code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
'''simple docstring''' import torch from transformers import AutoModel class lowerCamelCase_ (torch.nn.Module ): '''simple docstring''' def __init__( self : Optional[int] , A : List[str]="sayef/fsner-bert-base-uncased" ): super(_lowerCAmelCase , self ).__init__() _UpperCAmelCase : str = AutoModel.from_pretrained(_lowerCAmelCase , return_dict=_lowerCAmelCase ) _UpperCAmelCase : Dict = torch.nn.CosineSimilarity(3 , 1E-08 ) _UpperCAmelCase : Tuple = torch.nn.Softmax(dim=1 ) def _A ( self : List[str] , **A : Dict ): return self.bert(**_lowerCAmelCase ).last_hidden_state def _A ( self : Optional[Any] , A : Dict ): return token_embeddings.sum(2 , keepdim=_lowerCAmelCase ) def _A ( self : Any , A : str , A : List[Any] , A : str=1 ): return self.softmax(T * self.cos(_lowerCAmelCase , _lowerCAmelCase ) ) def _A ( self : Any , A : str , A : int ): _UpperCAmelCase : List[Any] = W_supports["sizes"].tolist() _UpperCAmelCase : Union[str, Any] = W_supports["start_token_id"].item() _UpperCAmelCase : Optional[int] = W_supports["end_token_id"].item() del W_supports["sizes"] del W_supports["start_token_id"] del W_supports["end_token_id"] _UpperCAmelCase : List[str] = self.BERT(**_lowerCAmelCase ) _UpperCAmelCase : int = self.BERT(**_lowerCAmelCase ) _UpperCAmelCase : List[Any] = None _UpperCAmelCase : str = None _UpperCAmelCase : Union[str, Any] = W_supports["input_ids"] == start_token_id _UpperCAmelCase : List[str] = W_supports["input_ids"] == end_token_id for i, size in enumerate(_lowerCAmelCase ): if i == 0: _UpperCAmelCase : List[str] = 0 else: _UpperCAmelCase : Union[str, Any] = support_sizes[i - 1] _UpperCAmelCase : Optional[int] = S[s : s + size][start_token_masks[s : s + size]] _UpperCAmelCase : List[Any] = S[s : s + size][end_token_masks[s : s + size]] _UpperCAmelCase : Dict = torch.matmul(q[i] , s_start.T ).sum(1 ).softmax(0 ) _UpperCAmelCase : str = torch.matmul(q[i] , s_end.T ).sum(1 ).softmax(0 ) if p_starts is not None: _UpperCAmelCase : Optional[int] = torch.vstack((p_starts, p_start) ) _UpperCAmelCase : Union[str, Any] = torch.vstack((p_ends, p_end) ) else: _UpperCAmelCase : Dict = p_start _UpperCAmelCase : List[str] = p_end return p_starts, p_ends
31
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) _SCREAMING_SNAKE_CASE = {"configuration_mbart": ["MBART_PRETRAINED_CONFIG_ARCHIVE_MAP", "MBartConfig", "MBartOnnxConfig"]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = ["MBartTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = ["MBartTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = [ "MBART_PRETRAINED_MODEL_ARCHIVE_LIST", "MBartForCausalLM", "MBartForConditionalGeneration", "MBartForQuestionAnswering", "MBartForSequenceClassification", "MBartModel", "MBartPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = [ "TFMBartForConditionalGeneration", "TFMBartModel", "TFMBartPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = [ "FlaxMBartForConditionalGeneration", "FlaxMBartForQuestionAnswering", "FlaxMBartForSequenceClassification", "FlaxMBartModel", "FlaxMBartPreTrainedModel", ] if TYPE_CHECKING: from .configuration_mbart import MBART_PRETRAINED_CONFIG_ARCHIVE_MAP, MBartConfig, MBartOnnxConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mbart import MBartTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mbart_fast import MBartTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mbart import ( MBART_PRETRAINED_MODEL_ARCHIVE_LIST, MBartForCausalLM, MBartForConditionalGeneration, MBartForQuestionAnswering, MBartForSequenceClassification, MBartModel, MBartPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mbart import TFMBartForConditionalGeneration, TFMBartModel, TFMBartPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_mbart import ( FlaxMBartForConditionalGeneration, FlaxMBartForQuestionAnswering, FlaxMBartForSequenceClassification, FlaxMBartModel, FlaxMBartPreTrainedModel, ) else: import sys _SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
158
0
from __future__ import annotations SCREAMING_SNAKE_CASE__ = tuple[int, int, int] SCREAMING_SNAKE_CASE__ = tuple[str, str, str] # used alphabet -------------------------- # from string.ascii_uppercase SCREAMING_SNAKE_CASE__ = """ABCDEFGHIJKLMNOPQRSTUVWXYZ""" # -------------------------- default selection -------------------------- # rotors -------------------------- SCREAMING_SNAKE_CASE__ = """EGZWVONAHDCLFQMSIPJBYUKXTR""" SCREAMING_SNAKE_CASE__ = """FOBHMDKEXQNRAULPGSJVTYICZW""" SCREAMING_SNAKE_CASE__ = """ZJXESIUQLHAVRMDOYGTNFWPBKC""" # reflector -------------------------- SCREAMING_SNAKE_CASE__ = { """A""": """N""", """N""": """A""", """B""": """O""", """O""": """B""", """C""": """P""", """P""": """C""", """D""": """Q""", """Q""": """D""", """E""": """R""", """R""": """E""", """F""": """S""", """S""": """F""", """G""": """T""", """T""": """G""", """H""": """U""", """U""": """H""", """I""": """V""", """V""": """I""", """J""": """W""", """W""": """J""", """K""": """X""", """X""": """K""", """L""": """Y""", """Y""": """L""", """M""": """Z""", """Z""": """M""", } # -------------------------- extra rotors -------------------------- SCREAMING_SNAKE_CASE__ = """RMDJXFUWGISLHVTCQNKYPBEZOA""" SCREAMING_SNAKE_CASE__ = """SGLCPQWZHKXAREONTFBVIYJUDM""" SCREAMING_SNAKE_CASE__ = """HVSICLTYKQUBXDWAJZOMFGPREN""" SCREAMING_SNAKE_CASE__ = """RZWQHFMVDBKICJLNTUXAGYPSOE""" SCREAMING_SNAKE_CASE__ = """LFKIJODBEGAMQPXVUHYSTCZRWN""" SCREAMING_SNAKE_CASE__ = """KOAEGVDHXPQZMLFTYWJNBRCIUS""" def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: RotorPositionT , __lowerCamelCase: RotorSelectionT , __lowerCamelCase: str ): '''simple docstring''' if (unique_rotsel := len(set(__lowerCamelCase ) )) < 3: lowercase_ = F'Please use 3 unique rotors (not {unique_rotsel})' raise Exception(__lowerCamelCase ) # Checks if rotor positions are valid lowercase_ , lowercase_ , lowercase_ = rotpos if not 0 < rotorposa <= len(__lowerCamelCase ): lowercase_ = F'First rotor position is not within range of 1..26 ({rotorposa}' raise ValueError(__lowerCamelCase ) if not 0 < rotorposa <= len(__lowerCamelCase ): lowercase_ = F'Second rotor position is not within range of 1..26 ({rotorposa})' raise ValueError(__lowerCamelCase ) if not 0 < rotorposa <= len(__lowerCamelCase ): lowercase_ = F'Third rotor position is not within range of 1..26 ({rotorposa})' raise ValueError(__lowerCamelCase ) # Validates string and returns dict lowercase_ = _plugboard(__lowerCamelCase ) return rotpos, rotsel, pbdict def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: str ): '''simple docstring''' if not isinstance(__lowerCamelCase , __lowerCamelCase ): lowercase_ = F'Plugboard setting isn\'t type string ({type(__lowerCamelCase )})' raise TypeError(__lowerCamelCase ) elif len(__lowerCamelCase ) % 2 != 0: lowercase_ = F'Odd number of symbols ({len(__lowerCamelCase )})' raise Exception(__lowerCamelCase ) elif pbstring == "": return {} pbstring.replace(" " , "" ) # Checks if all characters are unique lowercase_ = set() for i in pbstring: if i not in abc: lowercase_ = F'\'{i}\' not in list of symbols' raise Exception(__lowerCamelCase ) elif i in tmppbl: lowercase_ = F'Duplicate symbol ({i})' raise Exception(__lowerCamelCase ) else: tmppbl.add(__lowerCamelCase ) del tmppbl # Created the dictionary lowercase_ = {} for j in range(0 , len(__lowerCamelCase ) - 1 , 2 ): lowercase_ = pbstring[j + 1] lowercase_ = pbstring[j] return pb def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: str , __lowerCamelCase: RotorPositionT , __lowerCamelCase: RotorSelectionT = (rotora, rotora, rotora) , __lowerCamelCase: str = "" , ): '''simple docstring''' lowercase_ = text.upper() lowercase_ , lowercase_ , lowercase_ = _validator( __lowerCamelCase , __lowerCamelCase , plugb.upper() ) lowercase_ , lowercase_ , lowercase_ = rotor_position lowercase_ , lowercase_ , lowercase_ = rotor_selection rotorposa -= 1 rotorposa -= 1 rotorposa -= 1 lowercase_ = [] # encryption/decryption process -------------------------- for symbol in text: if symbol in abc: # 1st plugboard -------------------------- if symbol in plugboard: lowercase_ = plugboard[symbol] # rotor ra -------------------------- lowercase_ = abc.index(__lowerCamelCase ) + rotorposa lowercase_ = rotora[index % len(__lowerCamelCase )] # rotor rb -------------------------- lowercase_ = abc.index(__lowerCamelCase ) + rotorposa lowercase_ = rotora[index % len(__lowerCamelCase )] # rotor rc -------------------------- lowercase_ = abc.index(__lowerCamelCase ) + rotorposa lowercase_ = rotora[index % len(__lowerCamelCase )] # reflector -------------------------- # this is the reason you don't need another machine to decipher lowercase_ = reflector[symbol] # 2nd rotors lowercase_ = abc[rotora.index(__lowerCamelCase ) - rotorposa] lowercase_ = abc[rotora.index(__lowerCamelCase ) - rotorposa] lowercase_ = abc[rotora.index(__lowerCamelCase ) - rotorposa] # 2nd plugboard if symbol in plugboard: lowercase_ = plugboard[symbol] # moves/resets rotor positions rotorposa += 1 if rotorposa >= len(__lowerCamelCase ): lowercase_ = 0 rotorposa += 1 if rotorposa >= len(__lowerCamelCase ): lowercase_ = 0 rotorposa += 1 if rotorposa >= len(__lowerCamelCase ): lowercase_ = 0 # else: # pass # Error could be also raised # raise ValueError( # 'Invalid symbol('+repr(symbol)+')') result.append(__lowerCamelCase ) return "".join(__lowerCamelCase ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = """This is my Python script that emulates the Enigma machine from WWII.""" SCREAMING_SNAKE_CASE__ = (1, 1, 1) SCREAMING_SNAKE_CASE__ = """pictures""" SCREAMING_SNAKE_CASE__ = (rotora, rotora, rotora) SCREAMING_SNAKE_CASE__ = enigma(message, rotor_pos, rotor_sel, pb) print("""Encrypted message:""", en) print("""Decrypted message:""", enigma(en, rotor_pos, rotor_sel, pb))
297
import argparse import collections import numpy as np import torch from flax import traverse_util from tax import checkpoints from transformers import MTaConfig, UMTaEncoderModel, UMTaForConditionalGeneration from transformers.utils import logging logging.set_verbosity_info() def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: Any , __lowerCamelCase: List[str] , __lowerCamelCase: List[Any] ): '''simple docstring''' return params[F'{prefix}/{prefix}/relpos_bias/rel_embedding'][:, i, :] def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: List[Any] , __lowerCamelCase: Union[str, Any] , __lowerCamelCase: int , __lowerCamelCase: Any="attention" ): '''simple docstring''' lowercase_ = lowercase_ = np.ascontiguousarray(params[F'{prefix}/{prefix}/{layer_name}/key/kernel'][:, i, :, :] ) lowercase_ = k_tmp.reshape(k_tmp.shape[0] , k_tmp.shape[1] * k_tmp.shape[2] ) lowercase_ = np.ascontiguousarray(params[F'{prefix}/{prefix}/{layer_name}/out/kernel'][:, i, :, :] ) lowercase_ = o_tmp.reshape(o_tmp.shape[0] * o_tmp.shape[1] , o_tmp.shape[2] ) lowercase_ = np.ascontiguousarray(params[F'{prefix}/{prefix}/{layer_name}/query/kernel'][:, i, :, :] ) lowercase_ = q_tmp.reshape(q_tmp.shape[0] , q_tmp.shape[1] * q_tmp.shape[2] ) lowercase_ = np.ascontiguousarray(params[F'{prefix}/{prefix}/{layer_name}/value/kernel'][:, i, :, :] ) lowercase_ = v_tmp.reshape(v_tmp.shape[0] , v_tmp.shape[1] * v_tmp.shape[2] ) return k, o, q, v def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: Optional[Any] , __lowerCamelCase: str , __lowerCamelCase: Optional[Any] , __lowerCamelCase: Optional[Any]=False ): '''simple docstring''' if split_mlp_wi: lowercase_ = params[F'{prefix}/{prefix}/mlp/wi_0/kernel'][:, i, :] lowercase_ = params[F'{prefix}/{prefix}/mlp/wi_1/kernel'][:, i, :] lowercase_ = (wi_a, wi_a) else: lowercase_ = params[F'{prefix}/{prefix}/mlp/wi/kernel'][:, i, :] lowercase_ = params[F'{prefix}/{prefix}/mlp/wo/kernel'][:, i, :] return wi, wo def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: Optional[int] , __lowerCamelCase: Dict , __lowerCamelCase: int , __lowerCamelCase: Optional[Any] ): '''simple docstring''' return params[F'{prefix}/{prefix}/{layer_name}/scale'][:, i] def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: dict , *, __lowerCamelCase: int , __lowerCamelCase: bool , __lowerCamelCase: bool = False ): '''simple docstring''' lowercase_ = traverse_util.flatten_dict(variables["target"] ) lowercase_ = {"/".join(__lowerCamelCase ): v for k, v in old.items()} # v1.1 models have a gated GeLU with wi_0 and wi_1 instead of wi lowercase_ = "encoder/encoder/mlp/wi_0/kernel" in old print("Split MLP:" , __lowerCamelCase ) lowercase_ = collections.OrderedDict() # Shared embeddings. lowercase_ = old["token_embedder/embedding"] # Encoder. for i in range(__lowerCamelCase ): # Block i, layer 0 (Self Attention). lowercase_ = tax_layer_norm_lookup(__lowerCamelCase , __lowerCamelCase , "encoder" , "pre_attention_layer_norm" ) lowercase_ , lowercase_ , lowercase_ , lowercase_ = tax_attention_lookup(__lowerCamelCase , __lowerCamelCase , "encoder" , "attention" ) lowercase_ = layer_norm lowercase_ = k.T lowercase_ = o.T lowercase_ = q.T lowercase_ = v.T # Block i, layer 1 (MLP). lowercase_ = tax_layer_norm_lookup(__lowerCamelCase , __lowerCamelCase , "encoder" , "pre_mlp_layer_norm" ) lowercase_ , lowercase_ = tax_mlp_lookup(__lowerCamelCase , __lowerCamelCase , "encoder" , __lowerCamelCase ) lowercase_ = layer_norm if split_mlp_wi: lowercase_ = wi[0].T lowercase_ = wi[1].T else: lowercase_ = wi.T lowercase_ = wo.T if scalable_attention: # convert the rel_embedding of each layer lowercase_ = tax_relpos_bias_lookup( __lowerCamelCase , __lowerCamelCase , "encoder" ).T lowercase_ = old["encoder/encoder_norm/scale"] if not scalable_attention: lowercase_ = tax_relpos_bias_lookup( __lowerCamelCase , 0 , "encoder" ).T lowercase_ = tax_relpos_bias_lookup( __lowerCamelCase , 0 , "decoder" ).T if not is_encoder_only: # Decoder. for i in range(__lowerCamelCase ): # Block i, layer 0 (Self Attention). lowercase_ = tax_layer_norm_lookup(__lowerCamelCase , __lowerCamelCase , "decoder" , "pre_self_attention_layer_norm" ) lowercase_ , lowercase_ , lowercase_ , lowercase_ = tax_attention_lookup(__lowerCamelCase , __lowerCamelCase , "decoder" , "self_attention" ) lowercase_ = layer_norm lowercase_ = k.T lowercase_ = o.T lowercase_ = q.T lowercase_ = v.T # Block i, layer 1 (Cross Attention). lowercase_ = tax_layer_norm_lookup(__lowerCamelCase , __lowerCamelCase , "decoder" , "pre_cross_attention_layer_norm" ) lowercase_ , lowercase_ , lowercase_ , lowercase_ = tax_attention_lookup(__lowerCamelCase , __lowerCamelCase , "decoder" , "encoder_decoder_attention" ) lowercase_ = layer_norm lowercase_ = k.T lowercase_ = o.T lowercase_ = q.T lowercase_ = v.T # Block i, layer 2 (MLP). lowercase_ = tax_layer_norm_lookup(__lowerCamelCase , __lowerCamelCase , "decoder" , "pre_mlp_layer_norm" ) lowercase_ , lowercase_ = tax_mlp_lookup(__lowerCamelCase , __lowerCamelCase , "decoder" , __lowerCamelCase ) lowercase_ = layer_norm if split_mlp_wi: lowercase_ = wi[0].T lowercase_ = wi[1].T else: lowercase_ = wi.T lowercase_ = wo.T if scalable_attention: # convert the rel_embedding of each layer lowercase_ = tax_relpos_bias_lookup(__lowerCamelCase , __lowerCamelCase , "decoder" ).T lowercase_ = old["decoder/decoder_norm/scale"] # LM Head (only in v1.1 checkpoints, in v1.0 embeddings are used instead) if "decoder/logits_dense/kernel" in old: lowercase_ = old["decoder/logits_dense/kernel"].T return new def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: Dict , __lowerCamelCase: bool ): '''simple docstring''' lowercase_ = collections.OrderedDict([(k, torch.from_numpy(v.copy() )) for (k, v) in converted_params.items()] ) # Add what is missing. if "encoder.embed_tokens.weight" not in state_dict: lowercase_ = state_dict["shared.weight"] if not is_encoder_only: if "decoder.embed_tokens.weight" not in state_dict: lowercase_ = state_dict["shared.weight"] if "lm_head.weight" not in state_dict: # For old 1.0 models. print("Using shared word embeddings as lm_head." ) lowercase_ = state_dict["shared.weight"] return state_dict def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: Dict , __lowerCamelCase: Union[str, Any] , __lowerCamelCase: Union[str, Any] , __lowerCamelCase: List[Any] , __lowerCamelCase: Any ): '''simple docstring''' lowercase_ = checkpoints.load_tax_checkpoint(__lowerCamelCase ) lowercase_ = convert_tax_to_pytorch( __lowerCamelCase , num_layers=config.num_layers , is_encoder_only=__lowerCamelCase , scalable_attention=__lowerCamelCase ) lowercase_ = make_state_dict(__lowerCamelCase , __lowerCamelCase ) model.load_state_dict(__lowerCamelCase , strict=__lowerCamelCase ) def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: Dict , __lowerCamelCase: Optional[Any] , __lowerCamelCase: List[str] , __lowerCamelCase: bool = False , __lowerCamelCase: bool = False , ): '''simple docstring''' lowercase_ = MTaConfig.from_json_file(__lowerCamelCase ) print(F'Building PyTorch model from configuration: {config}' ) # Non-v1.1 checkpoints could also use T5Model, but this works for all. # The v1.0 checkpoints will simply have an LM head that is the word embeddings. if is_encoder_only: lowercase_ = UMTaEncoderModel(__lowerCamelCase ) else: lowercase_ = UMTaForConditionalGeneration(__lowerCamelCase ) # Load weights from tf checkpoint load_tax_weights_in_ta(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) # Save pytorch-model print(F'Save PyTorch model to {pytorch_dump_path}' ) model.save_pretrained(__lowerCamelCase ) # Verify that we can load the checkpoint. model.from_pretrained(__lowerCamelCase ) print("Done" ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser(description="""Converts a native T5X checkpoint into a PyTorch checkpoint.""") # Required parameters parser.add_argument( """--t5x_checkpoint_path""", default=None, type=str, required=True, help="""Path to the T5X checkpoint.""" ) parser.add_argument( """--config_file""", default=None, type=str, required=True, help="""The config json file corresponding to the pre-trained T5 model.\nThis specifies the model architecture.""", ) parser.add_argument( """--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) parser.add_argument( """--is_encoder_only""", action="""store_true""", help="""Check if the model is encoder-decoder model""", default=False ) parser.add_argument( """--scalable_attention""", action="""store_true""", help="""Whether the model uses scaled attention (umt5 model)""", default=False, ) SCREAMING_SNAKE_CASE__ = parser.parse_args() convert_tax_checkpoint_to_pytorch( args.tax_checkpoint_path, args.config_file, args.pytorch_dump_path, args.is_encoder_only, args.scalable_attention, )
297
1
'''simple docstring''' import numpy as np import torch from torch.nn import CrossEntropyLoss from transformers import AutoModelForCausalLM, AutoTokenizer import datasets from datasets import logging snake_case_ : str = '\\n\n' snake_case_ : str = '\nPerplexity (PPL) is one of the most common metrics for evaluating language models.\nIt is defined as the exponentiated average negative log-likelihood of a sequence.\n\nFor more information, see https://huggingface.co/docs/transformers/perplexity\n' snake_case_ : List[str] = '\nArgs:\n model_id (str): model used for calculating Perplexity\n NOTE: Perplexity can only be calculated for causal language models.\n This includes models such as gpt2, causal variations of bert,\n causal versions of t5, and more (the full list can be found\n in the AutoModelForCausalLM documentation here:\n https://huggingface.co/docs/transformers/master/en/model_doc/auto#transformers.AutoModelForCausalLM )\n\n input_texts (list of str): input text, each separate text snippet\n is one list entry.\n batch_size (int): the batch size to run texts through the model. Defaults to 16.\n add_start_token (bool): whether to add the start token to the texts,\n so the perplexity can include the probability of the first word. Defaults to True.\n device (str): device to run on, defaults to \'cuda\' when available\nReturns:\n perplexity: dictionary containing the perplexity scores for the texts\n in the input list, as well as the mean perplexity. If one of the input texts is\n longer than the max input length of the model, then it is truncated to the\n max length for the perplexity computation.\nExamples:\n Example 1:\n >>> perplexity = datasets.load_metric("perplexity")\n >>> input_texts = ["lorem ipsum", "Happy Birthday!", "Bienvenue"]\n >>> results = perplexity.compute(model_id=\'gpt2\',\n ... add_start_token=False,\n ... input_texts=input_texts) # doctest:+ELLIPSIS\n >>> print(list(results.keys()))\n [\'perplexities\', \'mean_perplexity\']\n >>> print(round(results["mean_perplexity"], 2))\n 78.22\n >>> print(round(results["perplexities"][0], 2))\n 11.11\n\n Example 2:\n >>> perplexity = datasets.load_metric("perplexity")\n >>> input_texts = datasets.load_dataset("wikitext",\n ... "wikitext-2-raw-v1",\n ... split="test")["text"][:50] # doctest:+ELLIPSIS\n [...]\n >>> input_texts = [s for s in input_texts if s!=\'\']\n >>> results = perplexity.compute(model_id=\'gpt2\',\n ... input_texts=input_texts) # doctest:+ELLIPSIS\n >>> print(list(results.keys()))\n [\'perplexities\', \'mean_perplexity\']\n >>> print(round(results["mean_perplexity"], 2))\n 60.35\n >>> print(round(results["perplexities"][0], 2))\n 81.12\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowercase__ ( datasets.Metric ): def UpperCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION ,citation=_CITATION ,inputs_description=_KWARGS_DESCRIPTION ,features=datasets.Features( { 'input_texts': datasets.Value('string' ), } ) ,reference_urls=['https://huggingface.co/docs/transformers/perplexity'] ,) def UpperCamelCase_ ( self : int ,lowerCamelCase__ : Tuple ,lowerCamelCase__ : int ,lowerCamelCase__ : int = 16 ,lowerCamelCase__ : bool = True ,lowerCamelCase__ : int=None ): '''simple docstring''' if device is not None: assert device in ["gpu", "cpu", "cuda"], "device should be either gpu or cpu." if device == "gpu": _UpperCamelCase : int = 'cuda' else: _UpperCamelCase : Optional[Any] = 'cuda' if torch.cuda.is_available() else 'cpu' _UpperCamelCase : Dict = AutoModelForCausalLM.from_pretrained(lowerCamelCase__ ) _UpperCamelCase : Dict = model.to(lowerCamelCase__ ) _UpperCamelCase : int = AutoTokenizer.from_pretrained(lowerCamelCase__ ) # if batch_size > 1 (which generally leads to padding being required), and # if there is not an already assigned pad_token, assign an existing # special token to also be the padding token if tokenizer.pad_token is None and batch_size > 1: _UpperCamelCase : List[Any] = list(tokenizer.special_tokens_map_extended.values() ) # check that the model already has at least one special token defined assert ( len(lowerCamelCase__ ) > 0 ), "If batch_size > 1, model must have at least one special token to use for padding. Please use a different model or set batch_size=1." # assign one of the special tokens to also be the pad token tokenizer.add_special_tokens({'pad_token': existing_special_tokens[0]} ) if add_start_token: # leave room for <BOS> token to be added: assert ( tokenizer.bos_token is not None ), "Input model must already have a BOS token if using add_start_token=True. Please use a different model, or set add_start_token=False" _UpperCamelCase : List[Any] = model.config.max_length - 1 else: _UpperCamelCase : Tuple = model.config.max_length _UpperCamelCase : Tuple = tokenizer( lowerCamelCase__ ,add_special_tokens=lowerCamelCase__ ,padding=lowerCamelCase__ ,truncation=lowerCamelCase__ ,max_length=lowerCamelCase__ ,return_tensors='pt' ,return_attention_mask=lowerCamelCase__ ,).to(lowerCamelCase__ ) _UpperCamelCase : str = encodings['input_ids'] _UpperCamelCase : int = encodings['attention_mask'] # check that each input is long enough: if add_start_token: assert torch.all(torch.ge(attn_masks.sum(1 ) ,1 ) ), "Each input text must be at least one token long." else: assert torch.all( torch.ge(attn_masks.sum(1 ) ,2 ) ), "When add_start_token=False, each input text must be at least two tokens long. Run with add_start_token=True if inputting strings of only one token, and remove all empty input strings." _UpperCamelCase : List[Any] = [] _UpperCamelCase : Dict = CrossEntropyLoss(reduction='none' ) for start_index in logging.tqdm(range(0 ,len(lowerCamelCase__ ) ,lowerCamelCase__ ) ): _UpperCamelCase : str = min(start_index + batch_size ,len(lowerCamelCase__ ) ) _UpperCamelCase : Tuple = encoded_texts[start_index:end_index] _UpperCamelCase : List[str] = attn_masks[start_index:end_index] if add_start_token: _UpperCamelCase : Dict = torch.tensor([[tokenizer.bos_token_id]] * encoded_batch.size(dim=0 ) ).to(lowerCamelCase__ ) _UpperCamelCase : List[Any] = torch.cat([bos_tokens_tensor, encoded_batch] ,dim=1 ) _UpperCamelCase : Tuple = torch.cat( [torch.ones(bos_tokens_tensor.size() ,dtype=torch.intaa ).to(lowerCamelCase__ ), attn_mask] ,dim=1 ) _UpperCamelCase : Tuple = encoded_batch with torch.no_grad(): _UpperCamelCase : Any = model(lowerCamelCase__ ,attention_mask=lowerCamelCase__ ).logits _UpperCamelCase : Dict = out_logits[..., :-1, :].contiguous() _UpperCamelCase : List[str] = labels[..., 1:].contiguous() _UpperCamelCase : Optional[int] = attn_mask[..., 1:].contiguous() _UpperCamelCase : Union[str, Any] = torch.expa( (loss_fct(shift_logits.transpose(1 ,2 ) ,lowerCamelCase__ ) * shift_attention_mask_batch).sum(1 ) / shift_attention_mask_batch.sum(1 ) ) ppls += perplexity_batch.tolist() return {"perplexities": ppls, "mean_perplexity": np.mean(lowerCamelCase__ )}
83
"""simple docstring""" import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import XLMRobertaTokenizerFast from diffusers import DDIMScheduler, KandinskyInpaintPipeline, KandinskyPriorPipeline, UNetaDConditionModel, VQModel from diffusers.pipelines.kandinsky.text_encoder import MCLIPConfig, MultilingualCLIP from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class __snake_case ( __lowerCAmelCase , unittest.TestCase ): a__ = KandinskyInpaintPipeline a__ = ["""prompt""", """image_embeds""", """negative_image_embeds""", """image""", """mask_image"""] a__ = [ """prompt""", """negative_prompt""", """image_embeds""", """negative_image_embeds""", """image""", """mask_image""", ] a__ = [ """generator""", """height""", """width""", """latents""", """guidance_scale""", """negative_prompt""", """num_inference_steps""", """return_dict""", """guidance_scale""", """num_images_per_prompt""", """output_type""", """return_dict""", ] a__ = False @property def lowerCamelCase_ ( self) -> Optional[int]: '''simple docstring''' return 32 @property def lowerCamelCase_ ( self) -> Tuple: '''simple docstring''' return 32 @property def lowerCamelCase_ ( self) -> Dict: '''simple docstring''' return self.time_input_dim @property def lowerCamelCase_ ( self) -> Dict: '''simple docstring''' return self.time_input_dim * 4 @property def lowerCamelCase_ ( self) -> List[Any]: '''simple docstring''' return 1_00 @property def lowerCamelCase_ ( self) -> List[Any]: '''simple docstring''' a__: Optional[int] = XLMRobertaTokenizerFast.from_pretrained('YiYiXu/tiny-random-mclip-base') return tokenizer @property def lowerCamelCase_ ( self) -> Any: '''simple docstring''' torch.manual_seed(0) a__: Dict = MCLIPConfig( numDims=self.cross_attention_dim , transformerDimensions=self.text_embedder_hidden_size , hidden_size=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=10_05 , ) a__: Optional[Any] = MultilingualCLIP(lowercase) a__: int = text_encoder.eval() return text_encoder @property def lowerCamelCase_ ( self) -> List[str]: '''simple docstring''' torch.manual_seed(0) a__: Any = { 'in_channels': 9, # Out channels is double in channels because predicts mean and variance 'out_channels': 8, 'addition_embed_type': 'text_image', 'down_block_types': ('ResnetDownsampleBlock2D', 'SimpleCrossAttnDownBlock2D'), 'up_block_types': ('SimpleCrossAttnUpBlock2D', 'ResnetUpsampleBlock2D'), 'mid_block_type': 'UNetMidBlock2DSimpleCrossAttn', 'block_out_channels': (self.block_out_channels_a, self.block_out_channels_a * 2), 'layers_per_block': 1, 'encoder_hid_dim': self.text_embedder_hidden_size, 'encoder_hid_dim_type': 'text_image_proj', 'cross_attention_dim': self.cross_attention_dim, 'attention_head_dim': 4, 'resnet_time_scale_shift': 'scale_shift', 'class_embed_type': None, } a__: str = UNetaDConditionModel(**lowercase) return model @property def lowerCamelCase_ ( self) -> Union[str, Any]: '''simple docstring''' return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def lowerCamelCase_ ( self) -> List[Any]: '''simple docstring''' torch.manual_seed(0) a__: Any = VQModel(**self.dummy_movq_kwargs) return model def lowerCamelCase_ ( self) -> Any: '''simple docstring''' a__: Dict = self.dummy_text_encoder a__: int = self.dummy_tokenizer a__: str = self.dummy_unet a__: Any = self.dummy_movq a__: Tuple = DDIMScheduler( num_train_timesteps=10_00 , beta_schedule='linear' , beta_start=0.00085 , beta_end=0.012 , clip_sample=lowercase , set_alpha_to_one=lowercase , steps_offset=1 , prediction_type='epsilon' , thresholding=lowercase , ) a__: Tuple = { 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'unet': unet, 'scheduler': scheduler, 'movq': movq, } return components def lowerCamelCase_ ( self , lowercase , lowercase=0) -> Any: '''simple docstring''' a__: List[Any] = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(lowercase)).to(lowercase) a__: int = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(seed + 1)).to(lowercase) # create init_image a__: Optional[int] = floats_tensor((1, 3, 64, 64) , rng=random.Random(lowercase)).to(lowercase) a__: int = image.cpu().permute(0 , 2 , 3 , 1)[0] a__: Optional[int] = Image.fromarray(np.uinta(lowercase)).convert('RGB').resize((2_56, 2_56)) # create mask a__: Tuple = np.ones((64, 64) , dtype=np.floataa) a__: Optional[Any] = 0 if str(lowercase).startswith('mps'): a__: str = torch.manual_seed(lowercase) else: a__: Dict = torch.Generator(device=lowercase).manual_seed(lowercase) a__: Optional[int] = { 'prompt': 'horse', 'image': init_image, 'mask_image': mask, 'image_embeds': image_embeds, 'negative_image_embeds': negative_image_embeds, 'generator': generator, 'height': 64, 'width': 64, 'num_inference_steps': 2, 'guidance_scale': 4.0, 'output_type': 'np', } return inputs def lowerCamelCase_ ( self) -> str: '''simple docstring''' a__: Optional[Any] = 'cpu' a__: List[Any] = self.get_dummy_components() a__: Optional[Any] = self.pipeline_class(**lowercase) a__: str = pipe.to(lowercase) pipe.set_progress_bar_config(disable=lowercase) a__: Optional[int] = pipe(**self.get_dummy_inputs(lowercase)) a__: List[str] = output.images a__: int = pipe( **self.get_dummy_inputs(lowercase) , return_dict=lowercase , )[0] a__: Optional[Any] = image[0, -3:, -3:, -1] a__: List[Any] = image_from_tuple[0, -3:, -3:, -1] print(f'image.shape {image.shape}') assert image.shape == (1, 64, 64, 3) a__: str = np.array( [0.8326919, 0.73790467, 0.20918581, 0.9309612, 0.5511791, 0.43713328, 0.5513321, 0.49922934, 0.59497786]) assert ( np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 ), f' expected_slice {expected_slice}, but got {image_slice.flatten()}' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2 ), f' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}' def lowerCamelCase_ ( self) -> str: '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=3e-3) @slow @require_torch_gpu class __snake_case ( unittest.TestCase ): def lowerCamelCase_ ( self) -> Optional[Any]: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCamelCase_ ( self) -> Dict: '''simple docstring''' a__: List[Any] = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinsky/kandinsky_inpaint_cat_with_hat_fp16.npy') a__: int = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinsky/cat.png') a__: Union[str, Any] = np.ones((7_68, 7_68) , dtype=np.floataa) a__: int = 0 a__: Optional[int] = 'a hat' a__: int = KandinskyPriorPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-1-prior' , torch_dtype=torch.floataa) pipe_prior.to(lowercase) a__: Any = KandinskyInpaintPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-1-inpaint' , torch_dtype=torch.floataa) a__: Optional[Any] = pipeline.to(lowercase) pipeline.set_progress_bar_config(disable=lowercase) a__: Dict = torch.Generator(device='cpu').manual_seed(0) a__ , a__: Optional[Any] = pipe_prior( lowercase , generator=lowercase , num_inference_steps=5 , negative_prompt='' , ).to_tuple() a__: List[str] = pipeline( lowercase , image=lowercase , mask_image=lowercase , image_embeds=lowercase , negative_image_embeds=lowercase , generator=lowercase , num_inference_steps=1_00 , height=7_68 , width=7_68 , output_type='np' , ) a__: str = output.images[0] assert image.shape == (7_68, 7_68, 3) assert_mean_pixel_difference(lowercase , lowercase)
290
0
from timeit import timeit def UpperCAmelCase ( a_ ) -> int: """simple docstring""" if number < 0: raise ValueError("the value of input must not be negative" ) __A = 0 while number: number &= number - 1 result += 1 return result def UpperCAmelCase ( a_ ) -> int: """simple docstring""" if number < 0: raise ValueError("the value of input must not be negative" ) __A = 0 while number: if number % 2 == 1: result += 1 number >>= 1 return result def UpperCAmelCase ( ) -> None: """simple docstring""" def do_benchmark(a_ ) -> None: __A = "import __main__ as z" print(F'''Benchmark when {number = }:''' ) print(F'''{get_set_bits_count_using_modulo_operator(a_ ) = }''' ) __A = timeit("z.get_set_bits_count_using_modulo_operator(25)" , setup=a_ ) print(F'''timeit() runs in {timing} seconds''' ) print(F'''{get_set_bits_count_using_brian_kernighans_algorithm(a_ ) = }''' ) __A = timeit( "z.get_set_bits_count_using_brian_kernighans_algorithm(25)" , setup=a_ , ) print(F'''timeit() runs in {timing} seconds''' ) for number in (2_5, 3_7, 5_8, 0): do_benchmark(a_ ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
124
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import PoolFormerImageProcessor class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def __init__( self : Optional[int] ,A : List[str] ,A : List[Any]=7 ,A : Any=3 ,A : int=30 ,A : List[Any]=4_00 ,A : str=True ,A : int=None ,A : List[str]=0.9 ,A : Dict=None ,A : int=True ,A : Any=[0.5, 0.5, 0.5] ,A : Optional[int]=[0.5, 0.5, 0.5] ,): __A = size if size is not None else {"shortest_edge": 30} __A = crop_size if crop_size is not None else {"height": 30, "width": 30} __A = parent __A = batch_size __A = num_channels __A = min_resolution __A = max_resolution __A = do_resize_and_center_crop __A = size __A = crop_pct __A = crop_size __A = do_normalize __A = image_mean __A = image_std def UpperCamelCase_ ( self : int ): return { "size": self.size, "do_resize_and_center_crop": self.do_resize_and_center_crop, "crop_pct": self.crop_pct, "crop_size": self.crop_size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, } @require_torch @require_vision class UpperCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' snake_case_ = PoolFormerImageProcessor if is_vision_available() else None def UpperCamelCase_ ( self : Optional[Any] ): __A = PoolFormerImageProcessingTester(self ) @property def UpperCamelCase_ ( self : List[Any] ): return self.image_processor_tester.prepare_image_processor_dict() def UpperCamelCase_ ( self : Tuple ): __A = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(A ,"do_resize_and_center_crop" ) ) self.assertTrue(hasattr(A ,"size" ) ) self.assertTrue(hasattr(A ,"crop_pct" ) ) self.assertTrue(hasattr(A ,"do_normalize" ) ) self.assertTrue(hasattr(A ,"image_mean" ) ) self.assertTrue(hasattr(A ,"image_std" ) ) def UpperCamelCase_ ( self : Union[str, Any] ): __A = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size ,{"shortest_edge": 30} ) self.assertEqual(image_processor.crop_size ,{"height": 30, "width": 30} ) __A = self.image_processing_class.from_dict(self.image_processor_dict ,size=42 ,crop_size=84 ) self.assertEqual(image_processor.size ,{"shortest_edge": 42} ) self.assertEqual(image_processor.crop_size ,{"height": 84, "width": 84} ) def UpperCamelCase_ ( self : List[str] ): pass def UpperCamelCase_ ( self : Optional[int] ): # Initialize image_processing __A = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __A = prepare_image_inputs(self.image_processor_tester ,equal_resolution=A ) for image in image_inputs: self.assertIsInstance(A ,Image.Image ) # Test not batched input __A = image_processing(image_inputs[0] ,return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) ,) # Test batched __A = image_processing(A ,return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) ,) def UpperCamelCase_ ( self : List[Any] ): # Initialize image_processing __A = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __A = prepare_image_inputs(self.image_processor_tester ,equal_resolution=A ,numpify=A ) for image in image_inputs: self.assertIsInstance(A ,np.ndarray ) # Test not batched input __A = image_processing(image_inputs[0] ,return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) ,) # Test batched __A = image_processing(A ,return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) ,) def UpperCamelCase_ ( self : List[Any] ): # Initialize image_processing __A = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __A = prepare_image_inputs(self.image_processor_tester ,equal_resolution=A ,torchify=A ) for image in image_inputs: self.assertIsInstance(A ,torch.Tensor ) # Test not batched input __A = image_processing(image_inputs[0] ,return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) ,) # Test batched __A = image_processing(A ,return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) ,)
124
1
from ...configuration_utils import PretrainedConfig from ...utils import logging _A = logging.get_logger(__name__) _A = { 'microsoft/swinv2-tiny-patch4-window8-256': ( 'https://huggingface.co/microsoft/swinv2-tiny-patch4-window8-256/resolve/main/config.json' ), } class UpperCAmelCase__ ( A_ ): """simple docstring""" UpperCAmelCase__ : str = "swinv2" UpperCAmelCase__ : Dict = { "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers", } def __init__( self , A_=224 , A_=4 , A_=3 , A_=96 , A_=[2, 2, 6, 2] , A_=[3, 6, 12, 24] , A_=7 , A_=4.0 , A_=True , A_=0.0 , A_=0.0 , A_=0.1 , A_="gelu" , A_=False , A_=0.02 , A_=1E-5 , A_=32 , **A_ , ) -> Any: super().__init__(**A_ ) __UpperCamelCase =image_size __UpperCamelCase =patch_size __UpperCamelCase =num_channels __UpperCamelCase =embed_dim __UpperCamelCase =depths __UpperCamelCase =len(A_ ) __UpperCamelCase =num_heads __UpperCamelCase =window_size __UpperCamelCase =mlp_ratio __UpperCamelCase =qkv_bias __UpperCamelCase =hidden_dropout_prob __UpperCamelCase =attention_probs_dropout_prob __UpperCamelCase =drop_path_rate __UpperCamelCase =hidden_act __UpperCamelCase =use_absolute_embeddings __UpperCamelCase =layer_norm_eps __UpperCamelCase =initializer_range __UpperCamelCase =encoder_stride # we set the hidden_size attribute in order to make Swinv2 work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model __UpperCamelCase =int(embed_dim * 2 ** (len(A_ ) - 1) ) __UpperCamelCase =(0, 0, 0, 0)
62
from typing import Optional import pyspark from .. import Features, NamedSplit from ..download import DownloadMode from ..packaged_modules.spark.spark import Spark from .abc import AbstractDatasetReader class lowerCAmelCase_ ( a__ ): def __init__( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ = None, SCREAMING_SNAKE_CASE_ = None, SCREAMING_SNAKE_CASE_ = True, SCREAMING_SNAKE_CASE_ = None, SCREAMING_SNAKE_CASE_ = False, SCREAMING_SNAKE_CASE_ = None, SCREAMING_SNAKE_CASE_ = True, SCREAMING_SNAKE_CASE_ = "arrow", **SCREAMING_SNAKE_CASE_, ) -> Optional[int]: super().__init__( split=SCREAMING_SNAKE_CASE_, features=SCREAMING_SNAKE_CASE_, cache_dir=SCREAMING_SNAKE_CASE_, keep_in_memory=SCREAMING_SNAKE_CASE_, streaming=SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_, ) UpperCamelCase : List[str] = load_from_cache_file UpperCamelCase : List[str] = file_format UpperCamelCase : Optional[int] = Spark( df=SCREAMING_SNAKE_CASE_, features=SCREAMING_SNAKE_CASE_, cache_dir=SCREAMING_SNAKE_CASE_, working_dir=SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_, ) def snake_case_ ( self ) -> int: if self.streaming: return self.builder.as_streaming_dataset(split=self.split ) UpperCamelCase : Union[str, Any] = None if self._load_from_cache_file else DownloadMode.FORCE_REDOWNLOAD self.builder.download_and_prepare( download_mode=SCREAMING_SNAKE_CASE_, file_format=self._file_format, ) return self.builder.as_dataset(split=self.split )
119
0
"""simple docstring""" import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class UpperCamelCase__( __A ): lowerCAmelCase__ : List[Any] = ['image_processor', 'tokenizer'] lowerCAmelCase__ : Dict = 'ChineseCLIPImageProcessor' lowerCAmelCase__ : Optional[Any] = ('BertTokenizer', 'BertTokenizerFast') def __init__( self ,__UpperCAmelCase=None ,__UpperCAmelCase=None ,**__UpperCAmelCase ) -> int: A__ = None if "feature_extractor" in kwargs: warnings.warn( 'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`' ' instead.' ,__UpperCAmelCase ,) A__ = kwargs.pop('feature_extractor' ) A__ = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('You need to specify an `image_processor`.' ) if tokenizer is None: raise ValueError('You need to specify a `tokenizer`.' ) super().__init__(__UpperCAmelCase ,__UpperCAmelCase ) A__ = self.image_processor def __call__( self ,__UpperCAmelCase=None ,__UpperCAmelCase=None ,__UpperCAmelCase=None ,**__UpperCAmelCase ) -> Tuple: if text is None and images is None: raise ValueError('You have to specify either text or images. Both cannot be none.' ) if text is not None: A__ = self.tokenizer(__UpperCAmelCase ,return_tensors=__UpperCAmelCase ,**__UpperCAmelCase ) if images is not None: A__ = self.image_processor(__UpperCAmelCase ,return_tensors=__UpperCAmelCase ,**__UpperCAmelCase ) if text is not None and images is not None: A__ = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**__UpperCAmelCase ) ,tensor_type=__UpperCAmelCase ) def snake_case__ ( self ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> List[Any]: return self.tokenizer.batch_decode(*__UpperCAmelCase ,**__UpperCAmelCase ) def snake_case__ ( self ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> Optional[int]: return self.tokenizer.decode(*__UpperCAmelCase ,**__UpperCAmelCase ) @property def snake_case__ ( self ) -> Dict: A__ = self.tokenizer.model_input_names A__ = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def snake_case__ ( self ) -> Union[str, Any]: warnings.warn( '`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.' ,__UpperCAmelCase ,) return self.image_processor_class
154
"""simple docstring""" def UpperCAmelCase ( UpperCamelCase__ = 100 ): """simple docstring""" A__ = (n * (n + 1) // 2) ** 2 A__ = n * (n + 1) * (2 * n + 1) // 6 return sum_cubes - sum_squares if __name__ == "__main__": print(F'''{solution() = }''')
154
1
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.auto import AutoModelForSeqaSeqLM, AutoTokenizer from .base import PipelineTool __magic_name__: Tuple = { "Acehnese Arabic": "ace_Arab", "Acehnese Latin": "ace_Latn", "Mesopotamian Arabic": "acm_Arab", "Ta'izzi-Adeni Arabic": "acq_Arab", "Tunisian Arabic": "aeb_Arab", "Afrikaans": "afr_Latn", "South Levantine Arabic": "ajp_Arab", "Akan": "aka_Latn", "Amharic": "amh_Ethi", "North Levantine Arabic": "apc_Arab", "Modern Standard Arabic": "arb_Arab", "Modern Standard Arabic Romanized": "arb_Latn", "Najdi Arabic": "ars_Arab", "Moroccan Arabic": "ary_Arab", "Egyptian Arabic": "arz_Arab", "Assamese": "asm_Beng", "Asturian": "ast_Latn", "Awadhi": "awa_Deva", "Central Aymara": "ayr_Latn", "South Azerbaijani": "azb_Arab", "North Azerbaijani": "azj_Latn", "Bashkir": "bak_Cyrl", "Bambara": "bam_Latn", "Balinese": "ban_Latn", "Belarusian": "bel_Cyrl", "Bemba": "bem_Latn", "Bengali": "ben_Beng", "Bhojpuri": "bho_Deva", "Banjar Arabic": "bjn_Arab", "Banjar Latin": "bjn_Latn", "Standard Tibetan": "bod_Tibt", "Bosnian": "bos_Latn", "Buginese": "bug_Latn", "Bulgarian": "bul_Cyrl", "Catalan": "cat_Latn", "Cebuano": "ceb_Latn", "Czech": "ces_Latn", "Chokwe": "cjk_Latn", "Central Kurdish": "ckb_Arab", "Crimean Tatar": "crh_Latn", "Welsh": "cym_Latn", "Danish": "dan_Latn", "German": "deu_Latn", "Southwestern Dinka": "dik_Latn", "Dyula": "dyu_Latn", "Dzongkha": "dzo_Tibt", "Greek": "ell_Grek", "English": "eng_Latn", "Esperanto": "epo_Latn", "Estonian": "est_Latn", "Basque": "eus_Latn", "Ewe": "ewe_Latn", "Faroese": "fao_Latn", "Fijian": "fij_Latn", "Finnish": "fin_Latn", "Fon": "fon_Latn", "French": "fra_Latn", "Friulian": "fur_Latn", "Nigerian Fulfulde": "fuv_Latn", "Scottish Gaelic": "gla_Latn", "Irish": "gle_Latn", "Galician": "glg_Latn", "Guarani": "grn_Latn", "Gujarati": "guj_Gujr", "Haitian Creole": "hat_Latn", "Hausa": "hau_Latn", "Hebrew": "heb_Hebr", "Hindi": "hin_Deva", "Chhattisgarhi": "hne_Deva", "Croatian": "hrv_Latn", "Hungarian": "hun_Latn", "Armenian": "hye_Armn", "Igbo": "ibo_Latn", "Ilocano": "ilo_Latn", "Indonesian": "ind_Latn", "Icelandic": "isl_Latn", "Italian": "ita_Latn", "Javanese": "jav_Latn", "Japanese": "jpn_Jpan", "Kabyle": "kab_Latn", "Jingpho": "kac_Latn", "Kamba": "kam_Latn", "Kannada": "kan_Knda", "Kashmiri Arabic": "kas_Arab", "Kashmiri Devanagari": "kas_Deva", "Georgian": "kat_Geor", "Central Kanuri Arabic": "knc_Arab", "Central Kanuri Latin": "knc_Latn", "Kazakh": "kaz_Cyrl", "Kabiyè": "kbp_Latn", "Kabuverdianu": "kea_Latn", "Khmer": "khm_Khmr", "Kikuyu": "kik_Latn", "Kinyarwanda": "kin_Latn", "Kyrgyz": "kir_Cyrl", "Kimbundu": "kmb_Latn", "Northern Kurdish": "kmr_Latn", "Kikongo": "kon_Latn", "Korean": "kor_Hang", "Lao": "lao_Laoo", "Ligurian": "lij_Latn", "Limburgish": "lim_Latn", "Lingala": "lin_Latn", "Lithuanian": "lit_Latn", "Lombard": "lmo_Latn", "Latgalian": "ltg_Latn", "Luxembourgish": "ltz_Latn", "Luba-Kasai": "lua_Latn", "Ganda": "lug_Latn", "Luo": "luo_Latn", "Mizo": "lus_Latn", "Standard Latvian": "lvs_Latn", "Magahi": "mag_Deva", "Maithili": "mai_Deva", "Malayalam": "mal_Mlym", "Marathi": "mar_Deva", "Minangkabau Arabic ": "min_Arab", "Minangkabau Latin": "min_Latn", "Macedonian": "mkd_Cyrl", "Plateau Malagasy": "plt_Latn", "Maltese": "mlt_Latn", "Meitei Bengali": "mni_Beng", "Halh Mongolian": "khk_Cyrl", "Mossi": "mos_Latn", "Maori": "mri_Latn", "Burmese": "mya_Mymr", "Dutch": "nld_Latn", "Norwegian Nynorsk": "nno_Latn", "Norwegian Bokmål": "nob_Latn", "Nepali": "npi_Deva", "Northern Sotho": "nso_Latn", "Nuer": "nus_Latn", "Nyanja": "nya_Latn", "Occitan": "oci_Latn", "West Central Oromo": "gaz_Latn", "Odia": "ory_Orya", "Pangasinan": "pag_Latn", "Eastern Panjabi": "pan_Guru", "Papiamento": "pap_Latn", "Western Persian": "pes_Arab", "Polish": "pol_Latn", "Portuguese": "por_Latn", "Dari": "prs_Arab", "Southern Pashto": "pbt_Arab", "Ayacucho Quechua": "quy_Latn", "Romanian": "ron_Latn", "Rundi": "run_Latn", "Russian": "rus_Cyrl", "Sango": "sag_Latn", "Sanskrit": "san_Deva", "Santali": "sat_Olck", "Sicilian": "scn_Latn", "Shan": "shn_Mymr", "Sinhala": "sin_Sinh", "Slovak": "slk_Latn", "Slovenian": "slv_Latn", "Samoan": "smo_Latn", "Shona": "sna_Latn", "Sindhi": "snd_Arab", "Somali": "som_Latn", "Southern Sotho": "sot_Latn", "Spanish": "spa_Latn", "Tosk Albanian": "als_Latn", "Sardinian": "srd_Latn", "Serbian": "srp_Cyrl", "Swati": "ssw_Latn", "Sundanese": "sun_Latn", "Swedish": "swe_Latn", "Swahili": "swh_Latn", "Silesian": "szl_Latn", "Tamil": "tam_Taml", "Tatar": "tat_Cyrl", "Telugu": "tel_Telu", "Tajik": "tgk_Cyrl", "Tagalog": "tgl_Latn", "Thai": "tha_Thai", "Tigrinya": "tir_Ethi", "Tamasheq Latin": "taq_Latn", "Tamasheq Tifinagh": "taq_Tfng", "Tok Pisin": "tpi_Latn", "Tswana": "tsn_Latn", "Tsonga": "tso_Latn", "Turkmen": "tuk_Latn", "Tumbuka": "tum_Latn", "Turkish": "tur_Latn", "Twi": "twi_Latn", "Central Atlas Tamazight": "tzm_Tfng", "Uyghur": "uig_Arab", "Ukrainian": "ukr_Cyrl", "Umbundu": "umb_Latn", "Urdu": "urd_Arab", "Northern Uzbek": "uzn_Latn", "Venetian": "vec_Latn", "Vietnamese": "vie_Latn", "Waray": "war_Latn", "Wolof": "wol_Latn", "Xhosa": "xho_Latn", "Eastern Yiddish": "ydd_Hebr", "Yoruba": "yor_Latn", "Yue Chinese": "yue_Hant", "Chinese Simplified": "zho_Hans", "Chinese Traditional": "zho_Hant", "Standard Malay": "zsm_Latn", "Zulu": "zul_Latn", } class snake_case__ ( _lowerCAmelCase ): lowercase__ : List[str] = '''facebook/nllb-200-distilled-600M''' lowercase__ : List[Any] = ( '''This is a tool that translates text from a language to another. It takes three inputs: `text`, which should ''' '''be the text to translate, `src_lang`, which should be the language of the text to translate and `tgt_lang`, ''' '''which should be the language for the desired ouput language. Both `src_lang` and `tgt_lang` are written in ''' '''plain English, such as \'Romanian\', or \'Albanian\'. It returns the text translated in `tgt_lang`.''' ) lowercase__ : List[str] = '''translator''' lowercase__ : Optional[Any] = AutoTokenizer lowercase__ : int = AutoModelForSeqaSeqLM lowercase__ : List[Any] = LANGUAGE_CODES lowercase__ : str = ['''text''', '''text''', '''text'''] lowercase__ : Any = ['''text'''] def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> List[str]: if src_lang not in self.lang_to_code: raise ValueError(F'{src_lang} is not a supported language.' ) if tgt_lang not in self.lang_to_code: raise ValueError(F'{tgt_lang} is not a supported language.' ) __magic_name__ : Tuple = self.lang_to_code[src_lang] __magic_name__ : Dict = self.lang_to_code[tgt_lang] return self.pre_processor._build_translation_inputs( lowerCAmelCase__ , return_tensors="""pt""" , src_lang=lowerCAmelCase__ , tgt_lang=lowerCAmelCase__ ) def __magic_name__ ( self , lowerCAmelCase__ ) -> Dict: return self.model.generate(**lowerCAmelCase__ ) def __magic_name__ ( self , lowerCAmelCase__ ) -> Dict: return self.post_processor.decode(outputs[0].tolist() , skip_special_tokens=lowerCAmelCase__ )
342
from __future__ import annotations import math import random from collections.abc import Collection from typing import overload class snake_case__ : def __init__( self , lowerCAmelCase__ = None ) -> None: if components is None: __magic_name__ : Any = [] __magic_name__ : List[str] = list(lowerCAmelCase__ ) def __len__( self ) -> int: return len(self.__components ) def __str__( self ) -> str: return "(" + ",".join(map(lowerCAmelCase__ , self.__components ) ) + ")" def __add__( self , lowerCAmelCase__ ) -> Vector: __magic_name__ : Dict = len(self ) if size == len(lowerCAmelCase__ ): __magic_name__ : str = [self.__components[i] + other.component(lowerCAmelCase__ ) for i in range(lowerCAmelCase__ )] return Vector(lowerCAmelCase__ ) else: raise Exception("""must have the same size""" ) def __sub__( self , lowerCAmelCase__ ) -> Vector: __magic_name__ : int = len(self ) if size == len(lowerCAmelCase__ ): __magic_name__ : str = [self.__components[i] - other.component(lowerCAmelCase__ ) for i in range(lowerCAmelCase__ )] return Vector(lowerCAmelCase__ ) else: # error case raise Exception("""must have the same size""" ) @overload def __mul__( self , lowerCAmelCase__ ) -> Vector: ... @overload def __mul__( self , lowerCAmelCase__ ) -> float: ... def __mul__( self , lowerCAmelCase__ ) -> float | Vector: if isinstance(lowerCAmelCase__ , (float, int) ): __magic_name__ : Optional[Any] = [c * other for c in self.__components] return Vector(lowerCAmelCase__ ) elif isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) and len(self ) == len(lowerCAmelCase__ ): __magic_name__ : Optional[Any] = len(self ) __magic_name__ : List[Any] = [self.__components[i] * other.component(lowerCAmelCase__ ) for i in range(lowerCAmelCase__ )] return sum(lowerCAmelCase__ ) else: # error case raise Exception("""invalid operand!""" ) def __magic_name__ ( self ) -> Vector: return Vector(self.__components ) def __magic_name__ ( self , lowerCAmelCase__ ) -> float: if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) and -len(self.__components ) <= i < len(self.__components ): return self.__components[i] else: raise Exception("""index out of range""" ) def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ ) -> None: assert -len(self.__components ) <= pos < len(self.__components ) __magic_name__ : Optional[int] = value def __magic_name__ ( self ) -> float: if len(self.__components ) == 0: raise Exception("""Vector is empty""" ) __magic_name__ : Dict = [c**2 for c in self.__components] return math.sqrt(sum(lowerCAmelCase__ ) ) def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = False ) -> float: __magic_name__ : Optional[Any] = self * other __magic_name__ : List[str] = self.euclidean_length() * other.euclidean_length() if deg: return math.degrees(math.acos(num / den ) ) else: return math.acos(num / den ) def UpperCamelCase ( _A ): """simple docstring""" assert isinstance(_A, _A ) return Vector([0] * dimension ) def UpperCamelCase ( _A, _A ): """simple docstring""" assert isinstance(_A, _A ) and (isinstance(_A, _A )) __magic_name__ : Union[str, Any] = [0] * dimension __magic_name__ : Optional[int] = 1 return Vector(_A ) def UpperCamelCase ( _A, _A, _A ): """simple docstring""" assert ( isinstance(_A, _A ) and isinstance(_A, _A ) and (isinstance(_A, (int, float) )) ) return x * scalar + y def UpperCamelCase ( _A, _A, _A ): """simple docstring""" random.seed(_A ) __magic_name__ : Union[str, Any] = [random.randint(_A, _A ) for _ in range(_A )] return Vector(_A ) class snake_case__ : def __init__( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> None: __magic_name__ : Dict = matrix __magic_name__ : Tuple = w __magic_name__ : Union[str, Any] = h def __str__( self ) -> str: __magic_name__ : Dict = """""" for i in range(self.__height ): ans += "|" for j in range(self.__width ): if j < self.__width - 1: ans += str(self.__matrix[i][j] ) + "," else: ans += str(self.__matrix[i][j] ) + "|\n" return ans def __add__( self , lowerCAmelCase__ ) -> Matrix: if self.__width == other.width() and self.__height == other.height(): __magic_name__ : Tuple = [] for i in range(self.__height ): __magic_name__ : Tuple = [ self.__matrix[i][j] + other.component(lowerCAmelCase__ , lowerCAmelCase__ ) for j in range(self.__width ) ] matrix.append(lowerCAmelCase__ ) return Matrix(lowerCAmelCase__ , self.__width , self.__height ) else: raise Exception("""matrix must have the same dimension!""" ) def __sub__( self , lowerCAmelCase__ ) -> Matrix: if self.__width == other.width() and self.__height == other.height(): __magic_name__ : Optional[Any] = [] for i in range(self.__height ): __magic_name__ : int = [ self.__matrix[i][j] - other.component(lowerCAmelCase__ , lowerCAmelCase__ ) for j in range(self.__width ) ] matrix.append(lowerCAmelCase__ ) return Matrix(lowerCAmelCase__ , self.__width , self.__height ) else: raise Exception("""matrices must have the same dimension!""" ) @overload def __mul__( self , lowerCAmelCase__ ) -> Matrix: ... @overload def __mul__( self , lowerCAmelCase__ ) -> Vector: ... def __mul__( self , lowerCAmelCase__ ) -> Vector | Matrix: if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): # matrix-vector if len(lowerCAmelCase__ ) == self.__width: __magic_name__ : Tuple = zero_vector(self.__height ) for i in range(self.__height ): __magic_name__ : Optional[int] = [ self.__matrix[i][j] * other.component(lowerCAmelCase__ ) for j in range(self.__width ) ] ans.change_component(lowerCAmelCase__ , sum(lowerCAmelCase__ ) ) return ans else: raise Exception( """vector must have the same size as the """ """number of columns of the matrix!""" ) elif isinstance(lowerCAmelCase__ , (int, float) ): # matrix-scalar __magic_name__ : Any = [ [self.__matrix[i][j] * other for j in range(self.__width )] for i in range(self.__height ) ] return Matrix(lowerCAmelCase__ , self.__width , self.__height ) return None def __magic_name__ ( self ) -> int: return self.__height def __magic_name__ ( self ) -> int: return self.__width def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ ) -> float: if 0 <= x < self.__height and 0 <= y < self.__width: return self.__matrix[x][y] else: raise Exception("""change_component: indices out of bounds""" ) def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> None: if 0 <= x < self.__height and 0 <= y < self.__width: __magic_name__ : List[Any] = value else: raise Exception("""change_component: indices out of bounds""" ) def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ ) -> float: if self.__height != self.__width: raise Exception("""Matrix is not square""" ) __magic_name__ : Optional[int] = self.__matrix[:x] + self.__matrix[x + 1 :] for i in range(len(lowerCAmelCase__ ) ): __magic_name__ : List[str] = minor[i][:y] + minor[i][y + 1 :] return Matrix(lowerCAmelCase__ , self.__width - 1 , self.__height - 1 ).determinant() def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ ) -> float: if self.__height != self.__width: raise Exception("""Matrix is not square""" ) if 0 <= x < self.__height and 0 <= y < self.__width: return (-1) ** (x + y) * self.minor(lowerCAmelCase__ , lowerCAmelCase__ ) else: raise Exception("""Indices out of bounds""" ) def __magic_name__ ( self ) -> float: if self.__height != self.__width: raise Exception("""Matrix is not square""" ) if self.__height < 1: raise Exception("""Matrix has no element""" ) elif self.__height == 1: return self.__matrix[0][0] elif self.__height == 2: return ( self.__matrix[0][0] * self.__matrix[1][1] - self.__matrix[0][1] * self.__matrix[1][0] ) else: __magic_name__ : str = [ self.__matrix[0][y] * self.cofactor(0 , lowerCAmelCase__ ) for y in range(self.__width ) ] return sum(lowerCAmelCase__ ) def UpperCamelCase ( _A ): """simple docstring""" __magic_name__ : list[list[float]] = [[0] * n for _ in range(_A )] return Matrix(_A, _A, _A ) def UpperCamelCase ( _A, _A, _A, _A ): """simple docstring""" random.seed(_A ) __magic_name__ : list[list[float]] = [ [random.randint(_A, _A ) for _ in range(_A )] for _ in range(_A ) ] return Matrix(_A, _A, _A )
342
1
import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import SPIECE_UNDERLINE, logging __snake_case :Dict = logging.get_logger(__name__) __snake_case :List[str] = {'''vocab_file''': '''spiece.model'''} __snake_case :Dict = { '''vocab_file''': { '''TsinghuaAI/CPM-Generate''': '''https://huggingface.co/TsinghuaAI/CPM-Generate/resolve/main/spiece.model''', } } class _A ( __UpperCAmelCase ): def __init__( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : Optional[Any]=False , __SCREAMING_SNAKE_CASE : List[Any]=True , __SCREAMING_SNAKE_CASE : List[Any]=False , __SCREAMING_SNAKE_CASE : Optional[int]="<s>" , __SCREAMING_SNAKE_CASE : Optional[Any]="</s>" , __SCREAMING_SNAKE_CASE : Union[str, Any]="<unk>" , __SCREAMING_SNAKE_CASE : Optional[int]="<sep>" , __SCREAMING_SNAKE_CASE : Optional[int]="<pad>" , __SCREAMING_SNAKE_CASE : List[Any]="<cls>" , __SCREAMING_SNAKE_CASE : Optional[int]="<mask>" , __SCREAMING_SNAKE_CASE : Any=["<eop>", "<eod>"] , __SCREAMING_SNAKE_CASE : Optional[Dict[str, Any]] = None , **__SCREAMING_SNAKE_CASE : Union[str, Any] , ): '''simple docstring''' __a = AddedToken(__SCREAMING_SNAKE_CASE , lstrip=__SCREAMING_SNAKE_CASE , rstrip=__SCREAMING_SNAKE_CASE) if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) else mask_token __a = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=__SCREAMING_SNAKE_CASE , remove_space=__SCREAMING_SNAKE_CASE , keep_accents=__SCREAMING_SNAKE_CASE , bos_token=__SCREAMING_SNAKE_CASE , eos_token=__SCREAMING_SNAKE_CASE , unk_token=__SCREAMING_SNAKE_CASE , sep_token=__SCREAMING_SNAKE_CASE , pad_token=__SCREAMING_SNAKE_CASE , cls_token=__SCREAMING_SNAKE_CASE , mask_token=__SCREAMING_SNAKE_CASE , additional_special_tokens=__SCREAMING_SNAKE_CASE , sp_model_kwargs=self.sp_model_kwargs , **__SCREAMING_SNAKE_CASE , ) __a = 3 __a = do_lower_case __a = remove_space __a = keep_accents __a = vocab_file __a = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(__SCREAMING_SNAKE_CASE) try: import jieba except ModuleNotFoundError as error: raise error.__class__( '''You need to install jieba to use CpmTokenizer or CpmTokenizerFast. ''' '''See https://pypi.org/project/jieba/ for installation.''') __a = jieba __a = str.maketrans(''' \n''' , '''\u2582\u2583''') @property # Copied from transformers.models.xlnet.tokenization_xlnet.XLNetTokenizer.vocab_size def _lowerCamelCase ( self : int): '''simple docstring''' return len(self.sp_model) def _lowerCamelCase ( self : str): '''simple docstring''' __a = {self.convert_ids_to_tokens(__SCREAMING_SNAKE_CASE): i for i in range(self.vocab_size)} vocab.update(self.added_tokens_encoder) return vocab def __getstate__( self : Any): '''simple docstring''' __a = self.__dict__.copy() __a = None return state def __setstate__( self : Tuple , __SCREAMING_SNAKE_CASE : List[str]): '''simple docstring''' __a = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs'''): __a = {} __a = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(self.vocab_file) def _lowerCamelCase ( self : Dict , __SCREAMING_SNAKE_CASE : Any): '''simple docstring''' if self.remove_space: __a = ''' '''.join(inputs.strip().split()) else: __a = inputs __a = outputs.replace('''``''' , '''"''').replace('''\'\'''' , '''"''') if not self.keep_accents: __a = unicodedata.normalize('''NFKD''' , __SCREAMING_SNAKE_CASE) __a = ''''''.join([c for c in outputs if not unicodedata.combining(__SCREAMING_SNAKE_CASE)]) if self.do_lower_case: __a = outputs.lower() return outputs def _lowerCamelCase ( self : str , __SCREAMING_SNAKE_CASE : str): '''simple docstring''' __a = self.preprocess_text(__SCREAMING_SNAKE_CASE) __a = self.sp_model.encode(__SCREAMING_SNAKE_CASE , out_type=__SCREAMING_SNAKE_CASE) __a = [] for piece in pieces: if len(__SCREAMING_SNAKE_CASE) > 1 and piece[-1] == str(''',''') and piece[-2].isdigit(): __a = self.sp_model.EncodeAsPieces(piece[:-1].replace(__SCREAMING_SNAKE_CASE , '''''')) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0]) == 1: __a = cur_pieces[1:] else: __a = cur_pieces[0][1:] cur_pieces.append(piece[-1]) new_pieces.extend(__SCREAMING_SNAKE_CASE) else: new_pieces.append(__SCREAMING_SNAKE_CASE) return new_pieces def _lowerCamelCase ( self : str , __SCREAMING_SNAKE_CASE : List[Any]): '''simple docstring''' return self.sp_model.PieceToId(__SCREAMING_SNAKE_CASE) def _lowerCamelCase ( self : Optional[Any] , __SCREAMING_SNAKE_CASE : Optional[int]): '''simple docstring''' return self.sp_model.IdToPiece(__SCREAMING_SNAKE_CASE) def _lowerCamelCase ( self : List[str] , __SCREAMING_SNAKE_CASE : Tuple): '''simple docstring''' __a = ''''''.join(__SCREAMING_SNAKE_CASE).replace(__SCREAMING_SNAKE_CASE , ''' ''').strip() return out_string def _lowerCamelCase ( self : Optional[int] , __SCREAMING_SNAKE_CASE : List[int] , __SCREAMING_SNAKE_CASE : Optional[List[int]] = None): '''simple docstring''' __a = [self.sep_token_id] __a = [self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def _lowerCamelCase ( self : Optional[Any] , __SCREAMING_SNAKE_CASE : List[int] , __SCREAMING_SNAKE_CASE : Optional[List[int]] = None , __SCREAMING_SNAKE_CASE : bool = False): '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__SCREAMING_SNAKE_CASE , token_ids_a=__SCREAMING_SNAKE_CASE , already_has_special_tokens=__SCREAMING_SNAKE_CASE) if token_ids_a is not None: return ([0] * len(__SCREAMING_SNAKE_CASE)) + [1] + ([0] * len(__SCREAMING_SNAKE_CASE)) + [1, 1] return ([0] * len(__SCREAMING_SNAKE_CASE)) + [1, 1] def _lowerCamelCase ( self : Dict , __SCREAMING_SNAKE_CASE : List[int] , __SCREAMING_SNAKE_CASE : Optional[List[int]] = None): '''simple docstring''' __a = [self.sep_token_id] __a = [2] if token_ids_a is None: return len(token_ids_a + sep) * [0] + cls_segment_id return len(token_ids_a + sep) * [0] + len(token_ids_a + sep) * [1] + cls_segment_id def _lowerCamelCase ( self : Optional[int] , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Optional[str] = None): '''simple docstring''' if not os.path.isdir(__SCREAMING_SNAKE_CASE): logger.error(F'Vocabulary path ({save_directory}) should be a directory') return __a = os.path.join( __SCREAMING_SNAKE_CASE , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file''']) if os.path.abspath(self.vocab_file) != os.path.abspath(__SCREAMING_SNAKE_CASE) and os.path.isfile(self.vocab_file): copyfile(self.vocab_file , __SCREAMING_SNAKE_CASE) elif not os.path.isfile(self.vocab_file): with open(__SCREAMING_SNAKE_CASE , '''wb''') as fi: __a = self.sp_model.serialized_model_proto() fi.write(__SCREAMING_SNAKE_CASE) return (out_vocab_file,) def _lowerCamelCase ( self : Any , *__SCREAMING_SNAKE_CASE : List[str] , **__SCREAMING_SNAKE_CASE : Any): '''simple docstring''' __a = super()._decode(*__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE) __a = text.replace(''' ''' , '''''').replace('''\u2582''' , ''' ''').replace('''\u2583''' , '''\n''') return text
131
import gc import random import unittest import numpy as np import torch from PIL import Image from diffusers import ( DDIMScheduler, KandinskyVaaImgaImgPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class _A ( __UpperCAmelCase ,unittest.TestCase ): UpperCamelCase__ : str = KandinskyVaaImgaImgPipeline UpperCamelCase__ : Optional[Any] = ['''image_embeds''', '''negative_image_embeds''', '''image'''] UpperCamelCase__ : Dict = [ '''image_embeds''', '''negative_image_embeds''', '''image''', ] UpperCamelCase__ : Any = [ '''generator''', '''height''', '''width''', '''strength''', '''guidance_scale''', '''num_inference_steps''', '''return_dict''', '''guidance_scale''', '''num_images_per_prompt''', '''output_type''', '''return_dict''', ] UpperCamelCase__ : List[Any] = False @property def _lowerCamelCase ( self : Optional[int]): '''simple docstring''' return 32 @property def _lowerCamelCase ( self : List[str]): '''simple docstring''' return 32 @property def _lowerCamelCase ( self : List[Any]): '''simple docstring''' return self.time_input_dim @property def _lowerCamelCase ( self : int): '''simple docstring''' return self.time_input_dim * 4 @property def _lowerCamelCase ( self : Optional[Any]): '''simple docstring''' return 100 @property def _lowerCamelCase ( self : Any): '''simple docstring''' torch.manual_seed(0) __a = { '''in_channels''': 4, # Out channels is double in channels because predicts mean and variance '''out_channels''': 8, '''addition_embed_type''': '''image''', '''down_block_types''': ('''ResnetDownsampleBlock2D''', '''SimpleCrossAttnDownBlock2D'''), '''up_block_types''': ('''SimpleCrossAttnUpBlock2D''', '''ResnetUpsampleBlock2D'''), '''mid_block_type''': '''UNetMidBlock2DSimpleCrossAttn''', '''block_out_channels''': (self.block_out_channels_a, self.block_out_channels_a * 2), '''layers_per_block''': 1, '''encoder_hid_dim''': self.text_embedder_hidden_size, '''encoder_hid_dim_type''': '''image_proj''', '''cross_attention_dim''': self.cross_attention_dim, '''attention_head_dim''': 4, '''resnet_time_scale_shift''': '''scale_shift''', '''class_embed_type''': None, } __a = UNetaDConditionModel(**__SCREAMING_SNAKE_CASE) return model @property def _lowerCamelCase ( self : Tuple): '''simple docstring''' return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def _lowerCamelCase ( self : Optional[int]): '''simple docstring''' torch.manual_seed(0) __a = VQModel(**self.dummy_movq_kwargs) return model def _lowerCamelCase ( self : Optional[int]): '''simple docstring''' __a = self.dummy_unet __a = self.dummy_movq __a = { '''num_train_timesteps''': 1_000, '''beta_schedule''': '''linear''', '''beta_start''': 0.0_00_85, '''beta_end''': 0.0_12, '''clip_sample''': False, '''set_alpha_to_one''': False, '''steps_offset''': 0, '''prediction_type''': '''epsilon''', '''thresholding''': False, } __a = DDIMScheduler(**__SCREAMING_SNAKE_CASE) __a = { '''unet''': unet, '''scheduler''': scheduler, '''movq''': movq, } return components def _lowerCamelCase ( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Union[str, Any]=0): '''simple docstring''' __a = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(__SCREAMING_SNAKE_CASE)).to(__SCREAMING_SNAKE_CASE) __a = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1)).to( __SCREAMING_SNAKE_CASE) # create init_image __a = floats_tensor((1, 3, 64, 64) , rng=random.Random(__SCREAMING_SNAKE_CASE)).to(__SCREAMING_SNAKE_CASE) __a = image.cpu().permute(0 , 2 , 3 , 1)[0] __a = Image.fromarray(np.uinta(__SCREAMING_SNAKE_CASE)).convert('''RGB''').resize((256, 256)) if str(__SCREAMING_SNAKE_CASE).startswith('''mps'''): __a = torch.manual_seed(__SCREAMING_SNAKE_CASE) else: __a = torch.Generator(device=__SCREAMING_SNAKE_CASE).manual_seed(__SCREAMING_SNAKE_CASE) __a = { '''image''': init_image, '''image_embeds''': image_embeds, '''negative_image_embeds''': negative_image_embeds, '''generator''': generator, '''height''': 64, '''width''': 64, '''num_inference_steps''': 10, '''guidance_scale''': 7.0, '''strength''': 0.2, '''output_type''': '''np''', } return inputs def _lowerCamelCase ( self : Dict): '''simple docstring''' __a = '''cpu''' __a = self.get_dummy_components() __a = self.pipeline_class(**__SCREAMING_SNAKE_CASE) __a = pipe.to(__SCREAMING_SNAKE_CASE) pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE) __a = pipe(**self.get_dummy_inputs(__SCREAMING_SNAKE_CASE)) __a = output.images __a = pipe( **self.get_dummy_inputs(__SCREAMING_SNAKE_CASE) , return_dict=__SCREAMING_SNAKE_CASE , )[0] __a = image[0, -3:, -3:, -1] __a = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) __a = np.array( [0.6_19_97_78, 0.63_98_44_06, 0.46_14_57_85, 0.62_94_49_84, 0.5_62_22_15, 0.47_30_61_32, 0.47_44_14_56, 0.4_60_76_06, 0.48_71_92_63]) assert ( np.abs(image_slice.flatten() - expected_slice).max() < 1E-2 ), F' expected_slice {expected_slice}, but got {image_slice.flatten()}' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1E-2 ), F' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}' @slow @require_torch_gpu class _A ( unittest.TestCase ): def _lowerCamelCase ( self : Dict): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def _lowerCamelCase ( self : str): '''simple docstring''' __a = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinskyv22/kandinskyv22_img2img_frog.npy''') __a = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinsky/cat.png''') __a = '''A red cartoon frog, 4k''' __a = KandinskyVaaPriorPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-2-prior''' , torch_dtype=torch.floataa) pipe_prior.to(__SCREAMING_SNAKE_CASE) __a = KandinskyVaaImgaImgPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-2-decoder''' , torch_dtype=torch.floataa) __a = pipeline.to(__SCREAMING_SNAKE_CASE) pipeline.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE) __a = torch.Generator(device='''cpu''').manual_seed(0) __a , __a = pipe_prior( __SCREAMING_SNAKE_CASE , generator=__SCREAMING_SNAKE_CASE , num_inference_steps=5 , negative_prompt='''''' , ).to_tuple() __a = pipeline( image=__SCREAMING_SNAKE_CASE , image_embeds=__SCREAMING_SNAKE_CASE , negative_image_embeds=__SCREAMING_SNAKE_CASE , generator=__SCREAMING_SNAKE_CASE , num_inference_steps=100 , height=768 , width=768 , strength=0.2 , output_type='''np''' , ) __a = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE)
131
1
'''simple docstring''' # Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available lowercase__ : Optional[int] = {'configuration_mra': ['MRA_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MraConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ : List[str] = [ 'MRA_PRETRAINED_MODEL_ARCHIVE_LIST', 'MraForMaskedLM', 'MraForMultipleChoice', 'MraForQuestionAnswering', 'MraForSequenceClassification', 'MraForTokenClassification', 'MraLayer', 'MraModel', 'MraPreTrainedModel', ] if TYPE_CHECKING: from .configuration_mra import MRA_PRETRAINED_CONFIG_ARCHIVE_MAP, MraConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mra import ( MRA_PRETRAINED_MODEL_ARCHIVE_LIST, MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, MraLayer, MraModel, MraPreTrainedModel, ) else: import sys lowercase__ : Tuple = _LazyModule(__name__, globals()['__file__'], _import_structure)
324
'''simple docstring''' import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_rembert import RemBertTokenizer else: lowercase__ : str = None lowercase__ : Optional[int] = logging.get_logger(__name__) lowercase__ : Optional[Any] = {'vocab_file': 'sentencepiece.model', 'tokenizer_file': 'tokenizer.json'} lowercase__ : int = { 'vocab_file': { 'google/rembert': 'https://huggingface.co/google/rembert/resolve/main/sentencepiece.model', }, 'tokenizer_file': { 'google/rembert': 'https://huggingface.co/google/rembert/resolve/main/tokenizer.json', }, } lowercase__ : Optional[int] = { 'google/rembert': 2_56, } lowercase__ : str = '▁' class __lowerCAmelCase ( __magic_name__ ): """simple docstring""" _snake_case : str = VOCAB_FILES_NAMES _snake_case : str = PRETRAINED_VOCAB_FILES_MAP _snake_case : List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _snake_case : Dict = RemBertTokenizer def __init__( self : List[Any] , lowerCAmelCase__ : List[str]=None , lowerCAmelCase__ : str=None , lowerCAmelCase__ : Optional[Any]=True , lowerCAmelCase__ : str=True , lowerCAmelCase__ : Union[str, Any]=False , lowerCAmelCase__ : List[Any]="[CLS]" , lowerCAmelCase__ : str="[SEP]" , lowerCAmelCase__ : Optional[Any]="<unk>" , lowerCAmelCase__ : Optional[int]="[SEP]" , lowerCAmelCase__ : List[str]="<pad>" , lowerCAmelCase__ : str="[CLS]" , lowerCAmelCase__ : List[Any]="[MASK]" , **lowerCAmelCase__ : List[Any] , ) -> Any: '''simple docstring''' _UpperCamelCase = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else mask_token super().__init__( lowerCAmelCase__ , tokenizer_file=lowerCAmelCase__ , do_lower_case=lowerCAmelCase__ , remove_space=lowerCAmelCase__ , keep_accents=lowerCAmelCase__ , bos_token=lowerCAmelCase__ , eos_token=lowerCAmelCase__ , unk_token=lowerCAmelCase__ , sep_token=lowerCAmelCase__ , pad_token=lowerCAmelCase__ , cls_token=lowerCAmelCase__ , mask_token=lowerCAmelCase__ , **lowerCAmelCase__ , ) _UpperCamelCase = do_lower_case _UpperCamelCase = remove_space _UpperCamelCase = keep_accents _UpperCamelCase = vocab_file _UpperCamelCase = False if not self.vocab_file else True def snake_case__ ( self : Union[str, Any] , lowerCAmelCase__ : List[int] , lowerCAmelCase__ : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' _UpperCamelCase = [self.sep_token_id] _UpperCamelCase = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def snake_case__ ( self : int , lowerCAmelCase__ : List[int] , lowerCAmelCase__ : Optional[List[int]] = None , lowerCAmelCase__ : bool = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: if token_ids_a is not None: raise ValueError( '''You should not supply a second sequence if the provided sequence of ''' '''ids is already formatted with special tokens for the model.''' ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is not None: return [1] + ([0] * len(lowerCAmelCase__ )) + [1] + ([0] * len(lowerCAmelCase__ )) + [1] return [1] + ([0] * len(lowerCAmelCase__ )) + [1] def snake_case__ ( self : List[str] , lowerCAmelCase__ : List[int] , lowerCAmelCase__ : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' _UpperCamelCase = [self.sep_token_id] _UpperCamelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def snake_case__ ( self : Any , lowerCAmelCase__ : str , lowerCAmelCase__ : Optional[str] = None ) -> Tuple[str]: '''simple docstring''' if not os.path.isdir(lowerCAmelCase__ ): logger.error('''Vocabulary path ({}) should be a directory'''.format(lowerCAmelCase__ ) ) return _UpperCamelCase = os.path.join( lowerCAmelCase__ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCAmelCase__ ): copyfile(self.vocab_file , lowerCAmelCase__ ) return (out_vocab_file,)
324
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tensorflow_text_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowercase : List[Any] = { '''configuration_bert''': ['''BERT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''BertConfig''', '''BertOnnxConfig'''], '''tokenization_bert''': ['''BasicTokenizer''', '''BertTokenizer''', '''WordpieceTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase : Optional[Any] = ['''BertTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase : int = [ '''BERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''BertForMaskedLM''', '''BertForMultipleChoice''', '''BertForNextSentencePrediction''', '''BertForPreTraining''', '''BertForQuestionAnswering''', '''BertForSequenceClassification''', '''BertForTokenClassification''', '''BertLayer''', '''BertLMHeadModel''', '''BertModel''', '''BertPreTrainedModel''', '''load_tf_weights_in_bert''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase : Tuple = [ '''TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFBertEmbeddings''', '''TFBertForMaskedLM''', '''TFBertForMultipleChoice''', '''TFBertForNextSentencePrediction''', '''TFBertForPreTraining''', '''TFBertForQuestionAnswering''', '''TFBertForSequenceClassification''', '''TFBertForTokenClassification''', '''TFBertLMHeadModel''', '''TFBertMainLayer''', '''TFBertModel''', '''TFBertPreTrainedModel''', ] try: if not is_tensorflow_text_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase : Any = ['''TFBertTokenizer'''] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase : Tuple = [ '''FlaxBertForCausalLM''', '''FlaxBertForMaskedLM''', '''FlaxBertForMultipleChoice''', '''FlaxBertForNextSentencePrediction''', '''FlaxBertForPreTraining''', '''FlaxBertForQuestionAnswering''', '''FlaxBertForSequenceClassification''', '''FlaxBertForTokenClassification''', '''FlaxBertModel''', '''FlaxBertPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_bert import BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, BertConfig, BertOnnxConfig from .tokenization_bert import BasicTokenizer, BertTokenizer, WordpieceTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bert_fast import BertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bert import ( BERT_PRETRAINED_MODEL_ARCHIVE_LIST, BertForMaskedLM, BertForMultipleChoice, BertForNextSentencePrediction, BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification, BertForTokenClassification, BertLayer, BertLMHeadModel, BertModel, BertPreTrainedModel, load_tf_weights_in_bert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_bert import ( TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFBertEmbeddings, TFBertForMaskedLM, TFBertForMultipleChoice, TFBertForNextSentencePrediction, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFBertForTokenClassification, TFBertLMHeadModel, TFBertMainLayer, TFBertModel, TFBertPreTrainedModel, ) try: if not is_tensorflow_text_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bert_tf import TFBertTokenizer try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_bert import ( FlaxBertForCausalLM, FlaxBertForMaskedLM, FlaxBertForMultipleChoice, FlaxBertForNextSentencePrediction, FlaxBertForPreTraining, FlaxBertForQuestionAnswering, FlaxBertForSequenceClassification, FlaxBertForTokenClassification, FlaxBertModel, FlaxBertPreTrainedModel, ) else: import sys lowercase : Tuple = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
36
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import center_crop, normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL lowercase : Union[str, Any] = logging.get_logger(__name__) class UpperCAmelCase_ ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' A : List[Any] = ['pixel_values'] def __init__( self , _SCREAMING_SNAKE_CASE = True , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = PIL.Image.BICUBIC , _SCREAMING_SNAKE_CASE = True , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = 1 / 255 , _SCREAMING_SNAKE_CASE = True , _SCREAMING_SNAKE_CASE = True , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , **_SCREAMING_SNAKE_CASE , ) -> None: super().__init__(**_SCREAMING_SNAKE_CASE ) snake_case_ : Optional[Any] = size if size is not None else {"height": 256, "width": 256} snake_case_ : int = get_size_dict(_SCREAMING_SNAKE_CASE ) snake_case_ : Tuple = crop_size if crop_size is not None else {"height": 224, "width": 224} snake_case_ : Dict = get_size_dict(_SCREAMING_SNAKE_CASE , param_name="crop_size" ) snake_case_ : str = do_resize snake_case_ : Tuple = size snake_case_ : Tuple = resample snake_case_ : Dict = do_center_crop snake_case_ : Any = crop_size snake_case_ : int = do_rescale snake_case_ : Union[str, Any] = rescale_factor snake_case_ : Optional[int] = do_normalize snake_case_ : Union[str, Any] = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN snake_case_ : Optional[Any] = image_std if image_std is not None else IMAGENET_STANDARD_STD def _lowerCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = PIL.Image.BICUBIC , _SCREAMING_SNAKE_CASE = None , **_SCREAMING_SNAKE_CASE , ) -> np.ndarray: snake_case_ : List[Any] = get_size_dict(_SCREAMING_SNAKE_CASE ) if "height" not in size or "width" not in size: raise ValueError(f'''The size dictionary must have keys \'height\' and \'width\'. Got {size.keys()}''' ) return resize( _SCREAMING_SNAKE_CASE , size=(size["height"], size["width"]) , resample=_SCREAMING_SNAKE_CASE , data_format=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) def _lowerCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None , **_SCREAMING_SNAKE_CASE , ) -> np.ndarray: snake_case_ : str = get_size_dict(_SCREAMING_SNAKE_CASE ) if "height" not in size or "width" not in size: raise ValueError(f'''The size dictionary must have keys \'height\' and \'width\'. Got {size.keys()}''' ) return center_crop(_SCREAMING_SNAKE_CASE , size=(size["height"], size["width"]) , data_format=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) def _lowerCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None , **_SCREAMING_SNAKE_CASE , ) -> Optional[int]: return rescale(_SCREAMING_SNAKE_CASE , scale=_SCREAMING_SNAKE_CASE , data_format=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) def _lowerCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None , **_SCREAMING_SNAKE_CASE , ) -> np.ndarray: return normalize(_SCREAMING_SNAKE_CASE , mean=_SCREAMING_SNAKE_CASE , std=_SCREAMING_SNAKE_CASE , data_format=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) def _lowerCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = ChannelDimension.FIRST , **_SCREAMING_SNAKE_CASE , ) -> PIL.Image.Image: snake_case_ : Optional[Any] = do_resize if do_resize is not None else self.do_resize snake_case_ : Tuple = resample if resample is not None else self.resample snake_case_ : Optional[int] = do_center_crop if do_center_crop is not None else self.do_center_crop snake_case_ : Union[str, Any] = do_rescale if do_rescale is not None else self.do_rescale snake_case_ : Optional[Any] = rescale_factor if rescale_factor is not None else self.rescale_factor snake_case_ : Tuple = do_normalize if do_normalize is not None else self.do_normalize snake_case_ : Union[str, Any] = image_mean if image_mean is not None else self.image_mean snake_case_ : Optional[int] = image_std if image_std is not None else self.image_std snake_case_ : Optional[Any] = size if size is not None else self.size snake_case_ : int = get_size_dict(_SCREAMING_SNAKE_CASE ) snake_case_ : str = crop_size if crop_size is not None else self.crop_size snake_case_ : Optional[Any] = get_size_dict(_SCREAMING_SNAKE_CASE , param_name="crop_size" ) snake_case_ : int = make_list_of_images(_SCREAMING_SNAKE_CASE ) if not valid_images(_SCREAMING_SNAKE_CASE ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None or resample is None: raise ValueError("Size and resample must be specified if do_resize is True." ) if do_center_crop and crop_size is None: raise ValueError("Crop size must be specified if do_center_crop is True." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True." ) # All transformations expect numpy arrays. snake_case_ : Optional[int] = [to_numpy_array(_SCREAMING_SNAKE_CASE ) for image in images] if do_resize: snake_case_ : Optional[Any] = [self.resize(image=_SCREAMING_SNAKE_CASE , size=_SCREAMING_SNAKE_CASE , resample=_SCREAMING_SNAKE_CASE ) for image in images] if do_center_crop: snake_case_ : List[Any] = [self.center_crop(image=_SCREAMING_SNAKE_CASE , size=_SCREAMING_SNAKE_CASE ) for image in images] if do_rescale: snake_case_ : Optional[int] = [self.rescale(image=_SCREAMING_SNAKE_CASE , scale=_SCREAMING_SNAKE_CASE ) for image in images] if do_normalize: snake_case_ : List[str] = [self.normalize(image=_SCREAMING_SNAKE_CASE , mean=_SCREAMING_SNAKE_CASE , std=_SCREAMING_SNAKE_CASE ) for image in images] snake_case_ : int = [to_channel_dimension_format(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) for image in images] snake_case_ : List[str] = {"pixel_values": images} return BatchFeature(data=_SCREAMING_SNAKE_CASE , tensor_type=_SCREAMING_SNAKE_CASE )
36
1
'''simple docstring''' import warnings from diffusers import StableDiffusionInpaintPipeline as StableDiffusionInpaintPipeline # noqa F401 warnings.warn( '''The `inpainting.py` script is outdated. Please use directly `from diffusers import''' ''' StableDiffusionInpaintPipeline` instead.''' )
319
'''simple docstring''' import json import logging import math import os import sys from dataclasses import dataclass, field from typing import Optional from datasets import Dataset, load_dataset import transformers from transformers import ( CONFIG_MAPPING, MODEL_FOR_MASKED_LM_MAPPING, AutoConfig, AutoModelForMaskedLM, AutoTokenizer, DataCollatorForWholeWordMask, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import get_last_checkpoint, is_main_process UpperCamelCase = logging.getLogger(__name__) UpperCamelCase = list(MODEL_FOR_MASKED_LM_MAPPING.keys()) UpperCamelCase = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class lowerCAmelCase_ : '''simple docstring''' UpperCamelCase_ : Optional[str] = field( default=UpperCAmelCase_ , metadata={ """help""": ( """The model checkpoint for weights initialization.Don't set if you want to train a model from scratch.""" ) } , ) UpperCamelCase_ : Optional[str] = field( default=UpperCAmelCase_ , metadata={"""help""": """If training from scratch, pass a model type from the list: """ + """, """.join(UpperCAmelCase_ )} , ) UpperCamelCase_ : Optional[str] = field( default=UpperCAmelCase_ , metadata={ """help""": ( """Override some existing default config settings when a model is trained from scratch. Example: """ """n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index""" ) } , ) UpperCamelCase_ : Optional[str] = field( default=UpperCAmelCase_ , metadata={"""help""": """Pretrained config name or path if not the same as model_name"""} ) UpperCamelCase_ : Optional[str] = field( default=UpperCAmelCase_ , metadata={"""help""": """Pretrained tokenizer name or path if not the same as model_name"""} ) UpperCamelCase_ : Optional[str] = field( default=UpperCAmelCase_ , metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} , ) UpperCamelCase_ : bool = field( default=UpperCAmelCase_ , metadata={"""help""": """Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."""} , ) UpperCamelCase_ : str = field( default="""main""" , metadata={"""help""": """The specific model version to use (can be a branch name, tag name or commit id)."""} , ) UpperCamelCase_ : bool = field( default=UpperCAmelCase_ , metadata={ """help""": ( """Will use the token generated when running `huggingface-cli login` (necessary to use this script """ """with private models).""" ) } , ) def _snake_case ( self : Tuple ) -> List[Any]: '''simple docstring''' if self.config_overrides is not None and (self.config_name is not None or self.model_name_or_path is not None): raise ValueError( '''--config_overrides can\'t be used in combination with --config_name or --model_name_or_path''' ) @dataclass class lowerCAmelCase_ : '''simple docstring''' UpperCamelCase_ : Optional[str] = field( default=UpperCAmelCase_ , metadata={"""help""": """The name of the dataset to use (via the datasets library)."""} ) UpperCamelCase_ : Optional[str] = field( default=UpperCAmelCase_ , metadata={"""help""": """The configuration name of the dataset to use (via the datasets library)."""} ) UpperCamelCase_ : Optional[str] = field(default=UpperCAmelCase_ , metadata={"""help""": """The input training data file (a text file)."""} ) UpperCamelCase_ : Optional[str] = field( default=UpperCAmelCase_ , metadata={"""help""": """An optional input evaluation data file to evaluate the perplexity on (a text file)."""} , ) UpperCamelCase_ : Optional[str] = field( default=UpperCAmelCase_ , metadata={"""help""": """An optional input train ref data file for whole word masking in Chinese."""} , ) UpperCamelCase_ : Optional[str] = field( default=UpperCAmelCase_ , metadata={"""help""": """An optional input validation ref data file for whole word masking in Chinese."""} , ) UpperCamelCase_ : bool = field( default=UpperCAmelCase_ , metadata={"""help""": """Overwrite the cached training and evaluation sets"""} ) UpperCamelCase_ : Optional[int] = field( default=5 , metadata={ """help""": """The percentage of the train set used as validation set in case there's no validation split""" } , ) UpperCamelCase_ : Optional[int] = field( default=UpperCAmelCase_ , metadata={ """help""": ( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated. Default to the max input length of the model.""" ) } , ) UpperCamelCase_ : Optional[int] = field( default=UpperCAmelCase_ , metadata={"""help""": """The number of processes to use for the preprocessing."""} , ) UpperCamelCase_ : float = field( default=0.15 , metadata={"""help""": """Ratio of tokens to mask for masked language modeling loss"""} ) UpperCamelCase_ : bool = field( default=UpperCAmelCase_ , metadata={ """help""": ( """Whether to pad all samples to `max_seq_length`. """ """If False, will pad the samples dynamically when batching to the maximum length in the batch.""" ) } , ) def _snake_case ( self : List[Any] ) -> Optional[int]: '''simple docstring''' if self.train_file is not None: A: Tuple = self.train_file.split('''.''' )[-1] assert extension in ["csv", "json", "txt"], "`train_file` should be a csv, a json or a txt file." if self.validation_file is not None: A: str = self.validation_file.split('''.''' )[-1] assert extension in ["csv", "json", "txt"], "`validation_file` should be a csv, a json or a txt file." def SCREAMING_SNAKE_CASE( __lowercase , __lowercase ) -> List[str]: with open(__lowercase , '''r''' , encoding='''utf-8''' ) as f: A: List[Any] = [json.loads(__lowercase ) for line in f.read().splitlines() if (len(__lowercase ) > 0 and not line.isspace())] assert len(__lowercase ) == len(__lowercase ) A: Optional[int] = {c: dataset[c] for c in dataset.column_names} A: Union[str, Any] = refs return Dataset.from_dict(__lowercase ) def SCREAMING_SNAKE_CASE( ) -> int: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. A: int = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('''.json''' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. A , A , A: Optional[int] = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: A , A , A: List[Any] = parser.parse_args_into_dataclasses() # Detecting last checkpoint. A: Any = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: A: Any = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F"""Output directory ({training_args.output_dir}) already exists and is not empty. """ '''Use --overwrite_output_dir to overcome.''' ) elif last_checkpoint is not None: logger.info( F"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """ '''the `--output_dir` or add `--overwrite_output_dir` to train from scratch.''' ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , handlers=[logging.StreamHandler(sys.stdout )] , ) logger.setLevel(logging.INFO if is_main_process(training_args.local_rank ) else logging.WARN ) # Log on each process the small summary: logger.warning( F"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}""" + F"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info('''Training/evaluation parameters %s''' , __lowercase ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). # # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.dataset_name is not None: # Downloading and loading a dataset from the hub. A: Dict = load_dataset(data_args.dataset_name , data_args.dataset_config_name ) if "validation" not in datasets.keys(): A: int = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=F"""train[:{data_args.validation_split_percentage}%]""" , ) A: Dict = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=F"""train[{data_args.validation_split_percentage}%:]""" , ) else: A: Any = {} if data_args.train_file is not None: A: int = data_args.train_file if data_args.validation_file is not None: A: Optional[int] = data_args.validation_file A: List[str] = data_args.train_file.split('''.''' )[-1] if extension == "txt": A: int = '''text''' A: Any = load_dataset(__lowercase , data_files=__lowercase ) # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. A: Dict = { '''cache_dir''': model_args.cache_dir, '''revision''': model_args.model_revision, '''use_auth_token''': True if model_args.use_auth_token else None, } if model_args.config_name: A: List[Any] = AutoConfig.from_pretrained(model_args.config_name , **__lowercase ) elif model_args.model_name_or_path: A: int = AutoConfig.from_pretrained(model_args.model_name_or_path , **__lowercase ) else: A: str = CONFIG_MAPPING[model_args.model_type]() logger.warning('''You are instantiating a new config instance from scratch.''' ) if model_args.config_overrides is not None: logger.info(F"""Overriding config: {model_args.config_overrides}""" ) config.update_from_string(model_args.config_overrides ) logger.info(F"""New config: {config}""" ) A: Tuple = { '''cache_dir''': model_args.cache_dir, '''use_fast''': model_args.use_fast_tokenizer, '''revision''': model_args.model_revision, '''use_auth_token''': True if model_args.use_auth_token else None, } if model_args.tokenizer_name: A: Optional[int] = AutoTokenizer.from_pretrained(model_args.tokenizer_name , **__lowercase ) elif model_args.model_name_or_path: A: Union[str, Any] = AutoTokenizer.from_pretrained(model_args.model_name_or_path , **__lowercase ) else: raise ValueError( '''You are instantiating a new tokenizer from scratch. This is not supported by this script.''' '''You can do it from another script, save it, and load it from here, using --tokenizer_name.''' ) if model_args.model_name_or_path: A: List[Any] = AutoModelForMaskedLM.from_pretrained( model_args.model_name_or_path , from_tf=bool('''.ckpt''' in model_args.model_name_or_path ) , config=__lowercase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) else: logger.info('''Training new model from scratch''' ) A: List[Any] = AutoModelForMaskedLM.from_config(__lowercase ) model.resize_token_embeddings(len(__lowercase ) ) # Preprocessing the datasets. # First we tokenize all the texts. if training_args.do_train: A: int = datasets['''train'''].column_names else: A: str = datasets['''validation'''].column_names A: Tuple = '''text''' if '''text''' in column_names else column_names[0] A: List[str] = '''max_length''' if data_args.pad_to_max_length else False def tokenize_function(__lowercase ): # Remove empty lines A: int = [line for line in examples['''text'''] if len(__lowercase ) > 0 and not line.isspace()] return tokenizer(examples['''text'''] , padding=__lowercase , truncation=__lowercase , max_length=data_args.max_seq_length ) A: str = datasets.map( __lowercase , batched=__lowercase , num_proc=data_args.preprocessing_num_workers , remove_columns=[text_column_name] , load_from_cache_file=not data_args.overwrite_cache , ) # Add the chinese references if provided if data_args.train_ref_file is not None: A: List[str] = add_chinese_references(tokenized_datasets['''train'''] , data_args.train_ref_file ) if data_args.validation_ref_file is not None: A: Dict = add_chinese_references( tokenized_datasets['''validation'''] , data_args.validation_ref_file ) # If we have ref files, need to avoid it removed by trainer A: Optional[Any] = data_args.train_ref_file or data_args.validation_ref_file if has_ref: A: List[Any] = False # Data collator # This one will take care of randomly masking the tokens. A: Optional[Any] = DataCollatorForWholeWordMask(tokenizer=__lowercase , mlm_probability=data_args.mlm_probability ) # Initialize our Trainer A: Optional[int] = Trainer( model=__lowercase , args=__lowercase , train_dataset=tokenized_datasets['''train'''] if training_args.do_train else None , eval_dataset=tokenized_datasets['''validation'''] if training_args.do_eval else None , tokenizer=__lowercase , data_collator=__lowercase , ) # Training if training_args.do_train: if last_checkpoint is not None: A: Optional[int] = last_checkpoint elif model_args.model_name_or_path is not None and os.path.isdir(model_args.model_name_or_path ): A: str = model_args.model_name_or_path else: A: List[str] = None A: str = trainer.train(resume_from_checkpoint=__lowercase ) trainer.save_model() # Saves the tokenizer too for easy upload A: Union[str, Any] = os.path.join(training_args.output_dir , '''train_results.txt''' ) if trainer.is_world_process_zero(): with open(__lowercase , '''w''' ) as writer: logger.info('''***** Train results *****''' ) for key, value in sorted(train_result.metrics.items() ): logger.info(F""" {key} = {value}""" ) writer.write(F"""{key} = {value}\n""" ) # Need to save the state, since Trainer.save_model saves only the tokenizer with the model trainer.state.save_to_json(os.path.join(training_args.output_dir , '''trainer_state.json''' ) ) # Evaluation A: Optional[int] = {} if training_args.do_eval: logger.info('''*** Evaluate ***''' ) A: Optional[Any] = trainer.evaluate() A: Union[str, Any] = math.exp(eval_output['''eval_loss'''] ) A: Dict = perplexity A: Any = os.path.join(training_args.output_dir , '''eval_results_mlm_wwm.txt''' ) if trainer.is_world_process_zero(): with open(__lowercase , '''w''' ) as writer: logger.info('''***** Eval results *****''' ) for key, value in sorted(results.items() ): logger.info(F""" {key} = {value}""" ) writer.write(F"""{key} = {value}\n""" ) return results def SCREAMING_SNAKE_CASE( __lowercase ) -> List[Any]: # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
319
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available SCREAMING_SNAKE_CASE_ = { 'configuration_bloom': ['BLOOM_PRETRAINED_CONFIG_ARCHIVE_MAP', 'BloomConfig', 'BloomOnnxConfig'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE_ = ['BloomTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE_ = [ 'BLOOM_PRETRAINED_MODEL_ARCHIVE_LIST', 'BloomForCausalLM', 'BloomModel', 'BloomPreTrainedModel', 'BloomForSequenceClassification', 'BloomForTokenClassification', 'BloomForQuestionAnswering', ] if TYPE_CHECKING: from .configuration_bloom import BLOOM_PRETRAINED_CONFIG_ARCHIVE_MAP, BloomConfig, BloomOnnxConfig try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bloom_fast import BloomTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bloom import ( BLOOM_PRETRAINED_MODEL_ARCHIVE_LIST, BloomForCausalLM, BloomForQuestionAnswering, BloomForSequenceClassification, BloomForTokenClassification, BloomModel, BloomPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
189
