code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging a : Union[str, Any] = logging.get_logger(__name__) a : Tuple = { """facebook/levit-128S""": """https://huggingface.co/facebook/levit-128S/resolve/main/config.json""", # See all LeViT models at https://huggingface.co/models?filter=levit } class UpperCamelCase_ ( __magic_name__ ): lowercase = 'levit' def __init__( self , A=224 , A=3 , A=3 , A=2 , A=1 , A=16 , A=[128, 256, 384] , A=[4, 8, 12] , A=[4, 4, 4] , A=[16, 16, 16] , A=0 , A=[2, 2, 2] , A=[2, 2, 2] , A=0.0_2 , **A , ) -> int: super().__init__(**A ) UpperCAmelCase : Optional[Any] = image_size UpperCAmelCase : str = num_channels UpperCAmelCase : Any = kernel_size UpperCAmelCase : str = stride UpperCAmelCase : Optional[Any] = padding UpperCAmelCase : List[str] = hidden_sizes UpperCAmelCase : Union[str, Any] = num_attention_heads UpperCAmelCase : Any = depths UpperCAmelCase : Optional[Any] = key_dim UpperCAmelCase : Union[str, Any] = drop_path_rate UpperCAmelCase : str = patch_size UpperCAmelCase : List[Any] = attention_ratio UpperCAmelCase : Optional[Any] = mlp_ratio UpperCAmelCase : Tuple = initializer_range UpperCAmelCase : Dict = [ ["""Subsample""", key_dim[0], hidden_sizes[0] // key_dim[0], 4, 2, 2], ["""Subsample""", key_dim[0], hidden_sizes[1] // key_dim[0], 4, 2, 2], ] class UpperCamelCase_ ( __magic_name__ ): lowercase = version.parse('1.11' ) @property def _lowercase( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def _lowercase( self ) -> float: return 1e-4
265
'''simple docstring''' from itertools import count def __lowerCamelCase ( _lowercase = 5_0 ) -> int: UpperCAmelCase : Any = [1] * min_block_length for n in count(_lowercase ): fill_count_functions.append(1 ) for block_length in range(_lowercase , n + 1 ): for block_start in range(n - block_length ): fill_count_functions[n] += fill_count_functions[ n - block_start - block_length - 1 ] fill_count_functions[n] += 1 if fill_count_functions[n] > 1_0_0_0_0_0_0: break return n if __name__ == "__main__": print(F'''{solution() = }''')
265
1
import math def UpperCAmelCase_( a__ ): """simple docstring""" SCREAMING_SNAKE_CASE : Any = math.loga(math.sqrt(4 * positive_integer + 1 ) / 2 + 1 / 2 ) return exponent == int(a__ ) def UpperCAmelCase_( a__ = 1 / 12_345 ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = 0 SCREAMING_SNAKE_CASE : Dict = 0 SCREAMING_SNAKE_CASE : int = 3 while True: SCREAMING_SNAKE_CASE : Union[str, Any] = (integer**2 - 1) / 4 # if candidate is an integer, then there is a partition for k if partition_candidate == int(a__ ): SCREAMING_SNAKE_CASE : List[str] = int(a__ ) total_partitions += 1 if check_partition_perfect(a__ ): perfect_partitions += 1 if perfect_partitions > 0: if perfect_partitions / total_partitions < max_proportion: return int(a__ ) integer += 1 if __name__ == "__main__": print(F"{solution() = }")
19
import math from collections.abc import Iterator from itertools import takewhile def UpperCAmelCase_( a__ ): """simple docstring""" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(a__ ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def UpperCAmelCase_( ): """simple docstring""" SCREAMING_SNAKE_CASE : str = 2 while True: if is_prime(a__ ): yield num num += 1 def UpperCAmelCase_( a__ = 2_000_000 ): """simple docstring""" return sum(takewhile(lambda a__ : x < n , prime_generator() ) ) if __name__ == "__main__": print(F"{solution() = }")
19
1
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { '''xlm-roberta-base''': '''https://huggingface.co/xlm-roberta-base/resolve/main/config.json''', '''xlm-roberta-large''': '''https://huggingface.co/xlm-roberta-large/resolve/main/config.json''', '''xlm-roberta-large-finetuned-conll02-dutch''': ( '''https://huggingface.co/xlm-roberta-large-finetuned-conll02-dutch/resolve/main/config.json''' ), '''xlm-roberta-large-finetuned-conll02-spanish''': ( '''https://huggingface.co/xlm-roberta-large-finetuned-conll02-spanish/resolve/main/config.json''' ), '''xlm-roberta-large-finetuned-conll03-english''': ( '''https://huggingface.co/xlm-roberta-large-finetuned-conll03-english/resolve/main/config.json''' ), '''xlm-roberta-large-finetuned-conll03-german''': ( '''https://huggingface.co/xlm-roberta-large-finetuned-conll03-german/resolve/main/config.json''' ), } class SCREAMING_SNAKE_CASE__ ( lowercase ): """simple docstring""" a : Any ="xlm-roberta" def __init__( self , snake_case__=30_522 , snake_case__=768 , snake_case__=12 , snake_case__=12 , snake_case__=3_072 , snake_case__="gelu" , snake_case__=0.1 , snake_case__=0.1 , snake_case__=512 , snake_case__=2 , snake_case__=0.02 , snake_case__=1e-12 , snake_case__=1 , snake_case__=0 , snake_case__=2 , snake_case__="absolute" , snake_case__=True , snake_case__=None , **snake_case__ , ): """simple docstring""" super().__init__(pad_token_id=snake_case__ , bos_token_id=snake_case__ , eos_token_id=snake_case__ , **snake_case__ ) lowerCAmelCase : int = vocab_size lowerCAmelCase : str = hidden_size lowerCAmelCase : List[Any] = num_hidden_layers lowerCAmelCase : Union[str, Any] = num_attention_heads lowerCAmelCase : List[Any] = hidden_act lowerCAmelCase : Any = intermediate_size lowerCAmelCase : List[str] = hidden_dropout_prob lowerCAmelCase : Dict = attention_probs_dropout_prob lowerCAmelCase : str = max_position_embeddings lowerCAmelCase : str = type_vocab_size lowerCAmelCase : List[Any] = initializer_range lowerCAmelCase : int = layer_norm_eps lowerCAmelCase : Union[str, Any] = position_embedding_type lowerCAmelCase : int = use_cache lowerCAmelCase : int = classifier_dropout class SCREAMING_SNAKE_CASE__ ( lowercase ): """simple docstring""" @property def lowercase__ ( self ): """simple docstring""" if self.task == "multiple-choice": lowerCAmelCase : Tuple = {0: "batch", 1: "choice", 2: "sequence"} else: lowerCAmelCase : Any = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ] )
108
"""simple docstring""" import random import unittest from torch.utils.data import BatchSampler, DataLoader, IterableDataset from accelerate import Accelerator from accelerate.data_loader import ( BatchSamplerShard, DataLoaderDispatcher, DataLoaderShard, IterableDatasetShard, SkipBatchSampler, SkipDataLoader, skip_first_batches, ) class SCREAMING_SNAKE_CASE__ ( lowercase ): """simple docstring""" def __init__( self , snake_case__=0.01 , snake_case__=1_000 ): """simple docstring""" lowerCAmelCase : List[Any] = p_stop lowerCAmelCase : Optional[Any] = max_length def __iter__( self ): """simple docstring""" lowerCAmelCase : Optional[Any] = 0 lowerCAmelCase : Tuple = False while not stop and count < self.max_length: yield count count += 1 lowerCAmelCase : Dict = random.random() < self.p_stop class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): """simple docstring""" def lowercase__ ( self , snake_case__ , snake_case__ , snake_case__=False , snake_case__=True ): """simple docstring""" lowerCAmelCase : Dict = [ BatchSamplerShard(snake_case__ , 2 , snake_case__ , split_batches=snake_case__ , even_batches=snake_case__ ) for i in range(2 ) ] lowerCAmelCase : Any = [list(snake_case__ ) for batch_sampler_shard in batch_sampler_shards] if not split_batches: self.assertListEqual([len(snake_case__ ) for shard in batch_sampler_shards] , [len(snake_case__ ) for e in expected] ) self.assertListEqual(snake_case__ , snake_case__ ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Union[str, Any] = BatchSampler(range(24 ) , batch_size=3 , drop_last=snake_case__ ) lowerCAmelCase : Any = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 22, 23]], ] self.check_batch_sampler_shards(snake_case__ , snake_case__ ) lowerCAmelCase : Tuple = BatchSampler(range(24 ) , batch_size=3 , drop_last=snake_case__ ) # Expected shouldn't change self.check_batch_sampler_shards(snake_case__ , snake_case__ ) # Check the shards when the dataset is a round multiple of batch size but not total batch size. lowerCAmelCase : Union[str, Any] = BatchSampler(range(21 ) , batch_size=3 , drop_last=snake_case__ ) lowerCAmelCase : List[str] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [0, 1, 2]], ] self.check_batch_sampler_shards(snake_case__ , snake_case__ ) lowerCAmelCase : Tuple = BatchSampler(range(21 ) , batch_size=3 , drop_last=snake_case__ ) lowerCAmelCase : Any = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(snake_case__ , snake_case__ ) # Check the shards when the dataset is not a round multiple of batch size but has a multiple of # num_processes batch. lowerCAmelCase : List[str] = BatchSampler(range(22 ) , batch_size=3 , drop_last=snake_case__ ) lowerCAmelCase : Dict = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 0, 1]], ] self.check_batch_sampler_shards(snake_case__ , snake_case__ ) lowerCAmelCase : Dict = BatchSampler(range(22 ) , batch_size=3 , drop_last=snake_case__ ) lowerCAmelCase : Optional[Any] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(snake_case__ , snake_case__ ) # Check the shards when the dataset is not a round multiple of batch size but and has not a multiple of # num_processes batch. lowerCAmelCase : Any = BatchSampler(range(20 ) , batch_size=3 , drop_last=snake_case__ ) lowerCAmelCase : Tuple = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 0]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [1, 2, 3]], ] self.check_batch_sampler_shards(snake_case__ , snake_case__ ) lowerCAmelCase : List[str] = BatchSampler(range(20 ) , batch_size=3 , drop_last=snake_case__ ) lowerCAmelCase : List[str] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(snake_case__ , snake_case__ ) # Check the shards when the dataset is very small. lowerCAmelCase : Dict = BatchSampler(range(2 ) , batch_size=3 , drop_last=snake_case__ ) lowerCAmelCase : Union[str, Any] = [[[0, 1, 0]], [[1, 0, 1]]] self.check_batch_sampler_shards(snake_case__ , snake_case__ ) lowerCAmelCase : Optional[Any] = BatchSampler(range(2 ) , batch_size=3 , drop_last=snake_case__ ) lowerCAmelCase : Any = [[], []] self.check_batch_sampler_shards(snake_case__ , snake_case__ ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Tuple = BatchSampler(range(24 ) , batch_size=4 , drop_last=snake_case__ ) lowerCAmelCase : int = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [22, 23]], ] self.check_batch_sampler_shards(snake_case__ , snake_case__ , split_batches=snake_case__ ) lowerCAmelCase : Dict = BatchSampler(range(24 ) , batch_size=4 , drop_last=snake_case__ ) # Expected shouldn't change self.check_batch_sampler_shards(snake_case__ , snake_case__ , split_batches=snake_case__ ) # Check the shards when the dataset is not a round multiple of batch size. lowerCAmelCase : Optional[int] = BatchSampler(range(22 ) , batch_size=4 , drop_last=snake_case__ ) lowerCAmelCase : Optional[Any] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [0, 1]], ] self.check_batch_sampler_shards(snake_case__ , snake_case__ , split_batches=snake_case__ ) lowerCAmelCase : List[Any] = BatchSampler(range(22 ) , batch_size=4 , drop_last=snake_case__ ) lowerCAmelCase : List[str] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(snake_case__ , snake_case__ , split_batches=snake_case__ ) # Check the shards when the dataset is not a round multiple of batch size or num_processes. lowerCAmelCase : Tuple = BatchSampler(range(21 ) , batch_size=4 , drop_last=snake_case__ ) lowerCAmelCase : List[str] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 0]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [1, 2]], ] self.check_batch_sampler_shards(snake_case__ , snake_case__ , split_batches=snake_case__ ) lowerCAmelCase : Any = BatchSampler(range(21 ) , batch_size=4 , drop_last=snake_case__ ) lowerCAmelCase : Optional[Any] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(snake_case__ , snake_case__ , split_batches=snake_case__ ) # Check the shards when the dataset is very small. lowerCAmelCase : Optional[Any] = BatchSampler(range(2 ) , batch_size=4 , drop_last=snake_case__ ) lowerCAmelCase : Optional[int] = [[[0, 1]], [[0, 1]]] self.check_batch_sampler_shards(snake_case__ , snake_case__ , split_batches=snake_case__ ) lowerCAmelCase : Optional[Any] = BatchSampler(range(2 ) , batch_size=4 , drop_last=snake_case__ ) lowerCAmelCase : Optional[int] = [[], []] self.check_batch_sampler_shards(snake_case__ , snake_case__ , split_batches=snake_case__ ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Optional[int] = BatchSampler(range(24 ) , batch_size=3 , drop_last=snake_case__ ) lowerCAmelCase : Any = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 22, 23]], ] self.check_batch_sampler_shards(snake_case__ , snake_case__ , even_batches=snake_case__ ) lowerCAmelCase : Optional[Any] = BatchSampler(range(24 ) , batch_size=3 , drop_last=snake_case__ ) # Expected shouldn't change self.check_batch_sampler_shards(snake_case__ , snake_case__ , even_batches=snake_case__ ) # Check the shards when the dataset is a round multiple of batch size but not total batch size. lowerCAmelCase : Dict = BatchSampler(range(21 ) , batch_size=3 , drop_last=snake_case__ ) lowerCAmelCase : Dict = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(snake_case__ , snake_case__ , even_batches=snake_case__ ) lowerCAmelCase : int = BatchSampler(range(21 ) , batch_size=3 , drop_last=snake_case__ ) lowerCAmelCase : List[str] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(snake_case__ , snake_case__ , even_batches=snake_case__ ) # Check the shards when the dataset is not a round multiple of batch size but has a multiple of # num_processes batch. lowerCAmelCase : str = BatchSampler(range(22 ) , batch_size=3 , drop_last=snake_case__ ) lowerCAmelCase : Union[str, Any] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21]], ] self.check_batch_sampler_shards(snake_case__ , snake_case__ , even_batches=snake_case__ ) lowerCAmelCase : List[str] = BatchSampler(range(22 ) , batch_size=3 , drop_last=snake_case__ ) lowerCAmelCase : Union[str, Any] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(snake_case__ , snake_case__ , even_batches=snake_case__ ) # Check the shards when the dataset is not a round multiple of batch size but and has not a multiple of # num_processes batch. lowerCAmelCase : str = BatchSampler(range(20 ) , batch_size=3 , drop_last=snake_case__ ) lowerCAmelCase : Union[str, Any] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(snake_case__ , snake_case__ , even_batches=snake_case__ ) lowerCAmelCase : Any = BatchSampler(range(20 ) , batch_size=3 , drop_last=snake_case__ ) lowerCAmelCase : Union[str, Any] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(snake_case__ , snake_case__ , even_batches=snake_case__ ) # Check the shards when the dataset is very small. lowerCAmelCase : Optional[int] = BatchSampler(range(2 ) , batch_size=3 , drop_last=snake_case__ ) lowerCAmelCase : List[str] = [[[0, 1]], []] self.check_batch_sampler_shards(snake_case__ , snake_case__ , even_batches=snake_case__ ) lowerCAmelCase : str = BatchSampler(range(2 ) , batch_size=3 , drop_last=snake_case__ ) lowerCAmelCase : Optional[Any] = [[], []] self.check_batch_sampler_shards(snake_case__ , snake_case__ , even_batches=snake_case__ ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : str = BatchSampler(range(24 ) , batch_size=4 , drop_last=snake_case__ ) lowerCAmelCase : Dict = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [22, 23]], ] self.check_batch_sampler_shards(snake_case__ , snake_case__ , split_batches=snake_case__ , even_batches=snake_case__ ) lowerCAmelCase : List[Any] = BatchSampler(range(24 ) , batch_size=4 , drop_last=snake_case__ ) # Expected shouldn't change self.check_batch_sampler_shards(snake_case__ , snake_case__ , split_batches=snake_case__ , even_batches=snake_case__ ) # Check the shards when the dataset is not a round multiple of batch size. lowerCAmelCase : Tuple = BatchSampler(range(22 ) , batch_size=4 , drop_last=snake_case__ ) lowerCAmelCase : List[str] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(snake_case__ , snake_case__ , split_batches=snake_case__ , even_batches=snake_case__ ) lowerCAmelCase : int = BatchSampler(range(22 ) , batch_size=4 , drop_last=snake_case__ ) lowerCAmelCase : str = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(snake_case__ , snake_case__ , split_batches=snake_case__ , even_batches=snake_case__ ) # Check the shards when the dataset is not a round multiple of batch size or num_processes. lowerCAmelCase : int = BatchSampler(range(21 ) , batch_size=4 , drop_last=snake_case__ ) lowerCAmelCase : str = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(snake_case__ , snake_case__ , split_batches=snake_case__ , even_batches=snake_case__ ) lowerCAmelCase : str = BatchSampler(range(21 ) , batch_size=4 , drop_last=snake_case__ ) lowerCAmelCase : Union[str, Any] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(snake_case__ , snake_case__ , split_batches=snake_case__ , even_batches=snake_case__ ) # Check the shards when the dataset is very small. lowerCAmelCase : Optional[Any] = BatchSampler(range(2 ) , batch_size=4 , drop_last=snake_case__ ) lowerCAmelCase : int = [[[0, 1]], []] self.check_batch_sampler_shards(snake_case__ , snake_case__ , split_batches=snake_case__ , even_batches=snake_case__ ) lowerCAmelCase : Dict = BatchSampler(range(2 ) , batch_size=4 , drop_last=snake_case__ ) lowerCAmelCase : List[str] = [[], []] self.check_batch_sampler_shards(snake_case__ , snake_case__ , split_batches=snake_case__ , even_batches=snake_case__ ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : List[str] = [[0, 1, 2], [3, 4], [5, 6, 7, 8], [9, 10, 11], [12, 13]] lowerCAmelCase : Tuple = [BatchSamplerShard(snake_case__ , 2 , snake_case__ , even_batches=snake_case__ ) for i in range(2 )] self.assertEqual(len(batch_sampler_shards[0] ) , 3 ) self.assertEqual(len(batch_sampler_shards[1] ) , 2 ) self.assertListEqual(list(batch_sampler_shards[0] ) , [[0, 1, 2], [5, 6, 7, 8], [12, 13]] ) self.assertListEqual(list(batch_sampler_shards[1] ) , [[3, 4], [9, 10, 11]] ) def lowercase__ ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__=False , snake_case__=2 , snake_case__=False ): """simple docstring""" random.seed(snake_case__ ) lowerCAmelCase : List[str] = list(snake_case__ ) lowerCAmelCase : Optional[int] = [ IterableDatasetShard( snake_case__ , batch_size=snake_case__ , drop_last=snake_case__ , num_processes=snake_case__ , process_index=snake_case__ , split_batches=snake_case__ , ) for i in range(snake_case__ ) ] lowerCAmelCase : str = [] for iterable_dataset_shard in iterable_dataset_shards: # Since our random iterable dataset will be... random... we need to use a seed to get reproducible results. random.seed(snake_case__ ) iterable_dataset_lists.append(list(snake_case__ ) ) lowerCAmelCase : List[Any] = batch_size // num_processes if split_batches else batch_size # All iterable dataset shard should have the same length, a round multiple of shard_batch_size lowerCAmelCase : Tuple = iterable_dataset_lists[0] for l in iterable_dataset_lists[1:]: self.assertEqual(len(snake_case__ ) , len(snake_case__ ) ) self.assertTrue(len(snake_case__ ) % shard_batch_size == 0 ) lowerCAmelCase : List[Any] = [] for idx in range(0 , len(snake_case__ ) , snake_case__ ): for l in iterable_dataset_lists: observed += l[idx : idx + shard_batch_size] if not drop_last: while len(snake_case__ ) < len(snake_case__ ): reference += reference self.assertListEqual(snake_case__ , reference[: len(snake_case__ )] ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : List[str] = 42 lowerCAmelCase : Tuple = RandomIterableDataset() self.check_iterable_dataset_shards(snake_case__ , snake_case__ , batch_size=4 , drop_last=snake_case__ , split_batches=snake_case__ ) self.check_iterable_dataset_shards(snake_case__ , snake_case__ , batch_size=4 , drop_last=snake_case__ , split_batches=snake_case__ ) self.check_iterable_dataset_shards(snake_case__ , snake_case__ , batch_size=4 , drop_last=snake_case__ , split_batches=snake_case__ ) self.check_iterable_dataset_shards(snake_case__ , snake_case__ , batch_size=4 , drop_last=snake_case__ , split_batches=snake_case__ ) # Edge case with a very small dataset lowerCAmelCase : List[str] = RandomIterableDataset(max_length=2 ) self.check_iterable_dataset_shards(snake_case__ , snake_case__ , batch_size=4 , drop_last=snake_case__ , split_batches=snake_case__ ) self.check_iterable_dataset_shards(snake_case__ , snake_case__ , batch_size=4 , drop_last=snake_case__ , split_batches=snake_case__ ) self.check_iterable_dataset_shards(snake_case__ , snake_case__ , batch_size=4 , drop_last=snake_case__ , split_batches=snake_case__ ) self.check_iterable_dataset_shards(snake_case__ , snake_case__ , batch_size=4 , drop_last=snake_case__ , split_batches=snake_case__ ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Tuple = BatchSampler(range(16 ) , batch_size=4 , drop_last=snake_case__ ) lowerCAmelCase : List[Any] = SkipBatchSampler(snake_case__ , 2 ) self.assertListEqual(list(snake_case__ ) , [[8, 9, 10, 11], [12, 13, 14, 15]] ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : List[str] = SkipDataLoader(list(range(16 ) ) , batch_size=4 , skip_batches=2 ) self.assertListEqual([t.tolist() for t in dataloader] , [[8, 9, 10, 11], [12, 13, 14, 15]] ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : int = DataLoader(list(range(16 ) ) , batch_size=4 ) lowerCAmelCase : Optional[int] = skip_first_batches(snake_case__ , num_batches=2 ) self.assertListEqual([t.tolist() for t in new_dataloader] , [[8, 9, 10, 11], [12, 13, 14, 15]] ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Tuple = DataLoaderShard(list(range(16 ) ) , batch_size=4 ) for idx, _ in enumerate(snake_case__ ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) # Test it also works on the second iteration for idx, _ in enumerate(snake_case__ ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) def lowercase__ ( self ): """simple docstring""" Accelerator() lowerCAmelCase : Dict = DataLoaderDispatcher(range(16 ) , batch_size=4 ) for idx, _ in enumerate(snake_case__ ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) # Test it also works on the second iteration for idx, _ in enumerate(snake_case__ ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 )
108
1
'''simple docstring''' def __a ( _UpperCamelCase: float , _UpperCamelCase: float ) -> float: """simple docstring""" return price * (1 + tax_rate) if __name__ == "__main__": print(F'{price_plus_tax(100, 0.2_5) = }') print(F'{price_plus_tax(1_2_5.5_0, 0.0_5) = }')
142
'''simple docstring''' import argparse import gc import json import os import re import torch from huggingface_hub import hf_hub_download from transformers import AutoModelForCausalLM, AutoTokenizer, PreTrainedTokenizerFast, RwkvConfig from transformers.modeling_utils import WEIGHTS_INDEX_NAME, shard_checkpoint UpperCamelCase_ : int = { '''169M''': 12, '''430M''': 24, '''1B5''': 24, '''3B''': 32, '''7B''': 32, '''14B''': 40, } UpperCamelCase_ : str = { '''169M''': 768, '''430M''': 1024, '''1B5''': 2048, '''3B''': 2560, '''7B''': 4096, '''14B''': 5120, } def __a ( _UpperCamelCase: str ) -> Any: """simple docstring""" _snake_case = list(state_dict.keys() ) for name in state_dict_keys: _snake_case = state_dict.pop(_UpperCamelCase ) # emb -> embedding if name.startswith("emb." ): _snake_case = name.replace("emb." , "embeddings." ) # ln_0 -> pre_ln (only present at block 0) if name.startswith("blocks.0.ln0" ): _snake_case = name.replace("blocks.0.ln0" , "blocks.0.pre_ln" ) # att -> attention _snake_case = re.sub(r"blocks\.(\d+)\.att" , r"blocks.\1.attention" , _UpperCamelCase ) # ffn -> feed_forward _snake_case = re.sub(r"blocks\.(\d+)\.ffn" , r"blocks.\1.feed_forward" , _UpperCamelCase ) # time_mix_k -> time_mix_key and reshape if name.endswith(".time_mix_k" ): _snake_case = name.replace(".time_mix_k" , ".time_mix_key" ) # time_mix_v -> time_mix_value and reshape if name.endswith(".time_mix_v" ): _snake_case = name.replace(".time_mix_v" , ".time_mix_value" ) # time_mix_r -> time_mix_key and reshape if name.endswith(".time_mix_r" ): _snake_case = name.replace(".time_mix_r" , ".time_mix_receptance" ) if name != "head.weight": _snake_case = "rwkv." + name _snake_case = weight return state_dict def __a ( _UpperCamelCase: Any , _UpperCamelCase: List[Any] , _UpperCamelCase: List[Any] , _UpperCamelCase: str=None , _UpperCamelCase: Optional[Any]=None , _UpperCamelCase: List[str]=False , _UpperCamelCase: Dict=None ) -> Dict: """simple docstring""" if tokenizer_file is None: print("No `--tokenizer_file` provided, we will use the default tokenizer." ) _snake_case = 50_277 _snake_case = AutoTokenizer.from_pretrained("EleutherAI/gpt-neox-20b" ) else: _snake_case = PreTrainedTokenizerFast(tokenizer_file=_UpperCamelCase ) _snake_case = len(_UpperCamelCase ) tokenizer.save_pretrained(_UpperCamelCase ) # 2. Build the config _snake_case = list(NUM_HIDDEN_LAYERS_MAPPING.keys() ) if size is None: # Try to infer size from the checkpoint name for candidate in possible_sizes: if candidate in checkpoint_file: _snake_case = candidate break if size is None: raise ValueError("Could not infer the size, please provide it with the `--size` argument." ) if size not in possible_sizes: raise ValueError(F"""`size` should be one of {possible_sizes}, got {size}.""" ) _snake_case = RwkvConfig( vocab_size=_UpperCamelCase , num_hidden_layers=NUM_HIDDEN_LAYERS_MAPPING[size] , hidden_size=HIDEN_SIZE_MAPPING[size] , ) config.save_pretrained(_UpperCamelCase ) # 3. Download model file then convert state_dict _snake_case = hf_hub_download(_UpperCamelCase , _UpperCamelCase ) _snake_case = torch.load(_UpperCamelCase , map_location="cpu" ) _snake_case = convert_state_dict(_UpperCamelCase ) # 4. Split in shards and save _snake_case , _snake_case = shard_checkpoint(_UpperCamelCase ) for shard_file, shard in shards.items(): torch.save(_UpperCamelCase , os.path.join(_UpperCamelCase , _UpperCamelCase ) ) if index is not None: _snake_case = os.path.join(_UpperCamelCase , _UpperCamelCase ) # Save the index as well with open(_UpperCamelCase , "w" , encoding="utf-8" ) as f: _snake_case = json.dumps(_UpperCamelCase , indent=2 , sort_keys=_UpperCamelCase ) + "\n" f.write(_UpperCamelCase ) # 5. Clean up shards (for some reason the file PyTorch saves take the same space as the whole state_dict print( "Cleaning up shards. This may error with an OOM error, it this is the case don't worry you still have converted the model." ) _snake_case = list(shards.keys() ) del state_dict del shards gc.collect() for shard_file in shard_files: _snake_case = torch.load(os.path.join(_UpperCamelCase , _UpperCamelCase ) ) torch.save({k: v.cpu().clone() for k, v in state_dict.items()} , os.path.join(_UpperCamelCase , _UpperCamelCase ) ) del state_dict gc.collect() if push_to_hub: if model_name is None: raise ValueError("Please provide a `model_name` to push the model to the Hub." ) _snake_case = AutoModelForCausalLM.from_pretrained(_UpperCamelCase ) model.push_to_hub(_UpperCamelCase , max_shard_size="2GB" ) tokenizer.push_to_hub(_UpperCamelCase ) if __name__ == "__main__": UpperCamelCase_ : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--repo_id''', default=None, type=str, required=True, help='''Repo ID from which to pull the checkpoint.''' ) parser.add_argument( '''--checkpoint_file''', default=None, type=str, required=True, help='''Name of the checkpoint file in the repo.''' ) parser.add_argument( '''--output_dir''', default=None, type=str, required=True, help='''Where to save the converted model.''' ) parser.add_argument( '''--tokenizer_file''', default=None, type=str, help='''Path to the tokenizer file to use (if not provided, only the model is converted).''', ) parser.add_argument( '''--size''', default=None, type=str, help='''Size of the model. Will be inferred from the `checkpoint_file` if not passed.''', ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Push to the Hub the converted model.''', ) parser.add_argument( '''--model_name''', default=None, type=str, help='''Name of the pushed model on the Hub, including the username / organization.''', ) UpperCamelCase_ : int = parser.parse_args() convert_rmkv_checkpoint_to_hf_format( args.repo_id, args.checkpoint_file, args.output_dir, size=args.size, tokenizer_file=args.tokenizer_file, push_to_hub=args.push_to_hub, model_name=args.model_name, )
142
1
'''simple docstring''' from collections.abc import Callable class lowerCAmelCase__ : def __init__( self , __SCREAMING_SNAKE_CASE = None ): """simple docstring""" lowercase_ : list = [] # Stores indexes of each item for supporting updates and deletion. lowercase_ : dict = {} # Stores current size of heap. lowercase_ : Any = 0 # Stores function used to evaluate the score of an item on which basis ordering # will be done. lowercase_ : str = key or (lambda __SCREAMING_SNAKE_CASE : x) def _snake_case ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" return int((i - 1) / 2 ) if i > 0 else None def _snake_case ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase_ : List[Any] = int(2 * i + 1 ) return left if 0 < left < self.size else None def _snake_case ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase_ : Union[str, Any] = int(2 * i + 2 ) return right if 0 < right < self.size else None def _snake_case ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase_ : str = ( self.pos_map[self.arr[j][0]], self.pos_map[self.arr[i][0]], ) # Then swap the items in the list. lowercase_ : Optional[int] = self.arr[j], self.arr[i] def _snake_case ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): """simple docstring""" return self.arr[i][1] < self.arr[j][1] def _snake_case ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase_ : Any = self._left(__SCREAMING_SNAKE_CASE ) lowercase_ : Optional[Any] = self._right(__SCREAMING_SNAKE_CASE ) lowercase_ : Optional[int] = i if left is not None and not self._cmp(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): lowercase_ : str = left if right is not None and not self._cmp(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): lowercase_ : List[str] = right return valid_parent def _snake_case ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase_ : List[Any] = self._parent(__SCREAMING_SNAKE_CASE ) while parent is not None and not self._cmp(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): self._swap(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) lowercase_ : int = parent, self._parent(__SCREAMING_SNAKE_CASE ) def _snake_case ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase_ : int = self._get_valid_parent(__SCREAMING_SNAKE_CASE ) while valid_parent != index: self._swap(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) lowercase_ : int = valid_parent, self._get_valid_parent(__SCREAMING_SNAKE_CASE ) def _snake_case ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): """simple docstring""" if item not in self.pos_map: return lowercase_ : List[Any] = self.pos_map[item] lowercase_ : Optional[int] = [item, self.key(__SCREAMING_SNAKE_CASE )] # Make sure heap is right in both up and down direction. # Ideally only one of them will make any change. self._heapify_up(__SCREAMING_SNAKE_CASE ) self._heapify_down(__SCREAMING_SNAKE_CASE ) def _snake_case ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" if item not in self.pos_map: return lowercase_ : int = self.pos_map[item] del self.pos_map[item] lowercase_ : List[Any] = self.arr[self.size - 1] lowercase_ : List[Any] = index self.size -= 1 # Make sure heap is right in both up and down direction. Ideally only one # of them will make any change- so no performance loss in calling both. if self.size > index: self._heapify_up(__SCREAMING_SNAKE_CASE ) self._heapify_down(__SCREAMING_SNAKE_CASE ) def _snake_case ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase_ : Dict = len(self.arr ) if arr_len == self.size: self.arr.append([item, self.key(__SCREAMING_SNAKE_CASE )] ) else: lowercase_ : Any = [item, self.key(__SCREAMING_SNAKE_CASE )] lowercase_ : List[str] = self.size self.size += 1 self._heapify_up(self.size - 1 ) def _snake_case ( self ): """simple docstring""" return self.arr[0] if self.size else None def _snake_case ( self ): """simple docstring""" lowercase_ : str = self.get_top() if top_item_tuple: self.delete_item(top_item_tuple[0] ) return top_item_tuple def snake_case_ ( ): """simple docstring""" if __name__ == "__main__": import doctest doctest.testmod()
93
"""simple docstring""" from __future__ import annotations import math from collections.abc import Callable def a_ ( _lowerCAmelCase : Callable[[int | float], int | float] , _lowerCAmelCase : int | float , _lowerCAmelCase : int | float , _lowerCAmelCase : int = 100 , ): '''simple docstring''' lowercase__ : Dict = x_start lowercase__ : Union[str, Any] = fnc(_lowerCAmelCase ) lowercase__ : Optional[Any] = 0.0 for _ in range(_lowerCAmelCase ): # Approximates curve as a sequence of linear lines and sums their length lowercase__ : Union[str, Any] = (x_end - x_start) / steps + xa lowercase__ : Union[str, Any] = fnc(_lowerCAmelCase ) length += math.hypot(xa - xa , fxa - fxa ) # Increment step lowercase__ : Union[str, Any] = xa lowercase__ : int = fxa return length if __name__ == "__main__": def a_ ( _lowerCAmelCase : List[Any] ): '''simple docstring''' return math.sin(10 * x ) print("f(x) = sin(10 * x)") print("The length of the curve from x = -10 to x = 10 is:") _UpperCamelCase : str = 10 while i <= 10_00_00: print(f'''With {i} steps: {line_length(f, -10, 10, i)}''') i *= 10
77
0
"""simple docstring""" import timeit import numpy as np import datasets from datasets.arrow_writer import ArrowWriter from datasets.features.features import _ArrayXD def lowerCamelCase_( _lowerCamelCase ) -> Optional[int]: '''simple docstring''' def wrapper(*_lowerCamelCase , **_lowerCamelCase ): _lowerCamelCase : List[str] = timeit.default_timer() _lowerCamelCase : Optional[int] = func(*_lowerCamelCase , **_lowerCamelCase ) _lowerCamelCase : str = timeit.default_timer() - starttime return delta _lowerCamelCase : List[Any] = func.__name__ return wrapper def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase=100 , _lowerCamelCase=None ) -> str: '''simple docstring''' _lowerCamelCase : List[Any] = [] _lowerCamelCase : Any = seq_shapes or {} for i in range(_lowerCamelCase ): _lowerCamelCase : Any = {} for col_id, (k, v) in enumerate(features.items() ): if isinstance(_lowerCamelCase , _ArrayXD ): _lowerCamelCase : Optional[int] = np.random.rand(*v.shape ).astype(v.dtype ) elif isinstance(_lowerCamelCase , datasets.Value ): if v.dtype == "string": _lowerCamelCase : Dict = "The small grey turtle was surprisingly fast when challenged." else: _lowerCamelCase : List[Any] = np.random.randint(10 , size=1 ).astype(v.dtype ).item() elif isinstance(_lowerCamelCase , datasets.Sequence ): while isinstance(_lowerCamelCase , datasets.Sequence ): _lowerCamelCase : Tuple = v.feature _lowerCamelCase : Optional[int] = seq_shapes[k] _lowerCamelCase : List[str] = np.random.rand(*_lowerCamelCase ).astype(v.dtype ) _lowerCamelCase : Union[str, Any] = data dummy_data.append((i, example) ) return dummy_data def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=100 , _lowerCamelCase=None ) -> str: '''simple docstring''' _lowerCamelCase : str = generate_examples(_lowerCamelCase , num_examples=_lowerCamelCase , seq_shapes=_lowerCamelCase ) with ArrowWriter(features=_lowerCamelCase , path=_lowerCamelCase ) as writer: for key, record in dummy_data: _lowerCamelCase : Union[str, Any] = features.encode_example(_lowerCamelCase ) writer.write(_lowerCamelCase ) _lowerCamelCase, _lowerCamelCase : Union[str, Any] = writer.finalize() if not num_final_examples == num_examples: raise ValueError( F"""Error writing the dataset, wrote {num_final_examples} examples but should have written {num_examples}.""" ) _lowerCamelCase : Union[str, Any] = datasets.Dataset.from_file(filename=_lowerCamelCase , info=datasets.DatasetInfo(features=_lowerCamelCase ) ) return dataset
340
"""simple docstring""" import time from contextlib import contextmanager from pathlib import Path import pytest import requests from huggingface_hub.hf_api import HfApi, HfFolder _lowerCAmelCase : Optional[int] = '''__DUMMY_TRANSFORMERS_USER__''' _lowerCAmelCase : Dict = '''Dummy User''' _lowerCAmelCase : Optional[int] = '''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''' _lowerCAmelCase : Tuple = '''https://hub-ci.huggingface.co''' _lowerCAmelCase : Any = CI_HUB_ENDPOINT + '''/datasets/{repo_id}/resolve/{revision}/{path}''' _lowerCAmelCase : Tuple = CI_HUB_ENDPOINT + '''/{repo_id}/resolve/{revision}/{filename}''' _lowerCAmelCase : Dict = Path('''~/.huggingface/hub_ci_token''').expanduser() @pytest.fixture def lowerCamelCase_( _lowerCamelCase ) -> Optional[Any]: '''simple docstring''' monkeypatch.setattr( "huggingface_hub.file_download.HUGGINGFACE_CO_URL_TEMPLATE" , _lowerCamelCase ) @pytest.fixture def lowerCamelCase_( _lowerCamelCase ) -> Tuple: '''simple docstring''' monkeypatch.setattr("datasets.config.HF_ENDPOINT" , _lowerCamelCase ) monkeypatch.setattr("datasets.config.HUB_DATASETS_URL" , _lowerCamelCase ) @pytest.fixture def lowerCamelCase_( _lowerCamelCase ) -> Optional[Any]: '''simple docstring''' monkeypatch.setattr("huggingface_hub.hf_api.HfFolder.path_token" , _lowerCamelCase ) @pytest.fixture def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> Dict: '''simple docstring''' HfFolder.save_token(_lowerCamelCase ) yield HfFolder.delete_token() @pytest.fixture(scope="session" ) def lowerCamelCase_( ) -> str: '''simple docstring''' return HfApi(endpoint=_lowerCamelCase ) @pytest.fixture(scope="session" ) def lowerCamelCase_( _lowerCamelCase ) -> int: '''simple docstring''' _lowerCamelCase : Dict = HfFolder.get_token() HfFolder.save_token(_lowerCamelCase ) yield CI_HUB_USER_TOKEN if previous_token is not None: HfFolder.save_token(_lowerCamelCase ) @pytest.fixture def lowerCamelCase_( _lowerCamelCase ) -> Optional[Any]: '''simple docstring''' def _cleanup_repo(_lowerCamelCase ): hf_api.delete_repo(_lowerCamelCase , token=_lowerCamelCase , repo_type="dataset" ) return _cleanup_repo @pytest.fixture def lowerCamelCase_( _lowerCamelCase ) -> List[str]: '''simple docstring''' @contextmanager def _temporary_repo(_lowerCamelCase ): try: yield repo_id finally: cleanup_repo(_lowerCamelCase ) return _temporary_repo @pytest.fixture(scope="session" ) def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Optional[Any]: '''simple docstring''' _lowerCamelCase : Tuple = F"""repo_txt_data-{int(time.time() * 10e3 )}""" _lowerCamelCase : List[str] = F"""{CI_HUB_USER}/{repo_name}""" hf_api.create_repo(_lowerCamelCase , token=_lowerCamelCase , repo_type="dataset" , private=_lowerCamelCase ) hf_api.upload_file( token=_lowerCamelCase , path_or_fileobj=str(_lowerCamelCase ) , path_in_repo="data/text_data.txt" , repo_id=_lowerCamelCase , repo_type="dataset" , ) yield repo_id try: hf_api.delete_repo(_lowerCamelCase , token=_lowerCamelCase , repo_type="dataset" ) except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error pass @pytest.fixture() def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> str: '''simple docstring''' return hf_private_dataset_repo_txt_data_ @pytest.fixture(scope="session" ) def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> str: '''simple docstring''' _lowerCamelCase : List[Any] = F"""repo_zipped_txt_data-{int(time.time() * 10e3 )}""" _lowerCamelCase : Dict = F"""{CI_HUB_USER}/{repo_name}""" hf_api.create_repo(_lowerCamelCase , token=_lowerCamelCase , repo_type="dataset" , private=_lowerCamelCase ) hf_api.upload_file( token=_lowerCamelCase , path_or_fileobj=str(_lowerCamelCase ) , path_in_repo="data.zip" , repo_id=_lowerCamelCase , repo_type="dataset" , ) yield repo_id try: hf_api.delete_repo(_lowerCamelCase , token=_lowerCamelCase , repo_type="dataset" ) except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error pass @pytest.fixture() def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Dict: '''simple docstring''' return hf_private_dataset_repo_zipped_txt_data_ @pytest.fixture(scope="session" ) def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> List[Any]: '''simple docstring''' _lowerCamelCase : Any = F"""repo_zipped_img_data-{int(time.time() * 10e3 )}""" _lowerCamelCase : List[Any] = F"""{CI_HUB_USER}/{repo_name}""" hf_api.create_repo(_lowerCamelCase , token=_lowerCamelCase , repo_type="dataset" , private=_lowerCamelCase ) hf_api.upload_file( token=_lowerCamelCase , path_or_fileobj=str(_lowerCamelCase ) , path_in_repo="data.zip" , repo_id=_lowerCamelCase , repo_type="dataset" , ) yield repo_id try: hf_api.delete_repo(_lowerCamelCase , token=_lowerCamelCase , repo_type="dataset" ) except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error pass @pytest.fixture() def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Optional[Any]: '''simple docstring''' return hf_private_dataset_repo_zipped_img_data_
340
1
'''simple docstring''' import logging from dataclasses import dataclass, field from pathlib import Path from typing import Optional, Union from .generation.configuration_utils import GenerationConfig from .training_args import TrainingArguments from .utils import add_start_docstrings __snake_case =logging.getLogger(__name__) @dataclass @add_start_docstrings(TrainingArguments.__doc__ ) class UpperCAmelCase_ ( __lowercase ): lowerCamelCase : bool = field(default=__lowercase , metadata={'''help''': '''Whether to use SortishSampler or not.'''} ) lowerCamelCase : bool = field( default=__lowercase , metadata={'''help''': '''Whether to use generate to calculate generative metrics (ROUGE, BLEU).'''} ) lowerCamelCase : Optional[int] = field( default=__lowercase , metadata={ '''help''': ( '''The `max_length` to use on each evaluation loop when `predict_with_generate=True`. Will default ''' '''to the `max_length` value of the model configuration.''' ) } , ) lowerCamelCase : Optional[int] = field( default=__lowercase , metadata={ '''help''': ( '''The `num_beams` to use on each evaluation loop when `predict_with_generate=True`. Will default ''' '''to the `num_beams` value of the model configuration.''' ) } , ) lowerCamelCase : Optional[Union[str, Path, GenerationConfig]] = field( default=__lowercase , metadata={ '''help''': '''Model id, file path or url pointing to a GenerationConfig json file, to use during prediction.''' } , ) def __UpperCAmelCase ( self : Dict ) -> List[str]: lowerCAmelCase = super().to_dict() for k, v in d.items(): if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ): lowerCAmelCase = v.to_dict() return d
4
def _a ( a :float , a :float ) -> float: return price * (1 + tax_rate) if __name__ == "__main__": print(f"""{price_plus_tax(100, 0.25) = }""") print(f"""{price_plus_tax(125.50, 0.05) = }""")
0
0
import re from filelock import FileLock try: import nltk UpperCAmelCase : Tuple = True except (ImportError, ModuleNotFoundError): UpperCAmelCase : int = False if NLTK_AVAILABLE: with FileLock(".lock") as lock: nltk.download("punkt", quiet=True) def __lowerCamelCase ( lowerCamelCase__ : str ): '''simple docstring''' re.sub("""<n>""" , """""" , lowerCamelCase__ ) # remove pegasus newline char assert NLTK_AVAILABLE, "nltk must be installed to separate newlines between sentences. (pip install nltk)" return "\n".join(nltk.sent_tokenize(lowerCamelCase__ ) )
66
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) UpperCAmelCase : Union[str, Any] = { "configuration_mobilebert": [ "MOBILEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "MobileBertConfig", "MobileBertOnnxConfig", ], "tokenization_mobilebert": ["MobileBertTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase : Dict = ["MobileBertTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase : str = [ "MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST", "MobileBertForMaskedLM", "MobileBertForMultipleChoice", "MobileBertForNextSentencePrediction", "MobileBertForPreTraining", "MobileBertForQuestionAnswering", "MobileBertForSequenceClassification", "MobileBertForTokenClassification", "MobileBertLayer", "MobileBertModel", "MobileBertPreTrainedModel", "load_tf_weights_in_mobilebert", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase : str = [ "TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST", "TFMobileBertForMaskedLM", "TFMobileBertForMultipleChoice", "TFMobileBertForNextSentencePrediction", "TFMobileBertForPreTraining", "TFMobileBertForQuestionAnswering", "TFMobileBertForSequenceClassification", "TFMobileBertForTokenClassification", "TFMobileBertMainLayer", "TFMobileBertModel", "TFMobileBertPreTrainedModel", ] if TYPE_CHECKING: from .configuration_mobilebert import ( MOBILEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, MobileBertConfig, MobileBertOnnxConfig, ) from .tokenization_mobilebert import MobileBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mobilebert_fast import MobileBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mobilebert import ( MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, MobileBertLayer, MobileBertModel, MobileBertPreTrainedModel, load_tf_weights_in_mobilebert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mobilebert import ( TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFMobileBertForMaskedLM, TFMobileBertForMultipleChoice, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertMainLayer, TFMobileBertModel, TFMobileBertPreTrainedModel, ) else: import sys UpperCAmelCase : int = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
66
1
"""simple docstring""" import os import tempfile import unittest from transformers import DistilBertConfig, is_torch_available from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, DistilBertModel, ) class _UpperCAmelCase ( _snake_case ): def __init__( self : Optional[Any] , _lowercase : Optional[int] , _lowercase : List[Any]=13 , _lowercase : Any=7 , _lowercase : Union[str, Any]=True , _lowercase : Any=True , _lowercase : List[str]=False , _lowercase : List[str]=True , _lowercase : int=99 , _lowercase : int=32 , _lowercase : List[Any]=5 , _lowercase : Optional[Any]=4 , _lowercase : Optional[Any]=37 , _lowercase : List[Any]="gelu" , _lowercase : int=0.1 , _lowercase : Optional[int]=0.1 , _lowercase : List[Any]=5_12 , _lowercase : List[str]=16 , _lowercase : Optional[int]=2 , _lowercase : Optional[int]=0.02 , _lowercase : int=3 , _lowercase : List[str]=4 , _lowercase : Tuple=None , ): __UpperCAmelCase = parent __UpperCAmelCase = batch_size __UpperCAmelCase = seq_length __UpperCAmelCase = is_training __UpperCAmelCase = use_input_mask __UpperCAmelCase = use_token_type_ids __UpperCAmelCase = use_labels __UpperCAmelCase = vocab_size __UpperCAmelCase = hidden_size __UpperCAmelCase = num_hidden_layers __UpperCAmelCase = num_attention_heads __UpperCAmelCase = intermediate_size __UpperCAmelCase = hidden_act __UpperCAmelCase = hidden_dropout_prob __UpperCAmelCase = attention_probs_dropout_prob __UpperCAmelCase = max_position_embeddings __UpperCAmelCase = type_vocab_size __UpperCAmelCase = type_sequence_label_size __UpperCAmelCase = initializer_range __UpperCAmelCase = num_labels __UpperCAmelCase = num_choices __UpperCAmelCase = scope def a ( self : int ): __UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __UpperCAmelCase = None if self.use_input_mask: __UpperCAmelCase = random_attention_mask([self.batch_size, self.seq_length] ) __UpperCAmelCase = None __UpperCAmelCase = None __UpperCAmelCase = None if self.use_labels: __UpperCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __UpperCAmelCase = ids_tensor([self.batch_size] , self.num_choices ) __UpperCAmelCase = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def a ( self : Optional[Any] ): return DistilBertConfig( vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , ) def a ( self : int , _lowercase : Optional[int] , _lowercase : List[Any] , _lowercase : Tuple , _lowercase : Any , _lowercase : str , _lowercase : int ): __UpperCAmelCase = DistilBertModel(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() __UpperCAmelCase = model(UpperCamelCase__ , UpperCamelCase__ ) __UpperCAmelCase = model(UpperCamelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def a ( self : Optional[Any] , _lowercase : List[Any] , _lowercase : List[str] , _lowercase : int , _lowercase : Tuple , _lowercase : str , _lowercase : Dict ): __UpperCAmelCase = DistilBertForMaskedLM(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() __UpperCAmelCase = model(UpperCamelCase__ , attention_mask=UpperCamelCase__ , labels=UpperCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def a ( self : List[str] , _lowercase : List[Any] , _lowercase : Any , _lowercase : str , _lowercase : int , _lowercase : Any , _lowercase : Optional[Any] ): __UpperCAmelCase = DistilBertForQuestionAnswering(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() __UpperCAmelCase = model( UpperCamelCase__ , attention_mask=UpperCamelCase__ , start_positions=UpperCamelCase__ , end_positions=UpperCamelCase__ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def a ( self : List[str] , _lowercase : List[str] , _lowercase : str , _lowercase : str , _lowercase : str , _lowercase : Optional[int] , _lowercase : str ): __UpperCAmelCase = self.num_labels __UpperCAmelCase = DistilBertForSequenceClassification(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() __UpperCAmelCase = model(UpperCamelCase__ , attention_mask=UpperCamelCase__ , labels=UpperCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def a ( self : Optional[Any] , _lowercase : List[str] , _lowercase : Optional[int] , _lowercase : Optional[Any] , _lowercase : Any , _lowercase : Optional[Any] , _lowercase : int ): __UpperCAmelCase = self.num_labels __UpperCAmelCase = DistilBertForTokenClassification(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() __UpperCAmelCase = model(UpperCamelCase__ , attention_mask=UpperCamelCase__ , labels=UpperCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def a ( self : int , _lowercase : List[Any] , _lowercase : List[str] , _lowercase : Any , _lowercase : List[Any] , _lowercase : List[str] , _lowercase : Optional[int] ): __UpperCAmelCase = self.num_choices __UpperCAmelCase = DistilBertForMultipleChoice(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() __UpperCAmelCase = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __UpperCAmelCase = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __UpperCAmelCase = model( UpperCamelCase__ , attention_mask=UpperCamelCase__ , labels=UpperCamelCase__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def a ( self : List[Any] ): __UpperCAmelCase = self.prepare_config_and_inputs() ((__UpperCAmelCase) , (__UpperCAmelCase) , (__UpperCAmelCase) , (__UpperCAmelCase) , (__UpperCAmelCase) , (__UpperCAmelCase)) = config_and_inputs __UpperCAmelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class _UpperCAmelCase ( _snake_case , _snake_case , unittest.TestCase ): a__ : List[Any] = ( ( DistilBertModel, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, ) if is_torch_available() else None ) a__ : Union[str, Any] = ( { "feature-extraction": DistilBertModel, "fill-mask": DistilBertForMaskedLM, "question-answering": DistilBertForQuestionAnswering, "text-classification": DistilBertForSequenceClassification, "token-classification": DistilBertForTokenClassification, "zero-shot": DistilBertForSequenceClassification, } if is_torch_available() else {} ) a__ : str = True a__ : Dict = True a__ : Optional[Any] = True a__ : Optional[Any] = True def a ( self : Optional[Any] ): __UpperCAmelCase = DistilBertModelTester(self ) __UpperCAmelCase = ConfigTester(self , config_class=UpperCamelCase__ , dim=37 ) def a ( self : Any ): self.config_tester.run_common_tests() def a ( self : Any ): __UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_model(*UpperCamelCase__ ) def a ( self : Dict ): __UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_masked_lm(*UpperCamelCase__ ) def a ( self : int ): __UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_question_answering(*UpperCamelCase__ ) def a ( self : Optional[Any] ): __UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_sequence_classification(*UpperCamelCase__ ) def a ( self : Optional[Any] ): __UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_token_classification(*UpperCamelCase__ ) def a ( self : List[Any] ): __UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_multiple_choice(*UpperCamelCase__ ) @slow def a ( self : Dict ): for model_name in DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCAmelCase = DistilBertModel.from_pretrained(UpperCamelCase__ ) self.assertIsNotNone(UpperCamelCase__ ) @slow @require_torch_gpu def a ( self : str ): __UpperCAmelCase , __UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # BertForMultipleChoice behaves incorrectly in JIT environments. if model_class == DistilBertForMultipleChoice: return __UpperCAmelCase = True __UpperCAmelCase = model_class(config=UpperCamelCase__ ) __UpperCAmelCase = self._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ ) __UpperCAmelCase = torch.jit.trace( UpperCamelCase__ , (inputs_dict['''input_ids'''].to('''cpu''' ), inputs_dict['''attention_mask'''].to('''cpu''' )) ) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(UpperCamelCase__ , os.path.join(UpperCamelCase__ , '''traced_model.pt''' ) ) __UpperCAmelCase = torch.jit.load(os.path.join(UpperCamelCase__ , '''traced_model.pt''' ) , map_location=UpperCamelCase__ ) loaded(inputs_dict['''input_ids'''].to(UpperCamelCase__ ) , inputs_dict['''attention_mask'''].to(UpperCamelCase__ ) ) @require_torch class _UpperCAmelCase ( unittest.TestCase ): @slow def a ( self : List[Any] ): __UpperCAmelCase = DistilBertModel.from_pretrained('''distilbert-base-uncased''' ) __UpperCAmelCase = torch.tensor([[0, 3_45, 2_32, 3_28, 7_40, 1_40, 16_95, 69, 60_78, 15_88, 2]] ) __UpperCAmelCase = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): __UpperCAmelCase = model(UpperCamelCase__ , attention_mask=UpperCamelCase__ )[0] __UpperCAmelCase = torch.Size((1, 11, 7_68) ) self.assertEqual(output.shape , UpperCamelCase__ ) __UpperCAmelCase = torch.tensor( [[[-0.1_639, 0.3_299, 0.1_648], [-0.1_746, 0.3_289, 0.1_710], [-0.1_884, 0.3_357, 0.1_810]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , UpperCamelCase__ , atol=1E-4 ) )
332
'''simple docstring''' import warnings from ...configuration_utils import PretrainedConfig from ...utils import logging __lowerCamelCase = logging.get_logger(__name__) __lowerCamelCase = { '''RUCAIBox/mvp''': '''https://huggingface.co/RUCAIBox/mvp/resolve/main/config.json''', } class A__ ( _snake_case ): lowercase = "mvp" lowercase = ["past_key_values"] lowercase = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"} def __init__( self , UpperCamelCase__=50267 , UpperCamelCase__=1024 , UpperCamelCase__=12 , UpperCamelCase__=4096 , UpperCamelCase__=16 , UpperCamelCase__=12 , UpperCamelCase__=4096 , UpperCamelCase__=16 , UpperCamelCase__=0.0 , UpperCamelCase__=0.0 , UpperCamelCase__="gelu" , UpperCamelCase__=1024 , UpperCamelCase__=0.1 , UpperCamelCase__=0.0 , UpperCamelCase__=0.0 , UpperCamelCase__=0.02 , UpperCamelCase__=0.0 , UpperCamelCase__=False , UpperCamelCase__=True , UpperCamelCase__=1 , UpperCamelCase__=0 , UpperCamelCase__=2 , UpperCamelCase__=True , UpperCamelCase__=2 , UpperCamelCase__=2 , UpperCamelCase__=False , UpperCamelCase__=100 , UpperCamelCase__=800 , **UpperCamelCase__ , ) -> Tuple: '''simple docstring''' A_ = vocab_size A_ = max_position_embeddings A_ = d_model A_ = encoder_ffn_dim A_ = encoder_layers A_ = encoder_attention_heads A_ = decoder_ffn_dim A_ = decoder_layers A_ = decoder_attention_heads A_ = dropout A_ = attention_dropout A_ = activation_dropout A_ = activation_function A_ = init_std A_ = encoder_layerdrop A_ = decoder_layerdrop A_ = classifier_dropout A_ = use_cache A_ = encoder_layers A_ = scale_embedding # scale factor will be sqrt(d_model) if True A_ = use_prompt A_ = prompt_length A_ = prompt_mid_dim super().__init__( pad_token_id=UpperCamelCase__ , bos_token_id=UpperCamelCase__ , eos_token_id=UpperCamelCase__ , is_encoder_decoder=UpperCamelCase__ , decoder_start_token_id=UpperCamelCase__ , forced_eos_token_id=UpperCamelCase__ , **UpperCamelCase__ , ) if self.forced_bos_token_id is None and kwargs.get("""force_bos_token_to_be_generated""" , UpperCamelCase__ ): A_ = self.bos_token_id warnings.warn( f'''Please make sure the config includes `forced_bos_token_id={self.bos_token_id}` in future versions. ''' """The config can simply be saved and uploaded again to be fixed.""" )
162
0
"""simple docstring""" import inspect import re from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_config_docstrings.py _lowerCAmelCase : List[str] = "src/transformers" # This is to make sure the transformers module imported is the one in the repo. _lowerCAmelCase : Union[str, Any] = direct_transformers_import(PATH_TO_TRANSFORMERS) _lowerCAmelCase : Dict = transformers.models.auto.configuration_auto.CONFIG_MAPPING # Regex pattern used to find the checkpoint mentioned in the docstring of `config_class`. # For example, `[bert-base-uncased](https://huggingface.co/bert-base-uncased)` _lowerCAmelCase : List[Any] = re.compile(r"\[(.+?)\]\((https://huggingface\.co/.+?)\)") _lowerCAmelCase : int = { "DecisionTransformerConfig", "EncoderDecoderConfig", "MusicgenConfig", "RagConfig", "SpeechEncoderDecoderConfig", "TimmBackboneConfig", "VisionEncoderDecoderConfig", "VisionTextDualEncoderConfig", "LlamaConfig", } def __snake_case ( SCREAMING_SNAKE_CASE__ : Any ) -> Dict: '''simple docstring''' _UpperCAmelCase : Dict = None # source code of `config_class` _UpperCAmelCase : List[Any] = inspect.getsource(SCREAMING_SNAKE_CASE__ ) _UpperCAmelCase : List[str] = _re_checkpoint.findall(SCREAMING_SNAKE_CASE__ ) # Each `checkpoint` is a tuple of a checkpoint name and a checkpoint link. # For example, `('bert-base-uncased', 'https://huggingface.co/bert-base-uncased')` for ckpt_name, ckpt_link in checkpoints: # allow the link to end with `/` if ckpt_link.endswith("/" ): _UpperCAmelCase : Union[str, Any] = ckpt_link[:-1] # verify the checkpoint name corresponds to the checkpoint link _UpperCAmelCase : int = f'https://huggingface.co/{ckpt_name}' if ckpt_link == ckpt_link_from_name: _UpperCAmelCase : str = ckpt_name break return checkpoint def __snake_case ( ) -> Tuple: '''simple docstring''' _UpperCAmelCase : Optional[int] = [] for config_class in list(CONFIG_MAPPING.values() ): # Skip deprecated models if "models.deprecated" in config_class.__module__: continue _UpperCAmelCase : str = get_checkpoint_from_config_class(SCREAMING_SNAKE_CASE__ ) _UpperCAmelCase : List[str] = config_class.__name__ if checkpoint is None and name not in CONFIG_CLASSES_TO_IGNORE_FOR_DOCSTRING_CHECKPOINT_CHECK: configs_without_checkpoint.append(SCREAMING_SNAKE_CASE__ ) if len(SCREAMING_SNAKE_CASE__ ) > 0: _UpperCAmelCase : Optional[int] = "\n".join(sorted(SCREAMING_SNAKE_CASE__ ) ) raise ValueError(f'The following configurations don\'t contain any valid checkpoint:\n{message}' ) if __name__ == "__main__": check_config_docstrings_have_checkpoints()
351
"""simple docstring""" from __future__ import annotations from typing import Any def __snake_case ( SCREAMING_SNAKE_CASE__ : list[Any] ) -> None: '''simple docstring''' create_state_space_tree(SCREAMING_SNAKE_CASE__ , [] , 0 ) def __snake_case ( SCREAMING_SNAKE_CASE__ : list[Any] , SCREAMING_SNAKE_CASE__ : list[Any] , SCREAMING_SNAKE_CASE__ : int ) -> None: '''simple docstring''' if index == len(SCREAMING_SNAKE_CASE__ ): print(SCREAMING_SNAKE_CASE__ ) return create_state_space_tree(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , index + 1 ) current_subsequence.append(sequence[index] ) create_state_space_tree(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , index + 1 ) current_subsequence.pop() if __name__ == "__main__": _lowerCAmelCase : list[Any] = [3, 1, 2, 4] generate_all_subsequences(seq) seq.clear() seq.extend(["A", "B", "C"]) generate_all_subsequences(seq)
202
0
from math import pi, sqrt def lowerCamelCase__ ( a ) -> float: if num <= 0: raise ValueError('''math domain error''' ) if num > 1_71.5: raise OverflowError('''math range error''' ) elif num - int(_SCREAMING_SNAKE_CASE ) not in (0, 0.5): raise NotImplementedError('''num must be an integer or a half-integer''' ) elif num == 0.5: return sqrt(_SCREAMING_SNAKE_CASE ) else: return 1.0 if num == 1 else (num - 1) * gamma(num - 1 ) def lowerCamelCase__ ( ) -> None: assert gamma(0.5 ) == sqrt(_SCREAMING_SNAKE_CASE ) assert gamma(1 ) == 1.0 assert gamma(2 ) == 1.0 if __name__ == "__main__": from doctest import testmod testmod() UpperCAmelCase__ : Any = 1.0 while num: UpperCAmelCase__ : List[Any] = float(input('Gamma of: ')) print(F"""gamma({num}) = {gamma(num)}""") print('\nEnter 0 to exit...')
121
"""simple docstring""" import unittest import numpy as np from transformers.testing_utils import require_pytesseract, require_torch from transformers.utils import is_pytesseract_available, is_torch_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_pytesseract_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def __init__( self , __UpperCAmelCase , __UpperCAmelCase=7 , __UpperCAmelCase=3 , __UpperCAmelCase=1_8 , __UpperCAmelCase=3_0 , __UpperCAmelCase=4_0_0 , __UpperCAmelCase=True , __UpperCAmelCase=None , __UpperCAmelCase=True , ): '''simple docstring''' lowerCAmelCase__ :Dict = size if size is not None else {'height': 1_8, 'width': 1_8} lowerCAmelCase__ :Tuple = parent lowerCAmelCase__ :List[Any] = batch_size lowerCAmelCase__ :List[Any] = num_channels lowerCAmelCase__ :Any = image_size lowerCAmelCase__ :int = min_resolution lowerCAmelCase__ :int = max_resolution lowerCAmelCase__ :Dict = do_resize lowerCAmelCase__ :str = size lowerCAmelCase__ :Any = apply_ocr def snake_case ( self ): '''simple docstring''' return {"do_resize": self.do_resize, "size": self.size, "apply_ocr": self.apply_ocr} @require_torch @require_pytesseract class _lowerCAmelCase ( a , unittest.TestCase ): """simple docstring""" __magic_name__ :str = LayoutLMvaImageProcessor if is_pytesseract_available() else None def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :List[Any] = LayoutLMvaImageProcessingTester(self ) @property def snake_case ( self ): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :Optional[int] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__UpperCAmelCase , 'do_resize' ) ) self.assertTrue(hasattr(__UpperCAmelCase , 'size' ) ) self.assertTrue(hasattr(__UpperCAmelCase , 'apply_ocr' ) ) def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :Union[str, Any] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'height': 1_8, 'width': 1_8} ) lowerCAmelCase__ :List[str] = self.image_processing_class.from_dict(self.image_processor_dict , size=4_2 ) self.assertEqual(image_processor.size , {'height': 4_2, 'width': 4_2} ) def snake_case ( self ): '''simple docstring''' pass def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowerCAmelCase__ :Tuple = prepare_image_inputs(self.image_processor_tester , equal_resolution=__UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(__UpperCAmelCase , Image.Image ) # Test not batched input lowerCAmelCase__ :Tuple = image_processing(image_inputs[0] , return_tensors='pt' ) self.assertEqual( encoding.pixel_values.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) self.assertIsInstance(encoding.words , __UpperCAmelCase ) self.assertIsInstance(encoding.boxes , __UpperCAmelCase ) # Test batched lowerCAmelCase__ :Any = image_processing(__UpperCAmelCase , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowerCAmelCase__ :Any = prepare_image_inputs(self.image_processor_tester , equal_resolution=__UpperCAmelCase , numpify=__UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(__UpperCAmelCase , np.ndarray ) # Test not batched input lowerCAmelCase__ :Tuple = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) # Test batched lowerCAmelCase__ :Optional[Any] = image_processing(__UpperCAmelCase , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :Tuple = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowerCAmelCase__ :List[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=__UpperCAmelCase , torchify=__UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(__UpperCAmelCase , torch.Tensor ) # Test not batched input lowerCAmelCase__ :Tuple = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) # Test batched lowerCAmelCase__ :Any = image_processing(__UpperCAmelCase , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :List[str] = LayoutLMvaImageProcessor() from datasets import load_dataset lowerCAmelCase__ :Tuple = load_dataset('hf-internal-testing/fixtures_docvqa' , split='test' ) lowerCAmelCase__ :int = Image.open(ds[0]['file'] ).convert('RGB' ) lowerCAmelCase__ :Optional[int] = image_processing(__UpperCAmelCase , return_tensors='pt' ) self.assertEqual(encoding.pixel_values.shape , (1, 3, 2_2_4, 2_2_4) ) self.assertEqual(len(encoding.words ) , len(encoding.boxes ) ) # fmt: off # the words and boxes were obtained with Tesseract 4.1.1 lowerCAmelCase__ :Optional[Any] = [['11:14', 'to', '11:39', 'a.m', '11:39', 'to', '11:44', 'a.m.', '11:44', 'a.m.', 'to', '12:25', 'p.m.', '12:25', 'to', '12:58', 'p.m.', '12:58', 'to', '4:00', 'p.m.', '2:00', 'to', '5:00', 'p.m.', 'Coffee', 'Break', 'Coffee', 'will', 'be', 'served', 'for', 'men', 'and', 'women', 'in', 'the', 'lobby', 'adjacent', 'to', 'exhibit', 'area.', 'Please', 'move', 'into', 'exhibit', 'area.', '(Exhibits', 'Open)', 'TRRF', 'GENERAL', 'SESSION', '(PART', '|)', 'Presiding:', 'Lee', 'A.', 'Waller', 'TRRF', 'Vice', 'President', '“Introductory', 'Remarks”', 'Lee', 'A.', 'Waller,', 'TRRF', 'Vice', 'Presi-', 'dent', 'Individual', 'Interviews', 'with', 'TRRF', 'Public', 'Board', 'Members', 'and', 'Sci-', 'entific', 'Advisory', 'Council', 'Mem-', 'bers', 'Conducted', 'by', 'TRRF', 'Treasurer', 'Philip', 'G.', 'Kuehn', 'to', 'get', 'answers', 'which', 'the', 'public', 'refrigerated', 'warehousing', 'industry', 'is', 'looking', 'for.', 'Plus', 'questions', 'from', 'the', 'floor.', 'Dr.', 'Emil', 'M.', 'Mrak,', 'University', 'of', 'Cal-', 'ifornia,', 'Chairman,', 'TRRF', 'Board;', 'Sam', 'R.', 'Cecil,', 'University', 'of', 'Georgia', 'College', 'of', 'Agriculture;', 'Dr.', 'Stanley', 'Charm,', 'Tufts', 'University', 'School', 'of', 'Medicine;', 'Dr.', 'Robert', 'H.', 'Cotton,', 'ITT', 'Continental', 'Baking', 'Company;', 'Dr.', 'Owen', 'Fennema,', 'University', 'of', 'Wis-', 'consin;', 'Dr.', 'Robert', 'E.', 'Hardenburg,', 'USDA.', 'Questions', 'and', 'Answers', 'Exhibits', 'Open', 'Capt.', 'Jack', 'Stoney', 'Room', 'TRRF', 'Scientific', 'Advisory', 'Council', 'Meeting', 'Ballroom', 'Foyer']] # noqa: E231 lowerCAmelCase__ :List[str] = [[[1_4_1, 5_7, 2_1_4, 6_9], [2_2_8, 5_8, 2_5_2, 6_9], [1_4_1, 7_5, 2_1_6, 8_8], [2_3_0, 7_9, 2_8_0, 8_8], [1_4_2, 2_6_0, 2_1_8, 2_7_3], [2_3_0, 2_6_1, 2_5_5, 2_7_3], [1_4_3, 2_7_9, 2_1_8, 2_9_0], [2_3_1, 2_8_2, 2_9_0, 2_9_1], [1_4_3, 3_4_2, 2_1_8, 3_5_4], [2_3_1, 3_4_5, 2_8_9, 3_5_5], [2_0_2, 3_6_2, 2_2_7, 3_7_3], [1_4_3, 3_7_9, 2_2_0, 3_9_2], [2_3_1, 3_8_2, 2_9_1, 3_9_4], [1_4_4, 7_1_4, 2_2_0, 7_2_6], [2_3_1, 7_1_5, 2_5_6, 7_2_6], [1_4_4, 7_3_2, 2_2_0, 7_4_5], [2_3_2, 7_3_6, 2_9_1, 7_4_7], [1_4_4, 7_6_9, 2_1_8, 7_8_2], [2_3_1, 7_7_0, 2_5_6, 7_8_2], [1_4_1, 7_8_8, 2_0_2, 8_0_1], [2_1_5, 7_9_1, 2_7_4, 8_0_4], [1_4_3, 8_2_6, 2_0_4, 8_3_8], [2_1_5, 8_2_6, 2_4_0, 8_3_8], [1_4_2, 8_4_4, 2_0_2, 8_5_7], [2_1_5, 8_4_7, 2_7_4, 8_5_9], [3_3_4, 5_7, 4_2_7, 6_9], [4_4_0, 5_7, 5_2_2, 6_9], [3_6_9, 7_5, 4_6_1, 8_8], [4_6_9, 7_5, 5_1_6, 8_8], [5_2_8, 7_6, 5_6_2, 8_8], [5_7_0, 7_6, 6_6_7, 8_8], [6_7_5, 7_5, 7_1_1, 8_7], [7_2_1, 7_9, 7_7_8, 8_8], [7_8_9, 7_5, 8_4_0, 8_8], [3_6_9, 9_7, 4_7_0, 1_0_7], [4_8_4, 9_4, 5_0_7, 1_0_6], [5_1_8, 9_4, 5_6_2, 1_0_7], [5_7_6, 9_4, 6_5_5, 1_1_0], [6_6_8, 9_4, 7_9_2, 1_0_9], [8_0_4, 9_5, 8_2_9, 1_0_7], [3_6_9, 1_1_3, 4_6_5, 1_2_5], [4_7_7, 1_1_6, 5_4_7, 1_2_5], [5_6_2, 1_1_3, 6_5_8, 1_2_5], [6_7_1, 1_1_6, 7_4_8, 1_2_5], [7_6_1, 1_1_3, 8_1_1, 1_2_5], [3_6_9, 1_3_1, 4_6_5, 1_4_3], [4_7_7, 1_3_3, 5_4_8, 1_4_3], [5_6_3, 1_3_0, 6_9_8, 1_4_5], [7_1_0, 1_3_0, 8_0_2, 1_4_6], [3_3_6, 1_7_1, 4_1_2, 1_8_3], [4_2_3, 1_7_1, 5_7_2, 1_8_3], [5_8_2, 1_7_0, 7_1_6, 1_8_4], [7_2_8, 1_7_1, 8_1_7, 1_8_7], [8_2_9, 1_7_1, 8_4_4, 1_8_6], [3_3_8, 1_9_7, 4_8_2, 2_1_2], [5_0_7, 1_9_6, 5_5_7, 2_0_9], [5_6_9, 1_9_6, 5_9_5, 2_0_8], [6_1_0, 1_9_6, 7_0_2, 2_0_9], [5_0_5, 2_1_4, 5_8_3, 2_2_6], [5_9_5, 2_1_4, 6_5_6, 2_2_7], [6_7_0, 2_1_5, 8_0_7, 2_2_7], [3_3_5, 2_5_9, 5_4_3, 2_7_4], [5_5_6, 2_5_9, 7_0_8, 2_7_2], [3_7_2, 2_7_9, 4_2_2, 2_9_1], [4_3_5, 2_7_9, 4_6_0, 2_9_1], [4_7_4, 2_7_9, 5_7_4, 2_9_2], [5_8_7, 2_7_8, 6_6_4, 2_9_1], [6_7_6, 2_7_8, 7_3_8, 2_9_1], [7_5_1, 2_7_9, 8_3_4, 2_9_1], [3_7_2, 2_9_8, 4_3_4, 3_1_0], [3_3_5, 3_4_1, 4_8_3, 3_5_4], [4_9_7, 3_4_1, 6_5_5, 3_5_4], [6_6_7, 3_4_1, 7_2_8, 3_5_4], [7_4_0, 3_4_1, 8_2_5, 3_5_4], [3_3_5, 3_6_0, 4_3_0, 3_7_2], [4_4_2, 3_6_0, 5_3_4, 3_7_2], [5_4_5, 3_5_9, 6_8_7, 3_7_2], [6_9_7, 3_6_0, 7_5_4, 3_7_2], [7_6_5, 3_6_0, 8_2_3, 3_7_3], [3_3_4, 3_7_8, 4_2_8, 3_9_1], [4_4_0, 3_7_8, 5_7_7, 3_9_4], [5_9_0, 3_7_8, 7_0_5, 3_9_1], [7_2_0, 3_7_8, 8_0_1, 3_9_1], [3_3_4, 3_9_7, 4_0_0, 4_0_9], [3_7_0, 4_1_6, 5_2_9, 4_2_9], [5_4_4, 4_1_6, 5_7_6, 4_3_2], [5_8_7, 4_1_6, 6_6_5, 4_2_8], [6_7_7, 4_1_6, 8_1_4, 4_2_9], [3_7_2, 4_3_5, 4_5_2, 4_5_0], [4_6_5, 4_3_4, 4_9_5, 4_4_7], [5_1_1, 4_3_4, 6_0_0, 4_4_7], [6_1_1, 4_3_6, 6_3_7, 4_4_7], [6_4_9, 4_3_6, 6_9_4, 4_5_1], [7_0_5, 4_3_8, 8_2_4, 4_4_7], [3_6_9, 4_5_3, 4_5_2, 4_6_6], [4_6_4, 4_5_4, 5_0_9, 4_6_6], [5_2_2, 4_5_3, 6_1_1, 4_6_9], [6_2_5, 4_5_3, 7_9_2, 4_6_9], [3_7_0, 4_7_2, 5_5_6, 4_8_8], [5_7_0, 4_7_2, 6_8_4, 4_8_7], [6_9_7, 4_7_2, 7_1_8, 4_8_5], [7_3_2, 4_7_2, 8_3_5, 4_8_8], [3_6_9, 4_9_0, 4_1_1, 5_0_3], [4_2_5, 4_9_0, 4_8_4, 5_0_3], [4_9_6, 4_9_0, 6_3_5, 5_0_6], [6_4_5, 4_9_0, 7_0_7, 5_0_3], [7_1_8, 4_9_1, 7_6_1, 5_0_3], [7_7_1, 4_9_0, 8_4_0, 5_0_3], [3_3_6, 5_1_0, 3_7_4, 5_2_1], [3_8_8, 5_1_0, 4_4_7, 5_2_2], [4_6_0, 5_1_0, 4_8_9, 5_2_1], [5_0_3, 5_1_0, 5_8_0, 5_2_2], [5_9_2, 5_0_9, 7_3_6, 5_2_5], [7_4_5, 5_0_9, 7_7_0, 5_2_2], [7_8_1, 5_0_9, 8_4_0, 5_2_2], [3_3_8, 5_2_8, 4_3_4, 5_4_1], [4_4_8, 5_2_8, 5_9_6, 5_4_1], [6_0_9, 5_2_7, 6_8_7, 5_4_0], [7_0_0, 5_2_8, 7_9_2, 5_4_1], [3_3_6, 5_4_6, 3_9_7, 5_5_9], [4_0_7, 5_4_6, 4_3_1, 5_5_9], [4_4_3, 5_4_6, 5_2_5, 5_6_0], [5_3_7, 5_4_6, 6_8_0, 5_6_2], [6_8_8, 5_4_6, 7_1_4, 5_5_9], [7_2_2, 5_4_6, 8_3_7, 5_6_2], [3_3_6, 5_6_5, 4_4_9, 5_8_1], [4_6_1, 5_6_5, 4_8_5, 5_7_7], [4_9_7, 5_6_5, 6_6_5, 5_8_1], [6_8_1, 5_6_5, 7_1_8, 5_7_7], [7_3_2, 5_6_5, 8_3_7, 5_8_0], [3_3_7, 5_8_4, 4_3_8, 5_9_7], [4_5_2, 5_8_3, 5_2_1, 5_9_6], [5_3_5, 5_8_4, 6_7_7, 5_9_9], [6_9_0, 5_8_3, 7_8_7, 5_9_6], [8_0_1, 5_8_3, 8_2_5, 5_9_6], [3_3_8, 6_0_2, 4_7_8, 6_1_5], [4_9_2, 6_0_2, 5_3_0, 6_1_4], [5_4_3, 6_0_2, 6_3_8, 6_1_5], [6_5_0, 6_0_2, 6_7_6, 6_1_4], [6_8_8, 6_0_2, 7_8_8, 6_1_5], [8_0_2, 6_0_2, 8_4_3, 6_1_4], [3_3_7, 6_2_1, 5_0_2, 6_3_3], [5_1_6, 6_2_1, 6_1_5, 6_3_7], [6_2_9, 6_2_1, 7_7_4, 6_3_6], [7_8_9, 6_2_1, 8_2_7, 6_3_3], [3_3_7, 6_3_9, 4_1_8, 6_5_2], [4_3_2, 6_4_0, 5_7_1, 6_5_3], [5_8_7, 6_3_9, 7_3_1, 6_5_5], [7_4_3, 6_3_9, 7_6_9, 6_5_2], [7_8_0, 6_3_9, 8_4_1, 6_5_2], [3_3_8, 6_5_8, 4_4_0, 6_7_3], [4_5_5, 6_5_8, 4_9_1, 6_7_0], [5_0_8, 6_5_8, 6_0_2, 6_7_1], [6_1_6, 6_5_8, 6_3_8, 6_7_0], [6_5_4, 6_5_8, 8_3_5, 6_7_4], [3_3_7, 6_7_7, 4_2_9, 6_8_9], [3_3_7, 7_1_4, 4_8_2, 7_2_6], [4_9_5, 7_1_4, 5_4_8, 7_2_6], [5_6_1, 7_1_4, 6_8_3, 7_2_6], [3_3_8, 7_7_0, 4_6_1, 7_8_2], [4_7_4, 7_6_9, 5_5_4, 7_8_5], [4_8_9, 7_8_8, 5_6_2, 8_0_3], [5_7_6, 7_8_8, 6_4_3, 8_0_1], [6_5_6, 7_8_7, 7_5_1, 8_0_4], [7_6_4, 7_8_8, 8_4_4, 8_0_1], [3_3_4, 8_2_5, 4_2_1, 8_3_8], [4_3_0, 8_2_4, 5_7_4, 8_3_8], [5_8_4, 8_2_4, 7_2_3, 8_4_1], [3_3_5, 8_4_4, 4_5_0, 8_5_7], [4_6_4, 8_4_3, 5_8_3, 8_6_0], [6_2_8, 8_6_2, 7_5_5, 8_7_5], [7_6_9, 8_6_1, 8_4_8, 8_7_8]]] # noqa: E231 # fmt: on self.assertListEqual(encoding.words , __UpperCAmelCase ) self.assertListEqual(encoding.boxes , __UpperCAmelCase ) # with apply_OCR = False lowerCAmelCase__ :int = LayoutLMvaImageProcessor(apply_ocr=__UpperCAmelCase ) lowerCAmelCase__ :Optional[int] = image_processing(__UpperCAmelCase , return_tensors='pt' ) self.assertEqual(encoding.pixel_values.shape , (1, 3, 2_2_4, 2_2_4) )
293
0
"""simple docstring""" import argparse from tax import checkpoints from transformers import AutoConfig, FlaxAutoModelForSeqaSeqLM def lowerCamelCase_ ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) -> Any: """simple docstring""" snake_case_ : Optional[int] = AutoConfig.from_pretrained(_UpperCamelCase ) snake_case_ : Dict = FlaxAutoModelForSeqaSeqLM.from_config(config=_UpperCamelCase ) snake_case_ : List[str] = checkpoints.load_tax_checkpoint(_UpperCamelCase ) snake_case_ : Optional[int] = '''wi_0''' in tax_model['''target''']['''encoder''']['''layers_0''']['''mlp'''] if config.model_type == "t5": snake_case_ : Optional[Any] = '''SelfAttention''' if config.model_type == "longt5" and config.encoder_attention_type == "local": snake_case_ : Union[str, Any] = '''LocalSelfAttention''' elif config.model_type == "longt5" and config.encoder_attention_type == "transient-global": snake_case_ : str = '''TransientGlobalSelfAttention''' else: raise ValueError( '''Given config is expected to have `model_type=\'t5\'`, or `model_type=\'longt5` with `encoder_attention_type`''' ''' attribute with a value from [\'local\', \'transient-global].''' ) # Encoder for layer_index in range(config.num_layers ): snake_case_ : Optional[Any] = f'''layers_{str(_UpperCamelCase )}''' # Self-Attention snake_case_ : Tuple = tax_model['''target''']['''encoder'''][layer_name]['''attention''']['''key''']['''kernel'''] snake_case_ : Optional[int] = tax_model['''target''']['''encoder'''][layer_name]['''attention''']['''out''']['''kernel'''] snake_case_ : Tuple = tax_model['''target''']['''encoder'''][layer_name]['''attention''']['''query''']['''kernel'''] snake_case_ : str = tax_model['''target''']['''encoder'''][layer_name]['''attention''']['''value''']['''kernel'''] # Global input layer norm if config.model_type == "longt5" and config.encoder_attention_type == "transient-global": snake_case_ : Optional[Any] = tax_model['''target''']['''encoder'''][layer_name]['''attention''']['''T5LayerNorm_0''']['''scale'''] # Layer Normalization snake_case_ : Union[str, Any] = tax_model['''target''']['''encoder'''][layer_name]['''pre_attention_layer_norm''']['''scale'''] if split_mlp_wi: snake_case_ : Dict = tax_model['''target''']['''encoder'''][layer_name]['''mlp''']['''wi_0''']['''kernel'''] snake_case_ : Any = tax_model['''target''']['''encoder'''][layer_name]['''mlp''']['''wi_1''']['''kernel'''] else: snake_case_ : Union[str, Any] = tax_model['''target''']['''encoder'''][layer_name]['''mlp''']['''wi''']['''kernel'''] snake_case_ : Any = tax_model['''target''']['''encoder'''][layer_name]['''mlp''']['''wo''']['''kernel'''] # Layer Normalization snake_case_ : List[str] = tax_model['''target''']['''encoder'''][layer_name]['''pre_mlp_layer_norm''']['''scale'''] # Assigning snake_case_ : List[Any] = flax_model.params['''encoder''']['''block'''][str(_UpperCamelCase )]['''layer'''] snake_case_ : Optional[int] = tax_attention_key snake_case_ : Union[str, Any] = tax_attention_out snake_case_ : Union[str, Any] = tax_attention_query snake_case_ : Dict = tax_attention_value snake_case_ : str = tax_attention_layer_norm # Global input layer norm if config.model_type == "longt5" and config.encoder_attention_type == "transient-global": snake_case_ : Tuple = tax_global_layer_norm if split_mlp_wi: snake_case_ : List[Any] = tax_mlp_wi_a snake_case_ : Optional[int] = tax_mlp_wi_a else: snake_case_ : Dict = tax_mlp_wi snake_case_ : Optional[int] = tax_mlp_wo snake_case_ : List[Any] = tax_mlp_layer_norm snake_case_ : List[str] = flax_model_encoder_layer_block # Only for layer 0: snake_case_ : Optional[Any] = tax_model['''target''']['''encoder''']['''relpos_bias''']['''rel_embedding'''].T snake_case_ : Any = tax_encoder_rel_embedding # Side/global relative position_bias + layer norm if config.model_type == "longt5" and config.encoder_attention_type == "transient-global": snake_case_ : List[str] = tax_model['''target''']['''encoder''']['''side_relpos_bias''']['''rel_embedding'''].T snake_case_ : int = tax_encoder_global_rel_embedding # Assigning snake_case_ : Union[str, Any] = tax_model['''target''']['''encoder''']['''encoder_norm''']['''scale'''] snake_case_ : Tuple = tax_encoder_norm # Decoder for layer_index in range(config.num_layers ): snake_case_ : str = f'''layers_{str(_UpperCamelCase )}''' # Self-Attention snake_case_ : Tuple = tax_model['''target''']['''decoder'''][layer_name]['''self_attention''']['''key''']['''kernel'''] snake_case_ : str = tax_model['''target''']['''decoder'''][layer_name]['''self_attention''']['''out''']['''kernel'''] snake_case_ : int = tax_model['''target''']['''decoder'''][layer_name]['''self_attention''']['''query''']['''kernel'''] snake_case_ : str = tax_model['''target''']['''decoder'''][layer_name]['''self_attention''']['''value''']['''kernel'''] # Layer Normalization snake_case_ : Optional[Any] = tax_model['''target''']['''decoder'''][layer_name]['''pre_self_attention_layer_norm'''][ '''scale''' ] # Encoder-Decoder-Attention snake_case_ : List[str] = tax_model['''target''']['''decoder'''][layer_name]['''encoder_decoder_attention'''] snake_case_ : Optional[Any] = tax_enc_dec_attention_module['''key''']['''kernel'''] snake_case_ : Optional[Any] = tax_enc_dec_attention_module['''out''']['''kernel'''] snake_case_ : Optional[Any] = tax_enc_dec_attention_module['''query''']['''kernel'''] snake_case_ : Optional[int] = tax_enc_dec_attention_module['''value''']['''kernel'''] # Layer Normalization snake_case_ : Optional[int] = tax_model['''target''']['''decoder'''][layer_name]['''pre_cross_attention_layer_norm''']['''scale'''] # MLP if split_mlp_wi: snake_case_ : Optional[Any] = tax_model['''target''']['''decoder'''][layer_name]['''mlp''']['''wi_0''']['''kernel'''] snake_case_ : int = tax_model['''target''']['''decoder'''][layer_name]['''mlp''']['''wi_1''']['''kernel'''] else: snake_case_ : Tuple = tax_model['''target''']['''decoder'''][layer_name]['''mlp''']['''wi''']['''kernel'''] snake_case_ : Tuple = tax_model['''target''']['''decoder'''][layer_name]['''mlp''']['''wo''']['''kernel'''] # Layer Normalization snake_case_ : str = tax_model['''target''']['''decoder'''][layer_name]['''pre_mlp_layer_norm''']['''scale'''] # Assigning snake_case_ : List[str] = flax_model.params['''decoder''']['''block'''][str(_UpperCamelCase )]['''layer'''] snake_case_ : Union[str, Any] = tax_attention_key snake_case_ : Dict = tax_attention_out snake_case_ : Union[str, Any] = tax_attention_query snake_case_ : List[Any] = tax_attention_value snake_case_ : Optional[Any] = tax_pre_attention_layer_norm snake_case_ : Optional[Any] = tax_enc_dec_attention_key snake_case_ : Dict = tax_enc_dec_attention_out snake_case_ : Tuple = tax_enc_dec_attention_query snake_case_ : Any = tax_enc_dec_attention_value snake_case_ : Tuple = tax_cross_layer_norm if split_mlp_wi: snake_case_ : List[Any] = tax_mlp_wi_a snake_case_ : Union[str, Any] = tax_mlp_wi_a else: snake_case_ : Optional[Any] = tax_mlp_wi snake_case_ : Any = tax_mlp_wo snake_case_ : Tuple = txa_mlp_layer_norm snake_case_ : int = flax_model_decoder_layer_block # Decoder Normalization snake_case_ : str = tax_model['''target''']['''decoder''']['''decoder_norm''']['''scale'''] snake_case_ : int = txa_decoder_norm # Only for layer 0: snake_case_ : int = tax_model['''target''']['''decoder''']['''relpos_bias''']['''rel_embedding'''].T snake_case_ : Tuple = tax_decoder_rel_embedding # Token Embeddings snake_case_ : List[str] = tax_model['''target''']['''token_embedder''']['''embedding'''] snake_case_ : Optional[int] = txa_token_embeddings # LM Head (only in v1.1 and LongT5 checkpoints) if "logits_dense" in tax_model["target"]["decoder"]: snake_case_ : Tuple = tax_model['''target''']['''decoder''']['''logits_dense''']['''kernel'''] flax_model.save_pretrained(_UpperCamelCase ) print('''T5X Model was sucessfully converted!''' ) if __name__ == "__main__": lowerCAmelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--t5x_checkpoint_path''', default=None, type=str, required=True, help='''Path the T5X checkpoint.''' ) parser.add_argument('''--config_name''', default=None, type=str, required=True, help='''Config name of LongT5/T5 model.''') parser.add_argument( '''--flax_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output FLAX model.''' ) lowerCAmelCase_ = parser.parse_args() convert_tax_checkpoint_to_flax(args.tax_checkpoint_path, args.config_name, args.flax_dump_folder_path)
357
def lowerCamelCase_ ( _UpperCamelCase ) -> int: """simple docstring""" if not isinstance(_UpperCamelCase , _UpperCamelCase ): raise ValueError('''multiplicative_persistence() only accepts integral values''' ) if num < 0: raise ValueError('''multiplicative_persistence() does not accept negative values''' ) snake_case_ : List[Any] = 0 snake_case_ : Tuple = str(_UpperCamelCase ) while len(_UpperCamelCase ) != 1: snake_case_ : Tuple = [int(_UpperCamelCase ) for i in num_string] snake_case_ : Dict = 1 for i in range(0 , len(_UpperCamelCase ) ): total *= numbers[i] snake_case_ : str = str(_UpperCamelCase ) steps += 1 return steps def lowerCamelCase_ ( _UpperCamelCase ) -> int: """simple docstring""" if not isinstance(_UpperCamelCase , _UpperCamelCase ): raise ValueError('''additive_persistence() only accepts integral values''' ) if num < 0: raise ValueError('''additive_persistence() does not accept negative values''' ) snake_case_ : Any = 0 snake_case_ : Tuple = str(_UpperCamelCase ) while len(_UpperCamelCase ) != 1: snake_case_ : List[str] = [int(_UpperCamelCase ) for i in num_string] snake_case_ : Optional[int] = 0 for i in range(0 , len(_UpperCamelCase ) ): total += numbers[i] snake_case_ : Tuple = str(_UpperCamelCase ) steps += 1 return steps if __name__ == "__main__": import doctest doctest.testmod()
279
0
from __future__ import annotations import sys from collections import deque from typing import Generic, TypeVar snake_case_ : Union[str, Any] = TypeVar("T") class __snake_case ( Generic[T] ): UpperCAmelCase__ : deque[T] # Cache store of keys UpperCAmelCase__ : set[T] # References of the keys in cache UpperCAmelCase__ : int = 1_0 # Maximum capacity of cache def __init__( self : Optional[int] , _snake_case : int): """simple docstring""" UpperCAmelCase_ = deque() UpperCAmelCase_ = set() if not n: UpperCAmelCase_ = sys.maxsize elif n < 0: raise ValueError('''n should be an integer greater than 0.''') else: UpperCAmelCase_ = n def lowerCamelCase ( self : int , _snake_case : T): """simple docstring""" if x not in self.key_reference: if len(self.dq_store) == LRUCache._MAX_CAPACITY: UpperCAmelCase_ = self.dq_store.pop() self.key_reference.remove(_snake_case) else: self.dq_store.remove(_snake_case) self.dq_store.appendleft(_snake_case) self.key_reference.add(_snake_case) def lowerCamelCase ( self : Any): """simple docstring""" for k in self.dq_store: print(_snake_case) def __repr__( self : Optional[Any]): """simple docstring""" return F"""LRUCache({self._MAX_CAPACITY}) => {list(self.dq_store)}""" if __name__ == "__main__": import doctest doctest.testmod() snake_case_ : LRUCache[str | int] = LRUCache(4) lru_cache.refer("A") lru_cache.refer(2) lru_cache.refer(3) lru_cache.refer("A") lru_cache.refer(4) lru_cache.refer(5) lru_cache.display() print(lru_cache) assert str(lru_cache) == "LRUCache(4) => [5, 4, 'A', 3]"
