCase :List[Any] = o_tmp.reshape(o_tmp.shape[0] * o_tmp.shape[1] , o_tmp.shape[2] ) UpperCamelCase :Union[str, Any] = np.ascontiguousarray(params[F'''{prefix}/{prefix}/{layer_name}/query/kernel'''][:, i, :, :] ) UpperCamelCase :Any = q_tmp.reshape(q_tmp.shape[0] , q_tmp.shape[1] * q_tmp.shape[2] ) UpperCamelCase :str = np.ascontiguousarray(params[F'''{prefix}/{prefix}/{layer_name}/value/kernel'''][:, i, :, :] ) UpperCamelCase :str = v_tmp.reshape(v_tmp.shape[0] , v_tmp.shape[1] * v_tmp.shape[2] ) return k, o, q, v def _A ( SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : List[str]=False ): if split_mlp_wi: UpperCamelCase :List[Any] = params[F'''{prefix}/{prefix}/mlp/wi_0/kernel'''][:, i, :] UpperCamelCase :int = params[F'''{prefix}/{prefix}/mlp/wi_1/kernel'''][:, i, :] UpperCamelCase :str = (wi_a, wi_a) else: UpperCamelCase :Optional[Any] = params[F'''{prefix}/{prefix}/mlp/wi/kernel'''][:, i, :] UpperCamelCase :Optional[int] = params[F'''{prefix}/{prefix}/mlp/wo/kernel'''][:, i, :] return wi, wo def _A ( SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Optional[int] ): return params[F'''{prefix}/{prefix}/{layer_name}/scale'''][:, i] def _A ( SCREAMING_SNAKE_CASE__ : dict , *, SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : bool , SCREAMING_SNAKE_CASE__ : bool = False ): UpperCamelCase :Tuple = traverse_util.flatten_dict(variables['''target'''] ) UpperCamelCase :List[Any] = {'''/'''.join(SCREAMING_SNAKE_CASE__ ): v for k, v in old.items()} # v1.1 models have a gated GeLU with wi_0 and wi_1 instead of wi UpperCamelCase :int = '''encoder/encoder/mlp/wi_0/kernel''' in old print('''Split MLP:''' , SCREAMING_SNAKE_CASE__ ) UpperCamelCase :Optional[int] = collections.OrderedDict() # Shared embeddings. UpperCamelCase :int = old['''token_embedder/embedding'''] # Encoder. for i in range(SCREAMING_SNAKE_CASE__ ): # Block i, layer 0 (Self Attention). UpperCamelCase :str = tax_layer_norm_lookup(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , '''encoder''' , '''pre_attention_layer_norm''' ) UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase :List[str] = tax_attention_lookup(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , '''encoder''' , '''attention''' ) UpperCamelCase :str = layer_norm UpperCamelCase :Dict = k.T UpperCamelCase :Optional[Any] = o.T UpperCamelCase :int = q.T UpperCamelCase :Any = v.T # Block i, layer 1 (MLP). UpperCamelCase :Tuple = tax_layer_norm_lookup(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , '''encoder''' , '''pre_mlp_layer_norm''' ) UpperCamelCase , UpperCamelCase :Any = tax_mlp_lookup(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , '''encoder''' , SCREAMING_SNAKE_CASE__ ) UpperCamelCase :Tuple = layer_norm if split_mlp_wi: UpperCamelCase :List[Any] = wi[0].T UpperCamelCase :Tuple = wi[1].T else: UpperCamelCase :Optional[Any] = wi.T UpperCamelCase :Dict = wo.T if scalable_attention: # convert the rel_embedding of each layer UpperCamelCase :List[str] = tax_relpos_bias_lookup( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , '''encoder''' ).T UpperCamelCase :Optional[Any] = old['''encoder/encoder_norm/scale'''] if not scalable_attention: UpperCamelCase :str = tax_relpos_bias_lookup( SCREAMING_SNAKE_CASE__ , 0 , '''encoder''' ).T UpperCamelCase :Any = tax_relpos_bias_lookup( SCREAMING_SNAKE_CASE__ , 0 , '''decoder''' ).T if not is_encoder_only: # Decoder. for i in range(SCREAMING_SNAKE_CASE__ ): # Block i, layer 0 (Self Attention). UpperCamelCase :Union[str, Any] = tax_layer_norm_lookup(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , '''decoder''' , '''pre_self_attention_layer_norm''' ) UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase :Dict = tax_attention_lookup(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , '''decoder''' , '''self_attention''' ) UpperCamelCase :str = layer_norm UpperCamelCase :int = k.T UpperCamelCase :Optional[int] = o.T UpperCamelCase :Tuple = q.T UpperCamelCase :List[str] = v.T # Block i, layer 1 (Cross Attention). UpperCamelCase :str = tax_layer_norm_lookup(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , '''decoder''' , '''pre_cross_attention_layer_norm''' ) UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase :List[Any] = tax_attention_lookup(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , '''decoder''' , '''encoder_decoder_attention''' ) UpperCamelCase :Tuple = layer_norm UpperCamelCase :Optional[Any] = k.T UpperCamelCase :List[str] = o.T UpperCamelCase :List[str] = q.T UpperCamelCase :str = v.T # Block i, layer 2 (MLP). UpperCamelCase :List[str] = tax_layer_norm_lookup(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , '''decoder''' , '''pre_mlp_layer_norm''' ) UpperCamelCase , UpperCamelCase :Optional[int] = tax_mlp_lookup(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , '''decoder''' , SCREAMING_SNAKE_CASE__ ) UpperCamelCase :Tuple = layer_norm if split_mlp_wi: UpperCamelCase :List[str] = wi[0].T UpperCamelCase :str = wi[1].T else: UpperCamelCase :Dict = wi.T UpperCamelCase :Optional[Any] = wo.T if scalable_attention: # convert the rel_embedding of each layer UpperCamelCase :Tuple = tax_relpos_bias_lookup(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , '''decoder''' ).T UpperCamelCase :Union[str, Any] = old['''decoder/decoder_norm/scale'''] # LM Head (only in v1.1 checkpoints, in v1.0 embeddings are used instead) if "decoder/logits_dense/kernel" in old: UpperCamelCase :Union[str, Any] = old['''decoder/logits_dense/kernel'''].T return new def _A ( SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : bool ): UpperCamelCase :Optional[int] = collections.OrderedDict([(k, torch.from_numpy(v.copy() )) for (k, v) in converted_params.items()] ) # Add what is missing. if "encoder.embed_tokens.weight" not in state_dict: UpperCamelCase :Dict = state_dict['''shared.weight'''] if not is_encoder_only: if "decoder.embed_tokens.weight" not in state_dict: UpperCamelCase :Dict = state_dict['''shared.weight'''] if "lm_head.weight" not in state_dict: # For old 1.0 models. print('''Using shared word embeddings as lm_head.''' ) UpperCamelCase :List[Any] = state_dict['''shared.weight'''] return state_dict def _A ( SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Any ): UpperCamelCase :Dict = checkpoints.load_tax_checkpoint(SCREAMING_SNAKE_CASE__ ) UpperCamelCase :str = convert_tax_to_pytorch( SCREAMING_SNAKE_CASE__ , num_layers=config.num_layers , is_encoder_only=SCREAMING_SNAKE_CASE__ , scalable_attention=SCREAMING_SNAKE_CASE__ ) UpperCamelCase :Dict = make_state_dict(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) model.load_state_dict(SCREAMING_SNAKE_CASE__ , strict=SCREAMING_SNAKE_CASE__ ) def _A ( SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : bool = False , SCREAMING_SNAKE_CASE__ : bool = False , ): UpperCamelCase :Any = MTaConfig.from_json_file(SCREAMING_SNAKE_CASE__ ) print(F'''Building PyTorch model from configuration: {config}''' ) # Non-v1.1 checkpoints could also use T5Model, but this works for all. # The v1.0 checkpoints will simply have an LM head that is the word embeddings. if is_encoder_only: UpperCamelCase :List[str] = UMTaEncoderModel(SCREAMING_SNAKE_CASE__ ) else: UpperCamelCase :Any = UMTaForConditionalGeneration(SCREAMING_SNAKE_CASE__ ) # Load weights from tf checkpoint load_tax_weights_in_ta(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # Save pytorch-model print(F'''Save PyTorch model to {pytorch_dump_path}''' ) model.save_pretrained(SCREAMING_SNAKE_CASE__ ) # Verify that we can load the checkpoint. model.from_pretrained(SCREAMING_SNAKE_CASE__ ) print('''Done''' ) if __name__ == "__main__": __snake_case = argparse.ArgumentParser(description="""Converts a native T5X checkpoint into a PyTorch checkpoint.""") # Required parameters parser.add_argument( """--t5x_checkpoint_path""", default=None, type=str, required=True, help="""Path to the T5X checkpoint.""" ) parser.add_argument( """--config_file""", default=None, type=str, required=True, help="""The config json file corresponding to the pre-trained T5 model.\nThis specifies the model architecture.""", ) parser.add_argument( """--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) parser.add_argument( """--is_encoder_only""", action="""store_true""", help="""Check if the model is encoder-decoder model""", default=False ) parser.add_argument( """--scalable_attention""", action="""store_true""", help="""Whether the model uses scaled attention (umt5 model)""", default=False, ) __snake_case = parser.parse_args() convert_tax_checkpoint_to_pytorch( args.tax_checkpoint_path, args.config_file, args.pytorch_dump_path, args.is_encoder_only, args.scalable_attention, )
259
1
import importlib import json import os from collections import OrderedDict from typing import Dict, Optional, Union # Build the list of all image processors from ...configuration_utils import PretrainedConfig from ...dynamic_module_utils import get_class_from_dynamic_module, resolve_trust_remote_code from ...image_processing_utils import ImageProcessingMixin from ...utils import CONFIG_NAME, IMAGE_PROCESSOR_NAME, get_file_from_repo, logging from .auto_factory import _LazyAutoMapping from .configuration_auto import ( CONFIG_MAPPING_NAMES, AutoConfig, model_type_to_module_name, replace_list_option_in_docstrings, ) _UpperCamelCase = logging.get_logger(__name__) _UpperCamelCase = OrderedDict( [ ('''align''', '''EfficientNetImageProcessor'''), ('''beit''', '''BeitImageProcessor'''), ('''bit''', '''BitImageProcessor'''), ('''blip''', '''BlipImageProcessor'''), ('''blip-2''', '''BlipImageProcessor'''), ('''bridgetower''', '''BridgeTowerImageProcessor'''), ('''chinese_clip''', '''ChineseCLIPImageProcessor'''), ('''clip''', '''CLIPImageProcessor'''), ('''clipseg''', '''ViTImageProcessor'''), ('''conditional_detr''', '''ConditionalDetrImageProcessor'''), ('''convnext''', '''ConvNextImageProcessor'''), ('''convnextv2''', '''ConvNextImageProcessor'''), ('''cvt''', '''ConvNextImageProcessor'''), ('''data2vec-vision''', '''BeitImageProcessor'''), ('''deformable_detr''', '''DeformableDetrImageProcessor'''), ('''deit''', '''DeiTImageProcessor'''), ('''deta''', '''DetaImageProcessor'''), ('''detr''', '''DetrImageProcessor'''), ('''dinat''', '''ViTImageProcessor'''), ('''donut-swin''', '''DonutImageProcessor'''), ('''dpt''', '''DPTImageProcessor'''), ('''efficientformer''', '''EfficientFormerImageProcessor'''), ('''efficientnet''', '''EfficientNetImageProcessor'''), ('''flava''', '''FlavaImageProcessor'''), ('''focalnet''', '''BitImageProcessor'''), ('''git''', '''CLIPImageProcessor'''), ('''glpn''', '''GLPNImageProcessor'''), ('''groupvit''', '''CLIPImageProcessor'''), ('''imagegpt''', '''ImageGPTImageProcessor'''), ('''instructblip''', '''BlipImageProcessor'''), ('''layoutlmv2''', '''LayoutLMv2ImageProcessor'''), ('''layoutlmv3''', '''LayoutLMv3ImageProcessor'''), ('''levit''', '''LevitImageProcessor'''), ('''mask2former''', '''Mask2FormerImageProcessor'''), ('''maskformer''', '''MaskFormerImageProcessor'''), ('''mgp-str''', '''ViTImageProcessor'''), ('''mobilenet_v1''', '''MobileNetV1ImageProcessor'''), ('''mobilenet_v2''', '''MobileNetV2ImageProcessor'''), ('''mobilevit''', '''MobileViTImageProcessor'''), ('''mobilevit''', '''MobileViTImageProcessor'''), ('''mobilevitv2''', '''MobileViTImageProcessor'''), ('''nat''', '''ViTImageProcessor'''), ('''oneformer''', '''OneFormerImageProcessor'''), ('''owlvit''', '''OwlViTImageProcessor'''), ('''perceiver''', '''PerceiverImageProcessor'''), ('''pix2struct''', '''Pix2StructImageProcessor'''), ('''poolformer''', '''PoolFormerImageProcessor'''), ('''regnet''', '''ConvNextImageProcessor'''), ('''resnet''', '''ConvNextImageProcessor'''), ('''sam''', '''SamImageProcessor'''), ('''segformer''', '''SegformerImageProcessor'''), ('''swiftformer''', '''ViTImageProcessor'''), ('''swin''', '''ViTImageProcessor'''), ('''swin2sr''', '''Swin2SRImageProcessor'''), ('''swinv2''', '''ViTImageProcessor'''), ('''table-transformer''', '''DetrImageProcessor'''), ('''timesformer''', '''VideoMAEImageProcessor'''), ('''tvlt''', '''TvltImageProcessor'''), ('''upernet''', '''SegformerImageProcessor'''), ('''van''', '''ConvNextImageProcessor'''), ('''videomae''', '''VideoMAEImageProcessor'''), ('''vilt''', '''ViltImageProcessor'''), ('''vit''', '''ViTImageProcessor'''), ('''vit_hybrid''', '''ViTHybridImageProcessor'''), ('''vit_mae''', '''ViTImageProcessor'''), ('''vit_msn''', '''ViTImageProcessor'''), ('''xclip''', '''CLIPImageProcessor'''), ('''yolos''', '''YolosImageProcessor'''), ] ) _UpperCamelCase = _LazyAutoMapping(CONFIG_MAPPING_NAMES, IMAGE_PROCESSOR_MAPPING_NAMES) def UpperCamelCase_( snake_case__: str ) -> Any: for module_name, extractors in IMAGE_PROCESSOR_MAPPING_NAMES.items(): if class_name in extractors: UpperCAmelCase__ = model_type_to_module_name(snake_case__ ) UpperCAmelCase__ = importlib.import_module(f".{module_name}" , 'transformers.models' ) try: return getattr(snake_case__ , snake_case__ ) except AttributeError: continue for _, extractor in IMAGE_PROCESSOR_MAPPING._extra_content.items(): if getattr(snake_case__ , '__name__' , snake_case__ ) == class_name: return extractor # We did not fine the class, but maybe it's because a dep is missing. In that case, the class will be in the main # init and we return the proper dummy to get an appropriate error message. UpperCAmelCase__ = importlib.import_module('transformers' ) if hasattr(snake_case__ , snake_case__ ): return getattr(snake_case__ , snake_case__ ) return None def UpperCamelCase_( snake_case__: Dict , snake_case__: Dict = None , snake_case__: int = False , snake_case__: Optional[Any] = False , snake_case__: Optional[int] = None , snake_case__: Union[str, Any] = None , snake_case__: List[str] = None , snake_case__: int = False , **snake_case__: List[str] , ) -> List[Any]: UpperCAmelCase__ = get_file_from_repo( snake_case__ , snake_case__ , cache_dir=snake_case__ , force_download=snake_case__ , resume_download=snake_case__ , proxies=snake_case__ , use_auth_token=snake_case__ , revision=snake_case__ , local_files_only=snake_case__ , ) if resolved_config_file is None: logger.info( 'Could not locate the image processor configuration file, will try to use the model config instead.' ) return {} with open(snake_case__ , encoding='utf-8' ) as reader: return json.load(snake_case__ ) class lowercase : '''simple docstring''' def __init__(self ) -> List[Any]: """simple docstring""" raise EnvironmentError( 'AutoImageProcessor is designed to be instantiated ' 'using the `AutoImageProcessor.from_pretrained(pretrained_model_name_or_path)` method.' ) @classmethod @replace_list_option_in_docstrings(__SCREAMING_SNAKE_CASE ) def UpperCamelCase__ (cls , __a , **__a ) -> List[str]: """simple docstring""" UpperCAmelCase__ = kwargs.pop('config' , __SCREAMING_SNAKE_CASE ) UpperCAmelCase__ = kwargs.pop('trust_remote_code' , __SCREAMING_SNAKE_CASE ) UpperCAmelCase__ = True UpperCAmelCase__ , UpperCAmelCase__ = ImageProcessingMixin.get_image_processor_dict(__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) UpperCAmelCase__ = config_dict.get('image_processor_type' , __SCREAMING_SNAKE_CASE ) UpperCAmelCase__ = None if "AutoImageProcessor" in config_dict.get('auto_map' , {} ): UpperCAmelCase__ = config_dict['auto_map']['AutoImageProcessor'] # If we still don't have the image processor class, check if we're loading from a previous feature extractor config # and if so, infer the image processor class from there. if image_processor_class is None and image_processor_auto_map is None: UpperCAmelCase__ = config_dict.pop('feature_extractor_type' , __SCREAMING_SNAKE_CASE ) if feature_extractor_class is not None: logger.warning( 'Could not find image processor class in the image processor config or the model config. Loading' ' based on pattern matching with the model\'s feature extractor configuration.' ) UpperCAmelCase__ = feature_extractor_class.replace('FeatureExtractor' , 'ImageProcessor' ) if "AutoFeatureExtractor" in config_dict.get('auto_map' , {} ): UpperCAmelCase__ = config_dict['auto_map']['AutoFeatureExtractor'] UpperCAmelCase__ = feature_extractor_auto_map.replace('FeatureExtractor' , 'ImageProcessor' ) logger.warning( 'Could not find image processor auto map in the image processor config or the model config.' ' Loading based on pattern matching with the model\'s feature extractor configuration.' ) # If we don't find the image processor class in the image processor config, let's try the model config. if image_processor_class is None and image_processor_auto_map is None: if not isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): UpperCAmelCase__ = AutoConfig.from_pretrained(__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) # It could be in `config.image_processor_type`` UpperCAmelCase__ = getattr(__SCREAMING_SNAKE_CASE , 'image_processor_type' , __SCREAMING_SNAKE_CASE ) if hasattr(__SCREAMING_SNAKE_CASE , 'auto_map' ) and "AutoImageProcessor" in config.auto_map: UpperCAmelCase__ = config.auto_map['AutoImageProcessor'] if image_processor_class is not None: UpperCAmelCase__ = image_processor_class_from_name(__SCREAMING_SNAKE_CASE ) UpperCAmelCase__ = image_processor_auto_map is not None UpperCAmelCase__ = image_processor_class is not None or type(__SCREAMING_SNAKE_CASE ) in IMAGE_PROCESSOR_MAPPING UpperCAmelCase__ = resolve_trust_remote_code( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) if has_remote_code and trust_remote_code: UpperCAmelCase__ = get_class_from_dynamic_module( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) UpperCAmelCase__ = kwargs.pop('code_revision' , __SCREAMING_SNAKE_CASE ) if os.path.isdir(__SCREAMING_SNAKE_CASE ): image_processor_class.register_for_auto_class() return image_processor_class.from_dict(__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) elif image_processor_class is not None: return image_processor_class.from_dict(__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) # Last try: we use the IMAGE_PROCESSOR_MAPPING. elif type(__SCREAMING_SNAKE_CASE ) in IMAGE_PROCESSOR_MAPPING: UpperCAmelCase__ = IMAGE_PROCESSOR_MAPPING[type(__SCREAMING_SNAKE_CASE )] return image_processor_class.from_dict(__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) raise ValueError( F"Unrecognized image processor in {pretrained_model_name_or_path}. Should have a " F"`image_processor_type` key in its {IMAGE_PROCESSOR_NAME} of {CONFIG_NAME}, or one of the following " F"`model_type` keys in its {CONFIG_NAME}: {', '.join(c for c in IMAGE_PROCESSOR_MAPPING_NAMES.keys() )}" ) @staticmethod def UpperCamelCase__ (__a , __a ) -> Dict: """simple docstring""" IMAGE_PROCESSOR_MAPPING.register(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
352
import copy import os import cva import numpy as np from matplotlib import pyplot as plt class lowercase : '''simple docstring''' def __init__(self ) -> str: """simple docstring""" UpperCAmelCase__ = '' UpperCAmelCase__ = '' UpperCAmelCase__ = [] UpperCAmelCase__ = 0 UpperCAmelCase__ = 256 UpperCAmelCase__ = 0 UpperCAmelCase__ = 0 UpperCAmelCase__ = 0 UpperCAmelCase__ = 0 def UpperCamelCase__ (self , __a ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase__ = cva.imread(__a , 0 ) UpperCAmelCase__ = copy.deepcopy(self.img ) UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = plt.hist(self.img.ravel() , 256 , [0, 256] , label='x' ) UpperCAmelCase__ = np.sum(__a ) for i in range(len(__a ) ): UpperCAmelCase__ = x[i] / self.k self.sk += prk UpperCAmelCase__ = (self.L - 1) * self.sk if self.rem != 0: UpperCAmelCase__ = int(last % last ) UpperCAmelCase__ = int(last + 1 if self.rem >= 0.5 else last ) self.last_list.append(__a ) UpperCAmelCase__ = int(np.ma.count(self.img ) / self.img[1].size ) UpperCAmelCase__ = self.img[1].size for i in range(self.number_of_cols ): for j in range(self.number_of_rows ): UpperCAmelCase__ = self.img[j][i] if num != self.last_list[num]: UpperCAmelCase__ = self.last_list[num] cva.imwrite('output_data/output.jpg' , self.img ) def UpperCamelCase__ (self ) -> Optional[int]: """simple docstring""" plt.hist(self.img.ravel() , 256 , [0, 256] ) def UpperCamelCase__ (self ) -> Tuple: """simple docstring""" cva.imshow('Output-Image' , self.img ) cva.imshow('Input-Image' , self.original_image ) cva.waitKey(5000 ) cva.destroyAllWindows() if __name__ == "__main__": _UpperCamelCase = os.path.join(os.path.basename(__file__), '''image_data/input.jpg''') _UpperCamelCase = ConstantStretch() stretcher.stretch(file_path) stretcher.plot_histogram() stretcher.show_image()
335
0