import warnings from typing import List import numpy as np from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding from ...utils import is_flax_available, is_tf_available, is_torch_available class a ( UpperCAmelCase ): _lowercase = ["image_processor", "tokenizer"] _lowercase = "OwlViTImageProcessor" _lowercase = ("CLIPTokenizer", "CLIPTokenizerFast") def __init__( self , A_=None , A_=None , **A_ ): '''simple docstring''' _UpperCAmelCase : List[str] = None if "feature_extractor" in kwargs: warnings.warn( "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" " instead." , A_ , ) _UpperCAmelCase : Union[str, Any] = kwargs.pop("feature_extractor" ) _UpperCAmelCase : Any = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("You need to specify an `image_processor`." ) if tokenizer is None: raise ValueError("You need to specify a `tokenizer`." ) super().__init__(A_ , A_ ) def __call__( self , A_=None , A_=None , A_=None , A_="max_length" , A_="np" , **A_ ): '''simple docstring''' if text is None and query_images is None and images is None: raise ValueError( "You have to specify at least one text or query image or image. All three cannot be none." ) if text is not None: if isinstance(A_ , A_ ) or (isinstance(A_ , A_ ) and not isinstance(text[0] , A_ )): _UpperCAmelCase : Optional[int] = [self.tokenizer(A_ , padding=A_ , return_tensors=A_ , **A_ )] elif isinstance(A_ , A_ ) and isinstance(text[0] , A_ ): _UpperCAmelCase : Optional[int] = [] # Maximum number of queries across batch _UpperCAmelCase : Optional[Any] = max([len(A_ ) for t in text] ) # Pad all batch samples to max number of text queries for t in text: if len(A_ ) != max_num_queries: _UpperCAmelCase : Optional[int] = t + [" "] * (max_num_queries - len(A_ )) _UpperCAmelCase : str = self.tokenizer(A_ , padding=A_ , return_tensors=A_ , **A_ ) encodings.append(A_ ) else: raise TypeError("Input text should be a string, a list of strings or a nested list of strings" ) if return_tensors == "np": _UpperCAmelCase : List[str] = np.concatenate([encoding["input_ids"] for encoding in encodings] , axis=0 ) _UpperCAmelCase : Tuple = np.concatenate([encoding["attention_mask"] for encoding in encodings] , axis=0 ) elif return_tensors == "jax" and is_flax_available(): import jax.numpy as jnp _UpperCAmelCase : Optional[Any] = jnp.concatenate([encoding["input_ids"] for encoding in encodings] , axis=0 ) _UpperCAmelCase : str = jnp.concatenate([encoding["attention_mask"] for encoding in encodings] , axis=0 ) elif return_tensors == "pt" and is_torch_available(): import torch _UpperCAmelCase : str = torch.cat([encoding["input_ids"] for encoding in encodings] , dim=0 ) _UpperCAmelCase : Dict = torch.cat([encoding["attention_mask"] for encoding in encodings] , dim=0 ) elif return_tensors == "tf" and is_tf_available(): import tensorflow as tf _UpperCAmelCase : Union[str, Any] = tf.stack([encoding["input_ids"] for encoding in encodings] , axis=0 ) _UpperCAmelCase : Optional[int] = tf.stack([encoding["attention_mask"] for encoding in encodings] , axis=0 ) else: raise ValueError("Target return tensor type could not be returned" ) _UpperCAmelCase : Optional[int] = BatchEncoding() _UpperCAmelCase : str = input_ids _UpperCAmelCase : Optional[Any] = attention_mask if query_images is not None: _UpperCAmelCase : int = BatchEncoding() _UpperCAmelCase : str = self.image_processor( A_ , return_tensors=A_ , **A_ ).pixel_values _UpperCAmelCase : Optional[Any] = query_pixel_values if images is not None: _UpperCAmelCase : int = self.image_processor(A_ , return_tensors=A_ , **A_ ) if text is not None and images is not None: _UpperCAmelCase : Optional[int] = image_features.pixel_values return encoding elif query_images is not None and images is not None: _UpperCAmelCase : Any = image_features.pixel_values return encoding elif text is not None or query_images is not None: return encoding else: return BatchEncoding(data=dict(**A_ ) , tensor_type=A_ ) def _UpperCAmelCase ( self , *A_ , **A_ ): '''simple docstring''' return self.image_processor.post_process(*A_ , **A_ ) def _UpperCAmelCase ( self , *A_ , **A_ ): '''simple docstring''' return self.image_processor.post_process_object_detection(*A_ , **A_ ) def _UpperCAmelCase ( self , *A_ , **A_ ): '''simple docstring''' return self.image_processor.post_process_image_guided_detection(*A_ , **A_ ) def _UpperCAmelCase ( self , *A_ , **A_ ): '''simple docstring''' return self.tokenizer.batch_decode(*A_ , **A_ ) def _UpperCAmelCase ( self , *A_ , **A_ ): '''simple docstring''' return self.tokenizer.decode(*A_ , **A_ ) @property def _UpperCAmelCase ( self ): '''simple docstring''' warnings.warn( "`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead." , A_ , ) return self.image_processor_class @property def _UpperCAmelCase ( self ): '''simple docstring''' warnings.warn( "`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead." , A_ , ) return self.image_processor
189
1
import unittest import numpy as np from transformers import RobertaPreLayerNormConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.roberta_prelayernorm.modeling_flax_roberta_prelayernorm import ( FlaxRobertaPreLayerNormForCausalLM, FlaxRobertaPreLayerNormForMaskedLM, FlaxRobertaPreLayerNormForMultipleChoice, FlaxRobertaPreLayerNormForQuestionAnswering, FlaxRobertaPreLayerNormForSequenceClassification, FlaxRobertaPreLayerNormForTokenClassification, FlaxRobertaPreLayerNormModel, ) class lowerCamelCase__ ( unittest.TestCase): def __init__(self , UpperCAmelCase , UpperCAmelCase=1_3 , UpperCAmelCase=7 , UpperCAmelCase=True , UpperCAmelCase=True , UpperCAmelCase=True , UpperCAmelCase=True , UpperCAmelCase=9_9 , UpperCAmelCase=3_2 , UpperCAmelCase=5 , UpperCAmelCase=4 , UpperCAmelCase=3_7 , UpperCAmelCase="gelu" , UpperCAmelCase=0.1 , UpperCAmelCase=0.1 , UpperCAmelCase=5_1_2 , UpperCAmelCase=1_6 , UpperCAmelCase=2 , UpperCAmelCase=0.02 , UpperCAmelCase=4 , ) -> Optional[int]: _lowercase =parent _lowercase =batch_size _lowercase =seq_length _lowercase =is_training _lowercase =use_attention_mask _lowercase =use_token_type_ids _lowercase =use_labels _lowercase =vocab_size _lowercase =hidden_size _lowercase =num_hidden_layers _lowercase =num_attention_heads _lowercase =intermediate_size _lowercase =hidden_act _lowercase =hidden_dropout_prob _lowercase =attention_probs_dropout_prob _lowercase =max_position_embeddings _lowercase =type_vocab_size _lowercase =type_sequence_label_size _lowercase =initializer_range _lowercase =num_choices def __A (self ) -> Tuple: _lowercase =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _lowercase =None if self.use_attention_mask: _lowercase =random_attention_mask([self.batch_size, self.seq_length] ) _lowercase =None if self.use_token_type_ids: _lowercase =ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _lowercase =RobertaPreLayerNormConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowerCamelCase__ , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def __A (self ) -> List[Any]: _lowercase =self.prepare_config_and_inputs() _lowercase =config_and_inputs _lowercase ={'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': attention_mask} return config, inputs_dict def __A (self ) -> Tuple: _lowercase =self.prepare_config_and_inputs() _lowercase =config_and_inputs _lowercase =True _lowercase =floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) _lowercase =ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, encoder_hidden_states, encoder_attention_mask, ) @require_flax # Copied from tests.models.roberta.test_modelling_flax_roberta.FlaxRobertaPreLayerNormModelTest with ROBERTA->ROBERTA_PRELAYERNORM,Roberta->RobertaPreLayerNorm,roberta-base->andreasmadsen/efficient_mlm_m0.40 class lowerCamelCase__ ( __lowerCAmelCase , unittest.TestCase): SCREAMING_SNAKE_CASE__ = True SCREAMING_SNAKE_CASE__ = ( ( FlaxRobertaPreLayerNormModel, FlaxRobertaPreLayerNormForCausalLM, FlaxRobertaPreLayerNormForMaskedLM, FlaxRobertaPreLayerNormForSequenceClassification, FlaxRobertaPreLayerNormForTokenClassification, FlaxRobertaPreLayerNormForMultipleChoice, FlaxRobertaPreLayerNormForQuestionAnswering, ) if is_flax_available() else () ) def __A (self ) -> int: _lowercase =FlaxRobertaPreLayerNormModelTester(self ) @slow def __A (self ) -> List[str]: for model_class_name in self.all_model_classes: _lowercase =model_class_name.from_pretrained('''andreasmadsen/efficient_mlm_m0.40''' , from_pt=lowerCamelCase__ ) _lowercase =model(np.ones((1, 1) ) ) self.assertIsNotNone(lowerCamelCase__ ) @require_flax class lowerCamelCase__ ( unittest.TestCase): @slow def __A (self ) -> Dict: _lowercase =FlaxRobertaPreLayerNormForMaskedLM.from_pretrained('''andreasmadsen/efficient_mlm_m0.40''' , from_pt=lowerCamelCase__ ) _lowercase =np.array([[0, 3_1_4_1_4, 2_3_2, 3_2_8, 7_4_0, 1_1_4_0, 1_2_6_9_5, 6_9, 4_6_0_7_8, 1_5_8_8, 2]] , dtype=jnp.intaa ) _lowercase =model(lowerCamelCase__ )[0] _lowercase =[1, 1_1, 5_0_2_6_5] self.assertEqual(list(output.shape ) , lowerCamelCase__ ) # compare the actual values for a slice. _lowercase =np.array( [[[40.4880, 18.0199, -5.2367], [-1.8877, -4.0885, 10.7085], [-2.2613, -5.6110, 7.2665]]] , dtype=np.floataa ) self.assertTrue(np.allclose(output[:, :3, :3] , lowerCamelCase__ , atol=1e-4 ) ) @slow def __A (self ) -> Tuple: _lowercase =FlaxRobertaPreLayerNormModel.from_pretrained('''andreasmadsen/efficient_mlm_m0.40''' , from_pt=lowerCamelCase__ ) _lowercase =np.array([[0, 3_1_4_1_4, 2_3_2, 3_2_8, 7_4_0, 1_1_4_0, 1_2_6_9_5, 6_9, 4_6_0_7_8, 1_5_8_8, 2]] , dtype=jnp.intaa ) _lowercase =model(lowerCamelCase__ )[0] # compare the actual values for a slice. _lowercase =np.array( [[[0.0208, -0.0356, 0.0237], [-0.1569, -0.0411, -0.2626], [0.1879, 0.0125, -0.0089]]] , dtype=np.floataa ) self.assertTrue(np.allclose(output[:, :3, :3] , lowerCamelCase__ , atol=1e-4 ) )
5
import os import tempfile import unittest from transformers.models.marian.convert_marian_tatoeba_to_pytorch import DEFAULT_REPO, TatoebaConverter from transformers.testing_utils import slow from transformers.utils import cached_property @unittest.skipUnless(os.path.exists(__lowerCAmelCase) , "Tatoeba directory does not exist.") class __magic_name__ ( unittest.TestCase): @cached_property def UpperCAmelCase__ ( self : str ) -> List[Any]: '''simple docstring''' UpperCamelCase__ : Tuple = tempfile.mkdtemp() return TatoebaConverter(save_dir=lowerCamelCase__ ) @slow def UpperCAmelCase__ ( self : Optional[int] ) -> Tuple: '''simple docstring''' self.resolver.convert_models(['''heb-eng'''] ) @slow def UpperCAmelCase__ ( self : Dict ) -> Optional[Any]: '''simple docstring''' UpperCamelCase__ , UpperCamelCase__ : Dict = self.resolver.write_model_card('''opus-mt-he-en''' , dry_run=lowerCamelCase__ ) assert mmeta["long_pair"] == "heb-eng"
146
0
import inspect import os import unittest from dataclasses import dataclass import torch from accelerate import Accelerator, DistributedDataParallelKwargs, GradScalerKwargs from accelerate.state import AcceleratorState from accelerate.test_utils import execute_subprocess_async, require_cuda, require_multi_gpu from accelerate.utils import KwargsHandler @dataclass class __lowerCamelCase ( a__ ): lowerCamelCase_ : int = 0 lowerCamelCase_ : bool = False lowerCamelCase_ : float = 3.0 class __lowerCamelCase ( unittest.TestCase ): def lowerCAmelCase_ ( self ) -> Dict: # If no defaults are changed, `to_kwargs` returns an empty dict. self.assertDictEqual(MockClass().to_kwargs() , {} ) self.assertDictEqual(MockClass(a=2 ).to_kwargs() , {"""a""": 2} ) self.assertDictEqual(MockClass(a=2 , b=lowerCAmelCase__ ).to_kwargs() , {"""a""": 2, """b""": True} ) self.assertDictEqual(MockClass(a=2 , c=2.25 ).to_kwargs() , {"""a""": 2, """c""": 2.25} ) @require_cuda def lowerCAmelCase_ ( self ) -> Dict: # If no defaults are changed, `to_kwargs` returns an empty dict. snake_case_ = GradScalerKwargs(init_scale=1024 , growth_factor=2 ) AcceleratorState._reset_state() snake_case_ = Accelerator(mixed_precision="""fp16""" , kwargs_handlers=[scaler_handler] ) print(accelerator.use_fpaa ) snake_case_ = accelerator.scaler # Check the kwargs have been applied self.assertEqual(scaler._init_scale , 1024.0 ) self.assertEqual(scaler._growth_factor , 2.0 ) # Check the other values are at the default self.assertEqual(scaler._backoff_factor , 0.5 ) self.assertEqual(scaler._growth_interval , 2000 ) self.assertEqual(scaler._enabled , lowerCAmelCase__ ) @require_multi_gpu def lowerCAmelCase_ ( self ) -> Any: snake_case_ = ["torchrun", f'''--nproc_per_node={torch.cuda.device_count()}''', inspect.getfile(self.__class__ )] execute_subprocess_async(lowerCAmelCase__ , env=os.environ.copy() ) if __name__ == "__main__": lowerCamelCase_ = DistributedDataParallelKwargs(bucket_cap_mb=15, find_unused_parameters=True) lowerCamelCase_ = Accelerator(kwargs_handlers=[ddp_scaler]) lowerCamelCase_ = torch.nn.Linear(100, 200) lowerCamelCase_ = accelerator.prepare(model) # Check the values changed in kwargs lowerCamelCase_ = '''''' lowerCamelCase_ = model.bucket_bytes_cap // (1024 * 1024) if observed_bucket_cap_map != 15: error_msg += f"Kwargs badly passed, should have `15` but found {observed_bucket_cap_map}.\n" if model.find_unused_parameters is not True: error_msg += f"Kwargs badly passed, should have `True` but found {model.find_unused_parameters}.\n" # Check the values of the defaults if model.dim != 0: error_msg += f"Default value not respected, should have `0` but found {model.dim}.\n" if model.broadcast_buffers is not True: error_msg += f"Default value not respected, should have `True` but found {model.broadcast_buffers}.\n" if model.gradient_as_bucket_view is not False: error_msg += f"Default value not respected, should have `False` but found {model.gradient_as_bucket_view}.\n" # Raise error at the end to make sure we don't stop at the first failure. if len(error_msg) > 0: raise ValueError(error_msg)
362
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available lowerCamelCase_ = { '''configuration_graphormer''': ['''GRAPHORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''GraphormerConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ = [ '''GRAPHORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''GraphormerForGraphClassification''', '''GraphormerModel''', '''GraphormerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_graphormer import GRAPHORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, GraphormerConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_graphormer import ( GRAPHORMER_PRETRAINED_MODEL_ARCHIVE_LIST, GraphormerForGraphClassification, GraphormerModel, GraphormerPreTrainedModel, ) else: import sys lowerCamelCase_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
34
0
'''simple docstring''' def __lowerCAmelCase ( UpperCamelCase__ ) -> int: if not isinstance(UpperCamelCase__ , UpperCamelCase__ ): raise ValueError('''Input must be an integer''' ) if input_num <= 0: raise ValueError('''Input must be positive''' ) return sum( divisor for divisor in range(1 , input_num // 2 + 1 ) if input_num % divisor == 0 ) if __name__ == "__main__": import doctest doctest.testmod()
67
"""simple docstring""" def A__ ( UpperCamelCase ): A = generate_pascal_triangle(UpperCamelCase ) for row_idx in range(UpperCamelCase ): # Print left spaces for _ in range(num_rows - row_idx - 1 ): print(end=" " ) # Print row values for col_idx in range(row_idx + 1 ): if col_idx != row_idx: print(triangle[row_idx][col_idx] , end=" " ) else: print(triangle[row_idx][col_idx] , end="" ) print() def A__ ( UpperCamelCase ): if not isinstance(UpperCamelCase , UpperCamelCase ): raise TypeError("The input value of 'num_rows' should be 'int'" ) if num_rows == 0: return [] elif num_rows < 0: raise ValueError( "The input value of 'num_rows' should be greater than or equal to 0" ) A = [] for current_row_idx in range(UpperCamelCase ): A = populate_current_row(UpperCamelCase , UpperCamelCase ) triangle.append(UpperCamelCase ) return triangle def A__ ( UpperCamelCase , UpperCamelCase ): A = [-1] * (current_row_idx + 1) # first and last elements of current row are equal to 1 A, A = 1, 1 for current_col_idx in range(1 , UpperCamelCase ): calculate_current_element( UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ) return current_row def A__ ( UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , ): A = triangle[current_row_idx - 1][current_col_idx - 1] A = triangle[current_row_idx - 1][current_col_idx] A = above_to_left_elt + above_to_right_elt def A__ ( UpperCamelCase ): if not isinstance(UpperCamelCase , UpperCamelCase ): raise TypeError("The input value of 'num_rows' should be 'int'" ) if num_rows == 0: return [] elif num_rows < 0: raise ValueError( "The input value of 'num_rows' should be greater than or equal to 0" ) A = [[1]] for row_index in range(1 , UpperCamelCase ): A = [0] + result[-1] + [0] A = row_index + 1 # Calculate the number of distinct elements in a row A = sum(divmod(UpperCamelCase , 2 ) ) A = [ temp_row[i - 1] + temp_row[i] for i in range(1 , distinct_elements + 1 ) ] A = row_first_half[: (row_index + 1) // 2] row_second_half.reverse() A = row_first_half + row_second_half result.append(UpperCamelCase ) return result def A__ ( ): from collections.abc import Callable from timeit import timeit def benchmark_a_function(UpperCamelCase , UpperCamelCase ) -> None: A = F"{func.__name__}({value})" A = timeit(F"__main__.{call}" , setup="import __main__" ) # print(f"{call:38} = {func(value)} -- {timing:.4f} seconds") print(F"{call:38} -- {timing:.4f} seconds" ) for value in range(15 ): # (1, 7, 14): for func in (generate_pascal_triangle, generate_pascal_triangle_optimized): benchmark_a_function(UpperCamelCase , UpperCamelCase ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
292
0
"""simple docstring""" import sys from collections.abc import Mapping from typing import TYPE_CHECKING, Dict, Optional import numpy as np import pyarrow as pa from .. import config from ..utils.logging import get_logger from ..utils.py_utils import map_nested from .formatting import TensorFormatter if TYPE_CHECKING: import jax import jaxlib SCREAMING_SNAKE_CASE__ = get_logger() SCREAMING_SNAKE_CASE__ = None class lowerCAmelCase_ ( TensorFormatter[Mapping, """jax.Array""", Mapping] ): """simple docstring""" def __init__( self , lowerCAmelCase=None , lowerCAmelCase=None , **lowerCAmelCase ): """simple docstring""" super().__init__(features=_lowerCamelCase ) import jax from jaxlib.xla_client import Device if isinstance(_lowerCamelCase , _lowerCamelCase ): raise ValueError( F"""Expected {device} to be a `str` not {type(_lowerCamelCase )}, as `jaxlib.xla_extension.Device` """ 'is not serializable neither with `pickle` nor with `dill`. Instead you can surround ' 'the device with `str()` to get its string identifier that will be internally mapped ' 'to the actual `jaxlib.xla_extension.Device`.' ) snake_case = device if isinstance(_lowerCamelCase , _lowerCamelCase ) else str(jax.devices()[0] ) # using global variable since `jaxlib.xla_extension.Device` is not serializable neither # with `pickle` nor with `dill`, so we need to use a global variable instead global DEVICE_MAPPING if DEVICE_MAPPING is None: snake_case = self._map_devices_to_str() if self.device not in list(DEVICE_MAPPING.keys() ): logger.warning( F"""Device with string identifier {self.device} not listed among the available """ F"""devices: {list(DEVICE_MAPPING.keys() )}, so falling back to the default """ F"""device: {str(jax.devices()[0] )}.""" ) snake_case = str(jax.devices()[0] ) snake_case = jnp_array_kwargs @staticmethod def snake_case ( ): """simple docstring""" import jax return {str(_lowerCamelCase ): device for device in jax.devices()} def snake_case ( self , lowerCAmelCase ): """simple docstring""" import jax import jax.numpy as jnp if isinstance(_lowerCamelCase , _lowerCamelCase ) and column: if all( isinstance(_lowerCamelCase , jax.Array ) and x.shape == column[0].shape and x.dtype == column[0].dtype for x in column ): return jnp.stack(_lowerCamelCase , axis=0 ) return column def snake_case ( self , lowerCAmelCase ): """simple docstring""" import jax import jax.numpy as jnp if isinstance(_lowerCamelCase , (str, bytes, type(_lowerCamelCase )) ): return value elif isinstance(_lowerCamelCase , (np.character, np.ndarray) ) and np.issubdtype(value.dtype , np.character ): return value.tolist() snake_case = {} if isinstance(_lowerCamelCase , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.integer ): # the default int precision depends on the jax config # see https://jax.readthedocs.io/en/latest/notebooks/Common_Gotchas_in_JAX.html#double-64bit-precision if jax.config.jax_enable_xaa: snake_case = {'''dtype''': jnp.intaa} else: snake_case = {'''dtype''': jnp.intaa} elif isinstance(_lowerCamelCase , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.floating ): snake_case = {'''dtype''': jnp.floataa} elif config.PIL_AVAILABLE and "PIL" in sys.modules: import PIL.Image if isinstance(_lowerCamelCase , PIL.Image.Image ): snake_case = np.asarray(_lowerCamelCase ) # using global variable since `jaxlib.xla_extension.Device` is not serializable neither # with `pickle` nor with `dill`, so we need to use a global variable instead global DEVICE_MAPPING if DEVICE_MAPPING is None: snake_case = self._map_devices_to_str() with jax.default_device(DEVICE_MAPPING[self.device] ): # calling jnp.array on a np.ndarray does copy the data # see https://github.com/google/jax/issues/4486 return jnp.array(_lowerCamelCase , **{**default_dtype, **self.jnp_array_kwargs} ) def snake_case ( self , lowerCAmelCase ): """simple docstring""" import jax # support for torch, tf, jax etc. if config.TORCH_AVAILABLE and "torch" in sys.modules: import torch if isinstance(_lowerCamelCase , torch.Tensor ): return self._tensorize(data_struct.detach().cpu().numpy()[()] ) if hasattr(_lowerCamelCase , '__array__' ) and not isinstance(_lowerCamelCase , jax.Array ): snake_case = data_struct.__array__() # support for nested types like struct of list of struct if isinstance(_lowerCamelCase , np.ndarray ): if data_struct.dtype == object: # jax arrays cannot be instantied from an array of objects return self._consolidate([self.recursive_tensorize(_lowerCamelCase ) for substruct in data_struct] ) elif isinstance(_lowerCamelCase , (list, tuple) ): return self._consolidate([self.recursive_tensorize(_lowerCamelCase ) for substruct in data_struct] ) return self._tensorize(_lowerCamelCase ) def snake_case ( self , lowerCAmelCase ): """simple docstring""" return map_nested(self._recursive_tensorize , _lowerCamelCase , map_list=_lowerCamelCase ) def snake_case ( self , lowerCAmelCase ): """simple docstring""" snake_case = self.numpy_arrow_extractor().extract_row(_lowerCamelCase ) snake_case = self.python_features_decoder.decode_row(_lowerCamelCase ) return self.recursive_tensorize(_lowerCamelCase ) def snake_case ( self , lowerCAmelCase ): """simple docstring""" snake_case = self.numpy_arrow_extractor().extract_column(_lowerCamelCase ) snake_case = self.python_features_decoder.decode_column(_lowerCamelCase , pa_table.column_names[0] ) snake_case = self.recursive_tensorize(_lowerCamelCase ) snake_case = self._consolidate(_lowerCamelCase ) return column def snake_case ( self , lowerCAmelCase ): """simple docstring""" snake_case = self.numpy_arrow_extractor().extract_batch(_lowerCamelCase ) snake_case = self.python_features_decoder.decode_batch(_lowerCamelCase ) snake_case = self.recursive_tensorize(_lowerCamelCase ) for column_name in batch: snake_case = self._consolidate(batch[column_name] ) return batch
354
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available SCREAMING_SNAKE_CASE__ = { "configuration_xlm": ["XLM_PRETRAINED_CONFIG_ARCHIVE_MAP", "XLMConfig", "XLMOnnxConfig"], "tokenization_xlm": ["XLMTokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ = [ "XLM_PRETRAINED_MODEL_ARCHIVE_LIST", "XLMForMultipleChoice", "XLMForQuestionAnswering", "XLMForQuestionAnsweringSimple", "XLMForSequenceClassification", "XLMForTokenClassification", "XLMModel", "XLMPreTrainedModel", "XLMWithLMHeadModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ = [ "TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST", "TFXLMForMultipleChoice", "TFXLMForQuestionAnsweringSimple", "TFXLMForSequenceClassification", "TFXLMForTokenClassification", "TFXLMMainLayer", "TFXLMModel", "TFXLMPreTrainedModel", "TFXLMWithLMHeadModel", ] if TYPE_CHECKING: from .configuration_xlm import XLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMConfig, XLMOnnxConfig from .tokenization_xlm import XLMTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlm import ( XLM_PRETRAINED_MODEL_ARCHIVE_LIST, XLMForMultipleChoice, XLMForQuestionAnswering, XLMForQuestionAnsweringSimple, XLMForSequenceClassification, XLMForTokenClassification, XLMModel, XLMPreTrainedModel, XLMWithLMHeadModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlm import ( TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLMForMultipleChoice, TFXLMForQuestionAnsweringSimple, TFXLMForSequenceClassification, TFXLMForTokenClassification, TFXLMMainLayer, TFXLMModel, TFXLMPreTrainedModel, TFXLMWithLMHeadModel, ) else: import sys SCREAMING_SNAKE_CASE__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
149
0
"""simple docstring""" from __future__ import annotations class __snake_case : """simple docstring""" def __init__( self , __lowerCamelCase ): '''simple docstring''' __A : Tuple = order # a_{0} ... a_{k} __A : Optional[int] = [1.0] + [0.0] * order # b_{0} ... b_{k} __A : Dict = [1.0] + [0.0] * order # x[n-1] ... x[n-k] __A : int = [0.0] * self.order # y[n-1] ... y[n-k] __A : List[Any] = [0.0] * self.order def UpperCamelCase__( self , __lowerCamelCase , __lowerCamelCase ): '''simple docstring''' if len(__lowerCamelCase ) < self.order: __A : Dict = [1.0, *a_coeffs] if len(__lowerCamelCase ) != self.order + 1: __A : str = ( F"""Expected a_coeffs to have {self.order + 1} elements """ F"""for {self.order}-order filter, got {len(__lowerCamelCase )}""" ) raise ValueError(__lowerCamelCase ) if len(__lowerCamelCase ) != self.order + 1: __A : Optional[Any] = ( F"""Expected b_coeffs to have {self.order + 1} elements """ F"""for {self.order}-order filter, got {len(__lowerCamelCase )}""" ) raise ValueError(__lowerCamelCase ) __A : Optional[int] = a_coeffs __A : Any = b_coeffs def UpperCamelCase__( self , __lowerCamelCase ): '''simple docstring''' __A : int = 0.0 # Start at index 1 and do index 0 at the end. for i in range(1 , self.order + 1 ): result += ( self.b_coeffs[i] * self.input_history[i - 1] - self.a_coeffs[i] * self.output_history[i - 1] ) __A : List[str] = (result + self.b_coeffs[0] * sample) / self.a_coeffs[0] __A : Tuple = self.input_history[:-1] __A : List[str] = self.output_history[:-1] __A : Optional[int] = sample __A : int = result return result
179
"""simple docstring""" import uuid from typing import Any, Dict, List, Optional, Union from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf if is_torch_available(): import torch a_ = logging.get_logger(__name__) class __snake_case : """simple docstring""" def __init__( self , __lowerCamelCase = None , __lowerCamelCase = None , __lowerCamelCase=None , __lowerCamelCase=None ): '''simple docstring''' if not conversation_id: __A : List[Any] = uuid.uuida() if past_user_inputs is None: __A : List[str] = [] if generated_responses is None: __A : Tuple = [] __A : uuid.UUID = conversation_id __A : List[str] = past_user_inputs __A : List[str] = generated_responses __A : Optional[str] = text def __eq__( self , __lowerCamelCase ): '''simple docstring''' if not isinstance(__lowerCamelCase , __lowerCamelCase ): return False if self.uuid == other.uuid: return True return ( self.new_user_input == other.new_user_input and self.past_user_inputs == other.past_user_inputs and self.generated_responses == other.generated_responses ) def UpperCamelCase__( self , __lowerCamelCase , __lowerCamelCase = False ): '''simple docstring''' if self.new_user_input: if overwrite: logger.warning( F"""User input added while unprocessed input was existing: \"{self.new_user_input}\" was overwritten """ F"""with: \"{text}\".""" ) __A : str = text else: logger.warning( F"""User input added while unprocessed input was existing: \"{self.new_user_input}\" new input """ F"""ignored: \"{text}\". Set `overwrite` to True to overwrite unprocessed user input""" ) else: __A : Union[str, Any] = text def UpperCamelCase__( self ): '''simple docstring''' if self.new_user_input: self.past_user_inputs.append(self.new_user_input ) __A : List[Any] = None def UpperCamelCase__( self , __lowerCamelCase ): '''simple docstring''' self.generated_responses.append(__lowerCamelCase ) def UpperCamelCase__( self ): '''simple docstring''' for user_input, generated_response in zip(self.past_user_inputs , self.generated_responses ): yield True, user_input yield False, generated_response if self.new_user_input: yield True, self.new_user_input def __repr__( self ): '''simple docstring''' __A : Optional[Any] = F"""Conversation id: {self.uuid} \n""" for is_user, text in self.iter_texts(): __A : Tuple = '''user''' if is_user else '''bot''' output += F"""{name} >> {text} \n""" return output @add_end_docstrings( SCREAMING_SNAKE_CASE__ , R""" min_length_for_response (`int`, *optional*, defaults to 32): The minimum length (in number of tokens) for a response. minimum_tokens (`int`, *optional*, defaults to 10): The minimum length of tokens to leave for a response. """ , ) class __snake_case ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" def __init__( self , *__lowerCamelCase , **__lowerCamelCase ): '''simple docstring''' super().__init__(*__lowerCamelCase , **__lowerCamelCase ) if self.tokenizer.pad_token_id is None: __A : Union[str, Any] = self.tokenizer.eos_token def UpperCamelCase__( self , __lowerCamelCase=None , __lowerCamelCase=None , __lowerCamelCase=None , **__lowerCamelCase ): '''simple docstring''' __A : str = {} __A : List[str] = {} __A : Any = {} if min_length_for_response is not None: __A : int = min_length_for_response if minimum_tokens is not None: __A : Any = minimum_tokens if "max_length" in generate_kwargs: __A : List[Any] = generate_kwargs['''max_length'''] # self.max_length = generate_kwargs.get("max_length", self.model.config.max_length) if clean_up_tokenization_spaces is not None: __A : str = clean_up_tokenization_spaces if generate_kwargs: forward_params.update(__lowerCamelCase ) return preprocess_params, forward_params, postprocess_params def __call__( self , __lowerCamelCase , __lowerCamelCase=0 , **__lowerCamelCase ): '''simple docstring''' __A : Any = super().__call__(__lowerCamelCase , num_workers=__lowerCamelCase , **__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) and len(__lowerCamelCase ) == 1: return outputs[0] return outputs def UpperCamelCase__( self , __lowerCamelCase , __lowerCamelCase=32 ): '''simple docstring''' if not isinstance(__lowerCamelCase , __lowerCamelCase ): raise ValueError('''ConversationalPipeline, expects Conversation as inputs''' ) if conversation.new_user_input is None: raise ValueError( F"""Conversation with UUID {type(conversation.uuid )} does not contain new user input to process. """ '''Add user inputs with the conversation\'s `add_user_input` method''' ) if hasattr(self.tokenizer , '''_build_conversation_input_ids''' ): __A : List[Any] = self.tokenizer._build_conversation_input_ids(__lowerCamelCase ) else: # If the tokenizer cannot handle conversations, we default to only the old version __A : int = self._legacy_parse_and_tokenize(__lowerCamelCase ) if self.framework == "pt": __A : Union[str, Any] = torch.LongTensor([input_ids] ) elif self.framework == "tf": __A : int = tf.constant([input_ids] ) return {"input_ids": input_ids, "conversation": conversation} def UpperCamelCase__( self , __lowerCamelCase , __lowerCamelCase=10 , **__lowerCamelCase ): '''simple docstring''' __A : Tuple = generate_kwargs.get('''max_length''' , self.model.config.max_length ) __A : str = model_inputs['''input_ids'''].shape[1] if max_length - minimum_tokens < n: logger.warning(F"""Conversation input is to long ({n}), trimming it to ({max_length} - {minimum_tokens})""" ) __A : str = max_length - minimum_tokens __A : Any = model_inputs['''input_ids'''][:, -trim:] if "attention_mask" in model_inputs: __A : Union[str, Any] = model_inputs['''attention_mask'''][:, -trim:] __A : Dict = model_inputs.pop('''conversation''' ) __A : List[str] = max_length __A : Dict = self.model.generate(**__lowerCamelCase , **__lowerCamelCase ) if self.model.config.is_encoder_decoder: __A : Any = 1 else: __A : List[Any] = n return {"output_ids": output_ids[:, start_position:], "conversation": conversation} def UpperCamelCase__( self , __lowerCamelCase , __lowerCamelCase=True ): '''simple docstring''' __A : int = model_outputs['''output_ids'''] __A : Optional[int] = self.tokenizer.decode( output_ids[0] , skip_special_tokens=__lowerCamelCase , clean_up_tokenization_spaces=__lowerCamelCase , ) __A : Dict = model_outputs['''conversation'''] conversation.mark_processed() conversation.append_response(__lowerCamelCase ) return conversation def UpperCamelCase__( self , __lowerCamelCase ): '''simple docstring''' __A : Tuple = self.tokenizer.eos_token_id __A : List[str] = [] for is_user, text in conversation.iter_texts(): if eos_token_id is not None: input_ids.extend(self.tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase ) + [eos_token_id] ) else: input_ids.extend(self.tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase ) ) if len(__lowerCamelCase ) > self.tokenizer.model_max_length: __A : List[str] = input_ids[-self.tokenizer.model_max_length :] return input_ids
179
1
'''simple docstring''' from random import randint from tempfile import TemporaryFile import numpy as np def UpperCamelCase_( snake_case : str , snake_case : str , snake_case : Union[str, Any] ): '''simple docstring''' snake_case_ = 0 if start < end: snake_case_ = randint(lowerCamelCase__ , lowerCamelCase__ ) snake_case_ = a[end] snake_case_ = a[pivot] snake_case_ = temp snake_case_ , snake_case_ = _in_place_partition(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) count += _in_place_quick_sort(lowerCamelCase__ , lowerCamelCase__ , p - 1 ) count += _in_place_quick_sort(lowerCamelCase__ , p + 1 , lowerCamelCase__ ) return count def UpperCamelCase_( snake_case : int , snake_case : str , snake_case : int ): '''simple docstring''' snake_case_ = 0 snake_case_ = randint(lowerCamelCase__ , lowerCamelCase__ ) snake_case_ = a[end] snake_case_ = a[pivot] snake_case_ = temp snake_case_ = start - 1 for index in range(lowerCamelCase__ , lowerCamelCase__ ): count += 1 if a[index] < a[end]: # check if current val is less than pivot value snake_case_ = new_pivot_index + 1 snake_case_ = a[new_pivot_index] snake_case_ = a[index] snake_case_ = temp snake_case_ = a[new_pivot_index + 1] snake_case_ = a[end] snake_case_ = temp return new_pivot_index + 1, count _SCREAMING_SNAKE_CASE : Union[str, Any] = TemporaryFile() _SCREAMING_SNAKE_CASE : str = 100 # 1000 elements are to be sorted _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : List[Any] = 0, 1 # mean and standard deviation _SCREAMING_SNAKE_CASE : Optional[int] = np.random.normal(mu, sigma, p) np.save(outfile, X) print("The array is") print(X) outfile.seek(0) # using the same array _SCREAMING_SNAKE_CASE : List[str] = np.load(outfile) _SCREAMING_SNAKE_CASE : List[str] = len(M) - 1 _SCREAMING_SNAKE_CASE : Any = _in_place_quick_sort(M, 0, r) print( "No of Comparisons for 100 elements selected from a standard normal distribution" "is :" ) print(z)
353
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging _SCREAMING_SNAKE_CASE : Any = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE : int = { "alibaba-damo/mgp-str-base": "https://huggingface.co/alibaba-damo/mgp-str-base/resolve/main/config.json", } class _snake_case ( lowercase_ ): lowerCAmelCase_ : Union[str, Any] = "mgp-str" def __init__( self , a__=[32, 128] , a__=4 , a__=3 , a__=27 , a__=38 , a__=50_257 , a__=30_522 , a__=768 , a__=12 , a__=12 , a__=4.0 , a__=True , a__=False , a__=1e-5 , a__=0.0 , a__=0.0 , a__=0.0 , a__=False , a__=0.0_2 , **a__ , ) -> Union[str, Any]: '''simple docstring''' super().__init__(**a__ ) snake_case_ = image_size snake_case_ = patch_size snake_case_ = num_channels snake_case_ = max_token_length snake_case_ = num_character_labels snake_case_ = num_bpe_labels snake_case_ = num_wordpiece_labels snake_case_ = hidden_size snake_case_ = num_hidden_layers snake_case_ = num_attention_heads snake_case_ = mlp_ratio snake_case_ = distilled snake_case_ = layer_norm_eps snake_case_ = drop_rate snake_case_ = qkv_bias snake_case_ = attn_drop_rate snake_case_ = drop_path_rate snake_case_ = output_aa_attentions snake_case_ = initializer_range
92
0
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, convert_to_rgb, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) if is_vision_available(): import PIL class lowerCAmelCase_ ( UpperCAmelCase__ ): __lowerCamelCase : Optional[int] = ["pixel_values"] def __init__( self , _lowerCAmelCase = True , _lowerCAmelCase = None , _lowerCAmelCase = PILImageResampling.BICUBIC , _lowerCAmelCase = True , _lowerCAmelCase = None , _lowerCAmelCase = True , _lowerCAmelCase = 1 / 255 , _lowerCAmelCase = True , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = True , **_lowerCAmelCase , ) -> Optional[int]: super().__init__(**_a ) _lowerCAmelCase = size if size is not None else {"shortest_edge": 224} _lowerCAmelCase = get_size_dict(_a , default_to_square=_a ) _lowerCAmelCase = crop_size if crop_size is not None else {"height": 224, "width": 224} _lowerCAmelCase = get_size_dict(_a , default_to_square=_a , param_name="crop_size" ) _lowerCAmelCase = do_resize _lowerCAmelCase = size _lowerCAmelCase = resample _lowerCAmelCase = do_center_crop _lowerCAmelCase = crop_size _lowerCAmelCase = do_rescale _lowerCAmelCase = rescale_factor _lowerCAmelCase = do_normalize _lowerCAmelCase = image_mean if image_mean is not None else OPENAI_CLIP_MEAN _lowerCAmelCase = image_std if image_std is not None else OPENAI_CLIP_STD _lowerCAmelCase = do_convert_rgb def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = PILImageResampling.BICUBIC , _lowerCAmelCase = None , **_lowerCAmelCase , ) -> Union[str, Any]: _lowerCAmelCase = get_size_dict(_a , default_to_square=_a ) if "shortest_edge" not in size: raise ValueError(f'''The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}''' ) _lowerCAmelCase = get_resize_output_image_size(_a , size=size["shortest_edge"] , default_to_square=_a ) return resize(_a , size=_a , resample=_a , data_format=_a , **_a ) def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = None , **_lowerCAmelCase , ) -> Dict: _lowerCAmelCase = get_size_dict(_a ) if "height" not in size or "width" not in size: raise ValueError(f'''The `size` parameter must contain the keys (height, width). Got {size.keys()}''' ) return center_crop(_a , size=(size["height"], size["width"]) , data_format=_a , **_a ) def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = None , **_lowerCAmelCase , ) -> str: return rescale(_a , scale=_a , data_format=_a , **_a ) def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = None , **_lowerCAmelCase , ) -> Dict: return normalize(_a , mean=_a , std=_a , data_format=_a , **_a ) def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = ChannelDimension.FIRST , **_lowerCAmelCase , ) -> Any: _lowerCAmelCase = do_resize if do_resize is not None else self.do_resize _lowerCAmelCase = size if size is not None else self.size _lowerCAmelCase = get_size_dict(_a , param_name="size" , default_to_square=_a ) _lowerCAmelCase = resample if resample is not None else self.resample _lowerCAmelCase = do_center_crop if do_center_crop is not None else self.do_center_crop _lowerCAmelCase = crop_size if crop_size is not None else self.crop_size _lowerCAmelCase = get_size_dict(_a , param_name="crop_size" , default_to_square=_a ) _lowerCAmelCase = do_rescale if do_rescale is not None else self.do_rescale _lowerCAmelCase = rescale_factor if rescale_factor is not None else self.rescale_factor _lowerCAmelCase = do_normalize if do_normalize is not None else self.do_normalize _lowerCAmelCase = image_mean if image_mean is not None else self.image_mean _lowerCAmelCase = image_std if image_std is not None else self.image_std _lowerCAmelCase = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb _lowerCAmelCase = make_list_of_images(_a ) if not valid_images(_a ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None: raise ValueError("Size must be specified if do_resize is True." ) if do_center_crop and crop_size is None: raise ValueError("Crop size must be specified if do_center_crop is True." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True." ) # PIL RGBA images are converted to RGB if do_convert_rgb: _lowerCAmelCase = [convert_to_rgb(_a ) for image in images] # All transformations expect numpy arrays. _lowerCAmelCase = [to_numpy_array(_a ) for image in images] if do_resize: _lowerCAmelCase = [self.resize(image=_a , size=_a , resample=_a ) for image in images] if do_center_crop: _lowerCAmelCase = [self.center_crop(image=_a , size=_a ) for image in images] if do_rescale: _lowerCAmelCase = [self.rescale(image=_a , scale=_a ) for image in images] if do_normalize: _lowerCAmelCase = [self.normalize(image=_a , mean=_a , std=_a ) for image in images] _lowerCAmelCase = [to_channel_dimension_format(_a , _a ) for image in images] _lowerCAmelCase = {"pixel_values": images} return BatchFeature(data=_a , tensor_type=_a )
158
"""simple docstring""" def a__ ( snake_case__ , snake_case__ = False ) -> str: if not isinstance(snake_case__ , snake_case__ ): lowerCamelCase = F'Expected string as input, found {type(snake_case__ )}' raise ValueError(snake_case__ ) if not isinstance(snake_case__ , snake_case__ ): lowerCamelCase = F'Expected boolean as use_pascal parameter, found {type(snake_case__ )}' raise ValueError(snake_case__ ) lowerCamelCase = input_str.split("""_""" ) lowerCamelCase = 0 if use_pascal else 1 lowerCamelCase = words[start_index:] lowerCamelCase = [word[0].upper() + word[1:] for word in words_to_capitalize] lowerCamelCase = """""" if use_pascal else words[0] return "".join([initial_word, *capitalized_words] ) if __name__ == "__main__": from doctest import testmod testmod()
291
0
"""simple docstring""" from math import pi def _lowerCamelCase ( _UpperCamelCase , _UpperCamelCase ): '''simple docstring''' return 2 * pi * radius * (angle / 360) if __name__ == "__main__": print(arc_length(9_0, 1_0))
367
"""simple docstring""" import argparse import torch from transformers import BertConfig, BertForPreTraining, load_tf_weights_in_bert from transformers.utils import logging logging.set_verbosity_info() def _lowerCamelCase ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = BertConfig.from_json_file(_UpperCamelCase ) print(f"Building PyTorch model from configuration: {config}" ) __lowerCAmelCase = BertForPreTraining(_UpperCamelCase ) # Load weights from tf checkpoint load_tf_weights_in_bert(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) # Save pytorch-model print(f"Save PyTorch model to {pytorch_dump_path}" ) torch.save(model.state_dict() , _UpperCamelCase ) if __name__ == "__main__": A : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--bert_config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained BERT model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) A : Optional[Any] = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.bert_config_file, args.pytorch_dump_path)
259
0
import math class UpperCAmelCase : '''simple docstring''' def __init__( self : Optional[int] ,A : Dict=0 ): # a graph with Node 0,1,...,N-1 __A = n __A = [ [math.inf for j in range(0 ,A )] for i in range(0 ,A ) ] # adjacency matrix for weight __A = [ [math.inf for j in range(0 ,A )] for i in range(0 ,A ) ] # dp[i][j] stores minimum distance from i to j def UpperCamelCase_ ( self : List[str] ,A : Tuple ,A : Union[str, Any] ,A : Optional[int] ): __A = w def UpperCamelCase_ ( self : int ): for k in range(0 ,self.n ): for i in range(0 ,self.n ): for j in range(0 ,self.n ): __A = min(self.dp[i][j] ,self.dp[i][k] + self.dp[k][j] ) def UpperCamelCase_ ( self : Optional[int] ,A : str ,A : Union[str, Any] ): return self.dp[u][v] if __name__ == "__main__": SCREAMING_SNAKE_CASE :Optional[int] = Graph(5) graph.add_edge(0, 2, 9) graph.add_edge(0, 4, 10) graph.add_edge(1, 3, 5) graph.add_edge(2, 3, 7) graph.add_edge(3, 0, 10) graph.add_edge(3, 1, 2) graph.add_edge(3, 2, 1) graph.add_edge(3, 4, 6) graph.add_edge(4, 1, 3) graph.add_edge(4, 2, 4) graph.add_edge(4, 3, 9) graph.floyd_warshall() graph.show_min(1, 4) graph.show_min(0, 3)
15
import datetime import platform import subprocess from typing import Optional, Tuple, Union import numpy as np def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> np.array: lowerCAmelCase__ : Dict = F'''{sampling_rate}''' lowerCAmelCase__ : Any = '1' lowerCAmelCase__ : Optional[Any] = 'f32le' lowerCAmelCase__ : Any = [ 'ffmpeg', '-i', 'pipe:0', '-ac', ac, '-ar', ar, '-f', format_for_conversion, '-hide_banner', '-loglevel', 'quiet', 'pipe:1', ] try: with subprocess.Popen(SCREAMING_SNAKE_CASE_ , stdin=subprocess.PIPE , stdout=subprocess.PIPE ) as ffmpeg_process: lowerCAmelCase__ : List[Any] = ffmpeg_process.communicate(SCREAMING_SNAKE_CASE_ ) except FileNotFoundError as error: raise ValueError('ffmpeg was not found but is required to load audio files from filename' ) from error lowerCAmelCase__ : List[str] = output_stream[0] lowerCAmelCase__ : str = np.frombuffer(SCREAMING_SNAKE_CASE_ , np.floataa ) if audio.shape[0] == 0: raise ValueError('Malformed soundfile' ) return audio def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = "f32le" , ) -> Dict: lowerCAmelCase__ : Optional[Any] = F'''{sampling_rate}''' lowerCAmelCase__ : Any = '1' if format_for_conversion == "s16le": lowerCAmelCase__ : Dict = 2 elif format_for_conversion == "f32le": lowerCAmelCase__ : List[str] = 4 else: raise ValueError(F'''Unhandled format `{format_for_conversion}`. Please use `s16le` or `f32le`''' ) lowerCAmelCase__ : Tuple = platform.system() if system == "Linux": lowerCAmelCase__ : str = 'alsa' lowerCAmelCase__ : str = 'default' elif system == "Darwin": lowerCAmelCase__ : Any = 'avfoundation' lowerCAmelCase__ : Tuple = ':0' elif system == "Windows": lowerCAmelCase__ : Any = 'dshow' lowerCAmelCase__ : int = 'default' lowerCAmelCase__ : Any = [ 'ffmpeg', '-f', format_, '-i', input_, '-ac', ac, '-ar', ar, '-f', format_for_conversion, '-fflags', 'nobuffer', '-hide_banner', '-loglevel', 'quiet', 'pipe:1', ] lowerCAmelCase__ : List[str] = int(round(sampling_rate * chunk_length_s ) ) * size_of_sample lowerCAmelCase__ : str = _ffmpeg_stream(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) for item in iterator: yield item def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = "f32le" , ) -> str: if stream_chunk_s is not None: lowerCAmelCase__ : Union[str, Any] = stream_chunk_s else: lowerCAmelCase__ : Tuple = chunk_length_s lowerCAmelCase__ : Any = ffmpeg_microphone(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , format_for_conversion=SCREAMING_SNAKE_CASE_ ) if format_for_conversion == "s16le": lowerCAmelCase__ : Optional[Any] = np.intaa lowerCAmelCase__ : Optional[Any] = 2 elif format_for_conversion == "f32le": lowerCAmelCase__ : Optional[Any] = np.floataa lowerCAmelCase__ : Optional[Any] = 4 else: raise ValueError(F'''Unhandled format `{format_for_conversion}`. Please use `s16le` or `f32le`''' ) if stride_length_s is None: lowerCAmelCase__ : Dict = chunk_length_s / 6 lowerCAmelCase__ : int = int(round(sampling_rate * chunk_length_s ) ) * size_of_sample if isinstance(SCREAMING_SNAKE_CASE_ , (int, float) ): lowerCAmelCase__ : Dict = [stride_length_s, stride_length_s] lowerCAmelCase__ : Union[str, Any] = int(round(sampling_rate * stride_length_s[0] ) ) * size_of_sample lowerCAmelCase__ : List[Any] = int(round(sampling_rate * stride_length_s[1] ) ) * size_of_sample lowerCAmelCase__ : Any = datetime.datetime.now() lowerCAmelCase__ : Any = datetime.timedelta(seconds=SCREAMING_SNAKE_CASE_ ) for item in chunk_bytes_iter(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , stride=(stride_left, stride_right) , stream=SCREAMING_SNAKE_CASE_ ): # Put everything back in numpy scale lowerCAmelCase__ : Any = np.frombuffer(item['raw'] , dtype=SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ : Optional[Any] = ( item['stride'][0] // size_of_sample, item['stride'][1] // size_of_sample, ) lowerCAmelCase__ : Optional[int] = sampling_rate audio_time += delta if datetime.datetime.now() > audio_time + 10 * delta: # We're late !! SKIP continue yield item def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = False ) -> Optional[int]: lowerCAmelCase__ : Union[str, Any] = b'' lowerCAmelCase__ , lowerCAmelCase__ : Union[str, Any] = stride if stride_left + stride_right >= chunk_len: raise ValueError( F'''Stride needs to be strictly smaller than chunk_len: ({stride_left}, {stride_right}) vs {chunk_len}''' ) lowerCAmelCase__ : List[str] = 0 for raw in iterator: acc += raw if stream and len(SCREAMING_SNAKE_CASE_ ) < chunk_len: lowerCAmelCase__ : Tuple = (_stride_left, 0) yield {"raw": acc[:chunk_len], "stride": stride, "partial": True} else: while len(SCREAMING_SNAKE_CASE_ ) >= chunk_len: # We are flushing the accumulator lowerCAmelCase__ : Dict = (_stride_left, stride_right) lowerCAmelCase__ : Any = {'raw': acc[:chunk_len], 'stride': stride} if stream: lowerCAmelCase__ : Optional[int] = False yield item lowerCAmelCase__ : Optional[int] = stride_left lowerCAmelCase__ : Optional[int] = acc[chunk_len - stride_left - stride_right :] # Last chunk if len(SCREAMING_SNAKE_CASE_ ) > stride_left: lowerCAmelCase__ : Tuple = {'raw': acc, 'stride': (_stride_left, 0)} if stream: lowerCAmelCase__ : Any = False yield item def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> str: lowerCAmelCase__ : int = 2**24 # 16Mo try: with subprocess.Popen(SCREAMING_SNAKE_CASE_ , stdout=subprocess.PIPE , bufsize=SCREAMING_SNAKE_CASE_ ) as ffmpeg_process: while True: lowerCAmelCase__ : List[str] = ffmpeg_process.stdout.read(SCREAMING_SNAKE_CASE_ ) if raw == b"": break yield raw except FileNotFoundError as error: raise ValueError('ffmpeg was not found but is required to stream audio files from filename' ) from error
212
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available __UpperCAmelCase = { 'configuration_mobilenet_v2': [ 'MOBILENET_V2_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MobileNetV2Config', 'MobileNetV2OnnxConfig', ], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = ['MobileNetV2FeatureExtractor'] __UpperCAmelCase = ['MobileNetV2ImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = [ 'MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST', 'MobileNetV2ForImageClassification', 'MobileNetV2ForSemanticSegmentation', 'MobileNetV2Model', 'MobileNetV2PreTrainedModel', 'load_tf_weights_in_mobilenet_v2', ] if TYPE_CHECKING: from .configuration_mobilenet_va import ( MOBILENET_V2_PRETRAINED_CONFIG_ARCHIVE_MAP, MobileNetVaConfig, MobileNetVaOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_mobilenet_va import MobileNetVaFeatureExtractor from .image_processing_mobilenet_va import MobileNetVaImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mobilenet_va import ( MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST, MobileNetVaForImageClassification, MobileNetVaForSemanticSegmentation, MobileNetVaModel, MobileNetVaPreTrainedModel, load_tf_weights_in_mobilenet_va, ) else: import sys __UpperCAmelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
145
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __UpperCAmelCase = { 'configuration_roc_bert': ['ROC_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'RoCBertConfig'], 'tokenization_roc_bert': ['RoCBertTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: pass try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = [ 'ROC_BERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'RoCBertForCausalLM', 'RoCBertForMaskedLM', 'RoCBertForMultipleChoice', 'RoCBertForPreTraining', 'RoCBertForQuestionAnswering', 'RoCBertForSequenceClassification', 'RoCBertForTokenClassification', 'RoCBertLayer', 'RoCBertModel', 'RoCBertPreTrainedModel', 'load_tf_weights_in_roc_bert', ] if TYPE_CHECKING: from .configuration_roc_bert import ROC_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, RoCBertConfig from .tokenization_roc_bert import RoCBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: raise OptionalDependencyNotAvailable() try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roc_bert import ( ROC_BERT_PRETRAINED_MODEL_ARCHIVE_LIST, RoCBertForCausalLM, RoCBertForMaskedLM, RoCBertForMultipleChoice, RoCBertForPreTraining, RoCBertForQuestionAnswering, RoCBertForSequenceClassification, RoCBertForTokenClassification, RoCBertLayer, RoCBertModel, RoCBertPreTrainedModel, load_tf_weights_in_roc_bert, ) else: import sys __UpperCAmelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
145
1
lowercase__ : str = [sum(int(c, 1_0) ** 2 for c in i.__str__()) for i in range(1_0_0_0_0_0)] def A_ ( snake_case : int ) -> int: '''simple docstring''' __UpperCamelCase = 0 while number: # Increased Speed Slightly by checking every 5 digits together. sum_of_digits_squared += DIGITS_SQUARED[number % 100000] number //= 100000 return sum_of_digits_squared # There are 2 Chains made, # One ends with 89 with the chain member 58 being the one which when declared first, # there will be the least number of iterations for all the members to be checked. # The other one ends with 1 and has only one element 1. # So 58 and 1 are chosen to be declared at the starting. # Changed dictionary to an array to quicken the solution lowercase__ : list[bool | None] = [None] * 1_0_0_0_0_0_0_0 lowercase__ : Union[str, Any] = True lowercase__ : List[str] = False def A_ ( snake_case : int ) -> bool: '''simple docstring''' if CHAINS[number - 1] is not None: return CHAINS[number - 1] # type: ignore __UpperCamelCase = chain(next_number(snake_case ) ) __UpperCamelCase = number_chain while number < 10000000: __UpperCamelCase = number_chain number *= 10 return number_chain def A_ ( snake_case : int = 10000000 ) -> int: '''simple docstring''' for i in range(1 , snake_case ): if CHAINS[i] is None: chain(i + 1 ) return CHAINS[:number].count(snake_case ) if __name__ == "__main__": import doctest doctest.testmod() print(F"{solution() = }")
328
import os import tempfile import unittest from transformers import DistilBertConfig, is_torch_available from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, DistilBertModel, ) class SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=13 , SCREAMING_SNAKE_CASE_=7 , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=99 , SCREAMING_SNAKE_CASE_=32 , SCREAMING_SNAKE_CASE_=5 , SCREAMING_SNAKE_CASE_=4 , SCREAMING_SNAKE_CASE_=37 , SCREAMING_SNAKE_CASE_="gelu" , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=512 , SCREAMING_SNAKE_CASE_=16 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=0.0_2 , SCREAMING_SNAKE_CASE_=3 , SCREAMING_SNAKE_CASE_=4 , SCREAMING_SNAKE_CASE_=None , )-> Dict: '''simple docstring''' __UpperCamelCase = parent __UpperCamelCase = batch_size __UpperCamelCase = seq_length __UpperCamelCase = is_training __UpperCamelCase = use_input_mask __UpperCamelCase = use_token_type_ids __UpperCamelCase = use_labels __UpperCamelCase = vocab_size __UpperCamelCase = hidden_size __UpperCamelCase = num_hidden_layers __UpperCamelCase = num_attention_heads __UpperCamelCase = intermediate_size __UpperCamelCase = hidden_act __UpperCamelCase = hidden_dropout_prob __UpperCamelCase = attention_probs_dropout_prob __UpperCamelCase = max_position_embeddings __UpperCamelCase = type_vocab_size __UpperCamelCase = type_sequence_label_size __UpperCamelCase = initializer_range __UpperCamelCase = num_labels __UpperCamelCase = num_choices __UpperCamelCase = scope def A__ ( self )-> List[str]: '''simple docstring''' __UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __UpperCamelCase = None if self.use_input_mask: __UpperCamelCase = random_attention_mask([self.batch_size, self.seq_length] ) __UpperCamelCase = None __UpperCamelCase = None __UpperCamelCase = None if self.use_labels: __UpperCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __UpperCamelCase = ids_tensor([self.batch_size] , self.num_choices ) __UpperCamelCase = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def A__ ( self )-> str: '''simple docstring''' return DistilBertConfig( vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , ) def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )-> Any: '''simple docstring''' __UpperCamelCase = DistilBertModel(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() __UpperCamelCase = model(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = model(SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )-> Optional[int]: '''simple docstring''' __UpperCamelCase = DistilBertForMaskedLM(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() __UpperCamelCase = model(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )-> Tuple: '''simple docstring''' __UpperCamelCase = DistilBertForQuestionAnswering(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() __UpperCamelCase = model( SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , start_positions=SCREAMING_SNAKE_CASE_ , end_positions=SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )-> Union[str, Any]: '''simple docstring''' __UpperCamelCase = self.num_labels __UpperCamelCase = DistilBertForSequenceClassification(SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() __UpperCamelCase = model(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )-> str: '''simple docstring''' __UpperCamelCase = self.num_labels __UpperCamelCase = DistilBertForTokenClassification(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() __UpperCamelCase = model(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )-> str: '''simple docstring''' __UpperCamelCase = self.num_choices __UpperCamelCase = DistilBertForMultipleChoice(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() __UpperCamelCase = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __UpperCamelCase = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __UpperCamelCase = model( SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def A__ ( self )-> Optional[int]: '''simple docstring''' __UpperCamelCase = self.prepare_config_and_inputs() ((__UpperCamelCase) , (__UpperCamelCase) , (__UpperCamelCase) , (__UpperCamelCase) , (__UpperCamelCase) , (__UpperCamelCase)) = config_and_inputs __UpperCamelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , unittest.TestCase ): """simple docstring""" _snake_case = ( ( DistilBertModel, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, ) if is_torch_available() else None ) _snake_case = ( { 'feature-extraction': DistilBertModel, 'fill-mask': DistilBertForMaskedLM, 'question-answering': DistilBertForQuestionAnswering, 'text-classification': DistilBertForSequenceClassification, 'token-classification': DistilBertForTokenClassification, 'zero-shot': DistilBertForSequenceClassification, } if is_torch_available() else {} ) _snake_case = True _snake_case = True _snake_case = True _snake_case = True def A__ ( self )-> Dict: '''simple docstring''' __UpperCamelCase = DistilBertModelTester(self ) __UpperCamelCase = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE_ , dim=37 ) def A__ ( self )-> Dict: '''simple docstring''' self.config_tester.run_common_tests() def A__ ( self )-> Optional[int]: '''simple docstring''' __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_model(*SCREAMING_SNAKE_CASE_ ) def A__ ( self )-> int: '''simple docstring''' __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_masked_lm(*SCREAMING_SNAKE_CASE_ ) def A__ ( self )-> Union[str, Any]: '''simple docstring''' __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_question_answering(*SCREAMING_SNAKE_CASE_ ) def A__ ( self )-> Any: '''simple docstring''' __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_sequence_classification(*SCREAMING_SNAKE_CASE_ ) def A__ ( self )-> Union[str, Any]: '''simple docstring''' __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_token_classification(*SCREAMING_SNAKE_CASE_ ) def A__ ( self )-> Tuple: '''simple docstring''' __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_multiple_choice(*SCREAMING_SNAKE_CASE_ ) @slow def A__ ( self )-> List[str]: '''simple docstring''' for model_name in DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCamelCase = DistilBertModel.from_pretrained(SCREAMING_SNAKE_CASE_ ) self.assertIsNotNone(SCREAMING_SNAKE_CASE_ ) @slow @require_torch_gpu def A__ ( self )-> List[str]: '''simple docstring''' __UpperCamelCase , __UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # BertForMultipleChoice behaves incorrectly in JIT environments. if model_class == DistilBertForMultipleChoice: return __UpperCamelCase = True __UpperCamelCase = model_class(config=SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = torch.jit.trace( SCREAMING_SNAKE_CASE_ , (inputs_dict['''input_ids'''].to('''cpu''' ), inputs_dict['''attention_mask'''].to('''cpu''' )) ) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(SCREAMING_SNAKE_CASE_ , os.path.join(SCREAMING_SNAKE_CASE_ , '''traced_model.pt''' ) ) __UpperCamelCase = torch.jit.load(os.path.join(SCREAMING_SNAKE_CASE_ , '''traced_model.pt''' ) , map_location=SCREAMING_SNAKE_CASE_ ) loaded(inputs_dict['''input_ids'''].to(SCREAMING_SNAKE_CASE_ ) , inputs_dict['''attention_mask'''].to(SCREAMING_SNAKE_CASE_ ) ) @require_torch class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): """simple docstring""" @slow def A__ ( self )-> Tuple: '''simple docstring''' __UpperCamelCase = DistilBertModel.from_pretrained('''distilbert-base-uncased''' ) __UpperCamelCase = torch.tensor([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]] ) __UpperCamelCase = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): __UpperCamelCase = model(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ )[0] __UpperCamelCase = torch.Size((1, 11, 768) ) self.assertEqual(output.shape , SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = torch.tensor( [[[-0.1_6_3_9, 0.3_2_9_9, 0.1_6_4_8], [-0.1_7_4_6, 0.3_2_8_9, 0.1_7_1_0], [-0.1_8_8_4, 0.3_3_5_7, 0.1_8_1_0]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , SCREAMING_SNAKE_CASE_ , atol=1E-4 ) )
328
1
"""simple docstring""" import unittest from transformers import MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING, AutoTokenizer, is_vision_available from transformers.pipelines import pipeline from transformers.pipelines.document_question_answering import apply_tesseract from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_detectrona, require_pytesseract, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image from transformers.image_utils import load_image else: class _lowerCAmelCase : """simple docstring""" @staticmethod def snake_case ( *__UpperCAmelCase , **__UpperCAmelCase ): '''simple docstring''' pass def __A (_SCREAMING_SNAKE_CASE ) ->List[str]: """simple docstring""" return None # This is a pinned image from a specific revision of a document question answering space, hosted by HuggingFace, # so we can expect it to be available. __A = ( """https://huggingface.co/spaces/impira/docquery/resolve/2f6c96314dc84dfda62d40de9da55f2f5165d403/invoice.png""" ) @is_pipeline_test @require_torch @require_vision class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" __magic_name__ :int = MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING @require_pytesseract @require_vision def snake_case ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' lowerCAmelCase__ :Optional[int] = pipeline( 'document-question-answering' , model=__UpperCAmelCase , tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase ) lowerCAmelCase__ :Dict = INVOICE_URL lowerCAmelCase__ :Optional[Any] = list(zip(*apply_tesseract(load_image(__UpperCAmelCase ) , __UpperCAmelCase , '' ) ) ) lowerCAmelCase__ :int = 'What is the placebo?' lowerCAmelCase__ :int = [ { 'image': load_image(__UpperCAmelCase ), 'question': question, }, { 'image': image, 'question': question, }, { 'image': image, 'question': question, 'word_boxes': word_boxes, }, ] return dqa_pipeline, examples def snake_case ( self , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' lowerCAmelCase__ :Optional[Any] = dqa_pipeline(__UpperCAmelCase , top_k=2 ) self.assertEqual( __UpperCAmelCase , [ [ {'score': ANY(__UpperCAmelCase ), 'answer': ANY(__UpperCAmelCase ), 'start': ANY(__UpperCAmelCase ), 'end': ANY(__UpperCAmelCase )}, {'score': ANY(__UpperCAmelCase ), 'answer': ANY(__UpperCAmelCase ), 'start': ANY(__UpperCAmelCase ), 'end': ANY(__UpperCAmelCase )}, ] ] * 3 , ) @require_torch @require_detectrona @require_pytesseract def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :Dict = pipeline('document-question-answering' , model='hf-internal-testing/tiny-random-layoutlmv2' ) lowerCAmelCase__ :Tuple = INVOICE_URL lowerCAmelCase__ :Union[str, Any] = 'How many cats are there?' lowerCAmelCase__ :Union[str, Any] = [ {'score': 0.00_01, 'answer': 'oy 2312/2019', 'start': 3_8, 'end': 3_9}, {'score': 0.00_01, 'answer': 'oy 2312/2019 DUE', 'start': 3_8, 'end': 4_0}, ] lowerCAmelCase__ :Optional[int] = dqa_pipeline(image=__UpperCAmelCase , question=__UpperCAmelCase , top_k=2 ) self.assertEqual(nested_simplify(__UpperCAmelCase , decimals=4 ) , __UpperCAmelCase ) lowerCAmelCase__ :List[str] = dqa_pipeline({'image': image, 'question': question} , top_k=2 ) self.assertEqual(nested_simplify(__UpperCAmelCase , decimals=4 ) , __UpperCAmelCase ) # This image does not detect ANY text in it, meaning layoutlmv2 should fail. # Empty answer probably lowerCAmelCase__ :Optional[int] = './tests/fixtures/tests_samples/COCO/000000039769.png' lowerCAmelCase__ :Union[str, Any] = dqa_pipeline(image=__UpperCAmelCase , question=__UpperCAmelCase , top_k=2 ) self.assertEqual(__UpperCAmelCase , [] ) # We can optionnally pass directly the words and bounding boxes lowerCAmelCase__ :Tuple = './tests/fixtures/tests_samples/COCO/000000039769.png' lowerCAmelCase__ :Optional[Any] = [] lowerCAmelCase__ :Union[str, Any] = [] lowerCAmelCase__ :Optional[int] = dqa_pipeline(image=__UpperCAmelCase , question=__UpperCAmelCase , words=__UpperCAmelCase , boxes=__UpperCAmelCase , top_k=2 ) self.assertEqual(__UpperCAmelCase , [] ) @slow @require_torch @require_detectrona @require_pytesseract def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :str = pipeline( 'document-question-answering' , model='tiennvcs/layoutlmv2-base-uncased-finetuned-docvqa' , revision='9977165' , ) lowerCAmelCase__ :str = INVOICE_URL lowerCAmelCase__ :Optional[int] = 'What is the invoice number?' lowerCAmelCase__ :Tuple = dqa_pipeline(image=__UpperCAmelCase , question=__UpperCAmelCase , top_k=2 ) self.assertEqual( nested_simplify(__UpperCAmelCase , decimals=4 ) , [ {'score': 0.99_44, 'answer': 'us-001', 'start': 1_6, 'end': 1_6}, {'score': 0.00_09, 'answer': 'us-001', 'start': 1_6, 'end': 1_6}, ] , ) lowerCAmelCase__ :Any = dqa_pipeline({'image': image, 'question': question} , top_k=2 ) self.assertEqual( nested_simplify(__UpperCAmelCase , decimals=4 ) , [ {'score': 0.99_44, 'answer': 'us-001', 'start': 1_6, 'end': 1_6}, {'score': 0.00_09, 'answer': 'us-001', 'start': 1_6, 'end': 1_6}, ] , ) lowerCAmelCase__ :Optional[int] = dqa_pipeline( [{'image': image, 'question': question}, {'image': image, 'question': question}] , top_k=2 ) self.assertEqual( nested_simplify(__UpperCAmelCase , decimals=4 ) , [ [ {'score': 0.99_44, 'answer': 'us-001', 'start': 1_6, 'end': 1_6}, {'score': 0.00_09, 'answer': 'us-001', 'start': 1_6, 'end': 1_6}, ], ] * 2 , ) @slow @require_torch @require_detectrona @require_pytesseract def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :List[str] = pipeline( 'document-question-answering' , model='tiennvcs/layoutlmv2-base-uncased-finetuned-docvqa' , revision='9977165' , max_seq_len=5_0 , ) lowerCAmelCase__ :Any = INVOICE_URL lowerCAmelCase__ :Optional[int] = 'What is the invoice number?' lowerCAmelCase__ :Optional[Any] = dqa_pipeline(image=__UpperCAmelCase , question=__UpperCAmelCase , top_k=2 ) self.assertEqual( nested_simplify(__UpperCAmelCase , decimals=4 ) , [ {'score': 0.99_74, 'answer': '1110212019', 'start': 2_3, 'end': 2_3}, {'score': 0.99_48, 'answer': 'us-001', 'start': 1_6, 'end': 1_6}, ] , ) lowerCAmelCase__ :Tuple = dqa_pipeline({'image': image, 'question': question} , top_k=2 ) self.assertEqual( nested_simplify(__UpperCAmelCase , decimals=4 ) , [ {'score': 0.99_74, 'answer': '1110212019', 'start': 2_3, 'end': 2_3}, {'score': 0.99_48, 'answer': 'us-001', 'start': 1_6, 'end': 1_6}, ] , ) lowerCAmelCase__ :List[Any] = dqa_pipeline( [{'image': image, 'question': question}, {'image': image, 'question': question}] , top_k=2 ) self.assertEqual( nested_simplify(__UpperCAmelCase , decimals=4 ) , [ [ {'score': 0.99_74, 'answer': '1110212019', 'start': 2_3, 'end': 2_3}, {'score': 0.99_48, 'answer': 'us-001', 'start': 1_6, 'end': 1_6}, ] ] * 2 , ) @slow @require_torch @require_pytesseract @require_vision def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :Dict = AutoTokenizer.from_pretrained( 'impira/layoutlm-document-qa' , revision='3dc6de3' , add_prefix_space=__UpperCAmelCase ) lowerCAmelCase__ :Optional[Any] = pipeline( 'document-question-answering' , model='impira/layoutlm-document-qa' , tokenizer=__UpperCAmelCase , revision='3dc6de3' , ) lowerCAmelCase__ :Optional[int] = INVOICE_URL lowerCAmelCase__ :List[Any] = 'What is the invoice number?' lowerCAmelCase__ :List[Any] = dqa_pipeline(image=__UpperCAmelCase , question=__UpperCAmelCase , top_k=2 ) self.assertEqual( nested_simplify(__UpperCAmelCase , decimals=4 ) , [ {'score': 0.42_51, 'answer': 'us-001', 'start': 1_6, 'end': 1_6}, {'score': 0.08_19, 'answer': '1110212019', 'start': 2_3, 'end': 2_3}, ] , ) lowerCAmelCase__ :Optional[int] = dqa_pipeline({'image': image, 'question': question} , top_k=2 ) self.assertEqual( nested_simplify(__UpperCAmelCase , decimals=4 ) , [ {'score': 0.42_51, 'answer': 'us-001', 'start': 1_6, 'end': 1_6}, {'score': 0.08_19, 'answer': '1110212019', 'start': 2_3, 'end': 2_3}, ] , ) lowerCAmelCase__ :Optional[int] = dqa_pipeline( [{'image': image, 'question': question}, {'image': image, 'question': question}] , top_k=2 ) self.assertEqual( nested_simplify(__UpperCAmelCase , decimals=4 ) , [ [ {'score': 0.42_51, 'answer': 'us-001', 'start': 1_6, 'end': 1_6}, {'score': 0.08_19, 'answer': '1110212019', 'start': 2_3, 'end': 2_3}, ] ] * 2 , ) lowerCAmelCase__ :List[Any] = list(zip(*apply_tesseract(load_image(__UpperCAmelCase ) , __UpperCAmelCase , '' ) ) ) # This model should also work if `image` is set to None lowerCAmelCase__ :Optional[Any] = dqa_pipeline({'image': None, 'word_boxes': word_boxes, 'question': question} , top_k=2 ) self.assertEqual( nested_simplify(__UpperCAmelCase , decimals=4 ) , [ {'score': 0.42_51, 'answer': 'us-001', 'start': 1_6, 'end': 1_6}, {'score': 0.08_19, 'answer': '1110212019', 'start': 2_3, 'end': 2_3}, ] , ) @slow @require_torch @require_pytesseract @require_vision def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :Union[str, Any] = AutoTokenizer.from_pretrained( 'impira/layoutlm-document-qa' , revision='3dc6de3' , add_prefix_space=__UpperCAmelCase ) lowerCAmelCase__ :Optional[int] = pipeline( 'document-question-answering' , model='impira/layoutlm-document-qa' , tokenizer=__UpperCAmelCase , revision='3dc6de3' , max_seq_len=5_0 , ) lowerCAmelCase__ :Dict = INVOICE_URL lowerCAmelCase__ :str = 'What is the invoice number?' lowerCAmelCase__ :Dict = dqa_pipeline(image=__UpperCAmelCase , question=__UpperCAmelCase , top_k=2 ) self.assertEqual( nested_simplify(__UpperCAmelCase , decimals=4 ) , [ {'score': 0.99_99, 'answer': 'us-001', 'start': 1_6, 'end': 1_6}, {'score': 0.99_98, 'answer': 'us-001', 'start': 1_6, 'end': 1_6}, ] , ) lowerCAmelCase__ :Union[str, Any] = dqa_pipeline( [{'image': image, 'question': question}, {'image': image, 'question': question}] , top_k=2 ) self.assertEqual( nested_simplify(__UpperCAmelCase , decimals=4 ) , [ [ {'score': 0.99_99, 'answer': 'us-001', 'start': 1_6, 'end': 1_6}, {'score': 0.99_98, 'answer': 'us-001', 'start': 1_6, 'end': 1_6}, ] ] * 2 , ) lowerCAmelCase__ :Dict = list(zip(*apply_tesseract(load_image(__UpperCAmelCase ) , __UpperCAmelCase , '' ) ) ) # This model should also work if `image` is set to None lowerCAmelCase__ :Tuple = dqa_pipeline({'image': None, 'word_boxes': word_boxes, 'question': question} , top_k=2 ) self.assertEqual( nested_simplify(__UpperCAmelCase , decimals=4 ) , [ {'score': 0.99_99, 'answer': 'us-001', 'start': 1_6, 'end': 1_6}, {'score': 0.99_98, 'answer': 'us-001', 'start': 1_6, 'end': 1_6}, ] , ) @slow @require_torch def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :Any = pipeline( 'document-question-answering' , model='naver-clova-ix/donut-base-finetuned-docvqa' , tokenizer=AutoTokenizer.from_pretrained('naver-clova-ix/donut-base-finetuned-docvqa' ) , feature_extractor='naver-clova-ix/donut-base-finetuned-docvqa' , ) lowerCAmelCase__ :int = INVOICE_URL lowerCAmelCase__ :List[Any] = 'What is the invoice number?' lowerCAmelCase__ :str = dqa_pipeline(image=__UpperCAmelCase , question=__UpperCAmelCase , top_k=2 ) self.assertEqual(nested_simplify(__UpperCAmelCase , decimals=4 ) , [{'answer': 'us-001'}] ) @require_tf @unittest.skip('Document question answering not implemented in TF' ) def snake_case ( self ): '''simple docstring''' pass
254
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices __A = logging.get_logger(__name__) __A = { """microsoft/swin-tiny-patch4-window7-224""": ( """https://huggingface.co/microsoft/swin-tiny-patch4-window7-224/resolve/main/config.json""" ), # See all Swin models at https://huggingface.co/models?filter=swin } class _lowerCAmelCase ( a , a ): """simple docstring""" __magic_name__ :int = """swin""" __magic_name__ :Tuple = { """num_attention_heads""": """num_heads""", """num_hidden_layers""": """num_layers""", } def __init__( self , __UpperCAmelCase=2_2_4 , __UpperCAmelCase=4 , __UpperCAmelCase=3 , __UpperCAmelCase=9_6 , __UpperCAmelCase=[2, 2, 6, 2] , __UpperCAmelCase=[3, 6, 1_2, 2_4] , __UpperCAmelCase=7 , __UpperCAmelCase=4.0 , __UpperCAmelCase=True , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.1 , __UpperCAmelCase="gelu" , __UpperCAmelCase=False , __UpperCAmelCase=0.02 , __UpperCAmelCase=1E-5 , __UpperCAmelCase=3_2 , __UpperCAmelCase=None , __UpperCAmelCase=None , **__UpperCAmelCase , ): '''simple docstring''' super().__init__(**__UpperCAmelCase ) lowerCAmelCase__ :Any = image_size lowerCAmelCase__ :List[Any] = patch_size lowerCAmelCase__ :Optional[int] = num_channels lowerCAmelCase__ :str = embed_dim lowerCAmelCase__ :Optional[int] = depths lowerCAmelCase__ :List[str] = len(__UpperCAmelCase ) lowerCAmelCase__ :Optional[Any] = num_heads lowerCAmelCase__ :List[Any] = window_size lowerCAmelCase__ :List[Any] = mlp_ratio lowerCAmelCase__ :int = qkv_bias lowerCAmelCase__ :Optional[int] = hidden_dropout_prob lowerCAmelCase__ :int = attention_probs_dropout_prob lowerCAmelCase__ :List[Any] = drop_path_rate lowerCAmelCase__ :Any = hidden_act lowerCAmelCase__ :Dict = use_absolute_embeddings lowerCAmelCase__ :int = layer_norm_eps lowerCAmelCase__ :Dict = initializer_range lowerCAmelCase__ :int = encoder_stride # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model lowerCAmelCase__ :str = int(embed_dim * 2 ** (len(__UpperCAmelCase ) - 1) ) lowerCAmelCase__ :str = ['stem'] + [F"stage{idx}" for idx in range(1 , len(__UpperCAmelCase ) + 1 )] lowerCAmelCase__ , lowerCAmelCase__ :List[Any] = get_aligned_output_features_output_indices( out_features=__UpperCAmelCase , out_indices=__UpperCAmelCase , stage_names=self.stage_names ) class _lowerCAmelCase ( a ): """simple docstring""" __magic_name__ :int = version.parse("""1.11""" ) @property def snake_case ( self ): '''simple docstring''' return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def snake_case ( self ): '''simple docstring''' return 1E-4
254
1
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from accelerate import PartialState from accelerate.utils.operations import broadcast, gather, gather_object, pad_across_processes, reduce def A_ ( A__ ) -> List[str]: return (torch.arange(state.num_processes ) + 1.0 + (state.num_processes * state.process_index)).to(state.device ) def A_ ( A__ ) -> Tuple: a__ : Dict = create_tensor(A__ ) a__ : Tuple = gather(A__ ) assert gathered_tensor.tolist() == list(range(1 , state.num_processes**2 + 1 ) ) def A_ ( A__ ) -> Any: a__ : Tuple = [state.process_index] a__ : Union[str, Any] = gather_object(A__ ) assert len(A__ ) == state.num_processes, F'{gathered_obj}, {len(A__ )} != {state.num_processes}' assert gathered_obj == list(range(state.num_processes ) ), F'{gathered_obj} != {list(range(state.num_processes ) )}' def A_ ( A__ ) -> Dict: a__ : List[Any] = create_tensor(A__ ) a__ : Optional[int] = broadcast(A__ ) assert broadcasted_tensor.shape == torch.Size([state.num_processes] ) assert broadcasted_tensor.tolist() == list(range(1 , state.num_processes + 1 ) ) def A_ ( A__ ) -> List[str]: # We need to pad the tensor with one more element if we are the main process # to ensure that we can pad if state.is_main_process: a__ : str = torch.arange(state.num_processes + 1 ).to(state.device ) else: a__ : Optional[int] = torch.arange(state.num_processes ).to(state.device ) a__ : Optional[Any] = pad_across_processes(A__ ) assert padded_tensor.shape == torch.Size([state.num_processes + 1] ) if not state.is_main_process: assert padded_tensor.tolist() == list(range(0 , state.num_processes ) ) + [0] def A_ ( A__ ) -> List[Any]: # For now runs on only two processes if state.num_processes != 2: return a__ : Optional[Any] = create_tensor(A__ ) a__ : str = reduce(A__ , 'sum' ) a__ : Any = torch.tensor([4.0, 6] ).to(state.device ) assert torch.allclose(A__ , A__ ), F'{reduced_tensor} != {truth_tensor}' def A_ ( A__ ) -> Dict: # For now runs on only two processes if state.num_processes != 2: return a__ : int = create_tensor(A__ ) a__ : Union[str, Any] = reduce(A__ , 'mean' ) a__ : Any = torch.tensor([2.0, 3] ).to(state.device ) assert torch.allclose(A__ , A__ ), F'{reduced_tensor} != {truth_tensor}' def A_ ( A__ ) -> List[Any]: # For xla_spawn (TPUs) main() def A_ ( ) -> int: a__ : List[str] = PartialState() state.print(F'State: {state}' ) state.print('testing gather' ) test_gather(A__ ) state.print('testing gather_object' ) test_gather_object(A__ ) state.print('testing broadcast' ) test_broadcast(A__ ) state.print('testing pad_across_processes' ) test_pad_across_processes(A__ ) state.print('testing reduce_sum' ) test_reduce_sum(A__ ) state.print('testing reduce_mean' ) test_reduce_mean(A__ ) if __name__ == "__main__": main()
99
import unittest from transformers import load_tool from .test_tools_common import ToolTesterMixin class __snake_case ( unittest.TestCase , __lowerCamelCase ): '''simple docstring''' def UpperCAmelCase__ ( self : Union[str, Any] ): __snake_case: Optional[int] = load_tool("""text-classification""" ) self.tool.setup() __snake_case: Dict = load_tool("""text-classification""" , remote=A ) def UpperCAmelCase__ ( self : Optional[int] ): __snake_case: List[str] = self.tool("""That's quite cool""" , ["""positive""", """negative"""] ) self.assertEqual(A , """positive""" ) def UpperCAmelCase__ ( self : Dict ): __snake_case: List[str] = self.remote_tool("""That's quite cool""" , ["""positive""", """negative"""] ) self.assertEqual(A , """positive""" ) def UpperCAmelCase__ ( self : Optional[Any] ): __snake_case: Optional[Any] = self.tool(text="""That's quite cool""" , labels=["""positive""", """negative"""] ) self.assertEqual(A , """positive""" ) def UpperCAmelCase__ ( self : Tuple ): __snake_case: int = self.remote_tool(text="""That's quite cool""" , labels=["""positive""", """negative"""] ) self.assertEqual(A , """positive""" )
111
0
def __lowerCamelCase ( lowerCamelCase__ ): """simple docstring""" if not isinstance(lowerCamelCase__ , lowerCamelCase__ ): lowercase__ : Optional[int] = F"""Input value of [number={number}] must be an integer""" raise TypeError(lowerCamelCase__ ) if number < 1: lowercase__ : Optional[int] = F"""Input value of [number={number}] must be > 0""" raise ValueError(lowerCamelCase__ ) lowercase__ : List[Any] = 1 for i in range(1 , lowerCamelCase__ ): current_number *= 4 * i - 2 current_number //= i + 1 return current_number if __name__ == "__main__": import doctest doctest.testmod()
121
import json import os import subprocess import unittest from ast import literal_eval import pytest from parameterized import parameterized_class from . import is_sagemaker_available if is_sagemaker_available(): from sagemaker import Session, TrainingJobAnalytics from sagemaker.huggingface import HuggingFace @pytest.mark.skipif( literal_eval(os.getenv("""TEST_SAGEMAKER""" , """False""" ) ) is not True , reason="""Skipping test because should only be run when releasing minor transformers version""" , ) @pytest.mark.usefixtures("""sm_env""" ) @parameterized_class( [ { """framework""": """pytorch""", """script""": """run_glue.py""", """model_name_or_path""": """distilbert-base-cased""", """instance_type""": """ml.g4dn.xlarge""", """results""": {"""train_runtime""": 6_5_0, """eval_accuracy""": 0.6, """eval_loss""": 0.9}, }, { """framework""": """tensorflow""", """script""": """run_tf.py""", """model_name_or_path""": """distilbert-base-cased""", """instance_type""": """ml.g4dn.xlarge""", """results""": {"""train_runtime""": 6_0_0, """eval_accuracy""": 0.3, """eval_loss""": 0.9}, }, ] ) class snake_case__(unittest.TestCase ): """simple docstring""" def snake_case ( self : Union[str, Any] ): if self.framework == "pytorch": subprocess.run( f"""cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py""".split() , encoding="utf-8" , check=SCREAMING_SNAKE_CASE , ) assert hasattr(self , "env" ) def snake_case ( self : Tuple , SCREAMING_SNAKE_CASE : str=1 ): # creates estimator return HuggingFace( entry_point=self.script , source_dir=self.env.test_path , role=self.env.role , image_uri=self.env.image_uri , base_job_name=f"""{self.env.base_job_name}-single""" , instance_count=SCREAMING_SNAKE_CASE , instance_type=self.instance_type , debugger_hook_config=SCREAMING_SNAKE_CASE , hyperparameters={**self.env.hyperparameters, "model_name_or_path": self.model_name_or_path} , metric_definitions=self.env.metric_definitions , py_version="py36" , ) def snake_case ( self : Union[str, Any] , SCREAMING_SNAKE_CASE : str ): TrainingJobAnalytics(SCREAMING_SNAKE_CASE ).export_csv(f"""{self.env.test_path}/{job_name}_metrics.csv""" ) def snake_case ( self : str ): # create estimator lowercase__ : Optional[int] = self.create_estimator() # run training estimator.fit() # result dataframe lowercase__ : Union[str, Any] = TrainingJobAnalytics(estimator.latest_training_job.name ).dataframe() # extract kpis lowercase__ : str = list(result_metrics_df[result_metrics_df.metric_name == "eval_accuracy"]["value"] ) lowercase__ : Tuple = list(result_metrics_df[result_metrics_df.metric_name == "eval_loss"]["value"] ) # get train time from SageMaker job, this includes starting, preprocessing, stopping lowercase__ : Any = ( Session().describe_training_job(estimator.latest_training_job.name ).get("TrainingTimeInSeconds" , 999_999 ) ) # assert kpis assert train_runtime <= self.results["train_runtime"] assert all(t >= self.results["eval_accuracy"] for t in eval_accuracy ) assert all(t <= self.results["eval_loss"] for t in eval_loss ) # dump tests result into json file to share in PR with open(f"""{estimator.latest_training_job.name}.json""" , "w" ) as outfile: json.dump({"train_time": train_runtime, "eval_accuracy": eval_accuracy, "eval_loss": eval_loss} , SCREAMING_SNAKE_CASE )
121
1
"""simple docstring""" import unittest from transformers import DonutProcessor UpperCamelCase_ = 'naver-clova-ix/donut-base' class snake_case ( unittest.TestCase ): def UpperCAmelCase__ ( self) ->int: a_ = DonutProcessor.from_pretrained(__UpperCAmelCase) def UpperCAmelCase__ ( self) ->Optional[Any]: a_ = { "name": "John Doe", "age": "99", "city": "Atlanta", "state": "GA", "zip": "30301", "phone": "123-4567", "nicknames": [{"nickname": "Johnny"}, {"nickname": "JD"}], } a_ = ( "<s_name>John Doe</s_name><s_age>99</s_age><s_city>Atlanta</s_city>" "<s_state>GA</s_state><s_zip>30301</s_zip><s_phone>123-4567</s_phone>" "<s_nicknames><s_nickname>Johnny</s_nickname>" "<sep/><s_nickname>JD</s_nickname></s_nicknames>" ) a_ = self.processor.tokenajson(__UpperCAmelCase) self.assertDictEqual(__UpperCAmelCase , __UpperCAmelCase)
243
"""simple docstring""" import argparse import json import os import re import shutil import torch from transformers import BioGptConfig, BioGptForCausalLM from transformers.models.biogpt.tokenization_biogpt import VOCAB_FILES_NAMES from transformers.tokenization_utils_base import TOKENIZER_CONFIG_FILE from transformers.utils import WEIGHTS_NAME, logging logging.set_verbosity_warning() UpperCamelCase_ = 2 class snake_case : def __init__( self , *, # begin keyword-only arguments __UpperCAmelCase="<s>" , __UpperCAmelCase="<pad>" , __UpperCAmelCase="</s>" , __UpperCAmelCase="<unk>" , __UpperCAmelCase=None , ) ->Tuple: a_ , a_ , a_ , a_ = bos, unk, pad, eos a_ = [] a_ = [] a_ = {} a_ = self.add_symbol(__UpperCAmelCase) a_ = self.add_symbol(__UpperCAmelCase) a_ = self.add_symbol(__UpperCAmelCase) a_ = self.add_symbol(__UpperCAmelCase) if extra_special_symbols: for s in extra_special_symbols: self.add_symbol(__UpperCAmelCase) a_ = len(self.symbols) def __eq__( self , __UpperCAmelCase) ->Dict: return self.indices == other.indices def __getitem__( self , __UpperCAmelCase) ->Optional[Any]: if idx < len(self.symbols): return self.symbols[idx] return self.unk_word def __len__( self) ->Any: return len(self.symbols) def __contains__( self , __UpperCAmelCase) ->Dict: return sym in self.indices @classmethod def UpperCAmelCase__ ( cls , __UpperCAmelCase) ->List[Any]: a_ = cls() d.add_from_file(__UpperCAmelCase) return d def UpperCAmelCase__ ( self , __UpperCAmelCase , __UpperCAmelCase=1 , __UpperCAmelCase=False) ->List[Any]: if word in self.indices and not overwrite: a_ = self.indices[word] a_ = self.count[idx] + n return idx else: a_ = len(self.symbols) a_ = idx self.symbols.append(__UpperCAmelCase) self.count.append(__UpperCAmelCase) return idx def UpperCAmelCase__ ( self , __UpperCAmelCase) ->Tuple: return 0 def UpperCAmelCase__ ( self , __UpperCAmelCase) ->List[str]: if isinstance(__UpperCAmelCase , __UpperCAmelCase): try: with open(__UpperCAmelCase , "r" , encoding="utf-8") as fd: self.add_from_file(__UpperCAmelCase) except FileNotFoundError as fnfe: raise fnfe except UnicodeError: raise Exception("Incorrect encoding detected in {}, please rebuild the dataset".format(__UpperCAmelCase)) return a_ = f.readlines() a_ = self._load_meta(__UpperCAmelCase) for line in lines[indices_start_line:]: try: a_ , a_ = line.rstrip().rsplit(" " , 1) if field == "#fairseq:overwrite": a_ = True a_ , a_ = line.rsplit(" " , 1) else: a_ = False a_ = int(__UpperCAmelCase) a_ = line if word in self and not overwrite: raise RuntimeError( "Duplicate word found when loading Dictionary: '{}'. " "Duplicate words can overwrite earlier ones by adding the " "#fairseq:overwrite flag at the end of the corresponding row " "in the dictionary file. If using the Camembert model, please " "download an updated copy of the model file.".format(__UpperCAmelCase)) self.add_symbol(__UpperCAmelCase , n=__UpperCAmelCase , overwrite=__UpperCAmelCase) except ValueError: raise ValueError("Incorrect dictionary format, expected '<token> <cnt> [flags]'") def UpperCamelCase ( UpperCAmelCase ) ->Union[str, Any]: """simple docstring""" a_ = dict((re.sub(r"@@$" , "" , UpperCAmelCase ), v) if k.endswith("@@" ) else (re.sub(r"$" , "</w>" , UpperCAmelCase ), v) for k, v in d.items() ) a_ = "<s> <pad> </s> <unk>".split() # restore the special tokens for k in keep_keys: del da[F'''{k}</w>'''] a_ = d[k] # restore return da def UpperCamelCase ( UpperCAmelCase , UpperCAmelCase ) ->Any: """simple docstring""" if not os.path.exists(UpperCAmelCase ): raise ValueError(F'''path {biogpt_checkpoint_path} does not exist!''' ) os.makedirs(UpperCAmelCase , exist_ok=UpperCAmelCase ) print(F'''Writing results to {pytorch_dump_folder_path}''' ) # handle various types of models a_ = os.path.join(UpperCAmelCase , "checkpoint.pt" ) if not os.path.isfile(UpperCAmelCase ): raise ValueError(F'''path to the file {checkpoint_file} does not exist!''' ) a_ = torch.load(UpperCAmelCase , map_location="cpu" ) a_ = chkpt["cfg"]["model"] # dicts a_ = os.path.join(UpperCAmelCase , "dict.txt" ) if not os.path.isfile(UpperCAmelCase ): raise ValueError(F'''path to the file {dict_file} does not exist!''' ) a_ = Dictionary.load(UpperCAmelCase ) a_ = rewrite_dict_keys(src_dict.indices ) a_ = len(UpperCAmelCase ) a_ = os.path.join(UpperCAmelCase , VOCAB_FILES_NAMES["vocab_file"] ) print(F'''Generating {src_vocab_file} of {src_vocab_size} records''' ) with open(UpperCAmelCase , "w" , encoding="utf-8" ) as f: f.write(json.dumps(UpperCAmelCase , ensure_ascii=UpperCAmelCase , indent=UpperCAmelCase ) ) # merges_file (bpecodes) a_ = os.path.join(UpperCAmelCase , "bpecodes" ) if not os.path.isfile(UpperCAmelCase ): raise ValueError(F'''path to the file {bpecodes_file} does not exist!''' ) a_ = os.path.join(UpperCAmelCase , VOCAB_FILES_NAMES["merges_file"] ) shutil.copyfile(UpperCAmelCase , UpperCAmelCase ) # model config a_ = os.path.join(UpperCAmelCase , "config.json" ) a_ = { "activation_dropout": args["activation_dropout"], "architectures": ["BioGptForCausalLM"], "attention_probs_dropout_prob": args["attention_dropout"], "bos_token_id": 0, "eos_token_id": 2, "hidden_act": args["activation_fn"], "hidden_dropout_prob": args["dropout"], "hidden_size": args["decoder_embed_dim"], "initializer_range": 0.02, "intermediate_size": args["decoder_ffn_embed_dim"], "layer_norm_eps": 1E-12, "layerdrop": args["decoder_layerdrop"], "max_position_embeddings": args["max_target_positions"], "model_type": "biogpt", "num_attention_heads": args["decoder_attention_heads"], "num_hidden_layers": args["decoder_layers"], "pad_token_id": 1, "scale_embedding": not args["no_scale_embedding"], "tie_word_embeddings": args["share_decoder_input_output_embed"], "vocab_size": src_vocab_size, } # good hparam defaults to start with print(F'''Generating {biogpt_model_config_file}''' ) with open(UpperCAmelCase , "w" , encoding="utf-8" ) as f: f.write(json.dumps(UpperCAmelCase , ensure_ascii=UpperCAmelCase , indent=UpperCAmelCase ) ) # tokenizer config a_ = os.path.join(UpperCAmelCase , UpperCAmelCase ) a_ = { "bos_token": "<s>", "eos_token": "</s>", "model_max_length": 1_024, "pad_token": "<pad>", "special_tokens_map_file": None, "tokenizer_class": "BioGptTokenizer", "unk_token": "<unk>", } print(F'''Generating {biogpt_tokenizer_config_file}''' ) with open(UpperCAmelCase , "w" , encoding="utf-8" ) as f: f.write(json.dumps(UpperCAmelCase , ensure_ascii=UpperCAmelCase , indent=UpperCAmelCase ) ) # model a_ = chkpt["model"] # remove unneeded keys a_ = [ "decoder.version", ] for k in ignore_keys: model_state_dict.pop(UpperCAmelCase , UpperCAmelCase ) a_ = list(model_state_dict.keys() ) for layer_name in layer_names: if layer_name.endswith("output_projection.weight" ): a_ = model_state_dict.pop(UpperCAmelCase ) else: a_ = model_state_dict.pop(UpperCAmelCase ) a_ = BioGptConfig.from_pretrained(UpperCAmelCase ) a_ = BioGptForCausalLM(UpperCAmelCase ) # check that it loads ok model_new.load_state_dict(UpperCAmelCase ) # save a_ = os.path.join(UpperCAmelCase , UpperCAmelCase ) print(F'''Generating {pytorch_weights_dump_path}''' ) torch.save(UpperCAmelCase , UpperCAmelCase ) print("Conversion is done!" ) if __name__ == "__main__": UpperCamelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--biogpt_checkpoint_path', default=None, type=str, required=True, help=( 'Path to the official PyTorch checkpoint file which is expected to reside in the dump dir with dicts,' ' bpecodes, etc.' ), ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) UpperCamelCase_ = parser.parse_args() convert_biogpt_checkpoint_to_pytorch(args.biogpt_checkpoint_path, args.pytorch_dump_folder_path)
243
1
def UpperCamelCase ( __magic_name__ : str ) -> List[str]: # noqa: E741 """simple docstring""" lowercase__ = len(__magic_name__ ) lowercase__ = 0 lowercase__ = [0] * n lowercase__ = [False] * n lowercase__ = [False] * n def dfs(__magic_name__ : str , __magic_name__ : List[str] , __magic_name__ : str , __magic_name__ : Any ): if parent == root: out_edge_count += 1 lowercase__ = True lowercase__ = at for to in l[at]: if to == parent: pass elif not visited[to]: lowercase__ = dfs(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) lowercase__ = min(low[at] , low[to] ) # AP found via bridge if at < low[to]: lowercase__ = True # AP found via cycle if at == low[to]: lowercase__ = True else: lowercase__ = min(low[at] , __magic_name__ ) return out_edge_count for i in range(__magic_name__ ): if not visited[i]: lowercase__ = 0 lowercase__ = dfs(__magic_name__ , __magic_name__ , -1 , __magic_name__ ) lowercase__ = out_edge_count > 1 for x in range(len(__magic_name__ ) ): if is_art[x] is True: print(__magic_name__ ) # Adjacency list of graph A : List[str] = { 0: [1, 2], 1: [0, 2], 2: [0, 1, 3, 5], 3: [2, 4], 4: [3], 5: [2, 6, 8], 6: [5, 7], 7: [6, 8], 8: [5, 7], } compute_ap(data)
146
import argparse import logging import os import time import timeit import datasets import numpy as np import pycuda.autoinit # noqa: F401 import pycuda.driver as cuda import tensorrt as trt import torch from absl import logging as absl_logging from accelerate import Accelerator from datasets import load_dataset, load_metric from torch.utils.data import DataLoader from utils_qa import postprocess_qa_predictions import transformers from transformers import AutoTokenizer, EvalPrediction, default_data_collator, set_seed from transformers.trainer_pt_utils import nested_concat, nested_truncate A : int = trt.Logger(trt.Logger.WARNING) A : Dict = absl_logging.get_absl_logger() absl_logger.setLevel(logging.WARNING) A : Union[str, Any] = logging.getLogger(__name__) A : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--onnx_model_path', default=None, type=str, required=True, help='Path to ONNX model: ', ) parser.add_argument( '--output_dir', default=None, type=str, required=True, help='The output directory where the model checkpoints and predictions will be written.', ) # Other parameters parser.add_argument( '--tokenizer_name', default='', type=str, required=True, help='Pretrained tokenizer name or path if not the same as model_name', ) parser.add_argument( '--version_2_with_negative', action='store_true', help='If true, the SQuAD examples contain some that do not have an answer.', ) parser.add_argument( '--null_score_diff_threshold', type=float, default=0.0, help='If null_score - best_non_null is greater than the threshold predict null.', ) parser.add_argument( '--max_seq_length', default=3_8_4, type=int, help=( 'The maximum total input sequence length after WordPiece tokenization. Sequences ' 'longer than this will be truncated, and sequences shorter than this will be padded.' ), ) parser.add_argument( '--doc_stride', default=1_2_8, type=int, help='When splitting up a long document into chunks, how much stride to take between chunks.', ) parser.add_argument('--per_device_eval_batch_size', default=8, type=int, help='Batch size per GPU/CPU for evaluation.') parser.add_argument( '--n_best_size', default=2_0, type=int, help='The total number of n-best predictions to generate in the nbest_predictions.json output file.', ) parser.add_argument( '--max_answer_length', default=3_0, type=int, help=( 'The maximum length of an answer that can be generated. This is needed because the start ' 'and end predictions are not conditioned on one another.' ), ) parser.add_argument('--seed', type=int, default=4_2, help='random seed for initialization') parser.add_argument( '--dataset_name', type=str, default=None, required=True, help='The name of the dataset to use (via the datasets library).', ) parser.add_argument( '--dataset_config_name', type=str, default=None, help='The configuration name of the dataset to use (via the datasets library).', ) parser.add_argument( '--preprocessing_num_workers', type=int, default=4, help='A csv or a json file containing the training data.' ) parser.add_argument('--overwrite_cache', action='store_true', help='Overwrite the cached training and evaluation sets') parser.add_argument( '--fp16', action='store_true', help='Whether to use 16-bit (mixed) precision instead of 32-bit', ) parser.add_argument( '--int8', action='store_true', help='Whether to use INT8', ) A : List[Any] = parser.parse_args() if args.tokenizer_name: A : Dict = AutoTokenizer.from_pretrained(args.tokenizer_name, use_fast=True) else: raise ValueError( 'You are instantiating a new tokenizer from scratch. This is not supported by this script.' 'You can do it from another script, save it, and load it from here, using --tokenizer_name.' ) logger.info('Training/evaluation parameters %s', args) A : Optional[Any] = args.per_device_eval_batch_size A : Tuple = (args.eval_batch_size, args.max_seq_length) # TRT Engine properties A : Any = True A : Optional[int] = 'temp_engine/bert-fp32.engine' if args.fpaa: A : Union[str, Any] = 'temp_engine/bert-fp16.engine' if args.inta: A : Optional[int] = 'temp_engine/bert-int8.engine' # import ONNX file if not os.path.exists('temp_engine'): os.makedirs('temp_engine') A : List[str] = 1 << (int)(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH) with trt.Builder(TRT_LOGGER) as builder, builder.create_network(EXPLICIT_BATCH) as network, trt.OnnxParser( network, TRT_LOGGER ) as parser: with open(args.onnx_model_path, 'rb') as model: if not parser.parse(model.read()): for error in range(parser.num_errors): print(parser.get_error(error)) # Query input names and shapes from parsed TensorRT network A : List[str] = [network.get_input(i) for i in range(network.num_inputs)] A : Any = [_input.name for _input in network_inputs] # ex: ["actual_input1"] with builder.create_builder_config() as config: A : Union[str, Any] = 1 << 5_0 if STRICT_TYPES: config.set_flag(trt.BuilderFlag.STRICT_TYPES) if args.fpaa: config.set_flag(trt.BuilderFlag.FPaa) if args.inta: config.set_flag(trt.BuilderFlag.INTa) A : Dict = builder.create_optimization_profile() config.add_optimization_profile(profile) for i in range(len(input_names)): profile.set_shape(input_names[i], INPUT_SHAPE, INPUT_SHAPE, INPUT_SHAPE) A : int = builder.build_engine(network, config) # serialize_engine and store in file (can be directly loaded and deserialized): with open(engine_name, 'wb') as f: f.write(engine.serialize()) def UpperCamelCase ( __magic_name__ : Optional[Any] , __magic_name__ : Tuple , __magic_name__ : int , __magic_name__ : Any , __magic_name__ : List[str] , __magic_name__ : Any , __magic_name__ : Union[str, Any] , __magic_name__ : Optional[Any] ) -> Optional[Any]: """simple docstring""" lowercase__ = np.asarray(inputs["""input_ids"""] , dtype=np.intaa ) lowercase__ = np.asarray(inputs["""attention_mask"""] , dtype=np.intaa ) lowercase__ = np.asarray(inputs["""token_type_ids"""] , dtype=np.intaa ) # Copy inputs cuda.memcpy_htod_async(d_inputs[0] , input_ids.ravel() , __magic_name__ ) cuda.memcpy_htod_async(d_inputs[1] , attention_mask.ravel() , __magic_name__ ) cuda.memcpy_htod_async(d_inputs[2] , token_type_ids.ravel() , __magic_name__ ) # start time lowercase__ = time.time() # Run inference context.execute_async( bindings=[int(__magic_name__ ) for d_inp in d_inputs] + [int(__magic_name__ ), int(__magic_name__ )] , stream_handle=stream.handle ) # Transfer predictions back from GPU cuda.memcpy_dtoh_async(__magic_name__ , __magic_name__ , __magic_name__ ) cuda.memcpy_dtoh_async(__magic_name__ , __magic_name__ , __magic_name__ ) # Synchronize the stream and take time stream.synchronize() # end time lowercase__ = time.time() lowercase__ = end_time - start_time lowercase__ = (h_outputa, h_outputa) # print(outputs) return outputs, infer_time # Initialize the accelerator. We will let the accelerator handle device placement for us in this example. A : Dict = Accelerator() # Make one log on every process with the configuration for debugging. logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt='%m/%d/%Y %H:%M:%S', level=logging.INFO, ) # Setup logging, we only want one process per machine to log things on the screen. # accelerator.is_local_main_process is only True for one process per machine. logger.setLevel(logging.INFO if accelerator.is_local_main_process else logging.ERROR) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_info() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() # If passed along, set the training seed now. if args.seed is not None: set_seed(args.seed) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). if args.dataset_name is not None: # Downloading and loading a dataset from the hub. A : str = load_dataset(args.dataset_name, args.dataset_config_name) else: raise ValueError('Evaluation requires a dataset name') # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Preprocessing the datasets. # Preprocessing is slighlty different for training and evaluation. A : str = raw_datasets['validation'].column_names A : Any = 'question' if 'question' in column_names else column_names[0] A : int = 'context' if 'context' in column_names else column_names[1] A : Tuple = 'answers' if 'answers' in column_names else column_names[2] # Padding side determines if we do (question|context) or (context|question). A : Dict = tokenizer.padding_side == 'right' if args.max_seq_length > tokenizer.model_max_length: logger.warning( F'The max_seq_length passed ({args.max_seq_length}) is larger than the maximum length for the' F'model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.' ) A : str = min(args.max_seq_length, tokenizer.model_max_length) def UpperCamelCase ( __magic_name__ : List[Any] ) -> Optional[Any]: """simple docstring""" lowercase__ = [q.lstrip() for q in examples[question_column_name]] # Tokenize our examples with truncation and maybe padding, but keep the overflows using a stride. This results # in one example possible giving several features when a context is long, each of those features having a # context that overlaps a bit the context of the previous feature. lowercase__ = tokenizer( examples[question_column_name if pad_on_right else context_column_name] , examples[context_column_name if pad_on_right else question_column_name] , truncation="""only_second""" if pad_on_right else """only_first""" , max_length=__magic_name__ , stride=args.doc_stride , return_overflowing_tokens=__magic_name__ , return_offsets_mapping=__magic_name__ , padding="""max_length""" , ) # Since one example might give us several features if it has a long context, we need a map from a feature to # its corresponding example. This key gives us just that. lowercase__ = tokenized_examples.pop("""overflow_to_sample_mapping""" ) # For evaluation, we will need to convert our predictions to substrings of the context, so we keep the # corresponding example_id and we will store the offset mappings. lowercase__ = [] for i in range(len(tokenized_examples["""input_ids"""] ) ): # Grab the sequence corresponding to that example (to know what is the context and what is the question). lowercase__ = tokenized_examples.sequence_ids(__magic_name__ ) lowercase__ = 1 if pad_on_right else 0 # One example can give several spans, this is the index of the example containing this span of text. lowercase__ = sample_mapping[i] tokenized_examples["example_id"].append(examples["""id"""][sample_index] ) # Set to None the offset_mapping that are not part of the context so it's easy to determine if a token # position is part of the context or not. lowercase__ = [ (o if sequence_ids[k] == context_index else None) for k, o in enumerate(tokenized_examples["""offset_mapping"""][i] ) ] return tokenized_examples A : Optional[Any] = raw_datasets['validation'] # Validation Feature Creation A : int = eval_examples.map( prepare_validation_features, batched=True, num_proc=args.preprocessing_num_workers, remove_columns=column_names, load_from_cache_file=not args.overwrite_cache, desc='Running tokenizer on validation dataset', ) A : Dict = default_data_collator A : Union[str, Any] = eval_dataset.remove_columns(['example_id', 'offset_mapping']) A : Optional[Any] = DataLoader( eval_dataset_for_model, collate_fn=data_collator, batch_size=args.per_device_eval_batch_size ) def UpperCamelCase ( __magic_name__ : str , __magic_name__ : str , __magic_name__ : Any , __magic_name__ : List[Any]="eval" ) -> List[Any]: """simple docstring""" lowercase__ = postprocess_qa_predictions( examples=__magic_name__ , features=__magic_name__ , predictions=__magic_name__ , version_2_with_negative=args.version_2_with_negative , n_best_size=args.n_best_size , max_answer_length=args.max_answer_length , null_score_diff_threshold=args.null_score_diff_threshold , output_dir=args.output_dir , prefix=__magic_name__ , ) # Format the result to the format the metric expects. if args.version_2_with_negative: lowercase__ = [ {"""id""": k, """prediction_text""": v, """no_answer_probability""": 0.0} for k, v in predictions.items() ] else: lowercase__ = [{"""id""": k, """prediction_text""": v} for k, v in predictions.items()] lowercase__ = [{"""id""": ex["""id"""], """answers""": ex[answer_column_name]} for ex in examples] return EvalPrediction(predictions=__magic_name__ , label_ids=__magic_name__ ) A : Union[str, Any] = load_metric('squad_v2' if args.version_2_with_negative else 'squad') # Evaluation! logger.info('Loading ONNX model %s for evaluation', args.onnx_model_path) with open(engine_name, 'rb') as f, trt.Runtime(TRT_LOGGER) as runtime, runtime.deserialize_cuda_engine( f.read() ) as engine, engine.create_execution_context() as context: # setup for TRT inferrence for i in range(len(input_names)): context.set_binding_shape(i, INPUT_SHAPE) assert context.all_binding_shapes_specified def UpperCamelCase ( __magic_name__ : Any ) -> Union[str, Any]: """simple docstring""" return trt.volume(engine.get_binding_shape(__magic_name__ ) ) * engine.get_binding_dtype(__magic_name__ ).itemsize # Allocate device memory for inputs and outputs. A : Union[str, Any] = [cuda.mem_alloc(binding_nbytes(binding)) for binding in engine if engine.binding_is_input(binding)] # Allocate output buffer A : Optional[int] = cuda.pagelocked_empty(tuple(context.get_binding_shape(3)), dtype=np.floataa) A : Dict = cuda.pagelocked_empty(tuple(context.get_binding_shape(4)), dtype=np.floataa) A : List[str] = cuda.mem_alloc(h_outputa.nbytes) A : Optional[Any] = cuda.mem_alloc(h_outputa.nbytes) # Create a stream in which to copy inputs/outputs and run inference. A : Union[str, Any] = cuda.Stream() # Evaluation logger.info('***** Running Evaluation *****') logger.info(F' Num examples = {len(eval_dataset)}') logger.info(F' Batch size = {args.per_device_eval_batch_size}') A : List[Any] = 0.0 A : Any = 0 A : str = timeit.default_timer() A : Tuple = None for step, batch in enumerate(eval_dataloader): A , A : Optional[int] = model_infer(batch, context, d_inputs, h_outputa, h_outputa, d_outputa, d_outputa, stream) total_time += infer_time niter += 1 A , A : int = outputs A : str = torch.tensor(start_logits) A : int = torch.tensor(end_logits) # necessary to pad predictions and labels for being gathered A : List[Any] = accelerator.pad_across_processes(start_logits, dim=1, pad_index=-1_0_0) A : Tuple = accelerator.pad_across_processes(end_logits, dim=1, pad_index=-1_0_0) A : Any = (accelerator.gather(start_logits).cpu().numpy(), accelerator.gather(end_logits).cpu().numpy()) A : str = logits if all_preds is None else nested_concat(all_preds, logits, padding_index=-1_0_0) if all_preds is not None: A : List[str] = nested_truncate(all_preds, len(eval_dataset)) A : List[Any] = timeit.default_timer() - start_time logger.info(' Evaluation done in total %f secs (%f sec per example)', evalTime, evalTime / len(eval_dataset)) # Inference time from TRT logger.info('Average Inference Time = {:.3f} ms'.format(total_time * 1_0_0_0 / niter)) logger.info('Total Inference Time = {:.3f} ms'.format(total_time * 1_0_0_0)) logger.info('Total Number of Inference = %d', niter) A : Dict = post_processing_function(eval_examples, eval_dataset, all_preds) A : Any = metric.compute(predictions=prediction.predictions, references=prediction.label_ids) logger.info(F'Evaluation metrics: {eval_metric}')