51
"""simple docstring""" from __future__ import annotations from collections import namedtuple def A ( snake_case__ , snake_case__ , snake_case__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = namedtuple("""result""" , """name value""" ) if (voltage, current, power).count(0 ) != 1: raise ValueError("""Only one argument must be 0""" ) elif power < 0: raise ValueError( """Power cannot be negative in any electrical/electronics system""" ) elif voltage == 0: return result("""voltage""" , power / current ) elif current == 0: return result("""current""" , power / voltage ) elif power == 0: return result("""power""" , float(round(abs(voltage * current ) , 2 ) ) ) else: raise ValueError("""Exactly one argument must be 0""" ) if __name__ == "__main__": import doctest doctest.testmod()
165
0
'''simple docstring''' import datasets from .evaluate import evaluate _a : Tuple = """\\n@article{hendrycks2021cuad,\n title={CUAD: An Expert-Annotated NLP Dataset for Legal Contract Review},\n author={Dan Hendrycks and Collin Burns and Anya Chen and Spencer Ball},\n journal={arXiv preprint arXiv:2103.06268},\n year={2021}\n}\n""" _a : Optional[Any] = """\nThis metric wrap the official scoring script for version 1 of the Contract\nUnderstanding Atticus Dataset (CUAD).\nContract Understanding Atticus Dataset (CUAD) v1 is a corpus of more than 13,000 labels in 510\ncommercial legal contracts that have been manually labeled to identify 41 categories of important\nclauses that lawyers look for when reviewing contracts in connection with corporate transactions.\n""" _a : Dict = """\nComputes CUAD scores (EM, F1, AUPR, Precision@80%Recall, and Precision@90%Recall).\nArgs:\n predictions: List of question-answers dictionaries with the following key-values:\n - 'id': id of the question-answer pair as given in the references (see below)\n - 'prediction_text': list of possible texts for the answer, as a list of strings\n depending on a threshold on the confidence probability of each prediction.\n references: List of question-answers dictionaries with the following key-values:\n - 'id': id of the question-answer pair (see above),\n - 'answers': a Dict in the CUAD dataset format\n {\n 'text': list of possible texts for the answer, as a list of strings\n 'answer_start': list of start positions for the answer, as a list of ints\n }\n Note that answer_start values are not taken into account to compute the metric.\nReturns:\n 'exact_match': Exact match (the normalized answer exactly match the gold answer)\n 'f1': The F-score of predicted tokens versus the gold answer\n 'aupr': Area Under the Precision-Recall curve\n 'prec_at_80_recall': Precision at 80% recall\n 'prec_at_90_recall': Precision at 90% recall\nExamples:\n >>> predictions = [{'prediction_text': ['The seller:', 'The buyer/End-User: Shenzhen LOHAS Supply Chain Management Co., Ltd.'], 'id': 'LohaCompanyltd_20191209_F-1_EX-10.16_11917878_EX-10.16_Supply Agreement__Parties'}]\n >>> references = [{'answers': {'answer_start': [143, 49], 'text': ['The seller:', 'The buyer/End-User: Shenzhen LOHAS Supply Chain Management Co., Ltd.']}, 'id': 'LohaCompanyltd_20191209_F-1_EX-10.16_11917878_EX-10.16_Supply Agreement__Parties'}]\n >>> cuad_metric = datasets.load_metric(\"cuad\")\n >>> results = cuad_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'exact_match': 100.0, 'f1': 100.0, 'aupr': 0.0, 'prec_at_80_recall': 1.0, 'prec_at_90_recall': 1.0}\n""" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _UpperCAmelCase ( datasets.Metric ): def lowerCamelCase__ ( self ): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION,citation=_CITATION,inputs_description=_KWARGS_DESCRIPTION,features=datasets.Features( { """predictions""": { """id""": datasets.Value("""string""" ), """prediction_text""": datasets.features.Sequence(datasets.Value("""string""" ) ), }, """references""": { """id""": datasets.Value("""string""" ), """answers""": datasets.features.Sequence( { """text""": datasets.Value("""string""" ), """answer_start""": datasets.Value("""int32""" ), } ), }, } ),codebase_urls=["""https://www.atticusprojectai.org/cuad"""],reference_urls=["""https://www.atticusprojectai.org/cuad"""],) def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ): '''simple docstring''' __lowerCAmelCase = {prediction["id"]: prediction["prediction_text"] for prediction in predictions} __lowerCAmelCase = [ { "paragraphs": [ { "qas": [ { "answers": [{"text": answer_text} for answer_text in ref["answers"]["text"]], "id": ref["id"], } for ref in references ] } ] } ] __lowerCAmelCase = evaluate(dataset=UpperCamelCase__,predictions=UpperCamelCase__ ) return score
369
'''simple docstring''' import sys def _lowerCAmelCase ( lowercase ) -> List[str]: __lowerCAmelCase = len(lowercase ) __lowerCAmelCase = [[0 for x in range(lowercase )] for x in range(lowercase )] __lowerCAmelCase = [[0 for x in range(lowercase )] for x in range(lowercase )] for chain_length in range(2 , lowercase ): for a in range(1 , n - chain_length + 1 ): __lowerCAmelCase = a + chain_length - 1 __lowerCAmelCase = sys.maxsize for c in range(lowercase , lowercase ): __lowerCAmelCase = ( matrix[a][c] + matrix[c + 1][b] + array[a - 1] * array[c] * array[b] ) if cost < matrix[a][b]: __lowerCAmelCase = cost __lowerCAmelCase = c return matrix, sol def _lowerCAmelCase ( lowercase , lowercase , lowercase ) -> Union[str, Any]: if i == j: print("""A""" + str(lowercase ) , end=""" """ ) else: print("""(""" , end=""" """ ) print_optiomal_solution(lowercase , lowercase , optimal_solution[i][j] ) print_optiomal_solution(lowercase , optimal_solution[i][j] + 1 , lowercase ) print(""")""" , end=""" """ ) def _lowerCAmelCase ( ) -> Dict: __lowerCAmelCase = [30, 35, 15, 5, 10, 20, 25] __lowerCAmelCase = len(lowercase ) # Size of matrix created from above array will be # 30*35 35*15 15*5 5*10 10*20 20*25 __lowerCAmelCase , __lowerCAmelCase = matrix_chain_order(lowercase ) print("""No. of Operation required: """ + str(matrix[1][n - 1] ) ) print_optiomal_solution(lowercase , 1 , n - 1 ) if __name__ == "__main__": main()
46
0
from .dependency_versions_table import deps from .utils.versions import require_version, require_version_core # define which module versions we always want to check at run time # (usually the ones defined in `install_requires` in setup.py) # # order specific notes: # - tqdm must be checked before tokenizers A_ : Union[str, Any] = [ 'python', 'tqdm', 'regex', 'requests', 'packaging', 'filelock', 'numpy', 'tokenizers', 'huggingface-hub', 'safetensors', 'accelerate', 'pyyaml', ] for pkg in pkgs_to_check_at_runtime: if pkg in deps: if pkg == "tokenizers": # must be loaded here, or else tqdm check may fail from .utils import is_tokenizers_available if not is_tokenizers_available(): continue # not required, check version only if installed elif pkg == "accelerate": # must be loaded here, or else tqdm check may fail from .utils import is_accelerate_available # Maybe switch to is_torch_available in the future here so that Accelerate is hard dep of # Transformers with PyTorch if not is_accelerate_available(): continue # not required, check version only if installed require_version_core(deps[pkg]) else: raise ValueError(F"""can\'t find {pkg} in {deps.keys()}, check dependency_versions_table.py""") def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=None ) -> Optional[int]: '''simple docstring''' require_version(deps[pkg] , _SCREAMING_SNAKE_CASE )
333
import argparse import json import os import numpy as np import PIL import requests import tensorflow.keras.applications.efficientnet as efficientnet import torch from huggingface_hub import hf_hub_download from PIL import Image from tensorflow.keras.preprocessing import image from transformers import ( EfficientNetConfig, EfficientNetForImageClassification, EfficientNetImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() SCREAMING_SNAKE_CASE__ : List[str] = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ : Tuple = { 'b0': efficientnet.EfficientNetBa, 'b1': efficientnet.EfficientNetBa, 'b2': efficientnet.EfficientNetBa, 'b3': efficientnet.EfficientNetBa, 'b4': efficientnet.EfficientNetBa, 'b5': efficientnet.EfficientNetBa, 'b6': efficientnet.EfficientNetBa, 'b7': efficientnet.EfficientNetBa, } SCREAMING_SNAKE_CASE__ : Any = { 'b0': { 'hidden_dim': 1280, 'width_coef': 1.0, 'depth_coef': 1.0, 'image_size': 224, 'dropout_rate': 0.2, 'dw_padding': [], }, 'b1': { 'hidden_dim': 1280, 'width_coef': 1.0, 'depth_coef': 1.1, 'image_size': 240, 'dropout_rate': 0.2, 'dw_padding': [16], }, 'b2': { 'hidden_dim': 1408, 'width_coef': 1.1, 'depth_coef': 1.2, 'image_size': 260, 'dropout_rate': 0.3, 'dw_padding': [5, 8, 16], }, 'b3': { 'hidden_dim': 1536, 'width_coef': 1.2, 'depth_coef': 1.4, 'image_size': 300, 'dropout_rate': 0.3, 'dw_padding': [5, 18], }, 'b4': { 'hidden_dim': 1792, 'width_coef': 1.4, 'depth_coef': 1.8, 'image_size': 380, 'dropout_rate': 0.4, 'dw_padding': [6], }, 'b5': { 'hidden_dim': 2048, 'width_coef': 1.6, 'depth_coef': 2.2, 'image_size': 456, 'dropout_rate': 0.4, 'dw_padding': [13, 27], }, 'b6': { 'hidden_dim': 2304, 'width_coef': 1.8, 'depth_coef': 2.6, 'image_size': 528, 'dropout_rate': 0.5, 'dw_padding': [31], }, 'b7': { 'hidden_dim': 2560, 'width_coef': 2.0, 'depth_coef': 3.1, 'image_size': 600, 'dropout_rate': 0.5, 'dw_padding': [18], }, } def A ( _SCREAMING_SNAKE_CASE ) -> str: lowerCamelCase : int = EfficientNetConfig() lowerCamelCase : List[str] = CONFIG_MAP[model_name]["hidden_dim"] lowerCamelCase : List[str] = CONFIG_MAP[model_name]["width_coef"] lowerCamelCase : Any = CONFIG_MAP[model_name]["depth_coef"] lowerCamelCase : Union[str, Any] = CONFIG_MAP[model_name]["image_size"] lowerCamelCase : Optional[int] = CONFIG_MAP[model_name]["dropout_rate"] lowerCamelCase : str = CONFIG_MAP[model_name]["dw_padding"] lowerCamelCase : Tuple = "huggingface/label-files" lowerCamelCase : List[str] = "imagenet-1k-id2label.json" lowerCamelCase : Any = 1000 lowerCamelCase : Any = json.load(open(hf_hub_download(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,repo_type="dataset" ) ,"r" ) ) lowerCamelCase : List[str] = {int(_SCREAMING_SNAKE_CASE ): v for k, v in idalabel.items()} lowerCamelCase : Tuple = idalabel lowerCamelCase : Any = {v: k for k, v in idalabel.items()} return config def A ( ) -> int: lowerCamelCase : str = "http://images.cocodataset.org/val2017/000000039769.jpg" lowerCamelCase : Tuple = Image.open(requests.get(_SCREAMING_SNAKE_CASE ,stream=_SCREAMING_SNAKE_CASE ).raw ) return im def A ( _SCREAMING_SNAKE_CASE ) -> str: lowerCamelCase : List[Any] = CONFIG_MAP[model_name]["image_size"] lowerCamelCase : str = EfficientNetImageProcessor( size={"height": size, "width": size} ,image_mean=[0.485, 0.456, 0.406] ,image_std=[0.47853944, 0.4732864, 0.47434163] ,do_center_crop=_SCREAMING_SNAKE_CASE ,) return preprocessor def A ( _SCREAMING_SNAKE_CASE ) -> Union[str, Any]: lowerCamelCase : Any = [v.split("_" )[0].split("block" )[1] for v in original_param_names if v.startswith("block" )] lowerCamelCase : Any = sorted(set(_SCREAMING_SNAKE_CASE ) ) lowerCamelCase : Dict = len(_SCREAMING_SNAKE_CASE ) lowerCamelCase : List[Any] = {b: str(_SCREAMING_SNAKE_CASE ) for b, i in zip(_SCREAMING_SNAKE_CASE ,range(_SCREAMING_SNAKE_CASE ) )} lowerCamelCase : List[Any] = [] rename_keys.append(("stem_conv/kernel:0", "embeddings.convolution.weight") ) rename_keys.append(("stem_bn/gamma:0", "embeddings.batchnorm.weight") ) rename_keys.append(("stem_bn/beta:0", "embeddings.batchnorm.bias") ) rename_keys.append(("stem_bn/moving_mean:0", "embeddings.batchnorm.running_mean") ) rename_keys.append(("stem_bn/moving_variance:0", "embeddings.batchnorm.running_var") ) for b in block_names: lowerCamelCase : Dict = block_name_mapping[b] rename_keys.append((f'''block{b}_expand_conv/kernel:0''', f'''encoder.blocks.{hf_b}.expansion.expand_conv.weight''') ) rename_keys.append((f'''block{b}_expand_bn/gamma:0''', f'''encoder.blocks.{hf_b}.expansion.expand_bn.weight''') ) rename_keys.append((f'''block{b}_expand_bn/beta:0''', f'''encoder.blocks.{hf_b}.expansion.expand_bn.bias''') ) rename_keys.append( (f'''block{b}_expand_bn/moving_mean:0''', f'''encoder.blocks.{hf_b}.expansion.expand_bn.running_mean''') ) rename_keys.append( (f'''block{b}_expand_bn/moving_variance:0''', f'''encoder.blocks.{hf_b}.expansion.expand_bn.running_var''') ) rename_keys.append( (f'''block{b}_dwconv/depthwise_kernel:0''', f'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_conv.weight''') ) rename_keys.append((f'''block{b}_bn/gamma:0''', f'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.weight''') ) rename_keys.append((f'''block{b}_bn/beta:0''', f'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.bias''') ) rename_keys.append( (f'''block{b}_bn/moving_mean:0''', f'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.running_mean''') ) rename_keys.append( (f'''block{b}_bn/moving_variance:0''', f'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.running_var''') ) rename_keys.append((f'''block{b}_se_reduce/kernel:0''', f'''encoder.blocks.{hf_b}.squeeze_excite.reduce.weight''') ) rename_keys.append((f'''block{b}_se_reduce/bias:0''', f'''encoder.blocks.{hf_b}.squeeze_excite.reduce.bias''') ) rename_keys.append((f'''block{b}_se_expand/kernel:0''', f'''encoder.blocks.{hf_b}.squeeze_excite.expand.weight''') ) rename_keys.append((f'''block{b}_se_expand/bias:0''', f'''encoder.blocks.{hf_b}.squeeze_excite.expand.bias''') ) rename_keys.append( (f'''block{b}_project_conv/kernel:0''', f'''encoder.blocks.{hf_b}.projection.project_conv.weight''') ) rename_keys.append((f'''block{b}_project_bn/gamma:0''', f'''encoder.blocks.{hf_b}.projection.project_bn.weight''') ) rename_keys.append((f'''block{b}_project_bn/beta:0''', f'''encoder.blocks.{hf_b}.projection.project_bn.bias''') ) rename_keys.append( (f'''block{b}_project_bn/moving_mean:0''', f'''encoder.blocks.{hf_b}.projection.project_bn.running_mean''') ) rename_keys.append( (f'''block{b}_project_bn/moving_variance:0''', f'''encoder.blocks.{hf_b}.projection.project_bn.running_var''') ) rename_keys.append(("top_conv/kernel:0", "encoder.top_conv.weight") ) rename_keys.append(("top_bn/gamma:0", "encoder.top_bn.weight") ) rename_keys.append(("top_bn/beta:0", "encoder.top_bn.bias") ) rename_keys.append(("top_bn/moving_mean:0", "encoder.top_bn.running_mean") ) rename_keys.append(("top_bn/moving_variance:0", "encoder.top_bn.running_var") ) lowerCamelCase : Optional[int] = {} for item in rename_keys: if item[0] in original_param_names: lowerCamelCase : List[str] = "efficientnet." + item[1] lowerCamelCase : int = "classifier.weight" lowerCamelCase : Union[str, Any] = "classifier.bias" return key_mapping def A ( _SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) -> Dict: for key, value in tf_params.items(): if "normalization" in key: continue lowerCamelCase : Tuple = key_mapping[key] if "_conv" in key and "kernel" in key: lowerCamelCase : List[Any] = torch.from_numpy(_SCREAMING_SNAKE_CASE ).permute(3 ,2 ,0 ,1 ) elif "depthwise_kernel" in key: lowerCamelCase : int = torch.from_numpy(_SCREAMING_SNAKE_CASE ).permute(2 ,3 ,0 ,1 ) elif "kernel" in key: lowerCamelCase : List[str] = torch.from_numpy(np.transpose(_SCREAMING_SNAKE_CASE ) ) else: lowerCamelCase : Optional[Any] = torch.from_numpy(_SCREAMING_SNAKE_CASE ) # Replace HF parameters with original TF model parameters assert hf_params[hf_key].shape == new_hf_value.shape hf_params[hf_key].copy_(_SCREAMING_SNAKE_CASE ) @torch.no_grad() def A ( _SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) -> Optional[int]: lowerCamelCase : Optional[int] = model_classes[model_name]( include_top=_SCREAMING_SNAKE_CASE ,weights="imagenet" ,input_tensor=_SCREAMING_SNAKE_CASE ,input_shape=_SCREAMING_SNAKE_CASE ,pooling=_SCREAMING_SNAKE_CASE ,classes=1000 ,classifier_activation="softmax" ,) lowerCamelCase : List[Any] = original_model.trainable_variables lowerCamelCase : Tuple = original_model.non_trainable_variables lowerCamelCase : Union[str, Any] = {param.name: param.numpy() for param in tf_params} for param in tf_non_train_params: lowerCamelCase : List[str] = param.numpy() lowerCamelCase : int = list(tf_params.keys() ) # Load HuggingFace model lowerCamelCase : Union[str, Any] = get_efficientnet_config(_SCREAMING_SNAKE_CASE ) lowerCamelCase : Optional[int] = EfficientNetForImageClassification(_SCREAMING_SNAKE_CASE ).eval() lowerCamelCase : Tuple = hf_model.state_dict() # Create src-to-dst parameter name mapping dictionary print("Converting parameters..." ) lowerCamelCase : Union[str, Any] = rename_keys(_SCREAMING_SNAKE_CASE ) replace_params(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) # Initialize preprocessor and preprocess input image lowerCamelCase : int = convert_image_processor(_SCREAMING_SNAKE_CASE ) lowerCamelCase : int = preprocessor(images=prepare_img() ,return_tensors="pt" ) # HF model inference hf_model.eval() with torch.no_grad(): lowerCamelCase : Optional[Any] = hf_model(**_SCREAMING_SNAKE_CASE ) lowerCamelCase : str = outputs.logits.detach().numpy() # Original model inference lowerCamelCase : Optional[Any] = False lowerCamelCase : Any = CONFIG_MAP[model_name]["image_size"] lowerCamelCase : Optional[int] = prepare_img().resize((image_size, image_size) ,resample=PIL.Image.NEAREST ) lowerCamelCase : Union[str, Any] = image.img_to_array(_SCREAMING_SNAKE_CASE ) lowerCamelCase : str = np.expand_dims(_SCREAMING_SNAKE_CASE ,axis=0 ) lowerCamelCase : Dict = original_model.predict(_SCREAMING_SNAKE_CASE ) # Check whether original and HF model outputs match -> np.allclose assert np.allclose(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,atol=1e-3 ), "The predicted logits are not the same." print("Model outputs match!" ) if save_model: # Create folder to save model if not os.path.isdir(_SCREAMING_SNAKE_CASE ): os.mkdir(_SCREAMING_SNAKE_CASE ) # Save converted model and image processor hf_model.save_pretrained(_SCREAMING_SNAKE_CASE ) preprocessor.save_pretrained(_SCREAMING_SNAKE_CASE ) if push_to_hub: # Push model and image processor to hub print(f'''Pushing converted {model_name} to the hub...''' ) lowerCamelCase : int = f'''efficientnet-{model_name}''' preprocessor.push_to_hub(_SCREAMING_SNAKE_CASE ) hf_model.push_to_hub(_SCREAMING_SNAKE_CASE ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__ : int = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='b0', type=str, help='Version name of the EfficientNet model you want to convert, select from [b0, b1, b2, b3, b4, b5, b6, b7].', ) parser.add_argument( '--pytorch_dump_folder_path', default='hf_model', type=str, help='Path to the output PyTorch model directory.', ) parser.add_argument('--save_model', action='store_true', help='Save model to local') parser.add_argument('--push_to_hub', action='store_true', help='Push model and image processor to the hub') SCREAMING_SNAKE_CASE__ : Tuple = parser.parse_args() convert_efficientnet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.save_model, args.push_to_hub)
48
0
from __future__ import annotations from random import random from typing import Generic, TypeVar __UpperCamelCase : Optional[int] = TypeVar("KT") __UpperCamelCase : str = TypeVar("VT") class __magic_name__ ( Generic[KT, VT]): def __init__( self : Dict , lowerCamelCase__ : Tuple = "root" , lowerCamelCase__ : int = None ) -> Dict: '''simple docstring''' UpperCamelCase__ : Union[str, Any] = key UpperCamelCase__ : str = value UpperCamelCase__ : list[Node[KT, VT]] = [] def __repr__( self : Any ) -> str: '''simple docstring''' return F"Node({self.key}: {self.value})" @property def UpperCAmelCase__ ( self : Dict ) -> int: '''simple docstring''' return len(self.forward ) class __magic_name__ ( Generic[KT, VT]): def __init__( self : str , lowerCamelCase__ : Any = 0.5 , lowerCamelCase__ : List[Any] = 16 ) -> List[Any]: '''simple docstring''' UpperCamelCase__ : Node[KT, VT] = Node[KT, VT]() UpperCamelCase__ : int = 0 UpperCamelCase__ : List[str] = p UpperCamelCase__ : List[Any] = max_level def __str__( self : str ) -> str: '''simple docstring''' UpperCamelCase__ : List[Any] = list(self ) if len(SCREAMING_SNAKE_CASE_ ) == 0: return F"SkipList(level={self.level})" UpperCamelCase__ : Tuple = max((len(str(SCREAMING_SNAKE_CASE_ ) ) for item in items) , default=4 ) UpperCamelCase__ : List[Any] = max(SCREAMING_SNAKE_CASE_ , 4 ) + 4 UpperCamelCase__ : List[str] = self.head UpperCamelCase__ : Union[str, Any] = [] UpperCamelCase__ : Optional[Any] = node.forward.copy() lines.append(F"[{node.key}]".ljust(SCREAMING_SNAKE_CASE_ , '''-''' ) + '''* ''' * len(SCREAMING_SNAKE_CASE_ ) ) lines.append(''' ''' * label_size + '''| ''' * len(SCREAMING_SNAKE_CASE_ ) ) while len(node.forward ) != 0: UpperCamelCase__ : List[Any] = node.forward[0] lines.append( F"[{node.key}]".ljust(SCREAMING_SNAKE_CASE_ , '''-''' ) + ''' '''.join(str(n.key ) if n.key == node.key else '''|''' for n in forwards ) ) lines.append(''' ''' * label_size + '''| ''' * len(SCREAMING_SNAKE_CASE_ ) ) UpperCamelCase__ : Optional[Any] = node.forward lines.append('''None'''.ljust(SCREAMING_SNAKE_CASE_ ) + '''* ''' * len(SCREAMING_SNAKE_CASE_ ) ) return F"SkipList(level={self.level})\n" + "\n".join(SCREAMING_SNAKE_CASE_ ) def __iter__( self : Optional[int] ) -> List[str]: '''simple docstring''' UpperCamelCase__ : List[str] = self.head while len(node.forward ) != 0: yield node.forward[0].key UpperCamelCase__ : int = node.forward[0] def UpperCAmelCase__ ( self : str ) -> int: '''simple docstring''' UpperCamelCase__ : Union[str, Any] = 1 while random() < self.p and level < self.max_level: level += 1 return level def UpperCAmelCase__ ( self : Optional[int] , lowerCamelCase__ : int ) -> tuple[Node[KT, VT] | None, list[Node[KT, VT]]]: '''simple docstring''' UpperCamelCase__ : Any = [] UpperCamelCase__ : Optional[int] = self.head for i in reversed(range(self.level ) ): # i < node.level - When node level is lesser than `i` decrement `i`. # node.forward[i].key < key - Jumping to node with key value higher # or equal to searched key would result # in skipping searched key. while i < node.level and node.forward[i].key < key: UpperCamelCase__ : str = node.forward[i] # Each leftmost node (relative to searched node) will potentially have to # be updated. update_vector.append(SCREAMING_SNAKE_CASE_ ) update_vector.reverse() # Note that we were inserting values in reverse order. # len(node.forward) != 0 - If current node doesn't contain any further # references then searched key is not present. # node.forward[0].key == key - Next node key should be equal to search key # if key is present. if len(node.forward ) != 0 and node.forward[0].key == key: return node.forward[0], update_vector else: return None, update_vector def UpperCAmelCase__ ( self : Dict , lowerCamelCase__ : List[str] ) -> Dict: '''simple docstring''' UpperCamelCase__ : List[Any] = self._locate_node(SCREAMING_SNAKE_CASE_ ) if node is not None: for i, update_node in enumerate(SCREAMING_SNAKE_CASE_ ): # Remove or replace all references to removed node. if update_node.level > i and update_node.forward[i].key == key: if node.level > i: UpperCamelCase__ : List[str] = node.forward[i] else: UpperCamelCase__ : Any = update_node.forward[:i] def UpperCAmelCase__ ( self : int , lowerCamelCase__ : Optional[int] , lowerCamelCase__ : Optional[int] ) -> Tuple: '''simple docstring''' UpperCamelCase__ : Optional[Any] = self._locate_node(SCREAMING_SNAKE_CASE_ ) if node is not None: UpperCamelCase__ : str = value else: UpperCamelCase__ : Dict = self.random_level() if level > self.level: # After level increase we have to add additional nodes to head. for _ in range(self.level - 1 , SCREAMING_SNAKE_CASE_ ): update_vector.append(self.head ) UpperCamelCase__ : List[str] = level UpperCamelCase__ : Optional[int] = Node(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) for i, update_node in enumerate(update_vector[:level] ): # Change references to pass through new node. if update_node.level > i: new_node.forward.append(update_node.forward[i] ) if update_node.level < i + 1: update_node.forward.append(SCREAMING_SNAKE_CASE_ ) else: UpperCamelCase__ : int = new_node def UpperCAmelCase__ ( self : Optional[Any] , lowerCamelCase__ : Dict ) -> VT | None: '''simple docstring''' UpperCamelCase__ : Union[str, Any] = self._locate_node(SCREAMING_SNAKE_CASE_ ) if node is not None: return node.value return None def _a ( ): """simple docstring""" UpperCamelCase__ : Union[str, Any] = SkipList() skip_list.insert('''Key1''' , 3 ) skip_list.insert('''Key2''' , 12 ) skip_list.insert('''Key3''' , 41 ) skip_list.insert('''Key4''' , -19 ) UpperCamelCase__ : int = skip_list.head UpperCamelCase__ : Tuple = {} while node.level != 0: UpperCamelCase__ : int = node.forward[0] UpperCamelCase__ : Union[str, Any] = node.value assert len(lowerCAmelCase__ ) == 4 assert all_values["Key1"] == 3 assert all_values["Key2"] == 12 assert all_values["Key3"] == 41 assert all_values["Key4"] == -19 def _a ( ): """simple docstring""" UpperCamelCase__ : Tuple = SkipList() skip_list.insert('''Key1''' , 10 ) skip_list.insert('''Key1''' , 12 ) skip_list.insert('''Key5''' , 7 ) skip_list.insert('''Key7''' , 10 ) skip_list.insert('''Key10''' , 5 ) skip_list.insert('''Key7''' , 7 ) skip_list.insert('''Key5''' , 5 ) skip_list.insert('''Key10''' , 10 ) UpperCamelCase__ : List[Any] = skip_list.head UpperCamelCase__ : Union[str, Any] = {} while node.level != 0: UpperCamelCase__ : Union[str, Any] = node.forward[0] UpperCamelCase__ : List[Any] = node.value if len(lowerCAmelCase__ ) != 4: print() assert len(lowerCAmelCase__ ) == 4 assert all_values["Key1"] == 12 assert all_values["Key7"] == 7 assert all_values["Key5"] == 5 assert all_values["Key10"] == 10 def _a ( ): """simple docstring""" UpperCamelCase__ : List[str] = SkipList() assert skip_list.find('''Some key''' ) is None def _a ( ): """simple docstring""" UpperCamelCase__ : List[str] = SkipList() skip_list.insert('''Key2''' , 20 ) assert skip_list.find('''Key2''' ) == 20 skip_list.insert('''Some Key''' , 10 ) skip_list.insert('''Key2''' , 8 ) skip_list.insert('''V''' , 13 ) assert skip_list.find('''Y''' ) is None assert skip_list.find('''Key2''' ) == 8 assert skip_list.find('''Some Key''' ) == 10 assert skip_list.find('''V''' ) == 13 def _a ( ): """simple docstring""" UpperCamelCase__ : Any = SkipList() skip_list.delete('''Some key''' ) assert len(skip_list.head.forward ) == 0 def _a ( ): """simple docstring""" UpperCamelCase__ : Optional[Any] = SkipList() skip_list.insert('''Key1''' , 12 ) skip_list.insert('''V''' , 13 ) skip_list.insert('''X''' , 14 ) skip_list.insert('''Key2''' , 15 ) skip_list.delete('''V''' ) skip_list.delete('''Key2''' ) assert skip_list.find('''V''' ) is None assert skip_list.find('''Key2''' ) is None def _a ( ): """simple docstring""" UpperCamelCase__ : Tuple = SkipList() skip_list.insert('''Key1''' , 12 ) skip_list.insert('''V''' , 13 ) skip_list.insert('''X''' , 14 ) skip_list.insert('''Key2''' , 15 ) skip_list.delete('''V''' ) assert skip_list.find('''V''' ) is None assert skip_list.find('''X''' ) == 14 assert skip_list.find('''Key1''' ) == 12 assert skip_list.find('''Key2''' ) == 15 skip_list.delete('''X''' ) assert skip_list.find('''V''' ) is None assert skip_list.find('''X''' ) is None assert skip_list.find('''Key1''' ) == 12 assert skip_list.find('''Key2''' ) == 15 skip_list.delete('''Key1''' ) assert skip_list.find('''V''' ) is None assert skip_list.find('''X''' ) is None assert skip_list.find('''Key1''' ) is None assert skip_list.find('''Key2''' ) == 15 skip_list.delete('''Key2''' ) assert skip_list.find('''V''' ) is None assert skip_list.find('''X''' ) is None assert skip_list.find('''Key1''' ) is None assert skip_list.find('''Key2''' ) is None def _a ( ): """simple docstring""" UpperCamelCase__ : Any = SkipList() skip_list.insert('''Key1''' , 12 ) skip_list.insert('''V''' , 13 ) skip_list.insert('''X''' , 142 ) skip_list.insert('''Key2''' , 15 ) skip_list.delete('''X''' ) def traverse_keys(SCREAMING_SNAKE_CASE : List[str] ): yield node.key for forward_node in node.forward: yield from traverse_keys(lowerCAmelCase__ ) assert len(set(traverse_keys(skip_list.head ) ) ) == 4 def _a ( ): """simple docstring""" def is_sorted(SCREAMING_SNAKE_CASE : Tuple ): return all(next_item >= item for item, next_item in zip(lowerCAmelCase__ , lst[1:] ) ) UpperCamelCase__ : Optional[int] = SkipList() for i in range(10 ): skip_list.insert(lowerCAmelCase__ , lowerCAmelCase__ ) assert is_sorted(list(lowerCAmelCase__ ) ) skip_list.delete(5 ) skip_list.delete(8 ) skip_list.delete(2 ) assert is_sorted(list(lowerCAmelCase__ ) ) skip_list.insert(-12 , -12 ) skip_list.insert(77 , 77 ) assert is_sorted(list(lowerCAmelCase__ ) ) def _a ( ): """simple docstring""" for _ in range(100 ): # Repeat test 100 times due to the probabilistic nature of skip list # random values == random bugs test_insert() test_insert_overrides_existing_value() test_searching_empty_list_returns_none() test_search() test_deleting_item_from_empty_list_do_nothing() test_deleted_items_are_not_founded_by_find_method() test_delete_removes_only_given_key() test_delete_doesnt_leave_dead_nodes() test_iter_always_yields_sorted_values() def _a ( ): """simple docstring""" UpperCamelCase__ : List[Any] = SkipList() skip_list.insert(2 , '''2''' ) skip_list.insert(4 , '''4''' ) skip_list.insert(6 , '''4''' ) skip_list.insert(4 , '''5''' ) skip_list.insert(8 , '''4''' ) skip_list.insert(9 , '''4''' ) skip_list.delete(4 ) print(lowerCAmelCase__ ) if __name__ == "__main__": import doctest doctest.testmod() main()
365
import argparse import intel_extension_for_pytorch as ipex import torch from diffusers import DPMSolverMultistepScheduler, StableDiffusionPipeline __UpperCamelCase : Optional[int] = argparse.ArgumentParser("Stable Diffusion script with intel optimization", add_help=False) parser.add_argument("--dpm", action="store_true", help="Enable DPMSolver or not") parser.add_argument("--steps", default=None, type=int, help="Num inference steps") __UpperCamelCase : Optional[int] = parser.parse_args() __UpperCamelCase : Union[str, Any] = "cpu" __UpperCamelCase : Dict = "a lovely <dicoo> in red dress and hat, in the snowly and brightly night, with many brighly buildings" __UpperCamelCase : int = "path-to-your-trained-model" __UpperCamelCase : List[str] = StableDiffusionPipeline.from_pretrained(model_id) if args.dpm: __UpperCamelCase : Optional[Any] = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config) __UpperCamelCase : Optional[Any] = pipe.to(device) # to channels last __UpperCamelCase : Tuple = pipe.unet.to(memory_format=torch.channels_last) __UpperCamelCase : Optional[int] = pipe.vae.to(memory_format=torch.channels_last) __UpperCamelCase : int = pipe.text_encoder.to(memory_format=torch.channels_last) if pipe.requires_safety_checker: __UpperCamelCase : Tuple = pipe.safety_checker.to(memory_format=torch.channels_last) # optimize with ipex __UpperCamelCase : Tuple = torch.randn(2, 4, 64, 64) __UpperCamelCase : Any = torch.rand(1) * 999 __UpperCamelCase : Any = torch.randn(2, 77, 768) __UpperCamelCase : List[Any] = (sample, timestep, encoder_hidden_status) try: __UpperCamelCase : Union[str, Any] = ipex.optimize(pipe.unet.eval(), dtype=torch.bfloataa, inplace=True, sample_input=input_example) except Exception: __UpperCamelCase : str = ipex.optimize(pipe.unet.eval(), dtype=torch.bfloataa, inplace=True) __UpperCamelCase : Tuple = ipex.optimize(pipe.vae.eval(), dtype=torch.bfloataa, inplace=True) __UpperCamelCase : str = ipex.optimize(pipe.text_encoder.eval(), dtype=torch.bfloataa, inplace=True) if pipe.requires_safety_checker: __UpperCamelCase : List[Any] = ipex.optimize(pipe.safety_checker.eval(), dtype=torch.bfloataa, inplace=True) # compute __UpperCamelCase : Optional[Any] = 666 __UpperCamelCase : int = torch.Generator(device).manual_seed(seed) __UpperCamelCase : int = {"generator": generator} if args.steps is not None: __UpperCamelCase : str = args.steps with torch.cpu.amp.autocast(enabled=True, dtype=torch.bfloataa): __UpperCamelCase : str = pipe(prompt, **generate_kwargs).images[0] # save image image.save("generated.png")
51
0
from __future__ import annotations import unittest from transformers import EsmConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import numpy import tensorflow as tf from transformers.models.esm.modeling_tf_esm import ( TF_ESM_PRETRAINED_MODEL_ARCHIVE_LIST, TFEsmForMaskedLM, TFEsmForSequenceClassification, TFEsmForTokenClassification, TFEsmModel, ) class UpperCamelCase__ : '''simple docstring''' def __init__( self , UpperCamelCase__ , ) -> Optional[int]: lowerCamelCase : int = parent lowerCamelCase : int = 13 lowerCamelCase : str = 7 lowerCamelCase : Any = True lowerCamelCase : Optional[int] = True lowerCamelCase : Dict = True lowerCamelCase : List[Any] = 99 lowerCamelCase : List[Any] = 32 lowerCamelCase : str = 2 lowerCamelCase : Union[str, Any] = 4 lowerCamelCase : str = 37 lowerCamelCase : Any = "gelu" lowerCamelCase : Optional[Any] = 0.1 lowerCamelCase : Dict = 0.1 lowerCamelCase : Optional[Any] = 512 lowerCamelCase : Optional[Any] = 16 lowerCamelCase : List[Any] = 2 lowerCamelCase : int = 0.02 lowerCamelCase : Tuple = 3 lowerCamelCase : Optional[int] = 4 lowerCamelCase : Any = None def _lowercase ( self ) -> List[str]: lowerCamelCase : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCamelCase : Union[str, Any] = None if self.use_input_mask: lowerCamelCase : Dict = random_attention_mask([self.batch_size, self.seq_length] ) lowerCamelCase : Union[str, Any] = None lowerCamelCase : Tuple = None lowerCamelCase : Tuple = None if self.use_labels: lowerCamelCase : List[str] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCamelCase : str = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCamelCase : Dict = ids_tensor([self.batch_size] , self.num_choices ) lowerCamelCase : Union[str, Any] = EsmConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , pad_token_id=1 , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def _lowercase ( self ) -> Dict: ( ( lowerCamelCase ) , ( lowerCamelCase ) , ( lowerCamelCase ) , ( lowerCamelCase ) , ( lowerCamelCase ) , ( lowerCamelCase ) , ) : Dict = self.prepare_config_and_inputs() lowerCamelCase : Union[str, Any] = True lowerCamelCase : int = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) lowerCamelCase : int = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def _lowercase ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> List[Any]: lowerCamelCase : List[Any] = TFEsmModel(config=UpperCamelCase__ ) lowerCamelCase : int = {"input_ids": input_ids, "attention_mask": input_mask} lowerCamelCase : List[Any] = model(UpperCamelCase__ ) lowerCamelCase : int = [input_ids, input_mask] lowerCamelCase : Optional[Any] = model(UpperCamelCase__ ) lowerCamelCase : Union[str, Any] = model(UpperCamelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _lowercase ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , ) -> str: lowerCamelCase : Optional[int] = True lowerCamelCase : Union[str, Any] = TFEsmModel(config=UpperCamelCase__ ) lowerCamelCase : str = { "input_ids": input_ids, "attention_mask": input_mask, "encoder_hidden_states": encoder_hidden_states, "encoder_attention_mask": encoder_attention_mask, } lowerCamelCase : List[str] = model(UpperCamelCase__ ) lowerCamelCase : Tuple = [input_ids, input_mask] lowerCamelCase : Dict = model(UpperCamelCase__ , encoder_hidden_states=UpperCamelCase__ ) # Also check the case where encoder outputs are not passed lowerCamelCase : Any = model(UpperCamelCase__ , attention_mask=UpperCamelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _lowercase ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> int: lowerCamelCase : List[str] = TFEsmForMaskedLM(config=UpperCamelCase__ ) lowerCamelCase : Any = model([input_ids, input_mask] ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _lowercase ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> List[Any]: lowerCamelCase : List[Any] = self.num_labels lowerCamelCase : Dict = TFEsmForTokenClassification(config=UpperCamelCase__ ) lowerCamelCase : List[str] = {"input_ids": input_ids, "attention_mask": input_mask} lowerCamelCase : Dict = model(UpperCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _lowercase ( self ) -> Optional[Any]: lowerCamelCase : Tuple = self.prepare_config_and_inputs() ( ( lowerCamelCase ) , ( lowerCamelCase ) , ( lowerCamelCase ) , ( lowerCamelCase ) , ( lowerCamelCase ) , ( lowerCamelCase ) , ) : Optional[Any] = config_and_inputs lowerCamelCase : Any = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_tf class UpperCamelCase__ (lowerCAmelCase__ , lowerCAmelCase__ , unittest.TestCase ): '''simple docstring''' lowerCamelCase_ : Dict = ( ( TFEsmModel, TFEsmForMaskedLM, TFEsmForSequenceClassification, TFEsmForTokenClassification, ) if is_tf_available() else () ) lowerCamelCase_ : Optional[Any] = ( { """feature-extraction""": TFEsmModel, """fill-mask""": TFEsmForMaskedLM, """text-classification""": TFEsmForSequenceClassification, """token-classification""": TFEsmForTokenClassification, """zero-shot""": TFEsmForSequenceClassification, } if is_tf_available() else {} ) lowerCamelCase_ : Any = False lowerCamelCase_ : Dict = False def _lowercase ( self ) -> Any: lowerCamelCase : Tuple = TFEsmModelTester(self ) lowerCamelCase : int = ConfigTester(self , config_class=UpperCamelCase__ , hidden_size=37 ) def _lowercase ( self ) -> List[str]: self.config_tester.run_common_tests() def _lowercase ( self ) -> str: lowerCamelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCamelCase__ ) def _lowercase ( self ) -> List[str]: lowerCamelCase : Any = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(*UpperCamelCase__ ) def _lowercase ( self ) -> Union[str, Any]: lowerCamelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*UpperCamelCase__ ) def _lowercase ( self ) -> List[Any]: lowerCamelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*UpperCamelCase__ ) @slow def _lowercase ( self ) -> List[Any]: for model_name in TF_ESM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase : Any = TFEsmModel.from_pretrained(UpperCamelCase__ ) self.assertIsNotNone(UpperCamelCase__ ) @unittest.skip("Protein models do not support embedding resizing." ) def _lowercase ( self ) -> List[str]: pass @unittest.skip("Protein models do not support embedding resizing." ) def _lowercase ( self ) -> Optional[Any]: pass def _lowercase ( self ) -> Tuple: lowerCamelCase , lowerCamelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase : Optional[Any] = model_class(UpperCamelCase__ ) assert isinstance(model.get_input_embeddings() , tf.keras.layers.Layer ) if model_class is TFEsmForMaskedLM: # Output embedding test differs from the main test because they're a matrix, not a layer lowerCamelCase : Any = model.get_bias() assert isinstance(UpperCamelCase__ , UpperCamelCase__ ) for k, v in name.items(): assert isinstance(UpperCamelCase__ , tf.Variable ) else: lowerCamelCase : str = model.get_output_embeddings() assert x is None lowerCamelCase : Optional[Any] = model.get_bias() assert name is None @require_tf class UpperCamelCase__ (unittest.TestCase ): '''simple docstring''' @slow def _lowercase ( self ) -> Dict: lowerCamelCase : int = TFEsmForMaskedLM.from_pretrained("facebook/esm2_t6_8M_UR50D" ) lowerCamelCase : Union[str, Any] = tf.constant([[0, 1, 2, 3, 4, 5]] ) lowerCamelCase : Optional[int] = model(UpperCamelCase__ )[0] lowerCamelCase : Union[str, Any] = [1, 6, 33] self.assertEqual(list(output.numpy().shape ) , UpperCamelCase__ ) # compare the actual values for a slice. lowerCamelCase : List[str] = tf.constant( [ [ [8.921518, -10.589814, -6.4671307], [-6.3967156, -13.911377, -1.1211915], [-7.781247, -13.951557, -3.740592], ] ] ) self.assertTrue(numpy.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1e-2 ) ) @slow def _lowercase ( self ) -> str: lowerCamelCase : Dict = TFEsmModel.from_pretrained("facebook/esm2_t6_8M_UR50D" ) lowerCamelCase : int = tf.constant([[0, 6, 4, 13, 5, 4, 16, 12, 11, 7, 2]] ) lowerCamelCase : Dict = model(UpperCamelCase__ )[0] # compare the actual values for a slice. lowerCamelCase : int = tf.constant( [ [ [0.14443092, 0.54125327, 0.3247739], [0.30340484, 0.00526676, 0.31077722], [0.32278043, -0.24987096, 0.3414628], ] ] ) self.assertTrue(numpy.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1e-4 ) )
48
"""simple docstring""" import os from distutils.util import strtobool def lowercase (_lowerCAmelCase , _lowerCAmelCase ): for e in env_keys: __lowerCAmelCase = int(os.environ.get(_lowerCAmelCase , -1 ) ) if val >= 0: return val return default def lowercase (_lowerCAmelCase , _lowerCAmelCase=False ): __lowerCAmelCase = os.environ.get(_lowerCAmelCase , str(_lowerCAmelCase ) ) return strtobool(_lowerCAmelCase ) == 1 # As its name indicates `strtobool` actually returns an int... def lowercase (_lowerCAmelCase , _lowerCAmelCase="no" ): __lowerCAmelCase = os.environ.get(_lowerCAmelCase , str(_lowerCAmelCase ) ) return value
301
0
'''simple docstring''' import unittest from transformers import TrOCRConfig from transformers.testing_utils import is_torch_available, require_torch, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers.models.trocr.modeling_trocr import TrOCRDecoder, TrOCRForCausalLM @require_torch class lowercase_ : """simple docstring""" def __init__( self : str , __lowerCamelCase : List[Any] , __lowerCamelCase : str=9_9 , __lowerCamelCase : List[Any]=1_3 , __lowerCamelCase : int=1_6 , __lowerCamelCase : Optional[int]=7 , __lowerCamelCase : Optional[Any]=True , __lowerCamelCase : List[str]=True , __lowerCamelCase : Tuple=True , __lowerCamelCase : Any=False , __lowerCamelCase : str=True , __lowerCamelCase : Any=2 , __lowerCamelCase : Tuple=3_2 , __lowerCamelCase : Tuple=4 , __lowerCamelCase : List[str]=4 , __lowerCamelCase : int=3_0 , __lowerCamelCase : Optional[int]=0 , __lowerCamelCase : str=1 , __lowerCamelCase : str=2 , __lowerCamelCase : Optional[Any]=None , ): """simple docstring""" _SCREAMING_SNAKE_CASE = parent _SCREAMING_SNAKE_CASE = batch_size _SCREAMING_SNAKE_CASE = decoder_seq_length # For common tests _SCREAMING_SNAKE_CASE = self.decoder_seq_length _SCREAMING_SNAKE_CASE = is_training _SCREAMING_SNAKE_CASE = use_attention_mask _SCREAMING_SNAKE_CASE = use_labels _SCREAMING_SNAKE_CASE = vocab_size _SCREAMING_SNAKE_CASE = d_model _SCREAMING_SNAKE_CASE = d_model _SCREAMING_SNAKE_CASE = decoder_layers _SCREAMING_SNAKE_CASE = decoder_layers _SCREAMING_SNAKE_CASE = decoder_ffn_dim _SCREAMING_SNAKE_CASE = decoder_attention_heads _SCREAMING_SNAKE_CASE = decoder_attention_heads _SCREAMING_SNAKE_CASE = eos_token_id _SCREAMING_SNAKE_CASE = bos_token_id _SCREAMING_SNAKE_CASE = pad_token_id _SCREAMING_SNAKE_CASE = decoder_start_token_id _SCREAMING_SNAKE_CASE = use_cache _SCREAMING_SNAKE_CASE = max_position_embeddings _SCREAMING_SNAKE_CASE = None _SCREAMING_SNAKE_CASE = decoder_seq_length _SCREAMING_SNAKE_CASE = 2 _SCREAMING_SNAKE_CASE = 1 def lowerCAmelCase_ ( self : List[Any] ): """simple docstring""" _SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size ) _SCREAMING_SNAKE_CASE = None if self.use_attention_mask: _SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.decoder_seq_length] , vocab_size=2 ) _SCREAMING_SNAKE_CASE = None if self.use_labels: _SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size ) _SCREAMING_SNAKE_CASE = TrOCRConfig( vocab_size=self.vocab_size , d_model=self.d_model , decoder_layers=self.decoder_layers , decoder_ffn_dim=self.decoder_ffn_dim , decoder_attention_heads=self.decoder_attention_heads , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , use_cache=self.use_cache , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , max_position_embeddings=self.max_position_embeddings , ) return (config, input_ids, attention_mask, lm_labels) def lowerCAmelCase_ ( self : Optional[Any] , __lowerCamelCase : List[Any] , __lowerCamelCase : Tuple , __lowerCamelCase : List[str] , __lowerCamelCase : Optional[Any] , ): """simple docstring""" _SCREAMING_SNAKE_CASE = True _SCREAMING_SNAKE_CASE = TrOCRDecoder(config=__lowerCamelCase ).to(__lowerCamelCase ).eval() _SCREAMING_SNAKE_CASE = input_ids[:2] input_ids[input_ids == 0] += 1 # first forward pass _SCREAMING_SNAKE_CASE = model(__lowerCamelCase , use_cache=__lowerCamelCase ) _SCREAMING_SNAKE_CASE = model(__lowerCamelCase ) _SCREAMING_SNAKE_CASE = model(__lowerCamelCase , use_cache=__lowerCamelCase ) self.parent.assertTrue(len(__lowerCamelCase ) == len(__lowerCamelCase ) ) self.parent.assertTrue(len(__lowerCamelCase ) == len(__lowerCamelCase ) + 1 ) _SCREAMING_SNAKE_CASE = outputs["past_key_values"] # create hypothetical next token and extent to next_input_ids _SCREAMING_SNAKE_CASE = ids_tensor((2, 1) , config.vocab_size - 1 ) + 1 # append to next input_ids and _SCREAMING_SNAKE_CASE = torch.cat([input_ids, next_tokens] , dim=-1 ) _SCREAMING_SNAKE_CASE = model(__lowerCamelCase )["last_hidden_state"] _SCREAMING_SNAKE_CASE = model(__lowerCamelCase , past_key_values=__lowerCamelCase )["last_hidden_state"] # select random slice _SCREAMING_SNAKE_CASE = ids_tensor((1,) , output_from_past.shape[-1] ).item() _SCREAMING_SNAKE_CASE = output_from_no_past[:, next_input_ids.shape[-1] - 1, random_slice_idx].detach() _SCREAMING_SNAKE_CASE = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice assert torch.allclose(__lowerCamelCase , __lowerCamelCase , atol=1e-3 ) def lowerCAmelCase_ ( self : Dict ): """simple docstring""" _SCREAMING_SNAKE_CASE = self.prepare_config_and_inputs() _SCREAMING_SNAKE_CASE, _SCREAMING_SNAKE_CASE, _SCREAMING_SNAKE_CASE, _SCREAMING_SNAKE_CASE = config_and_inputs _SCREAMING_SNAKE_CASE = {"input_ids": input_ids, "attention_mask": attention_mask} return config, inputs_dict @require_torch class lowercase_ ( A , A , A , unittest.TestCase ): """simple docstring""" lowerCamelCase_ = (TrOCRDecoder, TrOCRForCausalLM) if is_torch_available() else () lowerCamelCase_ = (TrOCRForCausalLM,) if is_torch_available() else () lowerCamelCase_ = {'''text-generation''': TrOCRForCausalLM} if is_torch_available() else {} lowerCamelCase_ = True lowerCamelCase_ = False def lowerCAmelCase_ ( self : Any ): """simple docstring""" _SCREAMING_SNAKE_CASE = TrOCRStandaloneDecoderModelTester(self , is_training=__lowerCamelCase ) _SCREAMING_SNAKE_CASE = ConfigTester(self , config_class=__lowerCamelCase ) def lowerCAmelCase_ ( self : Tuple ): """simple docstring""" pass def lowerCAmelCase_ ( self : int ): """simple docstring""" pass def lowerCAmelCase_ ( self : Optional[int] ): """simple docstring""" pass def lowerCAmelCase_ ( self : str ): """simple docstring""" self.config_tester.run_common_tests() def lowerCAmelCase_ ( self : Optional[Any] ): """simple docstring""" _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past(*__lowerCamelCase ) def lowerCAmelCase_ ( self : int ): """simple docstring""" return @unittest.skip("The model doesn't support left padding" ) # and it's not used enough to be worth fixing :) def lowerCAmelCase_ ( self : Optional[int] ): """simple docstring""" pass
360
'''simple docstring''' from collections import OrderedDict from typing import List, Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCamelCase_ = logging.get_logger(__name__) lowerCamelCase_ = { 'google/efficientnet-b7': 'https://huggingface.co/google/efficientnet-b7/resolve/main/config.json', } class lowercase_ ( A ): """simple docstring""" lowerCamelCase_ = '''efficientnet''' def __init__( self : Optional[Any] , __lowerCamelCase : int = 3 , __lowerCamelCase : int = 6_0_0 , __lowerCamelCase : float = 2.0 , __lowerCamelCase : float = 3.1 , __lowerCamelCase : int = 8 , __lowerCamelCase : List[int] = [3, 3, 5, 3, 5, 5, 3] , __lowerCamelCase : List[int] = [3_2, 1_6, 2_4, 4_0, 8_0, 1_1_2, 1_9_2] , __lowerCamelCase : List[int] = [1_6, 2_4, 4_0, 8_0, 1_1_2, 1_9_2, 3_2_0] , __lowerCamelCase : List[int] = [] , __lowerCamelCase : List[int] = [1, 2, 2, 2, 1, 2, 1] , __lowerCamelCase : List[int] = [1, 2, 2, 3, 3, 4, 1] , __lowerCamelCase : List[int] = [1, 6, 6, 6, 6, 6, 6] , __lowerCamelCase : float = 0.2_5 , __lowerCamelCase : str = "swish" , __lowerCamelCase : int = 2_5_6_0 , __lowerCamelCase : str = "mean" , __lowerCamelCase : float = 0.0_2 , __lowerCamelCase : float = 0.0_0_1 , __lowerCamelCase : float = 0.9_9 , __lowerCamelCase : float = 0.5 , __lowerCamelCase : float = 0.2 , **__lowerCamelCase : Tuple , ): """simple docstring""" super().__init__(**__lowerCamelCase ) _SCREAMING_SNAKE_CASE = num_channels _SCREAMING_SNAKE_CASE = image_size _SCREAMING_SNAKE_CASE = width_coefficient _SCREAMING_SNAKE_CASE = depth_coefficient _SCREAMING_SNAKE_CASE = depth_divisor _SCREAMING_SNAKE_CASE = kernel_sizes _SCREAMING_SNAKE_CASE = in_channels _SCREAMING_SNAKE_CASE = out_channels _SCREAMING_SNAKE_CASE = depthwise_padding _SCREAMING_SNAKE_CASE = strides _SCREAMING_SNAKE_CASE = num_block_repeats _SCREAMING_SNAKE_CASE = expand_ratios _SCREAMING_SNAKE_CASE = squeeze_expansion_ratio _SCREAMING_SNAKE_CASE = hidden_act _SCREAMING_SNAKE_CASE = hidden_dim _SCREAMING_SNAKE_CASE = pooling_type _SCREAMING_SNAKE_CASE = initializer_range _SCREAMING_SNAKE_CASE = batch_norm_eps _SCREAMING_SNAKE_CASE = batch_norm_momentum _SCREAMING_SNAKE_CASE = dropout_rate _SCREAMING_SNAKE_CASE = drop_connect_rate _SCREAMING_SNAKE_CASE = sum(__lowerCamelCase ) * 4 class lowercase_ ( A ): """simple docstring""" lowerCamelCase_ = version.parse('''1.11''' ) @property def lowerCAmelCase_ ( self : Optional[Any] ): """simple docstring""" return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ] ) @property def lowerCAmelCase_ ( self : List[Any] ): """simple docstring""" return 1e-5
111
0
"""simple docstring""" import logging from pathlib import Path import numpy as np import pytorch_lightning as pl import torch from pytorch_lightning.callbacks import EarlyStopping, ModelCheckpoint from pytorch_lightning.utilities import rank_zero_only from utils_rag import save_json def lowercase__ ( snake_case_ :Optional[Any] ): __UpperCAmelCase = filter(lambda snake_case_ : p.requires_grad , model.parameters() ) __UpperCAmelCase = sum([np.prod(p.size() ) for p in model_parameters] ) return params _lowercase : str = logging.getLogger(__name__) def lowercase__ ( snake_case_ :Optional[Any] , snake_case_ :Dict ): if metric == "rouge2": __UpperCAmelCase = '''{val_avg_rouge2:.4f}-{step_count}''' elif metric == "bleu": __UpperCAmelCase = '''{val_avg_bleu:.4f}-{step_count}''' elif metric == "em": __UpperCAmelCase = '''{val_avg_em:.4f}-{step_count}''' else: raise NotImplementedError( F'''seq2seq callbacks only support rouge2 and bleu, got {metric}, You can make your own by adding to this''' ''' function.''' ) __UpperCAmelCase = ModelCheckpoint( dirpath=snake_case_ , filename=snake_case_ , monitor=F'''val_{metric}''' , mode='''max''' , save_top_k=3 , every_n_epochs=1 , ) return checkpoint_callback def lowercase__ ( snake_case_ :int , snake_case_ :List[str] ): return EarlyStopping( monitor=F'''val_{metric}''' , mode='''min''' if '''loss''' in metric else '''max''' , patience=snake_case_ , verbose=snake_case_ , ) class _UpperCAmelCase ( pl.Callback ): def a ( self : Optional[Any] , _lowercase : Union[str, Any] , _lowercase : int ): __UpperCAmelCase = {F'''lr_group_{i}''': param['''lr'''] for i, param in enumerate(pl_module.trainer.optimizers[0].param_groups )} pl_module.logger.log_metrics(_lowercase ) @rank_zero_only def a ( self : Optional[Any] , _lowercase : pl.Trainer , _lowercase : pl.LightningModule , _lowercase : str , _lowercase : Optional[Any]=True ): logger.info(F'''***** {type_path} results at step {trainer.global_step:05d} *****''' ) __UpperCAmelCase = trainer.callback_metrics trainer.logger.log_metrics({k: v for k, v in metrics.items() if k not in ['''log''', '''progress_bar''', '''preds''']} ) # Log results __UpperCAmelCase = Path(pl_module.hparams.output_dir ) if type_path == "test": __UpperCAmelCase = od / '''test_results.txt''' __UpperCAmelCase = od / '''test_generations.txt''' else: # this never gets hit. I prefer not to save intermediate generations, and results are in metrics.json # If people want this it will be easy enough to add back. __UpperCAmelCase = od / F'''{type_path}_results/{trainer.global_step:05d}.txt''' __UpperCAmelCase = od / F'''{type_path}_generations/{trainer.global_step:05d}.txt''' results_file.parent.mkdir(exist_ok=_lowercase ) generations_file.parent.mkdir(exist_ok=_lowercase ) with open(_lowercase , '''a+''' ) as writer: for key in sorted(_lowercase ): if key in ["log", "progress_bar", "preds"]: continue __UpperCAmelCase = metrics[key] if isinstance(_lowercase , torch.Tensor ): __UpperCAmelCase = val.item() __UpperCAmelCase = F'''{key}: {val:.6f}\n''' writer.write(_lowercase ) if not save_generations: return if "preds" in metrics: __UpperCAmelCase = '''\n'''.join(metrics['''preds'''] ) generations_file.open('''w+''' ).write(_lowercase ) @rank_zero_only def a ( self : Dict , _lowercase : Dict , _lowercase : Tuple ): try: __UpperCAmelCase = pl_module.model.model.num_parameters() except AttributeError: __UpperCAmelCase = pl_module.model.num_parameters() __UpperCAmelCase = count_trainable_parameters(_lowercase ) # mp stands for million parameters trainer.logger.log_metrics({'''n_params''': npars, '''mp''': npars / 1E6, '''grad_mp''': n_trainable_pars / 1E6} ) @rank_zero_only def a ( self : str , _lowercase : pl.Trainer , _lowercase : pl.LightningModule ): save_json(pl_module.metrics , pl_module.metrics_save_path ) return self._write_logs(_lowercase , _lowercase , '''test''' ) @rank_zero_only def a ( self : str , _lowercase : pl.Trainer , _lowercase : Tuple ): save_json(pl_module.metrics , pl_module.metrics_save_path ) # Uncommenting this will save val generations # return self._write_logs(trainer, pl_module, "valid")
332
"""simple docstring""" def lowercase__ ( snake_case_ :Union[str, Any] ): # if the collection is empty, returns empty if collection == []: return [] # get some information about the collection __UpperCAmelCase = len(snake_case_ ) __UpperCAmelCase = max(snake_case_ ) __UpperCAmelCase = min(snake_case_ ) # create the counting array __UpperCAmelCase = coll_max + 1 - coll_min __UpperCAmelCase = [0] * counting_arr_length # count how much a number appears in the collection for number in collection: counting_arr[number - coll_min] += 1 # sum each position with it's predecessors. now, counting_arr[i] tells # us how many elements <= i has in the collection for i in range(1 , snake_case_ ): __UpperCAmelCase = counting_arr[i] + counting_arr[i - 1] # create the output collection __UpperCAmelCase = [0] * coll_len # place the elements in the output, respecting the original order (stable # sort) from end to begin, updating counting_arr for i in reversed(range(0 , snake_case_ ) ): __UpperCAmelCase = collection[i] counting_arr[collection[i] - coll_min] -= 1 return ordered def lowercase__ ( snake_case_ :str ): return "".join([chr(snake_case_ ) for i in counting_sort([ord(snake_case_ ) for c in string] )] ) if __name__ == "__main__": # Test string sort assert counting_sort_string('thisisthestring') == "eghhiiinrsssttt" _lowercase : int = input('Enter numbers separated by a comma:\n').strip() _lowercase : int = [int(item) for item in user_input.split(',')] print(counting_sort(unsorted))
332
1
"""simple docstring""" import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import BertTokenizer, BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import AlignProcessor, EfficientNetImageProcessor @require_vision class __UpperCAmelCase( unittest.TestCase ): """simple docstring""" def UpperCAmelCase_ ( self ): '''simple docstring''' lowercase__ : Any= tempfile.mkdtemp() lowercase__ : List[Any]= [ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest''', ] lowercase__ : str= os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) lowercase__ : Tuple= { '''do_resize''': True, '''size''': 20, '''do_center_crop''': True, '''crop_size''': 18, '''do_normalize''': True, '''image_mean''': [0.48_14_54_66, 0.4_57_82_75, 0.40_82_10_73], '''image_std''': [0.26_86_29_54, 0.26_13_02_58, 0.27_57_77_11], } lowercase__ : List[Any]= os.path.join(self.tmpdirname , _lowerCamelCase ) with open(self.image_processor_file , "w" , encoding="utf-8" ) as fp: json.dump(_lowerCamelCase , _lowerCamelCase ) def UpperCAmelCase_ ( self , **snake_case__ ): '''simple docstring''' return BertTokenizer.from_pretrained(self.tmpdirname , **_lowerCamelCase ) def UpperCAmelCase_ ( self , **snake_case__ ): '''simple docstring''' return BertTokenizerFast.from_pretrained(self.tmpdirname , **_lowerCamelCase ) def UpperCAmelCase_ ( self , **snake_case__ ): '''simple docstring''' return EfficientNetImageProcessor.from_pretrained(self.tmpdirname , **_lowerCamelCase ) def UpperCAmelCase_ ( self ): '''simple docstring''' shutil.rmtree(self.tmpdirname ) def UpperCAmelCase_ ( self ): '''simple docstring''' lowercase__ : Union[str, Any]= [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] lowercase__ : Any= [Image.fromarray(np.moveaxis(_lowerCamelCase , 0 , -1 ) ) for x in image_inputs] return image_inputs def UpperCAmelCase_ ( self ): '''simple docstring''' lowercase__ : Tuple= self.get_tokenizer() lowercase__ : Tuple= self.get_rust_tokenizer() lowercase__ : Dict= self.get_image_processor() lowercase__ : List[Any]= AlignProcessor(tokenizer=_lowerCamelCase , image_processor=_lowerCamelCase ) processor_slow.save_pretrained(self.tmpdirname ) lowercase__ : str= AlignProcessor.from_pretrained(self.tmpdirname , use_fast=_lowerCamelCase ) lowercase__ : Any= AlignProcessor(tokenizer=_lowerCamelCase , image_processor=_lowerCamelCase ) processor_fast.save_pretrained(self.tmpdirname ) lowercase__ : List[Any]= AlignProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , _lowerCamelCase ) self.assertIsInstance(processor_fast.tokenizer , _lowerCamelCase ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , _lowerCamelCase ) self.assertIsInstance(processor_fast.image_processor , _lowerCamelCase ) def UpperCAmelCase_ ( self ): '''simple docstring''' lowercase__ : List[str]= AlignProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) lowercase__ : Optional[int]= self.get_tokenizer(bos_token="(BOS)" , eos_token="(EOS)" ) lowercase__ : Tuple= self.get_image_processor(do_normalize=_lowerCamelCase , padding_value=1.0 ) lowercase__ : List[str]= AlignProcessor.from_pretrained( self.tmpdirname , bos_token="(BOS)" , eos_token="(EOS)" , do_normalize=_lowerCamelCase , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , _lowerCamelCase ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , _lowerCamelCase ) def UpperCAmelCase_ ( self ): '''simple docstring''' lowercase__ : Dict= self.get_image_processor() lowercase__ : Any= self.get_tokenizer() lowercase__ : List[str]= AlignProcessor(tokenizer=_lowerCamelCase , image_processor=_lowerCamelCase ) lowercase__ : Any= self.prepare_image_inputs() lowercase__ : List[Any]= image_processor(_lowerCamelCase , return_tensors="np" ) lowercase__ : str= processor(images=_lowerCamelCase , return_tensors="np" ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1e-2 ) def UpperCAmelCase_ ( self ): '''simple docstring''' lowercase__ : str= self.get_image_processor() lowercase__ : List[str]= self.get_tokenizer() lowercase__ : Optional[int]= AlignProcessor(tokenizer=_lowerCamelCase , image_processor=_lowerCamelCase ) lowercase__ : int= '''lower newer''' lowercase__ : str= processor(text=_lowerCamelCase ) lowercase__ : Dict= tokenizer(_lowerCamelCase , padding="max_length" , max_length=64 ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def UpperCAmelCase_ ( self ): '''simple docstring''' lowercase__ : Optional[int]= self.get_image_processor() lowercase__ : Optional[Any]= self.get_tokenizer() lowercase__ : List[str]= AlignProcessor(tokenizer=_lowerCamelCase , image_processor=_lowerCamelCase ) lowercase__ : List[Any]= '''lower newer''' lowercase__ : Optional[int]= self.prepare_image_inputs() lowercase__ : List[Any]= processor(text=_lowerCamelCase , images=_lowerCamelCase ) self.assertListEqual(list(inputs.keys() ) , ["input_ids", "token_type_ids", "attention_mask", "pixel_values"] ) # test if it raises when no input is passed with pytest.raises(_lowerCamelCase ): processor() def UpperCAmelCase_ ( self ): '''simple docstring''' lowercase__ : Optional[Any]= self.get_image_processor() lowercase__ : Optional[int]= self.get_tokenizer() lowercase__ : List[Any]= AlignProcessor(tokenizer=_lowerCamelCase , image_processor=_lowerCamelCase ) lowercase__ : str= [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] lowercase__ : str= processor.batch_decode(_lowerCamelCase ) lowercase__ : Union[str, Any]= tokenizer.batch_decode(_lowerCamelCase ) self.assertListEqual(_lowerCamelCase , _lowerCamelCase ) def UpperCAmelCase_ ( self ): '''simple docstring''' lowercase__ : str= self.get_image_processor() lowercase__ : Tuple= self.get_tokenizer() lowercase__ : Any= AlignProcessor(tokenizer=_lowerCamelCase , image_processor=_lowerCamelCase ) lowercase__ : str= '''lower newer''' lowercase__ : List[str]= self.prepare_image_inputs() lowercase__ : Tuple= processor(text=_lowerCamelCase , images=_lowerCamelCase ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
354
"""simple docstring""" import os from pathlib import Path def lowercase__() ->List[Any]: """simple docstring""" from torch.utils.cpp_extension import load lowercase__ : Any= Path(A ).resolve().parent.parent.parent / "kernels" / "deformable_detr" lowercase__ : Any= [ root / filename for filename in [ "vision.cpp", os.path.join("cpu" , "ms_deform_attn_cpu.cpp" ), os.path.join("cuda" , "ms_deform_attn_cuda.cu" ), ] ] load( "MultiScaleDeformableAttention" , A , with_cuda=A , extra_include_paths=[str(A )] , extra_cflags=["-DWITH_CUDA=1"] , extra_cuda_cflags=[ "-DCUDA_HAS_FP16=1", "-D__CUDA_NO_HALF_OPERATORS__", "-D__CUDA_NO_HALF_CONVERSIONS__", "-D__CUDA_NO_HALF2_OPERATORS__", ] , ) import MultiScaleDeformableAttention as MSDA return MSDA
150
0
"""simple docstring""" import argparse import torch from transformers import ( EncodecConfig, EncodecFeatureExtractor, EncodecModel, logging, ) # checkpoints downloaded from: # https://dl.fbaipublicfiles.com/encodec/v0/encodec_24khz-d7cc33bc.th # https://huggingface.co/facebook/musicgen-small/resolve/main/compression_state_dict.bin # https://dl.fbaipublicfiles.com/encodec/v0/encodec_48khz-7e698e3e.th logging.set_verbosity_info() lowercase__ = logging.get_logger('transformers.models.encodec') lowercase__ = { 'quantizer.vq.layers.*._codebook.inited': 'quantizer.layers.*.codebook.inited', 'quantizer.vq.layers.*._codebook.cluster_size': 'quantizer.layers.*.codebook.cluster_size', 'quantizer.vq.layers.*._codebook.embed': 'quantizer.layers.*.codebook.embed', 'quantizer.vq.layers.*._codebook.embed_avg': 'quantizer.layers.*.codebook.embed_avg', } lowercase__ = { 'encoder.model.0.conv.conv': 'encoder.layers.0.conv', 'encoder.model.1.block.1.conv.conv': 'encoder.layers.1.block.1.conv', 'encoder.model.1.block.3.conv.conv': 'encoder.layers.1.block.3.conv', 'encoder.model.1.shortcut.conv.conv': 'encoder.layers.1.shortcut.conv', 'encoder.model.3.conv.conv': 'encoder.layers.3.conv', 'encoder.model.4.block.1.conv.conv': 'encoder.layers.4.block.1.conv', 'encoder.model.4.block.3.conv.conv': 'encoder.layers.4.block.3.conv', 'encoder.model.4.shortcut.conv.conv': 'encoder.layers.4.shortcut.conv', 'encoder.model.6.conv.conv': 'encoder.layers.6.conv', 'encoder.model.7.block.1.conv.conv': 'encoder.layers.7.block.1.conv', 'encoder.model.7.block.3.conv.conv': 'encoder.layers.7.block.3.conv', 'encoder.model.7.shortcut.conv.conv': 'encoder.layers.7.shortcut.conv', 'encoder.model.9.conv.conv': 'encoder.layers.9.conv', 'encoder.model.10.block.1.conv.conv': 'encoder.layers.10.block.1.conv', 'encoder.model.10.block.3.conv.conv': 'encoder.layers.10.block.3.conv', 'encoder.model.10.shortcut.conv.conv': 'encoder.layers.10.shortcut.conv', 'encoder.model.12.conv.conv': 'encoder.layers.12.conv', 'encoder.model.13.lstm': 'encoder.layers.13.lstm', 'encoder.model.15.conv.conv': 'encoder.layers.15.conv', } lowercase__ = { 'encoder.model.0.conv.norm': 'encoder.layers.0.norm', 'encoder.model.1.block.1.conv.norm': 'encoder.layers.1.block.1.norm', 'encoder.model.1.block.3.conv.norm': 'encoder.layers.1.block.3.norm', 'encoder.model.1.shortcut.conv.norm': 'encoder.layers.1.shortcut.norm', 'encoder.model.3.conv.norm': 'encoder.layers.3.norm', 'encoder.model.4.block.1.conv.norm': 'encoder.layers.4.block.1.norm', 'encoder.model.4.block.3.conv.norm': 'encoder.layers.4.block.3.norm', 'encoder.model.4.shortcut.conv.norm': 'encoder.layers.4.shortcut.norm', 'encoder.model.6.conv.norm': 'encoder.layers.6.norm', 'encoder.model.7.block.1.conv.norm': 'encoder.layers.7.block.1.norm', 'encoder.model.7.block.3.conv.norm': 'encoder.layers.7.block.3.norm', 'encoder.model.7.shortcut.conv.norm': 'encoder.layers.7.shortcut.norm', 'encoder.model.9.conv.norm': 'encoder.layers.9.norm', 'encoder.model.10.block.1.conv.norm': 'encoder.layers.10.block.1.norm', 'encoder.model.10.block.3.conv.norm': 'encoder.layers.10.block.3.norm', 'encoder.model.10.shortcut.conv.norm': 'encoder.layers.10.shortcut.norm', 'encoder.model.12.conv.norm': 'encoder.layers.12.norm', 'encoder.model.15.conv.norm': 'encoder.layers.15.norm', } lowercase__ = { 'decoder.model.0.conv.conv': 'decoder.layers.0.conv', 'decoder.model.1.lstm': 'decoder.layers.1.lstm', 'decoder.model.3.convtr.convtr': 'decoder.layers.3.conv', 'decoder.model.4.block.1.conv.conv': 'decoder.layers.4.block.1.conv', 'decoder.model.4.block.3.conv.conv': 'decoder.layers.4.block.3.conv', 'decoder.model.4.shortcut.conv.conv': 'decoder.layers.4.shortcut.conv', 'decoder.model.6.convtr.convtr': 'decoder.layers.6.conv', 'decoder.model.7.block.1.conv.conv': 'decoder.layers.7.block.1.conv', 'decoder.model.7.block.3.conv.conv': 'decoder.layers.7.block.3.conv', 'decoder.model.7.shortcut.conv.conv': 'decoder.layers.7.shortcut.conv', 'decoder.model.9.convtr.convtr': 'decoder.layers.9.conv', 'decoder.model.10.block.1.conv.conv': 'decoder.layers.10.block.1.conv', 'decoder.model.10.block.3.conv.conv': 'decoder.layers.10.block.3.conv', 'decoder.model.10.shortcut.conv.conv': 'decoder.layers.10.shortcut.conv', 'decoder.model.12.convtr.convtr': 'decoder.layers.12.conv', 'decoder.model.13.block.1.conv.conv': 'decoder.layers.13.block.1.conv', 'decoder.model.13.block.3.conv.conv': 'decoder.layers.13.block.3.conv', 'decoder.model.13.shortcut.conv.conv': 'decoder.layers.13.shortcut.conv', 'decoder.model.15.conv.conv': 'decoder.layers.15.conv', } lowercase__ = { 'decoder.model.0.conv.norm': 'decoder.layers.0.norm', 'decoder.model.3.convtr.norm': 'decoder.layers.3.norm', 'decoder.model.4.block.1.conv.norm': 'decoder.layers.4.block.1.norm', 'decoder.model.4.block.3.conv.norm': 'decoder.layers.4.block.3.norm', 'decoder.model.4.shortcut.conv.norm': 'decoder.layers.4.shortcut.norm', 'decoder.model.6.convtr.norm': 'decoder.layers.6.norm', 'decoder.model.7.block.1.conv.norm': 'decoder.layers.7.block.1.norm', 'decoder.model.7.block.3.conv.norm': 'decoder.layers.7.block.3.norm', 'decoder.model.7.shortcut.conv.norm': 'decoder.layers.7.shortcut.norm', 'decoder.model.9.convtr.norm': 'decoder.layers.9.norm', 'decoder.model.10.block.1.conv.norm': 'decoder.layers.10.block.1.norm', 'decoder.model.10.block.3.conv.norm': 'decoder.layers.10.block.3.norm', 'decoder.model.10.shortcut.conv.norm': 'decoder.layers.10.shortcut.norm', 'decoder.model.12.convtr.norm': 'decoder.layers.12.norm', 'decoder.model.13.block.1.conv.norm': 'decoder.layers.13.block.1.norm', 'decoder.model.13.block.3.conv.norm': 'decoder.layers.13.block.3.norm', 'decoder.model.13.shortcut.conv.norm': 'decoder.layers.13.shortcut.norm', 'decoder.model.15.conv.norm': 'decoder.layers.15.norm', } lowercase__ = { **MAPPING_QUANTIZER, **MAPPING_ENCODER, **MAPPING_DECODER, } lowercase__ = { **MAPPING_QUANTIZER, **MAPPING_ENCODER, **MAPPING_ENCODER_48K, **MAPPING_DECODER, **MAPPING_DECODER_48K, } lowercase__ = [] lowercase__ = [] def __a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ->int: for attribute in key.split('.' ): a__: str = getattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if weight_type is not None: a__: List[str] = getattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ).shape else: a__: Optional[Any] = hf_pointer.shape if hf_shape != value.shape: raise ValueError( F'Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be' F' {value.shape} for {full_name}' ) if weight_type == "weight": a__: str = value elif weight_type == "weight_g": a__: int = value elif weight_type == "weight_v": a__: Tuple = value elif weight_type == "bias": a__: Dict = value elif weight_type == "running_mean": a__: Any = value elif weight_type == "running_var": a__: Tuple = value elif weight_type == "num_batches_tracked": a__: List[str] = value elif weight_type == "weight_ih_l0": a__: List[Any] = value elif weight_type == "weight_hh_l0": a__: List[Any] = value elif weight_type == "bias_ih_l0": a__: List[Any] = value elif weight_type == "bias_hh_l0": a__: List[Any] = value elif weight_type == "weight_ih_l1": a__: int = value elif weight_type == "weight_hh_l1": a__: str = value elif weight_type == "bias_ih_l1": a__: Union[str, Any] = value elif weight_type == "bias_hh_l1": a__: Any = value else: a__: Union[str, Any] = value logger.info(F'{key + ("." + weight_type if weight_type is not None else "")} was initialized from {full_name}.' ) def __a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ->Dict: for key in ignore_keys: if key.endswith('.*' ): if name.startswith(key[:-1] ): return True elif ".*." in key: a__ , a__: Optional[Any] = key.split('.*.' ) if prefix in name and suffix in name: return True elif key in name: return True return False def __a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ->List[str]: a__: List[Any] = [] if model_name == "encodec_24khz" or "encodec_32khz": a__: Optional[int] = MAPPING_24K elif model_name == "encodec_48khz": a__: List[Any] = MAPPING_48K else: raise ValueError(F'Unsupported model: {model_name}' ) for name, value in orig_dict.items(): if should_ignore(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): logger.info(F'{name} was ignored' ) continue a__: int = False for key, mapped_key in MAPPING.items(): if "*" in key: a__ , a__: str = key.split('.*.' ) if prefix in name and suffix in name: a__: List[str] = suffix if key in name: # HACK otherwise .embed gets initialized with .embed_avg too if key.endswith('embed' ) and name.endswith('embed_avg' ): continue a__: List[str] = True if "*" in mapped_key: a__: List[str] = name.split(_SCREAMING_SNAKE_CASE )[0].split('.' )[-2] a__: str = mapped_key.replace('*' , _SCREAMING_SNAKE_CASE ) if "weight_g" in name: a__: int = 'weight_g' elif "weight_v" in name: a__: Dict = 'weight_v' elif "weight_ih_l0" in name: a__: int = 'weight_ih_l0' elif "weight_hh_l0" in name: a__: Union[str, Any] = 'weight_hh_l0' elif "bias_ih_l0" in name: a__: Optional[Any] = 'bias_ih_l0' elif "bias_hh_l0" in name: a__: Optional[int] = 'bias_hh_l0' elif "weight_ih_l1" in name: a__: Dict = 'weight_ih_l1' elif "weight_hh_l1" in name: a__: Optional[Any] = 'weight_hh_l1' elif "bias_ih_l1" in name: a__: List[str] = 'bias_ih_l1' elif "bias_hh_l1" in name: a__: Optional[Any] = 'bias_hh_l1' elif "bias" in name: a__: List[str] = 'bias' elif "weight" in name: a__: Any = 'weight' elif "running_mean" in name: a__: Dict = 'running_mean' elif "running_var" in name: a__: Dict = 'running_var' elif "num_batches_tracked" in name: a__: Dict = 'num_batches_tracked' else: a__: List[str] = None set_recursively(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) continue if not is_used: unused_weights.append(_SCREAMING_SNAKE_CASE ) logger.warning(F'Unused weights: {unused_weights}' ) @torch.no_grad() def __a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , ) ->int: if config_path is not None: a__: Dict = EncodecConfig.from_pretrained(_SCREAMING_SNAKE_CASE ) else: a__: Tuple = EncodecConfig() if model_name == "encodec_24khz": pass # config is already correct elif model_name == "encodec_32khz": a__: Any = [8, 5, 4, 4] a__: List[str] = [2.2] a__: List[Any] = 64 a__: Dict = 32000 a__: Union[str, Any] = 2048 a__: Union[str, Any] = False a__: Any = False a__: Optional[Any] = False elif model_name == "encodec_48khz": a__: Optional[int] = [8, 5, 4, 2] a__: Union[str, Any] = [3.0, 6.0, 12.0, 24.0] a__: List[str] = 48000 a__: Tuple = 2 a__: Optional[Any] = False a__: Optional[int] = 'time_group_norm' a__: Union[str, Any] = True a__: Dict = 1.0 a__: str = 0.01 else: raise ValueError(F'Unknown model name: {model_name}' ) a__: Optional[int] = EncodecModel(_SCREAMING_SNAKE_CASE ) a__: List[str] = EncodecFeatureExtractor( feature_size=config.audio_channels , sampling_rate=config.sampling_rate , chunk_length_s=config.chunk_length_s , overlap=config.overlap , ) feature_extractor.save_pretrained(_SCREAMING_SNAKE_CASE ) a__: int = torch.load(_SCREAMING_SNAKE_CASE ) if "best_state" in original_checkpoint: # we might have a training state saved, in which case discard the yaml results and just retain the weights a__: str = original_checkpoint['best_state'] recursively_load_weights(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) model.save_pretrained(_SCREAMING_SNAKE_CASE ) if repo_id: print('Pushing to the hub...' ) feature_extractor.push_to_hub(_SCREAMING_SNAKE_CASE ) model.push_to_hub(_SCREAMING_SNAKE_CASE ) if __name__ == "__main__": lowercase__ = argparse.ArgumentParser() parser.add_argument( '--model', default='encodec_24khz', type=str, help='The model to convert. Should be one of \'encodec_24khz\', \'encodec_32khz\', \'encodec_48khz\'.', ) parser.add_argument('--checkpoint_path', required=True, default=None, type=str, help='Path to original checkpoint') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') parser.add_argument( '--pytorch_dump_folder_path', required=True, default=None, type=str, help='Path to the output PyTorch model.' ) parser.add_argument( '--push_to_hub', default=None, type=str, help='Where to upload the converted model on the 🤗 hub.' ) lowercase__ = parser.parse_args() convert_checkpoint( args.model, args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.push_to_hub, )
290
"""simple docstring""" import os from typing import Dict, List, Tuple, TypeVar, Union lowercase__ = TypeVar('T') lowercase__ = Union[List[T], Tuple[T, ...]] lowercase__ = Union[T, List[T], Dict[str, T]] lowercase__ = Union[str, bytes, os.PathLike]
290
1
"""simple docstring""" import unittest from datasets import load_dataset from transformers import BloomTokenizerFast from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class _UpperCAmelCase ( _UpperCAmelCase, unittest.TestCase ): '''simple docstring''' lowerCamelCase__ =None lowerCamelCase__ =BloomTokenizerFast lowerCamelCase__ =BloomTokenizerFast lowerCamelCase__ =True lowerCamelCase__ =False lowerCamelCase__ ='tokenizer_file' lowerCamelCase__ ={'bos_token': '<s>', 'eos_token': '</s>', 'unk_token': '<unk>', 'pad_token': '<pad>'} def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' super().setUp() __snake_case : Tuple = BloomTokenizerFast.from_pretrained('''bigscience/tokenizer''' ) tokenizer.save_pretrained(self.tmpdirname ) def SCREAMING_SNAKE_CASE (self , **a_ ): '''simple docstring''' kwargs.update(self.special_tokens_map ) return BloomTokenizerFast.from_pretrained(self.tmpdirname , **lowercase_ ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Tuple = self.get_rust_tokenizer() __snake_case : Any = ["""The quick brown fox</s>""", """jumps over the lazy dog</s>"""] __snake_case : Union[str, Any] = [[21_75, 2_37_14, 7_31_73, 14_42_52, 2], [77, 13_26_19, 34_78, 3_68, 10_95_86, 3_54_33, 2]] __snake_case : Dict = tokenizer.batch_encode_plus(lowercase_ )["""input_ids"""] self.assertListEqual(lowercase_ , lowercase_ ) __snake_case : Union[str, Any] = tokenizer.batch_decode(lowercase_ ) self.assertListEqual(lowercase_ , lowercase_ ) def SCREAMING_SNAKE_CASE (self , a_=6 ): '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): __snake_case : List[str] = self.rust_tokenizer_class.from_pretrained(lowercase_ , **lowercase_ ) # tokenizer_r.pad_token = None # Hotfixing padding = None # Simple input __snake_case : Union[str, Any] = """This is a simple input""" __snake_case : Dict = ["""This is a simple input 1""", """This is a simple input 2"""] __snake_case : Any = ("""This is a simple input""", """This is a pair""") __snake_case : Optional[Any] = [ ("""This is a simple input 1""", """This is a simple input 2"""), ("""This is a simple pair 1""", """This is a simple pair 2"""), ] # Simple input tests try: tokenizer_r.encode(lowercase_ , max_length=lowercase_ ) tokenizer_r.encode_plus(lowercase_ , max_length=lowercase_ ) tokenizer_r.batch_encode_plus(lowercase_ , max_length=lowercase_ ) tokenizer_r.encode(lowercase_ , max_length=lowercase_ ) tokenizer_r.batch_encode_plus(lowercase_ , max_length=lowercase_ ) except ValueError: self.fail('''Bloom Tokenizer should be able to deal with padding''' ) __snake_case : Optional[Any] = None # Hotfixing padding = None self.assertRaises(lowercase_ , tokenizer_r.encode , lowercase_ , max_length=lowercase_ , padding='''max_length''' ) # Simple input self.assertRaises(lowercase_ , tokenizer_r.encode_plus , lowercase_ , max_length=lowercase_ , padding='''max_length''' ) # Simple input self.assertRaises( lowercase_ , tokenizer_r.batch_encode_plus , lowercase_ , max_length=lowercase_ , padding='''max_length''' , ) # Pair input self.assertRaises(lowercase_ , tokenizer_r.encode , lowercase_ , max_length=lowercase_ , padding='''max_length''' ) # Pair input self.assertRaises(lowercase_ , tokenizer_r.encode_plus , lowercase_ , max_length=lowercase_ , padding='''max_length''' ) # Pair input self.assertRaises( lowercase_ , tokenizer_r.batch_encode_plus , lowercase_ , max_length=lowercase_ , padding='''max_length''' , ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Optional[int] = self.get_rust_tokenizer() __snake_case : Optional[int] = load_dataset('''xnli''' , '''all_languages''' , split='''test''' , streaming=lowercase_ ) __snake_case : List[str] = next(iter(lowercase_ ) )["""premise"""] # pick up one data __snake_case : str = list(sample_data.values() ) __snake_case : Tuple = list(map(tokenizer.encode , lowercase_ ) ) __snake_case : List[str] = [tokenizer.decode(lowercase_ , clean_up_tokenization_spaces=lowercase_ ) for x in output_tokens] self.assertListEqual(lowercase_ , lowercase_ ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' self.assertGreaterEqual(len(self.tokenizer_class.pretrained_vocab_files_map ) , 1 ) self.assertGreaterEqual(len(list(self.tokenizer_class.pretrained_vocab_files_map.values() )[0] ) , 1 )
371
"""simple docstring""" def lowercase ( _snake_case : int ) ->str: """simple docstring""" if number > 0: raise ValueError('''input must be a negative integer''' ) __snake_case : Any = len(bin(_snake_case )[3:] ) __snake_case : List[Any] = bin(abs(_snake_case ) - (1 << binary_number_length) )[3:] __snake_case : Dict = ( ( '''1''' + '''0''' * (binary_number_length - len(_snake_case )) + twos_complement_number ) if number < 0 else '''0''' ) return "0b" + twos_complement_number if __name__ == "__main__": import doctest doctest.testmod()
24
0
"""simple docstring""" from math import isclose, sqrt def UpperCAmelCase__ ( SCREAMING_SNAKE_CASE : float , SCREAMING_SNAKE_CASE : float , SCREAMING_SNAKE_CASE : float ): '''simple docstring''' lowerCAmelCase = point_y / 4 / point_x lowerCAmelCase = 2 * normal_gradient / (1 + normal_gradient * normal_gradient) lowerCAmelCase = (1 - normal_gradient * normal_gradient) / ( 1 + normal_gradient * normal_gradient ) lowerCAmelCase = (sa - ca * incoming_gradient) / (ca + sa * incoming_gradient) # to find the next point, solve the simultaeneous equations: # y^2 + 4x^2 = 100 # y - b = m * (x - a) # ==> A x^2 + B x + C = 0 lowerCAmelCase = outgoing_gradient**2 + 4 lowerCAmelCase = 2 * outgoing_gradient * (point_y - outgoing_gradient * point_x) lowerCAmelCase = (point_y - outgoing_gradient * point_x) ** 2 - 1_00 lowerCAmelCase = ( -linear_term - sqrt(linear_term**2 - 4 * quadratic_term * constant_term ) ) / (2 * quadratic_term) lowerCAmelCase = ( -linear_term + sqrt(linear_term**2 - 4 * quadratic_term * constant_term ) ) / (2 * quadratic_term) # two solutions, one of which is our input point lowerCAmelCase = x_minus if isclose(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) else x_plus lowerCAmelCase = point_y + outgoing_gradient * (next_x - point_x) return next_x, next_y, outgoing_gradient def UpperCAmelCase__ ( SCREAMING_SNAKE_CASE : float = 1.4 , SCREAMING_SNAKE_CASE : float = -9.6 ): '''simple docstring''' lowerCAmelCase = 0 lowerCAmelCase = first_x_coord lowerCAmelCase = first_y_coord lowerCAmelCase = (10.1 - point_y) / (0.0 - point_x) while not (-0.01 <= point_x <= 0.01 and point_y > 0): lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = next_point(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) num_reflections += 1 return num_reflections if __name__ == "__main__": print(f'{solution() = }')
46
"""simple docstring""" from __future__ import annotations def UpperCAmelCase__ ( SCREAMING_SNAKE_CASE : str ): '''simple docstring''' return [ord(SCREAMING_SNAKE_CASE ) - 96 for elem in plain] def UpperCAmelCase__ ( SCREAMING_SNAKE_CASE : list[int] ): '''simple docstring''' return "".join(chr(elem + 96 ) for elem in encoded ) def UpperCAmelCase__ ( ): '''simple docstring''' lowerCAmelCase = encode(input("""-> """ ).strip().lower() ) print("""Encoded: """ , SCREAMING_SNAKE_CASE ) print("""Decoded:""" , decode(SCREAMING_SNAKE_CASE ) ) if __name__ == "__main__": main()
46
1
import os # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_doctest_list.py A_ : List[str] = '.' if __name__ == "__main__": A_ : Dict = os.path.join(REPO_PATH, 'utils/documentation_tests.txt') A_ : Dict = [] A_ : Optional[Any] = [] with open(doctest_file_path) as fp: for line in fp: A_ : Tuple = line.strip() A_ : Any = os.path.join(REPO_PATH, line) if not (os.path.isfile(path) or os.path.isdir(path)): non_existent_paths.append(line) all_paths.append(path) if len(non_existent_paths) > 0: A_ : str = '\n'.join(non_existent_paths) raise ValueError(F'''`utils/documentation_tests.txt` contains non-existent paths:\n{non_existent_paths}''') if all_paths != sorted(all_paths): raise ValueError('Files in `utils/documentation_tests.txt` are not in alphabetical order.')
292
import json import os import unittest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_ftfy, require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class _lowerCAmelCase( UpperCAmelCase_ , unittest.TestCase ): """simple docstring""" a : Optional[Any] =CLIPTokenizer a : List[Any] =CLIPTokenizerFast a : str =True a : List[Any] ={} a : str =False def _a ( self ): super().setUp() # fmt: off UpperCamelCase_: str = ['l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', 'lo', 'l</w>', 'w</w>', 'r</w>', 't</w>', 'low</w>', 'er</w>', 'lowest</w>', 'newer</w>', 'wider', '<unk>', '<|startoftext|>', '<|endoftext|>'] # fmt: on UpperCamelCase_: Any = dict(zip(_lowerCamelCase , range(len(_lowerCamelCase ) ) ) ) UpperCamelCase_: Optional[int] = ['#version: 0.2', 'l o', 'lo w</w>', 'e r</w>'] UpperCamelCase_: Any = {'unk_token': '<unk>'} UpperCamelCase_: List[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) UpperCamelCase_: Optional[int] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(_lowerCamelCase ) + '\n' ) with open(self.merges_file , 'w' , encoding='utf-8' ) as fp: fp.write('\n'.join(_lowerCamelCase ) ) def _a ( self , **_lowerCamelCase ): kwargs.update(self.special_tokens_map ) return CLIPTokenizer.from_pretrained(self.tmpdirname , **_lowerCamelCase ) def _a ( self , **_lowerCamelCase ): kwargs.update(self.special_tokens_map ) return CLIPTokenizerFast.from_pretrained(self.tmpdirname , **_lowerCamelCase ) def _a ( self , _lowerCamelCase ): UpperCamelCase_: Union[str, Any] = 'lower newer' UpperCamelCase_: Tuple = 'lower newer' return input_text, output_text def _a ( self ): UpperCamelCase_: Dict = CLIPTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) UpperCamelCase_: Optional[int] = 'lower newer' UpperCamelCase_: Any = ['lo', 'w', 'er</w>', 'n', 'e', 'w', 'er</w>'] UpperCamelCase_: Union[str, Any] = tokenizer.tokenize(_lowerCamelCase ) self.assertListEqual(_lowerCamelCase , _lowerCamelCase ) UpperCamelCase_: str = tokens + [tokenizer.unk_token] UpperCamelCase_: Optional[Any] = [1_0, 2, 1_6, 9, 3, 2, 1_6, 2_0] self.assertListEqual(tokenizer.convert_tokens_to_ids(_lowerCamelCase ) , _lowerCamelCase ) @require_ftfy def _a ( self ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): UpperCamelCase_: Optional[int] = self.tokenizer_class.from_pretrained(_lowerCamelCase , **_lowerCamelCase ) UpperCamelCase_: List[str] = self.rust_tokenizer_class.from_pretrained(_lowerCamelCase , **_lowerCamelCase ) UpperCamelCase_: Optional[int] = 'A\n\'ll 11p223RF☆ho!!to?\'d\'d\'\'d of a cat to-$\'\'d.' UpperCamelCase_: Tuple = tokenizer_s.tokenize(_lowerCamelCase ) UpperCamelCase_: Any = tokenizer_r.tokenize(_lowerCamelCase ) self.assertListEqual(_lowerCamelCase , _lowerCamelCase ) # Test that the tokenization is identical on an example containing a character (Latin Small Letter A # with Tilde) encoded in 2 different ways UpperCamelCase_: List[str] = 'xa\u0303y' + ' ' + 'x\xe3y' UpperCamelCase_: List[Any] = tokenizer_s.tokenize(_lowerCamelCase ) UpperCamelCase_: int = tokenizer_r.tokenize(_lowerCamelCase ) self.assertListEqual(_lowerCamelCase , _lowerCamelCase ) # Test that the tokenization is identical on unicode of space type UpperCamelCase_: Dict = [ '\u0009', # (horizontal tab, '\t') '\u000B', # (vertical tab) '\u000C', # (form feed) '\u0020', # (space, ' ') '\u200E', # (left-to-right mark):w '\u200F', # (right-to-left mark) ] for unicode_seq in spaces_unicodes: UpperCamelCase_: int = tokenizer_s.tokenize(_lowerCamelCase ) UpperCamelCase_: Dict = tokenizer_r.tokenize(_lowerCamelCase ) self.assertListEqual(_lowerCamelCase , _lowerCamelCase ) # Test that the tokenization is identical on unicode of line break type UpperCamelCase_: List[str] = [ '\u000A', # (line feed, '\n') '\r\n', # (carriage return and line feed, '\r\n') '\u000D', # (carriage return, '\r') '\r', # (carriage return, '\r') '\u000D', # (carriage return, '\r') '\u2028', # (line separator) '\u2029', # (paragraph separator) # "\u0085", # (next line) ] # The tokenization is not identical for the character "\u0085" (next line). The slow version using ftfy transforms # it into the Horizontal Ellipsis character "…" ("\u2026") while the fast version transforms it into a # space (and thus into an empty list). for unicode_seq in line_break_unicodes: UpperCamelCase_: Optional[Any] = tokenizer_s.tokenize(_lowerCamelCase ) UpperCamelCase_: str = tokenizer_r.tokenize(_lowerCamelCase ) self.assertListEqual(_lowerCamelCase , _lowerCamelCase ) def _a ( self ): # Test which aims to verify that the offsets are well adapted to the argument `add_prefix_space` for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): UpperCamelCase_: str = 'hello' # `hello` is a token in the vocabulary of `pretrained_name` UpperCamelCase_: str = f'''{text_of_1_token} {text_of_1_token}''' UpperCamelCase_: Optional[Any] = self.rust_tokenizer_class.from_pretrained( _lowerCamelCase , use_fast=_lowerCamelCase , ) UpperCamelCase_: int = tokenizer_r(_lowerCamelCase , return_offsets_mapping=_lowerCamelCase , add_special_tokens=_lowerCamelCase ) self.assertEqual(encoding.offset_mapping[0] , (0, len(_lowerCamelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (len(_lowerCamelCase ) + 1, len(_lowerCamelCase ) + 1 + len(_lowerCamelCase )) , ) UpperCamelCase_: List[str] = f''' {text}''' UpperCamelCase_: str = self.rust_tokenizer_class.from_pretrained( _lowerCamelCase , use_fast=_lowerCamelCase , ) UpperCamelCase_: Dict = tokenizer_r(_lowerCamelCase , return_offsets_mapping=_lowerCamelCase , add_special_tokens=_lowerCamelCase ) self.assertEqual(encoding.offset_mapping[0] , (1, 1 + len(_lowerCamelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(_lowerCamelCase ) + 1, 1 + len(_lowerCamelCase ) + 1 + len(_lowerCamelCase )) , ) def _a ( self ): # Test related to the breaking change introduced in transformers v4.17.0 # We need to check that an error in raised when the user try to load a previous version of the tokenizer. with self.assertRaises(_lowerCamelCase ) as context: self.rust_tokenizer_class.from_pretrained('robot-test/old-clip-tokenizer' ) self.assertTrue( context.exception.args[0].startswith( 'The `backend_tokenizer` provided does not match the expected format.' ) ) @require_ftfy def _a ( self ): super().test_tokenization_python_rust_equals() def _a ( self ): # CLIP always lower cases letters pass
292
1
import os import zipfile import pytest from datasets.utils.extract import ( BzipaExtractor, Extractor, GzipExtractor, LzaExtractor, SevenZipExtractor, TarExtractor, XzExtractor, ZipExtractor, ZstdExtractor, ) from .utils import require_lza, require_pyazr, require_zstandard @pytest.mark.parametrize( 'compression_format, is_archive' , [ ('7z', True), ('bz2', False), ('gzip', False), ('lz4', False), ('tar', True), ('xz', False), ('zip', True), ('zstd', False), ] , ) def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Union[str, Any] , SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : List[str] , SCREAMING_SNAKE_CASE : Optional[Any] , ) -> Optional[int]: __lowercase = { """7z""": (seven_zip_file, SevenZipExtractor), """bz2""": (bza_file, BzipaExtractor), """gzip""": (gz_file, GzipExtractor), """lz4""": (lza_file, LzaExtractor), """tar""": (tar_file, TarExtractor), """xz""": (xz_file, XzExtractor), """zip""": (zip_file, ZipExtractor), """zstd""": (zstd_file, ZstdExtractor), } __lowercase = input_paths_and_base_extractors[compression_format] if input_path is None: __lowercase = F"""for \'{compression_format}\' compression_format, """ if compression_format == "7z": reason += require_pyazr.kwargs["reason"] elif compression_format == "lz4": reason += require_lza.kwargs["reason"] elif compression_format == "zstd": reason += require_zstandard.kwargs["reason"] pytest.skip(UpperCamelCase__ ) assert base_extractor.is_extractable(UpperCamelCase__ ) __lowercase = tmp_path / ("""extracted""" if is_archive else """extracted.txt""") base_extractor.extract(UpperCamelCase__ , UpperCamelCase__ ) if is_archive: assert output_path.is_dir() for file_path in output_path.iterdir(): assert file_path.name == text_file.name __lowercase = file_path.read_text(encoding='utf-8' ) else: __lowercase = output_path.read_text(encoding='utf-8' ) __lowercase = text_file.read_text(encoding='utf-8' ) assert extracted_file_content == expected_file_content @pytest.mark.parametrize( 'compression_format, is_archive' , [ ('7z', True), ('bz2', False), ('gzip', False), ('lz4', False), ('tar', True), ('xz', False), ('zip', True), ('zstd', False), ] , ) def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : Union[str, Any] , SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : int , ) -> Dict: __lowercase = { """7z""": seven_zip_file, """bz2""": bza_file, """gzip""": gz_file, """lz4""": lza_file, """tar""": tar_file, """xz""": xz_file, """zip""": zip_file, """zstd""": zstd_file, } __lowercase = input_paths[compression_format] if input_path is None: __lowercase = F"""for \'{compression_format}\' compression_format, """ if compression_format == "7z": reason += require_pyazr.kwargs["reason"] elif compression_format == "lz4": reason += require_lza.kwargs["reason"] elif compression_format == "zstd": reason += require_zstandard.kwargs["reason"] pytest.skip(UpperCamelCase__ ) __lowercase = Extractor.infer_extractor_format(UpperCamelCase__ ) assert extractor_format is not None __lowercase = tmp_path / ("""extracted""" if is_archive else """extracted.txt""") Extractor.extract(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) if is_archive: assert output_path.is_dir() for file_path in output_path.iterdir(): assert file_path.name == text_file.name __lowercase = file_path.read_text(encoding='utf-8' ) else: __lowercase = output_path.read_text(encoding='utf-8' ) __lowercase = text_file.read_text(encoding='utf-8' ) assert extracted_file_content == expected_file_content @pytest.fixture def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : str ) -> int: import tarfile __lowercase = tmp_path / """data_dot_dot""" directory.mkdir() __lowercase = directory / """tar_file_with_dot_dot.tar""" with tarfile.TarFile(UpperCamelCase__ , 'w' ) as f: f.add(UpperCamelCase__ , arcname=os.path.join('..' , text_file.name ) ) return path @pytest.fixture def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Dict ) -> List[str]: import tarfile __lowercase = tmp_path / """data_sym_link""" directory.mkdir() __lowercase = directory / """tar_file_with_sym_link.tar""" os.symlink('..' , directory / 'subdir' , target_is_directory=UpperCamelCase__ ) with tarfile.TarFile(UpperCamelCase__ , 'w' ) as f: f.add(str(directory / 'subdir' ) , arcname='subdir' ) # str required by os.readlink on Windows and Python < 3.8 return path @pytest.mark.parametrize( 'insecure_tar_file, error_log' , [('tar_file_with_dot_dot', 'illegal path'), ('tar_file_with_sym_link', 'Symlink')] , ) def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : Union[str, Any] ) -> Union[str, Any]: __lowercase = { """tar_file_with_dot_dot""": tar_file_with_dot_dot, """tar_file_with_sym_link""": tar_file_with_sym_link, } __lowercase = insecure_tar_files[insecure_tar_file] __lowercase = tmp_path / """extracted""" TarExtractor.extract(UpperCamelCase__ , UpperCamelCase__ ) assert caplog.text for record in caplog.records: assert record.levelname == "ERROR" assert error_log in record.msg def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Dict ) -> Optional[Any]: # We should have less false positives than zipfile.is_zipfile # We do that by checking only the magic number __lowercase = tmpdir / """not_a_zip_file""" # From: https://github.com/python/cpython/pull/5053 __lowercase = ( b"""\x89PNG\r\n\x1a\n\x00\x00\x00\rIHDR\x00\x00\x00\x01\x00\x00""" b"""\x00\x02\x08\x06\x00\x00\x00\x99\x81\xb6'\x00\x00\x00\x15I""" b"""DATx\x01\x01\n\x00\xf5\xff\x00PK\x05\x06\x00PK\x06\x06\x07""" b"""\xac\x01N\xc6|a\r\x00\x00\x00\x00IEND\xaeB`\x82""" ) with not_a_zip_file.open('wb' ) as f: f.write(UpperCamelCase__ ) assert zipfile.is_zipfile(str(UpperCamelCase__ ) ) # is a false positive for `zipfile` assert not ZipExtractor.is_extractable(UpperCamelCase__ ) # but we're right
325
'''simple docstring''' import os import zipfile import pytest from datasets.utils.extract import ( BzipaExtractor, Extractor, GzipExtractor, LzaExtractor, SevenZipExtractor, TarExtractor, XzExtractor, ZipExtractor, ZstdExtractor, ) from .utils import require_lza, require_pyazr, require_zstandard @pytest.mark.parametrize( """compression_format, is_archive""" , [ ("""7z""", True), ("""bz2""", False), ("""gzip""", False), ("""lz4""", False), ("""tar""", True), ("""xz""", False), ("""zip""", True), ("""zstd""", False), ] , ) def _UpperCamelCase ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , ): UpperCAmelCase__ : str = { """7z""": (seven_zip_file, SevenZipExtractor), """bz2""": (bza_file, BzipaExtractor), """gzip""": (gz_file, GzipExtractor), """lz4""": (lza_file, LzaExtractor), """tar""": (tar_file, TarExtractor), """xz""": (xz_file, XzExtractor), """zip""": (zip_file, ZipExtractor), """zstd""": (zstd_file, ZstdExtractor), } UpperCAmelCase__ , UpperCAmelCase__ : int = input_paths_and_base_extractors[compression_format] if input_path is None: UpperCAmelCase__ : Union[str, Any] = f'''for \'{compression_format}\' compression_format, ''' if compression_format == "7z": reason += require_pyazr.kwargs["reason"] elif compression_format == "lz4": reason += require_lza.kwargs["reason"] elif compression_format == "zstd": reason += require_zstandard.kwargs["reason"] pytest.skip(UpperCamelCase__ ) assert base_extractor.is_extractable(UpperCamelCase__ ) UpperCAmelCase__ : int = tmp_path / ("""extracted""" if is_archive else """extracted.txt""") base_extractor.extract(UpperCamelCase__ , UpperCamelCase__ ) if is_archive: assert output_path.is_dir() for file_path in output_path.iterdir(): assert file_path.name == text_file.name UpperCAmelCase__ : Union[str, Any] = file_path.read_text(encoding="""utf-8""" ) else: UpperCAmelCase__ : str = output_path.read_text(encoding="""utf-8""" ) UpperCAmelCase__ : Union[str, Any] = text_file.read_text(encoding="""utf-8""" ) assert extracted_file_content == expected_file_content @pytest.mark.parametrize( """compression_format, is_archive""" , [ ("""7z""", True), ("""bz2""", False), ("""gzip""", False), ("""lz4""", False), ("""tar""", True), ("""xz""", False), ("""zip""", True), ("""zstd""", False), ] , ) def _UpperCamelCase ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , ): UpperCAmelCase__ : Dict = { """7z""": seven_zip_file, """bz2""": bza_file, """gzip""": gz_file, """lz4""": lza_file, """tar""": tar_file, """xz""": xz_file, """zip""": zip_file, """zstd""": zstd_file, } UpperCAmelCase__ : List[str] = input_paths[compression_format] if input_path is None: UpperCAmelCase__ : Optional[Any] = f'''for \'{compression_format}\' compression_format, ''' if compression_format == "7z": reason += require_pyazr.kwargs["reason"] elif compression_format == "lz4": reason += require_lza.kwargs["reason"] elif compression_format == "zstd": reason += require_zstandard.kwargs["reason"] pytest.skip(UpperCamelCase__ ) UpperCAmelCase__ : Dict = Extractor.infer_extractor_format(UpperCamelCase__ ) assert extractor_format is not None UpperCAmelCase__ : Tuple = tmp_path / ("""extracted""" if is_archive else """extracted.txt""") Extractor.extract(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) if is_archive: assert output_path.is_dir() for file_path in output_path.iterdir(): assert file_path.name == text_file.name UpperCAmelCase__ : Dict = file_path.read_text(encoding="""utf-8""" ) else: UpperCAmelCase__ : Optional[Any] = output_path.read_text(encoding="""utf-8""" ) UpperCAmelCase__ : str = text_file.read_text(encoding="""utf-8""" ) assert extracted_file_content == expected_file_content @pytest.fixture def _UpperCamelCase ( UpperCamelCase__ , UpperCamelCase__ ): import tarfile UpperCAmelCase__ : Optional[int] = tmp_path / """data_dot_dot""" directory.mkdir() UpperCAmelCase__ : Optional[Any] = directory / """tar_file_with_dot_dot.tar""" with tarfile.TarFile(UpperCamelCase__ , """w""" ) as f: f.add(UpperCamelCase__ , arcname=os.path.join("""..""" , text_file.name ) ) return path @pytest.fixture def _UpperCamelCase ( UpperCamelCase__ ): import tarfile UpperCAmelCase__ : List[str] = tmp_path / """data_sym_link""" directory.mkdir() UpperCAmelCase__ : Optional[int] = directory / """tar_file_with_sym_link.tar""" os.symlink("""..""" , directory / """subdir""" , target_is_directory=UpperCamelCase__ ) with tarfile.TarFile(UpperCamelCase__ , """w""" ) as f: f.add(str(directory / """subdir""" ) , arcname="""subdir""" ) # str required by os.readlink on Windows and Python < 3.8 return path @pytest.mark.parametrize( """insecure_tar_file, error_log""" , [("""tar_file_with_dot_dot""", """illegal path"""), ("""tar_file_with_sym_link""", """Symlink""")] , ) def _UpperCamelCase ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): UpperCAmelCase__ : Any = { """tar_file_with_dot_dot""": tar_file_with_dot_dot, """tar_file_with_sym_link""": tar_file_with_sym_link, } UpperCAmelCase__ : str = insecure_tar_files[insecure_tar_file] UpperCAmelCase__ : Union[str, Any] = tmp_path / """extracted""" TarExtractor.extract(UpperCamelCase__ , UpperCamelCase__ ) assert caplog.text for record in caplog.records: assert record.levelname == "ERROR" assert error_log in record.msg def _UpperCamelCase ( UpperCamelCase__ ): # We should have less false positives than zipfile.is_zipfile # We do that by checking only the magic number UpperCAmelCase__ : Tuple = tmpdir / """not_a_zip_file""" # From: https://github.com/python/cpython/pull/5053 UpperCAmelCase__ : Any = ( b"""\x89PNG\r\n\x1a\n\x00\x00\x00\rIHDR\x00\x00\x00\x01\x00\x00""" b"""\x00\x02\x08\x06\x00\x00\x00\x99\x81\xb6'\x00\x00\x00\x15I""" b"""DATx\x01\x01\n\x00\xf5\xff\x00PK\x05\x06\x00PK\x06\x06\x07""" b"""\xac\x01N\xc6|a\r\x00\x00\x00\x00IEND\xaeB`\x82""" ) with not_a_zip_file.open("""wb""" ) as f: f.write(UpperCamelCase__ ) assert zipfile.is_zipfile(str(UpperCamelCase__ ) ) # is a false positive for `zipfile` assert not ZipExtractor.is_extractable(UpperCamelCase__ ) # but we're right
163
0
"""simple docstring""" import os SCREAMING_SNAKE_CASE : List[Any] = {'''I''': 1, '''V''': 5, '''X''': 1_0, '''L''': 5_0, '''C''': 1_0_0, '''D''': 5_0_0, '''M''': 1_0_0_0} def __UpperCAmelCase ( snake_case_ : str ) -> int: """simple docstring""" _lowerCAmelCase = 0 _lowerCAmelCase = 0 while index < len(snake_case_ ) - 1: _lowerCAmelCase = SYMBOLS[numerals[index]] _lowerCAmelCase = SYMBOLS[numerals[index + 1]] if current_value < next_value: total_value -= current_value else: total_value += current_value index += 1 total_value += SYMBOLS[numerals[index]] return total_value def __UpperCAmelCase ( snake_case_ : int ) -> str: """simple docstring""" _lowerCAmelCase = """""" _lowerCAmelCase = num // 1000 numerals += m_count * "M" num %= 1000 _lowerCAmelCase = num // 100 if c_count == 9: numerals += "CM" c_count -= 9 elif c_count == 4: numerals += "CD" c_count -= 4 if c_count >= 5: numerals += "D" c_count -= 5 numerals += c_count * "C" num %= 100 _lowerCAmelCase = num // 10 if x_count == 9: numerals += "XC" x_count -= 9 elif x_count == 4: numerals += "XL" x_count -= 4 if x_count >= 5: numerals += "L" x_count -= 5 numerals += x_count * "X" num %= 10 if num == 9: numerals += "IX" num -= 9 elif num == 4: numerals += "IV" num -= 4 if num >= 5: numerals += "V" num -= 5 numerals += num * "I" return numerals def __UpperCAmelCase ( snake_case_ : str = "/p089_roman.txt" ) -> int: """simple docstring""" _lowerCAmelCase = 0 with open(os.path.dirname(snake_case_ ) + roman_numerals_filename ) as filea: _lowerCAmelCase = filea.readlines() for line in lines: _lowerCAmelCase = line.strip() _lowerCAmelCase = parse_roman_numerals(snake_case_ ) _lowerCAmelCase = generate_roman_numerals(snake_case_ ) savings += len(snake_case_ ) - len(snake_case_ ) return savings if __name__ == "__main__": print(F'{solution() = }')
317
"""simple docstring""" import logging import os import sys from dataclasses import dataclass, field from typing import Optional from seqaseq_trainer import SeqaSeqTrainer from seqaseq_training_args import SeqaSeqTrainingArguments import transformers from transformers import ( AutoConfig, AutoModelForSeqaSeqLM, AutoTokenizer, HfArgumentParser, MBartTokenizer, MBartTokenizerFast, set_seed, ) from transformers.trainer_utils import EvaluationStrategy, is_main_process from transformers.training_args import ParallelMode from utils import ( SeqaSeqDataCollator, SeqaSeqDataset, assert_all_frozen, build_compute_metrics_fn, check_output_dir, freeze_embeds, freeze_params, lmap, save_json, use_task_specific_params, write_txt_file, ) SCREAMING_SNAKE_CASE : Optional[Any] = logging.getLogger(__name__) @dataclass class __lowerCamelCase : __UpperCamelCase = field( metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'} ) __UpperCamelCase = field( default=__lowercase , metadata={'help': 'Pretrained config name or path if not the same as model_name'} ) __UpperCamelCase = field( default=__lowercase , metadata={'help': 'Pretrained tokenizer name or path if not the same as model_name'} ) __UpperCamelCase = field( default=__lowercase , metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co'} , ) __UpperCamelCase = field(default=__lowercase , metadata={'help': 'Whether tp freeze the encoder.'} ) __UpperCamelCase = field(default=__lowercase , metadata={'help': 'Whether to freeze the embeddings.'} ) @dataclass class __lowerCamelCase : __UpperCamelCase = field( metadata={'help': 'The input data dir. Should contain the .tsv files (or other data files) for the task.'} ) __UpperCamelCase = field( default='summarization' , metadata={'help': 'Task name, summarization (or summarization_{dataset} for pegasus) or translation'} , ) __UpperCamelCase = field( default=1_024 , metadata={ 'help': ( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) __UpperCamelCase = field( default=128 , metadata={ 'help': ( 'The maximum total sequence length for target text after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) __UpperCamelCase = field( default=142 , metadata={ 'help': ( 'The maximum total sequence length for validation target text after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded. ' 'This argument is also used to override the ``max_length`` param of ``model.generate``, which is used ' 'during ``evaluate`` and ``predict``.' ) } , ) __UpperCamelCase = field( default=142 , metadata={ 'help': ( 'The maximum total sequence length for test target text after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) __UpperCamelCase = field(default=-1 , metadata={'help': '# training examples. -1 means use all.'} ) __UpperCamelCase = field(default=-1 , metadata={'help': '# validation examples. -1 means use all.'} ) __UpperCamelCase = field(default=-1 , metadata={'help': '# test examples. -1 means use all.'} ) __UpperCamelCase = field(default=__lowercase , metadata={'help': 'Source language id for translation.'} ) __UpperCamelCase = field(default=__lowercase , metadata={'help': 'Target language id for translation.'} ) __UpperCamelCase = field(default=__lowercase , metadata={'help': '# num_beams to use for evaluation.'} ) __UpperCamelCase = field( default=__lowercase , metadata={'help': 'If only pad tokens should be ignored. This assumes that `config.pad_token_id` is defined.'} , ) def __UpperCAmelCase ( snake_case_ : Optional[int] , snake_case_ : Any , snake_case_ : Union[str, Any] ) -> Tuple: """simple docstring""" logger.info(F"""***** {split} metrics *****""" ) for key in sorted(metrics.keys() ): logger.info(F""" {key} = {metrics[key]}""" ) save_json(snake_case_ , os.path.join(snake_case_ , F"""{split}_results.json""" ) ) def __UpperCAmelCase ( ) -> Union[str, Any]: """simple docstring""" _lowerCAmelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, SeqaSeqTrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(""".json""" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = parser.parse_args_into_dataclasses() check_output_dir(snake_case_ ) # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( """Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s""" , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.parallel_mode == ParallelMode.DISTRIBUTED ) , training_args.fpaa , ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() logger.info("""Training/evaluation parameters %s""" , snake_case_ ) # Set seed set_seed(training_args.seed ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. _lowerCAmelCase = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) _lowerCAmelCase = ("""encoder_layerdrop""", """decoder_layerdrop""", """dropout""", """attention_dropout""") for p in extra_model_params: if getattr(snake_case_ , snake_case_ , snake_case_ ): assert hasattr(snake_case_ , snake_case_ ), F"""({config.__class__.__name__}) doesn't have a `{p}` attribute""" setattr(snake_case_ , snake_case_ , getattr(snake_case_ , snake_case_ ) ) _lowerCAmelCase = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) _lowerCAmelCase = AutoModelForSeqaSeqLM.from_pretrained( model_args.model_name_or_path , from_tf=""".ckpt""" in model_args.model_name_or_path , config=snake_case_ , cache_dir=model_args.cache_dir , ) # use task specific params use_task_specific_params(snake_case_ , data_args.task ) # set num_beams for evaluation if data_args.eval_beams is None: _lowerCAmelCase = model.config.num_beams # set decoder_start_token_id for MBart if model.config.decoder_start_token_id is None and isinstance(snake_case_ , (MBartTokenizer, MBartTokenizerFast) ): assert ( data_args.tgt_lang is not None and data_args.src_lang is not None ), "mBart requires --tgt_lang and --src_lang" if isinstance(snake_case_ , snake_case_ ): _lowerCAmelCase = tokenizer.lang_code_to_id[data_args.tgt_lang] else: _lowerCAmelCase = tokenizer.convert_tokens_to_ids(data_args.tgt_lang ) if model_args.freeze_embeds: freeze_embeds(snake_case_ ) if model_args.freeze_encoder: freeze_params(model.get_encoder() ) assert_all_frozen(model.get_encoder() ) _lowerCAmelCase = SeqaSeqDataset # Get datasets _lowerCAmelCase = ( dataset_class( snake_case_ , type_path="""train""" , data_dir=data_args.data_dir , n_obs=data_args.n_train , max_target_length=data_args.max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or """""" , ) if training_args.do_train else None ) _lowerCAmelCase = ( dataset_class( snake_case_ , type_path="""val""" , data_dir=data_args.data_dir , n_obs=data_args.n_val , max_target_length=data_args.val_max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or """""" , ) if training_args.do_eval or training_args.evaluation_strategy != EvaluationStrategy.NO else None ) _lowerCAmelCase = ( dataset_class( snake_case_ , type_path="""test""" , data_dir=data_args.data_dir , n_obs=data_args.n_test , max_target_length=data_args.test_max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or """""" , ) if training_args.do_predict else None ) # Initialize our Trainer _lowerCAmelCase = ( build_compute_metrics_fn(data_args.task , snake_case_ ) if training_args.predict_with_generate else None ) _lowerCAmelCase = SeqaSeqTrainer( model=snake_case_ , args=snake_case_ , data_args=snake_case_ , train_dataset=snake_case_ , eval_dataset=snake_case_ , data_collator=SeqaSeqDataCollator( snake_case_ , snake_case_ , model.config.decoder_start_token_id , training_args.tpu_num_cores ) , compute_metrics=snake_case_ , tokenizer=snake_case_ , ) _lowerCAmelCase = {} # Training if training_args.do_train: logger.info("""*** Train ***""" ) _lowerCAmelCase = trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) _lowerCAmelCase = train_result.metrics _lowerCAmelCase = data_args.n_train trainer.save_model() # this also saves the tokenizer if trainer.is_world_process_zero(): handle_metrics("""train""" , snake_case_ , training_args.output_dir ) all_metrics.update(snake_case_ ) # Need to save the state, since Trainer.save_model saves only the tokenizer with the model trainer.state.save_to_json(os.path.join(training_args.output_dir , """trainer_state.json""" ) ) # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) tokenizer.save_pretrained(training_args.output_dir ) # Evaluation if training_args.do_eval: logger.info("""*** Evaluate ***""" ) _lowerCAmelCase = trainer.evaluate(metric_key_prefix="""val""" ) _lowerCAmelCase = data_args.n_val _lowerCAmelCase = round(metrics["""val_loss"""] , 4 ) if trainer.is_world_process_zero(): handle_metrics("""val""" , snake_case_ , training_args.output_dir ) all_metrics.update(snake_case_ ) if training_args.do_predict: logger.info("""*** Predict ***""" ) _lowerCAmelCase = trainer.predict(test_dataset=snake_case_ , metric_key_prefix="""test""" ) _lowerCAmelCase = test_output.metrics _lowerCAmelCase = data_args.n_test if trainer.is_world_process_zero(): _lowerCAmelCase = round(metrics["""test_loss"""] , 4 ) handle_metrics("""test""" , snake_case_ , training_args.output_dir ) all_metrics.update(snake_case_ ) if training_args.predict_with_generate: _lowerCAmelCase = tokenizer.batch_decode( test_output.predictions , skip_special_tokens=snake_case_ , clean_up_tokenization_spaces=snake_case_ ) _lowerCAmelCase = lmap(str.strip , snake_case_ ) write_txt_file(snake_case_ , os.path.join(training_args.output_dir , """test_generations.txt""" ) ) if trainer.is_world_process_zero(): save_json(snake_case_ , os.path.join(training_args.output_dir , """all_results.json""" ) ) return all_metrics def __UpperCAmelCase ( snake_case_ : Any ) -> Dict: """simple docstring""" main() if __name__ == "__main__": main()
317
1
# Logistic Regression from scratch # In[62]: # In[63]: # importing all the required libraries import numpy as np from matplotlib import pyplot as plt from sklearn import datasets def UpperCAmelCase_( a__ ): """simple docstring""" return 1 / (1 + np.exp(-z )) def UpperCAmelCase_( a__ , a__ ): """simple docstring""" return (-y * np.log(a__ ) - (1 - y) * np.log(1 - h )).mean() def UpperCAmelCase_( a__ , a__ , a__ ): """simple docstring""" SCREAMING_SNAKE_CASE : int = np.dot(a__ , a__ ) return np.sum(y * scores - np.log(1 + np.exp(a__ ) ) ) def UpperCAmelCase_( a__ , a__ , a__ , a__=70_000 ): """simple docstring""" SCREAMING_SNAKE_CASE : Any = np.zeros(x.shape[1] ) for iterations in range(a__ ): SCREAMING_SNAKE_CASE : Optional[int] = np.dot(a__ , a__ ) SCREAMING_SNAKE_CASE : Tuple = sigmoid_function(a__ ) SCREAMING_SNAKE_CASE : Optional[Any] = np.dot(x.T , h - y ) / y.size SCREAMING_SNAKE_CASE : Any = theta - alpha * gradient # updating the weights SCREAMING_SNAKE_CASE : Any = np.dot(a__ , a__ ) SCREAMING_SNAKE_CASE : str = sigmoid_function(a__ ) SCREAMING_SNAKE_CASE : List[str] = cost_function(a__ , a__ ) if iterations % 100 == 0: print(F"""loss: {j} \t""" ) # printing the loss after every 100 iterations return theta # In[68]: if __name__ == "__main__": a__ : int = datasets.load_iris() a__ : int = iris.data[:, :2] a__ : int = (iris.target != 0) * 1 a__ : List[Any] = 0.1 a__ : Any = logistic_reg(alpha, x, y, max_iterations=70_000) print('''theta: ''', theta) # printing the theta i.e our weights vector def UpperCAmelCase_( a__ ): """simple docstring""" return sigmoid_function( np.dot(a__ , a__ ) ) # predicting the value of probability from the logistic regression algorithm plt.figure(figsize=(10, 6)) plt.scatter(x[y == 0][:, 0], x[y == 0][:, 1], color='''b''', label='''0''') plt.scatter(x[y == 1][:, 0], x[y == 1][:, 1], color='''r''', label='''1''') ((a__) , (a__)) : List[Any] = (x[:, 0].min(), x[:, 0].max()) ((a__) , (a__)) : Tuple = (x[:, 1].min(), x[:, 1].max()) ((a__) , (a__)) : Tuple = np.meshgrid(np.linspace(xa_min, xa_max), np.linspace(xa_min, xa_max)) a__ : List[str] = np.c_[xxa.ravel(), xxa.ravel()] a__ : int = predict_prob(grid).reshape(xxa.shape) plt.contour(xxa, xxa, probs, [0.5], linewidths=1, colors='''black''') plt.legend() plt.show()
313
import json from typing import Dict, List, Optional, Tuple, Union from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding, EncodedInput from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import PaddingStrategy, logging from .tokenization_led import LEDTokenizer a__ : Dict = logging.get_logger(__name__) a__ : Dict = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_file''': '''tokenizer.json'''} a__ : str = { '''vocab_file''': { '''allenai/led-base-16384''': '''https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json''', }, '''merges_file''': { '''allenai/led-base-16384''': '''https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt''', }, '''tokenizer_file''': { '''allenai/led-base-16384''': '''https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json''', }, } a__ : Optional[int] = { '''allenai/led-base-16384''': 16_384, } class a_ ( a__ ): """simple docstring""" __SCREAMING_SNAKE_CASE : str = VOCAB_FILES_NAMES __SCREAMING_SNAKE_CASE : Tuple = PRETRAINED_VOCAB_FILES_MAP __SCREAMING_SNAKE_CASE : List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __SCREAMING_SNAKE_CASE : Union[str, Any] = LEDTokenizer __SCREAMING_SNAKE_CASE : Optional[int] = ['input_ids', 'attention_mask'] def __init__( self , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase="replace" , _lowerCamelCase="<s>" , _lowerCamelCase="</s>" , _lowerCamelCase="</s>" , _lowerCamelCase="<s>" , _lowerCamelCase="<unk>" , _lowerCamelCase="<pad>" , _lowerCamelCase="<mask>" , _lowerCamelCase=False , _lowerCamelCase=True , **_lowerCamelCase , ) ->Union[str, Any]: super().__init__( _lowerCamelCase , _lowerCamelCase , tokenizer_file=_lowerCamelCase , errors=_lowerCamelCase , bos_token=_lowerCamelCase , eos_token=_lowerCamelCase , sep_token=_lowerCamelCase , cls_token=_lowerCamelCase , unk_token=_lowerCamelCase , pad_token=_lowerCamelCase , mask_token=_lowerCamelCase , add_prefix_space=_lowerCamelCase , trim_offsets=_lowerCamelCase , **_lowerCamelCase , ) SCREAMING_SNAKE_CASE : Dict = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('''add_prefix_space''' , _lowerCamelCase ) != add_prefix_space: SCREAMING_SNAKE_CASE : str = getattr(_lowerCamelCase , pre_tok_state.pop('''type''' ) ) SCREAMING_SNAKE_CASE : Optional[int] = add_prefix_space SCREAMING_SNAKE_CASE : str = pre_tok_class(**_lowerCamelCase ) SCREAMING_SNAKE_CASE : Any = add_prefix_space # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` SCREAMING_SNAKE_CASE : List[Any] = '''post_processor''' SCREAMING_SNAKE_CASE : int = getattr(self.backend_tokenizer , _lowerCamelCase , _lowerCamelCase ) if tokenizer_component_instance: SCREAMING_SNAKE_CASE : Any = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: SCREAMING_SNAKE_CASE : Optional[int] = tuple(state['''sep'''] ) if "cls" in state: SCREAMING_SNAKE_CASE : Optional[Any] = tuple(state['''cls'''] ) SCREAMING_SNAKE_CASE : Any = False if state.get('''add_prefix_space''' , _lowerCamelCase ) != add_prefix_space: SCREAMING_SNAKE_CASE : Union[str, Any] = add_prefix_space SCREAMING_SNAKE_CASE : Union[str, Any] = True if state.get('''trim_offsets''' , _lowerCamelCase ) != trim_offsets: SCREAMING_SNAKE_CASE : List[Any] = trim_offsets SCREAMING_SNAKE_CASE : Union[str, Any] = True if changes_to_apply: SCREAMING_SNAKE_CASE : List[str] = getattr(_lowerCamelCase , state.pop('''type''' ) ) SCREAMING_SNAKE_CASE : List[Any] = component_class(**_lowerCamelCase ) setattr(self.backend_tokenizer , _lowerCamelCase , _lowerCamelCase ) @property # Copied from transformers.models.bart.tokenization_bart_fast.BartTokenizerFast.mask_token with BART->LED def __lowerCAmelCase ( self ) ->str: if self._mask_token is None: if self.verbose: logger.error('''Using mask_token, but it is not set yet.''' ) return None return str(self._mask_token ) @mask_token.setter def __lowerCAmelCase ( self , _lowerCamelCase ) ->List[Any]: SCREAMING_SNAKE_CASE : str = AddedToken(_lowerCamelCase , lstrip=_lowerCamelCase , rstrip=_lowerCamelCase ) if isinstance(_lowerCamelCase , _lowerCamelCase ) else value SCREAMING_SNAKE_CASE : List[Any] = value def __lowerCAmelCase ( self , *_lowerCamelCase , **_lowerCamelCase ) ->BatchEncoding: SCREAMING_SNAKE_CASE : Tuple = kwargs.get('''is_split_into_words''' , _lowerCamelCase ) if is_split_into_words and not self.add_prefix_space: raise ValueError( F"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ '''to use it with pretokenized inputs.''' ) return super()._batch_encode_plus(*_lowerCamelCase , **_lowerCamelCase ) def __lowerCAmelCase ( self , *_lowerCamelCase , **_lowerCamelCase ) ->BatchEncoding: SCREAMING_SNAKE_CASE : List[Any] = kwargs.get('''is_split_into_words''' , _lowerCamelCase ) if is_split_into_words and not self.add_prefix_space: raise ValueError( F"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ '''to use it with pretokenized inputs.''' ) return super()._encode_plus(*_lowerCamelCase , **_lowerCamelCase ) def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = None ) ->Tuple[str]: SCREAMING_SNAKE_CASE : Any = self._tokenizer.model.save(_lowerCamelCase , name=_lowerCamelCase ) return tuple(_lowerCamelCase ) def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase=None ) ->Any: SCREAMING_SNAKE_CASE : Union[str, Any] = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = None ) ->List[int]: SCREAMING_SNAKE_CASE : Any = [self.sep_token_id] SCREAMING_SNAKE_CASE : List[str] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = None , _lowerCamelCase = PaddingStrategy.DO_NOT_PAD , _lowerCamelCase = None , _lowerCamelCase = None , ) ->dict: SCREAMING_SNAKE_CASE : Tuple = super()._pad( encoded_inputs=_lowerCamelCase , max_length=_lowerCamelCase , padding_strategy=_lowerCamelCase , pad_to_multiple_of=_lowerCamelCase , return_attention_mask=_lowerCamelCase , ) # Load from model defaults if return_attention_mask is None: SCREAMING_SNAKE_CASE : Optional[Any] = '''attention_mask''' in self.model_input_names if return_attention_mask and "global_attention_mask" in encoded_inputs: SCREAMING_SNAKE_CASE : int = encoded_inputs[self.model_input_names[0]] # `global_attention_mask` need to have the same length as other (sequential) inputs. SCREAMING_SNAKE_CASE : Tuple = len(encoded_inputs['''global_attention_mask'''] ) != len(_lowerCamelCase ) if needs_to_be_padded: SCREAMING_SNAKE_CASE : int = len(_lowerCamelCase ) - len(encoded_inputs['''global_attention_mask'''] ) if self.padding_side == "right": # Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend` SCREAMING_SNAKE_CASE : str = ( encoded_inputs['''global_attention_mask'''] + [-1] * difference ) elif self.padding_side == "left": SCREAMING_SNAKE_CASE : Optional[Any] = [-1] * difference + encoded_inputs[ '''global_attention_mask''' ] else: raise ValueError('''Invalid padding strategy:''' + str(self.padding_side ) ) return encoded_inputs
313
1
import argparse import json from typing import List from ltp import LTP from transformers.models.bert.tokenization_bert import BertTokenizer def UpperCamelCase ( __lowerCamelCase : List[str] ): if ( (cp >= 0X4_E_0_0 and cp <= 0X9_F_F_F) or (cp >= 0X3_4_0_0 and cp <= 0X4_D_B_F) # or (cp >= 0X2_0_0_0_0 and cp <= 0X2_A_6_D_F) # or (cp >= 0X2_A_7_0_0 and cp <= 0X2_B_7_3_F) # or (cp >= 0X2_B_7_4_0 and cp <= 0X2_B_8_1_F) # or (cp >= 0X2_B_8_2_0 and cp <= 0X2_C_E_A_F) # or (cp >= 0XF_9_0_0 and cp <= 0XF_A_F_F) or (cp >= 0X2_F_8_0_0 and cp <= 0X2_F_A_1_F) # ): # return True return False def UpperCamelCase ( __lowerCamelCase : int ): for char in word: snake_case : Dict = ord(__lowerCamelCase ) if not _is_chinese_char(__lowerCamelCase ): return 0 return 1 def UpperCamelCase ( __lowerCamelCase : Optional[Any] ): snake_case : str = set() for token in tokens: snake_case : List[str] = len(__lowerCamelCase ) > 1 and is_chinese(__lowerCamelCase ) if chinese_word: word_set.add(__lowerCamelCase ) snake_case : int = list(__lowerCamelCase ) return word_list def UpperCamelCase ( __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Optional[Any] ): if not chinese_word_set: return bert_tokens snake_case : Optional[Any] = max([len(__lowerCamelCase ) for w in chinese_word_set] ) snake_case : Dict = bert_tokens snake_case : Optional[int] = 0, len(__lowerCamelCase ) while start < end: snake_case : Tuple = True if is_chinese(bert_word[start] ): snake_case : Optional[int] = min(end - start , __lowerCamelCase ) for i in range(__lowerCamelCase , 1 , -1 ): snake_case : str = ''''''.join(bert_word[start : start + i] ) if whole_word in chinese_word_set: for j in range(start + 1 , start + i ): snake_case : Any = '''##''' + bert_word[j] snake_case : Any = start + i snake_case : Tuple = False break if single_word: start += 1 return bert_word def UpperCamelCase ( __lowerCamelCase : Tuple , __lowerCamelCase : Tuple , __lowerCamelCase : Tuple ): snake_case : Union[str, Any] = [] for i in range(0 , len(__lowerCamelCase ) , 100 ): snake_case : Tuple = ltp_tokenizer.pipeline(lines[i : i + 100] , tasks=["cws"] ).cws snake_case : Tuple = [get_chinese_word(__lowerCamelCase ) for r in res] ltp_res.extend(__lowerCamelCase ) assert len(__lowerCamelCase ) == len(__lowerCamelCase ) snake_case : List[str] = [] for i in range(0 , len(__lowerCamelCase ) , 100 ): snake_case : Union[str, Any] = bert_tokenizer(lines[i : i + 100] , add_special_tokens=__lowerCamelCase , truncation=__lowerCamelCase , max_length=512 ) bert_res.extend(res["input_ids"] ) assert len(__lowerCamelCase ) == len(__lowerCamelCase ) snake_case : Optional[int] = [] for input_ids, chinese_word in zip(__lowerCamelCase , __lowerCamelCase ): snake_case : List[Any] = [] for id in input_ids: snake_case : str = bert_tokenizer._convert_id_to_token(__lowerCamelCase ) input_tokens.append(__lowerCamelCase ) snake_case : Dict = add_sub_symbol(__lowerCamelCase , __lowerCamelCase ) snake_case : Optional[int] = [] # We only save pos of chinese subwords start with ##, which mean is part of a whole word. for i, token in enumerate(__lowerCamelCase ): if token[:2] == "##": snake_case : str = token[2:] # save chinese tokens' pos if len(__lowerCamelCase ) == 1 and _is_chinese_char(ord(__lowerCamelCase ) ): ref_id.append(__lowerCamelCase ) ref_ids.append(__lowerCamelCase ) assert len(__lowerCamelCase ) == len(__lowerCamelCase ) return ref_ids def UpperCamelCase ( __lowerCamelCase : Union[str, Any] ): with open(args.file_name , "r" , encoding="utf-8" ) as f: snake_case : Optional[Any] = f.readlines() snake_case : Any = [line.strip() for line in data if len(__lowerCamelCase ) > 0 and not line.isspace()] # avoid delimiter like '\u2029' snake_case : Optional[int] = LTP(args.ltp ) # faster in GPU device snake_case : Any = BertTokenizer.from_pretrained(args.bert ) snake_case : Optional[Any] = prepare_ref(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) with open(args.save_path , "w" , encoding="utf-8" ) as f: snake_case : Optional[Any] = [json.dumps(__lowerCamelCase ) + '''\n''' for ref in ref_ids] f.writelines(__lowerCamelCase ) if __name__ == "__main__": __lowerCamelCase = argparse.ArgumentParser(description="""prepare_chinese_ref""") parser.add_argument( """--file_name""", required=False, type=str, default="""./resources/chinese-demo.txt""", help="""file need process, same as training data in lm""", ) parser.add_argument( """--ltp""", required=False, type=str, default="""./resources/ltp""", help="""resources for LTP tokenizer, usually a path""", ) parser.add_argument( """--bert""", required=False, type=str, default="""./resources/robert""", help="""resources for Bert tokenizer""", ) parser.add_argument( """--save_path""", required=False, type=str, default="""./resources/ref.txt""", help="""path to save res""", ) __lowerCamelCase = parser.parse_args() main(args)
366
from __future__ import annotations __lowerCamelCase = { """A""": ["""B""", """C""", """E"""], """B""": ["""A""", """D""", """E"""], """C""": ["""A""", """F""", """G"""], """D""": ["""B"""], """E""": ["""A""", """B""", """D"""], """F""": ["""C"""], """G""": ["""C"""], } class UpperCAmelCase : def __init__(self : Tuple , snake_case__ : dict[str, list[str]] , snake_case__ : str ) -> None: '''simple docstring''' snake_case : str = graph # mapping node to its parent in resulting breadth first tree snake_case : dict[str, str | None] = {} snake_case : Union[str, Any] = source_vertex def _SCREAMING_SNAKE_CASE (self : Union[str, Any] ) -> None: '''simple docstring''' snake_case : Any = {self.source_vertex} snake_case : str = None snake_case : List[str] = [self.source_vertex] # first in first out queue while queue: snake_case : List[Any] = queue.pop(0 ) for adjacent_vertex in self.graph[vertex]: if adjacent_vertex not in visited: visited.add(snake_case__ ) snake_case : Any = vertex queue.append(snake_case__ ) def _SCREAMING_SNAKE_CASE (self : str , snake_case__ : str ) -> str: '''simple docstring''' if target_vertex == self.source_vertex: return self.source_vertex snake_case : str = self.parent.get(snake_case__ ) if target_vertex_parent is None: snake_case : Optional[Any] = ( f"""No path from vertex: {self.source_vertex} to vertex: {target_vertex}""" ) raise ValueError(snake_case__ ) return self.shortest_path(snake_case__ ) + f"""->{target_vertex}""" if __name__ == "__main__": __lowerCamelCase = Graph(graph, """G""") g.breath_first_search() print(g.shortest_path("""D""")) print(g.shortest_path("""G""")) print(g.shortest_path("""Foo"""))
10
0
"""simple docstring""" import math import time from transformers import Trainer, is_torch_tpu_available from transformers.trainer_utils import PredictionOutput, speed_metrics if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm import torch_xla.debug.metrics as met class lowercase_ ( __lowerCAmelCase ): '''simple docstring''' def __init__( self : int , *_UpperCAmelCase : Dict , _UpperCAmelCase : Optional[int]=None , _UpperCAmelCase : str=None , **_UpperCAmelCase : List[Any] ): super().__init__(*_UpperCAmelCase , **_UpperCAmelCase ) _A = eval_examples _A = post_process_function def lowerCAmelCase_ ( self : Tuple , _UpperCAmelCase : Optional[Any]=None , _UpperCAmelCase : str=None , _UpperCAmelCase : List[Any]=None , _UpperCAmelCase : str = "eval" ): _A = self.eval_dataset if eval_dataset is None else eval_dataset _A = self.get_eval_dataloader(_UpperCAmelCase ) _A = self.eval_examples if eval_examples is None else eval_examples # Temporarily disable metric computation, we will do it in the loop here. _A = self.compute_metrics _A = None _A = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop _A = time.time() try: _A = eval_loop( _UpperCAmelCase , description='Evaluation' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=_UpperCAmelCase , metric_key_prefix=_UpperCAmelCase , ) finally: _A = compute_metrics _A = self.args.eval_batch_size * self.args.world_size if F'''{metric_key_prefix}_jit_compilation_time''' in output.metrics: start_time += output.metrics[F'''{metric_key_prefix}_jit_compilation_time'''] output.metrics.update( speed_metrics( _UpperCAmelCase , _UpperCAmelCase , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is not None and self.compute_metrics is not None and self.args.should_save: # Only the main node write the results by default _A = self.post_process_function(_UpperCAmelCase , _UpperCAmelCase , output.predictions ) _A = self.compute_metrics(_UpperCAmelCase ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(F'''{metric_key_prefix}_''' ): _A = metrics.pop(_UpperCAmelCase ) metrics.update(output.metrics ) else: _A = output.metrics if self.args.should_log: # Only the main node log the results by default self.log(_UpperCAmelCase ) if self.args.tpu_metrics_debug or self.args.debug: # tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.) xm.master_print(met.metrics_report() ) _A = self.callback_handler.on_evaluate(self.args , self.state , self.control , _UpperCAmelCase ) return metrics def lowerCAmelCase_ ( self : List[Any] , _UpperCAmelCase : Any , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Optional[int]=None , _UpperCAmelCase : str = "test" ): _A = self.get_test_dataloader(_UpperCAmelCase ) # Temporarily disable metric computation, we will do it in the loop here. _A = self.compute_metrics _A = None _A = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop _A = time.time() try: _A = eval_loop( _UpperCAmelCase , description='Prediction' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=_UpperCAmelCase , metric_key_prefix=_UpperCAmelCase , ) finally: _A = compute_metrics _A = self.args.eval_batch_size * self.args.world_size if F'''{metric_key_prefix}_jit_compilation_time''' in output.metrics: start_time += output.metrics[F'''{metric_key_prefix}_jit_compilation_time'''] output.metrics.update( speed_metrics( _UpperCAmelCase , _UpperCAmelCase , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is None or self.compute_metrics is None: return output _A = self.post_process_function(_UpperCAmelCase , _UpperCAmelCase , output.predictions , 'predict' ) _A = self.compute_metrics(_UpperCAmelCase ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(F'''{metric_key_prefix}_''' ): _A = metrics.pop(_UpperCAmelCase ) metrics.update(output.metrics ) return PredictionOutput(predictions=predictions.predictions , label_ids=predictions.label_ids , metrics=_UpperCAmelCase )
315
"""simple docstring""" def _snake_case ( _snake_case : int , _snake_case : int ) -> bool: '''simple docstring''' return numa ^ numa < 0 if __name__ == "__main__": import doctest doctest.testmod()
315
1
"""simple docstring""" from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available a_ = { """configuration_informer""": [ """INFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """InformerConfig""", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = [ """INFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """InformerForPrediction""", """InformerModel""", """InformerPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_informer import INFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, InformerConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_informer import ( INFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, InformerForPrediction, InformerModel, InformerPreTrainedModel, ) else: import sys a_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
358
"""simple docstring""" from collections import UserDict from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING from ..tf_utils import stable_softmax a_ = logging.get_logger(__name__) @add_end_docstrings(SCREAMING_SNAKE_CASE__ ) class __snake_case ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" def __init__( self , **__lowerCamelCase ): '''simple docstring''' super().__init__(**__lowerCamelCase ) requires_backends(self , '''vision''' ) self.check_model_type( TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if self.framework == '''tf''' else MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING ) def __call__( self , __lowerCamelCase , **__lowerCamelCase ): '''simple docstring''' return super().__call__(__lowerCamelCase , **__lowerCamelCase ) def UpperCamelCase__( self , **__lowerCamelCase ): '''simple docstring''' __A : Union[str, Any] = {} if "candidate_labels" in kwargs: __A : Tuple = kwargs['''candidate_labels'''] if "hypothesis_template" in kwargs: __A : List[str] = kwargs['''hypothesis_template'''] return preprocess_params, {}, {} def UpperCamelCase__( self , __lowerCamelCase , __lowerCamelCase=None , __lowerCamelCase="This is a photo of {}." ): '''simple docstring''' __A : Optional[int] = load_image(__lowerCamelCase ) __A : Optional[int] = self.image_processor(images=[image] , return_tensors=self.framework ) __A : int = candidate_labels __A : int = [hypothesis_template.format(__lowerCamelCase ) for x in candidate_labels] __A : Dict = self.tokenizer(__lowerCamelCase , return_tensors=self.framework , padding=__lowerCamelCase ) __A : int = [text_inputs] return inputs def UpperCamelCase__( self , __lowerCamelCase ): '''simple docstring''' __A : Optional[int] = model_inputs.pop('''candidate_labels''' ) __A : str = model_inputs.pop('''text_inputs''' ) if isinstance(text_inputs[0] , __lowerCamelCase ): __A : Union[str, Any] = text_inputs[0] else: # Batching case. __A : str = text_inputs[0][0] __A : List[str] = self.model(**__lowerCamelCase , **__lowerCamelCase ) __A : Dict = { '''candidate_labels''': candidate_labels, '''logits''': outputs.logits_per_image, } return model_outputs def UpperCamelCase__( self , __lowerCamelCase ): '''simple docstring''' __A : Optional[int] = model_outputs.pop('''candidate_labels''' ) __A : int = model_outputs['''logits'''][0] if self.framework == "pt": __A : Union[str, Any] = logits.softmax(dim=-1 ).squeeze(-1 ) __A : Dict = probs.tolist() if not isinstance(__lowerCamelCase , __lowerCamelCase ): __A : List[Any] = [scores] elif self.framework == "tf": __A : List[Any] = stable_softmax(__lowerCamelCase , axis=-1 ) __A : str = probs.numpy().tolist() else: raise ValueError(F"""Unsupported framework: {self.framework}""" ) __A : str = [ {'''score''': score, '''label''': candidate_label} for score, candidate_label in sorted(zip(__lowerCamelCase , __lowerCamelCase ) , key=lambda __lowerCamelCase : -x[0] ) ] return result
291
0
"""simple docstring""" def _lowerCamelCase( a , a ): def get_matched_characters(a , a ) -> str: __a = [] __a = min(len(_stra ) , len(_stra ) ) // 2 for i, l in enumerate(_stra ): __a = int(max(0 , i - limit ) ) __a = int(min(i + limit + 1 , len(_stra ) ) ) if l in _stra[left:right]: matched.append(__A ) __a = F"{_stra[0:_stra.index(__A )]} {_stra[_stra.index(__A ) + 1:]}" return "".join(__A ) # matching characters __a = get_matched_characters(__A , __A ) __a = get_matched_characters(__A , __A ) __a = len(__A ) # transposition __a = ( len([(ca, ca) for ca, ca in zip(__A , __A ) if ca != ca] ) // 2 ) if not match_count: __a = 0.0 else: __a = ( 1 / 3 * ( match_count / len(__A ) + match_count / len(__A ) + (match_count - transpositions) / match_count ) ) # common prefix up to 4 characters __a = 0 for ca, ca in zip(stra[:4] , stra[:4] ): if ca == ca: prefix_len += 1 else: break return jaro + 0.1 * prefix_len * (1 - jaro) if __name__ == "__main__": import doctest doctest.testmod() print(jaro_winkler("""hello""", """world"""))
261
def lowerCAmelCase_ ( __A, __A ) -> None: '''simple docstring''' UpperCAmelCase__ = len(__A ) print("The following activities are selected:" ) # The first activity is always selected UpperCAmelCase__ = 0 print(__A, end="," ) # Consider rest of the activities for j in range(__A ): # If this activity has start time greater than # or equal to the finish time of previously # selected activity, then select it if start[j] >= finish[i]: print(__A, end="," ) UpperCAmelCase__ = j if __name__ == "__main__": import doctest doctest.testmod() UpperCamelCase__ = [1, 3, 0, 5, 8, 5] UpperCamelCase__ = [2, 4, 6, 7, 9, 9] print_max_activities(start, finish)
65
0
import math import numpy as np import qiskit from qiskit import Aer, ClassicalRegister, QuantumCircuit, QuantumRegister, execute def A ( __UpperCAmelCase = 3 ) -> qiskit.result.counts.Counts: '''simple docstring''' if isinstance(__UpperCAmelCase , __UpperCAmelCase ): raise TypeError('''number of qubits must be a integer.''' ) if number_of_qubits <= 0: raise ValueError('''number of qubits must be > 0.''' ) if math.floor(__UpperCAmelCase ) != number_of_qubits: raise ValueError('''number of qubits must be exact integer.''' ) if number_of_qubits > 10: raise ValueError('''number of qubits too large to simulate(>10).''' ) UpperCAmelCase_ = QuantumRegister(__UpperCAmelCase , '''qr''' ) UpperCAmelCase_ = ClassicalRegister(__UpperCAmelCase , '''cr''' ) UpperCAmelCase_ = QuantumCircuit(__UpperCAmelCase , __UpperCAmelCase ) UpperCAmelCase_ = number_of_qubits for i in range(__UpperCAmelCase ): quantum_circuit.h(number_of_qubits - i - 1 ) counter -= 1 for j in range(__UpperCAmelCase ): quantum_circuit.cp(np.pi / 2 ** (counter - j) , __UpperCAmelCase , __UpperCAmelCase ) for k in range(number_of_qubits // 2 ): quantum_circuit.swap(__UpperCAmelCase , number_of_qubits - k - 1 ) # measure all the qubits quantum_circuit.measure(__UpperCAmelCase , __UpperCAmelCase ) # simulate with 10000 shots UpperCAmelCase_ = Aer.get_backend('''qasm_simulator''' ) UpperCAmelCase_ = execute(__UpperCAmelCase , __UpperCAmelCase , shots=1_0000 ) return job.result().get_counts(__UpperCAmelCase ) if __name__ == "__main__": print( f"Total count for quantum fourier transform state is: \ {quantum_fourier_transform(3)}" )
361
import tempfile import torch from diffusers import ( DEISMultistepScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, UniPCMultistepScheduler, ) from .test_schedulers import SchedulerCommonTest class a_ ( _snake_case ): UpperCamelCase__ : Optional[Any] =(DPMSolverSinglestepScheduler,) UpperCamelCase__ : Tuple =(("num_inference_steps", 25),) def __a ( self :List[Any] , **_lowercase :Optional[Any]) -> int: UpperCAmelCase_ = { '''num_train_timesteps''': 1000, '''beta_start''': 0.0_001, '''beta_end''': 0.02, '''beta_schedule''': '''linear''', '''solver_order''': 2, '''prediction_type''': '''epsilon''', '''thresholding''': False, '''sample_max_value''': 1.0, '''algorithm_type''': '''dpmsolver++''', '''solver_type''': '''midpoint''', '''lambda_min_clipped''': -float('''inf'''), '''variance_type''': None, } config.update(**_lowercase) return config def __a ( self :Union[str, Any] , _lowercase :List[Any]=0 , **_lowercase :Optional[int]) -> List[Any]: UpperCAmelCase_ = dict(self.forward_default_kwargs) UpperCAmelCase_ = kwargs.pop('''num_inference_steps''' , _lowercase) UpperCAmelCase_ = self.dummy_sample UpperCAmelCase_ = 0.1 * sample UpperCAmelCase_ = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: UpperCAmelCase_ = self.get_scheduler_config(**_lowercase) UpperCAmelCase_ = scheduler_class(**_lowercase) scheduler.set_timesteps(_lowercase) # copy over dummy past residuals UpperCAmelCase_ = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(_lowercase) UpperCAmelCase_ = scheduler_class.from_pretrained(_lowercase) new_scheduler.set_timesteps(_lowercase) # copy over dummy past residuals UpperCAmelCase_ = dummy_past_residuals[: new_scheduler.config.solver_order] UpperCAmelCase_ , UpperCAmelCase_ = sample, sample for t in range(_lowercase , time_step + scheduler.config.solver_order + 1): UpperCAmelCase_ = scheduler.step(_lowercase , _lowercase , _lowercase , **_lowercase).prev_sample UpperCAmelCase_ = new_scheduler.step(_lowercase , _lowercase , _lowercase , **_lowercase).prev_sample assert torch.sum(torch.abs(output - new_output)) < 1E-5, "Scheduler outputs are not identical" def __a ( self :Union[str, Any]) -> List[Any]: pass def __a ( self :Optional[Any] , _lowercase :str=0 , **_lowercase :Union[str, Any]) -> Dict: UpperCAmelCase_ = dict(self.forward_default_kwargs) UpperCAmelCase_ = kwargs.pop('''num_inference_steps''' , _lowercase) UpperCAmelCase_ = self.dummy_sample UpperCAmelCase_ = 0.1 * sample UpperCAmelCase_ = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: UpperCAmelCase_ = self.get_scheduler_config() UpperCAmelCase_ = scheduler_class(**_lowercase) scheduler.set_timesteps(_lowercase) # copy over dummy past residuals (must be after setting timesteps) UpperCAmelCase_ = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(_lowercase) UpperCAmelCase_ = scheduler_class.from_pretrained(_lowercase) # copy over dummy past residuals new_scheduler.set_timesteps(_lowercase) # copy over dummy past residual (must be after setting timesteps) UpperCAmelCase_ = dummy_past_residuals[: new_scheduler.config.solver_order] UpperCAmelCase_ = scheduler.step(_lowercase , _lowercase , _lowercase , **_lowercase).prev_sample UpperCAmelCase_ = new_scheduler.step(_lowercase , _lowercase , _lowercase , **_lowercase).prev_sample assert torch.sum(torch.abs(output - new_output)) < 1E-5, "Scheduler outputs are not identical" def __a ( self :Dict , _lowercase :Union[str, Any]=None , **_lowercase :List[Any]) -> int: if scheduler is None: UpperCAmelCase_ = self.scheduler_classes[0] UpperCAmelCase_ = self.get_scheduler_config(**_lowercase) UpperCAmelCase_ = scheduler_class(**_lowercase) UpperCAmelCase_ = self.scheduler_classes[0] UpperCAmelCase_ = self.get_scheduler_config(**_lowercase) UpperCAmelCase_ = scheduler_class(**_lowercase) UpperCAmelCase_ = 10 UpperCAmelCase_ = self.dummy_model() UpperCAmelCase_ = self.dummy_sample_deter scheduler.set_timesteps(_lowercase) for i, t in enumerate(scheduler.timesteps): UpperCAmelCase_ = model(_lowercase , _lowercase) UpperCAmelCase_ = scheduler.step(_lowercase , _lowercase , _lowercase).prev_sample return sample def __a ( self :int) -> Tuple: UpperCAmelCase_ = DPMSolverSinglestepScheduler(**self.get_scheduler_config()) UpperCAmelCase_ = 50 UpperCAmelCase_ = self.dummy_model() UpperCAmelCase_ = self.dummy_sample_deter scheduler.set_timesteps(_lowercase) # make sure that the first t is uneven for i, t in enumerate(scheduler.timesteps[3:]): UpperCAmelCase_ = model(_lowercase , _lowercase) UpperCAmelCase_ = scheduler.step(_lowercase , _lowercase , _lowercase).prev_sample UpperCAmelCase_ = torch.mean(torch.abs(_lowercase)) assert abs(result_mean.item() - 0.2_574) < 1E-3 def __a ( self :List[Any]) -> List[Any]: for timesteps in [25, 50, 100, 999, 1000]: self.check_over_configs(num_train_timesteps=_lowercase) def __a ( self :int) -> Optional[Any]: # make sure that iterating over schedulers with same config names gives same results # for defaults UpperCAmelCase_ = DPMSolverSinglestepScheduler(**self.get_scheduler_config()) UpperCAmelCase_ = self.full_loop(scheduler=_lowercase) UpperCAmelCase_ = torch.mean(torch.abs(_lowercase)) assert abs(result_mean.item() - 0.2_791) < 1E-3 UpperCAmelCase_ = DEISMultistepScheduler.from_config(scheduler.config) UpperCAmelCase_ = DPMSolverMultistepScheduler.from_config(scheduler.config) UpperCAmelCase_ = UniPCMultistepScheduler.from_config(scheduler.config) UpperCAmelCase_ = DPMSolverSinglestepScheduler.from_config(scheduler.config) UpperCAmelCase_ = self.full_loop(scheduler=_lowercase) UpperCAmelCase_ = torch.mean(torch.abs(_lowercase)) assert abs(result_mean.item() - 0.2_791) < 1E-3 def __a ( self :Tuple) -> int: self.check_over_configs(thresholding=_lowercase) for order in [1, 2, 3]: for solver_type in ["midpoint", "heun"]: for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( thresholding=_lowercase , prediction_type=_lowercase , sample_max_value=_lowercase , algorithm_type='''dpmsolver++''' , solver_order=_lowercase , solver_type=_lowercase , ) def __a ( self :List[Any]) -> Any: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=_lowercase) def __a ( self :Any) -> Optional[int]: for algorithm_type in ["dpmsolver", "dpmsolver++"]: for solver_type in ["midpoint", "heun"]: for order in [1, 2, 3]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( solver_order=_lowercase , solver_type=_lowercase , prediction_type=_lowercase , algorithm_type=_lowercase , ) UpperCAmelCase_ = self.full_loop( solver_order=_lowercase , solver_type=_lowercase , prediction_type=_lowercase , algorithm_type=_lowercase , ) assert not torch.isnan(_lowercase).any(), "Samples have nan numbers" def __a ( self :Tuple) -> int: self.check_over_configs(lower_order_final=_lowercase) self.check_over_configs(lower_order_final=_lowercase) def __a ( self :Tuple) -> Optional[Any]: self.check_over_configs(lambda_min_clipped=-float('''inf''')) self.check_over_configs(lambda_min_clipped=-5.1) def __a ( self :Any) -> List[str]: self.check_over_configs(variance_type=_lowercase) self.check_over_configs(variance_type='''learned_range''') def __a ( self :Any) -> Dict: for num_inference_steps in [1, 2, 3, 5, 10, 50, 100, 999, 1000]: self.check_over_forward(num_inference_steps=_lowercase , time_step=0) def __a ( self :Dict) -> Union[str, Any]: UpperCAmelCase_ = self.full_loop() UpperCAmelCase_ = torch.mean(torch.abs(_lowercase)) assert abs(result_mean.item() - 0.2_791) < 1E-3 def __a ( self :Any) -> Union[str, Any]: UpperCAmelCase_ = self.full_loop(use_karras_sigmas=_lowercase) UpperCAmelCase_ = torch.mean(torch.abs(_lowercase)) assert abs(result_mean.item() - 0.2_248) < 1E-3 def __a ( self :str) -> Optional[int]: UpperCAmelCase_ = self.full_loop(prediction_type='''v_prediction''') UpperCAmelCase_ = torch.mean(torch.abs(_lowercase)) assert abs(result_mean.item() - 0.1_453) < 1E-3 def __a ( self :List[Any]) -> Dict: UpperCAmelCase_ = self.full_loop(prediction_type='''v_prediction''' , use_karras_sigmas=_lowercase) UpperCAmelCase_ = torch.mean(torch.abs(_lowercase)) assert abs(result_mean.item() - 0.0_649) < 1E-3 def __a ( self :Any) -> Optional[Any]: UpperCAmelCase_ = self.scheduler_classes[0] UpperCAmelCase_ = self.get_scheduler_config(thresholding=_lowercase , dynamic_thresholding_ratio=0) UpperCAmelCase_ = scheduler_class(**_lowercase) UpperCAmelCase_ = 10 UpperCAmelCase_ = self.dummy_model() UpperCAmelCase_ = self.dummy_sample_deter.half() scheduler.set_timesteps(_lowercase) for i, t in enumerate(scheduler.timesteps): UpperCAmelCase_ = model(_lowercase , _lowercase) UpperCAmelCase_ = scheduler.step(_lowercase , _lowercase , _lowercase).prev_sample assert sample.dtype == torch.floataa
344
0
from __future__ import annotations from math import gcd def lowerCamelCase__ ( __lowerCamelCase : int , __lowerCamelCase : int = 2 , __lowerCamelCase : int = 1 , __lowerCamelCase : int = 3 , ): # A value less than 2 can cause an infinite loop in the algorithm. if num < 2: raise ValueError("""The input value cannot be less than 2""" ) # Because of the relationship between ``f(f(x))`` and ``f(x)``, this # algorithm struggles to find factors that are divisible by two. # As a workaround, we specifically check for two and even inputs. # See: https://math.stackexchange.com/a/2856214/165820 if num > 2 and num % 2 == 0: return 2 # Pollard's Rho algorithm requires a function that returns pseudorandom # values between 0 <= X < ``num``. It doesn't need to be random in the # sense that the output value is cryptographically secure or difficult # to calculate, it only needs to be random in the sense that all output # values should be equally likely to appear. # For this reason, Pollard suggested using ``f(x) = (x**2 - 1) % num`` # However, the success of Pollard's algorithm isn't guaranteed and is # determined in part by the initial seed and the chosen random function. # To make retries easier, we will instead use ``f(x) = (x**2 + C) % num`` # where ``C`` is a value that we can modify between each attempt. def rand_fn(__lowerCamelCase : int , __lowerCamelCase : int , __lowerCamelCase : int ) -> int: return (pow(__lowerCamelCase , 2 ) + step) % modulus for _ in range(__lowerCamelCase ): # These track the position within the cycle detection logic. __UpperCAmelCase : str = seed __UpperCAmelCase : List[Any] = seed while True: # At each iteration, the tortoise moves one step and the hare moves two. __UpperCAmelCase : str = rand_fn(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) __UpperCAmelCase : Union[str, Any] = rand_fn(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) __UpperCAmelCase : str = rand_fn(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) # At some point both the tortoise and the hare will enter a cycle whose # length ``p`` is a divisor of ``num``. Once in that cycle, at some point # the tortoise and hare will end up on the same value modulo ``p``. # We can detect when this happens because the position difference between # the tortoise and the hare will share a common divisor with ``num``. __UpperCAmelCase : Any = gcd(hare - tortoise , __lowerCamelCase ) if divisor == 1: # No common divisor yet, just keep searching. continue else: # We found a common divisor! if divisor == num: # Unfortunately, the divisor is ``num`` itself and is useless. break else: # The divisor is a nontrivial factor of ``num``! return divisor # If we made it here, then this attempt failed. # We need to pick a new starting seed for the tortoise and hare # in addition to a new step value for the random function. # To keep this example implementation deterministic, the # new values will be generated based on currently available # values instead of using something like ``random.randint``. # We can use the hare's position as the new seed. # This is actually what Richard Brent's the "optimized" variant does. __UpperCAmelCase : List[str] = hare # The new step value for the random function can just be incremented. # At first the results will be similar to what the old function would # have produced, but the value will quickly diverge after a bit. step += 1 # We haven't found a divisor within the requested number of attempts. # We were unlucky or ``num`` itself is actually prime. return None if __name__ == "__main__": import argparse a : Dict = argparse.ArgumentParser() parser.add_argument( "num", type=int, help="The value to find a divisor of", ) parser.add_argument( "--attempts", type=int, default=3, help="The number of attempts before giving up", ) a : Dict = parser.parse_args() a : Tuple = pollard_rho(args.num, attempts=args.attempts) if divisor is None: print(f"""{args.num} is probably prime""") else: a : List[Any] = args.num // divisor print(f"""{args.num} = {divisor} * {quotient}""")
114
from __future__ import annotations from math import pi def lowerCamelCase__ ( __lowerCamelCase : float , __lowerCamelCase : float , __lowerCamelCase : float ): if (inductance, frequency, reactance).count(0 ) != 1: raise ValueError("""One and only one argument must be 0""" ) if inductance < 0: raise ValueError("""Inductance cannot be negative""" ) if frequency < 0: raise ValueError("""Frequency cannot be negative""" ) if reactance < 0: raise ValueError("""Inductive reactance cannot be negative""" ) if inductance == 0: return {"inductance": reactance / (2 * pi * frequency)} elif frequency == 0: return {"frequency": reactance / (2 * pi * inductance)} elif reactance == 0: return {"reactance": 2 * pi * frequency * inductance} else: raise ValueError("""Exactly one argument must be 0""" ) if __name__ == "__main__": import doctest doctest.testmod()
114
1
"""simple docstring""" from pathlib import Path import fire from tqdm import tqdm def lowerCamelCase__ ( __snake_case="ro", __snake_case="en", __snake_case="wmt16", __snake_case=None ) -> None: """simple docstring""" try: import datasets except (ModuleNotFoundError, ImportError): raise ImportError('''run pip install datasets''' ) _UpperCamelCase = F'''{src_lang}-{tgt_lang}''' print(F'''Converting {dataset}-{pair}''' ) _UpperCamelCase = datasets.load_dataset(__snake_case, __snake_case ) if save_dir is None: _UpperCamelCase = F'''{dataset}-{pair}''' _UpperCamelCase = Path(__snake_case ) save_dir.mkdir(exist_ok=__snake_case ) for split in ds.keys(): print(F'''Splitting {split} with {ds[split].num_rows} records''' ) # to save to val.source, val.target like summary datasets _UpperCamelCase = '''val''' if split == '''validation''' else split _UpperCamelCase = save_dir.joinpath(F'''{fn}.source''' ) _UpperCamelCase = save_dir.joinpath(F'''{fn}.target''' ) _UpperCamelCase = src_path.open('''w+''' ) _UpperCamelCase = tgt_path.open('''w+''' ) # reader is the bottleneck so writing one record at a time doesn't slow things down for x in tqdm(ds[split] ): _UpperCamelCase = x['''translation'''] src_fp.write(ex[src_lang] + '''\n''' ) tgt_fp.write(ex[tgt_lang] + '''\n''' ) print(F'''Saved {dataset} dataset to {save_dir}''' ) if __name__ == "__main__": fire.Fire(download_wmt_dataset)
100
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging _a = logging.get_logger(__name__) _a = { """microsoft/biogpt""": """https://huggingface.co/microsoft/biogpt/resolve/main/config.json""", # See all BioGPT models at https://huggingface.co/models?filter=biogpt } class _UpperCAmelCase( lowerCamelCase ): lowercase__ = 'biogpt' def __init__( self , __a=4_23_84 , __a=10_24 , __a=24 , __a=16 , __a=40_96 , __a="gelu" , __a=0.1 , __a=0.1 , __a=10_24 , __a=0.02 , __a=1e-12 , __a=True , __a=True , __a=0.0 , __a=0.0 , __a=1 , __a=0 , __a=2 , **__a , ) -> Dict: '''simple docstring''' _UpperCamelCase = vocab_size _UpperCamelCase = max_position_embeddings _UpperCamelCase = hidden_size _UpperCamelCase = num_hidden_layers _UpperCamelCase = num_attention_heads _UpperCamelCase = intermediate_size _UpperCamelCase = hidden_act _UpperCamelCase = hidden_dropout_prob _UpperCamelCase = attention_probs_dropout_prob _UpperCamelCase = initializer_range _UpperCamelCase = layer_norm_eps _UpperCamelCase = scale_embedding _UpperCamelCase = use_cache _UpperCamelCase = layerdrop _UpperCamelCase = activation_dropout super().__init__(pad_token_id=__a , bos_token_id=__a , eos_token_id=__a , **__a)
100
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) __snake_case ={ """configuration_mega""": ["""MEGA_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MegaConfig""", """MegaOnnxConfig"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case =[ """MEGA_PRETRAINED_MODEL_ARCHIVE_LIST""", """MegaForCausalLM""", """MegaForMaskedLM""", """MegaForMultipleChoice""", """MegaForQuestionAnswering""", """MegaForSequenceClassification""", """MegaForTokenClassification""", """MegaModel""", """MegaPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_mega import MEGA_PRETRAINED_CONFIG_ARCHIVE_MAP, MegaConfig, MegaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mega import ( MEGA_PRETRAINED_MODEL_ARCHIVE_LIST, MegaForCausalLM, MegaForMaskedLM, MegaForMultipleChoice, MegaForQuestionAnswering, MegaForSequenceClassification, MegaForTokenClassification, MegaModel, MegaPreTrainedModel, ) else: import sys __snake_case =_LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
4
'''simple docstring''' import itertools import random import unittest import numpy as np from transformers import ASTFeatureExtractor from transformers.testing_utils import require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin __snake_case =random.Random() if is_torch_available(): import torch def a_ ( lowerCamelCase : Dict , lowerCamelCase : Dict=1.0 , lowerCamelCase : List[Any]=None , lowerCamelCase : Union[str, Any]=None ): if rng is None: lowerCAmelCase = global_rng lowerCAmelCase = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values class UpperCAmelCase_ ( unittest.TestCase ): def __init__( self : List[Any] , UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : List[str]=7 , UpperCAmelCase__ : int=4_0_0 , UpperCAmelCase__ : int=2_0_0_0 , UpperCAmelCase__ : List[str]=1 , UpperCAmelCase__ : Tuple=0.0 , UpperCAmelCase__ : Tuple=1_6_0_0_0 , UpperCAmelCase__ : Tuple=True , UpperCAmelCase__ : Union[str, Any]=True , ) -> Any: lowerCAmelCase = parent lowerCAmelCase = batch_size lowerCAmelCase = min_seq_length lowerCAmelCase = max_seq_length lowerCAmelCase = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) lowerCAmelCase = feature_size lowerCAmelCase = padding_value lowerCAmelCase = sampling_rate lowerCAmelCase = return_attention_mask lowerCAmelCase = do_normalize def __UpperCAmelCase ( self : Optional[Any] ) -> List[str]: return { "feature_size": self.feature_size, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def __UpperCAmelCase ( self : str , UpperCAmelCase__ : Union[str, Any]=False , UpperCAmelCase__ : Union[str, Any]=False ) -> Optional[Any]: def _flatten(UpperCAmelCase__ : int ): return list(itertools.chain(*UpperCAmelCase__ ) ) if equal_length: lowerCAmelCase = floats_list((self.batch_size, self.max_seq_length) ) else: # make sure that inputs increase in size lowerCAmelCase = [ _flatten(floats_list((x, self.feature_size) ) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: lowerCAmelCase = [np.asarray(UpperCAmelCase__ ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class UpperCAmelCase_ ( __lowercase , unittest.TestCase ): lowerCamelCase : Dict = ASTFeatureExtractor def __UpperCAmelCase ( self : str ) -> Optional[int]: lowerCAmelCase = ASTFeatureExtractionTester(self ) def __UpperCAmelCase ( self : Optional[int] ) -> Optional[int]: # Tests that all call wrap to encode_plus and batch_encode_plus lowerCAmelCase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 lowerCAmelCase = [floats_list((1, x) )[0] for x in range(8_0_0 , 1_4_0_0 , 2_0_0 )] lowerCAmelCase = [np.asarray(UpperCAmelCase__ ) for speech_input in speech_inputs] # Test not batched input lowerCAmelCase = feat_extract(speech_inputs[0] , return_tensors='np' ).input_values lowerCAmelCase = feat_extract(np_speech_inputs[0] , return_tensors='np' ).input_values self.assertTrue(np.allclose(UpperCAmelCase__ , UpperCAmelCase__ , atol=1E-3 ) ) # Test batched lowerCAmelCase = feat_extract(UpperCAmelCase__ , padding=UpperCAmelCase__ , return_tensors='np' ).input_values lowerCAmelCase = feat_extract(UpperCAmelCase__ , padding=UpperCAmelCase__ , return_tensors='np' ).input_values for enc_seq_a, enc_seq_a in zip(UpperCAmelCase__ , UpperCAmelCase__ ): self.assertTrue(np.allclose(UpperCAmelCase__ , UpperCAmelCase__ , atol=1E-3 ) ) # Test 2-D numpy arrays are batched. lowerCAmelCase = [floats_list((1, x) )[0] for x in (8_0_0, 8_0_0, 8_0_0)] lowerCAmelCase = np.asarray(UpperCAmelCase__ ) lowerCAmelCase = feat_extract(UpperCAmelCase__ , return_tensors='np' ).input_values lowerCAmelCase = feat_extract(UpperCAmelCase__ , return_tensors='np' ).input_values for enc_seq_a, enc_seq_a in zip(UpperCAmelCase__ , UpperCAmelCase__ ): self.assertTrue(np.allclose(UpperCAmelCase__ , UpperCAmelCase__ , atol=1E-3 ) ) @require_torch def __UpperCAmelCase ( self : Union[str, Any] ) -> Optional[int]: import torch lowerCAmelCase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) lowerCAmelCase = np.random.rand(1_0_0 ).astype(np.floataa ) lowerCAmelCase = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: lowerCAmelCase = feature_extractor.pad([{'input_values': inputs}] , return_tensors='np' ) self.assertTrue(np_processed.input_values.dtype == np.floataa ) lowerCAmelCase = feature_extractor.pad([{'input_values': inputs}] , return_tensors='pt' ) self.assertTrue(pt_processed.input_values.dtype == torch.floataa ) def __UpperCAmelCase ( self : int , UpperCAmelCase__ : str ) -> Tuple: from datasets import load_dataset lowerCAmelCase = load_dataset('hf-internal-testing/librispeech_asr_dummy' , 'clean' , split='validation' ) # automatic decoding with librispeech lowerCAmelCase = ds.sort('id' ).select(range(UpperCAmelCase__ ) )[:num_samples]['audio'] return [x["array"] for x in speech_samples] @require_torch def __UpperCAmelCase ( self : str ) -> Optional[Any]: # fmt: off lowerCAmelCase = torch.tensor( [-0.9_894, -1.2_776, -0.9_066, -1.2_776, -0.9_349, -1.2_609, -1.0_386, -1.2_776, -1.1_561, -1.2_776, -1.2_052, -1.2_723, -1.2_190, -1.2_132, -1.2_776, -1.1_133, -1.1_953, -1.1_343, -1.1_584, -1.2_203, -1.1_770, -1.2_474, -1.2_381, -1.1_936, -0.9_270, -0.8_317, -0.8_049, -0.7_706, -0.7_565, -0.7_869] ) # fmt: on lowerCAmelCase = self._load_datasamples(1 ) lowerCAmelCase = ASTFeatureExtractor() lowerCAmelCase = feature_extractor(UpperCAmelCase__ , return_tensors='pt' ).input_values self.assertEquals(input_values.shape , (1, 1_0_2_4, 1_2_8) ) self.assertTrue(torch.allclose(input_values[0, 0, :3_0] , UpperCAmelCase__ , atol=1E-4 ) )
4
1
from itertools import zip_longest import requests from bsa import BeautifulSoup from pandas import DataFrame def _snake_case( SCREAMING_SNAKE_CASE__ = "laptop" ) -> DataFrame: lowercase : Tuple = f"https://www.amazon.in/laptop/s?k={product}" lowercase : int = { """User-Agent""": """Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko)Chrome/44.0.2403.157 Safari/537.36""", """Accept-Language""": """en-US, en;q=0.5""", } lowercase : Optional[int] = BeautifulSoup(requests.get(SCREAMING_SNAKE_CASE__ , headers=SCREAMING_SNAKE_CASE__ ).text ) # Initialize a Pandas dataframe with the column titles lowercase : int = DataFrame( columns=[ """Product Title""", """Product Link""", """Current Price of the product""", """Product Rating""", """MRP of the product""", """Discount""", ] ) # Loop through each entry and store them in the dataframe for item, _ in zip_longest( soup.find_all( """div""" , attrs={"""class""": """s-result-item""", """data-component-type""": """s-search-result"""} , ) , soup.find_all("""div""" , attrs={"""class""": """a-row a-size-base a-color-base"""} ) , ): try: lowercase : str = item.ha.text lowercase : Tuple = """https://www.amazon.in/""" + item.ha.a["""href"""] lowercase : List[Any] = item.find("""span""" , attrs={"""class""": """a-offscreen"""} ).text try: lowercase : Dict = item.find("""span""" , attrs={"""class""": """a-icon-alt"""} ).text except AttributeError: lowercase : List[Any] = """Not available""" try: lowercase : Union[str, Any] = ( """₹""" + item.find( """span""" , attrs={"""class""": """a-price a-text-price"""} ).text.split("""₹""" )[1] ) except AttributeError: lowercase : int = """""" try: lowercase : int = float( ( ( float(product_mrp.strip("""₹""" ).replace(""",""" , """""" ) ) - float(product_price.strip("""₹""" ).replace(""",""" , """""" ) ) ) / float(product_mrp.strip("""₹""" ).replace(""",""" , """""" ) ) ) * 100 ) except ValueError: lowercase : Union[str, Any] = float("""nan""" ) except AttributeError: pass lowercase : List[Any] = [ product_title, product_link, product_price, product_rating, product_mrp, discount, ] lowercase : Dict = """ """ lowercase : Optional[int] = """ """ data_frame.index += 1 return data_frame if __name__ == "__main__": lowercase : Any = """headphones""" get_amazon_product_data(product).to_csv(F'''Amazon Product Data for {product}.csv''')
362
import argparse import json import os from collections import OrderedDict import torch from transformers import LukeConfig, LukeForMaskedLM, MLukeTokenizer, XLMRobertaTokenizer from transformers.tokenization_utils_base import AddedToken @torch.no_grad() def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> int: # Load configuration defined in the metadata file with open(SCREAMING_SNAKE_CASE__ ) as metadata_file: lowercase : Union[str, Any] = json.load(SCREAMING_SNAKE_CASE__ ) lowercase : Tuple = LukeConfig(use_entity_aware_attention=SCREAMING_SNAKE_CASE__ , **metadata["""model_config"""] ) # Load in the weights from the checkpoint_path lowercase : Tuple = torch.load(SCREAMING_SNAKE_CASE__ , map_location="""cpu""" )["""module"""] # Load the entity vocab file lowercase : str = load_original_entity_vocab(SCREAMING_SNAKE_CASE__ ) # add an entry for [MASK2] lowercase : Any = max(entity_vocab.values() ) + 1 config.entity_vocab_size += 1 lowercase : Dict = XLMRobertaTokenizer.from_pretrained(metadata["""model_config"""]["""bert_model_name"""] ) # Add special tokens to the token vocabulary for downstream tasks lowercase : List[Any] = AddedToken("""<ent>""" , lstrip=SCREAMING_SNAKE_CASE__ , rstrip=SCREAMING_SNAKE_CASE__ ) lowercase : int = AddedToken("""<ent2>""" , lstrip=SCREAMING_SNAKE_CASE__ , rstrip=SCREAMING_SNAKE_CASE__ ) tokenizer.add_special_tokens({"""additional_special_tokens""": [entity_token_a, entity_token_a]} ) config.vocab_size += 2 print(f"Saving tokenizer to {pytorch_dump_folder_path}" ) tokenizer.save_pretrained(SCREAMING_SNAKE_CASE__ ) with open(os.path.join(SCREAMING_SNAKE_CASE__ , """tokenizer_config.json""" ) , """r""" ) as f: lowercase : List[str] = json.load(SCREAMING_SNAKE_CASE__ ) lowercase : Optional[Any] = """MLukeTokenizer""" with open(os.path.join(SCREAMING_SNAKE_CASE__ , """tokenizer_config.json""" ) , """w""" ) as f: json.dump(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) with open(os.path.join(SCREAMING_SNAKE_CASE__ , MLukeTokenizer.vocab_files_names["""entity_vocab_file"""] ) , """w""" ) as f: json.dump(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) lowercase : int = MLukeTokenizer.from_pretrained(SCREAMING_SNAKE_CASE__ ) # Initialize the embeddings of the special tokens lowercase : Dict = tokenizer.convert_tokens_to_ids(["""@"""] )[0] lowercase : Dict = tokenizer.convert_tokens_to_ids(["""#"""] )[0] lowercase : int = state_dict["""embeddings.word_embeddings.weight"""] lowercase : Union[str, Any] = word_emb[ent_init_index].unsqueeze(0 ) lowercase : List[str] = word_emb[enta_init_index].unsqueeze(0 ) lowercase : str = torch.cat([word_emb, ent_emb, enta_emb] ) # add special tokens for 'entity_predictions.bias' for bias_name in ["lm_head.decoder.bias", "lm_head.bias"]: lowercase : List[Any] = state_dict[bias_name] lowercase : Any = decoder_bias[ent_init_index].unsqueeze(0 ) lowercase : Tuple = decoder_bias[enta_init_index].unsqueeze(0 ) lowercase : int = torch.cat([decoder_bias, ent_decoder_bias, enta_decoder_bias] ) # Initialize the query layers of the entity-aware self-attention mechanism for layer_index in range(config.num_hidden_layers ): for matrix_name in ["query.weight", "query.bias"]: lowercase : Union[str, Any] = f"encoder.layer.{layer_index}.attention.self." lowercase : List[str] = state_dict[prefix + matrix_name] lowercase : Any = state_dict[prefix + matrix_name] lowercase : str = state_dict[prefix + matrix_name] # Initialize the embedding of the [MASK2] entity using that of the [MASK] entity for downstream tasks lowercase : Any = state_dict["""entity_embeddings.entity_embeddings.weight"""] lowercase : Tuple = entity_emb[entity_vocab["""[MASK]"""]].unsqueeze(0 ) lowercase : Optional[Any] = torch.cat([entity_emb, entity_mask_emb] ) # add [MASK2] for 'entity_predictions.bias' lowercase : Optional[Any] = state_dict["""entity_predictions.bias"""] lowercase : str = entity_prediction_bias[entity_vocab["""[MASK]"""]].unsqueeze(0 ) lowercase : List[str] = torch.cat([entity_prediction_bias, entity_mask_bias] ) lowercase : List[str] = LukeForMaskedLM(config=SCREAMING_SNAKE_CASE__ ).eval() state_dict.pop("""entity_predictions.decoder.weight""" ) state_dict.pop("""lm_head.decoder.weight""" ) state_dict.pop("""lm_head.decoder.bias""" ) lowercase : List[str] = OrderedDict() for key, value in state_dict.items(): if not (key.startswith("""lm_head""" ) or key.startswith("""entity_predictions""" )): lowercase : List[Any] = state_dict[key] else: lowercase : Union[str, Any] = state_dict[key] lowercase , lowercase : int = model.load_state_dict(SCREAMING_SNAKE_CASE__ , strict=SCREAMING_SNAKE_CASE__ ) if set(SCREAMING_SNAKE_CASE__ ) != {"luke.embeddings.position_ids"}: raise ValueError(f"Unexpected unexpected_keys: {unexpected_keys}" ) if set(SCREAMING_SNAKE_CASE__ ) != { "lm_head.decoder.weight", "lm_head.decoder.bias", "entity_predictions.decoder.weight", }: raise ValueError(f"Unexpected missing_keys: {missing_keys}" ) model.tie_weights() assert (model.luke.embeddings.word_embeddings.weight == model.lm_head.decoder.weight).all() assert (model.luke.entity_embeddings.entity_embeddings.weight == model.entity_predictions.decoder.weight).all() # Check outputs lowercase : str = MLukeTokenizer.from_pretrained(SCREAMING_SNAKE_CASE__ , task="""entity_classification""" ) lowercase : str = """ISO 639-3 uses the code fas for the dialects spoken across Iran and アフガニスタン (Afghanistan).""" lowercase : str = (0, 9) lowercase : Dict = tokenizer(SCREAMING_SNAKE_CASE__ , entity_spans=[span] , return_tensors="""pt""" ) lowercase : Any = model(**SCREAMING_SNAKE_CASE__ ) # Verify word hidden states if model_size == "large": raise NotImplementedError else: # base lowercase : List[Any] = torch.Size((1, 33, 768) ) lowercase : str = torch.tensor([[0.0892, 0.0596, -0.2819], [0.0134, 0.1199, 0.0573], [-0.0169, 0.0927, 0.0644]] ) if not (outputs.last_hidden_state.shape == expected_shape): raise ValueError( f"Outputs.last_hidden_state.shape is {outputs.last_hidden_state.shape}, Expected shape is {expected_shape}" ) if not torch.allclose(outputs.last_hidden_state[0, :3, :3] , SCREAMING_SNAKE_CASE__ , atol=1e-4 ): raise ValueError # Verify entity hidden states if model_size == "large": raise NotImplementedError else: # base lowercase : Optional[int] = torch.Size((1, 1, 768) ) lowercase : List[Any] = torch.tensor([[-0.1482, 0.0609, 0.0322]] ) if not (outputs.entity_last_hidden_state.shape == expected_shape): raise ValueError( f"Outputs.entity_last_hidden_state.shape is {outputs.entity_last_hidden_state.shape}, Expected shape is" f" {expected_shape}" ) if not torch.allclose(outputs.entity_last_hidden_state[0, :3, :3] , SCREAMING_SNAKE_CASE__ , atol=1e-4 ): raise ValueError # Verify masked word/entity prediction lowercase : Any = MLukeTokenizer.from_pretrained(SCREAMING_SNAKE_CASE__ ) lowercase : List[Any] = """Tokyo is the capital of <mask>.""" lowercase : List[Any] = (24, 30) lowercase : int = tokenizer(SCREAMING_SNAKE_CASE__ , entity_spans=[span] , return_tensors="""pt""" ) lowercase : Dict = model(**SCREAMING_SNAKE_CASE__ ) lowercase : Union[str, Any] = encoding["""input_ids"""][0].tolist() lowercase : List[Any] = input_ids.index(tokenizer.convert_tokens_to_ids("""<mask>""" ) ) lowercase : Dict = outputs.logits[0][mask_position_id].argmax(dim=-1 ) assert "Japan" == tokenizer.decode(SCREAMING_SNAKE_CASE__ ) lowercase : Union[str, Any] = outputs.entity_logits[0][0].argmax().item() lowercase : int = [ entity for entity, entity_id in tokenizer.entity_vocab.items() if entity_id == predicted_entity_id ] assert [e for e in multilingual_predicted_entities if e.startswith("""en:""" )][0] == "en:Japan" # Finally, save our PyTorch model and tokenizer print("""Saving PyTorch model to {}""".format(SCREAMING_SNAKE_CASE__ ) ) model.save_pretrained(SCREAMING_SNAKE_CASE__ ) def _snake_case( SCREAMING_SNAKE_CASE__ ) -> Dict: lowercase : Optional[int] = ["""[MASK]""", """[PAD]""", """[UNK]"""] lowercase : List[str] = [json.loads(SCREAMING_SNAKE_CASE__ ) for line in open(SCREAMING_SNAKE_CASE__ )] lowercase : int = {} for entry in data: lowercase : Optional[Any] = entry["""id"""] for entity_name, language in entry["entities"]: if entity_name in SPECIAL_TOKENS: lowercase : Optional[Any] = entity_id break lowercase : List[Any] = f"{language}:{entity_name}" lowercase : Union[str, Any] = entity_id return new_mapping if __name__ == "__main__": lowercase : Any = argparse.ArgumentParser() # Required parameters parser.add_argument("""--checkpoint_path""", type=str, help="""Path to a pytorch_model.bin file.""") parser.add_argument( """--metadata_path""", default=None, type=str, help="""Path to a metadata.json file, defining the configuration.""" ) parser.add_argument( """--entity_vocab_path""", default=None, type=str, help="""Path to an entity_vocab.tsv file, containing the entity vocabulary.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to where to dump the output PyTorch model.""" ) parser.add_argument( """--model_size""", default="""base""", type=str, choices=["""base""", """large"""], help="""Size of the model to be converted.""" ) lowercase : str = parser.parse_args() convert_luke_checkpoint( args.checkpoint_path, args.metadata_path, args.entity_vocab_path, args.pytorch_dump_folder_path, args.model_size, )
285
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) a : Optional[Any] = {"""configuration_fnet""": ["""FNET_PRETRAINED_CONFIG_ARCHIVE_MAP""", """FNetConfig"""]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : Tuple = ["""FNetTokenizer"""] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : List[str] = ["""FNetTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : int = [ """FNET_PRETRAINED_MODEL_ARCHIVE_LIST""", """FNetForMaskedLM""", """FNetForMultipleChoice""", """FNetForNextSentencePrediction""", """FNetForPreTraining""", """FNetForQuestionAnswering""", """FNetForSequenceClassification""", """FNetForTokenClassification""", """FNetLayer""", """FNetModel""", """FNetPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_fnet import FNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FNetConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_fnet import FNetTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_fnet_fast import FNetTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_fnet import ( FNET_PRETRAINED_MODEL_ARCHIVE_LIST, FNetForMaskedLM, FNetForMultipleChoice, FNetForNextSentencePrediction, FNetForPreTraining, FNetForQuestionAnswering, FNetForSequenceClassification, FNetForTokenClassification, FNetLayer, FNetModel, FNetPreTrainedModel, ) else: import sys a : int = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
265
'''simple docstring''' import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( SwiftFormerConfig, SwiftFormerForImageClassification, ViTImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() a : List[Any] = logging.get_logger(__name__) a : Union[str, Any] = torch.device("""cpu""") def __lowerCamelCase ( ) -> Any: UpperCAmelCase : Optional[Any] = """http://images.cocodataset.org/val2017/000000039769.jpg""" UpperCAmelCase : Dict = Image.open(requests.get(_lowercase , stream=_lowercase ).raw ) return im def __lowerCamelCase ( _lowercase ) -> Dict: if swiftformer_name == "swiftformer_xs": return torch.tensor([-2.1_703e00, 2.1_107e00, -2.0_811e00, 8.8_685e-01, 2.4_360e-01] ) elif swiftformer_name == "swiftformer_s": return torch.tensor([3.9_636e-01, 2.3_478e-01, -1.6_963e00, -1.7_381e00, -8.6_337e-01] ) elif swiftformer_name == "swiftformer_l1": return torch.tensor([-4.2_768e-01, -4.7_429e-01, -1.0_897e00, -1.0_248e00, 3.5_523e-02] ) elif swiftformer_name == "swiftformer_l3": return torch.tensor([-2.5_330e-01, 2.4_211e-01, -6.0_185e-01, -8.2_789e-01, -6.0_446e-02] ) def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> str: UpperCAmelCase : Union[str, Any] = dct.pop(_lowercase ) UpperCAmelCase : str = val def __lowerCamelCase ( _lowercase ) -> List[str]: UpperCAmelCase : Tuple = [] for k in state_dict.keys(): UpperCAmelCase : Dict = k if ".pwconv" in k: UpperCAmelCase : Union[str, Any] = k_new.replace(""".pwconv""" , """.point_wise_conv""" ) if ".dwconv" in k: UpperCAmelCase : Dict = k_new.replace(""".dwconv""" , """.depth_wise_conv""" ) if ".Proj." in k: UpperCAmelCase : str = k_new.replace(""".Proj.""" , """.proj.""" ) if "patch_embed" in k_new: UpperCAmelCase : Dict = k_new.replace("""patch_embed""" , """swiftformer.patch_embed.patch_embedding""" ) if "network" in k_new: UpperCAmelCase : Optional[Any] = k_new.split(""".""" ) if ls[2].isdigit(): UpperCAmelCase : Any = """swiftformer.encoder.network.""" + ls[1] + """.blocks.""" + ls[2] + """.""" + """.""".join(ls[3:] ) else: UpperCAmelCase : Any = k_new.replace("""network""" , """swiftformer.encoder.network""" ) rename_keys.append((k, k_new) ) return rename_keys @torch.no_grad() def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> Optional[int]: UpperCAmelCase : Optional[Any] = SwiftFormerConfig() # dataset (ImageNet-21k only or also fine-tuned on ImageNet 2012), patch_size and image_size UpperCAmelCase : List[Any] = 1_0_0_0 UpperCAmelCase : List[str] = """huggingface/label-files""" UpperCAmelCase : Tuple = """imagenet-1k-id2label.json""" UpperCAmelCase : Dict = json.load(open(hf_hub_download(_lowercase , _lowercase , repo_type="""dataset""" ) , """r""" ) ) UpperCAmelCase : Tuple = {int(_lowercase ): v for k, v in idalabel.items()} UpperCAmelCase : Tuple = idalabel UpperCAmelCase : List[Any] = {v: k for k, v in idalabel.items()} # size of the architecture if swiftformer_name == "swiftformer_xs": UpperCAmelCase : List[Any] = [3, 3, 6, 4] UpperCAmelCase : int = [4_8, 5_6, 1_1_2, 2_2_0] elif swiftformer_name == "swiftformer_s": UpperCAmelCase : str = [3, 3, 9, 6] UpperCAmelCase : str = [4_8, 6_4, 1_6_8, 2_2_4] elif swiftformer_name == "swiftformer_l1": UpperCAmelCase : List[Any] = [4, 3, 1_0, 5] UpperCAmelCase : Union[str, Any] = [4_8, 9_6, 1_9_2, 3_8_4] elif swiftformer_name == "swiftformer_l3": UpperCAmelCase : Any = [4, 4, 1_2, 6] UpperCAmelCase : List[Any] = [6_4, 1_2_8, 3_2_0, 5_1_2] # load state_dict of original model, remove and rename some keys if original_ckpt: if original_ckpt.startswith("""https""" ): UpperCAmelCase : Dict = torch.hub.load_state_dict_from_url(_lowercase , map_location="""cpu""" , check_hash=_lowercase ) else: UpperCAmelCase : Dict = torch.load(_lowercase , map_location="""cpu""" ) UpperCAmelCase : str = checkpoint UpperCAmelCase : Tuple = create_rename_keys(_lowercase ) for rename_key_src, rename_key_dest in rename_keys: rename_key(_lowercase , _lowercase , _lowercase ) # load HuggingFace model UpperCAmelCase : str = SwiftFormerForImageClassification(_lowercase ).eval() hf_model.load_state_dict(_lowercase ) # prepare test inputs UpperCAmelCase : Any = prepare_img() UpperCAmelCase : List[Any] = ViTImageProcessor.from_pretrained("""preprocessor_config""" ) UpperCAmelCase : List[str] = processor(images=_lowercase , return_tensors="""pt""" ) # compare outputs from both models UpperCAmelCase : List[str] = get_expected_output(_lowercase ) UpperCAmelCase : Dict = hf_model(inputs["""pixel_values"""] ).logits assert hf_logits.shape == torch.Size([1, 1_0_0_0] ) assert torch.allclose(hf_logits[0, 0:5] , _lowercase , atol=1e-3 ) Path(_lowercase ).mkdir(exist_ok=_lowercase ) print(F'''Saving model {swiftformer_name} to {pytorch_dump_folder_path}''' ) hf_model.save_pretrained(_lowercase ) if __name__ == "__main__": a : Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument( """--swiftformer_name""", default="""swiftformer_xs""", choices=["""swiftformer_xs""", """swiftformer_s""", """swiftformer_l1""", """swiftformer_l3"""], type=str, help="""Name of the SwiftFormer model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default="""./converted_outputs/""", type=str, help="""Path to the output PyTorch model directory.""", ) parser.add_argument("""--original_ckpt""", default=None, type=str, help="""Path to the original model checkpoint.""") a : Union[str, Any] = parser.parse_args() convert_swiftformer_checkpoint(args.swiftformer_name, args.pytorch_dump_folder_path, args.original_ckpt)
265
1
'''simple docstring''' import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate # and perform gradient accumulation # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## lowercase =16 lowercase =32 def lowerCamelCase__ ( __lowerCamelCase : Accelerator , __lowerCamelCase : int = 1_6 ): '''simple docstring''' _UpperCAmelCase : Union[str, Any] =AutoTokenizer.from_pretrained('bert-base-cased' ) _UpperCAmelCase : str =load_dataset('glue' , 'mrpc' ) def tokenize_function(__lowerCamelCase : Optional[int] ): # max_length=None => use the model max length (it's actually the default) _UpperCAmelCase : Optional[int] =tokenizer(examples['sentence1'] , examples['sentence2'] , truncation=__lowerCamelCase , max_length=__lowerCamelCase ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): _UpperCAmelCase : Optional[Any] =datasets.map( __lowerCamelCase , batched=__lowerCamelCase , remove_columns=['idx', 'sentence1', 'sentence2'] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library _UpperCAmelCase : Tuple =tokenized_datasets.rename_column('label' , 'labels' ) def collate_fn(__lowerCamelCase : Union[str, Any] ): # On TPU it's best to pad everything to the same length or training will be very slow. _UpperCAmelCase : List[Any] =1_2_8 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": _UpperCAmelCase : List[Any] =1_6 elif accelerator.mixed_precision != "no": _UpperCAmelCase : int =8 else: _UpperCAmelCase : Optional[int] =None return tokenizer.pad( __lowerCamelCase , padding='longest' , max_length=__lowerCamelCase , pad_to_multiple_of=__lowerCamelCase , return_tensors='pt' , ) # Instantiate dataloaders. _UpperCAmelCase : Optional[Any] =DataLoader( tokenized_datasets['train'] , shuffle=__lowerCamelCase , collate_fn=__lowerCamelCase , batch_size=__lowerCamelCase ) _UpperCAmelCase : Dict =DataLoader( tokenized_datasets['validation'] , shuffle=__lowerCamelCase , collate_fn=__lowerCamelCase , batch_size=__lowerCamelCase ) return train_dataloader, eval_dataloader # For testing only if os.environ.get('TESTING_MOCKED_DATALOADERS', None) == "1": from accelerate.test_utils.training import mocked_dataloaders lowercase =mocked_dataloaders # noqa: F811 def lowerCamelCase__ ( __lowerCamelCase : Optional[Any] , __lowerCamelCase : List[Any] ): '''simple docstring''' if os.environ.get('TESTING_MOCKED_DATALOADERS' , __lowerCamelCase ) == "1": _UpperCAmelCase : Dict =2 # New Code # _UpperCAmelCase : int =int(args.gradient_accumulation_steps ) # Initialize accelerator _UpperCAmelCase : List[str] =Accelerator( cpu=args.cpu , mixed_precision=args.mixed_precision , gradient_accumulation_steps=__lowerCamelCase ) if accelerator.distributed_type == DistributedType.TPU and gradient_accumulation_steps > 1: raise NotImplementedError( 'Gradient accumulation on TPUs is currently not supported. Pass `gradient_accumulation_steps=1`' ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs _UpperCAmelCase : str =config['lr'] _UpperCAmelCase : List[str] =int(config['num_epochs'] ) _UpperCAmelCase : Tuple =int(config['seed'] ) _UpperCAmelCase : Optional[Any] =int(config['batch_size'] ) _UpperCAmelCase : Optional[int] =evaluate.load('glue' , 'mrpc' ) set_seed(__lowerCamelCase ) _UpperCAmelCase : str =get_dataloaders(__lowerCamelCase , __lowerCamelCase ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) _UpperCAmelCase : Union[str, Any] =AutoModelForSequenceClassification.from_pretrained('bert-base-cased' , return_dict=__lowerCamelCase ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). _UpperCAmelCase : Tuple =model.to(accelerator.device ) # Instantiate optimizer _UpperCAmelCase : Dict =AdamW(params=model.parameters() , lr=__lowerCamelCase ) # Instantiate scheduler _UpperCAmelCase : int =get_linear_schedule_with_warmup( optimizer=__lowerCamelCase , num_warmup_steps=1_0_0 , num_training_steps=(len(__lowerCamelCase ) * num_epochs) , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. _UpperCAmelCase : Union[str, Any] =accelerator.prepare( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) # Now we train the model for epoch in range(__lowerCamelCase ): model.train() for step, batch in enumerate(__lowerCamelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) # New code # # We use the new `accumulate` context manager to perform gradient accumulation # We also currently do not support TPUs nor advise it as bugs were found on the XLA side when running our tests. with accelerator.accumulate(__lowerCamelCase ): _UpperCAmelCase : int =model(**__lowerCamelCase ) _UpperCAmelCase : List[str] =output.loss accelerator.backward(__lowerCamelCase ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(__lowerCamelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): _UpperCAmelCase : Optional[int] =model(**__lowerCamelCase ) _UpperCAmelCase : Union[str, Any] =outputs.logits.argmax(dim=-1 ) _UpperCAmelCase : str =accelerator.gather_for_metrics((predictions, batch['labels']) ) metric.add_batch( predictions=__lowerCamelCase , references=__lowerCamelCase , ) _UpperCAmelCase : Optional[Any] =metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f"epoch {epoch}:" , __lowerCamelCase ) def lowerCamelCase__ ( ): '''simple docstring''' _UpperCAmelCase : Optional[int] =argparse.ArgumentParser(description='Simple example of training script.' ) parser.add_argument( '--mixed_precision' , type=__lowerCamelCase , default=__lowerCamelCase , choices=['no', 'fp16', 'bf16', 'fp8'] , help='Whether to use mixed precision. Choose' 'between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.' 'and an Nvidia Ampere GPU.' , ) # New Code # parser.add_argument( '--gradient_accumulation_steps' , type=__lowerCamelCase , default=1 , help='The number of minibatches to be ran before gradients are accumulated.' , ) parser.add_argument('--cpu' , action='store_true' , help='If passed, will train on the CPU.' ) _UpperCAmelCase : List[str] =parser.parse_args() _UpperCAmelCase : Optional[int] ={'lr': 2e-5, 'num_epochs': 3, 'seed': 4_2, 'batch_size': 1_6} training_function(__lowerCamelCase , __lowerCamelCase ) if __name__ == "__main__": main()