146
1
'''simple docstring''' import unittest import numpy as np import requests from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch from transformers.pytorch_utils import is_torch_greater_or_equal_than_1_11 else: lowercase__ : Optional[Any] = False if is_vision_available(): from PIL import Image from transformers import PixaStructImageProcessor class SCREAMING_SNAKE_CASE (unittest.TestCase ): def __init__( self , _UpperCAmelCase , _UpperCAmelCase=7 , _UpperCAmelCase=3 , _UpperCAmelCase=18 , _UpperCAmelCase=30 , _UpperCAmelCase=400 , _UpperCAmelCase=None , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=None , ): '''simple docstring''' __A : str = size if size is not None else {'height': 20, 'width': 20} __A : Union[str, Any] = parent __A : Tuple = batch_size __A : Optional[Any] = num_channels __A : Optional[Any] = image_size __A : Any = min_resolution __A : Dict = max_resolution __A : Optional[int] = size __A : Any = do_normalize __A : Tuple = do_convert_rgb __A : Dict = [512, 1024, 2048, 4096] __A : List[str] = patch_size if patch_size is not None else {'height': 16, 'width': 16} def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' return {"do_normalize": self.do_normalize, "do_convert_rgb": self.do_convert_rgb} def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Dict = 'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/australia.jpg' __A : str = Image.open(requests.get(_UpperCAmelCase , stream=_UpperCAmelCase).raw).convert('RGB') return raw_image @unittest.skipIf( not is_torch_greater_or_equal_than_1_11 , reason='''`Pix2StructImageProcessor` requires `torch>=1.11.0`.''' , ) @require_torch @require_vision class SCREAMING_SNAKE_CASE (a__ , unittest.TestCase ): lowerCAmelCase = PixaStructImageProcessor if is_vision_available() else None def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Optional[int] = PixaStructImageProcessingTester(self) @property def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Any = self.image_processing_class(**self.image_processor_dict) self.assertTrue(hasattr(_UpperCAmelCase , 'do_normalize')) self.assertTrue(hasattr(_UpperCAmelCase , 'do_convert_rgb')) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Optional[Any] = self.image_processor_tester.prepare_dummy_image() __A : Any = self.image_processing_class(**self.image_processor_dict) __A : List[Any] = 2048 __A : str = image_processor(_UpperCAmelCase , return_tensors='pt' , max_patches=_UpperCAmelCase) self.assertTrue(torch.allclose(inputs.flattened_patches.mean() , torch.tensor(0.0606) , atol=1e-3 , rtol=1e-3)) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Tuple = self.image_processing_class(**self.image_processor_dict) # create random PIL images __A : List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCAmelCase) for image in image_inputs: self.assertIsInstance(_UpperCAmelCase , Image.Image) # Test not batched input __A : Dict = ( (self.image_processor_tester.patch_size['height'] * self.image_processor_tester.patch_size['width']) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input __A : Tuple = image_processor( image_inputs[0] , return_tensors='pt' , max_patches=_UpperCAmelCase).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched __A : Optional[Any] = image_processor( _UpperCAmelCase , return_tensors='pt' , max_patches=_UpperCAmelCase).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Dict = self.image_processing_class(**self.image_processor_dict) # create random PIL images __A : List[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCAmelCase) for image in image_inputs: self.assertIsInstance(_UpperCAmelCase , Image.Image) # Test not batched input __A : Optional[int] = ( (self.image_processor_tester.patch_size['height'] * self.image_processor_tester.patch_size['width']) * self.image_processor_tester.num_channels ) + 2 __A : List[str] = True for max_patch in self.image_processor_tester.max_patches: # Test not batched input with self.assertRaises(_UpperCAmelCase): __A : str = image_processor( image_inputs[0] , return_tensors='pt' , max_patches=_UpperCAmelCase).flattened_patches __A : str = 'Hello' __A : Tuple = image_processor( image_inputs[0] , return_tensors='pt' , max_patches=_UpperCAmelCase , header_text=_UpperCAmelCase).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched __A : Any = image_processor( _UpperCAmelCase , return_tensors='pt' , max_patches=_UpperCAmelCase , header_text=_UpperCAmelCase).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Optional[int] = self.image_processing_class(**self.image_processor_dict) # create random numpy tensors __A : Optional[int] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCAmelCase , numpify=_UpperCAmelCase) for image in image_inputs: self.assertIsInstance(_UpperCAmelCase , np.ndarray) __A : Dict = ( (self.image_processor_tester.patch_size['height'] * self.image_processor_tester.patch_size['width']) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input __A : Optional[int] = image_processor( image_inputs[0] , return_tensors='pt' , max_patches=_UpperCAmelCase).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched __A : List[str] = image_processor( _UpperCAmelCase , return_tensors='pt' , max_patches=_UpperCAmelCase).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : int = self.image_processing_class(**self.image_processor_dict) # create random PyTorch tensors __A : Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCAmelCase , torchify=_UpperCAmelCase) for image in image_inputs: self.assertIsInstance(_UpperCAmelCase , torch.Tensor) # Test not batched input __A : List[str] = ( (self.image_processor_tester.patch_size['height'] * self.image_processor_tester.patch_size['width']) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input __A : Optional[int] = image_processor( image_inputs[0] , return_tensors='pt' , max_patches=_UpperCAmelCase).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched __A : Any = image_processor( _UpperCAmelCase , return_tensors='pt' , max_patches=_UpperCAmelCase).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) @unittest.skipIf( not is_torch_greater_or_equal_than_1_11 , reason='''`Pix2StructImageProcessor` requires `torch>=1.11.0`.''' , ) @require_torch @require_vision class SCREAMING_SNAKE_CASE (a__ , unittest.TestCase ): lowerCAmelCase = PixaStructImageProcessor if is_vision_available() else None def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Optional[Any] = PixaStructImageProcessingTester(self , num_channels=4) __A : int = 3 @property def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : List[str] = self.image_processing_class(**self.image_processor_dict) self.assertTrue(hasattr(_UpperCAmelCase , 'do_normalize')) self.assertTrue(hasattr(_UpperCAmelCase , 'do_convert_rgb')) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Optional[Any] = self.image_processing_class(**self.image_processor_dict) # create random PIL images __A : Any = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCAmelCase) for image in image_inputs: self.assertIsInstance(_UpperCAmelCase , Image.Image) # Test not batched input __A : Optional[int] = ( (self.image_processor_tester.patch_size['height'] * self.image_processor_tester.patch_size['width']) * (self.image_processor_tester.num_channels - 1) ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input __A : Optional[Any] = image_processor( image_inputs[0] , return_tensors='pt' , max_patches=_UpperCAmelCase).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched __A : Any = image_processor( _UpperCAmelCase , return_tensors='pt' , max_patches=_UpperCAmelCase).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , )
190
'''simple docstring''' import shutil import tempfile import unittest import numpy as np import pytest from transformers.testing_utils import require_vision from transformers.utils import is_vision_available if is_vision_available(): from PIL import Image from transformers import AutoProcessor, BertTokenizer, BlipImageProcessor, BlipProcessor, PreTrainedTokenizerFast @require_vision class SCREAMING_SNAKE_CASE (unittest.TestCase ): def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Dict = tempfile.mkdtemp() __A : Optional[int] = BlipImageProcessor() __A : List[str] = BertTokenizer.from_pretrained('hf-internal-testing/tiny-random-BertModel') __A : Any = BlipProcessor(_UpperCAmelCase , _UpperCAmelCase) processor.save_pretrained(self.tmpdirname) def SCREAMING_SNAKE_CASE ( self , **_UpperCAmelCase): '''simple docstring''' return AutoProcessor.from_pretrained(self.tmpdirname , **_UpperCAmelCase).tokenizer def SCREAMING_SNAKE_CASE ( self , **_UpperCAmelCase): '''simple docstring''' return AutoProcessor.from_pretrained(self.tmpdirname , **_UpperCAmelCase).image_processor def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' shutil.rmtree(self.tmpdirname) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : int = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta)] __A : Union[str, Any] = [Image.fromarray(np.moveaxis(_UpperCAmelCase , 0 , -1)) for x in image_inputs] return image_inputs def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : int = BlipProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor()) processor.save_pretrained(self.tmpdirname) __A : int = self.get_tokenizer(bos_token='(BOS)' , eos_token='(EOS)') __A : List[Any] = self.get_image_processor(do_normalize=_UpperCAmelCase , padding_value=1.0) __A : Tuple = BlipProcessor.from_pretrained( self.tmpdirname , bos_token='(BOS)' , eos_token='(EOS)' , do_normalize=_UpperCAmelCase , padding_value=1.0) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab()) self.assertIsInstance(processor.tokenizer , _UpperCAmelCase) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string()) self.assertIsInstance(processor.image_processor , _UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : List[str] = self.get_image_processor() __A : str = self.get_tokenizer() __A : int = BlipProcessor(tokenizer=_UpperCAmelCase , image_processor=_UpperCAmelCase) __A : List[str] = self.prepare_image_inputs() __A : str = image_processor(_UpperCAmelCase , return_tensors='np') __A : str = processor(images=_UpperCAmelCase , return_tensors='np') for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Any = self.get_image_processor() __A : Tuple = self.get_tokenizer() __A : Union[str, Any] = BlipProcessor(tokenizer=_UpperCAmelCase , image_processor=_UpperCAmelCase) __A : str = 'lower newer' __A : Dict = processor(text=_UpperCAmelCase) __A : Tuple = tokenizer(_UpperCAmelCase , return_token_type_ids=_UpperCAmelCase) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key]) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : List[Any] = self.get_image_processor() __A : Optional[Any] = self.get_tokenizer() __A : Optional[Any] = BlipProcessor(tokenizer=_UpperCAmelCase , image_processor=_UpperCAmelCase) __A : Dict = 'lower newer' __A : int = self.prepare_image_inputs() __A : List[Any] = processor(text=_UpperCAmelCase , images=_UpperCAmelCase) self.assertListEqual(list(inputs.keys()) , ['pixel_values', 'input_ids', 'attention_mask']) # test if it raises when no input is passed with pytest.raises(_UpperCAmelCase): processor() def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Union[str, Any] = self.get_image_processor() __A : Optional[Any] = self.get_tokenizer() __A : Union[str, Any] = BlipProcessor(tokenizer=_UpperCAmelCase , image_processor=_UpperCAmelCase) __A : Tuple = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] __A : List[str] = processor.batch_decode(_UpperCAmelCase) __A : List[str] = tokenizer.batch_decode(_UpperCAmelCase) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Any = self.get_image_processor() __A : Union[str, Any] = self.get_tokenizer() __A : Optional[Any] = BlipProcessor(tokenizer=_UpperCAmelCase , image_processor=_UpperCAmelCase) __A : str = 'lower newer' __A : str = self.prepare_image_inputs() __A : Optional[int] = processor(text=_UpperCAmelCase , images=_UpperCAmelCase) # For now the processor supports only ['pixel_values', 'input_ids', 'attention_mask'] self.assertListEqual(list(inputs.keys()) , ['pixel_values', 'input_ids', 'attention_mask'])
190
1
import unittest from transformers import DebertaConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( DebertaForMaskedLM, DebertaForQuestionAnswering, DebertaForSequenceClassification, DebertaForTokenClassification, DebertaModel, ) from transformers.models.deberta.modeling_deberta import DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST class __magic_name__ ( _UpperCAmelCase): def __init__( self : Tuple , lowercase_ : Optional[int] , lowercase_ : Any=13 , lowercase_ : Optional[int]=7 , lowercase_ : List[Any]=True , lowercase_ : List[str]=True , lowercase_ : int=True , lowercase_ : List[Any]=True , lowercase_ : Any=99 , lowercase_ : List[str]=32 , lowercase_ : Union[str, Any]=5 , lowercase_ : Tuple=4 , lowercase_ : int=37 , lowercase_ : Any="gelu" , lowercase_ : int=0.1 , lowercase_ : Optional[int]=0.1 , lowercase_ : Tuple=512 , lowercase_ : Optional[Any]=16 , lowercase_ : Optional[int]=2 , lowercase_ : Any=0.02 , lowercase_ : str=False , lowercase_ : List[Any]=True , lowercase_ : Dict="None" , lowercase_ : Tuple=3 , lowercase_ : Any=4 , lowercase_ : Tuple=None , ): lowercase_ : int = parent lowercase_ : List[Any] = batch_size lowercase_ : Optional[Any] = seq_length lowercase_ : List[str] = is_training lowercase_ : List[Any] = use_input_mask lowercase_ : Optional[int] = use_token_type_ids lowercase_ : Union[str, Any] = use_labels lowercase_ : Dict = vocab_size lowercase_ : List[str] = hidden_size lowercase_ : Optional[int] = num_hidden_layers lowercase_ : Dict = num_attention_heads lowercase_ : Optional[Any] = intermediate_size lowercase_ : Optional[int] = hidden_act lowercase_ : Any = hidden_dropout_prob lowercase_ : Any = attention_probs_dropout_prob lowercase_ : Any = max_position_embeddings lowercase_ : Dict = type_vocab_size lowercase_ : List[str] = type_sequence_label_size lowercase_ : List[Any] = initializer_range lowercase_ : Union[str, Any] = num_labels lowercase_ : Any = num_choices lowercase_ : Optional[int] = relative_attention lowercase_ : Tuple = position_biased_input lowercase_ : List[str] = pos_att_type lowercase_ : Any = scope def SCREAMING_SNAKE_CASE_ ( self : str ): lowercase_ : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase_ : Optional[Any] = None if self.use_input_mask: lowercase_ : Tuple = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) lowercase_ : List[str] = None if self.use_token_type_ids: lowercase_ : Dict = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowercase_ : str = None lowercase_ : List[str] = None lowercase_ : List[Any] = None if self.use_labels: lowercase_ : Tuple = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase_ : Dict = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowercase_ : str = ids_tensor([self.batch_size] , self.num_choices ) lowercase_ : List[str] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def SCREAMING_SNAKE_CASE_ ( self : str ): return DebertaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , relative_attention=self.relative_attention , position_biased_input=self.position_biased_input , pos_att_type=self.pos_att_type , ) def SCREAMING_SNAKE_CASE_ ( self : Tuple ): lowercase_ : List[str] = self.get_config() lowercase_ : int = 300 return config def SCREAMING_SNAKE_CASE_ ( self : Tuple , lowercase_ : Dict ): self.parent.assertListEqual(list(result.loss.size() ) , [] ) def SCREAMING_SNAKE_CASE_ ( self : List[str] , lowercase_ : Tuple , lowercase_ : Any , lowercase_ : Dict , lowercase_ : Union[str, Any] , lowercase_ : Optional[int] , lowercase_ : Dict , lowercase_ : Tuple ): lowercase_ : str = DebertaModel(config=lowercase_ ) model.to(lowercase_ ) model.eval() lowercase_ : str = model(lowercase_ , attention_mask=lowercase_ , token_type_ids=lowercase_ )[0] lowercase_ : Any = model(lowercase_ , token_type_ids=lowercase_ )[0] lowercase_ : Any = model(lowercase_ )[0] self.parent.assertListEqual(list(sequence_output.size() ) , [self.batch_size, self.seq_length, self.hidden_size] ) def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] , lowercase_ : Dict , lowercase_ : Any , lowercase_ : Any , lowercase_ : Union[str, Any] , lowercase_ : List[str] , lowercase_ : Union[str, Any] , lowercase_ : str ): lowercase_ : Any = DebertaForMaskedLM(config=lowercase_ ) model.to(lowercase_ ) model.eval() lowercase_ : Tuple = model(lowercase_ , attention_mask=lowercase_ , token_type_ids=lowercase_ , labels=lowercase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] , lowercase_ : Dict , lowercase_ : Any , lowercase_ : Optional[Any] , lowercase_ : Dict , lowercase_ : Optional[Any] , lowercase_ : Tuple , lowercase_ : int ): lowercase_ : List[Any] = self.num_labels lowercase_ : Optional[Any] = DebertaForSequenceClassification(lowercase_ ) model.to(lowercase_ ) model.eval() lowercase_ : Optional[Any] = model(lowercase_ , attention_mask=lowercase_ , token_type_ids=lowercase_ , labels=lowercase_ ) self.parent.assertListEqual(list(result.logits.size() ) , [self.batch_size, self.num_labels] ) self.check_loss_output(lowercase_ ) def SCREAMING_SNAKE_CASE_ ( self : List[str] , lowercase_ : List[Any] , lowercase_ : List[str] , lowercase_ : List[Any] , lowercase_ : List[Any] , lowercase_ : List[str] , lowercase_ : Tuple , lowercase_ : str ): lowercase_ : List[Any] = self.num_labels lowercase_ : List[Any] = DebertaForTokenClassification(config=lowercase_ ) model.to(lowercase_ ) model.eval() lowercase_ : Union[str, Any] = model(lowercase_ , attention_mask=lowercase_ , token_type_ids=lowercase_ , labels=lowercase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def SCREAMING_SNAKE_CASE_ ( self : Optional[int] , lowercase_ : str , lowercase_ : Union[str, Any] , lowercase_ : str , lowercase_ : Optional[Any] , lowercase_ : List[str] , lowercase_ : List[Any] , lowercase_ : Dict ): lowercase_ : Any = DebertaForQuestionAnswering(config=lowercase_ ) model.to(lowercase_ ) model.eval() lowercase_ : int = model( lowercase_ , attention_mask=lowercase_ , token_type_ids=lowercase_ , start_positions=lowercase_ , end_positions=lowercase_ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ): lowercase_ : Optional[Any] = self.prepare_config_and_inputs() ( lowercase_ ) : List[Any] = config_and_inputs lowercase_ : str = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class __magic_name__ ( _UpperCAmelCase, _UpperCAmelCase, unittest.TestCase): UpperCamelCase__ = ( ( DebertaModel, DebertaForMaskedLM, DebertaForSequenceClassification, DebertaForTokenClassification, DebertaForQuestionAnswering, ) if is_torch_available() else () ) UpperCamelCase__ = ( { '''feature-extraction''': DebertaModel, '''fill-mask''': DebertaForMaskedLM, '''question-answering''': DebertaForQuestionAnswering, '''text-classification''': DebertaForSequenceClassification, '''token-classification''': DebertaForTokenClassification, '''zero-shot''': DebertaForSequenceClassification, } if is_torch_available() else {} ) UpperCamelCase__ = True UpperCamelCase__ = False UpperCamelCase__ = False UpperCamelCase__ = False UpperCamelCase__ = False def SCREAMING_SNAKE_CASE_ ( self : Tuple ): lowercase_ : Optional[int] = DebertaModelTester(self ) lowercase_ : Any = ConfigTester(self , config_class=lowercase_ , hidden_size=37 ) def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ): self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE_ ( self : str ): lowercase_ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_model(*lowercase_ ) def SCREAMING_SNAKE_CASE_ ( self : List[Any] ): lowercase_ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_sequence_classification(*lowercase_ ) def SCREAMING_SNAKE_CASE_ ( self : List[str] ): lowercase_ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_masked_lm(*lowercase_ ) def SCREAMING_SNAKE_CASE_ ( self : List[str] ): lowercase_ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_question_answering(*lowercase_ ) def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ): lowercase_ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_token_classification(*lowercase_ ) @slow def SCREAMING_SNAKE_CASE_ ( self : List[str] ): for model_name in DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase_ : Any = DebertaModel.from_pretrained(lowercase_ ) self.assertIsNotNone(lowercase_ ) @require_torch @require_sentencepiece @require_tokenizers class __magic_name__ ( unittest.TestCase): @unittest.skip(reason="""Model not available yet""" ) def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ): pass @slow def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ): lowercase_ : Optional[int] = DebertaModel.from_pretrained("""microsoft/deberta-base""" ) lowercase_ : Union[str, Any] = torch.tensor([[0, 31414, 232, 328, 740, 1140, 12695, 69, 46078, 1588, 2]] ) lowercase_ : int = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): lowercase_ : int = model(lowercase_ , attention_mask=lowercase_ )[0] # compare the actual values for a slice. lowercase_ : str = torch.tensor( [[[-0.59_86, -0.80_55, -0.84_62], [1.44_84, -0.93_48, -0.80_59], [0.31_23, 0.00_32, -1.41_31]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , lowercase_ , atol=1E-4 ) , f'''{output[:, 1:4, 1:4]}''' )
360
'''simple docstring''' import collections import tempfile import unittest import numpy as np from transformers.testing_utils import ( is_pt_flax_cross_test, require_flax, require_torch, require_vision, slow, torch_device, ) from transformers.utils import is_flax_available, is_torch_available, is_vision_available from ...test_modeling_flax_common import floats_tensor, ids_tensor, random_attention_mask from ..bert.test_modeling_flax_bert import FlaxBertModelTester from ..clip.test_modeling_flax_clip import FlaxCLIPVisionModelTester from ..vit.test_modeling_flax_vit import FlaxViTModelTester if is_flax_available(): from transformers import ( FlaxBertModel, FlaxCLIPVisionModel, FlaxVisionTextDualEncoderModel, FlaxViTModel, VisionTextDualEncoderConfig, VisionTextDualEncoderProcessor, ) from transformers.modeling_flax_pytorch_utils import ( convert_pytorch_state_dict_to_flax, load_flax_weights_in_pytorch_model, ) if is_torch_available(): import torch from transformers import VisionTextDualEncoderModel if is_vision_available(): from PIL import Image def lowerCamelCase ( UpperCAmelCase__ : Optional[int] ) -> List[str]: if isinstance(UpperCAmelCase__ , collections.abc.Iterable ): return x return (x, x) @require_flax class __magic_name__ : def SCREAMING_SNAKE_CASE_ ( self : Optional[int] , lowercase_ : Any , lowercase_ : str ): pass def SCREAMING_SNAKE_CASE_ ( self : str ): pass def SCREAMING_SNAKE_CASE_ ( self : List[Any] ): pass def SCREAMING_SNAKE_CASE_ ( self : List[str] , lowercase_ : np.ndarray , lowercase_ : np.ndarray , lowercase_ : float ): lowercase_ : Optional[Any] = np.abs((a - b) ).max() self.assertLessEqual(lowercase_ , lowercase_ , f'''Difference between torch and flax is {diff} (>= {tol}).''' ) def SCREAMING_SNAKE_CASE_ ( self : Tuple , lowercase_ : List[str] , lowercase_ : List[str] , lowercase_ : Optional[Any] , lowercase_ : Dict , lowercase_ : Tuple=None , **lowercase_ : Optional[int] ): lowercase_ : Any = VisionTextDualEncoderConfig.from_vision_text_configs(lowercase_ , lowercase_ ) lowercase_ : Any = FlaxVisionTextDualEncoderModel(lowercase_ ) lowercase_ : List[Any] = model(input_ids=lowercase_ , pixel_values=lowercase_ , attention_mask=lowercase_ ) self.assertEqual(output["""text_embeds"""].shape , (input_ids.shape[0], config.projection_dim) ) self.assertEqual(output["""image_embeds"""].shape , (pixel_values.shape[0], config.projection_dim) ) def SCREAMING_SNAKE_CASE_ ( self : Dict , lowercase_ : List[str] , lowercase_ : int , lowercase_ : Optional[int] , lowercase_ : Optional[int] , lowercase_ : List[Any]=None , **lowercase_ : Tuple ): lowercase_ , lowercase_ : Any = self.get_vision_text_model(lowercase_ , lowercase_ ) lowercase_ : Optional[int] = {"""vision_model""": vision_model, """text_model""": text_model} lowercase_ : Optional[int] = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**lowercase_ ) lowercase_ : List[Any] = model(input_ids=lowercase_ , pixel_values=lowercase_ , attention_mask=lowercase_ ) self.assertEqual(output["""text_embeds"""].shape , (input_ids.shape[0], model.config.projection_dim) ) self.assertEqual(output["""image_embeds"""].shape , (pixel_values.shape[0], model.config.projection_dim) ) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] , lowercase_ : str , lowercase_ : Dict , lowercase_ : str , lowercase_ : Optional[int] , lowercase_ : Optional[Any]=None , **lowercase_ : int ): lowercase_ , lowercase_ : Union[str, Any] = self.get_vision_text_model(lowercase_ , lowercase_ ) lowercase_ : Optional[Any] = {"""vision_model""": vision_model, """text_model""": text_model} lowercase_ : int = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**lowercase_ ) lowercase_ : Tuple = model(input_ids=lowercase_ , pixel_values=lowercase_ , attention_mask=lowercase_ ) lowercase_ : Any = output[0] with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(lowercase_ ) lowercase_ : Optional[int] = FlaxVisionTextDualEncoderModel.from_pretrained(lowercase_ ) lowercase_ : List[str] = model(input_ids=lowercase_ , pixel_values=lowercase_ , attention_mask=lowercase_ ) lowercase_ : Union[str, Any] = after_output[0] lowercase_ : str = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(lowercase_ , 1E-3 ) def SCREAMING_SNAKE_CASE_ ( self : Optional[int] , lowercase_ : int , lowercase_ : Any , lowercase_ : List[str] , lowercase_ : Dict , lowercase_ : Dict=None , **lowercase_ : Optional[Any] ): lowercase_ , lowercase_ : Optional[int] = self.get_vision_text_model(lowercase_ , lowercase_ ) lowercase_ : Dict = {"""vision_model""": vision_model, """text_model""": text_model} lowercase_ : Optional[int] = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**lowercase_ ) lowercase_ : Optional[int] = model( input_ids=lowercase_ , pixel_values=lowercase_ , attention_mask=lowercase_ , output_attentions=lowercase_ ) lowercase_ : Tuple = output.vision_model_output.attentions self.assertEqual(len(lowercase_ ) , vision_config.num_hidden_layers ) # in ViT, the seq_len equals the number of patches + 1 (we add 1 for the [CLS] token) lowercase_ : List[str] = to_atuple(vision_model.config.image_size ) lowercase_ : Optional[Any] = to_atuple(vision_model.config.patch_size ) lowercase_ : str = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) lowercase_ : Optional[Any] = num_patches + 1 self.assertEqual(vision_attentions[0].shape[-3:] , (vision_config.num_attention_heads, seq_len, seq_len) ) lowercase_ : Union[str, Any] = output.text_model_output.attentions self.assertEqual(len(lowercase_ ) , text_config.num_hidden_layers ) self.assertEqual( text_attentions[0].shape[-3:] , (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) , ) def SCREAMING_SNAKE_CASE_ ( self : Dict , lowercase_ : Dict , lowercase_ : Union[str, Any] , lowercase_ : int ): pt_model.to(lowercase_ ) pt_model.eval() # prepare inputs lowercase_ : int = inputs_dict lowercase_ : Tuple = {k: torch.tensor(v.tolist() ) for k, v in flax_inputs.items()} with torch.no_grad(): lowercase_ : str = pt_model(**lowercase_ ).to_tuple() lowercase_ : Optional[Any] = fx_model(**lowercase_ ).to_tuple() self.assertEqual(len(lowercase_ ) , len(lowercase_ ) , """Output lengths differ between Flax and PyTorch""" ) for fx_output, pt_output in zip(fx_outputs[:4] , pt_outputs[:4] ): self.assert_almost_equals(lowercase_ , pt_output.numpy() , 4E-2 ) # PT -> Flax with tempfile.TemporaryDirectory() as tmpdirname: pt_model.save_pretrained(lowercase_ ) lowercase_ : Tuple = FlaxVisionTextDualEncoderModel.from_pretrained(lowercase_ , from_pt=lowercase_ ) lowercase_ : Dict = fx_model_loaded(**lowercase_ ).to_tuple() self.assertEqual(len(lowercase_ ) , len(lowercase_ ) , """Output lengths differ between Flax and PyTorch""" ) for fx_output_loaded, pt_output in zip(fx_outputs_loaded[:4] , pt_outputs[:4] ): self.assert_almost_equals(lowercase_ , pt_output.numpy() , 4E-2 ) # Flax -> PT with tempfile.TemporaryDirectory() as tmpdirname: fx_model.save_pretrained(lowercase_ ) lowercase_ : Union[str, Any] = VisionTextDualEncoderModel.from_pretrained(lowercase_ , from_flax=lowercase_ ) pt_model_loaded.to(lowercase_ ) pt_model_loaded.eval() with torch.no_grad(): lowercase_ : List[Any] = pt_model_loaded(**lowercase_ ).to_tuple() self.assertEqual(len(lowercase_ ) , len(lowercase_ ) , """Output lengths differ between Flax and PyTorch""" ) for fx_output, pt_output_loaded in zip(fx_outputs[:4] , pt_outputs_loaded[:4] ): self.assert_almost_equals(lowercase_ , pt_output_loaded.numpy() , 4E-2 ) def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] , lowercase_ : Any , lowercase_ : str , lowercase_ : Union[str, Any] ): lowercase_ : Tuple = VisionTextDualEncoderConfig.from_vision_text_configs(lowercase_ , lowercase_ ) lowercase_ : List[Any] = VisionTextDualEncoderModel(lowercase_ ) lowercase_ : Union[str, Any] = FlaxVisionTextDualEncoderModel(lowercase_ ) lowercase_ : Optional[Any] = convert_pytorch_state_dict_to_flax(pt_model.state_dict() , lowercase_ ) lowercase_ : Tuple = fx_state self.check_pt_flax_equivalence(lowercase_ , lowercase_ , lowercase_ ) def SCREAMING_SNAKE_CASE_ ( self : str , lowercase_ : List[str] , lowercase_ : Tuple , lowercase_ : List[Any] ): lowercase_ : Optional[int] = VisionTextDualEncoderConfig.from_vision_text_configs(lowercase_ , lowercase_ ) lowercase_ : int = VisionTextDualEncoderModel(lowercase_ ) lowercase_ : Dict = FlaxVisionTextDualEncoderModel(lowercase_ ) lowercase_ : Optional[Any] = load_flax_weights_in_pytorch_model(lowercase_ , fx_model.params ) self.check_pt_flax_equivalence(lowercase_ , lowercase_ , lowercase_ ) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ): lowercase_ : Tuple = self.prepare_config_and_inputs() self.check_model_from_pretrained_configs(**lowercase_ ) def SCREAMING_SNAKE_CASE_ ( self : str ): lowercase_ : List[Any] = self.prepare_config_and_inputs() self.check_vision_text_dual_encoder_from_pretrained(**lowercase_ ) def SCREAMING_SNAKE_CASE_ ( self : Any ): lowercase_ : List[Any] = self.prepare_config_and_inputs() self.check_save_load(**lowercase_ ) def SCREAMING_SNAKE_CASE_ ( self : Tuple ): lowercase_ : Union[str, Any] = self.prepare_config_and_inputs() self.check_vision_text_output_attention(**lowercase_ ) @is_pt_flax_cross_test def SCREAMING_SNAKE_CASE_ ( self : Any ): lowercase_ : Tuple = self.prepare_config_and_inputs() lowercase_ : List[Any] = config_inputs_dict.pop("""vision_config""" ) lowercase_ : int = config_inputs_dict.pop("""text_config""" ) lowercase_ : Optional[int] = config_inputs_dict self.check_equivalence_pt_to_flax(lowercase_ , lowercase_ , lowercase_ ) self.check_equivalence_flax_to_pt(lowercase_ , lowercase_ , lowercase_ ) @slow def SCREAMING_SNAKE_CASE_ ( self : Tuple ): lowercase_ , lowercase_ : str = self.get_pretrained_model_and_inputs() lowercase_ : Dict = model_a(**lowercase_ ) lowercase_ : str = outputs[0] with tempfile.TemporaryDirectory() as tmp_dirname: model_a.save_pretrained(lowercase_ ) lowercase_ : Optional[int] = FlaxVisionTextDualEncoderModel.from_pretrained(lowercase_ ) lowercase_ : str = model_a(**lowercase_ ) lowercase_ : Union[str, Any] = after_outputs[0] lowercase_ : Any = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(lowercase_ , 1E-5 ) @require_flax class __magic_name__ ( _UpperCAmelCase, unittest.TestCase): def SCREAMING_SNAKE_CASE_ ( self : Dict ): lowercase_ : Any = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained( """hf-internal-testing/tiny-random-vit""" , """hf-internal-testing/tiny-bert""" , vision_from_pt=lowercase_ , text_from_pt=lowercase_ , ) lowercase_ : List[str] = 13 lowercase_ : Optional[Any] = floats_tensor( [ batch_size, model.config.vision_config.num_channels, model.config.vision_config.image_size, model.config.vision_config.image_size, ] ) lowercase_ : Any = ids_tensor([batch_size, 4] , model.config.text_config.vocab_size ) lowercase_ : str = random_attention_mask([batch_size, 4] ) lowercase_ : List[str] = {"""pixel_values""": pixel_values, """input_ids""": input_ids, """attention_mask""": attention_mask} return model, inputs def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] , lowercase_ : List[Any] , lowercase_ : Tuple ): lowercase_ : Union[str, Any] = FlaxViTModel(lowercase_ ) lowercase_ : Dict = FlaxBertModel(lowercase_ ) return vision_model, text_model def SCREAMING_SNAKE_CASE_ ( self : int ): lowercase_ : Any = FlaxViTModelTester(self ) lowercase_ : Optional[Any] = FlaxBertModelTester(self ) lowercase_ : Dict = vit_model_tester.prepare_config_and_inputs() lowercase_ : Optional[Any] = bert_model_tester.prepare_config_and_inputs() lowercase_ , lowercase_ : List[str] = vision_config_and_inputs lowercase_ , lowercase_ , lowercase_ , lowercase_ : Union[str, Any] = text_config_and_inputs # make sure that cross attention layers are added return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": attention_mask, "input_ids": input_ids, "token_type_ids": token_type_ids, } @require_torch class __magic_name__ ( _UpperCAmelCase, unittest.TestCase): def SCREAMING_SNAKE_CASE_ ( self : int ): lowercase_ : str = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained( """hf-internal-testing/tiny-random-clip""" , """hf-internal-testing/tiny-bert""" , vision_from_pt=lowercase_ , text_from_pt=lowercase_ , ) lowercase_ : List[str] = 13 lowercase_ : Optional[Any] = floats_tensor( [ batch_size, model.config.vision_config.num_channels, model.config.vision_config.image_size, model.config.vision_config.image_size, ] ) lowercase_ : int = ids_tensor([batch_size, 4] , model.config.text_config.vocab_size ) lowercase_ : Tuple = random_attention_mask([batch_size, 4] ) lowercase_ : Union[str, Any] = {"""pixel_values""": pixel_values, """input_ids""": input_ids, """attention_mask""": attention_mask} return model, inputs def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] , lowercase_ : Optional[Any] , lowercase_ : Union[str, Any] ): lowercase_ : Tuple = FlaxCLIPVisionModel(lowercase_ ) lowercase_ : Any = FlaxBertModel(lowercase_ ) return vision_model, text_model def SCREAMING_SNAKE_CASE_ ( self : Tuple ): lowercase_ : Union[str, Any] = FlaxCLIPVisionModelTester(self ) lowercase_ : Tuple = FlaxBertModelTester(self ) lowercase_ : Union[str, Any] = clip_model_tester.prepare_config_and_inputs() lowercase_ : Any = bert_model_tester.prepare_config_and_inputs() lowercase_ , lowercase_ : Optional[Any] = vision_config_and_inputs lowercase_ , lowercase_ , lowercase_ , lowercase_ : str = text_config_and_inputs # make sure that cross attention layers are added return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": attention_mask, "input_ids": input_ids, "token_type_ids": token_type_ids, } @require_flax @require_vision class __magic_name__ ( unittest.TestCase): @slow def SCREAMING_SNAKE_CASE_ ( self : str ): lowercase_ : List[str] = FlaxVisionTextDualEncoderModel.from_pretrained("""clip-italian/clip-italian""" , logit_scale_init_value=1.0 ) lowercase_ : Optional[Any] = VisionTextDualEncoderProcessor.from_pretrained("""clip-italian/clip-italian""" ) lowercase_ : Union[str, Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) lowercase_ : Optional[int] = processor( text=["""una foto di un gatto""", """una foto di un cane"""] , images=lowercase_ , padding=lowercase_ , return_tensors="""np""" ) lowercase_ : List[str] = model(**lowercase_ ) # verify the logits self.assertEqual(outputs.logits_per_image.shape , (inputs.pixel_values.shape[0], inputs.input_ids.shape[0]) ) self.assertEqual( outputs.logits_per_text.shape , (inputs.input_ids.shape[0], inputs.pixel_values.shape[0]) , ) lowercase_ : Optional[Any] = np.array([[1.2_28_47_27, 0.3_10_41_22]] ) self.assertTrue(np.allclose(outputs.logits_per_image , lowercase_ , atol=1E-3 ) )
21
0
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, is_batched, to_numpy_array, valid_images, ) from ...utils import TensorType, logging __A : Dict = logging.get_logger(__name__) class A_ (a_ ): UpperCAmelCase__ = ['''pixel_values'''] def __init__( self , _A = True , _A = None , _A = PILImageResampling.BICUBIC , _A = True , _A = True , _A = 1 / 2_5_5 , _A = None , _A = True , _A = None , _A = None , **_A , ): '''simple docstring''' super().__init__(**_A ) UpperCAmelCase = size if size is not None else {'''height''': 2_2_4, '''width''': 2_2_4} UpperCAmelCase = get_size_dict(_A ) UpperCAmelCase = crop_size if crop_size is not None else {'''height''': 2_2_4, '''width''': 2_2_4} UpperCAmelCase = get_size_dict(_A , default_to_square=_A , param_name='''crop_size''' ) UpperCAmelCase = do_resize UpperCAmelCase = do_rescale UpperCAmelCase = do_normalize UpperCAmelCase = do_center_crop UpperCAmelCase = crop_size UpperCAmelCase = size UpperCAmelCase = resample UpperCAmelCase = rescale_factor UpperCAmelCase = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN UpperCAmelCase = image_std if image_std is not None else IMAGENET_DEFAULT_STD def _lowercase ( self , _A , _A , _A = PILImageResampling.BILINEAR , _A = None , **_A , ): '''simple docstring''' UpperCAmelCase = get_size_dict(_A ) if "shortest_edge" in size: UpperCAmelCase = get_resize_output_image_size(_A , size=size['''shortest_edge'''] , default_to_square=_A ) # size = get_resize_output_image_size(image, size["shortest_edge"], size["longest_edge"]) elif "height" in size and "width" in size: UpperCAmelCase = (size['''height'''], size['''width''']) else: raise ValueError(F"""Size must contain 'height' and 'width' keys or 'shortest_edge' key. Got {size.keys()}""" ) return resize(_A , size=_A , resample=_A , data_format=_A , **_A ) def _lowercase ( self , _A , _A , _A = None , **_A , ): '''simple docstring''' UpperCAmelCase = get_size_dict(_A ) if "height" not in size or "width" not in size: raise ValueError(F"""The `size` parameter must contain the keys (height, width). Got {size.keys()}""" ) return center_crop(_A , size=(size['''height'''], size['''width''']) , data_format=_A , **_A ) def _lowercase ( self , _A , _A , _A = None , **_A ): '''simple docstring''' return rescale(_A , scale=_A , data_format=_A , **_A ) def _lowercase ( self , _A , _A , _A , _A = None , **_A , ): '''simple docstring''' return normalize(_A , mean=_A , std=_A , data_format=_A , **_A ) def _lowercase ( self , _A , _A = None , _A = None , _A = None , _A = None , _A = None , _A = None , _A = None , _A = None , _A = None , _A = None , _A = None , _A = ChannelDimension.FIRST , **_A , ): '''simple docstring''' UpperCAmelCase = do_resize if do_resize is not None else self.do_resize UpperCAmelCase = do_rescale if do_rescale is not None else self.do_rescale UpperCAmelCase = do_normalize if do_normalize is not None else self.do_normalize UpperCAmelCase = do_center_crop if do_center_crop is not None else self.do_center_crop UpperCAmelCase = crop_size if crop_size is not None else self.crop_size UpperCAmelCase = get_size_dict(_A , param_name='''crop_size''' , default_to_square=_A ) UpperCAmelCase = resample if resample is not None else self.resample UpperCAmelCase = rescale_factor if rescale_factor is not None else self.rescale_factor UpperCAmelCase = image_mean if image_mean is not None else self.image_mean UpperCAmelCase = image_std if image_std is not None else self.image_std UpperCAmelCase = size if size is not None else self.size UpperCAmelCase = get_size_dict(_A ) if not is_batched(_A ): UpperCAmelCase = [images] if not valid_images(_A ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''' ) if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) # All transformations expect numpy arrays. UpperCAmelCase = [to_numpy_array(_A ) for image in images] if do_resize: UpperCAmelCase = [self.resize(image=_A , size=_A , resample=_A ) for image in images] if do_center_crop: UpperCAmelCase = [self.center_crop(image=_A , size=_A ) for image in images] if do_rescale: UpperCAmelCase = [self.rescale(image=_A , scale=_A ) for image in images] if do_normalize: UpperCAmelCase = [self.normalize(image=_A , mean=_A , std=_A ) for image in images] UpperCAmelCase = [to_channel_dimension_format(_A , _A ) for image in images] UpperCAmelCase = {'''pixel_values''': images} return BatchFeature(data=_A , tensor_type=_A )
273
import gc import unittest from transformers import CTRLConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( CTRL_PRETRAINED_MODEL_ARCHIVE_LIST, CTRLForSequenceClassification, CTRLLMHeadModel, CTRLModel, ) class A_ : def __init__( self , _A , _A=1_4 , _A=7 , _A=True , _A=True , _A=True , _A=True , _A=True , _A=9_9 , _A=3_2 , _A=5 , _A=4 , _A=3_7 , _A="gelu" , _A=0.1 , _A=0.1 , _A=5_1_2 , _A=1_6 , _A=2 , _A=0.02 , _A=3 , _A=4 , _A=None , ): '''simple docstring''' UpperCAmelCase = parent UpperCAmelCase = batch_size UpperCAmelCase = seq_length UpperCAmelCase = is_training UpperCAmelCase = use_token_type_ids UpperCAmelCase = use_input_mask UpperCAmelCase = use_labels UpperCAmelCase = use_mc_token_ids UpperCAmelCase = vocab_size UpperCAmelCase = hidden_size UpperCAmelCase = num_hidden_layers UpperCAmelCase = num_attention_heads UpperCAmelCase = intermediate_size UpperCAmelCase = hidden_act UpperCAmelCase = hidden_dropout_prob UpperCAmelCase = attention_probs_dropout_prob UpperCAmelCase = max_position_embeddings UpperCAmelCase = type_vocab_size UpperCAmelCase = type_sequence_label_size UpperCAmelCase = initializer_range UpperCAmelCase = num_labels UpperCAmelCase = num_choices UpperCAmelCase = scope UpperCAmelCase = self.vocab_size - 1 def _lowercase ( self ): '''simple docstring''' UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase = None if self.use_input_mask: UpperCAmelCase = random_attention_mask([self.batch_size, self.seq_length] ) UpperCAmelCase = None if self.use_token_type_ids: UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCAmelCase = None if self.use_mc_token_ids: UpperCAmelCase = ids_tensor([self.batch_size, self.num_choices] , self.seq_length ) UpperCAmelCase = None UpperCAmelCase = None UpperCAmelCase = None if self.use_labels: UpperCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCAmelCase = ids_tensor([self.batch_size] , self.num_choices ) UpperCAmelCase = self.get_config() UpperCAmelCase = ids_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 ) return ( config, input_ids, input_mask, head_mask, token_type_ids, mc_token_ids, sequence_labels, token_labels, choice_labels, ) def _lowercase ( self ): '''simple docstring''' return CTRLConfig( vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , pad_token_id=self.pad_token_id , ) def _lowercase ( self , _A , _A , _A , _A , _A , *_A ): '''simple docstring''' UpperCAmelCase = CTRLModel(config=_A ) model.to(_A ) model.eval() model(_A , token_type_ids=_A , head_mask=_A ) model(_A , token_type_ids=_A ) UpperCAmelCase = model(_A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(len(result.past_key_values ) , config.n_layer ) def _lowercase ( self , _A , _A , _A , _A , _A , *_A ): '''simple docstring''' UpperCAmelCase = CTRLLMHeadModel(_A ) model.to(_A ) model.eval() UpperCAmelCase = model(_A , token_type_ids=_A , labels=_A ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _lowercase ( self ): '''simple docstring''' UpperCAmelCase = self.prepare_config_and_inputs() ( ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ) = config_and_inputs UpperCAmelCase = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''head_mask''': head_mask} return config, inputs_dict def _lowercase ( self , _A , _A , _A , _A , *_A ): '''simple docstring''' UpperCAmelCase = self.num_labels UpperCAmelCase = CTRLForSequenceClassification(_A ) model.to(_A ) model.eval() UpperCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase = model(_A , token_type_ids=_A , labels=_A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) @require_torch class A_ (a_ , a_ , a_ , unittest.TestCase ): UpperCAmelCase__ = (CTRLModel, CTRLLMHeadModel, CTRLForSequenceClassification) if is_torch_available() else () UpperCAmelCase__ = (CTRLLMHeadModel,) if is_torch_available() else () UpperCAmelCase__ = ( { '''feature-extraction''': CTRLModel, '''text-classification''': CTRLForSequenceClassification, '''text-generation''': CTRLLMHeadModel, '''zero-shot''': CTRLForSequenceClassification, } if is_torch_available() else {} ) UpperCAmelCase__ = True UpperCAmelCase__ = False UpperCAmelCase__ = False def _lowercase ( self , _A , _A , _A , _A , _A ): '''simple docstring''' if pipeline_test_casse_name == "ZeroShotClassificationPipelineTests": # Get `tokenizer does not have a padding token` error for both fast/slow tokenizers. # `CTRLConfig` was never used in pipeline tests, either because of a missing checkpoint or because a tiny # config could not be created. return True return False def _lowercase ( self ): '''simple docstring''' UpperCAmelCase = CTRLModelTester(self ) UpperCAmelCase = ConfigTester(self , config_class=_A , n_embd=3_7 ) def _lowercase ( self ): '''simple docstring''' super().tearDown() # clean-up as much as possible GPU memory occupied by PyTorch gc.collect() torch.cuda.empty_cache() def _lowercase ( self ): '''simple docstring''' self.config_tester.run_common_tests() def _lowercase ( self ): '''simple docstring''' UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_ctrl_model(*_A ) def _lowercase ( self ): '''simple docstring''' UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head_model(*_A ) @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def _lowercase ( self ): '''simple docstring''' pass @slow def _lowercase ( self ): '''simple docstring''' for model_name in CTRL_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase = CTRLModel.from_pretrained(_A ) self.assertIsNotNone(_A ) @unittest.skip('''The model doesn\'t support left padding''' ) # and it's not used enough to be worth fixing :) def _lowercase ( self ): '''simple docstring''' pass @require_torch class A_ (unittest.TestCase ): def _lowercase ( self ): '''simple docstring''' super().tearDown() # clean-up as much as possible GPU memory occupied by PyTorch gc.collect() torch.cuda.empty_cache() @slow def _lowercase ( self ): '''simple docstring''' UpperCAmelCase = CTRLLMHeadModel.from_pretrained('''ctrl''' ) model.to(_A ) UpperCAmelCase = torch.tensor( [[1_1_8_5_9, 0, 1_6_1_1, 8]] , dtype=torch.long , device=_A ) # Legal the president is UpperCAmelCase = [ 1_1_8_5_9, 0, 1_6_1_1, 8, 5, 1_5_0, 2_6_4_4_9, 2, 1_9, 3_4_8, 4_6_9, 3, 2_5_9_5, 4_8, 2_0_7_4_0, 2_4_6_5_3_3, 2_4_6_5_3_3, 1_9, 3_0, 5, ] # Legal the president is a good guy and I don't want to lose my job. \n \n I have a UpperCAmelCase = model.generate(_A , do_sample=_A ) self.assertListEqual(output_ids[0].tolist() , _A )
273
1
from __future__ import annotations from random import choice def lowerCAmelCase__ ( a__ ) ->Optional[int]: '''simple docstring''' return choice(a__ ) def lowerCAmelCase__ ( a__ , a__ ) ->str: '''simple docstring''' _UpperCamelCase = random_pivot(a__ ) # partition based on pivot # linear time _UpperCamelCase = [e for e in lst if e < pivot] _UpperCamelCase = [e for e in lst if e > pivot] # if we get lucky, pivot might be the element we want. # we can easily see this: # small (elements smaller than k) # + pivot (kth element) # + big (elements larger than k) if len(a__ ) == k - 1: return pivot # pivot is in elements bigger than k elif len(a__ ) < k - 1: return kth_number(a__ , k - len(a__ ) - 1 ) # pivot is in elements smaller than k else: return kth_number(a__ , a__ ) if __name__ == "__main__": import doctest doctest.testmod()
352
from typing import TYPE_CHECKING from ...file_utils import _LazyModule, is_tokenizers_available, is_torch_available from ...utils import OptionalDependencyNotAvailable lowerCamelCase__ = {'''configuration_gpt_neox''': ['''GPT_NEOX_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''GPTNeoXConfig''']} try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = ['''GPTNeoXTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = [ '''GPT_NEOX_PRETRAINED_MODEL_ARCHIVE_LIST''', '''GPTNeoXForCausalLM''', '''GPTNeoXForQuestionAnswering''', '''GPTNeoXForSequenceClassification''', '''GPTNeoXForTokenClassification''', '''GPTNeoXLayer''', '''GPTNeoXModel''', '''GPTNeoXPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_gpt_neox import GPT_NEOX_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTNeoXConfig try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_gpt_neox_fast import GPTNeoXTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_neox import ( GPT_NEOX_PRETRAINED_MODEL_ARCHIVE_LIST, GPTNeoXForCausalLM, GPTNeoXForQuestionAnswering, GPTNeoXForSequenceClassification, GPTNeoXForTokenClassification, GPTNeoXLayer, GPTNeoXModel, GPTNeoXPreTrainedModel, ) else: import sys lowerCamelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
63
0
from collections.abc import Callable def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> float: lowerCamelCase__ : float = a lowerCamelCase__ : float = b if function(_UpperCAmelCase ) == 0: # one of the a or b is a root for the function return a elif function(_UpperCAmelCase ) == 0: return b elif ( function(_UpperCAmelCase ) * function(_UpperCAmelCase ) > 0 ): # if none of these are root and they are both positive or negative, # then this algorithm can't find the root raise ValueError('could not find root in given interval.' ) else: lowerCamelCase__ : float = start + (end - start) / 2.0 while abs(start - mid ) > 10**-7: # until precisely equals to 10^-7 if function(_UpperCAmelCase ) == 0: return mid elif function(_UpperCAmelCase ) * function(_UpperCAmelCase ) < 0: lowerCamelCase__ : Optional[int] = mid else: lowerCamelCase__ : Optional[Any] = mid lowerCamelCase__ : Any = start + (end - start) / 2.0 return mid def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> float: return x**3 - 2 * x - 5 if __name__ == "__main__": print(bisection(f, 1, 10_00)) import doctest doctest.testmod()
50
import flax.linen as nn import jax import jax.numpy as jnp class lowerCAmelCase ( nn.Module ): UpperCAmelCase__ = 42 UpperCAmelCase__ = jnp.floataa def A_ ( self : Any ) -> Any: lowerCamelCase__ : str = nn.Conv( self.out_channels , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) def __call__( self : int , UpperCAmelCase : Dict ) -> Optional[Any]: lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : str = hidden_states.shape lowerCamelCase__ : Union[str, Any] = jax.image.resize( UpperCAmelCase , shape=(batch, height * 2, width * 2, channels) , method='nearest' , ) lowerCamelCase__ : Optional[Any] = self.conv(UpperCAmelCase ) return hidden_states class lowerCAmelCase ( nn.Module ): UpperCAmelCase__ = 42 UpperCAmelCase__ = jnp.floataa def A_ ( self : List[str] ) -> int: lowerCamelCase__ : Tuple = nn.Conv( self.out_channels , kernel_size=(3, 3) , strides=(2, 2) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) def __call__( self : str , UpperCAmelCase : Union[str, Any] ) -> Optional[Any]: # pad = ((0, 0), (0, 1), (0, 1), (0, 0)) # pad height and width dim # hidden_states = jnp.pad(hidden_states, pad_width=pad) lowerCamelCase__ : Optional[Any] = self.conv(UpperCAmelCase ) return hidden_states class lowerCAmelCase ( nn.Module ): UpperCAmelCase__ = 42 UpperCAmelCase__ = None UpperCAmelCase__ = 0.0 UpperCAmelCase__ = None UpperCAmelCase__ = jnp.floataa def A_ ( self : List[str] ) -> Union[str, Any]: lowerCamelCase__ : Optional[Any] = self.in_channels if self.out_channels is None else self.out_channels lowerCamelCase__ : Tuple = nn.GroupNorm(num_groups=32 , epsilon=1e-5 ) lowerCamelCase__ : int = nn.Conv( UpperCAmelCase , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) lowerCamelCase__ : Union[str, Any] = nn.Dense(UpperCAmelCase , dtype=self.dtype ) lowerCamelCase__ : Union[str, Any] = nn.GroupNorm(num_groups=32 , epsilon=1e-5 ) lowerCamelCase__ : List[Any] = nn.Dropout(self.dropout_prob ) lowerCamelCase__ : Tuple = nn.Conv( UpperCAmelCase , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) lowerCamelCase__ : Optional[Any] = self.in_channels != out_channels if self.use_nin_shortcut is None else self.use_nin_shortcut lowerCamelCase__ : Union[str, Any] = None if use_nin_shortcut: lowerCamelCase__ : Dict = nn.Conv( UpperCAmelCase , kernel_size=(1, 1) , strides=(1, 1) , padding='VALID' , dtype=self.dtype , ) def __call__( self : Optional[Any] , UpperCAmelCase : str , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : int=True ) -> Optional[int]: lowerCamelCase__ : Union[str, Any] = hidden_states lowerCamelCase__ : List[Any] = self.norma(UpperCAmelCase ) lowerCamelCase__ : List[Any] = nn.swish(UpperCAmelCase ) lowerCamelCase__ : Any = self.conva(UpperCAmelCase ) lowerCamelCase__ : Optional[Any] = self.time_emb_proj(nn.swish(UpperCAmelCase ) ) lowerCamelCase__ : List[str] = jnp.expand_dims(jnp.expand_dims(UpperCAmelCase , 1 ) , 1 ) lowerCamelCase__ : List[str] = hidden_states + temb lowerCamelCase__ : Optional[Any] = self.norma(UpperCAmelCase ) lowerCamelCase__ : List[str] = nn.swish(UpperCAmelCase ) lowerCamelCase__ : Optional[int] = self.dropout(UpperCAmelCase , UpperCAmelCase ) lowerCamelCase__ : str = self.conva(UpperCAmelCase ) if self.conv_shortcut is not None: lowerCamelCase__ : Dict = self.conv_shortcut(UpperCAmelCase ) return hidden_states + residual
50
1
from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow if is_tf_available(): import numpy as np import tensorflow as tf from transformers import TFCamembertModel @require_tf @require_sentencepiece @require_tokenizers class snake_case__ ( unittest.TestCase ): @slow def __magic_name__ ( self ) -> Optional[Any]: __magic_name__ : Tuple = TFCamembertModel.from_pretrained("""jplu/tf-camembert-base""" ) __magic_name__ : str = tf.convert_to_tensor( [[5, 1_21, 11, 6_60, 16, 7_30, 2_55_43, 1_10, 83, 6]] , dtype=tf.intaa , ) # J'aime le camembert !" __magic_name__ : Dict = model(lowerCAmelCase__ )["""last_hidden_state"""] __magic_name__ : List[str] = tf.TensorShape((1, 10, 7_68) ) self.assertEqual(output.shape , lowerCAmelCase__ ) # compare the actual values for a slice. __magic_name__ : Tuple = tf.convert_to_tensor( [[[-0.0_2_5_4, 0.0_2_3_5, 0.1_0_2_7], [0.0_6_0_6, -0.1_8_1_1, -0.0_4_1_8], [-0.1_5_6_1, -0.1_1_2_7, 0.2_6_8_7]]] , dtype=tf.floataa , ) # camembert = torch.hub.load('pytorch/fairseq', 'camembert.v0') # camembert.eval() # expected_slice = roberta.model.forward(input_ids)[0][:, :3, :3].detach() self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1e-4 ) )
138
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available __magic_name__: Tuple = { "configuration_tapas": ["TAPAS_PRETRAINED_CONFIG_ARCHIVE_MAP", "TapasConfig"], "tokenization_tapas": ["TapasTokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __magic_name__: Dict = [ "TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST", "TapasForMaskedLM", "TapasForQuestionAnswering", "TapasForSequenceClassification", "TapasModel", "TapasPreTrainedModel", "load_tf_weights_in_tapas", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __magic_name__: int = [ "TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST", "TFTapasForMaskedLM", "TFTapasForQuestionAnswering", "TFTapasForSequenceClassification", "TFTapasModel", "TFTapasPreTrainedModel", ] if TYPE_CHECKING: from .configuration_tapas import TAPAS_PRETRAINED_CONFIG_ARCHIVE_MAP, TapasConfig from .tokenization_tapas import TapasTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tapas import ( TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST, TapasForMaskedLM, TapasForQuestionAnswering, TapasForSequenceClassification, TapasModel, TapasPreTrainedModel, load_tf_weights_in_tapas, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_tapas import ( TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST, TFTapasForMaskedLM, TFTapasForQuestionAnswering, TFTapasForSequenceClassification, TFTapasModel, TFTapasPreTrainedModel, ) else: import sys __magic_name__: Tuple = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
138
1
import argparse import os from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_task_guides.py _UpperCAmelCase : str = """src/transformers""" _UpperCAmelCase : Dict = """docs/source/en/tasks""" def __lowerCamelCase ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' with open(UpperCamelCase__ , 'r' , encoding='utf-8' , newline='\n' ) as f: snake_case_ = f.readlines() # Find the start prompt. snake_case_ = 0 while not lines[start_index].startswith(UpperCamelCase__ ): start_index += 1 start_index += 1 snake_case_ = start_index while not lines[end_index].startswith(UpperCamelCase__ ): end_index += 1 end_index -= 1 while len(lines[start_index] ) <= 1: start_index += 1 while len(lines[end_index] ) <= 1: end_index -= 1 end_index += 1 return "".join(lines[start_index:end_index] ), start_index, end_index, lines # This is to make sure the transformers module imported is the one in the repo. _UpperCAmelCase : str = direct_transformers_import(TRANSFORMERS_PATH) _UpperCAmelCase : Dict = { """asr.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_CTC_MAPPING_NAMES, """audio_classification.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES, """language_modeling.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_CAUSAL_LM_MAPPING_NAMES, """image_classification.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES, """masked_language_modeling.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_MASKED_LM_MAPPING_NAMES, """multiple_choice.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES, """object_detection.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_OBJECT_DETECTION_MAPPING_NAMES, """question_answering.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES, """semantic_segmentation.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_SEMANTIC_SEGMENTATION_MAPPING_NAMES, """sequence_classification.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES, """summarization.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES, """token_classification.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES, """translation.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES, """video_classification.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING_NAMES, """document_question_answering.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES, """monocular_depth_estimation.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_DEPTH_ESTIMATION_MAPPING_NAMES, } # This list contains model types used in some task guides that are not in `CONFIG_MAPPING_NAMES` (therefore not in any # `MODEL_MAPPING_NAMES` or any `MODEL_FOR_XXX_MAPPING_NAMES`). _UpperCAmelCase : Union[str, Any] = { """summarization.md""": ("""nllb""",), """translation.md""": ("""nllb""",), } def __lowerCamelCase ( UpperCamelCase__ ): '''simple docstring''' snake_case_ = TASK_GUIDE_TO_MODELS[task_guide] snake_case_ = SPECIAL_TASK_GUIDE_TO_MODEL_TYPES.get(UpperCamelCase__ , set() ) snake_case_ = { code: name for code, name in transformers_module.MODEL_NAMES_MAPPING.items() if (code in model_maping_names or code in special_model_types) } return ", ".join([F'''[{name}](../model_doc/{code})''' for code, name in model_names.items()] ) + "\n" def __lowerCamelCase ( UpperCamelCase__ , UpperCamelCase__=False ): '''simple docstring''' snake_case_ , snake_case_ , snake_case_ , snake_case_ = _find_text_in_file( filename=os.path.join(UpperCamelCase__ , UpperCamelCase__ ) , start_prompt='<!--This tip is automatically generated by `make fix-copies`, do not fill manually!-->' , end_prompt='<!--End of the generated tip-->' , ) snake_case_ = get_model_list_for_task(UpperCamelCase__ ) if current_list != new_list: if overwrite: with open(os.path.join(UpperCamelCase__ , UpperCamelCase__ ) , 'w' , encoding='utf-8' , newline='\n' ) as f: f.writelines(lines[:start_index] + [new_list] + lines[end_index:] ) else: raise ValueError( F'''The list of models that can be used in the {task_guide} guide needs an update. Run `make fix-copies`''' ' to fix this.' ) if __name__ == "__main__": _UpperCAmelCase : List[str] = argparse.ArgumentParser() parser.add_argument("""--fix_and_overwrite""", action="""store_true""", help="""Whether to fix inconsistencies.""") _UpperCAmelCase : Optional[Any] = parser.parse_args() for task_guide in TASK_GUIDE_TO_MODELS.keys(): check_model_list_for_task(task_guide, args.fix_and_overwrite)
285
from abc import ABC, abstractmethod from argparse import ArgumentParser class lowercase ( lowercase_ ): @staticmethod @abstractmethod def a ( snake_case ): raise NotImplementedError() @abstractmethod def a ( self ): raise NotImplementedError()
285
1
import torch from diffusers import KDPMaDiscreteScheduler from diffusers.utils import torch_device from .test_schedulers import SchedulerCommonTest class A ( _UpperCAmelCase ): """simple docstring""" lowerCamelCase = (KDPMaDiscreteScheduler,) lowerCamelCase = 10 def snake_case__ ( self : Optional[Any],**lowercase_ : str )-> Optional[int]: '''simple docstring''' A__ = { 'num_train_timesteps': 1_1_0_0, 'beta_start': 0.0_001, 'beta_end': 0.02, 'beta_schedule': 'linear', } config.update(**lowercase_ ) return config def snake_case__ ( self : Optional[Any] )-> List[Any]: '''simple docstring''' for timesteps in [1_0, 5_0, 1_0_0, 1_0_0_0]: self.check_over_configs(num_train_timesteps=lowercase_ ) def snake_case__ ( self : str )-> Optional[int]: '''simple docstring''' for beta_start, beta_end in zip([0.00_001, 0.0_001, 0.001],[0.0_002, 0.002, 0.02] ): self.check_over_configs(beta_start=lowercase_,beta_end=lowercase_ ) def snake_case__ ( self : Optional[int] )-> Any: '''simple docstring''' for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=lowercase_ ) def snake_case__ ( self : Dict )-> Any: '''simple docstring''' for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=lowercase_ ) def snake_case__ ( self : List[str] )-> str: '''simple docstring''' A__ = self.scheduler_classes[0] A__ = self.get_scheduler_config(prediction_type='v_prediction' ) A__ = scheduler_class(**lowercase_ ) scheduler.set_timesteps(self.num_inference_steps ) A__ = self.dummy_model() A__ = self.dummy_sample_deter * scheduler.init_noise_sigma A__ = sample.to(lowercase_ ) for i, t in enumerate(scheduler.timesteps ): A__ = scheduler.scale_model_input(lowercase_,lowercase_ ) A__ = model(lowercase_,lowercase_ ) A__ = scheduler.step(lowercase_,lowercase_,lowercase_ ) A__ = output.prev_sample A__ = torch.sum(torch.abs(lowercase_ ) ) A__ = torch.mean(torch.abs(lowercase_ ) ) if torch_device in ["cpu", "mps"]: assert abs(result_sum.item() - 4.6_934E-07 ) < 1E-2 assert abs(result_mean.item() - 6.1_112E-10 ) < 1E-3 else: # CUDA assert abs(result_sum.item() - 4.693_428_650_170_972E-07 ) < 1E-2 assert abs(result_mean.item() - 0.0_002 ) < 1E-3 def snake_case__ ( self : List[Any] )-> Dict: '''simple docstring''' if torch_device == "mps": return A__ = self.scheduler_classes[0] A__ = self.get_scheduler_config() A__ = scheduler_class(**lowercase_ ) scheduler.set_timesteps(self.num_inference_steps ) A__ = self.dummy_model() A__ = self.dummy_sample_deter * scheduler.init_noise_sigma A__ = sample.to(lowercase_ ) for i, t in enumerate(scheduler.timesteps ): A__ = scheduler.scale_model_input(lowercase_,lowercase_ ) A__ = model(lowercase_,lowercase_ ) A__ = scheduler.step(lowercase_,lowercase_,lowercase_ ) A__ = output.prev_sample A__ = torch.sum(torch.abs(lowercase_ ) ) A__ = torch.mean(torch.abs(lowercase_ ) ) if torch_device in ["cpu", "mps"]: assert abs(result_sum.item() - 20.4_125 ) < 1E-2 assert abs(result_mean.item() - 0.0_266 ) < 1E-3 else: # CUDA assert abs(result_sum.item() - 20.4_125 ) < 1E-2 assert abs(result_mean.item() - 0.0_266 ) < 1E-3 def snake_case__ ( self : Union[str, Any] )-> str: '''simple docstring''' if torch_device == "mps": return A__ = self.scheduler_classes[0] A__ = self.get_scheduler_config() A__ = scheduler_class(**lowercase_ ) scheduler.set_timesteps(self.num_inference_steps,device=lowercase_ ) A__ = self.dummy_model() A__ = self.dummy_sample_deter.to(lowercase_ ) * scheduler.init_noise_sigma for t in scheduler.timesteps: A__ = scheduler.scale_model_input(lowercase_,lowercase_ ) A__ = model(lowercase_,lowercase_ ) A__ = scheduler.step(lowercase_,lowercase_,lowercase_ ) A__ = output.prev_sample A__ = torch.sum(torch.abs(lowercase_ ) ) A__ = torch.mean(torch.abs(lowercase_ ) ) if str(lowercase_ ).startswith('cpu' ): # The following sum varies between 148 and 156 on mps. Why? assert abs(result_sum.item() - 20.4_125 ) < 1E-2 assert abs(result_mean.item() - 0.0_266 ) < 1E-3 else: # CUDA assert abs(result_sum.item() - 20.4_125 ) < 1E-2 assert abs(result_mean.item() - 0.0_266 ) < 1E-3
282
import argparse import struct import unittest class A : """simple docstring""" def __init__( self : Any,lowercase_ : bytes )-> None: '''simple docstring''' A__ = data # Initialize hash values A__ = [ 0X6_a_0_9_e_6_6_7, 0Xb_b_6_7_a_e_8_5, 0X3_c_6_e_f_3_7_2, 0Xa_5_4_f_f_5_3_a, 0X5_1_0_e_5_2_7_f, 0X9_b_0_5_6_8_8_c, 0X1_f_8_3_d_9_a_b, 0X5_b_e_0_c_d_1_9, ] # Initialize round constants A__ = [ 0X4_2_8_a_2_f_9_8, 0X7_1_3_7_4_4_9_1, 0Xb_5_c_0_f_b_c_f, 0Xe_9_b_5_d_b_a_5, 0X3_9_5_6_c_2_5_b, 0X5_9_f_1_1_1_f_1, 0X9_2_3_f_8_2_a_4, 0Xa_b_1_c_5_e_d_5, 0Xd_8_0_7_a_a_9_8, 0X1_2_8_3_5_b_0_1, 0X2_4_3_1_8_5_b_e, 0X5_5_0_c_7_d_c_3, 0X7_2_b_e_5_d_7_4, 0X8_0_d_e_b_1_f_e, 0X9_b_d_c_0_6_a_7, 0Xc_1_9_b_f_1_7_4, 0Xe_4_9_b_6_9_c_1, 0Xe_f_b_e_4_7_8_6, 0X0_f_c_1_9_d_c_6, 0X2_4_0_c_a_1_c_c, 0X2_d_e_9_2_c_6_f, 0X4_a_7_4_8_4_a_a, 0X5_c_b_0_a_9_d_c, 0X7_6_f_9_8_8_d_a, 0X9_8_3_e_5_1_5_2, 0Xa_8_3_1_c_6_6_d, 0Xb_0_0_3_2_7_c_8, 0Xb_f_5_9_7_f_c_7, 0Xc_6_e_0_0_b_f_3, 0Xd_5_a_7_9_1_4_7, 0X0_6_c_a_6_3_5_1, 0X1_4_2_9_2_9_6_7, 0X2_7_b_7_0_a_8_5, 0X2_e_1_b_2_1_3_8, 0X4_d_2_c_6_d_f_c, 0X5_3_3_8_0_d_1_3, 0X6_5_0_a_7_3_5_4, 0X7_6_6_a_0_a_b_b, 0X8_1_c_2_c_9_2_e, 0X9_2_7_2_2_c_8_5, 0Xa_2_b_f_e_8_a_1, 0Xa_8_1_a_6_6_4_b, 0Xc_2_4_b_8_b_7_0, 0Xc_7_6_c_5_1_a_3, 0Xd_1_9_2_e_8_1_9, 0Xd_6_9_9_0_6_2_4, 0Xf_4_0_e_3_5_8_5, 0X1_0_6_a_a_0_7_0, 0X1_9_a_4_c_1_1_6, 0X1_e_3_7_6_c_0_8, 0X2_7_4_8_7_7_4_c, 0X3_4_b_0_b_c_b_5, 0X3_9_1_c_0_c_b_3, 0X4_e_d_8_a_a_4_a, 0X5_b_9_c_c_a_4_f, 0X6_8_2_e_6_f_f_3, 0X7_4_8_f_8_2_e_e, 0X7_8_a_5_6_3_6_f, 0X8_4_c_8_7_8_1_4, 0X8_c_c_7_0_2_0_8, 0X9_0_b_e_f_f_f_a, 0Xa_4_5_0_6_c_e_b, 0Xb_e_f_9_a_3_f_7, 0Xc_6_7_1_7_8_f_2, ] A__ = self.preprocessing(self.data ) self.final_hash() @staticmethod def snake_case__ ( lowercase_ : bytes )-> bytes: '''simple docstring''' A__ = B'\x80' + (B'\x00' * (6_3 - (len(lowercase_ ) + 8) % 6_4)) A__ = struct.pack('>Q',(len(lowercase_ ) * 8) ) return data + padding + big_endian_integer def snake_case__ ( self : Optional[int] )-> None: '''simple docstring''' A__ = [ self.preprocessed_data[x : x + 6_4] for x in range(0,len(self.preprocessed_data ),6_4 ) ] for block in self.blocks: # Convert the given block into a list of 4 byte integers A__ = list(struct.unpack('>16L',lowercase_ ) ) # add 48 0-ed integers words += [0] * 4_8 A__ , A__ , A__ , A__ , A__ , A__ , A__ , A__ = self.hashes for index in range(0,6_4 ): if index > 1_5: # modify the zero-ed indexes at the end of the array A__ = ( self.ror(words[index - 1_5],7 ) ^ self.ror(words[index - 1_5],1_8 ) ^ (words[index - 1_5] >> 3) ) A__ = ( self.ror(words[index - 2],1_7 ) ^ self.ror(words[index - 2],1_9 ) ^ (words[index - 2] >> 1_0) ) A__ = ( words[index - 1_6] + sa + words[index - 7] + sa ) % 0X1_0_0_0_0_0_0_0_0 # Compression A__ = self.ror(lowercase_,6 ) ^ self.ror(lowercase_,1_1 ) ^ self.ror(lowercase_,2_5 ) A__ = (e & f) ^ ((~e & 0Xf_f_f_f_f_f_f_f) & g) A__ = ( h + sa + ch + self.round_constants[index] + words[index] ) % 0X1_0_0_0_0_0_0_0_0 A__ = self.ror(lowercase_,2 ) ^ self.ror(lowercase_,1_3 ) ^ self.ror(lowercase_,2_2 ) A__ = (a & b) ^ (a & c) ^ (b & c) A__ = (sa + maj) % 0X1_0_0_0_0_0_0_0_0 A__ , A__ , A__ , A__ , A__ , A__ , A__ , A__ = ( g, f, e, ((d + tempa) % 0X1_0_0_0_0_0_0_0_0), c, b, a, ((tempa + tempa) % 0X1_0_0_0_0_0_0_0_0), ) A__ = [a, b, c, d, e, f, g, h] # Modify final values A__ = [ ((element + mutated_hash_values[index]) % 0X1_0_0_0_0_0_0_0_0) for index, element in enumerate(self.hashes ) ] A__ = ''.join([hex(lowercase_ )[2:].zfill(8 ) for value in self.hashes] ) def snake_case__ ( self : Union[str, Any],lowercase_ : int,lowercase_ : int )-> int: '''simple docstring''' return 0Xf_f_f_f_f_f_f_f & (value << (3_2 - rotations)) | (value >> rotations) class A ( unittest.TestCase ): """simple docstring""" def snake_case__ ( self : List[str] )-> None: '''simple docstring''' import hashlib A__ = bytes('Test String','utf-8' ) self.assertEqual(SHAaaa(lowercase_ ).hash,hashlib.shaaaa(lowercase_ ).hexdigest() ) def _snake_case( ) -> None: '''simple docstring''' import doctest doctest.testmod() A__ = argparse.ArgumentParser() parser.add_argument( '-s' , '--string' , dest='input_string' , default='Hello World!! Welcome to Cryptography' , help='Hash the string' , ) parser.add_argument( '-f' , '--file' , dest='input_file' , help='Hash contents of a file' ) A__ = parser.parse_args() A__ = args.input_string # hash input should be a bytestring if args.input_file: with open(args.input_file , 'rb' ) as f: A__ = f.read() else: A__ = bytes(SCREAMING_SNAKE_CASE__ , 'utf-8' ) print(SHAaaa(SCREAMING_SNAKE_CASE__ ).hash ) if __name__ == "__main__": main()
282
1
"""simple docstring""" import inspect import unittest from transformers import SegformerConfig, is_torch_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_MAPPING, SegformerForImageClassification, SegformerForSemanticSegmentation, SegformerModel, ) from transformers.models.segformer.modeling_segformer import SEGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import SegformerImageProcessor class UpperCamelCase ( lowercase ): def _lowercase (self : Optional[Any]) -> List[Any]: __snake_case : List[str] = self.config_class(**self.inputs_dict) self.parent.assertTrue(hasattr(_A , 'hidden_sizes')) self.parent.assertTrue(hasattr(_A , 'num_attention_heads')) self.parent.assertTrue(hasattr(_A , 'num_encoder_blocks')) class UpperCamelCase : def __init__(self : Tuple , _A : Tuple , _A : List[str]=13 , _A : List[Any]=64 , _A : List[str]=3 , _A : Dict=4 , _A : Any=[2, 2, 2, 2] , _A : Tuple=[8, 4, 2, 1] , _A : Tuple=[16, 32, 64, 1_28] , _A : Any=[1, 4, 8, 16] , _A : str=[1, 2, 4, 8] , _A : Any=True , _A : Tuple=True , _A : Dict="gelu" , _A : Dict=0.1 , _A : Dict=0.1 , _A : Union[str, Any]=0.02 , _A : Any=3 , _A : int=None , ) -> Any: __snake_case : Optional[int] = parent __snake_case : str = batch_size __snake_case : Any = image_size __snake_case : Tuple = num_channels __snake_case : Optional[Any] = num_encoder_blocks __snake_case : int = sr_ratios __snake_case : Union[str, Any] = depths __snake_case : str = hidden_sizes __snake_case : List[str] = downsampling_rates __snake_case : Union[str, Any] = num_attention_heads __snake_case : Any = is_training __snake_case : str = use_labels __snake_case : Dict = hidden_act __snake_case : Any = hidden_dropout_prob __snake_case : int = attention_probs_dropout_prob __snake_case : str = initializer_range __snake_case : Optional[Any] = num_labels __snake_case : Optional[Any] = scope def _lowercase (self : List[str]) -> Dict: __snake_case : Optional[int] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) __snake_case : Union[str, Any] = None if self.use_labels: __snake_case : Tuple = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels) __snake_case : Dict = self.get_config() return config, pixel_values, labels def _lowercase (self : List[Any]) -> str: return SegformerConfig( image_size=self.image_size , num_channels=self.num_channels , num_encoder_blocks=self.num_encoder_blocks , depths=self.depths , hidden_sizes=self.hidden_sizes , num_attention_heads=self.num_attention_heads , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , initializer_range=self.initializer_range , ) def _lowercase (self : List[str] , _A : Optional[int] , _A : List[str] , _A : Any) -> Optional[int]: __snake_case : List[Any] = SegformerModel(config=_A) model.to(_A) model.eval() __snake_case : Tuple = model(_A) __snake_case : List[str] = self.image_size // (self.downsampling_rates[-1] * 2) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], expected_height, expected_width)) def _lowercase (self : Any , _A : List[Any] , _A : Dict , _A : Any) -> Optional[Any]: __snake_case : Dict = self.num_labels __snake_case : Any = SegformerForSemanticSegmentation(_A) model.to(_A) model.eval() __snake_case : Any = model(_A) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size // 4, self.image_size // 4)) __snake_case : Optional[Any] = model(_A , labels=_A) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size // 4, self.image_size // 4)) self.parent.assertGreater(result.loss , 0.0) def _lowercase (self : Optional[Any] , _A : Optional[Any] , _A : List[str] , _A : str) -> str: __snake_case : Any = 1 __snake_case : Dict = SegformerForSemanticSegmentation(config=_A) model.to(_A) model.eval() __snake_case : int = torch.randint(0 , 1 , (self.batch_size, self.image_size, self.image_size)).to(_A) __snake_case : Union[str, Any] = model(_A , labels=_A) self.parent.assertGreater(result.loss , 0.0) def _lowercase (self : int) -> Dict: __snake_case : Any = self.prepare_config_and_inputs() __snake_case , __snake_case , __snake_case : List[str] = config_and_inputs __snake_case : int = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class UpperCamelCase ( lowercase , lowercase , unittest.TestCase ): UpperCAmelCase : Optional[int] = ( ( SegformerModel, SegformerForSemanticSegmentation, SegformerForImageClassification, ) if is_torch_available() else () ) UpperCAmelCase : Any = ( { """feature-extraction""": SegformerModel, """image-classification""": SegformerForImageClassification, """image-segmentation""": SegformerForSemanticSegmentation, } if is_torch_available() else {} ) UpperCAmelCase : Union[str, Any] = True UpperCAmelCase : Dict = False UpperCAmelCase : List[Any] = False UpperCAmelCase : Any = False def _lowercase (self : Optional[Any]) -> int: __snake_case : List[Any] = SegformerModelTester(self) __snake_case : Optional[Any] = SegformerConfigTester(self , config_class=_A) def _lowercase (self : str) -> Optional[int]: self.config_tester.run_common_tests() def _lowercase (self : Union[str, Any]) -> List[str]: __snake_case : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_A) def _lowercase (self : Dict) -> Optional[Any]: __snake_case : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_binary_image_segmentation(*_A) def _lowercase (self : str) -> Union[str, Any]: __snake_case : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_segmentation(*_A) @unittest.skip('SegFormer does not use inputs_embeds') def _lowercase (self : Dict) -> int: pass @unittest.skip('SegFormer does not have get_input_embeddings method and get_output_embeddings methods') def _lowercase (self : Tuple) -> Optional[int]: pass def _lowercase (self : Union[str, Any]) -> str: __snake_case , __snake_case : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __snake_case : Optional[Any] = model_class(_A) __snake_case : int = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic __snake_case : Optional[Any] = [*signature.parameters.keys()] __snake_case : List[Any] = ['pixel_values'] self.assertListEqual(arg_names[:1] , _A) def _lowercase (self : str) -> Optional[Any]: __snake_case , __snake_case : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() __snake_case : int = True for model_class in self.all_model_classes: __snake_case : Dict = True __snake_case : Optional[int] = False __snake_case : str = True __snake_case : Optional[int] = model_class(_A) model.to(_A) model.eval() with torch.no_grad(): __snake_case : Dict = model(**self._prepare_for_class(_A , _A)) __snake_case : int = outputs.attentions __snake_case : Any = sum(self.model_tester.depths) self.assertEqual(len(_A) , _A) # check that output_attentions also work using config del inputs_dict["output_attentions"] __snake_case : str = True __snake_case : Dict = model_class(_A) model.to(_A) model.eval() with torch.no_grad(): __snake_case : str = model(**self._prepare_for_class(_A , _A)) __snake_case : Optional[int] = outputs.attentions self.assertEqual(len(_A) , _A) # verify the first attentions (first block, first layer) __snake_case : Optional[int] = (self.model_tester.image_size // 4) ** 2 __snake_case : Optional[Any] = (self.model_tester.image_size // (4 * self.model_tester.sr_ratios[0])) ** 2 self.assertListEqual( list(attentions[0].shape[-3:]) , [self.model_tester.num_attention_heads[0], expected_seq_len, expected_reduced_seq_len] , ) # verify the last attentions (last block, last layer) __snake_case : Any = (self.model_tester.image_size // 32) ** 2 __snake_case : str = (self.model_tester.image_size // (32 * self.model_tester.sr_ratios[-1])) ** 2 self.assertListEqual( list(attentions[-1].shape[-3:]) , [self.model_tester.num_attention_heads[-1], expected_seq_len, expected_reduced_seq_len] , ) __snake_case : Tuple = len(_A) # Check attention is always last and order is fine __snake_case : Optional[int] = True __snake_case : List[str] = True __snake_case : Optional[Any] = model_class(_A) model.to(_A) model.eval() with torch.no_grad(): __snake_case : List[str] = model(**self._prepare_for_class(_A , _A)) self.assertEqual(out_len + 1 , len(_A)) __snake_case : Dict = outputs.attentions self.assertEqual(len(_A) , _A) # verify the first attentions (first block, first layer) __snake_case : int = (self.model_tester.image_size // 4) ** 2 __snake_case : str = (self.model_tester.image_size // (4 * self.model_tester.sr_ratios[0])) ** 2 self.assertListEqual( list(self_attentions[0].shape[-3:]) , [self.model_tester.num_attention_heads[0], expected_seq_len, expected_reduced_seq_len] , ) def _lowercase (self : List[Any]) -> int: def check_hidden_states_output(_A : Tuple , _A : List[str] , _A : Dict): __snake_case : int = model_class(_A) model.to(_A) model.eval() with torch.no_grad(): __snake_case : Union[str, Any] = model(**self._prepare_for_class(_A , _A)) __snake_case : int = outputs.hidden_states __snake_case : Tuple = self.model_tester.num_encoder_blocks self.assertEqual(len(_A) , _A) # verify the first hidden states (first block) self.assertListEqual( list(hidden_states[0].shape[-3:]) , [ self.model_tester.hidden_sizes[0], self.model_tester.image_size // 4, self.model_tester.image_size // 4, ] , ) __snake_case , __snake_case : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __snake_case : Tuple = True check_hidden_states_output(_A , _A , _A) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __snake_case : List[Any] = True check_hidden_states_output(_A , _A , _A) def _lowercase (self : Optional[Any]) -> List[Any]: if not self.model_tester.is_training: return __snake_case , __snake_case : List[str] = self.model_tester.prepare_config_and_inputs_for_common() __snake_case : str = True for model_class in self.all_model_classes: if model_class in get_values(_A): continue __snake_case : Tuple = model_class(_A) model.to(_A) model.train() __snake_case : List[Any] = self._prepare_for_class(_A , _A , return_labels=_A) __snake_case : Tuple = model(**_A).loss loss.backward() @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.') def _lowercase (self : Union[str, Any]) -> str: pass @slow def _lowercase (self : Dict) -> Any: for model_name in SEGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __snake_case : Tuple = SegformerModel.from_pretrained(_A) self.assertIsNotNone(_A) def __UpperCAmelCase ( ) -> List[str]: '''simple docstring''' __snake_case : str = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch class UpperCamelCase ( unittest.TestCase ): @slow def _lowercase (self : Dict) -> str: # only resize + normalize __snake_case : List[str] = SegformerImageProcessor( image_scale=(5_12, 5_12) , keep_ratio=_A , align=_A , do_random_crop=_A) __snake_case : List[str] = SegformerForSemanticSegmentation.from_pretrained('nvidia/segformer-b0-finetuned-ade-512-512').to( _A) __snake_case : Tuple = prepare_img() __snake_case : Union[str, Any] = image_processor(images=_A , return_tensors='pt') __snake_case : Dict = encoded_inputs.pixel_values.to(_A) with torch.no_grad(): __snake_case : Tuple = model(_A) __snake_case : Optional[int] = torch.Size((1, model.config.num_labels, 1_28, 1_28)) self.assertEqual(outputs.logits.shape , _A) __snake_case : Union[str, Any] = torch.tensor( [ [[-4.6_310, -5.5_232, -6.2_356], [-5.1_921, -6.1_444, -6.5_996], [-5.4_424, -6.2_790, -6.7_574]], [[-12.1_391, -13.3_122, -13.9_554], [-12.8_732, -13.9_352, -14.3_563], [-12.9_438, -13.8_226, -14.2_513]], [[-12.5_134, -13.4_686, -14.4_915], [-12.8_669, -14.4_343, -14.7_758], [-13.2_523, -14.5_819, -15.0_694]], ]).to(_A) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3, :3] , _A , atol=1E-4)) @slow def _lowercase (self : str) -> int: # only resize + normalize __snake_case : Any = SegformerImageProcessor( image_scale=(5_12, 5_12) , keep_ratio=_A , align=_A , do_random_crop=_A) __snake_case : int = SegformerForSemanticSegmentation.from_pretrained( 'nvidia/segformer-b1-finetuned-cityscapes-1024-1024').to(_A) __snake_case : Tuple = prepare_img() __snake_case : Optional[int] = image_processor(images=_A , return_tensors='pt') __snake_case : int = encoded_inputs.pixel_values.to(_A) with torch.no_grad(): __snake_case : str = model(_A) __snake_case : Tuple = torch.Size((1, model.config.num_labels, 1_28, 1_28)) self.assertEqual(outputs.logits.shape , _A) __snake_case : Dict = torch.tensor( [ [[-13.5_748, -13.9_111, -12.6_500], [-14.3_500, -15.3_683, -14.2_328], [-14.7_532, -16.0_424, -15.6_087]], [[-17.1_651, -15.8_725, -12.9_653], [-17.2_580, -17.3_718, -14.8_223], [-16.6_058, -16.8_783, -16.7_452]], [[-3.6_456, -3.0_209, -1.4_203], [-3.0_797, -3.1_959, -2.0_000], [-1.8_757, -1.9_217, -1.6_997]], ]).to(_A) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3, :3] , _A , atol=1E-1)) @slow def _lowercase (self : int) -> List[Any]: # only resize + normalize __snake_case : Optional[int] = SegformerImageProcessor( image_scale=(5_12, 5_12) , keep_ratio=_A , align=_A , do_random_crop=_A) __snake_case : List[str] = SegformerForSemanticSegmentation.from_pretrained('nvidia/segformer-b0-finetuned-ade-512-512').to( _A) __snake_case : Dict = prepare_img() __snake_case : Union[str, Any] = image_processor(images=_A , return_tensors='pt') __snake_case : List[str] = encoded_inputs.pixel_values.to(_A) with torch.no_grad(): __snake_case : int = model(_A) __snake_case : List[Any] = outputs.logits.detach().cpu() __snake_case : List[str] = image_processor.post_process_semantic_segmentation(outputs=_A , target_sizes=[(5_00, 3_00)]) __snake_case : str = torch.Size((5_00, 3_00)) self.assertEqual(segmentation[0].shape , _A) __snake_case : Dict = image_processor.post_process_semantic_segmentation(outputs=_A) __snake_case : Tuple = torch.Size((1_28, 1_28)) self.assertEqual(segmentation[0].shape , _A)
172
"""simple docstring""" _a : Tuple= 8.3_1_4_4_5_9_8 def __UpperCAmelCase ( UpperCAmelCase_ : float , UpperCAmelCase_ : float ) -> float: '''simple docstring''' if temperature < 0: raise Exception('Temperature cannot be less than 0 K' ) if molar_mass <= 0: raise Exception('Molar mass cannot be less than or equal to 0 kg/mol' ) else: return (3 * UNIVERSAL_GAS_CONSTANT * temperature / molar_mass) ** 0.5 if __name__ == "__main__": import doctest # run doctest doctest.testmod() # example _a : Any= 300 _a : Optional[Any]= 28 _a : Optional[int]= rms_speed_of_molecule(temperature, molar_mass) print(f'''Vrms of Nitrogen gas at 300 K is {vrms} m/s''')
172
1
import itertools import json import linecache import os import pickle import re import socket import string from collections import Counter from logging import getLogger from pathlib import Path from typing import Callable, Dict, Iterable, List import git import torch from torch.utils.data import Dataset from transformers import BartTokenizer, RagTokenizer, TaTokenizer def __lowerCAmelCase (SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE="pt" )-> str: """simple docstring""" snake_case_ = {'''add_prefix_space''': True} if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) and not line.startswith(''' ''' ) else {} snake_case_ = padding_side return tokenizer( [line] , max_length=SCREAMING_SNAKE_CASE , padding='''max_length''' if pad_to_max_length else None , truncation=SCREAMING_SNAKE_CASE , return_tensors=SCREAMING_SNAKE_CASE , add_special_tokens=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE , ) def __lowerCAmelCase (SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=None , )-> List[str]: """simple docstring""" snake_case_ = input_ids.ne(SCREAMING_SNAKE_CASE ).any(dim=0 ) if attention_mask is None: return input_ids[:, keep_column_mask] else: return (input_ids[:, keep_column_mask], attention_mask[:, keep_column_mask]) class lowerCAmelCase_ ( lowerCamelCase__ ): '''simple docstring''' def __init__( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase="train" , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase="" , ): super().__init__() snake_case_ = Path(_UpperCAmelCase ).joinpath(type_path + '''.source''' ) snake_case_ = Path(_UpperCAmelCase ).joinpath(type_path + '''.target''' ) snake_case_ = self.get_char_lens(self.src_file ) snake_case_ = max_source_length snake_case_ = max_target_length assert min(self.src_lens ) > 0, F'''found empty line in {self.src_file}''' snake_case_ = tokenizer snake_case_ = prefix if n_obs is not None: snake_case_ = self.src_lens[:n_obs] snake_case_ = src_lang snake_case_ = tgt_lang def __len__( self ): return len(self.src_lens ) def __getitem__( self , _UpperCAmelCase ): snake_case_ = index + 1 # linecache starts at 1 snake_case_ = self.prefix + linecache.getline(str(self.src_file ) , _UpperCAmelCase ).rstrip('''\n''' ) snake_case_ = linecache.getline(str(self.tgt_file ) , _UpperCAmelCase ).rstrip('''\n''' ) assert source_line, F'''empty source line for index {index}''' assert tgt_line, F'''empty tgt line for index {index}''' # Need to add eos token manually for T5 if isinstance(self.tokenizer , _UpperCAmelCase ): source_line += self.tokenizer.eos_token tgt_line += self.tokenizer.eos_token # Pad source and target to the right snake_case_ = ( self.tokenizer.question_encoder if isinstance(self.tokenizer , _UpperCAmelCase ) else self.tokenizer ) snake_case_ = self.tokenizer.generator if isinstance(self.tokenizer , _UpperCAmelCase ) else self.tokenizer snake_case_ = encode_line(_UpperCAmelCase , _UpperCAmelCase , self.max_source_length , '''right''' ) snake_case_ = encode_line(_UpperCAmelCase , _UpperCAmelCase , self.max_target_length , '''right''' ) snake_case_ = source_inputs['''input_ids'''].squeeze() snake_case_ = target_inputs['''input_ids'''].squeeze() snake_case_ = source_inputs['''attention_mask'''].squeeze() return { "input_ids": source_ids, "attention_mask": src_mask, "decoder_input_ids": target_ids, } @staticmethod def UpperCamelCase__ ( _UpperCAmelCase ): return [len(_UpperCAmelCase ) for x in Path(_UpperCAmelCase ).open().readlines()] def UpperCamelCase__ ( self , _UpperCAmelCase ): snake_case_ = torch.stack([x['''input_ids'''] for x in batch] ) snake_case_ = torch.stack([x['''attention_mask'''] for x in batch] ) snake_case_ = torch.stack([x['''decoder_input_ids'''] for x in batch] ) snake_case_ = ( self.tokenizer.generator.pad_token_id if isinstance(self.tokenizer , _UpperCAmelCase ) else self.tokenizer.pad_token_id ) snake_case_ = ( self.tokenizer.question_encoder.pad_token_id if isinstance(self.tokenizer , _UpperCAmelCase ) else self.tokenizer.pad_token_id ) snake_case_ = trim_batch(_UpperCAmelCase , _UpperCAmelCase ) snake_case_ , snake_case_ = trim_batch(_UpperCAmelCase , _UpperCAmelCase , attention_mask=_UpperCAmelCase ) snake_case_ = { '''input_ids''': source_ids, '''attention_mask''': source_mask, '''decoder_input_ids''': y, } return batch UpperCAmelCase = getLogger(__name__) def __lowerCAmelCase (SCREAMING_SNAKE_CASE )-> int: """simple docstring""" return list(itertools.chain.from_iterable(SCREAMING_SNAKE_CASE ) ) def __lowerCAmelCase (SCREAMING_SNAKE_CASE )-> None: """simple docstring""" snake_case_ = get_git_info() save_json(SCREAMING_SNAKE_CASE , os.path.join(SCREAMING_SNAKE_CASE , '''git_log.json''' ) ) def __lowerCAmelCase (SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=4 , **SCREAMING_SNAKE_CASE )-> List[str]: """simple docstring""" with open(SCREAMING_SNAKE_CASE , '''w''' ) as f: json.dump(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , indent=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) def __lowerCAmelCase (SCREAMING_SNAKE_CASE )-> int: """simple docstring""" with open(SCREAMING_SNAKE_CASE ) as f: return json.load(SCREAMING_SNAKE_CASE ) def __lowerCAmelCase ()-> Optional[int]: """simple docstring""" snake_case_ = git.Repo(search_parent_directories=SCREAMING_SNAKE_CASE ) snake_case_ = { '''repo_id''': str(SCREAMING_SNAKE_CASE ), '''repo_sha''': str(repo.head.object.hexsha ), '''repo_branch''': str(repo.active_branch ), '''hostname''': str(socket.gethostname() ), } return repo_infos def __lowerCAmelCase (SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )-> List: """simple docstring""" return list(map(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) ) def __lowerCAmelCase (SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )-> Optional[Any]: """simple docstring""" with open(SCREAMING_SNAKE_CASE , '''wb''' ) as f: return pickle.dump(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) def __lowerCAmelCase (SCREAMING_SNAKE_CASE )-> int: """simple docstring""" def remove_articles(SCREAMING_SNAKE_CASE ): return re.sub(R'''\b(a|an|the)\b''' , ''' ''' , SCREAMING_SNAKE_CASE ) def white_space_fix(SCREAMING_SNAKE_CASE ): return " ".join(text.split() ) def remove_punc(SCREAMING_SNAKE_CASE ): snake_case_ = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(SCREAMING_SNAKE_CASE ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(SCREAMING_SNAKE_CASE ) ) ) ) def __lowerCAmelCase (SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )-> Union[str, Any]: """simple docstring""" snake_case_ = normalize_answer(SCREAMING_SNAKE_CASE ).split() snake_case_ = normalize_answer(SCREAMING_SNAKE_CASE ).split() snake_case_ = Counter(SCREAMING_SNAKE_CASE ) & Counter(SCREAMING_SNAKE_CASE ) snake_case_ = sum(common.values() ) if num_same == 0: return 0 snake_case_ = 1.0 * num_same / len(SCREAMING_SNAKE_CASE ) snake_case_ = 1.0 * num_same / len(SCREAMING_SNAKE_CASE ) snake_case_ = (2 * precision * recall) / (precision + recall) return fa def __lowerCAmelCase (SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )-> int: """simple docstring""" return normalize_answer(SCREAMING_SNAKE_CASE ) == normalize_answer(SCREAMING_SNAKE_CASE ) def __lowerCAmelCase (SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )-> Dict: """simple docstring""" assert len(SCREAMING_SNAKE_CASE ) == len(SCREAMING_SNAKE_CASE ) snake_case_ = 0 for hypo, pred in zip(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): em += exact_match_score(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if len(SCREAMING_SNAKE_CASE ) > 0: em /= len(SCREAMING_SNAKE_CASE ) return {"em": em} def __lowerCAmelCase (SCREAMING_SNAKE_CASE )-> Optional[int]: """simple docstring""" return model_prefix.startswith('''rag''' ) def __lowerCAmelCase (SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )-> Any: """simple docstring""" snake_case_ = {p: p for p in extra_params} # T5 models don't have `dropout` param, they have `dropout_rate` instead snake_case_ = '''dropout_rate''' for p in extra_params: if getattr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): if not hasattr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) and not hasattr(SCREAMING_SNAKE_CASE , equivalent_param[p] ): logger.info('''config doesn\'t have a `{}` attribute'''.format(SCREAMING_SNAKE_CASE ) ) delattr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) continue snake_case_ = p if hasattr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) else equivalent_param[p] setattr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , getattr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) ) delattr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) return hparams, config
267
import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, PNDMScheduler, StableDiffusionInpaintPipeline, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, slow from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class lowerCAmelCase_ ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ): '''simple docstring''' __snake_case = StableDiffusionInpaintPipeline __snake_case = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS __snake_case = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS __snake_case = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess __snake_case = frozenset([] ) def UpperCamelCase__ ( self ): torch.manual_seed(0 ) snake_case_ = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=9 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , attention_head_dim=(2, 4) , use_linear_projection=_UpperCAmelCase , ) snake_case_ = PNDMScheduler(skip_prk_steps=_UpperCAmelCase ) torch.manual_seed(0 ) snake_case_ = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , sample_size=1_28 , ) torch.manual_seed(0 ) snake_case_ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , hidden_act='''gelu''' , projection_dim=5_12 , ) snake_case_ = CLIPTextModel(_UpperCAmelCase ) snake_case_ = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) snake_case_ = { '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''safety_checker''': None, '''feature_extractor''': None, } return components def UpperCamelCase__ ( self , _UpperCAmelCase , _UpperCAmelCase=0 ): # TODO: use tensor inputs instead of PIL, this is here just to leave the old expected_slices untouched snake_case_ = floats_tensor((1, 3, 32, 32) , rng=random.Random(_UpperCAmelCase ) ).to(_UpperCAmelCase ) snake_case_ = image.cpu().permute(0 , 2 , 3 , 1 )[0] snake_case_ = Image.fromarray(np.uinta(_UpperCAmelCase ) ).convert('''RGB''' ).resize((64, 64) ) snake_case_ = Image.fromarray(np.uinta(image + 4 ) ).convert('''RGB''' ).resize((64, 64) ) if str(_UpperCAmelCase ).startswith('''mps''' ): snake_case_ = torch.manual_seed(_UpperCAmelCase ) else: snake_case_ = torch.Generator(device=_UpperCAmelCase ).manual_seed(_UpperCAmelCase ) snake_case_ = { '''prompt''': '''A painting of a squirrel eating a burger''', '''image''': init_image, '''mask_image''': mask_image, '''generator''': generator, '''num_inference_steps''': 2, '''guidance_scale''': 6.0, '''output_type''': '''numpy''', } return inputs def UpperCamelCase__ ( self ): snake_case_ = '''cpu''' # ensure determinism for the device-dependent torch.Generator snake_case_ = self.get_dummy_components() snake_case_ = StableDiffusionInpaintPipeline(**_UpperCAmelCase ) snake_case_ = sd_pipe.to(_UpperCAmelCase ) sd_pipe.set_progress_bar_config(disable=_UpperCAmelCase ) snake_case_ = self.get_dummy_inputs(_UpperCAmelCase ) snake_case_ = sd_pipe(**_UpperCAmelCase ).images snake_case_ = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) snake_case_ = np.array([0.4_727, 0.5_735, 0.3_941, 0.5_446, 0.5_926, 0.4_394, 0.5_062, 0.4_654, 0.4_476] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def UpperCamelCase__ ( self ): super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class lowerCAmelCase_ ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase__ ( self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase__ ( self ): snake_case_ = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/sd2-inpaint/init_image.png''' ) snake_case_ = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png''' ) snake_case_ = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint''' '''/yellow_cat_sitting_on_a_park_bench.npy''' ) snake_case_ = '''stabilityai/stable-diffusion-2-inpainting''' snake_case_ = StableDiffusionInpaintPipeline.from_pretrained(_UpperCAmelCase , safety_checker=_UpperCAmelCase ) pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) pipe.enable_attention_slicing() snake_case_ = '''Face of a yellow cat, high resolution, sitting on a park bench''' snake_case_ = torch.manual_seed(0 ) snake_case_ = pipe( prompt=_UpperCAmelCase , image=_UpperCAmelCase , mask_image=_UpperCAmelCase , generator=_UpperCAmelCase , output_type='''np''' , ) snake_case_ = output.images[0] assert image.shape == (5_12, 5_12, 3) assert np.abs(expected_image - image ).max() < 9E-3 def UpperCamelCase__ ( self ): snake_case_ = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/sd2-inpaint/init_image.png''' ) snake_case_ = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png''' ) snake_case_ = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint''' '''/yellow_cat_sitting_on_a_park_bench_fp16.npy''' ) snake_case_ = '''stabilityai/stable-diffusion-2-inpainting''' snake_case_ = StableDiffusionInpaintPipeline.from_pretrained( _UpperCAmelCase , torch_dtype=torch.floataa , safety_checker=_UpperCAmelCase , ) pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) pipe.enable_attention_slicing() snake_case_ = '''Face of a yellow cat, high resolution, sitting on a park bench''' snake_case_ = torch.manual_seed(0 ) snake_case_ = pipe( prompt=_UpperCAmelCase , image=_UpperCAmelCase , mask_image=_UpperCAmelCase , generator=_UpperCAmelCase , output_type='''np''' , ) snake_case_ = output.images[0] assert image.shape == (5_12, 5_12, 3) assert np.abs(expected_image - image ).max() < 5E-1 def UpperCamelCase__ ( self ): torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() snake_case_ = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/sd2-inpaint/init_image.png''' ) snake_case_ = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png''' ) snake_case_ = '''stabilityai/stable-diffusion-2-inpainting''' snake_case_ = PNDMScheduler.from_pretrained(_UpperCAmelCase , subfolder='''scheduler''' ) snake_case_ = StableDiffusionInpaintPipeline.from_pretrained( _UpperCAmelCase , safety_checker=_UpperCAmelCase , scheduler=_UpperCAmelCase , torch_dtype=torch.floataa , ) pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() snake_case_ = '''Face of a yellow cat, high resolution, sitting on a park bench''' snake_case_ = torch.manual_seed(0 ) snake_case_ = pipe( prompt=_UpperCAmelCase , image=_UpperCAmelCase , mask_image=_UpperCAmelCase , generator=_UpperCAmelCase , num_inference_steps=2 , output_type='''np''' , ) snake_case_ = torch.cuda.max_memory_allocated() # make sure that less than 2.65 GB is allocated assert mem_bytes < 2.65 * 10**9
267
1
import asyncio import os import re import sys import tempfile import unittest from contextlib import contextmanager from copy import deepcopy from distutils.util import strtobool from enum import Enum from importlib.util import find_spec from pathlib import Path from unittest.mock import patch import pyarrow as pa import pytest import requests from packaging import version from datasets import config if config.PY_VERSION < version.parse('''3.8'''): import importlib_metadata else: import importlib.metadata as importlib_metadata def lowercase_ ( _lowerCamelCase : Any , _lowerCamelCase : List[str]=False): try: lowercase__ : Union[str, Any] = os.environ[key] except KeyError: # KEY isn't set, default to `default`. lowercase__ : int = default else: # KEY is set, convert it to True or False. try: lowercase__ : Optional[int] = strtobool(_lowerCamelCase) except ValueError: # More values are supported, but let's keep the message simple. raise ValueError(f'''If set, {key} must be yes or no.''') return _value UpperCamelCase = parse_flag_from_env('''RUN_SLOW''', default=False) UpperCamelCase = parse_flag_from_env('''RUN_REMOTE''', default=False) UpperCamelCase = parse_flag_from_env('''RUN_LOCAL''', default=True) UpperCamelCase = parse_flag_from_env('''RUN_PACKAGED''', default=True) # Compression UpperCamelCase = pytest.mark.skipif(not config.LZ4_AVAILABLE, reason='''test requires lz4''') UpperCamelCase = pytest.mark.skipif(not config.PY7ZR_AVAILABLE, reason='''test requires py7zr''') UpperCamelCase = pytest.mark.skipif(not config.ZSTANDARD_AVAILABLE, reason='''test requires zstandard''') # Audio UpperCamelCase = pytest.mark.skipif( # On Windows and OS X, soundfile installs sndfile find_spec('''soundfile''') is None or version.parse(importlib_metadata.version('''soundfile''')) < version.parse('''0.12.0'''), reason='''test requires sndfile>=0.12.1: \'pip install \"soundfile>=0.12.1\"\'; ''', ) # Beam UpperCamelCase = pytest.mark.skipif( not config.BEAM_AVAILABLE or config.DILL_VERSION >= version.parse('''0.3.2'''), reason='''test requires apache-beam and a compatible dill version''', ) # Dill-cloudpickle compatibility UpperCamelCase = pytest.mark.skipif( config.DILL_VERSION <= version.parse('''0.3.2'''), reason='''test requires dill>0.3.2 for cloudpickle compatibility''', ) # Windows UpperCamelCase = pytest.mark.skipif( sys.platform == '''win32''', reason='''test should not be run on Windows''', ) def lowercase_ ( _lowerCamelCase : int): try: import faiss # noqa except ImportError: lowercase__ : Optional[Any] = unittest.skip("test requires faiss")(_lowerCamelCase) return test_case def lowercase_ ( _lowerCamelCase : int): try: import regex # noqa except ImportError: lowercase__ : List[Any] = unittest.skip("test requires regex")(_lowerCamelCase) return test_case def lowercase_ ( _lowerCamelCase : int): try: import elasticsearch # noqa except ImportError: lowercase__ : Optional[int] = unittest.skip("test requires elasticsearch")(_lowerCamelCase) return test_case def lowercase_ ( _lowerCamelCase : Union[str, Any]): try: import sqlalchemy # noqa except ImportError: lowercase__ : Optional[int] = unittest.skip("test requires sqlalchemy")(_lowerCamelCase) return test_case def lowercase_ ( _lowerCamelCase : int): if not config.TORCH_AVAILABLE: lowercase__ : Tuple = unittest.skip("test requires PyTorch")(_lowerCamelCase) return test_case def lowercase_ ( _lowerCamelCase : Tuple): if not config.TF_AVAILABLE: lowercase__ : Any = unittest.skip("test requires TensorFlow")(_lowerCamelCase) return test_case def lowercase_ ( _lowerCamelCase : Dict): if not config.JAX_AVAILABLE: lowercase__ : List[str] = unittest.skip("test requires JAX")(_lowerCamelCase) return test_case def lowercase_ ( _lowerCamelCase : int): if not config.PIL_AVAILABLE: lowercase__ : Dict = unittest.skip("test requires Pillow")(_lowerCamelCase) return test_case def lowercase_ ( _lowerCamelCase : Tuple): try: import transformers # noqa F401 except ImportError: return unittest.skip("test requires transformers")(_lowerCamelCase) else: return test_case def lowercase_ ( _lowerCamelCase : Optional[Any]): try: import tiktoken # noqa F401 except ImportError: return unittest.skip("test requires tiktoken")(_lowerCamelCase) else: return test_case def lowercase_ ( _lowerCamelCase : Dict): try: import spacy # noqa F401 except ImportError: return unittest.skip("test requires spacy")(_lowerCamelCase) else: return test_case def lowercase_ ( _lowerCamelCase : Optional[int]): def _require_spacy_model(_lowerCamelCase : Optional[int]): try: import spacy # noqa F401 spacy.load(_lowerCamelCase) except ImportError: return unittest.skip("test requires spacy")(_lowerCamelCase) except OSError: return unittest.skip("test requires spacy model '{}'".format(_lowerCamelCase))(_lowerCamelCase) else: return test_case return _require_spacy_model def lowercase_ ( _lowerCamelCase : Dict): try: import pyspark # noqa F401 except ImportError: return unittest.skip("test requires pyspark")(_lowerCamelCase) else: return test_case def lowercase_ ( _lowerCamelCase : List[str]): try: import joblibspark # noqa F401 except ImportError: return unittest.skip("test requires joblibspark")(_lowerCamelCase) else: return test_case def lowercase_ ( _lowerCamelCase : Dict): if not _run_slow_tests or _run_slow_tests == 0: lowercase__ : Tuple = unittest.skip("test is slow")(_lowerCamelCase) return test_case def lowercase_ ( _lowerCamelCase : int): if not _run_local_tests or _run_local_tests == 0: lowercase__ : str = unittest.skip("test is local")(_lowerCamelCase) return test_case def lowercase_ ( _lowerCamelCase : Optional[int]): if not _run_packaged_tests or _run_packaged_tests == 0: lowercase__ : List[Any] = unittest.skip("test is packaged")(_lowerCamelCase) return test_case def lowercase_ ( _lowerCamelCase : Tuple): if not _run_remote_tests or _run_remote_tests == 0: lowercase__ : Union[str, Any] = unittest.skip("test requires remote")(_lowerCamelCase) return test_case def lowercase_ ( *_lowerCamelCase : str): def decorate(cls : str): for name, fn in cls.__dict__.items(): if callable(_lowerCamelCase) and name.startswith("test"): for decorator in decorators: lowercase__ : Optional[int] = decorator(_lowerCamelCase) setattr(cls , _lowerCamelCase , _lowerCamelCase) return cls return decorate class snake_case_ ( __A ): pass class snake_case_ ( __A ): __A : List[Any] = 0 __A : str = 1 __A : int = 2 @contextmanager def lowercase_ ( _lowerCamelCase : List[str]=OfflineSimulationMode.CONNECTION_FAILS , _lowerCamelCase : int=1E-16): lowercase__ : int = requests.Session().request def timeout_request(_lowerCamelCase : str , _lowerCamelCase : Dict , _lowerCamelCase : Dict , **_lowerCamelCase : str): # Change the url to an invalid url so that the connection hangs lowercase__ : Any = "https://10.255.255.1" if kwargs.get("timeout") is None: raise RequestWouldHangIndefinitelyError( f'''Tried a call to {url} in offline mode with no timeout set. Please set a timeout.''') lowercase__ : Dict = timeout try: return online_request(_lowerCamelCase , _lowerCamelCase , **_lowerCamelCase) except Exception as e: # The following changes in the error are just here to make the offline timeout error prettier lowercase__ : Dict = url lowercase__ : Union[str, Any] = e.args[0] lowercase__ : Optional[Any] = (max_retry_error.args[0].replace("10.255.255.1" , f'''OfflineMock[{url}]'''),) lowercase__ : int = (max_retry_error,) raise def raise_connection_error(_lowerCamelCase : Union[str, Any] , _lowerCamelCase : Optional[Any] , **_lowerCamelCase : Tuple): raise requests.ConnectionError("Offline mode is enabled." , request=_lowerCamelCase) if mode is OfflineSimulationMode.CONNECTION_FAILS: with patch("requests.Session.send" , _lowerCamelCase): yield elif mode is OfflineSimulationMode.CONNECTION_TIMES_OUT: # inspired from https://stackoverflow.com/a/904609 with patch("requests.Session.request" , _lowerCamelCase): yield elif mode is OfflineSimulationMode.HF_DATASETS_OFFLINE_SET_TO_1: with patch("datasets.config.HF_DATASETS_OFFLINE" , _lowerCamelCase): yield else: raise ValueError("Please use a value from the OfflineSimulationMode enum.") @contextmanager def lowercase_ ( *_lowerCamelCase : str , **_lowerCamelCase : Tuple): lowercase__ : Dict = str(Path().resolve()) with tempfile.TemporaryDirectory(*_lowerCamelCase , **_lowerCamelCase) as tmp_dir: try: os.chdir(_lowerCamelCase) yield finally: os.chdir(_lowerCamelCase) @contextmanager def lowercase_ ( ): import gc gc.collect() lowercase__ : Union[str, Any] = pa.total_allocated_bytes() yield assert pa.total_allocated_bytes() - previous_allocated_memory > 0, "Arrow memory didn't increase." @contextmanager def lowercase_ ( ): import gc gc.collect() lowercase__ : int = pa.total_allocated_bytes() yield assert pa.total_allocated_bytes() - previous_allocated_memory <= 0, "Arrow memory wasn't expected to increase." def lowercase_ ( _lowerCamelCase : Optional[Any] , _lowerCamelCase : Optional[Any]): return deepcopy(_lowerCamelCase).integers(0 , 100 , 10).tolist() == deepcopy(_lowerCamelCase).integers(0 , 100 , 10).tolist() def lowercase_ ( _lowerCamelCase : str): import decorator from requests.exceptions import HTTPError def _wrapper(_lowerCamelCase : str , *_lowerCamelCase : Dict , **_lowerCamelCase : Dict): try: return func(*_lowerCamelCase , **_lowerCamelCase) except HTTPError as err: if str(_lowerCamelCase).startswith("500") or str(_lowerCamelCase).startswith("502"): pytest.xfail(str(_lowerCamelCase)) raise err return decorator.decorator(_wrapper , _lowerCamelCase) class snake_case_ : def __init__( self : int , lowercase_ : Union[str, Any] , lowercase_ : Dict , lowercase_ : List[str] ) -> List[str]: lowercase__ : Tuple = returncode lowercase__ : int = stdout lowercase__ : Union[str, Any] = stderr async def lowercase_ ( _lowerCamelCase : List[str] , _lowerCamelCase : Dict): while True: lowercase__ : Optional[int] = await stream.readline() if line: callback(_lowerCamelCase) else: break async def lowercase_ ( _lowerCamelCase : Optional[int] , _lowerCamelCase : Union[str, Any]=None , _lowerCamelCase : Optional[Any]=None , _lowerCamelCase : int=None , _lowerCamelCase : Optional[Any]=False , _lowerCamelCase : Tuple=False): if echo: print("\nRunning: " , " ".join(_lowerCamelCase)) lowercase__ : Optional[int] = await asyncio.create_subprocess_exec( cmd[0] , *cmd[1:] , stdin=_lowerCamelCase , stdout=asyncio.subprocess.PIPE , stderr=asyncio.subprocess.PIPE , env=_lowerCamelCase , ) # note: there is a warning for a possible deadlock when using `wait` with huge amounts of data in the pipe # https://docs.python.org/3/library/asyncio-subprocess.html#asyncio.asyncio.subprocess.Process.wait # # If it starts hanging, will need to switch to the following code. The problem is that no data # will be seen until it's done and if it hangs for example there will be no debug info. # out, err = await p.communicate() # return _RunOutput(p.returncode, out, err) lowercase__ : str = [] lowercase__ : List[str] = [] def tee(_lowerCamelCase : str , _lowerCamelCase : Optional[Any] , _lowerCamelCase : Union[str, Any] , _lowerCamelCase : Optional[int]=""): lowercase__ : Optional[int] = line.decode("utf-8").rstrip() sink.append(_lowerCamelCase) if not quiet: print(_lowerCamelCase , _lowerCamelCase , file=_lowerCamelCase) # XXX: the timeout doesn't seem to make any difference here await asyncio.wait( [ _read_stream(p.stdout , lambda _lowerCamelCase: tee(_lowerCamelCase , _lowerCamelCase , sys.stdout , label="stdout:")), _read_stream(p.stderr , lambda _lowerCamelCase: tee(_lowerCamelCase , _lowerCamelCase , sys.stderr , label="stderr:")), ] , timeout=_lowerCamelCase , ) return _RunOutput(await p.wait() , _lowerCamelCase , _lowerCamelCase) def lowercase_ ( _lowerCamelCase : Optional[int] , _lowerCamelCase : List[str]=None , _lowerCamelCase : Dict=None , _lowerCamelCase : int=180 , _lowerCamelCase : Union[str, Any]=False , _lowerCamelCase : Optional[Any]=True): lowercase__ : Any = asyncio.get_event_loop() lowercase__ : Tuple = loop.run_until_complete( _stream_subprocess(_lowerCamelCase , env=_lowerCamelCase , stdin=_lowerCamelCase , timeout=_lowerCamelCase , quiet=_lowerCamelCase , echo=_lowerCamelCase)) lowercase__ : int = " ".join(_lowerCamelCase) if result.returncode > 0: lowercase__ : Any = "\n".join(result.stderr) raise RuntimeError( f'''\'{cmd_str}\' failed with returncode {result.returncode}\n\n''' f'''The combined stderr from workers follows:\n{stderr}''') # check that the subprocess actually did run and produced some output, should the test rely on # the remote side to do the testing if not result.stdout and not result.stderr: raise RuntimeError(f'''\'{cmd_str}\' produced no output.''') return result def lowercase_ ( ): lowercase__ : List[str] = os.environ.get("PYTEST_XDIST_WORKER" , "gw0") lowercase__ : str = re.sub(R"^gw" , "" , _lowerCamelCase , 0 , re.M) return int(_lowerCamelCase) def lowercase_ ( ): lowercase__ : Union[str, Any] = 2_9500 lowercase__ : Optional[int] = pytest_xdist_worker_id() return port + uniq_delta
87
'''simple docstring''' import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import CLIPImageProcessor, CLIPProcessor @require_vision class SCREAMING_SNAKE_CASE (unittest.TestCase ): def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Optional[Any] = tempfile.mkdtemp() # fmt: off __A : Optional[int] = ['l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', 'lo', 'l</w>', 'w</w>', 'r</w>', 't</w>', 'low</w>', 'er</w>', 'lowest</w>', 'newer</w>', 'wider', '<unk>', '<|startoftext|>', '<|endoftext|>'] # fmt: on __A : Tuple = dict(zip(_UpperCAmelCase , range(len(_UpperCAmelCase)))) __A : Any = ['#version: 0.2', 'l o', 'lo w</w>', 'e r</w>', ''] __A : List[str] = {'unk_token': '<unk>'} __A : int = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file']) __A : Optional[int] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file']) with open(self.vocab_file , 'w' , encoding='utf-8') as fp: fp.write(json.dumps(_UpperCAmelCase) + '\n') with open(self.merges_file , 'w' , encoding='utf-8') as fp: fp.write('\n'.join(_UpperCAmelCase)) __A : str = { 'do_resize': True, 'size': 20, 'do_center_crop': True, 'crop_size': 18, 'do_normalize': True, 'image_mean': [0.48145466, 0.4578275, 0.40821073], 'image_std': [0.26862954, 0.26130258, 0.27577711], } __A : Union[str, Any] = os.path.join(self.tmpdirname , _UpperCAmelCase) with open(self.image_processor_file , 'w' , encoding='utf-8') as fp: json.dump(_UpperCAmelCase , _UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self , **_UpperCAmelCase): '''simple docstring''' return CLIPTokenizer.from_pretrained(self.tmpdirname , **_UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self , **_UpperCAmelCase): '''simple docstring''' return CLIPTokenizerFast.from_pretrained(self.tmpdirname , **_UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self , **_UpperCAmelCase): '''simple docstring''' return CLIPImageProcessor.from_pretrained(self.tmpdirname , **_UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' shutil.rmtree(self.tmpdirname) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Tuple = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta)] __A : Optional[int] = [Image.fromarray(np.moveaxis(_UpperCAmelCase , 0 , -1)) for x in image_inputs] return image_inputs def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : str = self.get_tokenizer() __A : int = self.get_rust_tokenizer() __A : Any = self.get_image_processor() __A : Union[str, Any] = CLIPProcessor(tokenizer=_UpperCAmelCase , image_processor=_UpperCAmelCase) processor_slow.save_pretrained(self.tmpdirname) __A : Dict = CLIPProcessor.from_pretrained(self.tmpdirname , use_fast=_UpperCAmelCase) __A : Union[str, Any] = CLIPProcessor(tokenizer=_UpperCAmelCase , image_processor=_UpperCAmelCase) processor_fast.save_pretrained(self.tmpdirname) __A : Union[str, Any] = CLIPProcessor.from_pretrained(self.tmpdirname) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab()) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab()) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab()) self.assertIsInstance(processor_slow.tokenizer , _UpperCAmelCase) self.assertIsInstance(processor_fast.tokenizer , _UpperCAmelCase) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string()) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string()) self.assertIsInstance(processor_slow.image_processor , _UpperCAmelCase) self.assertIsInstance(processor_fast.image_processor , _UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Dict = CLIPProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor()) processor.save_pretrained(self.tmpdirname) __A : Dict = self.get_tokenizer(bos_token='(BOS)' , eos_token='(EOS)') __A : Any = self.get_image_processor(do_normalize=_UpperCAmelCase , padding_value=1.0) __A : Tuple = CLIPProcessor.from_pretrained( self.tmpdirname , bos_token='(BOS)' , eos_token='(EOS)' , do_normalize=_UpperCAmelCase , padding_value=1.0) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab()) self.assertIsInstance(processor.tokenizer , _UpperCAmelCase) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string()) self.assertIsInstance(processor.image_processor , _UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Optional[int] = self.get_image_processor() __A : List[Any] = self.get_tokenizer() __A : List[Any] = CLIPProcessor(tokenizer=_UpperCAmelCase , image_processor=_UpperCAmelCase) __A : List[str] = self.prepare_image_inputs() __A : Dict = image_processor(_UpperCAmelCase , return_tensors='np') __A : str = processor(images=_UpperCAmelCase , return_tensors='np') for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1e-2) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : List[Any] = self.get_image_processor() __A : List[str] = self.get_tokenizer() __A : Optional[Any] = CLIPProcessor(tokenizer=_UpperCAmelCase , image_processor=_UpperCAmelCase) __A : Dict = 'lower newer' __A : List[Any] = processor(text=_UpperCAmelCase) __A : Optional[int] = tokenizer(_UpperCAmelCase) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key]) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Dict = self.get_image_processor() __A : Optional[int] = self.get_tokenizer() __A : Optional[Any] = CLIPProcessor(tokenizer=_UpperCAmelCase , image_processor=_UpperCAmelCase) __A : int = 'lower newer' __A : Any = self.prepare_image_inputs() __A : Tuple = processor(text=_UpperCAmelCase , images=_UpperCAmelCase) self.assertListEqual(list(inputs.keys()) , ['input_ids', 'attention_mask', 'pixel_values']) # test if it raises when no input is passed with pytest.raises(_UpperCAmelCase): processor() def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Any = self.get_image_processor() __A : str = self.get_tokenizer() __A : Optional[Any] = CLIPProcessor(tokenizer=_UpperCAmelCase , image_processor=_UpperCAmelCase) __A : Dict = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] __A : str = processor.batch_decode(_UpperCAmelCase) __A : Optional[Any] = tokenizer.batch_decode(_UpperCAmelCase) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Optional[int] = self.get_image_processor() __A : int = self.get_tokenizer() __A : Any = CLIPProcessor(tokenizer=_UpperCAmelCase , image_processor=_UpperCAmelCase) __A : Any = 'lower newer' __A : Any = self.prepare_image_inputs() __A : Any = processor(text=_UpperCAmelCase , images=_UpperCAmelCase) self.assertListEqual(list(inputs.keys()) , processor.model_input_names)
190
0
"""simple docstring""" import os import tempfile import unittest import numpy as np from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import require_flax, slow if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard from diffusers import FlaxDDIMScheduler, FlaxDiffusionPipeline, FlaxStableDiffusionPipeline @require_flax class lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def __A ( self ) -> Tuple: with tempfile.TemporaryDirectory() as tmpdirname: # pipeline has Flax weights SCREAMING_SNAKE_CASE = FlaxDiffusionPipeline.from_pretrained( 'hf-internal-testing/tiny-stable-diffusion-pipe' , safety_checker=lowerCAmelCase__ , cache_dir=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = [t[-1] for t in os.walk(os.path.join(lowerCAmelCase__ , os.listdir(lowerCAmelCase__ )[0] , 'snapshots' ) )] SCREAMING_SNAKE_CASE = [item for sublist in all_root_files for item in sublist] # None of the downloaded files should be a PyTorch file even if we have some here: # https://huggingface.co/hf-internal-testing/tiny-stable-diffusion-pipe/blob/main/unet/diffusion_pytorch_model.bin assert not any(f.endswith('.bin' ) for f in files ) @slow @require_flax class lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def __A ( self ) -> Union[str, Any]: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = FlaxStableDiffusionPipeline.from_pretrained( 'hf-internal-testing/tiny-stable-diffusion-pipe' , safety_checker=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) SCREAMING_SNAKE_CASE = jax.random.PRNGKey(0 ) SCREAMING_SNAKE_CASE = 4 SCREAMING_SNAKE_CASE = jax.device_count() SCREAMING_SNAKE_CASE = num_samples * [prompt] SCREAMING_SNAKE_CASE = pipeline.prepare_inputs(lowerCAmelCase__ ) # shard inputs and rng SCREAMING_SNAKE_CASE = replicate(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = jax.random.split(lowerCAmelCase__ , lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = shard(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = pipeline(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , jit=lowerCAmelCase__ ).images assert images.shape == (num_samples, 1, 64, 64, 3) if jax.device_count() == 8: assert np.abs(np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 4.1_51_47_45 ) < 1e-3 assert np.abs(np.abs(lowerCAmelCase__ , dtype=np.floataa ).sum() - 4_99_47.8_75 ) < 5e-1 SCREAMING_SNAKE_CASE = pipeline.numpy_to_pil(np.asarray(images.reshape((num_samples,) + images.shape[-3:] ) ) ) assert len(lowerCAmelCase__ ) == num_samples def __A ( self ) -> List[Any]: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' , revision='flax' , safety_checker=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) SCREAMING_SNAKE_CASE = jax.random.PRNGKey(0 ) SCREAMING_SNAKE_CASE = 50 SCREAMING_SNAKE_CASE = jax.device_count() SCREAMING_SNAKE_CASE = num_samples * [prompt] SCREAMING_SNAKE_CASE = pipeline.prepare_inputs(lowerCAmelCase__ ) # shard inputs and rng SCREAMING_SNAKE_CASE = replicate(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = jax.random.split(lowerCAmelCase__ , lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = shard(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = pipeline(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , jit=lowerCAmelCase__ ).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.05_65_24_01) ) < 1e-3 assert np.abs((np.abs(lowerCAmelCase__ , dtype=np.floataa ).sum() - 2_38_38_08.2) ) < 5e-1 def __A ( self ) -> Union[str, Any]: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' , revision='bf16' , dtype=jnp.bfloataa , safety_checker=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) SCREAMING_SNAKE_CASE = jax.random.PRNGKey(0 ) SCREAMING_SNAKE_CASE = 50 SCREAMING_SNAKE_CASE = jax.device_count() SCREAMING_SNAKE_CASE = num_samples * [prompt] SCREAMING_SNAKE_CASE = pipeline.prepare_inputs(lowerCAmelCase__ ) # shard inputs and rng SCREAMING_SNAKE_CASE = replicate(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = jax.random.split(lowerCAmelCase__ , lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = shard(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = pipeline(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , jit=lowerCAmelCase__ ).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.04_00_39_06) ) < 1e-3 assert np.abs((np.abs(lowerCAmelCase__ , dtype=np.floataa ).sum() - 2_37_35_16.75) ) < 5e-1 def __A ( self ) -> List[str]: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' , revision='bf16' , dtype=jnp.bfloataa ) SCREAMING_SNAKE_CASE = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) SCREAMING_SNAKE_CASE = jax.random.PRNGKey(0 ) SCREAMING_SNAKE_CASE = 50 SCREAMING_SNAKE_CASE = jax.device_count() SCREAMING_SNAKE_CASE = num_samples * [prompt] SCREAMING_SNAKE_CASE = pipeline.prepare_inputs(lowerCAmelCase__ ) # shard inputs and rng SCREAMING_SNAKE_CASE = replicate(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = jax.random.split(lowerCAmelCase__ , lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = shard(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = pipeline(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , jit=lowerCAmelCase__ ).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.04_00_39_06) ) < 1e-3 assert np.abs((np.abs(lowerCAmelCase__ , dtype=np.floataa ).sum() - 2_37_35_16.75) ) < 5e-1 def __A ( self ) -> Dict: SCREAMING_SNAKE_CASE = FlaxDDIMScheduler( beta_start=0.0_00_85 , beta_end=0.0_12 , beta_schedule='scaled_linear' , set_alpha_to_one=lowerCAmelCase__ , steps_offset=1 , ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' , revision='bf16' , dtype=jnp.bfloataa , scheduler=lowerCAmelCase__ , safety_checker=lowerCAmelCase__ , ) SCREAMING_SNAKE_CASE = scheduler.create_state() SCREAMING_SNAKE_CASE = scheduler_state SCREAMING_SNAKE_CASE = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) SCREAMING_SNAKE_CASE = jax.random.PRNGKey(0 ) SCREAMING_SNAKE_CASE = 50 SCREAMING_SNAKE_CASE = jax.device_count() SCREAMING_SNAKE_CASE = num_samples * [prompt] SCREAMING_SNAKE_CASE = pipeline.prepare_inputs(lowerCAmelCase__ ) # shard inputs and rng SCREAMING_SNAKE_CASE = replicate(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = jax.random.split(lowerCAmelCase__ , lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = shard(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = pipeline(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , jit=lowerCAmelCase__ ).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.0_45_04_39_45) ) < 1e-3 assert np.abs((np.abs(lowerCAmelCase__ , dtype=np.floataa ).sum() - 2_34_76_93.5) ) < 5e-1 def __A ( self ) -> List[str]: SCREAMING_SNAKE_CASE = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) SCREAMING_SNAKE_CASE = jax.device_count() SCREAMING_SNAKE_CASE = num_samples * [prompt] SCREAMING_SNAKE_CASE = jax.random.split(jax.random.PRNGKey(0 ) , lowerCAmelCase__ ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' , revision='bf16' , dtype=jnp.bfloataa , safety_checker=lowerCAmelCase__ , ) SCREAMING_SNAKE_CASE = replicate(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = pipeline.prepare_inputs(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = shard(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = pipeline(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , jit=lowerCAmelCase__ ).images assert images.shape == (num_samples, 1, 512, 512, 3) SCREAMING_SNAKE_CASE = images[2, 0, 256, 10:17, 1] # With memory efficient attention SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' , revision='bf16' , dtype=jnp.bfloataa , safety_checker=lowerCAmelCase__ , use_memory_efficient_attention=lowerCAmelCase__ , ) SCREAMING_SNAKE_CASE = replicate(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = pipeline.prepare_inputs(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = shard(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = pipeline(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , jit=lowerCAmelCase__ ).images assert images_eff.shape == (num_samples, 1, 512, 512, 3) SCREAMING_SNAKE_CASE = images[2, 0, 256, 10:17, 1] # I checked the results visually and they are very similar. However, I saw that the max diff is `1` and the `sum` # over the 8 images is exactly `256`, which is very suspicious. Testing a random slice for now. assert abs(slice_eff - slice ).max() < 1e-2
38
"""simple docstring""" class lowerCAmelCase : '''simple docstring''' def __init__( self , lowerCAmelCase__ ) -> None: SCREAMING_SNAKE_CASE = size SCREAMING_SNAKE_CASE = [0] * size SCREAMING_SNAKE_CASE = [0] * size @staticmethod def __A ( lowerCAmelCase__ ) -> int: return index | (index + 1) @staticmethod def __A ( lowerCAmelCase__ ) -> int: return (index & (index + 1)) - 1 def __A ( self , lowerCAmelCase__ , lowerCAmelCase__ ) -> None: SCREAMING_SNAKE_CASE = value while index < self.size: SCREAMING_SNAKE_CASE = self.get_prev(lowerCAmelCase__ ) + 1 if current_left_border == index: SCREAMING_SNAKE_CASE = value else: SCREAMING_SNAKE_CASE = max(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = self.get_next(lowerCAmelCase__ ) def __A ( self , lowerCAmelCase__ , lowerCAmelCase__ ) -> int: right -= 1 # Because of right is exclusive SCREAMING_SNAKE_CASE = 0 while left <= right: SCREAMING_SNAKE_CASE = self.get_prev(lowerCAmelCase__ ) if left <= current_left: SCREAMING_SNAKE_CASE = max(lowerCAmelCase__ , self.tree[right] ) SCREAMING_SNAKE_CASE = current_left else: SCREAMING_SNAKE_CASE = max(lowerCAmelCase__ , self.arr[right] ) right -= 1 return result if __name__ == "__main__": import doctest doctest.testmod()
38
1
"""simple docstring""" def UpperCAmelCase__ (lowerCAmelCase_ , lowerCAmelCase_ ): '''simple docstring''' return (pointa[0] - pointa[0]) ** 2 + (pointa[1] - pointa[1]) ** 2 def UpperCAmelCase__ (lowerCAmelCase_ , lowerCAmelCase_=0 ): '''simple docstring''' return sorted(lowerCAmelCase_ , key=lambda lowerCAmelCase_ : x[column] ) def UpperCAmelCase__ (lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_=float("inf" ) ): '''simple docstring''' for i in range(points_counts - 1 ): for j in range(i + 1 , lowerCAmelCase_ ): __SCREAMING_SNAKE_CASE = euclidean_distance_sqr(points[i] , points[j] ) if current_dis < min_dis: __SCREAMING_SNAKE_CASE = current_dis return min_dis def UpperCAmelCase__ (lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_=float("inf" ) ): '''simple docstring''' for i in range(min(6 , points_counts - 1 ) , lowerCAmelCase_ ): for j in range(max(0 , i - 6 ) , lowerCAmelCase_ ): __SCREAMING_SNAKE_CASE = euclidean_distance_sqr(points[i] , points[j] ) if current_dis < min_dis: __SCREAMING_SNAKE_CASE = current_dis return min_dis def UpperCAmelCase__ (lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): '''simple docstring''' if points_counts <= 3: return dis_between_closest_pair(lowerCAmelCase_ , lowerCAmelCase_ ) # recursion __SCREAMING_SNAKE_CASE = points_counts // 2 __SCREAMING_SNAKE_CASE = closest_pair_of_points_sqr( lowerCAmelCase_ , points_sorted_on_y[:mid] , lowerCAmelCase_ ) __SCREAMING_SNAKE_CASE = closest_pair_of_points_sqr( lowerCAmelCase_ , points_sorted_on_y[mid:] , points_counts - mid ) __SCREAMING_SNAKE_CASE = min(lowerCAmelCase_ , lowerCAmelCase_ ) __SCREAMING_SNAKE_CASE = [] for point in points_sorted_on_x: if abs(point[0] - points_sorted_on_x[mid][0] ) < closest_pair_dis: cross_strip.append(lowerCAmelCase_ ) __SCREAMING_SNAKE_CASE = dis_between_closest_in_strip( lowerCAmelCase_ , len(lowerCAmelCase_ ) , lowerCAmelCase_ ) return min(lowerCAmelCase_ , lowerCAmelCase_ ) def UpperCAmelCase__ (lowerCAmelCase_ , lowerCAmelCase_ ): '''simple docstring''' __SCREAMING_SNAKE_CASE = column_based_sort(lowerCAmelCase_ , column=0 ) __SCREAMING_SNAKE_CASE = column_based_sort(lowerCAmelCase_ , column=1 ) return ( closest_pair_of_points_sqr( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) ) ** 0.5 if __name__ == "__main__": a__ : List[str] = [(2, 3), (1_2, 3_0), (4_0, 5_0), (5, 1), (1_2, 1_0), (3, 4)] print('''Distance:''', closest_pair_of_points(points, len(points)))
54
"""simple docstring""" def UpperCAmelCase__ (lowerCAmelCase_ ): '''simple docstring''' if upper_limit < 0: raise ValueError("Limit for the Catalan sequence must be ≥ 0" ) __SCREAMING_SNAKE_CASE = [0] * (upper_limit + 1) # Base case: C(0) = C(1) = 1 __SCREAMING_SNAKE_CASE = 1 if upper_limit > 0: __SCREAMING_SNAKE_CASE = 1 # Recurrence relation: C(i) = sum(C(j).C(i-j-1)), from j = 0 to i for i in range(2 , upper_limit + 1 ): for j in range(lowerCAmelCase_ ): catalan_list[i] += catalan_list[j] * catalan_list[i - j - 1] return catalan_list if __name__ == "__main__": print('''\n********* Catalan Numbers Using Dynamic Programming ************\n''') print('''\n*** Enter -1 at any time to quit ***''') print('''\nEnter the upper limit (≥ 0) for the Catalan number sequence: ''', end='''''') try: while True: a__ : List[str] = int(input().strip()) if N < 0: print('''\n********* Goodbye!! ************''') break else: print(F"The Catalan numbers from 0 through {N} are:") print(catalan_numbers(N)) print('''Try another upper limit for the sequence: ''', end='''''') except (NameError, ValueError): print('''\n********* Invalid input, goodbye! ************\n''') import doctest doctest.testmod()
54
1
"""simple docstring""" import logging import os import sys from dataclasses import dataclass, field from typing import Optional from seqaseq_trainer import SeqaSeqTrainer from seqaseq_training_args import SeqaSeqTrainingArguments import transformers from transformers import ( AutoConfig, AutoModelForSeqaSeqLM, AutoTokenizer, HfArgumentParser, MBartTokenizer, MBartTokenizerFast, set_seed, ) from transformers.trainer_utils import EvaluationStrategy, is_main_process from transformers.training_args import ParallelMode from utils import ( SeqaSeqDataCollator, SeqaSeqDataset, assert_all_frozen, build_compute_metrics_fn, check_output_dir, freeze_embeds, freeze_params, lmap, save_json, use_task_specific_params, write_txt_file, ) UpperCAmelCase: Any = logging.getLogger(__name__) @dataclass class UpperCamelCase : """simple docstring""" SCREAMING_SNAKE_CASE_ : str = field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) SCREAMING_SNAKE_CASE_ : Optional[str] = field( default=snake_case , metadata={"help": "Pretrained config name or path if not the same as model_name"} ) SCREAMING_SNAKE_CASE_ : Optional[str] = field( default=snake_case , metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) SCREAMING_SNAKE_CASE_ : Optional[str] = field( default=snake_case , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , ) SCREAMING_SNAKE_CASE_ : bool = field(default=snake_case , metadata={"help": "Whether tp freeze the encoder."} ) SCREAMING_SNAKE_CASE_ : bool = field(default=snake_case , metadata={"help": "Whether to freeze the embeddings."} ) @dataclass class UpperCamelCase : """simple docstring""" SCREAMING_SNAKE_CASE_ : str = field( metadata={"help": "The input data dir. Should contain the .tsv files (or other data files) for the task."} ) SCREAMING_SNAKE_CASE_ : Optional[str] = field( default="summarization" , metadata={"help": "Task name, summarization (or summarization_{dataset} for pegasus) or translation"} , ) SCREAMING_SNAKE_CASE_ : Optional[int] = field( default=1_0_2_4 , metadata={ "help": ( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) } , ) SCREAMING_SNAKE_CASE_ : Optional[int] = field( default=1_2_8 , metadata={ "help": ( "The maximum total sequence length for target text after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) } , ) SCREAMING_SNAKE_CASE_ : Optional[int] = field( default=1_4_2 , metadata={ "help": ( "The maximum total sequence length for validation target text after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded. " "This argument is also used to override the ``max_length`` param of ``model.generate``, which is used " "during ``evaluate`` and ``predict``." ) } , ) SCREAMING_SNAKE_CASE_ : Optional[int] = field( default=1_4_2 , metadata={ "help": ( "The maximum total sequence length for test target text after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) } , ) SCREAMING_SNAKE_CASE_ : Optional[int] = field(default=-1 , metadata={"help": "# training examples. -1 means use all."} ) SCREAMING_SNAKE_CASE_ : Optional[int] = field(default=-1 , metadata={"help": "# validation examples. -1 means use all."} ) SCREAMING_SNAKE_CASE_ : Optional[int] = field(default=-1 , metadata={"help": "# test examples. -1 means use all."} ) SCREAMING_SNAKE_CASE_ : Optional[str] = field(default=snake_case , metadata={"help": "Source language id for translation."} ) SCREAMING_SNAKE_CASE_ : Optional[str] = field(default=snake_case , metadata={"help": "Target language id for translation."} ) SCREAMING_SNAKE_CASE_ : Optional[int] = field(default=snake_case , metadata={"help": "# num_beams to use for evaluation."} ) SCREAMING_SNAKE_CASE_ : bool = field( default=snake_case , metadata={"help": "If only pad tokens should be ignored. This assumes that `config.pad_token_id` is defined."} , ) def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): logger.info(F"""***** {split} metrics *****""" ) for key in sorted(metrics.keys() ): logger.info(F""" {key} = {metrics[key]}""" ) save_json(__UpperCAmelCase , os.path.join(__UpperCAmelCase , F"""{split}_results.json""" ) ) def __SCREAMING_SNAKE_CASE ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. _lowercase : Any = HfArgumentParser((ModelArguments, DataTrainingArguments, SeqaSeqTrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(""".json""" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. _lowercase , _lowercase , _lowercase : int = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: _lowercase , _lowercase , _lowercase : Optional[int] = parser.parse_args_into_dataclasses() check_output_dir(__UpperCAmelCase ) # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( """Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s""" , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.parallel_mode == ParallelMode.DISTRIBUTED ) , training_args.fpaa , ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() logger.info("""Training/evaluation parameters %s""" , __UpperCAmelCase ) # Set seed set_seed(training_args.seed ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. _lowercase : List[str] = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) _lowercase : Tuple = ("""encoder_layerdrop""", """decoder_layerdrop""", """dropout""", """attention_dropout""") for p in extra_model_params: if getattr(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): assert hasattr(__UpperCAmelCase , __UpperCAmelCase ), F"""({config.__class__.__name__}) doesn't have a `{p}` attribute""" setattr(__UpperCAmelCase , __UpperCAmelCase , getattr(__UpperCAmelCase , __UpperCAmelCase ) ) _lowercase : Optional[int] = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) _lowercase : Dict = AutoModelForSeqaSeqLM.from_pretrained( model_args.model_name_or_path , from_tf=""".ckpt""" in model_args.model_name_or_path , config=__UpperCAmelCase , cache_dir=model_args.cache_dir , ) # use task specific params use_task_specific_params(__UpperCAmelCase , data_args.task ) # set num_beams for evaluation if data_args.eval_beams is None: _lowercase : Dict = model.config.num_beams # set decoder_start_token_id for MBart if model.config.decoder_start_token_id is None and isinstance(__UpperCAmelCase , (MBartTokenizer, MBartTokenizerFast) ): assert ( data_args.tgt_lang is not None and data_args.src_lang is not None ), "mBart requires --tgt_lang and --src_lang" if isinstance(__UpperCAmelCase , __UpperCAmelCase ): _lowercase : Optional[Any] = tokenizer.lang_code_to_id[data_args.tgt_lang] else: _lowercase : Dict = tokenizer.convert_tokens_to_ids(data_args.tgt_lang ) if model_args.freeze_embeds: freeze_embeds(__UpperCAmelCase ) if model_args.freeze_encoder: freeze_params(model.get_encoder() ) assert_all_frozen(model.get_encoder() ) _lowercase : Optional[int] = SeqaSeqDataset # Get datasets _lowercase : int = ( dataset_class( __UpperCAmelCase , type_path="""train""" , data_dir=data_args.data_dir , n_obs=data_args.n_train , max_target_length=data_args.max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or """""" , ) if training_args.do_train else None ) _lowercase : int = ( dataset_class( __UpperCAmelCase , type_path="""val""" , data_dir=data_args.data_dir , n_obs=data_args.n_val , max_target_length=data_args.val_max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or """""" , ) if training_args.do_eval or training_args.evaluation_strategy != EvaluationStrategy.NO else None ) _lowercase : Tuple = ( dataset_class( __UpperCAmelCase , type_path="""test""" , data_dir=data_args.data_dir , n_obs=data_args.n_test , max_target_length=data_args.test_max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or """""" , ) if training_args.do_predict else None ) # Initialize our Trainer _lowercase : List[Any] = ( build_compute_metrics_fn(data_args.task , __UpperCAmelCase ) if training_args.predict_with_generate else None ) _lowercase : Tuple = SeqaSeqTrainer( model=__UpperCAmelCase , args=__UpperCAmelCase , data_args=__UpperCAmelCase , train_dataset=__UpperCAmelCase , eval_dataset=__UpperCAmelCase , data_collator=SeqaSeqDataCollator( __UpperCAmelCase , __UpperCAmelCase , model.config.decoder_start_token_id , training_args.tpu_num_cores ) , compute_metrics=__UpperCAmelCase , tokenizer=__UpperCAmelCase , ) _lowercase : int = {} # Training if training_args.do_train: logger.info("""*** Train ***""" ) _lowercase : Any = trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) _lowercase : Optional[int] = train_result.metrics _lowercase : Tuple = data_args.n_train trainer.save_model() # this also saves the tokenizer if trainer.is_world_process_zero(): handle_metrics("""train""" , __UpperCAmelCase , training_args.output_dir ) all_metrics.update(__UpperCAmelCase ) # Need to save the state, since Trainer.save_model saves only the tokenizer with the model trainer.state.save_to_json(os.path.join(training_args.output_dir , """trainer_state.json""" ) ) # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) tokenizer.save_pretrained(training_args.output_dir ) # Evaluation if training_args.do_eval: logger.info("""*** Evaluate ***""" ) _lowercase : List[Any] = trainer.evaluate(metric_key_prefix="""val""" ) _lowercase : Any = data_args.n_val _lowercase : Any = round(metrics["""val_loss"""] , 4 ) if trainer.is_world_process_zero(): handle_metrics("""val""" , __UpperCAmelCase , training_args.output_dir ) all_metrics.update(__UpperCAmelCase ) if training_args.do_predict: logger.info("""*** Predict ***""" ) _lowercase : Any = trainer.predict(test_dataset=__UpperCAmelCase , metric_key_prefix="""test""" ) _lowercase : int = test_output.metrics _lowercase : Optional[int] = data_args.n_test if trainer.is_world_process_zero(): _lowercase : Union[str, Any] = round(metrics["""test_loss"""] , 4 ) handle_metrics("""test""" , __UpperCAmelCase , training_args.output_dir ) all_metrics.update(__UpperCAmelCase ) if training_args.predict_with_generate: _lowercase : Any = tokenizer.batch_decode( test_output.predictions , skip_special_tokens=__UpperCAmelCase , clean_up_tokenization_spaces=__UpperCAmelCase ) _lowercase : Any = lmap(str.strip , __UpperCAmelCase ) write_txt_file(__UpperCAmelCase , os.path.join(training_args.output_dir , """test_generations.txt""" ) ) if trainer.is_world_process_zero(): save_json(__UpperCAmelCase , os.path.join(training_args.output_dir , """all_results.json""" ) ) return all_metrics def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase ): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
336
"""simple docstring""" from ....configuration_utils import PretrainedConfig from ....utils import logging UpperCAmelCase: Tuple = logging.get_logger(__name__) UpperCAmelCase: List[Any] = { """CarlCochet/trajectory-transformer-halfcheetah-medium-v2""": ( """https://huggingface.co/CarlCochet/trajectory-transformer-halfcheetah-medium-v2/resolve/main/config.json""" ), # See all TrajectoryTransformer models at https://huggingface.co/models?filter=trajectory_transformer } class UpperCamelCase ( snake_case ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = "trajectory_transformer" SCREAMING_SNAKE_CASE_ : Optional[int] = ["past_key_values"] SCREAMING_SNAKE_CASE_ : Tuple = { "hidden_size": "n_embd", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self ,UpperCAmelCase_=1_00 ,UpperCAmelCase_=5 ,UpperCAmelCase_=1 ,UpperCAmelCase_=1 ,UpperCAmelCase_=2_49 ,UpperCAmelCase_=6 ,UpperCAmelCase_=17 ,UpperCAmelCase_=25 ,UpperCAmelCase_=4 ,UpperCAmelCase_=4 ,UpperCAmelCase_=1_28 ,UpperCAmelCase_=0.1 ,UpperCAmelCase_=0.1 ,UpperCAmelCase_=0.1 ,UpperCAmelCase_=0.0006 ,UpperCAmelCase_=5_12 ,UpperCAmelCase_=0.02 ,UpperCAmelCase_=1E-12 ,UpperCAmelCase_=1 ,UpperCAmelCase_=True ,UpperCAmelCase_=1 ,UpperCAmelCase_=5_02_56 ,UpperCAmelCase_=5_02_56 ,**UpperCAmelCase_ ,): _lowercase : Dict = vocab_size _lowercase : List[str] = action_weight _lowercase : int = reward_weight _lowercase : List[Any] = value_weight _lowercase : List[str] = max_position_embeddings _lowercase : Any = block_size _lowercase : Any = action_dim _lowercase : List[str] = observation_dim _lowercase : Union[str, Any] = transition_dim _lowercase : str = learning_rate _lowercase : Tuple = n_layer _lowercase : Optional[int] = n_head _lowercase : List[str] = n_embd _lowercase : List[str] = embd_pdrop _lowercase : Optional[Any] = attn_pdrop _lowercase : List[Any] = resid_pdrop _lowercase : str = initializer_range _lowercase : Optional[Any] = layer_norm_eps _lowercase : List[Any] = kaiming_initializer_range _lowercase : List[Any] = use_cache super().__init__(pad_token_id=UpperCAmelCase_ ,bos_token_id=UpperCAmelCase_ ,eos_token_id=UpperCAmelCase_ ,**UpperCAmelCase_ )
336
1
import os import zipfile import pytest from datasets.utils.extract import ( BzipaExtractor, Extractor, GzipExtractor, LzaExtractor, SevenZipExtractor, TarExtractor, XzExtractor, ZipExtractor, ZstdExtractor, ) from .utils import require_lza, require_pyazr, require_zstandard @pytest.mark.parametrize( '''compression_format, is_archive''' , [ ('''7z''', True), ('''bz2''', False), ('''gzip''', False), ('''lz4''', False), ('''tar''', True), ('''xz''', False), ('''zip''', True), ('''zstd''', False), ] , ) def _a ( SCREAMING_SNAKE_CASE : Union[str, Any] , SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : Union[str, Any] , SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : List[str] , ): """simple docstring""" UpperCamelCase__ : List[Any] = { '''7z''': (seven_zip_file, SevenZipExtractor), '''bz2''': (bza_file, BzipaExtractor), '''gzip''': (gz_file, GzipExtractor), '''lz4''': (lza_file, LzaExtractor), '''tar''': (tar_file, TarExtractor), '''xz''': (xz_file, XzExtractor), '''zip''': (zip_file, ZipExtractor), '''zstd''': (zstd_file, ZstdExtractor), } UpperCamelCase__ , UpperCamelCase__ : Optional[int] = input_paths_and_base_extractors[compression_format] if input_path is None: UpperCamelCase__ : List[Any] = F"for '{compression_format}' compression_format, " if compression_format == "7z": reason += require_pyazr.kwargs["reason"] elif compression_format == "lz4": reason += require_lza.kwargs["reason"] elif compression_format == "zstd": reason += require_zstandard.kwargs["reason"] pytest.skip(SCREAMING_SNAKE_CASE ) assert base_extractor.is_extractable(SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Union[str, Any] = tmp_path / ('''extracted''' if is_archive else '''extracted.txt''') base_extractor.extract(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if is_archive: assert output_path.is_dir() for file_path in output_path.iterdir(): assert file_path.name == text_file.name UpperCamelCase__ : Optional[Any] = file_path.read_text(encoding='''utf-8''' ) else: UpperCamelCase__ : Optional[int] = output_path.read_text(encoding='''utf-8''' ) UpperCamelCase__ : List[str] = text_file.read_text(encoding='''utf-8''' ) assert extracted_file_content == expected_file_content @pytest.mark.parametrize( '''compression_format, is_archive''' , [ ('''7z''', True), ('''bz2''', False), ('''gzip''', False), ('''lz4''', False), ('''tar''', True), ('''xz''', False), ('''zip''', True), ('''zstd''', False), ] , ) def _a ( SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : Union[str, Any] , SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : Dict , ): """simple docstring""" UpperCamelCase__ : Optional[int] = { '''7z''': seven_zip_file, '''bz2''': bza_file, '''gzip''': gz_file, '''lz4''': lza_file, '''tar''': tar_file, '''xz''': xz_file, '''zip''': zip_file, '''zstd''': zstd_file, } UpperCamelCase__ : Optional[Any] = input_paths[compression_format] if input_path is None: UpperCamelCase__ : Tuple = F"for '{compression_format}' compression_format, " if compression_format == "7z": reason += require_pyazr.kwargs["reason"] elif compression_format == "lz4": reason += require_lza.kwargs["reason"] elif compression_format == "zstd": reason += require_zstandard.kwargs["reason"] pytest.skip(SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Union[str, Any] = Extractor.infer_extractor_format(SCREAMING_SNAKE_CASE ) assert extractor_format is not None UpperCamelCase__ : Tuple = tmp_path / ('''extracted''' if is_archive else '''extracted.txt''') Extractor.extract(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if is_archive: assert output_path.is_dir() for file_path in output_path.iterdir(): assert file_path.name == text_file.name UpperCamelCase__ : Union[str, Any] = file_path.read_text(encoding='''utf-8''' ) else: UpperCamelCase__ : str = output_path.read_text(encoding='''utf-8''' ) UpperCamelCase__ : Any = text_file.read_text(encoding='''utf-8''' ) assert extracted_file_content == expected_file_content @pytest.fixture def _a ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : Any ): """simple docstring""" import tarfile UpperCamelCase__ : str = tmp_path / '''data_dot_dot''' directory.mkdir() UpperCamelCase__ : Any = directory / '''tar_file_with_dot_dot.tar''' with tarfile.TarFile(SCREAMING_SNAKE_CASE , '''w''' ) as f: f.add(SCREAMING_SNAKE_CASE , arcname=os.path.join('''..''' , text_file.name ) ) return path @pytest.fixture def _a ( SCREAMING_SNAKE_CASE : str ): """simple docstring""" import tarfile UpperCamelCase__ : Optional[int] = tmp_path / '''data_sym_link''' directory.mkdir() UpperCamelCase__ : str = directory / '''tar_file_with_sym_link.tar''' os.symlink('''..''' , directory / '''subdir''' , target_is_directory=SCREAMING_SNAKE_CASE ) with tarfile.TarFile(SCREAMING_SNAKE_CASE , '''w''' ) as f: f.add(str(directory / '''subdir''' ) , arcname='''subdir''' ) # str required by os.readlink on Windows and Python < 3.8 return path @pytest.mark.parametrize( '''insecure_tar_file, error_log''' , [('''tar_file_with_dot_dot''', '''illegal path'''), ('''tar_file_with_sym_link''', '''Symlink''')] , ) def _a ( SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : Dict ): """simple docstring""" UpperCamelCase__ : Any = { '''tar_file_with_dot_dot''': tar_file_with_dot_dot, '''tar_file_with_sym_link''': tar_file_with_sym_link, } UpperCamelCase__ : int = insecure_tar_files[insecure_tar_file] UpperCamelCase__ : List[str] = tmp_path / '''extracted''' TarExtractor.extract(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) assert caplog.text for record in caplog.records: assert record.levelname == "ERROR" assert error_log in record.msg def _a ( SCREAMING_SNAKE_CASE : Any ): """simple docstring""" UpperCamelCase__ : Dict = tmpdir / '''not_a_zip_file''' # From: https://github.com/python/cpython/pull/5053 UpperCamelCase__ : Tuple = ( B'''\x89PNG\r\n\x1a\n\x00\x00\x00\rIHDR\x00\x00\x00\x01\x00\x00''' B'''\x00\x02\x08\x06\x00\x00\x00\x99\x81\xb6\'\x00\x00\x00\x15I''' B'''DATx\x01\x01\n\x00\xf5\xff\x00PK\x05\x06\x00PK\x06\x06\x07''' B'''\xac\x01N\xc6|a\r\x00\x00\x00\x00IEND\xaeB`\x82''' ) with not_a_zip_file.open('''wb''' ) as f: f.write(SCREAMING_SNAKE_CASE ) assert zipfile.is_zipfile(str(SCREAMING_SNAKE_CASE ) ) # is a false positive for `zipfile` assert not ZipExtractor.is_extractable(SCREAMING_SNAKE_CASE ) # but we're right
146
import json import os import re import sys import urllib.request import requests from bsa import BeautifulSoup __UpperCamelCase : Dict = { "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36" " (KHTML, like Gecko) Chrome/70.0.3538.102 Safari/537.36 Edge/18.19582" } def _a ( SCREAMING_SNAKE_CASE : str = "dhaka" , SCREAMING_SNAKE_CASE : int = 5 ): """simple docstring""" UpperCamelCase__ : Optional[int] = min(SCREAMING_SNAKE_CASE , 50 ) # Prevent abuse! UpperCamelCase__ : str = { '''q''': query, '''tbm''': '''isch''', '''hl''': '''en''', '''ijn''': '''0''', } UpperCamelCase__ : List[str] = requests.get('''https://www.google.com/search''' , params=SCREAMING_SNAKE_CASE , headers=SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Any = BeautifulSoup(html.text , '''html.parser''' ) UpperCamelCase__ : Union[str, Any] = ''''''.join( re.findall(r'''AF_initDataCallback\(([^<]+)\);''' , str(soup.select('''script''' ) ) ) ) UpperCamelCase__ : Optional[Any] = json.dumps(SCREAMING_SNAKE_CASE ) UpperCamelCase__ : List[Any] = json.loads(SCREAMING_SNAKE_CASE ) UpperCamelCase__ : List[str] = re.findall( r'''\[\"GRID_STATE0\",null,\[\[1,\[0,\".*?\",(.*),\"All\",''' , SCREAMING_SNAKE_CASE , ) if not matched_google_image_data: return 0 UpperCamelCase__ : Optional[Any] = re.sub( r'''\[\"(https\:\/\/encrypted-tbn0\.gstatic\.com\/images\?.*?)\",\d+,\d+\]''' , '''''' , str(SCREAMING_SNAKE_CASE ) , ) UpperCamelCase__ : List[Any] = re.findall( r'''(?:\'|,),\[\"(https:|http.*?)\",\d+,\d+\]''' , SCREAMING_SNAKE_CASE , ) for index, fixed_full_res_image in enumerate(SCREAMING_SNAKE_CASE ): if index >= max_images: return index UpperCamelCase__ : Optional[int] = bytes(SCREAMING_SNAKE_CASE , '''ascii''' ).decode( '''unicode-escape''' ) UpperCamelCase__ : List[Any] = bytes(SCREAMING_SNAKE_CASE , '''ascii''' ).decode( '''unicode-escape''' ) UpperCamelCase__ : List[Any] = urllib.request.build_opener() UpperCamelCase__ : Optional[Any] = [ ( '''User-Agent''', '''Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36''' ''' (KHTML, like Gecko) Chrome/70.0.3538.102 Safari/537.36 Edge/18.19582''', ) ] urllib.request.install_opener(SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Dict = F"query_{query.replace(' ' , '_' )}" if not os.path.exists(SCREAMING_SNAKE_CASE ): os.makedirs(SCREAMING_SNAKE_CASE ) urllib.request.urlretrieve( # noqa: S310 SCREAMING_SNAKE_CASE , F"{path_name}/original_size_img_{index}.jpg" ) return index if __name__ == "__main__": try: __UpperCamelCase : List[Any] = download_images_from_google_query(sys.argv[1]) print(f"{image_count} images were downloaded to disk.") except IndexError: print("Please provide a search term.") raise
146
1
"""simple docstring""" from __future__ import annotations import unittest import numpy as np from transformers import OPTConfig, is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import GPTaTokenizer, TFOPTForCausalLM, TFOPTModel def _SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_=None , lowercase_=None ) -> List[str]: if attention_mask is None: A__ = tf.cast(tf.math.not_equal(lowercase_ , config.pad_token_id ) , tf.inta ) return {"input_ids": input_ids, "attention_mask": attention_mask} @require_tf class UpperCAmelCase_ : lowercase__ = OPTConfig lowercase__ = {} lowercase__ = '''gelu''' def __init__( self : Optional[Any] , snake_case_ : Optional[Any] , snake_case_ : Dict=13 , snake_case_ : Any=7 , snake_case_ : Dict=True , snake_case_ : List[str]=False , snake_case_ : Optional[int]=99 , snake_case_ : str=16 , snake_case_ : List[Any]=2 , snake_case_ : str=4 , snake_case_ : List[Any]=4 , snake_case_ : str="gelu" , snake_case_ : List[str]=0.1 , snake_case_ : Optional[Any]=0.1 , snake_case_ : Optional[int]=20 , snake_case_ : Any=2 , snake_case_ : Optional[int]=1 , snake_case_ : Optional[Any]=0 , snake_case_ : int=16 , snake_case_ : List[Any]=16 , ) -> Any: '''simple docstring''' A__ = parent A__ = batch_size A__ = seq_length A__ = is_training A__ = use_labels A__ = vocab_size A__ = hidden_size A__ = num_hidden_layers A__ = num_attention_heads A__ = intermediate_size A__ = hidden_act A__ = hidden_dropout_prob A__ = attention_probs_dropout_prob A__ = max_position_embeddings A__ = eos_token_id A__ = pad_token_id A__ = bos_token_id A__ = embed_dim A__ = word_embed_proj_dim A__ = False def __magic_name__ ( self : List[Any] ) -> Optional[int]: '''simple docstring''' A__ = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) A__ = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) A__ = tf.concat([input_ids, eos_tensor] , axis=1 ) A__ = self.config_cls( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , embed_dim=self.embed_dim , word_embed_proj_dim=self.word_embed_proj_dim , is_encoder_decoder=snake_case_ , **self.config_updates , ) A__ = prepare_opt_inputs_dict(snake_case_ , snake_case_ ) return config, inputs_dict def __magic_name__ ( self : int , snake_case_ : Optional[int] , snake_case_ : Optional[int] ) -> Dict: '''simple docstring''' A__ = TFOPTModel(config=snake_case_ ) A__ = inputs_dict["input_ids"] A__ = input_ids[:1, :] A__ = inputs_dict["attention_mask"][:1, :] A__ = 1 # first forward pass A__ = model(snake_case_ , attention_mask=snake_case_ , use_cache=snake_case_ ) A__, A__ = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids A__ = ids_tensor((self.batch_size, 3) , config.vocab_size ) A__ = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and A__ = tf.concat([input_ids, next_tokens] , axis=-1 ) A__ = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) A__ = model(snake_case_ , attention_mask=snake_case_ )[0] A__ = model(snake_case_ , attention_mask=snake_case_ , past_key_values=snake_case_ )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice A__ = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) A__ = output_from_no_past[:, -3:, random_slice_idx] A__ = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(snake_case_ , snake_case_ , rtol=1e-3 ) @require_tf class UpperCAmelCase_ ( A_, A_, unittest.TestCase ): lowercase__ = (TFOPTModel, TFOPTForCausalLM) if is_tf_available() else () lowercase__ = (TFOPTForCausalLM,) if is_tf_available() else () lowercase__ = ( {'''feature-extraction''': TFOPTModel, '''text-generation''': TFOPTForCausalLM} if is_tf_available() else {} ) lowercase__ = False lowercase__ = False lowercase__ = False lowercase__ = 10 def __magic_name__ ( self : Dict ) -> str: '''simple docstring''' A__ = TFOPTModelTester(self ) A__ = ConfigTester(self , config_class=snake_case_ ) def __magic_name__ ( self : Optional[Any] ) -> List[str]: '''simple docstring''' self.config_tester.run_common_tests() def __magic_name__ ( self : Any ) -> List[Any]: '''simple docstring''' A__ = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*snake_case_ ) def __magic_name__ ( self : Tuple ) -> Dict: '''simple docstring''' A__, A__ = self.model_tester.prepare_config_and_inputs_for_common() def _get_word_embedding_weight(snake_case_ : str , snake_case_ : List[str] ): if hasattr(snake_case_ , "weight" ): return embedding_layer.weight else: # Here we build the word embeddings weights if not exists. # And then we retry to get the attribute once built. model.build() if hasattr(snake_case_ , "weight" ): return embedding_layer.weight else: return None for model_class in self.all_model_classes: for size in [config.vocab_size - 10, config.vocab_size + 10]: # build the embeddings A__ = model_class(config=snake_case_ ) A__ = _get_word_embedding_weight(snake_case_ , model.get_input_embeddings() ) A__ = _get_word_embedding_weight(snake_case_ , model.get_output_embeddings() ) # reshape the embeddings model.resize_token_embeddings(snake_case_ ) A__ = _get_word_embedding_weight(snake_case_ , model.get_input_embeddings() ) A__ = _get_word_embedding_weight(snake_case_ , model.get_output_embeddings() ) # check that the resized embeddings size matches the desired size. A__ = size if size is not None else config.vocab_size self.assertEqual(new_input_embeddings.shape[0] , snake_case_ ) # check that weights remain the same after resizing A__ = True for pa, pa in zip(old_input_embeddings.value() , new_input_embeddings.value() ): if tf.math.reduce_sum(tf.math.abs(pa - pa ) ) > 0: A__ = False self.assertTrue(snake_case_ ) if old_output_embeddings is not None and new_output_embeddings is not None: self.assertEqual(new_output_embeddings.shape[0] , snake_case_ ) A__ = True for pa, pa in zip(old_output_embeddings.value() , new_output_embeddings.value() ): if tf.math.reduce_sum(tf.math.abs(pa - pa ) ) > 0: A__ = False self.assertTrue(snake_case_ ) def _SCREAMING_SNAKE_CASE ( lowercase_ ) -> Union[str, Any]: return tf.constant(lowercase_ , dtype=tf.intaa ) @require_tf class UpperCAmelCase_ ( unittest.TestCase ): lowercase__ = 99 def __magic_name__ ( self : Tuple ) -> str: '''simple docstring''' A__ = tf.ones((4, 1) , dtype=tf.intaa ) * 2 A__ = tf.concat([ids_tensor((4, 6) , self.vocab_size - 3 ) + 3, eos_column_vector] , axis=1 ) A__ = input_ids.shape[0] A__ = OPTConfig( vocab_size=self.vocab_size , hidden_size=24 , num_hidden_layers=2 , num_attention_heads=2 , ffn_dim=32 , max_position_embeddings=48 , eos_token_id=2 , pad_token_id=1 , bos_token_id=0 , ) return config, input_ids, batch_size @require_sentencepiece @require_tf class UpperCAmelCase_ ( unittest.TestCase ): @slow def __magic_name__ ( self : int ) -> List[str]: '''simple docstring''' A__ = TFOPTModel.from_pretrained("facebook/opt-350m" ) A__ = _long_tensor([[0, 31_414, 232, 328, 740, 1_140, 12_695, 69, 46_078, 1_588, 2]] ) A__ = tf.not_equal(snake_case_ , model.config.pad_token_id ) with tf.GradientTape(): A__ = model(input_ids=snake_case_ , attention_mask=snake_case_ ).last_hidden_state A__ = (1, 11, 512) self.assertEqual(output.shape , snake_case_ ) A__ = tf.constant( [[-0.2873, -1.9218, -0.3033], [-1.2710, -0.1338, -0.1902], [0.4095, 0.1214, -1.3121]] ) self.assertTrue(np.allclose(output[:, :3, :3] , snake_case_ , atol=4e-3 ) ) A__ = tf.function(snake_case_ , jit_compile=snake_case_ ) A__ = xla_generate(snake_case_ , snake_case_ )[0] self.assertTrue(np.allclose(output[:, :3, :3] , snake_case_ , atol=4e-2 ) ) @require_tf @slow class UpperCAmelCase_ ( unittest.TestCase ): def __magic_name__ ( self : Any ) -> int: '''simple docstring''' super().setUp() A__ = "facebook/opt-350m" def __magic_name__ ( self : Optional[int] ) -> Union[str, Any]: '''simple docstring''' A__ = TFOPTForCausalLM.from_pretrained(self.path_model ) A__ = GPTaTokenizer.from_pretrained(self.path_model ) A__ = [ "Today is a beautiful day and I want to", "In the city of", "Paris is the capital of France and", "Computers and mobile phones have taken", ] # verify that prompt without BOS token is identical to Metaseq -> add_special_tokens=False A__ = tokenizer(snake_case_ , return_tensors="tf" , padding=snake_case_ , add_special_tokens=snake_case_ ) A__ = tf.math.reduce_mean(model(inputs.input_ids , attention_mask=inputs.attention_mask )[0] , axis=-1 ) A__ = tf.constant( [ [1.3851, -13.8923, -10.5229, -10.7533, -0.2309, -10.2384, -0.5365, -9.0947, -5.1670], [-4.7073, -10.6276, -3.9415, -21.5242, -0.2822, -0.2822, -0.2822, -0.2822, -0.2822], [0.6247, -3.4229, -8.9179, -1.4297, -14.1650, 1.4146, -9.0218, -0.2703, -0.2703], [6.4783, -1.9913, -10.7926, -2.3336, 1.5092, -0.9974, -6.8213, 1.3477, 1.3477], ] ) self.assertTrue(np.allclose(snake_case_ , snake_case_ , atol=1e-4 ) ) A__ = tf.function(snake_case_ , jit_compile=snake_case_ ) A__ = tf.math.reduce_mean(xla_generate(inputs.input_ids , attention_mask=inputs.attention_mask )[0] , axis=-1 ) self.assertTrue(np.allclose(snake_case_ , snake_case_ , atol=1e-4 ) ) @require_tf @slow class UpperCAmelCase_ ( unittest.TestCase ): @property def __magic_name__ ( self : Optional[int] ) -> Tuple: '''simple docstring''' return [ "Today is a beautiful day and I want", "In the city of", "Paris is the capital of France and", "Computers and mobile phones have taken", ] def __magic_name__ ( self : List[Any] ) -> Dict: '''simple docstring''' A__ = "facebook/opt-125m" A__ = [ "Today is a beautiful day and I want to", "In the city of New York, the city", "Paris is the capital of France and the capital", "Computers and mobile phones have taken over the", ] A__ = [] A__ = GPTaTokenizer.from_pretrained(snake_case_ ) A__ = TFOPTForCausalLM.from_pretrained(snake_case_ ) for prompt in self.prompts: A__ = tokenizer(snake_case_ , return_tensors="tf" ).input_ids A__ = model.generate(snake_case_ , max_length=10 ) A__ = tokenizer.batch_decode(snake_case_ , skip_special_tokens=snake_case_ ) predicted_outputs += generated_string self.assertListEqual(snake_case_ , snake_case_ ) def __magic_name__ ( self : Any ) -> List[str]: '''simple docstring''' A__ = "facebook/opt-350m" A__ = GPTaTokenizer.from_pretrained(snake_case_ ) A__ = TFOPTForCausalLM.from_pretrained(snake_case_ ) A__ = "left" # use different length sentences to test batching A__ = [ "Hello, my dog is a little", "Today, I", ] A__ = tokenizer(snake_case_ , return_tensors="tf" , padding=snake_case_ ) A__ = inputs["input_ids"] A__ = model.generate(input_ids=snake_case_ , attention_mask=inputs["attention_mask"] ) A__ = tokenizer(sentences[0] , return_tensors="tf" ).input_ids A__ = model.generate(input_ids=snake_case_ ) A__ = inputs_non_padded.shape[-1] - tf.math.reduce_sum( tf.cast(inputs["attention_mask"][-1] , tf.intaa ) ) A__ = tokenizer(sentences[1] , return_tensors="tf" ).input_ids A__ = model.generate(input_ids=snake_case_ , max_length=model.config.max_length - num_paddings ) A__ = tokenizer.batch_decode(snake_case_ , skip_special_tokens=snake_case_ ) A__ = tokenizer.decode(output_non_padded[0] , skip_special_tokens=snake_case_ ) A__ = tokenizer.decode(output_padded[0] , skip_special_tokens=snake_case_ ) A__ = [ "Hello, my dog is a little bit of a dork.\nI'm a little bit", "Today, I was in the middle of a conversation with a friend about the", ] self.assertListEqual(snake_case_ , snake_case_ ) self.assertListEqual(snake_case_ , [non_padded_sentence, padded_sentence] ) def __magic_name__ ( self : int ) -> Dict: '''simple docstring''' A__ = "facebook/opt-350m" A__ = [ "Today is a beautiful day and I want to", "In the city of San Francisco, the city", "Paris is the capital of France and the capital", "Computers and mobile phones have taken over the", ] A__ = [] A__ = GPTaTokenizer.from_pretrained(snake_case_ ) A__ = TFOPTForCausalLM.from_pretrained(snake_case_ ) for prompt in self.prompts: A__ = tokenizer(snake_case_ , return_tensors="tf" ).input_ids A__ = model.generate(snake_case_ , max_length=10 ) A__ = tokenizer.batch_decode(snake_case_ , skip_special_tokens=snake_case_ ) predicted_outputs += generated_string self.assertListEqual(snake_case_ , snake_case_ )
230
"""simple docstring""" from argparse import ArgumentParser from .env import EnvironmentCommand def _SCREAMING_SNAKE_CASE ( ) -> List[Any]: A__ = ArgumentParser("Diffusers CLI tool" , usage="diffusers-cli <command> [<args>]" ) A__ = parser.add_subparsers(help="diffusers-cli command helpers" ) # Register commands EnvironmentCommand.register_subcommand(lowercase_ ) # Let's go A__ = parser.parse_args() if not hasattr(lowercase_ , "func" ): parser.print_help() exit(1 ) # Run A__ = args.func(lowercase_ ) service.run() if __name__ == "__main__": main()
230
1
import warnings from diffusers import StableDiffusionImgaImgPipeline # noqa F401 warnings.warn( '''The `image_to_image.py` script is outdated. Please use directly `from diffusers import''' ''' StableDiffusionImg2ImgPipeline` instead.''' )
244
from typing import Any, Dict, List, Union from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from ..image_utils import load_image if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_OBJECT_DETECTION_MAPPING, MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING __UpperCAmelCase : Any = logging.get_logger(__name__) __UpperCAmelCase : str = Dict[str, Any] __UpperCAmelCase : int = List[Prediction] @add_end_docstrings(__lowerCamelCase ) class __snake_case ( __lowerCamelCase ): '''simple docstring''' def __init__( self : int , *A : Optional[int] , **A : Optional[int] ): super().__init__(*A , **A ) if self.framework == "tf": raise ValueError(f'''The {self.__class__} is only available in PyTorch.''' ) requires_backends(self , """vision""" ) self.check_model_type( dict(MODEL_FOR_OBJECT_DETECTION_MAPPING.items() + MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING.items() ) ) def UpperCAmelCase__ ( self : List[str] , **A : Tuple ): __snake_case: List[str] = {} if "threshold" in kwargs: __snake_case: Optional[Any] = kwargs["""threshold"""] return {}, {}, postprocess_kwargs def __call__( self : int , *A : Optional[Any] , **A : Tuple ): return super().__call__(*A , **A ) def UpperCAmelCase__ ( self : Optional[int] , A : str ): __snake_case: Optional[Any] = load_image(A ) __snake_case: Dict = torch.IntTensor([[image.height, image.width]] ) __snake_case: str = self.image_processor(images=[image] , return_tensors="""pt""" ) if self.tokenizer is not None: __snake_case: Optional[Any] = self.tokenizer(text=inputs["""words"""] , boxes=inputs["""boxes"""] , return_tensors="""pt""" ) __snake_case: Any = target_size return inputs def UpperCAmelCase__ ( self : Optional[int] , A : Dict ): __snake_case: int = model_inputs.pop("""target_size""" ) __snake_case: int = self.model(**A ) __snake_case: Any = outputs.__class__({"""target_size""": target_size, **outputs} ) if self.tokenizer is not None: __snake_case: Optional[int] = model_inputs["""bbox"""] return model_outputs def UpperCAmelCase__ ( self : List[Any] , A : Optional[int] , A : Union[str, Any]=0.9 ): __snake_case: Optional[Any] = model_outputs["""target_size"""] if self.tokenizer is not None: # This is a LayoutLMForTokenClassification variant. # The OCR got the boxes and the model classified the words. __snake_case , __snake_case: Union[str, Any] = target_size[0].tolist() def unnormalize(A : Tuple ): return self._get_bounding_box( torch.Tensor( [ (width * bbox[0] / 1_000), (height * bbox[1] / 1_000), (width * bbox[2] / 1_000), (height * bbox[3] / 1_000), ] ) ) __snake_case , __snake_case: Optional[int] = model_outputs["""logits"""].squeeze(0 ).softmax(dim=-1 ).max(dim=-1 ) __snake_case: List[Any] = [self.model.config.idalabel[prediction] for prediction in classes.tolist()] __snake_case: int = [unnormalize(A ) for bbox in model_outputs["""bbox"""].squeeze(0 )] __snake_case: int = ["""score""", """label""", """box"""] __snake_case: List[Any] = [dict(zip(A , A ) ) for vals in zip(scores.tolist() , A , A ) if vals[0] > threshold] else: # This is a regular ForObjectDetectionModel __snake_case: Tuple = self.image_processor.post_process_object_detection(A , A , A ) __snake_case: Optional[Any] = raw_annotations[0] __snake_case: int = raw_annotation["""scores"""] __snake_case: int = raw_annotation["""labels"""] __snake_case: Optional[Any] = raw_annotation["""boxes"""] __snake_case: Union[str, Any] = scores.tolist() __snake_case: List[str] = [self.model.config.idalabel[label.item()] for label in labels] __snake_case: List[str] = [self._get_bounding_box(A ) for box in boxes] # {"scores": [...], ...} --> [{"score":x, ...}, ...] __snake_case: List[Any] = ["""score""", """label""", """box"""] __snake_case: Dict = [ dict(zip(A , A ) ) for vals in zip(raw_annotation["""scores"""] , raw_annotation["""labels"""] , raw_annotation["""boxes"""] ) ] return annotation def UpperCAmelCase__ ( self : Optional[Any] , A : "torch.Tensor" ): if self.framework != "pt": raise ValueError("""The ObjectDetectionPipeline is only available in PyTorch.""" ) __snake_case , __snake_case , __snake_case , __snake_case: Union[str, Any] = box.int().tolist() __snake_case: Optional[Any] = { """xmin""": xmin, """ymin""": ymin, """xmax""": xmax, """ymax""": ymax, } return bbox
111
0
'''simple docstring''' import pytest lowerCAmelCase_ = "__dummy_dataset1__" lowerCAmelCase_ = "\nimport json\nimport os\n\nimport datasets\n\n\nREPO_URL = \"https://huggingface.co/datasets/albertvillanova/tests-raw-jsonl/resolve/main/\"\nURLS = {\"train\": REPO_URL + \"wikiann-bn-train.jsonl\", \"validation\": REPO_URL + \"wikiann-bn-validation.jsonl\"}\n\n\nclass __DummyDataset1__(datasets.GeneratorBasedBuilder):\n\n def _info(self):\n features = datasets.Features(\n {\n \"tokens\": datasets.Sequence(datasets.Value(\"string\")),\n \"ner_tags\": datasets.Sequence(\n datasets.features.ClassLabel(\n names=[\n \"O\",\n \"B-PER\",\n \"I-PER\",\n \"B-ORG\",\n \"I-ORG\",\n \"B-LOC\",\n \"I-LOC\",\n ]\n )\n ),\n \"langs\": datasets.Sequence(datasets.Value(\"string\")),\n \"spans\": datasets.Sequence(datasets.Value(\"string\")),\n }\n )\n return datasets.DatasetInfo(features=features)\n\n def _split_generators(self, dl_manager):\n dl_path = dl_manager.download(URLS)\n return [\n datasets.SplitGenerator(datasets.Split.TRAIN, gen_kwargs={\"filepath\": dl_path[\"train\"]}),\n datasets.SplitGenerator(datasets.Split.VALIDATION, gen_kwargs={\"filepath\": dl_path[\"validation\"]}),\n ]\n\n def _generate_examples(self, filepath):\n with open(filepath, \"r\", encoding=\"utf-8\") as f:\n for i, line in enumerate(f):\n yield i, json.loads(line)\n" @pytest.fixture def __magic_name__ ( ) -> List[Any]: return DATASET_LOADING_SCRIPT_NAME @pytest.fixture def __magic_name__ ( ) -> Union[str, Any]: return DATASET_LOADING_SCRIPT_CODE @pytest.fixture def __magic_name__ ( A , A , A ) -> Optional[int]: snake_case = dataset_loading_script_name snake_case = tmp_path / 'datasets' / script_name script_dir.mkdir(parents=A ) snake_case = script_dir / F'''{script_name}.py''' with open(A , 'w' ) as f: f.write(A ) return str(A )
332
'''simple docstring''' from ..utils import DummyObject, requires_backends class lowerCamelCase ( metaclass=__lowerCAmelCase ): snake_case_ = ['''note_seq'''] def __init__( self, *lowercase_, **lowercase_ ) -> str: requires_backends(self, ['note_seq'] ) @classmethod def _lowerCamelCase ( cls, *lowercase_, **lowercase_ ) -> Union[str, Any]: requires_backends(cls, ['note_seq'] ) @classmethod def _lowerCamelCase ( cls, *lowercase_, **lowercase_ ) -> List[Any]: requires_backends(cls, ['note_seq'] )
332
1
"""simple docstring""" # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os from accelerate.utils import ComputeEnvironment from .cluster import get_cluster_input from .config_args import cache_dir, default_config_file, default_yaml_config_file, load_config_from_file # noqa: F401 from .config_utils import _ask_field, _ask_options, _convert_compute_environment # noqa: F401 from .sagemaker import get_sagemaker_input _snake_case : List[Any] = 'Launches a series of prompts to create and save a `default_config.yaml` configuration file for your training system. Should always be ran first on your machine' def A__ ( ): A = _ask_options( "In which compute environment are you running?" , ["This machine", "AWS (Amazon SageMaker)"] , _convert_compute_environment , ) if compute_environment == ComputeEnvironment.AMAZON_SAGEMAKER: A = get_sagemaker_input() else: A = get_cluster_input() return config def A__ ( UpperCamelCase=None ): if subparsers is not None: A = subparsers.add_parser("config" , description=UpperCamelCase ) else: A = argparse.ArgumentParser("Accelerate config command" , description=UpperCamelCase ) parser.add_argument( "--config_file" , default=UpperCamelCase , help=( "The path to use to store the config file. Will default to a file named default_config.yaml in the cache " "location, which is the content of the environment `HF_HOME` suffixed with 'accelerate', or if you don't have " "such an environment variable, your cache directory ('~/.cache' or the content of `XDG_CACHE_HOME`) suffixed " "with 'huggingface'." ) , ) if subparsers is not None: parser.set_defaults(func=UpperCamelCase ) return parser def A__ ( UpperCamelCase ): A = get_user_input() if args.config_file is not None: A = args.config_file else: if not os.path.isdir(UpperCamelCase ): os.makedirs(UpperCamelCase ) A = default_yaml_config_file if config_file.endswith(".json" ): config.to_json_file(UpperCamelCase ) else: config.to_yaml_file(UpperCamelCase ) print(F"accelerate configuration saved at {config_file}" ) def A__ ( ): A = config_command_parser() A = parser.parse_args() config_command(UpperCamelCase ) if __name__ == "__main__": main()
292
"""simple docstring""" import inspect import unittest from transformers import ViTMSNConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTMSNForImageClassification, ViTMSNModel from transformers.models.vit_msn.modeling_vit_msn import VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class _UpperCAmelCase : def __init__( self :List[Any] , __UpperCamelCase :Tuple , __UpperCamelCase :List[str]=13 , __UpperCamelCase :Any=30 , __UpperCamelCase :int=2 , __UpperCamelCase :Union[str, Any]=3 , __UpperCamelCase :Union[str, Any]=True , __UpperCamelCase :Optional[int]=True , __UpperCamelCase :List[str]=32 , __UpperCamelCase :List[Any]=5 , __UpperCamelCase :Dict=4 , __UpperCamelCase :List[str]=37 , __UpperCamelCase :str="gelu" , __UpperCamelCase :Union[str, Any]=0.1 , __UpperCamelCase :List[Any]=0.1 , __UpperCamelCase :Tuple=10 , __UpperCamelCase :Tuple=0.02 , __UpperCamelCase :int=None , ): A = parent A = batch_size A = image_size A = patch_size A = num_channels A = is_training A = use_labels A = hidden_size A = num_hidden_layers A = num_attention_heads A = intermediate_size A = hidden_act A = hidden_dropout_prob A = attention_probs_dropout_prob A = type_sequence_label_size A = initializer_range A = scope # in ViT MSN, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) A = (image_size // patch_size) ** 2 A = num_patches + 1 def lowerCamelCase ( self :Any ): A = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) A = None if self.use_labels: A = ids_tensor([self.batch_size] , self.type_sequence_label_size ) A = self.get_config() return config, pixel_values, labels def lowerCamelCase ( self :Union[str, Any] ): return ViTMSNConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , initializer_range=self.initializer_range , ) def lowerCamelCase ( self :Dict , __UpperCamelCase :Dict , __UpperCamelCase :Any , __UpperCamelCase :Any ): A = ViTMSNModel(config=__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() A = model(__UpperCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCamelCase ( self :Optional[int] , __UpperCamelCase :List[str] , __UpperCamelCase :Union[str, Any] , __UpperCamelCase :Optional[Any] ): A = self.type_sequence_label_size A = ViTMSNForImageClassification(__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() A = model(__UpperCamelCase , labels=__UpperCamelCase ) print("Pixel and labels shape: {pixel_values.shape}, {labels.shape}" ) print("Labels: {labels}" ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images A = 1 A = ViTMSNForImageClassification(__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() A = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) A = model(__UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def lowerCamelCase ( self :Optional[Any] ): A = self.prepare_config_and_inputs() A, A, A = config_and_inputs A = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class _UpperCAmelCase ( lowercase_ , lowercase_ , unittest.TestCase ): UpperCamelCase = (ViTMSNModel, ViTMSNForImageClassification) if is_torch_available() else () UpperCamelCase = ( {'''feature-extraction''': ViTMSNModel, '''image-classification''': ViTMSNForImageClassification} if is_torch_available() else {} ) UpperCamelCase = False UpperCamelCase = False UpperCamelCase = False UpperCamelCase = False def lowerCamelCase ( self :Optional[int] ): A = ViTMSNModelTester(self ) A = ConfigTester(self , config_class=__UpperCamelCase , has_text_modality=__UpperCamelCase , hidden_size=37 ) def lowerCamelCase ( self :Any ): self.config_tester.run_common_tests() @unittest.skip(reason="ViTMSN does not use inputs_embeds" ) def lowerCamelCase ( self :Union[str, Any] ): pass def lowerCamelCase ( self :int ): A, A = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A = model_class(__UpperCamelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) A = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__UpperCamelCase , nn.Linear ) ) def lowerCamelCase ( self :Tuple ): A, A = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A = model_class(__UpperCamelCase ) A = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic A = [*signature.parameters.keys()] A = ["pixel_values"] self.assertListEqual(arg_names[:1] , __UpperCamelCase ) def lowerCamelCase ( self :List[str] ): A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCamelCase ) def lowerCamelCase ( self :Dict ): A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__UpperCamelCase ) @slow def lowerCamelCase ( self :List[Any] ): for model_name in VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A = ViTMSNModel.from_pretrained(__UpperCamelCase ) self.assertIsNotNone(__UpperCamelCase ) def A__ ( ): A = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class _UpperCAmelCase ( unittest.TestCase ): @cached_property def lowerCamelCase ( self :Union[str, Any] ): return ViTImageProcessor.from_pretrained("facebook/vit-msn-small" ) if is_vision_available() else None @slow def lowerCamelCase ( self :Any ): torch.manual_seed(2 ) A = ViTMSNForImageClassification.from_pretrained("facebook/vit-msn-small" ).to(__UpperCamelCase ) A = self.default_image_processor A = prepare_img() A = image_processor(images=__UpperCamelCase , return_tensors="pt" ).to(__UpperCamelCase ) # forward pass with torch.no_grad(): A = model(**__UpperCamelCase ) # verify the logits A = torch.Size((1, 10_00) ) self.assertEqual(outputs.logits.shape , __UpperCamelCase ) A = torch.tensor([-0.0_803, -0.4_454, -0.2_375] ).to(__UpperCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __UpperCamelCase , atol=1e-4 ) )
292
1
def lowerCAmelCase_ ( __A ) -> Any: '''simple docstring''' UpperCAmelCase__ = 1 for i in range(1, num + 1 ): fact *= i return fact def lowerCAmelCase_ ( __A ) -> Tuple: '''simple docstring''' UpperCAmelCase__ = 0 while number > 0: UpperCAmelCase__ = number % 10 sum_of_digits += last_digit UpperCAmelCase__ = number // 10 # Removing the last_digit from the given number return sum_of_digits def lowerCAmelCase_ ( __A = 100 ) -> Any: '''simple docstring''' UpperCAmelCase__ = factorial(lowerCAmelCase__ ) UpperCAmelCase__ = split_and_add(lowerCAmelCase__ ) return result if __name__ == "__main__": print(solution(int(input('Enter the Number: ').strip())))
366
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_pegasus import PegasusTokenizer else: UpperCamelCase__ = None UpperCamelCase__ = logging.get_logger(__name__) UpperCamelCase__ = '▁' UpperCamelCase__ = {'vocab_file': 'spiece.model', 'tokenizer_file': 'tokenizer.json'} UpperCamelCase__ = { 'vocab_file': {'google/pegasus-xsum': 'https://huggingface.co/google/pegasus-xsum/resolve/main/spiece.model'}, 'tokenizer_file': { 'google/pegasus-xsum': 'https://huggingface.co/google/pegasus-xsum/resolve/main/tokenizer.json' }, } UpperCamelCase__ = { 'google/pegasus-xsum': 5_1_2, } class A ( UpperCAmelCase_ ): __UpperCAmelCase : str = VOCAB_FILES_NAMES __UpperCAmelCase : Any = PRETRAINED_VOCAB_FILES_MAP __UpperCAmelCase : List[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCAmelCase : Union[str, Any] = PegasusTokenizer __UpperCAmelCase : Any = ['input_ids', 'attention_mask'] def __init__(self : Optional[int] , __UpperCAmelCase : List[str]=None , __UpperCAmelCase : Any=None , __UpperCAmelCase : Union[str, Any]="<pad>" , __UpperCAmelCase : List[str]="</s>" , __UpperCAmelCase : Union[str, Any]="<unk>" , __UpperCAmelCase : int="<mask_2>" , __UpperCAmelCase : Optional[Any]="<mask_1>" , __UpperCAmelCase : Union[str, Any]=None , __UpperCAmelCase : str=1_0_3 , **__UpperCAmelCase : str , ) -> Optional[Any]: """simple docstring""" UpperCAmelCase__ = offset if additional_special_tokens is not None: if not isinstance(__UpperCAmelCase , __UpperCAmelCase ): raise TypeError( f"""additional_special_tokens should be of type {type(__UpperCAmelCase )}, but is""" f""" {type(__UpperCAmelCase )}""" ) UpperCAmelCase__ = ( ([mask_token_sent] + additional_special_tokens) if mask_token_sent not in additional_special_tokens and mask_token_sent is not None else additional_special_tokens ) # fill additional tokens with ..., <unk_token_102> in case not all additional tokens are already taken additional_special_tokens_extended += [ f"""<unk_{i}>""" for i in range(len(__UpperCAmelCase ) , self.offset - 1 ) ] if len(set(__UpperCAmelCase ) ) != len(__UpperCAmelCase ): raise ValueError( "Please make sure that the provided additional_special_tokens do not contain an incorrectly" f""" shifted list of <unk_x> tokens. Found {additional_special_tokens_extended}.""" ) UpperCAmelCase__ = additional_special_tokens_extended else: UpperCAmelCase__ = [mask_token_sent] if mask_token_sent is not None else [] additional_special_tokens += [f"""<unk_{i}>""" for i in range(2 , self.offset )] super().__init__( __UpperCAmelCase , tokenizer_file=__UpperCAmelCase , pad_token=__UpperCAmelCase , eos_token=__UpperCAmelCase , unk_token=__UpperCAmelCase , mask_token=__UpperCAmelCase , mask_token_sent=__UpperCAmelCase , offset=__UpperCAmelCase , additional_special_tokens=__UpperCAmelCase , **__UpperCAmelCase , ) UpperCAmelCase__ = vocab_file UpperCAmelCase__ = False if not self.vocab_file else True def lowercase_ (self : List[Any] , __UpperCAmelCase : Tuple ) -> int: """simple docstring""" UpperCAmelCase__ = set(self.all_special_ids ) # call it once instead of inside list comp all_special_ids.remove(self.unk_token_id ) # <unk> is only sometimes special if all_special_ids != set(range(len(self.additional_special_tokens ) + 3 ) ): raise ValueError( "There should be 3 special tokens: mask_token, pad_token, and eos_token +" f""" {len(self.additional_special_tokens )} additional_special_tokens, but got {all_special_ids}""" ) return [1 if x in all_special_ids else 0 for x in seq] def lowercase_ (self : Union[str, Any] , __UpperCAmelCase : List , __UpperCAmelCase : Optional[List] = None , __UpperCAmelCase : bool = False ) -> List[int]: """simple docstring""" if already_has_special_tokens: return self._special_token_mask(__UpperCAmelCase ) elif token_ids_a is None: return self._special_token_mask(__UpperCAmelCase ) + [1] else: return self._special_token_mask(token_ids_a + token_ids_a ) + [1] def lowercase_ (self : str , __UpperCAmelCase : List[str] , __UpperCAmelCase : Optional[Any]=None ) -> List[int]: """simple docstring""" if token_ids_a is None: return token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return token_ids_a + token_ids_a + [self.eos_token_id] def lowercase_ (self : List[str] , __UpperCAmelCase : str , __UpperCAmelCase : Optional[str] = None ) -> Tuple[str]: """simple docstring""" if not self.can_save_slow_tokenizer: raise ValueError( "Your fast tokenizer does not have the necessary information to save the vocabulary for a slow " "tokenizer." ) if not os.path.isdir(__UpperCAmelCase ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return UpperCAmelCase__ = os.path.join( __UpperCAmelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__UpperCAmelCase ): copyfile(self.vocab_file , __UpperCAmelCase ) return (out_vocab_file,)
143
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) SCREAMING_SNAKE_CASE :int = { '''configuration_convnext''': ['''CONVNEXT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ConvNextConfig''', '''ConvNextOnnxConfig'''] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE :Optional[int] = ['''ConvNextFeatureExtractor'''] SCREAMING_SNAKE_CASE :Optional[Any] = ['''ConvNextImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE :str = [ '''CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ConvNextForImageClassification''', '''ConvNextModel''', '''ConvNextPreTrainedModel''', '''ConvNextBackbone''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE :Optional[int] = [ '''TFConvNextForImageClassification''', '''TFConvNextModel''', '''TFConvNextPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_convnext import CONVNEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, ConvNextConfig, ConvNextOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_convnext import ConvNextFeatureExtractor from .image_processing_convnext import ConvNextImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_convnext import ( CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST, ConvNextBackbone, ConvNextForImageClassification, ConvNextModel, ConvNextPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_convnext import TFConvNextForImageClassification, TFConvNextModel, TFConvNextPreTrainedModel else: import sys SCREAMING_SNAKE_CASE :Tuple = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
159
'''simple docstring''' from __future__ import annotations import os import tempfile import unittest from transformers import ConvBertConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFConvBertForMaskedLM, TFConvBertForMultipleChoice, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertModel, ) class A : '''simple docstring''' def __init__(self , _UpperCAmelCase , _UpperCAmelCase=1_3 , _UpperCAmelCase=7 , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=9_9 , _UpperCAmelCase=3_2 , _UpperCAmelCase=2 , _UpperCAmelCase=4 , _UpperCAmelCase=3_7 , _UpperCAmelCase="gelu" , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=5_1_2 , _UpperCAmelCase=1_6 , _UpperCAmelCase=2 , _UpperCAmelCase=0.02 , _UpperCAmelCase=3 , _UpperCAmelCase=4 , _UpperCAmelCase=None , ) -> Dict: __UpperCamelCase : Optional[Any] = parent __UpperCamelCase : List[str] = 1_3 __UpperCamelCase : List[Any] = 7 __UpperCamelCase : List[str] = True __UpperCamelCase : Optional[Any] = True __UpperCamelCase : Tuple = True __UpperCamelCase : str = True __UpperCamelCase : List[Any] = 9_9 __UpperCamelCase : Union[str, Any] = 3_8_4 __UpperCamelCase : str = 2 __UpperCamelCase : Optional[Any] = 4 __UpperCamelCase : Any = 3_7 __UpperCamelCase : str = "gelu" __UpperCamelCase : Optional[Any] = 0.1 __UpperCamelCase : str = 0.1 __UpperCamelCase : str = 5_1_2 __UpperCamelCase : Optional[Any] = 1_6 __UpperCamelCase : Dict = 2 __UpperCamelCase : Optional[int] = 0.02 __UpperCamelCase : List[Any] = 3 __UpperCamelCase : Optional[Any] = 4 __UpperCamelCase : int = 1_2_8 __UpperCamelCase : Tuple = 2 __UpperCamelCase : str = 9 __UpperCamelCase : List[Any] = 1 __UpperCamelCase : Any = None def a_ (self ) -> int: __UpperCamelCase : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __UpperCamelCase : str = None if self.use_input_mask: __UpperCamelCase : str = random_attention_mask([self.batch_size, self.seq_length] ) __UpperCamelCase : int = None if self.use_token_type_ids: __UpperCamelCase : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __UpperCamelCase : List[Any] = None __UpperCamelCase : Union[str, Any] = None __UpperCamelCase : Optional[Any] = None if self.use_labels: __UpperCamelCase : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __UpperCamelCase : Any = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __UpperCamelCase : Tuple = ids_tensor([self.batch_size] , self.num_choices ) __UpperCamelCase : str = ConvBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=_UpperCAmelCase , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def a_ (self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> Dict: __UpperCamelCase : Tuple = TFConvBertModel(config=_UpperCAmelCase ) __UpperCamelCase : Optional[Any] = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} __UpperCamelCase : Optional[Any] = [input_ids, input_mask] __UpperCamelCase : str = model(_UpperCAmelCase ) __UpperCamelCase : int = model(_UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def a_ (self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> Optional[int]: __UpperCamelCase : int = TFConvBertForMaskedLM(config=_UpperCAmelCase ) __UpperCamelCase : Dict = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } __UpperCamelCase : List[str] = model(_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def a_ (self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> Optional[int]: __UpperCamelCase : Union[str, Any] = self.num_labels __UpperCamelCase : Optional[Any] = TFConvBertForSequenceClassification(config=_UpperCAmelCase ) __UpperCamelCase : List[str] = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } __UpperCamelCase : Optional[Any] = model(_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def a_ (self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> List[str]: __UpperCamelCase : Optional[int] = self.num_choices __UpperCamelCase : List[Any] = TFConvBertForMultipleChoice(config=_UpperCAmelCase ) __UpperCamelCase : Optional[int] = tf.tile(tf.expand_dims(_UpperCAmelCase , 1 ) , (1, self.num_choices, 1) ) __UpperCamelCase : Optional[Any] = tf.tile(tf.expand_dims(_UpperCAmelCase , 1 ) , (1, self.num_choices, 1) ) __UpperCamelCase : str = tf.tile(tf.expand_dims(_UpperCAmelCase , 1 ) , (1, self.num_choices, 1) ) __UpperCamelCase : List[str] = { "input_ids": multiple_choice_inputs_ids, "attention_mask": multiple_choice_input_mask, "token_type_ids": multiple_choice_token_type_ids, } __UpperCamelCase : int = model(_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def a_ (self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> Any: __UpperCamelCase : List[str] = self.num_labels __UpperCamelCase : Tuple = TFConvBertForTokenClassification(config=_UpperCAmelCase ) __UpperCamelCase : Dict = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } __UpperCamelCase : Union[str, Any] = model(_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def a_ (self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> Union[str, Any]: __UpperCamelCase : int = TFConvBertForQuestionAnswering(config=_UpperCAmelCase ) __UpperCamelCase : Dict = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } __UpperCamelCase : Any = model(_UpperCAmelCase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def a_ (self ) -> str: __UpperCamelCase : str = self.prepare_config_and_inputs() ( ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ) : Any = config_and_inputs __UpperCamelCase : int = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict @require_tf class A ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , unittest.TestCase ): '''simple docstring''' A = ( ( TFConvBertModel, TFConvBertForMaskedLM, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertForMultipleChoice, ) if is_tf_available() else () ) A = ( { "feature-extraction": TFConvBertModel, "fill-mask": TFConvBertForMaskedLM, "question-answering": TFConvBertForQuestionAnswering, "text-classification": TFConvBertForSequenceClassification, "token-classification": TFConvBertForTokenClassification, "zero-shot": TFConvBertForSequenceClassification, } if is_tf_available() else {} ) A = False A = False A = False def a_ (self ) -> Optional[int]: __UpperCamelCase : Tuple = TFConvBertModelTester(self ) __UpperCamelCase : Optional[Any] = ConfigTester(self , config_class=_UpperCAmelCase , hidden_size=3_7 ) def a_ (self ) -> Dict: self.config_tester.run_common_tests() def a_ (self ) -> Dict: __UpperCamelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCAmelCase ) def a_ (self ) -> Tuple: __UpperCamelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*_UpperCAmelCase ) def a_ (self ) -> Tuple: __UpperCamelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*_UpperCAmelCase ) def a_ (self ) -> Dict: __UpperCamelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*_UpperCAmelCase ) def a_ (self ) -> Dict: __UpperCamelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*_UpperCAmelCase ) def a_ (self ) -> Optional[int]: __UpperCamelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*_UpperCAmelCase ) @slow def a_ (self ) -> Any: __UpperCamelCase , __UpperCamelCase : Any = self.model_tester.prepare_config_and_inputs_for_common() __UpperCamelCase : str = True __UpperCamelCase : int = True if hasattr(_UpperCAmelCase , "use_cache" ): __UpperCamelCase : List[Any] = True __UpperCamelCase : List[str] = getattr(self.model_tester , "encoder_seq_length" , self.model_tester.seq_length ) __UpperCamelCase : Optional[Any] = getattr(self.model_tester , "key_length" , _UpperCAmelCase ) for model_class in self.all_model_classes: __UpperCamelCase : Any = self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase ) __UpperCamelCase : int = model_class(_UpperCAmelCase ) __UpperCamelCase : Any = len(model(_UpperCAmelCase ) ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(_UpperCAmelCase , saved_model=_UpperCAmelCase ) __UpperCamelCase : List[str] = os.path.join(_UpperCAmelCase , "saved_model" , "1" ) __UpperCamelCase : List[str] = tf.keras.models.load_model(_UpperCAmelCase ) __UpperCamelCase : Dict = model(_UpperCAmelCase ) if self.is_encoder_decoder: __UpperCamelCase : Any = outputs["encoder_hidden_states"] __UpperCamelCase : Tuple = outputs["encoder_attentions"] else: __UpperCamelCase : Tuple = outputs["hidden_states"] __UpperCamelCase : Optional[int] = outputs["attentions"] self.assertEqual(len(_UpperCAmelCase ) , _UpperCAmelCase ) __UpperCamelCase : Any = getattr( self.model_tester , "expected_num_hidden_layers" , self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(_UpperCAmelCase ) , _UpperCAmelCase ) self.assertListEqual( list(output_hidden_states[0].shape[-2:] ) , [self.model_tester.seq_length, self.model_tester.hidden_size] , ) self.assertEqual(len(_UpperCAmelCase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(output_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) @slow def a_ (self ) -> Optional[Any]: __UpperCamelCase : Tuple = TFConvBertModel.from_pretrained("YituTech/conv-bert-base" ) self.assertIsNotNone(_UpperCAmelCase ) def a_ (self ) -> Tuple: __UpperCamelCase , __UpperCamelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common() __UpperCamelCase : str = True __UpperCamelCase : Tuple = getattr(self.model_tester , "decoder_seq_length" , self.model_tester.seq_length ) __UpperCamelCase : Optional[int] = getattr(self.model_tester , "encoder_seq_length" , self.model_tester.seq_length ) __UpperCamelCase : Any = getattr(self.model_tester , "key_length" , _UpperCAmelCase ) __UpperCamelCase : List[Any] = getattr(self.model_tester , "key_length" , _UpperCAmelCase ) def check_decoder_attentions_output(_UpperCAmelCase ): __UpperCamelCase : Dict = len(_UpperCAmelCase ) self.assertEqual(out_len % 2 , 0 ) __UpperCamelCase : List[str] = outputs.decoder_attentions self.assertEqual(len(_UpperCAmelCase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, decoder_seq_length, decoder_key_length] , ) def check_encoder_attentions_output(_UpperCAmelCase ): __UpperCamelCase : Any = [ t.numpy() for t in (outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions) ] self.assertEqual(len(_UpperCAmelCase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) for model_class in self.all_model_classes: __UpperCamelCase : Any = True __UpperCamelCase : Dict = False __UpperCamelCase : str = model_class(_UpperCAmelCase ) __UpperCamelCase : Tuple = model(self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase ) ) __UpperCamelCase : List[Any] = len(_UpperCAmelCase ) self.assertEqual(config.output_hidden_states , _UpperCAmelCase ) check_encoder_attentions_output(_UpperCAmelCase ) if self.is_encoder_decoder: __UpperCamelCase : str = model_class(_UpperCAmelCase ) __UpperCamelCase : Dict = model(self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase ) ) self.assertEqual(config.output_hidden_states , _UpperCAmelCase ) check_decoder_attentions_output(_UpperCAmelCase ) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] __UpperCamelCase : Optional[Any] = True __UpperCamelCase : Tuple = model_class(_UpperCAmelCase ) __UpperCamelCase : int = model(self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase ) ) self.assertEqual(config.output_hidden_states , _UpperCAmelCase ) check_encoder_attentions_output(_UpperCAmelCase ) # Check attention is always last and order is fine __UpperCamelCase : int = True __UpperCamelCase : str = True __UpperCamelCase : Optional[Any] = model_class(_UpperCAmelCase ) __UpperCamelCase : Optional[int] = model(self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase ) ) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(_UpperCAmelCase ) ) self.assertEqual(model.config.output_hidden_states , _UpperCAmelCase ) check_encoder_attentions_output(_UpperCAmelCase ) @require_tf class A ( unittest.TestCase ): '''simple docstring''' @slow def a_ (self ) -> str: __UpperCamelCase : Dict = TFConvBertModel.from_pretrained("YituTech/conv-bert-base" ) __UpperCamelCase : str = tf.constant([[0, 1, 2, 3, 4, 5]] ) __UpperCamelCase : Optional[int] = model(_UpperCAmelCase )[0] __UpperCamelCase : Tuple = [1, 6, 7_6_8] self.assertEqual(output.shape , _UpperCAmelCase ) __UpperCamelCase : Any = tf.constant( [ [ [-0.03_475_493, -0.4_686_034, -0.30_638_832], [0.22_637_248, -0.26_988_646, -0.7_423_424], [0.10_324_868, -0.45_013_508, -0.58_280_784], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , _UpperCAmelCase , atol=1E-4 )