364
'''simple docstring''' import jax.numpy as jnp from ...utils import logging from ..ta.modeling_flax_ta import FlaxTaEncoderModel, FlaxTaForConditionalGeneration, FlaxTaModel from .configuration_mta import MTaConfig lowercase =logging.get_logger(__name__) lowercase ='T5Config' def lowerCamelCase__ ( __lowerCamelCase : jnp.array , __lowerCamelCase : int , __lowerCamelCase : int ): '''simple docstring''' _UpperCAmelCase : List[Any] =jnp.zeros_like(__lowerCamelCase ) _UpperCAmelCase : Union[str, Any] =shifted_input_ids.at[:, 1:].set(input_ids[:, :-1] ) _UpperCAmelCase : List[Any] =shifted_input_ids.at[:, 0].set(__lowerCamelCase ) _UpperCAmelCase : str =jnp.where(shifted_input_ids == -1_0_0 , __lowerCamelCase , __lowerCamelCase ) return shifted_input_ids class __magic_name__ ( lowerCAmelCase ): UpperCAmelCase ="mt5" UpperCAmelCase =MTaConfig class __magic_name__ ( lowerCAmelCase ): UpperCAmelCase ="mt5" UpperCAmelCase =MTaConfig class __magic_name__ ( lowerCAmelCase ): UpperCAmelCase ="mt5" UpperCAmelCase =MTaConfig
242
0
"""simple docstring""" # This model implementation is heavily inspired by https://github.com/haofanwang/ControlNet-for-Diffusers/ import gc import random import tempfile import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, ControlNetModel, DDIMScheduler, StableDiffusionControlNetImgaImgPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_controlnet import MultiControlNetModel from diffusers.utils import floats_tensor, load_image, load_numpy, randn_tensor, slow, torch_device from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, ) enable_full_determinism() class __A ( A_ ,A_ ,A_ ,unittest.TestCase ): '''simple docstring''' lowerCAmelCase : Union[str, Any] = StableDiffusionControlNetImgaImgPipeline lowerCAmelCase : Any = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {"height", "width"} lowerCAmelCase : List[str] = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS lowerCAmelCase : Tuple = IMAGE_TO_IMAGE_IMAGE_PARAMS.union({"control_image"} ) lowerCAmelCase : int = IMAGE_TO_IMAGE_IMAGE_PARAMS def UpperCAmelCase ( self : int ) -> Union[str, Any]: """simple docstring""" torch.manual_seed(0 ) lowercase__ : Optional[int] = UNetaDConditionModel( block_out_channels=(32, 64) ,layers_per_block=2 ,sample_size=32 ,in_channels=4 ,out_channels=4 ,down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') ,up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') ,cross_attention_dim=32 ,) torch.manual_seed(0 ) lowercase__ : Any = ControlNetModel( block_out_channels=(32, 64) ,layers_per_block=2 ,in_channels=4 ,down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') ,cross_attention_dim=32 ,conditioning_embedding_out_channels=(16, 32) ,) torch.manual_seed(0 ) lowercase__ : List[str] = DDIMScheduler( beta_start=0.0_0085 ,beta_end=0.012 ,beta_schedule='''scaled_linear''' ,clip_sample=_snake_case ,set_alpha_to_one=_snake_case ,) torch.manual_seed(0 ) lowercase__ : List[str] = AutoencoderKL( block_out_channels=[32, 64] ,in_channels=3 ,out_channels=3 ,down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] ,up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] ,latent_channels=4 ,) torch.manual_seed(0 ) lowercase__ : Optional[Any] = CLIPTextConfig( bos_token_id=0 ,eos_token_id=2 ,hidden_size=32 ,intermediate_size=37 ,layer_norm_eps=1e-05 ,num_attention_heads=4 ,num_hidden_layers=5 ,pad_token_id=1 ,vocab_size=1_000 ,) lowercase__ : List[Any] = CLIPTextModel(_snake_case ) lowercase__ : Union[str, Any] = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) lowercase__ : Dict = { '''unet''': unet, '''controlnet''': controlnet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''safety_checker''': None, '''feature_extractor''': None, } return components def UpperCAmelCase ( self : Any ,_snake_case : List[Any] ,_snake_case : Any=0 ) -> Any: """simple docstring""" if str(_snake_case ).startswith('''mps''' ): lowercase__ : Optional[Any] = torch.manual_seed(_snake_case ) else: lowercase__ : str = torch.Generator(device=_snake_case ).manual_seed(_snake_case ) lowercase__ : List[Any] = 2 lowercase__ : Optional[int] = randn_tensor( (1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor) ,generator=_snake_case ,device=torch.device(_snake_case ) ,) lowercase__ : str = floats_tensor(control_image.shape ,rng=random.Random(_snake_case ) ).to(_snake_case ) lowercase__ : Optional[Any] = image.cpu().permute(0 ,2 ,3 ,1 )[0] lowercase__ : Optional[Any] = Image.fromarray(np.uinta(_snake_case ) ).convert('''RGB''' ).resize((64, 64) ) lowercase__ : Union[str, Any] = { '''prompt''': '''A painting of a squirrel eating a burger''', '''generator''': generator, '''num_inference_steps''': 2, '''guidance_scale''': 6.0, '''output_type''': '''numpy''', '''image''': image, '''control_image''': control_image, } return inputs def UpperCAmelCase ( self : Optional[int] ) -> Dict: """simple docstring""" return self._test_attention_slicing_forward_pass(expected_max_diff=2e-3 ) @unittest.skipIf( torch_device != '''cuda''' or not is_xformers_available() ,reason='''XFormers attention is only available with CUDA and `xformers` installed''' ,) def UpperCAmelCase ( self : Optional[Any] ) -> str: """simple docstring""" self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=2e-3 ) def UpperCAmelCase ( self : Any ) -> str: """simple docstring""" self._test_inference_batch_single_identical(expected_max_diff=2e-3 ) class __A ( A_ ,A_ ,unittest.TestCase ): '''simple docstring''' lowerCAmelCase : Dict = StableDiffusionControlNetImgaImgPipeline lowerCAmelCase : List[Any] = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {"height", "width"} lowerCAmelCase : Union[str, Any] = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS lowerCAmelCase : Dict = frozenset([] ) # TO_DO: add image_params once refactored VaeImageProcessor.preprocess def UpperCAmelCase ( self : Tuple ) -> Any: """simple docstring""" torch.manual_seed(0 ) lowercase__ : List[Any] = UNetaDConditionModel( block_out_channels=(32, 64) ,layers_per_block=2 ,sample_size=32 ,in_channels=4 ,out_channels=4 ,down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') ,up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') ,cross_attention_dim=32 ,) torch.manual_seed(0 ) def init_weights(_snake_case : Optional[int] ): if isinstance(_snake_case ,torch.nn.Convad ): torch.nn.init.normal(m.weight ) m.bias.data.fill_(1.0 ) lowercase__ : Any = ControlNetModel( block_out_channels=(32, 64) ,layers_per_block=2 ,in_channels=4 ,down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') ,cross_attention_dim=32 ,conditioning_embedding_out_channels=(16, 32) ,) controlneta.controlnet_down_blocks.apply(_snake_case ) torch.manual_seed(0 ) lowercase__ : Any = ControlNetModel( block_out_channels=(32, 64) ,layers_per_block=2 ,in_channels=4 ,down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') ,cross_attention_dim=32 ,conditioning_embedding_out_channels=(16, 32) ,) controlneta.controlnet_down_blocks.apply(_snake_case ) torch.manual_seed(0 ) lowercase__ : Dict = DDIMScheduler( beta_start=0.0_0085 ,beta_end=0.012 ,beta_schedule='''scaled_linear''' ,clip_sample=_snake_case ,set_alpha_to_one=_snake_case ,) torch.manual_seed(0 ) lowercase__ : List[str] = AutoencoderKL( block_out_channels=[32, 64] ,in_channels=3 ,out_channels=3 ,down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] ,up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] ,latent_channels=4 ,) torch.manual_seed(0 ) lowercase__ : List[Any] = CLIPTextConfig( bos_token_id=0 ,eos_token_id=2 ,hidden_size=32 ,intermediate_size=37 ,layer_norm_eps=1e-05 ,num_attention_heads=4 ,num_hidden_layers=5 ,pad_token_id=1 ,vocab_size=1_000 ,) lowercase__ : int = CLIPTextModel(_snake_case ) lowercase__ : Union[str, Any] = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) lowercase__ : int = MultiControlNetModel([controlneta, controlneta] ) lowercase__ : Optional[Any] = { '''unet''': unet, '''controlnet''': controlnet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''safety_checker''': None, '''feature_extractor''': None, } return components def UpperCAmelCase ( self : Optional[Any] ,_snake_case : Dict ,_snake_case : Union[str, Any]=0 ) -> List[Any]: """simple docstring""" if str(_snake_case ).startswith('''mps''' ): lowercase__ : int = torch.manual_seed(_snake_case ) else: lowercase__ : Dict = torch.Generator(device=_snake_case ).manual_seed(_snake_case ) lowercase__ : int = 2 lowercase__ : Optional[Any] = [ randn_tensor( (1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor) ,generator=_snake_case ,device=torch.device(_snake_case ) ,), randn_tensor( (1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor) ,generator=_snake_case ,device=torch.device(_snake_case ) ,), ] lowercase__ : Dict = floats_tensor(control_image[0].shape ,rng=random.Random(_snake_case ) ).to(_snake_case ) lowercase__ : Dict = image.cpu().permute(0 ,2 ,3 ,1 )[0] lowercase__ : Optional[int] = Image.fromarray(np.uinta(_snake_case ) ).convert('''RGB''' ).resize((64, 64) ) lowercase__ : Any = { '''prompt''': '''A painting of a squirrel eating a burger''', '''generator''': generator, '''num_inference_steps''': 2, '''guidance_scale''': 6.0, '''output_type''': '''numpy''', '''image''': image, '''control_image''': control_image, } return inputs def UpperCAmelCase ( self : Dict ) -> List[str]: """simple docstring""" lowercase__ : Dict = self.get_dummy_components() lowercase__ : Dict = self.pipeline_class(**_snake_case ) pipe.to(_snake_case ) lowercase__ : Optional[Any] = 10.0 lowercase__ : Tuple = 4 lowercase__ : Dict = self.get_dummy_inputs(_snake_case ) lowercase__ : Optional[Any] = steps lowercase__ : Any = scale lowercase__ : Optional[Any] = pipe(**_snake_case )[0] lowercase__ : List[str] = self.get_dummy_inputs(_snake_case ) lowercase__ : Optional[int] = steps lowercase__ : int = scale lowercase__ : List[str] = pipe(**_snake_case ,control_guidance_start=0.1 ,control_guidance_end=0.2 )[0] lowercase__ : int = self.get_dummy_inputs(_snake_case ) lowercase__ : Optional[int] = steps lowercase__ : Dict = scale lowercase__ : Dict = pipe(**_snake_case ,control_guidance_start=[0.1, 0.3] ,control_guidance_end=[0.2, 0.7] )[0] lowercase__ : Dict = self.get_dummy_inputs(_snake_case ) lowercase__ : List[Any] = steps lowercase__ : Optional[int] = scale lowercase__ : List[Any] = pipe(**_snake_case ,control_guidance_start=0.4 ,control_guidance_end=[0.5, 0.8] )[0] # make sure that all outputs are different assert np.sum(np.abs(output_a - output_a ) ) > 1e-3 assert np.sum(np.abs(output_a - output_a ) ) > 1e-3 assert np.sum(np.abs(output_a - output_a ) ) > 1e-3 def UpperCAmelCase ( self : Tuple ) -> Optional[int]: """simple docstring""" return self._test_attention_slicing_forward_pass(expected_max_diff=2e-3 ) @unittest.skipIf( torch_device != '''cuda''' or not is_xformers_available() ,reason='''XFormers attention is only available with CUDA and `xformers` installed''' ,) def UpperCAmelCase ( self : Optional[int] ) -> Union[str, Any]: """simple docstring""" self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=2e-3 ) def UpperCAmelCase ( self : Union[str, Any] ) -> Optional[int]: """simple docstring""" self._test_inference_batch_single_identical(expected_max_diff=2e-3 ) def UpperCAmelCase ( self : List[str] ) -> Dict: """simple docstring""" lowercase__ : Union[str, Any] = self.get_dummy_components() lowercase__ : Optional[Any] = self.pipeline_class(**_snake_case ) pipe.to(_snake_case ) pipe.set_progress_bar_config(disable=_snake_case ) with tempfile.TemporaryDirectory() as tmpdir: try: # save_pretrained is not implemented for Multi-ControlNet pipe.save_pretrained(_snake_case ) except NotImplementedError: pass @slow @require_torch_gpu class __A ( unittest.TestCase ): '''simple docstring''' def UpperCAmelCase ( self : Any ) -> int: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCAmelCase ( self : Optional[Any] ) -> Union[str, Any]: """simple docstring""" lowercase__ : int = ControlNetModel.from_pretrained('''lllyasviel/sd-controlnet-canny''' ) lowercase__ : Any = StableDiffusionControlNetImgaImgPipeline.from_pretrained( '''runwayml/stable-diffusion-v1-5''' ,safety_checker=_snake_case ,controlnet=_snake_case ) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=_snake_case ) lowercase__ : Optional[Any] = torch.Generator(device='''cpu''' ).manual_seed(0 ) lowercase__ : List[str] = '''evil space-punk bird''' lowercase__ : Optional[Any] = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny.png''' ).resize((512, 512) ) lowercase__ : Tuple = load_image( '''https://huggingface.co/lllyasviel/sd-controlnet-canny/resolve/main/images/bird.png''' ).resize((512, 512) ) lowercase__ : List[Any] = pipe( _snake_case ,_snake_case ,control_image=_snake_case ,generator=_snake_case ,output_type='''np''' ,num_inference_steps=50 ,strength=0.6 ,) lowercase__ : List[Any] = output.images[0] assert image.shape == (512, 512, 3) lowercase__ : Dict = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/img2img.npy''' ) assert np.abs(expected_image - image ).max() < 9e-2
16
'''simple docstring''' # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse from ...utils.dataclasses import ( ComputeEnvironment, DistributedType, DynamoBackend, PrecisionType, SageMakerDistributedType, ) from ..menu import BulletMenu UpperCAmelCase : Any = [ 'EAGER', 'AOT_EAGER', 'INDUCTOR', 'NVFUSER', 'AOT_NVFUSER', 'AOT_CUDAGRAPHS', 'OFI', 'FX2TRT', 'ONNXRT', 'IPEX', ] def a__ ( a__ , a__=None , a__=None , a__=None ): """simple docstring""" __SCREAMING_SNAKE_CASE = True while ask_again: __SCREAMING_SNAKE_CASE = input(a__ ) try: if default is not None and len(a__ ) == 0: return default return convert_value(a__ ) if convert_value is not None else result except Exception: if error_message is not None: print(a__ ) def a__ ( a__ , a__=[] , a__=None , a__=0 ): """simple docstring""" __SCREAMING_SNAKE_CASE = BulletMenu(a__ , a__ ) __SCREAMING_SNAKE_CASE = menu.run(default_choice=a__ ) return convert_value(a__ ) if convert_value is not None else result def a__ ( a__ ): """simple docstring""" __SCREAMING_SNAKE_CASE = int(a__ ) return ComputeEnvironment(["""LOCAL_MACHINE""", """AMAZON_SAGEMAKER"""][value] ) def a__ ( a__ ): """simple docstring""" __SCREAMING_SNAKE_CASE = int(a__ ) return DistributedType(["""NO""", """MULTI_CPU""", """MULTI_XPU""", """MULTI_GPU""", """MULTI_NPU""", """TPU"""][value] ) def a__ ( a__ ): """simple docstring""" __SCREAMING_SNAKE_CASE = int(a__ ) return DynamoBackend(DYNAMO_BACKENDS[value] ).value def a__ ( a__ ): """simple docstring""" __SCREAMING_SNAKE_CASE = int(a__ ) return PrecisionType(["""no""", """fp16""", """bf16""", """fp8"""][value] ) def a__ ( a__ ): """simple docstring""" __SCREAMING_SNAKE_CASE = int(a__ ) return SageMakerDistributedType(["""NO""", """DATA_PARALLEL""", """MODEL_PARALLEL"""][value] ) def a__ ( a__ ): """simple docstring""" return {"yes": True, "no": False}[value.lower()] class lowerCAmelCase__ ( argparse.RawDescriptionHelpFormatter ): """simple docstring""" def UpperCAmelCase__ ( self : str , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : List[Any] ) -> Dict: """simple docstring""" __SCREAMING_SNAKE_CASE = super()._format_usage(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = usage.replace("""<command> [<args>] """ , """""" ) return usage
267
0
from __future__ import annotations import unittest from transformers import DistilBertConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.distilbert.modeling_tf_distilbert import ( TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDistilBertForMaskedLM, TFDistilBertForMultipleChoice, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertModel, ) class lowercase__ : def __init__( self : Optional[int] , UpperCAmelCase_ : str , ): SCREAMING_SNAKE_CASE__ = parent SCREAMING_SNAKE_CASE__ = 13 SCREAMING_SNAKE_CASE__ = 7 SCREAMING_SNAKE_CASE__ = True SCREAMING_SNAKE_CASE__ = True SCREAMING_SNAKE_CASE__ = False SCREAMING_SNAKE_CASE__ = True SCREAMING_SNAKE_CASE__ = 99 SCREAMING_SNAKE_CASE__ = 32 SCREAMING_SNAKE_CASE__ = 2 SCREAMING_SNAKE_CASE__ = 4 SCREAMING_SNAKE_CASE__ = 37 SCREAMING_SNAKE_CASE__ = 'gelu' SCREAMING_SNAKE_CASE__ = 0.1 SCREAMING_SNAKE_CASE__ = 0.1 SCREAMING_SNAKE_CASE__ = 512 SCREAMING_SNAKE_CASE__ = 16 SCREAMING_SNAKE_CASE__ = 2 SCREAMING_SNAKE_CASE__ = 0.02 SCREAMING_SNAKE_CASE__ = 3 SCREAMING_SNAKE_CASE__ = 4 SCREAMING_SNAKE_CASE__ = None def A_ ( self : str ): SCREAMING_SNAKE_CASE__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) SCREAMING_SNAKE_CASE__ = None if self.use_input_mask: SCREAMING_SNAKE_CASE__ = random_attention_mask([self.batch_size, self.seq_length] ) SCREAMING_SNAKE_CASE__ = None SCREAMING_SNAKE_CASE__ = None SCREAMING_SNAKE_CASE__ = None if self.use_labels: SCREAMING_SNAKE_CASE__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) SCREAMING_SNAKE_CASE__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) SCREAMING_SNAKE_CASE__ = ids_tensor([self.batch_size] , self.num_choices ) SCREAMING_SNAKE_CASE__ = DistilBertConfig( vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , ) return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def A_ ( self : Dict , UpperCAmelCase_ : int , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Any , UpperCAmelCase_ : Any , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : int ): SCREAMING_SNAKE_CASE__ = TFDistilBertModel(config=UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = {'input_ids': input_ids, 'attention_mask': input_mask} SCREAMING_SNAKE_CASE__ = model(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = [input_ids, input_mask] SCREAMING_SNAKE_CASE__ = model(UpperCAmelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def A_ ( self : Dict , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Dict , UpperCAmelCase_ : str , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Tuple ): SCREAMING_SNAKE_CASE__ = TFDistilBertForMaskedLM(config=UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = {'input_ids': input_ids, 'attention_mask': input_mask} SCREAMING_SNAKE_CASE__ = model(UpperCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def A_ ( self : int , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Union[str, Any] ): SCREAMING_SNAKE_CASE__ = TFDistilBertForQuestionAnswering(config=UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = { 'input_ids': input_ids, 'attention_mask': input_mask, } SCREAMING_SNAKE_CASE__ = model(UpperCAmelCase_ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def A_ ( self : Any , UpperCAmelCase_ : int , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Optional[Any] ): SCREAMING_SNAKE_CASE__ = self.num_labels SCREAMING_SNAKE_CASE__ = TFDistilBertForSequenceClassification(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = {'input_ids': input_ids, 'attention_mask': input_mask} SCREAMING_SNAKE_CASE__ = model(UpperCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def A_ ( self : Tuple , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Any ): SCREAMING_SNAKE_CASE__ = self.num_choices SCREAMING_SNAKE_CASE__ = TFDistilBertForMultipleChoice(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = tf.tile(tf.expand_dims(UpperCAmelCase_ , 1 ) , (1, self.num_choices, 1) ) SCREAMING_SNAKE_CASE__ = tf.tile(tf.expand_dims(UpperCAmelCase_ , 1 ) , (1, self.num_choices, 1) ) SCREAMING_SNAKE_CASE__ = { 'input_ids': multiple_choice_inputs_ids, 'attention_mask': multiple_choice_input_mask, } SCREAMING_SNAKE_CASE__ = model(UpperCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def A_ ( self : Optional[Any] , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : int , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : int , UpperCAmelCase_ : str ): SCREAMING_SNAKE_CASE__ = self.num_labels SCREAMING_SNAKE_CASE__ = TFDistilBertForTokenClassification(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = {'input_ids': input_ids, 'attention_mask': input_mask} SCREAMING_SNAKE_CASE__ = model(UpperCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def A_ ( self : str ): SCREAMING_SNAKE_CASE__ = self.prepare_config_and_inputs() ((SCREAMING_SNAKE_CASE__) , (SCREAMING_SNAKE_CASE__) , (SCREAMING_SNAKE_CASE__) , (SCREAMING_SNAKE_CASE__) , (SCREAMING_SNAKE_CASE__) , (SCREAMING_SNAKE_CASE__)) = config_and_inputs SCREAMING_SNAKE_CASE__ = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_tf class lowercase__ ( _UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ): A__ : Optional[Any] =( ( TFDistilBertModel, TFDistilBertForMaskedLM, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertForMultipleChoice, ) if is_tf_available() else None ) A__ : Any =( { """feature-extraction""": TFDistilBertModel, """fill-mask""": TFDistilBertForMaskedLM, """question-answering""": TFDistilBertForQuestionAnswering, """text-classification""": TFDistilBertForSequenceClassification, """token-classification""": TFDistilBertForTokenClassification, """zero-shot""": TFDistilBertForSequenceClassification, } if is_tf_available() else {} ) A__ : Dict =False A__ : str =False def A_ ( self : List[str] ): SCREAMING_SNAKE_CASE__ = TFDistilBertModelTester(self ) SCREAMING_SNAKE_CASE__ = ConfigTester(self , config_class=UpperCAmelCase_ , dim=37 ) def A_ ( self : Tuple ): self.config_tester.run_common_tests() def A_ ( self : str ): SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_model(*UpperCAmelCase_ ) def A_ ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_masked_lm(*UpperCAmelCase_ ) def A_ ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_question_answering(*UpperCAmelCase_ ) def A_ ( self : Optional[int] ): SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_sequence_classification(*UpperCAmelCase_ ) def A_ ( self : List[Any] ): SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_multiple_choice(*UpperCAmelCase_ ) def A_ ( self : Tuple ): SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_token_classification(*UpperCAmelCase_ ) @slow def A_ ( self : List[Any] ): for model_name in list(TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1] ): SCREAMING_SNAKE_CASE__ = TFDistilBertModel.from_pretrained(UpperCAmelCase_ ) self.assertIsNotNone(UpperCAmelCase_ ) @require_tf class lowercase__ ( unittest.TestCase ): @slow def A_ ( self : Any ): SCREAMING_SNAKE_CASE__ = TFDistilBertModel.from_pretrained('distilbert-base-uncased' ) SCREAMING_SNAKE_CASE__ = tf.constant([[0, 1, 2, 3, 4, 5]] ) SCREAMING_SNAKE_CASE__ = model(UpperCAmelCase_ )[0] SCREAMING_SNAKE_CASE__ = [1, 6, 768] self.assertEqual(output.shape , UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = tf.constant( [ [ [0.19_261_885, -0.13_732_955, 0.4_119_799], [0.22_150_156, -0.07_422_661, 0.39_037_204], [0.22_756_018, -0.0_896_414, 0.3_701_467], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , UpperCAmelCase_ , atol=1e-4 )
169
import json import os import tempfile import transformers import datasets from utils import generate_example_dataset, get_duration __snake_case = 50_00_00 __snake_case ,__snake_case = os.path.split(__file__) __snake_case = os.path.join(RESULTS_BASEPATH, """results""", RESULTS_FILENAME.replace(""".py""", """.json""")) @get_duration def _lowercase ( UpperCamelCase_ , **UpperCamelCase_ ) -> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE__ = dataset.map(**UpperCamelCase_ ) @get_duration def _lowercase ( UpperCamelCase_ , **UpperCamelCase_ ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE__ = dataset.filter(**UpperCamelCase_ ) def _lowercase ( ) -> Dict: '''simple docstring''' SCREAMING_SNAKE_CASE__ = {'num examples': SPEED_TEST_N_EXAMPLES} with tempfile.TemporaryDirectory() as tmp_dir: SCREAMING_SNAKE_CASE__ = datasets.Features({'text': datasets.Value('string' ), 'numbers': datasets.Value('float32' )} ) SCREAMING_SNAKE_CASE__ = generate_example_dataset( os.path.join(UpperCamelCase_ , 'dataset.arrow' ) , UpperCamelCase_ , num_examples=UpperCamelCase_ ) SCREAMING_SNAKE_CASE__ = transformers.AutoTokenizer.from_pretrained('bert-base-cased' , use_fast=UpperCamelCase_ ) def tokenize(UpperCamelCase_ ): return tokenizer(examples['text'] ) SCREAMING_SNAKE_CASE__ = map(UpperCamelCase_ ) SCREAMING_SNAKE_CASE__ = map(UpperCamelCase_ , batched=UpperCamelCase_ ) SCREAMING_SNAKE_CASE__ = map(UpperCamelCase_ , function=lambda UpperCamelCase_ : None , batched=UpperCamelCase_ ) with dataset.formatted_as(type='numpy' ): SCREAMING_SNAKE_CASE__ = map(UpperCamelCase_ , function=lambda UpperCamelCase_ : None , batched=UpperCamelCase_ ) with dataset.formatted_as(type='pandas' ): SCREAMING_SNAKE_CASE__ = map(UpperCamelCase_ , function=lambda UpperCamelCase_ : None , batched=UpperCamelCase_ ) with dataset.formatted_as(type='torch' , columns='numbers' ): SCREAMING_SNAKE_CASE__ = map(UpperCamelCase_ , function=lambda UpperCamelCase_ : None , batched=UpperCamelCase_ ) with dataset.formatted_as(type='tensorflow' , columns='numbers' ): SCREAMING_SNAKE_CASE__ = map(UpperCamelCase_ , function=lambda UpperCamelCase_ : None , batched=UpperCamelCase_ ) SCREAMING_SNAKE_CASE__ = map(UpperCamelCase_ , function=UpperCamelCase_ , batched=UpperCamelCase_ ) SCREAMING_SNAKE_CASE__ = filter(UpperCamelCase_ ) # Activate later when tokenizer support batched inputs # with dataset.formatted_as(type='numpy'): # times[func.__name__ + " fast-tokenizer batched numpy"] = func(dataset, function=tokenize, batched=True) with open(UpperCamelCase_ , 'wb' ) as f: f.write(json.dumps(UpperCamelCase_ ).encode('utf-8' ) ) if __name__ == "__main__": # useful to run the profiler benchmark_map_filter()
169
1
import unittest from transformers import ( MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, Pipeline, ZeroShotClassificationPipeline, pipeline, ) from transformers.testing_utils import is_pipeline_test, nested_simplify, require_tf, require_torch, slow from .test_pipelines_common import ANY # These 2 model types require different inputs than those of the usual text models. _lowerCAmelCase : str = {"LayoutLMv2Config", "LayoutLMv3Config"} @is_pipeline_test class _UpperCamelCase ( unittest.TestCase ): UpperCAmelCase_ = MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING UpperCAmelCase_ = TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING if model_mapping is not None: UpperCAmelCase_ = {config: model for config, model in model_mapping.items() if config.__name__ not in _TO_SKIP} if tf_model_mapping is not None: UpperCAmelCase_ = { config: model for config, model in tf_model_mapping.items() if config.__name__ not in _TO_SKIP } def UpperCAmelCase_ ( self :List[str] , lowerCamelCase :Dict , lowerCamelCase :Any , lowerCamelCase :Dict ) -> Tuple: UpperCAmelCase__ = ZeroShotClassificationPipeline( model=lowerCamelCase , tokenizer=lowerCamelCase , candidate_labels=["polics", "health"] ) return classifier, ["Who are you voting for in 2020?", "My stomach hurts."] def UpperCAmelCase_ ( self :List[str] , lowerCamelCase :Optional[int] , lowerCamelCase :Optional[Any] ) -> List[Any]: UpperCAmelCase__ = classifier("Who are you voting for in 2020?" , candidate_labels="politics" ) self.assertEqual(lowerCamelCase , {"sequence": ANY(lowerCamelCase ), "labels": [ANY(lowerCamelCase )], "scores": [ANY(lowerCamelCase )]} ) # No kwarg UpperCAmelCase__ = classifier("Who are you voting for in 2020?" , ["politics"] ) self.assertEqual(lowerCamelCase , {"sequence": ANY(lowerCamelCase ), "labels": [ANY(lowerCamelCase )], "scores": [ANY(lowerCamelCase )]} ) UpperCAmelCase__ = classifier("Who are you voting for in 2020?" , candidate_labels=["politics"] ) self.assertEqual(lowerCamelCase , {"sequence": ANY(lowerCamelCase ), "labels": [ANY(lowerCamelCase )], "scores": [ANY(lowerCamelCase )]} ) UpperCAmelCase__ = classifier("Who are you voting for in 2020?" , candidate_labels="politics, public health" ) self.assertEqual( lowerCamelCase , {"sequence": ANY(lowerCamelCase ), "labels": [ANY(lowerCamelCase ), ANY(lowerCamelCase )], "scores": [ANY(lowerCamelCase ), ANY(lowerCamelCase )]} ) self.assertAlmostEqual(sum(nested_simplify(outputs["scores"] ) ) , 1.0 ) UpperCAmelCase__ = classifier("Who are you voting for in 2020?" , candidate_labels=["politics", "public health"] ) self.assertEqual( lowerCamelCase , {"sequence": ANY(lowerCamelCase ), "labels": [ANY(lowerCamelCase ), ANY(lowerCamelCase )], "scores": [ANY(lowerCamelCase ), ANY(lowerCamelCase )]} ) self.assertAlmostEqual(sum(nested_simplify(outputs["scores"] ) ) , 1.0 ) UpperCAmelCase__ = classifier( "Who are you voting for in 2020?" , candidate_labels="politics" , hypothesis_template="This text is about {}" ) self.assertEqual(lowerCamelCase , {"sequence": ANY(lowerCamelCase ), "labels": [ANY(lowerCamelCase )], "scores": [ANY(lowerCamelCase )]} ) # https://github.com/huggingface/transformers/issues/13846 UpperCAmelCase__ = classifier(["I am happy"] , ["positive", "negative"] ) self.assertEqual( lowerCamelCase , [ {"sequence": ANY(lowerCamelCase ), "labels": [ANY(lowerCamelCase ), ANY(lowerCamelCase )], "scores": [ANY(lowerCamelCase ), ANY(lowerCamelCase )]} for i in range(1 ) ] , ) UpperCAmelCase__ = classifier(["I am happy", "I am sad"] , ["positive", "negative"] ) self.assertEqual( lowerCamelCase , [ {"sequence": ANY(lowerCamelCase ), "labels": [ANY(lowerCamelCase ), ANY(lowerCamelCase )], "scores": [ANY(lowerCamelCase ), ANY(lowerCamelCase )]} for i in range(2 ) ] , ) with self.assertRaises(lowerCamelCase ): classifier("" , candidate_labels="politics" ) with self.assertRaises(lowerCamelCase ): classifier(lowerCamelCase , candidate_labels="politics" ) with self.assertRaises(lowerCamelCase ): classifier("Who are you voting for in 2020?" , candidate_labels="" ) with self.assertRaises(lowerCamelCase ): classifier("Who are you voting for in 2020?" , candidate_labels=lowerCamelCase ) with self.assertRaises(lowerCamelCase ): classifier( "Who are you voting for in 2020?" , candidate_labels="politics" , hypothesis_template="Not formatting template" , ) with self.assertRaises(lowerCamelCase ): classifier( "Who are you voting for in 2020?" , candidate_labels="politics" , hypothesis_template=lowerCamelCase , ) self.run_entailment_id(lowerCamelCase ) def UpperCAmelCase_ ( self :Optional[int] , lowerCamelCase :Pipeline ) -> Tuple: UpperCAmelCase__ = zero_shot_classifier.model.config UpperCAmelCase__ = config.labelaid UpperCAmelCase__ = zero_shot_classifier.entailment_id UpperCAmelCase__ = {"LABEL_0": 0, "LABEL_1": 1, "LABEL_2": 2} self.assertEqual(zero_shot_classifier.entailment_id , -1 ) UpperCAmelCase__ = {"entailment": 0, "neutral": 1, "contradiction": 2} self.assertEqual(zero_shot_classifier.entailment_id , 0 ) UpperCAmelCase__ = {"ENTAIL": 0, "NON-ENTAIL": 1} self.assertEqual(zero_shot_classifier.entailment_id , 0 ) UpperCAmelCase__ = {"ENTAIL": 2, "NEUTRAL": 1, "CONTR": 0} self.assertEqual(zero_shot_classifier.entailment_id , 2 ) UpperCAmelCase__ = original_labelaid self.assertEqual(lowerCamelCase , zero_shot_classifier.entailment_id ) @require_torch def UpperCAmelCase_ ( self :Union[str, Any] ) -> List[Any]: UpperCAmelCase__ = pipeline( "zero-shot-classification" , model="sshleifer/tiny-distilbert-base-cased-distilled-squad" , framework="pt" , ) # There was a regression in 4.10 for this # Adding a test so we don't make the mistake again. # https://github.com/huggingface/transformers/issues/13381#issuecomment-912343499 zero_shot_classifier( "Who are you voting for in 2020?" * 100 , candidate_labels=["politics", "public health", "science"] ) @require_torch def UpperCAmelCase_ ( self :Tuple ) -> Optional[Any]: UpperCAmelCase__ = pipeline( "zero-shot-classification" , model="sshleifer/tiny-distilbert-base-cased-distilled-squad" , framework="pt" , ) UpperCAmelCase__ = zero_shot_classifier( "Who are you voting for in 2020?" , candidate_labels=["politics", "public health", "science"] ) self.assertEqual( nested_simplify(lowerCamelCase ) , { "sequence": "Who are you voting for in 2020?", "labels": ["science", "public health", "politics"], "scores": [0.3_33, 0.3_33, 0.3_33], } , ) @require_tf def UpperCAmelCase_ ( self :List[Any] ) -> Optional[Any]: UpperCAmelCase__ = pipeline( "zero-shot-classification" , model="sshleifer/tiny-distilbert-base-cased-distilled-squad" , framework="tf" , ) UpperCAmelCase__ = zero_shot_classifier( "Who are you voting for in 2020?" , candidate_labels=["politics", "public health", "science"] ) self.assertEqual( nested_simplify(lowerCamelCase ) , { "sequence": "Who are you voting for in 2020?", "labels": ["science", "public health", "politics"], "scores": [0.3_33, 0.3_33, 0.3_33], } , ) @slow @require_torch def UpperCAmelCase_ ( self :Optional[int] ) -> List[Any]: UpperCAmelCase__ = pipeline("zero-shot-classification" , model="roberta-large-mnli" , framework="pt" ) UpperCAmelCase__ = zero_shot_classifier( "Who are you voting for in 2020?" , candidate_labels=["politics", "public health", "science"] ) self.assertEqual( nested_simplify(lowerCamelCase ) , { "sequence": "Who are you voting for in 2020?", "labels": ["politics", "public health", "science"], "scores": [0.9_76, 0.0_15, 0.0_09], } , ) UpperCAmelCase__ = zero_shot_classifier( "The dominant sequence transduction models are based on complex recurrent or convolutional neural networks" " in an encoder-decoder configuration. The best performing models also connect the encoder and decoder" " through an attention mechanism. We propose a new simple network architecture, the Transformer, based" " solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two" " machine translation tasks show these models to be superior in quality while being more parallelizable" " and requiring significantly less time to train. Our model achieves 28.4 BLEU on the WMT 2014" " English-to-German translation task, improving over the existing best results, including ensembles by" " over 2 BLEU. On the WMT 2014 English-to-French translation task, our model establishes a new" " single-model state-of-the-art BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small" " fraction of the training costs of the best models from the literature. We show that the Transformer" " generalizes well to other tasks by applying it successfully to English constituency parsing both with" " large and limited training data." , candidate_labels=["machine learning", "statistics", "translation", "vision"] , multi_label=lowerCamelCase , ) self.assertEqual( nested_simplify(lowerCamelCase ) , { "sequence": ( "The dominant sequence transduction models are based on complex recurrent or convolutional neural" " networks in an encoder-decoder configuration. The best performing models also connect the" " encoder and decoder through an attention mechanism. We propose a new simple network" " architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence" " and convolutions entirely. Experiments on two machine translation tasks show these models to be" " superior in quality while being more parallelizable and requiring significantly less time to" " train. Our model achieves 28.4 BLEU on the WMT 2014 English-to-German translation task," " improving over the existing best results, including ensembles by over 2 BLEU. On the WMT 2014" " English-to-French translation task, our model establishes a new single-model state-of-the-art" " BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small fraction of the training" " costs of the best models from the literature. We show that the Transformer generalizes well to" " other tasks by applying it successfully to English constituency parsing both with large and" " limited training data." ), "labels": ["translation", "machine learning", "vision", "statistics"], "scores": [0.8_17, 0.7_13, 0.0_18, 0.0_18], } , ) @slow @require_tf def UpperCAmelCase_ ( self :Union[str, Any] ) -> List[str]: UpperCAmelCase__ = pipeline("zero-shot-classification" , model="roberta-large-mnli" , framework="tf" ) UpperCAmelCase__ = zero_shot_classifier( "Who are you voting for in 2020?" , candidate_labels=["politics", "public health", "science"] ) self.assertEqual( nested_simplify(lowerCamelCase ) , { "sequence": "Who are you voting for in 2020?", "labels": ["politics", "public health", "science"], "scores": [0.9_76, 0.0_15, 0.0_09], } , ) UpperCAmelCase__ = zero_shot_classifier( "The dominant sequence transduction models are based on complex recurrent or convolutional neural networks" " in an encoder-decoder configuration. The best performing models also connect the encoder and decoder" " through an attention mechanism. We propose a new simple network architecture, the Transformer, based" " solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two" " machine translation tasks show these models to be superior in quality while being more parallelizable" " and requiring significantly less time to train. Our model achieves 28.4 BLEU on the WMT 2014" " English-to-German translation task, improving over the existing best results, including ensembles by" " over 2 BLEU. On the WMT 2014 English-to-French translation task, our model establishes a new" " single-model state-of-the-art BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small" " fraction of the training costs of the best models from the literature. We show that the Transformer" " generalizes well to other tasks by applying it successfully to English constituency parsing both with" " large and limited training data." , candidate_labels=["machine learning", "statistics", "translation", "vision"] , multi_label=lowerCamelCase , ) self.assertEqual( nested_simplify(lowerCamelCase ) , { "sequence": ( "The dominant sequence transduction models are based on complex recurrent or convolutional neural" " networks in an encoder-decoder configuration. The best performing models also connect the" " encoder and decoder through an attention mechanism. We propose a new simple network" " architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence" " and convolutions entirely. Experiments on two machine translation tasks show these models to be" " superior in quality while being more parallelizable and requiring significantly less time to" " train. Our model achieves 28.4 BLEU on the WMT 2014 English-to-German translation task," " improving over the existing best results, including ensembles by over 2 BLEU. On the WMT 2014" " English-to-French translation task, our model establishes a new single-model state-of-the-art" " BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small fraction of the training" " costs of the best models from the literature. We show that the Transformer generalizes well to" " other tasks by applying it successfully to English constituency parsing both with large and" " limited training data." ), "labels": ["translation", "machine learning", "vision", "statistics"], "scores": [0.8_17, 0.7_13, 0.0_18, 0.0_18], } , )
169
import unittest from transformers import is_vision_available from transformers.pipelines import pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class _UpperCamelCase : @staticmethod def UpperCAmelCase_ ( *lowerCamelCase :Tuple , **lowerCamelCase :List[Any] ) -> Tuple: pass @is_pipeline_test @require_vision class _UpperCamelCase ( unittest.TestCase ): @require_torch def UpperCAmelCase_ ( self :int ) -> Optional[Any]: UpperCAmelCase__ = pipeline( model="hf-internal-testing/tiny-random-clip-zero-shot-image-classification" , ) UpperCAmelCase__ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) UpperCAmelCase__ = image_classifier(lowerCamelCase , candidate_labels=["a", "b", "c"] ) # The floating scores are so close, we enter floating error approximation and the order is not guaranteed across # python and torch versions. self.assertIn( nested_simplify(lowerCamelCase ) , [ [{"score": 0.3_33, "label": "a"}, {"score": 0.3_33, "label": "b"}, {"score": 0.3_33, "label": "c"}], [{"score": 0.3_33, "label": "a"}, {"score": 0.3_33, "label": "c"}, {"score": 0.3_33, "label": "b"}], ] , ) UpperCAmelCase__ = image_classifier([image] * 5 , candidate_labels=["A", "B", "C"] , batch_size=2 ) self.assertEqual( nested_simplify(lowerCamelCase ) , [ [ {"score": 0.3_33, "label": ANY(lowerCamelCase )}, {"score": 0.3_33, "label": ANY(lowerCamelCase )}, {"score": 0.3_33, "label": ANY(lowerCamelCase )}, ], [ {"score": 0.3_33, "label": ANY(lowerCamelCase )}, {"score": 0.3_33, "label": ANY(lowerCamelCase )}, {"score": 0.3_33, "label": ANY(lowerCamelCase )}, ], [ {"score": 0.3_33, "label": ANY(lowerCamelCase )}, {"score": 0.3_33, "label": ANY(lowerCamelCase )}, {"score": 0.3_33, "label": ANY(lowerCamelCase )}, ], [ {"score": 0.3_33, "label": ANY(lowerCamelCase )}, {"score": 0.3_33, "label": ANY(lowerCamelCase )}, {"score": 0.3_33, "label": ANY(lowerCamelCase )}, ], [ {"score": 0.3_33, "label": ANY(lowerCamelCase )}, {"score": 0.3_33, "label": ANY(lowerCamelCase )}, {"score": 0.3_33, "label": ANY(lowerCamelCase )}, ], ] , ) @require_tf def UpperCAmelCase_ ( self :List[str] ) -> Optional[int]: UpperCAmelCase__ = pipeline( model="hf-internal-testing/tiny-random-clip-zero-shot-image-classification" , framework="tf" ) UpperCAmelCase__ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) UpperCAmelCase__ = image_classifier(lowerCamelCase , candidate_labels=["a", "b", "c"] ) self.assertEqual( nested_simplify(lowerCamelCase ) , [{"score": 0.3_33, "label": "a"}, {"score": 0.3_33, "label": "b"}, {"score": 0.3_33, "label": "c"}] , ) UpperCAmelCase__ = image_classifier([image] * 5 , candidate_labels=["A", "B", "C"] , batch_size=2 ) self.assertEqual( nested_simplify(lowerCamelCase ) , [ [ {"score": 0.3_33, "label": ANY(lowerCamelCase )}, {"score": 0.3_33, "label": ANY(lowerCamelCase )}, {"score": 0.3_33, "label": ANY(lowerCamelCase )}, ], [ {"score": 0.3_33, "label": ANY(lowerCamelCase )}, {"score": 0.3_33, "label": ANY(lowerCamelCase )}, {"score": 0.3_33, "label": ANY(lowerCamelCase )}, ], [ {"score": 0.3_33, "label": ANY(lowerCamelCase )}, {"score": 0.3_33, "label": ANY(lowerCamelCase )}, {"score": 0.3_33, "label": ANY(lowerCamelCase )}, ], [ {"score": 0.3_33, "label": ANY(lowerCamelCase )}, {"score": 0.3_33, "label": ANY(lowerCamelCase )}, {"score": 0.3_33, "label": ANY(lowerCamelCase )}, ], [ {"score": 0.3_33, "label": ANY(lowerCamelCase )}, {"score": 0.3_33, "label": ANY(lowerCamelCase )}, {"score": 0.3_33, "label": ANY(lowerCamelCase )}, ], ] , ) @slow @require_torch def UpperCAmelCase_ ( self :str ) -> Dict: UpperCAmelCase__ = pipeline( task="zero-shot-image-classification" , model="openai/clip-vit-base-patch32" , ) # This is an image of 2 cats with remotes and no planes UpperCAmelCase__ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) UpperCAmelCase__ = image_classifier(lowerCamelCase , candidate_labels=["cat", "plane", "remote"] ) self.assertEqual( nested_simplify(lowerCamelCase ) , [ {"score": 0.5_11, "label": "remote"}, {"score": 0.4_85, "label": "cat"}, {"score": 0.0_04, "label": "plane"}, ] , ) UpperCAmelCase__ = image_classifier([image] * 5 , candidate_labels=["cat", "plane", "remote"] , batch_size=2 ) self.assertEqual( nested_simplify(lowerCamelCase ) , [ [ {"score": 0.5_11, "label": "remote"}, {"score": 0.4_85, "label": "cat"}, {"score": 0.0_04, "label": "plane"}, ], ] * 5 , ) @slow @require_tf def UpperCAmelCase_ ( self :List[Any] ) -> List[str]: UpperCAmelCase__ = pipeline( task="zero-shot-image-classification" , model="openai/clip-vit-base-patch32" , framework="tf" ) # This is an image of 2 cats with remotes and no planes UpperCAmelCase__ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) UpperCAmelCase__ = image_classifier(lowerCamelCase , candidate_labels=["cat", "plane", "remote"] ) self.assertEqual( nested_simplify(lowerCamelCase ) , [ {"score": 0.5_11, "label": "remote"}, {"score": 0.4_85, "label": "cat"}, {"score": 0.0_04, "label": "plane"}, ] , ) UpperCAmelCase__ = image_classifier([image] * 5 , candidate_labels=["cat", "plane", "remote"] , batch_size=2 ) self.assertEqual( nested_simplify(lowerCamelCase ) , [ [ {"score": 0.5_11, "label": "remote"}, {"score": 0.4_85, "label": "cat"}, {"score": 0.0_04, "label": "plane"}, ], ] * 5 , )
169
1
"""simple docstring""" import argparse import json from dataclasses import dataclass, field from functools import partial from pathlib import Path from typing import List import timm import torch import torch.nn as nn from huggingface_hub import hf_hub_download from torch import Tensor from transformers import AutoImageProcessor, ResNetConfig, ResNetForImageClassification from transformers.utils import logging logging.set_verbosity_info() __UpperCamelCase : Tuple = logging.get_logger() @dataclass class a : snake_case__ = 42 snake_case__ = field(default_factory=a__ ) snake_case__ = field(default_factory=a__ ) def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case ): """simple docstring""" lowerCAmelCase = len(list(m.modules() ) ) == 1 or isinstance(_snake_case , nn.Convad ) or isinstance(_snake_case , nn.BatchNormad ) if has_not_submodules: self.traced.append(_snake_case ) def __call__( self , _snake_case ): """simple docstring""" for m in self.module.modules(): self.handles.append(m.register_forward_hook(self._forward_hook ) ) self.module(_snake_case ) [x.remove() for x in self.handles] return self @property def UpperCamelCase__ ( self ): """simple docstring""" return list(filter(lambda _snake_case : len(list(x.state_dict().keys() ) ) > 0 , self.traced ) ) @dataclass class a : snake_case__ = 42 snake_case__ = 42 snake_case__ = 0 snake_case__ = field(default_factory=a__ ) snake_case__ = field(default_factory=a__ ) def __call__( self , _snake_case ): """simple docstring""" lowerCAmelCase = Tracker(self.dest )(_snake_case ).parametrized lowerCAmelCase = Tracker(self.src )(_snake_case ).parametrized lowerCAmelCase = list(filter(lambda _snake_case : type(_snake_case ) not in self.src_skip , _snake_case ) ) lowerCAmelCase = list(filter(lambda _snake_case : type(_snake_case ) not in self.dest_skip , _snake_case ) ) if len(_snake_case ) != len(_snake_case ): raise Exception( F'Numbers of operations are different. Source module has {len(_snake_case )} operations while' F' destination module has {len(_snake_case )}.' ) for dest_m, src_m in zip(_snake_case , _snake_case ): dest_m.load_state_dict(src_m.state_dict() ) if self.verbose == 1: print(F'Transfered from={src_m} to={dest_m}' ) def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : str , _UpperCAmelCase : ResNetConfig , _UpperCAmelCase : Path , _UpperCAmelCase : bool = True ): print(F'Converting {name}...' ) with torch.no_grad(): lowerCAmelCase = timm.create_model(_UpperCAmelCase , pretrained=_UpperCAmelCase ).eval() lowerCAmelCase = ResNetForImageClassification(_UpperCAmelCase ).eval() lowerCAmelCase = ModuleTransfer(src=_UpperCAmelCase , dest=_UpperCAmelCase ) lowerCAmelCase = torch.randn((1, 3, 224, 224) ) module_transfer(_UpperCAmelCase ) assert torch.allclose(from_model(_UpperCAmelCase ) , our_model(_UpperCAmelCase ).logits ), "The model logits don't match the original one." lowerCAmelCase = F'resnet{"-".join(name.split("resnet" ) )}' print(_UpperCAmelCase ) if push_to_hub: our_model.push_to_hub( repo_path_or_name=save_directory / checkpoint_name , commit_message='Add model' , use_temp_dir=_UpperCAmelCase , ) # we can use the convnext one lowerCAmelCase = AutoImageProcessor.from_pretrained('facebook/convnext-base-224-22k-1k' ) image_processor.push_to_hub( repo_path_or_name=save_directory / checkpoint_name , commit_message='Add image processor' , use_temp_dir=_UpperCAmelCase , ) print(F'Pushed {checkpoint_name}' ) def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Path , _UpperCAmelCase : str = None , _UpperCAmelCase : bool = True ): lowerCAmelCase = 'imagenet-1k-id2label.json' lowerCAmelCase = 1000 lowerCAmelCase = (1, num_labels) lowerCAmelCase = 'huggingface/label-files' lowerCAmelCase = num_labels lowerCAmelCase = json.load(open(hf_hub_download(_UpperCAmelCase , _UpperCAmelCase , repo_type='dataset' ) , 'r' ) ) lowerCAmelCase = {int(_UpperCAmelCase ): v for k, v in idalabel.items()} lowerCAmelCase = idalabel lowerCAmelCase = {v: k for k, v in idalabel.items()} lowerCAmelCase = partial(_UpperCAmelCase , num_labels=_UpperCAmelCase , idalabel=_UpperCAmelCase , labelaid=_UpperCAmelCase ) lowerCAmelCase = { 'resnet18': ImageNetPreTrainedConfig( depths=[2, 2, 2, 2] , hidden_sizes=[64, 128, 256, 512] , layer_type='basic' ), 'resnet26': ImageNetPreTrainedConfig( depths=[2, 2, 2, 2] , hidden_sizes=[256, 512, 1024, 2048] , layer_type='bottleneck' ), 'resnet34': ImageNetPreTrainedConfig( depths=[3, 4, 6, 3] , hidden_sizes=[64, 128, 256, 512] , layer_type='basic' ), 'resnet50': ImageNetPreTrainedConfig( depths=[3, 4, 6, 3] , hidden_sizes=[256, 512, 1024, 2048] , layer_type='bottleneck' ), 'resnet101': ImageNetPreTrainedConfig( depths=[3, 4, 23, 3] , hidden_sizes=[256, 512, 1024, 2048] , layer_type='bottleneck' ), 'resnet152': ImageNetPreTrainedConfig( depths=[3, 8, 36, 3] , hidden_sizes=[256, 512, 1024, 2048] , layer_type='bottleneck' ), } if model_name: convert_weight_and_push(_UpperCAmelCase , names_to_config[model_name] , _UpperCAmelCase , _UpperCAmelCase ) else: for model_name, config in names_to_config.items(): convert_weight_and_push(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) return config, expected_shape if __name__ == "__main__": __UpperCamelCase : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default=None, type=str, help=( '''The name of the model you wish to convert, it must be one of the supported resnet* architecture,''' ''' currently: resnet18,26,34,50,101,152. If `None`, all of them will the converted.''' ), ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=Path, required=True, help='''Path to the output PyTorch model directory.''', ) parser.add_argument( '''--push_to_hub''', default=True, type=bool, required=False, help='''If True, push model and image processor to the hub.''', ) __UpperCamelCase : Dict = parser.parse_args() __UpperCamelCase : Path = args.pytorch_dump_folder_path pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True) convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
309
"""simple docstring""" import re def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : str ): if len(re.findall('[ATCG]' , _UpperCAmelCase ) ) != len(_UpperCAmelCase ): raise ValueError('Invalid Strand' ) return dna.translate(dna.maketrans('ATCG' , 'TAGC' ) ) if __name__ == "__main__": import doctest doctest.testmod()
309
1
import numpy as np import pandas as pd from sklearn.preprocessing import Normalizer from sklearn.svm import SVR from statsmodels.tsa.statespace.sarimax import SARIMAX def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : Any , _SCREAMING_SNAKE_CASE : Dict , _SCREAMING_SNAKE_CASE : List[Any] , _SCREAMING_SNAKE_CASE : Optional[Any] ): """simple docstring""" __a = np.array([[1, item, train_mtch[i]] for i, item in enumerate(_UpperCamelCase )] ) __a = np.array(_UpperCamelCase ) __a = np.dot(np.dot(np.linalg.inv(np.dot(x.transpose() , _UpperCamelCase ) ) , x.transpose() ) , _UpperCamelCase ) return abs(beta[0] + test_dt[0] * beta[1] + test_mtch[0] + beta[2] ) def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : Tuple , _SCREAMING_SNAKE_CASE : Union[str, Any] ): """simple docstring""" __a = (1, 2, 1) __a = (1, 1, 0, 7) __a = SARIMAX( _UpperCamelCase , exog=_UpperCamelCase , order=_UpperCamelCase , seasonal_order=_UpperCamelCase ) __a = model.fit(disp=_UpperCamelCase , maxiter=600 , method="""nm""" ) __a = model_fit.predict(1 , len(_UpperCamelCase ) , exog=[test_match] ) return result[0] def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : List[str] , _SCREAMING_SNAKE_CASE : Dict , _SCREAMING_SNAKE_CASE : Tuple ): """simple docstring""" __a = SVR(kernel="""rbf""" , C=1 , gamma=0.1 , epsilon=0.1 ) regressor.fit(_UpperCamelCase , _UpperCamelCase ) __a = regressor.predict(_UpperCamelCase ) return y_pred[0] def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : Tuple ): """simple docstring""" train_user.sort() __a = np.percentile(_UpperCamelCase , 25 ) __a = np.percentile(_UpperCamelCase , 75 ) __a = qa - qa __a = qa - (iqr * 0.1) return low_lim def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : Any , _SCREAMING_SNAKE_CASE : Tuple ): """simple docstring""" __a = 0 __a = 0 for i in list_vote: if i > actual_result: __a = not_safe + 1 else: if abs(abs(_UpperCamelCase ) - abs(_UpperCamelCase ) ) <= 0.1: safe += 1 else: not_safe += 1 return safe > not_safe if __name__ == "__main__": # data_input_df = pd.read_csv("ex_data.csv", header=None) lowerCamelCase__ = [[1_8231, 0.0, 1], [2_2621, 1.0, 2], [1_5675, 0.0, 3], [2_3583, 1.0, 4]] lowerCamelCase__ = pd.DataFrame( data_input, columns=["""total_user""", """total_even""", """days"""] ) lowerCamelCase__ = Normalizer().fit_transform(data_input_df.values) # split data lowerCamelCase__ = normalize_df[:, 2].tolist() lowerCamelCase__ = normalize_df[:, 0].tolist() lowerCamelCase__ = normalize_df[:, 1].tolist() # for svr (input variable = total date and total match) lowerCamelCase__ = normalize_df[:, [1, 2]].tolist() lowerCamelCase__ = x[: len(x) - 1] lowerCamelCase__ = x[len(x) - 1 :] # for linear regression & sarimax lowerCamelCase__ = total_date[: len(total_date) - 1] lowerCamelCase__ = total_user[: len(total_user) - 1] lowerCamelCase__ = total_match[: len(total_match) - 1] lowerCamelCase__ = total_date[len(total_date) - 1 :] lowerCamelCase__ = total_user[len(total_user) - 1 :] lowerCamelCase__ = total_match[len(total_match) - 1 :] # voting system with forecasting lowerCamelCase__ = [ linear_regression_prediction( trn_date, trn_user, trn_match, tst_date, tst_match ), sarimax_predictor(trn_user, trn_match, tst_match), support_vector_regressor(x_train, x_test, trn_user), ] # check the safety of today's data lowerCamelCase__ = """""" if data_safety_checker(res_vote, tst_user) else """not """ print("""Today\'s data is {not_str}safe.""")
302
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import GLPNImageProcessor class __lowerCAmelCase ( unittest.TestCase ): def __init__(self , __magic_name__ , __magic_name__=7 , __magic_name__=3 , __magic_name__=18 , __magic_name__=30 , __magic_name__=400 , __magic_name__=True , __magic_name__=32 , __magic_name__=True , ) -> Dict: '''simple docstring''' snake_case_ : Tuple = parent snake_case_ : Union[str, Any] = batch_size snake_case_ : Union[str, Any] = num_channels snake_case_ : Optional[Any] = image_size snake_case_ : int = min_resolution snake_case_ : Any = max_resolution snake_case_ : Tuple = do_resize snake_case_ : str = size_divisor snake_case_ : Optional[Any] = do_rescale def lowerCamelCase (self ) -> Dict: '''simple docstring''' return { "do_resize": self.do_resize, "size_divisor": self.size_divisor, "do_rescale": self.do_rescale, } @require_torch @require_vision class __lowerCAmelCase ( _a, unittest.TestCase ): lowerCamelCase_ : Optional[Any] = GLPNImageProcessor if is_vision_available() else None def lowerCamelCase (self ) -> Optional[Any]: '''simple docstring''' snake_case_ : str = GLPNImageProcessingTester(self ) @property def lowerCamelCase (self ) -> Union[str, Any]: '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def lowerCamelCase (self ) -> List[str]: '''simple docstring''' snake_case_ : Optional[int] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__magic_name__ , '''do_resize''' ) ) self.assertTrue(hasattr(__magic_name__ , '''size_divisor''' ) ) self.assertTrue(hasattr(__magic_name__ , '''resample''' ) ) self.assertTrue(hasattr(__magic_name__ , '''do_rescale''' ) ) def lowerCamelCase (self ) -> List[Any]: '''simple docstring''' pass def lowerCamelCase (self ) -> int: '''simple docstring''' snake_case_ : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images snake_case_ : Union[str, Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=__magic_name__ ) for image in image_inputs: self.assertIsInstance(__magic_name__ , Image.Image ) # Test not batched input (GLPNImageProcessor doesn't support batching) snake_case_ : Optional[int] = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisor == 0 ) self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisor == 0 ) def lowerCamelCase (self ) -> Dict: '''simple docstring''' snake_case_ : str = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors snake_case_ : List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=__magic_name__ , numpify=__magic_name__ ) for image in image_inputs: self.assertIsInstance(__magic_name__ , np.ndarray ) # Test not batched input (GLPNImageProcessor doesn't support batching) snake_case_ : Any = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisor == 0 ) self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisor == 0 ) def lowerCamelCase (self ) -> Optional[Any]: '''simple docstring''' snake_case_ : Dict = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors snake_case_ : Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=__magic_name__ , torchify=__magic_name__ ) for image in image_inputs: self.assertIsInstance(__magic_name__ , torch.Tensor ) # Test not batched input (GLPNImageProcessor doesn't support batching) snake_case_ : Dict = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisor == 0 ) self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisor == 0 )
279
0
def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Tuple: # "extended trapezoidal rule" # int(f) = dx/2 * (f1 + 2f2 + ... + fn) lowerCAmelCase__ : Any = (boundary[1] - boundary[0]) / steps lowerCAmelCase__ : int = boundary[0] lowerCAmelCase__ : Union[str, Any] = boundary[1] lowerCAmelCase__ : Dict = make_points(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ : List[Any] = 0.0 y += (h / 2.0) * f(SCREAMING_SNAKE_CASE_ ) for i in x_i: # print(i) y += h * f(SCREAMING_SNAKE_CASE_ ) y += (h / 2.0) * f(SCREAMING_SNAKE_CASE_ ) return y def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> List[str]: lowerCAmelCase__ : Any = a + h while x < (b - h): yield x lowerCAmelCase__ : int = x + h def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ ) -> Any: # enter your function here lowerCAmelCase__ : Any = (x - 0) * (x - 0) return y def lowerCAmelCase__ ( ) -> Any: lowerCAmelCase__ : Tuple = 0.0 # Lower bound of integration lowerCAmelCase__ : Dict = 1.0 # Upper bound of integration lowerCAmelCase__ : List[Any] = 10.0 # define number of steps or resolution lowerCAmelCase__ : str = [a, b] # define boundary of integration lowerCAmelCase__ : Union[str, Any] = method_a(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) print(F'''y = {y}''' ) if __name__ == "__main__": main()
307
def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ ) -> str: stooge(SCREAMING_SNAKE_CASE_ , 0 , len(SCREAMING_SNAKE_CASE_ ) - 1 ) return arr def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Dict: if i >= h: return # If first element is smaller than the last then swap them if arr[i] > arr[h]: lowerCAmelCase__ , lowerCAmelCase__ : Tuple = arr[h], arr[i] # If there are more than 2 elements in the array if h - i + 1 > 2: lowerCAmelCase__ : Union[str, Any] = (int)((h - i + 1) / 3 ) # Recursively sort first 2/3 elements stooge(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , (h - t) ) # Recursively sort last 2/3 elements stooge(SCREAMING_SNAKE_CASE_ , i + t , (SCREAMING_SNAKE_CASE_) ) # Recursively sort first 2/3 elements stooge(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , (h - t) ) if __name__ == "__main__": lowerCamelCase__ = input("""Enter numbers separated by a comma:\n""").strip() lowerCamelCase__ = [int(item) for item in user_input.split(""",""")] print(stooge_sort(unsorted))
307
1
"""simple docstring""" __lowerCamelCase = [ 9_99, 8_00, 7_99, 6_00, 5_99, 5_00, 4_00, 3_99, 3_77, 3_55, 3_33, 3_11, 2_88, 2_66, 2_44, 2_22, 2_00, 1_99, 1_77, 1_55, 1_33, 1_11, 88, 66, 44, 22, 0, ] __lowerCamelCase = [ 9_99, 9_76, 9_52, 9_28, 9_05, 8_82, 8_58, 8_57, 8_10, 7_62, 7_15, 7_14, 5_72, 4_29, 4_28, 2_86, 2_85, 2_38, 1_90, 1_43, 1_42, 1_18, 95, 71, 47, 24, 0, ] __lowerCamelCase = [ 9_99, 9_88, 9_77, 9_66, 9_55, 9_44, 9_33, 9_22, 9_11, 9_00, 8_99, 8_79, 8_59, 8_40, 8_20, 8_00, 7_99, 7_66, 7_33, 7_00, 6_99, 6_50, 6_00, 5_99, 5_00, 4_99, 4_00, 3_99, 3_50, 3_00, 2_99, 2_66, 2_33, 2_00, 1_99, 1_79, 1_59, 1_40, 1_20, 1_00, 99, 88, 77, 66, 55, 44, 33, 22, 11, 0, ] __lowerCamelCase = [ 9_99, 9_95, 9_92, 9_89, 9_85, 9_81, 9_78, 9_75, 9_71, 9_67, 9_64, 9_61, 9_57, 9_56, 9_51, 9_47, 9_42, 9_37, 9_33, 9_28, 9_23, 9_19, 9_14, 9_13, 9_08, 9_03, 8_97, 8_92, 8_87, 8_81, 8_76, 8_71, 8_70, 8_64, 8_58, 8_52, 8_46, 8_40, 8_34, 8_28, 8_27, 8_20, 8_13, 8_06, 7_99, 7_92, 7_85, 7_84, 7_77, 7_70, 7_63, 7_56, 7_49, 7_42, 7_41, 7_33, 7_24, 7_16, 7_07, 6_99, 6_98, 6_88, 6_77, 6_66, 6_56, 6_55, 6_45, 6_34, 6_23, 6_13, 6_12, 5_98, 5_84, 5_70, 5_69, 5_55, 5_41, 5_27, 5_26, 5_05, 4_84, 4_83, 4_62, 4_40, 4_39, 3_96, 3_95, 3_52, 3_51, 3_08, 3_07, 2_64, 2_63, 2_20, 2_19, 1_76, 1_32, 88, 44, 0, ] __lowerCamelCase = [ 9_99, 9_97, 9_95, 9_92, 9_90, 9_88, 9_86, 9_84, 9_81, 9_79, 9_77, 9_75, 9_72, 9_70, 9_68, 9_66, 9_64, 9_61, 9_59, 9_57, 9_56, 9_54, 9_51, 9_49, 9_46, 9_44, 9_41, 9_39, 9_36, 9_34, 9_31, 9_29, 9_26, 9_24, 9_21, 9_19, 9_16, 9_14, 9_13, 9_10, 9_07, 9_05, 9_02, 8_99, 8_96, 8_93, 8_91, 8_88, 8_85, 8_82, 8_79, 8_77, 8_74, 8_71, 8_70, 8_67, 8_64, 8_61, 8_58, 8_55, 8_52, 8_49, 8_46, 8_43, 8_40, 8_37, 8_34, 8_31, 8_28, 8_27, 8_24, 8_21, 8_17, 8_14, 8_11, 8_08, 8_04, 8_01, 7_98, 7_95, 7_91, 7_88, 7_85, 7_84, 7_80, 7_77, 7_74, 7_70, 7_66, 7_63, 7_60, 7_56, 7_52, 7_49, 7_46, 7_42, 7_41, 7_37, 7_33, 7_30, 7_26, 7_22, 7_18, 7_14, 7_10, 7_07, 7_03, 6_99, 6_98, 6_94, 6_90, 6_85, 6_81, 6_77, 6_73, 6_69, 6_64, 6_60, 6_56, 6_55, 6_50, 6_46, 6_41, 6_36, 6_32, 6_27, 6_22, 6_18, 6_13, 6_12, 6_07, 6_02, 5_96, 5_91, 5_86, 5_80, 5_75, 5_70, 5_69, 5_63, 5_57, 5_51, 5_45, 5_39, 5_33, 5_27, 5_26, 5_19, 5_12, 5_05, 4_98, 4_91, 4_84, 4_83, 4_74, 4_66, 4_57, 4_49, 4_40, 4_39, 4_28, 4_18, 4_07, 3_96, 3_95, 3_81, 3_66, 3_52, 3_51, 3_30, 3_08, 3_07, 2_86, 2_64, 2_63, 2_42, 2_20, 2_19, 1_76, 1_75, 1_32, 1_31, 88, 44, 0, ] __lowerCamelCase = [ 9_99, 9_91, 9_82, 9_74, 9_66, 9_58, 9_50, 9_41, 9_33, 9_25, 9_16, 9_08, 9_00, 8_99, 8_74, 8_50, 8_25, 8_00, 7_99, 7_00, 6_00, 5_00, 4_00, 3_00, 2_00, 1_00, 0, ] __lowerCamelCase = [ 9_99, 9_92, 9_85, 9_78, 9_71, 9_64, 9_57, 9_49, 9_42, 9_35, 9_28, 9_21, 9_14, 9_07, 9_00, 8_99, 8_79, 8_59, 8_40, 8_20, 8_00, 7_99, 7_66, 7_33, 7_00, 6_99, 6_50, 6_00, 5_99, 5_00, 4_99, 4_00, 3_99, 3_00, 2_99, 2_00, 1_99, 1_00, 99, 0, ] __lowerCamelCase = [ 9_99, 9_96, 9_92, 9_89, 9_85, 9_82, 9_79, 9_75, 9_72, 9_68, 9_65, 9_61, 9_58, 9_55, 9_51, 9_48, 9_44, 9_41, 9_38, 9_34, 9_31, 9_27, 9_24, 9_20, 9_17, 9_14, 9_10, 9_07, 9_03, 9_00, 8_99, 8_91, 8_84, 8_76, 8_69, 8_61, 8_53, 8_46, 8_38, 8_30, 8_23, 8_15, 8_08, 8_00, 7_99, 7_88, 7_77, 7_66, 7_55, 7_44, 7_33, 7_22, 7_11, 7_00, 6_99, 6_88, 6_77, 6_66, 6_55, 6_44, 6_33, 6_22, 6_11, 6_00, 5_99, 5_85, 5_71, 5_57, 5_42, 5_28, 5_14, 5_00, 4_99, 4_85, 4_71, 4_57, 4_42, 4_28, 4_14, 4_00, 3_99, 3_79, 3_59, 3_40, 3_20, 3_00, 2_99, 2_79, 2_59, 2_40, 2_20, 2_00, 1_99, 1_66, 1_33, 1_00, 99, 66, 33, 0, ]
221
"""simple docstring""" import os import socket from contextlib import contextmanager import torch from ..commands.config.default import write_basic_config # noqa: F401 from ..state import PartialState from .dataclasses import DistributedType from .imports import is_deepspeed_available, is_tpu_available from .transformer_engine import convert_model from .versions import is_torch_version if is_deepspeed_available(): from deepspeed import DeepSpeedEngine if is_tpu_available(check_device=False): import torch_xla.core.xla_model as xm def UpperCAmelCase ( UpperCamelCase__ ): """simple docstring""" if is_torch_version('<' , '2.0.0' ) or not hasattr(UpperCamelCase__ , '_dynamo' ): return False return isinstance(UpperCamelCase__ , torch._dynamo.eval_frame.OptimizedModule ) def UpperCAmelCase ( UpperCamelCase__ , UpperCamelCase__ = True ): """simple docstring""" A__ = (torch.nn.parallel.DistributedDataParallel, torch.nn.DataParallel) A__ = is_compiled_module(UpperCamelCase__ ) if is_compiled: A__ = model A__ = model._orig_mod if is_deepspeed_available(): options += (DeepSpeedEngine,) while isinstance(UpperCamelCase__ , UpperCamelCase__ ): A__ = model.module if not keep_fpaa_wrapper: A__ = getattr(UpperCamelCase__ , 'forward' ) A__ = model.__dict__.pop('_original_forward' , UpperCamelCase__ ) if original_forward is not None: while hasattr(UpperCamelCase__ , '__wrapped__' ): A__ = forward.__wrapped__ if forward == original_forward: break A__ = forward if getattr(UpperCamelCase__ , '_converted_to_transformer_engine' , UpperCamelCase__ ): convert_model(UpperCamelCase__ , to_transformer_engine=UpperCamelCase__ ) if is_compiled: A__ = model A__ = compiled_model return model def UpperCAmelCase ( ): """simple docstring""" PartialState().wait_for_everyone() def UpperCAmelCase ( UpperCamelCase__ , UpperCamelCase__ ): """simple docstring""" if PartialState().distributed_type == DistributedType.TPU: xm.save(UpperCamelCase__ , UpperCamelCase__ ) elif PartialState().local_process_index == 0: torch.save(UpperCamelCase__ , UpperCamelCase__ ) @contextmanager def UpperCAmelCase ( **UpperCamelCase__ ): """simple docstring""" for key, value in kwargs.items(): A__ = str(UpperCamelCase__ ) yield for key in kwargs: if key.upper() in os.environ: del os.environ[key.upper()] def UpperCAmelCase ( UpperCamelCase__ ): """simple docstring""" if not hasattr(UpperCamelCase__ , '__qualname__' ) and not hasattr(UpperCamelCase__ , '__name__' ): A__ = getattr(UpperCamelCase__ , '__class__' , UpperCamelCase__ ) if hasattr(UpperCamelCase__ , '__qualname__' ): return obj.__qualname__ if hasattr(UpperCamelCase__ , '__name__' ): return obj.__name__ return str(UpperCamelCase__ ) def UpperCAmelCase ( UpperCamelCase__ , UpperCamelCase__ ): """simple docstring""" for key, value in source.items(): if isinstance(UpperCamelCase__ , UpperCamelCase__ ): A__ = destination.setdefault(UpperCamelCase__ , {} ) merge_dicts(UpperCamelCase__ , UpperCamelCase__ ) else: A__ = value return destination def UpperCAmelCase ( UpperCamelCase__ = None ): """simple docstring""" if port is None: A__ = 29_500 with socket.socket(socket.AF_INET , socket.SOCK_STREAM ) as s: return s.connect_ex(('localhost', port) ) == 0
221
1
'''simple docstring''' from __future__ import annotations def _lowercase ( __A ): '''simple docstring''' if len(__A ) == 0: return [] __UpperCamelCase , __UpperCamelCase = min(__A ), max(__A ) __UpperCamelCase = int(max_value - min_value ) + 1 __UpperCamelCase = [[] for _ in range(__A )] for i in my_list: buckets[int(i - min_value )].append(__A ) return [v for bucket in buckets for v in sorted(__A )] if __name__ == "__main__": from doctest import testmod testmod() assert bucket_sort([4, 5, 3, 2, 1]) == [1, 2, 3, 4, 5] assert bucket_sort([0, 1, -1_0, 1_5, 2, -2]) == [-1_0, -2, 0, 1, 2, 1_5]
365
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_convbert import ConvBertTokenizer a__ : List[Any] = logging.get_logger(__name__) a__ : str = {'vocab_file': 'vocab.txt'} a__ : Any = { 'vocab_file': { 'YituTech/conv-bert-base': 'https://huggingface.co/YituTech/conv-bert-base/resolve/main/vocab.txt', 'YituTech/conv-bert-medium-small': ( 'https://huggingface.co/YituTech/conv-bert-medium-small/resolve/main/vocab.txt' ), 'YituTech/conv-bert-small': 'https://huggingface.co/YituTech/conv-bert-small/resolve/main/vocab.txt', } } a__ : Tuple = { 'YituTech/conv-bert-base': 5_1_2, 'YituTech/conv-bert-medium-small': 5_1_2, 'YituTech/conv-bert-small': 5_1_2, } a__ : str = { 'YituTech/conv-bert-base': {'do_lower_case': True}, 'YituTech/conv-bert-medium-small': {'do_lower_case': True}, 'YituTech/conv-bert-small': {'do_lower_case': True}, } class UpperCAmelCase__ ( UpperCAmelCase_): __SCREAMING_SNAKE_CASE = VOCAB_FILES_NAMES __SCREAMING_SNAKE_CASE = PRETRAINED_VOCAB_FILES_MAP __SCREAMING_SNAKE_CASE = PRETRAINED_INIT_CONFIGURATION __SCREAMING_SNAKE_CASE = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __SCREAMING_SNAKE_CASE = ConvBertTokenizer def __init__( self , lowercase=None , lowercase=None , lowercase=True , lowercase="[UNK]" , lowercase="[SEP]" , lowercase="[PAD]" , lowercase="[CLS]" , lowercase="[MASK]" , lowercase=True , lowercase=None , **lowercase , ) -> int: super().__init__( lowercase , tokenizer_file=lowercase , do_lower_case=lowercase , unk_token=lowercase , sep_token=lowercase , pad_token=lowercase , cls_token=lowercase , mask_token=lowercase , tokenize_chinese_chars=lowercase , strip_accents=lowercase , **lowercase , ) __UpperCamelCase = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("""lowercase""" , lowercase ) != do_lower_case or normalizer_state.get("""strip_accents""" , lowercase ) != strip_accents or normalizer_state.get("""handle_chinese_chars""" , lowercase ) != tokenize_chinese_chars ): __UpperCamelCase = getattr(lowercase , normalizer_state.pop("""type""" ) ) __UpperCamelCase = do_lower_case __UpperCamelCase = strip_accents __UpperCamelCase = tokenize_chinese_chars __UpperCamelCase = normalizer_class(**lowercase ) __UpperCamelCase = do_lower_case def __lowerCamelCase ( self , lowercase , lowercase=None ) -> Tuple: __UpperCamelCase = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def __lowerCamelCase ( self , lowercase , lowercase = None ) -> List[int]: __UpperCamelCase = [self.sep_token_id] __UpperCamelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __lowerCamelCase ( self , lowercase , lowercase = None ) -> Tuple[str]: __UpperCamelCase = self._tokenizer.model.save(lowercase , name=lowercase ) return tuple(lowercase )
243
0
'''simple docstring''' import math def __lowerCamelCase ( lowerCAmelCase_ ) -> bool: assert isinstance(__UpperCAmelCase , __UpperCAmelCase ) and ( number >= 0 ), "'number' must been an int and positive" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or not number % 2: # Negatives, 0, 1 and all even numbers are not primes return False _a : Optional[Any] = range(3 , int(math.sqrt(__UpperCAmelCase ) + 1 ) , 2 ) return not any(not number % i for i in odd_numbers ) def __lowerCamelCase ( lowerCAmelCase_ , lowerCAmelCase_=1 , **lowerCAmelCase_ ) -> Union[str, Any]: _a : Tuple = factor * value _a : List[str] = value while not is_prime(__UpperCAmelCase ): value += 1 if not ("desc" in kwargs and kwargs["desc"] is True) else -1 if value == first_value_val: return next_prime(value + 1 , **__UpperCAmelCase ) return value
89
from math import factorial def lowerCAmelCase_ ( __UpperCAmelCase: int , __UpperCAmelCase: int ) -> int: # If either of the conditions are true, the function is being asked # to calculate a factorial of a negative number, which is not possible if n < k or k < 0: raise ValueError('''Please enter positive integers for n and k where n >= k''' ) return factorial(__UpperCAmelCase ) // (factorial(__UpperCAmelCase ) * factorial(n - k )) if __name__ == "__main__": print( 'The number of five-card hands possible from a standard', F'''fifty-two card deck is: {combinations(52, 5)}\n''', ) print( 'If a class of 40 students must be arranged into groups of', F'''4 for group projects, there are {combinations(40, 4)} ways''', 'to arrange them.\n', ) print( 'If 10 teams are competing in a Formula One race, there', F'''are {combinations(10, 3)} ways that first, second and''', 'third place can be awarded.', )
201
0
"""simple docstring""" def a__ ( _SCREAMING_SNAKE_CASE ): """simple docstring""" if len(_SCREAMING_SNAKE_CASE ) < 2: return collection def circle_sort_util(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> bool: UpperCamelCase = False if low == high: return swapped UpperCamelCase = low UpperCamelCase = high while left < right: if collection[left] > collection[right]: UpperCamelCase = ( collection[right], collection[left], ) UpperCamelCase = True left += 1 right -= 1 if left == right and collection[left] > collection[right + 1]: UpperCamelCase = ( collection[right + 1], collection[left], ) UpperCamelCase = True UpperCamelCase = low + int((high - low) / 2 ) UpperCamelCase = circle_sort_util(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) UpperCamelCase = circle_sort_util(_SCREAMING_SNAKE_CASE , mid + 1 , _SCREAMING_SNAKE_CASE ) return swapped or left_swap or right_swap UpperCamelCase = True while is_not_sorted is True: UpperCamelCase = circle_sort_util(_SCREAMING_SNAKE_CASE , 0 , len(_SCREAMING_SNAKE_CASE ) - 1 ) return collection if __name__ == "__main__": lowerCAmelCase__ = input('''Enter numbers separated by a comma:\n''').strip() lowerCAmelCase__ = [int(item) for item in user_input.split(''',''')] print(circle_sort(unsorted))
356
"""simple docstring""" import math def a__ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase = len(_SCREAMING_SNAKE_CASE ) UpperCamelCase = int(math.floor(math.sqrt(_SCREAMING_SNAKE_CASE ) ) ) UpperCamelCase = 0 while arr[min(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) - 1] < x: UpperCamelCase = step step += int(math.floor(math.sqrt(_SCREAMING_SNAKE_CASE ) ) ) if prev >= n: return -1 while arr[prev] < x: UpperCamelCase = prev + 1 if prev == min(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): return -1 if arr[prev] == x: return prev return -1 if __name__ == "__main__": lowerCAmelCase__ = input('''Enter numbers separated by a comma:\n''').strip() lowerCAmelCase__ = [int(item) for item in user_input.split(''',''')] lowerCAmelCase__ = int(input('''Enter the number to be searched:\n''')) lowerCAmelCase__ = jump_search(arr, x) if res == -1: print('''Number not found!''') else: print(f'''Number {x} is at index {res}''')
244
0
import unittest from transformers import TrOCRConfig from transformers.testing_utils import is_torch_available, require_torch, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers.models.trocr.modeling_trocr import TrOCRDecoder, TrOCRForCausalLM @require_torch class lowercase : def __init__( self , A_ , A_=99 , A_=13 , A_=16 , A_=7 , A_=True , A_=True , A_=True , A_=False , A_=True , A_=2 , A_=32 , A_=4 , A_=4 , A_=30 , A_=0 , A_=1 , A_=2 , A_=None , ) -> Optional[Any]: """simple docstring""" UpperCamelCase = parent UpperCamelCase = batch_size UpperCamelCase = decoder_seq_length # For common tests UpperCamelCase = self.decoder_seq_length UpperCamelCase = is_training UpperCamelCase = use_attention_mask UpperCamelCase = use_labels UpperCamelCase = vocab_size UpperCamelCase = d_model UpperCamelCase = d_model UpperCamelCase = decoder_layers UpperCamelCase = decoder_layers UpperCamelCase = decoder_ffn_dim UpperCamelCase = decoder_attention_heads UpperCamelCase = decoder_attention_heads UpperCamelCase = eos_token_id UpperCamelCase = bos_token_id UpperCamelCase = pad_token_id UpperCamelCase = decoder_start_token_id UpperCamelCase = use_cache UpperCamelCase = max_position_embeddings UpperCamelCase = None UpperCamelCase = decoder_seq_length UpperCamelCase = 2 UpperCamelCase = 1 def __UpperCamelCase ( self ) -> Union[str, Any]: """simple docstring""" UpperCamelCase = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size ) UpperCamelCase = None if self.use_attention_mask: UpperCamelCase = ids_tensor([self.batch_size, self.decoder_seq_length] , vocab_size=2 ) UpperCamelCase = None if self.use_labels: UpperCamelCase = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size ) UpperCamelCase = TrOCRConfig( vocab_size=self.vocab_size , d_model=self.d_model , decoder_layers=self.decoder_layers , decoder_ffn_dim=self.decoder_ffn_dim , decoder_attention_heads=self.decoder_attention_heads , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , use_cache=self.use_cache , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , max_position_embeddings=self.max_position_embeddings , ) return (config, input_ids, attention_mask, lm_labels) def __UpperCamelCase ( self , A_ , A_ , A_ , A_ , ) -> List[Any]: """simple docstring""" UpperCamelCase = True UpperCamelCase = TrOCRDecoder(config=A_ ).to(A_ ).eval() UpperCamelCase = input_ids[:2] input_ids[input_ids == 0] += 1 # first forward pass UpperCamelCase = model(A_ , use_cache=A_ ) UpperCamelCase = model(A_ ) UpperCamelCase = model(A_ , use_cache=A_ ) self.parent.assertTrue(len(A_ ) == len(A_ ) ) self.parent.assertTrue(len(A_ ) == len(A_ ) + 1 ) UpperCamelCase = outputs['past_key_values'] # create hypothetical next token and extent to next_input_ids UpperCamelCase = ids_tensor((2, 1) , config.vocab_size - 1 ) + 1 # append to next input_ids and UpperCamelCase = torch.cat([input_ids, next_tokens] , dim=-1 ) UpperCamelCase = model(A_ )['last_hidden_state'] UpperCamelCase = model(A_ , past_key_values=A_ )['last_hidden_state'] # select random slice UpperCamelCase = ids_tensor((1,) , output_from_past.shape[-1] ).item() UpperCamelCase = output_from_no_past[:, next_input_ids.shape[-1] - 1, random_slice_idx].detach() UpperCamelCase = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice assert torch.allclose(A_ , A_ , atol=1e-3 ) def __UpperCamelCase ( self ) -> str: """simple docstring""" UpperCamelCase = self.prepare_config_and_inputs() UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase = config_and_inputs UpperCamelCase = {'input_ids': input_ids, 'attention_mask': attention_mask} return config, inputs_dict @require_torch class lowercase ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , unittest.TestCase ): __lowercase : Tuple = (TrOCRDecoder, TrOCRForCausalLM) if is_torch_available() else () __lowercase : Union[str, Any] = (TrOCRForCausalLM,) if is_torch_available() else () __lowercase : Union[str, Any] = {"text-generation": TrOCRForCausalLM} if is_torch_available() else {} __lowercase : Tuple = True __lowercase : List[str] = False def __UpperCamelCase ( self ) -> Optional[Any]: """simple docstring""" UpperCamelCase = TrOCRStandaloneDecoderModelTester(self , is_training=A_ ) UpperCamelCase = ConfigTester(self , config_class=A_ ) def __UpperCamelCase ( self ) -> Union[str, Any]: """simple docstring""" pass def __UpperCamelCase ( self ) -> int: """simple docstring""" pass def __UpperCamelCase ( self ) -> Any: """simple docstring""" pass def __UpperCamelCase ( self ) -> Optional[Any]: """simple docstring""" self.config_tester.run_common_tests() def __UpperCamelCase ( self ) -> Dict: """simple docstring""" UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past(*A_ ) def __UpperCamelCase ( self ) -> Optional[Any]: """simple docstring""" return @unittest.skip('The model doesn\'t support left padding' ) # and it's not used enough to be worth fixing :) def __UpperCamelCase ( self ) -> int: """simple docstring""" pass
222
import gc import unittest import numpy as np import torch from diffusers import StableDiffusionKDiffusionPipeline from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() @slow @require_torch_gpu class lowercase ( unittest.TestCase ): def __UpperCamelCase ( self ) -> Dict: """simple docstring""" # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __UpperCamelCase ( self ) -> str: """simple docstring""" UpperCamelCase = StableDiffusionKDiffusionPipeline.from_pretrained('CompVis/stable-diffusion-v1-4' ) UpperCamelCase = sd_pipe.to(A_ ) sd_pipe.set_progress_bar_config(disable=A_ ) sd_pipe.set_scheduler('sample_euler' ) UpperCamelCase = 'A painting of a squirrel eating a burger' UpperCamelCase = torch.manual_seed(0 ) UpperCamelCase = sd_pipe([prompt] , generator=A_ , guidance_scale=9.0 , num_inference_steps=20 , output_type='np' ) UpperCamelCase = output.images UpperCamelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) UpperCamelCase = np.array([0.0447, 0.0492, 0.0468, 0.0408, 0.0383, 0.0408, 0.0354, 0.0380, 0.0339] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def __UpperCamelCase ( self ) -> Any: """simple docstring""" UpperCamelCase = StableDiffusionKDiffusionPipeline.from_pretrained('stabilityai/stable-diffusion-2-1-base' ) UpperCamelCase = sd_pipe.to(A_ ) sd_pipe.set_progress_bar_config(disable=A_ ) sd_pipe.set_scheduler('sample_euler' ) UpperCamelCase = 'A painting of a squirrel eating a burger' UpperCamelCase = torch.manual_seed(0 ) UpperCamelCase = sd_pipe([prompt] , generator=A_ , guidance_scale=9.0 , num_inference_steps=20 , output_type='np' ) UpperCamelCase = output.images UpperCamelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) UpperCamelCase = np.array([0.1237, 0.1320, 0.1438, 0.1359, 0.1390, 0.1132, 0.1277, 0.1175, 0.1112] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-1 def __UpperCamelCase ( self ) -> Optional[int]: """simple docstring""" UpperCamelCase = StableDiffusionKDiffusionPipeline.from_pretrained('stabilityai/stable-diffusion-2-1-base' ) UpperCamelCase = sd_pipe.to(A_ ) sd_pipe.set_progress_bar_config(disable=A_ ) sd_pipe.set_scheduler('sample_dpmpp_2m' ) UpperCamelCase = 'A painting of a squirrel eating a burger' UpperCamelCase = torch.manual_seed(0 ) UpperCamelCase = sd_pipe( [prompt] , generator=A_ , guidance_scale=7.5 , num_inference_steps=15 , output_type='np' , use_karras_sigmas=A_ , ) UpperCamelCase = output.images UpperCamelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) UpperCamelCase = np.array( [0.1138_1689, 0.1211_2921, 0.138_9457, 0.1254_9606, 0.124_4964, 0.1083_1517, 0.1156_2866, 0.1086_7816, 0.1049_9048] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
222
1
from urllib.parse import quote import pytest from datasets.utils.hub import hf_hub_url @pytest.mark.parametrize("repo_id" , ["canonical_dataset_name", "org-name/dataset-name"] ) @pytest.mark.parametrize("path" , ["filename.csv", "filename with blanks.csv"] ) @pytest.mark.parametrize("revision" , [None, "v2"] ) def lowerCAmelCase_ ( _snake_case : List[str] , _snake_case : int , _snake_case : Optional[Any] ) -> Tuple: '''simple docstring''' __magic_name__ : int = hf_hub_url(repo_id=_snake_case , path=_snake_case , revision=_snake_case ) assert url == F'''https://huggingface.co/datasets/{repo_id}/resolve/{revision or "main"}/{quote(_snake_case )}'''
41
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available, is_vision_available, ) snake_case : List[str] = {"configuration_beit": ["BEIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "BeitConfig", "BeitOnnxConfig"]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case : int = ["BeitFeatureExtractor"] snake_case : Optional[int] = ["BeitImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case : List[Any] = [ "BEIT_PRETRAINED_MODEL_ARCHIVE_LIST", "BeitForImageClassification", "BeitForMaskedImageModeling", "BeitForSemanticSegmentation", "BeitModel", "BeitPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case : Dict = [ "FlaxBeitForImageClassification", "FlaxBeitForMaskedImageModeling", "FlaxBeitModel", "FlaxBeitPreTrainedModel", ] if TYPE_CHECKING: from .configuration_beit import BEIT_PRETRAINED_CONFIG_ARCHIVE_MAP, BeitConfig, BeitOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_beit import BeitFeatureExtractor from .image_processing_beit import BeitImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_beit import ( BEIT_PRETRAINED_MODEL_ARCHIVE_LIST, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation, BeitModel, BeitPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_beit import ( FlaxBeitForImageClassification, FlaxBeitForMaskedImageModeling, FlaxBeitModel, FlaxBeitPreTrainedModel, ) else: import sys snake_case : int = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
41
1
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase : int = logging.get_logger(__name__) UpperCAmelCase : Optional[int] = { """facebook/s2t-small-librispeech-asr""": ( """https://huggingface.co/facebook/s2t-small-librispeech-asr/resolve/main/config.json""" ), # See all Speech2Text models at https://huggingface.co/models?filter=speech_to_text } class __lowerCAmelCase ( _UpperCAmelCase): _lowercase : str = "speech_to_text" _lowercase : List[str] = ["past_key_values"] _lowercase : Dict = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"} def __init__( self , lowerCAmelCase__=1_0_0_0_0 , lowerCAmelCase__=1_2 , lowerCAmelCase__=2_0_4_8 , lowerCAmelCase__=4 , lowerCAmelCase__=6 , lowerCAmelCase__=2_0_4_8 , lowerCAmelCase__=4 , lowerCAmelCase__=0.0 , lowerCAmelCase__=0.0 , lowerCAmelCase__=True , lowerCAmelCase__=True , lowerCAmelCase__="relu" , lowerCAmelCase__=2_5_6 , lowerCAmelCase__=0.1 , lowerCAmelCase__=0.0 , lowerCAmelCase__=0.0 , lowerCAmelCase__=0.02 , lowerCAmelCase__=2 , lowerCAmelCase__=True , lowerCAmelCase__=1 , lowerCAmelCase__=0 , lowerCAmelCase__=2 , lowerCAmelCase__=6_0_0_0 , lowerCAmelCase__=1_0_2_4 , lowerCAmelCase__=2 , lowerCAmelCase__=(5, 5) , lowerCAmelCase__=1_0_2_4 , lowerCAmelCase__=8_0 , lowerCAmelCase__=1 , **lowerCAmelCase__ , ) -> Tuple: '''simple docstring''' a__ : Optional[int] =vocab_size a__ : int =d_model a__ : Optional[int] =encoder_ffn_dim a__ : Optional[Any] =encoder_layers a__ : str =encoder_attention_heads a__ : Tuple =decoder_ffn_dim a__ : List[Any] =decoder_layers a__ : Dict =decoder_attention_heads a__ : Union[str, Any] =dropout a__ : str =attention_dropout a__ : List[str] =activation_dropout a__ : Optional[int] =activation_function a__ : int =init_std a__ : str =encoder_layerdrop a__ : Any =decoder_layerdrop a__ : Optional[int] =use_cache a__ : List[str] =encoder_layers a__ : Optional[int] =scale_embedding # scale factor will be sqrt(d_model) if True a__ : Union[str, Any] =max_source_positions a__ : Union[str, Any] =max_target_positions a__ : Any =num_conv_layers a__ : Dict =list(_UpperCAmelCase ) a__ : Optional[int] =conv_channels a__ : Any =input_feat_per_channel a__ : Dict =input_channels if len(self.conv_kernel_sizes ) != self.num_conv_layers: raise ValueError( "Configuration for convolutional module is incorrect. " "It is required that `len(config.conv_kernel_sizes)` == `config.num_conv_layers` " F'''but is `len(config.conv_kernel_sizes) = {len(self.conv_kernel_sizes )}`, ''' F'''`config.num_conv_layers = {self.num_conv_layers}`.''' ) super().__init__( pad_token_id=_UpperCAmelCase , bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , is_encoder_decoder=_UpperCAmelCase , decoder_start_token_id=_UpperCAmelCase , **_UpperCAmelCase , )
95
"""simple docstring""" def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ) -> int: if not grid or not grid[0]: raise TypeError('''The grid does not contain the appropriate information''' ) for cell_n in range(1 , len(grid[0] ) ): grid[0][cell_n] += grid[0][cell_n - 1] lowercase__: Tuple = grid[0] for row_n in range(1 , len(__UpperCAmelCase ) ): lowercase__: Tuple = grid[row_n] lowercase__: Dict = fill_row(__UpperCAmelCase , __UpperCAmelCase ) lowercase__: Union[str, Any] = grid[row_n] return grid[-1][-1] def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , __UpperCAmelCase ) -> list: current_row[0] += row_above[0] for cell_n in range(1 , len(__UpperCAmelCase ) ): current_row[cell_n] += min(current_row[cell_n - 1] , row_above[cell_n] ) return current_row if __name__ == "__main__": import doctest doctest.testmod()
177
0
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from timm import create_model from timm.data import resolve_data_config from timm.data.transforms_factory import create_transform from transformers import BitConfig, BitForImageClassification, BitImageProcessor from transformers.image_utils import PILImageResampling from transformers.utils import logging logging.set_verbosity_info() _lowerCAmelCase : Dict = logging.get_logger(__name__) def UpperCamelCase_( _snake_case : Tuple ): """simple docstring""" __a ='huggingface/label-files' __a ='imagenet-1k-id2label.json' __a =json.load(open(hf_hub_download(_snake_case , _snake_case , repo_type='dataset' ) , 'r' ) ) __a ={int(_snake_case ): v for k, v in idalabel.items()} __a ={v: k for k, v in idalabel.items()} __a ='std_conv' if 'bit' in model_name else False # note that when using BiT as backbone for ViT-hybrid checkpoints, # one needs to additionally set config.layer_type = "bottleneck", config.stem_type = "same", # config.conv_layer = "std_conv_same" __a =BitConfig( conv_layer=_snake_case , num_labels=1000 , idalabel=_snake_case , labelaid=_snake_case , ) return config def UpperCamelCase_( _snake_case : str ): """simple docstring""" if "stem.conv" in name: __a =name.replace('stem.conv' , 'bit.embedder.convolution' ) if "blocks" in name: __a =name.replace('blocks' , 'layers' ) if "head.fc" in name: __a =name.replace('head.fc' , 'classifier.1' ) if name.startswith('norm' ): __a ='bit.' + name if "bit" not in name and "classifier" not in name: __a ='bit.encoder.' + name return name def UpperCamelCase_( ): """simple docstring""" __a ='http://images.cocodataset.org/val2017/000000039769.jpg' __a =Image.open(requests.get(_snake_case , stream=_snake_case ).raw ) return im @torch.no_grad() def UpperCamelCase_( _snake_case : Optional[Any] , _snake_case : Optional[Any] , _snake_case : Any=False ): """simple docstring""" __a =get_config(_snake_case ) # load original model from timm __a =create_model(_snake_case , pretrained=_snake_case ) timm_model.eval() # load state_dict of original model __a =timm_model.state_dict() for key in state_dict.copy().keys(): __a =state_dict.pop(_snake_case ) __a =val.squeeze() if 'head' in key else val # load HuggingFace model __a =BitForImageClassification(_snake_case ) model.eval() model.load_state_dict(_snake_case ) # create image processor __a =create_transform(**resolve_data_config({} , model=_snake_case ) ) __a =transform.transforms __a ={ 'bilinear': PILImageResampling.BILINEAR, 'bicubic': PILImageResampling.BICUBIC, 'nearest': PILImageResampling.NEAREST, } __a =BitImageProcessor( do_resize=_snake_case , size={'shortest_edge': timm_transforms[0].size} , resample=pillow_resamplings[timm_transforms[0].interpolation.value] , do_center_crop=_snake_case , crop_size={'height': timm_transforms[1].size[0], 'width': timm_transforms[1].size[1]} , do_normalize=_snake_case , image_mean=timm_transforms[-1].mean.tolist() , image_std=timm_transforms[-1].std.tolist() , ) __a =prepare_img() __a =transform(_snake_case ).unsqueeze(0 ) __a =processor(_snake_case , return_tensors='pt' ).pixel_values # verify pixel values assert torch.allclose(_snake_case , _snake_case ) # verify logits with torch.no_grad(): __a =model(_snake_case ) __a =outputs.logits print('Logits:' , logits[0, :3] ) print('Predicted class:' , model.config.idalabel[logits.argmax(-1 ).item()] ) __a =timm_model(_snake_case ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(_snake_case , outputs.logits , atol=1e-3 ) print('Looks ok!' ) if pytorch_dump_folder_path is not None: Path(_snake_case ).mkdir(exist_ok=_snake_case ) print(F'Saving model {model_name} and processor to {pytorch_dump_folder_path}' ) model.save_pretrained(_snake_case ) processor.save_pretrained(_snake_case ) if push_to_hub: print(F'Pushing model {model_name} and processor to the hub' ) model.push_to_hub(F'ybelkada/{model_name}' ) processor.push_to_hub(F'ybelkada/{model_name}' ) if __name__ == "__main__": _lowerCAmelCase : Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="resnetv2_50x1_bitm", type=str, help="Name of the BiT timm model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether to push the model to the hub.", ) _lowerCAmelCase : Dict = parser.parse_args() convert_bit_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
366
import unittest from transformers import load_tool from transformers.utils import is_torch_available if is_torch_available(): import torch from transformers.testing_utils import require_torch from .test_tools_common import ToolTesterMixin @require_torch class __magic_name__ ( unittest.TestCase , lowerCAmelCase_ ): def __magic_name__ ( self ) -> Union[str, Any]: '''simple docstring''' __a =load_tool('text-to-speech' ) self.tool.setup() def __magic_name__ ( self ) -> Dict: '''simple docstring''' # SpeechT5 isn't deterministic torch.manual_seed(0 ) __a =self.tool('hey' ) __a =result.to_raw() self.assertTrue( torch.allclose( resulting_tensor[:3] , torch.tensor([-0.000_5966_6688_3211_5829, -0.000_3657_6401_9079_5064, -0.0001_3439_5027_9988_3485] ) , ) ) def __magic_name__ ( self ) -> List[Any]: '''simple docstring''' # SpeechT5 isn't deterministic torch.manual_seed(0 ) __a =self.tool('hey' ) __a =result.to_raw() self.assertTrue( torch.allclose( resulting_tensor[:3] , torch.tensor([-0.000_5966_6688_3211_5829, -0.000_3657_6401_9079_5064, -0.0001_3439_5027_9988_3485] ) , ) )
308
0
import math import sys import cva import numpy as np def A_ ( a , a ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = math.sqrt(a ) SCREAMING_SNAKE_CASE_ : List[Any] = 1 / (sigma * math.sqrt(2 * math.pi )) return cons * np.exp(-((img / sigma) ** 2) * 0.5 ) def A_ ( a , a , a , a ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = kernel_size // 2 return img[x - half : x + half + 1, y - half : y + half + 1] def A_ ( a , a ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = np.zeros((kernel_size, kernel_size) ) for i in range(0 , a ): for j in range(0 , a ): SCREAMING_SNAKE_CASE_ : List[Any] = math.sqrt( abs(i - kernel_size // 2 ) ** 2 + abs(j - kernel_size // 2 ) ** 2 ) return vec_gaussian(a , a ) def A_ ( a , a , a , a , ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = np.zeros(img.shape ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = get_gauss_kernel(a , a ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Any = img.shape for i in range(kernel_size // 2 , size_x - kernel_size // 2 ): for j in range(kernel_size // 2 , size_y - kernel_size // 2 ): SCREAMING_SNAKE_CASE_ : Tuple = get_slice(a , a , a , a ) SCREAMING_SNAKE_CASE_ : List[str] = img_s - img_s[kernel_size // 2, kernel_size // 2] SCREAMING_SNAKE_CASE_ : Tuple = vec_gaussian(a , a ) SCREAMING_SNAKE_CASE_ : Any = np.multiply(a , a ) SCREAMING_SNAKE_CASE_ : Dict = np.multiply(a , a ) SCREAMING_SNAKE_CASE_ : int = np.sum(a ) / np.sum(a ) SCREAMING_SNAKE_CASE_ : Optional[int] = val return imga def A_ ( a ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[int] = args[1] if args[1:] else '../image_data/lena.jpg' SCREAMING_SNAKE_CASE_ : Dict = float(args[2] ) if args[2:] else 1.0 SCREAMING_SNAKE_CASE_ : Dict = float(args[3] ) if args[3:] else 1.0 if args[4:]: SCREAMING_SNAKE_CASE_ : Union[str, Any] = int(args[4] ) SCREAMING_SNAKE_CASE_ : Any = kernel_size + abs(kernel_size % 2 - 1 ) else: SCREAMING_SNAKE_CASE_ : Union[str, Any] = 5 return filename, spatial_variance, intensity_variance, kernel_size if __name__ == "__main__": lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : Union[str, Any] = parse_args(sys.argv) lowerCAmelCase : Tuple = cva.imread(filename, 0) cva.imshow('input image', img) lowerCAmelCase : str = img / 2_55 lowerCAmelCase : List[str] = out.astype('float32') lowerCAmelCase : List[Any] = bilateral_filter(out, spatial_variance, intensity_variance, kernel_size) lowerCAmelCase : List[Any] = out * 2_55 lowerCAmelCase : List[Any] = np.uinta(out) cva.imshow('output image', out) cva.waitKey(0) cva.destroyAllWindows()
253
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging lowerCAmelCase : Optional[Any] = logging.get_logger(__name__) lowerCAmelCase : Any = {'vocab_file': 'spiece.model'} lowerCAmelCase : Tuple = { 'vocab_file': { 'bert_for_seq_generation': ( 'https://huggingface.co/google/bert_for_seq_generation_L-24_bbc_encoder/resolve/main/spiece.model' ), } } lowerCAmelCase : Optional[int] = {'bert_for_seq_generation': 5_12} class _A ( __magic_name__): SCREAMING_SNAKE_CASE : Dict = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE : Optional[int] = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE : List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE : List[int] = [] SCREAMING_SNAKE_CASE : Dict = ['''input_ids''', '''attention_mask'''] def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE="<s>" , _SCREAMING_SNAKE_CASE="</s>" , _SCREAMING_SNAKE_CASE="<unk>" , _SCREAMING_SNAKE_CASE="<pad>" , _SCREAMING_SNAKE_CASE="<::::>" , _SCREAMING_SNAKE_CASE = None , **_SCREAMING_SNAKE_CASE , ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = {} if sp_model_kwargs is None else sp_model_kwargs # Add extra_ids to the special token list super().__init__( bos_token=_SCREAMING_SNAKE_CASE , eos_token=_SCREAMING_SNAKE_CASE , unk_token=_SCREAMING_SNAKE_CASE , pad_token=_SCREAMING_SNAKE_CASE , sep_token=_SCREAMING_SNAKE_CASE , sp_model_kwargs=self.sp_model_kwargs , **_SCREAMING_SNAKE_CASE , ) SCREAMING_SNAKE_CASE_ : List[str] = vocab_file SCREAMING_SNAKE_CASE_ : Any = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(_SCREAMING_SNAKE_CASE ) @property def UpperCAmelCase ( self ): """simple docstring""" return self.sp_model.get_piece_size() def UpperCAmelCase ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = {self.convert_ids_to_tokens(_SCREAMING_SNAKE_CASE ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[int] = self.__dict__.copy() SCREAMING_SNAKE_CASE_ : List[Any] = None return state def __setstate__( self , _SCREAMING_SNAKE_CASE ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): SCREAMING_SNAKE_CASE_ : Dict = {} SCREAMING_SNAKE_CASE_ : str = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE ): """simple docstring""" return self.sp_model.encode(_SCREAMING_SNAKE_CASE , out_type=_SCREAMING_SNAKE_CASE ) def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE ): """simple docstring""" return self.sp_model.piece_to_id(_SCREAMING_SNAKE_CASE ) def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = self.sp_model.IdToPiece(_SCREAMING_SNAKE_CASE ) return token def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = [] SCREAMING_SNAKE_CASE_ : Optional[int] = '' for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(_SCREAMING_SNAKE_CASE ) + token SCREAMING_SNAKE_CASE_ : Optional[int] = [] else: current_sub_tokens.append(_SCREAMING_SNAKE_CASE ) out_string += self.sp_model.decode(_SCREAMING_SNAKE_CASE ) return out_string.strip() def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None ): """simple docstring""" if not os.path.isdir(_SCREAMING_SNAKE_CASE ): logger.error(f"Vocabulary path ({save_directory}) should be a directory" ) return SCREAMING_SNAKE_CASE_ : Optional[Any] = os.path.join( _SCREAMING_SNAKE_CASE , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_SCREAMING_SNAKE_CASE ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , _SCREAMING_SNAKE_CASE ) elif not os.path.isfile(self.vocab_file ): with open(_SCREAMING_SNAKE_CASE , 'wb' ) as fi: SCREAMING_SNAKE_CASE_ : List[Any] = self.sp_model.serialized_model_proto() fi.write(_SCREAMING_SNAKE_CASE ) return (out_vocab_file,)
253
1
def a__ ( UpperCAmelCase : int ) -> int: UpperCAmelCase : list[list[int]] = [[0 for _ in range(UpperCAmelCase )] for _ in range(m + 1 )] for i in range(m + 1 ): UpperCAmelCase : Union[str, Any] = 1 for n in range(m + 1 ): for k in range(1 , UpperCAmelCase ): memo[n][k] += memo[n][k - 1] if n - k > 0: memo[n][k] += memo[n - k - 1][k] return memo[m][m - 1] if __name__ == "__main__": import sys if len(sys.argv) == 1: try: _lowerCamelCase : Optional[int] = int(input("Enter a number: ").strip()) print(partition(n)) except ValueError: print("Please enter a number.") else: try: _lowerCamelCase : Union[str, Any] = int(sys.argv[1]) print(partition(n)) except ValueError: print("Please pass a number.")