298
0
"""simple docstring""" from collections import OrderedDict from typing import TYPE_CHECKING, Any, List, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import TensorType, logging if TYPE_CHECKING: from ...onnx.config import PatchingSpec from ...tokenization_utils_base import PreTrainedTokenizerBase _snake_case = logging.get_logger(__name__) _snake_case = { 'allenai/longformer-base-4096': 'https://huggingface.co/allenai/longformer-base-4096/resolve/main/config.json', 'allenai/longformer-large-4096': 'https://huggingface.co/allenai/longformer-large-4096/resolve/main/config.json', 'allenai/longformer-large-4096-finetuned-triviaqa': ( 'https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/config.json' ), 'allenai/longformer-base-4096-extra.pos.embd.only': ( 'https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/config.json' ), 'allenai/longformer-large-4096-extra.pos.embd.only': ( 'https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/config.json' ), } class UpperCamelCase ( snake_case_ ): UpperCamelCase : Any = '''longformer''' def __init__( self : Union[str, Any] , UpperCAmelCase__ : Union[List[int], int] = 512 , UpperCAmelCase__ : int = 2 , UpperCAmelCase__ : int = 1 , UpperCAmelCase__ : int = 0 , UpperCAmelCase__ : int = 2 , UpperCAmelCase__ : int = 30522 , UpperCAmelCase__ : int = 768 , UpperCAmelCase__ : int = 12 , UpperCAmelCase__ : int = 12 , UpperCAmelCase__ : int = 3072 , UpperCAmelCase__ : str = "gelu" , UpperCAmelCase__ : float = 0.1 , UpperCAmelCase__ : float = 0.1 , UpperCAmelCase__ : int = 512 , UpperCAmelCase__ : int = 2 , UpperCAmelCase__ : float = 0.0_2 , UpperCAmelCase__ : float = 1E-12 , UpperCAmelCase__ : bool = False , **UpperCAmelCase__ : Optional[int] , ) -> Dict: super().__init__(pad_token_id=UpperCAmelCase__ , **UpperCAmelCase__ ) _a : str = attention_window _a : int = sep_token_id _a : List[str] = bos_token_id _a : int = eos_token_id _a : Optional[int] = vocab_size _a : List[Any] = hidden_size _a : Any = num_hidden_layers _a : Any = num_attention_heads _a : str = hidden_act _a : Optional[int] = intermediate_size _a : Any = hidden_dropout_prob _a : int = attention_probs_dropout_prob _a : str = max_position_embeddings _a : Tuple = type_vocab_size _a : int = initializer_range _a : int = layer_norm_eps _a : Optional[Any] = onnx_export class UpperCamelCase ( snake_case_ ): def __init__( self : Dict , UpperCAmelCase__ : "PretrainedConfig" , UpperCAmelCase__ : str = "default" , UpperCAmelCase__ : "List[PatchingSpec]" = None ) -> Dict: super().__init__(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) _a : Tuple = True @property def _lowercase ( self : Optional[Any] ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": _a : Optional[int] = {0: """batch""", 1: """choice""", 2: """sequence"""} else: _a : str = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ("""global_attention_mask""", dynamic_axis), ] ) @property def _lowercase ( self : Dict ) -> Mapping[str, Mapping[int, str]]: _a : int = super().outputs if self.task == "default": _a : Union[str, Any] = {0: """batch"""} return outputs @property def _lowercase ( self : Union[str, Any] ) -> float: return 1E-4 @property def _lowercase ( self : Tuple ) -> int: # needs to be >= 14 to support tril operator return max(super().default_onnx_opset , 14 ) def _lowercase ( self : Any , UpperCAmelCase__ : "PreTrainedTokenizerBase" , UpperCAmelCase__ : int = -1 , UpperCAmelCase__ : int = -1 , UpperCAmelCase__ : bool = False , UpperCAmelCase__ : Optional[TensorType] = None , ) -> Mapping[str, Any]: _a : str = super().generate_dummy_inputs( preprocessor=UpperCAmelCase__ , batch_size=UpperCAmelCase__ , seq_length=UpperCAmelCase__ , is_pair=UpperCAmelCase__ , framework=UpperCAmelCase__ ) import torch # for some reason, replacing this code by inputs["global_attention_mask"] = torch.randint(2, inputs["input_ids"].shape, dtype=torch.int64) # makes the export fail randomly _a : Optional[Any] = torch.zeros_like(inputs["""input_ids"""] ) # make every second token global _a : Tuple = 1 return inputs
324
"""simple docstring""" import argparse import os from pathlib import Path from typing import Dict import tensorflow as tf import torch from tqdm import tqdm from transformers import PegasusConfig, PegasusForConditionalGeneration, PegasusTokenizer from transformers.models.pegasus.configuration_pegasus import DEFAULTS, task_specific_params _snake_case = [ # replace left string with right string to get the relevant state_dict key (identical state dict to bart) ['memory_attention', 'encoder_attn'], ['attention', 'attn'], ['/', '.'], ['.LayerNorm.gamma', '_layer_norm.weight'], ['.LayerNorm.beta', '_layer_norm.bias'], ['r.layer_', 'r.layers.'], ['output_proj', 'out_proj'], ['ffn.dense_1.', 'fc2.'], ['ffn.dense.', 'fc1.'], ['ffn_layer_norm', 'final_layer_norm'], ['kernel', 'weight'], ['encoder_layer_norm.', 'encoder.layer_norm.'], ['decoder_layer_norm.', 'decoder.layer_norm.'], ['embeddings.weights', 'shared.weight'], ] def lowerCAmelCase__ ( UpperCamelCase__ ): '''simple docstring''' for pegasus_name, hf_name in PATTERNS: _a : Optional[Any] = k.replace(UpperCamelCase__ , UpperCamelCase__ ) return k def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' _a : Union[str, Any] = DEFAULTS.copy() cfg_kwargs.update(UpperCamelCase__ ) _a : Optional[Any] = PegasusConfig(**UpperCamelCase__ ) _a : Tuple = PegasusForConditionalGeneration(UpperCamelCase__ ) _a : str = torch_model.model.state_dict() _a : Union[str, Any] = {} for k, v in tf_weights.items(): _a : Any = rename_state_dict_key(UpperCamelCase__ ) if new_k not in sd: raise ValueError(F"""could not find new key {new_k} in state dict. (converted from {k})""" ) if "dense" in k or "proj" in new_k: _a : str = v.T _a : int = torch.tensor(UpperCamelCase__ , dtype=sd[new_k].dtype ) assert v.shape == sd[new_k].shape, F"""{new_k}, {k}, {v.shape}, {sd[new_k].shape}""" # make sure embedding.padding_idx is respected _a : Union[str, Any] = torch.zeros_like(mapping["""shared.weight"""][cfg.pad_token_id + 1] ) _a : str = mapping["""shared.weight"""] _a : Union[str, Any] = mapping["""shared.weight"""] _a : Optional[Any] = {k: torch.zeros_like(UpperCamelCase__ ) for k, v in sd.items() if k.endswith("""bias""" ) and k not in mapping} mapping.update(**UpperCamelCase__ ) _a , _a : int = torch_model.model.load_state_dict(UpperCamelCase__ , strict=UpperCamelCase__ ) _a : Optional[Any] = [ k for k in missing if k not in ["""encoder.embed_positions.weight""", """decoder.embed_positions.weight"""] ] assert unexpected_missing == [], F"""no matches found for the following torch keys {unexpected_missing}""" assert extra == [], F"""no matches found for the following tf keys {extra}""" return torch_model def lowerCAmelCase__ ( UpperCamelCase__="./ckpt/aeslc/model.ckpt-32000" ): '''simple docstring''' _a : List[Any] = tf.train.list_variables(UpperCamelCase__ ) _a : Optional[int] = {} _a : Dict = ["""Adafactor""", """global_step"""] for name, shape in tqdm(UpperCamelCase__ , desc="""converting tf checkpoint to dict""" ): _a : Optional[Any] = any(pat in name for pat in ignore_name ) if skip_key: continue _a : str = tf.train.load_variable(UpperCamelCase__ , UpperCamelCase__ ) _a : int = array return tf_weights def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' # save tokenizer first _a : Dict = Path(UpperCamelCase__ ).parent.name _a : Optional[Any] = task_specific_params[F"""summarization_{dataset}"""]["""max_position_embeddings"""] _a : Tuple = PegasusTokenizer.from_pretrained("""sshleifer/pegasus""" , model_max_length=UpperCamelCase__ ) assert tok.model_max_length == desired_max_model_length tok.save_pretrained(UpperCamelCase__ ) # convert model _a : List[Any] = get_tf_weights_as_numpy(UpperCamelCase__ ) _a : Dict = task_specific_params[F"""summarization_{dataset}"""] if dataset == "large": _a : Tuple = task_specific_params _a : Optional[int] = convert_pegasus(UpperCamelCase__ , UpperCamelCase__ ) torch_model.save_pretrained(UpperCamelCase__ ) _a : Dict = torch_model.state_dict() sd.pop("""model.decoder.embed_positions.weight""" ) sd.pop("""model.encoder.embed_positions.weight""" ) torch.save(UpperCamelCase__ , Path(UpperCamelCase__ ) / """pytorch_model.bin""" ) if __name__ == "__main__": _snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument('tf_ckpt_path', type=str, help='passed to tf.train.list_variables') parser.add_argument('save_dir', default=None, type=str, help='Path to the output PyTorch model.') _snake_case = parser.parse_args() if args.save_dir is None: _snake_case = Path(args.tf_ckpt_path).parent.name _snake_case = os.path.join('pegasus', dataset) convert_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir)
324
1
import argparse import json import os import sys import tempfile import unittest from argparse import Namespace from dataclasses import dataclass, field from enum import Enum from pathlib import Path from typing import List, Literal, Optional import yaml from transformers import HfArgumentParser, TrainingArguments from transformers.hf_argparser import make_choice_type_function, string_to_bool # Since Python 3.10, we can use the builtin `|` operator for Union types # See PEP 604: https://peps.python.org/pep-0604 SCREAMING_SNAKE_CASE : Optional[int] = sys.version_info >= (3, 10) def UpperCamelCase_( lowerCamelCase_=None , lowerCamelCase_=None ) -> Optional[int]: return field(default_factory=lambda: default , metadata=lowerCamelCase_ ) @dataclass class _lowerCamelCase: lowercase_ : int lowercase_ : float lowercase_ : str lowercase_ : bool @dataclass class _lowerCamelCase: lowercase_ : int = 42 lowercase_ : str = field(default="""toto""", metadata={"""help""": """help message"""} ) @dataclass class _lowerCamelCase: lowercase_ : bool = False lowercase_ : bool = True lowercase_ : Optional[bool] = None class _lowerCamelCase( _a ): lowercase_ : Tuple = """titi""" lowercase_ : Optional[Any] = """toto""" class _lowerCamelCase( _a ): lowercase_ : Optional[Any] = """titi""" lowercase_ : Any = """toto""" lowercase_ : List[str] = 42 @dataclass class _lowerCamelCase: lowercase_ : BasicEnum = "toto" def UpperCamelCase ( self) -> str: """simple docstring""" _lowercase : Dict = BasicEnum(self.foo) @dataclass class _lowerCamelCase: lowercase_ : MixedTypeEnum = "toto" def UpperCamelCase ( self) -> Union[str, Any]: """simple docstring""" _lowercase : int = MixedTypeEnum(self.foo) @dataclass class _lowerCamelCase: lowercase_ : Optional[int] = None lowercase_ : Optional[float] = field(default=_a, metadata={"""help""": """help message"""} ) lowercase_ : Optional[str] = None lowercase_ : Optional[List[str]] = list_field(default=[] ) lowercase_ : Optional[List[int]] = list_field(default=[] ) @dataclass class _lowerCamelCase: lowercase_ : List[int] = list_field(default=[] ) lowercase_ : List[int] = list_field(default=[1, 2, 3] ) lowercase_ : List[str] = list_field(default=["""Hallo""", """Bonjour""", """Hello"""] ) lowercase_ : List[float] = list_field(default=[0.1, 0.2, 0.3] ) @dataclass class _lowerCamelCase: lowercase_ : List[int] = field() lowercase_ : str = field() lowercase_ : BasicEnum = field() def UpperCamelCase ( self) -> List[Any]: """simple docstring""" _lowercase : int = BasicEnum(self.required_enum) @dataclass class _lowerCamelCase: lowercase_ : int lowercase_ : "BasicEnum" = field() lowercase_ : "Optional[bool]" = None lowercase_ : "str" = field(default="""toto""", metadata={"""help""": """help message"""} ) lowercase_ : "List[str]" = list_field(default=["""Hallo""", """Bonjour""", """Hello"""] ) if is_python_no_less_than_3_10: @dataclass class _lowerCamelCase: lowercase_ : bool = False lowercase_ : bool = True lowercase_ : bool | None = None @dataclass class _lowerCamelCase: lowercase_ : int | None = None lowercase_ : float | None = field(default=_a, metadata={"""help""": """help message"""} ) lowercase_ : str | None = None lowercase_ : list[str] | None = list_field(default=[] ) lowercase_ : list[int] | None = list_field(default=[] ) class _lowerCamelCase( unittest.TestCase ): def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase) -> List[str]: """simple docstring""" self.assertEqual(len(a._actions), len(b._actions)) for x, y in zip(a._actions, b._actions): _lowercase : str = {k: v for k, v in vars(lowerCamelCase).items() if k != 'container'} _lowercase : Any = {k: v for k, v in vars(lowerCamelCase).items() if k != 'container'} # Choices with mixed type have custom function as "type" # So we need to compare results directly for equality if xx.get('choices', lowerCamelCase) and yy.get('choices', lowerCamelCase): for expected_choice in yy["choices"] + xx["choices"]: self.assertEqual(xx['type'](lowerCamelCase), yy['type'](lowerCamelCase)) del xx["type"], yy["type"] self.assertEqual(lowerCamelCase, lowerCamelCase) def UpperCamelCase ( self) -> List[str]: """simple docstring""" _lowercase : List[str] = HfArgumentParser(lowerCamelCase) _lowercase : str = argparse.ArgumentParser() expected.add_argument('--foo', type=lowerCamelCase, required=lowerCamelCase) expected.add_argument('--bar', type=lowerCamelCase, required=lowerCamelCase) expected.add_argument('--baz', type=lowerCamelCase, required=lowerCamelCase) expected.add_argument('--flag', type=lowerCamelCase, default=lowerCamelCase, const=lowerCamelCase, nargs='?') self.argparsersEqual(lowerCamelCase, lowerCamelCase) _lowercase : List[str] = ['--foo', '1', '--baz', 'quux', '--bar', '0.5'] ((_lowercase) , ) : Union[str, Any] = parser.parse_args_into_dataclasses(lowerCamelCase, look_for_args_file=lowerCamelCase) self.assertFalse(example.flag) def UpperCamelCase ( self) -> Dict: """simple docstring""" _lowercase : Dict = HfArgumentParser(lowerCamelCase) _lowercase : Any = argparse.ArgumentParser() expected.add_argument('--foo', default=42, type=lowerCamelCase) expected.add_argument('--baz', default='toto', type=lowerCamelCase, help='help message') self.argparsersEqual(lowerCamelCase, lowerCamelCase) def UpperCamelCase ( self) -> Optional[int]: """simple docstring""" _lowercase : int = argparse.ArgumentParser() expected.add_argument('--foo', type=lowerCamelCase, default=lowerCamelCase, const=lowerCamelCase, nargs='?') expected.add_argument('--baz', type=lowerCamelCase, default=lowerCamelCase, const=lowerCamelCase, nargs='?') # A boolean no_* argument always has to come after its "default: True" regular counter-part # and its default must be set to False expected.add_argument('--no_baz', action='store_false', default=lowerCamelCase, dest='baz') expected.add_argument('--opt', type=lowerCamelCase, default=lowerCamelCase) _lowercase : Optional[Any] = [WithDefaultBoolExample] if is_python_no_less_than_3_10: dataclass_types.append(lowerCamelCase) for dataclass_type in dataclass_types: _lowercase : List[str] = HfArgumentParser(lowerCamelCase) self.argparsersEqual(lowerCamelCase, lowerCamelCase) _lowercase : List[str] = parser.parse_args([]) self.assertEqual(lowerCamelCase, Namespace(foo=lowerCamelCase, baz=lowerCamelCase, opt=lowerCamelCase)) _lowercase : List[str] = parser.parse_args(['--foo', '--no_baz']) self.assertEqual(lowerCamelCase, Namespace(foo=lowerCamelCase, baz=lowerCamelCase, opt=lowerCamelCase)) _lowercase : Tuple = parser.parse_args(['--foo', '--baz']) self.assertEqual(lowerCamelCase, Namespace(foo=lowerCamelCase, baz=lowerCamelCase, opt=lowerCamelCase)) _lowercase : Optional[int] = parser.parse_args(['--foo', 'True', '--baz', 'True', '--opt', 'True']) self.assertEqual(lowerCamelCase, Namespace(foo=lowerCamelCase, baz=lowerCamelCase, opt=lowerCamelCase)) _lowercase : Union[str, Any] = parser.parse_args(['--foo', 'False', '--baz', 'False', '--opt', 'False']) self.assertEqual(lowerCamelCase, Namespace(foo=lowerCamelCase, baz=lowerCamelCase, opt=lowerCamelCase)) def UpperCamelCase ( self) -> int: """simple docstring""" _lowercase : Tuple = HfArgumentParser(lowerCamelCase) _lowercase : Any = argparse.ArgumentParser() expected.add_argument( '--foo', default='toto', choices=['titi', 'toto', 42], type=make_choice_type_function(['titi', 'toto', 42]), ) self.argparsersEqual(lowerCamelCase, lowerCamelCase) _lowercase : Dict = parser.parse_args([]) self.assertEqual(args.foo, 'toto') _lowercase : Any = parser.parse_args_into_dataclasses([])[0] self.assertEqual(enum_ex.foo, MixedTypeEnum.toto) _lowercase : str = parser.parse_args(['--foo', 'titi']) self.assertEqual(args.foo, 'titi') _lowercase : Optional[Any] = parser.parse_args_into_dataclasses(['--foo', 'titi'])[0] self.assertEqual(enum_ex.foo, MixedTypeEnum.titi) _lowercase : Optional[int] = parser.parse_args(['--foo', '42']) self.assertEqual(args.foo, 42) _lowercase : List[str] = parser.parse_args_into_dataclasses(['--foo', '42'])[0] self.assertEqual(enum_ex.foo, MixedTypeEnum.fourtytwo) def UpperCamelCase ( self) -> Tuple: """simple docstring""" @dataclass class _lowerCamelCase: lowercase_ : Literal["titi", "toto", 42] = "toto" _lowercase : Union[str, Any] = HfArgumentParser(lowerCamelCase) _lowercase : Dict = argparse.ArgumentParser() expected.add_argument( '--foo', default='toto', choices=('titi', 'toto', 42), type=make_choice_type_function(['titi', 'toto', 42]), ) self.argparsersEqual(lowerCamelCase, lowerCamelCase) _lowercase : List[Any] = parser.parse_args([]) self.assertEqual(args.foo, 'toto') _lowercase : List[Any] = parser.parse_args(['--foo', 'titi']) self.assertEqual(args.foo, 'titi') _lowercase : Any = parser.parse_args(['--foo', '42']) self.assertEqual(args.foo, 42) def UpperCamelCase ( self) -> Union[str, Any]: """simple docstring""" _lowercase : List[str] = HfArgumentParser(lowerCamelCase) _lowercase : int = argparse.ArgumentParser() expected.add_argument('--foo_int', nargs='+', default=[], type=lowerCamelCase) expected.add_argument('--bar_int', nargs='+', default=[1, 2, 3], type=lowerCamelCase) expected.add_argument('--foo_str', nargs='+', default=['Hallo', 'Bonjour', 'Hello'], type=lowerCamelCase) expected.add_argument('--foo_float', nargs='+', default=[0.1, 0.2, 0.3], type=lowerCamelCase) self.argparsersEqual(lowerCamelCase, lowerCamelCase) _lowercase : Optional[Any] = parser.parse_args([]) self.assertEqual( lowerCamelCase, Namespace(foo_int=[], bar_int=[1, 2, 3], foo_str=['Hallo', 'Bonjour', 'Hello'], foo_float=[0.1, 0.2, 0.3]), ) _lowercase : List[str] = parser.parse_args('--foo_int 1 --bar_int 2 3 --foo_str a b c --foo_float 0.1 0.7'.split()) self.assertEqual(lowerCamelCase, Namespace(foo_int=[1], bar_int=[2, 3], foo_str=['a', 'b', 'c'], foo_float=[0.1, 0.7])) def UpperCamelCase ( self) -> Optional[Any]: """simple docstring""" _lowercase : Dict = argparse.ArgumentParser() expected.add_argument('--foo', default=lowerCamelCase, type=lowerCamelCase) expected.add_argument('--bar', default=lowerCamelCase, type=lowerCamelCase, help='help message') expected.add_argument('--baz', default=lowerCamelCase, type=lowerCamelCase) expected.add_argument('--ces', nargs='+', default=[], type=lowerCamelCase) expected.add_argument('--des', nargs='+', default=[], type=lowerCamelCase) _lowercase : Any = [OptionalExample] if is_python_no_less_than_3_10: dataclass_types.append(lowerCamelCase) for dataclass_type in dataclass_types: _lowercase : Dict = HfArgumentParser(lowerCamelCase) self.argparsersEqual(lowerCamelCase, lowerCamelCase) _lowercase : List[str] = parser.parse_args([]) self.assertEqual(lowerCamelCase, Namespace(foo=lowerCamelCase, bar=lowerCamelCase, baz=lowerCamelCase, ces=[], des=[])) _lowercase : Union[str, Any] = parser.parse_args('--foo 12 --bar 3.14 --baz 42 --ces a b c --des 1 2 3'.split()) self.assertEqual(lowerCamelCase, Namespace(foo=12, bar=3.1_4, baz='42', ces=['a', 'b', 'c'], des=[1, 2, 3])) def UpperCamelCase ( self) -> str: """simple docstring""" _lowercase : Optional[Any] = HfArgumentParser(lowerCamelCase) _lowercase : Optional[int] = argparse.ArgumentParser() expected.add_argument('--required_list', nargs='+', type=lowerCamelCase, required=lowerCamelCase) expected.add_argument('--required_str', type=lowerCamelCase, required=lowerCamelCase) expected.add_argument( '--required_enum', type=make_choice_type_function(['titi', 'toto']), choices=['titi', 'toto'], required=lowerCamelCase, ) self.argparsersEqual(lowerCamelCase, lowerCamelCase) def UpperCamelCase ( self) -> Dict: """simple docstring""" _lowercase : List[Any] = HfArgumentParser(lowerCamelCase) _lowercase : Optional[int] = argparse.ArgumentParser() expected.add_argument('--foo', type=lowerCamelCase, required=lowerCamelCase) expected.add_argument( '--required_enum', type=make_choice_type_function(['titi', 'toto']), choices=['titi', 'toto'], required=lowerCamelCase, ) expected.add_argument('--opt', type=lowerCamelCase, default=lowerCamelCase) expected.add_argument('--baz', default='toto', type=lowerCamelCase, help='help message') expected.add_argument('--foo_str', nargs='+', default=['Hallo', 'Bonjour', 'Hello'], type=lowerCamelCase) self.argparsersEqual(lowerCamelCase, lowerCamelCase) def UpperCamelCase ( self) -> int: """simple docstring""" _lowercase : Optional[int] = HfArgumentParser(lowerCamelCase) _lowercase : Any = { 'foo': 12, 'bar': 3.1_4, 'baz': '42', 'flag': True, } _lowercase : Tuple = parser.parse_dict(lowerCamelCase)[0] _lowercase : Dict = BasicExample(**lowerCamelCase) self.assertEqual(lowerCamelCase, lowerCamelCase) def UpperCamelCase ( self) -> int: """simple docstring""" _lowercase : Dict = HfArgumentParser(lowerCamelCase) _lowercase : Any = { 'foo': 12, 'bar': 3.1_4, 'baz': '42', 'flag': True, 'extra': 42, } self.assertRaises(lowerCamelCase, parser.parse_dict, lowerCamelCase, allow_extra_keys=lowerCamelCase) def UpperCamelCase ( self) -> Tuple: """simple docstring""" _lowercase : Tuple = HfArgumentParser(lowerCamelCase) _lowercase : Tuple = { 'foo': 12, 'bar': 3.1_4, 'baz': '42', 'flag': True, } with tempfile.TemporaryDirectory() as tmp_dir: _lowercase : Optional[Any] = os.path.join(lowerCamelCase, 'temp_json') os.mkdir(lowerCamelCase) with open(temp_local_path + '.json', 'w+') as f: json.dump(lowerCamelCase, lowerCamelCase) _lowercase : int = parser.parse_yaml_file(Path(temp_local_path + '.json'))[0] _lowercase : int = BasicExample(**lowerCamelCase) self.assertEqual(lowerCamelCase, lowerCamelCase) def UpperCamelCase ( self) -> int: """simple docstring""" _lowercase : int = HfArgumentParser(lowerCamelCase) _lowercase : Tuple = { 'foo': 12, 'bar': 3.1_4, 'baz': '42', 'flag': True, } with tempfile.TemporaryDirectory() as tmp_dir: _lowercase : List[Any] = os.path.join(lowerCamelCase, 'temp_yaml') os.mkdir(lowerCamelCase) with open(temp_local_path + '.yaml', 'w+') as f: yaml.dump(lowerCamelCase, lowerCamelCase) _lowercase : str = parser.parse_yaml_file(Path(temp_local_path + '.yaml'))[0] _lowercase : Any = BasicExample(**lowerCamelCase) self.assertEqual(lowerCamelCase, lowerCamelCase) def UpperCamelCase ( self) -> Dict: """simple docstring""" _lowercase : Tuple = HfArgumentParser(lowerCamelCase) self.assertIsNotNone(lowerCamelCase)
21
from __future__ import annotations from fractions import Fraction from math import gcd, sqrt def UpperCamelCase_( lowerCamelCase_ ) -> bool: _lowercase : int = int(number**0.5 ) return number == sq * sq def UpperCamelCase_( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) -> tuple[int, int]: _lowercase : int = x_num * y_den * z_den + y_num * x_den * z_den + z_num * x_den * y_den _lowercase : int = x_den * y_den * z_den _lowercase : int = gcd(lowerCamelCase_ , lowerCamelCase_ ) top //= hcf bottom //= hcf return top, bottom def UpperCamelCase_( lowerCamelCase_ = 35 ) -> int: _lowercase : set = set() _lowercase : int _lowercase : Fraction = Fraction(0 ) _lowercase : tuple[int, int] for x_num in range(1 , order + 1 ): for x_den in range(x_num + 1 , order + 1 ): for y_num in range(1 , order + 1 ): for y_den in range(y_num + 1 , order + 1 ): # n=1 _lowercase : int = x_num * y_den + x_den * y_num _lowercase : int = x_den * y_den _lowercase : str = gcd(lowerCamelCase_ , lowerCamelCase_ ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: _lowercase : List[Any] = add_three( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) unique_s.add(lowerCamelCase_ ) # n=2 _lowercase : Dict = ( x_num * x_num * y_den * y_den + x_den * x_den * y_num * y_num ) _lowercase : List[Any] = x_den * x_den * y_den * y_den if is_sq(lowerCamelCase_ ) and is_sq(lowerCamelCase_ ): _lowercase : Tuple = int(sqrt(lowerCamelCase_ ) ) _lowercase : int = int(sqrt(lowerCamelCase_ ) ) _lowercase : Any = gcd(lowerCamelCase_ , lowerCamelCase_ ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: _lowercase : Optional[int] = add_three( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) unique_s.add(lowerCamelCase_ ) # n=-1 _lowercase : Any = x_num * y_num _lowercase : str = x_den * y_num + x_num * y_den _lowercase : Any = gcd(lowerCamelCase_ , lowerCamelCase_ ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: _lowercase : int = add_three( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) unique_s.add(lowerCamelCase_ ) # n=2 _lowercase : str = x_num * x_num * y_num * y_num _lowercase : Optional[Any] = ( x_den * x_den * y_num * y_num + x_num * x_num * y_den * y_den ) if is_sq(lowerCamelCase_ ) and is_sq(lowerCamelCase_ ): _lowercase : Tuple = int(sqrt(lowerCamelCase_ ) ) _lowercase : List[str] = int(sqrt(lowerCamelCase_ ) ) _lowercase : Union[str, Any] = gcd(lowerCamelCase_ , lowerCamelCase_ ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: _lowercase : Tuple = add_three( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) unique_s.add(lowerCamelCase_ ) for num, den in unique_s: total += Fraction(lowerCamelCase_ , lowerCamelCase_ ) return total.denominator + total.numerator if __name__ == "__main__": print(F"{solution() = }")
21
1
import argparse import logging import pickle from collections import Counter logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''', datefmt='''%m/%d/%Y %H:%M:%S''', level=logging.INFO ) __UpperCAmelCase = logging.getLogger(__name__) if __name__ == "__main__": __UpperCAmelCase = argparse.ArgumentParser( description='''Token Counts for smoothing the masking probabilities in MLM (cf XLM/word2vec)''' ) parser.add_argument( '''--data_file''', type=str, default='''data/dump.bert-base-uncased.pickle''', help='''The binarized dataset.''' ) parser.add_argument( '''--token_counts_dump''', type=str, default='''data/token_counts.bert-base-uncased.pickle''', help='''The dump file.''' ) parser.add_argument('''--vocab_size''', default=3_05_22, type=int) __UpperCAmelCase = parser.parse_args() logger.info(f"""Loading data from {args.data_file}""") with open(args.data_file, '''rb''') as fp: __UpperCAmelCase = pickle.load(fp) logger.info('''Counting occurrences for MLM.''') __UpperCAmelCase = Counter() for tk_ids in data: counter.update(tk_ids) __UpperCAmelCase = [0] * args.vocab_size for k, v in counter.items(): __UpperCAmelCase = v logger.info(f"""Dump to {args.token_counts_dump}""") with open(args.token_counts_dump, '''wb''') as handle: pickle.dump(counts, handle, protocol=pickle.HIGHEST_PROTOCOL)
42
import json import os import torch from diffusers import UNetaDModel os.makedirs('''hub/hopper-medium-v2/unet/hor32''', exist_ok=True) os.makedirs('''hub/hopper-medium-v2/unet/hor128''', exist_ok=True) os.makedirs('''hub/hopper-medium-v2/value_function''', exist_ok=True) def __lowerCamelCase ( __magic_name__ : List[Any] ): if hor == 128: a__: Union[str, Any] =("DownResnetBlock1D", "DownResnetBlock1D", "DownResnetBlock1D") a__: Optional[int] =(32, 128, 256) a__: Tuple =("UpResnetBlock1D", "UpResnetBlock1D") elif hor == 32: a__: Tuple =("DownResnetBlock1D", "DownResnetBlock1D", "DownResnetBlock1D", "DownResnetBlock1D") a__: List[Any] =(32, 64, 128, 256) a__: List[str] =("UpResnetBlock1D", "UpResnetBlock1D", "UpResnetBlock1D") a__: Dict =torch.load(F"/Users/bglickenhaus/Documents/diffuser/temporal_unet-hopper-mediumv2-hor{hor}.torch" ) a__: Optional[int] =model.state_dict() a__: str ={ "down_block_types": down_block_types, "block_out_channels": block_out_channels, "up_block_types": up_block_types, "layers_per_block": 1, "use_timestep_embedding": True, "out_block_type": "OutConv1DBlock", "norm_num_groups": 8, "downsample_each_block": False, "in_channels": 14, "out_channels": 14, "extra_in_channels": 0, "time_embedding_type": "positional", "flip_sin_to_cos": False, "freq_shift": 1, "sample_size": 65_536, "mid_block_type": "MidResTemporalBlock1D", "act_fn": "mish", } a__: List[Any] =UNetaDModel(**__magic_name__ ) print(F"length of state dict: {len(state_dict.keys() )}" ) print(F"length of value function dict: {len(hf_value_function.state_dict().keys() )}" ) a__: Tuple =dict(zip(model.state_dict().keys() , hf_value_function.state_dict().keys() ) ) for k, v in mapping.items(): a__: Dict =state_dict.pop(__magic_name__ ) hf_value_function.load_state_dict(__magic_name__ ) torch.save(hf_value_function.state_dict() , F"hub/hopper-medium-v2/unet/hor{hor}/diffusion_pytorch_model.bin" ) with open(F"hub/hopper-medium-v2/unet/hor{hor}/config.json" , "w" ) as f: json.dump(__magic_name__ , __magic_name__ ) def __lowerCamelCase ( ): a__: Union[str, Any] ={ "in_channels": 14, "down_block_types": ("DownResnetBlock1D", "DownResnetBlock1D", "DownResnetBlock1D", "DownResnetBlock1D"), "up_block_types": (), "out_block_type": "ValueFunction", "mid_block_type": "ValueFunctionMidBlock1D", "block_out_channels": (32, 64, 128, 256), "layers_per_block": 1, "downsample_each_block": True, "sample_size": 65_536, "out_channels": 14, "extra_in_channels": 0, "time_embedding_type": "positional", "use_timestep_embedding": True, "flip_sin_to_cos": False, "freq_shift": 1, "norm_num_groups": 8, "act_fn": "mish", } a__: Union[str, Any] =torch.load("/Users/bglickenhaus/Documents/diffuser/value_function-hopper-mediumv2-hor32.torch" ) a__: Any =model a__: str =UNetaDModel(**__magic_name__ ) print(F"length of state dict: {len(state_dict.keys() )}" ) print(F"length of value function dict: {len(hf_value_function.state_dict().keys() )}" ) a__: List[str] =dict(zip(state_dict.keys() , hf_value_function.state_dict().keys() ) ) for k, v in mapping.items(): a__: List[Any] =state_dict.pop(__magic_name__ ) hf_value_function.load_state_dict(__magic_name__ ) torch.save(hf_value_function.state_dict() , "hub/hopper-medium-v2/value_function/diffusion_pytorch_model.bin" ) with open("hub/hopper-medium-v2/value_function/config.json" , "w" ) as f: json.dump(__magic_name__ , __magic_name__ ) if __name__ == "__main__": unet(32) # unet(128) value_function()
42
1
"""simple docstring""" from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Features, Sequence, Value from .base import TaskTemplate @dataclass(frozen=lowercase__ ) class A_ (lowercase__ ): '''simple docstring''' # `task` is not a ClassVar since we want it to be part of the `asdict` output for JSON serialization SCREAMING_SNAKE_CASE__ : str = field(default="""question-answering-extractive""" ,metadata={"""include_in_asdict_even_if_is_default""": True} ) SCREAMING_SNAKE_CASE__ : ClassVar[Features] = Features({"""question""": Value("""string""" ), """context""": Value("""string""" )} ) SCREAMING_SNAKE_CASE__ : ClassVar[Features] = Features( { """answers""": Sequence( { """text""": Value("""string""" ), """answer_start""": Value("""int32""" ), } ) } ) SCREAMING_SNAKE_CASE__ : str = "question" SCREAMING_SNAKE_CASE__ : str = "context" SCREAMING_SNAKE_CASE__ : str = "answers" @property def UpperCamelCase__ ( self ): """simple docstring""" return {self.question_column: "question", self.context_column: "context", self.answers_column: "answers"}
61
import contextlib import csv import json import os import sqlitea import tarfile import textwrap import zipfile import pyarrow as pa import pyarrow.parquet as pq import pytest import datasets import datasets.config @pytest.fixture(scope='session' ) def UpperCAmelCase_ ( ) -> str: SCREAMING_SNAKE_CASE_ = 10 SCREAMING_SNAKE_CASE_ = datasets.Features( { 'tokens': datasets.Sequence(datasets.Value('string' ) ), 'labels': datasets.Sequence(datasets.ClassLabel(names=['negative', 'positive'] ) ), 'answers': datasets.Sequence( { 'text': datasets.Value('string' ), 'answer_start': datasets.Value('int32' ), } ), 'id': datasets.Value('int64' ), } ) SCREAMING_SNAKE_CASE_ = datasets.Dataset.from_dict( { 'tokens': [['foo'] * 5] * n, 'labels': [[1] * 5] * n, 'answers': [{'answer_start': [97], 'text': ['1976']}] * 10, 'id': list(range(__UpperCAmelCase ) ), } , features=__UpperCAmelCase , ) return dataset @pytest.fixture(scope='session' ) def UpperCAmelCase_ ( __UpperCAmelCase : Tuple , __UpperCAmelCase : str ) -> int: SCREAMING_SNAKE_CASE_ = str(tmp_path_factory.mktemp('data' ) / 'file.arrow' ) dataset.map(cache_file_name=__UpperCAmelCase ) return filename # FILE_CONTENT + files lowerCamelCase__ : List[Any] = '\\n Text data.\n Second line of data.' @pytest.fixture(scope='session' ) def UpperCAmelCase_ ( __UpperCAmelCase : Any ) -> List[str]: SCREAMING_SNAKE_CASE_ = tmp_path_factory.mktemp('data' ) / 'file.txt' SCREAMING_SNAKE_CASE_ = FILE_CONTENT with open(__UpperCAmelCase , 'w' ) as f: f.write(__UpperCAmelCase ) return filename @pytest.fixture(scope='session' ) def UpperCAmelCase_ ( __UpperCAmelCase : Dict ) -> List[str]: import bza SCREAMING_SNAKE_CASE_ = tmp_path_factory.mktemp('data' ) / 'file.txt.bz2' SCREAMING_SNAKE_CASE_ = bytes(__UpperCAmelCase , 'utf-8' ) with bza.open(__UpperCAmelCase , 'wb' ) as f: f.write(__UpperCAmelCase ) return path @pytest.fixture(scope='session' ) def UpperCAmelCase_ ( __UpperCAmelCase : List[Any] ) -> Any: import gzip SCREAMING_SNAKE_CASE_ = str(tmp_path_factory.mktemp('data' ) / 'file.txt.gz' ) SCREAMING_SNAKE_CASE_ = bytes(__UpperCAmelCase , 'utf-8' ) with gzip.open(__UpperCAmelCase , 'wb' ) as f: f.write(__UpperCAmelCase ) return path @pytest.fixture(scope='session' ) def UpperCAmelCase_ ( __UpperCAmelCase : List[str] ) -> int: if datasets.config.LZ4_AVAILABLE: import lza.frame SCREAMING_SNAKE_CASE_ = tmp_path_factory.mktemp('data' ) / 'file.txt.lz4' SCREAMING_SNAKE_CASE_ = bytes(__UpperCAmelCase , 'utf-8' ) with lza.frame.open(__UpperCAmelCase , 'wb' ) as f: f.write(__UpperCAmelCase ) return path @pytest.fixture(scope='session' ) def UpperCAmelCase_ ( __UpperCAmelCase : List[Any] , __UpperCAmelCase : Union[str, Any] ) -> Any: if datasets.config.PY7ZR_AVAILABLE: import pyazr SCREAMING_SNAKE_CASE_ = tmp_path_factory.mktemp('data' ) / 'file.txt.7z' with pyazr.SevenZipFile(__UpperCAmelCase , 'w' ) as archive: archive.write(__UpperCAmelCase , arcname=os.path.basename(__UpperCAmelCase ) ) return path @pytest.fixture(scope='session' ) def UpperCAmelCase_ ( __UpperCAmelCase : Dict , __UpperCAmelCase : str ) -> str: import tarfile SCREAMING_SNAKE_CASE_ = tmp_path_factory.mktemp('data' ) / 'file.txt.tar' with tarfile.TarFile(__UpperCAmelCase , 'w' ) as f: f.add(__UpperCAmelCase , arcname=os.path.basename(__UpperCAmelCase ) ) return path @pytest.fixture(scope='session' ) def UpperCAmelCase_ ( __UpperCAmelCase : str ) -> List[Any]: import lzma SCREAMING_SNAKE_CASE_ = tmp_path_factory.mktemp('data' ) / 'file.txt.xz' SCREAMING_SNAKE_CASE_ = bytes(__UpperCAmelCase , 'utf-8' ) with lzma.open(__UpperCAmelCase , 'wb' ) as f: f.write(__UpperCAmelCase ) return path @pytest.fixture(scope='session' ) def UpperCAmelCase_ ( __UpperCAmelCase : Dict , __UpperCAmelCase : Dict ) -> str: import zipfile SCREAMING_SNAKE_CASE_ = tmp_path_factory.mktemp('data' ) / 'file.txt.zip' with zipfile.ZipFile(__UpperCAmelCase , 'w' ) as f: f.write(__UpperCAmelCase , arcname=os.path.basename(__UpperCAmelCase ) ) return path @pytest.fixture(scope='session' ) def UpperCAmelCase_ ( __UpperCAmelCase : Dict ) -> Any: if datasets.config.ZSTANDARD_AVAILABLE: import zstandard as zstd SCREAMING_SNAKE_CASE_ = tmp_path_factory.mktemp('data' ) / 'file.txt.zst' SCREAMING_SNAKE_CASE_ = bytes(__UpperCAmelCase , 'utf-8' ) with zstd.open(__UpperCAmelCase , 'wb' ) as f: f.write(__UpperCAmelCase ) return path @pytest.fixture(scope='session' ) def UpperCAmelCase_ ( __UpperCAmelCase : int ) -> List[Any]: SCREAMING_SNAKE_CASE_ = tmp_path_factory.mktemp('data' ) / 'file.xml' SCREAMING_SNAKE_CASE_ = textwrap.dedent( '\\n <?xml version="1.0" encoding="UTF-8" ?>\n <tmx version="1.4">\n <header segtype="sentence" srclang="ca" />\n <body>\n <tu>\n <tuv xml:lang="ca"><seg>Contingut 1</seg></tuv>\n <tuv xml:lang="en"><seg>Content 1</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang="ca"><seg>Contingut 2</seg></tuv>\n <tuv xml:lang="en"><seg>Content 2</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang="ca"><seg>Contingut 3</seg></tuv>\n <tuv xml:lang="en"><seg>Content 3</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang="ca"><seg>Contingut 4</seg></tuv>\n <tuv xml:lang="en"><seg>Content 4</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang="ca"><seg>Contingut 5</seg></tuv>\n <tuv xml:lang="en"><seg>Content 5</seg></tuv>\n </tu>\n </body>\n </tmx>' ) with open(__UpperCAmelCase , 'w' ) as f: f.write(__UpperCAmelCase ) return filename lowerCamelCase__ : Optional[Any] = [ {'col_1': '0', 'col_2': 0, 'col_3': 0.0}, {'col_1': '1', 'col_2': 1, 'col_3': 1.0}, {'col_1': '2', 'col_2': 2, 'col_3': 2.0}, {'col_1': '3', 'col_2': 3, 'col_3': 3.0}, ] lowerCamelCase__ : Dict = [ {'col_1': '4', 'col_2': 4, 'col_3': 4.0}, {'col_1': '5', 'col_2': 5, 'col_3': 5.0}, ] lowerCamelCase__ : Optional[int] = { 'col_1': ['0', '1', '2', '3'], 'col_2': [0, 1, 2, 3], 'col_3': [0.0, 1.0, 2.0, 3.0], } lowerCamelCase__ : List[Any] = [ {'col_3': 0.0, 'col_1': '0', 'col_2': 0}, {'col_3': 1.0, 'col_1': '1', 'col_2': 1}, ] lowerCamelCase__ : List[Any] = [ {'col_1': 's0', 'col_2': 0, 'col_3': 0.0}, {'col_1': 's1', 'col_2': 1, 'col_3': 1.0}, {'col_1': 's2', 'col_2': 2, 'col_3': 2.0}, {'col_1': 's3', 'col_2': 3, 'col_3': 3.0}, ] @pytest.fixture(scope='session' ) def UpperCAmelCase_ ( ) -> Tuple: return DATA_DICT_OF_LISTS @pytest.fixture(scope='session' ) def UpperCAmelCase_ ( __UpperCAmelCase : Optional[Any] ) -> Union[str, Any]: SCREAMING_SNAKE_CASE_ = datasets.Dataset.from_dict(__UpperCAmelCase ) SCREAMING_SNAKE_CASE_ = str(tmp_path_factory.mktemp('data' ) / 'dataset.arrow' ) dataset.map(cache_file_name=__UpperCAmelCase ) return path @pytest.fixture(scope='session' ) def UpperCAmelCase_ ( __UpperCAmelCase : List[str] ) -> List[str]: SCREAMING_SNAKE_CASE_ = str(tmp_path_factory.mktemp('data' ) / 'dataset.sqlite' ) with contextlib.closing(sqlitea.connect(__UpperCAmelCase ) ) as con: SCREAMING_SNAKE_CASE_ = con.cursor() cur.execute('CREATE TABLE dataset(col_1 text, col_2 int, col_3 real)' ) for item in DATA: cur.execute('INSERT INTO dataset(col_1, col_2, col_3) VALUES (?, ?, ?)' , tuple(item.values() ) ) con.commit() return path @pytest.fixture(scope='session' ) def UpperCAmelCase_ ( __UpperCAmelCase : Optional[int] ) -> str: SCREAMING_SNAKE_CASE_ = str(tmp_path_factory.mktemp('data' ) / 'dataset.csv' ) with open(__UpperCAmelCase , 'w' , newline='' ) as f: SCREAMING_SNAKE_CASE_ = csv.DictWriter(__UpperCAmelCase , fieldnames=['col_1', 'col_2', 'col_3'] ) writer.writeheader() for item in DATA: writer.writerow(__UpperCAmelCase ) return path @pytest.fixture(scope='session' ) def UpperCAmelCase_ ( __UpperCAmelCase : Tuple ) -> Optional[Any]: SCREAMING_SNAKE_CASE_ = str(tmp_path_factory.mktemp('data' ) / 'dataset2.csv' ) with open(__UpperCAmelCase , 'w' , newline='' ) as f: SCREAMING_SNAKE_CASE_ = csv.DictWriter(__UpperCAmelCase , fieldnames=['col_1', 'col_2', 'col_3'] ) writer.writeheader() for item in DATA: writer.writerow(__UpperCAmelCase ) return path @pytest.fixture(scope='session' ) def UpperCAmelCase_ ( __UpperCAmelCase : str , __UpperCAmelCase : Tuple ) -> str: import bza SCREAMING_SNAKE_CASE_ = tmp_path_factory.mktemp('data' ) / 'dataset.csv.bz2' with open(__UpperCAmelCase , 'rb' ) as f: SCREAMING_SNAKE_CASE_ = f.read() # data = bytes(FILE_CONTENT, "utf-8") with bza.open(__UpperCAmelCase , 'wb' ) as f: f.write(__UpperCAmelCase ) return path @pytest.fixture(scope='session' ) def UpperCAmelCase_ ( __UpperCAmelCase : Dict , __UpperCAmelCase : List[str] , __UpperCAmelCase : str ) -> Optional[int]: SCREAMING_SNAKE_CASE_ = tmp_path_factory.mktemp('data' ) / 'dataset.csv.zip' with zipfile.ZipFile(__UpperCAmelCase , 'w' ) as f: f.write(__UpperCAmelCase , arcname=os.path.basename(__UpperCAmelCase ) ) f.write(__UpperCAmelCase , arcname=os.path.basename(__UpperCAmelCase ) ) return path @pytest.fixture(scope='session' ) def UpperCAmelCase_ ( __UpperCAmelCase : List[Any] , __UpperCAmelCase : int , __UpperCAmelCase : str ) -> Any: SCREAMING_SNAKE_CASE_ = tmp_path_factory.mktemp('data' ) / 'dataset.csv.zip' with zipfile.ZipFile(__UpperCAmelCase , 'w' ) as f: f.write(__UpperCAmelCase , arcname=os.path.basename(csv_path.replace('.csv' , '.CSV' ) ) ) f.write(__UpperCAmelCase , arcname=os.path.basename(csva_path.replace('.csv' , '.CSV' ) ) ) return path @pytest.fixture(scope='session' ) def UpperCAmelCase_ ( __UpperCAmelCase : int , __UpperCAmelCase : Tuple , __UpperCAmelCase : List[Any] ) -> Union[str, Any]: SCREAMING_SNAKE_CASE_ = tmp_path_factory.mktemp('data' ) / 'dataset_with_dir.csv.zip' with zipfile.ZipFile(__UpperCAmelCase , 'w' ) as f: f.write(__UpperCAmelCase , arcname=os.path.join('main_dir' , os.path.basename(__UpperCAmelCase ) ) ) f.write(__UpperCAmelCase , arcname=os.path.join('main_dir' , os.path.basename(__UpperCAmelCase ) ) ) return path @pytest.fixture(scope='session' ) def UpperCAmelCase_ ( __UpperCAmelCase : List[str] ) -> Optional[Any]: SCREAMING_SNAKE_CASE_ = str(tmp_path_factory.mktemp('data' ) / 'dataset.parquet' ) SCREAMING_SNAKE_CASE_ = pa.schema( { 'col_1': pa.string(), 'col_2': pa.intaa(), 'col_3': pa.floataa(), } ) with open(__UpperCAmelCase , 'wb' ) as f: SCREAMING_SNAKE_CASE_ = pq.ParquetWriter(__UpperCAmelCase , schema=__UpperCAmelCase ) SCREAMING_SNAKE_CASE_ = pa.Table.from_pydict({k: [DATA[i][k] for i in range(len(__UpperCAmelCase ) )] for k in DATA[0]} , schema=__UpperCAmelCase ) writer.write_table(__UpperCAmelCase ) writer.close() return path @pytest.fixture(scope='session' ) def UpperCAmelCase_ ( __UpperCAmelCase : Tuple ) -> Any: SCREAMING_SNAKE_CASE_ = str(tmp_path_factory.mktemp('data' ) / 'dataset.json' ) SCREAMING_SNAKE_CASE_ = {'data': DATA} with open(__UpperCAmelCase , 'w' ) as f: json.dump(__UpperCAmelCase , __UpperCAmelCase ) return path @pytest.fixture(scope='session' ) def UpperCAmelCase_ ( __UpperCAmelCase : Union[str, Any] ) -> Optional[Any]: SCREAMING_SNAKE_CASE_ = str(tmp_path_factory.mktemp('data' ) / 'dataset.json' ) SCREAMING_SNAKE_CASE_ = {'data': DATA_DICT_OF_LISTS} with open(__UpperCAmelCase , 'w' ) as f: json.dump(__UpperCAmelCase , __UpperCAmelCase ) return path @pytest.fixture(scope='session' ) def UpperCAmelCase_ ( __UpperCAmelCase : Dict ) -> List[str]: SCREAMING_SNAKE_CASE_ = str(tmp_path_factory.mktemp('data' ) / 'dataset.jsonl' ) with open(__UpperCAmelCase , 'w' ) as f: for item in DATA: f.write(json.dumps(__UpperCAmelCase ) + '\n' ) return path @pytest.fixture(scope='session' ) def UpperCAmelCase_ ( __UpperCAmelCase : Optional[Any] ) -> Optional[Any]: SCREAMING_SNAKE_CASE_ = str(tmp_path_factory.mktemp('data' ) / 'dataset2.jsonl' ) with open(__UpperCAmelCase , 'w' ) as f: for item in DATA: f.write(json.dumps(__UpperCAmelCase ) + '\n' ) return path @pytest.fixture(scope='session' ) def UpperCAmelCase_ ( __UpperCAmelCase : List[Any] ) -> List[Any]: SCREAMING_SNAKE_CASE_ = str(tmp_path_factory.mktemp('data' ) / 'dataset_312.jsonl' ) with open(__UpperCAmelCase , 'w' ) as f: for item in DATA_312: f.write(json.dumps(__UpperCAmelCase ) + '\n' ) return path @pytest.fixture(scope='session' ) def UpperCAmelCase_ ( __UpperCAmelCase : Optional[Any] ) -> List[Any]: SCREAMING_SNAKE_CASE_ = str(tmp_path_factory.mktemp('data' ) / 'dataset-str.jsonl' ) with open(__UpperCAmelCase , 'w' ) as f: for item in DATA_STR: f.write(json.dumps(__UpperCAmelCase ) + '\n' ) return path @pytest.fixture(scope='session' ) def UpperCAmelCase_ ( __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : List[str] ) -> Union[str, Any]: import gzip SCREAMING_SNAKE_CASE_ = str(tmp_path_factory.mktemp('data' ) / 'dataset.txt.gz' ) with open(__UpperCAmelCase , 'rb' ) as orig_file: with gzip.open(__UpperCAmelCase , 'wb' ) as zipped_file: zipped_file.writelines(__UpperCAmelCase ) return path @pytest.fixture(scope='session' ) def UpperCAmelCase_ ( __UpperCAmelCase : str , __UpperCAmelCase : Optional[Any] ) -> List[str]: import gzip SCREAMING_SNAKE_CASE_ = str(tmp_path_factory.mktemp('data' ) / 'dataset.jsonl.gz' ) with open(__UpperCAmelCase , 'rb' ) as orig_file: with gzip.open(__UpperCAmelCase , 'wb' ) as zipped_file: zipped_file.writelines(__UpperCAmelCase ) return path @pytest.fixture(scope='session' ) def UpperCAmelCase_ ( __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : Dict ) -> Optional[int]: SCREAMING_SNAKE_CASE_ = tmp_path_factory.mktemp('data' ) / 'dataset.jsonl.zip' with zipfile.ZipFile(__UpperCAmelCase , 'w' ) as f: f.write(__UpperCAmelCase , arcname=os.path.basename(__UpperCAmelCase ) ) f.write(__UpperCAmelCase , arcname=os.path.basename(__UpperCAmelCase ) ) return path @pytest.fixture(scope='session' ) def UpperCAmelCase_ ( __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : Any , __UpperCAmelCase : List[str] , __UpperCAmelCase : List[str] ) -> Optional[int]: SCREAMING_SNAKE_CASE_ = tmp_path_factory.mktemp('data' ) / 'dataset_nested.jsonl.zip' with zipfile.ZipFile(__UpperCAmelCase , 'w' ) as f: f.write(__UpperCAmelCase , arcname=os.path.join('nested' , os.path.basename(__UpperCAmelCase ) ) ) return path @pytest.fixture(scope='session' ) def UpperCAmelCase_ ( __UpperCAmelCase : List[str] , __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : str ) -> Any: SCREAMING_SNAKE_CASE_ = tmp_path_factory.mktemp('data' ) / 'dataset_with_dir.jsonl.zip' with zipfile.ZipFile(__UpperCAmelCase , 'w' ) as f: f.write(__UpperCAmelCase , arcname=os.path.join('main_dir' , os.path.basename(__UpperCAmelCase ) ) ) f.write(__UpperCAmelCase , arcname=os.path.join('main_dir' , os.path.basename(__UpperCAmelCase ) ) ) return path @pytest.fixture(scope='session' ) def UpperCAmelCase_ ( __UpperCAmelCase : List[Any] , __UpperCAmelCase : List[Any] , __UpperCAmelCase : Tuple ) -> Dict: SCREAMING_SNAKE_CASE_ = tmp_path_factory.mktemp('data' ) / 'dataset.jsonl.tar' with tarfile.TarFile(__UpperCAmelCase , 'w' ) as f: f.add(__UpperCAmelCase , arcname=os.path.basename(__UpperCAmelCase ) ) f.add(__UpperCAmelCase , arcname=os.path.basename(__UpperCAmelCase ) ) return path @pytest.fixture(scope='session' ) def UpperCAmelCase_ ( __UpperCAmelCase : Optional[int] , __UpperCAmelCase : Optional[int] , __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : List[Any] ) -> List[str]: SCREAMING_SNAKE_CASE_ = tmp_path_factory.mktemp('data' ) / 'dataset_nested.jsonl.tar' with tarfile.TarFile(__UpperCAmelCase , 'w' ) as f: f.add(__UpperCAmelCase , arcname=os.path.join('nested' , os.path.basename(__UpperCAmelCase ) ) ) return path @pytest.fixture(scope='session' ) def UpperCAmelCase_ ( __UpperCAmelCase : Optional[Any] ) -> Optional[Any]: SCREAMING_SNAKE_CASE_ = ['0', '1', '2', '3'] SCREAMING_SNAKE_CASE_ = str(tmp_path_factory.mktemp('data' ) / 'dataset.txt' ) with open(__UpperCAmelCase , 'w' ) as f: for item in data: f.write(item + '\n' ) return path @pytest.fixture(scope='session' ) def UpperCAmelCase_ ( __UpperCAmelCase : Dict ) -> Any: SCREAMING_SNAKE_CASE_ = ['0', '1', '2', '3'] SCREAMING_SNAKE_CASE_ = str(tmp_path_factory.mktemp('data' ) / 'dataset2.txt' ) with open(__UpperCAmelCase , 'w' ) as f: for item in data: f.write(item + '\n' ) return path @pytest.fixture(scope='session' ) def UpperCAmelCase_ ( __UpperCAmelCase : List[Any] ) -> int: SCREAMING_SNAKE_CASE_ = ['0', '1', '2', '3'] SCREAMING_SNAKE_CASE_ = tmp_path_factory.mktemp('data' ) / 'dataset.abc' with open(__UpperCAmelCase , 'w' ) as f: for item in data: f.write(item + '\n' ) return path @pytest.fixture(scope='session' ) def UpperCAmelCase_ ( __UpperCAmelCase : Any , __UpperCAmelCase : Dict , __UpperCAmelCase : Dict ) -> Union[str, Any]: SCREAMING_SNAKE_CASE_ = tmp_path_factory.mktemp('data' ) / 'dataset.text.zip' with zipfile.ZipFile(__UpperCAmelCase , 'w' ) as f: f.write(__UpperCAmelCase , arcname=os.path.basename(__UpperCAmelCase ) ) f.write(__UpperCAmelCase , arcname=os.path.basename(__UpperCAmelCase ) ) return path @pytest.fixture(scope='session' ) def UpperCAmelCase_ ( __UpperCAmelCase : Tuple , __UpperCAmelCase : int , __UpperCAmelCase : Optional[int] ) -> Any: SCREAMING_SNAKE_CASE_ = tmp_path_factory.mktemp('data' ) / 'dataset_with_dir.text.zip' with zipfile.ZipFile(__UpperCAmelCase , 'w' ) as f: f.write(__UpperCAmelCase , arcname=os.path.join('main_dir' , os.path.basename(__UpperCAmelCase ) ) ) f.write(__UpperCAmelCase , arcname=os.path.join('main_dir' , os.path.basename(__UpperCAmelCase ) ) ) return path @pytest.fixture(scope='session' ) def UpperCAmelCase_ ( __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : Any , __UpperCAmelCase : Union[str, Any] ) -> Dict: SCREAMING_SNAKE_CASE_ = tmp_path_factory.mktemp('data' ) / 'dataset.ext.zip' with zipfile.ZipFile(__UpperCAmelCase , 'w' ) as f: f.write(__UpperCAmelCase , arcname=os.path.basename('unsupported.ext' ) ) f.write(__UpperCAmelCase , arcname=os.path.basename('unsupported_2.ext' ) ) return path @pytest.fixture(scope='session' ) def UpperCAmelCase_ ( __UpperCAmelCase : Union[str, Any] ) -> Dict: SCREAMING_SNAKE_CASE_ = '\n'.join(['First', 'Second\u2029with Unicode new line', 'Third'] ) SCREAMING_SNAKE_CASE_ = str(tmp_path_factory.mktemp('data' ) / 'dataset_with_unicode_new_lines.txt' ) with open(__UpperCAmelCase , 'w' , encoding='utf-8' ) as f: f.write(__UpperCAmelCase ) return path @pytest.fixture(scope='session' ) def UpperCAmelCase_ ( ) -> List[Any]: return os.path.join('tests' , 'features' , 'data' , 'test_image_rgb.jpg' ) @pytest.fixture(scope='session' ) def UpperCAmelCase_ ( ) -> Tuple: return os.path.join('tests' , 'features' , 'data' , 'test_audio_44100.wav' ) @pytest.fixture(scope='session' ) def UpperCAmelCase_ ( __UpperCAmelCase : Dict , __UpperCAmelCase : Dict ) -> int: SCREAMING_SNAKE_CASE_ = tmp_path_factory.mktemp('data' ) / 'dataset.img.zip' with zipfile.ZipFile(__UpperCAmelCase , 'w' ) as f: f.write(__UpperCAmelCase , arcname=os.path.basename(__UpperCAmelCase ) ) f.write(__UpperCAmelCase , arcname=os.path.basename(__UpperCAmelCase ).replace('.jpg' , '2.jpg' ) ) return path @pytest.fixture(scope='session' ) def UpperCAmelCase_ ( __UpperCAmelCase : str ) -> Dict: SCREAMING_SNAKE_CASE_ = tmp_path_factory.mktemp('data_dir' ) (data_dir / "subdir").mkdir() with open(data_dir / 'subdir' / 'train.txt' , 'w' ) as f: f.write('foo\n' * 10 ) with open(data_dir / 'subdir' / 'test.txt' , 'w' ) as f: f.write('bar\n' * 10 ) # hidden file with open(data_dir / 'subdir' / '.test.txt' , 'w' ) as f: f.write('bar\n' * 10 ) # hidden directory (data_dir / ".subdir").mkdir() with open(data_dir / '.subdir' / 'train.txt' , 'w' ) as f: f.write('foo\n' * 10 ) with open(data_dir / '.subdir' / 'test.txt' , 'w' ) as f: f.write('bar\n' * 10 ) return data_dir
225
0
from typing import Optional import torch import torch.utils.checkpoint from torch import Tensor, nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...modeling_outputs import ( BackboneOutput, BaseModelOutputWithNoAttention, BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention, ) from ...modeling_utils import PreTrainedModel from ...utils import ( add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings, ) from ...utils.backbone_utils import BackboneMixin from .configuration_resnet import ResNetConfig __snake_case :Dict = logging.get_logger(__name__) # General docstring __snake_case :List[str] = '''ResNetConfig''' # Base docstring __snake_case :Dict = '''microsoft/resnet-50''' __snake_case :Optional[Any] = [1, 2048, 7, 7] # Image classification docstring __snake_case :List[Any] = '''microsoft/resnet-50''' __snake_case :List[Any] = '''tiger cat''' __snake_case :Tuple = [ '''microsoft/resnet-50''', # See all resnet models at https://huggingface.co/models?filter=resnet ] class _A ( nn.Module ): def __init__( self : Dict , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int = 3 , __SCREAMING_SNAKE_CASE : int = 1 , __SCREAMING_SNAKE_CASE : str = "relu"): '''simple docstring''' super().__init__() __a = nn.Convad( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , kernel_size=__SCREAMING_SNAKE_CASE , stride=__SCREAMING_SNAKE_CASE , padding=kernel_size // 2 , bias=__SCREAMING_SNAKE_CASE) __a = nn.BatchNormad(__SCREAMING_SNAKE_CASE) __a = ACTaFN[activation] if activation is not None else nn.Identity() def _lowerCamelCase ( self : List[Any] , __SCREAMING_SNAKE_CASE : Tensor): '''simple docstring''' __a = self.convolution(__SCREAMING_SNAKE_CASE) __a = self.normalization(__SCREAMING_SNAKE_CASE) __a = self.activation(__SCREAMING_SNAKE_CASE) return hidden_state class _A ( nn.Module ): def __init__( self : List[str] , __SCREAMING_SNAKE_CASE : ResNetConfig): '''simple docstring''' super().__init__() __a = ResNetConvLayer( config.num_channels , config.embedding_size , kernel_size=7 , stride=2 , activation=config.hidden_act) __a = nn.MaxPoolad(kernel_size=3 , stride=2 , padding=1) __a = config.num_channels def _lowerCamelCase ( self : List[Any] , __SCREAMING_SNAKE_CASE : Tensor): '''simple docstring''' __a = pixel_values.shape[1] if num_channels != self.num_channels: raise ValueError( '''Make sure that the channel dimension of the pixel values match with the one set in the configuration.''') __a = self.embedder(__SCREAMING_SNAKE_CASE) __a = self.pooler(__SCREAMING_SNAKE_CASE) return embedding class _A ( nn.Module ): def __init__( self : List[str] , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int = 2): '''simple docstring''' super().__init__() __a = nn.Convad(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , kernel_size=1 , stride=__SCREAMING_SNAKE_CASE , bias=__SCREAMING_SNAKE_CASE) __a = nn.BatchNormad(__SCREAMING_SNAKE_CASE) def _lowerCamelCase ( self : Tuple , __SCREAMING_SNAKE_CASE : Tensor): '''simple docstring''' __a = self.convolution(__SCREAMING_SNAKE_CASE) __a = self.normalization(__SCREAMING_SNAKE_CASE) return hidden_state class _A ( nn.Module ): def __init__( self : Any , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int = 1 , __SCREAMING_SNAKE_CASE : str = "relu"): '''simple docstring''' super().__init__() __a = in_channels != out_channels or stride != 1 __a = ( ResNetShortCut(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , stride=__SCREAMING_SNAKE_CASE) if should_apply_shortcut else nn.Identity() ) __a = nn.Sequential( ResNetConvLayer(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , stride=__SCREAMING_SNAKE_CASE) , ResNetConvLayer(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , activation=__SCREAMING_SNAKE_CASE) , ) __a = ACTaFN[activation] def _lowerCamelCase ( self : Dict , __SCREAMING_SNAKE_CASE : str): '''simple docstring''' __a = hidden_state __a = self.layer(__SCREAMING_SNAKE_CASE) __a = self.shortcut(__SCREAMING_SNAKE_CASE) hidden_state += residual __a = self.activation(__SCREAMING_SNAKE_CASE) return hidden_state class _A ( nn.Module ): def __init__( self : Dict , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int = 1 , __SCREAMING_SNAKE_CASE : str = "relu" , __SCREAMING_SNAKE_CASE : int = 4): '''simple docstring''' super().__init__() __a = in_channels != out_channels or stride != 1 __a = out_channels // reduction __a = ( ResNetShortCut(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , stride=__SCREAMING_SNAKE_CASE) if should_apply_shortcut else nn.Identity() ) __a = nn.Sequential( ResNetConvLayer(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , kernel_size=1) , ResNetConvLayer(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , stride=__SCREAMING_SNAKE_CASE) , ResNetConvLayer(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , kernel_size=1 , activation=__SCREAMING_SNAKE_CASE) , ) __a = ACTaFN[activation] def _lowerCamelCase ( self : Dict , __SCREAMING_SNAKE_CASE : Dict): '''simple docstring''' __a = hidden_state __a = self.layer(__SCREAMING_SNAKE_CASE) __a = self.shortcut(__SCREAMING_SNAKE_CASE) hidden_state += residual __a = self.activation(__SCREAMING_SNAKE_CASE) return hidden_state class _A ( nn.Module ): def __init__( self : str , __SCREAMING_SNAKE_CASE : ResNetConfig , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int = 2 , __SCREAMING_SNAKE_CASE : int = 2 , ): '''simple docstring''' super().__init__() __a = ResNetBottleNeckLayer if config.layer_type == '''bottleneck''' else ResNetBasicLayer __a = nn.Sequential( # downsampling is done in the first layer with stride of 2 layer(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , stride=__SCREAMING_SNAKE_CASE , activation=config.hidden_act) , *[layer(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , activation=config.hidden_act) for _ in range(depth - 1)] , ) def _lowerCamelCase ( self : Optional[Any] , __SCREAMING_SNAKE_CASE : Tensor): '''simple docstring''' __a = input for layer in self.layers: __a = layer(__SCREAMING_SNAKE_CASE) return hidden_state class _A ( nn.Module ): def __init__( self : Optional[int] , __SCREAMING_SNAKE_CASE : ResNetConfig): '''simple docstring''' super().__init__() __a = nn.ModuleList([]) # based on `downsample_in_first_stage` the first layer of the first stage may or may not downsample the input self.stages.append( ResNetStage( __SCREAMING_SNAKE_CASE , config.embedding_size , config.hidden_sizes[0] , stride=2 if config.downsample_in_first_stage else 1 , depth=config.depths[0] , )) __a = zip(config.hidden_sizes , config.hidden_sizes[1:]) for (in_channels, out_channels), depth in zip(__SCREAMING_SNAKE_CASE , config.depths[1:]): self.stages.append(ResNetStage(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , depth=__SCREAMING_SNAKE_CASE)) def _lowerCamelCase ( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : Tensor , __SCREAMING_SNAKE_CASE : bool = False , __SCREAMING_SNAKE_CASE : bool = True): '''simple docstring''' __a = () if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: __a = hidden_states + (hidden_state,) __a = stage_module(__SCREAMING_SNAKE_CASE) if output_hidden_states: __a = hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None) return BaseModelOutputWithNoAttention( last_hidden_state=__SCREAMING_SNAKE_CASE , hidden_states=__SCREAMING_SNAKE_CASE , ) class _A ( __UpperCAmelCase ): UpperCamelCase__ : Any = ResNetConfig UpperCamelCase__ : List[Any] = '''resnet''' UpperCamelCase__ : List[Any] = '''pixel_values''' UpperCamelCase__ : str = True def _lowerCamelCase ( self : Any , __SCREAMING_SNAKE_CASE : List[Any]): '''simple docstring''' if isinstance(__SCREAMING_SNAKE_CASE , nn.Convad): nn.init.kaiming_normal_(module.weight , mode='''fan_out''' , nonlinearity='''relu''') elif isinstance(__SCREAMING_SNAKE_CASE , (nn.BatchNormad, nn.GroupNorm)): nn.init.constant_(module.weight , 1) nn.init.constant_(module.bias , 0) def _lowerCamelCase ( self : int , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : Optional[Any]=False): '''simple docstring''' if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE): __a = value __snake_case :Union[str, Any] = r''' This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`ResNetConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. ''' __snake_case :List[str] = r''' Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`ConvNextImageProcessor.__call__`] for details. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. ''' @add_start_docstrings( '''The bare ResNet model outputting raw features without any specific head on top.''' ,__UpperCAmelCase ,) class _A ( __UpperCAmelCase ): def __init__( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : List[str]): '''simple docstring''' super().__init__(__SCREAMING_SNAKE_CASE) __a = config __a = ResNetEmbeddings(__SCREAMING_SNAKE_CASE) __a = ResNetEncoder(__SCREAMING_SNAKE_CASE) __a = nn.AdaptiveAvgPoolad((1, 1)) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(__SCREAMING_SNAKE_CASE) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=__SCREAMING_SNAKE_CASE , config_class=_CONFIG_FOR_DOC , modality='''vision''' , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def _lowerCamelCase ( self : int , __SCREAMING_SNAKE_CASE : Tensor , __SCREAMING_SNAKE_CASE : Optional[bool] = None , __SCREAMING_SNAKE_CASE : Optional[bool] = None): '''simple docstring''' __a = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) __a = return_dict if return_dict is not None else self.config.use_return_dict __a = self.embedder(__SCREAMING_SNAKE_CASE) __a = self.encoder( __SCREAMING_SNAKE_CASE , output_hidden_states=__SCREAMING_SNAKE_CASE , return_dict=__SCREAMING_SNAKE_CASE) __a = encoder_outputs[0] __a = self.pooler(__SCREAMING_SNAKE_CASE) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=__SCREAMING_SNAKE_CASE , pooler_output=__SCREAMING_SNAKE_CASE , hidden_states=encoder_outputs.hidden_states , ) @add_start_docstrings( ''' ResNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for ImageNet. ''' ,__UpperCAmelCase ,) class _A ( __UpperCAmelCase ): def __init__( self : str , __SCREAMING_SNAKE_CASE : List[Any]): '''simple docstring''' super().__init__(__SCREAMING_SNAKE_CASE) __a = config.num_labels __a = ResNetModel(__SCREAMING_SNAKE_CASE) # classification head __a = nn.Sequential( nn.Flatten() , nn.Linear(config.hidden_sizes[-1] , config.num_labels) if config.num_labels > 0 else nn.Identity() , ) # initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(__SCREAMING_SNAKE_CASE) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=__SCREAMING_SNAKE_CASE , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def _lowerCamelCase ( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : Optional[torch.FloatTensor] = None , __SCREAMING_SNAKE_CASE : Optional[torch.LongTensor] = None , __SCREAMING_SNAKE_CASE : Optional[bool] = None , __SCREAMING_SNAKE_CASE : Optional[bool] = None , ): '''simple docstring''' __a = return_dict if return_dict is not None else self.config.use_return_dict __a = self.resnet(__SCREAMING_SNAKE_CASE , output_hidden_states=__SCREAMING_SNAKE_CASE , return_dict=__SCREAMING_SNAKE_CASE) __a = outputs.pooler_output if return_dict else outputs[1] __a = self.classifier(__SCREAMING_SNAKE_CASE) __a = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: __a = '''regression''' elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): __a = '''single_label_classification''' else: __a = '''multi_label_classification''' if self.config.problem_type == "regression": __a = MSELoss() if self.num_labels == 1: __a = loss_fct(logits.squeeze() , labels.squeeze()) else: __a = loss_fct(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) elif self.config.problem_type == "single_label_classification": __a = CrossEntropyLoss() __a = loss_fct(logits.view(-1 , self.num_labels) , labels.view(-1)) elif self.config.problem_type == "multi_label_classification": __a = BCEWithLogitsLoss() __a = loss_fct(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) if not return_dict: __a = (logits,) + outputs[2:] return (loss,) + output if loss is not None else output return ImageClassifierOutputWithNoAttention(loss=__SCREAMING_SNAKE_CASE , logits=__SCREAMING_SNAKE_CASE , hidden_states=outputs.hidden_states) @add_start_docstrings( ''' ResNet backbone, to be used with frameworks like DETR and MaskFormer. ''' ,__UpperCAmelCase ,) class _A ( __UpperCAmelCase ,__UpperCAmelCase ): def __init__( self : List[Any] , __SCREAMING_SNAKE_CASE : Optional[Any]): '''simple docstring''' super().__init__(__SCREAMING_SNAKE_CASE) super()._init_backbone(__SCREAMING_SNAKE_CASE) __a = [config.embedding_size] + config.hidden_sizes __a = ResNetEmbeddings(__SCREAMING_SNAKE_CASE) __a = ResNetEncoder(__SCREAMING_SNAKE_CASE) # initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(__SCREAMING_SNAKE_CASE) @replace_return_docstrings(output_type=__SCREAMING_SNAKE_CASE , config_class=_CONFIG_FOR_DOC) def _lowerCamelCase ( self : Optional[Any] , __SCREAMING_SNAKE_CASE : Tensor , __SCREAMING_SNAKE_CASE : Optional[bool] = None , __SCREAMING_SNAKE_CASE : Optional[bool] = None): '''simple docstring''' __a = return_dict if return_dict is not None else self.config.use_return_dict __a = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) __a = self.embedder(__SCREAMING_SNAKE_CASE) __a = self.encoder(__SCREAMING_SNAKE_CASE , output_hidden_states=__SCREAMING_SNAKE_CASE , return_dict=__SCREAMING_SNAKE_CASE) __a = outputs.hidden_states __a = () for idx, stage in enumerate(self.stage_names): if stage in self.out_features: feature_maps += (hidden_states[idx],) if not return_dict: __a = (feature_maps,) if output_hidden_states: output += (outputs.hidden_states,) return output return BackboneOutput( feature_maps=__SCREAMING_SNAKE_CASE , hidden_states=outputs.hidden_states if output_hidden_states else None , attentions=__SCREAMING_SNAKE_CASE , )
131
import unittest from transformers import DonutProcessor __snake_case :List[str] = '''naver-clova-ix/donut-base''' class _A ( unittest.TestCase ): def _lowerCamelCase ( self : List[str]): '''simple docstring''' __a = DonutProcessor.from_pretrained(__SCREAMING_SNAKE_CASE) def _lowerCamelCase ( self : Tuple): '''simple docstring''' __a = { '''name''': '''John Doe''', '''age''': '''99''', '''city''': '''Atlanta''', '''state''': '''GA''', '''zip''': '''30301''', '''phone''': '''123-4567''', '''nicknames''': [{'''nickname''': '''Johnny'''}, {'''nickname''': '''JD'''}], } __a = ( '''<s_name>John Doe</s_name><s_age>99</s_age><s_city>Atlanta</s_city>''' '''<s_state>GA</s_state><s_zip>30301</s_zip><s_phone>123-4567</s_phone>''' '''<s_nicknames><s_nickname>Johnny</s_nickname>''' '''<sep/><s_nickname>JD</s_nickname></s_nicknames>''' ) __a = self.processor.tokenajson(__SCREAMING_SNAKE_CASE) self.assertDictEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE)
131
1
"""simple docstring""" from copy import deepcopy import torch import torch.nn.functional as F from torch.optim import AdamW from torch.optim.lr_scheduler import LambdaLR from torch.utils.data import DataLoader from accelerate.accelerator import Accelerator from accelerate.state import GradientState from accelerate.test_utils import RegressionDataset, RegressionModel from accelerate.utils import DistributedType, is_torch_version, set_seed def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ): for param, grad_param in zip(model_a.parameters(), model_b.parameters() ): if not param.requires_grad: continue if not did_step: # Grads should not be in sync assert ( torch.allclose(param.grad, grad_param.grad ) is False ), f"""Gradients in sync when they should not be at iteration {iteration}:\nmodel_a grad ({param.grad}) == model_b grad ({grad_param.grad})""" else: # Grads should be in sync assert ( torch.allclose(param.grad, grad_param.grad ) is True ), f"""Gradients not in sync when they should be at iteration {iteration}:\nmodel_a grad ({param.grad}) != model_b grad ({grad_param.grad})""" def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase=True ): model.train() UpperCAmelCase_ : int = model(__lowerCamelCase ) UpperCAmelCase_ : List[str] = F.mse_loss(__lowerCamelCase, target.to(output.device ) ) if not do_backward: loss /= accelerator.gradient_accumulation_steps loss.backward() else: accelerator.backward(__lowerCamelCase ) def __a ( __lowerCamelCase, __lowerCamelCase=False ): set_seed(42 ) UpperCAmelCase_ : Dict = RegressionModel() UpperCAmelCase_ : Optional[Any] = deepcopy(__lowerCamelCase ) UpperCAmelCase_ : Tuple = RegressionDataset(length=80 ) UpperCAmelCase_ : List[Any] = DataLoader(__lowerCamelCase, batch_size=16 ) model.to(accelerator.device ) if sched: UpperCAmelCase_ : Any = AdamW(params=model.parameters(), lr=1E-3 ) UpperCAmelCase_ : str = AdamW(params=ddp_model.parameters(), lr=1E-3 ) UpperCAmelCase_ : str = LambdaLR(__lowerCamelCase, lr_lambda=lambda __lowerCamelCase : epoch**0.65 ) UpperCAmelCase_ : List[str] = LambdaLR(__lowerCamelCase, lr_lambda=lambda __lowerCamelCase : epoch**0.65 ) # Make a copy of `model` if sched: UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : int = accelerator.prepare(__lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ) else: UpperCAmelCase_ , UpperCAmelCase_ : Optional[Any] = accelerator.prepare(__lowerCamelCase, __lowerCamelCase ) if sched: return (model, opt, sched, dataloader, ddp_model, ddp_opt, ddp_sched) return model, ddp_model, dataloader def __a ( __lowerCamelCase ): # Test when on a single CPU or GPU that the context manager does nothing UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : List[str] = get_training_setup(__lowerCamelCase ) # Use a single batch UpperCAmelCase_ , UpperCAmelCase_ : List[Any] = next(iter(__lowerCamelCase ) ).values() for iteration in range(3 ): # Gather the distributed inputs and targs for the base model UpperCAmelCase_ , UpperCAmelCase_ : str = accelerator.gather((ddp_input, ddp_target) ) UpperCAmelCase_ , UpperCAmelCase_ : List[Any] = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(__lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ) # Do "gradient accumulation" (noop) if iteration % 2 == 0: # Accumulate grads locally with accelerator.no_sync(__lowerCamelCase ): step_model(__lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ) else: # Sync grads step_model(__lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ) # Since `no_sync` is a noop, `ddp_model` and `model` grads should always be in sync check_model_parameters(__lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ) for param, ddp_param in zip(model.parameters(), ddp_model.parameters() ): if not param.requires_grad: continue assert torch.allclose( param.grad, ddp_param.grad ), f"""Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})""" # Shuffle ddp_input on each iteration torch.manual_seed(1337 + iteration ) UpperCAmelCase_ : Optional[Any] = ddp_input[torch.randperm(len(__lowerCamelCase ) )] def __a ( __lowerCamelCase ): # Test on distributed setup that context manager behaves properly UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : int = get_training_setup(__lowerCamelCase ) # Use a single batch UpperCAmelCase_ , UpperCAmelCase_ : int = next(iter(__lowerCamelCase ) ).values() for iteration in range(3 ): # Gather the distributed inputs and targs for the base model UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = accelerator.gather((ddp_input, ddp_target) ) UpperCAmelCase_ , UpperCAmelCase_ : Dict = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(__lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ) # Do "gradient accumulation" (noop) if iteration % 2 == 0: # Accumulate grads locally with accelerator.no_sync(__lowerCamelCase ): step_model(__lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ) else: # Sync grads step_model(__lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ) # DDP model and model should only be in sync when not (iteration % 2 == 0) for param, ddp_param in zip(model.parameters(), ddp_model.parameters() ): if not param.requires_grad: continue if iteration % 2 == 0: # Grads should not be in sync assert ( torch.allclose(param.grad, ddp_param.grad ) is False ), f"""Gradients in sync when they should not be:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})""" else: # Grads should be in sync assert ( torch.allclose(param.grad, ddp_param.grad ) is True ), f"""Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})""" # Shuffle ddp_input on each iteration torch.manual_seed(1337 + iteration ) UpperCAmelCase_ : Dict = ddp_input[torch.randperm(len(__lowerCamelCase ) )] def __a ( __lowerCamelCase=False, __lowerCamelCase=False ): UpperCAmelCase_ : Tuple = Accelerator( split_batches=__lowerCamelCase, dispatch_batches=__lowerCamelCase, gradient_accumulation_steps=2 ) # Test that context manager behaves properly UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Dict = get_training_setup(__lowerCamelCase ) for iteration, batch in enumerate(__lowerCamelCase ): UpperCAmelCase_ , UpperCAmelCase_ : int = batch.values() # Gather the distributed inputs and targs for the base model UpperCAmelCase_ , UpperCAmelCase_ : Dict = accelerator.gather((ddp_input, ddp_target) ) UpperCAmelCase_ , UpperCAmelCase_ : List[Any] = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(__lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ) # Do "gradient accumulation" (noop) with accelerator.accumulate(__lowerCamelCase ): step_model(__lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ) # DDP model and model should only be in sync when not (iteration % 2 == 0) for param, ddp_param in zip(model.parameters(), ddp_model.parameters() ): if not param.requires_grad: continue if ((iteration + 1) % 2 == 0) or (iteration == len(__lowerCamelCase ) - 1): # Grads should be in sync assert ( torch.allclose(param.grad, ddp_param.grad ) is True ), f"""Gradients not in sync when they should be at iteration {iteration}:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})""" else: # Grads should not be in sync assert ( torch.allclose(param.grad, ddp_param.grad ) is False ), f"""Gradients in sync when they should not be at iteration {iteration}:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})""" # Shuffle ddp_input on each iteration torch.manual_seed(1337 + iteration ) UpperCAmelCase_ : int = ddp_input[torch.randperm(len(__lowerCamelCase ) )] GradientState._reset_state() def __a ( __lowerCamelCase=False, __lowerCamelCase=False ): UpperCAmelCase_ : List[Any] = Accelerator( split_batches=__lowerCamelCase, dispatch_batches=__lowerCamelCase, gradient_accumulation_steps=2 ) # Test that context manager behaves properly UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : List[Any] = get_training_setup(__lowerCamelCase, __lowerCamelCase ) for iteration, batch in enumerate(__lowerCamelCase ): UpperCAmelCase_ , UpperCAmelCase_ : str = batch.values() # Gather the distributed inputs and targs for the base model UpperCAmelCase_ , UpperCAmelCase_ : Optional[Any] = accelerator.gather((ddp_input, ddp_target) ) UpperCAmelCase_ , UpperCAmelCase_ : str = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" model.train() ddp_model.train() step_model(__lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ) opt.step() if ((iteration + 1) % 2 == 0) or ((iteration + 1) == len(__lowerCamelCase )): if split_batches: sched.step() else: for _ in range(accelerator.num_processes ): sched.step() opt.zero_grad() # Perform gradient accumulation under wrapper with accelerator.accumulate(__lowerCamelCase ): step_model(__lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ) ddp_opt.step() ddp_sched.step() ddp_opt.zero_grad() # Learning rates should be the same assert ( opt.param_groups[0]["lr"] == ddp_opt.param_groups[0]["lr"] ), f"""Learning rates found in each optimizer did not align\nopt: {opt.param_groups[0]["lr"]}\nDDP opt: {ddp_opt.param_groups[0]["lr"]}\n""" UpperCAmelCase_ : str = (((iteration + 1) % 2) == 0) or ((iteration + 1) == len(__lowerCamelCase )) if accelerator.num_processes > 1: check_model_parameters(__lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ) # Shuffle ddp_input on each iteration torch.manual_seed(1337 + iteration ) GradientState._reset_state() def __a ( ): UpperCAmelCase_ : Dict = Accelerator() UpperCAmelCase_ : Tuple = RegressionDataset(length=80 ) UpperCAmelCase_ : str = DataLoader(__lowerCamelCase, batch_size=16 ) UpperCAmelCase_ : Optional[Any] = RegressionDataset(length=96 ) UpperCAmelCase_ : List[Any] = DataLoader(__lowerCamelCase, batch_size=16 ) UpperCAmelCase_ , UpperCAmelCase_ : List[Any] = accelerator.prepare(__lowerCamelCase, __lowerCamelCase ) assert accelerator.gradient_state.active_dataloader is None for iteration, _ in enumerate(__lowerCamelCase ): assert id(accelerator.gradient_state.active_dataloader ) == id(__lowerCamelCase ) if iteration < len(__lowerCamelCase ) - 1: assert not accelerator.gradient_state.end_of_dataloader if iteration == 1: for batch_num, _ in enumerate(__lowerCamelCase ): assert id(accelerator.gradient_state.active_dataloader ) == id(__lowerCamelCase ) if batch_num < len(__lowerCamelCase ) - 1: assert not accelerator.gradient_state.end_of_dataloader else: assert accelerator.gradient_state.end_of_dataloader else: assert accelerator.gradient_state.end_of_dataloader assert accelerator.gradient_state.active_dataloader is None def __a ( ): UpperCAmelCase_ : str = Accelerator() UpperCAmelCase_ : int = accelerator.state if state.local_process_index == 0: print("**Test `accumulate` gradient accumulation with dataloader break**" ) test_dataloader_break() if state.distributed_type == DistributedType.NO: if state.local_process_index == 0: print("**Test NOOP `no_sync` context manager**" ) test_noop_sync(__lowerCamelCase ) if state.distributed_type in (DistributedType.MULTI_GPU, DistributedType.MULTI_CPU): if state.local_process_index == 0: print("**Test Distributed `no_sync` context manager**" ) test_distributed_sync(__lowerCamelCase ) if state.distributed_type == DistributedType.MULTI_GPU: for split_batch in [True, False]: for dispatch_batches in [True, False]: if state.local_process_index == 0: print( "**Test `accumulate` gradient accumulation, ", f"""`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**""", ) test_gradient_accumulation(__lowerCamelCase, __lowerCamelCase ) # Currently will break on torch 2.0 +, need to investigate why if is_torch_version("<", "2.0" ) or state.distributed_type == DistributedType.NO: if state.local_process_index == 0: print( "**Test `accumulate` gradient accumulation with optimizer and scheduler, ", "`split_batches=False`, `dispatch_batches=False`**", ) test_gradient_accumulation_with_opt_and_scheduler() if state.distributed_type == DistributedType.MULTI_GPU: for split_batch in [True, False]: for dispatch_batches in [True, False]: if not split_batch and not dispatch_batches: continue if state.local_process_index == 0: print( "**Test `accumulate` gradient accumulation with optimizer and scheduler, ", f"""`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**""", ) test_gradient_accumulation_with_opt_and_scheduler(__lowerCamelCase, __lowerCamelCase ) def __a ( __lowerCamelCase ): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
61
'''simple docstring''' import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING lowercase__ : str = logging.get_logger(__name__) lowercase__ : Any = { 'SenseTime/deformable-detr': 'https://huggingface.co/sensetime/deformable-detr/resolve/main/config.json', # See all Deformable DETR models at https://huggingface.co/models?filter=deformable-detr } class __lowerCAmelCase ( __magic_name__ ): """simple docstring""" _snake_case : Tuple = 'deformable_detr' _snake_case : Dict = { 'hidden_size': 'd_model', 'num_attention_heads': 'encoder_attention_heads', } def __init__( self : Optional[Any] , lowerCAmelCase__ : str=True , lowerCAmelCase__ : List[str]=None , lowerCAmelCase__ : Dict=3 , lowerCAmelCase__ : List[str]=300 , lowerCAmelCase__ : Union[str, Any]=1024 , lowerCAmelCase__ : Tuple=6 , lowerCAmelCase__ : Union[str, Any]=1024 , lowerCAmelCase__ : List[Any]=8 , lowerCAmelCase__ : List[Any]=6 , lowerCAmelCase__ : Tuple=1024 , lowerCAmelCase__ : List[Any]=8 , lowerCAmelCase__ : Union[str, Any]=0.0 , lowerCAmelCase__ : Tuple=True , lowerCAmelCase__ : Any="relu" , lowerCAmelCase__ : int=256 , lowerCAmelCase__ : Dict=0.1 , lowerCAmelCase__ : Tuple=0.0 , lowerCAmelCase__ : str=0.0 , lowerCAmelCase__ : int=0.02 , lowerCAmelCase__ : Any=1.0 , lowerCAmelCase__ : Optional[Any]=True , lowerCAmelCase__ : int=False , lowerCAmelCase__ : str="sine" , lowerCAmelCase__ : List[Any]="resnet50" , lowerCAmelCase__ : str=True , lowerCAmelCase__ : str=False , lowerCAmelCase__ : List[str]=4 , lowerCAmelCase__ : List[str]=4 , lowerCAmelCase__ : Optional[Any]=4 , lowerCAmelCase__ : Optional[Any]=False , lowerCAmelCase__ : Optional[int]=300 , lowerCAmelCase__ : int=False , lowerCAmelCase__ : Optional[Any]=1 , lowerCAmelCase__ : Dict=5 , lowerCAmelCase__ : int=2 , lowerCAmelCase__ : Tuple=1 , lowerCAmelCase__ : Optional[Any]=1 , lowerCAmelCase__ : Optional[int]=5 , lowerCAmelCase__ : Dict=2 , lowerCAmelCase__ : int=0.1 , lowerCAmelCase__ : int=0.25 , lowerCAmelCase__ : Any=False , **lowerCAmelCase__ : Optional[Any] , ) -> str: '''simple docstring''' if backbone_config is not None and use_timm_backbone: raise ValueError('''You can\'t specify both `backbone_config` and `use_timm_backbone`.''' ) if not use_timm_backbone: if backbone_config is None: logger.info('''`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.''' ) _UpperCamelCase = CONFIG_MAPPING['''resnet'''](out_features=['''stage4'''] ) elif isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): _UpperCamelCase = backbone_config.get('''model_type''' ) _UpperCamelCase = CONFIG_MAPPING[backbone_model_type] _UpperCamelCase = config_class.from_dict(lowerCAmelCase__ ) _UpperCamelCase = use_timm_backbone _UpperCamelCase = backbone_config _UpperCamelCase = num_channels _UpperCamelCase = num_queries _UpperCamelCase = max_position_embeddings _UpperCamelCase = d_model _UpperCamelCase = encoder_ffn_dim _UpperCamelCase = encoder_layers _UpperCamelCase = encoder_attention_heads _UpperCamelCase = decoder_ffn_dim _UpperCamelCase = decoder_layers _UpperCamelCase = decoder_attention_heads _UpperCamelCase = dropout _UpperCamelCase = attention_dropout _UpperCamelCase = activation_dropout _UpperCamelCase = activation_function _UpperCamelCase = init_std _UpperCamelCase = init_xavier_std _UpperCamelCase = encoder_layerdrop _UpperCamelCase = auxiliary_loss _UpperCamelCase = position_embedding_type _UpperCamelCase = backbone _UpperCamelCase = use_pretrained_backbone _UpperCamelCase = dilation # deformable attributes _UpperCamelCase = num_feature_levels _UpperCamelCase = encoder_n_points _UpperCamelCase = decoder_n_points _UpperCamelCase = two_stage _UpperCamelCase = two_stage_num_proposals _UpperCamelCase = with_box_refine if two_stage is True and with_box_refine is False: raise ValueError('''If two_stage is True, with_box_refine must be True.''' ) # Hungarian matcher _UpperCamelCase = class_cost _UpperCamelCase = bbox_cost _UpperCamelCase = giou_cost # Loss coefficients _UpperCamelCase = mask_loss_coefficient _UpperCamelCase = dice_loss_coefficient _UpperCamelCase = bbox_loss_coefficient _UpperCamelCase = giou_loss_coefficient _UpperCamelCase = eos_coefficient _UpperCamelCase = focal_alpha _UpperCamelCase = disable_custom_kernels super().__init__(is_encoder_decoder=lowerCAmelCase__ , **lowerCAmelCase__ ) @property def snake_case__ ( self : List[str] ) -> int: '''simple docstring''' return self.encoder_attention_heads @property def snake_case__ ( self : int ) -> int: '''simple docstring''' return self.d_model def snake_case__ ( self : Union[str, Any] ) -> Optional[int]: '''simple docstring''' _UpperCamelCase = copy.deepcopy(self.__dict__ ) if self.backbone_config is not None: _UpperCamelCase = self.backbone_config.to_dict() _UpperCamelCase = self.__class__.model_type return output
324
0
from manim import * class lowerCamelCase (__lowerCamelCase ): """simple docstring""" def A_ ( self : Optional[Any] ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[int] = Rectangle(height=0.5, width=0.5 ) SCREAMING_SNAKE_CASE__ : Optional[Any] = Rectangle(height=0.46, width=0.46 ).set_stroke(width=0 ) SCREAMING_SNAKE_CASE__ : Tuple = [mem.copy() for i in range(6 )] SCREAMING_SNAKE_CASE__ : str = [mem.copy() for i in range(6 )] SCREAMING_SNAKE_CASE__ : int = VGroup(*_UpperCAmelCase ).arrange(_UpperCAmelCase, buff=0 ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = VGroup(*_UpperCAmelCase ).arrange(_UpperCAmelCase, buff=0 ) SCREAMING_SNAKE_CASE__ : List[str] = VGroup(_UpperCAmelCase, _UpperCAmelCase ).arrange(_UpperCAmelCase, buff=0 ) SCREAMING_SNAKE_CASE__ : Dict = Text("CPU", font_size=2_4 ) SCREAMING_SNAKE_CASE__ : List[str] = Group(_UpperCAmelCase, _UpperCAmelCase ).arrange(_UpperCAmelCase, buff=0.5, aligned_edge=_UpperCAmelCase ) cpu.move_to([-2.5, -0.5, 0] ) self.add(_UpperCAmelCase ) SCREAMING_SNAKE_CASE__ : Dict = [mem.copy() for i in range(1 )] SCREAMING_SNAKE_CASE__ : Any = VGroup(*_UpperCAmelCase ).arrange(_UpperCAmelCase, buff=0 ) SCREAMING_SNAKE_CASE__ : int = Text("GPU", font_size=2_4 ) SCREAMING_SNAKE_CASE__ : Tuple = Group(_UpperCAmelCase, _UpperCAmelCase ).arrange(_UpperCAmelCase, buff=0.5, aligned_edge=_UpperCAmelCase ) gpu.align_to(_UpperCAmelCase, _UpperCAmelCase ) gpu.set_x(gpu.get_x() - 1 ) self.add(_UpperCAmelCase ) SCREAMING_SNAKE_CASE__ : Any = [mem.copy() for i in range(6 )] SCREAMING_SNAKE_CASE__ : Optional[int] = VGroup(*_UpperCAmelCase ).arrange(_UpperCAmelCase, buff=0 ) SCREAMING_SNAKE_CASE__ : Any = Text("Model", font_size=2_4 ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = Group(_UpperCAmelCase, _UpperCAmelCase ).arrange(_UpperCAmelCase, buff=0.5, aligned_edge=_UpperCAmelCase ) model.move_to([3, -1.0, 0] ) self.play( Create(_UpperCAmelCase, run_time=1 ), Create(_UpperCAmelCase, run_time=1 ), Create(_UpperCAmelCase, run_time=1 ), ) SCREAMING_SNAKE_CASE__ : str = MarkupText( F'''First, an empty model skeleton is loaded\ninto <span fgcolor=\'{YELLOW}\'>memory</span> without using much RAM.''', font_size=2_4, ) SCREAMING_SNAKE_CASE__ : Optional[int] = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) SCREAMING_SNAKE_CASE__ : List[str] = MarkupText( F'''<b>Key:</b>\n\n<span fgcolor=\'{YELLOW}\'>●</span> Empty Model''', font_size=1_8, ) key_text.move_to([-5, 2.4, 0] ) step_a.move_to([2, 2, 0] ) self.play(Write(_UpperCAmelCase, run_time=2.5 ), Write(_UpperCAmelCase ), Write(_UpperCAmelCase ) ) self.add(_UpperCAmelCase ) SCREAMING_SNAKE_CASE__ : str = [] SCREAMING_SNAKE_CASE__ : Any = [] SCREAMING_SNAKE_CASE__ : str = [] for i, rect in enumerate(_UpperCAmelCase ): SCREAMING_SNAKE_CASE__ : int = Rectangle(height=0.46, width=0.46 ).set_stroke(width=0.0 ).set_fill(_UpperCAmelCase, opacity=0.7 ) cpu_target.move_to(_UpperCAmelCase ) cpu_target.generate_target() SCREAMING_SNAKE_CASE__ : int = 0.46 / 4 SCREAMING_SNAKE_CASE__ : List[Any] = 0.46 / 3 if i == 0: cpu_target.target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ), buff=0.02, direction=_UpperCAmelCase ) cpu_target.target.set_x(cpu_target.target.get_x() + 0.1 ) elif i == 3: cpu_target.target.next_to(cpu_targs[0].target, direction=_UpperCAmelCase, buff=0.0 ) else: cpu_target.target.next_to(cpu_targs[i - 1].target, direction=_UpperCAmelCase, buff=0.0 ) cpu_targs.append(_UpperCAmelCase ) first_animations.append(rect.animate(run_time=0.5 ).set_stroke(_UpperCAmelCase ) ) second_animations.append(MoveToTarget(_UpperCAmelCase, run_time=1.5 ) ) self.play(*_UpperCAmelCase ) self.play(*_UpperCAmelCase ) self.wait()
191
from __future__ import annotations import math from collections import Counter from string import ascii_lowercase def _a ( SCREAMING_SNAKE_CASE__ : str ) -> None: '''simple docstring''' SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ : Dict = analyze_text(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : Tuple = list(" " + ascii_lowercase ) # what is our total sum of probabilities. SCREAMING_SNAKE_CASE__ : str = sum(single_char_strings.values() ) # one length string SCREAMING_SNAKE_CASE__ : str = 0 # for each alpha we go in our dict and if it is in it we calculate entropy for ch in my_alphas: if ch in single_char_strings: SCREAMING_SNAKE_CASE__ : Optional[int] = single_char_strings[ch] SCREAMING_SNAKE_CASE__ : Any = my_str / all_sum my_fir_sum += prob * math.loga(SCREAMING_SNAKE_CASE__ ) # entropy formula. # print entropy print(f'''{round(-1 * my_fir_sum ):.1f}''' ) # two len string SCREAMING_SNAKE_CASE__ : Union[str, Any] = sum(two_char_strings.values() ) SCREAMING_SNAKE_CASE__ : int = 0 # for each alpha (two in size) calculate entropy. for cha in my_alphas: for cha in my_alphas: SCREAMING_SNAKE_CASE__ : List[str] = cha + cha if sequence in two_char_strings: SCREAMING_SNAKE_CASE__ : Optional[Any] = two_char_strings[sequence] SCREAMING_SNAKE_CASE__ : Tuple = int(SCREAMING_SNAKE_CASE__ ) / all_sum my_sec_sum += prob * math.loga(SCREAMING_SNAKE_CASE__ ) # print second entropy print(f'''{round(-1 * my_sec_sum ):.1f}''' ) # print the difference between them print(f'''{round((-1 * my_sec_sum) - (-1 * my_fir_sum) ):.1f}''' ) def _a ( SCREAMING_SNAKE_CASE__ : str ) -> tuple[dict, dict]: '''simple docstring''' SCREAMING_SNAKE_CASE__ : str = Counter() # type: ignore SCREAMING_SNAKE_CASE__ : Dict = Counter() # type: ignore single_char_strings[text[-1]] += 1 # first case when we have space at start. two_char_strings[" " + text[0]] += 1 for i in range(0 , len(SCREAMING_SNAKE_CASE__ ) - 1 ): single_char_strings[text[i]] += 1 two_char_strings[text[i : i + 2]] += 1 return single_char_strings, two_char_strings def _a ( ) -> str: '''simple docstring''' import doctest doctest.testmod() # text = ( # "Had repulsive dashwoods suspicion sincerity but advantage now him. Remark " # "easily garret nor nay. Civil those mrs enjoy shy fat merry. You greatest " # "jointure saw horrible. He private he on be imagine suppose. Fertile " # "beloved evident through no service elderly is. Blind there if every no so " # "at. Own neglected you preferred way sincerity delivered his attempted. To " # "of message cottage windows do besides against uncivil. Delightful " # "unreserved impossible few estimating men favourable see entreaties. She " # "propriety immediate was improving. He or entrance humoured likewise " # "moderate. Much nor game son say feel. Fat make met can must form into " # "gate. Me we offending prevailed discovery. " # ) # calculate_prob(text) if __name__ == "__main__": main()
191
1
from collections import OrderedDict from typing import Any, List, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import logging __lowerCamelCase : Optional[Any] = logging.get_logger(__name__) __lowerCamelCase : List[str] = { '''EleutherAI/gpt-j-6B''': '''https://huggingface.co/EleutherAI/gpt-j-6B/resolve/main/config.json''', # See all GPT-J models at https://huggingface.co/models?filter=gpt_j } class a__ ( snake_case_ ): A = 'gptj' A = { 'max_position_embeddings': 'n_positions', 'hidden_size': 'n_embd', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__( self : str,_A : List[str]=5_0400,_A : str=2048,_A : int=4096,_A : str=28,_A : int=16,_A : List[str]=64,_A : Any=None,_A : Tuple="gelu_new",_A : str=0.0,_A : List[Any]=0.0,_A : List[str]=0.0,_A : Union[str, Any]=1E-5,_A : List[Any]=0.02,_A : Tuple=True,_A : Tuple=5_0256,_A : List[Any]=5_0256,_A : List[Any]=False,**_A : Optional[int],): """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = vocab_size SCREAMING_SNAKE_CASE_ : int = n_positions SCREAMING_SNAKE_CASE_ : Optional[int] = n_embd SCREAMING_SNAKE_CASE_ : Dict = n_layer SCREAMING_SNAKE_CASE_ : Dict = n_head SCREAMING_SNAKE_CASE_ : List[str] = n_inner SCREAMING_SNAKE_CASE_ : Union[str, Any] = rotary_dim SCREAMING_SNAKE_CASE_ : List[Any] = activation_function SCREAMING_SNAKE_CASE_ : Dict = resid_pdrop SCREAMING_SNAKE_CASE_ : Optional[int] = embd_pdrop SCREAMING_SNAKE_CASE_ : Union[str, Any] = attn_pdrop SCREAMING_SNAKE_CASE_ : Optional[Any] = layer_norm_epsilon SCREAMING_SNAKE_CASE_ : Tuple = initializer_range SCREAMING_SNAKE_CASE_ : int = use_cache SCREAMING_SNAKE_CASE_ : Optional[int] = bos_token_id SCREAMING_SNAKE_CASE_ : Dict = eos_token_id super().__init__( bos_token_id=_A,eos_token_id=_A,tie_word_embeddings=_A,**_A ) class a__ ( snake_case_ ): def __init__( self : int,_A : PretrainedConfig,_A : str = "default",_A : List[PatchingSpec] = None,_A : bool = False,): """simple docstring""" super().__init__(_A,task=_A,patching_specs=_A,use_past=_A ) if not getattr(self._config,"pad_token_id",_A ): # TODO: how to do that better? SCREAMING_SNAKE_CASE_ : List[Any] = 0 @property def __UpperCamelCase ( self : Tuple ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = OrderedDict({"input_ids": {0: "batch", 1: "sequence"}} ) if self.use_past: self.fill_with_past_key_values_(_A,direction="inputs" ) SCREAMING_SNAKE_CASE_ : Optional[int] = {0: 'batch', 1: 'past_sequence + sequence'} else: SCREAMING_SNAKE_CASE_ : int = {0: 'batch', 1: 'sequence'} return common_inputs @property def __UpperCamelCase ( self : Optional[int] ): """simple docstring""" return self._config.n_layer @property def __UpperCamelCase ( self : Any ): """simple docstring""" return self._config.n_head def __UpperCamelCase ( self : Optional[int],_A : PreTrainedTokenizer,_A : int = -1,_A : int = -1,_A : bool = False,_A : Optional[TensorType] = None,): """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = super(_A,self ).generate_dummy_inputs( _A,batch_size=_A,seq_length=_A,is_pair=_A,framework=_A ) # We need to order the input in the way they appears in the forward() SCREAMING_SNAKE_CASE_ : Any = OrderedDict({"input_ids": common_inputs["input_ids"]} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed." ) else: import torch SCREAMING_SNAKE_CASE_ : Tuple = common_inputs['input_ids'].shape # Not using the same length for past_key_values SCREAMING_SNAKE_CASE_ : Any = seqlen + 2 SCREAMING_SNAKE_CASE_ : Any = ( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) SCREAMING_SNAKE_CASE_ : Dict = [ (torch.zeros(_A ), torch.zeros(_A )) for _ in range(self.num_layers ) ] SCREAMING_SNAKE_CASE_ : Tuple = common_inputs['attention_mask'] if self.use_past: SCREAMING_SNAKE_CASE_ : Tuple = ordered_inputs['attention_mask'].dtype SCREAMING_SNAKE_CASE_ : Union[str, Any] = torch.cat( [ordered_inputs["attention_mask"], torch.ones(_A,_A,dtype=_A )],dim=1 ) return ordered_inputs @property def __UpperCamelCase ( self : Union[str, Any] ): """simple docstring""" return 13
18
from __future__ import annotations def __lowercase ( lowerCamelCase : Optional[Any] , lowerCamelCase : Dict , lowerCamelCase : Union[str, Any] , lowerCamelCase : List[str] ): # noqa: E741 while r - l > 1: UpperCamelCase_ : Union[str, Any] = (l + r) // 2 if v[m] >= key: UpperCamelCase_ : str = m else: UpperCamelCase_ : List[Any] = m # noqa: E741 return r def __lowercase ( lowerCamelCase : list[int] ): if len(lowerCamelCase ) == 0: return 0 UpperCamelCase_ : Tuple = [0] * len(lowerCamelCase ) UpperCamelCase_ : int = 1 UpperCamelCase_ : Dict = v[0] for i in range(1 , len(lowerCamelCase ) ): if v[i] < tail[0]: UpperCamelCase_ : Any = v[i] elif v[i] > tail[length - 1]: UpperCamelCase_ : Dict = v[i] length += 1 else: UpperCamelCase_ : List[str] = v[i] return length if __name__ == "__main__": import doctest doctest.testmod()
175
0
'''simple docstring''' import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES from ...utils import logging from ..auto import CONFIG_MAPPING lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = { "salesforce/blip2-opt-2.7b": "https://huggingface.co/salesforce/blip2-opt-2.7b/resolve/main/config.json", } class lowerCamelCase ( lowerCAmelCase_ ): snake_case_ = 'blip_2_vision_model' def __init__( self, lowercase_=1408, lowercase_=6144, lowercase_=39, lowercase_=16, lowercase_=224, lowercase_=14, lowercase_="gelu", lowercase_=0.00_001, lowercase_=0.0, lowercase_=1E-10, lowercase_=True, **lowercase_, ) -> Dict: super().__init__(**__lowerCAmelCase ) snake_case = hidden_size snake_case = intermediate_size snake_case = num_hidden_layers snake_case = num_attention_heads snake_case = patch_size snake_case = image_size snake_case = initializer_range snake_case = attention_dropout snake_case = layer_norm_eps snake_case = hidden_act snake_case = qkv_bias @classmethod def _lowerCamelCase ( cls, lowercase_, **lowercase_ ) -> Dict: cls._set_token_in_kwargs(__lowerCAmelCase ) snake_case , snake_case = cls.get_config_dict(__lowerCAmelCase, **__lowerCAmelCase ) # get the vision config dict if we are loading from Blip2Config if config_dict.get('model_type' ) == "blip-2": snake_case = config_dict['vision_config'] if "model_type" in config_dict and hasattr(cls, 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( F'''You are using a model of type {config_dict["model_type"]} to instantiate a model of type ''' F'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(__lowerCAmelCase, **__lowerCAmelCase ) class lowerCamelCase ( lowerCAmelCase_ ): snake_case_ = 'blip_2_qformer' def __init__( self, lowercase_=30522, lowercase_=768, lowercase_=12, lowercase_=12, lowercase_=3072, lowercase_="gelu", lowercase_=0.1, lowercase_=0.1, lowercase_=512, lowercase_=0.02, lowercase_=1E-12, lowercase_=0, lowercase_="absolute", lowercase_=2, lowercase_=1408, **lowercase_, ) -> str: super().__init__(pad_token_id=__lowerCAmelCase, **__lowerCAmelCase ) snake_case = vocab_size snake_case = hidden_size snake_case = num_hidden_layers snake_case = num_attention_heads snake_case = hidden_act snake_case = intermediate_size snake_case = hidden_dropout_prob snake_case = attention_probs_dropout_prob snake_case = max_position_embeddings snake_case = initializer_range snake_case = layer_norm_eps snake_case = position_embedding_type snake_case = cross_attention_frequency snake_case = encoder_hidden_size @classmethod def _lowerCamelCase ( cls, lowercase_, **lowercase_ ) -> List[Any]: cls._set_token_in_kwargs(__lowerCAmelCase ) snake_case , snake_case = cls.get_config_dict(__lowerCAmelCase, **__lowerCAmelCase ) # get the qformer config dict if we are loading from Blip2Config if config_dict.get('model_type' ) == "blip-2": snake_case = config_dict['qformer_config'] if "model_type" in config_dict and hasattr(cls, 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( F'''You are using a model of type {config_dict["model_type"]} to instantiate a model of type ''' F'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(__lowerCAmelCase, **__lowerCAmelCase ) class lowerCamelCase ( lowerCAmelCase_ ): snake_case_ = 'blip-2' snake_case_ = True def __init__( self, lowercase_=None, lowercase_=None, lowercase_=None, lowercase_=32, **lowercase_ ) -> Any: super().__init__(**__lowerCAmelCase ) if vision_config is None: snake_case = {} logger.info('vision_config is None. initializing the Blip2VisionConfig with default values.' ) if qformer_config is None: snake_case = {} logger.info('qformer_config is None. Initializing the Blip2QFormerConfig with default values.' ) if text_config is None: snake_case = {} logger.info('text_config is None. Initializing the text config with default values (`OPTConfig`).' ) snake_case = BlipaVisionConfig(**__lowerCAmelCase ) snake_case = BlipaQFormerConfig(**__lowerCAmelCase ) snake_case = text_config['model_type'] if 'model_type' in text_config else 'opt' snake_case = CONFIG_MAPPING[text_model_type](**__lowerCAmelCase ) snake_case = self.text_config.tie_word_embeddings snake_case = self.text_config.is_encoder_decoder snake_case = num_query_tokens snake_case = self.vision_config.hidden_size snake_case = self.text_config.model_type in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES snake_case = 1.0 snake_case = 0.02 @classmethod def _lowerCamelCase ( cls, lowercase_, lowercase_, lowercase_, **lowercase_, ) -> Union[str, Any]: return cls( vision_config=vision_config.to_dict(), qformer_config=qformer_config.to_dict(), text_config=text_config.to_dict(), **__lowerCAmelCase, ) def _lowerCamelCase ( self ) -> Tuple: snake_case = copy.deepcopy(self.__dict__ ) snake_case = self.vision_config.to_dict() snake_case = self.qformer_config.to_dict() snake_case = self.text_config.to_dict() snake_case = self.__class__.model_type return output
358
'''simple docstring''' import pytest lowerCAmelCase_ = "__dummy_dataset1__" lowerCAmelCase_ = "\nimport json\nimport os\n\nimport datasets\n\n\nREPO_URL = \"https://huggingface.co/datasets/albertvillanova/tests-raw-jsonl/resolve/main/\"\nURLS = {\"train\": REPO_URL + \"wikiann-bn-train.jsonl\", \"validation\": REPO_URL + \"wikiann-bn-validation.jsonl\"}\n\n\nclass __DummyDataset1__(datasets.GeneratorBasedBuilder):\n\n def _info(self):\n features = datasets.Features(\n {\n \"tokens\": datasets.Sequence(datasets.Value(\"string\")),\n \"ner_tags\": datasets.Sequence(\n datasets.features.ClassLabel(\n names=[\n \"O\",\n \"B-PER\",\n \"I-PER\",\n \"B-ORG\",\n \"I-ORG\",\n \"B-LOC\",\n \"I-LOC\",\n ]\n )\n ),\n \"langs\": datasets.Sequence(datasets.Value(\"string\")),\n \"spans\": datasets.Sequence(datasets.Value(\"string\")),\n }\n )\n return datasets.DatasetInfo(features=features)\n\n def _split_generators(self, dl_manager):\n dl_path = dl_manager.download(URLS)\n return [\n datasets.SplitGenerator(datasets.Split.TRAIN, gen_kwargs={\"filepath\": dl_path[\"train\"]}),\n datasets.SplitGenerator(datasets.Split.VALIDATION, gen_kwargs={\"filepath\": dl_path[\"validation\"]}),\n ]\n\n def _generate_examples(self, filepath):\n with open(filepath, \"r\", encoding=\"utf-8\") as f:\n for i, line in enumerate(f):\n yield i, json.loads(line)\n" @pytest.fixture def __magic_name__ ( ) -> List[Any]: return DATASET_LOADING_SCRIPT_NAME @pytest.fixture def __magic_name__ ( ) -> Union[str, Any]: return DATASET_LOADING_SCRIPT_CODE @pytest.fixture def __magic_name__ ( A , A , A ) -> Optional[int]: snake_case = dataset_loading_script_name snake_case = tmp_path / 'datasets' / script_name script_dir.mkdir(parents=A ) snake_case = script_dir / F'''{script_name}.py''' with open(A , 'w' ) as f: f.write(A ) return str(A )
332
0
from math import factorial def __lowercase ( _A , _A ) -> int: # If either of the conditions are true, the function is being asked # to calculate a factorial of a negative number, which is not possible if n < k or k < 0: raise ValueError("""Please enter positive integers for n and k where n >= k""" ) return factorial(_A ) // (factorial(_A ) * factorial(n - k )) if __name__ == "__main__": print( """The number of five-card hands possible from a standard""", F"""fifty-two card deck is: {combinations(52, 5)}\n""", ) print( """If a class of 40 students must be arranged into groups of""", F"""4 for group projects, there are {combinations(40, 4)} ways""", """to arrange them.\n""", ) print( """If 10 teams are competing in a Formula One race, there""", F"""are {combinations(10, 3)} ways that first, second and""", """third place can be awarded.""", )
245
import logging import math from functools import partial from typing import Any, Callable, Dict, Iterable, List, Optional, Sequence, Tuple, Union import torch from .tensor_utils import tensor_tree_map, tree_map def __lowercase ( _A ) -> List[Tuple[int, ...]]: SCREAMING_SNAKE_CASE : Optional[int] = [] if isinstance(_A , _A ): for v in tree.values(): shapes.extend(_fetch_dims(_A ) ) elif isinstance(_A , (list, tuple) ): for t in tree: shapes.extend(_fetch_dims(_A ) ) elif isinstance(_A , torch.Tensor ): shapes.append(tree.shape ) else: raise ValueError("""Not supported""" ) return shapes @torch.jit.ignore def __lowercase ( _A , _A ) -> Tuple[int, ...]: SCREAMING_SNAKE_CASE : List[Any] = [] for d in reversed(_A ): idx.append(flat_idx % d ) SCREAMING_SNAKE_CASE : Tuple = flat_idx // d return tuple(reversed(_A ) ) @torch.jit.ignore def __lowercase ( _A , _A , _A , _A = None , _A = None , ) -> List[Tuple[slice, ...]]: # start_edges and end_edges both indicate whether, starting from any given # dimension, the start/end index is at the top/bottom edge of the # corresponding tensor, modeled as a tree def reduce_edge_list(_A ) -> None: SCREAMING_SNAKE_CASE : int = True for i in range(len(_A ) ): SCREAMING_SNAKE_CASE : Dict = -1 * (i + 1) l[reversed_idx] &= tally SCREAMING_SNAKE_CASE : Any = l[reversed_idx] if start_edges is None: SCREAMING_SNAKE_CASE : Tuple = [s == 0 for s in start] reduce_edge_list(_A ) if end_edges is None: SCREAMING_SNAKE_CASE : Tuple = [e == (d - 1) for e, d in zip(_A , _A )] reduce_edge_list(_A ) # Base cases. Either start/end are empty and we're done, or the final, # one-dimensional tensor can be simply sliced if len(_A ) == 0: return [()] elif len(_A ) == 1: return [(slice(start[0] , end[0] + 1 ),)] SCREAMING_SNAKE_CASE : List[Tuple[slice, ...]] = [] SCREAMING_SNAKE_CASE : List[slice] = [] # Dimensions common to start and end can be selected directly for s, e in zip(_A , _A ): if s == e: path_list.append(slice(_A , s + 1 ) ) else: break SCREAMING_SNAKE_CASE : Tuple[slice, ...] = tuple(_A ) SCREAMING_SNAKE_CASE : List[str] = len(_A ) # start == end, and we're done if divergence_idx == len(_A ): return [path] def upper() -> Tuple[Tuple[slice, ...], ...]: assert start_edges is not None assert end_edges is not None SCREAMING_SNAKE_CASE : List[str] = start[divergence_idx] return tuple( path + (slice(_A , sdi + 1 ),) + s for s in _get_minimal_slice_set( start[divergence_idx + 1 :] , [d - 1 for d in dims[divergence_idx + 1 :]] , dims[divergence_idx + 1 :] , start_edges=start_edges[divergence_idx + 1 :] , end_edges=[True for _ in end_edges[divergence_idx + 1 :]] , ) ) def lower() -> Tuple[Tuple[slice, ...], ...]: assert start_edges is not None assert end_edges is not None SCREAMING_SNAKE_CASE : Tuple = end[divergence_idx] return tuple( path + (slice(_A , edi + 1 ),) + s for s in _get_minimal_slice_set( [0 for _ in start[divergence_idx + 1 :]] , end[divergence_idx + 1 :] , dims[divergence_idx + 1 :] , start_edges=[True for _ in start_edges[divergence_idx + 1 :]] , end_edges=end_edges[divergence_idx + 1 :] , ) ) # If both start and end are at the edges of the subtree rooted at # divergence_idx, we can just select the whole subtree at once if start_edges[divergence_idx] and end_edges[divergence_idx]: slices.append(path + (slice(start[divergence_idx] , end[divergence_idx] + 1 ),) ) # If just start is at the edge, we can grab almost all of the subtree, # treating only the ragged bottom edge as an edge case elif start_edges[divergence_idx]: slices.append(path + (slice(start[divergence_idx] , end[divergence_idx] ),) ) slices.extend(lower() ) # Analogous to the previous case, but the top is ragged this time elif end_edges[divergence_idx]: slices.extend(upper() ) slices.append(path + (slice(start[divergence_idx] + 1 , end[divergence_idx] + 1 ),) ) # If both sides of the range are ragged, we need to handle both sides # separately. If there's contiguous meat in between them, we can index it # in one big chunk else: slices.extend(upper() ) SCREAMING_SNAKE_CASE : int = end[divergence_idx] - start[divergence_idx] if middle_ground > 1: slices.append(path + (slice(start[divergence_idx] + 1 , end[divergence_idx] ),) ) slices.extend(lower() ) return slices @torch.jit.ignore def __lowercase ( _A , _A , _A , _A ) -> torch.Tensor: SCREAMING_SNAKE_CASE : Tuple = t.shape[:no_batch_dims] SCREAMING_SNAKE_CASE : Union[str, Any] = list(_flat_idx_to_idx(_A , _A ) ) # _get_minimal_slice_set is inclusive SCREAMING_SNAKE_CASE : Any = list(_flat_idx_to_idx(flat_end - 1 , _A ) ) # Get an ordered list of slices to perform SCREAMING_SNAKE_CASE : List[Any] = _get_minimal_slice_set( _A , _A , _A , ) SCREAMING_SNAKE_CASE : List[Any] = [t[s] for s in slices] return torch.cat([s.view((-1,) + t.shape[no_batch_dims:] ) for s in sliced_tensors] ) def __lowercase ( _A , _A , _A , _A , _A = False , _A = None , _A = False , ) -> Any: if not (len(_A ) > 0): raise ValueError("""Must provide at least one input""" ) SCREAMING_SNAKE_CASE : Tuple = [shape[:no_batch_dims] for shape in _fetch_dims(_A )] SCREAMING_SNAKE_CASE : str = tuple([max(_A ) for s in zip(*_A )] ) def _prep_inputs(_A ) -> torch.Tensor: if not low_mem: if not sum(t.shape[:no_batch_dims] ) == no_batch_dims: SCREAMING_SNAKE_CASE : List[Any] = t.expand(orig_batch_dims + t.shape[no_batch_dims:] ) SCREAMING_SNAKE_CASE : Union[str, Any] = t.reshape(-1 , *t.shape[no_batch_dims:] ) else: SCREAMING_SNAKE_CASE : Optional[Any] = t.expand(orig_batch_dims + t.shape[no_batch_dims:] ) return t SCREAMING_SNAKE_CASE : Dict[str, Any] = tensor_tree_map(_prep_inputs , _A ) SCREAMING_SNAKE_CASE : Optional[int] = None if _out is not None: SCREAMING_SNAKE_CASE : Optional[int] = tensor_tree_map(lambda _A : t.view([-1] + list(t.shape[no_batch_dims:] ) ) , _out ) SCREAMING_SNAKE_CASE : Optional[int] = 1 for d in orig_batch_dims: flat_batch_dim *= d SCREAMING_SNAKE_CASE : Tuple = flat_batch_dim // chunk_size + (flat_batch_dim % chunk_size != 0) def _select_chunk(_A ) -> torch.Tensor: return t[i : i + chunk_size] if t.shape[0] != 1 else t SCREAMING_SNAKE_CASE : Union[str, Any] = 0 SCREAMING_SNAKE_CASE : Union[str, Any] = prepped_outputs for _ in range(_A ): # Chunk the input if not low_mem: SCREAMING_SNAKE_CASE : int = _select_chunk else: SCREAMING_SNAKE_CASE : Optional[int] = partial( _chunk_slice , flat_start=_A , flat_end=min(_A , i + chunk_size ) , no_batch_dims=len(_A ) , ) SCREAMING_SNAKE_CASE : Dict[str, Any] = tensor_tree_map(_A , _A ) # Run the layer on the chunk SCREAMING_SNAKE_CASE : Tuple = layer(**_A ) # Allocate space for the output if out is None: SCREAMING_SNAKE_CASE : List[str] = tensor_tree_map(lambda _A : t.new_zeros((flat_batch_dim,) + t.shape[1:] ) , _A ) # Put the chunk in its pre-allocated space if isinstance(_A , _A ): def assign(_A , _A ) -> None: for k, v in da.items(): if isinstance(_A , _A ): assign(_A , da[k] ) else: if _add_into_out: v[i : i + chunk_size] += da[k] else: SCREAMING_SNAKE_CASE : Optional[Any] = da[k] assign(_A , _A ) elif isinstance(_A , _A ): for xa, xa in zip(_A , _A ): if _add_into_out: xa[i : i + chunk_size] += xa else: SCREAMING_SNAKE_CASE : str = xa elif isinstance(_A , torch.Tensor ): if _add_into_out: out[i : i + chunk_size] += output_chunk else: SCREAMING_SNAKE_CASE : List[Any] = output_chunk else: raise ValueError("""Not supported""" ) i += chunk_size SCREAMING_SNAKE_CASE : Any = tensor_tree_map(lambda _A : t.view(orig_batch_dims + t.shape[1:] ) , _A ) return out class a__ : """simple docstring""" def __init__( self : Optional[Any] , UpperCAmelCase__ : int = 5_1_2 , ) ->int: """simple docstring""" SCREAMING_SNAKE_CASE : str = max_chunk_size SCREAMING_SNAKE_CASE : Optional[int] = None SCREAMING_SNAKE_CASE : Optional[tuple] = None def _lowercase ( self : List[Any] , UpperCAmelCase__ : Callable , UpperCAmelCase__ : tuple , UpperCAmelCase__ : int ) ->int: """simple docstring""" logging.info("""Tuning chunk size...""" ) if min_chunk_size >= self.max_chunk_size: return min_chunk_size SCREAMING_SNAKE_CASE : List[int] = [2**l for l in range(int(math.log(self.max_chunk_size , 2 ) ) + 1 )] SCREAMING_SNAKE_CASE : Dict = [c for c in candidates if c > min_chunk_size] SCREAMING_SNAKE_CASE : List[str] = [min_chunk_size] + candidates candidates[-1] += 4 def test_chunk_size(UpperCAmelCase__ : int ) -> bool: try: with torch.no_grad(): fn(*UpperCAmelCase__ , chunk_size=UpperCAmelCase__ ) return True except RuntimeError: return False SCREAMING_SNAKE_CASE : List[str] = 0 SCREAMING_SNAKE_CASE : List[str] = len(UpperCAmelCase__ ) - 1 while i > min_viable_chunk_size_index: SCREAMING_SNAKE_CASE : int = test_chunk_size(candidates[i] ) if not viable: SCREAMING_SNAKE_CASE : Tuple = (min_viable_chunk_size_index + i) // 2 else: SCREAMING_SNAKE_CASE : List[str] = i SCREAMING_SNAKE_CASE : List[str] = (i + len(UpperCAmelCase__ ) - 1) // 2 return candidates[min_viable_chunk_size_index] def _lowercase ( self : List[Any] , UpperCAmelCase__ : Iterable , UpperCAmelCase__ : Iterable ) ->bool: """simple docstring""" SCREAMING_SNAKE_CASE : str = True for aa, aa in zip(UpperCAmelCase__ , UpperCAmelCase__ ): assert type(UpperCAmelCase__ ) == type(UpperCAmelCase__ ) if isinstance(UpperCAmelCase__ , (list, tuple) ): consistent &= self._compare_arg_caches(UpperCAmelCase__ , UpperCAmelCase__ ) elif isinstance(UpperCAmelCase__ , UpperCAmelCase__ ): SCREAMING_SNAKE_CASE : Optional[Any] = [v for _, v in sorted(aa.items() , key=lambda UpperCAmelCase__ : x[0] )] SCREAMING_SNAKE_CASE : List[str] = [v for _, v in sorted(aa.items() , key=lambda UpperCAmelCase__ : x[0] )] consistent &= self._compare_arg_caches(UpperCAmelCase__ , UpperCAmelCase__ ) else: consistent &= aa == aa return consistent def _lowercase ( self : List[str] , UpperCAmelCase__ : Callable , UpperCAmelCase__ : tuple , UpperCAmelCase__ : int , ) ->int: """simple docstring""" SCREAMING_SNAKE_CASE : int = True SCREAMING_SNAKE_CASE : tuple = tree_map(lambda UpperCAmelCase__ : a.shape if isinstance(UpperCAmelCase__ , torch.Tensor ) else a , UpperCAmelCase__ , UpperCAmelCase__ ) if self.cached_arg_data is not None: # If args have changed shape/value, we need to re-tune assert len(self.cached_arg_data ) == len(UpperCAmelCase__ ) SCREAMING_SNAKE_CASE : Optional[Any] = self._compare_arg_caches(self.cached_arg_data , UpperCAmelCase__ ) else: # Otherwise, we can reuse the precomputed value SCREAMING_SNAKE_CASE : List[Any] = False if not consistent: SCREAMING_SNAKE_CASE : List[Any] = self._determine_favorable_chunk_size( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , ) SCREAMING_SNAKE_CASE : Union[str, Any] = arg_data assert self.cached_chunk_size is not None return self.cached_chunk_size
245
1
# DISCLAIMER: This file is strongly influenced by https://github.com/yang-song/score_sde_pytorch import math from typing import Union import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import randn_tensor from .scheduling_utils import SchedulerMixin class a ( UpperCAmelCase , UpperCAmelCase ): _lowercase = 1 @register_to_config def __init__( self , A_=2000 , A_=0.1 , A_=20 , A_=1e-3 ): '''simple docstring''' _UpperCAmelCase : List[str] = None _UpperCAmelCase : Any = None _UpperCAmelCase : List[str] = None def _UpperCAmelCase ( self , A_ , A_ = None ): '''simple docstring''' _UpperCAmelCase : Dict = torch.linspace(1 , self.config.sampling_eps , A_ , device=A_ ) def _UpperCAmelCase ( self , A_ , A_ , A_ , A_=None ): '''simple docstring''' if self.timesteps is None: raise ValueError( "`self.timesteps` is not set, you need to run 'set_timesteps' after creating the scheduler" ) # TODO(Patrick) better comments + non-PyTorch # postprocess model score _UpperCAmelCase : Tuple = ( -0.25 * t**2 * (self.config.beta_max - self.config.beta_min) - 0.5 * t * self.config.beta_min ) _UpperCAmelCase : Any = torch.sqrt(1.0 - torch.exp(2.0 * log_mean_coeff ) ) _UpperCAmelCase : Optional[int] = std.flatten() while len(std.shape ) < len(score.shape ): _UpperCAmelCase : Tuple = std.unsqueeze(-1 ) _UpperCAmelCase : str = -score / std # compute _UpperCAmelCase : Optional[int] = -1.0 / len(self.timesteps ) _UpperCAmelCase : Dict = self.config.beta_min + t * (self.config.beta_max - self.config.beta_min) _UpperCAmelCase : Any = beta_t.flatten() while len(beta_t.shape ) < len(x.shape ): _UpperCAmelCase : Dict = beta_t.unsqueeze(-1 ) _UpperCAmelCase : Tuple = -0.5 * beta_t * x _UpperCAmelCase : int = torch.sqrt(A_ ) _UpperCAmelCase : int = drift - diffusion**2 * score _UpperCAmelCase : Dict = x + drift * dt # add noise _UpperCAmelCase : Dict = randn_tensor(x.shape , layout=x.layout , generator=A_ , device=x.device , dtype=x.dtype ) _UpperCAmelCase : Optional[int] = x_mean + diffusion * math.sqrt(-dt ) * noise return x, x_mean def __len__( self ): '''simple docstring''' return self.config.num_train_timesteps
355
import inspect import re from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_config_docstrings.py SCREAMING_SNAKE_CASE_ = 'src/transformers' # This is to make sure the transformers module imported is the one in the repo. SCREAMING_SNAKE_CASE_ = direct_transformers_import(PATH_TO_TRANSFORMERS) SCREAMING_SNAKE_CASE_ = transformers.models.auto.configuration_auto.CONFIG_MAPPING # Regex pattern used to find the checkpoint mentioned in the docstring of `config_class`. # For example, `[bert-base-uncased](https://huggingface.co/bert-base-uncased)` SCREAMING_SNAKE_CASE_ = re.compile(R'\[(.+?)\]\((https://huggingface\.co/.+?)\)') SCREAMING_SNAKE_CASE_ = { 'DecisionTransformerConfig', 'EncoderDecoderConfig', 'MusicgenConfig', 'RagConfig', 'SpeechEncoderDecoderConfig', 'TimmBackboneConfig', 'VisionEncoderDecoderConfig', 'VisionTextDualEncoderConfig', 'LlamaConfig', } def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: Dict ) -> Union[str, Any]: _UpperCAmelCase : List[Any] = None # source code of `config_class` _UpperCAmelCase : int = inspect.getsource(lowerCAmelCase ) _UpperCAmelCase : Tuple = _re_checkpoint.findall(lowerCAmelCase ) # Each `checkpoint` is a tuple of a checkpoint name and a checkpoint link. # For example, `('bert-base-uncased', 'https://huggingface.co/bert-base-uncased')` for ckpt_name, ckpt_link in checkpoints: # allow the link to end with `/` if ckpt_link.endswith("/" ): _UpperCAmelCase : Dict = ckpt_link[:-1] # verify the checkpoint name corresponds to the checkpoint link _UpperCAmelCase : Any = F'https://huggingface.co/{ckpt_name}' if ckpt_link == ckpt_link_from_name: _UpperCAmelCase : Union[str, Any] = ckpt_name break return checkpoint def __SCREAMING_SNAKE_CASE ( ) -> Dict: _UpperCAmelCase : Any = [] for config_class in list(CONFIG_MAPPING.values() ): # Skip deprecated models if "models.deprecated" in config_class.__module__: continue _UpperCAmelCase : int = get_checkpoint_from_config_class(lowerCAmelCase ) _UpperCAmelCase : Tuple = config_class.__name__ if checkpoint is None and name not in CONFIG_CLASSES_TO_IGNORE_FOR_DOCSTRING_CHECKPOINT_CHECK: configs_without_checkpoint.append(lowerCAmelCase ) if len(lowerCAmelCase ) > 0: _UpperCAmelCase : int = "\n".join(sorted(lowerCAmelCase ) ) raise ValueError(F'The following configurations don\'t contain any valid checkpoint:\n{message}' ) if __name__ == "__main__": check_config_docstrings_have_checkpoints()
189
0
"""simple docstring""" from ..utils import ( OptionalDependencyNotAvailable, is_flax_available, is_scipy_available, is_torch_available, is_torchsde_available, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_pt_objects import * # noqa F403 else: from .scheduling_consistency_models import CMStochasticIterativeScheduler from .scheduling_ddim import DDIMScheduler from .scheduling_ddim_inverse import DDIMInverseScheduler from .scheduling_ddim_parallel import DDIMParallelScheduler from .scheduling_ddpm import DDPMScheduler from .scheduling_ddpm_parallel import DDPMParallelScheduler from .scheduling_deis_multistep import DEISMultistepScheduler from .scheduling_dpmsolver_multistep import DPMSolverMultistepScheduler from .scheduling_dpmsolver_multistep_inverse import DPMSolverMultistepInverseScheduler from .scheduling_dpmsolver_singlestep import DPMSolverSinglestepScheduler from .scheduling_euler_ancestral_discrete import EulerAncestralDiscreteScheduler from .scheduling_euler_discrete import EulerDiscreteScheduler from .scheduling_heun_discrete import HeunDiscreteScheduler from .scheduling_ipndm import IPNDMScheduler from .scheduling_k_dpm_2_ancestral_discrete import KDPMaAncestralDiscreteScheduler from .scheduling_k_dpm_2_discrete import KDPMaDiscreteScheduler from .scheduling_karras_ve import KarrasVeScheduler from .scheduling_pndm import PNDMScheduler from .scheduling_repaint import RePaintScheduler from .scheduling_sde_ve import ScoreSdeVeScheduler from .scheduling_sde_vp import ScoreSdeVpScheduler from .scheduling_unclip import UnCLIPScheduler from .scheduling_unipc_multistep import UniPCMultistepScheduler from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin from .scheduling_vq_diffusion import VQDiffusionScheduler try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_flax_objects import * # noqa F403 else: from .scheduling_ddim_flax import FlaxDDIMScheduler from .scheduling_ddpm_flax import FlaxDDPMScheduler from .scheduling_dpmsolver_multistep_flax import FlaxDPMSolverMultistepScheduler from .scheduling_karras_ve_flax import FlaxKarrasVeScheduler from .scheduling_lms_discrete_flax import FlaxLMSDiscreteScheduler from .scheduling_pndm_flax import FlaxPNDMScheduler from .scheduling_sde_ve_flax import FlaxScoreSdeVeScheduler from .scheduling_utils_flax import ( FlaxKarrasDiffusionSchedulers, FlaxSchedulerMixin, FlaxSchedulerOutput, broadcast_to_shape_from_left, ) try: if not (is_torch_available() and is_scipy_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_torch_and_scipy_objects import * # noqa F403 else: from .scheduling_lms_discrete import LMSDiscreteScheduler try: if not (is_torch_available() and is_torchsde_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_torch_and_torchsde_objects import * # noqa F403 else: from .scheduling_dpmsolver_sde import DPMSolverSDEScheduler
66
"""simple docstring""" from __future__ import annotations from collections import Counter from random import random class lowerCamelCase : '''simple docstring''' def __init__( self: Tuple ) -> Optional[Any]: snake_case_ :Optional[int] = {} def lowerCAmelCase_ ( self: Dict , snake_case: str ) -> None: snake_case_ :str = {} def lowerCAmelCase_ ( self: Optional[int] , snake_case: str , snake_case: str , snake_case: float ) -> None: if nodea not in self.connections: self.add_node(snake_case ) if nodea not in self.connections: self.add_node(snake_case ) snake_case_ :Dict = probability def lowerCAmelCase_ ( self: List[Any] ) -> list[str]: return list(self.connections ) def lowerCAmelCase_ ( self: Any , snake_case: str ) -> str: snake_case_ :Optional[Any] = 0 snake_case_ :List[str] = random() for dest in self.connections[node]: current_probability += self.connections[node][dest] if current_probability > random_value: return dest return "" def A_ ( _lowercase, _lowercase, _lowercase ): '''simple docstring''' snake_case_ :List[str] = MarkovChainGraphUndirectedUnweighted() for nodea, nodea, probability in transitions: graph.add_transition_probability(_lowercase, _lowercase, _lowercase ) snake_case_ :int = Counter(graph.get_nodes() ) snake_case_ :Optional[Any] = start for _ in range(_lowercase ): snake_case_ :Tuple = graph.transition(_lowercase ) visited[node] += 1 return visited if __name__ == "__main__": import doctest doctest.testmod()
66
1
import json import os import re import unicodedata from json.encoder import INFINITY from typing import Any, Dict, List, Optional, Tuple, Union import numpy as np import regex from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, is_flax_available, is_tf_available, is_torch_available, logging from ...utils.generic import _is_jax, _is_numpy UpperCAmelCase = logging.get_logger(__name__) UpperCAmelCase = { """artists_file""": """artists.json""", """lyrics_file""": """lyrics.json""", """genres_file""": """genres.json""", } UpperCAmelCase = { """artists_file""": { """jukebox""": """https://huggingface.co/ArthurZ/jukebox/blob/main/artists.json""", }, """genres_file""": { """jukebox""": """https://huggingface.co/ArthurZ/jukebox/blob/main/genres.json""", }, """lyrics_file""": { """jukebox""": """https://huggingface.co/ArthurZ/jukebox/blob/main/lyrics.json""", }, } UpperCAmelCase = { """jukebox""": 512, } class lowerCAmelCase_ ( lowerCamelCase__ ): '''simple docstring''' __snake_case = VOCAB_FILES_NAMES __snake_case = PRETRAINED_VOCAB_FILES_MAP __snake_case = PRETRAINED_LYRIC_TOKENS_SIZES __snake_case = ["input_ids", "attention_mask"] def __init__( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=["v3", "v2", "v2"] , _UpperCAmelCase=5_12 , _UpperCAmelCase=5 , _UpperCAmelCase="<|endoftext|>" , **_UpperCAmelCase , ): snake_case_ = AddedToken(_UpperCAmelCase , lstrip=_UpperCAmelCase , rstrip=_UpperCAmelCase ) if isinstance(_UpperCAmelCase , _UpperCAmelCase ) else unk_token super().__init__( unk_token=_UpperCAmelCase , n_genres=_UpperCAmelCase , version=_UpperCAmelCase , max_n_lyric_tokens=_UpperCAmelCase , **_UpperCAmelCase , ) snake_case_ = version snake_case_ = max_n_lyric_tokens snake_case_ = n_genres with open(_UpperCAmelCase , encoding='''utf-8''' ) as vocab_handle: snake_case_ = json.load(_UpperCAmelCase ) with open(_UpperCAmelCase , encoding='''utf-8''' ) as vocab_handle: snake_case_ = json.load(_UpperCAmelCase ) with open(_UpperCAmelCase , encoding='''utf-8''' ) as vocab_handle: snake_case_ = json.load(_UpperCAmelCase ) snake_case_ = R'''[^A-Za-z0-9.,:;!?\-\'\"()\[\] \t\n]+''' # In v2, we had a n_vocab=80 and in v3 we missed + and so n_vocab=79 of characters. if len(self.lyrics_encoder ) == 79: snake_case_ = oov.replace(R'''\-\'''' , R'''\-+\'''' ) snake_case_ = regex.compile(_UpperCAmelCase ) snake_case_ = {v: k for k, v in self.artists_encoder.items()} snake_case_ = {v: k for k, v in self.genres_encoder.items()} snake_case_ = {v: k for k, v in self.lyrics_encoder.items()} @property def UpperCamelCase__ ( self ): return len(self.artists_encoder ) + len(self.genres_encoder ) + len(self.lyrics_encoder ) def UpperCamelCase__ ( self ): return dict(self.artists_encoder , self.genres_encoder , self.lyrics_encoder ) def UpperCamelCase__ ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): snake_case_ = [self.artists_encoder.get(_UpperCAmelCase , 0 ) for artist in list_artists] for genres in range(len(_UpperCAmelCase ) ): snake_case_ = [self.genres_encoder.get(_UpperCAmelCase , 0 ) for genre in list_genres[genres]] snake_case_ = list_genres[genres] + [-1] * (self.n_genres - len(list_genres[genres] )) snake_case_ = [[self.lyrics_encoder.get(_UpperCAmelCase , 0 ) for character in list_lyrics[0]], [], []] return artists_id, list_genres, lyric_ids def UpperCamelCase__ ( self , _UpperCAmelCase ): return list(_UpperCAmelCase ) def UpperCamelCase__ ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ): snake_case_ , snake_case_ , snake_case_ = self.prepare_for_tokenization(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) snake_case_ = self._tokenize(_UpperCAmelCase ) return artist, genre, lyrics def UpperCamelCase__ ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = False ): for idx in range(len(self.version ) ): if self.version[idx] == "v3": snake_case_ = artists[idx].lower() snake_case_ = [genres[idx].lower()] else: snake_case_ = self._normalize(artists[idx] ) + '''.v2''' snake_case_ = [ self._normalize(_UpperCAmelCase ) + '''.v2''' for genre in genres[idx].split('''_''' ) ] # split is for the full dictionary with combined genres if self.version[0] == "v2": snake_case_ = regex.compile(R'''[^A-Za-z0-9.,:;!?\-\'\"()\[\] \t\n]+''' ) snake_case_ = '''ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789.,:;!?-+\'\"()[] \t\n''' snake_case_ = {vocab[index]: index + 1 for index in range(len(_UpperCAmelCase ) )} snake_case_ = 0 snake_case_ = len(_UpperCAmelCase ) + 1 snake_case_ = self.vocab snake_case_ = {v: k for k, v in self.vocab.items()} snake_case_ = '''''' else: snake_case_ = regex.compile(R'''[^A-Za-z0-9.,:;!?\-+\'\"()\[\] \t\n]+''' ) snake_case_ = self._run_strip_accents(_UpperCAmelCase ) snake_case_ = lyrics.replace('''\\''' , '''\n''' ) snake_case_ = self.out_of_vocab.sub('''''' , _UpperCAmelCase ), [], [] return artists, genres, lyrics def UpperCamelCase__ ( self , _UpperCAmelCase ): snake_case_ = unicodedata.normalize('''NFD''' , _UpperCAmelCase ) snake_case_ = [] for char in text: snake_case_ = unicodedata.category(_UpperCAmelCase ) if cat == "Mn": continue output.append(_UpperCAmelCase ) return "".join(_UpperCAmelCase ) def UpperCamelCase__ ( self , _UpperCAmelCase ): snake_case_ = ( [chr(_UpperCAmelCase ) for i in range(ord('''a''' ) , ord('''z''' ) + 1 )] + [chr(_UpperCAmelCase ) for i in range(ord('''A''' ) , ord('''Z''' ) + 1 )] + [chr(_UpperCAmelCase ) for i in range(ord('''0''' ) , ord('''9''' ) + 1 )] + ['''.'''] ) snake_case_ = frozenset(_UpperCAmelCase ) snake_case_ = re.compile(R'''_+''' ) snake_case_ = ''''''.join([c if c in accepted else '''_''' for c in text.lower()] ) snake_case_ = pattern.sub('''_''' , _UpperCAmelCase ).strip('''_''' ) return text def UpperCamelCase__ ( self , _UpperCAmelCase ): return " ".join(_UpperCAmelCase ) def UpperCamelCase__ ( self , _UpperCAmelCase , _UpperCAmelCase = None , _UpperCAmelCase = False ): # Convert to TensorType if not isinstance(_UpperCAmelCase , _UpperCAmelCase ): snake_case_ = TensorType(_UpperCAmelCase ) # Get a function reference for the correct framework if tensor_type == TensorType.TENSORFLOW: if not is_tf_available(): raise ImportError( '''Unable to convert output to TensorFlow tensors format, TensorFlow is not installed.''' ) import tensorflow as tf snake_case_ = tf.constant snake_case_ = tf.is_tensor elif tensor_type == TensorType.PYTORCH: if not is_torch_available(): raise ImportError('''Unable to convert output to PyTorch tensors format, PyTorch is not installed.''' ) import torch snake_case_ = torch.tensor snake_case_ = torch.is_tensor elif tensor_type == TensorType.JAX: if not is_flax_available(): raise ImportError('''Unable to convert output to JAX tensors format, JAX is not installed.''' ) import jax.numpy as jnp # noqa: F811 snake_case_ = jnp.array snake_case_ = _is_jax else: snake_case_ = np.asarray snake_case_ = _is_numpy # Do the tensor conversion in batch try: if prepend_batch_axis: snake_case_ = [inputs] if not is_tensor(_UpperCAmelCase ): snake_case_ = as_tensor(_UpperCAmelCase ) except: # noqa E722 raise ValueError( '''Unable to create tensor, you should probably activate truncation and/or padding ''' '''with \'padding=True\' \'truncation=True\' to have batched tensors with the same length.''' ) return inputs def __call__( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase="" , _UpperCAmelCase="pt" ): snake_case_ = [0, 0, 0] snake_case_ = [artist] * len(self.version ) snake_case_ = [genres] * len(self.version ) snake_case_ , snake_case_ , snake_case_ = self.tokenize(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) snake_case_ , snake_case_ , snake_case_ = self._convert_token_to_id(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) snake_case_ = [-INFINITY] * len(full_tokens[-1] ) snake_case_ = [ self.convert_to_tensors( [input_ids + [artists_id[i]] + genres_ids[i] + full_tokens[i]] , tensor_type=_UpperCAmelCase ) for i in range(len(self.version ) ) ] return BatchEncoding({'''input_ids''': input_ids, '''attention_masks''': attention_masks} ) def UpperCamelCase__ ( self , _UpperCAmelCase , _UpperCAmelCase = None ): if not os.path.isdir(_UpperCAmelCase ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return snake_case_ = os.path.join( _UpperCAmelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''artists_file'''] ) with open(_UpperCAmelCase , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(self.artists_encoder , ensure_ascii=_UpperCAmelCase ) ) snake_case_ = os.path.join( _UpperCAmelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''genres_file'''] ) with open(_UpperCAmelCase , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(self.genres_encoder , ensure_ascii=_UpperCAmelCase ) ) snake_case_ = os.path.join( _UpperCAmelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''lyrics_file'''] ) with open(_UpperCAmelCase , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(self.lyrics_encoder , ensure_ascii=_UpperCAmelCase ) ) return (artists_file, genres_file, lyrics_file) def UpperCamelCase__ ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): snake_case_ = self.artists_decoder.get(_UpperCAmelCase ) snake_case_ = [self.genres_decoder.get(_UpperCAmelCase ) for genre in genres_index] snake_case_ = [self.lyrics_decoder.get(_UpperCAmelCase ) for character in lyric_index] return artist, genres, lyrics
267
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCAmelCase = {"""configuration_vit_msn""": ["""VIT_MSN_PRETRAINED_CONFIG_ARCHIVE_MAP""", """ViTMSNConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase = [ """VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST""", """ViTMSNModel""", """ViTMSNForImageClassification""", """ViTMSNPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_vit_msn import VIT_MSN_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTMSNConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit_msn import ( VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST, ViTMSNForImageClassification, ViTMSNModel, ViTMSNPreTrainedModel, ) else: import sys UpperCAmelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
267
1
'''simple docstring''' import json import os from dataclasses import dataclass from functools import partial from typing import Callable import flax.linen as nn import jax import jax.numpy as jnp import joblib import optax import wandb from flax import jax_utils, struct, traverse_util from flax.serialization import from_bytes, to_bytes from flax.training import train_state from flax.training.common_utils import shard from tqdm.auto import tqdm from transformers import BigBirdConfig, FlaxBigBirdForQuestionAnswering from transformers.models.big_bird.modeling_flax_big_bird import FlaxBigBirdForQuestionAnsweringModule class a_ ( SCREAMING_SNAKE_CASE__ ): __A = 42 __A = jnp.floataa __A = True def lowercase__ ( self : Optional[int] ): """simple docstring""" super().setup() lowercase_ :List[Any] = nn.Dense(5 , dtype=self.dtype ) def __call__( self : Tuple , *lowercase : Tuple , **lowercase : Optional[int] ): """simple docstring""" lowercase_ :Tuple = super().__call__(*__lowerCamelCase , **__lowerCamelCase ) lowercase_ :Optional[int] = self.cls(outputs[2] ) return outputs[:2] + (cls_out,) class a_ ( SCREAMING_SNAKE_CASE__ ): __A = FlaxBigBirdForNaturalQuestionsModule def UpperCAmelCase_ ( __lowerCamelCase : Tuple ,__lowerCamelCase : Optional[int] ,__lowerCamelCase : int ,__lowerCamelCase : Tuple ,__lowerCamelCase : Any ,__lowerCamelCase : Any ): def cross_entropy(__lowerCamelCase : str ,__lowerCamelCase : Optional[Any] ,__lowerCamelCase : Tuple=None ): lowercase_ :Dict = logits.shape[-1] lowercase_ :Dict = (labels[..., None] == jnp.arange(snake_case_ )[None]).astype("f4" ) lowercase_ :int = jax.nn.log_softmax(snake_case_ ,axis=-1 ) lowercase_ :Optional[int] = -jnp.sum(labels * logits ,axis=-1 ) if reduction is not None: lowercase_ :Optional[int] = reduction(snake_case_ ) return loss lowercase_ :str = partial(snake_case_ ,reduction=jnp.mean ) lowercase_ :Dict = cross_entropy(snake_case_ ,snake_case_ ) lowercase_ :List[str] = cross_entropy(snake_case_ ,snake_case_ ) lowercase_ :str = cross_entropy(snake_case_ ,snake_case_ ) return (start_loss + end_loss + pooled_loss) / 3 @dataclass class a_ : __A = "google/bigbird-roberta-base" __A = 3_000 __A = 10_500 __A = 128 __A = 3 __A = 1 __A = 5 # tx_args __A = 3e-5 __A = 0.0 __A = 20_000 __A = 0.0095 __A = "bigbird-roberta-natural-questions" __A = "training-expt" __A = "data/nq-training.jsonl" __A = "data/nq-validation.jsonl" def lowercase__ ( self : Tuple ): """simple docstring""" os.makedirs(self.base_dir , exist_ok=__lowerCamelCase ) lowercase_ :Dict = os.path.join(self.base_dir , self.save_dir ) lowercase_ :Dict = self.batch_size_per_device * jax.device_count() @dataclass class a_ : __A = 42 __A = 4_096 # no dynamic padding on TPUs def __call__( self : Optional[int] , lowercase : Optional[Any] ): """simple docstring""" lowercase_ :Optional[int] = self.collate_fn(__lowerCamelCase ) lowercase_ :Tuple = jax.tree_util.tree_map(__lowerCamelCase , __lowerCamelCase ) return batch def lowercase__ ( self : List[Any] , lowercase : Union[str, Any] ): """simple docstring""" lowercase_ :List[Any] = self.fetch_inputs(features["input_ids"] ) lowercase_ :Union[str, Any] = { '''input_ids''': jnp.array(__lowerCamelCase , dtype=jnp.intaa ), '''attention_mask''': jnp.array(__lowerCamelCase , dtype=jnp.intaa ), '''start_labels''': jnp.array(features["start_token"] , dtype=jnp.intaa ), '''end_labels''': jnp.array(features["end_token"] , dtype=jnp.intaa ), '''pooled_labels''': jnp.array(features["category"] , dtype=jnp.intaa ), } return batch def lowercase__ ( self : List[Any] , lowercase : Union[str, Any] ): """simple docstring""" lowercase_ :Any = [self._fetch_inputs(__lowerCamelCase ) for ids in input_ids] return zip(*__lowerCamelCase ) def lowercase__ ( self : Tuple , lowercase : int ): """simple docstring""" lowercase_ :Any = [1 for _ in range(len(__lowerCamelCase ) )] while len(__lowerCamelCase ) < self.max_length: input_ids.append(self.pad_id ) attention_mask.append(0 ) return input_ids, attention_mask def UpperCAmelCase_ ( __lowerCamelCase : List[Any] ,__lowerCamelCase : Optional[Any] ,__lowerCamelCase : List[str]=None ): if seed is not None: lowercase_ :List[Any] = dataset.shuffle(seed=snake_case_ ) for i in range(len(snake_case_ ) // batch_size ): lowercase_ :Tuple = dataset[i * batch_size : (i + 1) * batch_size] yield dict(snake_case_ ) @partial(jax.pmap ,axis_name="batch" ) def UpperCAmelCase_ ( __lowerCamelCase : str ,__lowerCamelCase : Union[str, Any] ,**__lowerCamelCase : List[str] ): def loss_fn(__lowerCamelCase : List[str] ): lowercase_ :str = model_inputs.pop("start_labels" ) lowercase_ :str = model_inputs.pop("end_labels" ) lowercase_ :int = model_inputs.pop("pooled_labels" ) lowercase_ :Dict = state.apply_fn(**snake_case_ ,params=snake_case_ ,dropout_rng=snake_case_ ,train=snake_case_ ) lowercase_ :Union[str, Any] = outputs return state.loss_fn( snake_case_ ,snake_case_ ,snake_case_ ,snake_case_ ,snake_case_ ,snake_case_ ,) lowercase_ :int = jax.random.split(snake_case_ ) lowercase_ :str = jax.value_and_grad(snake_case_ ) lowercase_ :Optional[int] = grad_fn(state.params ) lowercase_ :List[str] = jax.lax.pmean({"loss": loss} ,axis_name="batch" ) lowercase_ :List[str] = jax.lax.pmean(snake_case_ ,"batch" ) lowercase_ :str = state.apply_gradients(grads=snake_case_ ) return state, metrics, new_drp_rng @partial(jax.pmap ,axis_name="batch" ) def UpperCAmelCase_ ( __lowerCamelCase : int ,**__lowerCamelCase : Union[str, Any] ): lowercase_ :Tuple = model_inputs.pop("start_labels" ) lowercase_ :Dict = model_inputs.pop("end_labels" ) lowercase_ :int = model_inputs.pop("pooled_labels" ) lowercase_ :List[str] = state.apply_fn(**snake_case_ ,params=state.params ,train=snake_case_ ) lowercase_ :Dict = outputs lowercase_ :Optional[int] = state.loss_fn(snake_case_ ,snake_case_ ,snake_case_ ,snake_case_ ,snake_case_ ,snake_case_ ) lowercase_ :List[str] = jax.lax.pmean({"loss": loss} ,axis_name="batch" ) return metrics class a_ ( train_state.TrainState ): __A = struct.field(pytree_node=SCREAMING_SNAKE_CASE__ ) @dataclass class a_ : __A = 42 __A = 42 __A = 42 __A = 42 __A = 42 __A = 42 __A = None def lowercase__ ( self : Optional[Any] , lowercase : Optional[Any] , lowercase : Any , lowercase : Optional[int] , lowercase : Any=None ): """simple docstring""" lowercase_ :Tuple = model.params lowercase_ :Union[str, Any] = TrainState.create( apply_fn=model.__call__ , params=__lowerCamelCase , tx=__lowerCamelCase , loss_fn=__lowerCamelCase , ) if ckpt_dir is not None: lowercase_ :Optional[Any] = restore_checkpoint(__lowerCamelCase , __lowerCamelCase ) lowercase_ :List[Any] = { '''lr''': args.lr, '''init_lr''': args.init_lr, '''warmup_steps''': args.warmup_steps, '''num_train_steps''': num_train_steps, '''weight_decay''': args.weight_decay, } lowercase_ :List[str] = build_tx(**__lowerCamelCase ) lowercase_ :int = train_state.TrainState( step=__lowerCamelCase , apply_fn=model.__call__ , params=__lowerCamelCase , tx=__lowerCamelCase , opt_state=__lowerCamelCase , ) lowercase_ :int = args lowercase_ :Optional[Any] = data_collator lowercase_ :Tuple = lr lowercase_ :List[Any] = params lowercase_ :Dict = jax_utils.replicate(__lowerCamelCase ) return state def lowercase__ ( self : Any , lowercase : int , lowercase : Optional[Any] , lowercase : Any ): """simple docstring""" lowercase_ :List[Any] = self.args lowercase_ :Dict = len(__lowerCamelCase ) // args.batch_size lowercase_ :List[Any] = jax.random.PRNGKey(0 ) lowercase_ :Optional[Any] = jax.random.split(__lowerCamelCase , jax.device_count() ) for epoch in range(args.max_epochs ): lowercase_ :Tuple = jnp.array(0 , dtype=jnp.floataa ) lowercase_ :Optional[Any] = get_batched_dataset(__lowerCamelCase , args.batch_size , seed=__lowerCamelCase ) lowercase_ :Union[str, Any] = 0 for batch in tqdm(__lowerCamelCase , total=__lowerCamelCase , desc=F'Running EPOCH-{epoch}' ): lowercase_ :Optional[Any] = self.data_collator(__lowerCamelCase ) lowercase_ :Union[str, Any] = self.train_step_fn(__lowerCamelCase , __lowerCamelCase , **__lowerCamelCase ) running_loss += jax_utils.unreplicate(metrics["loss"] ) i += 1 if i % args.logging_steps == 0: lowercase_ :Union[str, Any] = jax_utils.unreplicate(state.step ) lowercase_ :Optional[int] = running_loss.item() / i lowercase_ :List[Any] = self.scheduler_fn(state_step - 1 ) lowercase_ :Union[str, Any] = self.evaluate(__lowerCamelCase , __lowerCamelCase ) lowercase_ :Optional[Any] = { '''step''': state_step.item(), '''eval_loss''': eval_loss.item(), '''tr_loss''': tr_loss, '''lr''': lr.item(), } tqdm.write(str(__lowerCamelCase ) ) self.logger.log(__lowerCamelCase , commit=__lowerCamelCase ) if i % args.save_steps == 0: self.save_checkpoint(args.save_dir + F'-e{epoch}-s{i}' , state=__lowerCamelCase ) def lowercase__ ( self : str , lowercase : Union[str, Any] , lowercase : Dict ): """simple docstring""" lowercase_ :Union[str, Any] = get_batched_dataset(__lowerCamelCase , self.args.batch_size ) lowercase_ :int = len(__lowerCamelCase ) // self.args.batch_size lowercase_ :Optional[Any] = jnp.array(0 , dtype=jnp.floataa ) lowercase_ :Dict = 0 for batch in tqdm(__lowerCamelCase , total=__lowerCamelCase , desc="Evaluating ... " ): lowercase_ :List[str] = self.data_collator(__lowerCamelCase ) lowercase_ :Union[str, Any] = self.val_step_fn(__lowerCamelCase , **__lowerCamelCase ) running_loss += jax_utils.unreplicate(metrics["loss"] ) i += 1 return running_loss / i def lowercase__ ( self : Any , lowercase : Dict , lowercase : Optional[Any] ): """simple docstring""" lowercase_ :Dict = jax_utils.unreplicate(__lowerCamelCase ) print(F'SAVING CHECKPOINT IN {save_dir}' , end=" ... " ) self.model_save_fn(__lowerCamelCase , params=state.params ) with open(os.path.join(__lowerCamelCase , "opt_state.msgpack" ) , "wb" ) as f: f.write(to_bytes(state.opt_state ) ) joblib.dump(self.args , os.path.join(__lowerCamelCase , "args.joblib" ) ) joblib.dump(self.data_collator , os.path.join(__lowerCamelCase , "data_collator.joblib" ) ) with open(os.path.join(__lowerCamelCase , "training_state.json" ) , "w" ) as f: json.dump({"step": state.step.item()} , __lowerCamelCase ) print("DONE" ) def UpperCAmelCase_ ( __lowerCamelCase : int ,__lowerCamelCase : Dict ): print(F'RESTORING CHECKPOINT FROM {save_dir}' ,end=" ... " ) with open(os.path.join(snake_case_ ,"flax_model.msgpack" ) ,"rb" ) as f: lowercase_ :List[Any] = from_bytes(state.params ,f.read() ) with open(os.path.join(snake_case_ ,"opt_state.msgpack" ) ,"rb" ) as f: lowercase_ :Optional[int] = from_bytes(state.opt_state ,f.read() ) lowercase_ :Tuple = joblib.load(os.path.join(snake_case_ ,"args.joblib" ) ) lowercase_ :List[str] = joblib.load(os.path.join(snake_case_ ,"data_collator.joblib" ) ) with open(os.path.join(snake_case_ ,"training_state.json" ) ,"r" ) as f: lowercase_ :Dict = json.load(snake_case_ ) lowercase_ :int = training_state['''step'''] print("DONE" ) return params, opt_state, step, args, data_collator def UpperCAmelCase_ ( __lowerCamelCase : List[str] ,__lowerCamelCase : Any ,__lowerCamelCase : Dict ,__lowerCamelCase : str ): lowercase_ :str = num_train_steps - warmup_steps lowercase_ :Union[str, Any] = optax.linear_schedule(init_value=snake_case_ ,end_value=snake_case_ ,transition_steps=snake_case_ ) lowercase_ :Optional[Any] = optax.linear_schedule(init_value=snake_case_ ,end_value=1e-7 ,transition_steps=snake_case_ ) lowercase_ :Any = optax.join_schedules(schedules=[warmup_fn, decay_fn] ,boundaries=[warmup_steps] ) return lr def UpperCAmelCase_ ( __lowerCamelCase : List[str] ,__lowerCamelCase : List[Any] ,__lowerCamelCase : Union[str, Any] ,__lowerCamelCase : List[Any] ,__lowerCamelCase : str ): def weight_decay_mask(__lowerCamelCase : List[Any] ): lowercase_ :List[Any] = traverse_util.flatten_dict(snake_case_ ) lowercase_ :int = {k: (v[-1] != '''bias''' and v[-2:] != ('''LayerNorm''', '''scale''')) for k, v in params.items()} return traverse_util.unflatten_dict(snake_case_ ) lowercase_ :List[Any] = scheduler_fn(snake_case_ ,snake_case_ ,snake_case_ ,snake_case_ ) lowercase_ :List[str] = optax.adamw(learning_rate=snake_case_ ,weight_decay=snake_case_ ,mask=snake_case_ ) return tx, lr
223
"""simple docstring""" import dataclasses import json import sys import types from argparse import ArgumentDefaultsHelpFormatter, ArgumentParser, ArgumentTypeError from copy import copy from enum import Enum from inspect import isclass from pathlib import Path from typing import Any, Callable, Dict, Iterable, List, Literal, NewType, Optional, Tuple, Union, get_type_hints import yaml a_ = NewType("""DataClass""", Any) a_ = NewType("""DataClassType""", Any) def __lowercase ( snake_case_ : List[str] ) ->List[str]: '''simple docstring''' if isinstance(snake_case_ ,snake_case_ ): return v if v.lower() in ("yes", "true", "t", "y", "1"): return True elif v.lower() in ("no", "false", "f", "n", "0"): return False else: raise ArgumentTypeError( F"""Truthy value expected: got {v} but expected one of yes/no, true/false, t/f, y/n, 1/0 (case insensitive).""" ) def __lowercase ( snake_case_ : list ) ->Callable[[str], Any]: '''simple docstring''' __A : List[Any] = {str(snake_case_ ): choice for choice in choices} return lambda snake_case_ : str_to_choice.get(snake_case_ ,snake_case_ ) def __lowercase ( *, snake_case_ : Union[str, List[str]] = None ,snake_case_ : str = None ,snake_case_ : Any = dataclasses.MISSING ,snake_case_ : Callable[[], Any] = dataclasses.MISSING ,snake_case_ : dict = None ,**snake_case_ : str ,) ->dataclasses.Field: '''simple docstring''' if metadata is None: # Important, don't use as default param in function signature because dict is mutable and shared across function calls __A : Optional[Any] = {} if aliases is not None: __A : List[Any] = aliases if help is not None: __A : str = help return dataclasses.field(metadata=snake_case_ ,default=snake_case_ ,default_factory=snake_case_ ,**snake_case_ ) class __snake_case ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" _lowerCamelCase = 42 def __init__( self , __lowerCamelCase , **__lowerCamelCase ): '''simple docstring''' if "formatter_class" not in kwargs: __A : str = ArgumentDefaultsHelpFormatter super().__init__(**__lowerCamelCase ) if dataclasses.is_dataclass(__lowerCamelCase ): __A : Union[str, Any] = [dataclass_types] __A : Optional[Any] = list(__lowerCamelCase ) for dtype in self.dataclass_types: self._add_dataclass_arguments(__lowerCamelCase ) @staticmethod def UpperCamelCase__( __lowerCamelCase , __lowerCamelCase ): '''simple docstring''' __A : Optional[Any] = F"""--{field.name}""" __A : List[Any] = field.metadata.copy() # field.metadata is not used at all by Data Classes, # it is provided as a third-party extension mechanism. if isinstance(field.type , __lowerCamelCase ): raise RuntimeError( '''Unresolved type detected, which should have been done with the help of ''' '''`typing.get_type_hints` method by default''' ) __A : Tuple = kwargs.pop('''aliases''' , [] ) if isinstance(__lowerCamelCase , __lowerCamelCase ): __A : Optional[int] = [aliases] __A : str = getattr(field.type , '''__origin__''' , field.type ) if origin_type is Union or (hasattr(__lowerCamelCase , '''UnionType''' ) and isinstance(__lowerCamelCase , types.UnionType )): if str not in field.type.__args__ and ( len(field.type.__args__ ) != 2 or type(__lowerCamelCase ) not in field.type.__args__ ): raise ValueError( '''Only `Union[X, NoneType]` (i.e., `Optional[X]`) is allowed for `Union` because''' ''' the argument parser only supports one type per argument.''' F""" Problem encountered in field '{field.name}'.""" ) if type(__lowerCamelCase ) not in field.type.__args__: # filter `str` in Union __A : int = field.type.__args__[0] if field.type.__args__[1] == str else field.type.__args__[1] __A : int = getattr(field.type , '''__origin__''' , field.type ) elif bool not in field.type.__args__: # filter `NoneType` in Union (except for `Union[bool, NoneType]`) __A : int = ( field.type.__args__[0] if isinstance(__lowerCamelCase , field.type.__args__[1] ) else field.type.__args__[1] ) __A : Tuple = getattr(field.type , '''__origin__''' , field.type ) # A variable to store kwargs for a boolean field, if needed # so that we can init a `no_*` complement argument (see below) __A : Union[str, Any] = {} if origin_type is Literal or (isinstance(field.type , __lowerCamelCase ) and issubclass(field.type , __lowerCamelCase )): if origin_type is Literal: __A : Union[str, Any] = field.type.__args__ else: __A : Union[str, Any] = [x.value for x in field.type] __A : Optional[int] = make_choice_type_function(kwargs['''choices'''] ) if field.default is not dataclasses.MISSING: __A : Dict = field.default else: __A : Optional[Any] = True elif field.type is bool or field.type == Optional[bool]: # Copy the currect kwargs to use to instantiate a `no_*` complement argument below. # We do not initialize it here because the `no_*` alternative must be instantiated after the real argument __A : Any = copy(__lowerCamelCase ) # Hack because type=bool in argparse does not behave as we want. __A : Dict = string_to_bool if field.type is bool or (field.default is not None and field.default is not dataclasses.MISSING): # Default value is False if we have no default when of type bool. __A : Optional[Any] = False if field.default is dataclasses.MISSING else field.default # This is the value that will get picked if we don't include --field_name in any way __A : Tuple = default # This tells argparse we accept 0 or 1 value after --field_name __A : str = '''?''' # This is the value that will get picked if we do --field_name (without value) __A : int = True elif isclass(__lowerCamelCase ) and issubclass(__lowerCamelCase , __lowerCamelCase ): __A : str = field.type.__args__[0] __A : List[str] = '''+''' if field.default_factory is not dataclasses.MISSING: __A : Optional[int] = field.default_factory() elif field.default is dataclasses.MISSING: __A : Tuple = True else: __A : Union[str, Any] = field.type if field.default is not dataclasses.MISSING: __A : Dict = field.default elif field.default_factory is not dataclasses.MISSING: __A : List[str] = field.default_factory() else: __A : str = True parser.add_argument(__lowerCamelCase , *__lowerCamelCase , **__lowerCamelCase ) # Add a complement `no_*` argument for a boolean field AFTER the initial field has already been added. # Order is important for arguments with the same destination! # We use a copy of earlier kwargs because the original kwargs have changed a lot before reaching down # here and we do not need those changes/additional keys. if field.default is True and (field.type is bool or field.type == Optional[bool]): __A : List[str] = False parser.add_argument(F"""--no_{field.name}""" , action='''store_false''' , dest=field.name , **__lowerCamelCase ) def UpperCamelCase__( self , __lowerCamelCase ): '''simple docstring''' if hasattr(__lowerCamelCase , '''_argument_group_name''' ): __A : Tuple = self.add_argument_group(dtype._argument_group_name ) else: __A : List[Any] = self try: __A : Dict[str, type] = get_type_hints(__lowerCamelCase ) except NameError: raise RuntimeError( F"""Type resolution failed for {dtype}. Try declaring the class in global scope or """ '''removing line of `from __future__ import annotations` which opts in Postponed ''' '''Evaluation of Annotations (PEP 563)''' ) except TypeError as ex: # Remove this block when we drop Python 3.9 support if sys.version_info[:2] < (3, 10) and "unsupported operand type(s) for |" in str(__lowerCamelCase ): __A : List[str] = '''.'''.join(map(__lowerCamelCase , sys.version_info[:3] ) ) raise RuntimeError( F"""Type resolution failed for {dtype} on Python {python_version}. Try removing """ '''line of `from __future__ import annotations` which opts in union types as ''' '''`X | Y` (PEP 604) via Postponed Evaluation of Annotations (PEP 563). To ''' '''support Python versions that lower than 3.10, you need to use ''' '''`typing.Union[X, Y]` instead of `X | Y` and `typing.Optional[X]` instead of ''' '''`X | None`.''' ) from ex raise for field in dataclasses.fields(__lowerCamelCase ): if not field.init: continue __A : int = type_hints[field.name] self._parse_dataclass_field(__lowerCamelCase , __lowerCamelCase ) def UpperCamelCase__( self , __lowerCamelCase=None , __lowerCamelCase=False , __lowerCamelCase=True , __lowerCamelCase=None , __lowerCamelCase=None , ): '''simple docstring''' if args_file_flag or args_filename or (look_for_args_file and len(sys.argv )): __A : Tuple = [] if args_filename: args_files.append(Path(__lowerCamelCase ) ) elif look_for_args_file and len(sys.argv ): args_files.append(Path(sys.argv[0] ).with_suffix('''.args''' ) ) # args files specified via command line flag should overwrite default args files so we add them last if args_file_flag: # Create special parser just to extract the args_file_flag values __A : Dict = ArgumentParser() args_file_parser.add_argument(__lowerCamelCase , type=__lowerCamelCase , action='''append''' ) # Use only remaining args for further parsing (remove the args_file_flag) __A , __A : List[Any] = args_file_parser.parse_known_args(args=__lowerCamelCase ) __A : Dict = vars(__lowerCamelCase ).get(args_file_flag.lstrip('''-''' ) , __lowerCamelCase ) if cmd_args_file_paths: args_files.extend([Path(__lowerCamelCase ) for p in cmd_args_file_paths] ) __A : Any = [] for args_file in args_files: if args_file.exists(): file_args += args_file.read_text().split() # in case of duplicate arguments the last one has precedence # args specified via the command line should overwrite args from files, so we add them last __A : List[Any] = file_args + args if args is not None else file_args + sys.argv[1:] __A , __A : Tuple = self.parse_known_args(args=__lowerCamelCase ) __A : int = [] for dtype in self.dataclass_types: __A : List[str] = {f.name for f in dataclasses.fields(__lowerCamelCase ) if f.init} __A : List[str] = {k: v for k, v in vars(__lowerCamelCase ).items() if k in keys} for k in keys: delattr(__lowerCamelCase , __lowerCamelCase ) __A : int = dtype(**__lowerCamelCase ) outputs.append(__lowerCamelCase ) if len(namespace.__dict__ ) > 0: # additional namespace. outputs.append(__lowerCamelCase ) if return_remaining_strings: return (*outputs, remaining_args) else: if remaining_args: raise ValueError(F"""Some specified arguments are not used by the HfArgumentParser: {remaining_args}""" ) return (*outputs,) def UpperCamelCase__( self , __lowerCamelCase , __lowerCamelCase = False ): '''simple docstring''' __A : Tuple = set(args.keys() ) __A : Union[str, Any] = [] for dtype in self.dataclass_types: __A : str = {f.name for f in dataclasses.fields(__lowerCamelCase ) if f.init} __A : Optional[int] = {k: v for k, v in args.items() if k in keys} unused_keys.difference_update(inputs.keys() ) __A : int = dtype(**__lowerCamelCase ) outputs.append(__lowerCamelCase ) if not allow_extra_keys and unused_keys: raise ValueError(F"""Some keys are not used by the HfArgumentParser: {sorted(__lowerCamelCase )}""" ) return tuple(__lowerCamelCase ) def UpperCamelCase__( self , __lowerCamelCase , __lowerCamelCase = False ): '''simple docstring''' with open(Path(__lowerCamelCase ) , encoding='''utf-8''' ) as open_json_file: __A : List[str] = json.loads(open_json_file.read() ) __A : List[str] = self.parse_dict(__lowerCamelCase , allow_extra_keys=__lowerCamelCase ) return tuple(__lowerCamelCase ) def UpperCamelCase__( self , __lowerCamelCase , __lowerCamelCase = False ): '''simple docstring''' __A : Dict = self.parse_dict(yaml.safe_load(Path(__lowerCamelCase ).read_text() ) , allow_extra_keys=__lowerCamelCase ) return tuple(__lowerCamelCase )
179
0
'''simple docstring''' import argparse import json from dataclasses import dataclass, field from functools import partial from pathlib import Path from typing import Callable, Dict, List, Tuple import timm import torch import torch.nn as nn from classy_vision.models.regnet import RegNet, RegNetParams, RegNetYaagf, RegNetYaagf, RegNetYaaagf from huggingface_hub import cached_download, hf_hub_url from torch import Tensor from vissl.models.model_helpers import get_trunk_forward_outputs from transformers import AutoImageProcessor, RegNetConfig, RegNetForImageClassification, RegNetModel from transformers.utils import logging logging.set_verbosity_info() __a = logging.get_logger() @dataclass class A__ : """simple docstring""" UpperCamelCase_ : Optional[Any] = 42 UpperCamelCase_ : Tuple = field(default_factory=__a ) UpperCamelCase_ : int = field(default_factory=__a ) def _lowerCAmelCase ( self : int , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : Tensor , lowerCAmelCase__ : Tensor ) -> Dict: """simple docstring""" _UpperCAmelCase : Optional[int] = len(list(m.modules() ) ) == 1 or isinstance(UpperCamelCase__ , nn.Convad ) or isinstance(UpperCamelCase__ , nn.BatchNormad ) if has_not_submodules: self.traced.append(UpperCamelCase__ ) def __call__( self : Optional[Any] , lowerCAmelCase__ : Tensor ) -> Any: """simple docstring""" for m in self.module.modules(): self.handles.append(m.register_forward_hook(self._forward_hook ) ) self.module(UpperCamelCase__ ) [x.remove() for x in self.handles] return self @property def _lowerCAmelCase ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" return list(filter(lambda lowerCAmelCase__ : len(list(x.state_dict().keys() ) ) > 0 , self.traced ) ) @dataclass class A__ : """simple docstring""" UpperCamelCase_ : str = 42 UpperCamelCase_ : Union[str, Any] = 42 UpperCamelCase_ : str = 1 UpperCamelCase_ : Tuple = field(default_factory=__a ) UpperCamelCase_ : List[Any] = field(default_factory=__a ) UpperCamelCase_ : int = True def __call__( self : int , lowerCAmelCase__ : Tensor ) -> str: """simple docstring""" _UpperCAmelCase : Optional[Any] = Tracker(self.dest )(UpperCamelCase__ ).parametrized _UpperCAmelCase : Dict = Tracker(self.src )(UpperCamelCase__ ).parametrized _UpperCAmelCase : List[Any] = list(filter(lambda lowerCAmelCase__ : type(UpperCamelCase__ ) not in self.src_skip , UpperCamelCase__ ) ) _UpperCAmelCase : Optional[Any] = list(filter(lambda lowerCAmelCase__ : type(UpperCamelCase__ ) not in self.dest_skip , UpperCamelCase__ ) ) if len(UpperCamelCase__ ) != len(UpperCamelCase__ ) and self.raise_if_mismatch: raise Exception( F"""Numbers of operations are different. Source module has {len(UpperCamelCase__ )} operations while""" F""" destination module has {len(UpperCamelCase__ )}.""" ) for dest_m, src_m in zip(UpperCamelCase__ , UpperCamelCase__ ): dest_m.load_state_dict(src_m.state_dict() ) if self.verbose == 1: print(F"""Transfered from={src_m} to={dest_m}""" ) class A__ ( nn.Module ): """simple docstring""" def __init__( self : Optional[int] , lowerCAmelCase__ : nn.Module ) -> Dict: """simple docstring""" super().__init__() _UpperCAmelCase : List[Any] = [] # - get the stem feature_blocks.append(("conv1", model.stem) ) # - get all the feature blocks for k, v in model.trunk_output.named_children(): assert k.startswith("block" ), F"""Unexpected layer name {k}""" _UpperCAmelCase : Optional[Any] = len(UpperCamelCase__ ) + 1 feature_blocks.append((F"""res{block_index}""", v) ) _UpperCAmelCase : List[str] = nn.ModuleDict(UpperCamelCase__ ) def _lowerCAmelCase ( self : Union[str, Any] , lowerCAmelCase__ : Tensor ) -> Tuple: """simple docstring""" return get_trunk_forward_outputs( UpperCamelCase__ , out_feat_keys=UpperCamelCase__ , feature_blocks=self._feature_blocks , ) class A__ ( __a ): """simple docstring""" def _lowerCAmelCase ( self : Tuple , lowerCAmelCase__ : str ) -> str: """simple docstring""" _UpperCAmelCase : Tuple = x.split("-" ) return x_split[0] + x_split[1] + "_" + "".join(x_split[2:] ) def __getitem__( self : Union[str, Any] , lowerCAmelCase__ : str ) -> Callable[[], Tuple[nn.Module, Dict]]: """simple docstring""" if x not in self: _UpperCAmelCase : List[str] = self.convert_name_to_timm(UpperCamelCase__ ) _UpperCAmelCase : Union[str, Any] = partial(lambda: (timm.create_model(UpperCamelCase__ , pretrained=UpperCamelCase__ ).eval(), None) ) else: _UpperCAmelCase : List[str] = super().__getitem__(UpperCamelCase__ ) return val class A__ ( __a ): """simple docstring""" def __getitem__( self : Optional[Any] , lowerCAmelCase__ : str ) -> Callable[[], nn.Module]: """simple docstring""" if "seer" in x and "in1k" not in x: _UpperCAmelCase : int = RegNetModel else: _UpperCAmelCase : List[str] = RegNetForImageClassification return val def __UpperCAmelCase ( a_: Union[str, Any], a_: List[str], a_: List[Tuple[str, str]] ): for from_key, to_key in keys: _UpperCAmelCase : Dict = from_state_dict[from_key].clone() print(f"""Copied key={from_key} to={to_key}""" ) return to_state_dict def __UpperCAmelCase ( a_: str, a_: Callable[[], nn.Module], a_: Callable[[], nn.Module], a_: RegNetConfig, a_: Path, a_: bool = True, ): print(f"""Converting {name}...""" ) with torch.no_grad(): _UpperCAmelCase , _UpperCAmelCase : Optional[int] = from_model_func() _UpperCAmelCase : List[str] = our_model_func(__UpperCamelCase ).eval() _UpperCAmelCase : List[Any] = ModuleTransfer(src=__UpperCamelCase, dest=__UpperCamelCase, raise_if_mismatch=__UpperCamelCase ) _UpperCAmelCase : int = torch.randn((1, 3, 224, 224) ) module_transfer(__UpperCamelCase ) if from_state_dict is not None: _UpperCAmelCase : List[Any] = [] # for seer - in1k finetuned we have to manually copy the head if "seer" in name and "in1k" in name: _UpperCAmelCase : Optional[Any] = [("0.clf.0.weight", "classifier.1.weight"), ("0.clf.0.bias", "classifier.1.bias")] _UpperCAmelCase : Optional[int] = manually_copy_vissl_head(__UpperCamelCase, our_model.state_dict(), __UpperCamelCase ) our_model.load_state_dict(__UpperCamelCase ) _UpperCAmelCase : Optional[Any] = our_model(__UpperCamelCase, output_hidden_states=__UpperCamelCase ) _UpperCAmelCase : int = ( our_outputs.logits if isinstance(__UpperCamelCase, __UpperCamelCase ) else our_outputs.last_hidden_state ) _UpperCAmelCase : Any = from_model(__UpperCamelCase ) _UpperCAmelCase : List[str] = from_output[-1] if type(__UpperCamelCase ) is list else from_output # now since I don't want to use any config files, vissl seer model doesn't actually have an head, so let's just check the last hidden state if "seer" in name and "in1k" in name: _UpperCAmelCase : Union[str, Any] = our_outputs.hidden_states[-1] assert torch.allclose(__UpperCamelCase, __UpperCamelCase ), "The model logits don't match the original one." if push_to_hub: our_model.push_to_hub( repo_path_or_name=save_directory / name, commit_message="Add model", use_temp_dir=__UpperCamelCase, ) _UpperCAmelCase : Union[str, Any] = 224 if "seer" not in name else 384 # we can use the convnext one _UpperCAmelCase : List[Any] = AutoImageProcessor.from_pretrained("facebook/convnext-base-224-22k-1k", size=__UpperCamelCase ) image_processor.push_to_hub( repo_path_or_name=save_directory / name, commit_message="Add image processor", use_temp_dir=__UpperCamelCase, ) print(f"""Pushed {name}""" ) def __UpperCAmelCase ( a_: Path, a_: str = None, a_: bool = True ): _UpperCAmelCase : Any = "imagenet-1k-id2label.json" _UpperCAmelCase : List[str] = 1_000 _UpperCAmelCase : Tuple = (1, num_labels) _UpperCAmelCase : Any = "huggingface/label-files" _UpperCAmelCase : Optional[Any] = num_labels _UpperCAmelCase : Tuple = json.load(open(cached_download(hf_hub_url(__UpperCamelCase, __UpperCamelCase, repo_type="dataset" ) ), "r" ) ) _UpperCAmelCase : List[Any] = {int(__UpperCamelCase ): v for k, v in idalabel.items()} _UpperCAmelCase : Optional[int] = idalabel _UpperCAmelCase : Tuple = {v: k for k, v in idalabel.items()} _UpperCAmelCase : Tuple = partial(__UpperCamelCase, num_labels=__UpperCamelCase, idalabel=__UpperCamelCase, labelaid=__UpperCamelCase ) _UpperCAmelCase : Union[str, Any] = { "regnet-x-002": ImageNetPreTrainedConfig( depths=[1, 1, 4, 7], hidden_sizes=[24, 56, 152, 368], groups_width=8, layer_type="x" ), "regnet-x-004": ImageNetPreTrainedConfig( depths=[1, 2, 7, 12], hidden_sizes=[32, 64, 160, 384], groups_width=16, layer_type="x" ), "regnet-x-006": ImageNetPreTrainedConfig( depths=[1, 3, 5, 7], hidden_sizes=[48, 96, 240, 528], groups_width=24, layer_type="x" ), "regnet-x-008": ImageNetPreTrainedConfig( depths=[1, 3, 7, 5], hidden_sizes=[64, 128, 288, 672], groups_width=16, layer_type="x" ), "regnet-x-016": ImageNetPreTrainedConfig( depths=[2, 4, 10, 2], hidden_sizes=[72, 168, 408, 912], groups_width=24, layer_type="x" ), "regnet-x-032": ImageNetPreTrainedConfig( depths=[2, 6, 15, 2], hidden_sizes=[96, 192, 432, 1_008], groups_width=48, layer_type="x" ), "regnet-x-040": ImageNetPreTrainedConfig( depths=[2, 5, 14, 2], hidden_sizes=[80, 240, 560, 1_360], groups_width=40, layer_type="x" ), "regnet-x-064": ImageNetPreTrainedConfig( depths=[2, 4, 10, 1], hidden_sizes=[168, 392, 784, 1_624], groups_width=56, layer_type="x" ), "regnet-x-080": ImageNetPreTrainedConfig( depths=[2, 5, 15, 1], hidden_sizes=[80, 240, 720, 1_920], groups_width=120, layer_type="x" ), "regnet-x-120": ImageNetPreTrainedConfig( depths=[2, 5, 11, 1], hidden_sizes=[224, 448, 896, 2_240], groups_width=112, layer_type="x" ), "regnet-x-160": ImageNetPreTrainedConfig( depths=[2, 6, 13, 1], hidden_sizes=[256, 512, 896, 2_048], groups_width=128, layer_type="x" ), "regnet-x-320": ImageNetPreTrainedConfig( depths=[2, 7, 13, 1], hidden_sizes=[336, 672, 1_344, 2_520], groups_width=168, layer_type="x" ), # y variant "regnet-y-002": ImageNetPreTrainedConfig(depths=[1, 1, 4, 7], hidden_sizes=[24, 56, 152, 368], groups_width=8 ), "regnet-y-004": ImageNetPreTrainedConfig( depths=[1, 3, 6, 6], hidden_sizes=[48, 104, 208, 440], groups_width=8 ), "regnet-y-006": ImageNetPreTrainedConfig( depths=[1, 3, 7, 4], hidden_sizes=[48, 112, 256, 608], groups_width=16 ), "regnet-y-008": ImageNetPreTrainedConfig( depths=[1, 3, 8, 2], hidden_sizes=[64, 128, 320, 768], groups_width=16 ), "regnet-y-016": ImageNetPreTrainedConfig( depths=[2, 6, 17, 2], hidden_sizes=[48, 120, 336, 888], groups_width=24 ), "regnet-y-032": ImageNetPreTrainedConfig( depths=[2, 5, 13, 1], hidden_sizes=[72, 216, 576, 1_512], groups_width=24 ), "regnet-y-040": ImageNetPreTrainedConfig( depths=[2, 6, 12, 2], hidden_sizes=[128, 192, 512, 1_088], groups_width=64 ), "regnet-y-064": ImageNetPreTrainedConfig( depths=[2, 7, 14, 2], hidden_sizes=[144, 288, 576, 1_296], groups_width=72 ), "regnet-y-080": ImageNetPreTrainedConfig( depths=[2, 4, 10, 1], hidden_sizes=[168, 448, 896, 2_016], groups_width=56 ), "regnet-y-120": ImageNetPreTrainedConfig( depths=[2, 5, 11, 1], hidden_sizes=[224, 448, 896, 2_240], groups_width=112 ), "regnet-y-160": ImageNetPreTrainedConfig( depths=[2, 4, 11, 1], hidden_sizes=[224, 448, 1_232, 3_024], groups_width=112 ), "regnet-y-320": ImageNetPreTrainedConfig( depths=[2, 5, 12, 1], hidden_sizes=[232, 696, 1_392, 3_712], groups_width=232 ), # models created by SEER -> https://arxiv.org/abs/2202.08360 "regnet-y-320-seer": RegNetConfig(depths=[2, 5, 12, 1], hidden_sizes=[232, 696, 1_392, 3_712], groups_width=232 ), "regnet-y-640-seer": RegNetConfig(depths=[2, 5, 12, 1], hidden_sizes=[328, 984, 1_968, 4_920], groups_width=328 ), "regnet-y-1280-seer": RegNetConfig( depths=[2, 7, 17, 1], hidden_sizes=[528, 1_056, 2_904, 7_392], groups_width=264 ), "regnet-y-2560-seer": RegNetConfig( depths=[3, 7, 16, 1], hidden_sizes=[640, 1_696, 2_544, 5_088], groups_width=640 ), "regnet-y-10b-seer": ImageNetPreTrainedConfig( depths=[2, 7, 17, 1], hidden_sizes=[2_020, 4_040, 11_110, 28_280], groups_width=1_010 ), # finetuned on imagenet "regnet-y-320-seer-in1k": ImageNetPreTrainedConfig( depths=[2, 5, 12, 1], hidden_sizes=[232, 696, 1_392, 3_712], groups_width=232 ), "regnet-y-640-seer-in1k": ImageNetPreTrainedConfig( depths=[2, 5, 12, 1], hidden_sizes=[328, 984, 1_968, 4_920], groups_width=328 ), "regnet-y-1280-seer-in1k": ImageNetPreTrainedConfig( depths=[2, 7, 17, 1], hidden_sizes=[528, 1_056, 2_904, 7_392], groups_width=264 ), "regnet-y-2560-seer-in1k": ImageNetPreTrainedConfig( depths=[3, 7, 16, 1], hidden_sizes=[640, 1_696, 2_544, 5_088], groups_width=640 ), "regnet-y-10b-seer-in1k": ImageNetPreTrainedConfig( depths=[2, 7, 17, 1], hidden_sizes=[2_020, 4_040, 11_110, 28_280], groups_width=1_010 ), } _UpperCAmelCase : List[Any] = NameToOurModelFuncMap() _UpperCAmelCase : List[Any] = NameToFromModelFuncMap() # add seer weights logic def load_using_classy_vision(a_: str, a_: Callable[[], nn.Module] ) -> Tuple[nn.Module, Dict]: _UpperCAmelCase : str = torch.hub.load_state_dict_from_url(__UpperCamelCase, model_dir=str(__UpperCamelCase ), map_location="cpu" ) _UpperCAmelCase : Dict = model_func() # check if we have a head, if yes add it _UpperCAmelCase : Any = files["classy_state_dict"]["base_model"]["model"] _UpperCAmelCase : str = model_state_dict["trunk"] model.load_state_dict(__UpperCamelCase ) return model.eval(), model_state_dict["heads"] # pretrained _UpperCAmelCase : Tuple = partial( __UpperCamelCase, "https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_regnet32d/seer_regnet32gf_model_iteration244000.torch", lambda: FakeRegNetVisslWrapper(RegNetYaagf() ), ) _UpperCAmelCase : Optional[Any] = partial( __UpperCamelCase, "https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_regnet64/seer_regnet64gf_model_final_checkpoint_phase0.torch", lambda: FakeRegNetVisslWrapper(RegNetYaagf() ), ) _UpperCAmelCase : str = partial( __UpperCamelCase, "https://dl.fbaipublicfiles.com/vissl/model_zoo/swav_ig1b_regnet128Gf_cnstant_bs32_node16_sinkhorn10_proto16k_syncBN64_warmup8k/model_final_checkpoint_phase0.torch", lambda: FakeRegNetVisslWrapper(RegNetYaaagf() ), ) _UpperCAmelCase : Tuple = partial( __UpperCamelCase, "https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_regnet10B/model_iteration124500_conso.torch", lambda: FakeRegNetVisslWrapper( RegNet(RegNetParams(depth=27, group_width=1_010, w_a=1_744, w_a=620.83, w_m=2.52 ) ) ), ) # IN1K finetuned _UpperCAmelCase : Tuple = partial( __UpperCamelCase, "https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_regnet32_finetuned_in1k_model_final_checkpoint_phase78.torch", lambda: FakeRegNetVisslWrapper(RegNetYaagf() ), ) _UpperCAmelCase : int = partial( __UpperCamelCase, "https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_regnet64_finetuned_in1k_model_final_checkpoint_phase78.torch", lambda: FakeRegNetVisslWrapper(RegNetYaagf() ), ) _UpperCAmelCase : Tuple = partial( __UpperCamelCase, "https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_regnet128_finetuned_in1k_model_final_checkpoint_phase78.torch", lambda: FakeRegNetVisslWrapper(RegNetYaaagf() ), ) _UpperCAmelCase : Optional[Any] = partial( __UpperCamelCase, "https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_10b_finetuned_in1k_model_phase28_conso.torch", lambda: FakeRegNetVisslWrapper( RegNet(RegNetParams(depth=27, group_width=1_010, w_a=1_744, w_a=620.83, w_m=2.52 ) ) ), ) if model_name: convert_weight_and_push( __UpperCamelCase, names_to_from_model_map[model_name], names_to_ours_model_map[model_name], names_to_config[model_name], __UpperCamelCase, __UpperCamelCase, ) else: for model_name, config in names_to_config.items(): convert_weight_and_push( __UpperCamelCase, names_to_from_model_map[model_name], names_to_ours_model_map[model_name], __UpperCamelCase, __UpperCamelCase, __UpperCamelCase, ) return config, expected_shape if __name__ == "__main__": __a = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default=None, type=str, help=( 'The name of the model you wish to convert, it must be one of the supported regnet* architecture,' ' currently: regnetx-*, regnety-*. If `None`, all of them will the converted.' ), ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=Path, required=True, help='Path to the output PyTorch model directory.', ) parser.add_argument( '--push_to_hub', default=True, type=bool, required=False, help='If True, push model and image processor to the hub.', ) __a = parser.parse_args() __a = args.pytorch_dump_folder_path pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True) convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
368
'''simple docstring''' import baseaa def __UpperCAmelCase ( a_: str ): return baseaa.baaencode(string.encode("utf-8" ) ) def __UpperCAmelCase ( a_: bytes ): return baseaa.baadecode(a_ ).decode("utf-8" ) if __name__ == "__main__": __a = 'Hello World!' __a = baseaa_encode(test) print(encoded) __a = baseaa_decode(encoded) print(decoded)
17
0
import tensorflow as tf from ...tf_utils import shape_list class snake_case_ ( tf.keras.layers.Layer ): def __init__( self : Dict , lowercase_ : Optional[Any] , lowercase_ : Union[str, Any] , lowercase_ : List[Any] , lowercase_ : Dict , lowercase_ : Dict=1 , lowercase_ : Any=False , **lowercase_ : Dict ) -> Optional[int]: super().__init__(**lowerCAmelCase_ ) lowercase__ : Optional[Any] = vocab_size lowercase__ : int = d_embed lowercase__ : Union[str, Any] = d_proj lowercase__ : Optional[Any] = cutoffs + [vocab_size] lowercase__ : Optional[Any] = [0] + self.cutoffs lowercase__ : int = div_val lowercase__ : str = self.cutoffs[0] lowercase__ : List[Any] = len(self.cutoffs ) - 1 lowercase__ : List[Any] = self.shortlist_size + self.n_clusters lowercase__ : Any = keep_order lowercase__ : Dict = [] lowercase__ : int = [] def __UpperCamelCase ( self : Tuple , lowercase_ : int ) -> Union[str, Any]: if self.n_clusters > 0: lowercase__ : Any = self.add_weight( shape=(self.n_clusters, self.d_embed) , initializer="zeros" , trainable=lowerCAmelCase_ , name="cluster_weight" ) lowercase__ : Any = self.add_weight( shape=(self.n_clusters,) , initializer="zeros" , trainable=lowerCAmelCase_ , name="cluster_bias" ) if self.div_val == 1: for i in range(len(self.cutoffs ) ): if self.d_proj != self.d_embed: lowercase__ : Optional[int] = self.add_weight( shape=(self.d_embed, self.d_proj) , initializer="zeros" , trainable=lowerCAmelCase_ , name=F'''out_projs_._{i}''' , ) self.out_projs.append(lowerCAmelCase_ ) else: self.out_projs.append(lowerCAmelCase_ ) lowercase__ : Optional[int] = self.add_weight( shape=(self.vocab_size, self.d_embed) , initializer="zeros" , trainable=lowerCAmelCase_ , name=F'''out_layers_._{i}_._weight''' , ) lowercase__ : List[str] = self.add_weight( shape=(self.vocab_size,) , initializer="zeros" , trainable=lowerCAmelCase_ , name=F'''out_layers_._{i}_._bias''' , ) self.out_layers.append((weight, bias) ) else: for i in range(len(self.cutoffs ) ): lowercase__ , lowercase__ : Optional[Any] = self.cutoff_ends[i], self.cutoff_ends[i + 1] lowercase__ : List[Any] = self.d_embed // (self.div_val**i) lowercase__ : Any = self.add_weight( shape=(d_emb_i, self.d_proj) , initializer="zeros" , trainable=lowerCAmelCase_ , name=F'''out_projs_._{i}''' ) self.out_projs.append(lowerCAmelCase_ ) lowercase__ : Tuple = self.add_weight( shape=(r_idx - l_idx, d_emb_i) , initializer="zeros" , trainable=lowerCAmelCase_ , name=F'''out_layers_._{i}_._weight''' , ) lowercase__ : List[str] = self.add_weight( shape=(r_idx - l_idx,) , initializer="zeros" , trainable=lowerCAmelCase_ , name=F'''out_layers_._{i}_._bias''' , ) self.out_layers.append((weight, bias) ) super().build(lowerCAmelCase_ ) @staticmethod def __UpperCamelCase ( lowercase_ : int , lowercase_ : Optional[int] , lowercase_ : Optional[int] , lowercase_ : Tuple=None ) -> Any: lowercase__ : Any = x if proj is not None: lowercase__ : str = tf.einsum("ibd,ed->ibe" , lowerCAmelCase_ , lowerCAmelCase_ ) return tf.einsum("ibd,nd->ibn" , lowerCAmelCase_ , lowerCAmelCase_ ) + b @staticmethod def __UpperCamelCase ( lowercase_ : List[str] , lowercase_ : Any ) -> Optional[int]: lowercase__ : Tuple = shape_list(lowerCAmelCase_ ) lowercase__ : str = tf.range(lp_size[0] , dtype=target.dtype ) lowercase__ : str = tf.stack([r, target] , 1 ) return tf.gather_nd(lowerCAmelCase_ , lowerCAmelCase_ ) def __UpperCamelCase ( self : Any , lowercase_ : Union[str, Any] , lowercase_ : int , lowercase_ : List[str]=True , lowercase_ : Union[str, Any]=False ) -> Union[str, Any]: lowercase__ : List[str] = 0 if self.n_clusters == 0: lowercase__ : Any = self._logit(lowerCAmelCase_ , self.out_layers[0][0] , self.out_layers[0][1] , self.out_projs[0] ) if target is not None: lowercase__ : int = tf.nn.sparse_softmax_cross_entropy_with_logits(labels=lowerCAmelCase_ , logits=lowerCAmelCase_ ) lowercase__ : Optional[Any] = tf.nn.log_softmax(lowerCAmelCase_ , axis=-1 ) else: lowercase__ : Union[str, Any] = shape_list(lowerCAmelCase_ ) lowercase__ : Dict = [] lowercase__ : Tuple = tf.zeros(hidden_sizes[:2] ) for i in range(len(self.cutoffs ) ): lowercase__ , lowercase__ : Union[str, Any] = self.cutoff_ends[i], self.cutoff_ends[i + 1] if target is not None: lowercase__ : Optional[int] = (target >= l_idx) & (target < r_idx) lowercase__ : Tuple = tf.where(lowerCAmelCase_ ) lowercase__ : Union[str, Any] = tf.boolean_mask(lowerCAmelCase_ , lowerCAmelCase_ ) - l_idx if self.div_val == 1: lowercase__ : Optional[Any] = self.out_layers[0][0][l_idx:r_idx] lowercase__ : List[str] = self.out_layers[0][1][l_idx:r_idx] else: lowercase__ : Any = self.out_layers[i][0] lowercase__ : int = self.out_layers[i][1] if i == 0: lowercase__ : Union[str, Any] = tf.concat([cur_W, self.cluster_weight] , 0 ) lowercase__ : Optional[Any] = tf.concat([cur_b, self.cluster_bias] , 0 ) lowercase__ : Any = self._logit(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , self.out_projs[0] ) lowercase__ : Optional[Any] = tf.nn.log_softmax(lowerCAmelCase_ ) out.append(head_logprob[..., : self.cutoffs[0]] ) if target is not None: lowercase__ : List[str] = tf.boolean_mask(lowerCAmelCase_ , lowerCAmelCase_ ) lowercase__ : Any = self._gather_logprob(lowerCAmelCase_ , lowerCAmelCase_ ) else: lowercase__ : List[Any] = self._logit(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , self.out_projs[i] ) lowercase__ : str = tf.nn.log_softmax(lowerCAmelCase_ ) lowercase__ : Dict = self.cutoffs[0] + i - 1 # No probability for the head cluster lowercase__ : int = head_logprob[..., cluster_prob_idx, None] + tail_logprob out.append(lowerCAmelCase_ ) if target is not None: lowercase__ : Tuple = tf.boolean_mask(lowerCAmelCase_ , lowerCAmelCase_ ) lowercase__ : Any = tf.boolean_mask(lowerCAmelCase_ , lowerCAmelCase_ ) lowercase__ : Dict = self._gather_logprob(lowerCAmelCase_ , lowerCAmelCase_ ) cur_logprob += cur_head_logprob[:, self.cutoff_ends[1] + i - 1] if target is not None: loss += tf.scatter_nd(lowerCAmelCase_ , -cur_logprob , shape_list(lowerCAmelCase_ ) ) lowercase__ : Optional[Any] = tf.concat(lowerCAmelCase_ , axis=-1 ) if target is not None: if return_mean: lowercase__ : Optional[int] = tf.reduce_mean(lowerCAmelCase_ ) # Add the training-time loss value to the layer using `self.add_loss()`. self.add_loss(lowerCAmelCase_ ) # Log the loss as a metric (we could log arbitrary metrics, # including different metrics for training and inference. self.add_metric(lowerCAmelCase_ , name=self.name , aggregation="mean" if return_mean else "" ) return out
87
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available lowercase : Tuple = { "configuration_xlm": ["XLM_PRETRAINED_CONFIG_ARCHIVE_MAP", "XLMConfig", "XLMOnnxConfig"], "tokenization_xlm": ["XLMTokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase : int = [ "XLM_PRETRAINED_MODEL_ARCHIVE_LIST", "XLMForMultipleChoice", "XLMForQuestionAnswering", "XLMForQuestionAnsweringSimple", "XLMForSequenceClassification", "XLMForTokenClassification", "XLMModel", "XLMPreTrainedModel", "XLMWithLMHeadModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase : Tuple = [ "TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST", "TFXLMForMultipleChoice", "TFXLMForQuestionAnsweringSimple", "TFXLMForSequenceClassification", "TFXLMForTokenClassification", "TFXLMMainLayer", "TFXLMModel", "TFXLMPreTrainedModel", "TFXLMWithLMHeadModel", ] if TYPE_CHECKING: from .configuration_xlm import XLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMConfig, XLMOnnxConfig from .tokenization_xlm import XLMTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlm import ( XLM_PRETRAINED_MODEL_ARCHIVE_LIST, XLMForMultipleChoice, XLMForQuestionAnswering, XLMForQuestionAnsweringSimple, XLMForSequenceClassification, XLMForTokenClassification, XLMModel, XLMPreTrainedModel, XLMWithLMHeadModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlm import ( TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLMForMultipleChoice, TFXLMForQuestionAnsweringSimple, TFXLMForSequenceClassification, TFXLMForTokenClassification, TFXLMMainLayer, TFXLMModel, TFXLMPreTrainedModel, TFXLMWithLMHeadModel, ) else: import sys lowercase : Union[str, Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
42
0
import itertools import os import random import tempfile import unittest import numpy as np from datasets import load_dataset from transformers import is_speech_available from transformers.testing_utils import check_json_file_has_correct_format, require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_speech_available(): from transformers import WhisperFeatureExtractor if is_torch_available(): import torch lowerCamelCase_ : List[str] = random.Random() def A__ ( lowerCamelCase , lowerCamelCase=1.0 , lowerCamelCase=None , lowerCamelCase=None ) -> Tuple: if rng is None: UpperCamelCase_: Optional[int] = global_rng UpperCamelCase_: int = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values @require_torch @require_torchaudio class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' def __init__( self : Union[str, Any] , snake_case_ : str , snake_case_ : Union[str, Any]=7 , snake_case_ : int=400 , snake_case_ : Any=2000 , snake_case_ : Optional[int]=10 , snake_case_ : str=160 , snake_case_ : Tuple=8 , snake_case_ : List[Any]=0.0 , snake_case_ : Any=4000 , snake_case_ : List[Any]=False , snake_case_ : Tuple=True , ): UpperCamelCase_: List[str] = parent UpperCamelCase_: Optional[int] = batch_size UpperCamelCase_: Any = min_seq_length UpperCamelCase_: Any = max_seq_length UpperCamelCase_: List[Any] = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) UpperCamelCase_: List[Any] = padding_value UpperCamelCase_: Tuple = sampling_rate UpperCamelCase_: str = return_attention_mask UpperCamelCase_: Tuple = do_normalize UpperCamelCase_: Dict = feature_size UpperCamelCase_: Union[str, Any] = chunk_length UpperCamelCase_: Union[str, Any] = hop_length def lowerCAmelCase__ ( self : List[str] ): return { "feature_size": self.feature_size, "hop_length": self.hop_length, "chunk_length": self.chunk_length, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def lowerCAmelCase__ ( self : Dict , snake_case_ : Optional[int]=False , snake_case_ : List[Any]=False ): def _flatten(snake_case_ : int ): return list(itertools.chain(*snake_case_ ) ) if equal_length: UpperCamelCase_: Union[str, Any] = [floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size UpperCamelCase_: List[str] = [ floats_list((x, self.feature_size) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: UpperCamelCase_: Union[str, Any] = [np.asarray(snake_case_ ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class _UpperCamelCase ( _A , unittest.TestCase ): '''simple docstring''' __UpperCamelCase : str = WhisperFeatureExtractor if is_speech_available() else None def lowerCAmelCase__ ( self : Optional[Any] ): UpperCamelCase_: Any = WhisperFeatureExtractionTester(self ) def lowerCAmelCase__ ( self : Any ): UpperCamelCase_: Any = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: UpperCamelCase_: Tuple = feat_extract_first.save_pretrained(snake_case_ )[0] check_json_file_has_correct_format(snake_case_ ) UpperCamelCase_: Union[str, Any] = self.feature_extraction_class.from_pretrained(snake_case_ ) UpperCamelCase_: str = feat_extract_first.to_dict() UpperCamelCase_: Tuple = feat_extract_second.to_dict() UpperCamelCase_: int = feat_extract_first.mel_filters UpperCamelCase_: Any = feat_extract_second.mel_filters self.assertTrue(np.allclose(snake_case_ , snake_case_ ) ) self.assertEqual(snake_case_ , snake_case_ ) def lowerCAmelCase__ ( self : Optional[int] ): UpperCamelCase_: Optional[int] = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: UpperCamelCase_: Dict = os.path.join(snake_case_ , """feat_extract.json""" ) feat_extract_first.to_json_file(snake_case_ ) UpperCamelCase_: Any = self.feature_extraction_class.from_json_file(snake_case_ ) UpperCamelCase_: Tuple = feat_extract_first.to_dict() UpperCamelCase_: str = feat_extract_second.to_dict() UpperCamelCase_: List[Any] = feat_extract_first.mel_filters UpperCamelCase_: Optional[int] = feat_extract_second.mel_filters self.assertTrue(np.allclose(snake_case_ , snake_case_ ) ) self.assertEqual(snake_case_ , snake_case_ ) def lowerCAmelCase__ ( self : int ): # Tests that all call wrap to encode_plus and batch_encode_plus UpperCamelCase_: List[Any] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 UpperCamelCase_: Dict = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] UpperCamelCase_: Optional[Any] = [np.asarray(snake_case_ ) for speech_input in speech_inputs] # Test feature size UpperCamelCase_: Optional[Any] = feature_extractor(snake_case_ , padding="""max_length""" , return_tensors="""np""" ).input_features self.assertTrue(input_features.ndim == 3 ) self.assertTrue(input_features.shape[-1] == feature_extractor.nb_max_frames ) self.assertTrue(input_features.shape[-2] == feature_extractor.feature_size ) # Test not batched input UpperCamelCase_: str = feature_extractor(speech_inputs[0] , return_tensors="""np""" ).input_features UpperCamelCase_: Optional[Any] = feature_extractor(np_speech_inputs[0] , return_tensors="""np""" ).input_features self.assertTrue(np.allclose(snake_case_ , snake_case_ , atol=1e-3 ) ) # Test batched UpperCamelCase_: int = feature_extractor(snake_case_ , return_tensors="""np""" ).input_features UpperCamelCase_: List[Any] = feature_extractor(snake_case_ , return_tensors="""np""" ).input_features for enc_seq_a, enc_seq_a in zip(snake_case_ , snake_case_ ): self.assertTrue(np.allclose(snake_case_ , snake_case_ , atol=1e-3 ) ) # Test 2-D numpy arrays are batched. UpperCamelCase_: str = [floats_list((1, x) )[0] for x in (800, 800, 800)] UpperCamelCase_: Union[str, Any] = np.asarray(snake_case_ ) UpperCamelCase_: Union[str, Any] = feature_extractor(snake_case_ , return_tensors="""np""" ).input_features UpperCamelCase_: List[Any] = feature_extractor(snake_case_ , return_tensors="""np""" ).input_features for enc_seq_a, enc_seq_a in zip(snake_case_ , snake_case_ ): self.assertTrue(np.allclose(snake_case_ , snake_case_ , atol=1e-3 ) ) # Test truncation required UpperCamelCase_: Optional[Any] = [floats_list((1, x) )[0] for x in range(200 , (feature_extractor.n_samples + 500) , 200 )] UpperCamelCase_: int = [np.asarray(snake_case_ ) for speech_input in speech_inputs] UpperCamelCase_: str = [x[: feature_extractor.n_samples] for x in speech_inputs] UpperCamelCase_: Dict = [np.asarray(snake_case_ ) for speech_input in speech_inputs_truncated] UpperCamelCase_: Optional[Any] = feature_extractor(snake_case_ , return_tensors="""np""" ).input_features UpperCamelCase_: List[Any] = feature_extractor(snake_case_ , return_tensors="""np""" ).input_features for enc_seq_a, enc_seq_a in zip(snake_case_ , snake_case_ ): self.assertTrue(np.allclose(snake_case_ , snake_case_ , atol=1e-3 ) ) def lowerCAmelCase__ ( self : Optional[int] ): import torch UpperCamelCase_: Union[str, Any] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) UpperCamelCase_: List[str] = np.random.rand(100 , 32 ).astype(np.floataa ) UpperCamelCase_: List[str] = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: UpperCamelCase_: List[str] = feature_extractor.pad([{"""input_features""": inputs}] , return_tensors="""np""" ) self.assertTrue(np_processed.input_features.dtype == np.floataa ) UpperCamelCase_: Union[str, Any] = feature_extractor.pad([{"""input_features""": inputs}] , return_tensors="""pt""" ) self.assertTrue(pt_processed.input_features.dtype == torch.floataa ) def lowerCAmelCase__ ( self : Dict , snake_case_ : Union[str, Any] ): UpperCamelCase_: str = load_dataset("""hf-internal-testing/librispeech_asr_dummy""" , """clean""" , split="""validation""" ) # automatic decoding with librispeech UpperCamelCase_: Tuple = ds.sort("""id""" ).select(range(snake_case_ ) )[:num_samples]["""audio"""] return [x["array"] for x in speech_samples] def lowerCAmelCase__ ( self : Tuple ): # fmt: off UpperCamelCase_: Dict = torch.tensor( [ 0.1193, -0.0946, -0.1098, -0.0196, 0.0225, -0.0690, -0.1736, 0.0951, 0.0971, -0.0817, -0.0702, 0.0162, 0.0260, 0.0017, -0.0192, -0.1678, 0.0709, -0.1867, -0.0655, -0.0274, -0.0234, -0.1884, -0.0516, -0.0554, -0.0274, -0.1425, -0.1423, 0.0837, 0.0377, -0.0854 ] ) # fmt: on UpperCamelCase_: Tuple = self._load_datasamples(1 ) UpperCamelCase_: List[Any] = WhisperFeatureExtractor() UpperCamelCase_: Optional[int] = feature_extractor(snake_case_ , return_tensors="""pt""" ).input_features self.assertEqual(input_features.shape , (1, 80, 3000) ) self.assertTrue(torch.allclose(input_features[0, 0, :30] , snake_case_ , atol=1e-4 ) ) def lowerCAmelCase__ ( self : Tuple ): UpperCamelCase_: Union[str, Any] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) UpperCamelCase_: List[Any] = self._load_datasamples(1 )[0] UpperCamelCase_: List[str] = ((audio - audio.min()) / (audio.max() - audio.min())) * 6_5535 # Rescale to [0, 65535] to show issue UpperCamelCase_: Any = feat_extract.zero_mean_unit_var_norm([audio] , attention_mask=snake_case_ )[0] self.assertTrue(np.all(np.mean(snake_case_ ) < 1e-3 ) ) self.assertTrue(np.all(np.abs(np.var(snake_case_ ) - 1 ) < 1e-3 ) )
223
def A__ ( lowerCamelCase , lowerCamelCase ) -> list: UpperCamelCase_: Optional[int] = word.split() def justify(lowerCamelCase , lowerCamelCase , lowerCamelCase ) -> str: UpperCamelCase_: Tuple = max_width - width UpperCamelCase_: Optional[Any] = len(lowerCamelCase ) if len(lowerCamelCase ) == 1: # if there is only word in line # just insert overall_spaces_count for the remainder of line return line[0] + " " * overall_spaces_count else: UpperCamelCase_: List[Any] = words_count - 1 # num_spaces_between_words_list[i] : tells you to insert # num_spaces_between_words_list[i] spaces # after word on line[i] UpperCamelCase_: Optional[Any] = spaces_to_insert_between_words * [ overall_spaces_count // spaces_to_insert_between_words ] UpperCamelCase_: List[str] = ( overall_spaces_count % spaces_to_insert_between_words ) # distribute spaces via round robin to the left words for i in range(lowerCamelCase ): num_spaces_between_words_list[i] += 1 UpperCamelCase_: Dict = [] for i in range(lowerCamelCase ): # add the word aligned_words_list.append(line[i] ) # add the spaces to insert aligned_words_list.append(num_spaces_between_words_list[i] * """ """ ) # just add the last word to the sentence aligned_words_list.append(line[-1] ) # join the aligned words list to form a justified line return "".join(lowerCamelCase ) UpperCamelCase_: Optional[int] = [] UpperCamelCase_: list[str] = [] UpperCamelCase_: List[str] = 0 for word in words: if width + len(lowerCamelCase ) + len(lowerCamelCase ) <= max_width: # keep adding words until we can fill out max_width # width = sum of length of all words (without overall_spaces_count) # len(word) = length of current word # len(line) = number of overall_spaces_count to insert between words line.append(lowerCamelCase ) width += len(lowerCamelCase ) else: # justify the line and add it to result answer.append(justify(lowerCamelCase , lowerCamelCase , lowerCamelCase ) ) # reset new line and new width UpperCamelCase_, UpperCamelCase_: List[str] = [word], len(lowerCamelCase ) UpperCamelCase_: List[str] = max_width - width - len(lowerCamelCase ) answer.append(""" """.join(lowerCamelCase ) + (remaining_spaces + 1) * """ """ ) return answer if __name__ == "__main__": from doctest import testmod testmod()
223
1
"""simple docstring""" import json from typing import List, Optional, Tuple from tokenizers import normalizers from tokenizers.pre_tokenizers import BertPreTokenizer, PreTokenizer from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_roformer import RoFormerTokenizer from .tokenization_utils import JiebaPreTokenizer __lowerCAmelCase : List[str] =logging.get_logger(__name__) __lowerCAmelCase : int ={"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} __lowerCAmelCase : List[Any] ={ """vocab_file""": { """junnyu/roformer_chinese_small""": """https://huggingface.co/junnyu/roformer_chinese_small/resolve/main/vocab.txt""", """junnyu/roformer_chinese_base""": """https://huggingface.co/junnyu/roformer_chinese_base/resolve/main/vocab.txt""", """junnyu/roformer_chinese_char_small""": ( """https://huggingface.co/junnyu/roformer_chinese_char_small/resolve/main/vocab.txt""" ), """junnyu/roformer_chinese_char_base""": ( """https://huggingface.co/junnyu/roformer_chinese_char_base/resolve/main/vocab.txt""" ), """junnyu/roformer_small_discriminator""": ( """https://huggingface.co/junnyu/roformer_small_discriminator/resolve/main/vocab.txt""" ), """junnyu/roformer_small_generator""": ( """https://huggingface.co/junnyu/roformer_small_generator/resolve/main/vocab.txt""" ), } } __lowerCAmelCase : Optional[int] ={ """junnyu/roformer_chinese_small""": 1_5_3_6, """junnyu/roformer_chinese_base""": 1_5_3_6, """junnyu/roformer_chinese_char_small""": 5_1_2, """junnyu/roformer_chinese_char_base""": 5_1_2, """junnyu/roformer_small_discriminator""": 1_2_8, """junnyu/roformer_small_generator""": 1_2_8, } __lowerCAmelCase : List[str] ={ """junnyu/roformer_chinese_small""": {"""do_lower_case""": True}, """junnyu/roformer_chinese_base""": {"""do_lower_case""": True}, """junnyu/roformer_chinese_char_small""": {"""do_lower_case""": True}, """junnyu/roformer_chinese_char_base""": {"""do_lower_case""": True}, """junnyu/roformer_small_discriminator""": {"""do_lower_case""": True}, """junnyu/roformer_small_generator""": {"""do_lower_case""": True}, } class _A ( lowerCAmelCase ): snake_case__ : List[Any] = VOCAB_FILES_NAMES snake_case__ : List[str] = PRETRAINED_VOCAB_FILES_MAP snake_case__ : List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case__ : Union[str, Any] = PRETRAINED_INIT_CONFIGURATION snake_case__ : List[Any] = RoFormerTokenizer def __init__( self , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase=True , __lowerCAmelCase="[UNK]" , __lowerCAmelCase="[SEP]" , __lowerCAmelCase="[PAD]" , __lowerCAmelCase="[CLS]" , __lowerCAmelCase="[MASK]" , __lowerCAmelCase=True , __lowerCAmelCase=None , **__lowerCAmelCase , ): """simple docstring""" super().__init__( __lowerCAmelCase , tokenizer_file=__lowerCAmelCase , do_lower_case=__lowerCAmelCase , unk_token=__lowerCAmelCase , sep_token=__lowerCAmelCase , pad_token=__lowerCAmelCase , cls_token=__lowerCAmelCase , mask_token=__lowerCAmelCase , tokenize_chinese_chars=__lowerCAmelCase , strip_accents=__lowerCAmelCase , **__lowerCAmelCase , ) lowercase = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( pre_tok_state.get("""lowercase""" , __lowerCAmelCase ) != do_lower_case or pre_tok_state.get("""strip_accents""" , __lowerCAmelCase ) != strip_accents ): lowercase = getattr(__lowerCAmelCase , pre_tok_state.pop("""type""" ) ) lowercase = do_lower_case lowercase = strip_accents lowercase = pre_tok_class(**__lowerCAmelCase ) lowercase = do_lower_case def __getstate__( self ): """simple docstring""" lowercase = self.__dict__.copy() lowercase = BertPreTokenizer() return state def __setstate__( self , __lowerCAmelCase ): """simple docstring""" lowercase = d lowercase = self.__dict__["""_tokenizer"""].get_vocab() lowercase = PreTokenizer.custom(JiebaPreTokenizer(__lowerCAmelCase ) ) def A__ ( self , __lowerCAmelCase , __lowerCAmelCase=None ): """simple docstring""" lowercase = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def A__ ( self , __lowerCAmelCase , __lowerCAmelCase = None ): """simple docstring""" lowercase = [self.sep_token_id] lowercase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def A__ ( self , __lowerCAmelCase , __lowerCAmelCase = None ): """simple docstring""" lowercase = self._tokenizer.model.save(__lowerCAmelCase , name=__lowerCAmelCase ) return tuple(__lowerCAmelCase ) def A__ ( self , __lowerCAmelCase , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase=False , **__lowerCAmelCase , ): """simple docstring""" lowercase = BertPreTokenizer() return super().save_pretrained(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , **__lowerCAmelCase )
197