99
from math import log from scipy.constants import Boltzmann, physical_constants _lowerCamelCase : Tuple = 3_0_0 # TEMPERATURE (unit = K) def a__ ( UpperCAmelCase : float , UpperCAmelCase : float , UpperCAmelCase : float , ) -> float: if donor_conc <= 0: raise ValueError('''Donor concentration should be positive''' ) elif acceptor_conc <= 0: raise ValueError('''Acceptor concentration should be positive''' ) elif intrinsic_conc <= 0: raise ValueError('''Intrinsic concentration should be positive''' ) elif donor_conc <= intrinsic_conc: raise ValueError( '''Donor concentration should be greater than intrinsic concentration''' ) elif acceptor_conc <= intrinsic_conc: raise ValueError( '''Acceptor concentration should be greater than intrinsic concentration''' ) else: return ( Boltzmann * T * log((donor_conc * acceptor_conc) / intrinsic_conc**2 ) / physical_constants["electron volt"][0] ) if __name__ == "__main__": import doctest doctest.testmod()
99
1
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging __snake_case : List[str] = logging.get_logger(__name__) __snake_case : int = {'vocab_file': 'sentencepiece.bpe.model'} __snake_case : Optional[int] = { 'vocab_file': { 'camembert-base': 'https://huggingface.co/camembert-base/resolve/main/sentencepiece.bpe.model', } } __snake_case : Union[str, Any] = { 'camembert-base': 512, } __snake_case : Union[str, Any] = '▁' class lowerCamelCase ( _a ): '''simple docstring''' __snake_case = VOCAB_FILES_NAMES __snake_case = PRETRAINED_VOCAB_FILES_MAP __snake_case = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __snake_case = ["""input_ids""", """attention_mask"""] def __init__( self : str , lowerCAmelCase_ : str , lowerCAmelCase_ : List[Any]="<s>" , lowerCAmelCase_ : Union[str, Any]="</s>" , lowerCAmelCase_ : List[str]="</s>" , lowerCAmelCase_ : Tuple="<s>" , lowerCAmelCase_ : Any="<unk>" , lowerCAmelCase_ : List[str]="<pad>" , lowerCAmelCase_ : str="<mask>" , lowerCAmelCase_ : str=["<s>NOTUSED", "</s>NOTUSED"] , lowerCAmelCase_ : List[str] = None , **lowerCAmelCase_ : Optional[int] , ) -> Union[str, Any]: '''simple docstring''' # Mask token behave like a normal word, i.e. include the space before it A__ : Dict =AddedToken(snake_case_ , lstrip=snake_case_ , rstrip=snake_case_ ) if isinstance(snake_case_ , snake_case_ ) else mask_token A__ : Optional[int] ={} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=snake_case_ , eos_token=snake_case_ , unk_token=snake_case_ , sep_token=snake_case_ , cls_token=snake_case_ , pad_token=snake_case_ , mask_token=snake_case_ , additional_special_tokens=snake_case_ , sp_model_kwargs=self.sp_model_kwargs , **snake_case_ , ) A__ : Union[str, Any] =spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(snake_case_ ) ) A__ : Dict =vocab_file # HACK: These tokens were added by fairseq but don't seem to be actually used when duplicated in the actual # sentencepiece vocabulary (this is the case for <s> and </s> A__ : List[Any] ={"""<s>NOTUSED""": 0, """<pad>""": 1, """</s>NOTUSED""": 2, """<unk>""": 3} A__ : Tuple =len(self.fairseq_tokens_to_ids ) A__ : List[str] =len(self.sp_model ) + len(self.fairseq_tokens_to_ids ) A__ : Union[str, Any] ={v: k for k, v in self.fairseq_tokens_to_ids.items()} def lowercase__ ( self : Dict , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Optional[Any] = None ) -> Optional[Any]: '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] A__ : str =[self.cls_token_id] A__ : int =[self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def lowercase__ ( self : Tuple , lowerCAmelCase_ : Dict , lowerCAmelCase_ : Optional[int] = None , lowerCAmelCase_ : Optional[Any] = False ) -> Any: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=snake_case_ , token_ids_a=snake_case_ , already_has_special_tokens=snake_case_ ) if token_ids_a is None: return [1] + ([0] * len(snake_case_ )) + [1] return [1] + ([0] * len(snake_case_ )) + [1, 1] + ([0] * len(snake_case_ )) + [1] def lowercase__ ( self : str , lowerCAmelCase_ : Any , lowerCAmelCase_ : List[Any] = None ) -> Optional[Any]: '''simple docstring''' A__ : List[str] =[self.sep_token_id] A__ : str =[self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def lowercase__ ( self : List[Any] ) -> Optional[int]: '''simple docstring''' return len(self.fairseq_tokens_to_ids ) + len(self.sp_model ) def lowercase__ ( self : Any ) -> List[Any]: '''simple docstring''' A__ : Optional[int] ={self.convert_ids_to_tokens(snake_case_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def lowercase__ ( self : Optional[int] , lowerCAmelCase_ : str ) -> Dict: '''simple docstring''' return self.sp_model.encode(snake_case_ , out_type=snake_case_ ) def lowercase__ ( self : int , lowerCAmelCase_ : Optional[int] ) -> Tuple: '''simple docstring''' if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] elif self.sp_model.PieceToId(snake_case_ ) == 0: # Convert sentence piece unk token to fairseq unk token index return self.unk_token_id return self.fairseq_offset + self.sp_model.PieceToId(snake_case_ ) def lowercase__ ( self : Optional[Any] , lowerCAmelCase_ : Union[str, Any] ) -> int: '''simple docstring''' if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def lowercase__ ( self : List[Any] , lowerCAmelCase_ : Union[str, Any] ) -> Dict: '''simple docstring''' A__ : Tuple =[] A__ : Tuple ="""""" A__ : List[str] =False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(snake_case_ ) + token A__ : int =True A__ : str =[] else: current_sub_tokens.append(snake_case_ ) A__ : List[str] =False out_string += self.sp_model.decode(snake_case_ ) return out_string.strip() def __getstate__( self : Optional[int] ) -> Dict: '''simple docstring''' A__ : Any =self.__dict__.copy() A__ : Optional[Any] =None return state def __setstate__( self : Dict , lowerCAmelCase_ : Dict ) -> List[str]: '''simple docstring''' A__ : int =d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): A__ : int ={} A__ : int =spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def lowercase__ ( self : List[Any] , lowerCAmelCase_ : Dict , lowerCAmelCase_ : Optional[Any] = None ) -> Optional[int]: '''simple docstring''' if not os.path.isdir(snake_case_ ): logger.error(f"Vocabulary path ({save_directory}) should be a directory" ) return A__ : List[Any] =os.path.join( snake_case_ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(snake_case_ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , snake_case_ ) elif not os.path.isfile(self.vocab_file ): with open(snake_case_ , """wb""" ) as fi: A__ : Optional[Any] =self.sp_model.serialized_model_proto() fi.write(snake_case_ ) return (out_vocab_file,)
134
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available UpperCamelCase_ = { """configuration_groupvit""": [ """GROUPVIT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """GroupViTConfig""", """GroupViTOnnxConfig""", """GroupViTTextConfig""", """GroupViTVisionConfig""", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = [ """GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST""", """GroupViTModel""", """GroupViTPreTrainedModel""", """GroupViTTextModel""", """GroupViTVisionModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = [ """TF_GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFGroupViTModel""", """TFGroupViTPreTrainedModel""", """TFGroupViTTextModel""", """TFGroupViTVisionModel""", ] if TYPE_CHECKING: from .configuration_groupvit import ( GROUPVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, GroupViTConfig, GroupViTOnnxConfig, GroupViTTextConfig, GroupViTVisionConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_groupvit import ( GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST, GroupViTModel, GroupViTPreTrainedModel, GroupViTTextModel, GroupViTVisionModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_groupvit import ( TF_GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFGroupViTModel, TFGroupViTPreTrainedModel, TFGroupViTTextModel, TFGroupViTVisionModel, ) else: import sys UpperCamelCase_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
309
0
def lowerCAmelCase_ ( __A ) -> bool: '''simple docstring''' return credit_card_number.startswith(("34", "35", "37", "4", "5", "6") ) def lowerCAmelCase_ ( __A ) -> bool: '''simple docstring''' UpperCAmelCase__ = credit_card_number UpperCAmelCase__ = 0 UpperCAmelCase__ = len(_UpperCamelCase ) - 2 for i in range(_UpperCamelCase, -1, -2 ): # double the value of every second digit UpperCAmelCase__ = int(cc_number[i] ) digit *= 2 # If doubling of a number results in a two digit number # i.e greater than 9(e.g., 6 × 2 = 12), # then add the digits of the product (e.g., 12: 1 + 2 = 3, 15: 1 + 5 = 6), # to get a single digit number. if digit > 9: digit %= 10 digit += 1 UpperCAmelCase__ = cc_number[:i] + str(_UpperCamelCase ) + cc_number[i + 1 :] total += digit # Sum up the remaining digits for i in range(len(_UpperCamelCase ) - 1, -1, -2 ): total += int(cc_number[i] ) return total % 10 == 0 def lowerCAmelCase_ ( __A ) -> bool: '''simple docstring''' UpperCAmelCase__ = f"""{credit_card_number} is an invalid credit card number because""" if not credit_card_number.isdigit(): print(f"""{error_message} it has nonnumerical characters.""" ) return False if not 13 <= len(_UpperCamelCase ) <= 16: print(f"""{error_message} of its length.""" ) return False if not validate_initial_digits(_UpperCamelCase ): print(f"""{error_message} of its first two digits.""" ) return False if not luhn_validation(_UpperCamelCase ): print(f"""{error_message} it fails the Luhn check.""" ) return False print(f"""{credit_card_number} is a valid credit card number.""" ) return True if __name__ == "__main__": import doctest doctest.testmod() validate_credit_card_number('4111111111111111') validate_credit_card_number('32323')
359
from typing import TYPE_CHECKING from ...utils import _LazyModule UpperCamelCase__ = {'tokenization_bertweet': ['BertweetTokenizer']} if TYPE_CHECKING: from .tokenization_bertweet import BertweetTokenizer else: import sys UpperCamelCase__ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
143
0
import gzip import hashlib import json import multiprocessing import os import re import shutil import time from pathlib import Path import numpy as np from arguments import PreprocessingArguments from datasets import load_dataset from minhash_deduplication import deduplicate_dataset from transformers import AutoTokenizer, HfArgumentParser __UpperCamelCase : List[str] = re.compile(R"""\s+""") def a_ ( _A ) -> Union[str, Any]: """simple docstring""" return {"hash": hashlib.mda(re.sub(_A , '' , example['content'] ).encode('utf-8' ) ).hexdigest()} def a_ ( _A ) -> Optional[Any]: """simple docstring""" snake_case__ = [len(_A ) for line in example['content'].splitlines()] return {"line_mean": np.mean(_A ), "line_max": max(_A )} def a_ ( _A ) -> str: """simple docstring""" snake_case__ = np.mean([c.isalnum() for c in example['content']] ) return {"alpha_frac": alpha_frac} def a_ ( _A , _A ) -> Union[str, Any]: """simple docstring""" if example["hash"] in uniques: uniques.remove(example['hash'] ) return True else: return False def a_ ( _A , _A=5 ) -> Tuple: """simple docstring""" snake_case__ = ['auto-generated', 'autogenerated', 'automatically generated'] snake_case__ = example['content'].splitlines() for _, line in zip(range(_A ) , _A ): for keyword in keywords: if keyword in line.lower(): return {"autogenerated": True} else: return {"autogenerated": False} def a_ ( _A , _A=5 , _A=0.05 ) -> Dict: """simple docstring""" snake_case__ = ['unit tests', 'test file', 'configuration file'] snake_case__ = example['content'].splitlines() snake_case__ = 0 snake_case__ = 0 # first test for _, line in zip(range(_A ) , _A ): for keyword in keywords: if keyword in line.lower(): return {"config_or_test": True} # second test snake_case__ = example['content'].count('\n' ) snake_case__ = int(coeff * nlines ) for line in lines: count_config += line.lower().count('config' ) count_test += line.lower().count('test' ) if count_config > threshold or count_test > threshold: return {"config_or_test": True} return {"config_or_test": False} def a_ ( _A ) -> List[str]: """simple docstring""" snake_case__ = ['def ', 'class ', 'for ', 'while '] snake_case__ = example['content'].splitlines() for line in lines: for keyword in keywords: if keyword in line.lower(): return {"has_no_keywords": False} return {"has_no_keywords": True} def a_ ( _A , _A=4 ) -> Tuple: """simple docstring""" snake_case__ = example['content'].splitlines() snake_case__ = 0 for line in lines: counter += line.lower().count('=' ) if counter > minimum: return {"has_few_assignments": False} return {"has_few_assignments": True} def a_ ( _A ) -> List[Any]: """simple docstring""" snake_case__ = tokenizer(example['content'] , truncation=_A )['input_ids'] snake_case__ = len(example['content'] ) / len(_A ) return {"ratio": ratio} def a_ ( _A ) -> List[str]: """simple docstring""" snake_case__ = {} results.update(get_hash(_A ) ) results.update(line_stats(_A ) ) results.update(alpha_stats(_A ) ) results.update(char_token_ratio(_A ) ) results.update(is_autogenerated(_A ) ) results.update(is_config_or_test(_A ) ) results.update(has_no_keywords(_A ) ) results.update(has_few_assignments(_A ) ) return results def a_ ( _A , _A , _A ) -> Optional[int]: """simple docstring""" if not check_uniques(_A , _A ): return False elif example["autogenerated"]: return False elif example["line_max"] > args.line_max: return False elif example["line_mean"] > args.line_mean: return False elif example["alpha_frac"] < args.alpha_frac: return False elif example["ratio"] < args.min_token_ratio: return False elif example["config_or_test"] and np.random.rand() <= args.filter_proba: return False elif example["has_no_keywords"] and np.random.rand() <= args.filter_proba: return False elif example["has_few_assignments"]: return False else: return True def a_ ( _A ) -> Optional[Any]: """simple docstring""" with open(_A , 'rb' ) as f_in: with gzip.open(str(_A ) + '.gz' , 'wb' , compresslevel=6 ) as f_out: shutil.copyfileobj(_A , _A ) os.unlink(_A ) # Settings __UpperCamelCase : Union[str, Any] = HfArgumentParser(PreprocessingArguments) __UpperCamelCase : Dict = parser.parse_args() if args.num_workers is None: __UpperCamelCase : Any = multiprocessing.cpu_count() __UpperCamelCase : Tuple = AutoTokenizer.from_pretrained(args.tokenizer_dir) # Load dataset __UpperCamelCase : Any = time.time() __UpperCamelCase : Union[str, Any] = load_dataset(args.dataset_name, split="""train""") print(f'''Time to load dataset: {time.time()-t_start:.2f}''') # Run preprocessing __UpperCamelCase : Tuple = time.time() __UpperCamelCase : List[str] = ds.map(preprocess, num_proc=args.num_workers) print(f'''Time to preprocess dataset: {time.time()-t_start:.2f}''') # Deduplicate hashes __UpperCamelCase : int = set(ds.unique("""hash""")) __UpperCamelCase : str = len(uniques) / len(ds) print(f'''Fraction of duplicates: {1-frac:.2%}''') # Deduplicate data and apply heuristics __UpperCamelCase : Optional[Any] = time.time() __UpperCamelCase : List[str] = ds.filter(filter, fn_kwargs={"""uniques""": uniques, """args""": args}) print(f'''Time to filter dataset: {time.time()-t_start:.2f}''') print(f'''Size of filtered dataset: {len(ds_filter)}''') # Deduplicate with minhash and jaccard similarity if args.near_deduplication: __UpperCamelCase : Union[str, Any] = time.time() __UpperCamelCase , __UpperCamelCase : List[Any] = deduplicate_dataset(ds_filter, args.jaccard_threshold) print(f'''Time to deduplicate dataset: {time.time()-t_start:.2f}''') print(f'''Size of deduplicate dataset: {len(ds_filter)}''') # Save data in batches of samples_per_file __UpperCamelCase : Optional[Any] = Path(args.output_dir) output_dir.mkdir(exist_ok=True) # save duplicate_clusters in the output_dir as artifacts # not sure it is the right place the save it if args.near_deduplication: with open(output_dir / """duplicate_clusters.json""", """w""") as f: json.dump(duplicate_clusters, f) __UpperCamelCase : List[str] = output_dir / """data""" data_dir.mkdir(exist_ok=True) __UpperCamelCase : Optional[int] = time.time() for file_number, index in enumerate(range(0, len(ds_filter), args.samples_per_file)): __UpperCamelCase : List[Any] = str(data_dir / f'''file-{file_number+1:012}.json''') __UpperCamelCase : List[str] = min(len(ds_filter), index + args.samples_per_file) ds_filter.select(list(range(index, end_index))).to_json(file_path) compress_file(file_path) print(f'''Time to save dataset: {time.time()-t_start:.2f}''')
307
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging __UpperCamelCase : Dict = logging.get_logger(__name__) class __SCREAMING_SNAKE_CASE( a_ ): _UpperCAmelCase = ["pixel_values"] def __init__( self: List[Any] , UpperCamelCase: bool = True , UpperCamelCase: Optional[Dict[str, int]] = None , UpperCamelCase: PILImageResampling = PILImageResampling.BILINEAR , UpperCamelCase: bool = True , UpperCamelCase: Dict[str, int] = None , UpperCamelCase: bool = True , UpperCamelCase: Union[int, float] = 1 / 2_55 , UpperCamelCase: bool = True , UpperCamelCase: Optional[Union[float, List[float]]] = None , UpperCamelCase: Optional[Union[float, List[float]]] = None , **UpperCamelCase: Optional[int] , ) -> None: super().__init__(**UpperCamelCase ) snake_case__ = size if size is not None else {'shortest_edge': 2_56} snake_case__ = get_size_dict(UpperCamelCase , default_to_square=UpperCamelCase ) snake_case__ = crop_size if crop_size is not None else {'height': 2_24, 'width': 2_24} snake_case__ = get_size_dict(UpperCamelCase ) snake_case__ = do_resize snake_case__ = size snake_case__ = resample snake_case__ = do_center_crop snake_case__ = crop_size snake_case__ = do_rescale snake_case__ = rescale_factor snake_case__ = do_normalize snake_case__ = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN snake_case__ = image_std if image_std is not None else IMAGENET_STANDARD_STD def lowerCAmelCase_ ( self: Tuple , UpperCamelCase: np.ndarray , UpperCamelCase: Dict[str, int] , UpperCamelCase: PILImageResampling = PILImageResampling.BICUBIC , UpperCamelCase: Optional[Union[str, ChannelDimension]] = None , **UpperCamelCase: Dict , ) -> np.ndarray: snake_case__ = get_size_dict(UpperCamelCase , default_to_square=UpperCamelCase ) if "shortest_edge" not in size: raise ValueError(F'''The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}''' ) snake_case__ = get_resize_output_image_size(UpperCamelCase , size=size['shortest_edge'] , default_to_square=UpperCamelCase ) return resize(UpperCamelCase , size=UpperCamelCase , resample=UpperCamelCase , data_format=UpperCamelCase , **UpperCamelCase ) def lowerCAmelCase_ ( self: List[Any] , UpperCamelCase: np.ndarray , UpperCamelCase: Dict[str, int] , UpperCamelCase: Optional[Union[str, ChannelDimension]] = None , **UpperCamelCase: List[Any] , ) -> np.ndarray: snake_case__ = get_size_dict(UpperCamelCase ) return center_crop(UpperCamelCase , size=(size['height'], size['width']) , data_format=UpperCamelCase , **UpperCamelCase ) def lowerCAmelCase_ ( self: Union[str, Any] , UpperCamelCase: np.ndarray , UpperCamelCase: float , UpperCamelCase: Optional[Union[str, ChannelDimension]] = None , **UpperCamelCase: Dict ) -> np.ndarray: return rescale(UpperCamelCase , scale=UpperCamelCase , data_format=UpperCamelCase , **UpperCamelCase ) def lowerCAmelCase_ ( self: Optional[Any] , UpperCamelCase: np.ndarray , UpperCamelCase: Union[float, List[float]] , UpperCamelCase: Union[float, List[float]] , UpperCamelCase: Optional[Union[str, ChannelDimension]] = None , **UpperCamelCase: Any , ) -> np.ndarray: return normalize(UpperCamelCase , mean=UpperCamelCase , std=UpperCamelCase , data_format=UpperCamelCase , **UpperCamelCase ) def lowerCAmelCase_ ( self: Any , UpperCamelCase: ImageInput , UpperCamelCase: Optional[bool] = None , UpperCamelCase: Dict[str, int] = None , UpperCamelCase: PILImageResampling = None , UpperCamelCase: bool = None , UpperCamelCase: Dict[str, int] = None , UpperCamelCase: Optional[bool] = None , UpperCamelCase: Optional[float] = None , UpperCamelCase: Optional[bool] = None , UpperCamelCase: Optional[Union[float, List[float]]] = None , UpperCamelCase: Optional[Union[float, List[float]]] = None , UpperCamelCase: Optional[Union[str, TensorType]] = None , UpperCamelCase: Union[str, ChannelDimension] = ChannelDimension.FIRST , **UpperCamelCase: Any , ) -> Optional[Any]: snake_case__ = do_resize if do_resize is not None else self.do_resize snake_case__ = size if size is not None else self.size snake_case__ = get_size_dict(UpperCamelCase , default_to_square=UpperCamelCase ) snake_case__ = resample if resample is not None else self.resample snake_case__ = do_center_crop if do_center_crop is not None else self.do_center_crop snake_case__ = crop_size if crop_size is not None else self.crop_size snake_case__ = get_size_dict(UpperCamelCase ) snake_case__ = do_rescale if do_rescale is not None else self.do_rescale snake_case__ = rescale_factor if rescale_factor is not None else self.rescale_factor snake_case__ = do_normalize if do_normalize is not None else self.do_normalize snake_case__ = image_mean if image_mean is not None else self.image_mean snake_case__ = image_std if image_std is not None else self.image_std snake_case__ = make_list_of_images(UpperCamelCase ) if not valid_images(UpperCamelCase ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None: raise ValueError('Size must be specified if do_resize is True.' ) if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) # All transformations expect numpy arrays. snake_case__ = [to_numpy_array(UpperCamelCase ) for image in images] if do_resize: snake_case__ = [self.resize(image=UpperCamelCase , size=UpperCamelCase , resample=UpperCamelCase ) for image in images] if do_center_crop: snake_case__ = [self.center_crop(image=UpperCamelCase , size=UpperCamelCase ) for image in images] if do_rescale: snake_case__ = [self.rescale(image=UpperCamelCase , scale=UpperCamelCase ) for image in images] if do_normalize: snake_case__ = [self.normalize(image=UpperCamelCase , mean=UpperCamelCase , std=UpperCamelCase ) for image in images] snake_case__ = [to_channel_dimension_format(UpperCamelCase , UpperCamelCase ) for image in images] snake_case__ = {'pixel_values': images} return BatchFeature(data=UpperCamelCase , tensor_type=UpperCamelCase )
307
1
import unittest import numpy as np import requests from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch from transformers.pytorch_utils import is_torch_greater_or_equal_than_1_11 else: __lowerCAmelCase = False if is_vision_available(): from PIL import Image from transformers import PixaStructImageProcessor class __a ( unittest.TestCase ): def __init__( self , lowerCAmelCase__ , lowerCAmelCase__=7 , lowerCAmelCase__=3 , lowerCAmelCase__=18 , lowerCAmelCase__=30 , lowerCAmelCase__=400 , lowerCAmelCase__=None , lowerCAmelCase__=True , lowerCAmelCase__=True , lowerCAmelCase__=None , ) -> Dict: '''simple docstring''' lowercase__: int = size if size is not None else {'height': 20, 'width': 20} lowercase__: Any = parent lowercase__: Any = batch_size lowercase__: Optional[int] = num_channels lowercase__: Tuple = image_size lowercase__: List[str] = min_resolution lowercase__: Union[str, Any] = max_resolution lowercase__: Dict = size lowercase__: Optional[Any] = do_normalize lowercase__: str = do_convert_rgb lowercase__: Any = [512, 1_024, 2_048, 4_096] lowercase__: Dict = patch_size if patch_size is not None else {'height': 16, 'width': 16} def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[Any]: '''simple docstring''' return {"do_normalize": self.do_normalize, "do_convert_rgb": self.do_convert_rgb} def SCREAMING_SNAKE_CASE__ ( self ) -> int: '''simple docstring''' lowercase__: str = 'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/australia.jpg' lowercase__: Any = Image.open(requests.get(lowerCAmelCase__ , stream=lowerCAmelCase__ ).raw ).convert('RGB' ) return raw_image @unittest.skipIf( not is_torch_greater_or_equal_than_1_11 , reason='`Pix2StructImageProcessor` requires `torch>=1.11.0`.' , ) @require_torch @require_vision class __a ( __snake_case , unittest.TestCase ): __lowercase : Union[str, Any] = PixaStructImageProcessor if is_vision_available() else None def SCREAMING_SNAKE_CASE__ ( self ) -> Any: '''simple docstring''' lowercase__: str = PixaStructImageProcessingTester(self ) @property def SCREAMING_SNAKE_CASE__ ( self ) -> Dict: '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def SCREAMING_SNAKE_CASE__ ( self ) -> str: '''simple docstring''' lowercase__: Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowerCAmelCase__ , 'do_normalize' ) ) self.assertTrue(hasattr(lowerCAmelCase__ , 'do_convert_rgb' ) ) def SCREAMING_SNAKE_CASE__ ( self ) -> Tuple: '''simple docstring''' lowercase__: List[Any] = self.image_processor_tester.prepare_dummy_image() lowercase__: Any = self.image_processing_class(**self.image_processor_dict ) lowercase__: List[str] = 2_048 lowercase__: Tuple = image_processor(lowerCAmelCase__ , return_tensors='pt' , max_patches=lowerCAmelCase__ ) self.assertTrue(torch.allclose(inputs.flattened_patches.mean() , torch.tensor(0.0_6_0_6 ) , atol=1E-3 , rtol=1E-3 ) ) def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[int]: '''simple docstring''' # Initialize image_processor lowercase__: Tuple = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowercase__: Tuple = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase__ , Image.Image ) # Test not batched input lowercase__: List[str] = ( (self.image_processor_tester.patch_size['height'] * self.image_processor_tester.patch_size['width']) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input lowercase__: List[str] = image_processor( image_inputs[0] , return_tensors='pt' , max_patches=lowerCAmelCase__ ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched lowercase__: Union[str, Any] = image_processor( lowerCAmelCase__ , return_tensors='pt' , max_patches=lowerCAmelCase__ ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) def SCREAMING_SNAKE_CASE__ ( self ) -> int: '''simple docstring''' # Initialize image_processor lowercase__: Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowercase__: List[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase__ , Image.Image ) # Test not batched input lowercase__: Any = ( (self.image_processor_tester.patch_size['height'] * self.image_processor_tester.patch_size['width']) * self.image_processor_tester.num_channels ) + 2 lowercase__: Optional[Any] = True for max_patch in self.image_processor_tester.max_patches: # Test not batched input with self.assertRaises(lowerCAmelCase__ ): lowercase__: Dict = image_processor( image_inputs[0] , return_tensors='pt' , max_patches=lowerCAmelCase__ ).flattened_patches lowercase__: int = 'Hello' lowercase__: Union[str, Any] = image_processor( image_inputs[0] , return_tensors='pt' , max_patches=lowerCAmelCase__ , header_text=lowerCAmelCase__ ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched lowercase__: Any = image_processor( lowerCAmelCase__ , return_tensors='pt' , max_patches=lowerCAmelCase__ , header_text=lowerCAmelCase__ ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) def SCREAMING_SNAKE_CASE__ ( self ) -> int: '''simple docstring''' # Initialize image_processor lowercase__: Dict = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowercase__: Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ , numpify=lowerCAmelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase__ , np.ndarray ) lowercase__: List[Any] = ( (self.image_processor_tester.patch_size['height'] * self.image_processor_tester.patch_size['width']) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input lowercase__: str = image_processor( image_inputs[0] , return_tensors='pt' , max_patches=lowerCAmelCase__ ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched lowercase__: Tuple = image_processor( lowerCAmelCase__ , return_tensors='pt' , max_patches=lowerCAmelCase__ ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) def SCREAMING_SNAKE_CASE__ ( self ) -> Dict: '''simple docstring''' # Initialize image_processor lowercase__: str = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowercase__: List[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ , torchify=lowerCAmelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase__ , torch.Tensor ) # Test not batched input lowercase__: Optional[Any] = ( (self.image_processor_tester.patch_size['height'] * self.image_processor_tester.patch_size['width']) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input lowercase__: str = image_processor( image_inputs[0] , return_tensors='pt' , max_patches=lowerCAmelCase__ ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched lowercase__: str = image_processor( lowerCAmelCase__ , return_tensors='pt' , max_patches=lowerCAmelCase__ ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) @unittest.skipIf( not is_torch_greater_or_equal_than_1_11 , reason='`Pix2StructImageProcessor` requires `torch>=1.11.0`.' , ) @require_torch @require_vision class __a ( __snake_case , unittest.TestCase ): __lowercase : int = PixaStructImageProcessor if is_vision_available() else None def SCREAMING_SNAKE_CASE__ ( self ) -> Dict: '''simple docstring''' lowercase__: Union[str, Any] = PixaStructImageProcessingTester(self , num_channels=4 ) lowercase__: Union[str, Any] = 3 @property def SCREAMING_SNAKE_CASE__ ( self ) -> str: '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def SCREAMING_SNAKE_CASE__ ( self ) -> int: '''simple docstring''' lowercase__: int = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowerCAmelCase__ , 'do_normalize' ) ) self.assertTrue(hasattr(lowerCAmelCase__ , 'do_convert_rgb' ) ) def SCREAMING_SNAKE_CASE__ ( self ) -> int: '''simple docstring''' # Initialize image_processor lowercase__: Dict = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowercase__: Union[str, Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase__ , Image.Image ) # Test not batched input lowercase__: Optional[Any] = ( (self.image_processor_tester.patch_size['height'] * self.image_processor_tester.patch_size['width']) * (self.image_processor_tester.num_channels - 1) ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input lowercase__: Union[str, Any] = image_processor( image_inputs[0] , return_tensors='pt' , max_patches=lowerCAmelCase__ ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched lowercase__: Tuple = image_processor( lowerCAmelCase__ , return_tensors='pt' , max_patches=lowerCAmelCase__ ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , )
362
import json import os import unittest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_ftfy, require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __a ( __UpperCamelCase , unittest.TestCase ): __lowercase : Optional[int] = CLIPTokenizer __lowercase : str = CLIPTokenizerFast __lowercase : Tuple = True __lowercase : str = {} __lowercase : Dict = False def SCREAMING_SNAKE_CASE__ ( self ) -> int: '''simple docstring''' super().setUp() # fmt: off lowercase__: str = ['l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', 'lo', 'l</w>', 'w</w>', 'r</w>', 't</w>', 'low</w>', 'er</w>', 'lowest</w>', 'newer</w>', 'wider', '<unk>', '<|startoftext|>', '<|endoftext|>'] # fmt: on lowercase__: List[str] = dict(zip(lowerCAmelCase__ , range(len(lowerCAmelCase__ ) ) ) ) lowercase__: int = ['#version: 0.2', 'l o', 'lo w</w>', 'e r</w>'] lowercase__: Optional[int] = {'unk_token': '<unk>'} lowercase__: int = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) lowercase__: Union[str, Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(lowerCAmelCase__ ) + '\n' ) with open(self.merges_file , 'w' , encoding='utf-8' ) as fp: fp.write('\n'.join(lowerCAmelCase__ ) ) def SCREAMING_SNAKE_CASE__ ( self , **lowerCAmelCase__ ) -> List[str]: '''simple docstring''' kwargs.update(self.special_tokens_map ) return CLIPTokenizer.from_pretrained(self.tmpdirname , **lowerCAmelCase__ ) def SCREAMING_SNAKE_CASE__ ( self , **lowerCAmelCase__ ) -> Optional[int]: '''simple docstring''' kwargs.update(self.special_tokens_map ) return CLIPTokenizerFast.from_pretrained(self.tmpdirname , **lowerCAmelCase__ ) def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__ ) -> Union[str, Any]: '''simple docstring''' lowercase__: Dict = 'lower newer' lowercase__: Dict = 'lower newer' return input_text, output_text def SCREAMING_SNAKE_CASE__ ( self ) -> List[Any]: '''simple docstring''' lowercase__: Union[str, Any] = CLIPTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) lowercase__: Dict = 'lower newer' lowercase__: Union[str, Any] = ['lo', 'w', 'er</w>', 'n', 'e', 'w', 'er</w>'] lowercase__: Any = tokenizer.tokenize(lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) lowercase__: Tuple = tokens + [tokenizer.unk_token] lowercase__: Tuple = [10, 2, 16, 9, 3, 2, 16, 20] self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCAmelCase__ ) , lowerCAmelCase__ ) @require_ftfy def SCREAMING_SNAKE_CASE__ ( self ) -> Tuple: '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'{tokenizer.__class__.__name__} ({pretrained_name})' ): lowercase__: List[str] = self.tokenizer_class.from_pretrained(lowerCAmelCase__ , **lowerCAmelCase__ ) lowercase__: Optional[int] = self.rust_tokenizer_class.from_pretrained(lowerCAmelCase__ , **lowerCAmelCase__ ) lowercase__: Optional[int] = 'A\n\'ll 11p223RF☆ho!!to?\'d\'d\'\'d of a cat to-$\'\'d.' lowercase__: Optional[Any] = tokenizer_s.tokenize(lowerCAmelCase__ ) lowercase__: Dict = tokenizer_r.tokenize(lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) # Test that the tokenization is identical on an example containing a character (Latin Small Letter A # with Tilde) encoded in 2 different ways lowercase__: Dict = 'xa\u0303y' + ' ' + 'x\xe3y' lowercase__: Tuple = tokenizer_s.tokenize(lowerCAmelCase__ ) lowercase__: int = tokenizer_r.tokenize(lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) # Test that the tokenization is identical on unicode of space type lowercase__: str = [ '\u0009', # (horizontal tab, '\t') '\u000B', # (vertical tab) '\u000C', # (form feed) '\u0020', # (space, ' ') '\u200E', # (left-to-right mark):w '\u200F', # (right-to-left mark) ] for unicode_seq in spaces_unicodes: lowercase__: Optional[Any] = tokenizer_s.tokenize(lowerCAmelCase__ ) lowercase__: Tuple = tokenizer_r.tokenize(lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) # Test that the tokenization is identical on unicode of line break type lowercase__: str = [ '\u000A', # (line feed, '\n') '\r\n', # (carriage return and line feed, '\r\n') '\u000D', # (carriage return, '\r') '\r', # (carriage return, '\r') '\u000D', # (carriage return, '\r') '\u2028', # (line separator) '\u2029', # (paragraph separator) # "\u0085", # (next line) ] # The tokenization is not identical for the character "\u0085" (next line). The slow version using ftfy transforms # it into the Horizontal Ellipsis character "…" ("\u2026") while the fast version transforms it into a # space (and thus into an empty list). for unicode_seq in line_break_unicodes: lowercase__: Optional[int] = tokenizer_s.tokenize(lowerCAmelCase__ ) lowercase__: Optional[int] = tokenizer_r.tokenize(lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[int]: '''simple docstring''' # Test which aims to verify that the offsets are well adapted to the argument `add_prefix_space` for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'{tokenizer.__class__.__name__} ({pretrained_name})' ): lowercase__: Optional[int] = 'hello' # `hello` is a token in the vocabulary of `pretrained_name` lowercase__: Optional[int] = F'{text_of_1_token} {text_of_1_token}' lowercase__: int = self.rust_tokenizer_class.from_pretrained( lowerCAmelCase__ , use_fast=lowerCAmelCase__ , ) lowercase__: Dict = tokenizer_r(lowerCAmelCase__ , return_offsets_mapping=lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ) self.assertEqual(encoding.offset_mapping[0] , (0, len(lowerCAmelCase__ )) ) self.assertEqual( encoding.offset_mapping[1] , (len(lowerCAmelCase__ ) + 1, len(lowerCAmelCase__ ) + 1 + len(lowerCAmelCase__ )) , ) lowercase__: Any = F' {text}' lowercase__: Union[str, Any] = self.rust_tokenizer_class.from_pretrained( lowerCAmelCase__ , use_fast=lowerCAmelCase__ , ) lowercase__: int = tokenizer_r(lowerCAmelCase__ , return_offsets_mapping=lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ) self.assertEqual(encoding.offset_mapping[0] , (1, 1 + len(lowerCAmelCase__ )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(lowerCAmelCase__ ) + 1, 1 + len(lowerCAmelCase__ ) + 1 + len(lowerCAmelCase__ )) , ) def SCREAMING_SNAKE_CASE__ ( self ) -> List[str]: '''simple docstring''' # Test related to the breaking change introduced in transformers v4.17.0 # We need to check that an error in raised when the user try to load a previous version of the tokenizer. with self.assertRaises(lowerCAmelCase__ ) as context: self.rust_tokenizer_class.from_pretrained('robot-test/old-clip-tokenizer' ) self.assertTrue( context.exception.args[0].startswith( 'The `backend_tokenizer` provided does not match the expected format.' ) ) @require_ftfy def SCREAMING_SNAKE_CASE__ ( self ) -> List[Any]: '''simple docstring''' super().test_tokenization_python_rust_equals() def SCREAMING_SNAKE_CASE__ ( self ) -> Tuple: '''simple docstring''' # CLIP always lower cases letters pass
288
0
'''simple docstring''' import argparse lowercase__ = "docs/source/_static/js/custom.js" def UpperCamelCase( UpperCAmelCase_ ): with open(UpperCAmelCase_ , encoding='utf-8' , newline='\n' ) as f: UpperCAmelCase : Dict = f.readlines() UpperCAmelCase : List[str] = 0 # First let's put the right version while not lines[index].startswith('const stableVersion =' ): index += 1 UpperCAmelCase : str = F"""const stableVersion = \"v{version}\"\n""" # Then update the dictionary while not lines[index].startswith('const versionMapping = {' ): index += 1 # We go until the end while not lines[index].startswith('}' ): index += 1 # We add the new version at the end lines[index - 1] += F""" \"v{version}\": \"v{version}\",\n""" with open(UpperCAmelCase_ , 'w' , encoding='utf-8' , newline='\n' ) as f: f.writelines(UpperCAmelCase_ ) if __name__ == "__main__": lowercase__ = argparse.ArgumentParser() parser.add_argument("--version", help="Release version.") lowercase__ = parser.parse_args() update_custom_js(args.version)
151
'''simple docstring''' import warnings from ...utils import logging from .image_processing_perceiver import PerceiverImageProcessor lowercase__ = logging.get_logger(__name__) class A_ ( _snake_case ): '''simple docstring''' def __init__( self : List[Any] , *lowercase_ : Optional[Any] , **lowercase_ : Optional[Any] ) -> None: warnings.warn( 'The class PerceiverFeatureExtractor is deprecated and will be removed in version 5 of Transformers.' ' Please use PerceiverImageProcessor instead.' , lowercase_ , ) super().__init__(*lowercase_ , **lowercase_ )
151
1
from maths.prime_check import is_prime def _SCREAMING_SNAKE_CASE ( _lowerCamelCase : int) -> int: '''simple docstring''' if not isinstance(_lowerCamelCase , _lowerCamelCase): __UpperCamelCase : List[str] = F'Input value of [number={number}] must be an integer' raise TypeError(_lowerCamelCase) if is_prime(_lowerCamelCase) and is_prime(number + 2): return number + 2 else: return -1 if __name__ == "__main__": import doctest doctest.testmod()
151
lowercase : Optional[int] = 9.8_0_6_6_5 def _SCREAMING_SNAKE_CASE ( _lowerCamelCase : float , _lowerCamelCase : float , _lowerCamelCase : float = g) -> float: '''simple docstring''' if fluid_density <= 0: raise ValueError("Impossible fluid density") if volume < 0: raise ValueError("Impossible Object volume") if gravity <= 0: raise ValueError("Impossible Gravity") return fluid_density * gravity * volume if __name__ == "__main__": import doctest # run doctest doctest.testmod()
151
1
"""simple docstring""" from __future__ import annotations def _A (__a , __a ) -> list[list[int]]: """simple docstring""" SCREAMING_SNAKE_CASE_ : list[list[int]] = [] create_all_state(1 , __a , __a , [] , __a ) return result def _A (__a , __a , __a , __a , __a , ) -> None: """simple docstring""" if level == 0: total_list.append(current_list[:] ) return for i in range(__a , total_number - level + 2 ): current_list.append(__a ) create_all_state(i + 1 , __a , level - 1 , __a , __a ) current_list.pop() def _A (__a ) -> None: """simple docstring""" for i in total_list: print(*__a ) if __name__ == "__main__": UpperCAmelCase_ : Dict = 4 UpperCAmelCase_ : int = 2 UpperCAmelCase_ : str = generate_all_combinations(n, k) print_all_state(total_list)
91
from __future__ import annotations import unittest from transformers import AutoTokenizer, MBartConfig, is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFMBartForConditionalGeneration, TFMBartModel @require_tf class A_ : UpperCAmelCase__ = MBartConfig UpperCAmelCase__ = {} UpperCAmelCase__ = '''gelu''' def __init__( self , _A , _A=1_3 , _A=7 , _A=True , _A=False , _A=9_9 , _A=3_2 , _A=2 , _A=4 , _A=3_7 , _A=0.1 , _A=0.1 , _A=2_0 , _A=2 , _A=1 , _A=0 , ): '''simple docstring''' UpperCAmelCase = parent UpperCAmelCase = batch_size UpperCAmelCase = seq_length UpperCAmelCase = is_training UpperCAmelCase = use_labels UpperCAmelCase = vocab_size UpperCAmelCase = hidden_size UpperCAmelCase = num_hidden_layers UpperCAmelCase = num_attention_heads UpperCAmelCase = intermediate_size UpperCAmelCase = hidden_dropout_prob UpperCAmelCase = attention_probs_dropout_prob UpperCAmelCase = max_position_embeddings UpperCAmelCase = eos_token_id UpperCAmelCase = pad_token_id UpperCAmelCase = bos_token_id def _lowercase ( self ): '''simple docstring''' UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) UpperCAmelCase = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) UpperCAmelCase = tf.concat([input_ids, eos_tensor] , axis=1 ) UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) UpperCAmelCase = prepare_mbart_inputs_dict(_A , _A , _A ) return config, inputs_dict def _lowercase ( self , _A , _A ): '''simple docstring''' UpperCAmelCase = TFMBartModel(config=_A ).get_decoder() UpperCAmelCase = inputs_dict['''input_ids'''] UpperCAmelCase = input_ids[:1, :] UpperCAmelCase = inputs_dict['''attention_mask'''][:1, :] UpperCAmelCase = inputs_dict['''head_mask'''] UpperCAmelCase = 1 # first forward pass UpperCAmelCase = model(_A , attention_mask=_A , head_mask=_A , use_cache=_A ) UpperCAmelCase , UpperCAmelCase = outputs.to_tuple() UpperCAmelCase = past_key_values[1] def __SCREAMING_SNAKE_CASE ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__=None , UpperCamelCase__=None , UpperCamelCase__=None , UpperCamelCase__=None , UpperCamelCase__=None , ) -> List[str]: '''simple docstring''' if attention_mask is None: UpperCAmelCase = tf.cast(tf.math.not_equal(UpperCamelCase__ , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: UpperCAmelCase = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: UpperCAmelCase = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: UpperCAmelCase = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: UpperCAmelCase = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class A_ (a_ , a_ , unittest.TestCase ): UpperCAmelCase__ = (TFMBartForConditionalGeneration, TFMBartModel) if is_tf_available() else () UpperCAmelCase__ = (TFMBartForConditionalGeneration,) if is_tf_available() else () UpperCAmelCase__ = ( { '''conversational''': TFMBartForConditionalGeneration, '''feature-extraction''': TFMBartModel, '''summarization''': TFMBartForConditionalGeneration, '''text2text-generation''': TFMBartForConditionalGeneration, '''translation''': TFMBartForConditionalGeneration, } if is_tf_available() else {} ) UpperCAmelCase__ = True UpperCAmelCase__ = False UpperCAmelCase__ = False def _lowercase ( self , _A , _A , _A , _A , _A ): '''simple docstring''' if pipeline_test_casse_name != "FeatureExtractionPipelineTests": # Exception encountered when calling layer '...' return True return False def _lowercase ( self ): '''simple docstring''' UpperCAmelCase = TFMBartModelTester(self ) UpperCAmelCase = ConfigTester(self , config_class=_A ) def _lowercase ( self ): '''simple docstring''' self.config_tester.run_common_tests() def _lowercase ( self ): '''simple docstring''' UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*_A ) @require_sentencepiece @require_tokenizers @require_tf class A_ (unittest.TestCase ): UpperCAmelCase__ = [ ''' UN Chief Says There Is No Military Solution in Syria''', ] UpperCAmelCase__ = [ '''Şeful ONU declară că nu există o soluţie militară în Siria''', ] UpperCAmelCase__ = '''facebook/mbart-large-en-ro''' @cached_property def _lowercase ( self ): '''simple docstring''' return AutoTokenizer.from_pretrained(self.model_name ) @cached_property def _lowercase ( self ): '''simple docstring''' UpperCAmelCase = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model def _lowercase ( self , **_A ): '''simple docstring''' UpperCAmelCase = self.translate_src_text(**_A ) self.assertListEqual(self.expected_text , _A ) def _lowercase ( self , **_A ): '''simple docstring''' UpperCAmelCase = self.tokenizer(self.src_text , **_A , return_tensors='''tf''' ) UpperCAmelCase = self.model.generate( model_inputs.input_ids , attention_mask=model_inputs.attention_mask , num_beams=2 ) UpperCAmelCase = self.tokenizer.batch_decode(_A , skip_special_tokens=_A ) return generated_words @slow def _lowercase ( self ): '''simple docstring''' self._assert_generated_batch_equal_expected()
273
0
import argparse import json import os import sys import tempfile import unittest from argparse import Namespace from dataclasses import dataclass, field from enum import Enum from pathlib import Path from typing import List, Literal, Optional import yaml from transformers import HfArgumentParser, TrainingArguments from transformers.hf_argparser import make_choice_type_function, string_to_bool # Since Python 3.10, we can use the builtin `|` operator for Union types # See PEP 604: https://peps.python.org/pep-0604 lowerCamelCase : Union[str, Any] = sys.version_info >= (3, 10) def _SCREAMING_SNAKE_CASE ( lowercase : List[str]=None , lowercase : int=None ): '''simple docstring''' return field(default_factory=lambda: default , metadata=lowercase ) @dataclass class A: '''simple docstring''' UpperCamelCase = 42 UpperCamelCase = 42 UpperCamelCase = 42 UpperCamelCase = 42 @dataclass class A: '''simple docstring''' UpperCamelCase = 42 UpperCamelCase = field(default='''toto''' , metadata={'''help''': '''help message'''} ) @dataclass class A: '''simple docstring''' UpperCamelCase = False UpperCamelCase = True UpperCamelCase = None class A( UpperCamelCase ): '''simple docstring''' UpperCamelCase = '''titi''' UpperCamelCase = '''toto''' class A( UpperCamelCase ): '''simple docstring''' UpperCamelCase = '''titi''' UpperCamelCase = '''toto''' UpperCamelCase = 42 @dataclass class A: '''simple docstring''' UpperCamelCase = "toto" def a__ ( self : str ) -> Any: """simple docstring""" lowerCamelCase_ = BasicEnum(self.foo ) @dataclass class A: '''simple docstring''' UpperCamelCase = "toto" def a__ ( self : Optional[Any] ) -> Tuple: """simple docstring""" lowerCamelCase_ = MixedTypeEnum(self.foo ) @dataclass class A: '''simple docstring''' UpperCamelCase = None UpperCamelCase = field(default=UpperCamelCase , metadata={'''help''': '''help message'''} ) UpperCamelCase = None UpperCamelCase = list_field(default=[] ) UpperCamelCase = list_field(default=[] ) @dataclass class A: '''simple docstring''' UpperCamelCase = list_field(default=[] ) UpperCamelCase = list_field(default=[1, 2, 3] ) UpperCamelCase = list_field(default=['''Hallo''', '''Bonjour''', '''Hello'''] ) UpperCamelCase = list_field(default=[0.1, 0.2, 0.3] ) @dataclass class A: '''simple docstring''' UpperCamelCase = field() UpperCamelCase = field() UpperCamelCase = field() def a__ ( self : Optional[int] ) -> str: """simple docstring""" lowerCamelCase_ = BasicEnum(self.required_enum ) @dataclass class A: '''simple docstring''' UpperCamelCase = 42 UpperCamelCase = field() UpperCamelCase = None UpperCamelCase = field(default='''toto''' , metadata={'''help''': '''help message'''} ) UpperCamelCase = list_field(default=['''Hallo''', '''Bonjour''', '''Hello'''] ) if is_python_no_less_than_3_10: @dataclass class A: '''simple docstring''' UpperCamelCase = False UpperCamelCase = True UpperCamelCase = None @dataclass class A: '''simple docstring''' UpperCamelCase = None UpperCamelCase = field(default=UpperCamelCase , metadata={'''help''': '''help message'''} ) UpperCamelCase = None UpperCamelCase = list_field(default=[] ) UpperCamelCase = list_field(default=[] ) class A( unittest.TestCase ): '''simple docstring''' def a__ ( self : List[str] , A_ : argparse.ArgumentParser , A_ : argparse.ArgumentParser ) -> Optional[Any]: """simple docstring""" self.assertEqual(len(a._actions ) , len(b._actions ) ) for x, y in zip(a._actions , b._actions ): lowerCamelCase_ = {k: v for k, v in vars(A_ ).items() if k != 'container'} lowerCamelCase_ = {k: v for k, v in vars(A_ ).items() if k != 'container'} # Choices with mixed type have custom function as "type" # So we need to compare results directly for equality if xx.get('choices' , A_ ) and yy.get('choices' , A_ ): for expected_choice in yy["choices"] + xx["choices"]: self.assertEqual(xx['type'](A_ ) , yy['type'](A_ ) ) del xx["type"], yy["type"] self.assertEqual(A_ , A_ ) def a__ ( self : List[str] ) -> Tuple: """simple docstring""" lowerCamelCase_ = HfArgumentParser(A_ ) lowerCamelCase_ = argparse.ArgumentParser() expected.add_argument('--foo' , type=A_ , required=A_ ) expected.add_argument('--bar' , type=A_ , required=A_ ) expected.add_argument('--baz' , type=A_ , required=A_ ) expected.add_argument('--flag' , type=A_ , default=A_ , const=A_ , nargs='?' ) self.argparsersEqual(A_ , A_ ) lowerCamelCase_ = ['--foo', '1', '--baz', 'quux', '--bar', '0.5'] ((lowerCamelCase_) , ) = parser.parse_args_into_dataclasses(A_ , look_for_args_file=A_ ) self.assertFalse(example.flag ) def a__ ( self : Optional[int] ) -> List[str]: """simple docstring""" lowerCamelCase_ = HfArgumentParser(A_ ) lowerCamelCase_ = argparse.ArgumentParser() expected.add_argument('--foo' , default=42 , type=A_ ) expected.add_argument('--baz' , default='toto' , type=A_ , help='help message' ) self.argparsersEqual(A_ , A_ ) def a__ ( self : Optional[int] ) -> List[str]: """simple docstring""" lowerCamelCase_ = argparse.ArgumentParser() expected.add_argument('--foo' , type=A_ , default=A_ , const=A_ , nargs='?' ) expected.add_argument('--baz' , type=A_ , default=A_ , const=A_ , nargs='?' ) # A boolean no_* argument always has to come after its "default: True" regular counter-part # and its default must be set to False expected.add_argument('--no_baz' , action='store_false' , default=A_ , dest='baz' ) expected.add_argument('--opt' , type=A_ , default=A_ ) lowerCamelCase_ = [WithDefaultBoolExample] if is_python_no_less_than_3_10: dataclass_types.append(A_ ) for dataclass_type in dataclass_types: lowerCamelCase_ = HfArgumentParser(A_ ) self.argparsersEqual(A_ , A_ ) lowerCamelCase_ = parser.parse_args([] ) self.assertEqual(A_ , Namespace(foo=A_ , baz=A_ , opt=A_ ) ) lowerCamelCase_ = parser.parse_args(['--foo', '--no_baz'] ) self.assertEqual(A_ , Namespace(foo=A_ , baz=A_ , opt=A_ ) ) lowerCamelCase_ = parser.parse_args(['--foo', '--baz'] ) self.assertEqual(A_ , Namespace(foo=A_ , baz=A_ , opt=A_ ) ) lowerCamelCase_ = parser.parse_args(['--foo', 'True', '--baz', 'True', '--opt', 'True'] ) self.assertEqual(A_ , Namespace(foo=A_ , baz=A_ , opt=A_ ) ) lowerCamelCase_ = parser.parse_args(['--foo', 'False', '--baz', 'False', '--opt', 'False'] ) self.assertEqual(A_ , Namespace(foo=A_ , baz=A_ , opt=A_ ) ) def a__ ( self : List[str] ) -> Tuple: """simple docstring""" lowerCamelCase_ = HfArgumentParser(A_ ) lowerCamelCase_ = argparse.ArgumentParser() expected.add_argument( '--foo' , default='toto' , choices=['titi', 'toto', 42] , type=make_choice_type_function(['titi', 'toto', 42] ) , ) self.argparsersEqual(A_ , A_ ) lowerCamelCase_ = parser.parse_args([] ) self.assertEqual(args.foo , 'toto' ) lowerCamelCase_ = parser.parse_args_into_dataclasses([] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.toto ) lowerCamelCase_ = parser.parse_args(['--foo', 'titi'] ) self.assertEqual(args.foo , 'titi' ) lowerCamelCase_ = parser.parse_args_into_dataclasses(['--foo', 'titi'] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.titi ) lowerCamelCase_ = parser.parse_args(['--foo', '42'] ) self.assertEqual(args.foo , 42 ) lowerCamelCase_ = parser.parse_args_into_dataclasses(['--foo', '42'] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.fourtytwo ) def a__ ( self : str ) -> Union[str, Any]: """simple docstring""" @dataclass class A: '''simple docstring''' UpperCamelCase = "toto" lowerCamelCase_ = HfArgumentParser(A_ ) lowerCamelCase_ = argparse.ArgumentParser() expected.add_argument( '--foo' , default='toto' , choices=('titi', 'toto', 42) , type=make_choice_type_function(['titi', 'toto', 42] ) , ) self.argparsersEqual(A_ , A_ ) lowerCamelCase_ = parser.parse_args([] ) self.assertEqual(args.foo , 'toto' ) lowerCamelCase_ = parser.parse_args(['--foo', 'titi'] ) self.assertEqual(args.foo , 'titi' ) lowerCamelCase_ = parser.parse_args(['--foo', '42'] ) self.assertEqual(args.foo , 42 ) def a__ ( self : int ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_ = HfArgumentParser(A_ ) lowerCamelCase_ = argparse.ArgumentParser() expected.add_argument('--foo_int' , nargs='+' , default=[] , type=A_ ) expected.add_argument('--bar_int' , nargs='+' , default=[1, 2, 3] , type=A_ ) expected.add_argument('--foo_str' , nargs='+' , default=['Hallo', 'Bonjour', 'Hello'] , type=A_ ) expected.add_argument('--foo_float' , nargs='+' , default=[0.1, 0.2, 0.3] , type=A_ ) self.argparsersEqual(A_ , A_ ) lowerCamelCase_ = parser.parse_args([] ) self.assertEqual( A_ , Namespace(foo_int=[] , bar_int=[1, 2, 3] , foo_str=['Hallo', 'Bonjour', 'Hello'] , foo_float=[0.1, 0.2, 0.3] ) , ) lowerCamelCase_ = parser.parse_args('--foo_int 1 --bar_int 2 3 --foo_str a b c --foo_float 0.1 0.7'.split() ) self.assertEqual(A_ , Namespace(foo_int=[1] , bar_int=[2, 3] , foo_str=['a', 'b', 'c'] , foo_float=[0.1, 0.7] ) ) def a__ ( self : Dict ) -> str: """simple docstring""" lowerCamelCase_ = argparse.ArgumentParser() expected.add_argument('--foo' , default=A_ , type=A_ ) expected.add_argument('--bar' , default=A_ , type=A_ , help='help message' ) expected.add_argument('--baz' , default=A_ , type=A_ ) expected.add_argument('--ces' , nargs='+' , default=[] , type=A_ ) expected.add_argument('--des' , nargs='+' , default=[] , type=A_ ) lowerCamelCase_ = [OptionalExample] if is_python_no_less_than_3_10: dataclass_types.append(A_ ) for dataclass_type in dataclass_types: lowerCamelCase_ = HfArgumentParser(A_ ) self.argparsersEqual(A_ , A_ ) lowerCamelCase_ = parser.parse_args([] ) self.assertEqual(A_ , Namespace(foo=A_ , bar=A_ , baz=A_ , ces=[] , des=[] ) ) lowerCamelCase_ = parser.parse_args('--foo 12 --bar 3.14 --baz 42 --ces a b c --des 1 2 3'.split() ) self.assertEqual(A_ , Namespace(foo=12 , bar=3.14 , baz='42' , ces=['a', 'b', 'c'] , des=[1, 2, 3] ) ) def a__ ( self : str ) -> int: """simple docstring""" lowerCamelCase_ = HfArgumentParser(A_ ) lowerCamelCase_ = argparse.ArgumentParser() expected.add_argument('--required_list' , nargs='+' , type=A_ , required=A_ ) expected.add_argument('--required_str' , type=A_ , required=A_ ) expected.add_argument( '--required_enum' , type=make_choice_type_function(['titi', 'toto'] ) , choices=['titi', 'toto'] , required=A_ , ) self.argparsersEqual(A_ , A_ ) def a__ ( self : Any ) -> str: """simple docstring""" lowerCamelCase_ = HfArgumentParser(A_ ) lowerCamelCase_ = argparse.ArgumentParser() expected.add_argument('--foo' , type=A_ , required=A_ ) expected.add_argument( '--required_enum' , type=make_choice_type_function(['titi', 'toto'] ) , choices=['titi', 'toto'] , required=A_ , ) expected.add_argument('--opt' , type=A_ , default=A_ ) expected.add_argument('--baz' , default='toto' , type=A_ , help='help message' ) expected.add_argument('--foo_str' , nargs='+' , default=['Hallo', 'Bonjour', 'Hello'] , type=A_ ) self.argparsersEqual(A_ , A_ ) def a__ ( self : Optional[int] ) -> List[str]: """simple docstring""" lowerCamelCase_ = HfArgumentParser(A_ ) lowerCamelCase_ = { 'foo': 12, 'bar': 3.14, 'baz': '42', 'flag': True, } lowerCamelCase_ = parser.parse_dict(A_ )[0] lowerCamelCase_ = BasicExample(**A_ ) self.assertEqual(A_ , A_ ) def a__ ( self : Union[str, Any] ) -> Dict: """simple docstring""" lowerCamelCase_ = HfArgumentParser(A_ ) lowerCamelCase_ = { 'foo': 12, 'bar': 3.14, 'baz': '42', 'flag': True, 'extra': 42, } self.assertRaises(A_ , parser.parse_dict , A_ , allow_extra_keys=A_ ) def a__ ( self : Optional[Any] ) -> str: """simple docstring""" lowerCamelCase_ = HfArgumentParser(A_ ) lowerCamelCase_ = { 'foo': 12, 'bar': 3.14, 'baz': '42', 'flag': True, } with tempfile.TemporaryDirectory() as tmp_dir: lowerCamelCase_ = os.path.join(A_ , 'temp_json' ) os.mkdir(A_ ) with open(temp_local_path + '.json' , 'w+' ) as f: json.dump(A_ , A_ ) lowerCamelCase_ = parser.parse_yaml_file(Path(temp_local_path + '.json' ) )[0] lowerCamelCase_ = BasicExample(**A_ ) self.assertEqual(A_ , A_ ) def a__ ( self : int ) -> List[str]: """simple docstring""" lowerCamelCase_ = HfArgumentParser(A_ ) lowerCamelCase_ = { 'foo': 12, 'bar': 3.14, 'baz': '42', 'flag': True, } with tempfile.TemporaryDirectory() as tmp_dir: lowerCamelCase_ = os.path.join(A_ , 'temp_yaml' ) os.mkdir(A_ ) with open(temp_local_path + '.yaml' , 'w+' ) as f: yaml.dump(A_ , A_ ) lowerCamelCase_ = parser.parse_yaml_file(Path(temp_local_path + '.yaml' ) )[0] lowerCamelCase_ = BasicExample(**A_ ) self.assertEqual(A_ , A_ ) def a__ ( self : Tuple ) -> List[Any]: """simple docstring""" lowerCamelCase_ = HfArgumentParser(A_ ) self.assertIsNotNone(A_ )
208
import argparse import collections import os import re import tempfile import pandas as pd from datasets import Dataset from huggingface_hub import hf_hub_download, upload_folder from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/update_metadata.py lowerCamelCase : List[Any] = "src/transformers" # This is to make sure the transformers module imported is the one in the repo. lowerCamelCase : List[Any] = direct_transformers_import(TRANSFORMERS_PATH) # Regexes that match TF/Flax/PT model names. lowerCamelCase : Optional[Any] = re.compile(r"TF(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)") lowerCamelCase : List[Any] = re.compile(r"Flax(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)") # Will match any TF or Flax model too so need to be in an else branch afterthe two previous regexes. lowerCamelCase : Union[str, Any] = re.compile(r"(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)") # Fill this with tuples (pipeline_tag, model_mapping, auto_model) lowerCamelCase : Tuple = [ ("pretraining", "MODEL_FOR_PRETRAINING_MAPPING_NAMES", "AutoModelForPreTraining"), ("feature-extraction", "MODEL_MAPPING_NAMES", "AutoModel"), ("audio-classification", "MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES", "AutoModelForAudioClassification"), ("text-generation", "MODEL_FOR_CAUSAL_LM_MAPPING_NAMES", "AutoModelForCausalLM"), ("automatic-speech-recognition", "MODEL_FOR_CTC_MAPPING_NAMES", "AutoModelForCTC"), ("image-classification", "MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES", "AutoModelForImageClassification"), ("image-segmentation", "MODEL_FOR_IMAGE_SEGMENTATION_MAPPING_NAMES", "AutoModelForImageSegmentation"), ("fill-mask", "MODEL_FOR_MASKED_LM_MAPPING_NAMES", "AutoModelForMaskedLM"), ("object-detection", "MODEL_FOR_OBJECT_DETECTION_MAPPING_NAMES", "AutoModelForObjectDetection"), ( "zero-shot-object-detection", "MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING_NAMES", "AutoModelForZeroShotObjectDetection", ), ("question-answering", "MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES", "AutoModelForQuestionAnswering"), ("text2text-generation", "MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES", "AutoModelForSeq2SeqLM"), ("text-classification", "MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES", "AutoModelForSequenceClassification"), ("automatic-speech-recognition", "MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES", "AutoModelForSpeechSeq2Seq"), ( "table-question-answering", "MODEL_FOR_TABLE_QUESTION_ANSWERING_MAPPING_NAMES", "AutoModelForTableQuestionAnswering", ), ("token-classification", "MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES", "AutoModelForTokenClassification"), ("multiple-choice", "MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES", "AutoModelForMultipleChoice"), ( "next-sentence-prediction", "MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES", "AutoModelForNextSentencePrediction", ), ( "audio-frame-classification", "MODEL_FOR_AUDIO_FRAME_CLASSIFICATION_MAPPING_NAMES", "AutoModelForAudioFrameClassification", ), ("audio-xvector", "MODEL_FOR_AUDIO_XVECTOR_MAPPING_NAMES", "AutoModelForAudioXVector"), ( "document-question-answering", "MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES", "AutoModelForDocumentQuestionAnswering", ), ( "visual-question-answering", "MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING_NAMES", "AutoModelForVisualQuestionAnswering", ), ("image-to-text", "MODEL_FOR_FOR_VISION_2_SEQ_MAPPING_NAMES", "AutoModelForVision2Seq"), ( "zero-shot-image-classification", "MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING_NAMES", "AutoModelForZeroShotImageClassification", ), ("depth-estimation", "MODEL_FOR_DEPTH_ESTIMATION_MAPPING_NAMES", "AutoModelForDepthEstimation"), ("video-classification", "MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING_NAMES", "AutoModelForVideoClassification"), ("mask-generation", "MODEL_FOR_MASK_GENERATION_MAPPING_NAMES", "AutoModelForMaskGeneration"), ] def _SCREAMING_SNAKE_CASE ( lowercase : int ): '''simple docstring''' lowerCamelCase_ = re.finditer('.+?(?:(?<=[a-z])(?=[A-Z])|(?<=[A-Z])(?=[A-Z][a-z])|$)' , lowercase ) return [m.group(0 ) for m in matches] def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' lowerCamelCase_ = transformers_module.models.auto.configuration_auto.CONFIG_MAPPING_NAMES lowerCamelCase_ = { config.replace('Config' , '' ): model_type for model_type, config in config_maping_names.items() } # Dictionaries flagging if each model prefix has a backend in PT/TF/Flax. lowerCamelCase_ = collections.defaultdict(lowercase ) lowerCamelCase_ = collections.defaultdict(lowercase ) lowerCamelCase_ = collections.defaultdict(lowercase ) # Let's lookup through all transformers object (once) and find if models are supported by a given backend. for attr_name in dir(lowercase ): lowerCamelCase_ = None if _re_tf_models.match(lowercase ) is not None: lowerCamelCase_ = tf_models lowerCamelCase_ = _re_tf_models.match(lowercase ).groups()[0] elif _re_flax_models.match(lowercase ) is not None: lowerCamelCase_ = flax_models lowerCamelCase_ = _re_flax_models.match(lowercase ).groups()[0] elif _re_pt_models.match(lowercase ) is not None: lowerCamelCase_ = pt_models lowerCamelCase_ = _re_pt_models.match(lowercase ).groups()[0] if lookup_dict is not None: while len(lowercase ) > 0: if attr_name in model_prefix_to_model_type: lowerCamelCase_ = True break # Try again after removing the last word in the name lowerCamelCase_ = ''.join(camel_case_split(lowercase )[:-1] ) lowerCamelCase_ = set(list(pt_models.keys() ) + list(tf_models.keys() ) + list(flax_models.keys() ) ) lowerCamelCase_ = list(lowercase ) all_models.sort() lowerCamelCase_ = {'model_type': all_models} lowerCamelCase_ = [pt_models[t] for t in all_models] lowerCamelCase_ = [tf_models[t] for t in all_models] lowerCamelCase_ = [flax_models[t] for t in all_models] # Now let's use the auto-mapping names to make sure lowerCamelCase_ = {} for t in all_models: if t in transformers_module.models.auto.processing_auto.PROCESSOR_MAPPING_NAMES: lowerCamelCase_ = 'AutoProcessor' elif t in transformers_module.models.auto.tokenization_auto.TOKENIZER_MAPPING_NAMES: lowerCamelCase_ = 'AutoTokenizer' elif t in transformers_module.models.auto.feature_extraction_auto.FEATURE_EXTRACTOR_MAPPING_NAMES: lowerCamelCase_ = 'AutoFeatureExtractor' else: # Default to AutoTokenizer if a model has nothing, for backward compatibility. lowerCamelCase_ = 'AutoTokenizer' lowerCamelCase_ = [processors[t] for t in all_models] return pd.DataFrame(lowercase ) def _SCREAMING_SNAKE_CASE ( lowercase : str ): '''simple docstring''' lowerCamelCase_ = [ transformers_module.models.auto.modeling_auto, transformers_module.models.auto.modeling_tf_auto, transformers_module.models.auto.modeling_flax_auto, ] for pipeline_tag, model_mapping, auto_class in PIPELINE_TAGS_AND_AUTO_MODELS: lowerCamelCase_ = [model_mapping, f"""TF_{model_mapping}""", f"""FLAX_{model_mapping}"""] lowerCamelCase_ = [auto_class, f"""TF_{auto_class}""", f"""Flax_{auto_class}"""] # Loop through all three frameworks for module, cls, mapping in zip(lowercase , lowercase , lowercase ): # The type of pipeline may not exist in this framework if not hasattr(lowercase , lowercase ): continue # First extract all model_names lowerCamelCase_ = [] for name in getattr(lowercase , lowercase ).values(): if isinstance(lowercase , lowercase ): model_names.append(lowercase ) else: model_names.extend(list(lowercase ) ) # Add pipeline tag and auto model class for those models table.update({model_name: (pipeline_tag, cls) for model_name in model_names} ) return table def _SCREAMING_SNAKE_CASE ( lowercase : str , lowercase : Optional[int] ): '''simple docstring''' lowerCamelCase_ = get_frameworks_table() lowerCamelCase_ = Dataset.from_pandas(lowercase ) lowerCamelCase_ = hf_hub_download( 'huggingface/transformers-metadata' , 'pipeline_tags.json' , repo_type='dataset' , token=lowercase ) lowerCamelCase_ = Dataset.from_json(lowercase ) lowerCamelCase_ = { tags_dataset[i]['model_class']: (tags_dataset[i]['pipeline_tag'], tags_dataset[i]['auto_class']) for i in range(len(lowercase ) ) } lowerCamelCase_ = update_pipeline_and_auto_class_table(lowercase ) # Sort the model classes to avoid some nondeterministic updates to create false update commits. lowerCamelCase_ = sorted(table.keys() ) lowerCamelCase_ = pd.DataFrame( { 'model_class': model_classes, 'pipeline_tag': [table[m][0] for m in model_classes], 'auto_class': [table[m][1] for m in model_classes], } ) lowerCamelCase_ = Dataset.from_pandas(lowercase ) with tempfile.TemporaryDirectory() as tmp_dir: frameworks_dataset.to_json(os.path.join(lowercase , 'frameworks.json' ) ) tags_dataset.to_json(os.path.join(lowercase , 'pipeline_tags.json' ) ) if commit_sha is not None: lowerCamelCase_ = ( f"""Update with commit {commit_sha}\n\nSee: """ f"""https://github.com/huggingface/transformers/commit/{commit_sha}""" ) else: lowerCamelCase_ = 'Update' upload_folder( repo_id='huggingface/transformers-metadata' , folder_path=lowercase , repo_type='dataset' , token=lowercase , commit_message=lowercase , ) def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' lowerCamelCase_ = {tag: cls for tag, _, cls in PIPELINE_TAGS_AND_AUTO_MODELS} lowerCamelCase_ = transformers_module.pipelines.SUPPORTED_TASKS lowerCamelCase_ = [] for key in pipeline_tasks: if key not in in_table: lowerCamelCase_ = pipeline_tasks[key]['pt'] if isinstance(lowercase , (list, tuple) ): lowerCamelCase_ = model[0] lowerCamelCase_ = model.__name__ if model not in in_table.values(): missing.append(lowercase ) if len(lowercase ) > 0: lowerCamelCase_ = ', '.join(lowercase ) raise ValueError( 'The following pipeline tags are not present in the `PIPELINE_TAGS_AND_AUTO_MODELS` constant inside ' f"""`utils/update_metadata.py`: {msg}. Please add them!""" ) if __name__ == "__main__": lowerCamelCase : List[str] = argparse.ArgumentParser() parser.add_argument("--token", type=str, help="The token to use to push to the transformers-metadata dataset.") parser.add_argument("--commit_sha", type=str, help="The sha of the commit going with this update.") parser.add_argument("--check-only", action="store_true", help="Activate to just check all pipelines are present.") lowerCamelCase : Optional[int] = parser.parse_args() if args.check_only: check_pipeline_tags() else: update_metadata(args.token, args.commit_sha)
208
1
import os import torch from ..logging import get_logger from .constants import FSDP_PYTORCH_VERSION, MODEL_NAME, OPTIMIZER_NAME from .versions import is_torch_version if is_torch_version('>=', FSDP_PYTORCH_VERSION): import torch.distributed.checkpoint as dist_cp from torch.distributed.checkpoint.default_planner import DefaultLoadPlanner, DefaultSavePlanner from torch.distributed.checkpoint.optimizer import load_sharded_optimizer_state_dict from torch.distributed.fsdp.fully_sharded_data_parallel import FullyShardedDataParallel as FSDP from torch.distributed.fsdp.fully_sharded_data_parallel import StateDictType _SCREAMING_SNAKE_CASE = get_logger(__name__) def snake_case ( snake_case__ :Tuple , snake_case__ :Union[str, Any] , snake_case__ :List[Any] , snake_case__ :Optional[int] , snake_case__ :Tuple=0) -> List[str]: os.makedirs(snake_case__ , exist_ok=snake_case__) with FSDP.state_dict_type( snake_case__ , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config): _A = model.state_dict() if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: _A = F'''{MODEL_NAME}.bin''' if model_index == 0 else F'''{MODEL_NAME}_{model_index}.bin''' _A = os.path.join(snake_case__ , snake_case__) if accelerator.process_index == 0: logger.info(F'''Saving model to {output_model_file}''') torch.save(snake_case__ , snake_case__) logger.info(F'''Model saved to {output_model_file}''') elif fsdp_plugin.state_dict_type == StateDictType.LOCAL_STATE_DICT: _A = ( F'''{MODEL_NAME}_rank{accelerator.process_index}.bin''' if model_index == 0 else F'''{MODEL_NAME}_{model_index}_rank{accelerator.process_index}.bin''' ) _A = os.path.join(snake_case__ , snake_case__) logger.info(F'''Saving model to {output_model_file}''') torch.save(snake_case__ , snake_case__) logger.info(F'''Model saved to {output_model_file}''') elif fsdp_plugin.state_dict_type == StateDictType.SHARDED_STATE_DICT: _A = os.path.join(snake_case__ , F'''{MODEL_NAME}_{model_index}''') os.makedirs(snake_case__ , exist_ok=snake_case__) logger.info(F'''Saving model to {ckpt_dir}''') _A = {"""model""": state_dict} dist_cp.save_state_dict( state_dict=snake_case__ , storage_writer=dist_cp.FileSystemWriter(snake_case__) , planner=DefaultSavePlanner() , ) logger.info(F'''Model saved to {ckpt_dir}''') def snake_case ( snake_case__ :Optional[int] , snake_case__ :Optional[int] , snake_case__ :Union[str, Any] , snake_case__ :Optional[int] , snake_case__ :Dict=0) -> str: accelerator.wait_for_everyone() with FSDP.state_dict_type( snake_case__ , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config): if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: if type(snake_case__) != FSDP and accelerator.process_index != 0: if not fsdp_plugin.sync_module_states: raise ValueError( """Set the `sync_module_states` flag to `True` so that model states are synced across processes when """ """initializing FSDP object""") return _A = F'''{MODEL_NAME}.bin''' if model_index == 0 else F'''{MODEL_NAME}_{model_index}.bin''' _A = os.path.join(snake_case__ , snake_case__) logger.info(F'''Loading model from {input_model_file}''') _A = torch.load(snake_case__) logger.info(F'''Model loaded from {input_model_file}''') elif fsdp_plugin.state_dict_type == StateDictType.LOCAL_STATE_DICT: _A = ( F'''{MODEL_NAME}_rank{accelerator.process_index}.bin''' if model_index == 0 else F'''{MODEL_NAME}_{model_index}_rank{accelerator.process_index}.bin''' ) _A = os.path.join(snake_case__ , snake_case__) logger.info(F'''Loading model from {input_model_file}''') _A = torch.load(snake_case__) logger.info(F'''Model loaded from {input_model_file}''') elif fsdp_plugin.state_dict_type == StateDictType.SHARDED_STATE_DICT: _A = ( os.path.join(snake_case__ , F'''{MODEL_NAME}_{model_index}''') if F'''{MODEL_NAME}''' not in input_dir else input_dir ) logger.info(F'''Loading model from {ckpt_dir}''') _A = {"""model""": model.state_dict()} dist_cp.load_state_dict( state_dict=snake_case__ , storage_reader=dist_cp.FileSystemReader(snake_case__) , planner=DefaultLoadPlanner() , ) _A = state_dict["""model"""] logger.info(F'''Model loaded from {ckpt_dir}''') model.load_state_dict(snake_case__) def snake_case ( snake_case__ :Optional[int] , snake_case__ :List[str] , snake_case__ :List[str] , snake_case__ :Any , snake_case__ :List[Any] , snake_case__ :Optional[int]=0) -> Optional[Any]: os.makedirs(snake_case__ , exist_ok=snake_case__) with FSDP.state_dict_type( snake_case__ , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config): _A = FSDP.optim_state_dict(snake_case__ , snake_case__) if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: if accelerator.process_index == 0: _A = ( F'''{OPTIMIZER_NAME}.bin''' if optimizer_index == 0 else F'''{OPTIMIZER_NAME}_{optimizer_index}.bin''' ) _A = os.path.join(snake_case__ , snake_case__) logger.info(F'''Saving Optimizer state to {output_optimizer_file}''') torch.save(snake_case__ , snake_case__) logger.info(F'''Optimizer state saved in {output_optimizer_file}''') else: _A = os.path.join(snake_case__ , F'''{OPTIMIZER_NAME}_{optimizer_index}''') os.makedirs(snake_case__ , exist_ok=snake_case__) logger.info(F'''Saving Optimizer state to {ckpt_dir}''') dist_cp.save_state_dict( state_dict={"""optimizer""": optim_state} , storage_writer=dist_cp.FileSystemWriter(snake_case__) , planner=DefaultSavePlanner() , ) logger.info(F'''Optimizer state saved in {ckpt_dir}''') def snake_case ( snake_case__ :str , snake_case__ :Dict , snake_case__ :Optional[Any] , snake_case__ :List[str] , snake_case__ :Optional[Any] , snake_case__ :List[Any]=0) -> Optional[Any]: accelerator.wait_for_everyone() with FSDP.state_dict_type( snake_case__ , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config): if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: _A = None # below check should work but currently it isn't working (mostly opytorch issue), # in the meantime disabling it at the cost of excess memory usage # if accelerator.process_index == 0 or not fsdp_plugin.optim_state_dict_config.rank0_only: _A = ( F'''{OPTIMIZER_NAME}.bin''' if optimizer_index == 0 else F'''{OPTIMIZER_NAME}_{optimizer_index}.bin''' ) _A = os.path.join(snake_case__ , snake_case__) logger.info(F'''Loading Optimizer state from {input_optimizer_file}''') _A = torch.load(snake_case__) logger.info(F'''Optimizer state loaded from {input_optimizer_file}''') else: _A = ( os.path.join(snake_case__ , F'''{OPTIMIZER_NAME}_{optimizer_index}''') if F'''{OPTIMIZER_NAME}''' not in input_dir else input_dir ) logger.info(F'''Loading Optimizer from {ckpt_dir}''') _A = load_sharded_optimizer_state_dict( model_state_dict=model.state_dict() , optimizer_key="""optimizer""" , storage_reader=dist_cp.FileSystemReader(snake_case__) , ) _A = optim_state["""optimizer"""] logger.info(F'''Optimizer loaded from {ckpt_dir}''') _A = FSDP.optim_state_dict_to_load(snake_case__ , snake_case__ , snake_case__) optimizer.load_state_dict(snake_case__)
180
import collections import importlib.util import os import re from pathlib import Path _SCREAMING_SNAKE_CASE = 'src/transformers' # Matches is_xxx_available() _SCREAMING_SNAKE_CASE = re.compile(R'is\_([a-z_]*)_available()') # Catches a one-line _import_struct = {xxx} _SCREAMING_SNAKE_CASE = re.compile(R'^_import_structure\s+=\s+\{([^\}]+)\}') # Catches a line with a key-values pattern: "bla": ["foo", "bar"] _SCREAMING_SNAKE_CASE = re.compile(R'\s+"\S*":\s+\[([^\]]*)\]') # Catches a line if not is_foo_available _SCREAMING_SNAKE_CASE = re.compile(R'^\s*if\s+not\s+is\_[a-z_]*\_available\(\)') # Catches a line _import_struct["bla"].append("foo") _SCREAMING_SNAKE_CASE = re.compile(R'^\s*_import_structure\["\S*"\]\.append\("(\S*)"\)') # Catches a line _import_struct["bla"].extend(["foo", "bar"]) or _import_struct["bla"] = ["foo", "bar"] _SCREAMING_SNAKE_CASE = re.compile(R'^\s*_import_structure\[\S*\](?:\.extend\(|\s*=\s+)\[([^\]]*)\]') # Catches a line with an object between quotes and a comma: "MyModel", _SCREAMING_SNAKE_CASE = re.compile('^\s+"([^"]+)",') # Catches a line with objects between brackets only: ["foo", "bar"], _SCREAMING_SNAKE_CASE = re.compile('^\s+\[([^\]]+)\]') # Catches a line with from foo import bar, bla, boo _SCREAMING_SNAKE_CASE = re.compile(R'\s+from\s+\S*\s+import\s+([^\(\s].*)\n') # Catches a line with try: _SCREAMING_SNAKE_CASE = re.compile(R'^\s*try:') # Catches a line with else: _SCREAMING_SNAKE_CASE = re.compile(R'^\s*else:') def snake_case ( snake_case__ :Optional[Any]) -> List[str]: if _re_test_backend.search(snake_case__) is None: return None _A = [b[0] for b in _re_backend.findall(snake_case__)] backends.sort() return "_and_".join(snake_case__) def snake_case ( snake_case__ :Any) -> Any: with open(snake_case__ , """r""" , encoding="""utf-8""" , newline="""\n""") as f: _A = f.readlines() _A = 0 while line_index < len(snake_case__) and not lines[line_index].startswith("""_import_structure = {"""): line_index += 1 # If this is a traditional init, just return. if line_index >= len(snake_case__): return None # First grab the objects without a specific backend in _import_structure _A = [] while not lines[line_index].startswith("""if TYPE_CHECKING""") and find_backend(lines[line_index]) is None: _A = lines[line_index] # If we have everything on a single line, let's deal with it. if _re_one_line_import_struct.search(snake_case__): _A = _re_one_line_import_struct.search(snake_case__).groups()[0] _A = re.findall("""\[([^\]]+)\]""" , snake_case__) for imp in imports: objects.extend([obj[1:-1] for obj in imp.split(""", """)]) line_index += 1 continue _A = _re_import_struct_key_value.search(snake_case__) if single_line_import_search is not None: _A = [obj[1:-1] for obj in single_line_import_search.groups()[0].split(""", """) if len(snake_case__) > 0] objects.extend(snake_case__) elif line.startswith(""" """ * 8 + """\""""): objects.append(line[9:-3]) line_index += 1 _A = {"""none""": objects} # Let's continue with backend-specific objects in _import_structure while not lines[line_index].startswith("""if TYPE_CHECKING"""): # If the line is an if not is_backend_available, we grab all objects associated. _A = find_backend(lines[line_index]) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1]) is None: _A = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index]) is None: line_index += 1 line_index += 1 _A = [] # Until we unindent, add backend objects to the list while len(lines[line_index]) <= 1 or lines[line_index].startswith(""" """ * 4): _A = lines[line_index] if _re_import_struct_add_one.search(snake_case__) is not None: objects.append(_re_import_struct_add_one.search(snake_case__).groups()[0]) elif _re_import_struct_add_many.search(snake_case__) is not None: _A = _re_import_struct_add_many.search(snake_case__).groups()[0].split(""", """) _A = [obj[1:-1] for obj in imports if len(snake_case__) > 0] objects.extend(snake_case__) elif _re_between_brackets.search(snake_case__) is not None: _A = _re_between_brackets.search(snake_case__).groups()[0].split(""", """) _A = [obj[1:-1] for obj in imports if len(snake_case__) > 0] objects.extend(snake_case__) elif _re_quote_object.search(snake_case__) is not None: objects.append(_re_quote_object.search(snake_case__).groups()[0]) elif line.startswith(""" """ * 8 + """\""""): objects.append(line[9:-3]) elif line.startswith(""" """ * 12 + """\""""): objects.append(line[13:-3]) line_index += 1 _A = objects else: line_index += 1 # At this stage we are in the TYPE_CHECKING part, first grab the objects without a specific backend _A = [] while ( line_index < len(snake_case__) and find_backend(lines[line_index]) is None and not lines[line_index].startswith("""else""") ): _A = lines[line_index] _A = _re_import.search(snake_case__) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(""", """)) elif line.startswith(""" """ * 8): objects.append(line[8:-2]) line_index += 1 _A = {"""none""": objects} # Let's continue with backend-specific objects while line_index < len(snake_case__): # If the line is an if is_backend_available, we grab all objects associated. _A = find_backend(lines[line_index]) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1]) is None: _A = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index]) is None: line_index += 1 line_index += 1 _A = [] # Until we unindent, add backend objects to the list while len(lines[line_index]) <= 1 or lines[line_index].startswith(""" """ * 8): _A = lines[line_index] _A = _re_import.search(snake_case__) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(""", """)) elif line.startswith(""" """ * 12): objects.append(line[12:-2]) line_index += 1 _A = objects else: line_index += 1 return import_dict_objects, type_hint_objects def snake_case ( snake_case__ :Dict , snake_case__ :int) -> List[Any]: def find_duplicates(snake_case__ :Union[str, Any]): return [k for k, v in collections.Counter(snake_case__).items() if v > 1] if list(import_dict_objects.keys()) != list(type_hint_objects.keys()): return ["Both sides of the init do not have the same backends!"] _A = [] for key in import_dict_objects.keys(): _A = find_duplicates(import_dict_objects[key]) if duplicate_imports: errors.append(F'''Duplicate _import_structure definitions for: {duplicate_imports}''') _A = find_duplicates(type_hint_objects[key]) if duplicate_type_hints: errors.append(F'''Duplicate TYPE_CHECKING objects for: {duplicate_type_hints}''') if sorted(set(import_dict_objects[key])) != sorted(set(type_hint_objects[key])): _A = """base imports""" if key == """none""" else F'''{key} backend''' errors.append(F'''Differences for {name}:''') for a in type_hint_objects[key]: if a not in import_dict_objects[key]: errors.append(F''' {a} in TYPE_HINT but not in _import_structure.''') for a in import_dict_objects[key]: if a not in type_hint_objects[key]: errors.append(F''' {a} in _import_structure but not in TYPE_HINT.''') return errors def snake_case ( ) -> int: _A = [] for root, _, files in os.walk(snake_case__): if "__init__.py" in files: _A = os.path.join(snake_case__ , """__init__.py""") _A = parse_init(snake_case__) if objects is not None: _A = analyze_results(*snake_case__) if len(snake_case__) > 0: _A = F'''Problem in {fname}, both halves do not define the same objects.\n{errors[0]}''' failures.append("""\n""".join(snake_case__)) if len(snake_case__) > 0: raise ValueError("""\n\n""".join(snake_case__)) def snake_case ( ) -> Optional[Any]: _A = [] for path, directories, files in os.walk(snake_case__): for folder in directories: # Ignore private modules if folder.startswith("""_"""): directories.remove(snake_case__) continue # Ignore leftovers from branches (empty folders apart from pycache) if len(list((Path(snake_case__) / folder).glob("""*.py"""))) == 0: continue _A = str((Path(snake_case__) / folder).relative_to(snake_case__)) _A = short_path.replace(os.path.sep , """.""") submodules.append(snake_case__) for fname in files: if fname == "__init__.py": continue _A = str((Path(snake_case__) / fname).relative_to(snake_case__)) _A = short_path.replace(""".py""" , """""").replace(os.path.sep , """.""") if len(submodule.split(""".""")) == 1: submodules.append(snake_case__) return submodules _SCREAMING_SNAKE_CASE = [ 'convert_pytorch_checkpoint_to_tf2', 'modeling_flax_pytorch_utils', ] def snake_case ( ) -> Union[str, Any]: # This is to make sure the transformers module imported is the one in the repo. _A = importlib.util.spec_from_file_location( """transformers""" , os.path.join(snake_case__ , """__init__.py""") , submodule_search_locations=[PATH_TO_TRANSFORMERS] , ) _A = spec.loader.load_module() _A = [ module for module in get_transformers_submodules() if module not in IGNORE_SUBMODULES and module not in transformers._import_structure.keys() ] if len(snake_case__) > 0: _A = """\n""".join(F'''- {module}''' for module in module_not_registered) raise ValueError( """The following submodules are not properly registered in the main init of Transformers:\n""" F'''{list_of_modules}\n''' """Make sure they appear somewhere in the keys of `_import_structure` with an empty list as value.""") if __name__ == "__main__": check_all_inits() check_submodules()
180
1
'''simple docstring''' import gc import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, CycleDiffusionPipeline, DDIMScheduler, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class UpperCamelCase__( lowerCAmelCase , lowerCAmelCase , unittest.TestCase ): __magic_name__ : Tuple = CycleDiffusionPipeline __magic_name__ : int = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - { "negative_prompt", "height", "width", "negative_prompt_embeds", } __magic_name__ : str = PipelineTesterMixin.required_optional_params - {"latents"} __magic_name__ : Union[str, Any] = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({"source_prompt"} ) __magic_name__ : List[str] = IMAGE_TO_IMAGE_IMAGE_PARAMS __magic_name__ : Optional[int] = IMAGE_TO_IMAGE_IMAGE_PARAMS def a__( self : List[Any] )-> int: """simple docstring""" torch.manual_seed(0 ) UpperCAmelCase = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , ) UpperCAmelCase = DDIMScheduler( beta_start=0.00085 , beta_end=0.012 , beta_schedule='''scaled_linear''' , num_train_timesteps=1000 , clip_sample=lowerCAmelCase , set_alpha_to_one=lowerCAmelCase , ) torch.manual_seed(0 ) UpperCAmelCase = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , ) torch.manual_seed(0 ) UpperCAmelCase = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) UpperCAmelCase = CLIPTextModel(lowerCAmelCase ) UpperCAmelCase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) UpperCAmelCase = { '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''safety_checker''': None, '''feature_extractor''': None, } return components def a__( self : Tuple , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : Optional[int]=0 )-> Optional[Any]: """simple docstring""" UpperCAmelCase = floats_tensor((1, 3, 32, 32) , rng=random.Random(lowerCAmelCase ) ).to(lowerCAmelCase ) UpperCAmelCase = image / 2 + 0.5 if str(lowerCAmelCase ).startswith('''mps''' ): UpperCAmelCase = torch.manual_seed(lowerCAmelCase ) else: UpperCAmelCase = torch.Generator(device=lowerCAmelCase ).manual_seed(lowerCAmelCase ) UpperCAmelCase = { '''prompt''': '''An astronaut riding an elephant''', '''source_prompt''': '''An astronaut riding a horse''', '''image''': image, '''generator''': generator, '''num_inference_steps''': 2, '''eta''': 0.1, '''strength''': 0.8, '''guidance_scale''': 3, '''source_guidance_scale''': 1, '''output_type''': '''numpy''', } return inputs def a__( self : Optional[int] )-> Optional[Any]: """simple docstring""" UpperCAmelCase = '''cpu''' # ensure determinism for the device-dependent torch.Generator UpperCAmelCase = self.get_dummy_components() UpperCAmelCase = CycleDiffusionPipeline(**lowerCAmelCase ) UpperCAmelCase = pipe.to(lowerCAmelCase ) pipe.set_progress_bar_config(disable=lowerCAmelCase ) UpperCAmelCase = self.get_dummy_inputs(lowerCAmelCase ) UpperCAmelCase = pipe(**lowerCAmelCase ) UpperCAmelCase = output.images UpperCAmelCase = images[0, -3:, -3:, -1] assert images.shape == (1, 32, 32, 3) UpperCAmelCase = np.array([0.4459, 0.4943, 0.4544, 0.6643, 0.5474, 0.4327, 0.5701, 0.5959, 0.5179] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 @unittest.skipIf(torch_device != '''cuda''' , '''This test requires a GPU''' ) def a__( self : Any )-> Union[str, Any]: """simple docstring""" UpperCAmelCase = self.get_dummy_components() for name, module in components.items(): if hasattr(lowerCAmelCase , '''half''' ): UpperCAmelCase = module.half() UpperCAmelCase = CycleDiffusionPipeline(**lowerCAmelCase ) UpperCAmelCase = pipe.to(lowerCAmelCase ) pipe.set_progress_bar_config(disable=lowerCAmelCase ) UpperCAmelCase = self.get_dummy_inputs(lowerCAmelCase ) UpperCAmelCase = pipe(**lowerCAmelCase ) UpperCAmelCase = output.images UpperCAmelCase = images[0, -3:, -3:, -1] assert images.shape == (1, 32, 32, 3) UpperCAmelCase = np.array([0.3506, 0.4543, 0.446, 0.4575, 0.5195, 0.4155, 0.5273, 0.518, 0.4116] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 @skip_mps def a__( self : int )-> Union[str, Any]: """simple docstring""" return super().test_save_load_local() @unittest.skip('''non-deterministic pipeline''' ) def a__( self : Optional[int] )-> Tuple: """simple docstring""" return super().test_inference_batch_single_identical() @skip_mps def a__( self : Optional[int] )-> int: """simple docstring""" return super().test_dict_tuple_outputs_equivalent() @skip_mps def a__( self : str )-> Union[str, Any]: """simple docstring""" return super().test_save_load_optional_components() @skip_mps def a__( self : Optional[int] )-> Any: """simple docstring""" return super().test_attention_slicing_forward_pass() @slow @require_torch_gpu class UpperCamelCase__( unittest.TestCase ): def a__( self : Optional[Any] )-> Optional[Any]: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def a__( self : Union[str, Any] )-> List[str]: """simple docstring""" UpperCAmelCase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/cycle-diffusion/black_colored_car.png''' ) UpperCAmelCase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/cycle-diffusion/blue_colored_car_fp16.npy''' ) UpperCAmelCase = init_image.resize((512, 512) ) UpperCAmelCase = '''CompVis/stable-diffusion-v1-4''' UpperCAmelCase = DDIMScheduler.from_pretrained(lowerCAmelCase , subfolder='''scheduler''' ) UpperCAmelCase = CycleDiffusionPipeline.from_pretrained( lowerCAmelCase , scheduler=lowerCAmelCase , safety_checker=lowerCAmelCase , torch_dtype=torch.floataa , revision='''fp16''' ) pipe.to(lowerCAmelCase ) pipe.set_progress_bar_config(disable=lowerCAmelCase ) pipe.enable_attention_slicing() UpperCAmelCase = '''A black colored car''' UpperCAmelCase = '''A blue colored car''' UpperCAmelCase = torch.manual_seed(0 ) UpperCAmelCase = pipe( prompt=lowerCAmelCase , source_prompt=lowerCAmelCase , image=lowerCAmelCase , num_inference_steps=100 , eta=0.1 , strength=0.85 , guidance_scale=3 , source_guidance_scale=1 , generator=lowerCAmelCase , output_type='''np''' , ) UpperCAmelCase = output.images # the values aren't exactly equal, but the images look the same visually assert np.abs(image - expected_image ).max() < 5E-1 def a__( self : Any )-> List[str]: """simple docstring""" UpperCAmelCase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/cycle-diffusion/black_colored_car.png''' ) UpperCAmelCase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/cycle-diffusion/blue_colored_car.npy''' ) UpperCAmelCase = init_image.resize((512, 512) ) UpperCAmelCase = '''CompVis/stable-diffusion-v1-4''' UpperCAmelCase = DDIMScheduler.from_pretrained(lowerCAmelCase , subfolder='''scheduler''' ) UpperCAmelCase = CycleDiffusionPipeline.from_pretrained(lowerCAmelCase , scheduler=lowerCAmelCase , safety_checker=lowerCAmelCase ) pipe.to(lowerCAmelCase ) pipe.set_progress_bar_config(disable=lowerCAmelCase ) pipe.enable_attention_slicing() UpperCAmelCase = '''A black colored car''' UpperCAmelCase = '''A blue colored car''' UpperCAmelCase = torch.manual_seed(0 ) UpperCAmelCase = pipe( prompt=lowerCAmelCase , source_prompt=lowerCAmelCase , image=lowerCAmelCase , num_inference_steps=100 , eta=0.1 , strength=0.85 , guidance_scale=3 , source_guidance_scale=1 , generator=lowerCAmelCase , output_type='''np''' , ) UpperCAmelCase = output.images assert np.abs(image - expected_image ).max() < 2E-2
91
'''simple docstring''' import flax.linen as nn import jax.numpy as jnp from .attention_flax import FlaxTransformeraDModel from .resnet_flax import FlaxDownsampleaD, FlaxResnetBlockaD, FlaxUpsampleaD class UpperCamelCase__( nn.Module ): __magic_name__ : int __magic_name__ : int __magic_name__ : float = 0.0 __magic_name__ : int = 1 __magic_name__ : int = 1 __magic_name__ : bool = True __magic_name__ : bool = False __magic_name__ : bool = False __magic_name__ : bool = False __magic_name__ : jnp.dtype = jnp.floataa def a__( self : str )-> Dict: """simple docstring""" UpperCAmelCase = [] UpperCAmelCase = [] for i in range(self.num_layers ): UpperCAmelCase = self.in_channels if i == 0 else self.out_channels UpperCAmelCase = FlaxResnetBlockaD( in_channels=lowerCAmelCase , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(lowerCAmelCase ) UpperCAmelCase = FlaxTransformeraDModel( in_channels=self.out_channels , n_heads=self.num_attention_heads , d_head=self.out_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , only_cross_attention=self.only_cross_attention , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) attentions.append(lowerCAmelCase ) UpperCAmelCase = resnets UpperCAmelCase = attentions if self.add_downsample: UpperCAmelCase = FlaxDownsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self : List[Any] , lowerCAmelCase : Any , lowerCAmelCase : int , lowerCAmelCase : Dict , lowerCAmelCase : List[str]=True )-> Optional[int]: """simple docstring""" UpperCAmelCase = () for resnet, attn in zip(self.resnets , self.attentions ): UpperCAmelCase = resnet(lowerCAmelCase , lowerCAmelCase , deterministic=lowerCAmelCase ) UpperCAmelCase = attn(lowerCAmelCase , lowerCAmelCase , deterministic=lowerCAmelCase ) output_states += (hidden_states,) if self.add_downsample: UpperCAmelCase = self.downsamplers_a(lowerCAmelCase ) output_states += (hidden_states,) return hidden_states, output_states class UpperCamelCase__( nn.Module ): __magic_name__ : int __magic_name__ : int __magic_name__ : float = 0.0 __magic_name__ : int = 1 __magic_name__ : bool = True __magic_name__ : jnp.dtype = jnp.floataa def a__( self : List[str] )-> Any: """simple docstring""" UpperCAmelCase = [] for i in range(self.num_layers ): UpperCAmelCase = self.in_channels if i == 0 else self.out_channels UpperCAmelCase = FlaxResnetBlockaD( in_channels=lowerCAmelCase , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(lowerCAmelCase ) UpperCAmelCase = resnets if self.add_downsample: UpperCAmelCase = FlaxDownsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self : List[str] , lowerCAmelCase : Tuple , lowerCAmelCase : Dict , lowerCAmelCase : List[str]=True )-> Optional[int]: """simple docstring""" UpperCAmelCase = () for resnet in self.resnets: UpperCAmelCase = resnet(lowerCAmelCase , lowerCAmelCase , deterministic=lowerCAmelCase ) output_states += (hidden_states,) if self.add_downsample: UpperCAmelCase = self.downsamplers_a(lowerCAmelCase ) output_states += (hidden_states,) return hidden_states, output_states class UpperCamelCase__( nn.Module ): __magic_name__ : int __magic_name__ : int __magic_name__ : int __magic_name__ : float = 0.0 __magic_name__ : int = 1 __magic_name__ : int = 1 __magic_name__ : bool = True __magic_name__ : bool = False __magic_name__ : bool = False __magic_name__ : bool = False __magic_name__ : jnp.dtype = jnp.floataa def a__( self : List[str] )-> Tuple: """simple docstring""" UpperCAmelCase = [] UpperCAmelCase = [] for i in range(self.num_layers ): UpperCAmelCase = self.in_channels if (i == self.num_layers - 1) else self.out_channels UpperCAmelCase = self.prev_output_channel if i == 0 else self.out_channels UpperCAmelCase = FlaxResnetBlockaD( in_channels=resnet_in_channels + res_skip_channels , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(lowerCAmelCase ) UpperCAmelCase = FlaxTransformeraDModel( in_channels=self.out_channels , n_heads=self.num_attention_heads , d_head=self.out_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , only_cross_attention=self.only_cross_attention , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) attentions.append(lowerCAmelCase ) UpperCAmelCase = resnets UpperCAmelCase = attentions if self.add_upsample: UpperCAmelCase = FlaxUpsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self : Union[str, Any] , lowerCAmelCase : List[str] , lowerCAmelCase : Optional[int] , lowerCAmelCase : List[str] , lowerCAmelCase : Any , lowerCAmelCase : Union[str, Any]=True )-> Optional[int]: """simple docstring""" for resnet, attn in zip(self.resnets , self.attentions ): # pop res hidden states UpperCAmelCase = res_hidden_states_tuple[-1] UpperCAmelCase = res_hidden_states_tuple[:-1] UpperCAmelCase = jnp.concatenate((hidden_states, res_hidden_states) , axis=-1 ) UpperCAmelCase = resnet(lowerCAmelCase , lowerCAmelCase , deterministic=lowerCAmelCase ) UpperCAmelCase = attn(lowerCAmelCase , lowerCAmelCase , deterministic=lowerCAmelCase ) if self.add_upsample: UpperCAmelCase = self.upsamplers_a(lowerCAmelCase ) return hidden_states class UpperCamelCase__( nn.Module ): __magic_name__ : int __magic_name__ : int __magic_name__ : int __magic_name__ : float = 0.0 __magic_name__ : int = 1 __magic_name__ : bool = True __magic_name__ : jnp.dtype = jnp.floataa def a__( self : Optional[int] )-> str: """simple docstring""" UpperCAmelCase = [] for i in range(self.num_layers ): UpperCAmelCase = self.in_channels if (i == self.num_layers - 1) else self.out_channels UpperCAmelCase = self.prev_output_channel if i == 0 else self.out_channels UpperCAmelCase = FlaxResnetBlockaD( in_channels=resnet_in_channels + res_skip_channels , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(lowerCAmelCase ) UpperCAmelCase = resnets if self.add_upsample: UpperCAmelCase = FlaxUpsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self : Union[str, Any] , lowerCAmelCase : Dict , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : Tuple , lowerCAmelCase : Dict=True )-> Tuple: """simple docstring""" for resnet in self.resnets: # pop res hidden states UpperCAmelCase = res_hidden_states_tuple[-1] UpperCAmelCase = res_hidden_states_tuple[:-1] UpperCAmelCase = jnp.concatenate((hidden_states, res_hidden_states) , axis=-1 ) UpperCAmelCase = resnet(lowerCAmelCase , lowerCAmelCase , deterministic=lowerCAmelCase ) if self.add_upsample: UpperCAmelCase = self.upsamplers_a(lowerCAmelCase ) return hidden_states class UpperCamelCase__( nn.Module ): __magic_name__ : int __magic_name__ : float = 0.0 __magic_name__ : int = 1 __magic_name__ : int = 1 __magic_name__ : bool = False __magic_name__ : bool = False __magic_name__ : jnp.dtype = jnp.floataa def a__( self : int )-> Optional[int]: """simple docstring""" UpperCAmelCase = [ FlaxResnetBlockaD( in_channels=self.in_channels , out_channels=self.in_channels , dropout_prob=self.dropout , dtype=self.dtype , ) ] UpperCAmelCase = [] for _ in range(self.num_layers ): UpperCAmelCase = FlaxTransformeraDModel( in_channels=self.in_channels , n_heads=self.num_attention_heads , d_head=self.in_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) attentions.append(lowerCAmelCase ) UpperCAmelCase = FlaxResnetBlockaD( in_channels=self.in_channels , out_channels=self.in_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(lowerCAmelCase ) UpperCAmelCase = resnets UpperCAmelCase = attentions def __call__( self : Dict , lowerCAmelCase : Optional[Any] , lowerCAmelCase : Tuple , lowerCAmelCase : Dict , lowerCAmelCase : Any=True )-> Union[str, Any]: """simple docstring""" UpperCAmelCase = self.resnets[0](lowerCAmelCase , lowerCAmelCase ) for attn, resnet in zip(self.attentions , self.resnets[1:] ): UpperCAmelCase = attn(lowerCAmelCase , lowerCAmelCase , deterministic=lowerCAmelCase ) UpperCAmelCase = resnet(lowerCAmelCase , lowerCAmelCase , deterministic=lowerCAmelCase ) return hidden_states
91
1
import math from typing import Optional import numpy as np from ...configuration_utils import PretrainedConfig from ...utils import logging A_ :Optional[Any] = logging.get_logger(__name__) A_ :Optional[Any] = { '''facebook/encodec_24khz''': '''https://huggingface.co/facebook/encodec_24khz/resolve/main/config.json''', '''facebook/encodec_48khz''': '''https://huggingface.co/facebook/encodec_48khz/resolve/main/config.json''', } class __A ( lowerCamelCase__ ): """simple docstring""" UpperCamelCase__ : str ='encodec' def __init__( self , lowerCamelCase__=[1.5, 3.0, 6.0, 12.0, 24.0] , lowerCamelCase__=24000 , lowerCamelCase__=1 , lowerCamelCase__=False , lowerCamelCase__=None , lowerCamelCase__=None , lowerCamelCase__=128 , lowerCamelCase__=32 , lowerCamelCase__=1 , lowerCamelCase__=[8, 5, 4, 2] , lowerCamelCase__="weight_norm" , lowerCamelCase__=7 , lowerCamelCase__=7 , lowerCamelCase__=3 , lowerCamelCase__=2 , lowerCamelCase__=True , lowerCamelCase__="reflect" , lowerCamelCase__=2 , lowerCamelCase__=2 , lowerCamelCase__=1.0 , lowerCamelCase__=1024 , lowerCamelCase__=None , lowerCamelCase__=True , **lowerCamelCase__ , ): """simple docstring""" __UpperCamelCase : int =target_bandwidths __UpperCamelCase : Optional[int] =sampling_rate __UpperCamelCase : Optional[Any] =audio_channels __UpperCamelCase : List[str] =normalize __UpperCamelCase : Union[str, Any] =chunk_length_s __UpperCamelCase : List[str] =overlap __UpperCamelCase : Optional[Any] =hidden_size __UpperCamelCase : List[Any] =num_filters __UpperCamelCase : Tuple =num_residual_layers __UpperCamelCase : List[Any] =upsampling_ratios __UpperCamelCase : Tuple =norm_type __UpperCamelCase : Optional[int] =kernel_size __UpperCamelCase : str =last_kernel_size __UpperCamelCase : str =residual_kernel_size __UpperCamelCase : List[Any] =dilation_growth_rate __UpperCamelCase : List[Any] =use_causal_conv __UpperCamelCase : Tuple =pad_mode __UpperCamelCase : str =compress __UpperCamelCase : Union[str, Any] =num_lstm_layers __UpperCamelCase : int =trim_right_ratio __UpperCamelCase : str =codebook_size __UpperCamelCase : Any =codebook_dim if codebook_dim is not None else hidden_size __UpperCamelCase : Tuple =use_conv_shortcut if self.norm_type not in ["weight_norm", "time_group_norm"]: raise ValueError( f'self.norm_type must be one of `\"weight_norm\"`, `\"time_group_norm\"`), got {self.norm_type}' ) super().__init__(**lowercase_ ) @property def __lowercase ( self ): """simple docstring""" if self.chunk_length_s is None: return None else: return int(self.chunk_length_s * self.sampling_rate ) @property def __lowercase ( self ): """simple docstring""" if self.chunk_length_s is None or self.overlap is None: return None else: return max(1 , int((1.0 - self.overlap) * self.chunk_length ) ) @property def __lowercase ( self ): """simple docstring""" __UpperCamelCase : List[Any] =np.prod(self.upsampling_ratios ) return math.ceil(self.sampling_rate / hop_length ) @property def __lowercase ( self ): """simple docstring""" return int(1000 * self.target_bandwidths[-1] // (self.frame_rate * 10) )
71
from __future__ import annotations def UpperCAmelCase__ ( _A : float , _A : float , _A : float , ): '''simple docstring''' if (stress, tangential_force, area).count(0 ) != 1: raise ValueError('''You cannot supply more or less than 2 values''' ) elif stress < 0: raise ValueError('''Stress cannot be negative''' ) elif tangential_force < 0: raise ValueError('''Tangential Force cannot be negative''' ) elif area < 0: raise ValueError('''Area cannot be negative''' ) elif stress == 0: return ( "stress", tangential_force / area, ) elif tangential_force == 0: return ( "tangential_force", stress * area, ) else: return ( "area", tangential_force / stress, ) if __name__ == "__main__": import doctest doctest.testmod()
188
0
import numpy as np import torch from imwatermark import WatermarkEncoder # Copied from https://github.com/Stability-AI/generative-models/blob/613af104c6b85184091d42d374fef420eddb356d/scripts/demo/streamlit_helpers.py#L66 a_ = 0B1011_0011_1110_1100_1001_0000_0111_1011_1011_0001_1001_1110 # bin(x)[2:] gives bits of x as str, use int to convert them to 0/1 a_ = [int(bit) for bit in bin(WATERMARK_MESSAGE)[2:]] class __snake_case : """simple docstring""" def __init__( self ): '''simple docstring''' __A : str = WATERMARK_BITS __A : Optional[int] = WatermarkEncoder() self.encoder.set_watermark('''bits''' , self.watermark ) def UpperCamelCase__( self , __lowerCamelCase ): '''simple docstring''' if images.shape[-1] < 256: return images __A : Any = (255 * (images / 2 + 0.5)).cpu().permute(0 , 2 , 3 , 1 ).float().numpy() __A : Any = [self.encoder.encode(__lowerCamelCase , '''dwtDct''' ) for image in images] __A : Union[str, Any] = torch.from_numpy(np.array(__lowerCamelCase ) ).permute(0 , 3 , 1 , 2 ) __A : Union[str, Any] = torch.clamp(2 * (images / 255 - 0.5) , min=-1.0 , max=1.0 ) return images
367
"""simple docstring""" from typing import TYPE_CHECKING from ..utils import _LazyModule a_ = { """config""": [ """EXTERNAL_DATA_FORMAT_SIZE_LIMIT""", """OnnxConfig""", """OnnxConfigWithPast""", """OnnxSeq2SeqConfigWithPast""", """PatchingSpec""", ], """convert""": ["""export""", """validate_model_outputs"""], """features""": ["""FeaturesManager"""], """utils""": ["""ParameterFormat""", """compute_serialized_parameters_size"""], } if TYPE_CHECKING: from .config import ( EXTERNAL_DATA_FORMAT_SIZE_LIMIT, OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast, PatchingSpec, ) from .convert import export, validate_model_outputs from .features import FeaturesManager from .utils import ParameterFormat, compute_serialized_parameters_size else: import sys a_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
291
0
from random import randint, random def lowerCamelCase__ ( __lowerCamelCase : Optional[int] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Optional[Any] , __lowerCamelCase : List[str] = False , __lowerCamelCase : int = False , __lowerCamelCase : Tuple = 5 , ): __UpperCAmelCase : Dict = [[-1] * number_of_cells] # Create a highway without any car __UpperCAmelCase : Dict = 0 __UpperCAmelCase : List[Any] = max(__lowerCamelCase , 0 ) while i < number_of_cells: __UpperCAmelCase : Optional[Any] = ( randint(0 , __lowerCamelCase ) if random_speed else initial_speed ) # Place the cars i += ( randint(1 , max_speed * 2 ) if random_frequency else frequency ) # Arbitrary number, may need tuning return highway def lowerCamelCase__ ( __lowerCamelCase : int , __lowerCamelCase : Union[str, Any] ): __UpperCAmelCase : Tuple = 0 __UpperCAmelCase : Union[str, Any] = highway_now[car_index + 1 :] for cell in range(len(__lowerCamelCase ) ): # May need a better name for this if cells[cell] != -1: # If the cell is not empty then return distance # we have the distance we wanted distance += 1 # Here if the car is near the end of the highway return distance + get_distance(__lowerCamelCase , -1 ) def lowerCamelCase__ ( __lowerCamelCase : Tuple , __lowerCamelCase : Tuple , __lowerCamelCase : List[str] ): __UpperCAmelCase : List[Any] = len(__lowerCamelCase ) # Beforce calculations, the highway is empty __UpperCAmelCase : int = [-1] * number_of_cells for car_index in range(__lowerCamelCase ): if highway_now[car_index] != -1: # Add 1 to the current speed of the car and cap the speed __UpperCAmelCase : Optional[int] = min(highway_now[car_index] + 1 , __lowerCamelCase ) # Number of empty cell before the next car __UpperCAmelCase : Optional[int] = get_distance(__lowerCamelCase , __lowerCamelCase ) - 1 # We can't have the car causing an accident __UpperCAmelCase : int = min(next_highway[car_index] , __lowerCamelCase ) if random() < probability: # Randomly, a driver will slow down __UpperCAmelCase : Optional[int] = max(next_highway[car_index] - 1 , 0 ) return next_highway def lowerCamelCase__ ( __lowerCamelCase : Tuple , __lowerCamelCase : Dict , __lowerCamelCase : int , __lowerCamelCase : List[str] ): __UpperCAmelCase : Union[str, Any] = len(highway[0] ) for i in range(__lowerCamelCase ): __UpperCAmelCase : Tuple = update(highway[i] , __lowerCamelCase , __lowerCamelCase ) __UpperCAmelCase : Optional[int] = [-1] * number_of_cells for car_index in range(__lowerCamelCase ): __UpperCAmelCase : List[str] = next_speeds_calculated[car_index] if speed != -1: # Change the position based on the speed (with % to create the loop) __UpperCAmelCase : Union[str, Any] = (car_index + speed) % number_of_cells # Commit the change of position __UpperCAmelCase : Dict = speed highway.append(__lowerCamelCase ) return highway if __name__ == "__main__": import doctest doctest.testmod()
114
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _UpperCAmelCase : Union[str, Any] = { "configuration_instructblip": [ "INSTRUCTBLIP_PRETRAINED_CONFIG_ARCHIVE_MAP", "InstructBlipConfig", "InstructBlipQFormerConfig", "InstructBlipVisionConfig", ], "processing_instructblip": ["InstructBlipProcessor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase : List[Any] = [ "INSTRUCTBLIP_PRETRAINED_MODEL_ARCHIVE_LIST", "InstructBlipQFormerModel", "InstructBlipPreTrainedModel", "InstructBlipForConditionalGeneration", "InstructBlipVisionModel", ] if TYPE_CHECKING: from .configuration_instructblip import ( INSTRUCTBLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, InstructBlipConfig, InstructBlipQFormerConfig, InstructBlipVisionConfig, ) from .processing_instructblip import InstructBlipProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_instructblip import ( INSTRUCTBLIP_PRETRAINED_MODEL_ARCHIVE_LIST, InstructBlipForConditionalGeneration, InstructBlipPreTrainedModel, InstructBlipQFormerModel, InstructBlipVisionModel, ) else: import sys _UpperCAmelCase : Union[str, Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
222
0
import unittest from transformers import BertGenerationConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import BertGenerationDecoder, BertGenerationEncoder class _a : def __init__( self : Union[str, Any] , _SCREAMING_SNAKE_CASE : List[Any] , _SCREAMING_SNAKE_CASE : Optional[int]=13 , _SCREAMING_SNAKE_CASE : Dict=7 , _SCREAMING_SNAKE_CASE : Optional[int]=True , _SCREAMING_SNAKE_CASE : Tuple=True , _SCREAMING_SNAKE_CASE : List[str]=99 , _SCREAMING_SNAKE_CASE : Dict=32 , _SCREAMING_SNAKE_CASE : Optional[Any]=5 , _SCREAMING_SNAKE_CASE : List[Any]=4 , _SCREAMING_SNAKE_CASE : List[str]=37 , _SCREAMING_SNAKE_CASE : List[Any]="gelu" , _SCREAMING_SNAKE_CASE : Optional[int]=0.1 , _SCREAMING_SNAKE_CASE : Optional[int]=0.1 , _SCREAMING_SNAKE_CASE : Union[str, Any]=50 , _SCREAMING_SNAKE_CASE : Dict=0.02 , _SCREAMING_SNAKE_CASE : Optional[int]=True , _SCREAMING_SNAKE_CASE : Any=None , )-> Any: lowerCAmelCase__ : str = parent lowerCAmelCase__ : Tuple = batch_size lowerCAmelCase__ : Optional[int] = seq_length lowerCAmelCase__ : Union[str, Any] = is_training lowerCAmelCase__ : Optional[Any] = use_input_mask lowerCAmelCase__ : Optional[Any] = vocab_size lowerCAmelCase__ : Tuple = hidden_size lowerCAmelCase__ : Tuple = num_hidden_layers lowerCAmelCase__ : Union[str, Any] = num_attention_heads lowerCAmelCase__ : Optional[int] = intermediate_size lowerCAmelCase__ : int = hidden_act lowerCAmelCase__ : Any = hidden_dropout_prob lowerCAmelCase__ : Any = attention_probs_dropout_prob lowerCAmelCase__ : int = max_position_embeddings lowerCAmelCase__ : Any = initializer_range lowerCAmelCase__ : Tuple = use_labels lowerCAmelCase__ : str = scope def UpperCAmelCase__( self : str )-> Optional[Any]: lowerCAmelCase__ : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCAmelCase__ : List[str] = None if self.use_input_mask: lowerCAmelCase__ : Dict = random_attention_mask([self.batch_size, self.seq_length] ) if self.use_labels: lowerCAmelCase__ : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCAmelCase__ : List[Any] = self.get_config() return config, input_ids, input_mask, token_labels def UpperCAmelCase__( self : int )-> Dict: return BertGenerationConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , is_decoder=_SCREAMING_SNAKE_CASE , initializer_range=self.initializer_range , ) def UpperCAmelCase__( self : Tuple )-> Tuple: ( lowerCAmelCase__ ) : int = self.prepare_config_and_inputs() lowerCAmelCase__ : Optional[Any] = True lowerCAmelCase__ : Optional[int] = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) lowerCAmelCase__ : int = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, input_mask, token_labels, encoder_hidden_states, encoder_attention_mask, ) def UpperCAmelCase__( self : Dict , _SCREAMING_SNAKE_CASE : Dict , _SCREAMING_SNAKE_CASE : Tuple , _SCREAMING_SNAKE_CASE : Optional[Any] , _SCREAMING_SNAKE_CASE : Optional[Any] , **_SCREAMING_SNAKE_CASE : Optional[int] , )-> Optional[Any]: lowerCAmelCase__ : Dict = BertGenerationEncoder(config=_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() lowerCAmelCase__ : Optional[Any] = model(_SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE ) lowerCAmelCase__ : Any = model(_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCAmelCase__( self : List[str] , _SCREAMING_SNAKE_CASE : Optional[int] , _SCREAMING_SNAKE_CASE : List[str] , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : Union[str, Any] , _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : List[Any] , **_SCREAMING_SNAKE_CASE : int , )-> List[str]: lowerCAmelCase__ : List[str] = True lowerCAmelCase__ : Optional[Any] = BertGenerationEncoder(config=_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() lowerCAmelCase__ : List[str] = model( _SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE , encoder_hidden_states=_SCREAMING_SNAKE_CASE , encoder_attention_mask=_SCREAMING_SNAKE_CASE , ) lowerCAmelCase__ : Optional[Any] = model( _SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE , encoder_hidden_states=_SCREAMING_SNAKE_CASE , ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCAmelCase__( self : Any , _SCREAMING_SNAKE_CASE : List[str] , _SCREAMING_SNAKE_CASE : Optional[Any] , _SCREAMING_SNAKE_CASE : Optional[int] , _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : Optional[Any] , _SCREAMING_SNAKE_CASE : int , **_SCREAMING_SNAKE_CASE : List[Any] , )-> Any: lowerCAmelCase__ : Optional[int] = True lowerCAmelCase__ : int = True lowerCAmelCase__ : Dict = BertGenerationDecoder(config=_SCREAMING_SNAKE_CASE ).to(_SCREAMING_SNAKE_CASE ).eval() # first forward pass lowerCAmelCase__ : List[Any] = model( _SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE , encoder_hidden_states=_SCREAMING_SNAKE_CASE , encoder_attention_mask=_SCREAMING_SNAKE_CASE , use_cache=_SCREAMING_SNAKE_CASE , ) lowerCAmelCase__ : Any = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids lowerCAmelCase__ : List[Any] = ids_tensor((self.batch_size, 3) , config.vocab_size ) lowerCAmelCase__ : int = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and lowerCAmelCase__ : List[Any] = torch.cat([input_ids, next_tokens] , dim=-1 ) lowerCAmelCase__ : Dict = torch.cat([input_mask, next_mask] , dim=-1 ) lowerCAmelCase__ : Tuple = model( _SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE , encoder_hidden_states=_SCREAMING_SNAKE_CASE , encoder_attention_mask=_SCREAMING_SNAKE_CASE , output_hidden_states=_SCREAMING_SNAKE_CASE , )['''hidden_states'''][0] lowerCAmelCase__ : Optional[Any] = model( _SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE , encoder_hidden_states=_SCREAMING_SNAKE_CASE , encoder_attention_mask=_SCREAMING_SNAKE_CASE , past_key_values=_SCREAMING_SNAKE_CASE , output_hidden_states=_SCREAMING_SNAKE_CASE , )['''hidden_states'''][0] # select random slice lowerCAmelCase__ : Tuple = ids_tensor((1,) , output_from_past.shape[-1] ).item() lowerCAmelCase__ : Optional[Any] = output_from_no_past[:, -3:, random_slice_idx].detach() lowerCAmelCase__ : List[str] = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , atol=1E-3 ) ) def UpperCAmelCase__( self : str , _SCREAMING_SNAKE_CASE : List[Any] , _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : Any , _SCREAMING_SNAKE_CASE : Union[str, Any] , *_SCREAMING_SNAKE_CASE : List[str] , )-> int: lowerCAmelCase__ : Tuple = BertGenerationDecoder(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() lowerCAmelCase__ : Optional[Any] = model(_SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE , labels=_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCAmelCase__( self : str )-> str: lowerCAmelCase__ : int = self.prepare_config_and_inputs() lowerCAmelCase__ : str = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class _a ( _lowercase , _lowercase , _lowercase , unittest.TestCase): _a : str = (BertGenerationEncoder, BertGenerationDecoder) if is_torch_available() else () _a : Tuple = (BertGenerationDecoder,) if is_torch_available() else () _a : int = ( {'''feature-extraction''': BertGenerationEncoder, '''text-generation''': BertGenerationDecoder} if is_torch_available() else {} ) def UpperCAmelCase__( self : Union[str, Any] )-> List[Any]: lowerCAmelCase__ : Tuple = BertGenerationEncoderTester(self ) lowerCAmelCase__ : Union[str, Any] = ConfigTester(self , config_class=_SCREAMING_SNAKE_CASE , hidden_size=37 ) def UpperCAmelCase__( self : str )-> Tuple: self.config_tester.run_common_tests() def UpperCAmelCase__( self : Optional[int] )-> Optional[Any]: lowerCAmelCase__ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_SCREAMING_SNAKE_CASE ) def UpperCAmelCase__( self : int )-> Optional[Any]: lowerCAmelCase__ : Optional[int] = self.model_tester.prepare_config_and_inputs() lowerCAmelCase__ : Union[str, Any] = '''bert''' self.model_tester.create_and_check_model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def UpperCAmelCase__( self : Optional[Any] )-> str: lowerCAmelCase__ : Any = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(*_SCREAMING_SNAKE_CASE ) def UpperCAmelCase__( self : Any )-> Dict: lowerCAmelCase__ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_decoder_model_past_large_inputs(*_SCREAMING_SNAKE_CASE ) def UpperCAmelCase__( self : List[str] )-> Any: # This regression test was failing with PyTorch < 1.3 ( lowerCAmelCase__ ) : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_decoder() lowerCAmelCase__ : str = None self.model_tester.create_and_check_model_as_decoder( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , ) def UpperCAmelCase__( self : Tuple )-> Any: lowerCAmelCase__ : int = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_for_causal_lm(*_SCREAMING_SNAKE_CASE ) @slow def UpperCAmelCase__( self : Tuple )-> str: lowerCAmelCase__ : List[str] = BertGenerationEncoder.from_pretrained('''google/bert_for_seq_generation_L-24_bbc_encoder''' ) self.assertIsNotNone(_SCREAMING_SNAKE_CASE ) @require_torch class _a ( unittest.TestCase): @slow def UpperCAmelCase__( self : List[Any] )-> Optional[int]: lowerCAmelCase__ : Optional[int] = BertGenerationEncoder.from_pretrained('''google/bert_for_seq_generation_L-24_bbc_encoder''' ) lowerCAmelCase__ : str = torch.tensor([[101, 7592, 1010, 2026, 3899, 2003, 1_0140, 102]] ) with torch.no_grad(): lowerCAmelCase__ : Optional[int] = model(_SCREAMING_SNAKE_CASE )[0] lowerCAmelCase__ : int = torch.Size([1, 8, 1024] ) self.assertEqual(output.shape , _SCREAMING_SNAKE_CASE ) lowerCAmelCase__ : str = torch.tensor( [[[0.1775, 0.0083, -0.0321], [1.6002, 0.1287, 0.3912], [2.1473, 0.5791, 0.6066]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , _SCREAMING_SNAKE_CASE , atol=1E-4 ) ) @require_torch class _a ( unittest.TestCase): @slow def UpperCAmelCase__( self : Union[str, Any] )-> str: lowerCAmelCase__ : Union[str, Any] = BertGenerationDecoder.from_pretrained('''google/bert_for_seq_generation_L-24_bbc_encoder''' ) lowerCAmelCase__ : List[Any] = torch.tensor([[101, 7592, 1010, 2026, 3899, 2003, 1_0140, 102]] ) with torch.no_grad(): lowerCAmelCase__ : int = model(_SCREAMING_SNAKE_CASE )[0] lowerCAmelCase__ : Optional[int] = torch.Size([1, 8, 5_0358] ) self.assertEqual(output.shape , _SCREAMING_SNAKE_CASE ) lowerCAmelCase__ : str = torch.tensor( [[[-0.5788, -2.5994, -3.7054], [0.0438, 4.7997, 1.8795], [1.5862, 6.6409, 4.4638]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , _SCREAMING_SNAKE_CASE , atol=1E-4 ) )
371
import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import DeiTImageProcessor, ViTConfig, ViTForImageClassification, ViTImageProcessor, ViTModel from transformers.utils import logging logging.set_verbosity_info() lowerCamelCase = logging.get_logger(__name__) def lowerCamelCase_ ( _a , _a=False ): """simple docstring""" lowerCAmelCase__ : int = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f'blocks.{i}.norm1.weight', f'vit.encoder.layer.{i}.layernorm_before.weight') ) rename_keys.append((f'blocks.{i}.norm1.bias', f'vit.encoder.layer.{i}.layernorm_before.bias') ) rename_keys.append((f'blocks.{i}.attn.proj.weight', f'vit.encoder.layer.{i}.attention.output.dense.weight') ) rename_keys.append((f'blocks.{i}.attn.proj.bias', f'vit.encoder.layer.{i}.attention.output.dense.bias') ) rename_keys.append((f'blocks.{i}.norm2.weight', f'vit.encoder.layer.{i}.layernorm_after.weight') ) rename_keys.append((f'blocks.{i}.norm2.bias', f'vit.encoder.layer.{i}.layernorm_after.bias') ) rename_keys.append((f'blocks.{i}.mlp.fc1.weight', f'vit.encoder.layer.{i}.intermediate.dense.weight') ) rename_keys.append((f'blocks.{i}.mlp.fc1.bias', f'vit.encoder.layer.{i}.intermediate.dense.bias') ) rename_keys.append((f'blocks.{i}.mlp.fc2.weight', f'vit.encoder.layer.{i}.output.dense.weight') ) rename_keys.append((f'blocks.{i}.mlp.fc2.bias', f'vit.encoder.layer.{i}.output.dense.bias') ) # projection layer + position embeddings rename_keys.extend( [ ('''cls_token''', '''vit.embeddings.cls_token'''), ('''patch_embed.proj.weight''', '''vit.embeddings.patch_embeddings.projection.weight'''), ('''patch_embed.proj.bias''', '''vit.embeddings.patch_embeddings.projection.bias'''), ('''pos_embed''', '''vit.embeddings.position_embeddings'''), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ('''norm.weight''', '''layernorm.weight'''), ('''norm.bias''', '''layernorm.bias'''), ('''pre_logits.fc.weight''', '''pooler.dense.weight'''), ('''pre_logits.fc.bias''', '''pooler.dense.bias'''), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" lowerCAmelCase__ : Tuple = [(pair[0], pair[1][4:]) if pair[1].startswith('''vit''' ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ('''norm.weight''', '''vit.layernorm.weight'''), ('''norm.bias''', '''vit.layernorm.bias'''), ('''head.weight''', '''classifier.weight'''), ('''head.bias''', '''classifier.bias'''), ] ) return rename_keys def lowerCamelCase_ ( _a , _a , _a=False ): """simple docstring""" for i in range(config.num_hidden_layers ): if base_model: lowerCAmelCase__ : Dict = '''''' else: lowerCAmelCase__ : List[str] = '''vit.''' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) lowerCAmelCase__ : Dict = state_dict.pop(f'blocks.{i}.attn.qkv.weight' ) lowerCAmelCase__ : Dict = state_dict.pop(f'blocks.{i}.attn.qkv.bias' ) # next, add query, keys and values (in that order) to the state dict lowerCAmelCase__ : Any = in_proj_weight[ : config.hidden_size, : ] lowerCAmelCase__ : Optional[Any] = in_proj_bias[: config.hidden_size] lowerCAmelCase__ : int = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] lowerCAmelCase__ : Dict = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] lowerCAmelCase__ : Dict = in_proj_weight[ -config.hidden_size :, : ] lowerCAmelCase__ : Any = in_proj_bias[-config.hidden_size :] def lowerCamelCase_ ( _a ): """simple docstring""" lowerCAmelCase__ : Union[str, Any] = ['''head.weight''', '''head.bias'''] for k in ignore_keys: state_dict.pop(_a , _a ) def lowerCamelCase_ ( _a , _a , _a ): """simple docstring""" lowerCAmelCase__ : Any = dct.pop(_a ) lowerCAmelCase__ : Optional[Any] = val def lowerCamelCase_ ( ): """simple docstring""" lowerCAmelCase__ : Dict = '''http://images.cocodataset.org/val2017/000000039769.jpg''' lowerCAmelCase__ : Tuple = Image.open(requests.get(_a , stream=_a ).raw ) return im @torch.no_grad() def lowerCamelCase_ ( _a , _a ): """simple docstring""" lowerCAmelCase__ : List[str] = ViTConfig() lowerCAmelCase__ : Optional[Any] = False # dataset (ImageNet-21k only or also fine-tuned on ImageNet 2012), patch_size and image_size if vit_name[-5:] == "in21k": lowerCAmelCase__ : List[Any] = True lowerCAmelCase__ : Any = int(vit_name[-12:-10] ) lowerCAmelCase__ : int = int(vit_name[-9:-6] ) else: lowerCAmelCase__ : Dict = 1_000 lowerCAmelCase__ : str = '''huggingface/label-files''' lowerCAmelCase__ : Dict = '''imagenet-1k-id2label.json''' lowerCAmelCase__ : str = json.load(open(hf_hub_download(_a , _a , repo_type='''dataset''' ) , '''r''' ) ) lowerCAmelCase__ : Any = {int(_a ): v for k, v in idalabel.items()} lowerCAmelCase__ : Optional[Any] = idalabel lowerCAmelCase__ : List[str] = {v: k for k, v in idalabel.items()} lowerCAmelCase__ : Tuple = int(vit_name[-6:-4] ) lowerCAmelCase__ : Union[str, Any] = int(vit_name[-3:] ) # size of the architecture if "deit" in vit_name: if vit_name[9:].startswith('''tiny''' ): lowerCAmelCase__ : List[str] = 192 lowerCAmelCase__ : Tuple = 768 lowerCAmelCase__ : Optional[int] = 12 lowerCAmelCase__ : List[Any] = 3 elif vit_name[9:].startswith('''small''' ): lowerCAmelCase__ : Any = 384 lowerCAmelCase__ : Optional[int] = 1_536 lowerCAmelCase__ : List[Any] = 12 lowerCAmelCase__ : Tuple = 6 else: pass else: if vit_name[4:].startswith('''small''' ): lowerCAmelCase__ : List[str] = 768 lowerCAmelCase__ : Tuple = 2_304 lowerCAmelCase__ : Any = 8 lowerCAmelCase__ : Union[str, Any] = 8 elif vit_name[4:].startswith('''base''' ): pass elif vit_name[4:].startswith('''large''' ): lowerCAmelCase__ : str = 1_024 lowerCAmelCase__ : Optional[Any] = 4_096 lowerCAmelCase__ : Optional[int] = 24 lowerCAmelCase__ : Tuple = 16 elif vit_name[4:].startswith('''huge''' ): lowerCAmelCase__ : Tuple = 1_280 lowerCAmelCase__ : Tuple = 5_120 lowerCAmelCase__ : Optional[int] = 32 lowerCAmelCase__ : List[Any] = 16 # load original model from timm lowerCAmelCase__ : Tuple = timm.create_model(_a , pretrained=_a ) timm_model.eval() # load state_dict of original model, remove and rename some keys lowerCAmelCase__ : Any = timm_model.state_dict() if base_model: remove_classification_head_(_a ) lowerCAmelCase__ : List[Any] = create_rename_keys(_a , _a ) for src, dest in rename_keys: rename_key(_a , _a , _a ) read_in_q_k_v(_a , _a , _a ) # load HuggingFace model if vit_name[-5:] == "in21k": lowerCAmelCase__ : List[str] = ViTModel(_a ).eval() else: lowerCAmelCase__ : Any = ViTForImageClassification(_a ).eval() model.load_state_dict(_a ) # Check outputs on an image, prepared by ViTImageProcessor/DeiTImageProcessor if "deit" in vit_name: lowerCAmelCase__ : Dict = DeiTImageProcessor(size=config.image_size ) else: lowerCAmelCase__ : int = ViTImageProcessor(size=config.image_size ) lowerCAmelCase__ : Optional[Any] = image_processor(images=prepare_img() , return_tensors='''pt''' ) lowerCAmelCase__ : List[str] = encoding['''pixel_values'''] lowerCAmelCase__ : List[Any] = model(_a ) if base_model: lowerCAmelCase__ : Optional[Any] = timm_model.forward_features(_a ) assert timm_pooled_output.shape == outputs.pooler_output.shape assert torch.allclose(_a , outputs.pooler_output , atol=1e-3 ) else: lowerCAmelCase__ : Union[str, Any] = timm_model(_a ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(_a , outputs.logits , atol=1e-3 ) Path(_a ).mkdir(exist_ok=_a ) print(f'Saving model {vit_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(_a ) print(f'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(_a ) if __name__ == "__main__": lowerCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--vit_name''', default='''vit_base_patch16_224''', type=str, help='''Name of the ViT timm model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) lowerCamelCase = parser.parse_args() convert_vit_checkpoint(args.vit_name, args.pytorch_dump_folder_path)
211
0
'''simple docstring''' import json import os import tempfile import unittest import unittest.mock as mock from pathlib import Path from requests.exceptions import HTTPError from transformers.utils import ( CONFIG_NAME, FLAX_WEIGHTS_NAME, TF2_WEIGHTS_NAME, TRANSFORMERS_CACHE, WEIGHTS_NAME, cached_file, get_file_from_repo, has_file, ) _A : Optional[int] ='''hf-internal-testing/tiny-random-bert''' _A : Union[str, Any] =os.path.join(TRANSFORMERS_CACHE, '''models--hf-internal-testing--tiny-random-bert''') _A : Optional[Any] ='''9b8c223d42b2188cb49d29af482996f9d0f3e5a6''' class _lowercase ( unittest.TestCase ): def lowerCamelCase_ ( self: Dict ): lowerCamelCase__ : Dict = cached_file(UpperCamelCase__ , UpperCamelCase__ ) # Should have downloaded the file in here self.assertTrue(os.path.isdir(UpperCamelCase__ ) ) # Cache should contain at least those three subfolders: for subfolder in ["blobs", "refs", "snapshots"]: self.assertTrue(os.path.isdir(os.path.join(UpperCamelCase__ , UpperCamelCase__ ) ) ) with open(os.path.join(UpperCamelCase__ , """refs""" , """main""" ) ) as f: lowerCamelCase__ : int = f.read() self.assertEqual(UpperCamelCase__ , os.path.join(UpperCamelCase__ , """snapshots""" , UpperCamelCase__ , UpperCamelCase__ ) ) self.assertTrue(os.path.isfile(UpperCamelCase__ ) ) # File is cached at the same place the second time. lowerCamelCase__ : Union[str, Any] = cached_file(UpperCamelCase__ , UpperCamelCase__ ) self.assertEqual(UpperCamelCase__ , UpperCamelCase__ ) # Using a specific revision to test the full commit hash. lowerCamelCase__ : str = cached_file(UpperCamelCase__ , UpperCamelCase__ , revision="""9b8c223""" ) self.assertEqual(UpperCamelCase__ , os.path.join(UpperCamelCase__ , """snapshots""" , UpperCamelCase__ , UpperCamelCase__ ) ) def lowerCamelCase_ ( self: List[Any] ): with self.assertRaisesRegex(UpperCamelCase__ , """is not a valid model identifier""" ): lowerCamelCase__ : Tuple = cached_file("""tiny-random-bert""" , UpperCamelCase__ ) with self.assertRaisesRegex(UpperCamelCase__ , """is not a valid git identifier""" ): lowerCamelCase__ : List[str] = cached_file(UpperCamelCase__ , UpperCamelCase__ , revision="""aaaa""" ) with self.assertRaisesRegex(UpperCamelCase__ , """does not appear to have a file named""" ): lowerCamelCase__ : str = cached_file(UpperCamelCase__ , """conf""" ) def lowerCamelCase_ ( self: Optional[int] ): with self.assertRaisesRegex(UpperCamelCase__ , """does not appear to have a file named""" ): lowerCamelCase__ : Any = cached_file(UpperCamelCase__ , """conf""" ) with open(os.path.join(UpperCamelCase__ , """refs""" , """main""" ) ) as f: lowerCamelCase__ : Optional[int] = f.read() self.assertTrue(os.path.isfile(os.path.join(UpperCamelCase__ , """.no_exist""" , UpperCamelCase__ , """conf""" ) ) ) lowerCamelCase__ : Optional[Any] = cached_file(UpperCamelCase__ , """conf""" , _raise_exceptions_for_missing_entries=UpperCamelCase__ ) self.assertIsNone(UpperCamelCase__ ) lowerCamelCase__ : Dict = cached_file(UpperCamelCase__ , """conf""" , local_files_only=UpperCamelCase__ , _raise_exceptions_for_missing_entries=UpperCamelCase__ ) self.assertIsNone(UpperCamelCase__ ) lowerCamelCase__ : List[Any] = mock.Mock() lowerCamelCase__ : str = 500 lowerCamelCase__ : List[str] = {} lowerCamelCase__ : Union[str, Any] = HTTPError lowerCamelCase__ : List[str] = {} # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch("""requests.Session.request""" , return_value=UpperCamelCase__ ) as mock_head: lowerCamelCase__ : List[Any] = cached_file(UpperCamelCase__ , """conf""" , _raise_exceptions_for_connection_errors=UpperCamelCase__ ) self.assertIsNone(UpperCamelCase__ ) # This check we did call the fake head request mock_head.assert_called() def lowerCamelCase_ ( self: Dict ): self.assertTrue(has_file("""hf-internal-testing/tiny-bert-pt-only""" , UpperCamelCase__ ) ) self.assertFalse(has_file("""hf-internal-testing/tiny-bert-pt-only""" , UpperCamelCase__ ) ) self.assertFalse(has_file("""hf-internal-testing/tiny-bert-pt-only""" , UpperCamelCase__ ) ) def lowerCamelCase_ ( self: Optional[Any] ): # `get_file_from_repo` returns None if the file does not exist self.assertIsNone(get_file_from_repo("""bert-base-cased""" , """ahah.txt""" ) ) # The function raises if the repository does not exist. with self.assertRaisesRegex(UpperCamelCase__ , """is not a valid model identifier""" ): get_file_from_repo("""bert-base-case""" , UpperCamelCase__ ) # The function raises if the revision does not exist. with self.assertRaisesRegex(UpperCamelCase__ , """is not a valid git identifier""" ): get_file_from_repo("""bert-base-cased""" , UpperCamelCase__ , revision="""ahaha""" ) lowerCamelCase__ : Tuple = get_file_from_repo("""bert-base-cased""" , UpperCamelCase__ ) # The name is the cached name which is not very easy to test, so instead we load the content. lowerCamelCase__ : str = json.loads(open(UpperCamelCase__ , """r""" ).read() ) self.assertEqual(config["""hidden_size"""] , 768 ) def lowerCamelCase_ ( self: List[Any] ): with tempfile.TemporaryDirectory() as tmp_dir: lowerCamelCase__ : int = Path(UpperCamelCase__ ) / """a.txt""" filename.touch() self.assertEqual(get_file_from_repo(UpperCamelCase__ , """a.txt""" ) , str(UpperCamelCase__ ) ) self.assertIsNone(get_file_from_repo(UpperCamelCase__ , """b.txt""" ) )
41
'''simple docstring''' import argparse import os import torch from diffusers import ( CMStochasticIterativeScheduler, ConsistencyModelPipeline, UNetaDModel, ) __lowerCAmelCase : List[str] ={ "sample_size": 32, "in_channels": 3, "out_channels": 3, "layers_per_block": 2, "num_class_embeds": 1000, "block_out_channels": [32, 64], "attention_head_dim": 8, "down_block_types": [ "ResnetDownsampleBlock2D", "AttnDownBlock2D", ], "up_block_types": [ "AttnUpBlock2D", "ResnetUpsampleBlock2D", ], "resnet_time_scale_shift": "scale_shift", "upsample_type": "resnet", "downsample_type": "resnet", } __lowerCAmelCase : Dict ={ "sample_size": 64, "in_channels": 3, "out_channels": 3, "layers_per_block": 3, "num_class_embeds": 1000, "block_out_channels": [192, 192 * 2, 192 * 3, 192 * 4], "attention_head_dim": 64, "down_block_types": [ "ResnetDownsampleBlock2D", "AttnDownBlock2D", "AttnDownBlock2D", "AttnDownBlock2D", ], "up_block_types": [ "AttnUpBlock2D", "AttnUpBlock2D", "AttnUpBlock2D", "ResnetUpsampleBlock2D", ], "resnet_time_scale_shift": "scale_shift", "upsample_type": "resnet", "downsample_type": "resnet", } __lowerCAmelCase : Union[str, Any] ={ "sample_size": 256, "in_channels": 3, "out_channels": 3, "layers_per_block": 2, "num_class_embeds": None, "block_out_channels": [256, 256, 256 * 2, 256 * 2, 256 * 4, 256 * 4], "attention_head_dim": 64, "down_block_types": [ "ResnetDownsampleBlock2D", "ResnetDownsampleBlock2D", "ResnetDownsampleBlock2D", "AttnDownBlock2D", "AttnDownBlock2D", "AttnDownBlock2D", ], "up_block_types": [ "AttnUpBlock2D", "AttnUpBlock2D", "AttnUpBlock2D", "ResnetUpsampleBlock2D", "ResnetUpsampleBlock2D", "ResnetUpsampleBlock2D", ], "resnet_time_scale_shift": "default", "upsample_type": "resnet", "downsample_type": "resnet", } __lowerCAmelCase : str ={ "num_train_timesteps": 40, "sigma_min": 0.002, "sigma_max": 80.0, } __lowerCAmelCase : Tuple ={ "num_train_timesteps": 201, "sigma_min": 0.002, "sigma_max": 80.0, } __lowerCAmelCase : Dict ={ "num_train_timesteps": 151, "sigma_min": 0.002, "sigma_max": 80.0, } def UpperCamelCase ( _lowerCamelCase : Tuple ): if isinstance(_lowerCamelCase , _lowerCamelCase ): return v if v.lower() in ("yes", "true", "t", "y", "1"): return True elif v.lower() in ("no", "false", "f", "n", "0"): return False else: raise argparse.ArgumentTypeError("boolean value expected" ) def UpperCamelCase ( _lowerCamelCase : List[str] , _lowerCamelCase : List[str] , _lowerCamelCase : Optional[int] , _lowerCamelCase : Dict , _lowerCamelCase : Optional[int]=False ): A__ = checkpoint[F"{old_prefix}.in_layers.0.weight"] A__ = checkpoint[F"{old_prefix}.in_layers.0.bias"] A__ = checkpoint[F"{old_prefix}.in_layers.2.weight"] A__ = checkpoint[F"{old_prefix}.in_layers.2.bias"] A__ = checkpoint[F"{old_prefix}.emb_layers.1.weight"] A__ = checkpoint[F"{old_prefix}.emb_layers.1.bias"] A__ = checkpoint[F"{old_prefix}.out_layers.0.weight"] A__ = checkpoint[F"{old_prefix}.out_layers.0.bias"] A__ = checkpoint[F"{old_prefix}.out_layers.3.weight"] A__ = checkpoint[F"{old_prefix}.out_layers.3.bias"] if has_skip: A__ = checkpoint[F"{old_prefix}.skip_connection.weight"] A__ = checkpoint[F"{old_prefix}.skip_connection.bias"] return new_checkpoint def UpperCamelCase ( _lowerCamelCase : str , _lowerCamelCase : Any , _lowerCamelCase : Tuple , _lowerCamelCase : Optional[int] , _lowerCamelCase : List[Any]=None ): A__, A__, A__ = checkpoint[F"{old_prefix}.qkv.weight"].chunk(3 , dim=0 ) A__, A__, A__ = checkpoint[F"{old_prefix}.qkv.bias"].chunk(3 , dim=0 ) A__ = checkpoint[F"{old_prefix}.norm.weight"] A__ = checkpoint[F"{old_prefix}.norm.bias"] A__ = weight_q.squeeze(-1 ).squeeze(-1 ) A__ = bias_q.squeeze(-1 ).squeeze(-1 ) A__ = weight_k.squeeze(-1 ).squeeze(-1 ) A__ = bias_k.squeeze(-1 ).squeeze(-1 ) A__ = weight_v.squeeze(-1 ).squeeze(-1 ) A__ = bias_v.squeeze(-1 ).squeeze(-1 ) A__ = ( checkpoint[F"{old_prefix}.proj_out.weight"].squeeze(-1 ).squeeze(-1 ) ) A__ = checkpoint[F"{old_prefix}.proj_out.bias"].squeeze(-1 ).squeeze(-1 ) return new_checkpoint def UpperCamelCase ( _lowerCamelCase : str , _lowerCamelCase : List[str] ): A__ = torch.load(_lowerCamelCase , map_location="cpu" ) A__ = {} A__ = checkpoint["time_embed.0.weight"] A__ = checkpoint["time_embed.0.bias"] A__ = checkpoint["time_embed.2.weight"] A__ = checkpoint["time_embed.2.bias"] if unet_config["num_class_embeds"] is not None: A__ = checkpoint["label_emb.weight"] A__ = checkpoint["input_blocks.0.0.weight"] A__ = checkpoint["input_blocks.0.0.bias"] A__ = unet_config["down_block_types"] A__ = unet_config["layers_per_block"] A__ = unet_config["attention_head_dim"] A__ = unet_config["block_out_channels"] A__ = 1 A__ = channels_list[0] for i, layer_type in enumerate(_lowerCamelCase ): A__ = channels_list[i] A__ = current_channels != prev_channels if layer_type == "ResnetDownsampleBlock2D": for j in range(_lowerCamelCase ): A__ = F"down_blocks.{i}.resnets.{j}" A__ = F"input_blocks.{current_layer}.0" A__ = True if j == 0 and downsample_block_has_skip else False A__ = convert_resnet(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , has_skip=_lowerCamelCase ) current_layer += 1 elif layer_type == "AttnDownBlock2D": for j in range(_lowerCamelCase ): A__ = F"down_blocks.{i}.resnets.{j}" A__ = F"input_blocks.{current_layer}.0" A__ = True if j == 0 and downsample_block_has_skip else False A__ = convert_resnet(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , has_skip=_lowerCamelCase ) A__ = F"down_blocks.{i}.attentions.{j}" A__ = F"input_blocks.{current_layer}.1" A__ = convert_attention( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) current_layer += 1 if i != len(_lowerCamelCase ) - 1: A__ = F"down_blocks.{i}.downsamplers.0" A__ = F"input_blocks.{current_layer}.0" A__ = convert_resnet(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) current_layer += 1 A__ = current_channels # hardcoded the mid-block for now A__ = "mid_block.resnets.0" A__ = "middle_block.0" A__ = convert_resnet(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) A__ = "mid_block.attentions.0" A__ = "middle_block.1" A__ = convert_attention(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) A__ = "mid_block.resnets.1" A__ = "middle_block.2" A__ = convert_resnet(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) A__ = 0 A__ = unet_config["up_block_types"] for i, layer_type in enumerate(_lowerCamelCase ): if layer_type == "ResnetUpsampleBlock2D": for j in range(layers_per_block + 1 ): A__ = F"up_blocks.{i}.resnets.{j}" A__ = F"output_blocks.{current_layer}.0" A__ = convert_resnet(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , has_skip=_lowerCamelCase ) current_layer += 1 if i != len(_lowerCamelCase ) - 1: A__ = F"up_blocks.{i}.upsamplers.0" A__ = F"output_blocks.{current_layer-1}.1" A__ = convert_resnet(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) elif layer_type == "AttnUpBlock2D": for j in range(layers_per_block + 1 ): A__ = F"up_blocks.{i}.resnets.{j}" A__ = F"output_blocks.{current_layer}.0" A__ = convert_resnet(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , has_skip=_lowerCamelCase ) A__ = F"up_blocks.{i}.attentions.{j}" A__ = F"output_blocks.{current_layer}.1" A__ = convert_attention( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) current_layer += 1 if i != len(_lowerCamelCase ) - 1: A__ = F"up_blocks.{i}.upsamplers.0" A__ = F"output_blocks.{current_layer-1}.2" A__ = convert_resnet(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) A__ = checkpoint["out.0.weight"] A__ = checkpoint["out.0.bias"] A__ = checkpoint["out.2.weight"] A__ = checkpoint["out.2.bias"] return new_checkpoint if __name__ == "__main__": __lowerCAmelCase : List[Any] =argparse.ArgumentParser() parser.add_argument("--unet_path", default=None, type=str, required=True, help="Path to the unet.pt to convert.") parser.add_argument( "--dump_path", default=None, type=str, required=True, help="Path to output the converted UNet model." ) parser.add_argument("--class_cond", default=True, type=str, help="Whether the model is class-conditional.") __lowerCAmelCase : Optional[Any] =parser.parse_args() __lowerCAmelCase : List[Any] =strabool(args.class_cond) __lowerCAmelCase : List[str] =os.path.basename(args.unet_path) print(f"""Checkpoint: {ckpt_name}""") # Get U-Net config if "imagenet64" in ckpt_name: __lowerCAmelCase : List[str] =IMAGENET_64_UNET_CONFIG elif "256" in ckpt_name and (("bedroom" in ckpt_name) or ("cat" in ckpt_name)): __lowerCAmelCase : List[str] =LSUN_256_UNET_CONFIG elif "test" in ckpt_name: __lowerCAmelCase : Any =TEST_UNET_CONFIG else: raise ValueError(f"""Checkpoint type {ckpt_name} is not currently supported.""") if not args.class_cond: __lowerCAmelCase : Dict =None __lowerCAmelCase : Optional[int] =con_pt_to_diffuser(args.unet_path, unet_config) __lowerCAmelCase : Dict =UNetaDModel(**unet_config) image_unet.load_state_dict(converted_unet_ckpt) # Get scheduler config if "cd" in ckpt_name or "test" in ckpt_name: __lowerCAmelCase : List[str] =CD_SCHEDULER_CONFIG elif "ct" in ckpt_name and "imagenet64" in ckpt_name: __lowerCAmelCase : Dict =CT_IMAGENET_64_SCHEDULER_CONFIG elif "ct" in ckpt_name and "256" in ckpt_name and (("bedroom" in ckpt_name) or ("cat" in ckpt_name)): __lowerCAmelCase : Dict =CT_LSUN_256_SCHEDULER_CONFIG else: raise ValueError(f"""Checkpoint type {ckpt_name} is not currently supported.""") __lowerCAmelCase : Dict =CMStochasticIterativeScheduler(**scheduler_config) __lowerCAmelCase : str =ConsistencyModelPipeline(unet=image_unet, scheduler=cm_scheduler) consistency_model.save_pretrained(args.dump_path)
237
0
"""simple docstring""" from typing import TYPE_CHECKING from ..utils import _LazyModule __UpperCamelCase = { '''config''': [ '''EXTERNAL_DATA_FORMAT_SIZE_LIMIT''', '''OnnxConfig''', '''OnnxConfigWithPast''', '''OnnxSeq2SeqConfigWithPast''', '''PatchingSpec''', ], '''convert''': ['''export''', '''validate_model_outputs'''], '''features''': ['''FeaturesManager'''], '''utils''': ['''ParameterFormat''', '''compute_serialized_parameters_size'''], } if TYPE_CHECKING: from .config import ( EXTERNAL_DATA_FORMAT_SIZE_LIMIT, OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast, PatchingSpec, ) from .convert import export, validate_model_outputs from .features import FeaturesManager from .utils import ParameterFormat, compute_serialized_parameters_size else: import sys __UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
312
"""simple docstring""" __UpperCamelCase = 256 # Modulus to hash a string __UpperCamelCase = 100_0003 def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase ) -> bool: snake_case_ = len(UpperCAmelCase ) snake_case_ = len(UpperCAmelCase ) if p_len > t_len: return False snake_case_ = 0 snake_case_ = 0 snake_case_ = 1 # Calculating the hash of pattern and substring of text for i in range(UpperCAmelCase ): snake_case_ = (ord(pattern[i] ) + p_hash * alphabet_size) % modulus snake_case_ = (ord(text[i] ) + text_hash * alphabet_size) % modulus if i == p_len - 1: continue snake_case_ = (modulus_power * alphabet_size) % modulus for i in range(0 , t_len - p_len + 1 ): if text_hash == p_hash and text[i : i + p_len] == pattern: return True if i == t_len - p_len: continue # Calculate the https://en.wikipedia.org/wiki/Rolling_hash snake_case_ = ( (text_hash - ord(text[i] ) * modulus_power) * alphabet_size + ord(text[i + p_len] ) ) % modulus return False def UpperCAmelCase ( ) -> None: snake_case_ = 'abc1abc12' snake_case_ = 'alskfjaldsabc1abc1abc12k23adsfabcabc' snake_case_ = 'alskfjaldsk23adsfabcabc' assert rabin_karp(UpperCAmelCase , UpperCAmelCase ) and not rabin_karp(UpperCAmelCase , UpperCAmelCase ) # Test 2) snake_case_ = 'ABABX' snake_case_ = 'ABABZABABYABABX' assert rabin_karp(UpperCAmelCase , UpperCAmelCase ) # Test 3) snake_case_ = 'AAAB' snake_case_ = 'ABAAAAAB' assert rabin_karp(UpperCAmelCase , UpperCAmelCase ) # Test 4) snake_case_ = 'abcdabcy' snake_case_ = 'abcxabcdabxabcdabcdabcy' assert rabin_karp(UpperCAmelCase , UpperCAmelCase ) # Test 5) snake_case_ = 'Lü' snake_case_ = 'Lüsai' assert rabin_karp(UpperCAmelCase , UpperCAmelCase ) snake_case_ = 'Lue' assert not rabin_karp(UpperCAmelCase , UpperCAmelCase ) print('Success.' ) if __name__ == "__main__": test_rabin_karp()
312
1
import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST, OpenAIGPTConfig, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification, OpenAIGPTLMHeadModel, OpenAIGPTModel, ) class lowercase_ : def __init__( self , __UpperCamelCase , __UpperCamelCase=1_3 , __UpperCamelCase=7 , __UpperCamelCase=True , __UpperCamelCase=True , __UpperCamelCase=True , __UpperCamelCase=9_9 , __UpperCamelCase=3_2 , __UpperCamelCase=5 , __UpperCamelCase=4 , __UpperCamelCase=3_7 , __UpperCamelCase="gelu" , __UpperCamelCase=0.1 , __UpperCamelCase=0.1 , __UpperCamelCase=5_1_2 , __UpperCamelCase=1_6 , __UpperCamelCase=2 , __UpperCamelCase=0.02 , __UpperCamelCase=3 , __UpperCamelCase=4 , __UpperCamelCase=None , ): """simple docstring""" UpperCamelCase_ = parent UpperCamelCase_ = batch_size UpperCamelCase_ = seq_length UpperCamelCase_ = is_training UpperCamelCase_ = use_token_type_ids UpperCamelCase_ = use_labels UpperCamelCase_ = vocab_size UpperCamelCase_ = hidden_size UpperCamelCase_ = num_hidden_layers UpperCamelCase_ = num_attention_heads UpperCamelCase_ = intermediate_size UpperCamelCase_ = hidden_act UpperCamelCase_ = hidden_dropout_prob UpperCamelCase_ = attention_probs_dropout_prob UpperCamelCase_ = max_position_embeddings UpperCamelCase_ = type_vocab_size UpperCamelCase_ = type_sequence_label_size UpperCamelCase_ = initializer_range UpperCamelCase_ = num_labels UpperCamelCase_ = num_choices UpperCamelCase_ = scope UpperCamelCase_ = self.vocab_size - 1 def lowerCamelCase_ ( self ): """simple docstring""" UpperCamelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCamelCase_ = None if self.use_token_type_ids: UpperCamelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCamelCase_ = None UpperCamelCase_ = None UpperCamelCase_ = None if self.use_labels: UpperCamelCase_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCamelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCamelCase_ = ids_tensor([self.batch_size] , self.num_choices ) UpperCamelCase_ = OpenAIGPTConfig( vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , pad_token_id=self.pad_token_id , ) UpperCamelCase_ = ids_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 ) return ( config, input_ids, head_mask, token_type_ids, sequence_labels, token_labels, choice_labels, ) def lowerCamelCase_ ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , *__UpperCamelCase ): """simple docstring""" UpperCamelCase_ = OpenAIGPTModel(config=__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() UpperCamelCase_ = model(__UpperCamelCase , token_type_ids=__UpperCamelCase , head_mask=__UpperCamelCase ) UpperCamelCase_ = model(__UpperCamelCase , token_type_ids=__UpperCamelCase ) UpperCamelCase_ = model(__UpperCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCamelCase_ ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , *__UpperCamelCase ): """simple docstring""" UpperCamelCase_ = OpenAIGPTLMHeadModel(__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() UpperCamelCase_ = model(__UpperCamelCase , token_type_ids=__UpperCamelCase , labels=__UpperCamelCase ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCamelCase_ ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , *__UpperCamelCase ): """simple docstring""" UpperCamelCase_ = OpenAIGPTDoubleHeadsModel(__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() UpperCamelCase_ = model(__UpperCamelCase , token_type_ids=__UpperCamelCase , labels=__UpperCamelCase ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCamelCase_ ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , *__UpperCamelCase ): """simple docstring""" UpperCamelCase_ = self.num_labels UpperCamelCase_ = OpenAIGPTForSequenceClassification(__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() UpperCamelCase_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCamelCase_ = model(__UpperCamelCase , token_type_ids=__UpperCamelCase , labels=__UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCamelCase_ ( self ): """simple docstring""" UpperCamelCase_ = self.prepare_config_and_inputs() ( ( UpperCamelCase_ ) , ( UpperCamelCase_ ) , ( UpperCamelCase_ ) , ( UpperCamelCase_ ) , ( UpperCamelCase_ ) , ( UpperCamelCase_ ) , ( UpperCamelCase_ ) , ) = config_and_inputs UpperCamelCase_ = { """input_ids""": input_ids, """token_type_ids""": token_type_ids, """head_mask""": head_mask, } return config, inputs_dict @require_torch class lowercase_ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): A__ : Dict = ( (OpenAIGPTModel, OpenAIGPTLMHeadModel, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification) if is_torch_available() else () ) A__ : Optional[int] = ( (OpenAIGPTLMHeadModel,) if is_torch_available() else () ) # TODO (PVP): Add Double HeadsModel when generate() function is changed accordingly A__ : Any = ( { """feature-extraction""": OpenAIGPTModel, """text-classification""": OpenAIGPTForSequenceClassification, """text-generation""": OpenAIGPTLMHeadModel, """zero-shot""": OpenAIGPTForSequenceClassification, } if is_torch_available() else {} ) def lowerCamelCase_ ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): """simple docstring""" if pipeline_test_casse_name == "ZeroShotClassificationPipelineTests": # Get `tokenizer does not have a padding token` error for both fast/slow tokenizers. # `OpenAIGPTConfig` was never used in pipeline tests, either because of a missing checkpoint or because a # tiny config could not be created. return True return False def lowerCamelCase_ ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase=False ): """simple docstring""" UpperCamelCase_ = super()._prepare_for_class(__UpperCamelCase , __UpperCamelCase , return_labels=__UpperCamelCase ) if return_labels: if model_class.__name__ == "OpenAIGPTDoubleHeadsModel": UpperCamelCase_ = torch.zeros( (self.model_tester.batch_size, self.model_tester.num_choices, self.model_tester.seq_length) , dtype=torch.long , device=__UpperCamelCase , ) UpperCamelCase_ = inputs_dict["""labels"""] UpperCamelCase_ = inputs_dict["""labels"""] UpperCamelCase_ = torch.zeros( (self.model_tester.batch_size, self.model_tester.num_choices) , dtype=torch.long , device=__UpperCamelCase , ) UpperCamelCase_ = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__UpperCamelCase ) return inputs_dict def lowerCamelCase_ ( self ): """simple docstring""" UpperCamelCase_ = OpenAIGPTModelTester(self ) UpperCamelCase_ = ConfigTester(self , config_class=__UpperCamelCase , n_embd=3_7 ) def lowerCamelCase_ ( self ): """simple docstring""" self.config_tester.run_common_tests() def lowerCamelCase_ ( self ): """simple docstring""" UpperCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_openai_gpt_model(*__UpperCamelCase ) def lowerCamelCase_ ( self ): """simple docstring""" UpperCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head_model(*__UpperCamelCase ) def lowerCamelCase_ ( self ): """simple docstring""" UpperCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_double_lm_head_model(*__UpperCamelCase ) def lowerCamelCase_ ( self ): """simple docstring""" UpperCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_openai_gpt_for_sequence_classification(*__UpperCamelCase ) @slow def lowerCamelCase_ ( self ): """simple docstring""" for model_name in OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCamelCase_ = OpenAIGPTModel.from_pretrained(__UpperCamelCase ) self.assertIsNotNone(__UpperCamelCase ) @require_torch class lowercase_ ( unittest.TestCase ): @slow def lowerCamelCase_ ( self ): """simple docstring""" UpperCamelCase_ = OpenAIGPTLMHeadModel.from_pretrained("""openai-gpt""" ) model.to(__UpperCamelCase ) UpperCamelCase_ = torch.tensor([[4_8_1, 4_7_3_5, 5_4_4]] , dtype=torch.long , device=__UpperCamelCase ) # the president is UpperCamelCase_ = [ 4_8_1, 4_7_3_5, 5_4_4, 2_4_6, 9_6_3, 8_7_0, 7_6_2, 2_3_9, 2_4_4, 4_0_4_7_7, 2_4_4, 2_4_9, 7_1_9, 8_8_1, 4_8_7, 5_4_4, 2_4_0, 2_4_4, 6_0_3, 4_8_1, ] # the president is a very good man. " \n " i\'m sure he is, " said the UpperCamelCase_ = model.generate(__UpperCamelCase , do_sample=__UpperCamelCase ) self.assertListEqual(output_ids[0].tolist() , __UpperCamelCase )
122
import inspect import unittest from transformers import RegNetConfig, is_flax_available from transformers.testing_utils import require_flax, slow from transformers.utils import cached_property, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor if is_flax_available(): import jax import jax.numpy as jnp from transformers.models.regnet.modeling_flax_regnet import FlaxRegNetForImageClassification, FlaxRegNetModel if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class lowercase_ ( unittest.TestCase ): def __init__( self , __UpperCamelCase , __UpperCamelCase=3 , __UpperCamelCase=3_2 , __UpperCamelCase=3 , __UpperCamelCase=1_0 , __UpperCamelCase=[1_0, 2_0, 3_0, 4_0] , __UpperCamelCase=[1, 1, 2, 1] , __UpperCamelCase=True , __UpperCamelCase=True , __UpperCamelCase="relu" , __UpperCamelCase=3 , __UpperCamelCase=None , ): """simple docstring""" UpperCamelCase_ = parent UpperCamelCase_ = batch_size UpperCamelCase_ = image_size UpperCamelCase_ = num_channels UpperCamelCase_ = embeddings_size UpperCamelCase_ = hidden_sizes UpperCamelCase_ = depths UpperCamelCase_ = is_training UpperCamelCase_ = use_labels UpperCamelCase_ = hidden_act UpperCamelCase_ = num_labels UpperCamelCase_ = scope UpperCamelCase_ = len(__UpperCamelCase ) def lowerCamelCase_ ( self ): """simple docstring""" UpperCamelCase_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCamelCase_ = self.get_config() return config, pixel_values def lowerCamelCase_ ( self ): """simple docstring""" return RegNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , image_size=self.image_size , ) def lowerCamelCase_ ( self , __UpperCamelCase , __UpperCamelCase ): """simple docstring""" UpperCamelCase_ = FlaxRegNetModel(config=__UpperCamelCase ) UpperCamelCase_ = model(__UpperCamelCase ) # Output shape (b, c, h, w) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 3_2, self.image_size // 3_2) , ) def lowerCamelCase_ ( self , __UpperCamelCase , __UpperCamelCase ): """simple docstring""" UpperCamelCase_ = self.num_labels UpperCamelCase_ = FlaxRegNetForImageClassification(config=__UpperCamelCase ) UpperCamelCase_ = model(__UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCamelCase_ ( self ): """simple docstring""" UpperCamelCase_ = self.prepare_config_and_inputs() UpperCamelCase_ , UpperCamelCase_ = config_and_inputs UpperCamelCase_ = {"""pixel_values""": pixel_values} return config, inputs_dict @require_flax class lowercase_ ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): A__ : Tuple = (FlaxRegNetModel, FlaxRegNetForImageClassification) if is_flax_available() else () A__ : Any = False A__ : List[Any] = False A__ : Dict = False def lowerCamelCase_ ( self ): """simple docstring""" UpperCamelCase_ = FlaxRegNetModelTester(self ) UpperCamelCase_ = ConfigTester(self , config_class=__UpperCamelCase , has_text_modality=__UpperCamelCase ) def lowerCamelCase_ ( self ): """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowerCamelCase_ ( self ): """simple docstring""" return def lowerCamelCase_ ( self ): """simple docstring""" UpperCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCamelCase ) def lowerCamelCase_ ( self ): """simple docstring""" UpperCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__UpperCamelCase ) @unittest.skip(reason="""RegNet does not use inputs_embeds""" ) def lowerCamelCase_ ( self ): """simple docstring""" pass @unittest.skip(reason="""RegNet does not support input and output embeddings""" ) def lowerCamelCase_ ( self ): """simple docstring""" pass def lowerCamelCase_ ( self ): """simple docstring""" UpperCamelCase_ , UpperCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase_ = model_class(__UpperCamelCase ) UpperCamelCase_ = inspect.signature(model.__call__ ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCamelCase_ = [*signature.parameters.keys()] UpperCamelCase_ = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , __UpperCamelCase ) def lowerCamelCase_ ( self ): """simple docstring""" def check_hidden_states_output(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): UpperCamelCase_ = model_class(__UpperCamelCase ) UpperCamelCase_ = model(**self._prepare_for_class(__UpperCamelCase , __UpperCamelCase ) ) UpperCamelCase_ = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states UpperCamelCase_ = self.model_tester.num_stages self.assertEqual(len(__UpperCamelCase ) , expected_num_stages + 1 ) UpperCamelCase_ , UpperCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase_ = True check_hidden_states_output(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCamelCase_ = True check_hidden_states_output(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) def lowerCamelCase_ ( self ): """simple docstring""" UpperCamelCase_ , UpperCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): UpperCamelCase_ = self._prepare_for_class(__UpperCamelCase , __UpperCamelCase ) UpperCamelCase_ = model_class(__UpperCamelCase ) @jax.jit def model_jitted(__UpperCamelCase , **__UpperCamelCase ): return model(pixel_values=__UpperCamelCase , **__UpperCamelCase ) with self.subTest("""JIT Enabled""" ): UpperCamelCase_ = model_jitted(**__UpperCamelCase ).to_tuple() with self.subTest("""JIT Disabled""" ): with jax.disable_jit(): UpperCamelCase_ = model_jitted(**__UpperCamelCase ).to_tuple() self.assertEqual(len(__UpperCamelCase ) , len(__UpperCamelCase ) ) for jitted_output, output in zip(__UpperCamelCase , __UpperCamelCase ): self.assertEqual(jitted_output.shape , output.shape ) def lowerCamelCase__ ( ) -> Tuple: UpperCamelCase_ = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_flax class lowercase_ ( unittest.TestCase ): @cached_property def lowerCamelCase_ ( self ): """simple docstring""" return AutoImageProcessor.from_pretrained("""facebook/regnet-y-040""" ) if is_vision_available() else None @slow def lowerCamelCase_ ( self ): """simple docstring""" UpperCamelCase_ = FlaxRegNetForImageClassification.from_pretrained("""facebook/regnet-y-040""" ) UpperCamelCase_ = self.default_image_processor UpperCamelCase_ = prepare_img() UpperCamelCase_ = image_processor(images=__UpperCamelCase , return_tensors="""np""" ) UpperCamelCase_ = model(**__UpperCamelCase ) # verify the logits UpperCamelCase_ = (1, 1_0_0_0) self.assertEqual(outputs.logits.shape , __UpperCamelCase ) UpperCamelCase_ = jnp.array([-0.4_180, -1.5_051, -3.4_836] ) self.assertTrue(jnp.allclose(outputs.logits[0, :3] , __UpperCamelCase , atol=1e-4 ) )
122
1
'''simple docstring''' from typing import Dict import numpy as np from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, GenericTensor, Pipeline, PipelineException if is_tf_available(): import tensorflow as tf from ..tf_utils import stable_softmax if is_torch_available(): import torch lowercase__ : Optional[int] = logging.get_logger(__name__) @add_end_docstrings( a__ , r''' top_k (`int`, defaults to 5): The number of predictions to return. targets (`str` or `List[str]`, *optional*): When passed, the model will limit the scores to the passed targets instead of looking up in the whole vocab. If the provided targets are not in the model vocab, they will be tokenized and the first resulting token will be used (with a warning, and that might be slower). ''' , ) class SCREAMING_SNAKE_CASE (a__ ): def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase): '''simple docstring''' if self.framework == "tf": __A : Tuple = tf.where(input_ids == self.tokenizer.mask_token_id).numpy() elif self.framework == "pt": __A : str = torch.nonzero(input_ids == self.tokenizer.mask_token_id , as_tuple=_UpperCAmelCase) else: raise ValueError('Unsupported framework') return masked_index def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase): '''simple docstring''' __A : Optional[Any] = self.get_masked_index(_UpperCAmelCase) __A : List[str] = np.prod(masked_index.shape) if numel < 1: raise PipelineException( 'fill-mask' , self.model.base_model_prefix , F'No mask_token ({self.tokenizer.mask_token}) found on the input' , ) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase): '''simple docstring''' if isinstance(_UpperCAmelCase , _UpperCAmelCase): for model_input in model_inputs: self._ensure_exactly_one_mask_token(model_input['input_ids'][0]) else: for input_ids in model_inputs["input_ids"]: self._ensure_exactly_one_mask_token(_UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase=None , **_UpperCAmelCase): '''simple docstring''' if return_tensors is None: __A : List[Any] = self.framework __A : List[str] = self.tokenizer(_UpperCAmelCase , return_tensors=_UpperCAmelCase) self.ensure_exactly_one_mask_token(_UpperCAmelCase) return model_inputs def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase): '''simple docstring''' __A : Dict = self.model(**_UpperCAmelCase) __A : Optional[Any] = model_inputs['input_ids'] return model_outputs def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase=5 , _UpperCAmelCase=None): '''simple docstring''' if target_ids is not None and target_ids.shape[0] < top_k: __A : Any = target_ids.shape[0] __A : Optional[Any] = model_outputs['input_ids'][0] __A : Dict = model_outputs['logits'] if self.framework == "tf": __A : Tuple = tf.where(input_ids == self.tokenizer.mask_token_id).numpy()[:, 0] __A : str = outputs.numpy() __A : Union[str, Any] = outputs[0, masked_index, :] __A : str = stable_softmax(_UpperCAmelCase , axis=-1) if target_ids is not None: __A : Tuple = tf.gather_nd(tf.squeeze(_UpperCAmelCase , 0) , target_ids.reshape(-1 , 1)) __A : Optional[int] = tf.expand_dims(_UpperCAmelCase , 0) __A : int = tf.math.top_k(_UpperCAmelCase , k=_UpperCAmelCase) __A : str = topk.values.numpy(), topk.indices.numpy() else: __A : Optional[Any] = torch.nonzero(input_ids == self.tokenizer.mask_token_id , as_tuple=_UpperCAmelCase).squeeze(-1) # Fill mask pipeline supports only one ${mask_token} per sample __A : Tuple = outputs[0, masked_index, :] __A : Dict = logits.softmax(dim=-1) if target_ids is not None: __A : Optional[Any] = probs[..., target_ids] __A : List[Any] = probs.topk(_UpperCAmelCase) __A : Dict = [] __A : Optional[int] = values.shape[0] == 1 for i, (_values, _predictions) in enumerate(zip(values.tolist() , predictions.tolist())): __A : Dict = [] for v, p in zip(_values , _predictions): # Copy is important since we're going to modify this array in place __A : Optional[int] = input_ids.numpy().copy() if target_ids is not None: __A : Optional[int] = target_ids[p].tolist() __A : List[Any] = p # Filter padding out: __A : Dict = tokens[np.where(tokens != self.tokenizer.pad_token_id)] # Originally we skip special tokens to give readable output. # For multi masks though, the other [MASK] would be removed otherwise # making the output look odd, so we add them back __A : Any = self.tokenizer.decode(_UpperCAmelCase , skip_special_tokens=_UpperCAmelCase) __A : str = {'score': v, 'token': p, 'token_str': self.tokenizer.decode([p]), 'sequence': sequence} row.append(_UpperCAmelCase) result.append(_UpperCAmelCase) if single_mask: return result[0] return result def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase=None): '''simple docstring''' if isinstance(_UpperCAmelCase , _UpperCAmelCase): __A : Dict = [targets] try: __A : Optional[Any] = self.tokenizer.get_vocab() except Exception: __A : str = {} __A : List[str] = [] for target in targets: __A : Any = vocab.get(_UpperCAmelCase , _UpperCAmelCase) if id_ is None: __A : str = self.tokenizer( _UpperCAmelCase , add_special_tokens=_UpperCAmelCase , return_attention_mask=_UpperCAmelCase , return_token_type_ids=_UpperCAmelCase , max_length=1 , truncation=_UpperCAmelCase , )['input_ids'] if len(_UpperCAmelCase) == 0: logger.warning( F'The specified target token `{target}` does not exist in the model vocabulary. ' 'We cannot replace it with anything meaningful, ignoring it') continue __A : Dict = input_ids[0] # XXX: If users encounter this pass # it becomes pretty slow, so let's make sure # The warning enables them to fix the input to # get faster performance. logger.warning( F'The specified target token `{target}` does not exist in the model vocabulary. ' F'Replacing with `{self.tokenizer.convert_ids_to_tokens(id_)}`.') target_ids.append(id_) __A : Dict = list(set(_UpperCAmelCase)) if len(_UpperCAmelCase) == 0: raise ValueError('At least one target must be provided when passed.') __A : List[str] = np.array(_UpperCAmelCase) return target_ids def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase=None , _UpperCAmelCase=None): '''simple docstring''' __A : Optional[int] = {} if targets is not None: __A : Union[str, Any] = self.get_target_ids(_UpperCAmelCase , _UpperCAmelCase) __A : Dict = target_ids if top_k is not None: __A : Optional[int] = top_k if self.tokenizer.mask_token_id is None: raise PipelineException( 'fill-mask' , self.model.base_model_prefix , 'The tokenizer does not define a `mask_token`.') return {}, {}, postprocess_params def __call__( self , _UpperCAmelCase , *_UpperCAmelCase , **_UpperCAmelCase): '''simple docstring''' __A : Dict = super().__call__(_UpperCAmelCase , **_UpperCAmelCase) if isinstance(_UpperCAmelCase , _UpperCAmelCase) and len(_UpperCAmelCase) == 1: return outputs[0] return outputs
362
'''simple docstring''' import os from pathlib import Path import numpy as np import pytest from pack_dataset import pack_data_dir from parameterized import parameterized from save_len_file import save_len_file from torch.utils.data import DataLoader from transformers import AutoTokenizer from transformers.models.mbart.modeling_mbart import shift_tokens_right from transformers.testing_utils import TestCasePlus, slow from utils import FAIRSEQ_AVAILABLE, DistributedSortishSampler, LegacySeqaSeqDataset, SeqaSeqDataset lowercase__ : List[Any] = '''bert-base-cased''' lowercase__ : Union[str, Any] = '''google/pegasus-xsum''' lowercase__ : str = [''' Sam ate lunch today.''', '''Sams lunch ingredients.'''] lowercase__ : Optional[Any] = ['''A very interesting story about what I ate for lunch.''', '''Avocado, celery, turkey, coffee'''] lowercase__ : str = '''patrickvonplaten/t5-tiny-random''' lowercase__ : List[str] = '''sshleifer/bart-tiny-random''' lowercase__ : List[str] = '''sshleifer/tiny-mbart''' lowercase__ : str = '''sshleifer/tiny-marian-en-de''' def _lowerCAmelCase ( __snake_case : Path , __snake_case : list ) -> str: __A : Any = '\n'.join(__snake_case ) Path(__snake_case ).open('w' ).writelines(__snake_case ) def _lowerCAmelCase ( __snake_case : Optional[int] ) -> Tuple: for split in ["train", "val", "test"]: _dump_articles(os.path.join(__snake_case , f'{split}.source' ) , __snake_case ) _dump_articles(os.path.join(__snake_case , f'{split}.target' ) , __snake_case ) return tmp_dir class SCREAMING_SNAKE_CASE (a__ ): @parameterized.expand( [ MBART_TINY, MARIAN_TINY, T5_TINY, BART_TINY, PEGASUS_XSUM, ] , ) @slow def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase): '''simple docstring''' __A : str = AutoTokenizer.from_pretrained(_UpperCAmelCase) __A : int = make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir()) __A : int = max(len(tokenizer.encode(_UpperCAmelCase)) for a in ARTICLES) __A : str = max(len(tokenizer.encode(_UpperCAmelCase)) for a in SUMMARIES) __A : Dict = 4 __A : Optional[Any] = 8 assert max_len_target > max_src_len # Will be truncated assert max_len_source > max_src_len # Will be truncated __A ,__A : Any = 'ro_RO', 'de_DE' # ignored for all but mbart, but never causes error. __A : List[str] = SeqaSeqDataset( _UpperCAmelCase , data_dir=_UpperCAmelCase , type_path='train' , max_source_length=_UpperCAmelCase , max_target_length=_UpperCAmelCase , src_lang=_UpperCAmelCase , tgt_lang=_UpperCAmelCase , ) __A : Any = DataLoader(_UpperCAmelCase , batch_size=2 , collate_fn=train_dataset.collate_fn) for batch in dataloader: assert isinstance(_UpperCAmelCase , _UpperCAmelCase) assert batch["attention_mask"].shape == batch["input_ids"].shape # show that articles were trimmed. assert batch["input_ids"].shape[1] == max_src_len # show that targets are the same len assert batch["labels"].shape[1] == max_tgt_len if tok_name != MBART_TINY: continue # check language codes in correct place __A : Optional[Any] = shift_tokens_right(batch['labels'] , tokenizer.pad_token_id) assert batch["decoder_input_ids"][0, 0].item() == tokenizer.lang_code_to_id[tgt_lang] assert batch["decoder_input_ids"][0, -1].item() == tokenizer.eos_token_id assert batch["input_ids"][0, -2].item() == tokenizer.eos_token_id assert batch["input_ids"][0, -1].item() == tokenizer.lang_code_to_id[src_lang] break # No need to test every batch @parameterized.expand([BART_TINY, BERT_BASE_CASED]) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase): '''simple docstring''' __A : str = AutoTokenizer.from_pretrained(_UpperCAmelCase) __A : Optional[int] = make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir()) __A : Tuple = max(len(tokenizer.encode(_UpperCAmelCase)) for a in ARTICLES) __A : Any = max(len(tokenizer.encode(_UpperCAmelCase)) for a in SUMMARIES) __A : Optional[int] = 4 __A : Any = LegacySeqaSeqDataset( _UpperCAmelCase , data_dir=_UpperCAmelCase , type_path='train' , max_source_length=20 , max_target_length=_UpperCAmelCase , ) __A : Union[str, Any] = DataLoader(_UpperCAmelCase , batch_size=2 , collate_fn=train_dataset.collate_fn) for batch in dataloader: assert batch["attention_mask"].shape == batch["input_ids"].shape # show that articles were trimmed. assert batch["input_ids"].shape[1] == max_len_source assert 20 >= batch["input_ids"].shape[1] # trimmed significantly # show that targets were truncated assert batch["labels"].shape[1] == trunc_target # Truncated assert max_len_target > trunc_target # Truncated break # No need to test every batch def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Dict = AutoTokenizer.from_pretrained('facebook/mbart-large-cc25') __A : int = Path(make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir())) __A : List[str] = tmp_dir.joinpath('train.source').open().readlines() __A : Optional[Any] = Path(make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir())) pack_data_dir(_UpperCAmelCase , _UpperCAmelCase , 128 , _UpperCAmelCase) __A : Dict = {x.name for x in tmp_dir.iterdir()} __A : Dict = {x.name for x in save_dir.iterdir()} __A : str = save_dir.joinpath('train.source').open().readlines() # orig: [' Sam ate lunch today.\n', 'Sams lunch ingredients.'] # desired_packed: [' Sam ate lunch today.\n Sams lunch ingredients.'] assert len(_UpperCAmelCase) < len(_UpperCAmelCase) assert len(_UpperCAmelCase) == 1 assert len(packed_examples[0]) == sum(len(_UpperCAmelCase) for x in orig_examples) assert orig_paths == new_paths @pytest.mark.skipif(not FAIRSEQ_AVAILABLE , reason='This test requires fairseq') def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' if not FAIRSEQ_AVAILABLE: return __A ,__A ,__A : List[Any] = self._get_dataset(max_len=64) __A : Union[str, Any] = 64 __A : List[Any] = ds.make_dynamic_sampler(_UpperCAmelCase , required_batch_size_multiple=_UpperCAmelCase) __A : Union[str, Any] = [len(_UpperCAmelCase) for x in batch_sampler] assert len(set(_UpperCAmelCase)) > 1 # it's not dynamic batch size if every batch is the same length assert sum(_UpperCAmelCase) == len(_UpperCAmelCase) # no dropped or added examples __A : List[Any] = DataLoader(_UpperCAmelCase , batch_sampler=_UpperCAmelCase , collate_fn=ds.collate_fn , num_workers=2) __A : Optional[int] = [] __A : Tuple = [] for batch in data_loader: __A : Optional[int] = batch['input_ids'].shape __A : Any = src_shape[0] assert bs % required_batch_size_multiple == 0 or bs < required_batch_size_multiple __A : Tuple = np.product(batch['input_ids'].shape) num_src_per_batch.append(_UpperCAmelCase) if num_src_tokens > (max_tokens * 1.1): failures.append(_UpperCAmelCase) assert num_src_per_batch[0] == max(_UpperCAmelCase) if failures: raise AssertionError(F'too many tokens in {len(_UpperCAmelCase)} batches') def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A ,__A ,__A : Optional[int] = self._get_dataset(max_len=512) __A : Optional[int] = 2 __A : Dict = ds.make_sortish_sampler(_UpperCAmelCase , shuffle=_UpperCAmelCase) __A : Tuple = DataLoader(_UpperCAmelCase , batch_size=_UpperCAmelCase , collate_fn=ds.collate_fn , num_workers=2) __A : Union[str, Any] = DataLoader(_UpperCAmelCase , batch_size=_UpperCAmelCase , collate_fn=ds.collate_fn , num_workers=2 , sampler=_UpperCAmelCase) __A : str = tokenizer.pad_token_id def count_pad_tokens(_UpperCAmelCase , _UpperCAmelCase="input_ids"): return [batch[k].eq(_UpperCAmelCase).sum().item() for batch in data_loader] assert sum(count_pad_tokens(_UpperCAmelCase , k='labels')) < sum(count_pad_tokens(_UpperCAmelCase , k='labels')) assert sum(count_pad_tokens(_UpperCAmelCase)) < sum(count_pad_tokens(_UpperCAmelCase)) assert len(_UpperCAmelCase) == len(_UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase=1000 , _UpperCAmelCase=128): '''simple docstring''' if os.getenv('USE_REAL_DATA' , _UpperCAmelCase): __A : Dict = 'examples/seq2seq/wmt_en_ro' __A : Any = max_len * 2 * 64 if not Path(_UpperCAmelCase).joinpath('train.len').exists(): save_len_file(_UpperCAmelCase , _UpperCAmelCase) else: __A : int = 'examples/seq2seq/test_data/wmt_en_ro' __A : Any = max_len * 4 save_len_file(_UpperCAmelCase , _UpperCAmelCase) __A : Tuple = AutoTokenizer.from_pretrained(_UpperCAmelCase) __A : Optional[int] = SeqaSeqDataset( _UpperCAmelCase , data_dir=_UpperCAmelCase , type_path='train' , max_source_length=_UpperCAmelCase , max_target_length=_UpperCAmelCase , n_obs=_UpperCAmelCase , ) return ds, max_tokens, tokenizer def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A ,__A ,__A : Tuple = self._get_dataset() __A : Optional[int] = set(DistributedSortishSampler(_UpperCAmelCase , 256 , num_replicas=2 , rank=0 , add_extra_examples=_UpperCAmelCase)) __A : List[str] = set(DistributedSortishSampler(_UpperCAmelCase , 256 , num_replicas=2 , rank=1 , add_extra_examples=_UpperCAmelCase)) assert idsa.intersection(_UpperCAmelCase) == set() @parameterized.expand( [ MBART_TINY, MARIAN_TINY, T5_TINY, BART_TINY, PEGASUS_XSUM, ] , ) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase): '''simple docstring''' __A : Union[str, Any] = AutoTokenizer.from_pretrained(_UpperCAmelCase , use_fast=_UpperCAmelCase) if tok_name == MBART_TINY: __A : Dict = SeqaSeqDataset( _UpperCAmelCase , data_dir=make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir()) , type_path='train' , max_source_length=4 , max_target_length=8 , src_lang='EN' , tgt_lang='FR' , ) __A : List[Any] = train_dataset.dataset_kwargs assert "src_lang" in kwargs and "tgt_lang" in kwargs else: __A : Any = SeqaSeqDataset( _UpperCAmelCase , data_dir=make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir()) , type_path='train' , max_source_length=4 , max_target_length=8 , ) __A : List[str] = train_dataset.dataset_kwargs assert "add_prefix_space" not in kwargs if tok_name != BART_TINY else "add_prefix_space" in kwargs assert len(_UpperCAmelCase) == 1 if tok_name == BART_TINY else len(_UpperCAmelCase) == 0
190
0
"""simple docstring""" import math import sys import cva import numpy as np def lowercase ( __snake_case : np.ndarray , __snake_case : float ): # For applying gaussian function for each element in matrix. lowercase_ : Union[str, Any] = math.sqrt(__snake_case ) lowercase_ : Any = 1 / (sigma * math.sqrt(2 * math.pi )) return cons * np.exp(-((img / sigma) ** 2) * 0.5 ) def lowercase ( __snake_case : np.ndarray , __snake_case : int , __snake_case : int , __snake_case : int ): lowercase_ : List[str] = kernel_size // 2 return img[x - half : x + half + 1, y - half : y + half + 1] def lowercase ( __snake_case : int , __snake_case : float ): # Creates a gaussian kernel of given dimension. lowercase_ : Tuple = np.zeros((kernel_size, kernel_size) ) for i in range(0 , __snake_case ): for j in range(0 , __snake_case ): lowercase_ : List[str] = math.sqrt( abs(i - kernel_size // 2 ) ** 2 + abs(j - kernel_size // 2 ) ** 2 ) return vec_gaussian(__snake_case , __snake_case ) def lowercase ( __snake_case : np.ndarray , __snake_case : float , __snake_case : float , __snake_case : int , ): lowercase_ : Tuple = np.zeros(img.shape ) lowercase_ : Union[str, Any] = get_gauss_kernel(__snake_case , __snake_case ) lowercase_ , lowercase_ : List[Any] = img.shape for i in range(kernel_size // 2 , size_x - kernel_size // 2 ): for j in range(kernel_size // 2 , size_y - kernel_size // 2 ): lowercase_ : str = get_slice(__snake_case , __snake_case , __snake_case , __snake_case ) lowercase_ : Any = img_s - img_s[kernel_size // 2, kernel_size // 2] lowercase_ : List[Any] = vec_gaussian(__snake_case , __snake_case ) lowercase_ : List[Any] = np.multiply(__snake_case , __snake_case ) lowercase_ : Union[str, Any] = np.multiply(__snake_case , __snake_case ) lowercase_ : Any = np.sum(__snake_case ) / np.sum(__snake_case ) lowercase_ : Optional[Any] = val return imga def lowercase ( __snake_case : list ): lowercase_ : Optional[Any] = args[1] if args[1:] else '''../image_data/lena.jpg''' lowercase_ : Dict = float(args[2] ) if args[2:] else 1.0 lowercase_ : int = float(args[3] ) if args[3:] else 1.0 if args[4:]: lowercase_ : str = int(args[4] ) lowercase_ : Optional[int] = kernel_size + abs(kernel_size % 2 - 1 ) else: lowercase_ : Dict = 5 return filename, spatial_variance, intensity_variance, kernel_size if __name__ == "__main__": __A , __A , __A , __A : List[str] = parse_args(sys.argv) __A : str = cva.imread(filename, 0) cva.imshow('''input image''', img) __A : str = img / 255 __A : Any = out.astype('''float32''') __A : List[Any] = bilateral_filter(out, spatial_variance, intensity_variance, kernel_size) __A : Any = out * 255 __A : Optional[int] = np.uinta(out) cva.imshow('''output image''', out) cva.waitKey(0) cva.destroyAllWindows()
33
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { '''facebook/dpr-ctx_encoder-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/config.json''' ), '''facebook/dpr-question_encoder-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/config.json''' ), '''facebook/dpr-reader-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/config.json''' ), '''facebook/dpr-ctx_encoder-multiset-base''': ( '''https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/config.json''' ), '''facebook/dpr-question_encoder-multiset-base''': ( '''https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/config.json''' ), '''facebook/dpr-reader-multiset-base''': ( '''https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/config.json''' ), } class SCREAMING_SNAKE_CASE__ ( lowercase ): """simple docstring""" a : int ="dpr" def __init__( self , snake_case__=30_522 , snake_case__=768 , snake_case__=12 , snake_case__=12 , snake_case__=3_072 , snake_case__="gelu" , snake_case__=0.1 , snake_case__=0.1 , snake_case__=512 , snake_case__=2 , snake_case__=0.02 , snake_case__=1e-12 , snake_case__=0 , snake_case__="absolute" , snake_case__ = 0 , **snake_case__ , ): """simple docstring""" super().__init__(pad_token_id=snake_case__ , **snake_case__ ) lowerCAmelCase : Union[str, Any] = vocab_size lowerCAmelCase : str = hidden_size lowerCAmelCase : Any = num_hidden_layers lowerCAmelCase : Optional[int] = num_attention_heads lowerCAmelCase : Union[str, Any] = hidden_act lowerCAmelCase : Dict = intermediate_size lowerCAmelCase : Union[str, Any] = hidden_dropout_prob lowerCAmelCase : Dict = attention_probs_dropout_prob lowerCAmelCase : Dict = max_position_embeddings lowerCAmelCase : Tuple = type_vocab_size lowerCAmelCase : Any = initializer_range lowerCAmelCase : Any = layer_norm_eps lowerCAmelCase : Dict = projection_dim lowerCAmelCase : Dict = position_embedding_type
108
0
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from ..models.speechta import SpeechTaForTextToSpeech, SpeechTaHifiGan, SpeechTaProcessor from ..utils import is_datasets_available from .base import PipelineTool if is_datasets_available(): from datasets import load_dataset class SCREAMING_SNAKE_CASE__ ( __UpperCamelCase ): A : Optional[int] = "microsoft/speecht5_tts" A : List[Any] = ( "This is a tool that reads an English text out loud. It takes an input named `text` which should contain the " "text to read (in English) and returns a waveform object containing the sound." ) A : str = "text_reader" A : Optional[Any] = SpeechTaProcessor A : Any = SpeechTaForTextToSpeech A : Optional[Any] = SpeechTaHifiGan A : str = ["text"] A : Union[str, Any] = ["audio"] def snake_case__ ( self : List[Any] ): if self.post_processor is None: __snake_case : Tuple = """microsoft/speecht5_hifigan""" super().setup() def snake_case__ ( self : Any , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Tuple=None ): __snake_case : str = self.pre_processor(text=_lowerCAmelCase , return_tensors="""pt""" , truncation=_lowerCAmelCase ) if speaker_embeddings is None: if not is_datasets_available(): raise ImportError("""Datasets needs to be installed if not passing speaker embeddings.""" ) __snake_case : List[Any] = load_dataset("""Matthijs/cmu-arctic-xvectors""" , split="""validation""" ) __snake_case : str = torch.tensor(embeddings_dataset[73_05]["""xvector"""] ).unsqueeze(0 ) return {"input_ids": inputs["input_ids"], "speaker_embeddings": speaker_embeddings} def snake_case__ ( self : List[Any] , _lowerCAmelCase : Dict ): with torch.no_grad(): return self.model.generate_speech(**_lowerCAmelCase ) def snake_case__ ( self : Union[str, Any] , _lowerCAmelCase : int ): with torch.no_grad(): return self.post_processor(_lowerCAmelCase ).cpu().detach()
356
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from ..models.speechta import SpeechTaForTextToSpeech, SpeechTaHifiGan, SpeechTaProcessor from ..utils import is_datasets_available from .base import PipelineTool if is_datasets_available(): from datasets import load_dataset class SCREAMING_SNAKE_CASE__ ( __UpperCamelCase ): A : Optional[int] = "microsoft/speecht5_tts" A : List[Any] = ( "This is a tool that reads an English text out loud. It takes an input named `text` which should contain the " "text to read (in English) and returns a waveform object containing the sound." ) A : str = "text_reader" A : Optional[Any] = SpeechTaProcessor A : Any = SpeechTaForTextToSpeech A : Optional[Any] = SpeechTaHifiGan A : str = ["text"] A : Union[str, Any] = ["audio"] def snake_case__ ( self : List[Any] ): if self.post_processor is None: __snake_case : Tuple = """microsoft/speecht5_hifigan""" super().setup() def snake_case__ ( self : Any , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Tuple=None ): __snake_case : str = self.pre_processor(text=_lowerCAmelCase , return_tensors="""pt""" , truncation=_lowerCAmelCase ) if speaker_embeddings is None: if not is_datasets_available(): raise ImportError("""Datasets needs to be installed if not passing speaker embeddings.""" ) __snake_case : List[Any] = load_dataset("""Matthijs/cmu-arctic-xvectors""" , split="""validation""" ) __snake_case : str = torch.tensor(embeddings_dataset[73_05]["""xvector"""] ).unsqueeze(0 ) return {"input_ids": inputs["input_ids"], "speaker_embeddings": speaker_embeddings} def snake_case__ ( self : List[Any] , _lowerCAmelCase : Dict ): with torch.no_grad(): return self.model.generate_speech(**_lowerCAmelCase ) def snake_case__ ( self : Union[str, Any] , _lowerCAmelCase : int ): with torch.no_grad(): return self.post_processor(_lowerCAmelCase ).cpu().detach()
20
0
import numpy # List of input, output pairs __UpperCamelCase : Optional[Any] = ( ((5, 2, 3), 15), ((6, 5, 9), 25), ((11, 12, 13), 41), ((1, 1, 1), 8), ((11, 12, 13), 41), ) __UpperCamelCase : str = (((515, 22, 13), 555), ((61, 35, 49), 150)) __UpperCamelCase : Optional[Any] = [2, 4, 1, 5] __UpperCamelCase : Optional[Any] = len(train_data) __UpperCamelCase : Optional[int] = 0.0_0_9 def a_ ( _A , _A="train" ) -> Tuple: """simple docstring""" return calculate_hypothesis_value(_A , _A ) - output( _A , _A ) def a_ ( _A ) -> Any: """simple docstring""" snake_case__ = 0 for i in range(len(_A ) - 1 ): hyp_val += data_input_tuple[i] * parameter_vector[i + 1] hyp_val += parameter_vector[0] return hyp_val def a_ ( _A , _A ) -> Optional[int]: """simple docstring""" if data_set == "train": return train_data[example_no][1] elif data_set == "test": return test_data[example_no][1] return None def a_ ( _A , _A ) -> Optional[Any]: """simple docstring""" if data_set == "train": return _hypothesis_value(train_data[example_no][0] ) elif data_set == "test": return _hypothesis_value(test_data[example_no][0] ) return None def a_ ( _A , _A=m ) -> List[Any]: """simple docstring""" snake_case__ = 0 for i in range(_A ): if index == -1: summation_value += _error(_A ) else: summation_value += _error(_A ) * train_data[i][0][index] return summation_value def a_ ( _A ) -> Optional[int]: """simple docstring""" snake_case__ = summation_of_cost_derivative(_A , _A ) / m return cost_derivative_value def a_ ( ) -> Dict: """simple docstring""" global parameter_vector # Tune these values to set a tolerance value for predicted output snake_case__ = 0.000002 snake_case__ = 0 snake_case__ = 0 while True: j += 1 snake_case__ = [0, 0, 0, 0] for i in range(0 , len(_A ) ): snake_case__ = get_cost_derivative(i - 1 ) snake_case__ = ( parameter_vector[i] - LEARNING_RATE * cost_derivative ) if numpy.allclose( _A , _A , atol=_A , rtol=_A , ): break snake_case__ = temp_parameter_vector print(('Number of iterations:', j) ) def a_ ( ) -> List[str]: """simple docstring""" for i in range(len(_A ) ): print(('Actual output value:', output(_A , 'test' )) ) print(('Hypothesis output:', calculate_hypothesis_value(_A , 'test' )) ) if __name__ == "__main__": run_gradient_descent() print("""\nTesting gradient descent for a linear hypothesis function.\n""") test_gradient_descent()
307