"""simple docstring""" from __future__ import annotations from collections.abc import Callable __lowerCAmelCase : str =list[list[float | int]] def UpperCAmelCase__ ( lowerCAmelCase__ :Matrix , lowerCAmelCase__ :Matrix ) -> Matrix: '''simple docstring''' lowercase = len(lowerCAmelCase__ ) lowercase = [[0 for _ in range(size + 1 )] for _ in range(lowerCAmelCase__ )] lowercase = 42 lowercase = 42 lowercase = 42 lowercase = 42 lowercase = 42 lowercase = 42 for row in range(lowerCAmelCase__ ): for col in range(lowerCAmelCase__ ): lowercase = matrix[row][col] lowercase = vector[row][0] lowercase = 0 lowercase = 0 while row < size and col < size: # pivoting lowercase = max((abs(augmented[rowa][col] ), rowa) for rowa in range(lowerCAmelCase__ , lowerCAmelCase__ ) )[ 1 ] if augmented[pivot_row][col] == 0: col += 1 continue else: lowercase , lowercase = augmented[pivot_row], augmented[row] for rowa in range(row + 1 , lowerCAmelCase__ ): lowercase = augmented[rowa][col] / augmented[row][col] lowercase = 0 for cola in range(col + 1 , size + 1 ): augmented[rowa][cola] -= augmented[row][cola] * ratio row += 1 col += 1 # back substitution for col in range(1 , lowerCAmelCase__ ): for row in range(lowerCAmelCase__ ): lowercase = augmented[row][col] / augmented[col][col] for cola in range(lowerCAmelCase__ , size + 1 ): augmented[row][cola] -= augmented[col][cola] * ratio # round to get rid of numbers like 2.000000000000004 return [ [round(augmented[row][size] / augmented[row][row] , 1_0 )] for row in range(lowerCAmelCase__ ) ] def UpperCAmelCase__ ( lowerCAmelCase__ :list[int] ) -> Callable[[int], int]: '''simple docstring''' lowercase = len(lowerCAmelCase__ ) lowercase = [[0 for _ in range(lowerCAmelCase__ )] for _ in range(lowerCAmelCase__ )] lowercase = [[0] for _ in range(lowerCAmelCase__ )] lowercase = 42 lowercase = 42 lowercase = 42 lowercase = 42 for x_val, y_val in enumerate(lowerCAmelCase__ ): for col in range(lowerCAmelCase__ ): lowercase = (x_val + 1) ** (size - col - 1) lowercase = y_val lowercase = solve(lowerCAmelCase__ , lowerCAmelCase__ ) def interpolated_func(lowerCAmelCase__ :int ) -> int: return sum( round(coeffs[x_val][0] ) * (var ** (size - x_val - 1)) for x_val in range(lowerCAmelCase__ ) ) return interpolated_func def UpperCAmelCase__ ( lowerCAmelCase__ :int ) -> int: '''simple docstring''' return ( 1 - variable + variable**2 - variable**3 + variable**4 - variable**5 + variable**6 - variable**7 + variable**8 - variable**9 + variable**1_0 ) def UpperCAmelCase__ ( lowerCAmelCase__ :Callable[[int], int] = question_function , lowerCAmelCase__ :int = 1_0 ) -> int: '''simple docstring''' lowercase = [func(lowerCAmelCase__ ) for x_val in range(1 , order + 1 )] lowercase = [ interpolate(data_points[:max_coeff] ) for max_coeff in range(1 , order + 1 ) ] lowercase = 0 lowercase = 42 lowercase = 42 for poly in polynomials: lowercase = 1 while func(lowerCAmelCase__ ) == poly(lowerCAmelCase__ ): x_val += 1 ret += poly(lowerCAmelCase__ ) return ret if __name__ == "__main__": print(F"""{solution() = }""")
197
1
"""simple docstring""" def _lowerCAmelCase ( UpperCAmelCase : int ): '''simple docstring''' UpperCamelCase__ : Dict =[1] UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ : Union[str, Any] =0, 0, 0 UpperCamelCase__ : int =ugly_nums[ia] * 2 UpperCamelCase__ : Optional[int] =ugly_nums[ia] * 3 UpperCamelCase__ : Optional[Any] =ugly_nums[ia] * 5 for _ in range(1 , UpperCAmelCase ): UpperCamelCase__ : Union[str, Any] =min(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) ugly_nums.append(UpperCAmelCase ) if next_num == next_a: ia += 1 UpperCamelCase__ : Dict =ugly_nums[ia] * 2 if next_num == next_a: ia += 1 UpperCamelCase__ : List[str] =ugly_nums[ia] * 3 if next_num == next_a: ia += 1 UpperCamelCase__ : Optional[Any] =ugly_nums[ia] * 5 return ugly_nums[-1] if __name__ == "__main__": from doctest import testmod testmod(verbose=True) print(F'''{ugly_numbers(2_0_0) = }''')
157
"""simple docstring""" from typing import Optional import torch import torch.utils.checkpoint from torch import Tensor, nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...modeling_outputs import ( BackboneOutput, BaseModelOutputWithNoAttention, BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention, ) from ...modeling_utils import PreTrainedModel from ...utils import ( add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings, ) from ...utils.backbone_utils import BackboneMixin from .configuration_resnet import ResNetConfig _SCREAMING_SNAKE_CASE : int = logging.get_logger(__name__) # General docstring _SCREAMING_SNAKE_CASE : Union[str, Any] = """ResNetConfig""" # Base docstring _SCREAMING_SNAKE_CASE : str = """microsoft/resnet-50""" _SCREAMING_SNAKE_CASE : List[Any] = [1, 2_0_4_8, 7, 7] # Image classification docstring _SCREAMING_SNAKE_CASE : Tuple = """microsoft/resnet-50""" _SCREAMING_SNAKE_CASE : Union[str, Any] = """tiger cat""" _SCREAMING_SNAKE_CASE : Optional[Any] = [ """microsoft/resnet-50""", # See all resnet models at https://huggingface.co/models?filter=resnet ] class __a ( nn.Module ): """simple docstring""" def __init__( self : str , lowercase_ : int , lowercase_ : int , lowercase_ : int = 3 , lowercase_ : int = 1 , lowercase_ : str = "relu" ): super().__init__() UpperCamelCase__ : Optional[Any] =nn.Convad( lowercase_ , lowercase_ , kernel_size=lowercase_ , stride=lowercase_ , padding=kernel_size // 2 , bias=lowercase_ ) UpperCamelCase__ : Tuple =nn.BatchNormad(lowercase_ ) UpperCamelCase__ : int =ACTaFN[activation] if activation is not None else nn.Identity() def _lowerCAmelCase ( self : Dict , lowercase_ : Tensor ): UpperCamelCase__ : List[Any] =self.convolution(lowercase_ ) UpperCamelCase__ : Union[str, Any] =self.normalization(lowercase_ ) UpperCamelCase__ : Optional[int] =self.activation(lowercase_ ) return hidden_state class __a ( nn.Module ): """simple docstring""" def __init__( self : Tuple , lowercase_ : ResNetConfig ): super().__init__() UpperCamelCase__ : Any =ResNetConvLayer( config.num_channels , config.embedding_size , kernel_size=7 , stride=2 , activation=config.hidden_act ) UpperCamelCase__ : Tuple =nn.MaxPoolad(kernel_size=3 , stride=2 , padding=1 ) UpperCamelCase__ : Any =config.num_channels def _lowerCAmelCase ( self : str , lowercase_ : Tensor ): UpperCamelCase__ : Optional[Any] =pixel_values.shape[1] if num_channels != self.num_channels: raise ValueError( '''Make sure that the channel dimension of the pixel values match with the one set in the configuration.''' ) UpperCamelCase__ : Dict =self.embedder(lowercase_ ) UpperCamelCase__ : Union[str, Any] =self.pooler(lowercase_ ) return embedding class __a ( nn.Module ): """simple docstring""" def __init__( self : Tuple , lowercase_ : int , lowercase_ : int , lowercase_ : int = 2 ): super().__init__() UpperCamelCase__ : int =nn.Convad(lowercase_ , lowercase_ , kernel_size=1 , stride=lowercase_ , bias=lowercase_ ) UpperCamelCase__ : Optional[int] =nn.BatchNormad(lowercase_ ) def _lowerCAmelCase ( self : Tuple , lowercase_ : Tensor ): UpperCamelCase__ : Dict =self.convolution(lowercase_ ) UpperCamelCase__ : Dict =self.normalization(lowercase_ ) return hidden_state class __a ( nn.Module ): """simple docstring""" def __init__( self : List[Any] , lowercase_ : int , lowercase_ : int , lowercase_ : int = 1 , lowercase_ : str = "relu" ): super().__init__() UpperCamelCase__ : Optional[Any] =in_channels != out_channels or stride != 1 UpperCamelCase__ : str =( ResNetShortCut(lowercase_ , lowercase_ , stride=lowercase_ ) if should_apply_shortcut else nn.Identity() ) UpperCamelCase__ : List[str] =nn.Sequential( ResNetConvLayer(lowercase_ , lowercase_ , stride=lowercase_ ) , ResNetConvLayer(lowercase_ , lowercase_ , activation=lowercase_ ) , ) UpperCamelCase__ : Any =ACTaFN[activation] def _lowerCAmelCase ( self : str , lowercase_ : Tuple ): UpperCamelCase__ : Any =hidden_state UpperCamelCase__ : Union[str, Any] =self.layer(lowercase_ ) UpperCamelCase__ : str =self.shortcut(lowercase_ ) hidden_state += residual UpperCamelCase__ : str =self.activation(lowercase_ ) return hidden_state class __a ( nn.Module ): """simple docstring""" def __init__( self : str , lowercase_ : int , lowercase_ : int , lowercase_ : int = 1 , lowercase_ : str = "relu" , lowercase_ : int = 4 ): super().__init__() UpperCamelCase__ : Optional[Any] =in_channels != out_channels or stride != 1 UpperCamelCase__ : Union[str, Any] =out_channels // reduction UpperCamelCase__ : str =( ResNetShortCut(lowercase_ , lowercase_ , stride=lowercase_ ) if should_apply_shortcut else nn.Identity() ) UpperCamelCase__ : int =nn.Sequential( ResNetConvLayer(lowercase_ , lowercase_ , kernel_size=1 ) , ResNetConvLayer(lowercase_ , lowercase_ , stride=lowercase_ ) , ResNetConvLayer(lowercase_ , lowercase_ , kernel_size=1 , activation=lowercase_ ) , ) UpperCamelCase__ : List[Any] =ACTaFN[activation] def _lowerCAmelCase ( self : Tuple , lowercase_ : Optional[int] ): UpperCamelCase__ : Dict =hidden_state UpperCamelCase__ : str =self.layer(lowercase_ ) UpperCamelCase__ : Tuple =self.shortcut(lowercase_ ) hidden_state += residual UpperCamelCase__ : Optional[int] =self.activation(lowercase_ ) return hidden_state class __a ( nn.Module ): """simple docstring""" def __init__( self : Optional[int] , lowercase_ : ResNetConfig , lowercase_ : int , lowercase_ : int , lowercase_ : int = 2 , lowercase_ : int = 2 , ): super().__init__() UpperCamelCase__ : Dict =ResNetBottleNeckLayer if config.layer_type == '''bottleneck''' else ResNetBasicLayer UpperCamelCase__ : Union[str, Any] =nn.Sequential( # downsampling is done in the first layer with stride of 2 layer(lowercase_ , lowercase_ , stride=lowercase_ , activation=config.hidden_act ) , *[layer(lowercase_ , lowercase_ , activation=config.hidden_act ) for _ in range(depth - 1 )] , ) def _lowerCAmelCase ( self : Tuple , lowercase_ : Tensor ): UpperCamelCase__ : Optional[Any] =input for layer in self.layers: UpperCamelCase__ : Tuple =layer(lowercase_ ) return hidden_state class __a ( nn.Module ): """simple docstring""" def __init__( self : List[Any] , lowercase_ : ResNetConfig ): super().__init__() UpperCamelCase__ : Optional[Any] =nn.ModuleList([] ) # based on `downsample_in_first_stage` the first layer of the first stage may or may not downsample the input self.stages.append( ResNetStage( lowercase_ , config.embedding_size , config.hidden_sizes[0] , stride=2 if config.downsample_in_first_stage else 1 , depth=config.depths[0] , ) ) UpperCamelCase__ : int =zip(config.hidden_sizes , config.hidden_sizes[1:] ) for (in_channels, out_channels), depth in zip(lowercase_ , config.depths[1:] ): self.stages.append(ResNetStage(lowercase_ , lowercase_ , lowercase_ , depth=lowercase_ ) ) def _lowerCAmelCase ( self : Dict , lowercase_ : Tensor , lowercase_ : bool = False , lowercase_ : bool = True ): UpperCamelCase__ : int =() if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: UpperCamelCase__ : Union[str, Any] =hidden_states + (hidden_state,) UpperCamelCase__ : List[str] =stage_module(lowercase_ ) if output_hidden_states: UpperCamelCase__ : Optional[Any] =hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None ) return BaseModelOutputWithNoAttention( last_hidden_state=lowercase_ , hidden_states=lowercase_ , ) class __a ( snake_case__ ): """simple docstring""" SCREAMING_SNAKE_CASE_ = ResNetConfig SCREAMING_SNAKE_CASE_ = 'resnet' SCREAMING_SNAKE_CASE_ = 'pixel_values' SCREAMING_SNAKE_CASE_ = True def _lowerCAmelCase ( self : str , lowercase_ : Optional[int] ): if isinstance(lowercase_ , nn.Convad ): nn.init.kaiming_normal_(module.weight , mode='''fan_out''' , nonlinearity='''relu''' ) elif isinstance(lowercase_ , (nn.BatchNormad, nn.GroupNorm) ): nn.init.constant_(module.weight , 1 ) nn.init.constant_(module.bias , 0 ) def _lowerCAmelCase ( self : str , lowercase_ : Union[str, Any] , lowercase_ : Dict=False ): if isinstance(lowercase_ , lowercase_ ): UpperCamelCase__ : str =value _SCREAMING_SNAKE_CASE : int = r""" This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`ResNetConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ _SCREAMING_SNAKE_CASE : Optional[int] = r""" Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`ConvNextImageProcessor.__call__`] for details. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ @add_start_docstrings( 'The bare ResNet model outputting raw features without any specific head on top.', snake_case__, ) class __a ( snake_case__ ): """simple docstring""" def __init__( self : Union[str, Any] , lowercase_ : List[Any] ): super().__init__(lowercase_ ) UpperCamelCase__ : Dict =config UpperCamelCase__ : str =ResNetEmbeddings(lowercase_ ) UpperCamelCase__ : str =ResNetEncoder(lowercase_ ) UpperCamelCase__ : Union[str, Any] =nn.AdaptiveAvgPoolad((1, 1) ) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(lowercase_ ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=lowercase_ , config_class=_CONFIG_FOR_DOC , modality='''vision''' , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def _lowerCAmelCase ( self : List[Any] , lowercase_ : Tensor , lowercase_ : Optional[bool] = None , lowercase_ : Optional[bool] = None ): UpperCamelCase__ : Union[str, Any] =( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) UpperCamelCase__ : Tuple =return_dict if return_dict is not None else self.config.use_return_dict UpperCamelCase__ : Optional[Any] =self.embedder(lowercase_ ) UpperCamelCase__ : Union[str, Any] =self.encoder( lowercase_ , output_hidden_states=lowercase_ , return_dict=lowercase_ ) UpperCamelCase__ : int =encoder_outputs[0] UpperCamelCase__ : List[Any] =self.pooler(lowercase_ ) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=lowercase_ , pooler_output=lowercase_ , hidden_states=encoder_outputs.hidden_states , ) @add_start_docstrings( '\n ResNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n ', snake_case__, ) class __a ( snake_case__ ): """simple docstring""" def __init__( self : Dict , lowercase_ : Union[str, Any] ): super().__init__(lowercase_ ) UpperCamelCase__ : Any =config.num_labels UpperCamelCase__ : Dict =ResNetModel(lowercase_ ) # classification head UpperCamelCase__ : Any =nn.Sequential( nn.Flatten() , nn.Linear(config.hidden_sizes[-1] , config.num_labels ) if config.num_labels > 0 else nn.Identity() , ) # initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(lowercase_ ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=lowercase_ , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def _lowerCAmelCase ( self : List[str] , lowercase_ : Optional[torch.FloatTensor] = None , lowercase_ : Optional[torch.LongTensor] = None , lowercase_ : Optional[bool] = None , lowercase_ : Optional[bool] = None , ): UpperCamelCase__ : Dict =return_dict if return_dict is not None else self.config.use_return_dict UpperCamelCase__ : List[Any] =self.resnet(lowercase_ , output_hidden_states=lowercase_ , return_dict=lowercase_ ) UpperCamelCase__ : Tuple =outputs.pooler_output if return_dict else outputs[1] UpperCamelCase__ : Union[str, Any] =self.classifier(lowercase_ ) UpperCamelCase__ : int =None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: UpperCamelCase__ : List[str] ='''regression''' elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): UpperCamelCase__ : Dict ='''single_label_classification''' else: UpperCamelCase__ : str ='''multi_label_classification''' if self.config.problem_type == "regression": UpperCamelCase__ : Union[str, Any] =MSELoss() if self.num_labels == 1: UpperCamelCase__ : Optional[Any] =loss_fct(logits.squeeze() , labels.squeeze() ) else: UpperCamelCase__ : Dict =loss_fct(lowercase_ , lowercase_ ) elif self.config.problem_type == "single_label_classification": UpperCamelCase__ : List[Any] =CrossEntropyLoss() UpperCamelCase__ : List[Any] =loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": UpperCamelCase__ : Optional[Any] =BCEWithLogitsLoss() UpperCamelCase__ : List[str] =loss_fct(lowercase_ , lowercase_ ) if not return_dict: UpperCamelCase__ : Tuple =(logits,) + outputs[2:] return (loss,) + output if loss is not None else output return ImageClassifierOutputWithNoAttention(loss=lowercase_ , logits=lowercase_ , hidden_states=outputs.hidden_states ) @add_start_docstrings( '\n ResNet backbone, to be used with frameworks like DETR and MaskFormer.\n ', snake_case__, ) class __a ( snake_case__, snake_case__ ): """simple docstring""" def __init__( self : str , lowercase_ : List[Any] ): super().__init__(lowercase_ ) super()._init_backbone(lowercase_ ) UpperCamelCase__ : str =[config.embedding_size] + config.hidden_sizes UpperCamelCase__ : Optional[int] =ResNetEmbeddings(lowercase_ ) UpperCamelCase__ : Dict =ResNetEncoder(lowercase_ ) # initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(lowercase_ ) @replace_return_docstrings(output_type=lowercase_ , config_class=_CONFIG_FOR_DOC ) def _lowerCAmelCase ( self : int , lowercase_ : Tensor , lowercase_ : Optional[bool] = None , lowercase_ : Optional[bool] = None ): UpperCamelCase__ : Union[str, Any] =return_dict if return_dict is not None else self.config.use_return_dict UpperCamelCase__ : Union[str, Any] =( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) UpperCamelCase__ : Any =self.embedder(lowercase_ ) UpperCamelCase__ : Optional[Any] =self.encoder(lowercase_ , output_hidden_states=lowercase_ , return_dict=lowercase_ ) UpperCamelCase__ : str =outputs.hidden_states UpperCamelCase__ : Optional[int] =() for idx, stage in enumerate(self.stage_names ): if stage in self.out_features: feature_maps += (hidden_states[idx],) if not return_dict: UpperCamelCase__ : int =(feature_maps,) if output_hidden_states: output += (outputs.hidden_states,) return output return BackboneOutput( feature_maps=lowercase_ , hidden_states=outputs.hidden_states if output_hidden_states else None , attentions=lowercase_ , )
157
1
def lowerCamelCase__ ( A__ : Dict ): '''simple docstring''' return [ { 0: [1, 2], 1: [0, 2], 2: [0, 1, 3, 5], 3: [2, 4], 4: [3], 5: [2, 6, 8], 6: [5, 7], 7: [6, 8], 8: [5, 7], }, { 0: [6], 1: [9], 2: [4, 5], 3: [4], 4: [2, 3], 5: [2], 6: [0, 7], 7: [6], 8: [], 9: [1], }, { 0: [4], 1: [6], 2: [], 3: [5, 6, 7], 4: [0, 6], 5: [3, 8, 9], 6: [1, 3, 4, 7], 7: [3, 6, 8, 9], 8: [5, 7], 9: [5, 7], }, { 0: [1, 3], 1: [0, 2, 4], 2: [1, 3, 4], 3: [0, 2, 4], 4: [1, 2, 3], }, ][index] def lowerCamelCase__ ( A__ : dict[int, list[int]] ): '''simple docstring''' __lowerCamelCase = 0 __lowerCamelCase = len(_UpperCamelCase ) # No of vertices in graph __lowerCamelCase = [0] * n __lowerCamelCase = [False] * n def dfs(A__ : int , A__ : Optional[int] , A__ : Optional[int] , A__ : Dict ): __lowerCamelCase = True __lowerCamelCase = id_ id_ += 1 for to in graph[at]: if to == parent: pass elif not visited[to]: dfs(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , id_ ) __lowerCamelCase = min(low[at] , low[to] ) if id_ <= low[to]: bridges.append((at, to) if at < to else (to, at) ) else: # This edge is a back edge and cannot be a bridge __lowerCamelCase = min(low[at] , low[to] ) __lowerCamelCase = [] for i in range(_UpperCamelCase ): if not visited[i]: dfs(_UpperCamelCase , -1 , _UpperCamelCase , id_ ) return bridges if __name__ == "__main__": import doctest doctest.testmod()
12
'''simple docstring''' # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json import os from ...utils.constants import SAGEMAKER_PARALLEL_EC2_INSTANCES, TORCH_DYNAMO_MODES from ...utils.dataclasses import ComputeEnvironment, SageMakerDistributedType from ...utils.imports import is_botoa_available from .config_args import SageMakerConfig from .config_utils import ( DYNAMO_BACKENDS, _ask_field, _ask_options, _convert_dynamo_backend, _convert_mixed_precision, _convert_sagemaker_distributed_mode, _convert_yes_no_to_bool, ) if is_botoa_available(): import botoa # noqa: F401 def _lowerCAmelCase ( _UpperCamelCase : Optional[int] ) -> List[str]: """simple docstring""" _SCREAMING_SNAKE_CASE =botoa.client('iam' ) _SCREAMING_SNAKE_CASE ={ 'Version': '2012-10-17', 'Statement': [ {'Effect': 'Allow', 'Principal': {'Service': 'sagemaker.amazonaws.com'}, 'Action': 'sts:AssumeRole'} ], } try: # create the role, associated with the chosen trust policy iam_client.create_role( RoleName=_UpperCamelCase , AssumeRolePolicyDocument=json.dumps(_UpperCamelCase , indent=2 ) ) _SCREAMING_SNAKE_CASE ={ 'Version': '2012-10-17', 'Statement': [ { 'Effect': 'Allow', 'Action': [ 'sagemaker:*', 'ecr:GetDownloadUrlForLayer', 'ecr:BatchGetImage', 'ecr:BatchCheckLayerAvailability', 'ecr:GetAuthorizationToken', 'cloudwatch:PutMetricData', 'cloudwatch:GetMetricData', 'cloudwatch:GetMetricStatistics', 'cloudwatch:ListMetrics', 'logs:CreateLogGroup', 'logs:CreateLogStream', 'logs:DescribeLogStreams', 'logs:PutLogEvents', 'logs:GetLogEvents', 's3:CreateBucket', 's3:ListBucket', 's3:GetBucketLocation', 's3:GetObject', 's3:PutObject', ], 'Resource': '*', } ], } # attach policy to role iam_client.put_role_policy( RoleName=_UpperCamelCase , PolicyName=f"{role_name}_policy_permission" , PolicyDocument=json.dumps(_UpperCamelCase , indent=2 ) , ) except iam_client.exceptions.EntityAlreadyExistsException: print(f"role {role_name} already exists. Using existing one" ) def _lowerCAmelCase ( _UpperCamelCase : List[str] ) -> Optional[int]: """simple docstring""" _SCREAMING_SNAKE_CASE =botoa.client('iam' ) return iam_client.get_role(RoleName=_UpperCamelCase )["Role"]["Arn"] def _lowerCAmelCase ( ) -> Optional[int]: """simple docstring""" _SCREAMING_SNAKE_CASE =_ask_options( 'How do you want to authorize?' , ['AWS Profile', 'Credentials (AWS_ACCESS_KEY_ID, AWS_SECRET_ACCESS_KEY) '] , _UpperCamelCase , ) _SCREAMING_SNAKE_CASE =None if credentials_configuration == 0: _SCREAMING_SNAKE_CASE =_ask_field('Enter your AWS Profile name: [default] ' , default='default' ) _SCREAMING_SNAKE_CASE =aws_profile else: print( 'Note you will need to provide AWS_ACCESS_KEY_ID and AWS_SECRET_ACCESS_KEY when you launch you training script with,' '`accelerate launch --aws_access_key_id XXX --aws_secret_access_key YYY`' ) _SCREAMING_SNAKE_CASE =_ask_field('AWS Access Key ID: ' ) _SCREAMING_SNAKE_CASE =aws_access_key_id _SCREAMING_SNAKE_CASE =_ask_field('AWS Secret Access Key: ' ) _SCREAMING_SNAKE_CASE =aws_secret_access_key _SCREAMING_SNAKE_CASE =_ask_field('Enter your AWS Region: [us-east-1]' , default='us-east-1' ) _SCREAMING_SNAKE_CASE =aws_region _SCREAMING_SNAKE_CASE =_ask_options( 'Do you already have an IAM Role for executing Amazon SageMaker Training Jobs?' , ['Provide IAM Role name', 'Create new IAM role using credentials'] , _UpperCamelCase , ) if role_management == 0: _SCREAMING_SNAKE_CASE =_ask_field('Enter your IAM role name: ' ) else: _SCREAMING_SNAKE_CASE ='accelerate_sagemaker_execution_role' print(f"Accelerate will create an iam role \"{iam_role_name}\" using the provided credentials" ) _create_iam_role_for_sagemaker(_UpperCamelCase ) _SCREAMING_SNAKE_CASE =_ask_field( 'Do you want to use custom Docker image? [yes/NO]: ' , _convert_yes_no_to_bool , default=_UpperCamelCase , error_message='Please enter yes or no.' , ) _SCREAMING_SNAKE_CASE =None if is_custom_docker_image: _SCREAMING_SNAKE_CASE =_ask_field('Enter your Docker image: ' , lambda _UpperCamelCase : str(_UpperCamelCase ).lower() ) _SCREAMING_SNAKE_CASE =_ask_field( 'Do you want to provide SageMaker input channels with data locations? [yes/NO]: ' , _convert_yes_no_to_bool , default=_UpperCamelCase , error_message='Please enter yes or no.' , ) _SCREAMING_SNAKE_CASE =None if is_sagemaker_inputs_enabled: _SCREAMING_SNAKE_CASE =_ask_field( 'Enter the path to the SageMaker inputs TSV file with columns (channel_name, data_location): ' , lambda _UpperCamelCase : str(_UpperCamelCase ).lower() , ) _SCREAMING_SNAKE_CASE =_ask_field( 'Do you want to enable SageMaker metrics? [yes/NO]: ' , _convert_yes_no_to_bool , default=_UpperCamelCase , error_message='Please enter yes or no.' , ) _SCREAMING_SNAKE_CASE =None if is_sagemaker_metrics_enabled: _SCREAMING_SNAKE_CASE =_ask_field( 'Enter the path to the SageMaker metrics TSV file with columns (metric_name, metric_regex): ' , lambda _UpperCamelCase : str(_UpperCamelCase ).lower() , ) _SCREAMING_SNAKE_CASE =_ask_options( 'What is the distributed mode?' , ['No distributed training', 'Data parallelism'] , _convert_sagemaker_distributed_mode , ) _SCREAMING_SNAKE_CASE ={} _SCREAMING_SNAKE_CASE =_ask_field( 'Do you wish to optimize your script with torch dynamo?[yes/NO]:' , _convert_yes_no_to_bool , default=_UpperCamelCase , error_message='Please enter yes or no.' , ) if use_dynamo: _SCREAMING_SNAKE_CASE ='dynamo_' _SCREAMING_SNAKE_CASE =_ask_options( 'Which dynamo backend would you like to use?' , [x.lower() for x in DYNAMO_BACKENDS] , _convert_dynamo_backend , default=2 , ) _SCREAMING_SNAKE_CASE =_ask_field( 'Do you want to customize the defaults sent to torch.compile? [yes/NO]: ' , _convert_yes_no_to_bool , default=_UpperCamelCase , error_message='Please enter yes or no.' , ) if use_custom_options: _SCREAMING_SNAKE_CASE =_ask_options( 'Which mode do you want to use?' , _UpperCamelCase , lambda _UpperCamelCase : TORCH_DYNAMO_MODES[int(_UpperCamelCase )] , default='default' , ) _SCREAMING_SNAKE_CASE =_ask_field( 'Do you want the fullgraph mode or it is ok to break model into several subgraphs? [yes/NO]: ' , _convert_yes_no_to_bool , default=_UpperCamelCase , error_message='Please enter yes or no.' , ) _SCREAMING_SNAKE_CASE =_ask_field( 'Do you want to enable dynamic shape tracing? [yes/NO]: ' , _convert_yes_no_to_bool , default=_UpperCamelCase , error_message='Please enter yes or no.' , ) _SCREAMING_SNAKE_CASE ='Which EC2 instance type you want to use for your training?' if distributed_type != SageMakerDistributedType.NO: _SCREAMING_SNAKE_CASE =_ask_options( _UpperCamelCase , _UpperCamelCase , lambda _UpperCamelCase : SAGEMAKER_PARALLEL_EC2_INSTANCES[int(_UpperCamelCase )] ) else: eca_instance_query += "? [ml.p3.2xlarge]:" _SCREAMING_SNAKE_CASE =_ask_field(_UpperCamelCase , lambda _UpperCamelCase : str(_UpperCamelCase ).lower() , default='ml.p3.2xlarge' ) _SCREAMING_SNAKE_CASE =1 if distributed_type in (SageMakerDistributedType.DATA_PARALLEL, SageMakerDistributedType.MODEL_PARALLEL): _SCREAMING_SNAKE_CASE =_ask_field( 'How many machines do you want use? [1]: ' , _UpperCamelCase , default=1 , ) _SCREAMING_SNAKE_CASE =_ask_options( 'Do you wish to use FP16 or BF16 (mixed precision)?' , ['no', 'fp16', 'bf16', 'fp8'] , _convert_mixed_precision , ) if use_dynamo and mixed_precision == "no": print( 'Torch dynamo used without mixed precision requires TF32 to be efficient. Accelerate will enable it by default when launching your scripts.' ) return SageMakerConfig( image_uri=_UpperCamelCase , compute_environment=ComputeEnvironment.AMAZON_SAGEMAKER , distributed_type=_UpperCamelCase , use_cpu=_UpperCamelCase , dynamo_config=_UpperCamelCase , eca_instance_type=_UpperCamelCase , profile=_UpperCamelCase , region=_UpperCamelCase , iam_role_name=_UpperCamelCase , mixed_precision=_UpperCamelCase , num_machines=_UpperCamelCase , sagemaker_inputs_file=_UpperCamelCase , sagemaker_metrics_file=_UpperCamelCase , )
47
0
"""simple docstring""" def A ( snake_case :int , snake_case :int ) -> str: return numa ^ numa < 0 if __name__ == "__main__": import doctest doctest.testmod()
360
"""simple docstring""" import argparse import json import torch from diffusers import DDPMScheduler, LDMPipeline, UNetaDModel, VQModel def A ( snake_case :List[Any] , snake_case :Dict=1 ) -> Optional[int]: if n_shave_prefix_segments >= 0: return ".".join(path.split('.' )[n_shave_prefix_segments:] ) else: return ".".join(path.split('.' )[:n_shave_prefix_segments] ) def A ( snake_case :Dict , snake_case :int=0 ) -> Optional[int]: __UpperCamelCase = [] for old_item in old_list: __UpperCamelCase = old_item.replace('in_layers.0' , 'norm1' ) __UpperCamelCase = new_item.replace('in_layers.2' , 'conv1' ) __UpperCamelCase = new_item.replace('out_layers.0' , 'norm2' ) __UpperCamelCase = new_item.replace('out_layers.3' , 'conv2' ) __UpperCamelCase = new_item.replace('emb_layers.1' , 'time_emb_proj' ) __UpperCamelCase = new_item.replace('skip_connection' , 'conv_shortcut' ) __UpperCamelCase = shave_segments(snake_case , n_shave_prefix_segments=snake_case ) mapping.append({'old': old_item, 'new': new_item} ) return mapping def A ( snake_case :Optional[Any] , snake_case :Tuple=0 ) -> Tuple: __UpperCamelCase = [] for old_item in old_list: __UpperCamelCase = old_item __UpperCamelCase = new_item.replace('norm.weight' , 'group_norm.weight' ) __UpperCamelCase = new_item.replace('norm.bias' , 'group_norm.bias' ) __UpperCamelCase = new_item.replace('proj_out.weight' , 'proj_attn.weight' ) __UpperCamelCase = new_item.replace('proj_out.bias' , 'proj_attn.bias' ) __UpperCamelCase = shave_segments(snake_case , n_shave_prefix_segments=snake_case ) mapping.append({'old': old_item, 'new': new_item} ) return mapping def A ( snake_case :int , snake_case :List[str] , snake_case :List[str] , snake_case :Any=None , snake_case :Optional[int]=None , snake_case :Union[str, Any]=None ) -> Optional[int]: assert isinstance(snake_case , snake_case ), "Paths should be a list of dicts containing 'old' and 'new' keys." # Splits the attention layers into three variables. if attention_paths_to_split is not None: for path, path_map in attention_paths_to_split.items(): __UpperCamelCase = old_checkpoint[path] __UpperCamelCase = old_tensor.shape[0] // 3 __UpperCamelCase = (-1, channels) if len(old_tensor.shape ) == 3 else (-1) __UpperCamelCase = old_tensor.shape[0] // config['num_head_channels'] // 3 __UpperCamelCase = old_tensor.reshape((num_heads, 3 * channels // num_heads) + old_tensor.shape[1:] ) __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = old_tensor.split(channels // num_heads , dim=1 ) __UpperCamelCase = query.reshape(snake_case ) __UpperCamelCase = key.reshape(snake_case ) __UpperCamelCase = value.reshape(snake_case ) for path in paths: __UpperCamelCase = path['new'] # These have already been assigned if attention_paths_to_split is not None and new_path in attention_paths_to_split: continue # Global renaming happens here __UpperCamelCase = new_path.replace('middle_block.0' , 'mid_block.resnets.0' ) __UpperCamelCase = new_path.replace('middle_block.1' , 'mid_block.attentions.0' ) __UpperCamelCase = new_path.replace('middle_block.2' , 'mid_block.resnets.1' ) if additional_replacements is not None: for replacement in additional_replacements: __UpperCamelCase = new_path.replace(replacement['old'] , replacement['new'] ) # proj_attn.weight has to be converted from conv 1D to linear if "proj_attn.weight" in new_path: __UpperCamelCase = old_checkpoint[path['old']][:, :, 0] else: __UpperCamelCase = old_checkpoint[path['old']] def A ( snake_case :Optional[Any] , snake_case :Dict ) -> Optional[Any]: __UpperCamelCase = {} __UpperCamelCase = checkpoint['time_embed.0.weight'] __UpperCamelCase = checkpoint['time_embed.0.bias'] __UpperCamelCase = checkpoint['time_embed.2.weight'] __UpperCamelCase = checkpoint['time_embed.2.bias'] __UpperCamelCase = checkpoint['input_blocks.0.0.weight'] __UpperCamelCase = checkpoint['input_blocks.0.0.bias'] __UpperCamelCase = checkpoint['out.0.weight'] __UpperCamelCase = checkpoint['out.0.bias'] __UpperCamelCase = checkpoint['out.2.weight'] __UpperCamelCase = checkpoint['out.2.bias'] # Retrieves the keys for the input blocks only __UpperCamelCase = len({'.'.join(layer.split('.' )[:2] ) for layer in checkpoint if 'input_blocks' in layer} ) __UpperCamelCase = { layer_id: [key for key in checkpoint if f'input_blocks.{layer_id}' in key] for layer_id in range(snake_case ) } # Retrieves the keys for the middle blocks only __UpperCamelCase = len({'.'.join(layer.split('.' )[:2] ) for layer in checkpoint if 'middle_block' in layer} ) __UpperCamelCase = { layer_id: [key for key in checkpoint if f'middle_block.{layer_id}' in key] for layer_id in range(snake_case ) } # Retrieves the keys for the output blocks only __UpperCamelCase = len({'.'.join(layer.split('.' )[:2] ) for layer in checkpoint if 'output_blocks' in layer} ) __UpperCamelCase = { layer_id: [key for key in checkpoint if f'output_blocks.{layer_id}' in key] for layer_id in range(snake_case ) } for i in range(1 , snake_case ): __UpperCamelCase = (i - 1) // (config['num_res_blocks'] + 1) __UpperCamelCase = (i - 1) % (config['num_res_blocks'] + 1) __UpperCamelCase = [key for key in input_blocks[i] if f'input_blocks.{i}.0' in key] __UpperCamelCase = [key for key in input_blocks[i] if f'input_blocks.{i}.1' in key] if f'input_blocks.{i}.0.op.weight' in checkpoint: __UpperCamelCase = checkpoint[ f'input_blocks.{i}.0.op.weight' ] __UpperCamelCase = checkpoint[ f'input_blocks.{i}.0.op.bias' ] continue __UpperCamelCase = renew_resnet_paths(snake_case ) __UpperCamelCase = {'old': f'input_blocks.{i}.0', 'new': f'down_blocks.{block_id}.resnets.{layer_in_block_id}'} __UpperCamelCase = {'old': 'resnets.2.op', 'new': 'downsamplers.0.op'} assign_to_checkpoint( snake_case , snake_case , snake_case , additional_replacements=[meta_path, resnet_op] , config=snake_case ) if len(snake_case ): __UpperCamelCase = renew_attention_paths(snake_case ) __UpperCamelCase = { 'old': f'input_blocks.{i}.1', 'new': f'down_blocks.{block_id}.attentions.{layer_in_block_id}', } __UpperCamelCase = { f'input_blocks.{i}.1.qkv.bias': { 'key': f'down_blocks.{block_id}.attentions.{layer_in_block_id}.key.bias', 'query': f'down_blocks.{block_id}.attentions.{layer_in_block_id}.query.bias', 'value': f'down_blocks.{block_id}.attentions.{layer_in_block_id}.value.bias', }, f'input_blocks.{i}.1.qkv.weight': { 'key': f'down_blocks.{block_id}.attentions.{layer_in_block_id}.key.weight', 'query': f'down_blocks.{block_id}.attentions.{layer_in_block_id}.query.weight', 'value': f'down_blocks.{block_id}.attentions.{layer_in_block_id}.value.weight', }, } assign_to_checkpoint( snake_case , snake_case , snake_case , additional_replacements=[meta_path] , attention_paths_to_split=snake_case , config=snake_case , ) __UpperCamelCase = middle_blocks[0] __UpperCamelCase = middle_blocks[1] __UpperCamelCase = middle_blocks[2] __UpperCamelCase = renew_resnet_paths(snake_case ) assign_to_checkpoint(snake_case , snake_case , snake_case , config=snake_case ) __UpperCamelCase = renew_resnet_paths(snake_case ) assign_to_checkpoint(snake_case , snake_case , snake_case , config=snake_case ) __UpperCamelCase = renew_attention_paths(snake_case ) __UpperCamelCase = { 'middle_block.1.qkv.bias': { 'key': 'mid_block.attentions.0.key.bias', 'query': 'mid_block.attentions.0.query.bias', 'value': 'mid_block.attentions.0.value.bias', }, 'middle_block.1.qkv.weight': { 'key': 'mid_block.attentions.0.key.weight', 'query': 'mid_block.attentions.0.query.weight', 'value': 'mid_block.attentions.0.value.weight', }, } assign_to_checkpoint( snake_case , snake_case , snake_case , attention_paths_to_split=snake_case , config=snake_case ) for i in range(snake_case ): __UpperCamelCase = i // (config['num_res_blocks'] + 1) __UpperCamelCase = i % (config['num_res_blocks'] + 1) __UpperCamelCase = [shave_segments(snake_case , 2 ) for name in output_blocks[i]] __UpperCamelCase = {} for layer in output_block_layers: __UpperCamelCase , __UpperCamelCase = layer.split('.' )[0], shave_segments(snake_case , 1 ) if layer_id in output_block_list: output_block_list[layer_id].append(snake_case ) else: __UpperCamelCase = [layer_name] if len(snake_case ) > 1: __UpperCamelCase = [key for key in output_blocks[i] if f'output_blocks.{i}.0' in key] __UpperCamelCase = [key for key in output_blocks[i] if f'output_blocks.{i}.1' in key] __UpperCamelCase = renew_resnet_paths(snake_case ) __UpperCamelCase = renew_resnet_paths(snake_case ) __UpperCamelCase = {'old': f'output_blocks.{i}.0', 'new': f'up_blocks.{block_id}.resnets.{layer_in_block_id}'} assign_to_checkpoint(snake_case , snake_case , snake_case , additional_replacements=[meta_path] , config=snake_case ) if ["conv.weight", "conv.bias"] in output_block_list.values(): __UpperCamelCase = list(output_block_list.values() ).index(['conv.weight', 'conv.bias'] ) __UpperCamelCase = checkpoint[ f'output_blocks.{i}.{index}.conv.weight' ] __UpperCamelCase = checkpoint[ f'output_blocks.{i}.{index}.conv.bias' ] # Clear attentions as they have been attributed above. if len(snake_case ) == 2: __UpperCamelCase = [] if len(snake_case ): __UpperCamelCase = renew_attention_paths(snake_case ) __UpperCamelCase = { 'old': f'output_blocks.{i}.1', 'new': f'up_blocks.{block_id}.attentions.{layer_in_block_id}', } __UpperCamelCase = { f'output_blocks.{i}.1.qkv.bias': { 'key': f'up_blocks.{block_id}.attentions.{layer_in_block_id}.key.bias', 'query': f'up_blocks.{block_id}.attentions.{layer_in_block_id}.query.bias', 'value': f'up_blocks.{block_id}.attentions.{layer_in_block_id}.value.bias', }, f'output_blocks.{i}.1.qkv.weight': { 'key': f'up_blocks.{block_id}.attentions.{layer_in_block_id}.key.weight', 'query': f'up_blocks.{block_id}.attentions.{layer_in_block_id}.query.weight', 'value': f'up_blocks.{block_id}.attentions.{layer_in_block_id}.value.weight', }, } assign_to_checkpoint( snake_case , snake_case , snake_case , additional_replacements=[meta_path] , attention_paths_to_split=to_split if any('qkv' in key for key in attentions ) else None , config=snake_case , ) else: __UpperCamelCase = renew_resnet_paths(snake_case , n_shave_prefix_segments=1 ) for path in resnet_0_paths: __UpperCamelCase = '.'.join(['output_blocks', str(snake_case ), path['old']] ) __UpperCamelCase = '.'.join(['up_blocks', str(snake_case ), 'resnets', str(snake_case ), path['new']] ) __UpperCamelCase = checkpoint[old_path] return new_checkpoint if __name__ == "__main__": UpperCamelCase : Any = argparse.ArgumentParser() parser.add_argument( "--checkpoint_path", default=None, type=str, required=True, help="Path to the checkpoint to convert." ) parser.add_argument( "--config_file", default=None, type=str, required=True, help="The config json file corresponding to the architecture.", ) parser.add_argument("--dump_path", default=None, type=str, required=True, help="Path to the output model.") UpperCamelCase : Dict = parser.parse_args() UpperCamelCase : Optional[Any] = torch.load(args.checkpoint_path) with open(args.config_file) as f: UpperCamelCase : int = json.loads(f.read()) UpperCamelCase : Dict = convert_ldm_checkpoint(checkpoint, config) if "ldm" in config: del config["ldm"] UpperCamelCase : Optional[Any] = UNetaDModel(**config) model.load_state_dict(converted_checkpoint) try: UpperCamelCase : List[Any] = DDPMScheduler.from_config("/".join(args.checkpoint_path.split("/")[:-1])) UpperCamelCase : Optional[int] = VQModel.from_pretrained("/".join(args.checkpoint_path.split("/")[:-1])) UpperCamelCase : Dict = LDMPipeline(unet=model, scheduler=scheduler, vae=vqvae) pipe.save_pretrained(args.dump_path) except: # noqa: E722 model.save_pretrained(args.dump_path)
263
0
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING import torch from ..models.auto import AutoModelForVisualQuestionAnswering, AutoProcessor from ..utils import requires_backends from .base import PipelineTool if TYPE_CHECKING: from PIL import Image class snake_case_ ( __A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Dict = "dandelin/vilt-b32-finetuned-vqa" SCREAMING_SNAKE_CASE : str = ( "This is a tool that answers a question about an image. It takes an input named `image` which should be the " "image containing the information, as well as a `question` which should be the question in English. It " "returns a text that is the answer to the question." ) SCREAMING_SNAKE_CASE : Any = "image_qa" SCREAMING_SNAKE_CASE : str = AutoProcessor SCREAMING_SNAKE_CASE : Optional[int] = AutoModelForVisualQuestionAnswering SCREAMING_SNAKE_CASE : Optional[int] = ["image", "text"] SCREAMING_SNAKE_CASE : List[Any] = ["text"] def __init__( self : Optional[Any] , *_UpperCamelCase : Optional[int] , **_UpperCamelCase : Union[str, Any] ) ->List[Any]: requires_backends(self , ['''vision'''] ) super().__init__(*_UpperCamelCase , **_UpperCamelCase ) def snake_case__( self : str , _UpperCamelCase : "Image" , _UpperCamelCase : str ) ->Union[str, Any]: return self.pre_processor(_UpperCamelCase , _UpperCamelCase , return_tensors='''pt''' ) def snake_case__( self : Optional[int] , _UpperCamelCase : Dict ) ->int: with torch.no_grad(): return self.model(**_UpperCamelCase ).logits def snake_case__( self : Optional[Any] , _UpperCamelCase : Tuple ) ->Tuple: snake_case_ = outputs.argmax(-1 ).item() return self.model.config.idalabel[idx]
8
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_speech_available, is_tf_available, is_torch_available, ) a = { 'configuration_speech_to_text': ['SPEECH_TO_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Speech2TextConfig'], 'processing_speech_to_text': ['Speech2TextProcessor'], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a = ['Speech2TextTokenizer'] try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a = ['Speech2TextFeatureExtractor'] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a = [ 'TF_SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFSpeech2TextForConditionalGeneration', 'TFSpeech2TextModel', 'TFSpeech2TextPreTrainedModel', ] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a = [ 'SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST', 'Speech2TextForConditionalGeneration', 'Speech2TextModel', 'Speech2TextPreTrainedModel', ] if TYPE_CHECKING: from .configuration_speech_to_text import SPEECH_TO_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, SpeechaTextConfig from .processing_speech_to_text import SpeechaTextProcessor try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_speech_to_text import SpeechaTextTokenizer try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_speech_to_text import SpeechaTextFeatureExtractor try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_speech_to_text import ( TF_SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, TFSpeechaTextForConditionalGeneration, TFSpeechaTextModel, TFSpeechaTextPreTrainedModel, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_speech_to_text import ( SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, SpeechaTextForConditionalGeneration, SpeechaTextModel, SpeechaTextPreTrainedModel, ) else: import sys a = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
155
0
from typing import List from .keymap import KEYMAP, get_character def lowerCamelCase__ ( snake_case_ : str ) -> Tuple: def decorator(snake_case_ : Optional[int] ): __snake_case = getattr(snake_case_ , '''handle_key''' , [] ) handle += [key] setattr(snake_case_ , '''handle_key''' , snake_case_ ) return func return decorator def lowerCamelCase__ ( *snake_case_ : List[str] ) -> List[Any]: def decorator(snake_case_ : List[str] ): __snake_case = getattr(snake_case_ , '''handle_key''' , [] ) handle += keys setattr(snake_case_ , '''handle_key''' , snake_case_ ) return func return decorator class SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ): def __new__(cls : Optional[int] , a__ : List[Any] , a__ : Optional[Any] , a__ : Union[str, Any] ): """simple docstring""" __snake_case = super().__new__(cls , a__ , a__ , a__ ) if not hasattr(a__ , '''key_handler''' ): setattr(a__ , '''key_handler''' , {} ) setattr(a__ , '''handle_input''' , KeyHandler.handle_input ) for value in attrs.values(): __snake_case = getattr(a__ , '''handle_key''' , [] ) for key in handled_keys: __snake_case = value return new_cls @staticmethod def a (cls : Optional[int] ): """simple docstring""" __snake_case = get_character() if char != KEYMAP["undefined"]: __snake_case = ord(a__ ) __snake_case = cls.key_handler.get(a__ ) if handler: __snake_case = char return handler(cls ) else: return None def lowerCamelCase__ ( cls : Optional[int] ) -> List[str]: return KeyHandler(cls.__name__ , cls.__bases__ , cls.__dict__.copy() )
238
# Algorithm for the pigeonhole sorting def lowerCamelCase__ ( snake_case_ : int ) -> Optional[int]: __snake_case = min(snake_case_ ) # min() finds the minimum value __snake_case = max(snake_case_ ) # max() finds the maximum value __snake_case = max_val - min_val + 1 # size is difference of max and min values plus one # list of pigeonholes of size equal to the variable size __snake_case = [0] * size # Populate the pigeonholes. for x in a: assert isinstance(snake_case_ , snake_case_ ), "integers only please" holes[x - min_val] += 1 # Putting the elements back into the array in an order. __snake_case = 0 for count in range(snake_case_ ): while holes[count] > 0: holes[count] -= 1 __snake_case = count + min_val i += 1 def lowerCamelCase__ ( ) -> Union[str, Any]: __snake_case = [8, 3, 2, 7, 4, 6, 8] pigeonhole_sort(snake_case_ ) print('''Sorted order is:''' , ''' '''.join(snake_case_ ) ) if __name__ == "__main__": main()
238
1
import argparse import os import transformers from .convert_slow_tokenizer import SLOW_TO_FAST_CONVERTERS from .utils import logging logging.set_verbosity_info() _UpperCAmelCase : Union[str, Any] = logging.get_logger(__name__) _UpperCAmelCase : Optional[int] = {name: getattr(transformers, name + """Fast""") for name in SLOW_TO_FAST_CONVERTERS} def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> Optional[int]: if tokenizer_name is not None and tokenizer_name not in TOKENIZER_CLASSES: raise ValueError(F"""Unrecognized tokenizer name, should be one of {list(TOKENIZER_CLASSES.keys() )}.""" ) if tokenizer_name is None: lowerCamelCase__ : str = TOKENIZER_CLASSES else: lowerCamelCase__ : List[Any] = {tokenizer_name: getattr(__A , tokenizer_name + 'Fast' )} logger.info(F"""Loading tokenizer classes: {tokenizer_names}""" ) for tokenizer_name in tokenizer_names: lowerCamelCase__ : Optional[int] = TOKENIZER_CLASSES[tokenizer_name] lowerCamelCase__ : Optional[int] = True if checkpoint_name is None: lowerCamelCase__ : Tuple = list(tokenizer_class.max_model_input_sizes.keys() ) else: lowerCamelCase__ : Tuple = [checkpoint_name] logger.info(F"""For tokenizer {tokenizer_class.__class__.__name__} loading checkpoints: {checkpoint_names}""" ) for checkpoint in checkpoint_names: logger.info(F"""Loading {tokenizer_class.__class__.__name__} {checkpoint}""" ) # Load tokenizer lowerCamelCase__ : List[Any] = tokenizer_class.from_pretrained(__A , force_download=__A ) # Save fast tokenizer logger.info(F"""Save fast tokenizer to {dump_path} with prefix {checkpoint} add_prefix {add_prefix}""" ) # For organization names we create sub-directories if "/" in checkpoint: lowerCamelCase__ , lowerCamelCase__ : Union[str, Any] = checkpoint.split('/' ) lowerCamelCase__ : Optional[Any] = os.path.join(__A , __A ) elif add_prefix: lowerCamelCase__ : Any = checkpoint lowerCamelCase__ : Any = dump_path else: lowerCamelCase__ : Optional[Any] = None lowerCamelCase__ : str = dump_path logger.info(F"""=> {dump_path_full} with prefix {checkpoint_prefix_name}, add_prefix {add_prefix}""" ) if checkpoint in list(tokenizer.pretrained_vocab_files_map.values() )[0]: lowerCamelCase__ : Optional[int] = list(tokenizer.pretrained_vocab_files_map.values() )[0][checkpoint] lowerCamelCase__ : str = file_path.split(__A )[-1][0] if next_char == "/": lowerCamelCase__ : str = os.path.join(__A , __A ) lowerCamelCase__ : Tuple = None logger.info(F"""=> {dump_path_full} with prefix {checkpoint_prefix_name}, add_prefix {add_prefix}""" ) lowerCamelCase__ : str = tokenizer.save_pretrained( __A , legacy_format=__A , filename_prefix=__A ) logger.info(F"""=> File names {file_names}""" ) for file_name in file_names: if not file_name.endswith('tokenizer.json' ): os.remove(__A ) logger.info(F"""=> removing {file_name}""" ) if __name__ == "__main__": _UpperCAmelCase : int = argparse.ArgumentParser() # Required parameters parser.add_argument( """--dump_path""", default=None, type=str, required=True, help="""Path to output generated fast tokenizer files.""" ) parser.add_argument( """--tokenizer_name""", default=None, type=str, help=( F"""Optional tokenizer type selected in the list of {list(TOKENIZER_CLASSES.keys())}. If not given, will """ """download and convert all the checkpoints from AWS.""" ), ) parser.add_argument( """--checkpoint_name""", default=None, type=str, help="""Optional checkpoint name. If not given, will download and convert the canonical checkpoints from AWS.""", ) parser.add_argument( """--force_download""", action="""store_true""", help="""Re-download checkpoints.""", ) _UpperCAmelCase : Union[str, Any] = parser.parse_args() convert_slow_checkpoint_to_fast(args.tokenizer_name, args.checkpoint_name, args.dump_path, args.force_download)
50
import warnings from typing import List, Optional, Union from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class __snake_case ( a ): UpperCAmelCase__ : Dict = ['''image_processor''', '''tokenizer'''] UpperCAmelCase__ : Dict = '''FlavaImageProcessor''' UpperCAmelCase__ : Dict = ('''BertTokenizer''', '''BertTokenizerFast''') def __init__( self : Union[str, Any] , _snake_case : List[str]=None , _snake_case : str=None , **_snake_case : int): """simple docstring""" UpperCAmelCase_ = None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , _snake_case , ) UpperCAmelCase_ = kwargs.pop('''feature_extractor''') UpperCAmelCase_ = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''') if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''') super().__init__(_snake_case , _snake_case) UpperCAmelCase_ = self.image_processor def __call__( self : List[Any] , _snake_case : Optional[ImageInput] = None , _snake_case : Optional[Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]]] = None , _snake_case : bool = True , _snake_case : Union[bool, str, PaddingStrategy] = False , _snake_case : Union[bool, str, TruncationStrategy] = False , _snake_case : Optional[int] = None , _snake_case : int = 0 , _snake_case : Optional[int] = None , _snake_case : Optional[bool] = None , _snake_case : Optional[bool] = None , _snake_case : Optional[bool] = None , _snake_case : Optional[bool] = None , _snake_case : bool = False , _snake_case : bool = False , _snake_case : bool = False , _snake_case : bool = False , _snake_case : bool = True , _snake_case : Optional[Union[str, TensorType]] = None , **_snake_case : Any , ): """simple docstring""" if text is None and images is None: raise ValueError('''You have to specify either text or images. Both cannot be none.''') if text is not None: UpperCAmelCase_ = self.tokenizer( text=_snake_case , add_special_tokens=_snake_case , padding=_snake_case , truncation=_snake_case , max_length=_snake_case , stride=_snake_case , pad_to_multiple_of=_snake_case , return_token_type_ids=_snake_case , return_attention_mask=_snake_case , return_overflowing_tokens=_snake_case , return_special_tokens_mask=_snake_case , return_offsets_mapping=_snake_case , return_length=_snake_case , verbose=_snake_case , return_tensors=_snake_case , **_snake_case , ) if images is not None: UpperCAmelCase_ = self.image_processor( _snake_case , return_image_mask=_snake_case , return_codebook_pixels=_snake_case , return_tensors=_snake_case , **_snake_case , ) if text is not None and images is not None: encoding.update(_snake_case) return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**_snake_case) , tensor_type=_snake_case) def lowerCamelCase ( self : Any , *_snake_case : Optional[Any] , **_snake_case : int): """simple docstring""" return self.tokenizer.batch_decode(*_snake_case , **_snake_case) def lowerCamelCase ( self : Optional[int] , *_snake_case : int , **_snake_case : Dict): """simple docstring""" return self.tokenizer.decode(*_snake_case , **_snake_case) @property def lowerCamelCase ( self : str): """simple docstring""" UpperCAmelCase_ = self.tokenizer.model_input_names UpperCAmelCase_ = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names)) @property def lowerCamelCase ( self : str): """simple docstring""" warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , _snake_case , ) return self.image_processor_class @property def lowerCamelCase ( self : Any): """simple docstring""" warnings.warn( '''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''' , _snake_case , ) return self.image_processor
51
0
from manim import * class A__ ( snake_case__ ): """simple docstring""" def a_ ( self ): snake_case = Rectangle(height=0.5 , width=0.5 ) snake_case = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 ) snake_case = [mem.copy() for i in range(6 )] snake_case = [mem.copy() for i in range(6 )] snake_case = VGroup(*__snake_case ).arrange(__snake_case , buff=0 ) snake_case = VGroup(*__snake_case ).arrange(__snake_case , buff=0 ) snake_case = VGroup(__snake_case , __snake_case ).arrange(__snake_case , buff=0 ) snake_case = Text('''CPU''' , font_size=2_4 ) snake_case = Group(__snake_case , __snake_case ).arrange(__snake_case , buff=0.5 , aligned_edge=__snake_case ) cpu.move_to([-2.5, -0.5, 0] ) self.add(__snake_case ) snake_case = [mem.copy() for i in range(1 )] snake_case = VGroup(*__snake_case ).arrange(__snake_case , buff=0 ) snake_case = Text('''GPU''' , font_size=2_4 ) snake_case = Group(__snake_case , __snake_case ).arrange(__snake_case , buff=0.5 , aligned_edge=__snake_case ) gpu.align_to(__snake_case , __snake_case ) gpu.set_x(gpu.get_x() - 1 ) self.add(__snake_case ) snake_case = [mem.copy() for i in range(6 )] snake_case = VGroup(*__snake_case ).arrange(__snake_case , buff=0 ) snake_case = Text('''Model''' , font_size=2_4 ) snake_case = Group(__snake_case , __snake_case ).arrange(__snake_case , buff=0.5 , aligned_edge=__snake_case ) model.move_to([3, -1.0, 0] ) self.play( Create(__snake_case , run_time=1 ) , Create(__snake_case , run_time=1 ) , Create(__snake_case , run_time=1 ) , ) snake_case = MarkupText( F'''First, an empty model skeleton is loaded\ninto <span fgcolor=\'{YELLOW}\'>memory</span> without using much RAM.''' , font_size=2_4 , ) snake_case = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) snake_case = MarkupText( F'''<b>Key:</b>\n\n<span fgcolor=\'{YELLOW}\'>●</span> Empty Model''' , font_size=1_8 , ) key_text.move_to([-5, 2.4, 0] ) step_a.move_to([2, 2, 0] ) self.play(Write(__snake_case , run_time=2.5 ) , Write(__snake_case ) , Write(__snake_case ) ) self.add(__snake_case ) snake_case = [] snake_case = [] snake_case = [] for i, rect in enumerate(__snake_case ): snake_case = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0.0 ).set_fill(__snake_case , opacity=0.7 ) cpu_target.move_to(__snake_case ) cpu_target.generate_target() snake_case = 0.46 / 4 snake_case = 0.46 / 3 if i == 0: cpu_target.target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) , buff=0.02 , direction=__snake_case ) cpu_target.target.set_x(cpu_target.target.get_x() + 0.1 ) elif i == 3: cpu_target.target.next_to(cpu_targs[0].target , direction=__snake_case , buff=0.0 ) else: cpu_target.target.next_to(cpu_targs[i - 1].target , direction=__snake_case , buff=0.0 ) cpu_targs.append(__snake_case ) first_animations.append(rect.animate(run_time=0.5 ).set_stroke(__snake_case ) ) second_animations.append(MoveToTarget(__snake_case , run_time=1.5 ) ) self.play(*__snake_case ) self.play(*__snake_case ) self.wait()
368
import warnings from ...utils import logging from .image_processing_beit import BeitImageProcessor _SCREAMING_SNAKE_CASE : List[str] = logging.get_logger(__name__) class A__ ( snake_case__ ): """simple docstring""" def __init__( self , *__snake_case , **__snake_case ): warnings.warn( '''The class BeitFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please''' ''' use BeitImageProcessor instead.''' , __snake_case , ) super().__init__(*__snake_case , **__snake_case )
213
0
import inspect import logging import os import random import shutil import tempfile import unittest import pytest import torch from torch import nn from torch.utils.data import DataLoader, TensorDataset from accelerate import Accelerator from accelerate.test_utils import execute_subprocess_async, require_cuda from accelerate.utils import ProjectConfiguration, set_seed __snake_case : Tuple =logging.getLogger(__name__) def lowerCAmelCase__ ( lowerCamelCase_ : Tuple=2 ,lowerCamelCase_ : int=3 ,lowerCamelCase_ : Union[str, Any]=16 ,lowerCamelCase_ : int = 10 ,lowerCamelCase_ : int = 2): '''simple docstring''' def get_dataset(lowerCamelCase_ : Dict): lowerCAmelCase__ : Any = torch.randn(batch_size * n_batches ,1) return TensorDataset(lowerCamelCase_ ,a * x + b + 0.1 * torch.randn(batch_size * n_batches ,1)) lowerCAmelCase__ : Dict = get_dataset(lowerCamelCase_) lowerCAmelCase__ : List[str] = get_dataset(lowerCamelCase_) lowerCAmelCase__ : Optional[int] = DataLoader(lowerCamelCase_ ,shuffle=lowerCamelCase_ ,batch_size=lowerCamelCase_ ,num_workers=4) lowerCAmelCase__ : Optional[int] = DataLoader(lowerCamelCase_ ,shuffle=lowerCamelCase_ ,batch_size=lowerCamelCase_ ,num_workers=4) return (train_dataloader, valid_dataloader) def lowerCAmelCase__ ( lowerCamelCase_ : List[Any] ,lowerCamelCase_ : List[Any] ,lowerCamelCase_ : Tuple ,lowerCamelCase_ : int ,lowerCamelCase_ : Tuple ,lowerCamelCase_ : str=None): '''simple docstring''' lowerCAmelCase__ : Optional[int] = [] for epoch in range(lowerCamelCase_): # Train quickly model.train() for batch in dataloader: lowerCAmelCase__ , lowerCAmelCase__ : int = batch lowerCAmelCase__ : Dict = model(lowerCamelCase_) lowerCAmelCase__ : Tuple = torch.nn.functional.mse_loss(lowerCamelCase_ ,lowerCamelCase_) accelerator.backward(lowerCamelCase_) optimizer.step() optimizer.zero_grad() rands.append(random.random()) # Introduce some randomness if scheduler is not None: scheduler.step() return rands class lowerCamelCase__ ( nn.Module): '''simple docstring''' def __init__(self ) -> int: """simple docstring""" super().__init__() lowerCAmelCase__ : List[str] = nn.Parameter(torch.randn(1 ) ) lowerCAmelCase__ : Optional[Any] = nn.Parameter(torch.randn(1 ) ) def lowerCAmelCase__ (self ,__lowerCamelCase ) -> List[Any]: """simple docstring""" return x * self.a + self.b class lowerCamelCase__ ( unittest.TestCase): '''simple docstring''' def lowerCAmelCase__ (self ) -> Optional[int]: """simple docstring""" with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) lowerCAmelCase__ : Optional[int] = DummyModel() lowerCAmelCase__ : Tuple = torch.optim.Adam(params=model.parameters() ,lr=1e-3 ) lowerCAmelCase__ , lowerCAmelCase__ : Union[str, Any] = dummy_dataloaders() lowerCAmelCase__ : Dict = ProjectConfiguration(total_limit=1 ,project_dir=__lowerCamelCase ,automatic_checkpoint_naming=__lowerCamelCase ) # Train baseline lowerCAmelCase__ : Optional[Any] = Accelerator(project_config=__lowerCamelCase ) lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ : List[str] = accelerator.prepare( __lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ) # Save initial accelerator.save_state() # Save second state accelerator.save_state() self.assertEqual(len(os.listdir(accelerator.project_dir ) ) ,1 ) def lowerCAmelCase__ (self ) -> List[Any]: """simple docstring""" with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) lowerCAmelCase__ : Union[str, Any] = DummyModel() lowerCAmelCase__ : Dict = torch.optim.Adam(params=model.parameters() ,lr=1e-3 ) lowerCAmelCase__ , lowerCAmelCase__ : Optional[int] = dummy_dataloaders() # Train baseline lowerCAmelCase__ : int = Accelerator() lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ : int = accelerator.prepare( __lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ) # Save initial lowerCAmelCase__ : str = os.path.join(__lowerCamelCase ,'''initial''' ) accelerator.save_state(__lowerCamelCase ) ((lowerCAmelCase__) , (lowerCAmelCase__)) : Dict = model.a.item(), model.b.item() lowerCAmelCase__ : Any = optimizer.state_dict() lowerCAmelCase__ : str = train(3 ,__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ) ((lowerCAmelCase__) , (lowerCAmelCase__)) : str = model.a.item(), model.b.item() lowerCAmelCase__ : List[Any] = optimizer.state_dict() # Train partially set_seed(42 ) lowerCAmelCase__ : Dict = DummyModel() lowerCAmelCase__ : int = torch.optim.Adam(params=model.parameters() ,lr=1e-3 ) lowerCAmelCase__ , lowerCAmelCase__ : str = dummy_dataloaders() lowerCAmelCase__ : Dict = Accelerator() lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ : Union[str, Any] = accelerator.prepare( __lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ) accelerator.load_state(__lowerCamelCase ) ((lowerCAmelCase__) , (lowerCAmelCase__)) : Dict = model.a.item(), model.b.item() lowerCAmelCase__ : List[Any] = optimizer.state_dict() self.assertEqual(__lowerCamelCase ,__lowerCamelCase ) self.assertEqual(__lowerCamelCase ,__lowerCamelCase ) self.assertEqual(__lowerCamelCase ,__lowerCamelCase ) lowerCAmelCase__ : List[Any] = train(2 ,__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ) # Save everything lowerCAmelCase__ : int = os.path.join(__lowerCamelCase ,'''checkpoint''' ) accelerator.save_state(__lowerCamelCase ) # Load everything back in and make sure all states work accelerator.load_state(__lowerCamelCase ) test_rands += train(1 ,__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ) ((lowerCAmelCase__) , (lowerCAmelCase__)) : str = model.a.item(), model.b.item() lowerCAmelCase__ : Optional[Any] = optimizer.state_dict() self.assertEqual(__lowerCamelCase ,__lowerCamelCase ) self.assertEqual(__lowerCamelCase ,__lowerCamelCase ) self.assertEqual(__lowerCamelCase ,__lowerCamelCase ) self.assertEqual(__lowerCamelCase ,__lowerCamelCase ) def lowerCAmelCase__ (self ) -> Union[str, Any]: """simple docstring""" with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) lowerCAmelCase__ : Optional[Any] = DummyModel() lowerCAmelCase__ : Union[str, Any] = torch.optim.Adam(params=model.parameters() ,lr=1e-3 ) lowerCAmelCase__ , lowerCAmelCase__ : Optional[Any] = dummy_dataloaders() lowerCAmelCase__ : List[str] = ProjectConfiguration(automatic_checkpoint_naming=__lowerCamelCase ) # Train baseline lowerCAmelCase__ : Dict = Accelerator(project_dir=__lowerCamelCase ,project_config=__lowerCamelCase ) lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ : Optional[Any] = accelerator.prepare( __lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ) # Save initial accelerator.save_state() ((lowerCAmelCase__) , (lowerCAmelCase__)) : List[Any] = model.a.item(), model.b.item() lowerCAmelCase__ : Dict = optimizer.state_dict() lowerCAmelCase__ : Optional[Any] = train(3 ,__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ) ((lowerCAmelCase__) , (lowerCAmelCase__)) : Optional[Any] = model.a.item(), model.b.item() lowerCAmelCase__ : str = optimizer.state_dict() # Train partially set_seed(42 ) lowerCAmelCase__ : str = DummyModel() lowerCAmelCase__ : List[Any] = torch.optim.Adam(params=model.parameters() ,lr=1e-3 ) lowerCAmelCase__ , lowerCAmelCase__ : List[Any] = dummy_dataloaders() lowerCAmelCase__ : Tuple = ProjectConfiguration(iteration=1 ,automatic_checkpoint_naming=__lowerCamelCase ) lowerCAmelCase__ : Union[str, Any] = Accelerator(project_dir=__lowerCamelCase ,project_config=__lowerCamelCase ) lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ : Any = accelerator.prepare( __lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ) accelerator.load_state(os.path.join(__lowerCamelCase ,'''checkpoints''' ,'''checkpoint_0''' ) ) ((lowerCAmelCase__) , (lowerCAmelCase__)) : Any = model.a.item(), model.b.item() lowerCAmelCase__ : Tuple = optimizer.state_dict() self.assertEqual(__lowerCamelCase ,__lowerCamelCase ) self.assertEqual(__lowerCamelCase ,__lowerCamelCase ) self.assertEqual(__lowerCamelCase ,__lowerCamelCase ) lowerCAmelCase__ : List[str] = train(2 ,__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ) # Save everything accelerator.save_state() # Load everything back in and make sure all states work accelerator.load_state(os.path.join(__lowerCamelCase ,'''checkpoints''' ,'''checkpoint_1''' ) ) test_rands += train(1 ,__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ) ((lowerCAmelCase__) , (lowerCAmelCase__)) : List[str] = model.a.item(), model.b.item() lowerCAmelCase__ : Optional[Any] = optimizer.state_dict() self.assertEqual(__lowerCamelCase ,__lowerCamelCase ) self.assertEqual(__lowerCamelCase ,__lowerCamelCase ) self.assertEqual(__lowerCamelCase ,__lowerCamelCase ) self.assertEqual(__lowerCamelCase ,__lowerCamelCase ) def lowerCAmelCase__ (self ) -> Tuple: """simple docstring""" lowerCAmelCase__ : Optional[Any] = torch.tensor([1, 2, 3] ) lowerCAmelCase__ : int = torch.tensor([2, 3, 4] ) lowerCAmelCase__ : Tuple = DummyModel() lowerCAmelCase__ : Tuple = torch.optim.Adam(net.parameters() ) lowerCAmelCase__ : Any = Accelerator() with self.assertRaises(__lowerCamelCase ) as ve: accelerator.register_for_checkpointing(__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ) lowerCAmelCase__ : int = str(ve.exception ) self.assertTrue('''Item at index 0''' in message ) self.assertTrue('''Item at index 1''' in message ) self.assertFalse('''Item at index 2''' in message ) self.assertFalse('''Item at index 3''' in message ) def lowerCAmelCase__ (self ) -> Optional[Any]: """simple docstring""" with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) lowerCAmelCase__ : Dict = DummyModel() lowerCAmelCase__ : Optional[int] = torch.optim.Adam(params=model.parameters() ,lr=1e-3 ) lowerCAmelCase__ : str = torch.optim.lr_scheduler.StepLR(__lowerCamelCase ,step_size=1 ,gamma=0.99 ) lowerCAmelCase__ , lowerCAmelCase__ : Tuple = dummy_dataloaders() lowerCAmelCase__ : int = ProjectConfiguration(automatic_checkpoint_naming=__lowerCamelCase ) # Train baseline lowerCAmelCase__ : Tuple = Accelerator(project_dir=__lowerCamelCase ,project_config=__lowerCamelCase ) lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ : Dict = accelerator.prepare( __lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ) # Save initial accelerator.save_state() lowerCAmelCase__ : Any = scheduler.state_dict() train(3 ,__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ) self.assertNotEqual(__lowerCamelCase ,scheduler.state_dict() ) # Load everything back in and make sure all states work accelerator.load_state(os.path.join(__lowerCamelCase ,'''checkpoints''' ,'''checkpoint_0''' ) ) self.assertEqual(__lowerCamelCase ,scheduler.state_dict() ) def lowerCAmelCase__ (self ) -> List[str]: """simple docstring""" with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) lowerCAmelCase__ : str = DummyModel() lowerCAmelCase__ : Dict = ProjectConfiguration(automatic_checkpoint_naming=__lowerCamelCase ,total_limit=2 ) # Train baseline lowerCAmelCase__ : Optional[int] = Accelerator(project_dir=__lowerCamelCase ,project_config=__lowerCamelCase ) lowerCAmelCase__ : Optional[Any] = accelerator.prepare(__lowerCamelCase ) # Save 3 states: for _ in range(11 ): accelerator.save_state() self.assertTrue(not os.path.exists(os.path.join(__lowerCamelCase ,'''checkpoints''' ,'''checkpoint_0''' ) ) ) self.assertTrue(os.path.exists(os.path.join(__lowerCamelCase ,'''checkpoints''' ,'''checkpoint_9''' ) ) ) self.assertTrue(os.path.exists(os.path.join(__lowerCamelCase ,'''checkpoints''' ,'''checkpoint_10''' ) ) ) @require_cuda def lowerCAmelCase__ (self ) -> Optional[Any]: """simple docstring""" lowerCAmelCase__ : str = ['''torchrun''', f"""--nproc_per_node={torch.cuda.device_count()}""", inspect.getfile(self.__class__ )] execute_subprocess_async(__lowerCamelCase ,env=os.environ.copy() ) if __name__ == "__main__": __snake_case : Tuple ='/tmp/accelerate/state_checkpointing' __snake_case : int =DummyModel() __snake_case : Any =torch.optim.Adam(params=model.parameters(), lr=1E-3) __snake_case : Dict =torch.optim.lr_scheduler.StepLR(optimizer, step_size=1, gamma=0.99) __snake_case , __snake_case : Any =dummy_dataloaders() __snake_case : Tuple =ProjectConfiguration(automatic_checkpoint_naming=True) # Train baseline __snake_case : Dict =Accelerator(project_dir=savedir, project_config=project_config, mixed_precision='no') if accelerator.process_index == 0: if os.path.exists(savedir): shutil.rmtree(savedir) os.makedirs(savedir) __snake_case , __snake_case , __snake_case , __snake_case , __snake_case : Optional[Any] =accelerator.prepare( model, optimizer, train_dataloader, valid_dataloader, scheduler ) __snake_case , __snake_case : str =accelerator.prepare(model, optimizer) train(3, model, train_dataloader, optimizer, accelerator, scheduler) # Check that the intial optimizer is loaded on the GPU for group in optimizer.param_groups: __snake_case : Any =group['params'][0].device break assert param_device.type == accelerator.device.type __snake_case : Tuple =model.cpu() accelerator.wait_for_everyone() accelerator.save_state() accelerator.wait_for_everyone() # Check CPU state accelerator.load_state(os.path.join(savedir, 'checkpoints', 'checkpoint_0'), map_location='cpu') for group in optimizer.param_groups: __snake_case : Dict =group['params'][0].device break assert ( param_device.type == torch.device('cpu').type ), f"Loaded optimizer states did not match, expected to be loaded on the CPU but got {param_device}" # Check device state model.to(accelerator.device) accelerator.load_state(os.path.join(savedir, 'checkpoints', 'checkpoint_0'), map_location='on_device') for group in optimizer.param_groups: __snake_case : Any =group['params'][0].device break assert ( param_device.type == accelerator.device.type ), f"Loaded optimizer states did not match, expected to be loaded on {accelerator.device} but got {param_device}" # Check error with pytest.raises(TypeError, match='Unsupported optimizer map location passed'): accelerator.load_state(os.path.join(savedir, 'checkpoints', 'checkpoint_0'), map_location='invalid') accelerator.wait_for_everyone() if accelerator.process_index == 0: shutil.rmtree(savedir) accelerator.wait_for_everyone()
129
import math def lowerCAmelCase__ ( lowerCamelCase_ : int): '''simple docstring''' if not isinstance(lowerCamelCase_ ,lowerCamelCase_): lowerCAmelCase__ : Union[str, Any] = f"""Input value of [number={number}] must be an integer""" raise TypeError(lowerCamelCase_) if number < 1: lowerCAmelCase__ : Dict = f"""Input value of [number={number}] must be > 0""" raise ValueError(lowerCamelCase_) elif number == 1: return 3 elif number == 2: return 5 else: lowerCAmelCase__ : Optional[Any] = int(math.log(number // 3 ,2)) + 2 lowerCAmelCase__ : Optional[Any] = [3, 5] lowerCAmelCase__ : List[Any] = 2 lowerCAmelCase__ : Tuple = 3 for block in range(1 ,lowerCamelCase_): for _ in range(lowerCamelCase_): proth_list.append(2 ** (block + 1) + proth_list[proth_index - 1]) proth_index += 1 increment *= 2 return proth_list[number - 1] if __name__ == "__main__": import doctest doctest.testmod() for number in range(1_1): __snake_case : Optional[int] =0 try: __snake_case : List[Any] =proth(number) except ValueError: print(f"""ValueError: there is no {number}th Proth number""") continue print(f"""The {number}th Proth number: {value}""")
129
1
import argparse import glob import logging import os from argparse import Namespace from importlib import import_module import numpy as np import torch from lightning_base import BaseTransformer, add_generic_args, generic_train from seqeval.metrics import accuracy_score, fa_score, precision_score, recall_score from torch.nn import CrossEntropyLoss from torch.utils.data import DataLoader, TensorDataset from utils_ner import TokenClassificationTask a__ : List[str] = logging.getLogger(__name__) class a_ ( a__ ): """simple docstring""" __SCREAMING_SNAKE_CASE : int = 'token-classification' def __init__( self , _lowerCamelCase ) ->str: if type(_lowerCamelCase ) == dict: SCREAMING_SNAKE_CASE : Union[str, Any] = Namespace(**_lowerCamelCase ) SCREAMING_SNAKE_CASE : Tuple = import_module('''tasks''' ) try: SCREAMING_SNAKE_CASE : List[str] = getattr(_lowerCamelCase , hparams.task_type ) SCREAMING_SNAKE_CASE : TokenClassificationTask = token_classification_task_clazz() except AttributeError: raise ValueError( F"""Task {hparams.task_type} needs to be defined as a TokenClassificationTask subclass in {module}. """ F"""Available tasks classes are: {TokenClassificationTask.__subclasses__()}""" ) SCREAMING_SNAKE_CASE : str = self.token_classification_task.get_labels(hparams.labels ) SCREAMING_SNAKE_CASE : Optional[Any] = CrossEntropyLoss().ignore_index super().__init__(_lowerCamelCase , len(self.labels ) , self.mode ) def __lowerCAmelCase ( self , **_lowerCamelCase ) ->List[Any]: return self.model(**_lowerCamelCase ) def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase ) ->Tuple: SCREAMING_SNAKE_CASE : Union[str, Any] = {'''input_ids''': batch[0], '''attention_mask''': batch[1], '''labels''': batch[3]} if self.config.model_type != "distilbert": SCREAMING_SNAKE_CASE : Union[str, Any] = ( batch[2] if self.config.model_type in ['''bert''', '''xlnet'''] else None ) # XLM and RoBERTa don"t use token_type_ids SCREAMING_SNAKE_CASE : int = self(**_lowerCamelCase ) SCREAMING_SNAKE_CASE : Union[str, Any] = outputs[0] # tensorboard_logs = {"loss": loss, "rate": self.lr_scheduler.get_last_lr()[-1]} return {"loss": loss} def __lowerCAmelCase ( self ) ->Optional[int]: SCREAMING_SNAKE_CASE : List[str] = self.hparams for mode in ["train", "dev", "test"]: SCREAMING_SNAKE_CASE : Any = self._feature_file(_lowerCamelCase ) if os.path.exists(_lowerCamelCase ) and not args.overwrite_cache: logger.info('''Loading features from cached file %s''' , _lowerCamelCase ) SCREAMING_SNAKE_CASE : Union[str, Any] = torch.load(_lowerCamelCase ) else: logger.info('''Creating features from dataset file at %s''' , args.data_dir ) SCREAMING_SNAKE_CASE : Dict = self.token_classification_task.read_examples_from_file(args.data_dir , _lowerCamelCase ) SCREAMING_SNAKE_CASE : List[Any] = self.token_classification_task.convert_examples_to_features( _lowerCamelCase , self.labels , args.max_seq_length , self.tokenizer , cls_token_at_end=bool(self.config.model_type in ['''xlnet'''] ) , cls_token=self.tokenizer.cls_token , cls_token_segment_id=2 if self.config.model_type in ['''xlnet'''] else 0 , sep_token=self.tokenizer.sep_token , sep_token_extra=_lowerCamelCase , pad_on_left=bool(self.config.model_type in ['''xlnet'''] ) , pad_token=self.tokenizer.pad_token_id , pad_token_segment_id=self.tokenizer.pad_token_type_id , pad_token_label_id=self.pad_token_label_id , ) logger.info('''Saving features into cached file %s''' , _lowerCamelCase ) torch.save(_lowerCamelCase , _lowerCamelCase ) def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = False ) ->DataLoader: SCREAMING_SNAKE_CASE : Optional[Any] = self._feature_file(_lowerCamelCase ) logger.info('''Loading features from cached file %s''' , _lowerCamelCase ) SCREAMING_SNAKE_CASE : Tuple = torch.load(_lowerCamelCase ) SCREAMING_SNAKE_CASE : int = torch.tensor([f.input_ids for f in features] , dtype=torch.long ) SCREAMING_SNAKE_CASE : Tuple = torch.tensor([f.attention_mask for f in features] , dtype=torch.long ) if features[0].token_type_ids is not None: SCREAMING_SNAKE_CASE : Union[str, Any] = torch.tensor([f.token_type_ids for f in features] , dtype=torch.long ) else: SCREAMING_SNAKE_CASE : Dict = torch.tensor([0 for f in features] , dtype=torch.long ) # HACK(we will not use this anymore soon) SCREAMING_SNAKE_CASE : List[str] = torch.tensor([f.label_ids for f in features] , dtype=torch.long ) return DataLoader( TensorDataset(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) , batch_size=_lowerCamelCase ) def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase ) ->Optional[int]: """Compute validation""" "" SCREAMING_SNAKE_CASE : List[Any] = {'''input_ids''': batch[0], '''attention_mask''': batch[1], '''labels''': batch[3]} if self.config.model_type != "distilbert": SCREAMING_SNAKE_CASE : Optional[Any] = ( batch[2] if self.config.model_type in ['''bert''', '''xlnet'''] else None ) # XLM and RoBERTa don"t use token_type_ids SCREAMING_SNAKE_CASE : Optional[int] = self(**_lowerCamelCase ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : str = outputs[:2] SCREAMING_SNAKE_CASE : Optional[Any] = logits.detach().cpu().numpy() SCREAMING_SNAKE_CASE : Optional[int] = inputs['''labels'''].detach().cpu().numpy() return {"val_loss": tmp_eval_loss.detach().cpu(), "pred": preds, "target": out_label_ids} def __lowerCAmelCase ( self , _lowerCamelCase ) ->Dict: SCREAMING_SNAKE_CASE : Optional[int] = torch.stack([x['''val_loss'''] for x in outputs] ).mean() SCREAMING_SNAKE_CASE : Union[str, Any] = np.concatenate([x['''pred'''] for x in outputs] , axis=0 ) SCREAMING_SNAKE_CASE : str = np.argmax(_lowerCamelCase , axis=2 ) SCREAMING_SNAKE_CASE : Tuple = np.concatenate([x['''target'''] for x in outputs] , axis=0 ) SCREAMING_SNAKE_CASE : Any = dict(enumerate(self.labels ) ) SCREAMING_SNAKE_CASE : int = [[] for _ in range(out_label_ids.shape[0] )] SCREAMING_SNAKE_CASE : Optional[Any] = [[] for _ in range(out_label_ids.shape[0] )] for i in range(out_label_ids.shape[0] ): for j in range(out_label_ids.shape[1] ): if out_label_ids[i, j] != self.pad_token_label_id: out_label_list[i].append(label_map[out_label_ids[i][j]] ) preds_list[i].append(label_map[preds[i][j]] ) SCREAMING_SNAKE_CASE : List[Any] = { '''val_loss''': val_loss_mean, '''accuracy_score''': accuracy_score(_lowerCamelCase , _lowerCamelCase ), '''precision''': precision_score(_lowerCamelCase , _lowerCamelCase ), '''recall''': recall_score(_lowerCamelCase , _lowerCamelCase ), '''f1''': fa_score(_lowerCamelCase , _lowerCamelCase ), } SCREAMING_SNAKE_CASE : Optional[int] = dict(results.items() ) SCREAMING_SNAKE_CASE : Optional[int] = results return ret, preds_list, out_label_list def __lowerCAmelCase ( self , _lowerCamelCase ) ->Tuple: # when stable SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[Any] = self._eval_end(_lowerCamelCase ) SCREAMING_SNAKE_CASE : List[Any] = ret['''log'''] return {"val_loss": logs["val_loss"], "log": logs, "progress_bar": logs} def __lowerCAmelCase ( self , _lowerCamelCase ) ->Tuple: # updating to test_epoch_end instead of deprecated test_end SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Union[str, Any] = self._eval_end(_lowerCamelCase ) # Converting to the dict required by pl # https://github.com/PyTorchLightning/pytorch-lightning/blob/master/\ # pytorch_lightning/trainer/logging.py#L139 SCREAMING_SNAKE_CASE : Any = ret['''log'''] # `val_loss` is the key returned by `self._eval_end()` but actually refers to `test_loss` return {"avg_test_loss": logs["val_loss"], "log": logs, "progress_bar": logs} @staticmethod def __lowerCAmelCase ( _lowerCamelCase , _lowerCamelCase ) ->Dict: # Add NER specific options BaseTransformer.add_model_specific_args(_lowerCamelCase , _lowerCamelCase ) parser.add_argument( '''--task_type''' , default='''NER''' , type=_lowerCamelCase , help='''Task type to fine tune in training (e.g. NER, POS, etc)''' ) parser.add_argument( '''--max_seq_length''' , default=128 , type=_lowerCamelCase , help=( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) , ) parser.add_argument( '''--labels''' , default='''''' , type=_lowerCamelCase , help='''Path to a file containing all labels. If not specified, CoNLL-2003 labels are used.''' , ) parser.add_argument( '''--gpus''' , default=0 , type=_lowerCamelCase , help='''The number of GPUs allocated for this, it is by default 0 meaning none''' , ) parser.add_argument( '''--overwrite_cache''' , action='''store_true''' , help='''Overwrite the cached training and evaluation sets''' ) return parser if __name__ == "__main__": a__ : Tuple = argparse.ArgumentParser() add_generic_args(parser, os.getcwd()) a__ : Optional[int] = NERTransformer.add_model_specific_args(parser, os.getcwd()) a__ : int = parser.parse_args() a__ : Any = NERTransformer(args) a__ : Any = generic_train(model, args) if args.do_predict: # See https://github.com/huggingface/transformers/issues/3159 # pl use this default format to create a checkpoint: # https://github.com/PyTorchLightning/pytorch-lightning/blob/master\ # /pytorch_lightning/callbacks/model_checkpoint.py#L322 a__ : Union[str, Any] = sorted(glob.glob(os.path.join(args.output_dir, '''checkpoint-epoch=*.ckpt'''), recursive=True)) a__ : Optional[Any] = model.load_from_checkpoint(checkpoints[-1]) trainer.test(model)
19
import math def UpperCAmelCase_( a__ ): """simple docstring""" SCREAMING_SNAKE_CASE : Any = math.loga(math.sqrt(4 * positive_integer + 1 ) / 2 + 1 / 2 ) return exponent == int(a__ ) def UpperCAmelCase_( a__ = 1 / 12_345 ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = 0 SCREAMING_SNAKE_CASE : Dict = 0 SCREAMING_SNAKE_CASE : int = 3 while True: SCREAMING_SNAKE_CASE : Union[str, Any] = (integer**2 - 1) / 4 # if candidate is an integer, then there is a partition for k if partition_candidate == int(a__ ): SCREAMING_SNAKE_CASE : List[str] = int(a__ ) total_partitions += 1 if check_partition_perfect(a__ ): perfect_partitions += 1 if perfect_partitions > 0: if perfect_partitions / total_partitions < max_proportion: return int(a__ ) integer += 1 if __name__ == "__main__": print(F"{solution() = }")
19
1
'''simple docstring''' from __future__ import annotations def snake_case_ ( __SCREAMING_SNAKE_CASE : list , __SCREAMING_SNAKE_CASE : int | None = None , __SCREAMING_SNAKE_CASE : int | None = None ): """simple docstring""" if start is None: lowercase_ : Dict = 0 if end is None: lowercase_ : List[Any] = len(__SCREAMING_SNAKE_CASE ) - 1 if start >= end: return lowercase_ : Tuple = (start + end) // 2 slowsort(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) slowsort(__SCREAMING_SNAKE_CASE , mid + 1 , __SCREAMING_SNAKE_CASE ) if sequence[end] < sequence[mid]: lowercase_ , lowercase_ : List[str] = sequence[mid], sequence[end] slowsort(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , end - 1 ) if __name__ == "__main__": from doctest import testmod testmod()
93
import unittest from transformers import MraConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_torch_available(): import torch from transformers import ( MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, MraModel, ) from transformers.models.mra.modeling_mra import MRA_PRETRAINED_MODEL_ARCHIVE_LIST class __lowerCAmelCase : def __init__( self , __UpperCAmelCase , __UpperCAmelCase=2 , __UpperCAmelCase=8 , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=99 , __UpperCAmelCase=16 , __UpperCAmelCase=5 , __UpperCAmelCase=2 , __UpperCAmelCase=36 , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.0 , __UpperCAmelCase=512 , __UpperCAmelCase=16 , __UpperCAmelCase=2 , __UpperCAmelCase=0.02 , __UpperCAmelCase=3 , __UpperCAmelCase=4 , __UpperCAmelCase=None , ): '''simple docstring''' __lowerCamelCase = parent __lowerCamelCase = batch_size __lowerCamelCase = seq_length __lowerCamelCase = is_training __lowerCamelCase = use_input_mask __lowerCamelCase = use_token_type_ids __lowerCamelCase = use_labels __lowerCamelCase = vocab_size __lowerCamelCase = hidden_size __lowerCamelCase = num_hidden_layers __lowerCamelCase = num_attention_heads __lowerCamelCase = intermediate_size __lowerCamelCase = hidden_act __lowerCamelCase = hidden_dropout_prob __lowerCamelCase = attention_probs_dropout_prob __lowerCamelCase = max_position_embeddings __lowerCamelCase = type_vocab_size __lowerCamelCase = type_sequence_label_size __lowerCamelCase = initializer_range __lowerCamelCase = num_labels __lowerCamelCase = num_choices __lowerCamelCase = scope def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowerCamelCase = None if self.use_input_mask: __lowerCamelCase = random_attention_mask([self.batch_size, self.seq_length] ) __lowerCamelCase = None if self.use_token_type_ids: __lowerCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __lowerCamelCase = None __lowerCamelCase = None __lowerCamelCase = None if self.use_labels: __lowerCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowerCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __lowerCamelCase = ids_tensor([self.batch_size] , self.num_choices ) __lowerCamelCase = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowerCamelCase ( self ): '''simple docstring''' return MraConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__UpperCAmelCase , initializer_range=self.initializer_range , ) def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = self.get_config() __lowerCamelCase = 300 return config def lowerCamelCase ( self ): '''simple docstring''' ( ( __lowerCamelCase ) ,( __lowerCamelCase ) ,( __lowerCamelCase ) ,( __lowerCamelCase ) ,( __lowerCamelCase ) ,( __lowerCamelCase ) ,( __lowerCamelCase ) , ) = self.prepare_config_and_inputs() __lowerCamelCase = True __lowerCamelCase = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) __lowerCamelCase = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' __lowerCamelCase = MraModel(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __lowerCamelCase = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase ) __lowerCamelCase = model(__UpperCAmelCase , token_type_ids=__UpperCAmelCase ) __lowerCamelCase = model(__UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ): '''simple docstring''' __lowerCamelCase = True __lowerCamelCase = MraModel(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __lowerCamelCase = model( __UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , encoder_hidden_states=__UpperCAmelCase , encoder_attention_mask=__UpperCAmelCase , ) __lowerCamelCase = model( __UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , encoder_hidden_states=__UpperCAmelCase , ) __lowerCamelCase = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' __lowerCamelCase = MraForMaskedLM(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __lowerCamelCase = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , labels=__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' __lowerCamelCase = MraForQuestionAnswering(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __lowerCamelCase = model( __UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , start_positions=__UpperCAmelCase , end_positions=__UpperCAmelCase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' __lowerCamelCase = self.num_labels __lowerCamelCase = MraForSequenceClassification(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __lowerCamelCase = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , labels=__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' __lowerCamelCase = self.num_labels __lowerCamelCase = MraForTokenClassification(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __lowerCamelCase = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , labels=__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' __lowerCamelCase = self.num_choices __lowerCamelCase = MraForMultipleChoice(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __lowerCamelCase = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __lowerCamelCase = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __lowerCamelCase = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __lowerCamelCase = model( __UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , labels=__UpperCAmelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = self.prepare_config_and_inputs() ( ( __lowerCamelCase ) ,( __lowerCamelCase ) ,( __lowerCamelCase ) ,( __lowerCamelCase ) ,( __lowerCamelCase ) ,( __lowerCamelCase ) ,( __lowerCamelCase ) , ) = config_and_inputs __lowerCamelCase = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class __lowerCAmelCase ( lowerCAmelCase__ , unittest.TestCase ): lowerCAmelCase__ = ( ( MraModel, MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, ) if is_torch_available() else () ) lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = () def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = MraModelTester(self ) __lowerCamelCase = ConfigTester(self , config_class=__UpperCAmelCase , hidden_size=37 ) def lowerCamelCase ( self ): '''simple docstring''' self.config_tester.run_common_tests() def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCAmelCase ) def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: __lowerCamelCase = type self.model_tester.create_and_check_model(*__UpperCAmelCase ) def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*__UpperCAmelCase ) def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*__UpperCAmelCase ) def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*__UpperCAmelCase ) def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*__UpperCAmelCase ) def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*__UpperCAmelCase ) @slow def lowerCamelCase ( self ): '''simple docstring''' for model_name in MRA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowerCamelCase = MraModel.from_pretrained(__UpperCAmelCase ) self.assertIsNotNone(__UpperCAmelCase ) @unittest.skip(reason='''MRA does not output attentions''' ) def lowerCamelCase ( self ): '''simple docstring''' return @require_torch class __lowerCAmelCase ( unittest.TestCase ): @slow def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = MraModel.from_pretrained('''uw-madison/mra-base-512-4''' ) __lowerCamelCase = torch.arange(256 ).unsqueeze(0 ) with torch.no_grad(): __lowerCamelCase = model(__UpperCAmelCase )[0] __lowerCamelCase = torch.Size((1, 256, 768) ) self.assertEqual(output.shape , __UpperCAmelCase ) __lowerCamelCase = torch.tensor( [[[-0.0_140, 0.0_830, -0.0_381], [0.1_546, 0.1_402, 0.0_220], [0.1_162, 0.0_851, 0.0_165]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , __UpperCAmelCase , atol=1E-4 ) ) @slow def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = MraForMaskedLM.from_pretrained('''uw-madison/mra-base-512-4''' ) __lowerCamelCase = torch.arange(256 ).unsqueeze(0 ) with torch.no_grad(): __lowerCamelCase = model(__UpperCAmelCase )[0] __lowerCamelCase = 50265 __lowerCamelCase = torch.Size((1, 256, vocab_size) ) self.assertEqual(output.shape , __UpperCAmelCase ) __lowerCamelCase = torch.tensor( [[[9.2_595, -3.6_038, 11.8_819], [9.3_869, -3.2_693, 11.0_956], [11.8_524, -3.4_938, 13.1_210]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , __UpperCAmelCase , atol=1E-4 ) ) @slow def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = MraForMaskedLM.from_pretrained('''uw-madison/mra-base-4096-8-d3''' ) __lowerCamelCase = torch.arange(4096 ).unsqueeze(0 ) with torch.no_grad(): __lowerCamelCase = model(__UpperCAmelCase )[0] __lowerCamelCase = 50265 __lowerCamelCase = torch.Size((1, 4096, vocab_size) ) self.assertEqual(output.shape , __UpperCAmelCase ) __lowerCamelCase = torch.tensor( [[[5.4_789, -2.3_564, 7.5_064], [7.9_067, -1.3_369, 9.9_668], [9.0_712, -1.8_106, 7.0_380]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , __UpperCAmelCase , atol=1E-4 ) )
330
0
'''simple docstring''' # Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available _lowerCamelCase = { """configuration_vivit""": ["""VIVIT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """VivitConfig"""], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase = ["""VivitImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase = [ """VIVIT_PRETRAINED_MODEL_ARCHIVE_LIST""", """VivitModel""", """VivitPreTrainedModel""", """VivitForVideoClassification""", ] if TYPE_CHECKING: from .configuration_vivit import VIVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, VivitConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_vivit import VivitImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vivit import ( VIVIT_PRETRAINED_MODEL_ARCHIVE_LIST, VivitForVideoClassification, VivitModel, VivitPreTrainedModel, ) else: import sys _lowerCamelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
67
'''simple docstring''' import argparse import torch from transformers import GPTaConfig, GPTaModel, load_tf_weights_in_gpta from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() def a__ ( _SCREAMING_SNAKE_CASE : Optional[Any] , _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : int ) -> Any: """simple docstring""" if gpta_config_file == "": UpperCAmelCase_ : List[str] = GPTaConfig() else: UpperCAmelCase_ : int = GPTaConfig.from_json_file(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : List[Any] = GPTaModel(_SCREAMING_SNAKE_CASE ) # Load weights from numpy load_tf_weights_in_gpta(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # Save pytorch-model UpperCAmelCase_ : Dict = pytorch_dump_folder_path + "/" + WEIGHTS_NAME UpperCAmelCase_ : int = pytorch_dump_folder_path + "/" + CONFIG_NAME print(F'''Save PyTorch model to {pytorch_weights_dump_path}''' ) torch.save(model.state_dict() , _SCREAMING_SNAKE_CASE ) print(F'''Save configuration file to {pytorch_config_dump_path}''' ) with open(_SCREAMING_SNAKE_CASE , "w" , encoding="utf-8" ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": _lowerCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( """--gpt2_checkpoint_path""", default=None, type=str, required=True, help="""Path to the TensorFlow checkpoint path.""" ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) parser.add_argument( """--gpt2_config_file""", default="""""", type=str, help=( """An optional config json file corresponding to the pre-trained OpenAI model. \n""" """This specifies the model architecture.""" ), ) _lowerCamelCase = parser.parse_args() convert_gpta_checkpoint_to_pytorch(args.gpta_checkpoint_path, args.gpta_config_file, args.pytorch_dump_folder_path)
67
1
import warnings from ...utils import is_sklearn_available, requires_backends if is_sklearn_available(): from scipy.stats import pearsonr, spearmanr from sklearn.metrics import fa_score, matthews_corrcoef __lowerCAmelCase : str =( 'This metric will be removed from the library soon, metrics should be handled with the 🤗 Evaluate ' 'library. You can have a look at this example script for pointers: ' 'https://github.com/huggingface/transformers/blob/main/examples/pytorch/text-classification/run_glue.py' ) def _UpperCamelCase ( lowercase__ , lowercase__ ): warnings.warn(lowercase__ , lowercase__ ) requires_backends(lowercase__ , '''sklearn''' ) return (preds == labels).mean() def _UpperCamelCase ( lowercase__ , lowercase__ ): warnings.warn(lowercase__ , lowercase__ ) requires_backends(lowercase__ , '''sklearn''' ) __SCREAMING_SNAKE_CASE : str = simple_accuracy(lowercase__ , lowercase__ ) __SCREAMING_SNAKE_CASE : Dict = fa_score(y_true=lowercase__ , y_pred=lowercase__ ) return { "acc": acc, "f1": fa, "acc_and_f1": (acc + fa) / 2, } def _UpperCamelCase ( lowercase__ , lowercase__ ): warnings.warn(lowercase__ , lowercase__ ) requires_backends(lowercase__ , '''sklearn''' ) __SCREAMING_SNAKE_CASE : List[str] = pearsonr(lowercase__ , lowercase__ )[0] __SCREAMING_SNAKE_CASE : Union[str, Any] = spearmanr(lowercase__ , lowercase__ )[0] return { "pearson": pearson_corr, "spearmanr": spearman_corr, "corr": (pearson_corr + spearman_corr) / 2, } def _UpperCamelCase ( lowercase__ , lowercase__ , lowercase__ ): warnings.warn(lowercase__ , lowercase__ ) requires_backends(lowercase__ , '''sklearn''' ) assert len(lowercase__ ) == len(lowercase__ ), F'''Predictions and labels have mismatched lengths {len(lowercase__ )} and {len(lowercase__ )}''' if task_name == "cola": return {"mcc": matthews_corrcoef(lowercase__ , lowercase__ )} elif task_name == "sst-2": return {"acc": simple_accuracy(lowercase__ , lowercase__ )} elif task_name == "mrpc": return acc_and_fa(lowercase__ , lowercase__ ) elif task_name == "sts-b": return pearson_and_spearman(lowercase__ , lowercase__ ) elif task_name == "qqp": return acc_and_fa(lowercase__ , lowercase__ ) elif task_name == "mnli": return {"mnli/acc": simple_accuracy(lowercase__ , lowercase__ )} elif task_name == "mnli-mm": return {"mnli-mm/acc": simple_accuracy(lowercase__ , lowercase__ )} elif task_name == "qnli": return {"acc": simple_accuracy(lowercase__ , lowercase__ )} elif task_name == "rte": return {"acc": simple_accuracy(lowercase__ , lowercase__ )} elif task_name == "wnli": return {"acc": simple_accuracy(lowercase__ , lowercase__ )} elif task_name == "hans": return {"acc": simple_accuracy(lowercase__ , lowercase__ )} else: raise KeyError(lowercase__ ) def _UpperCamelCase ( lowercase__ , lowercase__ , lowercase__ ): warnings.warn(lowercase__ , lowercase__ ) requires_backends(lowercase__ , '''sklearn''' ) if len(lowercase__ ) != len(lowercase__ ): raise ValueError(F'''Predictions and labels have mismatched lengths {len(lowercase__ )} and {len(lowercase__ )}''' ) if task_name == "xnli": return {"acc": simple_accuracy(lowercase__ , lowercase__ )} else: raise KeyError(lowercase__ )
9
import os import random import sys from . import cryptomath_module as cryptoMath # noqa: N812 from . import rabin_miller as rabinMiller # noqa: N812 def __lowercase ( ): print('Making key files...' ) make_key_files('rsa' , 1_0_2_4 ) print('Key files generation successful.' ) def __lowercase ( __lowerCAmelCase : int ): print('Generating prime p...' ) a__ = rabinMiller.generate_large_prime(__lowerCAmelCase ) print('Generating prime q...' ) a__ = rabinMiller.generate_large_prime(__lowerCAmelCase ) a__ = p * q print('Generating e that is relatively prime to (p - 1) * (q - 1)...' ) while True: a__ = random.randrange(2 ** (key_size - 1) , 2 ** (key_size) ) if cryptoMath.gcd(__lowerCAmelCase , (p - 1) * (q - 1) ) == 1: break print('Calculating d that is mod inverse of e...' ) a__ = cryptoMath.find_mod_inverse(__lowerCAmelCase , (p - 1) * (q - 1) ) a__ = (n, e) a__ = (n, d) return (public_key, private_key) def __lowercase ( __lowerCAmelCase : str , __lowerCAmelCase : int ): if os.path.exists(F'{name}_pubkey.txt' ) or os.path.exists(F'{name}_privkey.txt' ): print('\nWARNING:' ) print( F'"{name}_pubkey.txt" or "{name}_privkey.txt" already exists. \n' 'Use a different name or delete these files and re-run this program.' ) sys.exit() a__ , a__ = generate_key(__lowerCAmelCase ) print(F'\nWriting public key to file {name}_pubkey.txt...' ) with open(F'{name}_pubkey.txt' , 'w' ) as out_file: out_file.write(F'{key_size},{public_key[0]},{public_key[1]}' ) print(F'Writing private key to file {name}_privkey.txt...' ) with open(F'{name}_privkey.txt' , 'w' ) as out_file: out_file.write(F'{key_size},{private_key[0]},{private_key[1]}' ) if __name__ == "__main__": main()
240
0
"""simple docstring""" import math def lowerCAmelCase__ ( _UpperCamelCase : Tuple , _UpperCamelCase : Union[str, Any] ) -> Optional[Any]: """simple docstring""" return math.pow(_UpperCamelCase , 2 ) - a def lowerCAmelCase__ ( _UpperCamelCase : Optional[int] ) -> str: """simple docstring""" return 2 * x def lowerCAmelCase__ ( _UpperCamelCase : str ) -> Optional[Any]: """simple docstring""" snake_case = 2.0 while start <= a: snake_case = math.pow(_UpperCamelCase , 2 ) return start def lowerCAmelCase__ ( _UpperCamelCase : Dict , _UpperCamelCase : Dict = 9_9_9_9 , _UpperCamelCase : List[Any] = 0.00_00_00_00_00_00_01 ) -> Optional[Any]: """simple docstring""" if a < 0: raise ValueError('math domain error' ) snake_case = get_initial_point(_UpperCamelCase ) for _ in range(_UpperCamelCase ): snake_case = value snake_case = value - fx(_UpperCamelCase , _UpperCamelCase ) / fx_derivative(_UpperCamelCase ) if abs(prev_value - value ) < tolerance: return value return value if __name__ == "__main__": from doctest import testmod testmod()
371
"""simple docstring""" from __future__ import annotations from typing import Any class lowerCAmelCase_ ( lowerCAmelCase ): """simple docstring""" pass class lowerCAmelCase_ : """simple docstring""" def __init__( self , lowerCAmelCase ): """simple docstring""" snake_case = data snake_case = None def __iter__( self ): """simple docstring""" snake_case = self snake_case = [] while node: if node in visited: raise ContainsLoopError visited.append(lowerCAmelCase ) yield node.data snake_case = node.next_node @property def snake_case ( self ): """simple docstring""" try: list(self ) return False except ContainsLoopError: return True if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = Node(1) SCREAMING_SNAKE_CASE__ = Node(2) SCREAMING_SNAKE_CASE__ = Node(3) SCREAMING_SNAKE_CASE__ = Node(4) print(root_node.has_loop) # False SCREAMING_SNAKE_CASE__ = root_node.next_node print(root_node.has_loop) # True SCREAMING_SNAKE_CASE__ = Node(5) SCREAMING_SNAKE_CASE__ = Node(6) SCREAMING_SNAKE_CASE__ = Node(5) SCREAMING_SNAKE_CASE__ = Node(6) print(root_node.has_loop) # False SCREAMING_SNAKE_CASE__ = Node(1) print(root_node.has_loop) # False
149
0
'''simple docstring''' from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available A__ : Tuple ={'''configuration_focalnet''': ['''FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''FocalNetConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ : str =[ '''FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST''', '''FocalNetForImageClassification''', '''FocalNetForMaskedImageModeling''', '''FocalNetBackbone''', '''FocalNetModel''', '''FocalNetPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_focalnet import FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FocalNetConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_focalnet import ( FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST, FocalNetBackbone, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetModel, FocalNetPreTrainedModel, ) else: import sys A__ : List[str] =_LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
70