import os import re import warnings from shutil import copyfile from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer if TYPE_CHECKING: from ...tokenization_utils_base import TextInput from ...utils import logging __UpperCamelCase : Union[str, Any] = logging.get_logger(__name__) __UpperCamelCase : int = {"""vocab_file""": """spiece.model"""} __UpperCamelCase : Any = { """vocab_file""": { """t5-small""": """https://huggingface.co/t5-small/resolve/main/spiece.model""", """t5-base""": """https://huggingface.co/t5-base/resolve/main/spiece.model""", """t5-large""": """https://huggingface.co/t5-large/resolve/main/spiece.model""", """t5-3b""": """https://huggingface.co/t5-3b/resolve/main/spiece.model""", """t5-11b""": """https://huggingface.co/t5-11b/resolve/main/spiece.model""", } } # TODO(PVP) - this should be removed in Transformers v5 __UpperCamelCase : Tuple = { """t5-small""": 512, """t5-base""": 512, """t5-large""": 512, """t5-3b""": 512, """t5-11b""": 512, } __UpperCamelCase : Optional[Any] = """▁""" class __SCREAMING_SNAKE_CASE( a_ ): _UpperCAmelCase = VOCAB_FILES_NAMES _UpperCAmelCase = PRETRAINED_VOCAB_FILES_MAP _UpperCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCAmelCase = ["input_ids", "attention_mask"] def __init__( self: Any , UpperCamelCase: List[str] , UpperCamelCase: Union[str, Any]="</s>" , UpperCamelCase: Tuple="<unk>" , UpperCamelCase: Optional[int]="<pad>" , UpperCamelCase: List[str]=1_00 , UpperCamelCase: Dict=None , UpperCamelCase: Optional[Dict[str, Any]] = None , UpperCamelCase: Tuple=True , **UpperCamelCase: Dict , ) -> None: # Add extra_ids to the special token list if extra_ids > 0 and additional_special_tokens is None: snake_case__ = [F'''<extra_id_{i}>''' for i in range(UpperCamelCase )] elif extra_ids > 0 and additional_special_tokens is not None: # Check that we have the right number of extra_id special tokens snake_case__ = len(set(filter(lambda UpperCamelCase : bool('extra_id' in str(UpperCamelCase ) ) , UpperCamelCase ) ) ) if extra_tokens != extra_ids: raise ValueError( F'''Both extra_ids ({extra_ids}) and additional_special_tokens ({additional_special_tokens}) are''' ' provided to T5Tokenizer. In this case the additional_special_tokens must include the extra_ids' ' tokens' ) if legacy: logger.warning_once( F'''You are using the legacy behaviour of the {self.__class__}. This means that tokens that come after special tokens will not be properly handled. We recommend you to''' ' read the related pull request available at https://github.com/huggingface/transformers/pull/24565' ) snake_case__ = legacy snake_case__ = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( eos_token=UpperCamelCase , unk_token=UpperCamelCase , pad_token=UpperCamelCase , extra_ids=UpperCamelCase , additional_special_tokens=UpperCamelCase , sp_model_kwargs=self.sp_model_kwargs , legacy=UpperCamelCase , **UpperCamelCase , ) snake_case__ = vocab_file snake_case__ = extra_ids snake_case__ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(UpperCamelCase ) @staticmethod def lowerCAmelCase_ ( UpperCamelCase: Tuple , UpperCamelCase: Optional[int] , UpperCamelCase: List[Any] ) -> Any: if pretrained_model_name_or_path in TaTokenizer.max_model_input_sizes: snake_case__ = TaTokenizer.max_model_input_sizes[pretrained_model_name_or_path] if init_max_model_length is not None and init_max_model_length != max_model_length: return init_max_model_length elif init_max_model_length is None: warnings.warn( 'This tokenizer was incorrectly instantiated with a model max length of' F''' {deprecated_max_model_length} which will be corrected in Transformers v5.\nFor now, this''' ' behavior is kept to avoid breaking backwards compatibility when padding/encoding with' ' `truncation is True`.\n- Be aware that you SHOULD NOT rely on' F''' {pretrained_model_name_or_path} automatically truncating your input to''' F''' {deprecated_max_model_length} when padding/encoding.\n- If you want to encode/pad to sequences''' F''' longer than {deprecated_max_model_length} you can either instantiate this tokenizer with''' ' `model_max_length` or pass `max_length` when encoding/padding.\n- To avoid this warning, please' ' instantiate this tokenizer with `model_max_length` set to your preferred value.' , UpperCamelCase , ) return max_model_length @property def lowerCAmelCase_ ( self: Tuple ) -> List[str]: return self.sp_model.get_piece_size() + self._extra_ids def lowerCAmelCase_ ( self: Union[str, Any] ) -> Any: snake_case__ = {self.convert_ids_to_tokens(UpperCamelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def lowerCAmelCase_ ( self: Dict , UpperCamelCase: List[int] , UpperCamelCase: Optional[List[int]] = None , UpperCamelCase: bool = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCamelCase , token_ids_a=UpperCamelCase , already_has_special_tokens=UpperCamelCase ) # normal case: some special tokens if token_ids_a is None: return ([0] * len(UpperCamelCase )) + [1] return ([0] * len(UpperCamelCase )) + [1] + ([0] * len(UpperCamelCase )) + [1] def lowerCAmelCase_ ( self: str ) -> Union[str, Any]: return list( set(filter(lambda UpperCamelCase : bool(re.search(R'<extra_id_\d+>' , UpperCamelCase ) ) is not None , self.additional_special_tokens ) ) ) def lowerCAmelCase_ ( self: Optional[Any] ) -> Tuple: return [self._convert_token_to_id(UpperCamelCase ) for token in self.get_sentinel_tokens()] def lowerCAmelCase_ ( self: Optional[Any] , UpperCamelCase: List[int] ) -> List[int]: if len(UpperCamelCase ) > 0 and token_ids[-1] == self.eos_token_id: warnings.warn( F'''This sequence already has {self.eos_token}. In future versions this behavior may lead to duplicated''' ' eos tokens being added.' ) return token_ids else: return token_ids + [self.eos_token_id] def lowerCAmelCase_ ( self: str , UpperCamelCase: List[int] , UpperCamelCase: Optional[List[int]] = None ) -> List[int]: snake_case__ = [self.eos_token_id] if token_ids_a is None: return len(token_ids_a + eos ) * [0] return len(token_ids_a + eos + token_ids_a + eos ) * [0] def lowerCAmelCase_ ( self: Dict , UpperCamelCase: List[int] , UpperCamelCase: Optional[List[int]] = None ) -> List[int]: snake_case__ = self._add_eos_if_not_present(UpperCamelCase ) if token_ids_a is None: return token_ids_a else: snake_case__ = self._add_eos_if_not_present(UpperCamelCase ) return token_ids_a + token_ids_a def __getstate__( self: Union[str, Any] ) -> List[str]: snake_case__ = self.__dict__.copy() snake_case__ = None return state def __setstate__( self: Optional[int] , UpperCamelCase: int ) -> List[str]: snake_case__ = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): snake_case__ = {} snake_case__ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def lowerCAmelCase_ ( self: str , UpperCamelCase: "TextInput" , **UpperCamelCase: Dict ) -> List[str]: # Replace the SPIECE_UNDERLINE with a space to make sure SPIECE_UNDERLINE is only used at # the beginning of the text if not self.legacy: snake_case__ = SPIECE_UNDERLINE + text.replace(UpperCamelCase , ' ' ) return super().tokenize(UpperCamelCase , **UpperCamelCase ) def lowerCAmelCase_ ( self: List[str] , UpperCamelCase: Any , **UpperCamelCase: str ) -> str: if not self.legacy: snake_case__ = text.startswith(UpperCamelCase ) if is_first: snake_case__ = text[1:] snake_case__ = self.sp_model.encode(UpperCamelCase , out_type=UpperCamelCase ) if not self.legacy and not is_first and not text.startswith(' ' ) and tokens[0].startswith(UpperCamelCase ): snake_case__ = ([tokens[0][1:]] if len(tokens[0] ) > 1 else []) + tokens[1:] return tokens def lowerCAmelCase_ ( self: Tuple , UpperCamelCase: Optional[int] ) -> Dict: if token.startswith('<extra_id_' ): snake_case__ = re.match(R'<extra_id_(\d+)>' , UpperCamelCase ) snake_case__ = int(match.group(1 ) ) return self.vocab_size - num - 1 return self.sp_model.piece_to_id(UpperCamelCase ) def lowerCAmelCase_ ( self: Dict , UpperCamelCase: str ) -> Tuple: if index < self.sp_model.get_piece_size(): snake_case__ = self.sp_model.IdToPiece(UpperCamelCase ) else: snake_case__ = F'''<extra_id_{self.vocab_size - 1 - index}>''' return token def lowerCAmelCase_ ( self: Union[str, Any] , UpperCamelCase: Any ) -> Dict: snake_case__ = [] snake_case__ = '' snake_case__ = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(UpperCamelCase ) + token snake_case__ = True snake_case__ = [] else: current_sub_tokens.append(UpperCamelCase ) snake_case__ = False out_string += self.sp_model.decode(UpperCamelCase ) return out_string.strip() def lowerCAmelCase_ ( self: List[str] , UpperCamelCase: str , UpperCamelCase: Optional[str] = None ) -> Tuple[str]: if not os.path.isdir(UpperCamelCase ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return snake_case__ = os.path.join( UpperCamelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCamelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , UpperCamelCase ) elif not os.path.isfile(self.vocab_file ): with open(UpperCamelCase , 'wb' ) as fi: snake_case__ = self.sp_model.serialized_model_proto() fi.write(UpperCamelCase ) return (out_vocab_file,)
307
1
"""simple docstring""" import os from argparse import ArgumentParser, Namespace from ..data import SingleSentenceClassificationProcessor as Processor from ..pipelines import TextClassificationPipeline from ..utils import is_tf_available, is_torch_available, logging from . import BaseTransformersCLICommand if not is_tf_available() and not is_torch_available(): raise RuntimeError('At least one of PyTorch or TensorFlow 2.0+ should be installed to use CLI training') # TF training parameters UpperCamelCase_ = False UpperCamelCase_ = False def UpperCamelCase ( UpperCAmelCase ) ->Union[str, Any]: """simple docstring""" return TrainCommand(UpperCAmelCase ) class snake_case ( SCREAMING_SNAKE_CASE_ ): @staticmethod def UpperCAmelCase__ ( __UpperCAmelCase) ->Union[str, Any]: a_ = parser.add_parser("train" , help="CLI tool to train a model on a task.") train_parser.add_argument( "--train_data" , type=__UpperCAmelCase , required=__UpperCAmelCase , help="path to train (and optionally evaluation) dataset as a csv with tab separated labels and sentences." , ) train_parser.add_argument( "--column_label" , type=__UpperCAmelCase , default=0 , help="Column of the dataset csv file with example labels.") train_parser.add_argument( "--column_text" , type=__UpperCAmelCase , default=1 , help="Column of the dataset csv file with example texts.") train_parser.add_argument( "--column_id" , type=__UpperCAmelCase , default=2 , help="Column of the dataset csv file with example ids.") train_parser.add_argument( "--skip_first_row" , action="store_true" , help="Skip the first row of the csv file (headers).") train_parser.add_argument("--validation_data" , type=__UpperCAmelCase , default="" , help="path to validation dataset.") train_parser.add_argument( "--validation_split" , type=__UpperCAmelCase , default=0.1 , help="if validation dataset is not provided, fraction of train dataset to use as validation dataset." , ) train_parser.add_argument("--output" , type=__UpperCAmelCase , default="./" , help="path to saved the trained model.") train_parser.add_argument( "--task" , type=__UpperCAmelCase , default="text_classification" , help="Task to train the model on.") train_parser.add_argument( "--model" , type=__UpperCAmelCase , default="bert-base-uncased" , help="Model's name or path to stored model.") train_parser.add_argument("--train_batch_size" , type=__UpperCAmelCase , default=32 , help="Batch size for training.") train_parser.add_argument("--valid_batch_size" , type=__UpperCAmelCase , default=64 , help="Batch size for validation.") train_parser.add_argument("--learning_rate" , type=__UpperCAmelCase , default=3E-5 , help="Learning rate.") train_parser.add_argument("--adam_epsilon" , type=__UpperCAmelCase , default=1E-08 , help="Epsilon for Adam optimizer.") train_parser.set_defaults(func=__UpperCAmelCase) def __init__( self , __UpperCAmelCase) ->List[Any]: a_ = logging.get_logger("transformers-cli/training") a_ = "tf" if is_tf_available() else "torch" os.makedirs(args.output , exist_ok=__UpperCAmelCase) a_ = args.output a_ = args.column_label a_ = args.column_text a_ = args.column_id self.logger.info(F'''Loading {args.task} pipeline for {args.model}''') if args.task == "text_classification": a_ = TextClassificationPipeline.from_pretrained(args.model) elif args.task == "token_classification": raise NotImplementedError elif args.task == "question_answering": raise NotImplementedError self.logger.info(F'''Loading dataset from {args.train_data}''') a_ = Processor.create_from_csv( args.train_data , column_label=args.column_label , column_text=args.column_text , column_id=args.column_id , skip_first_row=args.skip_first_row , ) a_ = None if args.validation_data: self.logger.info(F'''Loading validation dataset from {args.validation_data}''') a_ = Processor.create_from_csv( args.validation_data , column_label=args.column_label , column_text=args.column_text , column_id=args.column_id , skip_first_row=args.skip_first_row , ) a_ = args.validation_split a_ = args.train_batch_size a_ = args.valid_batch_size a_ = args.learning_rate a_ = args.adam_epsilon def UpperCAmelCase__ ( self) ->Optional[Any]: if self.framework == "tf": return self.run_tf() return self.run_torch() def UpperCAmelCase__ ( self) ->Union[str, Any]: raise NotImplementedError def UpperCAmelCase__ ( self) ->Any: self.pipeline.fit( self.train_dataset , validation_data=self.valid_dataset , validation_split=self.validation_split , learning_rate=self.learning_rate , adam_epsilon=self.adam_epsilon , train_batch_size=self.train_batch_size , valid_batch_size=self.valid_batch_size , ) # Save trained pipeline self.pipeline.save_pretrained(self.output)
303
"""simple docstring""" import warnings from contextlib import contextmanager from ...processing_utils import ProcessorMixin class snake_case ( SCREAMING_SNAKE_CASE_ ): a_ : Dict = """Speech2TextFeatureExtractor""" a_ : str = """Speech2TextTokenizer""" def __init__( self , __UpperCAmelCase , __UpperCAmelCase) ->List[str]: super().__init__(__UpperCAmelCase , __UpperCAmelCase) a_ = self.feature_extractor a_ = False def __call__( self , *__UpperCAmelCase , **__UpperCAmelCase) ->Optional[int]: # For backward compatibility if self._in_target_context_manager: return self.current_processor(*__UpperCAmelCase , **__UpperCAmelCase) if "raw_speech" in kwargs: warnings.warn("Using `raw_speech` as a keyword argument is deprecated. Use `audio` instead.") a_ = kwargs.pop("raw_speech") else: a_ = kwargs.pop("audio" , __UpperCAmelCase) a_ = kwargs.pop("sampling_rate" , __UpperCAmelCase) a_ = kwargs.pop("text" , __UpperCAmelCase) if len(__UpperCAmelCase) > 0: a_ = args[0] a_ = args[1:] if audio is None and text is None: raise ValueError("You need to specify either an `audio` or `text` input to process.") if audio is not None: a_ = self.feature_extractor(__UpperCAmelCase , *__UpperCAmelCase , sampling_rate=__UpperCAmelCase , **__UpperCAmelCase) if text is not None: a_ = self.tokenizer(__UpperCAmelCase , **__UpperCAmelCase) if text is None: return inputs elif audio is None: return encodings else: a_ = encodings["input_ids"] return inputs def UpperCAmelCase__ ( self , *__UpperCAmelCase , **__UpperCAmelCase) ->str: return self.tokenizer.batch_decode(*__UpperCAmelCase , **__UpperCAmelCase) def UpperCAmelCase__ ( self , *__UpperCAmelCase , **__UpperCAmelCase) ->int: return self.tokenizer.decode(*__UpperCAmelCase , **__UpperCAmelCase) @contextmanager def UpperCAmelCase__ ( self) ->Tuple: warnings.warn( "`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your " "labels by using the argument `text` of the regular `__call__` method (either in the same call as " "your audio inputs, or in a separate call.") a_ = True a_ = self.tokenizer yield a_ = self.feature_extractor a_ = False
303
1
"""simple docstring""" import sys import webbrowser import requests from bsa import BeautifulSoup from fake_useragent import UserAgent if __name__ == "__main__": print("Googling.....") __A = "https://www.google.com/search?q=" + " ".join(sys.argv[1:]) __A = requests.get(url, headers={"UserAgent": UserAgent().random}) # res.raise_for_status() with open("project1a.html", "wb") as out_file: # only for knowing the class for data in res.iter_content(1_0_0_0_0): out_file.write(data) __A = BeautifulSoup(res.text, "html.parser") __A = list(soup.select(".eZt8xd"))[:5] print(len(links)) for link in links: if link.text == "Maps": webbrowser.open(link.get("href")) else: webbrowser.open(f'''https://google.com{link.get('href')}''')
177
"""simple docstring""" from __future__ import annotations import unittest from transformers import AutoTokenizer, MBartConfig, is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFMBartForConditionalGeneration, TFMBartModel @require_tf class UpperCAmelCase : """simple docstring""" _UpperCAmelCase :Union[str, Any] = MBartConfig _UpperCAmelCase :str = {} _UpperCAmelCase :Union[str, Any] = "gelu" def __init__( self , _UpperCAmelCase , _UpperCAmelCase=13 , _UpperCAmelCase=7 , _UpperCAmelCase=True , _UpperCAmelCase=False , _UpperCAmelCase=99 , _UpperCAmelCase=32 , _UpperCAmelCase=2 , _UpperCAmelCase=4 , _UpperCAmelCase=37 , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=20 , _UpperCAmelCase=2 , _UpperCAmelCase=1 , _UpperCAmelCase=0 , ): lowercase__: List[str] = parent lowercase__: List[Any] = batch_size lowercase__: List[Any] = seq_length lowercase__: str = is_training lowercase__: List[str] = use_labels lowercase__: Optional[int] = vocab_size lowercase__: int = hidden_size lowercase__: Optional[int] = num_hidden_layers lowercase__: int = num_attention_heads lowercase__: Tuple = intermediate_size lowercase__: Optional[Any] = hidden_dropout_prob lowercase__: Optional[int] = attention_probs_dropout_prob lowercase__: str = max_position_embeddings lowercase__: Union[str, Any] = eos_token_id lowercase__: int = pad_token_id lowercase__: List[str] = bos_token_id def _snake_case ( self ): lowercase__: int = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) lowercase__: str = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) lowercase__: List[Any] = tf.concat([input_ids, eos_tensor] , axis=1 ) lowercase__: List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase__: Optional[Any] = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) lowercase__: Optional[int] = prepare_mbart_inputs_dict(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) return config, inputs_dict def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase ): lowercase__: List[str] = TFMBartModel(config=_UpperCAmelCase ).get_decoder() lowercase__: Tuple = inputs_dict['''input_ids'''] lowercase__: Optional[Any] = input_ids[:1, :] lowercase__: Optional[int] = inputs_dict['''attention_mask'''][:1, :] lowercase__: List[str] = inputs_dict['''head_mask'''] lowercase__: Optional[int] = 1 # first forward pass lowercase__: List[Any] = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , head_mask=_UpperCAmelCase , use_cache=_UpperCAmelCase ) lowercase__, lowercase__: Any = outputs.to_tuple() lowercase__: List[str] = past_key_values[1] def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=None , ) -> int: if attention_mask is None: lowercase__: Union[str, Any] = tf.cast(tf.math.not_equal(__UpperCAmelCase , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: lowercase__: List[str] = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: lowercase__: str = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: lowercase__: List[str] = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: lowercase__: Union[str, Any] = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class UpperCAmelCase (_UpperCAmelCase ,_UpperCAmelCase ,unittest.TestCase ): """simple docstring""" _UpperCAmelCase :Dict = (TFMBartForConditionalGeneration, TFMBartModel) if is_tf_available() else () _UpperCAmelCase :List[Any] = (TFMBartForConditionalGeneration,) if is_tf_available() else () _UpperCAmelCase :List[str] = ( { "conversational": TFMBartForConditionalGeneration, "feature-extraction": TFMBartModel, "summarization": TFMBartForConditionalGeneration, "text2text-generation": TFMBartForConditionalGeneration, "translation": TFMBartForConditionalGeneration, } if is_tf_available() else {} ) _UpperCAmelCase :str = True _UpperCAmelCase :List[Any] = False _UpperCAmelCase :str = False def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): if pipeline_test_casse_name != "FeatureExtractionPipelineTests": # Exception encountered when calling layer '...' return True return False def _snake_case ( self ): lowercase__: Tuple = TFMBartModelTester(self ) lowercase__: Optional[Any] = ConfigTester(self , config_class=_UpperCAmelCase ) def _snake_case ( self ): self.config_tester.run_common_tests() def _snake_case ( self ): lowercase__: List[str] = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*_UpperCAmelCase ) @require_sentencepiece @require_tokenizers @require_tf class UpperCAmelCase (unittest.TestCase ): """simple docstring""" _UpperCAmelCase :Optional[int] = [ " UN Chief Says There Is No Military Solution in Syria", ] _UpperCAmelCase :Any = [ "Şeful ONU declară că nu există o soluţie militară în Siria", ] _UpperCAmelCase :Tuple = "facebook/mbart-large-en-ro" @cached_property def _snake_case ( self ): return AutoTokenizer.from_pretrained(self.model_name ) @cached_property def _snake_case ( self ): lowercase__: Optional[int] = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model def _snake_case ( self , **_UpperCAmelCase ): lowercase__: List[Any] = self.translate_src_text(**_UpperCAmelCase ) self.assertListEqual(self.expected_text , _UpperCAmelCase ) def _snake_case ( self , **_UpperCAmelCase ): lowercase__: str = self.tokenizer(self.src_text , **_UpperCAmelCase , return_tensors='''tf''' ) lowercase__: Optional[int] = self.model.generate( model_inputs.input_ids , attention_mask=model_inputs.attention_mask , num_beams=2 ) lowercase__: Tuple = self.tokenizer.batch_decode(_UpperCAmelCase , skip_special_tokens=_UpperCAmelCase ) return generated_words @slow def _snake_case ( self ): self._assert_generated_batch_equal_expected()
177
1
__a = [ (10_00, '''M'''), (9_00, '''CM'''), (5_00, '''D'''), (4_00, '''CD'''), (1_00, '''C'''), (90, '''XC'''), (50, '''L'''), (40, '''XL'''), (10, '''X'''), (9, '''IX'''), (5, '''V'''), (4, '''IV'''), (1, '''I'''), ] def __lowercase ( _UpperCamelCase ) ->int: """simple docstring""" lowercase : List[Any] = {'''I''': 1, '''V''': 5, '''X''': 10, '''L''': 50, '''C''': 100, '''D''': 500, '''M''': 1000} lowercase : Optional[Any] = 0 lowercase : Optional[Any] = 0 while place < len(_UpperCamelCase ): if (place + 1 < len(_UpperCamelCase )) and (vals[roman[place]] < vals[roman[place + 1]]): total += vals[roman[place + 1]] - vals[roman[place]] place += 2 else: total += vals[roman[place]] place += 1 return total def __lowercase ( _UpperCamelCase ) ->str: """simple docstring""" lowercase : List[str] = [] for arabic, roman in ROMAN: (lowercase) : Dict = divmod(_UpperCamelCase, _UpperCamelCase ) result.append(roman * factor ) if number == 0: break return "".join(_UpperCamelCase ) if __name__ == "__main__": import doctest doctest.testmod()
366
import re from typing import Callable, List, Optional, Union import tensorflow as tf try: from tensorflow.keras.optimizers.legacy import Adam except ImportError: from tensorflow.keras.optimizers import Adam class __SCREAMING_SNAKE_CASE ( tf.keras.optimizers.schedules.LearningRateSchedule ): def __init__( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = 1.0 , SCREAMING_SNAKE_CASE__ = None , ): super().__init__() lowercase : str = initial_learning_rate lowercase : Optional[Any] = warmup_steps lowercase : Union[str, Any] = power lowercase : List[str] = decay_schedule_fn lowercase : List[str] = name def __call__( self , SCREAMING_SNAKE_CASE__ ): with tf.name_scope(self.name or '''WarmUp''' ) as name: # Implements polynomial warmup. i.e., if global_step < warmup_steps, the # learning rate will be `global_step/num_warmup_steps * init_lr`. lowercase : Optional[Any] = tf.cast(SCREAMING_SNAKE_CASE__ , tf.floataa ) lowercase : Tuple = tf.cast(self.warmup_steps , tf.floataa ) lowercase : Optional[Any] = global_step_float / warmup_steps_float lowercase : Union[str, Any] = self.initial_learning_rate * tf.math.pow(SCREAMING_SNAKE_CASE__ , self.power ) return tf.cond( global_step_float < warmup_steps_float , lambda: warmup_learning_rate , lambda: self.decay_schedule_fn(step - self.warmup_steps ) , name=SCREAMING_SNAKE_CASE__ , ) def __lowerCamelCase ( self ): return { "initial_learning_rate": self.initial_learning_rate, "decay_schedule_fn": self.decay_schedule_fn, "warmup_steps": self.warmup_steps, "power": self.power, "name": self.name, } def __lowercase ( _UpperCamelCase, _UpperCamelCase, _UpperCamelCase, _UpperCamelCase = 0.0, _UpperCamelCase = 0.9, _UpperCamelCase = 0.9_9_9, _UpperCamelCase = 1e-8, _UpperCamelCase = None, _UpperCamelCase = None, _UpperCamelCase = 0.0, _UpperCamelCase = 1.0, _UpperCamelCase = None, ) ->Any: """simple docstring""" lowercase : List[str] = tf.keras.optimizers.schedules.PolynomialDecay( initial_learning_rate=_UpperCamelCase, decay_steps=num_train_steps - num_warmup_steps, end_learning_rate=init_lr * min_lr_ratio, power=_UpperCamelCase, ) if num_warmup_steps: lowercase : Tuple = WarmUp( initial_learning_rate=_UpperCamelCase, decay_schedule_fn=_UpperCamelCase, warmup_steps=_UpperCamelCase, ) if weight_decay_rate > 0.0: lowercase : Tuple = AdamWeightDecay( learning_rate=_UpperCamelCase, weight_decay_rate=_UpperCamelCase, beta_a=_UpperCamelCase, beta_a=_UpperCamelCase, epsilon=_UpperCamelCase, clipnorm=_UpperCamelCase, global_clipnorm=_UpperCamelCase, exclude_from_weight_decay=['''LayerNorm''', '''layer_norm''', '''bias'''], include_in_weight_decay=_UpperCamelCase, ) else: lowercase : Union[str, Any] = tf.keras.optimizers.Adam( learning_rate=_UpperCamelCase, beta_a=_UpperCamelCase, beta_a=_UpperCamelCase, epsilon=_UpperCamelCase, clipnorm=_UpperCamelCase, global_clipnorm=_UpperCamelCase, ) # We return the optimizer and the LR scheduler in order to better track the # evolution of the LR independently of the optimizer. return optimizer, lr_schedule class __SCREAMING_SNAKE_CASE ( A__ ): def __init__( self , SCREAMING_SNAKE_CASE__ = 0.001 , SCREAMING_SNAKE_CASE__ = 0.9 , SCREAMING_SNAKE_CASE__ = 0.999 , SCREAMING_SNAKE_CASE__ = 1E-7 , SCREAMING_SNAKE_CASE__ = False , SCREAMING_SNAKE_CASE__ = 0.0 , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = "AdamWeightDecay" , **SCREAMING_SNAKE_CASE__ , ): super().__init__(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) lowercase : str = weight_decay_rate lowercase : int = include_in_weight_decay lowercase : str = exclude_from_weight_decay @classmethod def __lowerCamelCase ( cls , SCREAMING_SNAKE_CASE__ ): lowercase : Tuple = {'''WarmUp''': WarmUp} return super(SCREAMING_SNAKE_CASE__ , cls ).from_config(SCREAMING_SNAKE_CASE__ , custom_objects=SCREAMING_SNAKE_CASE__ ) def __lowerCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): super(SCREAMING_SNAKE_CASE__ , self )._prepare_local(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) lowercase : int = tf.constant( self.weight_decay_rate , name='''adam_weight_decay_rate''' ) def __lowerCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): lowercase : Any = self._do_use_weight_decay(var.name ) if do_decay: return var.assign_sub( learning_rate * var * apply_state[(var.device, var.dtype.base_dtype)]['''weight_decay_rate'''] , use_locking=self._use_locking , ) return tf.no_op() def __lowerCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=None , **SCREAMING_SNAKE_CASE__ ): lowercase , lowercase : Tuple = list(zip(*SCREAMING_SNAKE_CASE__ ) ) return super(SCREAMING_SNAKE_CASE__ , self ).apply_gradients(zip(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) , name=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) def __lowerCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): if apply_state is None: return self._decayed_lr_t[var_dtype], {} lowercase : Tuple = apply_state or {} lowercase : Any = apply_state.get((var_device, var_dtype) ) if coefficients is None: lowercase : Dict = self._fallback_apply_state(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) lowercase : Optional[int] = coefficients return coefficients["lr_t"], {"apply_state": apply_state} def __lowerCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=None ): lowercase , lowercase : int = self._get_lr(var.device , var.dtype.base_dtype , SCREAMING_SNAKE_CASE__ ) lowercase : str = self._decay_weights_op(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) with tf.control_dependencies([decay] ): return super(SCREAMING_SNAKE_CASE__ , self )._resource_apply_dense(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) def __lowerCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=None ): lowercase , lowercase : Union[str, Any] = self._get_lr(var.device , var.dtype.base_dtype , SCREAMING_SNAKE_CASE__ ) lowercase : Optional[int] = self._decay_weights_op(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) with tf.control_dependencies([decay] ): return super(SCREAMING_SNAKE_CASE__ , self )._resource_apply_sparse(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) def __lowerCamelCase ( self ): lowercase : Dict = super().get_config() config.update({'''weight_decay_rate''': self.weight_decay_rate} ) return config def __lowerCamelCase ( self , SCREAMING_SNAKE_CASE__ ): if self.weight_decay_rate == 0: return False if self._include_in_weight_decay: for r in self._include_in_weight_decay: if re.search(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) is not None: return True if self._exclude_from_weight_decay: for r in self._exclude_from_weight_decay: if re.search(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) is not None: return False return True class __SCREAMING_SNAKE_CASE ( A__ ): def __init__( self ): lowercase : Optional[Any] = [] lowercase : Tuple = None @property def __lowerCamelCase ( self ): if self._accum_steps is None: lowercase : Any = tf.Variable( tf.constant(0 , dtype=tf.intaa ) , trainable=SCREAMING_SNAKE_CASE__ , synchronization=tf.VariableSynchronization.ON_READ , aggregation=tf.VariableAggregation.ONLY_FIRST_REPLICA , ) return self._accum_steps.value() @property def __lowerCamelCase ( self ): if not self._gradients: raise ValueError('''The accumulator should be called first to initialize the gradients''' ) return [gradient.value() if gradient is not None else gradient for gradient in self._gradients] def __call__( self , SCREAMING_SNAKE_CASE__ ): if not self._gradients: lowercase : Optional[Any] = self.step # Create the step variable. self._gradients.extend( [ tf.Variable( tf.zeros_like(SCREAMING_SNAKE_CASE__ ) , trainable=SCREAMING_SNAKE_CASE__ , synchronization=tf.VariableSynchronization.ON_READ , aggregation=tf.VariableAggregation.ONLY_FIRST_REPLICA , ) if gradient is not None else gradient for gradient in gradients ] ) if len(SCREAMING_SNAKE_CASE__ ) != len(self._gradients ): raise ValueError(f"""Expected {len(self._gradients )} gradients, but got {len(SCREAMING_SNAKE_CASE__ )}""" ) for accum_gradient, gradient in zip(self._gradients , SCREAMING_SNAKE_CASE__ ): if accum_gradient is not None and gradient is not None: accum_gradient.assign_add(SCREAMING_SNAKE_CASE__ ) self._accum_steps.assign_add(1 ) def __lowerCamelCase ( self ): if not self._gradients: return self._accum_steps.assign(0 ) for gradient in self._gradients: if gradient is not None: gradient.assign(tf.zeros_like(SCREAMING_SNAKE_CASE__ ) )
173
0
'''simple docstring''' from typing import List, Optional, Union import numpy as np import tensorflow as tf from .utils import logging snake_case_ : int = logging.get_logger(__name__) def A__ ( UpperCAmelCase_ ): if isinstance(UpperCAmelCase_ , np.ndarray ): return list(tensor.shape ) _UpperCamelCase : Any = tf.shape(UpperCAmelCase_ ) if tensor.shape == tf.TensorShape(UpperCAmelCase_ ): return dynamic _UpperCamelCase : Any = tensor.shape.as_list() return [dynamic[i] if s is None else s for i, s in enumerate(UpperCAmelCase_ )] def A__ ( UpperCAmelCase_ , UpperCAmelCase_ = None , UpperCAmelCase_ = None ): return tf.nn.softmax(logits=logits + 1E-9 , axis=UpperCAmelCase_ , name=UpperCAmelCase_ ) def A__ ( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_=1E-5 , UpperCAmelCase_=-1 ): # This is a very simplified functional layernorm, designed to duplicate # the functionality of PyTorch nn.functional.layer_norm when this is needed to port # models in Transformers. if weight.shape.rank != 1 or bias.shape.rank != 1 or not isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): raise NotImplementedError('Only 1D weight and bias tensors are supported for now, with only a single axis.' ) # Get mean and variance on the axis to be normalized _UpperCamelCase , _UpperCamelCase : Any = tf.nn.moments(UpperCAmelCase_ , axes=[axis] , keepdims=UpperCAmelCase_ ) if axis != -1: # Reshape scale and weight to have the same rank as inputs, but with 1 dimensions # on every dimension except axis _UpperCamelCase : str = [1] * inputs.shape.rank _UpperCamelCase : List[str] = shape_list(UpperCAmelCase_ )[axis] _UpperCamelCase : Optional[int] = tf.reshape(UpperCAmelCase_ , UpperCAmelCase_ ) _UpperCamelCase : str = tf.reshape(UpperCAmelCase_ , UpperCAmelCase_ ) # Compute layer normalization using the batch_normalization # function. _UpperCamelCase : str = tf.nn.batch_normalization( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , offset=UpperCAmelCase_ , scale=UpperCAmelCase_ , variance_epsilon=UpperCAmelCase_ , ) return outputs def A__ ( UpperCAmelCase_ , UpperCAmelCase_=0 , UpperCAmelCase_=-1 ): # Replicates the behavior of torch.flatten in TF # If end_dim or start_dim is negative, count them from the end if end_dim < 0: end_dim += input.shape.rank if start_dim < 0: start_dim += input.shape.rank if start_dim == end_dim: return input _UpperCamelCase : str = tf.shape(UpperCAmelCase_ ) _UpperCamelCase : Union[str, Any] = tf.math.reduce_prod(in_shape[start_dim : end_dim + 1] ) _UpperCamelCase : List[str] = tf.concat([in_shape[:start_dim], [flattened_dim], in_shape[end_dim + 1 :]] , axis=0 ) return tf.reshape(UpperCAmelCase_ , UpperCAmelCase_ ) def A__ ( UpperCAmelCase_ ): if not isinstance(UpperCAmelCase_ , tf.Tensor ): _UpperCamelCase : str = tf.convert_to_tensor(UpperCAmelCase_ ) # Catches stray NumPy inputs if encoder_attention_mask.shape.rank == 3: _UpperCamelCase : Tuple = encoder_attention_mask[:, None, :, :] if encoder_attention_mask.shape.rank == 2: _UpperCamelCase : Union[str, Any] = encoder_attention_mask[:, None, None, :] # T5 has a mask that can compare sequence ids, we can simulate this here with this transposition # Cf. https://github.com/tensorflow/mesh/blob/8d2465e9bc93129b913b5ccc6a59aa97abd96ec6/mesh_tensorflow # /transformer/transformer_layers.py#L270 # encoder_extended_attention_mask = (encoder_extended_attention_mask == # encoder_extended_attention_mask.transpose(-1, -2)) _UpperCamelCase : List[str] = ( tf.cast(1 , encoder_attention_mask.dtype ) - encoder_extended_attention_mask ) * encoder_extended_attention_mask.dtype.min return encoder_extended_attention_mask def A__ ( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = "input_ids" ): tf.debugging.assert_less( UpperCAmelCase_ , tf.cast(UpperCAmelCase_ , dtype=tensor.dtype ) , message=( f'The maximum value of {tensor_name} ({tf.math.reduce_max(UpperCAmelCase_ )}) must be smaller than the embedding ' f'layer\'s input dimension ({embed_dim}). The likely cause is some problem at tokenization time.' ) , ) def A__ ( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ): _UpperCamelCase : Tuple = 6_4_5_1_2 # Check that no item in `data` is larger than `HDF5_OBJECT_HEADER_LIMIT` # because in that case even chunking the array would not make the saving # possible. _UpperCamelCase : Dict = [x for x in data if len(UpperCAmelCase_ ) > HDF5_OBJECT_HEADER_LIMIT] # Expecting this to never be true. if bad_attributes: raise RuntimeError( 'The following attributes cannot be saved to HDF5 file because ' f'they are larger than {HDF5_OBJECT_HEADER_LIMIT} ' f'bytes: {bad_attributes}' ) _UpperCamelCase : int = np.asarray(UpperCAmelCase_ ) _UpperCamelCase : Optional[Any] = 1 _UpperCamelCase : Optional[Any] = np.array_split(UpperCAmelCase_ , UpperCAmelCase_ ) # This will never loop forever thanks to the test above. while any(x.nbytes > HDF5_OBJECT_HEADER_LIMIT for x in chunked_data ): num_chunks += 1 _UpperCamelCase : Optional[int] = np.array_split(UpperCAmelCase_ , UpperCAmelCase_ ) if num_chunks > 1: for chunk_id, chunk_data in enumerate(UpperCAmelCase_ ): _UpperCamelCase : List[str] = chunk_data else: _UpperCamelCase : List[str] = data def A__ ( UpperCAmelCase_ , UpperCAmelCase_ ): if name in group.attrs: _UpperCamelCase : Tuple = [n.decode('utf8' ) if hasattr(UpperCAmelCase_ , 'decode' ) else n for n in group.attrs[name]] else: _UpperCamelCase : int = [] _UpperCamelCase : int = 0 while "%s%d" % (name, chunk_id) in group.attrs: data.extend( [n.decode('utf8' ) if hasattr(UpperCAmelCase_ , 'decode' ) else n for n in group.attrs['%s%d' % (name, chunk_id)]] ) chunk_id += 1 return data def A__ ( UpperCAmelCase_ ): def _expand_single_ad_tensor(UpperCAmelCase_ ): if isinstance(UpperCAmelCase_ , tf.Tensor ) and t.shape.rank == 1: return tf.expand_dims(UpperCAmelCase_ , axis=-1 ) return t return tf.nest.map_structure(_expand_single_ad_tensor , UpperCAmelCase_ )
83
"""simple docstring""" def _snake_case ( lowerCamelCase__ : str ) -> str: if not all(char in "01" for char in bin_string ): raise ValueError("Non-binary value was passed to the function" ) if not bin_string: raise ValueError("Empty string was passed to the function" ) lowerCamelCase_ : Optional[Any] ="" while len(lowerCamelCase__ ) % 3 != 0: lowerCamelCase_ : Any ="0" + bin_string lowerCamelCase_ : int =[ bin_string[index : index + 3] for index in range(len(lowerCamelCase__ ) ) if index % 3 == 0 ] for bin_group in bin_string_in_3_list: lowerCamelCase_ : int =0 for index, val in enumerate(lowerCamelCase__ ): oct_val += int(2 ** (2 - index) * int(lowerCamelCase__ ) ) oct_string += str(lowerCamelCase__ ) return oct_string if __name__ == "__main__": from doctest import testmod testmod()
144
0
"""simple docstring""" def lowerCAmelCase_ ( __a ) -> str: """simple docstring""" if isinstance(__a , __a ): raise TypeError("'float' object cannot be interpreted as an integer" ) if isinstance(__a , __a ): raise TypeError("'str' object cannot be interpreted as an integer" ) if num == 0: return "0b0" lowerCamelCase__: Optional[int] =False if num < 0: lowerCamelCase__: Optional[Any] =True lowerCamelCase__: List[Any] =-num lowerCamelCase__: list[int] =[] while num > 0: binary.insert(0 , num % 2 ) num >>= 1 if negative: return "-0b" + "".join(str(__a ) for e in binary ) return "0b" + "".join(str(__a ) for e in binary ) if __name__ == "__main__": import doctest doctest.testmod()
367
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __A = logging.get_logger(__name__) __A = { "distilbert-base-uncased": "https://huggingface.co/distilbert-base-uncased/resolve/main/config.json", "distilbert-base-uncased-distilled-squad": ( "https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/config.json" ), "distilbert-base-cased": "https://huggingface.co/distilbert-base-cased/resolve/main/config.json", "distilbert-base-cased-distilled-squad": ( "https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/config.json" ), "distilbert-base-german-cased": "https://huggingface.co/distilbert-base-german-cased/resolve/main/config.json", "distilbert-base-multilingual-cased": ( "https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/config.json" ), "distilbert-base-uncased-finetuned-sst-2-english": ( "https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english/resolve/main/config.json" ), } class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = "distilbert" lowercase_ = { "hidden_size": "dim", "num_attention_heads": "n_heads", "num_hidden_layers": "n_layers", } def __init__(self : Any , UpperCAmelCase_ : str=30_522 , UpperCAmelCase_ : Union[str, Any]=512 , UpperCAmelCase_ : int=False , UpperCAmelCase_ : Optional[Any]=6 , UpperCAmelCase_ : Optional[Any]=12 , UpperCAmelCase_ : Any=768 , UpperCAmelCase_ : List[Any]=4 * 768 , UpperCAmelCase_ : Tuple=0.1 , UpperCAmelCase_ : List[Any]=0.1 , UpperCAmelCase_ : Any="gelu" , UpperCAmelCase_ : int=0.02 , UpperCAmelCase_ : Optional[Any]=0.1 , UpperCAmelCase_ : Optional[int]=0.2 , UpperCAmelCase_ : int=0 , **UpperCAmelCase_ : List[Any] , ) ->Any: '''simple docstring''' lowerCamelCase__: int =vocab_size lowerCamelCase__: Any =max_position_embeddings lowerCamelCase__: Optional[int] =sinusoidal_pos_embds lowerCamelCase__: str =n_layers lowerCamelCase__: str =n_heads lowerCamelCase__: str =dim lowerCamelCase__: Optional[Any] =hidden_dim lowerCamelCase__: Dict =dropout lowerCamelCase__: Optional[Any] =attention_dropout lowerCamelCase__: int =activation lowerCamelCase__: Dict =initializer_range lowerCamelCase__: Optional[Any] =qa_dropout lowerCamelCase__: int =seq_classif_dropout super().__init__(**UpperCAmelCase_ , pad_token_id=UpperCAmelCase_) class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' @property def SCREAMING_SNAKE_CASE_ (self : List[str]) ->Mapping[str, Mapping[int, str]]: '''simple docstring''' if self.task == "multiple-choice": lowerCamelCase__: Dict ={0: "batch", 1: "choice", 2: "sequence"} else: lowerCamelCase__: Optional[int] ={0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ])
273
0
from jiwer import compute_measures import datasets _UpperCAmelCase : Optional[Any] ="""\ @inproceedings{inproceedings, author = {Morris, Andrew and Maier, Viktoria and Green, Phil}, year = {2004}, month = {01}, pages = {}, title = {From WER and RIL to MER and WIL: improved evaluation measures for connected speech recognition.} } """ _UpperCAmelCase : Optional[Any] ="""\ Word error rate (WER) is a common metric of the performance of an automatic speech recognition system. The general difficulty of measuring performance lies in the fact that the recognized word sequence can have a different length from the reference word sequence (supposedly the correct one). The WER is derived from the Levenshtein distance, working at the word level instead of the phoneme level. The WER is a valuable tool for comparing different systems as well as for evaluating improvements within one system. This kind of measurement, however, provides no details on the nature of translation errors and further work is therefore required to identify the main source(s) of error and to focus any research effort. This problem is solved by first aligning the recognized word sequence with the reference (spoken) word sequence using dynamic string alignment. Examination of this issue is seen through a theory called the power law that states the correlation between perplexity and word error rate. Word error rate can then be computed as: WER = (S + D + I) / N = (S + D + I) / (S + D + C) where S is the number of substitutions, D is the number of deletions, I is the number of insertions, C is the number of correct words, N is the number of words in the reference (N=S+D+C). This value indicates the average number of errors per reference word. The lower the value, the better the performance of the ASR system with a WER of 0 being a perfect score. """ _UpperCAmelCase : int =""" Compute WER score of transcribed segments against references. Args: references: List of references for each speech input. predictions: List of transcriptions to score. concatenate_texts (bool, default=False): Whether to concatenate all input texts or compute WER iteratively. Returns: (float): the word error rate Examples: >>> predictions = [\"this is the prediction\", \"there is an other sample\"] >>> references = [\"this is the reference\", \"there is another one\"] >>> wer = datasets.load_metric(\"wer\") >>> wer_score = wer.compute(predictions=predictions, references=references) >>> print(wer_score) 0.5 """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION ) class snake_case__( datasets.Metric ): '''simple docstring''' def lowercase_ ( self ) -> Optional[int]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''string''' , id='''sequence''' ), '''references''': datasets.Value('''string''' , id='''sequence''' ), } ) , codebase_urls=['''https://github.com/jitsi/jiwer/'''] , reference_urls=[ '''https://en.wikipedia.org/wiki/Word_error_rate''', ] , ) def lowercase_ ( self , __lowercase=None , __lowercase=None , __lowercase=False ) -> Union[str, Any]: if concatenate_texts: return compute_measures(__lowercase , __lowercase )["wer"] else: lowerCAmelCase_ : Dict = 0 lowerCAmelCase_ : Optional[Any] = 0 for prediction, reference in zip(__lowercase , __lowercase ): lowerCAmelCase_ : Tuple = compute_measures(__lowercase , __lowercase ) incorrect += measures["substitutions"] + measures["deletions"] + measures["insertions"] total += measures["substitutions"] + measures["deletions"] + measures["hits"] return incorrect / total
262
def lowerCAmelCase ( lowerCAmelCase_ = 10**9 )-> int: lowerCAmelCase_ : List[Any] = 1 lowerCAmelCase_ : Optional[int] = 2 lowerCAmelCase_ : Any = 0 lowerCAmelCase_ : str = 0 lowerCAmelCase_ : str = 0 while perimeter <= max_perimeter: perimeters_sum += perimeter prev_value += 2 * value value += prev_value lowerCAmelCase_ : Any = 2 * value + 2 if i % 2 == 0 else 2 * value - 2 i += 1 return perimeters_sum if __name__ == "__main__": print(f"""{solution() = }""")
262
1
def __SCREAMING_SNAKE_CASE ( __UpperCamelCase : dict ): """simple docstring""" SCREAMING_SNAKE_CASE__ = set() # To detect a back edge, keep track of vertices currently in the recursion stack SCREAMING_SNAKE_CASE__ = set() return any( node not in visited and depth_first_search(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) for node in graph ) def __SCREAMING_SNAKE_CASE ( __UpperCamelCase : dict , __UpperCamelCase : int , __UpperCamelCase : set , __UpperCamelCase : set ): """simple docstring""" visited.add(__UpperCamelCase ) rec_stk.add(__UpperCamelCase ) for node in graph[vertex]: if node not in visited: if depth_first_search(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): return True elif node in rec_stk: return True # The node needs to be removed from recursion stack before function ends rec_stk.remove(__UpperCamelCase ) return False if __name__ == "__main__": from doctest import testmod testmod()
366
import argparse import os import transformers from .convert_slow_tokenizer import SLOW_TO_FAST_CONVERTERS from .utils import logging logging.set_verbosity_info() __lowerCamelCase : int = logging.get_logger(__name__) __lowerCamelCase : Tuple = {name: getattr(transformers, name + '''Fast''') for name in SLOW_TO_FAST_CONVERTERS} def __SCREAMING_SNAKE_CASE ( __UpperCamelCase : int , __UpperCamelCase : Optional[int] , __UpperCamelCase : str , __UpperCamelCase : Optional[Any] ) -> Union[str, Any]: """simple docstring""" if tokenizer_name is not None and tokenizer_name not in TOKENIZER_CLASSES: raise ValueError(f"""Unrecognized tokenizer name, should be one of {list(TOKENIZER_CLASSES.keys() )}.""" ) if tokenizer_name is None: SCREAMING_SNAKE_CASE__ = TOKENIZER_CLASSES else: SCREAMING_SNAKE_CASE__ = {tokenizer_name: getattr(__UpperCamelCase , tokenizer_name + """Fast""" )} logger.info(f"""Loading tokenizer classes: {tokenizer_names}""" ) for tokenizer_name in tokenizer_names: SCREAMING_SNAKE_CASE__ = TOKENIZER_CLASSES[tokenizer_name] SCREAMING_SNAKE_CASE__ = True if checkpoint_name is None: SCREAMING_SNAKE_CASE__ = list(tokenizer_class.max_model_input_sizes.keys() ) else: SCREAMING_SNAKE_CASE__ = [checkpoint_name] logger.info(f"""For tokenizer {tokenizer_class.__class__.__name__} loading checkpoints: {checkpoint_names}""" ) for checkpoint in checkpoint_names: logger.info(f"""Loading {tokenizer_class.__class__.__name__} {checkpoint}""" ) # Load tokenizer SCREAMING_SNAKE_CASE__ = tokenizer_class.from_pretrained(__UpperCamelCase , force_download=__UpperCamelCase ) # Save fast tokenizer logger.info(f"""Save fast tokenizer to {dump_path} with prefix {checkpoint} add_prefix {add_prefix}""" ) # For organization names we create sub-directories if "/" in checkpoint: SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = checkpoint.split("""/""" ) SCREAMING_SNAKE_CASE__ = os.path.join(__UpperCamelCase , __UpperCamelCase ) elif add_prefix: SCREAMING_SNAKE_CASE__ = checkpoint SCREAMING_SNAKE_CASE__ = dump_path else: SCREAMING_SNAKE_CASE__ = None SCREAMING_SNAKE_CASE__ = dump_path logger.info(f"""=> {dump_path_full} with prefix {checkpoint_prefix_name}, add_prefix {add_prefix}""" ) if checkpoint in list(tokenizer.pretrained_vocab_files_map.values() )[0]: SCREAMING_SNAKE_CASE__ = list(tokenizer.pretrained_vocab_files_map.values() )[0][checkpoint] SCREAMING_SNAKE_CASE__ = file_path.split(__UpperCamelCase )[-1][0] if next_char == "/": SCREAMING_SNAKE_CASE__ = os.path.join(__UpperCamelCase , __UpperCamelCase ) SCREAMING_SNAKE_CASE__ = None logger.info(f"""=> {dump_path_full} with prefix {checkpoint_prefix_name}, add_prefix {add_prefix}""" ) SCREAMING_SNAKE_CASE__ = tokenizer.save_pretrained( __UpperCamelCase , legacy_format=__UpperCamelCase , filename_prefix=__UpperCamelCase ) logger.info(f"""=> File names {file_names}""" ) for file_name in file_names: if not file_name.endswith("""tokenizer.json""" ): os.remove(__UpperCamelCase ) logger.info(f"""=> removing {file_name}""" ) if __name__ == "__main__": __lowerCamelCase : str = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--dump_path''', default=None, type=str, required=True, help='''Path to output generated fast tokenizer files.''' ) parser.add_argument( '''--tokenizer_name''', default=None, type=str, help=( F"""Optional tokenizer type selected in the list of {list(TOKENIZER_CLASSES.keys())}. If not given, will """ '''download and convert all the checkpoints from AWS.''' ), ) parser.add_argument( '''--checkpoint_name''', default=None, type=str, help='''Optional checkpoint name. If not given, will download and convert the canonical checkpoints from AWS.''', ) parser.add_argument( '''--force_download''', action='''store_true''', help='''Re-download checkpoints.''', ) __lowerCamelCase : Any = parser.parse_args() convert_slow_checkpoint_to_fast(args.tokenizer_name, args.checkpoint_name, args.dump_path, args.force_download)
204
0
import numpy as np import torch from torch.nn import CrossEntropyLoss from transformers import AutoModelForCausalLM, AutoTokenizer import datasets from datasets import logging snake_case : int = "\\n\n" snake_case : str = "\nPerplexity (PPL) is one of the most common metrics for evaluating language models.\nIt is defined as the exponentiated average negative log-likelihood of a sequence.\n\nFor more information, see https://huggingface.co/docs/transformers/perplexity\n" snake_case : Optional[Any] = "\nArgs:\n model_id (str): model used for calculating Perplexity\n NOTE: Perplexity can only be calculated for causal language models.\n This includes models such as gpt2, causal variations of bert,\n causal versions of t5, and more (the full list can be found\n in the AutoModelForCausalLM documentation here:\n https://huggingface.co/docs/transformers/master/en/model_doc/auto#transformers.AutoModelForCausalLM )\n\n input_texts (list of str): input text, each separate text snippet\n is one list entry.\n batch_size (int): the batch size to run texts through the model. Defaults to 16.\n add_start_token (bool): whether to add the start token to the texts,\n so the perplexity can include the probability of the first word. Defaults to True.\n device (str): device to run on, defaults to 'cuda' when available\nReturns:\n perplexity: dictionary containing the perplexity scores for the texts\n in the input list, as well as the mean perplexity. If one of the input texts is\n longer than the max input length of the model, then it is truncated to the\n max length for the perplexity computation.\nExamples:\n Example 1:\n >>> perplexity = datasets.load_metric(\"perplexity\")\n >>> input_texts = [\"lorem ipsum\", \"Happy Birthday!\", \"Bienvenue\"]\n >>> results = perplexity.compute(model_id='gpt2',\n ... add_start_token=False,\n ... input_texts=input_texts) # doctest:+ELLIPSIS\n >>> print(list(results.keys()))\n ['perplexities', 'mean_perplexity']\n >>> print(round(results[\"mean_perplexity\"], 2))\n 78.22\n >>> print(round(results[\"perplexities\"][0], 2))\n 11.11\n\n Example 2:\n >>> perplexity = datasets.load_metric(\"perplexity\")\n >>> input_texts = datasets.load_dataset(\"wikitext\",\n ... \"wikitext-2-raw-v1\",\n ... split=\"test\")[\"text\"][:50] # doctest:+ELLIPSIS\n [...]\n >>> input_texts = [s for s in input_texts if s!='']\n >>> results = perplexity.compute(model_id='gpt2',\n ... input_texts=input_texts) # doctest:+ELLIPSIS\n >>> print(list(results.keys()))\n ['perplexities', 'mean_perplexity']\n >>> print(round(results[\"mean_perplexity\"], 2))\n 60.35\n >>> print(round(results[\"perplexities\"][0], 2))\n 81.12\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _snake_case ( datasets.Metric ): def SCREAMING_SNAKE_CASE ( self ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "input_texts": datasets.Value("string" ), } ) , reference_urls=["https://huggingface.co/docs/transformers/perplexity"] , ) def SCREAMING_SNAKE_CASE ( self , _a , _a , _a = 16 , _a = True , _a=None ): if device is not None: assert device in ["gpu", "cpu", "cuda"], "device should be either gpu or cpu." if device == "gpu": __magic_name__ : Any = "cuda" else: __magic_name__ : Tuple = "cuda" if torch.cuda.is_available() else "cpu" __magic_name__ : Union[str, Any] = AutoModelForCausalLM.from_pretrained(_a ) __magic_name__ : List[str] = model.to(_a ) __magic_name__ : Dict = AutoTokenizer.from_pretrained(_a ) # if batch_size > 1 (which generally leads to padding being required), and # if there is not an already assigned pad_token, assign an existing # special token to also be the padding token if tokenizer.pad_token is None and batch_size > 1: __magic_name__ : Union[str, Any] = list(tokenizer.special_tokens_map_extended.values() ) # check that the model already has at least one special token defined assert ( len(_a ) > 0 ), "If batch_size > 1, model must have at least one special token to use for padding. Please use a different model or set batch_size=1." # assign one of the special tokens to also be the pad token tokenizer.add_special_tokens({"pad_token": existing_special_tokens[0]} ) if add_start_token: # leave room for <BOS> token to be added: assert ( tokenizer.bos_token is not None ), "Input model must already have a BOS token if using add_start_token=True. Please use a different model, or set add_start_token=False" __magic_name__ : List[Any] = model.config.max_length - 1 else: __magic_name__ : List[Any] = model.config.max_length __magic_name__ : List[Any] = tokenizer( _a , add_special_tokens=_a , padding=_a , truncation=_a , max_length=_a , return_tensors="pt" , return_attention_mask=_a , ).to(_a ) __magic_name__ : Dict = encodings["input_ids"] __magic_name__ : int = encodings["attention_mask"] # check that each input is long enough: if add_start_token: assert torch.all(torch.ge(attn_masks.sum(1 ) , 1 ) ), "Each input text must be at least one token long." else: assert torch.all( torch.ge(attn_masks.sum(1 ) , 2 ) ), "When add_start_token=False, each input text must be at least two tokens long. Run with add_start_token=True if inputting strings of only one token, and remove all empty input strings." __magic_name__ : Tuple = [] __magic_name__ : int = CrossEntropyLoss(reduction="none" ) for start_index in logging.tqdm(range(0 , len(_a ) , _a ) ): __magic_name__ : Any = min(start_index + batch_size , len(_a ) ) __magic_name__ : Optional[int] = encoded_texts[start_index:end_index] __magic_name__ : Union[str, Any] = attn_masks[start_index:end_index] if add_start_token: __magic_name__ : Dict = torch.tensor([[tokenizer.bos_token_id]] * encoded_batch.size(dim=0 ) ).to(_a ) __magic_name__ : Dict = torch.cat([bos_tokens_tensor, encoded_batch] , dim=1 ) __magic_name__ : Dict = torch.cat( [torch.ones(bos_tokens_tensor.size() , dtype=torch.intaa ).to(_a ), attn_mask] , dim=1 ) __magic_name__ : str = encoded_batch with torch.no_grad(): __magic_name__ : Union[str, Any] = model(_a , attention_mask=_a ).logits __magic_name__ : Union[str, Any] = out_logits[..., :-1, :].contiguous() __magic_name__ : List[str] = labels[..., 1:].contiguous() __magic_name__ : Dict = attn_mask[..., 1:].contiguous() __magic_name__ : List[str] = torch.expa( (loss_fct(shift_logits.transpose(1 , 2 ) , _a ) * shift_attention_mask_batch).sum(1 ) / shift_attention_mask_batch.sum(1 ) ) ppls += perplexity_batch.tolist() return {"perplexities": ppls, "mean_perplexity": np.mean(_a )}
281
def lowerCAmelCase_ ( _snake_case : str , _snake_case : str ) -> bool: '''simple docstring''' __magic_name__ : Union[str, Any] = len(_snake_case ) + 1 __magic_name__ : List[str] = len(_snake_case ) + 1 # dp is a 2d matrix where dp[i][j] denotes whether prefix string of # length i of input_string matches with prefix string of length j of # given pattern. # "dp" stands for dynamic programming. __magic_name__ : str = [[0 for i in range(_snake_case )] for j in range(_snake_case )] # since string of zero length match pattern of zero length __magic_name__ : Optional[int] = 1 # since pattern of zero length will never match with string of non-zero length for i in range(1 , _snake_case ): __magic_name__ : Optional[int] = 0 # since string of zero length will match with pattern where there # is at least one * alternatively for j in range(1 , _snake_case ): __magic_name__ : Union[str, Any] = dp[0][j - 2] if pattern[j - 1] == "*" else 0 # now using bottom-up approach to find for all remaining lengths for i in range(1 , _snake_case ): for j in range(1 , _snake_case ): if input_string[i - 1] == pattern[j - 1] or pattern[j - 1] == ".": __magic_name__ : Optional[int] = dp[i - 1][j - 1] elif pattern[j - 1] == "*": if dp[i][j - 2] == 1: __magic_name__ : Optional[Any] = 1 elif pattern[j - 2] in (input_string[i - 1], "."): __magic_name__ : List[Any] = dp[i - 1][j] else: __magic_name__ : Union[str, Any] = 0 else: __magic_name__ : Dict = 0 return bool(dp[-1][-1] ) if __name__ == "__main__": import doctest doctest.testmod() # inputing the strings # input_string = input("input a string :") # pattern = input("input a pattern :") snake_case : Optional[Any] = "aab" snake_case : List[str] = "c*a*b" # using function to check whether given string matches the given pattern if match_pattern(input_string, pattern): print(F"{input_string} matches the given pattern {pattern}") else: print(F"{input_string} does not match with the given pattern {pattern}")
281
1
import os import sys _snake_case = os.path.join(os.path.dirname(__file__), """src""") sys.path.append(SRC_DIR) from transformers import ( AutoConfig, AutoModel, AutoModelForCausalLM, AutoModelForMaskedLM, AutoModelForQuestionAnswering, AutoModelForSequenceClassification, AutoTokenizer, add_start_docstrings, ) _snake_case = [ """torch""", """numpy""", """tokenizers""", """filelock""", """requests""", """tqdm""", """regex""", """sentencepiece""", """sacremoses""", """importlib_metadata""", """huggingface_hub""", ] @add_start_docstrings(AutoConfig.__doc__ ) def _A ( *__magic_name__ , **__magic_name__ ): return AutoConfig.from_pretrained(*__magic_name__ , **__magic_name__ ) @add_start_docstrings(AutoTokenizer.__doc__ ) def _A ( *__magic_name__ , **__magic_name__ ): return AutoTokenizer.from_pretrained(*__magic_name__ , **__magic_name__ ) @add_start_docstrings(AutoModel.__doc__ ) def _A ( *__magic_name__ , **__magic_name__ ): return AutoModel.from_pretrained(*__magic_name__ , **__magic_name__ ) @add_start_docstrings(AutoModelForCausalLM.__doc__ ) def _A ( *__magic_name__ , **__magic_name__ ): return AutoModelForCausalLM.from_pretrained(*__magic_name__ , **__magic_name__ ) @add_start_docstrings(AutoModelForMaskedLM.__doc__ ) def _A ( *__magic_name__ , **__magic_name__ ): return AutoModelForMaskedLM.from_pretrained(*__magic_name__ , **__magic_name__ ) @add_start_docstrings(AutoModelForSequenceClassification.__doc__ ) def _A ( *__magic_name__ , **__magic_name__ ): return AutoModelForSequenceClassification.from_pretrained(*__magic_name__ , **__magic_name__ ) @add_start_docstrings(AutoModelForQuestionAnswering.__doc__ ) def _A ( *__magic_name__ , **__magic_name__ ): return AutoModelForQuestionAnswering.from_pretrained(*__magic_name__ , **__magic_name__ )
201
import argparse import os import re import torch from flax.traverse_util import flatten_dict from tax import checkpoints from transformers import ( AutoTokenizer, PixaStructConfig, PixaStructForConditionalGeneration, PixaStructImageProcessor, PixaStructProcessor, PixaStructTextConfig, PixaStructVisionConfig, ) def _A ( __magic_name__ ): lowercase__ = checkpoints.load_tax_checkpoint(__magic_name__ ) lowercase__ = flatten_dict(__magic_name__ ) return flax_params def _A ( __magic_name__ ): lowercase__ = {} lowercase__ = { "token_embedder": "embeddings", "encoder_norm": "layernorm", "kernel": "weight", ".out": ".output", "scale": "weight", "embedders_0.pos_embedding": "row_embedder.weight", "embedders_1.pos_embedding": "column_embedder.weight", } lowercase__ = { "query": "attention.query", "key": "attention.key", "value": "attention.value", "output.dense": "output", "encoder_decoder_attention.o": "encoder_decoder_attention.attention.o", "pre_self_attention_layer_norm": "self_attention.layer_norm", "pre_cross_attention_layer_norm": "encoder_decoder_attention.layer_norm", "mlp.": "mlp.DenseReluDense.", "pre_mlp_layer_norm": "mlp.layer_norm", "self_attention.o": "self_attention.attention.o", "decoder.embeddings.embedding": "decoder.embed_tokens.weight", "decoder.relpos_bias.rel_embedding": "decoder.layer.0.self_attention.attention.relative_attention_bias.weight", "decoder.decoder_norm.weight": "decoder.final_layer_norm.weight", "decoder.logits_dense.weight": "decoder.lm_head.weight", } for key in flax_dict.keys(): if "target" in key: # remove the first prefix from the key lowercase__ = ".".join(key[1:] ) # rename the key for old, new in CONVERSION_MAPPING.items(): lowercase__ = new_key.replace(__magic_name__ , __magic_name__ ) if "decoder" in new_key: for old, new in DECODER_CONVERSION_MAPPING.items(): lowercase__ = new_key.replace(__magic_name__ , __magic_name__ ) if "layers" in new_key and "decoder" not in new_key: # use regex to replace the layer number lowercase__ = re.sub(R"layers_(\d+)" , R"layer.\1" , __magic_name__ ) lowercase__ = new_key.replace("encoder" , "encoder.encoder" ) elif "layers" in new_key and "decoder" in new_key: # use regex to replace the layer number lowercase__ = re.sub(R"layers_(\d+)" , R"layer.\1" , __magic_name__ ) lowercase__ = flax_dict[key] lowercase__ = {} # convert converted_dict into torch format for key in converted_dict.keys(): if ("embed_tokens" not in key) and ("embedder" not in key): lowercase__ = torch.from_numpy(converted_dict[key].T ) else: lowercase__ = torch.from_numpy(converted_dict[key] ) return converted_torch_dict def _A ( __magic_name__ , __magic_name__ , __magic_name__=False , __magic_name__=False ): lowercase__ = get_flax_param(__magic_name__ ) if not use_large: lowercase__ = PixaStructVisionConfig() lowercase__ = PixaStructTextConfig() else: lowercase__ = PixaStructVisionConfig( hidden_size=1536 , d_ff=3968 , num_attention_heads=24 , num_hidden_layers=18 ) lowercase__ = PixaStructTextConfig(hidden_size=1536 , d_ff=3968 , num_heads=24 , num_layers=18 ) lowercase__ = PixaStructConfig( vision_config=encoder_config.to_dict() , text_config=decoder_config.to_dict() , is_vqa=__magic_name__ ) lowercase__ = PixaStructForConditionalGeneration(__magic_name__ ) lowercase__ = rename_and_convert_flax_params(__magic_name__ ) model.load_state_dict(__magic_name__ ) lowercase__ = AutoTokenizer.from_pretrained("ybelkada/test-pix2struct-tokenizer" ) lowercase__ = PixaStructImageProcessor() lowercase__ = PixaStructProcessor(image_processor=__magic_name__ , tokenizer=__magic_name__ ) if use_large: lowercase__ = 4096 lowercase__ = True # mkdir if needed os.makedirs(__magic_name__ , exist_ok=__magic_name__ ) model.save_pretrained(__magic_name__ ) processor.save_pretrained(__magic_name__ ) print("Model saved in {}".format(__magic_name__ ) ) if __name__ == "__main__": _snake_case = argparse.ArgumentParser() parser.add_argument("""--t5x_checkpoint_path""", default=None, type=str, help="""Path to the original T5x checkpoint.""") parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--use_large""", action="""store_true""", help="""Use large model.""") parser.add_argument("""--is_vqa""", action="""store_true""", help="""Use large model.""") _snake_case = parser.parse_args() convert_pixastruct_original_pytorch_checkpoint_to_hf( args.tax_checkpoint_path, args.pytorch_dump_folder_path, args.use_large )
201
1
"""simple docstring""" import os lowerCAmelCase = {"""I""": 1, """V""": 5, """X""": 10, """L""": 50, """C""": 1_00, """D""": 5_00, """M""": 10_00} def lowerCAmelCase_ ( snake_case_ : str ) ->int: lowerCamelCase__ : Union[str, Any] =0 lowerCamelCase__ : Tuple =0 while index < len(snake_case_ ) - 1: lowerCamelCase__ : Optional[Any] =SYMBOLS[numerals[index]] lowerCamelCase__ : Tuple =SYMBOLS[numerals[index + 1]] if current_value < next_value: total_value -= current_value else: total_value += current_value index += 1 total_value += SYMBOLS[numerals[index]] return total_value def lowerCAmelCase_ ( snake_case_ : int ) ->str: lowerCamelCase__ : List[Any] ='' lowerCamelCase__ : Dict =num // 1_0_0_0 numerals += m_count * "M" num %= 1_0_0_0 lowerCamelCase__ : List[str] =num // 1_0_0 if c_count == 9: numerals += "CM" c_count -= 9 elif c_count == 4: numerals += "CD" c_count -= 4 if c_count >= 5: numerals += "D" c_count -= 5 numerals += c_count * "C" num %= 1_0_0 lowerCamelCase__ : int =num // 1_0 if x_count == 9: numerals += "XC" x_count -= 9 elif x_count == 4: numerals += "XL" x_count -= 4 if x_count >= 5: numerals += "L" x_count -= 5 numerals += x_count * "X" num %= 1_0 if num == 9: numerals += "IX" num -= 9 elif num == 4: numerals += "IV" num -= 4 if num >= 5: numerals += "V" num -= 5 numerals += num * "I" return numerals def lowerCAmelCase_ ( snake_case_ : str = "/p089_roman.txt" ) ->int: lowerCamelCase__ : Optional[int] =0 with open(os.path.dirname(snake_case_ ) + roman_numerals_filename ) as filea: lowerCamelCase__ : Optional[Any] =filea.readlines() for line in lines: lowerCamelCase__ : Union[str, Any] =line.strip() lowerCamelCase__ : Optional[Any] =parse_roman_numerals(snake_case_ ) lowerCamelCase__ : str =generate_roman_numerals(snake_case_ ) savings += len(snake_case_ ) - len(snake_case_ ) return savings if __name__ == "__main__": print(f"""{solution() = }""")
126
"""simple docstring""" import unittest import numpy as np from transformers import BertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): from transformers.models.bert.modeling_flax_bert import ( FlaxBertForMaskedLM, FlaxBertForMultipleChoice, FlaxBertForNextSentencePrediction, FlaxBertForPreTraining, FlaxBertForQuestionAnswering, FlaxBertForSequenceClassification, FlaxBertForTokenClassification, FlaxBertModel, ) class A_ ( unittest.TestCase ): """simple docstring""" def __init__( self :List[str] , lowerCamelCase_ :str , lowerCamelCase_ :List[Any]=13 , lowerCamelCase_ :Any=7 , lowerCamelCase_ :List[str]=True , lowerCamelCase_ :List[str]=True , lowerCamelCase_ :Optional[int]=True , lowerCamelCase_ :Any=True , lowerCamelCase_ :List[str]=99 , lowerCamelCase_ :Dict=32 , lowerCamelCase_ :Union[str, Any]=5 , lowerCamelCase_ :int=4 , lowerCamelCase_ :Optional[Any]=37 , lowerCamelCase_ :Optional[Any]="gelu" , lowerCamelCase_ :List[str]=0.1 , lowerCamelCase_ :List[Any]=0.1 , lowerCamelCase_ :List[Any]=512 , lowerCamelCase_ :List[str]=16 , lowerCamelCase_ :Tuple=2 , lowerCamelCase_ :Tuple=0.02 , lowerCamelCase_ :Tuple=4 , ): """simple docstring""" lowerCamelCase__ : Optional[Any] =parent lowerCamelCase__ : List[Any] =batch_size lowerCamelCase__ : Optional[int] =seq_length lowerCamelCase__ : Optional[int] =is_training lowerCamelCase__ : Optional[Any] =use_attention_mask lowerCamelCase__ : List[Any] =use_token_type_ids lowerCamelCase__ : List[Any] =use_labels lowerCamelCase__ : Any =vocab_size lowerCamelCase__ : int =hidden_size lowerCamelCase__ : Dict =num_hidden_layers lowerCamelCase__ : int =num_attention_heads lowerCamelCase__ : List[str] =intermediate_size lowerCamelCase__ : Dict =hidden_act lowerCamelCase__ : str =hidden_dropout_prob lowerCamelCase__ : Tuple =attention_probs_dropout_prob lowerCamelCase__ : List[Any] =max_position_embeddings lowerCamelCase__ : Tuple =type_vocab_size lowerCamelCase__ : Any =type_sequence_label_size lowerCamelCase__ : Dict =initializer_range lowerCamelCase__ : str =num_choices def UpperCAmelCase__ ( self :Union[str, Any] ): """simple docstring""" lowerCamelCase__ : str =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCamelCase__ : Any =None if self.use_attention_mask: lowerCamelCase__ : Any =random_attention_mask([self.batch_size, self.seq_length] ) lowerCamelCase__ : Any =None if self.use_token_type_ids: lowerCamelCase__ : Dict =ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowerCamelCase__ : str =BertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowerCamelCase_ , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def UpperCAmelCase__ ( self :Dict ): """simple docstring""" lowerCamelCase__ : Dict =self.prepare_config_and_inputs() lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : Dict =config_and_inputs lowerCamelCase__ : int ={'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': attention_mask} return config, inputs_dict def UpperCAmelCase__ ( self :Tuple ): """simple docstring""" lowerCamelCase__ : int =self.prepare_config_and_inputs() lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : Union[str, Any] =config_and_inputs lowerCamelCase__ : Optional[Any] =True lowerCamelCase__ : Any =floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) lowerCamelCase__ : str =ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, attention_mask, encoder_hidden_states, encoder_attention_mask, ) @require_flax class A_ ( A__ , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ = True SCREAMING_SNAKE_CASE_ = ( ( FlaxBertModel, FlaxBertForPreTraining, FlaxBertForMaskedLM, FlaxBertForMultipleChoice, FlaxBertForQuestionAnswering, FlaxBertForNextSentencePrediction, FlaxBertForSequenceClassification, FlaxBertForTokenClassification, FlaxBertForQuestionAnswering, ) if is_flax_available() else () ) def UpperCAmelCase__ ( self :Tuple ): """simple docstring""" lowerCamelCase__ : str =FlaxBertModelTester(self ) @slow def UpperCAmelCase__ ( self :Optional[int] ): """simple docstring""" lowerCamelCase__ : Dict =FlaxBertModel.from_pretrained('bert-base-cased' ) lowerCamelCase__ : List[str] =model(np.ones((1, 1) ) ) self.assertIsNotNone(lowerCamelCase_ )
126
1
from manim import * class _A ( lowerCAmelCase ): def A__ ( self ): """simple docstring""" lowercase = Rectangle(height=0.5 , width=0.5 ) lowercase = Rectangle(height=0.4_6 , width=0.4_6 ).set_stroke(width=0 ) lowercase = [mem.copy() for i in range(6 )] lowercase = [mem.copy() for i in range(6 )] lowercase = VGroup(*_snake_case ).arrange(_snake_case , buff=0 ) lowercase = VGroup(*_snake_case ).arrange(_snake_case , buff=0 ) lowercase = VGroup(_snake_case , _snake_case ).arrange(_snake_case , buff=0 ) lowercase = Text("""CPU""" , font_size=24 ) lowercase = Group(_snake_case , _snake_case ).arrange(_snake_case , buff=0.5 , aligned_edge=_snake_case ) cpu.move_to([-2.5, -0.5, 0] ) self.add(_snake_case ) lowercase = [mem.copy() for i in range(4 )] lowercase = VGroup(*_snake_case ).arrange(_snake_case , buff=0 ) lowercase = Text("""GPU""" , font_size=24 ) lowercase = Group(_snake_case , _snake_case ).arrange(_snake_case , buff=0.5 , aligned_edge=_snake_case ) gpu.move_to([-1, -1, 0] ) self.add(_snake_case ) lowercase = [mem.copy() for i in range(6 )] lowercase = VGroup(*_snake_case ).arrange(_snake_case , buff=0 ) lowercase = Text("""Model""" , font_size=24 ) lowercase = Group(_snake_case , _snake_case ).arrange(_snake_case , buff=0.5 , aligned_edge=_snake_case ) model.move_to([3, -1.0, 0] ) self.add(_snake_case ) lowercase = [] for i, rect in enumerate(_snake_case ): rect.set_stroke(_snake_case ) # target = fill.copy().set_fill(YELLOW, opacity=0.7) # target.move_to(rect) # self.add(target) lowercase = Rectangle(height=0.4_6 / 4 , width=0.4_6 / 3 ).set_stroke(width=0.0 ).set_fill(_snake_case , opacity=0.7 ) if i == 0: cpu_target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) , buff=0.0_2 , direction=_snake_case ) cpu_target.set_x(cpu_target.get_x() + 0.1 ) elif i == 3: cpu_target.next_to(cpu_targs[0] , direction=_snake_case , buff=0.0 ) else: cpu_target.next_to(cpu_targs[i - 1] , direction=_snake_case , buff=0.0 ) self.add(_snake_case ) cpu_targs.append(_snake_case ) lowercase = [mem.copy() for i in range(6 )] lowercase = VGroup(*_snake_case ).arrange(_snake_case , buff=0 ) lowercase = Text("""Loaded Checkpoint""" , font_size=24 ) lowercase = Group(_snake_case , _snake_case ).arrange(_snake_case , aligned_edge=_snake_case , buff=0.4 ) checkpoint.move_to([3, 0.5, 0] ) lowercase = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) lowercase = MarkupText( f'<b>Key:</b>\n\n<span fgcolor=\'{YELLOW}\'>●</span> Empty Model' , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) self.add(_snake_case , _snake_case ) lowercase = MarkupText( f'<span fgcolor=\'{BLUE}\'>●</span> Checkpoint' , font_size=18 , ) blue_text.next_to(_snake_case , DOWN * 2.4 , aligned_edge=key_text.get_left() ) lowercase = MarkupText( f'Next, a <i><span fgcolor=\"{BLUE}\">second</span></i> model is loaded into memory,\nwith the weights of a <span fgcolor=\"{BLUE}\">single shard</span>.' , font_size=24 , ) step_a.move_to([2, 2, 0] ) self.play(Write(_snake_case ) , Write(_snake_case ) ) self.play(Write(_snake_case , run_time=1 ) , Create(_snake_case , run_time=1 ) ) lowercase = [] lowercase = [] for i, rect in enumerate(_snake_case ): lowercase = fill.copy().set_fill(_snake_case , opacity=0.7 ) target.move_to(_snake_case ) first_animations.append(GrowFromCenter(_snake_case , run_time=1 ) ) lowercase = target.copy() cpu_target.generate_target() if i < 5: cpu_target.target.move_to(cpu_left_col_base[i + 1] ) else: cpu_target.target.move_to(cpu_right_col_base[i - 5] ) second_animations.append(MoveToTarget(_snake_case , run_time=1.5 ) ) self.play(*_snake_case ) self.play(*_snake_case ) self.wait()
357
"""simple docstring""" import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import XLMRobertaTokenizerFast from diffusers import DDIMScheduler, KandinskyInpaintPipeline, KandinskyPriorPipeline, UNetaDConditionModel, VQModel from diffusers.pipelines.kandinsky.text_encoder import MCLIPConfig, MultilingualCLIP from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class _A ( lowerCAmelCase , unittest.TestCase ): snake_case__ : str = KandinskyInpaintPipeline snake_case__ : Optional[int] = ['prompt', 'image_embeds', 'negative_image_embeds', 'image', 'mask_image'] snake_case__ : Optional[int] = [ 'prompt', 'negative_prompt', 'image_embeds', 'negative_image_embeds', 'image', 'mask_image', ] snake_case__ : Tuple = [ 'generator', 'height', 'width', 'latents', 'guidance_scale', 'negative_prompt', 'num_inference_steps', 'return_dict', 'guidance_scale', 'num_images_per_prompt', 'output_type', 'return_dict', ] snake_case__ : Dict = False @property def A__ ( self ): """simple docstring""" return 32 @property def A__ ( self ): """simple docstring""" return 32 @property def A__ ( self ): """simple docstring""" return self.time_input_dim @property def A__ ( self ): """simple docstring""" return self.time_input_dim * 4 @property def A__ ( self ): """simple docstring""" return 100 @property def A__ ( self ): """simple docstring""" lowercase = XLMRobertaTokenizerFast.from_pretrained("""YiYiXu/tiny-random-mclip-base""" ) return tokenizer @property def A__ ( self ): """simple docstring""" torch.manual_seed(0 ) lowercase = MCLIPConfig( numDims=self.cross_attention_dim , transformerDimensions=self.text_embedder_hidden_size , hidden_size=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=1005 , ) lowercase = MultilingualCLIP(__lowerCAmelCase ) lowercase = text_encoder.eval() return text_encoder @property def A__ ( self ): """simple docstring""" torch.manual_seed(0 ) lowercase = { """in_channels""": 9, # Out channels is double in channels because predicts mean and variance """out_channels""": 8, """addition_embed_type""": """text_image""", """down_block_types""": ("""ResnetDownsampleBlock2D""", """SimpleCrossAttnDownBlock2D"""), """up_block_types""": ("""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""), """mid_block_type""": """UNetMidBlock2DSimpleCrossAttn""", """block_out_channels""": (self.block_out_channels_a, self.block_out_channels_a * 2), """layers_per_block""": 1, """encoder_hid_dim""": self.text_embedder_hidden_size, """encoder_hid_dim_type""": """text_image_proj""", """cross_attention_dim""": self.cross_attention_dim, """attention_head_dim""": 4, """resnet_time_scale_shift""": """scale_shift""", """class_embed_type""": None, } lowercase = UNetaDConditionModel(**__lowerCAmelCase ) return model @property def A__ ( self ): """simple docstring""" return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def A__ ( self ): """simple docstring""" torch.manual_seed(0 ) lowercase = VQModel(**self.dummy_movq_kwargs ) return model def A__ ( self ): """simple docstring""" lowercase = self.dummy_text_encoder lowercase = self.dummy_tokenizer lowercase = self.dummy_unet lowercase = self.dummy_movq lowercase = DDIMScheduler( num_train_timesteps=1000 , beta_schedule="""linear""" , beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , clip_sample=__lowerCAmelCase , set_alpha_to_one=__lowerCAmelCase , steps_offset=1 , prediction_type="""epsilon""" , thresholding=__lowerCAmelCase , ) lowercase = { """text_encoder""": text_encoder, """tokenizer""": tokenizer, """unet""": unet, """scheduler""": scheduler, """movq""": movq, } return components def A__ ( self , __lowerCAmelCase , __lowerCAmelCase=0 ): """simple docstring""" lowercase = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(__lowerCAmelCase ) ).to(__lowerCAmelCase ) lowercase = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(seed + 1 ) ).to(__lowerCAmelCase ) # create init_image lowercase = floats_tensor((1, 3, 64, 64) , rng=random.Random(__lowerCAmelCase ) ).to(__lowerCAmelCase ) lowercase = image.cpu().permute(0 , 2 , 3 , 1 )[0] lowercase = Image.fromarray(np.uinta(__lowerCAmelCase ) ).convert("""RGB""" ).resize((256, 256) ) # create mask lowercase = np.ones((64, 64) , dtype=np.floataa ) lowercase = 0 if str(__lowerCAmelCase ).startswith("""mps""" ): lowercase = torch.manual_seed(__lowerCAmelCase ) else: lowercase = torch.Generator(device=__lowerCAmelCase ).manual_seed(__lowerCAmelCase ) lowercase = { """prompt""": """horse""", """image""": init_image, """mask_image""": mask, """image_embeds""": image_embeds, """negative_image_embeds""": negative_image_embeds, """generator""": generator, """height""": 64, """width""": 64, """num_inference_steps""": 2, """guidance_scale""": 4.0, """output_type""": """np""", } return inputs def A__ ( self ): """simple docstring""" lowercase = """cpu""" lowercase = self.get_dummy_components() lowercase = self.pipeline_class(**__lowerCAmelCase ) lowercase = pipe.to(__lowerCAmelCase ) pipe.set_progress_bar_config(disable=__lowerCAmelCase ) lowercase = pipe(**self.get_dummy_inputs(__lowerCAmelCase ) ) lowercase = output.images lowercase = pipe( **self.get_dummy_inputs(__lowerCAmelCase ) , return_dict=__lowerCAmelCase , )[0] lowercase = image[0, -3:, -3:, -1] lowercase = image_from_tuple[0, -3:, -3:, -1] print(f'image.shape {image.shape}' ) assert image.shape == (1, 64, 64, 3) lowercase = np.array( [0.8_3_2_6_9_1_9, 0.7_3_7_9_0_4_6_7, 0.2_0_9_1_8_5_8_1, 0.9_3_0_9_6_1_2, 0.5_5_1_1_7_9_1, 0.4_3_7_1_3_3_2_8, 0.5_5_1_3_3_2_1, 0.4_9_9_2_2_9_3_4, 0.5_9_4_9_7_7_8_6] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 ), f' expected_slice {expected_slice}, but got {image_slice.flatten()}' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 ), f' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}' def A__ ( self ): """simple docstring""" super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class _A ( unittest.TestCase ): def A__ ( self ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def A__ ( self ): """simple docstring""" lowercase = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinsky/kandinsky_inpaint_cat_with_hat_fp16.npy""" ) lowercase = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinsky/cat.png""" ) lowercase = np.ones((768, 768) , dtype=np.floataa ) lowercase = 0 lowercase = """a hat""" lowercase = KandinskyPriorPipeline.from_pretrained( """kandinsky-community/kandinsky-2-1-prior""" , torch_dtype=torch.floataa ) pipe_prior.to(__lowerCAmelCase ) lowercase = KandinskyInpaintPipeline.from_pretrained( """kandinsky-community/kandinsky-2-1-inpaint""" , torch_dtype=torch.floataa ) lowercase = pipeline.to(__lowerCAmelCase ) pipeline.set_progress_bar_config(disable=__lowerCAmelCase ) lowercase = torch.Generator(device="""cpu""" ).manual_seed(0 ) lowercase , lowercase = pipe_prior( __lowerCAmelCase , generator=__lowerCAmelCase , num_inference_steps=5 , negative_prompt="""""" , ).to_tuple() lowercase = pipeline( __lowerCAmelCase , image=__lowerCAmelCase , mask_image=__lowerCAmelCase , image_embeds=__lowerCAmelCase , negative_image_embeds=__lowerCAmelCase , generator=__lowerCAmelCase , num_inference_steps=100 , height=768 , width=768 , output_type="""np""" , ) lowercase = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(__lowerCAmelCase , __lowerCAmelCase )
32
0
import math def lowerCamelCase_ ( _a : int ): '''simple docstring''' if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(__lowerCAmelCase ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def lowerCamelCase_ ( _a : float = 0.1 ): '''simple docstring''' UpperCAmelCase_ : List[str] = 3 UpperCAmelCase_ : Dict = 3 while primes / (2 * j - 1) >= ratio: for i in range(j * j + j + 1 , (j + 2) * (j + 2) , j + 1 ): primes += is_prime(__lowerCAmelCase ) j += 2 return j if __name__ == "__main__": import doctest doctest.testmod()
345
import json import os import unittest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_ftfy, require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class _lowerCAmelCase ( __a , unittest.TestCase ): _lowercase =CLIPTokenizer _lowercase =CLIPTokenizerFast _lowercase =True _lowercase ={} _lowercase =False def __a ( self ) -> Dict: super().setUp() # fmt: off lowerCAmelCase_ = ["l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "lo", "l</w>", "w</w>", "r</w>", "t</w>", "low</w>", "er</w>", "lowest</w>", "newer</w>", "wider", "<unk>", "<|startoftext|>", "<|endoftext|>"] # fmt: on lowerCAmelCase_ = dict(zip(_UpperCamelCase , range(len(_UpperCamelCase ) ) ) ) lowerCAmelCase_ = ["#version: 0.2", "l o", "lo w</w>", "e r</w>"] lowerCAmelCase_ = {"unk_token": "<unk>"} lowerCAmelCase_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) lowerCAmelCase_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as fp: fp.write(json.dumps(_UpperCamelCase ) + "\n" ) with open(self.merges_file , "w" , encoding="utf-8" ) as fp: fp.write("\n".join(_UpperCamelCase ) ) def __a ( self , **_UpperCamelCase ) -> Any: kwargs.update(self.special_tokens_map ) return CLIPTokenizer.from_pretrained(self.tmpdirname , **_UpperCamelCase ) def __a ( self , **_UpperCamelCase ) -> int: kwargs.update(self.special_tokens_map ) return CLIPTokenizerFast.from_pretrained(self.tmpdirname , **_UpperCamelCase ) def __a ( self , _UpperCamelCase ) -> List[str]: lowerCAmelCase_ = "lower newer" lowerCAmelCase_ = "lower newer" return input_text, output_text def __a ( self ) -> List[Any]: lowerCAmelCase_ = CLIPTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) lowerCAmelCase_ = "lower newer" lowerCAmelCase_ = ["lo", "w", "er</w>", "n", "e", "w", "er</w>"] lowerCAmelCase_ = tokenizer.tokenize(_UpperCamelCase ) self.assertListEqual(_UpperCamelCase , _UpperCamelCase ) lowerCAmelCase_ = tokens + [tokenizer.unk_token] lowerCAmelCase_ = [10, 2, 16, 9, 3, 2, 16, 20] self.assertListEqual(tokenizer.convert_tokens_to_ids(_UpperCamelCase ) , _UpperCamelCase ) @require_ftfy def __a ( self ) -> Union[str, Any]: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): lowerCAmelCase_ = self.tokenizer_class.from_pretrained(_UpperCamelCase , **_UpperCamelCase ) lowerCAmelCase_ = self.rust_tokenizer_class.from_pretrained(_UpperCamelCase , **_UpperCamelCase ) lowerCAmelCase_ = "A\n'll 11p223RF☆ho!!to?'d'd''d of a cat to-$''d." lowerCAmelCase_ = tokenizer_s.tokenize(_UpperCamelCase ) lowerCAmelCase_ = tokenizer_r.tokenize(_UpperCamelCase ) self.assertListEqual(_UpperCamelCase , _UpperCamelCase ) # Test that the tokenization is identical on an example containing a character (Latin Small Letter A # with Tilde) encoded in 2 different ways lowerCAmelCase_ = "xa\u0303y" + " " + "x\xe3y" lowerCAmelCase_ = tokenizer_s.tokenize(_UpperCamelCase ) lowerCAmelCase_ = tokenizer_r.tokenize(_UpperCamelCase ) self.assertListEqual(_UpperCamelCase , _UpperCamelCase ) # Test that the tokenization is identical on unicode of space type lowerCAmelCase_ = [ "\u0009", # (horizontal tab, '\t') "\u000B", # (vertical tab) "\u000C", # (form feed) "\u0020", # (space, ' ') "\u200E", # (left-to-right mark):w "\u200F", # (right-to-left mark) ] for unicode_seq in spaces_unicodes: lowerCAmelCase_ = tokenizer_s.tokenize(_UpperCamelCase ) lowerCAmelCase_ = tokenizer_r.tokenize(_UpperCamelCase ) self.assertListEqual(_UpperCamelCase , _UpperCamelCase ) # Test that the tokenization is identical on unicode of line break type lowerCAmelCase_ = [ "\u000A", # (line feed, '\n') "\r\n", # (carriage return and line feed, '\r\n') "\u000D", # (carriage return, '\r') "\r", # (carriage return, '\r') "\u000D", # (carriage return, '\r') "\u2028", # (line separator) "\u2029", # (paragraph separator) # "\u0085", # (next line) ] # The tokenization is not identical for the character "\u0085" (next line). The slow version using ftfy transforms # it into the Horizontal Ellipsis character "…" ("\u2026") while the fast version transforms it into a # space (and thus into an empty list). for unicode_seq in line_break_unicodes: lowerCAmelCase_ = tokenizer_s.tokenize(_UpperCamelCase ) lowerCAmelCase_ = tokenizer_r.tokenize(_UpperCamelCase ) self.assertListEqual(_UpperCamelCase , _UpperCamelCase ) def __a ( self ) -> str: # Test which aims to verify that the offsets are well adapted to the argument `add_prefix_space` for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): lowerCAmelCase_ = "hello" # `hello` is a token in the vocabulary of `pretrained_name` lowerCAmelCase_ = f"""{text_of_1_token} {text_of_1_token}""" lowerCAmelCase_ = self.rust_tokenizer_class.from_pretrained( _UpperCamelCase , use_fast=_UpperCamelCase , ) lowerCAmelCase_ = tokenizer_r(_UpperCamelCase , return_offsets_mapping=_UpperCamelCase , add_special_tokens=_UpperCamelCase ) self.assertEqual(encoding.offset_mapping[0] , (0, len(_UpperCamelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (len(_UpperCamelCase ) + 1, len(_UpperCamelCase ) + 1 + len(_UpperCamelCase )) , ) lowerCAmelCase_ = f""" {text}""" lowerCAmelCase_ = self.rust_tokenizer_class.from_pretrained( _UpperCamelCase , use_fast=_UpperCamelCase , ) lowerCAmelCase_ = tokenizer_r(_UpperCamelCase , return_offsets_mapping=_UpperCamelCase , add_special_tokens=_UpperCamelCase ) self.assertEqual(encoding.offset_mapping[0] , (1, 1 + len(_UpperCamelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(_UpperCamelCase ) + 1, 1 + len(_UpperCamelCase ) + 1 + len(_UpperCamelCase )) , ) def __a ( self ) -> Optional[Any]: # Test related to the breaking change introduced in transformers v4.17.0 # We need to check that an error in raised when the user try to load a previous version of the tokenizer. with self.assertRaises(_UpperCamelCase ) as context: self.rust_tokenizer_class.from_pretrained("robot-test/old-clip-tokenizer" ) self.assertTrue( context.exception.args[0].startswith( "The `backend_tokenizer` provided does not match the expected format." ) ) @require_ftfy def __a ( self ) -> str: super().test_tokenization_python_rust_equals() def __a ( self ) -> Any: # CLIP always lower cases letters pass
231
0
import torch from diffusers import UnCLIPScheduler from .test_schedulers import SchedulerCommonTest class __UpperCAmelCase (_UpperCAmelCase ): __snake_case : Optional[Any] = (UnCLIPScheduler,) def UpperCamelCase ( self: int , **UpperCAmelCase_: Dict ): '''simple docstring''' _SCREAMING_SNAKE_CASE = { """num_train_timesteps""": 1_000, """variance_type""": """fixed_small_log""", """clip_sample""": True, """clip_sample_range""": 1.0, """prediction_type""": """epsilon""", } config.update(**UpperCAmelCase_ ) return config def UpperCamelCase ( self: Optional[Any] ): '''simple docstring''' for timesteps in [1, 5, 100, 1_000]: self.check_over_configs(num_train_timesteps=UpperCAmelCase_ ) def UpperCamelCase ( self: Any ): '''simple docstring''' for variance in ["fixed_small_log", "learned_range"]: self.check_over_configs(variance_type=UpperCAmelCase_ ) def UpperCamelCase ( self: List[Any] ): '''simple docstring''' for clip_sample in [True, False]: self.check_over_configs(clip_sample=UpperCAmelCase_ ) def UpperCamelCase ( self: Optional[int] ): '''simple docstring''' for clip_sample_range in [1, 5, 10, 20]: self.check_over_configs(clip_sample_range=UpperCAmelCase_ ) def UpperCamelCase ( self: Union[str, Any] ): '''simple docstring''' for prediction_type in ["epsilon", "sample"]: self.check_over_configs(prediction_type=UpperCAmelCase_ ) def UpperCamelCase ( self: Optional[Any] ): '''simple docstring''' for time_step in [0, 500, 999]: for prev_timestep in [None, 5, 100, 250, 500, 750]: if prev_timestep is not None and prev_timestep >= time_step: continue self.check_over_forward(time_step=UpperCAmelCase_ , prev_timestep=UpperCAmelCase_ ) def UpperCamelCase ( self: Any ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.scheduler_classes[0] _SCREAMING_SNAKE_CASE = self.get_scheduler_config(variance_type="""fixed_small_log""" ) _SCREAMING_SNAKE_CASE = scheduler_class(**UpperCAmelCase_ ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 1.0_000E-10 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(487 ) - 0.0_54_96_25 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(999 ) - 0.9_99_49_87 ) ) < 1E-5 def UpperCamelCase ( self: int ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.scheduler_classes[0] _SCREAMING_SNAKE_CASE = self.get_scheduler_config(variance_type="""learned_range""" ) _SCREAMING_SNAKE_CASE = scheduler_class(**UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = 0.5 assert scheduler._get_variance(1 , predicted_variance=UpperCAmelCase_ ) - -10.1_71_27_90 < 1E-5 assert scheduler._get_variance(487 , predicted_variance=UpperCAmelCase_ ) - -5.7_99_80_52 < 1E-5 assert scheduler._get_variance(999 , predicted_variance=UpperCAmelCase_ ) - -0.0_01_00_11 < 1E-5 def UpperCamelCase ( self: List[Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.scheduler_classes[0] _SCREAMING_SNAKE_CASE = self.get_scheduler_config() _SCREAMING_SNAKE_CASE = scheduler_class(**UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = scheduler.timesteps _SCREAMING_SNAKE_CASE = self.dummy_model() _SCREAMING_SNAKE_CASE = self.dummy_sample_deter _SCREAMING_SNAKE_CASE = torch.manual_seed(0 ) for i, t in enumerate(UpperCAmelCase_ ): # 1. predict noise residual _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ , UpperCAmelCase_ ) # 2. predict previous mean of sample x_t-1 _SCREAMING_SNAKE_CASE = scheduler.step(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , generator=UpperCAmelCase_ ).prev_sample _SCREAMING_SNAKE_CASE = pred_prev_sample _SCREAMING_SNAKE_CASE = torch.sum(torch.abs(UpperCAmelCase_ ) ) _SCREAMING_SNAKE_CASE = torch.mean(torch.abs(UpperCAmelCase_ ) ) assert abs(result_sum.item() - 2_52.2_68_24_95 ) < 1E-2 assert abs(result_mean.item() - 0.3_28_47_43 ) < 1E-3 def UpperCamelCase ( self: List[str] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.scheduler_classes[0] _SCREAMING_SNAKE_CASE = self.get_scheduler_config() _SCREAMING_SNAKE_CASE = scheduler_class(**UpperCAmelCase_ ) scheduler.set_timesteps(25 ) _SCREAMING_SNAKE_CASE = scheduler.timesteps _SCREAMING_SNAKE_CASE = self.dummy_model() _SCREAMING_SNAKE_CASE = self.dummy_sample_deter _SCREAMING_SNAKE_CASE = torch.manual_seed(0 ) for i, t in enumerate(UpperCAmelCase_ ): # 1. predict noise residual _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ , UpperCAmelCase_ ) if i + 1 == timesteps.shape[0]: _SCREAMING_SNAKE_CASE = None else: _SCREAMING_SNAKE_CASE = timesteps[i + 1] # 2. predict previous mean of sample x_t-1 _SCREAMING_SNAKE_CASE = scheduler.step( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , prev_timestep=UpperCAmelCase_ , generator=UpperCAmelCase_ ).prev_sample _SCREAMING_SNAKE_CASE = pred_prev_sample _SCREAMING_SNAKE_CASE = torch.sum(torch.abs(UpperCAmelCase_ ) ) _SCREAMING_SNAKE_CASE = torch.mean(torch.abs(UpperCAmelCase_ ) ) assert abs(result_sum.item() - 2_58.2_04_49_83 ) < 1E-2 assert abs(result_mean.item() - 0.3_36_20_38 ) < 1E-3 def UpperCamelCase ( self: List[Any] ): '''simple docstring''' pass def UpperCamelCase ( self: str ): '''simple docstring''' pass
125