import os import numpy import onnx def __lowerCamelCase ( UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' snake_case_ = a.name snake_case_ = b.name snake_case_ = '' snake_case_ = '' snake_case_ = a == b snake_case_ = name_a snake_case_ = name_b return res def __lowerCamelCase ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' for i, input_name in enumerate(node_proto.input ): if input_name == name: node_proto.input.insert(UpperCamelCase__ , UpperCamelCase__ ) node_proto.input.pop(i + 1 ) if node_proto.op_type == "If": _graph_replace_input_with(node_proto.attribute[0].g , UpperCamelCase__ , UpperCamelCase__ ) _graph_replace_input_with(node_proto.attribute[1].g , UpperCamelCase__ , UpperCamelCase__ ) if node_proto.op_type == "Loop": _graph_replace_input_with(node_proto.attribute[0].g , UpperCamelCase__ , UpperCamelCase__ ) def __lowerCamelCase ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' for n in graph_proto.node: _node_replace_input_with(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) def __lowerCamelCase ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' snake_case_ = list(model.graph.initializer ) snake_case_ = list(model_without_ext.graph.initializer ) for i, ref_i in ind_to_replace: assert inits_with_data[i].name == inits[i].name assert inits_with_data[ref_i].name == inits[ref_i].name assert i > ref_i snake_case_ = inits[i].name snake_case_ = inits[ref_i].name model_without_ext.graph.initializer.remove(inits[i] ) # for n in model.graph.node: _graph_replace_input_with(model_without_ext.graph , UpperCamelCase__ , UpperCamelCase__ ) def __lowerCamelCase ( UpperCamelCase__ ): '''simple docstring''' snake_case_ = os.path.dirname(UpperCamelCase__ ) snake_case_ = os.path.basename(UpperCamelCase__ ) snake_case_ = onnx.load(os.path.join(UpperCamelCase__ , UpperCamelCase__ ) ) snake_case_ = list(model.graph.initializer ) snake_case_ = set() snake_case_ = {} snake_case_ = [] snake_case_ = 0 for i in range(len(UpperCamelCase__ ) ): if i in dup_set: continue for j in range(i + 1 , len(UpperCamelCase__ ) ): if j in dup_set: continue if _is_equal_tensor_proto(inits[i] , inits[j] ): dup_set.add(UpperCamelCase__ ) dup_set.add(UpperCamelCase__ ) snake_case_ = inits[j].data_type snake_case_ = numpy.prod(inits[j].dims ) if dtype == 1: mem_size *= 4 elif dtype == 6: mem_size *= 4 elif dtype == 7 or dtype == 11: mem_size *= 8 else: print('unexpected data type: ' , UpperCamelCase__ ) total_reduced_size += mem_size snake_case_ = inits[i].name snake_case_ = inits[j].name if name_i in dup_map: dup_map[name_i].append(UpperCamelCase__ ) else: snake_case_ = [name_j] ind_to_replace.append((j, i) ) print('total reduced size: ' , total_reduced_size / 1024 / 1024 / 1024 , 'GB' ) snake_case_ = sorted(UpperCamelCase__ ) _remove_dup_initializers_from_model(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) snake_case_ = 'optimized_' + model_file_name snake_case_ = os.path.join(UpperCamelCase__ , UpperCamelCase__ ) onnx.save(UpperCamelCase__ , UpperCamelCase__ ) return new_model
285
0
'''simple docstring''' import os from huggingface_hub.constants import HUGGINGFACE_HUB_CACHE, hf_cache_home a_ = HUGGINGFACE_HUB_CACHE a_ = 'config.json' a_ = 'diffusion_pytorch_model.bin' a_ = 'diffusion_flax_model.msgpack' a_ = 'model.onnx' a_ = 'diffusion_pytorch_model.safetensors' a_ = 'weights.pb' a_ = 'https://huggingface.co' a_ = default_cache_path a_ = 'diffusers_modules' a_ = os.getenv('HF_MODULES_CACHE', os.path.join(hf_cache_home, 'modules')) a_ = ['fp16', 'non-ema'] a_ = '.self_attn'
350
'''simple docstring''' from decimal import Decimal, getcontext from math import ceil, factorial def _a( UpperCamelCase__ : int ): '''simple docstring''' if not isinstance(UpperCamelCase__, UpperCamelCase__ ): raise TypeError('''Undefined for non-integers''' ) elif precision < 1: raise ValueError('''Undefined for non-natural numbers''' ) SCREAMING_SNAKE_CASE__ : Optional[Any] =precision SCREAMING_SNAKE_CASE__ : int =ceil(precision / 1_4 ) SCREAMING_SNAKE_CASE__ : int =4_2_6_8_8_0 * Decimal(1_0_0_0_5 ).sqrt() SCREAMING_SNAKE_CASE__ : Tuple =1 SCREAMING_SNAKE_CASE__ : Any =1_3_5_9_1_4_0_9 SCREAMING_SNAKE_CASE__ : List[Any] =Decimal(UpperCamelCase__ ) for k in range(1, UpperCamelCase__ ): SCREAMING_SNAKE_CASE__ : str =factorial(6 * k ) // (factorial(3 * k ) * factorial(UpperCamelCase__ ) ** 3) linear_term += 5_4_5_1_4_0_1_3_4 exponential_term *= -2_6_2_5_3_7_4_1_2_6_4_0_7_6_8_0_0_0 partial_sum += Decimal(multinomial_term * linear_term ) / exponential_term return str(constant_term / partial_sum )[:-1] if __name__ == "__main__": a_ = 5_0 print(F'''The first {n} digits of pi is: {pi(n)}''')
222
0
"""simple docstring""" import numpy as np from transformers import Pipeline def snake_case ( A__ ): UpperCAmelCase_ : Optional[Any] = np.max(A__ ,axis=-1 ,keepdims=A__ ) UpperCAmelCase_ : List[Any] = np.exp(outputs - maxes ) return shifted_exp / shifted_exp.sum(axis=-1 ,keepdims=A__ ) class UpperCamelCase_ (__A ): def _SCREAMING_SNAKE_CASE ( self : Any , **lowerCAmelCase_ : int ) -> List[str]: UpperCAmelCase_ : Optional[Any] = {} if "second_text" in kwargs: UpperCAmelCase_ : List[Any] = kwargs["second_text"] return preprocess_kwargs, {}, {} def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Optional[int]=None ) -> Dict: return self.tokenizer(lowerCAmelCase_ , text_pair=lowerCAmelCase_ , return_tensors=self.framework ) def _SCREAMING_SNAKE_CASE ( self : Tuple , lowerCAmelCase_ : List[Any] ) -> Tuple: return self.model(**lowerCAmelCase_ ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , lowerCAmelCase_ : Union[str, Any] ) -> Union[str, Any]: UpperCAmelCase_ : List[Any] = model_outputs.logits[0].numpy() UpperCAmelCase_ : Optional[int] = softmax(lowerCAmelCase_ ) UpperCAmelCase_ : Tuple = np.argmax(lowerCAmelCase_ ) UpperCAmelCase_ : Optional[int] = self.model.config.idalabel[best_class] UpperCAmelCase_ : int = probabilities[best_class].item() UpperCAmelCase_ : str = logits.tolist() return {"label": label, "score": score, "logits": logits}
268
"""simple docstring""" def snake_case ( A__ ,A__ ): # "extended trapezoidal rule" # int(f) = dx/2 * (f1 + 2f2 + ... + fn) UpperCAmelCase_ : Dict = (boundary[1] - boundary[0]) / steps UpperCAmelCase_ : Optional[int] = boundary[0] UpperCAmelCase_ : str = boundary[1] UpperCAmelCase_ : Tuple = make_points(A__ ,A__ ,A__ ) UpperCAmelCase_ : List[str] = 0.0 y += (h / 2.0) * f(A__ ) for i in x_i: # print(i) y += h * f(A__ ) y += (h / 2.0) * f(A__ ) return y def snake_case ( A__ ,A__ ,A__ ): UpperCAmelCase_ : Union[str, Any] = a + h while x < (b - h): yield x UpperCAmelCase_ : Optional[Any] = x + h def snake_case ( A__ ): # enter your function here UpperCAmelCase_ : Dict = (x - 0) * (x - 0) return y def snake_case ( ): UpperCAmelCase_ : Dict = 0.0 # Lower bound of integration UpperCAmelCase_ : Optional[int] = 1.0 # Upper bound of integration UpperCAmelCase_ : Dict = 10.0 # define number of steps or resolution UpperCAmelCase_ : List[Any] = [a, b] # define boundary of integration UpperCAmelCase_ : Union[str, Any] = method_a(A__ ,A__ ) print(F"""y = {y}""" ) if __name__ == "__main__": main()
268
1
import argparse import os import shutil from pathlib import Path import onnx import torch from packaging import version from torch.onnx import export from diffusers import OnnxRuntimeModel, OnnxStableDiffusionPipeline, StableDiffusionPipeline _UpperCAmelCase : Optional[int] = version.parse(version.parse(torch.__version__).base_version) < version.parse("1.11") def A ( lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase=False , ) -> Optional[Any]: '''simple docstring''' output_path.parent.mkdir(parents=lowercase , exist_ok=lowercase ) # PyTorch deprecated the `enable_onnx_checker` and `use_external_data_format` arguments in v1.11, # so we check the torch version for backwards compatibility if is_torch_less_than_1_11: export( lowercase , lowercase , f=output_path.as_posix() , input_names=lowercase , output_names=lowercase , dynamic_axes=lowercase , do_constant_folding=lowercase , use_external_data_format=lowercase , enable_onnx_checker=lowercase , opset_version=lowercase , ) else: export( lowercase , lowercase , f=output_path.as_posix() , input_names=lowercase , output_names=lowercase , dynamic_axes=lowercase , do_constant_folding=lowercase , opset_version=lowercase , ) @torch.no_grad() def A ( lowercase , lowercase , lowercase , lowercase = False ) -> Any: '''simple docstring''' UpperCamelCase = torch.floataa if fpaa else torch.floataa if fpaa and torch.cuda.is_available(): UpperCamelCase = 'cuda' elif fpaa and not torch.cuda.is_available(): raise ValueError('`float16` model export is only supported on GPUs with CUDA' ) else: UpperCamelCase = 'cpu' UpperCamelCase = StableDiffusionPipeline.from_pretrained(lowercase , torch_dtype=lowercase ).to(lowercase ) UpperCamelCase = Path(lowercase ) # TEXT ENCODER UpperCamelCase = pipeline.text_encoder.config.max_position_embeddings UpperCamelCase = pipeline.text_encoder.config.hidden_size UpperCamelCase = pipeline.tokenizer( 'A sample prompt' , padding='max_length' , max_length=pipeline.tokenizer.model_max_length , truncation=lowercase , return_tensors='pt' , ) onnx_export( pipeline.text_encoder , model_args=(text_input.input_ids.to(device=lowercase , dtype=torch.intaa )) , output_path=output_path / 'text_encoder' / 'model.onnx' , ordered_input_names=['input_ids'] , output_names=['last_hidden_state', 'pooler_output'] , dynamic_axes={ 'input_ids': {0: 'batch', 1: 'sequence'}, } , opset=lowercase , ) del pipeline.text_encoder # UNET UpperCamelCase = pipeline.unet.config.in_channels UpperCamelCase = pipeline.unet.config.sample_size UpperCamelCase = output_path / 'unet' / 'model.onnx' onnx_export( pipeline.unet , model_args=( torch.randn(2 , lowercase , lowercase , lowercase ).to(device=lowercase , dtype=lowercase ), torch.randn(2 ).to(device=lowercase , dtype=lowercase ), torch.randn(2 , lowercase , lowercase ).to(device=lowercase , dtype=lowercase ), False, ) , output_path=lowercase , ordered_input_names=['sample', 'timestep', 'encoder_hidden_states', 'return_dict'] , output_names=['out_sample'] , dynamic_axes={ 'sample': {0: 'batch', 1: 'channels', 2: 'height', 3: 'width'}, 'timestep': {0: 'batch'}, 'encoder_hidden_states': {0: 'batch', 1: 'sequence'}, } , opset=lowercase , use_external_data_format=lowercase , ) UpperCamelCase = str(unet_path.absolute().as_posix() ) UpperCamelCase = os.path.dirname(lowercase ) UpperCamelCase = onnx.load(lowercase ) # clean up existing tensor files shutil.rmtree(lowercase ) os.mkdir(lowercase ) # collate external tensor files into one onnx.save_model( lowercase , lowercase , save_as_external_data=lowercase , all_tensors_to_one_file=lowercase , location='weights.pb' , convert_attribute=lowercase , ) del pipeline.unet # VAE ENCODER UpperCamelCase = pipeline.vae UpperCamelCase = vae_encoder.config.in_channels UpperCamelCase = vae_encoder.config.sample_size # need to get the raw tensor output (sample) from the encoder UpperCamelCase = lambda lowercase , lowercase : vae_encoder.encode(lowercase , lowercase )[0].sample() onnx_export( lowercase , model_args=( torch.randn(1 , lowercase , lowercase , lowercase ).to(device=lowercase , dtype=lowercase ), False, ) , output_path=output_path / 'vae_encoder' / 'model.onnx' , ordered_input_names=['sample', 'return_dict'] , output_names=['latent_sample'] , dynamic_axes={ 'sample': {0: 'batch', 1: 'channels', 2: 'height', 3: 'width'}, } , opset=lowercase , ) # VAE DECODER UpperCamelCase = pipeline.vae UpperCamelCase = vae_decoder.config.latent_channels UpperCamelCase = vae_decoder.config.out_channels # forward only through the decoder part UpperCamelCase = vae_encoder.decode onnx_export( lowercase , model_args=( torch.randn(1 , lowercase , lowercase , lowercase ).to(device=lowercase , dtype=lowercase ), False, ) , output_path=output_path / 'vae_decoder' / 'model.onnx' , ordered_input_names=['latent_sample', 'return_dict'] , output_names=['sample'] , dynamic_axes={ 'latent_sample': {0: 'batch', 1: 'channels', 2: 'height', 3: 'width'}, } , opset=lowercase , ) del pipeline.vae # SAFETY CHECKER if pipeline.safety_checker is not None: UpperCamelCase = pipeline.safety_checker UpperCamelCase = safety_checker.config.vision_config.num_channels UpperCamelCase = safety_checker.config.vision_config.image_size UpperCamelCase = safety_checker.forward_onnx onnx_export( pipeline.safety_checker , model_args=( torch.randn( 1 , lowercase , lowercase , lowercase , ).to(device=lowercase , dtype=lowercase ), torch.randn(1 , lowercase , lowercase , lowercase ).to(device=lowercase , dtype=lowercase ), ) , output_path=output_path / 'safety_checker' / 'model.onnx' , ordered_input_names=['clip_input', 'images'] , output_names=['out_images', 'has_nsfw_concepts'] , dynamic_axes={ 'clip_input': {0: 'batch', 1: 'channels', 2: 'height', 3: 'width'}, 'images': {0: 'batch', 1: 'height', 2: 'width', 3: 'channels'}, } , opset=lowercase , ) del pipeline.safety_checker UpperCamelCase = OnnxRuntimeModel.from_pretrained(output_path / 'safety_checker' ) UpperCamelCase = pipeline.feature_extractor else: UpperCamelCase = None UpperCamelCase = None UpperCamelCase = OnnxStableDiffusionPipeline( vae_encoder=OnnxRuntimeModel.from_pretrained(output_path / 'vae_encoder' ) , vae_decoder=OnnxRuntimeModel.from_pretrained(output_path / 'vae_decoder' ) , text_encoder=OnnxRuntimeModel.from_pretrained(output_path / 'text_encoder' ) , tokenizer=pipeline.tokenizer , unet=OnnxRuntimeModel.from_pretrained(output_path / 'unet' ) , scheduler=pipeline.scheduler , safety_checker=lowercase , feature_extractor=lowercase , requires_safety_checker=safety_checker is not None , ) onnx_pipeline.save_pretrained(lowercase ) print('ONNX pipeline saved to' , lowercase ) del pipeline del onnx_pipeline UpperCamelCase = OnnxStableDiffusionPipeline.from_pretrained(lowercase , provider='CPUExecutionProvider' ) print('ONNX pipeline is loadable' ) if __name__ == "__main__": _UpperCAmelCase : Any = argparse.ArgumentParser() parser.add_argument( "--model_path", type=str, required=True, help="Path to the `diffusers` checkpoint to convert (either a local directory or on the Hub).", ) parser.add_argument("--output_path", type=str, required=True, help="Path to the output model.") parser.add_argument( "--opset", default=14, type=int, help="The version of the ONNX operator set to use.", ) parser.add_argument("--fp16", action="store_true", default=False, help="Export the models in `float16` mode") _UpperCAmelCase : List[str] = parser.parse_args() convert_models(args.model_path, args.output_path, args.opset, args.fpaa)
110
import argparse import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## _UpperCAmelCase : Union[str, Any] = 16 _UpperCAmelCase : Dict = 32 def A ( lowercase , lowercase = 16 ) -> str: '''simple docstring''' UpperCamelCase = AutoTokenizer.from_pretrained('bert-base-cased' ) UpperCamelCase = load_dataset('glue' , 'mrpc' ) def tokenize_function(lowercase ): # max_length=None => use the model max length (it's actually the default) UpperCamelCase = tokenizer(examples['sentence1'] , examples['sentence2'] , truncation=lowercase , max_length=lowercase ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): UpperCamelCase = datasets.map( lowercase , batched=lowercase , remove_columns=['idx', 'sentence1', 'sentence2'] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library UpperCamelCase = tokenized_datasets.rename_column('label' , 'labels' ) def collate_fn(lowercase ): # On TPU it's best to pad everything to the same length or training will be very slow. UpperCamelCase = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": UpperCamelCase = 16 elif accelerator.mixed_precision != "no": UpperCamelCase = 8 else: UpperCamelCase = None return tokenizer.pad( lowercase , padding='longest' , max_length=lowercase , pad_to_multiple_of=lowercase , return_tensors='pt' , ) # Instantiate dataloaders. UpperCamelCase = DataLoader( tokenized_datasets['train'] , shuffle=lowercase , collate_fn=lowercase , batch_size=lowercase , drop_last=lowercase ) UpperCamelCase = DataLoader( tokenized_datasets['validation'] , shuffle=lowercase , collate_fn=lowercase , batch_size=lowercase , drop_last=(accelerator.mixed_precision == 'fp8') , ) return train_dataloader, eval_dataloader def A ( lowercase , lowercase ) -> Optional[Any]: '''simple docstring''' UpperCamelCase = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs UpperCamelCase = config['lr'] UpperCamelCase = int(config['num_epochs'] ) UpperCamelCase = int(config['seed'] ) UpperCamelCase = int(config['batch_size'] ) UpperCamelCase = evaluate.load('glue' , 'mrpc' ) # If the batch size is too big we use gradient accumulation UpperCamelCase = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: UpperCamelCase = batch_size // MAX_GPU_BATCH_SIZE UpperCamelCase = MAX_GPU_BATCH_SIZE set_seed(lowercase ) UpperCamelCase , UpperCamelCase = get_dataloaders(lowercase , lowercase ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) UpperCamelCase = AutoModelForSequenceClassification.from_pretrained('bert-base-cased' , return_dict=lowercase ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). UpperCamelCase = model.to(accelerator.device ) # Instantiate optimizer UpperCamelCase = AdamW(params=model.parameters() , lr=lowercase ) # Instantiate scheduler UpperCamelCase = get_linear_schedule_with_warmup( optimizer=lowercase , num_warmup_steps=100 , num_training_steps=(len(lowercase ) * num_epochs) // gradient_accumulation_steps , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase = accelerator.prepare( lowercase , lowercase , lowercase , lowercase , lowercase ) # Now we train the model for epoch in range(lowercase ): model.train() for step, batch in enumerate(lowercase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) UpperCamelCase = model(**lowercase ) UpperCamelCase = outputs.loss UpperCamelCase = loss / gradient_accumulation_steps accelerator.backward(lowercase ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(lowercase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): UpperCamelCase = model(**lowercase ) UpperCamelCase = outputs.logits.argmax(dim=-1 ) UpperCamelCase , UpperCamelCase = accelerator.gather_for_metrics((predictions, batch['labels']) ) metric.add_batch( predictions=lowercase , references=lowercase , ) UpperCamelCase = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f'''epoch {epoch}:''' , lowercase ) def A ( ) -> Union[str, Any]: '''simple docstring''' UpperCamelCase = argparse.ArgumentParser(description='Simple example of training script.' ) parser.add_argument( '--mixed_precision' , type=lowercase , default=lowercase , choices=['no', 'fp16', 'bf16', 'fp8'] , help='Whether to use mixed precision. Choose' 'between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.' 'and an Nvidia Ampere GPU.' , ) parser.add_argument('--cpu' , action='store_true' , help='If passed, will train on the CPU.' ) UpperCamelCase = parser.parse_args() UpperCamelCase = {'lr': 2e-5, 'num_epochs': 3, 'seed': 42, 'batch_size': 16} training_function(lowercase , lowercase ) if __name__ == "__main__": main()
110
1
'''simple docstring''' from typing import TYPE_CHECKING from ...file_utils import _LazyModule, is_torch_available from ...utils import OptionalDependencyNotAvailable lowerCAmelCase__ = { '''configuration_gpt_neox_japanese''': ['''GPT_NEOX_JAPANESE_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''GPTNeoXJapaneseConfig'''], '''tokenization_gpt_neox_japanese''': ['''GPTNeoXJapaneseTokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ '''GPT_NEOX_JAPANESE_PRETRAINED_MODEL_ARCHIVE_LIST''', '''GPTNeoXJapaneseForCausalLM''', '''GPTNeoXJapaneseLayer''', '''GPTNeoXJapaneseModel''', '''GPTNeoXJapanesePreTrainedModel''', ] if TYPE_CHECKING: from .configuration_gpt_neox_japanese import GPT_NEOX_JAPANESE_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTNeoXJapaneseConfig from .tokenization_gpt_neox_japanese import GPTNeoXJapaneseTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_neox_japanese import ( GPT_NEOX_JAPANESE_PRETRAINED_MODEL_ARCHIVE_LIST, GPTNeoXJapaneseForCausalLM, GPTNeoXJapaneseLayer, GPTNeoXJapaneseModel, GPTNeoXJapanesePreTrainedModel, ) else: import sys lowerCAmelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
104
'''simple docstring''' import argparse from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection from diffusers import UnCLIPImageVariationPipeline, UnCLIPPipeline if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() parser.add_argument('''--dump_path''', default=None, type=str, required=True, help='''Path to the output model.''') parser.add_argument( '''--txt2img_unclip''', default='''kakaobrain/karlo-v1-alpha''', type=str, required=False, help='''The pretrained txt2img unclip.''', ) lowerCAmelCase__ = parser.parse_args() lowerCAmelCase__ = UnCLIPPipeline.from_pretrained(args.txtaimg_unclip) lowerCAmelCase__ = CLIPImageProcessor() lowerCAmelCase__ = CLIPVisionModelWithProjection.from_pretrained('''openai/clip-vit-large-patch14''') lowerCAmelCase__ = UnCLIPImageVariationPipeline( decoder=txtaimg.decoder, text_encoder=txtaimg.text_encoder, tokenizer=txtaimg.tokenizer, text_proj=txtaimg.text_proj, feature_extractor=feature_extractor, image_encoder=image_encoder, super_res_first=txtaimg.super_res_first, super_res_last=txtaimg.super_res_last, decoder_scheduler=txtaimg.decoder_scheduler, super_res_scheduler=txtaimg.super_res_scheduler, ) imgaimg.save_pretrained(args.dump_path)
104
1
import requests __snake_case : str ='''YOUR API KEY''' def lowerCAmelCase__ ( lowerCamelCase_ : str ,lowerCamelCase_ : str = giphy_api_key): lowerCAmelCase__ : str = "+".join(query.split()) lowerCAmelCase__ : Dict = f"""https://api.giphy.com/v1/gifs/search?q={formatted_query}&api_key={api_key}""" lowerCAmelCase__ : Dict = requests.get(_lowerCAmelCase).json()["data"] return [gif["url"] for gif in gifs] if __name__ == "__main__": print('\n'.join(get_gifs('space ship')))
354
import random import unittest import torch from diffusers import IFInpaintingSuperResolutionPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class lowerCamelCase__ ( lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase): '''simple docstring''' snake_case_ =IFInpaintingSuperResolutionPipeline snake_case_ =TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {"""width""", """height"""} snake_case_ =TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS.union({"""original_image"""}) snake_case_ =PipelineTesterMixin.required_optional_params - {"""latents"""} def lowerCAmelCase__ (self ) -> Union[str, Any]: """simple docstring""" return self._get_superresolution_dummy_components() def lowerCAmelCase__ (self ,__lowerCamelCase ,__lowerCamelCase=0 ) -> Dict: """simple docstring""" if str(__lowerCamelCase ).startswith('''mps''' ): lowerCAmelCase__ : Union[str, Any] = torch.manual_seed(__lowerCamelCase ) else: lowerCAmelCase__ : int = torch.Generator(device=__lowerCamelCase ).manual_seed(__lowerCamelCase ) lowerCAmelCase__ : str = floats_tensor((1, 3, 16, 16) ,rng=random.Random(__lowerCamelCase ) ).to(__lowerCamelCase ) lowerCAmelCase__ : Optional[Any] = floats_tensor((1, 3, 32, 32) ,rng=random.Random(__lowerCamelCase ) ).to(__lowerCamelCase ) lowerCAmelCase__ : Union[str, Any] = floats_tensor((1, 3, 32, 32) ,rng=random.Random(__lowerCamelCase ) ).to(__lowerCamelCase ) lowerCAmelCase__ : Dict = { '''prompt''': '''A painting of a squirrel eating a burger''', '''image''': image, '''original_image''': original_image, '''mask_image''': mask_image, '''generator''': generator, '''num_inference_steps''': 2, '''output_type''': '''numpy''', } return inputs @unittest.skipIf( torch_device != '''cuda''' or not is_xformers_available() ,reason='''XFormers attention is only available with CUDA and `xformers` installed''' ,) def lowerCAmelCase__ (self ) -> int: """simple docstring""" self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 ) def lowerCAmelCase__ (self ) -> int: """simple docstring""" self._test_save_load_optional_components() @unittest.skipIf(torch_device != '''cuda''' ,reason='''float16 requires CUDA''' ) def lowerCAmelCase__ (self ) -> str: """simple docstring""" super().test_save_load_floataa(expected_max_diff=1e-1 ) def lowerCAmelCase__ (self ) -> Any: """simple docstring""" self._test_attention_slicing_forward_pass(expected_max_diff=1e-2 ) def lowerCAmelCase__ (self ) -> Optional[Any]: """simple docstring""" self._test_save_load_local() def lowerCAmelCase__ (self ) -> Any: """simple docstring""" self._test_inference_batch_single_identical( expected_max_diff=1e-2 ,)
94
0
'''simple docstring''' from collections import Counter from timeit import timeit def __lowerCAmelCase ( UpperCamelCase__ = "" , ) -> bool: return sum(c % 2 for c in Counter(input_str.replace(''' ''' , '''''' ).lower() ).values() ) < 2 def __lowerCAmelCase ( UpperCamelCase__ = "" ) -> bool: if len(UpperCamelCase__ ) == 0: return True __lowerCamelCase = input_str.replace(''' ''' , '''''' ).lower() # character_freq_dict: Stores the frequency of every character in the input string __lowerCamelCase = {} for character in lower_case_input_str: __lowerCamelCase = character_freq_dict.get(UpperCamelCase__ , 0 ) + 1 __lowerCamelCase = 0 for character_count in character_freq_dict.values(): if character_count % 2: odd_char += 1 if odd_char > 1: return False return True def __lowerCAmelCase ( UpperCamelCase__ = "" ) -> None: print('''\nFor string = ''' , UpperCamelCase__ , ''':''' ) print( '''> can_string_be_rearranged_as_palindrome_counter()''' , '''\tans =''' , can_string_be_rearranged_as_palindrome_counter(UpperCamelCase__ ) , '''\ttime =''' , timeit( '''z.can_string_be_rearranged_as_palindrome_counter(z.check_str)''' , setup='''import __main__ as z''' , ) , '''seconds''' , ) print( '''> can_string_be_rearranged_as_palindrome()''' , '''\tans =''' , can_string_be_rearranged_as_palindrome(UpperCamelCase__ ) , '''\ttime =''' , timeit( '''z.can_string_be_rearranged_as_palindrome(z.check_str)''' , setup='''import __main__ as z''' , ) , '''seconds''' , ) if __name__ == "__main__": __UpperCAmelCase =input( "Enter string to determine if it can be rearranged as a palindrome or not: " ).strip() benchmark(check_str) __UpperCAmelCase =can_string_be_rearranged_as_palindrome_counter(check_str) print(f'{check_str} can {"" if status else "not "}be rearranged as a palindrome')
67
'''simple docstring''' from . import ( albert, align, altclip, audio_spectrogram_transformer, auto, autoformer, bark, bart, barthez, bartpho, beit, bert, bert_generation, bert_japanese, bertweet, big_bird, bigbird_pegasus, biogpt, bit, blenderbot, blenderbot_small, blip, blip_a, bloom, bridgetower, byta, camembert, canine, chinese_clip, clap, clip, clipseg, codegen, conditional_detr, convbert, convnext, convnextva, cpm, cpmant, ctrl, cvt, dataavec, deberta, deberta_va, decision_transformer, deformable_detr, deit, deprecated, deta, detr, dialogpt, dinat, distilbert, dit, donut, dpr, dpt, efficientformer, efficientnet, electra, encodec, encoder_decoder, ernie, ernie_m, esm, falcon, flaubert, flava, fnet, focalnet, fsmt, funnel, git, glpn, gpta, gpt_bigcode, gpt_neo, gpt_neox, gpt_neox_japanese, gpt_swa, gptj, gptsan_japanese, graphormer, groupvit, herbert, hubert, ibert, imagegpt, informer, instructblip, jukebox, layoutlm, layoutlmva, layoutlmva, layoutxlm, led, levit, lilt, llama, longformer, longta, luke, lxmert, mam_aaa, marian, markuplm, maskaformer, maskformer, mbart, mbartaa, mega, megatron_bert, megatron_gpta, mgp_str, mluke, mobilebert, mobilenet_va, mobilenet_va, mobilevit, mobilevitva, mpnet, mra, mta, musicgen, mvp, nat, nezha, nllb, nllb_moe, nystromformer, oneformer, open_llama, openai, opt, owlvit, pegasus, pegasus_x, perceiver, phobert, pixastruct, plbart, poolformer, prophetnet, qdqbert, rag, realm, reformer, regnet, rembert, resnet, roberta, roberta_prelayernorm, roc_bert, roformer, rwkv, sam, segformer, sew, sew_d, speech_encoder_decoder, speech_to_text, speech_to_text_a, speechta, splinter, squeezebert, swiftformer, swin, swinasr, swinva, switch_transformers, ta, table_transformer, tapas, time_series_transformer, timesformer, timm_backbone, transfo_xl, trocr, tvlt, umta, unispeech, unispeech_sat, upernet, videomae, vilt, vision_encoder_decoder, vision_text_dual_encoder, visual_bert, vit, vit_hybrid, vit_mae, vit_msn, vivit, wavaveca, wavaveca_conformer, wavaveca_phoneme, wavaveca_with_lm, wavlm, whisper, x_clip, xglm, xlm, xlm_prophetnet, xlm_roberta, xlm_roberta_xl, xlnet, xmod, yolos, yoso, )
67
1
"""simple docstring""" import os from collections import deque import torch from torch.utils.data import Dataset class A_ (lowercase__ ): '''simple docstring''' def __init__( self , lowercase_="" , lowercase_="train" ): """simple docstring""" assert os.path.isdir(lowercase_ ) UpperCAmelCase_ : str = [] UpperCAmelCase_ : int = os.listdir(lowercase_ ) for story_filename in story_filenames_list: if "summary" in story_filename: continue UpperCAmelCase_ : Union[str, Any] = os.path.join(lowercase_ , lowercase_ ) if not os.path.isfile(lowercase_ ): continue self.documents.append(lowercase_ ) def __len__( self ): """simple docstring""" return len(self.documents ) def __getitem__( self , lowercase_ ): """simple docstring""" UpperCAmelCase_ : Optional[Any] = self.documents[idx] UpperCAmelCase_ : Dict = document_path.split("/" )[-1] with open(lowercase_ , encoding="utf-8" ) as source: UpperCAmelCase_ : Union[str, Any] = source.read() UpperCAmelCase_ : Any = process_story(lowercase_ ) return document_name, story_lines, summary_lines def __a ( __lowerCamelCase ) -> List[Any]: UpperCAmelCase_ : Dict = list(filter(lambda __lowerCamelCase : len(__lowerCamelCase ) != 0, [line.strip() for line in raw_story.split("\n" )] ) ) # for some unknown reason some lines miss a period, add it UpperCAmelCase_ : List[Any] = [_add_missing_period(__lowerCamelCase ) for line in nonempty_lines] # gather article lines UpperCAmelCase_ : Dict = [] UpperCAmelCase_ : Optional[int] = deque(__lowerCamelCase ) while True: try: UpperCAmelCase_ : List[str] = lines.popleft() if element.startswith("@highlight" ): break story_lines.append(__lowerCamelCase ) except IndexError: # if "@highlight" is absent from the file we pop # all elements until there is None, raising an exception. return story_lines, [] # gather summary lines UpperCAmelCase_ : int = list(filter(lambda __lowerCamelCase : not t.startswith("@highlight" ), __lowerCamelCase ) ) return story_lines, summary_lines def __a ( __lowerCamelCase ) -> List[str]: UpperCAmelCase_ : List[Any] = [".", "!", "?", "...", "'", "`", "\"", "\u2019", "\u2019", ")"] if line.startswith("@highlight" ): return line if line[-1] in END_TOKENS: return line return line + "." def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ) -> Union[str, Any]: if len(__lowerCamelCase ) > block_size: return sequence[:block_size] else: sequence.extend([pad_token_id] * (block_size - len(__lowerCamelCase )) ) return sequence def __a ( __lowerCamelCase, __lowerCamelCase ) -> List[str]: UpperCAmelCase_ : int = torch.ones_like(__lowerCamelCase ) UpperCAmelCase_ : Optional[Any] = sequence == pad_token_id UpperCAmelCase_ : Any = 0 return mask def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ) -> Union[str, Any]: UpperCAmelCase_ : int = [tokenizer.encode(__lowerCamelCase ) for line in story_lines] UpperCAmelCase_ : Optional[Any] = [token for sentence in story_lines_token_ids for token in sentence] UpperCAmelCase_ : Optional[Any] = [tokenizer.encode(__lowerCamelCase ) for line in summary_lines] UpperCAmelCase_ : str = [token for sentence in summary_lines_token_ids for token in sentence] return story_token_ids, summary_token_ids def __a ( __lowerCamelCase, __lowerCamelCase ) -> Dict: UpperCAmelCase_ : Tuple = [] for sequence in batch: UpperCAmelCase_ : Dict = -1 UpperCAmelCase_ : Any = [] for s in sequence: if s == separator_token_id: sentence_num += 1 embeddings.append(sentence_num % 2 ) batch_embeddings.append(__lowerCamelCase ) return torch.tensor(__lowerCamelCase )
371
"""simple docstring""" import json import os from typing import Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _a = logging.get_logger(__name__) _a = {'vocab_file': 'vocab.json'} _a = { 'vocab_file': { 'mgp-str': 'https://huggingface.co/alibaba-damo/mgp-str-base/blob/main/vocab.json', } } _a = {'mgp-str': 27} class A_ (lowercase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Dict = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE__ : List[str] = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE__ : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self , lowercase_ , lowercase_="[GO]" , lowercase_="[GO]" , lowercase_="[s]" , lowercase_="[GO]" , **lowercase_ ): """simple docstring""" super().__init__( unk_token=lowercase_ , bos_token=lowercase_ , eos_token=lowercase_ , pad_token=lowercase_ , **lowercase_ , ) with open(lowercase_ , encoding="utf-8" ) as vocab_handle: UpperCAmelCase_ : Dict = json.load(lowercase_ ) UpperCAmelCase_ : Dict = {v: k for k, v in self.vocab.items()} @property def UpperCamelCase__ ( self ): """simple docstring""" return len(self.vocab ) def UpperCamelCase__ ( self ): """simple docstring""" return dict(self.vocab , **self.added_tokens_encoder ) def UpperCamelCase__ ( self , lowercase_ ): """simple docstring""" UpperCAmelCase_ : Optional[int] = [] for s in text: char_tokens.extend(lowercase_ ) return char_tokens def UpperCamelCase__ ( self , lowercase_ ): """simple docstring""" return self.vocab.get(lowercase_ , self.vocab.get(self.unk_token ) ) def UpperCamelCase__ ( self , lowercase_ ): """simple docstring""" return self.decoder.get(lowercase_ ) def UpperCamelCase__ ( self , lowercase_ , lowercase_ = None ): """simple docstring""" if not os.path.isdir(lowercase_ ): logger.error("Vocabulary path ({}) should be a directory".format(lowercase_ ) ) return UpperCAmelCase_ : Optional[int] = os.path.join( lowercase_ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) with open(lowercase_ , "w" , encoding="utf-8" ) as f: f.write(json.dumps(self.vocab , indent=2 , sort_keys=lowercase_ , ensure_ascii=lowercase_ ) + "\n" ) return (vocab_file,)
23
0
'''simple docstring''' import logging import re import pytorch_quantization import pytorch_quantization.nn as quant_nn import torch from pytorch_quantization import calib from pytorch_quantization.tensor_quant import QuantDescriptor lowerCAmelCase__ = logging.getLogger(__name__) lowerCAmelCase__ = 50 # max width of layer names lowerCAmelCase__ = 70 # max width of quantizer names def _A ( A__ ): """simple docstring""" __lowercase = parser.add_argument_group('''quant_trainer arguments''' ) group.add_argument('''--wprec''' , type=A__ , default=8 , help='''weight precision''' ) group.add_argument('''--aprec''' , type=A__ , default=8 , help='''activation precision''' ) group.add_argument('''--quant-per-tensor''' , action='''store_true''' , help='''per tensor weight scaling''' ) group.add_argument('''--quant-disable''' , action='''store_true''' , help='''disable all quantizers''' ) group.add_argument('''--quant-disable-embeddings''' , action='''store_true''' , help='''disable all embeddings quantizers''' ) group.add_argument('''--quant-disable-keyword''' , type=A__ , nargs='''+''' , help='''disable quantizers by keyword''' ) group.add_argument('''--quant-disable-layer-module''' , type=A__ , help='''disable quantizers by keyword under layer.''' ) group.add_argument('''--quant-enable-layer-module''' , type=A__ , help='''enable quantizers by keyword under layer''' ) group.add_argument('''--calibrator''' , default='''max''' , help='''which quantization range calibrator to use''' ) group.add_argument('''--percentile''' , default=A__ , type=A__ , help='''percentile for PercentileCalibrator''' ) group.add_argument('''--fuse-qkv''' , action='''store_true''' , help='''use the same scale factor for qkv''' ) group.add_argument('''--clip-gelu''' , metavar='''N''' , type=A__ , help='''clip gelu output maximum value to N''' ) group.add_argument( '''--recalibrate-weights''' , action='''store_true''' , help=( '''recalibrate weight amaxes by taking the max of the weights.''' ''' amaxes will be computed with the current quantization granularity (axis).''' ) , ) def _A ( A__ ): """simple docstring""" if args.calibrator == "max": __lowercase = '''max''' elif args.calibrator == "percentile": if args.percentile is None: raise ValueError('''Specify --percentile when using percentile calibrator''' ) __lowercase = '''histogram''' elif args.calibrator == "mse": __lowercase = '''histogram''' else: raise ValueError(F"Invalid calibrator {args.calibrator}" ) __lowercase = QuantDescriptor(num_bits=args.aprec , calib_method=A__ ) __lowercase = QuantDescriptor(num_bits=args.wprec , axis=(None if args.quant_per_tensor else (0,)) ) quant_nn.QuantLinear.set_default_quant_desc_input(A__ ) quant_nn.QuantLinear.set_default_quant_desc_weight(A__ ) def _A ( A__ , A__ , A__=False , A__=False ): """simple docstring""" logger.info('''Configuring Model for Quantization''' ) logger.info(F"using quantization package {pytorch_quantization.__file__}" ) if not calib: if args.quant_disable_embeddings: set_quantizer_by_name(A__ , ['''embeddings'''] , which='''weight''' , _disabled=A__ ) if args.quant_disable: set_quantizer_by_name(A__ , [''''''] , _disabled=A__ ) if args.quant_disable_keyword: set_quantizer_by_name(A__ , args.quant_disable_keyword , _disabled=A__ ) if args.quant_disable_layer_module: set_quantizer_by_name(A__ , [R'''layer.\d+.''' + args.quant_disable_layer_module] , _disabled=A__ ) if args.quant_enable_layer_module: set_quantizer_by_name(A__ , [R'''layer.\d+.''' + args.quant_enable_layer_module] , _disabled=A__ ) if args.recalibrate_weights: recalibrate_weights(A__ ) if args.fuse_qkv: fuse_qkv(A__ , A__ ) if args.clip_gelu: clip_gelu(A__ , args.clip_gelu ) # if args.local_rank in [-1, 0] and not calib: print_quant_summary(A__ ) def _A ( A__ ): """simple docstring""" logger.info('''Enabling Calibration''' ) for name, module in model.named_modules(): if name.endswith('''_quantizer''' ): if module._calibrator is not None: module.disable_quant() module.enable_calib() else: module.disable() logger.info(F"{name:80}: {module}" ) def _A ( A__ , A__ ): """simple docstring""" logger.info('''Loading calibrated amax''' ) for name, module in model.named_modules(): if name.endswith('''_quantizer''' ): if module._calibrator is not None: if isinstance(module._calibrator , calib.MaxCalibrator ): module.load_calib_amax() else: module.load_calib_amax('''percentile''' , percentile=args.percentile ) module.enable_quant() module.disable_calib() else: module.enable() model.cuda() print_quant_summary(A__ ) def _A ( A__ , A__ ): """simple docstring""" def fusea(A__ , A__ , A__ ): for mod in [qq, qk, qv]: if not hasattr(A__ , '''_amax''' ): print(''' WARNING: NO AMAX BUFFER''' ) return __lowercase = qq._amax.detach().item() __lowercase = qk._amax.detach().item() __lowercase = qv._amax.detach().item() __lowercase = max(A__ , A__ , A__ ) qq._amax.fill_(A__ ) qk._amax.fill_(A__ ) qv._amax.fill_(A__ ) logger.info(F" q={q:5.2f} k={k:5.2f} v={v:5.2f} -> {amax:5.2f}" ) for name, mod in model.named_modules(): if name.endswith('''.attention.self''' ): logger.info(F"FUSE_QKV: {name:{name_width}}" ) fusea(mod.matmul_q_input_quantizer , mod.matmul_k_input_quantizer , mod.matmul_v_input_quantizer ) if args.quant_per_tensor: fusea(mod.query._weight_quantizer , mod.key._weight_quantizer , mod.value._weight_quantizer ) def _A ( A__ , A__ ): """simple docstring""" for name, mod in model.named_modules(): if name.endswith('''.output.dense''' ) and not name.endswith('''attention.output.dense''' ): __lowercase = mod._input_quantizer._amax.data.detach().item() mod._input_quantizer._amax.data.detach().clamp_(max=A__ ) __lowercase = mod._input_quantizer._amax.data.detach().item() logger.info(F"CLIP_GELU: {name:{name_width}} amax: {amax_init:5.2f} -> {amax:5.2f}" ) def _A ( A__ ): """simple docstring""" for name, mod in model.named_modules(): if hasattr(A__ , '''_weight_quantizer''' ) and mod._weight_quantizer.axis is not None: __lowercase = mod.weight.shape[0] __lowercase = mod._weight_quantizer._amax.detach() __lowercase = torch.ones(A__ , dtype=amax.dtype , device=amax.device ) * amax print(F"expanding {name} {amax} -> {mod._weight_quantizer._amax}" ) def _A ( A__ ): """simple docstring""" for name, mod in model.named_modules(): if hasattr(A__ , '''_weight_quantizer''' ): if not hasattr(mod.weight_quantizer , '''_amax''' ): print('''RECALIB: {name:{name_width}} WARNING: NO AMAX BUFFER''' ) continue # determine which axes to reduce across # e.g. a 4D tensor quantized per axis 0 should reduce over (1,2,3) __lowercase = set() if mod._weight_quantizer.axis is None else set(mod._weight_quantizer.axis ) __lowercase = set(range(len(mod.weight.size() ) ) ) - axis_set __lowercase = pytorch_quantization.utils.reduce_amax(mod.weight , axis=A__ , keepdims=A__ ).detach() logger.info(F"RECALIB: {name:{name_width}} {mod._weight_quantizer._amax.flatten()} -> {amax.flatten()}" ) __lowercase = amax def _A ( A__ , A__=25 , A__=180 , A__=None ): """simple docstring""" if ignore is None: __lowercase = [] elif not isinstance(A__ , A__ ): __lowercase = [ignore] __lowercase = 0 for name, mod in model.named_modules(): if not hasattr(A__ , '''weight''' ): continue __lowercase = max(A__ , len(A__ ) ) for name, mod in model.named_modules(): __lowercase = getattr(A__ , '''_input_quantizer''' , A__ ) __lowercase = getattr(A__ , '''_weight_quantizer''' , A__ ) if not hasattr(A__ , '''weight''' ): continue if type(A__ ) in ignore: continue if [True for s in ignore if type(A__ ) is str and s in name]: continue __lowercase = F"Act:{input_q.extra_repr()}" __lowercase = F"Wgt:{weight_q.extra_repr()}" __lowercase = F"{name:{name_width}} {act_str} {wgt_str}" if len(A__ ) <= line_width: logger.info(A__ ) else: logger.info(F"{name:{name_width}} {act_str}" ) logger.info(F"{' ':{name_width}} {wgt_str}" ) def _A ( A__ ): """simple docstring""" __lowercase = 0 for name, mod in model.named_modules(): if isinstance(A__ , pytorch_quantization.nn.TensorQuantizer ): print(F"{name:80} {mod}" ) count += 1 print(F"{count} TensorQuantizers found in model" ) def _A ( A__ , A__ , A__ , A__ , A__ ): """simple docstring""" __lowercase = getattr(A__ , A__ , A__ ) if quantizer_mod is not None: assert hasattr(A__ , A__ ) setattr(A__ , A__ , A__ ) else: logger.warning(F"{name} has no {quantizer}" ) def _A ( A__ , A__ , A__="both" , **A__ ): """simple docstring""" __lowercase = F"Warning: changing {which} quantizers of {name:{qname_width}}" for k, v in kwargs.items(): s += F" {k}={v}" if which in ["input", "both"]: set_quantizer(A__ , A__ , '''_input_quantizer''' , A__ , A__ ) if which in ["weight", "both"]: set_quantizer(A__ , A__ , '''_weight_quantizer''' , A__ , A__ ) logger.info(A__ ) def _A ( A__ , A__ , **A__ ): """simple docstring""" for name, mod in model.named_modules(): if hasattr(A__ , '''_input_quantizer''' ) or hasattr(A__ , '''_weight_quantizer''' ): for n in names: if re.search(A__ , A__ ): set_quantizers(A__ , A__ , **A__ ) elif name.endswith('''_quantizer''' ): for n in names: if re.search(A__ , A__ ): __lowercase = F"Warning: changing {name:{name_width}}" for k, v in kwargs.items(): s += F" {k}={v}" setattr(A__ , A__ , A__ ) logger.info(A__ )
104
"""simple docstring""" import tempfile import torch from diffusers import IPNDMScheduler from .test_schedulers import SchedulerCommonTest class UpperCamelCase ( snake_case_ ): UpperCamelCase : int = (IPNDMScheduler,) UpperCamelCase : int = (('''num_inference_steps''', 50),) def _lowercase ( self : Union[str, Any] , **UpperCAmelCase__ : Tuple ) -> int: _a : Optional[int] = {"""num_train_timesteps""": 1000} config.update(**UpperCAmelCase__ ) return config def _lowercase ( self : Dict , UpperCAmelCase__ : Any=0 , **UpperCAmelCase__ : Optional[Any] ) -> Union[str, Any]: _a : Optional[int] = dict(self.forward_default_kwargs ) _a : Dict = kwargs.pop("""num_inference_steps""" , UpperCAmelCase__ ) _a : Optional[Any] = self.dummy_sample _a : Union[str, Any] = 0.1 * sample _a : Union[str, Any] = [residual + 0.2, residual + 0.1_5, residual + 0.1, residual + 0.0_5] for scheduler_class in self.scheduler_classes: _a : Optional[int] = self.get_scheduler_config(**UpperCAmelCase__ ) _a : Union[str, Any] = scheduler_class(**UpperCAmelCase__ ) scheduler.set_timesteps(UpperCAmelCase__ ) # copy over dummy past residuals _a : Any = dummy_past_residuals[:] if time_step is None: _a : str = scheduler.timesteps[len(scheduler.timesteps ) // 2] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(UpperCAmelCase__ ) _a : Union[str, Any] = scheduler_class.from_pretrained(UpperCAmelCase__ ) new_scheduler.set_timesteps(UpperCAmelCase__ ) # copy over dummy past residuals _a : Optional[Any] = dummy_past_residuals[:] _a : List[Any] = scheduler.step(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , **UpperCAmelCase__ ).prev_sample _a : str = new_scheduler.step(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , **UpperCAmelCase__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" _a : Optional[int] = scheduler.step(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , **UpperCAmelCase__ ).prev_sample _a : Tuple = new_scheduler.step(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , **UpperCAmelCase__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def _lowercase ( self : Tuple ) -> List[str]: pass def _lowercase ( self : Optional[int] , UpperCAmelCase__ : List[str]=0 , **UpperCAmelCase__ : Optional[Any] ) -> List[Any]: _a : Optional[Any] = dict(self.forward_default_kwargs ) _a : Optional[Any] = kwargs.pop("""num_inference_steps""" , UpperCAmelCase__ ) _a : Optional[Any] = self.dummy_sample _a : List[Any] = 0.1 * sample _a : Optional[Any] = [residual + 0.2, residual + 0.1_5, residual + 0.1, residual + 0.0_5] for scheduler_class in self.scheduler_classes: _a : Union[str, Any] = self.get_scheduler_config() _a : Optional[Any] = scheduler_class(**UpperCAmelCase__ ) scheduler.set_timesteps(UpperCAmelCase__ ) # copy over dummy past residuals (must be after setting timesteps) _a : Any = dummy_past_residuals[:] if time_step is None: _a : List[Any] = scheduler.timesteps[len(scheduler.timesteps ) // 2] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(UpperCAmelCase__ ) _a : Any = scheduler_class.from_pretrained(UpperCAmelCase__ ) # copy over dummy past residuals new_scheduler.set_timesteps(UpperCAmelCase__ ) # copy over dummy past residual (must be after setting timesteps) _a : Optional[Any] = dummy_past_residuals[:] _a : List[str] = scheduler.step(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , **UpperCAmelCase__ ).prev_sample _a : Tuple = new_scheduler.step(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , **UpperCAmelCase__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" _a : Union[str, Any] = scheduler.step(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , **UpperCAmelCase__ ).prev_sample _a : int = new_scheduler.step(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , **UpperCAmelCase__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def _lowercase ( self : str , **UpperCAmelCase__ : Any ) -> List[str]: _a : Optional[int] = self.scheduler_classes[0] _a : Optional[Any] = self.get_scheduler_config(**UpperCAmelCase__ ) _a : Union[str, Any] = scheduler_class(**UpperCAmelCase__ ) _a : int = 10 _a : List[Any] = self.dummy_model() _a : str = self.dummy_sample_deter scheduler.set_timesteps(UpperCAmelCase__ ) for i, t in enumerate(scheduler.timesteps ): _a : str = model(UpperCAmelCase__ , UpperCAmelCase__ ) _a : List[Any] = scheduler.step(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ).prev_sample for i, t in enumerate(scheduler.timesteps ): _a : Union[str, Any] = model(UpperCAmelCase__ , UpperCAmelCase__ ) _a : Any = scheduler.step(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ).prev_sample return sample def _lowercase ( self : int ) -> str: _a : Dict = dict(self.forward_default_kwargs ) _a : int = kwargs.pop("""num_inference_steps""" , UpperCAmelCase__ ) for scheduler_class in self.scheduler_classes: _a : Optional[int] = self.get_scheduler_config() _a : Tuple = scheduler_class(**UpperCAmelCase__ ) _a : Tuple = self.dummy_sample _a : Optional[Any] = 0.1 * sample if num_inference_steps is not None and hasattr(UpperCAmelCase__ , """set_timesteps""" ): scheduler.set_timesteps(UpperCAmelCase__ ) elif num_inference_steps is not None and not hasattr(UpperCAmelCase__ , """set_timesteps""" ): _a : List[str] = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) _a : Union[str, Any] = [residual + 0.2, residual + 0.1_5, residual + 0.1, residual + 0.0_5] _a : Optional[Any] = dummy_past_residuals[:] _a : Optional[Any] = scheduler.timesteps[5] _a : str = scheduler.timesteps[6] _a : Optional[int] = scheduler.step(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , **UpperCAmelCase__ ).prev_sample _a : Union[str, Any] = scheduler.step(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , **UpperCAmelCase__ ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) _a : Tuple = scheduler.step(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , **UpperCAmelCase__ ).prev_sample _a : List[str] = scheduler.step(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , **UpperCAmelCase__ ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def _lowercase ( self : List[str] ) -> List[str]: for timesteps in [100, 1000]: self.check_over_configs(num_train_timesteps=UpperCAmelCase__ , time_step=UpperCAmelCase__ ) def _lowercase ( self : List[str] ) -> List[str]: for t, num_inference_steps in zip([1, 5, 10] , [10, 50, 100] ): self.check_over_forward(num_inference_steps=UpperCAmelCase__ , time_step=UpperCAmelCase__ ) def _lowercase ( self : int ) -> List[Any]: _a : str = self.full_loop() _a : List[Any] = torch.mean(torch.abs(UpperCAmelCase__ ) ) assert abs(result_mean.item() - 2540529 ) < 10
294
0
"""simple docstring""" import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( WavaVecaConfig, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaForCTC, WavaVecaForPreTraining, WavaVecaProcessor, logging, ) from transformers.models.wavaveca.modeling_wavaveca import WavaVecaForSequenceClassification logging.set_verbosity_info() SCREAMING_SNAKE_CASE_ : Dict = logging.get_logger(__name__) SCREAMING_SNAKE_CASE_ : int = { "post_extract_proj": "feature_projection.projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.k_proj": "encoder.layers.*.attention.k_proj", "self_attn.v_proj": "encoder.layers.*.attention.v_proj", "self_attn.q_proj": "encoder.layers.*.attention.q_proj", "self_attn.out_proj": "encoder.layers.*.attention.out_proj", "self_attn_layer_norm": "encoder.layers.*.layer_norm", "fc1": "encoder.layers.*.feed_forward.intermediate_dense", "fc2": "encoder.layers.*.feed_forward.output_dense", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.layer_norm": "encoder.layer_norm", "adapter_layer": "encoder.layers.*.adapter_layer", "w2v_model.layer_norm": "feature_projection.layer_norm", "quantizer.weight_proj": "quantizer.weight_proj", "quantizer.vars": "quantizer.codevectors", "project_q": "project_q", "final_proj": "project_hid", "w2v_encoder.proj": "lm_head", "mask_emb": "masked_spec_embed", "pooling_layer.linear": "projector", "pooling_layer.projection": "classifier", } SCREAMING_SNAKE_CASE_ : Tuple = [ "lm_head", "quantizer.weight_proj", "quantizer.codevectors", "project_q", "project_hid", "projector", "classifier", ] def _snake_case ( UpperCAmelCase_ : str ): A__ = {} with open(UpperCAmelCase_ , """r""" ) as file: for line_number, line in enumerate(UpperCAmelCase_ ): A__ = line.strip() if line: A__ = line.split() A__ = line_number A__ = words[0] A__ = value return result def _snake_case ( UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Any , UpperCAmelCase_ : Any , UpperCAmelCase_ : Any ): for attribute in key.split(""".""" ): A__ = getattr(UpperCAmelCase_ , UpperCAmelCase_ ) A__ = None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(UpperCAmelCase_ ): A__ = PARAM_MAPPING[full_name.split(""".""" )[-1]] A__ = 'param' if weight_type is not None and weight_type != "param": A__ = getattr(UpperCAmelCase_ , UpperCAmelCase_ ).shape elif weight_type is not None and weight_type == "param": A__ = hf_pointer for attribute in hf_param_name.split(""".""" ): A__ = getattr(UpperCAmelCase_ , UpperCAmelCase_ ) A__ = shape_pointer.shape # let's reduce dimension A__ = value[0] else: A__ = hf_pointer.shape if hf_shape != value.shape: raise ValueError( F"""Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be""" F""" {value.shape} for {full_name}""" ) if weight_type == "weight": A__ = value elif weight_type == "weight_g": A__ = value elif weight_type == "weight_v": A__ = value elif weight_type == "bias": A__ = value elif weight_type == "param": for attribute in hf_param_name.split(""".""" ): A__ = getattr(UpperCAmelCase_ , UpperCAmelCase_ ) A__ = value else: A__ = value logger.info(F"""{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.""" ) def _snake_case ( UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : List[str] ): A__ = None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(UpperCAmelCase_ ): A__ = PARAM_MAPPING[full_name.split(""".""" )[-1]] A__ = 'param' if weight_type is not None and weight_type != "param": A__ = '.'.join([key, weight_type] ) elif weight_type is not None and weight_type == "param": A__ = '.'.join([key, hf_param_name] ) else: A__ = key A__ = value if 'lm_head' in full_key else value[0] SCREAMING_SNAKE_CASE_ : str = { "W_a": "linear_1.weight", "W_b": "linear_2.weight", "b_a": "linear_1.bias", "b_b": "linear_2.bias", "ln_W": "norm.weight", "ln_b": "norm.bias", } def _snake_case ( UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : str=None , UpperCAmelCase_ : List[Any]=None ): A__ = False for key, mapped_key in MAPPING.items(): A__ = 'wav2vec2.' + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split("""w2v_model.""" )[-1] == name.split(""".""" )[0]: A__ = True if "*" in mapped_key: A__ = name.split(UpperCAmelCase_ )[0].split(""".""" )[-2] A__ = mapped_key.replace("""*""" , UpperCAmelCase_ ) if "weight_g" in name: A__ = 'weight_g' elif "weight_v" in name: A__ = 'weight_v' elif "bias" in name: A__ = 'bias' elif "weight" in name: # TODO: don't match quantizer.weight_proj A__ = 'weight' else: A__ = None if hf_dict is not None: rename_dict(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) else: set_recursively(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) return is_used return is_used def _snake_case ( UpperCAmelCase_ : Dict , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Dict ): A__ = [] A__ = fairseq_model.state_dict() A__ = hf_model.wavaveca.feature_extractor for name, value in fairseq_dict.items(): A__ = False if "conv_layers" in name: load_conv_layer( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , hf_model.config.feat_extract_norm == """group""" , ) A__ = True else: A__ = load_wavaveca_layer(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) if not is_used: unused_weights.append(UpperCAmelCase_ ) logger.warning(F"""Unused weights: {unused_weights}""" ) def _snake_case ( UpperCAmelCase_ : Any , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : int , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : List[str] ): A__ = full_name.split("""conv_layers.""" )[-1] A__ = name.split(""".""" ) A__ = int(items[0] ) A__ = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) A__ = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) A__ = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.""" ) A__ = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.""" ) A__ = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(UpperCAmelCase_ ) @torch.no_grad() def _snake_case ( UpperCAmelCase_ : Dict , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : str=None , UpperCAmelCase_ : Optional[Any]=None , UpperCAmelCase_ : Dict=True , UpperCAmelCase_ : Union[str, Any]=False ): if config_path is not None: A__ = WavaVecaConfig.from_pretrained(UpperCAmelCase_ ) else: A__ = WavaVecaConfig() if is_seq_class: A__ = read_txt_into_dict(UpperCAmelCase_ ) A__ = idalabel A__ = WavaVecaForSequenceClassification(UpperCAmelCase_ ) A__ = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_6000 , padding_value=0 , do_normalize=UpperCAmelCase_ , return_attention_mask=UpperCAmelCase_ , ) feature_extractor.save_pretrained(UpperCAmelCase_ ) elif is_finetuned: if dict_path: A__ = Dictionary.load(UpperCAmelCase_ ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq A__ = target_dict.pad_index A__ = target_dict.bos_index A__ = target_dict.eos_index A__ = len(target_dict.symbols ) A__ = os.path.join(UpperCAmelCase_ , """vocab.json""" ) if not os.path.isdir(UpperCAmelCase_ ): logger.error("""--pytorch_dump_folder_path ({}) should be a directory""".format(UpperCAmelCase_ ) ) return os.makedirs(UpperCAmelCase_ , exist_ok=UpperCAmelCase_ ) A__ = target_dict.indices # fairseq has the <pad> and <s> switched A__ = 0 A__ = 1 with open(UpperCAmelCase_ , """w""" , encoding="""utf-8""" ) as vocab_handle: json.dump(UpperCAmelCase_ , UpperCAmelCase_ ) A__ = WavaVecaCTCTokenizer( UpperCAmelCase_ , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="""|""" , do_lower_case=UpperCAmelCase_ , ) A__ = True if config.feat_extract_norm == 'layer' else False A__ = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_6000 , padding_value=0 , do_normalize=UpperCAmelCase_ , return_attention_mask=UpperCAmelCase_ , ) A__ = WavaVecaProcessor(feature_extractor=UpperCAmelCase_ , tokenizer=UpperCAmelCase_ ) processor.save_pretrained(UpperCAmelCase_ ) A__ = WavaVecaForCTC(UpperCAmelCase_ ) else: A__ = WavaVecaForPreTraining(UpperCAmelCase_ ) if is_finetuned or is_seq_class: A__ = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"""data""": """/""".join(dict_path.split("""/""" )[:-1] )} ) else: A__ = argparse.Namespace(task="""audio_pretraining""" ) A__ = fairseq.tasks.setup_task(UpperCAmelCase_ ) A__ = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] , task=UpperCAmelCase_ ) A__ = model[0].eval() recursively_load_weights(UpperCAmelCase_ , UpperCAmelCase_ , not is_finetuned ) hf_wavavec.save_pretrained(UpperCAmelCase_ ) if __name__ == "__main__": SCREAMING_SNAKE_CASE_ : Any = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint') parser.add_argument('--dict_path', default=None, type=str, help='Path to dict of fine-tuned model') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') parser.add_argument( '--not_finetuned', action='store_true', help='Whether the model to convert is a fine-tuned model or not' ) parser.add_argument( '--is_seq_class', action='store_true', help='Whether the model to convert is a fine-tuned sequence classification model or not', ) SCREAMING_SNAKE_CASE_ : Optional[Any] = parser.parse_args() SCREAMING_SNAKE_CASE_ : List[str] = not args.not_finetuned and not args.is_seq_class convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, is_finetuned, args.is_seq_class, )
356
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available SCREAMING_SNAKE_CASE_ : Tuple = { 'configuration_nllb_moe': [ 'NLLB_MOE_PRETRAINED_CONFIG_ARCHIVE_MAP', 'NllbMoeConfig', ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE_ : int = [ 'NLLB_MOE_PRETRAINED_MODEL_ARCHIVE_LIST', 'NllbMoeForConditionalGeneration', 'NllbMoeModel', 'NllbMoePreTrainedModel', 'NllbMoeTop2Router', 'NllbMoeSparseMLP', ] if TYPE_CHECKING: from .configuration_nllb_moe import ( NLLB_MOE_PRETRAINED_CONFIG_ARCHIVE_MAP, NllbMoeConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_nllb_moe import ( NLLB_MOE_PRETRAINED_MODEL_ARCHIVE_LIST, NllbMoeForConditionalGeneration, NllbMoeModel, NllbMoePreTrainedModel, NllbMoeSparseMLP, NllbMoeTopaRouter, ) else: import sys SCREAMING_SNAKE_CASE_ : Dict = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
69
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) __snake_case = { '''configuration_mobilevit''': ['''MOBILEVIT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MobileViTConfig''', '''MobileViTOnnxConfig'''], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = ['''MobileViTFeatureExtractor'''] __snake_case = ['''MobileViTImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = [ '''MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''MobileViTForImageClassification''', '''MobileViTForSemanticSegmentation''', '''MobileViTModel''', '''MobileViTPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = [ '''TF_MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFMobileViTForImageClassification''', '''TFMobileViTForSemanticSegmentation''', '''TFMobileViTModel''', '''TFMobileViTPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_mobilevit import MOBILEVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, MobileViTConfig, MobileViTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_mobilevit import MobileViTFeatureExtractor from .image_processing_mobilevit import MobileViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mobilevit import ( MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST, MobileViTForImageClassification, MobileViTForSemanticSegmentation, MobileViTModel, MobileViTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mobilevit import ( TF_MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFMobileViTForImageClassification, TFMobileViTForSemanticSegmentation, TFMobileViTModel, TFMobileViTPreTrainedModel, ) else: import sys __snake_case = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
348
import qiskit def lowerCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase )-> qiskit.result.counts.Counts: '''simple docstring''' UpperCAmelCase : Union[str, Any] =qiskit.Aer.get_backend('''aer_simulator''' ) UpperCAmelCase : List[str] =qiskit.QuantumCircuit(4 , 2 ) # encode inputs in qubits 0 and 1 if bita == 1: qc_ha.x(0 ) if bita == 1: qc_ha.x(1 ) qc_ha.barrier() # use cnots to write XOR of the inputs on qubit2 qc_ha.cx(0 , 2 ) qc_ha.cx(1 , 2 ) # use ccx / toffoli gate to write AND of the inputs on qubit3 qc_ha.ccx(0 , 1 , 3 ) qc_ha.barrier() # extract outputs qc_ha.measure(2 , 0 ) # extract XOR value qc_ha.measure(3 , 1 ) # extract AND value # Execute the circuit on the qasm simulator UpperCAmelCase : Dict =qiskit.execute(__lowerCAmelCase , __lowerCAmelCase , shots=10_00 ) # Return the histogram data of the results of the experiment return job.result().get_counts(__lowerCAmelCase ) if __name__ == "__main__": __snake_case = half_adder(1, 1) print(f'Half Adder Output Qubit Counts: {counts}')
348
1
from __future__ import annotations import requests __A = set( 'approved_at_utc approved_by author_flair_background_color\nauthor_flair_css_class author_flair_richtext author_flair_template_id author_fullname\nauthor_premium can_mod_post category clicked content_categories created_utc downs\nedited gilded gildings hidden hide_score is_created_from_ads_ui is_meta\nis_original_content is_reddit_media_domain is_video link_flair_css_class\nlink_flair_richtext link_flair_text link_flair_text_color media_embed mod_reason_title\nname permalink pwls quarantine saved score secure_media secure_media_embed selftext\nsubreddit subreddit_name_prefixed subreddit_type thumbnail title top_awarded_type\ntotal_awards_received ups upvote_ratio url user_reports'.split() ) def __A ( _lowercase , _lowercase = 1 , _lowercase = "new" , _lowercase = None ): '''simple docstring''' _A = wanted_data or [] if invalid_search_terms := ", ".join(sorted(set(_lowercase ) - valid_terms ) ): _A = f"""Invalid search term: {invalid_search_terms}""" raise ValueError(_lowercase ) _A = requests.get( f"""https://reddit.com/r/{subreddit}/{age}.json?limit={limit}""" , headers={'''User-agent''': '''A random string'''} , ) if response.status_code == 4_29: raise requests.HTTPError _A = response.json() if not wanted_data: return {id_: data["data"]["children"][id_] for id_ in range(_lowercase )} _A = {} for id_ in range(_lowercase ): _A = { item: data['''data''']['''children'''][id_]['''data'''][item] for item in wanted_data } return data_dict if __name__ == "__main__": # If you get Error 429, that means you are rate limited.Try after some time print(get_subreddit_data('learnpython', wanted_data=['title', 'url', 'selftext']))
370
from datetime import datetime import requests from bsa import BeautifulSoup if __name__ == "__main__": __A = input('Enter image url: ').strip() print(f'Downloading image from {url} ...') __A = BeautifulSoup(requests.get(url).content, 'html.parser') # The image URL is in the content field of the first meta tag with property og:image __A = soup.find('meta', {'property': 'og:image'})['content'] __A = requests.get(image_url).content __A = f'{datetime.now():%Y-%m-%d_%H:%M:%S}.jpg' with open(file_name, 'wb') as fp: fp.write(image_data) print(f'Done. Image saved to disk as {file_name}.')
75
0
'''simple docstring''' from __future__ import annotations from math import pi, sqrt def _A ( snake_case , snake_case ) -> tuple: if inductance <= 0: raise ValueError("Inductance cannot be 0 or negative" ) elif capacitance <= 0: raise ValueError("Capacitance cannot be 0 or negative" ) else: return ( "Resonant frequency", float(1 / (2 * pi * (sqrt(inductance * capacitance ))) ), ) if __name__ == "__main__": import doctest doctest.testmod()
250
'''simple docstring''' import argparse import os import re _snake_case = 'src/transformers' # Pattern that looks at the indentation in a line. _snake_case = re.compile(r'^(\s*)\S') # Pattern that matches `"key":" and puts `key` in group 0. _snake_case = re.compile(r'^\s*"([^"]+)":') # Pattern that matches `_import_structure["key"]` and puts `key` in group 0. _snake_case = re.compile(r'^\s*_import_structure\["([^"]+)"\]') # Pattern that matches `"key",` and puts `key` in group 0. _snake_case = re.compile(r'^\s*"([^"]+)",\s*$') # Pattern that matches any `[stuff]` and puts `stuff` in group 0. _snake_case = re.compile(r'\[([^\]]+)\]') def _A ( snake_case ) -> str: _lowercase : Union[str, Any] = _re_indent.search(snake_case ) return "" if search is None else search.groups()[0] def _A ( snake_case , snake_case="" , snake_case=None , snake_case=None ) -> Optional[int]: _lowercase : List[str] = 0 _lowercase : str = code.split("\n" ) if start_prompt is not None: while not lines[index].startswith(snake_case ): index += 1 _lowercase : Optional[int] = ["\n".join(lines[:index] )] else: _lowercase : Dict = [] # We split into blocks until we get to the `end_prompt` (or the end of the block). _lowercase : Any = [lines[index]] index += 1 while index < len(snake_case ) and (end_prompt is None or not lines[index].startswith(snake_case )): if len(lines[index] ) > 0 and get_indent(lines[index] ) == indent_level: if len(snake_case ) > 0 and get_indent(current_block[-1] ).startswith(indent_level + " " ): current_block.append(lines[index] ) blocks.append("\n".join(snake_case ) ) if index < len(snake_case ) - 1: _lowercase : int = [lines[index + 1]] index += 1 else: _lowercase : Optional[int] = [] else: blocks.append("\n".join(snake_case ) ) _lowercase : Optional[Any] = [lines[index]] else: current_block.append(lines[index] ) index += 1 # Adds current block if it's nonempty. if len(snake_case ) > 0: blocks.append("\n".join(snake_case ) ) # Add final block after end_prompt if provided. if end_prompt is not None and index < len(snake_case ): blocks.append("\n".join(lines[index:] ) ) return blocks def _A ( snake_case ) -> Optional[int]: def _inner(snake_case ): return key(snake_case ).lower().replace("_" , "" ) return _inner def _A ( snake_case , snake_case=None ) -> List[str]: # If no key is provided, we use a noop. def noop(snake_case ): return x if key is None: _lowercase : Optional[int] = noop # Constants are all uppercase, they go first. _lowercase : Dict = [obj for obj in objects if key(snake_case ).isupper()] # Classes are not all uppercase but start with a capital, they go second. _lowercase : int = [obj for obj in objects if key(snake_case )[0].isupper() and not key(snake_case ).isupper()] # Functions begin with a lowercase, they go last. _lowercase : Dict = [obj for obj in objects if not key(snake_case )[0].isupper()] _lowercase : Union[str, Any] = ignore_underscore(snake_case ) return sorted(snake_case , key=snake_case ) + sorted(snake_case , key=snake_case ) + sorted(snake_case , key=snake_case ) def _A ( snake_case ) -> List[Any]: # This inner function sort imports between [ ]. def _replace(snake_case ): _lowercase : Optional[Any] = match.groups()[0] if "," not in imports: return F'''[{imports}]''' _lowercase : str = [part.strip().replace("\"" , "" ) for part in imports.split("," )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: _lowercase : Optional[int] = keys[:-1] return "[" + ", ".join([F'''"{k}"''' for k in sort_objects(snake_case )] ) + "]" _lowercase : Tuple = import_statement.split("\n" ) if len(snake_case ) > 3: # Here we have to sort internal imports that are on several lines (one per name): # key: [ # "object1", # "object2", # ... # ] # We may have to ignore one or two lines on each side. _lowercase : Union[str, Any] = 2 if lines[1].strip() == "[" else 1 _lowercase : Optional[int] = [(i, _re_strip_line.search(snake_case ).groups()[0]) for i, line in enumerate(lines[idx:-idx] )] _lowercase : Any = sort_objects(snake_case , key=lambda snake_case : x[1] ) _lowercase : Tuple = [lines[x[0] + idx] for x in sorted_indices] return "\n".join(lines[:idx] + sorted_lines + lines[-idx:] ) elif len(snake_case ) == 3: # Here we have to sort internal imports that are on one separate line: # key: [ # "object1", "object2", ... # ] if _re_bracket_content.search(lines[1] ) is not None: _lowercase : Dict = _re_bracket_content.sub(_replace , lines[1] ) else: _lowercase : Optional[Any] = [part.strip().replace("\"" , "" ) for part in lines[1].split("," )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: _lowercase : Optional[int] = keys[:-1] _lowercase : Optional[Any] = get_indent(lines[1] ) + ", ".join([F'''"{k}"''' for k in sort_objects(snake_case )] ) return "\n".join(snake_case ) else: # Finally we have to deal with imports fitting on one line _lowercase : Optional[Any] = _re_bracket_content.sub(_replace , snake_case ) return import_statement def _A ( snake_case , snake_case=True ) -> Dict: with open(snake_case , encoding="utf-8" ) as f: _lowercase : Dict = f.read() if "_import_structure" not in code: return # Blocks of indent level 0 _lowercase : Optional[Any] = split_code_in_indented_blocks( snake_case , start_prompt="_import_structure = {" , end_prompt="if TYPE_CHECKING:" ) # We ignore block 0 (everything untils start_prompt) and the last block (everything after end_prompt). for block_idx in range(1 , len(snake_case ) - 1 ): # Check if the block contains some `_import_structure`s thingy to sort. _lowercase : Dict = main_blocks[block_idx] _lowercase : Union[str, Any] = block.split("\n" ) # Get to the start of the imports. _lowercase : int = 0 while line_idx < len(snake_case ) and "_import_structure" not in block_lines[line_idx]: # Skip dummy import blocks if "import dummy" in block_lines[line_idx]: _lowercase : Optional[Any] = len(snake_case ) else: line_idx += 1 if line_idx >= len(snake_case ): continue # Ignore beginning and last line: they don't contain anything. _lowercase : Any = "\n".join(block_lines[line_idx:-1] ) _lowercase : int = get_indent(block_lines[1] ) # Slit the internal block into blocks of indent level 1. _lowercase : Optional[int] = split_code_in_indented_blocks(snake_case , indent_level=snake_case ) # We have two categories of import key: list or _import_structure[key].append/extend _lowercase : Union[str, Any] = _re_direct_key if "_import_structure = {" in block_lines[0] else _re_indirect_key # Grab the keys, but there is a trap: some lines are empty or just comments. _lowercase : str = [(pattern.search(snake_case ).groups()[0] if pattern.search(snake_case ) is not None else None) for b in internal_blocks] # We only sort the lines with a key. _lowercase : List[str] = [(i, key) for i, key in enumerate(snake_case ) if key is not None] _lowercase : Tuple = [x[0] for x in sorted(snake_case , key=lambda snake_case : x[1] )] # We reorder the blocks by leaving empty lines/comments as they were and reorder the rest. _lowercase : Any = 0 _lowercase : str = [] for i in range(len(snake_case ) ): if keys[i] is None: reorderded_blocks.append(internal_blocks[i] ) else: _lowercase : Tuple = sort_objects_in_import(internal_blocks[sorted_indices[count]] ) reorderded_blocks.append(snake_case ) count += 1 # And we put our main block back together with its first and last line. _lowercase : int = "\n".join(block_lines[:line_idx] + reorderded_blocks + [block_lines[-1]] ) if code != "\n".join(snake_case ): if check_only: return True else: print(F'''Overwriting {file}.''' ) with open(snake_case , "w" , encoding="utf-8" ) as f: f.write("\n".join(snake_case ) ) def _A ( snake_case=True ) -> str: _lowercase : List[Any] = [] for root, _, files in os.walk(snake_case ): if "__init__.py" in files: _lowercase : Tuple = sort_imports(os.path.join(snake_case , "__init__.py" ) , check_only=snake_case ) if result: _lowercase : Any = [os.path.join(snake_case , "__init__.py" )] if len(snake_case ) > 0: raise ValueError(F'''Would overwrite {len(snake_case )} files, run `make style`.''' ) if __name__ == "__main__": _snake_case = argparse.ArgumentParser() parser.add_argument('--check_only', action='store_true', help='Whether to only check or fix style.') _snake_case = parser.parse_args() sort_imports_in_all_inits(check_only=args.check_only)
250
1
def _lowerCAmelCase ( __lowerCAmelCase ) -> str: """simple docstring""" snake_case__ : str = len(__lowerCAmelCase ) while cur > 1: # Find the maximum number in arr snake_case__ : str = arr.index(max(arr[0:cur] ) ) # Reverse from 0 to mi snake_case__ : int = arr[mi::-1] + arr[mi + 1 : len(__lowerCAmelCase )] # Reverse whole list snake_case__ : Dict = arr[cur - 1 :: -1] + arr[cur : len(__lowerCAmelCase )] cur -= 1 return arr if __name__ == "__main__": A__ = input('''Enter numbers separated by a comma:\n''').strip() A__ = [int(item) for item in user_input.split(''',''')] print(pancake_sort(unsorted))
44
A__ = 256 # Modulus to hash a string A__ = 100_0003 def _lowerCAmelCase ( __lowerCAmelCase , __lowerCAmelCase ) -> bool: """simple docstring""" snake_case__ : str = len(__lowerCAmelCase ) snake_case__ : Optional[int] = len(__lowerCAmelCase ) if p_len > t_len: return False snake_case__ : str = 0 snake_case__ : Union[str, Any] = 0 snake_case__ : Dict = 1 # Calculating the hash of pattern and substring of text for i in range(__lowerCAmelCase ): snake_case__ : int = (ord(pattern[i] ) + p_hash * alphabet_size) % modulus snake_case__ : str = (ord(text[i] ) + text_hash * alphabet_size) % modulus if i == p_len - 1: continue snake_case__ : str = (modulus_power * alphabet_size) % modulus for i in range(0 , t_len - p_len + 1 ): if text_hash == p_hash and text[i : i + p_len] == pattern: return True if i == t_len - p_len: continue # Calculate the https://en.wikipedia.org/wiki/Rolling_hash snake_case__ : Any = ( (text_hash - ord(text[i] ) * modulus_power) * alphabet_size + ord(text[i + p_len] ) ) % modulus return False def _lowerCAmelCase ( ) -> None: """simple docstring""" snake_case__ : Optional[int] = '''abc1abc12''' snake_case__ : Dict = '''alskfjaldsabc1abc1abc12k23adsfabcabc''' snake_case__ : int = '''alskfjaldsk23adsfabcabc''' assert rabin_karp(__lowerCAmelCase , __lowerCAmelCase ) and not rabin_karp(__lowerCAmelCase , __lowerCAmelCase ) # Test 2) snake_case__ : int = '''ABABX''' snake_case__ : Any = '''ABABZABABYABABX''' assert rabin_karp(__lowerCAmelCase , __lowerCAmelCase ) # Test 3) snake_case__ : Dict = '''AAAB''' snake_case__ : Union[str, Any] = '''ABAAAAAB''' assert rabin_karp(__lowerCAmelCase , __lowerCAmelCase ) # Test 4) snake_case__ : Union[str, Any] = '''abcdabcy''' snake_case__ : Optional[Any] = '''abcxabcdabxabcdabcdabcy''' assert rabin_karp(__lowerCAmelCase , __lowerCAmelCase ) # Test 5) snake_case__ : Dict = '''Lü''' snake_case__ : Optional[Any] = '''Lüsai''' assert rabin_karp(__lowerCAmelCase , __lowerCAmelCase ) snake_case__ : str = '''Lue''' assert not rabin_karp(__lowerCAmelCase , __lowerCAmelCase ) print('''Success.''' ) if __name__ == "__main__": test_rabin_karp()
44
1
"""simple docstring""" from __future__ import annotations from decimal import Decimal from math import * # noqa: F403 from sympy import diff def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = 10**-10 ) -> float: '''simple docstring''' lowercase_ = a while True: lowercase_ = Decimal(__lowerCAmelCase ) - ( Decimal(eval(__lowerCAmelCase ) ) / Decimal(eval(str(diff(__lowerCAmelCase ) ) ) ) # noqa: S307 ) # This number dictates the accuracy of the answer if abs(eval(__lowerCAmelCase ) ) < precision: # noqa: S307 return float(__lowerCAmelCase ) # Let's Execute if __name__ == "__main__": # Find root of trigonometric function # Find value of pi print(F"The root of sin(x) = 0 is {newton_raphson('sin(x)', 2)}") # Find root of polynomial print(F"The root of x**2 - 5*x + 2 = 0 is {newton_raphson('x**2 - 5*x + 2', 0.4)}") # Find Square Root of 5 print(F"The root of log(x) - 1 = 0 is {newton_raphson('log(x) - 1', 2)}") # Exponential Roots print(F"The root of exp(x) - 1 = 0 is {newton_raphson('exp(x) - 1', 0)}")
136
"""simple docstring""" from typing import List import numpy as np def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> int: '''simple docstring''' lowercase_ = {key: len(__lowerCAmelCase ) for key, value in gen_kwargs.items() if isinstance(__lowerCAmelCase , __lowerCAmelCase )} if len(set(lists_lengths.values() ) ) > 1: raise RuntimeError( ( """Sharding is ambiguous for this dataset: """ + """we found several data sources lists of different lengths, and we don't know over which list we should parallelize:\n""" + """\n""".join(F'''\t- key {key} has length {length}''' for key, length in lists_lengths.items() ) + """\nTo fix this, check the 'gen_kwargs' and make sure to use lists only for data sources, """ + """and use tuples otherwise. In the end there should only be one single list, or several lists with the same length.""" ) ) lowercase_ = max(lists_lengths.values() , default=0 ) return max(1 , __lowerCAmelCase ) def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase ) -> List[range]: '''simple docstring''' lowercase_ = [] for group_idx in range(__lowerCAmelCase ): lowercase_ = num_shards // max_num_jobs + (group_idx < (num_shards % max_num_jobs)) if num_shards_to_add == 0: break lowercase_ = shards_indices_per_group[-1].stop if shards_indices_per_group else 0 lowercase_ = range(__lowerCAmelCase , start + num_shards_to_add ) shards_indices_per_group.append(__lowerCAmelCase ) return shards_indices_per_group def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase ) -> List[dict]: '''simple docstring''' lowercase_ = _number_of_shards_in_gen_kwargs(__lowerCAmelCase ) if num_shards == 1: return [dict(__lowerCAmelCase )] else: lowercase_ = _distribute_shards(num_shards=__lowerCAmelCase , max_num_jobs=__lowerCAmelCase ) return [ { key: [value[shard_idx] for shard_idx in shard_indices_per_group[group_idx]] if isinstance(__lowerCAmelCase , __lowerCAmelCase ) else value for key, value in gen_kwargs.items() } for group_idx in range(len(__lowerCAmelCase ) ) ] def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> dict: '''simple docstring''' return { key: [value for gen_kwargs in gen_kwargs_list for value in gen_kwargs[key]] if isinstance(gen_kwargs_list[0][key] , __lowerCAmelCase ) else gen_kwargs_list[0][key] for key in gen_kwargs_list[0] } def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase ) -> dict: '''simple docstring''' lowercase_ = {len(__lowerCAmelCase ) for value in gen_kwargs.values() if isinstance(__lowerCAmelCase , __lowerCAmelCase )} lowercase_ = {} for size in list_sizes: lowercase_ = list(range(__lowerCAmelCase ) ) rng.shuffle(indices_per_size[size] ) # Now let's copy the gen_kwargs and shuffle the lists based on their sizes lowercase_ = dict(__lowerCAmelCase ) for key, value in shuffled_kwargs.items(): if isinstance(__lowerCAmelCase , __lowerCAmelCase ): lowercase_ = [value[i] for i in indices_per_size[len(__lowerCAmelCase )]] return shuffled_kwargs
136
1
"""simple docstring""" def __lowerCamelCase ( a_ : list[int] ) -> int: if not numbers: return 0 if not isinstance(a_ , (list, tuple) ) or not all( isinstance(a_ , a_ ) for number in numbers ): raise ValueError('''numbers must be an iterable of integers''' ) __SCREAMING_SNAKE_CASE :List[str] = numbers[0] for i in range(1 , len(a_ ) ): # update the maximum and minimum subarray products __SCREAMING_SNAKE_CASE :Any = numbers[i] if number < 0: __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE :Any = min_till_now, max_till_now __SCREAMING_SNAKE_CASE :Tuple = max(a_ , max_till_now * number ) __SCREAMING_SNAKE_CASE :Tuple = min(a_ , min_till_now * number ) # update the maximum product found till now __SCREAMING_SNAKE_CASE :Optional[int] = max(a_ , a_ ) return max_prod
239
"""simple docstring""" import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging lowerCamelCase_ = logging.get_logger(__name__) lowerCamelCase_ = {"vocab_file": "spiece.model"} lowerCamelCase_ = { "vocab_file": { "bert_for_seq_generation": ( "https://huggingface.co/google/bert_for_seq_generation_L-24_bbc_encoder/resolve/main/spiece.model" ), } } lowerCamelCase_ = {"bert_for_seq_generation": 5_1_2} class _SCREAMING_SNAKE_CASE( A ): SCREAMING_SNAKE_CASE_ : str = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE_ : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE_ : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE_ : List[int] = [] SCREAMING_SNAKE_CASE_ : List[Any] = ['''input_ids''', '''attention_mask'''] def __init__( self ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__="<s>" ,SCREAMING_SNAKE_CASE__="</s>" ,SCREAMING_SNAKE_CASE__="<unk>" ,SCREAMING_SNAKE_CASE__="<pad>" ,SCREAMING_SNAKE_CASE__="<::::>" ,SCREAMING_SNAKE_CASE__ = None ,**SCREAMING_SNAKE_CASE__ ,) -> None: """simple docstring""" __SCREAMING_SNAKE_CASE :Optional[Any] = {} if sp_model_kwargs is None else sp_model_kwargs # Add extra_ids to the special token list super().__init__( bos_token=SCREAMING_SNAKE_CASE__ ,eos_token=SCREAMING_SNAKE_CASE__ ,unk_token=SCREAMING_SNAKE_CASE__ ,pad_token=SCREAMING_SNAKE_CASE__ ,sep_token=SCREAMING_SNAKE_CASE__ ,sp_model_kwargs=self.sp_model_kwargs ,**SCREAMING_SNAKE_CASE__ ,) __SCREAMING_SNAKE_CASE :Dict = vocab_file __SCREAMING_SNAKE_CASE :Optional[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(SCREAMING_SNAKE_CASE__ ) @property def _UpperCamelCase ( self ) -> List[str]: """simple docstring""" return self.sp_model.get_piece_size() def _UpperCamelCase ( self ) -> int: """simple docstring""" __SCREAMING_SNAKE_CASE :List[Any] = {self.convert_ids_to_tokens(SCREAMING_SNAKE_CASE__ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ) -> Dict: """simple docstring""" __SCREAMING_SNAKE_CASE :int = self.__dict__.copy() __SCREAMING_SNAKE_CASE :Dict = None return state def __setstate__( self ,SCREAMING_SNAKE_CASE__ ) -> Optional[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE :List[str] = d # for backward compatibility if not hasattr(self ,'''sp_model_kwargs''' ): __SCREAMING_SNAKE_CASE :str = {} __SCREAMING_SNAKE_CASE :str = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def _UpperCamelCase ( self ,SCREAMING_SNAKE_CASE__ ) -> List[str]: """simple docstring""" return self.sp_model.encode(SCREAMING_SNAKE_CASE__ ,out_type=SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self ,SCREAMING_SNAKE_CASE__ ) -> int: """simple docstring""" return self.sp_model.piece_to_id(SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self ,SCREAMING_SNAKE_CASE__ ) -> str: """simple docstring""" __SCREAMING_SNAKE_CASE :Optional[int] = self.sp_model.IdToPiece(SCREAMING_SNAKE_CASE__ ) return token def _UpperCamelCase ( self ,SCREAMING_SNAKE_CASE__ ) -> List[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE :int = [] __SCREAMING_SNAKE_CASE :List[str] = '''''' for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(SCREAMING_SNAKE_CASE__ ) + token __SCREAMING_SNAKE_CASE :Dict = [] else: current_sub_tokens.append(SCREAMING_SNAKE_CASE__ ) out_string += self.sp_model.decode(SCREAMING_SNAKE_CASE__ ) return out_string.strip() def _UpperCamelCase ( self ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ = None ) -> Tuple[str]: """simple docstring""" if not os.path.isdir(SCREAMING_SNAKE_CASE__ ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return __SCREAMING_SNAKE_CASE :Union[str, Any] = os.path.join( SCREAMING_SNAKE_CASE__ ,(filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(SCREAMING_SNAKE_CASE__ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file ,SCREAMING_SNAKE_CASE__ ) elif not os.path.isfile(self.vocab_file ): with open(SCREAMING_SNAKE_CASE__ ,'''wb''' ) as fi: __SCREAMING_SNAKE_CASE :Tuple = self.sp_model.serialized_model_proto() fi.write(SCREAMING_SNAKE_CASE__ ) return (out_vocab_file,)
239
1
"""simple docstring""" import unittest from knapsack import knapsack as k class lowerCamelCase__ ( unittest.TestCase ): """simple docstring""" def lowerCamelCase__ ( self : List[str] ): '''simple docstring''' __UpperCAmelCase : List[str] = 0 __UpperCAmelCase : Tuple = [0] __UpperCAmelCase : Tuple = [0] __UpperCAmelCase : Any = len(UpperCamelCase ) self.assertEqual(k.knapsack(UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ) , 0 ) __UpperCAmelCase : Optional[int] = [60] __UpperCAmelCase : int = [10] __UpperCAmelCase : Dict = len(UpperCamelCase ) self.assertEqual(k.knapsack(UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ) , 0 ) def lowerCamelCase__ ( self : Union[str, Any] ): '''simple docstring''' __UpperCAmelCase : Dict = 3 __UpperCAmelCase : int = [1, 2, 3] __UpperCAmelCase : Any = [3, 2, 1] __UpperCAmelCase : Dict = len(UpperCamelCase ) self.assertEqual(k.knapsack(UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ) , 5 ) def lowerCamelCase__ ( self : Any ): '''simple docstring''' __UpperCAmelCase : Optional[Any] = 50 __UpperCAmelCase : Tuple = [60, 100, 120] __UpperCAmelCase : Dict = [10, 20, 30] __UpperCAmelCase : Union[str, Any] = len(UpperCamelCase ) self.assertEqual(k.knapsack(UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ) , 220 ) if __name__ == "__main__": unittest.main()
115
"""simple docstring""" import json import os from collections import Counter import torch import torchvision import torchvision.transforms as transforms from PIL import Image from torch import nn from torch.utils.data import Dataset UpperCAmelCase : str = {1: (1, 1), 2: (2, 1), 3: (3, 1), 4: (2, 2), 5: (5, 1), 6: (3, 2), 7: (7, 1), 8: (4, 2), 9: (3, 3)} class lowerCamelCase__ ( nn.Module ): """simple docstring""" def __init__( self : Union[str, Any] , UpperCamelCase : Optional[int] ): '''simple docstring''' super().__init__() __UpperCAmelCase : Union[str, Any] = torchvision.models.resnetaaa(pretrained=UpperCamelCase ) __UpperCAmelCase : Union[str, Any] = list(model.children() )[:-2] __UpperCAmelCase : Tuple = nn.Sequential(*UpperCamelCase ) __UpperCAmelCase : Tuple = nn.AdaptiveAvgPoolad(POOLING_BREAKDOWN[args.num_image_embeds] ) def lowerCamelCase__ ( self : List[Any] , UpperCamelCase : List[str] ): '''simple docstring''' __UpperCAmelCase : int = self.pool(self.model(UpperCamelCase ) ) __UpperCAmelCase : str = torch.flatten(UpperCamelCase , start_dim=2 ) __UpperCAmelCase : Union[str, Any] = out.transpose(1 , 2 ).contiguous() return out # BxNx2048 class lowerCamelCase__ ( A ): """simple docstring""" def __init__( self : str , UpperCamelCase : str , UpperCamelCase : Tuple , UpperCamelCase : str , UpperCamelCase : Any , UpperCamelCase : Optional[int] ): '''simple docstring''' __UpperCAmelCase : Optional[Any] = [json.loads(UpperCamelCase ) for l in open(UpperCamelCase )] __UpperCAmelCase : Optional[Any] = os.path.dirname(UpperCamelCase ) __UpperCAmelCase : List[Any] = tokenizer __UpperCAmelCase : List[str] = labels __UpperCAmelCase : Optional[int] = len(UpperCamelCase ) __UpperCAmelCase : Union[str, Any] = max_seq_length __UpperCAmelCase : Tuple = transforms def __len__( self : Tuple ): '''simple docstring''' return len(self.data ) def __getitem__( self : int , UpperCamelCase : Any ): '''simple docstring''' __UpperCAmelCase : Union[str, Any] = torch.LongTensor(self.tokenizer.encode(self.data[index]["""text"""] , add_special_tokens=UpperCamelCase ) ) __UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase : Dict = sentence[0], sentence[1:-1], sentence[-1] __UpperCAmelCase : Union[str, Any] = sentence[: self.max_seq_length] __UpperCAmelCase : Tuple = torch.zeros(self.n_classes ) __UpperCAmelCase : str = 1 __UpperCAmelCase : List[str] = Image.open(os.path.join(self.data_dir , self.data[index]["""img"""] ) ).convert("""RGB""" ) __UpperCAmelCase : Any = self.transforms(UpperCamelCase ) return { "image_start_token": start_token, "image_end_token": end_token, "sentence": sentence, "image": image, "label": label, } def lowerCamelCase__ ( self : Tuple ): '''simple docstring''' __UpperCAmelCase : int = Counter() for row in self.data: label_freqs.update(row["""label"""] ) return label_freqs def lowerCamelCase ( _UpperCamelCase : Union[str, Any] ) -> Any: '''simple docstring''' __UpperCAmelCase : Union[str, Any] = [len(row["""sentence"""] ) for row in batch] __UpperCAmelCase ,__UpperCAmelCase : Union[str, Any] = len(_UpperCamelCase ), max(_UpperCamelCase ) __UpperCAmelCase : int = torch.zeros(_UpperCamelCase , _UpperCamelCase , dtype=torch.long ) __UpperCAmelCase : Any = torch.zeros(_UpperCamelCase , _UpperCamelCase , dtype=torch.long ) for i_batch, (input_row, length) in enumerate(zip(_UpperCamelCase , _UpperCamelCase ) ): __UpperCAmelCase : List[str] = input_row["""sentence"""] __UpperCAmelCase : Optional[Any] = 1 __UpperCAmelCase : int = torch.stack([row["""image"""] for row in batch] ) __UpperCAmelCase : Optional[int] = torch.stack([row["""label"""] for row in batch] ) __UpperCAmelCase : int = torch.stack([row["""image_start_token"""] for row in batch] ) __UpperCAmelCase : int = torch.stack([row["""image_end_token"""] for row in batch] ) return text_tensor, mask_tensor, img_tensor, img_start_token, img_end_token, tgt_tensor def lowerCamelCase ( ) -> List[str]: '''simple docstring''' return [ "Crime", "Drama", "Thriller", "Action", "Comedy", "Romance", "Documentary", "Short", "Mystery", "History", "Family", "Adventure", "Fantasy", "Sci-Fi", "Western", "Horror", "Sport", "War", "Music", "Musical", "Animation", "Biography", "Film-Noir", ] def lowerCamelCase ( ) -> Dict: '''simple docstring''' return transforms.Compose( [ transforms.Resize(2_5_6 ), transforms.CenterCrop(2_2_4 ), transforms.ToTensor(), transforms.Normalize( mean=[0.46_777_044, 0.44_531_429, 0.40_661_017] , std=[0.12_221_994, 0.12_145_835, 0.14_380_469] , ), ] )
115
1
import argparse import shutil from pathlib import Path from tqdm import tqdm from transformers import AutoTokenizer def lowerCAmelCase_ ( __UpperCAmelCase: Optional[Any] , __UpperCAmelCase: str , __UpperCAmelCase: Union[str, Any] , __UpperCAmelCase: Any=1024 ) -> Any: UpperCamelCase__ : List[Any] = [], [] UpperCamelCase__ : Dict = list(zip(__UpperCAmelCase , __UpperCAmelCase ) ) UpperCamelCase__ : Any = sorted_examples[0] def is_too_big(__UpperCAmelCase: int ): return tok(__UpperCAmelCase , return_tensors='''pt''' ).input_ids.shape[1] > max_tokens for src, tgt in tqdm(sorted_examples[1:] ): UpperCamelCase__ : Any = new_src + ''' ''' + src UpperCamelCase__ : str = new_tgt + ''' ''' + tgt if is_too_big(__UpperCAmelCase ) or is_too_big(__UpperCAmelCase ): # cant fit, finalize example finished_src.append(__UpperCAmelCase ) finished_tgt.append(__UpperCAmelCase ) UpperCamelCase__ : str = src, tgt else: # can fit, keep adding UpperCamelCase__ : Any = cand_src, cand_tgt # cleanup if new_src: assert new_tgt finished_src.append(__UpperCAmelCase ) finished_tgt.append(__UpperCAmelCase ) return finished_src, finished_tgt def lowerCAmelCase_ ( __UpperCAmelCase: Tuple , __UpperCAmelCase: Path , __UpperCAmelCase: Dict , __UpperCAmelCase: Optional[Any] ) -> Dict: UpperCamelCase__ : str = Path(__UpperCAmelCase ) save_path.mkdir(exist_ok=__UpperCAmelCase ) for split in ["train"]: UpperCamelCase__ : Optional[Any] = data_dir / f"{split}.source", data_dir / f"{split}.target" UpperCamelCase__ : List[Any] = [x.rstrip() for x in Path(__UpperCAmelCase ).open().readlines()] UpperCamelCase__ : Optional[int] = [x.rstrip() for x in Path(__UpperCAmelCase ).open().readlines()] UpperCamelCase__ : Tuple = pack_examples(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) print(f"packed {split} split from {len(__UpperCAmelCase )} examples -> {len(__UpperCAmelCase )}." ) Path(save_path / f"{split}.source" ).open('''w''' ).write('''\n'''.join(__UpperCAmelCase ) ) Path(save_path / f"{split}.target" ).open('''w''' ).write('''\n'''.join(__UpperCAmelCase ) ) for split in ["val", "test"]: UpperCamelCase__ : Any = data_dir / f"{split}.source", data_dir / f"{split}.target" shutil.copyfile(__UpperCAmelCase , save_path / f"{split}.source" ) shutil.copyfile(__UpperCAmelCase , save_path / f"{split}.target" ) def lowerCAmelCase_ ( ) -> Dict: UpperCamelCase__ : Optional[Any] = argparse.ArgumentParser() parser.add_argument('''--tok_name''' , type=__UpperCAmelCase , help='''like facebook/bart-large-cnn,t5-base, etc.''' ) parser.add_argument('''--max_seq_len''' , type=__UpperCAmelCase , default=128 ) parser.add_argument('''--data_dir''' , type=__UpperCAmelCase ) parser.add_argument('''--save_path''' , type=__UpperCAmelCase ) UpperCamelCase__ : Optional[Any] = parser.parse_args() UpperCamelCase__ : Optional[Any] = AutoTokenizer.from_pretrained(args.tok_name ) return pack_data_dir(__UpperCAmelCase , Path(args.data_dir ) , args.max_seq_len , args.save_path ) if __name__ == "__main__": packer_cli()
353
from typing import Optional from torch import nn from .transformer_ad import TransformeraDModel, TransformeraDModelOutput class lowercase__ ( nn.Module ): '''simple docstring''' def __init__( self, __magic_name__ = 16, __magic_name__ = 88, __magic_name__ = None, __magic_name__ = 1, __magic_name__ = 0.0, __magic_name__ = 32, __magic_name__ = None, __magic_name__ = False, __magic_name__ = None, __magic_name__ = None, __magic_name__ = "geglu", __magic_name__ = None, ) -> Tuple: """simple docstring""" super().__init__() UpperCamelCase__ : str = nn.ModuleList( [ TransformeraDModel( num_attention_heads=__magic_name__, attention_head_dim=__magic_name__, in_channels=__magic_name__, num_layers=__magic_name__, dropout=__magic_name__, norm_num_groups=__magic_name__, cross_attention_dim=__magic_name__, attention_bias=__magic_name__, sample_size=__magic_name__, num_vector_embeds=__magic_name__, activation_fn=__magic_name__, num_embeds_ada_norm=__magic_name__, ) for _ in range(2 ) ] ) # Variables that can be set by a pipeline: # The ratio of transformer1 to transformer2's output states to be combined during inference UpperCamelCase__ : Any = 0.5 # The shape of `encoder_hidden_states` is expected to be # `(batch_size, condition_lengths[0]+condition_lengths[1], num_features)` UpperCamelCase__ : Optional[Any] = [77, 257] # Which transformer to use to encode which condition. # E.g. `(1, 0)` means that we'll use `transformers[1](conditions[0])` and `transformers[0](conditions[1])` UpperCamelCase__ : int = [1, 0] def UpperCamelCase__ ( self, __magic_name__, __magic_name__, __magic_name__=None, __magic_name__=None, __magic_name__=None, __magic_name__ = True, ) -> Any: """simple docstring""" UpperCamelCase__ : Optional[Any] = hidden_states UpperCamelCase__ : Tuple = [] UpperCamelCase__ : int = 0 # attention_mask is not used yet for i in range(2 ): # for each of the two transformers, pass the corresponding condition tokens UpperCamelCase__ : List[Any] = encoder_hidden_states[:, tokens_start : tokens_start + self.condition_lengths[i]] UpperCamelCase__ : List[str] = self.transformer_index_for_condition[i] UpperCamelCase__ : List[str] = self.transformers[transformer_index]( __magic_name__, encoder_hidden_states=__magic_name__, timestep=__magic_name__, cross_attention_kwargs=__magic_name__, return_dict=__magic_name__, )[0] encoded_states.append(encoded_state - input_states ) tokens_start += self.condition_lengths[i] UpperCamelCase__ : List[str] = encoded_states[0] * self.mix_ratio + encoded_states[1] * (1 - self.mix_ratio) UpperCamelCase__ : int = output_states + input_states if not return_dict: return (output_states,) return TransformeraDModelOutput(sample=__magic_name__ )
247
0
"""simple docstring""" import os def a_ ( ): UpperCAmelCase__ = os.path.dirname(os.path.realpath(lowerCamelCase ) ) UpperCAmelCase__ = os.path.join(lowerCamelCase , 'triangle.txt' ) with open(lowerCamelCase ) as f: UpperCAmelCase__ = f.readlines() UpperCAmelCase__ = [] for line in triangle: UpperCAmelCase__ = [] for number in line.strip().split(' ' ): numbers_from_line.append(int(lowerCamelCase ) ) a.append(lowerCamelCase ) for i in range(1 , len(lowerCamelCase ) ): for j in range(len(a[i] ) ): UpperCAmelCase__ = a[i - 1][j] if j != len(a[i - 1] ) else 0 UpperCAmelCase__ = a[i - 1][j - 1] if j > 0 else 0 a[i][j] += max(lowerCamelCase , lowerCamelCase ) return max(a[-1] ) if __name__ == "__main__": print(solution())
98
"""simple docstring""" def a_ ( lowerCamelCase , lowerCamelCase ): if a < 0 or b < 0: raise ValueError('the value of both inputs must be positive' ) UpperCAmelCase__ = str(bin(lowerCamelCase ) )[2:] # remove the leading "0b" UpperCAmelCase__ = str(bin(lowerCamelCase ) )[2:] # remove the leading "0b" UpperCAmelCase__ = max(len(lowerCamelCase ) , len(lowerCamelCase ) ) return "0b" + "".join( str(int(char_a == '1' and char_b == '1' ) ) for char_a, char_b in zip(a_binary.zfill(lowerCamelCase ) , b_binary.zfill(lowerCamelCase ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
98
1
import unittest from transformers import MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING, is_vision_available from transformers.pipelines import pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class lowercase : '''simple docstring''' @staticmethod def snake_case_ ( *_snake_case , **_snake_case ) -> List[str]: """simple docstring""" pass @is_pipeline_test @require_torch @require_vision class lowercase ( unittest.TestCase ): '''simple docstring''' __SCREAMING_SNAKE_CASE = MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING def snake_case_ ( self , _snake_case , _snake_case , _snake_case ) -> Any: """simple docstring""" UpperCAmelCase = pipeline('''visual-question-answering''' , model='''hf-internal-testing/tiny-vilt-random-vqa''' ) UpperCAmelCase = [ { '''image''': Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ), '''question''': '''How many cats are there?''', }, { '''image''': '''./tests/fixtures/tests_samples/COCO/000000039769.png''', '''question''': '''How many cats are there?''', }, ] return vqa_pipeline, examples def snake_case_ ( self , _snake_case , _snake_case ) -> str: """simple docstring""" UpperCAmelCase = vqa_pipeline(_snake_case , top_k=1 ) self.assertEqual( _snake_case , [ [{'''score''': ANY(_snake_case ), '''answer''': ANY(_snake_case )}], [{'''score''': ANY(_snake_case ), '''answer''': ANY(_snake_case )}], ] , ) @require_torch def snake_case_ ( self ) -> Optional[int]: """simple docstring""" UpperCAmelCase = pipeline('''visual-question-answering''' , model='''hf-internal-testing/tiny-vilt-random-vqa''' ) UpperCAmelCase = '''./tests/fixtures/tests_samples/COCO/000000039769.png''' UpperCAmelCase = '''How many cats are there?''' UpperCAmelCase = vqa_pipeline(image=_snake_case , question='''How many cats are there?''' , top_k=2 ) self.assertEqual( _snake_case , [{'''score''': ANY(_snake_case ), '''answer''': ANY(_snake_case )}, {'''score''': ANY(_snake_case ), '''answer''': ANY(_snake_case )}] ) UpperCAmelCase = vqa_pipeline({'''image''': image, '''question''': question} , top_k=2 ) self.assertEqual( _snake_case , [{'''score''': ANY(_snake_case ), '''answer''': ANY(_snake_case )}, {'''score''': ANY(_snake_case ), '''answer''': ANY(_snake_case )}] ) @slow @require_torch def snake_case_ ( self ) -> int: """simple docstring""" UpperCAmelCase = pipeline('''visual-question-answering''' , model='''dandelin/vilt-b32-finetuned-vqa''' ) UpperCAmelCase = '''./tests/fixtures/tests_samples/COCO/000000039769.png''' UpperCAmelCase = '''How many cats are there?''' UpperCAmelCase = vqa_pipeline(image=_snake_case , question=_snake_case , top_k=2 ) self.assertEqual( nested_simplify(_snake_case , decimals=4 ) , [{'''score''': 0.8799, '''answer''': '''2'''}, {'''score''': 0.296, '''answer''': '''1'''}] ) UpperCAmelCase = vqa_pipeline({'''image''': image, '''question''': question} , top_k=2 ) self.assertEqual( nested_simplify(_snake_case , decimals=4 ) , [{'''score''': 0.8799, '''answer''': '''2'''}, {'''score''': 0.296, '''answer''': '''1'''}] ) UpperCAmelCase = vqa_pipeline( [{'''image''': image, '''question''': question}, {'''image''': image, '''question''': question}] , top_k=2 ) self.assertEqual( nested_simplify(_snake_case , decimals=4 ) , [[{'''score''': 0.8799, '''answer''': '''2'''}, {'''score''': 0.296, '''answer''': '''1'''}]] * 2 , ) @require_tf @unittest.skip('''Visual question answering not implemented in TF''' ) def snake_case_ ( self ) -> Optional[int]: """simple docstring""" pass
350
from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available() and is_transformers_version(">=", "4.25.0")): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import UnCLIPImageVariationPipeline, UnCLIPPipeline else: from .pipeline_unclip import UnCLIPPipeline from .pipeline_unclip_image_variation import UnCLIPImageVariationPipeline from .text_proj import UnCLIPTextProjModel
152
0