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_camembert import CamembertTokenizer else: UpperCamelCase = None UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = {'''vocab_file''': '''sentencepiece.bpe.model''', '''tokenizer_file''': '''tokenizer.json'''} UpperCamelCase = { '''vocab_file''': { '''camembert-base''': '''https://huggingface.co/camembert-base/resolve/main/sentencepiece.bpe.model''', }, '''tokenizer_file''': { '''camembert-base''': '''https://huggingface.co/camembert-base/resolve/main/tokenizer.json''', }, } UpperCamelCase = { '''camembert-base''': 512, } UpperCamelCase = '''▁''' class __UpperCAmelCase (_UpperCAmelCase ): __snake_case : int = VOCAB_FILES_NAMES __snake_case : Any = PRETRAINED_VOCAB_FILES_MAP __snake_case : Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __snake_case : Dict = ["input_ids", "attention_mask"] __snake_case : Tuple = CamembertTokenizer def __init__( self: List[Any] , UpperCAmelCase_: Optional[int]=None , UpperCAmelCase_: Tuple=None , UpperCAmelCase_: str="<s>" , UpperCAmelCase_: List[str]="</s>" , UpperCAmelCase_: Dict="</s>" , UpperCAmelCase_: List[Any]="<s>" , UpperCAmelCase_: Dict="<unk>" , UpperCAmelCase_: Any="<pad>" , UpperCAmelCase_: Tuple="<mask>" , UpperCAmelCase_: str=["<s>NOTUSED", "</s>NOTUSED"] , **UpperCAmelCase_: Optional[Any] , ): '''simple docstring''' _SCREAMING_SNAKE_CASE = AddedToken(UpperCAmelCase_ , lstrip=UpperCAmelCase_ , rstrip=UpperCAmelCase_ ) if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) else mask_token super().__init__( UpperCAmelCase_ , tokenizer_file=UpperCAmelCase_ , bos_token=UpperCAmelCase_ , eos_token=UpperCAmelCase_ , sep_token=UpperCAmelCase_ , cls_token=UpperCAmelCase_ , unk_token=UpperCAmelCase_ , pad_token=UpperCAmelCase_ , mask_token=UpperCAmelCase_ , additional_special_tokens=UpperCAmelCase_ , **UpperCAmelCase_ , ) _SCREAMING_SNAKE_CASE = vocab_file _SCREAMING_SNAKE_CASE = False if not self.vocab_file else True def UpperCamelCase ( self: int , UpperCAmelCase_: List[int] , UpperCAmelCase_: Optional[List[int]] = None ): '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] _SCREAMING_SNAKE_CASE = [self.cls_token_id] _SCREAMING_SNAKE_CASE = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def UpperCamelCase ( self: List[str] , UpperCAmelCase_: List[int] , UpperCAmelCase_: Optional[List[int]] = None ): '''simple docstring''' _SCREAMING_SNAKE_CASE = [self.sep_token_id] _SCREAMING_SNAKE_CASE = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def UpperCamelCase ( self: List[str] , UpperCAmelCase_: str , UpperCAmelCase_: Optional[str] = None ): '''simple docstring''' if not self.can_save_slow_tokenizer: raise ValueError( """Your fast tokenizer does not have the necessary information to save the vocabulary for a slow """ """tokenizer.""" ) if not os.path.isdir(UpperCAmelCase_ ): logger.error(F'Vocabulary path ({save_directory}) should be a directory' ) return _SCREAMING_SNAKE_CASE = os.path.join( UpperCAmelCase_ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCAmelCase_ ): copyfile(self.vocab_file , UpperCAmelCase_ ) return (out_vocab_file,)
125
1
import numpy as np from scipy.spatial.distance import cdist from sklearn.metrics import fa_score import datasets snake_case : Tuple = '''\ @inproceedings{kakwani2020indicnlpsuite, title={{IndicNLPSuite: Monolingual Corpora, Evaluation Benchmarks and Pre-trained Multilingual Language Models for Indian Languages}}, author={Divyanshu Kakwani and Anoop Kunchukuttan and Satish Golla and Gokul N.C. and Avik Bhattacharyya and Mitesh M. Khapra and Pratyush Kumar}, year={2020}, booktitle={Findings of EMNLP}, } ''' snake_case : int = '''\ IndicGLUE is a natural language understanding benchmark for Indian languages. It contains a wide variety of tasks and covers 11 major Indian languages - as, bn, gu, hi, kn, ml, mr, or, pa, ta, te. ''' snake_case : Tuple = ''' Compute IndicGLUE evaluation metric associated to each IndicGLUE dataset. Args: predictions: list of predictions to score (as int64), except for \'cvit-mkb-clsr\' where each prediction is a vector (of float32). references: list of ground truth labels corresponding to the predictions (as int64), except for \'cvit-mkb-clsr\' where each reference is a vector (of float32). Returns: depending on the IndicGLUE subset, one or several of: "accuracy": Accuracy "f1": F1 score "precision": Precision@10 Examples: >>> indic_glue_metric = datasets.load_metric(\'indic_glue\', \'wnli\') # \'wnli\' or any of ["copa", "sna", "csqa", "wstp", "inltkh", "bbca", "iitp-mr", "iitp-pr", "actsa-sc", "md"] >>> references = [0, 1] >>> predictions = [0, 1] >>> results = indic_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'accuracy\': 1.0} >>> indic_glue_metric = datasets.load_metric(\'indic_glue\', \'wiki-ner\') >>> references = [0, 1] >>> predictions = [0, 1] >>> results = indic_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'accuracy\': 1.0, \'f1\': 1.0} >>> indic_glue_metric = datasets.load_metric(\'indic_glue\', \'cvit-mkb-clsr\') >>> references = [[0.5, 0.5, 0.5], [0.1, 0.2, 0.3]] >>> predictions = [[0.5, 0.5, 0.5], [0.1, 0.2, 0.3]] >>> results = indic_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'precision@10\': 1.0} ''' def __lowerCamelCase ( UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Union[str, Any] ): """simple docstring""" return float((preds == labels).mean() ) def __lowerCamelCase ( UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Dict ): """simple docstring""" a :Tuple = simple_accuracy(UpperCAmelCase_ , UpperCAmelCase_ ) a :Optional[int] = float(fa_score(y_true=UpperCAmelCase_ , y_pred=UpperCAmelCase_ ) ) return { "accuracy": acc, "f1": fa, } def __lowerCamelCase ( UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Optional[Any] ): """simple docstring""" a :Tuple = np.array(UpperCAmelCase_ ) a :Dict = np.array(UpperCAmelCase_ ) a :List[str] = en_sentvecs.shape[0] # mean centering a :Union[str, Any] = en_sentvecs - np.mean(UpperCAmelCase_ , axis=0 ) a :int = in_sentvecs - np.mean(UpperCAmelCase_ , axis=0 ) a :Optional[int] = cdist(UpperCAmelCase_ , UpperCAmelCase_ , '''cosine''' ) a :str = np.array(range(UpperCAmelCase_ ) ) a :Any = sim.argsort(axis=1 )[:, :10] a :str = np.any(preds == actual[:, None] , axis=1 ) return float(matches.mean() ) @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _snake_case ( datasets.Metric ): def SCREAMING_SNAKE_CASE__ ( self ): if self.config_name not in [ "wnli", "copa", "sna", "csqa", "wstp", "inltkh", "bbca", "cvit-mkb-clsr", "iitp-mr", "iitp-pr", "actsa-sc", "md", "wiki-ner", ]: raise KeyError( '''You should supply a configuration name selected in ''' '''["wnli", "copa", "sna", "csqa", "wstp", "inltkh", "bbca", ''' '''"cvit-mkb-clsr", "iitp-mr", "iitp-pr", "actsa-sc", "md", ''' '''"wiki-ner"]''' ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''int64''' ) if self.config_name != '''cvit-mkb-clsr''' else datasets.Sequence(datasets.Value('''float32''' ) ), '''references''': datasets.Value('''int64''' ) if self.config_name != '''cvit-mkb-clsr''' else datasets.Sequence(datasets.Value('''float32''' ) ), } ) , codebase_urls=[] , reference_urls=[] , format='''numpy''' if self.config_name != '''cvit-mkb-clsr''' else None , ) def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase , _lowerCamelCase ): if self.config_name == "cvit-mkb-clsr": return {"precision@10": precision_at_aa(_lowerCamelCase , _lowerCamelCase )} elif self.config_name in ["wiki-ner"]: return acc_and_fa(_lowerCamelCase , _lowerCamelCase ) elif self.config_name in [ "wnli", "copa", "sna", "csqa", "wstp", "inltkh", "bbca", "iitp-mr", "iitp-pr", "actsa-sc", "md", ]: return {"accuracy": simple_accuracy(_lowerCamelCase , _lowerCamelCase )} else: raise KeyError( '''You should supply a configuration name selected in ''' '''["wnli", "copa", "sna", "csqa", "wstp", "inltkh", "bbca", ''' '''"cvit-mkb-clsr", "iitp-mr", "iitp-pr", "actsa-sc", "md", ''' '''"wiki-ner"]''' )
94
from __future__ import annotations def __lowerCamelCase ( UpperCAmelCase_ : str , UpperCAmelCase_ : list[str] | None = None , UpperCAmelCase_ : dict[str, float] | None = None , UpperCAmelCase_ : bool = False , ): """simple docstring""" a :str = cipher_alphabet or [chr(UpperCAmelCase_ ) for i in range(97 , 123 )] # If the argument is None or the user provided an empty dictionary if not frequencies_dict: # Frequencies of letters in the english language (how much they show up) a :List[Any] = { '''a''': 0.08497, '''b''': 0.01492, '''c''': 0.02202, '''d''': 0.04253, '''e''': 0.11162, '''f''': 0.02228, '''g''': 0.02015, '''h''': 0.06094, '''i''': 0.07546, '''j''': 0.00153, '''k''': 0.01292, '''l''': 0.04025, '''m''': 0.02406, '''n''': 0.06749, '''o''': 0.07507, '''p''': 0.01929, '''q''': 0.00095, '''r''': 0.07587, '''s''': 0.06327, '''t''': 0.09356, '''u''': 0.02758, '''v''': 0.00978, '''w''': 0.02560, '''x''': 0.00150, '''y''': 0.01994, '''z''': 0.00077, } else: # Custom frequencies dictionary a :Dict = frequencies_dict if not case_sensitive: a :Union[str, Any] = ciphertext.lower() # Chi squared statistic values a :dict[int, tuple[float, str]] = {} # cycle through all of the shifts for shift in range(len(UpperCAmelCase_ ) ): a :int = '''''' # decrypt the message with the shift for letter in ciphertext: try: # Try to index the letter in the alphabet a :Dict = (alphabet_letters.index(letter.lower() ) - shift) % len( UpperCAmelCase_ ) decrypted_with_shift += ( alphabet_letters[new_key].upper() if case_sensitive and letter.isupper() else alphabet_letters[new_key] ) except ValueError: # Append the character if it isn't in the alphabet decrypted_with_shift += letter a :List[Any] = 0.0 # Loop through each letter in the decoded message with the shift for letter in decrypted_with_shift: if case_sensitive: a :Optional[int] = letter.lower() if letter in frequencies: # Get the amount of times the letter occurs in the message a :List[Any] = decrypted_with_shift.lower().count(UpperCAmelCase_ ) # Get the excepcted amount of times the letter should appear based # on letter frequencies a :Dict = frequencies[letter] * occurrences # Complete the chi squared statistic formula a :Any = ((occurrences - expected) ** 2) / expected # Add the margin of error to the total chi squared statistic chi_squared_statistic += chi_letter_value else: if letter.lower() in frequencies: # Get the amount of times the letter occurs in the message a :int = decrypted_with_shift.count(UpperCAmelCase_ ) # Get the excepcted amount of times the letter should appear based # on letter frequencies a :Tuple = frequencies[letter] * occurrences # Complete the chi squared statistic formula a :Optional[Any] = ((occurrences - expected) ** 2) / expected # Add the margin of error to the total chi squared statistic chi_squared_statistic += chi_letter_value # Add the data to the chi_squared_statistic_values dictionary a :Optional[Any] = ( chi_squared_statistic, decrypted_with_shift, ) # Get the most likely cipher by finding the cipher with the smallest chi squared # statistic def chi_squared_statistic_values_sorting_key(UpperCAmelCase_ : int ) -> tuple[float, str]: return chi_squared_statistic_values[key] a :int = min( UpperCAmelCase_ , key=UpperCAmelCase_ , ) # Get all the data from the most likely cipher (key, decoded message) ( ( a ) , ( a ) , ) :Optional[int] = chi_squared_statistic_values[most_likely_cipher] # Return the data on the most likely shift return ( most_likely_cipher, most_likely_cipher_chi_squared_value, decoded_most_likely_cipher, )
94
1
"""simple docstring""" from __future__ import annotations import time lowercase__ = list[tuple[int, int]] lowercase__ = [ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] lowercase__ = [[-1, 0], [0, -1], [1, 0], [0, 1]] # up, left, down, right class __lowerCamelCase : '''simple docstring''' def __init__( self : Optional[int] , a_ : int , a_ : int , a_ : int , a_ : int , a_ : Node | None ): lowerCAmelCase_ : Optional[Any] = pos_x lowerCAmelCase_ : Any = pos_y lowerCAmelCase_ : List[Any] = (pos_y, pos_x) lowerCAmelCase_ : List[str] = goal_x lowerCAmelCase_ : Dict = goal_y lowerCAmelCase_ : List[Any] = parent class __lowerCamelCase : '''simple docstring''' def __init__( self : Union[str, Any] , a_ : tuple[int, int] , a_ : tuple[int, int] ): lowerCAmelCase_ : int = Node(start[1] , start[0] , goal[1] , goal[0] , a_ ) lowerCAmelCase_ : Tuple = Node(goal[1] , goal[0] , goal[1] , goal[0] , a_ ) lowerCAmelCase_ : int = [self.start] lowerCAmelCase_ : List[str] = False def lowerCamelCase ( self : int ): while self.node_queue: lowerCAmelCase_ : Optional[int] = self.node_queue.pop(0 ) if current_node.pos == self.target.pos: lowerCAmelCase_ : List[Any] = True return self.retrace_path(a_ ) lowerCAmelCase_ : Any = self.get_successors(a_ ) for node in successors: self.node_queue.append(a_ ) if not self.reached: return [self.start.pos] return None def lowerCamelCase ( self : List[str] , a_ : Node ): lowerCAmelCase_ : Any = [] for action in delta: lowerCAmelCase_ : List[str] = parent.pos_x + action[1] lowerCAmelCase_ : str = parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(a_ ) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node(a_ , a_ , self.target.pos_y , self.target.pos_x , a_ ) ) return successors def lowerCamelCase ( self : str , a_ : Node | None ): lowerCAmelCase_ : int = node lowerCAmelCase_ : Tuple = [] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x) ) lowerCAmelCase_ : int = current_node.parent path.reverse() return path class __lowerCamelCase : '''simple docstring''' def __init__( self : List[Any] , a_ : List[str] , a_ : str ): lowerCAmelCase_ : Tuple = BreadthFirstSearch(a_ , a_ ) lowerCAmelCase_ : Optional[Any] = BreadthFirstSearch(a_ , a_ ) lowerCAmelCase_ : Dict = False def lowerCamelCase ( self : List[Any] ): while self.fwd_bfs.node_queue or self.bwd_bfs.node_queue: lowerCAmelCase_ : Tuple = self.fwd_bfs.node_queue.pop(0 ) lowerCAmelCase_ : int = self.bwd_bfs.node_queue.pop(0 ) if current_bwd_node.pos == current_fwd_node.pos: lowerCAmelCase_ : List[Any] = True return self.retrace_bidirectional_path( a_ , a_ ) lowerCAmelCase_ : Tuple = current_bwd_node lowerCAmelCase_ : Tuple = current_fwd_node lowerCAmelCase_ : List[str] = { self.fwd_bfs: self.fwd_bfs.get_successors(a_ ), self.bwd_bfs: self.bwd_bfs.get_successors(a_ ), } for bfs in [self.fwd_bfs, self.bwd_bfs]: for node in successors[bfs]: bfs.node_queue.append(a_ ) if not self.reached: return [self.fwd_bfs.start.pos] return None def lowerCamelCase ( self : Optional[Any] , a_ : Node , a_ : Node ): lowerCAmelCase_ : Dict = self.fwd_bfs.retrace_path(a_ ) lowerCAmelCase_ : List[str] = self.bwd_bfs.retrace_path(a_ ) bwd_path.pop() bwd_path.reverse() lowerCAmelCase_ : Optional[int] = fwd_path + bwd_path return path if __name__ == "__main__": # all coordinates are given in format [y,x] import doctest doctest.testmod() lowercase__ = (0, 0) lowercase__ = (len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) lowercase__ = time.time() lowercase__ = BreadthFirstSearch(init, goal) lowercase__ = bfs.search() lowercase__ = time.time() - start_bfs_time print("""Unidirectional BFS computation time : """, bfs_time) lowercase__ = time.time() lowercase__ = BidirectionalBreadthFirstSearch(init, goal) lowercase__ = bd_bfs.search() lowercase__ = time.time() - start_bd_bfs_time print("""Bidirectional BFS computation time : """, bd_bfs_time)
361
"""simple docstring""" def __lowerCamelCase ( __UpperCamelCase ) -> list: """simple docstring""" if bit_count < 0: raise ValueError("The given input must be positive" ) # get the generated string sequence lowerCAmelCase_ : Optional[Any] = gray_code_sequence_string(__UpperCamelCase ) # # convert them to integers for i in range(len(__UpperCamelCase ) ): lowerCAmelCase_ : List[Any] = int(sequence[i] , 2 ) return sequence def __lowerCamelCase ( __UpperCamelCase ) -> list: """simple docstring""" if bit_count == 0: return ["0"] if bit_count == 1: return ["0", "1"] lowerCAmelCase_ : Dict = 1 << bit_count # defines the length of the sequence # 1<< n is equivalent to 2^n # recursive answer will generate answer for n-1 bits lowerCAmelCase_ : List[str] = gray_code_sequence_string(bit_count - 1 ) lowerCAmelCase_ : Tuple = [] # append 0 to first half of the smaller sequence generated for i in range(seq_len // 2 ): lowerCAmelCase_ : List[str] = "0" + smaller_sequence[i] sequence.append(__UpperCamelCase ) # append 1 to second half ... start from the end of the list for i in reversed(range(seq_len // 2 ) ): lowerCAmelCase_ : Optional[Any] = "1" + smaller_sequence[i] sequence.append(__UpperCamelCase ) return sequence if __name__ == "__main__": import doctest doctest.testmod()
161
0
'''simple docstring''' import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( UniSpeechConfig, UniSpeechForCTC, UniSpeechForPreTraining, WavaVecaFeatureExtractor, WavaVecaPhonemeCTCTokenizer, WavaVecaProcessor, logging, ) logging.set_verbosity_info() __lowercase : Any = logging.get_logger(__name__) __lowercase : List[Any] = { 'post_extract_proj': 'feature_projection.projection', 'encoder.pos_conv.0': 'encoder.pos_conv_embed.conv', 'self_attn.k_proj': 'encoder.layers.*.attention.k_proj', 'self_attn.v_proj': 'encoder.layers.*.attention.v_proj', 'self_attn.q_proj': 'encoder.layers.*.attention.q_proj', 'self_attn.out_proj': 'encoder.layers.*.attention.out_proj', 'self_attn_layer_norm': 'encoder.layers.*.layer_norm', 'fc1': 'encoder.layers.*.feed_forward.intermediate_dense', 'fc2': 'encoder.layers.*.feed_forward.output_dense', 'final_layer_norm': 'encoder.layers.*.final_layer_norm', 'encoder.layer_norm': 'encoder.layer_norm', 'w2v_model.layer_norm': 'feature_projection.layer_norm', 'quantizer.weight_proj': 'quantizer.weight_proj', 'quantizer.vars': 'quantizer.codevectors', 'project_q': 'project_q', 'final_proj': 'project_hid', 'w2v_encoder.proj': 'ctc_proj', 'mask_emb': 'masked_spec_embed', } __lowercase : Optional[Any] = [ 'ctc_proj', 'quantizer.weight_proj', 'quantizer.codevectors', 'project_q', 'project_hid', ] def lowerCamelCase (_SCREAMING_SNAKE_CASE : Optional[int] , _SCREAMING_SNAKE_CASE : Any , _SCREAMING_SNAKE_CASE : Any , _SCREAMING_SNAKE_CASE : Dict , _SCREAMING_SNAKE_CASE : Dict , _SCREAMING_SNAKE_CASE : Any ): for attribute in key.split('.' ): if is_finetuned: if attribute in ["quantizer", "project_q", "project_hid"]: # those layers are only relevant for pretraining and should be dropped return if attribute == "ctc_proj": # we should rename `ctc_proj` to `lm_head` for fine-tuned phoneme models __a : Optional[Any] = 'lm_head' __a : Any = getattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if weight_type is not None: __a : Optional[Any] = getattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ).shape else: __a : Union[str, Any] = hf_pointer.shape assert hf_shape == value.shape, ( F"""Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be""" F""" {value.shape} for {full_name}""" ) if weight_type == "weight": __a : Dict = value elif weight_type == "weight_g": __a : List[str] = value elif weight_type == "weight_v": __a : List[Any] = value elif weight_type == "bias": __a : Optional[int] = value else: __a : List[Any] = value logger.info(F"""{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.""" ) def lowerCamelCase (_SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : List[str] ): __a : List[str] = [] __a : Optional[Any] = fairseq_model.state_dict() __a : Dict = hf_model.unispeech.feature_extractor for name, value in fairseq_dict.items(): __a : Union[str, Any] = False if "conv_layers" in name: load_conv_layer( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , hf_model.config.feat_extract_norm == 'group' , ) __a : Tuple = True else: for key, mapped_key in MAPPING.items(): __a : int = 'unispeech.' + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split('w2v_model.' )[-1] == name.split('.' )[0]: __a : str = True if "*" in mapped_key: __a : Dict = name.split(_SCREAMING_SNAKE_CASE )[0].split('.' )[-2] __a : Optional[int] = mapped_key.replace('*' , _SCREAMING_SNAKE_CASE ) if "weight_g" in name: __a : Any = 'weight_g' elif "weight_v" in name: __a : List[str] = 'weight_v' elif "bias" in name: __a : Dict = 'bias' elif "weight" in name: # TODO: don't match quantizer.weight_proj __a : List[Any] = 'weight' else: __a : str = None set_recursively(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) continue if not is_used: unused_weights.append(_SCREAMING_SNAKE_CASE ) logger.warning(F"""Unused weights: {unused_weights}""" ) def lowerCamelCase (_SCREAMING_SNAKE_CASE : Tuple , _SCREAMING_SNAKE_CASE : Any , _SCREAMING_SNAKE_CASE : List[Any] , _SCREAMING_SNAKE_CASE : Any , _SCREAMING_SNAKE_CASE : List[Any] ): __a : Union[str, Any] = full_name.split('conv_layers.' )[-1] __a : Dict = name.split('.' ) __a : Any = int(items[0] ) __a : str = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) __a : List[Any] = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) __a : Any = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F"""{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was""" " found." ) __a : int = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.""" ) __a : Dict = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(_SCREAMING_SNAKE_CASE ) @torch.no_grad() def lowerCamelCase (_SCREAMING_SNAKE_CASE : Union[str, Any] , _SCREAMING_SNAKE_CASE : List[str] , _SCREAMING_SNAKE_CASE : Optional[Any]=None , _SCREAMING_SNAKE_CASE : List[Any]=None , _SCREAMING_SNAKE_CASE : List[str]=True ): if config_path is not None: __a : str = UniSpeechConfig.from_pretrained(_SCREAMING_SNAKE_CASE ) else: __a : Optional[Any] = UniSpeechConfig() if is_finetuned: if dict_path: __a : List[str] = Dictionary.load_from_json(_SCREAMING_SNAKE_CASE ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq __a : int = target_dict.pad_index __a : Dict = target_dict.bos_index __a : Tuple = target_dict.eos_index __a : int = len(target_dict.symbols ) __a : Union[str, Any] = os.path.join(_SCREAMING_SNAKE_CASE , 'vocab.json' ) if not os.path.isdir(_SCREAMING_SNAKE_CASE ): logger.error('--pytorch_dump_folder_path ({}) should be a directory'.format(_SCREAMING_SNAKE_CASE ) ) return os.makedirs(_SCREAMING_SNAKE_CASE , exist_ok=_SCREAMING_SNAKE_CASE ) __a : Optional[Any] = target_dict.indices # fairseq has the <pad> and <s> switched __a : List[str] = 42 __a : int = 43 with open(_SCREAMING_SNAKE_CASE , 'w' , encoding='utf-8' ) as vocab_handle: json.dump(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) __a : Any = WavaVecaPhonemeCTCTokenizer( _SCREAMING_SNAKE_CASE , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token='|' , do_lower_case=_SCREAMING_SNAKE_CASE , ) __a : List[str] = True if config.feat_extract_norm == 'layer' else False __a : List[Any] = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16_000 , padding_value=0 , do_normalize=_SCREAMING_SNAKE_CASE , return_attention_mask=_SCREAMING_SNAKE_CASE , ) __a : Dict = WavaVecaProcessor(feature_extractor=_SCREAMING_SNAKE_CASE , tokenizer=_SCREAMING_SNAKE_CASE ) processor.save_pretrained(_SCREAMING_SNAKE_CASE ) __a : Optional[int] = UniSpeechForCTC(_SCREAMING_SNAKE_CASE ) else: __a : Tuple = UniSpeechForPreTraining(_SCREAMING_SNAKE_CASE ) if is_finetuned: __a , __a , __a : Dict = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'data': '/'.join(dict_path.split('/' )[:-1] ), 'w2v_path': checkpoint_path} ) else: __a , __a , __a : Union[str, Any] = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] ) __a : int = model[0].eval() recursively_load_weights(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) hf_unispeech.save_pretrained(_SCREAMING_SNAKE_CASE ) if __name__ == "__main__": __lowercase : Optional[int] = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint') parser.add_argument('--dict_path', default=None, type=str, help='Path to dict of fine-tuned model') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') parser.add_argument( '--not_finetuned', action='store_true', help='Whether the model to convert is a fine-tuned model or not' ) __lowercase : str = parser.parse_args() convert_unispeech_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
27
'''simple docstring''' import argparse import gc import json import os import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils.deepspeed import DummyOptim, DummyScheduler __lowercase : Dict = 16 __lowercase : List[Any] = 32 def lowerCamelCase (_SCREAMING_SNAKE_CASE : int ): return int(x / 2**20 ) class __UpperCamelCase : def __enter__( self ): '''simple docstring''' gc.collect() torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() # reset the peak gauge to zero __a : Optional[int] = torch.cuda.memory_allocated() return self def __exit__( self , *__a ): '''simple docstring''' gc.collect() torch.cuda.empty_cache() __a : Dict = torch.cuda.memory_allocated() __a : List[Any] = torch.cuda.max_memory_allocated() __a : Tuple = bamb(self.end - self.begin ) __a : Tuple = bamb(self.peak - self.begin ) # print(f"delta used/peak {self.used:4d}/{self.peaked:4d}") def lowerCamelCase (_SCREAMING_SNAKE_CASE : Accelerator , _SCREAMING_SNAKE_CASE : int = 16 , _SCREAMING_SNAKE_CASE : str = "bert-base-cased" , _SCREAMING_SNAKE_CASE : int = 320 , _SCREAMING_SNAKE_CASE : int = 160 , ): __a : int = AutoTokenizer.from_pretrained(_SCREAMING_SNAKE_CASE ) __a : List[Any] = load_dataset( 'glue' , 'mrpc' , split={'train': F"""train[:{n_train}]""", 'validation': F"""validation[:{n_val}]"""} ) def tokenize_function(_SCREAMING_SNAKE_CASE : Tuple ): # max_length=None => use the model max length (it's actually the default) __a : Any = tokenizer(examples['sentence1'] , examples['sentence2'] , truncation=_SCREAMING_SNAKE_CASE , max_length=_SCREAMING_SNAKE_CASE ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset __a : List[str] = datasets.map( _SCREAMING_SNAKE_CASE , batched=_SCREAMING_SNAKE_CASE , remove_columns=['idx', 'sentence1', 'sentence2'] , load_from_cache_file=_SCREAMING_SNAKE_CASE ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library __a : Tuple = tokenized_datasets.rename_column('label' , 'labels' ) def collate_fn(_SCREAMING_SNAKE_CASE : Tuple ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(_SCREAMING_SNAKE_CASE , padding='max_length' , max_length=128 , return_tensors='pt' ) return tokenizer.pad(_SCREAMING_SNAKE_CASE , padding='longest' , return_tensors='pt' ) # Instantiate dataloaders. __a : int = DataLoader( tokenized_datasets['train'] , shuffle=_SCREAMING_SNAKE_CASE , collate_fn=_SCREAMING_SNAKE_CASE , batch_size=_SCREAMING_SNAKE_CASE ) __a : Tuple = DataLoader( tokenized_datasets['validation'] , shuffle=_SCREAMING_SNAKE_CASE , collate_fn=_SCREAMING_SNAKE_CASE , batch_size=_SCREAMING_SNAKE_CASE ) return train_dataloader, eval_dataloader def lowerCamelCase (_SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int ): # Initialize accelerator __a : str = Accelerator() # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs __a : Dict = config['lr'] __a : str = int(config['num_epochs'] ) __a : Optional[int] = int(config['seed'] ) __a : Any = int(config['batch_size'] ) __a : List[str] = args.model_name_or_path set_seed(_SCREAMING_SNAKE_CASE ) __a , __a : int = get_dataloaders(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , args.n_train , args.n_val ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) __a : Optional[int] = AutoModelForSequenceClassification.from_pretrained(_SCREAMING_SNAKE_CASE , return_dict=_SCREAMING_SNAKE_CASE ) # Instantiate optimizer __a : Optional[Any] = ( AdamW if accelerator.state.deepspeed_plugin is None or 'optimizer' not in accelerator.state.deepspeed_plugin.deepspeed_config else DummyOptim ) __a : Optional[Any] = optimizer_cls(params=model.parameters() , lr=_SCREAMING_SNAKE_CASE ) if accelerator.state.deepspeed_plugin is not None: __a : int = accelerator.state.deepspeed_plugin.deepspeed_config[ 'gradient_accumulation_steps' ] else: __a : Union[str, Any] = 1 __a : Tuple = (len(_SCREAMING_SNAKE_CASE ) * num_epochs) // gradient_accumulation_steps # Instantiate scheduler if ( accelerator.state.deepspeed_plugin is None or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config ): __a : str = get_linear_schedule_with_warmup( optimizer=_SCREAMING_SNAKE_CASE , num_warmup_steps=0 , num_training_steps=_SCREAMING_SNAKE_CASE , ) else: __a : List[Any] = DummyScheduler(_SCREAMING_SNAKE_CASE , total_num_steps=_SCREAMING_SNAKE_CASE , warmup_num_steps=0 ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. __a , __a , __a , __a , __a : Optional[Any] = accelerator.prepare( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # We need to keep track of how many total steps we have iterated over __a : Union[str, Any] = 0 # We also need to keep track of the stating epoch so files are named properly __a : Dict = 0 # Now we train the model __a : str = {} for epoch in range(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): with TorchTracemalloc() as tracemalloc: model.train() for step, batch in enumerate(_SCREAMING_SNAKE_CASE ): __a : List[Any] = model(**_SCREAMING_SNAKE_CASE ) __a : str = outputs.loss __a : str = loss / gradient_accumulation_steps accelerator.backward(_SCREAMING_SNAKE_CASE ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 # Printing the GPU memory usage details such as allocated memory, peak memory, and total memory usage accelerator.print('Memory before entering the train : {}'.format(bamb(tracemalloc.begin ) ) ) accelerator.print('Memory consumed at the end of the train (end-begin): {}'.format(tracemalloc.used ) ) accelerator.print('Peak Memory consumed during the train (max-begin): {}'.format(tracemalloc.peaked ) ) accelerator.print( 'Total Peak Memory consumed during the train (max): {}'.format( tracemalloc.peaked + bamb(tracemalloc.begin ) ) ) __a : List[Any] = tracemalloc.peaked + bamb(tracemalloc.begin ) if args.peak_memory_upper_bound is not None: assert ( train_total_peak_memory[F"""epoch-{epoch}"""] <= args.peak_memory_upper_bound ), "Peak memory usage exceeded the upper bound" accelerator.wait_for_everyone() if accelerator.is_main_process: with open(os.path.join(args.output_dir , 'peak_memory_utilization.json' ) , 'w' ) as f: json.dump(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def lowerCamelCase (): __a : int = argparse.ArgumentParser(description='Simple example of training script tracking peak GPU memory usage.' ) parser.add_argument( '--model_name_or_path' , type=_SCREAMING_SNAKE_CASE , default='bert-base-cased' , help='Path to pretrained model or model identifier from huggingface.co/models.' , required=_SCREAMING_SNAKE_CASE , ) parser.add_argument( '--output_dir' , type=_SCREAMING_SNAKE_CASE , default='.' , help='Optional save directory where all checkpoint folders will be stored. Default is the current working directory.' , ) parser.add_argument( '--peak_memory_upper_bound' , type=_SCREAMING_SNAKE_CASE , default=_SCREAMING_SNAKE_CASE , help='The upper bound of peak memory usage in MB. If set, the training will throw an error if the peak memory usage exceeds this value.' , ) parser.add_argument( '--n_train' , type=_SCREAMING_SNAKE_CASE , default=320 , help='Number of training examples to use.' , ) parser.add_argument( '--n_val' , type=_SCREAMING_SNAKE_CASE , default=160 , help='Number of validation examples to use.' , ) parser.add_argument( '--num_epochs' , type=_SCREAMING_SNAKE_CASE , default=1 , help='Number of train epochs.' , ) __a : List[str] = parser.parse_args() __a : List[Any] = {'lr': 2e-5, 'num_epochs': args.num_epochs, 'seed': 42, 'batch_size': 16} training_function(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if __name__ == "__main__": main()
27
1
import math import unittest def __lowercase ( __lowercase ) -> bool: '''simple docstring''' assert isinstance(__lowercase , __lowercase ) and ( number >= 0 ), "'number' must been an int and positive" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(__lowercase ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" def lowerCAmelCase ( self : int ): '''simple docstring''' self.assertTrue(is_prime(2 ) ) self.assertTrue(is_prime(3 ) ) self.assertTrue(is_prime(5 ) ) self.assertTrue(is_prime(7 ) ) self.assertTrue(is_prime(11 ) ) self.assertTrue(is_prime(13 ) ) self.assertTrue(is_prime(17 ) ) self.assertTrue(is_prime(19 ) ) self.assertTrue(is_prime(23 ) ) self.assertTrue(is_prime(29 ) ) def lowerCAmelCase ( self : List[str] ): '''simple docstring''' with self.assertRaises(__UpperCAmelCase ): is_prime(-19 ) self.assertFalse( is_prime(0 ) , "Zero doesn't have any positive factors, primes must have exactly two." , ) self.assertFalse( is_prime(1 ) , "One only has 1 positive factor, primes must have exactly two." , ) self.assertFalse(is_prime(2 * 2 ) ) self.assertFalse(is_prime(2 * 3 ) ) self.assertFalse(is_prime(3 * 3 ) ) self.assertFalse(is_prime(3 * 5 ) ) self.assertFalse(is_prime(3 * 5 * 7 ) ) if __name__ == "__main__": unittest.main()
355
'''simple docstring''' from argparse import ArgumentParser from datasets.commands.convert import ConvertCommand from datasets.commands.dummy_data import DummyDataCommand from datasets.commands.env import EnvironmentCommand from datasets.commands.run_beam import RunBeamCommand from datasets.commands.test import TestCommand from datasets.utils.logging import set_verbosity_info def __lowercase ( __lowercase ) -> str: '''simple docstring''' return {key.lstrip("-" ): value for key, value in zip(unknown_args[::2] , unknown_args[1::2] )} def __lowercase ( ) -> Tuple: '''simple docstring''' _A = ArgumentParser( "HuggingFace Datasets CLI tool" , usage="datasets-cli <command> [<args>]" , allow_abbrev=__lowercase ) _A = parser.add_subparsers(help="datasets-cli command helpers" ) set_verbosity_info() # Register commands ConvertCommand.register_subcommand(__lowercase ) EnvironmentCommand.register_subcommand(__lowercase ) TestCommand.register_subcommand(__lowercase ) RunBeamCommand.register_subcommand(__lowercase ) DummyDataCommand.register_subcommand(__lowercase ) # Parse args _A , _A = parser.parse_known_args() if not hasattr(__lowercase , "func" ): parser.print_help() exit(1 ) _A = parse_unknown_args(__lowercase ) # Run _A = args.func(__lowercase , **__lowercase ) service.run() if __name__ == "__main__": main()
174
0
import json import os import shutil import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoConfig, BertConfig, GPTaConfig from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import TOKEN, USER, is_staging_test sys.path.append(str(Path(__file__).parent.parent / "utils")) from test_module.custom_configuration import CustomConfig # noqa E402 __UpperCamelCase : Any = { "return_dict": False, "output_hidden_states": True, "output_attentions": True, "torchscript": True, "torch_dtype": "float16", "use_bfloat16": True, "tf_legacy_loss": True, "pruned_heads": {"a": 1}, "tie_word_embeddings": False, "is_decoder": True, "cross_attention_hidden_size": 128, "add_cross_attention": True, "tie_encoder_decoder": True, "max_length": 50, "min_length": 3, "do_sample": True, "early_stopping": True, "num_beams": 3, "num_beam_groups": 3, "diversity_penalty": 0.5, "temperature": 2.0, "top_k": 10, "top_p": 0.7, "typical_p": 0.2, "repetition_penalty": 0.8, "length_penalty": 0.8, "no_repeat_ngram_size": 5, "encoder_no_repeat_ngram_size": 5, "bad_words_ids": [1, 2, 3], "num_return_sequences": 3, "chunk_size_feed_forward": 5, "output_scores": True, "return_dict_in_generate": True, "forced_bos_token_id": 2, "forced_eos_token_id": 3, "remove_invalid_values": True, "architectures": ["BertModel"], "finetuning_task": "translation", "id2label": {0: "label"}, "label2id": {"label": "0"}, "tokenizer_class": "BertTokenizerFast", "prefix": "prefix", "bos_token_id": 6, "pad_token_id": 7, "eos_token_id": 8, "sep_token_id": 9, "decoder_start_token_id": 10, "exponential_decay_length_penalty": (5, 1.01), "suppress_tokens": [0, 1], "begin_suppress_tokens": 2, "task_specific_params": {"translation": "some_params"}, "problem_type": "regression", } @is_staging_test class __magic_name__ ( unittest.TestCase): @classmethod def UpperCAmelCase__ ( cls : Any ) -> Tuple: '''simple docstring''' UpperCamelCase__ : Optional[Any] = TOKEN HfFolder.save_token(lowerCamelCase__ ) @classmethod def UpperCAmelCase__ ( cls : Optional[int] ) -> Any: '''simple docstring''' try: delete_repo(token=cls._token , repo_id='''test-config''' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''valid_org/test-config-org''' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''test-dynamic-config''' ) except HTTPError: pass def UpperCAmelCase__ ( self : List[str] ) -> str: '''simple docstring''' UpperCamelCase__ : int = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) config.push_to_hub('''test-config''' , use_auth_token=self._token ) UpperCamelCase__ : List[Any] = BertConfig.from_pretrained(F"{USER}/test-config" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowerCamelCase__ , getattr(lowerCamelCase__ , lowerCamelCase__ ) ) # Reset repo delete_repo(token=self._token , repo_id='''test-config''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(lowerCamelCase__ , repo_id='''test-config''' , push_to_hub=lowerCamelCase__ , use_auth_token=self._token ) UpperCamelCase__ : List[str] = BertConfig.from_pretrained(F"{USER}/test-config" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowerCamelCase__ , getattr(lowerCamelCase__ , lowerCamelCase__ ) ) def UpperCAmelCase__ ( self : Dict ) -> int: '''simple docstring''' UpperCamelCase__ : List[Any] = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) config.push_to_hub('''valid_org/test-config-org''' , use_auth_token=self._token ) UpperCamelCase__ : int = BertConfig.from_pretrained('''valid_org/test-config-org''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowerCamelCase__ , getattr(lowerCamelCase__ , lowerCamelCase__ ) ) # Reset repo delete_repo(token=self._token , repo_id='''valid_org/test-config-org''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( lowerCamelCase__ , repo_id='''valid_org/test-config-org''' , push_to_hub=lowerCamelCase__ , use_auth_token=self._token ) UpperCamelCase__ : Optional[int] = BertConfig.from_pretrained('''valid_org/test-config-org''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowerCamelCase__ , getattr(lowerCamelCase__ , lowerCamelCase__ ) ) def UpperCAmelCase__ ( self : str ) -> Union[str, Any]: '''simple docstring''' CustomConfig.register_for_auto_class() UpperCamelCase__ : int = CustomConfig(attribute=42 ) config.push_to_hub('''test-dynamic-config''' , use_auth_token=self._token ) # This has added the proper auto_map field to the config self.assertDictEqual(config.auto_map , {'''AutoConfig''': '''custom_configuration.CustomConfig'''} ) UpperCamelCase__ : Union[str, Any] = AutoConfig.from_pretrained(F"{USER}/test-dynamic-config" , trust_remote_code=lowerCamelCase__ ) # Can't make an isinstance check because the new_config is from the FakeConfig class of a dynamic module self.assertEqual(new_config.__class__.__name__ , '''CustomConfig''' ) self.assertEqual(new_config.attribute , 42 ) class __magic_name__ ( unittest.TestCase): def UpperCAmelCase__ ( self : str ) -> Tuple: '''simple docstring''' UpperCamelCase__ : List[str] = GPTaConfig() # attempt to modify each of int/float/bool/str config records and verify they were updated UpperCamelCase__ : str = c.n_embd + 1 # int UpperCamelCase__ : int = c.resid_pdrop + 1.0 # float UpperCamelCase__ : Tuple = not c.scale_attn_weights # bool UpperCamelCase__ : Union[str, Any] = c.summary_type + '''foo''' # str c.update_from_string( F"n_embd={n_embd},resid_pdrop={resid_pdrop},scale_attn_weights={scale_attn_weights},summary_type={summary_type}" ) self.assertEqual(lowerCamelCase__ , c.n_embd , '''mismatch for key: n_embd''' ) self.assertEqual(lowerCamelCase__ , c.resid_pdrop , '''mismatch for key: resid_pdrop''' ) self.assertEqual(lowerCamelCase__ , c.scale_attn_weights , '''mismatch for key: scale_attn_weights''' ) self.assertEqual(lowerCamelCase__ , c.summary_type , '''mismatch for key: summary_type''' ) def UpperCAmelCase__ ( self : Optional[int] ) -> Optional[Any]: '''simple docstring''' UpperCamelCase__ : Any = PretrainedConfig() UpperCamelCase__ : Dict = [key for key in base_config.__dict__ if key not in config_common_kwargs] # If this part of the test fails, you have arguments to addin config_common_kwargs above. self.assertListEqual( lowerCamelCase__ , ['''is_encoder_decoder''', '''_name_or_path''', '''_commit_hash''', '''transformers_version'''] ) UpperCamelCase__ : Union[str, Any] = [key for key, value in config_common_kwargs.items() if value == getattr(lowerCamelCase__ , lowerCamelCase__ )] if len(lowerCamelCase__ ) > 0: raise ValueError( '''The following keys are set with the default values in''' ''' `test_configuration_common.config_common_kwargs` pick another value for them:''' F" {', '.join(lowerCamelCase__ )}." ) def UpperCAmelCase__ ( self : Tuple ) -> List[str]: '''simple docstring''' with self.assertRaises(lowerCamelCase__ ): # config is in subfolder, the following should not work without specifying the subfolder UpperCamelCase__ : Optional[int] = BertConfig.from_pretrained('''hf-internal-testing/tiny-random-bert-subfolder''' ) UpperCamelCase__ : Any = BertConfig.from_pretrained('''hf-internal-testing/tiny-random-bert-subfolder''' , subfolder='''bert''' ) self.assertIsNotNone(lowerCamelCase__ ) def UpperCAmelCase__ ( self : List[Any] ) -> Any: '''simple docstring''' UpperCamelCase__ : Tuple = mock.Mock() UpperCamelCase__ : Tuple = 500 UpperCamelCase__ : Tuple = {} UpperCamelCase__ : str = HTTPError UpperCamelCase__ : Dict = {} # Download this model to make sure it's in the cache. UpperCamelCase__ : Dict = BertConfig.from_pretrained('''hf-internal-testing/tiny-random-bert''' ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch('''requests.Session.request''' , return_value=lowerCamelCase__ ) as mock_head: UpperCamelCase__ : Any = BertConfig.from_pretrained('''hf-internal-testing/tiny-random-bert''' ) # This check we did call the fake head request mock_head.assert_called() def UpperCAmelCase__ ( self : List[str] ) -> List[Any]: '''simple docstring''' UpperCamelCase__ : Tuple = BertConfig.from_pretrained( '''https://huggingface.co/hf-internal-testing/tiny-random-bert/resolve/main/config.json''' ) def UpperCAmelCase__ ( self : int ) -> List[Any]: '''simple docstring''' UpperCamelCase__ : Union[str, Any] = AutoConfig.from_pretrained('''bert-base-cased''' ) UpperCamelCase__ : List[str] = ['''config.4.0.0.json'''] with tempfile.TemporaryDirectory() as tmp_dir: configuration.save_pretrained(lowerCamelCase__ ) UpperCamelCase__ : List[Any] = 2 json.dump(configuration.to_dict() , open(os.path.join(lowerCamelCase__ , '''config.4.0.0.json''' ) , '''w''' ) ) # This should pick the new configuration file as the version of Transformers is > 4.0.0 UpperCamelCase__ : int = AutoConfig.from_pretrained(lowerCamelCase__ ) self.assertEqual(new_configuration.hidden_size , 2 ) # Will need to be adjusted if we reach v42 and this test is still here. # Should pick the old configuration file as the version of Transformers is < 4.42.0 UpperCamelCase__ : int = ['''config.42.0.0.json'''] UpperCamelCase__ : List[Any] = 768 configuration.save_pretrained(lowerCamelCase__ ) shutil.move(os.path.join(lowerCamelCase__ , '''config.4.0.0.json''' ) , os.path.join(lowerCamelCase__ , '''config.42.0.0.json''' ) ) UpperCamelCase__ : Union[str, Any] = AutoConfig.from_pretrained(lowerCamelCase__ ) self.assertEqual(new_configuration.hidden_size , 768 ) def UpperCAmelCase__ ( self : List[Any] ) -> Dict: '''simple docstring''' UpperCamelCase__ : str = '''hf-internal-testing/test-two-configs''' import transformers as new_transformers UpperCamelCase__ : Dict = '''v4.0.0''' UpperCamelCase__ , UpperCamelCase__ : Tuple = new_transformers.models.auto.AutoConfig.from_pretrained( lowerCamelCase__ , return_unused_kwargs=lowerCamelCase__ ) self.assertEqual(new_configuration.hidden_size , 2 ) # This checks `_configuration_file` ia not kept in the kwargs by mistake. self.assertDictEqual(lowerCamelCase__ , {} ) # Testing an older version by monkey-patching the version in the module it's used. import transformers as old_transformers UpperCamelCase__ : int = '''v3.0.0''' UpperCamelCase__ : str = old_transformers.models.auto.AutoConfig.from_pretrained(lowerCamelCase__ ) self.assertEqual(old_configuration.hidden_size , 768 )
146
import json import os import unittest from transformers.models.xlm.tokenization_xlm import VOCAB_FILES_NAMES, XLMTokenizer from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class __magic_name__ ( __lowerCAmelCase , unittest.TestCase): A: str = XLMTokenizer A: Optional[Any] = False def UpperCAmelCase__ ( self : Optional[Any] ) -> Optional[Any]: '''simple docstring''' super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt UpperCamelCase__ : Any = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''w</w>''', '''r</w>''', '''t</w>''', '''lo''', '''low''', '''er</w>''', '''low</w>''', '''lowest</w>''', '''newer</w>''', '''wider</w>''', '''<unk>''', ] UpperCamelCase__ : Optional[int] = dict(zip(lowerCamelCase__ , range(len(lowerCamelCase__ ) ) ) ) UpperCamelCase__ : Optional[Any] = ['''l o 123''', '''lo w 1456''', '''e r</w> 1789''', ''''''] UpperCamelCase__ : Union[str, Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) UpperCamelCase__ : Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' ) as fp: fp.write(json.dumps(lowerCamelCase__ ) ) with open(self.merges_file , '''w''' ) as fp: fp.write('''\n'''.join(lowerCamelCase__ ) ) def UpperCAmelCase__ ( self : List[Any] , lowerCamelCase__ : Dict ) -> Tuple: '''simple docstring''' UpperCamelCase__ : int = '''lower newer''' UpperCamelCase__ : List[str] = '''lower newer''' return input_text, output_text def UpperCAmelCase__ ( self : List[Any] ) -> List[Any]: '''simple docstring''' UpperCamelCase__ : Tuple = XLMTokenizer(self.vocab_file , self.merges_file ) UpperCamelCase__ : Tuple = '''lower''' UpperCamelCase__ : Dict = ['''low''', '''er</w>'''] UpperCamelCase__ : Optional[int] = tokenizer.tokenize(lowerCamelCase__ ) self.assertListEqual(lowerCamelCase__ , lowerCamelCase__ ) UpperCamelCase__ : Dict = tokens + ['''<unk>'''] UpperCamelCase__ : List[Any] = [14, 15, 20] self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCamelCase__ ) , lowerCamelCase__ ) @slow def UpperCAmelCase__ ( self : Dict ) -> Union[str, Any]: '''simple docstring''' UpperCamelCase__ : Any = XLMTokenizer.from_pretrained('''xlm-mlm-en-2048''' ) UpperCamelCase__ : List[str] = tokenizer.encode('''sequence builders''' , add_special_tokens=lowerCamelCase__ ) UpperCamelCase__ : Any = tokenizer.encode('''multi-sequence build''' , add_special_tokens=lowerCamelCase__ ) UpperCamelCase__ : Optional[int] = tokenizer.build_inputs_with_special_tokens(lowerCamelCase__ ) UpperCamelCase__ : Any = tokenizer.build_inputs_with_special_tokens(lowerCamelCase__ , lowerCamelCase__ ) assert encoded_sentence == [0] + text + [1] assert encoded_pair == [0] + text + [1] + text_a + [1]
146
1
from __future__ import annotations import time lowercase_ = list[tuple[int, int]] lowercase_ = [ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] lowercase_ = [[-1, 0], [0, -1], [1, 0], [0, 1]] # up, left, down, right class SCREAMING_SNAKE_CASE__ : def __init__( self : Optional[Any] , _lowerCAmelCase : int , _lowerCAmelCase : int , _lowerCAmelCase : int , _lowerCAmelCase : int , _lowerCAmelCase : Node | None ): __snake_case : Dict = pos_x __snake_case : Any = pos_y __snake_case : Any = (pos_y, pos_x) __snake_case : Any = goal_x __snake_case : Any = goal_y __snake_case : Tuple = parent class SCREAMING_SNAKE_CASE__ : def __init__( self : Dict , _lowerCAmelCase : tuple[int, int] , _lowerCAmelCase : tuple[int, int] ): __snake_case : List[Any] = Node(start[1] , start[0] , goal[1] , goal[0] , _lowerCAmelCase ) __snake_case : Any = Node(goal[1] , goal[0] , goal[1] , goal[0] , _lowerCAmelCase ) __snake_case : Optional[Any] = [self.start] __snake_case : List[Any] = False def snake_case__ ( self : Optional[Any] ): while self.node_queue: __snake_case : Optional[Any] = self.node_queue.pop(0 ) if current_node.pos == self.target.pos: __snake_case : List[Any] = True return self.retrace_path(_lowerCAmelCase ) __snake_case : List[str] = self.get_successors(_lowerCAmelCase ) for node in successors: self.node_queue.append(_lowerCAmelCase ) if not self.reached: return [self.start.pos] return None def snake_case__ ( self : List[str] , _lowerCAmelCase : Node ): __snake_case : Optional[int] = [] for action in delta: __snake_case : Optional[int] = parent.pos_x + action[1] __snake_case : Union[str, Any] = parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(_lowerCAmelCase ) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node(_lowerCAmelCase , _lowerCAmelCase , self.target.pos_y , self.target.pos_x , _lowerCAmelCase ) ) return successors def snake_case__ ( self : Tuple , _lowerCAmelCase : Node | None ): __snake_case : Union[str, Any] = node __snake_case : Any = [] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x) ) __snake_case : int = current_node.parent path.reverse() return path class SCREAMING_SNAKE_CASE__ : def __init__( self : Dict , _lowerCAmelCase : List[str] , _lowerCAmelCase : List[Any] ): __snake_case : str = BreadthFirstSearch(_lowerCAmelCase , _lowerCAmelCase ) __snake_case : Any = BreadthFirstSearch(_lowerCAmelCase , _lowerCAmelCase ) __snake_case : int = False def snake_case__ ( self : Dict ): while self.fwd_bfs.node_queue or self.bwd_bfs.node_queue: __snake_case : Tuple = self.fwd_bfs.node_queue.pop(0 ) __snake_case : Optional[Any] = self.bwd_bfs.node_queue.pop(0 ) if current_bwd_node.pos == current_fwd_node.pos: __snake_case : Any = True return self.retrace_bidirectional_path( _lowerCAmelCase , _lowerCAmelCase ) __snake_case : Optional[Any] = current_bwd_node __snake_case : int = current_fwd_node __snake_case : Optional[Any] = { self.fwd_bfs: self.fwd_bfs.get_successors(_lowerCAmelCase ), self.bwd_bfs: self.bwd_bfs.get_successors(_lowerCAmelCase ), } for bfs in [self.fwd_bfs, self.bwd_bfs]: for node in successors[bfs]: bfs.node_queue.append(_lowerCAmelCase ) if not self.reached: return [self.fwd_bfs.start.pos] return None def snake_case__ ( self : int , _lowerCAmelCase : Node , _lowerCAmelCase : Node ): __snake_case : List[str] = self.fwd_bfs.retrace_path(_lowerCAmelCase ) __snake_case : Tuple = self.bwd_bfs.retrace_path(_lowerCAmelCase ) bwd_path.pop() bwd_path.reverse() __snake_case : Optional[int] = fwd_path + bwd_path return path if __name__ == "__main__": # all coordinates are given in format [y,x] import doctest doctest.testmod() lowercase_ = (0, 0) lowercase_ = (len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) lowercase_ = time.time() lowercase_ = BreadthFirstSearch(init, goal) lowercase_ = bfs.search() lowercase_ = time.time() - start_bfs_time print("Unidirectional BFS computation time : ", bfs_time) lowercase_ = time.time() lowercase_ = BidirectionalBreadthFirstSearch(init, goal) lowercase_ = bd_bfs.search() lowercase_ = time.time() - start_bd_bfs_time print("Bidirectional BFS computation time : ", bd_bfs_time)
20
import os import sys import warnings from dataclasses import dataclass, field from io import BytesIO from typing import TYPE_CHECKING, Any, ClassVar, Dict, List, Optional, Union import numpy as np import pyarrow as pa from .. import config from ..download.streaming_download_manager import xopen from ..table import array_cast from ..utils.file_utils import is_local_path from ..utils.py_utils import first_non_null_value, no_op_if_value_is_null, string_to_dict if TYPE_CHECKING: import PIL.Image from .features import FeatureType lowercase_ = None lowercase_ = "<" if sys.byteorder == "little" else ">" # Origin: https://github.com/python-pillow/Pillow/blob/698951e19e19972aeed56df686868f1329981c12/src/PIL/Image.py#L3126 minus "|i1" which values are not preserved correctly when saving and loading an image lowercase_ = [ np.dtype("|b1"), np.dtype("|u1"), np.dtype("<u2"), np.dtype(">u2"), np.dtype("<i2"), np.dtype(">i2"), np.dtype("<u4"), np.dtype(">u4"), np.dtype("<i4"), np.dtype(">i4"), np.dtype("<f4"), np.dtype(">f4"), np.dtype("<f8"), np.dtype(">f8"), ] @dataclass class SCREAMING_SNAKE_CASE__ : A : bool = True A : Optional[str] = None # Automatically constructed A : ClassVar[str] = "PIL.Image.Image" A : ClassVar[Any] = pa.struct({"bytes": pa.binary(), "path": pa.string()} ) A : str = field(default="Image" , init=__UpperCamelCase , repr=__UpperCamelCase ) def __call__( self : Any ): return self.pa_type def snake_case__ ( self : List[Any] , _lowerCAmelCase : Union[str, bytes, dict, np.ndarray, "PIL.Image.Image"] ): if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError("""To support encoding images, please install 'Pillow'.""" ) if isinstance(_lowerCAmelCase , _lowerCAmelCase ): __snake_case : str = np.array(_lowerCAmelCase ) if isinstance(_lowerCAmelCase , _lowerCAmelCase ): return {"path": value, "bytes": None} elif isinstance(_lowerCAmelCase , _lowerCAmelCase ): return {"path": None, "bytes": value} elif isinstance(_lowerCAmelCase , np.ndarray ): # convert the image array to PNG/TIFF bytes return encode_np_array(_lowerCAmelCase ) elif isinstance(_lowerCAmelCase , PIL.Image.Image ): # convert the PIL image to bytes (default format is PNG/TIFF) return encode_pil_image(_lowerCAmelCase ) elif value.get("""path""" ) is not None and os.path.isfile(value["""path"""] ): # we set "bytes": None to not duplicate the data if they're already available locally return {"bytes": None, "path": value.get("""path""" )} elif value.get("""bytes""" ) is not None or value.get("""path""" ) is not None: # store the image bytes, and path is used to infer the image format using the file extension return {"bytes": value.get("""bytes""" ), "path": value.get("""path""" )} else: raise ValueError( f'''An image sample should have one of \'path\' or \'bytes\' but they are missing or None in {value}.''' ) def snake_case__ ( self : List[str] , _lowerCAmelCase : dict , _lowerCAmelCase : Dict=None ): if not self.decode: raise RuntimeError("""Decoding is disabled for this feature. Please use Image(decode=True) instead.""" ) if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError("""To support decoding images, please install 'Pillow'.""" ) if token_per_repo_id is None: __snake_case : Tuple = {} __snake_case , __snake_case : str = value["""path"""], value["""bytes"""] if bytes_ is None: if path is None: raise ValueError(f'''An image should have one of \'path\' or \'bytes\' but both are None in {value}.''' ) else: if is_local_path(_lowerCAmelCase ): __snake_case : str = PIL.Image.open(_lowerCAmelCase ) else: __snake_case : List[str] = path.split("""::""" )[-1] try: __snake_case : Dict = string_to_dict(_lowerCAmelCase , config.HUB_DATASETS_URL )["""repo_id"""] __snake_case : int = token_per_repo_id.get(_lowerCAmelCase ) except ValueError: __snake_case : List[Any] = None with xopen(_lowerCAmelCase , """rb""" , use_auth_token=_lowerCAmelCase ) as f: __snake_case : Union[str, Any] = BytesIO(f.read() ) __snake_case : Dict = PIL.Image.open(bytes_ ) else: __snake_case : Optional[Any] = PIL.Image.open(BytesIO(bytes_ ) ) image.load() # to avoid "Too many open files" errors return image def snake_case__ ( self : Union[str, Any] ): from .features import Value return ( self if self.decode else { "bytes": Value("""binary""" ), "path": Value("""string""" ), } ) def snake_case__ ( self : Optional[int] , _lowerCAmelCase : Union[pa.StringArray, pa.StructArray, pa.ListArray] ): if pa.types.is_string(storage.type ): __snake_case : Optional[Any] = pa.array([None] * len(_lowerCAmelCase ) , type=pa.binary() ) __snake_case : Any = pa.StructArray.from_arrays([bytes_array, storage] , ["""bytes""", """path"""] , mask=storage.is_null() ) elif pa.types.is_binary(storage.type ): __snake_case : Optional[Any] = pa.array([None] * len(_lowerCAmelCase ) , type=pa.string() ) __snake_case : List[str] = pa.StructArray.from_arrays([storage, path_array] , ["""bytes""", """path"""] , mask=storage.is_null() ) elif pa.types.is_struct(storage.type ): if storage.type.get_field_index("""bytes""" ) >= 0: __snake_case : List[str] = storage.field("""bytes""" ) else: __snake_case : List[Any] = pa.array([None] * len(_lowerCAmelCase ) , type=pa.binary() ) if storage.type.get_field_index("""path""" ) >= 0: __snake_case : Optional[int] = storage.field("""path""" ) else: __snake_case : int = pa.array([None] * len(_lowerCAmelCase ) , type=pa.string() ) __snake_case : Tuple = pa.StructArray.from_arrays([bytes_array, path_array] , ["""bytes""", """path"""] , mask=storage.is_null() ) elif pa.types.is_list(storage.type ): __snake_case : Optional[Any] = pa.array( [encode_np_array(np.array(_lowerCAmelCase ) )["""bytes"""] if arr is not None else None for arr in storage.to_pylist()] , type=pa.binary() , ) __snake_case : Optional[int] = pa.array([None] * len(_lowerCAmelCase ) , type=pa.string() ) __snake_case : List[str] = pa.StructArray.from_arrays( [bytes_array, path_array] , ["""bytes""", """path"""] , mask=bytes_array.is_null() ) return array_cast(_lowerCAmelCase , self.pa_type ) def snake_case__ ( self : Union[str, Any] , _lowerCAmelCase : pa.StructArray ): @no_op_if_value_is_null def path_to_bytes(_lowerCAmelCase : Tuple ): with xopen(_lowerCAmelCase , """rb""" ) as f: __snake_case : Optional[int] = f.read() return bytes_ __snake_case : Tuple = pa.array( [ (path_to_bytes(x["""path"""] ) if x["""bytes"""] is None else x["""bytes"""]) if x is not None else None for x in storage.to_pylist() ] , type=pa.binary() , ) __snake_case : Optional[Any] = pa.array( [os.path.basename(_lowerCAmelCase ) if path is not None else None for path in storage.field("""path""" ).to_pylist()] , type=pa.string() , ) __snake_case : Any = pa.StructArray.from_arrays([bytes_array, path_array] , ["""bytes""", """path"""] , mask=bytes_array.is_null() ) return array_cast(_lowerCAmelCase , self.pa_type ) def __lowerCAmelCase ( ): '''simple docstring''' if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError("""To support encoding images, please install 'Pillow'.""" ) global _IMAGE_COMPRESSION_FORMATS if _IMAGE_COMPRESSION_FORMATS is None: PIL.Image.init() __snake_case : Optional[Any] = list(set(PIL.Image.OPEN.keys() ) & set(PIL.Image.SAVE.keys() ) ) return _IMAGE_COMPRESSION_FORMATS def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : "PIL.Image.Image" ): '''simple docstring''' __snake_case : List[Any] = BytesIO() if image.format in list_image_compression_formats(): __snake_case : Union[str, Any] = image.format else: __snake_case : List[Any] = """PNG""" if image.mode in ["""1""", """L""", """LA""", """RGB""", """RGBA"""] else """TIFF""" image.save(__SCREAMING_SNAKE_CASE , format=__SCREAMING_SNAKE_CASE ) return buffer.getvalue() def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : "PIL.Image.Image" ): '''simple docstring''' if hasattr(__SCREAMING_SNAKE_CASE , """filename""" ) and image.filename != "": return {"path": image.filename, "bytes": None} else: return {"path": None, "bytes": image_to_bytes(__SCREAMING_SNAKE_CASE )} def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : np.ndarray ): '''simple docstring''' if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError("""To support encoding images, please install 'Pillow'.""" ) __snake_case : List[Any] = array.dtype __snake_case : List[Any] = dtype.byteorder if dtype.byteorder != """=""" else _NATIVE_BYTEORDER __snake_case : Dict = dtype.kind __snake_case : Union[str, Any] = dtype.itemsize __snake_case : Tuple = None # Multi-channel array case (only np.dtype("|u1") is allowed) if array.shape[2:]: __snake_case : int = np.dtype("""|u1""" ) if dtype_kind not in ["u", "i"]: raise TypeError( F'''Unsupported array dtype {dtype} for image encoding. Only {dest_dtype} is supported for multi-channel arrays.''' ) if dtype is not dest_dtype: warnings.warn(F'''Downcasting array dtype {dtype} to {dest_dtype} to be compatible with \'Pillow\'''' ) # Exact match elif dtype in _VALID_IMAGE_ARRAY_DTPYES: __snake_case : List[str] = dtype else: # Downcast the type within the kind (np.can_cast(from_type, to_type, casting="same_kind") doesn't behave as expected, so do it manually) while dtype_itemsize >= 1: __snake_case : int = dtype_byteorder + dtype_kind + str(__SCREAMING_SNAKE_CASE ) __snake_case : Any = np.dtype(__SCREAMING_SNAKE_CASE ) if dest_dtype in _VALID_IMAGE_ARRAY_DTPYES: warnings.warn(F'''Downcasting array dtype {dtype} to {dest_dtype} to be compatible with \'Pillow\'''' ) break else: dtype_itemsize //= 2 if dest_dtype is None: raise TypeError( F'''Cannot convert dtype {dtype} to a valid image dtype. Valid image dtypes: {_VALID_IMAGE_ARRAY_DTPYES}''' ) __snake_case : Optional[int] = PIL.Image.fromarray(array.astype(__SCREAMING_SNAKE_CASE ) ) return {"path": None, "bytes": image_to_bytes(__SCREAMING_SNAKE_CASE )} def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : Union[List[str], List[dict], List[np.ndarray], List["PIL.Image.Image"]] ): '''simple docstring''' if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError("""To support encoding images, please install 'Pillow'.""" ) if objs: __snake_case , __snake_case : Any = first_non_null_value(__SCREAMING_SNAKE_CASE ) if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): return [{"path": obj, "bytes": None} if obj is not None else None for obj in objs] if isinstance(__SCREAMING_SNAKE_CASE , np.ndarray ): __snake_case : int = no_op_if_value_is_null(__SCREAMING_SNAKE_CASE ) return [obj_to_image_dict_func(__SCREAMING_SNAKE_CASE ) for obj in objs] elif isinstance(__SCREAMING_SNAKE_CASE , PIL.Image.Image ): __snake_case : List[str] = no_op_if_value_is_null(__SCREAMING_SNAKE_CASE ) return [obj_to_image_dict_func(__SCREAMING_SNAKE_CASE ) for obj in objs] else: return objs else: return objs
20
1
"""simple docstring""" from collections import defaultdict from pathlib import Path import pandas as pd from rouge_cli import calculate_rouge_path from utils import calculate_rouge a__ : Dict = [ '''Prosecutor: "No videos were used in the crash investigation" German papers say they saw a cell phone video of the''' ''' final seconds on board Flight 9525. The Germanwings co-pilot says he had a "previous episode of severe''' ''' depression\" German airline confirms it knew of Andreas Lubitz\'s depression years before he took control.''', '''The Palestinian Authority officially becomes the 123rd member of the International Criminal Court. The formal''' ''' accession was marked with a ceremony at The Hague, in the Netherlands. The Palestinians signed the ICC\'s''' ''' founding Rome Statute in January. Israel and the United States opposed the Palestinians\' efforts to join the''' ''' body.''', '''Amnesty International releases its annual report on the death penalty. The report catalogs the use of''' ''' state-sanctioned killing as a punitive measure across the globe. At least 607 people were executed around the''' ''' world in 2014, compared to 778 in 2013. The U.S. remains one of the worst offenders for imposing capital''' ''' punishment.''', ] a__ : List[str] = [ '''Marseille prosecutor says "so far no videos were used in the crash investigation" despite media reports .''' ''' Journalists at Bild and Paris Match are "very confident" the video clip is real, an editor says . Andreas Lubitz''' ''' had informed his Lufthansa training school of an episode of severe depression, airline says .''', '''Membership gives the ICC jurisdiction over alleged crimes committed in Palestinian territories since last June .''' ''' Israel and the United States opposed the move, which could open the door to war crimes investigations against''' ''' Israelis .''', '''Amnesty\'s annual death penalty report catalogs encouraging signs, but setbacks in numbers of those sentenced to''' ''' death . Organization claims that governments around the world are using the threat of terrorism to advance''' ''' executions . The number of executions worldwide has gone down by almost 22% compared with 2013, but death''' ''' sentences up by 28% .''', ] def UpperCAmelCase__ (): '''simple docstring''' __SCREAMING_SNAKE_CASE = calculate_rouge(lowerCAmelCase_ , lowerCAmelCase_ , bootstrap_aggregation=lowerCAmelCase_ , rouge_keys=["rouge2", "rougeL"] ) assert isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) __SCREAMING_SNAKE_CASE = calculate_rouge(lowerCAmelCase_ , lowerCAmelCase_ , bootstrap_aggregation=lowerCAmelCase_ , rouge_keys=["rouge2"] ) assert ( pd.DataFrame(no_aggregation["rouge2"] ).fmeasure.mean() == pd.DataFrame(no_aggregation_just_ra["rouge2"] ).fmeasure.mean() ) def UpperCAmelCase__ (): '''simple docstring''' __SCREAMING_SNAKE_CASE = "rougeLsum" __SCREAMING_SNAKE_CASE = calculate_rouge(lowerCAmelCase_ , lowerCAmelCase_ , newline_sep=lowerCAmelCase_ , rouge_keys=[k] )[k] __SCREAMING_SNAKE_CASE = calculate_rouge(lowerCAmelCase_ , lowerCAmelCase_ , newline_sep=lowerCAmelCase_ , rouge_keys=[k] )[k] assert score > score_no_sep def UpperCAmelCase__ (): '''simple docstring''' __SCREAMING_SNAKE_CASE = ["rouge1", "rouge2", "rougeL"] __SCREAMING_SNAKE_CASE = calculate_rouge(lowerCAmelCase_ , lowerCAmelCase_ , newline_sep=lowerCAmelCase_ , rouge_keys=lowerCAmelCase_ ) __SCREAMING_SNAKE_CASE = calculate_rouge(lowerCAmelCase_ , lowerCAmelCase_ , newline_sep=lowerCAmelCase_ , rouge_keys=lowerCAmelCase_ ) assert score_sep == score_no_sep def UpperCAmelCase__ (): '''simple docstring''' __SCREAMING_SNAKE_CASE = [ "Her older sister, Margot Frank, died in 1945, a month earlier than previously thought.", "Marseille prosecutor says \"so far no videos were used in the crash investigation\" despite media reports .", ] __SCREAMING_SNAKE_CASE = [ "Margot Frank, died in 1945, a month earlier than previously thought.", "Prosecutor: \"No videos were used in the crash investigation\" German papers say they saw a cell phone video of" " the final seconds on board Flight 9525.", ] assert calculate_rouge(lowerCAmelCase_ , lowerCAmelCase_ , newline_sep=lowerCAmelCase_ ) == calculate_rouge(lowerCAmelCase_ , lowerCAmelCase_ , newline_sep=lowerCAmelCase_ ) def UpperCAmelCase__ (): '''simple docstring''' __SCREAMING_SNAKE_CASE = [ "\" \"a person who has such a video needs to immediately give it to the investigators,\" prosecutor says .<n> \"it is a very disturbing scene,\" editor-in-chief of bild online tells \"erin burnett: outfront\" " ] __SCREAMING_SNAKE_CASE = [ " Marseille prosecutor says \"so far no videos were used in the crash investigation\" despite media reports . Journalists at Bild and Paris Match are \"very confident\" the video clip is real, an editor says . Andreas Lubitz had informed his Lufthansa training school of an episode of severe depression, airline says ." ] __SCREAMING_SNAKE_CASE = calculate_rouge(lowerCAmelCase_ , lowerCAmelCase_ , rouge_keys=["rougeLsum"] , newline_sep=lowerCAmelCase_ )["rougeLsum"] __SCREAMING_SNAKE_CASE = calculate_rouge(lowerCAmelCase_ , lowerCAmelCase_ , rouge_keys=["rougeLsum"] )["rougeLsum"] assert new_score > prev_score def UpperCAmelCase__ (): '''simple docstring''' __SCREAMING_SNAKE_CASE = Path("examples/seq2seq/test_data/wmt_en_ro" ) __SCREAMING_SNAKE_CASE = calculate_rouge_path(data_dir.joinpath("test.source" ) , data_dir.joinpath("test.target" ) ) assert isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) __SCREAMING_SNAKE_CASE = calculate_rouge_path( data_dir.joinpath("test.source" ) , data_dir.joinpath("test.target" ) , bootstrap_aggregation=lowerCAmelCase_ ) assert isinstance(lowerCAmelCase_ , lowerCAmelCase_ )
54
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_speech_available, is_tf_available, is_torch_available, ) SCREAMING_SNAKE_CASE : List[str] = { "configuration_speech_to_text": ["SPEECH_TO_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP", "Speech2TextConfig"], "processing_speech_to_text": ["Speech2TextProcessor"], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE : Union[str, Any] = ["Speech2TextTokenizer"] try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE : int = ["Speech2TextFeatureExtractor"] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE : Optional[Any] = [ "TF_SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST", "TFSpeech2TextForConditionalGeneration", "TFSpeech2TextModel", "TFSpeech2TextPreTrainedModel", ] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE : str = [ "SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST", "Speech2TextForConditionalGeneration", "Speech2TextModel", "Speech2TextPreTrainedModel", ] if TYPE_CHECKING: from .configuration_speech_to_text import SPEECH_TO_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, SpeechaTextConfig from .processing_speech_to_text import SpeechaTextProcessor try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_speech_to_text import SpeechaTextTokenizer try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_speech_to_text import SpeechaTextFeatureExtractor try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_speech_to_text import ( TF_SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, TFSpeechaTextForConditionalGeneration, TFSpeechaTextModel, TFSpeechaTextPreTrainedModel, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_speech_to_text import ( SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, SpeechaTextForConditionalGeneration, SpeechaTextModel, SpeechaTextPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE : Optional[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
21
0
'''simple docstring''' from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class _lowercase ( _lowercase ): a = ["""image_processor""", """tokenizer"""] a = """Pix2StructImageProcessor""" a = ("""T5Tokenizer""", """T5TokenizerFast""") def __init__( self: List[str] , UpperCamelCase__: Tuple , UpperCamelCase__: Optional[Any] ): lowerCamelCase__ : List[Any] = False super().__init__(UpperCamelCase__ , UpperCamelCase__ ) def __call__( self: List[Any] , UpperCamelCase__: Optional[Any]=None , UpperCamelCase__: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , UpperCamelCase__: bool = True , UpperCamelCase__: Union[bool, str, PaddingStrategy] = False , UpperCamelCase__: Union[bool, str, TruncationStrategy] = None , UpperCamelCase__: Optional[int] = None , UpperCamelCase__: Optional[int] = 2_048 , UpperCamelCase__: int = 0 , UpperCamelCase__: Optional[int] = None , UpperCamelCase__: Optional[bool] = None , UpperCamelCase__: bool = False , UpperCamelCase__: bool = False , UpperCamelCase__: bool = False , UpperCamelCase__: bool = False , UpperCamelCase__: bool = False , UpperCamelCase__: bool = True , UpperCamelCase__: Optional[Union[str, TensorType]] = None , **UpperCamelCase__: Any , ): if images is None and text is None: raise ValueError("""You have to specify either images or text.""" ) # Get only text if images is None and not self.image_processor.is_vqa: lowerCamelCase__ : Dict = self.tokenizer lowerCamelCase__ : List[Any] = self.tokenizer( text=UpperCamelCase__ , add_special_tokens=UpperCamelCase__ , padding=UpperCamelCase__ , truncation=UpperCamelCase__ , max_length=UpperCamelCase__ , stride=UpperCamelCase__ , pad_to_multiple_of=UpperCamelCase__ , return_attention_mask=UpperCamelCase__ , return_overflowing_tokens=UpperCamelCase__ , return_special_tokens_mask=UpperCamelCase__ , return_offsets_mapping=UpperCamelCase__ , return_token_type_ids=UpperCamelCase__ , return_length=UpperCamelCase__ , verbose=UpperCamelCase__ , return_tensors=UpperCamelCase__ , **UpperCamelCase__ , ) return text_encoding if not self.image_processor.is_vqa: # add pixel_values lowerCamelCase__ : List[Any] = self.image_processor( UpperCamelCase__ , return_tensors=UpperCamelCase__ , max_patches=UpperCamelCase__ , **UpperCamelCase__ ) else: # add pixel_values and bbox lowerCamelCase__ : int = self.image_processor( UpperCamelCase__ , return_tensors=UpperCamelCase__ , max_patches=UpperCamelCase__ , header_text=UpperCamelCase__ , **UpperCamelCase__ ) if text is not None and not self.image_processor.is_vqa: lowerCamelCase__ : Dict = self.tokenizer( text=UpperCamelCase__ , add_special_tokens=UpperCamelCase__ , padding=UpperCamelCase__ , truncation=UpperCamelCase__ , max_length=UpperCamelCase__ , stride=UpperCamelCase__ , pad_to_multiple_of=UpperCamelCase__ , return_attention_mask=UpperCamelCase__ , return_overflowing_tokens=UpperCamelCase__ , return_special_tokens_mask=UpperCamelCase__ , return_offsets_mapping=UpperCamelCase__ , return_token_type_ids=UpperCamelCase__ , return_length=UpperCamelCase__ , verbose=UpperCamelCase__ , return_tensors=UpperCamelCase__ , **UpperCamelCase__ , ) if "attention_mask" in text_encoding: lowerCamelCase__ : str = text_encoding.pop("""attention_mask""" ) if "input_ids" in text_encoding: lowerCamelCase__ : Optional[Any] = text_encoding.pop("""input_ids""" ) else: lowerCamelCase__ : Union[str, Any] = None if text_encoding is not None: encoding_image_processor.update(UpperCamelCase__ ) return encoding_image_processor def lowerCamelCase_ ( self: Optional[int] , *UpperCamelCase__: Dict , **UpperCamelCase__: Dict ): return self.tokenizer.batch_decode(*UpperCamelCase__ , **UpperCamelCase__ ) def lowerCamelCase_ ( self: Dict , *UpperCamelCase__: Union[str, Any] , **UpperCamelCase__: int ): return self.tokenizer.decode(*UpperCamelCase__ , **UpperCamelCase__ ) @property def lowerCamelCase_ ( self: Dict ): lowerCamelCase__ : Union[str, Any] = self.tokenizer.model_input_names lowerCamelCase__ : Optional[int] = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
129
'''simple docstring''' import argparse from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection from diffusers import UnCLIPImageVariationPipeline, UnCLIPPipeline if __name__ == "__main__": _A : List[Any] =argparse.ArgumentParser() parser.add_argument('''--dump_path''', default=None, type=str, required=True, help='''Path to the output model.''') parser.add_argument( '''--txt2img_unclip''', default='''kakaobrain/karlo-v1-alpha''', type=str, required=False, help='''The pretrained txt2img unclip.''', ) _A : Dict =parser.parse_args() _A : List[str] =UnCLIPPipeline.from_pretrained(args.txtaimg_unclip) _A : Any =CLIPImageProcessor() _A : Union[str, Any] =CLIPVisionModelWithProjection.from_pretrained('''openai/clip-vit-large-patch14''') _A : Union[str, Any] =UnCLIPImageVariationPipeline( decoder=txtaimg.decoder, text_encoder=txtaimg.text_encoder, tokenizer=txtaimg.tokenizer, text_proj=txtaimg.text_proj, feature_extractor=feature_extractor, image_encoder=image_encoder, super_res_first=txtaimg.super_res_first, super_res_last=txtaimg.super_res_last, decoder_scheduler=txtaimg.decoder_scheduler, super_res_scheduler=txtaimg.super_res_scheduler, ) imgaimg.save_pretrained(args.dump_path)
129
1
import json import os from collections import Counter import torch import torchvision import torchvision.transforms as transforms from PIL import Image from torch import nn from torch.utils.data import Dataset A : Union[str, Any] = {1: (1, 1), 2: (2, 1), 3: (3, 1), 4: (2, 2), 5: (5, 1), 6: (3, 2), 7: (7, 1), 8: (4, 2), 9: (3, 3)} class lowerCamelCase (nn.Module ): """simple docstring""" def __init__( self : Union[str, Any] , __magic_name__ : Optional[Any] ) -> Dict: super().__init__() SCREAMING_SNAKE_CASE_ = torchvision.models.resnetaaa(pretrained=__magic_name__ ) SCREAMING_SNAKE_CASE_ = list(model.children() )[:-2] SCREAMING_SNAKE_CASE_ = nn.Sequential(*__magic_name__ ) SCREAMING_SNAKE_CASE_ = nn.AdaptiveAvgPoolad(POOLING_BREAKDOWN[args.num_image_embeds] ) def __A ( self : Union[str, Any] , __magic_name__ : List[str] ) -> Optional[int]: # Bx3x224x224 -> Bx2048x7x7 -> Bx2048xN -> BxNx2048 SCREAMING_SNAKE_CASE_ = self.pool(self.model(__magic_name__ ) ) SCREAMING_SNAKE_CASE_ = torch.flatten(__magic_name__ , start_dim=2 ) SCREAMING_SNAKE_CASE_ = out.transpose(1 , 2 ).contiguous() return out # BxNx2048 class lowerCamelCase (SCREAMING_SNAKE_CASE__ ): """simple docstring""" def __init__( self : Union[str, Any] , __magic_name__ : str , __magic_name__ : Union[str, Any] , __magic_name__ : str , __magic_name__ : int , __magic_name__ : str ) -> Optional[Any]: SCREAMING_SNAKE_CASE_ = [json.loads(__magic_name__ ) for l in open(__magic_name__ )] SCREAMING_SNAKE_CASE_ = os.path.dirname(__magic_name__ ) SCREAMING_SNAKE_CASE_ = tokenizer SCREAMING_SNAKE_CASE_ = labels SCREAMING_SNAKE_CASE_ = len(__magic_name__ ) SCREAMING_SNAKE_CASE_ = max_seq_length SCREAMING_SNAKE_CASE_ = transforms def __len__( self : int ) -> List[str]: return len(self.data ) def __getitem__( self : List[Any] , __magic_name__ : Tuple ) -> Optional[int]: SCREAMING_SNAKE_CASE_ = torch.LongTensor(self.tokenizer.encode(self.data[index]["text"] , add_special_tokens=__magic_name__ ) ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = sentence[0], sentence[1:-1], sentence[-1] SCREAMING_SNAKE_CASE_ = sentence[: self.max_seq_length] SCREAMING_SNAKE_CASE_ = torch.zeros(self.n_classes ) SCREAMING_SNAKE_CASE_ = 1 SCREAMING_SNAKE_CASE_ = Image.open(os.path.join(self.data_dir , self.data[index]["img"] ) ).convert("RGB" ) SCREAMING_SNAKE_CASE_ = self.transforms(__magic_name__ ) return { "image_start_token": start_token, "image_end_token": end_token, "sentence": sentence, "image": image, "label": label, } def __A ( self : Any ) -> int: SCREAMING_SNAKE_CASE_ = Counter() for row in self.data: label_freqs.update(row["label"] ) return label_freqs def a__ ( __UpperCamelCase ): SCREAMING_SNAKE_CASE_ = [len(row["sentence"] ) for row in batch] SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = len(__UpperCamelCase ), max(__UpperCamelCase ) SCREAMING_SNAKE_CASE_ = torch.zeros(__UpperCamelCase , __UpperCamelCase , dtype=torch.long ) SCREAMING_SNAKE_CASE_ = torch.zeros(__UpperCamelCase , __UpperCamelCase , dtype=torch.long ) for i_batch, (input_row, length) in enumerate(zip(__UpperCamelCase , __UpperCamelCase ) ): SCREAMING_SNAKE_CASE_ = input_row["sentence"] SCREAMING_SNAKE_CASE_ = 1 SCREAMING_SNAKE_CASE_ = torch.stack([row["image"] for row in batch] ) SCREAMING_SNAKE_CASE_ = torch.stack([row["label"] for row in batch] ) SCREAMING_SNAKE_CASE_ = torch.stack([row["image_start_token"] for row in batch] ) SCREAMING_SNAKE_CASE_ = torch.stack([row["image_end_token"] for row in batch] ) return text_tensor, mask_tensor, img_tensor, img_start_token, img_end_token, tgt_tensor def a__ ( ): return [ "Crime", "Drama", "Thriller", "Action", "Comedy", "Romance", "Documentary", "Short", "Mystery", "History", "Family", "Adventure", "Fantasy", "Sci-Fi", "Western", "Horror", "Sport", "War", "Music", "Musical", "Animation", "Biography", "Film-Noir", ] def a__ ( ): return transforms.Compose( [ transforms.Resize(2_5_6 ), transforms.CenterCrop(2_2_4 ), transforms.ToTensor(), transforms.Normalize( mean=[0.46777044, 0.44531429, 0.40661017] , std=[0.12221994, 0.12145835, 0.14380469] , ), ] )
118
import json import os import unittest from transformers import DebertaTokenizer, DebertaTokenizerFast from transformers.models.deberta.tokenization_deberta import VOCAB_FILES_NAMES from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class lowerCamelCase (SCREAMING_SNAKE_CASE__ , unittest.TestCase ): """simple docstring""" lowerCamelCase__ = DebertaTokenizer lowerCamelCase__ = True lowerCamelCase__ = DebertaTokenizerFast def __A ( self : List[Any] ) -> Dict: super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt SCREAMING_SNAKE_CASE_ = [ "l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "\u0120", "\u0120l", "\u0120n", "\u0120lo", "\u0120low", "er", "\u0120lowest", "\u0120newer", "\u0120wider", "[UNK]", ] SCREAMING_SNAKE_CASE_ = dict(zip(__magic_name__ , range(len(__magic_name__ ) ) ) ) SCREAMING_SNAKE_CASE_ = ["#version: 0.2", "\u0120 l", "\u0120l o", "\u0120lo w", "e r", ""] SCREAMING_SNAKE_CASE_ = {"unk_token": "[UNK]"} SCREAMING_SNAKE_CASE_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) SCREAMING_SNAKE_CASE_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as fp: fp.write(json.dumps(__magic_name__ ) + "\n" ) with open(self.merges_file , "w" , encoding="utf-8" ) as fp: fp.write("\n".join(__magic_name__ ) ) def __A ( self : str , **__magic_name__ : int ) -> Union[str, Any]: kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **__magic_name__ ) def __A ( self : str , __magic_name__ : List[Any] ) -> Dict: SCREAMING_SNAKE_CASE_ = "lower newer" SCREAMING_SNAKE_CASE_ = "lower newer" return input_text, output_text def __A ( self : Union[str, Any] ) -> str: SCREAMING_SNAKE_CASE_ = self.get_tokenizer() SCREAMING_SNAKE_CASE_ = "lower newer" SCREAMING_SNAKE_CASE_ = ["l", "o", "w", "er", "\u0120", "n", "e", "w", "er"] SCREAMING_SNAKE_CASE_ = tokenizer.tokenize(__magic_name__ ) self.assertListEqual(__magic_name__ , __magic_name__ ) SCREAMING_SNAKE_CASE_ = tokens + [tokenizer.unk_token] SCREAMING_SNAKE_CASE_ = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(__magic_name__ ) , __magic_name__ ) def __A ( self : Optional[int] ) -> Optional[Any]: SCREAMING_SNAKE_CASE_ = self.get_tokenizer() SCREAMING_SNAKE_CASE_ = tokenizer("Hello" , "World" ) SCREAMING_SNAKE_CASE_ = [0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1] self.assertListEqual(tokd["token_type_ids"] , __magic_name__ ) @slow def __A ( self : Any ) -> Any: SCREAMING_SNAKE_CASE_ = self.tokenizer_class.from_pretrained("microsoft/deberta-base" ) SCREAMING_SNAKE_CASE_ = tokenizer.encode("sequence builders" , add_special_tokens=__magic_name__ ) SCREAMING_SNAKE_CASE_ = tokenizer.encode("multi-sequence build" , add_special_tokens=__magic_name__ ) SCREAMING_SNAKE_CASE_ = tokenizer.encode( "sequence builders" , add_special_tokens=__magic_name__ , add_prefix_space=__magic_name__ ) SCREAMING_SNAKE_CASE_ = tokenizer.encode( "sequence builders" , "multi-sequence build" , add_special_tokens=__magic_name__ , add_prefix_space=__magic_name__ ) SCREAMING_SNAKE_CASE_ = tokenizer.build_inputs_with_special_tokens(__magic_name__ ) SCREAMING_SNAKE_CASE_ = tokenizer.build_inputs_with_special_tokens(__magic_name__ , __magic_name__ ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode @slow def __A ( self : Tuple ) -> str: SCREAMING_SNAKE_CASE_ = [self.tokenizer_class] if self.test_rust_tokenizer: tokenizer_classes.append(self.rust_tokenizer_class ) for tokenizer_class in tokenizer_classes: SCREAMING_SNAKE_CASE_ = tokenizer_class.from_pretrained("microsoft/deberta-base" ) SCREAMING_SNAKE_CASE_ = [ "ALBERT: A Lite BERT for Self-supervised Learning of Language Representations", "ALBERT incorporates two parameter reduction techniques", "The first one is a factorized embedding parameterization. By decomposing the large vocabulary" " embedding matrix into two small matrices, we separate the size of the hidden layers from the size of" " vocabulary embedding.", ] SCREAMING_SNAKE_CASE_ = tokenizer(__magic_name__ , padding=__magic_name__ ) SCREAMING_SNAKE_CASE_ = [tokenizer.decode(__magic_name__ , skip_special_tokens=__magic_name__ ) for seq in encoding["input_ids"]] # fmt: off SCREAMING_SNAKE_CASE_ = { "input_ids": [ [1, 2_118, 11_126, 565, 35, 83, 25_191, 163, 18_854, 13, 12_156, 12, 16_101, 25_376, 13_807, 9, 22_205, 27_893, 1_635, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 2_118, 11_126, 565, 24_536, 80, 43_797, 4_878, 7_373, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 133, 78, 65, 16, 10, 3_724, 1_538, 33_183, 11_303, 43_797, 1_938, 4, 870, 24_165, 29_105, 5, 739, 32_644, 33_183, 11_303, 36_173, 88, 80, 650, 7_821, 45_940, 6, 52, 2_559, 5, 1_836, 9, 5, 7_397, 13_171, 31, 5, 1_836, 9, 32_644, 33_183, 11_303, 4, 2] ], "token_type_ids": [ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ], "attention_mask": [ [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] ] } # fmt: on SCREAMING_SNAKE_CASE_ = [ "ALBERT: A Lite BERT for Self-supervised Learning of Language Representations", "ALBERT incorporates two parameter reduction techniques", "The first one is a factorized embedding parameterization. By decomposing the large vocabulary" " embedding matrix into two small matrices, we separate the size of the hidden layers from the size of" " vocabulary embedding.", ] self.assertDictEqual(encoding.data , __magic_name__ ) for expected, decoded in zip(__magic_name__ , __magic_name__ ): self.assertEqual(__magic_name__ , __magic_name__ )
118
1
def __magic_name__ ( __a : List[Any] , __a : int ): '''simple docstring''' UpperCamelCase__ = """""" for i in table: res += inp[i - 1] return res def __magic_name__ ( __a : str ): '''simple docstring''' return data[1:] + data[0] def __magic_name__ ( __a : Optional[Any] , __a : List[Any] ): '''simple docstring''' UpperCamelCase__ = """""" for i in range(len(__a ) ): if a[i] == b[i]: res += "0" else: res += "1" return res def __magic_name__ ( __a : Optional[Any] , __a : List[Any] ): '''simple docstring''' UpperCamelCase__ = int("""0b""" + data[0] + data[-1] , 2 ) UpperCamelCase__ = int("""0b""" + data[1:3] , 2 ) return bin(s[row][col] )[2:] def __magic_name__ ( __a : Union[str, Any] , __a : int , __a : Optional[int] , __a : Any , __a : int ): '''simple docstring''' UpperCamelCase__ = message[:4] UpperCamelCase__ = message[4:] UpperCamelCase__ = apply_table(__a , __a ) UpperCamelCase__ = xor(__a , __a ) UpperCamelCase__ = apply_sbox(__a , temp[:4] ) # noqa: E741 UpperCamelCase__ = apply_sbox(__a , temp[4:] ) UpperCamelCase__ = """0""" * (2 - len(__a )) + l # noqa: E741 UpperCamelCase__ = """0""" * (2 - len(__a )) + r UpperCamelCase__ = apply_table(l + r , __a ) UpperCamelCase__ = xor(__a , __a ) return temp + right if __name__ == "__main__": lowerCamelCase_ = input('''Enter 10 bit key: ''') lowerCamelCase_ = input('''Enter 8 bit message: ''') lowerCamelCase_ = [6, 3, 7, 4, 8, 5, 10, 9] lowerCamelCase_ = [3, 5, 2, 7, 4, 10, 1, 9, 8, 6] lowerCamelCase_ = [2, 4, 3, 1] lowerCamelCase_ = [2, 6, 3, 1, 4, 8, 5, 7] lowerCamelCase_ = [4, 1, 3, 5, 7, 2, 8, 6] lowerCamelCase_ = [4, 1, 2, 3, 2, 3, 4, 1] lowerCamelCase_ = [[1, 0, 3, 2], [3, 2, 1, 0], [0, 2, 1, 3], [3, 1, 3, 2]] lowerCamelCase_ = [[0, 1, 2, 3], [2, 0, 1, 3], [3, 0, 1, 0], [2, 1, 0, 3]] # key generation lowerCamelCase_ = apply_table(key, paa_table) lowerCamelCase_ = temp[:5] lowerCamelCase_ = temp[5:] lowerCamelCase_ = left_shift(left) lowerCamelCase_ = left_shift(right) lowerCamelCase_ = apply_table(left + right, pa_table) lowerCamelCase_ = left_shift(left) lowerCamelCase_ = left_shift(right) lowerCamelCase_ = left_shift(left) lowerCamelCase_ = left_shift(right) lowerCamelCase_ = apply_table(left + right, pa_table) # encryption lowerCamelCase_ = apply_table(message, IP) lowerCamelCase_ = function(expansion, sa, sa, keya, temp) lowerCamelCase_ = temp[4:] + temp[:4] lowerCamelCase_ = function(expansion, sa, sa, keya, temp) lowerCamelCase_ = apply_table(temp, IP_inv) print('''Cipher text is:''', CT) # decryption lowerCamelCase_ = apply_table(CT, IP) lowerCamelCase_ = function(expansion, sa, sa, keya, temp) lowerCamelCase_ = temp[4:] + temp[:4] lowerCamelCase_ = function(expansion, sa, sa, keya, temp) lowerCamelCase_ = apply_table(temp, IP_inv) print('''Plain text after decypting is:''', PT)
178
from __future__ import annotations def __magic_name__ ( __a : list[list[int]] ): '''simple docstring''' for i in range(1 , len(matrix[0] ) ): matrix[0][i] += matrix[0][i - 1] # preprocessing the first column for i in range(1 , len(__a ) ): matrix[i][0] += matrix[i - 1][0] # updating the path cost for current position for i in range(1 , len(__a ) ): for j in range(1 , len(matrix[0] ) ): matrix[i][j] += min(matrix[i - 1][j] , matrix[i][j - 1] ) return matrix[-1][-1] if __name__ == "__main__": import doctest doctest.testmod()
178
1
'''simple docstring''' import unittest from transformers import is_flax_available from transformers.testing_utils import require_flax, require_sentencepiece, require_tokenizers, require_torch, slow if is_flax_available(): import optax from flax.training.common_utils import onehot from transformers import AutoTokenizer, FlaxMTaForConditionalGeneration from transformers.models.ta.modeling_flax_ta import shift_tokens_right @require_torch @require_sentencepiece @require_tokenizers @require_flax class lowerCamelCase_ (unittest.TestCase ): '''simple docstring''' @slow def _A ( self : Any ): _UpperCAmelCase : List[str] = FlaxMTaForConditionalGeneration.from_pretrained("google/mt5-small" ) _UpperCAmelCase : Any = AutoTokenizer.from_pretrained("google/mt5-small" ) _UpperCAmelCase : Any = tokenizer("Hello there" , return_tensors="np" ).input_ids _UpperCAmelCase : Union[str, Any] = tokenizer("Hi I am" , return_tensors="np" ).input_ids _UpperCAmelCase : List[str] = shift_tokens_right(A , model.config.pad_token_id , model.config.decoder_start_token_id ) _UpperCAmelCase : Tuple = model(A , decoder_input_ids=A ).logits _UpperCAmelCase : Optional[int] = optax.softmax_cross_entropy(A , onehot(A , logits.shape[-1] ) ).mean() _UpperCAmelCase : str = -(labels.shape[-1] * loss.item()) _UpperCAmelCase : str = -84.9_127 self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 1E-4 )
31
def _a ( lowerCamelCase: dict ) -> bool: '''simple docstring''' __A = set() # To detect a back edge, keep track of vertices currently in the recursion stack __A = set() return any( node not in visited and depth_first_search(lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ) for node in graph ) def _a ( lowerCamelCase: dict , lowerCamelCase: int , lowerCamelCase: set , lowerCamelCase: set ) -> bool: '''simple docstring''' visited.add(lowerCamelCase ) rec_stk.add(lowerCamelCase ) for node in graph[vertex]: if node not in visited: if depth_first_search(lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ): return True elif node in rec_stk: return True # The node needs to be removed from recursion stack before function ends rec_stk.remove(lowerCamelCase ) return False if __name__ == "__main__": from doctest import testmod testmod()
117
0
import os from collections import namedtuple import pytest from datasets import ClassLabel, Features, Sequence, Value from datasets.commands.test import TestCommand from datasets.info import DatasetInfo, DatasetInfosDict UpperCAmelCase_ = namedtuple( '_TestCommandArgs', [ 'dataset', 'name', 'cache_dir', 'data_dir', 'all_configs', 'save_infos', 'ignore_verifications', 'force_redownload', 'clear_cache', ], defaults=[None, None, None, False, False, False, False, False], ) def lowerCamelCase__ ( A__ : str , A__ : Union[str, Any] ): '''simple docstring''' return (abs(source - target ) / target) < 0.01 @pytest.mark.integration def lowerCamelCase__ ( A__ : Union[str, Any] ): '''simple docstring''' __lowerCamelCase = _TestCommandArgs(dataset=A__ , all_configs=A__ , save_infos=A__ ) __lowerCamelCase = TestCommand(*A__ ) test_command.run() __lowerCamelCase = os.path.join(A__ , """README.md""" ) assert os.path.exists(A__ ) __lowerCamelCase = DatasetInfosDict.from_directory(A__ ) __lowerCamelCase = DatasetInfosDict( { """default""": DatasetInfo( features=Features( { """tokens""": Sequence(Value("""string""" ) ), """ner_tags""": Sequence( ClassLabel(names=["""O""", """B-PER""", """I-PER""", """B-ORG""", """I-ORG""", """B-LOC""", """I-LOC"""] ) ), """langs""": Sequence(Value("""string""" ) ), """spans""": Sequence(Value("""string""" ) ), } ) , splits=[ { """name""": """train""", """num_bytes""": 2351563, """num_examples""": 10000, }, { """name""": """validation""", """num_bytes""": 238418, """num_examples""": 1000, }, ] , download_size=3940680 , dataset_size=2589981 , ) } ) assert dataset_infos.keys() == expected_dataset_infos.keys() for key in DatasetInfo._INCLUDED_INFO_IN_YAML: __lowerCamelCase, __lowerCamelCase = getattr(dataset_infos["""default"""] , A__ ), getattr(expected_dataset_infos["""default"""] , A__ ) if key == "num_bytes": assert is_apercent_close(A__ , A__ ) elif key == "splits": assert list(A__ ) == list(A__ ) for split in result: assert result[split].name == expected[split].name assert result[split].num_examples == expected[split].num_examples assert is_apercent_close(result[split].num_bytes , expected[split].num_bytes ) else: result == expected
29
import random import unittest import torch from diffusers import IFInpaintingPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class lowerCamelCase__( __lowerCamelCase , __lowerCamelCase , unittest.TestCase): UpperCAmelCase__ : Optional[int] = IFInpaintingPipeline UpperCAmelCase__ : int = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {'width', 'height'} UpperCAmelCase__ : Dict = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS UpperCAmelCase__ : List[str] = PipelineTesterMixin.required_optional_params - {'latents'} def lowerCAmelCase__ ( self: List[str] ): return self._get_dummy_components() def lowerCAmelCase__ ( self: int , UpperCamelCase_: Dict , UpperCamelCase_: str=0 ): if str(UpperCamelCase_ ).startswith("""mps""" ): __lowerCamelCase = torch.manual_seed(UpperCamelCase_ ) else: __lowerCamelCase = torch.Generator(device=UpperCamelCase_ ).manual_seed(UpperCamelCase_ ) __lowerCamelCase = floats_tensor((1, 3, 32, 32) , rng=random.Random(UpperCamelCase_ ) ).to(UpperCamelCase_ ) __lowerCamelCase = floats_tensor((1, 3, 32, 32) , rng=random.Random(UpperCamelCase_ ) ).to(UpperCamelCase_ ) __lowerCamelCase = { """prompt""": """A painting of a squirrel eating a burger""", """image""": image, """mask_image""": mask_image, """generator""": generator, """num_inference_steps""": 2, """output_type""": """numpy""", } return inputs @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , ) def lowerCAmelCase__ ( self: Union[str, Any] ): self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 ) def lowerCAmelCase__ ( self: Union[str, Any] ): self._test_save_load_optional_components() @unittest.skipIf(torch_device != """cuda""" , reason="""float16 requires CUDA""" ) def lowerCAmelCase__ ( self: Optional[int] ): # Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder super().test_save_load_floataa(expected_max_diff=1E-1 ) def lowerCAmelCase__ ( self: Any ): self._test_attention_slicing_forward_pass(expected_max_diff=1E-2 ) def lowerCAmelCase__ ( self: str ): self._test_save_load_local() def lowerCAmelCase__ ( self: str ): self._test_inference_batch_single_identical( expected_max_diff=1E-2 , )
29
1